
HP-28S
Engineering Applications

by Robert Boyd

[oF LOGS. EVSBID PREV

Bo) (= [=
EDIT EW? VIEW ROLL SWAP

=) (@(E (© 6
vi COMMANG UNDO LAST 1\

8008s

NEWLINE » x 2 MENUS

EEEECIE J

EduCALC
27953 Cabot Road
Laguna Niguel, CA 92677 U.S.A.Stock #2219

HP-28S ENGINEERING APPLICATIONS

by

Robert R. Boyd

Copyright 1989

Robert R. Boyd

All rights reserved

EauCALC
27953 Cabot Road
Laguna Niguel, CA 92677

(714) 582-2637

ACKNOWLEDGEMENT:

Many thanks to friend and colleague Gary Garth for reviewing the

manuscript and providing invaluable corrections and comments.

DISCLAIMER:

The author and/or EduCALC, Inc. make no warranty of any kind with
regard to this material. The author and/or EduCALC, Inc. shall not

be liable for errors contained herein or for inicidental or con-

sequential damages in connection with the furnishing, performance,

or use of this material.

TECHNICAL SUPPORT:

For the price of a self-addressed stamped envelope (SASE), the author

will answer questions and provide help for programs that will not run

properly. This will generally take the form of a printout of the
author’s working program listing, plus inputs, outputs, flag status,

plus suggestions and comments. Send questions and SASE to:

HP-28S HELP

P.O. Box 5950-260

Orange, CA 92667

PREFACE

These programs have been found useful over the years, first as HP-41
and then as HP-71B programs. Since Hewlett-Packard has regrettably
discontinued the HP-71B, they were translated for the HP-28S. It is
hoped they will have some practical value to the reader of this book.
They are unavoidably slanted towards electrical engineering, but at

least half of the subjects should be useful to all engineering

disciplines.

Some methods are original with the author, but most programs were

adapted from various technical references which are provided. No

attempt has been made to optimize the programs. The interested reader

will see a faster or more efficient way to do it.

The programs are "bare bones*, i.e., for the most part there are nc
input or output label strings. These embellishments are left for the

reader to add after gaining famjliarity with the programs. The HP-28S
characters yr and y are shown as "pi* and *sqrt®, respectively.

The programs are presented in the following format:

a. Introduction:

An explanation of what the program is used for. Some exposure

to the material by the reader is assumed.

b. Stack diagram:

A stack diagram is used to show the stack contents before

and after program execution.

c. Examples:

One or two examples are given 80 the user can check the program

to make sure it was entered correctly.

d. Listing:

Commented listings of the programs.

e. References:

This section will either give book or article reference(s). If the
method is original, a theoretical explanation is presented.

Page |

II.

III.

IV.

STATE SPACE METHODS

1. State Transition Matrix « « « « .

2. Characteristic Equation +. +. «+ « + « .
3. Transfer Matrix « « v ¢ ¢ « « « «

POLYNOMIALS

1. Real or Complex Roots ¢(n > 4).

2. Curve Fitting . . . « « « ¢ « «4 ov o o .
3. Surface Fitting + «o.oo...

TABLE OF CONTENTS

SIGNAL PROCESSING

N
O
N

S
E
W
N

RMS Value of Random Waveforms
RMS Value of Deterministic Waveforms

RMS Value of Piecewise Continuous Waveforms. .

Discrete Fourier Transform
Fast Fourler Transform
Discrete Convolution +. +. +. . .
Autocorrelation +. 0 0 0 ee ew

TRANSFER FUNCTIONS

1. Step Response of Any Transfer Function

2. Bode Plots From Transfer Functions

MISCELLANEOUS

1. Worst Case Analysis + «v « « v « « o «

2. Accurate Gain Ratios . . . « + v ov « ov « « «

3. Spline Interpolation . . . « + « « « + «+ « .

4. Kalman Filtering . . . « +. « «vv ¢v « + « « «
5S. Newton’s Method v ¢ ¢ ¢« « « « « o «

6. Inductor Design +. + ¢ vv vv eo

Page 2

A WORD ABOUT DIRECTORIES

The author takes advantage of the directory scheme in the HP-28S
by having the root directory (HOME) contain directories of major
categories of programs, such as circult analysis, math, signal
processing, etc.

The HOME directory is designated as level 1, the next level down

level 2, etc., Level 4 |s the deepest level. Level 4 |s used to

store constants that are used by programs in level 3.

Thus the programs wlll Include directory changes In the beginning
to access the constants in the level below such as << LVL4 ’A’
STO A ... UP >>. The CRDIR command is used to create the downward
directory changes.

The command UP is an upward directory change to get back to level 3

or higher directories. Procedure UP would be: << next level up

name >>. As an example, a specific directory path is given below:

Path = (HOME MATH MAT LVL4)

Downward directory changes Upward directory changes

from HOME created by ‘CRDIR’ created by programs

MATH (Goes to level 2 << HOME >> ‘LVL1’ STO
when executed)

MAT (Goes to level 3) << MATH >> “LVL2’ STO

LVL4 (Goes to level 4) << MAT >> ‘UP’ STO

Another directory path has only three levels:

Path = { HOME SIGPR LVL3 }

Downward directory changes Upward directory changes

from HOME created ‘CRDIR’ created by programs

SIGPR (Goes to level 2 << HOME >> ’‘LVL1’ STO
when executed)

LVL3 (Goes to level 3) << SIGPR >> ‘UP’ STO

The user may of course create his/her own directory system. These names

are given here so the reader can follow the program listings.

Page 3

I. STATE SPACE METHODS

1. StateTransition Matrix

a. Introduction:

Leverrier’s Algorithm provides a straightforward means of
obtaining the state transition matrix (STM) from the following matrix

equation:

dx/dt = Ax 1»

where A Is an N x N matrix of coefficients and x is an N x 1 column

vector. The STM is defined as:

(sl - A)? (2)

where I is an N x N identity matrix and s Is the Laplace transform
variable.

The STM initially appears as a transfer function in s, with
the denominator being the characteristic equation, and the

numerator a matrix polynomial. When matrix elements are
collected in the numerator, the final form of the STM results.
The roots of the characteristic equation are then the eigenvalues

of the A matrix. (See example below.)

b. Stack dlagram: (- indicates empty.)

Level Before After

N+ 2 - 8™=1> matrix

N +1 - 8‘™-2> matrix

3: - s° matrix

2: - “*Denom coeff are"

1: A matrix [Coeff vector Ti]

Page 4

c. Example:

(t-t 0 01
Let matrix A=[0 -4 4) (N= 3)

[0 -1 01]

Key in the matrix and enter into level 1: [[-1 00 [0 -4 4
{ 0 -1 0 ENTER. Press SIMA (S I Minus A)

The stack will contain the following five objects when

the program has finished: (About 4 seconds execution time.)

5: [1 0 0]
{0 1 0) (matrix coefficient of s2)
{0 0 11]

4: ([4 0 0]
{0 1 4] (matrix coefficient of 8! = 8)

{0 -151)

3: [[4 0 0)
{0 0 4) (matrix coefficient of 8° = 1)

(0 -141]]

2: "Denom coeff are"

i: [5S 8 4]

From this we obtain:

i100 I | 4 0 0 | | 4 0 0 |
Il 0101Is2+ 10 1 4IiIs+ 10 0 4
| 001 | | 0-1 51 | 0-1 4 |

s® + 582 + 8s + 4

The STM is then:

| 82 4+ 48 + 4 0 0 |
| |

| 0 s(s + {) 4(s + 1)

| |

| 0 -(s + 1) s2 + 58 + 4 |

s® + 58% + 8s + 4

Page 5

d. Listing:

listing comments

‘SIMA’ Main program

<< LVL4 ‘A’ STO A SIZE LIST-> DROP2 Get A matrix & order n

->n<< ni ->LIST 0 CON ‘Ti’ STO Scratch for denominator

coefficients

n IDN ‘Di’ STO Create identity matrix Di

n LALG Subprogram LALG (Leverrier’s

ALGorithm)

*Denom coeff are" Ti Label T1 vector

C1” ‘Tt’ ’T’ D1” ‘F’ 5 ->LIST

PURGE UP >> >> Purge and go back up to
LVL3 subdirectory

‘UP’

<< MAT » Upward directory change to

level 3

*LALG’

<< ->n<<1n FOR gq Start algorithm loop

IF 1 q SAME THEN D1 “F” STO F END Start with Identity matrix

AF «x ‘Cl’ STO Multiply A times F

0 ‘T” STO n q GETT Subprogram GETT (GET T)

IF qn # THEN “T1” q GET D1 *

Ci + ‘F STO F END NEXT >> >> Put matrix F on stack and
repeat.

’GETT

<< ->ng<<1nFORIi “Cl” | DUP 2

->LIST GET ‘T’ STO+ NEXT Get trace of C1 = A % F

‘Ti 9 T q / NEG PUT >> >> Store denom coeff.

Page 6

References:

1. andSvstems, Donald M. Wiberg,
Schaum’s Cutline Series, 1971, p.102.

The alogrithm is given as:

Step i: F, =1, T, = -trAF./1

Step 2: Fa AF: + T.1, Ta = -trAFa/2

Step n: Fn = AFn-s + Tn-sl, Tn = -trAFa./n

s"-'F, + 8"~2F, + ,.. + SF._y + Fn.

Then (8] = A)™! = =--c-cccccccmocccnccnncncnconnoaa-
8" + Tyg" + ,.. + Trh-18 + Tn

where tr denotes the trace (sum of diagonal elements), A, F are

matrices, and T is a scalar.

Page 7

2. Characteristic

a. Introduction:

A faster method of finding the characteristic equation (CE) is
Bocher’s Formula. If the complete STM is not needed, then this
series of programs is preferred. The roots of the CE (eigenvalues)

can be found from the programs in III.{.

b. Stack Diagram:

Level Before After

1: A matrix [Vector of CE coefficients]

c. Examples:

Using the same example A matrix as in 1.1. above, key in the
matrix and enter into level i: [[-1 00 [0 -494[0-10
ENTER. Press BOCH (BOCHer’s formula). When the program has
finished, level | will show:

i: [1584]

Note that the coefficient of the highest power of s, which

will always be unity, is included. In Leverrier’s

Algorithm in I.1., the unity coefficent is assumed.

Hence the CE is: 82 4+ 532 + 8s + 4,

Second example: Key in ([2-23 (111 [1 3-1 ENTER,

BOCH; see in level 1: [1 -2 -5 6). The CE of this matrix is

s® - 282 - 5s + 6.

Page 8

d. Listing:

p List]

“BOCH’

<< LVL4 ’A2’ STO AZ DUP ‘Al’ STO

SIZE LIST-> DROPZ -> n << n 1 +

1 ->LIST 0 CON “B’ STO

ni ->LIST 0 CON ‘T’ STO

1 n FOR i Al n TRACE

‘T 1 ROT PUT ‘Al’ A2 STO#

NEXT ‘B“ 1 1 PUT “T’ 1 GET NEG

‘B 2 ROT PUT 2 n FOR | 1 1 +

-> gq << ‘B” q 0 PUT i “kK” STO

1 1 FOR Jj “B” K GET “T’ J GET

*¥ ‘B’ q GET + “B” q ROT PUT ‘K’

1 STO- NEXT

‘B” q GET i / NEG "B’ gq

ROT PUT >> NEXT >> B

‘K” ‘A1’ ‘T’ ’B’ 4 ->LIST

PURGE UP >>

“TRACE

<< 0->altnc<<1nFORIi “al

i 1 2->LIST GET ¢ + ‘c’

STO NEXT c >> >»

e. Reference:

i.

Comments

Save matrix A2 in Al for

powers of A calculation.

Get order N of A matrix

Scratch for coefficients

Get trace of A matrix

Get A=, A®, etc.

Start Bocher’s sequence

Auxiliary index K

Decrement K and repeat

Put vector B on stack

Get diagonal sum

Pass sum back to BOCH

, DeRusso, Roy, & Close,
John Wiley & Sons, 1965, p. 234.

Page 9

3. Transfer Matrix

a. Introduction:

State space analysis leads to the transfer matrix, which Is
very useful for multiple-input/multiple-output automatic control
system analysis. It is also used for circuit analysis and
is especially useful In the analysis of switched mode power
supplies (SMPS). Using an averaging technique called state
space averaging, many SMPS small signal transfer functions

such as input and output impedance can be obtained.

To obtain the transfer matrix, we begin with the following two

sets of matrix equations:

dx/dt = Ax + Bu (system equation) (3)

y = Cx + Eu (output equation) (4)

where y and u represent output and input vectors respectively,

and x is an N x { vector of unknowns.

For the dimensions, let N be the system order, M the number of

Inputs, and K the number of outputs. Then we have:

matrix A is N x N vector x is N x 1
matrix B is Nx M vector u is Mx 1
matrix C is K x N vector vy is K x 1
matrix E is K x M

After taking the Laplace transform, (3) and (4) become:

sx(s8) = Ax(s) + Bu(s) (5

y(8) = Cx(s) + Eu(s) (6)

Solving (5) for x(s):

X(8) = (sl - A)~*'Bu(s) «”

Substituting Into (6) and dropping the (8) functional

notation:

y = C(s] - A)"*Bu + Eu (8)

If we let the STM = @ = (s] - A)-* (which can be found from
Leverrier’s algorithm in 1.1.) and divide by u we have the
transfer matrix:

y/u=G=CGB + E (9)

Page 10

Note that CGB must have dimensions of E or K x M to be

conformable for addition. Hence the transfer matrix G

will also have dimensions of K x M, or no. of outputs x

no. of inputs. Reinstating the (8) notation, G can be given

generally as:

Gii1(8) Gi2(8) . . . Gim(8)

G2:1(8) G22(8) . . . Gam(S)

|
|
|
|

G(s) = |

|

| G:1(8) OGk2(8) . . . Gxm(8)

output I

where G; (8) = ccceeeeee-- .

input J

b. Stack Diagram:

Level Before After

N + 2 - 8s‘™~-1> matrix

N +1 - 8‘N-2> matrix

4: A matrix 8s! matrix

3: B matrix s° matrix

2: C matrix *Denom coeff are"

1: E matrix [Coeff vector Ti 1]

c. Examples:

For the first example, let N=3, K=M = 1;

(Ll 010]
let matrix A= [001)

{ -30 -31 -10 J]

Page 11

let the B matrix, or in this example, the b column vector be

(note lower case to denote vectors, upper case to denote matrices.)

(
b = ;

]

0
0
1 C

d
C
o
d

O
n
l

let the row vector c = [[451]);

and let e be the null vector [[0 1].

