

Advanced Scientific
Calculator

Owner's Manual

)
@

 Ky HEWLETT
PACKARD

HP-28S Advanced Scientific

Calculator

Owner’s Manual

ie HEWLETT
PACKARD

Edition 5 August 1989
Reorder Number 00028-90066

Notice

For warranty and regulatory information for this calculator, see pages 291
and 295.

This manual and any examples contained herein are provided “as is” and
are subject to change without notice. Hewlett-Packard Company makes
no warranty of any kind with regard to this manual, including, but not

limited to, the implied warranties of merchantability and fitness for a

particular purpose. Hewlett-Packard Co. shall not be liable for any
errors or for incidental or consequential damages in connection with the
furnishing, performance, or use of this manual or the keystroke programs
contained herein.

o Hewlett-Packard Co. 1988. All rights reserved. Reproduction,
adaptation, or translation of this manualis prohibited without prior
written permission of Hewlett-Packard Company, except as allowed under
the copyright laws.

The programs that control your calculator are copyrighted and all rights
are reserved. Reproduction, adaptation, or translation of those programs
without prior written permission of Hewlett-Packard Co. is also
prohibited.

Corvallis Division

1000 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 November 1987 Mfg. No. 00028-90067

Edition 2 April 1988 Mfg. No. 00028-90128
Edition 3 June 1988 Mfg. No. 00028-90130
Edition 4 November 1988 Mfg. No. 00028-90147
Edition § August 1989 Mfg. No. 00028-90153

Welcome to the HP-28S

Congratulations! With the HP-28S you can easily solve complicated
problems, including problems you couldn't solve on a calculator be-
fore. The HP-28S combines powerful numerical computation with a
new dimension—symbolic computation. You can formulate a problem
symbolically, find a symbolic solution that shows the global behavior
of the problem, and obtain numerical results from the symbolic solu-
tion.

The HP-28S offers the following features:

B® Algebraic manipulation. You can expand, collect, or rearrange terms
in an expression, and you can symbolically solve an equation for a
variable.

® Calculus. You can calculate derivatives, indefinite integrals, and

definite integrals.

® Numerical solutions. Using HP Solve on the HP-28S, you can solve
an expression or equation for any variable. You can also solve a
system of linear equations. With multiple data types, you can use
complex numbers, vectors, and matrices as easily as real numbers.

B® Plotting. You can plot expressions, equations, and statistical data.

B® Unit conversion. You can convert between any equivalent combina-
tions of the 120 built-in units. You can also define your own units.

B Statistics. You can calculate single-sample statistics, paired-sample
statistics, and probabilities.

® Binary number bases. You can calculate with binary, octal, and

hexadecimal numbers and perform bit manipulations.

B Direct entry for algebraic formulas, plus RPN logic for interactive
calculations.

Welcome to the HP-28S 3

The HP-28S Owner’s Manual (this manual) contains three parts. Part 1,

“Fundamentals,” demonstrates how to work some simple problems.
Part 2, “Summary of Calculator Features,” builds on part 1 to help
you apply those examples to your own problems. Part 3, “Program-
ming,” describes programming features and demonstrates them in a
series of programming examples.

The HP-28S Reference Manual gives detailed information about com-
mands. It is a dictionary of menus, describing the concepts and
commands for each menu.

We recommend that you first work through the examples in part 1 of
the Owner's Manual to get comfortable with the calculator, and then
look at part 2 to gain a broader understanding of the calculator’s op-
eration. When you want to know more about a particular command,
look it up in the Reference Manual. When you wantto learn about
programming, read part 3 of the Owner's Manual.

These manuals show you how to use the HP-28S to do math, but
they don’t teach math. We assume that you're already familiar with
the relevant mathematical principles. For example, to use the calculus
features of the HP-28S effectively, you should know elementary
calculus.

On the other hand, you don’t need to understand all the math topics
in the HP-28S to use those parts of interest to you. For example, you
don’t need to understand calculus to use the statistical capabilities.

4 Welcome to the HP-28S

Contents

15 How To Use This Manual

15 What's in This Manual

16 For More Information

Part 1: Fundamentals

1 18 Getting Started
18 Preliminaries
18 Opening and Closing the Case
19 Locating the Battery Door and Printer Port
20 Turning the HP-28S On and Off
20 Clearing All Memory (Memory Reset)
21 Adjusting the Display Contrast
21 Keyboard Calculations
25 An Overview of the Calculator

25 Major Features and Concepts
31 The Catalog of Commands

2 34 Doing Arithmetic
36 Entering and Displaying Numbers
36 Changing the Decimal Point
37 Selecting Number Display Mode
39 Keying In Numbers
40 One-Number Functions
41 Two-Number Functions
41 Addition and Subtraction
41 Multiplication and Division
42 Powers and Roots
43 Percentages

Contents 5

43
44
45
47

48
49
50
50
51
52
52
54
56
56
57

58
60
63
66
68
71
72

73
73
74
76
77

78
79

6 Contents

Swapping Levels 1 and 2
Clearing Objects From the Stack
Chain Calculations
If You Execute the Wrong Function

Using Variables

Introduction to Variables
Creating a Numerical Variable
Recalling a Numerical Variable
Evaluating a Numerical Variable

Changing the Value of a Variable
Purging a Variable
Changing the Name of a Variable

Creating a Program Variable
Recalling a Program Variable
Evaluating a Program Variable

Quoted and Unquoted Names

Repeating Calculations

Creating an Expression
Creating a Directory
Using the Solver To Repeat a Calculation
Using a Different Set of Values
Using a Different Expression
Returning to HOME
Summary

Real-Number Functions
Trigonometric Functions

Selecting Angle Mode
Using 7
Converting Angular Measure

Logarithmic, Exponential, and Hyperbolic
Functions

Other Real Functions
Defining New Functions

10

82
82
84
86

89
91
91
93
94
97

98
98
100
103

107
107
109
110
112

117
117
118
120
120
121
122

Complex-Number Functions
Using Complex Numbers
Using Polar Coordinates
A User Function for Polar Addition

Plotting

Printing a Plot
Changing the Scale of the Plot
Translating the Plot
Redefining the Corners of the Plot
Plotting Equations

The Solver
Finding a Zero of an Expression
Finding a Minimum or Maximum
Time Value of Money

Symbolic Solutions

Finding the Zeros of a Quadratic Expression
Isolating a Variable
Expanding and Collecting
Using FORM

Calculus
Differentiating an Expression

Step-by-Step Differentiation
Complete Differentiation

Integrating an Expression
Symbolic Integration of Polynomials
Numerical Integration of Expressions

Contents 7

11 124
124
124
125
125
126
126
126
127
127
128
128
128
128
129
130

12 131
132
133
134
134
135
135
135
136
136
136
137
137

13 138
138
139
139
140

8 Contents

Vectors and Matrices
Vectors
Keying In a Vector
Multiplying and Dividing a Vector by a Number
Adding and Subtracting Vectors
Finding the Cross Product
Finding the Dot Product

Matrices
Keying In a Matrix
Viewing a Large Matrix
Inverting a Matrix
Finding the Determinant

Multiplying Two Arrays
Multiplying Two Matrices
Multiplying a Matrix and a Vector

Solving a System of Linear Equations

Statistics
Entering Data
Editing Data
Single-Sample Statistics

Finding the Mean
Finding the Standard Deviation
Finding the Variance

Paired-Sample Statistics
Specifying a Pair of Columns
Finding the Correlation
Finding the Covariance
Finding the Linear Regression
Finding Predicted Values

Binary Arithmetic

Selecting the Wordsize
Selecting the Base
Entering Binary Integers
Calculating With Binary Integers

14 141
141
143
144
146
147

15 149
149
150
151
152
152

Unit Conversion
The UNITS Catalog
Converting Units
Converting Unit Strings
Checking for the Correct Units
User Functions for Unit Conversion

Printing

Printing the Display
Printing a Running Record
Printing Level 1
Printing the Stack
Printing a Variable

Part 2: Summary of Calculator Features

16 154
155
155
156
156
157
158
159
160
161
161
162
163

17 164

Objects

Real Numbers
Complex Numbers
Binary Integers
Strings
Arrays
Lists
Names
Programs
Algebraics

Expressions
Equations
Symbolic Constants

Operations, Commands, and Functions

Contents

18

19

20

21

10

166
166
168
169
169
171
171
172
173
173
174
175

176
176
177
177
179
179
180
181

182
182
182
183
187
188
190

192
193
194
194
195

Contents

The Command Line
The Cursor Menu
Some Entry Keys
Object Delimiters and Separators
Entry Modes

Exceptions
Manual Selection of Entry Modes

How the Cursor Indicates Modes
Executing the Command Line
Editing Existing Objects
Recovering Command Lines
The Command Line as a String

The Stack
Review of Stack Concepts
Viewing the Stack
Manipulating the Stack
Local Variables
Recovering the Last Arguments
Restoring the Stack
The Stack as a List

Memory

User Memory
Global Variables
Directories

Recovery Features
Low Memory
Maximizing Performance

Menus

Menus of Commands

Menus of Operations
Menus of Variables

Custom Menus

22

23

24

25

196
197
197

198
199
199
200
200
201
201
202
203

205
205
207
210
211
212

215
216
216
216
216
217
217

Catalog of Commands

Finding a Command
Checking Command Use

Evaluation
Data-Class Objects
Name-Class Objects

Evaluation of Local Names
Evaluation of Global Names

Procedure-Class Objects
Evaluation of Programs
Evaluation of Algebraics
Evaluation of Functions

Modes
General Modes
Entry and Display Modes
Recovery Modes
Mathematical Exceptions
Printing Modes

System Operations

Printing the Display
Contrast Control
Clearing Operations

Attention
System Halt
Memory Reset

Contents 11

218
218
219

Test Operations
Repeating Test
Keyboard Test

Part 3: Programming

26

27

12

222
222
223
226
226
227
227
227
228
228
229
230
231
231
232
233

234
234
235
235

240
241
241
244
245
246
247
248
249
250

Contents

Program Structures

Local-Variable Structure
Conditional Structures

IF ... THEN ... ELSE ... END
IFTE (If-Then-Else-End Function)
IF ... THEN ... END
IFT (If-Then-End Command)
Error Traps

Definite Loop Structures
START ... NEXT
FOR counter ... NEXT

... increment STEP
Indefinite Loop Structures
DO ... UNTIL ... END
WHILE ... REPEAT ... END

Nested Program Structures

Interactive Programs

Asking for Input
Asking for a Choice
A More Complicated Example

Programming Examples

Box Functions

BOXS (Surface of a Box)
BOXS Without Local Variables
BOXR (Ratio of Surface to Volume of a Box)

Fibonacci Numbers
FIB1 (Fibonacci Numbers, Recursive Version)

FIB2 (Fibonacci Numbers, Loop Version)
Comparison of FIB1 and FIB2

Single-Step Execution

253
253
255
257
257
258
259
262
263
265
266
266
267
270
270
272
273
275
276
277

Expanding and Collecting Completely
MULTI (Multiple Execution)
EXCO (Expand and Collect Completely)

Displaying a Binary Integer
PAD (Pad With Leading Spaces)
PRESERVE (Save and Restore Previous Status)
BDISP (Binary Display)

Summary Statistics
SUMS (Summary Statistics Matrix)
2GET (Get an Element of ZCOV)
2X2 (Sum of Squares of x)
2Y2 (Sum of Squares of vy)
ZXY (Sum of Products of x and y)

Median of Statistics Data
SORT (Sort a List)
LMED (Median of a List)
MEDIAN (Median of Statistics Data)

Changing Directories
UP (Move to a Parent Directory)
DOWN (Move to a Subdirectory)

Contents 13

Appendixes & Indexes

A

14

282
282
286
289
289
289
291
293
295

302

306

327

332

Contents

Assistance, Batteries, and Service

Answers to Common Questions

Batteries

Calculator Maintenance

Environmental Limits

Determining If the Calculator Requires Service
Limited One-Year Warranty
If the Calculator Requires Service
Regulatory Information

Notes for RPN Calculator Users

Notes for Algebraic Calculator Users

Menu Map

Key Index

Subject Index

How To Use This Manual

If you have the time and inclination, you can read this manual from
front to back, working every example. If not, we recommend the fol-
lowing approach for getting started.

1. Read the first five chapters in part 1, “Fundamentals,” to get
comfortable with the calculator.

2. There are two appendixes that compare the HP-28S with other
styles of calculators.

B If you're familiar with other Hewlett-Packard calculators that
use RPN, read appendix B, “Notes for RPN Calculator Users,”
on page 296.

® If you're familiar with calculators that use a form of algebraic
entry, read appendix C, “Notes for Algebraic Calculator Us-
ers,” on page 302.

3. If you're interested in a topic covered later in part 1, you can
skip ahead and try the examples in that chapter.

What’s in This Manual

Part 1, “Fundamentals,” demonstrates how to work some simple prob-
lems. While solving these problems you'll learn the basics about HP-
28S operations, object types, and menus.

Part 2, “Summary of Calculator Features,” builds on part 1. It provides
more detail about how to use the calculator, including options and
features not discussed in part 1. Using part 2, you can extend the
examples in part 1 to solve your own problems.

How to Use This Manual 15

Part 3, “Programming,” describes the programming features of the
HP-28S. The last chapter, “Programming Examples,” contains a series
of short programs that demonstrate programming techniques.

For More Information

As you work the examples in this manual, you may have questions
about the features demonstrated or mentioned in the examples. Both
this manual and the Reference Manual contain additional
information.

® If you have problems, see “Answers to Common Questions” on
page 282.

® For a brief description of what each key does, see “Key Index” on
page 327.

B For a brief description of the commands in each menu, see appen-
dix D, “Menu Map,” on page 306.

B For detailed information about a menu, look in the Reference Man-
ual. All menus (plus some additional topics) appear in alphabetical
order. The contents of the dictionary are listed on the back cover of
the Reference Manual.

B For detailed information about a particular command, look in the
“Operation Index” at the back of the Reference Manual. There
you'll find a reference to a dictionary entry (usually a menu) and a
page reference to the particular command.

16 How To Use This Manual

Part 1
Fundamentals

Page 18 1: Getting Started

34 2: Doing Arithmetic

48 3: Using Variables

58 4: Repeating Calculations

73 5: Real-Number Functions

82 6: Complex-Number Functions

89 7: Plotting

98 8: The Solver

107 9: Symbolic Solutions

117 10: Calculus

124 11: Vectors and Matrices

131 12: Statistics

138 13: Binary Arithmetic

141 14: Unit Conversions

149 15: Printing

Getting Started

This chapter first describes the calculator’s basic features, then dem-
onstrates a simple calculation. Next, an annotated illustration of the
keyboard highlights the major features of the keyboard and display.
Last, you'll learn about the catalog of commands, which is a handy
guide to commands and how to use them.

Preliminaries

This section describes the calculator’s basic features.

Opening and Closing the Case

The calculator forms its own case, opening and closing like a book. To
open the calculator, hold it with the hinge away from you and open it
with your thumbs.

 18 1: Getting Started

To close the calculator, fold the two sides together and press until you
hear a click.

You can fold back the left-hand side of the calculator untilit is back-
to-back with the right-hand keyboard. This is handy for field work—
when you want to hold the calculator in one hand and operate it with
the other—or to save space on a desk.

Locating the Battery Door and Printer Port

With the calculator open, note the location of the battery door and the
printer port.

- — Printer port

 Battery door

The HP-28S is powered by three N-cell alkaline batteries. Batteries
are included with the calculator. If the batteries are not already in-
stalled, follow the instructions that start on page 286.

1: Getting Started 19

When you use the HP-28S with a printer, the calculator sends in-
formation to the printer via an infra-red signal. This signal is emitted
from the printer port and received by the printer. Printer operations
are described in chapter 15.

Turning the HP-28S On and Off

Press to turn on the calculator. The HP-28S has Continuous Mem-
ory, so all data in the calculator, including the contents of the display,
are unchanged from the last time you used the calculator.

While the calculator is on, acts as the ATTN (attention) key, as
printed in white below the key. Pressing clears any text you've
typed in and stops programs.

Press [OFF] to turn off the calculator. (“Press [llOFF]” means “press
the shift key [l, then press the key with OFF printed above it.)

If the calculator is inactive for about 10 minutes, it automatically turns
off to conserve energy. Press to turn it on again.

Clearing All Memory (Memory Reset)

You can restore the calculator to its initial state by resetting memory.
All information in the calculator is lost. Any modes you've changed
(number display format, angle mode, and so on) are restored to their
default settings.

To reset memory:

1. Press and hold [ON].

2. Press and hold (in the upper-left corner of the right-hand
keyboard).

3. Press and release [Bb] (in the upper-right corner of the right-hand
keyboard).

4. Release [INS].

5. Release [ON].

20 1: Getting Started

The calculator beeps and displays Memory Lost. The message auto-
matically disappears when you press a key.

If you begin to reset memory but change your mind, continue holding
down while you press (in the top row, next to [INS]), and
then release [ON]. Pressing cancels the reset sequence.

Adjusting the Display Contrast

You can adjust the contrast of the display to compensate for various
viewing angles and light intensities.

To adjust the contrast:

1. Press and hold [ON].

2. Press one or more times to darken the display, or press [-]
one or more times to lighten the display.

3. Release [ON].

Keyboard Calculations

Try the following calculation.

(15 + 23) Xx sin 30°

The basic steps are the same as using paper and pencil. First you'll
calculate 15 + 23, which produces an intermediate result. Next you'll
calculate sin 30°, which produces the other intermediate result. Fi-
nally, you'll combine the intermediate results for the answer.

If you make a mistake while keying in a number, you can:

Bm Press (¢] to erase the last digit you keyed in.

B Press to erase all the digits you keyed in.

1: Getting Started 21

Start with a clean sheet of paper.

W(CLEAR]

—
=
M
N
W
E

The display shows the stack, which is your work area. Currently the
stack is empty.

Press (1](5] to write 15 in the command line.

15

=
=
=
a
)

(
J
]
o
e

[T
I
1
]

 0

Note that the stack moves up to make room for the command line, so
only three stack levels are displayed.

Put 15 on the stack.

=
P

 15

The number goes in stack level 1, as indicated by 1: at the left. Note
that the command line disappears, so four stack levels are displayed
again.

Press (2](3] to write 23 in the command line.

23

3:
2%

1: 15
230

Put 23 in level 1.

3:

21 15
1: 23

The number 15, which was in level 1, is lifted to level 2.

22 1: Getting Started

Add 15 and 23.

=
M
N
W
R

 38

The numbers 15 and 23 are removed from the stack, and their sum,

38, is returned to level 1. You'll leave this intermediate result on the

stack while you calculate the second intermediate result.

To calculate sin 30° you'll use the TRIG (trigonometry) menu.

3
2:
1: 38
NEEICETETEISTET

The bottom line of the display shows six commands in the TRIG
menu. The six menu labels (818 through 'ATAN) define the six
menu keys (the keys immediately below the display).

Press [3](0] to write 30 in the command line.

30 2:
1: 38
380
ECIEET]EEEINERCEEITT

Put 30 in level 1.

2: 38
ESCTNEECEEATT

The previous result, 15 + 23 = 38, is lifted to level 2.

Calculate sin 30°.

SIN 3:

5 ’
ELECETEEFOEETEEGE

1: Getting Started 23

The number 30 is removed from level 1, and its sine, .5, is returned to

level 1. The previous result, 38, remains in level 2.

Calculate 38 x .5.

x]

19
ECEEECEEEEWEBETEEIT

The numbers 38 and .5 are removed from levels 1 and 2, and their

product, 19, is returned to level 1.

This completes the calculation:

(15 + 23) x sin 30° = 19.

To summarize, here's a general procedure for the calculation you just
completed.

1. Key a number into the command line.

2. Press to put a number on the stack.

3. Press the key to execute the command. (If the command doesn’t
appear on the keyboard, select the menu that contains the com-
mand, and press the menu key below the appropriate menu label.)

The previous example demonstrated that all calculations occur on the
stack. To highlight this idea, you pressed to put every number
on the stack. In practice, you need to press only to separate two
numbers keyed in sequentially—in the example, to separate 15 and 23.
Try repeating the example, omitting the second and third [ENTER]s.

24 1: Getting Started

The style of calculation illustrated above, in which you enter numbers
onto the stack before you perform mathematical functions, is called
RPN (Reverse Polish Notation), postfix notation, or stack logic. Nearly
all HP-28S commands, not just calculations, use stack logic. This sys-
tem uses two simple rules:

® The inputs required by a function, called the arguments to the func-
tion, must be on the stack before the function is executed.

B The results of a function are returned to the stack, where they are
available as arguments to the next function.

You can also calculate by entering an expression in algebraic form, as
it might appear written in a book. In the next chapter you'll perform
the same calculation as above, using an algebraic expression.

An Overview of the Calculator

This section points out some major features of the calculator, includ-
ing a catalog of commands that lists and describes each command.

Major Features and Concepts

The illustrations on pages 26 and 27 show the calculator keyboard
and display, with important features identified. The numbers in the
following descriptions correspond to the numbers in the illustrations.

1: Getting Started 25

Object Type Symbol Example

~

Real Number 1.23456E-25

Complex Number () (123.45,678.90)

Binary Integer # #123AB
String “ “RESULT”

Vector [1 [1.23 4.56 7.89]

Matrix mn [[1.23 4.56]
4 [6.54 3.21]]

1 List {+ |[1.23 “aBC” #as)

Names

Name 1 : |caLc’)

Procedures \
Program « «DUP + SWAP»

L Algebraic I IE + ZY = 2

ARRAY = = Po LIST

Cooooo
STACK [STORE MEMORY ALGBRA STAY PRINT

2 SoS E Dn
CONTRL BRANCH TEST CATALOG UNITS

x om on 6
< 2 ° MH

3 E3 Tv Lv) £3 =

< > n) 1)

Y52 3] mu 1. 3

NEWLINE » z ? MENUS

|<]12Lc]
—

3

1. Object types and formats

2. Menu selection (shifted)

3. Object delimiters

26 1: Getting Started

4. Lowercase

5. Entry mode

6. Command and unit listings

(shifted)

 ——

HEWLETT
A PACKARD

28S SCIENTIFIC CALCULATOR
ADVANCED

—

I}

7 » © — a @ «Ca em 9

2:
| 1: 38 } 19

8 380
ETIEETIINEFTERITEEITTE18

MODE LOGS oo custom PREV

9 > BBBEBRBE
| EDIT VIEW 4 VIEW + ROLL SWAP

| VISIT COMMAND UNDO LAST |

11 > EJ |=
RCL PURGE J d/dx A

B11)BH = »
+ NUM CONT % %CH

=
OFF CLEAR vm CONVERT

12 > | —
| J

=

13

7. Annunciators 13. Number entry

8. Command line 14. Arithmetic

9. Shift key 15. Backspace

10. Enter command line 16. Menu selection, next menu row

11. Delimiter for symbolic objects 17. Menu keys

12. Power on and off; clear com- 18. Menu labels

mand line; stop program 19. Stack levels

1: Getting Started

1. Object types and formats. This table shows the correct delimit-

ers and examples for the 10 basic types of object. An “object” is any of
the individual items you work with on the calculator. The 10 basic
object types are:

B Real numbers, such as 5 or —4.3 x 101°,

B® Complex numbers, which are a pair of real numbers representing a
complex number x + iy or a point in a plane.

B® Binary integers, which are unsigned integers used in computer
science.

Strings, which contain arbitrary sequences of characters.

Vectors, which are one-dimensional arrays used in linear algebra.

Matrices, which are two-dimensional arrays used in linear algebra.

Lists, which contain arbitrary sequences of objects.

Names, which enable you to name and store other objects and to
perform symbolic calculations.

Programs, which enable you to create your own commands.

B Algebraics, which represent mathematical expressions and
equations.

2. Menu selection (shifted). Use the menu selection keys to assign

commands to the menu keys. For example, press [ARRAY] to select
the ARRAY menu. To select a different menu, press another menu

selection key.

There are additional menu selection keys on the right-hand keyboard
(see item 16).

3. Object delimiters. These symbols identify the different object
types (see item 1). For example, (#] identifies binary integers, while [«]
and [(»] identify programs.

Real numbers require no delimiters. Symbolic objects (names and
algebraics) require the [*] delimiter, located on the right-hand key-
board (see item 11).

4. Lowercase. Press to key in lowercase letters. Lowercase
mode continues until you press a second time, press [ENTER] to
process the command line, or press to clear the command line.

28 1: Getting Started

S. Entry mode. The command line has three entry modes, each
suited to entering certain types of objects. Entry modes change auto-
matically as you key in objects, but sometimes you want manual
control; the [a] key enables you to select the entry mode you want.

6. Command and unit listings (shifted). Press J[CATALOG] for a
listing of all HP-28S commands and their required arguments (page
31). Press @[UNITS] for a listing of the units recognized in unit conver-

sion (page 141).

7. Annunciators. The annunciators indicate the status of the calcu-

lator. When an annunciator is visible, it indicates the following:

Annunciator Meaning

Oo Suspended program.

4 Shift key [li] was pressed.

a Alpha entry mode.

(Q))) Busy, not ready for input.

— Low battery.

(2m) Radians mode.

Oo Sending data to printer.
8. Command line. The text you key in goes in the command line.

9. Shift key. Press the colored shift key [ll to execute a command

printed in color above a key.

10. Enter command line. Press to process the text in the
command line.

11. Delimiter for symbolic objects. Delimiters are punctuation

that identify types of objects; symbolic objects are names and
algebraics. To key in a symbolic object, press [*] at the beginning and
(when necessary) the end of the object.

1: Getting Started 29

Real numbers require no delimiters. The delimiters for other object
types are on the left-hand keyboard (see items 1 and 3).

12. Power on and off; clear command line; stop program. To
turn on the calculator, press ; to turn it off, press [l[OFF]. (OFFis
printed on the keyboard above [ON]. “Press [llOFF]” means press the
shift key ll and then press [ON].)

While the calculator is on, also acts as the ATTN (attention) key
to clear text in the command line or stop a running program. (ATTN
is printed on the keyboard below [ON].)

13. Number entry. To key in numbers, use the digit keys [0] through
(9], (change sign), and (enter exponent). Assuming you want
to use the period as the decimal point (page 36), use [-] to separate the
integer part from the fractional part. Number entry is described on
page 39.

14. Arithmetic. The arithmetic functions are described in “One-
Number Functions” on page 40 and “Two-Number Functions” on
page 41.

15. Backspace. Press [¢] to erase the last character you typed in.

16. Menu selection, next menu row. Use the menu selection keys
to assign commands to the menu keys. For example, press to
select the TRIG menu. To select a different menu, press another menu
selection key.

When no menu labels are visible, the cursor menu is active. The opera-

tions in the cursor menu ([INS] through [»]) are printed in white
above the menu keys. When menu labels are visible, press [«*] to se-
lect the cursor menu. To restore the previous menu, press [«»] a
second time.

A menu can contain more than one row, with up to six commands in
each row. Press [NEXT] to display the next row of the current menu.
Press [PREV] to display the previous row.

30 1: Getting Started

There are additional menu selection keys on the left-hand keyboard
(see item 2). For an alphabeticallisting of all menus, including a brief
description of the commands in each menu, refer to appendix D,
“Menu Map.”

17. Menu keys. The menu keys are defined by the menu labels. If
no labels are visible, these keys execute the cursor menu operations
labeled in white above the keys.

18. Menu labels. The menu labels show the current definitions of

the menu keys.

19. Stack levels. The stack shows the objects you're currently
working with. Each numbered stack level (level 1, level 2, and so on)
holds one object.

The Catalog of Commands

The HP-28S contains a catalog of all commands,listed alphabetically.
For each command the catalog shows its usage—that is, the argu-
ments required by the command. For a complete description of any
command listed in the catalog, refer to “Operation Index” in the back
of the Reference Manual.

Start the catalog.

W(CATALOG] UE

[WEST[FREVM|WEE [FETCH

The first command is ABORT.

Normal calculator operation is suspended while the catalog is active.
The MEXT and PREY operations move the catalog to other com-
mands. The USE operation displays the arguments required by the
current command. The FETCH and @UIT operations terminate the
catalog, restoring normal calculator operation.

Try pressing NEXT and PREV to move through the catalog. You can
hold down the keys for repeated moves.

1: Getting Started 31

You can moveto the first catalog entry for a particular letter by press-
ing the letter key. Try “T".

[WERT[FREV|USE [FETCH

The first “T” command is the TAN function. If you press a symbol
(non-letter) key on the left-hand keyboard, the catalog moves to the
first catalog entry for that symbol. Try “2”.

BE)

[WERT[FREY|USE [FETCH

The first “2” command is the Z+ command. If you press a symbol
key on the left-hand keyboard, and no commands begin with that
symbol, the catalog moves to +, the first non-alphabetical command.

[(#)

[WERTJFREV|LISE [FETCH

Check the usage for +.

USE

This shows that you can add two real numbers. Check the next
combination.

NEXT REED
: Real Number

1: Complex Number
LEEITI151

This shows that you can add real and complex numbers. Check the
next combination.

NEXT AA
: Complex Number

1: Real Number
LEETIEE15

This shows that the real and complex numbers can be in either order.

32 1: Getting Started

Check the 14 remaining combinations. The last combination looks
like this.

ny Jec
: List

[WERTJFREY || [[SUIT]

When you're done checking combinations, return to the main catalog.

QuIT

[WERTFREN|LISE [FETCH

You can now move to another catalog entry and check its combina-
tions of arguments. When you're done with the catalog, return to
normal calculator operation.

QUIT

3
2
1 19

[SIN[ASIN]cofJRCOZ |TAN |HTAN |

Alternatively, you can exit the catalog by pressing FETEH , which also
writes the name of the current command in the command line.

1: Getting Started 33

2
Doing Arithmetic

There are two ways to do arithmetic on the HP-28S. You can do
arithmetic using the stack, as you did in the previous chapter, or you
can enter an expression representing the calculation. In the previous
chapter you calculated:

(15 + 23) X sin 30°

Here's how to make the same calculation using an expression.

Clear the stack and select the TRIG menu.

W(CLEAR] 3
1
ECECECEEECEETTECET

Start the expression.

©

CELEEEEREETEET

The cursor changes, indicating Algebraic Entry mode. You'll see the ef-
fects of this entry mode as you key in the expression.

Key in the first part of the expression.

[015 [+] 23 BO] 2

¢15+23)H
ECACCCEEEETRE]

34 2: Doing Arithmetic

Because of Algebraic Entry mode, pressing wrote the character + in
the command line rather than executing the command.

Continue the expression.

[x] SIN

=
=
]

¢15+23)*SINCH

BUECETIEECEETGIT

Because of Algebraic Entry mode, pressing [x] wrote ¥ in the com-
mand line, and pressing 8IN wrote SIN¢ in the command line,
rather than executing the commands.

Complete the expression and put it on the stack.

30 [ENTER]

: '(15+23)*SIN(38)"
ETECET]EEEENEETEEET

The closing parenthesis > and the closing delimiter ' are added for
you.

Evaluate the expression.

19
ETRE TEEECEBITECET

The expression is removed from the stack, and the result, 19, is re-
turned to level 1.

This completes the calculation:

(15 + 23) x sin 30° = 19.

To perform a calculation that’s already written as an expression, such
as in a textbook, it’s easier to key in the expression and evaluate it.
Alternatively, to see the intermediate results of your calculation, or to
perform an on-going calculation, it’s easier to calculate on the stack.
The results are the same.

The relationship between stack calculations and expressions is demon-
strated in chapter 4, “Repeating Calculations.” In that chapter you
calculate on the stack, using names instead of numbers, to produce an
expression.

2: Doing Arithmetic 35

Entering and Displaying Numbers

There are modes that affect how numbers are displayed. To demon-
strate the choices, put the number #3 on the stack.

Put 2 on the stack.

2 3:: 2
ETEETIIECEETECET

Divide by 3.

3 3
=] 3: 19

I: . 666666666667
ECERECERITECET]

The result, %s, is returned to level 1. This result is the decimal ap-
proximation to %3, as displayed by the default choices for decimal
point and number display mode. The next section describes other
choices.

Changing the Decimal Point

In the United States a period is used to separate the integer part of a
number from the fractional part. In this role the period is called a
decimal point; the general term for this numerical punctuation is a
radix mark.

Many other countries use a comma as the radix mark. You can select
the comma as follows.

Select the MODE menu.

BB(ooE) 3
i: . 666666666667
HOESIEEE

36 2: Doing Arithmetic

The first row of the MODE menu appears. Display the second row of
the MODE menu.

 i: . 666666666667
EMCEEECREEEEE

Select the comma as the radix mark.

RDX, 3:
oH 19
1: ys EEE6666666T
HEDITEDREOECEEEAEEE

The decimal points are replaced by comma radix marks, and a square
appears in the menu label "RBX; to indicate that RDX, mode is
turned on.

Turn off RDX, mode to restore decimal points.

RD¥,

19
666666666667

[EENCTEOS)ECAEEEE

Selecting Number Display Mode

You can choose how many decimal places are displayed.

Return to the first row of the MODE menu.

19
« 666666666667

[270m |FIN |SCI [ENS[DEG |RAD |

You can move from the last row in a menu to the first row by pressing
[NEXT]. Since the MODE menu has only two rows, pressing cy-
cled back to the first row.

The menu shows four basic choices for number display mode: STD
(standard), FIX (fixed), SCI (scientific), and ENG (engineering). The
label for STD currently includes a square, indicating that STD is the
current choice. In STD mode the number of decimal places depends

2: Doing Arithmetic 37

on the value. For an integer, no decimal places are shown; for the

example displayed above, the maximum of 12 decimal places are
shown.

 The other display formats show a given number of decimal places
from 0 through 11—regardless of the number being displayed. We'll
demonstrate each of the other display formats with two decimal
places. Only the displays of the numbers are rounded—internally, the
numbers are unchanged.

Display %3 rounded to two decimal places.

2 FIX

19.688
8.67

[STO[FIdm |CT |ENG[DEGS |RAD |

Display %3 as a mantissa and an exponent, with the mantissa rounded
to two decimal places.

2 scCI

The value of the number is the product of the mantissa and 10 raised
to the power of the exponent. The mantissa is always between 1 and
9.99999999999.

Display #3 as a mantissa and an exponent, with the mantissa rounded
to two decimal places and the exponent a multiple of 3.

2 ENG

3:
2: 19.8E8
1: 667.E-3
STOFIXSCTJENGe|DEGE]RAD

STD

38 2: Doing Arithmetic

Keying In Numbers

You can enter numbers as a mantissa and an exponent, where the
value of the number is the product of the mantissa and 10 raised to
the power of the exponent. The mantissa or the exponent or both can
be negative.

For example, key in the number —4.2 x 10712,

First key in the digits for the mantissa.

4.2

19
on . 666666666667

EGEEEEEEET

If you make a mistake, press [(¢] to erase the mistake and then key in
the correct digits.

Next make the mantissa negative.

CHS

“CHS” stands for “change sign”—pressing a second time would
make the mantissa positive again.

Now begin the exponent.

 EEX 2: 19

1: « 666666666667
-4.2E0
[270mFI:SCIENG[DEGEFAD

“EEX” stands for “enter exponent.” The E in the command line marks
the number's exponent. If you press by mistake for a number
without an exponent, you can erase the E by pressing [(¢], just as you

would erase an incorrect digit.

Key in the digits for the exponent.

12 2: 19
1: . 666666666667
-4.2E120
[ZT0mFIV201ENG[DEG]RHO

2: Doing Arithmetic 39

Make the exponent negative.

CHS

1
=
=
) 19

« 666666666667

4. 26-120]

[ERCIEACTETEITO

Put the number on the stack.

Don't forget to use to key in negative numbers. For example,if
this manual shows the keystrokes —4 [x], you'll need to press [4]

[chs] [x].

One-Number Functions

Functions that act on a single number—for example, negating a num-
ber or taking a square root—are called one-number functions. All act
on the number in level 1. There are four one-number functions on the
keyboard:

B® Press to negate the number.

® Press §(1/x] to take the inverse (reciprocal) of the number.

B Press Jz] to take the square root of the number.

B Press (x?) to square the number.

If you're keying in a number,it’s not necessary to press before
executing the one-number function—pressing the function key auto-
matically performs ENTER for you. For example, you can calculate Vs
as follows:

8 W(1/x]

. 666666666667
-4.2E-12

40 2: Doing Arithmetic

Two-Number Functions

Functions that act on two numbers—such as addition—are called

two-number functions. All act on the numbers in levels 1 and 2.

When you're keying in both arguments to the function, as when you
divided 2 by 3 on page 36, you must press to separate the two
arguments. When one or both arguments are already on the stack
from previous calculations, you don’t need to press [ENTER].

Addition and Subtraction

Calculate 36 + 17.

36 [ENTER]
17 (+)

The result is 53.

For addition the order of the numbers doesn’t matter. However, the

order is important for subtraction. Next calculate 91 — 27.

91
27 (5)

The result is 64.

Multiplication and Division

Calculate 13 Xx 6.

13 [ENTER]
6 [x]

The result is 78.

2: Doing Arithmetic 41

For multiplication the order of the numbers doesn’t matter. However,
the order is important for division. Next calculate 182/14.

182 3 64
ue + f

The result is 13.

Powers and Roots

The order of the numbers is important for both powers and roots.
Calculate 53.

5 (ENTER)
3B)

The result is 125.

To calculate \/2401 , first put 2401 on the stack.

2401

Now raise 2401 to the “4 power.

4 B04) 8)

The result is 7.

42 2: Doing Arithmetic

Percentages

Calculate 40% of 85.

85
40 W(]

 125
7

34
[ZT0mFIHSCT[ENG[DEGe]RAD

The result is 34.

For “percent” the order of the numbers doesn’t matter. However, the

order is important for “percent change.” Calculate the percent change
from 60 to 75.

60
75 l(%CH]

The result is +25, meaning that 75 is 25% more than 60.

Swapping Levels 1 and 2

For all the functions where the order of the numbers is important—
subtraction, division, powers, roots, and percent change—you can
switch the order of the numbers by pressing [ll[SWAP]. For example,
you currently have 25 on the stack; suppose you want to calculate
30 — 25.

Key in 30.

30

Swap the order of 25 and 30.

W(swAP]

Note that pressing performed ENTER for you.

2: Doing Arithmetic 43

Subtract 25 from 30.

=]

The result is 5.

Clearing Objects From the Stack

As you worked these examples, you accumulated quite a few numbers
on the stack. The stack grows without limit as you put more objects
on the stack, and those objects remain until you use them in an oper-
ation or until you clear them.

You can clear objects one at a time or all at once.

Clear the number in level 1.

Objects in higher levels move down one level each.

Clear all objects from the stack.

B(CLEAR]

It's a good idea to clear the stack whenever you start a problem. As
you work on the problem you'll know that all objects on the stack are
relevant to the current problem, not left over from the previous
problem.

44 2: Doing Arithmetic

Chain Calculations

When you perform complicated calculations, the stack acts as tempo-
rary storage to hold intermediate results. This temporary storage acts
automatically. For example, suppose you want to calculate the total
resistance of the following circuit:

R;

If R;, R,, and Rj; have resistances of 8, 6, and 3 ohms respectively,
calculate the following:

1
Rota = 8 + 1

=~ +
6

1
3

Calculate as follows:

Put 8 on the stack.

8

You'll leave 8 on the stack until it’s time to add it to the rest of the

calculation.

2: Doing Arithmetic 45

Put Y%on the stack.

6 Bli/x

Put 5 on the stack.

3 Wl)

Add the reciprocals of 6 and 3.

Take the reciprocal of the sum.

Bx]

Complete the calculation of R,,,.

The result is 10 ohms.

46 2: Doing Arithmetic

EEEESEEETTEETE

3:
2: « 166666666667
1: » 333333333333
EEGEESEETTDETT

If You Execute the Wrong Function

The HP-28S includes recovery features to help you “backtrack” when
you mistakenly execute a function. The following steps reverse the
effects of a function, whether a one-number or two-number function.

1. Press [UNDO] to recover the previous contents of the stack.

2. If a number was in the command line when you made the mis-
take, press [lJ[COMMAND] to recover the previous contents of the
command line.

3. Continue the calculation.

2: Doing Arithmetic 47

3
Using Variables

Variables enable you to refer to objects by name. You create a vari-
able by associating a name object with any other object. The name
object defines the name of the variable; the other object defines the
contents of the variable. You can then use the variable’s name to refer
to the variable’s contents.

Variables are stored in user memory, a part of the calculator’s memory
distinct from the stack. The stack is designed for temporary storage of
the objects you're currently working with, such as the numbers you're
using in a calculation. User memory is designed for long-term storage
of variables, such as numbers that you use repeatedly.

In this chapter you'll create a numerical variable, which may be a fa-
miliar concept to you; you'll also create a program variable, which is
probably an unfamiliar concept. In the HP-28S, a program has no in-
trinsic name—it is simply another object type. You name the program
by storing it in a variable, just as you would a number, and you can
then execute the program by name.

The steps to create, recall, evaluate, change, rename, or purge a vari-

able are identical for all variables, regardless of their contents. This

uniformity makes the HP-28S both easy to use and powerful, because
there are fewer special rules and because it is more flexible.

Introduction to Variables

The simplest variables are numerical variables. This section shows
how to create, recall, and evaluate a numerical variable.

48 3: Using Variables

Creating a Numerical Variable

Suppose you repeatedly use a volume measurement of 133 in your
calculations. Create a variable named VOL (for “volume”) as follows:

Clear the stack and select the USER menu.

B(CLEAR] 3

i:
IEEEEEEEE

The USER menu shows your variables. It’s blank because you haven't
created any variables yet.

Put the number in level 1.

133 3:
i: 133
II

Put the name 'VOL' in level 1.

(*] voL 3:
=H 133
1: "SOL!
IA

Note that the closing ' is added for you. The number 133 is lifted to
level 2. (In practice you don’t need to press [ENTER], butit’s included
here for clarity.)

Create the variable VOL.

STO

The number and the name are removed from the stack, creating a
variable named VOL with a value of 133. Note that VOL now appears
in the USER menu.

3: Using Variables 49

Recalling a Numerical Variable

Now that you've created the variable VOL, return its value to the

stack.

