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Finding the Commands on the HP-28S

Explanation: Directory path and page are given in parentheses. For example,

CLLCD (Plot-4) means that the command CLLCD is on the fourth page of the

Plot directory. To find CLLCD, press |PLOT||NEXT||NEXT||NEXT| (or

[PLGT[PREV] ).
ACOS (Trig)

ASIN (Trig)

ATAN (Trig)

CENTR (Plot-2)

CLLCD (Plot-4)

COS (Trig)

COSH (Logs-2)

CRDIR (Memory)

C—R (Complx)

DEG (Mode)

DEPTH (Stack-2)

DGTIZ (Plot-4)

DO (Branch-3)

DRAX (Plot-4)

DRAW (Plot)

DRWZX (Plot-3)

DROP2 (Stack)

DROPN, DUPN (Stack-2)

DUP, DUP2 (Stack)

ELSE (Branch)

END (Branch)

EXP (Logs)

FACT (Real)

FIX (Mode)

FOR (Branch-2)

HOME (Memory)

IF (Branch)

IFTE (Branch-2)

ISOL (Solv)

 

 

LN (Logs)

LCD—, —LCD (String)

MENU (Memory)

NEXT (Branch-2)

ORDER (Memory)

PIXEL (Plot-4)

PMAX (Plot)

PMIN (Plot)

PPAR (Plot-2)

P—R (Trig-2)

RAD (Mode)

RCEQ (Plot, Solv)

ROLLD (Stack-2)

R—C (Complx)

R—P (Trig-2)

SIN (Trig)

SINH (Logs-2)

SOLVR (Solv)

START (Branch-2)

STD (Mode)

STEQ (Plot Solv)
TAN (Trig)

TAYLR (Algebra-2)

THEN (Branch)

UNTIL (Branch-3)

WHILE (Branch-3)

*H (Plot-2)

*W (Plot-2)

2 = (Stat)

All other HP-28S commands used in this book are on the keyboard.
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Calculus and Calculators

Over the last ten years, microcomputer technology has revolutionized business

and industry. Similarly, the wide accessibility of computing power is changing the

way in which mathematics is learned and applied. We would estimate that the

HP-28S could perform 95 percent of the calculations on a typical calculus exam.

However, the point of learning the calculus is not simply to generate correct answers

to problems. Indeed, the purpose is to learn how to think mathematically. In this

book, we show how the graphical, symbolic and numerical capabilities of the HP-28

and HP-48 families of calculators can help students think about and understand

mathematics in new ways.

As we complete this book, the HP-28S is barely three years old. Within the

last year, it has been joined by its cousin, the HP-48SX, and most recently by the

HP-48S. These graphing calculators are incredibly powerful, each with a tremendous

amount of built-in memory and a sophisticated programming language. Indeed, with

the ability to perform symbolic and graphical as well as numerical manipulations,

these machines might be more correctly referred to as hand-held computers. Used

properly, the HP-28S/48SX/48S can be a valuable tool in exploring the concepts of

calculus.

What you find in this book is the result of our experiences in the classroom

as well as in computing in general. Our discussion does not focus on the HP-

285/485X/48S. Rather, we concentrate our efforts on the main concepts of the calcu-

lus, using the calculator as a tool. We have therefore emphasized only those features

of the HP-285/48SX/48S that aid the study of calculus. There are many other fea-

tures of these machines which we give only passing mention to or ignore altogether.

For those interested in a more thorough discussion of the calculators’ features, we

suggest the excellent book HP-28 Insights by William Wickes (see the bibliography

starting on page 267).

vii
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Using This Book

As its size alone should indicate, this book is certainly not a complete calculus

text. The reader should have a standard calculus text as well, for although much

of our discussion is self-contained, we make frequent reference to material found

in such a text. Our choice of topics reflects those most often found in the first

two semesters of calculus which we feel most benefit from the introduction of the

HP-28S/485X/48S. We also provide more realistic problems as well as the means of

solving them.

You can use this book in a variety of ways. You will find, as our own students

have, that you can sit down with this book and your calculator and learn calculus

with the fresh approach of a new technology. Work through the book to gain that

new perspective, use our exercises to supplement those of your standard calculus

text, or — and this is our preferred choice — do both. No experience with graphing

calculators is needed to use this text. We start from scratch in Chapter 1. You

need only have the desire to learn some new mathematics using a slightly different

approach.

We strongly recommend that you work carefully through Chapter 1 before going

on to the later chapters. The material on graphing found there is prerequisite for

almost everything that follows. This is particularly true if you are using the HP-28S,

whose graphics are more difficult to deal with than the HP-48SX.

The HP-28S and the HP-48SX are in some ways very similar machines and we

most often discuss their use making no distinction between the two. As far as the

programming goes, the two machines are almost identical. In those few instances

where there are differences, we have tried to explain them carefully and when there

is any chance for confusion, we have discussed the two machines separately. The

most noticeable difference is in the handling of graphics and so, in Chapter 1, we

have provided easy-to-use programs which allow the HP-28S to mimic some of the

graphics functions of the HP-485SX. We make no distinction at all between the HP-

485X and the HP-48S, since the two are identical, except for the expandability of

the HP-48SX. For the purposes of this text, then, all references to the HP-48SX

apply equally to the HP-48S.

We have tried to write programs that are as easy to follow as possible. By doing

so, we sometimes sacrifice a certain level of computational efficiency or sophistica-

tion, but we hope that we have better enabled you to understand the mathematics.

We have included many examples throughout the text, as well as a wide variety of
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exercises. Of particular note are the “Exploratory Exercises” found at the end of ev-

ery section. These provide good experience in tackling some extended, open-ended

problems. We have also provided numerous tips on using the HP-28S/485X/48S

more efficiently.

For your convenience, when we refer to a special key (or a “softkey” located in

one of the many menus), we put that key in a box. For instance, indicates

that you should press the ENTER key, rather than type the letters E-N-T-E-R.

Likewise, indicates that you should press the CRDIR softkey located in the

Memory menu. In order to help you find the commands in the numerous menus,

we have included a listing inside the front cover of the book (for the HP-28S) and

inside the back cover (for the HP-48SX/48S).
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CHAPTER

 

Overview of

the HP-28

and HP-48

1.1 Introduction

Calculus is a very broad and tremendously deep study with many and varied

applications. As the name implies, it is filled with calculation. You will compute

velocities, areas, volumes, etc. The skills that you learn in calculus are basic tools

for studying (and yes, practicing) engineering, physics, chemistry, economics and

many other diverse fields. But, calculus is more than just necessary background

work for the sciences. It is a fascinating subject in its own right, where geometry

and algebra come together into a powerful problem solver. The mathematical theory

developed here will allow you to make connections between seemingly unrelated real

world problems, ultimately leading to a deeper understanding of the world in which

we live.

These are some pretty strong statements that we’ve made. Indeed, what we

have described above is the ideal. Unfortunately, the ideal and the reality are not

always quite the same. The often messy details of algebra and computation can

sometimes obscure the calculus that’s behind them. We cannot, nor would we want
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to, get rid of all the algebra and computation involved in studying calculus. Indeed,

these things are necessary. However, we also don’t want you to get so lost in the

details that you miss the larger picture.

By giving you easy access to fast calculations and graphics, your HP-28S/48SX

can help you to discover important relationships. Because of its speed and easy

interface, you can ask those “What if I did this...” questions, without a large in-

vestment of time. In short, you can experiment. You can focus on the calculus

questions, and leave many of the details to your HP-28S5/48SX assistant.

As is the case throughout the book, most of what follows is applicable to users

of both the HP-28S and the newer HP-48SX graphing supercalculators. Except

for the handling of the graphics and the layout of keys and location of programs in

subdirectories, there are few differences in the functionality of the two machines that

affect their use here. In the instances where there are differences, we first give the

HP-28S keystrokes and displays and make comments regarding the modifications

needed for the HP-48SX. We also end the section with a set of notes for HP-48SX

users.

ARITHMETIC ON THE HP-28S/48SX

The first features that you are likely to notice on the HP-285/48SX are the

Reverse Polish Notation (RPN) and the stack. When you first turned your ma-

chine on, you probably tried to add or multiply two numbers. If you tried to enter

3+5

the calculator beeped at you before you could even type the 5. Most calculators

use algebraic notation, where expressions are entered in the same way as they are

written (as above). This is not so for RPN machines such as the HP-28S/48SX. For

instance, to compute 345, you would enter

3 [ENTER] 5+  OR 3 [SPACE] 5 +

To compute 3 — 5/21, press

3 5 21/ -

At first, if you are used to algebraic calculators, this seems rather awkward, but

with practice, RPN will become quite natural. In fact, you'll find in the examples

below that for longer calculations, RPN has significant advantages over algebraic

notation.
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Next, try computing 4(2 + 3/v/11). Note that the square root symbol on the

HP-28S is printed in red above the — key, so that you need to press the red (shift)

key followed by the — key to get /T .

There are a number of ways to compute 4(2 +3/v/11), depending on how much

pencil-and-paper work you do first and how you choose to use the stack. One

sequence is

3 [ENTER] 11 / 2 [ENTER] + 4 [ENTER] *

The result is 11.6181361349.

NOTE: Throughout the text we will denote multiplication by * and division by /.

You should note that although the keys are marked by “x” and “+,” respectively,

the operations are displayed as “*” and “/” on the screen. Further, we will denote

exponentiation by A (e.g., z2 will correspond to “X A 3”). This usage is consistent

with the displays of both the HP-28S and the HP-48SX and the labeling of the

HP-28S key. The corresponding HP-48SX key is labeled y*.

You can think of the calculator’s stack as a (almost endless) scratchpad on

which values are stored. Each line of the stack is numbered, with the bottom line

labeled line 1. Although you can see only 3 or 4 lines of the stack at any one time,

there may be many, many numbers stored on lines which are not presently visible.

For the moment, think of the stack as a tremendously long list of numbers. We will

discuss the uses and manipulation of numbers on the stack shortly.

Try computing 6\/575 + 7{5/%. To do this on an algebraic calculator, you

would need to do several side calculations, recording the results of each by storing

them in a memory or by writing them down for use in completing the calculation.

On the HP-28S/48SX, this can be done with great ease, seamlessly. For instance,

we can break the calculation up into three parts:

(1) 5 3/ 6 *
(2) 5 [ENTER] 8 / 1 [ENTER] 3 / A 7 *
(3) Press + to add the results of the calculations in (1) and (2)

The result of this calculation is 13.7308825058.

The following examples will introduce you to some of the most commonly used

features of the HP-28S/48SX, while exploring some interesting situations.
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Example 1. The Stack

Consider the case of the trapped video game robot. A robot starts at one end

of a corridor (z = 0) and moves toward the other end (z = 1). At the same time,

the walls at the ends of the corridor begin closing in, moving at half the robot’s

speed.

 

O

   
  L

x=0 x=1

 

The robot runs into a wall at £ = 2/3 (why?) then immediately turns and goes

the other way. Since the walls are now separated by a distance of 1/3, the next

collision occurs after the robot has gone (2/3)(1/3) back to the left. The second

collision, then, is at x = 2/3 — 2/9. The walls are now separated by a distance of

1/9. (Why?) The third collision will be at z = 2/3 —2/9 4+ 2/27, and soon. Where

exactly will the robot be trapped?

We have analyzed the problem enough to see the pattern of where the collisions

occur. Let’s use the HP-285/48SX to crunch some numbers. First, compute 2/3

(press 2 3 /). Then compute 2/9 (press 2 9 /) and subtract the

two values (press — ). Then add 2/27 (press 2 27 / + ), and continue in

this way to generate the table below.

 

 

   

Key Sequence Result

2 3/ 666666666667
2 9/ — 444444444445
2 27 / +  |.518518518519
2 81 / — 1493827160494
2 [ENTER| 243 / + |.502057613169
2 [ENTER]| 729 / — |.499314128944
 

It looks like we're homing in on .5. We’ll examine this idea of “homing in”
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(called a limit ) very carefully in Chapter 2. We’ll look further into limits involving

sums in Chapter 6. For now, let’s take .5 as an educated guess and rethink the

problem somewhat. Is .5 a reasonable solution? The answer is “yes.” Since the

walls are traveling at the same speed, they will meet in the middle at x = .5, with

the robot trapped between them. .

You should notice several things about the preceding problem before going on to

Example 2. We worked this problem in three stages: basic analysis, calculations to

estimate the solution and an evaluation of the estimate. You should follow this pro-

cess whenever possible. A numerical answeris of little value without understanding

its meaning.

Example 2. The Solve Menu

In Example 1, we were able to guess what turned out to be the precise solution

by computing several collision points and recognizing the pattern. We will often

search for an answer by repeatedly computing values of a function. For instance,

we know from algebra that for

1

@) = Ta02

f(x) gets steadily smaller as = gets larger (for x > 1). Let’s find a “smallness

threshold,” e.g., find the smallest positive integer n such that f(n) < .001. We'll

start by computing f(2) and then we’ll see how the HP-285/48SX can make our

task easier. The keystroke sequence

2 [z?] 120 [ENTER] 2 * + 22 — [1/z]

gives us f(2) = .0045045045, which is not small enough.

It looks like it will take a lot of typing to generate all of the function values we

need. Fortunately, the HP-28S/48SX has some features to minimize this work. We

can put the expression for f(x) onto the stack by enclosing the expression in single

quote marks. The ’ tells the HP-285/48SX to delay execution of the commands.

Type

"1/ (X A2+ 120* X — 22) ’ [ENTER]

Note that the parentheses are not optional here. (Why not?)
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Next, activate the Solve menu by pressing (or on the HP-485X).

The top row of keys are now “soft keys” whose function is described by the labels

appearing on the screen directly above them. The soft key labeled (for “store

equation”) will take the expression on line 1 of the stack and store it for later use

in a variable named EQ. The soft key labeled (for “recall equation” on the

HP-28S; use on the HP-48SX) will recall the expression stored in EQ

and return it to line 1 of the stack. Since we presently want to store our function,

we press . Notice that the expression has now been removed from the stack.

Now, activate the Solver menu (press the soft key). To evaluate f(2),

first set x = 2 by pressing 2 followed by the soft key . (Note that pressing the

usual X key will not have the same effect.) The top of the screen should show

Now press the soft key . The value f(2) = .0045045045 should be returned

to the stack. Try computing f(3): press 3 and we get f(3) = .00288184.

Continue by computing f(4), f(5), and so on, until you have f(n) < .001. You

should get f(8) = .00099800 < .001. The entire sequence of calculations follows.

 

 

 

Key Sequence |Result (to 8 places)

2 .00450450
3 EXPR= 00288184
4 .00210970
5 00165837
6 .00136240
7 .00115340
8 EXPR= .00099800   
We should mention at this point how to correct an expression that has been

mistyped. Rather than retype the entire expression, you should use the

command, built into the HP-285/48SX. Suppose that, instead of "XA2+120*X—

22’, you had accidently typed

"X A2+ 122*%X — 22

If this expression is on line 1 of the stack, you can edit it by pressing

(located above the key on the HP-28S and above the key on the

HP-48SX). The four arrow keys (in the top row of keys on the HP-28S) will now

move a blinking cursor through the expression. If you are using an HP-28S, pressing
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any key replaces the current character with the one pressed. (This is called replace

mode.) On The HP-485SX, you must first press the soft key to enter replace

mode. Try this now by moving the cursor over to the second 2 in 122 and pressing 0.

Press and the original expression appears corrected on line 1 of the stack.

Suppose, instead, that the coefficient of X should be 1200 instead of 120. Press

and move the cursor to the spot where you want to insert the extra 0. On

the HP-28S, first press the key (in the top row of keys; this puts the editor in

insert mode) and then press 0 to insert the extra 0. Again, pressing returns

the edited expression to line 1 of the stack.

Finally, suppose that you had wanted z* instead of 2. Move the cursor over

to the 2 and press the key to delete the 2 and then replace it with a 3.

NOTE: On the HP-48SX, the editor is initially automatically in insert mode and

you must press the soft key to switch back and forth between insert and replace

mode.

As you edit more and more complicated expressions, you will find the need

to switch back and forth between insert and replace mode while in the process of

editing a single expression. This will become routine in a short time.

Example 3. The Stack Menu

At this point, if you've been following along with the calculations, your stack

should contain a number of entries, not all of which are visible. Before clearing the

stack, let’s experiment with some of the commands which allow you to manipulate

items on the stack. Activate the Stack menu by pressing on the HP-28S (it

is a red label located above the G; on the HP-48SX, press and then ).

Press [located on the second page of the HP-48SX Stack menu (press

to get the next page) |: the .001 on line 1 is duplicated. Now, press (or the

key on the HP-48SX; in both cases this is not a soft key): the entry on line 1

of the stack is removed.

In the Stack menu, and work like and , but operate

on 2 lines of the stack at the same time. Try these now. If you haven’t already done

so, go to the second page of the Stack menu by pressing . Now, enter 3

Although you may not be able to see it yet, something did happen. Press

and the screen displays lines 2, 3, and 4. Press twice more and note that

the entries on lines 4-6 are duplicates of those on lines 1-3. (On the HP-48SX, the
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display will show the first 4 lines of the stack and you use the up/down arrow keys

to move around the stack.) That is, 3 copied the first 3 stack lines onto the

next 3 lines.

Enter 3 . The value on line 1 is rolled to line 3, with the values in lines

2 and 3 rolled down to lines 1 and 2, respectively. Try 3 . The value on line

3 is rolled to line 1, with the values on lines 1 and 2 rolled up. Finally, press

The values on lines 1 and 2 are interchanged. We encourage you to discover the

functions of the other stack commands on your own. When you are ready to move

on, press (or on the HP-48SX) to clear the entire stack.

We summarize below the most frequently used stack commands. (The entries

in parentheses indicate the corresponding HP-485SX commands.)

 

 

   

Command Result

STACK (STK) |Activate the stack menu
DUP Copy line 1

n DUPN Copy first n lines

DROP Delete line 1

n DROPN Delete first n lines

VIEWT (4) Move viewing window up
VIEW| (V) Move viewing window down
n ROLL Move line n to line 1

n ROLLD Move line 1 to line n

SWAP Swap lines 1 and 2
 

In Example 2, we used the Solver to simplify repeated function evaluation. We

now illustrate the use of the Solver for a more complicated example.

Example 4. Parameters and the Solver Menu

 

 

la -
- R =1

Suppose that a ball is thrown from ground level with initial speed S ft/sec and

initial angle A above the horizontal. If air effects (such as lift and drag) are ignored,
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an equation giving the horizontal range in feet is

S?sin(2A)

32

If a ball is thrown at the initial speed of 100 mph at an angle of 30°, how far will it

go? First, make sure that your calculator is in degrees mode: type D E G |ENTER

or press [MODE| and then press the soft key (on the HP-48SX, press [MODES

and is located on the third page of the Modes menu). Type

'SA2*[SIN]2*A) /32’ [ENTER]

Note that the sine function is located in the Trig menu on the HP-28S. Activate

the Solve menu (press or ) and store the expression (press ).

Activate the Solvr menu (press the soft key ), and you will see soft keys for

both variables, and , as well as one for . Before we store a value in

S, we need to convert 100 mph into feet per second. This is done by multiplying by

5280 (feet per mile) and dividing by 3600 (seconds per hour). Press

100 5280 * 3600 /

or use (see the HP manual). You should have 146.666 on line 1 of the

stack. Press the soft key . Then enter 30 and press the soft key . Press

to obtain the range: R = 582 ft. How much farther would the ball go if it

were thrown at an angle of 40° with the same initial speed? Press 40

and we find that the ball would go 662 ft. Press — (this subtracts the value on line

1 from the value on line 2) to see that the difference is about 80 ft.

Now, suppose that an outfielder needs to throw a ball 300 ft, and that he/she

can throw with an initial speed of 100 mph. What is the best angle of release? In

this case, best would mean the smallest angle which gets the ball to its destination.

(Why?) From our work above, we can conclude that 30° is too high. From the

following calculations, we conclude that the best angle would seem to be slightly

greater than 13°.
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Key Sequence Result (rounded)

20 432.10
10 EXPR= 229.91
15 336.11
13 294.68
14 EXPR= 315.59    

Note that we found an answer to this problem through a simple process oftrial-

and-error. In section 1.3, we will show a more direct way of solving an equation while

getting a more precise answer. For now, let’s note how painless the trial-and-error

process was with the help of the Solver.

Example 5. User-Defined Functions

The HP-28S5/48SX is a remarkably flexible machine. With the large number

of built-in programs and the expansive 32K of user memory (i.e., 32,000 bytes or

about as much as some early personal computers), you can customize your machine

with ease, without doing any complicated programming. Throughout the rest of this

section, we will be giving you ideas on the best way to customize your HP-28S/485X

for use in calculus.

First, press (or on the HP-48SX) to activate the User menu. You

should see soft keys displayed for A, S, X and EQ, which are the variables we have

used in our previous examples, as well as keys for any other variables which you’ve

intentionally or unintentionally stored. Press and you get the last angle that

you tried in Example 4. The HP-28S/48SX, then, stores whatever variables and

routines you create as you solve problems. We can take advantage of this storage

to save commonly used variables and functions, for repeated use.

Let’s start by creating a user-defined function for Example 2. All HP-285/48SX

programs begin with the delimiter , and we use the symbol (in red above the

U on the HP-28S and in blue above the 0 on the HP-48SX) to create a local variable.

Local variables allow us to create highly readable programs without requiring an

extra variable in our User menu. As an example, enter the following program.

K—->X"1/(XAN24120*X —-24)" >

A brief explanation of each of the components of the program follows.
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Program Step Explanation

< Begin the program.

— X Take the value from line 1 of

the stack and store it in

the local variable X.

"1/ (XA24120%X -24)° Evaluate the given
algebraic expression.

> End the program.

Place the program on the stack.

B Store the program under the name  F in the User or Var menu.  
 

NOTE: The HP-285/48SX is very sensitive to the placement of blank spaces. For

example, in the above program, there must be a blank space between the — and the

X. Throughout this text, be very observant as to the inclusion or the lack of blank

spaces. This is very important!

Following the first ’ is the function which we examined in Example 2. Notice

that F has become the first soft key in your User menu. We can now evaluate F

without entering the Solver menu. Press 2 and then the soft key and f(2) is

computed, as before. Notice that the value of the local variable X in the program

does not affect the value of the (external) variable X in your menu: press the soft

key (it is not 2!). The function F is now available to use at any time, in the

context of Example 2 or as part of another program (as we will do in Example 6).

NOTE: If you no longer have use for a variable, then you can easily remove it from

memory. For example, type A’ to delete A ( is located above the

4 on the HP-28S and above the key on the HP-485X).

PROGRAM NOTE: If your program does not work for some reason, and returns

an error or simply keeps running and won’t stop, you need only press the key

to return the stack to normal. If you do have a problem, you should first take

a look at the program. For the program above, this can be done by pressing 'F’
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(recall). is located above the key on both the HP-28S and the

HP-48SX. Doing this will return a copy of the program to line 1 of the stack. If

the program contains an error, you can correct it by using the command,

discussed previously. When you are through editing, you will need to use to

store the newly edited expression. An alternative to this is the command

(located above the ’ key on the HP-28S and above the key on the HP-48SX).

Pressing 'F’ will recall the expression stored in the variable F to the stack

and automatically enter edit mode. When is pressed at the end of the edit,

the edited expression is automatically stored back in the user variable from which

it was taken. This is faster and sometimes more convenient than using the three

separate commands , |EDIT| and to accomplish the same thing. n

The HP-28S/48SX accommodates many different levels of programming, from

the crude to the very sophisticated. Since this is not intended as a text on the pro-

gramming of the machine, but rather, in its use in learning calculus, we have included

mostly very short and easily understood programs. We suggest some more sophisti-

cated programs in the exercises for those who are interested in this aspect. The in-

terested reader is also referred to the excellent book HP-28 Insights: Principles and

Programming of the HP-28C/S , written by William Wickes (see the bibliography

at the back of the book). Our aim throughout the book will be to provide the

student with useful programs that are easy to use, easy to understand and as simple

as possible. Therefore, at times we have avoided what might be a more efficient

program for the sake of choosing something which is simpler.

Example 6. Programming

As a first example, we will write a one-step program for Example 2. An auto-

mated version of this program will be discussed in the exercises.

Recalling Example 2, we would like to push one button and have the HP-

285/48SX calculate the value of f(n) for the next value of n. The key to many

HP-28S5/48SX programs is having an understanding of how you want to make use

of the stack. In the present case, we’ll keep the current value of n on line 2 and the

value of f(n) on line 1.

Let’s first run through the procedure manually. Enter 2 and f(2) on the stack:

press
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2 [ENTER] 2 [F]

where again, refers to a soft key in the User menu. Before computing the next

value of f, we want to remove f(2) from the stack, and so, press . Next, to

increase the 2 on line 1 to 3, press 1 +. We can now evaluate f(3) by pressing

although we’ll have f(3) on the stack, but not 3! So we need to first duplicate 3

(press or ) before pressing .

We are now ready to write a program. When typing the program, you should

press the key instead of typing the 4 letters in the word DROP. Also, get

from the Stack menu. Enter the following program:

< [DROP] 1 + [DUP| F >

 

 

Program Step Explanation

< [DROP Begin the program and drop

the entry on line 1 of the stack.

1+ Add 1 to the value on line 1.

Copy the value on line 1.

F > |ENTER Compute the value of F' at the

value on line 1. Place the

program on the stack.

PG’ Store the program under the
name PG.   
 

Since the program needs two values on the stack (one to be dropped and one

to add 1 to) we need to initialize the stack: type 2 [ENTER] 2 . Now, press

several times, and observe how the values of n and f(n) (located on lines 2 and 1

of the display) change. .

Note that the HP-28S/48SX has no difficulty in referencing our user-defined

function F, and that we wrote this program essentially by including all the same

keystrokes we would have used if we were performing all the steps manually. If

you want to change the function F (as we ask you to in the exercises) you may do
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so without making any changes to PG. The HP-28S/48SX encourages this type of

structured programming: breaking up larger tasks into small independent tasks.

HP-48SX NOTES

For the most part, the changes in instructions noted in this section for HP-

48SX users have been notational. As a reminder, we summarize the differences in

the keystrokes here:

 

HP-28S HP-485X

SPACE SPC
A y*

CHS +/—
RCEQ —STEQ
USER VAR
DROP —

 

    
Most of the menus included in the HP-28S are also included in the HP-48SX,

although some are found deeper in the directory structure. For example, the HP-

48SX does not have direct access to the Stack menu. Instead, Stk is a menu which

can only be accessed by first pressing . The [A] key acts the same as [VIEW]] on

the HP-28S, but also brings up a menu of several useful stack commands, including

[ROLL| , [ROLLD] , [DUPN] and :

The HP-48SX is easily switched back and forth between degrees and radians

mode by pressing (above the 1). In radians mode, you will see the message

RAD in the top left corner of the screen. Press again, the message disappears,

and you are back in degrees mode.

 

The trig functions sine, cosine and tangent, the exponential function e® and the

natural logarithm function In z are located on the keyboard of the HP-48SX (e® and

In z are above the key), while they are accessed from Trig and Logs menus on

the HP-28S.

The factorial is the ! key located in the Prob menu which is accessed by pressing

first.
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Exercises 1.1

In exercises 1-9, compute the indicated values. If you are familiar with exponential

functions, compute the values in exercises 10-12, using the soft key in the Logs

menu (or the key on the HP-48SX).

1. 4+5/12 2. 4/(3-1/6) 3. 7T—4(1+2/3)

4. 42 +2/7 5. (4 —4/9)? 6. 13.53 — 122

7. (3/7+1)1/2 8. (4.2%3.141)1/3 9. (3.4%4.1+1/3)!2
10. e* +1 11. (e +€72)/2 12. e=3 +1n(3)

In exercises 13-18, compute the first 6 terms as in Example 1. If possible, guess

what number the sum is “homing in” on. NOTE: in exercises 16 and 18, you may

want to use |FACT| in the Real menu (or ! in the Prob menu on the HP-485X).

 

 

1 1 1 1 1 1 1
13. - +-+-+—+... 4. 1— -4+ -——+...

2+4+8+16+ 3+9 27+

15 L + ! + ! + 16 l—i—i—i—i-l-
12 23)  3(4) 7 2 34 5T

4 4 4 1 1 1
A=+ - ==+ .. 8. 1+=-4+ =+ —+...17 3+5 7+ 8 +2+3!+4!+

6)3 6)° 6)7
19. Repeat Example 1 for 7r/6—(7ré') +(7ré') -(W{]') + ... To make this as easy

as possible, store 7/6 in a variable P. Note that 7 is in red above the period

(or above the key on the HP-48SX) and pressing 7 gives you the symbol

m. To get a decimal approximation of 7, press —=NUM| .

In exercises 20-21, we will discover the relationship between the quadratic formula

and our work in Example 2.

20. Note that if 2 4+ 120z + 22 > 1000 or z2 + 120z — 

22 + 120z + 22 1000
978 > 0. Use the quadratic formula to solve this equation. You should get two

solutions. Use your calculator to find a decimal approximation of the larger

solution. How does this relate to our answer in Example 2?7

21. Use the quadratic formula as in exercise 20 to determine the smallest integer

n > 0 such that f(n) < 1/1000 for f(z) = 2/(z? + 10z + 100).

22. In this exercise, we assume that you have stored the function in exercise 21

using |STEQ| (if not, do so now). Enter the Solve menu. On the HP-28S, press
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23.

24.

25.

26.

27.

28.
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and then ; on the HP-48SX, press . The function 2/(z2 +

10z 4+ 100) should be on the command line and a flashing cursor positioned at

the first character. Use the arrow keys to move the cursor and change 100 to

80. On the HP-28S, press ; on the HP-48SX, press :

Rework exercise 21 with this new function.

As in exercise 22, edit the current EQ, this time changing 80 to C. To set C=40,

press 40 'C’ . Rework exercise 21 using C=40 and C=120.

Press (or on the HP-485X) and find the user-defined function F

we used in Example 5. Press’ ’ and this function will be displayed

for editing. Change the power on z from 2 to 3 and rework Example 6. Note

that you do not need to change program PG.

Using as in exercise 24, change the power on z in F from 3 to N. Set

N=4 by pressing 4 'N’ . Then rework Example 6.

You have undoubtedly noticed that the results of certain calculations have

been displayed in scientific notation. For instance, compute 2/27. The dis-

played answer of 7.40740740741E-2 is shorthand for 7.40740740741x10~2 or

.0740740740741. You have some control over the calculator’s display through

the command located in the Modes menu. Press 6 and see how the

displayed number changes. Also press 2 . If you do not need 12 digits

of accuracy or simply do not want the screen cluttered with 12 digits, you can

use at your convenience. Press to return to the standard 12-digit

display.

As with most calculators, the HP-28S5/48SX has a key which will compute

1/x for whatever z is on the display. This is an example where all calculators

use RPN. Unlike other calculators, though, the key on the HP-28S/48SX

will find the multiplicative inverse of expressions. To discover this, press * X A

2 - 22’ |[ENTER| and then press . The INV stands for inverse, and the

229" If you press

this expression is squared, and if you press the expression on the stack is

expression on the stack is completely equivalent to 

equivalent to cos[1/(x? — 22)2]. In many cases, you can save keystrokes using

this nice feature of the HP-28S/48SX.

Type in the program < 0 1+ F 001 < F>

and store this in the user variable PG2. Compare PG2 to PG in Example 6.

To rework Example 6 (or exercise 25, if you have changed F) simply press



29.

30.

31.

32.
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Which program, PG or PG2, do you like better? We will typically present

programs like PG to avoid infinite loops [PG2 would never stop if f(z) > .001

for all  unless we interrupted it by pressing ] and to gain the educational

value of watching processes step by step.

When going to a bank, have you ever thought that your line moved slower than

the other lines? William Feller in his classic An Introduction to Probability

Theory and Its Applications, volume 2, devotes a section to “The Persistence

of Bad Luck.” Feller derives the formula f(n) = for the probability
n(n +1)

that you will wait longer than the next n — 1 people choosing a line (under

various assumptions such as everyone receives the same service and the lines

never thin out). In exercise 15, you were asked to add up 6 of these probabilities.

The total probability is always 1 (100%). Did you guess 1 as the limiting value

in exercise 157

In the situation of exercise 29, what is the average number of people that you

would wait longer than? This is computed with the expected value formula

f(1) +2f(2) +3f(3) + 4f(4) + ... Show that this sum keeps getting larger

without ever homing in on any number. Talk about bad luck picking lines!

The so-called “dining room problem” is another probability problem whose

solution can be found in Feller’s An Introduction to Probability Theory and Its

Applications, 3rd edition, volume 1. Suppose that n people sit down to eat and

then discover that there are name tags at each seat. What is the probability

1
that nobody sat down at the right place? The formulais P = - ——+——...+—

! n!

(if n is even) which you were asked to compute for n = 6 in exercise 16. What

number did you guess the sum homes in on? If the number of people for dinner

becomes larger, do you think it becomes more or less likely that someone will

accidentally sit in the right place? Compare your answer in exercise 16 with

el = .367879441171....

An ancient riddle is attributed to Zeno, a Greek philosopher of the fourth

century B.C. A version of Zeno’s paradoz starts with Achilles 1 meter behind

his rival in a race, but gaining at the rate of 1 meter/sec. Clearly, Achilles

catches up in 1 sec. But, argues Zeno, before he catches up he must cut the

distance to .5 meters (this takes .5 sec), and then he must cut the distance

to .25 meters (this takes .25 sec), then to .125 meters, and so on. Therefore,

it would seem Achilles can never catch up! The sum in exercise 13 gives the
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amount of time it takes to complete this seemingly endless process. Did you

get 1 sec?

33. You may have already heard about the dangers of the population explosion.

The following dramatic warning is adapted from the article “Doomsday: Friday

13 November A.D. 2026” by Foerster, Mora and Amiot in Science, volume

132, November 1960, pp. 1291-1295. Create, as in Example 5, a user-defined

function P given by

P(x) = x + .0052%*°!

If x is the current population, P(x) is a prediction of next year’s population.

Start by entering 3.049 (the population in 1960 was about 3.049 billion). Then

press the soft key [P] . You should get about 3.096, which is an estimate of the

population in 1961. Press [P] again: 3.144 billion is an estimate of the 1962

population. Press [P] repeatedly and compare the equation’s estimates with the

actual populations shown. Then project ahead to the year 2035. Frightening,

isn’t it?

YEAR POPULATION (in billions)

1970 3.721

1980 4.473

1985 4.865

EXPLORATORY EXERCISE

Introduction

In this exercise, we will take an extended look at a question that is open-ended; that

is, there is no single correct answer or even a single correct strategy for finding a

solution. The HP-28S/48SX makes it easy to try out ideas. This is when mathe-

matics becomes fun! The general question to be addressed is: what is the optimal

angle at which to punt a football? Mathematicians view words like “optimal” or

“best” with suspicion, and a large part of this problem is to decide what should

be meant by “optimal.” We will assume that a ball kicked with initial speed S and

S?sin(2A)

50
intended to take into account gravity and air resistance. The ball will be in the air

for T — Ssin(A)

16
to run 25T + 30 ft from the punter.

initial angle A will cover a horizontal distance of R = where the 50 is

seconds, during which time the punt coverage team will be able
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Problems

We want to compare the distances covered by the punt and the punt coverage team.

Recall that we can evaluate two expressions at the same time in the Solver. We will

take advantage of this feature by entering the equation

"SA2*SIN(2*A)/50=25*S*SIN(A) /16 + 30"’

and storing it (press ). Now enter the Solver. We will use degree measures

for angles so make sure you are in degrees mode. Enter 90 for S (press 90 ) and

60 for A (60 ). Press and (or on the HP- 48SX). The

left side of the equation is the distance covered by the punt (in this case, about 140

ft) and the right side of the equation is the distance covered by the coverage team

(in this case, about 147 ft). Since the coverage team can cover more ground than

the punt, it is reasonable to assume that there would be no punt return. Now, try

an angle of 45°. The punt goes 162 ft and the coverage team goes 130 ft. How

far would this punt be returned? A simple rule would be to split the difference:

the punt returner would make it back to the 146-ft mark. From the punt team’s

perspective, this is better than the 140-ft result we got from an angle of 60°. Your

job is to develop a rule for deciding where the punt returner is tackled (preferably

more sophisticated than the one given above) and then maximize the net distance.

Further Study

There are numerous follow-up questions for this problem. For example, we used an

initial speed of 90 ft/sec in the problem above. Does the optimal angle change if

you change S? Compare your results to others’ in your class, and have fun!

1.2 Graphing Capabilities

The expression “a picture is worth a thousand words” is particularly true in

mathematics. For complicated problems, a graph is often useful to communicate

the statement as well as the solution of a problem. In mathematics, graphs also

provide simple summaries of the important properties of a function. For instance,

the graph displayed in Figure 1.1 (which is taken from the screen of an HP-485X)

shows a function which has a minimum value of approximately y = 0, located at

about r = 0. We would also anticipate that the function would continue to get

larger to the left and to the right of the screen displayed.
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FIGURE 1.1

The HP-28S/48SX lets us immediately see what the graph of a function looks

like. We can then use calculus skills to precisely label the important points on

the graph, and to precisely determine the behavior of the function in regions not

displayed by the graph. This all sounds great, but there is a significant caution.

Your HP-285/48SX does not draw graphs. All that it does is plot points, albeit

lots and lots of points. You should not be so dazzled by the speed and comparative

ease of the graphics that you lose sight of this limitation. The graphs produced by

the HP-285/48SX are essentially a bunch of (not necessarily connected) dots on the

screen. Even so, because of the large number of points being plotted, the graphs

are very useful and we will exploit them.

Because of the differences in the graphics on the HP-28S and HP-48SX, we

present separate sections for the two machines. The HP-28S section has more dis-

cussion, and HP-48SX users are urged to read this section before working through

the HP-48SX section. HP-28S users may wish to read through the HP-48SX section

for comparison purposes.

GRAPHING ON THE HP-28S

We begin our discussion by examining the graphics features built into the HP-

28S. While these are very powerful, they are not very easy for beginning users to

handle. In the latter half of our presentation, we provide the reader with a collection

of graphing “utility” programs, which can easily be keyed in in a few minutes and

which provide for a simplified handling of the graphics. We urge the reader to pay

particular attention to this material, as we will use these programs throughout the

remainder of the text.

The graphing commands of the HP-28S are located in the Plot menu. Press
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PLOT| . The first page of the menu contains the soft keys

 

[STEQ| [RCEQ] [PMIN] [PMAX] [INDEP]| [DRAW]

You should recognize and from our work in section 1.1 with the

Solve menu. The [STEQ] (store equation) and (recall equation) soft keys are

provided in both menus for the sake of convenience. In the examples to follow, we

will learn the uses of many of the other soft keys in the Plot menu (which has 4

pages). We will close this section with some graphing utilities to automate some

of the more common graphing sequences. In most cases, these utilities are already

available as built-in functions on the HP-48SX.

WARNING: Before drawing a graph of a function with the variable X, make sure

that you have purged the value of X from the current directory: press ’X’ [PURGE]

([PURGE] is located above the 4 on the HP-28S and above the key on the

HP-48SX). Failure to do so may cause a problem with drawing the graph.

Example 1. Draw

So, what are we waiting for? Let’s graph a function! Store the function f(x) =

z? — 1. That is, enter

"X A2 — 1" [STEQ]

Now, press |DRAW| . At first, nothing appears on the screen; points are being

“plotted” off the screen. Eventually, a nice parabola appears. The tick marks on

the x-axis and y-axis have default values of 1 unit each, so that the parabola seems

to bottom out at y = —1 and cross the z-axis at z = —1 and x = 1 (see Figure 1.2).

 

FIGURE 1.2

While the picture is displayed on the screen, the calculator is in interactive plot

mode. The four keys marked [A] , [VV] , [<] and [>] (in the top row of keys) will
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move a small cross-hair (the cursor) around the graphics window. For example,

press @ 7 times and you will see the cursor moving up the y-axis. Now, press E’

13 times and the cursor will be on top of one of the points of the parabola plotted

by the HP-28S. What point is this? Press and hold the [¢] key and the coordinates

of the location of the cursor will be displayed for as long as you hold the key. An

alternative is to press . When you do this, the screen may appear to blink,

but otherwise nothing seems to happen. To see what this has done, press to

leave interactive plot mode. The graph is erased and replaced by the stack, which

now has the point (1.3,.7) on line 1. This is the point we had moved the cursor to.

But, is this actually a point on the parabola? Compute 1.32 — 1 = .69 to discover

that (1.3,.7) actually lies just above the parabola. n

You should realize that the graphs produced by the HP-28S are not perfect

representations. They quickly provide us with some idea of what the true graph

looks like, but we will need to use the power of calculus to obtain precision in the

areas where we want it.

Example 2. CENTR, *W, and *H

Here, we examine the graph of f(x) = 22 —1 from several different perspectives.

First, we will translate our viewing window (i.e., that small portion of the zy-plane

which the calculator is currently displaying) with the centering command.

Enter (1.3,.7) on line 1 of the stack. Then go to the second page of the Plot

menu (press ) and press . Next, press (above ) to

return to page 1 of the Plot menu. Press and you get a new graph. The

cursor is always placed at the center of the screen, which is now located at the point

(1.3,.7) specified in the command. In this view, the bottom of the parabola

has been cut off (see Figure 1.3).

We can change the vertical scale to recover sight of the bottom of the graph.

Press (to return to page 2 of the Plot menu). Pressing the soft key

multiplies the height of the viewing window by whatever factor is on line 1 of the

stack. Press 2 and redraw the graph (press )-

The parabola has seemingly spread out (see Figure 1.4), and we can see more

of it. The vertical tick marks now represent 2 units (the bottom of the parabola at

y = —1 is half a tick mark down from the z-axis). In effect, we have “zoomed out”

our viewing window.
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In the same way that [*H] controls the vertical scale, the (multiply width)

soft key controls the horizontal scale. To discover its effect, press

[ON] [NEXT] 2 [+W] [PREV] [DRAU]

Srneeme et

FIGURE 1.5

The parabola now looks similar to what we saw in Figure 1.2, although there

are fewer points plotted (see Figure 1.5). The tick marks now represent 2 units both

horizontally and vertically. We have again “zoomed out” our view. You should

observe that zooming is a powerful graphing tool, but our current implementation

is somewhat awkward. An automatic zoom-out utility will be given later to greatly

simplify this procedure. =

Example 3. PMIN and PMAX

We saw two different ways to zoom out in Example 2. We will now see how

to zoom in on a specific part of a graph. Starting from the screen in Figure 1.5,

move the cursor 6 steps below the origin and 6 steps to the left of the origin and

press . Next, move the cursor 6 steps above the origin and 10 steps to the

right of the origin, and press again. Press and you should see the points

(-1.1,-1.3) and (2.1,1.1) on lines 2 and 1 of the stack, respectively. Finally, press the

soft keys , , and . We obtain the graph pictured in Figure 1.6.
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FIGURE 1.6

has set the upper right corner of the screen to be the point (2.1,1.1) and

has set the lower left corner of the screen to be (-1.1,-1.3). We have in effect

zoomed in on that portion of the graph lying in the rectangular window with the

corners specified in the and commands. In the process, we have made

it difficult to recognize that we are looking at the graph of a parabola. In general,

the more that we zoom in on a certain portion of a graph, the harder it becomes

to see the overall (global) behavior of the function. As we will see in Example 4,

perspective is an important aspect of correctly interpreting graphs. n

Example 4. Asymptotes

Vertical and horizontal asymptotes are among the most recognizable features

of a graph. They also provide for many students the first example of the interplay

between graphs and equation solving. In this example, we will look at the graph

z—1
f =.

(z — 1 = 0) gives you the z- intercept of the graph, while setting the denominator

You should recall that setting the numerator equal to 0

equal to 0 (z2 —x—2 = 0) gives you the location of the vertical asymptotes, provided

all common factors have already been cancelled. In addition, you may have seen the

idea of letting = become arbitrarily large and identifying the result with a horizontal

asymptote. In this case, as x becomes very large, f(z) approaches 0 and the line

y = 0 (i.e. the z-axis) is a horizontal asymptote. Let’s look at this on the HP-28S.

Enter

'(X-1)/(XA2-X-2)’ [STEQ| [DRAV]

and you should see the graph in Figure 1.7. This does not match our expectations at

alll! With some imagination, you might be able to visualize the vertical asymptote

x = 2, but the horizontal asymptote is simply not there. The problem is that we

still have the screen set up with the viewing window of Example 3. We can get back
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to the default viewing window of Example 2 by entering

 

[NEXT] ’ [PPAR] ’ [PURGE]

This removes the variable PPAR from the User menu. (PPAR is a variable

storing the parameters for the current viewing window.) Now, redraw the graph by

pressing |PREV| [DRAW| . What we see in Figure 1.8 is more like what we expected.

 

FIGURE 1.7 FIGURE 1.8

The graph appears to have vertical asymptotes at x = —1 and z = 2, an z-

intercept at x = 1, and becomes horizontal to the left and to the right. So, we

needed to zoom out from Figure 1.7 to see all the features we anticipated from our

analysis. What would happen if we zoomed out further? Try

[ON] (VEXT] 10 [+ [PREV] [DRAW]
Very few points show up. Actually, a lot of points get plotted, but the y-values

are so small compared to the scale (10 units per tick mark) that the points all get

plotted on the x-axis (see Figure 1.9).

Also, try the sequence

[NEXT] ’ [PPAR] ’ [PURGE] 10

Again, most of the plotted points are placed on the z-axis (see Figure 1.10).

 

This time, it appears as if there is only one vertical asymptote (at x = 0). The

significance of Figures 1.7-1.10 is that the appearance of a graph is highly dependent

on the scale you choose. It is essential to verify any features you see on a graph

with calculus, because appearances can be deceiving, very deceiving. m

THE GRAPHICS ENVIRONMENT

You should now be familiar enough with the HP-28S graphics commands to be

concerned with the ease of their use. Notice that we have repeated certain multi-key
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FIGURE 1.9 FIGURE 1.10

sequences several times, and that it is easy to automate such sequences with short

programs. We will do this presently. However, each program that we write will

occupy a slot in the User menu, and you have already seen how aggravating multi-

page menus can be. The solution is to group our programs into separate directories,

much as is done on a computer. Below, we suggest several graphics programs (many

of which are already built into the HP-48SX) and a directory structure.

We will start by creating a directory called PLOTR. Simply enter

"PLOTR’ [CRDIR]

[[CRDIR] (create directory) is located in the Memory menu.] Note that is

now the first entry in the User menu. Press the soft key and all the menu

entries disappear. PLOTR is essentially a new shelf that we have built to store

programs and as of now we have not put any programs on this shelf.

You should enter all of the following programs. Note that and

are soft keys found in the String menu. If you type these in manually, you must be

sure that there is no space between the — and LCD. Note that most of the programs

can be entered with just a few keystrokes. Except for variable names, all commands

can be entered with a single keystroke.

The first program which we offer will exit the current directory and return the

user to the HOME directory with a single keystroke. This facilitates easy movement

in and out of your new PLOTR directory. Enter

< [HOME] >> [ENTER] * Q UI T’ [STO]

Next, we give a program that will draw a graph in the usual way, but which

will also store the graph so that it can be recalled at some later point, without the

need to redraw the entire graph.

< [cLLcD| [DRAW] [LCD—| 'PICT’ DGTIZ| >
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Program Step Explanation

< Clear the LCD display.

Draw the graph of the function
stored in the variable EQ.

Place a coded image of the
display on line 1 of the stack.

PICT” Store the image in a variable
named PICT.

DGTIZ| > |ENTER Turn on the interactive graphics

mode, end the program and place

the program on line 1 of the stack.

'PLOT’ Store the program under the name
PLOT in the current directory.    

Rather than use PLOT immediately, we offer the following program as a con-

venience that you can use each time you want to graph a function for the first time.

It will read an expression (function, equation, etc.) from line 1 of the stack, store

it in the variable EQ and draw a graph using the PLOT graphing routine above.

We use PLOT instead of DRAW since PLOT will also save a digitized image of the

display for easy retrieval.

< [STEQ] [PLOT] >

 

 

Program Step Explanation

< [STEQ Store the expression on line 1

of the stack in the variable EQ

in the current directory.

PLOT| > |ENTER Draw the graph of EQ, end the

program and place the program

on line 1 of the stack.

'NEWF’ Store the program under the name

NEWEFin the current directory.    
Before continuing to enter new programs, test your new programs out. Press
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’SIN(X)’ |ENTER| |NEWF| . If you have your calculator in radians mode, you should

see a nice graph of y = sin(z). As always, to exit the graphics mode, press :

The next program will recall a stored display image to the screen with one

 

 

keystroke.

< PICT DGTIZ| >

Program Step Explanation

< PICT Return the screen image stored
in the variable PICT to the display.

> Turn on the interactive graphics mode,

end the program and place the program

on line 1 of the stack.

'GRAPH’ Store the program under the name GRAPH
in the current directory.    

Press |GRAPH| now to recall the last graph to the screen.

Our next program is the first of two automatic zoom programs. This first one

will zoom out a fixed amount at the touch of a button.

< 1.25 ] 4 [+H] [PLOT] >

 

 

Program Step Explanation

< 1.25 Multiply the scale on the z-axis
by a factor of 1.25.

4 [*H] Multiply the scale on the y-axis
by a factor of 4.

> [ENTER Draw the graph of EQ, end the program
and place it on line 1 of the stack.

'ZO0OM’ Store the program under the name
ZOOM in the current directory.    

Press [Z00M| now and you will produce a graph that is “zoomed out” from the

last one.
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The second of our two zooming programs will read two points from the stack

(usually, these will be points that were digitized from a graph) and draw a new

graph, using these points as the upper right and lower left corners, respectively, of

the new display window. This is perhaps the most useful of all our graphing utilities.

 

< [PMAX| [PMIN| [PLOT| >

 

 

Program Step Explanation

< [PMAX Read the point from line 1 of the

stack and make it the upper right

of the next graphics window.

PMIN Read the point from line 2 of the

stack and make it the lower left

of the next graphics window.

PLOT| > |ENTER Draw a new graph using the new

parameters and the PLOT utility.

'ZBOX’ Store the program under the name

ZBOX in the current directory.   
 

At this time, you should try out your new program. First press to

return the last graph to the display. To zoom in on a particular portion of this

graph, move the cursor (recall that this is controlled by the arrow keys in the first

row on the keyboard) to the lower left corner of a rectangular portion of the graph

in which you are interested. Pressing will digitize the point. Then, move the

cursor to the upper right corner of the rectangle of interest and digitize that point.

Press to exit the graphics mode and you should see the coordinates of the two

digitized points on the stack. Press and a new graph will be drawn, using

the two digitized points as the corners of the new display window.

Our next program redefines the center of the display window to be the point on

line 1 of the stack. There is no difference between this and the command in

the Plot menu, except that this will be conveniently located in the PLOTR directory

and that the graph is then drawn using the PLOT utility, thereby storing a coded

image of the graphics display for easy access.

< [CENTR] [PLOT] >
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Program Step Explanation

< |CENTR Take the point on line 1 of the stack and

make it the center of the next graphics window.

PLOT| > |ENTER Draw the graph with the new center using PLOT.

'"CENTER’ Store the program under the name CENTER.   
 

Note that only the first 5 letters of the name will appear in the menu.

To try your new program, first press to return the last graph to the

display. Move the cursor to some point of interest (say an intercept) and digitize

the point. Press and then to draw a new graph with the center of the

graphics window at the indicated point.