Key In these arrays In A, b, ¢, eorder: ([01 0[001
{ 30 CHS 31 CHS 10 CHS ENTER [([O [O [1 ENTER ([4 5S { ENTER
({ 0 ENTER. Then press CQB. The stack should show at completion:

5S: [([1 1])

4: ([5 1)

3 (t 41)

2: "Denom coeff are"

[10 31 30]o
t

[1
]

To Interpret these answers, remember that K = M = 1, and the

transfer matrix G will have dimensions of K x Mor {1 x {. Hence

G(s) = Gii1(8) TB ecrrccccccccccccaaee-

s® + 108% + 31s + 30

As a more interesting example, key in the following arrays, again
in A, B, ¢, e order:

({ -2.2 -0.6)
(0.6 -0.2 1)> "

(1-100
(0 000.61)

c=1I[001.2 0.61]

e=((0001.2 1)

2, K=1, and M = 4. When CGB is executed the stack should be:Here N

4: [[1.2-1.20 1.56 1]

3: ([.6-.60 1.56 1)

Page 12

2: "Denom coeff are"

1: [2.4 .8]

Now G(s) 1s 1 x 4 and |f we let D(8) = 82 4 2.43 + 0,8, the transfer
matrix elements are:

G:1(8) = (1.28 + 0.6)/D(s)

G:2(8) = -(1.28 + 0.6)/D(s)

G:ia(8) = 0/D(s) = 0

Gi«(8) = 1.56(s + 1)/D(3)

d. Listing: (This is a short program, as most of the work |s done
by the SIMA program.)

Listing Comments

CQB’

<< => abce <a SIMA a SIZE LIST-> Fill stack with Q matrices

DROP2 -> n << n NTP n NTP NTP is a utility subroutine

1 n START c SWAP ¥ b x e + Form G = CQB+E

n NTP NEXT >> >> >> Roll down stack

NTP’

<< ->n << n 2 + ROLLD >> >»

e. References: See 1.1. and I.2.

Page 13

II. POLYNOMIALS

1. Real orComplexRoots,np>4

a. Introduction:

As the title conveys, this series of programs solve for the
real and/or complex roots of polynomials with real coefficients
of order > 5S. Reference 1 has some excellent programs concerning
polynomials, among which are programs that will solve for real
/complex roots for orders 4. If your requirements never exceed

order 4, then It is suggested that the programs from reference 1 be
used and this section omitted. The programs in reference | are
explicit closed form solutions (for up to fourth order) and execute
faster.

The author has tested the programs given here up to order 25. Although
the programs will solve some equations with multiple roots, the user is

cautioned not to use these programs for multiple roots. Since identical

roots rarely occur in practice, this restriction should not be too confining.

Equations with the coefficient of the highest power of s other than
one are permitted, as the program divides through by this coefficient

If it Is not unity.

The method used is known as Bairstow’s method. (Reference. 2.)
(AKA Lin-Bairstow method.) The method pulls out the quadratic
factors from a polynomial with real coefficients and solves that
quadratic for real or complex roots. Thus no root searching is

done in the complex plane.

The roots are displayed in complex form, whether they are real

or complex. Roots given such as (-52, {E-19) should be assumed

real, i.e., the imaginary part may not be precisely zero.

The program is started by entering a LIST of polynomial coefficients
and pressing BEGN. The level of precision is determined by the display
mode. That is, if the display mode is (FIX, SCI, or ENG) n, then the
precision is 1/10». If in STD mode, the precision defaults to 0.001
(FIX 3).

Page 14

b. Stack diagram:

Level Before After

n - (A~,Br) nth root

n- i - (An-1 yBr-1)

2: - (Az,Bz)

i: { list of coefficients) (A; ,B:)

c. Examples:

In the (list of coefficients), the order of the polynomial
coefficients is in descending powers of the variable, from left
to right.

The first example will be an easy fifth order polynomial made up of

integer roots:

P(s) (s + 1)(8 + 2)(8 + 3)(8 + 4)(s8 + 5)

s® + 158% + 85s + 225382 + 274s + 120

which 18 shown in factored form first so we can identify the roots

to check the program. Enter P(s8) in list form as follows:

{ 1 15 85 225 274 120)

in FIX 3 mode and press ‘BEGN’.

During program execution, display levels 1 and 2 will show the iterations

of u and v in the quadratic 82 + us + v. Since P(s) in this example

is fifth order, the first real root will be found and then the search

for u and v starts. After u and v are found, the deflated polynomial

remaining is second order and the 2nd u and v are given ipso facto.

(The reader is reminded of the fact that any odd order polynomial has

at least one real root.)

Page 15

After about 30 seconds of run time the stack should show:

—-
N
W
S

F
N
N
A
N
N
N

|
—-
D
N
S

DS
o
O
V
O
v
o

o
O
v
O
V
o

C
M
O
®
S

o o
O
o
O
o
O
~
v

By increasing the display mode to FIX 6, the roots will be exact

The second example will be a 7th order polynomial, first given in

factored form so the roots can be identified, and then in poly-
nomial form.

Let P(8) = (8 + 30)(s + 500)(s + 9000)((s + 150)2 + 3002)

((s + 75)2 + 802) which when multiplied out:

P(8) = 87 + 9980s8* + 92430258° + 39243057508“ +

1.0684781625E12s5® + 1.33786940625E14s82 +

9.2383453125E158 + 1.826296875E17

Thus we are looking for three real roots, and two complex

conjugate pairs, which gives us the required seven.

Key in the polynomial in list form: ({ 9980 9243025 3924305750

1.0684781625E12 1.33786940625E14 9.2383453125E15 1.826296875E17 }

and ENTER into level 1 and press BEGN to start the program.

After program completion, the stack will show (FIX 3 format):

(-500.051,0.000)
(-9000.000,0.000)
(-149.997,-300.025)
(-149.977,300.025)
(-74.998,-79.999)
(-74.998,79.999)
(-30.000, 0.000)—

“
N
D
W
H
N
O
N

which are close to the expected roots. Again, by using a larger display
mode, e.g., FIX 5, the roots will be closer to exact. The user is cautioned
about using an excessively large display mode as this can cause run times to
be very long. It is best to start with a relatively small display mode
and work up.

Page 16

d. Listing:

Listing Comments

“BEGN” Main program

<< LVL4 59 CF ‘PE’ STO GFIX Store Polynomial Equation
& get display mode.

{) “RTL” STO 5S CF PE SIZE -> n ««

PE { GET { IF # THEN n NORM END Divide by coeff of s"

n2/ FP 0 IF == THEN RROOT 5 SF END If odd order, get real root.

PE SIZE 3 IF > THEN Minimum order is n = 3.

DOO O Begin outer loop with initial
estimates of u and v.

DO PE GSR GUV DUP2 CLLCD Get (remainders) S & R; Get U & V.

1 DISP 2 DISP UNTIL { FS? END Display iterations

RTL + + ‘RTL’ STO QT LIST-> 3 RTL is the RooT List
QT is the QuotienT list

DROPN DEPTH ->LIST ‘PE’ STO Store deflated polynomial

UNTIL PE SIZE 3 == END END Continue until one quadratic
with 3 coefficients left.

PE LIST-> DROP RTL + + ‘RTL’ STO

CLEAR CLMF (DA QT S PE)} PURGE RTS Get quadratic roots

IF 5 FS? THEN RRL LIST-> DROP Display odd order real root

SWAP DROP NEG 0 R->C ‘RRL’ PURGE END RRL 1s Real Root List

UP > »

RROOT” Real ROOT routine

<< 35 36 SF SF PE 'S’ PVAL PVAL & PDIV from reference 1.

‘S’ -1 ROOT NEG 1 SWAP 2 ->LIST Get real root using HP-28S
firmware routine ROOT.

PE SWAP PDIV ‘RRL’ STO DROP Store in Real Root List.

‘PE’ STO » Store deflated even order
polynomial.

Page 17

GSR’ Get (remainders) S & R routine.

<< => u v num << num SIZE -> n Store u & v estimates and
polynomial list ‘num’.

<< num ‘QT’ STO num 1 GET DUP Start synthethic division.
(See reference 2.)

QT 1 RPGS u # NEG QT is QuotienT list.

num 2 GET + QT 2 RPGS Utility routine RPQS

3n2-FORinumi GETQT i 1 - Continue synthethic division

GET u # - QT | 2 - GET v ¥ - QT iI RPGS

NEXT num n 1 - GET QT n

2-GETu#*-Q0Tn3-GETv#*-GQTn

1 - RPGS QT num n GET SWAP n 2 - GET v

- QT n RPGS u v >> >> »

‘RPQS” Utility subroutine

<< ROT PUT “QT” STO >>

‘GUV~ Get U&V

<< QT DA’ STO => u v << Space for D Array and pass
ud wv.

QT 1 GET DUP DA {| RPD Utility routine RPD

u # NEG QT 2 GET + DA 2 RPD QT

SIZE -> n << 3 n 2 - FOR J Begin u & v calculations

QT J GET DA j 1 - GET u % - DA

J 2- GET v %- DA J RPD NEXT GT n 2 -

GET DA n 4 - GET v # - DA n 1 - RPD DA

n3- GET v » NEGDA n RPD DA n 2 - GET

DA ni - GET » DA n 3 - GET DA n GET Get den = denominator

* - ->den << DAn1i -GETQT n 1 -

Page 18

GET # DA n 3 - GET QT n GET # - den /

DA n 2 - GET GT n GET * DA n GET QT

ni - GET # - den / => du dv << Get du and dv

uv dudv {i CF CALE CALculate Error, du/u - ER

IF 1 FS? THEN u v ELSE u du + U=>U+du, Vv ->V + dv

v dv + END >> >> >> >> >

‘RPD” Utility subroutine

<< ROT PUT “DA” STO >>

“CALE” CALculate Error

<(C =>uvdudv < IF duu /

ABS ER < dv v / ABS ER < AND

THEN 1 SF END >> >» Set flag 1 if both less than
error input ER.

RTS’ Get RooTS

<C RTL LIST-> 2/ => m

<< 1 m START QUD RND SWAP RND Solve gquadratics

m2 *% ROLLD m 2 # ROLLD

NEXT >> ‘RTL’ PURGE >>

‘PVAL/ Polynomial VALue
Copyright Hewlett-Packard Co.

<< => st x << st 1 GET 2 st SIZE FOR Used with permission.
See reference 1.

n x # st n GET + NEXT >> >»

/QUD’ QUaDratic solve
Copyright Hewlett-Packard Co.

<< SWAP 2 / NEG DUP SQ ROT - sqrt Used with permission.
See reference 1.

DUP2 + 3 ROLLD - DUP IF TYPE 0 == THEN

0 R->C SWAP 0 R->C END >>

Page 19

‘PDIV” Polynomial DIVision
Copyright Hewlett-Packard Co.

<< DUP 1 GET OVER SIZE -> d t n Used with permission.
See reference 1.

<< {) SWAP DUP SIZE n - 1 + 1 SWAP

START DUP 1 GET t / COLCT ROT OVER 1

->LIST + 3 ROLLD { n FOR m OVER m

GET d m GET 3 PICK # - ROT m ROT PUT

SWAP NEXT DROP 2 100 SUB NEXT d >> >>

‘NORM’ Normalize coefficients

<< PE { GET -> n an << PE LIST->

DROP { n FORqan / PE‘ nl + q -

ROT PUT NEXT >> >>

‘GFIX’ Get Display mode

<< 53 54 55 56 | 4 START FS? 4

ROLLD NEXT 1 3 START 2 # + NEXT Get decimal value of flags

DUP IF 0 == THEN DROP 3 END DUP FIX FIX If STD mode

NEG ALOG ‘ER’ STO >>

e. References:

1. MathematicalApplications, Hewlett-Packard Co.
No. 00028-90111, June 1988

2. CalculationsAlgorithms, Beckett & Hurt,
McGraw-Hill, p. 71.

Page 20

2. Curve

a. Introduction:

These programs will allow polynomial curve fitting (PCF) to virtually
unlimited degree, although a degree higher than 8 is rarely used due to
roundoff error.

PCF should be used with caution. For certain functions the values of the
fitted polynomial can become unstable and diverge. An example of this

is Runge’s function: (See reference 1.)

i
yx) = ==cc=ee-

1 + 25x*=

The higher the degree of polynomial used, the more unstable the poiynomial
values near the end points +1 & -1. Hence PCF is not the best interpolation
method, although it is satisfactory in many situations. (See Spline

Interpolation in section V.4.) It is not intended for extrapolation.

The mathematics used comes from least squares theory (reference 2):
Glven an array of (x,y) data points we first form an array U containing:

1 Xs X42 x42 ,.. X4™

I Xz Xa* x2*® ... Xa™

the number of data points and

the polynomial degree and

1 Xa X2% Xx2® ... Xa" where n

|
|
|
|
|
|
|
| m<n +1,

|
|
|

8 n
n

1 Xn Xn? Xn? ... Xa"

Then the coefficient array C is given by:

C= (UH (U'Y), where ™ indicates matrix transpose and Y is the

column vector of y data points | y: y¥2 Ya ... ¥n IT.

Page 21

b. Stack diagram:

Level Before After

1: Degree M of polynomial -

Note: The calculated polynomial coefficients are available for viewing

in an array named ‘C‘. The array ‘C’ is used for predicted

value calculations using the program PRDV.

c. Example:

It 1s necessary to create the statistics array 2ZDAT of x and y data
points before using the programs. We create the following x,y data
2 DAT array using the STAT menu functions:

({ 0 20 1
{ 35]
2 66 1
3119]
4 200 1
S 315 1]P

N
P
S
P
Y
P
N

[[0 2001 3502 66(3 11904 200(S 315 ENTER I+

Since we have six data points we could use a degree as high as five.

However we will initially use degree three. The program is started

by placing 3 in the command line and pressing PCF.

When the run annunciator goes off, we can try the given integer as well as

intermediate values of x to test the goodness of fit.

Put the number 4 in the command line and press PRDV. Level {1 will show
(4.00,200.00) in complex format to display (x,y) on one line. (FIX 2).
Now try a number beyond the given x inputs. Press 7, PRDV and see
(7.00,671). An intermediate value of x = 3.5 gives y = 155.63.

Page 22

Going to LVL4 subdirectory level, the variable C 1s the coefficient
array and contains:

({ 20.00 1)
(9.00)
(5.00)
(1.00 1]

The interpolating polynomial is thus: x2 + 5x* + 9x + 20.

If we try degree 4 by entering 4, PCF, the array C will contain

((20.00 1
(9.00 1]
[5.00 1]
(1.00 1]
[-6.16E-9])

Hence degree three is sufficient for these data points.

