| - | S [Uy Uy Ty
Memory L_l_tl._l_l_ Ll_ttttt

(I (I .
Management ttEtttL e
Solutions for C_CCoC|flcoote

the HP28S

By 7
Martin D. Harris

SECOND EDITION

Memory
Management
Solutions for
the HP28S

(i e '~ s

EE=D

LLLLL L tttttt
LLtLtt L LLLL
LLLL L
[W R W W[5 1| O T
L LLLuw L L

R e e e e T T T B R

O

Martin D. Harris

O

SECOND EDITION

FOX Project:
Memory Management Solutions for the HP28S
Second Edition

© Martin D. Harris, 1991. All rights reserved. No portion of this book or its
contents may be reproduced in any way without the written permission of
Martin D. Harris.

The programs, illustrations, and instructions contained in this book are
provided "as is" and without warranty of any kind. The user is ultimately
responsible for properly using these materials.

MS-DOS is a trademark of Microsoft Corporation.

About the Author. Martin D. Harris is an undergraduate Electronic Engineering
student at California Polytechnic State University, San Luis Obispo. His
calculator programming experience includes the HP15C, HP28C, HP28S, and
HP42S. He is an active member of the National Society of Black Engineers.

About the Publication. This work was published and distrubuted by the author.
For a list of stores that sell FOX Project write to Martin D. Harris, 778 Boysen
Ave #21, San Luis Obispo, CA 93405; or call 805-544-3602 or 213-295-2230.

AUTHOR'S NOTE

FOX Project, in its entirety, is a complete solution to memory management on the
HP28S. At first glance, it might seem large and cumbersome. After all, it does
take up about two kilobytes of memory and includes 16 programs. However, you
don't have to use all of the programs. Detailed descriptions help you decide
which programs you need. And there are practical exercises demonstrating how
to use the programs to manage your memory. The important thing to keep in
mind is that FOX was designed to save you time by providing efficient, clever
programs to accomplish those tasks that would otherwise require several
keystrokes and careful planning. The time you spend entering the programs and
learning how to use them may seem like a lot at first but in the long run FOX
pays for itself.

This material is based upon my three years' experience with the
HP28S. I embarked upon this project with the intention of solving the
difficulties of managing memory on the HP28S - moving several variables at a
time from one directory to another, renaming directories, locating variables,
and purging non-empty directories -- using programs and without using
SYSEVAL. The book is partitioned into five sections numbered zero through
four. Section 0 reviews the fundamentals of user memory (familiarity with
creating variables, creating directories, and entering programs is prerequisite to
Section 0). Section 1 introduces and defines FOX Project. Section 2 describes the
programs. Section 3 presents step-by-step exercises and some tips on how to enter
the programs. Section 4 contains program listings. The examples in Section 2 and
interweaved in the text of other sections are primarily for thinking through
rather than working through. The idea is that refraining from punching buttons
gives you a chance to focus on the concept first, before considering the mechanics
of applying it. Section 3, however, has step-by-step exercises to give you
practice using FOX to solve memory management problems. So the examples are
useful for gaining a conceptual understanding of FOX and the exercises are
useful for gaining a working knowledge of FOX. After reading Section 2 and
after completing Section 3, feel free to return to Section 2 and work the examples
to get even better acquainted with FOX.

Were there any changes to the first edition? Most definitely! Users of
the first edition will find in this second edition some significant improvements:
1) the programs are easier to enter because the "bat" (character code 134) is not
used; 2) in response to feedback from the field, I have devoted an entire section
to step-by-step exercises; 3) the program set has been simplified by the
elimination of four programs (BAT, D—S, DM, and D—X) and at the same
time the program set has been enhanced by the addition of four powerful
programs (HUNT, RENM, PTRE, and ZAP). To perform D—S, D—M, or DX
use the VARS command followed by V-5, V=M, or V=X, respectively. All of
the programs have been streamlined. Overall, FOX is now more efficient and
more useful.

I would like to thank: My mother Elnora Crowder for her wisdom;
Maya Gitelson and Percival Parks for their encouraging words; Raphael
Hernadez for his time; Debbie Gibson and Ken Johnson for the cover design; and
the staff of Chicago Public Schools, Mid-City Gifted Program Office, for their
support. I am very grateful to these people and the many others who
motivated, advised, and assisted me in this endeavor. Special thanks to
illustrator Ray Tong and proof readers Azizi Jones and Bruce Newman, without
whom the second edition would not have been possible.

This book is dedicated to Ms. Mary Owens, an outstanding scholar and
inspirational teacher who coached me in writing.

All proceeds go towards printing costs and towards encouraging me to
write more. For comments and correspondence ih general, please write 778
Boysen Ave #21, San Luis Obispo, CA 93405, or call 805-544-3602 or 213-295-
2230. Feedback is very much welcomed.

FOX Project: Quick, Smart, Clever. Enjoy!

Martin D. Harris
September 1991

CONTENTS

SECTION 0

SECTION 1

SECTION 2

SECTION 3

SECTION 4

APPENDIX

User Memory Basics

Introduction

1.1 General Description
1.2 Motivation

1.3 Terms and Symbols
1.4 Special Features

Program Descriptions

Exercises

3.1 Getting Started
3.2 Recalling Names
3.3 Storing Names
3.4 Purging Names
3.5 Locating Names
3.6 Moving Names
3.7 Entering Programs
3.8 Onward

Program Listings

A.1 Operation Requirements

A.2 Nomenclature

N
fury

A.3 Generalized Stack-Coded Directory

CONTENTS |

TABLE 2.1

TABLE 4.1

| CONTENTS

4-1

SECTION 0

USER MEMORY BASICS

This section briefly explains menus, variables, and directories. If, after reading
this section, you feel comfortable with the concepts presented, then you may
proceed confidently onto the next section. But if not, then review the Owner's
Manual and become more familiar with the HP28S before going on. The
following topics will be covered:

Menu Keys

USER Menu

Variables as User-Defined Commands
Directories as Sets of Variables
Current Path

Ghost Names

What are Menu Keys?

Unlike many calculators, the HP28S has more commands than it has
keys. It has over 200 built-in commands but it has only 72 keys, half of which
are for letters and numbers. That leaves 36 keys for commands. This apparent
shortage of keys is taken care of by the menu keys which are the first row of
keys immediately below the display.

Menu keys are keys that can have several meanings. They are not
limited to representing one or two commands. The division key represents only
two commands: "divide" and, when used with the shift key, "invert." Just as
painted-on symbols (+ and 1/X) depict the meaning of the division key, menu
labels depict the meaning of the menu keys.

Menu labels appear at the bottom of the calculator's display when
activated by a menu selection key. The keys MODE, TRIG, LOGS, ARRAY,
BINARY, USER, and CUSTOM are all examples of menu selection keys.
Selecting different menus gives the menu keys different meanings. The menu

User Memory Basics 0-1

labels show what the menu keys mean for the currently selected menu. Consider
the LOGS menu. It contains commands useful for calculating logarithms. When
the LOGS menu is activated, six menu labels appear at the bottom of the
calculator's display. Each label has the name of a logarithm-related
command: LOG, ALOG, LN, EXP, LNP1, and EXPM appear on the last line of
the display. So pressing the menu key (immediately below the display)
corresponding to ALOG, for example, commands the calculator to take the
antilogarithm of a number. Only six menu labels can be displayed at a time. For
menus having more than six commands, the NEXT key causes the next six
commands to be displayed. Each set of six menu labels is called a row. So when
the LOGS menu is selected, pressing NEXT causes the next row of logarithm
commands to be displayed, namely SINH, ASINH, COSH, ACOSH, TANH,
and ATANH.