Put the name VOL on the stack, taking advantage of the USER menu.

[J] vou

Recall the contents of VOL.

B(RcL]

This is the number you stored in VOL.

If you're accustomed to a calculator with storage registers, recalling is
a familiar process. On the HP-28S, variables are recalled infrequently;
more often they are evaluated.

Evaluating a Numerical Variable

For numerical variables, “evaluating” has the same meaning as “recall-
ing"—evaluating a numerical variable returns the number to the stack.
You'll see that evaluation is easier. (When you create a program vari-
able later in this chapter, you'll see that evaluating and recalling can
have quite different effects.)

Return the value of VOL to the stack by evaluation.

voL

You can also evaluate VOL by typing in its name without quotes.

VoL

50 3: Using Variables

Changing the Value of a Variable

You can change the value of a variable by using the same procedure
as when you created the variable. The new value replaces the old
value.

Now change the value of the variable VOL to 151.

Write the new value in the command line.

151

Note that the cursor appears as an empty box. The cursor will change
in the next step.

Write the variable’s name in the command line.

(*] wor

The cursor changed when you pressed [*] to indicate the new entry
mode—how the calculator responds when you press keys.

Initially the command line was in immediate execution mode, suitable
for keyboard calculations. When you pressed [*], which indicates a
name or an expression, the command line changed to algebraic entry
mode, suitable for entering names and expressions:

B Pressing a function key such as writes the character + rather
than executing the command.

B Pressing a USER menu key writes the variable’s name rather than
evaluating the variable.

Now store the new value in the variable.

STO

3: Using Variables 51

Check the new value.

VoL

Purging a Variable

When you finish with the variable VOL, purge it from user memory.

Write the variable name in the command line.

voL 2: 133
[J 1: 151

'‘vYoLg
EI

(The quote [*] is necessary to avoid evaluating the variable.)

Purge the variable VOL from user memory.

B(PURGE]

Note that the label for VOL disappears from the USER menu.

Changing the Name of a Variable

You can effectively change the name of a variable by creating a new
variable with the same value and purging the original variable.

In this section you'll first go through the steps required to rename a
variable, then write a program that contains the same steps, and fi-
nally store the program in a variable and execute it by name.

52 3: Using Variables

In preparation, create a variable so you have something to rename—a
variable A with value 10.

Put the value 10 on the stack.

10 3: 133

£ i
I

Create the variable A.

A 3: 133

or : 5
|ICIIII

Note that A appears in the USER menu.

Suppose you want to rename A to B. Put the old name on the stack.

al 3 I2: 151
EEI

Put the new name on the stack.

OB 3: I=
1: 'B!

This completes the preparation: the variable exists, the old nameis on
the stack, and the new name is on the stack. The old and new names
are the arguments to the program—the program will assume they're
on the stack in this order. The steps that follow are those that will be
in the program.

The steps include three common stack-manipulation commands,
OVER, ROT, and SWAP. You'll see how they work as you execute the
steps.

Copy the old name to level 1. (Use the OVER command in the STACK
menu.)

B(STACK] TovER

OLE[OVERDUF2[OROF2]ROT[LIST

3: Using Variables 53

Recall the contents of the variable.

Bc) 3 A
2: 'B!

1: 10
OOFoMER[DUF2JDROF2]ROT[LISTS]

Move the old name to level 1. (Use the ROT command, for “rotate”.)

ROT

'B!3:
2:
1: 'A!

OOFoMER[DUF2JDROFE]ROT[LISTS]

Purge the old variable. (By purging the old variable before creating
the new one, you avoid making an extra copy of the value.)

W(FucE) 3
2:
1:

Put the contents and the new name in the correct order.

W(swar)

[DUE |oVER |DUFEJOROF2]ROT |

Create the new variable.

STO 3: 133
2: 133
1: 151
DOFoMER[DUF2[OROF2]ROTJLISTH]

Now you can create a program that automates these steps.

Creating a Program Variable

First you'll key in the program, and then you'll store it in a variable.

54 3: Using Variables

Begin the program with the program delimiter.

[J

133
131

|OOF |OVER JDUFEJOROF2]ROTJLISTH]

Note that the cursor changed form and the Ol annunciator appeared,
both indicating alpha entry mode. Pressing the key for any pro-
grammable operation writes the operation’s name in the command
line. Only non-programmable operations, such as pressing [¢] to erase
a character, are executed.

Now key in the steps you executed before.

over (RCL) 2! 151
go1" (PURGE) 1: &QYERRCL ROT PURGE

B(swar] (sTO] [DLE |OVER |DLIF3[OROF3]ROTLISTS]

Note that the closing delimiter » was added for you.

Store the program in a variable RENAME.

[] RENAME 3:

Check the USER menu.

[USER] 3: 133

: 12
EETI

Note that RENAME (in abbreviated form) appears in the USER menu.

Now you're ready to execute RENAME. You'll do it first in a round-
about method, by using RCL, and then in a normal method, by using
the USER menu. The difference in the methods highlights the differ-
ence between recalling and evaluating a program variable.

3: Using Variables 55

Recalling a Program Variable

For this example, rename the variable B to C.

Put the old name and the new name on the stack.

(J 8 [ENTER]
[J C (ENTER)

Recall the program RENAME.

Rena (RCL) 2: Cl
L = 1: ¢€ OVER RCL ROT PURGE

SWAP STO =»
EDIEEE

For any variable, RCL simply returns the contents of the variable to
the stack.

Evaluating a Program Variable

To execute a program on the stack you must explicitly evaluate it.

[EVAL] : 133

£ 4
©[REN]|[|

The USER menu shows that B was renamed to C.

It wasn’t necessary to recall the program to the stack for execution,
but it demonstrated how RCL works for programs and how EVAL
causes programs to execute. Next you'll see the easy way to execute
your program.

This time you'll rename C to D. Put the old name and the new name
on the stack.

(Jc [ENTER]
(J D [ENTER]

56 3: Using Variables

Rename C to D.

RENA

The USER menu shows that C was renamed to D. You executed the
program simply by pressing one key in the USER menu.

Quoted and Unquoted Names

In the examples above you used variable names in two ways, quoted
and unquoted. The quotes [*] are important: they distinguish the name
of a variable from the contents of a variable. Here's a summary of the
purposes of quoted and unquoted names.

B Use a quoted name to represent the nameitself. The quotes prevent
evaluation of the name, so it goes on the stack and can be an argu-
ment to a command. In this chapter you used quoted names as
arguments to STO, RCL, PURGE, and the program RENAME.

B® Use an unquoted name to evaluate the variable with that name.
The unquoted name doesn’t go on the stack—instead, the object
stored in the variable is handled according to its type: numerical
variables are returned to the stack, and programs are executed.
You'll see what happens with other variable types later in this
manual.

If you type in an unquoted name that isn’t associated with a variable,
the quoted form of the name goes on the stack.

3: Using Variables 57

4
Repeating Calculations

In this chapter you'll create an expression containing numerical vari-
ables and then use a calculator feature called the Solver to evaluate
the expression for various values of the numerical variables.

In chapter 2 you made a calculation by keying in an expression that
contained numbers and then evaluating the expression. In this chapter
you'll create an expression by calculating on the stack, using names as
symbolic arguments. You'll use the Solver to assign values to the vari-
ables and evaluate the expression. Each time you evaluate the
expression, the calculation is made with the current values of the vari-
ables. If you change the value of one or more variables, you can
simply evaluate the expression again to recalculate with the new
values.

In chapter 3 you created numerical variables and a program variable.
In this chapter you'll create expression variables and name variables.
(Remember, any object can be stored in a variable.) You'll also learn
about directories, which are sets of variables.

Creating an Expression

We'll repeat the resistance calculation from “Chain Calculations” in
chapter 2, only this time we'll use names, rather than numbers, as
arguments. Recall that the formula for the circuit is:

58 4: Repeating Calculations

Clear the stack and select the cursor menu.

B(CLEAR]

=
p

If a menu is displayed, press [#*] to select the cursor menu.

Put the name 'R1' on the stack.

[J R1 [ENTER]

: 'R1’=
P

Note that the closing ' is added for you. You'll leave R1 on the stack
until it’s time to add it to the rest of the calculation.

Put the reciprocal of R2 on the stack.

(7) R2 (ENTER) (1/3) 3:
2: 'R1’
1: 'INVC(RZD!

Put the reciprocal of R3 on the stack.

[7] R3 W173) 3: —
31 INVCRDY
1: 'INVC(R3D'

Add the reciprocals of R2 and R3.

T
2: 'R1!
1: 'INV(R2)+INV(R3)"'

Take the reciprocal of the sum.

mz) 3 RL:
1: , TNVCINVCRZ)+INVIRS)

4: Repeating Calculations 59

Add R1 and the reciprocal.

+]

=
I

'R1+INVCINYCR2)+INV(
R32)

The resulting expression represents R;,,;.

You could key in this expression directly, taking care to add parenthe-
ses where necessary. Every expression is equivalent to a stack
calculation, so you can choose the method that is easier for you.

Later in this chapter you'll store this expression in a variable, but first
create a directory to group together the examples in this chapter.

Creating a Directory

A directory is a set of variables. Right now you're working in the
HOME directory—a built-in directory that exists even after MEMORY
RESET. In this chapter you'll create a subdirectory within HOME, and
then subdirectories within that subdirectory.

Here are some concepts about directories that you'll use in this
chapter.

® Only one directory can be the current directory; only its variables
appear in the USER menu.

® If a directory A contains a directory B, then A is called the parent
directory of B, and B is called a subdirectory of A.

B If you start at the current directory and find its parent directory,
and then the next parent directory, and so on, you always return to
HOME. This sequence of directories (in the reverse order) is called
the current path.

You can check the current path by executing the command PATH.

Select the MEMORY menu.

(EMORY) 2:
I: CRITINVCINYCR2)+INVC

[HEH[HENL[GRUERPATH[HOME[CRUE]

60 4: Repeating Calculations

Check the current path.

PATH

3:
2: 'R1+INVCINVYCR2)+INY.,
1: { HOME
[MEM[MENU[ORDER]FRTH[HOME[ROI]

The list that PATH returns always begins with HOME and ends with
the current directory. HOME is the starting point for all paths and,
since you haven't created any other directories yet, HOME is also the
current directory.

To group together all your electrical engineering problems, create a
subdirectory named EE.

(*]) EE CRDIR

'R1+INVCINYCRZ2)+INY..
{ HOME >

[MEM[MENUORDER]FATH[HOME[CROTF]

Switch to the EE directory.

EE

'R1+INVCINVC(R2)+ INV.
{ HOME 2

[HEH[MENU[ORDER]FRTH[HOME[ROT]

Check the current path again.

PATH 3: 'RI+INVCINVC(RZ2) +]
: £ HO

{ HOME E

Now the current directory is EE. To see one effect of switching to the
EE directory, display the USER menu.

Note that the RENAME program (created in the last chapter) doesn’t
appear. Only variables in the current directory (EE) appear in the USER
menu; RENAME is in the HOME directory.

However, you could still execute RENAME by typing its name, be-
cause any variable whose directory is on the current path (HOME EE)
can be found by name.

4: Repeating Calculations 61

This is one of the benefits of directories: If you put general-purpose
programs such as RENAME in the HOME directory, you can always exe-
cute them but they don’t clutter up the USER menu.

Now you can work in the new directory EE.

Drop the two path lists from the stack.

21
1: pLHINVCINYCRZ)+INVC

II

Store the expression in a variable named EQ1 (equation 1). You'll see
the reason for this name later.

(J EQ1 (sT10]

The variable EQ1 appears in the USER menu.

Let's assume that you'll use this expression for a variety of problems,
each of which you want to treat independently. To do so, you can put
the values for each problem in a subdirectory for that problem.

Create a subdirectory SP1 (series-parallel 1) for the first problem.

[J sP1
CRDIR

EWN=IEE

The name of the new subdirectory appears in the USER menu. Press
the menu key to switch to SP1.

5P1

=
r

The USER menu is empty again because the current directory (SP1) is
empty.

62 4: Repeating Calculations

Check the current path.

PATH

3
2
1 { HOME EE SP1 >
1[1[I|

You can find any variable in the HOME or EE directories by name,
because those directories are on the current path (HOME EE SP1), but
the USER menu shows only the variables in the current directory
(SP1).

Now you're ready to use the Solver with the expression EQI.

Using the Solver To Repeat a Calculation

There are three basic steps to using the Solver with an expression.

1. Store the expression (or the name of the expression) in a variable
named EQ (equation). The Solver requires a variable by this
name.

2. Use the Solver menu to assign values to the variables.

3. Use the Solver to evaluate the expression.

4. Repeat steps 2 and 3 for other values.

Here are the steps for the present example.

Step 1. Store the name EQI1 in a variable EQ.

This step may surprise you—why store a name in a variable? Why not
store the expression itself in EQ? The simplest reason is that the name
EQ1 is shorter and easier to remember than the entire expression.
Also, you'll see later that this makes it easy to switch back and forth

between different equations.

Put the name EQ1 on the stack.

[J EQ1

{ HOME EE SP1 >
'EQL’

If you forgot the quote [*], you got the expression itself on the stack;
in this case press to drop the expression and try again.

4: Repeating Calculations 63

Select the SOLVE menu.

{ HOME EE SP1
'EQ1'

St [REC [SOLVE TE0L[CLAD[SHOW

Use STEQ (Store Equation) to store th

STE®@

name EQI1 in the variable EQ.

=
r
]

©

{ HOME EE SP1 32
[TEC[RCEC[ZOLMR]T30L[CURD]SHO

Step 2: Assign values to the variables.

Display the Solver menu.

SOLVR 3

i: { HOME EE SP1 2
CrCeeCeaJERrRsIC__C1

The variables in the current equation appear in the Solver menu. (If
the equation contains more than six variables, pressing displays
additional rows of variables.)

This menu looks different from the USER menu because it works dif-
ferently: the Solver menu stores values in variables rather than
evaluating variables.

Now you can assign values to the variables R1, R2, and R3. First store
the number 8 in the variable R1.

8 [Ri]

1 { HOME EE SP1 2
CrCeaICESJERFRS]

Pressing is equivalent to putting 'R1' on the stack and press-
ing [STO]. Note that the top line of the display shows the variable
name and the value.

Store the number 6 in the variable R2.

6 RZ |

1 { HOME EE SP1
CelJCkaCRIJERFRsICIC]

64 4: Repeating Calculations

Store the number 3 in the variable R3.

3[RZ

{ HOME EE SI

CelJCk2ICESJERFR=IC|

Step 3: Evaluate the expression.

The menu label [E¥FR=] means “expression equals’—pressing it evalu-
ates the expression.

EXPR=

The value (10) is returned to level 1, and it appears in inverse charac-
ters in the top line of the display.

Step 4: Repeat steps 2 and 3 for other values. For example, whatif
R3 is 12?

Store the number 12 in the variable R3.

12[RZ

EXPR=

The new value (12) is returned to level 1, and it appears in inverse
characters in the top line of the display.

4: Repeating Calculations 65

Using a Different Set of Values

Suppose you want to work on a different problem, with different val-
ues of R1, R2, and R3, and later return to the values now assigned.

You could reenter all the values each time you switch problems, but
this section shows you an easier way. There are three steps:

1. Create a new directory for the new values.

2. Define the same expression to be EQ.

3. Use the Solver as before to assign values and evaluate the
expression.

This process shows another benefit of directories: Within a directory,
only one variable can exist with a particular name; but any number of
directories can contain a variable with a particular name.

Step 1: Create a new directory.

Since the new directory is an alternative to SP1, call it SP2 and create

it within the same parent directory (namely EE). This will be the first
“branch” within your directory structure—two subdirectories (SP1 and
SP2) within the same parent directory (EE).

To create a subdirectory within EE, you must make EE the current
directory. (Any subdirectory you created now would be within SP1.)

Switch to the EE directory.

EE

Ha Current Equation

1: 12
[ZTERCEC[TOLMER]TZ0L[CURD]SHO

The calculator beeps, displays No Current Equation, and acti-
vates the SOLVE menu. This occurs because there is no current
equation ‘EQ’ in the EE directory.

Create a directory SP2.

[*] SP2

B(VEMORY] CRDIR

{ HOME EE SP1
16
12

AEM [HEMNLU[ORDER]FATH [HOME JCRDOIF

=
M n

d

66 4: Repeating Calculations

Switch to the SP2 directory.

SP2 (ENTER) 3 T HOME EE SPT 3

1: 12

Check the current path.

18
12

{ HOME EE SP2 >
[HEH[MENLUORDER]FATH[HOMEJCROIF]

PATH

Note that HOME and EE are in the current path, as they were when
SP1 was the current directory, but SP1 doesn’t appear now. As a re-
sult, you can still find the variables in HOME (such as RENAME) and
in EE (such as EQ1), but not the variables in SP1 (EQ, R1, R2, and
R3); now you can create new variables R1, R2, and R3.

Step 2: Define the same expression to be EQ.

As before, use STEQ to store the name EQ1 in the variable EQ.

(J EQ1 STEQ

1
1

=
o

W
I
E

{ HOME EE SP2
[TEC[RCEC[ZOLUR]T20L[CURD]SHO

Step 3: Use the Solver as before to assign values and evaluate the
expression. Suppose the values for the new problem are

R1 = 11, R2 = 2], R3 =7

Select the Solver menu.

SOLUR 3: 10
3: 12
1: { HOME EE SP2 3
CrCeeJCeaJERre=ll_11

Assign the values.

11 ;
21 I: { HOME EE SP2 3
7 CraCeeCeaJERee=IC_IC]

4: Repeating Calculations 67

Evaluate the expression.

To return to the previous problem, you would execute EE (to switch to
the EE directory), execute SP1 (to switch to the SP1 directory), and
press SOLVR (to activate the Solver menu); all the variable val-
ues would be the same as when you left SP1.

Using a Different Expression

Now that you have two sets of values to use with the expression EQ1,
try creating a second expression EQ2 that you can use with either set
of values. There are two basic steps:

1. Switch to the EE directory, create the new expression, and store
the new expression in a variable EQ?2.

2. Switch to the SP1 or SP2 directory, change the value of EQ from
‘EQ1’ to ‘EQ2’, and use the Solver to evaluate the expression.

Step 1: Switch to the EE directory, create the new expression, and
store the new expression in a variable EQ?2.

Switch to the EE directory.

EE

0 Current Equation
: { HOME EE SPz
: 16.25

Create the new expression. In this example, EQ2 will be an edited
copy of the expression EQI.

68 4: Repeating Calculations

Return the expression stored in EQ1 to the stack.

EQ1

: 16.25

1: pLHINVCINVCRZo+INVC

EENETIEE
Beni)

The expression in level 1 appears in inverse characters to warn you
that it will be replaced by the contents of the command line. The
alpha annunciator OQ appears, indicating that alpha entry mode is
active.

Now edit the expression to represent the formula:

1
Rip= Ry + 1 1 1

_ 4 — 4+ —

2 R; R;

Move the cursor to the lower row of the command line. (The opera-
tions for moving the cursor are on the cursor menu—the labels printed
in white just above the menu keys.)

J

The cursor menu is active whenever the command line exists and no
menu is displayed. You can turn the cursor menu on and off by press-
ing («»]. Pressing (EDIT) automatically turns on the cursor menu.

Move the cursor just past the term for R3.

JJ]

4: Repeating Calculations 69

Select Insert mode.

The shape of the cursor changes to an arrow, indicating that text will
be inserted to the left of the character at the cursor position.
(Pressing a second time returns to replace mode, where text re-
places the character at the cursor position.)

Key in the second term for R3.

(+) B=] [ORS

Replace the expression in level 1 by the edited expression in the com-
mand line.

16.25
'RI+INVCINYCR2)+INV(C
R3J)+INVC(R3))'

sF22F1[ECL]||

Store the new expression in a variable EQ2.

EQ2 (sT0] 3: 12
OJ et { HOME EE Fe2

IE=ENEEEEWET

Step 2: Switch to the SP1 or SP2 directory, change the definition of
EQ from EQ1 to EQ2, and use the Solver to evaluate the expression.

For this example, use the values in SP1 with the new expression.

Switch to the SP1 directory.

S5P1 3: 12
2: { HOME EE SPZ2
1: 16.25
EEEETEEEEEE

70 4: Repeating Calculations

Change the definition of EQ from EQ1 to EQ2.

[7] EQ2 STEQ

12
{ HOME EE SP2 3

16.25

MR] IZ0L[CURD]SHO

SOLYR {[EXPR=

To evaluate EQ2 with the values from SP2, you could execute EE (to
switch directories back to EE) and then repeat step 2 above, substitut-
ing SP2 for SPI.

Returning to HOME

Assuming you're done for now with your electrical engineering prob-
lems, you can return to the HOME directory. Since HOMEis a built-in
directory, its name is included in the MEMORY menu.

Switch to the HOME directory.

(MEMORY HOME 3 { HOME EE £e.2

CEETIEOCRE

Check the USER menu.

2: { HOME EE 2.8

EE0JRENR][|||

The menu label EE is the only sign of everything you created in
this chapter—EQ1, EQ2, the subdirectories SP1 and SP2, and all the

variables in them. This is a major advantage of directories: Viewed
from its parent directory, an entire directory—its variables and its own
subdirectories—appear simply as the name of the directory.

4: Repeating Calculations 71

Summary

Here's the overall strategy you've followed in this chapter.

® Create a directory for each set of related problems.

B Store each expression needed for the problems in a variable.

B Create a subdirectory for the specific values in each problem.

B® Use the Solver with any combination of expression and values.

72 4: Repeating Calculations

S
Real-Number Functions

This chapter introduces the TRIG, LOGS, and REAL menus. The
TRIG menu contains trigonometric functions and commands dealing
with angular measurement. The LOGS menu contains logarithmic, ex-
ponential, and hyperbolic functions. The REAL menu contains
additional commands for real numbers.

All commands in these menus are described briefly in appendix D,
“Menu Map.” For complete descriptions, refer to “TRIG,” “LOGS,” or
“REAL” in the Reference Manual.

Trigonometric Functions

This section shows how to select the current angle mode, calculate
with 7, and convert angular measure.

Selecting Angle Mode

The calculator can interpret angular arguments and results as degrees
(360 of a circle) or as radians (Y2m of a circle). The default choice is
Degrees angle mode. For the examples in this section, switch to Radi-
ans angle mode.

Clear the stack and select the MODE menu.

BE(CLEAR B(MODE]

5: Real-Number Functions 73

The two right-most menu labels, BEG © (degrees) and | RAD (radians),
represent your choices of angle mode. Note that the "DEG label
shows a small square, indicating that the current angle mode is
Degrees.

Select Radians angle mode.

RAD

The Radians annunciator (27) appears and the menu labels change.
(Most illustrations in this manual don’t show the annunciators. To lo-
cate the (277) annunciator, see the illustration on page 27.)

Display the first row of the TRIG menu.

ECEEECEEEEWEBETTEEET

These are one-number functions, acting on the numberin level 1. For
real numbers, the angle mode affects how SIN (sine), COS (cosine),
and TAN (tangent) interpret their arguments, and how ASIN (arc sine),
ACOS (arc cosine), and ATAN (arc tangent) express their results.

You'll use the SIN function in the discussion of = that comes next.

Using

The transcendental number 7 can’t be represented exactly in a finite
decimal form. In general, the calculator’s 12-digit approximation
(3.14159265359) yields results accurate to 12 digits, which is suffi-
cient for most applications.

The HP-28S also offers a symbolic constant w that represents = ex-
actly. In radians angle mode, the functions SIN, COS, and TAN
recognize the symbolic constant m and produce an exact result. The
functions SIN and COS also recognize w./2.

74 5: Real-Number Functions

For other functions, the symbolic constant w produces an expression
containing w. If you force a real-number result, the calculator uses the
12-digit approximation.

To demonstrate the difference between 3.14159265359 and w, calcu-

late the sine of each.

Put 'n' in level 1.

B(-] (ENTER]

 =

I

1 1m
ETHEETEEEEWEBETHEIT

Although this object looks like a name, it’s actually an expression
with a single term, the symbolic constant =.

Force a real-number result using “NUM (to number)

BG) 3:

1: 3.14159263339
ETHEET]EEECREETECEC

The 12-digit approximation to m (3.14159265359)is returned to level
1.

Calculate the sine of the approximation to =.

SIN

=
r

-2.86761537357E-13
ECEEETEEECWERETRCET

The result (—2.06761537357 x 10713) isn’t exactly 0 because the ar-
gument (3.14159265359) isn’t exactly =.

Now calculate the sine of .

BB] sin

-2.86761337357E-13

ETCETCEARETCET

The SIN function recognizes the symbolic constant = and returns the
exact result (0).

5: Real-Number Functions 75

Converting Angular Measure

The TRIG menu contains commands that convert an angle from one
system of measurement to another. These commands are on the third
row of the TRIG menu. Take a quick look at the second row before
continuing to the third.

Display the second row of the TRIG menu.

-2.86761537357E-1 2

FkFFRacCFARG|

These commands deal with complex numbers and are duplicated in
the COMPLEX menu. Complex numbers are described in the next
chapter.

Display the third row of the TRIG menu.

NEXT 3:

Lal 3: -2.86761537357E-13
ERHIEEIEEIEINEANESE

You'll use the commands HMS— and D-R to convert an angle ex-
pressed in degrees, minutes, and seconds to an angle expressed in
radians.

The four HMS (hours-minutes-seconds) commands enable you to calcu-
late with numbers whose fractional parts are expressed as minutes
and seconds. Such numbers must have the following special format,
called the HMS format:

h.MMSSs

where h represents hours (or degrees), MM represents minutes, SS
represents seconds, and s represents decimal fraction of seconds. MM
and SS each represent two digits; h and s each represent any number
of digits.

The commands -HMS (decimal-to-HMS) and HMS— (HMS-to-decimal)
convert a real number between the normal decimal format and the

special HMS format. The commands HMS+ (HMS plus) and HMS—
(HMS minus) add and subtract numbers in HMS format, with the re-

sult also in HMS format.

76 5: Real-Number Functions

For example, convert 141° 26’ 15” to decimal degrees.

Enter the number in HMS format.

141.2615 -2.86761537357E-132
1 a
141.26150
EERRENEEEET

Convert the number from HMS format to decimal degrees.

HHS 3: ~2.B6761537357E- 13

i: 141.4375
EERIEEIA

The other two functions on this menu row, D—R (degrees-to-radians)
and R-D (radians-to-degrees) convert a real number between degrees
angular measure and radians angular measure.

Convert the number in level 1 from degrees to radians.

OSR 3: =2.06761537357E- 1.

1: 2. 468550060873
ERECEEEEE

S
h
?

 D
E
Q
)

Altogether, you've calculated:

141° 26’ 15” = 141.4375° = 2.46855006079 radians

Logarithmic, Exponential, and Hyperbolic
Functions

The LOGS menu contains logarithmic and exponential functions, both
common and natural, and hyperbolic functions. For a detailed de-
scription of these functions, refer to “LOGS” in the Reference Manual.

Display the first row of the LOGS menu.

Bl(LoGs] 3 -2.06761537357E-13
5: 8
i: 2. 46855006879
NECEECEEEEITEEE

5: Real-Number Functions 77

The functions LOG (common logarithm) and ALOG (common antiloga-
rithm) compute logarithms and exponentials to base 10. The functions
LN (natural logarithm) and EXP (natural exponential) calculate loga-
rithms and exponentials to base e. (¢ is a transcendental number
approximately equal to 2.71828182846.)

For an argumentx, the function LNP1 (In plus 1) computes In (x + 1),
and the function EXPM (exp minus 1) computes (exp x) — 1. For argu-
ments close to 0, each of these functions provides greater accuracy
than the corresponding sequence of functions. (An example using
LNP1 appears in “Time Value of Money” on page 103.)

Display the second row of the LOGS menu.

3: =2.06761537357E- 3

i: 2. 4685500607
[ZINH [HZINH]02HJHCIZH]TANRJATHNH

These are the hyperbolic functions and their inverses: SINH (hyper-
bolic sine) and ASINH (inverse hyperbolic sine), COSH (hyperbolic
cosine) and ACOSH (inverse hyperbolic cosine), and TANH (hyperbolic
tangent) and ATANH (inverse hyperbolic tangent). These functions are
derived from e*, the natural exponential function. All are one-number

functions that act on the number in level 1.

Other Real Functions

The REAL menu contains functions that apply primarily to real
numbers.

Select the REAL menu.

W(ReAL] 3: -2.86761337357E-13

i: 2. 468550P607S
CEAEEETEEGEART

The function NEG (negate) returns —x for an argument x. The func-
tion FACT (factorial) returns n! for a positive integer n or the gamma
function I(x + 1) for a non-integer argument x. The command
RAND (random number) returns a random number calculated from a
seed specified by RDZ (randomize).

78 5: Real-Number Functions

The functions MAXR (maximum real) and MINR (minimum real) return
symbolic constants for the largest and smallest positive real numbers
representable on the HP-28S. (To force a numerical result for a sym-
bolic constant, see “Using 7” on page 74.)

This section shows you how to use the function NEG. For conve-
nience, you can execute NEG by pressing (change sign) if no
command line is present. To enter the NEG command in the com-
mand line—for example, when you're keying in a program—press
"NEG" or [N][E] [G].

Now negate the number in level 1 twice, once by pressing and
once by pressing [NEG.

Negate the number in level 1.

CHS

-2.86761537357E-1 3

-2.46855086087%

NESFRCTRANDKOZ[HARE[MINE]

Negate the number a second time.

NEG -2.86761337357E-13
a

2.46855086079

Defining New Functions

You can create program variables that work like the built-in func-
tions—you can even use them in expressions. Such program variables,
called user functions, must fulfill two requirements:

B® They must explicitly indicate their arguments.

B® They must return exactly one result.

5: Real-Number Functions 79

For example, you can define a function COT for the cotangent func-
tion, where cot x = 1/tan x.

Begin the program.

[J]

a
2.46855006079

Indicate the argument.

WB [>] tc] x [tc]

The right arrow indicates that the following name represents a local
variable, which will exist only within this program.

It's useful to follow some convention to distinguish your local vari-
ables from your ordinary or “global” variables. This manual uses
lower-case letters to distinguish local variables. (Pressing once
switches to lower case; pressing a second time switches back to
upper case.)

Define the function.

CJ M7] [J TAN [J [tc] x 2:

&

8
2.46855806079

+ x' INV CTANCxE
NES[FACT[RAND]R02[HARE [MINE

Enter the program.

(ENTER] 2: 2. 46855806079
1: ¥ + x "INVCTANCxD) DO!

NEG[FACTRAND]RD[HARE JHINE

The closing parentheses and delimiters are added for you.

80 5: Real-Number Functions

This program means: take an argument from the stack (in RPN syn-
tax) or from the expression (in algebraic syntax) and call it x; then
evaluate the expression 1/tan x, using the local definition of x.

Store the program in a variable COT.

[FJ] coT 3: -2.86761537357E- I3

i: 2. 46855006879
INES |FALT |KANE]KOZ[MAGE[MINE]

Now you can use COT in either RPN or algebraic syntax, just like the
built-in trigonometric functions.

Calculate cot 45° using RPN.

@ [MODE] DEG
45 [USER] COT

Calculate cot —45° using algebraic syntax.

(J cor [J —45 2. 46855006073

'COTC-43>"
[|

Evaluate the expression.

 5: Real-Number Functions 81

Complex-Number
Functions

The HP-28S includes an object type that represents complex numbers.
For example, the complex number z = 3 + 4i is represented by the
object (3, 42. Because each complex number is a single object, you
can calculate with complex numbers as easily as real numbers.

The pair of real numbers in a complex number can represent the co-
ordinates of a point in a plane. For example, the HP-28S uses
complex numbers to represent plotting coordinates. The second sec-
tion in this chapter describes two coordinate systems, rectangular and
polar, and shows how to convert a point from one system to the
other.

Using Complex Numbers

Most functions that work with real numbers work the same way with
complex numbers. For example, you do arithmetic with complex num-
bers just as you do real numbers—put the numbers on the stack and
execute the function. Try calculating the following:

(9 + 20) + (—4 + 3i)) xX (6 + i)

Clear the stack and enter 9 + 2i.

M(CLEAR]
[d 9 [J 2 (ENTER)

 82 6: Complex-Number Functions

Add —4 + 3i. (Remember to press [4] to enter —4.)

[d-4(]3

Multiply by 6 + i.

[Meld]

Sometimes a real-number argument can produce a complex-number
result.

Calculate \V—4.

-48=)

(25, 35)
cB, 2)

3

oT EE0[RENA]|

Calculate arcsin 2.

2 (TRIG) ‘ASIN 2: (B,2)
1: ¢1.57879632679

21.31695789692)
EECCEEITCET

Functions specifically for complex numbers are in the COMPLEX
menu.

Select the COMPLEX menu.

Bi(compLx]

2 (8,2)

¢1.570879632679
~1.31695789692)

EEREEECEEEE

All commands in the COMPLEX menu are described briefly in appen-
dix D, “Menu Map.” For complete descriptions, refer to “COMPLEX”
in the Reference Manual.

B® R—C (real-to-complex) converts two real numbers x and y to one
complex number (x, y).

® C—R (complex-to-real) converts one complex number (x, y) to two
real numbers x and y.

B RE (real part) returns x for a complex argument (x, y).

6: Complex-Number Functions 83

B IM (imaginary part) returns y for a complex argument (x, y).

B® CON] (conjugate) returns (x, —y) for a complex argument (x, y).

® SIGN returns (x/Vx* + y*, y/Vx* + y*) for a complex argument

(x, y)-

Display the next row of the COMPLEX menu.

[NEXT] 2: CB,2)
1: (1.57079632679,

-1.31695789692)
EREEECTE

These functions (except NEG) relate to complex numbers in polar
coordinates.

Using Polar Coordinates

A point in a plane can be described by two different coordinate sys-
tems. The illustration below shows one point described two ways, in

rectangular notation (x, y) and in polar notation (r, 6).

84 6: Complex-Number Functions

B® R-P (rectangular-to-polar) converts a complex number in rectangu-
lar notation (x, y) to polar notation (r, 6).

B P-R (polar-to-rectangular) converts a complex number in polar no-
tation (r, 0) to rectangular notation (x, y).

B® ABS (absolute value) returns r for a complex argument (x, y).

® NEG returns (—x, —y) for a complex argument (x, y).

® ARG returns 0 for a complex argument (x, y).

Note that only PR interprets a complex number as polar coordinates;
all other functions—arithmetic, trigonometric, logarithmic, hyperbolic,
and so on—interpret a complex number as rectangular coordinates.
Remember this important rule: Any complex number in polar coordi-
nates must be converted to rectangular coordinates before you can use it
in a calculation.

As an example of arithmetic with polar coordinates, suppose you
travel 2 miles at a bearing of 36°, then 3 miles at a bearing of 65°.
What is the resulting distance and bearing, calculated to two decimal

places?

Select Degrees angle mode and FIX 2 number display.

DEG 2 FIX 3: (25.008, 35.00)
= 2: .00, 2.68)

1: C1.57,-1.32>

ER IFE IE3CTETTETT

Enter the first distance and bearing.

(J2(]36

(0.08, 2.88)
1. 57,-1. 32)

Convert to rectangular coordinates.

@(covpix] PR

ERENTEEa.

Enter the second distance and bearing.

03] 65 53 Ts57 “1.32
@slJ 1: 62,1183

¢3, 650]
EEECEEEE

6: Complex-Number Functionns 85

Convert to rectangular coordinates.

P3R

Add the rectangular coordinates.

Convert to polar coordinates.

RP

(8.688, 2.088)
4 v—1.32)

(4.85,53.46)
IEEEITT

The resulting distance is 4.85 miles, and the resulting bearing is
53.46°.

A User Function for Polar Addition

Here's a simple program PSUM (polar sum) to automate the process
you did manually in the previous section.

Begin the program.

[«

(1.575-1.32)
4. a5, 53. 46)

Indicate the arguments. (Use a space to separate the two arguments.)

[+] [Lc] x [SPACE] 2: (1.57s-1.32
8 (ic) y i: ¢4.85,53.46)

ETEETTENTEITT

The right arrow indicates that the following names are local variables,
which will exist only within this program.

86 6: Complex-Number Functions

Define the function.

Oersen [opsOx@O EH [20 (4.85,53, 46)
PRY (0 y [ENTER] Ir 3xy, RIPLPIROO

IEEEEECEEEE

The closing parentheses and delimiters are added for you.

This program means: take two arguments from the stack (in RPN syn-
tax) or from the expression (in algebraic syntax) and call them x and y;
then calculate the polar coordinates of the sum of the rectangular co-
ordinates of x and y.

Store the program in a variable PSUM.

(*] PSUM (sT0] 3: (0,00,2.00)
2: ¢1.57,-1.323
i: (4.85.53. 46)
EEEEECEEE

Now use PSUM to repeat the previous calculation, once in RPN syn-
tax and once in algebraic syntax.

Enter the first distance and bearing.

[d 2 (.] 36 [ENTER]

Enter the second distance and bearing.

[3 (5) 65 (4.85,53.46)
(2. 60, 36.088)

Execute PSUM.

3: (1.57s-1.327
21 (4.85,53.46)
1: (4.85,53.46)
FEETCCIOT

6: Complex-Number Functions 87

The result matches the previous answer.

Now try algebraic syntax.

[J esum [Q(J2(.)36 MOJ(J([T3
[+] 65 [ENTER]

2% (4.85,53.46)
1: 'PSUMCCZ, 36), (3, 65)

(Fiub]corEE0JKENR[|

The outer parentheses and the center comma define the arguments to
PSUM;the other parentheses and commas are part of complex-num-
ber syntax. Don’t forget that you need two sets of parentheses when
using a complex number as an argument in algebraic syntax.

Evaluate the expression.

IEEIAI5

88 6: Complex-Number Functions

7
Plotting

This chapter introduces plotting on the HP-28S. Plotting is helpful in
itself, giving a visual understanding of how an expression or equation
behaves. In addition, plotting makes it easy to estimate the roots,
maxima, or minima of an expression. The next chapter, “The Solver,”
shows how to use the Solver to turn estimates into precise numbers.

In this chapter you'll learn how to use some of the commands in the
PLOT menu. All commands in the PLOT menu are described briefly
in appendix D, “Menu Map.” For complete descriptions, refer to
“PLOT” in the Reference Manual.

For the first example you'll plot sin x in Radians angle mode, but first
there are preliminaries to make sure your display will match the
illustrations.

Plotting uses a variable named PPAR to store a list of plotting param-
eters. Purge any existing PPAR to ensure that the next plot uses the
default plotting parameters.

Clear the stack and select the PLOT menu.

M(CLEAR)
M(rLoT)

=
a
)

IEEEE CEETFTE
Display the second row of the PLOT menu.

[FFARRFESAHES [CENTRE]$k*H

7: Plotting 89

Purge any existing PPAR.

(5) "pPAR: M(PURGE]

@(ViooE) RADY [STD

Now enter the expression.

[J (@RIG) "sin" X [ENTER]

 'SINCKY'

ECEEECEEECEBITEEET

Store the expression as the current equation—a normal variable with
the special name EQ. (This is the same convention you followed with
the Solver in chapter 4.)

M(PLOT] 'sTEQ

Pressing '8TE@ is equivalent to pressing [*] EQ [STO].

Plot the expression.

DRAM

7 Nl

Wait for the ((®) annunciator to disappear, indicating that the plot is
complete.

The horizontal line is the axis for the independent variable (x in this
example), and the vertical line is the axis for the dependent variable
(the value of the expression sin x). The ticks on both axes mark inter-

vals of length 1.

90 7: Plotting

Printing a Plot

If you have an HP 82240A printer, you can print an image of the plot
you just made as follows.

1. Position the printer according to the instructions in the printer
manual.

2. Press and hold [ON].

3. Press (the key with “PRINT” written above it).

4. Release [ON].

These keystrokes are the keyboard equivalent of the command
PRLCD (print LCD, found on the first row of the PRINT menu). You
can use these keystrokes to print the display at practically any time,
without disturbing calculator operation.

If you write a program to plot an expression and print the result, use
the following sequence of commands:

...CLLCD DRAW PRLCD...

Returning to the present example, now restore the normal display of
the stack.

Changing the Scale of the Plot

In general, plotting an expression doesn’t produce such tidy results
the first time. When you're plotting an unfamiliar expression you may
need to adjust the plotting region—defined by the plotting param-
eters—to show the relevant characteristics of the expression.

7: Plotting 91

If you know beforehand the region that you want to plot, you can
directly change the plotting parameters in PPAR. (PPAR is described
in detail in “PLOT” in the Reference Manual.) More often you need to
experiment to find the desired plotting region. This manual shows
you how to use commands in the PLOT menu to “home in” on the
desired plot.

For the second example, you'll plot the expression x3 — x2 — x + 3.

Put the expression in level 1.

COXEA)3EXMA) 25) X(+)8 3
1: RAZRA2-K+D!
B=EIEECACTEEE

Store the expression as the current equation.

STE®

STEC [RCE [FMIN [FHA[INDEF]DEAL

Plot the expression.

DRAW

The horizontal line is the axis for x, and the vertical line is the axis for

the value of the expression x> — x2 — x + 3.

This plot shows a zero of the expression—a value of X for which the
value of the expression is zero. The zero is located where the graph of
the expression crosses the X axis. In the next chapter we'll use the
Solver to find a precise number for this zero.

To show more of the graph, expand the vertical scale and plot again.

Restore the normal display of the stack.

3
i:

[TEC[RCEJFMIN[FHAG[INDEF]DEAK |

92 7: Plotting

Expand the height by a scaling factor of 2, using the #H (times
height) operation on the next menu row.

[NEXT] 2 *H

[FFHFREZHUES JCENTR] $14€H

Plot again with the new plot parameters.

B(PREV] ORAM ly

The ticks on the horizontal axis still mark off intervals of length 1,
but now the tick marks on the vertical axis mark off intervals of
length 2.

Next you'll translate the plot, moving the interesting part to the center
of the display.

