Advanced Scientific
Calculator

Reference Manual

P-285

00000O0OOS

(é/” HEWLETT

PACKARD

HP-28S Advanced Scientific
Calculator

Reference Manual

ﬂﬁ HEWLETT

PACKARD

Edition 5 August 1989
Reorder Number 00028-90068

Notice

For warranty and regulatory information for this calculator, see pages
000 and 000.

This manual and any keystroke programs contained herein are pro-
vided “as is” and are subject to change without notice. Hewlett-
Packard Company makes no warranty of any kind with regard to
this manual or the keystroke programs contained herein, includ-
ing, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Hewlett-Packard Co. shall not
be liable for any errors or for incidental or consequential damages in
connection with the furnishing, performance, or use of this manual or
the keystroke programs contained herein.

© Hewlett-Packard Co. 1987. All rights reserved. Reproduction, ad-
aptation, or translation of this manual, including any programs, is

prohibited without prior written permission of Hewlett-Packard Com-
pany, except as allowed under the copyright laws. Hewlett-Packard
Company grants you the right to use any program contained in this
manual in this Hewlett-Packard calculator.

The programs that control your calculator are copyrighted and all
rights are reserved. Reproduction, adaptation, or translation of those
programs without prior written permission of Hewlett-Packard Co. is
also prohibited.

Corvallis Division
1000 N.E. Circle Bivd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 October 1987 Mfg. No. 00028-90069
Edition 2 April 1988 Mfg. No. 00028-90129
Edition 3 June 1988 Mfg. No. 00028-90131
Edition 4 November 1988 Mfg. No. 00028-90148

Edition § August 1989 Mfg. No. 00028-90154

Welcome to the HP-28S

Congratulations! With the HP-28S you can easily solve complicated
problems, including problems you couldn’t solve on a calculator be-
fore. The HP-28S combines powerful numerical computation with a
new dimension—symbolic computation. You can formulate a problem
symbolically, find a symbolic solution that shows the global behavior
of the problem, and obtain numerical results from the symbolic
solution.

The HP-28S offers the following features:

Algebraic manipulation. You can expand, collect, or rearrange terms
in an expression, and you can symbolically solve an equation for a
variable.

Calculus. You can calculate derivatives, indefinite integrals, and
definite integrals.

Numerical solutions. Using HP Solve on the HP-28S, you can solve
an expression or equation for any variable. You can also solve a
system of linear equations. With multiple data types, you can use
complex numbers, vectors, and matrices as easily as real numbers.

Plotting. You can plot expressions, equations, and statistical data.

® Unit conversion. You can convert between any equivalent combina-

tions of the 120 built-in units. You can also define your own units.

Statistics. You can calculate single-sample statistics, paired-sample
statistics, and probabilities.

Binary number bases. You can calculate with binary, octal, and
hexadecimal numbers and perform bit manipulations.

Direct entry for algebraic formulas, plus RPN logic for interactive
calculations.

Welcome to the HP-28S 3

The HP-28S Owner’s Manual contains three parts. Part 1, “Funda-
mentals,” demonstrates how to work some simple problems. Part 2,
“Summary of Calculator Features,” builds on part 1 to help you apply
those examples to your own problems. Part 3, “Programming,” de-
scribes programming features and demonstrates them in a series of
programming examples.

The HP-28S Reference Manual (this manual) gives detailed information
about commands. It is a dictionary of menus, describing the concepts
and commands for each menu.

We recommend that you first work through the examples in part 1 of
the Owner’s Manual to get comfortable with the calculator, and then
look at part 2 to gain a broader understanding of the calculator’s op-
eration. When you want to know more about a particular command,
look it up in the Reference Manual. When you want you learn about
programming, read part 3 of the Owner’s Manual.

These manuals show you how to use the HP-28S to do math, but
they don’t teach math. We assume that you're already familiar with
the relevant mathematical principles. For example, to use the calculus
features of the HP-28S effectively, you should know elementary
calculus.

On the other hand, you don’t need to understand all the math topics
in the HP-28S to use those parts of interest to you. For example, you
don’t need to understand calculus to use the statistical capabilities.

4q Welcome to the HP-28S

Contents

10 How To Use This Manual

11 How This Manual is Organized

11 How To Read Stack Diagrams

15 Dictionary

16 ALGEBRA (Algebraic manipulations)

16 Algebraic Objects

21 Functions of Symbolic Arguments

25 Evaluation of Algebraic Objects

27 Symbolic Constants: e, w, i, MAXR, and MINR
28 COLCT EXPAN SIZE FORM OBSUB EXSUB
33 TAYLR ISOL QUAD SHOW OBGET EXGET
34 ALGEBRA (FORM)

36 FORM Operations

47 FORM Operations Listed by Function

53 Arithmetic

63 ARRAY (Vector and matrix commands)

65 Keyboard Functions

70 -+ARRY ARRY- PUT GET PUTI GETI
75 SIZE RDM TRN CON IDN RSD
79 CROSS DOT DET ABS RNRM CNRM
82 R-C C-R RE IM CONJ NEG

Contents

85 BINARY (Base conversions, bit manipulations)
87 DEC HEX OCT BIN STWS RCWS
89 RL RR RLB RRB R-B B-R
91 SL SR SLB SRB ASR

92 AND OR XOR NOT

96 Calculus

96 Differentiation
100 Integration
106 Taylor Series

110 COMPLEX (Complex numbers)

111 R-C C-R RE IM CONJ SIGN
114 R-P P-R ABS NEG ARG

116 Principal Branches and General Solutions

124 Evaluation

127 LIST
128 -LIST LIST- PUT GET PUTI GETI
132 POS SUB SIZE

133 LOGS (Logarithmic, exponential, and hyperbolic
functions)

133 LOG ALOG LN EXP LNP1 EXPM

136 SINH ASINH COSH ACOSHTANH ATANH

139 MEMORY
141 MEM MENU ORDER PATH HOME CRDIR
144 VARS CLUSR

145 MODE (Display, angle, recovery, and radix modes)
145 STD FIX SCI ENG DEG RAD
150 CMD UNDO LAST ML RDX, PRMD

152 PLOT

152 The Display

153 Mathematical Function Plots

155 Statistical Scatter Plots

155 Interactive Plots

156 Plot Parameters

157 STEQ RCEQ PMIN PMAX INDEP DRAW
160 PPAR RES AXES CENTR xW *H
163 STOZ RCLZ COLZ SCLZ DRWZ

165 CLLCD DGTIZ PIXEL DRAX CLMF PRLCD

6 Contents

168
168
169
169
170
171
174

176
176
177
178
181

183
184
185
186
188
192

193

193
195
198

201
201
204
206
211

213
214
215
218
219
221

PRINT

Print Formats

Faster Printing

Double-Space Printing

Configuring the Printer

PR1 PRST PRVAR PRLCD CR TRAC
PRSTC PRUSR PRMD

Programs

Evaluating Program Obijects
Simple and Complex Programs.
Local Variables and Names
User-Defined Functions

PROGRAM BRANCH (Program branch structures)
Tests and Flags

Replacing GOTO

IF IFERR THEN ELSE END

START FOR NEXT STEP IFT IFTE
DO UNTIL END WHILE REPEAT END

PROGRAM CONTROL (Program control,
halt, and single-step operations)
Suspended Programs
SST HALT ABORT KILL WAIT KEY
BEEP CLLCD DISP CLMF ERRN ERRM

PROGRAM TEST (Flags, logical tests)
Keyboard Functions

SF CF FS? FC? FS?C FC?C
AND OR XOR NOT SAME ==
STOF RCLF TYPE

REAL (Real numbers)

Keyboard Functions

NEG FACT RAND RDZ MAXR MINR
ABS SIGN MANT XPON

IP FP FLOOR CEIL RND

MAX MIN MOD %T

Contents 7

224
225

234

236

239
239
241
243

245
246
249
251
254

258
258
262

263
264
264
270
273

273
277
280

283
285
286
287
295
295

8 Contents

SOLVE (Numerical and symbolic solutions)
Interactive Numerical Solving: The Solver
(STEQ, RCEQ, SOLVR, ROOT)
Symbolic Solutions
(ISOL, QUAD, SHOW)
General Solutions

STACK (Stack manipulation)

Keyboard Commands

DUP OVER DUP2 DROP2 ROT LIST-
ROLLD PICK DUPN DROPN DEPTH -LIST

STAT (Statistics and probability)

Z+ - N2 CLZ STOZ RCLZ
TOT MEAN SDEV VAR MAXZ MINZ
COLZ CORR COV LR PREDV

UTPC UTPF UTPN UTPT COMB PERM

STORE (Storage arithmetic)
STO+ STO— STO%* STO/ SNEG SINV
SCON]J

STRING (Character strings)
Keyboard Function
-STR STR- CHR NUM -LCD LCD-
POS SUB SIZE DISP
TRIG (Trigonometry, rectangular/polar and
degrees /radians conversion,
Hour/Minute /Second arithmetic)
SIN ASIN COS ACOS TAN ATAN
PR R-P R-C C-R ARG
-HMS HMS- HMS+ HMS— D-R R-D

UNITS

Temperature Conversions
Dimensionless Units of Angle
The UNITS Catalog
User-Defined Units

Unit Prefixes

298 Messages

306 User Flags

310 Glossary

323 Operation Index
350 Subject Index

Contents

How To Use This Manual

This manual contains general information about how the HP-28S
works and specific information about how each operation works. For
an overview of the manual, look through the Table of Contents. You
can quickly find other types of information as follows.

To Learn About:

Refer to:

A particular operation, command, or
function.

A particular menu.

What a displayed message means.

What an unfamiliar term means.

The Operation Index (page 323). All
operations, commands, and func-
tions are listed alphabetically. Each
entry includes a brief description, a
reference to a menu or topic in the
Dictionary, and a page reference to
the Dictionary. For background in-
formation, refer to the menu or topic
in the Dictionary (listed alphabeti-
cally). For specific information, refer
to the page number.

The Dictionary (page 15). All menus
are listed alphabetically.

Appendix A, “Messages” (page 298).
The Glossary (page 310).

10 How To Use This Manual

How This Manual is Organized

The Dictionary, is the largest portion of the manual. Organized by
menus, it details each individual operation, command, and function.
The action of each command and function is defined in a stack dia-
gram. (Refer to “How To Read Stack Diagrams” later in this section.)

Appendix A, “Messages,” describes status and error messages you
might encounter.

Appendix B, “User Flags,” describes the choices and default setting for
user flags 31 through 64.

The Glossary defines terms used in this manual.

The Operation Index is an alphabetical listing of all operations, com-
mands, and functions in the HP-28S. Each entry includes a brief
description, a reference to the chapter or menu heading in the manual
where you can find background information, and a page reference
where you can find specific information.

How To Read Stack Diagrams

The action of a command is specified by the values and order of its
arguments and results. An argument is an object that is taken from the
stack, on which the command acts. The command then returns a re-
sult to the stack. (A few commands affect modes, variables, flags, or
the display, rather than returning objects.)

How To Use This Manual 11

The description of each command includes a stack diagram, which
provides a tabular listing of the arguments and results of the com-
mand. A typical stack diagram looks like this:

XMPL Example Function

Level 2 Level 1 Level 1

obj, obj, » obj3

This diagram shows:

B The text name (which can appear in the command line) is “XMPL".
® The descriptive name is “Example”.
® XMPL is a function (allowed in algebraic expressions).

B XMPL requires two arguments, obj; and obj,, taken from stack
levels 2 and 1, respectively.

B XMPL returns one result, obj;, to level 1.

The arrow » in the diagram separates the arguments (on the left) from
the results (on the right). It is a shorthand notation for “with the pre-
ceding arguments on the stack, executing XMPL returns the following
results to the stack.”

The arguments and results are listed in various forms that indicate as
much specific information about the objects as possible. Objects of
specific types are shown within their characteristic delimiter symbols.
Words or formulas included with the delimiters provide additional de-
scriptions of the objects. Stack diagrams generally use the following
terms.

12 How To Use This Manual

Terms Used in Stack Diagrams

Term Description

obj Any object.

xory Real number.

hms Real number in hours-minutes-seconds format.

n Positive integer real number (rounded if non-integer).

flag Real number, zero (false) or non-zero (true).

z Real or complex number.

X, Y3 Complex number in rectangular form.

tr, 63 Complex number in polar form.

#n Binary integer.

"string" Character string.

Carray 1 Real or complex vector or matrix.

Cvector1 Real or complex vector.

Cmatrix 1 Real or complex matrix.

CR-array] Real vector or matrix.

CC-array] Complex vector or matrix.

{list* List of objects.

index Real number specifying an element in a list or array; or list
with one real number (or object that evaluates to a number)
specifying an element in a list or vector; or list with two real
numbers (or objects that evaluates to numbers) specifying an
element in a matrix.

{dim* List of one or two real numbers specifying the dimension(s) of
an array.

'name'' Global name or local name.

' global ! Global name.

'local’ Local name.

#programi | Program.

'symb' Expression, equation, or a name treated as an algebraic.

How To Use This Manual

13

The stack diagram for a command may contain more than one “argu-
ment ® result” line, reflecting the various possible combinations of
arguments and results. Where appropriate, results are written in a
form that shows the mathematical combination of the arguments. For
example, the stack diagram for + includes the following entries
(among others).

+ Add Analytic
Level 2 Level 1 Level 1
Z4 Zy » Z4 + Zy
Carray,1 Carray,1 » Carray,+array, 1
z 'symb' » 'z+Csymb> '

This diagram shows that:

® Adding two real or complex numbers z; and z, returns a third real
or complex number with the value z;+z,.

® Adding two arrays Carray;1 and Carray,] returns a third array
Carray,+array, 1.

B Adding a real or complex number z and a symbolic object 'symb'
returns a symbolic object 'z+({symb> .

14 How To Use This Manual

Dictionary

The Dictionary is organized around the menus in the HP-28S. It also
includes additional topics not related to specific menus:

B Arithmetic
B Calculus
B Evaluation

® Programs
® UNITS

Not included are menus that don’t contain a fixed set of commands:

B Cursor menu
® Custom menu
® USER menu

® Catalog of commands

Dictionary 15

ALGEBRA

COLCT EXPAN SIZE FORM OoBSUB EXSUB
TAYLR ISOL QUAD SHOW OBGET EXGET

Algebraic Objects

An algebraic object is a procedure that is entered and displayed in
mathematical form. It' can contain numbers, variable names, func-
tions, and operators, defined as follows:

Number: A real number or a complex number.

Variable name: Any name, whether or not there is currently a vari-
able associated with the name. We will use the term formal variable to
refer to a name that is not currently associated with a user variable.
When such a name is evaluated, it returns itself.

Function: An HP-285 command that is allowed in an algebraic pro-
cedure. Functions must return exactly one result. If one or more of a
function’s arguments are algebraic objects, the result is algebraic.
Most functions appear as a function name followed by one or more
arguments contained within parentheses; for example, 'SIHCK> ',

Operator: A function that generally doesn’t require parentheses
around its arguments. The operators NOT, \/, and NEG (which ap-
pears in algebraics as the unary — sign) are prefix operators: their
names appear before their arguments. The operators +, —, %, /, %,
=, ==, #, <, >, <, =, AND, OR, and XOR are infix operators:
their names appear between their two arguments.