(Actually, the author "cheated" and formed the Z2ZDAT array directly

from the 3rd degree polynomial given above. But it illustrates the
point that a higher degree polynomial is not necessarily a better fit.)

d. Listing:

Listing Comments

‘PCF’ Main program

<< LVL4 “M’ STO N2 -> n M degree, n no. of data points

<¢CnM1+2->LIST 0 CON “UU” Create U matrix

STO 2DAT { GCOL Get column 1 of 3IpAT

‘XD’ STO XD” 1 1 n Store as XD vector

FOR | GETI 'X’ STO 1 M1 +

FOR Jj “U7 1 J 2->LISTX j 1 - ° Fill in U elements

PUT NEXT NEXT CLEAR U TRN DUP ZDAT

2 GCOL * SWAP U » / “C’ STO Get Y vector & coeff array C

’X’ XD’ ‘U’ 3 ->LIST PURGE UP >> >»

/PRDV’ Predicted value program

Page 23

<< LVL4 -> x << C ARRY-> DROP

{ M START x #% + NEXT Evaluate using Horner’s method

x SWAP R->C UP >> » Display predicted value

/GCOL~ Extract column subprogram

<< -> k << TRN ARRY-> 2 GET -> n

<< n NLA => ¢c2 « Utility subprogram

n NLA c2 IF k 2 == THEN

SWAP END DROP >> >> >> >»

‘NLA’ Utility subprogram

<< 1 2 ->LIST ->ARRY >»

e. References:

i. ,

Forsythe, Malcolm, & Moler, Prentice-Hall, 1977

2. andapplications,
Jenkins & Watts, Holden-Day, 1968, p. 132.

Page 24

3. SurfaceFitting

a. Introduction:

Polynomial surface fitting (PSF) is a means of fitting a familly
of curves simultaneously. For example, transistor Ic vs Vce as a
function of Ib represents a family of curves as seen on a curve
tracer. The curves can be viewed as projecting out of the page
(z-axis) and forming contour lines of a surface. For a transistor,
the z-axis would be the base current Ib, the y-axis collector
current Ic, and the x-axis the collector to emitter voltage Vce.

Thus instead of merely fitting a polynomial vy = f(x) as in the previous
section, these programs will fit virtually any number of curves of the

form y = f(x,2). To accomplish this we need a list X of the x data points,
a list 2 of the z data points, and a matrix Y of the y data points as a
function of z. That is,

X= (XX: X2 X33 «.. Xn J,

2=1(2: 2223 ... 2x },

Y = [I[Yii1 Yi2 Yi32 «+. Yik]

[yz: Y22 Y22 ... Yax]

(Ya: Yaz Ya332 «.. Yax)

[yn: Yn2 YN oof Yk 1)

where N is the number of x,y data point pairs for each curve and XK is the

number of curves in the family. (K-1 is the highest power of z iny ="
f(x,z2).).

Another dimension we will need is M, the highest power of x in y = f(x,2),

which is a user input.

The general form of y f(x,2) Is

y = bi: + D122 + bi1222 + ... + biwu2z*?

(bz: + D222 + b2az2%* + ... + baxZ®?!)Xx

(ba: + b22Z + ba3z* + ... + bawzZ™"?*)x*

°

(bus + baz + baz? + ... + buzz" "Xx"

where L = M+1,

Page 25

The programs glven here create four matrices in the solution process:

Dimensions
Matrix Row Columns

U N M+1
A K M+1
ZM K K
B M+1 K

The B matrix contains the coefficients bljJ as given above in the

general form of y = f(x,z), and as such, is the solution we are
looking for.

The mathematics used is an extension of least squares theory to

three dimensions:

A= (UWO-(U"Y); B= (ZM- ADT

where ZM is constructed from the z data points in the same manner as

U is contructed from the x data points, as was done in the PCF section.

The process can be extended to four or higher dimensions (see reference 1).

b. Stack diagram:

Level Before After

i: M -

Note: As in the PCF section, the B matrix is available for viewing in

directory level 4, along with U, A, & ZM. The immediate purpose

of the B matrix is to provide Predicted values of Y given X and 2

('PYXZ27).

c. Examples:

For the first example, let X= (1234), andZ2 =(01 2). Then we
have 3 curves in the family, one for z = 0, z = 1, and z = 2. Hence
K = 3. Since there are four values in X, N = 4. From given data, the Y
matrix is:

([314 29]
Y= [343 91 1] (dim = N x KD

{ 390 189 1
[3 155 323 11]

This means that y = f(x,2) = £(1,0) = 3; £(3,2) = 189; f(4,1) = {55, etc.

Page 26

The lists X and 2 plus the Y matrix must be stored In directory level 4
prior to running the program. (The ancillary matrices U, A, and ZM can
be purged if 80 desired in order to optimize the program. They are

retained for tutorial purposes in the listings given in d.)

Let M = 2. Then place 2 in the command line and press PSF.

For this example, the calculated matrices should be as follows:

)
) [
)

a
w
n

—
-

=
0

b
o
+

n

=
N
r

N
D
—
O

= —
e
s01

91] ZM
iP

l
P
l

P
h

e
d

S
h

p
u
l

P
u
i

6 1]

]
] (rounded in FIX 0 format)
1]W

O
O

o
N
O3

B= [0
0

Hence we can neatly plck out the nonzero B elements and plug them into

y = £f(x,2) = 3 + 2x22 + 9x=z

Note that the first row of B gives the z coefficients for x°, while the

second row gives the z coefficients for x!, and so forth.

Evaluating y = f(x,2) = £(3,2) = 3 + 2%3%4 + 9%9x2 = 3 + 24 + 162 = 189

which agrees with the Y matrix element yucsz+s1> = Yaa.

The A matrix provides intermediate answers about each curve in the

family. For the A matrix given above we have (for M = 2):

Ys =3+4+0+0,

Ya = 3 + 2x + 9x2

Ya = 3 + 8x + 18x2,

In order to get intermediate or predicted values of y for various values
of x and z, the PYXZ program is used. Place the value of x in stack level
2 and the value of z in stack level {, and press PYXZ2. The program will
return the predicted value of y for those values of x and z. For example,

key in x = 2, 2 = 1. PYXZ should return 42.9999999974 (in STD mode) or
close enough to 43 as in the Y matrix. Using PYXZ again for y = £(3.5,2.1)
gives y = 265.395.

Page 27

For a second example, let X = (1 234), 2=(0123); here N = 4,
and K = 4. Again from collected data:

([3 27 93 231]
Y= [364179 378]

[3 119 301 579 1]
[3 192 459 834 1)

Let M = 2 again; place 2 in the command line and press PSF as before.

When the program has finished, the matrices should be:

(t111) ((300 ((10001
U= [124] A=108109] dM=01111)

(139) [43 32 18) 1248)
(1416 1] (138 66 27 1] [139271]

({ 3005)
B= [0460]

(09001)

As in the first example, we pick out the nonzero b elements and form

y = f(x,2) = 3 + 522 + 4xz + 6x22 + 9x=z.

The author has used "textbook® examples here mainly to get the material
across. In real world examples, the B coefficients will not be neat
little integers. The user must excercise some judgement concerning
the relative size of the coefficients choosing only those that will
have a predominate affect on the values of y.

Page 28

d. Listing:

Listing Comments

’PSF’ Malin program

<< LVL4 -> m << X SIZE 2 SIZE Get M, N, & kK

->nk<<{nFORIIm1i+

FOR J “X” | GET J 1 - * NEXT For matrix U

NEXT nm { + 2 ->LIST ->ARRY ‘U’ STO

UTRN DUP Y # SWAP U # / TRN ‘A’ Solve for A matrix

STO k >> GETZB >> » Get 2M & B matrices

’GETZB’

<{ ->k << 1 k FOR1i1 {1 k FOR J

‘2’ 1 GET J 1 - * NEXT NEXT Form ZM matrix

k k 2 =>LIST ->ARRY “2ZM’ STO A ZM

/ TRN “B’ STO UP >> » Solve for B matrix

‘PYX2’ Get y = £(x,2) predicted
values

<< LVL4 -> x z << B ARRY-> LIST->

DROP (} => mk blst << {im Get dimensions of B and start
coefficient list

START 1 k 1 - START z * + Evaluate using Horner’s method

NEXT bist + ‘blst’ STO NEXT

bist LIST-> DROP 1 m 1 - START

x #% + NEXT >> >> UP >»

e. References

1. AlgebraicApproximation,
Chandra P. Nehra, IEEE Transactions on Aerospace &
Electronic Systems, Vol AES-2i, No. 5, Sept, 198S

Page 29

111. SIGNAL PROCESSING

1. RMSValueofRandom Waveforms

a. Introduction:

This program will determine the ac and dc rms value of any random

waveform. The number of data points of waveform amplitude that can

used is limited only by available memory.

The statistics menu is used to enter the data points into the ZIDART

array. A minimum of 20 points should be used. The more points that

are used, the more accurate will be the results.

b. Stack diagram:

Level Before After

3: - dc rms value

2: - average value

i: - ac rms value

c. Examples:

For the first example assume the ZIDAT array contains the following

data points for a +/- 1V square wave: (Though hardly random, this

example }lllustrates that the program can be used for both deterministic

and random waveforms.)

f{i111111114¢-1-1-4-1-¢4-1-1-1-1-1

When program ‘RRMS’ is run, the stack should show (as expected):

3: 1.000 (FIX 3 format)
2: 0.000
1: 1.000

Page 30

Next we try a 25% duty cycle rectangular waveform:

11111000000000000CO0OO00O

Running RRMS’ again results in:

3: 0.500
2: 0.250
1: 0.433

This example shows that when using an rms voltmeter, one should know if

it reads dc or ac rms.

The final example will be truly random, using 20 numbers generated from RAND
in the REAL menu:

0.518 0.202 0.715 0.002 0.912 0.306 0.276 0.797 0.562 0.899

0.022 0.079 0.415 0.245 0.965 0.950 0.435 0.621 0.991 0.084

These data points give the following values:

3: 0.601

2: 0.500

1: 0.333

d. Listing:

Listing Comments

‘RRMS’ Random RMS

<C LVL3 VAR NZ 1 - ¥ NJ. / ac rms value squared

MEAN SG -> a d << a d + sqrt

d sqrt a sqrt UP >> >» Fill stack

Page 31

e. References:

The statistical root-mean value, l.e., the squared dc rms value, |S
given by:

var(n - 1)

V2rms = =====ce--- + mean=

n

where var is the variance, mean is the average value, and n is the number

of data points. The dc and ac rms values are related by:

Vrms = V2ac + V2dc

where Vdc is the average or mean value. Hence V2ac = var(n - {)/n.

Page 32

2. Val inisti Vv

a. Introduction:

If a waveform can be expressed mathematically, then the programs
in this section are preferred from a convenience standpoint.

Given a mathematical expression for the waveform, the user must create

a subprogram ‘FX’ to evaluate the expression as a function of time t.

b. Stack diagram:

Level Before After

3: - dc rms value

2: - average value
1: No. of data points ac rms value

c. Examples:

The first example will be the absolute value of sin(t) (full-wave

rectified sinewave).

Note: The FX subprogram for this waveform ls given below as FX1 so
that the subprograms can be separated. As seen from the listing,

FX merely calls FXi. This makes it easy to modify FX to call
other subprograms with different functions.

When ‘FRMS’ is executed, the stack shows: (using 20 data points)

3: 0.707
2: 0.631
1: 0.318

as expected for this waveform. (Use RAD mode.)

Page 33

Subprogram FX2 gives the differentiated rectangular waveform shown in the
figure below:

/ ~~

 -/

Using 20 data points again and running ‘FRMS’ with program FX as << FX2 »

glves the following values:

3: 0.815
2: 0.000
1: 0.815

Page 34

d. Listing:

Listing

FRMS’

<< LVL3 CLT INV -> 8 ««

01 s-FORtt FX 3+ 8

STEP RRMS >> »

‘FX’

<< FX1 >> or << FX2 >>

FFX

<< 2pl #¥ ->1t << “SINCt)” EVAL

ABS >> >»

‘FX’

<< 1.5 ->1t tcd«

‘EXP(-tcoxt)’

IF t d 2 THEN DROP “-EXP(-tc¥(t-d))’

END EVAL >> >>

e. References

See previous section.

Page 35

Comments

step = 1/no. of data points

Evaluate the function

When 3pRT is filled then

use RRMS program

Select subprogram

Switch to RAD mode before

using.

Time t, time constant tc
= |; auty cycle d = 0.5.
Positive half cycle ist.

Negative half cycle.

3. Piecewise

a. Introduction

This RMS program was developed because many waveforms encountered

in electrical engineering are formed from piecewise continuous line

segments. Examples are trapezoidal, triangular, sawtooth, and

rectangular waveforms.

This program does not make use of the statistics menu in the HP-28;
instead, a time vs. amplitude matrix is generated by the user from the

given waveform.

b. Stack diagram:

Level Before After

3: - dc rms value

2: - average value

i time/amplitude matrix ac rms value

c. Examples:

The time/amplitude matrix (TAM) general form is as follows:

{({ ti Vi) (tl is usually zero)

[t2 V2 1]

[tn Vn 1] (n limited orly by memory)

The first example will be the +/- iV square wave described by 20 discrete
data points in III.1.:

({ 001]
(.0001 1 1) (100 micro-second rise time to 1V)

[.9999 1]

{ 1.0001 -1)J (200 micro-second fall time to -1V)
[1.9999 -1])
(20) (100 micro-second rise time to OV)

Placing this matrix in level { and executing ‘LRMS’ gives:

3: 1.000 (FIX 3 format)

2: 0.000
i: 1.000

Page 36

The next TAM describes the waveform shown next to it:
—

p
y
p
y

p
y

o
a
N
-
O

O
C
W
W
O
o

t
d

C
a
d
C
d
n
d

<
Ww

T
A

Running ‘LRMS’ with this matrix in level { gives:

3: 2.121
2: 1.875
1: 0.992

d. Listing:

Listing

/ LRMS”

<< TRN ARRY-> LIST-> DROP SWAP DROP -> m

<< m ->LIST DEPTH

ROLLD m ->LISTO0 0 -> v t si 82

<< 1m1-FORI t | GET

t11+GETv]GETvVv Ii + GET

=> t1 t2 vi v2

t2 t1 - vi DUP ¥ v1 v2 % + v2 DUP # + %

sl + ‘si’ STO

t2 t1 - vi v2 + » 82 + “82’ STO

IF i m1 - == THEN t2 END >> NEXT -> t2

CK 82 t2 2 %/

DUP SQ si t2 3 ¥ / sqrt DUP SQ SWAP

4 ROLLD SWAP -

sqrt 3 FIX > > >» »

Page 37

Comments

Get no. of points

Get time & amplitude lists

& zero summation variables.

