
ADVANCED GRAPHING
FOR THE HP 28S

IS
(hF) O]

ROURNCED
ULRTOF

Brian Maguire

EduCALC
27953 CABOT ROAD
LAGUNA NIGUEL, CA 92677 U.S.A.

(714) 582-2637

Advanced Graphing

for the HP 28S

Copyright ©1990 by Brian Maguire
All rights reserved

Acknowledgments: My extreme thanks to Judy Zavisa, whose time
and patience helped make this book possible.

Copyright: Copyright © 1990. All rights reserved. No portions of
this text may be copied, electronically or mechanically, nor stored in
a retrieval system without written permission of the author.

Disclaimer: No warrantee, expressed or implied has been made with
regard to the contents of this book, and keystroke procedures
herein. They are presented on an "as is" basis with out guarantee of
merchantability or use for any special purpose. The buyer, not the
author nor the publisher, shall bear all cost of incidental or
consequential damage due to any error in this text.

TABLE OF CONTENTS

CHAPTER ONE
INTRODUCTION

What's Between the Covers?
What to do First
A Basic Outline of the Remaining Chapters .
About each Program Listing
Program Listings

PART A

10
11
13
17

BASIC GRAPHING AND DRAWING PROGRAMS

CHAPTER TWO
GRAPHING POLAR EQUATIONS

SECTION ONE
REFERENCE

Introduction
Program Table
Listings

SECTION TWO
EXAMPLES

About Polar Coordinates
Drawing a Circle Using the PLOT Menu
Drawing a Circle Using the Polar Graphing Menu
More Examples
ADRW as a Subprogram
Polar Graphing Menu Summary

27

28
28
29
30

CHAPTER THREE
DRAWING CHARTS

SECTION ONE
REFERENCE

Introduction
Program Table
Listings

SECTION TWO
EXAMPLES

Introduction
Storing Data
Choosing a Print Size
Choosing a Radius
The Pie Chart Parameter
Drawing a Pie Chart
Finding the Area of any Section
Labeling the Percentage of each Section
A Pie Chart Using Small Print
nDRW as a Subprogram
Pie Chart Menu Summary
Small Print Creation Menu Summary

CHAPTER FOUR
DRAWING SHAPES

SECTION ONE
REFERENCE

Introduction
Program Table
Listings

SECTION TWO
EXAMPLES

Introduction
Defining a Basic Polygon
The Shape Parameter List (SPAR)

99

100
100
101
102

117
117
117
118

Drawing Polygons
Drawing Stars
SDRW as a Subprogram
Shape Drawing Menu Summary

CHAPTER FIVE
FRACTAL DRAWING

SECTION ONE
REFERENCE

Introduction
Program Table
Listings

SECTION TWO
EXAMPLES

A Simple Fractal
Getting Started
Creating an Initial Curve
Creating a Freehand Initial Curve
A Shape as an Initial Curve
Storing a Predefined Initial Curve
The Model Construction
The Model Construction Editing Menu
Creating a Freehand Model Construction
Using a Predefined Format
Storing a Predefine Model
Viewing a Model
Setting the Number of Replacements
The Fractal Drawing Program (FDRW)
The Status of The Fractal Parameters
Example 5.1
Example 5.2
Example 5.3
Example 5.4
Example 5.5
Fractal Drawing Menu Summary
Fractal Editing Menu Summary
Initial Curve (Shape) Editing Menu Summary

118
121
124
126

127

128
128
129
130

157
157
159
159
159
161
161
161
162
162
163
164
164
164
165
165
165
167
169
170
173
174
175
176

PART TWO

ADVANCED GRAPHING PROGRAMS

CHAPTER SIX
ADVANCED GRAPHING 177

SECTION ONE
REFERENCE 178

Introduction 178
Program Table 179
Listings 181

SECTION TWO
EXAMPLES 229
Introduction 229
About Advanced Graphing Procedures 229
The Advanced Graphing Selection Menu 230

THREE DIMENSIONAL GRAPHS 231

A Three Dimensional Graph 231
Using the Three Dimensional Menu 233
The Basics Behind DDRW 233
The Three Dimensional Parameter List 234
Variable Lists 235
Adding a Variable List 235
Multiple Variable Lists 236
Defining the Independent Variables 236
Drawing a Sphere 237
Drawing a Three Dimensional Sine Wave 239
Another Sine Wave Example 239
Different Axis Assignments 240
Summary of Axis Assignments 247

A 3-D Saddle 247

EXTENDED GRAPHS 249

Introduction 249
The Extended Graphing Parameters 250
Printing an Extended Graph 250
Display Adjustments for Printed Graphs 250
Saving an Extended Graph Internally 251
Viewing an Extended Graph 251
An Example 252

ANIMATED GRAPHS 254

Introduction 254
The Animated Graph Menu 254
About the Animated Graphing Program (MDRW) 255
The Animated Graph Parameters (MPAR) 255
Defining the Drawing Program 256
Defining the Number of Frames 256
Variable Lists 256
Adding and Deleting Variable Lists 257
Using MDRW 257
Printing an Animated Graph 258
Storing an Animated Graph 259
Viewing an Animated Graph 259

THE GRAPHIC FILE MENU 261

SUMMARY OF MENUS 263

The Advanced Graphing Selection Menu 263
The Three Dimensional Menu 264
The Extended Graph Menu 265
The Animated (Motion) Graph Menu 267
The Graphic File Menu 269

CHAPTER SEVEN
MORE EXAMPLES OF ADVANCED GRAPHS 271

Introduction 272

ROOT LEVEL AND ADVANCED COMBINED 272

Example 7.1
Drawing a Cone in the Polar Menu 272
Example 7.2
A Three Dimensional Polar Equation 273
Example 7.3
An Extended Pie Chart 274
Example 7.4
Animated Shapes 275

EXTENDED GRAPHS OF FRACTALS 277

Example 7.5 (example 5.1 redrawn) 277
Example 7.6 (example 5.2 redrawn) 278
Example 7.7 279

COMBINING ADVANCED GRAPHING PROGRAMS 281

Example 7.8
An Extended Pyramid 281
Example 7.9
A Large Sphere 283
Example 7.10
A Large Saddle 285
Example 7.11
A Large Sine Function 286
Example 7.12
An Animated 3-D Sine Functicn 287

APPENDIX A 291

APPENDIX B 295

INDEX 299

CHAPTER ONE INTRODUCTION

CHAPTER ONE

INTRODUCTION

The 28S is a powerful hand-sized computer. It has more memory
and can do much more than most home computers from 10 years
ago. Although the owner's manuals are down to earth and do an
excellent job of explaining this intricate machine, they only touch
the surface of the 28S's broad range of applications. This book picks
up where the owner's manuals leave off. It gives a few of the endless
ways the 28S can be used as a graphics tool.

WHAT'S BETWEEN THE COVERS?

This book presents five different root level graphing applications
(chapter two through five) and three advanced graphing
applications (chapter six). A root level graphing application can be
thought of as a basic building block. It can only draw one specific
type of graph. For example, SDRW from chapter four only draws
shapes, nothing else.

In contrast, an advanced graphing program can draw almost any
type of graph, but only in one specific way. For example, DDRHW from
chapter six can draw shapes as well as functions, but always in
three dimensions. It does this by calling on a root level graphing
program to do the actual drawing for it. DDRW would call SDRH to
draw a three dimensional shape and DRANW to plot a three
dimensional function. The relationship between a root level and
advanced graphing application can be thought of as a foundation
and a house. The advanced graphing program needs the support of
the root level program.

CHAPTER ONE GETTING STARTED

Both root level and advanced applications have been incorporated
into a user friendly, custom menu similar to the built in 28S menus.
If you are at all familiar with the built in PLOT menu you'll have no
problem with these custom menus. Like the PLOT menu, each
custom graphing menu has a specific drawing program, the name
of an object containing the parameters used by that program, and
supporting programs that allow you to alter these parameters. For
example, the PLOT menu's drawing program, parameter name
and several of the supporting programs are DRAW, PPAR, and PMIN,
PMAX, and INDEP respectively. Because of each graphing menu's
similarity, once you learn one menu you'll have no problem with the
others.

Application menus aren't the only type of custom menus you'll
encounter in this text. Before ever coming to an application menu
you will use a selection menu. A selection menu does just what its
name implies. It allows you to select from a number of application
menus. The programs in this chapter set up the frame work for the
starting selection menu, as well as the custom application menu for
each chapter. You must key these programs in.

WHAT TO DO FIRST

The first thing you should do is read the introduction. I was
hesitant to even use the heading "INTRODUCTION" for this
chapter, in fear that some readers would flip right through it. The
introduction in this text is slightly different than most. A common
introduction would give a basic background on how the 28S works
and how to enter a program. Most readers already have a working
understanding of the 28S from reading the owner's manuals.
That's why I have dedicated the introduction on how to operate this
book. You must read the introduction to understand the remaining
chapters. It gives the basic outline each chapter follows. It describes
how programs are listed, where to put them, and which programs
you'll need. For those readers that feel they need a refresher on how
to use the 28S, read the owner's manuals or flip through appendix
A

10

CHAPTER ONE INTRODUCTION

Finally, at the end of this chapter, you'll come across a section
containing program listings. The first program, CKNM, checks for
typographical mistakes in any object you store in your calculator. It
generates a check number that can be compared with the one in
each program listing. CKNM is optional, but highly recommended.
All of the remaining programs in this chapter take you in and out of
the various custom menus and directories. They are needed by
every chapter in this book so you must key them in.

After reading the introduction and entering the programs at the
end of this chapter, you will be ready for any of the remaining
chapters. You can follow them chapter by chapter, or skip to one
you'd like to read first. Chapters two through six are all self-
supporting. After reading the introduction you'll have the basic
tools and knowledge to jump in to any of the remaining chapters.

A BASIC OUTLINE OF THE REMAINING
CHAPTERS

The remaining chapters are divided into two sections. Section one
contains the programming. It has a brief introduction and a
number of program listings. Section two is the example section. It
describes how to use each graphing program and gives a number of
examples. The next several pages describe section one of every
chapter.

INTRODUCTION

As you might expect, each chapter starts with an introduction.
These first few paragraphs briefly explain what the programs in
that chapter will do. By reading the introduction you can decide if
that chapteris for you. You might also want to skim through the
example section before keying in any programs.

A PROGRAM TABLE

A program table is included with every chapter. Pay close
attention to this table ! The first column lists all the programs that
are needed in that chapter. Some of these programs may have been

11

CHAPTER ONE GETTING STARTED

used in earlier chapters. If so, they won't be listed in that chapter.
They will have an asterisk after their name to let you know you'll
need to flip back to the page number indicated and check whether or
not you've entered that program already.

The second column shows the page number for each program
listing. This is very useful when you need to key in a program that
is notlisted it that chapter. It saves you the time of flipping to the
index.

Finally, the last column gives the memory usage of each program.
This number, in bytes, will give you an idea of how much memory is
needed to run each program. The sum of this column will be the
total memory needed to use that particular chapter. Remember
though, some of these programs may have been used in earlier
chapters and may be in your calculator already.

If the amount of memory you'll need is too large, you may decide
to enter only the programs that are needed for that chapter. Most
of the programs in each chapter make it easier for you to create,
store, and alter different graphing parameters. These programs are
extremely useful and highly recommended, but can be omitted. For
example, the built in PLOT menu has commands like STE@, PMAX
and COLZ to store and manipulate EQ, PPAR, and ZPAR respectively.
You would never want to trash all these commands, but there may
be several that you could do without. Omitting these programs
from a particular chapter can sometimes trim the required memory
in half.

ABOUT EACH PROGRAM LISTING

Each object that you must store in your calculator has a listing.
They are in alphabetical order in the first section of every chapter. If
applicable, each program listing will have the following headings.

ASHORT PHRASE TO DESCRIBE THE PROGRAM

Each program has an underlined phrase just above its name.
This phrase briefly describes that program. In most cases, the
name of the program is just a mnemonic of this phrase.

12

CHAPTER ONE INTRODUCTION

PROGRAM NAME(CHECK NUMBER)

The name of the program will be printed in boxy characters
resembling the characters displayed by the 28S. It will be followed
by a check number in parenthesis. Each program or object stored
in your calculator will have a unique check number generated by the
program CKNM, on page 19.

After storing the program you can check for typographical errors
by putting its name on level one and running CKNM. The number
that is returned should be the same as the one in parenthesis. If
not, just skim through you program, correct the mistake, and try
again.

The use ofCKNM is optional, but highly recommended. Even the
best programmer can delete a character or accidently swap two
letters. With the use ofCKNM though, these mistakes can be easily
found and corrected before running a program. Entering a program
without using CKNM is like using a word processor without a spell
checker.

PROGRAM LISTING

The program is the most important part of each listing, so it is
boxed and centered on the page. It is listed in the same way the 28S
lists its programs when on the stack. This makes it much easier to
find and correct any mistakes that are made when keying in a
program. Simply use the view up and view down keys to compare
the listing on your calculator with the one in the book.

PATH

Programs with a common interest should normally be stored in
one directory. A tree of the directories used in this book are shown
on the next page. It may be helpful to refer to it when keying in
programs. POLARP, CHARTP, SHAPEP, and FRACTP store programs
geared towards one type of graphing technique. GRAPHP, on the
other hand, contains programs that are used by more than one
graphing application. The directories named WRK below each

13

CHAPTER ONE GETTING STARTED

program directory are work directories. You'll be creating and
storing your own programs and variables here. Having a separate
work space makes it easier to sort through the multitude of
programs. More importantly, it protects the program directory
from accidently being purged.

A list representing the suggested path is given for each program.
The directory that the program should be stored in is the last one in
this list. For example, the the path { HOME GRAPHP POLARP }
says store the program in the polar graphing directory, POLARP,
below the main graphing directory, GRAPHP, below the home
directory, HOME.

HOME

|
GRAPHF

I I l 1]
POLARP| |[CHARTP SHAPEF WRK

WRK WRK WRK ||FRACTP

l
WRK

SUMMARY

The opening few paragraphs summarize program operation.
You'll find a brief explanation on how the program or object is used,
possible errors, how the program operates, and other added tidbits.

INPUT

Any input received by the program such as objects on the stack,
values of current variables, or input through the keyboard. Each
input will be labeled under one of the following headings.

14

CHAPTER ONE INTRODUCTION

LCD (liquid crystal display) Any input the program
receives from the current display. A program
receives display input using the 28S command
LCD>.

KEYBOARD What keys are active during program execution.

MEMORY Memory locations, such as flags or variables, that
the program uses.

LEVEL# Objects required to be on specified level of the
stack.

OouTPUT

Any program output will be listed under this heading. An
example of common program output is an object on the stack.
Other possibilities are a value stored in memory, information sent
to the printer, or display output. The output headings are as
follows.

LCD (liquid crystal display) A brief description of any
display output.

MEMORY Any memory location such as a flag or an object that
is changed or created by the program. Custom
menus are listed under memory, not lcd, because
the calculator stores the custom menu internally.

PRINTER The type of output, if any, sent to the printer.

BEEP Any audible tones and what they signify.

LEVEL # Objects left on the stack by the program.

UTILITIES

All subroutines used by the program are listed underthis
heading. Any program that isn't a built in 28S command is

15

CHAPTER ONE GETTING STARTED

considered a subroutine. If it already isn't in your calculator's
memory you can easily flip to the indicated page number and type it
in (their page numbers are listed in the beginning of each chapter).

Variables are not considered utilities. If a variable appears in a
program it will be listed under MEMORY for either the input or
output heading.

16

CHAPTER ONE INTRODUCTION

PROGRAM LISTINGS

The remaining part of this chapter contains listings for every
program, directory, list, or other object that you must store in your
calculator. The listings in this section are used in all of the
remaining chapters, so you must key them in. They allow you to
move from directory to directory and create the custom graphing
menus used by each chapter.

Before storing yourfirst program you should create the main
graphing directory. This is the parent directory for all other
directories. Everything is stored either in GRAPHP or in a directory
below it (see the directory tree on page 14). Go to the home directory
and create GRAPHP by entering 'GRAPHP' @24 . Now you're
ready to enter all the programs from this chapter. A table of these
programs is given below.

PROGRAM TABLE

Program Page# Bytes

CKNM 19| 127.5

End 20| 16.0

GRAPH 21| 375

GRAPHP 22| 18.0

QUIT 23| 45.0

Start 24| 50.0

STLST 25| 64.5

WRK 26| 15.0
Many of the programs in this book are used in more than one

chapter. A good example is Start. It creates each chapter's custom
graphing menu. Since every chapter uses this same program, it is

17

CHAPTER ONE GETTING STARTED

only listed once, in chapter one. Any latter chapter will refer to it in
the table at the beginning of that chapter. If you are following this
text chapter by chapter you won't have to worry about flipping back
to a program listed in a previous chapter since you will have already
stored it in your calculator. If you're jumping from chapter to
chapter though, you might want to check your calculator's memory
to see if every program from the table has been entered.

NOTE

There are several programs in this book with the same name.
Just because two chapters contain the same name in their program
tables doesn't necessarily mean they're the same program. They
could be two very different programs stored in two different
directories.

For example, chapters two through five all have listings for
STLST. A different version ofSTLST is used to create each custom
graphing menu. Don't pass over a listing because you remember
entering a program with the same name. It could be a very different
program.

18

CHAPTER ONE INTRODUCTION

Generate a Check Number

CKNM(822964)

« DUP IFERR RCL THEN
IF 31 FS? THEN DROP
END ™ END -STR SWAP
-STR + 0 OVER SIZE 1
SWAP FOR 1 OVER
DUPSUB NUM i +
NEXT SWAP DROP »

SUMMARY

This program is designed to generate a unique number for every
object. All the programs in this text will have their check number in
parenthesis following the program name. To check whether a
program has been keyed in properly, simply put the name of the
program on level one of the stack and run CKNM. After a few seconds
a number will be returned to level one.

This numberis generated by changing the object and the object's
name into a character string. It then generates a number which is
the sum of each character's ASCII value times its position in the
string. Note that the check number for this program is 822964.

PATH { HOME }

INPUT LEVEL ONE The name of the program you're checking.

OUTPUT LEVELAn integer (The resultant check number).

UTILITIES None

19

CHAPTER ONE GETTING STARTED

En ific Graphing Menu

End(3393)

'GRAPH'

SUMMARY

End does just what it sounds like. It leaves the menu you're in and
returns you to the main graphing menu. It also puts you back in
the work directory that is subordinate to GRAPHP. This is
fllustrated in the directory tree on page 22. Also see GRAPH for an
explanation of the main graphing menu.

End can be found as the last entry in the following custom
graphing menus.

Menu Chapter
Polar Graphing Menu
Chart Graphing Menu
Shape Drawing Menu
Fractal Drawing Menu

 s
W
N

PATH { HOME GRAPHP}

INPUT MEMORY The list stored in STLST located in GRAPHP,

the main graphing directory.

OUTPUT MEMORY Directory control is given to the work
directory subordinate to GRAPHP and the
main graphing menu is created.

UTILITIES GRAPH

CHAPTER ONE INTRODUCTION

Program

GRAPH(28826)

« GRAPHP Start »

SUMMARY

GRAPH puts you into the work directory, WRK, just below the main
graphing program directory and creates the main graphing menu.
This is a selection menu as opposed to an application menu.
Pressing any one of the keys in this menu will create another
custom menu. The menu labels are described below.

Control given to
Menu Key Menu Created Chapter work directory

Polar Graphing 2 POLARP

Chart Drawing 3 CHARTP

HEIIE Shape Drawing 4 SHAPEP

Fractal Drawing 5 FRACTP

[HOVAN] Advanced Graphing 6 Same as before

1B User Menu 1 HOME

PATH { HOME }

INPUT MEMORY The list stored in STLST located in GRAPHP,
the main graphing directory.

OUTPUT MEMORY Directory control is given to the work

directory subordinate to GRAPHP and the
main graphing menu is created.

UTILITIES Start

21

CHAPTER ONE GETTING STARTED

Polar Graphing Program Directory

GRAPHP(2391)

Directory

SUMMARY

The graphing application directories and all the programs that
are used in more than one graphing directory are stored in GRAPHP.
It is the parent directory for all other graphing directories. All the
programs stored here can be used by any one of the programs
stored in lower directories (See the directory tree below).

In contrast, programs that are specific to one graphing technique
should be stored in a separate directory. For example, programs
that are only used for polar graphing should be stored in POLARP. If
you classify your programs wisely you will never get lost in a web of
directories.

 [l []
POLARP| |CHARTP SHAPEP WRK

-
WRK WRK WRK [|FRACTP

l
WRK

PATH { HOME }

22

CHAPTER ONE INTRODUCTION

Quit the Main Graphing Menu

QUIT4372D

« HOME 23 MENU »

SUMMARY

QUIT allows you to quit the main graphing menu and return to
the home directory. It also displays the user menu. It is suggested
that you put this program in the main graphing directory, GRAPHP.
You could, however, store it in the home directory. This way you can
use QUIT in your own custom menus. Then, no matter where you're
at, will return you to the home directory and display the user
menu.

PATH { HOME GRAPHP }

INPUT MEMORY None

OUTPUT MEMORY Command is given to the home directory
and the user menu is displayed.

UTILITIES None

CHAPTER ONE GETTING STARTED

Start an Application Menu

Start(38113

« 17 CF WRK STLST

MENU »

SUMMARY

St art is used to create the graphing menus for chapter one to
five. First, it clears flag 17. This flag is tested by most of the
graphing programs in this book. Then,it puts you in the work
directory located just below the program directory you're in. Then,
the list generated by STLST is used to create a custom graphing
menu.

As you read through this book, you'll notice every chapter has a
different listing for STLST. Sometimes STLST is simply a list while
other times it is a program that creates a list. Although they all
have the same name, they really are quite different. Each one is
stored in a different program directory and returns a unique list.
Thus depending on the directory you're in, St art will create
different custom menus because it calls on different versions of
STLST.

PATH { HOME GRAPHP }

INPUT MEMORY The list stored in STLST is used to create a

custom menu. (If it is a list)

OUTPUT MEMORY A custom menu is created.

UTILITIES STLST (If it is a program)

CHAPTER ONE INTRODUCTION

Main Starting Menu List

STLSTC(71785>

{ POLAR CHART SHAPE
FRACT ADVAN QUIT }

SUMMARY

You'll find a different version of STLST in every program
directory. Start, the program that creates the custom graphing
menus, takes the list from STLST, or in some cases the list created
by STLST, and forms a custom graphing menu.

This version ofSTLST contains the list that is used to create the
main graphing selection menu. Each object is a program that
creates a new custom menu and puts you in a different directory.
The table on page 21 describes what each program does and which
chapter it is located in.

PATH { HOME GRAPHP }

25

CHAPTER ONE GETTING STARTED

Work

WRK(954)

Directory

SUMMARY

As you read through this text you'll notice every chapter has a
listing for a directory named WRK. Don't let this confuse you. These
are all different directories. Each program directory has its own
work directory named WRK.

WRK is used to store variables or programs you create. The work
directory listed here is located just below GRAPHP. This is shown on
the directory tree on page 22. Working in WRK protects the
programs in GRAPHP, the main graphing program directory, from
accidentally being purged. It is also easier sorting through variables
in a smaller work directory than sifting through all your variables
and programsin one big directory.

PATH { HOME GRAPHP }

CHAPTER TWO

GRAPHING IN POLAR

COORDINATES

SECTION ONE POLAR GRAPHING

SECTION ONE

REFERENCE SECTION

INTRODUCTION

This is the reference section for the polar graphing programs.
These programs allow you to graph any equation in polar
coordinates. Before starting this chapter, you should flip through
section two, the example section. It will give you an idea ofwhat to
expect from these programs. Then,ifyou like what you see, you can
jump right in. Be sure you've entered the programs from chapter
one first.

Most of the programs in this chapter are stored in POLARP, the
polar graphing program directory. You must create this directory
before storing any programs (where would you put them?). Go to
GRAPHP, the main graphing program directory, and create POLARP
by entering, GRAPHP (enter) POLARE EIHA. See the directory
tree on page 43. Now you're ready to enter the programs from this
chapter.

A table of all the programs you'll need in this chapter is given on
the next page. Of course, you must enter the programs from
chapter one before starting this chapter.

CHAPTER TWO POLAR GRAPHING

PROGRAM TABLE

Bytes Program

275.0

41
29

32.
18

NOTE

There are several programs in this book with the same name.
Just because two chapters contain the same name in their program
tables doesn't necessarily mean they are the same program. They
could be two very different programs stored in two different
directories.

For example, chapters two through five all have different listings
for STLST. STLST is used to create a custom graphing menu. Since
every chapter creates its own custom menu, each one will have its
own version of STLST. Don't pass over a listing because you
remember entering a program with the same name. It could be a
very different program.

SECTION ONE POLAR GRAPHING

Angul lar) Drawing Pr ur

ADRW(2595534)

« CLCD? DRAX RCLF 1
*H APAR LIST> DROP
EVAL 5 IF 60 FS?
THEN D-»R END 'PPAR'
3 GETI 4 ROLLD GET *
»tres « FORI{it
STO EQ »NUM IF DUP
TYPE ==THEN DUP {1
R-»C P»R PIXEL ABS
.001 +INV .1 MAX 1
MIN ELSE DROP 1 END
res * STEP t PURGE
STOF » DGTZ? »

SUMMARY

Using the parameters from the list stored in APAR, ADRW graphs
the polar equation stored in EQ. The parameterlist reads as follows.

{ minimum angle (any real number),
maximum angle (any real number)
polar graphing angle mode (RAD or DEG) }

ADRW begins with the starting angle and continues to plot points
until the ending angle is reached. Both these values can be set by
using AMIN and AMAX. The third item in APAR "tells" ADRW what
angle mode to graph in. This allows you to keep your calculator in
radians, but graph a function using degrees.

You'll notice two keys labeled @l and 38 in the polar graphing
menu. One of these labels will have a box after its name. This is the

CHAPTER TWO POLAR GRAPHING

current polar graphing angle mode. Pressing the menu key without
a box will activate that mode, puts a box after its name, and clears
the box from the name of the old angle mode.

NOTE

The two custom menu labels@ and are not the same as in the
28S mode menu. They do not reflect the angle mode your calculator
is in. they do indicate the angle mode that ADRW will graph in. This
means you can graph a polar function in radians while your
calculator is set to degrees.

ADRM, like most other root level drawing programs, uses the
utilities CLCD? and DGTZ?. When I say root level I mean it does the
actual graphing. In contrast, the graphing programs in chapter six
are advanced graphing programs. They call other procedures, like
ADRW, to do the graphing for them.

Both CLCD? and DGTZ?check the status of flag 17 and, if set,
clear the display before graphing and digitize after graphing is
complete. DGTZ? also clears flag 17 after checking its status. These
two subprograms allow you to use ADRNW directly from the custom
menu or as part of a larger program.

When using this program from the menu (it is assumed that flag
17 is cleared) the display will be cleared, a polar function will be
graphed, and you will enter digitizing mode. On the other hand, if
you want to use it as a subprogram, have the calling program set
flag 17 before executing ADRW. This prevents the display from being
cleared or having execution halted for digitizing. This is exactly
what the advanced graphing programs from chapter six do.

You might notice the step size of the main program loop is
inversely proportioned to the radius. The radius is taken as a
control on the step size since a larger radius means ADRHW has to
travel a greater distance. The larger the radius is, the more points
there are to be graphed and likewise, the longer it takes to graph the
equation.

31

SECTION ONE POLAR GRAPHING

To add to this program's versatility, ADRW gets the dependent
variable and resolution from the plot parameters, PPAR. This
means you can change them using the built in 28S commands RES
and INDEP found in the PLOT menu

NOTE

If the display doesn't clear when using ADRHW from the custom
menu, flag 17 is set. If this happens, you can stop the program and
clear flag 17 or ADRW will clear it after it is done graphing. Either
way, flag 17 will be cleared and you can try again.

PATH { HOME GRAPHP }

INPUT MEMORY The equation or program to be graphed must
be stored in EQ. The list in APAR is used to
define the starting angle, ending angle, and
the angle mode to graph in. The fourth and
fifth item in the plot parameters, PPAR, are
used to define the dependent variable and
resolution. Finally, the status of flag 17 is
checked.

KEYBOARD If flag 17 is clear digitizing mode is activated.
Refer to appendix A if you're unfamiliar with
digitizing.

OUTPUT LCD The polar graph of the equation in EQ is
drawn on the screen. If flag 17 is cleared the
display will be cleared before graphing.

STACK Any objects left by digitizing. (if flag 17 was
clear before running)

UTILITIES CLCD?, DGTZ

32

CHAPTER TWO POLAR GRAPHING

Maximum

AMAX(18408)

« 2 'APAR' PUTP »

SUMMARY

Starting at the minimum angle, ADRW graphs the equation stored
in EQ until the maximum (ending) angle has been reached. The
maximum angle can be set by putting it on level one and running
AMAX. AMAX puts the object from level one into the second position
in APAR, the polar graphing parameter. APAR reads as follows.

{ minimum angle (any real number),
maximum angle (any real number)
polar graphing angle mode (RAD or DEG))

PATH { HOME GRAPHP POLARP }

INPUT LEVELAny real number

OUTPUT MEMORY The number from level one is put into the
second position in APAR.

UTILITIES PUTP

SECTION ONE POLAR GRAPHING

1 nim n

AMINC183353)

« 1 'APAR' PUTP »

SUMMARY

As its name implies, AMIN stores the minimum (starting) angle
into APAR, the polar graphing parameters. It does this by putting
the object from level one into the first position in APAR. ADRW starts
graphing from this minimum angle and continues until the
maximum, (ending) angle is reached. APAR reads as follows.

{ minimum angle (any real number),
maximum angle (any real number)
polar graphing angle mode (RAD or DEG)}

PATH { HOME GRAPHP POLARP }

INPUT LEVEL Any real number

OUTPUT MEMORY The number from level one is put into the
first position in the polar graphing
parameters, APAR.

UTILITIES PUTP

CHAPTER TWO POLAR GRAPHING

(polar)

APAR(11845)

{0360 DEG)

SUMMARY

APAR is a list of parameters used by ADRW when graphing a polar
equation. It reads as follows.

{ minimum angle (any real number),
maximum angle (any real number)
polar graphing angle mode (RAD or DEG))

Most of the programs in this chapter use or manipulate APAR.
But what happens when APAR doesn't exist in the work directory?
The polar graphing parameters defined in the main graphing
directory, GRAPHP, will be used as a default.

As an example, lets say you're starting out with an empty work
directory and want to set the minimum graphing angle to 90°. You
would enter 90 . AMIN first creates APAR by recalling its default
value stored in the main graphing directory and storing it in the
work directory. Now AMINis able to put 90 into APAR. Remember a
variable in a different directory can be recalled, but can't be changed.
After pressing APAR will suddenly appear in the work
directory.

PATH { HOME GRAPHP }

SECTION ONE POLAR GRAPHING

Display

CLCD?(63015)

«1*WIF 17 FC?
THEN CLLCD END »

SUMMARY

ADRW, as well as every graphing program in this book, can be used
as an independent program or as a subprogram. When you press
its menu key in the custom menu you wantit to clear the display,
draw a graph, and enter digitizing mode. In this instance, it acts as
a free standing program.

What ifyou want to use it as a subprogram? You might not want
the display cleared before graphing. This is where CLCD? comes in.
It checks to see if flag 17 is clear. If so,it clears the display. Ifyou
don't want the display cleared simply have the calling program set
flag 17 before calling ADRW.

This is exactly what the advanced graphing programs from
chapter six do. DDRHW, EDRW, and MDRH, the three dimensional,
animated, and extended graphing programs need to call a root level
graphing procedure to do the actual graphing for them. Before
calling a root level program they set flag 17.

PATH { HOME GRAPHP }

INPUT MEMORY Flag 17 is tested

OUTPUT LCD If flag 17 is clear the display is cleared

UTILITIES None

CHAPTER TWO POLAR GRAPHING

Starting

CTLST(83163)

{APAR AMIN AMAX Deg
Rad ADRW ADVAN End }

SUMMARY

CTLST is used by STLST as a base for the polar graphing menu.
STLST puts CTLST on the stack and, depending on the last object in
APAR, replaces either Deg with DEG® or Rad with RAD" . The
resultant list is then used by $t art to create the polar graphing
menu.

PATH { HOME GRAPHP POLARP }

SECTION ONE POLAR GRAPHING

Graph

Deg(16748)

« { DEG } PUTA »

SUMMARY

Deg stores DEG as the third object in APAR, the polar graphing
parameters. This lets the calculator "know" that the minimum and
maximum angles in APAR are in degrees. APAR reads as follows.

{ minimum (starting) angle, maximum
(ending) angle, polar graphing angle mode }

Since lower case letters appear in all capitals in the user or
custom menu, Deg is displayed as @d8. After pressing3 from the
polar menu, you'll see a box appear after its name. This is to show
that degrees is now the active polar graphing angle mode.

PATH { HOME GRAPHP POLARP }

INPUT None

OUTPUT MEMORY DEG is stored as the third object in PPAR. A
new custom menu is also created to display
DEG as the new polar graphing angle mode.