The following program will read an expression from line 1 of the stack and then

draw its graph superimposed over the last graph drawn and stored in PICT. The

new graph is, in turn, stored in PICT and hence, by repeating the process, we may

superimpose the graphs of any number of expressions. You should note, however,

that due to the small size of the HP-28S display, the display starts to get quite

cluttered after 2 or 3 graphs.

< [cLLCD] [STEQ| PICT [—LcD| [DRAW| [LCD—]| 'PICT’ DGTIZ| >
 

 

 

Program Step Explanation

< |CLLCD Clear the LCD display.

STEQ Store the expression on line 1 of the stack

in the variable EQ.

PICT Restore the graph in PICT to the LCD display.

Draw the graph of EQ overtop of the current display.

'PICT’ Store the new display in the variable PICT.

DGTIZ| > |ENTER Activate the interactive graphics.

"OVERD’ Store the program under the name OVERD in

the current directory.   
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Before we test out the new program, we give one final graphics utility. This

program will reset the window parameters to their default settings. You should

always run this program before drawing the graph of any new expression. If it has

not been run, you will see the variable PPAR (containing all of the current window

parameters) as the first menu item in your PLOTR directory and the program

NEWF will be hidden on the second page of the menu. Enter

< 'PPAR’ >

and then press [ENTER| and 'RESET’ :

Press |RESET| now to reset the graphics window. To redraw the current function

with the default window, simply press |[PLOT| . Exit the graphics mode and press

'COS(XY’ . This will draw the graph of y = cos(z) overtop of the

last graph drawn.

Finally, we give a program which will automatically put the menu entries in

your PLOTR directory in a convenient order. The program includes a list of the

affected menu entries and the HP-28S command , which will rearrange the

menu to match the order in the list. Any menu items not listed are automatically

placed at the end of the menu. Enter

 

<« { |RESET| [CENTER| |Z00M| [ZBOX| |[GRAPH| |NEWF|

|OVERD| |PLOT| |QUIT| } [ORDER| >

and press |[ENTER| and "'ORDR’ :

Press now and your PLOTR directory will be ready to use.

That was a lot of typing! Let’s get a quick reward for that work by working

 

 

some examples using our new utilities.

Example 5. Oblique Asymptotes

A change of scale is useful for identifying a third type of asymptote: the oblique

 
2 3

(or slant) asymptote. For example, for f(z) = 21‘ T by solving z2 — 1 = 0, we
x _—

know that there should be vertical asymptotes at £ = —1 and x = 1. But what

happens to f(x) as ¢ becomes large? Perhaps the graph will give us a hint. First,

graph the function with the default parameters: press

RESET|2*X A3 /(X A2—1)" [ENTER
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The vertical asymptotes at £ = —1 and x = 1 are visible, but there are no clues

about the behavior of f(z) for x < —1 or > 1 (see Figure 1.11).

Let’s zoom out: press . You should see the graph from about

z = —2.5 to x = 2.75. Press again and we obtain the graph in Figure

1.12.

  

ol e
L e

FIGURE 1.11 FIGURE 1.12

It is now hard to visualize the vertical asymptotes, but the graph seems to

straighten out to the left and to the right. Long division can help to explain what
3x 2

can be rewritten as 2x + _a:, for large values of x
z2 —1 x2 —1
 is happening. Since

the difference between f(x) and 2z becomes very small. What we see in Figure 1.12

looks like the graph of y = 2z, for x large. To verify this, draw y = 2z on top of

the graph in Figure 1.12 by pressing 2*¥X’ . .

It should be clear at this point that there is more to graphing than plotting

points or pushing buttons on a calculator. A change of scale can dramatically

alter the appearance of a graph, and the proper choice of scale depends on what

information is being sought.

Example 6. Intersections of Graphs

There are many instances when we would be interested in finding the point(s)

of intersection of two graphs. For example, one of the applications of calculus which

we will see in Chapter 5 is the problem of finding the area between two curves. To

do so, it will be necessary to know where the curves intersect. The HP-28S can draw

several graphs simultaneously to help us locate any points of intersection.

For example, where do y = z* and y = 2z + 3 intersect? Worded differently,

what are the solutions of the equation z* = 2z + 3?7 We can graph y = z* and

y = 2z + 3 simultaneously by typing
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"X A4=2*X+ 3’ [ENTER| [RESET| [NEWF]
 

What does the HP-28S do here? It graphs both sides of the equation separately.

In Figure 1.13, we see an apparent intersection near r = —1, as well as some evidence

that the graphs will intersect a second time for x > 1.

Note that for x = —1, z* = 2z + 3 = 1, so that we have in fact found an

intersection. We’ll need to look further to see if there are any others. Zoom out

(press )-

FIGURE 1.13 FIGURE 1.14

There appears to be a second intersection between x = 1 and x = 2 (see

Figure 1.14; remember that ZOOM multiplies the z-scale by 1.25). To get a better

approximation, move the cursor just below and to the left of the intersection and

press . Next, move the cursor just above and to the right of the intersection

and press . Then press ZBOX]| . You should get a screen similar to that

in Figure 1.15.

<

FIGURE 1.15

Move the cursor to the apparent location of the intersection, press and

read off your approximation. We got (1.576,6.14); yours may differ slightly. Recall

that if you want to look at the graph again, just press |GRAPH| and it is instantly

reproduced. .
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Example 7. Estimating Zeros

We could have approached Example 6 differently by looking for zeros of z# —

2x — 3, since z* — 2z — 3 = 0 is equivalent to z* = 2z + 3. We should caution that

rewriting an equation can alter the type of graph that is called for. Recall that from

algebra, we know that a fourth-order equation like z* — 2z — 3 = 0 can have at most

4 solutions.

Draw the graph of y = % — 2z — 3 with the default parameters. Press

RESET| * X A4 — 2 * X — 3’ [ENTER] [NEWF

As in Figure 1.13, you can see an apparent intersection at x = —1 (see Figure

1.16).

 

FIGURE 1.16

This time, there is also strong evidence that there is a solution between z =1

and z = 2. Specifically, there are two points plotted, one with y < 0 followed by one

with y > 0. We will discuss later the Intermediate Value Theorem which tells us

that for this function the graph must cross the z-axis somewhere between the two

points. That is, there is a zero somewhere in between. We can use ZBOX to zoom

in and get a good estimate of the zero. Are there more than 2 zeros? We do not

have any evidence indicating that there is a third or fourth zero, but we will need

some calculus to decide for certain whether or not there are any more zeros. =

GRAPHING WITH THE HP-48SX

The graphing commands for the HP-48SX are accessed from the Plot menu.

Press (which is above the 8 in orange). This menu contains the entries

PLOTR PTYPE NEW EDEQ STEQ CAT
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Note that PLOTR and PTYPE are displayed with bars on top of the P’s,

indicating that they are themselves directories: press either one and a new menu

will appear. As in the Solve menu, the (store equation) key will take an

expression from line 1 of the stack and store it in the variable EQ, in the current

directory. We can recall the equation stored in EQ by pressing the blue (right shift)

key followed by :

As an alternative to storing the expression to be plotted in the variable EQ, the

HP-48SX will also allow us to store the expression in any other user variable, using

the command . The user will be prompted to supply a name for the expression

and the expression will be stored in both the designated name and EQ. The most

significant advantage to using is that it will allow us to easily superimpose the

graphs of several functions. For this reason, we will use instead of [STEQ| for

plotting.

Example 8. Draw

To draw the graph of f(xr) = 2% — 1, first enter the expression on the stack:

"X A2 — 1" |ENTER

We then suggest the following sequence of instructions.

 

[PLOT| [NEW| |[PLOTR| |RESET| |[DRAW| [LABEL)|

Note that the |RESET| command is located on the second page of the Plotr

menu. Press [NEXT| to go to that page and |PREV| to return to the first page. The

graph produced by this is seen in Figure 1.17.
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FIGURE 1.17
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Keystroke Explanation

PLOT Activate the Plot main menu.

Store the expression on line 1 of
the stack under the name supplied by

the user at the prompt and EQ.

Activate the Plotr menu. The HP-48SX
tells you that it has stored this

equation, and gives you the range of

x and y values it is expecting to display.

  
RESET Reset the graphics window parameters to

default values and erase previous graphs.

DRAW Draw the graph of the expression in EQ.

LABEL Turn on the z- and y-axis labels.  
 

The four arrow keys will move the cursor around the screen. Press @ seven

times, then press [>] until the cursor covers one of the points on the parabola. Press

and the HP-48SX will delete the menu and display the point (1.3,.7) at the

bottom of the screen. You can get the menu back by pressing any one of the soft

keys. To exit the display mode, press : "

NOTE: By pressing the [GRAPH] key (located above the [<] key), you can at any

time instantly restore the last graph to the display. This eliminates the need to

redraw a graph each time it may be needed and hence saves considerable time.

Example 9. CENT and ZOOM

With the cursor still located at (1.3,.7), press and the graph is redrawn

with (1.3,.7) at the center of the display window (see Figure 1.18).

To change the scale, press . You must select one of several options. You

can scale the z- or y-axis separately (press or , respectively) or together by

the same factor (press ). You can also scale the z-axis and have the calculator

automatically scale the y-axis so that all of the graph fits on the display (press

XAUTO| ). Because the y-scale factor is unknown, we urge caution in the use of this

feature. This time, press . You are prompted for a scale factor: try 2.
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FIGURE 1.18 FIGURE 1.19

The parabola seems to be much thinner in Figure 1.19. Press and

verify that the tick marks on the z-axis now represent 2 units each, while the tick

marks on the y-axis still represent 1 unit each. You should experiment some with

the X, Y, XY and XAUTO options in ZOOM. Notice how the appearance of the

parabola changes dramatically as you zoom back and forth. "

Example 10. ZBOX

Although the ZOOM feature allows us to zoom out (by entering a factor larger

than 1) or zoom in (by entering a factor less than 1), in most situations we will want

to use a different feature for zooming in. First, get back the original graph of the

parabola which we examined in the last two examples. Press (to reset the

graphics window parameters and erase the previous graph) and then press [DRAW

(to redraw the graph).

Move the cursor to the point (-.8,-1) (press to see the coordinates of

the location of the cursor). Press the (multiplication) key. When you move the

cursor away, an X is left behind marking the spot. Now move the cursor to (2,1.5).

Press any one of the soft keys to recover the Plotr menu, and then press :

This will zoom in on the rectangular box whose extreme corners are marked by the

x and by the present location of the cursor [here, the corners are (-.8,-1) and (2,1.5),

respectively| (see Figure 1.20).

Press to verify that the lower left corner of the screen is (-.8,-.1) and

that the upper right corner is (2,1.5).

Notice that, using ZBOX, we can with great ease zoom in on any specific portion

of the graphics window of interest. .
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Example 11. Asymptotes

T b _z—1
O grap f(.fE) =m y enter

'(X-1)/(XA2-X-2)’ [ENTER]

This will place the expression on line 1 of the stack. Next, enter the sequence

 

|PLOT| [NEW| |PLOTR| [RESET| |DRAW|

Recall that you will be prompted for a name after you enter the command.

This should produce the graph pictured in Figure 1.21.
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FIGURE 1.21

Notice that the vertical asymptotes at x = 2 and at £ = —1 and the horizontal

asymptote at y = 0 are clearly visible. m
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Example 12. Oblique Asymptotes

213

2 -1
parentheses are not optional).

 Draw a graph of f(x) = To do this, enter the following (note that the

"2*X A3/ (XA2-1)"

|PLOT| [NEW| [PLOTR| (RESET| [DRAW]
 

FIGURE 1.22

We can see only that part of the graph from x = —1 to x = 1, in Figure 1.22.

Outside of this interval, the y-values appear to have run off the display. To see more

of the graph, zoom out in the y-direction. Press

zoow] [Y] 4 [ENTER)
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FIGURE 1.23

It should be apparent from Figure 1.23 that the graph straightens out to the left

and to the right and approaches the oblique asymptote y = 2z (see the discussion

of Example 5 earlier in this section). Try zooming out further. Press

zooM] [XY] 4 [ENTER]

In Figure 1.24, what we see is essentially the graph of y = 2z, with a few blips
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FIGURE 1.24

near the origin. Verify that this is true by drawing y = 2z on top of the graph in

Figure 1.24. Press

 

’ 2 * X’ [ENTER] [NEW] [PLOTR] [DRAW|
 

We want to emphasize the importance of scaling. What you see in a graph is

highly dependent on what scale is being used. You should therefore look at every

graph from several different perspectives in order to fully appreciate its features.

It should be noted that the HP-48SX has an automatic scaling function, AUTO,

in the sense that for a given interval of z-values, the calculator will adjust the y-scale

so that the entire graph will fit on the screen. AUTO is used in place of DRAW.

Try it out on this function. Press

RESET| |AUTO

375436708061Y

y + "——J—'_"—_T

S+ Y 5.5

!
-48.8067721518}

FIGURE 1.25

Compare the results in Figure 1.25 with Figures 1.22-1.24. Notice that the

oblique asymptotes are clearly illustrated and that the two vertical asymptotes are



1.2 Graphing Capabilities 41

at least suggested. However, since we have not manually adjusted the scale, it is not

clear just what we are looking at. For this reason, we suggest that you use DRAW

and manually zoom in and out, where necessary, mindful of how you are adjusting

the scale. n

Example 13. Intersections of Graphs

To simultaneously graph y = 2% and y = 2z + 3, press

 
"X AN4=2*X+ 3’ |PLOT| [NEW| [PLOTR| |RESET| [DRAW]| 

We obtain the graph in Figure 1.26. To zoom in on the visible intersection, we

move the cursor to (-1.2,.8) and press . Then move the cursor to (-.8,1.2) and

press . (Of course, you could also use any other choice of two points defining

the extreme corners of a rectangle enclosing the intersection.) We obtain the graph

in Figure 1.27.
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FIGURE 1.26 FIGURE 1.27

Move the cursor to the apparent intersection and we get the approximate lo-

cation (—1,1.00317). Notice that Figure 1.26 suggests that there may be another

intersection, located to the right of the y-axis. To look for a second intersection,

first redraw the original graph and then zoom out. Enter

IRESET| |DRAW| |ZOOM| 4 |ENTER

and we get Figure 1.28, which clearly indicates a second intersection to the right of

 

the y-axis. We can now use ZBOX as above to zero in on that point. n

NOTE: The FCN menu (the key is in the menu that appears below all graphs)

provides an easier way to estimate intersections. We will discuss its use in detail in

section 1.3.
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------

FIGURE 1.28

Exercises 1.2

In exercises 1-10, graph the given function and use ZOOM, ZBOX and CENTER

to determine how many zeros the function has. Note that in exercises 9-10, z is in

radians.

f

©
N

O
t
W

1. fz)=2*+42? +z -1 2. f(x) =% -5z +2z—1

f(z)=x23-322+22+1 4. f(x)=z*+3z> -z +1

f(z)=x%—522+7 6. f(x) =x*+ 222 +1

(x) =x° — 323 + 222 - 1 8. f(r) =25%+4x°+ 2z -1

(f(z) =2*+4cosz — 1

11. Based on your graphs in exercises 1-8, describe what the graph of an nth-order

polynomial looks like. Make up several polynomials of your own to help see the

patterns.

12. Based on your answers to exercises 1-8, how many zeros would you expect an

nth-order polynomial to have? Make up several polynomials of your own to

test your answer.

In exercises 13-18, graph the function and find all asymptotes (vertical, horizontal

and oblique).

2x

B0 =s
22 +115. = T2

3+ 2x+1

7. @) = —5a

 

 

14. f(z) = if :i
3

16. f(z) = ; ’_Li

18. f(z) = z —4
234+ 7
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In exercises 19-24, graph both sides of the equation simultaneously and use ZBOX

to estimate the points of intersection of the graphs.

19. V3 +2=4z+1 20. z* -3 =z+2

21. cosx ==z 22. sin2x =22 —1

23. eT = 24. e =122 -1

In exercises 25-28, use ZOOM to determine if there is an oblique asymptote. If there

is not, what general shape does the graph assume? Check your answers with long

division.

223 + 2z 3rt —3r2 -1
25. -— 26. -v

23 —xr+1 3r* —3x2 -1
27. -— 28. =——

7. f(@) T+ 2 8. f(=) r+2

29. Based on your answers to exercises 25-28, state a rule for what the general

shape of f(x) = z—g—i assumes if p(z) is a polynomial of degree n and g(x) is a

polynomial of degree m.

30. Graph the circle 22 + y? = 4 by graphing the equation v4 — 22 = —v/4 — 22.

What happens if you try ZOOM?

31. Graph the ellipse 2 + 4y?> = 4. What happens if you change the horizontal

scale by a factor of 2 (2 on the HP- 28S and 2 on the

HP-485X)? What does this tell you about the relationship between a circle and

an ellipse?

EXPLORATORY EXERCISE

Introduction

Although we will devote most of our energies in calculus finding exact solutions

of problems, in real life the problems are often too difficult to solve completely.

For instance, flying to the moon requires constant recalculation of trajectories as

the spaceship gets slightly off-path. In such situations, it is common to replace a

difficult problem (computing the entire flight path) with a simpler one (computing

the next few miles of the flight path). We will look at an important approximation

in this exercise.
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Problems

First graph y = 22 — 2z + 1, and move the cursor to the point (0,1). Then move

the cursor 2 pixels to the left and 2 pixels down and mark this point (use on

the HP-28S or on the HP-48SX). From there, move the cursor up 4 pixels and

to the right 4 pixels and use ZBOX (press on the HP-28S or press

on the HP-485X). The graph should appear to be a straight line with (0,1)

at the center of the screen. Use the cursor to find a second point on this curve [we

already know (0,1) is a point] and find the equation of the line connecting (0,1) and

the second point.

Now remove the graph and press to get back to the default graphing

parameters. Draw the line found above on top of this graph (use OVERD on the

HP-28S). The line and parabola share several pixels and are graphed with adjacent

pixels in some areas. For which values of x are the two graphs close to each other?

In this region, we can say that the line approximates the parabola well.

Repeat the above process with the following functions and points.

f(z) =x3 at (0,0)

f(x) =sinx at (0,0)

f(x) =cosz at (0,1)

f(z)=+vz+1 at (0,1)

f(z)=2%-1 at (2,1)

Further Study

You will see variations of this problem under several names as you progress through

your mathematics courses. As presented here, the line found is referred to as the

linear approximation to the curve. Later, we will call it the tangent line to the curve

(this may change your idea of what a tangent lineis for curves like sin z). The slope

of the line will be called the derivative of the function at the point. The line is also

an example of a Taylor polynomial which we will discuss in Chapter 6. For now,

you can use the command on your calculator to check your answers. Enter

the function and then press

 

’X ’ [ENTER| 1 (ENTER| [ALGBRA| |TAYLR|
 

and you will get the exact equation of the desired line [for f(r) = z? — 2z + 1 you

should get y = 1 — 2z]. This will work for all but the last example, where we focus
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on a nonzero z. Finally, in terms of the introduction to this problem, you have seen

that the linear approximation stays close to the actual curve for a small interval. If

we follow the line for a short interval and then calculate the linear approximation

at the next point, we will remain fairly close to the curve. This is the basis for a

technique called Fuler’s method which is discussed in Chapter 3.

1.3 Using the Solver

In several examples in the two preceding sections, we found approximate so-

lutions to problems through a process of trial-and-error. The speed of the HP-

285/48SX made this practical for the problems we encountered, but it is important

to realize that most real world problems are more complicated and thereby more

difficult to solve. A study of calculus provides us with some very effective tools for

solving many such problems. These methods often will eventually lead us to solve

an equation(s). For example, we may need to find an x (a root or zero ) for which

f(z) =0.

While a given equation may precisely define a solution to the problem at hand,

we still must be able to find the solution of the equation. For instance, the equation

3 — 22 — 22 + 2 = 0 has 3 solutions. One of these, x = 1, is easily found and

easily checked (just plug in £ = 1). Two more solutions can be found graphically.

We can approximate these (try this graphically) by x = 1.4 and x = —1.4. With

persistence, we can further refine our estimate of these zeros to be z = 1.414 and

x = —1.414. (Do these digits look familiar?) In this case, of course, we can factor,

to obtain

3 —z° -2 4+2=(x—1)(z*-2)

We then see that the zeros are £ = 1 and £ = ++/2.

There are several important points to be made here. First, notice that not all

answers are integers! Further, when the solutions are not integers, we often have to

be content with an approximation with a fixed number of decimal places of accuracy.

In many cases, there is no way to find an exact solution.

The HP-28S/48SX gives us several options for finding good approximations to

solutions. In this section, we will discuss the use of the Solver menu. The topic

is important enough that we return to it in Chapter 4, where we will examine, in

detail, several methods for efficiently finding accurate approximations.
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The examples in this section can be completed on the HP-48SX with some minor

key changes which we detail in each example, as needed. In addition, some special

features of the HP-48SX significantly simplify our problem-solving procedure. These

are discussed in the HP-48SX Notes at the end of this section.

Example 1. The Solver

3Let’s return to the equation z2 — 22 — 22 + 2 = 0, and see how our calculators

can be better used. We will start by drawing a graph. Press

"XA3-—XA2—-2*X+ 2’ [ENTER

RESET

All 3 zeros are visible. (Figure 1.29 shows the HP-28S screen. On the HP-48SX,

press |[NEW| [PLOTR| [RESET| [DRAW| .) Now, move the cursor to the left until (on

the HP-28S) you cover up the point just above the intersection with the z-axis.

 

 

FIGURE 1.29

Press to find the estimate (-1.4,0) on line 1 of the stack. (On the

HP-48SX, simply move the cursor to the left until it covers the apparent point of

intersection with the z-axis and press . This will return the estimated

point to line 1 of the stack.) If we were to continue graphically, we would use

ZBOX to zoom in and get a more precise estimate. Instead, activate the Solver

menu: press (or on the HP-48SX). Note that we have already stored

the equation we are trying to solve in the variable EQ ([NEWF] or did that

for us automatically) and so we press and then the soft key . This

stores the point (—1.4,0) in the variable X. (The HP-28S/48SX actually is storing

both coordinates of the point, but in this setting the calculator only uses the first

coordinate, —1.4.)

To solve for the root, simply press the red key followed by the soft key :

(On the HP-48SX, press and the soft key .) The HP-28S/48SX tells you
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that it is solving for x and then displays Figure 1.30.

 

 

FIGURE 1.30

The “Sign Reversal” message that comes along with the answer indicates that

the calculator has not been able to find an answer that it thinks is accurate to its

maximum number of digits (12). (“Zero” is a more positive message.) Instead, the

machine has found what it thinks is an approximation valid to about 11 digits of

accuracy and is warning you that you ought to carefully examine the answer before

you accept it. Let’s see how close the approximation is (recall that the exact roots

are 1 and ++/2). Press

2 [Va) (G
All of the digits displayed are correct! (Recall that for the HP-48SX, you use

the key in place of .) As we will see, the Solver is not always this accurate.

You should always plug the approximation into the equation to get an idea of the

accuracy. This is quite easy to do. Simply press . Even if we did not

know the precise answer, we would know that our approximation gives a very small

function value. (Users of the HP-48SX should refer to the Notes at the end of the

section for an alternative approach.)

You may wonder why we bothered drawing a graph. As we will see in our

discussion in Chapter 4, it is important to start with an initial approximation close

to the solution that you want. In the preceding, the point (—1.4,0) told the calculator

where to start looking for a solution. Try the sequence

0

(or 0 on the HP-48SX) and the calculator will output that z = 1 is

a zero. That is, with the initial guess £ = 0, the calculator finds the solution

x = 1. Try the initial guesses x = .1, .2,... until you get the third solution z ~ 1.4.

Especially notice what happens with the initial guesses £ = .8 and x = 1.2. "
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Example 2. Solutions of Equations

In Example 6 of section 1.2, we used graphics to look for intersections of the

graphs of y = z* and y = 2z + 3. To find the points of intersection more precisely,

we are led to solve z# = 2z + 3. In section 2, we graphically found two solutions,

one at x = —1 (check that this is an exact solution!) and the other near x = 1.5.

To get greater precision for the second solution, we can use the Solver. First, store

the equation. Press

'XA4=2%X+3’ [STEQ] [SOLVR|

Start with an initial guess of £ = 1.5: press 1.5 . Then solve for x by

pressing = on the HP-485X). We get the “Sign Reversal” message

and x = 1.574743.... We can get an idea of the accuracy of this solution by evaluating

the left and right sides of the equation for this value of x: press and .

(On the HP-48SX, pressing the key will output values labeled “LEFT” and

“RIGHT,” corresponding to the values of the left and right sides of the equation,

respectively.) The values do not match precisely, but for most routine purposes (i.e.,

if you are not planning to use this to put a person on the moon) we can probably

be content with the accuracy. .

The flexibility of the HP-285/48SX is to be marveled at. The same sequence

of steps helps us to approximate zeros of functions or solutions of more general

equations. As we see in Example 3, with some trickery the Solver will also give us

the maximum and minimum of a piece of a graph.

Example 3. Finding Maxima and Minima

The extremes of functions are typically of special interest to us. For example,

in industry, you want to maximize production while minimizing costs. As a more

concrete illustration, look at the graph of f(z) = z3 + 4z% + 3z + 3. Enter

"XAN3+4*XAN2+4+3*X + 3’ |[ENTER

Then press |RESET| |[NEWF| . After the initial plot is drawn, press Z0OM| to

zoom out sufficiently to see the behavior of the function. (On the HP-48SX, press

INEW| [PLOTR| [RESET| |DRAW|

Then press |Z0OOM 4 to zoom out sufficiently in the y direction to see the behavior
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of the function.) The graph rises to a peak, drops down to a trough, then rises again.

(See Figure 1.31 for the HP-28S graph.)

FIGURE 1.31

The peak is called a relative marimum and the trough is called a relative mini-

mum. We would like to find the coordinates of these special points. First, move the

cursor up to the apparent location of the relative minimum and press (on

the HP-48SX, press |[ENTER )- You should now have (—.4,2.4) or some nearby

point on line 1 of the stack. Press

[SOLV] [SOLVR] [RED]

(On the HP-48SX, press .) We got x = —.45141626064

(your answer may differ slightly) which is labelled an “Extremum.” Since extremum

 

is the generic term for maximum or minimum, this would seem to be the point that

we are looking for. We will need some calculus to evaluate the accuracy of this

answer and we will look at this question further in Chapter 4.

Next, let’s try to locate the relative maximum. To get back to the graph, simply

press

(On the HP-48SX, simply press |GRAPH| .) Move the cursor to the apparent

location of the relative maximum, press and we have an estimate of

(—2.4,5.2). Repeat the sequence

[SOLV] [SOLVR] [RED]

and we get the zero x = —3.37442376321. On our graph, (from the HP-28S) there

were actually 2 points at the peak. If you use the other point, (—2.2,5.2), the Solver

 

produces the extremum at r = —.4514!

An experiment should clarify what the HP-28S/48SX is doing. Graph y =

z3 + 422 4+ 3z — 5. Note that this is just our original function with 8 subtracted.
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You can press

[RCEQ| 8 — [USER] [NEWF]

to graph this function. On the HP-48SX| press

8 — [NEW| [PLOTR] [RESET]| [DRAW]
 

Move the cursor to the apparent location of the relative maximum and digitize the

point (press or on the HP-48SX) to get (—2.2,—2.8) on the

stack. Now use the Solver to estimate the maximum. Press

to find the extremum at x = —2.2152. Note that if you give the Solver an initial

guess of (—2.4, —2.8) you get sent to a zero.

Can you tell what’s happening? First of all, the behavior of the Solver depends

very much on the initial guess provided. Sometimes you will have to change your

initial guesses in order to get the information you want. In general, though, the

Solver is going to move along the graph from the initial point toward the z-azis

and find an extremum or zero, whichever comes first. Thus, it may find a relative

minimum above the z-axis or a relative maximum below the z-axis.

If the extremum you are looking for is in the “wrong place,” you can translate

the graph (for instance, by subtracting 8, as we did above). With some effort,

though, we can quickly obtain accurate approximations of many important points

on a graph. .

Example 4. Solving for One Variable in an Equation

In Example 4 of section 1.1, we used the Solver to help estimate the smallest

angle at which a ball could be thrown to reach a certain distance. We will now use

the equation-solving capabilities of the HP-28S/48SX to more precisely solve that

problem.

Recall that the equation R = S?sin(2A4)/32 gives the range in feet of a ball

released at angle A with initial speed S ft/s. Press

'R=SA2*[SIN] (2*A) /32’ [STEQ]

and activate the Solvr menu. We want a throw to go 300 ft, so store 300 in R

(press 300 [R] ). For an initial speed of 100 mph = 146.66 ft/s, store 146.66 in S.
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Now, solve for A (press or ). The solution in degrees is given as

13.2539615945. m

HP-48SX NOTES

Example 1 can be easily worked on the HP-48SX without leaving the graphics

display. With the cursor at (—1.4,0), press (located in the menu at

the bottom of the display). As before, we get the “Sign Reversal” message and the

approximate root is displayed, but this time they are displayed at the bottom of the

screen without exiting the Plotr menu and while the graph is still displayed above.

Simple, isn’t it? If we now exit Plotr (press ), the zero estimate is on the stack

and we can use the Solver to test the accuracy as before.

As an alternative to the method given in Example 2, we can use the command

(intersection). Graph z* = 2z + 3 as before and then move the cursor close

to a point of intersection. Then, press (again located in the menu at

the bottom of the screen). As with Example 1, we can find points of intersection

without leaving the Plotr menu and without erasing the graph. This is particularly

useful when we are looking for more than one point of intersection. Again, when

you exit the graphics display, the point(s) of intersection will be listed on the stack.

We can also approximate relative extrema from the Plotr menu. Move the

cursor to a point near the suspected extremum and press . The

approximate relative extremum and any advisory messages are displayed at the

bottom of the display while the graph is still displayed above. You should experiment

with different cursor positions (i.e., initial guesses) and see which point the calculator

identifies.

Exercises 1.3

In exercises 1-8, use the Solver to find all zeros. In exercises 1-4, we indicate how

many zeros there are.

1.zt +22-6 (2) 2. 3+ 222 — 62 —12 (3)

.zt +3x3 -z +1 (2 4. 28 +4z° +2x -1 (2)

5. x4+ 23 —5x -5 6. 4z° + 8z — 1

7. sinz — 22 +1 8. sin2x — 3z +1
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In exercises 9-10, factor the function in the indicated exercises to find exact repre-

sentations of the zeros.

9. exercise 1 10. exercise 2

In exercises 11-14, find all solutions of the equations. HINT: you may want to

rewrite the equation before solving.

11. 23 + 20 = 10z? + 2z 12. 3 + 922 = 3z + 27

13. Va2 +4=12242 14. (z2 - 1)23 =2z +1

In exercises 15-18, find all extrema of the functions.

15. 23 — 322 +z — 4 16. 23 + 222 — 22+ 1

17. z* =Tz + 2 18. % 4+ 22 +2

In exercises 19-22, assume the showroom is to be x ft by y ft, and write down the

perimeter of the required walls in terms of x and y. Since xy = 200 (why?) you can

replace y with 200/x and find the desired minimum. The calculator is unusually

sensitive to initial guesses in these problems, so make sure your answer is reasonable.

19. A store needs to build a showroom with 200 ft? of floor space. If the cost of

building the showroom is proportional to the perimeter of the room (why is

this reasonable?), find the dimensions of the room that minimize cost.

20. In the showroom of exercise 19, suppose that one side of the room does not

need to be walled in. Find the dimensions that minimize the cost.

21. In the showroom of exercise 19, suppose that two facing walls require 3-ft

openings for doors. Find the dimensions that minimize the cost.

22. In the showroom of exercise 20, suppose that two facing walls require 3-ft

openings for doors. Find the dimensions that minimize the cost.

23. Use the Solver to find the zero of f(z) = z!® (set z = 1 to start). Draw the

graph of y = z1% and try to explain why it takes so long to get the obvious

answer of x = 0. We will discuss this type of problem in Chapter 4.
2

24. Find the intersections of the ellipse % + 92 =1 and the parabola y = 2% — 2.

HINT: graph the ellipse by graphing the equation /1 —x2/9 = —\/1 — 22/9

and then overdraw the parabola.

25. Instead of using the Solver as we did in Example 4, we could have solved

for the angle A using the inverse trig function arcsine. In this case, A =

1 2
3 arcsin (%TR> The HP-28S/48SX evaluates the arcsine with the built-in
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function ASIN (in the Trig menu of the HP-28S and in orange above on

the HP-48SX). The HP-285/48SX solves this equation symbolically using the

command in the Algebra menu. Press’ R =S A 2 * (2*A)/

32° and then press '’ A’ to solve for A. Along with

the terms in our answer above, the calculator shows a term ’(—1)Anl+4n*nl’.

If you replace nl with 0, you get our answer from above. What do you get

with n1=1?7 n1=2?7 Explain why these are also correct answers (HINT: the sine

function is periodic).

26. It is important to realize that the command is very limited. Try to use

to solve for X in the equation X + X2 = 1. On the HP-28S you get a

response (X = 1— X?2) which is correct but not very informative. The HP-485X

clearly indicates that it is unable to help.

EXPLORATORY EXERCISE

Introduction

The equation-solving techniques discussed in this section apply to one equation for

one unknown quantity. It is at least as important in applications to be able to solve

several equations for several unknowns. The HP-28S/48SX is equipped with matriz

operations to solve such systems of equations. We will explore an example of a

system of equations involving the maximum speed of a car on a circular (unbanked)
2

. v . . . .
road. From physics, we learn that — = — where F' is the friction force, m is the

m T
mass of the car, v is the speed of the car, and r is the radius of the circular path.

F
To simplify calculations we will assume that — = 100 so that the speed of the car

m

is given by v = 104/r. That is, speed is determined by the radius.

We will assume that we have the coordinates of 3 points on the car’s path (in

units of feet) which we will use to find the 3 unknowns (a, b and r) in the general

equation of a circle of a circle (x—a)?+ (y—b)? = r2. Suppose the 3 pointsare (0,0),

(600,600) and (520,300). To find the equation of the circle through these points,

we plug them into the general equation of the circle and solve for a, b and r. With

x = y = 0, the equation becomes

a2 + b2 = 2

With £z = y = 600 the equation of the circle becomes

(600 — a)? + (600 — b)? = r?
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which we can rewrite as 6002 — 2a600 + 6002 — 2b600 = 0 or after simplifying

1200a + 12006 = 720, 000

Similarly, with = 520 and y = 300 we get 520% — 2a520 + 300% — 26300 = 0 or

1040a + 600b = 360, 400

This is the system of equations we want to solve.

Problems

We will solve these equations using a powerful technique of matrix operations. Es-

sentially, we just copy down the numbers in the two displayed equations above into

1200 1200 a\ (720,000

1040 600 b )\ 360,400

To solve for a and b we multiply by the inverse of the matrix on the left. As the

matriz form . We get

name implies, multiplication by the inverse is in many ways analogous to division,

and we use the / key on the HP-285/48SX. To enter a matrix use the bracket keys

[ and ] and press

[ 720000 360400 |

[ [ 1200 1200 | [ 1040 600 ] |

Now press / . The first number displayed in the brackets is the value for a

(about @ = .91) and the second number is the value for b (about b = 599). With

these values r =+=~ 599 ft and v = 104/7 =~ 245 ft/sec.

How much faster could the car go if it cut the corner? Plot the points (0,0),

(600,600) and (520,300) and compare the circle through these points to the circle

through (0,0), (600,600) and (485,300). Repeat the above procedure to find the

speed through the second set of points. What happens to the speed as you cut off

more of the corner? Find the speed for the circle through (0,0), (600,600) and each

of the following points: (400,300), (350,300) and (300,300).

Further Study

The study of matrix theory is an important part of a sophomore level course in

linear algebra. You will see pieces of linear algebra throughout calculus, particularly

when you get to three-dimensional calculus.



 

CHAPTER

 

Numerical

Computation

of Limits

2.1 Conjecturing the Value of a Limit

Recall that when we say

lim f(x) =L
T—a

we mean that the function f is defined everywhere in an open interval (c,d) con-

taining a (except possibly at a itself), and that as x gets closer and closer to a, f(x)

will get closer and closer to the number L (called the limit of f as x approaches a).

We will make this intuitive notion more precise in section 2.3. For the moment, this

description will do quite nicely.

You might ask why such a big deal is made about limits, anyway. After all,

don’t you just “plug” the value x = a into the function to compute the limit? Of

course, you do, for limit problems like

lim (z? — 3z +2) = 2
z—3

In fact, for any polynomial p

lim p(z) = p(a)
r—a

95
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Unfortunately, limits are not always so easy to compute. As we will see in

Example 1, we can sometimes evaluate limits without plugging into the function.

Example 1. The Limit of a Rational Function

2. T°—=9 : :
Suppose that we next consider lur% . We can’t substitute x = 3, since

t—3 T —

this would result in division by zero. Could this perhaps mean that the limit does

not exist? We can use the HP-28S/48SX to examine what happens to this function

 

as = gets closer and closer to 3. First, we draw a graph of the function. Enter

'(XA2-9)/(X~-3)’ [ENTER]

and press in the PLOTR subdirectory on the HP-28S and similarly on the

HP-48SX. This will produce a graph of the function which does not show the be-

havior near the point of interest, x = 3. (See Figure 2.1.)

FIGURE 2.1

One way to obtain the graph near the value that we’re interested in is to

translate the center of the display. In the present example, move the cursor to the

right to the point (3,0) and then move the cursor up to the top of the screen and

digitize that point by pressing . Press to return to the menu and

to draw a new graph with the digitized point at the center of the display. (With

the HP-48SX you do not need to remove the graph to use the center command.)

Repeating this process of translating the center several times will yield a graph

depicting the behavior near x = 3. (Note that the center must only be translated
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once with the HP-48SX, due to the larger display, and that this can be done without

leaving graphics mode by moving the cursor to the new center and simply pressing

the soft key displayed below the graph.) We can observe several things.

First, the graph appears to be a straight line (see Figure 2.2).

.
h
-

e
e
o
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o

FIGURE 2.2

Second, it should look like the function has a value around 6 when z is near 3,

although the point at £ = 3 may be missing, depending on exactly how the new

center has been chosen. (Why would the point be missing from the graph?) We can

use the Solver to generate a table of values of f(z) for x close to 3. All that you

need to do is to enter the Solver menu (press ), enter an z value,

press the soft key and the soft key . The value of the current function

(already stored in the variable EQ) is computed and put on line 1 on the stack. The

following table is then easily generated.

 

 

z f(z) z f(z)
2.9 5.9 3.1 6.1

2.99 5.99 3.01 6.01

2.999 5.999 3.001 6.001

2.9999 5.9999 3.0001 6.0001

2.99999 9.99999 3.00001 6.00001     
 

Notice that we have taken values of x approaching 3 both from above (z > 3)

and from below (x < 3). (Make sure that you try entering 3 for x. What happens?)

In this way, we can see if the values of f(z) seem to be approaching the same value

as r approaches 3 from above and from below. If not, we would expect that the

limit does not exist.

Both the graphical and the numerical evidence point to the conclusion that

the limit is 6. While this is indeed the correct value for the limit (we’ll see why

in a moment), it is not fair to say that we conclude that the limit is 6. We’re

really making more of a guess as to the value of the limit (although it’s certainly
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an educated guess). The phrase that best describes what we’re doing here is that

we are making a conjecture. You have probably already noticed by now that the

numerator of the function factors. We then have:

z? -9 (z —3)(z+3)
lim = lim
z—3 T — z—3 Tr—3

 = lin};(a:+3) =6

where the last limit is computed by substituting x = 3 (since it’s the limit of a

polynomial). We note that the cancellation in the above is valid since in the limit

as = approaches 3, x gets arbitrarily close to 3, but x # 3, so that (z —3) #0. =

If you already have some amount of experience in computing limits, you prob-

ably knew the answer before we even started. But, what this example should still

convey to you is a process for conjecturing the value of a limit of any function which

is undefined at the point in question. This is especially useful for functions which are

difficult to compute by hand. (It’s worth noting here that the majority of functions

we run into in applications fall into this category.)

A somewhat more challenging problem is the following.

Example 2. A Limit of a Product That Is Not the Product of the Limits

Consider lin%) zsin(1/x). Again, we cannot resolve the limit by plugging in
r—

x = 0, since the function is not defined at x = 0. As with all the limit problems

we’ll face, we first draw a graph to get some idea of the behavior of the function near

z = 0. (See Figure 2.3 for the initial HP-28S graph. Make sure that your calculator

is set to radians mode.)

 

.
------ T-...--

FIGURE 2.3

Although for this example the initial graph shows the behavior near x = 0,

there is insufficient detail to make any serious guess as to the value of the limit.
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Using the command, we can zoom in on the behavior near the origin (see

Figures 2.4a and 2.4b).

 

\\ -~ ! - ’/! {- . %r :

FIGURE 2.4a FIGURE 2.4b

It appears that, although the function oscillates faster and faster as = ap-

proaches 0, the function values are getting smaller and smaller in absolute value.

That is, although oscillating wildly, the function seems to be approaching 0 as

x — 0. Using the Solver utility, you can quickly generate a table of values, such as

the following.

 

 

 

x f(x) x f(z)

.1 ~5.4 x 102 -1 ~5.4 x 102

.01 —5.1 x 1073 —.01 ~5.1x 1073

.001 83 x 1074 —.001 8.3 x 104

.0001 —3.1 x 1075 —.0001 —3.1x 1073
1x10-5 3.6 x 10”7 —1x10°5 3.6 x 10~7
1x10~7 4.2 x 108 —1x10~7 4.2 x 10~8
1x 109 5.5 x 1010 —1x10~? 5.5 x 10~10    
 

From both the graphical and the numerical evidence, we would conjecture that

lim zsin(1/x) =0
z—0

We can verify that this conjecture is true by using the following theorem. .

Theorem 2.1 (Pinching Theorem) Given a function f, if we can find functions

g and h such that for all z in some open interval containing a (except possibly for

z = a), g(x) < f(z) < h(z) and if lim g(z) = lim h(z) = L, then lim f(z) = L.

This theorem is referred to in most calculus texts as the Pinching Theorem,

the Sandwich Theorem, the Squeeze or Squeeze-Play Theorem or something to that
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y = h(x)

eo
/

/ \ ’
a

y = gx)

  

 
FIGURE 2.5

effect. Figure 2.5 gives a graphical interpretation of the Pinching Theorem.

While the theorem is fairly easy to understand (just think in terms of Figure

2.5), to use this in practice to find limits we must dream up appropriate functions

g and h. This can at times be quite a challenge. You should note, however, that for

a problem where we have already made a conjecture for the value of the limit, we

have a leg up on this process.

Returning to Example 2, we had conjectured that

:}‘i_r%xsin(l/m) =0

To use the Pinching Theorem here, we need to find two functions g and h such that

g9(x) < zsin(1/x) < h(x)

for all  in some open interval containing x = 0, except possibly at x = 0, and where

lim g(z) = lim h(z) =0

In order to do this, then, we will certainly have to make use of some knowledge

of the sine function. One of the simplest known facts about this function is that

—1 <sin(t) < 1, for all ¢. For the case at hand we can see that —1 < sin(1/z) <1

for all z, except £ = 0. But, we are interested in zsin(1/x). If we multiply the

above inequality through by z, we get

—z <zsin(l/z) <z (z>0)

z <zsin(l/z) < -z (x<0)
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Why do we get different inequalities for z > 0 and = < 0?7 Recall that multi-

plication of an inequality by a number results in the inequality reversing when that

number is negative. We can summarize the above two inequalities as follows:

—|z| < zsin(1/z) < |2] (z #0)

You may observe this graphically by superimposing the graphs of the function f(z) =

zsin(1/x) and the equation |x| = —|z| (this equation is plotted so that we see on

the screen the graphs of both y = |z| and y = —|z|). This can be done by using

the OVERDRAW utility discussed in Chapter 1 for the HP-28S, or by drawing the

second graph without resetting the display or erasing the last graph on the HP-

48SX (see Figure 2.6 for the HP-48SX graph).
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FIGURE 2.6

Clearly, lirrb —lz| = lin%) |z|] = 0. From the Pinching Theorem, then we also
r— r—

have that

lirr%):csin(l/x) =0

as we had conjectured. That was quite a long process, wasn’t it? If you haven’t

already done so, you should ask now whether it was worth it or not. After all,

from the graphical and numerical evidence, we had a pretty good idea that the limit

was 0. Why was it necessary to prove that the limit was indeed 0?7 The answer is

that the more complicated the problem is, the less helpful and accurate intuition

is. Computations and graphs can also be deceiving, as we’ll see in section 2.2. The

only way to be certain of the value of a given limit is to prove it.

At this point, you should recognize that there are really two somewhat different

reasons for conjecturing the value of a limit. The obvious reason is that we’d like to

find an approximate answer to a problem to which we cannot seem to find (at least

immediately) an exact answer by hand. An equally important reason is that we
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would like to gain sufficient insight into a limit problem that we might discover the

precise value. This second reason is a bit more difficult to get your hands on, but is

a very important reason for using a graphing calculator in exploring limit problems.

We’ll pursue this further in later examples and in the exercises at the end of the

section.

The following is a particularly useful limit to know. It arises in the derivation

of the derivative of sin .

Example 3. Limit of a Quotient That Is Not the Quotient of the Limits

. . sinz
Consider lim

x—0

 . The initial graph produced by the HP-28S/48SX seems to

indicate that the function approaches 1 as x approaches 0 (see Figure 2.7 for the

initial HP-28S graph; again, make sure that your calculator is set to radians mode).

FIGURE 2.7

Using the Solver, we produce the following table of values.

 

 

    

1 998334166468 —.1 998334166468

.01 999983333417 —.01 999983333417

.001 999999833333 —.001 1999999833333

.0001 999999998333 —.0001 .999999998333

.00001 1999999999983 —.00001 .999999999983 
 

Certainly, we could compute more values, but this, together with Figure 2.7,

would seem to be convincing evidence to warrant the testing of the conjecture:

sin x
=1 lim

xr—0 I
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We refer the reader to the derivation of this limit found in any standard calculus

text. There, as a preliminary step to finding the derivatives of the sine and cosine

functions, the above limit is found, usually using a complicated geometric argument

and the Pinching Theorem. We should mention that such a complex proof is con-

structed only after one has obtained experimentally, as above, a conjectured value.

Unfortunately, most standard calculus texts make no mention at all of how anyone

got the idea for whatever it is that is going to be proved. Consequently, many

students of calculus look at such theorems as wholly unmotivated, formal exercises.

We wish to help change that perception.

Example 4. A Limit with a Non-Integer Value

 Consider lirr%) .x3 . The initial graph drawn by the HP-28S (Figure 2.8a)
z—0 sin 3x

suggests that the limit is around .3. If we use the |ZBOX| command to zoom in on

where the graph seems to cross the y-axis (Figure 2.8b), then we might think that

the value of the limit is around .33.

  

 
......o e
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FIGURE 2.8a FIGURE 2.8b

Using the Solver, we construct the following table:
 

 

    

z f(z) z f(z)
1 338386336183 -1 338386336183

.01 333383338584 —.01 333383338584

.001 333333833334 —.001 333333833334

.0001 333333338333 —.0001 333333338333  
 

and so on. This graphical and numerical evidence is perhaps less convincing than in

earlier examples. One reason might be that the values do not seem to be approaching

a whole number value. If this were a homework problem, would this set off an

internal alarm? (There must be something wrong. The answer looks too messy.)
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Students often learn a very subtle lesson from solving textbook problems, all of whose

answers are whole numbers. That is, we come to expect nice looking answers. When

we don’t get them, we start looking for the mistake. The unfortunate reality is that

in real world applications of mathematics, we only very rarely run across problems

which have whole number answers. Thus, we need to be practiced at solving more

than just the usual unrealistic, but nice, problems.

From the preceding evidence, there are two reasonable ways in which we might

solve the limit problem. First, from the evidence, we might say that the value of the

limit is approximately equal to .333333338333. Second, in light of the expectation

of a nice answer, we could leap to the conjecture that:

T 1
 

ili% sin3z 3

Of course, when it’s possible to make and prove a conjecture, this is always

preferable. We can prove the preceding conjecture, as follows. It should occur to

the reader that the current problem is similar to Example 3. Here though, we have

sin(3x) instead of sin(z). It sounds like a change of variable might be in order. Let

u = 3z. Then z = u/3 and as z tends to 0, u tends to 0, also. We get

u/3 1 I u 1
lim — - = — lim — =
z—=0sin3rx u—0sinu 3u—0sinu 3
   

as conjectured, where we have used the fact, established in the last example, that

sin x
=1 lim

z—0 I

Example 5. A Limit with a Non-Rational Value

 Consider lim — 2 . From the initial graph (Figure 2.9a) and the graph ob-
z—0SIN7TT

tained from zooming in (using |ZBOX| ) on the section of the y-axis in question

(Figure 2.9b), we get the idea that the limit is somewhere around .3.

. & 2 2 3 A A A A Sl 2

 

FIGURE 2.9a FIGURE 2.9b
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Using the Solver, we generate the table

 

 

   

x f(x) z f(z)

1 .32360679775 —-.1 .32360679775

.01 318362252091 —.01 318362252091

.001 .318310409783 —.001 318310409783

.0001 .31830989142 —.0001 31830989142

.00001 318309886236 —.00001 .318309886236

.000001 318309886185 —.000001 318309886185 
  
and so on. (Note that if the symbolic constant 7 is used in the function definition,

you will need to add the keystroke to evaluate the symbolic value returned to

the stack by the Solver.) As someone trained to look for whole number answers, you

might be at great pains to arrive at a meaningful conjecture. For the moment, we

need to be satisfied with the suggestion that the limit is approximately .3183098862.

In the exercises, we shall see how to arrive at a meaningful conjecture for this

problem. Looking back at Example 4 might give you an idea as to how this might

be accomplished. .

Example 6. A Limit of a Sum Where Neither Limit Exists

(x —1)1/2 1
x2 —4 x2—4

the individual terms do not exist. The elementary rule that

. First note that the limits of Find i1_>m2 f(z) where f(x) =

tim[£(2) + 9(a)] = lim f(2) + lim g()

only applies when all three of the limits exist. In this example, this is not the case

and we must explore further to see what the limit might be.

The initial graph (see Figure 2.10a for an HP-28S graph) does not yield much

insight. However, if we use the command to zoom in on the part of the graph

near ¢ = 2 (Figure 2.10b), we see that the function appears to be approaching a

value somewhere around .123.

Using the Solver, we generate the table of values:
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1.9 .13158129 2.1 .119040597

1.99 .12562814 2.01 12437811

1.999 .12506253 2.001 12493753

1.9999 .12500625 2.0001 .12499375

1.99999 .1250007 2.00001 .1249994

1.999999 125 2.000001 125

1.9999999 125 2.0000001 125     
 

 

FIGURE 2.10a FIGURE 2.10b

We are led to make the conjecture

z-DY2 1
=.125

2 —4
 lim

r—2 12 -4

It is left as an exercise to show that the conjecture is correct. This requires some

elementary algebraic manipulation. .

Many functions are not nearly so well behaved as those in the preceding exam-

ples. We need to be able to recognize when a function blows up at a point, as well

as when it approaches a finite limit.

