
An Easy
Course In

By John W. Loux and Chris Coffin

Cover Illustration by Robert L. Bloch

An Easy Course In

Using The HP-28S

By John W. Loux

and Chris Coffin

Cover Illustration by Robert L. Bloch

Grapevine Publications, Inc.

P.O. Box 118

Corvallis, OR 97339-0118 U.S.A.

Acknowledgement

Thanks and appreciation go once again to the Hewlett-Packard Company for

continuing to produce such top-quality products and documentation.

© 1988, Grapevine Publications, Inc. All rights reserved. No portion of this

book or its contents, nor any portion of the programs contained herein, may be

reproduced in any form, printed or mechanical, without written permission from

Grapevine Publications, Inc.

Printed in The United States of America

First Printing — February, 1988

ISBN 0-931011-18-3

DISCLAIMER: Neither the authors nor Grapevine Publications, Inc. make any express or

implied warranty with regard to the keystroke procedures and program material herein of-

fered, nor to their merchantability nor fitness for any particular purpose. These keystroke

procedures and program material are made available solely on an "as is" basis, and the entire

risk as to their quality and performance is with the user. Should the keystroke procedures or

program material prove defective, the user (and not Grapevine Publications, Inc., nor the au-

thors, nor any other party) shall bear the entire cost of all necessary correction and all inci-

dental or consequential damages in connection with, or arising out of, the furnishing, use, or

performance of these keystroke procedures or program material.

CONTENTS

INTRODUCING...The Introduction

What Is This Tool?

What Is This Book?

What's In This Book — and What's Not?

How to Picture Your HP-28S

The Display

The Keyboards

Posting Memos: Interactions Between the Keyboards and the Display

The Menu Keys: Your Command Card File

The @ ("Shift") Key

Immediate Execution ("Do-It-Now") Keys

Messages From the System — Memos From Your Staff

Status Messages: The Annunciator Area

A Tricorder Reading

Quickie Quiz

Quickie Answers

Making Your HP-28S Work For You: The Command Line

Typing Characters Into the Command Line

Changing a Character in the Command Line

Adding and Removing Characters

@ns), and
@NEWLINE), (4) and (V)
The Key

The (o) Key

Item Delimiters and

and
Command Line Quiz

Command Line Answers

Notes

10

11

13

14

17

18

19

27

27

33

36

38

39

40

41

42

43

44

48

o1

54

o7

58

62

64

67

68

69

Real Numbers, the Stack, and Postfix Notation 70

Real Numbers — and the Real World 71

Representing Real Numbers On the HP-28S 73

Scientific Notation on Your HP-28S 73

12-Digit Accuracy: Rounding Error 74

Magnitude: How Big (or Small) Can You Get? 76

Posting Real Numbers: (CHS), and Display Modes 79

Display Formats 81

The Stack and Postfix Notation 84

Real Number Commands: 0-, 1-, and 2- Number Operations 85

Arithmetic Practice 91

Arithmetic Practice Solutions 93

Stack Operations 94

's Second Job 95

The Command 96

How to the Stack 96

Strenuous But Practical Stack Practice Problems 107

S.B.P.S.P.P. Solutions 108

The "Stuff' Upon Which the HP-28S Works 112

An Equal Opportunity Calculator 113

The HP-28S's Philosophy of Information 114

Real Numbers 115

Complex Numbers 118

Simple Questions About Complex Numbers 124

Simple Answers to Simple Questions About Complex Numbers 125

Vectors 128

A Visit With Vectors 138

Results ofA Visit With Vectors 140

Arrays 143

Array Aptitude Test 147

A.A.T. Results 148

Characters 151

Character Strings 152

Character String Query 159

C.S.Q. Answers 160

Names

Name Games

Name Game Winners

Bits

Binary Integers

Binary Integer Test

B.I.T. Answers

A Pause For the Cause

Lists

List Lessons

List Lessons Learned

Procedures: (a) Postfix Programs

Program Problems

Program Problem Solutions

Procedures: (b) Algebraic Expressions

Algebraic Aptitude Test

A.A.T. Scores

Procedures: (¢) User-Defined Functions

User-Defined Function Fun

U.D.F.F. Consequences

Directories

Directory Discussion

Directory Assistance

Menus

Problem Solving

Introduction

Postfix Programming

So

Answers

Local Names

Local Name Lesson

Local Name Moreon

161

167

168

171

172

175

176

177

178

183

184

185

189

190

193

201

202

205

209

210

212

219

220

222

226

227

228

229

230

232

235

236

Some Comments Before You Go On 237

Making Decisions 238

Conditional Curves 241

Conditional Conclusions 242

Variants of IF...THEN...ELSE...END 246

Iffy Situations 249

Iffy Answers 250

Doing Things More Than Once 252

Loop Practice 257

Loopy Answers 258

Solving Problems Using Algebra 260

Why Use an Algebraic Object? 260

Peculiarities of Representation 262

Some Practice 263

Some Answers 264

How Do You Use an Algebraic Object? 266

Basic Algebra Problems 269

B.A.P. Answers 270

Name Substitution 271

More Substitutions 274

FORM 276

Less Basic Algebra Problems 281

Less Basic Algebra Solutions 282

Some Short-Cuts 286

The Equation Solver 290

Still More Algebra Problems 295

S.M.A.P. Answers 296

Calculus 299

Symbolic Constant and Symbolic Function Evaluation 301

A Final Visit with Algebra/Calculus 303

Final Answers 304

Plotting

Scaling

Digitizing

Keyboard Error Recovery

: The Command Stack

: UNDOing a Command

: Recalling the Stack as It Was Before the LAST Command

Enabling and Disabling Error Recovery

Editorial

308

310

311

312

312

313

314

315

316

INTRODUCING...The Introduct101

A

s

K
R
R
e
R

R s
\..

-m.

Y
k

Well now...so you have an HP-28S, eh?

Now the questions are, "What do you want to do with it?" and (mostly), "How?"

These are the right questions to ask, of course. And you may have heard that

once you've decided what you want to do, the ~ow should be intuitively obvious —

even to the most casual observer.

That's just not true. There's nothing wrong with your intuition or your personal

casualness index. It's simply that this machine is not all that simple. Even if

you're experienced with other HP calculators, this one is so radically different

that you may find yourself "starting over" in many respects. You may still re-

cognize some familiar HP stack-oriented arithmetic, but that's about where the

similarities end. For the most part, the HP-28S will be a "brave new world."

Of course, as with all calculators, the HP-28S is only a tool, a problem-solving

tool. So is a hammer. And though it's fairly obvious (even to extremely casual

hammer-observers) that a hammer is good for pounding, it takes more than cas-

ual observation to use it effectively to build a house. It takes time and practice.

So it is with the HP-28S. Being just a bit more complex than a hammer, it does

require more effort on your part to use it effectively. But once you make that ef-

fort, you'll be amazed at the "houses" you can build with it.

That's the purpose of this book — to help you learn to use a tool. Just be sure to

remember that it is just a tool, not a magic box that gives you the answer to your

every question. It can't check to see if you've given it the right numbers to

"crunch,” nor can it catch you when you're attacking a problem altogether

wrongly. It's an inanimate mechanical aid — not a replacement for your under-

standing of the problem. You must understand both your tool and your problem

in order to use the one on the other.

INTRODUCING...The Introduction 9

What Is This Tool?

Before you begin to use the HP-28S as a problem-solving tool, you'd better have

at least some idea that it's actually the right tool for the job.

This calculator is not omnipotent. It does some things very well and other

things not so well. It's flexible, but for some tasks, it may cost you more effort to

bend it to your will than it's worth. In those cases, you would come out ahead by

choosing another, more appropriate tool.

So what is the HP-28S really "good at?"

Mostly, it's a math engine. It provides you with an extensive set of mathemati-

cal operations. And it uses these operations on a fairly comprehensive set of

mathematical "things": real numbers, vectors, arrays, complex numbers, and al-

gebraic expressions, to name a few. So if a lot of your problems involve this kind

of math, then the HP-28S is probably as good a "hammer" as any you will find.

But it's not a generalized computer. For example, it doesn't have the means to

save your calculations anywhere else (i.e., on magnetic tape or disc). It doesn't

have a full typewriter keyboard. You wouldn't want to try to type your doctoral

thesis on it.

Of course, with some effort you could coerce it into doing many different things,

but don't be surprised (or upset) if the results are not the best. After all, you can

drive a screw with a hammer, but if you do and then things don't turn out very

well, don't go blaming the hammer for not being a screw driver. It just wasn't

built for that.

10 An Easy Course In Using The HP-28S

What Is This Book?

There are (at least) four ways to approach your learning about the HP-28S:

1. Be Joe Computer-Whiz, for whom it is either intuitively obvious or the es-

sence ofjoy to play with such a machine until it yields all of its secrets;

2. Apply brute force — not knowing where to start, but pressing buttons any-

way, hoping that something meaningful will result;

3. Resort to tears and despair (usually as a result of method 2);

4. Ask for some help and explanation (usually as a result of method 3).

If you're now using method 4, then this book is meant for you. And there's abso-

lutely nothing wrong with that. It carries no shame or stigma to say "I don't un-

derstand this yet." You just haven't yet seen it explained in a way that "clicked"

for you. This book is merely a different way to explain the HP-28S.

Admittedly, it doesn't appeal to everybody. You may find the pace too slow or

the explanations too meticulous. But chances are there is something presented

here that could "shed more light on your HP-28S" for you. So relax and browse

if nothing else. A lot of people discover the same thing — that such a slow, class-

room-style approach seems to work better than the "brute force" method.

INTRODUCING...The Introduction 11

Above all, please don't feel "talked down to" by this Easy Course.

Just because the printing is large and spread out and the wording is simple and

"folksy," you shouldn't take this as any commentary on your technical expertise

or vocabulary. The subjects here are not trivial, nor is your intellect being trivi-

alized by seeing them presented in this fashion. The only reason for all this is to

communicate to you the skills and knowledge you need to make the best use of a

very sophisticated tool. And this method of communication often helps.

And how does this method go? Here are a few things to know about the book and

its classroom approach:

1.

12

Every so often, you'll come across a little set of quiz problems. These are just

some exercises to help you make sure you "have things under control” before

you move on. If you have any major difficulties with the questions, you'll find

the answers immediately following, along with page numbers so you can go

back and review if you wish.

. At certain points along the way, you'll be given the option to skip ahead if you

feel that you already know the material being discussed. If you do skip, it

will usually be to the quiz at the end of the section, so you can be sure you're

really as knowledgeable as you thought.

. There's no race, no time limit, no clock, no exam proctor, and no #2-pencil-

grading-machine breathing down your neck. This is your Course, to be taken

at your speed. Who cares if you go back and reread something a couple of

times? The idea is to learn about your calculator, not to break a speed record

for doing so.

An Easy Course In Using The HP-28S

What's In This Book - and What's Not?

This book is not a re-packaging of the manuals that came with your HP-28S.

Many keys, features and functions on your calculator just don't appear any-

where in this book — and this is no accident. Why should anyone try to docu-

ment every last aspect of the machine? That's what the HP manuals do so well;

why try to improve on them?

Instead, what you're going to see here are the fundamental concepts and princi-

ples of the HP-28S. Of course, you'll need to learn the mechanics of the key-

board and the display first, but the real idea here is to orient yourself and move

around in the generalized data-manipulation world of the HP-28S. By the time

you finish this Easy Course, you should feel quite comfortable in using and com-

bining the different available data "objects” to help solve your math problems.

But all the while, keep in mind that this is only an introduction to the HP-28S.

Why just an introduction? Two reasons:

First of all, this book is meant to help you get enough "calculator savvy" to begin

building a more exhaustive understanding of this tool on your own terms — and

in your own way. Hopefully, it's enough to get you on your way down that road,

without unduly burdening you with a load of preferences and biases as to how

you ought to actually apply this tool to your everyday tasks. At some point you

must take over and decide for yourself exactly when and how to use it.

Secondly, there's only so much room in one book!

INTRODUCING...The Introduction 13

How To Picture Your HP-28S

Before you can really do anything in the world of the HP-28S, you'll need to

know how to move around in it. Learning these mechanical skills isn't always a

whole lot of thrills — but it is necessary.

So you need to realize right up front that these next three chapters are really

just a set of lessons in controlling and communicating with your calculator. Bor-

ing as that may sound, don't underestimate the importance of these skills.

OK?

Now then: A picture is still worth a thousand words, so it makes some sense to

have a picture of the HP-28S's world to help you understand it.

Of course, the picture you'll need isn't exactly an 8-by-10 color glossy of the cal-

culator (with circles and arrows and writing on the back).

First of all, who needs such a photo when you have the real thing? And anyway,

you may already know from personal experience that you can stare at the physi-

cal HP-28S until drops of blood bead up on your forehead and you still won't

come any closer to understanding how the machine works.

So, because that's what you really want to know — how the thing works and not

what it looks like — you'll need instead a picture of something that doesn't physi-

cally exist, the logic of the calculator.

Unfortunately, the camera that can take that picture hasn't been invented. But

you might try another method instead: mind games....

How To Picture Your HP-28S 15

The name of this particular mind game is "Easy-Course-Warmer-Upper-HP-28S-

Mental-Picture-Of-Its-Logic." (Sort of catchy, don't you think?) It's for all ages

and requires only one player and one mind (and since you seem to "have a mind"

to use your HP-28S, you'll do quite nicely, thank you).

As you might suspect, the object of the game is to paint for yourself a mental pic-

ture you can use as a map to explore the unfamiliar world of the HP-28S. But

there are no rules; you just make it up as you go along.

So, if you're ready, flex your mental muscle, and sure enough, a picture begins to

form in your mind's eye....

The first thing you see is, not surprisingly, the HP-28S (see it there?). Of course,

as you've already observed, this doesn't get you very far (especially if, in your

mental picture, you've forgotten to open the calculator).

So you concentrate even harder, focusing in on its two most obvious features, the

display and the keyboards, and slowly but surely, a better picture forms....

You're the newly-elected president of a very talented little company of mathema-

ticians who make their livings by solving problems for others. By prior arrange-

ment, these mathematicians have their offices inside the HP-28S.

Of course, as president, your job is to properly delegate and assign tasks, so that

the overall results are those requested by your clients. You're the go-between,

understanding and translating your clients' needs into terms that your staff can

understand and act upon.

16 An Easy Course In Using The HP-28S

The Display

Think of the display of your HP-28S as a bulletin board, and picture it that way.

It's how you communicate with your staff (the calculator).

Upon reflection, you'll find that this makes quite a bit of sense because the dis-

play is interactive. That is to say, it changes as you and the calculator do things

to change it.

As with a real bulletin board, messages are posted in the display by you (for the

machine) — problems to solve, numbers to store or "crunch”, etc.

And messages are posted by the machine (for you) — status reports, information

and graphs for your inspection and correction.

You'll see as you go along that your bulletin board is quite well organized with

different messages from different departments posted in different areas on the

board. And you'll also find that, very much like a real-world bulletin board, your

display bulletin board can become cluttered. New messages can obscure or even

"bump off" old messages.

Not to worry though. There are ways to tell your "staff" that whenever they

need to post messages that would "bump off" other ones, they should save such

bumped messages, just in case you want to look at them again. Your staff will

obey this — and all your instructions — if you make them clear.

Actually, all things considered, you have a fairly well-organized, imaginary

math-problem-solving business here.

How To Picture Your HP-285 17

The Keyboards

The next areas to notice are the keyboards (and you should probably continue to

think of them as two distinct keyboards rather than as two halves of one key-

board, because there are some significant differences in how each is used).

Continue with your mental picture: If the display is your bulletin board, then

you can envision the keyboards as your typewriter or dictation recorder. After

all, as president you need some way of creating memos ana messages for posting

on the bulletin board, right? OK, draw it in your mind as a typewriter (got it?),

and look at how this typewriter is arranged.

First, look at the left-hand keyboard. If you pay attention only to the white let-

ters on the keys, the left-hand keyboard really does look like a typewriter with

its keys rearranged. And indeed, these keys are used for typing words and

phrases (ignore the other, less obvious things on the keybnard for now. You'll

come back to them later as you need them).

Likewise, if you look at the right-hand keyboard and notice only the white keys

with black lettering, you'll see what appears to be a simple, 4-function calcula-

tor. Again, this is how it ought to appear; that's exactly what those keys are for

(and again, ignore for now the other, less self-explanatory keys).

So, as a new president, you're beginning to at least find your way around the of-

fice. Review your picture up to this point:

You have a bulletin board (the display) through which you communicate with

your staff (the HP-28S system). You also have a simple, desktop calculator and

a typewriter to use in writing memos for posting. Not bad.

Next thing to figure out: How do you actually post memos?

18 An Easy Course In Using The HP-28S

Posting Memos:

Interactions Between the Keyboards and the Display

As you might expect, in order to get any work out of your staff, you need to tell

them what to do —i.e. post a memo, after composing it on your typewriter.

Of course, right now is when you realize that your typewriter actually types di-

rectly onto the bulletin-board (quite a high-tech office, really).

Unlikely? Well, yes, it's true that things don't work exactly like this in the real

world, but it doesn't stretch your imagination too much to picture it this way

nevertheless.

Now then, it's time for everyone's favorite game (yep — even company presidents

like to play):

"Press the Pretty Buttons and See What Happens."

But before you do that, stop and think for a minute: Whatever memos are post-

ed on that bulletin board now are from the previous administration (heaven for-

bid). Better clean up the bulletin board so that everyone will know exactly who

to blame (you) for anything that appears hereafter.

Ready?

How To Picture Your HP-28S 19

Scrub And Dust: Clean up your HP-28S bulletin board.

Here's How:* Press (#]4]0Jo)1][B[Flc)4)o)o]o]Jo)o]o]o) ENTER) (S[T[OJF)

@(PurGE) (H[OJMIEJENTER). Next, press and hold
down the key. While holding this down, press the (a) key

(the upper middle of the right-hand keyboard). Now release

the (a) key. Now release the key.

After doing all this, your display will look like this:

e
y
-

OK, now everyone in your company should be ready to receive instructions from

the new chief.

And now you're ready to try your typewriter to see its effects on the bulletin

board. Of course, you'll notice that the board (the display) isn't totally bare.

Don't be too concerned about what those remaining numbers and colons mean.

For now, just watch them move around as you begin to use your typewriter....

*This is, admittedly, a rather complicated procedure to start with here, but there's only one other way to ensure

that you're starting "in step" with this book — clearing the machine's 32K-byte memory entirely. And since you

may not want to re-key in the 31.5K-bytes of stuff you may already have stored...

20 An Easy Course In Using The HP-28S

(At this point, if you already know how to type and post message and command

memos, how to use menus and immediate-execute keys, then you can probably

skip ahead now to page 40. Otherwise, stick around.)

Go: Find the (A) key in the upper left-hand corner of the left-hand keyboard.

Press it once, and then look at the display. You should see this:

"Whoa!" (you undoubtedly say), "that's quite impressive!" Not at all (shucks).

Actually, here are the really important things to notice:

Firstly, notice that almost everything that was already in the display has been

pushed up one line — to make room for the newcomer on the bottom line.

The space opened up at the bottom is lovingly known as the command line. In

your mental picture, this is where the things you type on your typewriter are

first put onto the bulletin board.

Secondly, there's a flashing, empty box immediately to the right of the H.

This box, called the cursor, shows where the next character will be placed if you

type another one (notice that your typewriter does indeed produce characters —

not just letters; it can type other things, such as numerals and special symbols.

All of these things are collectively called characters).

How To Picture Your HP-28S 21

Next: To prove to yourself what this cursor (the flashing box) is for, find on

the left-hand keyboard and press it.

D
=
=
M
a
0
d

m
E
E

E
E

E
E

O
The B is placed where the box was, and the box is moved one space to

the right — to where the next character will be placed. And so on.

Important point: You will see the cursor only when typing in the com-

mand line.

By the way, if you press the wrong letter key while using the command line, use

(«) to correct it. (@) is the same as the backspace key on a typewriter keyboard.

That is, by pressing it, you move the cursor one space to the left and remove the

character that was there.

If you use (@) to remove the last remaining character, the command line goes

away. If you keep pressing («) after that, nothing more will happen.

Play with it, if you wish (then restore your display to the way you see it above).

22 An Easy Course In Using The HP-28S

OK,since you're a new chief executive trying to learn the ropes around here, do

a trial run: Pretend that what you've typed so far is actually something mean-

ingful that you'd like to post on the bulletin board.

Give It A Whirl: Seeing that the cursor is still blinking merrily, you press

(ENTER).

The command line goes away and the message is posted.

You see:

 =
=
M
r
A

IHBI

What can you learn from this?

1. The message was posted at the bottom of the bulletin board. It was put in

the first spot, indicated by the 15 .

That's what those numbers on the left-hand side of the bulletin board are —

level markers. They just tell you the age of each message on the board, the

youngest (most recent) ones going on at the bottom.

And as in any normal office, those newest postings are always the most inter-

esting. If anything is to be done by your staff, therefore, they will look first

at that bottom (the last) memo you've posted.

How To Picture Your HP-28S 23

2. You're already seeing the work of the "memo poster” — that loyal "office boy"

4.

24

on your staff, whose job it is to make sure that your posted memos are given

the space and attention they merit.

Of course, this memo poster has worked here longer than you have, so he

knows enough to do certain things without being told all the details. After

all, weren't you wondering just who was actually cleaning and rearranging

the bulletin board to make room for the command line? And who was put-

ting that cursor up there?

And note that the memo poster has put single quotation marks around your

message. Why? Because he didn't recognize the memo as anything but a

message to be remembered (e.g. "softball practice today at 6:00"). Therefore

he didn't do anything special to or with the message; he just posted it.

. The command line then went away. By posting something with the

key, you've told the memo poster that you don't need the command line any-

more, so he clears it away — to leave more space on the bulletin board for

messages.

The cursor went away, too. As you know, that cursor will appear only when

you're typing in the command line — and the command line is gone now.

An Easy Course In Using The HP-28S

Now for the real test: Post something that really is a command — a memo that

someone in your staff knows is an explicit request to do something.

Try This One: Type, from the left-hand keyboard, (DJU]P).

The display at this point shows nothing that you haven't seen

before (just different characters). And everything was pushed

up to make room for the command line, and the cursor is sitting

there, telling you where you are. No surprises, right?

Now press [ENTER). Here's what you should see:

4z
=
2
1:

And here's why you see it:

DUP is indeed a command that someone in your staff understands. In this case,

that someone is the memo poster himself; he recognizes it as a command intend-

ed for him and, without hesitation, he does what it tells him to do. He doesn't

even bother to post it — he just does it.

How To Picture Your HP-28S 25

DUP is shorthand for "DUPlicate the last message on the bulletin board."

The memo poster reads this and quickly makes a copy of the bottommost memo

(i.e., the memo at Level 1). Then he pushes the old memo (' HB"') up the board,

and posts the new memo (the copy of ' AB ') as the last message on the board.

And keep this in mind: To you, there's no real difference between posting a com-

mand memo and posting any other kind of memo. Either way, you can just type

it in and press ([ENTER).

The difference to your staff is whether or not someone knows what to do with it.

In this case, your office clerk — the memo poster — was the person responsible for

carrying out the command, and he did so immediately.

Now stop and recap for a minute: What all do you now know about this HP-28S

"staff" you have working for you?

You've seen basically how you and your office/business work together — how the

common language currency is the memo. You also know how to write and post

these memos, and you know that there are basically "information" memos and

"command" memos.

Are you starting to feel more at home in your new position (a couple of ferns and

some pictures of the family ought to just about do it, then, eh)?

Weeell...unfortunately, being somewhat new at the job of president, you don't

yet quite know all the commands you might need for working with your staff.

But all is not lost. You do have a command card file.

26 An Easy Course In Using The HP-28S

The Menu Keys: Your Command Card File

The key to any efficient office is organization. And though you may not realize it

yet, your office is organized "to the max."

You have a command card file, a file containing virtually every command that

your staff can execute. Not only that, being a card file, it has index tabs (those

little category names that stick up out of the card file, effectively dividing the

file into sections). It's about time to explore this card file and see how it works,

but before you do that, you should first know about this:

The @@ ('Shift") Key

See that red key on the right-hand keyboard? Now notice that most of the keys

on both keyboards have red words or symbols written above them. This is not a

coincidence.

Up to now, you've assumed that when you press a key, it will produce the action

or character written on the key face (e.g., pressing (A) causes an H to be placed

into the command line).

Well, by pressing the red key and then any key with a red word or symbol over

it, you'll produce the action or character that's written in red over that key.

For example, press . What happens? A% is written into the command line.

And < just happens to be what's written in red above the key. The red key is

called the shift key, because it shifts the operation of the keys to a second set of

operations — just like the shift key on a typewriter.

(If you have indeed pressed , then press («) now, before you go on.)

How To Picture Your HP-28S 27

Back to this card file you were going to explore. Notice the top three rows of

keys on the left-hand keyboard. Most of these keys have red words inside light-

grey boxes above them — as do the keys in the second row on the right-hand key-

board. These keys are the index tabs for your command card file. As in a real

card file, if you select one of these index tabs, you should find a logically-related

group of "things" underit.

Try One: Press A) (which is really ff(ARRAY)). You should see:

S:

<t A8,
SRRRTARRT*]PUT |GET |PUTL|GETL)

As you look at this, you should realize:

1. The words in the black boxes at the bottom of the display are all commands.

What's more, they're all related — they're all array commands. ARRAYis the

red word over the (A) key, which you just pressed. In other words, you've se-

lected the ARRAY index tab, so you're given this set of array commands.

2. A set of commands such as this is called a menu, because it's a list of items

from which you choose, just as in a restaurant.

3. A menu's appearance in the display moves everything else on the bulletin

board up one line. Notice that this doesn't make the memos any older; it

only moves everything up out of the way — just as the command line does.

28 An Easy Course In Using The HP-28S

Now then: You've seen how the command line will take the bottom line of the

display. But what happens if there's a menu already there when you activate

the command line?

One Way To Find Out:Type :

You'll see:

2 'AB’
1 1 HB 1

sTDO
+ARFY[ARRYPUTGET {PUTI{GETI

As you can see, the menu stays on the bottom line, and the command line takes

the next line, pushing everything else up one line farther than usual.

Why does the menu remain? Because you might want to use one of its choices in

the command line.

Now press to execute what you've just keyed in (apparently it was a com-

mand that was meaningful to someone on your calculator staff. You can see this

by the fact that it wasn't simply put up on the bulletin board as a message. In-

stead, someone recognized it and did it — immediately).

How To Picture Your HP-28S 29

Try Another Menu: Pick another index tab from the card file, say, i (REAL

(G

You should see:

3
2 'AB
: 'AB'
EEERTRRT

This is the REAL number menu. Because it's a menu, you should be able to pick

and use an item from it.

To do so, first notice that the black boxes around the items are lined up over the

top row of keys on the right-hand keyboard — and those keys are blank.

Another non-coincidence.

Whenever a menu is shown in the display, the keys in that top row take on the

meanings of the names in the menu. By pressing the key under an item, you

will be choosing that item from the menu.

30 An Easy Course In Using The HP-28S

Order From This Menu: For example, press the key under [REH# and see:

3: 1 H 1

2: 1 H 1

1= '"MAXE’
MEGFACTRAMDR0Z[FASE[MIMFE]

MAXR, in this case, is another command to the message poster. It just says

"Post this name (MAXR) as the message.”" As you'll see later, posting such names

can be very useful in certain situations.

But here's an important point: Menus are a convenience feature, not a vital ne-

cessity. You could have typed the name, MAXR, to get the same result. In fact,

Try It: Type (M[AIX]R) ENTER).

You accomplished the same thing on your typewriter as you did with

your card file! You can therefore think of your card file as your stock

of ready-typed memos.

In case you were wondering, it's true that many menus have more than six

items. To see the others, you simply need to flip to the next "page" of the menu

by using the key. To flip pages in the other direction, use {)[PREV). Prac-

tice now with these two keys by looking through the entire REAL number menu.

How To Picture Your HP-28S 31

Once again, tick off the things you now know:

You know how your memo poster obeys your keyboard by posting or acting upon

memos. And you know that you can change the meanings of keys with the |

("shift") key.

You also know how to pull out various collections of related commands from your

command card file. Each such collection is called a menu, and when you want

to, you can select from it by using the blank keys on the top of the right-hand

keyboard.

But those menus just give you easy access to the names of the commands. What

if you forget the particular rules for using them?

Ask your office boy. If you press f[CATALOG), you can get him to show you the de-

tails for each command — rules and limitations that might appear on the bottom

of each card in a real, paper card file. You can check the spelling, fetch, or re-

fresh your memory on the use of these commands, either in straight alphabetical

order or beginning with whatever letter you specify.

Play around with this special CATALOG menu. The commands on ¢Ais menu are

fairly self-explanatory, so go ahead — try 'em out!

32 An Easy Course In Using The HP-28S

Immediate Execution ("Do-It-Now") Keys

Now that you know where to find commands and menus, the next thing to notice

is that menu-related keys work a bit differently than the typewriter keys.

When you pressed the typewriter keys, the command line came on, and the char-

acters that you typed were placed there — but the message you were typing

wasn't considered by the memo poster as being ready for posting until you

pressed (ENTER).

By contrast, when you press a menu key (either an index tab or a command from

a menu), the effect is to "do-it-now.” Such keys don’t wait for you to press

before they present themselves to the memo poster; in essence, they "press the

on themselves," thus saving you a keystroke.

And some of these immediate-execution keys are so frightfully useful that

they've been awarded keys of their own. Of course, itself is one such vital

"do-it-now" key, but now it's time to introduce [ENTER)'s counterpart, which is also

a "do-it-now" key:

DROP

As you know, tells the memo poster to put memos on the bulletin board.

But what if you want to take memos off of the board? What if you make a mis-

take and don't notice it until after that erroneous memo is already posted? How

do you discard and replace it?

You press DROP). The command tells the memo poster to rip down and

trash the last memo and move the rest of the memos on the board down a level.

How To Picture Your HP-28S 33

So if you were to press (DROP) right now, what would you expect to see?

Try It: Use (it's on the right-hand keyboard, just above (9)). Press it

once and voila:

Memo 1 is trashed and everything else is moved down one level — just

as you would have expected, knowing the rules for DROP.

Notice, by the way, that ' HB "' sitting up there at Level 3. Where did it come

from?

It used to be up at Level 4.

Nothing had really "happened” to it; you just couldn't see it while it was on Lev-

el 4. The bulletin board is, for all practical purposes, "infinitely tall." But the

display isn't (an infinitely tall display doesn't fit very well in a calculator).

So for practical reasons, the HP-28S shows you, at most, the bottom four levels

of the bulletin board. But, any items you have posted which have been bumped

up above the fourth display line are still on the bulletin board, safe and sound.

34 An Easy Course In Using The HP-28S

All right, so you've seen some immediate-execution ("do-it-now") keys, a couple

of which you'll be using quite a bit: and (DROP).

But there are plenty of other such keys. For example, notice that weird-looking

one next to the shift key: («).

What Does It Do? Press it once and see the following:

4
3
2
1

What happened? The menu went away.

(«¢*) will turn the menu display either on or off, whichever makes sense at the

moment (press it again and the menu comes back; once more and the menu goes

away again, etc.).

The big advantage of this sleight-of-hand is that when you don't need the menu,

you don't have to keep it around cluttering up the bulletin board. That («¢») key is

your quick, convenient way to tell your memo poster to set that current menu

aside until you ask for it again.

How To Picture Your HP-28S 35

Messages From the System — Memos From Your Staff

At this point, you've explored some of the ways that you can use to communicate

with your staff, but you really haven't seen much about how your staff responds

to your commands and messages.

Now, everybody knows that one of an employee's most important jobs is to tell

the boss when he's messed up. It's time to see how your staff does this for you.

First, of course, you have to make a mistake (this may come as a shock to you

personally, not having done such a thing in so long; but of course, if you make a

mistake on purpose, then it's not really a mistake, is it?). All right then,

Mess Up: Press three times. All the memos are gone. You've dropped

them all.

But now, what happens if you tell the memo poster to drop a memo

when there's not one there to drop? ("Let'sfindout...1...2...3...")

Press ([DROP) once more.

You'll hear a beep (to get your attention), and you'll see:

DROP Error:
T9D Few Arguments

i
Is your staff bored because there hasn't been enough bickering in the

office lately?

36 An Easy Course In Using The HP-28S

Not really. Actually, this mathematical staff of yours is just guilty of using big

words. When they say argument, they mean "something to work on."

So your memo poster is simply telling you that when you told him to drop some-

thing off the bottom of the bulletin board, he didn't have anything to drop. A

reasonable objection, don't you think?

But forgetting for a moment about what this particular message says, you

should examine in general what your staff does whenever they notice a mistake

of yours.

1. They yell at you (remember the beep? Yep — that was them yelling at you).

2. They post a memo for the whole office to read. The memo says, in effect,

"You Blew It and This Is Why"

3. This message is posted at the top of the bulletin board — as are all error mes-

sages. But these messages don't bump others off or push them up the board;

they just temporarily cover up what's there.

The next time you do anything to the bulletin-board, the memo poster will

remove the error message (and if you just want to be rid of the error message

without otherwise changing the board, you can do so by pressing (ATTN), which

is the key).

So error messages are one way your employees talk to you.

How To Picture Your HP-28S 37

Status Messages: The Annunciator Area

There's another way your staff can tell you things.

There is actually another line visible on the display/bulletin board — above the

fourth "active memo" line. Up to now, this area has been largely irrelevant as

you've been learning your way "around the office.” But now take a look at it.

That line is the annunciator area, a place where little "wait-a-minute-I'm-busy"”

and "remember-your-lunch-money" messages are posted by your staff, for your

benefit.

For example, you may have noticed — though it wasn't pointed out — that many

times during the process of posting a memo (especially after pressing (ENTER)) the

symbol ((#)) will appear briefly on the top line.

Simply put, your staff is telling you that they're busy at the moment. As you

may have observed, in most cases, they're so fast that this "busy signal” only

flashes(but later on you'll know how to issue commands that will keep them oc-

cupied for quite some time).

Another symbol you may have noticed is the one that comes on when you press

the shift key. The symbol is —4~. It's there to remind you that the next key you

press will perform its shifted function (written in red above the key). You can

turn the4 off by pressing i a second time, thus shifting all keys back to their

main functions.

There are other annunciators that can appear on this top line, but you'll encoun-

ter them as you go along; no sense crossing those bridges now.

38 An Easy Course In Using The HP-28S

A Tricorder Reading

As usual, before going on, it's a good idea to get your bearings in this mental

"world" of your HP-28S.

This first Monday at the office was all about learning to communicate with your

staff through memos and messages on a bulletin board.

You saw how the keyboards are connected to this bulletin board (the display),

and how the keys produce either immediate actions (the "do-it-now" keys) or

characters for building memos.

You specifically know about 3 immediate-execution keys: ([ENTER), (DROP), and («4»).

You know that as you type in characters, your "office boy" will show you your

memos-in-progress on the command line. And if these typed-in memos are com-

mands recognized by anyone on your staff, they'll be carried out promptly after

you officially give your OK to post them (by pressing [ENTER)). If nobody recogniz-

es them, they'll stack up on the bulletin board, with the oldest memos on top.

You know how the) key changes the meaning of keys on both keyboards and

how a lot of these red-printed functions bring to the menu keys various sets of

related commands for your use. And you know that you can review your entire

repertoire of commands by pressing CATALOG).

You know how your calculator staff can give you signals and temporary error

messages when they need to — by using either the annunciator area or the top

lines of the actual bulletin board.

How To Picture YourHP-28S 39

So here's a set of questions to let you test your understanding before you go on.

The answers are on the next page, so check yourself; if you need to go back to re-

view, just look on the pages noted after each answer.

Quickie Quiz

1. What's the command line for?

2. What's the main purpose of the left-hand keyboard?

3. What's a menu key?

4. What are ((#)) and _4 and how do you get rid of them?

5. What's a character?

6. When would you expect to see this: []?

7. How many days hath September?

40 An Easy Course In Using The HP-28S

Quickie Answers

1. The command line is for typing and editing memos for posting (page 21).

2. The left-hand keyboard is mostly used for typing, especially the alphabetic

characters A through Z (page 18).

3. A menu key is one of the six blank keys at the top of the right-hand keyboard

which take on the functions of the displayed menu (page 30).

4. ((¢)) and —4 are both annunciators, appearing on the very top of the display.

((#)) is the busy annunciator, which you would get rid of simply by waiting for

the machine to finish what it's doing. The4 is the shift annunciator, and

you would press [to turn it off (page 38).

5. A character is any alphabetic letter, numeral, or special symbol that the HP-

28S can generate (page 21).