UTILITIES PUTA

CHAPTER TWO POLAR GRAPHING

Empty

DEG" (3525)

SUMMARY

DEG" is used for display purposes only. It is used in the custom
polar graphing menu to show that the active polar graphing angle
mode is degrees.

Since having in the custom menu means degrees is the active
polar graphing angle mode, pressing its menu key should not
change anything. This is why an empty program is stored here.

PATH { HOME GRAPHP POLARP }

SECTION ONE POLAR GRAPHING

heck i houl

DGTZ?7¢(35688)

« IF 17 FC?C THEN
DGTIZ END »

SUMMARY

ADRM, as well as every graphing program in this book, can be used
as an independent program or used as a subprogram. When you
press its menu key in the custom menu you wantit to clear the
display, draw a graph, and enter digitizing mode. In this instance it
acts as a free standing program.

What ifyou want to use it as a subprogram? You might not want
to digitize. This is where DGTZ? comes in. It checks flag 17 and, if it
is clear, enters digitizing mode. If you don't want to digitize, simply
have the calling program set flag 17.

This is exactly what DDRHW, EDRW, and MDRH from chapter six do.
They set flag 17 before calling a root level graphing procedure, such
as ADRH, to do the graphing for them.

PATH { HOME GRAPHP)

INPUT MEMORY The status of flag 17

OUTPUT KEYBOARD If flag 17 is clear you will enter digitizing
mode

MEMORY Flag 17 is cleared
STACK Any objects left from digitizing

UTILITIES None

CHAPTER TWO POLAR GRAPHING

Checking

PCHK<(23931>

« DUP RCL OVER STO »

SUMMARY

PCHK recalls the object on level one and stores it back into the
samevariable name. Nothing happens if the object already exists in
the current directory. If it doesn't, its value from the closest
directory in the current path is stored in the current directory.
Now any program can manipulate that object, sinceit is in the
current directory.

PATH { HOME GRAPHP }

INPUT LEVELAn object name
MEMORY The contents of the object on level one.

OUTPUT LEVELAn object name
MEMORY Ifit doesn't exist, the variable from level one

is created in the work directory, WRK.

UTILITIES None

41

SECTION ONE POLAR GRAPHING

Graphing

POLAR(21106)

« POLARP Start »

SUMMARY

POLAR puts you into the work directory, WRK, and creates the
polar graphing menu. You'll probably notice, if you haven't already,
that every graphing menu has its own program directory, the
directory with the programing specific to that topic, its own work
directory, titled WRK, its own graphing menu, and a program to
enter that menu.

Except for the last letter, the commands to enter the graphing
menus all have the same name as their program directories. For
example, POLAR puts you in the work directory, WRK, just below
POLARP. Likewise, SHAPE puts you into the shape drawing work
directory, WRK, just below SHAPEP.

PATH { HOME GRAPHP POLARP }

INPUT MEMORY ‘The list stored in CTLST in the directory
POLARP and the last object in the list stored
in APAR.

OUTPUT MEMORY Directory control is given to the work
directory, WHRK subordinate to POLARP.
This is shown in the directory tree on the
next page. The custom polar graphing menu
is also created.

UTILITIES Start

42

CHAPTER TWO POLAR GRAPHING

PolarGraphingProgramDirectory

POLARP(2429)

Directory

SUMMARY

This is the directory where all the programs that are specific to
polar graphing are stored. Storing the polar graphing programs in
their own directory creates a sense of order, like chapters in a book.

Some programs that are used for polar graphing are stored in
GRAPHP. This is because they are used by graphing procedures in
other directories. Putting these programs in GRAPHP allows access
to any program in or subordinate to GRAPHP. Thus a program in
CHARTP can use ADRW as well as a program in POLARP, since it is in
stored in GRAPHP. A program in CHARTP can't use AMIN though,
because it is stored in POLARP, which isn't in CHARTP's path. The
directory tree below illustrates this.

PATH { HOME GRAPHP)

[| 1

CHARTP SHAPEP WRK

—
WRK WRK |(FRACTP

I
WRK

SECTION ONE POLAR GRAPHING

Pol hi]
Mode into APAR

PUTR(39773)

« LIST» DROP 3
'APAR' PUTP Start »

SUMMARY

PUTA is called on by both Deg and Rad. It puts the object from the
list on level one, either {DPEG } or {RAD }, into the third position in
APAR and creates a new custom menu. This "tells" APRW whether to
graph in degrees or radians. APAR reads as follows.

{ minimum angle (any real number),
maximum angle (any real number),
polar graphing angle mode (CEG or RAD)}

PATH { HOME GRAPHP POLARP }

INPUT LEVEL Alist (Either { DEG } or { RAD })

OUTPUT MEMORY The new graphing angle mode, either RAD or
DEG is stored as the third object in APAR. A
new polar graphing menu is also created.

UTILITIES PUTP,Start

CHAPTER TWO POLAR GRAPHING

into

PUTP(26801)

« PCHK SWAP ROT PUT

SUMMARY

First, PUTP takes the name of the parameter list from level one
and checks whether it exists in the work directory. If not, it is
created using that parameter list's default value. The default value is
always stored in the main graphing directory. GRAPHP. Then,it
puts the object from level three into the parameter list. The integer
from level two specifies the position to putit in.

PATH { HOME GRAPHP }

INPUT LEVEL THREE An object to be put into the parameter list
LEVEL The position to put the object from level

three
LEVEL The name of a parameter list
MEMORY If it doesn't exist, the default value of the

parameterlist on level one.

OUTPUT MEMORY If it doesn't exist in the work directory,
the parameter list from level one is
created. Then, the object on level three is
put into that parameterlist in the
position indicated by the integer on level
two.

UTILITIES PCHK

SECTION ONE POLAR GRAPHING

Graph

Rad(16889)

« {RAD } PUTA »

SUMMARY

Rad stores RAD as the third object in APAR, the polar graphing
parameters. This lets the calculator "know" that the minimum and
maximum angles in APAR are in radians. APAR reads as follows.

{ minimum angle (any real number),
maximum angle (any real number),
polar graphing angle mode CEG or RAD)}

Since lower case letters appear in all capitals when in the user or
custom menu Rad is displayed as @H. After pressing from the
polar menu, you'll see a box appear after its name. This is to show
that radians is now the active polar graphing angle mode.

PATH { HOME GRAPHP POLARP }

INPUT None

OUTPUT MEMORY RAD is stored as the third object in PPAR. A
new custom menu is also created to display
the new polar graphing angle mode.

UTILITIES PUTA

CHAPTER TWO POLAR GRAPHING

Empty

RAD" (3550)

SUMMARY

RAD® is used in the custom graphing menu to show that the
active polar graphing angle mode is radians.

Since having @I in the custom menu means radians is the active
polar graphing angle mode, pressing its menu key should not
change anything. This is why an empty program is stored here. We
don't want anything to happen when its menu key is pressed.

PATH { HOME GRAPHP POLARP }

INPUT None

OUTPUT None

UTILITIES None

47

SECTION ONE POLAR GRAPHING

Starting

STLST(233687)

« CTLST APAR 3 GET
»SI‘R "0 SWAP + "o

+ STR» 4 OVER 'RAD“
SAME + SWAP PUT »

SUMMARY

You'll find a different version of STLST in every program
directory. St art, the program that creates the custom graphing
menu, takes the list iIn$STLST, or in this case the list created by
STLST, and forms a custom menu.

This version ofSTLST checks the active polar graphing angle
mode indicated by the third object in APAR. It adds a box (*) to the
name of the active mode and puts it in the polar menu list. This lets
you know exactly which angle mode RDRW will graph in.

PATH { HOME GRAPHP POLARP }

INPUT MEMORY The third object in APAR specifies the
current polar graphing angle mode.

OUTPUT LEVELThe polar graphing menu list

UTILITIES None

CHAPTER TWO POLAR GRAPHING

Polar Graphing Work Directory

WRK(954)

Directory

SUMMARY

As you read through this text you'll notice every chapter has a
listing for a directory named WRK. These are all different directories.
Each program directory has its own work directory named WRK.

WRK is used to store any variables or programs you create. The
work directory listed here is located just below POLARP. This is
shown on the directory tree on page 43. Working in WRK protects
the programs in POLARP from accidentally being purged. It is also
easier sorting through variables in a separate work directory than
sifting through all your variables and programs in one big directory.

PATH { HOME GRAPHP POLARP}

49

SECTION ONE POLAR GRAPHING

CHAPTER TWO POLAR GRAPHING

SECTION TWO

EXAMPLES

ABOUT POLAR COORDINATES

The most commonly used coordinate system is the Cartesian
coordinate system. In two dimensions, it uses the vertical and
horizontal components of a point along given axis. This is the
easiest representation for most applications, but some equations

can be simplified when represented in polar coordinates.

“ 34

T
.
1
1
.
1
,

|
v
'
fi
T
-
T
I

'
l
"

w X

 ..
.

o

- -
+
—
—

-

L
y

v
y

i
The Point (3, 4) in Cartesian Coordinates

Figure 2.1

51

SECTION TWO POLAR GRAPHING

The two dimensional polar coordinate system represents points
by their radial distance from the origin and the angle they make
with the polar axis. The polar axis is normally the same as the X
axis in the Cartesian coordinate system.

(5.53°)

53°

Polar Axis

The Point (5, 53°) in Polar Coordinates

Figure 2.2

Figure 2.1 shows the point (3, 4) in Cartesian coordinates. The
same pointis (5, 53°) in polar coordinates. This is shown in figure
2.2

The relationship between the Cartesian and Polar coordinates is as
follows.

Y

9

X

Polar to Cartesian x=r*sin(e) Equation (2.1)
(r,0) y=r*cos(6) Equation (2.2)

Cartesian to Polar r=V(x"2+y"2) Equation (2.3)
(x,y) e=tan-1(x/y) Equation (2.4)

52

CHAPTER TWO POLAR GRAPHING

In general, equations with circular graphs are simpler in polar
coordinates. For example, the equation of a circle in Cartesian
coordinates is xA2+yA2=rA2. This describes all points that are the
same distance, r, from the origin. In polar coordinate the equation
is simply r=c, where c is any real number.

DRAWING A CIRCLE USING THE PLOT MENU

Try graphing a circle with a radius of 1.5 in Cartesian coordinates
using the built in PLOT menu. First, you have to isolate y in the
equation x*2+y*2=1.5"2, This gives you two roots,-V(2.25-x*2) and
+V(2.25-x*2). If you recall, when an equation with an equal sign is
stored in EQ, DRAW graphs both sides of the equation. If we want to
graph both roots, we need to set them equal to each other and store
the resultant equation in EQ. Remember, this is not a valid equation
but only a trick we can use to graph two roots of an equation. First,
purge PPAR ff it exists. Then store -V(2.25-x"2)=+V(2.25-x"2) in EQ
and draw its graph.

'PPAR) '1(2.25-X"2)&
0

T~

Graph of a circle using DRAW

Figure 2.3

DRAWING A CIRCLE USING THE POLAR GRAPHING MENU

Now lets try graphing the same circle using the polar graphing
menu. To get to the polar graphing menu you have to start in the
main graphing menu. You can get here by typing HOME GRAPH

or pressingB ifyou are in a different graphing menu. Now

SECTION TWO POLAR GRAPHING

enter the polar graphing menu by pressing the menu key labeled
. This will put you in the work directory just below POLARP, the

polar graphing program directory (See the directory tree below). You
should also see the polar graphing menu. A description of its menu
keys is given at the end of this chapter. Ifyou leave this menu to use
a 28S menu such as TRIG, you can always recall it by pressing
CUSTOM.

[1 1

CHARTP SHAFPEP WRK

T
WRK WRK |[FRACTP

l
WRK

This directory tree shows which directory you should be in.
Figure 2.4

You'll notice two menu labels titled 38, for degrees, and @, for
radians. These are the two types of angles that can be stored in
APAR, the polar graphing parameters. One of these labels will have a
box after its name, indicating it is the active polar graphing angle
mode. The beginning and ending angles stored in APAR will be
evaluated as degrees or radians depending on this angle mode. You
can change modes by pressing the label without the bax. A box will
then appear after that menu label to show it is the new mode. APAR,
the polar graphing parameters, are defined as follows.

{ starting angle(any real number), ending angle
(any real number), angle mode (RAD or DEG)}

CHAPTER TWO POLAR GRAPHING

The starting and ending angles define the range for graphing the
equation stored in EQ, while the angle mode indicates whether the
starting and ending angles are in degrees or radians. The contents
ofAPAR can be recalled by pressing in the custom menu.

When you set the starting angle, ending angle, or polar graphing
angle mode, you change the contents ofAPAR. But what will happen
if APAR doesn't exist. If you haven't defined APAR in the work
directory the default value,{ ® 368 DEG }, stored in the main
graphing directory, GRARPHP, will be used. For example,ifyou
wanted to graph a function in radians you would press RAD. A box
will appear after its name and the new polar graphing mode, RAD,
will be stored in APAR. If APAR doesn't exist in the work directory,
the default starting and ending angles will be used. Its new value,{ 9
360 RAD }, will be stored in APAR.

Getting back to our example, a circle with a radius of 1.5 is the set
of all points that are 1.5 measurements away from its center. The
polar equation for this circle is simply r=1.5. Since there are 360
degrees in a circle, we need to graph our polar equation from O to
360 degrees. Store these values in EQ and APAR and press the menu
key for ADRW.

1.5 0[360
@@ (From the custom Menu)

The display will be cleared and a circle will be drawn, after which,
the digitizing keyboard is activated. Appendix A explains how to
digitize points on the display.

Graph of a circle using ADRW

Figure 2.5

SECTION TWO POLAR GRAPHING

IE and @8 perform the same function for polar graphing as
they do in the PLOT menu. @# sets the resolution, or step size for
the main program loop, and EXId3 sets the independent variable.

NOTE

There is a chance that ADRW will not clear the display or enter
digitizing mode. This means flag 17 is set. Normally, flag 17 is clear
so ADRW can be used as a menu driven program. The only time you
would wantit set is if you were using ADRW as a subprogram (See
page 59). If this happens, you can stop the program and manually
clear flag 17 or wait for ADRK to finish running, where it will clear
flag 17 itself. Then try again.

MORE EXAMPLES

Now that you've become familiar with the polar graphing menu
you can graph more complicated functions. For example, the graph
for the equation 2.5 is an endless spiral. Try graphing this function
from O to 1080 degrees.

r=T/360 Equation (2.5)

Store T in'EQ' and set T as the independent variable. Then, from
the polar graphing menu, set the polar graphing angle mode to
degrees, the starting angle at O, and the ending angle at 1080.

'T' 3E3 360 [562 KNS 0
0 CEH 1050 CREER CREN

DY
4

Graph of r=6/360
Figure 2.6

CHAPTER TWO POLAR GRAPHING

The sine and cosine functions can create a wide variety of
different polar graphs. For instance, when graphed from 0 to 360
degrees, equation 2.6 will draw a circle centered at (1, 0) while
equation 2.7 graphs two circles, one centered at (1, 0) and the other
centered at (-1, 0). Can you see why? The graphs of both these
functions and the keystrokes you need to enter are given in figures
2.7and 2.8.

r=2*COS(T) Equation (2.6)
r=2*ABS(COS(T1)) Equation (2.7)

'2%C0SCTY

BR 2ER)TR CIEER

B (From the custom menu)

 e.U

Graph of 2*COS(T)
Figure 2.7

'2%¥ABS(CASCT>

£oF
AAN

Graph of 2*ABS(COS(T))
Figure 2.8

57

SECTION TWO POLAR GRAPHING

Changing the period of equation 2.7 (multiplying 6 by any real
number) will change the number of petals on the graph. Try

graphing r=1.5*ABS(COS(2*¢)) from O to 2n radians.

'1.9¥ABSCCOSC2%TX! GIT2]

Graph of 1.5*ABS(COS(2*T))
Figure 2.9

The family of graphs for equation 2.5 are called limacons. The shape
of the graph depends on the value of a. If a is equal to 1 the graph is
a cardioid. The name seem quite appropriate since it looks like a
heart. Try graphing 1+COS(T) from O to 2x radians. Its graph is
shown in figure 2.10

r=1+a*COS(T) Equation (2.5)

'1+COSCTY RO

Graph of 1+COS(T)
Figure 2.10

Keeping APAR the same, try graphing equation 2.5 for a <1, a>1.

CHAPTER TWO POLAR GRAPHING

ADRWAS A SUBPROGRAM

If flag 17 is clear, ADRW clears the display, draws the axis, graphs
the polar equation in EQ, and activates the digitizing keyboard. It
acts as a menu driven graphing program. But what if you want to
incorporate ADRW as a subroutine in a larger program? Chances
are, you won't want the display cleared and you probably won't
want the digitizing keyboard activated.

When used as a subprogram, you need to set flag 17 before calling
ADRW. Then ADRKW will draw a polar graph without clearing the
display or entering digitizing mode. It also resets flag 17 so it will
always be ready when you want to use it as a menu driven program.

59

SECTION TWO POLAR GRAPHING

THE POLAR GRAPHING MENU

Menu Key _Operation
The value of APAR, the polar graphing

HFRE parameters, are returned to the stack.
They read { starting angle, ending angle,
angle mode}.

The real number from level one is stored
EIZE in the first position of APAR. This

number represents the angle ADRW
starts graphing from.
The real number from level one is stored

CZCH as the second object in APAR. This
number represents the angle ADRW
stops graphing from.
The polar graphing parameters, APAR,

33 are in degrees when a box appears after
this label. If it doesn't have a bax after its

I name you can activate it just by pressing
its menu key.
The polar graphing parameters, APAR,

i are in radians when a box appears after
this label. If it doesn't have a bax after its

D name you can activate it just by pressing
its menu key.
This is the menu driven polar graphing

DR program. Using the parameters in
APAR,it graphs the polar equation in EQ.
This will create the advanced graphing

HDVHN] menu from chapter six.

BN will leave the polar graphing menu
CEND and put you in the main graphing menu

described on page 21.

CHAPTER THREE

CREATING PIE
CHARTS

SECTION ONE CHARTS

SECTION ONE

REFERENCE SECTION

INTRODUCTION

This is the reference section for the chart drawing programs.
These programs allow you to draw a pie chart for the data stored in
the statistical array ZDAT. You also have the option of labeling each
section with small or large print. The small print is the size used in
the menu labels while the large is the size the 28S uses forits
display.

Before starting this chapter you should flip through section two,
the example section. It will give you an idea of what to expect from
these programs. Then, ifyou like what you see, you canjump right
in, but be sure you've entered the programs from chapter one first.

Most of the programs in this chapter are stored in CHARTP, the
chart drawing program directory. You must create this directory
before storing any programs (where would you put them?). Go to
GRAPHP, the main graphing directory, and create CHARTP by
entering, GRAPHP CHFIRTP . See the directory tree
on page 65. Now you're ready to enter all the programs from this
chapter.

CHAPTER THREE CHARTS

A table of all the programs you'll need for this chapter is given
below. An asterisk (*) after the page number indicates it is listed in a
different chapter. Flip to that page number and check whether
you've already keyed that program in.

PROGRAM TABLE

es Program

275.0

37.

18.

 NONP
NOTE

There are several programs in this book with the same name.
Just because two chapters contain the same name in their program
tables doesn't necessarily mean they are the same program. They
could be two very different programs stored in two different
directories.

For example, chapters two through five all have listings for
STLST. STLST is used to create a custom graphing menu. Since
every chapter creates its own custom menu, each one will have its
own unique version.

SECTION ONE CHARTS

Create the Chart Drawing Menu

CHART(28914)

« CHARTP Start »

SUMMARY

CHART puts you into the work directory, WRK, just below CHARTP
and creates the custom pie chart menu. See the directory tree on
the next page.

PATH { HOME GRAPHP }

INPUT MEMORY The list stored in CTLST and the second
object in TPAR are used to create the pie
chart menu.

OUTPUT MEMORY Directory control is given to the work
directory, WRK subordinate to CHARTP.
This is shown in the directory tree on the
next page. The custom chart menu is also
created.

UTILITIES Start

CHAPTER THREE CHARTS

Chart Drawing Program Directory

CHARTP(2435)

Directory

SUMMARY

This is the directory where all the programs that are specific to
drawing pie charts are stored. Storing the pie chart programs in
their own directory creates a sense of order, like chapters in a book.

Some programs used in this chapter are stored in GRAPHP rather
than CHARTP. This is because they are used by graphing
procedures in other directories. The programs in GRAPHP can be
accessed by any program in or subordinate to GRAPHP. Thus a
program in CHARTP can use LINE as well as a program in SHAPEP,
since 1t is in stored in GRAPHP. A program in SHAPEP can't use
TDRHW though, because it is stored in CHARTP, which isn't in
SHAPEP's path. The directory tree below illustrates this.

PATH { HOME GRAPHP }

]] 1

POLARP m SHAPEP WRK

WRK fi WRK ||FRACTP
|

WRK

SECTION ONE CHARTS

Continue Creating List of Small Print Graphics

CONT(858225>

« LCD» 411 548 SUB

NOT 1 11 FORIDUP (

261014 182529

33374156} 1 GET
DUP 3 + SUB 1 CHR
DUP + DUP + XOR SWAP

NEXT DROP 11 »LIST

'SMPR' STO Start »
SUMMARY

CONT is part of the custom menu created by CRSM. Pressing the
menu key under @I extracts the graphic strings for the letter O,
numbers 1 through 9 and the percent character. These graphics
are then put into a list and stored in SMPR. This list will be called on
by TDRW when using small print in a pie chart,i.e. is displayed in
the chart menu. See CRSM for more details.

PATH { HOME GRAPHP CHARTP }

INPUT LCD The graphic strings for the letter O,
numbers 1 to 9, and % in the custom

menu are used.

OUTPUT MEMORY A list of graphic characters are stored in
'SMPR' and the pie chart menu is created.

UTILITIES Start

CHAPTER THREE CHARTS

Create the List of Small

Graphics

CRSM(56571)

« {01234 56789 %
CONT ENd } MENU »

NOTE:The third character is the letter O, not the number O.

SUMMARY

CRSM creates a custom menu that is used to create the graphics
for small print in your pie charts. This custom menu contains the
letter O, numerals 1 through 9, the character %, EIll, and . The
letter O is used rather than the number O because it is narrower. In
the 28S menu, it takes three graphic characters to create the letter @
and the numbers through B. In contrast, it takes five graphic
characters to create the number @.

Pressing will create the graphics for small print and store
them in 'SMPR' while pressing returns you to the chart
graphing menu. Pressing the menu keys under or will
return that object to the stack. Pressing B will execute the percent
function as if you had pressed the percent key.

PATH { HOME GRAPHP CHARTP }

INPUT None

OUTPUT MEMORY A custom menu is created.

UTILITIES None

67

SECTION ONE CHARTS

Constant Chart Drawing

nu Li

CTLST(9858M

{ tPAR NONE RADIUS

IIVAL CRSM JIDRW ADVAN

End }

SUMMARY

CTLST is used bySTLST as a base for the pie chart menu. STLST
puts CTLST on the stack and, depending on the last number in
TPAR, replaces the second object with NONE, SM, or LARGE. Each
represent a different sized print used when labeling each section in
a pie chart. Finally, the resultant list is used by St art to create the
pie chart menu.

PATH { HOME GRAPHP CHARTP }

CHAPTER THREE CHARTS

Return raphing Menu

ENd(S761)

‘Start’

SUMMARY

ENd can be found in the small print creation menu, the fractal
editing menu, and the advanced graphing selection menu from
chapter six. It returns you to the graphing menu you are in, in this
case, the pie chart menu.

PATH {HOME GRAPHP }

INPUT MEMORY The list stored in STLST

OUTPUT MEMORY The graphing menu that you were in is

recreated.

UTILITIES None

SECTION ONE CHARTS

Increment Print Size to Large

LARGE <6181)>

I 'PUTT’ |

LARGE is one of the three possible labels you'll see in the second
position of the pie chart menu. Pressing this menu key causes the
second object in TPAR, which is 3, to rap around to 1. This number
"tells" TDRW what size print to use when labeling the percentage of
each piece of the pie. 1 is for no print, 2 is for small print (the same
size print as the menu labels), and 3 is for large print (the normal
display print). In effect, this program causes the print size to rap
around from large to none. A new custom menu is also created to
display the new print size.

SUMMARY

NONE, SM and LARGE are really the same programs. They all
increment the print size, rapping around to NONE after reaching
LARGE. See PUTT for more details.

PATH { HOME GRAPHP CHARTP }

INPUT MEMORY The number in the second position in TPAR.

OUTPUT MEMORY The number in the second position in TPAR
raps around to 1 and a new chart drawing
menu is created.

UTILITIES PUTT

70

CHAPTER THREE CHARTS

Large Printing Program

LGP<(44494)

« SPOT 100 * IP »STR
"%" + PLCE »

SUMMARY

LGP is used by TDRIW to put large labels on each section of a pie
chart. The large print is the standard size the 28S uses for normal
display. This size print is normally too large to use unless you're
drawing a large pie chart with the extended drawing program,
EDRW, from chapter six.

LGP first finds the appropriate spot to place the percentage of
each section and then converts the real number on level one to a
character string, which it places on the display.

PATH { HOME GRAPHP CHARTP }

INPUT LEVEL A real number (This is the percentage of a
given section that you'll be putting on the
display).

LEVEL A real number

MEMORY The second item in TPAR and the real
numberstored in EQ. E@ is created by TDRW.

LCD After the string from level one is displayed,
the graphic string representing the LCD is
used.

OUTPUT LCD The percentage of the current section is
printed on that section.

UTILITIES SPOT, PLCE

71

SECTION ONE CHARTS

Draw a Line Between Two Points

LINEC1385046)

« OVER - PPAR LIST>
4 ROLL 3 DROPN 5
ROLLD - C5R 31 /
SWAP 136 / 3 PICK
C5R 4 ROLL / ABS
SWAP ROT / ABS MAX 1
MAX SWAP OVER / 4
PICK*>31i«1 + ROT
/ 1 SWAP START DUP
PIXEL i + NEXT DROP

SUMMARY

LINE draws a line between the two points from level one and two.
Be careful when using LINE. It will connect the two points no
matter how far apart they are. If they are too far apart the program
will get caught in what seems to be an infinite loop. LINE is actually
drawing a line that is way off the screen. Imagine how long it would
take to connect (0, 0) and (9.9E50, 9.9E50)!

PATH { HOME GRAPHP }

INPUT LEVEL A complex number
LEVEL A complex number

OUTPUT LCD A line is drawn on the display.

UTILITIES None

CHAPTER THREE CHARTS

Rap Print Size Back to None

NONE(S314)

| 'PUT=' I

NONE is one ofthe three possible labels you'll see in the second
position of the pie chart menu. Pressing this menu key causes the
second object in TPAR, which is 1, to increment to 2. This number
"tells" TDRW what size print to use when labeling the percentage of
each piece of the pie. 1 is for no print, 2 is for small print (the same
size print as the menu labels), and 3 is for large print (the normal
display print). In effect, this program causes the print size to
increment from none to small. Finally, a new pie chart menu is
created to display the new print size.

SUMMARY

NONE, SM and LARGE are really the same programs. They all
increment the print size, rapping around to NONE after reaching
LARGE. See PUTT for more details.

PATH { HOME GRAPHP CHARTP }

INPUT MEMORY The number in the second position in
TPAR.

OUTPUT MEMORY The number in the second position in TPAR
increments to 2 and a new chart drawing
menu is created.

UTILITIES PUT™

SECTION ONE CHARTS

Don't Print Any Percentages

NONP(3164)

SUMMARY

NONP is simply an empty program. Every time TDRW draws a new
section in a pie chart it evaluates one of the three programs, NONP
SMP or LGP. These programs print the percentage of each section in
the chart.

When you don't want any printing on a pie chart (1 is the second
object in TPAR), TDRW will execute NONP when labeling each section.
Because NONP is an empty program, none of the sections will be
labeled with their percentage.

PATH { HOME GRAPHP CHARTP }

INPUT None

OUTPUT None

UTILITIES None

74

CHAPTER THREE CHARTS

Place T n Di

PLCEC157208)

« DUP SIZE 6 * LCD»
ROT 1 DISP LCD~» SWAP
»LCD 1 ROT SUB PLCU

SUMMARY

PLCE takes the string from level one and places it, pixel by pixel,
on the display. The point from level two defines the bottom left
comner of the string being printed. This allows you to put text
anywhere on the display by specifying the value of the pixel you
want to start as defined by the 28S's plot parameters PPAR.

PLCE first displays the string from level one on the top right
corner of the display via the built in command DISP. It then returns
the graphic string representing the display to level one and takes
only the portion of this string that contains the graphics for what
you're trying to place on the display. Finally, PLCU places the string
on the display starting at the point that was input on level two.

PATH { HOME GRAPHP CHARTP }

INPUT LEVEL TWO A complex number

LEVEL A string
LCD After the string from level one is displayed,

the string representing the LCD is used.

OUTPUT LCD The string from level one is plotted on the
display.

UTILITIES PLCU

75

SECTION ONE CHARTS

Utility

PLCUC2907379)

« 1 *W PPAR LIST> 4
DROPN - C3R -31 /
SWAP -136 / 4 ROLL
C>R 4 PICK 8 * OVER
+ ROT 6 PICK SIZE 5
PICK * OVER + - ys
xsyl y2 x1 x2 «x1
x2 FORx DUP 2 137
SUB SWAP NUM R»B yl
y2 FORy IF DUP
80h AND B»RTHEN x
y R»C PIXEL END RL
ys STEP DROP xs STEP
DROP » »

SUMMARY

This program plots a graphic string on the display. Simply put a
point on level two and the graphic string on level one. Starting at
the point from level two, PLCU takes each character of the graphic
string and draws it, pixel by pixel, on the display. It continues
plotting each character until it reaches the end of the graphic
string.

PATH { HOME GRAPHP CHARTP }

INPUT LEVEL A complex number

LEVEL A graphic string

OUTPUT LCD The graphic string from level one is drawn
on the display, bottom to top, left to right.

UTILITIES None

CHAPTER THREE CHARTS

Put Size Number into [[PAR

PUTT(118563)

« 'tPAR' PCHK 2 DUP2
GETDUP3=*1+
PUT Start »

SUMMARY

PUTT increments the print size number (The second object in
TPAR). If this number is greater than 3 it raps around to 1. TDRW
uses this number to decide what size print should be used to label
each section of the pie chart. Finally, PUTT calls Start to create a
new custom menu. The second label of this new menu will be either

,H&, or , depending on the number in the second position
ofTPAR.

PATH { HOME GRAPHP CHARTP }

INPUT MEMORY The number in the second position in
TPAR.

OUTPUT MEMORY The number in the second position in TPAR
is incremented. If it is greater than 3, it raps
around to 1. A new chart drawing menu is
also created.

UTILITIES Start

SECTION ONE CHARTS

Define Radius of Pie Chart

RADIUS(28867)

« RE 1 'tPAR' PUTP »

SUMMARY

RADIUS puts the real number from level one into the first position
in the pie chart parameters, TPAR. This number "tells" TDRW what
radius to use when drawing a pie chart.

RADIUS will only use the real part of the number on level one. This
number must be positive for TDRH, the pie chart drawing program,
to work properly.

PATH { HOME GRAPHP CHARTP }

INPUT LEVEL A real number

OUTPUT MEMORY The number from level one is put in the first
position in the pie chart parameters, TPAR.

UTILITIES PUTP

CHAPTER THREE CHARTS

Incr nt Prin

SM(371D

| 'PUT=’ I

SM is located in the chart drawing menu. Pressing this menu key
causes the second object in WPAR, which is 2, to increment to 3. This
number "tells" TDRW what size print to label the percentage of each
piece of the pie. 1 is for no printing, 2 is for small printing (the same
size print as the menu labels), and 3 is for large print (the normal
display print). In effect, this program causes the print size to
increment from small to large. A new custom menu is also create to
display the new print size.

SUMMARY

NONE, SM and LARGE are really the same programs. They all
increment the print size. The size raps around to NONE after
reaching LARGE. See PUTT for more details on how this is done.

PATH { HOME GRAPHP CHARTP }

INPUT MEMORY The number in the second position in TPAR.

OUTPUT MEMORY The number in the second position in TPAR
is incremented to 3. A new chart drawing
menu is also created.

UTILITIES PUTwT

SECTION ONE CHARTS

1 h n with Small Prin

SMP(289821)

« SPOT 'SMPR' SWAP
DUP2 10*1P 1 + GET
3ROLLD 10*FP 10 *
IP 1 + GET + 'SMPR'
11 GET + PLCU »

SUMMARY

Using SPOT, SMP Finds the appropriate spot to place the
percentage of each section. It then converts the percentage to a
graphic string and places it, in small print, on the pie chart. This
small print is the same size the 28S uses for its menu keys. This
size print can be used by many charts. In some cases though, it
may be too large to use unless you're drawing an enlarged pie chart
with the drawing program EDRW. This is illustrated in chapter 7.