Example 7. A Function Whose Graph Has a Vertical Asymptote

 
1

Consider lin%)e Any graph of the function (see Figures 2.11a and 2.11b,
Tr—

for instance, for the initial HP-28S and HP-48SX graphs, respectively) seems to

indicate that the function values go off the scale in the positive direction as £ — 0

(x > 0) and go off the scale in the negative direction as x — 0 (z < 0).

Using the Solver, we generate the table (f(x) rounded off):
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T f(z) T f(z)
1 10 —.1 —-10

.01 100 —.01 —-100

.001 1000 —.001 —1000

.0001 10000 —.0001 —10000

.00001 100000 —.00001 —100000

.000001 1000000 —.000001 —1000000

3 azth | || Vo
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FIGURE 2.11a FIGURE 2.11b

and so on. Since the function does not seem to be approaching any fixed value as

x — 0, we are led to conjecture that the limit does not exist. To be more specific,

since the function grows larger and larger, in absolute value, without bound, as x

gets close to 0, we conjecture that

im — = 400 and lim
z—0+ SINn T

  

where by this we mean that the limit does not exist, but more specifically, it doesn’t

exist because the absolute values of the function values are growing large, without

bound. Recall that, in this case, the graph is said to have a vertical asymptote at

x = 0. Verifying these conjectures takes a bit more work than our earlier examples

and we omit this. =

Now that we have explored limits which tend to co, the seasoned student of

calculus might guess (or possibly conjecture) that we would next examine the limit-

ing behavior of functions as = tends to infinity. We begin this with an obvious first

example.
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Example 8. A Function Whose Graph Has a Horizontal Asymptote

1 1
Consider lim — and lim —. The graphs produced by the HP-28S/485X

Tr—0o0 U r——00 T

(Figures 2.12a and 2.12b show the initial HP-28S and HP-48SX graphs, respectively)

seem to indicate that the function approaches the z-axis as x gets larger and larger.

(Recall that such a line is called a horizontal asymptote.) Figures 2.12a and 2.12b

show the horizontal asymptote y = 0.

   

127}

K ™,
| T ¥

—_— —EEo~5.5

- il

FIGURE 2.12a FIGURE 2.12b

A table of values is easily constructed (even by hand).

 

 

    

T f(x) x f(z)

10 1 —-10 —-.1

100 .01 —100 —.01

1000 .001 —1000 —.001

10000 .0001 —10000 —.0001

100000 .00001 —100000 —.00001
 

 
It should now be intuitively quite clear that as x gets larger and larger in

absolute value, 1/z will get closer and closer to 0. We then have that

lim l=O and lim —1—:0
r—oo I r——00 T

It is now easy to conclude (see the exercises) that, for any positive integer power k,

1
lim — =0 and lm — =0
r—00 a:k r— —00 :L‘k

We can use these two limits to solve a large class of limit problems. n
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Example 9. A Limit of the Form oo/co

: . z*+5x -7 o . o
Consider lim ————. This is a limit of a quotient, but the limits in

z—o0 322 +4x + 9

the numerator and the denominator are both infinite. At first glance, then, this

limit has the indeterminate form oco/0o. Repeatedly using the command to

translate the center of the display to the furthest point to the right on the z-axis,

we produce the graphs in Figures 2.13a-2.13c using the HP-28S.

 

FIGURE 2.13a FIGURE 2.13b

 

 

FIGURE 2.13c

The displays seem to suggest that the function tends to a limit of about .3 as

x tends to co. As usual, a table of values is revealing.

 

 

z f(z)
10 40974212

10 40974212

100 34506232

1000 3345506

10000 33345551

100000 33334556

1000000 33333456

10000000 33333346   
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From this evidence, we might conjecture that

. 2 +5x -7 1

It’s not hard at all to verify this conjecture. A rule of thumb for dealing with limits

of rational functions (i.e., quotients of polynomials) as x — oo or z — —oo is to

divide the numerator and denominator of the fraction by the highest power of x

which appears in the denominator. For the present example, this means that we

should divide top and bottom by z2. We get

lim (2 + 5z —7)/z* lim 145/ —17/x? 1

z=o0 (322 + 4z +9)/12  2-003+4/x+9/22 3

as conjectured. =

Example 10. A Limit Involving a Square Root

2 _ m\1/2

Consider lim (x—L
z——oo 2xr+1

indeterminate form oco/oc. Figures 2.14a and 2.14b show the HP-28S graphs of this

function, where we have used the command to translate the center of the

display to the furthest left point on the z-axis, in order to try to observe the limiting

Note that, like the last example, this is of the

behavior.

L
o

 

 

]
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FIGURE 2.14a FIGURE 2.14b

From the graphs, it appears that the function has a horizontal asymptote of

y = —.5, as x tends to —oo. More convincing yet is the table:
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z f(z)
—10 —.290756057

—100 —.50233665

—-1000 —.50024837

—10000 —.500025

—100000 —.5000025

—1000000 —.50000025

—10000000 —.500000025   
 

It is now reasonable to conjecture that

2 _ m\1/2m &01
r——occ 2x+1 2

We leave it as an exercise to show that this conjecture is true. One need only apply

the rule of thumb described in the last example, but very carefully. (HINT: Divide

numerator and denominator by x and recall that vz2? = |z|.) .

We want to emphasize the interplay between the graphics, the numerical com-

putation and the analysis of the conjecture. You might be tempted to forget about

the graphs in practice. After all, just how much information have we obtained from

them, anyway? It’s true that the graphs which a graphing calculator generate- are

far too crude most times to be able to obtain even a reasonably accurate guess as to

the value of a limit. So why bother with them at all? This is easy to answer. The

graph gives us some intuition, an expectation of what a reasonable answer might

be. If the numbers generated suggest a limit consistent with what we expect from

the graphs, then we can be comfortable with our approximation or with our conjec-

ture. However, if the limiting value suggested by a table is far out of line with our

expectation, then we have serious cause for concern that one or both of the numbers

or the graphs are misleading. In this case, the problem requires further analysis.

As an extreme example of what can go wrong with mindlessly computing a

limit from a table of values alone, we offer the following.

Example 11. A Limit Requiring the Use of Computation and Graphics

Consider lim (z — 7)cos(mx) . There is nothing particularly unusual about
r—00

this function. We can easily construct the following table of values by using the
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Solver. (Recall that we’ll need to add the extra keystroke to take care of

the evaluation of the symbolic constant 7.)

 

 

  

z f(z)
10 7

100 97

1000 997

10000 9997

100000 99997

1000000 999997

10000000 9999997
 

From this table, we are led to the conjecture:

On the other hand, if we use a different set of x values for our table, still tending

to infinity, we get:

 

 

  

z f(z)
9 —6

99 —96

999 —996

9999 —9996

99999 —99996

999999 —999996

9999999 —9999996
 

 
lim (x — ) cosmx = o0

 
This set of values might lead one to the seemingly reasonable conjecture that

lim (z — m) cosmz = —00
T—00

Both of these conjectures cannot be correct! In fact, neither of them is correct. If

we had taken the time to first examine the graph of the function, we might have

noticed that the function exhibits a great deal of oscillation as £ — oo. (See Figures

2.15a-2.15d for HP-28S graphs; 2.15a is the initial graph; 2.15b was produced by

translating the center of the display over to the extreme right end of the z-axis
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by using the |CENTE| command; 2.15c and 2.15d are produced by repeatedly using

Z00M| to zoom out.) Having then constructed either or, better yet, both of the

above tables, we could correctly conjecture that the limit does not exist, but does

not tend to +o0o or to —oo.
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Exercises 2.1

In exercises 1-6, use graphics and the Solver to conjecture the value of the limit, or

conjecture that the limit does not exist.

 

LI r—1 9 1 rz+1
Dlim—— . lim —————
z—112 —4x + 3 z—0 2 + 2r + 3

:c2+:c x2 —x
3. Iim ———— 4. 1limeN VP-z41
5. lim S0 6. lim -99527

r—0+ \/E £—0 T

In exercises 7-12, conjecture the value of the limit. Then verify your conjecture by

factoring or using the Pinching Theorem.

. x242x -8 i x® — z?

[ SN2
9. lin}) z?sin(1/x) 10. 1in%):vcos(1/ac)
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In exercises 13-16, you are asked to discover some general limit rules.

13.

14.

15.

16.

  Conjecture the value of each limit (assume ¢ # 0). lim — , lim — ,
r—0sindx z—0sin7x

 lim : . Verify your conjectures as in Example 4.
z—0 sin cx

Conjecture the values of the limits or conjecture that they do not exist: lirr%) z?,
Ir—

lim z'/2, lin%) z~2. State a rule giving the various cases for evaluating lin%) z*
r— xr—x—0

Conjecture the values of the limits or conjecture that they do not exist: lim z2,
r—00

lim z'/2, lim z~2. State a rule giving the various cases for evaluating lim z*.
Ir— 00 Ir— 00 r—00

T

Conjecture the values of the limits or conjecture that they do not exist: lim —,
r—o0 I

. Inzx : : :
lim —— for various values of k. What does this tell you about the relative
r—oo T

“size” of logarithms, polynomials and exponential functions?

In exercises 17-22, conjecture the value of the limit or conjecture that the limit does

not exist.

17.

19.

21.

lim YE 1 18, Tim Y2322 

  

21 22 4+ 1 t—1 1242 — 3
3 ~1 _

lim- 20. lim vz —1
z—1 \/xr —1 z—1 (:L' - 1)2

lim- 92. lim%
z—0 I z—0 X

EXPLORATORY EXERCISE

Introduction

What is the top speed of a human being? In the 1988 Olympics, it was reported

that Ben Johnson reached a peak speed of 24 mph before crossing the finish line

first in the 100-meter dash. If the track is well marked, a VCR with frame-by-frame

advance can be used to determine speed. Many video cameras record at 30 frames

per second so that by counting frames we can measure time.
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Problems

Suppose that we collect the following data for a runner. Using the formula

Dist
Average speed = —m

Time

estimate the peak speed of the runner. For instance, for the entire 100 meters the

average speed is 10 meter/sec. But this is not peak speed because between the 50-

and 60-meter marks the average speed is 10/.95 = 10.5 meter/sec. To convert to

more familiar units of mph, simply divide by .447.

 

 

meters seconds meters seconds

30 3.2 62 6.266

40 4.2 64 6.466

50 5.166 70 7.066

56 5.766 80 8.0

58 5.933 90 9.0

60 6.1 100 10.0     
 

Why are all the times multiples of .0337 How much does this affect the accuracy

of your estimate of peak speed? To improve our estimate we would either need a

better video camera or a formula relating distance and time. The second half of this

problem explores the latter (unrealistic) situation.

Suppose that the function f(t) = 3t? represents the distance covered in t sec-

onds. For instance, after ¢ = 2 seconds the runner has gone f(2) = 12 meters. The

average speed between 1 and 2 seconds is

f@ - f(1) _12-3
2-1 2—-1
 = 9 meter/sec

What is the instantaneous speed at ¢t = 27 We can get a better estimate than 9

meter/sec by computing the average speed between ¢t = 1.5 and ¢ = 2. Better still,

compute the average speed between t = 1.9 and t = 2. Continue this process to

estimate the speed at t = 2.

Further Study

The instantaneous rate of change, which you are asked to find above, is called the

derivative and is an integral part of most calculus-based applications. We will give

a more in-depth treatment of the derivative in Chapters 3 and 4.
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2.2 Loss of Significance Errors

When conjecturing the values of limits by using the evidence obtained from the

HP-28S/48SX (or any other computational device, for that matter), we must always

keep in mind that the numbers (and consequently also the graphs) obtained thereby

are only approximate. Most of the time, this will cause us no serious trouble. The

HP-28S/48SX carries out calculations to a very high degree of precision. Sometimes,

however, the results of round-off errors in calculations are disastrous. In this section,

we shall examine how and when these loss of significance errors occur. We’'ll also

look at how to recognize these sometimes difficult to find computational errors and

how to deal with the occurrence for a limited number of cases.

Example 1. A Flawed Calculation

Consider the limit

lim z[(z? +4)Y/% — 2]
r—00

Following the procedure worked out in the previous section, we draw several

graphs to try to get a rough idea of the behavior of the function as x tends to infinity

(see Figures 2.16a and 2.16b for the HP-28S graphs).

 

 

FIGURE 2.16a FIGURE 2.16b

From the graphs, it seems that the function remains just about constant at

around 1.95 as = goes further and further out to the right. (The graphs pictured

above were produced by first performing a ZOOM on the original graph and then by

repeatedly translating the center over to the right edge of the preceding window.)

Using the Solver, we obtain the following table:



 

 

 

z f(z)
10 1.9804
100 1.9998
1000 2
10000 2
100000 2
1000000 0
10000000 (O   
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The last two values in the table should come as quite a surprise. These are

inconsistent with what we expected from examination of the graphs. These are also

surprising since from z = 10 to x = 100000, the corresponding function values seem

to be homing in on 2. Then, all of a sudden, the values jump down to 0.

Could it be that we simply did not look at the graph for sufficiently large values

of 7 Certainly, this is always a possibility, since we’re only drawing a large enough

piece of the graph to try to get an idea of the limiting behavior as x — co. However,

this is not the case here. This is an example of what is called a loss of significance

error. The preceding table suggests that we look more carefully at what happens to

the function between x = 100,000 and x = 1,000,000. We get the following from

 

 

 

the Solver:

z f(z)
100000 2

500000 2

750000 2.25

900000 1.8

950000 1.9

990000 1.98

999900 1.9998

999999 1.999998

1000000 (0.0   
This should strike you as rather strange. It would seem that the function is well-

behaved, slowly approaching 2, as x approaches 1,000,000, but something unusual

occurs at z = 1,000, 000.
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The reason for the unusual behavior witnessed in the last example boils down

to how the HP-28S/48SX stores real numbers internally. Without getting into the

conversion of decimal (base 10) real numbers into binary (base 2) and vice versa, let

it suffice to say that the calculator stores real numbers in scientific notation. Thus,

the real number 1234567 is stored as 1.234567 x 10°. The part of the number in

front of the power of 10 is called the mantissa and the power of 10 is called the

exponent. (So, here the mantissa is 1.234567 and the exponent is 6.)

Since no computing device has infinite memory, there are limitations on the size

of the numbers which can be used by such a machine, as well as limits on the number

of digits in the mantissa which are held internally by the machine. In the case of

the HP-28S/48SX, real numbers are permitted to have a mantissa between 1 and

9.99999999999 and an exponent between —499 and 499. It should be noted that,

while this represents a high degree of accuracy especially for a hand-held computing

device, it still presents very real problems with accuracy in certain computations.

Essentially, this suggests that real numbers are represented internally only to

the first 12 significant digits (finite precision). Again, this is more than sufficient

for most computations, but will present an occasional problem. We will examine

here what the consequences of such limited accuracy may be on the computation of

limits. First, we look at several simple examples.

Example 2. Representation of Real Numbers in Finite Precision

1/3 is stored internally as 3.33333333333 x 10~! .

2/3 is stored internally as 6.66666666667 x 10~1 . n

In Example 3, we will see what happens if we subtract two numbers which differ

in the 13th significant digit.

Example 3. Arithmetic in Finite Precision

Notice that

1.000000000002 x 10— 1.000000000001 x 10= .000000000001 x 10= 1000

However,if the above operation is carried out on a machine with a 12-digit mantissa,

both numbers are represented by 1.0 x 10'° and consequently the difference between

the two values is computed as 0. (Try this now on your HP-28S5/48SX.) Similarly,

1.000000000006 x 10'® —1.000000000004 x 10'® = .000000000002 x 10'® = 2, 000, 000
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In this case, if the calculation is carried out on a machine with a 12-digit mantissa,

the first number is represented by 1.00000000001 x 10'® and the second number as

1.0 x 10'® due to the limited accuracy and rounding. The difference between the

two values is then computed as .00000000001 x 10'® or 1.0 x 107 or 10,000,000. Once

again, this is a serious error. n

In both of the preceding computations, we have a computed value which is

grossly inaccurate, caused by a subtraction of numbers whose significant digits were

very close to one another. This type of error is referred to as a loss of significant digits

error or simply a loss of significance error. These are subtle, but often disastrous,

computational errors. Returning now to Example 1, we’ll see that it was this type

of computational error which caused the values after x = 1,000,000 to be trashed.

Recall that the function under consideration was

f(z) = z[(z® + 4)'/* — 1]

Let’s follow the computation for x = 1,000, 000 one step at a time, as the calculator

carries it out. First compute (2% + 4)/2 (z = 1.0 x 10%):

(2% +0)Y2% = [(1 x 10%)2 + 4]Y/2 = [1 x 1012 4 4]'/2

= [1.000000000004 x 10*2]*/2

= [1.0 x 1012]/2

= 1.0 x 10°

Recall that 1.000000000004 x 102 is rounded off to 1.0 x 1012 because the calculator

only carries 12 digits. Thus, the calculator gives

f(1x10%) = (1 x 10%)[1.0 x 10° — 1.0 x 10°] =0

Note that the real culprit here is not the rounding of 1.000000000004 to 1, but

the fact that this was followed by a subtraction. Additionally, notice that this is not

a problem confined to the numerical computation of limits, but a problem common

to numerical computation, in general.

RULE OF THUMB: If at all possible, avoid subtractions, in order to avoid loss

of significance errors. This can sometimes be accomplished by performing some

algebraic manipulation of the function.
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Returning once again to Example 1, notice that we may avoid the subtraction

which seems to have been the cause of our problems, although in the process, we

will complicate the expression for the function. Notice that

f(z) = z[(a® + 4)'/? 2]

(22 +4)V2 4z

_z[(z®+4)—2?] Az

@2+)24z (2244242

= z(x? +4)'/? — 1]

 

where, for z > 0, the last expression has no subtraction and hence also no loss of

significance error. If we plot this last representation of the function, we get the same

graphs as for the original representation of the function (Figures 2.16a - 2.16b). We

now compute the table of values:

 

 

x f(z)
10 1.9804

100 1.9998

1000 1.999998

10000 1.99999998

100000 1.9999999998

1000000 2.0

10000000 2.0

100000000 |2.0    
This is more like the kind of progression of values which we had seen in earlier

examples. From this evidence, together with a graph of the function over a large

interval, we might reasonably conjecture that

lim z[(x? +4)Y/2 — 2] =2
r—00

At this point, you should have a fairly good idea of how a loss of significance

error can occur. In the next several examples, we shall pursue this a bit further.

Example 4. An Error Where Subtraction Is Not Explicitly Indicated

Consider lim z[(z% + 4)Y/2 + z] . At first glance, you might think that since

there’s no subtraction explicitly indicated, there will be no loss of significance error.
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Upon closer examination, however, notice that since x is tending to minus infinity,

an addition of two numbers of opposite sign (i.e., a subtraction) is taking place

inside the brackets. Again, we can see the same peculiar behavior as that evident

in Example 1. From Figures 2.17a and 2.17b (from the HP-28S, obtained by using

the command once and then translating the center to the furthest point to

the left on the z-axis) it appears that the function tends to a value around —1.95

as r — —OQ.

  

 

------ {1" ———— — ettt - 1

AT 3

FIGURE 2.17a FIGURE 2.17b

We obtain the following table from the Solver:

 

 

z f(z)
-10 —1.9804

—100 —1.9998

—1000 -2.0

—10000 -2.0

—100000 -2.0

—1000000 0.0

—10000000 0.0   
 

Again, the sudden change in values should appear suspicious. Upon closer

examination, it should be clear that we do indeed have a loss of significance error.

The remedy, as it was for Example 1, is to rewrite the expression.

f(z) = z[(z® + 4/ + 2]
(1‘2 + 4)1 /2 _ o

@+4% ¢
_ z[(z? +4) — 27 4z
(242 -z (224 4)1/2-2

= z[(a® + 4)"/% + 2]

Here, again, the last expression has no subtraction (for x < 0) and hence should

have no loss of significance error. Using this last expression, we construct the table:
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z f(z)
-10 —1.9804

—100 —1.9998

—1000 —1.999998

—10000 —-1.99999998

—100000 —1.9999999998

—1000000 -2.0

—10000000 -2.0

—100000000 |-2.0   
 

Once again, the algebraic manipulation has eliminated the subtraction and,

hence, also has eliminated the loss of significance error. We can now conjecture that

lim z[(z? +4)Y2 + ] = -2
r——0o0

You will have noticed that the loss of significance errors in each of the last

two examples occurred when the x value reached about 1,000,000 in absolute value.

Unfortunately, these errors do not occur only when dealing with numbers fairly large

in absolute value. They can occur any time two nearly equal numbers are subtracted

(or two numbers of nearly equal absolute values but opposite signs are added).

Example 5. A Loss of Significance Error Near x =0

1 —

Consider lim °5(%)
z—0 1:2

. Using the command twice to zoom in on the

behavior of the function near x = 0, we obtain the HP-28S graphs in Figures 2.18a

and 2.18b.

 

  

FIGURE 2.18a FIGURE 2.18b
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From the graphs, it appears that the function is approaching a value around

49 or .5, as £ — 0. Using the Solver, we obtain the table:

 

 

z f(x) x f(z)

1 0.4996 —-.1 0.4996

.01 0.499996 —.01 0.499996

.001 0.5 —.001 0.5

.0001 0.5 —.0001 0.5

.00001 0.5 —.00001 0.5

.000001 0.0 —.000001 0.0

.0000001 0.0 —.0000001 0.0      
Notice that the values in the table take a sudden jump from .5 to 0.0. From the

graphs in Figures 2.18a - 2.18b, we might reasonably expect a value near .5. This

indicates that there may be a loss of significance error in the computation of f(zx).

In this case, the value of cos(z) is very nearly equal to 1 when x is nearly 0. The

subtraction of 1 and cos(z) (two very nearly equal values) then causes the error.

We should note that, while from the first 5 entries in either column of the

table and the graphs, we might reasonably conjecture that the value of the limit is

.5 (in fact, this is correct) there is a broader question here. How can we reliably

compute values of f(z) for z close to 07 From the preceding, it should be clear

that we cannot use the given representation of the function. Consider the following

algebraic manipulation.

  

f(z) = l—cosz 1—cosz 1+cosz

- 2 - T2 1+ cosz

1 — (cosx)? sin® z
~ z2(14cosz) 22(1 4 cosz)

Notice that, as in the previous examples, this last expression has no subtraction

and hence, also will have no loss of significance error. We can now construct the

table:

 

 

    

A 49958 —-.1 .49958

.01 499996 —.01 .499996

.001 49999996 —.001 49999996

.0001 4999999996 —.0001 4999999996

.00001 499999999995 —.00001 499999999995

.000001 D —.000001 .9

.0000001 .0 —.0000001 .0  
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Once again, we have eliminated the loss of significance error by performing an

algebraic manipulation. We should be able to use the last expression above for

accurate calculation of the values of f(x) and we can, as well, make the conjecture:

. 1—cos(z) 1

2TT2

We must point out that the method used to avoid the loss of significance error

in the last three examples is not one which will work for all problems, or for most

problems, for that matter. Again, these errors are often hard to find and somewhat

tricky to fix and a complete exposition of these is best deferred to a course in Numer-

ical Analysis. Our main point in discussing these here is to make the student aware

of them at an early point, since they will invariably be encountered in calculation.

It is useful to be able to recognize when these errors occur and to know how to fix

them in at least a limited number of cases.

Exercises 2.2

In exercises 1-6, conjecture the value of the limit. For what value of x does a loss

of significance error appear?

1. lim z[v4x2 + — 2z] 2. lim z[vV4z? 4+ 1+ 2z]
T—00 T— —00

3. lim Vz[Vz +4— Vz +2] 4. lim z?[v/z* + 8 — z?]
r—00 r—00

5. lim LSBT 6. lim LS8
x—0 x3 x—0 1‘4

In exercises 7-10, rework the indicated exercise after rewriting the function to reduce

loss of significance error.

7. exercise 1 8. exercise 2

9. exercise 3 10. exercise 4

In exercises 11-13 (as well as the Exploratory Exercise) you will see what effect a

small numerical error can have.

2 -2 2 —2.01
11. Compare lim rAr- and lim rhr- .

T— r—1 r—1 r—1

 
R _ T —2

12. Compare il_)HlQo and il_% 101
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13. Compare sin7mz and sin3.14x for £ = 1 (radian), x = 10, z = 100, and = =

1000.

14. Compute (1.6 x 10%9%)2 on the calculator and by hand. In what ways does 10°%°

correspond to oo on the calculator?

15. Show that on the calculator 1.6 x 10499 — .8 x 10%9% # (1.6 —.8) x 10*%°. Explain

why they are different.

EXPLORATORY EXERCISE

Introduction

The theory of chaos has been called the most interesting scientific development of

the last 25 years. One of the fundamental principles of chaos is that small changes in

numbers (such as those due to loss of significance errors) can have substantial effects

on calculations. Physically, this concept is dramatized by the “Butterfly Effect.”

This states that the air stirred by a butterfly in China can create or disperse a

hurricane in the South Atlantic two days later. Below we look at a basic example

of chaos.

Problems

Set up a user-defined function called CHAOS:

<= X’X*(C-X)’'EVAL >

Start with C=2 (press 2 'C’ ), put .5 on the stack and press several

times. After a few times, the number 1 will be returned every time: we are “stuck”

at 1. Now try C=2.5, put .5 on the stack and evaluate CHAOS until you get stuck

at 1.5. This seems pretty tame: a small change in C produced a small change in

output. But, try C=3.2 (again starting with .5 on the stack). This time, you will

get stuck alternating between 2 different numbers. A small change in C produced a

substantially different behavior.

Verify the following statements: with C=3.48 you get stuck on a 4-number

cycle. With C=3.555 you get an 8-number cycle. With C=3.565 you get a 16-

number cycle. With C=3.569 you get a 32-number cycle. With C=3.5697 you get

a 64-number cycle. With C=3.57 you get chaos (no repetitions).

This information is summarized in the diagram below. For instance, the point

(2,1) signifies that with C=2 you get stuck at 1; the point (2.5,1.5) signifies that

with C=2.5 you get stuck at 1.5. The diagram divides into 2 branches and then 4
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branches and then 8 branches and so on as the process develops 2-number cycles,

4-number cycles, 8-number cycles and so on. The places where the branches occur

are called bifurcation points. Try to find them.

What happens with C=3.5?7 Since C=3.48 produces a 4-number cycle and

C=3.555 produces an 8-number cycle, C=3.5 is a surprise! Try to identify where

C=3.5 is on the diagram.

 
Further Study

Chaos is a very young scientific field, but there are several books out which are

very well written and enjoyable. Chaos by James Gleick is the most general (it

spent several weeks on the best seller list). The work we did above is the basis for

current attempts to understand turbulence (see Nonlinear Dynamics and Chaos by
 

Thompson and Stewart).
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2.3 Exploring the Definition of Limit

We have now spent many pages discussing various aspects of the computation

of limits. This may seem just a bit odd, in that we have never actually defined what

a limit is. Oh, sure, we have an idea of what a limit is, but that’s all. In section 2.1,

we reminded the student of the intuitive notion of a limit. Again, we say that

lim f(z) =1L
r—a

if f(x) gets closer and closer to L when x gets closer and closer to a.

We have so far been quite happy with this vague, although intuitive, description.

For many purposes, this notion is certainly sufficient. However, this needs to be

made more precise. In doing so, we will begin to see how mathematical analysis

(that branch of mathematics of which the calculus is the most elementary study)

works.

Studying more advanced mathematics without an understanding of the precise

definition of limit is somewhat like studying brain surgery without bothering with all

that background work in chemistry and biology. A brain surgeon certainly doesn’t

need these things to perform his or her job, but neither of the authors would consent

to surgery by one who did not have a thorough understanding of these areas. Why

not? In biology and medicine, it has only been through a careful examination of

the microscopic world that a deeper understanding of our own macroscopic world

has been achieved and good surgeons need to understand what they are doing and

why they are doing it. Mere technical proficiency is simply not enough. Likewise,

in mathematical analysis, it is only through an understanding of the microscopic

behavior of functions (here, the precise definition of limit) that real understanding

of the mathematics will come about.

We begin by careful examination of an elementary example.

Example 1. Analysis of a Limit of a Polynomial

Within the framework of our intuitive notion of limit, it’s easy to believe that

lim(22 + 5) = 11

The function is a polynomial and we have already observed that the limit of any

polynomial is found by simply plugging in the value for z. But, why is that? What
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is it that this statement is trying to communicate? You might answer that as x gets

closer and closer to 3, the quantity (2x + 5) will get closer and closer to 11. But,

this is rather vague. What do we mean when we say closer and closer?

A simple way to think about this is to say that we should be able to make

(2x + 5) as close as we might like to 11, simply by making z sufficiently close to 3.

So, suppose that we want (2 + 5) to be within, say, 1/2 of 11. Mathematically, this

means that

~1/2 < (2¢+5) — 11 < 1/2

or adding 11,

11-1/2<2x+5<11+1/2

For what values of x can we guarantee that this will be true? From the graph of

f(x) = (2¢ + 5), we can read off an answer. Since we are only interested in the

behavior of the function near x = 3 and since we want the function values to lie

between 10.5 and 11.5, we zoom in on the graphics window with extreme corners

(2,10.5) and (4,11.5). (On the HP-28S, put these two points on the stack and press

. On the HP-48SX, enter 2 and 4 on the stack and press and enter

10.5 and 11.5 on the stack and press and .) See Figure 2.19 for the

HP- 48SX graph. From the graph, it looks like for  between about 2.76 and 3.25,

the graph stays on the screen, i.e. f(x) stays between 10.5 and 11.5.

FIGURE 2.19

In this case, however, why not just solve the above inequality for 7 We have

21/2 < 2x 4+ 5 < 23/2

and subtracting 5,

11/2 < 2z < 13/2
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so that

11/4 <z < 13/4

In particular, notice that this says that

3—1/4<zx<3+1/4

More generally, just how close would you like (2 + 5) to be to 11?7 Pick some

arbitrary distance and call it € (epsilon, where ¢ > 0). What range of values of z

will guarantee that (2z + 5) is within a distance € of 117 Figure 2.20 gives a graphic

solution of this problem.

 11+e€

11

11—¢

~

 

 

    
3—€¢/2 € 3+¢/2 x 

FIGURE 2.20

Again, we require that

—e<(2r+5)—11<e

11—-e<2x+5<11+c¢€

Solving the inequality for x, we get

6—e<2x<6+e¢

3—€/2<x<3+¢€/2

—€/2<x—3<¢€/2

We summarize this by saying that if we want (2x + 5) to be within € of 11, then z

must be within €/2 of 3, i.e.,

|(2z +5) — 11| < ¢ whenever |z — 3| <€/2
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Next, we consider this more precise notion of limit for an example where the

function is undefined at the point in question.

Example 2. Analysis of a Limit of a Rational Function

212
Consider lim2 %__Q_ = 12. As in Example 1, we would like to know how close

T— —

z must be to 2, in order to guarantee that the function is within some arbitrary

distance € (¢ > 0) of 12. (See Figure 2.21 for a graphical representation of this

problem.)

FIGURE 2.21

Notice that, in this case, the function is undefined at x = 2 and so we look for

a number 6 (6 > 0) such that if

O0<|z—2|<é

then

3r2 - 12

T — 2 
—12‘<e

(Note that we have |z — 2| > 0, so that x # 2, since the function is not defined at

x = 2.) This last inequality corresponds to

2 _

19_e<3T212 154,
T —2

Since x # 2, we can factor and cancel, yielding

< 3(x ——x21(:2c + 2)
12 — <12+4¢€
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12-e<3(zx+2)<12+e€

Solving this inequality for x, we get:

2—-€¢/3<r<2+¢€/3

ie.,

—€/3<zr—-2<¢€/3

We can now see that choosing 6 = €¢/3 will do the job. That is, if

0<|z—2|<¢/3

then

2 _

T —2 

as desired. This should give you a sufficiently clear idea of the process to make a

general definition. .

Definition (Precise Definition of Limit) For a function f defined in some open

interval including a (except possibly at a itself), we say lim f(z) = L if given any
r—a

number € > 0, there is another number § > 0 such that whenever 0 < |z —a| < §

we guarantee that |f(z) — L| < e.

We want to emphasize that this formal definition is not a completely new idea,

but is simply a more precise formulation of the intuitive notion of limit which we

have been using since the start of our discussion of limits. The difference is that we

want to use this definition to carefully prove the conjectured value of a limit.

We have seen how to use the graphics and the computing power of the HP-

285/48SX to arrive at a conjecture for the value of a limit. But, how can we make

use of the calculator in working with the above definition to prove that a limit has

a certain value? In short, we cannot. However, it is of some value to explore the

definition using the calculator. While we won’t prove any theorems, we might gain

some insight into what the definition is saying and how these §’s relate to the ¢€’s.

First, as an illustration, let’s look at a limit for which we can explicitly compute

0 in terms of e.
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Example 3. Analysis of a Limit of a Quadratic Polynomial

Consider lim2(x® — 1) = 3. Given € > 0, we seek a § > 0 such that if 0 <

|z — 2| < 6, then

(2> —=1)-3| <e

We can turn the problem around somewhat by assuming that for some 6§ > 0,

0 < |z — 2| < 6. Then, we have

(2 1) =3[ =|a* — 4| = |z +2| - [ - 2|

If we further assume that z lies in the interval [1,3] (we are only interested in what

happens near z = 2, anyway), we get that |x + 2| < 5, from which it follows that

|22 — 4| = |z + 2| - |z — 2| < 5|z — 2|

We now require that

(2> —=1)=3| < 5lzr—2| <e

This occurs if and only if

|z — 2| < €/5

Thus, we can choose § = €¢/5 (as long as € < 5, so that z also stays in the interval

1,3).
We should point out here that for most problems, finding the § corresponding

to a given € is a very difficult task to accomplish algebraically. However, we can

use the graphics of the HP-285/48SX to gain insight into the relationship between

6 and e. First, we illustrate this for the present example.

Consider the choice € = 1/2. In this case, we are interested in what z-values

near r = 2 will guarantee that the function values stay between (3 — 1/2) and

(3 +1/2), i.e., between 2.5 and 3.5. In this case, we set the z-range to be [1,3]

and the y-range to be [2.5,3.5]. [On the HP-28S, enter the extreme corners of the

window, (1,2.5) and (3,3.5) on the stack and press . On the HP-48SX, enter

1 and 3 on the stack and press and enter 2.5 and 3.5 on the stack and press

and .| See Figure 2.22 for the HP-48SX graph. From the graph, you

can observe that by keeping the z-values in the interval (1.9,2.1), the graph will stay

on the screen (i.e., the y-values will stay in the desired interval). Notice that this
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set of z-values corresponds to those obtained from our previous analysis. (There,

we had |z — 1| < § , where § = €¢/5, so that when € = 1/2, § = 1/10.) .

!

e
,

FIGURE 2.22

We point out that an exploration of the definition of limit such as that exhibited

in Example 3 is of most interest for problems where it is not obvious what the

relationship between 6 and € might be. This is the case in Example 4.

Example 4. Exploring the Definition of Limit Where 6 Is Unknown

Consider lim1 cos(mz/2) = 0 . We would all certainly like to believe that this
r—

limit is correct. After all, cos(7/2) = 0 and so this seems only fair. Also, any graph

of y = cos(mwz/2) will suggest that this should be true. Proving this is yet another

matter. Given an € > 0, we look for a § > 0 such that

| cos(mx/2) — 0| < €

whenever 0 < |z — 1| < §. Finding 6 in terms of an arbitrary e is not easy. (Try

this and see what we mean!) We can, however, use the graphics utilities of the HP-

285/48SX to experimentally find values of § which seem to work for some selected

values ofe.

Let’s start with the value ¢ = 1/2. This means that we would like to know if

we can find a § > 0 so that 0 < |z — 1| < § guarantees that

0-1/2 < cos(mz/2) <0+1/2

or

—1/2 < cos(mx/2) < 1/2

Here, we are interested in what range of z-values (near x = 1) will guarantee

that the function values will stay between —1/2 and 1/2. Set the z-range to be [0,2]

and the y-range to be [—.5,.5]. [On the HP-28S, enter the extreme corners of the
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display, (0, —.5) and (2,.5) on the stack and press . On the HP-48SX, enter

0 and 2 on the stack and press and enter —.5 and .5 on the stack and press

and .| See Figure 2.23a for the HP-28S graph. Notice from the graph

that if x is between about .68 and 1.32, the graph will stay on the screen, i.e., the

y-values will fall in the desired range. This says that § is approximately .32, here.

¢ ’

v

FIGURE 2.23a FIGURE 2.23b

Next, we try € = .25. First, zoom in on the part of the graph of interest. Figure

2.23b was produced by entering the points (.6, —.25) and (1.4,.25) on the stack and

pressing . You can do the same on the HP-48SX by using the and

commands, as above. Here, we want

—.25 < cos(mzx/2) < .25

In this case, notice that if z is between about .85 and 1.15, the graph stays on

the screen and, hence, the y-values fall in the desired range. This gives us an

approximate value for 6 of .15.

Repeat this process for a few even smaller values of €. We can continue this

indefinitely. This is, of course, the whole idea of the definition of limit. Again, while

finding the ¢ ’s for a few € ’s will not prove a conjecture as to the value of a limit, it

should serve to illustrate the idea, as well as to provide evidence that our conjecture

is correct. In the exercises, we will explore this idea further, both using the power

of the HP-285/48SX and by solving some problems by hand. n

Exercises 2.3

In exercises 1-8, graphically find values of § corresponding to € = .1 and € = .05.

1. lir%3x+5=5 2. li11122:1:+1=5

3. nn%x2+1=1 4. lim 2z2+3=5

5. liml\/:I:—|-3:2 6. lir%\/asz”—{— =3
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2 3
7. limx t =4 8 limcosx =1

r—1 €T x—0

 

In exercises 9-11 the function has the form f(z) = kx for some constant k. Verify

that 6 = €/|k| works for lin%) f(z) =0.

9. f(z) =3z 10. f(z) = -2z

11. f(z) =x/2

12. Rework exercises 9-11 for lim1 f(z). Would 6 = €/|k| work for any cin lim f(z)?

In exercises 13-16, verify graphically that the limits do not exist. Explain why there

is no 6 that works for e = .1. NOTE: to graph the function in exercise 13, press

<— X' IFTE(X>1,XA2,X+1) ' >

and then proceed as for any other function using NEWF on the HP-28S or NEW

on the HP-48SX.

r+1 =<1
131 h _ =lim f(z) where f(z) {m2 o1

14. lim f(z) where f(c) {”3_4 TSz. 11m T =m ) wihnere X x2+1 $>2

4 2

15. lim —-% 16. lim 2 %
z—1 (r —1)2 2—0 /g3 4 422

17. State precisely what it means for a limit to not exist.

1
18. State precisely what is meant by lim f(x) = oco. Use lin}) — as an example to

r—C rx—0

guide your thinking.

19. A manufacturer of steel balls signs a contract to produce 2-1b balls. The cus-

tomer allows a deviation of at most .02 b (1%). The radius and weight are
3

related by W = % so that the radius is supposed to be 2 cm. How much

can the radius deviate from 2 cm if the weight is to stay within the customer’s

specifications?

20. If the manufacturer in exercise 19 receives special orders with reduced tolerances

of .01 Ib and .005 lb, how much does the radius tolerance need to be reduced

to?
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EXPLORATORY EXERCISE

Introduction

In exercises 9-12, you found a general formula for é in terms of € for linear functions.

Here, we will discover a similar formula for quadratic functions. In particular, we

want to find a constant k such that § = ¢/k works for illl}) az’ + bz +c=c.

Problems

We will look at some examples before trying to generalize. For f(z) = 22 + 3z + 2

zoom in on (0,2) until the graph appears to be straight. Find two points on this curve

and compute the slope m between these two points. Show that k = m does not work

but k slightly larger than m does work. Repeat this process for f(z) = 4z2 + 3z + 2

and f(r) = 2 + = + 2. Conjecture the slope of f(z) = az? + bx + ¢ at (0,c) and

then conjecture a solution to our original problem.

Further Study

The work you have done above will be useful in several ways as you progress through

calculus. You have probably discovered how to compute the derivative (slope) of a

quadratic function. You have also come very close to proving an important result

which states that if a function is differentiable at £ = a then it must be continuous

at T = a.



 

CHAPTER

 

 

Differentiation

3.1 Construction of Tangent Lines

We are all quite familiar with the notion of a tangent line to a circle. This

is a line which intersects the circle in exactly one point. Unfortunately, this idea

does not generalize to all curves. Recall that we define the tangent line to the curve

y = f(x) at the point P(xo,yo) by considering a sequence of lines joining P with

nearby points @ (these are called secant lines ). As @ gets closer and closer to P,

the lines are approaching the tangent line (see Figure 3.1).

01

0>

  
FIGURE 3.1

Notice that since we’re already specifying the point of tangency, all we need to

do to define the tangent line is to find its slope. We will do this shortly. But first,

we want to come at this problem from a slightly different direction.

What is it that the tangent line is telling us about the graph of a function?

97



98 Differentiation

One way to think about this is as follows. If you are walking along the graph

of a function, the direction in which you are facing at any given point is along the

tangent line. Further, if we zoom in enough on the graph, it should look fairly

straight. The straight line that we then observe is an approximation to the tangent

line. That should ring some bells. Your HP-285/48SX is ideal for drawing graphs

and zooming in on various points of interest.

Example 1. Using Graphics to Find an Approximate Tangent Line

1
Consider f(x) = -2—1113 — 1, near x = 1. We will explore this idea of zooming in

on the point of interest, (1, —.5), until the graph looks fairly straight. We start with

a graph of y = f(z) using the default graphing parameters (press [RESET| ). The

initial HP-28S graph is shown in Figure 3.2.

 

FIGURE 3.2

If you move the cursor over to the point (1,—.5), you'll note that the graph

does not look very straight nearby.

However, if we use the command (on either the HP-28S or 48SX) we

can see that the more that we zoom in on the vicinity of the point in question,

the straighter the graph appears to be (see Figures 3.3a and 3.3b for successively

zoomed HP-28S graphs).

FIGURE 3.3a FIGURE 3.3b

The endpoints of the portion of the graph appearing in Figure 3.3b are approxi-

mately (.941176470585, —.581685744016) and (1.05882352941, —.404786680541) but
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yours may differ somewhat. To find the slope of the line joining these two points,

first put the points on the stack (move the cursor over to the point and press

on the HP-28S; on the HP-48SX, press the key). Next, press and —.

The HP-28S/48SX will return the point whose coordinates are the differences of

the respective coordinates of the original points. Then press [located in the

Complx menu on the HP-28S and in the second page of the Obj menu (press

) on the HP-48SX]. This places the x and y coordinates of the point

on lines 2 and 1 of the stack, respectively. Press and then / to compute the

slope. In the present case, we get a slope of 1.50364203952. What does this slope

represent? Well, it would seem to be an approximation to the slope of the tangent

line.

To observe what the line through (1, —.5) with slope 1.50364203952 looks like

together with the original graph, plot them simultaneously, as follows:

1. Press to reset the graphics window parameters to their default values

2. Press EQ (or on the HP-48SX) to return the current equation to

the command line and prepare to edit it

3. Move the cursor to the 2nd quote mark, insert: = 1.50364203952 * (X—1) —.5

and press :

Press on the HP-28S or [NEW| on the HP-48SX and draw the graph of the

equation. (Recall that the two expressions on either side of the equation will be

graphed simultaneously.) See Figure 3.4 for the HP-485X graph of this. It is not

clear whether or not this is the tangent line that we are seeking. Actually, it’s a

secant line, and acts as only a crude approximation to the tangent line.

 

azfr | S

f 3
-65 *v/y?' © &%

:

"3:.13‘

FIGURE 3.4

While we might be able to improve our approximation by zooming in on the
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point of tangency even further, there is a better way to do this. You should keep

in mind that the graphs produced by the HP-28S/48SX are at best fairly rough

representations of the actual graphs. Thus, there’s a built-in limit to how good an

approximation of slope can be if it is derived from such an imperfect graph. "

In general, for a function f(z), if we want the slope of the tangent line to

y = f(z) at the point corresponding to x = a, then we should graphically zoom in on

the vicinity of the point of tangency enough that the graph appears to be a straight

line. We again want to make the point that appearances can be deceiving. However,

the basic idea here is correct. We can accomplish the same thing algebraically

without the inaccuracies inherent in the reliance on graphics alone.

Pick a point on the curve nearby the point of tangency, (a, f(a)), say (a +

h, f(a + h)), for some small value h. If h is small enough [i.e., if (a + h, f(a + h))

is close enough to (a, f(a))] then the portion of the graph between these two points

should appear fairly straight. In this case, the slope of the secant line joining these

two points will approximate the slope of the tangent line. From the usual formula

for slope, the slope of this secant line is

_y2—y1 _ fla+h)—f(a) fla+h)— f(a)

msec_:vg—:vlm (a+h)—a h
 

Example 2. Computing the Slope of a Secant Line

1
Again, for f(x) = 53:3 — 1, compute the slope of the secant line joining the

points corresponding to x =1 and z = 1.1. We get

_f(1) = f(1)  —.3345 — (-.5)
sec = = 1.655" 1 1
 

A better approximation to the slope of the tangent line might be obtained if

we find the slope of the secant line joining (1, —.5) and an even closer point, say the

point corresponding to z = 1.01. We find

F(1.01) — f(1)  —.4848495 — (—.5)
m o0 o0 51505 
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There are several things to notice here. First, the slopes of the secant lines

computed above are reasonably close to the approximation to the slope of the tan-

gent line found graphically in Example 1. Second, it is reasonable to expect that

the closer that we choose the second point to the point of tangency, the closer the

slope of the corresponding secant line should be to the slope of the tangent line.

Rather than compute a long sequence of slopes manually, we suggest the following

HP-28S/48SX program.

PROGRAM TIP: Return to the HOME directory (press |QUIT| if you are in a

subdirectory) and create a new subdirectory: Enter * TANG ’ and press |[CRDIR| .

Enter the new subdirectory by pressing |TANG| in the User menu. Then store the

usual QUIT program: type < > [ENTER| QUIT’ . Finally, enter

the program:

<«—>H’ (F(X0+H)-F(X0))/H’ >

 

Program Step Explanation

< — H Store the value on line 1 of the stack

in the local variable H.

 

(F(X0+H) — F(X0))/H’ Compute the slope of the secant
line joining the points corresponding

to £ = X0 and z = X0+H and return

this value to the stack.

> ENTER End the program and put it

on line 1 of the stack.

"MSEC’ STO Store the program under the name

MSEC in the current directory.   
 

Before running this program, you will need to create two other entries in your

current directory: one for the function F and one for the x coordinate of the point

of tangency, X0. For the present example, we can use:

<«—X’.5*X A3 —1’> [ENTER] ' F’ [STO]

1 [ENTER] * X0’ [STQ]

Entering a value for H on the stack and pressing [MSEC| will compute the slope
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of the secant line joining the points on the graph of y = F(x) corresponding to the x

values X0 and X0+H. For example, using H = .1, we get the slope 1.655, as above.

Having this program, however, allows us to easily compute values of MSEC for a

sequence of values of H getting closer and closer to 0. In this way, we can observe

the limiting behavior of the slopes of the secant lines and from this conjecture the

value of the slope of the tangent line.

 

 

    

H MSEC H MSEC

1.0 3.5 -1.0 0.5

0.1 1.655 —0.1 1.355

0.01 1.51505 —0.01 1.48505

0.001 1.5015005 —0.001 1.4985005

0.0001 1.50015 —0.0001 1.49985

0.00001 1.500015 —0.00001 1.499985

0.000001 1.5 —0.000001 1.499998

0.0000001 1.5 —0.0000001 1.5
 

 
From this table, we see that the slopes of the secant lines seem to be getting

closer and closer to 1.5 as H gets closer and closer to 0. Intuitively, then, it seems

reasonable to conjecture that the slope of the tangent line is 1.5. To check that this

conjecture is consistent with our geometric intuition about tangent lines, draw the

graphs of y = F'(z) together with the line through (1, —.5) with slope 1.5. Type

"5 *XA3-1=15*(X~-1)—.5" [ENTER]

and draw the graph using the default graphics window parameters (press

first). The resulting HP-28S graph is shown in Figure 3.5.

 

FIGURE 3.5

In the figure, it looks like this is indeed the tangent line that we’re looking for.

WARNING: If you take the value of H to be too small, the calculation of mg.. may

be subject to a loss of significance error, as discussed in Chapter 2. For example,
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here a value of H = .00000000001 yields mg.. = 1.5, while H = .000000000001

produces the value mge. = 0.0.

Let’s briefly review Example 2 to see how we might more precisely define the

notion of tangent line. In the preceding, we computed the slopes of secant lines for

a sequence of points getting closer and closer to the point of tangency. We observed

that the limiting value of these slopes should be the slope of the tangent line. In

general, we have:

Definition The slope of the tangent line to y = f(z) at the point (¢, f(z¢)) is

Mean = lim f(xo +h) — f(zo)
h—0 h

provided the limit exists.

It should be stressed that when conjecturing the value of such limits numerically

(e.g., with the HP-285/48SX) you should always compare the conjectured value

with what you expect from the graph (by zooming in on the behavior near the point

of tangency, as in Example 1) and further check that the line through the point

of tangency with the conjectured slope looks like the tangent line when plotted

simultaneously with the graph of the function.

Example 3. Conjecturing the Value of the Slope of the Tangent Line

Find the slope of the tangent line to the graph of f(z) = xsin(nz) at x = 2.

First, we draw the graph of the function and zoom in repeatedly, until the graph

appears fairly straight (see Figures 3.6a and 3.6b for the appropriate HP-48SX

graphs).
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FIGURE 3.6a FIGURE 3.6b

In Figure 3.6b, the graph appears fairly straight and if you computethe slope
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of the line joining two points on this segment of the graph, you should get a value

around 6.2. (Try this now for yourself!)

Next, use the program MSEC to compute a sequence of values for mge.. Note

that you’ll first need to store a new program for the function F and a new value for

the z-coordinate of the point of tangency, X0. Here, we enter:

2 [ENTER] * X0 * [STO]
and

<— X’ X * [SIN] (7 *X )’ [>NUM] > [ENTER] * F ’ [STO]

Notice that we have added the key at the end of the program so that

the HP-285/48SX will compute numerical instead of symbolic values for F. This

is necessary because with the use of the symbolic constant 7 in the function, the

calculator will automatically compute symbolic values.

Using MSEC, we generate the following table of values.

 

 

  

H MSEC H MSEC

1 6.48935688189 -.1 5.87132289315

.01 6.31356257552 —.01 6.25074105736

.001 6.28631655205 —.001 6.28003337711

.0001 6.28349945592 —.0001 6.28287113739

.00001 6.28321741491 —.00001 6.28315458303

.000001 6.28318314158 —.000001 6.2831768584

.0000001 6.28320031416 —.0000001 6.28319968584   
 

From the table, while the values may not look particularly nice, they seem to

be getting closer and closer to a number around 6.2832. As further evidence, this

is close to the value we expected from our use of the graphics. We should note that

using even smaller values of H may not lead to progressively better approximations

to the slope of the tangent line. Again, remember that these computations are

highly subject to loss of significance errors. These results may be improved by using

some of the hints found in section 2.2.

As a final test of the sensibility of our answer, we draw the graph of y = f(x)

with the suspected tangent line superimposed on it. That is, we plot the graph of

the equation

» X * SIN(m * X) =6.2832* (X — 2)’

See Figure 3.7a for the HP-48SX graph with the default graphics parameters and
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Figure 3.7b for a zoomed-in graph. In both cases, the line drawn looks very much

like the tangent line, as expected.
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FIGURE 3.7a FIGURE 3.7b "

In this section, we have explored the notion of tangent line to the graph of a

function and have seen how to compute approximations to the slope of the tangent

line at a given point. We’ve also seen how to test our conjectured approximate slopes

by using the graphics power of the HP-28S/48SX. In section 3.2, we will examine a

notion related to the slope of the tangent line and then see a more efficient way of

computing approximations to these values.