What is the USER Menu?

The USER menu is distinguished from the other menus by the fact that
it contains commands that are defined by you, the user. These user-defined
commands are generally called variables. Variables allow you to taylor your
calculator to suit your specific needs.

Here is an example. The cotangent function is not a built-in function of
the HP28S. But you can create a program to compute the cotangent: « TAN INV
» [ENTER] 'COT [STO]. The STO command in this example creates a variable
named 'COT. When the USER menu is activated, pressing the menu key that
corresponds to menu label 'COT" executes the program 'COT. Furthermore, you
can use the CUSTOM menu to display variables (user-defined commands) and
built-in commands together, in the same menu. The following does just that:
{ COT SIN COS ATAN } [ENTER] [MENU]. The MENU command (in the
MEMORY menu) makes both built-in commands and user-defined commands
easily accessible through the CUSTOM menu.

Here's how variables work in general. Typing the following sequence
defines a variable called 'G": 32.2 'G [STO]. When the USER menu is activated,
‘G’ appears as a menu label. Pressing the menu key directly below that label
can be thought of as "commanding" the calculator to put the contents of ‘G’ onto
the stack. If 'G' were a program, pressing the menu key that corresponds to label
'G' would in effect "command” the calculator to execute the program. In either
case, the variable is used to command the calculator to put something onto the

0-2 User Memory Basics

stack or to execute a program. The contents of the variable specifies either
what to put onto the stack or what set of instructions to perform.

What are Directories?

A directory is a set of variables. Directories allow you to organize your
variables into sets (groups) by course, chapter, type, and so on. You can define
directories within directories to make a hierarchy of variables. Such a
hierarchy is called a memory tree or simply a tree. FIG 0.1 shows an example of
a tree. The boxed names represent directories and the circled names represent
variables.

HDME

THELMD ‘ ‘ M;\:TH
Bl{\S [Y[L ‘ ‘ F[S
OO ® 53 ® @ @

FIG 0.1: Example Memory Tree.

HOME can be thought of as the "root and trunk" of the memory tree.
Directories can be thought of as a "branches,” subdirectories as "limbs,” and

User Memory Basics 0-3

variables as "leaves" of the memory tree. HOME is permanent and from it stem
all of the variables and directories of user memory.

The following sequence creates a directory called 'PHYS' for Physics in
the HOME directory: [HOME] 'PHYS [CRDIR]. The HOME and CRDIR
commands are in the MEMORY menu. When the USER menu is activated,
'PHYS' appears as a menu label. Pressing the menu key corresponding to 'PHYS'
changes the current directory from HOME to 'PHYS', moving you from the
directory whose path is { HOME } to the directory whose path is { HOME
PHYS }. This is similar to moving from one command menu to another. But there
is one big difference: the directory 'PHYS' is contained within HOME. Put
another way, 'PHYS' is a subdirectory of HOME. Put yet another way, HOME
is a set of variables of which 'PHYS' is a subset. Additionally, HOME is said
to be the parent directory of PHYS.

Only one directory at a time may be viewed in the USER menu. This
allows you to focus on one set of variables at a time. Whenever a directory has
its contents visible in the USER menu, that directory is the current directory. So
when in FIG 0.1 'MATH' is the current directory 'PRTL", 'YDAT, 'FS', and 'EQ’
appear on menu labels in the USER menu. Other names such as 'QDR’, 'GAS',
and 'VIEW' (to name just a few) do not appear because 'MATH' is not their
parent directory.

While only one directory at a time may be viewed in the USER menu,
all variables and directories on the current path are accessible. (The current
path is simply the path of the current directory). Suppose again that the USER
menu looks like FIG 0.1 and '"MATH' is the current directory. Certainly you can
recall variables 'PRTL', 'Y¥DAT’, and 'EQ' and evaluate directory 'FS'. But less
obvious is the fact that you can also recall variables '‘QDR' and 'LOCS' and
evaluate directories 'THERMO' and 'MATH'. The commands RCL (recall) and
EVAL (evaluate) search the entire current path for a name. First they check
the current directory, then the parent directory, and then the parent's parent
directory and so on.

EVAL is applicable to both variables and directories. RCL is
applicable to variables only. Directories cannot be recalled with RCL, hence
the need for FOX Project. (The PRVAR, like RCL, searches the entire current
path and is applicable to variables only.)

0-4 User Memory Basics

The variables and directories accessible from the current directory are
those that are defined in each directory of the current path. The PATH
command puts onto the stack the path of the current directory. This path is a
list of directories that lead up to the current directory. Does this sound
confusing? Well, it is difficult to understand. But hopefully these examples
will help. The path of 'MATH' is { HOME MATH }, so all the variables of
'MATH' (PRTL', 'EDAT', 'FS', and 'EQ') and HOME (THERMO', '‘QUAD",
'LOCS', and 'MATH?) are accessible. The path of 'GAS' is { HOME THERMO
GAS), so all the variables of 'GAS' (T, 'V', and 'EQ"), 'THERMO' (GAS' and
'CYCL'), and 'HOME' (‘'THERMO', 'QUAD’', 'LOCS’, and 'MATH') are
accessible. Again, the term "accessible” in this context means subject to use with
RCL, PRVAR, or EVAL.

What Does All of this Mean?

User memory consists of the variables and directories of the USER
menu. Use the USER menu to create your own commands. Use directories to
arrange your commands into sets and sets within sets. The most challenging
aspects of managing memory on the HP28S are 1) understanding directories, 2)
choosing an intelligent arrangement of directories, 3) choosing names for
variables and directories, and 4) rearranging and renaming variables and
directories to suit your changing needs. This section helps with the first item.
The FOX Project programs help with the last item.

Where Do I Go From Here?

Admittedly, this has been a very brief review. If you understand how
to use menus, variables, and directories and how to enter programs, then you are
ready to read the program descriptions, enter the FOX programs into your
HP28S, and use FOX Project to manage your user memory. Otherwise, it would
be best to review chapters 3, 4, and 20 ("Using Variables," "Repeating
Calculations," and "Memory") of the HP28S Owner's Manual.

User Memory Basics 0-5

SECTION 1

INTRODUCTION

1.1 General Description

FOX Project is a set of programs that automate memory management on
the Hewlett-Packard HP28S Scientific Calculator. Basically, it facilitates
the locating, recalling, storing, and purging of variables and especially that of
non-empty subdirectories. The programs were designed with three primary
objectives: 1) to prevent the accidental erasure of variables and directories; 2)
to minimize memory requirements; and 3) to maximize execution speed. FOX
Project gives HP28S users safe, efficient tools for use individually or as parts of
customized programs.

FOX Project is most recommended for those familiar with creating
directories, entering programs, and evaluating programs. Those who have
experienced the frustration of moving a subdirectory (and all of its contents)
from one parent directory to another parent directory are more than ready to
dive right into this project. And those who have hesitated to experiment with
alternate ways of setting up their directories because of the difficulties of
renaming, erasing, and replicating directories, will find this project of great
value.

