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PREFACE

We have sought to provide in this manual a new emphasis on geometrical

thinking in multivariable calculus using the new technology of graphical calculators.

Wefeel each topic in calculus should be introduced with an appeal to the student's

geometric intuition stressing geometric definitions of concepts. We should motivate

the calculus with geometric applications constructing geometric proofs wherever

possible.

The HP-28S can be thought of as an integrated software package providing

capabilities in graphics, symbolic manipulation, numerical linear algebra,

integration, statistical analysis and equation solving. The calculator should be the

student’s handbook, scratch pad and number cruncher, i.e., the student's resource of

unstructured computational power.

Chapter 1 contains an introduction to the philosophy of calculator enhanced

calculus and suggestions for using the manual. Chapter 2 deals with graphing polar

and parametric curves, conic sections and level curves of quadric surfaces. Chapter 3

is concerned with representing curves and surfaces with functions, classifying critical

points for functions of two variables and the method of level curves. Chapter 4

presents material on describing regions of the plane bounded by curves and surfaces,

single and double integrals. Chapter 5 finishes up with vector fields, line integrals

and Green's Theorem.

The material in the manual was tested at Clemson University in a third

semester multivariable calculus course which meets four hours a week for fifteen

weeks. Students have been enthusiastic about the calculator and its integration into

calculus. The sacrifice of class time required for the introduction of the calculator or

programs was offset by the possibilities for a more in depth exploration of important

concepts.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to the Philosophy of Calculator Enhanced Calculus

The current state of calculus instruction. The reality of a crisis in calculus

instruction is evidenced in recent years by the number of talks and panels at

professional meetings, reports of various ad hoc groups, papers in the professional

literature and the number of news stories in the popular press. My feeling is that

the disquiet we all feel about the appropriateness of the content of calculus and the

effectiveness of traditional methods of instruction stems not just from increased

enrollments but from the broadening of the class of students who now populate a

typical calculus course. Additionally over the last twenty years, while calculusis

increasingly taught to students from a widening circle of curricula, there has been an

accompaning ballooning of material included in the course (a response to appeals for

relevance.)

Compounding the difficulties is the new technological enviornment tin which

students and instructors find themselves. A bewildering array of new hardware and

software offers powerful tools for graphical display, symbolic manipulation and

computational ease. Is there a way out of our present situation?

Our response to the crisis in calculus instruction. We have sought a new

emphasis on geometrical thinking in multidimensional calculus using the new

technology of graphical calculators.

Objective of multidimensional calculus redesign: Reward geometric thinking.

Each topic should be introduced with an appeal to the students' geometric

intuition. Build on the base of understanding that each student already has

developed. Of course, the new topic represents an extension of that understanding.



Stress geometric definitions of concepts. Concepts which are arrived at

geometrically will stick with the student. We aren't talking about a rigorous

geometric definition here, but rather an intuitive, visual presentation of the new

concepts.

Motivate the calculus with geometric applications. Calculus is overloaded

with applications from science, engineering and business. In most university courses

there is no common experience or interest among the students. The instructoris forced

to pick and choose never satisfying everyone. A better approach is to concentrate on

geometric applications which serve as an interface between calculus on one hand and

applications outside of mathematics on the other. We are convinced that each

application has to start with a geometric formulation before calculus can be brought

to bear in any significant way. Let the instructors in the application areas show the

students how this is achieved for their own area. Having done this, the properly

trained student can then apply the methods of calculus on his own.

Construct geometric proofs wherever possible. Again the emphasis should not

be on rigor but visual thinking. We are trying to encourage students to adopt a way

of thinking about problems that will stay with them long after they have

completed their calculus requirement. When instructors present proofs of various

propositions they should at the same time demonstrate how a visual or geometric

approach can be applied to the problem.

Opportunities deriving from the introduction of calculators:

1) We encounter the problem of representing abstract objects as functions or

computer programs in a concrete setting. In some sense, this representation

problem is central to applying mathematics and the interplay of the
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calculator with abstract mathematics, i.e., calculus, encourages a step by

step approach which makes the whole process very natural.

2) The problem of approximation also must be faced early on in the course.

The false idea that mathematics is about the exact and the rest of science

and engineering only the approximate never gets a hold.

Danger: Using the calculator in calculus may encourage dependence on the calculator.

1.2 Introduction to the Manual

The organization of the manual. The manualis organized in chapters roughly

following the usual pattern adopted by calculus texts. Some of the material for a

given topic will go beyond what is required at a first introduction. For instance, the

material on polar curves might be visited at several points in the course: a first

introduction, the area of regions bounded by single polar curve, regions whose

boundary is made up of more than one polar curve, and line integrals along polar

curves. We suggest that the material in the manual be taken up as required by the

course text returning to the early chapters several times.

Outline of chapters

Chapter 1  Introduction to the manual and HP-285

Introduction to the philosophy of calculator enhanced calculus and

suggestions for using the manual.

Chapter 2 Graphs of curves and surfaces

Graphing polar and parametric curves, conic sections and level curves of

quadric surfaces.

Chapter 3  Functions of two variables/Optimization

Representing curves and surfaces with functions, classifying critical

points for functions of two variables and the method of level curves.



Chapter 4 Intersections of curves and surfaces/Integration

Describing regions of the plane bounded by given curves and surfaces,

single and double integrals.

Chapter 5 Vector fields and line integrals

Vector fields, line integrals and Green's Theorem.

The role of the calculator. The HP-28S can be thought of as an integrated

software package providing capabilities in graphics, symbolic manipulation, and

numerical linear algebra, integration, statistical analysis and equation solving. The

calculator is the student's handbook, scratchpad and number cruncher,i.e., the

student's resource of unstructured computational power. The calculator exercises are

designed to

1) Build a proficiency with the calculator which can be used in courses

outside the mathematics department

2) Lead the student to explore examples beyond the usual pencil and paper

textbook problems, i.e., problems which require for their solution some

computational power

3) Lead to a deeper understanding by making connections with previous work,

i.e., the calculator provides a level of technical skills (graphing, symbolic

manipulation, numerical calculation) which in the past we have not

assumed the student brought forward from previous experiences.

Background reading. The Owner's Manual is a great resource which can be

used in conjunction with this manual. To start, read Chapter Two of the Owner's

Manual. Each time a new capability of the calculator is applied to calculus for the

first time, either read or review the appropriate section in the Owner's Manual.

The Reference Manualis useful if you become confused about the use of specific
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commands. Wickes' book! provides a readable, but more advanced look at the HP-

28S with numereous programs and applications.

1.3 How to Make Use of the Manual

Conventions for displaying commands and programs. Outside of programs,

expressions and procedures, commands are executed immediately. On the otherhand,

objects (numbers, arrays, programs and expressions) have to be put on the stack before

they can be acted upon. When we write a sequence of objects and commands the

assumption is that each object has been put on the stack, i.e., there is an implied

ENTER following each object. For instance,

23+

really stands for 2 ENTER 3 ENTER + which results in 5 on level 1 of the stack.

In expressions, some commands are represented differently from the

corresponding key. For example 2 3 + inside an expression or program becomes 2 3

/'or <<2 3 />>. Hence we adopt the convention that in programs, procedures and

expressions we display exactly what appears on the screen.

Programs in the manual are displayed in formatted form. Of course, when

entering a program, the format (except for spaces) must be ignored. When the

program is recalled it will appear formatted on the calculator screen.

 

Twilliam C. Wickes, HP-28 Insights, Larken Publications, Corvallis, OR; 1988.
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Outline of possible course with accompaning sections from the manual

Topic

Conic sections

Polar graphs

Area of regions bounded

by polar curves

Comments

The programs for graphing

conic sections could be used here. 1

preferred using this period to

introduce the calculator, postponing

graphing conic sections with the

calculator until quadric surfaces.

Section 2.3.

Discuss the differences between

expressions and procedures. Introduce

the conventions for indicating

commands and displaying screens used

in the manual. Introduce the tasks of

entering, debugging and editing

programs. Section 2.1.

Introduce IGL. The emphasis is on

tracing out the region just once. I

suggest using a naive approach

leaving the graphing utilities until

later. Section 4.2.



Parametric curves

Vectors and vector functions

Tangent lines

Arc length/surface area

Functions of two variables
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At this point the students should be

able to enter and debug the programs

in the manual. I like to introduce

some interesting parametric curves and

graph some polar curves

parametrically. Section 2.5.

I do not take up DOT and CROSS until

later, but enterprising students tend to

learn these on their own.

The graphing utilities for parametric

curves can be introduced here. Also

machine differentiation starts to be

useful in the context of tangents to

polar graphs. Graph the curves

parametrically. Section 2.6.

The symbolic manipulation

capabilities of the HP-28S start to

payoff here. Also numerical

integration frees us up from the usual

restrictive textbook examples. We can

actually compute the arc lengths and

surface areas for figures generated

with familiar functions. Section 4.2

Compute some partial derivatives.
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Quadric surfaces

Limits

Differentials

Tangent planes

Classification of critical points

Lagrange multipliers

I use this opportunity to introduce the

distinctions between explicit, implicit

and parametric definitions of curves

and surfaces. Introduce the utilities

for graphing conic sections and use

them to contruct level curve

representations of the quadric surfaces.

Sections 2.3, 2.4.

Explore limits along various paths

and the relationship of these limits

with the limit. Section 3.2.

How nice can a function be and still

not be differentiable? Section 3.3.

Introduce Taylor polynomials.

Section 34.

Use second degree Taylor polynomials

to classify the critical points.

Section 3.4

The method of level curves can be

explored using the graphics capability

of the HP-28S. Section 3.5.
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Multiple integrals Use the material on the intersections

of curves and surfaces to set up

iterated integrals. This is a good time

to implement all of the graphing

utilities. A lot of time can be made up

here by concentrating on numerical

solutions. Sections 4.1, 4.2.

Vector fields Use gradient fields for explicitly

defined quadric surfaces to introduce

vector fields. Section 5.1.

Line Integrals Again the symbolic capabilities come

in very handy. Section 5.2.

Green's Theorem The students now have the tools for

attacking a host of nonstandard

problems. Section 5.3.

The Divergence Theorem and

Stokes' Theorem

Suggestions for integrating the material into a standard course. The

material in the manual was tested in a third semester multidimensional calculus

course which meets four hours a week for fifteen weeks. Support from the Fund for

the Improvement of Postsecondary Education (FIPSE) for this project is gratefully

acknowledged. The students had no previous experience with the HP-28S. My goal

was to devote no more than seven classes specifically to the calculator. One class

was used to introduce the basic operations on the calculator; storing, recalling and

editing expressions; and graphing simple functions using the default scaling. The
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next two classes devoted to the calculator were used for entering and using the

programs for graphing polar curves and numerical integration of functions of one

variable. The last four classes spent exclusively on applications of the calculator

were used for level curves of quadric surfaces, one of Polya's problems, describing

subsets of the plane and three space, and Green's theorem. The calculator was used

at least once a week for smaller applications: an integration problem, recalling the

shape of some parametric or polar curve, examples illustrating limits or

differentials, line integrals, etc.. Since use of the calculator was allowed on tests

and the final exam, the students were encouraged to work on their own to develop

skills that could be applied to standard textbook problems.