Exercises 3.1

In exercises 1-8, use ZBOX to estimate the slope of the tangent line at the given

point.

1. f(z)=22-1,z=1 2. f(x)=22-1,z=2

3. f(x) =23 -z, =0 4. f(z) =2 -z, =1

5 f(x)=vVz2+1,2=0 6. f(z)=vV22+1,z=1

7. f(x) =sinz, z =0 8. f(r)=sinz,z=m7

In exercises 9-16, use MSEC to estimate the slope of the tangent line at the given

point and compare to exercises 1-8.

9. f(z)=22-1,z=1 10. f(z)=2%-1,2=2

11. f(x)=x2*>—-z,2=0 12. f(x)=23-z,2=1

13. f(z)=vVz2 +1,2=0 4. fx)=V22+1,z=1

15. f(z) =sinz,x =0 16. f(x) =sinz,x =

In exercises 17-18, use the graph and MSEC to determine that the slope of the

tangent line does not exist.

17. f(z) =|z|,z =0 18. f(z) = ()3, z=0
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In exercises 19-22, compute the slope of the tangent line by hand and compare your

answers to those obtained in exercises 9-12.

19. f(z)=2%2-1,z=1 20. f(z)=2*-1,z2=2

21. f(z) =22 -z, =0 22. f(z)=x23—z,2=1

In exercises 23-26, use the graph and MSEC to estimate the slope of the tangent

line at x = 0, if it exists. HINT: Use IFTE (“if-then-else”) to enter the functions.

In exercise 23, type < — X’ IFTE (X<0,XA2—-1,XA3—1) ’ >.

2 -1 z<0

23'f(m)={:c3—1 z>0

22—z <0

24 f(x)z{xa—:r z>0

z/2 <0
25. =

f(=) {m/4 x>0

z2—-1 <0

EXPLORATORY EXERCISE

Introduction

Progress in mathematics is often made through exploration with an eye towards

finding patterns. It turns out that slopes of tangent lines are easily computed from

the original function. That is, there are nice patterns for us to discover below.

Problems

Use MSEC to estimate the slope of the tangent line to sinx at =0,.2,.4,.6,.8,..., 3.0

and save the slopes in the following format. After getting a slope of 1 at x = 0, press

[0,1] . This is a vector notation which the HP- 2835/48SX uses for statistical

data. When you have all 16 vectors on the stack, press (in the Stat menu) 16

times to store the data. Then plot the data (use in the Plot menu of the

HP-28S or in the Stat menu of the HP-48SX). Does this curve look familiar?

By correctly identifying this curve you will find an easy rule for finding slopes of

tangent lines to y = sinx. Repeat the above for y = cosx. Finally, estimate the

slope of the tangent line to y = e* at z=-1.5, —1.3, —1.1, ..., 1.5. Then plot the

data and identify the curve to find an easy rule for finding slopes of tangent lines to

y = e*.
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Further Study

The rules found above are three of the basic derivative rules which you will use

throughout the rest of your mathematics career. Rigorous derivations of these rules

can be found in your calculus book.

3.2 Numerical Differentiation

There are two main concepts from which the notion of derivative follows. One

is the notion of tangent line which we examined in section 3.1. The second concept

is the notion of velocity .

We first want to briefly explore what is meant by the term velocity. Think of

what you mean when you use the word. More importantly, ask yourself how you

would compute velocity if asked. The first thought that comes to mind is probably

the formula distance = rate x time which you studied in high school algebra. If you

want to know the rate (the velocity) then you need only divide the distance by the

time. Simple, isn’t it? It’s also not generally correct, as we’ll see.

For example, suppose that you are pulled over on the highway by a police officer.

The officer steps up to your car and asks that dreaded question,“Do you know how

fast you were going?” As a good student of mathematics, you might be tempted

to answer something like, “Well, I’ve been driving for 3 years, 2 months, 7 days, 5

hours and about 45 minutes. I’ve kept very careful records and I can tell you that

I’ve driven exactly 45,259.7 miles in that much time. Therefore, according to my

calculations, I was going only

45, 259.7 miles
209.169118 mph
57917.75 hours 102118 mp

Of course, the authors do not recommend that you use this argument if you’re

pulled over. To be sure, it’s ridiculous and most police officers would be reaching

for their handcuffs (or a straight jacket) by the time you finished explaining your

calculation. But, why is this wrong? Certainly there’s nothing wrong with the

formula or the calculations. Well, the police officer might reasonably argue that

during this 3-year period, you were not even in a car most of the time and, hence,

the results are invalid.

Suppose that you think quick and substitute the following argument instead,

“Officer, I left my house at exactly 6:17 pm tonight and by the time you pulled me
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over at 6:43 pm, I had driven exactly 17 miles. Now, that says that I was going only

17 miles 60 minutes
 = .

h

26 minutes X 1 hour 39.23077 mp

well under the posted 45-mph speed limit.”

What’s wrong this time? Even assuming that you did not stop at all during

the entire trip, this argument is unconvincing. It should be clear that, although this

is a much better estimate of your velocity than the 1.6 mph arrived at previously,

you are still computing the velocity using too long of a time period. It’s not hard

to realize that since cars speed up and slow down (and can do so very quickly) we

must compute the velocity using a much smaller time period. Well now, how small

is small enough?

It’s time for some answers. What we’ve been computing is what is usually

referred to as average velocity . What we are really interested in (as well as what

the police officer is interested in) is instantaneous velocity , the velocity at an instant

in time. We must now see how this can be computed.

Example 1. Instantaneous Velocity

Suppose that you are driving in a straight line and that the distance that you’ve

traveled at time ¢ (measured in minutes) is given by the function

1 1
t) = 2 — —¢3 <t<4

s(t) =3t" 5 0=t=

Find the instantaneous velocity at ¢ = 2 minutes. Here, we assume that s(t) gives

values measured in miles. As a starting point, we might compute the average velocity

during the time interval [0,2]. We get

2) - 1. —
Average velocity = 2(2) —5(0) _ 1.33333333333

—

0
 

2-0 2

= .666666666665 miles/minute

= 39.9999999999 mph

You might expect that we could improve our estimate by averaging over a



3.2 Numerical Differentiation 109

smaller time interval. For example, on the interval [1,2], we get

s(2) — s(1)
2-1

= 1.3333333333 — .416666666667

= .916666666663 miles/minute

= 54.9999999998 mph

Average velocity =

Of course, we can continue this process indefinitely. The smaller we make the

time interval, the better the approximation of the velocity should be. In general, on

the time interval [ty — h,to], the average velocity is given by

 

- S(to) — s(to —h) _ s(to) — s(to — h)
Ve to—(to—h) h

Notice the similarity of this to the formula developed in section 3.1 for the slope

of a secant line. We can use a program similar to MSEC to compute this value. In

the TANG directory, enter the following program.

<— H’(S(T0) — S(TO - H)) /H’ >

 

Program Step Explanation

< — H Take the value on line 1 of

the stack and store it in the

local variable H.

 

’(S(T0)—S(T0—-H))/H’ Compute the average velocity
on the interval [T0—H,T0]
and return this to the stack.

> ENTER End the program and enter it

on the stack.

'"VEL’ STO Store this in the current

directory under the name VEL   
 

Before you run this program, you will need to enter a value for the time TO

and a program for the distance function S in the current directory. For the present

example, enter 2’ TO ’ and use the program:
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«—X’5*XA2-1/12*X A3’> [ENTER] ’ S’ [STO]

Entering a value for H on line 1 of the stack and pressing will return the

average velocity on the desired interval to line 1 of the stack. We can thus easily

compute average velocities for a sequence of values of H, as in the following table.

 

 

H AVE VEL H AVE VEL

1.0 0.916666666663 -1.0 0.91666666667

0.1 0.9991666666 -0.1 0.9991666667

0.01 0.999991666 —0.01 0.999991667

0.001 0.99999991 —0.001 0.99999992

0.0001 1.0 —0.0001 1.0

0.00001 1.0 —0.00001 1.0

0.000001 1.0 —0.000001 1.0     
 

Notice from the table that as we make the time interval over which we’re aver-

aging smaller and smaller, the average velocity seems to be getting closer and closer

to 1 mile/minute (60 mph). This limiting value is what we mean by instantaneous

velocity. We can now give a definition of velocity. =

Definition If the position of an object traveling in a straight line at time ¢ is given

by the function s(t) [i.e., s(t) gives the location on a numberline of the object], then

the instantaneous velocity of the object at time ¢, is given by

hm S(to) — S(to - h)

h—0 h

or equivalently, by

lim s(to + h) — s(to)

h—0 h

Notice that this is precisely the same as the definition of the slope of the tangent

line, except that, here, the variable is ¢ instead of z. In particular, this says that the

numerical computation of velocities will also be highly subject to loss of significance

errors. Thus, taking H too small may result in a gross error in the computed average

velocity and, hence, also in the conjectured value of the instantaneous velocity.

As we have noted, the limit in the preceding definition arises naturally in several

different contexts. Actually, this limit is so common that we give it a name.
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Definition The derivative of a function f is the function f’ defined by

oy _ e S+ h) — f(z)
flz) = lim===

The function f’ is defined for every z for which the limit exists. If f’ is defined at

xg, [ is called differentiable at x.

You should note the relationship between the derivative function and tangent

lines and velocities. The slope of the tangent line at the point (xg, f(zo)) is the value

of the derivative function at x = =z, f'(z¢). Likewise, if s(t) represents distance

traveled along a straight line, then the velocity at time t = tg is s'(%o).

Your calculus text will spend a great deal of time developing rules for computing

the derivatives of various common functions. These are extremely important, but it

is not our intention to reproduce all of this material here. We refer the student to

any standard calculus text for this discussion.

We would like to point out at this time one of the truly impressive features of

the HP-285/48SX. Both of these calculators have the ability to compute derivatives

of many common functions symbolically. There are several different contexts in

which this can be done. We shall briefly discuss these here and refer the reader to

his/her calculator manuals or to the excellent book by Wickes for a more complete

treatment.

To compute the derivative of a function, simply enter the expression defining

the function onto the stack. Then, put the variable with respect to which you

are differentiating on line 1 of the stack (so that the function is now on line 2).

Pressing the key on the HP-28S or the [0] key on the HP-48SX will return

the symbolic derivative of most common functions to line 1 of the stack.

Example 2. Computing a Derivative Using the HP-28S/48SX

To find the derivative of f(z) = xsin(3z), first enter "X’ and

*X * [SIN] (3 * X )’ [ENTER]

Then put the variable on the stack. Press: ° X ’ |ENTER| . Finally, pressing the

derivative key ([d/dx] or [8] ) will return the derivative function to the stack:

'SIN(3 * X) + X * (COS(3 * X) * 3)’
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EXCEPTION: If there is a value stored in a variable X (in general, if there is

a value stored in whatever variable you are differentiating with respect to) in the

current directory or any parent directory (i.e., any directory of which the current

directory is a subdirectory; for example, the HOME directory is the parent directory

of the TANG subdirectory), then the calculator will return the value of the derivative

function at that point, instead of the symbolic derivative.

In experimenting with the differentiation routines of the calculators, you will

find that they are programmed with the derivatives of polynomials, exponentials and

logarithms and the trigonometric functions sine, cosine and tangent. The machine

also “knows” some standard rules of differentiation, notably the product rule and

the chain rule (as seen in Example 2). Thus, you can compute a wide variety of

derivatives symbolically with your HP-28S/48SX.

The HP-28S5/48SX also has a mode of operation in which you can watch the

calculation of a derivative proceed step-by-step, following through as each product

rule, chain rule, etc., is performed.

Example 3. Step-by-Step Computation of Derivatives

To find the derivative of f(z) = z?sin(3z), enter:

"X (X A2* (3*X))’

Note that the 9 symbol is obtained on the HP-28S by pressing the key.

Pressing the |EVAL| key performs one step of the differentiation process. The

successive steps here are:

70X (XA2) * SIN(3*X) + XA2 * 90X (SIN(3*X))’

(perform the product rule)

> 9X (X) * 2 * X * SIN(3*X) + XA2 * (COS(3*X) * 8X (3*X))’
[compute the derivative of 2 and use the chain rule to differentiate sin(3zx)]

» 2 % X * SIN(3*X) + XA2 * (COS(3*X) * (3 * 9X (X))’
[simplify the derivative in the first term and use the chain rule to differentiate (3x)]

' 2 % X * SIN(3*X) + XA2 * (COS(3*X) * 3)’
(simplify the derivative in the second term)
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Note that the calculation is completed when the last ’0X(X)’ is evaluated.

You can use this process to follow through the calculation of more complicated

derivatives. "

We wish to point out that, while this symbolic differentiation capability is quite

a nice feature of these machines (and sets them apart from every other calculator on

the market today), it is not their most significant feature, at least as far as learning

calculus is concerned. The graphing and programmability of the machines are far

more significant to us as regards the present chapter.

Finally, we would like to examine a method for getting improved approxima-

tions to the values of derivatives at a given point (i.e., that is improved over the

computations done in section 3.1 and earlier in this section). You should wonder why

we would want to approximate something which we can compute exactly (symboli-

cally) either by hand or by using the differentiation routines of the HP-285/48SX.

The explanation is that in practice we have trouble computing derivatives symboli-

cally. Very often, all we know about a function is a collection of data: measurements

of the value of a function at various points. It may also happen that a function is

simply too complicated to make symbolic computation of the derivative practical.

For example, if you wish to study the movement of a planet, you are not handed

a formula giving its position at a given time. As with many real world problems,

you make observations of its position at a number of specific times and then try to

determine the velocity from these discrete observations.

We could get very involved in a discussion of numerical differentiation, but

such a discussion is best left to a text in numerical analysis (see for instance, Conte

and deBoor, Elementary Numerical Analysis , 3rd edition). Instead, we give one

reasonably good way of computing derivatives numerically. Recall that in order to

approximate the value of a derivative at a point,

f(zo +h) — f(xo)
h

/ 1

f(zo) = lim

we have previously computed values of the difference quotient

f(zo +h) — f(zo)
h

for values of h (both positive and negative) close to zero. For h > 0 , this is called

a forward difference, and for h < 0 , this is a backward difference .
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An alternative approach is to approximate f’(xg) by the centered difference

f(zo+h) — f(zo—h)
2h
 

for small values of h > 0 . For reasons beyond the scope of this introductory discus-

sion, it turns out that this centered difference is generally a better approximation

to f'(z¢) than either the forward or backward difference. We caution the reader

that the centered differences are also highly subject to loss of significance errors as

h gets close to zero.

Example 4. Centered Difference Approximation to a Derivative

Approximate the value of f'(z) at ¢ = 2, for f(xz) = xsin(nz). First, note

that you can easily modify your MSEC or VEL programs to compute centered

differences [e.g., in MSEC by changing the F(X0) to F(X0—H) and then dividing by

2*H instead of H]. You will also need to enter new values for X0 and the function F

in your current directory. We obtain the following table of values, where the DIFF

column lists the values of the centered differences for the corresponding values of H.

 

 

  

H DIFF

1 6.1803398875

.01 6.28215181645

.001 6.2831749646

.0001 6.28318529665

.00001 6.28318599895

.000001 6.28318

.0000001 6.2832

.00000001 6.284

.000000001 6.28 
 

We can compute the exact value of f’(2) , as follows. From the product rule

and the chain rule,

f'(z) = sin(rz) + 7z cos(mzx)

Thus, f'(2) = 2m = 6.28318530718. Notice that this is very nearly the value com-

puted in the table with H = .0001. The later values in the table get progressively

worse, although for the values of H displayed, they tend to stay “in the ballpark” of

the exact value. Contrast this with the table of forward and backward differences

(the MSEC values for h > 0 and h < 0 , respectively) computed for this function
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in Example 3 of section 3.1. You should note that the centered difference values

are more accurate for each given value of H. This is generally the case and, hence,

it is usually better to use a centered difference approximation to a derivative than

to use either a forward or backward difference approximation. However, we can see

that the centered differences are still affected by loss of significance errors, as we

had expected. .

Unfortunately, there is no simple way of eliminating the loss of significance

errors in these computations. Such a topic is found in a course in numerical analysis.

Of course, for simple functions, you can always (and should) compute the derivatives

exactly by hand (or using your HP-28S/48SX). We also remind the reader that one

can use the graphics discussed in section 3.1 as a check on the reasonableness of a

centered difference approximation to a derivative.

Exercises 3.2

In exercises 1-6, use VEL to estimate the instantaneous velocity at the given time.

 

2t3 2t3
1. s(t) t2+1’t0 0 2. s(t) t2+1’t0

3. s(t) = 2 15 =10 4 s(t) = ——— t =0
W T eT TVer2

t t5. s(t) = ty =2 6. s(t) = b =10  

T Ve+r2 VE T2

In exercises 7-12, use the HP-28S/48SX to calculate the derivative symbolically.

 

7. f(z) = z%sinz 8. f(x) = zsinx? 9. f(z) = 52—3:—_—5

10. f(z) = ;—_xz 11. f(z) = (zsinz)? 12. f(z) = vz?2 + 4

In exercises 13-20, compare the centered difference, backward difference and forward

difference at the given x( for h=.1, .01 and .001.

13. f(z) =xcosz, o =0 14. f(z) =xcosz, xg =2

15. f(z) =vz?2+1,20=0 16. f(z) =vax2+1,20=2

17. f(z) = z%2e~*, o = 0 18. f(z) = z%e~*, zo =1
Cos T cos T
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In exercises 21-22, compute centered differences with h=.1, .01 and .001 for the given

function at o = 0. In exercises 17-18 of section 3.1, you found that the derivative

does not exist at o = 0. What evidence does the centered difference give?

21. f(x) = |z| 22. f(z) = (2?)/3

23. With your calculator in degrees mode, compute the derivative of sin x. Explain

why there is a factor of 7/180.

24. In radians mode, get the calculator’s derivative of f(x) = tanxz. Which is

correct, the calculator’s answer or f'(z) = sec? z?

In exercises 25-28, use the given data to estimate f'(0).

25. z -1 -6 -2 02 06 1
fz): 10 35 03 05 40 10

26. . -1 -6 -2 02 06 1
fl):2 1 25 —.15 —.25 0

27. . -3 -2 -1 0 01 02 03
flz): =2 =15 -1 0 01 .25 0.3

28. z -3 -2 -1 0 01 02 03
fz):20 14 11 1 12 15 22

29. Suppose a car has an average speed of 60 mph in a 65-mph speed limit zone.

As discussed in the text, the validity of the average speed depends on the length

of the time inteval. For instance, a 60-mph average over 1 hour does not prove

that the driver never exceeded the 65-mph speed limit. Suppose the car cannot

speed up or slow down more than 1 mph in 1 second. For how long of a time

interval does the 60-mph average speed guarantee that the driver did not break

the speed limit?

EXPLORATORY EXERCISE

Introduction

There are several ways of describing the characteristics of the graph of a function.

In calculus, we typically use the properties of increasing or decreasing and concave

up or down. As you look from left to right, if the graph goes up the function is

increasiag (for example, y = z). If the graph goes down the function is decreasing

(for example, y = —z). If the graph curves up (like y = x2) it is concave up. If the

graph curves down (like y = —z?) it is concave down.
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Problems

In this exercise, we will discover the relationship between the values of f’ and f”

and the properties of the graph of f. Start by simultaneously graphing f(z) =

3 — 322 + 1 and f'(z) = 3x? — 6x. How does the sign (+ or —) of f’ relate to

the properties (increasing/ decreasing, concave up/down) of the graph of f? What

do the zeros of f’ correspond to? Repeat this for f(z) = sinz [f'(z) = cosz]. Do

any of your interpretations change for f(z) = z3 [f'(z) = 3z?]? Write down the

relationship between f’ and f in as much detail as possible. Now compare the graphs

of f(x) = 3 —3x2 +1 and the second derivative f”(x) = 62 — 6. How does the sign

(+ or —) of f” relate to the graph of f? What does the zero of f” correspond to?

Repeat this for f(x) = sinz and f(z) = 3. Write down the relationship between

f" and f in as much detail as possible.

Further Study

You have discovered the basic components of what are known as the First Derivative

Test and Second Derivative Test, which you will see shortly in calculus.

3.3 Tangent Line Approximations

How does your calculator “know” that sin(1.2345678) = .9440056953117 Think

about it. We all understand the processes of addition, subtraction, multiplication

and division and are quite capable of performing even lengthy hand computations

involving these operations (if we are really pressed to do so). Still, we very often use

our calculators as a convenience. They save us the time and effort required for doing

hand computations. This is not the case for calculation of values of the trigonometric

functions, exponentials, logarithms and even for computing fractional powers of real

numbers. For these computations, we usually use our calculators because we know

of no other way of finding these values. But, how does the calculator do it?

In this section, we would like to take a first step (although a very small step)

toward understanding how certain kinds of approximations are made. We want to

make the point early on that the technique which we will develop here is not terribly

accurate. To be perfectly honest, we can describe these approximations as crude, at

best. In fact, the values computed with the built-in functions of your HP-28S/485X

(or those of any other scientific calculator for that matter) will almost always be far

better than those which we will develop here.



118 Differentiation

Why, then, would we be interested in developing such an inferior method of

approximation? There are in fact, several reasons. First, the methods used inter-

nally in calculators are too complicated to discuss at this point, while the method

we develop here will serve as an introduction to such approximations. Second, the

method introduced here will guide us to the approximate solution of the more com-

plicated problems found in the next section, problems which cannot be solved by

the mere push of a button.

For a given function f, suppose that we need to find the value of f at the point

x1, where f(z;) is unknown. For example, cos(.5) is unknown, although we could

use a calculator to approximate it (at least the authors don’t know the value without

using their calculators). The basic idea here is to find a value of x near x, say x

= x, such that we already know the value of f(x() exactly. If f is differentiable at

xo, draw in the tangent line to the graph of y = f(x) at £ = z¢ (see Figure 3.8).

} |
I I

X0 X1

FIGURE 3.8

 
Keep in mind that the tangent line will “hug” the curve near the point of

tangency (at * = o). This says that if zy is close to z;, then the tangent line

should still be close to the curve y = f(z), at £ = x;. Examine Figure 3.8 to see

that the y-values corresponding to x = x; on the curve and on the tangent line

seem to be fairly close. To implement this idea, we need only find an expression for

the tangent line. Since the slope of the tangent line is f'(zy) and the line passes

through the point (zg, f(xo)), the equation is

y — f(zo) _

Ir — X N
Mtan = f/(xO)

y = f(zo) + f'(zo)(z — 20)

The y-coordinate of the point on the line corresponding to z = x; is then

y1 = f(zo) + f'(x0)(z1 — o)
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To summarize, we are making the approximation

f(x1) = f(xo) + f'(zo)(z1 — z0)

This is called the tangent line or differential approzimation to f(x;).

Example 1. Tangent Line Approximation

Approximate the value of cos(.5). First, note that you can already get a highly

accurate approximation from your HP-28S/48SX: cos(.5) = .87758256189. (Before

doing this, make certain that your calculator is set to radians mode.)

The first step is to find the number closest to £ =.5 where we know the value

of the cosine exactly. You should quickly realize that the closest such value is

r = 7/6. We know that cos(m/6) = v/3/2. Recall that for f(z) = cos(z), we have

f'(x) = —sin(z). Thus, our approximation will be

cos(.5) = cos(m/6) — sin(7/6)(.5 — 7/6)

= /3/2 — .5(.5 — /6) = .877824791584

Note that this is only a rough approximation to what we know to be the correct

value, .87758256189. n

Once again, we emphasize that this method routinely produces only mediocre

approximations. What the reader should gain from this exposition (since the method

itself is, in the present context, of minimal value) is an appreciation of how the

method was developed. This will also serve as an introduction to the problems of

section 3.4, for which more direct methods may not be available.

Exercises 3.3

In exercises 1-12, compute the tangent line to f(x) at x = z¢ and use it to approx-

imate f(x,) for the given values of x;. Compare to the exact values.

1. f(z)=22%,20=1;2,=-1,0,2,3

2. f(z)=x%,290=1;,2,=-1,0,2,3

3. f(z) =sinz, zg =0; x1=—7n/4, —7/6, 7/6, /4

4. f(x) =sinz?, -y = 0; xlz—W, —\/71'—/6, \/7'('_/6, \/7r_/4

5. f(z) = +1, 20 =0; ,=1, 2, 3, 4



120 Differentiation

6. f(x) =Vr+1,20=3;2,=1,2,4,5

7. f(z) = (22 + 1)Y3, 20 = 0; z1=.5, 1, 1.5, 2

8. f(z) = (22 4+4)3 zo=2; z1=1, 1.5, 2.5, 3

9. f(z) =coszx, xp =0; z11=—7/4, —7/6, 7/6, w/4

10. f(x) =coszx, xg = 7/2; x1=n/4, /3, 27/3, =

In exercises 13-18, find a tangent line approximation for the given value as was done

in Example 1.

13. cos(2) 14. cos(1.5) 15. V4.2

16. /8.4 17. tan(1) 18. sin(.1)

19. Suppose a person weighs P 1b at sea level. At x ft above sea level, the person

PR?
will weigh W = —— b, where R =~ 21,120,000 ft is the radius of the

(R + x)?

earth. Compute the tangent line approximation to W at zog = 0. In many

applications, weight is considered to be constant. Why is this a reasonable

assumption for applications near the surface of the earth?

EXPLORATORY EXERCISE

Introduction

We saw graphically that the tangent line gives a good approximation of a graph

near the point of tangency. We can approach the idea of approximating a graph in a

different way. Suppose we want a linear approximation of f(z) near x = . Since a

line is determined by a point and the slope, the most we can demand is for the line

to pass through (x¢, f(z¢)) and have slope f’(xg). The line with these properties is

the tangent line y = f'(xo)(x — o) + f(zo). We extend this idea below.

Problems

What is the best quadratic approximation of f(z) near zo? To simplify matters,

take o = 0. Quadratic functions have the form Q(z) = ax? + bz + c. Since there

are 3 constants, we can make 3 demands. As above, we want Q(x) to pass through

(0, f(0)) and have slope f'(0) at x = 0. Show that this means Q(0) = f(0) and

Q'(0) = f'(0). Our last demand is Q”(0) = f”(0) (graphically, this forces @ to

curve in the same direction as f). Show that these requirements are satisfied with
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1
Q(z) = 5]”’(0):82 + f'(0)z + f(0). Repeat exercises 3, 5, 7 and 11 using Q(z).

Compare the accuracies of Q(x) and the tangent line.

Further Study

Q(z) is also known as the second degree Taylor polynomial of f(z) centered at

x = 0. By looking at higher-degree polynomials and demanding that higher-order

derivatives match, you can derive higher-degree Taylor polynomials. We will study

these in section 6.3.

3.4 Euler’s Method

Many important phenomena in science and engineering are modeled by dif-

ferential equations. In short, a differential equation is any equation involving the

derivative or rate of change of an unknown function. For example,

2Yy—2zy = z°sinzx

dy 3 x
T + cosy = (x 7x)tan(2)

2y(y')® — 3coszsiny = 2z° — 3z + 7

are all differential equations, for the unknown function y as a function of z. Since

these all involve only first derivatives, they are called first-order equations. The

objective in solving these is to find a function y (a solution) which, when substituted

into the equation, produces an identity (i.e., which satisfies the equation).

Example 1. Radioactive Decay

Physicists and chemists have long observed that radioactive substances decay

at a rate directly proportional to the amount present. That is, if Q)(¢) represents

the amount of a certain radioactive substance present at time t, the rate of change

of the amount with respect to time is

where k is the constant of proportionality (the decay constant which is known for

any given radioactive substance). Note that, for any constant A, if

Q(t) = Ae*
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then

Q'(t) = kAe* = kQ(t)

That is, Q(t) = Ae*® is a solution of the differential equation. In fact, since this

function is a solution for every choice of the constant A, we have found infinitely

many solutions, a different one for each value of A. An HP-48SX graph of a number

of these is shown, for the case kK = —1, in Figure 3.9.

 

FIGURE 3.9

How are we to distinguish among this infinite number of solutions? If the

question were left up to a 6 year old, he or she would select one by pointing to

the one they wanted, i.e., by placing their finger on a specific point, say (zo,yo),

of the desired curve. This is exactly what is done in practice. We specify that the

solution curve we are looking for should pass through the point (zo,yo). That is, if

the solution is y = y(x), we require that

y(fflo) =Y%o

This is called an initial condition since, in applications, xg often represents an initial

time. A differential equation together with an initial condition is called an initial

value problem.

For the solution of Example 1, if ()¢ is the amount of the radioactive substance

present at time ¢ = 0, we have the initial condition

Q(0) = Qo

from which it follows that

Qo =Q(0) = A’ = A

Thus, the solution of the initial value problem (i.e., the amount of the substance

present at time t) is

Q(t) = Qoekt
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While we were able to guess the solution of the differential equation in Example 1,

most problems are not so simple. There are many techniques available for solving

various classes offirst-order differential equations, but the study of these is best left

to a concentrated course on differential equations. (There are many excellent refer-

ences available; see, for example, Elementary Differential Equations and Boundary

Value Problems, 4th edition, Boyce and DiPrima.) There are still many problems

that are not easily solved directly. For such problems, we need to approximate the

solution numerically. This is the purpose of the remainder of our discussion in this

section.

Using the ideas developed in the last section, we can see how to approximate

the solution of a first-order initial value problem. Consider the general case:

y = f(z,y) y(zo0) = Yo

Suppose that the solution is y = ¢(x). Then the differential equation gives us the

slope of the tangent line to the graph of y = ¢(x) at any given point (z,y) on the

graph. In particular, from the initial condition, (z¢,yo) is a point on the graph of

the solution (you might think of this as the starting point). The slope of the tangent

line at (zo, yo) is then given by the differential equation as f(zg,yo). In Figure 3.10,

you will see a typical solution curve, together with the tangent line at the initial

point (zg, o).

Note that if x; is close to x(, then we might be able to use the tangent line to

approximate the value of the solution at z;.

y

 

X1 Xo X

FIGURE 3.10

The equation of the tangent line is

 

— & — _ Y~ Y%
Mian = @ (330) f(xo,yo) z — zo

Like the tangent line approximation developed in section 3.3, if we follow the tangent

line to the point corresponding to £ = x;, then the y-value at that point (call it y,)
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should approximate the value of the solution there. That is,

é(x1) = y1 = yo + f(To,y0)(T1 — Z0)

We now have an approximation to the value of the solution at some z = z;.

However, we cannot just carelessly use this formula to find approximate values of

the solution at any point. Again, you can clearly see from Figure 3.10 that such

an approximation should only be valid when x; is close to zy. Fortunately, there is

another way to think about this problem.

You should note that, unlike the tangent line approximations we sought in the

last section, when we look for the solution of an initial value problem, we are looking

for a function, or at least for the value of that function at a number of points. In

practice, we seek the solution of such a problem on an interval [a,b]|, where a is

usually the initial value xo. When we look for approximate solutions numerically,

we usually look for approximate values of the solution function at a finite number

of points. For the sake of simplicity, we choose equally spaced points, starting at

 

Lo - T1,T2,T3,..., where

|£Bj+1—£13j|=h j=0,1,2,...

and h is the step size. (See Figure 3.11 for an illustration of this partition of the

interval.)

a b

| | ] | | ]
1 1 T 1 T 1
X0 X1 X2 X3 Xn

FIGURE 3.11

We use the tangent line approximation at x, i.e.,

é(z1) = y1 = yo + f(Zo,Y0)(z1 — To)

= yo + hf(xo, o)

Next, we want to find an approximation to ¢(z3). Certainly, if we knew the equation

of the tangent line at the point (z;,¢(z1)), then we could proceed as above by

following this line to the point corresponding to x = z2. Of course, we don’t even

know the point (z1, ¢(x1)), although we do have an approximation for it. Notice

that from the tangent line approximation,

P(z2) = ¢(z1) + f(21, (21)) (T2 — 71)

~ y1 + hf(z1,91)
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where we have made the further approximation that the slope of the tangent line,

f(z1,9(x1)), is close to f(x1,y1). [This seems reasonable if y; is close to ¢(xy).]

Continuing with this process, to get the approximation at the next point, we fol-

low the approximate tangent line at the approximate point (x3,y2) to the point

corresponding to x = z3 and so on. We have the sequence of approximate values,

¢(xn+l) zyn+1 :yn+hf(wn7yn) n:Oa1a2""

This is called Fuler’s method for approximating the solution to an initial value prob-

lem. See Figure 3.12 for an illustration of an exact solution versus the approximate

solution derived from Euler’s method (the broken line graph represents the approx-

imate solution).

 

Exact

Euler

I X0 X1 X2 X3

FIGURE 3.12

Example 2. Euler’s Method for an Initial Value Problem

Consider the very simple initial value problem

First, we note that the exact solution of this problem is y = ¢(z) = 2z2. [Verify

this for yourself by differentiating ¢(x) and plugging it into the equation and initial

condition. We mention the exact solution here only so that we have some basis for

comparison with our approximate solution.| If we did not know the solution (which

is more commonly the case), we could try to approximate it using the Euler’s method

approximation given above.
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Starting at the initial point (1,2), and using a step size of h = .1, we get

¢(1.1) = y1 = yo + hf(zo, yo)

4

T 1

2$(1.2) ~ yo = y1 + h?:y—l =24+ .1(4.8/1.1)
1

= 2.4 4 .436363636364 = 2.83636363636

2o
$(1.3) ~ y3 = yo + h—22 = 3.30909090909

Z2

and so on. Notice that these calculations are very repetitive. The following program

will help to compute further values. =

PROGRAM TIP: Return to the HOME directory (press if you are in a

subdirectory). We suggest that, as you have done before, you set up a separate

subdirectory for these programs called DIFFQ. Enter 'DIFFQ’ and press [CRDIR] .

Enter the new subdirectory by pressing in the USER directory. As your

first entry in the new directory, include the program <« > under the name

QUIT to allow for easy return to the root directory.

We suggest the following program.

 

 

< [DUP] [C=R] - XY X + H + (Y + H*F(X)Y)) *i’ [=NUM] >

Program Step Explanation

< Copy the object on line 1 of the stack.

- XY Remove the z- and y-coordinates of the
point on line 1 of the stack and store

them in the local variables X and Y.

'X+H+(Y+H * Compute the new X and Y values and store
F(X,Y)) * i’ [—=NUM them as the coordinates of a point which

which is returned to line 1 of the stack.

> ENTER End the program and enter it on the stack.

"EULER’ STO Store the program under the name EULER

in the current directory.   
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Here, the “i” is the imaginary number /—1. Be careful to use the lower-case i.

[On the HP-28S, press (to turn on the lower-case letters) and enter i. Be sure

to reset the keyboard to upper case by pressing again. On the HP-48SX, press

the leftshift key before pressing the I.]

In order to run this program, you’ll need to store a value for the variable H in

the current directory. In this case, press: .1 |[ENTER| ’ H’ .

You will also need a program for the function F(X,Y). Again, for the present

problem, use

<«—XY’'2*Y /X’ [ENTER] ' F ’ [STO]

Finally, the program requires you to place the initial point (xg,yo) on line 1 of

the stack. Pressing the key will then compute the approximate solution at

x = 1 = 9 + h and return the point (x1,y;) to line 1 of the stack. Continuing

to press will compute approximations at further points. Using h = .1, we

constructed the following table. We have also listed the value of the exact solution,

since this was available to us. This provides us with some comparison for determin-

ing the accuracy.

 

X Approximate |Exact

1.1 |24 2.42

1.2 |2.83636363636 |2.88

1.3 |3.30909090909 |3.38

1.4 ]3.81818181818 |[3.92

1.5 |4.36363636363 |4.5

1.6 [4.94545454545 |5.12

1.7 15.56363636363 |5.78

1.8 [6.21818181818 [6.48

1.9 16.90909090909 |7.22

2.0 |7.63636363636 |8.0

 

     
Note that the approximate solution given here leaves much to be desired. In

particular, notice that the further x gets away from the initial value of 1.0, the worse

the approximation tends to get. This is characteristic of Euler’s method. While we

can improve the results somewhat by taking smaller values of h, we cannot make h

too small without facing the effects of loss of significance errors. Notice, too, that
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the smaller the value of h is, the larger the number of steps will be that are required

to reach a given z-value. This is illustrated in the following table. Here, we compare

the number of steps and the accuracy of the approximation at x = 2.0 for several

values of h, again for Example 2.

 

 

     

H Approximation Error Steps

1 7.63636363636 36363636364 10
.05 7.80952380952 19047619048 20
.025 7.90243902425 09756097575 40
0125 7.95061728389 .04938271611 80
.00625 7.97515527948 .02484472052 160
 

Here, the error listed is the absolute value of the difference between the exact

solution and the approximate solution at z = 2.0.

Notice that as the step size decreases and the amount of effort increases (i.e.,

the number of steps increases), the accuracy of our approximation improves, but not

dramatically. (Try this for yourself and see how quickly you get tired). We could

certainly write an automated program, but this will not correct the fundamental in-

efficiency of this method. The trouble with Euler’s method is that it takes too small

a step size and, hence, too many calculations to obtain a reasonable approximation.

In the exercises, we will explore a related but somewhat more efficient method for

approximating the solutions of differential equations. For the moment, we should

be content that we’ve developed a method which provides some minimal accuracy

for solving problems which have no other apparent means of solution.

Exercises 3.4

In exercises 1-4, show that ¢(z) is a solution of the differential equation for any c.

1. ¢(z) =cx?, 2y —2y=0 2. ¢(x) =ce?®, y' —2y=0

3. p(z) =22 +¢c, Y/ +y =2z +2 4. ¢(x) =csinz, y"+y=0

In exercises 5-8, find the value of ¢ such that ¢ satisfies the given initial condition.

5. ¢p(x) = cx?, y(1) =3 6. (x) = ce**, y(0) =5
7. p(x) =x%+c, y(1)=3 8. ¢(z) = csinz, y(0)=2
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In exercises 9-16, use EULER with h=.1 to estimate the solution at x = 1.

,  x+1
 9.y =2zy, y(0)=1 10. y e y(0) =1

11. y =3z —y, y(0)=2 12. v =y%* -z, y(0)=2

13. ¥ = (z+y)? 9(0)=1 4. ' =2 +¢°, y(0)=1
15. (x+ 1)y =y+3, y(0)=1 16. (z2+2)y' =%, y(0)=1

In exercises 17-20, repeat the given exercise with h=.05.

17. exercise 9 18. exercise 10

19. exercise 11 20. exercise 12

In exercises 21-24, use the exponential decay formula Q(t) = Qqe*t.

21.

22.

23.

24.

25.

26.

A radioactive substance has decay rate k = —.2hour™!. If 2 grams of the

substance is present initially when will only half the original amount remain?

NOTE: this is called the half-life of the substance.

In exercise 21, when will one-fourth the original amount remain? When will

one-eighth remain? Explain what is meant by the statement “the half-life is

independent of the initial amount.”

If there are initially 2 grams of a substance present and the half-life is 1 hour,

how much of the substance is left after 1 hour? 2 hours? 3 hours? 4 hours?

A common form of fossil dating is based on radioactive decay. Carbon-14 is

found in living organisms and decays exponentially after death. The half-life is

5568 years. If a fossil is found to have 10% ofits carbon-14 remaining, how old

is the fossil? HINT: assume that there was 1 gram present at the time of death

(t=0).

Write an automated program to do Euler’s method. HINT: given h, determine

how many steps are needed and loop (using the FOR NEXT structure) through

Euler’s method that many times.

In this exercise, we will use an improvement of Euler’s method called (clev-

erly enough) the improved Euler’s method. Using the same format as Euler’s

method, we will compute y,+1 = y, + hf, where f, is the slope of a line which

approximates the actual slope of the solution. Instead of using f, = f(xn,Yn)

as in Euler’s method, this time we will have f,, be the average of the slopes

f(xn,yn) and f(Tn+1,Yn+1)- Why would you expect this to be more accurate

than Euler’s method? Explain why f, =~ .5[f(n,yn) + f(Tnt1,Yn+1)]. We
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then get the formula

f(@n,yn) + f(@n + hyyn + hf(Tn,Yn)) h

2
 

Yn+1 = Yn +

Rework exercise 9 using the improved Euler’s method, and compare both ap-

proximations to the exact solution y = e*”.

EXPLORATORY EXERCISE

Introduction

Among all the detective movies made, nobody has ever filmed the following. A

murder has been committed, the ace detective examines the scene of the crime,

punches a few buttons on his calculator and announces the time of death. The HP-

285/48SX may not make it in Hollywood, but we will use it below to play detective.

We will use Newton’s Law of Cooling, which states that the temperature of an

object changes at a rate proportional to the difference between the temperature of

the object and its environment. If T'(t) is the temperature at time ¢, then T"(t) =

k[T(t) — E] where FE is the temperature of the environment and k is a constant.

Problems

At 6:00 we discover a secret agent bound (chains bound) and murdered. Next to him

is a martini which got shaken before he could stir it. Room temperature is 70°, and

the martini warms from 60° to 61° in the 2 minutes from 6:00 to 6:02. If the secret

agent’s martinis are always served at 40°, what is the time of death? There are two

estimates to be made, both of which we can use EULER for. First set T'(0) = 60

and (by trial-and-error) determine k such that 7'(2) = 61. Then set T'(0) = 40 and

determine ¢ such that 7T'(t) = 60. The time of death is ¢ minutes before 6:00.

Further Study

In a course on differential equations, you will learn to find exact solutions to this

and other problems arising from basic physical principles. Most calculus books also

include a chapter on differential equations.



 

CHAPTER

 

 

Applications of

Differentiation

4.1 Rootfinding Methods

Most students remember how much time was spent in their high school algebra

class answering the question: for what values of zx is

f(z)=az’+bz+c=0

The values (called zeros or roots ) are, of course, found by using the now familiar

quadratic formula. But, what if f is not a quadratic polynomial? You might well

hope that either the question is irrelevant or that no one will ever ask you to solve

such a problem. Unfortunately, the question is relevant and such questions need to

be answered wherever calculus is applied, from engineering and the physical sciences

to economics and business applications.

Example 1. A Hard Rootfinding Problem

In the vibration of an elastic string, under certain conditions, the natural fre-

quencies (i.e., one of the characteristics that physicists use to describe the vibration)

are solutions, x, of the equation

f(x) =tan(z) —z =0

131
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Notice that this is not an algebraic problem. That is, we cannot use the usual rules

of algebra to solve for the value(s) of x. However, you can see from a simple graph

(we’ll do this later) that there are indeed values of z which satisfy the equation

(in fact, there are infinitely many of them). But how can we find these values? In

short, we can’t, at least not exactly. The best that we can do in this case is to find

approximate solutions. .

So, what we have is a compelling problem with no apparent means of solution.

In this section, we will discuss several simple methods which can be employed with

a programmable calculator and show how to use the graphics and programming

features of the HP-28S/48SX to implement these methods effectively.

Recall that we had briefly discussed this problem in Chapter 1, when we showed

how to use the Solver to find the z-intercepts of functions whose graphs we were

looking at. Well, what else is there to discuss then? There’s no denying that the

built-in Solver is quite capable. It can be used to quickly and accurately solve a

wide variety of rootfinding problems. But, that is not enough. The Solver is a black

boz, where the inner workings are unknown to the user. While this is fine if our only

interest is to find solutions to problems, the whole thrust of our discussion here is

to find understanding. Further, the Solver does not always work and the advisory

message is not always to be trusted.

Example 2. A Faulty Answer from the Solver

Use the Solver to try to find a root of f(r) = z* — 523 + 922 — Tz + 2. First,

draw a graph to see that there seems to be a root near r = 1.1. So, we use the

Solver with the initial guess 1.1. (Store the function and enter the Solver. Enter

1.1 and press the soft key followed by on the HP-28S,or followed by

on the HP- 485X.) The Solver returns the approximate root 1.00013574976,

with the advisory message “ZERQO.” This indicates that the Solver thinks that it

has found a root exactly. This is not particularly surprising until we observe that

f(x) factors:

flx)=2*-52°+922 — Tz +2=(z - 1)*(z - 2)

Thus, the only two roots are clearly x = 1 and x = 2. While x = 1.00013574976

may not seem a poor approximation of 1.0 if you are using this to aim the throw

of a baseball from center field to home plate, this is not particularly precise if you
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are instead aiming a spacecraft at the moon. This stands in sharp contrast to the

confident advisory message “ZERO” displayed by the Solver. The moral of the

story, of course, is that you should develop a healthy amount of skepticism for the

results of the Solver (for finding roots or extrema, at least) or for the results of any

other “black box” method, where the technique and the intermediate calculations

are unknown. s

In this chapter, we will examine how roots are found. We’ll discuss the various

strengths and weaknesses of the methods we develop and also look at problems

whose roots are not easily found and where the Solver as well as our other methods

can get fooled. Finally, we’ll see how to follow the output of a rootfinding method

to see when it is going astray.

THE METHOD OF BISECTIONS

Recall that the graph of a continuous function can be drawn without lifting

the pencil from the paper. The following (a consequence of the Intermediate Value

Theorem) should then be fairly evident.

Theorem 4.1 Suppose that f is a continuous function on the interval [a,b], and

that f(a)- f(b) < 0. [i.e., f(a) and f(b) have opposite signs|. Then, for some number

c in (a,b), f(c) =0.

This simple result is the basis for the most elementary method of numerical

rootfinding. Given that f has opposite signs at a and b, we might guess that a root

could be halfway in between a and b, i.e., at

1
c= i(a + b)

If not, then a root must be in at least one of the intervals (a,c) or (¢, b). To check if

a root might be in (a,c), compare f(a) and f(c) for a change of sign. If there’s no

change, then there must be a root in (b, c). (Note that we say “a” root, as opposed

to “the” root, since there may well be more than one root in the interval.) We then

proceed to look at the value of f in the middle of the new interval and so on. The

following algorithm, called the Method of Bisections, is thus generated.
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Step Explanation

1. Check that f(a)- f(b) < 0. Look for a sign change to make certain
there’s a root in [a, b).

1 . . :
2. Let c= §(a + b). Find the midpoint of [a, b].

3. If f(c) =0, stop. Stop if you find a root.

4. If f(a)- f(c) < 0 replace b Check [a, c] for a sign change. If there is

  by ¢ and go to step 2. one, look for a root in the interval [a, c|.

5. Otherwise, replace a by c If there’s no sign change in [a, c] then there’s a

and go to step 2. a root in [c,b]. Look for a root there.  
 

Of course, in practice, the stopping condition, f(c) = 0, is only rarely realized.

Usually, c is considered to be an acceptable approximation if f(c) is “small enough”

in absolute value (how small is small enough is determined by the need for accuracy

in the particular problem). Step 3 in the algorithm is then replaced by:

3a. If | f(c)| <TOL, stop

where TOL is some acceptable tolerance. Alternatively, we may be satisfied in

knowing that a root is in the interval (a,b), where (b — a) is sufficiently small. In

this latter case, we replace step 3 with the step

3b. If (b —a) <TOL , stop

where, again, TOL is some acceptable tolerance.

We shall first illustrate the Bisections algorithm with an example done by hand

and then proceed to an HP-28S/48SX program for the method.

Example 3. The Method of Bisections - Step by Step

Find a root of f(z) = x° — 523 + 3 in the interval [0,1]. First note that f(0) = 3

and f(1) = —1. Since f is continuous (all polynomials are continuous!) and f has

opposite signs at x = 0 and x = 1, then, by Theorem 4.1, there must be a root in the

interval (0,1). For this particular problem, we’ll agree to accept a solution accurate

to 2 decimal places (i.e., we’ll stop computing new values when |b — ¢| < .01).
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1
Set ¢ = §(a +b) = .5; f(.5) =2.4 > 0. Since f(1) < 0, this means that there’s

a root between .5 and 1.
1

Set ¢ = —2—(5 + 1) =.75;f(.75) = 1.1 > 0. (There’s a root between .75 and 1.)

1
Set ¢ = 5(

1
Set ¢ = 5(.875 + 1) = .9375; f(.9375) = —.4 < 0. (A root is between .875 and

9375.)

75+ 1) = .875; f(.875) = .16 > 0. (A root is between .875 and 1.)

1
Set ¢ = (875 +.9375) = .90625; f(.90625) = —.11 < 0.

1
Set ¢ = 2 (875 +.90625) = .890625; f(.890625) = .03 > 0.

Note that although f(.890625) is not 0, there must be a root in the interval

(.890625,.90625). Thus, if we only need 2-digit accuracy, we can declare that the

midpoint of that interval,

1
c= 5(.890625 +.90625) = .8984375

is an approximate root, since no number in the interval (.890625,.90625) can be

more than

b—c=.90625 — .8984375 = .008

away from the center, c. (Why is that?) .

If greater accuracy is desired, then one must simply continue this process fur-

ther. The student will no doubt agree that this is a tedious procedure, at least when

performed by hand. But, who needs to do computations by hand, or even manu-

ally, when we have a powerful machine like the HP-28S/485X at our disposal? We

suggest the following HP-28S/48SX program to perform the Bisections algorithm.

PROGRAM TIP: We recommend that you create a subdirectory of the main

User directory (or the Vars directory on the HP-48SX) called ROOTS and store the

various rootfinding programs in this subdirectory, just as you stored your graphics

programs in the subdirectory PLOTR in Chapter 1 (if you are using the HP-28S).

You can do this by entering ‘ROOTS’ while in the Home directory. This

will help to keep your Home directory from getting too cluttered. To enter the

ROOTS directory, simply press the key in the User (or Vars) directory. To
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exit the subdirectory, type HOME, or include the program: < HOME>> under the

name QUIT in the subdirectory. Pressing the |QUIT| key will then return you to

the HOME directory.

First, define and store the function F whose roots are being sought by typing

<«— X’ expression ’ > ' F’

This may give you a new entry, F, in your current directory. When the soft

key is pressed, the value on line 1 of the stack is read and the value of the function

F at that point is computed and returned to the stack.

Now, enter the Bisections program:

<— A B < ’5*(A+B)’ - C
< "F(A)*F(C)’ [EVAL] 0 < [THEN] A C [ELSE] C B >>>
 

Program Step Explanation
 

<— AB

< '5*(A+B)’

- C

< "F(A)*F(C)’ 0 <

AC

[ELSE] C B

>

'BIS’ STO  

Store the values on lines 1 and 2 of

the stack in local variables A and B.

Compute the midpoint of A and B.

Duplicate the value on line 1 of the stack and

store one copy of this in the local variable C.

Test for a sign change between A and C.

If there is a sign change on [A,C|
place A and C on the stack.

If there was no sign change on [A,C]

place C and B on the stack.

End the conditional IF statement and the program.

Store the program in the current

directory under the name BIS.
 

To run the above program, place appropriate values for A and B on the stack,

with A on line 2 and B on line 1. [Recall that the method requires that A < B
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and f(A)- f(B) < 0.] Pressing the key in the current directory will cause the

program to execute. The program will return the value of C' to line 3 of the stack.

On lines 1 and 2, you will find the endpoints of an interval containing a root.

At this point, you should run the program given above for the example already

done by hand. The following are the keystrokes needed to run the preceding program

for this example.