1.2 Motivation

Memory size and memory organization set the HP28S apart from the
vast majority of hand-held calculators. Having 32 kilobytes of user memory
makes external memory devices pretty much unnecessary, though such devices
would be convenient for sharing programs. The HP28S does not support any
peripheral input devices (such as the card reader available for the HP41 or the
ROM card available for the HP48SX). This has two implications: 1) the
keyboard is the only way to input programs, and 2) user memory must be
carefully conserved.

Introduction 1-1

Memory organization on the HP28S is similar to MS-DOS file
organization on personal computers. The HP28S has variables (analogous to
files), directories, and subdirectories. The entire user memory is arranged like a
tree with variables (leaves) stored (grafted) in subdirectories (limbs), which
are themselves stored (grafted) in directories (branches). And similar to MS-
DOS, the built-in functions for managing memory operate only on variables and
empty subdirectories. These built-in functions -- STO (store), RCL (recall),
PURGE, and CLUSR (clear user memory) -- will result in an error if given the
name of a non-empty subdirectory as the argument for STO, RCL, and PURGE, or
if a non-empty subdirectory exists in the current directory when trying to use
CLUSR. If one wishes to 'purge’ an entire subdirectory or to 'recall’ the contents
of a subdirectory onto the stack, one would have to carefully maneuver in and
out of subdirectories and repetitively execute the built-in memory management
functions. FOX Project tremendously automates such operations.

1.3 Terms and Symbols

Brackets "[" and "]" will be used to emphasize the typing of a menu key
or any key in general on the HP28S keyboard (e.g. [ENTER] , [STO] , [PATH] ,
and [VARS]).

The arrow is an important HP28S symbol and is used frequently in FOX
programs as a character in names and as a command. An arrow "—" will be used
in this text to depict the arrow key (SHIFT-U) on the HP28S keyboard (e.g.
V=S and V->M).

A "name" is a variable or directory that is defined in user memory (and
therefore visible on a menu label when the USER menu is active). In a different
sense, a "name” is a sequence of characters enclosed in single quotes.

Variables and directories that are on the current path but not in the
current directory are called "ghost" names. Refer to FIG 0.1. When 'CYCL' is
the current directory, 'GAS', 'CYCL', 'THERMO', 'QDR’, 'LOCS', and 'MATH'
are ghosts. Although they do not appear in the 'CYCL' directory with 'ISEN'
and 'POLY’, they are still accessible via RCL, PRVAR, or EVAL.

"on " on "non

The terms "program," "variable,” "directory,” "subdirectory,” "current
directory,” "current path,” and "parent directory” will be used according to
their definitions given in the glossary of the HP28S Reference Manual. It would

1-2 Introduction

be worthwhile to review those terms now. The terms "directory” and
"subdirectory” are synonyiis and will be used interchangeably.

The term "name" is the most significant. Almost everywhere it appears
in this text, "name" can be replaced by the words "variable or subdirectory.”
Additionally, "names" (plural) can be replaced by the words "variables and
subdirectories.” So “locate a name" means "locate a variable or subdirectory”
and "all names are purged” means "all variables and subdirectories are
purged.” The Only exception is when "name" refers to a sequence of characters
in single quotes (e.g. 'A’", 'VALU1").

1.4 Special Features

Preserving Order. Names recalled from one directory and subsequently
stored into another directory appear on the menu labels in their original order.

Preventing Overwriting. The storing operation ends with an error
message if an attempt is made to store a set of names into a directory containing
variables or subdirectories that match those names. The user may then rename
or purge the existing variable or subdirectory defined in the current directory
and resume with the operation. The renaming operation ends if the old name
does not exist or if the new name matches a name that already exists in the
current directory. These are just two examples of how FOX guards against
careless mistakes.

Handling Ghost Names. A name that is not defined in the current
directory may be accessed via RCL, PRVAR, or EVAL if the name exists on the
current path. FOX can help locate and purge ghost names. This is useful because
ghost names can foil plotting and solving operations.

These are just some of the features that make FOX Project a robust
solution to managing memory on the HP28S. The FOX Project programs work
together and, upon encountering non-ideal conditions, safely end without
corrupting user memory or the stack. Enjoy!

Introduction 1-3

SECTION 2

PROGRAM DESCRIPTIONS

This section contains diagrams and text that describe the FOX Project programs.
TABLE 2.1 shows a complete listing of the program names and operations. In
the examples that follow, the notation {. . . P } means that the directory 'P' can
be anywhere. For example, the actual path might be { HOME P } or { HOME
TEST P}.

TABLE 2.1: FOX Project Program Description and Listing References.

NAME OPERATION DESCR. LISTING
page page
1 MM Interface 2-2 4-2
2 MSET Interface List 2-2 4-2
3 ALRM Audio Prompt 2-3 4-2
4 PL Locate Parent Directory 2-3 4-2
5 DL Locate a Directory 2-3 4-2
6 P? Identify Current Path 2-3 4-2
7 PTRE Create 'P' Tree 2-3 4-3
8 V-S Recall Names 2-4 4-3
9 V-M Store Names 2-5 4-4
10 | V=X Purge Names 2-6 4-5
11 FIND Locate a Name, Downwards 2-7 4-5
12 SEEK Locate a Name, Downwards 2-8 4-5
13 | HUNT Locate a Variable, Upwards 2-8 4-6
14 RENM Rename a Name 2-9 4-6
15 | CLDIR Clear Current Directory 2-10 4-7
16 | ZAP Purge a Name, Upwards 2-11 4-7

Program Descriptions 2-1

| MM

[Interface

|

¢ Uses the custom menu to display some FOX Project programs and some built-
in commands; simply type 'MM' for "Memory Management" from any directory
and the programs and built-in commands you need to effectively manage your
memory are at your fingertips.

| MSET

| Interface List

* A list of programs and commands pertinent to memory management; the

names listed in MSET appear in the custom menu as a result of using MM.

e May be modified to suit your own preferences; for example a) original set-up,
b) suggestion #1, c) suggestion #2, and d) suggestion #3:

a)

b)

c)

d)

2-2

P? V>S5 | VoM | VARS | HUNT PL
P? RENM | V—oX | FIND DL PL
HOME | VARS | V=S | VoM PL P?
RENM | HUNT | FIND | V-X PL DL
[V5S T VoM [SEEK | VoX PL P? |
P? V>S | VoM | RENM | HUNT PL
P? VARS | FIND | V—oX DL PL

Program Descriptions

[ALRM | Audio Prompt }

* Beeps (if flag 51 is clear).

[PL | Locate Parent Directory |

e Moves up the current path one step; if the current directory is HOME then
HOME remains the current directory.

| DL | Locate a Directory |

e Takes a directory path (list) from stack level one and evaluates it, moving
from the current directory to the directory having the same path as the one
given in stack level one.

[P? | Identify Current Path]

e Momentarily displays the path of the current directory (the current path),
letting you know where you are in user memory.

[PTRE | Create 'P' Tree |

* Recreates the tree of FIG 2.1 in the HOME directory.
e Particularly useful for practicing FOX programs on the tree of FIG 2.1; after

each experiment, execute PTRE to get 'P' tree back to normal for yet another
experiment.