PATH { HOME GRAPHP CHARTP }

INPUT LEVEL A real number (This is the percentage you'll

be putting on the display.
LEVEL A real number
MEMORY The second item in the list T/PAR and the

real number stored in EQ (this is the radius
of the pie chart).

OUTPUT LCD The percentage of the current section is
plotted on the display.

UTILITIES SPOT, PLCU

CHAPTER THREE CHARTS

u Pl h n

SPOT(26B672)

« DUP2 OVER2 / +
360 * EQ 2 / SWAP
R>C P»R (.45,.3)
(.45, 0) tPAR2 GET 3
==*+-SWAP»

SUMMARY

SPOT finds the appropriate spot to place the percentage of each
section. It is called on by both SMP, the smaller printing program,
and LGP, the larger printing program. Because of the difference in
size, the two types of print should be placed in different location.
SPOT accommodates for the larger print size by adding (.45, 0) to
the position the percentage will be printed at.

PATH { HOME GRAPHP CHARTP }

INPUT LEVEL A real number
LEVEL ONE A real number

MEMORY The second item in the list TPAR and the

real number stored in EQ. (This is the radius
of the pie chart.)

OUTPUT THREEThe real number input on level one

LEVEL TWO A complex number representing the
location that the percentage should be
drawn.

LEVEL ONE The real number input on level two

UTILITIES None

81

SECTION ONE CHARTS

Create Starting Chart Graphing Menu List

STLSTC184721>

« CTLST 2 { NONE SM

LARGE } nPAR 2 GET

GET PUT »

SUMMARY

The number in the second position in TPAR indicates which item
from the list {NONE SMLARGE }STLST will use. STLST take this
object and puts it into the second position in the list stored in
CTLST. CTLST is always the same and serves as a base to build the
custom chart drawing menu on. Thefinal list will be used by $t art,
to create a custom menu having either CEKH, Hal, or in the
second position. This tells you, the user, which size print TDRW will
use.

PATH { HOME GRAPHP CHARTP }

INPUT MEMORY The real number stored in the second

position of TPAR.

OUTPUT LEVEL A list that will be used to create a custom
menu.

UTILITIES None

CHAPTER THREE CHARTS

Chart Drawing Work Directory

WRK(954)

Directory |

SUMMARY

As you read through this text you'll notice that every chapter has
its own work directory named WRK. This version is used to store
any variables or programs you create while using the chart drawing
menu. It is located just below CHARTP. This is shown on the
directory tree on page 65. Working in WRK protects the programs in
CHARTP, the chart drawing program directory, from accidentally
being purged. It is also easier sorting through variables in a smaller
work directory than sifting through all your variables and
programs in one big directory.

PATH { HOME GRAPHP CHARTP}

SECTION ONE CHARTS

Pie Chart Drawing Program

TDRW(1 768699)

« 1.E50 DUP R>C AXES
CLCD? RCLF STD DEG
nPAR LIST- DROP {
NONP SMP LGP } SWAP
GET » p«STEQ 17 SF
ADRW $DATTOT /
ARRY> 1 GETO 1 ROT
START p EVAL + EQ
OVER 360 * R+C PsR
(0, 0) LINE NEXT DROP
'EQ' PURGE STOF
DGTZ? » »

SUMMARY

This is the program that does all the work. Using the statistical
array in ZDAT, TDRW draws a pie chart. It portions the pie among
the entries in this array. For example, if ZDAT equals

(L
[21
(1411

Then TDRW will draw a pie chart with three sections. The first
would be 20% of the chart. Likewise, the second and third section

would be 10% and 70% of the chart.

The pie chart parameter list, TPAR, contains two objects. The first
is the radius of the pie chart. The second, an integer from 1 to 3,
indicates the current print size used to print the percentages of
each section.

CHAPTER THREE CHARTS

There are three possible print sizes. Size 1 will omit any printing,
size 2 will use small print (the print used in the menu labels) and
size 3 will use large print (the same print that the 28S uses for
normal display). The current print size is displayed as the second
menu key in the custom chart menu as either LA, or .

TDRW, like most other root level drawing programs, uses the two
utilities CLCD? and DGTZ?. When I say root level I mean it does the
actual graphing. In contrast, the graphing programs in chapter six
are advanced graphing programs. They call other procedures, like
TDRH, to do the actual graphing for them.

Both CLCD? and DGTZ?check the status of flag 17 and, if it is
clear, clears the display before graphing and digitize after graphing
is complete. DGTZ? also clears flag 17 after checking its status.
These two subprograms allow you to use TDRW directly from the
custom menu or as part of a larger program.

When using this program from the menu (it is assumed that flag
17 is cleared) the display will be cleared, a pie chart will be drawn,
and you will enter digitizing mode. On the other hand, if you want
to use it as a subprogram, set flag 17 before executing TDRW. This
prevents the display from being cleared or having execution halted
for digitizing. This is exactly what the graphing programs from
chapter six do.

NOTE: If TDRW doesn't clear the display or allow
you to digitize, flag 17 is set. If this happens you can
stop the program and clear flag 17 or wait untilit is
done running. Either way, flag 17 will be cleared.
Then just try it again.

PATH { HOME GRAPHP CHARTP }

INPUT MEMORY The list in TPAR and the array stored in
ZDAT as well as flag 17 are used.

SECTION ONE CHARTS

KEYBOARD If flag 17 is clear the digitizing keyboard is

OUTPUT MEMORY

LCD

STACK

activated. See appendix A for an
explanation on digitizing.

The location of the axis defined be 'PPAR' is
shifted off the display, preventing them
from being drawn.
If flag 17 is clear the display is cleared. The
the pie chart defined by TPAR and ZDAT is
drawn.
If flag 17 was clear before running the
program any objects left by digitizing will be
on the stack.

ADRW, CLCD?, DGTZ?, LINE, NONP, SMP, LGP

CHAPTER THREE CHARTS

Default Pie Chart Parameters

TPAR(8112>

| {151} |

The default pie chart parameters are defined in GRAPHP. This
version will be used as a default when it isn't already defined in the
work directory. Of course any version ofTPAR created in the work
directory will take precedence over this one.

SUMMARY

The second object from this list, 1, is used as the default print
size. This should become obvious when you first enter the chart
graphing menu. will be displayed as the second menu label. It
was TPAR that "told" STLST, the program that created the custom
menu, which size to label this key.

PATH { HOME GRAPHP }

87

SECTION ONE CHARTS

Value

TVAL(304537)

« R»P IM 360 MOD

SWAP R»P IM 360 MOD

- IF DUP SIGN 1#

THEN 360 + END 360 /

RCLY CNRM *»
SUMMARY

This program allows you to find the area of any section in a pie
chart. While running TDRHW, digitize the two lines that make up the
section or combination of sections counter clockwise. Then,
running TVAL with both points on the stack will return the area of
that section.

TVAL uses ZDAT in computing this value, so changing this array
after digitizing your points will cause TVAL to give you an incorrect
answer.

PATH { HOME GRAPHP CHARTP }

INPUT LEVEL A complex number
LEVEL TWQ A complex number

OUTPUT LEVEL A real number

UTILITIES None

CHAPTER THREE CHARTS

SECTION TWO

INTRODUCTION

The pie chart menu allows you to represent data stored in the
statistical array ZDAT as a pie chart. You also have the option of
labeling each section with small or large print. The small print is the
same size used in the menu labels while the large is the same print
the 28S uses.

TDRW, the pie chart drawing program, and its supporting
programs are incorporated into an easy to use custom menu. To get
to the pie chart menu you have to start in the main graphing menu.
Enter HOME (xTes) GRAPH or pressing if you are in a
different graphing menu. Now enter the pie chart menu by
pressing the menu key labeled . This will put you in the work
directoryjust below CHARTP (See the directory tree below). You
should also see the pie chart menu. A description of each menu key
is given at the end of this chapter. Ifyou leave this menu to use a
28S menu such as TRIG, you can always recall it by pressing
CUSTOM.

]]]

POLARP SHAPEP WRK

WRK WRK ||FRACTP
I

WRK
Figure 3.1

89

SECTION TWO CHARTS

The next few pages will demonstrate the basic outline to follow
when drawing a pie chart. From storing the data to finding the area
of any section in the chart, each step is described with an example.

STORING DATA

Before you can draw a pie chart you need to store your data in an
array. WDRW portions one section for each number in the one
dimensional statistical array stored in 'ZDAT'. You can enter your
data using the commands from the 28S statistical menu, . B
adds the number from level one to ZDAT while Hd subtracts the last
number from ZDAT and putsit on level one.

The data we'll use for our example is[[1951[447 1[3621(6011].
Try storing this array into ZDAT. This can be done several ways.
You can enter the array on the stack and store it directly into
'ZDAT' or you can clear any existing ZDAT and use Eto add each
element individually. I'll use the second method.

Hil 195 Hi447 Hi362 K60 K

CHOOSINGA PRINT SIZE

Now we must decide whether or not we want to label the
percentage of each section and,if so, the size print we would like.
There is the large print that the 28S uses for normal display, or the
smaller print that is used for menu key labels. Most charts can
only handle small printing. Unless the chart is drawn on several
display screens, the large print is so big that the label from one
section will overlap others. Only an extended chart (a chart drawn
on more than one display screen) created using EDRW from chapter
six should have large printing. Since this is the first example, we will
omit any labels on our pie chart.

The second menu key displays the current print size. It will read
either CILHA, Hil, orM. The default value, CIEH, should be
displayed. If not, press the second menu key until it reads .
Pressing this key causes the print size to increment and changes
the second menu key label to display the new print size. Pressing

CHAPTER THREE CHARTS

the menu label when it reads MIEH3 will cause the print size to rap
around to CILH.

CHOOSING A RADIUS

Next we must choose a radius for our chart. An extended pie chart
drawn on several display screens might need a radius of 4.5 or 7.5
while a chart without any print can normally be drawn on one
display screen using a radius of 1.5 or less. To enter a radius, put a
real number on level one and press the menu key under . For
our example, set the radius to 1.5. After pressing @3l the first
number in the list stored in TPAR should be 1.3. This list is used by
TDRW when drawing a pie chart.

1.0 @3

THE PIE CHART PARAMETERS

TPAR, the pie chart parameter list, reads { radius, print size }. The
radius is just the distance from the center of the chart to any point
on the circle. It can be any real number. The print size is the size
characters used when labeling each section of the pie. It will be
either 1 for no print, 2 for small print, or 3 for large print.

TPAR can be recalled by pressing its menu key in the pie chart
menu. If TPAR doesn't exist in the work directory, the default value
stored in the main graphing directory will be returned. This default
value is { 1.5 1 }. It is use by the pie chart programs when TPAR
doesn't exist in the pie chart work directory.

DRAWINGAPIE CHART

With ZDAT and TPAR defined you're ready to draw a pie chart
with a radius of 1.5 where the percentage of each section is not
printed. ZDAT and TPAR should contain

ZDAT [L195104471(3621[6011]
TPAR {1.9+ 1}

91

SECTION TWO CHARTS

Pressing LlId% will draw the pie chart for the data you stored in
ZDAT. A section is drawn for each element, from last to first.

Figure 3.1

NOTE

There is a chance that ADRW will not clear the display or enter
digitizing mode. This means flag 17 is set. Normally, flag 17 is clear
so ADRKW can be used as a menu driven program. The only time you
would wantit set is if you were using ADRW as a subprogram (See
page 95). If this happens, you can stop the program and manually
clear flag 17 or wait for ADRNW to finish running, at which time it will
clear flag 17 itself. Then just try again.

FINDING THEAREAOF ANY SECTION

After drawing the pie chart, the 28S enters digitizing mode. There
is an added feature in the pie chart menu. You can find the value of
any section or combination of sections in the pie by digitizing its
boundaries clockwise, pressing to exit digitizing mode, and
running TVAL. The approximate value of the area is returned to level
one.

As an example, try finding the combined value the first two
segments of the chart we drew earlier. If you already left digitizing
mode you will have to draw the pie chart again.

Digitize any point on the lower border of the first section and the
opposite border of the second. Any point along the line will work,
but points further from the center will give a more accurate

CHAPTER THREE CHARTS

estimate. Press to exit digitizing mode and press the custom
menu key labeled TVAL. The estimate of 423.83 is very close to the
actual value of (60+362)=422. You may get a slightly different value
depending on the points you digitized.

LABELING THE PERCENTAGE OF EACH SECTION

You probably won't label the percentage of each section when
drawing a pie chart on one display screen. But what if you're
drawing a chart on several displays. This can be done using EDRW,
the extended drawing program from chapter six.

The 28S displays data using characters that are eight pixels high
and five pixels wide. It displays these characters on a four line by 23
column display screen. This gives you 92 different position in
which you can display a character. This is fine for most uses, but
what if you want to display a character anywhere on the screen?

Each section in a pie chart normally has very little area. With
such little space to work in and only 92 different possible positions,
it would be impossible to label each section with its percentage of the
pie. If, however, we could break the four line, 23 column restriction
and put characters anywhere on the screen, we might be able to
squeeze everything in.

The display screen is made up of 137 by 32 pixels. We could have
4384 different possible positions if we were able to specify which
pixel we want a character to start at. This is exactly what the
subprogram PLCU does. It allows us to places a graphic string
anywhere on the display screen by plotting it, pixel by pixel. By first
converting a number to a graphic string and using PLCU to draw it
on the display, we can easily label the sections of a pie chart.

We have two different sizes to choose from. We can label the
sections with small (the same size as the menu labels) or large (the
same size the 28S uses on its display) print. The small print is fine
when using two display screens while the large print can be used for
three or more displays.

93

SECTION TWO CHARTS

Before using the small print on your chart you have to create the
graphics for each number. Pressing the menu key labeled EEZ will
display the small print creation menu.

n1234/56,89

The first three menu labels, . , and B will be used to create
the graphics. The fourth, B, will extract the graphics for each
character in the first three labels of the custom menu and put you
back in the pie chart menu. gives you the option to exit this
menu and recall the pie chart menu without creating any graphics.

The first character in this menu is the letter O not the number 0.
The letter O is used rather than the number O because it is narrower
when in the 28S menu. It takes three graphic characters to create
the letter @ and the numbers Bthrough B. In contrast,it takes five
graphic characters to create the number (.

You must press HLli to create the small print graphics. This
extracts the graphics and stores them as a list in 'SMPR'. This list is
used when putting small labels on a pie chart. If you decide you do
not want to create this list, Bl will return you to the pie chart
menu. Pressing the menu keys under or will return that
object to the stack. While pressing B will execute the percent
function as if you had directly pressed the percent key.

If you are using the large print you will not have to define the
graphics before hand. Instead, TDRW will periodically flash the
percentage on the display, where it extracts the graphics it needs.
Large print is easier to use and doesn't consume memory space
storing graphics, but is limited by its awkward size.

A PIE CHART USING SMALL PRINT

Lets draw a pie chart labeling each section with small print.
Using the same data as the last example, subtract the last point

CHAPTER THREE CHARTS

from ZDAT. The statistical array should now be LL 19510 447 1L
3621]. Next, create the graphics for the small printing. Finally,
press the second menu key until it reads and run TDRW. Notice
how the labels just barely fit on each section. As a rule, pie charts
drawn on one display should not use labels. Only chart drawn on
several screen using EDRW from chapter six have the room needed to
label the percent of each section. An example of an extended pie
chart is given in chapter seven.

H oNE TG

-

7__35:.;\‘

S
l'.‘:'l:' 7 l}'ia;JI

m—"
-

Figure 3.2

[IDRW AS A SUBPROGRAM

If flag 17 is clear, TDRW clears the display, draws a pie chart, and
activates the digitizing keyboard. It acts as a menu driven program.
But what if you want to incorporate TDRW as a subroutine in a larger
program? Chances are, you won't want the display cleared and you
probably won't want the digitizing keyboard activated.

When used as a subprogram, you need to set flag 17 before calling
TDRW. Then, WDRW will draw a pie chart without clearing the display
or entering digitizing mode. It will also reset flag 17 so it will always
be ready when you want to use it as a menu driven program.

95

SECTION TWO CHARTS

PIE CHART MENU

Menu Key Operation

The pie chart parameters are { radius,
print size }. The radius is just the radial
distance from the center to the edge of
the pie chart. The print size is the size
print used to label each section of the pie
chart. 1 omits any labeling, 2 uses small
printing, and 3 uses larger printing.

The second menu key tells you, the user,
the current print size. Pressing this key
causes the size to increment, rapping
around to CEGH after reaching . The
number in the second position of TPAR
will also change to 1, 2, or 3 to reflect the
new print size.

You can specify the size of the pie chart
using this program. Pressing this menu
key puts the number from level one into
the first position in TPAR.

This handy program allows you to find
the value of any number of sections in a
pie chart. Simply digitize the boundaries
clockwise and press (o) . Then, running
VAL with the two points on the stack
will return the value between the
digitized boundaries.
 Pressing this menu key will display the

menu used to create the graphics for
small labels. Be sure you do this before
trying to graph a pie chart whose labels
are in small print.

CHAPTER THREE CHARTS

g2

This is the pie chart drawing program. It
draws a circle whose radius is given as
the first object in TPAR. It then sections
the pie among the elements in the one
dimensional statistical array stored in
ZDAT. Finally, using the second object in
TPAR, each piece of the pie is labeled with
small print, large print, or left unlabeled.

As in most other menus from this text,

HOLEN] this key will create the advanced

graphing menu. The programs in this
menu are in chaptersix.
The last menu key will exit the pie chart

R menu and return you to the main
graphing menu.

97

SECTION TWO CHARTS

SMALL PRINT CREATION MENU

Menu Key Operation

(
]
n L
J
o

Pressing this menu key returns the string
"01234" to the stack. This menu label is used
byBN to define 5 by 3 pixel characters.

u
n
m | o
]
L
o

Pressing this menu key returns the number
96789 to the stack. This menu label is used
by to define 5 by 3 pixel characters.

Pressing this key will preform the percent
function as if you have pressed the percent
key.

b

CONT extracts the graphics for the characters
in the first three menu labels and puts them
in a list stored in 'SMPR’.
 Pressing@ returns you to the pie chart

menu.

CHAPTER FOUR

DRAWING SHAPES

SECTION ONE DRAWING SHAPES

SECTION ONE

REFERENCE SECTION

INTRODUCTION

This is the reference section for the shape drawing programs.
These programs allow you to draw a variety of polygons and stars.
Before starting this chapter you should flip through section two,
the example section. It will give you an idea ofwhat to expect. Then,
ifyou like what you see, you canjump right in, but be sure you've
entered the programs from chapter one first.

Most of the programs in this chapter are stored in SHAPEP, the
shape drawing program directory. You must create this directory
berore storing any programs (where would you put them?). Go to
GRAPHP, the main graphing directory, and create SHAPEP by
entering, GRAPHP (enter) SHAPEP EIHA. See the directory tree

on page 110. Now you're ready to enter all the programs from this
chapter.

A table of all the programs you'll need in this chapter is given on
the next page. An asterisk (*) after its name indicates it is listed in a

100

CHAPTER FOUR DRAWING SHAPES

different chapter. Flip to the indicated page number and check
whether you've already keyed that program in.

PROGRAM TABLE

Program e Bytes Pro

* 36 52.5

102 87.

40 47.

178.

43.0

NOTE

There are several programs in this book with the same name.
Just because two chapters contain the same name in their program
tables doesn't necessarily mean they are the same program. They
could be two very different programs stored in two different
directories.

For example, chapters one through five all have listings for
STLST. STLST is used to create each custom graphing menu. Since
every chapter creates its own custom menu, each one will have a
different version of STLST.

101

SECTION ONE DRAWING SHAPES

Connect a List of Points

CHCT(251388)

«1*W1DO GETI »
pl« GETI pl SWAP
LINE » 1 - UNTIL 46
FS? END DROP2 »

SUMMARY

It is often easier to represent a figure as a series of end points.
Connecting these points trace out the figure in a dot to dot fashion.
This is exactly what CNCT does.

CNCT will connect a list of points on the display. Simply put any
list of complex numbers on level one and CNCT will draw a line from
one point to the next. Be sure the points aren't too far out of the
range of the display screen. If the display range is (-6.8,-1.5) to (6.8,
1.6), connecting the points (9.9E50, 9.9E50) and (0, 0) would put
you in a near endless loop.

PATH { HOME GRAPHP SHAPEP}

INPUT LEVELA list containing at least one complex

number.

OUTPUT LCD Each point from the list input on level one is
connected in order on the display

UTILITIES LINE

102

CHAPTER FOUR DRAWING SHAPES

Number of Points in Shape

POINTS(22791)

« 2 'SPAR' PUTP »

SUMMARY

POINTS puts the integer from level one into the second position of
the shape parameters, SPAR. This integer specifies the number of
end points on the shape you're drawing. For instance, a triangle
has three end points while a five pointed star has five points.
Likewise, a pentagon also has five points.

This program will accept any object as input. Be careful not to put
anything other than an integer on level one. If you do, you'll get an
error when running SDRNW.

PATH { HOME GRAPHP SHAPEP }

INPUT LEVELAny integer

OUTPUT MEMORY The integer from level one is put into the
second position of SPAR.

UTILITIES PUTP

103

SECTION ONE DRAWING SHAPES

Radiusof Shape

RADIUS(126795)

« ABS 'SPAR' PCHK 1
DUP2 GET IM 4 ROLL
SWAP R~>C PUT »

SUMMARY

RADIUS puts the real number from level one as the real part of the
complex number in the first position of SPAR, the shape
parameters. This number "tells" SDRW, the shape grapher, what
radius to use when creating a shape. Each time it makes a
revolution, $DPRHW will connect a number of points that are a distance
R away from the origin. It keeps on connecting points until it
completes the total number of revolutions SPAR "tells" it. In a
nutshell, this program controls the size of your shape. The larger
the radius, the larger the shape.

PATH { HOME GRAPHP SHAPEP}

INPUT LEVEL ONE Any real number

OUTPUT MEMORY The real number from level one is put into the
real part of the complex number in the first
position of SPAR.

UTILITIES PCHK

104

CHAPTER FOUR DRAWING SHAPES

Number of Revolution in Shape

REV(17148>

« 3 'SPAR' PUTP »

SUMMARY

REVY puts the integer from level one into the third position in
SPAR, the shape parameter list. This integer "tells" SDRW the
number of revolutions to make. Each time it makes a revolution
SDRHW will connect a numberof points. It keeps on connecting points
until it's completed the total number of revolutions.

The number of revolutions can drastically change the shape
you're drawing. For instance, ifyou want to create a shape that has
five points and you do it in one revolution, you'll end up with a
pentagon. On the other hand, if you decided you wanted to try
drawing your shape in two revolutions, you'd end up with a five
pointed star.

Be careful when using REY. It doesn't checkyour input. This
means you can input any object. You're sure to get an error when
running SDRH if, by accident, you input anything other than an
integer.

PATH { HOME GRAPHP SHAPEP }

INPUT LEVELAny integer

OUTPUT MEMORY The integer from level one is put into the
third position in SPAR.

UTILITIES PUTP

105

SECTION ONE DRAWING SHAPES

Shape Drawing Program

SDRKW(35934)

« CLCD? SHAPL CNCT
DGTZ? »

SUMMARY

SDRHW draws a shape that is defined by SPAR, the shape
parameters. SPAR read as follows.

{ (radius, starting angle), number
of points, number of revolutions }

The first number in SPAR is complex. The real part represents the
radial distance of every endpoint from the origin. The complex part
is the angle, in degrees, that the first point makes with the X axis. It
is, more or less, a polar coordinate. This is the spot where the first
point is plotted. All other points differ only by the angle (the
complex part of this number).

SDRW starts at the first point and circles the origin. The third
number in SPAR is the number of revolutions SDRW will make. While
revolving around the center, it plots a number of equally spaced
points around the circle. The total number of points are specified by
the second number in SPAR. Finally, these points are connected
together to draw a shape.

As an example, if you stored {€1.3; 98243, 1} in SPAR, SDRW would
connect three points that have a radial distance of 1.5 from the
center and are equally spaced apart. The first point would be
rotated 90° from the X axis. This is the description of the equilateral
triangle shown on the next page.

106

CHAPTER FOUR DRAWING SHAPES

Point 1

 v

Point 2 Point 3

SDRMN, like most other root level drawing programs uses the two
utilities CLCD? and DGTZ?. A root level graphing program does the
actual graphing. In contrast, the graphing programs in chapter six
are advanced graphing programs. They call other procedures, like
SDRMW, to do the graphing for them.

Both CLCD? and DGTZ?check the status of flag 17 and, if set,
clear the display before graphing and digitize after graphing is
complete. DGTZ? also clears flag 17 after checking its status. These
two subprograms allow you to use SDRW directly from the custom
menu or as part of a larger program.

When using this program from the menu (it is assumed that flag
17 is cleared) the display will be cleared, a shape will be drawn, and
you will enter digitizing mode. On the other hand, if you want to use
it as a subprogram, have the calling program set flag 17 before
executing SDRW. This prevents the display from being cleared or
having execution halted for digitizing. This is exactly what the
advanced graphing programs from chapter six do.

NOTE

If SDRW doesn't clear the display or allow you to digitize, flag 17 is
set. You can stop the program and clear flag 17 or wait until SDRW is
done running. Either way, flag 17 will be cleared. Thenjust try
again.

107

SECTION ONE DRAWING SHAPES

PATH { HOME GRAPHP SHAPEP }

INPUT MEMORY The list in SPAR and PPAR as well as flag 17
are used.

KEYBOARD If flag 17 is clear the digitizing keyboard is

activated. See appendix A for an explanation
on digitizing.

OUTPUT LCD If flag 17 is clear the display is cleared. The
shape defined by SPAR is drawn.

STACK If flag 17 is clear before running, any objects
left from digitizing.

UTILITIES CLCD?, SHAPL, CNCT, DGTZ?

108

CHAPTER FOUR DRAWING SHAPES

Create Shape Drawing Menu

SHAPE(28761)

« SHAPEP Start »

SUMMARY

SHAPE puts you into the work directory, WRK, and creates the
shape drawing menu. You'll probably notice, ifyou haven't already,
that every graphing menu has its own program directory, the
directory with the programing specific to that topic, its own work
directory, titled WRK, its own graphing menu, and a command to
enter that menu.

Except for the last letter, the commands to enter the graphing
menus all have the same name as their program directories. For
example, SHAPE puts you in the work directory, WRK, just below
SHAPEP. Likewise, FRACT puts you into the shape drawing work
directory, WRK, just below FRACTP.

PATH { HOME GRAPHP SHAPEP }

INPUT MEMORY STLST, the list in the SHAPEP directory

OUTPUT MEMORY Directory control is given to the work

directory, WRK subordinate to SHAPEP.
This is shown in the directory tree on the
next page. The custom shape graphing
menu is also created.

UTILITIES Start

109

SECTION ONE DRAWING SHAPES

Shape Program Directory

SHAPEP(2367)

Directory

SUMMARY

This is the directory where all the programs that are specific to
drawing shapes are stored. Storing the shape drawing programs in
their own directory creates a sense of order, like chapters in a book.

Some programs that are used for drawing shapes are stored in
GRAPHP rather than SHAPEP. This is because they are used by
graphing procedures in other directories. Putting these programs
in GRAPHP allows access to any program in or subordinate to it.
Thus a program in CHARTP can use LINE as well as a program in
SHAPEP,since it is in stored in GRAPHP. A program in CHARTP can't
use SDRH though, because it is stored in SHAPEP, which isn't in
CHARTP's path. The directory tree below illustrates this.

PATH { HOME GRAPHP }

[l]

POLARP CHARTP WRK

WRK WRK FRACTP

 WRK

110

CHAPTER FOUR DRAWING SHAPES

Shape

SHAPL(765293)

«SPAR LIST> DROP 1

*W 360 * OVER / RCLF

DEG » d a fg « DUP
PsR SWAP 1 d START O

a R»>C - DUP PoR SWAP
NEXTDROPd 1 +

-LIST fg STOF » »
SUMMARY

Using the list stored in SPAR, SHAPL creates a list of points that
are equally spaced around a circle. Connecting these points will
draw a symmetric shape. The list in SPAR is used as follows.

{ (radius, starting angle), number
of points, number of revolutions}

SHAPL starts at the polar coordinates of the complex number
from SPAR. While revolving around the origin, it continually adds
equally spaced points to a list. The second object in SPAR specifies
the total number of points. The third object is the number of
revolutions made while generating points.

PATH { HOME GRAPHP SHAPEP }

INPUT MEMORY The shape parameter list stored in SPAR

OUTPUT LEVELA list of points which are equally spaced
around a circle.

UTILITIES None

111

SECTION ONE DRAWING SHAPES

Shape Parameters (Default)

SPAR(14768)

{(1.5,90)3 1}

SUMMARY

SPAR is a list of parameters used by SDRW to draw a shape. It
reads as follows.

{ (radius, starting angle), number
of points, number of revolutions}

Most of the programs in this chapter use or manipulate SPAR.
What happens when SPAR doesn't exist in the work directory? The
default shape parameters defined in the main graphing directory,
GRAPHP, will be used as a default when it isn't defined in the work
directory, WRK.

As an example, if you're starting out with an empty work
directory and want to set the minimum radius to 2, you would enter
2 . RADIUS first creates SPAR by recalling its default value
stored in the main graphing directory and storing it in the work
directory. Remember a variable in a different directory can be
recalled, but can't be changed. Now it is able to put 2 into SPAR.

PATH { HOME GRAPHP }

112

CHAPTER FOUR DRAWING SHAPES

Start

STLST(184681)

{ SPAR RADIUS THETA
POINTS REV SDRW
ADVAN End }

SUMMARY

You'll find a different version ofSTLST in every program
directory. St art, the program that creates the custom graphing
menu, takes the list in STLST or the list created by STLST, and
forms a custom graphing menu.

This version ofSTLST is used to create the shape graphing menu.
A description of each menu key is given at the end of this chapter.

PATH { HOME GRAPHP SHAPEP }

113

SECTION ONE DRAWING SHAPES

Starting

THETRA(87602)

« 'SPAR' PCHK 1 DUP2
GET RE 4 ROLL R>C
PUT »

SUMMARY

Using the parameters stored in SPAR, SDRW will plot and connect
a number of points that are a distance R away from the origin.
THETA puts the real number from level one into the imaginary part
of the complex number in the first position of SPAR, the shape
parameters. This "tells" SDRW, what angle to start drawing from.
This angle, measured in degrees, will be the angle the starting point
makes with the X axis.

IMPORTANT

The angle put on level one must be in degrees.

PATH { HOME GRAPHP SHAPEP}

INPUT LEVEL ONE Any real number

OUTPUT MEMORY The real number from level one is put into the
imaginary part of the complex number in the
first position of SPAR.

UTILITIES PCHK

114

CHAPTER FOUR DRAWING SHAPES

Shape Work Directory

WRK(954)>

Directory

SUMMARY

As you read through this text you'll notice every chapter has a
listing for a directory named WRK. Don't let this confuse you. These
are all different directories. Each program directory has its own
work directory named WRK. See the directory tree on page 110.

WRK is used to store any objects or programs you create. The
work directory listed here is locatedjust below SHAPEP. Working in
WRK protects the programs in SHAPEP, the shape drawing program
directory, from accidentally being purged. It is also easier sorting
through variables in a smaller work directory than sifting through
all your variables and programs in one big directory.

PATH { HOME GRAPHP SHAPEP }

115

SECTION ONE DRAWING SHAPES

116

CHAPTER FOUR DRAWING SHAPES

SECTION TWO

EXAMPLES

INTRODUCTION

The shape graphing menu allows you to create a variety of
shapes, from a simple triangle to a multi-pointed star. Just specify
the radius, starting angle, number of end points and number of
revolutions to use when creating a shape. Because ofit's simplicity,
a triangle will be used when describing each key in the shape menu.

DEFINING A BASIC POLYGON

A basic polygon can be described as a numberofpoints that are
equally spaced around a circle. Connecting these points in order
traces out the polygon. The number of points determines its type.

Figure 4.1 shows three points, P1, P2, and P3, that are equally
spaced around a circle whose radius is r. The fact that the points
are equally spaced means that they are 360°/3=120° apart.
Connecting these points draws an equilateral triangle. Likewise,
four points define a square, five a pentagon, six a hexagon, and so
on.

P1

Figure 4.1

117

SECTION TWO DRAWING SHAPES

THE SHAPE PARAMETER LIST (SPAR)

All the information needed to draw a shape is stored in SPAR, the
shape parameter list, which reads { (radius, starting angle),
number of points, number of revolutions}. The first object is the
starting point for the shape. The real part is the radial distance
from the center while the imaginary part is the angle a ray
connecting that point and the center makes with the X axis. The
starting point for figure 4.1 is (r, 90°). The second object is the
number of points that define the shape. Finally, the last object is
the number of revolutions made when creating the shape. This is
one for polygons. Any other number will create a star. The
parameters can be set by putting a real number on level one and
pressing the key described below.

Position in SPAR Represents Menu Key

1 (real part) Radial distance from each I
point to the center

1 (imaginary part) Angle first point makes with
the X axis

2 Number of points defining IR
shape

3 Number of revolutions made N
when connecting points

As with every other parameterlist in this book, SPAR has a
default value in the main graphing directory, GRAPHP. The default
value { (1.5, 90), 3, 1} is used when SPAR isn't defined in the work
directory.