6. You see [] (the cursor) when the command line is active (page 22).

7. September hath thirty days.

How To Picture Your HP-28S 41

Making Your HP-28S Work For You:

The Command Line

The command line is where you'll be spending much of your time and energy as

you communicate with your HP-28S. So now that you've seen most of the vari-

ous communication channels you have with your office staff, it's time to concen-

trate on this particular one. This chapter is all about the editing and presenta-

tion options you have in the command line.*

Typing Characters Into the Command Line

As you know, the command line is where you type in numbers and words — as

series of characters — preparing them for posting or for issuing as commands. In-

deed, you've seen how directly it can be compared to the output portion of a type-

writer. It is, in effect, a very simple text editor.

But have you noticed that there's no command that says "Start the command

line"? Rather, certain keys that you often use in spelling out commands and me-

mos automatically tell that "memo poster” to start the command line.

The most commonly used of these keys are the alphabetic and numeric keys, (A)

through and (0) through (9). Invariably, if you press one of these keys when

you're not yet typing in the command line, the memo poster will start a com-

mand line for you and begin with the character you typed into it.

And of course, once you've keyed in all the characters you want on the command

line, you press to post it.

So if all the command line allowed you to do were to type out commands and

other memo postings, life would certainly be fruitful — but it wouldn't be very

easy. That is, being not quite perfect, you'll sometimes need simply to correct

your typing errors — and mercifully, the command line allows you to do this.

*Of course, if you're already feeling quite comfortable with all that, then you may skip ahead to page 67.

Making Your HP-28S Work For You: The Command Line 43

Changing a Character in the Command Line

You already know about the most commonly used correction key: backspace((«)).

In the command line, it removes the character immediately to the left of the

cursor. In this way, it's quite convenient, especially if you notice your error be-

fore you've typed too many more characters.

But if you type something like CKARACTERISTI C, then backspacing over all

but the first character is a waste, especially since almost everything is correct.

Somehow, you need to be able to move the cursor to the second character and re-

place the K with an H — without erasing everything else along the way.

Fortunately, you can: Remember the («¢+) key? You've seen how it turns on and

off the menu area of the display — but that's not its most important talent. The

arrows on its face are the tell-tale signs:

The («¢+) key enables and disables the cursor-movement keys.

Those cursor-movement keys are, non-coincidentally, the same as the menu

keys. This is because the («¢+) key — much like the shift key — shifts the function

of the blank menu/cursor keys between the current menu's functions and those

printed in white above the menu keys. The cursor-movement functions of these

keys are available only when there is no menu in the display.

And notice that, unlike the shift key, the («#) key changes the functions of those

keys until the next time the [«¢) key is pressed. In other words, you don't need to

repeatedly press («¢+) to maintain the menu selection keys' current functions.

44 An Easy Course In Using The HP-28S

So look now at those cursor-movement keys (called cursor keys, for short).

As you might expect, since they affect the cursor (which exists only when the

command line is active), these keys work only with an active command line.

Time For Some Practice: (If at first you see a menu in the display, just

press («¢+) to get rid of it for now.)

Type in CKARACTERISTIC, "mistake" and all

(but don't press afterwards; you're going to

"catch" this "mistake" before actually posting it

onto the bulletin board).

You should see:

C
y
=
=
M
a
0
d

:
.
E
E
E
E
E

EE
N

ARACTERISTICO
As you know, characters can be added to the command line only at the current

location of the cursor. Thus, typing a character key now would add the charac-

ter to the end of the word and move the cursor one character to the right.

As you also know, you could use (@) repeatedly to delete all of the characters be-

tween the cursor and the first C, thus deleting the K in the process. But all you

really want to do is to move the cursor on top of the K and overwrite it with an H.

How can you do this?

Making Your HP-28S Work For You: The Command Line 45

You do it by pressing the key with the white (] over it (but remember: the white

cursor symbols are only active when there's no menu in the display. When you

press a menu key, if there's any menu visible, the function of that menu key —

not the cursor control function — will be performed).

So press the (€ key.

The cursor moves to the left by one character, but it doesn't delete that charac-

ter. Press it again, and it moves one more character to the left. Press it and hold

it down, and the cursor will continue to move to the left until you let up on the

key. When the cursor has moved all the way to the left — over the top of the first

character — pressing (4} will no longer move it at all.

Now press (»). What happens?

No real surprises here, right? (») moves the cursor to the right, but notice that if

you keep pressing the (») key until you reach the last character of the word, the

cursor doesn't stop there; it goes one space farther, to exactly where it was when

you stopped typing the word in the first place — and for the same reason — so

that you can add more characters to the end of the word.

46 An Easy Course In Using The HP-28S

Now, go fix that typo.

Playing Editor: Press €. What happened?

The cursor moved all the way to the left-most character.

Press »). What happened? The cursor moved all the way

to the right.

These are shortcuts. You could have accomplished the same

thing simply by pressing and holding down either the () or

() keys, respectively; but pressing {J saves you some time.

So press (<) and then (»).

The cursor will now be over the K. Since characters are add-

ed to the command line at the position of the cursor, pressing

now will put an H in the command line — right where the

K used to be. Do it.

As you've come to expect, the cursor then moves one space to

the right.

Making Your HP-28S Work For You: The Command Line 47

Adding and Removing Characters

Now, what if you had simply omitted a character, rather than accidentally typed

the wrong one?

To see how you would deal with this, use (€] and (») to move the cursor so that it's

positioned over the E in CHARACTERISTIC.

Now press («). What happened?

The backspace key did what it always does. It deleted the character immediate-

ly to its left. In this case, since there were characters to the right of the deleted

character, they were all moved one space to the left, to fill up the hole.

Next, press).

This is what the command line would look like if you had originally forgotten to

type the first T.

C
Y
=
=
M
J
0
0

I
E
E

E
E
B
E

ARACERISTICO
Notice that you have just learned the way to remove a character or characters if

you've typed too many:

You use (¢} and (») to move to the space immediately to the right of the offending

character, then press («) to deleteit.

48 An Easy Course In Using The HP-28S

Now the command line is all set up to look just as it would if you had just keyed

in CHARACERISTIC. You want to correct the omission.

Use (€) to move to the E, which is the character that your missing T will precede.

Now, can you simply type in a T to fix things? Nope. Remember that if you type

a character now, it will replace the E. What can you do?

Press (INS).

What happens? Look closely and you'll see that the cursor — which was a flash-

ing box ([— is now a flashing arrow ().

is the INSert key. It tells the command line that you want to insert one or

more characters before (to the left of) the character that was sitting under the

flashing box cursor ((1).

So the arrow is now pointing to the place (between the C and E) where a charac-

ter would be added. Make sense? OK, do it: Press (T). Now what happens?

C
y
=
M
J
0
0

I
l
l

E
R

m
R

ARACTIRISTIC
First, the T was added to the command line at the place where the cursor was.

Then the cursor moved one space to the right. What's different is that every-

thing to the right of the arrow's point moved with the arrow. You have now cor-

rected the omission!

Making Your HP-28S Work For You: The Command Line 49

Press (€) and (») a couple of times. Notice that they work the same way with this

arrow cursor as with the box cursor. The only difference is when you press a

character key.

When the cursor is a box, the new character will replace the one on which the

cursor is sitting.

When the cursor is an arrow, the new character will be inserted before the char-

acter on which the cursor is sitting.

Finally, press (INS). What happens?

The cursor changes from an arrow back into a box. Repeatedly pressing (INS) will

change the cursor back and forth between a box and an arrow. In this way, it's a

"toggle key" — like) and («¢>) — shifting alternately between two modes.

Another key that you should find useful when editing the command line is the

(delete) key. works just like (@), except that instead of removing the

character to the left of the cursor, it removes the character under the cursor.

And just like (@), all the characters to the right of the deleted character are

moved to the left one space to fill up the hole.

Also, both and («) will repeat their functions if you hold their keys down.

You can see now that you have a number of different ways to correct minor er-

rors you may make while keying in a memo on the command line!

50 An Easy Course In Using The HP-28S

@Ns), @CEL and (ATTN)

Suppose that your error isn't so minor this time: you need to delete more than

one character.

Of course, you could always fix things by moving the cursor with (¢} and (») and

then using either or (@) — as you just saw.

But what if it's a whole string of characters that you need to remove?

In that case — whenever you need to delete all characters to the right or to the

left of the cursor — you have yet another option....

Using the word CHARACTERISTIC from the previous examples, assume that

what you really wanted was the word CHARACTER.

Assume also that the cursor is now sitting over the E — because you just inserted

the T (so if you've pressed (INS) to get the [] cursor, then for the purposes of follow-

ing along here, press again. Just bear in mind that the example will work

no matter which kind of cursor you use).

So you should see the following:

 C
y
=
M
a

I
l
l

EE
m
m
E

ARACTQRISTIC

Making Your HP-28S Work For You: The Command Line 51

Obviously, you want to delete ISTIC. You could move the cursor to the first I

and use [DEL). Or you could move the cursor to the right end (with {J»)) and use

(«@). Or, you could move the cursor over the first I and press @DED.

Try It (You'll Like It): Move the cursor over the I and press JOEJ). What

And Now This:

happens? Everything to the right of — and under — the

cursor is deleted, right? It’'s exactly as if you had

pressed and held down the [DEL) key.

You're left with CHARACTER<, and the cursor has

been left at the end of the new word, so that you can

add more to it if you like.

Type in MI TE and move the cursor so that it's sitting

over the first (left-most) T. Press INS).

See? Everything to the left of the cursor is deleted, and

the remaining characters are shifted to the left. It's ex-

actly as ifyou had pressed and held down the (@) key.

Last Resort: If all else fails, you can always press (ON)) to clear

the whole command line and start with a clean slate.

Try it now. Notice that the key serves two func-

tions: When the HP-28S is off, this turns it on; when

it's already on, functions as ATTN (attention), inter-

rupting and effectively shutting off the command line,

discarding everything that was in it.

52 An Easy Course In Using The HP-28S

While you're paused here with such a clean slate, take a minute to review all

these options for correcting errors on the command line — just to be sure you

have them all straight in your mind.

The («) and (») keys move your cursor to the left and right, respectively. You

can't go any farther left than the first character on the line; you can go exactly

one place farther than the last character — to be ready to type another, of course.

Pressing (<) and @(») are shortcuts for moving to the very ends of the com-

mand line.

The [] cursor lets you type a new character right over an existing one (thus re-

placing it). The @ cursor lets you insert a new character between existing ones.

You alternate back and forth between these two cursors by pressing the key.

To delete an unwanted character, you can press («), which would delete the char-

acter to the left of the cursor. Or, you can use the key, which would delete

the character under the cursor.

Pressing and are shortcuts for deleting all characters from the cur-

sor to the left and right ends of the command line, respectively. The one differ-

ence is that (DEL) also deletes the character under the cursor, while (INS)

doesn't.

OK so far?

Making Your HP-28S Work For You: The Command Line 53

E@NEWLINE), (4) and (V)

If you're at all verbose with your commands, you can certainly overrun the visi-

ble 23 characters of the command line. But this is no problem, really, because

the command line is effectively infinite; you can type as much as you want.

Test This: Type in the 26 letters of the alphabet onto a fresh, clean command

line (i.e., first press if there's anything on the command line):

GHLIKILMIN[OIPIQJRIS[TIUIVIWIX]Y[Z

 ~FGHIJKLMNOPRRSTUYKHXYZ[]

Notice that when you exceeded 23 characters, the command line scrolled to the

left and showed an ellipsis () as the first character to tell you that the com-

mand line does indeed continue to the left, but that the beginning part isn't cur-

rently visible.

Now press (€ to get to that far left end.

The command line now scrolls to the right and places the ellipsis at the right

end of the display. Makes sense, right?

54 An Easy Course In Using The HP-28S

Well, that's all good and fine, but it doesn't take advantage of the other 3 lines in

the display that are available to you.

Happily, if you want to see more of the command line, you do have the option of

using [NEWLINE) to separate words....

Try This: Press and type (DHI)S] 1S
(AJM(PIL)E) (SPACE] (o) MBNEWLINE) (TYH)E) (SPACE) (U)S)E) (SPACE] (O)(F)

(NEXWILTNIEX:)

This is what you should see:

28
1=
THIS IS AN EXAMPLE OF
THE USE OF NEWLINE.

You can use as many JNEWLINE)'s as you want in order to make

things more readable, and you don't need to fill up each line before

going on to the next line.

Making Your HP-28S Work For You: The Command Line 55

Your command line is essentially unbounded, since you can add lines — separat-

ed by INEWLINE)'s — to the point where the text scrolls off the top of the display.

And because the bulletin board is unbounded, even when these lines do scroll up

out of sight, they're faithfully preserved and usable!

OK, but how can you see or edit these lines that disappear off the top?

Simple: You move from line to line and scroll lines back into the display with (a)

and (v).

These two vertical cursor-movement keys work in the same way that («) and (»)

do — except that they move the cursor up and down rather than from side to

side. And, as you might expect, {§(a) and f(v) also function similarly, sending

the cursor to the very top or very bottom line, respectively.

Next question: How can you get rid of these NEWLINE's that you've embedded in

your command line?

Next Answer: Use to "undo" a EENEWLINE).

Try It: Press o) @)») to move to the end of the first line, where you pressed

@NEWLINE), and press ([DEL). The two lines are joined into one, with the

one that was on the bottom extending off to the right.

Notes: and affect only the line containing the cursor. And you can't

use («¢J or (») to move from line to line; you must use (a) and ().

56 An Easy Course In Using The HP-28S

The Key

Up to now, when you've typed something into your HP-28S, it has come out in

upper case. But that's not the only way to do things. If you need to use Lower

Case letters, just press (it's down there on the bottom line of keys on the left-

hand keyboard).

Go ahead and do that now.

Nothing obvious happens, but if you now use any of the alphabetic keys you'll

find that they all put lower-case letters into the command line.

Notice that is like (INS)in one respect. Once you pressit, it stays in effect until

you press it again (or press [ENTER)), much like the upper case ("Caps") lock key of

a standard typewriter.

This may not seem like a very important feature, but you must realize that the

case of a character in any command is taken quite literally by the HP-28S. If

you accidentally capitalize some character in a command that's not supposed to

be capitalized, the machine won't recognize it.

In order to have your commands recognized, you must spell them exactly the

way they appear in the command CATALOG,including all upper and lower-case

characters.

Making Your HP-28S Work For You: The Command Line 57

The (o) Key

So far, you've been concentrating on the keys that function only to put their

symbols into the command line. You've ignored most of the immediate- execu-

tion ("do-it-now") keys, such as or (). Recall that pressing one of those keys

all by itself normally causes the calculator to perform that function.

Watch: Press B

What happened? 'HB' was posted just as if had been

pressed, and an error message was displayed. Don't worry right now

about why this error occurred. Just realize that immediate-execution

keys will normally try to "do their things" even when the command

line is active.

Sometimes this is convenient; sometimes it's not. After all, what if

for some reason you wanted a symbol such as + or — to appear in the

command line?

You would press (o) first. The (o) ("alpha") key tells the system (your

memo-obeying staff) to treat the keys pressed as character keys rath-

er than as "do-it-now" keys.

As you might suspect, certain vital immediate-execution keys, such as and

(ATTN), are exempt from the (o) key's disabling influence.

58 An Easy Course In Using The HP-28S

So Try It: Press (o) H-IX]=)

a

3
25
1:
+ - % B

See how convenient (@) can be when you want to type merely symbols rather

than the commands usually associated with those symbols? All of those symbols

have been entered as plain old, garden-variety characters into the command

line.

Notice that when you pressed (@), the o annunciator appeared in the top line of

the display and the cursor changed to a solid block (l)to remind you that you are

in this mode where most of the immediate-execution keys are "blocked" from ex-

ecuting immediately.

Alpha mode will stay on until you press or (o) twice.

"Twice?" Yes, twice. The (a) key is a three-way toggle. You've already seen two-

way toggles (), (LC), (INS) and («#»)) that turn certain modes on or off. Well, (@) cycles

between three different modes.

Think about it this way: normally, when the command line is active, you get the

[] cursor — the immediate-entry cursor — and are in immediate entry mode.

Character keys put their characters in the command line and command keys do

their commands.

Making Your HP-28S Work For You: The Command Line 59

But if you press (@) immediately before or while the command line is active, the

a annunciator comes on, you get ll — the alpha cursor — and you are in alpha

mode. Most keys will then put characters into the command line, but notice that

keys like (+), (5, and (=) will put spaces around their names, too.

Now, if you're in alpha mode, the command line is active, and you press the ()

key, you'll get the B cursor — the algebraic cursor — and be in algebraic mode.

You'll see most of the usefulness of this mode later, but for a sneak preview,

Looky Here: Press +[-IX][5).

D
r
=
=
M
a
l
d

+
E
E

E
E
E
E

-¥/H
There are no spaces between the characters.

Notice, though, that you must have at least one character in

the command line (to activate it) before you can activate al-

gebraic mode.

If you press (@) again while in algebraic mode, the cursor changes back into [].

60 An Easy Course In Using The HP-28S

You're adding rapidly to your bag of tricks for controlling the command line.

First, you learned how to correct errors. Now you've seen some ways to key in

lower-case letters, long strings of characters, or strings involving symbols nor-

mally reserved for immediate execution. Review:

The @PNEWLINE) key produces an invisible character that lets you break a long

command strings into manageable segments, so that you will see these segments

in your display (your bulletin board) on adjacent lines. When you have such a

multi-line command line, you can move around between lines with the help of (a)

and (v) and their short-cutting versions, {f(a) and {v).

The key lets you type in lower-case letters — until you press it again or post

the memo.

The (o) key toggles between three different entry modes — immediate, alpha and

algebraic.

Now go on and look at some convenient variations of skills you already have....

Making Your HP-28S Work For You: The Command Line 61

Item Delimiters and

In past examples, you've almost never completed the memo on your command

line to the point of pressing (ENTER).

That is, you didn't actually give the go-ahead to your faithful office boy, the

memo-poster, to officially post a message or otherwise try to evaluate the com-

mand line.

This 1s because most of what you've keyed in so far just wouldn't make much

sense — either to you or to your office staff (the calculator system) when it was

evaluated.

And on those occasions when you have pressed [ENTER), you may have noticed that

the command line may not have been posted as a single memo.

For Example: Type in (PIoIsIT) (TIEIS]T) ENTER)

What you'll get is this:

4z
3
2
1:

What's going on here, anyway?

62 An Easy Course In Using The HP-28S

Three things of interest:

1. The space between the two words in the command line effectively separates

them into two postings when is pressed. In this case, then, the space

is called a delimiter, because it acts as a marker, denoting the end of one

memo and the beginning of another.

2. The memos are posted from left to right; the word on the left was posted be-

fore the word on the right (and as a consequence, POST now appears farther

up on your positionally-"dated" bulletin board).

3. Neither of these words was recognized by your calculator's system, so they

were posted as is — with single quotation marks to let you know this.

Conclusion: You can use the command line for posting more than one memo at

a time by marking each successive item with a delimiter character!

So, besides (SPACE), what other characters will play this role of delimiter?

NEWLINE) will.

So will the comma: "s " or period: "« " — whichever the HP-28S is not currently us-

ing as the radix mark (decimal point). In other words, if the current radix mark

is the period (i.e. if 1 « D is interpreted to mean one-and-a-half), the comma is a

delimiter; but if the current radix mark is the comma (1 s 9 = one-and-a-half),

then the period is free to be used as a delimiter.

There are many other delimiters too: &, 2, [, 1, #,", ', ¥and ¥. But these all

have special meanings to the calculator — meanings you'll see later.

Making Your HP-28S Work For You: The Command Line 63

COMMAND] and [gEDIT

Another variation on something you've already seen: You've seen how to correct

errors in the command line — as long as you catch them before you press ([ENTER).

But what if you don't catch them that soon? How do you "undo” an error that

has gone so far as to be officially posted on your bulletin board?

Of course, you could simply unpost the memo (using (DROP)) and totally retypeit.

But this seems like a colossal waste of time if the error is minor and the memo is

major. Wouldn't it be nice if you could just edit the posted memo?

Good News: Press [(A][CJENTER); but now decide that you really wanted ' HBC " .

So press . You should see this:

Notice what has happened: The command line is activated containing the con-

tents of Level 1, which is highlit to show that it's being edited. Alpha mode is

activated for your convenience, as indicated by the o annunciator and the solid

cursor.

You may now edit the memo in the same way that you would edit anything in

the command line. And when you're finished, pressing replaces the high-

lit line with what's in the command line. Or, if you change your mind midway,

pressing aborts the edit and does not change the highlit line.

64 An Easy Course In Using The HP-28S

Even if you do DROP an erroneous memo, there's still a time-saving shortcut to

re-post it:

DROP the bad memo and then press [COMMAND).

Try It: Press (to discard whatever command line you may now have in

progress).

Then: comMaND). You should see the following:*

The last thing you typed and followed with is what will be in the com-

mand line after you press f§(COMMAND). Then you can edit it in the old familiar

way(cursor keys and all that) and re-post it with (ENTER).

* This feature is actually an option — one that you can disable ("turn off") if you wish. Only those commands en-

tered while the command memory is enabled will be remembered. It's your choice — and this and other such

preference options live in the MODE menu. Thus, you would press IHE[M to enable this command

memory (it's a command "stack," actually). IHZIM is off, [HEITH is on.

Making Your HP-28S Work For You: The Command Line 65

By the way, §(COMMAND) has an even better memory than you might have first

supposed. Not only does it remember the last memo you posted, it remembers

the three before that, too!

If you press a second, third and fourth time, you'll see the second-to-

last, third-to-last, and fourth-to-last commands (or "memos") you have [ENTER)'ed,

respectively. And as each one of these comes to the command line, you may edit

it or repost it with [ENTER).

If you press fJ(COMMAND) a fifth time, it will cycle around and show you the most

recently posted command again. As always, you can get rid of the command line

altogether by pressing (ATTN).

This extra-good, short-term memory may hint to you of another advantage to us-

ing)(COMMAND).

If you're doing a lot of posting and many of the memos are the same, you don't

need to retype any that were already posted within the last four postings. You

can just use to call them up again.

As you might imagine, this is especially useful if the postings were long or

tricky!

Now it's time to put it all together and see how well you know your way around

the command line....

66 An Easy Course In Using The HP-28S

Command Line Quiz

1. How do you turn on the command line?

2. What's the difference between the functions of (@) and ?

3. What's a delimiter? Name two.

4. Change 'CONFRONTAHEBLE' to 'COMFORTHBLE ' (assume that the

memo ' COMFRONTAHBLE ' is now sitting at Level 1 of your bulletin

board).

5. Change 'centlimeler' to 'cent ipede' (again, assume that what

you start with is sitting at Level 1).

6. Change 'Apples' to 'Oranges' (again, at Level 1).

7. What's the capital of Montana?

Making Your HP-28S Work For You: The Command Line 67

68

Command Line Answers

. Press any character key (see page 43 to review this).

. (@) deletes the character to the left of the cursor; deletes the character un-

der the cursor (pages 48-50).

. A delimiter is a separator. In the case of the HP-28S, it is a character separ-

ating two memos in the command line. and NEWLINE) are two exam-

ples (pages 62-63).

: >M) or >>]>IM(F]O]JR) [ENTER), for ex-
ample; of course, there are many different ways to accomplish such an edit-

ing job (page 53).

. @EDIT)>)>)») (PXEXDIEXDEL] or {EDIT) @) (e[«e«e]«)
(PYEIDJE] or 11>1) (PJEJDJE) (ENTER), for example
(pages 53 and 57).

: (9) o)(RYAINIGIE]S) (page 57).

Helena.

An Easy Course In Using The HP-28S

Notes

Making Your HP-28S Work For You: The Command Line 69

Real Numbers, The Stack,

And Postfix Notation

How does this imaginary HP-28S world seem to you now? On your first Monday

at your new job as president, you familiarized yourself with your office, the bul-

letin board, your typewriter, your command file, and your faithful office boy, the

memo poster. On Tuesday, you spent all day learning all those skills for effi-

ciently posting and editing memos.

It's now Wednesday morning (time flies when you're having fun).

Real Numbers - and the Real World

There are a lot more high-powered brains working back there in the offices be-

yond the bulletin board. It's time y'all were introduced.

As you know, many of your HP-28S "staff”" system's talents lie in the area of nu-

meric problem-solving. So you can't really relate to them unless you're brushed

up on their language: numbers.

It's probably best to begin by using real numbers, since they're probably familiar

to you already.*

Numbers can be broken up into different classes which are useful in different

circumstances. Real numbers form a collection of most of these classes into the

one big group that you normally think of as being numbers: the positive and

negative integers (1, 2, -3, -5, etc.), the positive and negative rational numbers

(4.56, —.23, etc.), the positive and negative irrational numbers (—x, e) and zero

(0).

*If you already know how to key in, format, and otherwise represent real numbers on the HP-28S, then now's a

good time to skip over to page 84.

Real Numbers, The Stack, And Postfix Notation 71

Right, then: Your first priority is to learn to communicate with your calculator's

math brains. That is, when it shows you a number, you'd better be able to recog-

nize it.

Usually this isn't too much of a problem, except for extremely large and ex-

tremely small real numbers. These are always a bit awkward to deal with (in

any tool — from paper and pencil to a high-speed computer), because their repre-

sentations use a lot of digits.

For example, the number one-half is relatively easy to write. Its representation

is .5, ("point-five" or "five tenths"). But much smaller numbers, such as one ten-

thousandth (.0001), are more cumbersome and less easy to read.

And really small numbers — like one hundred-millionth (.00000001) — or really

big numbers — like one billion (1,000,000,000) — are actually unpleasant to deal

with, precisely because of all of these zeros you need to carry around.

For this reason, an alternate representation has been developed, called scientific

notation.* In this notation, you take a number and split it into two parts. The

first part consists of all the digits except leading or trailing zeroes. The second

part tells you how many of these leading or trailing zeros you also need and

whether they're leading or trailing.

Thus, 5,280 is 5.28 x 103, 0.00023 is 2.3 x 104, and 1 is 1 x 100°.

Notice the convention here. The first part of the number (called the "mantissa")

shows its precision and is written with its first digit just to the left of the deci-

mal point, with the rest of the digits, if any, to the right. The mantissa is then

multiplied by a power of 10 (called the "exponent") in order to show the number's

magnitude.

*It's called scientific notation not because it's in any way more "scientific" than other notations, but because in
science one commonly deals with very large or very small numbers. It could as easily have been called "national
debt notation,” for example.

72 An Easy Course In Using The HP-28S

Representing Real Numbers On the HP-28S

Scientific notation is especially useful for representing numbers on machines.

As you would expect, the HP-28S can be used to represent and manipulate real

numbers of extraordinary magnitudes. But being just a finite machine, it has

some limitations, peculiarities, and rules that you need to understand if you're

going to communicate with it well. Fortunately, these are few and reasonable.

Scientific Notation on Your HP-28S

First of all, the HP-28S does not use strict scientific notation. It uses a slightly

compacted, computerized version ofit.

For example, 2.5 x 104 is represented as 2. 2E4

And 3.9 x 106 appears as 3. FE-6

As you can see, the E means "...times ten to the...". That is, the number follow-

ing it is the Exponent of 10.

It's just a convenient way to write scientific notation without resorting to super-

scripts in the display of the calculator.

Real Numbers, The Stack, And Postfix Notation 73

12-Digit Accuracy: Rounding Error

Secondly, keep in mind that some real numbers have representations that are

just plain infinite. For example, the decimal representation of 1/3 is .333...,

where the 3's continue forever.

Of course, it's unreasonable (and fortunately, unnecessary) to try to use all of

those 3's during real-number arithmetic. What you do, naturally, is round it,

shortening it to a value that is both convenient and accurate enough for your

purposes. To be sure, the rounded number is not the same as the original, but

the difference is negligible in practice.

Well, the HP-28S rounds, too. In dealing with infinite or extremely long repre-

sentations, it rounds the number, remembering 12 digits of the original number.

The inaccuracy that results is called rounding error. And as you would suspect,

multiplying together two rounded numbers will multiply this error.

So, just how great an error is this?

"Let's find out."

Say that you're the pilot of a plane flying from Los Angeles to New York — a dis-

tance of 3,000 miles. Well, it's a lovely day, and once airborne, your navigator

lets it slip that he's been using his HP-28S to do fuel calculations.

Not only that, he freely admits that his computations of the number of miles per

pound of fuel are only accurate to .000000000001 miles (the 12th digit).

Uh-oh. If his calculations are off by that much per mile, how big an error will

this make over a lot of miles (3,000)...7

74 An Easy Course In Using The HP-28S

Oh, about one two-hundredth of a millimeter.

Not a lot, really.

If you'd flown clear to the moon and back, instead (roughly 500,000 miles), the

accumulated error would be an entire eight-tenths of a millimeter.

And in a round trip to the sun (about 186,000,000 miles) you'd gain or lose about

a foot (now you're talking gross error).

As you can see, digital accuracy to 12 decimal places as given to you by the HP-

28S is slightly more than barely adequate. So if an answer isn't exactly what

you were expecting, it's very, very close..

Real Numbers, The Stack, And Postfix Notation 75

Magnitude: How Big (or Small) Can You Get?

A third limitation of the HP-28S is the magnitude of a real number (i.e. the nu-

meric value — not the number of digits) it can represent. And again, it's the fi-

nite nature of the HP-28S that imposes this limitation; you simply cannot expect

it to be able to represent arbitrarily large or small numbers (everyone has his

limit; you do and so does your machine).

The largest real-number value representable on the HP-28S (which you can pro-

duce with the command MAXR - "MAXimum Real") is

9.99999999999 x 10499

And the smallest representable real-number value (which will result when you

use the command MINR — "MINimum Real") is

1 x1049

These numbers are extremely large and small, respectively. It's difficult, if not

truly impossible, to convey — or even contemplate — the enormity and tininess of

these values.

"It's a tough job...but someone's gotta do it..."

76 An Easy Course In Using The HP-28S

To try to get some idea of the size of these numbers, compare them with some of

the largest and smallest things in the known universe:

The best approximation for the effective radius of an electron is about 2.817938

x 1015 m(eters).

Putting this into other units, the electron radius is about 2.978626 x 103! light

years (a light year is the distance which light will travel through free space in

one year's time, abbreviated lyr).

Therefore, the volume of an electron (assuming that it's a sphere) is about

9.373093 x 1044 m3, or about 1.106972 x 10-1 lyr3 (sure, you can picture a cubic

light year — can't you?).

Now, consider that the radius of the sphere of the visible (i.e. the "known") uni-

verse is only on the order of 1010 lyr. That means that the volume of the known

universe is about 1039 lyr3. So if you packed the known universe absolutely sol-

idly with electrons (no wasted space), you would need about 10121 electrons.

Now, that's a lot, admittedly — more already than anybody can really envision.

But consider this: The number MAXR is so much larger than this, that if you ac-

tually had MAXR electrons, you would have enough electrons to fill

10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,000,000,000 Ernown universes.

Real Numbers, The Stack, And Postfix Notation 77

On the small end of things, picture in your mind that packed pile of MAXR elec-

trons. Then picture yourself picking out just ten of those electrons. That ten —

in relation to the whole — is the fraction you're talking about when you say

"MINR."

So you see, the magnitude limits of the HP-28S aren't all that restrictive. In-

deed, to further put things in perspective, you may have heard of human socie-

ties whose numbering systems went something like:

"1...2...3...more than 3."

And that was all the farther they could describe numerical magnitude.

So it is in every society. In this modern-day technical world, for example, the

numbering goes well beyond 3, but at some point, it runs out of names and

meanings, too. "Millions...billions...trillions...quadrillions..." etc, up to about

"nonillions" (?), which are on the order of 1030, But what do you call numbers on

the order of 10100 — or 1(4007*

Truly, there is a limit to practical needs to describe numbers. One society's limit

may simply be a little higher than another's — but not much.

*The authors recommend the term "several gadzillion."

78 An Easy Course In Using The HP-28S

Posting Real Numbers: (CHS), and Display Modes

Now then: Those are the details about how the HP-28S can and cannot repre-

sent real numbers. Knowing these rules and limitations, it's time you started

posting real numbers as memos to your calculations staff. You'll see right away

that it isn't much different than posting any other kind of information, except

that you use the number keys to key them in.

For Example: Post 5,280, 365.25 and 6.022 x 1023,

Solution: Press (ATTN) @CLEAR] (S|T)JDJENTER) (5]2]8]0) (ENTER) (3] 8]5]-J2]5]

ENTER]) (6-L0J2)2]E[2]3) (ENTER)

You should see:

M
o

Notice that when keying in that last number, 6. B22E23, you used the (E) key.
You could have used (Enter EXponent).

works the same as (E) except for one case. Press [EEX]. What happens? Since

you hadn't specified the number to the left of the E (the mantissa), supplied

you with one: 1. It's just an added nicety of the EEX function.

(Now press to clear the command line).

Real Numbers, The Stack, And Postfix Notation 79

OK, now how about posting a negative number? You have two ways to do this:

First method: You can post the positive number in the usual way (up to and in-

cluding pressing [ENTER)) and then press (CHange Sign).

Try It Now: Press(CHS]. The number in Level 1 becomes negative.

Press again — to make that number positive again.

Second method: You can change the sign of either the mantissa or the exponent

at any time while you're keying in that part.

Examples: Post—=1.3,4.3E-24,-7.8E3 and -9E-234.

Solutions: Press (1]«)3]cHSJENTER) (4]-5JEEX]2]4 CHS]ENTER) (7]cHS] -8E]3]

(*) (chsIe)EEX]CHS)54) (ENTER).

You'll see this:

4z -1.3
3 4.9E-24
21 -7280
1: -9.E-54

Notice that pressing before you start to key in the number will work only if

the command line is already active. If not, then will change the sign of the

number in Level 1, as in the first method, above.

80 An Easy Course In Using The HP-28S

Display Formats

Try this: Press (4))JF)I)JX)ENTER.. Continuing on from the previous example,

you should see this:

4: -1.36840
3= 4. 9HBBE-24
2t -7odd. BE8Y
1: -9.888BE-34

What's-a-goin' on?

Well, you just told the HP-28S to change the format of real numbers in the dis-

play. That is, the values of the numbers haven't changed — just the way you see

them.

told the HP-28S to display a FIXed number of digits — four in

this case — to the right of the decimal point. As you can see, that's just what it

did. When there are no more significant digits to be displayed, one or more ze-

roes are added to the end of the number to fulfill the FIX requirement.

Real Numbers, The Stack, And Postfix Notation 81

Next: Press [COMMAND) (0]ENTER). Here's what you'll see:

=
0

First of all, recall how retrieves your most recently posted command

(4 s FIX, in this case). Since the first character, 4, is the one you wanted to

change, you overwrote it with 8 and then pressed to execute the rewritten

command.

So there are now zero digits to the right of the decimal point. Again, the num-

bers haven't changed in value; only their appearances have.

Remember! All these display formats are only the display’s "editing” of the

numbers for presentation to you. The internal representations of the numbers —

for purposes of computation — are always fully 12 digits ofprecision.

82 An Easy Course In Using The HP-28S

Once Again: Press (1]1]*JSJCJIJENTER. Result:

=
M
w
p
A

This example brings up an important point: In the previous examples there

were numbers in the display formatted in scientific notation even though the

mode was FIX. That's because there are only 12 digits possible to display a real

number. Therefore, any number larger than 999999999999 (twelve nines) or

smaller than .000000000001 ("point-eleven-zeros-and-a-one") will be displayed

in scientific notation by default, because its magnitude exceeds the ability of the

display to show in an explicit, one-part number.

But now, with SC| mode, not only have you set the number of digits to be dis-

played, but you've forced the display to use scientific notation for every number

— regardless of whether or not that number could otherwise be correctly repre-

sented in the display. To see this, compare how Level 4 looks now to how it

looked after the previous example. Although the exponent is 0, the number is

still expressed in scientific notation here.

Finally: Press (S|T]DJ]ENTER] .

This is STandarD display format, where you started on page 79.

All significant digits of all numbers are displayed and scientific

notation is used only when the number overruns the display's

magnitude limits.

Real Numbers, The Stack, And Postfix Notation 83

The Stack and Postfix Notation

"OK, ok: Scientific notation... real-number representation limits... display for-

matting... when are we going to get to the part where I start doing things — like

arithmetic — with real numbers?"

Right now. Begin by noticing that what you see in the display is, quite literally,

a stack of numbers. It's true. Everything you've posted so far has been "stacked

up” on the bulletin-board.

This particular stack may look upside down to you, compared to other stacks of

things you've seen, because you put the latest additions on the bottom here.

Aside from that, it works in much the same way as any stack of "stuff."

If you think about it for a moment, you'll realize that a stack is merely a Last-

In-First-Out type of arrangement, where the last thing you put on the stack is

the first thing you take off.

But — as you've so eloquently put it — putting things on and taking things off the

stack doesn't accomplish a lot. You want to be able to do other things with the

stuff on the stack. With real numbers, for example, it would be nice to do some

math. Of course, you can.

But here's the idea to hang onto as you begin: An HP-28S command that uses

this stack — any math operation, for example — assumes that something to oper-

ate on will already be in the stack when you invoke the operation itself.