CHAPTER 2

GRAPHS OF CURVES AND SURFACES

2.1 Curves in Polar Coordinates

In order to enter the program POLAR given below, keystroke in the program

starting at << CLLCD DRAX and concluding at >> DGTIZ >> . Do not worry about

line breaks. After the program is entered it will be formatted automatically. You

must enter the spaces, they will be entered automatically for commands entered from

the menus. Use the correct font, i.e., lower case and upper case. After the program

has been keyed in, hit ENTER. If the program compiles it is entered on the stack.

Otherwise you must find and correct the errors using the cursor control keys, INS and

DEL. Assuming the program is compiled on the first stack level enter 'DRPOL' STO.

The program can now be executed or recalled for editing from the USER menu.

Polar Draw

level 4 level 3

procedure Omin

DRPOL:

<< CLLCD DRAX

4 ROLL > delta r

<<

FOR theta

theta r EVAL

theta R—>C

P—R PIXEL

delta STEP

>> DGTIZ

>>

11

level 2 level 1

Omax 1Y) =

| Initialize the screen.

| Save the radius procedure

| and increment.

| Compute r(6).

| Polar coordinates.

| Plot the point.

| Increment 6.

| Activate cursor.
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Recall the difference between an 'expression’ and a 'procedure’. When the

expression 'SIN(X)' is evaluated the sine function is evaluated at the current value

store in the global variable 'X'. When the procedure << — T 'SIN(T)' >> is

evaluated, a value is taken from the stack and stored in the local variable 'T'. Then

the sine function is evaluated at the value stored in 'T".

The program DROPL requires the function r = f(6) to be entered as a procedure

in level 4 of the stack. For instance, after storing the program in DRPOL, to draw r

= sin(0) enter the following:

<< = T 'SIN(T) >> 90 90 5 DRPOL

Notice the calculator must be in degree mode to produce the "right" picture

with the data entered above. Since most of our work will be in the radian mode, try

the following after putting the calculator in radian mode.

<< — T 'SIN(T)' >>

't CHS -NUM 2 + ENTER CHS ENTER 18 +

DRPOL

Examples. A couple of the standard figures are graphed below.

1) r=sin20

 

- - -
—
p
—

- -
—
—

- 

CY
2,

A
N

   
 

2) r=1-cosO

 

 e
N    
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Exercises

1) Redo some of the other standard figures: r = sin(6), r = cos(0), r =1 - sin(6), r =1

+ 2sin(0), r = cos(20), and r = cos(36).

2) Produce a graph containing both r = sin(6) and r = cos(6) on the same axis.

After producing a graph the cursor is active, i.e., the cursor can be moved to a

new location and its position recorded by pushing INS. This useful feature can be

exploited to capture new lower lefthand and upper righthand corners for a later

graph.

Example. You might have produced the figure r = sin(0) using the default graphing

parameter values in PPAR. The picuture can be improved by capturing a new lower

lefthand and upper righthand corners using INS. Clear the screen with ON. The

stack is then seen to contain two values, the points captured with INS. These can be

entered into PPAR using PMAX and PMIN. Each of these keys, found in the PLOT

menu, takes a value from the stack and stores it in the appropriate variable. Now,

produce the figure r = sin(6) a second time. You should have a better view.

The conic sections also have polar coordinate representation. The general forms

arer =tep/(1 £ ecos6) and r = tep/(1 + e sin 0). If 0 < e < 1 the figure is an ellipse.

If e =1 the figure is a parabola. If e > 1 the figure is an hyperbola.

Examples

1) r=2/(2-cos6)
 

 

-
’

- - -

AN
\__/    
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2) r=1/(1-2sin 0)
 

\/
T 1 1 T T- - - -

 

    
3) r=2/(4-3sin 0)
 

 

L 1 L 1 L
¥ T 1 v - - -

L

T

T
!

  

/

4) Otherfigures have a polar representation include Tschirnhausen's cubic, namely,

r = (cos 26)(sec 6).

  

 

 

- -
+

- - - - - -

   

Exercises. Match the following curves given in polar coordinates with the figures

given below:

1) r=.5/(cos®-1) 2) r=.25sec(6/2)2 3) r=sin40

4) r=1-2cosO 5) r=sin 30

 

 A) ——+——"—+

7
1
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2.2 Graphing Utilities for Polar Curves

 

Create a subdirectory called POLAR as follows:

'POLAR' CRDIR

QUIT:

<< HOME >> | Returns to home directory
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We need a version of DRPOL which does not begin by clearing the screen.

Since the new program appears in the subdirectory, we can use the same name (using

lower case letters) and still avoid any confusion

level 4 level 3 level 2 level 1

procedure Omin Omax 56 =

Drpol:

<< DRAX | Initialize the screen.

4 ROLL — delta r | Save the radius procedure and

<< | increment.

FOR theta

theta r EVAL | Compute r(6).

theta R—C | Polar coordinates.

P—-R PIXEL | Plot the point.

delta STEP | Increment 6.

>>

>>

Drpolin this subdirectory (as did DRPOL in the home directory) requires the

plotting parameters Omax, Omin and d6. Since the utilities are designed to produce

and manipulate several polar graphs on the same axis, we will use PPAR to store

the plotting parameters. There is no automatic feature for generating PPAR. Hence

you must initialize PPAR, for instance, {(-6.8,-14) (6.8,15) T 1 (0, 0)} PPAR

STO.
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level 1

procedure =

NEWGRAPHS:

<< CLLCD DUP

1 —LIST 'PROCS' STO | Creates a list containing the

| procedure and names it PROCS

PPAR 1 GET C-»R DROP | Gets the plotting parameters

PPAR 2 GET C-»R DROP | required for DROPL from PPAR

DUP2 SWAP - 136 /

Drpol LCD— 'SCR' STO | Draws to screen, saves the

| screen

DGTIZ | and leaves the cursor active

>>

Example. << > T 'SIN(T)' >> NEWGRAPHS results in a graph something like

the following which is saved in SCR.

 

D
-

 

    
GETG:

<< SCR -LCD DGTIZ >>

Example. GETG restores to the screen the graph stored in SCR.



18 CHAPTER 2

level 1

procedure

OVERDRAW:

DUP 1 —>LIST PROCS +

PROCS' STO

PPAR 1 GET C-»R DROP

PPAR 2 GET C—»R DROP

DUP2 SWAP - 136 /

SCR —»LCD

Drpol LCD—

'SCR' STO DGTIZ

>>

<<

=

| Adds new procedure to

I list PROCS

| Gets the plotting PPAR

| parameters required

| for Drpol from PPAR

| Reproduces old screen

| and adds new graph.

| Stores the result

Example. << — T 'COS(T)'>> OVERDRAW produces the following which is a little small.
 

O
 

T 1 I I 1 \/

-    
REDRAW:

<< CLLCD

PPAR 1 GET C-»R DROP

PPAR 2 GET C-R DROP

DUP2 SWAP - 136 /

PROCS SIZE 1

SWAP FOR I 3 DUPN

PROCS I GET 4 ROLLD

Drpol NEXT 3 DROPN

LCD—- 'SCR' STO DGTIZ

>>

| Gets the plotting PPAR

| parameters required

| for Drpol stored in PPAR

| Reproduces plotting
| parameters

| Gets procedure stored

| in PROCS
| Redraws the graphs

| Saves the screen

| and leaves the cursor
| active
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Example. The figures above can be regraphed with 2 3 + DUP *H *W

REDRAW

 

 

    
This method of choosing the graphing window can be simplified with the following

commands.

level 2 level 1

coordinate pair coordinate pair =

BOX:

<< PMIN PMAX REDRAW

>>

level 3 level 2 level 1

coordinate pair real real =

ZOOM:

<< *W *H CENTR REDRAW

>>

Example. To return to the original parameters enter 'PPAR PURGE REDRAW

Then to enlarge the region bounded by both curves try capturing the center of the

region with INS and then enter .67 .67 ZOOM You should get something like the

NN
/

following;:
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2.3 Graphs of Conic Sections

We can create a facility for producing graphs of conics on the HP-28S by entering the

following programs.

Test If 2nd Degree Polynomial Defines a Function

level 1 level 1

expression = flag

FNC?:

<< — rel | Input expression.

<< "Y' PURGE rel

'Y' 9 'Y' 9 0 == | Test if function.

| Return flag.

>>

>>

Solve Expression for Y and Save in EQ

level 1

expression =

LDR:

<< 'X' PURGE — rel | Input expression.

<< rel FNC? | Test if function.

<<rel 'Y' 1 TAYLR 'Y' ISOL

>> | Solve for Y.

<<rel 'Y' QUAD

>> IFTE STEQ | Store in EQ.

'X' INDEP | Make X the plotting

| variable

>>

>>
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Apparently DRAW is not well behaved when used in a program,i.e., after an

error something unintended might be left on the stack. We can fix this unfortunate

flaw by using the following program! in place of DRAW in a program.

DFix:

<<

[1]

IFERR DRAW

THEN DROP ERRM 1

DISP

ELSE

[1]

WHILE SAME NOT

REPEAT

[1]

END

END

>>

 

| Marks the end of the

| existing stack

| While executing DRAW,

| look for an error

| If there is drop [ 1]

| and display the

| message

| If there is no message

| return the stack to its

| original state

| End WHILE

| End IFERR

lJohn and Annie Selden, Graphing with the HP-28S, preprint.
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Draw Relation

DRAR:

<<-112 > stp | Initialize loop parameters.

<< CLLCD

FOR x x 's1' STO

DFix stp | Draw branch of curve.

STEP

>> DGTIZ | Activate cursor.

>>

Example. Sketch 4y? - 8x - x2 + 32y + 49 = 0.

Enter

'PPAR' PURGE

'4*yA2 - 8*x - xA2 + 32*y + 49' LDR DRAR

 

L o

 

- - - -

L L L 1 L 1
v v I v ¥

4
/

The resulting sketch isn't very satisfying. How can we improve it? Completing

    

squares our equation becomes (x + 4)2 - 4(y + 4)2 = 1, i.e., the figure must be a

hyperbola with center (-4, -4). Set the center in PPAR as follows:

4 CHS DUP R-»C CENTER DRAR

~
N
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Examples. A couple of the standard figures are graphed below.

1) x2=y2-2x=0

 

N/
 - - - -

—
—

- -

   
 

2) x2+xy+y2-1=0

 

'/fi.\,éz:::
N
 - - - -

t

-

   
 

Exercises

1) Redo some of the other standard figures: x +y +1=0,y2 +x-1=0,x2 + y2 - 1=

0 and 2x2-y2-2=0.

