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PREFACE

This is the preliminary edition of a manual to be used as supplementary

material for the single-variable calculus course. The students should have a

graphing programmable calculator (Hewlett-Packard Model 28S) and use it without

restriction throughout the course. Most of the material in this manual has been used

in such a course at Clemson University for three semesters. Although the

preliminary edition this manual deals specifically with the use of the HP-28S, it

will be replaced by the first edition which will also include material for using the

new HP-485SX calculator.

The material is organized in terms of the different aspects of calculator use and

it is textbook independent. In fact, it has been used with two different calculus texts

at Clemson. The order of presentation is roughly the order in which it has been

presented to the classes. There are two sets of exercises at the end of most chapters.

Set I is intended for beginning calculus students; Set II is intended for Calculus 2

students.

Use of a graphing calculator greatly enhances the geometric, graphical aspect

of calculus. From the outset of the course, derivatives can be continually associated

with graphs and differentiation becomes much more than merely a set of algebraic

manipulations. Each derivative can be associated with a graph. When the

calculator can also do symbol manipulation, find derivatives and solve equations, it

becomes both notebook and scratchpad for the students. But the calculator does not

organize problem-solving. The students must still find derivatives, their zeroes, and

direct the work of the calculator. The calculator simply does some of the

manipulation for them.
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With graphs so readily available, students continually see the basic ideas of

functions increasing or decreasing, and their graphs being concave up or concave down.

But to find precisely where the major changes in these properties occur, i.e., the

extreme points and inflection points, they must still use basic calculus tools to get

more than graphical estimates.

With a graphing calculator, one basic element of the beginning calculus course is

changed. Since graphs are readily available on the calculator, no problem can have

a graph as its main result. Graphs must be coupled with the major concepts of the

course. Likewise, the major concepts of the course can always be associated with

graphs.

Programming skill is not required, but some students do fairly extensive

programming on their own. Several sets of programs are distributed to the students

which extend the graphing capabilities of the calculator and permit rapid

calculation of such things as Riemann sums and the limit of convergent infinite

series.
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PROLOGUE

(to the student)

This manual deals with the application of your HP-28S calculator to the

tasks of calculus. Although the keystrokes are given for the operations we perform,

this manual is not intended to be, and is not, a general reference on the use of the

HP-28S. You should familiarize yourself with general calculator operations using

the owners manual. In particular, familiarize yourself with the reverse Polish

notation and the use of the HP-28S as a calculator. With four stack levels visible,

RPN can be very useful for organizing arithmetic operations.

In this manual calculator commands are given in boldface, e.g.,, PLOT. If

they are single keystrokes, they are also boxed: |PLOT|. If the key for a command

is a menu key, this is indicated by a superscript M to the right of the box:

DRAW|M. The red key for second functions has generally been omitted from the

keystroke sequences since it is assumed that you know that, if a command is the

second "red" function over a key, you must press the red key first to get the desired

command. However, when using SOLVR, M is the command to solve for

X, not an indicated second function, so the keystroke is given.

Vil
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CHAPTER 1

GRAPHING

INTRODUCTION

Calculus is a first course in the study of the behavior of functions. In the first

two semesters of calculus the functions you study will be functions, with real-number

values, that are defined on a set of real numbers. In the last semester of the course

you will deal with functions, with real-number values, defined on subsets of the

plane or three-dimensional space. Later on, vector valued functions will be studied.

Some of the most important aspects of functional behavior - maximum and

minimum values, as well as values where the rate of change of the function has a

maximum or a minimum - can be very effectively displayed by the graph of the

function. In fact, one of the main goals in first-semester calculus is the presentation

of efficient ways of accurately finding the coordinates of such points and thus an

accurate graph of the function. The appearance in the last few years of graphics

calculators and graphing programs for microcomputers has made readily available

for calculus students electronic means for achieving a sketch of the graph of almost

any function they will deal with in calculus.

Techniques for accurately finding the coordinates of peaks, low spots and other

important points on the graph of a function involve several procedures on the

HP-28S. Many of these will be discussed later in a chapter on Curve Sketching. In

this chapter, some basic facts about the nature of graphs on the HP-28S and basic

techniques for graphing functions on the calculator are presented.
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THE NATURE OF GRAPHS ON THE HP-28S

The display screen on the HP-28S is a 137 by 32 rectangular grid of picture

element dots called "pixels". When theM command is activated, the entire

screen is used to display the graph of the expression stored in the storage area

designated as EQ.

On the graphing screen, with the default plotting parameters, the pixels in the

leftmost column have x coordinates -6.8 and the pixels in the rightmost column have

x coordinates 6.8. The highest row of pixels has y coordinates 1.6 and the lowest

row of pixels has y coordinates -1.5. Two adjacent columns of pixels have x

coordinates differing by 0.1 unit and two adjacent rows of pixels have y coordinates

differing by 0.1 unit. The grid marks on the coordinate axes are at the unit marks,

ie.,, 1, 2, 3 etc.

When you activate the WM command for a function f stored in EQ, the

HP-28S calculates values of y = f(x) for each of the 137 values of x, 0.1 unit apart,

from x = -6.8 to x = 6.8. If the size of the y coordinate puts the point on the display,

i.e.,, -1.5 < y < 1.6, the appropriate pixel is energized and appears as a point of the

graph. So the "graph" of a function on the HP-28S is actually a set of 137, or less,

distinct points. When the HP-28S graphs an equation instead of a function, it graphs

each side of the equation as a function, and so the graph of an equation consists of

274, or fewer, distinct points.

GRAPHING A FUNCTION OR EQUATION ON THE HP-28S

With a function or equation displayed at level 1 of the stack, press to

bring up the plotting menu, then [STEQ|M to store the expression in EQ and then

DRAW [M {0 plot the graph. When you want to return to the stack display screen

from the graphing screen, press.
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SETTING THE VIEWING WINDOW

Probably the most important factor in learning to create informative graphs on

the HP-28S is learning to set the viewing window to display in appropriate

proportions the part of the graph you wish to see. Unlike some graphing calculators

and computer programs, the HP-28S does not automatically set the viewing window

to accomodate the particular function being plotted. When you graph a function on

the HP-28S, the plotting parameters are those used previously. That is, either the

parameters set for the last graph or the default parameters set in the calculator at

the factory and restored when PPAR is purged.

The default setting for the x coordinate range, -6.8 to 6.8, and the y coordinate

range, -1.5 to 1.6, works very nicely for trigonometric functions of amplitude 1. The

unit distances for x and for y are the same, so your visual intuition of slopes and

areas is preserved.

EXAMPLE1.

To illustrate the default viewing window settings and the graph of y = sin x,

perform the following:

PPAR [FORGE
[Ric] (515 M x [ENTER
|PLOT| [STEQ|M [DRAW|M
 

 

(make sure that MODE]| is set in radians and (2n) appears in the upper

right corner of the screen)
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Unfortunately, for many polynomial functions, the default range for y is so

limited that very few points of the graph will appear on the screen. But the

parameters can easily be changed and they must be adjusted to best illustrate most

functions.

If you know in advance the ranges you want for x and y for the graph of a given

function, you can set up the desired viewing window by entering the new lower-left

corner of the screen as [PMIN|M and the new upper-right corner of the screen as

PMAX|M  The keys for these are on the first line of the |PLOT| menu. That is, if

you want (a,b) as the coodinates of the lower-left corner of the screen and (c,d) as

the coordinates of the upper-right corner of the screen, enter (a,b) and press

PMIN|M | then enter (c,d) and press [PMAX|M. When you next execute

DRAW |M,the graphing screen will have the corners you have chosen.

EXAMPLE 2.

To illustrate changes in the corners of the viewing window, complete the steps

of Example 1, return to the stack display screen by pressing and then the

Mmenu. Enter the following;:

©0 [PMINM 1 [PMAX]M [DRAWM

eeC—

. .- ’° Sa,

 

  N

- - -

b=

L
]

—
—

- - - - -

 

New lower-left and upper-right corners for the viewing screen can also be chosen

with a graph displayed on the screen. This is handy for zooming in on part of a

graph. With a graph displayed on the screen, use the cursor keys (the rightmost

four keys on the menu line of white keys) to move the crosshairs to the point you
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want as your new lower-left corner. Then enter this point on the stack by pressing

(above the leftmost key on the menu line of keys). Now move the crosshairs

to the point you want as the new upper-right corner and enter it on the stack by

pressing [INS|. Return to the stack display screen by pressing . The

coordinates of the two points you selected will be displayed on stack levels 1 and 2.

Enter these points as [PMAX|M and [PMIN|M. If you now press WM, the

graphing screen will have the desired corners.

If you attempt to graph a function having a large range of y coordinates with

the screen set for a small range of y coordinates, you will get very few points since

most points of the graph are off of the screen. You can compress (or expand) the

graph vertically by using the @M key on the second line of the menu. If

you want to compress the graph vertically by a factor of n, 1 < n, key in n and then

press IE]M. When you return to the graphing screen, the mark on the y axis will

then represent n units, if it was 1 unit before, or, in any case, n times what it

represented before. Of course, if you enter n, 0 < n < 1, into E‘M, you will expand

the graph vertically.

EXAMPLE 3.

To illustrate compressing a graph for more complete viewing, we will try to

graphy = x> - 3x% - 5x +1. Key in the following:

'PPAR (PURGE

'xA3 -3*x722-5*"x+1 |ENTER

[pLoT| [sTEQ|M [DRAWM
 

 

 

 

—
—

- - - - -

b

o

=
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We get 11 isolated points, so enter:

10 [FHM [PREV] [DRAw]™ 
 

 

    
We compressed the height of the graph by a factor of 10. That is, the mark on

the y axis in the final graph represents 10 units instead of 1 unit. The factor of 10

was determined by trial and error. A smaller factor did not give a good picture.

You can similarly expand or compress the graph horizontally by entering a

positive factor intoM (also on the second line of the PLOT| menu).

SOME THOUGHTS ON GRAPHS

The graph of a function, like the function itself, is an abstraction. A "graph"

sketched on paper or plotted on a calculator or computer screen is an attempt to

physically reproduce this abstraction, or at least enough of it to discover some facts

about the behavior of the function itself. All such attempts to physically reproduce

graphs are subject to inherent limitations and inaccuracies.

A graph plotted on the HP-28S consists of discrete points. Some graphs such as

sin x plotted with the default plotting parameters look rather "continuous" and

smooth, while the graph of 7 sin(3x) begins to look rather disconnected or "dotty".

EXAMPLE 4.

Graph f(x) = % sin(3x).
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Key in [PLOT| [NEXT] [PPAR|™ [PURGE
' (3/2) * SIN(3*X

STEQ[™ [DRAW]
- . O-, S, .o N, /.

 

 

 

    
On the other hand, the graph of sin(x/6) with the default parameters shows a

distinct "stairstep” characteristic since x-coordinates of adjacent columns of pixels

differ only by .025 units and so the corresponding y coordinates are the same, correct

to the nearest 0.1 unit; so parts of the "graph” appear to be horizontal line segments.

EXAMPLE5.

Graph f(x) = 1Esin (—6x-). If you have not changed the plotting parameters

since Example 4:
 

Key in ' .5 * SIN(X/6) [ENTER| [STEQ|M [DrRAWM
 

 

 

    
The point here is that, while the graph of a function on the HP-28S can give

valuable clues to the behavior of the function, the graph on the screen is not an

accurate representation of the actual graph. All electronic reproductions of graphs

are subject to similar limitations, although the graphs on a much larger computer

monitor screen will often look smoother because of the greater resolution (many more

pixels) and the fact that many computer graphing programs fill in the spaces

between points with some sort of curve.
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However, substantial information can be inferred from the graphs of functions on

the HP-285. The technology readily produces graphical images with enough

accuracy for an overall analysis of the function without the use of much formal

mathematical technique.

EXAMPLE 6.

In the default screen, i.e., 'PPAR |PURGE|, graph sin x and cos x

simultaneously. This is accomplished by entering: 'SIN(X) = COS(X)' |ENTER

[PLOT| [STEQ|M [DRAW|M,
 

 

A quick set of key strokes would be:

X M x [cOS|M [=] [ENTER] [PLOT| [STEQ|M [DRAW]|M
 

 

 

 

    
Casual observation notes that the functions have the same behavior and the

sine is just the cosine delayed by a small amount. A close estimate of the lag, which

we know to be nt/2, could be confirmed by an investigation of the coordinates on the

sine curve of the first peak after the vertical coordinate axes. To do this, move the

cursor to the peak and touch the key, return to the text screen and note

the x coordinate -- the value should be close to ©/2 = 1.57.

Return to the graph through theMkey and note how the rise and fall

in the curves are linked. Later on, in calculus, we will establish that one curve is

the derivative of the other and then our current intuitive sense will be made formal

and quantified. The intuitive sense is the feeling for the curves increasing and

decreasing. Beyond that we sense that at different times the rate of change is itself

changing, i.e., sometimes the increase is with an increasing rate of increase and
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sometimes with a decreasing rate of increase. You are observing cyclical behavior.