Program Descriptions 2-3

[V=S [Recall Names |

* Recalls from the current directory the contents of each name specified in a
list in stack level one.

e If the list in stack level one contains names that are not defined in the
current directory, then V—S will ignore them and recall only those names that
are defined in the current directory .

e Returns to the stack a stack-coded directory; level one contains the number of
successfully recalled names.

e Memory is not altered, only copied onto the stack.

EXAMPLE for V-S before after
TREE FIG 2.1 same
PATH {...PS) same
STACK {A B} FIG 2.2
P
6: (2,1)
[] 5: 'R’
] © @O
3: [} B 1]
2: . 5 1]
@ ® @ e
FIG 2.1: Initial Tree. FIG 2.2: Stack-Coded
Directory.

2-4 Program Descriptions

[V=M | Store Names |

» Stores the names coded on the stack into the current directory.

e If any of the names on the stack match those already present in the current
directory, then the operation will stop and display an error message; you may
then rename or purge the existing name and resume with the operation by re-
running the program V-M.

e The stack must contain a stack-coded directory starting in level one (see
Appendix); such is the output of V-S.

EXAMPLE for VM before after

TREE FIG 2.1 FIG 2.3

PATH {...PT) same

STACK FIG 2.2 back to normal
P

L &P
DO O G

FIG 2.3: Result of Example for VM.

Program Descriptions 2-5

[v-X | Purge Names |

* Purges each name specified in a list (in stack level one) from the current
directory.

* To erase the entire HOME directory, and hence all of user memory, go to the
HOME directory, select all of the names (e.g. by using the VARS command that
is in the MEMORY menu), and then use V=X, this is the only way to erase all
of user memory with FOX Project; using CLDIR from HOME will not erase

anything (that's a safety feature).

EXAMPLE for V-X before after
TREE FIG 2.1 FIG 24
PATH {...P} same
STACK {SE) back to normal
P
_ ':l_ o | o]
| / \
| ‘L T

FIG 2.4: Result of Example for V—+X.

2-6 Program Descriptions

| FIND | Locate a Name, Downwards |

n Pn;

3: 3: P2

D : D : P1

1: name| |[1: by
BEFORE AFTER

e Searches through the current directory and through all of its subdirectories
for a name specified in stack level one.

e Returns to the stack the path of each directory that contains that name and
returns to stack level one the number of occurrences of that name (the number of
paths).

» Does not search above the current directory.
e To search through all of user memory, execute FIND from the HOME

directory (this will report all locations of a name because HOME is the top-
most directory in the hierarchy of directories).

Program Descriptions 2-7

| SEEK | Locate a Name, Downwards
P
: b: P2
D: offse] R: P1
1: name| |[1: offset + n|

BEFORE

AFTER

e A subprogram of FIND; does everything FIND does but requires that stack
level two contains a number (use zero to initialize the counter); like using FIND,
the name for which to search must be in stack level one.

| HUNT | Locate a Name, Upwards
n: Pnj
: 3: Pﬁ
D: D: Pl
1: name| [1: N

BEFORE

AFTER

* Searches through each directory on the current path for a name specified in
stack level one.

* Returns to the stack the path of each directory that contains that name and
returns to stack level one the number of occurrences of that name (the number of

paths).

* Does not search below the current directory (SEEK and FIND do search

downwards).

* Particularly useful for reporting the location of ghost names.

2-8

Program Descriptions

| RENM | Rename a Name]
3: 3:
D: old name | PR:
1: new name | |1:
A| B] Clod|] D] E new| A| B] C]|]DYJ]E

BEFORE

AFTER

e Renames a name specified in stack level two with the new name specified in

stack level one.

e Gives warning message "Not Ready"” and ends without renaming if either
the old name does not exist or the new name already exists in the current

directory.

Program

Descriptions 2-9

| CLDIR | Clear Current Directory]

* Purges all of the variables and directories in the current directory.

e Requires confirmation: press [Y] for "yes" after the "Delete?" message
appears; pressing any key other than [Y] will cause the program to end without

purging anything.

* Works like the CLUSR command but is more powerful because CLDIR purges
the non-empty directories too!

e The directory's contents are purged but the directory itself remains defined
in its parent.

* Works on any directory except HOME, thereby preventing the accidental
erasure of the entire user memory in one shot; (read the description for V=X or
simply do a System Reset if you want to clear the HOME directory.)

EXAMPLE for CLDIR before after
TREE FIG 2.1 FIG 2.5
PATH {...P} same
STACK anything same
P
DR A A
' I - . \] I |
o b L |
S _
| | | | |
rd ~N - 7N 7 ~ P
{ 1 I } {) { \ {)
~ 7 N - ~ 7 ~ 7 ~ 7

FIG 2.5: Result of Example for CLDIR.

2-10 Program Descriptions

[zAP | Purge a Variable, Upwards |

* Purges a variable specified in stack level one from each directory on the
current path.

* Particularly useful for erasing ghost variables which may foil plotting and
solving operations.

* Will not erase directories; this safety feature mainly prevents the
accidental erasure of the current directory (the directory from which ZAP is
executed).

e Returns a number to stack level one; that number indicates the number of
directories whose name matches the variable name that was given for
"zapping"; (this happens because after it purges all occurrences of the variable,
ZAP executes HUNT to report the locations of each directory whose name
matches the name of the given variable); this way you know how many
matching names remain on the current path and where they are; at that point,
each matching name is a directory because all matching variables have been
purged.

* Let's try that again; after purging variables, ZAP returns the number of
remaining occurrences of the given name and the path of each occurrence; if the
number is zero then that means that the name no longer exists anywhere on the
current path; if the number is not zero then that means that the name given for
"zapping" matches names of directories (on the current path); the number and
locations of such directories shows up on the stack.

* Sce the examples on the next few pages.

Program Descriptions 2-11

EXAMPLE #1 for ZAP before after

TREE FIG 2.1 FIG 2.6
PATH {...P S} same
STACK 'E’ 0

COMMENTS: If 'E - 5 / B'is stored in 'A’, then evaluating (pressing EVAL
twice after putting 'A’ on the stack) will cause the calculator to plug in values
for variables B and E. The calculator looks along the current path for these
variables: looking first in the current directory, then in the parent directory,
then in the parent's parent directory, and so on. When 'A' is evaluated while
'S' is the current directory, the calculator looks for 'B' and 'E' in 'S', finds 'B'
but not 'E', then looks in 'P' for 'E' and finds 'E' there. So if 'B' is in 'S' as B=5
and 'E' is in 'P" as E=7, then evaluating 'A’ yields A=(8-5/5)=7. This effect is
great if 'E' is common and relevant to all equations and programs stored in
directories 'S' and 'T' (as would be the case if 'E' were a physical constant for
all of the Physics variables of directories 'S' and 'T' since 'E' is accessible
from both of those directories). Otherwise it can be a problem. If you wish to
have 'E' appear as a symbol when 'A’ is evaluated, you must purge every
occurrence of 'E' on the current path (which includes the current directory too).
That is what ZAP does for you. Then evaluating 'A' (with 'A"' ,'B', and 'E' as
defined above) will return 'E - 1' instead of 7.

FIG 2.6: Result of Example #1 for ZAP.