Translating the Plot

After each plot the calculator leaves cross hairs in the center of the
display. (You can’t see the cross hairs when the axes are in the center
of the display.) You can use the cross hairs to digitize any point on the
display, returning the coordinates of the point to the stack. We'll digi-
tize the point we want to be the center of the next plot and use it to
adjust the plotting parameters.

Move the cross hairs to the indicated position.

[»] (press four times) he

(a] (press nine times) .

Digitize the point.

TT

7: Plotting 93

Return to the stack display.

C.4,1.8)
ZTERCEJFMINFHARJINDEF]DRA

The coordinates of the digitized point, represented by a complex
number, are in level 1.

Redefine the center of the plot, using CENTR on the next menu row.

NEXT |CENTR 3:

2:
[FEAF |KES |ARES[CENTER]14 |#H |

The coordinates are taken from the stack and used to adjust the plot
parameters. Unlike %*H , CENTR doesn’t change the scale.

Try another plot.

M(PREV] DRAM

4

Now zoom in on an interesting part of the plot. You could use #H
again, using a fractional scaling factor. (For example, a scaling factor of
.5 would return the vertical scale to its original value.) But there's a
more flexible way to zoom in on a plot.

Redefining the Corners of the Plot

This time you'll digitize two points, one for the lower-left corner of
the new plot and one for the upper-right corner, to zoom in on the
plot.

Move the cross hairs to the desired lower-left corner.

94 7: Plotting

Digitize the point.

Digitize the point.

4

Return to the stack display.

[oN] 3:

2: (-1.5,1.2>

1: (2.153.6)

i[ZTEC[RCE [FMIN]FHAY[INDEF]

The coordinates of the lower-left corner, represented by a complex
number, are in level 2. The coordinates of the upper-right corner are
in level 1. (Your coordinates may differ slightly from the illustration.)

Redefine the upper-right corner of the plot, using pmax (plot
maxima).

PMAX

(-1.3,1.2)
[ZTE[RCEC[FMIN]FHAR[TNDEF]RAL

The coordinates are taken from the stack and used to adjust the plot-
ting parameters.

Redefine the lower-left corner of the plot, using PMIN (plot minima).

3:
2

[STEC[RCE [FMIN| FHA[INDEF[DRA

|

PMIN

7: Plotting 95

Try another plot.

DRAW :

STee.’ +
.

Since you changed the height and width of the plot, both the vertical
and horizontal scales are changed.

The plot shows two extrema in the expression’s graph—a local maxi-
mum and a local minimum. In the next chapter you'll use the Solver
to find a precise value for the minimum. To avoid repeating all these
steps to generate our current plotting parameters, store the current

value of PPAR in a variable with a different name. To recreate this
plot in the next chapter, you'll restore PPAR to its current value.

Return to the stack display.

3

1
EEEEEE EEC EEEETE [TY

Put the current contents of PPAR on the stack.

(NEXT) IF 17 { (-1.5,1.27
(2.1,5.8) %'1 (0,8)

ERAGEEEEETE

For information about the plotting parameters and for details about
plotting in general, see “PLOT” in the Reference Manual.

Create a variable PPAR1 that contains the current plotting
parameters.

[7] teeAR]

EETCTIRAEETEET

Now you're ready to use the Solver to find precise numbers for the
zero and local minimum of the expression.

96 7: Plotting

Plotting Equations

The examples in this chapter were both expressions, but the same
rules and techniques work for plotting equations. When the variable
EQ contains an equation, DRAW plots each side of the equation as an
expression. You can find a root of the equation by finding where the
two graphs cross, because that is where the two sides of the equation
have equal values.

7: Plotting 97

The Solver

This chapter describes how to find a zero and a minimum of the ex-
pression you plotted in the previous chapter. Work through the steps
in the previous chapter if you haven't done so already, because you'll
need some of the results from that chapter.

For a complete description of the Solver, refer to “SOLVE” in the Ref-
erence Manual.

Finding a Zero of an Expression

The following example assumes that the expression x> — x2 — x + 3
is still the current equation and that you've created the variable
PPAR1, as described in the previous chapter. You'll plot the expres-
sion again, digitize an estimate for a zero of the expression, and then
use the Solver to find a more accurate value for the zero.

Before starting these examples, clear the stack, select Radians angle
mode, and select FIX 2 number display mode.

M(CLEAR]
@(MODE] RAD
2 FIX

Purge the existing PPAR to ensure that the next plot uses the default
plotting parameters.

B(FLo7) (RET)
(J epAR M(FURGE]

[FEARKES[ARES [CENTE

98 8: The Solver

Now plot the expression.

B(PREV] DRAM Do

This plot shows a zero of the expression—a value of X for which the
value of the expression is zero. The zero is located where the graph of
the expression crosses the horizontal axis.

Move the cross hairs to the approximate intersection of the graph and
the horizontal axis. (Use [a], (¥], [4], and [>] to move the cross hairs.)

— a 1+ +

Digitize this estimate for the zero.

- 1

You'll use this point as an estimate for finding the exact zero of the
expression. (In case the expression has more than one root, the esti-
mate indicates which one you want.)

Return to the stack display.

(-1.306,0.608)
[ZTE[RCEC[FMIN]FHAR[TINDER]ORAL

The coordinates of the digitized point, represented by a complex
number, are in level 1. (Your coordinates may differ slightly from the
illustration.)

Select the Solver menu.

SOLVR

=
a
)

(-1.360,0.80)

Ci] CC JCC 1

8: The Solver 99

The Solver menu shows all the variables in the current equation (only
X in this example).

Store the digitized estimate in variable X.
Le |

1
CxJEsrRslC__ JC JCC]

Although the digitized point contained two coordinates, the Solver
will use only the first coordinate as an estimate.

Now solve for X.

= on Er
1: -1.36

CeJEspRall__JC__JL__ JL]

The message Sign Rewersal indicates that the Solver found an
approximate solution, correct to 12 digits. If the Solver found an exact
solution, it would display the message Zer o. These messages, called
qualifying messages, are discussed in “SOLVE” in the Reference
Manual.

Return to the normal stack display.

Finding a Minimum or Maximum

To find the zero of an expression, the Solver samples points on the
graph, starting with your estimate, and tries to find points closer to
the x-axis. If your estimate is quite close to a positive local minimum or
a negative local maximum, there are no points nearby that are closer to
the x-axis. In this case, the Solver finds that extremum (minimum or
maximum) rather than a zero. (Generally the Solver won't “get stuck”

at an extremum unless your estimate forces it there.)

100 8: The Solver

Look at the graph you made in the last chapter, on page 96. It shows
that the expression has a positive local minimum and a positive local
maximum. The Solver can find the minimum, because locally it’s the

point closest to the x-axis; but the Solver can’t find the maximum,
because locally it’s the point farthest from the x-axis.

In this section you'll plot the expression, using the plotting parameters
stored in the variable PPAR1, then digitize three points to estimate
the minimum, and then use the Solver to find a more accurate
minimum.

Return the list stored in PPAR1 to the stack.

PPAR

|_|FFARR JFFARL] ECJFIUM]COT

Restore the variable PPAR to the values stored in PPARI.

(*) pPAR 3:

i: -1.36
EEGEAEEEEEEEGE

Plot the expression.

B(FLoT) (oRAN

Digitize the point.

a

8: The Solver 101

Move the cross hairs just to the left of the minimum.
 .

,

Digitize the point.

es

an~~;

.

Move the cross hairs just to the right of the minimum and digitize the
point.

(INS) Pa 5
, eT

Return to the stack display.

[on] 3: (8.99,1.979
EN 3: a. 86,2. 05)

i: ¢1.15,2.855
EEEEEEREEAIGEE

The three points are in levels 1, 2, and 3. (Your points may differ
slightly from the illustration.)

Now combine the three estimates in a list. By doing so, you can han-
dle the three estimates as a single object. This is a typical use for
lists—combining several objects into one.

@(LisT) 3 LIST

Select the Solver menu.

SOLVR 1:

—
-

The Solver menu shows all the variables in the current equation (only
X in this example).

102 8: The Solver

Store the list of points in the variable X.

1:

(EEE JCC]

The list of points is taken from the stack and stored in the variable X
as initial estimates.

Solve for X.

[RE
Xt remum

1: |. 88
CEJESRR]l Il Il]

The message Extremum indicates that the Solver found an extreme
point of the expression.

Return to the normal stack display.

[ON] 3:
2 -1.36
1: . 88
CaJEseRslC_JC__JCC]

Calculate the extreme value.

EXPR= [Rt ——

The minimum value is 2.

Time Value of Money

This section shows how to use the Solver with time value of money
(TVM) calculations. For n number of periods, i%interest per period,
$pmt payment, $pv present value, and $fv future value, the formula

for TVM is:

(1 — sppv) xX pmt x (100/i) + pv = —fv X sppv

8: The Solver 103

where

sppv (single payment present value) = (1 + i/100)~"

= exp (—n X In (1 + i/100)).

This formula assumes that payments are made at the end of each
period.

Here are the major steps you'll perform:

1. Key in the expression for sppv and store it in a variable SPPV.

2. Key in the equation and store it in a variable TVM.

3. Make TVM the current equation.

4. Use the Solver to calculate any of the five variables n, i, pmt, pv,

or fv, for given values of the other four variables.

Before starting, clear the stack and select FIX 2 number display mode.

B(CLEAR]
W(MODE] 2 wEIX

Step 1: Key in the expression for sppv and store it in a variable SPPV.

Key in the expression for sppv.

(0 M(oGs) exw (SN J mumps [2
I (2) 100 (ENTER) 1:

'EXP(-N¥LNP1C(I-108>>

LosJALOS]LNEHF[LNF1[EHFH]

This expression takes advantage of the greater accuracy of LNP1 to
calculate In (1 + 1/100).

Create the variable SPPV and check the USER menu.

[J SPPV

[SFFU |4FEAR JFPREL] EC:[PUM]

104 8: The Solver

Step 2: Key in the equation and store it in a variable TVM.

Key in the equation for TVM.

01 serv BOI) PMT [x] [25

GEREN se [LEERen
(ENTER) EECEAGEEEEEE

Create the variable TVM.

[J TVM

3:

1
IREETEEETTETH

The USER menu shows a new label for TVM.

Step 3: Make TVM the current equation.

Key in the name TVM.

(*] Tvm

=
p

[
5
)

 TYME
CREEGTAEE

Store the name TVM in the variable EQ.

STE®

[STEJRCEC[SOLUR]TZ0L[CLD]SHO

Step 4: Use the Solver to calculate any of the five variables n, i, pmt,

pv, or fu, for given values of the other four variables.

Select the Solver menu.

SOLVR

=
r

CrCTIeMTeyJCFYJEEFTE]

All the variables in TVM and SPPV appear in the menu. (The vari-
ables in SPPV appear because the current equation, TVM, contains
SPPV))

Given values N = 30 x 12,1 = 11.5/12, PMT = —630, and FV =
0, calculate PV. (PMT has a negative value because money paid out is
a negative number, while money received is a positive number.)

8: The Solver 105

First assign the value to N.

30 12 [x]

Assign the value to I.

11.5 [ENTER] 12 (1) [1]

Assign the value to PMT.

Assign the value to FV.

0

Now solve for PV.

The message Zero indicates that the returned value exactly satisfies
the current equation.

106 8: The Solver

Symbolic Solutions

This chapter describes two methods for finding symbolic solutions.
There is a simple method for solving a quadratic expression by cal-
culating the linear expression that represents both zeros. There is also
a more versatile method that provides a symbolic solution for a vari-
able in more general equations.

Each method works with both expressions and equations. The zero of
an expression f(x) is the same as the root of the equation f(x) = 0, and
the root of the equation f(x) = g(x) is the same as the zero of the
expression f(x) — g(x).

Finding the Zeros of a Quadratic Expression

You can find both zeros of a quadratic expression without plotting or
making estimates. The following example solves x2 — 6x + 8.

Before starting the example, clear the stack and select STD number
display mode.

B(CLEAR]
@(vooE] [sTD

Put the expression on the stack.

[x Wx) 25) 6 (3) x (3) 8 (ENTER)

'R2-6%¥K+8'
IT

 9: Symbolic Solutions 107

Put the name X on the stack, indicating the variable for which you're
solving.

[J X [ENTER]

'Kh2-6%x+8'
1

Calculate the zeros, using QUAD (quadratic) in the SOLVE menu.

QUAD

i: '(G+s1¥2)2"
(ZTE:|RLEGE[SULVRT30L[GUID]ZHitk

This expression represents both solutions to the quadratic expression.
The variable sl represents an arbitrary sign, either +1 or —1, and
each value of sl corresponds to a zero of the expression.

Store the expression as the current equation.

STE®

SOLVE] T20L[CURDSHO

Display the Solver menu.

SOLVR

 CEERrsslC_ JIC JC IC]

sl is the only variable in the current equation.

First make sl a positive sign.

10st]

ExPR=

108 9: Symbolic Solutions

Now make s1 a negative sign.

Isolating a Variable

The HP-28S can isolate a single occurrence of a variable in an equa-
tion, returning an expression representing the symbolic solution of
the equation. In other words, if x is the variable for which the equa-
tion is solved, and a, b, and c are the other variables in the equation,
isolating x produces an expression in 4, b, and c such that the equa-
tion is satisfied when x has the value of the expression.

For the first example, isolate x in the equation

ax + 3) —b =c.

This example is simple because there is only one occurrence of x. Later
examples show how to manipulate the equation to produce a single
occurrence of x.

Clear the stack.

B(CLEAR] 3

i:
CEEsre=l Il II Il]

Put the equation on the stack.

OAXOx®3WOEBEC 3:

I: 'A% (%+3)-B=C
C1JEZPE=Il Il]

9: Symbolic Solutions 109

Specify the variable you want to isolate.

X 2:
ul 1 "Ax (X+3)>-B=C"

CoE, Il II II]

Isolate x, using ISOL (isolate) in the SOLVE menu.

1800

'CC+B>~R-3'

The expression returned represents a symbolic solution of the equa-
tion for x—that is, the equation

ax + 3) —b=c

is satisfied when x = (c + b)/a — 3.

Expanding and Collecting

If x occurs more than once, you must manipulate the equation to
eliminate all but one occurrence of x. The next example shows how to
isolate x in the equation

2a + x) = 3(b — x) + c.

The strategy for this example is to expand the equation, subtract one
side’s x-term from both sides, collect the equation to cancel the x-term
on one side and produce a single x-term on the other side, and then
isolate.

Put the equation on the stack.

M2@EO0ADXBDEE0S ona.
(=) X BDI (+) C [EnTeR) | Px(A+R I=IECB-R40

STEC [RCEC[SOLVE]T20L[CURDSHO

Select the ALGEBRA menu.

3:

1: '2%(A+R)=3%(B-Rk)+C'
(CTO(RTT)MeTTCTT(RENT

110 9: Symbolic Solutions

In this example you'll use EXPAN (expand) and €OLET (collect) to
manipulate the equation. In the next example you'll use ‘FORM (form
algebraic expression) to manipulate an equation. All commands in the
ALGEBRA menu are described briefly in appendix D, “Menu Map.”
For complete descriptions, refer to “ALGEBRA” in the Reference Man-
ual. In addition, FORM, a powerful algebraic editor, has its own
section “ALGEBRA (FORM)” in the Reference Manual.

Expand both sides of the equation.

EXPAN

'CC+B)~A-3'
'2¥A+2%X=3%B-3%¥X+C'

COLT EXPAN]SIZE[FORM[0EZUE[ERTUE]

To subtract the left side’s x-term (2x) from both sides of the equation,
first put the left side’s x-term on the stack.

[J 2 [x] X [ENTER]

'¢C+B)~A-3'
'2%¥A+2%X=3%¥B-3*RX+C"'

1 2% 1

=
r

Then subtract 2x from both sides.

= 2: '(C+B)~A-3'
1: '2%A+2%X-2%x=3%B-3%X

+C-2%K'
CECT(RTTNETTCT(ET

Collect the equation.

COLCT 3:
2: 'CC+B)-A-3'
1: '2¥A=3%B+C-5%X'
(EEE(RATMelETTCTE(RET

Each side is collected independently, and the x-terms cancel on the
left side.

Now you can isolate x in the equation. Specify the variable you want
to isolate.

[1] X

'CC+B)~A-3'
g '2%¥A=3%B+C-5%X'

COLETJERFAN]SIZE [FORM [0EZUE[ERTUE]

=
=
=

>
u
e

u
e

9: Symbolic Solutions 111

Isolate x. The command ISOL appears in the second row of the AL-
GEBRA menu as well as the SOLVE menu.

NEXT] ISOL

 'CC+B>-A-3'
' (3%B+C-2%A)3

THYLE]ToL[CURDSHOW[0ESET]ERGET]

=
I

The expression returned represents a symbolic solution of the equa-
tion for x—that is, the equation

2@ + x) = 3b — x) +c

is satisfied when x = (3b + ¢ — 2a)/5.

Using FORM

If there are multiple occurrences of x, and if any occurrence has a
symbolic coefficient, the command COLCT won't combine the coef-
ficients. The next example isolates x in the equation

ax + b) + 2x =,

where x occurs more than once and has a symbolic coefficient a. The
strategy is to expand the equation, use FORM to collect coefficients of
x, and then isolate x.

Put the equation on the stack.

LAKMOxem2X([=)

2; | CBRBAEBRAN

C I: | AX (RABYF2EREE
ECITCETETNEE

Expand the equation.

EXPAN

3: 'CC+B>-A-3'
2: 'C3¥B+C-2%A)5’
1: 'A*¥R+A¥B+2%x=C"
(RNEET)aACSFE

Now use FORM to collect the coefficients of x.

FORM

55 CCRPERI+HCA¥BY 2+(2%X) =

COLCTEXFRN[LEVEL

112 9: Symbolic Solutions

Normal calculator operation is suspended while FORM is active. The
FORM display shows the equation with all subexpressions delimited
by parentheses. You'll use FORM to manipulate subexpressions
within the equation.

The goal is to combine (A%X> and (2%X) in a single term
¢(A+22%K). There are three steps required, shown below as you
might write them on paper. The current form of the equation is:

(ax + ab) + 2x = ¢

The first step is to commute ax and ab, giving:

(@b + ax) + 2x = ¢

The second step is to associate ax and 2x, giving:

ab + (ax + 2x) = ¢

The third step is to merge ax and 2x, giving:

ab + (a + 2) x = ¢

Step 1: Commute ax and ab.

Move the cursor (the inverse character or characters) to +.

C21 C1 C+]

ES CCA¥XOECA¥BY +(22K))=

(EETCR(WE

The position of the cursor determines which subexpression you're act-
ing on. Here you want to act on the subexpression ¢(CA¥X> +(A%B>
to commute the arguments to +.

9: Symbolic Solutions 113

Display the first row of manipulations for +.

§§ C CAFRITCA*E) 2+(2%K))=

EEEETHETEETEETHETE

The manipulations that appear when you press are specific to
the function or variable indicated by the cursor; these manipulations
are specific to +.

Commute the arguments to +, using [3 (commute).

>

&§ C CA¥BITCAER 2+(2%K))=

EEETHEELECETENTE

Return to the main FORM menu.

55 CCA*BICA*¥RI I+ (2%K) =

(COLCTEXFANJLEVELJERSET][+1[3]

Step 2: Associate ax and 2x.

Move the cursor to the second +.

CL»1 C+] C21 L+1

55 ¢ CARB+LAZK) JWC2ER) I=

(TRRET(WT

Here you want to act on the subexpression

CCCAXBY +CAXRI DO +C2%XKI)D

to associate the terms (A%X> and (2%X> in a single subexpression.
Display the first row of manipulations for +.

&5 (CAXBI+(A*X) IW(2¥K) I=

IEEETHETEETEETHETE

These are the same manipulations as before because the cursor again
indicated an additive subexpression.

114 9: Symbolic Solutions

Associate the terms (A%X> and (2%X> in the subexpression
CCAXK) +(2%X>), using A* (associate right).

A>

55 (A*BIQ(CA¥X)+(2%¥X) I=

EEEETHETEETEETEETE

Return to the main FORM menu.

ES CA*BIECCA¥X)+(2%X)))=

COLCT[ERFANILEVEL[EXSET][£1[1

Step 3: Merge ax and 2x.

Move the cursor to the second +.

+30 fed ToeN fwd
SS CREBI+CCAXXOT(22K)) =

[COLCT[ERFAN[LEVEL

Here you want to act on the subexpression ((A%X> +(2%X))> to com-
bine the coefficients of X.

Display the first row of manipulations for +.

S$ CREB+CCRRKOQC2%K) 5 =

IEEEETHETHBEENETHETE

Combine the coefficients of ¥, using "#3 (merge right).

M+

CCCA*BY+CCA+22 TKO H>=C>

This accomplishes the goal of combining (A%X> and (2%X> in a sin-
gle term ((A+2)%X).

Exit FORM and return the modified equation to the stack.

[ON] : 'CC+B>-A-3'
2: 'C3%B+C-2%¥A)5"

: 'A¥B+(A+2)*x=C"
(RTOTESTellTTTCTE(RN

9: Symbolic Solutions 115

Now that x occurs only once in the equation, you can isolate x.

Specify the variable you want to isolate.

[JX 2: '(3¥B+C-2%¥A)3"
Hg '"A*¥B+(A+2)*x=C"

(ETNRTTelITTCTT(REN

Isolate x.

[NEXT] 180L 3: '{C+B>~-A-3'
2: '(3*¥B+C-2*%A>/D"'
1: 'CC-A*B)~-(A+2>"'
LEAFETETETiRi

The expression returned represents a symbolic solution of the equa-
tion for x—that is, the equation

ax + b) + 2x = ¢

is satisfied when x = (¢c — ab)/(a + 2).

116 9: Symbolic Solutions

10
Calculus

You can symbolically differentiate any expression for which a sensible
derivative exists. Integration is more restricted: you can compute a def-
inite numerical integral for any expression, but an exact symbolic
integral only for a polynomial.

This chapter contains simple examples of finding derivatives, indefi-
nite integrals, and definite integrals for expressions. For more
information about doing calculus on the HP-28S, refer to “Calculus”

in the Reference Manual.

Differentiating an Expression

You can differentiate an expression step-by-step, observing how the
calculator applies the rules of differentiation, or you can differentiate
an expression all at once. The final results are identical. In this section
you'll differentiate an expression twice, first step-by-step and then all
at once.

10: Calculus 117

Step-by-Step Differentiation

To differentiate step-by-step, key in the derivative as a expression. For
this example, calculate:

2 tan (x2 + 1)

Before starting the example, clear the stack, select Radians angle
mode, and select STD number display mode.

B(Cierr) 3:
BODE) (RAD iT
STD [ZT0mFISCTENGDEG[RAD

Purge the variable X (if it exists).

[J X M(PURGE]

Now start the expression for the derivative, beginning with the vari-
able of differentiation.

(0) M(ezax) X [J

Next, key in the expression to be differentiated.

TAN X[B(*) 2+] 1 (ENTER] 2

1: 'OXCTANCR~2+1 22"
ECEEETEEETETTEET

This expression represents the derivative, with respect to x, of
tan (x2 + 1).

Evaluate the expression once.

(EVAL] 2:
1: '"C14SQCTANCK™2+12) 0%

AXRCK2+!
ETIEETERNEEITEET

The result reflects the chain rule of differentiation:

118 10: Calculus

d 2 d 2 d 2— t 1)= —— t 1 =
an (x +) (>) an (x +) xX (x + 1)

The derivative of the tangent function has been evaluated. Next you'll
evaluate the derivative of x2 + 1.

Evaluate the expression a second time.

2
'CL+SRCTANCR24102 0%
AX(R™2D)!
CELEEEEFREETEET

The result reflects the derivative of a sum:

424d—_ 1 —

dx oc +1) dx dx

The derivative of 1 is 0, so that term disappears. Next you'll evaluate
the derivative of x2.

Evaluate the expression a third time.

2:
1: 'C1+SQCTANCKT2+1) 00%

(ARCAX2XR(2-10)
ECEEETEEEEWERETRCIEL

The result again reflects the chain rule:

4a »_ 4d 2, 4d
dx aw OXx

The derivative of x? has been evaluated. Finally, evaluate the deriva-
tive of x itself.

Evaluate the expression a fourth time.

z

LISPTANCE2+)2%

ETEEETEEEEERETRCCT

Here is the fully evaluated derivative.

10: Calculus 119

Complete Differentiation

To differentiate an expression all at once, perform differentiation as a
stack operation. Again, suppose you want to find:

4 tan 2 + 1)
dx

Put the expression to be differentiated on the stack.

Bl (CLEAR] 3
(J ran X B(*] 2 (+) 1 (ENTER) 2

'TANCX™2+1)
ELEEETEEEEREEEEEEE

Specify the variable of differentiation.

X (ENTER) 3:
0 et TRHG2+),

ESCHCETNECEKTREET

Differentiate the expression.

W(d/dx]

oH
1: 'C1+SQCTANCK2+1200%

(2%¥R)'
BCEEECEEEEBITEEIT

The fully evaluated derivative is returned to level 1.

Integrating an Expression

The HP-28S calculates the indefinite integral of an expression by sym-
bolic integration, which returns an expression as a result. This method
returns an exact result only for polynomial expressions. (For other ex-
pressions, the HP-28S integrates a Taylor series approximation to the
expression. See “Calculus” in the Reference Manual for details.) The
first example below demonstrates symbolic integration.

In contrast, definite integrals are calculated by numerical integration,
which returns numerical results. This method works for any expres-
sion that is “well-behaved” in the mathematical sense. The second
example below demonstrates numerical integration.

120 10: Calculus

Symbolic Integration of Polynomials

In this example you'll symbolically integrate the polynomial

8x3 + 9x2 + 2x + 5.

Clear the stack.

B(CLEAR] 3
I:

[SIN[REIN]Caf[COS |THN |HTAN |

Put the polynomial on the stack.

De@xWEIxB25:
2X [+]5 I: SEXBHORR2H2ENAT

ELEEETEEFTEETEET

Specify the variable of integration.

[J X [ENTER]

3 Ji BRRGHORRZHZERID)
i: 3
ECECEETECET]

Integrate the polynomial.

al

21
1: : SER+XT2+3EK3+2¥K4

|IN[REIN |Zo[RCOS |TAN |HTHM |

Wait for the ((#) annunciator to disappear, indicating that integration
is completed. The integral is returned to level 1.

10: Calculus 121

Numerical Integration of Expressions

In this example you'll find a numerical value for the integral

1
[exp @® + 2% - x + 4)dx

Clear the stack.

B(CLEAR]

=

2
ECEEETEEEENEEETEET

Put the expression on the stack.

[] M(LOGS] XBJ3[2
IXBCI 2X4 'EXP(RABH+2K2-K+4) !

ITETTITW[EE

Key in the variable and limits of integration. You'll enter them as ob-
jects within a list object. (This is a typical use of a list—combining
several objects so you can handle them as a single object.)

{] X [SPACE O [SPACE] 1 [ENTER 3:
101 a 2 LIulBp

BETEITSHEE

X is the variable of integration, 0 and 1 the limits of integration.

Next key in the accuracy you require.

If the expression included constants derived from empirical data,
specify the accuracy of the constants. For example,if the constants are
accurate to three decimal places, specify an accuracy of .001.

122 10: Calculus

In this example you're integrating an expression without empirical
constants, so you could specify 12-digit accuracy. However,the iterative
process of numerical integration takes longer for greater accuracy, so here
you'll specify an accuracy of .00001.

'EXPCXA3+2%¥R0M2-K+4)!
{xB 1

. 080681
[Los[L0G]LNEHFLNF1JERFH

M
w

w
o

Find the integral.

3:
Lo 2: 183.117678153

1: 1.83886911923E-
LosJALOG]LNEXF[LNF1JERFH

W
w

The estimated integral is returned to level 2, and an error bound is
returned to level 1.

The value ofthe integral is 103.118 + .001. Note that the error bound
returned is approximately the product of the estimated integral and
the accuracy you specified.

10: Calculus 123

11
Vectors and Matrices

The HP-28S deals with two types of arrays: vectors, which are one-
dimensional arrays, and matrices, which are two-dimensional arrays.
You can enter vectors and matrices as individual objects, called array
objects, and calculate with them as easily as with numbers.

This chapter shows basic array calculations using real arrays—vectors
and matrices whose elements are real numbers. You can also calculate
with arrays whose elements are complex numbers.

All commands in the ARRAY menu are described briefly in appendix
D, “Menu Map.” For complete descriptions, refer to “ARRAY” in the
Reference Manual.

Vectors

This section demonstrates vector arithmetic, the cross product, and
the dot product.

Keying In a Vector:

Before beginning these examples, clear the stack and select STD num-
ber display mode.

BER) 3:
Wi(viooe) STON Ti

124 11: Vectors and Matrices

Key in the vector [2 3 4]. You can use either spaces or the non-radix
mark (the comma if you have selected the period as the radix mark) to
separate 2 from 3 and 3 from 4.

(02,34

Multiplying and Dividing a Vector by a Number

Multiply the vector by 15.

15 [x].

[L 306 45 68 1
IERFFETCTTEETT

For multiplication, the order of the arguments makes no difference,
just as it makes no difference when you multiply two numbers. How-
ever, for division, the vector must be in level 2 and the number in

level 1.

Divide the vector by 5.

5 [+]

Adding and Subtracting Vectors

You can add and subtract vectors just as you add and subtract num-
bers, provided that the vectors have the same number of elements.
For subtraction, the order of the arguments is important, just as it’s
important when you subtract one number from another.

For this example, subtract the vector [-10 20 30].

[10 [CHS),10,20,30 [3] 2
i: [16 -11 -18 1]
IERIGENETEWEETT

11: Vectors and Matrices 125

Finding the Cross Product

Find the cross product of the vector in level 1 with the vector
[2 —2 1]. (The cross product is defined only for two- and three-
element vectors.)

Key in the vector.

[@ 2,2 [CHS], 1

2
1: [16 -11 -18 1
[2,-2,10

[ZT0m |FIN |SCT JENG [DEG |FAle |

Calculate the cross product, using CROSS in the third row of the AR-
RAY menu.

B(ARRAY| [NEXT] (NEXT) GROSS

3
2
1 [-47 -52 -18 1]
CIEE]TOTSACTERCTATR

Finding the Dot Product

Find the dot product of the vector in level 1 with the vector [5 7 2].
(The two vectors must have the same number of elements.)

Key in the vector.

[0 5,7,2

Lag L747 "52-101
CENTAEEERER

Calculate the dot product.

DOT

-619
CREE]DOTDETWE:|KMEH[HEH]

Matrices

This section describes how to invert a matrix and how to find the

determinant of a matrix. Both of these calculations are restricted to

square matrices—those with the same number of rows as columns.

126 11: Vectors and Matrices

The calculations you performed on vectors also apply to matrices
(with the exception of the dot and cross products). You can multiply
or divide a matrix by a number, and you can add or subtract two
matrices (provided that the matrices have the same dimensions).

Keying In a Matrix

Key in the following matrix:

1 2 3

1 3 3

1 2 4

Start the matrix.

2:@ i: 619

EEETEEEEETECEEEEE

Enter each row of the matrix like a separate vector.

[0 1,2,3 1: [C12 3 J

0 1 EEE
(01.24 EEINETTEEERIE

Viewing a Large Matrix

When a matrix has many elements or non-integer elements, you may
not see the entire matrix at once. To view a large matrix, use (EDIT
(if the matrix is in level 1) or [§(ViSIT] to return the matrix to the com-
mand line. You can then use the cursor menu keys to display any part
of the matrix. For details, refer to “Editing Existing Objects” in chapter
18.

11: Vectors and Matrices 127

Inverting a Matrix

Because the matrix in level 1 is square, you can find its inverse.

; TT TL € <2 =3 7
_EVE3 [S118]

[-181 11
CEITTEEEGE

Finding the Determinant

Because the matrix in level 1 is square, you can find its determinant.

DET
-619

1
CRs]DoTDETAES[RNRM[CNEH

Multiplying Two Arrays

You can use the [x] function to multiply two matrices or a matrix and
a vector. (Use CROSS or DOT to multiply two vectors, as described
above.)

Multiplying Two Matrices

The order of the arguments is important when multiplying two matri-
ces. The number of columns in the matrix in level 2 must equal the
number of rows in the matrix in level 1. For example, you can calcu-
late the following matrix product.

128 11: Vectors and Matrices

To calculate this matrix product:

Enter the first matrix.

0D 22
(0) 4.1

[023

Key in the second matrix.

00 2,2,1,4 : 3

[0 3.4.2.1 [[2,2

Multiply the matrices.

x]

Multiplying a Matrix and a Vector

The order of the arguments is important when multiplying a matrix
and a vector. The matrix must be in level 2, and the vector must be in
level 1. The number of columns in the matrix must equal the number
of elements in the vector.

For the next example, multiply the matrix currently in level 1 by the
vector [311 2].

Key in the vector.

B12 6 18 1]3,1,1,2 1: [C1
0 [11 126 17 1

[3,1,1,20
TEEIEEEEEEETEREETE

Multiply the matrix and vector.

J

-619
1

[68 835 85 1
(CRos]007 |DET |AES[KNEE]CNEH]

3:
2:
i:

11: Vectors and Matrices 129

Solving a System of Linear Equations

To solve a system of n linear equations with n variables, use an n-
element constant vector, an n X n coefficient matrix, and division ([]).
The constant vector contains the constant values of the equations. The
coefficient matrix contains the coefficients of the variables.

The next example shows how to solve a system of three linearly inde-
pendent equations in three variables. Suppose the equations are

3x + y+ 2z= 13
x + y— 8 = -—1

—x+2y+52= 13

Enter the constant vector.

13,—1,13 [ENTER] [3: 1
O 2: [68 85 85 1

1: L 13 -1 13 1
[CRs]ooTDETWES[RMEH[CNRH

Key in the coefficient matrix.

MM 3.1.2 7 [68 85 85 J
i: [L 13 -1 13 1

[01.1,-8 [[3,1,201,1,-80-1,2,50
(J —1,2,5 HEEITETEEEEETREE

Solve the system of equations.

[+]

1
[68 85 85 1

[2311]

[Chios]DoT |DET |AES|RENER]CNEH]

The values in the solution vector are the values of the variables that

satisfy the equations:

x=2 y=35z=1

To solve under-determined, over-determined, or near-singular sys-
tems of equations, refer to “ARRAY” in the Reference Manual.

130 11: Vectors and Matrices

12
Statistics

This chapter describes how to enterstatistical data and how to calcu-
late single-sample and paired-sample statistics, using commands in
the STAT menu. All commands in the STAT menu are described
briefly in appendix D, “Menu Map.” For complete descriptions, refer
to “STAT” in the Reference Manual.

The following table lists the consumer price index change (CPI), the
producer price index change (PPI), and the unemployment rate (UR),
all in percentages, for the United States over a 5-year period. Enter
these data and calculate statistics from them.

Data for Statistical Example

Year CPl PPI UR

1975 9.1 9.2 85

1976 58 46 7.7

1977 65| 6.17.0

1978 76 7.8]6.0

1979 11.5 193 5.8

12: Statistics 131

Entering Data

Statistical data are stored in a statistics matrix named ZDAT—an ordi-
nary matrix with a special name. Each row of the matrix contains one
data point, which in this example comprises the values of CPI, PPI,
and UR for one year.

Before you start, clear the stack and select FIX 2 number display
mode.

B(CLEAR]
Bl(vODE] 2 FIX

|STO|FIdw |SCT |ENG |DES |RAD |

Clear any previous statistical data, using CLZ (clear statistics) in the
STAT menu. (Any existing ZDAT is purged.)

B(sTAT] res

Key in the data point for 1975.

(0) 9.1,9.2,85

Store this data point in ZDAT.

z+

3:
2

E+I-NECLE[TOT[RCLE

2:
1:
[9.1,9.2,8.50
T+E-NECLE[STOZ[ROLE]

|I+ |E- |NE |CLT[STOE]RCLE |

A new matrix named ZDAT is automatically created. The data point
for 1975 is the first row of ZDAT.

Enter the data point for 1976.

(0) 5.8,4.6,7.7 z+

3:
2:
i:

EXETEEHEYEEEE5

The data point for 1976 is added to ZDAT, forming the second row of
the statistics matrix.

132 12: Statistics

Enter the data point for 1977.

(]6.5,6.1,7 z+

3
2:
1:

I+T-NECLE[STO[RCLE

The data point for 1977 is added to ZDAT, forming the third row of
the statistics matrix.

Editing Data

If you make a mistake while keying in data, and you realize your mis-
take before pressing 2+ , you can simply edit the command line.
But suppose you believe that you made a mistake entering the data
point for 1976. You can return data points to the stack, edit those that

contain mistakes, and restore the data points to ZDAT.

Remove the data point for 1977 (the last row in ZDAT) and return it
to the stack.

z-

3
2
1 [6.00 6.18 7.088 1]

[I+ |E- |NT |CLT[STOZRCLE]

a
LJ

s
s

a
a

-

Remove the data point for 1976 (the last row in ZDAT) and return it
to the stack.

z-

3:
2: [6.00 6.18 7.80]
1: [5.80 4.68 7.70 1]
T+E-NECLT[STOE]RCLE

If you find you did make a mistake in this data point, press [J(EDIT] to
return the data point to the command line, edit the data point, and
press to put the corrected data point back on the stack. (Refer
to “Editing Existing Objects” in chapter 18.)

Return the corrected data point for 1976 to ZDAT.

[6.98 6.160 7.08 1]
|Z+ |Z- |NE |CLE[ETOE|RCLE]

12: Statistics 133

Return the data point for 1977 to ZDAT.

3:
2
1:
T+E-NECLT[STOZ|RCLE]

z+

Now enter the rest of the data (for 1978 and 1979) and check that
you entered all five data points.

([]7.6,7.86 =+
(0 11.5,19.3,5.8 54

NE

2.08
T+E-NECLT[STOE]RCLE

Single-Sample Statistics

In this section you'll find the mean, standard deviation, and variance
of CPI, PPI, and UR. The data for CPI are contained in the first col-

umn of ZDAT, the data for PPI in the second column, and the data

for UR in the third column.

Display the second row of the STAT menu.

3:
i: 5.00
EGETEEAETEEETHE

Here are the commands for mean, standard deviation, and variance.

Finding the Mean

Calculate the mean.

MEAN

=
a
)

: 2.80
: [8.18 9.48 7.068 1]
ToT[HEARN]SDENWAR[HARE[MINT]

The mean for CPI is 8.1, for PPI is 9.4, and for UR is 7.

134 12: Statistics

Finding the Standard Deviation

Calculate the standard deviation.

a
n3: . 88

2: [8.18 9.48 7.68]
1: [2.27 5.88 1.14 1]
ToT[MEAN]Z0ENMAE[HAREMINE]

SDEV

The sample standard deviation for CPI is 2.27, for PPI is 5.8, and for
UR is 1.14.

Finding the Variance

Calculate the variance.

3: [8.18 9.48 7.808 1]
2: [2.27 5.88 1.14]
1: [5.17 33.64 1.30 1]
ToT[MEAN]Z0ENMAE[HARE[HINT]

VAR

The sample variance for CPI is 5.17, for PPI is 33.64, and for UR is
1.3.

Paired-Sample Statistics

In this section you'll find the correlation and covariance of CPI and
PPI, then use a linear regression model to predict values of PPI from
values of CPL

Display the third row of the STAT menu.

[NEXT] 3: [8.18 9.48 7.88 1]
: [2.27 5.80 1-14 J

i: [5.17 33.64 1]
[COLE |CORR |CoM]Lk[FREON]|

Here are the commands for correlation, covariance, linear regression,
and predicted value.

12: Statistics 135

Specifying a Pair of Columns

Before performing paired-sample statistics, specify which columns of
the statistics matrix ZDAT contain the independent and dependent
data. In this example you want CPI (in column 1) to be the indepen-
dent data and PPI (in column 2) to be the dependent data.

Specify columns 1 and 2 as the independent and dependent data.

1,2 coLz 3: [8.18 9.48 7.68 1]
2: [2.27 5.80 1.14 1]
1: [5.17 33.64 1.30 1
ICTSTICCI(0

The numbers 1 and 2 are stored in a list named ZPAR, which is an
ordinary list with a special name. The commands that perform
paired-sample statistics refer to ZPAR.

If you don’t specify the columns containing the independent and de-
pendent data, the calculator uses columns 1 and 2. In this example

you didn’t need to specify the columns, but remember to execute
coLz if your independent and dependent data aren’t contained in
columns 1 and 2.

Finding the Correlation

Calculate the correlation.
s—

3: [2.27 5.80 1.1
2 [5.17 33.64 1.3

CORR

The correlation of CPI and PPI is 0.96.

Finding the Covariance

Calculate the sample covariance.

cov

[5.17 33.64 1.38 1]
8.96
12.63
[|

=
I

The sample covariance of CPI and PPI is 12.65.

136 12: Statistics

Finding the Linear Regression

Calculate the straight line that best fits the data for CPI and PPL

LR

The line's intercept is —10.43, andits slope is 2.45. The intercept and
slope are also stored in the list ZPAR.

Finding Predicted Values

Suppose you want to find the predicted values for PPI when CPI has
values of 6 and 7. The predicted value can be calculated from the
slope and intercept stored in ZPAR.

Predict the value for PPI when CPI has value 6.

6 PREDV

The predicted value is 4.26.

Predict the value for PPI when CPI has value 7.

7 PREDV 3: 2.45
2: 4.26
1: 6.71
EEEETETATT

The predicted value is 6.71.

12: Statistics 137

13
Binary Arithmetic

This chapter describes how to perform arithmetic with binary inte-
gers. Each binary integer contains from 1 to 64 bits and represents an
unsigned binary number. For ease in entering binary numbers and
reading the results, you can choose decimal, hexadecimal, octal or bi-

nary base. However, this choice doesn’t affect the internal
representation of binary integers, and commands act on binary inte-
gers bit-by-bit.

All commands in the BINARY menu are described briefly in appendix
D, “Menu Map.” For complete descriptions, refer to “BINARY” in the
Reference Manual.

Selecting the Wordsize

The current wordsize affects the length of binary integers returned by
commands and the display of binary integers on the stack. The
wordsize can range from 1 through 64 bits, with a default wordsize of
64 bits. Suppose you want a wordsize of 16.