In effect, you must first put onto the stack any number(s) you want to manipu-

late, and then perform the operation. This way of doing things is called postfix

(post-affix: literally, "to add after"”), because the operation itself comes after the

operands.

84 An Easy Course In Using The HP-28S

Real Number Commands:

0-, 1-, and 2- Number Operations*

Just so that you have some simple arithmetic to follow,

Do This: Key in these numbers: 100, 64, 4.6, 7 and 3 — in that order.

Solution: ENTER) (ENTER) (ENTER)

And here's how your stack should look:

=
R o

W
=

This is the reliable general procedure anytime you want to put a series of num-

bers in your stack, right? You just key in each number and press to post

it.

*If you already know how to do simple postfix arithmetic on the HP-28S, skip ahead to page 91.

Real Numbers, The Stack, And Postfix Notation 85

Start Crunching: With your stack set up like that, press (X).

You should see this:

L 180
3= 64
21 4.6
1: 21

The numbers in Levels 1 and 2 were multiplied together, and

the result was left at Level 1.

Try Another: Press (+).

=
R

o
y
4

The same thing happened — except that the result on Level 1

is now the sum of the (previous) bottom two levels.

Notice that, because two numbers were combined into one number here, there is

one number fewer in the stack now, and the rest of the stack has therefore

dropped one level. This is the way each 2-number math command works. It

takes the bottom two numbers from the stack, combines them, and puts the re-

sult back on the bottom of the stack.

86 An Easy Course In Using The HP-28S

Notice also that both addition and multiplication are commutative operations.

That is, their results do not depend upon the order of the two numbers involved.

Clearly,1 +2=2+1;and 2x3=3x 2.

So for this addition, it wouldn't have mattered if the 4« & had been above 21 or

below it in the stack. This is not the case with other arithmetic operations, such

as division and subtraction.

To Wit: Press (+).

=
M
w
A

Notice that the order of evaluation is "Level 2 divided by Level 1."

Then Of Course: Press(—). Here's the result — and now you know why, right?

4z 4.2E-24
3= - 75488
25 -9.E-54
1: 97.5

Real Numbers, The Stack, And Postfix Notation 87

Notice that throughout this little set of examples, all those other numbers you

had floating around above Level 4 have successively made their reappearances.

Your stack has been steadily "settling” downward as you perform these arithme-

tic operations that combine two numbers into one.

This settling is a very important part of the stack's operation. It becomes obvi-

ous with any problem that forces you to compute several intermediate results

before combining them into a final answer.

For Example: Find ((2.4 x6.8) + (5.9 -2.3) —(17.5+4)) x43.2

Solution: Press

(2.4 x6.8)
GELIJENTERI (23] (5 (5.9-23)

(A=) (17.5+4)
(-) (5.9-2.3)-(17.5 + 4)

(24 x6.8) +(5.9-2.3)—-(17.5+ 4)

(4]3)-[2]

The result is 671.544. Notice how you worked from the inner parentheses out-

ward, thus eliminating the parentheses as you go. That hearkens back even to

your earliest days in arithmetic class, doesn't it?

Notice also how you combined the values in each parenthesized portion,

"melting” them into intermediate results, which you allowed to "stack up" while

you computed the next portion!

88 An Easy Course In Using The HP-28S

OK, that probably gives you some idea of the workings of the 2-number math

functions. What about 1-number math functions?

You Asked For It: First, get rid of some of the extra numbers, by pressing

(DROP) (DROP) (DROP) (DROP) (DROP)(DROP) (DROP] (that's 7 times).

Then press (X3 (the shifted key). Here's what you

should see at this point:

I--
"l'

“i.
'.i

i.l
.ll

-_l
il-

228
1335487 .23623

X2 is a 1-number function, since it takes only one number

off the stack. Since it replaces that one number with its

result, only Level 1 is affected.

Affect It Again: Press @-). is also a 1-number function — and

no prizes for guessing what operation you just did:

2258
363.23=

M
p

Real Numbers, The Stack, And Postfix Notation 89

So now you've seen 2- and 1- number operations.

Believe it or don't, there are even some 0-number operations. That is, there are

some operations that take nothing from the stack, but leave a value there never-

theless.

Pick A Card, Any Card: Press(RJA]NJDJENTER). You'll see something like

this:*

2
6=

M
W 2286

369. 29
. 229199338633

RAND is the RANDom number generator. It takes no

numbers from the stack but leaves a random num-

ber there at Level 1, thus bumping everything else

up by one level.

*Because the number on Level 1 has been chosen at random by the calculator, the number in your display may

not be the same as the one shown above. Your calculator should generate this number the first time you invoke

RAND after a machine reset (via (ONJINS]»)).

90 An Easy Course In Using The HP-28S

Arithmetic Practice

Here are some not-so-trivial problems to let you practice your postfix arithmetic

skills and some of those 2- and 1-number functions.

A reminder: You'll notice an abundance of parentheses here, since that's how

you're used to seeing such problems expressed on paper. But there's no need for

parenthesis keystrokes when solving these on your HP-28S. The way these nu-

merical "memos" stack up on your "bulletin board" allows your arithmetic "staff

members" to work with them without using any parentheses!

And keep in mind the rule of thumb for handling parenthetical expressions:

"Work from the innermost parentheses outward."

1. (1 +2)x3)+4)x5)=?

2. Calculate -12 + V122 — (4 x 3 x (-5))

2x3

(You might recognize this as one of two solutions to the quadratic equation,

ax2+bx+c=0,wherea=3,b=12and c=-5.)

Real Numbers, The Stack, And Postfix Notation 91

3.37="2

(This is the cube root of 7. Notice that there is no cube root command on the

HP-28S and that you "raise-to-a power" via 7). Notice also that {7 = 713.)

4, 173e[_ 20162]=?

(e* is EXP from the LOGS menu.)

5.1+05+05%2+053+0.54="
2! 3! 4!

(x! is the FACTorial of X. The command FACT lives in the REAL menu. In

case you're curious, this problem is asking you to add the first five terms of

the Taylor series approximation of €95, You might want to compare your re-

sult here with the result of the HP-28S's EXPonential function.)

92 An Easy Course In Using The HP-28S

Arithmetic Practice Solutions

BRIDHBEXEWBHEX

The result = 6D

. (123 (4JENTER] (3]X) (s)cHsIX) (=) W) 21cHs) (H) (2) ENTER) (3) (X) (2]

The result = « 38047614285

- DEvER) 3) XY@)

Theresult=1.91293118277

. (4]3) EenTER) (-JoJ0]4) (X) ens) (+) (31 (EnTER) (1)6-J3) (5 (+) ILoGs)I

The result =373. 133149383

. W ENTER) J8) (1) 15)W) (2) @NREALIETAM (=) () 5) (EnTER)IRI()
B (J5) Enter)(A (4)M() (0

The result = 1 . 6484375

CEMoss)I= 1.64872127°87

Real Numbers, The Stack, And Postfix Notation 93

Of course, there's a whole lot more to this machine than just your basic arithme-

tic. You're surely itching to crack into all that (and why not? It's never any fun

to hammer out the fundamentals before getting to the really good stuff). Never-

theless, there's quite a bit more hammering to do before you get into serious

number-crunching. In fact, the only reason you're seeing arithmetic with any

numbers right now is to learn about how the stack works. And there's a whole

lot more to see before you're ready to manage your staff. This part of the course,

then,is still a filling-in of the details of the everyday operations of your staff and

bulletin board. After all, you need to fully construct this imaginary world in

your mind before you can operate with its help.

Stack Operations

Here's a quick run-down of all the things you know so far about the stack.

— You've already been introduced to some of the stack's basic math operations.

— You know how and the command line are used to put things on the

stack and how is used to remove them.

— You've even seen how the operation called DUP can be used to duplicate the

first level of the stack (remember way back on page 257?).

There are a lot more stack commands than just these 3, and since the stack is

basically your work area, you'd better know your way around it.* The next few

pages, therefore, are a continuation of your introduction to the HP-28S's stack

commands. Don't expect to inscribe all of this in your mind or on your fingertips

after a single pass here; it will take time until you're fluent in using all these

different specialized tools. But take a look now, and begin your practice....

*But if, on an outside chance, you feel at home there already, then by all means, jump now to page 107.

94 An Easy Course In Using The HP-28S

[ENTER)'s Second Job

Before you get to any new commands, take a second look at the hardest-working

key of all: (ENTER). Apart from posting (or evaluating) the command line, it has

another use altogether!

This second use of is that, when the command line is not active,

functions as a "do-it-now version" of DUP. This is another convenient extra, be-

cause most commands "eat" items off the stack; having back-up copies becomes

important.

Try It: First, be sure there's no half-built command line (by pressing if

necessary).

Key in a number and press several times. See how it dupli-

cates that number?

Now DROP all those duplicate entries out by pressing several

times.

Real Numbers, The Stack, And Postfix Notation 95

The Command

Another commonly used stack operation is f[SWAP). It functions to exchange the

contents of Levels 1 and 2.

So what good is that? Well, remember that division and subtraction are not

commutative operations; their operation depends on the order of the numbers in

Levels 1 and 2.

@SWAP) gives you the ability to reverse the order of these two stack levels, and

because there are many operations (besides (=) and (=) that are not commutative,

SWAP) becomes very much in demand.

How to the Stack

Remember — that command that throws away the bottom (most recent)

memo and therefore "drops" all the rest of the memos down one level?

Well, @CLEAR), like [DROP), is a stack clean-up command. If there are items on the

stack that you don't need any more, removes them. But you'd better be

sure about what you're doing: clears the whole stack.

Clean Your Slate:Press now — and see this:

-_
—:
r:
gm
.n

96 An Easy Course In Using The HP-28S

Up to now, the stack commands you've been using are all important enough to

have keys of their own.

But everyone has to live someplace; the less commonly used stack commands

live in the STACK menu (JG)).

Get That Menu: Press STACK]. You should now see this:

3

f
OUPOVEROUP2|DROP2{ROT|LISTH

You see that DUP lives here. But why? If does the same thing, and it's

sitting right there on the keyboard, why put DUP in a menu also?

Well, recalling that is exempt from the effects of (@), if you wanted DUP to

appear on your command line, you'd have to type (DJU]P) manually (perish the

thought) unless it were available on a menu key.

All this planning — just for your convenience!

Real Numbers, The Stack, And Postfix Notation 97

Continue your perusal of this STACK menu. Reading from left to right in the

menu, the next command over is OVER. OVER makes a copy of whatever is in

Level 2 and then pushes this copy onto the stack (to "push"” something onto the

stack means to put it on at Level 1, thus bumping everything else up one level).

In effect, then, OVER makes a copy of Level 2, jumps over the current Level 1

and pushes the copy on the stack "beneath" it.

Drum Roll, Please: Press Tl And here's the result:

g1 {: :
“LUP |OVER |DUPS|UROP2]FOT|LIZT+

See how this works? Remember, although you never pressed to put the 1

and 2 on the stack in the first place, OVER is an immediate-execution function,

which means that, for all practical purposes, you had a command line that read

1,2, 0VER before an was "caused" by the OVER. Since the HP-28S

posts (or obeys) memos from left to right, this explains how the numbers got

onto the stack by the time the OVER happened!

Horse around with this some more, but after you've finished, set up your stack

so that it looks like this (from the above example, all you would need to do is

press (DROPJ3]ENTER) orLI (+)):

3+ 1

: %
ITT(TIs

98 An Easy Course In Using The HP-28S

Now then: Just to keep things interesting, skip over to the fifth item in the

STACK menu — to the command called ROT.

This command ROTates the bottom three levels of the stack "upward." In effect,

Level 3 is removed (not copied) and then pushed onto the stack.

Prove It: Press IIl{. The result:

3 2

i i
TAA [TILS

See? Just a simple rotation of the three bottom-most

"things" in the stack. Now press twice more to

return the stack to its original order.

And Just For Laughs: Press ROT|

What happened? The bottom three levels of the stack

have been reversed.

3+ 3

: :
ITIYTl

(Now press to shred all evidence of levity.)

Real Numbers, The Stack, And Postfix Notation 99

Going back now to pick up those two commands you skipped:

DUP2 and DROP2 are analogous to DUP and DROP but — as their names imply —

they operate on both the first and second levels at the same time.

DUP2 makes a copy of both the first and the second levels and then pushes them

on the stack. That is, it DUPlicates the contents and ordering of the bottom 2

levels of the stack.

Watch: Press IITEl Then press («4+) to get the menu out of the way for

a minute so that you can see the bottom four levels of the stack:

=
0

M
=

And DROP2 drops (discards) the bottom two levels of the stack,

Like So: Press (<) [T («¢).

 =
M

 -

No sweat, right?

100 An Easy Course In Using The HP-28S

More? All right. Press («#*) to get the menu back and then to see more of it.

ROLL (which has a key of its own — the shifted key) and ROLLD (on the sec-

ond "page" of the STACK menu — now showing) are a matched set.

ROLL is a generalization of ROT. Its job is to retrieve a number from any given

level of the stack and push it back on again at Level 1, where it's more directly

usable. As you know, ROT does this same kind of retrieval service, but only with

Level 3. With ROLL, you can specify whatever level you want.

Easier Done Than Said: Press (3]]4]ENTER) — to load up a total of 4 levels.

Now press (4) («¢). You see:

=
M
W

=
R
0
a
n
d

The bottom four stack levels have now been ROLLed. You can see that pressing

@RoLL) is equivalent to pressing IIZ1lM. And similarly, pressing (2) fJ(ROLL) is

equivalent to pressing SWAP).

But while the effect of what you're doing here is really quite simple, this may be

one of your first encounters with the use of a command that calls for an

"argument.” So take a moment for a backstage tour, a behind-the-scenes look at

what's going on here....

Real Numbers, The Stack, And Postfix Notation 101

ROLL is a do-it-now function, so it has a built-in after it. Therefore, the

argument, 4, that you just keyed in does go onto the stack at Level 1 before the

ROLL gets under way (so keep in mind there's a 1 up on Level 5):

4
3
2
1

Next, your memo posting "office boy" obeys the do-it-now ROLL, which says, in

effect, "DROP (throw away) that bottom &, but note its value on the way to the

dumpster." He obeys, and so the stack (bulletin board) looks like this once

again:

=
M

M
-

He now climbs up the stack to Level 4 (because he just threw away a 4), removes

whatever's there (a 1) and pushes it back onto the stack at the bottom:

 =
R

=
L
o
M
d

As you get more practice, of course, you won't even need to think about all these

intermediate steps. After awhile, it'll feel obvious that if you want the 4th

"thing" in the stack to "come on down," you just key in a 4 and use ROLL.

102 An Easy Course In Using The HP-28S

The main point of this backstage tour is that ROLL is a good example of a one-

argument, postfix operation.

It's postfix because whatever it operates on (and with) had better be in position

by the time it comes along — and this is indeed the case: everything is sitting on

the stack exactly right — so that it does what you want it to.

And it's a one-argument function because it needs one parameter ("argument” —

remember your staff's math jargon?) in addition to the stack’s current contents

to tell it the "where's" and "how-many's" of its operation.

The way in which ROLL simultaneously uses and discards its argument is very

typical of the HP-28S's treatment of arguments that you load into the stack. It

notes them while throwing them away (DROPping them).

Another good example of this is ROLL's twin sister, ROLLD (in the STACK

menu). ROLLD is the reverse of ROLL. It ROLLs the stack Down in the same

way that ROLL rolls it up — sending what's in Level 1 up to the specified level.

Going The Other Way: Press («¢) Thus, the stack is returned to

the order it had before you executed the ROLL.:

=
M
A

H
M
-

And you know the reasons for the parameter, 4, and

the messing about with the (<) key, right?

Real Numbers, The Stack, And Postfix Notation 103

Onward and upward to more strange and wonderful stack manipulation stuff

(on the second "page" of the STACK menu)...

DUPN and DROPN are generalizations on DUP and DROP in the same way that

ROLL is a generalization of ROT — including the treatment of the one parameter.

Both commands first DROP a number off the stack and use it to tell the number

of levels on which to operate.

For Example: There are now four items on the stack. Press TN (<%).

Voila! There are now eight levels on the stack. The bottom four

levels have been duplicated and then pushed back onto the (bot-

tom of the) stack.

Press four times to prove this to yourself....

Thus, IO is the equivalent ofI, and (2) [ITLZA is the equivalent of

LT

Likewise: DROPN will remove the specified number of levels. Press (4)«#)

[T, All four of the remaining levels are dropped (nuthin'

left)!

Thus, [T is equivalent to (DROP), and (2) [dId4] is equivalent to [TIHE.

104 An Easy Course In Using The HP-28S

"But wait — there's more!"

PICK (same menu) is a generalization of OVER. It drops an argument from the

bottom of the stack, using its value to count up the stack. It then makes a copy

of that level (unlike ROLL, which extracts that entry altogether) and pushes this

copy onto the stack.

Thus, (2)Ais equivalent to I, and Mis equivalent to.

And more: DEPTH is a command that takes nothing from the stack. It merely

counts the number of levels currently on the stack and then pushes its resulting

count onto the stack (as the new bottom number, of course).

Do This: Be sure the stack is clear, then press [[@L, and it returns a @ — no

mystery, right? The stack was empty.

Press it again and it returnsa 1. (Why ?)

Real Numbers, The Stack, And Postfix Notation 105

Would you believe...more? {(VIEWt) (fi)cHs)) and J(VIEWY) (lEEX)) don't actually

change the stack in any way. As their names imply, they allow you simply to

view portions of the stack.

Take A Look: Press 00806800080000G6ENE) D!

Now press {(VIEWt. What happens?

R
O

h
i
f
-
R
0
d

The whole stack was scrolled (not rolled) down. You can now

see what was beyond the top line of the display.

Pressing @(VIEWY again will move the view up one more line.

Pressing and holding will scroll until the top line of the

stack is visible. has the opposite effect.

One more thing: (@)is just like ([EDIT), except that it uses the number

in Level 1 as an argument — DROPping it and noting it in the usual manner — to

select the stack level to be edited.

Then, in terms of actual editing, VISIT is exactly like EDIT, except that when you

press the altered contents of the stack level you've been editing are placed

back at that level — not at Level 1 (and you would expect this, right?). Try VISIT-

ing various stack levels, just to get the hang of it.

106 An Easy Course In Using The HP-28S

Strenuous But Practical Stack Practice Problems*

Solve the following as efficiently and expertly as you now know how:

L G-+ (-9) -

2. Assume the bottom three levels of the stack contain the coefficients of a

quadratic equation (i.e., ax? + bx + ¢ = 0), where Level 3 is a, Level 2 is b, and

Level 1 is c. Give a sequence of key-strokes that will produce the equation's

lesser root, whose formula is

-b — V(b2 — 4ac)

2a

3. You've seen (on page 99) how you might reverse the bottom three stack lev-

els. What are some key-strokes that will reverse the bottom four stack lev-

els? How about reversing Levels 2, 3 and 47?

4. Swap Levels 1 and 2 for Levels 3 and 4. Then swap Levels 1, 2 and 3 for Lev-

els 4, 5 and 6. How about swapping Levels 1 and 4?

5. ((((12.45 + 3) x 12.45 + 3) x 12.45 + 3) x 12.45 + 3) x 12.45 + 3) x 12.45 + 3 = ?

6. Who played Elliot Ness in the television series "The Untouchables?"

*Try saying that three times in a row.

Real Numbers, The Stack, And Postfix Notation 107

S. B. P. S. P. P. Solutions

1. (2/7 in Level 1)

(2/7 in Level 2; 14/15 in Level 1)

= (Copy both values)

85O (14/15 — 2/7)
=

Result =&

2. One solution:

(Stack = b; c¢; 2a, in descending order)

ETH (Stack = b; 2a; 2ac)

(Stack = b; 2a; 4ac)

A (Stack = b; 2a; 4ac; b)

(Stack = b; 2a; 4ac; b?)

= (Stack = b; 2a; V(b2 — 4ac))

(NexT) IETEM (CHs) @SWAP) (=) @SWAP) (+)

3. IsTACK) @SWAP) (4 ROLL);

BsTACK]) (4]NEXT) [N

(4 J(ROLL

108 An Easy Course In Using The HP-28S

4. (4JROLL) (4JROLL};
(6ROLL) (6(ROLL) (6ROLL);

(4JROLL) @SWAP) (4JESTACKINEXT) [i[NNY or

5. (ENTER) (ENTER) (ENTER) (ENTER) (ENTER) (ENTER) (Six copies.)

([ENTER) (ENTER)

T (Enable @J[COMMAND].)
(o) T (Remember these keystrokes.)

BCOMMANDJENTER)

@)COMMANDJENTER)

@COMMANDJENTER)

BCOMMAND]ENTER)

@COMMANDJENTER) (Do them five times.)

Result =4699789.91278

See how easily you can repeat any given set of keystrokes?

6. Robert Stack.

Real Numbers, The Stack, And Postfix Notation 109

n

construction.

N\Thank you for your/

patie

This is it. You've fully constructed your office surroundings in your mind. Now

you're ready to learn how to work with all the high-powered brains on your HP-

28S staff.

Looking back for a moment, you can see how far you've come as "president” of

this "collection of mathematicians" called the HP-28S....

110 An Easy Course In Using The HP-28S

— You know how the keyboard connects to the "bulletin board" display, and you

have a basic understanding of the layout of the keyboard — how the character

and command keys are arranged and how the i key serves to change the

meanings of most of the keys (changes to the red-printed functions).

— You know how to use the command line to edit and post "memos" or com-

mands on the bulletin board. You know that you have a "card catalog" of re-

served words (menu items) that the HP-28S will recognize as commands

rather than simple messages. And you know that many of these are "do-it-

now" commands, so they won't be posted onto the stack but rather, executed

immediately (unless you have switched to (@) mode).

— You know how arithmetic works on the HP-28S, with its postfix logic, where

both operands precede the operator. And you know about 0-, 1-, and 2- num-

ber arithmetic operators.

— You know several gadzillion charming and convenient stack-manipulation

commands — ways to rearrange the numbers in the stack.

— You're familiar enough with the HP-28S that you can now dispense with this

"office world" mind game and instead see this machine for what it really is —

just a mindless but powerful calculator that will obey your commands.

Real Numbers, The Stack, And Postfix Notation 111

The "Stuff' Upon Which

The HP-28S Works

An Equal Opportunity Calculator

Unlike most calculators, the HP-28S is not limited to working only with real

numbers. Though real numbers are tremendously useful, and much real-world

work involves their manipulation, you might also want more flexibility in your

problem solving — the ability to manipulate other sorts of information, too.

Unfortunately, with increased flexibility comes increased complexity (you don't

get somethin' fer nuthin'). With all these new sorts of information and new

ways of manipulating them, there comes a whole slew of new rules — and new

exceptions to those rules.

Fortunately, however, there is an underlying, unifying logic to how things work

in the HP-28S. Once you get a grip on this general operating scheme, you

should be able to move from manipulating one sort of information to another

without much discomfort.

How can that be? How can you treat characters, for instance, in any way simi-

larly to the way you treat real numbers?

Be assured, you can. Though you must remember certain details for certain

types of information, you will find that the machine treats most every "thing” in

very much the same way!

The "Stuff' Upon Which The HP-28S Works 113

The HP-28S's Philosophy of Information

Despite all evidence to the contrary, there are really only three basic kinds of in-

formation that the HP-28S understands. They are:

Real Numbers

Characters

Bits (short for Binary digits).

This is because these three basic information types are so very useful, forming

the backbone of almost all information processing that goes on in the real world.

But that isn't nearly the whole story.

Though these three information types are used almost universally, they are al-

most never used just as they are (the major exception being real numbers).

Specifically, characters are more commonly used as elements of character

strings or pages of text.

Bits are more often grouped into bytes and words, or used as binary integers.

Even real numbers are often grouped into vectors, arrays, tables, and other

more exotic "things."

The good news is this: HP-28S has anticipated your need for such complex

groupings of these three simple information types. Built right into this calcula-

tor is the capability to allow you to build and manipulate compound objects in

familiar, useful and convenient ways!

114 An Easy Course In Using The HP-28S

Real Numbers

You've already had an introduction to real numbers — what they are and some of

the things you can do with them. Now you must begin to look at them as part of

the larger scheme of things.

Real numbers are "things,” objects — one specific kind of information. Sure,

they're somewhat familiar to you because you often use them to solve problems

in your daily life — including the problem of how to introduce yourself to the HP-

28S's stack and arithmetic.

But stop and take a good, hard look at that. Exactly how have you used real

numbers in this Course so far?

Two ways:

1. The first way is probably so familiar to you that you didn't even notice it.

You used real numbers as object information. That is, they were data — in-

formation for its own sake — to be manipulated in order to get other numeric

information.

This is the way that you look at real numbers when you do things like addi-

tion, subtraction, multiplication and division. You are working on numbers

that are meaningful to you in order to get another number that is meaning-

ful to you.

2. You have also seen numbers used not as data, but as parts of commands.

For example, ROLL doesn't use the Level-1 stack value as data. Rather, it

uses the number as an indicator of how it is supposed to work. In other

words, real numbers used in this way are meaningful to you only because

they help you control the machine.

The 'Stuff' Upon Which The HP-28S Works 115

3. And here's yet a third way to use real number — a way you've not yet encoun-

tered in this book: use them as truth values.

That is, use two different real numbers (conventionally 0 and 1) to represent

opposing states or responses (e.g., yes or no, on or off, set or clear). In this

sense, then, a real number can be used to represent qualitative information.

For example, if you're comparing two real numbers to see if the first is great-

er than the second, you would use the > command.

Try It: Press (2]ENTER) (3]JENTER) . The result is 8. Then press

BENTER). The resultis 1.

To the HP-28S in this context, @ means that the comparison is false (i.e.

the answer is "no, 2 is not greater than 3"). Conversely, a 1 as a result

means that the comparison is true.

All such comparison operations (<, >, ==, SAME,<, >, #) will return either

a one or a zero depending upon whether the result is true or false.

116 An Easy Course In Using The HP-28S

You can begin to see that a number or any other type of information is actually

quite meaningless unto itself. It gains meaning based on how it is used. That's

a basic concept — an underlying truth — of the HP-28S.

You've also seen another underlying truth of the HP-28S — the stack. It may

have been a rather new idea to you. It does present some new problems and

new ways of doing things, but it also opens up many new possibilities — new and

powerful concepts, such as the postfix operation you've already begun to explore.

So it's time to begin exploring these different uses of information, seeing first-

hand just how the HP-28S builds upon the three fundamental information types,

creates other information "objects” and combines them on its stack....

The 'Stuff'Upon Which The HP-28S Works 117

Complex Numbers

A good starting point: With real numbers as your building blocks, the simplest

compound-data-type you can build is the complex number.

As an information structure, a complex number is simply an ordered pairing of

real numbers — a list with two real-number elements. The first element of the

pair is considered the real part of the number; the second is called the imaginary

part.

On the HP-28S, complex numbers are represented by bracketing two real num-

bers between parentheses, separating the two numbers with a delimiter.

Build One: Press («¢) @[CLEAR).

Then press ((J2]SPACE]3]-J4) ENTER). This is what you'll see:

=
R

 (23 3.4

118 An Easy Course In Using The HP-28S

Notice these things:

1. You didn't need to press at the end of the number. If the complex num-

ber has other things following it in the command line, then you must use 2

as a delimiter. If not, the HP-28S will automatically add the right-hand pa-

renthesis before posting the number.

2. The space you used as a delimiter in this example was replaced by a comma

when you posted it. Regardless of the delimiter you use when keying in the

complex number, the HP-28S will use a comma (unless you're using the com-

ma as the radix mark, in which case it will use a period*) in the posted form.

3. The real and imaginary portions of the number are on the same stack level.

Both this and the fact that they are grouped together inside parentheses tells

you clearly that this is a single object — one number. From now on, unless

you purposely break it into its components, it will be treated as one number —

one object.

That's all there is to it. That's how you key in and post any complex number

"object."

Now, what good is it?...

*The choice of radix is a selectable mode. The commands used to alter such HP-28S modes are found in the

MODE menu (ffJ(<¢*). RDX, controls the radix and is on the second "page"of the mode menu. IJEMl indicates that

the radix is the period while[is the comma. Pressing this key toggles between the two modes.

The 'Stuff' Upon Which The HP-28S Works 119

Complex numbers have, by definition, mathematical properties quite similar to

those of real numbers. Thus, many HP-28S operations meaningful for real num-

bers are also meaningful for complex numbers.

You can, for example, perform arithmetic operations (+, -, X, +, etc.), trigonomet-

ric functions (SIN, ASIN, COS, ACOS, etc.) and logarithmic functions (LOG,

ALOG, LN, EXP, etc.) on complex numbers.

And in all these operations you can perform arithmetic using a mixture of com-

plex and real numbers. The real number is converted by the machine into a

complex number (with a 0 imaginary part) before the operation commences. The

result is always complex.

Watch: Press (5) (+).

=
M
w
p
A

(12, 268.4

Pretty slick, right? With those few keystrokes — and the stack logic you now

know all about — you multiplied a real number by a complex number, then added

the result to a complex number.

So you can see right away that one major advantage of a compound data type

such as a complex number is that the components of the object are manipulated

together as a unit in new and meaningful ways — and you don't have to expend

any energy trying to keep track of all the parts!

120 An Easy Course In Using The HP-28S

However, another (complementary) advantage is that you can pull apart the

complex number into its component pieces, do things to them individually, and

then reassemble them into a complex number. In fact, you can build a complex

number from pieces generated by other, unrelated operations.

So in addition to the strictly mathematical operations in your complex-number

repertoire — operations they share with the real numbers — you have other oper-

ations designed specifically for complex numbers.

Any guesses as to where these type-specific operations might "live?" In the

COMPLX (@c)) Menu, of course!

Try This: Press (1]JENTER]9]+)(7]JENTER] 4]2]+).

Then ("Real to Complex"). Here's what you get:

2 (12,208.4)
1: ¢.111111111111,

. 166666666667)
IGEDSTTUTNBT

R—C allows you to construct a complex number from two real numbers that are

in stack Levels 1 and 2. The real portion is taken from Level 2; the imaginary

portion from Level 1.

As you might expect, the function C—R (also in this menu) allows you to go the

other way — decompose a complex number into two real numbers — where the

real portion goes to Level 2 and the imaginary portion to Level 1.

The 'Stuff' Upon Which The HP-28S Works 121

Now Try This: PressI You see:

31 ¢12,20. 47
51 111111171111
I: {EGEEEEREGET
ANBTNB

You've decomposed the complex number that was at Level 1 into its two compo-

nents. The real part is now at Level 2; the imaginary part is at Level 1.

Next, pressIto recombine those two parts once again. Simple, right?

OK: Press I3

Now what have you gone and done?

Nothing too awful: RE replaces the complex number on Level 1 of the stack with

only that number's REal component. IM does the same with a complex number's

IMaginary component.

122 An Easy Course In Using The HP-28S

Here's a point to help you wrap your mind around the HP-28S's idea of data ob-

jects:

Although complex numbers are a meaningful form of information and there are

plenty of operations that use them as such, you're not limited to using them just

as complex numbers.

You can also use complex numbers as two-dimensional vectors (which are very

similar to complex numbers), or as coordinate pairs in plotting, or just as a con-

venient way to group two related numbers.

And because you can pull complex numbers apart and put them back together

again, you can actually define new operations that give new meanings to the

complex number data type in the HP-28S but which have no relationship to the

mathematical concept of complex numbers in the real world.

As far as you should be concerned, then, complex numbers are just ordered pairs

of real numbers — information objects for you to use in whatever way you see fit.

And just so you're fully confident of your skills with the mechanics of complex

numbers, here's a "little something for the occasion..."

The "Stuff' Upon Which The HP-28S Works 123

Simple Questions About Complex Numbers

1. How would the HP-28S represent these complex numbers?

N
+

W
i
-3 +4i 2.3-1.1i -1 -1

2. How would you key in the numbers in question 1?

3. Calculate the following: Y1, ¥7, (1,1)2, sin'(2), In(=1).

4. Change (1,2) into (2,1).

5. Calculate the following: (0.34(2 + 31)(32.4 — 12.21)) + (33.42 — (12.2 + i\/§)).

6. Consider the two-dimensional vector (3,4). What is its magnitude and

direction? What unit vector has the same direction? Change the sign of the

original vector and answer the same three questions.

7. The heights and circumferences of a set of trees are as follows: 18 feet and 2

feet; 25 ft and 1 foot, 11 inches; 28 feet and 2 feet, 5 inches. What are the

mean height and circumference of these trees (use complex number objects).

124 AnEasyCourse in Using theHP-28S

Simple Answers to

Simple Questions About Complex Numbers

1. (3242,
(2.3s-1.12;
‘:"'1,"1:';

C.873y1.33333333333).

2.

L1JAJENTERJCHS]

3. (CEl®) = {8y 1)
= (.906465091387,1.656645699997)

=@y 22

Q)REET=¢t1.57879632679:-1.31695789692>

(1)crs) @Locs)M= 8,y 3. 14139263339)

4. (1)J2]enTer) @covrLx) IEEE swar) EEI or

()2)enter) (11J1)cHS)

5. (-J8J4JeNTER) ((J2)J3IX) ((J3)2)-J4L1)2]-J2]cHs]X]

(3131~[42)ENTER) (1]2]-[2]ENTER covPLx) IE(-5

Result = (1.94811498433, 1. 2698881897

The 'Stuff' Upon Which The HP-28S Works 125

6.

126

(37)4) comPLxNexT) IETM = 03 03. 13818233420

R—P converts the Cartesian (rectangular) cooérdinates to polar codrdinates.

Thus, the "real" part is the magnitude while the "imaginary" part is the an-

gle. Alternately:

(30)2) ENTER[ENTER) @[COMPLXINEXT) IEEEM = 5

ScvAr)B= 53. 1381823542

ABS gives the magnitude. ARG gives the angle. The unit vector is given by

SIGN:

()4 @coMPL) BRIl = £ . 63 . B 2.

Notice that the unit vector multiplied by the original magnitude (5) does re-

turn the original vector. Also, the magnitude (ABS) of the unit vector is 1.

Using the negative vector:

(3"Ja)ENTER]CHS)@coMPLXNeXT) IETMl = 2 - 126. 869397646

The magnitude is the same (of course), but the angle is different by 180°.

B= (- . 688bBBbBBaa2, -, /99999999995)

The resulting vector points in the opposite direction (i.e., 180° different) from

the unit vector for (3,4). Although it is not exact, the unit vector is effectively

(—.6,—.8). This is because R—P could not generate the exact angle (within 12

digits) so P—>R could not return the exact original vector. Compare this re-

sult with that of the SIGN of (-3,—4).

An Easy Course In Using The HP-28S

7. ((J1)8]J2JENTER]

(2]5)ENTER) (1]ENTER) (1)2]=]+) covPLx)I
(28]ENTER] (2]ENTER) (5JENTER) (1]2]=]+

The three data pairs are on the stack where each complex number object is

in the form (height, circumference). The circumferences have been converted

from feet and inches to just feet. To find the means, sum the components

and divide by the number of components.

FHHRE=C(23.6666666667,2.11111111111>

This is the mean height and mean circumference in decimal feet. To convert

each to feet and inches:

I@REALINEXTINEXT)

ETH T
(R]OJTJENTER] Bt i

(«#)

Result:

4: 2
3= 1.33333333332
25 23

__1 . 8. 880RBEEAE4
The mean height is in Levels 2 and 1 (23 feet, 8 inches) and the mean cir-

cumference is in levels 4 and 3 (2 feet, 1 1/3 inches). As you might have sur-

mised, |IP gets the Integer Portion of a real number while FP gets the Frac-

tional Portion.)

The 'Stuff' Upon Which The HP-28S Works 127

Vectors

Put most succinctly, a vector is an ordered list of numbers. It's ordered such

that the left-most element is numbered 1, and the rest follow in ascending order.

You're probably familiar with two- and three-element vectors, but the HP-28S

imposes no upper limit on the size of a vector. Vectors are represented by the

HP-288S as a list of numbers, separated by delimiters and enclosed within square

brackets (L and 1).

And here's a key point: The number elements of a vector may be real or complex

(aha)! You can see already how to build a compound data type from simple data

types and other compound types.

Better to start simply, though, so

Watch This: Press @CLEAR) ([]1]2]]3]]4) (ENTER).

You'll see:

=
R

[1 234 1]

128 An Easy Course In Using The HP-28S

Again, notice certain things:

1. You didn't need to press 1) at the end of the number. If the vector needs to

be separated from other things following it in the command line, you must

use J as a delimiter. If not, the HP-28S will automatically add the right-

hand square bracket (and these rules should sound quite familiar, since you

just heard similar ones for complex number objects).

2. The commas you used as delimiters were replaced by spaces. Regardless of

the delimiters you use to enter the vector, the HP-28S will use spaces to dis-

play the vector (also a familiar rule).