Get pairs of time &
amplitude in variables

t1 t2 vi v2

(t2-t1)(vivieviv2+vav2)

Sum in si for rms

(t2-t1)>(vi+v2), sum in 82
for dc average

When done get period T = t2

Fill stack to level 3

e. Reference:

The (V2rms) value can be obtained by integrating (f(t))2 over
the limits from 0 to period T, and then multiplying by 1/T to get the
average. It can be shown by operating on successive piecewise cont-

inuous line segments by this procedure that the squared dc rms value
is given by:

L

V2rms = (1/37) >, (Lies = LXECV,, Vie)

i = 1

where f(V,,Vier) = VV + VV: + Vie Vies, and L = no. of

line segments.

By integrating the line segments to get the average value Vdc:

L

Vdc = (1/2T) > (ties = £XCV, + Vio)

1 = 1

For example, using the second example TAM where L = 3 and T = 4:

(

—
—
—
—

S
H
D
N
)
—
-
O

O
o
O
w
W
w
w
o

—
v
s

)

Vdc (1/78) (1-0)(3+40) + (2-1)(3+3) + (4-2)(3+0))

(1/8) 3 +6 +6] =158 = 1.875.

VZrms = (1/12)[(1-0)(0+0+49) + (2-1)(9+49+9) + (4-2)(9+0+0)])

= 54/12.

Vrms = sqrt(54/12) = 2.121.

Vac = sqrt(54/12 - (15/8)2) = 0.992.

Page 38

4, Fourier

a. Introduction:

The Discrete Fourier Transform (DFT) provides the harmonic
amplitude and phase of a digitized waveform. The purpose of these

programs is to provide the harmonic amplitudes only, since the
phase angles of the harmonics are usually of lesser interest. The
phase is computed though and is available for scrutiny if desired.

By using N data points, the first N/2 harmonics of the waveform

can be obtained. A value of 40 for N is usually satisfactory, since

harmonics beyond the 20th are seldom of interest.

(The Fast Fourier Transform (FFT) is given in the next section. The FFT
becomes valuable when N is very large, e.g., N = 2048. All else being

equal, the FFT requires more code to implement than does the DFT and
requires more memory for the larger complex data points. The price
pald for using the DFT instead of the FFT is of course longer execution
time.)

b. Stack dlagram:

Level Before After

1: N Harmonic plot

c. Examples:

The user must provide a vector X of the N data points. This can be

done manually point-by-point, or programmatically using a subprogram

to generate the data points. In the example below, subprogram VIN3

generates the following vector X of 20 data points:

X=[11111000000000000000

This of course represents a iV, 0.25 duty cycle rectangular waveform.

Placing 20 in level one and pressing ‘DFT’ will start the program.

Page 39

The program automatically Jumps to a harmonic plot program called
‘FPLT’ that will plot the M harmonics. The computed harmonics are

contained in a vector C1 as follows:

Ct =1[0.452 0.324 0.156 0.000 0.100 0.124 0.079 0.000 0.072 0.100 1)

This Is the familiar 2AdiIsinx/x! harmonic plot for rectangular pulses
where x = dMpi, d = the duty cycle factor (0.25 for the example

above), M = the harmonic number, A |s the amplitude, and pl = 3.141...

According to the program, the 3rd harmonic should be close to 0.156:

dMpi = (0.25)(3)(3.14159) = 2.356; (2)(0.25)18in(2.356)/(2.356)! = 0.150;

The first harmonic should be close to 0.452:

dMpi = 0.785; 0.51s8in(0.785)/0.785)1 = 0.450.

Hence the harmonics calculated by the program are approximately correct.

When the duty factor is changed to 0.5, the harmonics are:

Ci =10.639 0.000 0.220 0.000 0.141 0.000 0.112 0.000 0.101 0.000)

As expected, the even harmonics are zero, as every 1/d harmonic is for

rectangular pulses.

Page 40

c. Listing:

Listing

‘DFT’

<C RAD LVL3 DUP 2 / -> nm <<

ni ->LIST 0 CON ’X’ STO

m1 ->LIST

0 CON DUP ‘C1’ STO ‘P’ STO

n VIN

1imFOR j O00 R->C

‘/C/ STO 1 n FOR I | J 2 pl

% % -> a3 <KC CRE a3 n/ COS "X’ |

GET -> te << te # + C IM a3 n / SIN

te » + R->C ‘C’ STO >> >> NEXT

‘C1 J CABS 2 ¥ n / DUP

IF 0.0001 < THEN DROP 0 END

PUT “/P’ J C ARG NEG PUT NEXT

‘C’ PURGE UP 23 MENU m >>

FPLT >>

‘FPLT”

<< LVL3 -> m << 0 0 R->C DUP PMIN AXES

m 0.5 R->C PMAX CLLCD DRAX 1 m FOR J

‘C1’ J GET J SWAP R->C PIXEL NEXT UP >> >>

Page 41

Get N and M.

Omit this line if manually
creating the X vector

in level 3

P Is for harmonic phase
angle storage.

Omit this line if manually
creating the X vector

Start outer harmonic loop

Start inner time loop

te is temporary storage

Next time point

Multiply harmonics by 2/n

(2/T for continuous FT)

Force zero harmonics

Next harmonic

Housekeeping

Jump to harmonic plot

The 0.5 may have to be
increased or decreased for
better resolution

‘VIN’ << VIN3 >»

‘VIN’ << .25 -> nk Store n & duty cycle factor

<< ’X’ 11 ->LIST 1 n FOR |

IFk i n/ 2 THEN 1 Amplitude = |

ELSE 0 END PUTI NEXT CLEAR >> >> Amplitude = 0

d. References:

1. AdvancedEngineeringMathematics, E. Kreyszig, 2nd Ed.,
Wiley, p. 458.

S. Paull, 1966, Wiley, p. 63.

Page 42

©. [FastFourier Transform

a. Introduction:

This famous algorithm, developed by Cooley and Tukey in 1965S, greatly

improves the speed of the DFT computation. As stated previously, its use

justifies the longer program length when using large arrays of input data.

Some significant differences that must be observed when using the FFT
program given here, is that the input data must be complex, and the

number of complex data points N must be an integer power of two, such
as 32, 256, etc. Also, the spectrum will repeat itself after N/2
harmonics due to aliasing. The FFT program provides N harmonics for N
inputs, but only the first N/2 harmonics have significance.

b. Stack diagram

For program ‘FFT’:

Level Before After

i: - -

For program ‘FPLT:

i: Maximum harmonic Harmonic plot

amplitude

c. Example

Using a 25% duty cycle rectangular waveform again, the following vector X

of input complex data points must be created: (N = 16)

X=101(¢,0 (1,0) (1,0) (1,0) ¢0,0> ¢0,0> ¢0,0> 0,0)

(0,0) ¢0,0> (0,0) ¢0,0> ¢0,0> ¢0,0> ¢0,0> (0,0) 1)

When this vector is stored, the program can be run by pressing FFT.

A program called GABS given in the Listing section generates the

absolute value or magnitude of the complex output harmonics which

are stored in rectangular form in the same X vector.

Page 43

After running GABS, the stack will show: (FIX 3)

16: 0.500 (16 harmonics for 16 inputs)

15: 0.453
14: 0.327

13: 0.159
12: 0.000 (every fourth or 1/.25 harmonic is zero)
11: 0.106

10: 0.135
9: 0.090

8: 0.000 (aliasing starts)
7: 0.090

6: 0.135
S: 0.106
4: 0.000
3: 0.159
2: 0.327
i: 0.453

Other than the top harmonic (2 x dc average), the stack levels designate
the harmonic number. This is due to the odd symmetry of the spectrum

(folded about N/2).

Note: Both the input data points and the output harmonics are stored in
the same vector ‘X’ to save memory. This is known as in-place
computation. After determining the maximum harmonic amplitude,

the FPLT program (not the same as FPLT as described in the DFT
section) can be used to plot the harmonics.

Note that the amplitudes are approximately the same as those in the DFT

section, since the lnput waveform is the same.

d. Listing.

Listing Comments

’GABS”

<< LVL3 X ARRY-> LIST-> DROP -> n

<< 1 n START ABS 2 # n / n ROLLD NEXT >> UP >»

Page 44

FFT’

<< LVL3 X SIZE LIST-> DROP “N” STO

N LOG 2 LOG 7 .5 + IP “V’ STO

0 “M” STO CS S2 S5 Sit

0 10000 START IF PN S - 1 - == THEN

S5 END S11 NEXT UP >>

’CS’

<C2VM-1-"78 STO >»

S27

<< 0 ’P” STO BFC

DO “P’ 1 STO+ BFC UNTIL P S 1 - == END >>

’ 857

<< 1 ’M” STO+ CS

IFP MV 1 -==THEN S18 ELSE S2 END >»

‘S117

<<PS1 ++ /P” STO BFC 0 “K’ STO

DO “P’ 1 STO+ “K’ 1 STO+ BFC UNTIL

KS1-==END >»

Page 45

Store no. of data points

N=2

Start algorithm. See ref-

erence for description.

S2 & SS refer to Step 2

& Step 5, etc. of algorithm.

Program will be stopped by ‘S18’

Calculate S

Step 2 of algorithm

BFC is ButterFly Computa-
tion

Increment P and repeat BFC

Step 5

Increment M and recalculate S

Step {i

Start auxiliary counter K

518’ Step 18

<< 0 ’“P’ STO BFC DO ‘P’ 2 STO+ BFC Last stage of algorithm

UNTIL PN 2 - == END

{ MPQS KV) PURGE BREV Bit REVerse routine

UP KILL >> Stop program.

‘BFC’ ButterFly Computation

<CPS+ Qn STOPSMODZ2M *" * ->r Get exponent r

<< XPG + XPQ - 0 pi 2 #¥ N/ r » NEG

R->C EXP ¥ “X” GQ 1 + ROT PUT 7X’ P {| + Store in-place

ROT PUT >> >>

’XPQ’ Utility routine

<< ’X’” Pt + GET 7X @ 1 + GET >» Get previous values

BREV’ Bit REVerse routine

K1->J<k<1N1-FORI1IF1 JK

THEN “X’ j GET -> t << “X’ 1 GET “X’ J

ROT PUT t “X” i ROT PUT >> ENDN 2 /

-> k << WHILE k J < REPEAT j k - “Jj” STO

k 2 / ‘k’” STO END J k + J’ STO >> NEXT >> >>

‘FPLT’ Frequency PLoT

<< LVL3 0 0 R->C PMIN N SWAP Max amplitude in stack prior
to running

R->C PMAX (0,0) AXES CLLCD DRAX “X’

21 N11 -FOR iI GETI ABS 2 * N / | SWAP ABS => magnitude

R->C PIXEL NEXT CLEAR UP >>

Page 46

e. Reference

1. SignalProcessing, Oppenheim & Shafer,
Prentice-Hall, 1975

Additional reference:

Most textbooks provide FFT flow diagrams for the case of N = 8, and

leave as a problem of how to extrapolate the algorithm for N = 16, 32,
etc. The author has done this for the general case and offers the

following step-by-step procedure upon which the above programs are

based.

The decimation-in-frequency butterfly computation is defined as

(see reference 1.)

Xmas (P) = X(P) + XQ) (1)

Xe 1 (BQ) = [Xm(P) = X(Q) IWR (2)

where Wn = exp(-2Jjpi/N) (pl = 3.141...)

Since N must be an integer power of 2, let N = 2¥, and the stage

counter M will range from 0 to V - 1. Hence for N = 16, the maximum

value of M is 3.

For the variables P & OQ, we must first define an auxiliary variable

S - 2v—-1

The variable P will start from zero be incremented in a manner to be

described below and

@G=P +S

One more variable is the exponent R of the complex operator Ww. The

variable R is given by

R = 2"MOD(P,S)

where MOD is the modulus or remainder function.

Now all that is needed is N (which is given), M and P, and everything
else (V, S, Q & R) follows. Every time that P is incremented, the
butterfly computations (1) and (2) must be performed. The results
are stored in-place for later use when the stage counter M is
incremented and to conserve memory.

Page 47

The general procedure for incrementing P and M and consequently per-

forming the FFT is as follows:

Step Operation DoC1)&C2)2

1. Set P=M=0 Yes

2. P->P +1 Yes

3. If P=S5S-1 go to step 5. No

4. Go to step 2. No

S. M->M+1 No

6. If M=V -1 go to step 18. No

7. P=20 Yes

8. P->P +1 Yes

9. If P=S-1 go to step 11. No

10. Go to step 8. No

11. P->P +5 +1 Yes

12. K=0 (Auxiliary counter) No

13. P->P+1,K->K+1 Yes

14. If K=S-1 go to step 16. No

15. Go to step 13. No

16. If P=N-S-1go to step 5. No

17. Go to step 11. No

18. P=20 Yes

19. P=P +2 Yes

20. If P=N-5S-1 STOP No

21. Go to step 19. No

Page 48

The variables should increment as shown below for N = {6

M=20; S=8 M= i: S = 4 M=2i S=2 = * =

P Q@ R P @ R P OQ R P @ R

0 8 0 0 4 0 0 2 0 0 1 0
i 9 1 1 5 2 1 3 4 2 3 0
2 10 2 2 6 4 4 6 0 4 5 0
311 3 3 7 6 S 7 4 6 7 0
4 12 4 812 0 810 0 8 9 0
$13 5 9 13 2 911 4 1011 0
6 14 6 10 14 4 12 14 0 1213 0
715 7 11 15 6 13 15 4 14 15 ©

The algorithm Just described is a decimation-in-frequency FFT in which
the final output is In "bit-reversed" order. The BREV routine given
above in affect converts P & Q to binary numbers, reverses the sequence
of 1's and 0’s so obtained, and converts back to decimal form. This
will arrange the output harmonics in sequential order. The BREV
routine was translated from a FORTRAN sequence given in reference 1.

Page 49

6. DiscreteConvolution

a. What it does:

Discrete time convolution, as opposed to continuous time convolution,

convolves samples of continuous time waveforms at discrete amplitudes.

The algorithm can be very easily explained by comparing the procedure to

multiplying two polynomials together. For example, we multiply the two

polynomials:

Pa(s)Pb(s) = (1 + 28 + 332 + 483)(5 + 43 + 382 + 23% + 84)

= (5 + 48 + 332 + 232 + 8°) + (10s + BS? + 68% + 43° + 28%)

+ (1582 + 1282 + 98% + 685 + 38%) + (2082 + 168° + 128° + B838* + 487)

To collect like powers of s we can group them in columns and add as

follows:

columns

gs° gs! g2 8s? g¢ ss gs 8?