DRAWING POLYGONS

Try drawing a triangle with a radius of 1.5 whose first point is at
the top of the display.

118

CHAPTER FOUR DRAWING SHAPES

As we saw earlier,a triangle is defined by three points. If the
starting point is at the top of the display, a ray connecting this
point to the center makes a 90° angle with the X axis. Finally, the
number of revolutions for any polygon is always one. The shape
parameters should be {(1.5, 90), 3, 1 }. This just happens to be the
default value for SPAR. Since this list will be used when SPAR doesn't
exist, you can define a triangle by purging SPAR. Of course you can
always define SPAR using the shape menu. Then, running SDRHW will
create the shape shown in figure 4.3.

1.5 @I99 LER 3 @TIE 1 I B

Seven different polygons are shown below. The only parameter
that differs between them is the number of points. Notice as the
number of points increase the polygon converges to a circle.

1.9 @R 90 HED 2 @TIE1

Figure 4.2 (2 points)

3 EETIE BT

A
Figure 4.3 (3 points)

119

SECTION TWO DRAWING SHAPES

Figure 4.4 (4 points)

S @B

Figure 4.5 (5 points)

6 DR

Figure 4.6 (6 points)

120

CHAPTER FOUR DRAWING SHAPES

7 UE EIIR

Figure 4.7 (7 points)

S [MHIH EITY

Figure 4.8 (8 points)

DRAWING STARS

Until now we have restricted SDRW to one revolution. What
happens when we increase the number of revolutions SDRW makes
when connecting points.

As an example, try drawing a shape with 5 points in two
revolutions whose starting point is (1.5, 90) and compare it to figure
4.5,

121

SECTION TWO DRAWING SHAPES

1.5@ 99 HERD 5 @IHE 2 IHEl

Figure 4.9

The points are in the same position, but they were connected in a
different order. Instead of connecting the points one after another
as in figure 4.5, SDRW connected every other point and took two
revolutions to connect all of them. If we had used 3 for the number
of revolutions, every third point would have been connected.

A serdes of stars are shown in figures 4.10 through 4.15. The all
have 17 points and their starting point is (1.5, 90). They differ only
in the number of revolutions made while connecting the points. The
first stars can be defined by entering

1.5 [N 90 WED 13 @NIE 1 EEE I

All others can be defined by substituting the 1 in the example above
with the appropriate number of revolutions.

Figure 4.10 (1 revolution)

122

CHAPTER FOUR DRAWING SHAPES

2 33 BT

Figure 4.11 (2 revolutions)

3HI

Figure 4.12 (3 revolutions)

4 I3 EII

Figure 4.13 (4 revolutions)

123

SECTION TWO DRAWING SHAPES

o3 HiIE

 AR
Figure 4.14 (5 revolutions)

61 HiI

Figure 4.15 (6 revolutions)

Having a radius larger than one doesn't guarantee SDRW will draw
a star. Try drawing the shape defined by the parameterlist {(1.5,
90), 12, 4}. You might expect to get a 12 pointed star, but instead, a
triangle will be drawn. Connecting every fourth point only traced
out the same triangle four times.

This is because the number of points defining the shape (12) is
divisible by the number of revolutions (4). Carrying out the division
gives us the parameters {(1.5, 90), 3, 1} which, to no surprise, is the

parameters for a triangle.

SDRWAS A SUBPROGRAM

If flag 17 is clear, SDRW clears the display, draws a shape, and
activates the digitizing keyboard. It acts as a menu driven graphing
program. But what if you want to incorporate SDRW as a subroutine

124

CHAPTER FOUR DRAWING SHAPES

in a larger program? Chances are, you won't want the display
cleared and you probably won't want the digitizing keyboard
activated.

When used as a subprogram, you need to set flag 17 before calling
SDRHW. Then SDRHW will draw a shape without clearing the display or
entering digitizing mode. It also resets flag 17, so it will always be
ready when you want to use it as a menu driven program.

125

SECTION TWO DRAWING SHAPES

SHAPE DRAWING MENU

Menu Key Operation

Pressing this menu key will return the
ZFHF shape parameters. They read { (radius,

starting angle), number of points,
number of revolutions }
This program puts the number from

O level one into the real part of the complex
number in SPAR. The number on level
one must be a real number.
This program puts the number from

- level one into the imaginary part of the
complex number in SPAR. The number
on level one must be a real number.
POINT takes the real number from level

- one and puts it into the second position
in SPAR. This number should be a
positive integer.

This program puts the real number from
3 level one into the second position in

SPAR. This number should be a positive
integer.

SDRW draws a shape using the shape
Z0F parameter list stored in SPAR.

Beginning with the starting point, SDRW
divides the number of points evenly
around a circle. It then connects these
points in the number of revolutions
specified.
As in most menus in this book, this key

ET will create the advanced graphing menu
described in chapter six.
The last menu key returns you to the

"END main graphing menu and put in the
work directoryjust below GRAPHP.

126

CHAPTER FIVE

DRAWING SIMPLE
FRACTALS

SECTION ONE DRAWING SIMPLE FRACTALS

SECTION ONE

REFERENCE SECTION

INTRODUCTION

This is the reference section for the fractal drawing menu. The
programming in this section allow you to define and draw simple
fractals. Before starting this chapter you should flip through
section two, the example section. It will give you an idea of what to
expect from these programs. Then, if you like what you see, you can

jump rightin.

Most of the programs in this chapter are stored in FRACTP, the
fractal drawing program directory. You must create this directory
before storing any programs. Go to GRAPHP, the main graphing
directory, and create FRACTP by entering, [HZA GRAPHP . This
will put vou in the main graphing directorv. Looking at the
directory tree on page 140 you can see that we need to create the
fractal program directory in the shape program directory, SHAPEP.
If SHAPEP is isn't already created type SHAPEP EIld. Now enter the
shape directory and create FRACTP by typing EEIE FRACTP EId3 .
Now you're ready to enter all the programs from this chapter.

A table of all the programs you'll need in this chapter is given on
the next page. An asterisk (*) after a name indicatesit is listed in a

128

CHAPTER FIVE DRAWING SIMPLE FRACTALS

different chapter. Flip to that page number and check whether
you've already keyed that program in.

PROGRAM TABLE

es Pro

1
139
1
141] 1

LDGU 142| 279.5
NOTE

There are several programs in this book with the same name.
Just because two chapters contain the same name in their program
tables doesn't necessarily mean they are the same program. They
could be two very different programs stored in two different
directories.

For example, chapters two through five all have listings for
STLST. STLST is used to create a custom graphing menu. Since
every chapter creates its own custom menu, each one will have a
different version of STLST.

129

SECTION ONE DRAWING SIMPLE FRACTALS

Initial

CREATC(86207)

« 'PPAR' PURGE CLLCD
LCD-» LDGU STOC CLMF

SUMMARY

CREATC is located in the fractal editing menu. It allows you to
draw your own freehand initial curve. First,it clears the display and
enters digitizing mode. You can define an initial curve by digitizing
points and pressing . These points will be connected on the

display and stored as a list. Adding to the curve is as easy as
digitizing more points and pressing again. The new points will

be appended to the curve.

If you make a mistake while drawing your curve, just press
and then . This will drop the points that were digitized since the
last time you pressed . If you make a big error you can start on a

new curve by pressing , digitizing at least one point, and

pressing . The old curve will still be displayed, but its list of
points will be dropped. You can use the image of the old curve as a
guide for your new one.

Finally, when you've finished drawing your curve, press again
to store the list of points representing the curve in 'CURYV'. A
summary is given on the next page.

PATH { HOME GRAPHP SHAPEP FRACTP }

130

CHAPTER FIVE DRAWING SIMPLE FRACTALS

INPUT (KEYBOARD) OUTPUT

digitize points by pressin
{ns) and then pressing .

The points you digitized are
connected from the last
point on the current curve.

digitizing points by pressing
. pressing and

immediately pressing (&N

The points you just digitized
are cleared. You can

continue with the same

curve

pressing , digitizing at
least one point, and then
pressing .

You'll start a new curve. The
old curve will still be
displayed, but the old list of
points representing that
curve will be dropped.
 pressing You'll exit CREATC and the

list of points representing
the current curve will be
stored in 'CURV"

LDGU, STOC

131

SECTION ONE DRAWING SIMPLE FRACTALS

Create a Model Construction

CREATM(1547988)

« RCLF DEG 'PPAR'
PURGE 5 INV DUP *H
*W CLLCD 2 INV O R>C
DUP NEG PIXEL PIXEL
LCD~» LDGU 1 DO GETI
3 ROLLD DUP2 GET 4
ROLL - R»P 3 ROLLD
UNTIL 46 FS? END ROT
DROP2 SIZE 1 - »LIST
STOM 'PPAR' PURGE
STOF CLMF »

SUMMARY

CREATM allows you to draw a freehand model construction. First,
it clears the display and draws two dots. These dots are a guide for
the beginning and ending points on your model. You can draw your
model anywhere, but positioning it at these suggested points will
create a continuous fractal. Positioning your model elsewhere will
cause the fractal to be segmented.

You can define a model by digitizing points and pressing .
These points will be connected on the display and stored as a list.
Adding to it is as easy as digitizing more points and pressing
again. The new points will be appended to the model. Ifyou make a
mistake while drawing your model just press and then .
This will drop the points that were digitized since the last time you
pressed . If you make a big error you can start on a new model

by pressing , digitizing at least one point, and pressing .
The old curve will still be displayed, butits list of points will be
dropped. When you've finished, press again to store the list of

points representing the current model in '"MODL'.

132

CHAPTER FIVE DRAWING SIMPLE FRACTALS

PATH { HOME GRAPHP SHAPEP FRACTP }

INPUT (KEYBOARD) OUTPUT

digltize points by pressing The points you digitized are
and then pressing o) . connected. If you already

started a model the points
will be added to the last point
on the current model.

digitizing points by pressing The points you just digitized
épressing [Be) and are cleared. You can
immediately pressing {on continue with the current

model.

pressing , digitizing at
least one point, and then
pressing

You'll start on a new model.

The old model will be

displayed, but the old list
representing this model will
be dropped.

pressing You'll exit CREARTM and the

list of points representing
the current model are
converted to polar
coordinates and stored in
'MODL’

LDGU, STOM

133

SECTION ONE DRAWING SIMPLE FRACTALS

Draw Initial Curve

DRAWC(23897)

« CLLCD CURV CNCT »

DRAWC draws the initial curve stored in CURY on the display.

PATH { HOME GRAPHP SHAPEP FRACTP }

INPUT MEMORY The list in'CURV'

OUTPUT LCD A figure is drawn on the display.

UTILITIES CNCT

Construction

DRAWM(357608)

« CLLCD MODL LCONV CNCT »

DRAWM draws the model construction stored in MODL.

PATH { HOME GRAPHP SHAPEP FRACTP }

INPUT MEMORY The list in'MODL'

OUTPUT LCD A figure is drawn on the display.

UTILITIES LCONY, CNCT

134

CHAPTER FIVE DRAWING SIMPLE FRACTALS

T he Fr Menu

EDIT(270695)

« { STOK CURV CREATC
STOC Shape DRAWC
MODL CREATM STOM
SEG2 SEG4 DRAWM

ENd
} MENU »

SUMMARY

EDIT creates the fractal editing menu. In this custom menu you
will be able to edit the initial curve and model construction, and set

the number of replacements, K.

PATH { HOME GRAPHP SHAPEP FRACTP }

INPUT None

OUTPUT MEMORY A custom menu is created.

UTILITIES None

135

SECTION ONE DRAWING SIMPLE FRACTALS

Fractal Drawing Program

FDRW(3466957)

« CLCD? RCLF DEG 1

CURV SIZE 1 - FOR

'‘CURV'i GETI 3

ROLLD GET DUP2 - NEG

R»>P SWAP DROP MODL

SIZE->dmn«dOn

KA1-FORjmjK

1-OFORknkA

DUP2 / IP 'MODL'

OVER 1 + GET 5 ROLL
PR OVERRE * R»P

SWAP DUP RE NEG + +

4 ROLLD * - -1 STEP

DROP P-R OVER + LNE

NEXT » DROP NEXT

STOF DGTZ? »
SUMMARY

FDRHW is the program that does all the work. It uses the list from
CURY as an initial curve and the list from MODL as a model
construction. FDRH replaces each line segment of the initial curve
with the model construction. This creates a new curve. The same
process is repeated K times. An integer must be stored in K.

The initial curve, CURY and the model construction, MODL, are
simply a series of line segments. They can be a shape, such as a
triangle, or even a design, like the letter Z. The only requirement is
that they be stored as a list. This list must be a series of points that,
when connected in order, form the initial curve or the model
construction. You can create these lists manually, or use any one of
the fractal editing tools.

136

CHAPTER FIVE DRAWING SIMPLE FRACTALS

A sample initial curve and model construction together with the
fractal that would be drawn for different values ofK are shown
below.

AN
Initial Curve Model Construction

One replacement (K=1) Two Replacements (K=2)

Three Replacements (K=3)

NOTE

If the display doesn't clear when using FDRW from the custom
menu, flag 17 is set. If this happens you can stop the program and
clear flag 17 or FDRW will clear it after it is done graphing. Either
way, flag 17 will be cleared and you can try again.

137

SECTION ONE

PATH

INPUT MEMORY

KEYBOARD

OUTPUT LCD

STACK

UTILITIES

138

DRAWING SIMPLE FRACTALS

{ HOME GRAPHP SHAPEP FRACTP }

The lists stored in CURY and MODL, as well
as the integer in K.
If flag 17 is clear, the digitizing keyboard will
be activated.

A fractal is drawn on the display screen. If
flag 17 is clear the display will be cleared
before drawing the fractal.
If flag 17 was clear before running, any
digitized objects will be on the stack.

CLCD?, DGTZ?,LNE

CHAPTER FIVE DRAWING SIMPLE FRACTALS

Create Fractal Drawing Menu

FRACT(34466>

« SHAPEP FRACTP

Start »

SUMMARY

FRACT puts you in the work directoryjust below FRACTP and
creates the fractal drawing menu. Ifyou haven't already noticed,
every graphing menu has its own program directory, the directory
with the programing specific to that topic, its own work directory,
titled WRK,its own graphing menu, and a command to enter that
menu.

Except for the last letter, the commands to enter the graphing
menus all have the same name as their program directories. For
example, FRACT puts you in the work directory, WRK, just below
FRACTP. Likewise, SHAPE puts you into the shape drawing work
directory, WRK, just below SHAPEP. See the directory tree on the
next page.

PATH { HOME GRAPHP }

INPUT MEMORY STLST, the starting list, stored in FRACTP

OUTPUT MEMORY Directory control is given to the work

directory, WRK subordinate to FRACTP.
This is shown in the directory tree on the
next page. The custom fractal drawing menu
is also created.

UTILITIES Start

139

SECTION ONE DRAWING SIMPLE FRACTALS

Fractal Drawing Program Directory

FRACTP(2396)

Directory

SUMMARY

This directory contains all the programs used specifically for
drawing fractals. Storing the fractal drawing programs in their own
directory creates a sense of order, like chapters in a book.

Some programs that are used for drawing fractals are stored in
directories other than FRACTP. This is because they are used by
graphing procedures in other directories. Putting these programs
in other directories allows any program in or subordinate to it
access. Thus a program in CHARTP can use LINE as well as a
program in FRACTP, sinceit is in stored in GRAPHP. A program in
CHARTP can't use SEG2 though, because it is stored in FRACTP
which isn't in CHARTP's path. The directory tree below illustrates
this.

I |
POLARP CHARTP

WRK WRK

140

CHAPTER FIVE DRAWING SIMPLE FRACTALS

nv ist of Points fr]

R ul in.

LCONVY<{4808594)

« RCLF DEG (-1.5, 0)

ROT + 2 OVERSIZE

FOR1i1DUP2 1 -
GETI 3 ROLLD GET P>R

3 * + PUT NEXT SWAP

STOF »
SUMMARY

The list of complex numbers stored in MODL represent line
segments. The real part is the length (or radius) and the complex
part is the angle made with the positive X axis. In contrast, the list
in CURY and any other list used by CNCT represents lines by the
rectangular coordinates of their end points.

LCONY converts the list of points in MODL from polar to
rectangular coordinates. The new list can then be drawn using
CNCT.

PATH { HOME GRAPHP SHAPEP FRACTP }

INPUT LEVELA list of complex numbers representing line
segments. The complex numbers are in
polar form, i.e. (radius, angle).

OUTPUT LEVELA list of complex numbers representing the
end points of the line segments in the
Cartesian coordinate system (XY plane).

UTILITIES None

141

SECTION ONE DRAWING SIMPLE FRACTALS

Line Drawing Utili

LDGU(3997276)

«{}DEPTH2 - >

lced Ist d « WHILE

DGTIZ lcd >LCD DEPTH

d - DUP REPEAT IF

OVERTYPE 1 # THEN

DROPN ELSE Ist { }

ROT 2 +3FOR11i

ROLLIF DUPTYPE 1 -

THEN 3 DROPN { }{}

ELSE + END -1 STEP

OVER DUP SIZE DUP

SUB OVER + CNCT +

Ist' STO LCD>» 'lcd’

STO END END DROP Ist
SUMMARY

LDGU is used by both CREATC and CREATM when creating a
freehand initial curve or model construction. Just digitize one or
more points and press . LDGU will connect these points on the

display and return to digitizing mode. You can add new points by
digitizing them and pressing ([on) again. The new points will be

added to the current drawing. This program also keeps track of all
the points you entered by storing them as a list.

Ifyou make a mistake while drawingjust press and then
) . If you hadjust digitized points, they will be drop, allowing you
to continue on the same drawing. If you hadn't digitized points
since was last pressed, you will start out on a new drawing. The
old sketch will still be displayed, butits list of points will be dropped.

142

CHAPTER FIVE DRAWING SIMPLE FRACTALS

You can use the image of the old drawing as a guide for your new
one.

Finally, when you've finished, press to return the list of
points representing the sketch to level one. If you are creating an
initial curve this list will be stored in 'CURY", else if you are creating a
model construction the list will be converted to polar coordinates
and stored in 'MODL'. See CREATC and CREATM for more details.

A summary of different keyboard input and its related output is
given below.

PATH { HOME GRAPHP SHAPEP FRACTP }

SEQUENCE WHAT HAPPENS

Digitize points by pressing The points you digitized are
and then pressing connected from the last point

on the drawing.
pressing digitizing at You'll start on a new drawing,
least one point, and then The old sketch will still be

pressing [oN displayed, but the list of
points representing the
drawing will be dropped.

Digitizing points by pressing |The points you just digitized
. pressing , and are cleared. You can continue

immediately pressing [Sx) with the same drawing.
Pressing You'll exit LDGU and the list of

points representing the
current drawing are left on
level one.

UTILITIES CNCT

143

SECTION ONE DRAWING SIMPLE FRACTALS

Line Drawing Utili

LNE(89634)

« DUP IFERR ROT THEN
DROP ELSE LINE END »

SUMMARY

LNE is used by FDRHW to connect the end points it generates on the
fractal. If there are two points on levels one and two, it will connect
them and drop the point from level one. If only one point is on the
stack it does nothing.

LNE has a wider range of application. Most drawing programs
simply plot a series of points. Often, the points are far apart, giving
the graph a disconnected appearance. You can substitute this
program for PIXEL in most any graphing programs. The modified
program will trace out a graph instead of plotting individual points.

NOTE

This program assumes is set in the menu. You will
get an errorff it isn't.

PATH { GRAPHP SHAPEP FRACTP }

INPUT LEVEL A complex number (Optional)
LEVEL A complex number

OUTPUT LEVEL If an object was on level two it is dropped to
level one.

LCD If two complex numbers were on level one
and two they are connected on the display.

UTILITIES LINE

144

CHAPTER FIVE DRAWING SIMPLE FRACTALS

M he Sh Defined

Store

MAKEC21754)

« SHAPL STOC EDIT »

SUMMARY

MAKE creates a list of points that, when connected, create the
shape described by the parameter list stored in SPAR. This list is
stored in CURY, where it is used as an initial curve by FDRW.

Afterthis list is stored, MAKE puts you back in the fractal editing
menu. You can view the curve you just created by pressing
from the first set of menu keys. This connects all the points from
the list in CURY on the display.

PATH { HOME GRAPHP SHAPEP FRACTP }

INPUT MEMORY The list in SPAR, the shape parameters.

OUTPUT MEMORY A list of points is stored in 'CURY".

UTILITIES SHAPL, STOC, EDIT

145

SECTION ONE DRAWING SIMPLE FRACTALS

Normalize a List

NMST(983384)

« RCLF SWAP DEG DUP
LIST> (0, 0) SWAP 1
SWAP START SWAP P-R
+ NEXT R»P RE INV >
L « 1 OVER SIZE FOR
i iDUP2GETP>R L *
R->P PUT NEXT SWAP »
STOF »

SUMMARY

NMST is used to normalize the list of polar coordinates that
represent the model construction. The model must be normalized
so that the total distance between its starting and ending point
equal one. The end points of a normalized model will properly
match the end points of each segment in the initial curve it is
replaces. If the list isn't normalized, the end points will not match
up and the resultant fractal will be broken.

PATH {HOME GRAPHP SHAPEP FRACTP }

INPUT LEVEL ONE A list of points

OUTPUT MEMORY A normalized list of points.

UTILITIES None

146

CHAPTER FIVE DRAWING SIMPLE FRACTALS

Model Construction with 2 n

SEG2(120908)

« 1 SWAP DUP2 R>C 3

ROLLD NEG R>C 2

2LIST NMST STOM »

SUMMARY

SEG2 can be found in the fractal editing menu. It takes the angle
from level one (in degrees) and creates a symmetric, two segment
model construction. The first segment will make a positive angle
with the horizontal axis while the second segment makes a negative
angle. (See the figure below) The list representing this model
construction is then normalized and stored into 'MODL'.

S1 52

1

Segment P1P2 make an angle 6 with the horizontal
axis while segment P2P3 make a angle -6.

PATH { HOME GRAPHP SHAPEP FRACTP }

INPUT LEVEL Any angle (in degrees)

OUTPUT MEMORY A list is stored in 'MODL"

UTILITIES NMST, STOM

147

SECTION ONE DRAWING SIMPLE FRACTALS

Create a 4 Segment Model Construction

SEG4(169966)

«(1, 0) 1 ROT DUP2

R>C 3 ROLLD NEG R»>C

3 PICK 4 »LIST NMST

STOM »
SUMMARY

SEG4 can be found in the fractal editing menu. It takes the angle
from level one (in degrees) and creates a symmetric, four segment
model construction. The first and fourth segment are parallel to the
horizontal axis while, using the angle from level one, the second and
third segment make a positive and negative angle with the
horizontal axis.

-8S2 g3

Sl 8 S4

1

Segments P1P2 and P4P5 are parallel with the horizontal axis
while segments P2P3 and P3P4 make a positive and negative angle
8 wiih wne liorizon respectively.

PATH { HOME GRAPHP SHAPEP FRACTP }

INPUT LEVEL ONE Any angle (in degrees)

OUTPUT MEMORY A list representing the model construction is
stored in 'MODL"'.

UTILITIES NMST, STOM

148

CHAPTER FIVE DRAWING SIMPLE FRACTALS

Menu h

Initial

Shape(120189

« { SPAR RADIUS THETA
POINTS REV MAKE ENd

} MENU »

SUMMARY

Shape displays a menu that allows you to create an initial curve
using many of the tools from the shape drawing directory. This
menu is almost identical to the shape drawing menu from chapter
four. The main difference is the new key labeled .

Rather than drawing the shape defined by SPAR, MAKE creates a
list representing that shape and stores it in 'CURY'. This list will be
used by FDRW as a initial curve. You can view this initial curve by
running from the first set ofmenu labels in the fractal editing
menu.

PATH { HOME GRAPHP SHAPEP FRACTP }

INPUT None

OUTPUT MEMORY A custom menu is created.

UTILITIES None

149

SECTION ONE DRAWING SIMPLE FRACTALS

Show Status of Fractal

STAT(271768)

« CURV SIZE 1 - »STR

"IN CURVE+" + MODL

SIZE >STR +

"IN MODEL= K="+ K

->STR + 1 DISP »
SUMMARY

STAT displays the number of segments in the initial curve
(CURY') and the model construction (MODL'), and the number of
times FDRW will replace the segments of the initial curve with the
model construction (K).

The characters in the program listing is character 10, the new
line character. When entering the program press . You
won't see the new line character (=) while in edit mode, but the
cursor will go to the next line.

PATH { HOME GRAPHP SHAPEP FRACTP }

INPUT MEMORY The list in 'CURY' and 'MODL', and the integer
in'K'.

OUTPUT LCD The number of segments of the model
construction and initial curve, and the
number of replacements are displayed.

UTILITIES None

150

CHAPTER FIVE DRAWING SIMPLE FRACTALS

Starting Fractal Menu List

STLST<44777)

{ EDIT STAT FDRW
ADVAN End }

SUMMARY

You'll find a different version ofSTLST in every program
directory. $tart, the program that creates the custom graphing
menu, takes the list in STLST or, in some cases, the list created by
STLST, and forms a custom graphing menu.

This version ofSTLST is used to create the fractal menu. A
description of each menu key is given at the end of this chapter.

PATH { HOME GRAPHP SHAPEP FRACTP }

151

SECTION ONE DRAWING SIMPLE FRACTALS

tore List Into th
Variable

STOCC14420)

« 'CURV' STO »

SUMMARY

STOC can be found in the fractal editing menu. It simply stores
the list on level one into 'CURY" ., the variable that contains the list
representing the initial curve.

After you've created an initial curve using the tools in the edit
menu, you may want to store in under a different name. Then, just
use STOC whenever you want to use that initial curve again. This
can be very useful with freehand initial curves that were created
using CREATC.

PATH { HOME GRAPHP SHAPEP FRACTP }

INPUT LEVELA list that represents the initial curve.

OUTPUT MEMORY The list from level one is stored in 'CURY".

UTILITIES None

152

CHAPTER FIVE DRAWING SIMPLE FRACTALS

Store Value into K

STOK(26358>

« [P 'K' STO Start »

SUMMARY

STOK stores the integer part of the number from level one in K.
This number "tells" FDRW how many times it should substitute the
model construction for each line segment of the initial curve. The
curve created by each substitution is used as the curve for the next
substitution.

STOK also exits the editing menu and returns you to the main
fractal menu.

PATH { HOME GRAPHP SHAPEP FRACTP }

INPUT LEVEL A real number

OUTPUT MEMORY The integer part of the real number from level
one is stored in K.

UTILITIES Start

153

SECTION ONE DRAWING SIMPLE FRACTALS

Store List into the

Construction

STOM(14466)

« 'MODL' STO »

SUMMARY

This program simply stores the list on level one into 'MODL', the
variable that contains the list representing the model construction.

After you've created a model using the tools in the edit menu, you
may want to store in under a different name. Then, just use STOM
whenever you want to use that model again. This can be very useful
for freehand models that were created using CREATM.

PATH { HOME GRAPHP SHAPEP FRACTP }

INPUT LEVELA list that represents the model
construction.

OUTPUT MEMORY The list from level one is stored in 'MODL'.

UTILITIES None

154

CHAPTER FIVE DRAWING SIMPLE FRACTALS

Drawing

WRK(954)

Directory

SUMMARY

As you read through this text you'll notice every chapter has a
listing for a directory named WRK. Don't let this confuse you. These
are all different directories.

The work directory listed here is locatedjust below FRACTP. This
is shown on the directory tree on page 140. It is used to store any
objects you create. Working in WRK protects the programs in
FRACTP, the fractal drawing program directory, from accidentally
being purged. It is also easier sorting through variables in a smaller
work directory than sifting through all your variables and
programs in one big directory.

PATH { HOME GRAPHP SHAPEP FRACTP }

155

SECTION ONE DRAWING SIMPLE FRACTALS

156

CHAPTER FIVE DRAWING SIMPLE FRACTALS

SECTION TWO

EXAMPLES

A SIMPLE FRACTAL

Many types of fractals exist, but we will limit this book to simple
fractals. Don't be mislead by the name. A simple fractal is hardly
simple. Its curves can be extremely complex and winding. A simple
fractal consists of an initial curve and a model construction. Each is
just a series of connected line segments. Examples of an initial
curve and model construction are given below.

AN
Initial Curve Model Construction

Figure 5.1 Figure 5.2

An initial curve can be any shape or design. The initial curve
shown above is a triangle. A triangle consists of three segments. To
create a simple fractal we need only replace each segment in the
initial curve with the model construction. We end up with a new
curve which we will call C1.

157

SECTION TWO DRAWING SIMPLE FRACTALS

L83
One Replacement C1 Two Replacements C2

Figure 5.3 Figure 5.4

Three Replacements C3
Figure 5.5

The new curve, C1, has twelve segments. Ifwe again replace each
of these twelve segments with the same model construction we will
end up with a new curve, C2. Continuing, a third replacement will
transformm C2 into yet a new curve, C3.

One through three replacements are show in figures 5.3 to 5.5.
You'll notice that each successive curve has a greater number of
segments that are shorter in length. Each new curve is more
defined than the last. Ifwe continue the replacement process our
fractal will converge towards a smooth curve. The length of each
segment will tend towards 0 while the number of segments tend
towards infinity. Because of the lower resolution of the display, a
fractal drawn by the 28S will converge quickly. In many fractals
drawn on the 28S, there is no visual difference between successive

158

CHAPTER FIVE DRAWING SIMPLE FRACTALS

curves with replacements higher than 4. Of course this number will
vary depending on the initial curve and model construction.

GETTING STARTED

The first step in designing a fractal is creating an initial curve and
model construction. This can be done in the fractal editin menu.
Fllst go to the fractal menu by entering [EZEA GRAPH (fenter) or press

in the graphing menu you're in. This will put you in the main
graphing selection menu. Pressing and then from the
custom menus will put you in the fractal editing menu.

CREATING AN INITIAL CURVE

The initial curve is stored, as a list of points, in 'CURY*. These
points represent the end points of the segments that make up the
initial curve. Connecting them will draw the initial curve like a dot to
dot drawing.

You can create or edit an initial curve from the fractal editing
menu. The second label in this menu, BI&, is the variable where the
initial curve is stored. Pressing it will return it's value. It's name,
'CURY', will be returned if an initial curve hasn't been defined.

There are three ways to define an initial curve. You can draw one
on the screen using , define a shape using the sub-menu,
or store a list that was previously defined using .

CREATING A FREEHAND INITIAL CURVE

, the simplest of the three, allows you to draw your own
freehand initial curve. First, it clears the display and enters
digitizing mode. You can define an initial curve by digitizing points
and pressing . These points will be connected on the display and

stored as a list. Addg to the curve is as easy as digitizing more
points and pressing floN] again. The new points will be appended to

the curve.

159

SECTION TWO DRAWING SIMPLE FRACTALS

If you make a mistake while drawing your curve just press
and then . This will drop the points that were digitized since the
last time you pressed . If you make a big error you can start on a

new curve by pressing , digitizing at least one point, and
pressing . The old curve will still be displayed, butits list of
points will be dropped. You can use the image of the old curve as a
guide for your new one. Finally, when you've finished drawing your
curve, press@ again to store the list of points representing the

curve in 'CURV'.

CREATM, A similar program in the model construction half of the
editing menu, allows you to create a freehand model . The table
below describes both programs. For generalization, the word sketch
has been used in place ofinitial curve or model construction.

INPUT (KEYBOARD) OUTPUT

digitize at least one point by The points you digitized are
pressing and then connected. If you've already
pressing] started a sketch the points

will be appended to the last
point on the current sketch.

Digitizing points by pressing The points you just digitized
&), pressing and are cleared. You can
immediately pressing continue with the same

sketch.
pressing [Be). digitizing at You'l start a new sketch.
least one point, and then The old sketch will still be
pressing (o) . displayed, but the list of

points representing it will be
dropped.

pressing You'll exit the program and
the list of points
representing the current
sketch will be stored.

160

CHAPTER FIVE DRAWING SIMPLE FRACTALS

A SHAPE AS AN INITIAL CURVE

The next easiest way to create an initial curve is to use the initial
curve shape menu. Pressing HIIA in the editing menu will create a
menu similar to the shape drawing menu from chapter four. A
summary of this menu is given at the end of this chapter. Because
the two menus are almost identical, the reader should refer to
chapter four for a full description of the shape drawing menu.

The main difference between the two menus is , the shape
drawing program, has been replaced with GEIE. Rather than
drawing a shape on the screen, generates a list of points
representing the shape. This list is stored in CURY and will be used
as an initial curve. After pressing you will return to the editing
menu. Here, you can press from the first set of menu labels to
have the initial curve drawn on the display.

STORING A PREDEFINED INITIAL CURVE

The third and final way to store an initial curve is to enter a list of
points on level one and press . The list from level one will be
stored directly into 'CURY'. This means you only need to create an
initial curve once. Ifyou plan to use it later, recall the list and store it
into any name. Anytime you want to use this initial curve, simply
recall it and press . The previously defined list will be stored
back into 'CURY".