3. All elements of the vector are on the same stack level. Both this and the fact

that they're grouped together inside square brackets tell you that this is a

single object. From now on, unless you purposely break it into its compo-

nents it will be treated as one object.

The 'Stuff' Upon Which The HP-28S Works 129

By definition, vectors may be combined via certain mathematical operations, but

unlike complex numbers, only a few of these are in any way analogous to corre-

sponding operations on real numbers (operations such as +, -, x, +, ABS, and

NEG).

For the most part, then, you have vector-specific operations, collected under the

ARRAY (J)A)) menu. Why not a VECTOR menu? Because vectors are really ex-

amples of an object type called an array.

So an array is an ordered arrangement of objects, and a vector is just one partic-

ular arrangement — a one-row arrangement.

Another Vector: Press (D) ([(1)*)2) (3"]4) (5]]e)

(ENTER).

2

=
M
W
A

[1 3 4 1]
[{1,2} {3,4} (5,6)!“

The usual, little things to notice:

1. Since something follows each complex number in this vector (except the last

one), you need to use the right-hand parenthesis to delimit each.

2. Neither the last complex number nor the vector needs the final parenthesis

or bracket. Since it found both an opening bracket and parenthesis, the HP-

28S knows it must close them at [ENTER).

130 An Easy Course In Using The HP-28S

Notice that the vector is longer than the display can hold. When this happens,

the HP-28S will use an ellipsis (m) to indicate the over-run — just as you saw

with the command line (page 54).

To view the whole vector, you must do one of three things:

(1) Edit Level 1 (with either EDIT or VISIT), using the cursor keys to scroll

through the entire object. Then press to discard the command line so

that you don't inadvertently change the vector;

(i1) Decompose the object with ARRY— from the ARRAY menu, and if neces-

sary use [J(VIEWt) and J(VIEWY to examine the elements in the stack. Re-

member to rebuild the vector with -ARRY when you are done;

(iii) Use GETI to step through the vector components.

No sense exploring (i). You already know how to EDIT.

Try Door Number (ii): Press IR Here's what you get:

=
M
a
d ¢

¢
L

s

The 'Stuff' Upon Which The HP-28S Works 131

The object in Level 1 is something new called a list. You can tell that this is a

different object type because it's represented within braces & and }). Alistisa

different animal altogether, so you won't see it in all its glory until later. For

right now, just learn to recognize it by its braces.

You can see that the numbers up farther in the stack are the former values

within the vector you just dissected. But what's that bottom number inside the

braces?

It's the number of elements the original vector contained: 4 (complex) numbers,

in this case. ARRY— will always put this extra value on Level 1, so that you'll

know how many stack levels contain vector elements and so that the machine

will know this too (the array-building command, -ARRY, needs to know how

many stack levels to use in making the new vector).

Now, use and to scan the stack.

The vector has been decomposed from left to right (like the complex number

with C—R); the first element (the left-most) has been put on the stack first and

the last vector element (the right-most) last.

Notice that you can modify any single vector element by using @(VISIT) to edit

that element right where it is (see page 106).

132 An Easy Course In Using The HP-28S

Rebuild: Press ELld.

I |

=
M
a
y

[1 234 1]
[Cly2) (3542 (D460

*ARFY|ARRY3]PUTGETPUTI GETIs

The vector has been recomposed from its pieces. The Efildd] operation used the

{ 4 2 to know how many stack elements to put into the vector.

Note that you could have filled the stack with real and/or complex numbers of

your own, put the vector size in Level 1 and used -ARRYto build an entirely dif-

ferent vector.

Like This: Press (1]*(J2]*J3]ENTER +AREY]

31 [1234]
B2 [€1,2) ¢3,4) ¢5,69.
i: el o0 ¢2;35
SRRETIARRT*]PUTGETPUTIGETI]

The 'Stuff' Upon Which The HP-28S Works 133

What happened? First of all, the real value 1 was changed to the complex value

{1482, which is its complex equivalent (remember that complex numbers with

a zero for the imaginary component are mathematically identical to real num-

bers). The HP-28S likes to be consistent within a vector, so if any element of the

vector is complex, all of the elements are made to be complex.

Secondly, notice that you didn't need to press before pressing EiId#l. Most

do-it-now operations will automatically evaluate the command line before they

execute, thus saving you a step.

Since you can have a vector full of complex numbers, it would be reasonable to

use the complex number operations on them, too. What happens if you do? To

find out, press to get to the previous page of the ARRAY menu.

Then Press: 3.

2 [(1427 3542 (5460,
2 [1 2 1]
1: [8 3 1]
IEEEGEESEECEETR

The complex vector has been decomposed into two real vectors, just as a complex

number would be decomposed into two real numbers. In the same way also, the

real components of the original complex vector are in the Level-2 vector, and the

complex components are in the Level-1 vector.

As you might expect, R—»C will recompose the original complex vector from the

two real vectors in Levels 1 and 2.

134 An Easy Course In Using The HP-28S

Now Try This: Press (DROPJDROP]{1]NEXT) Ic3#ll. What happened?

Encores:

[¢152) (3,43 (5567
51559

SRRRUJARRT>]PUTGETPUTL|GETT

3
2
1

First, you brought that 4-element complex vector to Level 1.

Second, you keyed in a list containing the number 1. This list

was created to be an index into the vector.

Third, you pressed which told the HP-28S to GET the in-

dexed component from the vector in Level 2, then Increment

that index and push the selected component on the stack — in

that order. Sure enough, component 1, {1322 was pushed

onto the stack and the index was incremented toL 2 .

Press IE3Fd. Now the second component, {3342 is

pushed onto the stack, and the index is incremented toX 3 .

Press IE3fd. The third component, £y 62, is pushed

onto the stack, after the index is incremented toX 4 2.

Press Igd3fd. Now the fourth component, ¥ s 82, is

pushed onto the stack, but since there are only 4 components in

this vector, the index is cycled backto€ 1 2.

The "Stuff"' Upon Which The HP-28S Works 135

At this point, your display will look like this:

[(1,2} (3,4:‘ (5,6)|u

{1 2
(FPy8)

*HREYARRY#]PUT|GET|PUTIGETI]
=
=
a
0
0

s
You can see how easy it is to gain access to any element within a vector, using

the GETl command. Remember that the | in GETI stands for Incrementing the in-

dex (not simply the fact that you're using an index) while GETting the indexed

element.

A Variation: Press W38 Here is the result:

3
2 [123 4 1
1: (1,22
ARRVIARRY]PUT|GET|PUTI |GETI|

Unlike GETI, GET consumes both the index and the vector and leaves only the in-

dexed component on the stack. Therefore, you would probably use this form of

GETting when you don't care about keeping the vector in the stack. When you

do want to keep the vector, you could either make a copy of it (with DUP) prior to

using GET, or you could use GETI.

136 An Easy Course In Using The HP-28S

By now, you've probably noticed that many commands come as matched sets of

complementary functions, such as C—»R, R—C, -ARRY, and ARRY-.

Speaking Of Which: Press ({]1]eNTER) (5]ENTER). Here's what you'll see:

3= [1234]
2s L1 2
1: 2
ARRYVIARRY]PUTGET PUTI| GETI

Now try to guess what will happen if you press IdTl#ll. Hint: PUTI is the comple-

ment to GETIl. Therefore, it should put the number in Level 1 into the vector in

Level 3 at the location specified by the index in Level 2. It should also incre-

ment the index.

Yes, But Does It Really? Press [ITi#dl.

3
2
1

[22 % g

ARRYVIAREY]PUTGETPUTI| GETI

]
b

Shur 'nuff: The machine put the 2 into the vector as element number 1 (the in-

dexed element), and the index was incremented to 2.

——
——

And Notice This: Press (6)ldTll. PUT is the complement of GET, functioning

similarly to PUTI, except that it doesn't preserve the index.

The 'Stuff' Upon Which The HP-28S Works 137

A Visit with Vectors

Like complex numbers, vectors are a meaningful form of information, and there

are operations that use them as such. But you're not limited to using them sole-

ly as mathematical vectors (i.e. representations of "reality”). Keep in mind that

because you can "dissect” vectors and reassemble them, you can define new oper-

ations that give new meanings to the vector data type — meanings that have no

relationship to the concept of vectors in the real world. So before going on, be

sure you understand vectors, how to build them, and how to take them apart.

1. Give three ways of putting the vector [(1,2) (3,4) (5,6)] into Level 1.

2. IfA=[1 2 3,B=[3 25 -2]and C =[] V2 -6] what's 14.5A - 0.2B + (1,1)C?

3. Sum the real and imaginary components of the result of the second problem.
Le., split that vector into two real-valued vectors and sum them.

4. Using the result of problem 3, find the corresponding unit vector (u = -fih).

5. For the following table, find the total hours worked per person and overall.

Abe Ben Carl Dan

Mon 8.00 7.75 450 6.40

Tue 7.50 8.25 5.500 740

Wed 3.50 6.50 4.75 7.10

Thu 8.00 750 4.00 7.50

Fri 810 800 450 7.25

138 An Easy Course In Using The HP-28S

6. Createthevector L 1 2 2 4 53 6 7 8 9 1. Change element 4 to

4B. Change element 7 to 7. Change element1to {1y12.

7. Create the vector L 1 2 1. Redimension it to a 5-element vector. Change

element 3 to 3. Redimension the vector to 2 elements

8. How would you key in these vectors?

3i+4j; 2i—4j+23k; V2i+V3j+ 13k

9. Evaluate the following:

[-4 5]+[1 1 -2]

3x[2 -7 1]-4x[-3 0 4]

[1 -8 05]-[41 -2 5]

(* is the symbol for dot product.)

[-3 4] X [8 -2]

(X for vectors is the cross product.)

The "Stuff' Upon Which The HP-28S Works 139

Results ofA Visit With Vectors

1. (LgJ2) 0800 (]5]2|8 JENTER);

(AL2 ENTER) (13L4 JENTER) (J57[6 JENTER ARRAY) EXTIH;

0008068E0800001 (Y9] R+|

2. (4=sIenTer) (LL23)IX) (LXens3L2=I5*-L2cHS]IENTER) (-J2]X) (&)

3) (6]CHS]ENTER ARRAY (LX)

Result=L[€13.4333333333, .333333333333)
(29.9142133624,1.41421336237> (37.24,-62 1

3. i)2rRAY) i)rPrEV)XX (+);

Result=[13.7666666666 31.3284271248 31.54 1

4. ENTER) @(ARRAY) (NEXTINEXT) IETEH @VX)X);

Result =

[.3342654550084 .664186741847 668672249469 1]

Note that since the HP-28S won't allow you to divide a vector by a scalar (a

real number), you must invert the magnitude (via f¥X)) and multiply.

140 An Easy Course In Using The HP-28S

5.
(Mon)
(Tue)
(Wed)
(Thu)
(Fri)

Totals=[L 33.18 38.88 23.25 35.65]

@ARRAYINEXTINEXT) [IX[dRN or T

Sum total = 132 . B8 hrs.

Notes: CNRM returns the sum of the elements of a vector. Also, you may

want to return to STD mode at this point.

6. (L2l3lJaesodeo708]J9JENTER

(4]ENTER] 4]0) ARRAY) IIITLM;

ENTER] 7]o) ITRIN;

Notice that you can use a real number (as opposed to a list) as the index to

PUT, PUTI, GET, GETI, and -ARRY although ARRY— and SIZE will always

return one-element lists when used on vectors.

Since you can't PUT a complex number into a real vector, make the vector

complex first.

LJoJX) (1IENTERL (J12 J1)

The '"Stuff' Upon Which The HP-28S Works 141

7.

()1

J2]ENTER) Result=L 1 2 1

({5EnTERARRAYINEXT) IEH Resut=L 1 2 8 8 8]

(3)ENTER[ENTER) {)(ARRAY) Result=L 1 2 3 8 8 1

I Result=L 1 2 1

Things to notice:

e Redimensioning a vector to a larger vector fills the new elements with 0's to

the end of the vector.

e Redimensioning a vector to be a smaller vector throws away elements at the

end of the vector.

8 (13"JalENTER) Result=L[3 4 1;

272)chs[>[2)-[3[ENTER) Result=[2 -4 2.3 1;

Result =

[1.41421336237 1.732856888757 .333333333333 1

9. (OBX&)eHsP5)eNTER) (DGJ2ICHS) (#); Result=L 4 -3 3 1

BLU2)eJ7IeHs[J1)X) (4[]3]cHs]»Jo»J4[X]=
Result=L 18 -21 -13 1]

(112)8JeHs [Jo)J5) ()4J1J2)cHs]»]5[ENTER) (DJO]TJENTER

Result =21

(3]cHs]*J4) (18]*J2)cHs) MARRAY) (NEXTINEXT)ER

Result=L 8 8 -26 1]

142 An Easy Course In Using The HP-28S

Arrays

You've already heard the word "array.” In fact, you know that a vector is one

form of an array. Mathematically, an array is nothing more than an ordered ar-

rangement of numbers in rows and columns, and a vector is merely a one-row

array.

So in general, you can think of an array as a list of vectors. The vectors form the

rows, and corresponding elements of the vectors form the columns. The lengths

of the component vectors must therefore be the same, but the number of rows

(vectors) does not need to be the same as the number of columns (elements per

vector).

On the HP-28S, an array is represented by bracketing a list of vectors with

square brackets ([and 1). Thus, you'll see a double set of square brackets,

since vectors themselves use a set, too.

But here's a less obvious point: The HP-28S allows you to deal with arrays only

as a two-dimensional list of numbers (i.e. not as a "vector of vectors"), which of

course conforms with the normal, mathematical notions of matrices.

In other words, it may seem logical to be able to extract entire rows (vectors)

from any given array and then horse around with them, just as you can with the

components of complex numbers and vectors. There are no conceptual reasons

why you can't do this; there just aren't any commands built into the HP-28S to

let you do it. You can decompose arrays only on an element basis, not on a row

(vector) basis.

The 'Stuff' Upon Which The HP-28S Works 143

An Example: Press CLEAR) (L]]1)J2]]3]]4)(ENTER)

Here's what you'll see:

3
2
1: [L 1 21

[3 4 1]

Things To Notice That Shouldn't Be Very Surprising Any More:

Notice that you didn't need to delimit the first vector with 1 before starting the

second vector with L.

Since the HP-28S is expecting the second vector (you told it that there were to be

more than one when you typed ([)1)), it doesn't need the closing bracket. The

new starting bracket simply tells it that you're finished with the first row/vector

(and therefore tells it how many elements are in each row).

Nothing very new, right? The HP-28S has dealt with the array in much the

same fashion in which it deals with vectors. This is in fact the case with almost

all of its other operations as well. You really wouldn't want it any other way.

144 An Easy Course In Using The HP-28S

Now, the only major mechanical difference between working with vectors and

arrays on the HP-28S is in the index — that list denoted with braces — associated

with -ARRY, ARRY—, GET, GETI, PUT and PUTI.

Because of its two-dimensionality, the size of an array is represented as a pair of

numbers within braces. The first number of the pair is the number of rows (vec-

tors) while the second is the number of columns (elements per vector).

Take It Apart: Press ARR'Y =+

3 3
2 4
1 L2 2
HFRYVIAREY]PUTGETPUTI|GETI

Use and to look over the stack. The array has been decomposed

into its component numbers, with the elements having been pushed onto the

stack in "row-major order.” That is, they were pushed on starting with the first

row, proceeding from left to right until that row was exhausted. Then the sec-

ond row was taken left-to-right, and so forth.

The list on Level 1 contains 2 numbers specifying two rows and two columns, re-

minding you (and the HP-28S) where those numbers above actually originated.

As with all decomposing commands, the stack is left in a state that allows you to

immediately recompose.

Do It: Press Elilddl. The array is recomposed, using that index list on Level 1

as the blueprint for rebuilding the array.

The '"Stuff' Upon Which The HP-28S Works 145

Again, remind yourself that you're working in the same ARRAY menu as you did

with vectors. How, then, do these same commands work on two-dimensional ob-

jects?

Find Out: Press ({17[1)ENTER). This is the array's index, pointing to the first

row, first column.

Now press IIE3fll. Here's the result:

3: [C121 [34 1]
23 71273

SRRRUJARRY#]PUT |GET |PUTI |GETI]

This works exactly analogously to the way it does with vectors, with an allow-

ance for the second dimension. Indeed, the only new thing to notice is how the

index is incremented: PUTIl and GETI increment the index in row-major order.

Do it a few more times to make sure you see the pattern. Press N58

The indexisnow® 2 1 2.

Press I3l The indexisnow® 2 2 .

Press I3l The index cyclesbacktot 1 1 2.

Care to speculate on how GET and PUT work? Go ahead — experiment with

them.

146 An Easy Course In Using The HP-28S

Array Aptitude Test

1. Convert the vector[1 2 3 4 5 6 7 8 9] (a1x9 array) into a 3 x 3 array.

Change element {2 2} to 10.

2. Convert the array result from problem 1 into a complex array such that all of

the imaginary components are 0. Are there different ways to do this?

3. GivenA=[[1 2 3][4 5 9]], double A and subtract 1 from every element (i.e.,

find 2A-1).

4. GivenA=[[1 2] [3 4]] and B=[[4 3] [2 1]] show that A x B # B x A (thereby

showing that matrix multiplication is not commutative).

5. How might you extract individual rows (single vectors) from a 3 x 3 array?

6. Given A and B from problem 4, calculate the following:

A°B

(the dot product ofA and B)

AB

(the product ofA and B)

A:B

The "Stuff'Upon Which The HP-28S Works 147

1.

148

AA.T. Results

(23L4(sJe27 L8Jo JENTER) l)ARRAY]

EEEES (DRoP) (1]3]0[3) ERTE or (NEXT) (1)3][3) IHIEM;

({2231)o) ARRAY) ITEM or (5]1]o) ARRAY) IHTLM;

Notice that the index to PUT can either be a list or a real number. Ifitis a

list, the list-elements specify the row and column of the array-element. If the

index is a real number, it specifies the position of the array-element counting

in row-major order.

. Method 1: ENTERJARRAYINEXT)EA (o) IE'H X

I.e., find the SIZE of the array and use it to create a CONstant array that is

filled with O's. Next, convert these two real arrays into a complex one.

Method 2: ((]1]2]o]X]

S2eI8t4I5)sJOJENTER

(S]1JZ]JEJENTER] (Find the size of the array.)

(1]7JCJOJNJENTER) (Create a CONstant array of the same size filled with 1's.)

=)

Result=LL 1 331 [79 17 1]

An Easy Course In Using The HP-28S

4. (L]J2)3]J4]ENTER

(L)r]4]3]2]J1JENTER

(DJU]P]2]ENTER

SWAP ROT reverses Levels 1, 2 and 3. See

page 99.

== tests Levels 1 and 2 for equality. If they are

equal, the test will produce a 1. If not, it pro-

duces a 0.

Result = B. The values at Levels 1 and 2 were not the same.

5. Take the array [[1 2 3] [4 5 6] [7 8 9]] as an example. The strategy is to

create the 1 x 3 array [[1 O 0]] and multiply this by the first array. Thus:

(OLoJoJenTer] (LI2]J3) (L4lsoo) (L78Jo)

Using [[0 1 0]] will give the second row, and [[0 O 1]] will give the third.

Be sure to keep in mind that the order of the two arrays is important in mul-

tiplication!

6. (LI2]3L4 JenTeR) (L[l4)2L3t2]JMJENTER

(DJu]P)2) [ENTER)(D]O]T) =28 ;
(oroP) DJUIP2) (X) =LCL 85 1LC 28 12 11];

DROP|=) =[L45 1L -5 -6 1];

The '"Stuff' Upon Which The HP-28S Works 149

You've now seen three different objects you can construct with real numbers as

your basic building blocks. Before building anything else, see if you can put all

these different real-number constructions into some perspective. How do they

all relate to one another?

— Each of these information objects is built from real numbers, which are one

of the three fundamental information types (characters and binary digits are

the other two).

— Throughout these last 33 pages, you've seen that innocent-looking little

word, "list." The ordered, indexed list is really the key when it comes to

thinking about how the HP-28S associates information. In order of increas-

ing sophistication, you can think of the real-number-based objects like this:

— A complex number is a 2-element list of real numbers;

— A vector is an "n"-element list of either real or complex numbers. There-

fore, it can actually be a list of other lists (complex numbers).

— An array is an "n"-element list of vectors. Therefore (in the case of a com-

plex array), it can actually be a list of lists oflists.

Lists of "things." That's the compound-information object "concept" in its pure

form — the truly consistent, generalized way to think about these objects.

However, as you've already seen, you don't have exactly the same set of "list

arithmetic” and "list decomposing tools" available for each of these objects.

Clearly, the HP-28S's command set has been tailored toward the real-life math

"meanings” of each of the objects. For example, it's true that an array is nothing

more than a list of vectors, but the HP-28S won't decompose it into component

vectors for you — probably because this isn't a commonly needed application.

150 An Easy Course In Using The HP-28S

Characters

Characters are another sort of simple information that you use every day with-

out thinking much about it; you're using them right now as you read this book.

They are so simple that they convey very little information by themselves. But

in mathematics, if you associate a certain character, say X, with a value or oper-

ation, it gains information value. Notice that this value is not intrinsic; you

have given it this value by association.

Characters also gain in information value when they are used to make words.

The characters on this page are only meaningful because of their association

with other characters to make words. Thus they attain a higher level of infor-

mation.

The words on the page in turn gain meaning by being associated with other

words in sentences. The process goes on through all of the sentences in each

paragraph, all the paragraphs on a page, to all the pages in this book. And it

doesn't stop there. The book is only meaningful in the context of your HP-28S,

and your HP-28S is only meaningful in the context of what you want to do with

it.

Although its ability to gain meaning from higher and higher levels of associated

characters is far more limited than yours, the HP-28S can indeed go a few steps

up the ladder. However, it actually has no facility to deal with characters sim-

ply as characters — only with characters as members of larger information types.

For example, you cannot place a single character on the stack. That is, there is

no data object type called a "character." This is different than with a real num-

ber, which may, of course, appear on the stack as itself — in its elementary build-

ing-block form. Not so with characters. They must always appear within a com-

pound data object.

The "Stuff' Upon Which The HP-28S Works 151

Character Strings

A string is simply a list of characters, displayed within quotation marks (").

And although you can't have a single character on the stack, you can have a

string of one character(!).

If this distinction sounds a little strange, don't worry. In practice, you'll find it

to be irrelevant (i.e. you can "mess with" a 1-character string just as if you were

"messing with" a single character), but you'll see it to be logically true. In fact,

the logic is consistent even to the point of allowing strings which contain no

characters ("empty" strings).

Strings may be arbitrarily long and may contain any character.

Build One: Press (<) IHEILIPL) M
(TIRYAIPIPIEID)) (HIEJRIE) ENTER).

Here's your string at Level 1 on the stack:

=
M
w
W
A

"HELPs I'M TRERFFED ..

152 An Easy Course In Using The HP-28S

The Notice-These-Things-Drill:

1. As always, you don't need to key in the final delimiter. The HP-28S closes

the expression for you.

2. All characters except " — including those that usually act as delimiters in

other objects — are included in the string.

3. All elements of the string are on the same stack level. Both this and the fact

that they are grouped together inside double quotation marks tells you that

this is a single object.

4. If a string is too long, it will run off the right hand side of the display. As al-

ways, the HP-28S indicates this with an ellipsis. The only (convenient) way

to view the entire string is to EDIT it and scroll from end to end using the

cursor keys.

The 'Stuff' Upon Which The HP-28S Works 153

Strings are, of course, information objects and can therefore be placed on the

stack and manipulated with stack commands. But you can't use them to do

math since math isn't defined for such objects.

You can, however, use one command that is normally associated with math.

Since the concept of adding two strings together (appending one to another) is

similar to the concept of adding two numbers, the + command effectively adds

two strings.

Other than +, though, you'll need to rely mainly on the string-specific commands

that you'll find in the STRING (D)) menu.

Explore: Press 017 EHTEA T(+)

3
2
1 "HELFy I'M TRAPPED!"
ESHGBTETTENETON

154 An Easy Course In Using The HP-28S

Here's what you did:

1. You selected the second level of the STRING menu.

2. You entered two parameters for the SUBstring operation. The first number

indicates the first and the second number the last character of the original

string that you want to keep.

3. You invoked the SUBstring command. The result was the string "HELP s

I'M TEARPPED" in Level 1 of the stack — characters 1 through 17.

4. You keyed-in the argument for the CHaRacter operation. You may have no-

ticed that not all of the characters you might expect to be available are on

the HP-28S keyboards (and there are some you probably didn't expect, too).

In the HP-28S Reference Manual in the section on strings there is a table of

characters and character codes. The CHR operation allows you to convert a

real number (dang, those things just keep popping up) into a one-character

string. For example, 33 is the character code for ! .

5. You moved back to the first level of the STRING menu (there are only two)

and performed the character code conversion. was left in stack Level 1.

6. Finally, you added (appended) the string in Level 1 onto the end of the string

in Level 2 using (+). The result was left in Level 1. Notice that the order is

Level 2 + Level 1, as always.

The '"Stuff' Upon Which The HP-28S Works 155

Since you can't have individual characters on the stack (only one-character

strings), there's no convenient way to change a string into characters (sure, you

could do some tricks with SUB, using several copies of the original string, but to-

tal string decomposition isn't generally very useful).

There is, on the other hand, a very powerful method of changing a string into

other, very useful things. Strings may be converted to and from any information

object by using -STR (convert to STRing) and STR— (convert from STRing).

For Example: Press (1]]2]enTer) BB

S:

2i "HELP, I'M TREPPED!:
TNTTNAS

Now press HIEL.

S:

5: “HELP, I'M TRAPPED!"
i: (1,23
SNTTTRY

These two objects on Level 1 don't look much different, but they are. "C1ys223"

is a string, not a complex number. The HP-28S (and you) can tell this by those

quotation marks. £1s 22, on the other hand, is a complex number and the two

objects are used in radically different ways.

156 An Easy Course In Using The HP-28S

Try This: Press ") (Notice that the 00 annunciator comes on. Remember what

that means?) (1)SPACE[2)+) ENTER).

3: "HELP, I'M TRAPPED!"
25 (1,27
1: “1 2 4+ N

TTTTTY

Press BIEL

3: "HELPs I'M TRAPPED!"
%E (1,22

|#2TR|TR|CHE|WUF|*LC0LCD|

What happened? STR— recognized that the string contained three different ob-

jects, and in converting the string into those objects, it posted them.

It read the string from left to right and first found the 1 (delimited by a space).

It converted that character into a real number and pushed it onto the stack. It

then kept reading and found the 2. It converted that to a real number and

pushed it onto the stack. Finally, it found the ¥, recognized it as the name of a

command, and performed it. The first two stack items were therefore added to-

gether, with the result landing at Level 1, as usual. STR— then reached the end

of the string and stopped reading.

The important point: This is exactly how the command line would have respond-

ed if it had contained those characters when was pressed.

The 'Stuff' Upon Which The HP-28S Works 157

So you see that strings may actually form "pretyped" command lines that you

can then post in their command form by converting out of string notation.

However, you probably won't use strings for this purpose nearly as much as you

will for other information. In fact, strings may quite possibly be the most infor-

mation-packed data objects available to you, because they allow the HP-28S to

communicate with you in English (or whatever language you prefer). This type

of information is probably how you'll encounter and use strings most often.

Test your understanding of them now....

158 An Easy Course In Using The HP-28S

Character String Query

1. Given that Level 1 contains the number 188 .81 | use it to build the string

"Wol.= 1868.81 gal."”

2. How would you go about pulling the number back out of this string? Assume

that you don't actually know what that numberis.

3. Taking the number 6. B22E23 from Level 1, format it within a string so

thatit looks like this: "6. 822 ¥ 187(23>".

(Hint: use MANT and XPON from the REAL number menu.)

4. Starting with the result of problem 3, what would you expect the result to be

if you invoked STR—? Why? Rewrite the string so that STR— gives you back

the original real number.

5. Change the string "You understand?" to

"Wou understand!"

The 'Stuff' Upon Which The HP-28S Works 159

1.

5.

160

C.S.Q.Answers

(S)DD)EnTER) @)V (L9(O)L)(-)(=)SPACE) (ENTER) E(SWAP) EB(STRING) 8
(GIA]L]-JENTER]

Recall why you use here — to concatenate (join) strings.

. ENTER)ENTER) E("SPACEENTER) @(STRING) (NEXT) IEEM (1)+) @(swAP) EREE IETTA
ENTER))" [SPACE[ENTER) EM SWAP) IR (NEXT

Notice how you find the spaces on either side of the embedded number by us-

ing the POS function. You then use the position of the space as one of two in-

dices you need to extract a SUBstring..

. (ENTER) MIREALINEXT) EICN @swAP) @STRING) @ (o
(~[JENTER) (+) EswAP) EERTA (+) (™

Same idea as in problem 1, really — except for the use of MANT and XPON.

Remember that to get ™ without spaces around it, you press (@) to get the B

cursor before pressing f*).

. The result is a S9Nt ax Error because the expression is not in postfix

form. If you want a string that breaks the original number up into mantissa

and exponent but will still evaluate back to the original number, then use

"6.822 18 23 ~ %"

(ENTER) @ISTRINGNEXT)B(1]1) ETH CHR

An Easy Course In Using The HP-28S

Names

Names are also character strings, but they have special restrictions and a spe-

cial purpose in life. They're represented by bracketing lists of characters with

single quotation marks (").

A name is a descriptive word used to describe an object in the HP-28S. In other

words, if you have an object — any object — you can give it a name and thereafter

refer to the object by that name. This name will be associated with the object

until you change the association, which you may do at any time.

You can, of course, elect not to name objects, and as a matter of fact, you may

also have a name that has no object associated with it.

For Example: Clear the stack, clear the menu line, and load 6.022 x 1023 and

'"MH"' onto the stack. After doing so, here's how things look:

 =
M
W
A

And what have you done? First, of course, you cleared the stack and the menu

line. Then you put the real number 6.022 x 1023 onto the stack.

Then you put the name 'H"' on the stack: NJENTER). You can tell the HP-28S

regards this as a name because of the single quotation marks.

The '"Stuff' Upon Which The HP-28S Works 161

That 'H"' on the stack isn't yet associated with any object. Although it need

never be so linked to an object, it's often useful to do so, and you can link it to

any other object (even another name) by using the STO (STOre) command.

Go For It: Press (STO).

Both the name and the number are removed from the stack, right?

What happened to them?

To find out, press (NJENTER]. Here's what happens:

=
M

6.822E23

You can see that when you put a name associated with an object onto the stack

without single quotation marks, this tells the HP-28S to "evaluate" the name,

thus replacing it with the object itself (and you're going to appreciate this more

and more as time goes on).

162 An Easy Course In Using The HP-28S

Do It Differently: Press]N)ENTER).

6.022E23
=
M
N
A

2
M

When you use ('), you're telling the HP-28S that you

do want just the name on the stack. So there you

have it.

Now Change Your Mind: You've decided you wanted the object after all — not

just its associated name? No problem. Just press

EvaD.

=
M
A

Can you make an educated guess as to what

does?

It EVALuates the name in Level 1, thereby replacing

it with its object.

The 'Stuff' Upon Which The HP-28S Works 163

But typing in an object's name isn't the only way to put the object on the stack.

Watch: Press (USER). Assuming that you don't have any other named

objects in your calculator yet, you'll see:

3
2: 6.822E23
1: 6.H822E23
&I|||

The USER menu is your own personal menu. You are the user. Whenever you

STOre an object in a name (i.e., associate a name with an object) that name will

appear in your USER menu.

Use Your USER: Press B Pressing the menu key is a quick way

to get the named object to be put onto the stack.

Now press (') HEIH (preceding the menu key with (')

allows you to use just the name, rather than the object it rep-

resents).

Your display should now look like this:

3=
2 6.622E23
IAISN

164 An Easy Course In Using The HP-28S

Next: Press(']A]G]JA]1]N)(STO)

6.022E23
AGAILW|||

You have now stored the name 'H' in the name 'AGAHIMN"! This is an exam-

ple of using one name to refer to another, which is quite "legal,” of course, since

a name is just an object like all the others.

And notice that [EIs;}¥l has been added to the USER menu. The first four or five

characters in any name are all the menu has room for (not all of the characters

are of the same width).

But the name itself has not been shortened.

Prove this by pressing (') IEIciill. The complete name is loaded into the com-

mand line. Now press to clearit.

The 'Stuff' Upon Which The HP-28S Works 165

But what is HGAIHN's "value?" Isit 'H"' orisit 6. 822E23?

Here Goes Nothing: Press T34

=
)

6.822E23
ICTTTIIIBB

There you have it. Whenever you evaluate a "name of a name of a name...etc.,"

the HP-28S continues to follow its nose, evaluating each named object until it

encounters one that's not a name (or a name that doesn't point to anything).

In this case, AGAIHN points to N, and N points to 6. B22E23. Evaluating

AGAIHN causes M to be evaluated. And since the object that M points to is not a

name, the HP-28S stops evaluating and places that object on the stack.

This chain of evaluations has a potential hazard. If you were to store, say, ' A’

in "B"' and "B"' in "AH"' and then try to evaluate either name, the HP-28S

would go into an infinite loop. A would point to B, and B would point back to A,

and so on, forever. In fact, the only way to stop this would be to press and
(a) at the same time (a special command just for such emergencies).

Another caution: Not all characters can be used in names. For obvious reasons,

you can't use delimiters ¥, [, 1,", ", L, 3, €, 2,4, %4, (sPAacE, INEWLINE). You

are allowed to use numerals, but not as first characters. And it's a definite no-

no to use symbols or names which are already commands in the HP-28S (+, =, ¥,

L0=4, 8,2, 2#o, DROP, SHAR, ete.).

166 An Easy Course In Using The HP-28S

Name Games

1. @APURGE) will dissociate a name and a value. Use @PURGE) to rename 'H"'.

2. The HP-28S has no data registers, unlike many calculators. Data registers

are usually a numbered series of slots for storing real numbers. Create a

named data object that looks like a series of data registers. How would you

store a number into it? How would you recall a number?

3. Store 4 in "register" 1 of the object you created in problem 2. Evaluate the

named object so that it's in Level 1 of the stack. Store 3 in "register” 1 of the

named object. Evaluate the named object so that it's in Level 1 of the stack.

Why are Levels 1 and 2 different?

4. Purge the name M. Press @(")[NJENTER). Before trying it to find out, try to

guess what the result of STR— would be on this string. Type

(S]T]R) What will 5STR do to this object?

5. Store 1 in A, -8 in B and 15 in C, then solve the following:

A2 + B2 + C2

-B + VB2 -4AC

2A

sin(A) — cos(B)

In(C)

The "Stuff' Upon Which The HP-28S Works 167

Name Game Winners

1. (NJENTER) ('JNJPURGE] (*[Q]STO]

The first entry of N is its value; the second is its name. You dissociate the

two and then, with the value still on the stack, you associate it with 'G& " .

2. ((J1]oJENTER) (0JENTER) (CJOINJENTER) (*JMIEIM[OJR]Y]STO)
Store : ('JMJE]M]O]JR]Y) (ENTER ENTER] (1]*[PJU]T]ENTER

Recall : ('JMJE]M]OJR]Y) (ENTER ENTER) (G]E]T[ENTER]

You have created a list of ten "registers" which you may then store into and

recall out of by using the list commands PUT and GET.

3. ("JMJEIMJO]R]Y) (ENTERJENTER]ENTER), then ({1]ENTER) (4) (ENTER) (PJU]T)JENTER) ([EVAL

SWAP) (ENTER)]1]ENTER) (3]ENTER) (PJU]T [ENTER) (EVAL

The point here is that the value on the stack is not what the name is refer-

ring to. Once you have evaluated the name, the object left on the stack is ef-

fectively a copy of what was referred to by the name. Changing the value on

the stack will not change the named object and vice versa.

4. Since performing STR— on a string is identical to keying in the contents of

the string into the command line, 'M"' is left on the stack as a name that has

no object to point to. This will happen to any valid name the HP-28S doesn't

already recognize as the identifier of another object. -STR will make the fol-

lowing string out of the name: " "H'"

168 An Easy Course In Using The HP-28S

5. (1JENTER]8JCHS]ENTER]1]5)

T@)G@)B@)() = 270

G(Crs)I2HETI(X415OlIX)) = 2

E(7RiG) IETH (B) IEEO©) @ocsMM()= —.339231823731

You can see how the use of names might make calculations easier. If the

numbers in this problem were a little hairier, keying them in and keeping

them straight would be more difficult and the use of names would almost be

essential.

You can see how you might also create and use constants (names with values

that don't change) and give them meaningful names (like JIM, FRED and

PETE).

Notice that names don't need to be short to be easy to use since you can al-

ways key them in with one keystroke from the user menu.