K= X'XA5-5*XA3+3">" F’[STO]

Enter the endpoints of an interval containing a root on the stack. For the present

problem, such an interval is [0,1]. Press 0 1 . Press to execute

the program.

Executing once returns the values .5, .5 and 1 to the first three lines of

the stack. The last two values correspond to the endpoints of the current interval

known to contain a root. Executing repeatedly will produce more and more

refined intervals containing a root. Repeating the program 6 more times yields the

interval [.890625,.8984375]. The width of the interval is .0078125. Thus, if we are

looking for an approximation to a root valid to 2 decimal places, the midpoint of

this interval, .89453125, will suffice. If more accuracy is needed, we can continue

to execute until we obtain an interval whose width is less than the specified

tolerance. (Just subtract the last 2 values on the stack to check. If the interval is

not sufficiently small, you can return the endpoints of the last interval to the stack

by pressing on the HP-28S or by pressing on the HP-48SX.)

The midpoint of this last interval will serve as the approximate root: press + 2 /.

Actually, an interval whose width is twice the tolerance will do. (Why?)

If you continue pressing for the above problem, you will arrive at the

approximate root .89382746211, valid to the limits of the machine’s accuracy. Pay

particular attention to the values of C displayed on line 3 of the stack. Watching

these values, you can see how the method of Bisections homes in on a root. If you’ve

been counting, it should have taken 39 applications of (and perhaps a minute

of your time) to arrive at this value. This does not seem too bad. After all, we are

obtaining an approximate root valid to about 12 decimal places. Nonetheless, this

is one of the most significant drawbacks to using Bisections in practice. Relative to

other methods (several of which we will discuss later in this chapter), it is very slow.

Of further concern is that Bisections can only be used when we can find values A

and B between which f changes sign. Unfortunately, this cannot always be done.
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Example 4. A Problem to Which Bisections Cannot Be Applied

Consider f(z) = z2. Note that f(z) > 0, except for z = 0, and, hence, one

could not use Bisections to locate the root (z = 0). .

NEWTON’S METHOD

The discerning reader will undoubtedly wonder why another rootfinding method

is necessary. First, as noted above, Bisections is a relatively slow method and

does not utilize the power of calculus. More generally, good problem solvers need

an assortment of mathematical tools, just as carpenters need a variety of tools to

perform their jobs.

A generally faster method for approximating roots of a function, called Newton’s

method, works in the following way. Using some graphical or numerical evidence,

make a guess as to where a root is located. Specifically, guess that an approximate

root of a given function f is located at some value xy. Assuming that f is differ-

entiable at xy, we can draw in the tangent line to y = f(z) at x = ¢ (see Figure

4.1).

 

 
FIGURE 4.1

The slope of the tangent line is f’(xo) and hence its equation is

—_ X

Mian = f'(o) = Y=L
r— X

Now, follow the tangent line to the point where it intersects the z-axis. In the figure,

this appears to be closer to the root than xy. Call the z-coordinate of this point z;.

Since this is the point of intersection with the z-axis, this corresponds to the point
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on the line where y = 0. From the above equation for f'(z¢), we get

f(zo)
f'(x0)
 Iy = Tg —

Rather than be satisfied with this modest improvement over our original guess,

repeat the above procedure, replacing zo with x;, to obtain a new (and, hopefully,

further improved) approximation x,. Continue this process until no further progress

is made by taking successive steps. This generates a sequence of approximations,

f(zn)

n

 n=0,1,2,..

which is the general form of Newton’s method. Let us return to Example 3 and

compare the performance of Bisections with this new method.

Example 5. Newton’s Method

Find a root of f(r) = x° — 53+ 3, using Newton’s method with an initial guess

of Tg = 1.

First, notice that f'(r) = 5z* — 152%2. Newton’s method then becomes

TS — 5z + 3
In4+l1 = Tp —
mt " 5zt — 1512

Using z¢ = 1, we obtain the following table. [Be sure to check these results yourself.

You can do this easily by entering the function z — f(x)/f'(x) into the Solver.]

 

In f(zn)

9 —.05451

893854219516 —.00023526873

893827462609 —.00000000448

893827462099 |0

.893827462099 |0

 

U
W
N
S

     
Notice that the last two steps are identical, at least in the 12 decimal places

displayed (about the most precision one can expect from the HP-28S/48SX). Since

the value of the function is also reported as 0, you should begin to suspect that we
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have obtained a good approximation to a root. You should also notice that New-

ton’s method produced an approximation in fewer steps and with less effort than

the method of Bisections. Finally, we should observe that a good time to stop com-

puting new approximations would seem to be when two successive approximations

are sufficiently close, (i.e., |zn,4+1 — | <TOL for some acceptable tolerance TOL)

as is the case for x4 and x5 in the table. =

CAUTION: In practice, even a reported function value close to zero does not

guarantee that the approximation is close to an actual root. We will examine this

further in the exercises and in section 4.2.

We now give an HP-285/48SX program to perform Newton’s method (before

entering this, be sure that you are in your ROOTS subdirectory, which was discussed

with the material on Bisections).

First, define the function F whose roots are being sought:

<«— X’ expression ' > ' F’

Second, define the derivative function, DF.

&«— X ’ expression ' > ’ DF ’

Now enter the Newton’s method program:

< — X 'X-F(X)/DF(X)’ >

 

 

Program Step Explanation

< — X Store the value on line 1 of the

stack in the local variable X.

"X-F(X)/DF(X)”’ Compute the Newton step and place
the value on line 1 of the stack.

> ENTER End the program.

"NEWT ’ STO Store the program in the current   directory under the name NEWT.
 

Pressing the |[NEWT| key in the current directory with the initial guess on line 1

of the stack will execute the program. Each time [NEWT] is pressed, the next Newton
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step (zn+1) is computed and placed on line 1 of the stack.

PROGRAM NOTE: Although the HP-285/48SX has the facility to compute

derivatives of most common functions, it is inefficient to have the machine do so in

each step of a Newton’s method procedure. Therefore, we have instead instructed

the user to store the derivative in a user-defined function, DF. Of course, you could

always use the HP-28S/48SX to find the derivative and then store that derivative

in a program of the form given above.

Now, key in the program and test it on the example given above. The following

keystrokes will execute the program for the preceding example.

<K= X’XA5-5*XA3+3">" F’[STO]

<K= X'5*XA4—-15*X A2’> DF’ [STOQ]

1

The successive approximations are displayed on the stack each time the program

is executed. Continue until the last two displayed values are within the desired

tolerance. Pay particular attention to how the approximation improves at each step

of the process and compare this with the behavior of the Bisections method.

CAUTION: Since Newton’s method is not guaranteed to work, it’s a good idea

to further test the validity of the results by computing the value of the function F

at the suspected approximate root. This is accomplished by simply pressing the

softkey in the current directory.

Notice that even for a very small tolerance, say TOL = .00000000001, the New-

ton’s method program for this problem takes only a few steps. Compare this with

the number of steps required for the Bisections method for this problem. This is

one of the main advantages of Newton’s method. It will usually take many fewer

steps than the method of Bisections to achieve the same tolerance. For compli-

cated problems, there can be a substantial difference between the two methods.

Thus, Newton’s method is typically favored over the method of Bisections. In auto-

mated programs (i.e., ones which will run automatically until a specified tolerance is
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reached), Bisections programs typically take much longer to run than programs for

Newton’s method. (Can you think of a time when Bisections would be the method

of choice? Hint: Newton’s method requires one to compute a derivative.)

Now that we’ve praised the benefits of Newton’ method, we want to be perfectly

honest with you. Newton’s method does have a negative side. It does not always

work. In practice, the initial guess must be chosen fairly close to a root in order that

the successive approximations home in on a root. Just how close to the root it must

be chosen, though, varies from problem to problem. The answer to this question

would be of little use anyway, since, in practice, we do not know where the root is.

(If we did, then we wouldn’t be employing an approximation method like Newton’s

method!)

Example 6. An Initial Guess that Does Not Work

Consider the function

flx)=2®-3224+z-1

Notice that there is a root somewhere in the interval (1,3). (Why is that?)

Using Newton’s method with initial guess xy = 1, we get x1 = 0 and 22 = 1 and so

on. The values alternate back and forth between 0 and 1, neither one of which is a

root. Try the example for yourself. If we instead start with a slightly better initial

guess, say o = 2, Newton’s method will converge quickly to the value 2.7692923542.

There are other bad things that can happen with Newton’s method. In the

next example, the successive values will wander away from the only root and tend

toward minus infinity.

Example 7. Newton’s Method Wanders Away from the Root

Consider the function

_ (x —1)2

fle) = 2 +1

with g = —2. Obviously, f has only one root, at x = 1. Using our Newton’s

method program, we get the results:
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Ln

-9.5

—65.9

—2302

—26541301

-3.5 E12

—6.2 E24

 

U
L
L
N

S

    
Notice that the last two values are very large in absolute value and are getting

rather close to the outer reaches of the accuracy of the HP-28S/48SX. You should

learn quickly to be skeptical of any reported approximate root that is so large in

absolute value.

If we use an improved initial guess of xy = —1, the program immediately returns

an “infinite result” error, caused by an attempted division by 0. (Why?) Finally,

with an even better initial guess of zo = 0, Newton’s method will converge to the

root, but uncharacteristically slowly. (Try this. We’ll look further into this type of

behavior later.) .

On the whole, Newton’s method should be viewed as a very useful and accurate

method for finding approximate roots, when used with a bit of caution. In the exer-

cises, we will demonstrate more cases where the method fails to yield an acceptable

answer, as well as a number of typical examples where things work just fine.

USE OF GRAPHICS FOR DETERMINING INITIAL GUESSES

There is one important question which we have so far avoided: How does one

come up with the initial guess(es) needed for either the method of Bisections or

for Newton’s method? One suggestion might be to randomly guess. However, we

have already seen that the method of Bisections requires good input to obtain good

answers in a reasonable length of time and that Newton’s method may require a

good initial guess just to work at all. We therefore require a more sensible approach

to finding initial guesses. The graphics capabilities of modern graphing calculators

and of the HP-28S/48SX, in particular, are well suited for this purpose.
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Example 8. Using Graphics to Find Initial Guesses

Find the roots of f(zx) = z* — 223 + 22 + 4z — 6. To get an idea of where

the root(s) may be located, we may use the HP-28S PLOTR routines developed

in Chapter 1 or use the built-in PLOT routines on the HP-48SX. In either case,

these plotting functions are exceptionally easy to use. First, enter the equation to

be plotted onto the stack:

"XAN4—-2*XA3+XA2+4*X — 6’ |ENTER|

For the HP-28S, enter the PLOTR subdirectory and press to reset

the parameters for the window. Press (This stores the function under the

name EQ in the current directory and then draws a plot using the default window

parameters.) If you have followed the instructions for this example, what you see

displayed are a few dots and the x- and y-axes (see Figure 4.2). This is typical of

HP-28S displays. Because of the size limitations of the display, one very often will

only see a few scattered dots, with the rest of the curve left to the imagination.

 vvvvvv

e
g
e

FIGURE 4.2

With some care, you can learn how to use these displays to obtain initial guesses

for our rootfinding schemes.

To plot the graph with the HP-48SX, enter the Plot menu and press .

(The machine will prompt you for a name and then save the function under this name

as well as under the name EQ in the current directory.) Next, press to enter

the Plotr directory. Press (found on the second page of the directory menu)

to clear the graphics display of the last graph and to reset the graphics window

parameters. Finally, pressing will produce a graph using the default window

parameters (see Figure 4.3). Because of the larger size and higher resolution of the

HP-48SX display, we can see considerably more detail than in the corresponding

HP-28S graph.

Returning to the plot that has been generated by the HP-28S, you should be



4.1 Rootfinding Methods 145

------

FIGURE 4.3

able to see that there appears to be a root between 1 and 2. (You can see this even

better in the HP-48SX graph.) We could certainly return to the Bisections program

with a = 1 and b = 2, or, for that matter, use a guess of zo = 1 in our Newton’s

method program. However, recall that the HP-285/48SX can easily digitize points

in a plot. The cursor (now located at the origin in the plot) can be moved about the

display using the 4 arrow keys (located in the top row of the keyboard on the HP-

28S). Moving the cursor to what looks to be the location of a root, we can digitize

that point (i.e., return its coordinates to line 1 of the stack) by pressing the

key on the HP-28S or on the HP-485SX. Remove the graph by pressing the

key. You will see the coordinates of the point that you digitized on the stack.

In our case, we obtained (1.4,0).

Now, use the z-coordinate of the digitized point as the initial guess for Newton’s

method,i.e., let zo = 1.4. Newton’s method quickly produces the approximate root

x = 1.41421356237, where f(xz) = —.00000000003. Of course, we could also use

the Bisections algorithm although, in practice, this is somewhat slower. Finally,

return to the plot to see if there are any other roots which we might find. (Press

GRAPH| to return the last plot to the screen.) Notice that in the HP-28S plot

(Figure 4.2) there is one point drawn close to the z-axis and to the left of z = —1.

Digitize this point (again by moving the cursor using the arrow keys and pressing

). Returning to the Plot menu, we find the point (—1.4,—.3) displayed. (In

the corresponding HP-48SX plot, we can clearly see the existence of a root near

x = —1.4.) Using £y = —1.4 as our initial guess in Newton’s method, we quickly

obtain the approximate root x = —1.41421356237, where f(x) = —.00000000008.

(Do these roots look familiar?) .
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REMARK: There are special difficulties which users of the HP-28S will encounter

due to the small size and relatively low resolution of the screen. These can all be

overcome by adjusting the size of the graphics window using the programs in the

PLOTR subdirectory discussed in Chapter 1. The following example will exhibit

some of the difficulties. Users of the HP-48SX are encouraged to work through

the example simply as practice in rootfinding, even though there are no particular

problems with their display of the graph.

Example 9. Special Problems with HP-28S Graphics

Consider f(z) = 2% —3x*+x2 —3. Using the NEWF routine, after resetting the

graphics parameters, the HP-28S will plot 2 dots (see Figure 4.4a). (The HP-48SX

does considerably better — see Figure 4.4b.) Where is the rest of the graph? As

with the last example, the size limitations of the display are such that only a piece

of the graph will be plotted; in this case, 2 points. We can improve this situation

somewhat if we use the graphing utilities discussed in Chapter 1.
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FIGURE 4.4a FIGURE 4.4b

By using the command, we can zoom in on the behavior of the function

near either of the displayed points. Start by moving the cursor to a point just

slightly to the left and below of one of the displayed points, using the arrow keys.

Digitize this point by pressing the key. Then, move the cursor to a point

just to the right of the point and just above the z-axis (above the axis, since we’re

looking for roots, ultimately). Digitize this point and then return to the Plotr menu.

(Press the key.) The digitized points are displayed on the stack. In our case,

we have (1.3,—1.3) and (2.2,.5). Press to zoom in on the graphics window

with the digitized points as corners. The displayed graph (Figure 4.5) is still quite

incomplete, but shows a sequence of points, with several on either side of the z-axis,
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indicating that there must be a root somewhere nearby, by the Intermediate Value

Theorem.

FIGURE 4.5

NOTE: Although the graph would seem to indicate that a root is located near

x = 1.735, we should not accept this as an approximate root. [Simply compute

f(1.735) to see why this is unacceptable.] However, if we use this as the initial

guess for Newton’s method, we get the approximate root x = 1.73205080757, where

f(z)=o.
Having found one root, it still remains for you to see if there are any other

roots. We will turn our attention to this in section 4.2. For the moment, we shall

be content with locating a single root. .

There are other problems in locating roots of functions caused by the limitations

of the HP-28S display. The graphics utilities discussed in Chapter 1 are sufficient

to deal with almost any situation which will arise in searching for roots.

THE SECANT METHOD

We have seen that Newton’s method can be a very useful tool for approximating

roots of functions. We have also pointed out several significant limitations. First,

the initial guess, o, must be chosen sufficiently close to the root (and we never

know when a given guess is sufficiently close). Second, the method requires us to

compute a derivative (whether it is done by hand or using the symbolic differentia-

tion routines of the HP-28S/48SX). The latter requirement can be quite restrictive:

the function may not be differentiable or the derivative computation may be pro-

hibitively complicated. If this is the case, we could always use Bisections. However,

Bisections is exceedingly slow and can be used only if we can find numbers A and B

for which f(A) and f(B) have opposite signs. We present now a method which has
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most of the advantages of Newton’s method, but does not require us to compute a

derivative.

Given two initial guesses, o and x; (not necessarily bracketing a root), draw

the secant line joining the two points. The slope of this line is

_ f(x1) = f(z0)
sec

1 — To

The equation of this secant line is then

y— f(x1) _ fz1) - f(xo)
r— I Ir1 — X

 

Much as with Newton’s method, we follow the line to where it crosses the x-axis

(i.e., where y = 0 ; see Figure 4.6). Call the z-coordinate of this new point zo. We

get

1 — Xg

f(z1) = f(z0)
T2 =T —f($1)

y=f(x)

pa
|

X0 X2 / X1 X

 

  
FIGURE 4.6

In Figure 4.6, x5 appears to be closer to the root than either xoy or ;. We

can repeat the procedure over and over, each time using the latest two values to

compute an improved approximation. We get:

Tn4+1 — Tn
Tn+2 = Tn+1 —f(xn+1)m n=20,1,2,...

This is known as the Secant method . Note the similarity with Newton’s method.

In this case, we start with two initial guesses and then approximate the slope of the

tangent line at z,,; by the slope of the secant line joining the points corresponding

to z,, and xp41,
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f(xn-l-l) - f(xn)

Tn4+1 — Tn
[(Tng1) =

In practice, the Secant method will converge almost as fast as Newton’s method.

Its main advantage over Newton’s method is that it does not require the computation

of a derivative. For some problems, this is a decisive advantage. We now return to

an earlier example, to compare our new method with Bisections and with Newton’s

method.

Example 10. Secant Method

Find a root of f(z) = z° — 53 + 3, using the Secant method with initial guesses

zo=1and z; = 0.

Using the HP-285/48SX, we obtain the following results (be certain to check

these yourself):

 

 

n Tr, f(zn)

2 10.75 1.13
3 |1.21 ~3.17
4 0.8685 0.2185

5 0.88999 0.0336

6 0.89389907 —0.00063

7 0.893827265517 0.0000017

8 0.89382746209 0.00000000009

9 0.8938274621 0.0    
 

We ceased computing new approximations when we ran across an z-value for

which the reported function value is zero. Notice that the method takes a few more

steps than Newton’s method (8 steps compared to the 4 or 5 steps of Newton’s

method required to obtain the same accuracy). This somewhat slower convergence

is typical of the Secant method. =

We now suggest an HP-28S/48SX program for the Secant method. First, define

the function F whose roots are being sought.

<— X’ expression ’ > ' F’
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Then, enter the Secant method program.

< — X Y Y-F(Y)*(Y-X)/(F(Y)-F(X))>
 

Program Step Explanation

< - XY Store the values on lines 1 and 2 of the

stack in the local variables X and Y.

 

Y-F(Y)*(Y-X) Compute the secant step and place
/(F(Y)-F(X))’ the value on line 1 of the stack.

> ENTER End the program.

’SCNT * STO Store the program in the current

directory under the name SCNT.   
 

Pressing the key in the current directory with the initial guesses zg

and x; on lines 2 and 1 of the stack, respectively, will execute the program. Each

time that the program is run, the next secant approximation, (z,,1), is computed

and put on line 1 of the stack. As with Newton’s method, new approximations

should continue to be computed until two successive values are within the prescribed

tolerance.

As with the Newton’s method program, this Secant method program will usu-

ally only require a few steps, even for a very small value of the tolerance. Take a

few minutes now to key in the program and to test it out by computing the values

in the last table. (Be sure to store the program in the ROOTS subdirectory created

earlier.) Using the same function F as for the Bisections and the Newton’s methods

programs, one need only enter initial guesses and then execute the program.

1[ENTER]| (Enter an initial value on the stack.)

O(ENTER| (Enter an initial value on the stack.)

SCNT| (Execute the program.)

Continue to execute the program until successive values displayed on the stack

are within the acceptable tolerance. Be sure to pay particular attention to how

the approximation is improving at each step and compare this with the behavior of

Newton’s method and the method of Bisections.

The only advantage of the Secant method over Newton’s method is that it does

not require us to compute a derivative. Both methods may fail to work for a given
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problem. Much like Newton’s method, the Secant method requires initial guesses

that are sufficiently close to a root in order to guarantee convergence to that root.

In practice, we can use the graphical techniques described earlier to arrive at these

guesses.

We have now presented three different methods for approximating roots and

given HP-28S/48SX programs for each one. Each has advantages and disadvantages

and we have pointed these out, where possible. With the three methods given and

the hints presented for finding initial guess(es) using the HP-28S/48SX’s PLOTR

routines, the student is now armed with all of the tools necessary for locating roots,

with one exception. We have only discussed how to find a root of a function — not

all the roots of a particular function. We will examine this question in the next

section. By working carefully through the exercises, you will gain an appreciation

for the various methods presented, as well as learn some of the shortcomings of each

one. In this way, you will be prepared to deal effectively with a wide variety of

rootfinding problems.

Exercises 4.1

In exercises 1-4, use Bisections, Newton’s method and the Secant method to find

approximate roots of the given function in the indicated interval. Use a tolerance

of .0001. Compare the rates of convergence.

1. 2% — 422 — 8z — 2, [-2,-1] 2. 23 + 22?2 — 49z — 8, [-1,0]

3. —28 +42* — 223 + 82+ 2, [2,3] 4. z* — Tx3 — 1522 — 10z — 1410, [10,11]

In exercises 5-8, rework the indicated exercise by finding a root outside the given

interval.

5. exercise 1 6. exercise 2

7. exercise 3 8. exercise 4

In exercises 9-10, use a rootfinding method to approximate the given root.

9. v/3 (solve z2 — 3 = 0) 10. ¥/2 (solve z°® — 2 = 0)

In exercises 11-14, rewrite the given equation in the form f(z) = 0 and use a

rootfinding method to approximate a solution in the interval.

Va2 +1
11. Va2 +1=2° -3z — 1, [2,3] 1222 =5=~

I
I [2’3]
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13. cosz =z, [0, 7/2] 14. sinz = 22 — 1, [-7/2,0]

In exercises 15-19, the indicated method fails in spite of the fact that there is a root

in the indicated interval. Explain why the method fails, and explain how the root

can be found.

15. 4x3 — 7z% + 1, [0,1], Newton’s method with zo = 1.

16. 423 + 1222 — 152 + 4 = 0, [0,1], Bisections with a = 0 and b = 1.

17. 3 + 4z% — 19z + 15 = 0, [1,2], Secant method with a =1 and b = 2.

422 — 8 1
18. ’QT%? =0, [1,2], Newton’s method with zy = 1.5.

34 2? — 2z —2
19.i0, [0,2], Bisections with a =0 and b = 2.

22 +3x—4
40

20. For f(x) = 2z — —O, we have f(—1) - f(2) < 0. What happens if we attempt
x

to run Bisections with a = —1 and b = 27 Is there actually a root in [—1,2]?

Try using the Solver with an initial guess of 15. What does the message “SIGN

REVERSAL” mean?

In exercises 21-24, show that £ = 1 is the only root and compare the rates of

convergence of Newton’s method with x¢ = 0.

21. 22 — 22 +4z-4=0 22. 24 —22° + 202 —22+1=0

23. 24 — 3234422 -3z +1=0 24. 23 - 222422 —-1=0

25. When light passes from one medium to another, it refracts according to Snell’s

in
Law - = STn L where v; is the velocity of light in the ith medium and 6; is

Vo sin 65

the angle from the vertical. In the figure on page 153, a person is looking at an

underwater object. Using

 

sin 6 -T sin 0, = 1-¢
LTVa2 T /64t (A-2)?

and v = .75vy, find = using the Secant method (why would this be simpler than

Newton’s method?). Also, find d, which is how far off the person’s perception

of the object is.

26. A tennis serve hit from a height of 8 feet at an angle of 6 below the horizontal

will be successful (neglecting spin) if 0 satisfies t; < cosf < t, where

8t2 — 39t /1 — 2 = .95  8t2 — 60ty4/1 — t2 = 2.25



27.

28.
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6

 

 

 

FIGURE FOR EXERCISE 25

Find 6; and 6 such that 8, < 8 < 6. For more details on tennis, see

Tennis Science for Tennis Players by Howard Brody.

 

Store the following program in EQ: < ' X’ F "N’ 1 > . You

will find in the Store menu on the HP-28S and the Variable Arithmetic

menu (press ) on the HP-48SX. When the calculator evaluates

EQ, this program will in turn evaluate F and add 1 to the variable N. Repeat

exercises 1-4 in the following way. First, store the function in F as a user-defined

function. Then set N=0 and use the Solver to find the indicated root. Now

evaluate N. This tells you how many times the Solver used EQ. Compare this

rate of convergence to the rates found in exercises 1-4.

Based on the discussion in this section, what do you think the “SIGN REVER-

SAL” and “ZERO” messages from the Solver actually mean?
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EXPLORATORY EXERCISE

Introduction

So far we have been finding one root at a time. In section 4.2, we will investigate how

to find all of the roots. In this exercise, we will examine the behavior of Newton’s

method in a case of known multiple roots: z(z — 1)(z — 2) = z3 — 322 + 2z = 0.

Clearly, the roots are 0, 1 and 2.

Problems

Try Newton’s method with o = .1, z¢ = 1.1 and z¢o = 2.1. All of these values

are close to a root, and certainly nothing unusual happens. But, try =z, = .54,

zo = .55 and x¢g = .56. Are you surprised by the results? Examine the graph of

y = z3 — 3z2 + 2z and try to explain what happened.

If your curiosity has been piqued, then the next step is natural. We want to

describe all starting values xy such that Newton’s method converges to 0. This is

called the basin of attraction of 0. Actually, we want to find the basins of attraction

for all 3 roots. Start by determining which root Newton’s method converges to from

x9 = 0,.01,.02,...,.99,1.0. You will want to write a program to do this. We suggest

writing a general program for taking 100 steps between z = A and z = B. (Such a

program is given in the back of the book, but try writing one yourself!) Most of the

basin boundaries are well defined, but there is some confusion between z = .5 and

z = .6 (as we have already seen). It is reasonable to believe that all we need to do

is magnify [.5,.6]. That is, run Newton’s method with zo = .5,.501,.502, ...,.599,.6.

Again, some clear boundaries emerge, but the picture is not sharp between .55

and .56. If you then magnify [.55,.56], you will find erratic behavior in [.552,.553].

Continue this process and you will always see confusion in 1 out of 10 subintervals.

Can we ever accurately determine the basin boundaries?

Further Study

We have seen a simple formula (Newton’s method) produce very complicated be-

havior. This is a dominant characteristic of the exciting mathematical field of chaos

and fractals. The basin boundaries we investigated above are fractals which are

similar to Cantor sets (see Fractals Everywhere by Michael Barnsley for details).

For functions of 2 variables (or a complex variable) basins of attractions are often

quite beautiful. The picture below is generated from Newton’s method for the root

z = 1 of the complex variable equation 23 — 1 = 0.
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4.2 Multiple Roots

In the last section, we presented several different methods for approximating

roots of a function. One question which we did not answer there was how to find all

of the roots of a given function. The more basic question is to determine just how

many roots a given function has. Unfortunately, the general theory surrounding

this question is rather incomplete. We shall examine some examples and give some

hints here. Another question which plagues the numerical approximation of roots

is: what happens when a function has a root of multiplicity greater than 1 at a

given point [e.g., f(z) = (z — 2)3 has a root of multiplicity 3 at z = 2]? We will see

that in this case, the speed and accuracy of both Newton’s method and the Secant

method will be reduced considerably, while Bisections may fail to work at all.
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HOW MANY ROOTS ARE ENOUGH?

Obviously, many functions have more than one root. A reasonable question

may be: How many roots are there? Unfortunately, there is no easy answer for this.

Even for the familiar, relatively simple case of polynomial functions, the theory is

inadequate. We do have:

Theorem 4.2 A polynomial p,, of degree n has at most n roots.

This says, for example, that a polynomial of degree 5 has at most 5 roots.

Recalling that complex roots of a polynomial must come in conjugate pairs (i.e., if

a+b-1is aroot, then a —b-1 is also a root), we see that polynomials of odd degree

must have at least one real root. Hence, a polynomial of degree 5 could have 1,2,3,4

or 5 distinct real roots. For instance,

fl@)=(z-1)(z-2)(z-3)(z—4)(z—5)  (5roots)

fl@)=(z-1)*(z~-2)(z-3)(z~4) (4 roots)
f(x) = (z - 1)*(@ - 2)(z - 3) (3 roots)

f(z) = (z - 1)*x-2) (2 roots)

)flz)=(z-1)° (1 root)

So, even for the familiar and relatively simple case of polynomials, we may not

know how many roots there are, without actually factoring the polynomial (which

we can do in only a small number of cases, in practice). For more general functions,

the answer is even less clear. However, we can use the graphics capabilities of the

HP-285/48SX to help answer the question.

Example 1. Using Graphics to Determine the Number of Roots

Consider f(z) = sinz — 22 + 1. If we use the usual graphics routine to graph

y = f(z), we can clearly see two roots (see Figure 4.7a for an HP-28S graph): one

in the interval (-1,0), the other in the interval (1,2). But, are there any roots that

we don’t see? That is, are there any roots outside of those displayed in the current

graphics window? We can resolve this question easily for this particular example by

plotting the graphs of y = sinz and y = z2 — 1 simultaneously . Why? Well, notice

that the equation

f(z)=sinz —2*4+1=0
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is equivalent to

sinz =z -1

i.e., roots of f correspond to intersections of the two graphs y = sinz and y = 2?—1.

FIGURE 4.7a FIGURE 4.7b

The HP-28S plot of the two superimposed graphs (Figure 4.7b) clearly shows

the two points of intersection. Since we know that the graph of y = 2% — 1 is

a parabola opening up and since the graph of y = sinz oscillates back and forth

between —1 and 1, we can easily infer from the plot that there are no other points

of intersection. Of course, for this simple graph, we might as easily have drawn the

graphs freehand. However, having done this using the HP-28S/48SX, we have the

added advantage that we can digitize initial guesses for the roots and use these in

one of our root-finding schemes.

In the present case, the digitized points of intersection are (—.6,—.5) and

(1.4,1). Using the z-coordinates of these points as initial guesses for Newton’s

method, we get the approximate roots:

z = —0.636732650 where f(z) = .000000000001

z = 1.409624004 where f(z) = .00000000001

From the foregoing discussion, these are seen to be the only roots of f. .

We hasten to add that the preceding example, while not typical of all rootfinding

problems, is of a type often encountered in applications. The suggestion that you

rewrite f(z) = 0 as g(z) = h(z) (for some appropriate selection of h and g) and

draw superimposed graphs of g and A will help in a number of situations. This is

particularly useful when the function f has both a periodic term (in the foregoing

case, sinz) and a term which is not oscillatory (in this case, —z? + 1).

A good test of your rootfinding skills is to solve the following problem.
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Example 2. A Hard Rootfinding Problem Solved

Find values of x for which f(x) = tanxz — z = 0. Certainly, there is no way

of solving the problem algebraically, although it’s clear that = 0 is a root. Are

there any others? The initial graph provided by the HP-28S (Figure 4.8a) gives us a

rather confusing picture. The HP-48SX does somewhat better (see Figure 4.8b). In

the HP-28S graph, there are a cluster of points around the origin (where we already

know that there is a root) and four single points, with two on either side of the

origin.
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FIGURE 4.8a FIGURE 4.8b

Notice that two of these points are very close to the x-axis. What is the behavior

of the function near these points? At this stage, you might be led by the relative

simplicity of the functions to draw freehand the superimposed graphs of y = x and

y = tanz (see Figure 4.9).

 
FIGURE 4.9

From Figure 4.9, we can see that there are infinitely many roots, since the

tangent is periodic and blows up to infinity at x = 7/2, 37/2, 57/2,.... We will

concern ourselves here only with the case x > 0. As can be seen from the graph, the

points of intersection are fairly close to the points ¢ = 7/2, 37/2, 57/2,.... In fact,
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the larger x gets, the closer the points of intersection (i.e., the roots of f) get to the

points x = 7/2, 3w/2, 57/2, .... While it is of some significance to notice this, this

does not help us find the roots. We cannot even use these values as initial guesses

for any of our methods, since tanz is undefined at all of these points. However,

we can use the less adequate graph provided by the HP-28S (or the better graph

provided by the HP-48SX) together with the digitizing feature of the interactive

graphics routines to obtain acceptable initial guesses.

As we have before, we use the arrow keys to move the cursor over to the point

near the z-axis for x > 0. Digitizing the opposing corners of a box roughly centered

at that point, we get (4,—.5) and (5,.5). Using the command, we zoom in

on this box (see Figure 4.10a). We now see clearly that there is a root near z = 4.5.

Using o = 4.5 in our Newton’s method program, we obtain the approximate root

x = 4.49340945791.

  

FIGURE 4.10a FIGURE 4.10b

Before looking for the next positive root, reset the display parameters (press

) and press (or on the HP-48SX) to obtain the original graph

(Figure 4.10b). Seeing no other apparent locations of roots in the current window,

move the cursor over to the extreme right edge of the display and digitize the point,

(6.8,0). Pressing will translate the center of the current graphics window

to the digitized point. You should see several single points plotted to the right of

the root just found (Figure 4.11a). Digitize the opposing corners of a box including

the first of these and the nearby section of the z-axis. In Figure 4.11b, we see the

result of the command with corners (7,—1.4) and (9,.6). In this latest plot,

we still only see two points and these are both on the same side of the z-axis. We

need to zoom in some more. Digitizing the points (7.64705882353, —.303225806452)

and (7.79411764706,.341935483871), and using the command, we obtain the

plot in Figure 4.11c, which clearly shows the existence of a root. If we digitize its

apparent location, we get that it’s around =z = 7.725.
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FIGURE 4.11a FIGURE 4.11b

Figure 4.11c shows the second positive root of tanx — x.

 

FIGURE 4.11c

Using the z-coordinate as an initial guess for Newton’s method, we get the

approximate root x = 7.72525183694. Continuing in this fashion, alternately trans-

lating the center of the display and then zooming in on the z-axis to see more points,

we can locate as many roots of f as needed. The first 5 found with our Newton’s

method program are

 

Tn f(zn)

4.4934094579 0.000000000002

7.7252518369 0.000000000014

10.9041216594 —0.000000000034

14.0661939128 —0.000000000062

17.2207552719 —0.000000000091

 

   
 

At this point, you should verify the results in the preceding table and find the

next largest positive root. Notice that one can see from Figure 4.9 about where the

roots should be. However, we need to use the digitized points from the HP-28S/485X

plots to obtain acceptable initial guesses for Newton’s method. .
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What you should now recognize is the interplay between the theory, computa-

tion and graphics. The theory, by itself, is insufficient for finding roots or even for

determining how many roots there may be. On the other hand, as we have seen,

we cannot go around blindly stuffing guesses into Newton’s method in the hope of

finding a root, let alone all the roots. We should emphasize that, in solving practical

problems, we need to take care to use all of the information at our disposal: the-

ory, computation, freehand graphs and numerically generated graphs, such as those

produced by the HP-285/48SX.

MULTIPLE ROOTS

You may recall seeing the following definition.

Definition A function f is said to have a root of multiplicity n at x = a if we can

write

f(z) = (z —a)"g(x)

where lim g(z) exists and is nonzero.
r—a

Example 3. A Function with a Multiple Root

The function f(z) = (z — 2)3(z? + 1) has a root of multiplicity 3 at z =2. =

All of the rootfinding methods which we have described encounter difficulties

when we try to locate a root which has a multiplicity greater than 1.

Example 4. An Example where Newton’s Method Is Very Slow

Locate a root of f(z) = (x — 3)2. First note that f has only one root, a root of

multiplicity 2 at £ = 3. Also note that Bisections cannot be used to locate this root,

since f(x) > 0 for all z [i.e., f(x) is never negative]. We apply Newton’s method,

using the initial guess o = 2. The method works, but is unusually slow, as seen in

the following table.
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n Tn Tp — Tp-1

1 2.5 .9

2 2.75 .25

3 2.875 125

4 2.9375 .0625

5 2.96875 .03125
32 {2.99999999977 |.000000000023
33 [2.99999999988 |.000000000011
34 [2.99999999994 |.000000000006     

From the preceding table, we can see that, for the problem at hand, Newton’s

method took many more steps than it usually does.

Looking down the last column in the table, we can see that each successive value

is about half the preceding value. This means that at each step of Newton’s method,

we move only about half as far (hopefully towards a root) as in the preceding step.

This is very slow for Newton’s method and is more like the convergence of the

method of Bisections. The Secant method performs equally poorly for this problem.

(Try this.) n

REMARK: One might want to blame the poor performance of Newton’s method

on making a poor choice of the initial guess. However, a better initial guess will

not improve the situation. This behavior is typical of convergence to a root whose

multiplicity is greater than 1. The interested reader is referred to more advanced

texts on the subject of numerical analysis for a more complete exposition (e.g.,

Burden and Faires, Numerical Analysis , 4th edition).

Unfortunately, slow convergence is not the only problem which we face when

there are roots of multiplicity greater than 1. Consider Example 5.

Example 5. An Example where Newton’s Method Has Poor Accuracy

Find the roots of f(x) = z* — 523 + 622 + 4z — 8. Using the graphics routines

of the HP-28S/48SX, we find that there is a root near z = 2.15 (see Figure 4.12).

Using this as an initial guess in Newton’s method yields the following table.



4.2 Multiple Roots 163

 

n

1 2.10078125 0.003174025
2 2.06754755331 |0.00094540994
3 2.04519576511 |0.00028113074
15 |2.00036287019 |0.000000000016
16 [2.00022789465 |0.0
17 12.00022789465 |0.0

 

     

FIGURE 4.12

This would seem to be a rather unremarkable example. Certainly, Newton’s

method took many more steps than usual, but we’ve already seen that slow conver-

gence can be caused by a root of multiplicity greater than 1. Quite naturally, then,

we make the conclusion that x = 2.00022789465 is an approximate root (maybe

even a root of multiplicity greater than 1). After all, Newton’s method converged to

this value and further steps yield no further progress. If this isn’t enough evidence,

the value of f at £ = 2.00022789465 is reported to be 0.0. How much more evidence

do we want, anyway?

At this point, it might be useful to notice that the given polynomial factors:

flx) =x* =523 +62° + 42— 8 = (z + 1)(z — 2)°

Thus, the only roots are = —1 and = = 2, with the latter being of multiplicity 3.

Our suspected approximate root of x = 2.00022789465 is then seen to be accurate

only to the 1st three decimal places. This is poor performance at best.

So, what went wrong with this application of Newton’s method? Without

getting into too many details, we can explain this as follows. If z is “close” to 2,

(z — 2) will be close to zero, but the factor (z — 2)® will be very close to zero. In

the present case, for z = 2.00022789465, (z — 2) = .00022789465 and (z — 2)3 =

1.18F — 11. .
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What, then, is the moral of this story? Should we learn that in the case of roots

of multiplicity greater than 1, we should demand a somewhat smaller tolerance?

Certainly, we cannot expect to get better than f(x,) = 0 and =z, — z,+1 = 0.

Perhaps we should be wary of all rootfinding problems involving multiple roots. Of

course, we would need to know when the root that we are seeking has a multiplicity

greater than 1. In practice, this can only be done by observing the slow convergence

of our rootfinding scheme.

We should beware of problems with inordinately slow convergence. This gen-

erally suggests a multiple root and that spells trouble. We need to realize, too, that

because of the limited accuracy of the HP-28S5/48SX (usually about 12 digits) we

will not, in many cases, be able to obtain even moderate accuracy in the root.

At this point, it might be interesting to see how well the built-in HP-28S/485X

Solver does on this problem. With the initial guess of 2.15 (enter 2.15, press the soft

key and on the HP-28S or on the HP-485SX) the Solver

gives the approximate root x = 2.0002711078, with the advisory message “ZERO”

indicating that the machine thinks that it has found a root exactly. Of course, this

answer is a bit worse than the already unacceptable answer found by our Newton’s

method program.

Notice that there is a further concern with using the Solver to solve such prob-

lems. Since we cannot observe the calculation in progress (as we can with our

Newton’s method program) we have no idea when something may be wrong. On

the contrary, the advisory message “ZERO” and the fact that the function value

at the reported root is 0 serve to convince us that everything is just fine and that

we have just found an accurate approximation to a root. For this reason, we cau-

tion against using the Solver alone to find roots. When there are multiple roots,

the Solver (and hence also the user) can be easily fooled into making an incorrect

conclusion. We suggest that you use the Newton’s method and Secant method pro-

grams given in this chapter and pay close attention to the progress of the calculation

and not just to the final answer.

There are some things which can be done to improve the situation. However, a

complete treatment of these methods is beyond the scope of the present work. We

will give some hints in the exercises, but for a thorough treatment, the interested

reader is referred to a text on numerical analysis. The real lesson for us here is to

learn caution in solving for roots numerically. In practice, you must use a great deal

of care, especially when a root of multiplicity greater than 1 is detected.
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Exercises 4.2

In exercises 1-6, rewrite the equation in the form f(x) = g(x) and use graphics to

determine how many roots there are.

1. cosz?+z2 =0 2.sinz? 4+ 23 -2224+1=0

3. 28 4+325+422 -4=0 4. (x2-1)?P 43z -1=0

5. eT4+22—-1=0 6. 3¢%cos(z —1)—22+2r—2=0

In exercises 7-8, there are an infinite number of roots. Use graphics and a rootfinder

to determine the three smallest positive roots.

7.secx—x =0 8. eT=tanx

In exercises 9-12, use graphics and a rootfinder to determine all the roots. Based

on the rate of convergence, which roots do you suspect are multiple roots?

9. 4 — 1222+ 32 =10 10. 2° — z* — 102® + 102® 4+ 252 — 25 =0

11. 2° — 10z* — 22° + 202 — 32+ 30 =0 12. % +22% — 622 — 14z —7=0

In exercises 13-14, = 1 and x = 2 are roots. In exercises 15-16, x = 0 is a root.

Based on the convergence of Newton’s method, determine which are multiple roots.

13. 24 — 223 - 322 +8zx -4 =0 14. z* — 723 + 1822 — 20z + 8 =0

15. zsinz =0 16. z(cosz —1) =0

17. In this exercise, we look at an alternative stopping rule for the Newton’s method

algorithm. Let f(z) =z* —2® — 322 + 52— 2 = (z — 1)3(z + 2).

(a) Execute Newton’s method with zo = 1.5. Stop when |z,4+1 — z,| < .0001.

(b) Repeat part (a) but stop when |f(z,)| < .0001.

(c) Compare the number of steps executed and the accuracy.

18. All of our examples so far have had relatively small roots. Special problems

may occur if a root is large. Consider f(z) = (z —400)%(z + 1) = x> — 7992 +

159200z + 160000.

(a) Execute Newton’s method with zo = 300. Stop when |z,4+1 — z,| < .0001.

(b) Repeat part (a) but stop when |z,41 —| < .0001|z,41].

(c) Compare the number of steps executed and the accuracy. Under what

circumstances might criterion (b) be more appropriate than criterion (a)?

In exercise 19, we will see one way to speed up the convergence of Newton’s method

in the case of a multiple root. Use this method to solve exercises 20-22.

19. Show that if f is a polynomial with a root ¢ of multiplicity n then c is a root of
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multiplicity 1 of f/f’. In this case, Newton’s method would converge rapidly

to ¢ if f were replaced by f/f’. HINT: f(z) = (z — ¢)"¢(x).

20. z* — 523 4 622 + 4x — 8 with zo = 2.15 (see Example 5).

21. z* — 23 — 322+ 3z -6, 20 = 1.5 22. 23 —z?2 —x+ 1,29 =1.2

EXPLORATORY EXERCISE

Introduction

We have seen that Newton’s method exhibits slow convergence to roots of mul-

tiplicity 2 or more. In exercises 19-22, we saw a messy way of speeding up the

rate of convergence. Yet, we have never precisely said what we mean by rate of

convergence. The stopping criterion we have used in our rootfinding methods is

the difference |z,4+1 — =, | between successive approximations. We use the quantity

A = xp — x_1 to define the rate of convergence.

Problems

Start by running Newton’s method with g = 1.5 on the following examples while

 computing

(a) (x —1) 2)% =% + 523 + 622 — 4z — 8

(b) (x — 1)*(x +2)2 = 2 + 22® — 32?2 — 4z + 4

)

)

AL after steps 2, 3,

(x +
2

() (x -1 (x+2)=z*—-23 322 + 52— 2

(d) (zx — 1) =2t — 423 + 622 — 4z + 1

 Conjecture a value for r = lim L in cases (a)-(d). If 7 exists and is nonzero
" k—oo

the method is said to converge linearly. Based on your calculations, formulate a

hypothesis relating r to the multiplicity of the root. According to your hypothesis,

what happens to the rate of convergence as the multiplicity of the root increases?

Use Newton’s method and your hypothesis to guess the multiplicity of the root x = 0

in the following cases.

(e) rsinx (f) z sin z? (g) z(z® — 1)

Further Study

The rate of convergence is a standard topic in numerical analysis. Introductory texts

such as Numerical Analysis, 2nd edition, by Johnson and Riess have nice treatments

of this topic.
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4.3 Extrema and Applications

Everywhere we turn in business and industry today, we find someone asking

questions like: “What’s the least amount of time sufficient for completing this job?”

or “What’s the most money we can make on this investment?” or “What’s the least

amount of material that need be used to fabricate this device?” These questions are

examples of what are called optimization problems, specifically mazimum/minimum

problems. In this section, we discuss some practical aspects of solving these prob-

lems. We start by pointing out that most such problems encountered in a typical

calculus textbook, of necessity, have solutions which are roots of perhaps a quadratic

or, at worst, a cubic polynomial. Most often, the solutions turn out to be integers.

As you might guess,it is rarely the case in real world problems that we would be

so fortunate as to be presented with a quadratic polynomial with integer roots. Yet,

it is not surprising that our textbook problems are so limited. To be sure, our facility

for finding roots by pencil-and-paper methods is confined (with few exceptions) to

low degree polynomials.

We should recognize, too, that there are few among us who do not instantly

frown when the solution of a (textbook) problem starts to involve numbers other

than integers. Most of us, unfortunately, have been trained to do just that. At

the same time, it is exactly this type of problem (messy, user-hostile ones) which

we will be facing when we apply calculus to almost any real world problem. As

users of calculus, we must come to the point where we expect to get messy-looking

answers and are surprised at the odd instance when we get an integer answer. The

power of the HP-28S/48SX is ideally suited for dealing with these problems, using

the rootfinding skills developed in the last two sections.

REVIEW OF ABSOLUTE EXTREMA

Recall the following definitions and theorems from elementary calculus.

Definition For zin [a, b], we call f(x() the absolute mazimum of f on the interval

[a,b] if f(xzo) > f(zx) for all z in [a,b]. f(xo) is the absolute minimum of f on [a,b]

if f(zg) < f(z) for all z in [a, b]. In either case, we call f(xg) an absolute extremum.

It should be fairly evident why someone would be interested in finding extrema.
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Simple examples are everywhere: Business managers are interested in maximizing

profits, while minimizing costs. Engineers are interested in maximizing the amount

of energy which can be obtained from a barrel of oil and in minimizing the amount

of material required to manufacture a given item. Similar examples abound in every

branch of science, engineering, business and economics.

Thefirst question that we might ask regarding the mathematics is whether every

function has absolute extrema. The answer is no, but we do have the following.

Theorem 4.3 (Extreme Value Theorem) Suppose that f is a continuous func-

tion on the closed interval [a,b]. Then, f has both an absolute maximum and an

absolute minimum on [a, b].

Certainly, it is very comforting to know that for a broad class of functions

(the set of continuous functions), there will always be absolute extrema on a closed

interval. But, how do we find what those values are? In Chapter 1, we drew a graph

of the function and tried to read from the graph what appear to be the extrema.

Naturally, this is just a bit too crude, even if the graph is computer generated (such

as by those produced by the HP-285/48SX). There is a much more precise way to

examine these problems. We can use the rootfinding methods developed in sections

4.2 and 4.3 or the Solver (discussed in section 1.3) to find approximations of extrema.

First, we need the following definition.

Definition A number x( in the domain of a function f is called a critical value of

fif f'(xg) =0 or if f'(x¢) is undefined.

We can now state the main tool used for locating absolute extrema.

Theorem 4.4 Suppose that f is a continuous function on the closed interval [a,b].

Then, if f(c) is an absolute extremum of f on [a, b], ¢ must be an endpoint (a or b)

or a critical value.

NOTE: This result says that if we want to find the absolute extrema of a continuous

function on a closed interval [a, b], then we need only locate all of the critical values

in (a,b) and simply compare the value of f at each of the endpoints and at each of

the critical values. The largest of these numbers will be the absolute maximum; the

smallest will be the absolute minimum. (That at least sounds easy, doesn’t it?)
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Example 1. Finding Extrema of a Polynomaial

Find the absolute extrema of f(r) = 3 — 322 — 9z + 7 on the interval [—2,5].

Here, f'(z) = 322 —6x — 9 = 3(z — 3)(z + 1). Thus, the critical values are the roots

of f'(z) (x =3 and x = —1). Since f’(x) is a polynomial, it is defined everywhere

and, hence, the only critical values of f are roots of f’. (The authors, of course,

realize that this is another cooked-up textbook problem with integer roots, but it

will serve as a good illustration of the procedure before we turn to the more messy

and realistic problems to follow.)

Now, we compare the value of f at the endpoints and at the critical values to

determine the relative extrema:

f(=2)=5 f()=12 f(-1)=12 and f(3)=—20

Obviously, the absolute maximum of f on [—2,5] is 12 (this occurs at both x = —1

and x = 5) and the absolute minimum is —20 (this occurs at x = 3). .

Example 2. Extrema of a Function with a Fractional Power

Find the absolute extrema of f(z) = (z? — 4)%/3, on the interval [—1,3]. Here,

4z/ _2 2 -1 _f@) =56 =970 =s

In this case f'(x) = 0 only for x = 0. Further, f'(z) is undefined whenever the

denominator is zero,i.e., for x = —2 and x = 2 (both of which are in the domain of

f). However, x = —2 is not in the interval under consideration. So, we need only

compare:

f(=1) = (—3)%/3 = 2.08008382305

£(3) = (5)%/3 = 2.92401773821

f(0) = (-4)2/3= 2.51984209979

£2) = (0=
Clearly, the absolute maximum is f(3) = 2.92401773821, while the absolute mini-

mum is f(2) = 0. Check these results, yourself. In doing so, you will notice that the

HP-28S/48SX (like most calculators) has a problem when asked to compute certain

fractional powers of negative numbers. In these cases, the user must compute the
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indicated power of the absolute value of the given number and then manually adjust

the sign. "

Now that we have reviewed the procedure for locating absolute extrema, the

only remaining questions are computational ones (i.e., How do we actually find the

critical values?). We will deal with these questions next.

NUMERICAL SOLUTION OF EXTREMA PROBLEMS

How often in practice does one run into an extrema problem where the critical

values are integer roots of a quadratic polynomial? If we were to answer “occasion-

ally” we might still be guilty of exaggeration. Real world problems are rarely very

pleasant and almost always require some computing to solve. The HP-28S/485X is

very well suited for solving many such problems. We exhibit here some examples

that are typical of the type of problems encountered in applications. Pay particular

attention to the interplay between the graphing, the analysis and the computation.