2-12 Program Descriptions

EXAMPLE #2 for ZAP before after

TREE FIG 2.1 same

PATH {...PS} same

STACK 2: 2: {...P}
1: T 1: 1

COMMENTS: Suppose you have the equation 'T + 273' stored in 'C'. An
attempt to evaluate 'C' results in a change of directories and possibly a
corrupted stack or a "Too Few Arguments” error. This is because 'T" is on the
current path and is a directory. Instead of purging 'T', ZAP reports that 'T" is
the name of 1 directory on the current path and that 'T' is a subdirectory of
directory 'P' (put another way, 'T' is located at { . . . P }). With this
information you could go to directory 'P' (using DL) and either purge 'T' (using
V—X) or rename ‘T (using RENM) to eliminate 'T" from the current path.
That would free you to use 'T" in the equation. Or you could choose to leave 'T
alone and select a different variable name for use in the equation (e.g. TMP +
273").

EXAMPLE #3 for ZAP before after

TREE FIG 2.1 same

PATH {...P S} same

STACK 2: 2: (...}
1: P 1: 1

COMMENTS: Here an attempt was made to zap 'P'. This is not allowable
since the current directory would be purged too. So instead ZAP just reports the
location.

EXAMPLE #4 for ZAP before after

TREE FIG 2.7 FIG 2.8

PATH {...GJR) same

STACK 2: 2: {(...G]}
1: T 1: 1

COMMENTS: A variable 'T" is purged from the current directory, a variable
‘T" is purged from the parent's parent directory (two steps up the current
path), and the location of directory 'T" is reported. 'T" at { . . . G W } is not
included because it is not on the current path so it is not a ghost and hence is
not accessible from directory 'G'.

Program Descriptions 2-13

G

[

J

l

[

NG

FIG 2.7: Before Example #4 for ZAP.

@ I
5o

G

5
& &

I
[

l

R

5 & o

@ 1
IT

. |

2N
)
< 7

ONE

FIG 2.8: After Example #4 for ZAP.

Program Descriptions

SECTION 3

EXERCISES

NOTE: It is recommended that you read through this section once briefly before
attempting do the exercises.

3.1 Getting Started

The fastest way to get familiar with FOX is to practice using it on FIG
3.1 and FIG 2.1 as directed by the exercises of this section and by the examples
of Section 2. The exercises of this section lead you to make changes to ' tree,
the tree in FIG 3.1.

HOME
l
p

SToYoks
5 60

FIG 3.1: Initial Tree, 'P' Tree, that results from PTRE.

d

Exercises 3-1

It would be nice to have a way to restore 'P' tree back to its original
form for the purpose of recovering from a mistake, repeating an exercise, or just
experimenting on your own. Well, program PTRE does just that. It allows you to
experiment, mess-up, and then quickly get things back to normal. Use PTRE from
any directory by typing PTRE and pressing ENTER and it will create 'P' tree in
the HOME directory. (Before using PTRE, be sure no variable or directory is
named P’ in the HOME directory because PTRE will erase it.)

The programs V—S, V=M, and V- X are extensions of the built-in
commands RCL (recall), STO (store), and PURGE, respectively. These built-in
commands work only for variables and empty directories. The FOX programs go
a few steps beyond these constraints, allowing greater flexibility in working
with variables and directories (empty directories and non-empty directories
alike).

For starters, whenever you want to use one of the programs, simply
select the CUSTOM menu and press the menu key that corresponds to the name
of the desired program. If the custom menu does not display names of FOX
programs, then typing MM (followed by ENTER) will re-establish the custom
menu to display them. Which program names appear in the custom menu is
determined by MSET. The original definition of MSET will be used throughout
the exercises of this section, but as you become familiar with FOX, feel free to
modify MSET to contain whatever FOX program names and built-in commands
(like HOME, VARS, and PATH) you use most often (see the description of
MSET in Section 2 for some suggestions). FIG 3.2 shows what the custom menu
looks like after using MM.

[P?]v—»s]v-»M|VARsJHUNT| PL]

a) CUSTOM (to see the first row)

LP? lRENMIV—»X]FIND[DL | PL J

b) NEXT (to see the second row)

FIG 3.2: The CUSTOM menu after using MM.

3-2 Exercises

The exercises use the following representations of keystrokes on the
HP28S:

TEXT STYLE LEGEND FOR EXERCISES
Plain Text = type letters
Underlined Text press key

Qutlined Text press menu key

3.2 Recalling Names

Typically, to recall a variable, one puts the variable's name in single
quotes onto the stack and presses RCL from the keyboard. The content of the
variable then appears in stack level one. That's fine, but an attempt to use RCL
on a directory will result in a "Directory not Allowed" error.

Here's how VS (Recall Names) solves this problem. V=S requires a
list of names as the argument on the stack. The list can contain one name or
several names. To recall a subdirectory, simply put its name in a list and use
V—S as illustrated in Exercise #1.

EXERCISE #1

Step Type Result

1. PTRE ENTER Establishes FIG 3.1 in the HOME directory and
makes HOME the current directory. Note: no
quotes are used in typing PTRE.

2. MM ENTER Sets up the CUSTOM menu for Memory
Management.

3. P? Momentarily displays the current path. The path
should be { HOME } at this point.

4. USER Makes T’ the current directory. (Pressing the

P ENTER menu key labeled 'P' does the same thing and does

not require ENTER.) The menu labels show names
S,D,E,and T.

Exercises 3-3

[B | T | l |

USER menu after step 4.

Momentarily displays the current path. The path
should be { HOME P } at this point.

Puts names 'S' and 'G' into a list on the stack. The

Alpha Key () puts the cursor into Alpha Entry
Mode, where pressing a menu key results in the
writing of its label in the command line. ENTER
moves the contents of the command line to the
stack and adds the closing brace. The name 'S'
may be either typed or selected from the USER
menu. The name 'G', however, must be typed (from
the left-hand keyboard) because it is not a part of
the current directory (it does not appear on the
USER menu labels). 'G' is included to illustrate
how V—S§ ignores names that are not a part of the
current directory. The stack contains the list {S G
} and the menu labels show names S, D, E, and T.

{S G}

| e | v [|

CUSTOM
\Aug™)

USER menu after step 6.

V—S takes the list { S G } and returns a stack-
coded directory.

Exercises

After step 7, a stack-coded directory appears on the stack. FIG Ex1.1
gives a graphical interpretation of the stack-coded directory. The triangle
signifies that 'P' is a stack-coded directory rather than a regular directory.
Note that the triangle 'T' of FIG Ex1.1 has one name branching from it whereas
the square 'P' of FIG 3.1 has four names branching from it. User memory has not
been altered as a result of using V—S. Only now the stack shows a portion of
user memory.

10: (2,1) —®

9: 'Al

8: (2,2)

7 'B' 5
6: (2,3 _®

5: 'C!

4: 'St B
3: 3 3

2: 'pP! f

1: 1

FIG Ex1.1: Graphical Interpretation of the stack-coded directory that
results from Exercise #1.

Exercises 3-5

The first item (stack level one) is the number of names that were
actually recalled. The second item (stack level two) is the name of the
directory from which V=S was executed. Together items one and two make up
the header of the stack coded directory. The rest of the levels contain the
recalled variables and directories.