The 'Stuff' Upon Which The HP-28S Works 169

So that's what you can build from characters. Now summarize for yourself the

differences and relationships between these objects:

Although a character is a fundamental information type, it is not recognized as

an object type on the HP-28S; therefore, you can't place a character on the stack

or manipulate it in any way. You need to build a compound object from one or

more characters.

The main object to build is the character string, which is just a list of characters

within quotation marks ("). Such a string may be broken down into smaller

strings — even a string with one (or zero) characters. But the object is still a

string. You can, however, convert a string into another object (and back again).

A specialized form of string is the name, which is denoted by single quotation

marks ('). The main purpose of a name is to associate itself with another infor-

mation object (even another name), thus giving you an easy way to refer to large

or complicated objects as you manipulate them.

Your repertoire is growing:

—You can use characters to build strings and names;

—You can use real numbers to build complex numbers, vectors, and arrays.

It's time now to look at what you can do with the third fundamental information

type — bits.

170 An Easy Course In Using The HP-28S

Bits

You can think of bits (Binary digits) as being 1's and 0's, true and false, on and

off, or any other pair of mutually exclusive states.

As such, they're used to indicate that some thing or state is either there (valid)

or not there (invalid). As with characters and real numbers, bits gain meaning

only within the context of their use. And since they are the simplest possible

kind of information, they have almost no useful meaning unto themselves.

The HP-28S can use bits individually as flags. The word flag is computerese for

a value that indicates the current state of something else. When that something

only has two possible states, the flag can be a bit.

Many of the HP-28S flags signal certain system states of the machine. For ex-

ample, there's a flag (48) that it examines whenever it needs to remember

whether to use the « or the s as the radix (as you'll recall from page 63, you do

have this choice). But there's also a generous supply of flags that have no intrin-

sic meaning to the system — flags that you can therefore define for your own pur-

poses.

As with characters, the HP-28S has no facility to deal with bits as bits on the

stack — only with bits as members of larger information types. You can't place a

single bit on the stack (i.e. the command TYPE, which tells you the type of object

currently at Level 1, has no provision for a bit type). But — also as with charac-

ters — this is no serious limitation, since a larger data type may contain a single

bit as its only member, and bit oriented operations will deal with this as if it

were an elemental bit.

The 'Stuff' Upon Which The HP-28S Works 171

Binary Integers

A binary integer is a list of bits. On the HP-28S, the list may be from 1 to 64 bits

long. The length of the list is called its word size.

You have several choices for the display and entry of a binary integer. You can

use either binary (0 or 1), octal (0 - 7), decimal (0 - 9) or hexadecimal (0 - F) dig-

its. A binary integer is entered and displayed preceded by #.

Like So: Press [JcLEAR)iBINARY) (fB) (#]1)1)o)1) (ENTER

3=
2
1: # 1181b
DECHEHOCTEIN®ZTHE[RCHE

You cleared the stack, selected the BINARY menu (because that's where most of

the binary-integer operations can be found) and put the binary integer #

1181b onto the stack. You didn't need to type the b because you were in BI-

Nary mode (indicated by the @ next to il in the menu) so the HP-28S assumed

the number was keyed-in in — and should be displayed in — binary digits.

Had you tried to use any other digits when keying-in the number, the command

line would have caught your error when you pressed . At that point you

would have been obliged to either re-enter the number using only ones and ze-

ros, select the digit entry mode (DEC, OCT, or HEX) compatible with the digits

you keyed in, or type the trailing letter indicating the type of digits you used (Q,

d or).

172 An Easy Course In Using The HP-28S

Now Press: ITE8ll (#]2]2]9]ENTER]. What you see:

13d
229d

3

{
NTTST

Upon pressing 33, the HP-28S understands that DECimal dig-

its are expected when keying-in binary integers. Not only that, it

also changes the representation of all binary integers to use deci-

mal digits (notice Level 2).

Now press and I[[¥ and notice how the display changes.

Now This: (#][F[F|E]3] ENTER) and see:

3

F
IEOEEREAGTE

Putting the h at the end of the binary integer allowed you to key-

in a hexadecimal representation while in decimal mode. Notice,

though, that the display mode didn't change. b, @ and d work the

same ways for their respective representations.

The 'Stuff' Upon Which The HP-28S Works 173

Like characters, literal bits cannot live on the stack, so there's no convenient

method for breaking a binary integer into its component bits. But binary inte-

gers are information objects; they can be placed on the stack and manipulated

with stack commands. You can even use them to do a smattering of math (limit-

ed to +, -, X and +).

In fact, since a binary integer and a real number are both fundamentally num-

bers, the HP-28S will allow you to mix them within this same restricted set of

math operations. The conversion is performed "on the fly," with the result al-

ways being a binary integer (any fractional portion of the real number is lost).

There are also several binary-number specific commands in the BINARY and

PROGRAM TEST (§)0)) menus. If you're interested, by all means explore those

menus. For now, however, this is enough of an introduction to binary numbers.

174 An Easy Course In Using The HP-28S

Binary Integer Test

1. What are the binary (base 2), octal (base 8), and hexadecimal (base 16) repre-

sentations of the decimal (base 10) number 1000 (a.k.a. 1000,4)?

2. Whatis 2, X FF4?

3. Calculate 2 x (FFF,g + 2). Why is the result not FFF,5?

4. Set decimal mode, key in # 188, duplicate it, and convert the Level 1 copy

to a character string. Now set binary mode. Why didn't the "number" in

Level 1 change like the number in Level 2?

The 'Stuff'Upon Which The HP-28S Works 175

B.I.T. Answers

1. (1Y0)oJ0) @ENARY)I(RexT) EETE (Result = # 1888d):
KT8 (Result = # 3E8h);
(Result =% 1735H0);

IBETH Result =# 1111168160868b).

R—B converts a real number in Level 1 to a binary integer in the current

base and word size.

2. I3 (#]F]F]ENTER ; (Result=# 1FEh).

3. IEIEM (#]F

]

F)FJENTER] (Result =% 7FFh);

(Result =# FFEh).

The point here is that the result of the division of a binary integer is also a

binary integer; any fractional portion in the result is lost. Therefore, the re-

sult of the division is accurate only to the next lowest whole digit, and dou-

bling this result might give you a number 1 smaller than your original.

4. QBINARY) IITXHM (#]1]0]0 [ENTER]ENTER) @~S|T]R]ENTER) IBT:H

Level 2 has # 11B8BB188Ab, a binary integer. Level 1 is "# 188d", a

character string. A character string, even though it may look like another

type of object, is simply a string of characters and as such has no binary-

integer meaning.

176 An Easy Course In Using The HP-28S

A Pause For The Cause

Take another compass reading here. You have now rounded out your repertoire

of compound objects that can be built purely from one of the three fundamental

information types:

Real Numbers may form complex numbers, vectors and arrays;

Characters may form strings and names;

Bits may form binary integers.

Now what? Where do you go from here? Is this the sum total of the objects you

can build and use on your HP-28S?

Not quite. You've seen most of the possible objects, but the few remaining are

the most powerful of all. And they're different — because they aren't construc-

tions built from only a single information type. Every object you've built so far

has been a list of simpler, similar objects (i.e. based upon the same fundamental

information type).

This again corroborates what you read on page 150, that the HP-28S deals sim-

ply with "lists of things." Up to now, the main concern has been those "things"

and what they can mean to you.

But what exactly is a list itself? What good is it? Can you have lists that com-

bine any objects you want?

It's time to answer these questions....

The 'Stuff' Upon Which The HP-28S Works 177

Lists

The actual description of a list as an object ought to sound quite familiar by now:

A list is a one-dimensional ordering of objects — any objects. It is ordered so that

the left-most element is numbered 1, with the rest of the elements numbered in

ascending order. It may be arbitrarily large or small; in fact, it may even be

completely empty.

As you've also seen already, a list is represented by bracketing a collection of ob-

jects within braces (£ and).

Build One: Press

ARDR2CE@A
()

Here's what you'll see:

1: £ £ 7 » "R"
II::I 51:3) (2,82 1

TR IR

178 An Easy Course In Using The HP-28S

Notice these things:

1. As always, you don't need to press at the end of the list unless another

object follows it in the command line.

2. All elements of the list are on the same stack level. Both this and the fact

that they are grouped together inside braces tell you that this is a single ob-

ject. From now on, unless you purposely break it into its components, it will

be treated as one object.

3. This list contains a list € 7). This is the first object you've seen that

can contain an object of the same type as itself.

4. If the list were longer than the display can hold, to view the whole list you

must do one of several things:

(i) Edit Level 1 (with either EDIT or VISIT). If the object is still too large,

you may use the cursor keys to scroll the display.

(i) Use @P(VIEWY and @(VIEWH to scroll through the display (if the objects

within the list are quite long, this method is not too helpful).

(1ii) Decompose the object, in this case with LIST—, and if necessary, use

B(ViEwt) and @(VIEWY to then examine the individual elements in the

stack. Remember to rebuild the list with -LIST when you're done;

(iv) Use GETI to step through the list's components.

The 'Stuff' Upon Which The HP-28S Works 179

Try That Last Choice: Press [H3f8. Result:

=
2
1
L
{47 >"A" L (I,S}E

L7 2
PUTI GETI

The index on Level 2 has been incremented to a value of 2, and Level 1 now con-

tainst 7 2.

Notice that the index for a list is a real number. The index for an array is typi-

cally a list because arrays may have either one or two dimensions (a vector is the

one-dimensional version) and thus one or two indices. But a list has only one di-

mension, so a single real number is used for an index.

While The GETting Is Good: Press Ig3Fd. The index is incremented

and Level 1 contains the character string "H",

which is the second element in the list.

Press Ig3#d. The index is incremented

and Level 1 contains the complex vector (ele-

ment number 3 in the list).

Press Id3Fd. The index is incremented

and Level 1 contains the name "H'. Notice

that the name has its single quotation marks

when it's on the stack by itself — but not when

it's a member of a list.

180 An Easy Course In Using The HP-28S

Secession From The Union: Press (DROP to decompose the list.

3 [1,3 ¢(-2,82 1]
2: IHI

1: 4
PUTI GETIs

The number of list elements is in Level 1, all ready in case you want to rebuild

the list by pressing ET¥&4].

Notice that, because the index/list-length is a real number, the list elements now

"stacked up"” become easily accessible to several other commands, particularly

the stack commands ROLL, ROLLD, DUPN, and DROPN (you may recall that

—LIST and LIST— are also available in the STACK menu).

It's quite feasible, therefore, to do some substantial list operations by decompos-

ing the list, manipulating the elements in the stack, and then recomposing the

list.

Reconstruction: Press EI®8l. Very convenient, no?

The "Stuff' Upon Which The HP-28S Works 181

As with character strings, there's a certain analogy between numerical addition

and the addition of an element to a list. If you have two lists at Levels 1 and 2,

you can "add” them to get one list with all the elements of the original two.

Like So: Stack up two lists by pressing («¢) ({]1]2]3).

1: L r7_x "R"
51:3) (-2,82 1

{
L
H
30

Now press to combine them:

=

{ ? } IIHII

¢1,33 ¢-2,8) 1
{2574

i
L
H

The contents (1 23) of the list formerly at Level 1 have been added to

the end of the list that was in Level 2 — the pattern for "list addition."

Remember that a list may contain any number of any data object. This makes

the list the most general purpose data object available to you. In keeping with

this idea of generality, the HP-28S doesn't restrict you by imposing too many

list-specific commands (note that the LIST menu isn't all that whopping huge).

But the convenience of the ability to decompose lists onto the stack, manipulate

the various elements, and then restore the lists allows you to dream up new

commands to manipulate them however you like!

182 An Easy Course In Using The HP-28S

List Lessons

1. What's the difference between® 1 2 3 4 Yand[1 2 3 4 12

How would you convert between one and the other?

2. Since a vector's components are limited to either complex or real number ob-

jects, how might you "represent” a "vector" whose elements are the name o0b-

jects I, J and K?

3. You can add elements to a list using (+), but how might you delete the last ele-

ment? The first element?

4. Say that you work with lumber. You therefore work with "lumber numbers"

in terms of feet, inches, and fractions of inches. What are some ways in

which you might use a list on the HP-28S to meaningfully represent six feet,

five and three-quarters inches?

5. You want to record the height and weight of a number of people so that you

can later do some statistical analyses on them. How might you use lists to

store/organize this information?

The '"Stuff' Upon Which The HP-28S Works 183

1.

2.

3.

184

List Lessons Learned

£ 1 2 2 4 2 isa four-element list containing the real numbers 1

through4. [1 2 3 4 1 is a four-element real vector containing the

numbers 1 through 4.

Convert from the list to the vector: (1)

Convert from the vector to the list: G

Each of these decomposes the original object, alters the index so that it

matches the new object, and forms the new object out of the items and the in-

dex on the stack. (Since -ARRY will also take a real number as the index in

making a vector, converting the index to a list is not really necessary.)

{ I JK X

[SWAP]DROP]1]—] or

@LisTIENTERINEXT)BN BIE (To delete the last element);

or
@LisTIENTERINEXT)BN (2) BB (This deletes the first element).

£ 6 D.72 7 or

£ 6 "feael" 5 "inch" 3 "quartlers inch" 2 or

L6 "ft" > L 5 "in" > £ 3 "A4" 3 3} | etcetera.

L € "HEIGHT" "WEIGHT" > € 6.2 218 X { 3.9 178 >
£ 9.7 132 2} 1} for example.

An Easy Course In Using The HP-28S

Procedures: (a) Postfix Programs

Programs are objects just like any other object discussed up to now. They can be

put on the stack, associated with a name, and put into a list. In fact, programs

are merely one specialized version of a generalized one-dimensional list of ob-

Jects. But to signify their special differences, programs are represented and

treated as an object type in its own right.

A program is indeed entered and displayed as a one-dimensional list of objects,

separated by delimiters in the usual manner, but it is bracketed between French

quotation marks (¥ and #) to distinguish it from a generic list.

As data objects used to store information, programs are relatively useless. Ex-

cept in the crudest manual sense — through the command line — you can't add

elements to a program, nor can you break it into its components nor build it

from its components. You can't perform math on it nor can you convert it to an-

other object type.

Well then, what good is it?

A program is a dynamic object, not in the sense that it changes itself or can be

changed by any other object, but rather that it does things; it causes changes to

other objects.

You've already been introduced to the idea of evaluation with names. Remember

when a name is evaluated, how the HP-28S actually produces the value of the

object associated with that name?

Well, programs can also be evaluated (indeed, that's their purpose in life). And

when evaluated, a program sequentially evaluates its elements.

The "Stuff' Upon Which The HP-28S Works 185

The best way to see this is with an example.

Watch The Birdie: Press J[CLEAR)«¢*) (notice that alpha mode is automati-

cally activated) (1]J2)*J+[ENTER). Result:

4z
3
2
1: £ 1 2 + »

Now press ([EVAL.

4:
3
2
1: 3

This should look vaguely familiar. In learning about strings, you saw how you

could put a similar sequence of objects into a string and then evaluate them by

using STR—.

This might also look familiar from your earlier work with the command line. Re-

member when you lined up several items on the command line (separating each

with a legal delimiter) and then pressed [ENTER), how this "posted” all of them at

once, one after another? If they were numbers or other data, they went onto the

stack. If they were commands, they were executed immediately, right?

186 An Easy Course In Using The HP-28S

So there are actually three roughly identical methods of doing this same thing:

Command Line: (1]]2][+

String: "1 2 + "Hi&a

Program: € 1 2 + *Enay

Any operation that can be performed through the evaluation of any one of these

expressions can also be performed by the others. So how are they different?

Funny you should ask....

The Command Line:

The command line is interactive and immediate. Once you've keyed in the

string of characters representing objects, evaluates them. Thus, you have

immediate evaluation and immediate error detection. The HP-28S tells if you've

made detectable errors in your typing, and then you get immediate feedback on

execution errors by pressing (ENTER).

Strings:

In sharp contrast to the command line, "stringed" collections of evaluable objects

are non-interactive and non-immediate — but portable. They are non- interac-

tive because a string may contain any character. The HP-28S won't look at a

string for syntax errors. Therefore, you won't know until you convert the collec-

tion into non-string form whether or not the string contained errors.

It's also not as easy to evaluate a string as it is a program or a command line.

For a string, you must explicitly use STR—. And if you have a name associated

with it, you must first evaluate the name. But strings do have advantages over

programs: they can use less memory and can be modified by other commands.

The '"Stuff'Upon Which The HP-28S Works 187

Programs:

So how do program objects stack up beside those other two ways to collect evalu-

able sequences of objects? A little of this and a little of that: Programs are

somewhat interactive, non-immediate, and portable.

They are somewhat interactive because entry errors are detected just as when

you use the command line. This happens because a program, though not imme-

diately evaluated, is immediately scanned and turned into objects for storage.

And during this scan, certain input errors can be detected.

A program is portable because it's an information object; you can put it onto the

stack and "store" it in a name. Its association with a name makes it very con-

venient to use, because, as you remember, typing an unquoted variable name

evaluates the name and all other objects the name points to.

Therefore, named programs are virtually identical to HP-28S system commands.

188 An Easy Course In Using The HP-28S

Program Problems

1. Rewrite the solutions to problem 1 from page 183 as postfix programs. Name

the first L—»V and the second V—L.

2. UseL>VtoconvertL B X, £ 1 2 3 FandL 1 B8 (1,82 7 tovec-

tors.

3. Try to convert L X to a vector using L—»V. What happens? Why?

4. Using L—V and V—L, write a program named LADD ("List ADD") that will add

two lists together such that the resultant list's elements are the sums of the

corresponding elements of the original two lists.

5. Use the program from problem 4 to add the following:

a. € 1234 {3678 2
b. € C1s12 €-3442 > {-3.4 (4.3,-8.1> 2
cc. Lt 986823 {113
d £ L121LC341%72

{[-311LC06913Z

Why do ¢ and d fail?

The '"Stuff' Upon Which The HP-28S Works 189

Program Problem Solutions

1. («) LsT)W(1)Bl@ARRAY) EXTHA (ENTER)
('U=]VIsTO);

ARRAY) [T

V=]LsTO).

It's certainly not very hard to translate postfix keystroke sequences into

postfix program objects, is it?

2. Result=L[B8 1;

(2][3)I Result=L 1 2 3 1;

(OOoO)o)=T Result=L (1,82 <B,8> (1,8) 1.

Notice — as you know — that a list will tolerate components of differing types,

but a vector will not. Therefore, you get a vector with either all real or all

complex components.

190 An Easy Course In Using The HP-28S

3. Here's what you do: ({]IIE&Ill. And here's what you get:

*ARRY Error:
?gd Argument Value{ .

BTSNTNNIN
Why? To find out, mentally "walk through" the program L—V:

LIST— puts the contents of a list onto the stack, followed by the number of

elements in Level 1. £ X has no elements;its size is 0. Therefore, £ 2 is

replaced with .

1 LIST— then makes a 1-elementlist from the B, thus preparing the stack for

the use of >ARRY. So at this point, £ B X isleft on the stack at Level 1.

Then —ARRY tries to use this index to build a vector, but there's no such

thing as a zero-length vector on the HP-28S, so the error is generated and

the stack is left as it was when the error occurred. Notice that the error mes-

sage tells you where the problem was.

4. & L=*¥Y SKWAP L*V + ¥Y3L * would be one reasonable approach. After

all, you can't sum lists directly — but you can sum vectors!

Here are the keystrokes to create the program and name it LADD:

(«) (UseER)I@swAP)T(+) IEET (ENTER)("[L]AD]D) (STO)

The 'Stuff'Upon Which The HP-28S Works 191

5. a. (AoJ2lJ3)»JalenTer) (se2J71>e) IETI

Result= £ & 8 18 12 >

b. (OO LJB)eHs)24 LS-Xa)eHs) ()=X38-1)eHs)

Result={ €-4.44y1) C1.3s-4.12 >

MR 00000EIE) 000

Result: The two lists are of different lengths and are therefore convert-

ed to two vectors of different length. The Invalid Dimension

error occurs because the HP-28S can't add two vectors that aren't the

same length. Note that the vectors are left on the stack after the error

is reported.

d. (LItladeT2]e]3]J4]enTer) (L)3)chHs]-J1))8]+9]

Result: Bad HArgumen! Type occurs when LADD attempts to

make a vector out of vectors (i.e., when L—V tries to perform —-ARRY on

a stack full of vectors).

192 An Easy Course In Using The HP-28S

Procedures: (b) Algebraic Expressions

Algebraic expressions are exactly like programs, only different.

They are programs whose syntax is algebraic (i.e. operand-operator-operand)

rather than postfix.

Algebraic expressions are represented by bracketing a syntactically correct list

of algebraically meaningful objects within single quotation marks ('). Since

those single quotation marks also apply to names, this explains why you can't

have a name that looks like a syntactically correct (and therefore executable) ex-

pression (see page 166).

For example, compare & 1 2 + % and '1+2°'.

Both evaluate to 3 .

The major difference between them is the order of the objects within them. The

ordering within a program is postfix (i.e. just like the stack — with the operands

first and the operator last).

By contrast, the ordering of an algebraic expression is (astonishingly) algebraic.

Notice that they're called algebraic objects, not simply mathematical objects. The

reason is that algebraic objects may contain name objects (remember them?),

thus giving the expressions the classical form of algebra with one or more varia-

bles.

The 'Stuff' Upon Which The HP-28S Works 193

Suppose you want to solve quadratic equations. The form of one solution is:

_ -b+Vb2-4ac

2a
X

You want to create an algebraic object which, when evaluated, will give you x.

No Problem:

Here are the key-strokes to do this, along with a play-by-play analysis.

First, press CLEAR]<$>).

Here, you're clearing the stack and disabling the menu. This is just "clearing

the decks for action.”

Next, press ({JA]*][B]*]c) @PURGE

Why? Well, you want to use the names 'A', 'B',and 'C" (you may prefer
'a','b',and 'C', but lower-case is somewhat cumbersome). So you PURGE
these names, dissociating them from any objects that they might otherwise be-
long to. This allows you to key in names without single quotation marks — not

necessary, but convenient.

194 An Easy Course In Using The HP-28S

Now you start to build your algebraic expression. Press (B)ENTER)(CHS). Here's

what you have so far:

=
M

-B!

You've keyed in "negative B." The CHS placed a negative sign in front of the B.

Notice that before you did the (CHS), B was a name sitting on the stack, not an al-

gebraic expression. But since the single quotation marks can mean either object

type, whenever you perform any allowable mathematical operation — such as

CHS — on a name, the operation’s effect will be to build an algebraic object.

Next, press (BJENTER[2)

4
3
2
1

Here you key in B again and square it by raising it to the second power (you

could have used and the result would have been ' SHE{B2'. The two ver-

sions of B2 evaluate to be the same thing; they just look different). Notice that

circumflex, ™. Because the HP-28S can't display superscripts, it uses the cir-

cumflex to indicate "raising to a power."

The 'Stuff'Upon Which The HP-28S Works 195

Now press (4]ENTER

g:
3: 1 1

E: IBAEI

1: '4%A*C’
You key in 4 and multiply it by A and C. Notice that the result is ' 4*H%*C"

and not ' 4AC "' . If the HP-28S didn't use ¥ to indicate multiplication, neither

it nor you could distinguish A x B (' A¥B ") from the name AB ("HB"). In writ-

ten algebra, you can omit the multiplication sign (it's implied) because you typi-

cally use only single character variables, such as x, y, and z.

Then: (=)

'BAD-4%A%C !

4
3
2
1:

You subtract ' 4¥H%C" from 'B™2"'. Notice again that when objects — even

algebraic objects — are on the stack, you use postfix logic commands. Therefore

you pressed (=) after the two arguments were on the stack. The HP-28S then in-

terprets that arithmetic command in terms of the objects on which it must act.

When acting upon two algebraic expressions,it just so happens that (=) means to

combine them into one, with a minus sign embedded in the resulting expression.

196 An Easy Course In Using The HP-28S

Next step:

' [(B2-4%[%C) !=

M
r
a
w
p
h

You take the square root of ' B*2-4%H%LC"'. Notice the parentheses. Again,

because the HP-28S's display is limited, it cannot draw the radical so that it in-

cludes the entire expression under it. Instead, the radical sign is represented as

a mathematical function, like f(x) (read "f of x"), and in the same way, parenthe-

ses are used to enclose the argument. ¥ L X2 is therefore "square root of x."

Then press

4:
3:
2
1: '-B+{(B*2-4%RA*C>"’

Youadd '-B"' to 'T(B*2-4*RA%*C>"'. No surprises, right?

Keep going: (2]ENTER[A]X

4
3
2
1

'-B+I(B*2-4%A%Cy’
"2xR!

You multiply 2 by A. Again, no surprises.

The '"Stuff' Upon Which The HP-28S Works 197

At last: (¥

=
M
a
d

' (-B+I(B™2-4%¥A%C22-(
2¥H2 "

You have divided '-B+J{B*2-4%A*C>"' by '2%H".

Notice the extra parentheses. Since the display's limited capacity forces the di-

vision sign onto the same line with the rest of the expression, it needs a way to

indicate what is divided by what. That's where the parentheses come in. They

group the things that are in the numerator, ' —B+{ {B*2-4¥A*¥C) ' and the

things in the denominator, ' 2%¥H" .

If these extra parentheses weren't there, the order of evaluation of the expres-

sion would be different, because in algebraic notation, the convention is that

multiplication and division are performed before addition and subtraction.

Notice also that the final object doesn't fit on one line. In multi-line mode (check

your MODE menu for this option), an algebraic object in Level 1 will be broken

between internal objects and displayed on several lines.

Of course, you could have simply typed in the expression above; the result would

be the same. It's up to you v7hich you find more convenient.

("Now they tell me.")

198 An Easy Course In Using The HP-28S

Now that you have an algebraic object, what do you do with it?

You use it as a mathematical procedure to solve problems.

Like This: Press (ENTER)(1])*JAISTO]J(2]cHs]*]B]ISTO)(1])*JC]STO)(EVAL).

=
M

'C-B+I{(B"2-4%A*L> }f.i.

What have you done? You've associated a real number 1 with the name 'R',a

—2 with the name "B "' and a 1 with the name 'C"' (and you could verify this in

your USER menu right?).

Then you've evaluated your algebraic expression, at which time all of the names

that have associated objects were replaced by the objects themselves, and all

mathematical expressions were performed.

Thus, you get the mathematical result of this expression — for the case where

a=1, b=—2, and c=1.

In this case, the result was a real-number object, 1. With other coefficients, it

would, of course, be another result, possibly a complex-number object.

The "Stuff' Upon Which The HP-28S Works 199

So you see the idea behind an algebraic object. It's merely a way to list certain

mathematical objects and operations in a collection that is evaluable in algebraic

("left-to-right") notation — rather than in postfix. And even this collecting pro-

cess can be done with postfix operations on the stack, unless you choose to type

in the entire expression manually.

Happily, this notation can refer to named objects as its variables and thus it re-

sembles written algebraic logic quite closely. And since so much of symbolic

math is represented in algebraic form, these capabilities of the HP-28S open up

vast horizons for you.

200 An Easy Course In Using The HP-28S

Algebraic Aptitude Test

1. Build an algebraic object for the expression x2— 2x + 1 and evaluate it for:

X =1

X =-2

X = (2,3)

X = V2.o
0
T
P

2. Evaluate the expression ' A+B*C-D"' for:

A=1,B=-2,C=3,D=4
A=(1,2),B=(2-2),C=(5,1.3), D = (104,.2)
A=[1 2],B=-2,C=[5 1.3], D=[104 .2]
A =14,y B =20,C=34,, D =101,a

e
T

3. Evaluate the expression ' 2¥X+Y "' for:

a. X=-2Y

b. Y=-2X

c. X=T,Y=T-1

d X=Z2-3Y,Y=Y-3Z

4. Evaluate the expression ' H+B+C+D "' for:

A="THIS ",B="IS ",c="0DD",andD="."

The "Stuff"' Upon Which The HP-28S Works 201

A.A.T. Scores

1. ()XENTER)2D COXENTER2)X) (5 (1) (JEJQJSTO)

a. (1) (DJX[sTo) MEEM EVAD; Result =8

Notice that invoking the (unquoted) name of an algebraic expression does not

immediately evaluate it numerically; rather,it is left on the stack in its sym-

bolic form.

This is an exception to the normal immediate-EVALuation rule for other

named objects, but there's a good reason for this: Often the forms of the ex-

pression itself — and the possibilities for modifying those forms — are as much

of interest to you as the numeric results of "plugging in" variables. Therefore,

the HP-28S asks you to confirm that you are indeed interested in a numeric

answer; you must explicitly use EVAL to tell it so.

b. (2)chs) ()x)sTO) MEEM EVAU; Result =9

c. (230 ()X)sTo) EEM EVAL); Result=C(-8362

d MEVAL; Result=.17137287525

202 An Easy Course In Using The HP-28S

2. (JAI+]B]x]c]=]DJENTER) ("JE]QJSTO)

A reminder: According to conventional algebraic notation, you don't neces-

sarily evaluate an expression strictly from left to right. Instead, your evalua-
tion order is based upon the priority of various operators.

Thus, since multiplication and division have a higher priority than addition

and subtraction, the expression A + B x C — D means this: A + (B x C) —D.

Only after performing the multiplication are all remaining operations of the

same priority; then the evaluation proceeds from left to right.

So the fact that you use no parentheses in keying in this expression means

that you, too, are reading it and understanding it not just from left to right

but also according to this hierarchy of priorities (which is called infix nota-

tion, by the way).

a. () JAJsTo)(2)JcHs) (*)B)sTO)(3))Jc)sTO) (4))D)STO) IE=MM (EVAL);
Result = =9

b. ((J1J2JENTER] ((J2)*J2JENTERJCHS] (I1-J3)ENTER]

((J1J0J4)»-J2JENTER] N(EVAL);
Result=¢-181.4,-1.8>

c. (L[lJ2)enter) ("JAJsTO)(2)cHs) (1JB]sTO) (LII821L-I3JENTER) ("[C]STO]
(L]1)0]4]-J2]ENTER] M(EVAL);

Result=[-184 -.8 1]

d W (]1)2]JA[STO] #)2]o]JB]sTO) LM (#)3]4]'JC]JSTO

IECH (#]1]o)1JD]ISTO] IEVAL);
Result =# 1181881881b (because you're still in BIN mode).

The "Stuff' Upon Which The HP-28S Works 203

3. (RIXXJHYJENTER] ("JEJQJSTO)

a. ()=2]XY)JeNTER] ('JX)STO] HEEE (EVAL);

Result = '2¥(-2¥Y2+Y"';

CIo[LIC[TIENTER);, Result="'-(3%¥)"’

Notice how the COLCT (COL1eCT) command affects an algebraic result. It

collects like terms and attempts to reduce the expression to lower terms.

b. (=2IXX[ENTER] IEEE EVAL),
Result = "2¥K+-2%x"';

[€)o)L)C[T)ENTER); Result = B

c. (JTIENTER[JXJSTOJ ('JTJ=J1JENTER EvAL;
Result = '2%¥T+(T-12";

CIO(LICITIENTER); ' —1+3%T"'

d. ("JZI=J3JX)YJENTER) (1JX]STO) (*LY=3)X]ZIENTER] MEVAL);

Result = '2¥%(Z2-3%Y)+(Y-3%2) "

Now use EVAL and COLCT a couple of times on this result. Each time you

use EVAL, the expression becomes more complex, because Y is replaced

with a more complex expression containing Y.

4. ('JA]+]B]+]C]+]D)(ENTER) "ITIH]1S]SPACE) (ENTER] ('JAISTO) "]IS]SPACE

("JoInJD) ENTER) JC]sTO)@™(ENTER) JDJSTO) (EVAL)
Result = "THIS IS 0ODD."

This works only because addition is defined on character strings.

204 An Easy Course In Using The HP-28S

Procedures: (c¢) User-Defined Functions

You've seen how algebraic objects can be used to solve problems. You simply

create an algebraic object of the proper form and assign values to the names in

it. Then, when you evaluate this algebraic object, it combines the values repre-

sented as the expression specifies, and you get a result. Fine and dandy.

But if the algebraic object contains a lot of named objects, then associating

(STOring) the data objects with their names can be a lengthy and therefore er-

ror-prone process.

One way around this — a method that stream-lines the use of algebraic objects —

is the User-Defined Function.

Take, for example, the old standby: one of the two roots of a quadratic equation

(an algebraic object or expression can generate only one result, and therefore

you can't get both roots at once).

You've already generated an algebraic expression (pages 194-198) to do this.

And you've seen that in order to use this algebraic object to solve for numerical

roots, you must assign values to the names — the variables — in the algebraic ex-

pression.

So you did that (e.g., (1)JAIsT0) (2)cHs]'JB)STO) (1)'JcJSTO)) and then EVALuated

the expression.

The "Stuff' Upon Which The HP-28S Works 205

But Try This: Create the following object:

€ * abc "(-b-J{b*"2-4%a%¥clrr (2%a)' %

And give a name to this odd-looking hybrid (it's a sort of cross

between a postfix program and an algebraic object).

For this example, use the name 'RUTE "' (there's an HP-28S

system command already called ROOT, so you can't use that);

type: (*JRIUITJEJSTO).

Now type (USER] (1]*J2]cHs]»1) IATHIA.

What happened?

RUTE took the three objects off the stack and used them in its

algebraic expression(!). The result, 1, was left on the stack.

That's a real step saver, eh? But how did RUTE do it? Look at the object itself,

to see if you can surmise some things from what you already know....

206 An Easy Course In Using The HP-28S

First, the French quotation marks () makeit look similar to a postfix program.

And postfix programs have the feature that when evaluated, they evaluate their
contents element by element, from left to right. This thing should do the same.

So, going from left to right, the first few symbols, * & b C, seem to be some-

thing new. But see if you can guess what they mean after looking at the rest of

the object.

Skipping therefore to the next (and last) object, you find it to be an algebraic ob-

ject. This is an algebraic object inside another kind ofprogram, which is perfect-

ly "legal” and often very useful.

So, the question is: Where does this user-defined function get the values for its

variables, a, b, and ¢? After all, you certainly haven't created such names nor

STOred any values into them. "Aha! The answer must have something to do

with the # preceding the list of variable names."

That's right: This # symbol inside a postfix program associates objects on the

stack to whatever names follow the 2.

In other words, the bottom three stack entries will be associated with (stored

into) &, b, and €. And pay close attention to the order: & will be associated

with Level 3, b with Level 2 and € with Level 1 (because you would naturally

load the stack in the order a ([ENTER) b ([ENTER) ¢ (ENTER). So this is the way your list-

ing of the variable names will be interpreted also. Makes sense, right?).

Of course, once these stack values have been associated with the names, the al-

gebraic object is evaluated in the normal algebraic manner.

The 'Stuff' Upon Which The HP-28S Works 207

So that's how the U.D.F. works. It's truly a function, because it's an algebraic

expression (which, as you'll recall, can produce exactly one result), but instead of

looking into your USER menu collection of named objects to find its variables, it

pulls objects off the stack — in the quantity and order you specify with the #* in

the function definition.

Once again, you can see the hybrid nature of the U.D.F. It evaluates like an al-

gebraic object, but it uses values from off the stack like a postfix program.

And here's an added bonus: U.D.F. names that are created and associated with

* are temporary. In other words, they are created at the beginning of the pro-

gram and PURGE'd at the end.

Not only that, they are created in such a way that they don't conflict with other

names that might already exist and have the same spellings. So if you had a list
or some other object already STOred under the name of &, and you nevertheless
evaluated RUTE as written (with its temporary + &), the contents of your named
object would not be changed!

208 An Easy Course In Using The HP-28S

User-Defined Function Fun

1. Build a user-defined function for the expression x2 — 2x + 1 and evaluate it

at:

a X=1

b. x=-2

c. x=(2,3)

d x=+2.

2. Build and evaluate a U.D.F. for the expression ' A+B*¥C-D"' when:

1,B=-2,C=3,D=4
(1,2), B = (-2,-2), C = (.5,1.3), D = (104,.2)
1 2],B=-2,C=[5 1.3],D=[104 .2]

a A

b. A

c. A

3. Evaluate the expression ' 2¥&+Y ' using a U.D.F. for:

a X=-2Y

b. Y =-2X

c. X=T,Y=T-1

d X=2Z2-3Y,Y=Y-3Z

4. Definethe UD.F.& + K 'X¥+1' ¥ and name it INCR (increment). Then

create both a postfix program and an algebraic object that use INCR to sum a

number and its increment (i.e., X+INCR(X)).

The 'Stuff' Upon Which The HP-28S Works 209

U. D. F. F. Consequences

1. (0=XXA]I+

a. (1)I, Result =&

b. . Result =9
c. (201G Result = (-84 67

d (2=IEE; Result =« 171957287223

Note that, unlike a plain algebraic expression, a U.D.F. does follow the rule

for immediate evaluation — just like a postfix program and the other objects;

if you invoke its (unquoted) name, it will produce its ultimate result right

away, without stopping to let you see its algebraic form.