2) Produce a graph containingbothx +y-1=0andy=2 - x2 on the sameaxis.

Example. You might have produced the figure x2 + y2 - 1= 0 using the default

graphing parameter values in PPAR. The picuture can be improved by capturing a

new lower lefthand and upper righthand corners using INS. Clear the screen with

ON. The stack is then seen to contain two values, the points captured with INS.

These can be entered into PPAR using PMAX and PMIN. Each of these keys, found in

the PLOT menu, takes a value from the stack and stores it in the appropriate

variable. Now, produce the figure x2 + y2 -1=0 a second time. You should have a

better view.

All second degree polynomials Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (allowing

for degenerate figures) define conic sections.
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Examples

1) x2+y2-2x-2y=0
 

N
N

)

   1
v \- 

 

2) x2-y2+2x+2y-1=0

 

N <
4

    ¢ 4

 

3) x2+2xy+y2-1=0

 

 .- - - - - - - - -
t

   
N

ANN

A/.::

 

4) x2-2xy+y2-1=0

 

- - - - - - - 

 
A
/2

Exercises. Match the following curves with the figures given below:

   

1) 2x2+xy-y2=0 2) y2-x=0 3) xy=1

4) 16x2 + 24xy +60x - 80y -100 = 0

5) 29x2 - 24xy + 36y2 + 118x 24y -55 = 0



A)

B)

Q)

D)

GRAPHS OF CURVES AND SURFACES
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2.4 Graphing Utilities for Conics

Create a subdirectory called Conics as follows:

'CONICS' CRDIR

level 1

expression =

QUIT:

<< HOME >> | Returns to home directory

We need a version of DRAR which does not begin by clearing the screen. Since

the new program appears in the subdirectory, we can use the same name (using lower

case letters) and still avoid any confusion.

Drar:

<<-112 -5 stp | Initialize loop

| parameters.

<< CLLCD

FOR x x 's1' STO

DFix stp | Draw branch of curve.

STEP

>>

>>

NEWGRAPHS:

<< CLLCD LDR RCEQ

1 -LIST | Creates a list containing the

'EQS' STO | expression and names it EQS

Drar LCD— 'SCR' STO | Draws to screen, saves the screen

DGTIZ | and leaves the cursor active
>>
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Example. 'X*2 + X*Y + YA2' NEWGRAPHS results in a graph something like

the following which is saved in SCR.
 

-/_‘\,:::::
N
 

L 1 1 1 1
T T T T v

    
GETG:

<< SCR -»LCD DGTIZ >>

Note. GETG restores to the screen the graph stored in SCR.

level 1

expression =

OVERDRAW:

<< CLLCD LDR RCEQ | Adds new expression to list EQS

1 -LIST EQS +

'EQS' STO

SCR —LCD Drar | Reproduces old screen and adds

LCD— 'SCR' STO DGTIZ | new graph. Stores the result

>>

Example. 'Y - X' OVERDRAW produces the following divides the region bounded

by the previous conic.
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REDRAW:

<< CLLCD EQS SIZE 1

SWAP FOR I EQS 1

GET STEQ Drar NEXT

LCD— 'SCR' STO DGTIZ

>>

| Redraws the graphs of

| expressions

| stored in EQS. Saves the screen

| and leaves the cursor active

Example. The upper region bounded by the curves can be regraphed with

(-14,-1) PMIN (1, 1.4) PMAX REDRAW

 

 

~

N
 

 ——    
This method of choosing the graphing window can be simplified with the following

commands.

level 2 level 1

coordinate pair coordinate pair =

BOX:

<< PMIN PMAX REDRAW

>>

level 3 level 2 level 1

real real oordinate pair =

ZOOM:

<< *W *H CENTR REDRAW

>>
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Example. To return to the original parameters enter 'PPAR PURGE REDRAW

Then to enlarge the upper bounded region try capturing the center of the region with

INS and then enter .75 .75 ZOOM You should get something like the following:
 

/‘_‘l

L 1 \
1 1 - —

—

—
—

 

-

    

2.5 Parametric Curves

Parametric Draw

level 5 level 4 level 3 level 2 level 1

procedure procedure T Tmax 6T =

DRPAR:

<< CLLCD DRAX | Initialize the screen.

5 ROLL 5 ROLL — delta x y | Save the x and y

| procedures and increment.

<<

FOR theta

theta x EVAL

theta y EVAL | Compute x(t) and y(t).

R—-C PIXEL | Plot the point.

delta STEP | Incrementt.

>> DGTIZ | Activate cursor.

>>

The program DRPARrequires the functions x = x(t) and y = y(t) to be entered

as a procedures in levels 5 and 4 of the stack. For instance, after storing the program

in DRPAR,to draw r = (cos(t), sin(t)) enter the following;:



<< = T'COS(T) >> << > T'SIN(T)'>> 0 '®' 2 + ->NUM

DUP 120 + DRPAR

Examples. A couple of the standard figures are graphed below.

1) r=(cost, sint)

 

 

- - - e -'::::/\
\/     

2) r=(2cost,sint)

 

Exercises

1) Redo some of the other standard figures: r=(t+ 1,t-1), r=(1 -t t2), r= ({2, 83)

andr=(+1/t,t-1/t)

2) Produce a graph containing both r = (t, t2) and r = (2, t) on the sameaxis.

Example. You might have produced the figure r = (cos t, sin t) using the default

graphing parameter values in PPAR. The picuture can be improved by capturing a

new lower lefthand and upper righthand corners using INS. Clear the screen with

ON. The stack is then seen to contain two values, the points captured with INS.

These can be entered into PPAR using PMAX and PMIN. Each of these keys, found in

the PLOT menu, takes a value from the stack and stores it in the appropriate

variable. Now, produce the figure r = (cos t, sin t) a second time. You should have a

better view.
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Several types of "circular" motion have nice parametric representations.

Examples

1)

2)

3)

The cycloid is generated by tracing a fixed point on the circumference of a circle

rolling along the x-axis, r = (R(t - sin t), R(1 - cos t)). Try R =1.

 

 

    
The epicycloid is generated by tracing a fixed point on the circumference of a

circle rolling around outside the circumference of another circle, x = (R1 + R2)cos t

- R2cos((R1 + R2)t/R2), y = (R1 + R2)sin t - Rpsin((R1 + R2)t/R2). Try R1 =1 and

Ry =1/4.

 

 

    
The hypocycloid is generated by tracing a fixed point on the circumference of a

circle rolling around inside the circumference of another circle, x = (R1 - R2)cos t

+ R2cos((R1 - R2)t/R2), y = (R- R2)sin t - R2sin((R] - R2)t/R2). Again, try R1 =

1and R =1/4.
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4) Other figures have a parametric representation include Tschirnhausen's cubic,

namely, r = (t2 - 3, t3/3 - ¢).
 

 

   
Exercises. Match the following curves given parametrically with the figures given

below:

1) r=(int cos2t) 2) r=(sect, tant) 3) r=Q2sint-1,1+cost)

4) r=03t/1 +13), 32/ + t3) 5) r = ((cos )3, (sin t)3)

 

 A)

B) ( ]

C), , \\O

   N -

 

 

- - - - -- - - -

    

 

- - —
—

-
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D) —t——t—t+ ——t—t+—+

[ 1\

E) ——t—t— %<\= —t—t——

   
 

2.6 Graphing Utilities for Parametric Curves

Create a subdirectory called PARAM as follows:

'PARAM' CRDIR

level 1

expression =

QUIT:

<< HOME >> | Returns to home directory

We need a version of DRPAR which does not begin by clearing the screen.

Since the new program appears in the subdirectory, we can use the same name (using

lower case letters) and still avoid any confusion.
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level 5 level 4

procedure procedure

Drpar:

<< DRAX

level 3

Tmi

5 ROLL 5 ROLL — delta x y

<<

FOR theta

theta x EVAL

theta y EVAL

R—-C PIXEL

delta STEP

>>

>>

level 2 level 1

Tmax oT =

| Initialize the screen.

| Save the x and y

| procedures and increment.

| Compute x(t) and y(t).

| Plot the point.

| Incrementt.

Drpar in this subdirectory (as did DRPAR in the home directory) requires the

plotting parameters Tmax, Tmin and 8T. Since the utilities are designed to produce

and manipulate several parametric curves on the same axis, we will use PPAR to

store the plotting parameters. There is no automatic feature for generating PPAR.

Hence you must initialize PPAR, for instance, {(-6.8, -1.4) (6.8, 1.5) T 1 (0, 0)}

PPAR' STO.
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level 1 level 2

procedure procedure =

NEWGRAPHS:

<< CLLCD DUP2

2 -LIST 'PROCS' STO | Creates a list containing the

| procedure and names it PROCS

PPAR 1 GET C-R DROP | Gets the plotting parameters

PPAR 2 GET C-R DROP | required for Drpar from PPAR

DUP2 SWAP - 136 /

Drpol LCD— 'SCR' STO | Draws to screen, saves the screen

DGTIZ | and leaves the cursor active

>>

Example. << = T 'SIN(T)' >> << — T 'SIN(T)' >> NEWGRAPHS results in a

graph something like the following which is saved in SCR.
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GETG:

<< SCR -»LCD DGTIZ >>

Example. GETG restores to the screen the graph stored in SCR.

level 1

procedure =

OVERDRAW:

<< DUP2 2 —LIST PROCS + | Adds new procedure to

PROCS' STO | list PROCS

PPAR 1 GET C-R DROP | Gets the plotting PPAR

2 GET C-»R DROP | parameters required

DUP2 SWAP - 136 / | for Drpar from PPAR

SCR -»LCD | Reproduces old screen

Drpar LCD- | and adds new graph.

'SCR' STO DGTIZ | Stores the result

>>

Example. << > T '1 + COS(T)' >> << —> T '1 + SIN(T)' >> OVERDRAW

produces the following which is a little small.

/6>
/

 

 

   
 



REDRAW:

<< CLLCD

PPAR 1 GET C-»R DROP

PPAR 2 GET C-R DROP

DUP2 SWAP - 136

PROCS SIZE 2 +1

SWAP FOR I 3 DUPN

PROCSI 2 x 1 - GET 4 ROLLD

Drpar NEXT 3 DROPN

LCD— 'SCR' STO DGTIZ

>>
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| Gets the plotting PPAR

| parameters required

| for Drparstored in

| PPAR

| Reproduces plotting

| parameters

| Gets procedure

| stored in PROCS

| Redraws the graphs

| Saves the screen

| and leaves the cursor

| active

Example. The figures above can be regraphed with 2 3 + DUP *H *W

REDRAW

 

 

  
N

/   
This method of choosing the graphing window can be simplified with the following

commands.
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level 2 level 1

coordinate pair oordinate pair =

BOX:

<< PMIN PMAX REDRAW

>>

level 3 level 2 level 1

real real coordinate pair =

ZOOM:

<< *W *H CENTR REDRAW

>>

Example. To return to the original parameters enter 'PPAR PURGE REDRAW

Then to enlarge the region bounded by both curves try capturing the center of the

region with INS and then enter .67 .67 ZOOM You should get something like the

(R
following;:

 

    - - -
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FUNCTIONS OF TWO VARIABLES/OPTIMIZATION

3.1 Curves, Surfaces and Functions

In one-dimensional calculus we applied our methods to problems associated

with functions: max/min problems for functions, average value of a function, etc.. We

usually did not distinguish a function and its graph nor make a big deal out of the

application of calculus to implicitly defined curves, for instance the conic sections.