As we’ll see, no one of these three tools is sufficient for solving extrema problems in

practice, but together they form a powerful combination.

Example 3. An Extrema Problem with Ugly Numbers

Find the absolute extrema of f(z) = z* + 323 — 522 — 2z + 10 on the interval

[—4,2]. It is always best to first get a rough idea of where the extrema might be

from a graph of the function f. In the initial graph produced by the HP-28S, we see

only a couple of dots graphed (see Figure 4.13a). Essentially, we need to compress

the height of the graph, in order to fit it on the display. Using the command

will help out somewhat. More of the graph is shown, but still not enough (Figure

4.13b).
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Two more applications of will show much more detail, but because

ZOOM zooms out in both the x- and y-directions simultaneously, the z-axis is

now too compressed (Figure 4.13c). If we now use to zoom in on the part of

the graph in which we are interested, we get the graph shown in Figure 4.13d [where

the corners of the graphics window were defined by (—4.5,—13.5) and (2.25,14.4)].

Unfortunately, not all of the graph fits in this window, although we could not have

known that from Figure 4.13c. One final will produce a fairly continuous

curve on the interval in question (Figure 4.13e). On the HP-48SX, producing a useful

graph is easier. You can enter the maximum and minimum x-values of interest, here

—4.5 and 2.25, on the stack and press (z-range) and . The y-values

are then automatically scaled to fit on the screen and the resulting plot is drawn.
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FIGURE 4.13c FIGURE 4.13d
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FIGURE 4.13e

Although we do not completely trust the picture, it suggests that the absolute

maximum is at the endpoint z = 2, and the absolute minimum is at a relative

minimum, around x = —3. To verify these conclusions and to make the values more

precise, we must find the critical values and compare the values of the function at

the endpoints and the critical values.

Notice that f'(z) = 423 + 922 — 10z — 2. This has no obvious factorization (at

least not one obvious to the authors) and we must rely on numerical approximation

of the roots. Note that since this is a cubic polynomial, there are no more than

3 roots. First, use the graphics routines to graph f’(x) to see where any roots

might be. (Don’t forget to reset the graphing parameters first: press . You
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might also use OVERD to superimpose the graphs of f and f’, on the HP-28S.

You can accomplish the same thing on the HP-48SX by drawing f’ after drawing

f, without first pressing .) Zooming out from the initial graph, we obtain

the graph in Figure 4.14a. Next, we use the command, with corners defined

as (—4.05,—4.5) and (2.1,4.8) to produce the graph in Figure 4.14b. Although the

graph lacks some detail, one should clearly be able to see that there are three roots:

one around —3 and two between —1 and 1. Since we know that there can be at

most three roots, there is no reason to produce a more detailed graph.

 

FIGURE 4.14a FIGURE 4.14b

Now we digitize the apparent locations of the roots. We obtain guesses of —3.0,

—.16 and .92. Using our Newton’s method program [looking for roots of f'(z)] with

these initial guesses, we obtain the following results:

 

T Approximate Root z f'(x)

-3.0 —3.02241785918 0.0000000008

—0.16 —0.174672345714 0.0

0.92 0.947090204888 0.00000000002

 

     
Notice that since f'(z) is cubic and we have located three roots, there are no

others left to find. Finally, we need only compare the values of f at the endpoints

and at the above three critical values. Obviously, the absolute maximum occurs at

x = 2, and the absolute minimum occurs at £ = —3.02241785918, both as expected

from the graph of f.

f(=4) =2
£(2) = 26

f(—3.02241785918) = —29.0112598806

f(—.174672345714) = 10.1817354516

£(.947090204888) = 6.97405567901
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We should note that in this example the critical values are roots of a cubic

equation which you probably cannot see how to factor. There is, of course, a formula

for finding the roots of a cubic equation, although it is rather cumbersome to use.

We chose instead to approximate the roots numerically. This is more instructive, of

course, since in general there will be no formulas for finding the roots exactly. You

should also note that, in this example, we knew in advance that there could be no

more than 3 critical values. In general, we will have no idea of how many critical

values to expect. We will therefore need to carefully search for critical values. "

Example 4 is typical of the general situation.

Example 4. Extrema of a Non-Polynomial Function

Consider f(z) = cosz? + x> — 2z on the interval [—1,2]. From the initial plot of

f(x) produced by the HP-28S, you can see most of the graph between z = —1 and

x = 2 (see Figure 4.15a). One application of and you should have a pretty

good idea of the behavior of the function on the interval of interest (see Figure

4.15b). An even better graph can be obtained by using the command to

zoom in on the portion of the graph of interest. In Figure 4.15c the corners are

(—1,-1.8) and (2,4.2).

FIGURE 4.15a FIGURE 4.15b

FIGURE 4.15¢

The graph seems to indicate that the absolute maximum occurs at z = 2, while
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the absolute minimum occurs around z = 1.2. Also, there would seem to be a

relative maximum around x = —.7. [Recall that f has a relative mazimum at T = ¢

if and only if f(c) > f(x), for all z in some open interval (a,b) containing c.] So,

we should expect 2 critical values in the interval (—1,2).

Next, to make sure that we find all of the critical values, draw a graph of

f'(z) = —2zsin(x?) + 3x? — 2. From the initial graph drawn by the HP-28S (see

Figure 4.16), we can get initial guesses for roots near x = —.7 and z = 1.2.
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FIGURE 4.16

To have some confidence that there are no other roots on the interval [—1, 2], try

first using to zoom out so that all or most of the y-values are in the window.

Then apply to zoom in on the portion of the x-axis of interest. Since the

graph appears to be a relatively continuous curve with no roots other than the two

already identified, we expect that there are no other roots on the interval [—1,2].

Using our Newton’s method program with these starting values, we get the follow-

ing:

 

To Approximate Root = f'(x)

-0.7 —0.68092076714 0.0

1.2 1.21298116466 0.0

 

    
 

So, we have found approximations to 2 critical values, where we had only ex-

pected 2 critical values. Further, these 2 values are located near where we had

expected to find extrema. Thus, we have no reason to search for any other critical

values, in this case. It remains only to compare the values of the function f at the
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endpoints and at the critical values:

f(—1) = 1.54030230587

£(2) = 3.34635637914

£(—.68092076714) = 1.94055525509

£(1.21298116466) = —.54196581576

We can now read off the extrema. The absolute maximum occurs at £ = 2

and the absolute minimum occurs at z = 1.21298116466, both as expected. You

should not underestimate the importance of checking that the computed extrema

correspond to those expected from the graph of f(z). If they do not, then you

should return to the graph and manipulate it so as to determine what you missed

the first time (e.g., a missed critical value or an incorrect location for the relative

extrema). u

By now, you should realize that we should be able to find the approximate loca-

tions for the absolute extrema of a continuous function, just by drawing a sufficiently

detailed graph. However, to find the precise locations and to find the precise maxi-

mum and minimum values, we must rely on the results of our numerical rootfinding

schemes and a comparison of function values. This process exhibits the interplay

between the mathematical analysis, numerical computation and graphics typical of

so many practical problems and which we have already seen in several other con-

texts. We provide one final example of such a problem, one where the graphics are

not so easy to work with.

Example 5. Extrema of a Difficult Polynomial

Find the absolute extrema of f(z) = z°% — 7z* + 3z — 5z + 1 on the interval

[—1,3]. The initial graph produced by the HP-28S appears as only a few scattered

dots (see Figure 4.17a). We first press to enlarge the range of y-values in

the current window. This has improved the situation somewhat, at least between

x=-1and z =1.

One can see a relative maximum around z = —.5, but the behavior on the

interval [1,3] is still not clear. To remedy this, we press twice more. We can

finally see where the graph bottoms out (see Figure 4.18). It appears that there is

an absolute minimum around the point (2, —32) and that the absolute maximum
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will occur at the endpoint, z = 3. Now that we have an idea of what we are looking

for, we turn to finding the critical values.
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FIGURE 4.18

Graphing the derivative, f/(z) = 6x° — 2823 + 922 — 5, we look for zeros in

the interval of interest, (—1,3). (Once again, it may help to draw superimposed

graphs of f and f’.) Pay particular attention to locating any critical values near the

suspected relative extrema seen in the graph of f(x). The original graph provides

few clues (see Figure 4.19a), so we start to zoom out, in the hope of locating some

roots. Pressing once, we clearly see that there is a root near ¢ = —.5 (see

Figure 4.19b). Recall from the graph of f that we expected a relative maximum

 
 

around r = —.5.

1 4
— —————s -

3 -;

FIGURE 4.19a FIGURE 4.19b

No other roots are apparent from the present display. If we press again,

we can infer from the resulting graph (Figure 4.20) that there is another root located

near z = 2.0 (recall from the graph of f that there seemed to be a relative minimum
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near x = 2). Finally, to be convinced that there are no roots on the interval (2,3),

we need to zoom out several more times (see Figures 4.21a, 4.21D).
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FIGURE 4.21a FIGURE 4.21b

So, from some routine work with the graphics, we have two guesses for critical

values, —.5 and 2. Using our Newton’s method program [for roots of f'(z)], with

these initial guesses, we get the following results.

 

 

  

Zo Approximate root x f'(x)

-0.5 —0.479344270315 0.00000000001

2.0 2.00550138612 —0.00000000004  
 

Finally, we compare the values of f at the critical values and at the endpoints:

f(-1)=-3
f(3) =229

f(—.4979344270315) = 2.70887113843

f(2.00550138612) = —33.0027596493

We can now see that the absolute maximum occurs at x = 3, and the absolute

minimum at z = 2.00550138612, as expected from the graph of f. »

Of course, the reason that we are interested in solving extrema problems is that

they occur quite naturally in applications. We offer Example 6 as an illustration
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of the typical applied max/min problem, where the solution cannot be easily found

through means of elementary algebra.

Example 6. Applied Maximum/Minimum

A city would like to build a new section of superhighway to link an existing

bridge with another highway interchange, lying 8 miles east and 8 miles south of the

bridge. Unfortunately, there is a 5-mile-wide stretch of marsh land which must be

crossed (see Figure 4.22). Given that the highway costs 10 million dollars per mile

to build over marsh and 7 million dollars per mile to build on dry land, how far to

the east of the bridge should the highway be at the point where it crosses out of the

marsh?

 

   
 

Bridge

Marsh

5

H x 8—x
N

3

Interchange

FIGURE 4.22

As with any applied max/min problem, you should first draw a picture and

label the appropriate variables, as in Figure 4.22. Let x represent the distance in

question (marked in Figure 4.22). Then the total cost of the project (in millions of

dollars) is

Cost = 10 * distance across marsh + 7 * distance across land

In Figure 4.22, there are obviously two right triangles. Using the Pythagorean

theorem, we find that the cost is given by

C(iL’) = 10(:1;2 +25)1/2 +7[(8—$)2 +9]1/2

Store this function in the variable C (press 'C’ ). From the picture,it is easy

toseethat 0 <z < 8.
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So, we would like to find the minimum value of C on the interval [0,8]. First,

to get an idea of where the minimum might be, we draw a graph of y = C(z). The

values of the function in the initial graph produced by the HP-28S are obviously

all off the scale (no points at all are plotted). We then translate the center of the

plot to the point (4,110). [We selected 110, since C(0) =~ 110.] A few points are

plotted, but not enough. Using twice produces a fairly continuous curve on

the interval [0,8]. (See Figure 4.23.) From this graph, we can see that the minimum

value seems to be between z = 2.75 and x = 4.5.

FIGURE 4.23

To find the minimum value precisely, we will need to first find any critical

values. The derivative of C is

C'(x) = 10z(z* + 25)"/2 — 7(8 — 2)[(8 — z)? + 9]~ 1/?

Note that you can compute C’(z) using the differentiation routines of the HP-

285/48SX. You should then store the expression for C’ in a variable, say CD.

Notice that the only critical values occur where C'(z) = 0. (Why is that?) We

now look for the roots of C’'(x). To get an idea of where these might be, we first

draw a graph of C’'(x). From the initial HP-28S graph (Figure 4.24a), we can clearly

see that there is a root around z = 3.6. Pressing twice, we are able to see a

fairly continuous curve on the interval [0,8] which has only one zero. This graph is

displayed in Figure 4.24b.

FIGURE 4.24a FIGURE 4.24b

Note that we could use x = 3.6 as an initial guess for Newton’s method, but
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this would require that we compute the derivative of C’'(x). While this is not

a monumental task (you could always use the differentiation routines of the HP-

285/48SX), it is simpler to use the Secant method in this case. Using the Secant

method program, with the initial guesses xy = 3 and z; = 4, we get the approximate

root

Ty = 3.56005152031 where C'(z,,) = 00000000002

Finally, compare the value of C(x) at the endpoints and at the critical value:

C(0) = $109, 808, 022.62

C(8) = $115, 339, 811.32

C(3.56005152031) = $98, 888, 374.49

Thus, if the roadway is built so that x = 3.56... , this will result in a savings of more

than 10 million dollars over cutting straight across the marsh and a savings of more

than 16 million dollars over cutting diagonally across the marsh. =

The examples which we have given in this section together with the exercises

to follow should give the student the necessary tools for solving a large variety

of maximum/minimum problems found in applications. In solving such problems

numerically, we urge caution, as always. You should be careful to check that the

answer computed numerically corresponds to the solution expected from the graph

of the function being maximized or minimized. If it does not, then further analysis

is needed. Perhaps a refined graph of the function will shed some light on the

problem or perhaps a critical value was missed in the graph of f'(z). You should

also check that the solution makes physical sense, if possible. All of these multiple

checks reduce the likelihood of error. A good problem-solver must be on guard all

the time, for there are many traps to fall into.

Exercises 4.3

In exercises 1-14, do the following: (a) use graphics to predict the maximum and

minimum of the function on the interval; (b) use graphics and a rootfinding method

to approximate the critical points; (c) find the maximum and minimum of the

function on the interval.

1. 2% — 6z + 9z — 2, [-2,2] 2. 2% — 62% + 9z — 2, [0,4]
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3. o +4a® — 622 — 362 + 25, [-2,2] 4. z* + 42 — 622 — 362 + 25, [—4,0]

5. 2% +4x* — 323 + 42 — 2, [-1, 3] 6. 2% + 4zt — 323 + 4z — 2, [-3,0]
2 2

7. \/x2+4—%+1, [~1,3] 8. \/x2+4—%—+1, (—4,1]

9. (z2-1)2/3 -2z +1, [1,3] 10. (2 —1)2/3 -2z +1. [-2,0]

11. z?sinz — 2, [0,4] 12. z?sinz — 2, [—4,0]

13. ze~% + 2, [0, 2] 14. e7% + 22, [-4, 4]

15. Light travels at speed c in air and speed .75c in water. Find x to minimize the

time it takes light to get from point A in air to point B in water.

16. The points A(0,1) and B(0, —1) are within the circle 2 + y? = 4. Consider the

path starting at point A, reflecting off the circle and finishing at point B. Find

the points (z,y) on the right half of the circle (that is, x > 0) which minimize

and maximize the reflecting distance from A to B. It is interesting to note that

light can follow both paths (usually, light only follows paths of minimum time).

5
S,

17. Washington needs to cross the Delaware to get to Trenton. Assume that the

.y

 
Delaware is 1 mile across and that Trenton is 2 miles inland and 10 miles

downstream. If Washington’s men can row at 3 mph and march at 4 mph, how

far downstream should they row? How many minutes will they save compared

to rowing straight across the river and then marching directly to Trenton?
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18.

19.

Applications of Differentiation

The spinning of a clothes dryer causes it to vibrate as if being acted on by

a downward force of f pounds, where f = fysinwt for constants f, and w.

Small springs and dampers may be used to reduce the vibrations. In studying

the design of the machine (see Raven, Mathematics of Engineering Systems )

an important quantity is F' = f;/fo where f; is the amplitude of the force

transmitted to the floor and fy is the amplitude of the vibrating force. This

P 1 + cb?

(1 —b2)2 4 cb?

where b is determined by the strength of the spring and c is determined by the

ratio has the form

amount of damping. For ¢ = .1, find b to maximize F. For ¢ = .4, find b to

maximize F. (HINT: Find the maximum of F2.) In practice, with ¢ = .1 it is

common to have b = 4. Explain why this differs from the value obtained above.

In sports where balls are thrown or hit, the ball often finishes at a different

height than it starts at. Examples include a golf shot downhill and a basketball

shot. In the diagram, a ball is released at an angle # and finishes at an angle B

above the horizontal (B can be negative for downhill trajectories). Neglecting

air resistance and spin, the horizontal range is given by

2 o2
R = 2&(M(tsz — tan B)

g

where vg is the initial velocity of the ball and g is the gravitational constant.

In the following cases, maximize R: (a) B =10; (b) B=0; (¢) B = —10

(in degrees). Verify that § = 45 + B/2. [HINT: argue that you only need to

maximize cos? §(tan § —tan B)]. This result and other uses of calculus in sports

can be found in Sports Science by Brancazio.

R  ‘ B

|l[



20.

21.

22.

23.

24.
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A ball is thrown from s = b to s = a (a < b) with initial speed vg. Assuming

that air resistance is proportional to speed, the time it takes the ball to reach

T:—lln(l——cb_a)
C Vo

where c is a constant of proportionality. A baseball player is 300 feet from

sS=alis

 

home plate and throws a ball directly towards home plate with an initial speed

of 125 ft/sec. Another player stands x feet from home plate and has the option

of letting the ball go by or catching it and, after a delay of .1 seconds, throwing

the ball towards home plate with an initial speed of 125 ft/sec. Take ¢ = .1

and find = to minimize the total time for the ball to reach home plate. What,

if anything, changes if the delay is .2 seconds?

For the situation in exercise 20, for what length delay is it equally fast to have

a relay and not have a relay? Why do you suppose it is considered important

in baseball to have a relay option?

Repeat exercises 20 and 21 if the second player throws the ball with initial

speed 100 ft/sec.

For a delay of .1 seconds, find the value of the initial speed of the second player’s

throw for which it is equally fast to have a relay and not have a relay.

Repeat exercise 20 if the second player throws the ball with an initial speed of

120 ft/sec.

EXPLORATORY EXERCISE

Introduction

The theory developed in this section gives us a definite answer about max/min

problems involving a continuous function of one variable on a closed interval. As

you might expect, not all applications of interest fit into this category. In this

exercise, we develop a technique for solving a different type of max/min problem.

We will analyze an old problem known as the “farmer problem.” A farmer standing

at (—2,0) needs to get water from a stream represented by y = 6 —  and deliver

the water to a cow at (2,0). From which point on the stream should the farmer get

the water to minimize the total walking distance?



184 Applications of Differentiation

Problems

We first find the solution graphically. The set of points for which the total walking

distance is d is given by the ellipse

2172 y2

@22 T @2E-4
 

This is called the level curve of the distance variable d. Trying the value d = 7,

graph the top half of the ellipse and y = 6 — x simultaneously and convince yourself

that the farmer will have to walk more than 7 units. Repeat the above with d = 11

and convince yourself that the farmer can walk less than 11 units.

With d = 9 the line y = 6 — = just barely passes inside the ellipse. This tells us

that the farmer can walk less than 9 units (why?). More importantly, we are now

close to the best point on the stream. By decreasing d slightly, we should be able to

find an ellipse that touches the stream at only one point. This point would be the

solution of our problem. Estimate this point.

We can find this point analytically, too. Note that at the optimal point, the

ellipse and line are tangent to each other, and hence have the same slope. The

slope of the line is —1, so we know 3 requirements for the optimal point: (a) it is

on the line; (b) it is on the ellipse; (c) at this point the slope of the ellipse is —1.

Translating these into equations, we get

Y %y
a?  a?—-14 a? a?2-14
  y=6—=x

where we have used a = d/2 for convenience. Find the optimal point.

Further Study

The geometry of the technique described above is the basis of a powerful result

known as the Lagrange Multiplier Theorem. The theorem is normally stated in

terms of a vector notation which simplifies calculations, but the principle is the

same: at the optimal point, the level curve of the function to be optimized is tangent

to the constraint curve (in the above example, the constraint curve is the stream

y = 6 — ). This result is a fundamental part of the field of calculus of variations,

which is typically a graduate course.
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Integration

5.1 Area and Riemann Sums

You are all familiar with the formulas for computing the area of rectangles,

circles and triangles. We don’t need to look very far to find good reasons for wanting

to compute areas. For example, if you want to know how much grass seed you will

need for your front yard, you’ll need to find its area. The question of how to compute

area is certainly much more profound than this example might make it seem, but

this should serve to illustrate the point.

Most people’s front yards are not perfect rectangles, circles or triangles. Does

this mean that their yards don’t have area? Certainly not, but the question re-

mains as to how the area is to be computed. Notice that we’ve used the word

computed. Areas are not measured directly, but rather are computed using some

one-dimensional measurements and a formula or formulas.

What we need, then, is a more general description of area, one which can be used

to find the area of almost any two-dimensional region imaginable. In this chapter, we

will investigate the notion of the definite integral. At first, we will develop this as a

tool for computing areas, but its usefulness goes far beyond this seemingly mundane

question. It is, in fact, one of the central ideas of calculus. Our studies in this chapter

will arm us with a powerful and flexible tool, which has applications in a wide variety

of fields.

185
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RIEMANN SUMS

We start our exploration of area by looking at a simple example on the HP-

28S/48SX. First, graph the parabola y = 2z — 2x? using the default plotting pa-

rameters (i.e., first press |RESET| ; see Figure 5.1 for the HP-28S graph). We would

like to find the area of the region bounded by the z-axis and the graph. The region

is clearly not a rectangle, a circle or a triangle, so we will look for an approximation

of the area.

FIGURE 5.1

Since 2z — 222 = 0 if £ = 0 or £ = 1, the region extends from z =0 to z = 1.

Although we often think of the calculator as plotting points, it actually colors

in small squares on your screen called pizels. If you look closely enough at your

calculator display, you will see a picture similar to the graph paper shown in Figure

5.2 (based on the HP-28S graph).

 

 

  
   
   
      

FIGURE 5.2

Each pixel represents a square of side .1 (on both the HP-28S and the HP-48SX).

To estimate the area, then, we can add up the number of pixels in the region of

interest and multiply the total by .01 (the area of each pixel). At x = .1, the graph

is 2 pixels high, at x = .2 the graph is 3 pixels high and so on. If you are using an

HP-28S, you should find

2+3+4+5+5+5+4+3+2=233

pixels, if you count the pixels representing the graph but not those representing the
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z-axis. (Why don’t we count both, or neither?) Our estimate of the area is then

(33)(.01)=.33. If you are using an HP-48SX, you should find

24+3+4+5+5+5+4+3+2+1=34

pixels, leading to an area estimate of .34.

It can be shown that the exact area is 1/3 (we’ll see how later), so it would seem

that we have found a fairly good estimate. However, we have not yet developed a

general procedure for computing area. First, we will need a way of systematically

obtaining better and better estimates. (You should notice that for larger areas you

would quickly tire of counting pixels.)

We can improve on this pixel-counting strategy by tracing along the curve with

the cursor. Specifically, if the cursor is located at the point (.3,.4), then it is 4 pixels

above the z-axis. Thus, the function values are related to the heights of the various

columns of pixels. We exploit this in what follows.

We can think of our area approximation in terms of rectangles sitting on the

z-axis and fitted-in under the graph, rather than in terms of pixels. Notice that in

the HP-28S graph, at x = .1, the graph is 2 pixels high. The display then shows a

rectangle of height .2 and width .1. Next to this, we see a rectangle of height .3 and

width .1, and so on. Thus, Figure 5.3 is essentially Figure 5.2 with the rectangles

shaded in.
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FIGURE 5.3

Our estimate of the area, then, is the sum of the areas of the rectangles:

(24+3+.44+5+.54+.5+.44.34+.2)(.1)

where we have factored out the common width of .1 (with corresponding results on

the HP-48SX). Notice that we can rewrite this estimate as

(fitfotfa+fat+fs+ fo+ fr+ fs+ fo)(.1)



188 Integration

where the notation used here suggests the relationship between the function values

and the heights of the rectangles.

You might wonder what would happen if we took more and more rectangles of

increasingly small width (i.e., smaller pixels). Since this means a higher resolution

picture, we should obtain a better approximation of the area. Indeed, by generalizing

the preceding process, we get a definition which is very useful for computing areas.

We start by dividing the interval [a,b] into n subintervals of equal length Ax =

(b —a)/n. (This is called a regular partition of the interval.) For each subinterval

[xi—1,2:], 1 = 1,2,...,n, we choose any point ¢; in [z;—1,x;] (see Figure 5.4).

a=xp x| X7 X3 Xp=b

FIGURE 5.4

Definition The Riemann sum R, (f) of a function f(x) corresponding to the above

partition and the evaluation points ¢y, co, ..., ¢, is

Rn(f) = [f(c1) + flc2) + fles) + ... + f(en)]Az

Note that the value of a Riemann sum depends on the function, the choice of n, and

the choice of the evaluation points.

Example 1. Computing Riemann Sums

Compute the Riemann sums with n = 4 and n = 8 for f(x) = z2 on the

interval [1, 3], where for each i = 1,2, ...,n, ¢; is chosen to be the midpoint of the

ith subinterval, [z;_1, z;].

1
For n = 4, we find that Az = 3 and the subintervals that make up the partition

are [1, g], [g—, 2], [2, g] and B—, 3}. The midpoints of the subintervals are then

5 7 11
2= pBs=7g and ¢4 = T Thus, we get

“a= 1’ 4

N
=

Ry(f) = [f(5/4) + F(7/4) + £(9/4) + F(11/4)]

1= [1.5625 + 3.0625 + 5.0625 + 7.5625] 5

= 8.625
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Note that you can use the Solver to ease this calculation, as follows. First, store the

function (enter ’ X A 2’ ) and then enter the Solver (press [SOLVR] ). Next,

compute 5/4 (press 5 4 /), press the soft key and then to get

f(5/4) = 1.5625. Similarly, compute the values f(7/4) = 3.0625, f(9/4) = 5.0625

and f(11/4) = 7.5625. Then add them up (press + three times) and, finally, divide

by 2 (press 2 / ).

For n = 8, you should verify that the Riemann sum is

Rs(f) = [£(9/8) + f(11/8) + f(13/8) + ... + f(23/8)]% — 8.65625

In Figures 5.5 and 5.6, we see the rectangles corresponding to the Riemann

sums R4 and Rg, respectively. Based on these figures, we would expect Rg to be the

better approximation of the actual area under the curve. (Why is that?) In fact,

you should convince yourself that the larger n is, the better the approximation R,

should be. We will use the following program to investigate this conjecture.

 

 

 

          

10 — 10 +

94 94

81 / 8+

71+ 74

61 // 61

5+ / 54

41+ 41+

314 / 34
L

21 // 2+

1+ -+
0 / 1 (1) |

T 1 1 T 1 1 T 1 1
0 05 1 1.5 2 25 3 35 0 05 1 1.5 2 25 3 3.5

FIGURE 5.5 FIGURE 5.6

The program RIEM computes Ry (F') for an integer N, an interval [A, B] and

a user-defined function F'. The parameter R, 0 < R < 1, lets us vary the evaluation

points from the left endpoint (R = 0) to the right endpoint (R = 1), to anything

in between (0 < R < 1). In Example 1 above, we used midpoint evaluations, which

corresponds to the choice R = .5.

< ’(B-A)/N’ 'D’ 01N I
'A+(I-1+R)*D’ F + D * >
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Program Step Explanation
 

<’(B-A)/N’ D’

0 [SPACE]

1 N I

'A+(I-14R)*D’ F +

D * >

ENTER 'RIEM’ STO  

Compute Az and store

the value in the variable D.

Put 0 on the stack to initialize

the value of the sum.

Start a loop.

Add F(c;) to the sum.

End the loop.

Multiply the sum by D and end the program.

Store the program under the name

RIEM in the current directory.
 

To use the program, you must first store the values of the left and right end-

points of the interval [a,b], in the variables A and B, respectively, the number of

subintervals, n, in the variable N and a value for the parameter R, all in the current

directory. You must also enter a program for the function F.

Example 2. Computing Riemann Sums with RIEM

Compute Rs(f), Ra5(f), Rioo(f) and Rsoo(f) for f(x) = 2 on the interval [0, 1]

using left-hand (R = 0), midpoint (R = .5), and right-hand (R = 1) evaluations.

To run RIEM, we first need to initialize the variables A, B, N, R and F. Here, we

have

<= XX A

I ’ [ST0]
* [sTO]
' [ST

T
* > [ENTER] ’ F ’ [STO]

n o

)

n o

T
z

3
>

% o

) I

92
!

o

0

1
g’

0

2

Now, press the soft key |RIEM| . Then change to R = .5 (press .5 'R’ )

and press |RIEM| again. You should construct the following table of Riemann sums:
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N R=0 R=.5 R=1

8 2734375 33203125 3984375

25 3136 3332 3936

100 .32835 333325 33835

500 332334 333333 334334     
 

There are several observations that we can make from these results. First,

the sums for R = .5 are in between the sums for R = 0 and R = 1. Since y =

5132 is an increasing function on [0,1], we can, in fact, conclude that the left-hand

evaluations (R = 0) give the smallest function values and, hence, also the smallest

Riemann sums. These sums are called lower sums . Further, the right-hand (R = 1)

evaluations for an increasing function f give the largest Riemann sums. These

sums are called upper sums . Finally, for any other choice of evaluation points, the

Riemann sum for a given n will fall in between the corresponding lower and upper

sums, in the case of an increasing function. Unfortunately, for many functions

the lower and upper sums are not of practical help. The maximum and minimum

values of the function on each subinterval are not necessarily at the endpoints of the

subinterval and are often quite hard to find.

In the table of numbers given above, all three columns appear to be approaching

1/3, as N gets larger. It is possible to show by hand (you can find the details in

most calculus books) that both the lower and upper sums approach 1/3. Then, by

the Pinching Theorem, all Riemann sums approach 1/3 as n — oco. The following

definition should now be meaningful. n

Definition The definite integral of the function f(z) over the interval [a, b], which

b
we denote by / f(x) dz, is defined by

a

b
/ f(@)dz = lim R, (f)
a n—oo

if the limit exists and is the same for every choice of the evaluation points.

This definition may seem to be an abstract mathematical notion, but recall

that it was motivated by the more concrete question of how to compute areas.
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1
We started this section by estimating what we will now call /0 (2z — 2x?) dz,

i.e., the area between the parabola and the z-axis seen in Figure 5.1. You might

wonder whether an integral always gives the area of some region. The next example

shows that the answer is no . While we originally had in mind computing the area

under the graph of a function f for which f(x) > 0, the integral of a function will

make sense as long as the defining limit exists. In general, however, the integral can

be thought of as representing something called signed area. We explore this in the

next two examples.

Example 3. Integrals on the HP-28S/48SX and Signed Area

1
Estimate the value of the definite integral /0 (x — 1)dx and compare your

estimate to the area of the triangle bounded by the lines x = 0, y = £ — 1, and the

z-axis (see Figure 5.7).

 

e
FIGURE 5.7

 
Here, we will estimate the value of the integral using the built-in routines of the HP-

285/48SX. The syntax is somewhat different on the two machines. On the HP-28S,

enter

'X-1" [ENTER] { X 01 } [ENTER] .001 [ENTER] [
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Keystroke Explanation

’X—1" |ENTER Place the function on the stack.

{X 01} [ENTER List the variable and the limits
of integration, A and B.

.001 |ENTER Enter the desired accuracy level.

f Return estimates of the value of the

integral and the error to the stack.   
 

On the HP-48SX, enter

’fO’]-’X—]-7X

 

Keystroke Explanation
 

il Indicate that an integral is to
be computed.

0,1,X-1,X |ENTER Enter the values of the limits of

integration A and B, the function F

and the variable of integration.

Return an estimate of the value
of the integral to the stack.   
 

The HP-28S will display two numbers, with the estimate of the value of the

integral on line 2 of the stack. (On line 1, you will find an estimate of the absolute

value of the maximum error in the approximation.) The estimate of the value of the

integral is the only number displayed by the HP-48SX. (An estimate of the absolute

value of the maximum error is stored under the variable name IERR in the current

directory.) Here, we get an estimate of —.5. Notice that the area of the triangle in

Figure 5.7 is +.5. The absolute value of the integral is correct. Here, the minus sign

indicates that the area lies below the xz-axis. This is an example of what we mean

by signed area. »

NOTE: The HP-48SX also has a special command. To use this for Example

3, start by graphing y = z — 1. While the graph is still displayed, and with the
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cursor at x = 0, press X (the multiplication key), and move the cursor to z = 1.

Then press . You need to be careful using this command, especially if

you have zoomed in or out or if A or B is irrational. In these cases, the cursor may

not be located eractly at x = A or x = B and, for this reason, the approximation

may be slightly worse than you expect. Also note that if you only need, say, 3 digits

of accuracy, then you can speed up the calculation by entering 3 ([FIX]| is

located in the Modes menu). This fixes the number of decimal places at 3. If you

do this, don’t forget to reset the number of decimal places when you are through

(press , again in the Modes menu).

Example 4. Sums of Signed Areas

1 2 2
Estimate /0 (z? — ) dx, /1 (z? — z) dx and /0 (z? — z) dr and interpret the

integrals as signed areas. To obtain approximations with an error tolerance of .001,

the keystrokes on the HP-28S are

XA2 — X' [ENTER] { X 0 1} [ENTER] .001 [ENTER] J
XA2 - X' [ENTER] { X 1 2} [ENTER] 001 [ENTER] J
XA2 - X' [ENTER] { X 0 2} [ENTER] 001 [ENTER] |

The keystrokes on the HP-48SX are:

’f OvlaX/\2 - X’X

[ 1,2XA2 — XX
[ 0,2,XA2 - XX

We obtain the estimates:

1
/0 (z? — z)dz ~ —.167

2
/1 (x? — z)dz ~ .833

2
/0 (z? — z) dz ~ .667

You might suspect that the exact values of the integrals are —1/6, 5/6 and

2/3, respectively. (It can be shown that these are in fact, correct. However, you

should be careful not to jump to conclusions, as many integrals do not have rational

values.) A quick sketch of the graph (see Figure 5.8) shows that (z2 — z) < 0 on
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(0,1) so that the area from z = 0 to z = 1 is 1/6. Since (2 — z) > 0 on (1,2), the

area from z = 1 to £ = 2 is 5/6. Now, the total area from z = 0 to z = 2 in Figure

5.8is 1/6 + 5/6 = 1. However,

2

/0 (22 — 5)dz = —1/6 +5/6 = 2/3

The integral adds up the signed areas, so that the proper interpretation of an integral

requires a knowledge of where the function is positive and where it is negative. =

 

FIGURE 5.8

Note that Example 4 illustrates a general property of integrals, namely that for

/abf(:n)dm=/acf(a:)dx+/cbf(x)da:

We will address one last fundamental question in this section. When does a

any c in [a, b,

definite integral exist (i.e., when does the limit defining an integral exist)? This

turns out to be an important issue, because although a limited number of integrals

can be computed exactly (we will see how to do this in the next section) most

integrals cannot be computed exactly. We are usually forced to approximate the

values of integrals using Riemann sums or some other computational method such

as the routines built into the HP-28S/48SX (or those discussed in section 5.2). The

problem with this approach is that, unless we have some way of knowing that a given

integral exists, we will not know if our numerical approximation has any meaning

(since numerical methods for almost any integral will produce some number, whether

or not the integral actually exists). The question, then, is whether or not the

“approximation” approximates anything meaningful. The following result gives a

partial answer to this question.

b
Theorem 5.1 If f is continuous on [a, b] then / f(z) dz exists.

a
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Notice that the theorem says nothing about what the possible effect of dis-

continuities might be. The bottom line is: for continuous functions, there are no

problems with the existence of the integral. For discontinuous functions, we need

to proceed with caution.

Example 5. Integrals of Discontinuous Functions

1 11 1
Investigate whether or not / —dz and / —= dz exist. Since both integrands

02 0 vz
are discontinuous at x = 0, we do not know in advance whether or not either inte-

gral exists. Try evaluating them on the HP-28S/48SX with a 30-second time limit.

That is, after 30 seconds press to halt execution of the calculator’s integration

routine. (The HP28S/48SX routine will continue to refine its estimate until it is

satisfied that it has found an adequate estimate of the value of the integral.) Nei-

ther computation is finished after 30 seconds. This slowness can mean either that

the integral does not exist or that the integral is difficult to compute because of the

discontinuity. The program RIEM can help us distinguish between the two cases.

We get the following table of Riemann sums:

 

N |[fl@)=1/z |flz)=1/Vz
16 [4.736261  |1.848856
64  |6.122403  |1.924392
256  |7.508688  |1.962194
1024 |8.894981  |1.981096

 

    
 

1
This gives us evidence that / — dx may not exist (since the sums do not seem

0 =

1 1
to be approaching a limit) and that / T dx does exist (and equals approximately

0 Vz

2). Both of these conjectures, it can be shown, are correct. m

We close with a question that is probably as much philosophical as it is math-

1 1
ematical. Given that / —dr = 2, is it reasonable to say that 2 is the area

0 VT
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1
bounded by the graphsof t =0, y =0 and y = 7? (Draw the picture for yourself

x

and think about this some. HINT: Can you draw the entire graph?)

Exercises 5.1

In exercises 1-2, count pixels to estimate the integrals.

1 2

1. / z? dx 2. / sin z dx
0 0

In exercises 3-6, use RIEM to compute lower sums and upper sums to show that

they approach a common limit.

1 1
3./ z?dz 4./ 3 dx

0 0
1 2

5. /0 (1-2%)dzx 6. ) Vzdr

In exercises 7-10, the values of the integrals are integers. Use RIEM to discover

these values.
2 2

7. /() (4z° — Tz) dx 8. /O (22 — 32%) dx

2 8
9./1 3(x — 1)*dx 10./O 3Vr +1ldx

In exercises 11-18, estimate the areas of the indicated regions. Recall that the

integral computes signed areas.

11. The region bounded by y = z* — 1 and y = 0.

12. The region bounded by y =2* -1,y =0,z =1 and z = 2.

13. The region bounded by y = 22, y = 0 and = = 2.

14. The region bounded by y = 22 — 2z and y = 0.

15. The region bounded by y = v/z, y =0 and = = 3.

16. The region bounded by y =22, y =0,z = —1 and = = 2.

17. The region bounded by y =sinx, y =0, = 0 and = = 27.

18. The region bounded by y =23,y =0,z = —1 and z = 1.
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In exercises 19-22, determine whether or not the integral exists.

  

1 1
19. / 1/2% dx 20. / =23 dx

0 0
4 2 1

21. / ! dz 22. / dz
2 z—1 1 z—1

2 2 . 2z, z<1
23. Argue that / f(x)dr = / g(z) dzx in the case where f(z) = 0

0 0 3z, z>1

2¢, <1
502 o1 HINT: what is the difference between f and g7
x<, x>

and g(z) = {

24. Estimate the integral in exercise 23.

r—1, x<12
25. Estimat dx wh = .31mae/0 f(x) dz where f(x) {4—:1;2, r>1

1
26. Investigate whether or not / sin(1/z) dx exists.

0

27. The Mean Value Theorem states that if f is differentiable on [a, b] then there

exists a number ¢ in (a, b) such that f'(c)[b—a] = f(b) — f(a). Determine c for

f(xz) = 23/3 on the intervals [0,1], [1,2] and [2,3]. Using these c’s as evaluation

3
points, show that R3(f) equals the exact integral / r?dr = 9. With the

0
correct choice of ¢, then, it is possible for R, (f) to exactly equal the integral

for any n.

3
28. For the integral / z? dz = 9, show that there is a value of R for which program

0
RIEM gives the exact integral. Carefully state the “mean value theorem” that

this result illustrates. How does R compare to the ¢’s found in exercise 277

29. The following will make RIEM easier for you to use. Store the program < {

ABNF} > as RMENU and you may enter values for A, B, N

and F as in the Solver menu.

EXPLORATORY EXERCISE

Introduction

We have made several references in this section to a method of computing integrals

exactly. In this exercise, you will discover this method. The key is to look for a
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Cc

simple rule, so we will assume that / " dr = ac’ for some constants a and b
0

which we will try to determine.

Problems

Compute /
0

c 1

/0 zdr =ac® for c =1 and ¢ = 2. That is, estimate / x dzr and set the estimate
0

1 2

xdr and / x dr and determine a and b to match the conjecture
0

2
equal to a(1)®. Then, estimate / rdr and set the estimate equal to a(2)®. Use

0
3 4

these two equations to solve for a and b. Now try / x dx and / x dz and see if the
0 0

formula works for the a and b just found. Repeat the above procedure (that is, find
c c

new values for a and b) with / z? dr and / z3 dr. Now, look at your solutions.
0 0

c
In the general formula / f(x) dx = g(c) what is the relationship between f and g?

0
2

Test your conjecture on /

/2
(2 — 2) dz and / cosz dx.

0 0

Further Study

You have several pieces of what is known as the Fundamental Theorem of Calculus.

b
It only remains to extend your conjecture from this exercise to / f(x)dx for a # 0

a
and to prove the result (the standard proof uses the ideas of exercise 27).

5.2 Computation of Integrals

In section 5.1, we introduced the notion of the definite integral, defining it as

a limit of Riemann sums. While this definition is theoretically quite important and

provides us with a very straightforward definition of area, we must point out that

integrals are in practice only rarely computed (or approximated) using Riemann

sums. In this section, we look at more sophisticated techniques for approximating

integrals, as well as a technique which will compute a limited number of integrals

exactly.
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THE FUNDAMENTAL THEOREM OF CALCULUS

The relationship between the integral and the derivative is a remarkable fact

which brings unity to the seemingly disjoint studies of differential and integral cal-

culus. You were asked to discover this relationship in an exploratory exercise in

the previous section, and you can find a careful proof of the result in your regular

calculus book. Its great significance is underscored by its name.

Theorem 5.2 (The Fundamental Theorem of Calculus) Suppose that f is

continuous on the interval [a,b]. Let F(z) be any function satisfying F'(z) = f(z)

for all = in [a,b]. (F is then called an antiderivative of f.) Then

b

| #@dz=F) - F@
a

b
To evaluate / f(x) dz, then, we need only find an antiderivative of f (any one at

a
all will do) and plug in the limits of integration (b and a).

This is a vitally important result because it gives us eract answers, and in

some cases it is very easy to implement. Unfortunately, in many other cases it

is quite difficult to find an antiderivative. Worse yet, many functions do not have

antiderivatives which can be written in terms of the elementary functions with which

we are all familiar. The HP-28S5/48SX will provide at least some minimal help in

this regard.

Example 1. Exact Integrals on the HP-28S/48SX

1
Compute /O (2 — 22%) dz using the Fundamental Theorem. We can, of course,

easily do this without the help of the calculator. Notice that an antiderivative of

f(z) =2z — 2z% is F(z) = 2 — 223 /3, so that the value of the integralis

F(1)— F(0) = (1 —2/3) — (0—0) = 1/3

On the HP-28S,first find the antiderivative and then plug in the limits of integration:

enter
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2K-2FXNY X’ 2 J

 

[SoLv] [STEQ] [SOLVR]1 0 -
 

 

 

  

Keystrokes Explanation

T2 X —2*X A2° Enter the function.

'X0 Enter the variable.

2 Enter the degree of the polynomial.

i Find an antiderivative.

|SOLV| [STEQ| [SOLVR| Store the antiderivative F in the Solver

1 0 — Compute F(1) — F(0).  
 

Note that the first three X’s in this sequence refer to the letter X on the left

keyboard, and the last 2 X’s refer to the soft key in the Solver menu. The routine

is more straightforward on the HP-48SX: enter

 

’[0,1,2%¥X—2*XA2,X [ENTER| [EVAL| [EVAL|
 

 

Keystrokes Explanation

’ [0,1,2¥X—2*XA2,X [ENTER Set up the integral.
 

   
EVAL Try to find an antiderivative.

EVAL Plug in the endpoints.
 

Although the HP-48SX can find antiderivatives for a much larger set of functions

than the HP-28S (which can only integrate polynomials exactly), neither machine

can perform important techniques such as integration by substitution or integration

by parts. Owning an HP-28S/48SX is thus no substitute for learning the techniques

of integration. (These are discussed in your regular calculus text.)
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TRAPEZOID RULE

Due to our inability to find antiderivatives for many functions [try, for example,

to find an antiderivative for sin(z?), but don’t try for too long] we need to supplement

the Fundamental Theorem with effective approximation methods. We have already

seen one such method, commonly called the midpoint rule, although we have not used

that name before. The midpoint rule is a Riemann sum with evaluation points equal

to the midpoints of the various subintervals (i.e., program RIEM with R = .5). As

was the case for the rootfinding methods discussed in Chapter 4, it is important for

us to have several methods available, so that we can balance accuracy and simplicity

for a wide range of problems.

The trapezoid rule, which we describe below, is in many ways similar to the

midpoint rule. Along with having a nice geometric interpretation, the trapezoid

rule is significant because of its extension to a more powerful rule called Simpson’s

rule.

We first note that, in practice, we may not know the function which we’re

trying to integrate. That’s right: we often will only know some values of a function

at a collection of points. An algebraic representation of the function might not be

available. For example, in experiments in the physical and biological sciences,it is

usually the case that the only information available about a function comes from

measurements made at a finite number of points.

Example 2. Estimating Area from Data with Trapezoids

Use the function values given in the following table to estimate the area bounded

by the graphs of z = 0, £ = 1, and the (unknown) function which generated the

data.

. 0 025 05 075 1.0
flz): 1 13 18 16 16

Conceptually, we have two tasks: first to conjecture a reasonable way to connect

the given points, and then to estimate the area. The simplest way to connect the

dots is with straight-line segments (at least, this is the way that the six-year-old

daughter of one of the authors does it; see Figure 5.9). Notice that the region thus

constructed is composed of 4 trapezoids. [Recall that the area of a trapezoid with

sides h; and he and base b is given by b x (h; + hg)/2. This is the sum of the area
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of a rectangle plus the area of a triangle. (Why?) | The total area is then

 

2T|oI039 LID) |9+T|o79+ 00

— [£(0) + 2£(.25) + 2f(.5) + 2£(.75) + f(1)]'275 1425

2 (.5,1.8) 516 "

1.5 (.25, 1.3)/

1

S

0! } | | |    
o 2 4 6 8 1

FIGURE 5.9

The trapezoid rule is a generalization of our work in Example 2. We first divide

the interval [a, b] into n equal pieces with endpointsa = zo < 7 < 2 < ... < T, = b.

b
The (n + 1)-point trapezoid rule approximation of / f(x) dz is then:

a

To(f) = [f(z0) + 2f(z1) + 2f(22) + ... + 2f(1) + Flzn)]%

In the exercises, you are asked to show that T,,(f) = (A, + Bn)/2, where A,

is the Riemann sum from program RIEM with R = 0 and B,, is the Riemann sum

with R = 1. This suggests the following simple (although not particularly efficient)

program for implementing the trapezoid rule.

< 0’R’[STO] [RIEM] 1’ R’ [STO] [RIEM] +2 />
 

Program Step Explanation

< 0’R’ RIEM Compute A,,.

1°'R’ Compute B,,.

 

+2/> Compute (A, + By)/2.

ENTER "TRAP’ STO Store the program in the current

directory under the name TRAP.   
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Example 3. Comparison of the Midpoint and Trapezoid Rules

1
For / 3z2 dz, compare the midpoint and trapezoid rules with n = 4, n = 8

0
and n = 16 to the exact value of the integral. For the midpoint rule, we use RIEM

with R = .5 and we use the new program TRAP for the trapezoid rule. Both

programs require A, B, N and F to be initialized. Here, we have

0’ A’[ST0] 1’ B’ [STO] 4 N’ [STO]
«—X’'3*X A2’ [ENTER] ’ F’ [STO]

We get the following table of values.

 

N Midpoint Trapezoid

984375 1.03125

99609375 |1.0078125

16 |.99902343 |1.001953125

 

o
0

    
 

Of course, from the Fundamental Theorem,

1
_/0 3z?dr = z°|j =1

exactly. The errors for the two rules here are fairly close, although the midpoint

rule is slightly more accurate. This accuracy comparison is typical. The geometry

of the two rules and the fact that y = 3z? is concave up on [0,1] should explain why

the midpoint rule gives values that are too low and the trapezoid rule gives ones

that are too high. (Draw a picture and think about this some.) .

EXTRAPOLATION

Mathematicians always try to recognize, explain and take advantage of patterns.

The approximations in Example 3 will reveal a pattern which we can take advantage

of to obtain a better approximation.

Let’s look more closely at the trapezoid rule approximations. T,,(f) is getting

smaller as n gets larger. From this pattern, we would expect the integral to be
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smaller than 1.001953125. In fact, we can be precise about how much smaller we

expect the answer to be. Note that T, — Tg = .0234375 and Tg — 1 = .0078125.

(Recall that the exact value of the integral is 1.) Also, Tg — T1¢ = .005859375 and

Ti6 — 1 =.001953125. Now for a surprise:

Ty—Ts T3 —Tie
Te—1 Tig—1 =30
 

Both ratios are eractly equal to 3! In other words, if we represent the exact integral

by I, we get

T4—T8=3*(T8—I) and Tg—-T16=3*(T16—I)

Solving this for I, we get 3] = 3Tg + (Ts — T4) and 31 = 3T16 + (T16 — Tg). Finally,

this leaves us with

I=Tg+(T8—T4)/3 and I=T16+(T16—T8)/3

It turns out that the following result is true, in general: Ty is about 3/4 of the

way from T} to the exact integral I, and T} is about 3/4 of the way from Ty to the

exact integral. That is,

I~Tg+ (Ts —T4)/3 and I =T+ (T16— Tg)/3

That’s a pattern we can take advantage of! We make the following definition.

Definition The Richardson ertrapolation of the trapezoid rule is Fo, = Ts, +

(T, — T,)/3.

For Example 3, Fg = Tg + (Ts — T4)/3 = 1 and E6 = T16 + (Th6 — 1s)/3 =

1. Thus, in this example we have taken two trapezoid approximations and the

Richardson extrapolation has led us directly to the exact value of the integral! In

general, the extrapolation will not give the exact value of an integral, but it will

greatly increase the accuracy of our approximation (usually much more so than by

simply increasing n alone).
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SIMPSON’S RULE

It turns out that the extrapolation of the trapezoid rule has a very simple form.

Returning to Example 3, some messy but basic algebra gives us

fo)  fC125) f(25)  ,f(375) f(5)
o1 TVTP AT TRy

f£(.625) 4+ 2f(.75) +4f(.875) 4 f(1)

Eg =  

43"
T 24 24 24 24
 

Notice the common factor of 1/24 and the pattern that the coefficients follow: 1,

4, 2, 4, 2, 4, 2, 4, 1. This is an example of Simpson’s rule, which has the general

formula

b—a
Sn(f) = [f(2o0) + 4f(z1) +2f(z2) +4f(23) + ... + 4f(zn-1) + f(2n)] 

where we have used the same notation as for the trapezoid rule. You should note

here that the value of n must be even. (Why is that?)

Since Simpson’s rule is an extrapolation of the trapezoid rule, it is, in general,

much more accurate than either the trapezoid rule or the midpoint rule. In addition,

Simpson’s rule has a nice geometric interpretation. Recall that in Example 2 we

connected 2 points at a time with line segments to form trapezoids. If we, instead,

connect 3 points at a time with parabolas, we get Simpson’s rule (although the

algebra involved in showing this is quite messy). Since parabolas would give a

smoother, perhaps more reasonable looking graph, we have a geometric explanation

of the increased accuracy of Simpson’s rule.