2. (<W=(A1"Jo) CJA[HBIXICI=]D]

a. (2)cas)31) (4) IEEl; Result =-9
b. (1J2JeNTER) (S2]J2JENTER]CHS) (S«J52J-I3JENTER) (1)04>-J2]

B Result=¢-181.4,-1.3>

c. (1))2)enTer] (2)cHSIENTER) (1)5[-(BIENTER) (L1)o)o-[2) IEIH;

Result= [-184 -.8 1]

210 An Easy Course In Using The HP-28S

3. (2IXIX[HYJENTER) (]QISTO)

a. [(\JY)eNTER[2)X]cHS) JY)ENTER) IIEEM; Result = '2% (- (Y¥232+Y!

b. ("JXJENTER) ENTER) (2)x]cHs) IIEEN; Result = ' 2¥X-K¥2'
c. ("JT)enTER[ENTER) (1=I, Result = '2¥T+C(T-1>"

d. (JZI=I3IX[YJENTER) YI=[3)X)Z]ENTER) INEEM;
Result = ' 2% (Z-3%Y)+(Y-3%2)"'

4. («)W= X)CIXHJENTER) ("JTIN]CIR]STO)
000680800 whichis: ¥ DUP INCRE + %

(XIHIN]SR(JX]ENTER] which is: ' R+ INCRC{K> '

Note the different form that INCR takes in a postfix program and an algebra-

ic object. This is another special advantage of User-Defined Functions — the

fact that you may use them in algebraic objects in the form you normally ex-

pect to see for mathematical functions: f(x) or f(x,y), etc.

Naturally, you also use this conventional form when you invoke standard

HP-28S functions — like LOG and SIN — in an algebraic expression.

The 'Stuff' Upon Which The HP-28S Works 211

Directories

A directory is an organizational thing.

Like other directories that you may have already seen, HP-28S directories exist

to form collections of related names or of names of related things. In essence,

the HP-28S directory is a special purpose list-object whose contents can only be

name-objects.

Consider this: Everything you create that doesn't "live" on the stack must be

given a name; otherwise you wouldn't have access to it. Every named thing

must live somewhere. That somewhere is a directory.

Look at the USER menu (i.e., press (USER)). What you see is a menu. What you

see is also a directory. In a sense, if you aren't already in another directory, this

is the directory, the main directory, or the HOME directory, the current "living

quarters” of all named objects you've created up to now. To get them there, you

didn't need to do anything special. When you associated an object with a name

(via STO), that pair of objects was automatically placed in the current directory.

When you activate the USER menu, you are actually selecting a menu whose

content is the current directory.

212 An Easy Course In Using The HP-28S

But Try This: Press @MEMORY) LITR[A (D) AT (USER)

=
M
a
l
d

You selected the MEMORY menu, where most of the directory

commands are. Then you made sure you were in the HOME di-

rectory (the main one), typed in a name, and used CRDIR to

CReate a DIRectory with that name. The name of the new di-

rectory is now in the USER menu.

Next: Press [I391.

What happened? The USER menu is empty! Why? Well, you

just moved into the NEWD directory and since it's new, it's emp-

ty. There are no names in NEWD, and since NEWD is separate

from HOME (the name of the main or default directory), you

can't see any of the HOME names.

You see the idea? NEWD is a directory just like HOME, except that the name

NEWD lives in the HOME directory. Evaluating the name NEWD moves you to a

new directory, the one named NEWD.

The 'Stuff' Upon Which The HP-28S Works 213

To verify where you are, type (PATH is also in the MEMORYdirec-

tory). What you get is a list like this: £ HOME MEWD . This is the path you

took to get where you are. You started in the HOME directory and moved to the

NEWD directory — the last name in the list — where you are now.

Another Level: First, press (STo). H is created and placed in the cur-

rent directory: NEWD. Now press [(MEMORY[NJEJW)

CROIF (FATH|

3
2 { HOME HEMWD :
1 { HOME NEWD MNEWZ
TNTIR

Because you were in the NEWD directory when you created

NEW2, the name NEW?2is placed in the NEWD directory, not

in the HOME directory. Evaluating ' HMEWZ2' then moved

you to that directory — and PATH tells you how you got there.

Now how do you get out of there (i.e., the directory NEW2)? The easiest way is

to invoke HOME. No matter where you are, HOME will always move you to the

HOME directory — from which you can then follow a path to any sub-directory.

Do It Now: Press [T(USER).

3=
25 { HOME NEWD 2
1: { HOME NEWD HEWZ >
e—————

214 An Easy Course In Using The HP-28S

Yes, but what are directories good for?

You can probably see that directories are useful for grouping and separating re-

lated things. But this separation goes beyond just organization. Objects stored

in sub-directories are invisible to their parent directories.

Try This: Press JAJENTER[ENTER) (PURGE) J[RCL).

RCL Error:
?gdef1ned Hame ™

STINRN

Although A exists (remember you created it in the NEWD directory), RCL can't

find it in the current directory. And typing (A) doesn't evaluate "H"' either,

for the same reason.

But: Press 194 CTI¥H (EVAL) .

EVAL found A in the NEWD directory even though you're in the

NEW2 directory. Names will be found if they exist in directo-

ries above the one you are in, but not in those below.

The 'Stuff"' Upon Which The HP-28S Works 215

And Another Thing: Press (H[OJM(EJENTER[3]'JA]sTo) CEEM KIHEH
(2)EnTER)STO) EB(CLEAR) (A)ENTER) (H)O)M)(E)ENTER) (A)[ENTER)

LT :

= 2: :
B[TSISN

You now have three different objects named 'H"' in three different directories.

What this says is that directories restrict the evaluation of their contents.

What this means to you is that directories function best as places where you

store special commands or data. They are localized environments where the

things you do don't have much impact on the rest of the HP-28S world.

This suggests that you should place all of your generally accessible objects in the

HOME directory where they will be found from any other directory (because

HOME is above all other directories) and create sub-directories for your special

activities.

For example, all of your calculation routines can be in HOME and the data for

different experimental runs can be in different sub-directories i.e., 'DATAH1 ',

'DATARZ"', etc.).

On the other hand, you could create a directory that contains only ARRAY utili-

ties, but if you do you must do most of your ARRAY calculations there or in a di-

rectory below it.

216 An Easy Course In Using The HP-28S

Now To Clean Up: Press (H[O]M]EJENTER) (*IN]JE]W]D) @PURGE).

PURGE Error:
T?n-Emptg Directorl'HEHDI

ICT35T0IND

The error here is pretty self-explanatory. The HP-28S re-

quires a directory to be empty before it will purge it. The

reason behind this is a good one: you wouldn't want to in-

advertently purge a directory that has loads of useful ob-

jects in it.

Therefore, to purge ' HEWD ', first you must purge its contents. Now, ' MEWD '

contains the directory 'MEMWZ2"' and the same restriction applies: ' HEWZ2"

must be empty before you can purge it.

The "Stuff' Upon Which The HP-28S Works 217

So Press IAYA CTIEE @ (MEMORY) (NEXT ([ENTER) (ENTER) (EVAL ENTER

LLTETH (UsER) PURGE

What you did: First, you moved to ' MEW2 "' and emptied it using CLUSR.

Notice that CLUSR (CLear USeR) requires you to press after pressing

its key in the MEMORY menu. It does this as a safeguard — so that you

have the chance to change your mind about destroying the entire contents

of a directory.

Second, you made use of the fact that the name 'HEWD ' was in Level 1 of
the stack. You duplicated it and evaluated the Level-1 copy, thus putting

you in the 'MEMWD ' directory.

Third, you emptied the ' HNEWD ' directory with CLUSR. Notice that
CLUSR removed 'MHEWZ"' without complaint, because the directory was
empty.

Fourth, you moved HOME and since a copy of the name 'HEWD ' was in
Level 1 of the stack, you pressed to purge the directory.

Now that you've had a smattering of an introduction to directories, try your

hand at some ...

218 An Easy Course In Using The HP-28S

Directory Discussion

1. When does evaluating a directory name move you to that directory?

2. Write a postfix program that moves you to the directory immediately above

the one you are in. Callit 'DU" (Directory Up).

3. Say that you want to write a little telephone directory program. You want

to be able to key in a person's name (as a character string) and to have the

program return the person's telephone number.

You have a lot of names, so you decide to set up a directory called

'"PHONES ' in which there are 26 sub-directories named 'A"' through

'Z"' to separate the names into groups and thus (hopefully) speed things

up a bit.

Write a little program that takes a character string from Level 1 of the

stack and uses its first character to select the appropriate sub-directory.

4. How would you create two names that point to the same directory? In oth-

er words, create two different names such that when you evaluate either

one, you are moved to the same directory.

The "Stuff' Upon Which The HP-28S Works 219

Directory Assistance

1. When the directory name exists either (i) in the current directory or (ii) in

one of the directories in the current directory's PATH (i.e., in one of the dir-

ectories above the current directory).

2. Find out where you are.

(=) Get the position of the previous directory.

Get the name from the PATH list.

EVAL Evaluate the name to go there.

Notice that this routine will fail when you are in the HOME directory be-

cause PATH returns £ HOME 2 which has SIZE == 1. GET would be

called to get element 0 (SIZE — 1), and there is no such animal.

Notice also that, to be useful, this routine should live in the HOME directo-

ry (why?).

Remember: As you noted in the answer to question 1, above, EVALuating

the second to the last name in the PATH list will always work (i.e., will al-

ways move to another directory) as long as you're not in the HOME directo-

ry, of course.

220 An Easy Course In Using The HP-28S

3. 2000680 Assuming you can get to PHONES from where

you are, go there.

DJU]P]] Make a copy of the string.

Get the character number of the first character.

Turn this back into a string.

Turn this character into a name and evaluate it.

0
(»)

(0]
(=]

=)
(T)

(€]
€

(@)
(2)

(=]
R]

(+)
(4]

4

NTER

The first step evaluates PHONES, which moves you to that directory if it

an.o

The second step assumes that the string containing the person's name is in

Level 1; it therefore duplicates it so that you have a copy around for later

use — because the next step is going to "eat” the string.

The steps NUM CHR are one way to get the first character from the Level 1

string. Another method would be 1 1 SUB (or 1 DUP SUB).

The final step evaluates the string in Level 1 as if its contents had been

keyed in from the command line. Since PHONES should have directories

in it named "A"' through 'Z"', evaluating this single character should

move you to one of those directories. Of course, this step assumes that the

character is in the upper-case alphabet.

4. [JAIENTER[ENTERJJJMEMORY) ETTRIA A%{d ('[B]STO]

The proof: (A]ENTER)IEIIE=C HOME R 2

BENERA= HOME B 2

The "Stuff' Upon Which The HP-28S Works 221

Menus

As you saw in your new-job orientation, "menus are index tabs [handy collec-

tions] to your command-card file." They are collections of object names — just as

are directories.

Now, as with any good card file, there are ways to create new cards (i.e. new

named objects — with STO — which you know already) and new index tabs(me-

nus): You create new index tabs (menus) with the MENU command. This com-

mand (found in the MEMORY menu) takes a list of objects from Level 1 of the

stack and creates a CUSTOM menu for your own use.

However, the use of a menu is limited by the current directory structure. You

can create a menu containing names of any objects you want (including built-in

commands, of course), but you won't be able to invoke a given name on that

menu unless the name is "visible” from the current directory (i.e. unless it's

named there or in a higher directory). Menus may be your index tabs for noting

collections of object names, but directories are the file cabinets in which you

keep those object names. OK?

Give It a Shot: (o] ({){A)(SPACE] [CXR))S)s)sPACE) RIOM B
HENU|

You now have a menu containing two names and some com-

monly used array/vector commands.

222 An Easy Course In Using The HP-28S

So Try It Out: Press JAIsTO) (1] 3]cHS]* 6][ENTER)

BG(5

AE00T

B(7) (NexT)HEEE

H
H
N
U
J

Ponder what happened for a moment:

You created a list of names. Some of these were just common name objects

while others were the names of system commands. You needed to be in alpha

mode to do this, so that (+), (), and wouldn't execute immediately.

When you executed MENU the names in the list were placed into a menu in the

same order and the menu was displayed.

There are only six "display boxes" for the menu but you had seven items in your

list. The seventh item wrapped around and was placed in the next "page." You

change levels with and JJPREV), as you'll recall.

The common names behaved just as they normally would in the USER menu,

while the command names behaved as any other immediate-execute menu key.

Notice that (+), (=) and are poor choices for a custom menu since it's easier to

press their keys on the keyboard than to hunt them in the menu.

The "Stuff' Upon Which The HP-28S Works 223

You can even create a menu that contains names that have no known associated

objects (and pressing the corresponding menu keys will then place the name on

the stack).

By contrast, you cannot create a directory with any unassociated names, because

the only way to place a name into a directory is to associate the name with an

existing object (via STO or CRDIR).

The utility of having your own custom menu like this is fairly obvious: You can

create a collection of related or personal-favorite commands so that you can do

your work with a minimum of keystrokes. And,...

Something Else From the Menu:

Press @(CLEAR) ({)(2)(sTO) (A)(SPACE] ®)
(E]JeNTER) MEMORY) [ETH:T.

This is just a little something extra that the MENU command

gives you. It's a storage menu, giving you a convenient method

of storing values into names.

224 An Easy Course In Using The HP-28S

Par Example: Press()[a _12)E 1G]

1
LaeCpE|

You've stored 1into "A',2into 'B"' and 3into 'C"'. A stor-

age menu conveniently shows you the object name and value at

the top of the display — in case you've done something wrong.

If you want to use only the names with which you've associated values, either (i)

type the names from the left-hand keyboard, (ii) press (o) before using the menu

keys, (iii) press (') before pressing a menu key, or (iv) press to access the

current directory, since this is where the names will be stored.

Try Them All: (a) ('JA]+[B)(EVAU (USER]L A |

[E

3+ 3

: a
LaECpE|

The first way used the command line in immediate mode; the

second used it in alpha mode; the third, in algebraic mode; and

the fourth way just used the immediate- execution keys.

Pressing CUSTOM] reactivated the current custom menu.

The 'Stuff' Upon Which The HP-28S Works 225

Problem Solving

Introduction

What we have here is a problem.

This book has been your introduction to the basics of HP-28S operation, but

there is much more available to you. These basic lessons gave you a feel for the

different kinds of information objects and their use. But there are programs and

groups of operations living in the machine that do more sophisticated problem

solving for you. These operations carry far-ranging implications for your use

and application — so much so, in fact, that a complete description of any one of

them would require a book in itself.

That's the problem: a book cannot be 10 books, no matter how hard it tries. So

although there's a lot more to say about the following topics, there just isn't the

room here to tell the whole story for each one. But they're definitely worth men-

tioning — if for no other reason than to round out your introduction to the ma-

chine. Even with these very cursory sketches of these topics, maybe you'll get

some feel for their uses, potentials, and limitations.

Above all, these "surface- scratching" pages are meant to give you a little cou-

rage and curiosity about all these other capabilities. So take these first impres-

sions and run with them.

Problem Solving 227

Postfix Programming

Most programming languages are just that, languages. Learning them is akin

to learning something like French or Spanish. You must first learn some words

and then go about the more difficult task of using the words to make meaningful

statements. This is usually a long and difficult process, especially for someone

who just wants to solve a simple problem.

Not so with the HP-28S. As you've already seen (on pages 185-188), postfix pro-

grams are just "captured” command lines. The keys you'd press to solve a prob-

lem from the keyboard (interactively) are the same ones you'd press to write a

program (preceded by %). As you've also seen, a program has the relatively mas-

sive advantage of being invokable with one keystroke (via its name) from the

keyboard, making it virtually equivalent to a built-in HP-28S command.

Therefore, before you go on to bigger and better things, a little more practice in

postfix programming is probably appropriate.

228 An Easy Course In Using The HP-28S

So

1. There are two vector commands, RNRM (Row NoRM) and CNRM (Column

NoRM), that find the maximum absolute value and sum the absolute values

of the elements of a vector, respectively. Write two postfix programs,

'LMAX " and "LSUM' to do these operations on lists.

2. Write a program called ' SPLIT"' that breaks the character-string in stack

Level 2 into two sub-strings. The break should be before the character point-

ed to by the real-number in Level 1. The two commands SUB (SUB-string)

and SIZE (the length of a string) will be useful to you.

3. Write the solution to problem 4 (pages 138 and 140) as a postfix program and

callit "UUNIT"'. Use it to calculate the unit-vectors for [1 1 1],[-3 2 -4 6],

and[555 121 2].

4. Write the solution to problem 3 (pages 147 and 148) as a postfix program.

Callit 'D5S1"' (Double and Subtract 1) and use it on the following objects:

(11,001 2 3][4 5 6][7 8 9]], and [(2,4) (-4,6) .

5. Write a program to generate the character string " | " (recall from page 155

that it's not on the keyboard). Nameit '!"'.

6. Write the answers to problem 3 (pages 183 and 184) as postfix programs.

Problem Solving 229

Answers

1.LSUM: & LIST+ *ARRY CHRM *
LMAX : & LIST+ 2»ARRY ENREM *

2. & DUPZ Two copies of the index and string.

1 SWAP OVYER - From 1 to index — 1.

SUB Get the sub-string.

ROT ROT Get the original index and string.

OVER SIZE From index to the length of the string.

SUB Get the sub-string.
=

The original string is split so that the indexed character is the first character

of the second string. The two strings are left in the stack such that will re-

join them.

3.% DUP ABS INV * »

L) =

[.577338269189 .377328269189 .377338269189 1

08E50800C500 =
[-.372184283767 .248069469178 -.496138938396
. 7442608487534 1]

[.242326144343 .242326144343 .242326144345
. 188463228989 .216938437818 . 1884632258989
. 216938437818 1

230 An Easy Course In Using The HP-28S

4.« 2 * DUP SIZE 1 CON - =»

(OCsEAMEM=LC 1 11

0000806000600I6a000)'E
[C1351C079111TCLC 13 15 17 1]

AP0(eo) MEM= [(3,82 (-9,12) 1]

5. («3]3]) R]ENTER]ENTER) (EVAL) STRING)

6. Last element:

€ DUP SIZE 1 - 1 SHWAP SUB * or, in an optimized version,

€ 1 OVER SIZE OVER - SUB % or

€ LIST» SWAP DROP 1 - *LIST *

First element:

€ DUP SIZE 2 SHWAP SUB * or,in an optimized version,

€ 2 OVER SIZE SUB % | or

€ LIST+ 1 - +LIST SWAP DROP *

Problem Solving 231

Local Names

Local names are name objects. They are born, live and die with the particular

program to which they are attached. They are local to that program.

Local names exist to enhance/ease the writing of postfix programs and user-

defined functions (see pages 185-192 and 205-211). As such, they cannot exist

without being attached to some procedure object.

An Example: Write a program to calculate (X+1) x (X-1) where X takes its val-

ue from Level 1 of the stack.

The direct approach: € DUP 1 + SWAP 1 - * »

Unfortunately the direct approach is not intuitively obvious to

the more casual HP-28S user.

Belessdirect: € '"®W' STO X 1 + ¥ 1 - * »

It's a little more clear here what is to be accomplished because

instead of manipulating the stack to get ' ', you just "call it

up" when you need it. But you're left with the name ' X' hang-

ing around after you're done. Not only that but the routine as-

sumes that you don't already have something of value in the

name '# ' and goes right ahead and stores into it.

Atouchofelegance:®% * ¥ €« K1 + ¥ 1 - ¥ » »

232 An Easy Course In Using The HP-28S

What's this? It's very similar to the previous program. The calculation portion

is exactly the same except that you've made it a program unto itself (by placing

it within its own set of French quotation marks).

The real difference is how you store stack Level 1 into the name "R "'.

Thatis, '®' STO and #* K are very similar operations — but they have

some very significant differences:

You know that "®' STO stores the value in Level 2 (' ®' is in Level 1) into

the name ' ®"'. You also know that the name 'R®" is created if it didn't already

exist. Regardless, the name ' X' exists in a directory and is now accessible by

this and other programs — even after this program is finished.

On the other hand, * A stores the value in Level 1 into the name '® "', but

this name ' A® ' is a local name and is therefore not created in any directory. If a

real name ' X' already exists in a directory,it is not over-written. And once the

program is done, the local name ' A" is gone — along with its value. Any named

object, ' ® ', in any directory has not been affected by the transitory existence of

the local name "®' in this program.

If you haven't guessed by now, the command * makes the name local. You can

see how it comes by its name — its presence is felt locally within the procedure

object that immediately follows it, but the rest of the HP-28S world knows noth-

ing aboutit.

Problem Solving 233

So then there's the age-old question of "what's it good for?"

Well...

First, local names are extremely attractive. You don't have the danger of stor-

ing over some important value in an already existing name, and you don't need

to worry about erasing them or otherwise cleaning them up when you're done.

Second, they help you organize your program. The assignment part comes first

and the calculation part comes second — as a separate procedure object.

Third, they can ease calculations. In a calculation that requires the use of many

objects taken from the stack, or the repeated use of a single object, keeping track

of the stack contents can be difficult. You'll also soon find that the majority of

your program just moves the stack around so that you can get to the object you

want. Local names let you avoid such stack "gymnastics" by allowing you simply

to "call up" an object when you need it within the calculation.

Fourth, they don't require the repeated use of STO. *# a b c d e will

take the bottom five objects off the stack and store them in the names 'a"

through '@"'. * will store stack objects into all the following names, no mat-

ter how many there are. The order is: the first one on the stack is the first one to

be stored into a name. Thus, in this example, Level 5 goes into ' &' and Level 1

goesinto '&"'.

Fifth, if a procedure object starts with € -=* | it is effectively a User-Defined

Function (see pages 205-211) and can be placed in an algebraic object. Be care-

ful, though! User-Defined Functions should return only one object as a result,

and although it's relatively easy to write a U.D.F. that returns one object when

the calculation part is an algebraic object, you must pay close attention to your

postfix object to make sure that it does too.

234 An Easy Course In Using The HP-28S

Local Name Lesson

1. What's the difference between the results of

€ F xy "%¥y' B and € Xy €& xy * B ¥ 2

2. Write two postfix programs, one with local names and one without, to cal-

culate ((A + B) x (A — B)) / C when stack Level 3 contains 'A", Level 2 con-

tains 'B"' and Level 1 contains 'C"'.

3. Most HP-28S commands that would be useful in algebraic objects act like

User-Defined Functions. For example, € SIN #* and 'SIH(K}'

are both possible uses of the SIN command. Two commands that don't

have algebraic forms are COMB (COMBinations) and PERM (PERMuta-

tions) in the STAT menu. Both take two real numbers from the stack.

Write the U.D.F.'s that will allow COMB and PERM to be used in algebraic

objects.

4. Write the solution to problem 1 page 167 as a postfix program using local

names. Why does this work?

Problem Solving 235

236

Local Name Moreon

(Answers to Local Name Lesson)

Nothing.

€ ROT ROT DUPZ2 + ROT ROT - % SHAP -~ %

£« * HBC<&HAB+ARAB-*C ~ % %

+*AB <« ABCOMB » ¥

€« > AB €« A B PERM ¥ %

€ % oldname newname € oldname RCL newname STO

oldname PURGE * %

Unlike global names, local names that contain other names (as

'oldname' and 'newname' must) don't evaluate their contents

when they themselves are evaluated. Thus 0l dname puts the old name

on the stack and RCL recalls the object associated with this name. RCL

does not recall the contents of 0l dname. You could say the same thing

about STO and PURGE.

By the way,is this a User-Defined Function? No. It doesn't return a value

to the stack.

An Easy Course In Using The HP-28S

Some Comments Before You Go On

You probably haven't thought about it much, but you've been assuming that it's

true: all of the programs and user-defined functions that you've written up to

now have assumed that something has been on the stack to work on.

That's no real surprise. It's the nature of the postfix environment of the HP-

28S. By now it's probably become pretty natural to you — and that's good, be-

cause you're learning to think like the HP-28S — a habit to help you to communi-

cate better with the machine.

It will also help you to write better programs. That is, the best programs are

those that work similarly to the built-in commands of the HP-28S. They take

things from the stack and (most of the time) leave things there, too — ready for

another command. In this way, your programs effectively become new HP-28S

commands. You are extending your machine — customizing your tool — by build-

ing a library of short, sweet machine-extensions that will make the HP-28S ex-

actly what you need to do your job.

And here's another thought for you. Once you've built your "new commands"

from the built-in system commands, what's to keep you from writing yet newer

commands from the "new" ones you've just built?*

*Absolutely nothing.

Problem Solving 237

Making Decisions

Now back to more practice with postfix programming: Not every program is as

straight-forward as the ones you just finished. Sometimes you need to test a

value before you know what calculation to perform on it.

For example, your train of thought to solve a particular problem might be:

"IF x is less than 0

THEN divide x by 2

or

IF y is equal to z

THEN multiply x by 2

ELSE multiply x by 2 and add y"

In the first case, you only do the calculation IF the condition is true. In the sec-

ond case, IF the condition is true THEN you do the first calculation, otherwise

(ELSE) you do the second.

Well, you do this sort of decision-making all the time, right? So wouldn't it be

nice if your calculator could do it too?

You're in luck. "This is what HP-28S's do best."

238 An Easy Course In Using The HP-28S

Decisions... : Write the following program:

€ IF x B8 <
THEN x 2 -~
END

B

This is quite similar to your first train of thought, isn't it? The

only difference is that the condition and the calculation are both

written in postfix notation (what else?). And the EMD indicates

the end of the calculation part. You need this special delimiter

because there might (and probably will) be more commands fol-

lowing.

...Decisions: Try another:

This is your second "train,” from above. The same comments

apply here as before, plus notice how the ELSE signals the

EHD of the IF-THEHN part and the beginning of the ELSE

part.

Problem Solving 239

Putting together the calculation part is something that you've done before — just

straight postfix programming. The conditional portion (between the IF and

THEN) may take some getting used to — but not too much, because these com-

mands, such as < and ==, are all just two-number postfix operations (page 85),

similar to — and =+ , because the order of the stack objects is important:

— Level 2 — Level 1 subtraction

+ Level 2 + Level 1 division

< Level 2 < Level 1 less than

< Level 2 < Level 1 less than or equal to

Level 2 == Level 1 equal to

Level 2 # Level 1 not equal to

> Level 2 > Level 1 greater than or equal to

> Level 2 > Level 1 greater than

The conditionals all compare the objects in Levels 1 and 2 and return a 1 if the

comparison is true or a 0 if the comparison is false. THEN takes this truth value

and uses it to decide whether to (i) execute the commands that immediately fol-

low it, then skip to END (when the truth value == 1, true); or (ii) skip to ELSE

and execute the commands that follow it (when the truth value == 0, false).

Notice (and here's the best part) that there is nothing to keep you from using

named program objects as the conditional and calculation parts. In other words,

you could write:

IF this

THEN that

ELSE olher

END

where Lhis, Thal and olher are names of programs or other objects

that you've defined!

Pretty great, right? Well then, it's time to throw you some...

240 An Easy Course In Using The HP-28S

Conditional Curves

1. In problem 2 on page 219, the program 'DU"' caused an error if you in-

voked it in the HOME directory. Rewrite the program with a conditional

that corrects the problem.

2. The command TYPE is useful in creating programs that work on different

object types. It returns a number corresponding to the object type. Write

the program 'BRERAK ' that will decompose either a list (via LIST—) or an

array/vector (via ARRY—). The TYPE numbers are 5 for a list, 3 for a real

vector or array, and 4 for a complex vector or array.

3. Write a new conditional (like ==, or >) called 'LIST?"' that returnsa 1l if

the Level 1 object is a list and a B if otherwise.

4. Write another new conditional that uses 'LIST? "' and determines if the

list is not empty. If the Level-1 object is a list and not empty, returna 1.

Return a B otherwise.

5. Conditional statements are useful for determining whether or not a real

number is within a certain range. Write a program that uses DISP to dis-

play "Out of Range" if the Level-1 value is not between 1 and 5.

(DISP will DISPlay the Level-2 object in the display line indicated by the

Level-1 number.)

6. Rewrite the previous program so that it displays " In Range" for val-

ues between 1 and 5, inclusive.

Problem Solving 241

Conditional Conclusions

1. €« PATH DUP SIZE 1 -

242

IF DUP 8 == If Level 1 equals O,

THEN HOT then change the O to a 1.

END GET EVYAL
2

The program first calculates the size of the PATH list and subtracts 1 to

get the previous directory position. This number will be 8 only if the origi-

nal list was £ HOME 2.

The conditional portion (DUP B ==) first makes a copy of the position

number because == eats both Level 1 and Level 2 objects. If the number

isn't B, the program proceeds as normal. Ifit is 8, then the logical operator

HOT will change the @ toa 1. The 1 is then used as the index into the list

(pointing to HOME) and is therefore valid — though the result is that the

current directory is not changed.

MOT considers the real number in Level 1 to be a truth value (recall page

240). B represents false while any other number, typically 1, represents

true. Then MOT effectively turns false into true (8 into 1) and #rue into

false (1 or any other number into B). In other words, NOT true == false and

NOT false == true. In this case, MOT is effectively equal to DROP 1.

Notice that the conditional portion could havebeen DUP 1 <, DUP 8

SAME, 8 OVER ==, DUP HOT oreven DUP #* x 'x==8'.The

choice of DUP B == is good, because it's both short and easy to under-

stand.

An Easy Course In Using The HP-28S

2. € IF DUP TYPE 2 ==
THEN LIST= IfTYPE is 5
ELSE RRRY-> Otherwise assume an array.

END

This program is simple because it assumes a lot. It will cause an error

for any object other than an array/vector or list. Here's a safer version:

€ DUP TYPE » 1
€« IF 1 ==

THEN LIST>
ELSE

IF 1t 3==14 == 0R
THEN ARRAY-
END

END
¥

¥ This is more complex. It first associates the object type with the local

name ' 1 ' to avoid having to keep track of or recalculate that type.

Then begins an IF...THEN...ELSE...END group to testif ' 1. ' is 5. If so,

then the program uses L IST# on the object. If not, then the ELSE

part begins — a complete IF...THEN...END group. This OR conditional

tests whether '1 ' is either 3 OR 4. OR is a logical operator that

evaluates to true (1) if either Level 1 OR Level 2 contains a true (non-

zero) value. If both are false, then OR returns false (8).

« DUP TYPE

IF { 3 4 2 > SWAP POS DUP
THEN { ARRY+ ARRY+* LIST+ > SWAP GET EVAL
ELSE DROP
END

This version is effectively the same as the previous one, but without the

"nested" |IF routines (one inside the other). Can you follow it?

Problem Solving 243

3. € IF TYPE S SHME

THEN 1

ELSE ©

EHD

¥ While it's clear what this routine is doing, it's redundant. € TYPE 9

SAME * does the same thing.

4. & IF DUP LIST?

THEN

IF SIZE

THEN 1

ELSE @

END

ELSE DROF @

EHD

¥ Again you see nesting. The DUP before the LIST? command is there to

keep a copy of the original list around for SIZE to use later. The DROP

after the second ELSE is to remove the list since SIZE wasn't performed.

« IF DUP LIST?

THEH SIZE HOT NOT
ELSE DROP B
EHD

¥ This routine gets rid of the nesting at the expense of some clarity. Why

does it work?

244 An Easy Course In Using The HP-28S

5. €« IF DUP 1 < SWAP 5 > OR

THEH "Out of Range" 1 DISP

END

6. €« IF DUP 1 = SWAP 3 £ AND
THEN "In Range" 1 DISP
END

#* AND is another logical operator. It returns true (1) only if both Levels 1

and 2 are true (non-zero) and false (@) otherwise.

Problem Solving 245

Variants of IF...THEN...ELSE...END

You've seen that conditionals are useful for testing to see whether some object is

a valid input for some calculation. You can check the type or range of a value

and then proceed accordingly. But what if you don't krnow all the possible condi-

tions to be met, or there are just too many to test for them all? You just want to

try your operation and if there's a problem — an error — then you'll deal with it.

Well, the HP-28S even gives you this option. Rather than testing for some true

or false condition, it can test for an error condition.

How It Works: Type the program

€ IFERR INV
THEN "Infinity" 1 DISP
END

¥ Call this program ' INF?"', and try it on 2, -4, and 0. The 2

and -4 invert properly, but 1+0 is not mathematically defined

and is commonly assumed to be infinite. The program tells

you this — without a lot of testing!

IFERR (IF ERRor) is much like the IF command, but rather than obtaining a

truth value from the commands between it and THEN, IFERR waits to see if they

generate an error. If so, IFERR causes a skip to the THEN part. If not, the com-

mands between I[IFERR and THEN are completed and those between THEN and

END are skipped.

You can also use IFERR...THEN...ELSE...END in a method similar to your use of

IF...THEN...ELSE... END. Just remember that the condition that causes the

branch (skip) is an error condition and not a logical (truth value) condition.

246 An Easy Course In Using The HP-28S

Another version of the IF command is IFT. IFT (IF Then) is a one-step version of

IF ... THEN ... END. It takes its conditional and command portions from Levels 2

and 1 of the stack, respectively.

For example, take the solution to problem 5 on page 241. It might be rewritten

as follows:

<« DUP 1 < SWAP 5 > OR

€ "Oul of Range" 1 DISP

2 IFT
¥

The condition is taken from Level 2 and the object in Level 1 (in this case a pro-

gram) is evaluated if the condition is true.

Look at another version:

€ 4« "Out of Range" 1 DISP * IFT » 'IFFY' STO

« DUP 1 < SWAP 5 > OR IFFY *

IFFY assumes that a truth value is in stack Level 1 and displays its message if

the value is true.

Problem Solving 247

IFT's sister command IFTE (IF Then Else) is not too difficult to understand. It

just expects the conditional (Level 3), the THEN commands (Level 2) and the

ELSE commands (Level 1) to be on the stack.

IFTE has the side benefit of being able to be used within an algebraic object (and

this means, of course, that all the conditional operators are usable within alge-

braic objects, too)!

F'rinstance: ' IFTECR==8, 1+Bs4*¥X+B>"'

IFTE takes three arguments separated by commas. The first is the conditional,

the second is the THEN clause and the third is the ELSE clause.

This algebraic form works for IFTE but not IFT, because |IFTE always returns one

value (which IFT doesn't).

Since these |IF ... THEN variants will probably take some getting used to, you'd

better practice your skills with some ...

248 An Easy Course In Using The HP-28S

Iffy Situations

1. Since a directory is always a named object (i.e., its name can be put on the

stack but the directory itself cannot), you can't use the command TYPE to

determine whether the object you have is a directory. You can make use of

the fact that attempting to recall from a directory is an error. Write a pro-

gram using IFERR to determine if an object is a directory.

2. Combine the solutions to problems 5 and 6 on pages 241 and 245. Use

IFTE.

3. |IFT can be used to do quick conversions — changing a bad input into one

that is acceptable. Write a routine that tests Level 1 for 0. If itis O, it is

changed to 1; otherwise, nothing is done.

4. Write a routine to change the Level 1 object into a real number only if the

Level-1 object is complex.

Problem Solving 249

IffyAnswers

1. € IFERR RCL

250

THEN RCLF &4 STHS
IF ERRN # 12Ah ==
THEN 1
ELSE @

EMD SWAP STOF
ELSE DROFP B
END

¥ The program assumes that there is an object on the stack. The test is

to see if recalling from the object produces an error. If an error is pro-

duced, the program then tests to see if it was error # 12Ah, which is

"Directory Nol Allowed".

ERRN returns the ERRor Number for the most recent error. Since the

number returned is a 12-bit binary integer (3 hexadecimal digits), the

binary word size must be at least 12 bits. Since you can't assume the

word size is already large enough, you must set it (STWS).

Programs that arbitrarily change mode settings can be annoying. So

you recall the system flags (RCLF) that contain all the system mode

settings before you change them and restore them (STOF) to their

original settings (including binary word size) when you are finished.

As before, the program can be shortened as follows:

IFERR RCL
THEN RCLF &4 STWS ERRN # 12Ah == SWAP STOF
ELSE DROP B
END

An Easy Course In Using The HP-28S

2. €« DUP 1 < SHAP 5 > OR "Qut of Ranga"

"In Range" IFTE 1 DISP »

3. €« DUP NHOT &« NOT » IFT *

Short and sweet. Again, the first NOT can be replaced by 0 == and its

equivalents while the second NOT could be DROP 1 instead.

4. €« DUP TYPE 1 == &« C3*R » IFT »

Problem Solving 251

Doing Things More Than Once

Whatif you want to do something, oh, say, a lot of times?

Some problems require you to do the same or similar things over and over again.

While it is possible to write a program that includes all of these redundant calcu-

lations or operations, wouldn't it be nice to be able to say just "Do it again"?

Fortunately, this is another "thing that HP-28S's do best."

For Example: Sum all the elements of the list {1 27 3 2 8 9 43}.

The program:

« LIST+ 1 SWAP OVER - START + MNEXT =»

Try it. The answer is 93.