Before you start the example, clear the stack and display the BINARY
menu.

B(CLEAR] I(BINARY]

 138 13: Binary Arithmetic

Specify a wordsize of 16 bits.

16 STHS

IEEICTTSSTESENEE

Now if you key in a binary integer longer than 16 bits, only the 16
least significant bits are displayed.

Selecting the Base

The current base affects how binary integers are displayed on the
stack. The choices for the base are decimal, hexadecimal, octal, and

binary, with a default choice of decimal base.

Suppose you want hexadecimal base.

HEX

The label for “HEX now includes a small square, indicating that the
current base is HEX.

Entering Binary Integers

Enter the address 24FFq.

(#] 24FF

The lowercase “h” is a base marker, indicating that the current base is
HEX. When you enter a number, you don’t need to key in the base
marker unless the number is not in the current base.

Check how this binary integeris represented in other bases. You don’t
need to change the binary integer, only the current mode.

13: Binary Arithmetic 139

Change to DEC base.

DEC

1 # 9471d
EOEIEEEEHEE

Change to OCT base.

ocr

Change to BIN base.

BIN

 # 19010011111111b
DECHER0CTJEIN®[THE [RCHE

Return to HEX base.

HEX

Calculating With Binary Integers

Calculate the address 1F0,4 less than the given address.

(#] 1FO0 [=]

2360Fh
ITICTOTCNEECEE

The difference is returned to level 1, just as for other numbers.

You can mix binary integers and real numbers in your calculations. A
normal real integer (entered without the # delimiter) is interpreted in
base 10 regardless of the current binary integer base.

For example, calculate the address 27; less than the given address.

27 (5) 3:

i: # Z2F4h
IERIEEGETETEEE

The difference, expressed as a binary integer, is returned to level 1.

140 13: Binary Arithmetic

14
Unit Conversion

This chapter contains examples of unit conversion—converting the
numerical value of a physical measurement from one system of units
to another. For detailed information, refer to “UNITS” in the Refer-
ence Manual.

The UNITS Catalog

The UNITScatalog lists alphabetically all units built into the HP-28S.
You'll use it to check the spelling and definition of units.

First clear the stack and select STD number display mode.

(CLEAR) (MODE)

|

'sTD 3

i:
EEEEEEEEETT

Start the UNITS catalog.

(unis) —

m2
[NEXTFREY|[FETCH

The first unit is “are”, abbreviated “a”. This is a unit of area equivalent
to 100 meter?.

Try scanning forward and backward through the catalog by holding
down the NEXT and PREV menu keys (not the permanent keys on
the keyboard).

14: Unit Conversion 141

You can move to the first unit that begins with a particular letter by
pressing that letter key.

I

s
[WERT[FREY|[FETCH

The entry for “second” shows that the correct abbreviation is “s” and
the value is 1 second. “Second” is defined in terms of itself because it

is a fundamental unit.

Be sure to use the abbreviations exactly as they appear in the UNITS
catalog. For example, the HP-28S recognizes lower-case “s” as sec-
onds, but not upper-case “S”.

Next check the entry for “day.”

(oJ

 —

s
[WERT[FREY|[FETCH

This entry shows that the correct abbreviation is “d” and the value is
86,400 seconds.

Next look for the “foot” unit.

 A"2¥s"4/kg¥m™2

[NERTJFREV]| [FETCH[CLIT]

The catalog shows the entry for “farad.” Move forward seven entries.

NEXT NEXT NEXT NEXT

NEXT NEXT NEXT

MEXTJFREW|[FETCH

The catalog shows the entry for “international foot.” There are two
versions of “foot” in the catalog; the next unit is “survey foot.”

You can write the abbreviation for “international foot” to the com-

mand line.

FETCH

142 14: Unit Conversion

The normal display returns, and the command line shows the unit
abbreviation.

The examples in this chapter show you how to key in units directly,
but you can use [UNITS] and FETCH if you prefer.

Clear the command line.

Converting Units

First convert 15 °C to degrees Fahrenheit.

Put the numerical value on the stack.

15 [ENTER]

8°] C [ENTER]

The unit abbreviation is converted to a name.

Enter the unit abbreviation for “degrees Fahrenheit.”

B(°] F [ENTER]

The unit abbreviation is converted to a name.

Convert the numerical value from the old unit to the new unit.

M(CONVERT]

rep

[ZT0m |FIN [SCTENG |DEG |RAle |

14: Unit Conversion 143

The result shows that 15 °C converts to 59 °F.

For the next example, convert 40 inches to millimeters. This time
you'll let [[CONVERT] automatically execute ENTER for you.

Clear the stack and enter the numerical value.

B(CLEAR] 3:

40 [ENTER] i 48
IERGEES 3TEWEETT

Enter the unit for “inches.”

in 31
2 4a

: 'in'
[270mFISCT[ENGDES[FADS

Key in the unit for “millimeter” and convert units.

You won't find “millimeter” in the UNITS catalog. It's considered a
prefixed unit—the unit “m” (for meter) prefixed by “m” (for milli, or
one-thousandth). Similarly, “km” is a prefixed unit for kilometer, and
“ms” is a prefixed unit for millisecond. A complete list of prefixes ap-
pears in “UNITS” in the Reference Manual.

[tC] mm M(CONVERT]

[ERT IHEE ATEEEETO

The result shows that 40 inches converts to 1016 millimeters.

Converting Unit Strings

Strings are objects that contain characters. You can use unit strings to
define more complicated units than those used so far.

A unit string can represent a unit raised to a power, such as “ft*2”, or
the product of units, such as “ft*Ib”, or any combination of unit pow-
ers and products.

144 14: Unit Conversion

A unit string can also represent a quotient of units, such as “m/sec”.
However, the / symbol can’t appear more than once. Be sure to group
all direct units before the / symbol and all inverse units after the /
symbol. For example, “feet per second per second” is represented by
“ft/s"2”.

For the next example, convert 1 mile per hour to feet per second.

Clear the stack and enter the numerical value.

B(CLEAR)
1 [ENTER]

Enter the unit for “miles per hour.”

[LC] mph [ENTER]

Key in the unit for “feet per second.”

There is no built-in unit for “feet per second,” so you'll use a unit
string.

Bc) ft(=]s

1
1 mph 1

t + sh
[ZT0m |FTW |SCI |ENG |DEG |FHDe |

Alpha entry mode was activated (as indicated by the form of the
cursor) when you began keying in the string. In alpha mode all com-
mands are written to the command line, so youll need to press

to complete the string.

BI(CONVERT]

The result shows that 1 mile per hour converts to 1.46666666667 feet
per second.

14: Unit Conversion 145

Next convert 10 cubic feet to gallons.

Clear the stack and enter the numerical value.

B(CLEAR]
10 [ENTER]

Enter the unit string for “cubic feet.”

BO (© ft m0) 3 (ENTER)

Key in the unit for “US gallon” and convert.

LC] gal (CONVERT 3:gal [CONVERT] 2: 74.8051948052
: 'gal'
EIEEETEEET

The result shows that 10 cubic feet converts to 74.8051948052

gallons.

Checking for the Correct Units

Using incorrect units can lead to unexpected numerical results or to an
Inconsistent Uni ts error. The solution in either case is to check
the UNITS catalog or the “UNITS” section of the Reference Manual.

Unexpected numerical results can occur if you use a unit with the cor-
rect dimensions but an incorrect numerical value. For example, if you
convert one acre to “ft*2” , the result is greater than 43,560. This oc-
curs because there are two “foot” units, “ft” (international foot) and
“ftUS” (survey foot). Converting one acre to “ftUS"2” returns exactly
43,560.

An Inconsistent Units error occurs if you use a unit with in-
correct dimensions. For example, this occurs if you use “Ib” (pound) as
a unit of force. The correct unit for force is “Ibf” (pound-force).

146 14: Unit Conversion

User Functions for Unit Conversion

If you perform particular unit conversions often, you can write user
functions for those conversions. In this section you'll write user func-
tions O—-G and G—+O that convert between ounces and grams; since
they're user functions, you can use them in either RPN or algebraic
syntax.

Recall that user functions must fulfill two requirements:

B® They must explicitly indicate their arguments.

B® They must return exactly one result.

First write O-G.

Begin the program and indicate the argument.

(«J B=] x 2: 74. 5051348052
& 5 x

[570mFT:501[ENG[EG[Fle]

The right arrow indicates that the following name is a local variable,
which will exist only within this program.

Define the conversion.

[0x [oz (J g (0 Micowenr) BE, — Toal’
" CONVERT DROP» »°
EOLA

The closing delimiters are added for you.

This program means: take an argument from the stack (in RPN syn-
tax) or from the expression (in algebraic syntax) and call it x; convert x
from ounces to grams; and drop the gram unit from the stack.

Store the program in a variable OG.

(JO M(~] G (s10]

14: Unit Conversion 147

Now write G=+O.

Begin the program and indicate the argument.

(«) B+] x 2s 74. 8851948052
s 1 a 1

€ > xB °

BENGEEERE

Define the conversion.

(«) x J g "J []) oz [*] BBCONVERT] + ‘5 w gal’

" CONVERT DROP » »
[iT |FI [C1JENS |DES[File |

This program means: take an argument from the stack (in RPN syn-
tax) or from the expression (in algebraic syntax) and call it x; convert x
from grams to ounces; and drop the ounce unit from the stack.

Store the program in a variable G=+O.

[J G @(=] O (sT0]

=H

=H 74.80851948852
1: 'gal’

To test the conversions, check how may grams are in 1 ounce, and
then convert that result back to ounces. The result should be 1 again.

Convert 1 ounce to grams.

1 [USER] 0OsG

There are about 28 grams in 1 ounce. Now convert this result back to
ounces.

74.8051948052G30 2 7
. 'ga 1

1: 1

G005EFRR]EOAT]51FW]

The conversions are inverses, as they should be.

148 14: Unit Conversion

15
Printing

This chapter describes some basic commands for using your HP-28S
with an HP 82240A printer. Refer to the printer manual for instruc-
tions about how to position the printer relative to the HP-28S and
how to turn on the printer.

All commands in the PRINT menu are described briefly in appendix
D, “Menu Map.” For complete descriptions, refer to “PRINT” in the
Reference Manual.

Printing the Display

You can print an image of the display as follows.

1. Press and hold [ON].

2. Press (the key with “PRINT” written above it).

3. Release [ON].

These keystrokes are the keyboard equivalent of the command
PRLCD (print LCD, found on the first row of the PRINT menu). You
can use these keystrokes to print the display at practically any time,
without disturbing calculator operation.

If you want a program to print the display, simply include the com-
mand PRLCD, found in the PRINT menu.

Clear the stack and display the PRINT menu.

M(CLEAR]
W(PRINT]

FELFEET[FRURR]FRELCD] CFTRAC

15: Printing 149

PR1 (print 1) prints the object in level 1.

PRST (print stack) prints all objects on the stack.

PRVAR (print variable) prints the name and contents of a variable.

PRLCD (print LCD) prints the display.

CR (carriage right) prints a blank line.

TRAC (trace on/off) turns Trace printing mode on and off.

Printing a Running Record

To print a running record of your calculations, turn on Trace printing
mode.

TRAC

3
2
1
FELFRET[FRVAR]FRLCD] CETRAC]

A square appears in the "TRAC menu label to indicate that Trace
printing mode is turned on.

Now see what happens when you add two numbers—for example, 44
and 72. First put 44 on the stack.

44
44 ENTER

1: 44

The input and level 1 result are printed.

Now add 72.

72

re +

1: 116

Again the input and level 1 result are printed.

Turn off Trace printing mode.

TRAC

116
FELFRETJFRVAR]FRELED] CE]TRAC

150 15: Printing

Printing Level 1

Rather than printing all results using Trace printing mode, you can
selectively print results using PRI.

PR1

The result remains in level 1, unchanged.

You can print a message by putting a string in level 1. To print the
message “OK”, first put the string on the stack.

BJ oK 116
n OK un

[Fi[FEST[PRVAR[FELEG]CkThi

Now print the message.

PR1

OK

Only the contents of the string are printed, not the quotation marks.

15: Printing 151

Printing the Stack

You can print all objects on the stack by using PRST.

PRST

2: 116
1: "OK"

The contents of the stack are unchanged.

Printing a Variable

You can print the name and contents of a variable without recalling
the variable to the stack. To demonstrate, store the string “OK” in a
variable named “A”, then print variable A.

Create the variable A with value “OK”.

[J A (s10]

116
FELJFRZT[FRUARIFELCD] CRTRAC

Print the name and value of the variable.

('] A PRVAR

A
"OK n

The name of the variable is dropped from the stack.

152 15: Printing

Part 2
Summary of Calculator
Features

Page 154

164

166

176

182

192

196

198

205

215

16: Objects

17: Operations, Commands, and Functions

18: The Command Line

19: The Stack

20: Memory

21: Menus

22: Catalog of Commands

23: Evaluation

24: Modes

25: System Operations

16
Objects

Part 1 of this manual contains examples of the 10 basic object types in
the HP-28S. Objects are the basic entities in the calculator—the enti-
ties you create to formulate problems and manipulate to find
solutions.

The purpose of most object types is to save you work by providing
specific data types. For example, imagine using real numbers to repre-
sent arrays, somehow keeping track of each elementin each array and
writing programs to do arithmetic with these arrays. It’s simpler to
enter the numbers in an array object, which you can manipulate as a
single entity, and to perform calculations by using the normal
arithmetic functions.

However, the reason for multiple object types is broader than just
multiple data types. The symbolic and programmable features of the
calculator are based on symbolic objects (names and algebraics) and
program objects. These objects are not just data; they can be evalu-
ated to produce a result. (Evaluation of objects is discussed in chapter
23.)

By basing multiple data types, symbolic operations, and programming
on the simple concept of object types, the HP-28S minimizes the rules
you need to remember. Objects are keyed into the command line, put
on the stack, or stored in variables in exactly the same way, regardless
of object type.

This chapter summarizes what you learned about each object type,
gives more detailed information, and suggests additional uses.

154 16: Objects

Real Numbers

Real numbers represent numbers greater than —10°%0 and less than
10590, They are stored internally as a mantissa between 1 and
9.99999999999, a sign (positive or negative) for the mantissa, an expo-
nent between 0 and 499, and a sign for the exponent.

In Hours-Minutes-Seconds Format. You can use the commands
HMS+ and HMS— to add and subtract numbers expressed as hours,
minutes, and seconds (or degrees, minutes, and seconds). For any

computation other than addition or subtraction, first use HMS— to
convert the numbers from HMS format to decimal degree format. (See
“TRIG” in the Reference Manual for details.)

Complex Numbers

Complex-number objects are ordered pairs of real numbers that repre-
sent the real part and the imaginary part of a complex number or the
coordinates of a point in a plane.

Rectangular and Polar Coordinates. In chapters 7 and 8 you used
complex numbers for plotting and digitizing; each complex number
represented rectangular coordinates—that is, distances along per-
pendicular axes.

Chapter 6 described polar coordinates—a radial distance and an an-
gle—and used the commands R—+P and P—+R to convert between polar
and rectangular coordinates. You can use polar coordinates to key in
coordinates and to display results, but you must use rectangular co-
ordinates for calculations. The user function PSUM, described on
page 86, adds points in polar coordinates by converting them, adding
them, and reconverting them.

In Algebraic Objects. When you key in a complex number in an
algebraic object, you may need two pairs of parentheses, as in the
expression 'SINC(@,1>)"'. The outer pair of parentheses are re-
quired by the function SIN¢ >, while the inner pair are delimiters
for complex numbers.

16: Objects 155

Binary Integers

Binary integers represent a sequence of bits. The length of the se-
quence, from 1 to 64 bits, depends on the current wordsize. The
current binary integer base determines how binary integers are dis-
played but has no effect on their internal representation.

Large Integers. Using binary integers in decimal base mode, you
can express a 19-digit positive integer exactly; this is 7 digits more
than you can express exactly using real numbers.

Programming Example. The programs in “Displaying a Binary Inte-
ger,” on page 257, work together to display a binary integer in all four
bases.

Preserving Status. The command RCLF (recall flags) returns a bi-
nary integer representing the status of all 64 user flags; the command
STOF (store flags) sets the user flags according to a binary-integer ar-
gument. These commands are demonstrated in “PRESERVE (Save and
Restore Previous Status)”, one of the programs in “Displaying a Binary
Integer” described above.

Strings

A string comprises a sequence of characters. Part 1 showed the fol-
lowing uses for strings.

® In chapter 14, “Unit Conversion,” you used strings to represent a
combination of unit products and powers.

B In chapter 15, “Printing,” you entered a message as a string in order
to print it. You can also display messages by using the command
DISP; it is described in chapter 27, “Interactive Programs.”

Most often a string represents text, but each character can also repre-
sent a numerical value from 0 through 255. The commands CHR
(character) and NUM (character number) convert between characters
and their numerical values.

156 16: Objects

Non-Keyboard Characters. You can display characters that don’t
appear on the HP-28S keyboard by entering a numerical value and
executing CHR. There are also non-displayable characters that you
can print; for a list of all characters, see “STRING” in the Reference
Manual.

Graphics Strings. The command LCD- (LCD to string) returns a
graphics string that represents the current displayed image; the com-
mand —+LCD (string to LCD) displays the image represented by a
graphics-string argument. For details about these commands, see the
Reference Manual.

String Manipulations. The programs in “Displaying a Binary Inte-
ger’, on page 257, show how to convert an object to string form,
count the number of characters, and join two strings.

Arrays

Arrays can be one-dimensional (called vectors) or two-dimensional

(called matrices), and they can comprise real or complex numbers.
Chapter 11, “Vectors and Matrices,” shows the basic calculations with
arrays. Part 1 included the following additional uses for arrays.

B® Chapter 11 shows how to solve a system of n linear equations in n
unknowns by using a an n-element constant vector and an n X n
coefficient matrix. For details about this process and its accuracy,
see “ARRAY” in the Reference Manual.

® In chapter 12, “Statistics,” the statistics data you entered was stored
in the current statistics matrix ZDAT.

In Algebraic Syntax. If an array is stored in a variable, you can re-
fer to elements in the array by using the variable name as a function.
For example, you could represent the sum of the third and fifth ele-
ments of a vector V as 'V(3» +(5).

Array Manipulations. The programs in “Summary Statistics” on
page 262, and “Median of Statistics Data,” on page 270, demonstrate a
variety of array manipulations.

16: Objects 157

Lists

Lists are sequences of objects; they are the most general method of
combining several objects into one. Part 1 showed the following uses
for lists.

® In chapter 4, “Repeating a Calculation,” the command PATH re-
turned a list of directory names, from the HOME directory to the
current directory.

B In chapter 7, “Plotting,” the list variable PPAR contained param-
eters used by DRAW.

B In chapter 8, “The Solver,” you gave a list containing three digitized
points as an estimate.

B In chapter 10, “Calculus,” you specified the variable of integration
and the lower and upper limits of integration by combining them in
a list.

B In chapter 12, “Statistics,” the list variable ZPAR contained param-
eters for paired-sample statistics.

In Algebraic Syntax. If a list is stored in a variable, you can refer to

elements in the list by using the variable name as a function. For ex-
ample, you could represent the sum of the third and fifth elements of
alist Las 'L(3>+L(5)".

Lists and the Stack. The program MEDIAN, on page 273, shows
how to put the elements of a list on the stack and combine objects on
the stack into a list.

Sorting a List. The program SORT, on page 270, shows how to sort
the elements in a list.

Extracting Elements From a List. The program LMED, on page
272, shows how to extract elements from a list.

158 16: Objects

Names are a sequence of characters used to name other objects. They
can contain up to 127 characters, although practical considerations
suggest that names be no longer than five or six characters.

The legal characters available on the keyboard are letters, digits, and
the characters ? Z « + p °. The first character can’t be a digit. The
following characters cannot be included in names.

B Characters that separate objects: delimiters (# C 1 " ' {
¢(> « %), space, period, or comma.

I 1'
s

H o
rB Algebraic operator symbols (+ - % » ~ § = < >

I)

The calculator determines whether a name is global or local when the
command line is processed: if the name is used by a program struc-
ture to create a local variable, the name is local within that program
structure; otherwise, the name is global.

Local Names. In part 1 you wrote userfunctions that created local
variables. This manual used lowercase letters for the local names to
help you distinguish them from global names. It's important to re-
member that it was the command - that made the names local, not
the lowercase letters. If you name a local variable e or i, your local
definition supersedes the built-in definition.

Global Names. All the other names in part 1 were global. Examples
include:

® Names for global variables (numerical variables used for plotting or
the Solver; all variables in the USER menu).

® Names for directories.

® Names used symbolically, without reference to specific values
(symbolic arithmetic, symbolic solutions, and calculus).

Names of commands, including e, i, and m, can’t be used as global
names. In addition, the following names are reserved for specific uses.

16: Objects 159

B EQ refers to the current equation used by the Solver and PLOT
commands.

2ZPAR refers to a list of parameters used by statistics commands.

PPAR refers to a list of parameters used by plot commands.

ZDAT refers to the current statistical array.

s1, s2, and so on, are created by ISOL and QUAD to represent arbi-
trary signs obtained in symbolic solutions.

B® nl, n2, and so on, are created by ISOL to represent arbitrary inte-
gers obtained in symbolic solutions.

B® Names beginning with “der” refer to user-defined derivatives.

You can use any of these names for your own purposes, but remem-
ber that certain commands use these names as implicit arguments.

Programs

Programs are sequences of objects and commands. Each program is
essentially a command line made into an object; when you surround
the contents of the command line by program delimiters, you indicate
that you want to save the contents for later execution.

Special program commands appear in the PROGRAM BRANCH,
PROGRAM CONTROL, and PROGRAM TEST menus. These menus
are described in the Reference Manual, along with the general topic
“Programs.”

You wrote five programs in part 1:

B In chapter 3 you wrote a program for renaming variables, and you
stored it in the variable RENAME.

B In chapter 5 you wrote a program for the cotangent function, and
you stored it in the variable COT.

B In chapter 6 you wrote a program for adding polar coordinates, and
you stored it in the variable PSUM.

B® In chapter 14 you wrote programs for converting between ounces
and grams, and you stored them in the variables O-G and G-O.

160 16: Objects

User Functions. The programs COT, PSUM, O-G, and G-+O are
user functions—they begin with the command —+ and one or more
names, which together define one or more local variables, followed by
one expression or program. When the user function is stored in a vari-
able, you can use the name of the variable in algebraics as you would
use a built-in function.

Program Structures. The command — followed by names and an
expression or program is called a local-variable structure, which is one
type of program structure. There are also program structures for

branching (such as IF ... THEN ... ELSE ... END) and looping (such
as DO ... UNTIL ... END). See chapter 26, “Program Structures,” for
descriptions. Also, chapter 28, “Programming Examples,” contains 20
programs that demonstrate every program structure, along with a va-
riety of programming techniques.

Unnamed Programs. Programs don’t need to be stored in variables
to be useful; for examples, see “Expanding and Collecting Com-
pletely,” on page 253, and “Displaying a Binary Integer,” on page 257.

Algebraics

Algebraics comprise one or more functions and the functions’ argu-
ments; the arguments can be numbers, names, or subexpressions.

Algebraics are written and displayed in algebraic syntax, a form simi-
lar to written mathematical notation. There are two types of
algebraics, expressions and equations.

Expressions

In part 1 you used expressions in three different ways: as data, as
functions, and as implicit equations.

Expressions As Data. When you calculate with expressions, such as
adding two expressions, squaring an expression, or differentiating an
expression, the result is another expression. In these cases the expres-
sions act as data to be manipulated, independent of any values
assigned to the variables.

16: Objects 161

Expressions as Functions. In chapter 4 you created the expression
RTOT and, using the Solver, assigned values to the variables and then

evaluated RTOT to calculate the desired result. In this case the
expression acted as a function which, given the input values,
produced a result.

Expressions as Implicit Equations. In chapter 8 you used the

Solver to find the numerical zero of an expression—that is, the
numerical value of the independent variable for which the expression
has value 0. In chapter 9 you used QUAD to find a symbolic zero—
that is, an expression which, substituted for the independent variable,
would give the original expression the value 0.

In both cases the expression f(x) acts like the equation f(x) = 0,
because the zero of the expression is the same as the root of the
equation.

Equations

Equations comprise two expressions related by an equals sign (=). In
mathematics there are two uses for the equals sign:

® To indicate a proposition, such as “x> = 4” or “x? + y?> = 1.” Here
the equation holds only for some values of the variables.

® To indicate an identity or definition, such as “sin 2x = 2 sin x cos x”

or “y = 3x2 + 2x + 5.” Here the equation holds for all values of
the variables.

On the HP-28S, equations are used for propositions only; to make a
definition such as “y = 3x2 + 2x + 5,” the expression

‘IHCZ+2%K +5 is stored in a variable named ¥.

In “Time Value of Money” on page 103, both TVM and SPPV are
expressed mathematically as equations. The TVM equation, which
holds only for certain values ofits variables, is entered as an equation;

but SPPV, whose value is defined by the value of its variables, is
created as a variable.

162 16: Objects

Equations as Data. When you calculate with equations, such as
adding two equations, or squaring an equation, or differentiating an
equation, the result is another equation. Each side of the equation is
treated independently—each side is an expression treated as data. The
equation maintains its propositional nature, where it holds for only
some values of its variables.

Solving Equations. When you solve an equation numerically, as
you did in “Time Value of Money,” you find the value of the
independent variable that satisfies the equality. Similarly, when you
solve an equation symbolically, as you did in “Isolating a Variable” on
page 109, you find an expression which, substituted for the
independent variable, would satisfy the equation.

Symbolic Constants

Algebraics can include the following symbolic constants. These look
like names but are actually functions.

® MINR (minimum real) represents the smallest positive real number.
Its numerical value is 1.00000000000E— 499.

MAXR (maximum real) represents the largest positive real number.
Its numerical value is 9.99999999999E499.

e represents the base of natural logarithms. Its numerical value on
the HP-28S is 2.71828182846.

® 7 represents the ratio of circumference to diameter of a circle. Its
numerical value on the HP-28S is 3.14159265359.

i represents the imaginary number \/—1. Its numerical value is

(0, 1).

In Numerical Constants mode or Numerical Result mode, evaluation

of symbolic constants returns their numerical values; otherwise,

evaluation returns their symbolic form. (Constants mode and Result
mode are described in chapter 24.)

16: Objects 163

17
Operations, Commands,
and Functions

Each procedure built into the HP-28S can be classified as an opera-
tion, a command, a function, or an analytic function.

® An operation is any procedure built into the calculator.

B® A command is a programmable operation.

® A function is a command allowed in algebraics.

B An analytic function is a function for which the HP-28S provides a
derivative and inverse.

Built-in procedures are usually characterized by their highest capabil-
ity. For example, SWAP and IP are both commands, but we
characterize SWAP as a command and IP as a function. The following
table shows examples of each type.

Operations

Commands

Non-Programmable]

Operations RPN Functions

Commands

Non-Analytic |Analytic

SWAP ABS ASIN

DROP J EXP

LAST IP INV

RCL MAX LN

PURGE OR NEG

J %CH SIN
STO R-D SINH

EVAL R-P sQ

CLEAR XPON +

CONVERT yt =

1 4 17: Operations, Commands, and Functions

The Operation Index in the back of the Reference Manual identifies
each built-in procedure as an operation, a command, a function, or an
analytic function. As a rough guide, here are general comments about
each type.

® Most non-programmable operations can be executed only by press-
ing a key. However, there are programmable equivalents for some
operations: for example, the operation (to select the TRIG
menu) can be effected in a program by executing 21 MENU, and
the RAD operation (to select Radians angle mode) can be effected
by executing 68 FS.

® Most RPN commands involve manipulating the stack or altering
user memory rather than calculating mathematical values.

® Most non-analytic functions are mathematical calculations without
inverses—that is, they return some characteristic of the arguments,
but the arguments can’t be reconstructed from the result. Examples
include integer part and fractional part, absolute value and sign.

B® In mathematics, a function of complex variables is analytic if it can
be expressed as a power series at every point in its domain; in this
case it has an inverse and a derivative. The HP-28S makes a few
exceptions to this definition. For example, no derivative is given for
the command ¥*, although one would be possible; a derivative is
given for the function ABS, although the function is non-analytic at
the point 0 + Oi.

Every built-in procedure is available on a key, either on the keyboard
or in a menu. When you press a key, the exact result depends on the
type of procedure and the entry mode, as discussed in the next
chapter.

17: Operations, Commands, and Functions 165

18
The Command Line

The command line holds any number of characters representing ob-
jects in text form. It appears at the bottom of the display (immediately
above the menu labels, if present) when you begin to key in an object
or when you use (EDIT) or [J(VISIT] to edit the contents of an exist-
ing object.

The command line can hold more than one row of text. If you enter
more than 23 characters into one row, characters scroll off the display
to the left. An ellipsis (...) appears in the leftmost character position
to indicate the undisplayed characters. If you try to move the cursor
past the left end of the display, the leftmost characters scroll back into
the display, and characters scroll off the display to the right. An ellip-
sis then appears at the right end of the display. When the command
line contains multiple rows of text, all rows scroll left and right
together.

The Cursor Menu

The cursor menu is a special menu of editing operations. It is active
whenever the command line is present and no menu labels are visi-
ble. The cursor menu contains both shifted and unshifted keys. The
unshifted keys are labeled in white above the corresponding menu
keys, as illustrated.

166 18: The Command Line

INS DEL A

If you press and hold an unshifted cursor menu key (except [INS]), the
operation is repeated until you release the key.

Description

El
:

Switch between Replace mode and Insert mode. In Replace
mode, new characters replace existing characters. In Insert

mode, new characters are inserted between existing
characters.

DEL] Delete the character at the cursor position.

Move the cursor up one line.

Move the cursor down one line.

Move the cursor left one space.

H
W
E

Move the cursor right one space.

The shifted cursor menu keys (except for [l[INS]) are equivalent to
repetitions of the unshifted operations.

18: The Command Line 167

Key

[INS

MB(DEL]

_[IY

a)

Bld

3

Description

Delete all characters to the left of the cursor.

Delete the character at the cursor position and all characters
to the right.

Move the cursor to the top row of the command line.

Move the cursor to the bottom row of the command line.

Move the cursor to the left end of the command line.

Move the cursor to the right end of the command line.

Some Entry Keys

The following keys are useful when you're entering objects in the
command line.

Key

[)

CHS

EEX

168

Description

Cursor Menu On/Off. When the Cursor menu is not ac-

tive: selects the Cursor menu. When the Cursor menu is

active: selects the previous menu.

Change Sign. When the cursor is positioned at a num-

ber: changes the sign of the number. When the cursor is
not positioned at a number: writes a minussign. (If no
command line is present: executes the command NEG.)

Enter Exponent. When the cursor is positioned at a
number without an exponent: writes the character E after

the number. When the cursor is positioned at a number
with an exponent: positions the cursor after the E. If the
cursor is not positioned at a number: writes 1E.

Backspace. Deletes the character to the left of the

cursor, moving the cursor (and any characters to the
right) one space to the left. If you press and hold (¢], the
action is repeated until you release the key.

Lower-Case Letters. Switches between Upper-case and
Lower-case modes. When the command line is created,

Upper-case mode is active— [A] through write A
through 2. In Lower-case mode, through write a
through =.

18: The Command Line

B(VvEnNUS] Menu Lock. Turns Menu Lock on and off. When Menu
Lock is on, the shifted and unshifted “positions” are
switched for the top three rows of the lefthand keyboard
(letter keys through (R]). You don’t need to press |
before through [UNITS], but you need to press [l§
before the letters A through R.

Attention. Cancels the command line.

Object Delimiters and Separators

To enter more than one object or command into the same command
line, you must separate them by one of the following:

B An object delimiter: ¢ > C 1 { » # " ' « =»,

B A space or newline. Pressing [llNEWLINE inserts a “newline” char-
acter (line-feed) into the command line at the cursor position.
Newline characters are equivalent to spaces when the command
line is executed.

B A comma (assuming you haven't selected the comma to act as the
decimal point).

Entry Modes

To make object entry easier, there are three entry modes—Immediate,
Algebraic, and Alpha—for entering different types of objects. Remem-
ber the distinctions made in the previous chapter, “Operations,
Commands, and Functions”:

® Operations are not programmable.

B® Commands can appear in programs but not in algebraics.

B Functions (analytic and non-analytic) and names can appear in pro-
grams or algebraics.

18: The Command Line 169

The calculator recognizes these distinctions as you enter objects in the
command line. Pressing an operation key (such as (ENTER]) always
causes execution of the operation. The current entry mode primarily
affects what happens when you press a command key (such as [ST0]),
a function key (such as (+]), or a USER menu key.

Immediate Entry Mode. This mode is for entering numbers, lists,
and arrays. In Immediate entry mode:

B Pressing a command key executes the command line and then exe-
cutes the command.

B Pressing a function key executes the command line and then exe-
cutes the function.

B Pressing a USER menu key executes the command line and then
evaluates the corresponding name.

Algebraic Entry Mode. This mode is for entering names and

algebraics. If you begin the command line by pressing [*], Algebraic
entry mode is automatically activated. In this mode:

B Pressing a command key executes the command line and then exe-
cutes the command.

B Pressing a function key writes the function’s name in the command
line. If the function takes its arguments in parentheses, the opening
parenthesis is included.

B® Pressing a USER menu key writes the corresponding name in the
command line.

Alpha Entry Mode. This mode is for entering strings and programs.
Pressing [@("] or («] automatically activates Alpha entry mode and
turns on the Ol annunciator. In this mode:

B® Pressing a command key writes the command’s name in the com-
mand line.

B Pressing a function key writes the function’s name in the command
line.

B Pressing a USER menu key writes the corresponding name in the
command line.

170 18: The Command Line

If the cursor is positioned at the end of the command line, orif Insert
modeis active, spaces are included as needed to keep successive com-
mands separate.

Exceptions

To enable you to select a mode while using the command line in Im-
mediate or Algebraic entry mode, the following command keys
execute their command without disturbing the command line.

mB 57D , DEG , and RAD in the MODE menu.

B pec , HEX , oct , and BIN in the BINARY menu.

Since the following commands make sense only in a program, press-
ing one of these keys always writes the command's name in the
command line.

® HALT in the PROGRAM CONTROL menu.

B® All keys in the PROGRAM BRANCH menu.

To help prevent the accidental loss of variables, pressing CLUSR (in
the MEMORY menu) always writes CLUSR in the command line. You
must then press to execute the command.

Manual Selection of Entry Modes

The calculator automatically switches between Immediate and Alge-
braic entry modes each time you press [*] to begin or end a name or
algebraic. It also switches to Alpha entry mode when you press [l§j("]
or [«]. You can manually select the entry mode by pressing the [a]
key. Doing so switches the entry mode in the cycle illustrated below.

[rmedie] ———» [one ———» [Aone

<<<¢

Manual Selection of Entry Modes

18: The Command Line 171

Thus you can switch to any entry mode by pressing [a] once or twice.
Here are some examples of using the [a] key.

B® Suppose you want to write a program that you'll execute only once
or twice. Press [a] to select Alpha entry mode; key in the program
without program delimiters; press to execute the program;
press [COMMAND] to return the program to the command line;
press to execute the program again.

B Suppose you want to purge several variables at once. Press to

start a list; press [a] to select Alpha entry mode; press the USER
menu keys for the variables to be purged; press to put the
list on the stack; press [PURGE].

B Suppose you're keying in a program, and you want to use the char-
acter = in a name. Since Alpha entry mode is active, pressing [lij(+
would write the command “+” surrounded by spaces. Press [a] to
select Algebraic entry mode; press [+]; press [a] [a] to return to
Alpha entry mode.

How the Cursor Indicates Modes

The appearance of the cursor indicates the current entry mode and
the current choice of Insert or Replace mode. The following table
shows the six possible combinations of entry mode and Insert or Re-
place mode.

Insert mode Replace mode

Immediate entry mode 9 0

Algebraic entry mode 2 B

Alpha entry mode + E

172 18: The Command Line

Executing the Command Line

When you press (or a key that performs ENTERin the current
entry mode), the calculator does the following:

1. The busy annunciator ((®) is turned on.

2. If UNDO is enabled, a copy of the current stack is saved.

3. The text string in the command line is searched for object delim-
iters and separators, then broken into the corresponding
substrings.

4. Each substring of text is tested against syntax rules to identifyits
object type.

5. If COMMAND is enabled, a copy of the command line is saved
in the command stack.

6. The command line is executed.

7. The busy annunciator ((e) is turned off.

If a substring fails the syntax tests in step 4, steps 5 and 6 are not
performed. Instead, Suntax Error is displayed, and the incorrect
text is highlighted in inverse characters, followed by the cursor. If the
error resulted from incomplete syntax, the cursor is positioned at the
end of the line.

Editing Existing Objects

You can return an existing object to the command line, view it or edit
it using command-line operations, and replace the original object with
the modified object if desired.

Key Description

B(eoiT) Edit Level 1. Returns the object in level 1 to the
command line.

n @BvisiT] Edit Level n. Returns the object in level n to the
command line.

'name’ [VISIT] Edit a Variable. Returns the contents of the speci-
fied variable to the command line.

18: The Command Line 173

The cursor menu and Alpha entry mode are activated. The original
object, if visible, is highlighted to remind you that you are editing that
object and that the original copy is still preserved.

When you're done viewing or editing the object, you can:

B Press to cancel the edit, clear the command line, and leave the
original object unchanged.

Bm Press (or a key that performs ENTER) to replace the original
object.

If the cursor menu is still active when you complete the editing, the
previous menu is restored.

Recovering Command Lines

The HP-28S saves the contents of the last four command lines you
executed. Pressing [llCOMMAND] once returns the most recently exe-
cuted command line (replacing the current command line if it exists);
pressing [llCOMMAND] a second time returns the next oldest command
line; and so on. If you press [lJCOMMAND] more than four times, the
sequence starts over with the most recent command line.

Some uses for [COMMAND appear in “If You Execute the Wrong
Function” on page 47 and “Manual Selection of Entry Modes” on page
171.

You can disable this feature by pressing [‘€Mb in the MODE menu.
The box disappears from the menu label, indicating that command
lines won't be saved. To enable this feature again, press €MD a sec-
ond time.

174 18: The Command Line

The Command Line as a String

The text that you key into the command line is equivalent to the con-
tents of a string object—that is, a sequence of characters. You can
programmatically execute a command line by entering the text in a
string and executing STR— (string-to-objects). This technique is useful
for storing programs in text form, which is more compact than object
form. Also, any local names that exist when STR— is executed will be
recognized in the command line.

18: The Command Line 175

19
The Stack

This chapter reviews what you've learned about the stack and de-
scribes commands for manipulating objects on the stack. Also briefly
described is the use of local variables to simplify stack manipulations.

Review of Stack Concepts

The stack is a sequence of numbered levels, each holding one object.
The objects you key into the command line are put on the stack when
you execute ENTER. Thefirst object in the command line is the first
object put on the stack. Each object is put in level 1, lifting other ob-
jects to the next higher stack level. The stack can grow indefinitely
(within the limits of calculator memory), so you don’t need to think

about how many objects are on the stack before entering more
objects.

In general, a command removes input objects (called arguments) from
the stack and replaces them with output objects (called results) to the
stack. For example, the function + removes two arguments from levels
1 and 2, replacing them with their sum in level 1.

The arguments must be present on the stack before the command is
executed. This type of logic, where the command comes after the ar-
guments, is called stack logic, postfix logic, or RPN, for Reverse Polish
Notation, in honor of the Polish logician Jan Lukasiewicz (1878-1956).

The results of a command are available as arguments for the next
command. If you're not ready to use the results yet, simply leave
them on the stack—they’ll be available when you're ready for them.

176 19: The Stack

Objects leave the stack from level 1, and the objects remaining on the
stack each drop to a lower level. It’s best to drop an object or store it
in a variable when you don’t need it on the stack; this makesit easier

to keep track of the stack objects you do need. Similarly, it’s best to
clear the entire stack when you begin a problem, so you'll know that
the objects on the stack are pertinent.

Viewing the Stack

Normally you see only the first few objects on the stack. If the object in
level 1 is large, you see only the first part of it. The operations [VIEW]
and J[VIEW}] enable you to view the first part of any object on the stack.

These operations move the “window” through which you see the
stack. The size of this window can range from one to four display
lines, depending on the presence of a menu, the command line, or
both.

Key Description

B(ViEws] Moves the window up (toward higher stack levels).

B(ViEws] Moves the window down (toward the end of the object in
level 1).

Viewing has no effect on the contents of the stack, the command line,
or the action of commands.

Manipulating the Stack

In part 1 you used some basic commands for manipulating the stack:
CLEAR (to clear the stack), DROP (to drop the object in level 1), and
SWAP (to switch the order of the objects in levels 1 and 2). This sec-
tion briefly describes all commands for moving, copying, and
dropping stack objects; for details, see “STACK” in Reference Manual.

19: The Stack 177

Moving Stack Objects. These commands rearrange the objects on

the stack; the number of objects doesn’t change. Commands preceded
by “n” require a real-number argument.

Command Description

SWAP Moves the object in level 2 to level 1.

ROT Moves the object in level 3 to level 1.

n ROLL Moves the object in level n to level 1.

n ROLLD Moves the object in level 1 to level n.

The command names ROT (rotate), ROLL, and ROLLD (roll down) are
descriptive of the motion of objects as a block. ROT moves the object
in level 3 to level 1, rotating a block of three objects; ROLL and
ROLLD roll blocks of n objects.

Copying Stack Objects. These commands return a copy of one or

more stack objects. Copying only one object returns the copy to level
1 andlifts the other objects on the stack (including the original object)
to a higher level. When you copy more than one object, they're copied
as a block in a similar manner. Commands preceded by “n” require a
real-number argument.

Command Description

DUP Copy the object in level 1. (When no command line is
present, you can execute DUP by pressing (ENTER].)

OVER Copy the object in level 2.

n PICK Copy the object in level n.

DUP2 Copy the objects in levels 1 and 2.

n DUPN Copy the objects in levels 1 through n.