VS tells the calculator, "Recall these names from the current
directory.” In Exercise #1 the argument of V—S was the list (S G }. V=S
attempted to recall both 'S' and 'G' but recognized that 'S' was a part of the
current directory and that 'G' was not a part of the current directory. So, stack
level one contains the number 1 instead of 2 even though two names were
specified in the list. That is because only one of the names specified in the list
actually exists in the current directory. V—S recalls only the names that are
defined in the current directory, the directory from which V=S is executed. The
header indicates how many names were recalled, hence the number of names
that may be created with V=M, as we shall see.This ability to ignore foreign
names is a safety feature, making V—S resilient to careless errors.

A better understanding of the stack-coded directory format will come
with practice. It's okay to move on to the next exercise even if the idea of a
stack-coded directory is not completely clear. It will become clearer as we forge
ahead. For now, keep the results of Exercise #1 on the stack for use in the next
exercise.

3.3 Storing Names

Typically, to store a variable, one puts the variable and a name onto
the stack and presses STO. Consider how V—»M works for a stack-coded
directory. V=M creates the variables and directories of a stack-coded directory
as illustrated in Exercise #2 and Exercise #3.

3-6 Exercises

EXERCISE #2

NOTE: This exercise is to be performed immediately after Exercise #1 so that

TREE = FIG3.1
PATH = {HOME P}
STACK = FIGEx1.1
Step Type Result
1. USER T Goes to the 'T' directory.
L F | ¢ | | I I |
USER menu after step 1; path=(HOME P T}.
2. CUSTOM Executes VM from the CUSTOM menu.
V—+M
3. USER Shows the USER menu. The menu labels show
names S,F, and G.
4. S Goes to the 'S' Directory. The menu labels show
names A, B, and C and the current path is { HOME
PTS)

V—M created 'S' in 'T'. FIG Ex2.1 is the resulting tree. V-5 put a copy
of 'S' on the stack (Exercise #1) and V—M created a copy of 'S' in directory 'T'
(Exercise #2). So now 'S’ exists in both directory 'P' and directory 'T'. Put
another way, a copy of directory 'S' has been "grafted" onto directory 'T'.

Exercises 3-7

HOME
|
P

|
l]
q T
[
B S F

® O

FIG Ex2.1: Result of Exercise #2.

What happens when you attempt to store a name that already exists?
Using the STO (store) command, the old contents would be replaced by the new.
For example, suppose variable 'K' contains the number 0.12; this means 0.12 is
stored in a variable named 'K'. To change it from K=0.12 to K=0.35, one would
simply type 0.35 'K STO. The variable 'K' would then contain the number
0.35. The new contents replaces the old as if STO tells the calculator, "Store
this number under this name; if this name already exists then erase it and
create this new one in its place.”

3-8 Exercises

V—M works a little differently. As a safety feature, V-+M prevents the
accidental over-writing (replacing or redefining) of variables and directories.
V—+M ends with the "Not Ready" message and does not alter memory if an
attempt is made to over-write the contents of a name that already exits. V-+M
says "Store this variable if no other variable by the same name exists;
otherwise stop and display a warning message." The next exercise demonstrates
how the "Not Ready" condition occurs and what to do when it does occur.

EXERCISE #3
Step Type Result
1. PTRE ENTER Restores directory T'.
2. USER P Makes ' the current directory.
3. «W,Z + Defines 'B' as a program. The program W + Z is
ENTER stored in 'B'. The comma automatically changes
‘B STO to a space after pressing ENTER.
L 8 [S p | B | T | |
USER menu after step 3.
4. S Goes to directory 'S'.
5. CUSTOM Puts all the names of directory 'S' in a list on the
VARS stack ((A B C})).
6. YV—+8 Recalls all of those names.
7. PL Goes to the parent directory. The current path
should be {HOME P }.
8. V=M Attempts to store 'A’, 'B', and 'C’ in directory P'.

Exercises 3-9

Not Ready

2: 'S’

1: 3
P? [VS 1 vV-M] VARS [HUNT] PL

The display after step 8.

9. USER Shows the USER menu (and clears the message
flag).
3: B’
2: 'S’
1 2
c | B | s | p | E | T

The display after step 9.

The result is a new stack-coded directory that contains 2 names. FIG
Ex3.1 and FIG Ex3.2 show what memory and the stack look like at this point.
Originally there were 3 names in the stack-coded directory but 'C' was
successfully created, leaving 'B' and 'A’ on the stack. Why did it stop there?
V—+M attempted to create 'B' but stopped because 'B' already exists in the
current directory. Executing V-+M again will just result in the same "Not
Ready" error, neither the stack nor the USER menu would change. What now?
The existing '‘B' must be purged before the new 'B' can be created. The exercise
continues.

3-10 Exercises

HOME
|
p

SOH6O
500 &6

FIG Ex3.1: Memory Tree that results from Exercise #3.

6 (2,1)

5. /5N
4: (2,2)

3 'B!

s 010
1 2

FIG Ex3.2: Stack-Coded Directory that results from Exercise #3.

Exercises 3-11

EXERCISE #3 (continued)

Step Type Result
10. 'B RCL Renames 'B' as 'B2'. The contents of 'B' are now in
‘B2 STO 'B2'.
‘B PURGE
USER
L 8 [c] s | D | E | T |
USER menu before step 10.
(B2 | ¢ | s | b | E | T |
USER menu after step 10.
11. CUSTOM Resumes storing names.
VM
USER
| A | B | B | C | S D |

3-12

USER menu after step 11.

Exercises

HOME
]
p

SO060HOOL
50 66

FIG Ex3.3: Memory Tree after step 11.

3.4 Purging Names

Typically, to purge a variable, one puts the name onto the stack and
presses PURGE. But an attempt to purge a directory in that manner will result
in a "Non-Empty Directory" error unless the directory is empty. Although this
prevents the accidental erasure of a directory, it becomes an annoyance when
you intend to erase non-empty directories. The next exercise illustrates how
V—-X purges both variables and directories alike, making it possible to free-up
large amounts of memory quickly.

Exercises 3-13

EXERCISE #4

Step Type Result
1. PTRE ENTER Restores T Tree.
2. USER P Goes to directory P'.
3. ({D,T Puts { D T } onto the stack. The comma
ENTER automatically changes to a space and a closing
brace is added after pressing ENTER.

1: {D T}
s | o | &] T | |

The display after step 3.

4. CUSTOM NEXT Purges.

5. USER Shows the USER menu. The menu labels show
names S and E.

Variable 'D' and directory 'T" no longer appear in the USER menu
because V=X erased them. FIG Ex4.1 shows the resulting tree.

3-14 Exercises

HOME

®©

FIG Ex4.1: The result of Exercise #4.

3.5 Locating Names

Consider the tree of FIG 3.1. When 'P' is the current directory, 'G' does
not appear in the USER menu. Suppose you do not know whether 'G' is in
subdirectory 'S' or in subdirectory 'T' or in both 'S' and 'T". How would you find
'G' without testing all possibilities? FIND reports the locations (directory
paths) of a name as illustrated in Exercise #5.

Exercises 3-15

EXERCISE #5

Step Type Result
1. PTRE ENTER Restores 'P' Tree.
2. USER P Goes to directory 'P'.
3. '‘G ENTER Puts 'G' onto the stack. The menu labels show
names S, D, E,and T.
4. TOM Executes FIND.
NEXT
FIND
2: {HOME P T}
1: 1
P? | RENM | v-X | FIND | DL | PL

FIG Ex5.1: The display after step 4 of Exercise #5.