Yes, but how did it work?

Well, to start with, the thing that you wanted to do over and over again was add.

And you wanted to add one fewer times than the number of elements you have

in the list (right?). LIST— helped you there; it not only put the list elements onto

the stack (so you can use +), but it left the number of elements in Level 1.

1 SWAP OVER - puts the number 1 in Level 2 and listsize — 1 in level 1. START,

the looping command, takes these numbers to mean "count from 1 to listsize —1."

Not only that, but the commands between START and NEXT are performed once

for every time START counts one higher. NEXT shows the end of the commands

to be executed and tells START it's time for the NEXT loop, if there is one.

252 An Easy Course In Using The HP-28S

The postfix logic here is: start finish START commands NEXT

START counts from start to finish, executing commands for every step.

One limitation is that NEXT adds only 1 each time, so you can only count using

integers.

No problem.

Use this instead: start finish START commands increment STEP

The STEP argument allows you to count by whatever increment that you want.

For example,

« LIST+ 1 SWAP OVER - START + 2 STEP »

will sum every other element of a list. You can even use a negative increment to

count down. Of course, then the start number would need to be larger than the

finish number — a minor detail.

STEP is really quite convenient. Suppose you wanted to count from 0 to 1 in

steps of .1? You'd use this:

€« B 1 START commands .1 STEP *

Of course, there's really no difference between this last example and counting

from O to 10, because you can't use or evaluate the mental index counter the HP-

28S 1is using to keep track of its looping.

Problem Solving 253

But say that you do want to know what the index is during each step. Why,

then you'd use:

start finish FOR index commands NEXT

or

start finish FOR index commands increment STEP

FOR ... NEXT and FOR ... STEP are exactly the same as START ... NEXT/STEP

except that the index is a local name that you can use. Try:

€ 1 18 FOR K K 1 DISP HERT *

Evaluating this program causes the numbers from 1 to 10 in steps of 1 to be dis-

played in Line 1 of the display. Look closely at that FOR K K part. The first

K is actually a part of the FOR command. It simply tells FOR the local name to

use as the index. The second K is just a command that puts the current value of

K onto the stack.

254 An Easy Course In Using The HP-28S

START ... NEXT/STEP and FOR ... NEXT/STEP are fine and dandy if you know

beforehand how many times you want to repeat a set of commands. But what if

you don’t know this?

Suppose you know only that you must keep repeating until a certain condition is

met?

You use: WHILE condition REPEAT commands END

This looks alot like your old friend IF ... THEN ... END. And it is. The same logic

holds, except that the commands are repeated while the condition is true.

Notice that this means that if the condition is not initially true then the com-

mands won't be executed even once. Not only that, but the commands to be re-

peated must change the condition at some point or they will be repeated forever

(or some very long time).

A Trivial Example: Sum the elements of the stack.

Solution: « WHILE DEPTH 1 > REPEART + END %

In other words, only while the stack has more than one

level do you want to execute +. And you want to execute +

until the stack has only one level. Notice that the action

of the command + does indeed have an effect on the out-

come of the conditional test DEPTH 1 >.

Problem Solving 255

But what if you must execute the commands once before the test is even valid?

In other words, say you want to do something like the following:

¢ getvalue WHILE DUFP 8 > REPEAT gelwvalue END *

Because WHILE performs its test before the calculation, you must pull the calcu-

lation out and do it once before the test.

Or you could:

<€ DO getvalue UNTIL DUP B8 £ END *

DO ... UNTIL performs its test after the calculation. Notice that the conditions

are the opposite of each other. The statements "WHILE this is true REPEATedly

do this" and "DO this UNTIL this is false" are equivalent statements except for

when the tests are performed.

256 An Easy Course In Using The HP-28S

Loop Practice

1. Use FOR ... NEXT to reverse the characters in a string.

2. Write a program that will delete all occurrences of the character in Level 1

from the string in Level 2.

3. Say that you have the PATH to some directory in Level 1. Write a program

that will sequentially evaluate the elements of this list, thus moving you to

that directory.

4. Write a routine that will wait for a key to be pressed and tell you what

that key was. The command KEY returns a 0 for no key having been

pressed or a 1 and the key name, but it doesn't wait for you.

5. Write a program that takes a list and a conditional routine from the stack,

applies the condition to each element of the list and leaves a list on the

stack that contains only those elements for which the condition was true.

Problem Solving 257

Loopy Answers

1. &« "" SWAP 1 OVER SIZE
FOR I DUP I DUP SUB ROT + SWAP
HEXT DROP

%

FOR 1 to the SIZE of the string, take each successive element of the string

and add it to the beginning of a new string you are building. Notice that

you couldn't easily use START ... NEXT because you need the loop index to

index the string.

2. € * 5

€ WHILE DUP NUM CHR s ==
REPEAT 2 OVER SIZE SUB
EMHD

B
=

WHILE the first character of the Level 2 string is the same as the test char-

acter, REPEATedly make the Level 2 string one shorter from the left (i.e.,

take the sub-string from the second character to the end of the string).

258 An Easy Course In Using The HP-28S

3. £ 1 OVER SIZE

FOR I DUP I GET EYAL

HEXT DROF

¥ You use FOR again because you need the loop index to index the PATH

list.

4. « DO UNTIL KEY END * or
« WHILE KEY HOT REPEAT END *

5. € * list condition
€ £ 1 list SIZE

FOR I list I GET

IF DUP condition EVAL
THEN +

ELSE DROP

END

NEXT
=

¥ This is rather long, but it's not too difficult to follow. Try it with the

following objects:

™
™

b
t
i
b

I
o
M

Problem Solving 259

Solving Problems Using Algebra

Why use an algebraic object?

Algebra is a universal language.

Almost every technical field has its own set of algebraic equations and

expressions that are meaningful to it. These equations describe and define the

relationships that exist within the discipline. It's only reasonable, therefore,

that the HP-28S provide you with the ability to manipulate and solve algebraic

problems.

Much of your work can also be simplified by writing ad hoc algebraic expressions

for the problem at hand. In this way, HP-28S algebraic objects are

programming without a programming language; the programming language is

algebra!

260 An Easy Course In Using The HP-28S

To understand the full utility of an algebraic object, you should understand ex-

actly what one is to the HP-28S.

For example:

1. An algebraic object, when evaluated, should yield one and only one result.

This result is typically a real or complex number, but it need not be. This

"restriction” is in keeping with the standard rules of mathematics.

2. An algebraic object may contain only names, algebraic operations, algebraic

functions, real numbers and complex numbers.

If this is the case, then how do you get other types of objects to result from

the evaluation of an algebraic object? By storing other types of objects under

the variable names used by the algebraic object!

3. An algebraic object may or may not contain one equal sign (=). If it has no

equal sign, it is called an algebraic expression. If it has an equal sign,it is

called an algebraic equation.

That's basically it. There are no more restrictions. There are only ramifications

and applications. You'll spend the rest of this discussion in looking at these.

Problem Solving 261

Peculiarities of Representation

Inherent to the manipulation of algebraic objects on the HP-28S are its repre-

sentation limits, which can at times be both annoying and confusing. The main

limitation for algebraic objects is that all expressions must be represented as

lines in the display.

In other words, there's not enough display to be able to present an algebraic ex-

pression in the pleasant and easy-to-read formats that you have seen in text-

books and have often written yourself. The HP-28S (and you too, when you're

using it) must organize all algebraic expressions and equations so that they can

be written and read from left to right, one character at a time.

This can (and does) often result in extremely long and complex-looking expres-

sions, with a prodigious use of parentheses to keep things grouped properly. But

there's no alternative.

Here's a word of comfort, however: The presentation of algebraic information is

one of the most difficult aspects of computer algebra even on large computers

with large displays.

Your HP-28S is in good company.

262 An Easy Course In Using The HP-28S

Some Practice

1. Identify the algebraic objects among the following:

a. "A+B"

b. 'SIMNCA>"

.

d. A

e. 'ONE+THO'

f. "8+COSCA-B>"

g. '"FACTCIPCABSCLHNCR-Y*I2+1-3222>!

h. '1-X"

i "INVC(X!

i 'L 1 2 1*D'

k. 'arxz2'

1. "IFTECACIJ22B8,ABSC{ACI J22+1,ACI 22"

m'(ly-22%¥z/C(-3.4,8>"'
.'H DUP'n

O.II

p. ¥ 'F#1' *»

q. 'SIZE+3'

r. € + 5 's72+2%s+1' %

s. 'a¥F""’

t. '6+C*RCcmplxy’

2. How would you key in the valid algebraic objects from problem 1?

Problem Solving 263

Some Answers

1. a,b,gh, ik, 1, m, and s are valid algebraic objects.

264

. This appears to be valid but you can't put it on the stack. It automatical-

ly evaluates to the real number 1.

. This is a name, but you can't put it on the stack without apostrophes (").

. This is a name, not an algebraic object. = is a valid character to use with-

in name objects. Pressing {(™)(0)(N)(E)ENTER) (1)(2)(e) @ (STRING)I

("]TIW]O] will give you this name.

. This is a character string. Note the quotation marks (").

j. This can't be keyed-in because vectors aren't allowed in algebraic objects.

. This example does not follow algebraic syntax. No stack command (like

DUP) is allowed within an algebraic object.

. This is invalid because an algebraic object cannot be empty.

. This is a postfix program that contains an algebraic object.

. This is invalid because it contains the command SIZE. Generic object-

oriented commands like SIZE are not allowed within algebraic objects.

. This is a user-defined function.

. This object contains the command C—R which returns two objects to the

stack and is therefore not allowed.

An Easy Course In Using The HP-28S

2. Note, of course, that there are other possible solutions besides these:

a. ("JA)JH)(B)ENTER) or ("A)ENTER) ("BJENTER or, if the names don't already

exist, (AJENTER]B]+).

b. ("JS]I]N](JA]ENTER) or (' [TRIG) BEETZH (A]ENTER) or ('JA]ENTER[TRIG) IERTiH or,if

the name already exists, (A]TRIG) IBTTHL

x|2)J+]1)+]3) or

(EREAL IETEM NexT)NExT)I@(PREV) IEEEN @(Locs)I(X)-(Y)X)
=]or

(IENTER] IX)2)ENTER]
EREAL) (NexT)IETEN (NexT)IETE @REAL) ITTHEL

h. ("] 1]=]X]ENTER).

1. ["IX]ENTER or (A"X"J=) or,if X doesn't already exist, (vX). This

object is equivalent to the one in h.

k. ("JLC]AJ >]2]ENTER] or ('JLC]A]ENTER] 2 JENTER ENTER).

1. ("JAL(J1]JU]ENTER) (ENTER) (0JENTER))Z)JENTER) (SWAP) (ENTER) (A]B]S]ENTER

SWAP) (1JF]TJEJENTER).

m. ((J1]»J2JCHS]ENTER) (*JLCJ ZJENTERIX) (U3]-J4)cHS]»8)+).

s. (JLcJAIX]LCIF " JENTER].

Problem Solving 265

How Do You Use an Algebraic Object?

Obviously, you use an algebraic object to do algebra. The obscure parts are the

steps you take to do so.

You've already seen one method of manipulating an algebraic object (pages 194

to 199) when you built the solution to the quadratic equation. Remember how

you used postfix commands to build the object out of items on the stack?

Well, you can do much of the manipulation of algebraic objects in this same way.

For Example: Assume that you know that R = A + B + C. You want to isolate

B(.e., to solve for B). To do so you must subtract A and C from

both sides of the equation. You press:

(ABJCIENTER) @(PURGE)
(R]ENTER) (A]ENTER) (BJENTER) (=)]ENTER).

Then:

You get:

=
M

'R-A-C=R+(B+C>-A-C'

266 An Easy Course In Using The HP-28S

Now, what good is that?

Well, it does show you what you've done. But it doesn't give you any more infor-

mation.

But Press: ALGBRA

4
3
2
1 '~A+R-C=B"

Much better. The left side of the equation is a little out of order, but the infor-

mation is correct — and simplified.

Take a moment to look at what you've done.

You first PURGE'd the names you were to use, so that when you were keying in

these names to the stack, you didn't need to precede each with an apostrophe.

You used postfix operations to combine the names. This isn't new to you, but

you could have posted the whole expression at once, like this:

('[R[=JA]+]BJ+[C]ENTER).

Notice that = is a postfix operator just like + or —.

Problem Solving 267

You then had the original expression. Next, you subtracted A and C from the al-

gebraic object on the stack. You did this again with postfix operations. Notice

that pressing subtracted A from both sides of the equation at once. The

same is true for C.

Finally, you invoked COLCT (COLleCT). This did a couple of things. First, it col-

lected like terms. That is, looking at each side of the equation independently, it

both combined positive and negative A and positive and negative C. It then

eliminated the resulting zeros, leaving the final expression. Unfortunately,

COLCT doesn't respect the order of the names in an algebraic object, so the left-

hand side of the equation was somewhat rearranged.

In general, this is the basic mode of manipulating an algebraic object: Create

the initial object, perform the desired manipulations using postfix commands,

and collect terms when you're finished.

Fear not — there's more you can do with algebra than this, but first you should

have some practice with this method....

268 An Easy Course In Using The HP-28S

Basic Algebra Problems

Convert the objects on the left into those on the right.

1. 'Y=T*Va+Vo2!

9. 'WAR=PER+T'

3 '-M=1"

4 'TR=TY"

5. 'A=m¥R"2!

6. 'A%B*C-1"

7. '2%4-2=6"

8. 'Z2¥A+B-L’

Problem Solving

'2-TEY=N+

-34K2-2%H=0"

=!

IH='T|l

'A-R/m=R"

'A*B*C=1"

I2=2I

'A=.23%(-B+C)> "'

269

B. A. P. Answers

To make things easier, do this first: ({J(A)

(Y)SPACE) (Z)SPACE) (R)SPACE) (TJSPACE] BPurGE) @(ALGBRA). This is to

make sure that you can enter these names on the stack without using " .

1. (YJENTER)(TJENTER)(V]0JENTER)

2. (X)ENTER[ENTER)()2 (=JEnTER) (2JENTERIX]X) (5) (3]

3. [(X]ENTER]CHS)(1]ENTER)(=]ENTER] then either (CHS) or (1]CHS]X)

4. (XJENTER]YJENTER]=]ENTERIX)

5. (AJENTER) @Jw]ENTER) (R]ENTER)

6. (1) (0JENTER) (=JENTER)

7. (ZIENTER)(a]X) (2] (6JENTER) (=JENTER) (2] (&)=(R (HiTH=d

8. (2JenTER)(AIX) (B]+) (CI=) (oJENTER[=]ENTER) (C]+) (B)-) (2)+) CHHA(W]

270 An Easy Course In Using The HP-28S

This level of manipulation is fairly minimal, and it doesn't give you a lot of flexi-

bility or control, it does give you a method of constructing algebraic objects and a

degree of ability to manipulate them. As you've seen (pages 201-204), you can

use algebraic objects to generate numeric results. If this is your primary pur-

pose, then the appearance of the object isn't too important, since the numeric re-

sult of its evaluation will be the same either way.

Rest assured, though, that you do have the option of using more powerful opera-

tions on algebraic objects. For instance:

Name Substitution

You know already that a name can contain another name (page 165). This fea-

ture is useful for simplifying algebraic expressions and for allowing you to sub-

stitute one name for another in an algebraic object.

There are basically two commands that give you this capability: EVAL and

SHOW. You've already seen that EVAL evaluates an algebraic object and replac-

es its names with whatever the names "point to." If the names point to other

names, those names are substituted. If the names point to other objects, those

objects are substituted.

SHOW, on the other hand, gives you more control as to what is evaluated. You

can actually pick and choose which objects are to be evaluated, but the objects

you want substituted must be other names.

Problem Solving 271

Here's How: Say you know that v = vO + at where Vv is velocity, vO is the initial

velocity, a is the constant acceleration and t is time. You also

know that x = x0 + (vO + v)t/2 where X0 is the initial position and

X is the final position. Now, you want to build a relationship be-

tween X and a, position and acceleration. What you do is:

Press: OVM)X)XeI)[T+)(A) MPURGE)
(V]o]JENTER) (AJENTER)

(XJ0)ENTER) (V]JENTER) ([V]ENTER)
0]HOH

And Get: 'RE+HCVBHCVEHA%T 2) ~2%T"

Clean It Up: BTI

To Get: 'L O¥AXT2+TVE+18 "

Since the starting expression was equal to X, so is this last one. You can press

(X]]=]JENTER]) to create the actual equation, if you want.

272 An Easy Course In Using The HP-28S

Look for a moment at the steps you took:

First you purged the names you were going to be using and created the expres-

sion for v. Purging the names just made keying them in easier. Notice that you

didn't key in the whole equation that solves for v, but just that part which is the

expression equal to v. You then stored this expression in the name 'V

Next, you keyed in the expression for X. At this point, you could've keyed in the

entire equation — it's up to you. You picked the name you wanted to show in

place of the name(s) that refer to it. You then invoked SHOW which replaced all

V's with their equivalent expressions containing A.

Since none of the other names referred to objects, you could have used EVALto

the same effect. Remember that EVAL evaluates all references and not just the

ones you select.

The resulting expression didn't contain the name V, but does contain an expres-

sion with the name A.

Now this expression is fine and does what you want it to (it is a valid expression

relating X to A), but its not very clean. For instance, there are two occurrences

of VO which could be combined. Since COLCT will combine like terms, you in-

voke that. Now it would be nice to distribute that 2T term throughout the ex-

pression. To do that you invoke EXPAN.

EXPAN EXPANds an expression by distributing terms where it can. The first in-

vokation of EXPAN distributes the « 9 (i.e., 1/2). The second distributes the T.

Finally, COLCTing once more combines T#T into T™2 and . 2¥2%¥Y¥8 into V8.

Problem Solving 273

More Substitutions

It's fairly obvious that SHOW and EVAL are useful for replacing names and in-

creasing the complexity of an expression (replacing names with expressions).

But many times you want to simplify expressions by replacing all or parts of

them with names or other, shorter expressions.

For Example: You know that V = q(In(b/a))/(2reyf) where everything except V

and q is constant. Also, C = (2rneyf)/In(b/a). Therefore, you'd like

to substitute C into the first expression.

Key in the expression 'q¥(LH{b~a>)/(2*%1xal*mw))"',

press ('J=IC) EE3.

Youget 'q¥C1-C)".

Press [@X&d to get 'q-C".

EXSUB (EXpression SUBstitute) is something new. It lets you substitute one ex-

pression for another within an algebraic object. In this case, you substituted 1+

C for LHCbra>~(2%1%¥eB%mw). You did this by placing the object to be

modified in stack Level 3, the position in the object of the expression you want to

replace in Level 2, the object to be inserted in Level 1 and executing EXSUB.

The hardest part of this is determining the numeric position of the expression to

be replaced. You do it by looking at the Level 3 object and counting the objects

from left to right — excluding parentheses. In this case, # is the seventh object.

You want the number of# because you want to replace it and its arguments.

274 An Easy Course In Using The HP-28S

A Variation: Keyin 'q¥(LH(b-a)~/(2%¥]1%¥eB%*mw>2"' once again. Now

press

)=ICINexT) RETE FisEd.

You get the same thing, but now press [EVAL. You get back the

original expression.

EXGET will pull the indexed expression out of an algebraic object in much the

same way that GET pulls objects out of vectors, arrays and lists. You used it this

time to make a copy of the expression you were going to replace and to store it

into the name you were going to replace it with.

An easy way to use EXGET is, with the source object in Level 1, to press

HIdEl. FORM is used to allow you to change or examine the form of an

algebraic object. Press until you've moved the black box over the second +

Now press [Id38]. The stack is loaded with the source object, the sub-

expression position and the sub-expression.

You can see how you might use EXSUB and EXGET in a long and complicated

expression to reduce it to manageable size (by substituting names for expres-

sions) before manipulating it. Then you replace the substituted names with

their objects/expressions when you're done.

By the by, OBSUB and OBGET are equivalent commands that substitute and get

objects rather than expressions. That is, they don’t take an operator's argu-

ments when they replace or get the operator.

Problem Solving 275

FORM

You don't get too far when dealing with rearranging and substituting things in

an algebraic object before you realize that you need more detailed control of

things.

F'rinstance, COLCT and EXPAN are tremendously useful, but they can't read

your mind. They don't know how far you want to go in expanding or collecting

nor do they know anything about the order of objects that pleases you most.

Happily, there is an algebraic object editor that gives you more control, as you

just discovered. It's called FORM.

FORM gives you step-by-step control over the association, distribution and order

of objects within an algebraic object — along with some other useful stuff. But

it's not a magic algebra box. It allows you to manipulate algebraic objects — just

as the HP-28S stack and postfic commands allow you to manipulate general ob-

jects — but it can't know what you want to do with them.

Therefore, don't become too discouraged if it takes a few steps to get where you

want to go. Also, if it's easier for you to rewrite by hand and then retype an ob-

ject than it is to use FORM, go for it. It's no sin.

276 An Easy Course In Using The HP-28S

For Example: Type in the expression ' H*2+2¥A*B+B™2"'. No amount of

EXPAN'ding or COLCT'ing will turn this into ' CA+B>"*2".

But press IRN

Use to move to the third ¥. Press IEEM to associate

H and B (i.e., move the association — the parentheses — to the

right). Now press to move to the 2 and press

Bl Both adding and subtracting 1 effectively adds O to the

expression. Press to swap the arguments of =, and

to associate the =€ 12 and 2. Press to get back to the

main menu and twice to move to the + before the 2.

Press [{M&1. All this merely breaks the 2 into 1+1.

Now use to move to the second ¥ (i.e., press it 7 times)

and press to distribute A%¥B over 1+1. Get back to

the main menu by pressing ENTER). Collect the 1's by moving

the cursor over the *¥'s and pressing [iHH{.

Now move to the + between A¥H and A¥B and press

to associate them. Use IFEM on the + between AH*¥B and

B#B to associate them (remember to press to get back to

the main menu and the cursor keys).

Move to the first + and press to merge the terms.

Move to the last + and press IIEEM to merge its arguments.

While the cursor is still on the second ¥, press to swap

the order of its arguments.

Move to the middle + and use JIEEM. Finally, with the cursor

still on the ¥, press [XH1. ((ON)) leaves FORM and puts

the expression back on the stack.

Problem Solving 277

Yes, it's quite a lengthy and detailed process ("Whoah, you don't say!").

But in most cases you won't need to take an object all the way through from one

form to another. You just use FORM to alter a few features to make other ma-

nipulations easier. Just pop in for a minute to do a specific distribution or col-

lection and then leave again.

The really good news is that FORM doesn't allow you to perform an invalid oper-

ation — one that changes the value of the object. It will only allow you to move

between equivalent forms of an object.

Want another look at that last example? All right, here's a little more detail

about what you did:

First, you have this object that looks like a binomial expansion —i.e., it's some-

thing that you recognize as having a simpler form. That's good. You should al-

ways have an idea of where you're going and what you want to do when entering

FORM. You know that you need to basically "undistribute" the expression.

So, you expand it with EXPAN. This turns all the X™2 terms into X¥X terms —

all the better to pull them apart. Then you invoke FORM, which takes the Level-

1 object and displaysit for you to edit. Notice that it put in all the implied pa-

rentheses so that you know exactly the order of things.

FORM has its own cursor keys and cursor to allow you to move around within

the expression. Notice that you can only move left and right and that the cursor

automatically skips parentheses.

278 An Easy Course In Using The HP-28S

You have two H¥B's and you want to separate them and give one to A¥H and

one to B¥B. So you move to the £ (2¥A2¥BJ and notice that the association is

not what you want. It's 2A x B and not 2 x AB. So you change it. You want to

shift the association to the right around the second multiplication, so you move

there and use [IEEMM to move the association to the right. You are left with

C2¥CAx*BY).

You want to turn 2%¥ CH¥B 2 into CA%¥B >+ (A*¥BY. To do so, you must turn 2

into 1+1 and distribute A¥B over the addition. Thus:

(SCAxXB) CCC2+1 2@l 2% CA%BY)
CCC2+1 0@l 2CA%¥BA > (C-(1)@C2+10)% (A*B>

CC=-(1o@C2+1 22 %C(A*¥B2> CCC-C1o+20H1)% CA%BY)
CCC=-Clogd2)+1 2% (A*BEM> CCl+12%CA*BX)

CC1+10gCA%BY 2 CCLl*CA*BXOEC1 % CA*¥BY 2
CCIFCA*¥BY 2+ C1%CA%XBY 2) CCA*B2+C1xCA*BY)

CCAXBX+C1ECA*BY 22 CCA*BY+CA%E) D

Next, you reassociate so that one H¥B is associated with A¥H and the other

with B¥B. You do this by moving to the +'s on either side of ¢ CH¥B >+

CA*BY > and using on the left one and on the right one.

Now you have C{CA¥AI+CA*BX)+ ((A¥BX+C(B*B2). You basically

want to undistribute the A's from the left-hand pair of terms and the B's from

the right-hand pair. Moving to the +'s between the terms to undistribute, you

use when the common term is on the left (i.e., the A) and IEEM when the

common term is on the right (i.e., the B). Thus:

CCA¥AXECA%BY) £H CAFCA+B Y >

(CA*B)W@<B*B>) IEEN (CA+BYTR

Problem Solving 279

You next order the terms so that CA+B2 is on the right for both multiplications

(although you could move it to the left just as well). Then you merge around the

central +.

CCAR+BIB (BE@(A+B>
(CA*{A+B>>W(B*{A+B>>) RN CCA+BLECA+E)

This is really very close to being done. You simply collect like terms around the

¥ with and that's it.

CCA+ARIFCA+EY S TN CCRHBX"2)

leaves FORM and returns the object to the stack.

Cwhew!?

280 An Easy Course In Using The HP-28S

Less Basic Algebra Problems

1. You've already seen (on page 272) how to combine (or substitute)

V = Vy+at

and X = Xo+.5(Vy+V)t

to get X=Xy+V,t+.5at?

Using the same two equations, show that v2 = v,2+2a(x—X,).

2. Convert 1/(x/2+y) to 2/(x+2y). These are equivalent expressions.

3. Given that v, = v,(r,/r,), v, = Wr; and v, = W,r,, show that w, = w,(r,/r,)2.

4. Convert 1—((m,—m,)/(m;+m,))? to 4m,m,/(m,+m,)2.

5. Given that GMm/(R+r)2 = mw?r, R is much less than r, and w = 2n/T, show that

GM=4r2r3/T>,

Problem Solving 281

Less Basic Algebra Solutions

1. First press to purge all the names
you'll to be using. Then key-in ' ¥Y=¥B+H%T"'. Solve the equation for T

(ie., move T to one side of the equation by itself) by pressing

B

ALGERA)

[MMEd. The resultis ' {Y=-YB)A=T".

Keyin 'RB+. 3¥(VB+YI)%2T=X"'. Notice that you've moved the = so that

the expression with T is on the left-hand side of the equation. You did it so

that when you isolate T it will be on the left-hand side of the equation. Press

(XToJ=) (TS [5)=)BJENTER) (V]+]-) EiTWEd.
You'll have ' T=2%¥ Ch-xKB)(VY@ '

Combine the two with to get ' (¥-VBIAA+T=T+2¥(X-¥B>~

CY+YB) ' Get rid of the T's by pressing (T]=) HiIX=Ed.

Multiply by both the denominators (i.e., press (VJENTER)(V)(0)+)X)

). The equation is now ' CY=-Y¥@)®(Y+VBI=2%(X-KB)*A".

Expand the left-hand side by pressing [@dZ0 , moving to ¥ with and

pressing [@JH31. You're now out of the FORM menu and ' {Y-Y8@)>*

CVY+YB2 ' is on the stack. Press FRGERT to completely distribute the

multiplication and then to collect like terms. Press [HENA to put this

expression back into the equation. You now have '¥*2-YB"2=2% (R~

REIER".

Now add ¥B™2 to the equation (V][0)ENTER2~[+ [HIXER) and you're done.

282 An Easy Course In Using The HP-28S

2. Keyin "1/ CK~2+Y 2" and press (aLcBRA) @TAZN. Move the cursor over

the + and press Al AF (Add Fractions) puts the two arguments

of + over a common denominator. You get ' C1/CCK+C2%¥Y 22 222"

which is 1 over a fraction. Press to leave FORM and press [HilN&{.

Another more intuitive method would be to multiply the original expression

by 2/2. You might do it this way:

Key-in ' 1/CK/2+Y 2" and pressX2toget ' 1 #CKA2+Y 2 %2-2" .

Don't collect. Press @TAEN. Move to the ¥ and press to as-

sociate the first 2 with the numerator. Move to the first ¥ and press

to collect the numerator. You'll have ' C {2/ CCRA2+Y2.2 " .

Move to the last # and use HIEEM to associate the last 2 with the denomina-

tor. Move now to the ¥ and press to distribute the £ over the denomi-

nator. At this point, the cursor is over the ¥+, so press to collect the de-

nominator. Press to leave FORM and you're done.

As you can see, the intuitively obvious method is not necessarily the easiest

to implement.

Problem Solving 283

3.

284

Key in '¥2=V1%(R1/R2>"'. Store 'W1#*¥R1"' in '¥W1' (e, press

COWEXRE)(1)sT0) and ' W2%¥R2" in 'V2'. Evaluate the equation

(via EVAD) to get 'WZ2*¥R2=W1*¥R1*{R1-R22>"'. Divide the equation by

'R2 "' and collect to get 'W2=R1"2*R2"C(-22%W1".

To associate the two squared terms, use FORM:

Move to the second ™ and press EEFE. You now have CWZ2=0C(

(R1IM23¥MEMCR2™22 2 %MW1 2 2. Move back one to the ¥ and press

to turn ¥ INY into #. Press EEEN to merge the two under

*2. Move to ¥ and press to make it pretty. You now have

(W2=C(W1%C(R1-R2)"*22 23). Leave FORM by pressing (ATTN).

. First,keyin "1=CCM1-M22-CM1+M22 272" and then press {)(ALGBRA)

Il Next distribute ™2 over the numerator and denominator by moving

to ™ and pressing . Next, create a single fraction with a common

denominator by moving to the first = and pressing Al . You

should have

CCC1%#CCMI+M20722)= CCMI-M22 720) BCCMI+M22 7200,

Collect the leading 1 by moving to the first ¥ and pressing [ME#l. Then ex-

pand the squared terms of the numerator by moving to each of the two ™'s

and pressing@&Finally, move to the first = and press and to

leave.

An Easy Course In Using The HP-28S

5. Key in ' G¥M¥m~ (R+r)"2=m¥W2%"

Since R is insignificant, eliminate it by storing 0 into it. Viz., (0)("))[R)STO)

[EVAL).

The equation is now ' G¥M¥mM-1r"2=m¥W*2%r .

To get rid of the left-hand denominator, multiply by 'r™2"'. Since M is on

both sides of the equation, divide by 'M"'. Remember to collect after each

step.

The equation is now ' GE¥M=r"3%W"*2".

Since w=21/T, store ' 2%¥W-T "' in 'W'. Evaluate the equation.

The equation is now ' G¥M=r"3%(2¥n-TX)"2".

Go into the FORM menu and distribute ™2 over 2%¥m#T. Le., move the cur-

sor over the final ™ and press . Next distribute ™2 over 2¥1r.

Now CCGEMI=C(r"32 %(2722(2227(T™2222).

Finally, collect 22 by moving the cursor over its ™ and pressing FREA.

Press (ATTN).

The equation is now ' G¥M=r"3%(4%xq*2-T*27.

Problem Solving 285

Some Short-Cuts

Solving an equation is, in many cases, a matter of isolating the name of interest

on one side of the = , with everything else on the other, and you've had some

practice doing that in the preceding problems. But while solving those prob-

lems, you probably were wishing for some short-cuts.

Well, there are some:

The ISOL (ISOLate) command will automatically perform all the transformations

necessary to an algebraic object to isolate the specified name.

For example,if you had the equation ' A=B#LC"' in Level 1 and typed (")C)(*)

(1)S)OJLJENTER), the result would be 'H~B" .

You asked the HP-28S to isolate 'C"' for you, and it did so. You can see by in-

spection that if you were to divide the original equation by 'B"', then 'C"

would indeed be equal to 'A#B". Notice that there is no C=. This is so that

the resulting object can be stored in ' C"' so that you can perform substitutions

if you like. If you want the C=, you can always add it.

Be careful: While isolation of a name in this way can be very useful when a

name occurs only once in an expression or equation, if there's more than one oc-

currence of the name, the resulting expression will also contain the name. In

other words, you will not have achieved very much by using ISOL.

iz.: ("AX(BY=JAJ+[CJENTER) (2_GBRAINEXT)Mgives ' CH+C)~B' rath-
erthan 'C~A¢(B-12>".

286 An Easy Course In Using The HP-28S

There's another method of solving an algebraic object if that object is specifically

in the form of a quadratic expression or equation. QUAD will take an algebraic

object from Level 2 and the name of the variable for which the expression is

quadratic from Level 1. The result will be an expression for one or both roots of

the quadratic expression.

But if QUAD returns only one object, how does it show both roots? The answer is

an unequivocal "It depends." It depends on whether flag 34, the principal value

flag, is set or clear.

Both ISOL and QUAD are capable of solving for multiple roots. In other words, if

an expression (like a quadratic) has more than one solution, all solutions can be

found and represented.

To see how,first set flag 34 (34"S|F(ENTER)) and purge 'A', 'B"', 'C"' and

'R "'. Next, key in the expression ' A¥X*2+B*X+LC"' and put a copy in both

Levels 1 and 2. Now key in (X]ENTER) (ALGBRAINEXT) EITETd.

The resultis ' C=B+I (B*2-4%(A*2-20%C))(2%(A*2-722) ",

This is clearly one of the roots, but because you specified that you wanted only

the principal root (you set the principal value flag), you were given only one root.

On the other hand, type (3]4]*JC]FJENTER EITTd. The result is:

'(-B+s1%l(B*"2-4%(A*2-22%CH)7 (2¥(A%2-2)72".

This object is different from the first by the inclusion of the name 'S1"'. You

will recall that the general solution is —b+V... et cetera. Well, ' 51" functions as

the + here. Since there are two solutions and an algebraic object can only return

one result, QUAD gives you the option of choosing one, the other or both of the

possible solutions.

Problem Solving 287

Here's how:

If you were to associate the value 1 with the name 'S1' (in the usual manner —

with (ST0)) and then evaluate the expression, the result would be ' =b+J ...

On the other hand, if you were to associate -1 with ' 1 ' and evaluate the ex-

pression, the result would be '=b-1....

's1 "' therefore, stands for signl and should be interpreted when reading the

object as +. (If there were more than one * possible in the object, you would see

's2', 's3' 's54"' et cetera.)

This convenience is fine for solutions to a quadratic equation, but what about ob-

jects that have more than two roots?

Let's find out. Take a periodic function, like sine, for which there are infinitely

many roots.

Do this: Press (DJEJG]ENTER) (X]ENTER) (S]1]NJENTER) (X]ENTER) (1]S]OJL JENTER

The result is ' 188%¥n1"'. Here, "Nl "' stands for any integer, indicating that

the sine of any integral multiple of 180° is zero. (Again, if there were more inte-

gral multiples in the expression, you wouldsee 'Nn2"', 'n3"', 'n4d"') Real-

ize that if flag 34 were set, the result would be simply 180 (the principle value).

One final thing to note with QUAD is that if you want strictly symbolic results,

take care to PURGE any names that the expression uses. If you don't, the names

will be evaluated and replaced by their referent objects. This precaution isn't

necessary with ISOL.

288 An Easy Course In Using The HP-28S

Another time-saver is the TAYLR command. TAYLR performs a TAYLoR Series

expansion of the algebraic object you supply. Though you may not even know

what a Taylor series is, you don't need to in order to see its usefulness in the fol-

lowing case.

Case: Say that you have the binomial (x+1)® and you want to expand it to

the equivalent polynomial. How do you do it?

Well, you could EXPANAJ it repeatedly until all the distributions had

been performed and then use COLCT to collect the terms. But this is

a trifle time consuming (you should try this at least once — when you

have 15-30 minutes to kill).

Or, you could use TAYLR as follows:

Type (X[ENTER) (1) (1) (8) (8] (X[ENTER) (5) ALGBRA] (NEXT) LITHNA.

Here 5 is the degree of the polynomial, and X is the variable in which

it is in that degree.

Your HP-28S will think for a little while, and then return the polyno-

mial (in order!) from low order term to high order term. Viz.:

'1+0%K+180%¥X2+10K3+D¥R4+x"D

Quite the deal, eh? A real time-saver with long expansions!

Problem Solving 289

The Equation Solver

You've seen that you can consider algebraic objects to be programs written in al-

gebraic syntax, and as such, you can use them to solve for numerical results of

algebraic expressions. In such cases, the algebraic object's internal names

("variables") refer to numeric objects.