178 19: The Stack

Dropping Stack Objects. These commands drop one or more ob-
jects from the stack. The objects remaining on the stack are dropped
to a lower level. Commands preceded by “n” require a real-number
argument.

Command Description

DROP Drop the object in level 1.

DROP2 Drop the objects in levels 1 and 2.

n DROPN Drop the objects in levels 1 through n.

CLEAR Drop all objects.

Local Variables

In part 1 you wrote a few user functions—programs that define local
variables and use them in a single expression or program. User func-
tions can be included in algebraics, just like built-in functions.

The use of local variables reduces the need for stack manipulations.
When you create local variables, their values are removed from the
stack. You can then refer to them by name instead of finding them on
the stack.

Local variables have applications in addition to user functions. Al-
most all of the programming examples in chapter 28 use local
variables. Of particular interest are “Box Functions” on page 241,
“MULTI (Multiple Execution)” on page 253, “PRESERVE (Save and
Restore Previous Status)” on page 258, and “SORT (Sort a List)” on

page 270.

Recovering the Last Arguments

The HP-28S saves the arguments to the last command executed. De-
pending on the command, one, two, or three objects may be saved. (If
a command takes no arguments, the previous saved arguments are
preserved.) The command LAST returns the saved arguments, each to

the stack level it occupied originally.

19: The Stack 179

If you need exactly the same arguments for two or more commands in
sequence, you can execute LAST to return copies of the arguments to
the stack for the next command. If the commands don’t require ex-
actly the same arguments, or if the commands aren’t in sequence,it’s
easier to use local variables.

You can disable LAST (that is, the saving of arguments) by pressing
LAST in the MODE menu. The box disappears from the menu label,

indicating that arguments won't be saved. This practice is not gener-
ally recommended, since the calculator uses the saved arguments for

recovery when an error occurs. However, if a command or program
fails because of insufficient memory, you can attempt execution with
LAST disabled. When you're done, be sure to enable LAST again by
pressing "LAST a second time.

Restoring the Stack

Each time you press (or a key that performs ENTER) the
HP-28S first saves a copy of the stack and then performs the specified
actions. If you're dissatisfied with the results, you can restore the
saved stack by pressing [UNDO]. Note that UNDO affects only the
stack—it doesn’t undo changes to user flags or user variables. For an
example using [UNDO], see “If You Execute the Wrong Function” on
page 47.

You can disable this feature by pressing [UNOG" in the MODE menu.
The box disappears from the menu label, indicating that the stack
won't be saved. To enable this feature again, press [UHOOa second
time.

180 19: The Stack

The Stack as a List

The contents of the stack are equivalent to the contents of a list—that
is, a sequence of objects. You can put all of the objects on the stack
into a single list by executing DEPTH —-LIST. The command DEPTH
returns the number of objects on the stack, and the command —=LIST

(stack to list) combines the specified number of objects into a list.

More often, a list is “opened” onto the stack by the command LIST-
(list to stack). After the elements are manipulated on the stack, they
may be recombined into a list by the command —LIST. For examples
of these commands, see “MEDIAN (Median of Statistics Data)” on
page 273.

19: The Stack 181

20
Memory

Memory is used for a variety of purposes in the HP-28S, including
the command line, the stack, user memory, recovery features, and the
operating system. The command line and the stack are described in
chapters 18 and 19. This chapter primarily discusses user memory,
including directories; it also discusses low-memory conditions and its
effects on recovery features and the operating system.

User Memory

User memory can contain variables, and it can contain directories to

organize the variables.

Global Variables

A variable is the combination of a name object and any other object.
The name object represents the name of the variable; the other object
is the value or contents of the variable.

Global variables are those that are stored in user memory. There are
also local variables, which are created by program structures and exist
only during execution of the program structures. Local variables are
primarily a substitute for stack manipulations and are described in
chapter 19, “The Stack.” In the present chapter, the term “variables”
indicates global variables.

The contents of a variable can be any type of object. In part 1 you
created numerical variables, program variables, algebraic variables,list
variables, and array variables. You even created name variables,

where the contents of the variable was the name of another variable.

182 20: Memory

You used the following commands to create, recall, and purge vari-
ables. These commands treat all variables alike, regardless of their
contents.

Command Description

STO Creates a variable with the specified value and name.

RCL Recalls the contents of the specified variable.

PURGE Deletes one or more specified variables.

Directories

In chapter 4, “Repeating a Calculation,” you used the Solver to calcu-
late the total resistance of two series-parallel circuits, with two sets of
resistor values that could be applied to either circuit. Here is a review
of the concepts you learned.

There are two primary motivations for creating directories.

® To group together the variables for a particular application or topic.
You created the directory EE for your electrical engineering prob-
lems so that, when youre working on these problems, you can
focus on the relevant variables. Equally important, when you're
working on other problems, the electrical engineering variables are
all hidden within the EE directory.

® To keep separate sets of variables that use the same names. You cre-
ated directories SP1 and SP2 (series-parallel-1 and series-parallel-2)
within EE to hold different values of the variables R1, R2, and R3.

You can switch from one set of values to the other simply by
switching directories.

Creating a Directory. To create a directory you enter a name and
execute CRDIR (create directory). The name of the directory appears in
the USER menu. The new directory is called a subdirectory, and the
directory that contains it is called its parent directory.

20: Memory 183

The Current Directory. Initially, the only directory that exists is the
built-in directory HOME. After creating other directories, you can
choose which is the current directory—that is, which set of variables

appears in the USER menu.

To choose the current directory you evaluate its name—for example,
if you've just created a directory, you make it the current directory by
pressing the appropriate key in the USER menu.

Almost all commands that use variables work only in the current di-
rectory, since the purpose of multiple directories is to control which
variables are available. You can alter a variable only ifit’s in the cur-
rent directory.

The following commands in the MEMORY menu act on the current
directory.

Command Description

VARS Returns a list of names of all variables and directories in

the current directory.

ORDER Reorders variables and directories in the current direc-

tory as specified by a list.

CLUSR Purges all variables and empty directories in the current
directory.

The Current Path. You can check where you are in the directory
structure by executing the command PATH. It returns a list specifying
the sequence of directories from the HOME directory to the current
directory.

In some cases the calculator searches not only the current directory,
but the entire current path. The search begins in the current directory;
if the variable isn’t found, the search continues in the parent direc-

tory; and this process continues back to the HOME directory.

This occurs in the evaluation of names—after all, you could never re-

turn to a parent directory if you couldn't successfully evaluate its
name. Evaluation of names occurs when you key in an unquoted
name, when you plot or use the Solver, when you evaluate algebraics
on the stack, and so on.

184 20: Memory

Other commands that search the current path are RCL and PRVAR
(print variables). Note that none of the actions that search the current
path can alter the variable.

Since the HOME directory is always on the current path, the calcu-
lator can always find variables in the HOME directory. You might
choose to limit the contents of the HOME directory to subdirectories
and those variables you want always available.

Directory Structure. The diagrams below show the directory struc-
ture you created in chapter 4. In the first diagram, HOME is the
current directory; in the second, EE; and in the third, SP2. Each dia-

gram uses the following symbols.

Symbols Used in the Directory Diagrams

name Name of a directory.

name A name in the current directory. These names appear in the
USER menu. The corresponding variables can be altered.

The current path.

A name on the current path. These names can be found only
by evaluation, RCL, and PRVARS. The corresponding vari-
ables can’t be altered.

20: Memory 185

COT EE D RENAME

| | | |
EQ2 SP2 SP1 EQ1

Cr
R3 R2 R1 EQ R3 R2 Ri EQ

Current Directory is HOME

HOME

cot EE Oo RENAME

EQ2 SP2 SP1 EQ1

Cr
R3 R2 R1 EQ R3 R2 Ri EQ

Current Directory is EE

HOME

= | |
cot EE D RENAME

| | | |
EQ2 SP2 SP1 EQ1

|
rr

R3 R2 Ri EQ R3 R2 Ri EQ

Current Directory is SP2.

186 20: Memory

Purging a Directory. You can purge an empty directory just as you
would a variable: switch to the directory that contains the directory to
be purged, put the directory’s name on the stack, and execute
PURGE.

If the directory to be purged contains variables or subdirectories, you
must purge the variables or subdirectories before you can purge the
directory. Here's a general procedure.

1. Switch to the directory to be purged.

2. Execute CLUSR to clear the directory.

3. Switch to the parent directory.

4. Purge the directory.

If a Non-Empty Directory error occurs in step 2, the directory
contains a subdirectory that isn’t empty. In this case you must per-
form steps 1, 2, and 3 to clear the subdirectory. You can then
continue with step 2 through 4 to purge the directory.

Moving Up and Down the Directory Structure. Chapter 28 in-

cludes programs for moving up the directory structure (switching to a
parent directory) or moving down (switching to a subdirectory). See
“Changing Directories” on page 275.

Recovery Features

The HP-28S automatically saves copies of command lines, arguments,
and the stack. These copies enable you to recover from a mistake—to
go back to where you were before the mistake. You can then redo a
calculation without starting over from the beginning. The copies of
command lines and arguments are also handy for repeating
calculations.

These copies can consume a significant amount of memory. For each
of these recovery features—command lines, the stack, and argu-
ments—you can choose whether to enable or disable the feature. The
operations to enable or disable the recovery features appear in the
MODE menu.

20: Memory 187

Generally it’s best to leave these features enabled. If very little mem-
ory is available and large objects have been saved by the recovery
features, you can safely regain some memory by disabling and re-en-
abling each feature, thereby clearing the stored objects.

Low Memory

The HP-28S contains 32 Kbytes of user memory, of which about 400
bytes are reserved for system use. Virtually every HP-28S operation
requires some memory use—even interpreting the command line. The
amount of memory used by some algebra commands (COLCT,
EXPAN, TAYLR) increases rapidly as their arguments become more
complicated. Try to leave at least a few thousand bytes of memory
free for dynamic system use.

You can check the amount of available memory by executing MEM,
found in the MEMORY menu.

Because the HP-28S operating system shares memory with user ob-
jects, you can fill memory so full of user objects that normal calculator
operation becomes difficult or impossible. The HP-28S provides a se-
ries of low memory warnings and responses, listed below in order of
increasing severity.

Insufficient Memory. If there isn’t enough memory available for a
command to execute, an Insufficient Memory error occurs. If

LAST is enabled, the original arguments are restored to the stack. If
LAST is disabled, the arguments are lost.

No Room for UNDO. If there isn’t enough memory available to save
a copy of the stack, a No Room for UNDO error occurs. The UNDO
feature is automatically disabled; to reenable UNDO, press ‘UNDO in

the MODE menu.

No Room to ENTER. If there isn’t enough memory available to pro-
cess the command line, the calculator clears the command line and

displays No Room to ENTER. A copy of the unsuccessful com-
mand line is saved in the command stack if the command stack is

enabled.

188 20: Memory

If you're attempting to edit an existing object, using EDIT or VISIT,
and a copy of the unsuccessful command line is saved in the com-
mand stack, purge the original copy of the object, press [COMMAND
to recover the command line containing the edited object, and press

to enter the edited version.

Low Memory! If fewer than 128 bytes of free memory remain,
Low Memory! flashes once in the top line of the display. This mes-
sage will flash at every keystroke until additional memory is available.
Clear unneeded objects from memory before continuing your
calculations.

No Room To Show Stack. It is sometimes possible for the HP-28S
to complete all pending operations, and not have enough free mem-
ory left for the normal stack display. In this case, the calculator
displays Ho Room to Show Stack in the top line of the display.
Those lines of the display that would normally display stack objects,
now show those objects only by type, for example, Real Humber,
Algebraic, and so on.

The amount of memory required to display a stack object varies with
the object type—algebraics usually require the most memory. Clear
one or more objects from memory, or store a stack object as a variable
so that it does not have to be displayed.

Out of Memory. In the extreme case of low memory, there is insuffi-

cient memory for the calculator to do anything—display the stack,
show menu labels, build a command line, and so on. In this situation,
you must clear some memory before continuing. A special
Out of Memory procedure is activated, which will create a display:

Out of Memory
Purge?
Command Stack
EEETEEE

20: Memory 189

The calculator will sequentially prompt you to clear:

1. The COMMAND stack (if enabled).

2. The UNDO stack (if enabled).

3. LAST Arguments (if enabled).

4. The custom menu (if any).

5. The stack.

6. Each variable in the HOME directory.

For each item that you want to purge, press the ¥€§ menu key; for
those that you want to keep, press "NG

After pressing |¥ES at least once, you can try to terminate the
Out of Memory procedure by pressing [ON]. If sufficient memory is
available, the calculator returns to the normal display; otherwise, the
calculator beeps and continues through the purge sequence. After cy-
cling once through the choices, the Out of Memory procedure
attempts to return to normal operation. If there still is not enough free
memory, the procedure starts over with the sequence of choices to
purge.

If you press ¥E8 for an empty directory, it is purged. If you press
YES for a directory that contains variables, the variables in that di-

rectory are displayed.

Maximizing Performance

From time to time the calculator does “housekeeping” to make better
use of memory. Generally this process is noticeable only as short
pauses during plotting, for example; however, when memory is al-
most full and the stack contains hundreds of objects, the calculator
may respond slowly to even simple operations such as selecting a
menu.

This section contains tips for maximizing speed (by reducing the
amount of housekeeping required) and maximizing available memory
(by increasing the effectiveness of housekeeping).

190 20: Memory

To Maximize Speed:

B® Don’t put more than a few hundred objects on the stack.

B Don’t leave large lists (more than a few hundred objects) on the
stack; store them in user memory.

To Maximize Available Memory:

wg The following procedure clears the stack, recovery data
(COMMAND, UNDO, LAST), the current custom menu

Note (CUSTOM), and any suspended programs.

1.

2.

3.

The

Purge unwanted variables and directories from user memory.

Store in user memory any objects on the stack that you want to
keep.

Perform a System Halt ([ON](a]).

current directory is now HOME.

To Minimize Memory Usage for Array Calculations: Store arrays

in variables and refer to them by name; avoid using them on the
stack. Here's a comprehensive strategy for doing so.

1.

3.

Plan in advance how many variables you'll need, including in-
termediate results.

Create small arrays of the correct type (real or complex, vector or
matrix), store them in variables, and then use RDM to adjust

their sizes.

Perform calculations using the storage arithmetic commands in
the STORE menu.

To act on individual elements, use GET, GETI, PUT, PUTI with

the variable’s name, or use algebraic syntax such as
'"ACS,62' EYAL and 'B¢3>' STO; don't return the entire ar-

ray to the stack.

20: Memory 191

21

Every operation, command, and function on the HP-28S is available
on the keyboard or in a menu. When you select a menu, six menu
labels appear in the bottom line of the display. These labels constitute
one menu row, which indicates the current definitions of the six menu
keys at the top of the keyboard. (The Cursor menu is an exception; its
definitions are printed in white above the menu keys.)

In addition to the keys that select specific menus (such as [§[ARRAY or

(TR1G]), the following keys control menu operations.

Key Description

(«4») Cursor Menu On/Off. When the Cursor menu is not ac-
tive: selects the Cursor menu. When the Cursor menu is
active: selects the previous menu.

(custom) Last Custom Menu. Displays the Custom menu last
created by the MENU command.

Next Menu Row. Displays the next row of menu labels.
If the last row is displayed, displays the first row.

(PREV) Previous Menu Row. Displays the previous row of
menu labels. If the first row is displayed, displays the
last row.

B(vENUS] Menu Lock. Turns Menu Lock on and off. When Menu
Lock is on, the shifted and unshifted “positions” are
switched for the top three rows of the lefthand key-
board (letter keys through [R]). When Menu Lock is
on, pressing selects the ARRAY menu and pressing
BA] writes the letter A.

192 21: Menus

Menus of Commands

The following menus contain keys for built-in operations, most of
which are programmable commands. For a brief description of the
commands in each menu, see appendix D, “Menu Map.” The Refer-
ence Manual covers these menus in alphabetical order and describes
them in detail.

The action of the keys in these menus depends on the entry mode,
described on page 169.

Menu Description

ALGEBRA Algebra commands.

ARRAY Vector and matrix commands.

BINARY Integer arithmetic, base conversions, bit
manipulations.

COMPLEX Complex-number commands.

LIST List commands.

LOGS Logarithmic, exponential, hyperbolic functions.

MEMORY User memory, directories.

MODE Display, angle, recovery modes.

PLOT Plotting commands.

PRINT Printing commands.

PROGRAM Program branch structures.
BRANCH

PROGRAM Program control, halt, and single-step operations.
CONTROL

PROGRAM Flags, logical tests.
TEST

REAL Real number commands.

SOLVE Numerical and symbolic solution commands, the
Solver.

21: Menus 193

Menu Description

STACK Stack manipulation.

STAT Statistics and probability commands.

STORE Storage arithmetic.

STRING Character strings.

TRIG Trigonometric functions, coordinate and angle
conversions.

Menus of Operations

The following menus offer non-programmable operations.

Menu Description

Cursor For editing the command line. Described in chapter
18.

CATALOG Catalog of commands, including USAGE submenu.
Described in chapter 22.

UNITS Units available for conversion. Described in chapter
14.

Menus of Variables

Menu Description

Solver Stores values and solves for variables in the current

equation. Distinctive appearance (black letters against
white menu label) indicates its distinctive action.

USER Displays variables and subdirectories in current direc-
tory. The action of the keys depends on the entry
mode, described on page 169.

194 21: Menus

Custom Menus

The command MENU can create a custom menu from a list of names

and commands. The custom menu can be similar to the Solver menu

or the USER menu.

B If the first element in the list is the command STO, followed by a
sequence of names, MENU creates a Custom Input menu. This
menu looks and acts like the Solver menu: pressing a menu key
take a value from the stack and stores it in the corresponding vari-
able. For an example, see chapter 27, “Interactive Programs.”

B If the list contains a sequence of names and commands (the first
element being different from STO), MENU creates a Custom User
menu. This menu acts like a hybrid of the USER menu and a com-
mand menu. For an example, see “Changing Directories” on page
275.

21: Menus 195

22
Catalog of Commands

In chapter 1 you used the catalog of commands to check the correct
spelling of a few commands and to check various combinations of
arguments for the function +. This chapter reviews the operations
available in the catalog, including the USAGE menu that shows cor-
rect combinations of arguments.

Pressing [CATALOG] displays the command ABORT, which is the first
command alphabetically, and the CATALOG menu.

Key Description

NEXT Advances the catalog to the next command. If you press
and hold this key, the catalog advances repeatedly until
you release the key.

PREV Move the catalog back to the previous command. If you
press and hold this key, the catalog moves back repeatedly
until you release the key.

usE Activates the USAGE menu display (see below) showing
the stack arguments used by the command.

FETCH Exits the catalog and writes the command’s name in the
command line.

QUIT Exits the catalog, leaving the command line unchanged.

You can exit the catalog and clear any current command line by press-

ing [ON].

196 22: Catalog of Commands

Finding a Command

You can use the keys on the left-hand keyboard to move the catalog
to a specific character.

B Pressing a letter key on the left-hand keyboard moves the catalog
to the first command that starts with that letter. If there are no
commands starting with that letter, the catalog moves to the last
command starting with the previous letter.

B® Pressing a non-letter character key (such as [§(=]) moves the cata-
log to the first command that starts with that character. If there are
no commands starting with that character, the catalog moves to +,
the first command that starts with a non-letter character.

B Pressing [llMENUS moves the catalog to =STR, the last entry in the
catalog.

Checking Command Usage

You can check the correct stack argument types for the command cur-
rently displayed by the catalog. Pressing USE activates a second
level of the catalog, called the USAGE menu, that shows all combina-

tions of arguments for the command. If the command accepts more
than one combination of arguments, the following menu keys appear.
(If the command accepts only one combination of arguments, the la-
bels "NEXT and PREV don’t appear.)

Description

Displays the next combination of arguments.

Displays the previous combination of arguments.

Returns to the main catalog, with the current command
displayed. You can then move through the catalog to other
commands, or exit by pressing '@UIT again.

You can exit both USAGE and the main catalog, and clear any current
command line, by pressing [ON].

22: Catalog of Commands 197

23
Evaluation

All calculator operations, from simple keyboard calculations to com-
plicated programs, involve evaluation. Some examples:

® When you key one or more objects into the command line and
press [ENTER], the command line is translated into a program,
which is then evaluated.

® When you press a key on the USER menu in Immediate entry
mode, the corresponding name is evaluated.

® When you perform step-by-step differentiation, you press to
evaluate the expression in level 1.

® When you use the Solver to find numerical solutions, the procedure
stored in the variable EQ is repeatedly evaluated.

It's easiest to understand calculator operations in terms of delaying
evaluation and causing evaluation. Although the term “delaying eval-
uation” is new, the process is familiar: whenever you enter a quoted
name or an algebraic, the object's delimiters indicate that you want to
delay evaluation of the object—that you want the object to go on the
stack.

Delayed evaluation is the basis for programming on any computing
device, since otherwise a program would execute as soon as you
wrote it. The HP-28S extends the concept in a uniform way to allow
symbolic operations—you can use names and algebraics as data for
symbolic calculations. For example, you choose when, if ever, you
want to evaluate an expression. You can differentiate it, symbolically
solve it, make substitutions for variables in it, and so on. Of course,
you can also calculate its numerical value.

198 23: Evaluation

This chapter describes what happens when you evaluate the various
types of objects. As a general introduction, consider the following ob-
ject classes.

® Data-class objects. This class comprises real numbers, complex num-
bers, binary integers,strings, arrays, and lists. The “value” of a data
object is exactly what it contains.

® Name-class objects. This class comprises global names and local
names. The “value” of a name is generally the contents of a
variable.

® Procedure-class objects. This class comprises algebraics and pro-
grams. The “value” of a procedure is the result of whatever process
it defines.

In a rough way, these classes define what happens when you evalu-
ate an object: it returns itself, or the contents of a variable, or the
result of a process. It’s not quite that simple, though, and more details
are provided below for each object class.

Data-Class Objects

This is the simplest class of objects. Evaluating any data-class object
returns the same object.

Note thatlists are all-purpose data objects, since they can contain any
object type. Consider a list of names: the names are protected from
evaluation by the list, and they can’t be evaluated until they're re-
moved from the list.

Name-Class Objects

Generally, the “value” of a name is the contents of a variable. Evalua-
tion of local names is simple and is described first, followed by
evaluation of global names.

23: Evaluation 199

Evaluation of Local Names

As described in chapter 19, the use of local variables simplifies stack
manipulations. The purpose of local variables is (1) to remove the
variable’s contents from the stack so it's out of the way and (2) to
return a copy of the variable’s contents whenever you need it. Conse-
quently, evaluating a local name always returns the contents of the
corresponding local variable to the stack.

Evaluation of Global Names

In general, evaluating a global name causes evaluation of the contents
of the corresponding global variable. In other words, evaluating a
global name has the same effect as evaluating the objectit represents.

There are two exceptions to the general rule:

B If no variable exists with the specified name, the name is returned

to the stack. An undefined name used as a variable is called a for-
mal variable.

B If the contents of the specified variable is an algebraic, the algebraic
is not evaluated. The calculator avoids evaluation of these objects so
you can continue symbolic calculations. If you do want evaluation,
execute the command EVAL with the algebraic in level 1. (To eval-
uate an algebraic repeatedly until it produces a numerical result,
execute -NUM.)

If the variable contains a data-class object, evaluating the variable’s
name is equivalent to simply recalling the variable’s contents. How-
ever, evaluating a variable’s name can lead to a long chain of
evaluations. For example, if a variable contains a name, and that

nameis the name of a second variable, and the second variable con-
tains a name, and that name is the name of a third variable, then
evaluating the name of the first variable ultimately causes evaluation
of contents of the third variable.

200 23: Evaluation

9 Do not create a variable whose value is its own name,

such as a variable named X that contains the name 'X’.

Note Evaluating such a variable causes an endless loop. To
halt an endless loop, you must perform a system halt
((oN] [(a]), which also clears the stack.

Similarly, do not create variables that reference one another in a circu-

lar definition. Evaluating a variable included in a circular definition
also causes an endless loop.

Procedure-Class Objects

Generally, the “value” of a procedure is the result of whatever process
it defines. Programs are the most general procedure-class objects, so
they're described first, followed by algebraics.

Evaluation of Programs

A program is a sequence of objects and commands. This manual uses
the terms “evaluate a program” and “execute a program” inter-
changably. In general, evaluating a program takes the program’s
contents in order, putting each object on the stack and executing each
command. There are two additional points to remember:

B® Unquoted names are evaluated, while quoted names go on the
stack. Names are quoted expressly to delay evaluation, as discussed
on page 57.

B Program structures are executed according to their own rules. In
part 1 you wrote several user functions, which contain a local-
variable structure. Program structures are described in chapter 26.

23: Evaluation 201

The rules for evaluating names and evaluating programs lead to one
of the fundamental ideas in programming the HP-28S. For this dis-
cussion, “program” means a program stored in a variable, and “name
of a program” means the name of the variable that contains a
program.

The fundamental idea is called structured programming. It means that a
complicated task is broken into subtasks, and a program is written for
each subtask. The main program can now berelatively simple, reflect-
ing the overall logic of the task. It can execute each subtask simply by
including the unquoted name of the program for that subtask. If a
subtask is executed more than once, the unquoted name can be in-
cluded more than once. If other main programs use the same subtask,
they can execute the subtask in the same way.

Structured programming is demonstrated in “Expanding and Collect-
ing Completely” on page 253, “Displaying a Binary Integer” on page
257, and “Median of Statistics Data” on page 270.

Evaluation of Algebraics

Each algebraic is equivalent to a program that contains only unquoted
names and functions. Evaluating an algebraic produces the same re-
sult as evaluating the corresponding program: unquoted names are
evaluated, and functions are executed. This topic is also discussed in
“Evaluation of Algebraic Objects” in the Reference Manual.

The result of evaluating a name depends on the existence of a vari-
able with that name, as described in “Evaluation of Global Names”
above. Some examples:

® If a name refers to a user function, you can use the user function’s
name like a built-in function. Evaluation of the algebraic causes
execution of the user function. The arguments to the user function,
enclosed in parentheses and following the user function's name, are
part of the algebraic.

202 23: Evaluation

® If a name refers to a program that takes no arguments from the
stack and returns exactly one result, you can use the program's
name to refer (indirectly) to the result. Evaluation of the algebraic
causes execution of the program, so in effect the program's name is
replaced by the result. For examples, see “Summary Statistics” on
page 262.

® If a name refers to a second algebraic, evaluation of the first alge-
braic doesn’t cause evaluation of the second algebraic. Instead, the

second algebraic effectively replaces its name in the first algebraic.

A special case among functions is the function “=", which distin-
guishes equations from expressions. Depending on the Result mode
(Symbolic or Numerical), executing = returns an equation or a nu-
merical result.

® In Symbolic Result mode, evaluating an equation produces a new
equation. The new left-hand expression is the result of evaluating
the original left-hand expression. The new right-hand expression is
the result of evaluating the original right-hand expression.

® In Numerical Result mode, evaluating an equation produces the nu-
merical difference between the original left-hand expression (nu-
merically evaluated) and the original right-hand expression
(numerically evaluated).

The next section describes Result modes in more detail.

Evaluation of Functions

When a function is evaluated, its action depends on the current Result

mode, which can be Symbolic or Numerical. These modes are also

described in the next chapter, “Modes.”

Symbolic Result Mode. This is the default case, where a function

accepts symbolic arguments and returns symbolic results. The action
of functions in Symbolic Result mode is evident when you calculate
with names and expressions to create larger expressions.

23: Evaluation 203

Numerical Result Mode. This alternative is used in plotting and by
the Solver. Its purpose is to ensure a numerical result from the func-
tion. In this mode, functions repeatedly evaluate symbolic arguments,
accepting only numerical arguments and returning numerical results.

You can force evaluation of an object until it returns a numerical re-
sult by executing “NUM (to number); in chapter 5 you did this to
return a numerical value for =.

gj In Numerical Result mode, do not evaluate a variable

whose value includes its own name, such as a variable

Note named X that contains the expression X+Y’. Evaluating

such a variable causes an endless loop. To halt an end-
less loop, you must perform a system halt ([ON][a]), which also clears
the stack.

Similarly, do not create variables that reference one another in a cir-
cular definition. Evaluating a variable included in a circular definition
also causes an endless loop.

204 23: Evaluation

24
Modes

You can affect the results of many operations by selecting a mode.
Some modes, such as angle mode (Degrees or Radians), can be se-
lected by pressing a menu key. The mode’s menu label includes a
small square when the mode is selected. For example, the menu label
for Radians angle mode appears as 'RAb*when that mode is
selected.

Most modes, such as Beeper mode (on or off), can be selected by set-
ting or clearing a user flag, using the commands SF (set flag) and CF
(clear flag). For example, flag 51 controls Beeper mode, so you can
turn the beeper off by executing 51 SF.

This chapter describes how the modes affect calculator operation and
lists the associated menu labels and flags. Also shown are annunci-
ators that appear when a mode is selected. For each mode, the
selection listed first is the default selection, active following Memory
Lost.

General Modes

These modes affect computations and the beeper.

Angle Mode

This mode determines whether real numbers represent angular mea-
sure in degrees or in radians. This affects arguments to trigonometric
functions and the results from inverse trigonometric functions.

24: Modes 205

Degrees Mode (y Flag 60 Clear). Real numbers represent

angular measure in degrees.

Radians Mode ('
sent angular meas

~, Flag 60 Set, (27)). Real numbers repre-

n radians.

Beeper Mode

This mode controls whether the calculator makes sounds when an er-

ror occurs or BEEP is executed.

Beeper On (Flag 51 Clear). The calculator makes sounds.

Beeper Off (Flag 51 Set). The calculator is silent.

Principal Value

A solution returned by ISOL or QUAD generally requires arbitrary
signs (+1 or —1) and integers (0, 1, 2, ...) to represent all possible
solutions. This mode determines whether arbitrary signs and integers
are included in solutions generated by ISOL or QUAD.

Principal Value Off (Flag 34 Clear). Solutions returned by ISOL

and QUAD include variables s1, s2, ... , for arbitrary signs and nl,
n2, ..., for arbitrary integers.

Principal Value On (Flag 34 Set). ISOL and QUAD take arbitrary

signs to be +1 and arbitrary integers to be 0.

Constants Mode

This mode affects whether evaluation of a symbolic constant (e, i,
MINR, MAXR, or mw) returns its numerical value. In Numerical Results
mode (flag 36 clear), evaluation of a symbolic constant returnsits nu-
merical value regardless of Constants Mode.

Symbolic Constants (Flag 35 Set). Evaluation of a symbolic con-

stant returns its symbolic form.

206 24: Modes

Numerical Constants (Flag 35 Clear). Evaluation of a symbolic
constant returns its numerical value.

Results Mode

The current Result mode affects the result of evaluating a function
when its arguments are symbolic.

Symbolic Results (Flag 36 Set). Given symbolic arguments, func-
tions return symbolic results.

Numerical Results (Flag 36 Clear). Functions always return nu-

merical results. To do so, functions evaluate symbolic arguments
repeatedly to determine their numerical values. Evaluation of a sym-
bolic constant returns its numerical value regardless of Constants
Mode.

Entry and Display Modes

These modes affect how objects are entered and displayed.

Entry Mode

The current entry mode affects the result when you press a command,
function, or User menu key. The entry mode automatically changes
when you press [*], [["], or («]; you can also change it manually by
pressing [a]. The appearance of the cursor indicates the current entry
mode. For details, see chapter 18, “The Command Line.”

Immediate Entry (Open Cursor). The command line is executed

when you press a command, function, or User menu key.

Algebraic Entry (Partly Filled Cursor). The command line is exe-

cuted when you press a command key.

Alpha Entry (Solid Cursor, Ol). The command line is executed only

when you press [ENTER].

24: Modes 207

Replace or Insert Mode

Pressing in the cursor menu switches between Replace and Insert
modes. The appearance of the cursor indicates Replace or Insert
mode.

Replace Mode (Box Cursor). New characters replace existing
characters.

Insert Mode (Arrow Cursor). New characters are inserted between

existing characters.

Uppercase or Lowercase

Pressing switches between Uppercase and Lowercase modes.

Uppercase Mode. Pressing a letter key writes an uppercase letter in
the command line.

Lowercase Mode. Pressing a letter key writes a lowercase letter in
the command line.

Level 1 Display

Many objects are too large to show on a single display line. You can
choose to use more than one line to display the object in level 1, if
needed, or to use only one line regardless of the object's size. This
choice affects the printed output in Trace mode.

ML On (» Flag 45 Set). Objects in level 1 are displayed on

more than one line if needed.

ML Off (
only one line.

y Flag 45 Clear). Objects in level 1 are displayed on

208 24: Modes

Decimal Point Mode

The comma and the period share the roles of radix mark (to distin-
guish the integer part of a number from the fractional part) and
separator (to distinguish objects in the command line; the space is al-
ways a separator). You can assign these roles to the comma and
period in either order.

RDX, Off , Flag 48 Clear). The period is the radix mark

(decimal point), and the comma is a separator.

RDX, On (R

The comma is

 , Flag 48 Set).

e radix mark, and the period is a separator.

Number Format

These modes determine the number of decimal places displayed for
real numbers. The commands FIX, SCI, and ENG require a real-num-

ber argument n. The current number format mode also affects the
command RND (round).

STD Format (). Real numbers are displayed with a decimal
point or an exponent only if necessary.

FIX Format _)- Real numbers are displayed with n decimal

places. An exponent is displayed only if necessary.

SCI Format (Real numbers are displayed as a mantissa,
which is less than 10 and contains n decimal places, and an exponent.

ENG Format (ENG=). Real numbers are displayed as a mantissa,
which contains n + 1 digits, and an exponent that is a multiple of 3.

Integer Base

You can choose the base used for entering and displaying binary inte-
gers. The choice of base doesn’t affect the internal structure of binary
integers, which are always treated as a sequence of bits.

24: Modes 209

DEC Base (DEC=). Binary integers entered without base markers
are interpreted in base 10. All binary integers are displayed in base 10
and show a “d” base marker.

HEX Base (HEX: Binary integers entered without base markers
are interprete ‘base 16. All binary integers are displayed in base 16
and show an “h” base marker.

OCT Base (). Binary integers entered without base markers
are interpreted in base 8. All binary integers are displayed in base 8
and show a “0” base marker.

BIN Base _). Binary integers entered without base markers
are interpreted in base 2. All binary integers are displayed in base 2
and show a “b” base marker.

Binary Integer Wordsize

The current wordsize can range from 1 bit through 64 bits. It controls
how binary integers are displayed; also, binary integers are truncated
to the current wordsize when used as arguments or returned as re-
sults. To set the wordsize to n, execute n STWS (store wordsize).

Recovery Modes

The recovery modes determine whether copies are made of command
lines, of the stack, and of arguments to commands. These copies can

help you to recover if you make a mistake.

CMD Mode

This mode determines whether a copy of the command line is saved
when you press (or a key that performs ENTER).

 CMD On (JE
B(COMMAND J.

fO=). Command lines are saved for recovery by

210 24: Modes

CMD Off Command lines are not saved.

UNDO Mode

This mode determines whether a copy of the stack is saved when you
press (or a key that performs ENTER).

UNDO On (

« The stack is saved for recovery by [UNDO].

UNDO Off (. The stack is not saved.

LAST Mode

This mode determines whether copies of arguments are saved when a
command is executed.

LAST On (Flag 31 Set, |
by LAST or in case of error.

®). Arguments are saved for recovery

LAST Off (Flag 31 Clear, » Arguments are not saved. If an

error occurs, the arguments to the last command are not returned to
the stack.

Mathematical Exceptions

Certain errors that can arise during ordinary real number calculations
are called mathematical exceptions. An exception can act as an ordinary
error and halt the calculation, or it can supply a default result and
allow the calculation to proceed.

Infinite Result Action

An Infinite Result exception occurs when a calculation returns an infi-
nite result. Examples include evaluation of 'LN¢B>', 'TAN(98)>'
(in Degrees angle mode), or '¥-8"'.

Infinite Result Error On (Flag 59 Set). Infinite Result exceptions

are errors.

24: Modes 211

Infinite Result Error Off (Flag 59 Clear). Infinite Result exceptions

return +£9.99999999999E499 and set the Infinite Result indicator(flag

64).

Overflow Action

An Overflow exception occurs when a calculation would return a fi-
nite result whose absolute value is greater than the largest machine-
representable number. Examples include the evaluation of
'SE499+3E499"', 'EXP(588@8)>', or 'FACT (2888) ".

Overflow Error Off (Flag 58 Clear). Overflow exceptions return
+9.99999999999E499 and set the Overflow indicator (flag 63).

Overflow Error On (Flag 58 Set). Overflow exceptions are errors.

Underflow Action

Underflow exceptions occur when a calculation returns a finite result
whose absolute value is smaller than the smallest machine-
representable number. Examples include the evaluation of
"1E-499,2' or 'EXP(-2808)".

Underflow Error Off (Flag 57 Clear). Underflow exceptions return

the default result 0. They set the Underflow+ indicator (flag 62) or
the Underflow— indicator (flag 61), depending on the sign of the ac-
tual result.

Underflow Error On (Flag 57 Set). Underflow exceptions are errors.

They return the error message Negative Under flow or

Positive Under flow, depending on the sign of the actual result.

Printing Modes

The following modes give you greater flexibility in printing.

212 24: Modes

Trace Printing

You can automatically print a record of your calculations.

Trace Printing Off (|
Occurs.

y Flag 32 Clear). No automatic printing

Trace Printing On (y Flag 32 Set). Each time the command
line is executed, the calculator prints the contents of the command
line, the operation that caused execution, and the result in level 1.

Auto CR Mode

Generally you want to send data to the printer and print the data
with a single command. In other cases, such as printing graphics, you
want to accumulate data in the printer without printing. This mode
determines whether print commands automatically cause printing.

Auto CR (Flag 33 Clear). Print commands send Carriage Right at

the end of transmission, causing the data to be printed.

Accumulate Print Data (Flag 33 Set). Print commands send data

without Carriage Right, causing the data to accumulate in the printer
buffer.

Print Speed

The calculator can’t sense when the printer is ready for more data, so
it computes the rate at which data can safely be transmitted. This
mode determines whether the computation is made for a printer
powered by batteries or one that is powered by an adaptor.

Normal Print Speed (Flag 52 Clear). The calculator sends data at a

rate suitable for battery-powered printing.

Faster Print Speed (Flag 52 Set). The calculator sends data at a

rate suitable for adaptor-powered printing.

24: Modes 213

Print Spacing

This mode determines whether blank lines are automatically printed.

Single-Space Printing (Flag 47 Clear). No blank lines are printed

automatically.

Double-Space Printing (Flag 47 Set). One blank line is automati-

cally printed between every two text lines.

214 24: Modes

25
System Operations

This chapter describes special key combinations that interrupt normal
HP-28S operation. These system operations include printing the dis-
play, adjusting display contrast, halting programs, resetting memory,
and performing diagnostic tests.

All system operations begin by pressing the key. You can cancel
any system operation by pressing before you release [ON].

The table below shows the keystrokes for system operations, followed
by a description of each.

System Operations

Name Keystrokes

Print Display

Contrast Control or [ON](-]

Attention

System Halt (on](a]

Memory Reset (on](INs][»]

Repeating Test (oN](d]

Keyboard Test

Cancel System Operation

25: System Operations 215

Printing the Display

To print the current display image:

1. Press and hold [ON].

2. Press (the key with “PRINT” above it).

3. Release [ON].

Contrast Control

To change the display contrast:

1. Press and hold [ON].

2. Press to increase the contrast or press [-] to decrease the con-
trast. As long as you hold down [ON], you can press or [-]
repeatedly or continuously to find the best contrast.

3. Release [ON].

Clearing Operations

There are three clearing operations, given below in order of increasing
severity.

Attention

To return to the normal stack display, execute Attention by pressing
[ON]. In some cases you may need to press twice. Attention has
following effects:

® Clears the command line.

B® Cancels all command or procedure execution.

B Exits special operations such as FORM, PLOT, and catalogs.

B® Restarts normal keyboard operation.

216 25: System Operations

System Halt

To halt a program that doesn’t respond to [ON], execute System Halt
as follows:

1. Press and hold [ON].

2. Press [a].

3. Release [ON].

System Halt has the following effects:

All the effects of Attention.

Clears all suspended programs and local variables.

Clears the stack.

Clears items saved for recovery (CMD, UNDO, LAST).

Clears the custom menu.

Selects HOME as the current directory.

Activates the cursor menu.

Selects Trace Printing Off mode.

Memory Reset

To reset all memory:

1. Press and hold [ON].

2. Press and hold [INS] and [»].

3. Release [INS] and [»].

4. Release [ON].

Memory Reset has the following effects:

B All the effects of Attention and System Halt.

B Purges all user variables and directories.

B Resets all user flags to their default values.

Bm Beeps and displays Memory Lost in display line 1.

25: System Operations 217

Test Operations

There are two system operations for testing the calculator. The first is
a repeating test of the electronics, which runs without assistance. The
second is a keyboard test, which requires you to press all the keys in a
specified sequence. Both tests perform a System Halt.

Repeating Test

To perform the repeating test:

1.

218

Start the test.

a. Press and hold [ON].

b. Press ((.

Cc. Release [ON].

The display shows horizontal and vertical lines, a blank display,
a random pattern, and then it briefly displays the result of the
test before starting over.

B® The message OK-285 indicates that the calculator passed the
test.

B A message such as 1 FAIL indicates that the calculator failed
the test. The number indicates the nature of the failure.

If you interrupt the test by pressing a key, the test returns a
failure message because it didn’t expect any keystrokes. Such a
failure message doesn’t indicate a problem with the calculator.

Exit the test by performing a System Halt.

a. Press and hold [ON].

b. Press [a].

Cc. Release [ON].

25: System Operations

Keyboard Test

To perform the keyboard test:

1.

4.

Start the test.

a. Press and hold [ON].

b. Press [NEXT].

Cc. Release [ON].

The calculator displays KEYBOARD TEST.

a. Test the first row of the lefthand keyboard by pressing

(@) (E) (FE).
b. Test the second through sixth rows of the lefthand key-

board in the same way.