THE MODEL CONSTRUCTION

Creating an initial curve is only half of the job. A model
construction must also be defined in order to draw a simple fractal.
Unlike the initial curve, which was defined as a list of rectangular
points, a model construction is defined as a list of line segments
and stored in the variable 'MODL'. Each line segment is represented
as a complex number. The real part is its length and the complex
part is the angle it makes with the X axis. When connected in series,
these segments define the model construction.

161

SECTION TWO DRAWING SIMPLE FRACTALS

r1 82

81

P1 P3

r2

Figure 5.6

As an example, the model construction shown above has two line
segments. Line P1P2 has length r1 and make and angle 61 with the
horizontal axis. Likewise, line P2P3 has length r2 and makes an
angle 62. The list { (r1, 1) (r2, 62) } completely describes this model.

THE MODEL CONSTRUCTION EDITING MENU

A model construction can be created or edited using the second
set of menu keysin the fractal editing menu (pressing).

 AL RS

Figure 5.7

The first label, , Is the variable where the model construction
is stored. Pressing it will return it's value. Its name, 'MODL', will be
returned if a model construction hasn't been defined. [ZE152)
, and are all programs that allow you to create a model
construction. The last key, , will draw the model construction
stored in 'MODL".

CREATING A FREEHAND MODEL CONSTRUCTION

The second menu key, @il functions like the initial curve editing
version. Simply digitize the end points of the segments in the model
construction and press . A full description is given for the initial

162

CHAPTER FIVE DRAWING SIMPLE FRACTALS

curve editing menu. Since this program is identical you should read
the table on page 160.

There is one difference between this program and the one used to
create an initial curve . Before entering digitizing mode, two dots are
drawn on the display. These dots are a guide for the beginning and
ending points on your model (P1 and P3 in figure 5.6). You can draw
your model anywhere, but positioning it at these suggested points
will create a continuous fractal. Positioning your model elsewhere
will cause the fractal to be segmented. You can check whether you've
lined up the cursor with each dot by pressing the cursor key *¥.

USING A PREDEFINED FORMAT

and allow you to create a model construction using a
predefined format. EEHH uses a two segment model while HIH] uses
four. All the segments have the same length. The only variable you
need to define is the angle 6. Simply put an angle (in degrees) on
level one and press either or E3H]. Figure 5.8 shows the format
used by SEG2 while figure 5.9 shows SEG4's format.

Notice how both models are normalized (the total distance
traveled equals). The model must be normalized to create a fluent
fractal. If it wasn't, the resultant fractal would be broken. Using
these two programs, you can create complicated, symmetric
fractals that would be extremely difficult to obtain using CREATM.

Sl S2

Figure 5.8

163

SECTION TWO DRAWING SIMPLE FRACTALS

S1 8 S4

1

Figure 5.9

STORING A PREDEFINED MODEL

Still another way to store a model construction is to enter a list of
points on level one and press Hiilil. The list from level one will be
stored directly into 'MODL'. This means you only need to create a
model once. Ifyou plan to use it later, recall the model list and store
it under a different name. Any time you want to use it again, simply
recall it and run . The previously defined list will be stored back
into MODL..

VIEWING A MODEL

To parallel the initial curve half ofthe editing menu, , draws
the model construction stored in MODL. If the construction drawn
on the display isn't what you want you can easily return to the
editing menu and try again. You will get an error though, if you
haven't already defined a model construction using one of the
programs in this menu.

SETTING THE NUMBER OF REPLACEMENTS

Now that you've created an initial curve and model construction,
the last thing you need to define is the number of replacements
stored in 'K'. K can be set by entering any real number and pressing
the menu key labeled in the editing menu. Figures 5.3 through
5.5 show drawings for several different numbers of replacements.

You'll notice that as K gets larger, the fractal becomes more and
more defined. Eventually, the fractal will converge, meaning there

164

CHAPTER FIVE DRAWING SIMPLE FRACTALS

will is no visible difference between drawings of successive values of
K. Due to the lower resolution of the 28S, most fractals can be
drawn using a value of 3 or 4 for K. Values higher take much longer
to draw and usually show very little improvement. If you're unsure
ofwhat value to use start with a value of 1 or 2 and see what the
fractal looks like. Then you can decide if you want to increase K.

THE FRACTAL DRAWING PROGRAM (FDRW)

Once you've defined the initial curve, model construction, and
number of replacements, you are ready to draw a fractal. Return to
the fractal drawing menu and press . The 28S does the rest.
Segment by segment, the fractal is slowly drawn on the display. If
the value of K is set at one or two, it should only take a few minutes.
After completing the drawing you are put in digitizing mode.

THE STATUS OF THE FRACTALPARAMETERS

From time to time you might get a drawing you didn't expect.
Maybe you changed the initial curve and forgot to change the model
construction, or maybe you forgot to define K. You can quickly
check the status of all the parameters by pressing in the fractal
menu. The number of segments in the initial curve and model curve,
as well as the number of replacements, K, are displayed on the
screen.

EXAMPLE 5.1

Now that we have the basics lets try drawing the fractal on page
158. Starting out in the fractal menu, press to enter the editing
menu. Next press so we can create a triangle for the initial
curve (Chapter four describes how a shape is created). The shape
parameters for the triangle shown in figure 5.1 are { (1.5, 90), 3 1}. It
just so happens this is the default parameter list so we won't have
to define it. Purge SPAR if it exists in the fractal work directory and
press to create the initial curve and store it in the CURY. You'll
find yourselfback in the editing menu. You can view the initial curve
at any time by pressing from the first set of menu labels.

165

SECTION TWO DRAWING SIMPLE FRACTALS

Creating the model construction is much easier. The model has
four segments whose second and third segment make an angle of
60° and -60° with the X axis. Enter thefirst angle, 60, and press
EXL]. To view the model construction simply press from the
second set of menu labels.

Next, you must specify the number of replacements made to
create the fractal. This is done by putting a real number on level one
and pressing in the editing menu. You might want to start out
with a value of 1 or 2. This gives you a chance to see the basic outline
of the fractal. Ifyou like what you see you can increase the value of K
to get better definition. To draw the fractal press in the fractal
drawing menu. The timeit takes will depend on the value of K.

0BTG 'S PAR' ([Foacs)i60 HEE 1
U323

Figure 5.10

2

Figure 5.11

166

CHAPTER FIVE DRAWING SIMPLE FRACTALS

Figure 5.12

Several fractals, their parameters, and the suggested keystrokes
you should enter are listed below. These fractals are drawn on only
one frame. You can combine FDRW with the extended graph
program in chapter six for larger, more defined fractals. See the
examples in chapter 7.

EXAMPLE 5.2

Create a five pointed star with a radius of 1.5 for the initial curve.
Then, create a four segment model construction whose second and
third segments make an angle of -36 and 36 degrees with the
horizontal axis. Draw fractals for K=1,2

SOLUTION

Go to the shape menu under the fractal editing menu, define
'SPAR' to be { (1.5,90) 5 2 } and press REI. Then, create a four
segment model construction by entering -36 . You can view the
initial curve and model by pressing from the first and second
sets on keys in the edit menu.

Finally, define the number of replacements, K. Running FDRW will
create figures 5.15 and 5.16.

167

SECTION TWO DRAWING SIMPLE FRACTALS

ARETEI 1.5 @3 909 HED S @TIE 2 @3

(from the first set of menu labels)

Figure 5.13 (initial curve)

-36
(from the first set of menu labels)

Figure 5.14 (model construction)

1 ATIY

Figure 5.15 (K=1)

168

CHAPTER FIVE DRAWING SIMPLE FRACTALS

1341 2 B8Y

Figure 5.16 (K=2)

EXAMPLE 5.3

Using the same initial curve as example 5.2, draw a fractal whose
four segment model is created by entering -72 . Next try +72.

334] -72 B3l 1 AT

Figure 5.17 (K=1)

10381 2 B3 1Y

Figure 5.18 (K=2)

169

SECTION TWO DRAWING SIMPLE FRACTALS

Hi%i 72 B3] 1 B3

AdH2

Figure 5.19 (K=1)

1381 2 BOEY

Figure 5.20 (K=2)

EXAMPLE 5.4

Using the same initial curve as example 5.1, draw a fractal whose
four segment model is created using -60 as an argument for SEG4.
Try a two segment model using -30 and -60 as an argument for
SEG2.

SOLUTION

Go to the shape menu under the fractal editing menu, purge
'SPAR' {f it exists, and press to create the initial curve. Then,
create the model construction by entering -68 . Finally, define
the number of replacements, K. Running FDRW will create figure
5.21. Try drawing different values of K.

170

CHAPTER FIVE DRAWING SIMPLE FRACTALS

FOF

[EITER ' S PAR' REG60 (SI2 il

oo
Figure 5.21 (K=2)

Keep the same initial curve and create a two segment model making
a angle of -30 and 30 degrees with the horizontal axis by entering
-30 . Try drawing fractals for 1,2,3, and 4 replacements (Only
the fractal for K=4 is shown).

4341 -30 EXH4 AT

&
Figure 5.22 (K=4)

Create a -60 degree two segment model by entering -60 HIfd. Draw
fractals for K=3,4,5. You may have to expand the range of the
display for larger values of K. If the entire fractal doesn't fit on the
display extend the range using and and try again. You may
have to repeat this process several times.

NOTE

Ifyou change the dimensions of the display, i.e. change PPAR, be
sure to purge the plot parameters before creating a different fractal.

171

SECTION TWO DRAWING SIMPLE FRACTALS

[-60EH3 BlE 2.25--

Figure 5.23 (K=3)

EDITHE 1.5 'mTER'ren) KX A1

Figure 5.24 (K=4)

1.253B@

Figure 5.25 (K=5)

172

CHAPTER FIVE DRAWING SIMPLE FRACTALS

EXAMPLE 5.5

Create a fractal whose initial curve list is { (3.2,0) (-3.2,0) (3.2,0) }
and model construction has four segments. The first and forth
segments are parallel with the horizontal axis while the second and
third make an angle of 45 and -45 degrees. Draw the fractal for K=3.

SOLUTION

The initial curve can be created several ways. You could use
CRERATC by locating each point (pressing the cursor key), digitize
them (pressing {&3)), and pressing . Then press [€§) agian. You
could also define SPAR to be { (3.2,0) 2 1} and run , or you could
enter the list on level one and store it directly into 'CURY'. The
model construction can be defined by entering 45 . The
resultant fractal is shown in figure 5.26.

pa¥as
Figure 5.26 (K=3)

173

SECTION TWO DRAWING SIMPLE FRACTALS

Fractal Drawing Menu

Menu Key Operation

This program will create the fractal editing menu,
qTE; where you can edit the initial curve, model

construction, or the number of replacements, K.
This is a quick way to check the status of the
fractal parameters. Pressing this key will display
the number of segments in the initial curve and
model construction, and the number stored in K.
Pressing this menu key will draw a fractal

" |according to the parameters. An initial curve must
be stored in CURY, a model construction in MODL,
and the number of replacements you want to make
inK.
This menu key creates the advanced graphing

L] |menu described in chapter six.

Pressing @H in the fractal menu will return you to
R the main graphing menu.

174

CHAPTER FIVE DRAWING SIMPLE FRACTALS

Fractal Editing Menu

Menu Key Operation

stores the number from level one into the

variable K.

This is where the initial curve list is stored.
Pressing this menu key will return it to the stack.

Using this program, you can create a freehand
g |initial curve . A detailed description is given on page

159 and 160. .
This key stores the list on level one into 'CURV".

creates the initial curve shape drawing menu.
This menu lets you create a shape for an initial
curve. Most all the keys and their functions are the
same as the shape menu in chapter four.
Pressing this menu key will draw the initial curve

OFA b on the display.

This key will return the value of MODL, the variable
T containing the model curve. Its name will be

returned if it isn't defined yet.
Here's a handy program that lets you create a
freehand model construction. A complete
description is given on page 160 and 162.
STOM stores the list from level one into "MODL'.

Put an angle, in degrees, on level one and this
program creates a two segment model
construction using the outline shown in figure 5.8.
Put an angle, in degrees, on level one and SEG4
creates a four segment model construction using
the outline shown in figure 5.9.
Pressing this menu key will draw the model

T construction on the display.

Pressing@ in the editing menu will return you to
the fractal drawing menu.

N
}
o
n
m o

<

-

[
N

o

E
E
:

o
=

175

SECTION TWO DRAWING SIMPLE FRACTALS

Ini Shape) Edi Men

Menu Key Operation

Pressing this menu key will return the
HA shape parameters. They read { (radius,

starting angle), number of points,
number of revolutions}
This program puts the number from

IR level one into the real part of the complex
number in SPAR. The number on level
one must be a real number.
This program puts the number from

- level one into the imaginary part of the
complex number in SPAR. The number
level one must be a real number.

puts the real number from level
ST one into the second position in SPAR.

This number must be a positive integer.
This program puts the positive real

=3 integer from level one into the second
position in SPAR.
This program creates the shape defined

BT by SPAR and stores it, as a list of points,
in CURY.
This program returns you to the main

END| graphing menu.

176

CHAPTER SIX

ADVANCED GRAPHING

SECTION ONE ADVANCED GRAPHING

SECTION ONE

REFERENCE SECTION

INTRODUCTION

This is the reference section for the advanced graphing programs.
These programs enhance the graphing programs from chapters
two through five, the bulilt in program DRAW, or your own graphing
programs. Before starting this chapter you should flip through
section two, the example section. It will give you an idea of what to
expect. Then,ifyou like what you see, you canjump right in, but be
sure you've entered the programs from chapter one first.

There are three different advanced graphing programs with their
own graphing menus. DDRW transforms most any graphing
program into three dimensions. MDRW, the animated grapher,
brlng;, your drawings to life. Finally, EDRW lets you create any size
graph.

An advanced graphing program doesn't actually do any graphing.
It simply drives a root level program a given number of times,
manipulating the input and output for the root level program each
time. For example, Ifyou wanted to create an animated graph of the
function 'Z=XA2*T" you would tell MDRH, the animated grapher, to
use DRAW as a root level program and varyT over a given range.
MDRHW would then input a different value for T, run DRAW, and store
the graphics for the display a number of times. What you end up
with is a list of graphic strings that, when displayed in series, show
the function as it changed with time. DRAW did the actual graphing
while MDRW manipulated the data.

178

CHAPTER SIX ADVANCED GRAPHING

A table of all the programs you'll need in this chapter is given
below. All these programs should be stored in the main graphing
directory, GRAPHP (see page 22). an asterisk after a program name
indicatesit is listed in a different chapter. You should flip to the
indicated page and check if that program is in your calculator's
memory.

PROGRAM TABLE

€s

.0

194

96
197

199 48
2 . 33.
201 . 92.

.0
204 .0 .

LINES 205 17.0] XFRM 227] 38.5

LOAD 206 38.5]YFRM 228| 38.5
A table of the programs needed for each graphing menu is given

on the next page. If you don't plan on using all three menus you can

179

SECTION ONE ADVANCED GRAPHING

store only the programs you need using these tables. Because
many of the programs are in more that one list though, adding a
graphing menu may require only a few more programs.

ADD CTR? DDRW DEL Dim
DPAR end ENd FRAM LINES
MLST MMENU MRCL MRKR MTYP
N>FG PCHK PGET PROG PUTL

ADVYAN CHLST CTR? EDRW end
ENd EPAR EXIT EXTND FILE
GFIL GGFL KEYW LGET LOAD
MCHK MLST MMENU MRKR N+FG
PCHK PGET Prog PUTP SAYE
VIEW XFRM YFRM

180

CHAPTER SIX ADVANCED GRAPHING

Variable

ADDC(251496)

«[F DUP TYPE 5 #
THEN 3 SLIST END 1
-»LIST PGET PCHK DUP
RCL ROT + SWAP STO »

SUMMARY

ADD will accept a list, or three objects as arguments. Each case is
shown under the heading input . Depending on the value ofthe first
four user flags, this program adds a variable list to either MPAR or
DPAR. A variable list contains a variable and two real numbers. The
two real numbers specify the range for the variable. The listings for
MDRW and DDRW explain how a variable list is evaluated in each case.

PATH { HOME GRAPHP }

INPUT MEMORY The first four flags are used to detect
which advanced graphing menu the user
is in.

CASE A LEVEL Alist
CASE B THREE Avariable name

LEVEL Areal number
LEVEL Areal number

OUTPUT MEMORY If flags one through three equal binary 2,
#0010 b, a list containing a variable and
two real numbers will be added to DPAR,
otherwise, the list will be added to MPAR.

UTILITIES PGET, PCHK

181

SECTION ONE ADVANCED GRAPHING

r Adv raphing Men

ADYANC(S1258)

« { Dim EXTND MOVE
ENd } MENU »

SUMMARY

This program creates the advanced graphing menu. This menu,
like the main graphing menu, is a selection menu. You have the
option of selecting one of the three advanced graphing sub-menus.
Pressing the key labeled or creates the three
dimensional, extended, or animated graphing menu respectively.
Pressing puts you back in the calling graphing menu.

PATH { HOME GRAPHP)}

INPUT None

OUTPUT MEMORY A custom menu is created.

UTILITIES None

182

CHAPTER SIX ADVANCED GRAPHING

Character

CHLST¢15147)

{("E""M"'"D"}

SUMMARY

CHLST is simply a list of characters. By adding one of these
characters to a variable name, a program can classify its data.
Many of the programs in this chapter look for this added character
to distinguish the type of data stored in a variable.

One of the programs that uses CHLST is PGET. PGET uses it to get
the quoted name of a specific graphing parameter. It converts the
first four user flags from a binary number to a real number. It then
adds the character in CHLS T pointed to by this real number and
PAR. For example, if the first four user flags equaled binary one,
PGET would return the name 'EPAR'. Likewise, if the first four flags
equaled binary three PGET would return 'DPAR’.

You'll notice CHLST only has three character strings but the
binary value of the first four user flags can be as high as fifteen.
This means you can incorporate many of the programs in this
chapter into your own programs by adding your own characters to
CHLST. The listings for MRKR, N3FG, PGET, and LGET might give you
some ideas.

PATH { HOME GRAPHP }

183

SECTION ONE ADVANCED GRAPHING

lcul n f Displ

CTR?¢(113198)

« 1 *W PPAR LIST> 4
DROPN DUP2 - M 31 /
OSWAPRC ++2 />

SUMMARY

DDRMW and EDRW call CTR? to compute the center point on the
display. This point is used as a reference point when shifting the
display and restoring the plot parameters (PPAR)to it's original
value.

First, if PPAR doesn't exist, CTR? creates it. Then, the minimum
and maximum points in PPAR are used to determine the center of
the display. Finally, this point is returned to level one.

PATH { HOME GRAPHP }

INPUT MEMORY Ifit doesn't exist, '"PPAR' is created. Then the
first and second objects from this list are
used to determine the center point on the
display.

OUTPUT LEVEL ONE The center point of the display (a complex
number).

UTILITIES None

184

CHAPTER SIX ADVANCED GRAPHING

Dimensional

DDRW(2733704)

« MAXR *NUM DUP R>C
AXES CLLCD CTR? DPAR
1 GET LIST» DROP
l-2ctrps«0s
FOR j DPAR 2 DO GET1
LIST»> DROP OVER - s
/j*+DUP.7 * 30
IF 60 FS? THEN D3R
END R>C P5R ctr +
CENTR SWAP MTYP
UNTIL 46 FS? END
DROP2 17 SF p EVAL
NEXT ctr CENTR » »

SUMMARY

DDRH takes the parameters from DPAR and creates a three
dimensional graph. DPAR read as follows.

{ { any graphing procedure, a real number}
{ first variable or program , first upper
limit, first lower limit}. { Nth variable
or program, Nth upper limit, Nth lower
limit }}

DDRW uses the first item of the first list as its graphing procedure.
This is the program that will be used to draw the three dimensional
graph. The second number in the first list is the number of times to
evaluate this procedure. A cross section is drawn each time the
procedure is evaluated. All other lists are variable lists.

A variable lists should have a variable or a program as the first
object and two real numbers as the second and third objects. The

185

SECTION ONE ADVANCED GRAPHING

two real numbers define the range that the variable will vary over or
the program will be evaluated over. The range of the lastlist is used
as the range for the axis coming out of the display. Although you
would normally only have one variable list, DPAR can have as many
lists as you want. Before drawing a cross section, DDRW takes each
variable list and adds

[(the upper limit - the lower limit)/
the number of cross sections being
drawn]

to the lower limit and puts this number on level one of the stack. It
then takes the first object of that variable list and, if it is a variable,
stores the number from level one in it, or, if it is a program,
evaluates it.

As an example, A three dimensional sine wave will be graphed if
the following objects are stored in the listed locations

DPAR {{«DRAW» 6} {Z2-1.51.3}}

EQ 'Z#S INCD!

PPAR {(-6.8,-1.5)
(6.8,1.60X1¢0,® }

In two dimensions, the axis coming out of the display (A3) is about
.7 times the length of the other two axis and makes a 30 degree
angle with the positive Al axis. By shifting the display screen along
this line each time a cross section is drawn DDRH creates a three
dimensional graph.

186

CHAPTER SIX ADVANCED GRAPHING

30°

Al

A3 A2

Ifyou stop the program while its running you'll ind that the
plot parameters, PPAR, have been changed. This is because DDRW
actually shifts the origin every time a cross section is drawn. This is
what creates the 3-D effect. Normally, PPAR is restored to its
original value, but if the program is stopped during a run you'll have
to check these parameters and change them or purge them.

NOTE

DDRUW sets flag 17 before it runs a drawing program. All of the
drawing programs in chapters two through five check the status of
flag 17. Having the flag set causes these programs to do nothing
more than draw on the display. If flag 17 isn't set, the display won't
be cleared and you'll enter digitizing mode each time a cross section
is drawn.

PATH { HOME GRAPHP }

INPUT MEMORY The lists stored in PPAR and DPAR

OUTPUT LCD A three dimensional graph is drawn on the
display screen.

UTILITIES CTR?, MTYP

187

SECTION ONE ADVANCED GRAPHING

Del Vi 1

DEL(286479

« PGET DUP RCL DUP 1
OVER SIZE 1 - 1 MAX
SUB ROT STO DUP SIZE
2 MAX DUP SUB LIST»
DROP »

SUMMARY

DEL does just the opposite ofADD. It subtracts the last list from
either MPAR or DPAR, depending on what menu you're in. If MPAR or
DPAR doesn't contain a variable list nothing happens. MPAR or
DPAR's default value will be stored in the current directory if it didn't
exist.

PATH { HOME GRAPHP }

INPUT MEMORY Flags one through four equal binary 2,
MPAR is used, otherwise, DPAR is used.

OUTPUT LEVEL If the specified parameter list contained at
least one variablelist it is returned to level
one.

MEMORY Depending on the value of the first four user
flags, the last variable list from either MPAR
or DPAR will be subtracted. If it doesn't exist
in the current directory, it is created using
the default value.

UTILITIES PGET

188

CHAPTER SIX ADVANCED GRAPHING

imensi n

Dim(17185)

« 3 N>FG MMENU »

SUMMARY

Dim stores binary three (# 0011 b) in the first four user flags.
This tells other programs, such as FILE, LOAD, and EXIT, that you
are working in the three dimensional menu. These flags also tell
MMENU which advanced graphing menu to create, in this case the
three dimensional menu.

PATH (HOME GRAPHP)

INPUT MEMORY The list stored iInMLST

OUTPUT MEMORY The user flags one through four are
changed to binary three, # 0011 b. A custom
menu is also created.

UTILITIES N-FG, MMENU

189

SECTION ONE ADVANCED GRAPHING

DDRW

DPAR(14084)

({DRAW 9})

SUMMARY

DPAR is a list of parameters used by DDRW when drawing in three
dimensions. It reads as follows.

{ { any graphing procedure, a real number}
{ first variable or program , first upper
limit, first lower limit}. { Nth variable
or program, Nth upper limit, Nth lower
limit }}

DDRW uses the first item of the first list as its graphing procedure.
This is the program that will be used for the three dimensional
graph. The second number in the first list is the number of timesit
evaluates this program. A cross section parallel to the XY plane is
drawn each time the program is evaluated. All otherlists are
variablelists.

A variable lists has a variable or a program as the first object and
two real numbers as the second and third objects. The two real
numbers define the range that the variable will vary over or program
will be evaluated over. Although you would normally have only one
variable list, DPAR can have as many lists as you want. Only the
range of the last list though, is used as the range for the three
dimensional (coming out of the display) axis.

This version of DPAR is stored in the main graphing directory,
GRAPHP. It will be used as a default value when it isn't defined in the
directory that you're in.

PATH { HOME GRAPHP }

190

CHAPTER SIX ADVANCED GRAPHING

W

Driven)

EDRW(S456263)

« EPAR LIST»> DROP
ABS 1 -2 /18 FS?
.845 1 IFTE *W CTR?
PPAR LIST» 4 DROPN -
C>ROVER 136 / ROT+
OVER 31 / ROT + R>C
NEG 4 ROLLABS 1 - 2
/ 0 OVER NEG ROT FOR
i DROP ™ CR 4 PICK
DUP NEG FOR j OVER
CoR j *SWAP 1 *
SWAP R+>C 4 PICK +
CENTR CLLCD 17 SF 5
PICK EVAL IF 18 FS?
THEN PRLCD ELSE LCD»
+ END -1 STEP NEXT
ROT CENTR IF 18 FS?
THEN DROP .845 INV
ELSE GGFL LOAD 1 END
*W 3 DROPN »

SUMMARY

EDRW usesthelist stored in EPAR to draw an extended graph.
This list contains three objects. The first is a drawing procedure
while the second and third are the number of horizontal and vertical
frames you want graphed. You can change these parameters using
Prog, XFRM and YFRM.

For example, if {DRAW2 2 } is stored in'EPAR’ the equation in 'E@
would be graphed on four display screens, two horizontal by two
vertical.

191

SECTION ONE ADVANCED GRAPHING

Each time EDRN evaluated the program specified by EPAR a
section of the graph is drawn and, if flag 18 is set, the graph is sent
to the printer. Because the HP thermal printer doesn't print a line
between graphics, a vertical series of frames will be printed. After
printing an entire vertical strip EDRH prints two blank lines and
shifts over one horizontal frame. It then starts graphing the next
vertical strip. You can tape or paste these vertical strips together to
get any sized graph.

If flag 18 is cleared EDRW will not send output to the printer.
Instead, the graphic string for the last vertical strip is stored as the
variable 'GSTRE' in the graphic file directory, GFIL. Since only the
last vertical strip is saved, the second number in EPAR should be 1.
Having a number larger than 1 will graph more vertical strips and
just waste time.

Storing graphics in the the graphic flle directory helps you keep
track of memory hogging graphic strings. It also allows you to view
a graph from any directory, no matter which directory the graphic
was created in. See FILE, LOAD and SAYE for more information on
the graphic file.

NOTE

If flag 18 is set (the graph is being sent to the printer) the plot
parameters are changed before and restored after graphing. This is
because the resolution of the printer isn't the same as the 28S
display. The dots on the printer are tall rectangles while the pixels
on the 28S are squares. Because of this you may have to edit or
purge PPAR if you interrupt EDRW while running .

PATH { HOME GRAPHP)

INPUT LCD The graphic string representing each frame
of the graph.

MEMORY The list stored in EPAR and PPAR,flag 18,
and any input used by the drawing
procedure in EPAR

192

CHAPTER SIX

OUTPUT LCD

MEMORY

Printer

UTILITIES

ADVANCED GRAPHING

A number of graphs are drawn on the
display.
If flag 18 is set the graphic string
representing the graph is stored in GSTRE in
the graphic file directory.
If flag 18 is cleared the graph will be sent to
the printer.

CTR?, GGFL, LOAD

193

SECTION ONE ADVANCED GRAPHING

Advanced

end(Se72)

'ADVAN'

SUMMARY

end can be found in the extended, animated, and three
dimensional graphing menu. It returns you to the advanced
graphing select menu. Because lower case letters appear as upper
case in the user or custom menu, it will be displayed as 1.

PATH { HOME GRAPHP }

INPUT None

OUTPUT MEMORY The advanced graphing selection menu is
created.

UTILITIES None

194

CHAPTER SIX ADVANCED GRAPHING

EDRW

EPAR(10631)

{DRAW 1 2}

SUMMARY

EPAR is the list of parameters used by EDRW to draw an extended
graph. It reads as follows.

{ any graphing procedure, a positive integer, a positive integer}

The first object is the drawing program used to create an
extended graph while the second and third objects are the number
of horizontal and vertical frames to be graphed.

This version of EPAR is stored in the main graphing directory,
GRAPHP. It will be used as a default value when it isn't defined in the
directory that you're in.

PATH { HOME GRAPHP }

195

SECTION ONE ADVANCED GRAPHING

Graphic
and Return to Previous Directory

EXITC14653)

| « PBAK MMENU »

SUMMARY

EXIT can be found in the graphic flle menu. It returns you to your
previous directory and recreates the previous custom.

Whenever you enter the graphic file directory your current path
is stored in'Path' in the main graphing directory, GRAPHP. EXIT
uses the list stored in Path to return you to the previous directory
and recreate the calling menu.

PATH { HOME GRAPHP }

INPUT MEMORY The lists stored inPath, and MLST.

OUTPUT MEMORY The list stored in Path is made the current
path and then purged. A custom menu is
also created.

UTILITIES PBAK, MMENU

196

CHAPTER SIX ADVANCED GRAPHING

Extended

EXTND(19506)

« 1 N>FG MMENU »

SUMMARY

EXTND stores binary one (# 0001 b) as the first four user flags.
This tells other programs, such as FILE, LOAD, and EXIT, that you
are working in the extended graphing menu. The extended
graphing menu is also created.

PATH { HOME GRAPHP }

INPUT MEMORY The list stored iIn MLST

OUTPUT MEMORY User flags one through four are changed to
binary one (# 0001 b) and the extended
graphing menu is created.

UTILITIES N+FG, MMENU

197

SECTION ONE ADVANCED GRAPHING

String

FILE(S83107)

« GGFL { LOAD SAVE
EXIT } VARS MCHK +
MENU »

SUMMARY

FILE is used to load, save, delete, or manipulate graphics created
by EDRW and MDRMW. It stores your current path in'Path’ in the
main graphic directory, GRAPHP, and moves to the graphic file
directory. Then,it sorts through all the variable names in the
graphic flle and puts the ones created by the calling menu in a list.
This is done by checking the last character of each name. Names
ending with the letter E are selected when you're in the extended
graphing menu while names ending in M as selected when in the
animated(motion) menu. Finally, this list is added to { LOAD SAYE
EXIT } and used to create the graphic fille menu.

PATH { HOME GRAPHP }

INPUT MEMORY The first four user flags determine which
character from the list stored in CHLSis
used as a test character. Any variable stored
in the graphic file directory that ends with
this test character will be used when creating
the custom menu.

OUTPUT MEMORY The path before running FILE is stored in
'Path' in the main graphic directory. A
custom menu with all the names in GFIL
ending with the test characteris also
created.

UTILITIES GGFL, MCHK

198

CHAPTER SIX ADVANCED GRAPHING

Number

FRAM(20232)

« [P 2 PGET PUTL »

SUMMARY

FRAM puts the integer part of the real number from level one into
the second position in the first list of the current advanced
graphing parameter list. This command only appears in the
animated menu, but is used under the name LINES in the three
dimensional menu.

PATH { HOME GRAPHP }

INPUT LEVEL A real number

OUTPUT MEMORY If flags one through four equal binary two or
three the real number from level one is put
into either MPAR, or DPAR.

UTILITIES PGET, PUTL

199

SECTION ONE ADVANCED GRAPHING

File

GFIL<1297)

DIRECTORY

SUMMARY

Graphics created by both EDRH and MDRW are stored in the
graphic file directory, GFIL. You can distinguish what programs
created which graphics by the last letter in their name. The
character E is added to the name of any graphic string that was
created or stored while in the extended graph menu .
Similarly, you'll find the letter M appended to the name oflists that
were stored or created by any program from the animated graph
menu EIHE.

The menu driven program that puts you in GFIL is FILE. It also
creates the graphic flle menu that allows to to save or load graphics.
Refer to the program listings for FILE, LOAD, SAYE, and EXIT for
further explanation on the graphic file.

PATH { HOME GRAPHP }

CHAPTER SIX ADVANCED GRAPHING

TCurrent
go to Graphic File Directory

GGFL{47471)

« PATH GRAPHP 'Path’
STO GFIL »

SUMMARY

GGFL recalls the current path and stores it in 'Path’' in the main
graphing directory. Then,it gives control to the graphic file
directory, GFIL. Later, when you exit out of the graphic file, the
program PBAK will use the list stored in 'Path' to return control to
the previous directory.

PATH { HOME GRAPHP)

INPUT MEMORY The current path as returned via the built in
command PATH

OUTPUT MEMORY The variable 'Path’ is created and stored in
the main graphing directory and command
is transferred to the graphic file directory.