S 4 3 2 i
10 8 6 4 2

15 12 9 6 3
20 16 12 8 4

The product of the two polynomials is thus:

S + 143 + 2682 + 40s8® + 308“ + 208° + 1is* + 4s”.

We have Just convolved two discrete time waveforms which can be

represented as vectors: A =[(1 234) and B=[(54321)

or AB = BxA = [5 14 26 40 30 20 11 4), where the *%" means convolution.

b. Stack diagram:

Level Before After

2: vector A (or B) -
i: vector B (or A) C = AxB = BxA

Page 50

c. Examples

Using some examples from reference 1.:

A=1[10.80.64 0.512 0.4096 0.32768 0.262144 0.2097152]

(Note: A=0.84, N=20,1, 2, ... ,D

B=[1111111111) (Discrete unit step)

Then placing these vectors in the stack and pressing ‘VCNV’ should show

vector C in level {| as:

C=1011.82.44 2.952 3.362 3.688 3.951 4.16 3.16 2.36 1.72 1.208

0.799 0.472 0.21 1]

(Reference 1, pp 14, 15)

The number of elements in C is Na + Nb - where Na, & Nb
A

i,
are the number of elements in vectors & B.

The next example shows that a vector can be time-shifted by a shifted

unit-sample pulse:

A=(00100)

B=154321)

Pressing “VCNV‘ with A and B in the stack (in either order):

C=10054321001]

or vector B time-shifted two units to the right with 5 +5 -1=29

elements.

Page 51

¢. Listing

Listing Comments

“VCNV~ Vector CoNVolution

<< LVL4 -> a b << a SIZE LIST-> DROP Get dimensions of A & B

b SIZE LIST-> DROP -> nm << mn + 1 - Na + Nb - 1

1 ->LIST 0 CON -> ¢ <« Create storage space for C

{nFOR]11mPFORJ al GET b J GET Get A & B elements

¥clJ+1-->1)<K1]JGET +¢ Add corresponding columns

iJ ROT PUT “¢c’ STO >> NEXT NEXT c UP Put C in stack

22 02> >> >»

References:

t. Digjtal Signal Processing, Oppenheim & Schafer,
Prentice-Hall, 1975

Page 52

7. Autocorrelation

a. Introduction:

The autocorrelation function relates the statistical dependence,
or correlation, of neighboring values in a time series. Thus if a

time series is made up of perfectly random noise, then each time point

Is statistically independent of the previous time point, and the

autocorrelation is zero or random itself.

Related to autocorrelation is cross correlation, where dependence

between two separate time series is measured.

It is important to note at the outset that the algorithm used in this
program is an estimate of discrete time autocorrelation and is used

primarily in statistical applications. Deterministic or analytical
autocorrelation uses an integration method similar to convolution.

The expression used here is

1 N-k
Cov(k) = === = (X(1) - xbX(X(i+k) - xb)

N i=!

k = 0,1,2,..., N-1

where Cov(k) is the covariance (sometimes called autocovariance) of

the kth term, xb is the mean of the data, X(i) is the ith data point,
X(i+k) is k time points away from X(i), and N is the number of data points.

To get the autocorrelation, the above summation is normalized by dividing

by the mean square value of the data or

Cor(k) = Cov(k)/Cov(0)

The user must create a set of data points using the statistics menu,
thus creating a =DAT array. This can be done manually or using a
function subprogram to generate the data points and create the =DAT
array. The dimension need only be N x 1, where N is the number of
data points. That is, It is not necessary to use a time vs. amplitude

(N x 2) array.

Page 53

b. Stack diagram:

For “ACFCN’:

Level Before After

1: - Autocorrelation vector

For ‘APLT’

2: Maximum plot ordinate -
1: Minimum plot ordinate Plot

c. Examples:

Assume the ZDAT array is made up of the following 20 data points
using the RAND function (RNDed in FIX 3 display mode):

.604, .033, .B89, .363, .246, .230, .872, .817, .372, .414,

.622, .105, .641, .971, .896, .414, .452, .570, .924, .003

After running the ACFCN’ program, level 1 contains the following

vector (named ‘CKA’) with N-1 or 19 points:

(-.159, -.249, -.101, .235, -.150, -.079, .105, .189, -.347, .0S55,
.154, -.035, -.270, .050, .068, .112, -.213, .159, -.024 1]

Plotting this vector using ‘APLT’ gives the plot below, with ,5 and
-5 as the maximum and minimum ordinates.

The plot shows that the random number generator is almost truly random,

l.e., white noise, as the correlation bounces up and down with no

discernable pattern.

Page 54

d. Listing

List]

“ACFCN’

<< LVL3 N MEAN -> n xb << n 1 ->LIST

0 CON “CKA” STOO n 1 - FOR k 1 n k -

FOR | 7 DAT’ | GET xb - 7 DAT’ | k +

GET xb - # k CKIP GET + k CKiP ROT PUT

NEXT k CK1P DUPZ2 GET n / PUT NEXT >>

CKA ARRY-> LIST-> DROP ROLL -> ckO0

<< DEPTH 1 ->LIST ->ARRY ck0 / ‘CKA’

STO CKA UP >> >

*CK1P’

<< => k << CKA" k 1 + >> >>

’APLT/

<< LVL3 CKA SIZE LIST-> DROP -> n

<< 0 SWAP R->C PMIN n SWAP R->C PMAX

(0,0) AXES CLLCD DRAX ‘CKA” 1 1 ->LIST

ini - FOR I GETI I SWAP R->C PIXEL

NEXT CLEAR UP >> >>

e. References

Comments

AutoCorrelation FunCtioN

Begin outer loop

Begin inner loop

CKiP, utility routine

Multiply by 1/N

Get Cov(0)

Normalize, get Cor(k)

Utility routine

Plot program

Cet N

1. andApplications, Jenkins & Watts,
Holden-Day, 1968, p.180

Page 55

IV. TRANSFER FUNCTIONS

(Distinct roots)

a. Introduction:

The step response of an input-output transfer function is a measure
of stability, or lack of it. If an output increases in value, or
oscillates at a constant amplitude, the system is unstable. If the
ringing is damped and decays to zero, then the system is marginally
stable. If the output overshoots one or two times before settling,
then the system banawidth, gain, and stability are probably Just
about right, depending on the application.

The usual method of determining a step response, |s to do a partial
fraction expansion of the transfer function (including the i/s step
input), after the roots of the denominator characteristic equation
have been found. Then jt is a relatively simple matter to determine
the term-by-term exponential response, either real or complex, to

obtain the output as a function of time.

A simple example is:

8(s + 2)(8 + 3)(s + 4) s Ss + 2 s + 3 sS + 4

24 24

A = F(s)sl = --—- = {; B = F(8)(8+2)]| ST
is=0 24 |s=-2 (-2)(3-2)(4-2)

|
C = F(s)(s8+3)| = 8; D = F(8)(8+4)| = -3,

Is=-3 |s=-4

For complex roots the procedure is the same.

Page 56

In using the following programs, it is necessary to know the roots of the

denominator characteristic equation. The roots can be obtained from the

root-finding programs in section II. 1., Real or Complex Roots, n > 4.

Prior to running the program, the stack must contain a list of numerator

polynomial coefficients and a list of denominator roots. For the example

above, the numerator list would be { 24) and (2 3 4) for the denominator
roots.

(The s = 0 for the 1/s step input is not included. Also note that the

roots are as they appear in the denominator, not -2, -3, & -4 which are
the actual signs of the roots.)

Once the partial fraction expansion coefficients have been determined,
the next step 1s to get the time response. A second program ‘GTR’ (for
Get Time Response) requires the stack to contain the maximum time and the
time step before executing. The user may have to experiment with these
two parameters before the time plot program ‘TPLT’ is run. The TPLT
program requires the maximum and minimum plot amplitudes in the stack
prior to running. These can be obtained by examining the stack time
response and choosing the amplitudes that will give the best resolution.

b. Stack diagram:

For ‘SRTF’ (Step Response Transfer Function)

Level Before After

2: { numerator coeff) -

1: { denominator roots } No displayed output

For ‘GTR’ (Get Time Response)

Level Before After

k: (= Tmax/Tstep + 1) - Time response at T(k) = Tmax

k-1: - Time response at T(k-1)

2: Tmax Time response at T(1) = Tstep
i: Tstep Time response at T(0) = 0

Page 57

After examining the results of the time response In the stack,

then run TPLT.

For /TPLT’ (Time PLoT)

Level Before After

2: Max amplitude -

1: Min amplitude Time plot

c. Examples:

Again using the same example given in a. above, the numerator and

denominator lists are placed in the stack as follows:

2: (24)
1: (234)

Then the starting program SRTF Is run, which provides no output to the
stack. The user then makes an estimate of the maximum time and the time
step of the time response. Given the roots -2, -3, & -4, a maximum time
of {| second, with a time step of 0.1 second is chosen:

2: 1.0
1: 0.1

Running GTR gives the following stack in (time,amplitude) FIX 2 format:

11: (1.00,0.53)
10: (¢0.90,0.46)
9: (0.80,0.39
8: (0.70,0.32>
7: (0.60,0.24)
6: (0.50,0.17)
5: (0.40,0.11)
4: (0.30,0.06>
3: (0.20,0.02)
2: (0.10,3.20E-3)
i: (0.00,0.00>

As a check, we know the explicit time response to be:

f(t) =1 - 6e~2t + Be~2t - 3e~*t, which at t = 1 Is

f(1) 1 - 6(0.135) + 8(0.050) - 3(0.018)

1 - 0.812 + 0.398 - 0.055 = 0.531 <(------- checks

Page 58

To plot this time response, a max amplitude of 0.6 and min of 0 should
fill up the LCD fairly well. CLEAR the screen of the time response and
enter in the stack:

2: 0.60

1: 0.00 (The minimum amplitude will be zero most of the time. But

there will be ringing responses that will go negative.)

The following plot was obtained by using a time step of 0.05 to get more

plotting points:

Next we try something more interesting; complex roots with some ringing

responses:

5
Let F(8) = ——cmcmmcmceeeaee

s((s + 1)2 + 22)

Key in the numerator coefficient list and denominator root list as

2: (5)
1: (1,2) (1,-2))

and press SRTF. Guessing that 1.0 second will show the complete response,
enter:

2: 1.0
1: 0.1

and press GTR. Stack level 11: shows (1.00,0.99). To insure a settled
response, CLEAR the stack and try:

2: 4.0

1: 0.2

and press GTR. The stack should now show: (FIX 3)

Page 59

(1.800,1.185)
(1.600,1.207) (Peak overshoot)
(1.400,1.191)

(1.200,1.120)

(1.000,0.986)
(0.800,0.789)
(0.600,0.545)
(0.400,0.293)
(0.200,0.086)
(0.000,0.000)

21: (4.000,0.994) i
20: (3.800,0.984)
19: (3.600,0.973)
18: (3.400,0.963)
17: (3.200,0.957)
16: (3.000,0.959)
15: (2.800,0.972)
14: (2.600,0.998)
13: (2.400,1.037)
12: (2.200,1.087)
11: (2.000,1.140)

~
~
N
D
W
L
O
N
O
N
N
D
O
O

e
e

o
¢

e
e

o
o

o
o

o
o

Hence a plot amplitude of 1.3 should work fine. CLEAR and enter

2: 1.300
1: 0.000

and press TPLT, which gives the plot shown below:

As a grand finale, we examine the following transfer function:

200s* - 3280s + 6560

s(s + 0.5)[(s + 1)2 + 92]((s + 2)2 + 122)

Enter (200 -3280 6560) in level 2: and (.5 (1,9) (1,-9) (2,12) (2,-12))
in level 1 and run SRTF. Choosing a max time of 4.0 seconds, a 0.1 second
time step, a maximum and minimum amplitude of 1.0 and -0.5, we get the
following plot after running GTR and TPLT in turn:

Note that the negative dip of the response is caused by the -3280 term
In the numerator.

Page 60

d. Listing:

Listing

*SRTF”

<< LVL4 ‘DLST’ STO ’NLST’ STO

GAAT

ONFOR 1 | GNUM

1 D9’ STO

if NFOR J "A" 1 1 + J 2 ->LIST GET

‘D9’ STO®x NEXT N9 D9 /

‘KA’ 1 1 + ROT PUT NEXT

‘N9‘ PURGE ‘D9’ PURGE UP >>

“GAAT~

<< RAD NLST SIZE 1 - ‘M’ STO

DLST SIZE ‘N STON 1 + N 2

->L1ST ¢0,0> CON ‘A’ STO

N11 +1 ->LIST (0,0) CON ‘KA’ STO

ONFORI ONFOR J IF J O ==THEN O

ELSE “DLST” j GET END NEXT NEXT N 1 +

DUP 2 ->LIST ->ARRY DUP TRN CONJ - GA >>

Page 61

Get A matrix

(See reference)

Get numerator. N is
denominator order.