C. Test the first row of the righthand keyboard by pressing

[ins] AMDB.
d. Test the second through seventh rows of the righthand

keyboard in the same way. (Press the key in the correct
order—it won't interrupt the test.)

If you've pressed the keys in the correct order and the keyboard
is working properly, the calculator displays 0K-285. A message
such as 1 FAIL indicates that you didn’t follow the correct or-
der or the calculator failed the test. The number indicates the
nature of the failure.

Press [ON].

25: System Operations 219

Part 3
Programming

Page 222 26: Program Structures

234 27: Interactive Programs

240 28: Programming Examples

26
Program Structures

Many programs are equivalent to a series of immediate-execute key-
board computations. Objects go on the stack and commands are
executed, producing the desired result. These programs are simply a
record of the objects and commands, written in the same order as you
would execute them from the keyboard. However, there are features
you can use in programs that go beyond simple keystrokes.

For example, in part 1 you wrote programs that created local vari-
ables. The special command +, followed by one or more names,

followed by a procedure, is called a local-variable structure. You can’t
execute the command + from the keyboard; it must appear in the
same program as the names and procedure that constitute the entire
program structure.

This chapter first reviews the local-variable structure. It then describes
additional program structures that conduct tests and modify program
execution based on the result. All commands for these program struc-
tures appear in the PROGRAM BRANCH menu. Be sure to read the
first example in “Conditional Structures” on page 223, which intro-
duces concepts used in the remainder of the chapter.

Local-Variable Structure

In part 1 you wrote several user functions, which are the most impor-
tant application of the local-variable structure. There are two
requirements for user functions. They must:

B® Explicitly indicate their arguments.

B® Return exactly one result.

222 26: Program Structures

For example, the user function COT (from chapter 5) was written:

€ + x '"INVCTANCx2>' =»

Here the local-variable structure stores one argument in a local vari-
able x (satisfying the first requirement) and evaluates the expression
'INV(TAN C(x) * (satisfying the second requirement). The user func-
tion O—+G (from chapter 14) included a program rather than an
expression but, since the program returned exactly one result, O-G
also satisfied the second requirement.

These requirements apply only to user functions. More generally, local
variables are used as a substitute for stack manipulations. The follow-
ing example returns the sum and difference of two numbers. Since it
returns two results, it can’t be a user function.

€ FF XU €§ Xx y + xy -—- 2%» »

For more examples, see the programs in chapter 28. They use local-
variable structures more often to avoid stack manipulations than to
create user functions.

Conditional Structures

Conditional structures enable a program to test a specified condition
and make a decision based on the result of the test. This section first
gives an example of a conditional structure. It uses that example to
discuss program structures in general, and then it describes other
types of conditional structures.

Suppose you're writing a program that uses the variable x, and you
want to calculate (sin x)/x. A problem arises because the quotient is
undefined when x = 0. The following example returns (sin x)/x if
x # 0, or returns 1 if x = 0.

IF ¥ 8 # THEN ¥ SIN x ~» ELSE 1 END

26: Program Structures 223

Here's how this structure works when you execute the program:

1. The IF command simply marks the start of the structure. It can
be anywhere before the THEN command.

2. X is evaluated.

3. The number 0 goes on the stack.

4. The command # takes the value of X and the number 0 as

arguments.

B If the arguments are “not equal’, # returns 1.

® If the arguments are not “not equal”, # returns 0.

5. The command THEN takes 1 or 0 as its argument.

B If its argument is 1, THEN evaluates the program up to ELSE
(namely ¥ SIN ¥ »).

B If its argument is 0, THEN evaluates the program from ELSE
to END (namely 1).

6. Program execution continues after the END command.

Before continuing with specifics about conditional structures, here's
some general information about program structures.

Program-Structure Commands. The commands IF, THEN, ELSE,
and END are examples of program-structure commands. The order and
meaning of these commands are similar to their use in English. You
can’t use program-structure commands as flexibly as other commands;
they work only in the combinations described in this chapter.

Test Functions and Commands. The function # is called a test
function. Given two numbers, # returns 1 or 0, indicating whether the
test is true or false. Other test functions are <, £, »,>, and ==. (Re-
member that = is used for equations, not to test equality.) Given
symbolic arguments, test functions return a symbolic result.

There are also test commands that always return 1 or 0. For example,
the test command SAME is similar to ==, but it simply tests whether
the two objects are identical. Additional test commands are available
for working with flags (described next). For more information about

test functions and commands, see “PROGRAM TEST” in the Refer-
ence Manual.

224 26: Program Structures

Flags. The numbers 1 and 0 that are returned by test commands are
called stack flags. Because they represent the truth or falsity of the
test, 1 is called a true flag, and 0 is called a false flag.

The term “flag” also refers to the built-in user flags. They are num-
bered 1 through 64; flags 31 through 64 have specific meanings to the
calculator, while flags 1 through 30 can represent any true/false dis-
tinction you wish. You can effectively store a stack flag in a user flag,
since both represent a truth value. For example, the sequence

IF AB { THEN 12 SF ELSE 12 CF END

sets flag 12 if A < B, or it clears flag 12 if A => B. You can later test
whether flag 12 is set by the sequence

IF 12 FS? THEN ...

which returns the same truth value as the original test A B <. The
advantage to this technique is that the truth value of the original test
is preserved, even if the values of A and B have changed. The com-
mands for changing and testing user flags appear in “PROGRAM
TEST” in the Reference Manual. For the remainder of this chapter,
“flag” refers to a stack flag.

Clauses. The objects and commands between two program-structure
commands are called a clause. Each clause is handled as a single en-
tity by the program structure. A clause is labeled by its logical role or
by the command that precedes it. In the first example:

B® The clause between IF and THEN (X 8 =) is called the test clause
or IF clause.

B The clause between THEN and ELSE (¥ SIN X .) is called the
true clause or THEN clause.

B The clause between ELSE and END (1) is called the false clause or
ELSE clause.

26: Program Structures 225

The clauses in the example represent simple numerical calculations,
but you can include any sequence of objects and commands. In effect,
a clause is like a subprogram within the program. If you write a sepa-
rate program that contains the clause and store this program in a
variable, you can use the variable’s name as the entire clause. In this
case a simple-looking structure like

IF A THEN B ELSE C END

can represent a complicated decision process with two possible com-
plicated results, depending on the contents of A, B, and C.

IF ... THEN ... ELSE ... END

Using the terminology just defined, the evaluation of this conditional
structure can be described as follows: The IF clause is evaluated and
returns a flag. If the flag is true, the THEN clause is evaluated; if the
flag is false, the ELSE clause is evaluated.

For another example of this structure, see “FIB2 (Fibonacci Numbers,

Loop Version)” on page 248.

IFTE (If-Then-Else-End Function)

Thefirst example in this chapter can be written in algebraic syntax by
using the function IFTE:

'"IFTE(X#0,SINCX) /X, 1)!

This form is handy for symbolic calculations. If you execute the pro-
gram-structure version while X is undefined, this algebraic form is the
result. The arguments to IFTE must be representable in algebraic syn-
tax; to include RPN commands in the conditional, you must use the
program-structure form.

The IFTE function is used in “FIB1 (Fibonacci Numbers, Recursive
Version)” on page 247.

226 26: Program Structures

IF ... THEN ... END

If an ELSE clause isn’t required—that is, if the choices are to do
something or do nothing—you can omit ELSE from the program
structure. The following example ensures that the object in level 1 is
greater than the object in level 2 by swapping them if necessary.

IF DUP2 £ THEN SWAP END

Note the use of DUP2 to make copies of the objects. The copies are
then consumed by the comparison £. For another example of IF ...
THEN ... END, see “SORT (Sort a List)” on page 270.

IFT (If-Then-End Command)

You could write the previous example by using the command IFT in-
stead of the program structure:

DUP2 £ « SWAP * IFT

The sequence DUP2 <£ leaves a flag on the stack, the program
« SWAP =» goes on the stack, and the command IFT takes the flag
and the program as arguments. If the flag is true, IFT evaluates the
program;if the flag is false, IFT drops the program. The result is iden-
tical to the program-structure form.

Error Traps

In some cases you can predict that an error might occur during pro-
gram execution. Normally an error cancels program execution; butif
you trap the offending command by enclosing it in a special program
structure, the program can continue execution when the error occurs.

Remember the problem with (sin x)/x—it causes an Infinite Result er-
ror when x = 0. Another method for defining (sin 0)/0 = 1 would
be:

IFERR » SIN ¥X » THEN DROP2 1 END

26: Program Structures 227

This means: Evaluate the IFERR clause (X SIN X .). If an error oc-
curs, evaluate the THEN clause (DROP2 1).

This example includes the command DROP2 to drop the two zeros
that caused the error. Note that this assumes that LAST is enabled. If
LAST is disabled, the zeros aren’t present and the DROP2 command

is inappropriate. Be sure to consider the state of LAST when using
error traps.

Another example of IFERR ... THEN ... END appears in “BDISP (Bi-
nary Display)” on page 259. Also, you can include an ELSE clause to
be evaluated only if an error doesn’t occur, using the form

IFERR ... THEN ... ELSE ... END

Definite Loop Structures

Loop structures contain a loop clause that is repeatedly evaluated. In a
definite loop structure, the program specifies in advance how many
times to evaluate the loop clause. Another type of program structure,
called an indefinite loop structure, uses a test clause to determine
whether to repeat evaluation of the loop clause. This section describes
definite loop structures; indefinite loop structures are described on
page 231.

START... NEXT

The following example sounds a tone four times.

1 4 START 440 .1 BEEP NEXT

This structure works as follows:

1. The command START takes the values 1 and 4 from the stack

and creates a counter. The counter will be used to keep track of
how many times to repeat the loop. The value 1 specifies the
initial value of the counter, and the value 4 specifies its final

value.

228 26: Program Structures

2. The loop clause 448 .1 BEEF is executed.

3. The command NEXT adds 1 to the counter.

4. The current counter value is compared with the final counter
value.

B If the current counter value doesn’t exceed the final counter

value, steps (2), (3), and (4) are repeated.

B If the current counter value exceeds the final counter value,

the definite loop structure is completed, and program execu-
tion continues after the NEXT command.

In this example, steps (2), (3), and (4) are repeated four times. The
loop counteris first incremented from 1 to 2, then to 3, then to 4, and

then to 5. At this point it exceeds the final value 4, so the definite
loop structure ends. Note that step (1) is performed before any tests
are made, so the loop clause is always evaluated at least once. For
another example of START ... NEXT, see “FIB2 (Fibonacci Numbers,

Loop Version)” on page 248.

FOR counter... NEXT

In many cases it’s handy to use the current value of the counter as a
variable in the loop clause. To do so, replace START by FOR name.
The counter becomes a local variable with the specified name. As be-
fore, this manual follows the convention of writing local names in
lowercase letters to help you distinguish them from global names. The
following example puts the first five square integers on the stack.

1 5 FOR x x S&@ NEXT

The sequence FOR x is executed only once. The sequence x S@ is
the loop clause, which is executed repeatedly.

26: Program Structures 229

The examples so far have specified an initial counter value of 1, but
any integer is acceptable. Since you're using the counter as a variable,
set the initial and final counter values to the desired initial and final
variable values. The following example puts the third through ninth
square integers on the stack.

3 9 FOR x x S@ NEXT

For another example, see “BDISP (Binary Display)” on page 259.

... increment STEP

The command NEXT always increments the counter by 1. To specify
a different increment, replace NEXT by n STEP, where 1 is the desired
increment. STEP is commonly used following FOR counter, as demon-
strated in the examples below, but it can also be used following
START. The following example puts the odd square integers from 12
through 52 on the stack.

1 5 FOR x x SQ 2 STEP

The loop clause x S@ 2 is executed three times. The command STEP
first increments the counter from 1 to 3, then to 5, and then to 7. At
this point the current value of the counter exceeds the final value 5,
so the definite loop structure ends.

The examples so far have used ascending values of the counter. For
descending values of the counter, you can specify a negative incre-
ment. The following example puts the odd square integers from 52
through 12 on the stack.

2 1 FOR x x S@ -2 STEP

The sequence —-2 STEP decrements the counter from 5 to 3, then 1,
and then —1. At this point the current value of the counter is less
than the final value 1, so the definite loop structure ends.

The program “SORT (Sort a List)” on page 270 uses -1 STEP to dec-
rement the counter by one. In this case STEP alters the value of the
counter by 1, as does NEXT, but the counter decreases rather than
increases.

230 26: Program Structures

Indefinite Loop Structures

If you can’t specify in advance how many times to repeat a loop, you
can write an indefinite loop structure that contains both a loop clause
and a test clause. The clauses are executed alternatingly, with the re-
sult of the test clause determining whether to continue.

This section describes two types of indefinite loop structure. Thefirst,
DO... UNTIL... END, executes the loop clause before the test clause.
Consequently, the loop clause is always executed at least once. The
second type, WHILE... REPEAT... END, executes the test clause
first. Consequently, in some cases the loop clause is never executed.

DO...UNTIL...END

The following example evaluates an object repeatedly until evaluation
doesn’t change the object. Since evaluation must occur at least once
before the first test can be made, this example uses DO... UNTIL...

END.

DO DUP EVAL UNTIL DUP ROT SAME END

This structure works as follows:

1. The loop clause DUP EVAL is executed, leaving the object and
the evaluated result on the stack.

2. The test clause DUP ROT SAME is evaluated, leaving the evalu-
ated result and a flag on the stack. The flag indicates whether
the object and the evaluated result are the same.

3. The flag is taken from the stack. Its value determines whether
the loop structure is repeated.

® If the flag is false, steps (1), (2), and (3) are repeated.

Bm If the flag is true, the loop structure ends.

26: Program Structures 231

Suppose that you want to completely evaluate 'A+B', where A con-
tains 'P+@' and P contains 2. The first evaluation of the loop clause
returns 'A+B' and 'P+Q+B'. These expressions are not the same, so

the loop clause is evaluated a second time, returning 'P+@+B' and
'2+0+B'. These expressions are not the same, so the loop clause is
evaluated a third time, returning '2+@+B' and '2+@+B"'. These ex-
pressions are the same, so the loop structure ends.

The effect of this example is similar to the effect of “NUM, except
=NUM causes an error if a name is undefined. For a more versatile
version of this example, see “MULTI (Multiple Execution)” on page
253.

WHILE ... REPEAT ... END

The following example takes any number of vectors from the stack
and adds them to the current statistics matrix. Since it needs to test
whether the object in level 1 is a vector before attempting to add it,
this example uses WHILE ... REPEAT ... END.

WHILE DUP TYPE 3 == REPERT Z+ END

This structure works as follows:

1. The test clause DUP TYPE 3 == is evaluated, leaving a flag on
the stack. The flag indicates whether the object in level 2 is a
real vector.

2. The flag is taken from the stack. Its value determines whether
the loop clause is executed.

® If the flag is true, the loop clause E+ is executed, adding the
vector to the current statistics matrix, and steps (1) and (2) are
repeated.

® If the flag is false, the loop structure ends.

Note that WHILE ... REPEAT ... END ends when the flag is false,
but DO ... UNTIL ... END ends when the flag is true. If you need to
change the truth value of a test clause, add NOT as the last com-
mand: WHILE ... NOT REPEAT or UNTIL ... NOT END.

For another example of WHILE ... REPEAT ... END, see “PAD (Pad
With Leading Spaces)” on page 257.

232 26: Program Structures

Nested Program Structures

Since a clause in a program structure is like a subprogram, the clause
itself can contain a program structure. The structure inside the clause
is called the inner structure, and the structure that contains the clause
is called the outer structure. The program “SORT (Sort a List)” on page
270 demonstrates nested definite loops.

There is no limit to the levels of nesting, except perhaps your ability
to understand the logic. In some cases it’s easier to store the inner
structures in programs and use their names as clauses in the outer
structures.

26: Program Structures 233

27
Interactive Programs

Some programs require direction from the user—that is, from you
when you're running the program. When the user must supply values
for variables, a program can ask for input. When the user must
choose among several alternatives, a program can ask for a choice.

This chapter demonstrates how a program can ask for input or a
choice, using the following commands from the PROGRAM CON-
TROL menu.

Command Description

HALT Suspend program execution.

s WAIT Suspend program execution for s seconds.

KEY Return a key string if a key was pressed.

fs BEEP Sound a tone of frequency f for s seconds.

CLLCD Clear the display.

n DISP Display an object in line n of the display.

CLMF Restore the normal display when the program completes
execution.

Asking for Input

The following sequence creates a custom input menu for variables A,
B, and C, sounds a tone to alert the user, and halts for input.

...4+ STOR B C » MENU 448 .1 BEEP HALT ...

234 27: Interactive Programs

The displayed menu shows the labels [A|, [E|, and [_¢_|,
which resemble labels in the Solver menu. After entering a value on
the stack, the user can simply press one of these keys to store the
value in the corresponding variable. After entering the values, the
user must press [lJ[CONT] to continue program execution.

Asking for a Choice

For complex tasks it's best to write a series of small programs, each
performing a small task. In some cases the user has several options
for performing one of the tasks. One approach is to write alternative
programs to perform that task.

Assume that one task is completed, and the user must choose among
the programs HOP, SKIP, and JUMP for the next task. The following
sequence creates a custom user menu for programs HOP, SKIP, and
JUMP, sounds a tone to alert the user, and ends program execution.

... £ HOP SKIP JUMP } MENU 448 .1 BEEP =»

The displayed menu shows the labels HOP, "SKIP, and [JUMP ,

which resemble labels in the User menu. When the user presses one
of the menu keys, the next task is performed. That task may end with
a similar sequence, offering the user a different set of options; and so
on throughout the entire complex task.

A More Complicated Example

The example below displays a message, waits until the user presses a
key, and checks that the key is defined (that is, represents one of the
choices). If the key is defined, the corresponding action is performed;
if the key isn’t defined, an error message is displayed and the process
starts over.

This example uses program structures described in the previous chap-
ter. There is an “outer” DO ... UNTIL ... END structure that repeats
until the user presses a defined key. The outer DO clause contains an
“inner” DO ... UNTIL ... END structure that repeats until the user
presses a key. The outer UNTIL clause contains a conditional that

27: Interactive Programs 235

displays an error message if the key is undefined. In the listing below,
the indentation marks the outer structure, the clauses, the inner struc-

tures, and their clauses.

Sequence

{ "Apple" "Banana"

"Cherry"

Do

CLLCD

"Press"

1 DISP

" CAJ for

2 DISP

“ CB] for

3 DISP

“" CC] for

4 DISP

DO UNTIL

UNTIL

H

Apple"

Banana"

Cherry"

KEY END

Comments

This list contains the possible out-
comes. It remains on the stack until

the following DO...UNTIL.. .END
structure returns 1, 2, or 3, indicating

the user’s choice.

Begin the outer loop clause. This
clause displays option messages,
which tell the user what the choices
are, and gets a response from the user.

Clear the display.

The option message for line 1.

Display the message.

The option message for line 2.

Display the message.

The option message for line 3.

Display the message.

The option message for line 4.

Display the message.

This inner indefinite loop repeats until
the user presses a key. The command
KEY returns 8 if no key was pressed,
or a string (representing the key) and
1 if a key was pressed. When the loop
ends, the string is left on the stack.

Begin the outer test clause. This clause
checks whether the key pressed was a
defined key.

236 27: Interactive Programs

{ "A" wp" wee >

SWAP POS

IF DUP

THEN 1

ELSE

CLLCD "Bad key"

1 DISP

448 .1 BEEP

1 WRIT

END

END

GET

This list contains the defined keys.
There is a one-to-one correspondence
between the defined keys and the pos-
sible outcomes.

Match the key string to the list of de-
fined keys. POS (position) returns 1 if
the key string is "A", 2 if the key
string is "B", 3 if the key string is
“C", or @ if no match occurs.

Make a copy of the position to use as
a flag. If the position is 1, 2, or 3, exe-
cute the THEN clause. If the position
is 8, execute the ELSE clause.

The key was defined, so put a true
flag on the stack.

The key was undefined, so display an
error message and beep.

Display an error message.

Sound a tone.

Wait 1 second.

End the IF ... THEN ... ELSE ...
ENDstructure. If the key was defined,
the position and a true flag are on the
stack. If the key was undefined, only
the position (which is also a false flag)
is on the stack.

End the outer indefinite loop. If the
key was defined, the loop ends with
the position on the stack. If the key
was undefined, the loop clause is
repeated.

Given the list of possible outcomes
and a position, get the correponding
outcome.

27: Interactive Programs 237

EVAL Evaluate the outcome. In this example, EVAL
has no effect because the outcome is a string. In
a more realistic example, the outcome might be
a program (possibly stored in a variable), so
EVAL would be needed.

CLMF Enable the normal stack display.

When this sequence is executed, the user sees the option messages.

Press
[A] for Apple
[Bl] for Banana
[C] for erry

If the user presses a key other than [A], (B], or [C], a beep sounds and
the error message appears for 1 second.

Bad key

Then the option messages reappear. When the user presses [A], [B], or
(C], the string "Apple", "Banana", or "Cherry" is returned to
level 1.

By modifying the list of possible outcomes, the option messages, and
the list of defined keys, you can make this sequence more significant
than putting a string on the stack. More generally, by using local vari-
ables and putting this sequence inside a local-variable structure, you
can make the following program.

238 27: Interactive Programs

£ 3 keys ml m2 m3 md

« DO CLLCD

mi 1 DISP

m2 2 DISP

m3 3 DISP

md 4 DISP

DO UNTIL KEY END

UNTIL keys SWAP POS

IF DUP

THEN 1

ELSE CLLCD

4408

END

END
®

GET EVAL CLMF
3

"Bad key"

.1 BEEP 1 MWARIT

1 DISP

If you store this program in a variable named KEY?, you could per-
form the example above by executing

{ "Apple"

{ "A" "B"

"Press"

“ CA] for

"“" CB] for

" CC] for

KEY?

"Banana"
wee >

Apple"

Banana"

Cherry"

"Cherry"

27: Interactive Programs 239

Programming Examples

This chapter contains 20 programs for your HP-28S. These programs
are useful and, more importantly, they demonstrate a variety of pro-
gramming techniques. For each program you'll find the following
information.

B Stack Diagram. A stack diagram is a two-column table showing
“Arguments” and “Results”. “Arguments” shows what must be on
the stack before the program is executed; “Results” shows what the
program leaves on the stack.

The stack diagram doesn’t show everything; a program that
changes user memory or displays objects might have no effect on
the stack.

® Techniques. This is the most interesting part. When you understand
how a techniqueis used in this chapter, you can use it in your own
programs.

B® Required Programs. Some programs call others as subroutines. You
can enter the required programs and the calling program in any
order, but you must enter all of them before executing the calling
program.

B® Program and Comments. This chapter formats the program listing
to show a program’s structure and process. You don’t need to fol-
low the format of the listing when you enter a program. However,
be sure to key in spaces where they appear in the listing or be-
tween objects appearing on separate lines.

You can key in a program character by character, or you can use
the menus to key it in command by command. It makes no differ-
ence as long as the result matches the listing.

240 28: Programming Examples

When you key in the program you can omit all closing parentheses
and delimiters that appear at the very end of the program; when you
press the closing parentheses and delimiters are added for
you.

B® Example. The examples assume STD display format. To select STD
display format, press STD or use the MODE menu.

The most important technique demonstrated in this chapter is struc-
tured programming: small programs used to build other programs. The
following programs are used in other programs.

® BOXS is used in BOXR.

B® MULTI is used in EXCO.

B® PAD and PRESERVE are used in BDISP.

B IGET is used in 2X2, £Y2, and ZXY.

® SORT and LMED are used in MEDIAN.

Box Functions

This section contains two programs:

B BOXS calculates the total surface area of a box.

B BOXR uses BOXS to calculate the ratio of surface to volume for a

box.

BOXS (Surface of a Box)

Given the height, width, and length of a box, calculate the total area
of its six sides.

Arguments Results

2: height

2: width

1: length 1: area
28: Programming Examples 241

Techniques:

Local-variable structure. Local variables allow you to assign names
to arguments without conflicting with global variables. Like global
variables, local variables are convenient because you can use argu-
ments any number of times without tracking their positions on the
stack; unlike global variables, local variables disappear when the
program structure that creates them is done.

A local-variable structure has three parts.

1. A command named “+ ”. When you key in this command, re-
member to put spaces before and after it. (Like any command,
+ is spelled using normal characters and is recognized only
when it’s set off by spaces. Don’t confuse this one-character
command with delimiters like # or «.)

2. One or more names.

3. A procedure (expression, equation, or program) that includes
the names. This procedure is called the defining procedure.

When a local-variable structure is evaluated, a local variable is cre-

ated for each name. The values for the local variables are taken

from the stack. The defining procedure is then evaluated, substitut-
ing the values of the local variables.

To appreciate the power of local variables, compare the version of
BOXS given below with the version that appears on page 244.

User function. This type of program works in either RPN or alge-
braic syntax. A user function is a program that consists solely of a
local-variable structure and returns exactly one result.

Program Comments

&« Begin the program.
+ h wl Create local variables for height,

width, and length. By conven-
tion, lower-case letters are used.
The values are taken from the
stack (in RPN) or from the argu-
ments to the user function (in
algebraic syntax).

242 28: Programming Examples

Program Comments

‘2% (h¥u+h¥]l +wkl D>! The defining expression for the
surface area. Evaluating the user
function causes evaluation of this
expression, returning the area to
the stack.

End the program.
Put the program on the stack.

(*] BOXS Store the program as BOXS.

Example. One of the advantages of user functions is that they work
in either RPN or algebraic syntax. Calculate the surface of a box 12
inches high, 16 inches wide, and 24 inches long; make the calculation
first in RPN and then in algebraic syntax.

For the RPN version, first enter the height and width.

12 [ENTER]
16 [ENTER]

Then key in the length and execute BOXS.

24 BOXS 3

I: 1728
IEIEESIEEEB

The surface area is 1728 square inches.

Now try the algebraic version.

‘Boxes [(J 12,16,24 [EVAL 3:(7) reoxs (0 3 _—
1: 1728
ICEEESIIEE

Again, the surface area is 1728.

28: Programming Examples 243

BOXS Without Local Variables

The following program uses only stack operations to calculate the sur-
face of a box. Compare this program with BOXS.

Arguments Results

3: height

2: width

1: length 1: area

Program Comments

& Begin the program.

DUP2 % Calculate wl.

ROT Move w to level 1.

4 PICK Copy h to level 1.
¥ Calculate wh.

+ Calculate wl + wh.

ROT ROT Move h and | to levels 2 and 1.

¥ Calculate hl.

+ Calculate wl + wh + hl.

2% Calculate 2(wl + wh + hl).
» End the program.

Because this version of BOXS isn’t a user function, it can’t be used in

algebraic syntax.

244 28: Programming Examples

BOXR (Ratio of Surface to Volume of a Box)

Given the height, width, and length of a box, calculate the ratio of its
surface to its volume.

Arguments Results

3: height 3:

2: width

1: length 1: area/volume

Techniques:

B Nested user functions. BOXR is a user function whose defining ex-
pression uses BOXS in its calculation. In turn, BOXR could be used
to define other user functions.

Recall that BOXS was defined using h, w, and I as local variables,
and note below that BOXS takes x, y, and z as arguments in the
definition for BOXR. It makes no difference if the local variables in
the two definitions match, or if they don’t match, because each set
of local variables is independent of the other. However, it’s essential
that local variables be consistent within a single definition.

Program

%

+ Xd Zz

'BOXS(x,y,z)

Alx¥y¥zd!

&

(J BOXR

Comments

Begin the program.
Create local variables for height,

width, and length. This program
uses x, y, and z, rather than h, w,
and I.
Begin the defining expression
with the user function BOXS.
Divide by the volume of the box.
End the program.

Put the program on the stack.
Store the program as BOXR.

28: Programming Examples 245

Example. Calculate the ratio of surface to volume for a box 9 inches

high, 18 inches wide, and 21 inches long; make the calculation first in

RPN and then in algebraic syntax.

For the RPN version, first enter the height and width.

3:
: 2: 2
18 EEEEINS

Then key in the length and execute BOXR.

1:: 428571428571
EEREEREI

The ratio is .428571428571.

Now try the algebraic version.

[1] FeoRs 9.18.21 3 428571428571
1: «428571428571
EHETE

Again, the ratio is .428571428571.

Fibonacci Numbers

Given an integer n, calculate the nth Fibonacci number F,, where

Fp = 0, F, =1, F, =F, _1+ EF, _»

This section includes two programs, each demonstrating an approach
to this problem.

® FIB1 is a user function that is defined recursively—its defining ex-
pression contains its own name. FIB1 is short, easy to understand,
and can be used with symbolic arguments.

® FIB2 is a user function defined with a program. It executes faster
than FIB1, but cannot be used with symbolic arguments.

246 28: Programming Examples

FIB1 (Fibonacci Numbers, Recursive Version)

Arguments Results

Techniques:

® [FTE (If-Then-Else function). The defining expression for FIB1 con-
tains the conditional function IFTE, which can be used in either
RPN or algebraic syntax. (FIB2 uses the program structure IF ...
THEN ... ELSE ... END.)

B Recursion. The defining expression for FIB1 is written in terms of
FIB1, just as F, is defined in terms of F, _ ; and F, _ »,.

Program Comments

« Begin the program.
+n Define a local variable.

Begin the defining expression.
IFTECnZ1, If n <1,

n, Then F, = n;

FIB1¢n-1)>+FIB1(n-2>> Else F, =F, _; + F, _,.
End the defining expression.

» End the program.

Put the program on the stack.
(*] FIB1 Store the program as FIBI.

Example. Calculate Fg using RPN syntax and Fy; using algebraic
syntax.

First calculate Fg using RPN.

6 FIB1

Next calculate Fi using algebraic syntax.

(*] Fier [(J 10 [EVAL] 3: 3

1: 55
[FIEDJEouk[Bonz [||| |]

28: Programming Examples 247

FIB2 (Fibonacci Numbers, Loop Version)

Arguments Results

Techniques:

® IF ... THEN ... ELSE ... END. FIB2 uses the program-structure
form of the conditional. (FIB1 uses IFTE.)

B® START ... NEXT (definite loop). To calculate F,, FIB2 starts with F
and F; and repeats a loop to calculate successive F;’s.

NEXT

SWAP DROP

END
»

»

CJ FiB2

Comments

Begin the program.
Create a local variable.
Begin the defining program.
If n <1,

Then F, = n;

Begin ELSE clause.
Put Fy and F; on the stack.

From 2 to n,
Do the following loop:
Make a copy of the latest F (ini-

Move the previous F (initially F)
to level 1.
Calculate the next F (initially F,).

Repeat the loop.
Drop F, _ 1.

End ELSE clause.
End the defining program.
End the program.
Put the program on the stack.
Store the program as FIB2.

248 28: Programming Examples

Example. Calculate Fg and F;,. Note that FIB2 is faster than FIBI.

Calculate Fg.

6 FIBZ'

Calculate Fy.

10 FiB2

1: 8
FIE2 [FIEL JEORR[BORE]|

: 8
1: 55
EEEEYERAERE

Comparison of FIB1 and FIB2

FIB1 calculates intermediate values F; more than once, while FIB2 cal-
culates each intermediate F; only once. Consequently, FIB2 is faster.

The difference in speed increases with the size of n because the time
required for FIB1 grows exponentially with n, while the time required
for FIB2 grows only linearly with n.

The diagram below shows the beginning steps of FIB1 calculating F,.
Note the number of intermediate calculations: 1 in the first row, 2 in

the second row, 4 in the third row, and 8 in the fourth row.

aN

J \ J \

28: Programming Examples 249

Single-Step Execution

It’s easier to understand how a program works if you execute it step
by step, seeing the effect on the stack of each step. Doing this can
help you “debug” your own programs or help you understand pro-
grams written by others.

This section shows you how to execute FIB2 step by step, but you can
apply these rules to any program. The general rules are:

1. Use VISIT to insert the command HALT in the program. Place
HALT where you want to begin single-step execution. (You'll see
how the position of HALT within FIB2 affects execution.)

2. Execute the program. When the HALT command is executed, the
program stops (indicated by the “stopsign” annunciator).

3. Select the PROGRAM CONTROL menu.

4. Press [88T once to see the next program step displayed and
then executed.

You can now:

B Keep pressing 1887" to display and execute sequential steps.

B Press [J[CONT] to continue normal execution.

B Press KIEL" to abandon further program execution.

5. When you want the program to run normally again, use VISIT to
remove HALT from the program.

For the first example, insert HALT as the first command in FIB2.

Clear the stack and select the USER menu.

WCE) 3:

Ii

STEN EC IEREEE

Use VISIT to return FIB2 to the command line.

(] 'Fie2” @(Vi1SIT] BN 2 n

IF nil £
THEN n

Insert the HALT command.

(>) (INS) M(CONTRL] [HALT & HALT 42 n
&

IFn1i1<£

FILL [WAIT

Store the edited version of FIB2.

FILL [WAIT

Calculate F;. At first, nothing happens except that the Q annunciator
appears.

3:
1 FIB2 2 1

[FIE2[FIEL[Euik[Baus]||

Select the PROGRAM CONTROL menu and execute SST (single-step).
Watch the top line of the display to see the first step displayed before
it’s executed.

B(conTRL]
8ST

Ei BNET

Note that + n constitutes one step; “step” is a logical unit rather than
simply the next object in the program.

28: Programming Examples 251

Look at the general rules at the beginning of this section. Now you
can choose one of the three alternatives described in step 4.

For this example, press 88T repeatedly until the Q annunciator dis-
appears, indicating that FIB2 is completed. (These single-steps not
shown here.)

The calculation for F; executes only the THEN clause in FIB2.
For the second example, execute 3 FIB2 and single-step through
the calculation for F;. This executes the ELSE clause, including the

START ... NEXT loop. You'll see that, for n = 3, the START ...

NEXT loop is executed twice.

For the third example, suppose you want to single-step the START ...
NEXT loop as a whole—seeing the stack before each iteration of the
loop, but not single-stepping all the steps in FIB2 or in the loop itself.
To do so, move the HALT command inside the loop. Then FIB2 won't
halt until it reaches the loop, and you can use [CONT (continue) to
execute the loop one iteration at a time.

Use VISIT to return FIB2 to the command line.

" HALT > n

[1] i¥iezi WViSiT] IFn1l<
THEN n

Use the cursor menu keys to delete HALT. Then insert HALT as
shown (following the START command).

2 Nn

T HALT4DUP R..

Store the edited version of FIB2.

Start the calculation for F;. FIB2 will halt before performing the loop.

3 FIB2 3::
ERETETI

Continue execution of the loop. FIB2 will halt before performing the
loop a second time.

M(conT]

i
FIE2 [FIELJEORR[Bons]|

=
r

Continue execution of the loop. Because this is the last iteration of the
loop, FIB2 will execute to completion.

B(conT]

=
P

: 2
FTE TF IERETRE

When you're done experimenting with FIB2, don’t forget to use VISIT
to remove the HALT command.

Expanding and Collecting Completely

This section contains two programs:

® MULTI repeats a program until the program has no effect.

® EXCO uses MULTI to expand and collect completely.

MULTI (Multiple Execution)

Given an object and a program that acts on the object, apply the pro-
gram to the object repeatedly until the object is unchanged.

Arguments Results

2: object 2:

 1: « program * 1: resulting object

28: Programming Examples 253

Techniques:

® DO ... UNTIL ... END (indefinite loop). The DO clause contains
the steps to be repeated; the UNTIL clause contains the test that
determines whether to repeat both clauses again (if false) or to exit
(if true).

B Programs as arguments. Although programs are commonly named
and then executed by calling their names, programs can also be put
on the stack and used as arguments to other programs.

B Evaluation of local variables. The program argument to be executed
repeatedly is stored in a local variable. It’s handy to store an object
in a local variable when you don’t know beforehand how many
copies you'll need.

MULTI demonstrates one of the differences between global and lo-
cal variables: if a global variable contains a name or program, the
contents of the variable are evaluated when the name is evaluated;
but the contents of a local variable are always simply recalled. Con-
sequently, MULTI uses the local name to put the program argu-
ment on the stack and then executes an explicit EVAL command to
evaluate the program.

Program Comments

« Begin the program.
+P Create a local variable p that con-

tains the program argument.
Ld Begin the defining program.
Do Begin the DO clause.
DUP Make a copy of the object.
p EVAL Apply the program to the object,

returning a new version. (The
EVAL command is necessary to
execute the program because lo-
cal variables always return their
contents to the stack
unevaluated.)

UNTIL Begin the UNTIL clause.
DUP Make a copy of the new version

of the object.
ROT Move the old version to level 1.
SAME Test whether the old version and

the new version are the same.

254 28: Programming Examples

Program Comments

END End the UNTIL clause.
» End the defining program.

» End the program.

Put the program on the stack.
[*] MULTI Store the program as MULTI.

Example. MULTI is demonstrated in the next program.

EXCO (Expand and Collect Completely)

Given an algebraic object, execute EXPAN repeatedly until the alge-
braic doesn’t change, then execute COLCT repeatedly until the
algebraic doesn’t change. In some cases the result will be a number.

Arguments Results

1: 'algebraic' 1: ‘algebraic’

1: ‘algebraic 1: z

Techniques:

® Structured programming. EXCO calls the program MULTI twice.
Even if you don’t use MULTI anywhere else, the efficiency of re-
peating all the commands in MULTI by simply including its name a
second time justifies writing MULTI as a separate program.

Required Programs:

® MULTI (page 253) repeatedly executes the programs that EXCO
provides as arguments.

28: Programming Examples 255

Program Comments

« Begin the program.
« EXPAN =» Put EXPAN on the stack.
MULTI Execute EXPAN until the alge-

braic object doesn’t change.
« COLCT =» Put COLCT on the stack.
MULTI Execute COLCT until the alge-

braic object doesn’t change.
» End the program.

Put the program on the stack.
(*] EXCO Store the program as EXCO.

Example. Expand and collect completely the expression

3x (4y + z) + (8x — 52)%

Enter the expression.

(USER] 21

(3X X [5] i: SFERRCARYHZ) +(BER5x

[4x] Y[+]Z BO] (+) ENGREEEEEE
[d8[x]X[-)J5(x]ZMDI WM] 2
ENTER

Expand and collect completely.

EXCO 2H
i: '122XEY- 77EXEIFOGERT

2+25%Z2"2'
[Ein[MULT]FIERFIEL[EORE[EOL

Expressions with many products of sums or with powers can take
many iterations of EXPAN to expand completely, resulting in a long
execution time for EXCO.

256 28: Programming Examples

Displaying a Binary Integer

This section contains three programs:

B PAD is a utility program that converts an object to a string for
right-justified display.

B® PRESERVE is a utility program for use in programs that change the
calculator’s status (angle mode, binary base, and so on).

® BDISP displays a binary integer in HEX, DEC, OCT, and BIN bases.
It calls PAD to show the displayed numbers right-justified, and it
calls PRESERVE to preserve the binary base.

PAD (Pad With Leading Spaces)

Convert an object to a string and, if the string contains fewer than 23
characters, add spaces to the beginning.

When a short string is displayed by using DISP, it appears left-justi-
fied: its first character appears at the left end of the display. The
position of the last character is determined by the length of the string.

By adding spaces to the beginning of a short string, PAD moves the
position of the last character to the right. When the string is 23 char-
acters long, it appears right-justified: its last character appears at the
right end of the display.

PAD has no effect on strings that are longer than 22 characters.

Arguments Results

1: object 1: " object"

Techniques:

® WHILE ... REPEAT ... END (indefinite loop). The WHILE clause
contains a test that determines whether to execute the REPEAT
clause and test again (if true) or to skip the REPEAT clause and exit
(if false).

28: Programming Examples 257

B String operations. PAD demonstrates how to convert an object to
string form, count the number of characters, and concatenate two
strings.

Program Comments

& Begin the program.

STR Make sure the object is in string
form. (Strings are unaffected by
this command.)

WHILE Begin WHILE clause.
DUP SIZE 23 « Does the string contain fewer

than 23 characters?
REPEAT Begin REPEAT clause.

" " SWAP + Add a leading space.
END End REPEAT clause.

» End the program.

Put the program on the stack.
("J PAD Store the program as PAD.

Example. PAD is demonstrated in the program BDISP.

PRESERVE (Save and Restore Previous Status)

Given a program on the stack, store the current status, execute the
program, and then restore the previous status.

Arguments Results

1: « program * 1: (result of program)

Techniques:

B® RCLF and STOF. PRESERVE uses RCLF (recall flags) to record the
current status of the calculator in a binary integer and STOF (store
flags) to restore the status from that binary integer.

258 28: Programming Examples

B Local-variable structure. PRESERVE creates a local variable just to
remove the object from the stack briefly; its defining program does
little except evaluate the program argument on the stack.

Program Comments

Begin the program.
RCLF Recall a 64-bit binary integer

representing the status of all 64
user flags.

+ f Store the binary integer in a local
variable f.

& Begin the defining program.
EVAL Execute the program argument.
f STOF Restore the status of all 64 user

flags.
® End the defining program.

® End the program.

Put the program on the stack.
(*] PRESERVE Store the program as PRESERVE.

Example. PRESERVE is demonstrated in the program BDISP.

BDISP (Binary Display)

Display a number in HEX, DEC, OCT, and BIN bases.

Arguments Results

1: # n 1: # n

1: n 1: n

Techniques:

® JFERR ... THEN ... END (error trap). To accomodate real numbers,
BDISP includes the command R+E (real-to-binary). However, this

command causes an error if the argument is already a binary
integer.

28: Programming Examples 259

To maintain execution if an error occurs, the R+B command is

placed inside an IFERR clause. Because no action is required when
an error occurs, the THEN clause contains no commands.

B® Enabling LAST. In case an error occurs, LAST must be enabled to

return the argument to the stack. BDISP sets flag 31 to pro-
grammatically enable the LAST recovery feature.

B® FOR ... NEXT loop (definite loop with counter). BDISP executes a
loop from 1 to 4, each time displaying n in a different base on a
different line.

The loop counter (named j in this program) is a local variable. It’s
created by the FOR ... NEXT program structure (rather than by a +
command) and it’s automatically incremented by NEXT.