16 Dictionary

...ALGEBRA

Precedence

The precedence of operators determines the order of evaluation when
expressions are entered without parentheses. The operations with
higher precedence are performed first. Expressions are evaluated from
left to right for operators with the same precedence. The following
lists HP-28S algebraic functions in order of precedence, from highest
to lowest:

1. Expressions within parentheses. Expressions within nested pa-
rentheses are evaluated from the inside out.

2. Functions such as SIN, LOG, and FACT, which require argu-
ments in parentheses.

3. Power (*) and square root (\/).

4. Negation (—), multiplication (%), and division (/).

5. Addition (+) and subtraction (—).

6. Relational operators (==, #, <, >, <,).

7. AND and NOT.

8. OR and XOR.

9' =
Algebraic objects and programs have identical internal structures.
Both types of procedures are sequences of objects that are processed
sequentially when the procedures are evaluated. The algebraic ' X +%'
and the program # ¥ % + ® are both stored as the same sequence
(the RPN form). Algebraics are “marked” as algebraics so that they

will be displayed as mathematical expressions and to indicate that
they satisfy algebraic syntax rules.

Dictionary 17

...ALGEBRA

Algebraic Syntax and Subexpressions

A procedure obeys algebraic syntax if, when evaluated, it takes no
arguments from the stack and returns exactly one argument to the
stack, and if it can be subdivided completely into a hierarchy of
subexpressions. A subexpression can be a number, a name, or a func-
tion and its arguments. By hierarchy, we mean that each sub-
expression can itself be an argument of a function. For example,
consider the expression:

"1-SIHCR+Y !

The expression contains one number, 1, and two names, % and ¥,
each of which can be considered as a simple subexpression. The ex-
pression also contains three functions, +, —, and SIH, each of which
defines a subexpression along with its arguments. The arguments of +
are ¥ and ¥; ¥ +Y is the argument of SIN, and 1 and SIHCX+Y) are
the arguments of -. The hierarchy becomes more obvious if the ex-
pression with its operators is rewritten as ordinary functions (Polish
notation):

—(1, SIN (+(X, Y)))

An object or subexpression within an expression is characterized by
its position and level.

The position of an object is determined by counting from left to right
in the expression. For example, in the expression '1-SIH{H+v 2", 1
has position 1, - has position 2, SIH has position 3, and so on.

The position of a subexpression is the position of the object that de-
fines the subexpression. In the same example, 'SIM¢®+Y 2" has
position 3, since it is defined by SIHN in position 3.

18 Dictionary

...ALGEBRA

The level of an object within an algebraic expression is the number of
pairs of parentheses surrounding the object when the expression is
written in purely functional form. For example, in the expression '1-
SINCX+Y>', — has level 0, 1 and SIN have level 1, + has level 2,
and ¥ and Y have level 3. Every algebraic expression has exactly one
level O object.

(User-defined functions are an apparent exception to the rule for
determining the levels of a subexpression. In the expression
'"FCA,B»"', for example, where F is a user-defined function, F, A,
and B are all at level 1; there is no explicit level 0 function. This is
because F and its arguments A and B are all arguments for a special
“invisible” function that provides display and evaluation logic for
user-defined functions.)

If we take the above expression and rewrite it again, by removing the
parentheses, and placing the functions after their arguments, we ob-
tain the RPN form of the expression:

1 ¥ Y + SIN -

This defines a program that has algebraic syntax, and is effectively

equivalent to the corresponding algebraic object. Programs, however,
are more flexible than algebraic objects; for example, we could insert a
DUP anywhere in the above program and still have a valid program,
but it would no longer obey algebraic syntax. Since DUP takes one
argument and returns two, it cannot define or be part of an algebraic
subexpression.

Equations

An algebraic equation is an algebraic object containing two expressions
combined with an equals sign (=). Mathematically, the equals sign im-
plies the equality of the two subexpressions on either side of the sign.
In the HP-28S, = is a function of two arguments. It is displayed as an
infix operator, separating the two subexpressions that are its argu-
ments. Internally, an equation is an expression with = as its level 0
object.

Dictionary 19

...ALGEBRA

When an equation is numerically evaluated, = is equivalent to —. This
feature allows expressions and equations to be used interchangeably
as arguments for symbolic and numerical rootfinders. An equation is
equivalent to an expression with = replaced by -, and an expression is
equivalent to the left side of an equation in which the right side is
zero.

When an equation is an argument of a function, the result is also an
equation, where the function has been applied to both sides. Thus

wn=Y"' SIHM returns 'SINCRI=SINCY "

Conventional mathematical usage of the equals sign = is ambiguous.
The equals sign is used to equate two expressions, as in

x + siny = 2z + t. This type of equation is suitable for solving, that
is, adjusting one or more variables to achieve the equality of the two
sides.

The equals sign is also used to assign a value to a variable, as in
x = 2y + z. This equation means that the symbol x is a substitution
for the longer expression 2y + z; it is meaningless to “solve” this
equation.

The ambiguity of the equals sign is compounded by certain computer
languages such as BASIC, where “=" means “replace by,” as in
X =Y + Z. Such notation doesn’t imply a mathematical equation at

all.

In the HP-28S, the equals sign always means equating two expres-
sions, such that solving the equation is equivalent to making the
difference between the two expressions zero. (Assignment is per-
formed by STO, which is strictly a postfix command that takes two
arguments.)

20 Dictionary

...ALGEBRA

= Equal Analytic
Level 2 Level 1 Level 1
Z4 Z5 » 'z4=25"
z ‘symb' w» 'z=symb'
'symb ' z » 'symb=z"
'symb, ' 'symby' ®» ' symby=symb,"'

This function combines two arguments, which must be names, expres-
sions, real numbers or complex numbers.

If the HP-28S is in Symbolic Result mode (flag 36 set), the result is an
algebraic equation, with the level 2 argument on the left side of the
equation, and the level 1 argument on the right.

If the HP-28S is in Numerical Result mode (flag 36 clear), the result is
the numerical difference of the two arguments. In effect, = acts as
the — operator in Numerical Result mode.

Functions of Symbolic Arguments

Result Mode

Symbolic Result Mode (flag 36 set). In Symbolic Result mode,
functions return symbolic results if their arguments are symbolic. This
is the default mode. For example:

'¥' SIN returns 'SIHNCHEY!
'®¥~2+5' LM returns "LHCR"2+50 ",
2 '®' + returns P34
2 '®' + SIM returns 'SINCZ+E "
'#' 1 2 IFTE returns "IFTEC®, 1,22 ",

Dictionary 21

...ALGEBRA

Numerical Result Mode (flag 36 clear). In Numerical Result mode,
each function attempts to convert symbolic arguments to data objects.
Once the arguments are converted to numbers, the function is applied
to those arguments, returning a numeric result. The arguments are re-
peatedly evaluated until they become data objects or formal variables.
If the final arguments are formal variables, an Undefined MName er-

ror occurs.

Automatic Simplification

Certain functions, when evaluated, replace certain arguments or com-
binations of arguments with simpler forms. For example, when
'1%X' is evalulated, the ¥ function detects that one of its arguments
is a 1, so the expression is replaced by '¥'. Automatic simplification

occurs in the following cases:

Original Expression

Simplified Expression

Negation, Inverse, Square
—(=¥2

INVCINV XD

SRCTHED

SRCKEY D

SRCid

Addition and Subtraction
B+X or X+0@

A-8

-3

R—®

Multiplication

A¥0 or B¥ K

#EL or 1%¥

REC=1D2 or —1%¥
—R¥C=12 or —1¥(=-¥>
i%i

—H¥INVCY D

—HKEY

RETIHV (YD

KKK

RACYR20
-1

—CXAYD
=CXEYD
ey

22 Dictionary

...ALGEBRA

Original Expression Simplified Expression

Division

— 3

1o THWORED
MW

S

- oo

I
IHVCxa

: -lori-1,82"
102, @ c-1,8>

SIN, COS, TAN
SINCASIHCHY) H
SINC-3) ~SINCH)
SIMNfD et
SIHCH. 2) 1t
%) ®
COSCHD
..11-
COS(Ms2) 8t
TANCATAN K) ®
TAHC =33 ~TANCHK)
TAHC 8t
ABS, MAX, MIN, MOD, SIGN
‘ ABS (XD
AESCH)
a
e (%Y
33 SIGH

* Depends on Symbolic Result mode (flag 36 set) or Numerical Result mode (flag 36 clear).

1 Applies only when the angle mode is radians.

Dictionary 23

...ALGEBRA

Original Expression

Simplified Expression

ALOG, EXP, EXPM, SINH, COSH, TANH
ALOGCLOGC D

ExXPCLHCK Y2

EXPMCLHPLCX 2

SIHHCASIHHCR > 2

COSHCACOSHC W2

TANHCATAMH w2

IM, RE, CONJ
ITMCIMCE YD
IMCRE (R 2
IMCCOMICE Y 2

IMCia
RECRE (2D
RECIMCRD 2
RECCOMJC W22
RECi

COMJCCONJCK 2
COMJCRECK 2
COMJCIMOCK YD
COMJC1

E ol o o

o

a

a
—IMCRD
1
REC®2
IMCsD
REC®2
a

b
RECH
IMCRD
-1

Functions of Equations

Functions applied to equations in symbolic

equations as results.

evaluation mode return

If a function of one argument is applied to an equation, the result is
an equation obtained by applying the function separately to the left
and right sides of the argument equation. For example:

'R+2=%"'" SIHN returns

24 Dictionary

'SINCHE+22=SIMNCY 2",

...ALGEBRA

If both arguments of a two argument function are equations, the re-
sult is an equation derived by equating the expressions obtained by
applying the function separately with the two left sides of the equa-
tion as arguments, and with the two right sides. For example:

'HAY=Z+T' 'SINCRY=S' + returns 'N+Y+SINC@I=Z+T+5'.

If one argument of a two argument function is a numeric object or an
algebraic expression, and the other is an equation, the former is con-
verted to an identity equation with the original object on both sides.
Then the function acts as in the case where both arguments are equa-
tions. For example:

'R=y' 3 - returns 'K-3=%-3'.

These properties define the behavior of algebraic objects when they
are evaluated (see the next section) as well as allow you to perform
algebraic calculations in an interactive RPN style, much as you carry
out ordinary numerical calculations.

Evaluation of Algebraic Objects

Evaluation of algebraic objects is a powerful feature of the HP-285
that allows you to consolidate expressions by carrying out explicit nu-
merical calculations, and substitute numbers or expressions for
variables. In order to understand what to expect when you evaluate
an algebraic object remember that an algebraic object is equivalent to
a program, and that evaluating a program means to put each object in
the program on the stack and, if the object is a command or name,
evaluate the object.

To demonstrate what this means, let us suppose that we have defined
variable X to have the value 3 (thatis, 3 '¥' $5T0), Y to have the
value 4, and Z to have the value '%+T'. We will also assume that
Symbolic Result mode (flag 36) is set, so that functions will accept
symbolic arguments.

Dictionary 25

...ALGEBRA

First consider the expression 'X+Y'. When we evaluate this expres-
sion ('¥+Y' EVAL), we obtain the result 7. Here’s why: Internally,
'®+Y' is represented as X Y +. So when '¥+Y' is evaluated, X, Y,
and + are evaluated in sequence:

1. Since ¥ is a name, evaluating it is equivalent to evaluating the
object stored in the variable X, the number 3. Evaluating X puts
3 in level 1.

2. Similarly, evaluating ¥ puts 4 in level 1, pushing the 3 into
level 2.

3. Now +is evaluated, with the numeric arguments 3 and 4 on the
stack. This drops the 3 and the 4, and returns the numeric
result 7.

Now try evaluating '®+T':

1. Evaluating ¥ puts 3 in level 1.

2. T is a name not associated with a variable, so it just returns itself
to level 1, pushing the 3 into level 2.

3. This time + has 3 and T as arguments; since T is symbolic, +
returns an algebraic result, '3+T'.

Finally, consider evaluating 'X+Y+2Z'. Internally, this expression is
represented as X Y + Z +. Following the same logic as in the above
examples, evaluation gives the result '7+(X+T>'. We can evaluate
this result again and obtain the new result ' 7 +¢3+T > '. Further eval-
uation makes no additional changes, since T has no value.

The values 7 and 3 obtained are not arguments to the same + oper-
ator in the expression, and hence are not combined. If you want to
combine the 7 and the 3, you can use either the COLCT command for
automatic collection of terms, or the FORM command for more gen-
eral rearrangement of the expression.

26 Dictionary

...ALGEBRA

Symbolic Constants: e, =, i, MAXR, and
MINR

There are five built-in algebraic objects that return a numerical repre-
sentation of certain constants. These objects have the special property
that their evaluation is controlled by Constants mode (flag 35) as well
as by the Results mode (flag 36).

® If flag 35 or flag 36 is clear, these objects will evaluate to their
numeric values. For example:
'2%i' EVAL returns <@,2>.

m If flag 35 and flag 36 are both set, these objects will retain their
symbolic form when evaluated. For example:

'2%i' EVAL returns 'Z2¥i'.
The following table lists the five objects and their numerical values.

HP-28S Symbolic Constants

Object Name Numerical Value
e 2.71828182846
™ 3.14159265359
i (0.00000000000,1.00000000000)
MAXR 9.99999999999E499
MINR 1.00000000000E-499

Dictionary 27

...ALGEBRA

The numerical values of = and « are the closest approximations of the
constants ¢ and « that can be expressed with 12-digit accuracy. The
numerical value of i is the exact representation of the constant i.
MAXF and MIHR are the largest and smallest non-zero numerical val-
ues that can be represented by the HP-28S.

For greater numerical accuracy, use the expression 'EXF 2 ' rather
than the expression 'e~i'. The function EXP uses a special algo-
rithm to compute the exponential to greater accuracy.

When the angle mode is radians and flags 35 and 36 are set, trigono-
metric functions of n and r.-2 are automatically simplified. For
example, evaluating 'SIH{n»"' gives a result of 0.

COLCT EXPAN SIZE FORM OBSUB EXSUB

These commands alter the form of algebraic expressions, much as you
might if you were dealing with the expressions “on paper”. COLCT,
EXPAN, and FORM are identity operations, that is, they change the
form of an expression without changing its value. OBSUB and EXSUB
allow you to alter the value of an expression by substituting new ob-
jects or subexpressions into the expression.

COLCT Collect Terms Command

Level 1 Level 1

'symby' w ‘'symb,'

COLCT rewrites an algebraic object so that it is simplified by “collect-
ing” like terms. Specifically, COLCT:

B Evaluates numerical subexpressions. For example:
"1+2+L0GC1E2 " is replaced by 4.

28 Dictionary

...ALGEBRA

® Collects numerical terms. For example: '1+x+Z"' is replaced by

[BRSO |
St

B Orders factors (arguments of %), and combines like factors. For ex-
ample: 'H°ZkvEHTHY? is replaced by 'H~(T+Zrdv~2".

B Orders summands (arguments of +), and combines like terms dif-
fering only in a numeric coefficient. For example:
"H+H+V 438K is replaced by 'SHiE+Y .

COLCT operates separately on the two sides of an equation, so that
like terms on opposite sides of the equation are not combined.