FIND reported the following: 1 copy of 'G' exists and it is located in the
directory whose path is { HOME P T}. 'T" appears last in the path list and is
said to be the parent of 'G'. (‘'T" is also the parent of 'F'; similarly 'P' is the
parent of 'S, 'D’, 'E', and 'T".) For now, keep the results of Exercise #5 on the
stack for use in the next exercise.

FIND reports locations but DL actually takes you to those locations as
illustrated in Exercise #6.

3-16 Exercises

EXERCISE #6

This exercise is to be performed immediately after exercise #5 so that

TREE = FIG3.1
PATH = {HOME P}
STACK = FIGEx5.1
MENU = CUSTOM
Step Type Result
1. DROP Removes the number from the stack.
2. DL Goes to the directory whose path matches that of
stack level one ({ HOME P T} in this case).
3. P? Helps you make sure you're in the right place.
The path should be { HOME P T} at this point.
4. USER Shows the USER menu. The menu labels show
names F and G.

3.6 Moving Names

Consider FIG Ex2.1. It is the result of performing Exercise #1 and
Exercise #2 back-to-back. Compare FIG Ex2.1 to FIG 3.1. Notice that a copy of
'S' has been stored in 'T". If the 'S' in 'P' were purged from FIG Ex2.1, then FIG
3.3 would be the result. Comparing FIG 3.3 to FIG 3.1 reveals that 'S’ has been
moved from directory 'P' to directory 'T". This illustrates the steps involved in
moving names from one directory to another. The steps are as follows.

A. Replicate: make a copy of the names.
1. go to the directory that contains the names to be moved; that is
called the Source Directory;
2. put the names into a list; to move all names simply use VARS;
3. use V—S to recall the names from the Source Directory;
4. go to the final directory; that is called the Target Directory;
5. use V=M to store the names into the Target Directory.

Exercises 3-17

B. Clean Up: return to the Source Directory and purge the originals.
1. return to the Source Directory, using PL (Locate Parent Directory)
and DL (Directory Locate) as necessary;
2. put the names into a list;
3. use V=X to purge the names from the Source Directory.

Follow Steps A anytime you want to replicate a group of names. Follow
both Steps A and Steps B anytime you want to move a group of names from one
directory to another. You may even want to write a program that would do all
of the steps automatically. Such a program would make excellent use of the
FOX programs (DL, V=S, V=M, and V=X in particular) and would require
three inputs: 1) the path of the Source Directory, 2) the path of the Target
Directory, and 3) the list of the names to be moved.

HOME
|
P

Yok
0 E
50

FIG 3.3: Result of modifying FIG Ex2.1.

3-18 Exercises

3.7 Entering Programs

It takes approximately two hours to enter all 16 of the FOX programs.
So before starting, use TABLE 4.1 (found on page 4-1) to select the programs you
want to use, taking into consideration the operation, size, needs, and uses of
each program. For the purpose of working the exercises of Section 3 select
programs 1 through 12. Ideally you will eventually enter all 16 programs but if
you are limited by available memory then you can use TABLE 4.1 to determine
which programs to use.

Some of the programs require the existence of other programs in order to
work properly. For each FOX program, TABLE 4.1 lists which other FOX
programs are required to use it and which other programs depend on it. For
example, V-*M (program #9) needs three programs: #3, #4 and #5 (ALRM, PL,
and DL). V»M is used by one program: #14 (RENM). So if V=M is not in
memory then RENM will not work properly.

Before entering the programs, search through the HOME directory and
all other directories to ensure that none of them contain names that match the
FOX program names. Then, when entering the programs, stay in the HOME
directory the whole time. All of the programs must be stored in HOME in order
to work correctly.

If you are familiar with MENUS mode then you will be pleased to
know that it is particularly suitable for entering FOX programs because all
local variable names were selected from the lower half of the left keyboard.
For even more convenience, set up the CUSTOM menu as follows: { V=S, V=M,
V=X, PL, DL} MENU. That will make things easier.

Exercises 3-19

After entering and storing a program, use the checksum program below.
CKSM requires that stack level one contain the name of the program to be
checked. CKSM returns a four-digit hexadecimal number. If the number does not
match the one listed below for that program, then that program has not been
entered correctly and/or has not been stored under the correct name.

« RCLF STD HEX 64
STWS 48 CF SWAP DUP
—STR SWAP RCL —STR *t
16 STWS DUP # gh 1
ROT SIZE
FOR T OVER T DUP
SUB NUM R—B XOR RL
NEXT —STR 3 6 SUB
ROT STOF SWAP DROP
»

'CKSM'

Checksum Program

[Please Note: this checksum program is the author's improvement version of a
public domain program which is believed to have been posted on the HP public
electronic bulletin board. The checksum program on this page is not a part of the
FOX Project program set and is hereby regarded as public domain software.
Responsibility for its use rests solely with the user.]

3-20 Exercises

CHECKSUM VALUES FOR FOX

PROGRAMS
1 | MM F699 9 | VM 7D20
2 |MSET E21F 10 |v=X BFFB
3 |ALRM 43FE 11 [FIND 1E7F
4 |PL 654C 12 |SEEK A8AA
5 | DL E40B 13 | HUNT 3190
6 | P2 9F4E 14 |RENM EOB4
7 | PTRE B7A3 15 |CLDIR |EE48
8 |v=>s 7ASE 16 [ZAP DIFA

SUMMARY OF PROGRAM ENTRY TIPS

* consider size and needs when selecting programs

* FOX names must be unique throughout all of USER memory

* all local variables are lower case and are found on the lower half of
the left keyboard (letters s, t, v, w, x, y, and z; u is not used)

* CKSM verifies correct entry and correct naming

3.8 Onward

Having briefly read through this section once, you are ready to work
through it hands-on. Enter the checksum program, store it as 'CKSM’, and use it
to verify that you have entered the checksum program correctly; the checksum
for the checksum program itself is "5747" provided it has been stored as
'CKSM'. Next turn to Section 4, enter programs 1 through 12 into your calculator,
using CKSM to verify each one. Then go back to the beginning of this section and
work through the exercises.

Exercises 3-21

SECTION 4

PROGRAM LISTINGS

TABLE 4.1: FOX Project Program Size, Needs, and Uses.

NAME OPERATION SIZE* NEEDS USED BY
1 |MM Interface 265 |2 .
2 | MSET Interface List 855 1
3 | ALRM Audio Prompt 655 |. 9,14,15
4 |PL Locate Parent Directory 47 5 7-16
5 |DL Locate a Directory 415 4,7 -16
6 | P? Identify Current Path 365 |-
7 | PTRE Create 'P' Tree 307 4,5,10 .
8 | V-S Recall Names 2195 |4,5 14
9 |V-M Store Names 332 3-5 14
10| VX Purge Names 139.5 |4,5 7,14,15
11| FIND Locate a Name, Downwards 31 4,5,12 .
12| SEEK Locate a Name, Downwards | 179.5 |4,5 11
13| HUNT Locate a Variable, Upwards| 100 4,5 16
14 | RENM Rename a Name 220 3-5, 8-10
15| CLDIR Clear Current Directory 129 3-5,10
16| ZAP Purge a Name, Upwards 101 4,5,13
* Program sizes are approximate and are measured in kilobytes.
Program Listings 4-1

PROGRAM 1: MM

<« MSET MENU

>

PROGRAM 2: MSET

{ P? VS VM VARS
HUNT PL P? RENM VX
FIND DL PL }

PROGRAM 3: ALRM

« 900 .1 BEEP
960 .1 BEEP

»

PROGRAM 4: PL

< PATH DUP SIZE
1 - 1MAX 1 SWAP
SUB DL

>

4-2

PROGRAM 5:

« DUP SIZE 1 1

ROT
START GETI
EVAL
NEXT DROP2
»
PROGRAM 6:

« PATH 1 DISP 1
WAIT CLMF

»

Program Listings

DL

P?