It is a very important phenomena and it occurs frequently in stock markets, personal

moods, wave action and all sorts of different activities. The understanding and

ability to analyze the dynamic behavior of cyclical patterns is an important reason

for studying calculus. Here, with with the graphing calculator, we are able to

intuitively understand the some of the patterns and anticipate future results.

You can easily note when the curves cross and establish the coordinates of the

points by the previous technique. We see that the x-values are -3n/4, n/4, 51/4, etc.

But note how easily the graph gives the values in regions beyond the first quadrant.

These values are typically memorized, with considerable difficulty, in high school

trigonometry courses and we see that the graphing calculator gives us an easy means

to accurately recall the information whenever it might be needed.

Likewise, important properties of a function and its inverse are easily noted on

the graphing calculator:

EXAMPLE 7.

Examine the graphs of the x2 andits inverse function Vx (the square root of x).

First sketch the curves with the default viewing settings:

e[FORGH
x [x2] x [¥X] [5] [ENTER]
[PLOT| [STEQ|M [DRAW|M
 

 

 

 

   
 

Then adjust the horizontal scale by :
  

[ON] [4] [1/X] [PLOT] [NEXT] [*W] [PREV] [DRAW|M
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Note that the square function and its inverse function, the square root, meet on

the line y = x and the graphs are reflections across the line y = x. Are these

properties true of any function and its inverse?

SAVING AND COMBINING GRAPHS ON THE HP- 28S :

With a graph displayed on the screen of the HP-28S, you can save the screen

display as an "image string" by pressing the key (over the second white menu

key). When you return to the stack display, this string will appear on level 1 and

you can then save it under a name of your choice. You can then recall it from the

USER| menu and, with the image string on level 1, reproduce the display it

represents by executing M on the menu (left keyboard) . You can

also save the stack display screen as a string by executing M, and then

reproduceit later with [->LCD|M.

EXAMPLE 8.

Graph y = sin x (see example 1)

With the graph showing, press , the second white key on the menu line. Now

return to the stack display with . Save the image string on level 1: ' SN

. To recall the screen saved, do M |STRING| I-—)LCDIM.

Notice that the sine graph is not plotted again; the whole screen is reproduced at

 

once.

You can combine two graphs whose strings you have displayed on levels 1 and 2

by executing the commandM (on the second line of the TEST| menu, over @ ,

or just key in @ @ then [ENTER| ). This is the logical operator "or" and will
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give you the combined string on level 1. Executing M on the combined string

will give you the union of the two graphs. In fact, in this way you can combine as

many graphs as the resolution of the screen will allow you to use intelligently (or at

least as many as the memory will bear; each image string takes 548 bytes to store).

EXAMPLE 9.

To graph y = sin x, y = cos x and y = tan x on the same axes:

You should have the image string for sin x stored under 'SN' from Example 8. Now

do
 

' cos(x [ENTER| [PLOT] [STEQ|M [DrRAW]M

[DEL] [on] ' cs [570].
This saves the image string for cos x under 'CS"'.

 

 

' TAN(X [ENTER| [PLOT| [STEQM [DRAW|M

[oEd [on] ‘TN [570)
This saves the image string for tan x under 'TN'.

 

 

Recall the strings with [USER| [TN]M [cs]M [sN]M .
 

Now combine the levels 1 and 2 strings with OR |ENTER|.

If we now converted this string to the screen it represents, we would have sin x

and cos x superimposed. However, we will proceed and get all three graphs. To

combine the string for tan x on level 2 with the combined string on level 1, again do

OR. Now convert this new combined string to its screen withM

This shows all three combined.
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We will discuss another method of combining graphs in a later section of this

chapter.

SOME CONDITIONS UNDER WHICH THE GRAPHING PROGRAM WILL TERMINATE

ON THE HP-28C (This section does not apply to the HP-28S.)

There are three fairly commonly encountered situations which occur in the

calculation of the y coordinates for a graph which will cause the graphing program

on an early version of the HP-28C to terminate. The calculator will automatically

return to the stack display screen and show an error message.

If calculating y involves a division in which the denominator is 0 and the

numerator is not 0, the HP-28C will abort the graphing routine and return to the

stack display screen with the message "INFINITE RESULT" displayed. This

situation is easily corrected by clearing the flag (#59) which causes the error

message. Key in: 59 CF [ENTER|. Then [DRAW|M again.

Two other situations are not so easily corrected, but the behavior of the HP-28C

can be modified by the program on p. 303 of from William Wickes' book.l If, in

calculating a value of y, a complex number is obtained, the graphing routine will

shut down and the HP-28C will return to the stack display screen with the message

"NON-REAL RESULT". 1If calculating y involves a division in which both

numerator and denominator are 0, the graphing routine will shut down and the HP-

28C will return to the stack display screen with the message "UNDEFINED

RESULT".

 

1"HP-28 Insights", William C. Wickes, copyright 1988 by Larken Publications.
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SOME USEFUL PROGRAMS TO FACILITATE GRAPHING

Create a subdirectory called GSHO by entering MEMORY| 'GSHO

M. Recall it by M. Enter the following programs:

QUIT

« HOME |ENTER| 'QUIT

Input: none Effect: returns to HOME directory

It is a good practice to include a quit key at the end of the menu in each

subdirectory.

NEWGRAPHS

« CLLCD DUP | Clears screen, duplicates expression

1 ->LIST | Forms a list with expression

'EQS' STO | Stores list in 'EQS'

STEQ DRAW | Stores expression in 'EQ’, draw

LCD— 'SCR' STO | Forms image-string, stores in 'SCR'

DGTIZ » | Activates cursor

ENTER| 'NEWGRAPHS

Input: expression Effect: graphs expression, stores graph

The program NEWGRAPHS graphs the expression on level 1, and thus

automatically executes [PLOT| [STEQ|™M and [DRAW|™M. So it graphs a function

on level 1 in one keystroke if you have the NEWG M key showing on the menu line.

More important than saving keystrokes, however, is the fact that if you graph a

function with NEWGRAPH, you then have the programs discussed below to use with

your graph.



14 CHAPTER1

EXAMPLE 10.

Graph f(x) = cos x using NEWGRAPHS.
 

Key in X [TRIG| (COS| [USER|(andM, if necessary)M

 

 

   
 

GETG

« SCR —»LCD DGTIZ » |ENTER

Input: none

OVERDRAW

« DUP I

1 »LIST I

EQS + I

'EQS' STO I

STEQ I

SCR -»LCD I

DRAW I

LCD—- 'SCR' STO I

DGTIZ » |

OVERDRAW
Input: expression

'GETG

Effect: recalls last graph to screen

Duplicate expression

Form 1-element | ist

Combine with list in EQS

Store comb. list in 'EQS'

Store expression in EQ

Convert string in SCR to screen

Graph expression

Form string for screen, store in SCR

Activate cursor

Effect: draws new graph over old

The program OVERDRAW draws the graph of the expression on level 1 over

the screen of the last graph drawn with NEWGRAPHS. Its end effect, showing both

graphs together on the screen, is the same as that achieved either by the method of
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combining image strings, or by graphing the equation equating the two functions. It

involves fewer keystrokes than saving and combining strings; in fact, its program

involves that technique as you can note above, Furthermore, it is sometimes

desirable to see the second graph plotted over the first, rather than having them

appear simultaneously. If you OVERDRAW the graph of a function onto a screen

that already contains the graphs of two functions, then you get all three combined,

and so on.

EXAMPLE 11.

Use NEWGRAPHS to sketch the graph of f(x) = x> - 2x%- x + 1 and then use

OVERDRAW to draw the graph of g(x) = 3x? - 4x - 1 over the graph off.

Key in 'PPAR

'X A3 -2*XA2-X +1 |[ENTER| |[NEWG
 JM
 

 

 

= e

- -

= e

-
t

.
T - —
—

- -

   . - 2
 

 

 

 

SN

- e - - - - - -

 

   
 

If you know about derivatives, you will note that g is the derivative of f. As g

plots, you can see that, at the values of x where g crosses the x axis, f has a high or

low point. What kind of point does f have at the values of x where g has a high or

low point?

REDRAW
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« CLLCD EQS SIZE 1 SWAP FOR I EQS I GET

STEQ DRAW NEXT LCD- 'SCR'STO DGTIZ »

ENTER|' REDRAW

Input: none Effect: used in BOX and ZOOM

This is simply a utility program for use with BOX and ZOOM below.

BOX

« PMAX PMIN REDRAW » |ENTER| 'BOX

Input: coordinate pair, coordinate pair Effect: gives a new graph with

chosen corners

This program allows you to choose new lower left and upper right corners for

the graphing screen, either by entering them on the stack or by choosing them from

a graph with the cursor and entering them on the stack with [DEL|. The upper right

corner must be the bottom point on the stack.

EXAMPLE 12.

Graph f(x) = x> - 1.14x% - 1.37x + 1517. Many problems in engineering and

science do not have "nice” whole number coefficients. Once you have entered the

function in the HP-28S, the "ugliness" of the coefficients is immaterial.

Key in ' PPAR [PURGE]

'XA3-114*X A2- 137 * X + 1517 [ENTER| [NEWG|M

 

 -
t

- - - - - r - - e - -
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It is not clear what the graph is doing around x = 1, where it seems to touch the

x axis twice, so let's take a closer look at that part. Move the cursor to a point just

left and below where f first hits the x axis and record its coordinates with.

Now move the cursor to a point just right and above where the graph leaves the x

axis and record its coordinates with. Now return to the stack display with

. I got (.7, -.2) on level 2 and (1.7,.2) on level 1; your points may be slightly

different. Now get a new screen with these points as lower left corner and upper

right corner by pressing M

 

 

   
It is clear from the new graph that the graph of f crosses the x axis at two

points near x = 1 and lies below them in between. If you want a rough idea of the

two x intercepts shown, you can the crosshairs to each of these points, record their

coordinates with and read these coordinates on the stack. We will learn later

to easily find these intercepts with the 12-place accuracy of the 28S.

ZOOM

« *W *H CENTR REDRAW »

Input: coordinate pair, real, real, Effect: moves screen to a new center and

zooms in or out horiz. or vert,

This program requires a three-part input: a coordinate pair on level 3, a real

number on level 2 and a real number on level 1. The coordinate pair on level 3 is the

point you want for the new center of the screen. It can be chosen from the graphing

screen by moving the cursor to it and using [INS|, or it can be entered from the
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keyboard. The positive real number on level 2 is a "zoom" factor for the height of

the screen. If this number is less than 1, you are zooming in; if it is greater than 1

you are zooming out by that factor. The positive real on level 1 works in a similar

way on the width of the screen.

EXAMPLE 13.

Graph f(x) = sin(5nx).

PPAR
sins * 7 X) [ENTER] [NEWG]™
 

 

- - L
o

- -

b

-

b b= = p =

    
Why does this graph look like this? (Think of the points the 28S plots with

the default PPAR.)

This function has period % = % so obviously we would see more of its graph if

we zoomed in by a factor of, say, .2. We shall keep the origin at the center, the

height the same and multiply the width by a factor of .2. The simplest way to

enter (0,0) on the stack is to press with the graphing screen up, since the

default position of the cursor is at the origin. So, do
   
[INS] [ON] 1 [ENTER] .2 [ENTER| [ZOOM|M
   

and the graph now lookslike a sine curve.

 

T
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The graphing programs given here are combinations and modifications of handout

materials distributed by John Kenelly and Thomas Tucker at their presentations.
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CHAPTER 1 EXERCISES

SET I

Enter the functions and display the graphs:

1.

2.

10.

11.

12.

13.

14.

x3-2x2+1

x4 - x2 -1

sin(mx)

cos(nx/2)

cos(10mx) Why does this graph look the way it does? Adjust the PPAR to make

the graph look more like the usual cosine curve.

sin(x°) What change in PPAR would make this graph look more like sin x (x in

radians)?

tan x

5 sin(3x)

X3 4 5x% - 2x - 5

x4-x3-3x2+x-2

x> - 1.3x2 + .32x - .02 Make the behavior of this function around and just right of

x = 0 clearer by adjusting PPAR. This is probably simpler using the programs

given in the last section although you can also correctly adjust without them.
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16. Graph the functions of Exercises 3, 4 and 8, all on one coordinate system:

(a) using the method of combining image strings,

(b) using the programs NEWGRAPH and OVERDRAW.

x

In IxI

2x

COS X
3

In(sin x)

In Isin x|

xex

X2

e*/35in(2%)

SET 1I

Graph on the HP-28S:

9.

10.

11.

12.

13.

14.

15.

16.

cos X - sin(2x)

In(e>)

In(In x)

.. -1
sin(sin "~x)

sin-l(sin X)

-1
tan(tan “x)

-1
tan (tan x)

tan-l(l/x)



CHAPTER 2

EVALUATING FUNCTIONS

Built-in functions (sin x, In x, etc. ) are evaluated in the usual way on the 285, so

this chapter will deal only with user-defined functions. Three techniques for

evaluating a function will be discussed.