The ordering (that is, whether X precedes Y) algorithm used by
COLCT was chosen for speed of execution rather than conforming to
any obvious or standard forms. If the precise ordering of terms in a
resulting expression is not what you desire, you can use FORM to
rearrange the order.

EXPAN Expand Products Command

Level 1 Level 1

'symb,' @ ‘'symb,'

EXPAN rewrites an algebraic object by expanding products and pow-
ers. More specifically, EXPAN:

B Distributes multiplication and division over addition. For example:

"A¥CE+C) ' expands to 'A¥E+A%C'; '(BE+C1.-A' expands to
'BsR+CSRC

B Expands powers over sums. For example: 'A™~(E+C»' expands to
"ACEBRACC!.

B Expands positive integer powers. For example: '<~5' expands to
'HE¥~4"' . The square of a sum ' CE+v 272" or 'SRCHHY D' s ex-

panded to 'HUZHZEHEY 4V

Dictionary 29

-..ALGEBRA

EXPAN does not attempt to carry out all possible expansions of an
expression in a single execution. Instead, EXPAN works down
through the subexpression hierachy, stopping in each branch of the
hierarchy when it finds a subexpression that can be expanded. It first
examines the level 0 subexpression; if that is suitable for expansion, it
is expanded and EXPAN stops. If not, EXPAN examines each of the
level 1 subexpressions. Any of those that are suitable are expanded; in
the remainder, the level 2 subexpressions are examined. This process
continues down through the hierarchy until an expansion halts fur-
ther searching down each branch. For example:

Expand the expression 'A~(B¥{(C~2+D»>"'.

1. The level 0 operator is the left *. Since it cannot be expanded,
the level 1 operator * is examined. One of its arguments is a
sum, so the product is distributed yielding:

'"AC(BXC 2+BXD> !

2, The level 0 operator is still the left ©, but now its power is a sum,
so the power is expanded over the sum when EXPAN is exe-
cuted again:

"AMCBXCH22kAN(BXDY !

3. One more expansion is possible. The level 0 operator is now the
middle *. Since it cannot be expanded, the level 1 operators, the
outside *’s, are examined. They cannot be expanded, so the level
2 operators, the outside *’s, are examined. Since they cannot be
expanded, the level 3 operator, the middle #, is examined. Its
power is a positive integer, so the power is expanded:

"ACCBXCCHCH OXANCBRXDY!

30 Dictionary

-..ALGEBRA

SIZE Size Command
Level 1 Level 1
"string" » n
{list ¥ » n
Carrayl » { list ¥
'symb' ®» n

SIZE returns the number of objects that comprise an algebraic object.

Refer to “ARRAY,” “LIST,” and “STRING” for the use of SIZE with
other object types.

FORM Form Algebraic Expression Command
Level 1 Level 3 Level 2 Level 1
'symb,' ®» ' symb, '
'symby' ® ‘'symb,' n 'symbg'

FORM is an interactive expression editor that enables you to rear-
range an algebraic expression or equation according to standard rules
of mathematics. Its operation is described in the next section, “ALGE-
BRA (FORM).”

Dictionary 31

-..ALGEBRA

OBSUB Object Substitute Command
Level 3 Level 2 Level 1 Level 1
'symby' n {obj ¥ » 'symb,'

OBSUB substitutes a number, name, or function in the specified posi-
tion of an algebraic object. The object is the contents of a list in level
1, the position 7 is in level 2, and the algebraic object is in level 3. For
example:

'"A¥B' 3 { C » OBSUB returns 'A%C'.
You can substitute functions as well as user variables. For example:

'"A¥XB' 2 ¢ + I} OESUE returns 'A+B'.

EXSUB Expression Substitute Command
Level 3 Level 2 Level 1 Level 1
'symby ' n 'symb,' @ 'symbgs'

EXSUB substitutes the algebraic (or name) 'symb, ' for the subexpres-
sion in the nth position of the algebraic 'symb;' and returns the
result expression 'symb;'. The nth subexpression consists of the nth
object in an algebraic object definition plus the arguments, if any, of
the object. For example:

'"(A+BX¥C' 2 'E"F' EXSUEB returns 'E~F¥C'.

32 Dictionary

-..ALGEBRA

TAYLR ISOL QUAD SHOW OBGET EXGET

TAYLR is described in “Calculus,” along with ¢ and . ISOL, QUAD,
and SHOW are described in “SOLV.”

OBGET Object Get Command
Level 2 Level 1 Level 1
'symb' n » {obj ¥

OBGET returns the object in the nth position of the algebraic object
symb in level 2. The object is returned as the only object in a list. For
example:

'CA+BX¥C' 2 0OBGET returns { + .

If n exceeds the number of objects, OBGET returns the level 0 object.

EXGET Expression Get Command
Level 2 Level 1 Level 1
'symb, ' n » 'symb,'

EXGET returns the subexpression in the nth position of the algebraic
symb; in level 2. The nth subexpression consists of the nth object in an
algebraic object definition plus the arguments, if any, of the object.
For example:

'"CA+Br¥C' 2 EXGET returns 'A+B'.

If n exceeds the number of objects, EXGET returns the level 0
subexpression.

Dictionary 33

ALGEBRA (FORM)

FORM Form Algebraic Expression Command
Level 1 Level 3 Level 2 Level 1
‘symb,' » 'symby '
'symby' w» ‘'symb,' n ' symbg '

FORM is an interactive expression editor that enables you to re-
arrange an algebraic expression or equation according to standard
rules of mathematics. All of FORM'’s mathematical operations are
identities; that is, the result expression symb, will have the same value
as the original argument expression symb;, even though the two may
have different forms. For example, with FORM you can rearrange
"A+EB' to 'B+A', which changes the form but not the value of the
expression.

A variation of the command EXGET is available while FORM is ac-
tive. It allows you to duplicate a subexpression symb; contained in
symby, and return symb; and its position n to the stack.

When FORM is executed, the normal stack display is replaced by a
special display of the algebraic object, along with a menu of FORM
operations at the bottom of the display. The special display initially
starts in line two of the display (second from top), and wraps into line
three if the object is too long to display in a single line. If the object
requires more than two display lines, you will have to move the
FORM cursor through the object to view the remainder.

To exit FORM and continue with other calculator operations, press
(ON]. Alternatively, you can press the EXGET menu key, which also
returns the selected subexpression symb; and its position n to the
stack.

34 Dictionary

...ALGEBRA (FORM)

The FORM cursor highlights an individual object in the expression
display. (It is not a character cursor like that of the command line.)
The highlighted object appears as white characters against a black

background. The cursor identifies both the selected object, which is

highlighted, and the selected subexpression, which is the subexpression
consisting of the selected object and its arguments, if any.

You can move the cursor to the left or right in the expression by
pressing the [¢1 or [+31 Kkeys in the menu; when the cursor
moves, it moves directly from object to object, skipping any interven-
ing parentheses. The cursor is always in line two of the display. If you
attempt to move the cursor past the right end of line two, the expres-
sion scrolls up one line in the display, and the cursor moves back to
the left end of line two. Similarly, if you try to move the cursor past
the left end of line two, the expression scrolls down one line, and the
cursor moves to the right end of line two.

The expression display differs from the normal stack algebraic object
display by inserting additional parentheses in order to make all oper-
ator precedence explicit. This feature helps you identify the selected
subexpression associated with the selected object as shown by the
cursor. This is important, since all FORM menu operations operate on
the selected subexpression.

While FORM is active, a special set of operations is available as menu
keys. The initial menu contains six operations common to all
subexpressions. Additional menus of operations are available via the

and [(PREV] keys; the contents of the additional menus vary
according to the selected object. Only those operations that apply to
the selected object are shown.

You can reactivate the first six menu keys at any time by pressing

(ENTER].

Dictionary 35

...ALGEBRA (FORM)

FORM Operations

In the following subsections, all of the operations that can appear in
the FORM menus will be described. The descriptions consist primarily
of examples of the “before” and “after” structures of the selected
subexpressions relevant to each operation. Each possible operation is
represented by an example like this:

«[1 Distribute to the left.

Before After

CCR+BIXCO CCR¥COI+CBRCH D

For simplicity variable names such as A, B, and C will be used, but
each of these can represent a general object or subexpression. The ex-
ample shows that applying o (distribute to the left) to
"CA+EXXC' returns 'A¥C+B¥XC'.

Individual FORM operations appear in the FORM menu when they
are relevant for the selected object. For example, 0 appears in the
menu when + is the selected object, but not when SIN is selected.
Furthermore, if an operation does appear, you will be able to execute
it only if it applies to the selected subexpression. For example, b=
appears when X is the selected object, since distribution is a property
of multiplication. However, the menu key is inactive (it will just beep
if pressed) unless the subexpression is of the form '(R+E>*¥C"' or
'{A-B>#%C', which can be distributed.

36 Dictionary

...ALGEBRA (FORM)

The initial FORM menu contains the following operations:

Operations Common to All Subexpressions

Operation Description

COLCY Collects like terms in the selected subexpression. This opera-
tion works the same as the command COLCT except that its
action is restricted to the selected subexpression. The FORM
cursor is repositioned to the beginning of the expression
display.

EXPAN Expands products and powers in the selected subexpression.
This operation works the same as the command EXPAN ex-
cept that its action is restricted to the current subexpression.
The FORM cursor is repositioned to the beginning of the ex-
pression display.

LEVEL Displays the level of the selected object or its associated se-
lected subexpression. The level is displayed as long as you
hold down the LEVEL key.

EXGET Exits FORM, leaving the current version of the edited expres-
sion in level 3, a copy of the selected subexpression in level
1, and its position in level 2.

L€l Moves the FORM cursor to the previous object (to the left) in
the expression.

o3 Moves the FORM cursor to the next object (to the right) in the
expression.

Dictionary 37

...ALGEBRA (FORM)

Commutation, Association,

and Distribution

«+ Commute the arguments of an operator.
Before After

CA+B> (B*A>

(-(A+B> (B=A>

(A-B> (-CBX=*A>

(A%B> (BX¥A>

(INVCAY%B) (BZR>

(AsB> CINV(B)Y%A)
_¢A Associate to the left. The arrow indicates the direction in

which the parentheses will “move.”

Before After
CA+<(B+C> > C(CA+B>*C)
CA+C(B-CJ> CCA+BY=C>
(A=-CB+C> > (C(A-B>=C>
(A=(B-C>> CC(A-B>#C>
CAX(B¥XC>> C(CAXBY%XCH
(A%X(B~C>> C(CA%XBY2C>
CAz(BXC>> (CA-BY2C>
CAz(B+C>> CCA/BY%C)H
CA2CB¥XC2) CCA™BHY2C)

38 Dictionary

-..ALGEBRA (FORM)

A+
which the parentheses will “move.”

Associate to the right. The arrow indicates the direction in

Before After
CCA+BY+C> CA*C(B+C>>
(CA-B>+CH (A=(B-C>>
C(A+B>-C> (A*C(B-C>>
((A-B>=C> (A=(B+C>>
(CA¥XBY¥CH CAX(BXC>>
C(A-BY%C> CAZCB~C2>
((A%¥XB>,/C> (A%X(B-C>>
({(AsB>,C> C(AZCB¥XCH)
(CA™B>~C> (AR(BXC>>
+¢(2 Distribute prefix operator.

Before After
~-(A+B> (-(A>=B>
-(A-B> (-CRY+B>
~-(RA%¥B> (-C(A>%B>
-¢A/B> (-{AY/B>
~(LOGCA>? LOGCINVCAD 2
={LNCA>?> LNCINVCAD 2
INVCAXED CINVCR2 2B
INVCA~B2 CINVCRI%XB?>
INVCAR™BD CAA-C(B>>
INVCALOGCAY 2 ALOGC-CAX 2
INVCEXPCAD EXPC—-CR2 >

Dictionary

39

...ALGEBRA (FORM)

Note that any time an expression is rewritten, the sequence * INV is
collapsed to /. Similarly, + — is replaced by —.

<0 Distribute to the left. The arrow points to the subexpres-
sion that is distributed.

Before After
CCRA+BIRC) CCA¥CH+CBXCH D
CCA-BYXCH CCR¥CHI=CBRCH D
CCA+BYACO CCAACI4(BACHD
CCR-BY/C) CCAACI=CBACHD
CCRFBIACY CCATCHIRCBCH D
CCAABIAC) CCASCI,CBACH D

D+ Distribute to the right. The arrow points to the sub-
expression that is distributed.

Before After
CA%CB+CH CCAXB>+CAXCH >
CA%CB-CHD CCA¥BY=-CA%CH>
CA/ZCB+CH D INVCCINVCADRBY +CTNVCRY KT 2
CA/CB-CHD INVCCINVCAD B - CINVCRAY KT 2
CA~CB+CH C(A™BY¥C(A™CH>
(A~CB-CH2 CCA™BY,(A™CY>
LOGCAXB (LOGCAY+LOGC(B>>
LOGCA~B2 (LOGCAY-LOGC(B>?
ALOGCA+B CALOGCA¥ALOGCB >
ALOGCA-B2 CALOGCA>ALOGCEB)>
LNCA%E CLNCAY+LNCB Y

40 Dictionary

...ALGEBRA (FORM)

(Continued)
Before After
LNCA-B2 CLHCAX-LHCBY 2
EXPCH+E > CEXPCRAMXERP (B
EXPCA-B> CEXPCRY EXPCB

<M Merge left factors. This operation merges arguments of +,
—, %, and /, where the arguments have a common factor or a com-
mon single-argument function EXP, ALOG, LN, or LOG. In the case
of common factors, the arrow indicates that the left-hand factors are

common.

Before After

Er+CAXCHD CAXCB+C))
CCA¥BI-CAXCY D CAXCB-CH D
CCA™MBIRCATCY D CRACB+CH
CCATMBY CANCD D CRAMCB-CHD
CLHCAX +LHCR 2 D LNCAXE
CLHCAY-LNCBY 3 LNCABD
CLOGCAY+LOGCE > > LOGCA¥E
CLOGYAY-LOGCE» LOGCA~B2
CEXPCAMYEXPCBY 2 EXPCRA+ED
CESPCAR EXPCB D EXPCA-EBED
CALOGCA¥ALOGCE Y 2 ALOGCA+E
CALOGCAY ALOGCE D D ALOGCA-E>

Dictionary 41

...ALGEBRA (FORM)

M+ Merge right factors.This operation merges arguments of
+, —, %, and /, where the arguments have a common factor. The
arrow indicates that the right-hand factors are common.

Before

After

CCAXCI+(BXCH)
({A-CHY+C(B-C>
CCRA¥CHI-CB¥CH)
CCARACHI=CBACHD
CCA™COXCB™CO D
CCATCI (BT D

CCA+BY%CH
CCA+B.CO
CCA-BY%CH
CCA=-BM,C>
CCAXBIAC)
CCAABXAC

Double-Negation and Double-Inversion

OHEC Double-negate. Negate a subexpression twice.

Before

After

42 Dictionary

...ALGEBRA (FORM)

~¢» Double-negate and distribute. This operation is equiva-

lent to a double negate DHEG followed by distribution = #¢>

resulting inner negation.

of the

Before After
CA+B> =(—CAX-B>
CA-B> -(-CAY+B>
(—-{AX-B> -(A+B?>
CH%EB =(—-CAX¥B>
C-CAX%B> -(A¥B>
C—-CR>/B2 ~(A~ B2
CA/BD =C—-CAX B2
LOGCA2 ~CLOGCIMVCAD 2D
LOGCINMCA2) =C(LOGCAM
LNCAD =CLNCINMCR2 2O
LNCINVCR 2 =C(LHCA»

OINY Double-invert. Invert a subexpression twice.