That is, implicit differentiation was introduced as a natural extension of

differentiation of functions. A consequence of this blurring of distinctionsis a

heightened emphasis on functions as opposed to geometric curves.

In multidimensional calculus the more fundamental objects of our study are the

geometric curves and surfaces. Many of the concepts to be introduced are inherently

geometric and functions enter as an aid for the study of these concepts. Furthermore,

we can usually apply functions to the concepts in more than one way, though some

particular way will likely be most useful.

Thus the task now is to shift our attention from functions to curves and surfaces,

solving some of the same problems introduced in one-dimensional calculus. However,

we introduce others which have not been studied before ____ functions of several

variables have more than one kind of derivative, for instance, directional

derivatives; line and surface integrals are not just multidimensional versions of the

Riemann integral. Obviously, in thinking about curves and surfaces we are not going

to abandon what we know of differentiating and integrating functions. Therefore,

how can we use functions to describe curves and surfaces in higher dimensional

spaces? How is calculus applied to those functions to study the curves and surfaces

they describe?

39
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Basic definitions with examples

A function is best understood as a collection of ordered pairs no two of which

have the same first term. In the one-dimensional calculus, functions are ordered

pairs of real numbers which can be displayed graphically as subsets of the Cartesian

plane. This graphical representation of the function is called the graph of the

function. For real valued functions of more than one variable, the first members of

the ordered pairs (elements of the domain of the function) will themselves be

n-tuples. In the case of real valued functions of two variables the first members will

be 2-tuples or ordered pairs. The graphical representation of these functions will be

in 3-space. A surface S is said to be given explicitly by a function f, usually from R

to R, provided S is the graph of f.

a) From the one-dimensional calculus consider the function f(x) = x2 + x + 1.

The curve C={(x,y) | y = x2 + x +1},the graph of f, is said to be given

explicitly by f.

b) The surface S = {(x,y, z) | z=x2 - y2)} is the graph of z = x2 - y2. Two

views of S are shown below.
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Exercises. If you have the use of a 3-D grapher on a personal computer try the

following exercises.

1) Reproduce the pictures given above. Try changing the rotation and aiming

point.

2) Produce the surface z = sin(x + y) using the viewing cylinder [0, 10] by [0, 10].

3) Try some of the other explicit quadric surfaces from your calculus text.

Among the conic sections the ellipses and hyperbolas are usually defined

implicitly by equations. For example, the unit circle is given by the equation x2 + y?2

= 1. Note that the graph of the circle cannot be the graph of a function, there are

lots of verticle lines which intersect a circle more than one time. A surface S is said

to be given implicitly by a function f, usually from R into R, provided S is a level

set of f, i. e., there is a number k such that S = { x | f(x) = k}. Note that S is a subset

of the domain of f.

a) The unit circle C given by x2 + y2 = 1 is a level set of the function f(x, y)

=x2 +y2,ie, C={(x,y) | fix,y) =x2 +y2 =1).
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b) A portion of the implicitly defined surface S = {(x, y, ) | x2 + y2 +22 =1)

is given below.

 

This picture was produced with a 3-D grapher by solving x2 + y2 +22=1 explicitly

for z. Of course, each point (x, y) produces two values of z. We only used the

nonnegative values of z. Thus we can use software for producing explicit surfaces to

represent portions of implicitly defined surfaces.

Exercises. Using 3-D grapher on a personal computer, try to produce a portion of

some of the implicitly defined quadric surfaces in your calculus text.

Implicitly defined curves can also be used to study explicitly defined surfaces.

Given an explicit surface z = f(x, y) we produce the implicitly defined level curves k

= f(x, y). The level curves of a surface, in this case, are a two dimensional

representation of a three dimensional surface. Consider the level curve

representation of the surface z = x2 - y2 given below.
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   N
7

Exercises. Using the conic graphing utilities reproduce the level curves for z = x2 -

y2 shown above.

A curve C (sometimes a surface) is said to be given parametrically by a

function f, usually from some subset U of R to R, provided C is the image of U under

f, i.e,, C = f(U). Note that C is a subset of the range of f.

a) The straight line through P(xq, yp, zg) and Q(x1, y1, z1) is given

X=X+ t(x1 - Xg)

parametrically by the set of functions y =y, + t(y, - y,) , a real number

z=12zy+Htz, - 2,)

or, more economically, in vector form by x = (xq, yq, zg) +

t(xp - x1, ¥0 - ¥1, 20 - 21)-
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b)

a)

b)

a)

b)

The plane consisting of all linear combinations of two linearly

independent vectors u and v is given parametrically by f(a, b) = au + by,

(a,b)in R x R.

Some standard representations

Lines (explicit: y = mx + b; implicit: Ax + By + C = 0; parametric: r(t) =

u + tv, t a real number)

Conic sections

Implicit:

2 2
x2 y _ x2 y _

Zrzt gt
a b a b

Parametric:

_ _a .t -t
{x:acose X—acosht-z(e +¢e)

. ,0<0<2rn
o<t <o

Shifting the representation

A curve C given explicitly by y = f(x), x in D, can be described implicitly

by C = { (x,y) | y - f(x) = 0} or parametrically by

X =X

y = f(x), x in D

A curve C given implicitly by f(x, y) = 0 might not have have an explicit

representation, for instance the circle x2 + y2 = 1. Even so, we can
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frequently give a "branch” of the curve an explicit representation, as the

upper semicircley = V1-x2,-1<x<1.

¢) Sometimes a curve C originally given parametrically can also be

represented implicitly by "eliminating the parameter”. See the conic

sections above.

Exercises.

1) Find both parametric and explicit representations of the line segment

between P =(1,1) and Q = ( 2, -3).

2) Find both implicit and parametric representations of the ellipse with

vertices (-1, 0), (1, 0), (0, -2) and (0, 2).

3) Find both explicit and implicit representations of the plane which

contains (1, 0, 0), (0, 1, 0) and (0, O, 1).

3.2 Limits

lim , :
If x, y) = (a, b) f(x, y) = L then for any continuous function y = g(x) such that

limgla) =b we have "1 f(x, g(x)) = L. This fact is useful for showing that alimit

does not exist. If you suspect that a limit doesn't exist then search for two continuous

functions y = g1(x) and y = g2(x) with the property that gi(a) = gr(a) =b and xlir;xa

f(x, g1(x) # xli_n;a f(x, go(x).

Example 1. Returning to that familiar example

0 X2 + y2 20

foxy) =] 2Y_ 2, y% #0
X2 + y2
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we know that the partial derivatives exist at (0, 0). In fact fx(0, 0) = fy(O, 0) =0.

However, z = f(x, y) does not have a limit at (0, 0). You can demonstrate this as

follows:

<< Y 2*X*Y/(X*r2+YA*2)>>

'Z' STO

2*X' Z STEQ DRAW DEL ON

'X72'Z STEQ DRAW DEL ON

—LCD

The resulting screen should look something like this.

 

For g1(x) = 2x and g2(x) = x2 we have the limit of f(x, g1(x)) at x = 0 is 4/5 while

the limit of f(x, g2(x)) at x = 0 is 0. Thus f(x, y) does not have a limit at (0, 0).

Example 2. The following example shows that a function f(x, y) might fail to have

a limit at (a, b) while for every straight line y = g(x) through (a, b), the limit of

f(x, g(x)) exists and , furthermore, the limits are the same no matter which straight

line you choose.

3
(y2 -X) + x2y

Consider f(x, y) = . We proceed as follows:
2

(y2-x2) + lyl

<< 2Y '(YA2-X)A3+XA2*Y) /(Y A2-X) 22+ ABS(Y) A 5)

>

'Z' STO
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You should get something like this.

For

X' Z STEQ DRAW

 

 

    

For

- X' Z STEQ DRAW

 

 

    

Notice we are not saying that the graphs of f(x, g(x)) for various straight lines

y = mx coincide but rather that they have the same limit at x = 0. On the other

hand, for g(x) = Ix[1/2 the sketch of f(x, g(x)) looks something like the following:

 

 

 

    

i.e., f(x, g(x)) =1 and so has limit 1 not 0. This shows that f(x, y) does not have a

limit at (0, 0).
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Exercises. Show that the following do not have limits at (0, 0):

2,2 4_2
1) xX+y- 2) -y 3) Xy

X2+y4 X2+y2 y2'x+x2

% 5) \y-x 6)4) _NXy
\ X2 + y2

3.3 Differentials

We say the surface given explicitly by z = f(x, y) has an approximating plane

at (x0, y0, f(x0, y0)) provided the partial derivatives fx and fy exist at (xp, y0) and

f(xl Y) - f(xol yO) - fx(xol yo)(x - Xo) - fy(xor yO) (y = yO)

lim =0
2x,y) > (XO, Yo) (x - XO)Z +(y - Yo)

If the surface z = f(x, y) has an approximating plane at (xQ, y0, f(xQ, y0)) then we

 

say the function z = f(x, y) is differentiable at (xQ, yg). In this case, the function

clearly must be continuous at (x(, yQ).

Furthermore, if z = f(x, y) is differentiable at (x(, yp) and y = g(x), a function

differentiable at xg with g(xg) = yo, then z = f(x, g(x)) is differentiable at x = xg and

z'(xp) = fx(x0, y0) + fy(x0, y0)g'(x0). How "nice" can a function be and still not be

differentiable, i.e., not have an approximating plane?

Consider the surface given by z = f(x, y) where

2
Xy 2
> > X +y2 20

f(x,y): X +y

 

0 x* +y2 =0
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Two views of the surface are given below.

  
The point (0, 0, 0) is the center of each picure. The function certainly appears to be

continuous at (0, 0). We can see that this is the case by noting that

x2y

2, .2 < |yl
X+y y  

for all (x, y) = (0, 0).

If we section the surface with a plane y = mx for some constant m the resulting

curve z = f(x, mx) = (m/(1 + m2))x is a straight line, i.e., each section is a

differentiable curve with slope m/(1 + m2) at (0, 0). This would seem to say that z

= f(x, y) is well behaved at (0, 0). However, recall that if z = f(x, y) is

differentiable at (0, 0) and z = f(x, mx) then z'(0) = fx(0, 0) + mfy(O, 0) = 0. This

means z = f(x, y) is not differentiable at (0, 0). What went wrong?