I. STORING AN X AND EVALUATING

Enter the function to be evaluated in symbolic mode ( between ' ') and press

ENTER|. Key in the specific number at which you are evaluating the function and

press |[ENTER|. Key in ' X [STO|. Press [EVAL|. The value of the function at the

given x will replace the function on level 1.

EXAMPLE 1. For f(x) = sin® x + 3 cos(2x), find f(1.24561).

Enter ' SIN(X) A 2 + 3 * COS(2 * X) [ENTER

1.24561 'X EVAL

The value - 1.48965, which is f(1.24561), appears on level 1.

If you want the value of a function at several different values of x, this

technique is the clumsiest of the three methods of evaluation presented here.

However, it is close to the way we think of evaluating a function at a number: "just

plug it in".

II. USING SOLVR :

If you want to compile a short table of values of a function, a convenient way to

do this is to use SOLVR. This program is designed to find roots of equations, but the

format of its menu makes it convenient for evaluating functions. With the function

you want to evaluate on level 1, press |SOLVE| then [STEQ M then

22
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SOLVR/M . The SOLVR menu has just two entries in this case, X and EXPR= .

Keying in a number, then pressingM (the menu key, not the alphabet key), and

then pressing EXPR= M , will give the value of the expression in EQ at the number

entered.

2
EXAMPLE 2. Make a table of values for the function f(x) = %{;—1 using x = 1, 10,

100 and 1000.

Key in'(X+2)/(2*X + 1)

[soLv] [sTEQ|M [soLvr|M

Now, keying in 1 M EXPR=|M gives 1, which is f(1).

Now, keying in 10 M EXPR=|M gives .57143, which is f(10).

Now, keyingin 100  [X]M [EXPR=]M gives 50746, which is £(100).

Now, keying in 1000 [X]M [EXPR=]M gives 50075, whichis £(1000).

What would you say is the limit of f(x) as x—e ? The values above make .5

 

 

seem reasonable for this limit. Can you show that the limit actually is .5? Looking

at the graph will give us another view of the situation:
 

'PPAR [PURGE| [PLOT| [DRAW|M
 

 

----------------------

 

    
1

Although x only goes from -6.8 to 6.8 in this view, the idea that f(x) —» 5 as x

either increases or decreases without bound is suggested by the graph. This initial

indication can be further confirmed by repeated expansions of the domain of x by use

of theM key. Thatis,
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ON| 10 [*WM [DRAWM gives -68 < x <68g
10 [*wM M gives -680 < x < 680

10 [*W|M [DRAW|M gives -6800 < x < 6800

When using SOLVR, if you enter an equation into EQ instead a function, the

SOLVR menu has three entries, X , LEFT= and RT=. This gives a convenient way to

make a table of values for two functions you want to compare.

3x2 + 2x + 4
x+1 and

EXAMPLE 3. Make a table of values for the functions f(x) =

g(x) = 3x - 1 for x = 1, 10, 100 and 1000. Note that f(x) is the left side of the

equation, so pressingM after entering a value for x will give f(x) on level 1.

Similarly, g(x) is the right side of the equation, so pressingM will give g(x)

on level 1.

 

Key in ' (3*XA2 +2*X+4)/(x+1)=3*X-1 [ENTER| [sOLV| [STEQ|M [sOLVRM

1 M LEFT=|M  gives 4.5 for £(1)

 

and M gives 2 for g(1)

0 XM M gives 29.455 for £(10)

and M gives 29 for g(10)

100 [X]M [LEFT=[M  gives 299.0495 for £(100)

and M gives 299 for g(100)

1000 [X]M [LEFT=|M  gives 2999.005 for £(1000)

and [RT=|M gives 2999 for g(1000)
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If you perform the division indicated in f, you can see that

+ __xil and that the line y = 3x - 1 is an asymptote for the graph of y = f(x). The

values above give evidence for this. Again the graph gives more evidence:
  

'PPAR [PURGE]| [SOLV| [RCEQ|M [USER] [GSHO[M [NEWGM doesn't
give many points, so we will do 10 1

[ZOOM™ and get

  

 

 

   -
.',-I"- -
P
 

We compressed the graph vertically by a factor of 10.

We can see on the graph what was mentioned above: f — 3x -1 as x — o0 and as

X — -0,

III. USING A SIMPLE PROGRAM

This is the most useful way to store a function for later recall as an algebraic

expression or for later evaluation at a specific value of x. We will have occasion to

use this method many times. The procedure is simple:

For a function f, key in « » X 'F(X) [ENTER| 'FEV [STO].

This program is now on the USER menu under the name you chose (my choice

was FEV). If you key in X M the algebraic expression for the function will

appear on level 1. If you key in a real number and then press M, the value of

the function at that real number will appear on level 1.
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3
EXAMPLE 4. Evaluate f(x) = xx - 11 atx=2,15, 1.1 and 1.01.

Keyin « > X 'O -D/AX-1D 'FEV

2 [FEV|M  gives 7 as £(2)

1.5 [FEVIM gives 4.75 as £(1.5)

11 [FEVIM gives 331 as f(1.1)

1.01 [FEV|M gives 3.0301 as £(1.01)

It appears that as x — 1 the limit of f(x) is 3 and a little algebraic

simplification of the expression for f(x) will allow you to confirm that the limit of

f(x) is 3 as x approaches 1. Also note that X returns the expression for f(x)

to level 1. If a numerical result is presented where you enter x M, then the

variable X has a stored value. The stored value can be removed with x' PURGE|.

It is interesting to graph f and see how the graph relates to what we found above.

Since we are interested in values of f close to 3, we will do 3 EIEJM before

graphing.

x [FEV]M [LoT] [sTEQ)™
'PPAR [PURGE| [NEXT| 3 [*H|M [PREV] [DRAWM 
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CHAPTER 2 EXERCISES

 

 

SET I

x7 -128
Make a table of values of the function f(x) = ) for x = 3, 2.5, 2.1, 2.01 and

2.001.

. sin x
Make a table of values of the function f(x) = X for x =1, 0.5, 0.1, 0.01 and

0.001. What number does f(x) approach as x approaches 0?

Make a table of values of the function f(x) = 36x* - 216x° - 18900x2 + 195x + 250

for x = -3, -2, -1, 0 and 1. Between which consecutive pairs of these integers does

f have zeroes?

Make a table of values of the function f(x) = x4 + 2x3 - 19x2 - 29x + 37 for x = -5,

-4,-3,-2,-1,0,1, 2,3 and 4. Between which consecutive pairs of these integers

does f have zeroes?

3x”+ 4x
x+1

g(x) = 3x + 1 for x = 10, 100, 1000 and 100000. The relation between f and g is

further illustrated by graphing both on the same set of axes.

Make a table of values of the function f(x) = and the linear function
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SET 11

1. Make a table of values of the function f(x) = In x for x = 0.5, 0.2, 0.1, 0.01 and

0.001.

2. Make a table of values of the function f(x) = x In x for x = 0.5, 0.2, 0.1, 0.001 and

0.001.

3. Make a table of values of the function f(x) = x ex, for x = -1, -10, -100, -1000 and

-10000.

4. Make a table of values of the function f(x) = (1 + 1;))( for x = 10, 100, 1000 and

100000. What number does f approach as x increases without bound? If you

choose a very large number for x, say x = 1.0E20, the calculator gives the wrong

answerfor f(x). Can you explain this?

5. Make a table of values of the function f(x) = lnTx for x = 10, 100, 1000 and 100000.



CHAPTER 3

FINDING DERIVATIVES

INTRODUCTION

The derivative of a function is a source of much useful information about the

function itself. The value of the derivative at x , f'(x), is the slope of the tangent

line to the graph of f at the point (x,f(x)). If the number f(x) represents some

physical quantity, the number f'(x) represents the rate of change of f at x, with

respect to x. If a function has a derivative everywhere, then its local maximum and

local minimum points can occur only at those points where its derivative is 0, or at

the endpoints of its domain.

In some applications, you are interested in knowing where the derivative of a

function f has a maximum or minimum point. That is, you would like to know not

only where f has an extreme value, but also where its rate of growth or decline has

a maximum or minimum value. At the values of x where f'(x) has a local maximum

or minimum value, the graph of f has an inflection point and f"(x) = 0 (if it exists).

Geometrically, the points of f whose x coordinates are those where f' has an extreme

value are points where the graph of f changes from bending left to bending right, or

the reverse. Clearly the derivative of f, as well as the derivative of the

derivative, are of interest in analyzing the behavior off.

DIFFERENTIATION WITH THE HP-28S

For your own efficiency and protection, you should learn the mechanics of

finding derivatives without the HP-28S. For the functions we will consider, the

differentiation process is simple enough that you can usually take a derivative by

hand in less time that it takes you to enter it into the calculator. There is also the

possibility that you might be in a situation where you need derivatives and do not

29
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have access to the calculator. So, if all you want is the derivative of a function, do

it by hand.

However, there will be many problems in which we shall make use of the

derivative of a function within the calculator. For example, we will on many

occasions graph a function on the 28S, find its zeroes on the calculator, and then find

the second derivative and its zeroes. The graphing and equation-solving will be

done on the 285 and so the differentiation might as well be done there also to keep

the entire problem within the calculator.

There are two ways of taking derivatives on the HP-285. One takes the

derivative in a single stroke of the key (with the proper input); the other takes

the derivative one step at a time with each use of the |[EVAL| key. The direct

method is the one we will normally use to find derivatives. However, the"one-step-

at-a-time" method can be useful to someone first learning to find derivatives because

of the insight it gives into the differentiation process.

The procedure for direct differentiation with the command requires a two-

part input. Before executing this command, you should have the function to be

differentiated in symbolic mode (between ' ') on level 2 and the variable of

differentiation on level 1, also in symbolic mode:

' f(X)'

4

3:

2

1 X

Then press . The derivative will appear on level 1.
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EXAMPLE 1. We will find the derivative of f(x) = sin x + cos x on the 28-S and then

graph both f and f' to see some of the relations between them mentioned above.
 

Key in ' SIN(X) + COS(X) |ENTER| |ENTER|

[GSHOM™ PraR mEwa]™
This will give the graph of f:

 

 

\\\\\\\\\........

 

    
Now we shall find the derivative of f and graph it. I chose NEWGRAPHS to

graph f so I could draw the graph of f' over the graph of f. This makes the two

graphs more easily distinguishable than when they both appear simultaneously.

Key in (or recall from EQ or use the extra copy of the expression that was

entered two times above) ' SIN(X) + COS(X) |[ENTER

x [EvTER] |4
This should give you the derivative of f, cos x - sin x on level 1.

Now do |OVERD M which draws f' over f:

7°N 2N 9 °0N------ '-" '\\ ’t' ".- o’ SNe,

 

 

    
Notice that where the graph of f' crosses the x axis, the graph of f has an

extreme point; and where the graph of f' has an extreme point, the graph of f has an

inflection point.
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EXAMPLE 2. We will find the derivative of f(x) = %sin?’ x and then graph both f

and f'.

 

'5*SIN(X) A3 [ENTER| |[ENTER|

‘x [ENTER] |3 [SWAP)
Notice that we duplicated f so that it would still be on the stack after

 

differentiation and then swapped positions with it and f' so that we could graph f

first. Your stack display should look like:

"5 * (COS(X) * 3 * SINKX ...

"S5 *SINKX) A3

Now to graph: M gives the graph of f:

4

3:

2

1

 

-----------------

 

    

 

 A -
+

N

p

N 3

   
 

Notice again that the graph of f has a maximum or minimum point where the

graph of f' crosses the x axis. There are also points of the graph of f where it levels
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out and is tangent to the x axis but does not have an extreme value. At these points

f has value 0 but its graph does not cross the x axis.

When the default plotting parameters are used, i.e., 'PPAR [PURGE]|, the

graphs in the example are somewhat compressed. Expand the vertical axis with a

5 [*H|M command followed witha [REDRA|M in the user menu and the graph

will be more attractive.

EXAMPLE 3. Find the derivative of f(x) = x? +x3 - 2x® - 2x +1 and sketch the graphs

of both f and f".

Key in'XA4+ XA3-2*XA2-2*X+1

' [ENTER
which will give ' 4*X A3+3*XA2-4*X -2 onlevel 1 and f on level 2. To

graph f first

do '"PPAR 'NEWG|M and get

 

 

   
 

You should have f' now on level 1, so to draw its graph over the graph of f

press [OVERD]™
 

 

L

e - - - -
—
—

.
.

-
.

-

   
 

Since we cannot see all of f' we will do
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[INS] [ON] 2 [ENTER] 1 [ENTER] [ZOOM|™ and get
  

 

. -ne
.e* *e

o

- - - - - - - - -

=

 

-
L

    
Now we can see the relations between f and f' noted before. At the values of x

where f has an extremum, f' crosses the x axis. At the values of x where f' has an

extremum, f has an inflection point.

THE "ONE STEP AT A TIME" METHOD

To take the derivative of f one step at a time key in ' X (f(X)) |ENTER|.

Then each use of the |[EVAL| key will perform one step of differentiation.