You've also used algebraic objects as algebraic expressions to be manipulated al-

gebraically and that, through substitution (storing expressions in the names),

these can be transformed into other expressions.

But you've also seen that assigning values to these names can be tedious.

SOLV, the equation-solver menu, exists to aid you with just such problems. The

SOLV menu allows you both to conveniently load an algebraic object (via the

command called STEQ, or STore EQuation) and then use SOLVR to fill in the

values of its variables.

290 An Easy Course In Using The HP-28S

Try This: Press (X)]Y) @PURGE) @(CLEAR) (BIXXI=25=aXIY]

BN .

3

i: ;
eI |

SOLVR finds all of the names within the object and generates a stor-

age menu (remember page 224?), including LEF1=] and [RI=_] which

evaluate the expressions on the left and right sides of the equal sign,

respectively!

SOLVR makes it easy to associate values with names in an algebraic object.

Problem Solving 291

But wait — there's more!

SOLVR is also a sophisticated numerical root finder. That is, if you give all but

one of the names in the algebraic object real values, SOLVR will find the value of

the final name that satisfies (solves) the expression! In the case of equations,

this means that a value is found such that the left and right sides are equal. In

the case of expressions (i.e., objects with no =) a value is found such that the ex-

pression evaluates to 0 — just as if there were an invisible =B after the object.

In This Case: Press(4[5)_% @@L 1

 ero
1: - 27« 28HBBEEEaA]
L&

1L

¥JLeFT=IleT=11]

When X =45,Y = -27.5. Pressing | before the menu key tells

SOLVR that you want to solve for that name.

Press(1]3)L_ Y _J@L_% 1 SOLVR tells you that X = -9.

292 An Easy Course In Using The HP-28S

Although this in itself is terribly convenient — especially if you want to play with

different values to see how the expression acts — there are some important rami-

fications that radically increase the usefulness of SOLVR.

First, it doesn't matter which value is the unknown. Normally, you would need

to rewrite an algebraic expression so that the name of the unknown is on one

side of the = and an expression of known values is on the other. SOLVR does

this rewriting for you, automatically!

Second, there are expressions and equations for which it is impossible or virtual-

ly impossible to explicitly isolate a particular unknown in this way. For such

problems, the only solution may be an approximation to the value of the un-

known. But SOLVR knows this, and will find this solution automatically!

Unfortunately, in this latter case, there may be no unique solution; that is, there

may be more than one answer that will satisfy the expression. You must be able

to recognize expressions that are likely to behave this way, because although

SOLVR can find a result, it may not be the only one — or the best one.

So you may supply a guess or guesses as to the value of the unknown before

solving for it. SOLVR will start with these guesses as it looks for a solution and

therefore find a result (if any) that's relatively close to one of your guesses.

Problem Solving 293

In reality, SOLV and SOLVR are actually friendly ways to use the actual numer-

ic root-finder program, ROOT. They are excellent for interactive problem solving

and algebraic object manipulation, but it's quite possible that you'll have a more

sophisticated problem, one where a solution to an algebraic object is only half

the battle. In that case, you may opt to use ROOT itself in a postfix program.

ROOT takes either a name (most commonly the name of an algebraic function,

expression, equation or postfix program), an algebraic object or a postfix pro-

gram from Level 3, the name of the unknown from Level 2, and one or more

guesses from Level 1 of the stack. It returns a numeric result to Level 1.

For Example: Press ('[XJPURGE) ('X~2]+)X]—I2]ENTER) (ENTER) ('[X]ENTER) (5)

SOLV](NEXT) and L.

Now press (DROP)('IXJENTER) (5JcHS) IEIT1E.

The result is 1 when you guess 5, and it's -2 when you guess -5.

Unfortunately, a good discussion of how and why ROOT comes to its results

would require a good discussion of the nature of algebraic expressions, equations

and functions, as well as the nature of numerical approximations. These are

clearly beyond the scope of this book, but there are some such discussions in the

HP-28S Reference Manual.

294 An Easy Course In Using The HP-28S

Still More Algebra Problems

1. If1/1+1/0 =1/F, O =9, and F = 24, what is the value of 1?

2. Given v =Vv0 + at and x = x0 + .5(v + vO)t

a. Find xwhenx0=100,v0=0,a=-32,t=0, 1, 2, and 3.

b. Find xO whenx=50,v0=0,a=-32and t = 2.

c. Find vO whenx0=0,x=50,t=2 and a =-32.

d. Find t when a=-32,v0 =0, x0 =100, x = 90, 80, 70, and 60.

3. Det(A — ILA) = 0, where A is a square array, |l is the identity matrix of the same

degree as A, A is an eigenvalue for the system, and Det is the Determinant op-

eration.

Find the corresponding eigenvalues (there are three distinct values) when

A=[[16-2418][3-20][-918-17]].

(You don't need to understand all of this to be able to solve the problem,

though both this problem and its solution introduce some new and powerful

things.)

Problem Solving 295

1.

296

S. M. A. P. Answers

Create the object ' 1/I1+1-0=1-F"' and press HINA.

Store 9in '0"' and 24in 'F "' G.e., press (9) 1)) C_E_D. If you

pressf.__I_] now, you'll find that the solver will run for quite some time and

then quit and tell you that F is some huge number. The reason is simple (the

x-axis is an asymptote of the function; it never reaches 0), but it's not obvi-

ous, because it depends on the nature of the root finder and its limitations.

Fortunately, it's easy to get around, because you can use ISOL to solve the

equation for . So press [HEIA (ReCall EQuation) (']1)

The answeris: |=-14.4.

Note that you could have isolated | first thing, thrown the resulting expres-

sion into SOLVR, stored the values of O and F and pressed EZPE=]. EXPR= re-

places LEFT= and RT= in the SOLVR menu when you are dealing with an ex-

pression rather than an equation.

An Easy Course In Using The HP-28S

2. Create the object ' K=KB+. 3%¥ (V+VB)*T"'. Press R
Create the object ' VB+H#%T "' and press ¥_]. Notice that the name V goes

away and the name A appears in the menu.

a. Press(1)oJo)Ho |(o)[¥e 2)crs)[—a_]

OCII@E]1 x-= 100;
LI 1@_& 1 x= 84

QLI@ %1 x= 36

GILI_J@_ ¥ 1 x=-44.

b. Press (5)(0) (& [T_Jeverything else is the same as before.

@Eilx, = 114,

c. Press(0)[#8 everything else is the same as before.

@] v, - 57

d. Press Lo (o)vo
L51T t=.790569415044;

&11 t= 1.11803398875;

21 t= 1.36930639376;
%1 t= 1.58113883009.

Problem Solving 297

3.

298

Create the object® A DUP IDH L % - DET », where AandlL are

names, and IDN and DET are HP-28S array commands. IDN will convert the

Level 1 array into an identity matrix. DET calculates the determinant of the

Level 1 array (matrix).

Press HMMA. Key in the array

[[16 -24 18 1 [3 -28 1L -9 18 -1¥ 11

and pressA] Now press _L_] The resultis 1. This is one of the ei-

genvalues.

To find the others, you must supply some guesses. First, try less than 1:

Press ({)1)0)o)crs?o)LL1 The result is =8. The list you stored

in L contained the range in which you wanted SOLVR to work at finding an

answer. That's two out of three answers, now try greater than 1.

Press (1)0)(0) C_L_1@[_1L—_] The result is 4.00000000005. The 100 you

stored in L was your guess.

Now, you can't use SOLVR to solve for A. SOLVR works only when finding

real-number solutions, but as you've seen, this doesn't mean that the other

names in the expression must contain real numbers.

Notice that you can use a postfix program as the "equation” in SOLVR. The

program must not take values from the stack for use in its calculation and it

may either return one value to the stack (as an algebraic expression would

when evaluated) or store its result in a name.

An Easy Course In Using The HP-28S

Calculus

Differential calculus is well represented and easy to use on the HP-28S.

You need only place an algebraic object in stack Level 2, the name of the

variable of differentiation in Level 1, and press {ffd/dx). The resultant derivative

is left in Level 1.

For Example: (IXTHLN(OX]ENTER) (XJENTER) {ild/dx)

yields: ' 1+INHVC K> ",

Problem Solving 299

Representing the world of Integral calculus on the HP-28S are commands for

symbolic integration of polynomials and numeric integration (i.e., definite inte-

gration with a numeric result) of any expression.

To symbolically integrate a polynomial, you must put the polynomial in Level 3,

the name of the variable of integration (this is also the name of the variable for

which the expression is a polynomial) in Level 2, the degree of the polynomial in

Level 1 and press 7).

Like So: ("J3IXXE~2]=12IXX[+-J3JENTER) ('JXTENTER) (2) lY)

yields 'LSER-RTZERTT

To numerically integrate an object, you must put the object in Level 3, a list con-

taining the name of the variable of integration and the limits of integration in

Level 2, the accuracy of the result in Level 1 and press [ff5).

Like So: [JEXX[POXJENTER (1JENTER) (EEX[5)CHS)

gives the results 1.718281828735

and 1.71814388996E-5.

The first number is the result of the integration and the second is the

accuracy.

300 An Easy Course In Using The HP-28S

Symbolic Constants and Symbolic Function Evaluation

Symbolic calculation is great, but of course, it's not the only way to calculate. Us-

ers of most other calculators and computers will recognize this readily.

Most calculation tools are intended to help you generate numeric results. After

all, you usually want a numeric value when you add 1 and 1, not a symbolic ex-

pression. Most calculators and computers do this as a matter of course — both be-

cause it's commonly what you want and because they just can't do it any other

way.

The HP-288S gives you the option of exclusively evaluating objects down to nu-

meric results — if it's most convenient.

You simply clear flag 36 (press (3]6]JC]FJENTER)).

All evaluations after this point will attempt to generate non-name objects (real

numbers, vectors, et cetera). If it cannot find such an associated object for the

name it's trying to operate on, it generates an error : Undef ined Hame.

In this mode, the HP-28S acts most like calculators and computers that you

have used before. It assumes that you want the name to refer to something, or

you wouldn't be trying to calculate with it. In this mode the HP-28S is most like

a calculator and least like a symbolic manipulator.

Of course, even when in symbolic evaluation mode (you can choose this by set-

ting flag 36: (3]6]JS]FJENTER)), you can always force numeric evaluation for indi-

vidual cases by using -NUM. But it's good to know you can choose.

Problem Solving 301

Finally, the HP-28S sports a set of data objects called symbolic constants. This

is a set of three commonly used mathematical constants and two machine-

specific constants. They are:

e Euler's constant, the base of the natural logarithm,;

T the ratio of the circumference of a circle to its diameter;

i the square root of —1;

MINR the HP-28S's smallest representable number; and

MAXR the HP-28S's largest representable number.

Each of these can be considered a numeric function because each can be made to

yield a number. But they are in fact constants because they never change.

They're symbolic constants, partly because they have names and partly because

in symbolic constant mode (flags 35 and 36 set), they resist conversion to their

respective numeric values. In that mode, they will remain symbols unless forced

to become numbers by -NUM.

This stubborn resistance to change can be extremely useful, especially in the

simplification of expressions, because you're often interested in a result that is a

function of e, &, or i. If the result were strictly a number, you would potentially

lose some information.

For example, which is more meaningful: 2n or 6.28318530718 radians?

And which is more exact? The HP-28S (in symbolic constant mode) has certain

functions that recognize these constants — noting the fact that any numeric rep-

resentations of e and & are only approximations.

Thus, SIN(n) under symbolic evaluation mode (and radians mode) is B, but under

numeric evaluation mode, it's—2. 86761537357E-13.

302 An Easy Course In Using The HP-28S

A Final Visit with Algebra/Calculus

1. Find the expressions for v and a when x = Acos(wt + b), v = dx/dt and a = dv/dt.

2. Find | (x+1)6 dx .

3. Find the derivatives (with respect to x) of each of the following:

a. 2x3-3x2—12x+3

b, 2W&

c. log(eX)

d mX4+xT4+mT

e.

4. Find the following integrals between the specified limits:

a J 32X dx between 1 and 5.

b. J x(1O'x2) dx between 1 and 2.

C. f tan(x+m) dx between 0 and /2.

Problem Solving 303

1.

304

Final Answers

First,purge "AH', 'W','T', "B' and "®"' so that no unexpected substitu-

tions occur. Also, set the angular mode to radians (JmoDE)Ito simplify

the resulting expressions.

Key in the expression ' A¥COS{W*T+B> "' and then press d4x). You

get: "A¥ (- CSINCWH*T+B>*W> 2" . A little messing about with FORM

will give you '— CA¥WI¥SINCT*W+BY ' . Thisis v.

Now press (T)d/dx) and get ' = CA%¥W®*CCOSCT¥W+BI*W2 2 ' . Using

FORM again gives you a: ' = CA¥W™232COSCT*W+BY ' .

You could have started with an equation instead. Since X is a function of t

'"KCT)=A*COSCW*T+B> ' . Differentiating this in the same manner as

before will give you 'der®XCTas12...'. The HP-28S creates the name

derX because it cannot find a function it knows is the derivative to substi-

tute for &. It also tries to pass this non-existent function both T (since der&

is a function of T) and dT#dT which is 1. This action can be useful since it

effectively labels the expression on the right of the = as dx/dt.

Then differentiating a second time will yield ' derder®C(Ts1s 1,82"

indicating the second derivative and appending dt/dt and d?t/dt? (the deriva-

tives of the original parameter list) to the parameter list.

An Easy Course In Using The HP-28S

2. First, purge '®'. Then key in the expression ' CX+12"6"' and press

X)e) @F). You get: ' K+3¥X"2+2¥K3+53%¥R"4+3¥X5+K6+

. 1428357142837%K"7".

Yes the polynomial was expanded. It is the same as if you had used TAYLR

to expand the original binomial (see page 289) and then integrated the poly-

nomial. As a matter of fact, since will only symbolically integrate a pol-

ynomial, that's exactly what it did. Notice that (5] doesn't add the arbi-

trary constant C to the result.

If you prefer the result in its unexpanded form, you must do some mucking

about first. You could perform a u-substitution where u = x+1 and du/dx = 1.

Key in the ' CA+1 276" and substitute 'U" for ' ®+1"' by one of the

methods you know.

Now, integrate the expression with respect to u (i.e., press (*JUJENTER]s (V)

toget '« 1428371428577 "' . Now, resubstitute ' K+1"' for 'U"'

and you have your result. Notice that this result differs from the first one by

the addition of .142857142857 (i.e., 1/7).

Notice also that this method was easy to do because du/dx = 1. Other cases of

u-substitution will be more difficult when this isn't true.

Problem Solving 305

3. Purge ' X' before doing the following:

a. Keyin '2%K"3-3%¥X"2-12%¥+3"' and press X)(d/dx) to get ' 2%

(3xR"22-3%¥(2%¥X)-12"'. COLCT gives '~ 12+E6*¥R"2-6%K".

b. Keyin '2*¢JI¥23 "' and press X)(a/x) to get ' . 693147180856~

C2x[RIX2MCTKY " . 69314718056 is In(2).

c. Keyin 'LOGCEXPCX 22" and press X)@(dkdx) to get ' ERP LK I~

CEXPCRI*¥2,.382285@9299) ',

COLCT gives « 4342944819084 Notice that LOG is common loga-

rithm (base 10) and that the final result is 1/In(10).

d Keyin 'm™E+X*m+r™m' and press to get

'LHCT 22™R+m¥E~Cw-12".

e. Keyin '"T™CxX"™32 "' and press d/dx) to get

'LHT2% (32X220K32",

Notice that in these last two problems, if T were to be converted to a deci-

mal number (such as by (3]5]*JC]F) [EVAL), you would get an awful mess of

unrecognizable numbers.

306 An Easy Course In Using The HP-28S

4. a. Keyin '"37C(2%#X) "' and{ ¥ 1 3 2. Choose an accuracy of about

10> (i.e., press (EEX)(5)(CHS)[ENTER)) and press (f). You get a result of

26870.2622426 with an error of .268479611498 — that is, accurate to 5 dec-

imal places.

b. Put 'R¥1@*{(-K*22" (or "K¥ALOGC-K*22"),L ¥ 1 2 X and

an accuracy of « BEEEEEEAL (i.e., 10-8) on the stack and press 7). You

get 2.16930093711 x 10-2 with an accuracy of 2.16912752397 x 10-10,

c. Put the calculator in radians mode ({§MODE) IEITMM, you'd like &t radians

not w degrees, thank you). Keyin 'SINCR+mw2 ', L K 8 'n-2' %

and « BBEBAAEAA]L (i.e., 10-1°) and press F). You get a result of -1

with an accuracy of 1.00001310044 x 1010,

Notice that, in general, the greater the accuracy, the longer the calcula-

tion time. Also notice that the limits of integration can be expressions (as

in c).

Problem Solving 307

Plotting

Information comes in many forms. You've seen numbers, letters, bits, and vari-

ous and sundry compound information types built from them. Each of these

forms has advantages based on how it's used and what you want to know.

Graphs are, in a sense, pictures of numbers. Such pictures give you easy access

to (1) trends in collected data; (2) peaks and valleys in the output of functions;

(3) comparison between different functions; (4) function zeros; et cetera, etc.

In short, graphs give you information about information.

And the HP-28S gives you the ability to generate graphical pictures of numeric

information.

The DRAW function in the PLOT menu is basically a program written to auto-

mate the process of graphing real-valued functions.

A function, in this case, is anything that maps one real value onto another. As

far as the HP-28S is concerned, therefore, the function can be an algebraic ob-

ject, a postfix program, and even a constant or a name.

308 An Easy Course In Using The HP-28S

In the case of the postfix program, the function must be written so that it takes

no values from the stack (i.e., it refers to values via names) and so that it leaves

only one.

The first and second pages of the PLOT menu contain the operations you will

need to set up and plot the function(s) of your choice.

Some examples of a postfix program and an algebraic object used to plot X2+X-2:

'Rh2tR-21

€ » DUP 5@ + 2 - *

The DRAW command assumes that the function contains only one undefined

name. That is, since the plot will be two-dimensional, it must have one and only

one name (the independent variable — the "x-value").

You may explicitly select the independent variable using INDEP. If you do not

explicitly choose the independent variable, DRAW will scan the object and use

the first name it finds as the independent variable.

The y-axis is used to indicate the value of the function given the current value of

the independent variable. This does not mean that the algebraic object cannot

have more than one name in it. It does mean that DRAW will only vary one of

them as it successively evaluates the function. Thus, every other name had bet-

ter have a value attached to it, otherwise DRAW will generate an error.

Problem Solving 309

Scaling

Plotting is not always as simple as storing a function (i.e., via STEQ) and invok-

ing DRAW.

Sometimes, in order to get the clearest picture of the function, you must have

some idea of the scale of the plot and therefore the domain over which you want

to plot (the x-values) and the range of the function (the y-values).

If you don't, it's possible that what you'll see may be so little of the curve that

you can't get much information from it, or so much of the curve that you don't

see important detail.

Try this: Press ('X ~2]+[X]-)2] B [TThe resulting plot has

its "bottom" cut off. You know that this expression "bottoms out” when X is -0.5,

but you can't see it.

Scale is established primarily by setting the minimum and maximum values of

the domain and the range. You do this by making a complex number (X,y) out of

the maximum x- and y-coordinates and then using the command PMAX. Then

you do the same for setting the minimum values of the domain and range, ex-

cept that you would use PMIN.

To correct the plot you just generated, press to leave the plot. Then

press((]6]-J8]cHs]»J2]-2]5])chHs)R[IFTEL

Looking in the second level of the menu (via (NEXT)), you can increase or de-

crease the width of the plot with EEI¥Il (which multiplies the plot width by a

constant). Numbers less than 1 will decrease the width (reduce the domain),

while numbers greater than one will increase the width (enlarge the domain).

BETI works similarly with the plot height (the range,i.e. the y-values).

310 An Easy Course In Using The HP-28S

Digitizing

Once you have stored the function, established an initial scale, possibly selected

the independent variable, and invoked DRAW, the HP-28S will plot the function.

Depending on the function, this process may take some time. You'll know when

it's done, because the busy annunciator will be turned off (but if you become im-

patient, ATTN will interrupt the plot).

When it's done, the plot is left for your inspection. Then you also have the op-

tion of digitizing some points. That is, you may move a special cursor (it resem-

bles a +) around the plot to points of interest by using the cursor keys. Once

you've found a likely spot, you can record its coordinates (put them on the stack)

by pressing (INS). Don't worry that you can't see the recorded value. It will be in

the stack when you leave the plot display.

One reason to digitize points is to zero in on an interesting bit of the curve. You

may pick two new points on either side of the interesting portion to be your new

PMIN and PMAX. By digitizing those points, you'll have them on the stack and

thus available for [I8F:l and/or [IREH and then replotting with a new scale.

Another good idea: You can use the digitized points as guesses for use in

SOLVR.

One feature of DRAW that's not obvious is what it does with algebraic equations.

Since an algebraic equation is essentially a pair of algebraic expressions separ-

ated by =, the DRAW command plots both at the same time.

The advantage to this is that the point(s) at which the two curves cross (if they

cross) is the point at which the two expressions are equal (go after it with that

key's digitizing capabilities!).

Problem Solving 311

Keyboard Error Recovery

Anyone who's attempted to do any time-consuming thing is grateful for a meth-

od of recovering from false starts. No matter how careful you are, there will be

times that you'll want to redo, undo, or throw away and restart whatever it is

you're working on. You'll be happy to know, then, that the HP-28S has a set of

"ways out" from false starts and blunders.

: The Command Stack

You've already been introduced to the command stack (page 65), and after read-

ing this far you've probably gained some appreciation for its utility.

To cover this ground again, the command stack contains copies of the last four

command lines that you [ENTER)'ed. Repeatedly pressing J(COMMAND) recalls suc-

cessively older command line copies to the active command line for you to edit

and/or re[ENTER). Pressing [J(COMMAND) a fifth time cycles back to the most recent

command line copy.

The advantage here is two-fold. First, if you've made a keystroke error in a long

or involved command line, will allow you to recall that command line

if it's not too old, then correct it and re-enter it (note that re-entering simple

command lines is often easier than using the command stack).

Second (as in the quiz solution on page 109), you can use the command stack to

repeat lengthy and redundant commands. It's also a convenient way to enter a

series of slightly different commands (see page 82). And notice that, since im-

mediate-execution commands are not normally recorded in the command line,

you may need to do some planning ahead and use (o) for this kind of command

repetition.

312 An Easy Course In Using The HP-28S

: UNDOing a Command

Sometimes you will find that you will need to UNDO whatever it is you just did.

It may be that you did something that you didn't intend to do, or perhaps that

last command ate your only copy of some important datum. Never fear, you've a

way out.

Any time you press ([ENTER], or any time you press an immediate-execution key

since it effectively "presses on itself" (see page 33), the HP-28S makes a

secret copy of any stack Levels that are changed by the invoked commands. The

advantage of this is that if you need to undo something, you can then press

and the following things will happen:

1. Any and all results of the last command will be dropped from the stack.

2. The stack contents eaten by the last command will be replaced — pushed

back onto the stack.

3. UNDO will have amnesia. IL.e., pressing a second time will not undo

the UNDO, nor will it repeat its action. It will become active again only after

another (ENTER}-pressing command has been invoked.

Things will then be as if you had never invoked that last command.

As you can see, this is tremendously convenient. In fact, UNDO will probably be

the most commonly used error-recovery mechanism in your arsenal.

Problem Solving 313

: Recalling the Stack as It Was Before the LAST
Command

LAST is a slightly different flavor of UNDO. Here's a list of its actions, so you

can compare it with UNDO:

1. Any and all results of the last command will be left on the stack.

2. The stack contents eaten by the last command will be replaced; pushed back

onto the stack.

3. LAST won’t have amnesia. IL.e., pressing fJLAST) a several times will repeat

its action. You'll get several copies of the remembered stack Levels.

The main use for LAST is when you have an especially gnarly object on the stack

and you need to do several operations on it. You don't need to re-ENTER) it. Rath-

er, you can simply press between operations, to recall the original gnarly

object for re-use. Meanwhile, the results of the different operations would be

pushed onto higher Levels of the stack.

314 An Easy Course In Using The HP-28S

Enabling and Disabling Error Recovery

A final point of interest about error recovery: you can turn it off. On the second

page of the MODE menu are commands for turning on and off each of these error

recovery schemes.

But why would you want to turn them off? You never know when you might

need them.

The answer is: to conserve memory.

Since each of these mechanisms works by remembering (storing) something in

case you want it again, there will be times when it's just plain wasteful to take

up memory with something that's only potentially useful.

Consider also the case of especially large objects: there may simply not be

enough memory to remember the last large object and put the next one on the

stack, too.

Problem Solving 315

Editorial

Well now...having dug deep into the nitties and the gritties of the HP-28S, you

should probably poke your head back into the fresh air and catch a new perspec-

tive (or maybe re-catch an old one). It's too easy to get lost in the details and

how-to's and forget the big picture. It'd be a shame to lose sight of exciting po-

tentials while mired in the mundanity of getting the basics under your belt.

So in case you've forgotten, it's time you were reminded how much you have to

be excited about. If you're a serious problem-solver, by now you should be feel-

ing like a kid in a candy store, or maybe like an auto connoisseur at a new car

show. There's so much here, so much you can do, and so many new ways to do it

that the mind delights — and maybe boggles a little bit too. That's okay. It's all

part of the excitement.

Just remember to be excited.

What you have in the HP-28S is more than the Cadillac of calculators. It's more

like being on the freeway at rush hour and finding out that your vehicle can fly.

You're no longer bound to the pavement. You don't need to go where everyone

else is going before going where you want to go. You have a whole new way to

travel. Not only can you get there (wherever there is) faster, easier and more di-

rectly than anyone else, you can also go places that they can't.

If you haven't caught the drift by now, here it is: This machine is "radibolical.”

You just ain't never saw nothin' like it nohow nowhere before, but you can bet

you'll be seeing more of it. It's just too useful and too good an idea not to catch

on, and if it doesn't, it's because we aren't ready for it — like di Vinci's helicopter.

Don't be cowed by its power and flexibility. Take it slow and get to know the

most capable problem-solver you've ever met. He's a little short on small talk,
rnbut in his element, he's "dynobitchin'.

Can you tell we like this machine? And actually, we've realized its flexibility

even more during the writing of this book. Back on page 9, we called the HP-

288S a problem-solving tool, but you can see now that it's really a collection of dif-

ferent tools and attachments — more like a full toolbox, actually.

You can also see how hopeless it would have been to try to cover everything in

this book, so, true to our early warnings, we didn't try to tell you how to build a

house. The design of your house is your job (but once you decide where and how

the boards ought to go together, do we have a toolbox for you)!

Just remember — with all the real satisfactions you should get from such great

tools — you'll be wasting them if you build more house than you need.

This seems to be true of a lot of modern inventions. Two related questions come

up over and over again: What peaks of performance can you squeeze out of

them? Should you push them that far?

Like most machines, the HP-28S answers these two questions very differently,

and being so representative of the machine age, it therefore gives you a chance

to begin asking better questions about our technology. Instead of idly wondering

"How many neato-nifty-awesome-but-useless things can I make this little box

do?" we hope you'll ask "What better things can I do with the time and energy

these tools save me?"

For without sorting out the advisable from the possible, you'll be no better off

than before you ever had these tools. Your time and talents will have gone

merely to "gee-whiz" tinkering; you and the world will be the poorer for it. A so-

phisticated machine may be the subject of a course, but it's not the object of the

game.

February, 1988

By the way, if you liked this book, here's a full list of books that you or someone

you know might enjoy:

e An Easy Course in Using the HP-27S

e An Easy Course in Using the HP-17B

e An Easy Course in Using the HP-19B

e An Easy Course in Using the HP-28S

e An Easy Course in Using the HP-28C

e An Easy Course in Using the HP-16C

e Computer Science on Your HP-41 (Using the HP Advantage ROM)

e The HP Business Consultant (HP-18C) Training Guide

e Statics For Students (Using the HP Advantage ROM)

¢ The HP-12C Pocket Guide

e An Easy Course in Programming the HP-11C and HP-15C

e An Easy Course in Using the HP-12C

¢ An Easy Course in Programming the HP-41

You can use this handy set of order forms here =

Or, you can contact us for further information on the books and where you can

buy them locally:

Grapevine Publications, Inc.

P.O. Box 118

Corvallis, Oregon 97339-0118

U.S.A.

Phone: 1-800-338-4331

(Within Oregon: 754-0583 Outside US: 503-754-0583)

'"Yes! Please send:

ORDER FORM (Impress a Friend!)

___copies of An Easy Course in Using the HP-28S @ $22ea.=$

___ copies of An Easy Course in Using the HP-19B @$22ea.=$

___copies of An Easy Course in Using the HP-17B @$22ea.=$

___ copies of The HP Business Consultant (HP-18C) Training Guide @$22ea.=9%

___ copies of An Easy Course in Using the HP-12C @ $22ea.=$

__ copies of The HP-12C Pocket Guide (Just In Case) @$ 5ea.=9%

copies of An Easy Course in Using the HP-27S @%$22ea.=9%__

__ copies of An Easy Course in Using the HP-28C @$22ea.=$

__copies of An Easy Course in Programming the HP-11C and HP-15C @ $22ea.=$

__ copies of An Easy Course in Programming the HP-41 @ $22ea.=$

__ copies of Computer Science on Your HP-41 (Using the Advantage Module) @3%15ea.=$

__ copies of Using Your HP-41 Advantage: Statics For Students @%$12ea=9%__

__ copies of An Easy Course in Using the HP-16C @$22ea=9%___

(Prices and availability may change without notice.) Subtotal = $______

plus
SHIPPING INFORMATION:

For orders less than $10.00 ADD $1.00 $__

For all other orders- Chooseone:[Post Office shipping & handlingADD $2.00 $_
(allow 3 weeks for delivery)

or

UPS shipping & handling ADD $3.50 $
(allow 7-10 days for delivery)

TOTAL AMOUNT: > $

PAYMENT:

Your personal check is welcome. Please make it out to Grapevine Publications, Inc. or:

Your VISA or MasterCard #: Exp. date:

Your signature:
.
r—.{.—_—__—_—_———-—._—:———__—_———————__—_——_———'fl

Please ship my book(s) to:

Name

Address
Note: UPS will not deliver to a P.O. Box! Please give a street address for UPS delivery.

City State Zip

OR order by phone with a VISA or MasterCard! Call 1-800-338-4331 (in Oregon: 754-0583)

Thank You !

Reader Comments

We here at Grapevine love to hear feedback about our publications. It helps us write books

tailored to our readers' needs. If you have any specific comments or advice for our authors af-
ter reading this book, we'd appreciate hearing them!

Which of our books do you have?

Comments, Advice and Suggestions:

May we use your comments as testimonials?

Your Name: Profession:

City, State where you live:

How long have you had your HP calculator?

Name

Address

City

Name

Address

City

Please send Grapevine Catalogues to the following people:

State Zip

and

State Zip

Tell 'em You Heard it Through The Grapevine...
(Sorry — we just had to use that in here somewhere)

This cover flap is handy for several different

things:

-- Tuck it just inside the front cover when you

store this book on a shelf. That way, you can

see the title on the spine.

-- Fold it inside the back cover--out of your way--

when you're using the book.

-- Use it as a bookmark when you take a break

from your reading!

Loux

Coffin

Bloch

)
A
s
e
r
y
u
y

U
l
9
S
4
0

a
R
5
;
N%

An Easy Course In Using The HP-28S

If you're looking for a clear, straightforward explanation of the powerful

HP-28S, then this is your book! Authors Loux and Coffin sort through the

myriad features of this machine, giving you the pictures and the practice

you need to make the HP-28S your favorite calculating tool.

The first several chapters bring you up to speed on the mechanics of opera-

tion — what keys you need to press to control and command the display,

the stack, and the menus. You'll get lots of practice problems and explana-

tions designed to get your fingers trained for action.

Then you go straight to the heart of the machine, exploring all the differ-

ent information "objects” and how you can manipulate them, combine

them, name them and (best of all) think about them. You'll see how HP's

well-known stack-oriented (postfix) arithmetic becomes the engine behind

all this math power, and soon you'll be harnessing it for yourself!

Then in separate discussions, this Easy Course touches upon specialized

topics, such as symbolic algebra, calculus, plotting, and programming.

It's all in Grapevine's familiar Easy Course format — a book full of exam-

ples, review questions, and quizzes, designed to let you work at your own

speed (and your own speed will soon amaze you)! It's a very pleasant sur-

prise to find that learning about a calculator can be this satisfying — when

the right explanation transforms a mysterious machine into a friendly and

powerful tool.

ISBN 0-93101L-148-3

A FROMTHE PRESS AT

GRWEVINE. PUBLICATIONS, INC,
P.O.Box 118 ¢ Corvallis, Oregon 97339-0118 ¢ U.S.A. * (503) 7564-0583 0 "1 2841 oomlzl; 7

HP Part # 92236D

	Cover
	Contents
	INTRODUCING...The Introduction
	What Is This Tool?
	What Is This Book?
	What's In This Book - and What's Not?

	How to Picture Your HP-28S
	The Display
	The Keyboards
	Posting Memos: Interactions Between the Keyboards and the Display
	The Menu Keys: Your Command Card File
	The [] ("Shift") Key
	Immediate Execution ("Do-It-Now") Keys
	Messages From the System - Memos From Your Staff
	Status Messages: The Annunciator Area
	A Tricorder Reading
	Quickie Quiz
	Quickie Answers

	Making Your HP-28S Work For You: The Command Line
	Typing Characters Into the Command Line
	Changing a Character in the Command Line
	Adding and Removing Characters
	[][INS], [][DEL] and [ATTN]
	[][NEWLINE], [▲] and [▼]
	The [LC] Key
	The [α] Key
	Item Delimiters and [ENTER]
	[][EDIT] and [][COMMAND]
	Command Line Quiz
	Command Line Answers

	Notes

	Real Numbers, the Stack, and Postfix Notation
	Real Numbers - and the Real World
	Representing Real Numbers On the HP-28S
	Scientific Notation on Your HP-28S
	12-Digit Accuracy: Rounding Error
	Magnitude: How Big (or Small) Can You Get?
	Posting Real Numbers: [CHS], [EEX] and Display Modes
	Display Formats
	The Stack and Postfix Notation
	Real Number Commands: 0-, 1-, and 2- Number Operations
	Arithmetic Practice
	Arithmetic Practice Solutions

	Stack Operations
	[ENTER]'s Second Job
	The [SWAP] Command
	How to [CLEAR] the Stack
	Strenuous But Practical Stack Practice Problems
	S.B.P.S.P.P. Solutions

	The "Stuff" Upon Which the HP-28S Works
	An Equal Opportunity Calculator
	The HP-28S's Philosophy of Information
	Real Numbers
	Complex Numbers
	Simple Questions About Complex Numbers
	Simple Answers to Simple Questions About Complex Numbers

	Vectors
	A Visit With Vectors
	Results of A Visit With Vectors

	Arrays
	Array Aptitude Test
	A.A.T. Results

	Characters
	Character Strings
	Character String Query
	C.S.Q. Answers

	Names
	Name Games
	Name Game Winners

	Bits
	Binary Integers
	Binary Integer Test
	B.I.T. Answers

	A Pause For the Cause
	Lists
	List Lessons
	List Lessons Learned

	Procedures: (a) Postfix Programs
	Program Problems
	Program Problem Solutions

	Procedures: (b) Algebraic Expressions
	Algebraic Aptitude Test
	A.A.T. Scores

	Procedures: (c) User-Defined Functions
	User-Defined Function Fun
	U.D.F.F. Consequences

	Directories
	Directory Discussion
	Directory Assistance

	Menus

	Problem Solving
	Introduction
	Postfix Programming
	So
	Answers
	Local Names
	Local Name Lesson
	Local Name Moreon

	Some Comments Before You Go On
	Making Decisions
	Conditional Curves
	Conditional Conclusions

	Variants of IF...THEN...ELSE...END
	Iffy Situations
	Iffy Answers

	Doing Things More Than Once
	Loop Practice
	Loopy Answers

	Solving Problems Using Algebra
	Why Use an Algebraic Object?
	Peculiarities of Representation
	Some Practice
	Some Answers

	How Do You Use an Algebraic Object?
	Basic Algebra Problems
	B.A.P. Answers

	Name Substitution
	More Substitutions
	FORM
	Less Basic Algebra Problems
	Less Basic Algebra Solutions

	Some Short-Cuts
	The Equation Solver
	Still More Algebra Problems
	S.M.A.P. Answers

	Calculus
	Symbolic Constant and Symbolic Function Evaluation
	A Final Visit with Algebra/Calculus
	Final Answers

	Plotting
	Scaling
	Digitizing

	Keyboard Error Recovery
	[][COMMAND]: The Command Stack
	[][UNDO]: UNDOing a Command
	[][LAST]: Recalling the Stack as It Was Before the LAST Command
	Enabling and Disabling Error Recovery

	Editorial