Before

After

INVCINVCAD D

Dictionary

43

...ALGEBRA (FORM)

1-¢> Double-invert and distribute. This operation is equivalent
to double inversion bDIny followed by distribution 2¢> of the re-

sulting inner INV:

Before

After

CR%E
CA/B
CA~B2
CA*=CB22
ALOGCH?
ALOGC—CH» 2

INVCINVYCARY AB 2
INVCINMCADEE
INVCA™=CB2 2
INVCRSE >
INVCALOGC—CRA> 22
INVCALOGCAD)

EXPCA D INVCEXPC—CRAX 2
EXPC—CHI D INVCERPCRAD 2
Identities

¥1 Multiply by 1.

Before After
A Ax1
-1 Divide by 1.
Before After
A A~ 1

44 Dictionary

...ALGEBRA (FORM)

o Raise to the power 1.

Before After
A A ~ 1
+1-1 Add 1 and subtract 1.

Before After
A R+ 1 2 -1

Rearrangement of Exponentials

L¥ Replace log-of-power with product-of-log.

Before After
LOGCA™E> CLOGCR»%EB
LNCA™E CLHCAMRE >
L<2> Replace product-of-log with log-of-power.

Before

After

CLMCAX%ED

LOGCA™EX
LNCA™E

Dictionary

45

...ALGEBRA (FORM)

E~ Replace power-product with power-of-power.

Before After
ALOGCA¥EB? CALOGC(A>"B>
ALOGCA~B? CALOGCARAINV(BY)
EXAPCA%¥B> CEXPCRAABY
EXPC(A-B> CEXPCAXAINV(BY

E<> Replace power-of-power with power-product.

Before After
CALOGCA»~B> ALOGCA%XB
CALOGCA~INVC(B > ALOGCA~B2
CEXP(RA>~B> EXPCAXB >
CEXPCRAIAINVC(BY) EXPCA-B>

Adding Fractions

AF Combine over a common denominator.

Before After
CA+(B-sC>> CCCRAXCHY 4B ZCH
(CA-BY+C> (CA+C(BXCH>>,B>
(CA-B>»+(C-D2>> CCCAXDY +(BXCO >, CB*D> >
(A-(B~C>> CCCRAXCO-BYZCH
((A~sB>-C> (CA-(B¥C>>,B>
(CAsBY»=-C(C-D2> CCCA¥DY-CBXCO 2, (B*D> >

46 Dictionary

...ALGEBRA (FORM)

If the denominator is already common between two fractions, use
M+

FORM Operations Listed by Function

The following tables show which operations will appear in the FORM
menu when a given function is the selected object. The form of the
original subexpression and the result is shown for each operation.

The operations COLCT , EXPAN, LEVEL , DONEG , DINV , %1 ,

»1 ,and #1-1 are available for all functions and variables. These
common operations don’t appear in the tables. If only the common
operations are available for a function, no table appears for that func-
tion. (Only the common operations are available for \/ and SQ; to use
other operations, substitute ~.5 and "2.)

Addition (+)

Operation Before After

€ CA+B> (B+A>
(-(AX+B> (B=A>

€A CA*{(B+C>> C(A+BY*CH
(A*(B-C>»> C(A+B>=C>

A+ CCA+BYRCO CAR(B+C>>
C(A-B>+C> (A=(B-C>>

€M CCAXBY*CAXCH D (A%XC(B+C> >
CLNCAX*LNC(B>> LNCAXB>
(LOGC(A>*L0OG{(B>> LOGCAXB>

M+ CCAXCHY*(B*CH>> (CA+BY%C>
(CA-CHY+<B-CH> (CA+BYsC>

-0 CA+B> =(-C(A>-B>
-(A>+B =(A-B>

AF (A*(B-C>> CCCAXCHY+BHZCH
C(A/B>*(C-D>> (CCAXD>+(BXC>>,<(B%D>>
C(A-B>+C) CCA+C(B¥XC>>2B>

Dictionary 47

...ALGEBRA (FORM)

Subtraction (-)

Operation Before After

€3 (A-B> (—-C(B>+A>

A (A-CB+C>> C(A-B»-C>
(A-{B-C>> C(A-BY+C>

A+ ({A+B>-C> (A+(B-C>>
((A-B>-C> (A-(B+C>>

M (CA¥BY-CAXCH> CAXCB-C2 2
(LHCAY=-LNC(B LNCA-B>
(LOGCA»-LOGCB> > LOGCA-B>

M+ (CA¥C)H>-C(B*CH> (CA-BY%C>
({A-CHI-CB-C2> ({A-B>,C>

- {A-B> ~{-C(AX+B>
(-CA>-B> ~{A+B>

AF (A-CB~C> CCCR¥CH-BY./C>
((A-BY-C> C{A-CB¥C>>,B>
(CA-BY-CC D> CCCAYDY-CBXCY >, CBXD» D

Multiplication (%)

Operation Before After

€3 CA%B > CB%¥A>
CINVCAM%XB) (B,RA>

«A CA%(B¥C>> CCA¥BY%CH
(A%CB-CH> ({A%B>,C>

A+ CCA¥BY%CH CA%X(B¥C>>
C(A-B>%C> CAsCB-C>

«D (CA+BY%C> CCAXCH+CBXCH >
((A-B%C> CCA¥CHI-C(BXCH

D=+ CA%CB+CH > CCA¥BY+CAXCH)
CA%(B-C>»> CCA¥BY=-CA%CH D

48 Dictionary

...ALGEBRA (FORM)

(Continued)
Operation Before After
«M (CA™BYXCA™C) (A~C(B+CH2
(ALOGC(AXXALOGCB» > ALOGCA+E >
(EXPCAXEXP (B> EXPCRA+BE?
M+ CCA™CH%CB~CH 2 (CAXBYACH
=< (A%XB> ~{—-(AX¥B>
(-C(AM%BE> -{A%E>
148 CAxB > INVCINVCAY #B 2
CINVCA»%B> INVCA~B2
LE (LOGCA>%B> LOGCA™B?
(LHCAX%B> LNCA™B?
Division (/)
Operation Before After
€3 (AsB? CINVCB2%A>
+A CA/CB¥CH 2 ({A-B),C>
CA/CB~CH2 ({A-BX%C>
A+ (CAXBYCH CA%XCB-C>2
({A-B>»,C> (A/(B¥C>>
0 C{A+B>»/C2 CCAACI+CB-CH2
({A-B>,C3 CCAACHI=CB-CH2
D+ (A/CB+C 2 INVCCINVYCR Y EEBD
+CINVCAYECH D
(A CB-C22 INVCCINVCAXEB D
—CINVCAYECH 2
«M ((A™BX»,CA™CI) CA*CB-C2>2
CALOGCAY ALOGCB > ALOGCA-B>
CEXPCAXEXFP(B} EXPCA-B>

Dictionary

49

...ALGEBRA (FORM)

(Continued)
Operation Before After
M+ ({A™CH,CB™C> ((A-B>*C>
=) {AsB> =(-CAX~B>
(-(AX/B> =(A-B>
L¢) (LMC{AY/B> LNCA~INYC(B))
(LOGCA»,B> LOGCA™INY(B) >
LA (A/B?> INVCINVCAXXBD
Power (")
Operation Before After
A CA*(B¥C>> (CA™BYX~C)
A+ (CA™BY~CH (A*(BXC>>
) (CA¥B>~C) CCA™CHRCB™CO
({A-B>~C> (CA™CHI CB™CH>
D+ CA*{B+C>> (CA™BY%¥CA™CH
(A®{(B-C>> (CA™BY»,CA™C)>
$6) (A%B> INVCAS=C(B>)
(A*-(B>> INVCA™BD
E¢) CALOGC(A»*B> ALOGCA%B >
CALOGCAXAINVC(B) > ALOGC(A~B>
(EXPCA>*B> EXP(A%XB>
(EXPCAXAINVCBY ERPCA~B>

50 Dictionary

Negation (—)

...ALGEBRA (FORM)

Operation Before After
() -(A+B> (-(AX-B>
-(A-B> (-C(AY+B>
-(A%B> (-(AX%B>
-C(A-B> (-(AX/B>
-¢LOGC{A>> LOGCINVCA
={LNCRA>? LNCINVCADY
Iinverse (INV)
Operation Before After
() INVCAXE? (INVCAY /B
INV(A/B> C(INVCAY%B?
INVCA™B2 (Ar-C(B>>
INVCALOGCA? 2 ALOGC-CAM
INVCEXPCAY 2 EXPC(—-CRAY
Logarithm (LOG)
Operation Before After
D+ LOGCA%B> (LOGCA>+LOG{B> >
LOGCA-B> (LOGC{A>-LOG(B>>
- LOGCA? ~CLOGCINVCA» D

LOGCINVCAY

L¥ LOGCA™B?
LOGCA™INVCB

=CLOGC(A2 >

CLOGCA»%B
CLOGCRAR> /B>

Dictionary

51

...ALGEBRA (FORM)

Antilogarithm (ALOG)

Operation Before After
D+ ALOGCA+E » CALOGCAX*¥ALOGC(B»
ALOGCA-B CALOGCA» ALOGC(E»>
Fo ALOGCA INVCALOGC-CAX D2
ALOGC—CA» 2 INVCALOGCA > 2
E~ ALOGCA%EB? (ALOGC{AX*B>
ALOGCA-B2 CALOGC(AX*INVC(E)> >

Natural Logarithm (LN)

Operation Before After
D+ LNCA%B? CLNCAY+LNCB Y 2
LNCA~/B? CLNCAX»=LNC(B» >
-¢ LNCA? ~CLHCINVCAY 2D
LNCINYCA» D ~(LNCA> >
L% LNCAMINHYCB» CLN(A>Y%B>
Exponential (EXP)
Operation Before After
D+ EXPCA+E (EXPCRAMXEXPC(BY >
EXP(A-B> (EXPCAIEXP(B)>
1,¢) EXPCAY INVCEXPC-CRX 22
EXPC—CAX > INVCEXPCAY
E™ EXPCA%EB) (EXP{A*B>
EXPCA-B> CEXPCAXAINVC(EY

52 Dictionary

Arithmetic

This section describes the arithmetic functions +, —, %, /, ~, INV, \/,
5Q, and NEG. These functions apply to several object types. They're
described here for all appropriate object types; they're described in
other sections, such as “ARRAY” and “COMPLEX,” only as they apply
to that particular object type.

+ Add Analytic
Level 2 Level 1 Level 1
Z4 Zy » zy+2,
Carray,1] Carray,1 = Carray, t+array,1
z 'symb' w» 'z+ Csymba '
'symb' z » 'symb+z'
'symby' 'symb,' ®» 'symb+ C.symb,
I listy x {listor ® < listylisty &
i list * obj » { list obj ¥
obj Ilisty w» 1 obj list
"' string4 " "'string," » "' stringqstring,"
ny no » # ny+ny
ny # n, » # nqy+ny
ny # n, » # nyt+ny

+ returns the sum of its arguments, where the nature of the sum is
determined by the type of arguments. If the arguments are:

Two real numbers. The sum is the ordinary real sum of the
arguments.

A real number u and a complex number (x, y). The result is the
complex number (x + u, y) obtained by treating the real number as a
complex number with zero imaginary part.

Dictionary 53

. Arithmetic

Two complex numbers (x4, y4) and (x5, y5). The result is the com-
plex sum (x; + x;, Y1 + y,).

A number and an algebraic. The result is an algebraic representing
the symbolic sum.

Two algebraics. The result is an algebraic representing the symbolic
sum.

Two lists. The result is a list obtained by concatenating the objects in
the list in level 1 to the end of the list of objects in level 2.

A list and a non-list object. The result is a list obtained by treating
the non-list object as a one-element list and concatenating the two
lists.

Two strings. The result is a string obtained by concatenating the
characters in the string in level 1 to the end of the string in level 2.

Two arrays. The result is the array sum, where each element is the
real or complex sum of the corresponding elements of the argument
arrays. The two arrays must have the same dimensions.

A binary integer and a real number. The result is a binary integer
that is the sum of the two arguments, truncated to the current
wordsize. The real number is converted to a binary integer before the
addition.

Two binary integers. The result is a binary integer that is sum of
the two arguments, truncated to the current wordsize.

54 Dictionary

. Arithmetic

- Subtract Analytic

Level 2 Level 1 Level 1
z4 z5 » 24—2y

Carray,1 Carray,1 » Carray,—array, 1
z ‘symb' w» 'z-symb'
‘symb' z » 'symb-z'

'symb, ' 'symby,' ®» ' symb,—symb, '
ny ny » # ny—ny
ny # n, » # ny—ny
ny # n, » # ny—ny

— returns the difference of its arguments, where the nature of the
difference is determined by the type of arguments. The object in level
1 is subtracted from the object in level 2. If the arguments are:

Two real numbers. The result is the ordinary real difference of the
arguments.

A real number u and a complex number (x, y). The result is the
complex number (x — u, y) or (u — x, —y) obtained by treating the
real number as a complex number with zero imaginary part.

Two complex numbers (x4, y4) and (x3, y5). The result is the com-
plex difference (x; — x5, y; — ¥»).

A number and an algebraic. The result is an algebraic representing
the symbolic difference.

Two algebraics. The result is an algebraic representing the symbolic
difference.

Dictionary 55

.Arithmetic

Two arrays. The result is the array difference, where each element is
the real or complex difference of the corresponding elements of the
argument arrays. The two arrays must have the same dimensions.

A binary integer and a real number. The result is a binary integer
that is the sum of the number in level 2 plus the twos complement of
the number in level 1. The real number is converted to a binary inte-
ger before the subtraction.

Two binary integers. The result is a binary integer that is the sum
of the number in level 2 plus the twos complement of the number in
level 1.

X Multiply Analytic
Level 2 Level 1 Level 1

z4 Z5 » 2429
Cmatrix 1 Carrayl w» C matrix x array 1

z Carrayl » Czxarray]
Carray 1 z » Carrayxz1]

z 'symb' w» 'z¥{symb»'
'symb' z » '{symbr¥z'
'symb, ' 'symb,' ®» ' symbq¥symb, '

n, no » # nqyny
ny # n, » # nqyny
n, # n, » # nqyny

56 Dictionary

.Arithmetic

% returns the product of its arguments, where the nature of the prod-
uct is determined by the type of arguments. If the arguments are:

Two real numbers. The result is the ordinary real product of the
arguments.

A real number u and a complex number (x, y). The result is the
complex number (xu, yu) obtained by treating the real number as a
complex number with zero imaginary part.

Two complex numbers (x4, y4) and (x5, ¥5). The result is the com-
plex product (x1X; — Y1¥p, X1¥2 + Xp¥1).

A number and an algebraic. The result is an algebraic representing
the symbolic product.

Two algebraics. The result is an algebraic representing the symbolic
product.

A number and an array. The result is the product obtained by
muliplying each element of the array by the number.

A matrix and an array. The result is the matrix product of the argu-
ments. The array in level 1 must have the same number of rows
(elements, if a vector) as the number of columns of the matrix in
level 2.