Initialize denominator of

partial fraction expansion

NS = num. magnitude

Put coeff in KA array

Housekeeping

Get A minus A Transpose

Get numerator order

Create N+1 by N A array

Storage for residues

‘GA

<¢->2a<<1 Nit +FORI1CF1IN

FOR J IF 1 FC? THEN IF | J == THEN 1

SF END END “A” za | J IF 1 FS? THEN

1 + END 2 ->LIST GET | J 2 ->LIST SWAP

PUT NEXT NEXT >> >>

/ GNUM~

<< => | << NLST LIST-> DROP FLIP

IF M0 == THEN “N9’ STO ELSE IF {1 0

== THEN O ELSE “A” {1 1 2 ->LIST GET NEG

END -> x << 1 M START x # + NEXT ‘N9’ STO

>> END >> >»

‘FLIP’

<¢1 M1 + FOR q gq ROLL NEXT >>

‘TPLT’

<< LVL4 0 SWAP R->C PMIN ET SWAP R->C PMAX

(0,0) AXES CLLCD DRAX “TRL” ET DT / t ->LIST

GETI DROP 0 ET START GETI PIXEL DT STEP

DROP2 UP >>

Page 62

Get A array

Skip maln diagonal
and form A

Return to SRTF

Get NUMerator magnitude

Reverse list order

If M=0 then done

Evaluate using Horner's
method

Return to SRTF

Reverse list order

Time PLoT

GTR’

<< LVL3 ‘DT’ STO ‘ET’ STO

1 CF () “TRL STO

0 ET FOR t KA ARRY-> LIST-> -

DROPN C->R DROP ‘M1’ STO

1 NFOR 1 “A” 1 | 2 ->LIST GET DUP IM

IF 0 == THEN | t REAL

ELSE i t CMPX END

NEXT t M1 R->C TRL + ‘TRL’ STO

DT STEP TRL LIST-> DROP ‘Mi’ PURGE UP >>

‘REAL’

<< => i t << C->R DROP NEG t * EXP

‘KA’ 1 1 + GET C->R DROP x ‘M1’ STO+ >> >>

*CMPX”

<< => 1 t << IF 1 FS? THEN CLEAR { CF

ELSE 1 SF C->R SWAP NEG t % EXP “KA” 1 {| +

GET DUP ABS 2 * ROT » ROT NEG t # ROT ARG +

COS x “M1’/ STO+ END >> »

Page 63

Get Time Response

Store time step & max time

Begin Time Response List

Get residue

Get Re(residue)

Get real coeff

or complex coeff

Add to Time Response List

Done

Real coeff evaluation

Complex coeff evaluation

e~*tcos(Bt + arg)

e. Reference:

In finding the constants (residues) associated with each partial

fraction term, a pattern forms that is amenable for computer programming

as shown below using an N = 4 example:

Let F(8) = ~cccceccmmmcnnceccceccrccceeemem
N(Ss)

s(s + pl)(s + p2)(s + p3)(s + pd)

where N(s) is a polynomial

of the denominator equation, and the 1/8 input is included.
ICE

KO

K1

K2

F(s)sl

|s=0

F(s)(s + pl)

in 8, the p’s are roots (real or complex poles)

pip2p3p4

|s=-p1i

F(s)(s + p2)|
Is=-p2

-pi(p2 - p1)(P3 - pi1)(p4 - pl)

-p2(pl - p2)(p3 - p2)(p4 - p22)

The procedure

Continuing this for K3 and K4, we can form an N+! x N+! matrix of the

five denominators as follows:

ZA

0

-p1

-p2

-p3

-p4

pi

pl

pi

pl

0

To create ZA an auxiliary

Al

0 pi

0 pl

pi

0 pl

pi

pe

p2

p2

p2

p2

p2

p3

p4

p2

pa

p2

matrix

p3

P3

p3

p3

p3

P4

P4

p4

P4

p4

Al

I
|

I
|
|

Page 64

P2

- pi

0

- p3

- p4

p3

p3

p3

p3

0

pi

p2

p4

p4

p4

p4

is first formed:

p4

pi

p2

p3

ZA is then given by ZA = Al - Afl™,
we get an N+1 x N matrix A:

After eliminating the main diagonal

I pl p2 P3 pd |

-pi P2 - pl p3 -p! p4-pl

A= -p2 pl -p2 PpP3-p2 p4-p2

-p3 pl -p3 p22 -pP3 p4-p3

-p4 pl -p4 p2-pP4 pP3-p4

Whats the point of all this? To collect in one location the factors of
the denominators of KO thru K4. By multiplying across each row of A we
get the value of variable D9 in the program SRTF for each KO thru K4.
Since the numerator is a polynomial, it is easy to evaluate it and store
as variable N9 in program GNUM using Horner’s method.

It might help if we use the first example where NLST = (24) and DLST
= (234) and walk through the various arrays and variables:

The program GAAT creates the ZA matrix from the Al matrix and its transpose,

and it will be for this example:

I 0 2 3 41 I0 0 0 OI I 0 2 3 4 |
I 0 2 3 4 | 12 2 2 2 | I -2 0 1 2 |

ZA= | 0 2 3 41-13 3 3 3I=1-3-1011I
I 0 2 3 4 | I 4 4 4 4 | | -4-2-1 0 |

With the main diagonal of zeros eliminated by program GA we have the

complex A matrix, which for this example the elements are all real:

(3,0
(1,00

) (1,0)
(-2,0)

(4,0) |
(2,0) |
(1,00 |
(-1,0) |

The program GTR decides which subroutine to go to, REAL or CMPX, based

on the imaginary parts of A elements. If zero, then the program branches

to REAL, if not zero then to CMPX.

Page 65

The vector KA, containing the residues of the partial fraction expansion,
is formed by SRTF and is:

KA =1 KO Kt K2 K3 |

=| (1,0) (-6,0) (8,0) (-3,0) |

where each element Is formed by the ratio N9/D9. For example, multiplying
the 2nd row of matrix A gives D9 = -4. When this is divided into the
numerator magnitude N9 = 24, the 2nd element of KA = -6. The subroutine
REAL performs the evaluation

f(t) = 1 - 6e~2t + Be~2t - 3Je~t

and sums into variable Mi for each time point. When the summation is done

the final value of Ml is stuffed into the TRL list for that time point.

For a transfer function with complex roots, the procedure is the same
except for the f(t) evaluation. For example let

NO
F(8) = cccccmcccecee

s((s + a)2 + b2]

Then

where
(a= + bz)i-2

To use a specific example, let a = 1 and b = 2, then Ki = (5)t-2/4
= 0.559, and tan~!-0.5 = -2.678 radians (in the 4th quadrant). If
(5) and ((1,2) (1,-2)) is placed in the stack and SRTF run, the
polar form of KA vector will be:

KA KO Ki Kk2]

((1,0) (0.559,-2.678) (0.559,2.678) 1]

Note that K! and K2 are conjugates.

Page 66

2. Transfer

a. Introduction:

These programs are relatively straight-forward useage of the

HP-28S functions to plot a frequency response (Bode) plot directly
from a transfer function F(s8) = F(jw)

b. Stack diagram:

The stack is not used as an input. The MENU command is used to
input three parameters for the plot: beginning log frequency (BF),

points per decade (PD), and number of decades (ND). When the program
has finished the stack will contain:

Level After

1: {"LogF dBV Deg") for each frequency

For the plot function ‘BPLT-

Level Before After

2: Max amplitude -
1: Min amplitude Bode plot

To plot phase instead of magnitude, set flag 2.

c. Example:

Assume we desire the frequency response of the following biquad

transfer function:

82 + Nis + NO

82 + Dis + DO

The constants have been determined from a bandpass filter with a

center frequency of 50 KHz to be:

Ni 1002506265661483709; NO

D1 150376; DO NO.

Page 67

These constants must be manually stored In LVL4 subdirectory prior to
running the program. Then let BF = 4 (10 KHz), PD = 20, & ND =i
will provide the frequency response from 10 KHz to 100 KHz ({ decade)
using 20 equally spaced points of log frequency. The output list in

can be edited to display:level 1:

1: ("4

"4.
“4.
"4,
"4.
"4.
‘4,
“4.
‘4,
‘4.
"4,
"4.
"4.
‘4.
“4,

.75‘4
"4.
"4.
“4.
"4. .

.00 9.996 -55.")*S

.00
05
10
15
20
25
30
35
40
45
S0
55
60
65
70

80
85
90
95

V
O
I
L
E
W
N

11

.830

.381

.012

. 728

.535
441
. 455
.590
.867
311
.957
.833
.910
.895
.881
.050
110
.023
124
458

38.
41.
44.
47.

o

»

n

49."
n

a

"

o
n
Q
Q

o

«
=
=

-
a
.

24.
1."
-22."
-38."
-47."
-52.
-54.

10 KHz

Note sudden phase shift at about 50 KHz.
(Log 50,000 = 4.699)

100 KHz

To plot this put 25 in level 2: and 0 in level 1:, which produces the plot
shown below:

Page 68

d. Listing:

Listing

‘TFBP

<< LVL4 (STO BF PD ND) MENU HALT

BF ND + ‘FL’ STO CLEAR BF FL

FOR £ f ‘F’ STO TFCN

R->P C->R SWAP LOG 20 » F 2 FIX

->STR * * + SWAP 3 FIX RND ->STR + * °*

+ SWAP 0 FIX RND ->STR + PD

INV STEP DEPTH ->LIST ‘VOUT’ STO VOUT

3 FIX UP 23 MENU >>

‘TFCN’

<< F ALOG 2 pi # ¥ 0 SWAP R->C -> s

’(8"2+N1#s+N0)/(8"2+D1#s8+D0)’ EVAL >>

‘BPLT’

<< LVL4 BF SWAP R->C PMIN FL SWAP R->C

PMAX BF 0 R->C AXES CLLCD DRAX ‘VOUT

1 1 ->LIST BF FL START GETI STR->

IF 2 FS? THEN SWAP END DROP

R->C PIXEL PD INV STEP DROP2 UP >>

e. References:

Comments

Transfer Function Bode Plot

Get plot parameters

FL = last frequency

Get specific transfer function

Set up display strings

Store output in VOUT list

Specific transfer function

8s = jw

Bode PLoT

Setup Pmin and Pmax

To plot phase, set flag 2

1. PrinciplesNetworkSynthesis Design,
G. Daryanani, Wiley, 1976.

Page 69

V. MISCELLANEOUS

1. V¥orstCase Analysis

a. Introduction:

There are in general three types of worst-case circuit or function

analysis: Extreme Value Analysis (EVA), Root-Sum-Square (RSS), and
Monte Carlo Analysis (MCA). The three methods can best be explained
by a simple example.

Al Mi
Suppose the function to be analyzed is F = -==-=-=---- ,

Ri + R2
{| 4 ——ceeme

R3

Let the component values and tolerances be as follows:

Component Value Tolerance + %

Al 2 2
Mi 1 i
°3 S) 0.5
R2 4 0.5
R3 1 0.5

The nominal value of F is 2/(1 + 9) = 0.2, To find the maximum or high
value of F, the procedure is to vary each of the components in the same

direction, say +1%, one at a time, and note the change in the value of F,
whether it increases or decreases, and record the sign, + or -. This gives

us the sign of the partial derivative of F with respect that component.
Before multiplying the next component by 1.01 (+1%), we change the
previous component back to its nominal value.

(In more complicated functions one has to be careful, as it is possible

for the partial sign to change from say a +0.5% perturbation to a +1i%
purturbation. That ls, the sign may be negative at +0.5%, but be positive
at +1% purturbation. Fortunately this is a rare circumstance.)

Page 70

Continuing with our EVA of F, we construct a table for the changes in F
with +1% changes in all the components, one at a time. Let F’ be the

value of F with each of the component changes:

Component F F/ sgn(F’ - F) Comments

Al + 1% 0.2 0.202 +
Mi + 1% 0.2 0.202 + Al back to 2.0
Ri + 1% 0.2 0.1990 - Mi back to 1.0, etc.

R2 + 1% 0.2 0.1992 -
R3 + 1% 0.2 0.2018 +

Then the EVA high value of F will be with Al + 2%, M1 + 1%, Ri - 0.5%,
R2 - 0.5%, and R3 + 0.5%. Substituting these values into F, F becomes
0.2079. Reversing the tolerance sign on these components gives us the

EVA low value of F: F = 0.1923. Note that the high and low value is
not symmetrical.

Assuming Gaussian or normal distribution for the component statistics,
the chances of F attaining either the high or low value is extremely
remote. Increase the parts count and it becomes even more remote.

Nevertheless, in some military and space applications, EVA is required
as part of the contract. (MIL-STD-785.)

A more realistic worst case analysis used in commercial and some military
applications is RSS. The mathematics for RSS is given in the Reference
section. For now the basic idea is the assumption of Gaussian statistics
for the components, and then calculating the square root of the sum of the
(F - F/)2 values. This gives a Gaussian distribution for F with the
magnitude of the standard deviations as part of the calculation. Then
depending on the ground rules, either one, two or three standard dev-
jations (sigmas) can be taken at the worst case values.

The + and - 3 signa values for F are +3s = 0.2046, -3s = 0.1954. Note
that this spread is less than the EVA for F. This will usually, but
not always, be the case.

The last method is MCA, which is in general equivalent to the RSS
method. In this method, a random number is generated and is used to
determine the random value of Al within € 2%. A second random
number is then used to find a random value for Mi within + 1%,
and so forth through the five components. The (random) value of F
is then calculated using these first five random values for the
components. This is repeated a sufficient number of times to get
a spread for the values of F. No program is given for MCA, as
essentially the same information can be obtained from RSS.

Page 71

b. Stack dlagram

EVA

Level Before After

3: - EVA high value
2: - Nominal value

1: - EVA low value

RSS

3: - +38 value
2: - Nominal value

i: - -38 value

c. Examples:

Using the five component example above as the first example, the user

must create and store the following algebraic objects:

Object Name stored under

‘T(5)’ ‘M1’

’2%T(4) ‘AL’

‘T(3)’ ‘R3’

74%T(2)’ ‘R2’

‘S%T(1)’ ‘Ri’

Store the following under the name of FUNC:

<< “A1*M1/(1+(R1+R2)/R3)/ EVAL >> ‘FUNC’ STO

Finally a vector of decimal tolerances named ’‘D’ must be created to

follow the order of the T subscripts given above as follows:

(.5.5.5211], ’/D’ STO

That is, T(1) thru T(3) are 0.5%, T(4) is 2%, and T(5) is 1%.

Then EVA may be pressed to give the following output: (FIX 4)

3: 0.2079

2: 0.2000
1: 0.1923

Page 72

Clear stack and press RSS for the following output:

3: 0.2046
2: 0.2000
1: 0.1954

The worst case programs can also be used for functions that vary with time

or frequency by embedding RSS and EVA in a time or frequency loop. To

demonstrate this, change the FUNC program to:

<C 02pl F* % R-DC -> 8 <C “(8"2+N1%s+N0)/(8"2+D1%s+D0)"

EVAL ABS >> >»

We will now proceed to calculate EVA and RSS values for this bi-
quadratric (AKA biquad) as a function of frequency. Store the following

algebraics under the names shown:

Object Name stored under

“1483709%T(1)" ‘N17

2100250626566%T(2) ‘NO

/150376%T(3) ’D1’

2100250626566%T(4) “DO”

Assuming 5% tolerances for all four variables, vector D will be

[$5555) 7D” STO

We will be using a main program that iteratively calls either RSS or EVA
(not both) depending on the status of flag i. If flag 1 is set, then
RSS is called; if clear then EVA. This new main program is named FRWR.
Prior to executing FRWR, the stack must contain the following logarithmic
frequency parameters:

3: Log beginning frequency (e.g., log 100 Hz = 2, etc.)