The following program is a simple (although like the program TRAP, not espe-

cially efficient) program for computing Simpson’s rule approximations. It uses the

program TRAP and requires you to initialize the same variables as TRAP does.

< [TRAP] [DUP] 'N/2’ [EVAL] "N’ [STO] [TRAP| — 3 / + "2*N’ [EVAL] N’ [STO] >
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Program Step Explanation

< |TRAP Compute T;, and put a

copy on the stack.

'N/2’ N’ Compute T,/5 .

-3/+ Compute E,.

2¥N’ ‘N’ > Restore the value of N.

ENTER ’SIMP’ STO Store the program under the name

SIMP in the current directory.   
 

Example 4. Simpson’s Rule Approximations

1
Use Simpson’s rule to estimate / v z2 + 1dz. We will not reference an exact

0
value, but rather try to decide what seems reasonable. Using SIMP, we generate

the following approximations.

 

N Simpson’s Rule

4 2.95795560136
 

8 2.95788349721

16 2.95788557022   
 

Since we expect Simpson’s rule to be very accurate, (while it isn’t always accu-

rate, it often is) the agreement ofthe first 6 digits of Sg and S;¢ lead us to conjecture

that 2.95788 is a good approximation. n

With Simpson’s rule, you have a generally very accurate numerical integration

method. More importantly, the derivation of Simpson’s rule will have acquainted

you with some of the general concepts behind the numerical methods built into most

computer integration software.



208 Integration

Exercises 5.2

In exercises 1-6 use the Fundamental Theorem as in Example 1 to compute the

integral (the HP-28S cannot compute the antiderivative in exercises 5-6).

1 2
1. / 5z° dx 2. / 2z° dx

—1 0
3 5

3. /1 (z* — 22° + 3z — 2) dx 4. /2 (3z% — 22% 4+ 3) dx

2 1
5. /0 cos 3z dx 6. /0 (2z 4+ 1)°dx

In exercises 7-10, use the trapezoid rule and Simpson’s rule as in Example 2 to

1

approximate /O f(x)dz.

7. x: 025 05 07 1

24 30 33 36

0.25 0.5 0.75 1

21 27 34 42

0.125 0.25 0.375 0.50 0.625 0.75 0.875 1

13 15 16 16 20 24 29 35

0.125 0.25 0.375 0.50 0.625 0.75 0.875 1

1.2 04 -5 0 04 12 25 40

10. T:

- ~ 8 V
"
.
-

N
O

B
O

W
O

N
O

In exercises 11-14, compare the midpoint, trapezoid and Simpson’s rule approxima-

tions for N=4, N=8 and N=16 to the exact value.

2 3
11. /0 (3z%2 —1)dz 12. /0 (3z® — 2z + 1) dx

2 1
13. /1 (x —1)*dz 14. /O 4/(z? +1)dzx (=m)

In exercises 15-20, estimate the following integrals (4 digits accuracy):

1 2
15. /0 zvVz3 + ldx 16. /0 Va3 +1ldx

2 2
17. /0 1/vz?+ ldx 18./0 1/vVz3+ ldx

 
2 2 .

2 sin T
19. —dx 20. / dx

/0 V4 — z? 0 <
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21. Show that T,, = (A,+B,)/2 for n = 4 and n = 8,as described in the discussion

before program TRAP.

2
22. Use SIMP to try to estimate /0 1/coszdx. Graph 1/cosz = secz to help

your interpretation of the results.

In exercises 23-26, determine which rules (midpoint, trapezoid, Simpson’s) give the

exact integral for n = 4. Explain your results geometrically.

 

1 2
23. / 4z dx 24. / z? dzx

0 0
2 1

25. / 473 dzx 26. / 5z dzx
0 0

27. As you might expect, Simpson’s rule can be extrapolated in a similar way to

1 _
our extrapolation of the trapezoid rule. Use / 5z* dz and compute S; 518

s —

-5
and %——119. Derive a formula for E5,, in terms of S;,, and S,,.

16 —
28. Use your extrapolation formula from exercise 27 to improve your estimates

from exercise 15 to 8 digits accuracy.

EXPLORATORY EXERCISE

Introduction

We have seen how simple extrapolation formulas can greatly improve the accuracy

T2n - Tn

3
In exercise 27, you were asked to derive an extrapolation of Simpson’s rule F,,, =

SZn - S . : . : :
Son + ———l—g—-fi . We will continue to extrapolate our extrapolations in this exercise.

of our approximations. Specifically, we derived Simpson’s rule Ss,, = T5,, +

Problems

From the trapezoid calculations Ty, Ty, Ti¢, 132 and Tg4s we want to extrapolate as

far as possible. We have two levels of extrapolation so far, as illustrated below.

T4 Tg T16 T32 T64

Ss S16 Ss32 Se4

Ei6 E3, Ee4
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We want to extrapolate the E’s to get two improved approximations (call them F3;

and Fg4) and then extrapolate to a “best” approximation (call it G¢4). We will use

2
/ 231 dz = 134217728 to guide our thinking. First, fill in the above chart (compute
0

the T’s, S’s and E’s). We will guess the extrapolation formula for the F’s. The

formulas for the first two extrapolations differ only in a change of constants from 3

to 15. Since both 3 and 15 are 1 less than a power of 2 (3 =22 —1 and 15 =2%-1)

Es, — E
we look for the best k for the formula F5,, = E5, + . Which works best,

2k — 1

k=4, k =5 or k=67 Determine k and compute F35 and Fg4. Then find the best

F2n - Fn
m for the formula Ga,, = F5, +m 71

Further Study

We relied on numerical evidence to find a sequence of extrapolation formulas. A

good book on numerical analysis (see Numerical Analysis , 2nd edition, by Johnson

and Riess) will show the theoretical explanation for the accuracy of these methods.

The method derived above is typically called Romberg integration.

5.3 Applications of Integration

In the course of developing the notion of the definite integral, we have discov-

ered three interpretations of integration. Our original motivation was the need for

computing areas. We then defined the definite integral as a limit of Riemann sums.

Finally, the Fundamental Theorem of Calculus related the definite integral to an-

tiderivatives. Each of these interpretations is important in applications. We give a

sampling of applications below.

We first look at applications based on the area interpretation of the integral.

Example 1. Area between Curves

Find the area between the graphs of y = cosz and y = z? — 1. Figure 5.10

shows the HP-28S graph of the region we are interested in.

In this region, cosz > z% — 1 so that

b
Area = / [cosz — (2% — 1)) dz

a
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FIGURE 5.10

where a and b are the z-values of the points of intersection of the curves. The points

of intersection are not easily found, but can be estimated by using the Solver on the

HP-28S and the HP-48SX (or the command on the HP-48SX), or by

using the methods developed in Chapter 4. You should verify that, approximately,

a = —1.1765 and b = 1.1765. Since F(x) = sinz — 23/3 + z is an antiderivative of

the integrand, we have by the Fundamental Theorem that the area is

sin(b) — b%/3 + b —sin(a) + a®/3 — a ~ 3.114

To evaluate the above quantity, we can store the expression ’SIN(X)—XA3/3+X’

with then use the Solver to plug in b and a, and subtract. .

You may already be familiar with the notion of a normal probability distribu-

tion. For instance, standardized test scores are often normally distributed. That is,

if you draw a graph of the frequency of various scores against the scores, the graph

will look roughly bell-shaped. For ease of computation, statisticians often refer to

the standard normal distribution. (This is the normal distribution where the mean

or numerical average is 0 and where the standard deviation is 1.) This distribution

is described by the graph of

1 222
y= —\/3;7;6 /

(see Figure 5.11 for a graph of this function). The probability that a given score

falls between two values a and b is then the area under the graph between z = a

and £ = b. We discover an important property of this distribution in Example 2.

Example 2. An Application to Probability Theory

Given that the scores from a certain test are normally distributed, find the

probability that a randomly selected score falls within 1 standard deviation of the
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FIGURE 5.11

mean. The probability is the area underneath the above bell-shaped curve between

r=-—1and x =1,

—€ i

-1 V27

Unfortunately, it turns out that there is no elementary antiderivative of e~/2,

(Try to find one, but don’t spend much time on it.) Therefore, we estimate the

probability using Simpson’s rule. We find that Sg = .6827 and S= .6827, and

hence conjecture that the probability is about 68.27% (i.e., roughly 68.27% of all

scores will fall within 1 standard deviation of the mean). .

You have experienced many situations where a force applied to an object

changes the velocity of the object. For example, applying the brakes will decrease

the velocity of a car. Two factors which determine how much the car slows down

are the size of the force (how far you depress the brake pedal) and the length of

time the force is applied. Physicists use the quantity called impulse to measure this

effect. For a constant force F' applied over a length of time ¢, the impulse is simply

Ft. Newton’s 2nd law of motion tells us that F't = mAv where m is the mass of

the object and Aw is the change in velocity of the object. However, forces are rarely

constant, so the general form of impulse (which we denote by J) is needed:

J— /bm) u
a

Here, a variable force F'(t) is applied from time ¢t = a to ¢t = b . The general

impulse-momentum equation is then J = mAwv.
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Example 3. The Impulse of a Baseball

Suppose that a baseball, traveling at 130 ft/sec (about 90 mph), collides with

a bat. A sensor on the ball records the force of the bat on the ball every .0001

seconds. The data (taken from The Physics of Baseball by R.K. Adair) is given

below. What is the speed of the ball after the collision? If we ignore the energy lost

due to friction (this aspect is discussed in the exercises), we may use the impulse-

momentum equation: J = mAwv where m is the mass of the ball (we’ll use .01 slugs;

regardless of what this name may remind you of, slugs is the correct unit of mass —

as opposed to weight — in the English system), Av is the change of velocity of the

ball in feet/sec, and J is the impulse which equals the area under the graph of the

force versus time. Then, Av = 100J and we can use Simpson’s rule on the data to

estimate the area J.

F (Ib): 0 1250 4250 7500 9000 5500 1250 O 0

t (sec): 0 .0001 .0002 .0003 .0004 .0005 .0006 .0007 .0008

We have n = 8 (i.e., there are 9 data points) and

Sg = [0+ 4(1250) + 2(4250) + 4(7500) + 2(9000)

+ 4(5500) + 2(1250) + 4(0) + O]% ~ 2.866

Our estimate of the change in velocity is 100(2.866) = 286.6 ft/sec. The ball then

exits the collision traveling in the opposite direction at approximately 286.6 —130 =

156.6 ft/sec (107 mph). .

Examples 4 and 5 use integrals to compute geometric quantities other than

area, which applies to 2-dimensional regions. For a curve in 2 dimensions, the basic

measure is length, and for 3-dimensional solids, one of the basic measures is volume.

Formulas for the length of a curve and volume of a solid are derived in your regular

calculus book. The format of these derivations is:

1. Divide the curve or solid into several pieces.

2. Approximate the measure of each piece and add the approximations.

3. Take the limit of the approximations as the number of pieces tends to infinity.

Such a limit of sums will typically be represented as an integral, as we did in the

definition of definite integral.
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Example 4. Arc Length of a Curve

2

Find the length of that portion of the parabola y = —% + % which lies above

the z-axis. The z-intercepts occur where y = 0, with £ = 0 and x = 250. This

parabola could represent the path of a thrown ball. We would normally say the

throw is 250 feet long, which is the horizontal distance covered. The actual distance

traveled by the ball is given by the length of curve formula

250 250
s= | V14 [f'(z))2dz = ) V14 (—z2/250 +1/2)2dx
 

The built-in integration routine of the HP-28S/48SX gives an estimate of about 260

feet. We should emphasize that the length of curve formula only rarely produces

an integral which can be computed exactly (by finding an antiderivative). The

HP-285/48SX can thus be invaluable in computing these integrals. m

Example 5. Volume of a Solid of Revolution

Find the volume of the solid obtained by rotating the region bounded by the

graphs of y = sinz and y = (z — 1)2 about the z-axis. As in Example 1, we first

graph the region (see Figure 5.12 for the HP-48SX graph) by graphing the equation

sinz = (z — 1)?, and then find the approximate points of intersection of the graphs.

 

-31]

FIGURE 5.12

Using the Solver, we find that the z-coordinates of the points of intersection

are approximately a = .386237 and b = 1.961569. The volume is then given by

b

Volume =/ (F(@))? — (9(2))?) da
b

= 7r/ [(sinz)? — (z — 1)*] dz
a
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where we have used the method of washers to set up the integral. We now have

several options. It is possible to find an antiderivative and evaluate the integral

exactly. (Try this yourself to get the exact value.) On the calculator, the integral can

be approximated as before, using SIMP. For a more elaborate use of your calculator,

try on the HP-28S

{ X .386237 1.961569 } .001 [m*

On the HP-48SX, enter

386237 1.961569 ' X
[ —NUM 7 *

The volume is then found to be approximately .9567. .

Examples 6 and 7 utilize the relationship between the definite integral and the

antiderivative. Since the derivative is the instantaneous rate of change of a quantity,

the integral lets us work from a knowledge of the rate of change of a quantity back

to a knowledge of the quantity itself.

Example 6. Computing Distance from Velocity

A runner moves with velocity v(t) = 36t/v/t2 + 2 ft/sec t seconds into a race.

How far does she run in the first 10 seconds? Since velocity is the derivative of

10
distance, we want /0 v(t) dt. On the HP-28S, enter

'36* T/ [/] (TA2+2) [ENTER]

{T 010 } [ENTER] .001 [ENTER] [

On the HP-48SX, enter

' 0,10,36*T/[J] (T[] 2+2),T ENTER

We then find that the runner covers approximately 312 feet, or 104 yards, in

the first 10 seconds. .
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Example 7. Computing Oil Flow

Suppose that the rate of flow of oil through a pipe is given by f(t) = t(2 +

sint)/(3+t) gallons per minute at time ¢ (minutes). Find the amount of oil passing

through the pipe in the first 15 minutes. If A(t) is the number of gallons passing

through the pipe in the first ¢ minutes, then A’(t) = f(t). Integrate both sides of

this equation from £t = 0 to ¢t = 15:

15 15

A'(t) dt = d/O war= [ po

The Fundamental Theorem applies to the left side of this equation to yield A(15) —

15 15
A(0) = ; f(t) dt. Finally, since A(0) = 0, we have A(15) = A f(t) dt. Estimat-

ing the integral on the HP-28S/48SX using the built- in routines, we get A(15) = 20

gallons. "

Exercises 5.3

In exercises 1-4, find the area between the curves.

l.Ly=z*andy=1-12 2. y=z*and y =cosz

3.y=2z2-landy=z+1 4. y =sinz and y = —z?

In exercises 5-8, find the indicated probabilities.

5. A sample of a normal random variable is within 2 standard deviations of the

mean (see Example 2).

6. Repeat exercise 5 for 3 standard deviations.

7. The lifetimes of some products are exponentially distributed. Compute the

probability that a light bulb lasts less than 20 hours if the probability is given

20 110
b —e ¥V dx.y /O ¢ x

8. The probability that an electron is between a and b meters from its nucleus

b
4

is modeled by = / r2e~27/% dr where ag is the Bohr radius, 5.29 x 10~'m.
0 Ja

Find this probability for a = .5a¢9 and b = ay.
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In exercises 9-10, repeat Example 3 for the given data (which represent impact

velocities of 89 mph and 58 mph, respectively).

9. t: 0 .0001 .0002 .0003 .0004 .0005 .0006 .0007 .0008

F' 0 1000 2100 4000 5000 5200 2500 1000 O

10. t: 0 .0001 .0002 .0003 .0004 .0005 .0006 .0007 .0008

F': 0 600 1200 2000 2500 3000 2500 1100 300

In exercises 11-12 the data represent a landowner’s measurements in feet of the

depth of a lot at 5-foot intervals. Estimate the area of the lot.

11. T 0 9 10 15 20 25 30 35 40

y: 60 60 96 92 48 48 92 96 60

12. T 0 3 10 15 20 25 30 35 40

y: 42 48 92 92 94 96 36 60 62

In exercises 13-16, estimate the length of the curve.

13. y = —%x(w — 50) on [0,50] (a 50-yard football punt).

14. y = 10 4 cosh(z/30) on [—20,20] (the length of a telephone wire).

15. y =sinx on [—7/6,7/6] (compare to a straight line).

16. y = sinz on [0, 27].

In exercises 17-20, find the volume of the solid described.

17. The region in exercise 1 rotated about the z-axis.

18. The region in exercise 2 rotated about the z-axis.

19. The region in exercise 3 rotated about y = —1.

20. The region in exercise 4 rotated about the y-axis.

In exercises 21-24, use the given speed to find the distance covered.

21. s(t) = 36t/v/t2 on [0,20] (compare to Example 6).

22. s(t) = 40t/v/t2 on [0,20] (compare to exercise 21).

23. s(t) = —32t on [0,20] (a free fall without air resistance).

24. s(t) = 130 — 130e~*/* on [0,20] (fall with air resistance).

In exercises 25-26, we examine the energy lost to friction in the collision between

a ball and striking object. During the collision the ball changes shape, first com-

pressing and then expanding. If z represents displacement in inches and f rep-
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resents force, the area under the curve y = f(x) is proportional to the energy

transferred. In each exercise, f(z) gives the force during the compression of the ball

and g(z) gives the force during the expansion of the ball. Thus, the area between

the curves y = f(z) and y = g(x) divided by the area under the curve y = f(z)

gives the percentage of energy lost due to friction. Compute the percentage. (See

The Physics of Baseball by R. K. Adair for specific examples.)

25. f(z) = 25,000z% + 10,000z and g(z) = 50,000z2.

26. f(x) = 5000z% + 3000z and g(z) = 10, 000z2 + 1000z .

b1
In exercises 27-30, compute the moment of inertia I = / z?[f(z)—g(z)] dz where

the region is bounded by y = f(z) on top and y = g(x) on bottom. The regions

below are all crude models of baseball bats, and the moment of inertia is a measure

of how hard the bat is to swing.

1

3
. - = — = -3,b=27.

1 =z
29. f(z) = 5 56,9(33) = —f(z),a =0,b=32.

30. Same as exercise 27, but remove the rectangle from y = —1/4 to y = 1/4 and

from z = 27 to x = 30.

31. If a lawn sprinkler sweeps back and forth at a constant rate, does it provide

even coverage? Assume the angle of the sprinkler from the horizontal varies

from 7/4 to 3w/4 at the constant rate df/dt = .2 rad/sec. Also assume that

the water flies 25sin(260) ft horizontally when the sprinkler is at the angle 6.

Show that 6(t) = .2t + w/4 and d— = 10cos(.4t + 7/2). Then compute and

1
interpret / do— dt,/— dt and/— dt.

0o dt )

EXPLORATORY EXERCISE

Introduction

If we have points A = (z1,¥;:) and B = (x3,y2), the lines from A to the origin and

B to the origin are perpendicular if ;x5 + y;y2 = 0, since slopes of perpendicular
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lines (in this case y; /z; and y2/x2) multiply out to —1. The most familiar example

is (1,0) and (0,1). These points lie on the z- and y-axes, respectively, which we use

to represent all other points.

Problems

This exercise extends the idea of perpendicular lines to orthogonal functions. Since

the graph of a function includes an infinite number of points, the generalization of

z1Z2 + y1y2 = 0 is an infinite sum equal to 0. Representing the infinite sum as

an integral, we define functions f and g to be orthogonal on the interval [a,b] if

b

/a f(@)g(z) dz = o.

Show that the following pairs of functions are orthogonal on [—1,1]: (a) sin(7z)

and cos(wz) (b) sin(nz) and sin(27z) (c) cos(nz) and cos(27z) (d) 1 and sin(7z).

In fact, any two functions chosen from among sin(nz), sin(27z), sin(37z), ... , 1,

cos(mzx), cos(2mz), ... are orthogonal on [—1,1]. We say that these functions form

an orthogonal set of functions on [—1,1]. Show that the set { 1, z, z%, z3, ... } is

not an orthogonal set of functions on [-1, 1].

Find constants c;-c7 (not all of which are zero) to make the following an orthog-

onalset of polynomial functions on [—1,1]: {1, z, ;2% +c2x+c3, ¢4z +csx? +ceT+

crg} . HINT: If f(z) = c12% +cox +c3 and g(z) = 423 +c522 + ez+ 7,it is neces-

1 1 1 1 1
sary that / f(x)dz, / . zf(x)dz, / . 9(x) dzx, / . zg(x) dz and / . r2g(z) dz

-1

all equal 0. Compute these integrals exactly and find values of the constants (there

will be more than one choice) to make all integrals equal zero.

Further Study

The purpose of orthogonal functions is the same as the perpendicular z- and

y-axes: to make it easy to represent various functions in a common language. This

turns out to be a powerful result in many applications (in case you were wonder-

ing what this was doing in an applications section). The Fourier series, discussed

in section 6.3, is based on the orthogonal set of sines and cosines above. The or-

thogonal set of polynomials you found above are called Legendre polynomials. A

general reference is Orthogonal Transforms for Digital Signal Processing by Ahmed

and Rao.
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5.4 Alternative Coordinate Systems

We have emphasized several times that good problem solvers require a variety of

skills. For instance, although the built-in integration routine on the HP-28S/48SX is

powerful, we have seen integrals for which a sequence of Riemann sums or Simpson’s

rule provides a better approximation. Similarly, our standard choice of writing y

as a function of z is not appropriate for all integrals of interest. In this section, we

will look at two alternatives to using the equation y = f(z) to describe a curve.

In some cases, merely treating x as a function of y simplifies calculations. A more

fundamental change in perspective is provided by switching to the polar coordinate

system.

CHANGE OF INDEPENDENT VARIABLE

In our development of the Riemann sum, we approximated areas by using rect-

angles of common width and variable height. In this scheme, we must keep careful

track of the top and bottom of the region we are measuring to determine the heights

of the rectangles. Finding the areas of regions without a well-defined top or bottom,

such as in Examples 1 and 2, can be awkward.

Example 1. Two Integrals for One Area

Find the area of the region bounded by the graphs of y = z, y = 2 — x and

y = 0. The HP-28S graph of this region is shown in Figure 5.13. (This is produced

by graphing the equation z = 2 — z.)

FIGURE 5.13

Geometrically, this problem is simple. The region is a triangle with area

(1/2)(2)(1) = 1. However, if we wanted to use integrals to represent the area,

then we would have to use two integrals to compute the area, since the region is
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bounded above by y =z for 0 < x < 1 and by y =2 —x for 1 < £ < 2. Specifically,

we have that
1 2

Areaz/o xdx+/1 (2—z)dz

Example 2. Two Awkward Integrals for One Area

Sketch the region bounded by the parabolas z = y? and £ = 2—y? and represent

its area with integrals. Recall from algebra that these parabolas open to the right

and left, respectively. Since neither is a function of x, on the calculator you must

graph the equations /= = —/T and —z = —/2— using OVERD on the

HP-28S (simply do not use ERASE or RESET between successive uses of DRAW

on the HP-48SX). The HP-48SX graph is shown in Figure 5.14.

 

-'.f".:n.'."Pd-

...... £ R
-8.5 o’ 6.5

___f-"'-T _-."‘-\-__
d-_'_’_,__—"' '3 . N

FIGURE 5.14

The region is bounded by the top and bottom of the curve z = y?2 for0 < z < 1

and by the top and bottom of the curve £ = 2 — y2 for 1 < = < 2, so that

1 2
Area = ./O [V — (—vx)]dz +/1 V2 -z - (-v2-1z)|dz

In Examples 1 and 2, we had to use two integrals to find the area of one region.

Further, in Example 2 we had to first solve the given equations for y in terms of x

to find the functions to be integrated. The thought “there must be a better way”

has probably occurred to you, and the form of Example 2 suggests a better way.

Why not treat = as a function of y? The general area formula in this case becomes
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b
Area = / [9(y) — f(y)]dy

a

where z = g(y) defines the right boundary of the region and = = f(y) defines the

left boundary of the region. In Figures 5.13 and 5.14, the left and right boundaries

of the regions are well-defined, so that this approach should work well.

Example 3. Areas as Integrals with Respect to y

Compute the areas of Examples 1 and 2 in terms of integration with respect to

y. In Example 1, the right boundary of the triangle is the line y = 2 — z, which we

rewrite as £ = 2 — y. The left boundary of the triangle is the line x = y. The figure

extends from y = 0 to y = 1 (these are the solutions of 2 — y = y). We then have

1
Area = /0 [(2-y) —yldy

In Example 2, the right boundary of the region is the curve z = 2 — y? and the

left boundary of the region is the curve r = y2. Since 2 — y? = y? if y = +1,
1

Area = / 1[(2 —y?) —y?ldy

Both integrals are easy to compute by hand and equal 1 and 8/3, respectively.

For the latter integral, on the HP-28S enter

’2 —2*Y A2’ [ENTER]

{Y-11} [ENTER] .001 [ENTER] [
On the HP-48SX enter

[ -1,1,2-2*Y A2,Y [ENTER] [-NUM]

With this example, it becomes easier to appreciate the calculator’s insistence

on your identifying the variable of integration.

POLAR COORDINATES

The circle is one of the most important shapes occurring in nature and in

mathematics. It is also one of the few geometrical objects for which we have an

exact formula for area. It is ironic, then, that it is very difficult to compute the
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area of a circle by integrating. First recall that the circle of radius r centered at the

point (a,b) has the equation

(-+(-=7
For the top half of a circle of radius 1 centered at the origin, we have a = b = 0 and

r = 1, so the equation is

y=+v1-—x2

Then, we get

1

Areaz/l\/l—x2d:c

To compute this exactly, we need the sophisticated (and messy) technique of

trigonometric substitution, which you will see in your study of techniques of inte-

gration. The news gets worse: it is difficult to even set up the integrals necessary

to compute the area of a third of a circle. (Try it!)

The problem is with our approach. As we have defined it, integration is based

on sums of areas of rectangles, so that we are trying to fit rectangular pegs into

circular holes, so to speak. Of course, you can do this, but it’s not pretty. Our first

step in improving this situation is to introduce polar coordinates.

The standard rectangular coordinates locate points by measuring a horizontal

distance x and vertical distance y from the origin. In polar coordinates, we locate

the same point by measuring its distance r from the origin and the angle 8 between

the line from the origin to the point and the positive z-axis (see Figure 5.15).

Yy

 

FIGURE 5.15

The angle 6 is measured from the positive x-axis as usual: counterclockwise is

positive, clockwise is negative, and radian measurement is preferred over degrees.

From trigonometry, we get

r =12+ y? T =rcosf

tanf = y/x y =rsiné
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The circle 22 + y? = 4 then becomes r? = 4 or r = 2 (i.e., the set of all points

whose distance from the origin is 2). Also, the equation # = 7/4 describes the line

1 =tanw/4 =tanf = y/z, or y = x.

The following result is needed to use polar coordinates to compute areas. For

a region bounded by the graphs of § = a, # = b and r = f(0) as in Figure 5.16, we

have

b1
Area=/ ~f%(6)dé

a 2

r=£)

  
FIGURE 5.16

Example 4. Area of a Circle

Use polar coordinates to compute the area of the circle »r = 1. In this case,

r = f(f) =1 and to get the full circle we need 6 running from 0 to 27. Then, we

have that
2T

Area = /0 (1/2)(1)?do ==

Example 5. Area of 1/8-Circle

Compute the area of the region bounded by the graphs of y = 0, y = x and the

upper portion of the circle 2 + y? = 4. This is simply one-eighth of a circle, but

the integration in rectangular coordinates is quite ugly. (Try to set it up.) In polar

coordinates, the region is bounded by 6§ = 0, § = 7/4 and r = 2. We then have

/4
Area = /O (1/2)(2)2d6 = /2



5.4 Alternative Coordinate Systems 225

Example 6. Area Bounded by a Circle and a Line

Compute the area of the portion of the circle z2 + y? = 9 above the line y = 1

(see Figure 5.17). In polar coordinates, the equation of the circle is r = 3.

sry=
",-.-'3.5; b e

_.l L3 t

i

 
FIGURE 5.17

Since y = rsinf, we change the equation of the line y = 1 into rsinf = 1 or

r = 1/sin@. The intersections occur where 3 = 1/sin@ or sinf = 1/3. Then 6 goes

from a = arcsin(1/3) to b = m — arcsin(1/3). Finally, we get

b
Area = / —;—[9 —1/sin® 6] do

a

b1
=/ 5[9—csc2 6] df

a

= (b~ a) + 3 [cot(b) — cot(a)] = 8.2502026

Note that since the HP-28S/48SX does not have the cosecant function built-in,

you would need to type 1/ sin? 6 instead of csc? 6 to use the calculator to approximate

the integral. .

Along with providing a convenient way of computing various areas involving

circles, polar coordinates can be used to graph curves that you have probably not

yet seen in your studies. The HP-48SX provides a built-in utility for drawing graphs

in polar coordinates. To help with drawing these curves on the HP-28S, we suggest

the following graphing program.

  

< [CLLCD] [DRAX] [FOR] TH TH F TH [R—C| [P—R] [PIXEL] .05 >
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Keystrokes Explanation

< |CLLCD Clear the screen and draw

the z- and y-axes.

TH Start the loop.

THF Compute f(0).

TH Form the point (r, ).

Convert the polar point (r,8)
to the rectangular point (z,y) and
plot the point on the screen.

.05 |STEP| > Increment @ and repeat the

loop until the end of the program.

ENTER 'POLAR’ STO Store the program under the name

POLAR in the current directory.   
 

Example 7. Graphing a Spiral

Use the program POLAR on the HP-28S or the built-in utility on the HP-48SX

to graph the spiral » = /6 for 0 < § < 3w. To run POLAR, we will need a

user-defined function F. In this case, we enter

<«— T T /6’ > [ENTER] ’ F ’ [STO]

Next, enter the endpoints for # on the stack (make sure your calculator is in

radians mode) by pressing

0 [ENTER] [r] [—NUM] 3 *

Now run the program (press the soft key [POLAR| ) and you should get the spiral

seen in Figure 5.18.

vvvvvv l T ' v v v P—

FIGURE 5.18
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On the HP-48SX, plotting a graph in polar coordinates is a slight variation of

the usual plotting procedure. First put the function to be plotted on line 1 of the

stack. Here, we enter: 'X/6’ . Press [NEW| to store the function, giving

the function a name when prompted. Next, press to indicate that

the equation should be graphed as a polar equation in the form r = f(#). (Note

that although we are using X as the variable on the calculator, the graph will be

automatically plotted in polar coordinates, since we chose the POLAR plot type.)

Press as usual and then enter a string containing the name of the

independent variable and the lower and upper limits of the independent variable, in

the format { ’X’ lower upper} (the default setting is for the variable to be X and

the lower and upper limits to be 0 and 27). Here, use

 

{’X’ 0 3*r } [ENTER| |INDEP| [DRAW|
 

This will produce the portion of the graph with values of # between 0 and 3«

(radians). .

NOTE: After plotting a polar graph on the HP-48SX, you can graph any number of

additional polar graphs without needing to re-enter the command.

The calculator will remain in polar graphing mode until you switch back to standard

rectangular plotting mode. This is done by pressing in either the

Plot or Plotr menu.

Example 8. Area of One Leaf of a Rose

Find the area of one leaf of » = 2sin 3. On the HP-28S, use POLAR to graph

the region described. First, redefine the current function F:

«— T’ 2*[SIN] (3*T)’ > [ENTER] ' F’ [STO]

You might first try 0 < § < 27, since 27 is the period of sinz. You should get

the 3-leaf rose seen in Figure 5.19, but traced out twice. (The graph shown is from

the HP-48SX.)

Then, it is reasonable to expect that one copy of the rose is traced out for

0 < 0 < 7 and one leaf is traced out for 0 < 6 < w/3. We verify this by noting that

a leaf starts and stops with 7 = 0, and r = 0 if and only if 8 = 0,7/3,.... (Draw this
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FIGURE 5.19

portion to see what we mean.) Thus,

Area = /0 -2-(2 sin 30)? df

/3
:/0 2sin? 30 df

This can be evaluated using the trigonometric identity 2sin® 36 = 1 — cos 6. Thus,

Area = [0 — (1/6)sin66]3/% = 7/3

With polar coordinates available, when you encounter a problem (particularly

one involving circular geometry) you should now ask yourself whether it is more

appropriate to attack the problem using rectangular coordinates (x,y) or using

polar coordinates (, ).

Exercises 5.4

In exercises 1-6, find the areas of the regions bounded by the given curves using z

as a function of y.

l.y=z,y=2—-zand y =0 2. y=z%,y=2—-z,andy =0

3. z=y?and x =8 —¢? 4. x=y* and z =4

5. 2 + 4y* = 4 and = = 0 (right piece) 6. z=4—y?andz =0
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In exercises 7-10, find the volume of the solid obtained by rotating the region

bounded by the given curves about the z-axis.

7.y=z,y=2—-zand y =0 8. z=y?and x =2 —9?

9. z=y?and z = 8 — 9 10, y=z%,y=2—-zandy=0

In exercises 11-18, sketch a graph of the polar function.

11. r = cos 26 12. r=1+sinf

13. r = 2sinf 14. r = 2cos ¥

15. r=142cos¥ 16. r =1+ cosf

17. r = 2cos 36 18. 2 = 4sinf

In exercises 19-24, find the area of the polar region.

19. r = cos 26 (one leaf) 20. r=1+sinf

21. r = 2siné 22. r =2cosf

23. 1 =1+ 2cos 0 (inner loop) 24. r =1+ cosf

In exercises 25-30, find the area of the region bounded by the curves.

1
25. 22 +y?> =1, y = —z and the positive z-axis

V3

26. z2 + y? =1, y = —z and the positive r-axis

27. 22 + y? = 9 above y = 2

28. 2 4+ y?> =9 above y = —2

29. (z—1)2+y?=1and z? + (y — 1)?

30. (z —2)2+y%? =4 and 22 + (y — 2)2

1

4

31. Determine the number of leaves in the roses r = 2sin @, r = 2sin 26, r = 2sin 36

and r = 2sin46. Conjecture a rule for the number of leaves in r = 2sinnf for

any positive integer n.

32. Determine the number of leaves in the roses r = 2sin6/2, r = 2sin36/2,

r = 2sin50/2 and r = 2sin 70/2. Conjecture a rule for the number of leaves in

r = 2sinnf/2 for any odd integer n.

EXPLORATORY EXERCISE

Introduction

Example 6 in the text and exercises 27-28 refer to the same problem which we

call “Fletcher’s oil problem.” Suppose a cylindrical oil tank (circular cross-sections

perpendicular to the ground) has an opening at the top. A measuring stick can be
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inserted to measure the height of the oil in the tank. If the cylinder has diameter 6

feet, what percentage of the tank is full when the oil has height h?

Problems

We ignore the length of the cylinder (why is this reasonable?) and state the problem

as computing A(h)/9m where A(h) is the area of that portion of z? + y? = 9 below

y = h. As in Example 6, if 0 < h < 3, we compute the area above y = h as

b
/ 59 — h?csc? 0] df = 4.5(b — a) + h%[cot(b) — cot(a)] where a = arcsin(h/3) and
a

b = m—arcsin(h/3). The problem is, Fletcher the oil man does not want to calculate

arcsines or cotangents. We can do two things for him. First, design a stick with

1 1 3
marks at the appropriate heights to indicate g-ta,nk left, Z-tank left, g-tank left,

etc. Second, come up with a simple rule of thumb to describe how the height relates

to the amount of oil left.

Further Study

This problem does not directly relate to other areas of mathematics. However,

we hope the reader will devote much further study to the art of making compli-

cated mathematical results useful and easy to understand. Communication between

mathematicians and users of mathematics is vitally important.



 

CHAPTER

 

 

Sequences

and Series

6.1 Sequences

One of the underlying concepts of calculus is that we can often solve complicated

problems by generating a sequence of approximations which tend to get closer and

closer to the exact solution. We have already seen this idea applied to the study of

limits, derivatives and integrals as well as to several rootfinding methods. In this

section, we will formally introduce the mathematical notion of a sequence of real

numbers. Our discussion will serve to unify much of our previous work as well as to

lay the foundation for the remainder of the chapter.

Example 1. Conjecturing the Value of a Limit

 

 

V —2
Conjecture the value of the limit (if it exists) lim1 ——:-B—j—_——I—— . We can use the

r— X —

Solver to generate some function values.

x 1.1 1.01 1.001 1.0001

f(zx) .248457 .249844 .249984 .249998      
 

231
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Of course, we also need some function values for x < 1 .

 

z 1.1 1.01 1.001 1.0001

f(x) 251582 .250156 .250015 .250001
 

      
 

Based on this evidence, we would feel comfortable conjecturing that the limit equals

.25. n

Thinking through Example 1, it is natural to focus more on the values of f(x)

than on the corresponding z-values. In fact, as long as the z-values approach 1,

it does not seem especially important which x’s we use. However, we must closely

examine the pattern of numbers .248457, .249844. .249984, .249998 and the pattern

of numbers .251582, .250156, .250015, .250001. Even though the two sequences of

numbers are quite different, they appear to have a common limit of .25.

In the definitions below, we extract the most important features of Example 1

and put them into a general framework. For a more complete discussion of sequences,

we refer you to your calculus text.

Roughly speaking, a sequence of real numbers is a collection of values, each

corresponding to a specific choice of an integer (the index). We typically use set

notation to describe the sequence a;, a2, as, ..., writing { a1, ag, as,...} or more

simply {a,}5, .

1
For example, if a, = — for n = 1,2,3,..., we have the sequence

n

y 1 L1 1 1 1
’ 4’ 9’ 16’ 25’ 36’ 49’

Note that as we go further and further out in the sequence (i.e., as the index n gets

larger and larger), the terms of the sequence are getting closer and closer to 0. In

this case, we say that the sequence has the limit 0 or that the sequence converges

to 0.

Loosely speaking, then, a sequence has the limit L if a,, gets closer and closer

to L as n gets larger and larger. In this case, we write

lim a, =L
n—00

Let’s look a little closer to see what this might mean. We should be able to make

an as close as we like to L , simply by making n large enough. So, given a desired
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degree of closeness, say € > 0, we want to have |a, — L| < € for n sufficiently large.

More precisely, this means that for every ¢ > 0 there must be an integer N such

that if n > N | |a, — L| < e. We take this as our definition of convergence.

Compare this to the definition of the limit of a function given in section 2.3.

There, we had that

lim f(z) =L
r—a

if for every ¢ > 0 we could find a § > 0 so that |f(z) — L| < € whenever 0 <

|z —a| < 6. The main difference is the substitution of the condition that n > N

for 0 < |x —a| < 8. This difference comes from the fact that the sequence a, is

a function defined only for positive integers n and n is tending to infinity. This

gives us the flexibility needed to precisely define limits of sequences coming from

Newton’s method, Riemann sums or any other process.

Example 2. Finding the Limit of a Sequence

2 3 n
273747""n+17'

numbers are all smaller than 1 and appear to be approaching 1, as n — oo. To

Find the limit of the sequence ... We first observe that the

n :
prove lim a, = 1, we will use the formula a, = ——. From the definition, we

n—oo n—+1

need to find an NV so that n > N guarantees that

 

 

 

 

 

n
-1l <e

n+1 ‘

But |— 1 ! <eifl <e(n+1). Solving fo e get—1l=——<c¢€i n . Solving for n, w
4 n—+1 n+1 ¢ & ’ &

1—¢€
n >

€

1 —
Thus, if N is any integer greater than < , then |a, — 1| < € whenever n > N,

 
n

and we have proved that lim =1
n—oon + 1

Note the similarity between this proof and that for a limit problem we have
x

already seen, namely lim 7Tl 1
r—oo I
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Obviously, our proof in Example 2 was dependent on our having a simple for-

mula for a,,. In practice, it is not always possible to simply represent a,,. In that

case, we are limited to observing the sequence and conjecturing a value for the

limit. All of the examples in this section start with a formula for a,, so that we

may observe several different types of behavior in controlled situations.

Example 3. A Limit Involving a Trig Function

 

CoS TN )
Find lim (1 + - ), if it exists. We first examine several terms of the

n—00

sequence and look for a pattern. We find

a1 =14cosmt=0

 

 

a2=1+cos27r=§

2 2

a3=1+cos37r=2

3 3

a—-5 a—4

1T 4 >T 5

and so on. On the basis of these few terms, you might guess that the sequence is

approaching 1. Computing several more terms might serve to convince you of this.

We would also be very comfortable conjecturing that

 lim (1+c°i”) —140=1
Tr— 00

We use the fact that |cosmn| = 1 for every integer n to prove that 1 is the limit.

Note that

 

cos TN 1

an = 1] = | = =—-<E€n n

if n > 1/e . Thus, if N is any integer greater than 1/¢, then |a, — 1| < € whenever

n>N. .

You may have wondered why we seemed to make a distinction between the limit
i COST i cosN

problems lim (1 + = ) and lim (1 +
Ir—00 n—0o0

  - ) There is a subtle difference,

since £ may be any real number while n may only be an integer. Example 4 illustrates

this distinction.
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Example 4. A Tricky Limit

Find lim (1+4cos27n), if it exists. First, look at lim (1+cos2wz). We conclude
n—00 r—00

that the limit does not exist, since cos 27z oscillates between —1 and 1 and, hence,

does not approach any limiting value. However, if we list the first few terms of the

sequence we quickly get a different answer, since

a; =1+ cos2mr =2

a; =1+ cosdmr =2

az =1+ cosbmr = 2

and so on. Clearly, lim (1 + cos27n) = 2 since a,, = 2 for all n and a formal proof
n—00

is hardly necessary. .

In Examples 5 and 6, we examine a pair of sequences which approach 0 as

n — 0o. These examples illustrate two important general rules which we will use in

section 6.2. The proofs of these results are left for the exercises.

Example 5. Comparing Powers of n

2
. . n

Find nan;o 213

the Solver to generate these values):

if it exists. We look at several terms of the sequence (use

ay = .25

ao = .31325

aipo = .09999

ai1000 = 03162

ai10000 = .00999

ai100000 = .00316

a1000000 = -001

At this point, you might recognize a pattern and conjecture that the sequence is

slowly approaching 0.

One of the difficulties in observing limits on the calculator is identifying when

a sequence has stopped changing. In this example, ags = .10101 and agg = .10050,

so it might be tempting to conjecture a limit of .1. It always helps to look at a few
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more terms of the sequence! It also helps to know some general rules to simplify the

thought process. This example illustrates a relatively simple rule. Thatis, if p(n)

and q(n) consist only of powers of n and the degree (i.e., the largest exponent) of q

is larger than the degree of p, then lim I—)—(—@ =0
n—co g(n)

Example 6. Comparing Polynomials and Exponentials

2

Find lim —, if it exists. We compute
n—oo en

a; = .36787

aip = .004539

aio0 = -000000

a1000 = .000000

It is not difficult to conjecture a limit of 0. Note that both n? and e™ tend to infinity

as n — 00. Thus, this limit tells us that e™ must become large faster than n? does.

In this case, we say that e dominates n?, and the general rule is that exponentials

with positive exponents will dominate polynomials. .

Exercises 6.1

In exercises 1-4, find the limit of the sequence as in Example 2.

  

 

1 § 5 7 9 2n 41 9 2 5 8 11 3n—1
. 1, 2, 3, 4, ey n g oo . 1, 2, 3, 4,.-., n g oo

11 1 1 1 4 3 (—-1)"
3.1, ——=, =, —, ..., (=1)"—, ... c =, = =, -I 2, 37 4’ ,( 1) n? 4 2’ 2’ 37 47 71 n I

In exercises 5-10, find the limit of the sequence, if it exists. If the limit exists, find

N in terms of e.

5. q, =1+ S2(m/2) 6. an =1+
n n

7. a, = 3 +sin(mn) 8. an = 2+ cos(mn/2)
—-1)"

9. an=2+(——7—l—)—— 10. an =3+ (=1)"
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In exercises 11-18, inspect the sequence and conjecture a limit as n — oo.

 

 

nd 2n2 + 4n
11. a,, = 12. a,, = ————

a nt+4+5 @ n3 —6

3n3 5v/n
. =— 14. a,, =

13- an g5 =2
n2

15. an = Z{ 16. a, = n3e_n/2

17. a, =—— 18. a, = ———
a nd +4n + 2 4 n2+4+4n+1

In exercises 19-22, use the Solver (and FACT in the Real menu of the HP-28S or !

in the Prob menu of Math of the HP-485X) to conjecture the limit of the sequence,

if it exists.
2 n

 

19. @y = — 20. a5 = =
n: n.

! 2,n

21. @y = —— 22. @y = ——
esn n!

23. Based on your answers in exercises 19-22, which term is dominant, polynomials,

exponentials or factorials?

24. Determine the limit of the sequence sin(1/z,) for z, = 1/nm and for z, =

2/(4n + 1)m. What does this tell you about 31:% sin(1/x)?

n2 n2 .: - - -1/225. Prove that nler;o 572 13 0. HINT: 572 13 <n for all n.

n? n?
26. Prove that lim o= 0. HINTS: o <€ if n — 2In(n) > In(1/€).

27. Use the calculator to estimate the limits of (1+1/n)", (1+2/n)™ and (14+3/n)™.

Compare to e, e? and e3.

EXPLORATORY EXERCISE

Introduction

In applied mathematics, calculations are not typically restricted to real numbers.

As you move beyond graphs (where complex numbers have not played a role for us)

you will see more and more complex variables. A complex number z may be written

as z = a + bi where a and b are real numbers and 7 = y/—1. For instance, using the

2++v/4-20

2
quadratic formula we get the solutions of 2 —2x+5 = 0 to be =1+2

and 1 — 2i. Multiplication of complex numbers depends on the identity > = —1.
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Thus (1+2i)2 =1+4i+4i2 =1+4i—4 = -3 +4i. A useful image is to associate

the complex number a + bi with the point (a,b). The HP-285/48SX, in fact, does

not distinguish between two-dimensional points and complex numbers. Also, the

HP-28S/48SX uses the same syntax for complex arithmetic as for real arithmetic.

In this exercise we will look at the sequence defined by z,4+1 = 22 —c, 29 = 0, where

¢ = a + bi is a complex constant. The user-defined function FZ will help us track

the sequence. Press <K— X’'X A2 -C’>» ' FZ’ . This looks exactly like

the notation we used for real functions, but it will work equally well for complex

numbers.

Problems

Determine the behavior of the sequence for ¢ = .5, 1, 1.2, 1.5, 3, .2 + .2i, 1 + .21,

1 + ¢ and other values. In general, which ¢’s produce which behavior? To test c=.5,

press .5’ C’ then 0 and press several times. You should see the

sequence converge to about -.3660. To test ¢ = .2+ .2, press (.2,.2) ’ C’ then

0 and press several times. The sequence converges to approximately

—.1864 — .1456:. Before you jump to an incorrect conclusion try ¢ = 1 + i: the

sequence blows up! You should also find values of ¢ for which the sequence eventually

alternates between 2 values, values of ¢ for which the sequence alternates between 4

values, .... The various behaviors are summarized in the remarkable picture below

(see HP-28 Insights by William Wickes) which shows some of the detail of whatis

known as the Mandelbrot set. The set is displayed using the following rule: if for

¢ = a + bi the sequence blows up, the point (a,b) is colored. The set is sometimes

called the “snowman” because it looks like smaller and smaller balls stacked on top

of each other (in our picture, the snowman has fallen down). It turns out that

points within the same “ball” have the same behavior (for instance, converging to

1 number, or converging to 2 numbers,...). The set is infinitely complicated in the

sense that if you zoom in on what appears to be the edge of the set, you reveal more

detail and will find what appear to be miniature copies of the set itself!

Further Study

This exercise opens several doors. The Mandelbrot set is an example of a fractal,

of which much has been written recently (see, for example, The Science of Fractal
 

Images, ed. by Peitgen and Saupe, Springer-Verlag). The study of sequences such

as zpn41 = 22 — c belongs to dynamical systems theory (see, e.g., An Introduction

to Chaotic Dynamical Systems by R. Devaney).
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THE MANDELBROT SET

 
6.2 Infinite Series

Among the many specific sequences which we have already observed in our

exploration of calculus are Newton’s method approximations and Riemann sums.

Both are examples of a special type of sequence, called a sequence of partial sums,

which we will examine more carefully in this section.

Recall the Newton’s method formula for solving the equation f(z) = 0:

—_— _— ——————— = O, 1, 2’ cee

I P,y "

One way to think of this is as

Tn+l = Tp + Cn+1 n=0,1,2,..

Here, the new approximation z,4; is the sum of the previous approximation, x,,
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plus a so-called correction term c,+1, where

f(zn)

TT(e
 

Thus, we have that

1 =29+ C1

ITo =T1+C =Tp+C +C2

and in general,

Tpn=x9+C1+cC2+cC3+..4+Cp

We write this in summation notation as

n

Tp =To + E C;

=1

If Newton’s method succeeds in finding a root, z, then the sequence {x,}S%, con-

verges and
n

r= lim z, =x9+ lim E C;
n—00 n—00 4 7

1=

which we write as
o0

n=1

The last expression in this equation is called an infinite series .

We have the following definitions.

Definition For the sequence {a,}52,, the Mth partial sum is

M

SM = E an

n=1

o0

The infinite series Z a, is said to converge if the sequence of partial sums {S,}52
n=1

converges, in which case we write

o0

E a, = lim S,
n—00

n=1
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If the sequence {S,,}22; does not converge (diverges ), we say that the infinite series
oo

E a, diverges .

n=1

Example 1. An Infinite Series from Newton’s Method

Use Newton’s method with an initial guess of zo = 0 to estimate a root of

z — e~* = 0. Using the program NEWT from Chapter 4, we get (to 6 decimal

places)

Iry = 1

xo = .537883

x3 = .578976

x4 = .562737

x5 = .568840

T14 = .567143

It appears that Newton’s method has converged nicely to a root. We are led to

believe this because the iterations get closer and closer together until eventually the

first 6 digits do not change at all. Said a different way, the correction terms appear

to tend to 0. We then expect that the sequence {x,}32, converges and, hence, that
oo

the infinite series E cn also converges, all because the sequence {c,}52; appears

n=1

to converge to 0. n

It should be no surprise that we are going to use Example 1 to make what might

seem to be a believable conjecture. That is, if lim a,, = 0 we might expect that the
n—oo

oo

infinite series Z a, will converge. We should emphasize that this is a reasonable

n=1

expectation, and in fact is often used in casual investigations of series. However, as

we will see in the next example, having lim a, = 0 does not guarantee that the
n—0o0
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oo

infinite series E a,, converges. This is one reason that we have so cautiously talked

n=1

of conjectures throughout the book, while emphasizing the need for double-checking

answers. We do not need to look too far to find a counterexample to the preceding

conjecture.

Example 2. The Harmonic Series

oo

Show that _S_ — diverges. Because this series is so important, it is commonly
n

n=1

referred to by its name, “harmonic series” (see section 6.3 for the meaning of this

1
name). Clearly lim ~ = 0 and so by ourill-fated conjecture above we would expect

n—0o0

that the series converges. In fact, it does seem to converge on the calculator, since

on the calculator 1+ 10713 “equals” 1. But, a clever argument shows that the series

does, in fact, diverge. First note that

1+1+1>1
2 3 4

Also,

1+1+ + > 1
5 6 16

and

1—I—1+ + > 1
17 18 7 64

In fact, no matter how large n is, one can show that

Lo vt
n+l n+2 7 4dn
 

 

Thus, the sum keeps getting larger and larger without bound and, hence, the series

does not converge. .