To see what the problem is look at the quotient Q(x, y) =

f(x, y) - £(0, 0) - £,(0, 0)x - £,(0, O)y _ x2y
 

3/2

x* + Y2 (x2 + y2)
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For z = f(x, y) to be differentiable at (0, 0), the quotient Q(x, y) must have limit 0 at

(0, 0). In fact, the quotient Q(x, y) has no limit at all which can be verified by

letting, in turn, y = x and y = 2x. The limit as x—0 of the quotient along y = x is 2~

3/2, The limit along y = 2x is 2:5-3/2, Since these two limits are not the same the

function Q(x, y) does not have limit 0 at (0, 0). Thus z = f(x, y) is not differentiable

at (0, 0).

The HP-28S can be used in the above analysis as follows:

XA2*Y /(XA2+YA2) 'Z' STO

You compute zx by

Z 'X' PURGE X' d/dx

and zy by

Z 'Y' PURGE 'Y' d/dx

To compute z = f(x, 2x) try

™M*X 'Y STO

2 'M' STO Z

EVAL EVAL

At this point, you should have something like 'X"A2*(2*X)/(X"2+(2*X)"2)' on the

first level of the stack. Using COLCT and EXPAN from the ALGEBRA menu, you

can transform the expression to '.4*X'. The problem is that common factor from the

denominator and numerator have to be cancelled. Now, for (d/dx)f(x, 2x)

X' PURGE 'X' d/dx
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returns 4 i.e., for z = f(x, 2x) we get z' = 4. Of interest here is the symbolic

manipulation capability of the HP-28S. We stored f(x, y) in Z, mx in Y, 1 in M and

then computed f(x, 2y) by executing Z followed by two EVALS.

Exercises. Compute dz/dx given:

1) z=u/v; u=x,v=1+x2

2) z=arctan(u/v); u = xeX, v=1+ x2

3) z=1/2+v2);u=sinx,v=Inx

4) Repeat the above analysis for f(x, y) = ";zzi‘—’;gi

i.,e., show that z = f(x, y) is continuous at (0, 0), z = f(x, mx) is differentiable at

x = 0 for all m, and yet z = f(x, y) is not differentiable at (0, 0). It's hard to use the

calculator for the first of these tasks, but for the second task the symbolic

manipulation capability of the HP-28S can be put to work.

3.4 Classification of Critical Points for Functions of Two Variables

Taylor series for functions of one variable. The Taylor series expansion of f(x)

about xg is given by

(p)
f (xO)
 f(x) = ),

p=0 p! ).

The sum of the first n + 1 terms, i.e., for p=0, 1, ..., n, is called the nth degree

Taylor polynomial P,,(x). Of course, P1(x) is the line tangent to the graph of f(x) at

(xg, f(xg)). Similarly, each of the polynomials approximates the function. We can

get a better idea of the nature of this approximation by considering the graphs of

f(x) and P(x) plotted on the same axis.
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Example 1. Sketch the graphs of y = sin(x) and the first three nonzero Taylor

polynomials at xg = 0.
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The same pictures can be reproduced on your HP-28S by entering the following series

of commands.

'PPAR' PURGE

'SIN(X)' STEQ DRAW DEL ON ENTER

'SIN(X)' 'X' 1 TAYLR STEQ DRAW DEL ON OR —»LCD ON ENTER

'SIN(X)' 'X' 3 TAYLR STEQ DRAW DEL ON OR —»LCD ON ENTER

'SIN(X)'” 'X" 5 TAYLR STEQ DRAW DEL ON OR —»LCD

Exercise. Repeat the process for 1/(1 + x2) usingn =1, 3, 5.

We look for critical points of y = f(x) by finding values for which the graph of

P1(x) is a horizontal line. A critical point xg of y = f(x) is classified as a local

minimum if the second degree Taylor polynomial P>(x) for f(x) is a parabola which

opens up. Notice that Po(x) = f(xg) + f"(xg)(x - x0)2, which opens up provided

f'(xg) > 0. Similarly, x is classified as a local maximum if P(x) opens down.

Example 2. TAYLR always computes the polynomial expansions at zero, i.e., the

MacLaurin expansions. In order to find an expansion about some other point we must

introduce a change of variables. Suppose we want the expansion of 1/x about1.

Notice there is no expansion about 0.

Enter the following commands:

X' 1/x 'Y +1 'X' STO EVAL

"Y' 3 TAYLR

X' PURGE 'X-1"'Y'" STO EVAL

Exercise. Try expanding sec x about «.
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Classifying critical points. For z = f(x, y) we proceed as follows: let wi(t, x, y) =

f(xp+ t(x - x0), yo + t(y - yo)), a section of z = f(x, y) in the direction of (x, y). The

second degree Taylor polynomial at 0 for w(t, x, y) (holding (x, y) fixed) is

P2(t, x, y) = f(xo, yo) + [fx(x0, y0)(x - x0) + fy(x0, yo)(y- yo)lt +

(1/2)[fyx(x0, yo)x - x0)2+ 2fxy(x0' yoXx - x0)y - yo) +

fyy(x0, yoXy - y0)21t2

which reduces to

Pa(t, x, y) = f(x0, y0) + (1/2)[fxx(X0, yO)(X - X0)? +

2fxy(x0, yo)(x - x0)(y - y0) + fyy(x0, yol(y- y0)2]t2

when (xq, yo) is a critical point.

Example. Find the second degree Taylor polynomial for w(t, x, y) given z =

(sin x)(sin y) and (n/2, ©/2 is a critical point . Enter the following:

'SIN(U)*SIN(V)" 'Z' STO

't/2' -5NUM DUP CHS X' + 'T' x + 'U' STO

U EDIT (change X to Y) ENTER 'V' STO

Z EVAL 'T'" 2 TAYLR

In order to classify (n/2, n/2 ) as either a local maximum. a local minimum or a

saddlepoint, we must determine if P2(t, x, y) is a parabola opening down (or up) for

all (x, y) or opening down for some (x, y) and up for others. We can decide by

sketching the level curves of P5(1, x, y). Proceed as follows:
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1 'T" STO EVAL

'K' PURGE 'K' + LDR

0 'K' STO DRAR DEL ON

1 CHS 'K' STO DRAR DEL ON OR

2 CHS 'K' STO DRAR DEL ON OR —LCD

Clearly, we have produced the level curves of an elliptic paraboloid, i.e., the

coefficient of t2 in P2(t) must always be either positive or negative. Therefore

(n/2, ®/2 ) must be a local extremum. Furthermore, since the paraboloid looks down

(r/2, ®/2 ) must be a local maximum.

 

 

   
 

The example illustrates this general result: if f,,(xg, yo)(x - x0)2 +

2fxy(x0, yo)X(x - xo)Xy - yo) + fyy(xo, yoXy - yo)2 is an ellipse then (xp, yp) is an

extremum. In which case, (xg, yo) is a maximum if f,,(xg, yo) is ngative and a

minimum if fy,(xg, yo) is positive. If f,,(xp, yo)(x - x0)2 + 2fxy(x0, yo)(x - x0)(y - yo)

+ fyy(xo, yoXy - y())2 is a hyperbola then (xg, yo) is a saddlepoint. This can be

developed as an efficiently applied critera as follow: Let A = (fxy(xo, yo))? -

fyx(x0, yo)fyy(xo, yo0).

1) If A >0, then (xq, yp) is an extremum. A maximum if f,,(xg, yp) <0 and a

minimum if f,,(xg, yg) > 0.

2) If A >0, then (xg, yo) is a saddlepoint.

3) If A =0 then the test fails.
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Exercise. Use the method outlined above to classify the critical points (-1, 11/6)

and (1,1/2) of z = x3 + y2 + 2xy -4x -3y + 5 as either local extrema or saddlepoints.

3.5 Polya's Problems!

Example. If the sum of two numbers is 6, what is the maximum of their product?

Let the numbers be x and y. We are given that x + y = 6 and we wish to

maximize the function f(x, y) = xy subject to that constraint. From the handout, we

seek a point (xq, yg) on x + y = 6 where the level curve f(x, y) = xgy( is tangent. We

proceed as follows:

Create a program that combines two screen images and leaves the cursor active.

<< OR -»LCD DGTIZ >> 'TNGT' STO

We then produce a graph containing both x + y = 6 and xy = 1, i.e., the constraint

and an arbitrary level curve of f(x, y).

'PPAR' PURGE

'6 - X' STEQ DRAW DEL ON ENTER

'K' PURGE 'X*Y -K' LDR 1 'K' STO DRAR DEL ON

TNGT

—— é\"—\ o

Of course, xy = 1 is not tangent to the constraint x + y = 6 at any point. We can

 

 
 

    

choose a more appropriate level curve of f(x, y) = xy by moving the cursor to a point

 

1 George Polya, Mathematics and Plausible Reasoning, Vol. 1, Princeton University
Press, Princeton, NJ, 1954.
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on the constraint x + y = 6 where we think some level curve is tangent. Capture that

point with INS and then continue. (Our guess resulted in (3.1, 2.9). )

ON C-R x 'K' STO ENTER DRAR DEL ON TNGT

This will produce something like the following:
 

 

LL'\J\'_h

~N I N    
The picture is pretty convincing that either (3.1, 2.9) is a point of tangency or

near such a point. To check our answer, we can zoom in by setting the center at (3.1,

2.9) and repeating the process from the top.

Exercise. Find the minimum of x2 + y2 on the curve x = y2 + 1.

Example. Find the distance of the point (1, 2) from the curve y = 3.3x2 + 2x. If we

find the point which minimizes the sqare of the distance that point will also

minimize the distance. This latter problem can be stated as:

Minimize: f(x, y) = (x - 1)2 + (y - 2)2

Subject to: g(x,y) =y - x3 + 3x2 - 2x

The method of Lagrange multipliers leads to a system of polynomial equations with

no rational solution. Let us try the graphical method outlined above.

'PPAR' PURGE (-6.8, -1) PMIN (6.8, 2.1) PMAX

XX - D*X - 2)' 'Z' STO

Z STEQ DRAW DEL ON 'CONST' STO

'K' PURGE '(X-1) x2 (Y-2) x2 + 'K' - LDR

DRAR DEL ON TNGT
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This produces something like the following;:

 

 

    
Use the cursor to estimate the point on the curve nearest (1, 2), for us (2.5, 1.92). We

chose PMIN to be (-6.8, -1) and PMAX to be (6.8, 3). We update the graph as

follows:

C->R 2 -5ARRY 1 2 2 -5ARRY - DUP DOT 'K' STO

RCEQ Z STEQ DRAW DEL ON'CONST' STO

STEQ DRAR DEL ON CONST TNGT

This produces the following:

 

 

L
o (-
t

- - -    
The current estimate of the minimum seems pretty good, but we could improve our

estimate by repeating the process with a better guess. Our current estimate of the

distance is the square root of K,i.e., 1.50.