A binary integer and a real number. The result is a binary integer
that is the product of the two arguments, truncated to the current
wordsize. The real number is converted to a binary integer before the
multiplication.

Dictionary 57

.Arithmetic

Two binary integers. The result is a binary integer that is the prod-
uct of the two arguments, truncated to the current wordsize.

| Divide Analytic
Level 2 Level 1 — Level 1

z, 2 — 2/2,
[array] [matrix] — [matrix~" x array]
[array] z — [array/z]

z ‘symb’ — ‘z/(symb)’
‘symb’ z — ‘(symb)/Z'
‘symb,’ ‘symby’ — ‘symb,/symb,’

#n, ny — #n,/n;

n, #ny — #n,/n,

#n, #n, — #n,/n;

/ ([2)) returns the quotient (the object in level 2 divided by the object
in level 1) of its arguments, where the nature of the quotient is deter-
mined by the type of arguments. If the arguments are:

Two real numbers. The result is the ordinary real quotient of the
arguments.

A real number u in level 2 and a complex number (x, y) in
level 1. The result is the complex number

(ux/(x* + y2), —uy/(x2 + y?))

obtained by treating the real number as a complex number with zero
imaginary part.

A complex number (x, y) in level 2 and a real number u in
level 1. The result is the complex number (x/u, y/u) obtained by
treating the real number as a complex number with zero imaginary
part.

58 Dictionary

.Arithmetic

A complex number (x4, y,) in level 2, and a complex number
(x2, ¥2) in level 1. The result is the complex quotient

(%2 + viv2)/(5 + ¥3), ixy — x1¥2)/ (3 + v3)).

A number and an algebraic. The result is an algebraic representing
the symbolic quotient.

Two algebraics. The result is an algebraic representing the symbolic
quotient.

An array and a matrix. The result is the matrix product of the in-
verse of the matrix in level 1 with the array in level 2. The array in
level 2 must have the same number of rows (elements, if a vector) as
the number of columns of the matrix in level 1.

An array and a number. The result is a new array, with each new
element the quotient of the corresponding old element and the
number.

A binary integer and a real number. The result is a binary integer
that is the integer part of the quotient of the two arguments. The real
number is converted to a binary integer before the division. A divisor
of 0 returns # 0.

Two binary integers. The result is a binary integer that is the inte-
ger part of the quotient of the two arguments. A divisor of zero
returns # 0.

Dictionary 59

.Arithmetic

Power Analytic
Level 2 Level 1 Level 1
Z4 Zy » Z1Z2
z 'symb' w» 'z (symby '
'symb' z » 'isymb»"z!
'symb, "' 'symb,' ® ' symb4™(symbs,)"

~ returns the value of the object in level 2 raised to the power given
by the object in level 1. Any combination of real number, complex
number, and algebraic arguments may be used. If either argument is

complex, ” returns a complex result.
INV Inverse Analytic
Level 1 Level 1
z » 1/z
Cmatrix] » C matrix =11
'symb' » 'THW Csymb» !

INV (B(1/x]) returns the inverse (reciprocal) of its argument.

For a complex argument (x, y), the inverse is the complex number

@/ + y?), —y/(&* + y?).

Array arguments must be square matrices.

60 Dictionary

.Arithmetic

Vv Square Root Analytic
Level 1 Level 1
z » vz
'symb' w» "I isymby !

\V (B[5)) returns the (positive) square root of its argument. For a
complex number (x;, y;), the square root is the complex number

(x2 y2) = (Vr cos 6/2, \Vr sin 0/2)
where

r = abs (x;, y;), 0 = arg (x1, ¥1).
If (x;, y1) = (0, 0), then the square root is (0, 0).

Refer to “Principal Branches and General Solutions” in “COMPLEX.”

SQ Square Analytic
Level 1 Level 1
z » z2
Cmatrix1 w» C matrix X matrix 1
‘symb' w» 'SRCsymb !

SQ (M (+?)) returns the square of its argument.
For a complex argument (x, y), the square is the complex number
(% — 2, 2xy).

Array arguments must be square matrices.

Dictionary 61

«.Arithmetic

NEG Negate Analytic
Level 1 Level 1
z » -z
Carrayl = C —array]
‘symb' '—=(symb>'

NEG returns the negative of its argument.

For an array, the negative is an array composed of the negative of
each element in the array. The key can be used to execute NEG
if no command line is present. If a command line is present, acts
on the command line.

Menu keys for NEG are found in the REAL and ARRAY menus.

62 Dictionary

ARRAY

-ARRY ARRY- PUT GET PUTI GETI
SIZE RDM TRN CON IDN RSD
CROSS DOT DET ABS RNRM CNRM
R-C C-R RE iM CONJ NEG

Arrays are ordered collections of real or complex numbers that satisfy
various mathematical rules. In the HP-28S, one-dimensional arrays
are called vectors; two-dimensional arrays are called matrices. We will
use the term “array” to refer collectively to vectors and matrices.

Although vectors are entered and displayed as a row of numbers, the
HP-28S treats vectors, for the purposes of matrix multiplication and
computations of matrix norms, as n X 1 matrices.

An array can contain either real numbers or complex numbers. We
will use the terms real array (real vector or real matrix) and complex
array when describing properties of arrays that are specific to real

numbers or complex numbers.

Arrays are entered and displayed in the following formats:

vector | L number number ... 1]

matrix | CC number number ... 1]
C number number ... 1
C number number ... 11

where number represents a real number or a complex number.

Dictionary 63

...ARRAY

When you enter an array you can mix real and complex numbers. If
any one number in an array is complex, the resulting array will be
complex.

You can include any number of newlines anywhere in the entry, or
you can enter the entire array in a single command line.

When entering matrices, you can omit the delimiter 1 that ends each
row. The [that starts each row is required. If additional objects fol-
low the array in the command line, you must end the array with 11
before starting the new object.

The term row order refers to a sequential ordering of the elements of
an array, starting with the first element (first row, first column), then:
from left to right along each row; from the top row to the bottom row
(for matrices).

The STORE menu contains commands that allow you to perform ar-
ray operations using the name of a variable that contains an array,
rather than requiring the array itself to be on the stack. In these cases,
the result of an operation is stored in the variable, replacing its origi-
nal contents. This method requires less memory than operations on
the stack, and hence can allow you to deal with larger arrays.

Array operations that may be time-consuming for large arrays can be
interrupted via the key. If you press during such an opera-
tion, the HP-28S will halt execution of the array command and clear
the array arguments from the stack. You can recover the original ar-
guments by using UNDO or LAST.

In addition to the functions present in the ARRAY and STACK
menus, the keyboard functions described in the next section accept
arrays as arguments.

64 Dictionary

..ARRAY

Keyboard Functions

Complete stack diagrams for these functions appear in “Arithmetic.”

+ Add Analytic

Level 2 Level 1 Level 1

Carray,1 Carray,1 » Carray,+array, 1

+ returns the array sum of two array arguments. The two arguments
must have the same dimensions. The sum of a real array and a com-
plex array is a complex array, where each element x of the real array is
treated as a complex element (x, 0).

- Subtract Analytic
Level 2 Level 1 Level 1
Carray, 1 Carray,1 » Carray,—array,1

— returns the array difference of two array arguments. The two argu-
ments must have the same dimensions. The difference between a real
array and a complex array is a complex array, where each element x of
the real array is treated as a complex element (x, 0).

Dictionary 65

-..ARRAY

b 3 Multiply Analytic
Level 2 Level 1 Level 1
z Carraydl = Czxarray]
Carray] z » Czxarray 1
C matrix 1 Carrayl » C matrix x array 1

% returns the product of its arguments, where the nature of the prod-
uct is determined by the type of arguments. If the arguments are:

An array and a number. The product is the matrix product of the
number (real or complex number) and the array, obtained by multiplying
each element of the array by the number.

Two arrays. The product is the matrix product of the two arrays. The
array in level 2 must be a matrix (that is, it can not be a vector). Level
1 can contain either a matrix or a vector. The number of rows in the
array in level 1 must equal the number of columns in the matrix in
level 2.

The product of a real array and a complex array is a complex array.
Each element x of the real array is treated as a complex element (x,0).

/ Divide Analytic

Level 2 Level 1 Level 1

Cmatrix B1 Cmatrix A1l » [Cmatrix X1
Cvector B1 [matrix A1l » LCvector X1

/ ([(+)) applied to array arguments solves the system of equations
AX = B for X. That is, / computes X = A~ !B. / uses 16-digit internal
computation precision to provide a more accurate result than obtained
by applying INV to A and multiplying the result by B.

66 Dictionary

...ARRAY

A must be a square matrix, and B can be either a matrix or a vector. If
B is a matrix, it must have the same number of rows as A. If B is a
vector, it must have the same number of elements as the number of
columns of A.

If flag 59 (Infinite Result) is clear, the HP-28S will arrive at a solution
even if the coefficient array is singular (A has no proper inverse). This
feature allows you to solve under-determined and over-determined
systems of equations.

For an under-determined system (containing more variables than
equations), the coefficient array will have fewer rows than columns.
To find a solution:

1. Append enough rows of zeros to the bottom of your coefficient
array to make it square.

2. Append corresponding rows of zeros to the constant array.

You can now use these arrays with / to find a solution to the original
system.

For an over-determined system (containing more equations than vari-
ables), the coefficient array will have fewer columns than rows. To
find a solution:

1. Append enough columns of zeros on the right of your coefficient
array to make it square.

2. Add enough zeros on the bottom of your constant array to en-
sure conformability.

You can now use these arrays with / to find a solution to the original
system. Only those elements in the result array that correspond to
your original variables will be meaningful.

For both under-determined and over-determined systems, the coef-
ficient array is singular, so you should check the results returned by /
to see if they satisfy the original equation.

Dictionary 67

...ARRAY

Improving the Accuracy of System Solutions

Because of rounding errors during calculation, a numerically calcu-
lated solution Z is not in general the solution to the original system
AX = B, but rather the solution to the perturbed system (A + AA)
Z = B + AB. The perturbations AA and AB satisfy ||AA| < ¢[|A| and
|AB] < ¢|B|, where ¢ is a small number and ||A| is the norm of A, a
measure of its size analogous to the length of a vector. In many cases
AA and AB will amount to less than one in the 12th digit of each
element of A and B.

For a calculated solution Z, the residual is R = B — AZ. Then

IR| < €e||A]| [|Z]|. So the expected residual for a calculated solution is
small. Nevertheless, the error Z — X may not be small if A is ill-condi-
tioned, that is, if |Z — X|| < ¢|A| |A™ Y]] [|Z].

A rule-of-thumb for the accuracy of the computed solution is

(number of correct digits)
= (number of digits carried) — log (||A|l IA"Y)) — log 10n

where n is the dimension of A. For the HP-28S, which carries 12 ac-
curate digits,

(number of correct digits) = 11 — log (||A|l A=) — log n.

In many applications, this accuracy may be adequate. When addi-
tional accuracy is desired, the computed solution Z can usually be
improved by iterative refinement (also known as residual corrections).
Iterative refinement involves calculating a solution to a system of
equations, then improving its accuracy using the residual associated
with the solution to modify that solution.

68 Dictionary

...ARRAY

To use iterative refinement, first calculate a solution Z to the original
system AX = B. Then Z is treated as an approximation to X, in error
by E = X — Z. Then E satisifies the linear system

AE = AX — AZ = R,

where R is the residual for Z. The next step is to calculate the residual
and then solve AE = R for E. The calculated solution, denoted by F,
is treated as an approximation to E and is added to Z to obtain a new
approximation to X.

For F + Z to be a better approximation to X than is Z, the residual
R = B — AZ must be calculated to extended precision. The function
RSD does this (see the description of RSD below for details of its use).

The refinement process can be repeated, but most of the improvement
occurs in the first refinement. The / function does not attempt to per-
form a residual refinement because of the memory required to
maintain multiple copies of the original arrays. Here is an example of
a user program that solves a matrix equation, including one refine-
ment using RSD:

+BR«EBER BRI PFPICK RED R » + 3 =

The program takes two array arguments B and A from the stack, the
same as /, and returns the result array Z, which will be an improved
approximation to the solution X over that provided by / itself.

INV Inverse Analytic

Level 1 Level 1

Cmatrix1 » Cmatrix =11

INV (@(1/x)) returns the matrix inverse of its argument. The argu-
ment must be a square matrix, either real or complex.

Dictionary 69

...ARRAY

SQ Square Analytic

Level 1 Level 1

Cmatrix;1 » Cmatrix,]

SQ (M(>?]) returns the matrix product of a square matrix with itself.

NEG Negate Analytic

Level 1 Level 1

Carrayl o L[—arrayl

Pressing when no command line is present executes the function
NEG. For an array, each element of the result is the negative of the
corresponding element of the argument array.

To enter the NEG function in the command line, use HEz (on the
fourth row of the ARRAY menu).

-ARRY ARRY- PUT GET PUTI GETI

This group of commands allows you to recall or alter individual ele-
ments of an array.

70 Dictionary

...ARRAY

—ARRY Stack to Array Command
Level nm+1 Level 2 Level 1 — Level 1
Xy.e:Xpy n — [vector]
Xqoe:Xpy {n} — [vector]
Xq4---Xpm {n m} — [matrix]

— ARRY takes a list (or, for vectors, a number) representing the size of
the result array from level 1:

Vectors. If level 1 contains an integer n or a list consisting of a single
integer n, n numbers are taken from the stack, and an n element vector is
returned.

Matrices. If the list contains two integers n and m, nm numbers are
removed from the stack and returned as the elements of an n X m
matrix.

The elements of the result array should be entered into the stack in
row order, with x;; (or x;) in level nm + 1 (or n + 1), and x,,, (or x,)
in level 2. If one or more of the elements is a complex number, the
result array will be complex.

ARRY- Array to Stack Command
Level 1 Level n+1 ... Level2 Level 1
Cvector] = Xy ... Xp {n}
Cmatrix] w» X11 «+- Xpm {nm}

ARRY~ takes an array from the stack, and returns its elements to the
stack as individual real or complex numbers. ARRY- also returns a
list representing the size of the array to level 1. The elements are
placed on the stack in row order:

Dictionary 71

...ARRAY

Vectors. If the argument is an n-element vector, the first element is
returned to level n + 1, and the nth element to level 2. Level 1 will
contain the list { n }.

Matrices. If the argument is an n X m matrix, element x,,, is re-
turned to level 2, and element x;; to level (nm + 1).

PUT Put Element Command
Level 3 Level 2 Level 1 Level 1
Carray41 index X » Carray,1
' global ! index X »
CC-array, 1 index z » CC-array, 1
' global ! index z »
{listy x index obj » {listy ¥
' global ' index obj »

PUT replaces an object in the specified position in an array or list.
This section describes its use with arrays; see “LIST” for its use with
lists.

PUT takes three arguments from the stack:

B From level 3, an array or the name of an array.

B From level 2, a one-element list (specifying position in a vector), a
two-element list (specifying row and column in a matrix), or a real
number (specifying an element in row order in a vector or a
matrix).

® From level 1, the number to be put in the array. If this number is
complex, the array must also be complex.

If the argument in level 3 is an array, PUT returns the altered array to
the stack. If the argument in level 3 is a name, PUT alters the array
variable and returns nothing to the stack.