EXAMPLE 4. Take the derivative of f(x) = x (x2 + 4)3 +x* one step at a time.

Key in ' X(X*(XA2+4923+x4 |ENTER

This will appear on the screen as 'oX (X*(XA2+4)A3+XA4)". For functions

of one variable, the HP-28S uses dX( ) to mean the same thing as % ( ). Note also

that the "X" after the d symbol must be keyed in.

To proceed with the differentiation, press |[EVAL| and this will give

"OX(X*(XA2+4)A3)+0X(XA4)'. It used the sum rule. Another |EVAL

gives

"TOX(X)*F(XA24+4) A3 +X*X((XA2+4)A3)+dX(X)*4*XA(4-1"

The product rule and the power rule.

Another |[EVAL| gives
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"(XA2+4) A3+ X*(X(XA24+4)*3*(XA2 +4)7(3-1))+4*XA3!

It used the fact that -g—x(x) = 1 and the powerrule for [ u(x) 1™

Another gives

"XA2+4)A3+X*(IX(XA2)*3*(XA2+4)A2)+4*XA3"

It used the sumruleand 3-1 = 2.

Another |[EVAL| gives

"(XA244)A3+ X" (X(X)2*XA(2-1)3*(XA2+4)722)+4*X*3"

Finally, another [EVAL| gives

"(XA2+4)A3+X*(2*X *3*(XA2+4)A2)+4*X 23", an answer

without any differentiation symbols. You could clean up this expression some by

using the COLCT M command on the [ALGEBRA| menu. This was a somewhat

tedious way to take a derivative, but it does illustrate the steps in the

differentiation process.
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CHAPTER 3 EXERCISES

SET 1

In problems 1 through 4, take the derivative by the direct method and then

show the graphs of both f and f' on the HP-28S on the same set of axes. By noting

where f'(x) = 0, estimate the values of x where f has a local maximum or minimum.

—
o

©
®

N
&

f(x)=x4-2x3+3x-2
1

f(x) =
1+ x2

 

f(x) = (x2 - 1)3. Compressing the graph in height and expanding it in width

are useful here in interpreting the combined graph.

f(x) = \lx2+1

f(x)=x}—1

f(x) = | x2-x-2 I

f(x) = sin Ix|

f(x) = cos(2x) - sin x

f(x) = c052 X - sin X
2

10. (x) = sin( ’iz—)

Use the "one-step-at-a-time" method to find the derivative of each function

given below. Press the |[EVAL| key repeatedly until you get an expression with no

differentiation symbol in it. Note the differentiation rule used at each step. You

can "clean up" the final expression a little by using the COLCT command on the

ALGEBRA menu.

211. 7x% - 5x3 + 6x2 -3x + 2
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2
12. 2x 1 Try this one by hand using the quotient rule.

X" +
 

13. (x2 + 3x + 5)

14. (x +Vx )

SET 11

In problems 1 through 4, take the derivative by the direct method and then

show the graphs of both f and f' on the HP-285 on the same set of axes. By noting

where f'(x) = 0, estimate the values of x where f has a local maximum or minimum.

1. f{x)=Inl| x| (=In(ABS(X)))

2. fx)=1Inx|

3. f(x) = sin (e3X)
4. f(x) = o3 sin X

5. f(x) = tan"! x
6. £(x) = sin(x/2)
7. f(x) = sin-zl(sin x)

8. f(x)=eX . Note the relation between the inflection points of f and the extreme

points of f'.

9. 00 = e3sin(20)



CHAPTER 4

ILLUSTRATING LINEAR APPROXIMATIONS

AND THE MEAN-VALUE THEOREM

INTRODUCTION

In this chapter we will use the HP-28S to illustrate the underlying geometry for

the mean-value theorem for derivatives and the idea of approximating a function

with a linear polynomial. Understanding of both concepts is enhanced by keeping

the graphical aspects in mind.

LINEAR APPROXIMATIONS

The linearization, L(x), for a function f at a is the linear function whose graph

is the tangent line to the graph of f at the point (a,f(a)). So it is the linear function

with slope f'(a) whose graph contains (a,f(a)): L(x) = f(a) + f'(a)(x - a). Sometimes

a problem that is unworkable or very difficult with f is much simpler if f(x) is

replaced by L(x), and valid conclusions can be reached for values of x near a. The

graph of L is the straight line that "best fits" the graph of f at the point (a,f(a)).

EXAMPLE 1. Find the linearization of f(x) = Vx at x = 1, draw a graph on the 28S

which shows both graphs together on the same axes and make a table of values of

both functions for x = .5, -5, .9, -.9, .99, -.99 for comparison.

f'(x) = 1 so f'(1) = % and L(x) =1 +% (x-1)=.5x +.5
T 2x

Do ' VX PPAR [NEWGM to get the graph of f:
.7 

.
- '-”

 

   
 

38
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Now draw the linearization over this with

 

'5*X +.5 [ENTER] [OVERDM to get:
 

 

=,
144"%

 

   
 

For the table, one convenient technique is to key in

 

'VX = 5*X +.5[ENTER| [SOLV] [STEQ] [SOLVR|M
 

and proceed as outlined in Chapter 2 (I FIXed my screen display at 5 decimal

places):

X 0.5 0.9 0.99 0.999

f(x) 0.70711 0.94868 0.99499 0.99950

L(x) 0.75000 0.95000 0.99500 0.99950

Notice the increasing agreement between the two as x gets closer to 1.

EXAMPLE 2. Find the linearization of f(x) = x3 -x2 - 2x + 1 and draw the graph on

the calculator showing both f and L together on the same axes. Make a table which

shows the values of both f and L for x = .5, -.5, .9, and .99.

f(x) = 3x> - 2x - 2 and so £(1) = -1 and (1) = -1 so LX) = -1 -(x - 1) = x. To get
the graph of f do 'XA3-XA2-2*X+1 [ENTER| [NEWGM :

 

 

 

 L
o b

   
 

 

Now get both graphs with '-X [ENTER| [OVERD|M:
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For the table we can use the same procedure as in Example 1 and get

X 0.5 -0.5 0.9 .99

f(x) -0.12500 1.62500 -0.88100 -0.98980

L(x) -0.50000 0.50000 -0.90000 -0.99000

THE MEAN-VALUE THEOREM FOR DERIVATIVES

The mean-value theorem is of the greatest importance in our effort to learn

about the behavior of a function by investigating its derivative. Almost all of the

important theorems we use depend on the ideas of the mean-value theorem for proof:

"if a function has zero derivative for all x on an interval, it has constant

value on that interval"

"if the derivative of a function has positive value for all x on an interval,

the function is increasing in value on that interval”; and so on.

The mean-value theorem says:

"if a function is continuous on the interval [a,b] and differentiable on the

interval (a,b), then there is a number ¢ between a and b such that f'(c) =
f(b) - f(a) »
b-a -

Graphically, the conclusion of the mean-value theorem says that there is a

number ¢ such that the tangent line to the graph of at (c,f(c)) is parallel to the line

joining (a,f(a)) and (b,f(b)). It is this geometry that we will illustrate in the

examples and exercises.
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EXAMPLE 3. The function f(x) = Vx satisfies the hypothesis of the mean-value

theorem on the interval [0,1]. It is continuous on [0,1] and differentiable on (0,1]
f(1) - f

(f'(0) does not exist). Ll)-% = 1, so the mean-value theorem says that there must

1
be a number ¢ between 0 and 1 such that f(c) = 1. f(c) = —=

1
SO —

e 2Vc
1
5 soc= ‘II . Draw the graph of f on the HP-28S, then overdraw the graph of the

=1and\/€=

line joining (0,0) and (1,1) and then on this second graph draw the graph of the

tangent line at the point (% ,% ).

 

Do 'vX [ENTER| [NEWG|™ to getthe graph off:
 

 

7

 -
t

-

- -

-

b b

-

b

- -

   
 

The line joining (0,0) and (1,1) is the line y = x so

do'X [ENTER| [OVERD|M to get this line on the graph:
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The line through (% ,% ) with slope 1isy = x + % SO

do'X +.5 [ENTER| [OVERD|M to get the tangent line on the graph:
 

 

 

 

\
N \
N

   - \
N s -
l
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CHAPTER 4 EXERCISES

Problems 1 through 5 of this assignment involve graphing both a function and its

linear approximation (tangent line) at a point (a, f(a)), and also making a short

table of values of both the function and its linear approximation for some values of x

near a to see the closeness of the approximation. To graph: find the equation for

the linearization L(x) as described in the text and DRAW the graph of the equation

f(x) = L(x). To make up the table of values, use one of the methods described in an

earlier chapter ro evaluate f(x) and L(x).

1. Graph, simultaneously, on the HP-28, the function f(x) = x4 and the tangent line

to this graph at the point (1,1). (You will get a better picture of this if you

multiply,say 3, #H .) Make up a table which shows values of both f(x) and

the tangent line function L(x) at x = 1.5, 1.1, 1.01 and 1.001.

Graph, simultaneously, on the HP-28, the function f(x) = sin(2x) and the tangent

line to this graph at (0,0). Make up a table which shows values of both f(x) and

L(x) at x = 0.5, 0.2, 0.1, 0.01 and 0.001.

Graph, simultaneously, on the HP-28, the function f(x) = \]x2 + 9 and the tangent

line to this graph at the point (-4,5). (Again, multiply 4 or 5 #H.) Make up a

table which shows values of both f(x) and L(x) at x = -4.5, -4.1, 4.01 and -4.001.

Graph, simultaneously, on the HP-28, the function f(x) = x3 -x - 1 and the tangent

line to this graph at the point (1,-1). Make up a table which shows values of

both f(x) and L(x) for x = -1.5, -0.5, -1.1, -0.9, -1.01 and -0.99.

Graph, simultaneously, on the HP-28, the function sin x + cos x and the tangent

line to this graph at the point (0,1). Make up a table which shows values of

both f(x) and L(x) for x = -1, 1, -0.5, 0.5, -0.1 and 0.1.
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In Problems 6 through 9, graph the given function f and graph the line through

the points (a,f(a)) and (b,f(b)). Find the number c which satisfies the conclusion of

the mean-value theorem and show the line tangent to the graph of f at (c,f(c)) on

your graph.

6. f(x)=x3,a=0andb=1.

1 1
— ,a= 5 and b=4.
X2 2

7. f(x) =

8. f(x)=x>-x-1,a=0andb=2.

9. f(x)=x3-x-1, a=0and b =2.



CHAPTER 5

SOLVING EQUATIONS

One of the ways in which the HP-28S calculator widens our horizons in a

calculus course is by greatly enlarging the set of equations that we can solve. Some

of the most important procedures of calculus involve finding zeroes of a function. In

traditional calculus texts such problems are limited to polynomials which will

factor easily and to very simple trigonometric, exponential and logarithmic

functions. Using SOLVR on the HP-28S, we can solve a considerably expanded set of

equations.

To find a root of a function on the HP-28S, the SOLVR operation requires an

initial estimate of the root, supplied by you. Probably the best way to get these

initial estimates is from the graph of the function. Get the graph of the function

displayed so that you can see all the roots (x-intercepts) if possible (or at least all

the roots in one period for a periodic function). This requires some thought and a

little knowledge of algebra and calculus.

EXAMPLE 1. Graph f(x) = x* + x> - x% - x - 1.

Keyin: 'XA4+XA3-XA2 -X-1

mExT™ + [FPARM [FURGE
[PREVIM [sTEQ|M [DRAW|M

 

 

 

 

 

    
A fourth degree polynomial can have at most four roots. So, if you can see four

x-intercepts for a fourth degree polynomial, you can see all the roots. The

45
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derivative of a fourth-degree polynomial is a third degree polynomial and can have

at most three roots; so the graph of a fourth degree polynomial can have at most

three points where it has a horizontal tangent. If you can't see four x-intercepts of

the graph of a fourth degree polynomial but can see three points where it has a

horizontal tangent, then you are seeing all the roots or probably can see them with

an adjustment of the width of the plotting screen. The polynomial in Example 1

above has two roots; you will be asked to find them in an exercise.

We will now illustrate finding roots of functions with an example which would

be very tedious to do without some sort of numerical root-finding program like

SOLVR:

EXAMPLE 2. Find all the values of x for which cos x - x = 0.

To graph cos x - x, key in '

[Co3™ x)- x
[pLoT| [sTEQ|M [DRAWM
 

 

 T

+

 

    
Not much of the graph shows but we know that -1 < cos x < 1 so the equation can

not have a root outside of -1 < x < 1. Thus the root that shows on the graph is the

only one. On the graphing screen, the cursor is moved with the four white menu keys

that have arrowheads above them. Its default position is at the origin. Move the

cursor to the right until it coincides with the root shown on the graph, then press

INS|, the leftmost of the white menu keys, to record the coordinates of this point

on the stack.
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Return to the stack display with . The point that I chose is shown as

(.7,0). You may have positioned the cursor a little differently and obtained a

slightly different point - which is fine. The x coordinate of the point is just a

starting point for SOLVR .