2: Points per decade
1: Number of decades

The biquad with the given coefficients is a bandpass filter with a center

frequency of 50 KHz. Thus we should look at the frequency range of from
10 KHz to 100 KHz with 10 points per the one decade. The stack should
then contain:

3: 4 (log 10,000 = 4)
2: 10 (points per decade)
i: 1 (1 decade)

Page 73

Running FRWR gives us the following outputs for EVA: (Flag {| clear
and flag 2 set to get dBV)

(3.727 2.83 1.934] (l.e, EVA high is 3.727 dBV)
4.922 4.012 3.104 1] & EVA low is 1.934 dBV at 10 KHz.)
6.466 5.535 4.608 1
8.418 7.455 6.498)
10.888 9.867 8.86)
14.079 12.957 11.861 1]
18.166 16.91 15.69 1]
20.72 19.881 18.95 1 (Note peaking at 10°4.7 =
18.148 17.11 16.087 1 50119 Hz)
13.87 13.124 12.369 1)
10.571 9.996 9.405 1)F

—
F
m
r
E
F
E
E
e

E
Y
e
y

N
b
H
D
D
S

D
D
D

V
D
O
T
W
N

Running FRWR with flag | set will give a matrix of values for
RSS, with the spread at each frequency less than the corresponding
EVA run. By definition of + 3 signa, the spread about the nominal
will be symmetrical. Not so for EVA though.

Page 74

c. Listing

Listing Comments

Note: EVA and RSS can be used standalone for dc (single-valued)

functions as shown in the first example. FRWR below is for

functions of frequency only.

‘FRWR’

<< => bf pd nd << 3 FIX bf DUP nd + Start frequency loop

FOR q q ALOG "F/ STO IF { FS? THEN RSS Flag 1 set => RSS

ELSE EVA END q 4 ROLLD IF 2 FS? THEN GDB Use dBV if flag 2 set

END pd INV STEP ‘F’ PURGE CTA 23 MENU >> >>

‘GDB’ Get DB

<< 1 3 START LOG 20 * 3 ROLLD NEXT >>

‘RSS’ Root Sum Square

<< LVL3 LVL4 0 “S’ STO 1.0001 -> p Perturbation factor

<C FRMT { NC FOR | “T’ | p PUT VO FUNC Evaluate function

- ‘D’ 1 GET 100 / % SQ@ ’S’ STO+ ‘T’ i 1 Restore tolerance
multiplier to 1

PUT NEXT S sqrt p { - / DUP VO + SWAP

VO SWAP - VO SWAP UP >> » Setup stack for +3s, nom,
& -3s.

‘EVA’

<< LVL3 LVL4 FRMT 1 NC FOR | ‘T’ | ’D’

| GET 100 / 1 + PUT FUNC “VOUT” | ROT PUT

‘T 1 1 PUT NEXT 3 CF WCHL 3 SF WCHL

VO SWAP UP

Page 75

‘WCHL’ Worst Case High Low

<< { NC FOR 1 “TT” | “VOUT” | GET VO

- SIGN IF 3 FS? THEN NEG END “D’ | GET

100 / # 1 + PUT NEXT FUNC >>

’FRMT” FoRM T

<< 35 36 CF CF D SIZE LIST-> DROP ‘NC’ STO Store no. of components NC

NC { ->LIST DUP { CON “T/ STO 0 CON Set up T and VOUT vector

‘VOUT’ STO FUNC ‘V0’ STO >» V0 = nominal value

‘CTA’ Convert To Array

<< DEPTH 4 / 4 2 ->LIST ->ARRY RND STD >>

e. References:

The EVA technique is described in the first example. For RSS, the following
development is used:

Using the first example function, the varlance of the output is:

(A,a)p(B,&)+ (Bes. a)+(dee a)
QR dA

Vos
SM. 7)

Using Rl as an example, the partial derivatives are approximated as

Wei AVei _ AVe
ek, LK, PR,

where P = 0.0001. Assuming normal (Gaussian) distribution, the

component standard deviations (sigmas) are approximated as

Page 76

where Di 1s the decimal tolerance. Then the standard deviation of

the output |s

‘Yo

: :)Go = 35 [(AVo B+ (Ber 0,)+ vo + (Aes Ds) |

Page 77

2. AccurateGalp Ratlos

a. Introduction

In choosing the resistor values for an inverting opamp with a gain
of -R2/R1 for a glven required gain G, the usual procedure Is to choose
a convenient value for Ri such as 10K, and then solve for R2 by calculating
R2 = Rl x G. The next step is to find the closest standard value to the
calculated value for R2 from standard resistor value tables.

Depending on the difference between the calculated and standard value of

R2, a gain error is introduced. Intultively one knows that among the

48, 96, or 192 standard resistor values there is a best combination of

R1 and R2 that will be closer to the design gain G. This program finds
that best combination.

It will find the best combination for three circuit configurations

shown below with the corresponding limits on gain G:

Inverting opamp: G = -R2/R1 (-100 < G < -0.01)

Non-inverting opamp: G =1 + R2Z/R1 (1 < G < 100)

Voltage divider: G = 1/(1 + R1/R2) (0.01 < G < 0.99)

The user can choose from 48 2% values, 96 1% values, or 192 0.5%
values (same as 0.1% values). Appropriate decade values such as
1.92K, 19.2K, 192K, etc. must be provided by the user.

b. Stack diagram

Level Before After

3: - G

2: X tolerance, 2, 1, or 0.5 % R2
1: G Ri

¥ For 0.1% 192 values, use 0.5%.

Press ‘GRM’ to start the program.

Page 78

c. Examples:

Three examples are given in tabular form below for 1% values:

Configuration Desired Ri R2 Error

Voltage 0.24 4.75 1.50 0
divider

Inverting -0.68 1.50 1.02 0

opamp

Non-inverting 1.70 1.50 1.05 0

opamp

The error is the actual gain vs. the desired gain. Of course, even with

192 values, the error will not always be zero, but it will be the

smal lest possible value.

Page 79

c. Listing

Listing Comments

*GRM’ Maln program.

<< LVL3 2 FIX ‘G’ STO 96 SWAP / ’B’ STO B = 48, 96, or 192

SCF GIF GO < THEN INV NEG RER END Choose galn path

IF G1 <GO > AND THEN INV 1 - RER END

IF G2 <G1 > AND THEN 1 - INV RER END

IF G2 > THEN 1 - S SF RER END UP

‘RER’ REsistor Ratio

<< ‘A’ STO B “E” STO IF A 1 < THEN A See reference 1.

INV “A” STO S SF END A LOG B # 0 FIX RND

1 -/L STO1 BFORmmL + ‘N° STONB /

ALOG IF N B < THEN 2 FIX RND END

IFNB>NB2 x < AND THEN 1 FIX RND END

IFNB2#% > THEN O FIX RND END “R8” STO m

1 - B/ ALOG 2 FIX RND “R9‘ STO R8 R9 / A R8 & RY are trial values

- ABS ‘El’ STO IF Ei E < THEN Ei “E’ STO

R8 ‘Ri’ STO RY ’‘R2’ STO END NEXT

IF S FS? THEN R1 R2 ‘Ri’ STO ‘R2‘ STO END

G R2 Rt >» Put G, R2, & R1 on stack.

e. Reference:

1. GjveRatjos, R. Boyd,
Electronic Design, Sept 8, 1988, p. 111.

Page 80

3. SelineInterpolation

a. Introduction:

Cubic spline interpolation is one of the better if not the best

of the interpolation methods. When one runs into trouble with a
polynomial curve fit (PCF) that Is unstable at the end points, the
spline method will provide much improved performance over PCF.

b. Stack diagram

Level Before After

2: - u

1: u, Value to be inter- y = f(u)

polated.

c. Examples:

The first example will be the infamous Runge’s Function that gives

PCF such a difficult time near the end points. The following vectors

‘X’ and ‘Y‘, representing the x and y values of (for this example)

Runge’s Function must be created and stored:

[-.6 -.4 -.2 -.1 0 .1 .2 .4 .61) ‘XX STO

[.1 .2 .5 .8t .8 .5 .2 .11)1 “Y STO

(The number of elements in ’X’ and ‘Y’ must be equal.)

Runge’s function is

To get an interpolated value , say 0.25, place 0.25 in the stack (u),
and press CUSPL. The output should be:

2: 0.250 (the value of u repeated back)
1: 0.387 (y = f(u))

For u = -0.58:

2: -0.580
1: 0.109

Page 81

The user can create a program to create ‘X’ and ‘Y’ instead of keying
the vectors in manually. The program CUSPL can also be easily modified

to lterate u to create multiple interpolations of some function. The
statistics menu can be used to input the x,y data points thus creating

the 3IDAT array. A subroutine must then be written to separate the x
and y columns into the ‘X’ and ‘Y’ vectors.

For a second example, assume the ‘X’ and ‘Y’ vectors are:

X=[00 .25 .37 .5 .75 1]

Y=[13.6 8.9 6.7 5.3 4]

The following values of u and y = f(u) should be obtained:

u f(u)

0.05 12.782

0.10 11.869

0.15 10.895

0.20 9.894

0.25 8.900

Page 82

d. Listing

Listing

*CUSPL"

<< LVL4 X SIZE LIST-> DROP => un << n 1

->LIST 0 CON DUP DUP “B’ STO ‘C’ STO

’D’ STO n SPLINE n u SEVAL u SWAP >> UP >>

SPLINE’

<< => n << IF n 3 < THEN SPLN4 ELSE ‘X’

2 GET ’X’ 1 GET - “D’ 1 ROT PUT “Y’ 2 GET

‘Y” 1 GET - “D’ {1 GET » /C” 2 ROT PUT 2 n {| -

FOR i ’X” 1 1 + GET “X” 1 GET - DUP DUP “D’ i

ROT PUT “D” i 1 - GET + 2 ¥ “B” i ROT PUT

‘Y’ 1 1 + GET ’Y’ | GET SWAP / DUP ‘C/

} 1 + ROT PUT “C” i GET - ’C’ i ROT PUT NEXT

‘D’ 1 GET NEG “B’ 1 ROT PUT ‘D’ n 1 - GET NEG

‘B” n ROT PUT “C” 1 0 PUT “C’ nO PUT n 3

IF # THEN n SPLN{1 END n SPLNZ n SPLN3 END >> >>

Page 83

Comments

Main program

This series of
programs were
translated from a

FORTRAN program in
reference 1. See
reference | for

details.

*SPLN1”

<< => n << “C’ 3 GET ’X’ 4 GET ’‘X’ 2 GET - /

‘C’ 2 GET “X’ 3 GET ’X” 1 GET - / - “C/

1 ROT PUT ‘C’ n 1 - GET ’X’ n GET ’X’ n

2-GET-//C’n2- GET ‘X' n1 - GET

‘’X’" n3 - GET -/ - “C’ n ROT PUT ‘C’ 1

GET ’D’ 1 GET SQ % ’X’ 4 GET ‘X’ 1 GET

-/ ‘C’ 1 ROT PUT “C’ n GET NEG ‘D’ n

{1 - GET SQ # ‘X’ n GET “X’ n 3 - GET -

/ ‘C’ n ROT PUT >> >>

*SPLN2’

<< =>n<k<2nFOR1 “‘D11-

GET B’ 1 1 - GET / -> t << “B’ | GET t

‘D’ 1 1 - GET # - “B/ 1 ROT PUT “C’ |

GET t ‘C” 1 1 - GET # - “C’ | ROT PUT >>

NEXT ‘C/ n GET ‘B’ n GET / ‘C’ n

ROTPUT 1 nit -FOR Jn J -->1 «K

‘C/ 1 GET “D’ | GET /C’ 1 1 +

GET # - “B” | GET / “C’ 1 ROT PUT >»

NEXT ‘Y’ n GET ‘Y’ ni - GET - ’D’

ni-GET/ ‘C’ ni - GET “‘C’ n GET 2 *

+ ‘D’ n1 - GET % + “B’ n ROT PUT > >»

Page 84

*SPLN3’

<< ->n<k<1nit1-FORI “¥Y 11+

GET ‘Y’ i GET - 'D’ 1 GET 7 7C” 1 | +

GET /C’ | GET 2 ¥ + ‘D’ | GET » ‘B’ |

ROT PUT “C’ 1 1 + GET ‘C’ | GET - ’D’

i GET » ’/D” 1 ROT PUT “C’ | GET 3 «

‘C’ | ROT PUT NEXT “‘C’ n GET 3

7C/ n ROT PUT “D’ n 1 - GET “D’ n ROT

PUT >> »

’SPLN4

<< ‘YY’ 2 GET “Y’ 1 GET - ’X’ 2 GET ’X~’

1 GET - / DUP “B’ 1 ROT PUT “B’ 2 ROT PUT >>

*SEVAL Spline EVALuation

<< => nu<<u ’X” 1 GET IF < THEN n u

SEV! ELSE u “X’ 2 GET IF < THEN 1 u

SEV2 ELSE n u SEV1 END END >> >>

*SEV1’

CC SWAP DUP 1 +1 ->unji<<DOij+2

/ => k << u ‘X’ k GET IF < THEN k ‘J’ ELSE

k “17 END STO >> UNTIL j 1 1 + < END i u

SEVZ >> >>

Page 85

*SEV2’

<¢ =>] u<<u ’X’ | GET - => di << Y’

| GET di “B” | GET di “C’ | GET di ‘D’ |

GET % + % + % + >> >> >»

e. References.

1 ° »

Forsythe, Malcom, & Moler, Prentice-Hall, 1977, p.76

R. ¥W. Hamming, 2nd Ed., 1973, p.349.

Page 86

4. KalmanFlltering

a. Introduction:

The Kalman Filter (KF) is a sophisticated method of extracting a
signal that is buried in noise. It can find a signal where there

appears to be none. The mathematics combines state variable and

statistical methods for multiple-input multiple-output systems such
as inertial navigation systems.

The program given here is a first order (scalar) KF. First order

means there is one signal source and one output. The HP-28S is
certainly capable of implementing a multi-dimensional KF and the
reader is encouraged to pursue the subject further to this end.
(See reference.) Hence the program presented here |s more
tutorial than practical.

b. Stack diagram

Level Before After

KFIL

1: N, number of points {Input-Output List)

KPLT

2: Maximum ordinate
1: Minimum ordinate Input-Output Plot

c. Example.

One example is given similar to that given in reference 1. During
program execution, two numbers will appear in the display: The
Kalman gain k, and the error covariance p. Both numbers should
converge to a steady state value.

The noisy input and filtered output are overlaid on the same plot
to show the signal versus the noise. Each run will be slightly
different due to the random nature of the input. The output is
essentially the same for every run, which demonstrates the essence

of the KF.

The input is random "white noise" applied to a first order exponential

filter with a time constant of 0.8. Hence the input is filtered white
noise.

Page 87

For an input of (N =) 20 points, the Kalman gain In the display
should settle to about 0.167, while the error covarlance should converge
to about 0.200. The user can EDIT the input-output list in the stack
at program completion to determine the minimum and maximum ordinate
values for the plot.