Exercise. Find the distance of the point (1, 2) from the curve y = In x.

Example. We want to find a graphical solution to a more difficult version of the

milkmaid problem. Suppose the house is located at P(0, 1), the barn at Q(-2, 1) and

the river bank is given by y = sin x. If each morning the milkmaid walks in a

straight line from the house P to a point R on the riverbank to fill her pail and then
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in a straight line to the barn Q, the total distance she must travel is d(P, R) + d(R,

Q). The problem is to choose the point R on the riverbank to minimize the total

distance she must travel.

The problem can be stated as follows:

Minimize: f(x, y) = (x + 12 +y2)1/2 4+ (2 + (y - 1))1/2

Subject to: g(x,y) =y-sinx=0

The method of Lagrange Multipliers leads to some difficult equations. However, the

graphical method outlined above still works reasonably well.

The level curves of the distance the milkmaid walks are ellipses. Recall from
-h)2 - k)2

the derivation of the general form 9(—;2}1 + (lplfl_ = 1 of an ellipse with major

axis horizontal that for this problem (h, k) = (-1, 1), 2a is the distance the

milkmaid walks, 2c = 2 is the distance between the house and barn (the foci), and b2

=1-a2. The calculator analysis proceeds as follows:

'SIN(X) STEQ 'PPAR' PURGE DRAW DEL ON 'CONST' STO

'K' PURGE X' 1 + x2 'K' x2 + 'Y' 5 - x2 'K x2

1-++1-'2 STO Z'Y' 2 TAYLR 'Y’ QUAD STEQ

15 'K' STO DRAR DEL ON

CONST TNGT

The graph looks something like.

7 )

o~~~ ]
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Use the cursor to capture a guess for the point which minimizes the distance and to

bracket the region of interest. Our guess is (.3, .3) , PMIN is (-.5, .1) and PMAXis (1,

.6). Duplicate (3., .3) and store one copy in CNTR. To compute the updated K

proceed as follows:

C->R 2 -ARRY DUP 0 1 2 -ARRY - DUP DOT Vx

SWAP 2 CHS 1 2 -»ARRY - DUP DOT vx + 2+ 'K' STO

RCEQ 'SIN(X)' STEQ DRAW DEL ON 'CONST' STO

STEQ DRAR DEL ON TNGT

The graph looks something like this.

 

   s
 

Of course, the estimate can be improved by repeating the above process.

Exercise. Find a graphical solution to the milkmaid problem given the house is at

(0,1), the barn is at (0, 2) and the river bank is given by y = In x.
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INTERSECTIONS OF CURVES AND SURFACES/INTEGRATION

4.1 Intersections of Curves and Surfaces

Solving systems of equations forms the core of mathematics. Restricting

ourselves to pencil and paper methods means that most equations, even equations

with a single unknown, cannot be solved. Even simple equations such as eX = 10x,

which are easy to picture using the HP-28S, are best avoided without some kind of

computational capability. The HP-28S gives us a powerful tool for solving equations

and largely frees us from the narrow world of textbook problems.

Solution of one variable equations using SOLVE. Starting with something

simple, suppose we want the zeros of f(x) = sin(2x). Of course there are infinitely

many zeros and we know some of them, namely, x = nx for any integer n. Are there

any more? Obtain a graph of f(x) as follows:

'PPAR' PURGE

X' 2 x SIN STEQ DRAW

;T \/\/

 

 

    
Since the function is periodic, estimate the first three zeros starting at (0, 0).

Capture each estimate using INS. You should have something like (0, 0), (1.5, 0)

and (3.2, 0). Enter SOLVR from the SOLV menu. The first entry on the new menu is

X and the second EXPR=. Enter the estimate of the right most zero, namely (3.2, 0),

by pressing X. The top line of the screen display becomes X: (3.2, 0). Now enter

61
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ALERNATE (the red key) X. The top line becomes SOLVING FOR X followed

quickly by X: 3.1415926539 and the second line becomes Sign Reversal.

Quoting from the Reference Manual, "The Solver found two points where the

procedure values have opposite signs, but it can't find an intermediate point where

the procedure value is zero because (a) the two points are neighbors or (b) the

procedure is not real valued between the points. The Solver returns the point where

the procedure value is closer to zero. If the procedure is a continuous real function,

this point is the calculator's best approximation to the actual root."

We know the true answer to be w. If you check the calculator value of © you

see it agrees exactly with the root returned by the solver.

DROP the answer and repeat the process with (1.5, 0) and again with (0, 0).

For (0, 0) something new emerges. This time the second line reads Zero. This

indicates the Solver has found a point where the procedure is zero, i.e., an "exact"

answer. Drawing on our knowledge of f(x) = sin(2x) we now can conclude the zeros

are nrt/2 for n an integer.

Exercise. Repeat the process for f(x) = x3 - 3x2 + 2x.

The process breaks down when we can't obtain a reasonable sketch of the

function for forming an initial estimate. Try the repeating the process for f(x) = eX -

10x. We're in trouble. the graph seems to consist of only a couple of scattered points.

Try to graph just y = 10x without changing the plotting parameters. Again, nothing

seems to happen.
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In order to produce graphs of two or more functions, such as the one given below

of y = eX and y = 10x properly scaled, we introduce a set of graphing utilities to

1
Graphing Utilities for Functions!. Create a subdirectory called GFNCS as

make the process more efficient.

 

 

    

follows:

level 1

expression =

QUIT:

<< HOME >> | Returns to home

| directory

level 1

expression =

NEWGRAPHS:

<< CLLCD DUP 1 —-LIST | Creates a list containing

'EQS' STO | the expression and names

| it EQS

STEQ DRAW LCD- 'SCR' STO | Draws to screen, saves

| the screen

DGTIZ | and leaves the cursor

| active

>>

 

1 John Kenelly and Thomas Tucker, private communication.
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Example. X*(X - 1)*(X - 2)) NEWGRAPHS ON EQS results in a graph something

like the following which is saved in SCR.
 

-

 

    
GETG:

<< SCR -»LCD DGTIZ >>

Example. GETG restores to the screen the graph stored in SCR.

expression =

OVERDRAW:

<< DUP 1 ->LIST EQS +

'EQS' STO STEQ SCR

—-LCD DRAW LCD-

'SCR' STO DGTIZ

>>

level 1

| Adds new expression to

| list EQS

| Reproduces old screen

| and adds

| new graph. Stores the

| result

Example. 'X' OVERDRAW produces the following which clips one of the regions

bounded by the two curves.
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C

  

-

  
REDRAW:

<< CLLCD EQS SIZE 1

SWAP FOR I EQS I

GET STEQ DRAW NEXT

LCD— 'SCR' STO DGTIZ

>>

| Redraws the graphs of

| expressions

| stored in EQS. Saves

| the screen

| and leaves the cursor

| active

Example. The regions bounded by the curves can be regraphed with

(-7, -1) PMIN (7, 3) PMAX REDRAW

 

i
 

  
—rs

 
 

This method of choosing the graphing window can be simplified with the following

command.
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level 2 level 1

coordinate pair coordinate pair =

BOX:

<< PMIN PMAX REDRAW

>>

level 3 level 2 level 1

real real coordinate pair =

ZOOM:

<< *W *H CENTR REDRAW

>>

Example. To return to the original parameters enter 'PPAR PURGE REDRAW

Then to enlarge the smallest of the bounded regions try capturing the center of the

region with INS and then enter .25 .25 ZOOM You should get something like the

following:

 

 

   ' AN

Describing Regions of the Plane. Suppose we want to describe in set-builder

 

notation the region R pictured immediately above. Our estimate of the top

intersection captured with INS is (.375, .375). To use SOLVR proceed as follows:

EQS —LIST DROP - STEQ X (ALTERNATE)X
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The Solverreturns .381966. Thus we have R = {(x, y)| 0 < x < 0.381966 and x < y <x3

-3x2 4+ 2x}.

Exercises. In each of the following describe in set-builder notation using rectangular

coordinates the given region R2.

1) The region bounded by f(x) = x3 - 4x and gx)=1-x2,

2) The region bounded by f(x) = x and g(x) = (0.1)eX.

Example. Describe the region R bounded by y = x2 and x = y2. The new difficulty

presented here is dealing with a relation, namely x = y2, as opposed to a function.

We can proceed as follows:

'PPAR PURGE 'X A 2' NEWGRAPHS

 

 

b=    
ON 'X - Y A 2" 'X' PURGE 'Y' QUAD

The last command found in SOLV returns 's1*V(4*X)/(-2)', i.e., the symbolic solution

for y (using the quadratic formula) of x - y2 = 0. The parameter sl is to have values

+1.

1 'sl' STO OVERDRAW

L 1
I T T T T

 

 

- - - -
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1 CHS 's1' STO OVERDRAW

\_“_/

1 1 1 1 1 1 1 1 1
T T T T T T

1
T v 1 v

N
To describe the region, we need the upper intersection. (Of course, we know the

 

 

4 L
v T

    

answer, namely (1, 1).) Here's how to proceed with the calculator. First get an

estimate with the cursor. We got (.9, 1).

ON EQS LIST-» DROP SWAP DROP

We need to use the upper branch of x = y2.

- STEQ SOLVR X (ALTERNATE)X

The answer returns 1. Thus {(x, y)| 0<x<1 and x1/2 < y < x2).

Exercise. Describe the region bounded by y = x2 + x + 1 and x + 3/2 = y2.

These problems are really about regions bounded by conic sections. Using the

graphing utilities for conic sections makes the whole job easier.

Exercise. Describe the region R bounded by x2 + xy + y2 - 1=0and x2 + y2 - 2x = 0.

The graphs look like

 

 

- - - - - - - - -

   
AW
S

Turning to regions bounded by parametric curves and curves in polar coordinates,

 

the problem of interest becomes that of determining a minimum interval of

parameters for the curves.
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Example. Consider the curve C: r(t) = t3/8 - 3t/2, 3t2/8), 4 <t<4.

O
Clearly, we only need the three zeros of x(t).

=%=::::::/:::
/

Since x(t) = 0 factors, we don't need to use SOLVR to obtain the roots -3.4641, 0, and

 

     

 

 

    

3.4641. Thus the region R bounded by C has boundary given parametrically by

r(t) = (83/8 - 3t/2, 3t2/8), -3.4641 < t < 3.4641.

Exercise. Find the boundary of the region bounded by C: r(t) =

(t2-3,83/3-1),-2<t<2).

Example. Find the boundary C of the intersection of the regions bounded by the

polar curves r1 = costand r2 =sin t.