Now key in: [SOLVRI™
You should have two commands showing on the menu line: X and EXPR=.

Press the M menu key which enters your point as a first guess for SOLVR.

X: (.7,0) will appear at the top of the screen.

Now press M to solve for x. SOLVING FOR X will appear at the

top of the screen.

When the root is found, it will appear both at the top of the screen and on

level 1. In this case the root is .739085133215.

EXAMPLE 3. The equation cos x - x = 0 in Example 2 is equivalent to the equation

cos x = x. The solution of this equation is the point where the graph of y = cos x

crosses the graph of y = x. First we will graph both of these functions on the same

axes. The simplest way to do this is to graph the equation cos x = x:

' PPAR 'COS(X) = X

[pLoT| [STEQ|M [DRAWM
 

 

 

 

    
Now move the cursor to the point of intersection of the two graphs. Record its

coordinates on the stack with and return to the stack display with .
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The point I got was (0.8, 0.7). Your point may be a little different, depending on

where you stopped the cursor. Now do

[Sotv] [Sorva™
XM [ED] XM

We get for the solution, of course, x = .739085133215.

EXAMPLE 4. Find zeroes of the function x4 - 3x3 - x2 +3x+ 1.

Key in:'XA4-3*XA3-X2A2+3*X+1 [ENTER

'PPAR [PURGE| [PLOT| [STEQI™M [DrRAWM
 

 

 

 

    
Not very much of the graph shows, so we compress the graph in height by a

factor of 2:

 
Press[ON| [NEXT| 2 [* H/M

PREv] [omaw]™
 

 

.
" -.

 

- e -

o
-

.
.

. - - - - -

    
That's better. The low point of the graph to the right is still off the screen, but

we can see all four x intercepts and that is what we are interested in here.

Now with the graph still displayed on the screen, use the cursor keys to move

the crosshairs near the rightmost x-intercept. When you have it on this intercept,
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press to record the coordinates of this point on the stack. Now move the

crosshairs to the next x-interceptto the left and press to enter this point on

the stack. Repeat this procedure with the intercept just to left of x = 0 and finally

with the leftmost one near x = -1. Return to the stack display with.

You may have chosen slightly different points but my stack display looks like

this:

3,0

(1.2,0)

(-.3,0)

(-.8,0)-
N
W

Now we want to use these points as our initial guesses for the zeroes of our

function.

Press [SoLvRlM (XM
This enters your point on level 1 as a first estimate for x. This point is now

displayed at the top of the screen as x. (SOLVR will use only the first coordinate of

the point.)

To solve for x with this estimate,

press M :

When the calculations are complete, the root -.827090915283 is displayed on

level 1.

(3,0)

(1.2,0)

(-.3,0)

-.827090915283i
l
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Save it:

You now need to repeat this procedure with the remaining three estimates to get

the other roots. Since you need the point that is currently on level 2 to be on level 1

to proceed, press. Then to solve for x:

M M

This gives the root -.338261212718.

4 (3,0

3: (1.2,0)

2 -.827090915283

1 -.338261212718

To get the point now on level 3 to level 1 to use as an estimate for the third

root, do

3 |ROLL|, which will give

4 (3,0)

3: -.827090915283

2 -.338261212718

1 (1.2,0)

Then do M M which will give the third root on level 1:

4: (3,0)

3: -.827090915283
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2: -.338261212718

1: 1.20905692654

Doing 4 |ROLL| to get the point on level 4 to level 1 and then repeating the

above to solve for x gives all four roots:

4 -.827090915283

3: -.338261212718

2 1.20905692654

1 2.95629520147

Notice the basic procedure: with your initial estimate for x on level 1, press

Mon the SOLVR menu to enter the estimate, then press M on the

SOLVR menu. The root that SOLVR finds from the initial estimate will then

appear on level 1. This procedure should work on almost all the problems we will

encounter.

However, if you should have trouble getting SOLVR to home in on the root you

want, the procedure can be refined. Instead of an initial estimate for x, you can give

SOLVR two values of x, one on either side of the root. These should be entered, in

the form of a LIST of the two values, as x on the SOLVR menu . Again, these can

be points chosen from the graph by the crosshairs and INS, and SOLVR will use

only the x coordinates of the points. A still further refinement is to present SOLVR

with a three-value estimate in which the first value is near the root and the next

two bracket it on either side; again this should be entered as x on the SOLVR menu

in the form of a LIST of the three values. As before the three values can be points

chosen graphically.
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CHAPTER 5 EXERCISES

SET I

Find zeroes of the functions or solutions of the equations:

1. x3+5x2-2x-5

2. x2-x3-3x%4x-2

3. 6x}-20x3 + 49x% - 34x + 8

4. sinx=x2

5. sinx=

W
[
X

6. cos x = tan x. Find the solutions between 0 and 2r. Can you work this problem

easily without using SOLVR ?

7. x3= x2+1

8. sin x = cos(3x), 0 < x < 2m.

9. x=tanx, 0 £ x < 2r.
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SET II

Inx+x=0

eX=1Inx

" = cos'1

In x = sin x

e* = cos x. Find the solution for which -2 < x < 0. How many times do these

graphs intersect?

X
e =tanx

-X
e =X

2
-X

e =X



CHAPTER 6

CURVE SKETCHING

INTRODUCTION

The "important" points of the graph of a function are the intercepts, and the

local maximum, local minimum and inflection points. The local extreme points are

the points where the graph "changes direction”, that is, goes from increasing to

decreasing or the opposite. The inflection points are the points where the graph

changes from bending left to bending right, from being concave up to being concave

down, or the opposite. (A fact of importance in many applications is that the x-

coordinates of the inflection points of f are the x coordinates of points where f' has

an extreme value.) If we can display on the calculator screen a graph that shows all

the extreme points, inflection points and intercepts of a function f and we know the

behavior of f as x — o and as x — -e0, we can feel confident that our graph gives us a

good picture of the behavior of f, even though it displays f only for a limited range

of values of x. For functions involving trigonometric functions, if the function is

periodic, knowing the period will tell us when we have enough of the graph to get a

full picture of the function's behavior.

Since, even though we can expand the range of x coordinates on the screen, we

are always looking at the graph on a finite interval, the matter of knowing that we

have all the intercepts, extreme points and inflection points becomes a matter of

importance. A polynomial function of degree n can have at most n roots, so if we can

see n x-intercepts on our graph, we have all of them. It's derivative is a polynomial

of degree n - 1, so the graph of f can have at most n - 1 extreme points. Even when

the function may have less than n intercepts, when we see n - 1 extreme points, we

have essentially the full picture. For functions that have vertical or horizontal

EA
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asymptotes, we need to know this. From such considerations , you can often tell that

you have all the important points of a graph .

We can, of course, get an approximate idea of the coordinates of the extreme

points and inflection points of the graph of a function by plotting its graph on the

calculator. Usually, however, we want to know these coordinates with more

accuracy than we can estimate from the screen display.

You will recall from your textbook that the local extreme points of f occur at

those values of x where f' either does not exist, or is equal to 0 and where f' is of

opposite sign left and right of the point. The inflection points occur at values of x

where " has similar properties. We will outline a procedure below for finding

these values of x and thus the local extreme points and inflection points of the graph

of a function f for a much larger class of functions than is usually treated in calculus

textbooks. The behavior of f as x — o and as x — - o is sometimes clear by

inspection and sometimes requires something like 1'Hopital's rule.

The use of the HP-28S in a calculus course greatly enlarges the family of

functions whose graphs can be sketched. Most of the functions given as curve-

sketching exercises in calculus textbooks are carefully selected so that their

derivatives and second derivatives will factor easily or at least are simple enough

so that the critical values and the similar values for the second derivative can be

found by the techniques of high-school algebra. With the 28S, using M,

along with graphing to get initial estimates for the roots, critical values can be

found for almost any function whose graph you would want to sketch. Many

problems from engineering and science have coefficients that are not whole numbers

but numbers given to several decimal places. Once such a problem is entered into the

calculator, it is no harder to go through the procedures outlined below than it is for

a problem with "nice" coefficients.



56 CHAPTER 6

THE GENERAL TECHNIQUE

Given an equation of the form y = f(x) we would like to be able to sketch its

graph, showing the exact (to the 12-figure accuracy of the HP-28) coordinates of any

intercepts and any local minimum, local maximum or inflection points. A procedure

for doing this is outlined below.

Enter f(x) and store it under a name of your choice. A very useful way to enter f

is as a simple program, as discussed in Section III of Chapter 2; with this you can

both recall f in algebraic form and evaluate it at specific values of x. Now graph f

changing the plotting parameters as needed to get a graph that shows the important

points. If you are unable to get a graph which shows all the important points, go on

to the next step.

Recall f, take its derivative using the command and store the derivative

under a name of your choice.

df o :
Recall 7, take its derivative using the command and store the second

derivative under a name of your choice.

You are now ready to find critical numbers for f. You need to use SOLVRM

find roots of the equation f'(x) = 0. Use the procedure given in Chapter 5 to find

roots of f'(x) = 0. For each critical value, evaluate f there. With the values of f at

the critical numbers, you probably can now set the plotting parameters so that you

can get a good representation of the graph of f on the screen if you could not do so

originally. To find the coordinates of the inflection points, you need to repeat, for

f', the procedure used above to find roots of f. To find the x intercepts, you now

need to find the roots of f, using this same procedure.
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On a test, you may sometimes be asked, when it is feasible, to sketch your

graph of f on a coordinate system in which the unit distance is the same on both

axes. The graph you sketch for yourself using the max/min and inflection points

found will probably be a truer picture of f than the final graph shown on the HP-28,

since your graph will not have the vertical compression that is usually necessary to

fit a graph to the calculator screen.

EXAMPLE1.

2
Sketch the graph of G(x) = X+2382 +2x + 6 showing the coordinates

of the important points correct to 3 decimal places.

Enter G(x) into the HP-28 in an evaluation program from which you can both

recall G(x) and evaluate it for specific values of x:

2
« 5 X 'X +3x4-2x3-8x +2x+6"'»

Save this under a name of your choice, for example: 'GEV

Recall G(x): x [GEV]M

Graph G: [STEQM
( [NExT| [PPAR|M [PURGE| [PREV] )
 

 

DRAW

 

 

- - - - -
.

- - - - -

    
Not much with the default PPAR. Try

s [FH] [FREV] [DRAW]
 



58 CHAPTER6

 

No Ve

- - - - - 3 .

 

    
This is better. Note that although we see only three x intercepts of f, four extreme

points are shown and this is all that the graph of f can have since f is a fourth-

degree polynomial. Thus we can see all the important points. Furthermore, since f is

a fifth-degree polynomial with positive fifth-degree term, f(x) — o as x — « and

f(x) > — 0 asx — - . To find the coordinates of the extreme points shown, get G(x)

on stack level 1; take its derivative and store it:

Now recall the derivative andM its graph:

 

g - - - e

.
.
.

e
o)

.
®
s

- e
2

- e
o

o -

 

    
Notice that we can see all the x intercepts.

Move the crosshairs along the x axis with the cursor keys to a point close to

each root and record the coordinates of each point with [INS|, then return to the

stack display screen with. For my choice of points, I got:

4: (1.1,0)

3: (.1,0)

2: (-1.3,0)

1: (-2.3,0)

dG
Solve for the roots of ax
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XM [
This will give you the root corresponding to your point estimate on level 1.

Store it: 'DGR1 .

Repeat this process to get the remaining three roots and store them. You can jot the
d : , o

roots of 7~ down on a piece of paper if you don't want to store them, However, it is

convenient to keep everything in the calculator. Also, unless you jot down all 12

digits, you lose some accuracy. If you want to keep your USER menu neat, you can

store the 4 roots in a LIST. You can now find the y coordinates of the extreme points

by recalling each of the roots of % found and finding the value of G there with your

evaluation program for G. Store each of these

'GXTR1 'GXTR2 etc.

Here is an alternate method. With a root of G' on level 1, press |ENTER|. This

duplicates the entry on level 1 and moves everything else up. Then do |USER

'GEV|M. This gives you the root on level 2 and the value of G at the root on level

1.

Now do [COMPLX]| then M. This command takes real numbers on

levels 2 and 1 and makes them the coordinates of a point (complex number ). Thus

you now have on level 1 an extreme point of G. Store it under a name: 'GXP1

. Repeat with the other roots of G'.

d%G
Now find d_f and store it:

X

BEM 'D2G [5T0].
Now recall [D2G|M andM its graph:
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- - - - -

 - | _ | -
—
—

    
After doing 2 *H, we produced the graph shown above, which is fine since it

shows what we want, the roots.

Get initial approximations for the roots by moving the crosshairs close to the x-

intercept points and entering these points with . Now use SOLVR with these

initial approximations to find each of the roots of dd—Gz, storing them as you find
X

them. These are the x-coordinates of the inflection points of G. Now find the values

of G at each, using your evaluation program.

MFinally, recall G(x), |DRAW|™ its graph, and find its x-intercepts by entering

points near them on the stack as initial estimates and using SOLVR to find the

roots.