UTILITIES None

SECTION ONE ADVANCED GRAPHING

Animated

GLIDE(183200)

« GGFL 'GSTRM' 1 DO
GETI EVAL »LCD UNTIL
KEY END 3 DROPN PBAK »

SUMMARY

GLIDE is one of several programs that view an animated graph
created by MDRW. It goes to the graphic file directory, GFIL, takes
the list stored in 'GS TRM' and displays each graphic string from
first to last. It keeps doing this until any key is pressed. The effect,
in most cases, is a sort of gliding motion. Once a key is pressed the
program returns control to the calling directory and stops. You'll
get an error if a list of graphic strings isn't stored in 'GS TRM'. If this
happens you will have to return to the main graphing menu and
reselect the application menu you were working in by entering
(ENCJENT R

PATH (HOME GRAPHP }

INPUT MEMORY The list stored in'GS TRM'
KEYBOARD Pressing any key will end the program.

OUTPUT LCD The graphic strings stored in 'GS TRM' are
displayed on the screen. The images
continually cycle from first to last.

UTILITIES GGFL, PBAK

202

CHAPTER SIX ADVANCED GRAPHING

WaitforaKeyto bePressed

KEYW(33289)

« DO UNTIL KEY END

SUMMARY

KEYHW simply suspends a program while waiting for a key to be
pressed. Pressing any key will return its string to level one.
Because this program is so useful, you may decide to store it in the
home directory instead of the main graphing directory, where it can
be used by all your programs.

Be careful when using this program. Ifyou leave your calculator
unattended it will continue to run until the batteries go dead. This
may reset your memory!

PATH { HOME GRAPHP }

INPUT KEYBOARD The program waits for you to press any key.

OUTPUT LEVELThe string for the key that was pressed is
returned to level one.

UTILITIES None

SECTION ONE ADVANCED GRAPHING

T i Vi]

LGET(53291)

« "GSTR" CHLST MRKR
GET + STR> »

SUMMARY

Both EDRW and MDRW store graphics in the graphic file directory
under the name 'GSTRE' or 'GSTRM'. LGET creates the name where
the graphic string or list will be stored. If you were in the animated
graphing menu 'GS TRM' will be returned. Likewise, 'GS TRE' will be
returned ifyou were in the extended graphing menu.

It does this by adding the strings " 'GS TR", and the mode
character. LGET generates the mode character by converting the
first four user flags from binary to a decimal number (this is done
by the subprogram MRKR) and getting the character in that position
from the list in CHLST. Finally, the resultant string is converted to a
name.

PATH { HOME GRAPHP }

INPUT MEMORY Thelistin CHLST and the first four user
flags are used to generate the mode
character.

OUTPUT LEVEL Either'GSTRE' or 'GS TRM' will be returned
depending on whether you're in the
extended or animated graphing menu.

UTILITIES MRKR

CHAPTER SIX ADVANCED GRAPHING

Input the Number of Lines into DPAR

LINES<S5884)

'FRAM'

SUMMARY

LINES puts the object from level one into the second position in
the first list in DPAR. This program is in the three dimensional
menu. The number put into DPAR represents the number of cross
sections, or lines, that will be drawn in a three dimensional graph.
All this program really does is give FRAM, the program doing all the
work, a second name. This second name does a betterjob describing
whatis really happening when it is used in the three dimensional
graph menu.

PATH { HOME GRAPHP }

INPUT LEVELA real number

OUTPUT MEMORY The second numberin the first list in DPAR
is changed. If it doesn't exist in the directory
you are in, DPPAR is created.

UTILITIES FRAM

205

SECTION ONE ADVANCED GRAPHING

raphi r

LOADC27543)

« EVAL LGET STO EXIT »

SUMMARY

LOAD stores the object on level one into a specific graphic variable
name. The names of the graphic variable for the animated and
extended graphing menus are 'GS TRM' and 'GSTRE' respectively.
Once a graph is loaded into the appropriate variable it can be viewed
using programs like YIEW, GLIDE, or SHAKE. Finally, control is
returned to the directory and menu you were previously working in.

PATH { HOME GRAPHP }

INPUT MEMORY The mode character list, CHLST, as well as
the first four user flags are used to get the
last character in the graphic variable name.

OUTPUT MEMORY A variable whose name is a combination of
GS TR and one of the characters from
CHLST. For example, if the first four user
flags equaled binary two, then the second
character from CHLST would be added to
GSTR to create the name 'GS TRM'.

UTILITIES LGET, EXIT

CHAPTER SIX ADVANCED GRAPHING

Mode

MCHK(877220)

« 0 + {} CHLST MRKR
GET ROT 1 DO GETI IF
DUP »STR DUP SIZE 1
- DUP SUB 5 PICK
SAME THEN 5 ROLL + 4
ROLLD ELSE DROP END
UNTIL 46 FS? END 3
DROPN »

SUMMARY

When you enter an advanced graphing menu a distinct binary
numberis stored in the first four user flags. This binary number is
used to select the mode character from CHLST. The mode character
for a given advanced graphing menu is added to any name loaded
(stored) into the graphic file directory. When you enter the graphic
file menu MCHK check the last character of every variable in the list
on level one. If the last character matches the mode character it is
added to a new list, otherwise,it is dropped. The resulting list is
returned back to level one and will be used to create a custom menu.

PATH { HOME GRAPHP }

INPUT MEMORY The first four user flags, as well as the list
stored in CHLST are used to select the mode
character.

LEVELA list of all the user variables in GFIL

OUTPUT LEVELA list containing names with the proper
mode character in the last position.

UTILITIES MRKR

SECTION ONE ADVANCED GRAPHING

Mov hin T

MDRUW(2557821)

« MPAR 1 GET LIST>»
DROPl--»>ps«0s
FOR j CLLCD MPAR 2
DO GETI LIST> DROP
OVER-s8 /j* +
SWAP MTYP UNTIL DUP
1 == END DROP2 17 SF
p EVALIF 18 FS?
THEN CR PRLCD CR
ELSE LCD-» END NEXT
IF 18 FC? THEN s 1 +
sLIST GGFL LOAD END

SUMMARY

MDRH creates an animated graph using the parameter list stored
in MPAR. An animated graph is nothing more than a series of
frames in which one or more variable is changed in each graph.
Then,if flag 18 is set, each graph is printed on the thermal printer.
Otherwise, the graphic string for each graph is stored in a list that
can be viewed later. The parameters in MPAR are as follows.

{ { graphing procedure, number of frames]} { first variable or
program first upper limit, first lower limit}. { Nth
variable or program, Nth upper limit, Nth lower limit }}

MDRW uses the first item of the first list as its graphing procedure.
The second numberin the first list is the number of times it evaluate
this procedure. All otherlists should have a variable or a program
as the first entry, its upper limit as the second entry, and the lower
limit as the third entry. You can have as many lists as you want,
but MDRH require you to have at least two (The first with a graphing

208

CHAPTER SIX ADVANCED GRAPHING

procedure and a positive integer and the second containing the vary
parameters). MDRHW adds

[(the upper limit - the lower limit)/ the
number of graphs being drawn]

to the lower limit of each variable list (any list other than the first)
and puts this number on level one of the stack. It then takes the
first object in that variable list and, if it is a variable, stores the
number,or if it is a program, evaluates it. As an example, assume
the following objects are stored in the listed locations.

MPAR {{«DRAW» 6} {Z2-1.51.5})
EQ 'Z#S INCQD!
PPRR { ('6-8,-1 -5)

(6.8,1.62X1(0,0)}

MDRW will graph the sine function six times. Assuming that'Z' is
a variable and not the name of a program, Z is changed each time a
new graph is drawn. Viewing the graph using GLIDE will display a
sine wave whose amplitude varies from -1.5 to 1.5.

MDRW can either store each frame of a graph in a list to be viewed
using one of the programs in the animated graphing menu,or it can
send each frame to the printer. If flag 18 is cleared, MORW will store a
list of graphic strings in 'GS TRM' in the graphic file directory. If flag
18 is set, each frame will be printed on the thermal printer.

PATH { HOME GRAPHP }

INPUT MEMORY The list stored in MPAR and PPAR and flag 18

OUTPUT LCD A series of graphs are plotted.
MEMORY If flag 18 is cleared a list of graphic strings

is stored in'GS TRM' in the graphic file
directory.

PRINTER If flag 18 is set each graph is sent to the
printer.

UTILITIES MTYP, GGFL, LOAD

SECTION ONE ADVANCED GRAPHING

M List fi Dim Menu

MLST(753499)

{ { EPAR Prog XFRM
YFRM VIEW EDRW FILE

end){ MPAR PROG
FRAM ADD DEL MDRW
FILE GLIDE SHAKE

Step end } { DPAR
PROG LINES ADD DEL

DDRW end } }
PATH { HOME GRAPHP }

SUMMARY

MLST is used by MMENU when creating an advanced graphing
menu. Depending on the binary value of the first four userflags,
one of the lists iIn MLST is used to create a custom menu. Refer to
MMENU for more information.

210

CHAPTER SIX ADVANCED GRAPHING

Advanced

MMENU(30197)

« MLST MRKR GET MENU

SUMMARY

Dim, MOVE and EXTND are the programs that create the three
advanced graphing menus. These programs all change the value of
the first four user flags and call MMENU. Depending on the value of
these flags, MMENU selects one of the three lists from MLS T to create
the appropriate custom menu.

PATH { HOME GRAPHP)

INPUT MEMORY The first four user flags and the list in MLST

OUTPUT MEMORY A custom menu is created.

UTILITIES MRKR

211

SECTION ONE ADVANCED GRAPHING

(Motion)

MOVE(17798)

« 2 N>FG MMENU »

SUMMARY

MOVYE stores binary two (# 0010 b) in the first four user flags.
This tells programs such as FILE, LOAD, and EXIT that you are
working in the animated graphing menu. These flags also tell
MMENU which custom menu to create.

PATH { HOME GRAPHP }

INPUT MEMORY The list stored inMLST

OUTPUT MEMORY The first four user flags are changed to
binary two, # 0010 b and a custom menu is
created.

UTILITIES N+FG, MMENU

212

CHAPTER SIX ADVANCED GRAPHING

Default MDRW Parameters

MPAR(14188)

{{DRAW 5})

SUMMARY

MPAR, The animated drawing parameterlist, is used by MDRW. It
reads as follows.

{ { graphing procedure, number of frames} { first variable
or program , first upper limit, first lower limit}. {
Nth variable or program, Nth upper limit, Nth lower limit

1

These parameters can be changed using PROG, FRAM, ADD, or DEL.

This version of MPAR is stored in the main graphing directory
where it is used as a default when it isn't defined in the work
directory.

PATH { HOME GRAPHP }

213

SECTION ONE ADVANCED GRAPHING

Object

MRCL(S515072)

« [JFERR DUP RCLTHEN
IF 31 FS? THEN DROP
END STO ELSE IFTYPE
== THEN EVAL ELSE

STO END END »
SUMMARY

MRCL is called on by MTYP. It checks the object on level one and, if
it is a program or the name of a program, runs it. Otherwise,it
stores the real number on level two in that name. For example, if «
LN'X'STO» is stored in'Z' and the stack is as shown below, MRCL
will store .693147 in X. If instead, 'Z' from level one is replaced with
'¥' and a program isn't stored in X, 2 will be stored directly into X.

M
S
8
8

8
8
6

PATH { HOME GRAPHP }

INPUT LEVEL TWOQO A real number

LEVEL A name or a program

OUTPUT MEMORY If a program or the name of a program is on
level one it is evaluated. Otherwise, the
number from level two is stored in the name
on level one.

UTILITIES None

214

CHAPTER SIX ADVANCED GRAPHING

User

MRKR(26445)

« # Fh RCLF AND B-R »

SUMMARY

This program converts the binary value of the first four user flags
to a decimal number. This number represents the current mode set
by N*FG. If 1 is returned, the current graphing menu is the
extended menu. Likewise, two and three will be returned for the
animated and three dimension menus.

PATH { HOME GRAPHP }

INPUT MEMORY The first four user flags

OUTPUT LEVEL ONE A real number

UTILITIES None

215

SECTION ONE ADVANCED GRAPHING

Type

MTYP(137332)

« { DROP EVAL MRCL }
{8 6} 3 PICKTYPE
POS 1 + GET EVAL »

SUMMARY

This program is called on by both MDRW and DDRW. It checks what
type of object is on level one. If it is a program or the name of a
program MTYP evaluates it. Otherwise it should be a variable name,
so the number from level two is stored into it. See MRCL for more
detalls.

PATH { HOME GRAPHP)

INPUT LEVEL TWO A real number
LEVEL A variable name or a procedure

OUTPUT MEMORY If a name is on level one and that name
doesn't contain a procedure, the value on
level two is stored in that name . If the name
of a procedure or a procedure is on level one,
that procedure is run.

UTILITIES MRCL

216

CHAPTER SIX ADVANCED GRAPHING

Convert a Decimal Number to a Binary
Num| I Fou

N+FG(137134)

« RCWS 64 STWS SWAP
15 MIN R»B RCLF SRB
SLB + STOF STWS »

SUMMARY

This program converts the real number from level one to binary
and stores it as the first four user flags. By doing this, the first four
userflags act as a universal marker. This marker tells any program
which advanced graphing menu you are working and can be recalled
from any directory.

PATH { HOME GRAPHP)

INPUT LEVEL ONE Any real number

OUTPUT MEMORY Depending on the real number input on level

one, the first four user flags are set or
cleared.

UTILITIES None

217

SECTION ONE ADVANCED GRAPHING

Return to Previous Directory

PBRK<215067

« GRAPHP Path 1
'Path’ PURGE DO GETI
EVAL UNTIL 46 FS?
END DROP2 CLMF»

SUMMARY

This program passes directory control along the list stored in
'Pat h', which should have been created by GGFL. PBAK is called
whenever you are in the graphic file directory and want to return to
the directory you were previously working in. After recalling the list
in'Path' it is purged.

You normally wouldn't call this program directly. The programs,
LOAD, SAVE, and EXIT all use PBAK to return you to your active
directory.

PATH { HOME GRAPHP }

INPUT MEMORY The list stored in'Path’ in the GRAPHP
directory

OUTPUT MEMORY Control is passed to the last directory in
'Path' and 'Path' is purged.

UTILITIES None

218

CHAPTER SIX ADVANCED GRAPHING

Parameter

PGET(61296)

« "CHLST MRKR GET
+"PAR" + STR »

SUMMARY

PGET gets the name of the active advanced graphing parameter
list. Ifyou are in the animated menu MPAR will be returned.
Likewise, EPAR or DPAR will be returned if you are in the extended or
three dimensional menu.

It does this by adding a single quote ("' ">, the mode character,
and 'PAR". The resultant string is then converted to a name and
returned to level one. The mode character is the character in CHLST
pointed to by the decimal value of the first four insert flags.

PATH { HOME GRAPHP }

INPUT MEMORY Thelistin CHLST and the first four user
flags are used to get the mode character.

OUTPUT LEVELThe name that contains the calling menu's
graphing parameters.

UTILITIES MRKR

219

SECTION ONE ADVANCED GRAPHING

Define Drawing Program for EPAR

Progcl7906

«1 PGET PUTP »

SUMMARY

Prog takes the object from level one and puts it into the first
position in the extended graphing parameter list, EPAR.

Prog doesn't check to see if the object on level one is a program or
the name of a program. You'll end up with an error when you try to
create a graph if you accidentally put any other object into the
graphing parameters.

PATH (HOME GRAPHP }

INPUT LEVELA program or name of a program

OUTPUT MEMORY The object on level one is put into the first
position in EPAR.

UTILITIES PGET, PUTP

220

CHAPTER SIX ADVANCED GRAPHING

Program

PROG(16030)

«1 PGET PUTL »

SUMMARY

PROG takes the object from level one and puts it into the current
advanced graphing parameter list. This program can be found in
both the three dimensional and animated graphing menus. Simply
put a graphing procedure or the name of a graphing program on
level one and PROG will insert it into the graphing parameters for
that menu. The first four user flags indicate which parameterlist,
MPAR or DPAR,it should be put in.

PROG doesn't check to see if the object on level one is a program or
the name of a program. You'll end up with an error when you try to
create a graph if you accidentally put any other object into the
graphing parameters.

PATH (HOME GRAPHP }

INPUT LEVEL A program or name of a program
MEMORY The first four user flags determine which list,

MPAR or DPAR, will be changed.

OUTPUT MEMORY The object on level one is put in the first
position in the first list in MPAR or DPAR. The
the decimal value of the first four user flags
determine which list will be changed.

UTILITIES PGET, PUTL

SECTION ONE ADVANCED GRAPHING

a

PUTL(75229)

« PCHK 1 DUP2 GET 4
ROLL 5 ROLL PUT PUT

SUMMARY

Both DPAR and MPAR contain a list of lists. The first list is the
most important. It contains a drawing program and a real number.
PUTL allows you to change either object in this list by putting the
object from level three into the first list on level one. The real
number on level two specifies the position it should be put in.

PATH { HOME GRAPHP }

INPUT LEVELTHREE A real number, program, or the name of a
program

LEVEL TWQ Areal number

LEVEL A parameter name. (Either DPAR or
MPAR)

OUTPUT MEMORY The object input on level three is put into
the first list from the graphing
parameters on level one.

UTILITIES PCHK

222

CHAPTER SIX ADVANCED GRAPHING

Graphic

SAVE(325108)

« CHLST MRKR GET
SWAP >STR 1 OVER
SIZE 1 - SUB SWAP +
STR~» LGET DUP RCL
ROT STO PURGE EXIT »

SUMMARY

SAYE allows you to save graphics created by EDRW or MDRW. Both
EDRW and MDRW store their graphs in the graphic file directory in
'GSTRE' and 'GSTRM' respectively. If you would like to save one of
these graphs under a different variable name, simply put the new
name on level one and run SAVE.

For example,ifyou create a graph while in the extended graph
menu and want to store that graph in'FCN', you would enter 'FCN'
on level one and press Hld. GSTRE would be purged while the
graphic string that was stored there will be stored in'FCNE'. (SAVE
adds the E to indicate it is an extended graph.)

PATH { HOME GRAPHP }

INPUT MEMORY Thelistin CHLST,the first four user flags,
and the graphics in either 'GSTRE' or
'GSTRM' are used.

LEVEL ONE Any name

OUTPUT MEMORY Either'GSTRM' or 'GSTRE' is purged whileits
graphics are stored in a variable whose name
is a combination of the name input on level
one and either M or E.

UTILITIES MRKR, Exit

223

SECTION ONE ADVANCED GRAPHING

View a Graphic List Created By Move
Back and Forth

SHAKEC(719111)

« GGFL GSTRM DO DUP
LIST»> 1 SWAP START
EVAL ->LCD NEXT 1 DO
GETI EVAL -»LCD UNTIL
46 FS? END DROP
UNTIL KEY END DROP2
PBAK »

SUMMARY

SHAKE is one of several programs that view an animated graph
created by MDRW. It goes to the graphic file directory, takes the list of
graphic strings stored in GS TRM and displays each string from first
to last. It then displays the images from last to first. It keeps doing
this until any key is pressed. The effect is a shaking motion.

You'll get an error if a list of graphic strings wasn't created first by
MDRW. If this happens you'll have to retumn to the main graphing
menu and reselect the graphing menus you were working in.

PATH { HOME GRAPHP }

INPUT MEMORY The list stored in‘GSTRM' in the graphic file
directory.

KEYBOARD Pressing any key will end the program.

OUTPUT LCD The list of graphic strings stored in 'GS TRM'
is displayed on the screen.

UTILITIES GGFL, PBAK

224

CHAPTER SIX ADVANCED GRAPHING

List
at

Step(249516)

« GGFL 'GSTRM' 1 DO
GETI EVAL »>LCD UNTIL
KEYW "ENTER" SAME
END DROP2 PBAK »

SUMMARY

St ep is one of several programs that let you view an animated
graph created by MDRW. It goes to the graphic file directory, takes
the list stored in'GSTRM' and displays the first graphic string in
that list. Pressing any key other than will display the next
string. When the last string has been reached, $tep cycles back to
the first. This lets you view your graph one frame at a time.
Pressing at any time will exit the program.

You'll get an error if a list of graphic strings wasn't first created by
MDRW. If this happens you'll have to return to the main graphing
menu and reselect the graphing menus you were working in.

PATH (HOME GRAPHP }

INPUT MEMORY The list of graphic strings in GS TRM stored
in the graphic file directory, GFIL.

KEYBOARD Pressing (enter) will end the program. Any
other key displays the next graphic string
inGSTRM .

OUTPUT LCD The graphic strings stored in GSTRM are
displayed, in series, on the screen.

UTILITIES GGFL, PBAK, KEYHW

225

SECTION ONE ADVANCED GRAPHING

String

VIEW(1323245)

« GGFL GSTRE DUP DUP
-»LCD SIZE 547 - SWAP
1 DO (-137 137 }{
"UP" "DOWN"} KEYW
POS IF DUP THEN GET
+ 1 MAX 3 PICK MIN
DUP2 DUP 548 + SUB
-LCD 0 ELSE 5 DROPN
1 END UNTIL END CLMF
PBAK »

SUMMARY

This program allows you to view any graphic string created by
EDRW. The program initially displays the first four lines of the
graph stored in 'GSTRE' in the graphic file directory. To view down a
line simply press the down cursor key (¥). Likewise, the up cursor
key (A) shifts the display back up a line. Pressing any other key
will exit the program.

PATH { HOME GRAPHP }

INPUT MEMORY The string stored in 'GS TRE' located in the
graphic string directory, GFIL.

KEYBOARD The up and down keys view the extended
graph up and down one line respectively.

OUTPUT LCD Four lines of the graphic string in GSTRE are
displayed.

UTILITIES GGFL, KEYHW, PBAK

226

CHAPTER SIX ADVANCED GRAPHING

Horizontal

XFRM(20778)

« [P 2 PGET PUTP »

SUMMARY

This program puts the real number from level one into the second
position in EPAR. EPAR will be created in the work directory fif it
didn't exist before running the program.

PATH { HOME GRAPHP }

INPUT LEVELA real number
MEMORY The list stored in EPAR

OUTPUT MEMORY The number from level one is put in the
second position in EPAR. EPAR is created if it
didn't already exist in the work directory.

UTILITIES PGET, PUTP

227

SECTION ONE ADVANCED GRAPHING

of

YFRM(20804)

« [P 3 PGET PUTP »

SUMMARY

This program puts the real number from level one into the third
position in EPAR. EPAR will be created in the work directory if it
didn't exist before running the program.

PATH { HOME GRAPHP }

INPUT LEVELA real number

MEMORY The list stored in EPAR

OUTPUT MEMORY The number from level one is put in the
third position in EPAR. EPAR is created if it
didn't already exist in the work directory.

UTILITIES PGET, PUTP

228

CHAPTER SIX ADVANCED GRAPHING

SECTION TWO

EXAMPLES

INTRODUCTION

Advanced graphic techniques can add detail and style to almost
any graphing program. Using the three dimensional graphing
menu, you can transform most normal graphing programs into
three dimensional graphers. Team it up with the extended
graphing menu and you are no longer limited to a four line display.
Finally, with the animated graphing menu, you can watch a graph
as different parameters vary before your eyes, or simply enhance
the presentation of a drawing.

ABOUT ADVANCED GRAPHING PROCEDURES

Up till now this book has used root level graphing programs. A
root level graphing program does the actual plotting on the display.
It will always contain the command PIXEL or a subprogram that
contains this command.

In contrast, the advanced graphing programs don’t do any
graphing themselves. They must call on a root level graphing
program to do the plotting for them. They only manipulate the
input and output of the program doing the graphing. For instance,
if you wanted to draw a three dimensional polar graph you would
tell DDRW, to evaluate ADRW, the polar graphing program, in three
dimensions. Likewise, if you wanted to draw a three dimensional
shape you would tell DPRH to evaluate SDRHW in three dimensions.

A root level graphing program may call on a subprogram to draw
for it, but this doesn't make it an advanced graphing program. The
drawing program used by an advanced graphing program must be

229

SECTION TWO ADVANCED GRAPHING

input via its parameterlist. In contrast, a root level program must
have the drawing subprogram imbedded in its code.

THE ADVANCED GRAPHING SELECTION MENU

You can access any of the advanced graphing menus by pressing
XL from the main graphing menu as well as the polar, shape,
fractal, and pie chart drawing menus. This creates the advanced
graphing selection menu where you have the option to enter the
three dimensional graphing menu, , the extended graphing
menu, , the animated graphing menu, BRI, or exit back to the
previous menu, . Remember that all advanced graphing menus
are subordinate to the calling menu. If you enter the extended
graphing menu from the fractal drawing menu the 28S will still be
in the fractal work directory. Likewise, if you enter the animated
graphing menu from the shape graphing menu, you will still be in
the shape work directory.

CHAPTER SIX ADVANCED GRAPHING

THREE DIMENSIONAL GRAPHS

ATHREE DIMENSIONAL GRAPH

Almost any drawing program can become a three dimensional
graphing procedure with DDRW. DDRW doesn't actually do any
graphing. It positions the screen in different spots in three
dimensional space and runs the graphing program you give it. A
cross section is drawn each time the graphing program is run.

Drawing cross sections is one of the easiest ways to plot a
function in three dimensions. A cross section of a function is drawn
by setting one of the three variables equal to a constant and
graphing the resultant two dimensional equation. For example, the
cross section of the equation

X"24Y"24772=4 Equation 6.1

passing through the plane Z=0 (this is the XY plane) can be drawn
by substituting O for Z and plotting the simpler two dimensional
equation

X"24Y"2=4 Equation 6.2

SECTION TWO ADVANCED GRAPHING

Figure 6.1

Cross Section of Equation 6.1
at Z=0

Plotting a series of cross sections for different values of Z will give
us a three dimensional graph. The cross section of our example
equation for the plane Z=0 is shown in figure 6.1. Drawing cross
sections for different values of Z in equation 6.1 traces a three
dimensional graph. Although there are only nine cross sections,
the image of a sphere can easily be seen.

CHAPTER SIX ADVANCED GRAPHING

Figure 6.2

Nine Cross Sections of Equation 6.1

USING THE THREE DIMENSIONAL MENU

Exit any advanced graphing menu or press (ML from the menu
you are in to go to the advanced graphing selection menu. Now
press in the selection menu to go to the three dimensional
graphing menu. Simply specify the drawing program, number of
cross sections, variable tied to the axis coming out of the display
and the range of this variable and DDPRW will create a three
dimensional graph.

THE BASICS BEHIND DDRW

DDRW draws cross sections along the axis coming out of the display
screen. In order to do this, it must some how represent this axis in
two dimensions. DDRW assumes the image of this axis appears .7
times the length of the other two axis and makes a 30 degree angle
with the positive Al axis (See figure 6.3). By shifting the origin along
this line each time a cross section is drawn, DDRW creates a three
dimensional graph. It shifts the origin by redefining the maximum
and minimum points in the plot parameters, PPAR.

SECTION TWO ADVANCED GRAPHING

30°

Al

A3 A2

Figure 6.3

Normally, DDRW restores PPAR to its original value, butif the
program is stopped during a run you'll have to check these
parameters and change them or purge them.

THE THREE DIMENSIONAL PARAMETER LIST

The first key in the three dimensional menu is @XIA. This is the
variable containing the three dimensional parameter list. DPAR
reads as follows.

{ { any graphing procedure, a real number}
{ first variable or program, first upper
limit, first lower limit}. { Nth variable
or program, Nth upper limit, Nth lower
limit }}

Pressing DPAR when it isn't defined in the directory you're in will
return { {DRAW 9 } } to the stack. This is its default value. It is used
when DPAR hasn't been defined, as in this case.

You'll notice that DPAR contains lists within a list. The first list
contains the graphing program to be evaluated in three dimensions
and the number of times it should be evaluated. Each time the
graphing program is evaluated a cross section is drawn.

CHAPTERSIX ADVANCED GRAPHING

The graphing program DDRHW uses can easily be changed by
putting either a program or the quoted name of a program on level
one and pressing MIH . Likewise, the number of cross sections can
be changed by entering a positive integer and pressing .

VARIABLE LISTS

All lists other than the first are variable lists . They contain a
variable name or a program and two real numbers. The two real
numbers specify a range.

If the first object in the list is the name of a variable, DDRHW divides
the range up between the number of cross sections being drawn and
stores the appropriate value in that variable. For example, the list { {
DRAW9 }{Z-2 2 } } tells DDRH to run the drawing program DRAKW 9
times and vary Z from -2 to 2. Each time it runs PDRAW a new value is
stored in'Z' and a new cross section is drawn -2 will be stored in Z
for the first cross section, -1.5 for the second, -1 for the third, and
so on, all the way up to 2.

If the first object in the variable list is a program or the name of a
program, DDRMU still divides the range up between the number of
cross sections being drawn. But, rather than storing the
appropriate value directly into a variable,it puts the specified
program on the stack and runs it. For example, { {DRAW 9 }{« 2 /
'Z'STO»-22}} tells DDRW to divide the range { -2 2 } up into 9
sections, -2, -1.5, -1, -.5, 0, .5, 1, 1.5, and 2. Before drawing each new
cross section, the current value for that variable list is put on level
two and the program « 2 /'Z' STO » is evaluated. Only half the
current value is stored in Z. This has the effect of stretching the Z
axis. DDRW moves from -2 to 2 along the Z axis but stores half this in
Z.

ADDING A VARIABLE LIST

There are two ways to add a variable list to PDPAR. The easiestis to
put the variable or program on level three, the upper limit on level
two, the lower limit on level one and press EEld. You could also enter
the entire variable list, { variable or program, upper limit, lower limit

SECTION TWO ADVANCED GRAPHING

}, on level one and press Eld. Either way, a new variable list will be
added to DPAR.

does just the opposite. It subtracts the last list from DPAR and
returns it to level one. If {{DRAWS {Z2-11 }{HW -3 3 }} is stored in
DPAR, pressing will return {W-3 3} to level one and {{DRAW 2 }{Z

-1 1 }} will be stored in DPAR. If DPAR doesn't contain a variable list
nothing will happen.

MULTIPLE VARIABLE LISTS

DDRH has the ability to accept more than one variable list. It will
independently compute the appropriate value in the given range for
each list. If the first object in that list is the name of a variable, the
value will be stored in that variable. If the first object is a program or
the name of a program, the appropriate value will be put on level one
and that program will be run. Although you can have as many
variable lists as you want, only the variable or program in the last
list will be assigned to the axis coming out of the display.

DEFINING THE INDEPENDENT VARIABLES

When you draw a two dimensional graph using the bulilt-in
command DRANW, you must define an independent variable. This is
the variable that is tied to the horizontal axis. For example, if you
were to graph A=sin(B) using DRAW, you would first store 'SIN¢B)'
into'EQ@'. When graphed, B would be considered the independent
variable, while A would be the dependant variable, since its value
depends on B. Similarly, a three dimensional graph must have an
independent variable assigned to the axis coming out of the display,
which I will call the Z axis.

The variable or program in the last list in DPAR will be tied to the Z
axis. For example, if the equation A*2+2*B+C-SINC(D) is stored in
EQ and { {DRAW9 }{B-22}{CB5}{D-11 }}is stored in DPAR,
DDRW will graph 9 cross sections. For each cross section, the
appropriate values in the given ranges will be computed and stored
inB, C, and D, but only the range for the last list will be tied to the Z
axis. Using the range for D, DDRHW will draw six cross sections while
shifting the display screen from -1 to 1 along the Z axis. If you

CHAPTER SIX ADVANCED GRAPHING

change the positions of the three variable lists so a differentlist is in
the last position, the graph will be drawn using a different range for
the Z axis and will look different.

DRAWING A SPHERE

Try drawing a sphere with a radius of 1.5 in 9 cross sections. Its
equation is

X24vA2,772-1572 (6.3)

As in two dimensional graphing, we must first isolate the
dependent variable (The one tied to the horizontal axis). Isolating X
we get X=4V(-Y"2-2"242.25) . This equation has two roots. We can
make use of a trick that lets DRAW graph both roots by setting each
root equal to each other and storing the equation in'EQ'. When
DRAW sees an equal sign, it graphs both sides independently, so
both roots will be graphed. Equate both roots and store them in 'E@'

'T(-Y2-27°2+2.29)

Exit any advanced graphing menus and press from the
advanced graphing selection menu. You should always purge any
existing parameters before you start defining new ones. Purge both
DPAR and PPAR if they exist. The drawing program we need to use is
DRAW and the number of cross sections is 9. These happen to be the
default values. Pressing BXId will return { { DRAW 9 } }, the values we
want.

{DPAR PPAR } [purce]

There are two independent variables, Y and Z. We could choose
either one to be tied to the axis coming out of the screen, but Z will be
used in this example. Because of the symmetry ofX, Y, and Z in
equation 6.3, the same graph will be drawn regardless of what
variable you assign to each axis. Add the appropriate variable list for

SECTION TWO ADVANCED GRAPHING

the dependent variable Z and the range -1.45 to 1.45 to DPAR by
typing Zs -1.43, 1.45 . DPAR should now contain { {DRAKW 9 } {Z
=1.435,1.45 }). This tells DDRW to evaluate the graphing program
DRAKW 9 times and to vary £ from -1.45 to 1.45. DDRW will divide the
range into nine sections. Each time a new cross section is drawn a
new value is stored into Z.