72 Dictionary

...ARRAY

GET Get Element Command
Level 2 Level 1 Level 1
Carray 1 index » z
' name ' index » z
{list x index » obj
' name ' index » obj

GET gets an object from the specified position in an array or list. This
section describes its use with arrays; see “LIST” for its use with lists.

GET takes two arguments from the stack:

® From level 2, an array or the name of an array.

® From level 1, a one-element list (specifying position in a vector), a
two-element list (specifying row and column in a matrix), or a real
number (specifying an element in row order in a vector or a
matrix).

GET returns the specified object to the stack.

PUTI Put and Increment Index Command

Level 3 Level 2 Level 1 Level 2 Level 1
Carray1 index X » [array,] indexo

' global* index X » 'global' index,
CC-array, 1 index4 z » [C-array,1] indexo

' global ! index z » 'global' indexo
{listy ¥ index obj » {listy ¥ indexo

' global ' index obj » ‘'global' indexo

Dictionary 73

...ARRAY

PUTI replaces an object in the specified position in an array, returning
the array (or name) and the next position. You can then put an object
in the next position simply by putting the object on the stack and
executing PUTI again.

You can specify the position by a one-element list (specifying position
in a vector), by a two-element list (specifying row and column in a
matrix), or by a real number (specifying an element in row order in a
vector or a matrix).

Generally, after putting an object in position n (in row order), PUTI
returns n + 1 as the next position and clears flag 46. However, when
n is the last position in the list, PUTI returns 1 as the next position
and sets flag 46. (If you're using lists rather than row-order numbers
to specify position, the next positionis { 1 } or { 1, 1 }.)

The following example uses PUTI and flag 46 to put the contents of a
variable ¥ in an array, from the initially specified position (not shown)
to the last position.

...00 = PUTI UNTIL 4& FS7% EHND...

GETI Get and Increment Index Command
Level 2 Level 1 Level 3 Level 2 Level 1
Carray] index » [array] indexo z
" name ' index; » 'name' indexo z
< list ¥ index, » i list ¥ indexo obj
" name ' index, ®» ‘'name' indexo obj

GETI gets an object from the specified position in an array, also re-
turning the array (or name) and the next position. You can then get
the object in the next position simply by removing the object from
level 1 and executing GETI again.

74 Dictionary

...ARRAY

Generally, after getting an object from position 1 (in row order), GETI
returns n + 1 as the next position and clears flag 46. However, when
n is the last position in the list, GETI returns 1 as the next position
and sets flag 46. (If you're using lists rather than row-order numbers
to specify position, the next positionis { 1 } or { 1, 1 }.)

The following example uses GETI and flag 46 to add array elements,
from the initially specified position (not shown) to the last position, to
a variable .

...0D0 GETI 'X' STO+ UNTIL 48 FS? EMD...

SIZE RDM TRN CON IDN RSD

SIZE Size Command
Level 1 Level 1
"string" ®» n
i list ¥ » n
Carrayl = i list ¥
'symb' ®» n

SIZE returns an object representing the size, or dimensions, of a list,
array, string, or algebraic argument. For an array, SIZE returns a list
containing one or two integers:

® [f the original object is a vector, the list will contain a single integer
representing the number of elements in the vector.

B If the object is a matrix, the list will contain two integers represent-
ing the dimensions of the matrix. The first integer is the number of
rows in the matrix; the second is the number of columns.

Refer to sections “STRING,” “LIST,” and “ALGEBRA” for the use of
SIZE with other object types.

Dictionary 75

...ARRAY

RDM Redimension Command
Level 2 Level 1 Level 1
Carray41 {dim* » [array,]
' global! {dim%¥ »

RDM rearranges the elements of the array array; taken from level 2
(or contained in a variable name), and returns array,, which has the
dimensions specified in the list of one or two integers taken from level
1. If the array in level 2 is specified by name, array, replaces array; as
the contents of the variable. If the list contains a single integer n, ar-
ray, will be an n-element vector. If the list has the form {n m}, array,
will be an n X m matrix.

Elements taken from array; preserve the same row order in array,. If
array, is dimensioned to contain fewer elements than array;, excess
elements from array; at the end of the row order are discarded. If
array, is dimensioned to contain more elements than array,, the addi-
tional elements in array, at the end of the row order are filled with
zeros ((0, 0) if array; is complex).

TRN Transpose Command
Level 1 Level 1
Cmatrix;1 w» C matrix, 1
'global' w»

TRN returns the (conjugate) transpose of its argument. That is, an
n X m matrix A in level 1 (or contained in name) is replaced by an
m X n matrix A!, where

Al — { A; for real matrices,
ij CONJ (A;) for complex matrices.

If the matrix is specified by name, A’ replaces A in name.

76 Dictionary

...ARRAY

CON Constant Array Command
Level 2 Level 1 Level 1
{dim ¥ z » Carray 1
Carray, 1 X » Carray, 1]
CC-array,1 z » CC-array, 1
' global ! z »

CON produces a constant array—an array with all elements having
the same value. The constant value is the real or complex number
taken from level 1. The result array is either a new array, or an exist-
ing array with its elements replaced by the constant value, according
to the object in level 2.

Creating a new array. If level 2 contains a list of one or two inte-
gers, a new array is returned to the stack. If the list contains a single
integer n, the result is a constant vector with n elements. If the list has
the form {n m}, the result is a constant matrix with n rows and m
columns.

Replacing the elements of an existing array. If level 2 contains a
name, that name must identify a user variable containing an array. In
this case, the elements of the array are replaced by the constant taken
from level 1. If the constant is a complex number, the original array
must be complex.

If level 2 contains an array, an array of the same dimensions is re-
turned, with each element equal to the constant value. If the constant
is a complex number, the original array must be complex.

Dictionary 77

...ARRAY

IDN Identity Matrix Command
Level 1 Level 1
n » C R-identity matrix 1
Cmatrix1 » Cidentity matrix 1
‘global' ®»

IDN produces an identity matrix—a square matrix with its diagonal
elements equal to 1, and its off-diagonal elements 0. The result matrix
is either a new matrix, or an existing square matrix with its elements
replaced by those of the identity matrix, according to the argument in
level 1.

Creating a new matrix. If the argument is a real number, a new real
identity matrix is returned to the stack, with its number of rows and
number of columns equal to the argument.

Replacing the elements of an existing matrix. If the argument is
a name, that name must identify a user variable containing a square
matrix. In this case, the elements of the matrix are replaced by those
of the identity matrix (complex if the original matrix is complex).

If the argument is a square matrix, an identity matrix of the same
dimensions is returned. If the original matrix is complex, the returned
identity matrix will also be complex, with diagonal values (1,0).

RSD Residual Command
Level 3 Level 2 Level 1 Level 1
Carray B1 L[matrix A1l Carray Z1 » Carray B—AZ1]

78 Dictionary

...ARRAY

RSD computes the residual B — AZ of three arrays B, A, and Z. RSD is
typically used for computing a correction to Z, where Z has been ob-
tained as an approximation to the solution X to the system of
equations AX = B. Refer to “Improving the Accuracy of System Solu-
tions”, earlier in this section, for a description of the use of RSD with
systems of equations.

A, B, and Z are restricted as follows:

A must be a matrix.

The number of columns of A must equal the number of elements of
Z if Z is a vector, or the number of rows of Z if Z is a matrix.

The number of rows of A must equal the number of elements of B
if B is a vector, or the number of rows of B if B is a matrix.

B and Z must both be vectors or both be matrices.

B and Z must have the same number of columns, if they are
matrices.

CROSS DOT DET ABS RNRM CNRM

CROSS Cross Product Command
Level 2 Level 1 Level 1
Cvector A1 LCvector B1 » Cvector A x BJ

CROSS returns the cross product € = A x B of the vectors La; a ; 431
and Cb; b, b3, where

€1 = aby — azby

¢, = azby — ayb;
c3 = ajby — axby

Dictionary 79

...ARRAY

The arguments must be two- or three-element vectors. A two-element
argument Cd; d,] is converted to a three-element argument Cd; d, 01.

DOT Dot Product Command
Level 2 Level 1 Level 1
Carray A1l LCarray B1 » X

DOT returns the “dot” product A-B of two arrays A and B, computed
as the sum of the products of the corresponding elements of the two
arrays. For example: L1 & 31 [4 5 &1 DOT returns 1 X 4 +

2 X5+ 3 X6, or 32

Some authorities define the dot product of two complex arrays as the
sum of the products of the conjugated elements of one array with
their corresponding elements from the other array. The HP-28S uses
the ordinary products without conjugation. However, if you prefer the
alternate definition, you can apply CON]J to one or both arrays before
using DOT.

DET Determinant Command
Level 1 Level 1
Cmatrix1 =» determinant

DET returns the determinant of its argument, which must be a square
matrix.

80 Dictionary

...ARRAY

ABS Absolute Value Function
Level 1 Level 1
z » b4
Carrayl » ||array ||
'symb' ®» "AEBS Csymba '

ABS returns the absolute value of its argument. In the case of an ar-
ray, ABS returns the Frobenius (Euclidean) norm of the array, defined
as the square root of the sum of the squares of the absolute values of
all of the elements.

Refer to “REAL,” “COMPLEX,” and “ALGEBRA” for the use of ABS
with other object types.

RNRM Row Norm Command
Level 1 Level 1
Carrayd w row norm

RNRM returns the row norm (infinity norm) of its argument. The row
norm is the maximum value (over all rows) of the sums of the abso-
lute values of all elements in a row. For a vector, the row norm is the
largest absolute value of any of the elements.

CNRM Column Norm Command
Level 1 Level 1
Carrayl » column norm

CNRM returns the column norm (one-norm) of its argument. The col-
umn norm is the maximum value (over all columns) of the sums of
the absolute values of all elements in a column. For a vector, the col-
umn norm is the sum of the absolute values of the elements.

Dictionary 81

...ARRAY

R-C C-R RE M CONJ NEG
R-C Real-to-Complex Command
Level 2 Level 1 Level 1
X y » X,y

CR-array;1 LCR-array,1 » [C-array]

R—C combines two real numbers, or two real arrays, into a single
complex number, or complex array, respectively. The object in level 2
is taken as the real part of the result; the object in level 1 is taken as
the imaginary part.

For array arguments, the elements of the complex result array are
complex numbers, the real and imaginary parts of which are the cor-
responding elements of the argument arrays in level 2 and level 1,
respectively. The arrays must have the same dimensions.

C-R Complex-to-Real Command
Level 1 Level 2 Level 1
Cx,y? » X y

CC-arrayl w» [CR-array;1 LCR-array,1]

C-R returns to level 2 and level 1 the real and imaginary parts, re-
spectively, of a complex number or complex array.

82 Dictionary

IIIARRAY

The real or imaginary part of a complex array is a real array, of the
same dimensions, the elements of which are the real or imaginary
parts of the corresponding elements of the complex array.

RE Real Part Function
Level 1 Level 1
X » X
X,y » X
CR-array]l » CR-array]
CC-arrayl » CR-array 1
'symb' ®» 'RE (symb> '

RE returns the real part of its argument. If the argument is an array,
RE returns a real array, the elements of which are equal to the real
parts of the corresponding elements of the argument array.

iM Imaginary Part Function
Level 1 Level 1
X » 0
X,y » y
CR-arrayl » C zero R-array 1
CC-array]l w» CR-array 1
'symb' ®» 'IMCsymb> !

IM returns the imaginary part of its argument. If the argument is an
array, IM returns a real array, the elements of which are equal to the
imaginary parts of the corresponding elements of the argument array.
If the argument array is real, all of the elements of the result array
will be zero.

Dictionary 83

...ARRAY

CONJ Conjugate Analytic
Level 1 Level 1
X » X
(x,y? » (x, —y?
CR-arrayl » CR-array 1
CC-array;1 w» CC-array, 1
'symb' » 'COMJ(symb) '

CON] returns the complex conjugate of a complex number or complex
array. The imaginary part of a complex number, or of each element of
a complex array, is negated. For real numbers or arrays, the conjugate
is identical to the original argument.

NEG Negate Analytic

Level 1 Level 1

Carray]d » [—array]

For an array, each element of the result array is the negative of the
corresponding element of the argument array.

When no command line is present, pressing executes the func-
tion NEG. A complete stack diagram for NEG appears in
“Arithmetic”.

84 Dictionary

BINARY

DEC HEX oCT BIN STWS RCWS
RL RR RLB RRB R-B B-R
SL SR SLB SRB ASR

AND OR XOR NOT

Binary integers are unsigned integer numbers that are represented in-
ternally in the HP-28S as binary numbers of length 1 to 64 bits. Such
numbers must be entered, and are displayed, as a string of digits pre-
ceded by the delimiter #.

The display of binary integers is controlled by the current integer
base, which can be binary (base 2), octal (base 8), decimal (base 10), or
hexadecimal (base 16). Binary integers are displayed with a base
marker b, o, d, or h, indicating the current base. If you change the
current base using one of the menu keys BIN , 0CT , DEC , or

HEX , the internal representation of a binary integer on the stack is
not changed, but the digits shown in the display will change to reflect
the number’s representation in the new base.

You can enter a binary integer in any base if you also enter the base
marker; you can enter one in the current base by omitting the base
marker.

In binary base, only the digits 0 and 1 are allowed; in octal, the digits

0-7; in decimal, the digits 0-9; and in hexadecimal, the digits 0-9 and
the letters A-F. The default base is decimal.

Dictionary 85

...BINARY

The stack display of binary integers is also affected by the current
wordsize, which you can set in the range 1 to 64 bits with the com-
mand STWS. When a binary integer is displayed on the stack, the
display shows only the least significant bits, up to the wordsize, even
if the number has not been truncated. If you reduce the wordsize, the
display will alter to show fewer bits, but if you subsequently increase
the wordsize, the hidden bits will be displayed.

The primary purpose of the wordsize is to control the results returned
by commands. Commands that take binary integer arguments trun-
cate those arguments to the number of (least significant) bits specified
by the current wordsize, and they return results with that number of
bits. The default wordsize is 64 bits.

The current base and wordsize are encoded in user flags 37 through
44. Flags 37-42 are the binary representation of the current wordsize
minus 1 (flag 42 is the most significant bit). Flags 43 and 44 determine
the current base:

Flag 43 | Flag 44 Base
0 0 Decimal
0 1 Binary
1 0 Octal
1 1 Hexadecimal

In addition to the BINARY menu commands described in the next
sections, the arithmetic functions +, —, %, and / can be used with
pairs of binary integers, or combinations of real integers and binary
integers, as described in “Arithmetic.”

86 Dictionary

-..BINARY

DEC HEX oCT BIN STWS RCWS

DEC Decimal Mode Command

»

DEC sets decimal mode for binary integer operations. Binary integers
may contain the digits 0 through 9, and will be displayed in base 10.

DEC clears user flags 43 and 44.

HEX Hexadecimal Mode Command

»

HEX sets hexadecimal mode for binary integer operations. Binary inte-
gers may contain the digits 0 through 9, and A (ten) through F
(fifteen), and will be displayed in base 16.

HEX sets user flags 43 and 44.

OoCT Octal Mode Command

»

OCT sets octal mode for binary integer operations. Binary integers
may contain the digits 0 through 7, and will be displayed in base 8.