Usually you would now be asked to sketch your own graph of G, with equal unit

distances on the two axes if possible, showing both coordinates of important points.

This would give a graph of G without the vertical compression often needed to fit a

graph to the screen.

Here, however, I will just show the screen graph of G again and list the points:

 

.
" ‘.

 X

    
x-intercepts: -2.607, -1.668, -1.000

local maximum points: (-2.275,3.015), (0.121,6.122)
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local minimum points: (-1.335,-0.881),(1.089,1.858)

inflection points: (-1.894,1.333), (-0.605,2.627), (0.699,3.692)

A TRIGONOMETRIC EXAMPLE

Plot the graph of f(x) = cos(2x) - sin(3x) and find both coordinates of the

important points. Again, enter this function as a simple program:

« > x ' cos(2*x) - sin(3*x)' » |ENTER| 'SCF

Now do x to recall f to level 1. Graphing with the default PPAR puts

the lower extreme points off the screen so do 1.5 [E]M before executing the

MDRAW/|™ command again. This gives the following graph:

 

..‘ .

 

)
=

°
® = e -

o
L

.

o -

    
This function has period 2n. You can tell this by inspection of the graph or by

noting that the period of sin(3x) is 2515 and the period of cos(2x) is ®. So we need to

find the extreme points, inflection points and intercepts between 0 and 2r.

Recall the function to level 1 and take its derivative. WM the graph of

the derivative:

 

- - - - - - -
+
.

.

= - - - -

 

    
Although we can't see the extreme points, we can see the zeroes which is all we

need here. Move the crosshairs to each of the points, starting at the right, where



62 CHAPTER6

df
the graph of = crosses the x axis and record the coordinates on the stack with

INS|M . Now, get back to the stack display screen and use [SOLVR]™ to find the
df . . e : . .

zeroes of7 using these points as initial guesses. A hint on stack manipulation here:

when you enter the point on level 1 as x and then solve for x, you will have this

solution on level 1. To proceed with the second point you need it on level 1.

Executing 2 |ROLL| will bring the point on level 2 down to level 1 and move

everything else up. After you have found this solution, executing 3 |ROLL| will

bring the point on level 3 down to level 1 and move everything else up. And so on.

These roots of f'(x) = 0 are the x coordinates of the extreme points of the graph off.

You will need to store these roots and the corresponding values of f in some way.

Repeat the process above with f" to find the inflection points, and then find the

roots of f(x) = 0 for the intercepts. The graph of f together with the important

points:

 

-y ™,y oo, .

- -
.

- - -

.o
e

- - e
-

.
.
-

N
I

.
..

    
x intercepts: 0,31416, 1.57090, 2.82743, 4.08407, 5.34071

local maximum points: (1.57080,0), (3.51027,1.63418), (5.91451,1.63418)

local minimum points: (0.76663,-0.70825), (2.37496,-0.70825), (4.71239.-2)

inflection points: (0.14651,0.53188), (1.14662,-0.36735), (1.99497,-0.36735),

(2.99509,0.53188), (4.12998,-0.21940), (5.24980,-0.21940)
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AN EXAMPLE WITH AN ASYMPTOTE

3_.2

"2 Since £(1) = 2, with the default

PPAR this part of the graph would be off the screen so we will do 5 @ and then

DRAW/|.

We consider the function f(x) =

 

-

 

- - - -

.
-
"
.
'

:

- - - - - -

    
This graph has the y axis as a vertical asymptote and just one local extreme

point - a minimum to the right of the y axis - and just one inflection point. If we find
f

and graph g; and then use SOLVR to find its root we get x = 1.19743. Evaluating f

2

here, we get (1.19743, 1.90665) as the minimum point. If we find and graph 3—; and
X

then use SOLVR to find its root and then evaluate f there, we get (-1.25992, 1.25992)

as the inflection point. The x intercept is -1.
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CHAPTER 6 EXERCISES

Set 1

For each of the functions given below, sketch its graph showing both coordinates of

any local maximum, local minimum or inflection points.

1. f(x) = x + 3 sin x, on the interval [0,2r].

2. f(x) = x3 - X + 2, on the interval [-2,2].

3. f(x) = sin x + 2 cos(3x)

4. f(x)=x3-3x2-5x+2

5. f(x)=x4-x3-3x2+x-2

6. f(x) = x5 -(13)x% + (32)x - .02

7. 0 =% +3x -x0 3x° - x + 3

8. f(x)=xsinx,0<x<2rn

9. f(x) =sin(3x) - cos(2x), 0 £ x < 2x

10. f(x) = sin(x2/2), 0 < x < &
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Set 11

For each of the functions given below, sketch its graph showing both coordinates of

any local maximum, local minimum or inflection points.

1. f(x) =xInx

2. f(x) = x e2X

3. f(x) = e%sin x (find the first high, low and inflection points right of x = 0).

4. fx)=e-xe

5. f(x)=x"

sin x
6. f(x)=x ,0<x<2n

7. f(x) = (sin X)X, 0<x <™
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PARAMETRIC EQUATIONS

INTRODUCTION

The first type of plane curves treated in calculus are the graphs of equations

like y = f(x). However, there are many plane curves which are not the graphs of

functions. For instance, the unit circle is not the graph of a function since pairs ofits

points have the same x coordinate and a function can have only one value for each x

in its domain.

Though the unit circle is the graph of the relation x2+ y2 = 1, this relation will

not accomplish very readily a task that is often required in applications: to describe

a path in the plane which goes around the circle with increasing values of the

independent variable. But we can describe such a path by introducing a parameter t

and expressing the x and y coordinates of points as functions of t. If we let x = cos t

and y = sin t, then X + y2 = cos? t + sin? t = 1 and so all the points in the plane

whose coordinates satisfy this pair of parametric equations for some real number t

lie on the unit circle. A little thought shows that if we take 0 < t < 2 then this

will give one "orbit" around the unit circle, starting at (1,0) when t = 0, travelling

along the circle counterclockwise and reaching (1,0) again when t = 2n. For 2r <t <

4w, we will get another trip around the circle. We should also note that any plane

curve which is the graph of an equation of the form y = f(x) is the graph of the

parametric equations x = t, y = f(t). Thus the set of parametric curves in the plane is

a large family of curves which includes as a subset the set of graphs of equations

y = f(x).

66
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PROGRAMS FOR PLOTTING PARAMETRIC CURVES WITH THE HP-28S

You will need to enter some programs to plot parametric curves with the 28-S.

Create a new directory named PARM. Do

PARM
[CRDIR|M [USER| [PARM]
 

 

Now store the following in the new directory:

QUIT

« HOME » |ENTER| 'QUIT

Input: none Effect: return to main directory

Establish memory locations for SCR, N, B, A, Y and X. Simply store

0 under each of these names.

RCLGR

« SCR »LCD DGTIZ » 'RCLGR

Input: none Effect: recalls graph

(M is on the menu.)

CLDRA

« BA-N/->H IsetsH=]—3-l-;I—é

CLLCD DRAX | clear screen , draw axes

A 'T" STO | store A in 'T

1 N START | start loop of N steps

X -NUM Y -NUM | evaluate X and Y at T

R—-»C PIXEL | form point (X,Y), plot

H 'T' STO+ NEXT | add H to T for new T, proceed



'T' PURGE LCD-

'SCR' STO DGTIZ » »

Input: none Effect: draws graph

( M is on the menu.)

ABSTO

« 'B' STO 'A' STO »

Input: A on level 2, B on level 1

YSTO

« "Y' STO »

Input: y(t)

XSTO

« 'X' STO »

Input: x(t)

NSTO

« 'N' STO »

Input: n, the number of points to be

plotted

Effect: stores upper and lower limits

ont

Effect: stores y as a function of t

Effect: stores x as a function of t

Effect: sets the number of points

(These programs are from Tom Tucker [2].)

SOME EXAMPLES OF PARAMETRIC CURVES

EXAMPLE 1. Plot the graphof x=3 cost, y=sint, 0 <t <6.29.
 

Key in ' PPAR [PURGE| [USER| [PARM|M 50 [NsTOIM
 

3+COS(T) SIND) YsToM
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0 629 [ENTER] [ABSTO|M [CLDRA].

You should get the ellipse shown below:

 

 

    
The value of 50 set for n above seems to work well for many graphs. If a graph

seems too "dotty" or disconnected to you, you can increase n.

EXAMPLE 2. Plot the graphof x =cost, y = cos? t, 0<t<6.29. Do |[PLOT| |NEXT

' [PPAR|[PURGE| 'COS(T [ENTER|[ENTER] x> [YSTO]| [XSTO]

()
You should get the portion of a parabola shown below. If you watch closely while

 
 

   

the curve is plotting, you can see that this curve is traced over twice by the plotting

points.

 

 

- - - - - -

    
Note that for this graph we left n, a and b at their former settings.

EXAMPLE 3. Plot the graph of x = 2 cos(3t), y = sin(2t), 0 < t< 6.29. Taking

n = 50 and n = 100 do not give very intelligible graphs, so we try n = 200. This graph

shows up well with the default PPAR,so if you have something else, purge PPAR.

In fact, the graph shows up even better if you take 0.7. Then do 200

' 2*COS(3*T ' SIN@*T [ENTER| [YSTO| [XSTO| [CLDRA|. You
 

 

should get the curve:
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This type of curve, x = a cos(bt), y = c sin(bt) is a sometimes called a "Lissajou

curve".

A PARAMETRIC CURVE USING CURVE-SKETCHING TECHNIQUES TO FIND

HIGHEST, LOWEST, LEFTMOST AND RIGHTMOST POINTS

EXAMPLE 4. Sketch the parametric curve x = (1 + cos t) cos t, y = (1 + cos t)

sint, 0 < t < 6.29, and find both coordinates of the highest, lowest, leftmost and

rightmost points of the curve. Since we want to find values of x and y for specific

values of t, it is convenient to enter both functions as simple evaluation programs.

« = T' (1 + COS(T)* COS(T) ' » 'XEVL [STO|, then
« > T' (1 + COS(TY*SIN(T) ' » 'YEVL [STO].

To plot the parametric curve, return to the default PPAR. Taking n = 50 works well

here, so enter 50 for n.  You can recall x and y to the screen by doing 'T |ENTER

then 'T M. Now store these withMthen

'XSTO|M. Plotting with [CLDRA|M gives the heart-shaped graph shown below.

 

 

- - - = = - ~
r

- - - - -

    
We would now like to find coordinates for the highest and lowest and leftmost

and rightmost points on this graph. The high and low points will occur at those

values of t for which y(t) = (1 + cos t) sin t has a maximum or minimum. The

rightmost and leftmost points will occur at those values of t for which x(t) = (1 +
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cos t) cos t has a maximum or minimum. To find the leftmost and rightmost points,

must recall x(t), find its derivative, plot the derivative and find its roots by the

techniques of Chapter 5, and then find the x and y coordinates of the points

corresponding to these values of t. From the parametric plot above, the rightmost

point of the graph is obviously (0,1), which corresponds to both t = 0 and t = 2% so

we can ignore these roots and direct our attention to the other values of t where x'(t)

=0. DoT [XEVL]M 'T [ENTER PLOT| [DRAW|™. This should give

you the following graph:

 

 

    
Moving the cursor to each of the three points between 0 and 2=, recording their

coordinates on the stack, then using SOLVR with these points as initial guesses

gives for the roots the three numbers 2.09440, 3.14159 and 4.18879. The second number

is clearly ® and the point on the graph corresponding to t = = is (0,0) which, from

the graph of the parametric curve is a local rightmost point. Evaluating x and y at

the first value of t gives x(2.09440) = -0.2500 and y(2.09440) = 0.43301. Evaluating x

and y at the third value gives x(4.18879) = -.25000 and y = -0.43301. So the two

leftmost points of the graph are (-0.25, 0.43301) and (-0.25, -0.43301).

Now you need to get the expression for y(t) on level 1, take its derivative, plot

it, get first estimates for the roots from the t intercepts on the graph and use SOLVR

to find these roots. Note that the root at t = ® gives y'(n) = 0, but this is neither a

max nor a min for y since y' is negative on both sides of it. So we can ignore t = «.

The other two roots of y' are 1.04720 and 5.23599. Finding the points of the

parametric graph corresponding to these two values of t gives (0.75000, 1.29904) as

the high point and (0.75000, -1.29904) as the low point.
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CHAPTER 7 EXERCISES

In exercises 1 through 4, DRAW the graph of the given parametric curve:

1.

2.

10.

11.

x=4costy=3sint, 0<t<6.29

x=sin? t,y =sint, 0 <t< 629

x=t-sint,y=1-cost, -6.29 <t<6.29

x =2 cos (3t), y =3 sin(5t), 0 < t < 6.29

x=c053t,y=sin3t,OStS6.29

x=sect y=tant, 0<t<6.29

x=cost+sint,y=sint-cost,0<t<6.29

X = cos t - cos(4t), y = sin t - sin (4t), 0 < t < 6.29

x =cos t + cos(2t), y = sin t - sin(2t), 0 < t < 6.29

1
DRAW the graph of the parametric curve x = t2, y=3 t3, -5 <t <5, and find the

x and y coordinates of the rightmost, leftmost, highest and lowest points of the

graph.