For a run of 20 points, put 20 in the stack (or command line)

and press KFIL. The input-output list for this run was (again,

each run will be slightly different.):

((.352,1.947) t = 20 (complex form: (lnput,output))
(.549,1.927) t = 19
(.564,1.872) t = 18
(.146,1.814) t = {7

() t = 2

¢) t=1

For the plot, place 2 in level 2 and 0 in level 1 and press KPLT, which
produced the following plot.

Page 88

d. Listing

*KFIL’

<< LVL3 ’N’ STO () “KFO’ STO 0.98

1 04101 ->ahgqr xp

RZG {1 N FOR i ‘axp®a+q’ EVAL

‘p’ STO ‘pxh*INV(hxpxh+r)’ EVAL

-> k << CLLCD k 1 DISP p 2 DISP

(1-k*h)*p’ EVAL “p’ STO ‘axx’

EVAL “x” STO ‘2’ | GET => 2v «

‘x+k#zv’ EVAL ‘x’ STO zv x

R->C RND KFO + ‘KF0’ STO >»»

NEXT CLMF KFO UP >> >»

‘RZG’

<< N 1 ->LIST 0 CON ‘2’ STO

1 NFOR iI “27 1 | RFG PUT NEXT >>

’RFG’

€¢ => } ¢CC RAND 2 sqrt # i N /

.8 # NEG EXP * >> >>

‘KPLT/

<< LVL3 0 SWAP R->C PMIN N SWAP R->C PMAX

(0,0) AXES CLLCD DRAX 1 CF PLT

1 SF PLT

CLEAR UP >>

Page 89

Create storage and

initialize

In a muiti-dimensional

KF, the lc variables

would be arrays.

2 is random variable
vector
zZv is input,

X is output.

Add to output list

Put output list on
stack.

Random 2 Generator

Random Function

Generator

Kalman PLOT

Set vertical limits

Input plot

Output plot

‘PLT’ PLoT routine

<1 NFOR | “KFO’ N 1 - 1 + GET |

SWAP C->R IF {1 FS? THEN SWAP END

DROP R->C PIXEL NEXT >>

e. Reference.

1. ApalvslisFiltering,
R. G. Brown, Wiley, 1983

(0f the many books and papers written about Kalman filtering, this Is by

far the best one to start with.)

Page 90

5. Newton‘’s

a. Introduction:

This program does essentially the same thing as the ROOT function

in the HP-28S, but in addition will find complex roots. To find the

complex roots of polynomials, the programs given in section 1.4., are

recommended. The program given here will find real or complex roots for

many other functions.

b. Stack diagram

Level Before After

1: Initial (real or complex) guess Solution

c. Examples

The user must create a function subprogram (‘FX’) that a solution

is being sought for. These functions are generally of the type

form x = f(x), where all the x terms cannot be brought over to

the left hand side. A simple example is x = ln(x).

The first function of this type to be solved for is

In(x) + 3x = 11, or In(x) + 3x - {1 = 0.

Placing an initial guess of 1.0 in level i, and pressing NM gives

(after about 5 seconds) a value of 3.272. That this is indeed a

root can be shown by substitution back into the function.

(The initial guess cannot be zero.)

To see jf there is any complex roots to this function, we place
(1,1) in level 1, and very quickly the answer is

(3.272, -3.029E-14)

which should be interpreted as a real root. Hence there are no

complex roots for the given function.

Page 91

Second example: Find two roots of x= + 32 = 0.

Placing (1,1) in level 1 as the initial guess, the program comes

back with (1.618,1.176). This is the same answer obtained from

32, CHS, ENTER, .2, *, i.e., without using the program. The textbook

answer is 2(cos36 + jsin36). However, this is the only root this

method will find. Using a guess of (-1,2), the program will find a

second root of 2(cosil8 + jsini08) = (-0.618,1.902).

There are 3 other roots equally spaced around a circle of radius 2

in the complex plane. That is, 2(cos324 + jsin324) is also a root.

d. Listing

Listing Comments

/NM’

<< LVL4 .0001 -> d << DUP d # “DX” STO

DO “X0‘ STO XO DUP DUP DX + FX SWAP FX / F(X0)

1 - DX SWAP / - DUP d # “DX’ STO “X1’ STO Xi F/(X0)

UNTIL X1 XO - ABS d < END (X0 Xi DX } PURGE UP >> >>

‘FX’ (1st example)

CK => X K<CXLNX3% +11 => >»

‘FX’ (2nd example)

WC =>x< x5 "32+ >»

e. Reference.

1. ApplicationsPrograms, Hewlett-Packard Co.
Rev E 7/76. p. 76

2. HP-35MathPac, Hewlett-Packard Co. & Lee Skinner,
p. 67.

Page 92

6. Inductor Desian

a. Introduction

One of the obstacles in becoming familiar with the general subject
of magnetics, is the sometimes confusing array of units. To name a few:
Teslas, Gauss, Webers, Maxwells, Amp-turns, oersteds, Gilberts, Amps per
centimeters squared, circular-mils per Amp, Amps per circular-mil (!),
Amps per square inch, etc. Fortunately, the HP-28S CONVERT function is

a big help.

In an attempt at consistency, the mks (SI) system of units will be used.
Then flux density is in Teslas, (symbol B), and field intensity is in
Ampere-turns (symbol H). For current density, the consistency battle is
almost lost. The various conversions are given below:

(The abbreviation c.m. will be used for circular mils to distinguish it

from cm (centimeters)).

4E6 c.m
——————- = 1, pl = 3.141... (1)

pl in#®

4E6 c.m.
pp = i (2)

pi(2.54>2 cm=

4E10 c.m.
———mmmmemeee- = 1 (3)
pi(2.54)% m=

Example: Convert 2mA/c.m. to A/in®. Use (1):

0.002 A 4E6 c.m. B8E3 A
—e————— X === === = === === = 2546 A/|In*

c.m. pi in= pi iIn%*

Some wire gauge equations used in the programs are:

AWG = -20log((pidD),

A = D2 x {E6. Then substituting:

AWG = 60 - 20log((pil)Ar~=),

where D is wire diameter in inches, A is wire area in c.m., and AWG is

the wire gauge number.

Page 93

For the first example below, the program output will be the area-product,
abbreviated Ap. This number is in units of meters* and is used to
select a core. It is the product of window area Wa and core cross-
sectional area Ac. Most core catalogs do not give this number directly,
but do list Wa in c.m. and Ac in cm®*. The Wa in c.m. must be converted to
cm? using (2) above and then Ap will be units of cm*, which Is fairly
common. The conversion from cm* to m* Is easily done by multiplying Ap
in cm* by 1E-8.

Some core catalogs do not give Wa and provide only Ac in cm®* and Ap in
units of (c.m.)(cm2). To get around some of the units confusion, the
author has annotated his core catalogs for Ap in m* using the following
short programs:

Place Ac in cm? and Wa in c.m. in stack levels 1: and 2:

respectively and execute ‘AP’;

/ AP”

<< LVL3 1 CMDM2 INV *m"2" *cm“2" CONVERT DROP * * "cm*4" *m"4"

CONVERT UP >>

*CMDM2’

<< *m"2* "mil1~2" CONVERT DROP 4 * pi / >>

For example, the Magnetics, Inc. MPP303 Power Core catalog for core
55206: Wa =225600 c.m.; Ac = 0.226 cm2. Executing AP gives an
Ap of 2.583E-9 m*. Some users may prefer to drop the last conversion

in AP and leave Ap in cm“.

b. Stack diagram:

Level Before After

- Core area product Ap
- No. of turns

Wire gauge to use.
- Copper loss in watts
- Air gap in meters.

- mH/1000T (AL)—
-

N
D
W
A
U
O

I

Note: The inductor design program ‘COIL’, is self-prompting. No stack

inputs are required.

Page 94

c. Examples:

The inputs are: Inductor dc current = 1 = 10A
Wire current density = cmA = 208 c.m./A
Inductance = L = 37.5 uH
Max flux density = Bm = 0.27 T (Teslas)
Window utilization factor = Ku = 0.3 (dimensionless)
Resistivity of copper = Rhocu = 1.7241E-8 ohm-m
Permeability of free space = uo = 1.2566E-6 Henry/m

These inputs must be stored in LVL3 subdirectory as follows:

Value Stored name

10 ‘17
208 ‘CmA’

37.5E-6 ’L’/
0.27 ‘Bm’
0.30 Ku’

1.7241E-8 ‘Rhocu”’
1.2566E-7 ‘uo’

In the inductor design, these parameters are usually fixed, and only the

prompted variables of core area (Ac) and mean length of turn (MLT) will

be changed during the calculations.

‘Press ‘COIL’ to start the program. The first output will be:

*Ap(m*4) = 4.879E-9".

A search of Magnetics, Inc. ferrite core catalog (Ref 2.) shows a 2616
pot core with an Ap of 0.078E6 (c.m.)(cm*) = 3,952E-9 m*. The usual
practice is to select a core with a higher Ap than that calculated.

However, we will see what this solution gives us.

This core has the following values needed to continue the inductor design:

Ac = 0.94 cm* and

Mean length of turn = MLT = 0.173 ft = 5.2 cm.

Page 95

Pressing CONT displays the prompt Ac(cm*2) ?. Key In 0.94 and press
CONT. The next prompt will be MLT(cm) ?. Key in 5.2 and press CONT.
In a few seconds, the stack will show:

Ap(m“4) = 4.879E-9"
: "N= 15."

"AWG = 17."
"*Pcu(W) = 1.257"
*Gap = 6.877E-4"
*mH/1000T = 172.-

N
W
A

T
O
N

If a core catalog shows the air gap in inches, the conversion is easy.
Key in the following: 6.877 EEX 4 CHS *m"*in" CONVERT ENTER. The stack will
show 2: 0.027 {: *in".

The figure mH/1000T is used to select the specific inductance of the core.
For this example, core # D-42616-16 with an AL of 160 should be selected,
which Is the closest to 172. Hence an air gap of 0.027 in. corresponds to
a specific inductance of 172, while the core catalog shows an A. of 160
with an air gap of from 0.031 to 0.033 in.

Experience shows that several build iterations will be needed for the final
design, thus these numbers provide a good starting point.

Changing the wire current density (cmA) to 750 c.m./A instead of 208
and using the same 2616 core gives the following output: (Same inputs

as above; Ac = 0.94, MLT = 5.2):

"Ap(m*4) = {,759E-8"
*N = 15."
"AWG = 11."
"Pcu(W) = 0.349"
*Gap = 6.877E-4"
*mH/1000T = 172."-

N
N
W
h
H
O
N

The decreased current density forces a larger wire size with an attendant
reduction in copper loss. A higher current density or larger core may have
to be chosen, as 15 turns of 11 ga. wire may not fit in the bobbin. This
can be determined from graphs given in the core catalog.

Trying a 2823 core with an Ap of 7.550E-9, Ac = 1.28, and a MLT = 5.70
gives the following output:

6: "Ap(m“4) = {.759E-8"
5: *N = 11."
4: “AWG = 11."
3: "Pcu(¥W) = 0.281"
2: "Gap = 5.050E-4"
1 "mH/1000T = 319."

Page 96

The turns count goes down to ii with the larger core, which may fit. The
mH/1000T of 319 is closest to the core with an A. of 250, but the next
higher value of 400 should be chosen to insure the required inductance
can be obtained. The gap size of 5.05E-4 meters converts to 0.020 in.
This is between the catalog gap size of 0.027 in. for AL = 250 and
0.014 in. for AL = 400.

The core loss must be determined from mW/cm® curves given in the core

catalog.

d. Listing

Listing Comments

‘COIL

<< LVL3 cmA INV CMDM2 ‘J’ STO ’‘Lx]*2/(Bm¥J%*Ku)” Get Ap

EVAL 3 SCI *Ap(m“4) = " SWAP ->STR + ’S1’ STO

S1 HALT DROP NTWS PCU GAP 1000 DUP N/ SG L Get N, Pcu, air gap,
AL, & purge

* # 0 FIX RND *mH/1000T = * SWAP ->STR + ’S6’

STO S1 S2 S3 S4 S5 S6 (S1 S2 S3 S4 S5 S6 N J)

PURGE 3 FIX UP 20 MENU >>

’NTWS’ No. of Turns & Wire Size

<< CLLCD "Ac(cm“2) ?* { DISP HALT ‘Ac’ STO

LI * BmAc *cm*2" "m*2* CONVERT DROP ¥ /

‘N” STON O FIX *N = * SWAP ->STR + “52 Store display strings

STO 1 J / CMDM2 WGA ->STR "AWG = * SWAP +

’83” STO >>

PCV” Get copper loss

<< CLLCD ‘MLT(cm) ?* 1 DISP HALT ‘MLT’ STO

CLOSS 3 FIX ->STR "Pcu(W) = * SWAP + “S4~

STO » Get Pcu string

Page 97

*CLOSS’ Copper 108s

<< I Rhocu # J % MLT ‘cm’ ‘m’ CONVERT DROP

N »* >»

‘WGA’ Get wire gauge

<< sqrt pl *% LOG 20 »* NEG 60 + >>

‘GAP’ Get alr gap

<< uo N SQ * Ac "cm * 2" "m * 2" CONVERT

DROP # L / "Gap = *" 3 SCI SWAP ->STR +

857 STO >»

CMDM2’ c.m.

--- conversion

<< "m*"2" "mil*2" CONVERT DROP 4 x pi / >» m2

e. References:

1. AdvancesinSwitched-ModePowerConversion, Vols I & II,
R.D. Middlebrook, Slobodan Cuk, TESLAco, 1983, p. 303.

2. FerriteCoresforPowerandFilterAppjjcations, Magnetics,
Inc., Catalog No. FC405A, 1988.

Page 98

	Cover
	Table of Contents
	I. State Space Methods
	1. State Transition Matrix
	2. Characteristic Equation
	3. Transfer Matrix

	II. Polynomials
	1. Real or Complex Roots (n > 4)
	2. Curve Fitting
	3. Surface Fitting

	III. Signal Processing
	1. RMS Value of Random Waveforms
	2. RMS Value of Deterministic Waveforms
	3. RMS Value of Piecewise Continuous Waveforms
	4. Discrete Fourier Transform
	5. Fast Fourier Transform
	6. Discrete Convolution
	7. Autocorrelation

	IV. Transfer Functions
	1. Step Response of Any Transfer Function
	2. Bode Plots From Transfer Functions

	V. Miscellaneous
	1. Worst Case Analysis
	2. Accurate Gain Ratios
	3. Spline Interpolation
	4. Kalman Filtering
	5. Newton's Method
	6. Inductor Design