OCT sets user flag 43 and clears flag 44.

Dictionary 87

...BINARY

BIN Binary Mode Command

»

BIN sets binary mode for binary integer operations. Binary integers
may contain the digits 0 and 1, and will be displayed in base 2.

BIN clears user flag 43, and sets flag 44.

STWS Store Wordsize Command
Level 1
n »

STWS sets the argument n as the current binary integer wordsize,
where n should be a real integer in the range 1 through 64. If n > 64,
then a wordsize of 64 is set; if n < 1, the wordsize will be 1. User
flags 37-42 represent the binary representation of n — 1 (flag 42 is
the most significant bit).

RCWS Recall Wordsize Command
Level 1
» n

RCWS returns a real integer n equal to the current wordsize, in the
range 1 through 64. User flags 37-42 represent the binary representa-
tion of n — 1.

88 Dictionary

...BINARY

RL RR RLB RRB R-B B-R

The commands RL and RR rotate binary integers (set to the current
wordsize) to the left or right by one bit. The commands RLB and RRB
are equivalent to RL or RR repeated eight times. R+B and B»R con-
vert real numbers to or from binary integers.

RL Rotate Left Command
Level 1 Level 1
ny » # n,

RL performs a 1 bit left rotate on a binary integer number # n;. The
leftmost bit of # n; becomes the rightmost bit of the result # n,.

RR Rotate Right Command

Level 1 Level 1

#n1 » #ng

RR performs a 1 bit right rotate on a binary integer number # n;. The
rightmost bit of # 1n; becomes the leftmost bit of the result # n,.

RLB Rotate Left Byte Command

Level 1 Level 1

RLB performs a 1 byte left rotate on a binary integer number # ;.
The leftmost byte of # n; becomes the rightmost byte of the result
ns.

Dictionary 89

-..BINARY

RRB Rotate Right Byte Command
Level 1 Level 1
nq » # no

RRB performs a 1 byte right rotate on a binary integer number # n;.
The rightmost byte of # n; becomes the leftmost byte of the result
ny.

R-B Real to Binary Command
Level 1 Level 1
n » #n

R—+B converts a real integer n, 0 < n < 1.84467440737E19, to its bi-
nary integer equivalent # n. If n < 0, the result is # 0. If
n > 1.84467440737E19, the result is # FFFFFFFFFFFFFFFF (hex).

B-R Binary to Real Command
Level 1 Level 1
#n » n

B-R converts a binary integer # n to its real number equivalent n. If
#n > # 1000000000000 (decimal), only the 12 most significant deci-
mal digits are preserved in the mantissa of the result.

90 Dictonary

...BINARY

SL SR SLB SRB ASR

The commands SL and SR shift binary integers (set to the current
wordsize) to the left or right by one bit. The commands SLB and SRB are
equivalent to SL or SR repeated eight times.

SL Shift Left Command

Level 1 Level 1

SL performs a 1 bit left shift on a binary integer. The high bit of n, is
lost. The low bit of 1, is set to zero. SL is equivalent to binary multi-
plication by two (with truncation to the current wordsize).

SR Shift Right Command

Level 1 Level 1

#n1 » #n2

SR performs a 1 bit right shift on a binary integer. The low bit of n, is
lost. The high bit of n, is set to zero. SR is equivalent to binary divi-
sion by two.

SLB Shift Left Byte Command

Level 1 Level 1

SLB performs a 1 byte left shift on a binary integer. SLB is equivalent
to multiplication by # 100 (hexadecimal) (truncated to the current
wordsize).

Dictionary 91

...BINARY

SRB Shift Right Byte Command

Level 1 Level 1

SRB performs a 1 byte right shift on a binary integer. SRB is equiva-
lent to binary division by # 100 (hexadecimal).

ASR Arithmetic Shift Right Command

Level 1 Level 1

ASR performs a 1 bit arithmetic right shift on a binary integer.
In an arithmetic shift, the most significant bit retains its value, and a
shift right is performed on the remaining (wordsize—1) bits.

AND OR XOR NOT

The functions AND, OR, XOR, and NOT can be applied to binary
integers, strings, or flags (real numbers or algebraics). This section de-
scribes their use with binary integers and strings; see “PROGRAM

TEST” for their use with flags.

These functions treat binary integers and strings as sequences of bits
(0’s and 1’s).

B A binary integers is treated as a sequence of length n, where 1 is

the current wordsize. The bits correspond to the 0’s and 1’s in the
binary integer’s representation in base 2.

92 Dictionary

-..BINARY

B A string is treated as a sequence of length 8n, where 1 is the num-
ber of characters in the string. Each set of eight bits corresponds to
the binary representation of one character code. For AND, OR, and
XOR, the two string arguments must be the same length.

AND And Function
Level 2 Level 1 Level 1
ny # n2 » # na
"' stringq " "string," » "stringz"

AND returns the logical AND of two arguments. Each bit in the result
is determined by the corresponding bits (bit; and bit,) in the two ar-
guments, according to the following table:

bit, bit, | bit, AND bit,
0 0 0
1 0
1 0 0
1 1 1
OR Oor Function
Level 2 Level 1 Level 1
n1 # no » # n3
"string4 " "string," ® "stringz"

OR returns the logical OR of two arguments. Each bit in the result is
determined by the corresponding bits in the two arguments, accord-
ing to the following table:

Dictionary 93

...BINARY

bit, bit, | bit; OR bity
0 0 0
0 1 1
1 0 1
1 1 1
XOR Exclusive Or Function
Level 2 Level 1 Level 1
n, # n, » # ng
"' stringq " "string," » “stringz"

XOR returns the logical XOR (exclusive OR) of two arguments. Each
bit in the result is determined by the corresponding bits in the two
arguments, according to the following table:

bit, | bit, | bit, XOR bit,
0 0 0
0 1 1
1 0 1
1 1 0

94 Dictionary

...BINARY

NOT Not Function

Level 1 Level 1

#n1 » #nz

string » string,

NOT returns the ones complement of its argument. Each bit in the
result is the complement of the corresponding bit in its argument.

bit | NOT bit
0 1
1 0

Dictionary 95

Calculus

The HP-28S is capable of symbolic differentiation of any algebraic
expression (within the constraints of available memory), and of nu-
merical integration of any (algebraic syntax) procedure. In addition,
the calculator can perform symbolic integration of polynomial expres-
sions. For more general expressions, the [command can automatically
perform a Taylor series approximation to the expression, then sym-
bolically integrate the resulting polynomial.

Differentiation

i) Differentiate Analytic
Level 2 Level 1 Level 1
'symb, ' ‘global' ®» ‘'symb,'

0 ((d/dx]) computes the derivative of an algebraic expression symb;
with respect to a specified variable name. (Name cannot be a local
name.) The form of the result expression symb, depends upon
whether 9 is executed as part of an algebraic expression, or as a
“stand-alone” object.

Step-wise Differentiation in Algebraics

The derivative function 9 is represented in algebraic expressions with
a special syntax:

'aname<symb> ',

where name is the variable of differentiation and symb is the expres-
sion to be differentiated.

96 Dictionary

.Calculus

For example, 'aX<{SINCY>)>' represents the derivative of SINCY)
with respect to ¥. When the overall expression is evaluated, the dif-
ferentiation is carried forward one “step’—the result is the derivative
of the argument expression, multiplied by a new subexpression repre-
senting the derivative of its argument. An example should make this
clear. Consider differentiating SINCY> with respect to X in radians
mode, where ¥ has the value 'X~2"':

'OXCSINCY D)) EVAL returns 'COSCYIkaX(Y)!'.

We see that this is a strict application of the chain rule of differentia-
tion. This description of the behavior of 9, along with the general
properties of EVAL, is sufficient for understanding the results of sub-
sequent evaluations of the expression:

EVAL returns 'COSCX"2r¥(dX(RIX2%kK (2-122 "',

EVAL returns 'COS(R"2XX(2%X)> "',

Fully Evaluated Differentiation
When 9 is executed as an individual object—that is, in a sequence
'symb' 'name’' 3,

rather than as part of an algebraic expression, the expression is auto-
matically evaluated repeatedly until it contains no derivatives. As part
of this process, if the variable of differentiation name has a value, the
final form of the expression will have that value substituted every-
where for the variable name.

To compare this behavior of d with the step-wise differentiation de-
scribed in the preceding section, consider again the example
expression 'SINCY>', where ¥ has the value 'X~2':

'SINCY Y'Y '"X' o returns 'COS(R"2IXK(2¥XD) ',

Dictionary 97

.Calculus

All of the steps of the differentiation have been carried out in a single
operation.

The function 9 determines whether to perform the automatic repeated
evaluation according to the form of the level 1 argument that specifies
the variable of differentiation. If that argument is a name, the full
differentiation is performed. When the level 1 argument is an alge-
braic expression containing only a name, only one step of the
differentiation is carried out. Normally, algebraics containing only a
single name are automatically converted to name objects. The special
syntax of d allows this exception to be used as a signal for full or step-
wise differentiation.

Differentiation of User-Defined Functions
When 9 is applied to a user-defined function:

1. The expression consisting of the function name and its argu-
ments within parentheses is replaced by the expression that
defines the function.

2. The arguments from the original expression are substituted for
the local names within the function definition.

3. The new expression is differentiated.
For example: Define F (a, b) = 2a + b:
€« > ab '2%a+b' » 'F' STO.

Then differentiate 'F (X, X~2)>' with respect to . The differentia-
tion automatically proceeds as follows:

1. 'F(X,X"2> ' is replaced by '2%a+b'.

2. ¥ is substituted for a, and 'X"~2"' for b. The expression is now
'2%kR+RN2.

98 Dictionary

..Calculus

3. The new expression is differentiated.

B If we evaluated 'dX(F(X,X~2>)>' the result is
PAXC2%kK) 4K (K 2y .

B If we executed 'F(X, (X~2>>' 'X' &, the differentiation is
carried through to the final result '2+2%¥X"'.

User-Defined Derivatives

If 9 is applied to an HP-28S function for which a built-in derivative is
not available, d returns a formal derivative—a new function whose
name is “der” followed by the original function name. For example,
the HP-28S definition of % does not include a derivative. If you dif-
ferentiate '% (¥, Y>' one step with respect to Z, you obtain

‘der%(X,¥,a2C(X),d82¢Y>)>"

Each argument to the % function results in two arguments to the
der% function. In this example, the ¥ argument results in X and
aZ(X)> arguments, and the Y argument results in ¥ and aZ<(Y>
arguments.

You can further differentiate by creating a user-defined function to
represent the derivative. Here is a derivative for %:

€ 3+ x 9y dx dy '(x¥duy+y¥dx>-1088' » 'derx' STO.

With this definition you can obtain a correct derivative for the %
function. For example:

'K, 2%X0 " "K' & COLCT returns '.84%X'.

Similarly, if d is applied to a formal user function (a name followed by
arguments in parentheses, for which no user-defined function exists
in user memory), d returns a formal derivative whose name is “der”
followed by the original user function name. For example, differenti-
ating a formal user function 'f{x1,x2,x3>"' with respect to x
returns

'‘derf(x1,x2,x3,0x(x1),ax(x2),0x(x3>>"'

Dictionary 99

.Calculus

Integration
i Integrate Command
Level 3 Level 2 Level 1 Level 2 Level 1
'symb' ' global ! degree ®» ' integral '
X {global a b+ accuracy » integral error
'symb' {globalab} accuracy ® integral error
«program* <{global a b} accuracy ® integral error
«program#* {abi accuracy ® integral error

[returns either a polynomial expression representing a symbolic in-
definite integral, or two real numbers for a definite numerical integral.
The nature of the result is determined by the arguments. In general, [
requires three arguments. Level 3 contains the object to be integrated;
the level 2 object determines the form of the integration; the level 1
object specifies the accuracy of the integration.

Symbolic Integration

[includes a limited symbolic integration capability. It can return an
exact (indefinite) integral of an expression that is a polynomial in the
variable of integration. It can also return an approximate integral by
using a Taylor series approximation to convert the integrand to a
polynomial, then integrating the polynomial.

100 Dictionary

.Calculus

To obtain a symbolic integral, the stack arguments must be:

3: Integrand (name or algebraic)
2: Variable of integration (global name)

1: Degree of polynomial (real integer)

The degree of polynomial specifies the order of the Taylor series ap-
proximation (or the order of the integrand if it is already a
polynomial).

Numerical Integration
To obtain a numerical integral, you must specify:

B The integrand.
® The variable of integration.
B The numerical limits of integration.

B The accuracy of the integrand, or effectively, the acceptable error in
the result of the integration.

Using an Explicit Variable of Integration. A numerical integration,
in which the variable of integration is named with a name object that
(usually) appears in the definition of the object used as the integrand,
is called explicit variable integration. In the next section, implicit vari-
able integration will described, in which the variable of integration
does not have to be named.

Dictionary 101

.Calculus

For explicit variable integration, you must enter the relevant objects as
follows:

3: Integrand
2: Variable of integration and limits

1: Accuracy

The integrand is an object representing the mathematical expression
to be integrated. It can be:

® A real number, representing a constant integrand. In this case, the
value of the integral will just be:

number (upper limit — lower limit).
® An algebraic expression.

B A program. The program must satisfy algebraic syntax—that is,
take no arguments from the stack, and return a real number.

The variable of integration and the limits of integration must be in-
cluded in a list in level 2 of the form:

{ name lower-limit upper-limit 3,

where name is a global name, and where each limit is a real number
or an object that evaluates to a number.

The accuracy is a real number that specifies the error tolerance of the
integration, which is taken to be the relative error in the evaluation of
the integrand (the accuracy determines the spacing of the points, in
the domain of the integration variable, at which the integrand is sam-
pled for the approximation of the integral).

The accuracy is specified as a fractional error, that is,

true value — computed value
computed value

accuracy =

102 Dictionary

.Calculus

where value is the value of the integrand at any point in the integra-
tion interval. Even if your integrand is accurate to or near 12
significant digits, you may wish to use a larger accuracy value to re-
duce integration time, since the smaller the accuracy value, the more
points that must be sampled.

The accuracy of the integrand depends primarily on three
considerations:

B The accuracy of empirical constants in the expression.

® The degree to which the expression may accurately describe a
physical situation.

B The extent of round-off error in the internal evaluation of the
expression.

Expressions like cos (x — sin x) are purely mathematical expressions,
containing no empirical constants. The only constraint on the accu-
racy then, is the round-off errors which may accumulate due to the
finite (12-digit) accuracy of the numerical evaluation of the expres-
sion. You can, of course, specify an accuracy for integration of such
expressions larger than the simple round-off error, in order to reduce
computation time.

When the integrand relates to an actual physical situation, there are
additional considerations. In these cases, you must ask yourself
whether the accuracy you would like in the computed integral is justi-
fied by the accuracy of the integrand. For example, if the integrand
contains empirical constants that are accurate to only 3 digits, it may
not make sense to specify an accuracy smaller than 1E-3.

Furthermore, nearly every function relating to a physical situation is
inherently inaccurate because it is only a mathematical model of an
actual process or event. The model is typically an approximation that
ignores the effects of factors judged to be insignificant in comparison
with the factors in the model.