DRAW the graph of the parametric curve x = (1 + 2 cost) cost, y = (1 + 2 cos t)

sint, 0 <t<6.29, and find the x and y coordinates of the leftmost, rightmost,

highest and lowest points of the graph.



CHAPTER 8

INTEGRATION

INTRODUCTION

In this chapter, we shall exploit the calculating ability of the HP-28S in

connection with integration. Some programs will be given which will allow the

calculation of several kinds of Riemann sums for increasing values of n to help

illustrate the limiting process that defines the definite integral. We will also

introduce the idea of numerical integration with very simple methods and expand

the programs to include calculations by the trapezoidal rule and Simpson's rule.

The calculator's built-in programs for evaluating definite integrals and for finding

antiderivatives will also be briefly treated.

The simplest way to evaluate a definite integral is to use the HP-28S' built-in

routine. But the programs presented here may help give insight into the convergence

of Riemann sums and serve as an introduction to numerical integration.

USING THE HP-28S AS AN AID TO UNDERSTANDING THE DEFINITE INTEGRAL

b
The definite integral [ f(x)dx is defined as the limit of Riemann sums

a

n
Z f(u;)Ax;, where the numbers xq, x5, ..., X,; form a partition of the interval
i=1

[a,b]:that is, a=xp < X] < X < ... < xp=b. The "evaluation" points uy, us, ..., uy,

satisfy xj.1 < uj < xj for each i from 1 to n inclusive, and Axj = xj - xj_1. If the

integrand is never negative-valued on [a,b], this Riemann sum approximates the area

under the graph of f for x on [a,b] as the sum of the areas of rectangles.

When the limit of such sums exists, as the width of the longest subinterval in

the partitions goes to 0, the value is called the definite integral of f to a to b, i.e,,

73
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b
J f(x) dx. By installing a few simple programs into the HP-28S, we can evaluate
a

several different kinds of Riemann sums for functions of our choice using various

values of n and thereby gain some insight into the limiting process that defines the

integral. (These programs all come from a minicourse on the HP-28S conducted by

Tom Tucker of Colgate University at the Joint Mathematics Meetings at Phoenix,

Arizona, in January, 1989.)

Create a directory named INTG by keying in INTG |CRDIR M (this key is

on the first line of the  MEMORY| menu). Now press |INTG M

Key in the programs shown below. They will appear on the [INTG M

subdirectory under the names given to each program.

QUIT

« HOME » |ENTER| 'QUIT

Input: none Effect: returns to HOME directory

SUM

« X' 0 1 N START EQ 5NUM]| + H 'X' NEXT H *

: suwr
Input: real number (given by another program)

Effect: this is a utility program which is used for computation by each of the

Riemann sum programs. It takes the initial value of 'X' from the other
H

program, A for LRECT, A + H for RRECT and A + 7~ for MID. It

evaluates the integrand N times, starting at the initial value of X,

increments X by H each time and adds to the running sum of integrand values

kept on the stack. The final sum is multiplied by H.



INTEGRATION 75

RRECT

« A H + SUM » [ENTER| 'RRECT

Input: none

Effect: for the integrand, A, B and N already stored, it uses SUM to compute

the Riemann sum with the integrand evaluated at the right endpoint of each

subinterval.

LRECT

« A SUM » [ENTER| 'LRECT

Input: none

Effect: for the integrand, A, B and N already stored, it uses SUM to compute

the Riemann sum with the integrand evaluated at the left endpoint of each

subinterval.

MID

« 'A+H/2' EVAL SUM » |ENTER| 'MID

Input: none

Effect: for the integrand, A, B and N already stored, it uses SUM to compute

the Riemann sum with the integrand evaluated at the midpoint of each

subinterval.

NSTO

« 'N' B A- N/ 'H[STO| » [ENTER] 'NSTO

Input: positive integer N
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Effect: it sets the number of subintervals at N and sets H = B > A for use 

with the programs LRECT, RRECT and MID.

FABST

Input: 'f(x)' on level 3, real number A on level 2, real number B on level 1

Effect: it stores f as the integrand and A and B as the left and right endpoints

of the interval of integration.

The three programs RRECT, LRECT and MID evaluate three different

Riemann sums for the function, interval and value of N you store in the calculator.

In the LRECT program, the function is evaluated at the left endpoint of each

subinterval. In the RRECT program, the evaluation points are taken to be the right

endpoints of each subinterval and, in the MID program, they are the midpoints of

each subinterval.

EXAMPLE 1. We shall use these programs to evaluate some Riemann sums for a
4

specific integral, Jl/x dx. If you are taking first-term calculus and have not had

any calculus before, you may be unable to evaluate this integral using the

Fundamental Theorem which says thatrF'(x) dx = F(b) - F(a), since you may not
a

know a function whose derivative is 1/x. Thus, we shall get some idea of the size of

the number which is this integral by evaluating a few Riemann sums.

Press then [INTG[M .

Now key in ' 1/x 1 [ENTER] 4 [FABST|M.
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This enters the function and the lower and upper limits of integration into the

program. Now choose a value of n and enter it with NSTO. We start with n = 20:
 

20 [NsTO[M [LRECT|M
 

gives the result 1.50576102986 on level 1. This is the Riemann sum for the function

f(x) = 1/x on the interval [1,4], when the interval is partitioned into twenty

subintervals of equal length and the function is evaluated in each subinterval at the

left endpoint. Since 1/x is a decreasing function for all positive x, this Riemann sum

must be larger than the actual integral.

Pressing RRECT M gives the result 1.28076102986. This is like the LRECT

estimate except that the evaluation point in each subinterval is chosen to be the

right endpoint. Since the function is decreasing, this sum must be less than the

actual integral.
 

Now keying in 40 [NSTO|™ [LRECT|M gives 1.41485855232
 

and [RRECT|M gives 1.35860655232.
 

Repeating with 100 [NSTO|™ [LRECT] gives 1.39761466688

and RRECT| gives 1.37511466688.

 

So 1.37511466688 < f %dx < 1.39761466688. Using larger values of n will, of

course, narrow the gap still further.

For a decreasing function like 1/x, evaluating the function at the left and right

endpoints of each subinterval has the advantage of bracketing the answer.

However, evaluating the function at the midpoint of each subinterval will usually

give a better approximation for a given value of n.
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Keying in 40 INSTOIM IMIDIM gives 1.3860748637 for the Riemann sum
 

with the midpoint evaluation and 40 subintervals.

Doing 80 [NSTO|™ [MID|M gives 1.38623944384 with 80 subintervals.

Doing 100 [NSTO|™M [MID|M gives 1.38625921076 with 100 subintervals.

These midpoint estimates all agree to three decimal places, and the last two

agree to four places. This is much better than we obtained with the left and right

endpoint estimates.

USING THE HP-28S TO ILLUSTRATE NUMERICAL INTEGRATION

Most of the definite integrals that you evaluate in a calculus course can be

obtained by finding an antiderivative of the integrand and using the fundamental

theorem F'(x) dx = F(b) - F(a). However, many applications involve evaluating
a

integrals for which this is not possible. For example, finding the length of the

3graph of f(x) = x” between the points (1,1) and (4,64), involves evaluating the

integral 1+9x dx, and an antiderivative for V1 + 9x* can be found only as an

X

integral itself, that is, 1[\]1 + 9t1 dt. However, this arclength and, in fact, any

definite integral with constant limits, is just a number. What is needed is a

technique for computing this number to the degree of accuracy needed in a given case.

Riemann sums give one way of approximating a definite integral. But these sums

often converge rather slowly and so more efficient algorithms for approximating

integrals would be useful.

In Example 1 above, since the function is decreasing, we note that the RRECT

estimate is below the value of the integral and the LRECT is above it. In fact, in
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this example the exact value is obtainable through the use of the fundamental

theorem of calculus, (the function In x is an antiderivative of ;) and if we were to do

the evaluations we would see that the errors in the two approximations are close to

the same magnitude. In any case, the decreasing function observation insures that

the errors are opposite in sign and thus tend to cancel out at least part of each other.

Accordingly, this suggests that a better approximation may be derived through a

simple average of the two approximations. This yields the trapezoidal rule. Enter

the program below in the INTG subdirectory.

TRAP

« LRECT RRECT + 2 / » ' TRAP

Geometrically, you can think of the trapezoidal rule as approximating the

function on each subinterval by the line segment joining the two endpoints of the

graph on the subinterval, rather than by a horizontal line segment.

1
EXAMPLE 2. Approximate = dx using the trapezoidal rule with with n = 40, 80

and 100. The program TRAP gives the trapezoidal rule approximation for the given

function, interval and n. We already have 7 stored as f and 1 and 4 stored as a and

b, so

40 [NSTOJM [TRAP|M gives 138673355232 as the trapezoidal rule

approximation with n = 40,

80 [NSTO|M [TRAP]M gives 1.386404208 with n = 80 and

100 [NSTO[M [TRAPM gives 1.38636466688 with n = 100

We can see with a little geometric analysis that for a concave up function like
1 , : : :
% - the trapezoidal line segments remain above the graph, except at the endpoints of
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the subintervals. The resulting approximation exceeds the true value of the definite

integral and the error is consequently positive.

It can be noted with techniques that are not immediately apparent here that

the error in the estimation by the midpoint rule is negative androughly half the

size of the error generated by the trapezoidal approximation. This suggests that a

weighted average which assigns twice as much weight to the midpoint

approximation as to the trapezoidal approximation would take advantage of the

errors "cancelling” with each other. Such a rule is the widely used formula known

as Simpson's rule for approximating definite integrals. Enter this program in the

INTG subdirectory:

SIMP

« MID 2 * TRAP + 3 / » [ENTER| 'SIMP [STO]

EXAMPLE 3. Approximate % dx using Simpson's rule with n = 40, 80 and 100. We

already have the function, a and b stored so

40 [NSTO|M [SIMP|M gives 1.386294426577 with n = 40;

80 [NSTO[M [SIMP|M gives 1.38629436528 with n = 80; and
 

100 [NSTOM [SIMP|M gives 1.3862943628 with n = 100.
 

EXAMPLE 4. We will now use Simpson's rule to approximate the arclength integral

j \]1 + 9xI dx mentioned above.
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Keying in 'Vi1+ox? [ENTER| 1 [ENTER]| 4 [ENTER| [FABST|M will
 

set up the calculator to approximate ‘? 1+9x" dx.

 
For Simpson's rule with n = 50, key in 50 [NSTO|M [SIMP|M and get 

63.124102271 for the approximation to the integral.
 

Keying in 100 [NSTO|™ [SIMP|M gives 63.1241022593 for Simpson's rule 

with n = 100.

 

Keying in 200 [NSTO|™ [s1MP|M gives 63.1241022587 for n = 200.
 

The Simpson's rule approximations seem to be in better agreement than the

other approximations we calculated, and indeed Simpson's rule is the "best" of the

techniques we have treated. A more detailed look at the situation can be obtained

by considering the formulas in your text which estimate the error in the

approximations by the trapezoidal rule and Simpson's rule.

The discussion and examples above should give you some insight into the

limiting process that defines the definite integral and into some simple procedures

for the numerical evaluation of definite integrals. These are both topics that you

should learn for future use.

The simplest way to evaluate a definite integral on the HP-28S is to use the

program built into the calculator for that purpose. The HP-28S' program for
b

evaluating the definite integral [ f(x) dx requires a three-item input. You should
a

have on the stack :

'f(X)'

2: {x a b}

1: accuracy factor
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The entry on stack level 2 is a list containing of the variable of integration, the

lower limit of integration and the upper limit of integration. There should be spaces

separating the elements of the list. The last item, the "accuracy factor", is a real

number which sets an upper limit on the error in the calculation as a fraction of the

computed value; for example, if you wanted the error in the answer to be no more

than 0.01% of the the answer, the accuracy factor would be 0.0001.

With the required input displayed, executing will produce a two-item

output from the HP-28S:

2: calculated integral

maximum on error

1
EXAMPLE 5. We will use the built-in program to evaluate f; dx, arbitrarily

deciding that we want the error to be less than .000001 times the calculated integral:

Keying in '1/x |ENTER| {x 1 4} |ENTER| .000001 |[ENTER

gives the display :

|1 /xv

{x1 4}

1: .000001

Executing gives

2: 1.38629436197

1: 1.38617494355E - 6
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4
This output tells us that [ 1/x dx is approximately 1.38629436197 with an error

less than 1.38617494355 x 10-6. The error term should be approximately the error

factor you entered times the calculated integral. This is true here. (Wickes' states

in his book [1] thatif this is not true, the calculated approximation is suspect and, in

particular, if the error term is -1, the approximations failed to converge.) The

program in the calculator for approximating definite integrals uses the "Romberg

technique”, a more sophisticated procdure than those mentioned above in the section

on numerical integration. A description of this procedure can be found in most books

on numerical analysis.