The implication of Example 2 is that simply watching the iterations of Newton'’s

method to see that they get closer together, as in Example 1, does not guarantee

the convergence of the series. We would do well to check the conjectured answer

x = .567143 of Example 1 by plugging it back into the function f(z) = z — e™=.
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Here, we get f(.567143) = —.0000004 which gives us further evidence that we have,

in fact, found a good approximation to a root.

oo

Our original conjecture should be revised as follows. If lim a, = 0, then Z an
n—0o0 ne1l

o0

may or may not converge. However, if lim a, # 0, then Z a, does not converge
n—00

n=1

(it diverges).

It turns out that determining whether a series converges or diverges is not that

easy in practice. We need all of the tests for convergence found in your calculus

book, as well as a mental catalog of significant series (such as the harmonic series)

and their convergence or divergence properties. Because of loss ofsignificance errors,

the calculator is not a primary weapon in attacking infinite series. (In fact, the HP-

28S/48SX will suggest to you that the harmonic series converges!) Below, we offer

some ways in which the calculator does help us in our investigations.

The program SERIES computes the sum of 100 terms at a time of the series
o0

ZF(n), so that we may monitor changes in the value of the partial sums. The

n=c

program requires a user-defined function F, a 0 on line 2 of the stack and the value

of ¢ — 1 on line 1 of the stack. On the HP-48SX, you may use the command ¥ to

compute partial sums. Even with this command, we emphasize the importance of

computing a sequence of partial sums as we do in the examples.

< 100 + [DUP2] [DUP] 99 — [SWAP] [FOR] N N F + [NEXT] [SWAP] >
 

 

Program Step Explanation

< 100 + Set up the stack.

99 — Set up the loop limits.

N Start the loop.

N F + Add F(N) to the sum.

> End the loop and the program.

ENTER 'SERIES’ STO Store the program under the name

SERIES in the current directory.   
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You may have already come across geometric series in your regular calculus text.

In short, a geometric series is a series for which each term is a constant multiple of

the preceding term. That is, these are of the form

where r is called the ratio and a is the first term of the series. One remarkable

property of geometric series is that we always know when they converge (when

|r| < 1). Further, when they converge, they will converge to the value ¢ This 

-7
is extraordinary in that we only rarely know the sum of a series. We can use the

program SERIES (or X) to observe the convergence of geometric series.

Example 3. Geometric Series

3 1 1 1
Find the sum of the geometric series 1 + 1 + 3 + 36 + .... This is a geometric

series since each term of the sum is a constant multiple (r = 1/3) of the previous

term. We write the series as

1 1\2 3, /1\"
1+=-+(= =2 —
+3+(3) " 4,;)(3)

From the above formula, the sum is Z (1 11/3> = g We can observe the series

converge using the SERIES program. First, you’ll need to enter a program for the

3

4

  

 

function F:

<—N’.75*(1/3)AN’> [ENTER] ’ F ’ [STO]

Since the sum starts at n = 0, we enter 0 on line 2 of the stack and 0 — 1 = —1

on line 1 of the stack (press 0 [ENTER| 1 [CHS| [ENTER| ). Then press the soft key

. After a few seconds, you should get 1.125 on line 2 of the stack and 99

on line 1, indicating that Sg9 = 1.125 . Since 1.125 = 9/8, the series has already

converged (within the limitations of the accuracy of the HP-285/48SX). If you press

again, you will find S199 = 1.125 also. On the HP-48SX, store the sequence

'Y(N=0, M, .75*%(1/3)AN)’ in SUM, set M=99 and press to find Sog.

Then set M=199 and press to find S1g99. Of course, not all series will
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converge as quickly as this one did, but for a convergent series, the program SERIES

(or ¥) helps us to conjecture its value. .

Example 4. p-Series

o0

: : 1 . : :
Consider the series Z 3 This is an example of another special type of series

n=1

> 1
called a p-series . These are of the form Z —- The present example is the case

n
n=1

where p = 2. In your calculus text, you will find that p-series are convergent if

p > 1 and divergent if p < 1. Although p-series are easy to identify as convergent or

divergent (ours is convergent because p = 2 > 1), there are no easy ways to compute

their sums. Our SERIES program can help us with this. First, enter a new program

for the function F:

<—N’1/NA2’> [ENTER] ’ F ’ [STO]

Then, put 0 on line 2 and 1 — 1 = 0 on line 1 of the stack (0 [ENTER| O [ENTER| ).

Now press [SERIE| several times to get the partial sums

S100 = 1.63498

S200 = 1.63994

S300 = 1.64160

Si00 = 1.64243

Ss00 = 1.64293

On the HP-48SX, store '¥(N=1, M, 1/NA2)’ in SUM, set M=100 and press

, set M=200 and press and so on. This is a slowly converging

series, but it appears that the sum is about 1.64. (Actually, it has been shown that

the sum is exactly 72/6 ~ 1.644934.) .

One of the more useful techniques for determining whether a series converges

or diverges is to somehow compare that series with a given series whose convergence

or divergence is already known. The two main tools are the following tests.
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o0

Comparison Test Suppose that 0 < a,, < b, for all n and that Z b, converges.

n=0

o o0

Then the series Z a,, also converges. Likewise, if 0 < b,, < a,, for all n and Z b,

0

diverges, then Z a, diverges also.

n=0

Limit Comparison Test Suppose that 0 < a,, 0 < b,, for all n and that

lim 2% = L. Then, if L > 0, the series Z a, and Z b, either both converge or
n—oo 0y,

n=0 n=0

both diverge.

Once you have some experience with these two tests, you will realize that the

hardest part of implementing them is to find the right series with which to make a

comparison. For the comparison test, it is often hard to see which way the inequality

goes for a given prospective comparison series. Your HP-28S/48SX can be of some

help in seeing how to use these tests.

Example 5. The Comparison Test

 

o

Determine whether or not the series Z 3 converges. The key here is to

AL ~fi Further, the p-seriesZ\/_ diverges
3+n  n f

since p = 1/2 < 1. We then conjecture that our series also dlverges. However,

n 1
vn < —= for all n. Unfortunately, to use the Comparison Test, the inequality
3+4n /n

needs to go the other way! Don’t give up; just compare to a different divergent

 notice that for large n,

 

 
1

> —7 Your calculator will help. Press
3+n n

oo

: 1 :
series. For example, try E —. But, is

n
=1

A X/ (3+X)=1/X [FEQ
and then use the Solver to compare the two expressions. Try £ =1, £ = 2, ... until

the left-hand side is larger than the right-hand side. From the computations, you
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should notice that

1
vn > - for n >4
3+n n

Of course, you'll still need to prove that this inequality actually holds for all n > 4.

 

At least the computations lead us to believe that this is true. For n > 4, we get

2 1Vi VR 21
3+n n+n 2n n
 

o0

Thus, by the Comparison Test, we conclude that Zg diverges. We note that
n

n=1

the Limit Comparison Test also works quite well for this series. (Try this!) .

Recall that an alternating series is a series where successive terms are alter-

nately positive and negative. Determining when such a series converges is a fairly

simple matter. You will find a version of the following in any standard calculus text.

oo

Alternating Series Test For the alternating series, Z(—l)"an, if
n=1

(i) ap > a3 >ag > ... > an > apy1 > ... > 0and (i) lim a, =0
n—00

then the series converges.

Notice that this is very close to our initial conjecture about a convergence test for

series.

Example 6. An Alternating Series

 

oo

n :
Estimate the sum of the series E (—1)"3{ . First notice that the series

nn=1
converges, by the alternating series test. (Make sure that you check the details of

this.) We can use our program to estimate the value of the sum. Using SERIES (or

Y)), we get the partial sums

S100 = —.06321

Ss00 = —.08943

S1000 = —.09588

S2000 = —.10048

S3000 = —.10252
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We conjecture that the limit of this slowly converging series is about —.10. We note

that to modify SERIES to compute 1000 terms at a time, simply change 100 to 1000

and 99 to 999 in the program. "

We conclude this section with two powerful tests of convergence. First, recall
o0

that the series Z a, is said to converge absolutely if the series of absolute values,

n=1

o

Z |an|, converges.
n=1

The Root Test Suppose that lim 3{/|a,| = L. Then, if L < 1, the series converges

absolutely. If L > 1, the series diverges. Finally, if L = 1, the test yields no

information.

Example 7. The Root Test

o 3n
Determine whether or not E 3 converges. Note that because of the pres-

n=1

ence of the term 3", it is reasonable to try the Root Test. We need to compare

lim {/n3/3" = lim n%/"/3 to 1. But, is lim n®*/™ < 3? We can use the Solver to
n—aoo n—oo

discover the behavior of the sequence n3/™. Store the function 'XA(3/X)’ (put the

function on the stack and press ) and use the Solver to generate the following

values:

1.148 for X=100

1.0209 for X=1000

1.0027 for X=10000

and so on. It would seem reasonable to conjecture that lim n
n—oo

3/m < 3 in which

case the series converges by the Root Test. In fact, the limit in question is 1. (You

can show this by taking the natural logarithm of the expression.) Now that we

know that the series converges, we can use the program SERIES (or ) to com-

pute some partial sums in an effort to approximate the sum. In this case, we get

51000 = SQ()()() = 4.125. n

The Ratio Test may be the most frequently used in applications.
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o0

The Ratio Test Suppose that lim m"—fll = L. If L < 1, then the series Z an
n—00 |an| ne1

converges absolutely. If L > 1, the series diverges. Finally, if L = 1, the test yields

no information.

Example 8. The Ratio Test

oo

: 1 . :
Determine whether or not E — converges. We first note that series involving

n!
n=1

factorials can often be examined using the ratio test. Here, we have

 

 

|

lim [041] = lim —%
n—oo Ian| n—oo (TL + 1)'

I n!

" ntoo (n+ L)l
1

= lim =0<1
n—oon 1

The ratio test then says that the series converges absolutely. The next reasonable

question to ask is, “What does the series converge to?” Ordinarily, this remains

unknown. We will again use our program SERIES (or X) to answer the question.

We get:

S100 = 2.71828182846

So00 = 2.71828182846

and so on. In fact, Sigo0 = 2.71828182846. Do you recognize this number? You

should. It’s the irrational number e (at least a 12-digit approximation of e). =

Series can be quite tricky to deal with in practice. However, armed with your

HP-28S/48SX and a full array of convergence tests, you can readily discover when

they converge and compute approximations to the values to which they converge.

Exercises 6.2

In exercises 1-18, estimate the sum of the infinite series, if it converges.

1 1 1 1 1 1
1. 24 -4+ =4+ —+... 2.1l — =4 ——=+4...

+2+8+32+ 2+4 8+
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324142424 PRT.
3 2 4 4 4 12 36

2 4 8 2 2 2
5. —l4 2 — =~ — .. 6. —2— = — = — — —

T 3 9 T 27 3 9 27

7 L 8 3 1Z nd ' Z n2/3
n=1 n=1

0. 3 (1) 10, S (-1yr1 2Z(‘ )" = : Z( ) ntl
n=1 n=1

oo o0
4 -2

1. ) — 12. )—
n=2 n=3

oo oo .

cos(mn) sin(7mn/2)
13.

§

28T N sin(mn/2)
Z n 14 Z 2n
n=1 n=1
oo oo

2 4
15. ) —= 16. Y —=

n=1 \/fi n=2 nvn

17. {Z(—l)n—@—— 18. i(—n"——i—

In exercises 19-22, use the Comparison Test to determine whether or not the series

 

converges.
o0 o0

2 n+1
19. Z—n2_3 20. Z—n3_5

n=1 n=1

oo o0

3 n—1
21. _ 22.
; vn +2 n;l n? +3

In exercises 23-26, use the Root Test or the Ratio Test to determine whether or not

the series converges.
© 9 00 9 n

23.2_:1% 24.2_:1(3+n) 

 

o0 o0

n2n n22m2. 3 2o 26. > "
n=1 n=1

27. In exercise 26 of section 5.1, you were asked to conjecture whether or not

1
/ sin(1/x) dx exists. To argue that it does exist, we will use infinite series.
0

1
Since sin(1/z) = 0 if ¢ = 1/7, 1/2m, 1/3w, ... compute /1/ sin(1/z) dx,

s
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1/m 2/7
/ sin(1/z) dz, / sin(1/z)dz, .... Each individual integral exists but
2/m 3/

does the sum of the integrals exist? Compute the 3 integrals above to see if a

pattern develops. Note that they alternate signs, so the infinite series converges

1/(n+ 1)w
if the sequence a,, = /1/ sin(1/z) dx tends to 0. Using |sin(1/z)| <1,

nmw

show that |a,| tends to O.

28. What are the odds of winning a deuce game in tennis? In this situation, a

player wins the game by winning two points in a row. If each player wins one

point, the deuce starts over. If player A wins 60% of the points, A wins both

points with probability .36 and the points are split with probability .48. Of the

48% split, A wins both of the next two points with probability .36 and they

split points again with probability .48. Argue that player A wins the game with

probability .36 + (.48)(.36) + (.48)2(.36) + (.48)3(.36)+... and compute the sum.

29. A basketball player makes 90% of his free throws. How many would you expect

to be made before the first miss? If the (n + 1)st is the first miss, there are n

made and then 1 missed, which occurs with probability (.9)"(.1) = p(n + 1).
o0

The expected number of made free throws is Z np(n + 1). Estimate the sum
n=0

of this series.

EXPLORATORY EXERCISE

Introduction

Infinite series are useful in many situations. In exercise 27, we saw an infinite series

of integrals. We will see in the next section that infinite series of functions are

important. We take a quick look at such a series in this exercise.

Problems

 Start by doing long division to get =1—x2? 4+ z* — 2%+.... This equation
1+ z2

only makes sense if the infinite series converges. Show that the series converges if

—1 < z < 1 and diverges otherwise. Now integrate the equation term by term to

get arctan(z) = z — 3/3 + 2°/5 — 7/7+.... Again, the equation only makes sense

if the series converges. Show that the series converges if —1 < x < 1 and diverges
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otherwise. Finally, determine all x’s for which the following series converge, and
oo o0

T\" "
timate th 1 f the series for three different z’s: (—) and —.estimate the value of the seri E 5 nE_l -

n=1

Further Study

It turns out that the above results are not unusual. Power series (series involving

powers of x) have what is called a radius of convergence. If a power series converges

on the interval (0,7) then it also converges on (—r,0). The convergence at the

endpoints £ = —r and x = r may differ. Your calculus book has more information

on power series.

6.3 Series Representations of Functions

Infinite series are often used to represent some quantity of interest. The partial

sums are then used to approximate the sum of the series, providing increasingly

accurate approximations as the number of terms summed increases. For instance,

five iterations of Newton’s method may give us a good approximation of the solution

of an equation. The sixth iteration (i.e., adding one more term to the partial sum)

will generally give a better approximation. Finally, the exact solution equals the

limit of the Newton approximations (i.e., the sum of the series).

In this section, we will extend the notion of series representations from those

for single numbers to those for functions. That is, given a function y = f(x), we will

approximate it as a sum of simpler functions (e.g., polynomials), with the property

that the approximation improves as we add more terms to the sum. This may sound

like an ambitious project, but there are numerous important applications based on

such series representations of functions. For instance, we shall see how a music

synthesizer uses a series of pure tones to imitate a particular musical instrument.

We will discuss the two most prominent series representations, Taylor series and

Fourier series.

TAYLOR SERIES

Although we have sometimes called them by other names, we have already seen

some Taylor polynomaals. For instance, what is the best straight-line approximation
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of y = 2 — 17 If we are especially interested in maintaining accuracy near the point

(1,0) we would choose the tangent line to the curve at (1,0), namely y = 2x — 2 (see

Figure 6.1 for an HP-48SX graph). If we are more interested in accuracy near the

point (2,3), we would choose the tangent line at (2,3) given by y = 4z —5 (see Figure

6.2 for an HP-48SX graph). These tangent lines are examples of Taylor polynomials

of degree 1.

FIGURE 6.1 FIGURE 6.2

Since few things in life are linear (i.e., follow straight lines), we need to develop

better approximations than tangent lines. So we ask more difficult questions. For a

function f(z), which quadratic (2nd-order polynomial) function best approximates

it near some point? What is the best cubic approximation? What is the best

4th-order approximation? The following definition provides some answers.

Definition The Taylor polynomial of degree n centered about z = a approximating

the function f(z) is

P.z)=co+ci(z—a)+ca(zr—a) +cs(z—a)® +...+co(z—a)”

. : fD) .where the coefficients are given by c¢; = 1=0,1,2,...,n.
il
 

Example 1. Computing Taylor Polynomials

Compute the Taylor polynomials of degrees 1, 2 and 3 centered about x = 0

for f(xz) = e® — 1. First, note that

F@) = f"@) =(@) = .. = fP(a) = &

We then compute the coefficients co = f(0) =0, c; = f'(0) =1, co = f(0)/2=1/2
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and c3 = f"'(0)/3! =1/6. Thus,

Pi(z)=0+1(z—-0) =2

Note that this is the tangent line at (0,0) as seen in Figure 6.3 [the HP-48SX display

of Py(z) and f(x)]. Similarly,

21
P2(:B)=0+1(x—0)+§(x—0)2:w+%_

[see Figure 6.4 for the HP-48SX graph of P;(z) and f(x)]. Finally,

 
 

 

1 s 1 3 2  z?
P3(z)=04+1(z—-0)+=(z—0)*+=(z -0’ =+ — + —
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FIGURE 6.3 FIGURE 6.4

Figure 6.5 shows the HP-48SX graph of P3(z) and f(x).

327 .f;

.
i 4

%5Ti5

¢ -]

FIGURE 6.5

2 3
You should notice that Py(z) = P(x) + % and Ps3(z) = Py(z) + % Taylor

polynomials of higher order (i.e., higher degree) build on the Taylor polynomials of
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lower order. Also notice in Figures 6.3-6.5 that all three polynomials are close to

the graph of e* — 1 near £ = 0. However, P, remains close for a wider domain of z’s

than P;, and P; in turn remains close longer than P,. That is, our approximations

of e — 1 are improving as the degree of the approximating polynomial gets larger,

just as we wanted! .

Example 2. Taylor Polynomials for sin(z)

Repeat Example 1 for f(z) = sin(z). Note that f'(z) = cos(z), f"’(z) =

—sin(z) and f"'(x) = — cos(x). We then compute the coefficients cg = sin0 = 0,

cp =cos0=1,c; =—sin0/2 =0 and ¢cg = —cos0/6 = —1/6. Then P(z) = z is

the tangent line seen in Figure 6.6 [the HP-28S graph of P;(z) and f(z)]. We also
3

have Py(x) = z, since c; = 0. Finally, P3(z) =z — % [see Figure 6.7 for the HP-28S

graph of Ps(x) and f(x)]. Notice that here Py(x) = P;(z). This points out that the

Taylor polynomial P, is actually a polynomial of degree at most n. You can think

about the fact that P, = P; in the following way. You cannot draw a parabola that

approximates y = sin z any better (at least near = 0) than the straight line shown

  

in Figure 6.6. (Try this for yourself.) .

s e -l- - . ".fib"'/;, ..kfi—r’-'

FIGURE 6.6 FIGURE 6.7

We should note that the HP-28S/48SX will automatically calculate Taylor poly-

nomials centered about x = 0. To obtain the nth degree Taylor polynomial for f(x)

about z = 0, enter the function on the stack. On the next line, enter "X’ (or what-

ever other variable that you are using) and, finally, enter the desired degree on line 1

of the stack. Pressing the soft key will return the desired Taylor polynomial

to the stack. (Recall that TAYLR is located in the Algebra menu.)

For example, to get Ps(z) for f(x) = sinz, enter



256 Sequences and Series

'SIN(X)’
X’
3

The Taylor polynomial Ps(x) is then returned to line 1 of the stack.

Taylor polynomials can be used to approximate all sorts of quantities. For

example, in the exercises in Chapter 3, we saw how to use them to approximate

the solution of a differential equation. Taylor polynomials can also be used to

approximate the value of a definite integral.

Example 3. Estimating the Value of an Integral

1
Use the Taylor polynomial P3(z) found above to estimate /0 sin(z?) dz. Since

: : o z?
P;(x) approximates sin x, we write sinz ~ r — 5 and hence

 

Integrating, we get

1 1 6 1 1
/O sin(z?) dz ~ /0 (x2 - %—) dr = 3 ;o .30952

The exact value is .31027. .

The HP-28S/48SX uses Taylor polynomials to approximate the value of definite

integrals. This is especially evident on the HP-28S. If you ask it for an antiderivative
2 4

of sin z, and tell it that sin z is a polynomial of degree 3, it happily returns %— — 34—,

which is an antiderivative of Ps(x).

Example 4. Higher-Order Taylor Polynomials

Compute P3(z) and Pig(x) centered about x = 0 for f(x) = sinx and compare

their graphs to that of y = sinz. Enter

"SIN(X)’



6.3 Series Representations of Functions 257

X’
8

Then, graph the function by pressing on the HP-28S or

on the HP-48SX. Finally, graph y = sin z on top of the graph of Ps(x)

(using OVERD on the HP-28S or by simply graphing sinz without first pressing

on the HP-485X). The HP-48SX graph is shown in Figure 6.8. A similar

sequence produces the (HP-48SX) graphs of Pjg(x) and sinz shown in Figure 6.9.

Note that, to within the resolution of the calculator’s graphics display, Pig(z) =

  

sinz for all z in [—6, 6]. .

l 3.2ty 3.2y
\ | |

A TN L e WS K,-5.5 ‘\__,_.-’; Y5 -6 —_,.“i i

; |{ y-31} | -31}

FIGURE 6.8 FIGURE 6.9

We have so far accomplished at least part of our goal: we can now find increas-

ingly accurate polynomial approximations to a given function. The final question is:

is the function given exactly by the limit of the sequence of approximations? The

following result tells us when the answer is yes. First, we give a name to this limit.

Definition For a function f(z), the series

©_ £(n) (g
Zf n'( )(x_a)n

is called the Taylor series expansion for f(x) about z = a.

Theorem 6.1 Suppose that the function f has derivatives of all orders (i.e., f’,

f"”, f", ... all exist) in some open interval containing z = a. If the Taylor series

o £(n)(q
Zf ()(x_a)n 

n!
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converges for each z in the interval, then it converges to f(z) for all z in the interval.

Thus, we may compute the Taylor series and then determine for which z’s the series

converges. If the series converges in an interval containing z, then the series must

converge to f(x). We do not have to worry about the series converging to the “wrong

answer.”

Example 5. Using Taylor Series to Find Limits

Recall that in Chapter 2, we discussed the problem ofloss of significance errors

in computing limits. Here, we use Taylor series to argue that

5 l—cosz 1

xlir}) .’172 - 2

Recall from Example 5 of section 2.2 that the Solver cannot accurately compute the

values of the function for small values of x. As an alternative to using the Solver,
2 4 6

we first compute the Taylor series 1 — 5 + %— — %'— + ... for cos . Identifying the

. (=1)"z?" : :
coefficients as a,, = ——(—2)—'—, we can use the Ratio Test to prove that the series

n)!

converges for all z. It is then meaningful to write

2 gzt 6

=] - — — - — ..COSZ 5 + A ol +

It follows that

x2 x*r x5
l—cosx:?—fi+—T+

and

l—cosz 1 z2 x4

1 1 2 4

We then conclude that lim CoST _ lim |- — r + r + .| = l
T— 2 z—0 |2 4! !

The reader should beware that our calculations are “formal.” That is, they look

right, but we have not taken the care to show that each step in the derivation is
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legal and meaningful (for instance, for which z’s does the series 3”1 + o + ...

converge?).

FOURIER SERIES

One of the benefits of Taylor series is that they enable us to calculate values

such as sin(1) using only addition, subtraction, multiplication and division. This is

the language of humans and our computers. However, nature’s language is rarely

arithmetic. Nature often comes to us in sine waves: sight and sound, for instance,

are essentially wave phenomena. In applications involving waves, sines and cosines

are typically simpler and more natural than polynomials. We are then led to solve

the following problem. Given a function f(x), represent f as a series of sines and

cosines.

This may be a bit ambitious, so we start with a simpler problem. Suppose

that we know in advance that a function is the sum of a few sines and cosines. For

instance, suppose

f(x) = a1 cosx + a3 cos 2wz + by sin Tz + by sin 27x

Given f(z), how can we determine the constants a;, a2, by and by? The solution

may not be obvious, but we only need integration to understand it. First, multiply

the above equation by cos 7z and then integrate from —1 to 1. We get

1 1 1
/lf(m)cosrmdmzall cos27r:cdx+a2/ 1c0327ra:cos7rwda:

1 1

+ by / sin rx cos Tz dx + b, / sin 2wz cos mx dx

This looks like a mess, but evaluate the integrals. You should find that the first

integral on the right is 1 and the other 3 integrals are 0! Thus

1
/ . f(x)cosmrdr = a;

and we have solved for a;. How can we find a;? Multiply the original equation by
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cos 2wz and integrate from —1 to 1. Here, we get

1 1 1
/ cos2rrdr =a, / coS Tx coS 2mx dx + as / cos? 2z dx

-1

11

+ by / sin Tz cos 2wz dx + bo / sin 27z cos 2wx dx
-1

Again, all but one of the integrals on the right side are 0 and we get

1
/ . f(x)cos2mrdr = ag

You should be able to supply the details behind the remaining formulas:

1
/ 1f(:c)sin7ra:dar; = by

1
/ 1f(:l:) sin 27z dx = by

We now present the general result.

For a function f, define the Fourier series of f on the interval [—L, L] by

?0 Z(ancos + by, sm?)

By essentially the same process as that illustrated above, we find that

1 L
= Z/—L f(x)cos(nmz/L)dx

1 L ,
= Z/—L f(x)sin(nrz/L)dx

The constants a,,, n =0,1,2,... and b,, n = 1,2, ... are called the Fourier coefficients

of f. For details of this, see Churchill and Brown, Fourier Series and Boundary
 

Value Problems.
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Theorem 6.2 Suppose that f and f’ are continuous on the interval [—L, L] except

for possibly a finite number of jump discontinuities. Then, the Fourier series for f

on [—L, L] converges to f(x) at all points where f is continuous.

This is indeed a nice result! The function f does not even have to be continuous

for the series to converge. However, Fourier series are often very slowly converging

(i.e., it takes many terms to obtain a reasonable approximation), as we shall see in

the examples to follow.

Example 6. Fourier Series

Compute the Fourier series for f(x) = 22 on [—1, 1] and graph the 4th and 8th

1
partial sums of the series. We compute the coefficients a,, = / z? cosnmz dz and

1
b, = / z? sin nmz dz using integration by parts. We get

-1

o1 1 1 ,
an = [z“— sinnrx + 20—— cosnnxr — 2—— sinnwz|-,

nm n2m? n33

4(-1)" ,
= —-————51271_2 if n # 0

5 1 | 1 1
b, = [-2°— cosnmx + 2r—— sinnnx + 2—— cosnnz]_; =0

nmw n2m? n3m3

1 2
Also, ag = / z?dx = 3" The Fourier series for f is then

-1

n

 
2. 4(-1) 4 1 1 1

+n§1 22 cosmra::§+F[—cos7r:c+zc032m:—§cos37ra:+1—6(:os47rx+...]

W
l
=

The HP-48SX graphs of y = z2, together with the 4th and 8th partial sums, are

shown in Figures 6.10 and 6.11, respectively.

Note that in both cases, the curves are essentially identical on the interval

[—1,1]. Although the curves are not particularly close outside of [—1, 1], this is not

a deficiency, since our only intention in finding the Fourier series expansion was to

find an approximation valid on [—1, 1]. .
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FIGURE 6.10 FIGURE 6.11

Example 7. Fourier Series

Repeat Example 6 for f(x) = x. This time,

1

an =/ xcosnmrdr =0forn=20,1,2,...

1
bn:/ rsinnmx dx

 
1 . ,

= [—z— cosnmx sinnmrz]t[ + 121nm n2m?

—2(=1)"
nmw

The Fourier series is then

1 1 1
—flj[sinwa: 3 sin 27z + 3 sin3rx — 1 sin4nx + ...]

The HP-48SX graphs of y = x, together with the 4th and 8th partial sums, are

shown in Figures 6.12 and 6.13, respectively. .

Figures 6.10-6.13 may surprise you. It really is possible to approximate parabo-

las and straight lines with sums of sines and cosines. The computation of the Fourier

coefficients was not easy, but with practice, the symmetry tricks (e.g., in Example

7, a,, can be seen to be 0 because the integrand, x cosnrz, is an odd function and

the integration is over a symmetric interval) and integration by parts will become

routine.

The series derived in Example 7 is very important in the design of music syn-

thesizers. On an oscilloscope, each musical instrument has an identifying waveform
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FIGURE 6.12 FIGURE 6.13

(see Figures 6.14 and 6.15 for the waveforms of a saxophone and clarinet, respec-

tively; reprinted with permission from UMAP module 588, “Music and the Circular

Functions,” by Dorothea Bone). A pure tone is represented by a sine wave. By com-

bining a small number of pure tones in the proper proportions, a music synthesizer

approximates the sounds of various instruments.

How are the proper proportions determined? The answer is: by using Fourier

series!

Y VAVVA
Saxophone G# Clarinet C

209 vibrations per second 260 vibrations per second

FIGURE 6.14 FIGURE 6.15

The function y = x generates one of the two basic non-pure waves built into

synthesizers (the other, called a square wave, is discussed in the exercises). This

wave is called a sawtooth wave. The proportions of the various sine terms (called

the harmonics) are crucial. In absolute value (with 2/7 factored out) the size of the

nth Fourier coefficient in the expansion of f(x) = z is 1/n. In the language of music
o

1
synthesizers, the “harmonic content” varies as 1/n (recall that Z — is known as the

n
n=1

harmonic series). By itself, the sawtooth wave represents an oboe-like sound, but

it is easily modified (by varying the Fourier coefficients) to produce other familiar

tones.
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Exercises 6.3

In exercises 1-6, compute the Taylor polynomials of degrees 1, 2 and 3 of f(x)

centered at x = a and sketch the graphs.

1. cosz,a=0 2.2 —-1,a=0 3. Vz+1,a=0

.—L,a:O 5. sinxz,a=Tm 6. Inz,a=1
r+1

In exercises 7-10, use the TAYLR command to compare the graphs of Ps(z), Pig(z)

and f(x). In each case, take a = 0.

1
7. cosx 8. vVr+1 9. 10. tanz

z+1
 

In exercises 11-14, use Taylor series to argue that the limits are correct.

. T—sinzr . T—sinz 1

Mo= 12. i—5— =5
. ef—1—-z 1 . Inzx—(z-1) 1

B=) Wls=y

1
In exercises 15-18, estimate / f(x)dzr using P3(z) for cosz (in exercises 15 and

0
17) or v/x + 1 (exercises 16 and 18).

15. f(x) = cos(x?) 16. f(z) =vz2+1

17. f(x) = cos(x?) 18. f(z)=vz3+1

In exercises 19-26, determine the first 4 terms of the Fourier series for f(x) on [—1,1]

and graph the 4th partial sum. HINT: in exercises 19-22, use Examples 6-7.

19. f(x) =z -1 20. f(z)=2x%2-1 21. f(x) =2z -1

22. f(z)=3z2 -1 23. f(z) = |z| 24. f(z) = 3sin(2nz)

25, f(x)z{_l r<0
1 >0

-1/2 < -1/6

26. f(z) =< sin(mrz) —-1/6<zx<1/6

1/2 z>1/6

27. The Fourier series for the function in exercise 25 is the square wave which music

synthesizers use. Describe the harmonic content of the square wave.

28. The Fourier series for the function in exercise 26 represents the clipping which

a guitar amplifier does. The clipped function has nonzero harmonic content for

all n, with a richer tone than a pure sinx. Describe the harmonic content.
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EXPLORATORY EXERCISE

Introduction

Fourier series is a part of the field of Fourier analysis, which is vital to many en-

gineering applications. Fourier analysis includes Fourier transforms (you may have

heard of the Fast Fourier Transform, or FFT) and various techniques for applying

Fourier series to real world phenomena. We get an idea of how these techniques

work below.

Problems

Given measurements of a signal (waveform), the goalis to construct the Fourier series

of the signal function. We start with a simple version of the problem. Suppose the

function has the form f(z) = a¢/2 + a1 cosmz + as cos 2z + by sinwx + by sin 27x

and we have the measurements f(—1) = 0, f(-1/2) =1, f(0) = 2, f(1/2) =1

and f(1) = 0. Plugging into f we get f(—1) = ao/2 — a1 + a2 =0, f(—1/2) =

ap/2 —ay — by =1, f(0) = ap/2 4+ a1 +az = 2, f(1/2) = ag/2 —az + b =1

and f(1) = ag/2 — a; + az = 0. Note that by never appears in an equation, and

the f(—1) and f(1) equations are identical. We have 4 equations and 4 unknowns.

Solve the equations [HINT: start by comparing the f(1/2) and f(—1/2) equations,

then the f(0) and f(1) equations]. You should conclude that f(z) =1+ cosmz, and

we have no information about by. To get b, we would need another function value.

Thus, the number of measurements determines how many terms we can find in the

Fourier series. Repeat the above for measurements f(—1/2) = —1/2, f(0) = 0,

f(1/2) =1/2 and f(1) = 0 and compare to the Fourier series in Example 7.

There is, fortunately, an easier way to determine the Fourier coefficients. Recall

1 1

that a,, = / f(x) cos(nmx)dr and b,, = / f(x)sin(nmx) dzr. From the function
—1 -1

values at t=—1/2, 0, 1/2 and 1, we can estimate the integral. Which approximation

rule gives the correct values of a,, and b,, in the above examples? Use this approxi-

mation rule to find the relevant constants given f(—3/4) = —3/4, f(—-1/2) = —1/2,

F(=1/4) = —1/4, (0) = 0, F(1/4) = 1/4, f(1/2) = 1/2, £(3/4) = 3/4 and f(1) = 0.
Again, compare to the series in Example 7.

Further Study

The general formulation of our work above is called the inverse Fourier transform.

This can be found in numerous engineering mathematics books (see, for example,

Orthogonal Transforms for Digital Signal Processing by Ahmed and Rao) although
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it is typically presented in terms of complex variables. For an enjoyable overview of

several current applications of Fourier analysis, see Visualization by Friedhoff and

Benzon, Abrams Publishers.
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Answers to

Odd-Numbered

 

o

Exercises

Section 1.1

1. 4.41666666667 3. .33333333332 5. 12.6419753087

7. 1.19522860933 9. 24.2901663962 11. 3.76219569108

13. .984375 — 1.0 15. .857142857143 — 1.0

17. 2.97604617604 — =« 19. .499999999999 — .5

21. n =39 23. n = 40(c = 40), n = 39(c = 120)
33. P(1970) = 3.594 billion, P(1980) = 4.376 billion, P(1985) = 4.909 billion, and

P(2035) = 4.130 x 1053 billion

Section 1.2

1. 3 roots 3. 1 root 9. no roots

7. 3 roots 9. no roots

13. vertical asymptotes: x = —3, x = 1; horizontal asymptote: y =0

15. no vertical asymptotes; horizontal asymptote: y = 2

17. no vertical asymptotes; oblique asymptote: y =«

19. (.10365,1.4146), (16.4817,66.9268)  21. + (.7391,.7391)

23. (.5671,.5667) 25. oblique asymptote: y = 2x — 2

27. no oblique asymptote, looks like a parabola for |z| large.

29. Similar to y = 2™~™ (true for n > m).

31. It looks circular.

Section 1.3

1. —1, 1.70997594668 3. —1, —2.8311772072

5. £1.41421356237 7. 1.409624004 , —.636732650807

269
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Section 1.3 (cont.)

9. (2 —2)(z% + 3) 11. 10, £1.41421356237

13. 0 15. max at .183505, min at 1.816496

17. min at 1.20507104 19. 14.1421-by-14.1421

21. same as exercise 19

23. f(z) is nearly 0 for x between —.8 and .8.

25. 1[m — arcsin(32R/S?)], (27 + arcsin(32R/S?)]

Section 2.1

1. -1/2 3. does not exist 5. 0 7.3/2

9.0 11. 0 13. 1/4;1/m; 1/c

15. does not exist, does not exist, 0

17. 0 19. 6 21. 1

Section 2.2

1. .25; around x = 50,001 3. 1; around z = 1 x 1010

5. 1/6; around z = .0001 11. 3; does not exist

13. r=1 r=10 x = 100 x = 1000

sin Tx 0 0 0 0

sin 3.14x .00159 —.0159 —.159 —.9997

15. 16 x 10%%Y is stored as 9.99999999999 x 10499,

Section 2.3

1. e=.1:6=.0333; € =.05: 6 =.01666 (Your values for § could be smaller.)

3. e=.1:6=.316227766017; ¢ = .05 : 6 = .2236

5. €=.1:6=.39;,¢=.05:6 =.1975

7. ¢e=.1:6=.0465; ¢ = .05 : 6 = .0241

19. .0066

Section 3.1

1. 2 3. -1 50 7.1

9. 2 11. -1 13. 0 15. 1

19. 2 21. -1 23. 0 25. does not exist

Section 3.2

1. 0.0 3. 2.01940986178 5. .136082763488

7. 2rsinz + r?cos T 9. 1/(z? +2) — 22%/(x? + 2)?

11. 2(sinz + zcosz)rsinx



13. h

.01

.001

15. h

1

.01

.001

17. h

1

.01

.001

19. h

1

.01

.001

Answers to Odd-Numbered Exercises 271

Forward

995004165278

999950000417

9999995

Forward

0498756211

.004999875

.0005

Forward

0990049833749

.00999900005

.000999999

Forward

990099009901

999900009999

999999000001

Backward

995004165278

999950000417

9999995

Backward

—.0498756211

—.004999875

—.0005

Backward

—.0990049833749

—.00999900005

—.000999999

Backward

990099009901

999900009999

999999000001

Centered

99500416528

999950000415

.9999995

Centered

0.0

0.0

0.0

Centered

0.0

0.0

0.0

Centered

9900990099

99990001

.999999

21. All centered differences are 0.

23. d/dx [sinz°] = d/dx [sin(z7/180)] = (7/180) cos(zm/180)

25. .5

Section 3.3

1. f(z)
T(x)

3. f(z)

T(z)

5. f(z)
T(x)

7. f(z)

T(z)
9. f(z)

T(x)
11. f(x)

T(z)
13. —.41825

1

-3

_1/\/5

—7/4

1.4142

1.5

1.0772

1

7071

1

1353

—1

15. 2.05

29. 11 seconds

0 4 9

~1 3 5

—1/2 1/2 1/v2

—7/6 /6 7/4

1.7320 2 2.2360
2.0 2.5 3.0

1.2599 1.4812 1.7099
1 1 1

.8660 .8660 7071
1 1 1

3678 2.7182 7.3890
0 2 3
17. 1.54326 19. P - 2Pz/R
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Section 3.4

5. 3.0 7. 2.0 9. 2.3346

11. 1.74339 13. 29.6923 15. 5

17. 2.51066 19. 1.7924 21. 3.4657 hr

23.1,1/2,1/4,1/8

25. < '(B-A)/H’ EVAL 'N’ STO 1 N FOR I EULER NEXT >

Section 4.1

1. —1.2184; BIS-132 steps, NEWT-4 steps, SCNT-5 steps

3. 2.0238; BIS-13 steps, NEWT-5 steps, SCNT-5 steps

5. —.2975; BIS-13 steps, NEWT-3 steps, SCNT-7 steps

7. —1.10485; BIS-13 steps, NEWT-3 steps, SCNT-7 steps

9. 1.73205 11. 2.1381 13. .73908

15. Division by 0 on second step; try o = .5: z = .4362.

17. Division by 0 on first step; try a = 1.5 and b = 2: x = 1.870495.

19. Division by 0 with = 1; multiply by 22 + 3z — 4: = = 1.414.

21. (z —1)(z®> +4) = 0 if x = 1; one Newton step.

23. (z — 1)%(z? — z + 3) = 0 if £ = 1; 14 Newton steps with TOL=.0001

25. £ =1.847, d = 8 x 1.847/5 — 2.153 = .8022

27. N=12 (exercise 1), N=14 (exercise 3)

Exploratory: <— A B ’.01*(B—A)’ EVAL 'D’ STO 0 100 FOR I 'A+D*I’ EVAL

DUP 110 FOR J NEWTO NEXT .5 + FLOOR R—C NEXT > where NEWTO

is program NEWT with the DUP removed.

Section 4.2

1. 1 root 3. 2 roots 5. 2 roots

7. 4.91718592529, 7.7241531924, 11.0859017288

9. —2.82842712474, —2.0, 2.0, 2.82842712475

11. —1.73205080757, 1.73205080757, 10.0

13. 1.0 (multiple), 2.0 15. 0.0 (multiple)

21. 2.2599210499

Section 4.3

1. f(1) = 2.0 (absolute max), f(—2) = —52.0 (absolute min)

3. f(1.73205080757) = —25.57 (absolute min),

£(~1.73205080757) = 57.57 (absolute max)
5. f(—.48018994) = —3.36 (absolute min), f(3) = 982 (absolute max)
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7. f(0) = 3 (absolute min), £(2.2360679) = 3.16666 (absolute max)

9. f(1.2646054) = —.81844344 (absolute max), f(1) = f(3) = —1.0 (absolute min)

11. f(4) = —14.109 (absolute min), f(2.288929) = 1.945 (absolute max)

13. f(0) = 0 (absolute min), f(2) = 4.27 (absolute max)

15. z = 3.9144

17. T(1.0739472) = 2.776 hours (absolute min), saves .1069 hours (6.4 minutes)

21. .1877 sec

Section 5.1

1. .38

7. 2.0

13. 2.6666

19. does not exist

27. .577350269189, 1.52752723165, 2.51661147842

Section 5.2

1. 10/3

23. 116 ft/sec (x = 105)

3.1/3 5. 3/4

9. 1.0 11. 1.6

15. 3.464 17. 4.0

21. exists 25. 1.166666

3. 39.06666 5. —.093138499

7. 2.875 (Trapezoid Rule); 2.86667 (Simpson’s Rule)

9. 1.94375 (Trapezoid Rule); 1.9458333 (Simpson’s Rule)

11.

13.

15. .58826

23. All 3 are exact.

N

4

8

16

4

8

16

Midpoint Trapezoid Simpson’s

5.875 6.25 6.0

5.96875 6.0625 6.0

5.9921875 6.015625 6.0

Midpoint Trapezoid Simpson’s

189697265625 .220703125 .200520833333

197402954101 .205200195312 .200032552083

199349403381 .201301574707 .200002034505

17. 1.4436 19. 7 (use RIEM)

25. Only Simpson’s Rule is exact.

27. Es,, = So,, + (Szn - Sn)/15

Section 5.3

1. 1.8458

7. .86466

13. 67.848

19. 2.3364m

3. 2.9205 5. .9545
9. J=2.133, v; =57 mph 11. 2160
15. 1.44829 (vs. 1.44797) 17. 2.96867n
21. 670.886 23. —6400
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25. .2 27. 7500 29. 9466.31

31. —1.973475, —5.608858, —8.358723; length of ground covered

Section 5.4

1.1

7. 2w/3

21. w

27. 3.09748

Section 6.1

1. 2.0

7.30,N=1

13. does not exist

19. 0.0

Section 6.2

1. 8/3

7. 1.202

13. —.693

19. converges

25. converges

Section 6.3

3. 21.333333333

9. 167

23. .5435

29. .5708

3. 0.0

9. 2.0, N >1/e

15. 0.0

21. does not exist

3. diverges

9. —2.08

15. diverges

21. diverges

29. 9

1. Pi(z) = 1; P(z) = P3(z) = 1 — 122

3. Pi(z) =1+ 3z; Pa(x) =1+ 32 — 2%, P3(z) = 1+ 32 — 12?2 + LB

5. Pi(z) = Py(z) = —(x — 7); Ps(z) = —(x — ) + %(m — )3

15. .9 17. .92857

5.

19. .7854

25 w/12

31. n (n odd) or 2n (n even)

5. 1.0, N > 1/e

11. 0.0

17. does not exist

23. factorials

5. —3/5

11. 2.578

17. diverges

23. converges

2 1 1 1
19. -1+ —[sinmx — = sin 27z + = sin 37z — = sindnzx + ...]

T 2 3 4

4 1 1 1
21. -1+ —[sin7z — = sin27z + = sin37z — = sindnzr + ..]

™ 2 3 4

1 -4 1 1 1
23. — — — — —3 5 + - [cos7r:1:+ 9cos37m:+ 25 cos dnx + 9 cos Trrx + ]

4 . 1 . 1 . |
25. —[sinmx + = sin 3wz + = sinbnx + = sin 7wz + ...|

T 3 5 7

27. The harmonic content varies as 1/n for odd n.



Absolute maximum, 167

Absolute minimum, 167

Alternating Series Test, 247

Arc length, 214

Area, 185-199

between curves, 210, 220

in polar coordinates, 224-228

signed area, 192-195

Asymptote,

horizontal, 24, 38, 68

oblique, 31, 39

vertical, 24, 38, 66

Bifurcation, 86

Bisections, Method of, 133-138

BIS program, 136

Bohr radius, 216

Calculus of variations, 184

CENTER program, 30

Chaos, 85

Comparison Test, 245

Complex numbers, 237

Concave down (up), 116

Convergence,

absolute, 247

of infinite series, 240-241

Index

Convergence (Cont.):

of Newton’s method, 166

of a sequence, 232-233

tests for infinite series, 245-249

Critical value

Decay, radioactive, 121

Decreasing function, 116

Derivative, 75, 96, 97-117

on calculator, 111-113

chain rule, 111

definition, 111

Derivative,

first derivative test, 117

numerical approximations,

backward difference, 113

centered difference, 114

forward difference, 113

second derivative test, 117

Differentiable, 111

Differential equations, 121-130

Dining room problem, 17

Directory, 26

Dynamical system, 238

Editing, 6, 12

Euler’s method, 45, 121-130

EULER program, 126

275



276 Index

Expected value, 17

Extrapolation, 204, 209

Extreme Value Theorem, 168

Extremum, 48-50, 167-184

Fourier analysis, 265

Fourier series, 259-263

Fractal, 86, 155, 238

Fundamental Theorem, 199-200

Geometric series, 244

GRAPH program, 28

Graphing,

on HP-28S, 20-34

on HP-48SX, 34-45

interactive plot mode, 21

intersections of, 32, 41, 48

utilities, 20, 25-31

Harmonic series, 242

Harmonics, 263

Impulse, 212

Increasing function, 116

Infinite loop, 17

Infinite series, 239-251

alternating, 247

convergence of, 240

geometric, 244

harmonic, 242

p-series, 245

SERIES program, 243

tests for convergence, 245-249

Insert mode, 7

Integral, definite,

on calculator, 193

definition, 191

Integral, definite (Cont.):

existence of, 195

Integration, 185-230

Interactive plot mode, 21

Intermediate Value Theorem, 133

Intersections of graphs, 32, 41, 48

Lagrange Multiplier Theorem, 184

Length of curve, 214

Limit, 5, 55-71

definition of, 91

Limit Comparison Test, 246

Linear algebra, 54

Linear approximation, 44

Local variable, 10

Loss of significance errors, 76-86

Mandelbrot set, 238

Matrix, 53-54

Maximum, 48-50

Mean Value Theorem, 198

Midpoint rule, 202-204

Minimum, 48-50

MSEC program, 101

NEWF program, 27

Newton’s method, 138-143

NEWT program, 140

Normal distribution, 211

One-step program, 12

Optimization problems, 167

Orthogonal functions, 219

OVERD program, 30

Partition, regular, 188

Pinching Theorem, 59

Pixel, 186



PLOT program, 27

Polar coordinates, 222-228

POLAR program, 226

Population explosion, 18

Probability, 17, 211, 251

Ratio Test, 249

Replace mode, 7

RESET program, 31

Riemann sum, 186-191

lower sum, 191

RIEM program, 190

upper sum, 191

Root Test, 248

Roots, 131-154

multiple, 155-166

multiplicity n, 161

RPN, 2, 16

Sawtooth wave, 263

Scaling, 22-25, 36, 39

Scientific notation, 16

Secant method, 147-151

SCNT program, 150

Sequences, 231-239

convergence of, 232

dominating, 236

of partial sums, 239

Sign reversal, 47

Simpson’s rule, 206

SIMP program, 207

Index 277

Soft key, 6

Solve menu, 5

Solver menu, 6-10, 45-54, 132

Square wave, 264

Stack menu, 7

Summation notation, 240

Tangent line, 44, 97-107

approximations, 117-121, 252

MSEC program, 101

Taylor polynomials, 44, 120, 252-259

Taylor series, 257

Trapezoid rule, 202-204

TRAP program, 203

User-defined function, 10-12

User menu, 10

Var menu, 10

Velocity, 107-110

VEL program, 109

Volume of revolution, 214

Washers, method of, 214

Zeno’s paradox, 17

Zeros, 34, 45, 131-154

Zoom,

in, 23, 29, 36

out, 22, 28, 36

ZBOX program, 29

ZOOM program, 28





Finding the Commands on the HP-48S and HP-48SX

Explanation: Directory path and page are given in parentheses. For example,

REPEA (Prg/Brch-2) means that the command REPEA is on the second page

of the Brch subdirectory of the Prg directory. To find REPEA, press| PRG

[BRGH [NExT)
AREA (Plot/Plotr/Draw/Fen)

CENT (Plot/Plotr/Draw)

CLLCD (Prg/Dspl-4)

COORD (Plot/Plotr/Draw)

CRDIR (Memory)

C—R (Prg/Obj-2)

DEPTH (Prg/Stk)

DO (Prg/Brch)

DRAW (Plot/Plotr)

DRAX (Plot/Plotr-3)

DROP2, DRPN (Prg/Stk-2)

DUP, DUP2, DUPN (Prg/Stk-2)

EDEQ (Solve, Plot)

ELSE (Prg/Brch-3)

END (Prg/Brch-2)

ERASE (Plot/Plotr)

EXTR (Plot/Plotr/Draw/Fcn)

FCN (Plot/Plotr/Draw)

FIX (Modes)

FOR (Prg/Brch)

FUNC (Plot/Ptype)

IF (Prg/Brch)
IFTE (Prg/Brch-3)

ISECT (Plot/Plotr/Draw/Fcn)

LABEL (Plot/Plotr/Draw)

LCD—, —LCD (Prg/Dspl-4)

NEXT (Prg/Brch-2)

NEW (Plot)

ORDER (Memory)

PLOTR (Plot)

POLAR (Plot/Ptype)

PTYPE (Plot)

REPEA (Prg/Brch-2)

RESET (Plot/Plotr-2)

ROLL, ROLLD (Prg/Stk)

ROOT (Plot/Plotr/Draw/Fcn, Solve)

R—C (Prg/Obj-2)

SCATR (Stat-3)

SOLVR (Solve)

START (Prg/Brch)

STD (Modes)

STEQ (Plot, Solve)

TAYLR (Algebra)

THEN (Prg/Brch-2)

UNTIL (Prg/Brch-2)
WHILE (Prg/Brch)

XRNG (Plot/Plotr)

YRNG (Plot/Plotr)

ZBOX (Plot/Plotr/Draw)

ZOOM (Plot/Plotr/Draw)

*H (Plot/Plotr-3)

*W (Plot/Plotr-3)

< (Prg/Test-2)

> (Prg/Test-2)

2 + (Stat)

I (Mth/Prob)

All other HP-48S/48SX commands used in this book are on the keyboard.
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