Now we must set the independent variable tied to the horizontal
axis. This variable will be used by DRAMW, not DDRW. The only variable
leftis Y. Set Y as an independent variable by entering 'Y" from
the PLOT menu. A summary of what we've stored and how they
relate to the different axis is given below.

'EQ' 'V(-YA2-ZA2+2.25)=-V(-YA2-ZA2 Because Xwas isolated
+2.25)' from equation 6.3 it is

assigned to the vertical
axis

'DPAR' {{ DRAW9}{Z-1.45,1.45}) The second list assigns
Z to the axis coming out
of the display

'PPAR’ {(-6.8,-1.5)(6.8,1.6)Y1(0,0)} Y is assigned to the
horizontal axis

Pressing , the three dimensional graphing program, with the
equation for a sphere stored in 'E and the the correct parameters
stored in 'DPAR' will draw the graph shown on the next page.

238

CHAPTER SIX ADVANCED GRAPHING

DRAWING A THREE DIMENSIONAL SINE WAVE

The cover of the 28S owner's manual, as well as most
advertisements for the 28S, shows the graph of a sine wave on the
display. This is because, without programming, the sine function is
the most attractive graph. Lets transform this now ordinary plot
into a three dimensional drawing.

Using the built-in command DRAW and the three dimensional
grapher DDRUW, draw the function Y=SIN(X) in 9 cross sections. The
range of the three dimensional axis should be from -2 to 2. First,
purge any old parameters and define new ones. Then, set your
calculator to radians, store 'SINC(X)' into 'E®' and run DDRH to
create a 3-D sine wave.

{PPAR DPAR } (Bursg) K 'SINCX
'2'y-2,2 [l

Figure 6.5

Notice how Z has been assigned to the axis coming out of the
display but doesn't appear in the equation. We still needed to define
a range for this axis.

ANOTHER SINE WAVE EXAMPLE

Graph the function Y=SIN(2*X)*Z in six cross sections. Assign Z
to the three dimensional axis and vary it from -.2 to -1.5.

SOLUTION

This function has a period of two and the amplitude varies with Z.
The following key sequence will create the graph shown in figure 6.6

239

SECTION TWO ADVANCED GRAPHING

 {PPAR DPAR } I $IN(2*K)*2!
6 '2'y-.2y-1.5 [0 R

Figure 6.6

DIFFERENT AXIS ASSIGNMENTS

Any point in three dimensional space can be define by its
relationship to the three perpendicular axis shown in figure 6.7.

A2

.

Figure 6.7

Three perpendicular axis

All the examples up till now have assumed that the X, Y and Z are
assigned to Al, A2 and A3 respectively. Using this assignment,
DDRW graphs cross sections parallel to the XY plane. In fact, most
graphs you'll draw use this assignment. Quite often though, you

CHAPTER SIX ADVANCED GRAPHING

may want to graph a function using cross sections parallel to other
planes. This can easily be done by reassigning the variables to
different axis. The six possibilities are show in figures 6.8 through
6.13.

Y

.

Figure 6.8

Cross section parallel
to XY plane

Z

.

X

.

Figure 6.9

Cross sections parallel
to YX plane

X

.

Figure 6.10

Cross section parallel
to XZ plane

Figure 6.11

Cross sections parallel
to ZX plane

SECTION TWO ADVANCED GRAPHING

z Y

/Y
/Z

X X

Figure 6.12 Figure 6.13
Cross section parallel Cross sections parallel

to YZ plane to ZY plane

Although there are 6 different ways to assign 3 variables to the 3
axis (this doesn't take the direction of the axis into account), most
functions are symmetric to one or more axis. This cuts down on the
number of different views of a graph.

Equation 6.4 is an excellent example of a function that can be
graphed using cross sections along different planes. Before doing
anything, first purge old values in any variable by entering { EQ
PPAR DPAR } . Isolate each of the three variable in equation 6.4
we obtain equations 6.5 through 6.7.

X"2+y"2-2"2=0 (6.4)

Y=tV(-X"2+Z"2) (6.5)
X=tV(-Y*24+Z"2) (6.6)

Z=tX*24Y"2) (6.7)

Notice that, due to symmetry, switching the position ofXand Y in
equation 6.4 doesn't change the equation. Because ofthis
symmetry, equations 6.5 and 6.6 will yield the same graphs. This

CHAPTERSIX ADVANCED GRAPHING

means we can eliminate one and cut down the number of possible
graphs.

Lets start by graphing equation 6.5 using the built in graphing
program DRANW in 9 cross sections. To graph both roots we must set
them equal to each other and store them in 'EQ'. DRAW will plot each
side of this equality. This defines Y as the dependent variable tied to
the A2 axis in figure 6.7.

(-RA24202)[

Now we must decide which of the two remaining independent
variables, X or Z, will be tied to the A3 axis and the range it should be
graphed from. Due to the limited display size, -2 2 is a good range to
graph. Since switching X and Z in equation 6.2 will yield a different
equation, assigning X to the A3 axis will give a different graph than
having Z assigned to the A3 axis.

For our first graph lets assign Z to the A3 axis by adding the
variable list {Z -2 2 } to DPAR. Finally assign X to the Al axis by
entering 'X' EKH]. This stores X as the third object in PPAR.

'Z'y-2y2 ['X' EIHE]

The following should be stored in the specified variables.

AXIS VARIABLE VALUE

Yis A2 axis 'EQ' V(-XA24ZA2)=-(-XA2+ZA2)
ZisA3axis 'DPAR' {{ DRAW»9}{Z-22}}
XisAl axis 'PPAR' {(-6.8,-1.5) (6.8, 1.6) X 1 (0, 0) }

With the right values stored in the appropriate variables, will
draw the graph shown in figure 6.14. Using this axis assignment,
it is difficult to see what the graph really looks like. Lets try a
different assignment and hope the resultant graph gives a better
view.

SECTION TWO ADVANCED GRAPHING

Figure 6.14

Using the same equation stored in 'EQ' (keeping Y as the
dependentvariable), we can draw a different graph by changing the
axis assignments ofX and Z. This means that we must switch Z in
DPAR to X and X in PPAR to Z. Change the appropriate variables so
they have the values shown below.

=) 'Wy-2y2 OW 'Z' EEE

AXIS VARIABLE VALUE

YisA2axis 'EQ' V(-XA2+ZA2)=-V(-XA2+ZA2)
XisA3axis 'DPAR' {DRAW» 9} {X -2 2}}
ZisAl axis 'PPAR' {(-6.8,-1.5)(6.8,1.6) Z 1 (0, 0) }

Now press to draw the graph shown in figure 6.15. Although
it is much easier to see whatis going on, we can still try a different
assignment in hopes that we will get yet a better view of the graph.

CHAPTER SIX ADVANCED GRAPHING

We still have equations 6.6 and 6.7 left to consider. For

convenience, equations 6.4 through 6.7 are shown again.

X24Y72-772-0 (6.4)

X=tV(-Y24Z"2) (6.5)
Y=tV(-X*2+2"2) (6.6)
Z=t(X*2+Y"2) (6.7)

As stated earlier, due to symmetry, using equation 6.6 would give us
the same two graphs we already have. This leaves us with equation
6.7. Following as we did earlier, equate both roots of this equation
and store it into 'EQ'. The dependent variable Z, is now assigned to
A2,

'TRM2+Y2)

{enrer] ((enter] ([cris]

Ener]

Now we need to decide which of the two independent variables, X
or Y will be tied to the Al axis and which will be tied to the A3 axis.
But as we saw earlier, due to symmetry, switching X and Y will have
no effect on the resultant graph. It doesn't matter how we assign X
and Y to the two remaining axis. I have chosen Y for the A2 axis and
X for the A3 axis. Again, the appropriate values for the specified
variables are shown below. The resultant three dimensional graph
created by is shown in figure 6.16.

'Ky-2y2 ['Y EIR

AXIS VARIABLE VALUE

ZisA2axis 'EQ' VXA2+YA2)=-V(XA2+YA2)
XisA3axis 'DPAR' { DRAW»9} (X -22}}
Yis Al axis 'PPAR' {(-6.8,-1.5) (6.8, 1.6) Y1 (0, 0)}

245

SECTION TWO ADVANCED GRAPHING

Figure 6.16

The combination of all three views gives us a good idea ofwhat the
graph ofX*2+Y*2.Z2"2-0 looks like. It is an hour glass. The two
cones open towards the axis coming out of the display, in figure
6.14, the horizontal axis in figure 6.15, and the vertical axis in figure
6.16

CHAPTER SIX ADVANCED GRAPHING

SUMMARY OF AXIS ASSIGNMENTS

1) Check for symmetry and eliminate any possible axis
assignments.

2) Graph the function for the remaining axis assignments.

When assigning variables to the three axis, Al, A2, and A3.

i) Isolate the equation with respect to the variable you want
assigned to A2 (the vertical axis) and store the resultant
equation in'EQ".

il) Assign one of the two remaining variables to Al(the
horizontal axis) using in the PLOT menu.

iii) The remaining variable and two real numbers define the
range for the remaining axis. They should be put in a list
and added to DPAR. The variable will then be assigned to A3
(the axis coming out of the calculator).

A 3-D SADDLE

The three dimensional equation Z=-X"2+Y"2 looks much like a
saddle. It flares up at the front and back while sloping down at the
sides.

We can assign XY, and Z to any of the three axis, but assigning
them to the horizontal, vertical, and protruding axis respectively
gives us the best view. Isolating Y in the equation gives us two roots,
Y=tV(X*2+Z). DRAW will graph both roots if we equate them and
store the resulting equation in 'EQ’'. The objects shown on the next
page should have thelisted values. You can set them using tools
such as and BLH, enter each value on the stack and store it
directly into each name, or edit each object using VISIT. Finally,
running DDRHW will draw the graph shown in figure 6.17.

247

SECTION TWO ADVANCED GRAPHING

'EQ' V(SQX)+2)=-V(SQ(X)+2Z)’
'PPAR' {(-6.8,-1.5) (6.8,1.6) X1 (0,0)}
'DPAR' {({DRAW9}{Z2-2})

Figure 6.17

Try drawing the same equation using different axis assignments.

CHAPTER SIX ADVANCED GRAPHING

EXTENDED GRAPHS

INTRODUCTION

The 28S is a marvel to the calculator world. No other calculator
can come close to its graphing ability. It laughs at undefined points
as it graphs almost any equation. It accepts user defined functions
and even programs as arguments. In all its glory though,it has one
small drawback. It happily graphs anything you throw at it, but
can only display 4 lines.

Your only solution to this dilemma is to shrink your graph to fit
the display. A dwarfed plot can still give you a truckload of
information, but in most cases the stumped resolution falls short.
A larger screen would solve the problem, but alas we are stuck with a
4 line by 23 character display.

Don't go by a new calculator yet. There is a simple solution that
can stretch your screen. Using the extended graphing program,
EDRMW, you can increase the size of any graph. Just sit back and
watch EDRHW plot any graph you tell it on more than one screen. The
resultant graph can be stored in the calculators memory and viewed
using YIEMW, or printed on an optional thermal printer.

EDRMW, like all the other advanced graphing programs, doesn't
actually do any graphing. You must give it a graphing program and
tell it how many horizontal and vertical display screens you want
graphed. Starting with the top left screen, EDRW evaluates the
graphing program you give it and either store the graphic strings
representing each display or prints the displays to the thermal
printer. It continues doing this for each display screen.

249

SECTION TWO ADVANCED GRAPHING

THE EXTENDED GRAPH PARAMETERS

The extended graph parameterlist, EPAR, contains a program
and two positive integers. The program is the graphing procedure
you want used for plotting while the two integers indicate how
many horizontal and vertical frames you want graphed. The
graphing program, horizontal range, and vertical range are set by
putting the new value on level one and running the programs PROG,
XFRM, and YFRM respectively.

Pressing @Z1 will return its value to level one. IfEPAR hasn't been
defined yet its default value, {DRAW 1 2 }, will be returned. This value
is used when you haven't defined EPAR. For example, purge EPAR if
it exists in the work directory and define ADRH as the graphing
program by entering 'ADRW' . Pressing will return { ADRW 1
2 }. The default values for the horizontal and vertical frames (1 and
2) were used to fill in the missing pieces.

PRINTING AN EXTENDED GRAPH

Flag 18 decides how an extended graph will be output. If it is set,
each frame of the graph will be sent to the thermal printer. A gap is
printed between each column of the graph. For example, graphing
an equation with {DRAW 2 3 } stored in EPAR and flag 18 set will
print 2 vertical strips. Each represents 3 display screens. By
pasting the two strips together you'll get a graph that is two
screens wide and three screens tall.

DISPLAY ADJUSTMENTS FOR PRINTED GRAPHS

Look closely at the pixels on your 28S display screen. Notice how
each pixel is a perfect square. Now, if you own a thermal printer,
look at each dotit prints. These taller dots form rectangles.
Because of this slight discrepancy a graph plotted on the display
will appear to be stretched vertically when printed. You might not
notice its effects when printing only one display screen, but an
extended graph composed of several screens will appear distorted.

As an example, graph a circle with a radius of 1.5.

250

CHAPTER SIX ADVANCED GRAPHING

 PPAR' (D'1(2.25-5000) ER) B @

Next, print two copies of the graph by pressing twice while
holding the button. Now take one copy, turn it 90 degrees, and
compareit to the other. If a true circle had been printed they would
both look the same. Instead, two ovals will have been printed.

Figure 6.18

To accommodate for the extra height the second and third lines
in EDRW's program listing test flag 18. If it is set, the horizontal
components of the plot parameters are stretched. This
compensates for any extra height that the printer adds. Note that
the adjusted graph will look wider on the display, but will print out
correctly.

SAVING AN EXTENDED GRAPH INTERNALLY

If flag 18 is cleared, the resultant graphic strings representing
each display screen are added together and stored in 'GS TRE' in the
graphic file directory GFIL. Although EDRW will graph any number
of vertical strips, only the last one will be stored in 'GSTRE'. This
means the number of horizontal displays (the second object in
EPAR) should be set at 1 when storing an extended graph internally.
Having a number larger than 1 will graph more than one vertical
strip and only waste time.

VIEWING AND EXTENDED GRAPH

If an extended graph is drawn with flag 18 setit is stored in the
graphic file. You can view this graph by pressing in the
extended graph menu. This program initially displays the first four

251

SECTION TWO ADVANCED GRAPHING

lines of the graphic string stored in 'GS TRE' in the graphicfile
directory. To view down a line simply press the down cursor key ¥.
Likewise, the up cursor key A shifts the display back up a line.
Pressing any other key will exit the program.

You will get an error and become stranded in the graphic file
directory if you press without storing an extended graph in
the graphic file first. If this happens you'll have to return to the
main graphing menu and reselect the graphing directory and menu
you were working in.

AN EXAMPLE

As an example of how EDRH operates,let's see what would happen
if the following values are stored in the specified locations. The
keystrokes that will define them are also given.

{EPAR PPAR } 2 2
35STN 18

LOCATION VALUE

'EPAR' { DRAW 2 2}
'EQ’ '3*SIN(X)’'
'PPAR’ {(-6.8,-1.5)(6.8, 1.6) X 1 (0, 0) }
FLAG 18 SET

This tells EDRH to graph '3#SINCX)' using the built in graphing
procedure DRAW in four frames, two vertical and two horizontal. The
range of the horizontal axis doubles, to -13.6 through 13.6. The
range on the vertical axis also doubles to -3.1 through 3.2. The
dimensions of each pixel (.1 by .1) are maintained, as they should be.
The resultant graph is shown on the next page.

CHAPTER SIX ADVANCED GRAPHING

Figure 6.19

Ifyou don't own a printer you will have to clear flag 18 before
running EDRW and view the graph using . Unfortunately, only
the last two frames will be saved.

253

SECTION TWO ADVANCED GRAPHING

ANIMATED GRAPHS

INTRODUCTION

The 28S was designed with many great advantages overits
predecessor, the 28C. The most obvious new feature is its 32K of
RAM. This stock pile of storage allows you to retain all your
programs (although the amount of programing in this book may
put that theory to the test). The additional memory allowed the
designers to add several commands that were not practical on the
28C, which only had 4K worth of RAM. Two of these new tools deal
with the display screen. LCD+ returns a graphic string
representing the current display screen while +LCD displays the
graphic string from level one. These two powerful commands allow
you to store the display for any graph or picture and
instantaneously recall it at any time.

An animated graph is simply a graph that has been drawn a
number of times. Each time it is drawn some aspect of the graph is
changed slightly. If the graphic strings for these graphs are stored
and later played back, we end up with a small motion picture of the
graph as it changes.

THE ANIMATED GRAPH MENU

The animated graphing menu can be found by pressing from
the advanced graphing selection menu. The main program in this
menu, MDRH, transforms any drawing procedure into an animated
grapher. It takes full advantage of the 28S's ability to store and
recall a display screen. Simply tell it which program you want to
animate, the number of frames (pictures), and which variable or
parameter you want varied with time.

CHAPTER SIX ADVANCED GRAPHING

ABOUT THE ANIMATED GRAPHING PROGRAM (MDRW)

MDRH uses the graphing program you specify when drawing a
series of graphs. Each time it finishes a graph it stores the graphic
string representing the display, or prints it on the thermal printer,
and clears the screen for the next graph. Afterit is done you can
playback the animated graph with any one of the viewing programs.
Like a short motion picture, a series of graphs that took minutes to
create can be played back in a few second. Or,if it was printed on the
thermal printer, you'll have a series of snapshots of the graph.

Because storing graphic strings can quickly eat up valuable
memory, MDRW incorporates a print option. Like EDRHW, each graph
can be printed on a thermal printer instead of stored in the graphic
file. This feature also allows you use the extended graphing
program EDRHW as MDRW's drawing program, thus creating an
animated extended graph.

THE ANIMATED GRAPH PARAMETERS (MPAR)

Before you can create moving graphs you mustfirst understand
the move parameters. The first menu key in the animated(move)
menu is . This is the variable containing the animation
parameter list. MPAR reads as follows.

{ { any graphing procedure, a real number}
{ first variable or program, first upper
limit, first lower limit}. { Nth variable
or program, Nth upper limit, Nth lower
limit }}

You'll notice that MPAR is lists within a list. It can contain any
number of lists, but must have a minimum of two to avoid having
errors. Like the three dimensional parameters DPAR, the first list
in MPAR contains the graphing program to be animated and the
numberof times to evaluate it. Each time the graphing program is
evaluated a new frame(picture) is drawn.

PressingG when it isn't defined in the work directory will
return { {DRAW S } }. This is the default value stored in the main

SECTION TWO ADVANCED GRAPHING

graphing program directory GRAPHP. It is used to fill in any
undefined values when MPAR doesn't exist in the current directory.

THE DRAWING PROGRAM

The program that is used by MDRW can easily be changed by
putting either a program or the quoted name of a program on level
one and pressing @IH. Any valid drawing procedure can be used.
This versatility lets you animate any graphing program. The built-
in graphing program DRAW, any program in this book, or one you've
created yourself will all work equally well.

THE NUMBER OF FRAMES

Likewise, the number frames can be changed by entering a positive
integer and pressing . Graphing more frames will give
smoother motion when the graph is played back, but will take
longer and consume a larger amount of memory when stored in the
graphic file. Using fewer frames will cause the playback of the graph
to be choppier, but is much quicker and drains less memory. A high
resolution graph using 25 frames can easily devour any remaining
memory. On the other hand, a much less modest graph with 6 to
10 frames should leave ample working and storage space.

VARIABLE LISTS

All lists following the first are considered variable lists. The name
is some what deceiving since it can contain a variable or a program.
The first object of every list must be a variable name or a program.
The remaining two objects are real numbers and define the range
that the variable or program will cover.

MDRW divides the range of each variable list among the number of
frames being drawn. For example, if { {DRAWS }{Q-22 }} was
stored in MPAR, MDRW would divide the range (-2, 2) into 5 parts, -2,
-1, 0, 1 and 2. Each time a frame is drawn MDRHW puts the
appropriate number on level one. If a program is stored in @, it will
be run, otherwise, the current value on level one will be stored into @.

CHAPTER SIX ADVANCED GRAPHING

Having a program or the name of a program as the first object in a
variable list lets you preformn complicated calculations and variable
manipulation or even alter parameters within lists while running
MDRW.

As an example in the shape drawing menu, the starting angle of a
shape can only be set by the program THETA. THETA takes the
number from level one and puts it into the shape parameter list
SPAR. The variable list { THETA @ 45 } allows you to change the
starting angle of a shape with time thus creating and animated
graph of a spinning shape. When you play it back you'll see it rotate
from O to 45 degrees. A similar graph is drawn in chapter seven.

ADDING AND DELETING VARIABLE LISTS

There are two ways to add a variable list to MPAR. The easiest is to
put the name of the variable or program on level three, the upper
limit on level two, the lower limit on level one and press (. You can
also enter the entire variable list { variable or program, lower limit,
ending range } on level one and press [. Either way, a new variable
list will be added to MPAR .

To delete the last variable list from MPAR simply press [E8. It
subtracts the last list and returns it to level one. Nothing happens
if only one list is stored in MPAR 1i.e. it doesn't contain any variable
lists.

USING MDRW

MDRW will draw an animated graph as defined by MPAR. Simply
specify the drawing program to be animated, number of frames,
and an object and range to vary with ime. Then, MDRHW will draw a
series of graphs and,if flag 18 is set, print each one on the thermal
printer. Otherwise, the display for each graph will be converted into
a graphic string and stored, as a list, in'GS TRM' in the graphic file
directory. This list can then be viewed using the programs GLIDE,
SHAKE, or Step.

257

SECTION TWO ADVANCED GRAPHING

PRINTING AN ANIMATED GRAPH

Setting flag 18 will cause MDRHW to send an animated graph to the
thermal printer. It is often more desirable to print a graph, as
opposed to storing it in the graphic file directory. Printing not only
gives you a hard copy, but doesn't tie up additional memory for
storage. In fact, you won't even be able to store graphs having a
large number of frames and will be forced to print them out.

As an example, print eight frames of the time domain function
Y=SIN(X+tn). Have t vary from O to 2 (one period). This function can
easily be graphed using MDRW and the built-in program PRAW. DRAW
will control the variable 'X' while MDRW will control 't'. First, store the
equation in'EQ'. Then set 8 as the number of frames and add the
variable list { t 0 2 } to MPAR. Finally,set flag 18, turn your thermal
printer on, and run MDRW. Figures 6.20 through 6.27 will be printed
on the thermal printer. If you don't own a printer you can still
graph the function, as the next section demonstrates.

CHAPTER SIX ADVANCED GRAPHING

SNTN\
Figure 6.26 Figure 6.27

STORING AN ANIMATED GRAPH

Although printing an animated graph doesn't require any
additional memory, the only way a true animated graph can be
created is by storing the graphic strings for each frame. Then you
can play back each frame in series, like a short motion picture.

Flag 18 controls how MDRW stores an animated graph. Clearing it
will store the list of graphic strings for each frame 'GS TRM' in the
graphic file directory.

As an example, try graphing the same example used to
demonstrate printed animated graphs on page 258, but this time
clear flag 18.

'SINCK+E¥ S[T t,0, 2001 18 REEE

The same series of frames for the same graph will be drawn, but
this time the printer isn't activated. Instead, a list of graphic
strings has been stored in 'GS TRM' in the graphic file directory. You
can see the list by pressing@ . This will put you in the graphic file
directory and create the graphic fille menu. Page 261 describes this
directory in greater detail.

VIEWING AN ANIMATED GRAPH

Now that you've created an animated graph you need to view it.
GLIDE, SHAKE and St ep allow you to look at the graphic list stored
in'GSTRM' in three different ways. GLIDE continually flashes each
frame on the display in series,. SHAKE displays the frame from first
to last and then last to first. Finally, $tep show one frame and
pauses. Pressing a key will advance to the next frame.

259

SECTION TWO ADVANCED GRAPHING

GLIDE, the first viewing program in the animated menu, goes to
the graphic file directory, GFIL, takes the list in 'GS TRM' and
displays each string from first to last. It keeps doing this until you
press any key. If the graph has a period or cycle, like the sin
function, the effect is a gliding motion. Once a key is pressed the
program returns control to the calling directory and stops.

SHAKE displays the graphic strings in 'GSTRM' from first to last
and then from last to first. It keeps doing this until you press any
key. In most cases, this viewing program give a back and forth, or
shaking motion.

The last viewing program, St ep, operates much like GLIDE. It
displays the graphic strings in 'GSTRM' from first to last. Unlike
GLIDE, Step displays a graphic and waits for a key to be pressed.
Pressing any key other that (enter]) will display the next string in the
list. This lets you view your graph one frame at a time. Pressing

will exit the program and return you to the calling directory.

NOTE

You'll get an error if a list of graphic strings wasn't created first by
MDRW. If this happens, you'll find yourself stranded in the directory
GFIL. This can be easily solved by returning to the main graphing
menu and reselecting the menu and any sub-menus you were in.

CHAPTER SIX ADVANCED GRAPHING

THE GRAPHIC FILE MENU

As your catalog of data grows, you may be forced to purge old
programs, graphic strings, or other data. With so many directories
it can become impossible to sift through hundreds of different
variables in every different directory to find which ones should be
purged. This is why all graphic strings created by MDRW and EDRW
are stored in GFIL, the graphic file directory. Having all these
graphics in one directory maikes it easier to find these memory
hoarding objects and,if need be, discard them. It also allows you to
view a graph from any directory, no matter which directory the
original graph was created in. :

HOME

GRAPHP
|

L 1][[
POLARP|[CHARTP| |SHAPEP|| WRK GFIL

e
WRK WRK WRK |[FRACTP

|
WRK

Figure 6.28

Directory Tree Showing GFIL's Relationship
to the Other Directories

Any program that retrieves, views, or manipulates graphic
strings must have some way of distinguishing between a graphic
string created by EDRHW and a list made by MDRW. To differentiate

SECTION TWO ADVANCED GRAPHING

between the two, all the programs that store graphics in GFIL first
categorize it by adding a special character to the end of its name.
Any variable created by EDRW will end with an E while those create
by MDRW will end with an M. This make it easier for you to sort
through the different types of graphics. More importantly, other
programs can find the graphics it needs simply by looking at the
last character of each variable stored in the graphic file directory.

You can enter the graphic file from either the extended or
animated graph menu by pressing @. This will put you in the
graphic file directory and create the graphic file menu. The first
three keys in this menu are labeled Il B and Edl. The
remaining keys will be labeled with the names of graphics stored in
the graphic file that were created by the calling (extended or
animated) menu.

The extended and animated graphing menus store their graphs
in'GSTRE' and 'GSTRM' respectively. Creating a new graph will
replace any old one. SAYE, allows you to save a graph under a
different name. For example, you might want to save the sin
function graph from page 259. Simply enter the name you want to
store it under and press Hlli. Depending on the calling menu, either
GSTRE or GSTRM will be purged while its contents will be stored
under the new name.

Loading a saved graph is just as easy. Just put the appropriate
graphics or the name of a variable containing the graphics on level
one and press . These graphics will be stored (loaded) in either
'GSTRE' or 'GSTRM' and you'll exit the graphic file menu. The new
graphics are now ready to be viewed.

CHAPTER SIX ADVANCED GRAPHING

SUMMARY OF MENUS

GRAPHING

Menu Key Operation

Puts you in the three dimensional graphing
menu.

Put you in the extended graphing menu.

Puts you into the animated graphing menu.

Returns you to the calling menu.

END

SECTION TWO ADVANCED GRAPHING

E DIMENSION RAPH MEN

Menu Key Operation

This variable contains the three dimensional
ER parameter list which reads as follows. { {

graphing program, number of cross sections } {
first variable or program, real number, real
number } { last variable or program, real
number, real number } }.
The program or program name from level one

S will be put into the first position in the first list
in DPAR. This is the drawing program that will
be graphed in three dimensions.
The integer from level one will be put into the
second position in the first list in DPAR. This
specifies the number of cross sections to be
drawn.
This program adds a variable list to DPAR. Just

E put the name of the variable or program you
want varied on level three, the beginning value
on level two, and the ending value on level one.
ADD will put all three objects into a list and add it
to DPAR. You can also put the three items in a
list on level one and run this program. The list
will be added to DPAR.
This program deletes the last variable list from

DEL DPAR. DPAR will be unaffected if it doesn’t
contain a variable list.
This program draws the graphing program

™ specified by DPAR in three dimensions.

The last label in the three dimensional graphing
R menu, Bl sends you back to the advanced

graphing selection menu.

CHAPTER SIX ADVANCED GRAPHING

GRAPH

Menu Key Operation

EPAR containsa list of extended graph
EXR |parameters. Thelist reads as follows. {

graphing program, number of horizontal
frames, number ofvertical frames).
The program that will be used to create an

s extended graph can be set by putting its name
on level one and running this program. The
name from level one will be put into the first
position in EPAR.
The number of horizontal display screens
(frames) you want your graph to be plotted on is
set using this program. Pressing this menu
key will put the real number from level one into
the second position in EPAR.
The number of vertical display screens (frames)
you want your graph to be plotted on is set
using this program. Pressing this menu key
will put the real number from level one into the
third position in EPAR.
This handy program puts you in the graphic file

i3 directory and creates a graphic file menu.

If an extended graph is stored in'GS TRE' in the
graphic file this program will let you view it.
After pressing this menu key, you'll see the top
of the graph. Pressing the up and down keys,
AV, will move the graph up and down a line
respectively. Press any other key to exit.
The extended graphing program will plot the

Fiw €raphing program on a number of vertical and
horizontal frames specified by EPAR.
Depending on the status of flag 18, the
resultant graph will either be printed or stored
under 'GS TRE' in the graphic file.

SECTION TWO ADVANCED GRAPHING

The last label in the three dimensional graphing
EN| menu, B sends you back to the advanced

graphing selection menu.

CHAPTER SIX ADVANCED GRAPHING

TED RAPH MEN

Menu Key Operation

This variable contains the animated graphing
parameter list, which reads as follows. { {
graphing program, number of frames]}{ first
variable or program, real number, real
number }{ last variable or program, real
number, real number } }.

The program or program name from level one
will be stored as the first object in the first list
in MPAR. This is the drawing program to be
animated.

s

The number of frames decides how many
graphs will be drawn. It can be set by putting
a real number on level one and pressing this
menu key. The real number from level one will
be put into the second position of the first list
in MPAR.

This program adds a variable list to MPAR.
Just put the object you want varied on level
three, the beginning value on level two, and
the ending value on level one. ADPD will put all
three objects into a list and add it to MPAR.
You can also put the three items in a list on
level one and run this program. The list will be
added to MPAR.

N This program deletes the last variable list
(any list other than the first) from MPAR.
MPAR will be unaffected if it doesn’t contain
any variable lists.

SECTION TWO ADVANCED GRAPHING

Using the graphing program, number of
T graphs to draw, and variable lists stored in

MPAR, MDRW draws an animated graph. This
is nothing more that a series of graphs that
change slightly from frame to frame. If flag 18
is set the resultant graph is printed.
Otherwise,it is stored as a list under GS TRM
in the graphic file.
This handy program puts you in the graphic

NG file directory and creates the graphic file
menu.
GLIDE continually displays each string
stored in GS TRM in the graphic file directory
from first to last. Pressing any key will
return you to the calling directory and exit
the program.
SHAKE continually displays each string

HHEE] stored in GS TRM in the graphic file directory
from first to last and then last to first.
Pressing any key will return you to the calling
directory and exit the program.
An animated graph can be viewed one frame
at a time using this program. It displays a
graphic string from the list stored in GS TRM
in the graphic file directory and waits for a
key to be pressed. Pressing any key other
than (Exter) Will display the next string.
Pressing (enter) will return you to the calling
directory and exit the program.
The last label in the three dimensional

ER graphing menu, &l sends you back to the
advanced graphing selection menu.

268

CHAPTER SIX ADVANCED GRAPHING

THE GRAPHIC FILE MENU

Menu Key Operation

Depending on the calling menu (the extended
or animated graphing menu), this program
will store the graphics on level one or the
graphics stored in the name on level one into
either GSTRE or GSTRM and return to the
calling directory and menu.
A graphic string or list of graphic strings

ErE created by EDRW or MDRW can be saved by
putting a quoted name on level one and
pressing this menu key. Depending on the
calling menu (the extended or animated
graphing menu), the graphics stored in either
GSTRE or GSTRM will be stored in that name.
The original copy, in GSTRE or GSTRM, will be
purged.
This program exits the graphic file menu and

T3 directory and returns you to the calling menu
and directory.
Whenever a graphic string created by EDRW or
list of strings created by MDRMN is stored in the
graphic file, the letter E or M respectively is

All other keys |added to the end of its name. This lets any
program distinguish between the two.
Depending on the calling menu, the names of
all the variables in the graphic file directory
ending with either E or M will be listed in the
graphic file menu.