FINDING ANTIDERIVATIVES WITH THE HP-28S

Finding an antiderivative for a given function is often a considerably harder

problem than finding its derivative; in fact, finding an antiderivative as a simple

function, not involving integral signs or power series, is not always possible. For

example, an antiderivative of sin(xz) is F(x) = f sin(tz) dt, but expressing

1fsin(xz) dx as F(3) - F(1) = Isin(xz) dx -j sin(x?) dx is not of much help in

evaluating it as a number. (For those in beginning calculus, the subject "power

series" will be investigated later.) When possible, finding antiderivatives involves

recognizing patterns in integrals, such as [u()]"u'(x) dx or [ cos[u(x)] u'(x) dx, for

example. When one of the known patterns is not obviously present, there are trial-

and-error methods such as integration by parts or substitution.

Since the HP-28S is not equipped to do this sort of pattern recognition, it can

find antiderivatives for only the simplest kind of functions, polynomial functions.

For functions other than polynomial functions, the calculator finds the Maclaurin
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polynomial for the function to the degree that you specify and then integrates this

polynomial. The program for finding antiderivatives on the HP-28S, like the one

for numerical integration and the Taylor series program we will discuss later,

requires a three-item input:

3: 'integrand'’

2: 'independent variable'

1: degree

The items on Levels 3 and 2 are self-explanatory. The item on level 1 should be

the degree of the polynomial for a polynomial function, or, for a non-polynomial

function, the degree of the Maclaurin series you want the calculator to integrate.

The larger the degree, the better the series will simulate the function, and the

longer it will take to generate.

EXAMPLE 6. Entering

3: 'xA3-5*xA2+3*x+4

2: 'x'

1: 3

and then executing produces

1: '"4*x+1.5%xN2-

1.66667*x\3+

25*x\4

EXAMPLE 7. Entering
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and then executing produces

1: 5*x"\2+4.16667E-2*x"\4

+1.38889E-3*x”

6

We will seldom use the HP-285 simply to find an antiderivative. For

polynomial functions you can find the antiderivative by hand quicker than you can

enter the function into the calculator. But the program is worth keeping in mind. If

you want to find definite integrals of a polynomial function over several sets of

limits, it may be quicker to evaluate the antiderivative at these limits than to use

the definite integral program several times. For a non-polynomial function, if all

you want is a general idea of the shape of the graph of an antiderivative, you can

get this by using the antiderivative program to get a Taylor polynomial

approximation for the function and then plotting this.
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CHAPTER 8 EXERCISES

3

1. Approximate J—lf dx
1+x

(a) using LRECT and RRECT with n = 50, 100 and 200. What is the size

relation between LRECT, RRECT and the actual value of the integral for a

given n? It would probably be helpful to DRAW the graph of the integrand

to see the size relations between the Riemann sums.

(b) wusing MID with n = 50, 100 and 200,

(c) using TRAP with n =50, 100 and 200

(d) using SIMP with n = 50, 100 and 200

 (e) find an antiderivative for ] 1 5 and evaluate the integral using the
+ X

fundamental theorem. Compare this answer with those above.

3

 

1
2. Repeat parts (a) through (d) of Exercise 1 for d[ T3 dx. Can you repeat part

+ X

(e) for this integrand?

3. Approximate IV1+ sin2 x dx

(a) using Simpson's rule with n = 100

(b) using the built-in numerical integration program with error factor .000001.
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4. Approximate jV1+ ox?  dx using the bulit-in program with accuracy factor

.0001.

S

5. Repeat Exercise 4 for N1+ sec:4 x dx.

3

, , 1
6. Repeat Exercise 4 for j 1+—7 dx.

X

The integrals in Problems 3 through 7 represent arc lengths on the curves y = sin x,

3 1y=x,y=tanxandy=_ .

7. Find an antiderivative for x> + 3x + 4 using the built-in program.

8. Find an "antiderivative" for cos x with the built-in program, taking n = 8.
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TAYLOR POLYNOMIALS AND INFINITE SERIES

INTRODUCTION

When you enter a number x into your calculator and press the M key, how

does the machine determine sin x? There is no little man inside the calculator who

draws triangles and measures sides when you press the SIN button. Most calculators,

and computers as well, actually compute it; they do not have all the values of the

common functions stored.

Among other things, this chapter will answer the question posed above. A

method using Taylor polynomials will be presented which, when given a real number

x, shows how to calculate sin x, cos x, ex, etc. using only basic arithmetic operations

and a little calculus. In fact, this is the method used to produce trigonometric tables,

exponential tables, etc., for centuries. However, since the advent of the modern

calculator in recent years, more efficient numerical methods are now generally

programmed into them. See the AMERICAN MATHEMATICAL MONTHLY, volume

90, number 5, page 317, for a discussion.

Using a sequence of Taylor polynomials as a set of approximating functions for a

given function leads to the notions of infinite series and power series. Since power

series are a very basic way of defining functions in a variety of settings, infinite

series and power series are presented in your text in some detail.

TAYLOR POLYNOMIALS

Polynomial functions are perhaps the simplest functions we meet in calculus.

They are easy to understand because their values are readily calculated by finitely

many additions and multiplications. In Chapter 4 we used a polynomial to obtain

88
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approximate values for a function f near x = a, the linearization L(x) = f(a) +

f'(a)(x - a). This is a polynomial in x - a which agrees with both f and f' at x = a.

We will use the notation Py(x) for L(x) and call it the first degree Taylor polynomial

for f about x = a.

We may reasonably ask for a second degree polynomial P»(x) in x - a to use in

approximating values of f near x = a. Keying on the above, we would require that Py

and its first two derivatives coincide with f and its first two derivatives at x = a.

For Pyr(x) = ag + aj(x - a) + ap(x - a)2, we have Pp(a) = ag = f(a); Pp'(x) = a7 +

2as(x - a), and so Pp'(a) = a7 = f'(a). Finally, P»"(x) = 2ap and so Pp"(a) = 2ay =
fll

f'(a), so ap = éa) . Thus the second-degree Taylor polynomial for f about

x = a is Py(x) = f(a) + F@)(x - a) +- ;a) (x - 2)°.

 

 

If this process is continued to get a third-degree polynomial P3(x) which agrees

 

 

 

fll

with f and its first three derivatives, then P3(x) = f(a) + f'(a)(x - a) + éa)

(x - a)2 + f3((2a)) (x - a)3. If continued to the n-th degree, the same procedure gives

f(n)(a) n
Pnr(x) = f@@) + f@x - a) + ... +=(x - a)", the nth degree Taylor polynomialfor f

about x = a. In the more concise summation notation, this is PL(x) =

k
n f( )(x) k . S
D — (x - a) . For these polynomial approximations to f to be useful, we must
o K!

know the value of f and its first n derivatives at x = a.

You should know the definition of Taylor polynomials and be able to find them

by hand for simple functions. However, the HP-285 will find Taylor polynomials

about a = 0, and this is quite handy for large degree polynomials.

The command for finding a Taylor polynomial is TAYLR M Iocated on the

second line of the ALGBRA menu. This command requires a three-item input before
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execution: the function f whose Taylor polynomial is desired, the independent

variable and the degree of the desired Taylor polynomial.

EXAMPLE 1. Find the eleventh degree Taylor polynomial for f(x) = sin x about

x = 0.

Key in ' sin(x [ENTER] 'x [ENTER| 11 [ENTER].

Your stack display should look like :

 

1: 'sin(x)’

2: 'x'

3: 11

Now press TAYLR Mo get:

1: 'x - 0.1667*x"3 + 0.0083

*xA5 - 0.0002*x17 +

2.7557E-6 * x"9 -

2.5052E-8*x"11

By hand Pq11(x) for f(x) = sin x, about a = 0, is x -51-,-x3 +%x5-%x7+$x9 'Tll_T

11
x . This, of course, is what we have above with the coefficients in decimal form.

Now find P7(x) in the same way. We will make a table of values for sin x, P7(y)

and Pq1(x) for a few values of x near 0 to get an idea of how good the P7 and Pq1

approximations are. We must store both Pg and Pqj in some way either as a

procedure to use in compiling the values in the table, or under a name on the

menu to use with the routine to compile the table.
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X 1 3 6 1 1.5

sin x .099833 295520 564642 841471 997495

P7(x) .099833 295520 564642 .841469 997391

P11(x) .099833 295520 564642 841469 997391         
Notice that for the values of x in the table the P11 approximation agrees with

sin x to six decimal places and the P7 approximation deviates from the true value

only for x = 1 and x = 1.5. We could have predicted this by estimating the

remainder terms Rg(x) and R11(x) as explained in your textbook.

The [TAYLR|M command will only find Taylor polynomials centered about

a = 0. You can find them about numbers other than 0 by entering the following

program (see [1]).

« 31 SF 1CF 3 PICK IFERR RCL THEN 1 SF END —» x x0 d xv

« x SHOW 'XPRIM' DUP x0 + x STO d TAYLR xv x0 - 'XPRIM' STO

EVAL xv IF 1 FC?C THEN x STO ELSE PURGE END 'XPRIM' PURGE

» »

TAYXO
This program requires a four-item input:

independent variable on level 3, the value xy about which you want the polynomial

the function on level 4, the

centered on level 2 and the degree of the desired Taylor polynomial on level 1.

EXAMPLE 2. Find the 7th degree Taylor polynomial for f(x) = Vx about a = 4.

Your input stack display should look like this:
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4

3: 'x'

2

1

Executing [TAYX0|M gives:

1: '2 + .25%(x-4) - .015625

*(x-4)"2 + .001953125

(x-4)"3 -

3.0517578125E - 4(x-4)

You will have to scroll down to see the rest of this polynomial.

INFINITE SEQUENCES AND INFINITE SERIES

An infinite sequence of real numbers is a real-valued function whose domain is

the set of positive integers. That is, an infinite sequence has a first number £(1), a

second number f(2), a third number f(3) and so on.

An infinite series 2 a; is a notation for the limit of i aj as n — o. There are
i=1 i=1

two infinite sequences associated with each infinite series, the sequence of numbers

being added and the sequence of partial sums whose limit is defined to be the

"infinite" sum. It is often a simple matter to determine the limit of an infinite

sequence. For many of the sequences we consider, the limit can be found by inspection

or by a simple application of 1'Hopital's rule. On the other hand, it is seldom a

simple matter to determine the limit of an infinite series, or to determine whether it

converges or not. In fact, the infinite series itself is often both the definition of the

number to which it converges and an algorithm for calculating this number. We

include a program, below, which will find the limits of many common infinite series
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- accurate to the twelve-digit display of the calculator - PROVIDED YOU KNOW

THAT THE SERIES CONVERGES. To determine convergence, you will have to use

one of the convergence tests presented in your text. The program shows the

convergence of the series dynamically, by showing the partial sums as a single

number with the last digits changing as more terms are added. Key in the following

program (from W. Wickes' book [1]):

« 0 SWAP DO DUP 4 PICK EVAL SWAP 1 + ROT ROT OVER + DUP 1

DISP DUP 4 ROLLD UNTIL == END ROT DROP2 » |ENTER " INFSM

STO| .

This program returns a 12-digit number as the sum of the infinite series Y f(n).
n=1

Actually, this number represents the partial sum the calculations have reached at

the time the display is accurate to 12 digits. The program requires a two-item input:

the general term of the series written as a procedure, « - n'f(n)' » on level 2 and

the value of n where you want to begin on level 1.

- 1
EXAMPLE 3. By the integral test, the series Y —7, converges (you should verify

n=1 n

this). We can find its sum by using program INFSM:

Keyin« - n'1/n”4 » 1

The stack should look like this :

«->n'1/n4'»

1S
R

ow
R

Now execute INFS from the USER menu and a twelve-digit number will

appear above the stack with the last digits changing. When all the digits of this
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number are fixed, the number is 1.08232323295. This is the sum of the series, correct

to twelve digits.
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CHAPTER 9 EXERCISES

Find the Taylor polynomials P¢(x) and Pqn(x) for f(x) = eX about a = 0. Graph f

and the two polynomials on the same axes. Make a table of values for all three

functions using x = .1, .2, .6, 1 and 1.5.

Use the program given to find the Taylor polynomials P4(x) and Pg(x) for

f(x) = Vx about a = 1. Graph f and the two polynomials on the same set of axes.

Find the Taylor polynomials P4(x), P1(x) and P;(x) for f(x) = cos x about a = 0.

Graph all three polynomials and f on the same set of axes.

2
Find the Taylor polynonials P6(x) and PlO(x) for f(x) = e~ ata=0. Graph

these two polynomials and f on the same axes.

§ 1
Show that —¢ converges and find its sum using the INFSM program.

n
n=1

E 1
Show that —5~ converges and find its sum using INFSM. This series

st

converges slowly.

1
Show that Em converges and use INFSM to find its sum. This series

n=1

converges very fast.

o0

L . 1
What do you think will happen if you use INFSM on ; it
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2

9. Show that — converges and use INFSM to find its sum.
2

n=1

=

n
1

10. Show that Z —I%- converges and use INFSM to find its sum.
n=1
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