NN
/

The two intersections are (0, 0) and (.7071, 7071). Graphing the two curves in

 

 

    

rectangular coordinates we realize there is no value of t such that ri(t) = ra(t) = 0.
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However, we can write C as a sum C1 + C2 of curves where C1 is given by r1 = cos t,

7071 <t < 1.5708 and C2 is given by r2 =sin t, 0 < t <.7071.

Intersections of surfaces in 3-space. The intersection of two surfaces in 3-

space will usually be a curve. Dealing with the most general surfaces is too hard for

us at this time. We can look at the problem of describing regions bounded by a

quadric surface and a plane.

Example. Describe the region D of R3 between z22=2x2 +3y2 +land x +y +z = 2.

The two surfaces intersect in a 3-dimensional curve. We begin by looking at the

cylinder set parallel to the z-axis which contains this intersection. The equation for

the cylinder set is found by eliminating z from the equations,i.e., solve the equation

for the plane for z and substitute the result into the equation for the elliptic

paraboloid of two sheets. We the want to look at the xy-section of the cylinder set

in order to check that we have a bounded region.

X+Y+Z-2 'Z ISOL 'Z' STO

'2*XA2 + 3*yA2 -ZA2 + 1' EVAL LDR DRAR

The resulting picture is difficult to analyze. Step back by reducing the resolution,

i.e.,

5 *W 5 *H DRAR

The region does appear to be an ellipse. We can confirm this by shifting the axis.

Try capturing the upper right hand corner of a new window by using INS. My

attempt yields (3, 3) which I save using PMAX. You have to estimate something for

the lower left hand corner. I tried

-20 -10 R—»C PMIN
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The resulting picture obtained using DRARis convincing, i.e., the cylinder set

intersects the xy-plane in a bounded elliptic region D,.

The surface z2 = 2x2 + 3y2 + 1 is an elliptic paraboloid. For x =0, y = 0 we

have z2 = 1. The corresponding point on the plane x + y + z = 2 is (0, 0, 2), i.e., the

plane intersects the upper sheet of the elliptic paraboloid. Hence for (x, y) in the

bounded region D1, the ellipse obtained using the calculator, we must have

2x2+3y2+ 1D1/2<2-x-y

In order to complete the description of D1, we must in essence obtain a

description of the region Din set builder notation. Look at whatis stored in EQ.

Thus for (x, y) in D1 we have

2-x-m SySZ-x+m

Call this interval of y values Ix. To find the interval of x values proceed as follows:

'EQ'" RCL

The x-coordinates of the vertices of the ellipse will occur when the radical is zero.

Why? Use the editor to obtain just the radical.

EDIT V((2*Q2 - X)A2 - 3*(2*XA2 - (2 - X)A2 + 1))’

x2 'X' QUAD

We find the x-interval with

ENTER -1 's1' STO EVAL

SWAP 1 's1' STO EVAL

The stack is 0.7828 ..., -12.7828 ... . We obtain the right order with SWAP.

Thus D1 = {(x, y)| -12.7828 < x £ 0.7828 and y in Ix}. Finally, D = {(x, y)| -

12.7828 < x < 0.7828, y in Iy and 2x2 +3y2 + N1/2<z<2-x-y).
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4.2 Integration on the HP-28S

We will use the integration program IGL written by Wickes instead of the

keyboard command ‘[ ' for numerical integration. Before using IGL or the program

IGL2 for evaluating iterated integrals you must first store a positive number

repesenting an acceptable error in ACC. For instance, this can be accomplished by

entering

0.001 'ACC' STO

Integral

level 4 level 3 level 2 level 1 level 1

a b f(x) 'x' = integral

IGL:

<< 4 ROLL -»NUM 4 ROLL -»NUM

3 -LIST ACC | Set up arguments

I | Compute the

| integral

IF 0 < | Check the error

THEN "Bad Integral" 1 DISP | If it's negative,

| display

END | a message

>>

Examples

1) Use IGL to evaluate 2 ?n V1-cos dt.

0

24202 't 5NUM x '1 - COS(T) Vx 'T" IGL x
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2) Compute the circumference of the ellipse given parametrically by x = 2

cost,y=sint, 0<t<2n

0 2 '-NUM x '4*SQ(SIN(T)) + SQ(COS(T)) vx 'T' IGL

Exercises

1) Compute the circumference of the unit circle using the standard

parameterization.

2) Compute the length of the parabola y = x2 from ((1, 1) to ( 3, 9).

3) Compute the surface area of the figure generated by revolving about the x-

axis the curvey =lnx, 1 <x<2.

4) Compute the surface area of the figure generated by revolving about the x-

axis the curve parameterized by x = t2, y = 3,0<t<1.

As you become more skilled with the HP-28S you will want to minimize the

pencil and paper preprocessing that the previous examples employ. Consider the

following example which uses the differentiation capabilities of the calculator.

Example 3. Compute the length of the curvey = fiz from (0, 1) to (3, 0.1). Enter

the following;:

0 3 '1+SQX) 1/x X' PURGE X' d/dx x2 1 + Yx 'X' IGL

Exercises

5) Compute the surface area of the figure generated by revolving about the x-

axis the curve discussed in the example above.

6) Redo the previous set of exercises.
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7) Compute the circumference of the circle given in polar coordinates by r =

sin 0.

Wickes' program IGL2 for evaluating iterated integrals works just like IGL, the

program for definite integrals of functions of a single variable. Notice also that

IGL2 uses IGL. Remember to store a positive real number in ACC before executing

IGL2.

Iterated Integral

Level 7 6 5 4 3 2 1 level 1

a b 'x' c d f(x, y) 'y' = integral

IGL2:

<< > cdfy | Arguments of

| the "inner"

| integral

<<

<<cd f y IGL | Compute

>> | inner integral

SWAP IGL | Compute outer

| integral

>>

>>

1/x
Example 4. Evaluatej I Vx+y dydx

0 x

01°'X 'X" "X VYx 'X+Y vx 'Y IGL2
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Notice that the calculator takes a while to return the answer of 0.1522, about 32

seconds. Iterated integrals are harder to obtain numerically than definite integrals

for functions of a single variable. Also, since the stack is complicated you should

save the stack before executing IGL2,i.e., the commands should be

0 1 'Xl !Xl 'Xl _J; 'X + Yl _J-x_ 'YI

7 -LIST ENTER LIST-» DROP

IGL2

If everything looks right then SWAP DROP and you are left with only the answer.

Exercises

8) Find the volume of the figure bounded by the planesx +y +z =1, x =0,

y=0and z = 0.

9) Find the volume of the figure bounded by z = 0, x2+y2=1andz= x2 +

2y©.

10) Compute the mass of a flat plate, the quarter disk x2 + y2 <1,x20and

y 2 0, with density p(x, y) = xy.



CHAPTER 5

VECTOR FIELDS AND LINE INTEGRALS

5.1 Vector Fields

A vector valued function defined on a subset of R, n > 1, is called a vector
 

field. Similarly, a scalar valued function is called a scalar field. We will tend to
 

use a standard notation, for instance, f(x, y) = P(x, y)i + Q(x, y)j. Of course, f is a

vector field with component functions P and Q which are scalar fields.

If a constant force ¢ (constant in both direction and magnitude) is applied is

applied in moving a particle along a straight line (the x-axis) from a to b (a < b)

then the work W done is c(b - a). Notice that if c¢ is positive then W is positive and

the physical interpretation is that we have done work on the system. If c is

negative then the system does work on us.

Any problem where motion is in a straight line and the force acts in a

direction parallel to the direction of motion could be recoordinatized to fit our

standard formulation.

Suppose the particle is to be moved from P = (a, b) to Q = (¢, d) along the

straight line connecting P and Q, but the force f no longer is assumed to act in a

direction parallel to u = (c-a, b-d).T The component of the force in the direction u

is given by (f-u)/ | | u | |. The distance traveled in moving from P to Qis | lul I.

Hence the work done is (f-u)/ | lul )| lul | = f-u.

76
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Example 1. Compute the work required to move a particle in the force field

illustrated below from the point P to the point Q.

 

4

 

 

 

 

 

 

           
0 Q 4

The force field is constant, say f = (1/4)i + (1/4)j. The path the particle must travel

can be split up into two parts, from P = (0, 3) to (3, 3) and from (3, 3) to Q = (3, 0).

The total work W is the sum of the work on each part. Let u =3iand v =-3j. The

force to be exerted in moving the particle must balance the force exerted by the field,

i.e., the force exerted in moving the particle must be -f. Thus W = -f-u - f-v=-3/4) +

(3/4) = 0.

Example 2. The picture below represents the force field f = (1/(1 + x))j. Compute

the work done in moving a particle around the path PQRSP.

Of course, in moving from P to Q and from R to S, no work is done. Again, a

force which balances the field must be exerted on the particle, but work is the

component of the force exerted in the direction of motion. On those two segments of

the path the force is orthogonal to the direction of motion so no work is done.
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Assume that P =(1/2,1),Q=(17/2,1),R=(17/2,6) and S = (1/2, 6). Let u = 5j and

v = -u = -5j. Since the field on the path from Q to R is f( 17/2, y) = (2/19)j and from

Sto Pis £(1/2,y) = (2/3)j, we have W = -£f(17/2, y)u - £(1/2, y)v = -(10/19) + (10/3)

= 160/57. Note that in moving from Q to R the system does work on us. From S to P

we do work on the system. Since the total work is positive, we do work in traversing

the path PQRSP. If we move in the opposite direction PSRQP then the system does

net work on us.
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Exercise 1. Show that W = 0 if the particle is moved in a straight line from P to Q.

Exercise 2. Which path PQR or PSR requires the most work to move a particle from

P to R.

Of course, in order to construct a vector field f(x, y) = P(x, y)i + Q(x, y)j one

just has to specify P and Q. An interesting way to do this is to start with a function

z = g(x, y) and let f = Vg = (g,, gy)T =gyl + gyj . A vector field defined this way is

called a gradientfield. Consider the surface below given explicitly by z = x2 - y2,
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The with attached gradient field appears below. The vectors have all been

normalized to simplify the picture.

 

Exercise 3. Use the fact that a gradient vector at a point is normal to the level

curve through the point to add normalized vectors to the level curves of z = x2 - y2
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given below and recapture the previous picture. Remember which direction is up

 

 

/
"N  2\

Exercise 4.  Produce the gradientfields for z = y2 and z = x2 + y2.

  
5.2 Line Integrals

If a constant force c (constant in both direction and magnitude) is applied is

applied in moving a particle along a straight line (the x-axis) from a to b (a < b)

then the work W done is ¢(b - a). Notice that if c is positive then W is positive and

the physical interpretation is that we have done work on the system. If c is

negative then the system does work on us.

If the force f(x) is not constant but acts in only a direction parallel to the
b

direction of motion then W = [ f(x) dx and again we interpret positive f(x) as a

a

force in the direction of motion. If W is positive then we are doing a net positive
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work on the system. Notice that any problem where motion is in a straight line and

the force acts in a direction parallel to the direction of motion could be

recoordinatized to fit our standard formulation.