PROGRAM 71

« HOME { P }
VsX 'P' CRDIR P 'T'
CRDIR T (3,2) 'G'
STO (3,1) 'F' STO P
(1,2) 'E' STO (1,1
‘D' STO 'S' CRDIR S
2,3) 'C' ST0 (2,2)
'B' STO (2,1) 'A’
STO HOME

b4

PTRE

PROGRAM 8: V»S

«@9»vut
« 31 CF
IF v SIZE
THEN 1 v
SIZE
FOR x v x
GET
IF VARS
2 PICK POS
THEN
IFERR
DUP RCL SWAP
THEN
EVAL VARS V»S PL
END
ELSE
DROP t 1 + 't' STO
END
NEXT
END PATH
DUP SIZE GET v SIZE
t._

Program Listings

4-3

PROGRAM 9: VM

« 1 VARS » s t
X U
« 38 CF
WHILE x t <
38 FC? AND
REPEAT
IF DUP
TYPE
THEN
IFv?2
PICK POS
THEN 38
SF
ELSE
STO

[This prosram listing is
continued on the very next

column.]

4-4

[This is a continuation of
the prosram listing for
PROGRAM 9: V=M. 1

END
ELSE
IF v3
PICK POS
THEN 30
SF
ELSE 2
PICK DUP CRDIR EVAL
VM PL
END
END % 1 +
'x' STO
END
IF 308 FS?
THEN s t x
- 2 + ALRM
"Not Ready" 1 DISP
END

Program Listings

PROGRAM 18:
« Iy
« 31 CF
IF v SIZE
THEN 1 v
SIZE
FOR % v x
GET
IFERR
DUP PURGE DROP
THEN

DUP EVAL VARS V»X
PL PURGE
END
NEXT
END

PROGRAM 11:

« @ SWAP SEEK

»

VaX

FIND

PROGRAM 12: SEEK

« VARS » z v
« 31 CF
IF v SIZE
THEN 1 v
SIZE
FOR x v x
GET DUP
IFERR
RCL DROP2
THEN
EVAL z SEEK PL
END
NEXT v z
IF POS
THEN 1 +
PATH SWAP
END
END

PROGRAM 13: HUNT

«PATH > z y
« @8 1 PATH
SIZE
START
IF VARS z
POS
THEN 1 +
PATH SWAP
END PL
NEXT y DL

4-6

PROGRAM 14:

« QVER 1 »LIST
ryzv
« 31 CF
IF VARS y
POS VARS z POS NOT
AND

THEN v V»S
DROPZ v VaX
IF DUP
TYPE
THEN DROP
z STO
ELSE SWAP

DROP z SWAP 'x' 1
Vadi
END
ELSE ALRM
“Not Ready" 1 DISP
END

Program Listings

RENH

PROGRAM 15: CLDIR PROGRAM 16:
<« « PATH » z y
IF PATH SIZE « 1 PATH SIZE
1 - START
THEN ALRM IFERR z
PATH 2 DISP PURGE
"Delete?" 1 DISP THEN
DO END PL
UNTIL KEY NEXT y DL z
END DUP 1 HUNT
DISP >
IF "y" SAME >
THEN VARS
V¥
END CLMF
END

Program Listings

ZAP

4-7

APPENDIX

A.1 Operation Requirements

ITEM NOTE RECOMMENDATION
User FOX Project programs require | Have the appropriate amount of
Memory |approximately 2061 bytes|user memory available before
total. The amount of memory | entering in programs. Use the
required for each program is| MEM command to check how
reported in TABLE 4.1. much memory is available.
Modes LAST mode is disabled by| Always expect LAST mode to be
some operations. disabled after using any FOX
program.
Flags Some operations use User Flag | Always expect flag 30 to be
30. They do not require that it | affected by FOX programs.
be set or cleared before hand
but they may change it.
Custom |Program MM clears the| A program like « { TAN RND
Menu CUSTOM menu.

IP } MENU » will conveniently
reestablish the CUSTOM menu. If
necessary, write and store such a
program to quickly restore the
CUSTOM menu. The names TAN,
RND, and IP were arbitrarily
chosen.

Appendix

A-1

A.2 Nomenclature

*V—S means "Copy Names to the Stack."
*V-M means "Copy Names to the Current Directory"” (into memory).
*V—+X means "Move Names to the Abyss" (purge them).

A.3 Generalized Stack-Coded Directory

Program V—S puts a stack-coded directory onto the stack. Program
V—M assumes the stack contains a stack-coded directory starting in level one.
So the stack MUST be in the format shown in FIG A.2 prior to using V—+M. Study
FIG A.1 with FIG A.2. Notice that a stack-coded directory is simply a nested
sequence of stack levels where each couplet is either a node or a cell. Each node
consists of a directory name and the number of names contained in that
directory. Each cell contains a variable and its name. The stack-coded directory
in FIG A.2 was generated by using VARS and V—S from directory 'P' where the
path was { HOME P }.

HOME

Slolol:
OO0 OG

FIG A.1: The model tree used to get FIG A.2.

A-2 Appendix

23:

22:
21:
20;
19:
18:
17:
16:
15:
14:
13:
12:
11:
10:

WD oy 9@

any-
thing
(2,1)
IAI
(2,2)
|Bl
(2,3)
ICI
ISI

(1,1)
lDl
(1,2)
IEI
(3,1)
IFI
(3,2)
IGI
ITI

IPI

HOME

previous stack

contents

variable's
variable's

contents
name

variable's
variable's

contents
name

variable's
variable's

contents
name

directory's name

of names

therein

variable's
variable's

contents
name

variable's
variable's

contents
name

variable's
variable's

contents
name

variable's
variable's

contents
name

directory's name

of names

?????E??T?

therein

directory's name

of names

therein

name of parent

directory

e

number of names
recalled from the
parent directory

FIG A.2: (left) Stack-Coded Directory of FIG A.1; and
(right) Generalized Stack-Coded Directory.

Appendix A-3

	Cover
	Contents
	Section 0: User Memory Basics
	Section 1: Introduction
	1.1 General Description
	1.2 Motivation
	1.3 Terms and Symbols
	1.4 Special Features

	Section 2: Program Descriptions
	Section 3: Exercises
	3.1 Getting Started
	3.2 Recalling Names
	3.3 Storing Names
	3.4 Purging Names
	3.5 Locating Names
	3.6 Moving Names
	3.7 Entering Programs
	3.8 Onward

	Section 4: Program Listings
	Appendix
	A.1 Operation Requirements
	A.2 Nomenclature
	A.3 Generalized Stack-Coded Directory