® Subprograms. BDISP demonstrates three uses for subprograms.

1. BDISP contains a main subprogram and a call to PRESERVE.
The main subprogram goes on the stack and is evaluated by
PRESERVE.

2. When BDISP creates a local variable for n, the defining pro-
gram is a subprogram.

3. There are four subprograms that “customize” the action of the
loop. Each subprogram contains a command to change the bi-
nary base, and each iteration of the loop executes one of these
subprograms.

Required Programs:

® PAD (page 257) expands a string to 23 characters so that DISP
shows it right-justified.

® PRESERVE (page 258) stores the current status, executes the main
subprograms and restores the status.

260 28: Programming Examples

Program

#

&

oupP

31 SF

IFERR

R+B

THEN

END

CLLCD

BIN

oCcT

DEC

HEX

=
R&R

KR
AR

RA
R

¥
OW

¥
Ow

FOR

EVAL

nh *STR

PRO

J DISP

NEXT
»

»

PRESERVE

2

(7) BDISP

Comments

Begin the program.
Begin the main subprogram.
Make a copy of n.
Set flag 31 to enable LAST.
Begin error trap.
Convert n to a binary integer.
If an error occured,
Do nothing (no commands in
THEN clause).
Create a local variable n.
Begin the defining program.
Clear the display.
Subprogram for BIN.
Subprogram for OCT.
Subprogram for DEC.
Subprogram for HEX.
First and last counter values.
Start loop with counter j.
Evaluate one of the base subpro-
grams (initially the one for HEX).
Make a string showing 7 in the
current base.
Pad the string to 23 characters.
Display the string in the jth line.
Increment j and repeat the loop.
End the defining program.
End the main subprogram.
Store the current status, execute
the main subprogram, and re-
store the status.
End the program.

Put the program on the stack.
Store the program as BDISP.

28: Programming Examples 261

Example. Switch to DEC base, display # 100 in all bases, and check
that BDISP restored the base to DEC.

Clear the stack and select the BINARY menu.

W(ciERR) 3:
BEAR) it

[DECeHER007EIN[STHE[RCT]

Make sure the current base is DEC and key in # 100.

DEC

(#] 100 1 # 100d

INSEEE

Execute BDISP. (Don’t switch menus, since you'll want to see the BI-

NARY menu in the next step.)

BDISP (ENTER) JF
#1

11001

Return to the normal stack display and check the current base.

3
1: # 188d
EOEEEEECEETEEEE

Although the main subprogram left the calculator in BIN base, PRE-
SERVE restored DEC base.

To check that BDISP also works for real numbers, try 144.

144 BOISE

#
#
1# 106

Summary Statistics

For paired-sample statistics it’s often useful to calculate the sum of
the squares (2x? and Zy?) and the sum of the products (Zxy) of the
two variables. This section contains five programs:

B SUMS creates a variable 2COV that contains the covariance matrix

for the current statistics matrix 2DAT.

B® ZGET extracts a number from the specified position in ZCOV.

® 3X2 uses ZGET to extract =x? from COV.

B 3Y2 uses GET to extract Zy? from COV.

B 2XY uses ZGET to extract Zxy from ZCOV.

If ZDAT contains n columns, ZCOV is an n X n matrix. The pro-
grams 2X2, 2Y2, and ZXY refer to ZPAR (statistics parameters) to
determine which columns contain the x data (called C;) and the y
data (called C,).

Techniques:

B® Matrix operations. These programs demonstrate how to transpose a
matrix, how to multiply two matrices, and how to extract one ele-
ment from a matrix.

B® Programs usable in algebraic objects. Because 2X2, 2Y2, and ZXY
conform to algebraic syntax (no arguments from the stack, one re-
sult put on the stack), you can use their names like ordinary
variables in an expression or equation.

B® PAR convention. Several paired-sample statistics commands use a
variable named ZPAR to specify a pair of columns in ZDAT. ZPAR
contains a list with four numbers, the first two specifying columns.
(The other two numbers are the slope and intercept from linear re-
gression.)

SUMS ensures that ZPAR exists by executing 0 PREDV DROP; the
command PREDV (predicted value) creates ZPAR with default val-
ues if ZPAR doesn’t already exist, and DROP removes the
predicted value computed for 0.

2X2, 2Y2, and ZXY use the values stored in 2PAR to determine

which element to extract from ZCOV.

SUMS (Summary Statistics Matrix)

Create a variable ZCOV that contains the covariance matrix of the

statistics matrix ZDAT.

28: Programming Examples 263

As an example, if ZDAT is the n X 2 matrix

xq

xX,

Xn

Yi

Y2

Yn

then 2COV will contain the covariance matrix

>x2 Zxy

xy Zp?

Arguments Results

Program

%

RCLZE

DUP

TRH

SWAP *

'ECOoV' STO

f PREDY DROP
*

[J sums

Comments

Begin the program.
Recall the contents of the n X m

statistics matrix ZDAT.

Make a copy.
Transpose the matrix. The result
is an m X n matrix.

Multiply the matrices to produce
the m X m covariance matrix.

(Without swapping the matrices,
the product would be an n X n
matrix.)

Store the covariance matrix in a

variable ZCOV.

Make sure ZPAR exists.

End the program.

Put the program on the stack.
Store the program as SUMS.

264 28: Programming Examples

2GET (Get an Element of ZCOV)

Given p and 4, each indicating either the first or second position in
ZPAR,extract the rs element from ZCOV, where r and s are the cor-
responding first or second elements in ZPAR.

2GETis called by 2X2, 2Y2, and ZXY with the following arguments.

® For 2X2, p = 1 and gq =

® For 2Y2, p = 2 and ¢g

® For 2XY, p = land gq =

Arguments Results

2: 1or2 2

1: Tor2 1: rs element of ZCOV

Program Comments

& Begin the program.
ZCov Put the covariance matrix on the

stack.

ZPAR Put the list of statistics param-
eters on the stack.

DUP Make a copy.
5 ROLL Move p to level 1.
GET Get r, the pth element in ZPAR.
SWAP Move ZPAR to level 1.

4 ROLL Move gq to level 1.
GET Get s, the qth element in ZPAR.
2 »LIST Put { r, s } on the stack.

GET Get the rs element from ZCOV.

® End the program.

Put the program on the stack.

[J GET Store the program as ZGET.

28: Programming Examples 265

2X2 (Sum of Squares of x)

Calculate =x2, where the x's are the elements of C; (the column speci-
fied by the first parameter in ZPAR).

Arguments Results

1: 1: =x?

Program Comments

& Begin the program.

1 1 Specify C; twice.

ZGET Extract Zx2.
» End the program.

Put the program on the stack.
(*] =X2 Store the program as ZX2.

2Y2 (Sum of Squares of y)

Calculate Zy?, where the y's are the elements of C, (the column speci-
fied by the second parameter in ZPAR).

Arguments Results

1: 1: 2p?

Program Comments

« Begin the program.
2 2 Specify C, twice.

IGET Extract Zy2.
® End the program.

Put the program on the stack.
(] =y2 Store the program as ZY2.

266 28: Programming Examples

2XY (Sum of Products of x and y)

Calculate Zxy, where the x's and y's are corresponding elements of C;
and C, (the columns specified by the first and second parameters in
2ZPAR).

Arguments Results

1: 1: Zxy

Program Comments

€ Begin the program.
1 2 Specify C; and C,.

EGET Extract 2xy.
® End the program.

Put the program on the stack.
[1] =XY Store the program as ZXY.

Example. Calculate 2X2, 2Y2, and ZXY for the following statistics
data:

18 12

4 7

3 2

11 1

31 48

20 17

28: Programming Examples 267

The general steps are as follows.

1. Enter the statistical data.

2. Execute SUMS to create the covariance matrix ZCOV.

3. Execute 2X2, 2Y2, and ZXY.

4. If ZDAT contains more than two columns (that is, if each data
point contains more than two variables):

a. Execute COLZ to specify new values for C; and C,. The
values are stored in ZPAR.

b. Execute ZX2, 2Y2, and ZXY.

Now try the example given above.

Clear the stack, select the STAT menu, and clear ZDAT.

 3

BW(CLEAR] 3
W(STAT) gi
CLz I+I-NE[GLE[STO[RCL

Enter the data and then check that you entered all six data points.

(J 18,12 z+
[04,7 nz% 3 &
a 32 z+ E+E-NE[CLE[STOE[ROLE]

11,1 2+

([] 31,48 2+
([J 20,17 2%
NE

Drop the number of data points.

=
I

|+ |Z- |NE[CLE[STOERCLT]

268 28: Programming Examples

Create the covariance matrix ZCOV.

SUMS

[ZFAR[TCou[TORT]ThyEvaEH2

Calculate =x2.

Z¥z

 1831
ETTBEETBATEBTTEPEE

Calculate Zy2.

ZY2 3:
2: 1831
1: 2791

Calculate Zxy.

IXY

[ZFAR[TCou[TORTTuvIvaEHa

If the statistics matrix had more than two columns, you could specify
new values for C; and C,. For practice, specify C; = 1 and C, = 2
(the current values).

The command COLZ is available in the STAT menu, but here it’s eas-

ier to spell out the command name and stay in the USER menu.

1 3 1831
2 COLZ ii 5525

[FREZCov[TORT]EWIvaEHE

You could now execute 2X2, 2Y2, and ZXY for the new pair of col-
umns C; and C,.

Don’t forget to execute SUMS again whenever you add or delete data
from the statistics matrix DAT.

28: Programming Examples 269

Median of Statistics Data

This section contains three programs:

B SORT orders the elements of a list.

B LMED calculates the median of a sorted list.

B® MEDIAN uses SORT and LMED to calculate the median of the cur-

rent statistics data.

SORT (Sort a List)

Sort a list into ascending order.

Arguments Results

1: { list } 1: { sorted list }

Techniques:

B Bubble sort. Starting with the first and second numbers in the list,
SORT compares adjacent numbers and moves the larger number
toward the end of the list. This process is done once to move the
largest number to the last position in list, then again to move the
next largest to the next-to-last position, and so on.

B Nested definite loops. The outer loop controls the stopping position
each time the process is done; the inner loop runs from 1 to the
stopping position each time the process is done.

B® Nested local-variable structures. SORT contains two local-variable
structures, the second inside the defining program of the first. This
nesting is done for convenience; it’s easier to create the first local
variable as soon as its value is computed, thereby removing its
value from the stack, rather than computing both values and creat-
ing both local variables at once.

270 28: Programming Examples

B® FOR ... STEP and FOR ... NEXT (definite loops). SORT uses two
counters: — 1 STEP decrements the counter for the outer loop each
iteration; NEXT increments the counter for the inner loop by 1 each
iteration.

Program

%

DUP SIZE 1 - 1

FOR J

FOR k

k GETI + nl

&

GETI +» n2

&

DROP

IF nl n2 >

THEN

k n2 PUTI

nl PUT

END
®

»

NEXT

-1 STEP

=

(ENTER)
[J SORT

Comments

Begin the program.
From the next-to-last position to
the first position,
Begin the outer loop with counter
J-
From the first position to the jth
position,

Begin the inner loop with counter
k.
Get the kth number in the list
and store it in a local variable n;.

Begin outer defining program.
Get the next number in the list
and store it in a local variable 7,.

Begin inner defining program.
Drop the counter.
If the two numbers are in the
wrong order,
Then do the following:
Put the second one back in the
kth position.
Put the kth one back in the next
position.
End of THEN clause.
End inner defining program.
End outer defining program.
Increment k and repeat the inner
loop.
Decrement j and repeat the outer
loop.
End the program.

Put the program on the stack.
Store the program as SORT.

28: Programming Examples 271

Example.

Sort the list { 8, 3, 1, 2, 5 }.

({] 8,3,1,2,5 SORT {12358">

HIEETETHFTEETE

LMED (Median of a List)

Given a sorted list, calculate the median. If the list contains an odd

number of elements, the median is the value of the center element. If

the list contains an even number of elements, the median is the aver-

age value of the elements just above and below the center.

Arguments Results

1: { sorted list * 1: median of sorted list

Techniques:

® FLOOR and CEIL. For an integer, FLOOR and CEIL both return
that integer; for a non-integer, FLOOR and CEIL return successive
integers that bracket the non-integer.

Program Comments

Begin the program.
DUP SIZE The size of the list.
1 +2 » The center position in the list

(fractional for even-sized lists).

+P Store the center position in local
variable p.

« Begin the defining program.
DUP Make a copy of the list.
p FLOOR GET Get the number at or below the

center position.
SWAP Move the list to level 1.
p CEIL GET Get the number at or above the

center position.

272 28: Programming Examples

Program

+ 2

=

F

[J LMED

Comments

The average of the two numbers
at or near the center position.
End the defining program.
End the program.

Put the program on the stack.
Store the program as LMED.

Calculate the median of the list you sorted using SORT.

LMED

LMED is called by MEDIAN.

2:
1: 3
LHED 0RTZFAR[ZC0MTOATTHY

MEDIAN (Median of Statistics Data)

Return a vector representing the medians of the columns of the statis-
tics data.

Arguments Results

 1: C xy x0... Xm]

Techniques:

B® Arrays, lists, and stack elements. MEDIAN extracts a column of

data from ZDAT in vector form. To convert the vector to a list,
MEDIAN puts the vector elements on the stack and then combines
them into a list. From this list the median is calculated using SORT
and LMED.

The median for the mth column is calculated first, and the median

for the first column is calculated last, so as each median is calcu-

lated, it is moved to the stack level above the previously calculated
medians.

28: Programming Examples 273

After all medians are calculated and positioned correctly on the
stack, they're combined into a vector.

B® FOR ... NEXT (definite loop with counter). MEDIAN uses a loop to
calculate the median of each column. Because the medians are cal-

culated in reverse order (last column first), the counter is used to
reverse the order of the medians.

Required Programs:

B SORT (page 270) arranges a list in ascending order.

® LMED (page 272) calculates the median of a sorted list.

Program

&

R

D

L

&«

274

CLZ

UP SIZE

IST+ DROP

nm

'ZDARAT' TRN

1m

FOR J
3-

ARRY+ DROP

n LIST

SORT

LMED

Comments

Begin the program.
Put a copy of the current statis-
tics matrix ZDAT on the stack for

safekeeping.
Put the list { n m } on the stack,
where n is the number of rows in

2ZDAT and m is the number of

columns.

Put n and m on the stack. Drop
the list size.

Create local variables for n and

m.

Begin the defining program.
Transpose ZDAT. Now n is the
number of columns in ZDAT and

m is the number of rows.

The first and last rows.

For each row, do the following:
Extract the last row in ZDAT. Ini-

tially this is the mth row, which
corresponds to the mth column in
the original ZDAT.
Put the row elements on the

stack. Drop the index list { n },
since n is already stored in a local
variable.

Make an n-element list.

Sort the list.

Calculate the median of the list.

28: Programming Examples

Program Comments

J ROLLD Move the median to the proper
stack level.

NEXT Increment j and repeat the loop.
m 1 »LIST Make the list { m }.
+ARRY Combine all the medians into an

m-element vector.
» End the defining program.
SWAP Move the orginal ZDAT to level

1.
STOZ Restore ZDAT to its previous

value.
® End the program.

Put the program on the stack.
(*] MEDIAN Store the program as MEDIAN.

Example. Calculate the median of the data on page 268. (This exam-
ple assumes you've keyed in the data.) There are two columns of data,
so MEDIAN will return a two-element vector.

Calculate the median.

USER

MEDI

 [14.5 9.5 1]
AEM ETEMETIEAEBITEBET

The medians are 14.5 for the first column and 9.5 for the second

column.

Changing Directories

This section contains two programs:

Bm UP gives you a menu of parent directories.

® DOWN gives you a menu of subdirectories.

These programs have no utility for those who always remember their
entire directory structure and know exactly where they are at all
times. For those who occasionally become confused, these programs
are helpful.

28: Programming Examples 275

UP (Move to a Parent Directory)

Create a menu that contains the names of the parent directory, its
parent directory, and so on, back to the HOME directory.

Arguments Results

Techniques:

B List of parent directories. UP uses PATH to return the names of the
current directory and all parent directories.

B Subset of a list. UP uses SUB to remove the name of the current

directory from the PATH list.

® Custom menu. UP uses MENU to create a custom menu of parent
directories from the modified PATH list.

Program

&

PATH

1

OVER SIZE 1 -

SUB

MENU

&

[J up [sT0]

Comments

Begin the program.
Put the path list on the stack.
Put 1 on the stack.

Put size — 1 on the stack.

Create a subset of the PATH list

that includes all names but the

last name (the current directory).
Create a menu of parent

directories.

End the program.

Put the program on the stack.
Store the program as UP.

276 28: Programming Examples

Example. From the HOME directory, create a hierarchy of
subdirectories D1, D2, and D3; then use UP to move from D3 to D1.

Clear the stack and move to the HOME directory.

M(CLEAR]
B(EMORY [HOHE

3:
2:
1:
[MEM[MENLI[ORDERFATH[HOHE[ROT]

Create a subdirectory D1 and move to it.

(*] D1 CRDIR

D1

HEM [HENLUORDER]FATH [HOME [ZRDIF

Repeat the process for subdirectories D2 and D3.

(*] D2 ERDIR :

D2 Ii
(*] D3 crDIR [MEM[MENLI[ORDEFRFHTH[HOME[CROIF
D3
Display the menu of parent directories.

UP [ENTER]

Hote] 01 |v2||| |]

Move to the D1 directory.

D1

=H

2
TTIIINE

DOWN (Move to a Subdirectory)

Create a menu that contains the names of all subdirectories of the

current directory.

Arguments Results

28: Programming Examples 277

Techniques:

® List of variables. DOWN uses VARS to return the list of variables
and subdirectories in the current directory.

B® Error trap. To check whether a name in the VARS list is a directory,
DOWN uses the name as an argument to RCL; since directories
can’t be recalled to the stack, an error occurs if the name is a direc-
tory name, and the name is added to the list of directory names.

Program

&

VARS

1 wv SIZE

FOR

v J GET

IFERR RCL DROP

THEN +

END

NEXT

MENU

2

2

() DOWN

Comments

Begin the program.
Put on the stack a list of the
names of all variables and
subdirectories.
Store the VARS list in a local
variable v.
Begin the defining program.
Put the list of directory names on
the stack (initally empty).
Put 1 and size of v on the stack.
For each name in v, do the
following;
Get the name.
Attempt to recall the contents of
a variable with that name; if suc-
cessful, drop the contents.
If RCL caused an error, the name
must be a directory name, so add
the name to the list of directory
names.
End of the THEN clause and the
program structure.

Repeat for next name in v.
Create a custom menu for the di-
rectory names.

End the defining program.
End the program.

Put the program on the stack.

Store the program as DOWN.

278 28: Programming Examples

Example. In the previous example (page 277) you created a hierar-
chy of subdirectories D1, D2, and D3, and completed the example
with D1 the current directory. For this example, move to D2 and then
D3.

Display the menu of subdirectories.

DOWN 3

i:
v2[1[1[|

Move down to D2.

D2 3:
Zt
(v2|[[|

Display the menu of subdirectories.

DOWN 3:
1:
(3|[[||

Move down to D3.

D3

 28: Programming Examples 279

Appendixes & Indexes

Page 282

296

302

306

327

332

A: Assistance, Batteries, and Service

B: Notes for HP RPN Calculator Users

C: Notes for Algebraic Calculator Users

D: Menu Map

Key Index

Subject Index

A
Assistance, Batteries, and

Service

This appendix contains information to help you when you have prob-
lems with your calculator. If you have problems understanding how
to use the calculator, and you can’t find an appropriate topic in the
Table of Contents (page 5) or the Subject Index (page 332), see “An-
swers to Common Questions” below. If you don’t find an answer to
your question, you can contact our Calculator Support department,
using the address or phone number listed on the inside back cover.

If you need to replace the batteries, see page 286. If your calculator
doesn’t seem to work properly, see “Determining If the Calculator Re-
quires Service” on page 289. If the calculator does require service, see
“Limited One-Year Warranty” on page 291 and “If the Calculator Re-
quires Service” on page 293.

Answers to Common Questions

Q: The calculator doesn’t turn on when I press [ON]. What is wrong?
A: There may be a simple problem that you can solve immediately, or
the calculator may require service. See “Determining If the Calculator
Requires Service” on page 289.

Q: How can I verify that the calculator is operating properly?
A: Perform the repeating test, as described on page 290.

Q: How do I clear everything from the calculator’s memory?
A: Press and hold [ON][(INS][»], then release, as described in “Clearing
All Memory (Memory Reset)” on page 20.

282 A: Assistance, Batteries, and Service

Q: What do three dots (...) mean at the right end of a display line?
A: The three dots, called an ellipsis, indicate that the displayed object
is too long to display on one line.

Q: How do I display all of an object?
A: Use (EDIT) or [VISIT] to return the object to the command line,
as described in “Editing Exisiting Objects” on page 173. You can then
use the cursor keys to display any part of the object. To cancel the
edit, press [ON].

Q: What does “object” mean?
A: “Object” is a general term for almost everything you work with.
Numbers, expressions, arrays, programs, and so on, are all types of
objects. See “Major Features and Concepts” on page 25 for a brief
description of object types, or see chapter 16, “Objects,” for a detailed
discussion of object types.

Q: The calculator beeps and displays Bad Argument Tupe. What is
wrong?
A: The objects on the stack aren’t the correct type for the command
you're attempting. For example, executing without a name in
level 1 causes this error. Use CATALOG to check the correct argu-
ments for the command, as described in “The Catalog of Commands”
on page 31.

Q: The calculator beeps and displays Too Few Arguments. What is
wrong?
A: There are fewer objects on the stack than required by the com-
mand you're attempting. For example, executing with only one
number on the stack causes this error. Use CATALOG to check the
correct arguments for the command, as described in “The Catalog of
Commands” on page 31.

Q: The calculator beeps and displays an error message different from the
two listed above. How do I find out what's wrong?
A: See appendix A, “Messages,” in the Reference Manual.

Q: How do I turn off the beeper?
A: Type S1 SF [ENTER]. This sets flag 51, which disables the beeper.

Q: How can I print a copy of the display?
A: Press and hold [ON], press [L], and release [ON].

A: Assistance, Batteries, and Service 283

Q: The keys from to (R] don’t work. What is wrong?
A: You accidentally selected Menu Lock, so the keys from to [R]
select menus unless you press [§ first. To turn off Menu Lock, press

W(vENUS.

Q: I can’t find some variables that 1 used earlier. Where did they go?
A: You may have been using the variables in a different directory. If
you can’t remember which directory you were using, you'll need to
check all the directories.

Q: How can I determine how much memory is left?
A: Execute MEM to return the number of bytes available in
memory.

Q: Why did the cursor change its appearance?
A: The cursor indicates the current entry mode. The entry modes are
Immediate (empty cursor), Algebraic (partly filled cursor), or Alpha
(filled cursor). The shape of the cursor indicates Replace mode (box
cursor) or Insert mode (arrow cursor). See “How the Cursor Indicates
Modes” on page 172.

Q: | keyed in a name (or pressed a USER menu key), but the name didn’t
go on the stack. Why not?
A: You entered an unquoted name, which refers to the contents of a
variable. To put a name on the stack, press [*] first. (See “Quoted and
Unquoted Names” on page 57.)

Q: When I calculate the cube root of —27, why isn’t the result —3?
A: Every number has three cube roots, two of which are complex
numbers. The HP-28S returns one of the three roots, called the princi-
pal value. For positive real arguments the principal value is the real
root; for negative real arguments the principal value is one of the
complex roots. To calculate the real bth root of a real number a, key in
the following program.

« * ab 'SIGNCa>X¥ABSCa’>~INV(b2"' =

Press [*] RROOT to store the program in a variable RROOT (real
root). You can then find the real cube root of —27 by typing 27

3 RROOT [ENTER].

284 A: Assistance, Batteries, and Service

Q: The calculator is slower than usual, and the & annunciator is blink-

ing. What is happening?
A: The calculator is in Trace printing mode. Press [PRINT| "TRAE to
turn off Trace printing mode.

Q: The printer prints several lines quickly, then slows down. Why?
A: The calculator quickly transmits a certain amount of data to the
printer, then slowsits transmission rate to make sure the printer can
keep up.

Q: How can I speed up printing?
A: If your printer is plugged into an adaptor, the calculator can safely
send data at a faster rate. To select faster printing, type 52 SF
[ENTER]. This sets flag 52, which controls the printing speed. When
the printer isn’t plugged into an adaptor, type 52 CF to clear
flag 52 and return to normal printing speed.

Q: The printer drops characters or prints B characters. What is wrong?
A: The distance or angle between the printer and the calculator may
be too large, or there may be an obstruction blocking the transmis-
sion. See the printer manual for details about positioning the printer
and calculator.

Q: What is the difference between STO and STORE?
A: The STO command assigns a specified value to a variable. The
STORE menu contains commands that perform storage arithmetic, us-
ing the value of a variable as an argument and assigning the resulting
value to the variable.

Q: | expected a symbolic result, but 1 got a numerical result. Why?
A: There are values assigned to one or more variables. Purge the con-
tents of the variables (see “Purging a Variable” on page 52) and then
try again.

Q: When I press DRAW , the display clears, the ((®) annunciator blinks
and then stops, but I don’t see any points plotted on the display. Why not?
A: The calculated values are outside the current plot range. See
“Changing the Scale of the Plot” on page 91.

A: Assistance, Batteries, and Service 285

Q: I evaluated a variable or an expression, and now the calculator doesn’t
respond. Pressing has no effect. What happened?
A: You defined a variable in terms ofitself, creating a circular defini-
tion, and now the calculator is executing an “endless loop.” To
terminate the loop, perform a System Halt as follows:

1. Press and hold [ON].

2. Press [a].

3. Release [ON].

Then redefine the variable to remove the circular definition.

If you don’t find an answer to your question, you can contact our
Calculator Technical Support department, using the address or phone
number listed on the inside back cover.

Batteries

The HP-28S is powered by three alkaline batteries. A fresh set of bat-
teries typically will provide approximately six months to one year of
use. However, expected battery life depends on how the calculator is
used.

Use only fresh N-cell alkaline batteries. Do not use rechargeable
batteries.

Low Power Indicator

When the low battery annunciator (§2J) comes on, the HP-28S can

continue operating for at least 10 hours. If the calculatoris turned off
when the annunciator first comes on, Continuous Memory will be
preserved for approximately one month.

286 A: Assistance, Batteries, and Service

Installing Batteries

If you have just purchased the HP-28S and are installing the batteries
for the first time, you can take as long as you'd like to complete these
procedures.

However, if you are replacing batteries, you should keep in mind that
there is a time limit for completing these procedures if you want to
preserve the information you have stored inside the calculator (Con-
tinuous Memory). Once the battery compartment is open, you must
replace the batteries and close the compartment within one minute to
prevent loss of Continuous Memory. Therefore, you should have the
new batteries readily at hand before opening the battery compart-
ment. Also, you must make sure the calculator is off during the entire
process of changing batteries.

To install batteries:

1. Have three fresh N-cell batteries readily at hand.

2. Open the calculator to expose the keyboard and display. If you
are replacing batteries, make sure the calculator is off. Do not
press until the entire procedure for changing batteries is com-
pleted. Changing batteries with the calculator on could erase the
contents of Continuous Memory.

3. Hold the calculator with the battery compartment door facing
up. To remove the battery compartment door, slide it towards
the back of the calculator (away from the product label).

L i)

A: Assistance, Batteries, and Service 287

4.

7.

Tip the calculator to remove the old batteries. You may have to hit
the calculator against your hand to dislodge the last battery.

Insert three new batteries. Orient the batteries as shown on the
diagram on the back of the calculator. Be certain to observe the
polarities (+ and —) as shown.

Press the batteries into the compartment using the portion of the
battery door that extends beyond the metal contact plate. Press
down until the contact plate is lined up with the grooves on the
calculator case.

—

Slide the contact plate into the grooves. If necessary, use your finger
to push the batteries into the compartment so that the door can
slide over them. Pressing firmly, slide the door until it latches into
place.

O

e)

A: Assistance, Batteries, and Service

Calculator Maintenance

To clean the display, use a cloth slightly moistened with water. Avoid
getting the calculator wet.

Do not lubricate the hinge.

Environmental Limits

In order to maintain product reliability, you should observe the fol-
lowing temperature and humidity limits of the HP-28S:

B® Operating temperature: 0° to 45°C (32° to 113°F).

B Storage temperature: —20° to 65°C (—4° to 149°F).

B Operating and storage humidity: 90%relative humidity at 40°C
(104°F) maximum.

Determining If the Calculator Requires
Service

Use these guidelines to determine whether the calculator is function-
ing properly. If the calculator does require service, see “Limited One-
Year Warranty” on page 291 and “If the Calculator Requires Service”
on page 293.

If nothing appears in the display when you press [ON]:

1. Check the display contrast.

a. Press and hold [ON].

b. Press several times.

Cc. Release [ON].

d If the display remains blank, press and repeat steps a,
b, and c.

A: Assistance, Batteries, and Service 289

3.

Change the batteries, as described on page 286.

If steps 1 and 2 don’t restore the calculator, it requires service.
See “Limited One-Year Warranty” on page 291 and “If the Cal-
culator Requires Service” on page 293.

If the display is visible, but nothing happens when you press

keys:

1. Perform a System Halt.

a. Press and hold [ON].

b. Press [a].

Cc. Release [ON].

If the calculator is still unresponsive, perform a Memory Reset.

a. Press and hold [ON].

b. Press and hold and [»].

C. Release and [»].

d. Release [ON].

If steps 1 and 2 fail to restore the calculator, it requires service.
See “Limited One-Year Warranty” on page 291 and “If the Cal-
culator Requires Service” on page 293.

The Repeating Test

If the calculator works, but you think it’s not working

properly:

1.

290

If you have a printer, turn it on. During the test the calculator
prints numbers that are helpfulif the calculator requires service.

Start the repeating test.

a. Press and hold [ON].

b. Press [d].

Cc. Release [ON].

A: Assistance, Batteries, and Service

The repeating test proceeds automatically. (If the test doesn’t
proceed, you probably pressed [ON](¥] by mistake. This starts a
different test, used at the factory, that requires input from the
keyboard. Quit this self-test by executing a System Halt, de-
scribed in step 4 below, and then start the correct repeating test.)

3. Watch for the test message. The test shows horizontal and verti-
cal lines, a blank display, a random pattern, and then it displays
the result of the test.

B® The message O0K-28S indicates that the calculator passed the
test.

B® A message such as 1 FAIL indicates that the calculator failed
the test. The number indicates the nature of the failure. When
you send the calculator for service, include the failure number
and printed output (if available).

If you interrupt the repeating test by pressing a key, the test
returns a failure message because it didn’t expect any key-
strokes. Such a failure message doesn’t indicate a problem with
the calculator.

4. Halt the test by performing a System Halt.

a. Press and hold [ON].

b. Press [a].

Cc. Release [ON].

5. If the test returns a failure message, and you didn’t cause the fail-
ure by interrupting the test, the calculator requires service. See
“Limited One-Year Warranty” below and “If the Calculator Re-
quires Service” on page 293.

Limited One-Year Warranty

What Is Covered

The calculator (except for the batteries, or damage caused by the bat-
teries) is warranted by Hewlett-Packard against defects in materials and
workmanship for one year from the date of original purchase. If you sell
your unit or give it as a gift, the warranty is automatically transferred
to the new owner and remains in effect for the original one-year

A: Assistance, Batteries, and Service 291

period. During the warranty period, we will repair or, at our option,
replace at no charge a product that proves to be defective, provided
you return the product, shipping prepaid, to a Hewlett-Packard ser-
vice center. (Replacement may be with a newer model of equivalent
or better functionality.)

This warranty gives you specific legal rights, and you may also have
other rights that vary from state to state, province to province, or
country to country.

What Is Not Covered

Batteries, and damage caused by the batteries, are not covered by the
Hewlett-Packard warranty. Check with the battery manufacturer about
battery and battery leakage warranties.

This warranty does not apply if the product has been damaged by
accident or misuse or as the result of service or modification by other
than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a
product is your exclusive remedy. ANY OTHER IMPLIED WARRANTY
OF MERCHANTABILITY OR FITNESS IS LIMITED TO THE ONE-YEAR

DURATION OF THIS WRITTEN WARRANTY. Some states, provinces,

or countries do not allow limitations on how long an implied war-
ranty lasts, so the above limitation may not apply to you. IN NO
EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR

CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do
not allow the exclusion or limitation of incidental or consequential
damages, so the above limitation or exclusion may not apply to you.

Products are sold on the basis of specifications applicable at the time
of manufacture. Hewlett-Packard shall have no obligation to modify
or update products once sold.

292 A: Assistance, Batteries, and Service

Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not
affect the statutory rights of a consumer. In relation to such transac-
tions, the rights and obligations of Seller and Buyer shall be
determined by statute.

If the Calculator Requires Service

Hewlett-Packard maintains service centers in many countries. These
centers will repair a calculator or replace it (with an equivalent or
newer model), whetherit is under warranty or not. There is a charge
for service after the warranty period. Calculators normally are
serviced and reshipped within 5 working days of receipt.

Obtaining Service

HB In the United States: Send the calculator to the Corvallis Service

Center listed on the inside of the back cover.

® In Europe: Contact your HP sales office or dealer or HP’s Euro-
pean headquarters for the location of the nearest service center. Do
not ship the calculator for service without first contacting a Hewlett-
Packard office.

Hewlett-Packard S.A.

150, Route du Nant-d’Avril

P.O. Box

CH 1217 Meyrin 2
Geneva, Switzerland

Telephone: (022) 780 81 11

= In other countries: Contact your HP sales office or dealer or
write to the Corvallis Service Center (listed on the inside of the back
cover) for the location of other service centers. If local service is
unavailable, you can ship the calculator to the Corvallis Service
Centerfor repair.

All shipping, reimportation arrangements, and customs costs are
your responsibility.

A: Assistance, Batteries, and Service 293

Service Charge

There is a standard repair charge for out-of-warranty service. The
Corvallis Service Center (listed on the inside of the back cover) can tell
you how much this charge is. The full charge is subject to the customer’s
local sales or value-added tax wherever applicable.

Calculator products damaged by accident or misuse are not covered
by the fixed service charges. In these cases, charges are individually
determined based on time and material.

Shipping Instructions

If your calculator requires service, ship it to the nearest authorized
service center or collection point. (You must pay the shipping charges
for delivery to the service center, whether or not the calculator is un-
der warranty.) Be sure to:

B Include your return address and description of the problem.

® Include proof of purchase date if the warranty has not expired.

® Include a purchase order, check, or credit card number plus expira-
tion date (VISA or MasterCard) to cover the standard repair charge.

® Ship the calculator in adequate protective packaging to prevent
damage. Such damage is not covered by the warranty, so we rec-
ommend that you insure the shipment.

B Pay the shipping charges for delivery to the Hewlett-Packard ser-
vice center, whether or not the calculator is under warranty.

Warranty on Service

Service is warranted against defects in materials and workmanship for
90 days from the date of service.

294 A: Assistance, Batteries, and Service

Service Agreements

In the U.S., a support agreement is available for repair and service.
Refer to the form that was wrapped with the manual. For additional
information, contact the Calculator Service Center (see the inside of
the back cover).

Regulatory Information

Radio Frequency Interference

U.S.A. The HP-28S generates and uses radio frequency energy and
may interfere with radio and television reception. The calculator com-
plies with the limits for a Class B computing device as specified in
Subpart J of Part 15 of FCC Rules, which provide reasonable protec-
tion against such interference in a residential installation. In the
unlikely event that there is interference to radio or television reception
(which can be determined by turning the HP-28S off and on or by
removing the batteries), try:

B® Reorienting the receiving antenna.

B® Relocating the calculator with respect to the receiver.

For more information, consult your dealer, an experienced
radio/television technician, or the following booklet, prepared by the
Federal Communications Commission: How to Identify and Resolve Ra-
dio-TV Interference Problems. This booklet is available from the U.S.
Government Printing Office, Washington, D.C. 20402, Stock Number
004-000-00345-4. At the first printing of this manual, the telephone
number was (202) 783-3238.

West Germany. The HP-28S and the HP 82240A printer comply
with VFG 1046/84, VDE 0871B, and similar non-interference
standards.

If you use equipment that is not authorized by Hewlett-Packard, that
system configuration has to comply with the requirements of Para-
graph 2 of the German Federal Gazette, Order (VFG) 1046/84, dated
December 14, 1984.

A: Assistance, Batteries, and Service 295

Notes for HP RPN

Calculator Users

Starting with the HP-35 in 1972, Hewlett-Packard has developed a
series of handheld scientific and business calculators based upon the
RPN stack interface. Although there are many differences in the ca-
pabilities and applications of these various calculators, they all share a
common implementation of the basic stack interface, which makes it
easy for a user accustomed to one calculator to learn to use any of the
others.

The HP-28S also uses a stack and RPN logic as the central themes of
its user interface. However, the four-level stack and fixed register
structure of the previous calculators is inadequate to support the mul-
tiple object types and symbolic mathematical capability of the HP-
28S. Thus while the HP-28S is a natural evolution of the “original”
RPN interface, there are sufficient differences between the HP-285
and its predecessors to require a little “getting used to” if you are ac-
customed to other RPN calculators. In this appendix, we will highlight
the major differences.

The Dynamic Stack

The most dramatic difference in the basic interface of the HP-28S
compared with previous HP RPN calculators is the size of the stack.
The other calculators feature a fixed, four-level stack consisting of the
X-, Y-, Z- and T-registers, augmented by a single LAST X, or L-regis-
ter. This stack is always “full’—even when you “clear” the stack, all
you are doing is filling the stack with zeros.

296 B: Notes for HP RPN Calculator Users

The HP-28S has no fixed size to its stack. As you enter new objects
onto the stack, new levels are dynamically created as they are needed.
When you remove objects from the stack, the stack shrinks, even to
the point where the stack is empty. Thus the HP-28S can generate a
Too Few Arguments error that previous HP RPN calculators could
not.

The dynamic versus fixed stack implementation gives rise to the fol-
lowing specific differences between the HP-28S and fixed-stack
calculators:

Numbered levels. The indefinite size of the HP-28S stack makes the
XY Z T stack level names inappropriate—instead, the levels are num-
bered. Thus level 1 is analogous to the X-register, 2 to Y, 3 to Z, and 4
to T. The key labels 1/x and x? were preserved on the HP-28S for the
sake of familiarity—they make the keys more visible than their actual
command names INV and SQ, respectively. However, the RPN fix-
ture X<>Y has been renamed SWAP on the HP-28S.

Stack Manipulation. The HP-28S requires a more general set of
stack manipulation commands than the fixed-stack calculators. Rt and
R4, for example, are replaced by ROLL and ROLLD, respectively,
each of which require an additional argument to specify how many
stack levels to roll. The STACK menu contains several stack manipu-
lation commands that do not exist on the fixed-stack calculators.

No Automatic Replication of the T-register. On fixed-stack calcu-

lators, the contents of the T-register are duplicated into the Z-register
whenever the stack “drops” (that is, when a number is removed from

the stack). This provides a convenient means for constant multiplica-
tion—you can fill the stack with copies of a constant, then multiplyit
by a series of numbers by entering each number, pressing [x], then

after you have recorded each result. You can’t do this on the
HP-285—butit is easy to create a program of the form

« 12345 % » 'MULT' STO

where 12345 represents a typical constant. Then all you have to do is
press [USER], enter a number and press 'HULT , enter a new number
and press ‘MULT again, and so on, to perform constant multiplication.
You can leave successive results on the stack.

B: Notes for HP RPN Calculator Users 297

Stack Memory. A dynamic stack has the advantage that you can use
as many levels as you need for any calculation, without worrying
aboutlosing objects “off the top” as you enter new ones. This also has
the disadvantage that you can tie up a significant amount of memory
with old objects, if you leave them on the stack after you are finished
with a calculation. With the HP-28S, you should get in the habit of
discarding unneeded objects from the stack.

DROP Versus CLX. In fixed-stack calculators, CLX means “replace
the contents of the X-register with 0, and disable stack lift” (see be-
low). Its primary purpose is to throw away an old number, prior to
replacing it with a new one—but you can also use it as a means to
enter 0. On the HP-28S, CLX is replaced by DROP, which does what

its name implies—it drops the object in level 1 from the stack, and the
rest of the stack drops down to fill in. No extraneous 0 is entered.
Similarly, CLEAR drops all objects from the stack, instead of replacing
them with zeros as does its fixed-stack counterpart CLST (CLEAR
STACK).

Stack-Lift Disable and ENTER

Certain commands on fixed-stack calculators (ENTERt, CLX, Z+,
2—) exhibit a peculiar feature called stack-lift disable. That is, after
any of these commands is executed, the next number entered onto the
stack replaces the current contents of the X-register, rather than push-
ing it into the Y-register. This feature is entirely absent on the HP-
28S. New objects entered onto the stack always push the previous
stack objects up to higher levels.

The X-register and ENTER on fixed-stack calculators play dual roles
that are derived more from the single-line display of the calculators
than from the stack structure. The X-register acts as an input register
as well as an ordinary stack register—when you key in a number, the
digits are created in the X-register, until a non-digit key terminates
entry. The key is provided for separating two consecutive
number entries. But in addition to terminating digit entry, the

key also copies the contents of the X-register into Y, and dis-
ables stack lift.

298 B: Notes for HP RPN Calculator Users

On the HP-28S each of these dual roles is separated—there is no
stack lift disable. A command line completely distinct from level 1
(the “X-register”) is used for command entry. ENTER is used only to
process the contents of the command line—it does not duplicate the
contents of level 1. Note, however, that the key will execute
DUP (which copies level 1 into level 2) if no command line is present.
This feature of is provided partly for the sake of similarity to
previous calculators.

Prefix Versus Postfix

HP-28S commands use a strict postfix syntax. That is, all commands
using arguments require that those arguments be present on the stack
before the command is executed. This departs from the convention
used by previous RPN calculators, in which arguments specifying a
register number, a flag number, and so on, are not entered on the

stack but are entered after the command itself—for example, STO 25,
TONE 1, CF 03, and so on. This latter method has the advantage of

saving a stack level, but the disadvantage of requiring an inflexible
format—STO on the HP-41, for example, must always be followed by
a two-digit register number.