Suppose the particle is to be moved from P = (a, b) to Q = (¢, d) along the

straight line connecting P and Q, but the force f(x, y) no longer is assumed to act in a

direction parallel to u = (c -a, b - d).

  
The component of the force in the direction u is given by (f(x, y)u)/ || u ||. If

the straight line segment from P to Q is parameterized by x = x(t), y = y(t),

a < t < b, then the work done in moving the particle from P to Q is approximated, for

n

a partition a = tg <t; <.. <t, =bby Z (f(x4-1, yi-1) W- t.1) = (F(x(ti_1), y(t;_1))

i=1
b

w) H(x(ty) - x(ti.p), y&) - y&q) 1/ [Tu [l Thus W= [ fx(®), y(®) u dt . Moving
a

on to the general case where the curve from P to Q is not a straight line, our picture

becomes as follows.
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Again we assume that the curve from P to Q has been parameterized by x =

x(t), y = y(t), a < t < b, and consider the polygonal approximation to the curve based

on the partitiona = tg <ty <.. <t, =b.
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The approximation to the work done in moving the particle from P to Q

 

i

i=1 i=1 L-t t-t,

y S X" X1 YitYia
becomes 2 £(x;-1, ¥i-1) & - Xi-1, ¥- Vi-1) = Z £(x;_1, Vi.p)| ——= t - t_p)

i-1

b
which approaches in the limit | f(x(t), y(t)) (x'(t), y'(t)) dt = [ f dr, where C is

a C

the curve from P to Q parameterized by r.

We use the numerical integration program IGL to compute the various ine

integrals in the next three examples. Notice that the calculator performs the task

of constructing the integrand symbolically from the pieces, i.e., P(x, y), Q(x, y),

x = x(t) and y = y(t). In fact, the keystrokes for computing much more complex line

integrals differs very little from these simple examples.

Example 1. | x2y ds; C: x=cost,y=sint, 0<t<m/2.
C

XA2*Y' 'P' STO

'COS(T)" 'X' STO

'SIN(T)" 'Y' STO

'T' PURGE

X' 'T' d/dx 'XP' STO

Y''T" d/dx 'YP' STO

0'n' 5NUM 2 /

PH(XP)2 + (YP)A)AS
T

IGL
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Example 2. | (xZy dx + xy dy); C: x2 + y? = 1 form (1,0) to (0, 1).
C

Cy= V1-x2,0<x<1

'XA2*Y' 'P' STO

'X*Y' 'Q' STO

'(1 - xA2)A5' 'Y' STO

'X' PURGE

X' 'X' d/dx 'XP' STO

'Y' "X' d/dx 'YP' STO

10

'P*XP + Q*YP'
X

IGL

C: x=costy=sint, 0<t<m/2

'XA2*Y' 'P' STO

X*Y' 'Q" STO

'COS(T)' 'X' STO

'SIN(T)' 'Y' STO

'T' PURGE

X' 'T" d/dx 'XP' STO

"Y' "T" d/dx "YP' STO

0'n' 5NUM 2 /

P*XP + Q*YP

T

IGL
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Example 3. [F-dr F(x,y)=x+2p)l+ (2x +y)j, C: rt) = ti + 12,0 <t < 1.
C

X + 2*Y' 'P' STO

'2*X + Y' 'Q' STO

'T' 'X' STO

'"TA2' 'Y' STO

'T' PURGE

X' 'T' @ 'XP' STO

Y' "T' @ 'YP' STO

01

P*XP + Q*YP'

"I

IGL

Exercises

1) Compute [ F - dr given F(x, y) = (x + 2y)i + (2x + y)j, C: x = V2t y=12
C

sin t, 0 <t < n/4. Compare with Example 3.

2) Compute [ F-dr given F(x, y) = x2yi + xyi, C=C; + Cp, Cy:x =1+

C

W2-2)t/2,y=v2t /2,and Cy: x=V2 (1-) /2,y =V2 (1 -t) /2 + t.

Compare with Example 2. What happens as C is approximated with shorter

straight line segments?

Example 4. Compute | F - dr, where F(x, y) = xyi + (x - y)j, and C is given in polar
C

coordinates by r = cos 0.



8  CHAPTERS

Of course, ourfirst task is to obtain a parametric representation of C in

rectangular coordinates. This is easily done since x(6) = r(6)cos 6 = cos2(6) and

y = r(0)sin 8 = cos 0 sin 6.

X*?Y' 'P' STO

X-Y 'Q STO

'SQ(COS(T)) 'X' STO

'COS(T)*SIN(T)' "Y' STO

'T" PURGE

X' 'T" d/dx 'XP' STO

Y' 'T" d/dx 'YP' STO

0 'n

P*XP + Q*YP'

T

IGL

5.3 Green's Theorem

Green's Theorem may be stated as follows: Suppose F(x, y) is a vector field,

i.e., F(x, y) = P(x, y)i + Q(x, y)j where P(x, y) and Q(x, y) are scalar functions

(fields). Assume that Py(x, y) and Qx(x, y) are continuous in a bounded region R

with a piecewise smooth boundary C which is oriented positively. (C is given

parametrically by r(t) = x()i + yt)j, a < t <b, and x(t) and y(t) are piecewise

smooth. Furthermore, as t varies from a to b, r(t) traces out C keeping R on the left.)
b

Then [Fedr= [P(x,y) dx + Q(x, y) dy = [ [ Qu(x, y) - Py(x, y) dxdy.
C a R



VECTOR FIELDS AND LIVE INTEGRALS 87

Example 1. Use Green's Theorem to compute the area of the unit disc R. Since the

area is given by [ [ dxdy, we can apply Green's Theorem provided P(x, y) and

R

Q(x, y) can be found so that Qx(x, y) - Py(x, y) = 1. Of course, this can be done in

many ways. Why not P(x, y) = 0 and Q(x,y) = x. Thje boundary of the unit disc R is

the unit circle C which could be parameterized with r(t) = (cos t)i + (sin t)j, 0 <t <

2rx. Hence the area is

2 t sin 2t)2F
(cost) dt=|5*"4 | =x

Example 2. Find the area inside the loop of Tschirnhausen's cubic C parameterized

by r(t) = 2 -3)i + t3/3 - t)j, -3 <t < 3. The curve C looks something like

fl"/L L L )
v v v v

 

 

    

We need to restrict the range of t to the values which give the boundary of just the

loop, call it C1. This can be done by solving x(t) = y(t) = 0. Clearly, t = ¥31/2, e,

we restrict the parameter to the interval -31/2 <t <31/2, Check to see that the

loop (the boundary of the region inside) has a positive orientation. The area is then

given by

{3 5 3 {3
jxdy=j (t2-3)(t2-1)dt=[%-%+4t | =6.235
C, 3 -J3

Example 3. Find the area of the four loops in the hypotrochoid C given

parametrically by r(t) = (6cos t + 5cos 3t)i + (6sin t - 5sin 3t)j, 0 < t < 2n. The figure
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looks something like

 

 W=t
The loops are all equal. The boundary of each loop is negatively oriented. Only the

    

boundary of the little region in the center of the figure is positively oriented. Let's

work with the top loop. The first step is to restrict the range of the parameter and

call the resulting boundary C1. We need to solve the equation x(t) = 6cos t + 5cos

3t = 0. Using the calculator proceed as follows:

'6 * COS(T) + 5* COS@3 * T)' STEQ

'PPAR' PURGE DRAW

The resulting picture isn't much help, but you can improve it by changing the

plotting parameters. Use the cursor and INS to capture the bottom of the y-axis. It

should be approximately, (0, -1.5). Store the result in PPAR by hitting PMIN.

Redraw the graph. Again you probably want to change PPAR. This time move the

cursor to the top of a vertical line just to the right of the first two zeros, say (2, 1.6).

Capture this point with INS and store in PPAR with PMAX. Now we can estimate

the first two zeros of x(t), i.e., the beginning and end of the top vertical loop of the

hypotrochoid.

We use ROOT to estimate the two zeros more accurately. Try this: use the

cursor and INS to estimate the leftmost zero. Then bracket that guess in the same
 

way. Having done that enter the following;:

3 -LIST EQ SWAP 'T'" SWAP ROOT
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My answer comes back as 0.83548. Repeating this process for the zero on the right

(remember to capture your best guess of the zero first) I got 1.5708. Of course, the true

answer is /2. The area is

15708

f xdy = _[ (6cos t + 5 cos 3t) (6cos t - 15cos 3t) dt
83548

which can be evaluated as follows: (assuming the two zeros we found are still on

the stack)

'6* COS(T) + 5* COS@B * T)' '6*SIN(T) -5*SIN@GB *T)

'T" PURGE 'T" d/dx x 'T' IGL

The answer returned is -15.831. We're trying to find an area and we've ended up

with a negative number. What's wrong? As noted earlier C1 has a negative

orientation, so the area is 15.831. The area of the region bounded by the four loops is

63.324.

Exercises.

1) Compute the area of the region R bounded by the ellipse

9 2

XT + -}i- = 1. Our standard parameterization of the boundary C of R is

given by r(t) = (3cos t)i + (2sin t)j, 0 < t < 2m.

2) Find the area bounded by one arch of the cycloid generated with a circle

of radius one and the x-axis. The portion of the cycloid of interest, call it

C1, is parameterized by r(t) = (t - sin t)i + (1 - cos t)j, 0 <t <2r. For the

relevant portion of the x-axis C2 use R(t) = ti, 0 <t <2rn. The boundary of

the region C with positive orientation then becomes C = C3 - Cj.
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Sometimes one side of the equation in Green's Theorem is easier to evaluate

than the other. This usually comes about because the integral on one side or the

other is easier to set up.

Example 4. Evaluate [ [ y - x dxdy, where R is the region bounded by the curve C
R

given in polar coordinates by r(6) = 2 - c0s2(30). The region looks something like

ST ..=
Clearly, the 'snowflake' region R would be difficult to describe in rectangular

 

 

    

coordinates. We proceed as follows:

X*Y' ENTER 'Q" STO 'P' STO

2 - COS@B*T) N2

ENTER 'COS(T)' x 'X' STO

'SIN(T)' x "Y' STO

X 'T" PURGE 'T" d/dx 'XP' STO

Y 'T" d/dx 'YP' STO

0 63 P*XP+Q*YP 'T" IGL

After a wait of several minutes the answer 0.000 returns.

Exercises.

3) Integrate y - x over the region bounded by the loop of Tschirnhausen's cubic

parameterized by r(t) = (t2 -3)i + (83/3 - )j, -3 < t < 3. (Use the

boundary C1 developed in Example 2 above.)

4) [ xdy, where C is the polygonal path from (0, 0) to (1, 0) to (1, 1) to (0,

C

1) to (0, 0).
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