269

SECTION TWO ADVANCED GRAPHING

270

CHAPTER SEVEN

MORE EXAMPLES OF

ADVANCED GRAPHS

CHAPTER SEVEN MORE EXAMPLES

INTRODUCTION

Chapter presented three different advanced graphing programs.
Each one can drive any drawing program. The examples in chapter
six used the built-in program DRAW, but there is no reason why an
advanced graphing program can't drive root level programs from
chapters two through five, or even another advanced graphing
program. In fact, you can link all three advanced graphing
programs and one root level program to create an extended, four
dimensional graph.

ROOT LEVEL AND ADVANCED COMBINED

EXAMPLE 7.1

DRAWING A CONE IN THE POLAR MENU

There are several ways to draw a cone with a base of 1.5. This
example uses the polar graphing menu. A cone can be graphed by
drawing circles whose radius equate their distance along the Z axis.
Thus the tip of the cone will be at Z=0 and the base will be at Z=2. In
polar coordinates, the equation for a circle is justit's radius. In this
example we want the radius to vary from 0 to 2.

The coordinates we are given in the polar and three dimensional
menusare r, 6, and z. This happens to be cylindrical coordinates.
The cylindrical equation of a cone is just r=z

Starting off in the polar graphing menu, purge any old parameter
lists and set APAR to {8 368 DEG }. Now go to the advanced
graphing selection menu and enter the three dimensional menu.
Set the drawing program to ADRHW and the number of cross sections
to 6.

{PPAR APAR DPAR } (Purce] B 360 [RIH [[EY
'ADRW' @IHE &

272

CHAPTER SEVEN MORE EXAMPLES

Now we need to decide how to vary the radius of each circle along
the Z axis. If the value of Z is stored into 'E@' for each cross section
ADRW will draw a circle with that radius. Add the variable list {EQ .1
2 }to DPAR and draw the cone.

'EQ'y.1,2

You could have added {EQ -.1 -2 } as the variable list. The
negative sign won't effect the radius of the circles, only the direction
of the cones along the Z axis. Try it and see, but be sure you've
deleted the old variable list first.

NOTE:

.1 1s used as a lower limit instead of 0. because ADPRKW can't draw a
circle with a radius of 0. ADRW uses the inverse of the radius as a
control on the step size. You can see how it might not like a step size
of INV(0), which is undefined.

Figure 7.1

EXAMPLE 7.2

A THREE DIMENSIONAL POLAR EQUATION

Try drawing the equation 'ABS(2.5*COS(T))' in cylindrical
coordinates. Vary the Z axis from -1 to 1 in five cross sections.

SOLUTION

While in the polar graphing menu, purge any old parameter lists,
store the equation in 'ERQ' and set the polar graphing parameters to

273

CHAPTER SEVEN MORE EXAMPLES

{8 6.283 RAD }. This tells ADRHK to graph the polar function from 0
to 2rx. Then, call the three dimensional menu and set the drawing
program and number of cross sections to 'ADRW' and 3 respectively.
Finally, add the parameterlist for the Z axis and run DDRW. Figure
7.2 will be drawn on the display.

{APAR PPAR DPAR } [FSieg) 'ABS(2.5%C0SCT)!
0 ERED 2,7 * (e (Exad) CEIB BN GO

'ADRW' G 5 7'y 1,1 M

EXAMPLE 7.3

AN EXTENDED PIE CHART

In chapter five we create a pie chart, but there wasn't enough
room to label each section with large print. Ifwe create a chart with
a radius of 4.5 (on three display screens), we will be able to use large
printing.

Go to the pie chart menu, purge any old parameters, and store
the following values in the specified names. The keystrokes are
listed below.

ZDAT [[1951[4471(3621[6011]

195 Bl 447 Kl 362 Kl 2 60 Kl 4.5[

274

CHAPTER SEVEN MORE EXAMPLES

The second menu label should be . If it isn't, keep pressing it
until it is.

Next, go to the extended menu and set the drawing program and
the number of horizontal and vertical frames at TDRW, 1, and 3
respectively. If you want the graph to be printed set flag 18, else
clear it to store the graph in memory. Finally, pressing EDRHW will
create the graph shown in figure 7.3.

[T EALH 'wDRW' EXE 1 HiE 3 IR 18 Ei EIIE

,-Ffd_ o.
".' 'll 's‘

y ¢ i19 |" \l

d S0 VAN 4
i | - 1

:l |‘ ‘— —
xl . \...l 1 fi:.: ')

"; = l:" -.._' |"

'\I == ..\ |.".

1\- W >4

L_\- - X

S ™™

Figure 7.3

EXAMPLE 7.4

ANIMATED SHAPES

Any shape can easily be animated using the shape and animation
menus. Simply define any shape and add the parameterlist {
THETA, 61, 62 } to MPAR. The angles 61 and 62 depend on the number
of points in your shape and the number of frames used in your
graph.

As an example, let's animate a five pointed star. First, define the
shape in the shape menu. Remember, we don't need to define the

275

CHAPTER SEVEN MORE EXAMPLES

starting angle of the shape because the animated graphing
program, MDRW, will do it for us. Next call the animation menu and
define SDRHW as the drawing program.

o @2[1.5@ GIED] 'SDRIW' @1H

Now, we need to decide how many frames to use. We will get better
resolution using more frames, but it will take longer creating the
graph and, if stored as a list in the graphic file, will take up more
memory. For this example, 6 frames will give good resolution and
only take a few minute to complete.

6G
Now we need to set the starting and ending angle in the variable

list. The staring angle can be set at any number, while the ending
angle, 62, depends on the number of frames and number of points
on the shape. The relationship is given in equation 7.1, where p is
the number of points set by and f is the number of frames set
by .

62=360/p*(1- 1/f)+61 Equation 7.1

The ending angle for a starting angle of 0°, five points on the
shape, and six frames in the graph,is 60°. Put these values in a
variable list and add it to MPAR. Finally, decide wether you want the
graph stored in the graphic file or printed by clearing or setting flag
18. Running MDRW will create the graph show in figures 7.4 to 7.9.

'THETR', 8, 60 [l

Figure 7.4 Figure 7.5

276

CHAPTER SEVEN MORE EXAMPLES

Figure 7.6 Figure 7.7

Figure 7.8 Figure 7.9

See if you can't create a three dimensional, rotating pentagon by
storing the following values in the given objects and running MDRMN.

'PPAR' {¢-6.85-1.5) (6.8 1.6) constant 1 (8,8))
'SPAR' {€1.5,8>51})
'DPAR' {{SPDRW9}{RADPIV.11}))
'MPAR' {{DDRW &)} {THETAB 60 })
FLAG 18 Setfor printing, clear for storing in graphic file

EXTENDED GRAPHS OF FRACTALS

The fractals drawn in chapter five were all drawn on one display
screen. This limited the resolution you could get. Now that we have
the extended graphing program, we can draw any size fractal.
Several fractals from the example section in chapter five have been
redrawn on two vertical displays using EDRW. Try redrawing the
others on your own.

EXAMPLE 7.5 (example 5.1 redrawn)

First, go to the fractal menu, select the editing menu, and define
the fractal. The fractal has a triangle for an initial curve and a four
segment, 60° model construction. The radius of the initial curve

CHAPTER SEVEN MORE EXAMPLES

should be larger than in chapter five because we are drawing the
fractal on two displays now. Then, while in the fractal selection
menu, go to the extended graphing menu and define EPAR. Ifyou
want the graph sent to the printer set flag 18, otherwise, the graph
will be stored in the graphic file.

Hii'SPAR' (fpurcel] HILEE 3 (I3 REEEE 6O HIK 3
CITL) LN 'FORW' E3E 1 BEIS 2 HEES G

Figure 7.10

EXAMPLE 7.6 (example 5.3 redrawn)

The initial curve is a five pointed star with a radius of 3, since it
will be drawn on two display screens. The four segment model
construction's second and third segments make an angle of -72
and 72 degrees with the horizontal axis.

As in chapterfive, go to the shape menu under the fractal editing
menu, define 'SPAR', and press . Then, create the four segment
model construction and define the number of repiacements, K.
Finally, go to the extended graph menu EPAR should still have the
same value as in example 7.5 so all you need to do is run EDRW.

EHiiHIE3 @0 90 HER S5@ 2 @3 G
-72 Hifl 3 Bil3 [HTL] LN ETE

278

CHAPTER SEVEN MORE EXAMPLES

Figure 7.11

EXAMPLE 7.7

Create a fractal whose initial curve is a square with a radius of 2.5
and model construction has two segments making an angle -45°
and 45° with the horizontal axis. Draw several different values of 'K’
and use two vertical displays.

SOLUTION

While in the fractal editing menu, press HEE. Then, define a
square and press . Now, define the model construction by
entering -45 . Next, set the number of replacements at 3.
Finally, go to the extended graph menu and, using the same
parameters as the previous two examples, run EDRW. Return to the
fractal editing menu, store different values it K and redraw the
fractal.

ISEITEE 2.5A 45 HED 4 @TIE 1 {3 REE
-45 HIH 3 BiE [T ECE E3EE

279

CHAPTER SEVEN MORE EXAMPLES

Figure 7.12

Bl EH 4 LT EELE

Figure 7.13

Bl A1 @3 5

R LT

f

Figure 7.14

CHAPTER SEVEN MORE EXAMPLES

ENCNENDRECTTINCN:Tk MACYANEE-TNOREDRL

O O

1 H1 K
AT I

Figure 7.15

COMBINING SEVERAL ADVANCED GRAPHING PROGRAMS

We drew several three dimensional shaped in the example section
in chapter six. Now, with more than one advanced graphing
rogram, we can draw larger graphs or add the dimension of time.

Root Level Advanced Advanced
Graphing —¥® Graphing |—¥»{ Graphing
Program Program Program

Several advanced graphing programs can be cascaded to
produced large, multidimensional graphs. For example, by using
DDRHW as an argument for EDRW you can get an extended three
dimensional graph. Or, by cascading DDRW with MDRHW you can get
an animated three dimensional graph. Several examples are given
below.

EXAMPLE 7.8

DRAWING AN EXTENDED PYRAMID

There are times when the item you want to vary is not directly
tied to a variable. One good example is drawing a pyramid with a
base of 3.5. A pyramid is just a triangle that is wide at the base, gets

CHAPTER SEVEN MORE EXAMPLES

smaller towards the top, and eventually comes to a point. 10 cross
sections should be good enough to outline the pyramid.

Obviously, we must start in the shape menu. Go to the shape
graphing menu and define a triangle by inputting 3 1389
3L . We don't care about the radius now because DDRW will define it
for us. Then call the three dimensional graphing menu and define
the drawing program and number of cross sections as 'SDRW' and

GLRET] 'SDRIW' @XH 109

Now we need to tell DDRW to vary the radius of the triangle along
the axis coming out of the display. The radius of a shapeis set by
putting the radius we want on level one and running the program
RADIUS . This stores the radius into the shape parameter list SPAR.
Add'RADIVS' as the program to be evaluated and the range .1 to 3.5
to DPAR.

'RADIUS', .1, 3.5 (I

In orderto plot the entire pyramid we'll have to use two display
screens. Because the pyramid drops towards the base, we also
have to shift the center down 1.1 units. Exit the three dimensional
graphing menu and enter the extended menu. Define 'DDRW' as the
drawing program and set the vertical and horizontal frames at 1
and 2. Then, shift the center down 1.1 units Finally, if you want the
graph printed set flag 18, otherwise, clear it.

ENELHE 'DDRW' @3 1 2 (B8y-1.1)

SDRW —» DDRW —»{ EDRW

SDRH is now the input program for DDRW and DDRH is the input
program for EPRW. Running EDRW will plot the pyramid in figure
7.16 on several displays.

282

CHAPTER SEVEN MORE EXAMPLES

EXAMPLE 7.9

A LARGE SPHERE

A sphere was used as an example when describing the three
dimensional drawing program DDRHW. Because of the limited
resolution of the display, we were limited to no more than a few
cross section. With EDRHW though, the same sphere can be drawn at
any size. Lets graph a sphere with a radius of 9.5 in 16 cross
sections. The entire graph will fit on 7 vertical and 2 horizontal
display screens. Because this graph is so big, it can't be saved in the
graphic file. It must be printed. It will also take about an hour, so be
prepared.

Store the equation ¥(98-5 Q(X)-S ACY)=-7(90-$AXD-SQACY) into
EQ. Then go to the three dimensional menu and set the three
dimensional parameterlist to { {DRAW 16 }{Y -9.39.3 }}. Next, go
to the extended graph menu and set DDRW ,7, and 2 as the drawing
program, vertical, and horizontal frames. The graph can only be
drawn using the thermal printer, so you must set flag 18. Running
EDRNW will print 2 vertical strips. Cutting and pasting them together
will give you the graph shown on the next page.

Purge any old parameter lists

{PPAR DPAR EPAR }

Store the equation in 'EQ'

'T(9B-5 QCKI-S QYD) E= ENTe

CHAPTER SEVEN MORE EXAMPLES

Define the three dimensional parameters (CPAR)

CIEER] [35 'Y' y-9.3,9.3 [l

Finally, define EPAR, set flag 18, and run EDRM.

Bl ELH'DDRW' EIE 2 7 18 GIY

Figure 7.17

CHAPTER SEVEN MORE EXAMPLES

EXAMPLE 7.10

A LARGE SADDLE

In chapter six the equation Z=V(X"A2+Y~2) gave us a saddle shaped
graph (page 247). If we cascade DDRW with EDRW we can redraw this
same graph on several display screens. This will give us a better
picture than on one display. The following objects had the listed
values in the example from chapter six. Running DDRW with these
values drew the graph shown in figure 6.18. Lets try graphing this
same function on 1 horizontal and 4 vertical display screens.

' EQ’ V(SQX)+2)=-V(SQX)+2Z)
'PPAR’ ((-6.8,-1.5) (6.8,1.6)X 1 (0,0))
'DPAR' ((DRAW 9} {Z 2 -2})

DPAR is the only object we have to change. Because the range of
the X and Y axis will increase we must increase the range of the Z
axis and the number of cross sections. We must also define the
extended graph parameters, EPAR. The new values are shown
below.

'EQ' V(SQ(X)+2)=-V(SQ(X)+2)’
'PPAR' {(-6.8,-1.5) (6.8,1.6) X 1 (0,0)}
'DPAR' {{DRAW15}{Z6-6})
'EPAR'’ {DDRW 1 4)

Ifyou want the graph printed set flag 18, otherwise, clear it.
Running EDRW will draw the graph show on the next page.

285

CHAPTER SEVEN MORE EXAMPLES

N

Figure 7.18

EXAMPLE 7.11

A LARGE SINE FUNCTION

The sine function is probably the most attractive. Try graphing
the function Y=-SIN(X)*(Z+4)*(X/6) on three horizontal and six
vertical display screens. Draw 15 cross sections and use the range
{-.3,-4}for Z.

First, store the equation in'E@' and set your calculator to
radians. Then, purge any old parameters. Next, define DPAR from
the 3-D menu and EPAR from the extended graph menu. Finally,
set flag 18 and run EDRH to graph the function in figure 7.19.

'=SINCXY*(Z+4)%(K6D
{PPAR DPAR EPAR } (ForeE) @
CIZET] 13 'Z'y =3y -4 0N

ER ELH 'DDRW EXE 3 MR 12 15 Hi 1T

CHAPTER SEVEN MORE EXAMPLES

Figure 7.19

EXAMPLE 7.12

AN ANIMATED 3-D SINE FUNCTION

Try graphing the time domain, three dimensional function
shown in equation 7.1. Because there are four different variables, X,
Y, Z, and t, we must use DDRW and MDRN.

Z=SIN(X+tn)*COS(Y+tn) Equation 7.1

First, purge any old parameters, store the equation in 'EQ', and
set your calculator to radians. Then, go to the three dimensional
menu and set up the parameter list for DDRW. Drawing cross
sections from -n/2 to n/2 will draw one entire period of the graph.
and because the range for the X and Y axis is one display screen (we
aren't using EDRW) we will draw 9 cross section.

{PPAR DPAR MPAR }=
'SINCK+t *m)2COS Y+t*m)

ER
'Y63" 60ED206DI

287

CHAPTER SEVEN MORE EXAMPLES

Next, go to the animated graph menu and set the parameters for
MDRW. The drawing program it uses is DDRW. The number of frames
you use to draw the graph depends on whether you're printing the
graph or how much memory you have available. It also depends on
how long you're willing to wait or the resolution you want. If you
have the memory try 10 frames. If not, use fewer frames or print
the output (set flag 18).

Because the sine function is periodic, defining the range from 0 to
1 will cause MDRH to graph one period. But the graph for t=0 and
one for t=1 are the same. This means if we graph 10 frames ranging
from O to 1 the first and last frames will be identical. This gives us
only 9 different pictures. If we found the step size for drawing 11
frames, subtracted it from 1 and used it as the upper limit, MDRW will
draw 10 different frames. The equation to follow when determining
the upper limit to use for a periodic function is

LL=lower limit in variable list
UL=upper limit in variable list
BP=beginning range for periodic function
EP=ending range for periodic function
N=number of frames

LL=-BP UL=EP - [[EP - BP)/N]

For this example it is .9. Ifyou are using a different number of
frames you'll have to calculate the upper limit and substitute it for
.9. Go to the animated menu, define MPAR and run MDRHW to graph
the function shown in figures 7.20 to 7.29.

'DDRIW' IIE 19 't',8,.9 N

Figure 7.20 Figure 7.21

288

CHAPTER SEVEN MORE EXAMPLES

289

CHAPTER SEVEN MORE EXAMPLES

APPENDIX A

APPENDIX A

ENTERING DATA

There are several different ways to enter the programs from this
book in your 28S. You could type the programs letter by letter. Not
only will this take a long time, but you can easily make a
typographical mistake. A simpler way is to press the menu key for
any commands in the program listing.

As an example, both key sequences for entering « LCD+ NOT +LCD
» are show below. This program inverts the display screen. It
should be obvious that the second is a better method.

CHARACTER BY CHARACTER

USING MENU KEYS

=
Although both key sequences are correct, the second is much

easier. You should take the time to familiarize yourself with the
different menus so you can take advantage of them.

STORING DATA

After you've enter a program on the stack you'll have to store it in
your calculator's memory. Simply enter the quoted name you want
the program stored under and press (§ig). This will store the
program in the user menu.

291

APPENDIX A

DIRECTORIES

The 28S can store hundreds of programs and data in any
number of different directories. Anything stored in one directory is
"hidden" from the others. Thus programs that share a common
interest should be classified together in one directory.

The directory tree below shows all the directories used in this
book. The parent directory for all other directories is HOME.
GRAPHP, the directory below HOME, contains the programs and sub-
directories used for graphing. The directories get more specific as
you move down the line. POLARP only contains programs used for
polar graphing.

HOME

I
GRAPHP

I

[I 1 l |

POLARP| |CHARTP SHAPEP|| WRK GFIL

 T
WRK WRK WRK [|FRACTP

|
WRK

Directory Tree

You can recall or run any program in your path. For example,
when in FRACTP, you can run any program in FRACTP, SHHPEP
GRAPHP, or HOME. However, you can't access programs in POLARP,
since it isn't in your path.

292

APPENDIX A

Notice all the directories named WRK below each program
directory. These are the work directories. You'll be creating and
storing your own programs and variables here. Having a separate
work space makes it easier to sort through the multitude of
programs. More importantly, it protects the programs in the main

directory from accidently being purged.

MOVING FROM DIRECTORY TO DIRECTORY

Each custom graphing menu has keys that take you from menu
to menu. If fact, the menus are so user friendly you don't even have
to know which menu your in or which one you're going to. But
when your entering or editing programs, you won't be able to use
the menus. They put you in work directory while programs are
stored in program directories.

There are several ways to move between directories. You can go to
any directory in your path by entering its unquoted name. For
example, you can go to SHAPEP from FRACTP by typing

EE60E6E=
(See directory tree on the previous page). If the directory is not in
your path, you should go to the home directory and enter the
unquoted name of the directory that is next the path of the
directory you want to get to. Keep doing this until you've reach your
destination directory. For example, you could enter POLARP from
FRACTP by typing

L
Even though you can also press the menu key for each directory

that is next in the path, you should never do it for the directories in
this book. Because the menu keys can only fit a set number of
characters, for the labels for each program directory is the same as
the labels of each programs that enters that directory's graphing
menu. For example, GRAPH and GRAPHP will both read EHEII] in the
user menu.

293

APPENDIX A

DIGITIZING

Digitizing mode allows you to return display points to the stack.
Press from the [PLO0T] menu. You will see a cross in the center
of the display. The arrow keys A¥ €4 » will move the cross up, down,
left, and right. Pressing the shift key and then an arrow key will
move the cross to the edge of the display in that direction.

Pressing the cursor key *v> will display the point where the cross
is at. Pressing will put the point on level one of the stack.
Finally, pressing will return the graphic string representing the
display screen.

294

APPENDIX B

Uses the utilities. ..

PGET, PCHK

PUTP

PUTA.STLST (CH 2

CKNM

. .S .
FDRW

CNCT LINE SDRW, LDGU, DRANWC,
DRAWM

tart
CRERTC LDGU, STOC

LDGU,

DDRMW, EDRW

N3FG, MMENU

LCONY, CNCT

Stari

GRAPH
295

APPENDIX B

N3FG. MMENU
DGTZ7,

Stari

SPOT,PLCE

LINE

SHAPL, STOC, EDIT

MTYP, GGFL, LORD

296

LINES

EDRW,FILE,GLIDE,
MORW, SHAKE, St ep

End

LE

m' ’

EXTND

MDRW,
MTYP

PGET.SAVE Dim, EXTND, MOVE

APPENDIX B

5

EXIT,GLIDE,Step,
VIEW

PUTL. RADIUS (Ch.3

FRAM, Prog. PROG,
XFRM. YFRM

Start

PGET, PUTP
. 5t .

PCHK
PCHK AMAX, AMIN, PUTA,

POINTS,REVY, Prog,
XFRM, YFRM

Start LARGE, NONE, SM

PUTP

CLCD?,5
DGTZ?
NMST, STOM
NMS T,
GGFL,
Start

297

APPENDIX B

SHAPEP SHAPE
SHAPL SDRW, MAKE
SM PUTT
SMP SPOT,PLCU TDRW
SPAR POINTS, RADIUS,

REY,SHAPL, THETA
SPOT LGP,SMP
Start STLST GRAPH, POLAR
STAT
Step GGFL, PBAK, KEYHW

STLST Start
(CH 1)
(CH 2) Start

(CH 3) Start
(CH 4) Start
(CH 5) Start

STOC CREATC, MAKE

STOK Start
STOM CRERATM, SEG2,SEG4
THETA PCHK
VIEW GGFL, KEYW, PBAK
WRK Start
(CH 1)
(CH 2) POLAR

(CH 3) CHART
(CH 4) SHAPE
(CH 5) FRACT
XFRM PGET, PUTP
YFRM PGET,PUTP
TDRW ADRW, CLCD?,DGTZ?,

LINE, NONP,SMP,
LGP

TPAR PUTw, wDRW, SPOT,
RADIUS (CH 3),
STLST(CH 3)

TVAL

298

ADD

ADRKW
ADVAN

AMAX
AMIN
APAR
CHART
CHARTP
CHLST
CKNM
CNCT
CONT
CREATC
CREATM
CRSM
CTLST
CURY
DDRW

Deg

DEG"
DEL

Dim

DPAR
DRAWC
DRAWM
EDIT
EDRW

end

End

ENd

EPAR
EXIT
EXTND
FDRW

181, 235-237, 264,
267
30, 55, 56, 59, 60
60, 97, 126, 174,
182, 230
33, 55, 60
34, 55, 60
38, 54, 55, 60
64, 89
65, 89
183
11, 13, 19
102
66, 94, 98
130, 159, 160, 175
132, 163, 175
67, 94, 96
37, 68
159, 161, 175
178, 188, 231-236,
264
38, 54, 55, 60
39, 54, 55, 60
188, 236, 257, 264,
267
189, 234-236, 263
190, 234-236, 264
134, 162, 175
134, 164, 175
138, 159, 174
178, 191, 249-252,
261, 162, 265, 269
194, 264, 266, 268
20, 60, 97, 126, 174
69, 98, 175, 176,
263
198, 265
196, 230, 262, 269
97, 230, 263
136, 165, 174

FILE

FRACT
FRACTP
FRAM
GFIL
GGFL
GLIDE
GRAPH
GRAPHP
GSTRE

GSTRM

LARGE
LCONY
LDGU
LGET
LGP
LINE
LINES
LNE
LOAD
MAKE
MCHK
MDRW

MLST
MODL
MOVE
MPAR
MRCL
MRKR
MTYP
N>FG
NMST
NONE
NONP
PBAK
PCHK

INDEX

198, 260, 262, 265,
268
139, 159
140
199, 256, 267
200, 251, 260-262
201
202, 257, 260, 268
21
22
251, 252, 262, 265,
269
257, 259, 260, 262,
268, 269
70, 90, 96
141
142
204
71
72
208, 235, 264
144
208, 262, 269
145, 161, 176
207
178, 208, 255-262,
268, 269
211
161, 162, 164, 175
213, 263
214, 255-260, 267
215
216
217
218
146
73, 90, 96
74
220
41

299

INDEX

PGET
PLCE
PLCU
POINTS
POLAR
POLARP
Prog
PROG

PUTRH

PUTP
PUTw

QUIT

Rad

RADIU

CH.3
CH. 4

CH.5
RAD"

REY

SAVE

SDRW

SEG2

SEG4

SHAKE

Shape

SHAPE
SHAPL

SM

SMP

SMPR
SPAR

SPOT

Start
STAT

Step
STLST

STOC

STOK
STOM

300

219
75
76, 93
103, 118, 126, 176
42, 54
43, 54
220, 250, 265
221, 235, 256, 264,
267
44
45
77
23
48, 54, 55

78, 9, 96
104, 118, 126
176
47, 54, 55, 60
108, 118, 126, 176
224, 262, 269
106, 119, 121-126
147, 163, 175
148, 163, 175
228, 257, 260, 268
149, 159, 161, 175
109, 110
111
79, 90, 95, 96
80
94
112, 118, 126, 176
81
24
150, 165, 174
226, 257, 260, 268
25, 48, 82, 113, 151
152, 159, 161
153, 164, 175
154, 164

THETA

VIEW

WRK

XFRM

YFRM
TDRNW

TPAR

TVAL

114, 118, 119, 126,
176, 257
227, 249, 251, 252,
265
26, 49, 83, 115, 155
227, 250, 265
228, 250, 265
84, 89-95, 97
87, 91, 96
88, 92, 93, 96

Chapter

1

TOPIC

Introduction

Polar
Graphing

Chart
Drawing

Shape
Drawing

Fractal
Drawing

Advanced
Graphing

More

Examples

DESCRIPTION

The introduction describes the layout of
each chapter and the programs used to
create each custom menu

The polar graphing menu plots the
equation stored in 'EQ' in polar
coordinates.

This menu creates a pie chart for the
data stored in the statistical array,
'ZDAT'. You also have the option of
labeling the percentage of each section
with two different sized print.

The shape drawing menu creates a wide
variety of polygons and stars.

Chapterfive introduces you to simple
fractals. An endless assortment of
fractals can be define in the fractal
editing menu. Use a predefined format,
or draw a freehand model construction
and initial curve on the display.

Chapter six contains three different
advanced graphing programs. DDRW,
MDRW, and EDRW transforms any
procedure into a three dimensional,
animated, or extended graphing
program.

Chapter seven shows you how the
graphing menus from part one and part
two can work together. Detailed
examples demonstrate only a few of the
infinite graphs that the 28S can create.

"ADVANCED GRAPHING FOR THE 28S" presents seven different
graphing menus. Chapters two through five each contain one
unique graphing program while chapter six comprises three. In all,
over 120 programs and utilities are incorporated into user friendly
menus similar to those built in to the 28S. These menus are
described in detail with over 100 different graphs and illustrations.
There is even a menu summary at the end of each chapter.

The book is divided into two parts. The first, chapters two
through five, presents four different root level graphing menus.
These menus allow you to graph polar equations, plot pie charts,
draw polygons and stars, and draw fractals.

Chapter six, the second part, contains three different advanced
graphing menus. In contrast to the menus in the first part, they
can plot many different types of graphs, but always in one specify
way. For example, DDRW can plot polar equations, pie charts, draw
shapes, or any other graph, but always in three dimensions.
Likewise, MDRW animates any graph while EDRW plots large graphs
on any number of horizontal and vertical display screens. And best
of all, they can be cascaded with any graphing program. You can
combine the programs from part one with one or more of the
programs in part two to create an endless variety of multi-
dimensional graphs.

Finally, the last chapter shows you how the graphing menus
from part one and part two can work together. Detailed examples
demonstrate only a few of the infinite graphs you never imagined
the 28S could create.

	Cover
	Table of Contents
	Chapter One: Introduction
	What's Between the Covers?
	What to do First
	A Basic Outline of the Remaining Chapters
	About each Program Listing
	Program Listings

	Chapter Two: Graphing Polar Equations
	Section One: Reference
	Introduction
	Program Table
	Listings

	Section Two: Examples
	About Polar Coordinates
	Drawing a Circle Using the PLOT Menu
	Drawing a Circle Using the Polar Graphing Menu
	More Examples
	ADRW as a Subprogram
	Polar Graphing Menu Summary

	Chapter Three: Drawing Charts
	Section One: Reference
	Introduction
	Program Table
	Listings

	Section Two: Examples
	Introduction
	Storing Data
	Choosing a Print Size
	Choosing a Radius
	The Pie Chart Parameter
	Drawing a Pie Chart
	Finding the Area of any Section
	Labeling the Percentage of each Section
	A Pie Chart Using Small Print
	πDRW as a Subprogram
	Pie Chart Menu Summary
	Small Print Creation Menu Summary

	Chapter Four: Drawing Shapes
	Section One: Reference
	Introduction
	Program Table
	Listings

	Section Two: Examples
	Introduction
	Defining a Basic Polygon
	The Shape Parameter List (SPAR)
	Drawing Polygons
	Drawing Stars
	SDRW as a Subprogram
	Shape Drawing Menu Summary

	Chapter Five: Fractal Drawing
	Section One: Reference
	Introduction
	Program Table
	Listings

	Section Two: Examples
	A Simple Fractal
	Getting Started
	Creating an Initial Curve
	Creating a Freehand Initial Curve
	A Shape as an Initial Curve
	Storing a Predefined Initial Curve
	The Model Construction
	The Model Construction Editing Menu
	Creating a Freehand Model Construction
	Using a Predefined Format
	Storing a Predefine Model
	Viewing a Model
	Setting the Number of Replacements
	The Fractal Drawing Program (FDRW)
	The Status of The Fractal Parameters
	Example 5.1
	Example 5.2
	Example 5.3
	Example 5.4
	Example 5.5
	Fractal Drawing Menu Summary
	Fractal Editing Menu Summary
	Initial Curve (Shape) Editing Menu Summary

	Chapter Six: Advanced Graphing
	Section One: Reference
	Introduction
	Program Table
	Listings

	Section Two: Examples
	Introduction
	About Advanced Graphing Procedures
	The Advanced Graphing Selection Menu

	Three Dimensional Graphs
	A Three Dimensional Graph
	Using the Three Dimensional Menu
	The Basics Behind DDRW
	The Three Dimensional Parameter List
	Variable Lists
	Adding a Variable List
	Multiple Variable Lists
	Defining the Independent Variables
	Drawing a Sphere
	Drawing a Three Dimensional Sine Wave
	Another Sine Wave Example
	Different Axis Assignments
	Summary of Axis Assignments
	A 3-D Saddle

	Extended Graphs
	Introduction
	The Extended Graphing Parameters
	Printing an Extended Graph
	Display Adjustments for Printed Graphs
	Saving an Extended Graph Internally
	Viewing an Extended Graph
	An Example

	Animated Graphs
	Introduction
	The Animated Graph Menu
	About the Animated Graphing Program (MDRW)
	The Animated Graph Parameters (MPAR)
	Defining the Drawing Program
	Defining the Number of Frames
	Variable Lists
	Adding and Deleting Variable Lists
	Using MDRW
	Printing an Animated Graph
	Storing an Animated Graph
	Viewing an Animated Graph

	The Graphic File Menu
	Summary of Menus
	The Advanced Graphing Selection Menu
	The Three Dimensional Menu
	The Extended Graph Menu
	The Animated (Motion) Graph Menu
	The Graphic File Menu

	Chapter Seven: More Examples Of Advanced Graphs
	Introduction
	Root Level and Advanced Combined
	Example 7.1: Drawing a Cone in the Polar Menu
	Example 7.2: A Three Dimensional Polar Equation
	Example 7.3: An Extended Pie Chart
	Example 7.4: Animated Shapes

	Extended Graphs of Fractals
	Example 7.5 (example 5.1 redrawn)
	Example 7.6 (example 5.2 redrawn)
	Example 7.7

	Combining Advanced Graphing Programs
	Example 7.8: An Extended Pyramid
	Example 7.9: A Large Sphere
	Example 7.10: A Large Saddle
	Example 7.11: A Large Sine Function
	Example 7.12: An Animated 3-D Sine Functicn

	Appendix A
	Appendix B
	Index