Similar operations of the HP-28S are closer in style to indirect opera-
tions on the fixed-stack calculators, where you can use an i-register (or
any register, in the case of the HP-41) to specify the register, flag
number, and so on, addressed by a command. You can view STO,
RCL, and so on, on the HP-28S as using level 1 as an i-register. RCL,

for example, means “recall the contents of the variable (‘register’)
named in level 1’— equivalent to RCL IND X on the HP-41.

You should be aware also that most HP-28S commands remove their
arguments from the stack. If you execute, for example, 123 ‘X’ STO,
the 123 and the ‘X’ disappear from the stack. Without this behavior,
the stack would be overloaded with “old” arguments. If you want to
keep the 123 on the stack, you should execute 123 DUP "X" STO.

B: Notes for HP RPN Calculator Users 299

Registers Versus Variables

Fixed-stack calculators can deal efficiently only with real, floating-
point numbers for which the fixed, seven-byte register structure of the
stack and numbered data register memory is suitable (the HP-41 in-
troduced a primitive alpha data object constrained to the seven-byte
format). The HP-28S replaces numbered data registers with named
variables. Variables, in addition to having a flexible structure so that
they can accomodate different object types, have names that can help
you remember their contents more readily than can register numbers.

If you want to duplicate numbered registers on the HP-28S, you can
use a vector:

{ 58 » 8 CON 'REG' STO

creates a vector with 50 elements initialized to 0;

« 'REG' SWAP GET » 'HRCL' STO

creates a program NRCL that recalls the nth element from the vector,
where 7 is a number in level 1;

« 'REG' SWAP ROT PUT » 'NSTO' STO

creates the analogous store program NSTO.

300 B: Notes for HP RPN Calculator Users

LASTX Versus LAST

The LASTX command on fixed-stack calculators returns the contents
of the LASTX (or L) register, which contains the last value used from
the X-register. This concept is generalized on the HP-28S to the LAST
command, which returns the last one, two, or three arguments taken
from the stack by a command (no command uses more than three
arguments). Thus 1 2 + LASTX returns 3 and 2 to the stack on a
fixed-stack calculator, but 1 2 + LAST returns 3, 1, and 2 to the stack
on the HP-28S.

Although the HP-28S LAST is more flexible than its LASTX predeces-
sor, you should keep in mind that more HP-28S5 commands use
arguments from the stack than their fixed-stack calculator counter-
parts. This means that the LAST arguments are updated more
frequently, and even such commands as DROP or ROLL will replace
the LAST arguments.

Remember also that UNDO can replace the entire stack, which for
simple error recovery may be preferable to LAST.

B: Notes for HP RPN Calculator Users 301

Notes for Algebraic
Calculator Users

Many calculators, including the great majority of simple, “four-func-
tion” calculators, use variations of the algebraic calculator interface.

The name derives from the feature that the keystroke sequences used
for simple calculations closely parallel the way in which the calcula-
tion is specified in algebraic expressions “on paper.” Thatis, to
evaluate 1 + 2 — 3, you press 2] [=] (B&B) [=].

This interface works nicely for expressions containing numbers and
operators—functions like +, —, X, and / that are written in infix
notation between their arguments. More sophisticated calculators al-
low you to enter parentheses to specify precedence (the order of
operations). However, the introduction of prefix functions, like SIN,
LOG, and so on, leads to two different variations:

® Ordinary algebraic calculators use a combination of styles—infix
operators remain infix, but prefix functions are entered in a postfix
style (like RPN calculators). For example, 1 + SIN(23) is entered as

(1 (2) (8) (sIN] [=]. This approach has the advantages of being
able to show intermediate results, and of preserving single-key
evaluations of prefix functions (that is, without parentheses), but
the disadvantage of losing the correspondence with ordinary math-
ematical notation that is the primary advantage of the algebraic
interface.

302 C: Notes for Algebraic Calculator Users

® “Direct formula entry” calculators, and BASIC language computers
that have an immediate-execute mode, allow you to key in an en-
tire expression in its ordinary algebraic form, then compute the
result when you press a termination key (variously labeled [ENTER],
[ENDLINE], [RETURN], and so on). This approach has the advantage
of preserving the correspondence between written expressions and
keystrokes, but usually the disadvantage of providing no intermedi-
ate results. (The HP-71B CALC mode is an exception.) You have to
know the full form of an expression before you start to enter it—it
is difficult to “work your way through a problem,” varying the cal-
culation according to intermediate results.

Getting Used to the HP-28S

HP-28S operating logic is based on a mathematical logic known as
“Polish Notation,” developed by the Polish logician Jan kukasiewicz
(Wookashye'veech) (1878-1956). Conventional algebraic notation
places arithmetic operators between the relevant numbers or variables
when evaluating algebraic expressions. kukasiewicz’s notation speci-
fies the operators before the variables. A variation of this logic
specifies the operators after the variables—this is termed “Reverse Pol-
ish Notation,” or “‘RPN” for short.

The basic idea of RPN is that you enter numbers or other objects into
the calculatorfirst, then execute a command that acts on those entries
(called “arguments”). The “stack” is just the sequence of objects wait-
ing to be used. Most commands return their results to the stack,
where they can then be used as arguments for subsequent operations.

The HP-28S uses an RPN stack interface because it provides the nec-
essary flexibility to support the wide variety of HP-28S mathematical
capabilities in a uniform manner. All calculator operations, including
those that can not be expressed as algebraic expressions, are per-
formed in the same manner—arguments from the stack, results to the
stack.

C: Notes for Algebraic Calculator Users 303

Nevertheless, using the RPN stack for simple arithmetic is most likely
the biggest stumbling block for algebraic calculator users trying to
learn to use RPN calculators. RPN is very efficient, butit does require
you mentally to rearrange an expression before you can calculate re-
sults. But the HP-28S'’s capability of interpreting algebraic expressions
without translation should make the transition from algebraic calcu-
lator use more straightforward than has been possible on previous
RPN calculators. The four-line display can also help to take away
some of the mystery of the stack, by showing you the contents of up
to four levels at a time.

For the purpose of evaluating algebraic expressions, the HP-28S is es-
sentially a “direct formula entry” calculator. That is, to evaluate an
algebraic expression, all you have to do is precede it with a [*], key in
the expression in its algebraic form, including infix operators, prefix
functions, and parentheses, and then press to see the result.
You can use this method even for simple arithmetic:

(J) (1) [+] (2) (=) (8] [(evAL] returns 0.

Except for the preceding (*], these are the same keystrokes you would
use on a simple algebraic calculator, where you substitute for
(=].

J Don’t confuse the HP-28S [=] key with that found on alge-
braic calculators— on the HP-28S, [=] is used for the sole

Note purpose of creating algebraic equations (described in
“ALGEBRA”in the Reference Manual).

304 C: Notes for Algebraic Calculator Users

When you use the HP-28S as a “direct formula entry calculator,” each
result that you compute is retained on the stack, which takes on the
role of a “history stack.” This allows you to save old results indefi-
nitely for reuse later. It also allows you to break up large calculations
into smaller ones, keeping each partial result on the stack and then
combining the results when they are all available. (When carried to
the extreme, this is the essence of RPN arithmetic). The stack provides
a much easier-to-use and more powerful history stack than the single
“result” function available on algebraic or BASIC calculators.

A key feature of the HP-28S is that you really don’t need to concern
yourself over whether RPN logic is better or worse than algebraic
logic. You can choose the logic that is best suited for the problem at
hand, and intermix algebraic expressions with RPN manipulations.

C: Notes for Algebraic Calculator Users 305

This appendix shows the commands in each HP-28S menu. The
menus are listed in alphabetical order, from ALGEBRA to TRIG. For
detailed information about a menu, refer to the Dictionary in the Ref-
erence Manual. The Dictionary describes all menus, listed in
alphabetical order. For detailed information about a particular com-
mand, refer to the Operation Index at the back of the Reference
Manual. The Operation Index lists all commands in alphabetical order
and gives a page reference to the command's description in the
Dictionary.

This appendix doesn’t include the menus of the interactive operations
offered by CATALOG, FORM, the Solver, and UNITS.

8 CATALOG is described in chapter 22 and demonstrated on page
31.

® FORM is described in “Using FORM” on page 112. For details, see
“ALGEBRA (FORM)” in the Reference Manual.

B® The Solver is described in chapter 8, “The Solver,”. For details, see

“SOLVE” in the Reference Manual.

B® UNITS is described in “The UNITS Catalog” on page 141. For de-
tails, see “UNITS” in the Reference Manual.

For each menu in this appendix, the commands are grouped by rows
that appear in the display at one time. Pressing moves to the
next row, and pressing [J(PREV] moves to the previous row.

The column labeled “Command” is the name that appears in the dis-
play. The column labeled “Description” is a short description of the
command or its entire name. The column labeled “Page” refers to an
example, description, or mention of the command in this manual. For
commands without page references, see the Operation Index in the
Reference Manual.

306 D: Menu Map

ALGEBRA

Command Description Page

coLCT Collect terms 111

EXPAN Expand products 111

Row 1 SIZE Size

FORM Form algebraic expression 112

0oBSUB Object substitute

EXSUB Expression substitute

TAYLR Taylor series

1s0L Isolate 112

Row 2 QUAD Quadratic form

SHOW Show variable

OBGET Object get

EXGET Expression get

D: Menu Map 307

ARRAY

Command Description Page

*ARRY Stack-to-array 275

ARRY> Array-to-stack 274

Row 1 PUT Put element

GET Get element

PUTI Put and increment index

GETI Get and increment index

SIZE Size 274

RDM Redimension

Row 2 TRH Transpose 264

CON Constant array

1DN Identity matrix

RSD Residual

CROSS Cross product 126

DoT Dot product 126

Row 3 DET Determinant 128

ABS Absolute value

RNRM Row norm

CNRM Column norm

R>C Real-to-complex

CAR Complex-to-real

Row 4 RE Real part

mM Imaginary part

CONJ Conjugate

NEG Negate

308 D: Menu Map

BINARY

Command Description Page

DEC Decimal mode 140

HEX Hexadecimal mode 139

Row 1 ocT Octal mode 140

BIN Binary mode 140

STWS Store wordsize 139

RCHS Recall wordsize

RL Rotate left

RR Rotate right

Row 2 RLE Rotate left byte

RRB Rotate right byte

RB Real-to-binary 261

BR Binary-to-real

SL Shift left

SR Shift right

Row 3 SLB Shift left byte

SRB Shift right byte

ASR Arithmetic shift right

AND And

OR Or

Row 4 KOR Exclusive or

NOT Not
D: Menu Map 309

COMPLEX

Command Description Page

RC Real-to-complex 83

CeR Complex-to-real 83

Row 1 RE Real part 83

IM Imaginary part 84

CONJ Conjugate 84

SIGH Sign 84

R3P Rectangular-to-polar 86

P3R Polar-to-rectangular 85

Row 2 ABS Absolute value 85

NEG Negate 85

ARG Argument 85

310

LIST

Command

Description Page

SLIST Stack-to-list 181

LIST» List-to-stack 181

Row 1 PUT Put element 271

GET Get element 237

PUTI Put and increment index 271

GETI Get and increment index 271

POS Position 237

SUB Subset 276

Row 2 SIZE Size 271

D: Menu Map 311

LOGS

Command Description Page

LOG Common logarithm 78

ALOG Common antilogarithm 78

Row 1 LN Natural logarithm 78

EXP Exponential 78

LNP1 Natural log of 1 + x 78

EXPM Exponential minus 1 78

SINH Hyperbolic sine 78

ASINH Inverse hyperbolic sine 78

Row 2 COSH Hyperbolic cosine 78

ACOSH Inverse hyperbolic cosine 78

TANH Hyperbolic tangent 78

ATAMH Inverse hyperbolic tangent 78

312 D: Menu Map

MEMORY

Command Description Page

MEM Available memory 188

MENU Create custom menu 195

Row 1 ORDER Order variables 184

PATH Current path 67

HOME Select HOME directory 71

CRDIR Create directory 66

VARS Variables in current directory 184

CLUSR Clear current directory 184

Row 2 |

D: Menu Map 313

MODE

Command Description Page

3TD Standard number display format 38

FIX Fixed number display format 38

Row 1 5CI Scientific number display format 38

ENG Engineering number display format 38

DEG Degrees angle mode 74

RAD Radians angle mode 74

CMD Enables or disables COMMAND 210

UNDO Enables or disables UNDO 211

Row 2 LAST Enables or disables LAST 21

ML Enables or disables multi-line 208

RDX, Enables or disables RDX, 37

PRMD Prints and displays modes

314 D: Menu Map

PLOT

Command Description Page

STER Store equation 90

RCE® Recall equation

Row 1 PMIN Plot minima 95

PMAY Plot maxima 95

IHDEP Independent

DRAW Draw 90

PPAR Recall plot parameters 90

RES Resolution

Row 2 AXES Axes

CENTR Center 94

¥W Multiply width

*H Multiply height 93

STO0Z Store sigma

RCLZ Recall sigma

Row 3 COLZ Sigma columns

SCLZ Scale sigma

DRHZ Draw sigma

CLLCD Clear LCD

DGTIZ Digitize

Row 4 PIXEL Pixel

DRAX Draw axes

CLMF Clear message flag

PRLCD Print LCD
D: Menu Map 315

PRINT

Command Description Page

PR1 Print level 1 151

PRST Print stack 1562

Row 1 PRVAR Print variable 1562

PRLCD Print LCD 149

CR Carriage right

TRAC Enable or disable Trace mode 150

PRSTC Print stack (compact)

PRUSR Print user variables

Row 2 PRMD Print modes

316 D: Menu Map

PROGRAM BRANCH

Command Description Page

IF Begin IF clause 226

IFERR Begin IF ERROR clause 227

Row 1 THEN Begin THEN clause 226

ELSE Begin ELSE clause 226

END End program structure 226

START Begin definite loop 228

FOR Begin definite loop 229

Row 2 NEXT End definite loop 228

STEP End definite loop 230

IFT If-Then command 227

IFTE If-Then-Else function 226

Do Define indefinite loop 231

UNTI Define indefinite loop 231

Row 3 END End program structure 231

WHIL Define indefinite loop 232

REPER Define indefinite loop 232

END End program structure 232
D: Menu Map 317

PROGRAM CONTROL

Command Description Page

SST Single step 250

HALT Suspend program 234

Row 1 ABORT Abort program

KILL Abort suspended programs 250

WAIT Pause program 234

KEY Return key string 234

BEEP Beep 234

CLLCD Clear LCD 234

Row 2 DISP Display 234

CLMF Clear message flag 234

ERRN Error number

ERRM Error message

318 D: Menu Map

PROGRAM TEST

Command Description Page

SF Set flag 205

CF Clear flag 205

Row 1 Fs? Flag set? 225

FC? Flag clear?

Fs?C Flag set? Clear

FC?C Flag clear? Clear

AND And

OR Or

Row 2 XOR Exclusive or

NOT Not 232

SAME Same 231

mw Equal 222

STOF Store flags 156

RCLF Recall flags 156

Row 3 TYPE Type 232

D: Menu Map 319

REAL

 ~ — Percent of total

Command Description Page

NEG Negate 78

FACT Factorial (gamma) 78

Row 1 RAND Random number 78

RDZ Randomize 78

MAXR Maximum real 79

MINR Minimum real 79

ABS Absolute value

SIGH Sign

Row 2 MANT Mantissa

XPON Exponent

IP Integer part

FP Fractional part

Row 3 FLOOR Floor 272

CEIL Ceiling 272

RND Round

MAX Maximum

MIN Minimum

Row 4 MOD Modulo

320 D: Menu Map

SOLVE

Command Description Page

STE® Store equation 64

RCEQ Recall equation

Row 1 SOLVR Solver variables menu 102

1S0L Isolate 110

RUAD Quadratic form 108

SHOW Show variable

ROOT Rootfinder

Row 2

D: Menu Map 321

STACK

Command Description Page

DUP Duplicate 178

OVER Over 178

Row 1 DUP2 Duplicate two objects 178

DROP2 Drop two objects 179

ROT Rotate 178

LIST» List-to-stack 181

ROLLD Roll down 178

PICK Pick 178

Row 2 DUPHN Duplicate n objects 178

DROPN Drop n objects 179

DEPTH Depth 181

SLIST Stack-to-list 181

322

STAT

Command Description Page

z+ Sigma plus 132

2- Sigma minus 133

Row 1 NZ Sigma N 134

CLZ Clear sigma 132

STOZ Store sigma 275

RCLZ Recall sigma 264

TOT Total

MEAN Mean 134

Row 2 SDEV Standard deviation 135

VAR Variance 135

MAKE Maximum sigma

MINZ Minimum sigma

coLZz Sigma columns 136

CORR Correlation 136

Row 3 cov Covariance 136

LR Linear regression 137

PREDV Predicted value 137

UuTPC Upper chi-square distribution

UTPF Upper Snedecor’s f distribution

Row 4 UTPN Upper normal distribution

UTPT Upper Student's t distribution

COMB Combinations

FERM Permutations

D: Menu Map 323

STORE

Command Description Page

STO+ Store plus

STO- Store minus

Row 1 STO% Store times

STO, Store divide

SNEG Store negate

SINY Store invert

SCONJ Store conjugate

Row 2

324 D: Menu Map

STRING

Command Description Page

+STR Object-to-string 258

STR» String-to-object 175

Row 1 CHR Character 156

HUM Character number 156

+LCD String-to-LCD 157

LCD» LCD-to-string 157

POS Position

SUB Subset

Row 2 SIZE Size 258

DISP Display 156

D: Menu Map 325

TRIG

Command Description Page

SIN Sine 74

ASIN Arc sine 74

Row 1 cos Cosine 74

ACOS Arc cosine 74

TAN Tangent 74

ATAN Arc tangent 74

P3R Polar-to-rectangular 76

RP Rectangular-to-polar 76

Row 2 RC Real-to-complex 76

CR Complex-to-real 76

ARG Argument 76

+HMS Decimal to hours-minutes-seconds 76

HMS=» Hours-minutes-seconds to decimal 76

Row 3 HMS + Hours-minutes-seconds plus 76

HMS~- Hours-minutes-seconds minus 76

DR Degrees-to-radians 77

R2D Radians-to-degrees 77

326 D: Menu Map

Key Index

This index describes the actions of the keys on the calculator key-
board. First is an alphabetical index of the keys on the left-hand
keyboard, followed by an alphabetical index of the keys on the right-
hand keyboard. Last is an index of the keys on the cursor menu (the
white labels above the top row of the right-hand keyboard).

This index includes shifted keys such as [ARRAY] and WB[OFF]. It
doesn’t include character keys such as through and [0] through
[9], which always write a character in the command line. (Other char-
acter keys include delimiters such as [(J, operators such as [=], and
symbolic constants such as [ll(~]. These characters have special mean-
ing to the calculator, but their keys are simply character keys.) If you
don’t find a key listed in this index, it is a character key.

For each key, there is a brief description ofits action and a page refer-
ence. If the key isn’t mentioned in this manual, or for additional
information about any key, look in the Operation Index at the back of
the Reference Manual.

Key Index 327

Left-hand Keyboard

Key Description Page

B(ALGBRA] Selects the ALGEBRA menu. 110

B(ARRAY Selects the ARRAY menu. 124

B(BINARY] Selects the BINARY menu. 138

B(BRANCH] Selects the PROGRAM BRANCH menu. 222

BICATALOG] Starts the command catalog. 196

B(compLx] Selects the COMPLEX menu. 83

B(ConTRL] Selects the PROGRAM CONTROL menu. 234

Switches lower-case mode on or off. 168

Bust) Selects the LIST menu. 102

B(MENUS] Switches Menu Lock on or off. 192

B(MEMORY] Selects the MEMORY menu. 182

B(PRINT] Selects the PRINT menu. 149

B(REAL] Selects the REAL menu. 78

B(sTACK] Selects the STACK menu. 176

B(sT1AT) Selects the STAT menu. 131

B(sToRE] Selects the STORE menu. 191

B(sTRING] Selects the STRING menu. 156

B(EsT) Selects the PROGRAM TEST menu. 225

B(uniTS] Selects the UNITS catalog. 141

(a] Switches entry mode. 171

328 Key Index

Right-hand Keyboard

Key Description Page

((ON]) Aborts program execution; clears the command 216
line; exits catalogs, FORM, plot displays.

CHS Changes the sign of a number in the command 168

line or executes NEG.

EB(CLEAR] Clears the stack. 179

@(COMMAND] Moves an entry from the command stack to the 174
command line.

Bi(conT] Continues a halted program. 235

B(CONVERT] Performs a unit conversion. 143

Blcustom] Seclects the last-displayed custom menu. 192

B(c/0x] Derivative. 117

Drops one object from the stack. 179

B(EniT) Copies the object in level 1 to the command line 173
for editing.

EEX Enters exponent in command line. 168

Parses and evaluates the command line. 173

Evaluates an object. 118

(LAST) Returns last arguments. 179

B(L.oGs] Selects the LOGS menu. 77

Bi(moDE] Selects the MODE menu. 36

Displays the next row of menu labels. 192

((ATIN]) Turns the calculator on; aborts program execu- 216
tion; clears the command line; exits catalogs,

FORM, plot displays.

Bi(oFF) Turns the calculator off. 20

Bi(rLoT] Selects the PLOT menu. 89

B(PRrReEV] Displays the previous row of menu labels. 192

Key Index 329

Key Description Page

B(PuURGE] Purges one or more variables. 183

B(RcL] Recalls the contents of a variable, unevaluated. 183

B(RoLL] Moves the level n+1 object to level 1. 178

Selects the SOLVE menu. 99

STO Stores an object in a variable. 183

B(swap Swaps the objects in levels 1 and 2. 178

Selects the TRIG menu. 74

B(unDo] Replaces the stack contents. 180

Selects the USER menu. 49

B(ViEW: Moves the display window up one line. 177

B(ViEW:] Moves the display window down one line. 177

B(visiT] Copies an object to the command line for editing. 173

(Delimiter for names and symbolic expressions. 51

B(x?) Squares a number or matrix. 40

Bx] Inverse (reciprocal). 40

Adds two objects. 41

=) Subtracts two objects. 4

(x] Multiplies two objects. 41

(+] Divides two objects. 42

B=] Percent. 43

(CH) Percent change. 43

BB] Raises a number to a power. 42

B= Takes the square root. 40

Bl) Definite or indefinite integral. 120

B Shift key. 29

(«#] Selects cursor menu or restores last menu. 168

(¢] Backspace. 168

B(>NuM] Forces a numerical result. 75

330 Key Index

Cursor Menu

The cursor menu is labeled in white above the menu keys (the top
row of the right-hand keyboard). The cursor menu is active when the
command line is present and no menu labels are displayed. To select
the cursor menu when menu labels are displayed, press («#*]. To re-
store the previous menu, press [+] a second time.

Key Description Page

Switches between Replace and Insert modes. 167

Bins] Deletes all characters to the left of the cursor. 168

DEL Deletes character at cursor. 167

BiDEL] Deletes character at cursor and all characters to 168

the right.

(a] Moves cursor up. 167

Ba) Moves cursor up all the way. 168

(v] Moves cursor down. 167

BB) Moves cursor down all the way. 168

Kl Moves cursor left. 167

Bd Moves cursorleft all the way. 168

>) Moves cursorright. 167

BD) Moves cursor right all the way. 168

Key Index 331

Subject Index

Page numbers in bold type indicate primary references; page numbers
in regular type indicate secondary references.

A
Algebraic calculators, 302-305
Algebraic entry mode, 34, 51,

170-172
Algebraic objects, 161-163

evaluating, 202-203
Alpha entry mode, 55, 170-172
Analytic function, 164-165

Angle mode, 73, 205-206

Annunciators, 27, 29

Arguments
defined, 25
order of, 41, 43

usage, 197
Array elements, 272
Arrays

in algebraic syntax, 157
defined, 124
minimal memory usage, 191

Associating terms, 114-115
Attention, 216

Auto CR mode, 213
Automatic off, 20
Available memory, 188

332 Subject Index

Backspace, 27, 30

Backtrack, 47

Base for binary integers, 139

Base marker, 139

Batteries, 286-288

Battery door, location, 19

BDISP program, 259-262

Beeper mode, 206
Binary integer wordsize, 210

Binary integers, 156
BOXR program, 245-246
BOXS program, 241-244

Bubble sort, 270

C
Cancel system operation, 215
Case, opening and closing, 18
Catalog

of commands, 196-197
of units, 141-143

Chain calcuations, 45
Chain rule, 118-119

Change sign, 39
Changing

directories, 275-279
a variable, 51

Classes of objects, 199
Clause, 225-226

Clearing

all memory, 20

the stack, 44

statistical data, 132

Closing the case, 18

Collecting an algebraic, 111, 256
Comma, 169

Commands, 164-165

catalog of, 26, 29, 31-33

Command line, 22, 166

recovering, 174
Commuting terms, 113-114
Complex numbers, 82, 155
Conditional structures, 223-228

Constants mode, 206-207

Continuous Memory, 20
Contrast, display, 21, 216
Copying stack objects, 178
Corners of a plot, 94
Correcting errors, 47

Correlation, 136

COT program, 80-81
Cotangent, 80-81
Counter, 228-230, 260, 271, 274

Covariance, 136

Covariance matrix, 263

Creating
a directory, 183

a variable, 49, 54

Cross product, 126
Cubic feet conversion, 146

Current directory, 60, 184
Current equation, 90
Current path, 60, 184-185
Current statistics matrix, 132

Current status, 258

Cursor, indicating modes, 172
Cursor menu, 30, 69, 166-168

Custom input menu, 234-235

Custom menus, 192, 195, 276, 277

Custom user menu, 235

Darkening the display, 21
Data point, 132
Data-class objects, 199

Debugging programs, 250
Decimal places, 37

Decimal point, 36, 209

Default modes, 205

Definite loops, 228-230, 248, 260,
274

nested, 270-271

Degrees angle mode, 73
Degrees-minutes-seconds, 76

Delaying evaluation, 198
Delimiters, 26, 28, 169

Dependent data, 136

Determinant, 128

Diagnostics, 218-219

Differentiation, 117-120

Digitize, 93, 99

Directories, 183-187

benefits, 62, 66, 71, 183

changing, 275-279
creating, 60

Display, printing, 145, 216
Display contrast, 21
Dot product, 126
Dropping stack objects, 179

Editing, 69, 173

statistics data, 133

ENTER, 24, 173

Enter exponent, 39

Entry modes, 51, 169-172, 207

Equality test, 224
Equations, 162-163

evaluating, 203
plotting, 97
quadratic, 107
root of, 107

Subject Index 333

Error trap, 227-228, 259, 278

Estimates for Solver, 99, 102

Evaluating a variable, 50, 56

Evaluating an expression, using
Solver, 65

Evaluation, 198-199

Exceptions, mathematical, 211-212

EXCO program, 255-256
Expanding an algebraic, 111, 256
Exponent, 38

Exponential functions, 77-78

Expressions, 34, 161-162
evaluating, 202-203
evaluating using Solver, 65
from stack calculations, 59-60

zero of, 92, 98-100, 107

Extrema of a plot, 96

F
Feet per second conversion, 145

FIB1 program, 247

FIB2 program, 248-253
Fibonacci numbers, 246-249

Financial calculations, 103-106

Flags, 205, 225, 258

Foot units, 146

Force unit, 146

Formal variable, 200

Function, 164-165

evaluating, 203-204
one-number, 41

two-number, 41

Gallon conversion, 146

Gamma function, 78

Global names, 159

evaluating, 200-201

Global variables, 80, 182-183

Gram conversion, 147-148

Graphics strings, 157
G-+O program, 148

334 Subject Index

HOME directory, 60, 71
Hours-minutes-seconds, 76
Housekeeping, 190-191
HP RPN calculators, 296-301
HP Solve. See Solver
Hyperbolic functions, 77-78

Immediate entry mode, 170-172

Inch conversion, 144

Increment for counter, 230

Indefinite loops, 231-232, 254, 257

Independent data, 136
Infinite result, 211-212

Input menu, custom, 234-235
Insert mode, 70

Integer base, 209-210
Integration, 120-123
Inverse, 40

Inverting a matrix, 128

Isolating a variable, 109-116

J, K
KEY? program, 239
Keyboard, 26-27, 328-330

Keyboard test, 219

L
Last arguments, 179-180

Level 1, printing, 151

Levels, of the stack, 176

Lightening the display, 21
Linear equations, system of, 130

Linear regression, 137
Lists, 158, 276

elements of, 272

LMED program, 272-273

Loan calculations, 103-106

Local names, 159

evaluating, 200

Local variables, 80, 86, 147, 179,

222-223, 242, 259

evaluation of, 254

nested, 270

Logarithmic functions, 77-78
Loop structures, 228

Low memory, 188-190
Lowercase mode, 26, 28

Maintenance, 289

Mantissa, 38

Matrix, defined, 124

Matrix operations, 263
Maximum, of a expression, 100

Mean, 134

Median, defined, 272

MEDIAN program, 273-275

Memory, low, 188-190
Memory Reset, 20, 217
Menu keys, 27, 31

Menu labels, 27, 31

Menu Lock, 169

Merging terms, 115
Message, printing, 151
Miles per hour conversion, 145
Millimeter conversion, 144

Minimum, of a expression, 100

Modes, 205-214

indicated by cursor, 172
Moving stack objects, 178
MULTI program, 253-255
Multi-line mode, 208

Name-class objects, 199-201
Names, 159-160

quoted and unquoted, 57
Negation, 40, 79
Negative number, 39

Nested program structures, 233
definite loops, 270-271
local variable structures, 270
user functions, 245

Newline character, 169

Number display mode, 37, 209

Numerical integration, 122-123
Numerical result mode, 203-204

Numerical variable, 49

o
Object classes, 199
Object types, 26-29
Objects, 154
Off, automatic, 20
One-number functions, 40

Opening the case, 18
Operation, 164-165
Order of arguments, 41, 43

Ounce conversion, 147-148
Overflow, 212

O-G program, 147

PAD program, 257-258
Parent directory, 60, 183, 275
Percentages, 43
Performance, maximizing, 190-191

Period, 169
Pi, 74-75
Plotting, 89-97
Plotting parameters, 89
Polar coordinates, 84-88

Postfix notation, 25
Powers, 42

Predicted values, 137

Prefixed units, 144
PRESERVE program, 258-259
Principal value, 206
Printer port, location, 19

Printing a plot, 91
Procedure-class objects, 199,

201-204
Program structures, 161

evaluating, 201

Subject Index 335

Programs, 160-161

in algebraics, 263

as arguments, 254
evaluating, 201-202

Proposition, 162

PSUM program, 86-88
Purging

a directory, 187
a variable, 52

Q
Quadratic expressions and equations,

107

Quoted names, 57

Radians angle mode, 73
Radix mark, defined, 36

Random numbers, 78

Real numbers, 155

Recalling a variable, 50, 56
Reciprocal, 40

Recovery modes, 210-211

Recursion, 246-247, 249

RENAME program, 54-55
Renaming a variable, 52

Repeating test, 218
Reserved names, 159-160

Resetting memory, 20
Restoring the stack, 180

Results mode, 207

Root of an equation, 107

Roots, 42

RPN, 25

Running record, printing, 150

Ss
Scale of a plot, 91
Self-tests, 218-219

Separators, 169

Service, 293-295

Shift key, 27, 29

336 Subject Index

ZGET program, 265
2X2 program, 266
ZXY program, 267

2Y2 program, 266
Single-step execution, 250-253
Solver, 63-64, 98-109
SORT program, 270-272
Spacing of printed output, 214
Speed of printing, 213
Square, 40

Square root, 40

Stack, 176-181
Stack, 22, 272

clearing, 44
printing, 152

Stack diagram, defined, 240

Stack flags, 225

Stack levels, 27, 31

Stack logic, 25

Standard deviation, 135

Statistics parameters, 136, 263

Status, preserving, 258
Storing plot parameters, 96
Strings, 156-157, 258

Structured programming, 202, 241,

255
Subdirectory, 60, 183, 275
Subprograms, 260
SUMS program, 263-264
Symbolic constants, 163

Symbolic integration, 121
Symbolic result mode, 203
System Halt, 217

System of linear equations, 130

T
Taylor series, 120
Temperature conversion, 143-144

Test functions and commands, 224
Time value of money, 103-106
Trace printing, 150, 213
Translating a plot, 93
Transpose, 264
Trigonometric functions, 73-77

Two-number functions, 40
Types of objects, 26, 28

Underflow, 212
Unit catalog, 26, 29
Unit strings, 144-145
Unquoted names, 57
Usage of commands, 197
User flags, 225

User functions, 79-81, 161, 202, 242

nested, 245

User memory, 48
User menu, custom, 235

Vv
Variables, 48

creating, 49, 54
isolating, 109-116

printing, 152
purging, 52

Variance, 135

Vectors, defined, 124

Warranty, 291-293
Wordsize, 138-139

X,Y, Z
Zero of an expression, 92, 98-100,

107, 162

Subject Index 337

Contacting Hewlett-Packard

For Information About Using the Calculator. If you have
questions about how to use the calculator,first check the table of
contents, the subject index, and "Answers to Common Questions" in

appendix A.If you can’t find an answer in the manual, you can contact
the Calculator Support department:

Hewlett-Packard

Calculator Support
1000 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

(503) 757-2004
8:00 a.m.to 3:00 p.m. Pacific time

Monday through Friday

For Service. If your calculator doesn’t seem to work properly, refer
to appendix A for diagnostic instructions and information on obtaining
service. If you are in the United States and your calculator requires
service, mailit to the Corvallis Service Center:

Hewlett-Packard

Corvallis Service Center

1030 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

(503) 757-2002

If you are outside the United States, refer to appendix A for
information on locating the nearest service center.

Contents

Page 15

17

153

221

281

How To Use This Manual

Part 1: Fundamentals

GettingStarted « Doing Arithmetic « Using Variables
Repeating Calculations ¢ Real-Number Functions
Complex-Number Functions « Plotting « The Solver
Symbolic Solutions Calculus ¢ Vectors and Matrices
Statistics » Binary Arithmetic « Unit Conversion
Printing

Part 2: Summary of Calculator Features

Objects « Operations, Commands, and Functions

The Command Line « The Stack « Memory « Menus
Catalog of Commands « Evaluation « Modes
System Operations

Part 3: Programming

Program Structures « Interactive Programs
Programming Examples

Appendixes and Indexes

Assistance, Batteries, and Service « Notes for RPN
Calculator Users « Notes for Algebraic Calculator Users
Menu Map + Key Index ¢ Subject Index

Kk HEWLETT
PACKARD

Reorder Number

00028-90066

00028-90153 English

Printed in US.A. 8/89

	Cover
	Welcome to the HP-28S
	Contents
	How To Use This Manual
	What’s in This Manual
	For More Information

	Part 1: Fundamentals
	1. Getting Started
	Preliminaries
	Opening and Closing the Case
	Locating the Battery Door and Printer Port
	Turning the HP-28S On and Off
	Clearing All Memory (Memory Reset)
	Adjusting the Display Contrast

	Keyboard Calculations
	An Overview of the Calculator
	Major Features and Concepts
	The Catalog of Commands

	2. Doing Arithmetic
	Entering and Displaying Numbers
	Changing the Decimal Point
	Selecting Number Display Mode
	Keying In Numbers

	One-Number Functions
	Two-Number Functions
	Addition and Subtraction
	Multiplication and Division
	Powers and Roots
	Percentages

	Swapping Levels 1 and 2
	Clearing Objects From the Stack
	Chain Calculations
	If You Execute the Wrong Function

	3. Using Variables
	Introduction to Variables
	Creating a Numerical Variable
	Recalling a Numerical Variable
	Evaluating a Numerical Variable

	Changing the Value of a Variable
	Purging a Variable
	Changing the Name of a Variable
	Creating a Program Variable
	Recalling a Program Variable
	Evaluating a Program Variable

	Quoted and Unquoted Names

	4. Repeating Calculations
	Creating an Expression
	Creating a Directory
	Using the Solver To Repeat a Calculation
	Using a Different Set of Values
	Using a Different Expression
	Returning to HOME
	Summary

	5. Real-Number Functions
	Trigonometric Functions
	Selecting Angle Mode
	Using π
	Converting Angular Measure

	Logarithmic, Exponential, and Hyperbolic Functions
	Other Real Functions
	Defining New Functions

	6. Complex-Number Functions
	Using Complex Numbers
	Using Polar Coordinates
	A User Function for Polar Addition

	7. Plotting
	Printing a Plot
	Changing the Scale of the Plot
	Translating the Plot
	Redefining the Corners of the Plot
	Plotting Equations

	8. The Solver
	Finding a Zero of an Expression
	Finding a Minimum or Maximum
	Time Value of Money

	9. Symbolic Solutions
	Finding the Zeros of a Quadratic Expression
	Isolating a Variable
	Expanding and Collecting
	Using FORM

	10. Calculus
	Differentiating an Expression
	Step-by-Step Differentiation
	Complete Differentiation

	Integrating an Expression
	Symbolic Integration of Polynomials
	Numerical Integration of Expressions

	11. Vectors and Matrices
	Vectors
	Keying In a Vector
	Multiplying and Dividing a Vector by a Number
	Adding and Subtracting Vectors
	Finding the Cross Product
	Finding the Dot Product

	Matrices
	Keying In a Matrix
	Viewing a Large Matrix
	Inverting a Matrix
	Finding the Determinant

	Multiplying Two Arrays
	Multiplying Two Matrices
	Multiplying a Matrix and a Vector

	Solving a System of Linear Equations

	12. Statistics
	Entering Data
	Editing Data
	Single-Sample Statistics
	Finding the Mean
	Finding the Standard Deviation
	Finding the Variance

	Paired-Sample Statistics
	Specifying a Pair of Columns
	Finding the Correlation
	Finding the Covariance
	Finding the Linear Regression
	Finding Predicted Values

	13. Binary Arithmetic
	Selecting the Wordsize
	Selecting the Base
	Entering Binary Integers
	Calculating With Binary Integers

	14. Unit Conversion
	The UNITS Catalog
	Converting Units
	Converting Unit Strings
	Checking for the Correct Units
	User Functions for Unit Conversion

	15. Printing
	Printing the Display
	Printing a Running Record
	Printing Level 1
	Printing the Stack
	Printing a Variable

	Part 2: Summary of Calculator Features
	16. Objects
	Real Numbers
	Complex Numbers
	Binary Integers
	Strings
	Arrays
	Lists
	Names
	Programs
	Algebraics
	Expressions
	Equations
	Symbolic Constants

	17. Operations, Commands, and Functions
	18. The Command Line
	The Cursor Menu
	Some Entry Keys
	Object Delimiters and Separators
	Entry Modes
	Exceptions
	Manual Selection of Entry Modes

	How the Cursor Indicates Modes
	Executing the Command Line
	Editing Existing Objects
	Recovering Previous Command Lines
	The Command Line as a String

	19. The Stack
	Review of Stack Concepts
	Viewing the Stack
	Manipulating the Stack
	Local Variables
	Recovering the Last Arguments
	Restoring the Stack
	The Stack as a List

	20. Memory
	User Memory
	Global Variables
	Directories

	Recovery Features
	Low Memory
	Maximizing Performance

	21. Menus
	Menus of Commands
	Menus of Operations
	Menus of Variables
	Custom Menus

	22. Catalog of Commands
	Finding a Command
	Checking Command Use

	23. Evaluation
	Data-Class Objects
	Name-Class Objects
	Evaluation of Local Names
	Evaluation of Global Names

	Procedure-Class Objects
	Evaluation of Programs
	Evaluation of Algebraics
	Evaluation of Functions

	24. Modes
	General Modes
	Entry and Display Modes
	Recovery Modes
	Mathematical Exceptions
	Printing Modes

	25. System Operations
	Printing the Display
	Contrast Control
	Clearing Operations
	Attention
	System Halt
	Memory Reset

	Test Operations
	Repeating Test
	Keyboard Test

	Part 3: Programming
	26. Program Structures
	Local-Variable Structure
	Conditional Structures
	IF ... THEN ... ELSE ... END
	IFTE (If-Then-Else-End Function)
	IF ... THEN ... END
	IFT (If-Then-End Command)
	Error Traps

	Definite Loop Structures
	START ... NEXT
	FOR counter ... NEXT
	... increment STEP

	Indefinite Loop Structures
	DO ... UNTIL ... END
	WHILE ... REPEAT ... END

	Nested Program Structures

	27. Interactive Programs
	Asking for Input
	Asking for a Choice
	A More Complicated Example

	28. Programming Examples
	Box Functions
	BOXS (Surface of a Box)
	BOXS Without Local Variables
	BOXR (Ratio of Surface to Volume of a Box)

	Fibonacci Numbers
	FIB1 (Fibonacci Numbers, Recursive Version)
	FIB2 (Fibonacci Numbers, Loop Version)
	Comparison of FIB1 and FIB2

	Single-Step Execution
	Expanding and Collecting Completely
	MULTI (Multiple Execution)
	EXCO (Expand and Collect Completely)

	Displaying a Binary Integer
	PAD (Pad With Leading Spaces)
	PRESERVE (Save and Restore Previous Status)
	BDISP (Binary Display)

	Summary Statistics
	SUMS (Summary Statistics Matrix)
	ΣGET (Get an Element of ΣCOV)
	ΣX2 (Sum of Squares of x)
	ΣY2 (Sum of Squares of y)
	ΣXY (Sum of Products of x and y)

	Median of Statistics Data
	SORT (Sort a List)
	LMED (Median of a List)
	MEDIAN (Median of Statistics Data)

	Changing Directories
	UP (Move to a Parent Directory)
	DOWN (Move to a Subdirectory)

	Appendixes & Indexes
	A. Assistance, Batteries, and Service
	Answers to Common Questions
	Batteries
	Calculator Maintenance
	Environmental Limits
	Determining If the Calculator Requires Service
	Limited One-Year Warranty
	If the Calculator Requires Service
	Regulatory Information

	B. Notes for RPN Calculator Users
	C. Notes for Algebraic Calculator Users
	D. Menu Map
	Key Index
	Subject Index