Dictionary 103

.Calculus

To illustrate numerical integration, we will compute

flzexpxdx

to an accuracy of .00001. The stack should be configured as follows

for [

3: ‘EXP(X)’
2 X 1 2 }
1: .00001

Numerical integration returns two numbers to the stack. The value of
the integral is returned to level 2. The error returned to level 1 is an
upper limit to the fractional error of the computation, where normally

error = accuracy [lintegrand|

If the error is a negative number, it indicates that a convergence of the
approximation was not achieved, and the level 2 result is the last com-
puted approximation.

For the integral of 'EXP(X>' in the example, [returns a value
4.67077 to level 2, and the error 4.7E-5 to level 1.

Using an Implicit Variable of Integration. The use of an explicit
variable of integration allows you to enter the integrand as an ordi-
nary algebraic expression. However, it is also possible to enter the
integrand in RPN form, which can appreciably reduce the time re-
quired to compute the integral by eliminating repeated evaluation of
the variable name. In this method, an implicit variable of integration
is being used. The stack should be configured like this:

104 Dictionary

.Calculus

3: Integrand (program)

2: Limits of integration (list)

1: Accuracy (real number)

The integrand must be a program that takes one real number from the
stack, and returns one real number. [evaluates the program at each of
the sample points between the limits of integration. For each evalua-
tion [places the sample value on the stack. The program takes that
value, and returns the value of the integrand at that point.

The limits of integration must be entered as a list of two real numbers,
in the format {lower-limit upper-limit}. The accuracy specifies the frac-
tional error in the computation, as described in the preceding section.

For example to evaluate the integral:

2
f1 exp (x) dx

to an accuracy of .00001, you should execute [with the stack as
follows:

3: « EXP »
2.1 1 2 }
1: .00001

This returns the same value 4.67077 and accuracy 4.7E-5 as the exam-
ple in the preceding section, where we used an explicit variable of
integration.

Dictionary 105

.Calculus

Taylor Series

TAYLR Taylor Series Command
Level 3 Level 2 Level 1 Level 1
'symb, ! ' global ' n » 'symb,'

TAYLR (in the ALGEBRA menu) computes a Taylor series approxima-
tion of the algebraic symb;, to the nth order in the variable name. The
approximation is evaluated at the point name = 0 (sometimes called a
MacLaurin series). The Taylor approximation of f(x) at x = 0 is de-
fined as:

n xi ai
2 <g f(x))L=0

i=0 i!

Translating the Point of Evaluation

If you're using TAYLR simply to put a polynomial in power form, the
point of evaluation makes no difference because the result is exact.
However, if you're using TAYLR to approximate a mathematical func-
tion, you may need to translate the point of evaluation away from
zero.

For example, if you're interested in the behavior of a function in a
particular region, its TAYLR approximation will be more useful if you
translate the point of evaluation to that region. Also, if the function
has no derivative at zero, its TAYLR approximation will be meaning-
less unless you translate the point of evaluation away from zero.

106 Dictionary

...Calculus

(G Executing TAYLR can return a meaningless result if the
ﬂ expression is not differentiable at zero. For example, if
Note you clear flag 59 (to prevent Infinite Result er-

rors) and execute:

RS 'K 2 TRYLR

you will obtain the result 'S.E499%X-1,25E4392%%"~2". The coef-
ficient of ¥ is aX(X~.5>, which equals .5 % ¥~ - .5 and
evaluates to 5.E499 for x = 0.

Although TAYLR always evaluates the function and its derivatives at
zero, you can effectively translate the point of evaluation away from
zero by changing variables in the expression. For example, suppose
the function is an expression in X, and you want the TAYLR approxi-
mation at X = 2. To translate the point of evaluation by changing

variables:
1. Store '¥+2' in 'X'.
2. Evaluate the original function to change the variable from X
toY.
3. Find the Taylor approximation at Y = 0.
4. Purge X (if it still exists as a variable).
5. Store 'H-2' in '¥"'.
6. Evaluate the new function to change the variable from Y to X.
7. Purge Y.

Dictionary 107

.Calculus

Approximations of Rational Functions

A rational function is the quotient of two polynomials. If the denomi-
nator evenly divides the numerator, the rational function is equivalent
to a polynomial. For example:

¥4+ 2> —5x — 6
¥ —x =2

If your expression is such a rational function, you can convert it to the
equivalent polynomial form by using TAYLR. However, if the denomi-
nator doesn’t evenly divide the numerator—that is, if there is a

remainder—the rational function is not a polynomial. For example:

3 2 _ _
X+ 2x 5x 2=x+3+2 4
P —x =2 XX —x =2

There is no equivalent polynomial form for such a rational function,
but you can use TAYLR to calculate a polynomial that is accurate for
small x (close to zero). You can translate the region of greatest accu-
racy away from x = 0, and you can choose the accuracy of the
approximation. For the example above, the first-degree TAYLR ap-
proximation at x = 0 is 2x + 1.

Polynomial Long Division. Another useful approximation to a ratio-
nal function is the quotient polynomial resulting from long division.
Consider the righthand side of the equation above as a polynomial
plus a remainder. The polynomial is a good approximation to the ra-
tional function when the remainder is small—that is, when x is large.
Note the difference between the quotient polynomial (x + 3) and the
TAYLR approximation of the same degree (2x + 1).

The steps below show you how to perform polynomial long division

on the HP-28S. The general process is the same as doing long division
for numbers.

108 Dictionary

..Calculus

1. Create expressions for the numerator and denominator, with
both in power form.

2. Store the denominator in a variable named ‘D’ (for “divisor”).
3. Store an initial value of zero in a variable named ‘Q’ (for
“quotient”).

With the numerator on the stack, proceed with the steps below. The
numerator is the initial value for the dividend. Each time you repeat
steps 4 through 8, you'll add a term to Q and reduce the dividend.

4. Put D on the stack (in level 1).

5. Divide the highest-order term of the dividend (in level 2) by the
highest-order term of the divisor (in level 1). You can calculate
the result by inspection and key it in, or you can key in an
expression

"dividend-term .- divisor-term
and then put it in power form.

For example, if the dividend is x> + 2x2> — 5x — 2 and the divi-
sor is ¥2 — x — 2, the result is x; if the dividend is 3x3 4+ x2 — 7
and the divisor is 2x2 + 8x + 9, the result is 1.5x.

The result is one term of the quotient polynomial.
6. Make a copy of the quotient term, and add this copy to Q.
7. Multiply the quotient term and the divisor.
8. Subtract the result from the dividend. The result is the new
dividend.

If the new dividend’s degree is greater than or equal to the divisor’s
degree, repeat steps 4 through 8.

When the new dividend’s degree is less than the divisor’s degree,
stop. The polynomial quotient is stored in Q, and the remainder
equals the final dividend divided by the divisor.

Dictionary 109

COMPLEX

R-C C-R RE M CONJ SIGN
R-P P-R ABS NEG ARG

The COMPLEX menu ([[COMPLX]) contains commands specific to
complex numbers.

Complex number objects in the HP-28S are ordered pairs of numbers
that are represented as two real numbers enclosed within parentheses
and separated by the non-radix character, for example,
¢1.234,5.678>. A complex number object (x, y) can represent:

B A complex number z in rectangular notation, where x is the real
part of z, and y is the imaginary part.

B A complex number z in polar notation, where x is the absolute
value of z, and y is the polar angle.

B The coordinates of a point in two dimensions, in rectangular co-
ordinates, where x is the abscissa or horizontal coordinate, and y is
the ordinate or vertical coordinate.

B The coordinates of a point in two dimensions, in polar coordinates,
where x is the radial coordinate, and y is the polar angle.

If you are not familiar with complex number analysis, you may prefer
to consider complex number objects as two-dimensional vectors or

point coordinates. Most of the complex number commands return re-
sults that are meaningful in ordinary two-dimensional geometry as
well as for complex numbers.

With the exception of the P=R (polar-to-rectangular) command, all
HP-28S commands that deal with values of complex number objects
assume that their arguments are expressed in rectangular notation.

Similarly, all commands that return complex number results, except
R—+P (rectangular-to-polar), express their results in rectangular form.

110 Dictionary

...COMPLEX

In addition to the commands described in the following sections, cer-
tain commands in other menus accept complex number arguments:

B Arithmetic functions +, —, %, /, INV, \/, SQ, ~.
B Trigonometric functions SIN, ASIN, COS, ACOS, TAN, ATAN.

B Hyperbolic functions SINH, ASINH, COSH, ACOSH, TANH,
ATANH.

B Logarithmic functions EXP, LN, LOG, ALOG.

R-C C-R RE M CONJ SIGN

The commands R+C, C-R, RE, IM, and CON]J also appear in the
fourth row of the ARRAY menu. For their use with array arguments,
refer to page 82.

R-C Real to Complex Command
Level 2 Level 1 Level 1
X y » (x,y?

CR-array;1 LCR-array,1 » [CC-array]

R—C combines two real numbers x and y into a complex number. x is
the real part, and y the imaginary part of the result. x and y may also
be considered as the horizontal and vertical coordinates, respectively,
of the point (x, y) in a two-dimensional space.

Dictionary 111

-..COMPLEX

C-R Complex to Real Command
Level 1 Level 2 Level 1
X,y » X y

CC-array]l » LCR-array;1 LCR-array,1]

C-R separates a complex number (or coordinate pair) into its compo-
nents, returning the real part (or horizontal coordinate) to level 2, and
the imaginary part (or vertical coordinate) to level 1.

RE Real Part Function
Level 1 Level 1
(X,y2 » X
'symb' » 'RE Csymb2 '
Carray;1 » Carray,1

RE returns the real part x of its complex number argument (x, y).
x may also be considered as the horizontal or abscissa coordinate of
the point (x, y).

iM Imaginary Part Function
Level 1 Level 1
X,y» 0w y
'symb' w» 'IMCsymb> '
Carray;1 = Carray,1

IM returns the imaginary part y of its complex number argument
(x, y). y may also be considered as the vertical or ordinate coordinate
of the point (x, y).

112 Dictionary

-..COMPLEX

CONJ Conjugate Analytic
Level 1 Level 1
X » X
CX,yy @ CX, =y
CR-array] » CR-array 1
CC-array;1 w» CC-array,1
‘symb' w» 'COMJdCsymb !

CON]J returns the complex conjugate of a complex number. The imag-
inary part of a complex number is negated.

SIGN Sign Function
Level 1 Level 1
Z4 » Zy
‘symb' w» 'SIGHCsymbx '

For a complex number argument (x;, y;), SIGN returns the unit vector
in the direction of (xy, y;):

(X2, ¥2) = (xl/\/lez + v oy /VH + y%)

Dictionary 113

-..COMPLEX

R-P P-R ABS NEG ARG

R-P Rectangular to Polar Function
Level 1 Level 1
X » (x,0?
Cx,y» 0w Cr, 92
‘symb' » 'R3P {symb>'

R—~+P converts a complex number in rectangular notation (x, y) to polar
notation (7, 8), where

r = abs (x, y), 0 = arg (x, y).

P-R Polar to Rectangular Function
Level 1 Level 1
r.gy w x,y2
‘symb' w» 'P*R{symb> '

P-R converts a complex number in polar notation (r, 6) to rectangular
notation (x, y), where

x =rcosf, y =rsind.

ABS Absolute Value Function
Level 1 Level 1
z » 1z|
Carrayl w» ||array||
'symb' w» 'ABS Csymb> !

114 Dictionary

-..COMPLEX

ABS returns the absolute value of its argument. For a complex argu-
ment (x, y), the absolute value is \/(x* + y?) .

NEG Negate Analytic
Level 1 Level 1
z » 4
'symb' » ' —{symb>'
Carrayl = C —arrayl

NEG returns the negative of its argument. When no command line is
present, pressing executes NEG. A complete stack diagram for
NEG appears in “Arithmetic.”

ARG Argument Function
Level 1 Level 1
z » 0
'symb' ®» 'ARG (symb> '

ARG returns the polar angle 6 of a complex number (x, y) where

arctany/x forx >0
6=) ¢/2signy forx =0
arctany/x + ¢signy forx <0,y #0
¢ forx <0,y =0
¢= { 180 in degrees mode
vy in radians mode

Dictionary 115

-..COMPLEX

Principal Branches and General Solutions

In general the inverse of a function is a relation—for any argument
the inverse has more than one value. For example, consider cos~ 1z
for each z there are infinitely many w’s such that cos w = z. For rela-
tions such as cos~! the HP-28S defines functions such as ACOS.
These functions return a principal value, which lies in the part of the
range defined as the principal branch.

The principal branches used in the HP-28S are analytic in the regions
where their real-valued counterparts are defined—that is, the branch
cut occurs where the real-valued inverse is undefined. The principal
branches also preserve most of the important symmetries, such as
ASIN(—z) = —ASIN(z).

The illustrations below show the principal branches for \/, LN, ASIN,
ACOS, ATAN, ACOSH. The graphs of the domains show where the
cuts occur: the solid color or black lines are on one side of the cut,
and the shaded color or black regions are on the other side. The
graphs of the principal branches show where each side of the cut is
mapped under the function. Additional dotted lines in the domain
graphs and the principal branch graphs help you visualize the
function.

Also included are the general solutions returned by ISOL (assuming
flag 34, Principal Value, is clear, and radians angle mode is selected).
Each general solution is an expression that represent the multiple val-
ues of the inverse relations.

The functions LOG, ~, ASINH, and ATANH are closely related to the
illustrated functions. You can determine principal values for LOG, *,
ASINH, and ATANH by extension from the illustrations. Also given
are the general solutions for these functions.

116 Dictionary

-..COMPLEX

Principal Branch for \/Z

Domain: £ = (x,y?

s g N
Y, \
/ \

/ \
t \
| 0 |

[{11777777771, /’

\\ /

/
\ N Y
~N - _ 4
Principal Value: M = cu,v) = Jix,y?
h N
AN
\
\
0 b
I
o~
N !
-~ /
I~
NS /
N Y
NG e
\/ -
S
AN

[y}
[ru]

General Solution: 'S)=2" 'K

IS0L returns '=1%J2".

Dictionary

117

-..COMPLEX

Principal Branch for LN(Z)

Domain: £ = (x,y2

f ;7 \ \

Principal Value: W = <u,v» = LNix,y>

ir

| f
' |
[

| l
| 0o 4
T |
[|
[|
[I

L

—im

General Solution: 'EXFP{l»=2"'" 'W' IS0L returns
'LHCZ2 +2%nk1%nl "

118 Dictionary

...COMPLEX

Principal Branch for LOG (Z)

You can determine the principal branch for LOG from the illustrations
for LN (on the previous page) and the relationship log (z) =
In (z)/In (10).

General Solution: 'ALOGCW>=2"' 'W' ISOL returns
'LOGCZ) +2%n¥iknl - 2.308258589299"'

Principal Branch for U*Z

You can determine the principal branch for complex powers from the
illustrations for LN (on the previous page) and the relationship
u* = exp (In (u) z).

Principal Branch for ASINH (2Z)

You can determine the principal branch for ASINH from the illustra-
tions for ASIN (on the following page) and the relationship
asinh z = —i asin iz.

General Solution: 'SINH(W>=2' 'W' ISOL returns
"ASIHHCZ =0 -1 3" ml+n*i*nl

Principal Branch for ATANH (Z)

You can determine the principal branch for ATANH from the illustra-
tions for ATAN (on page 122) and the relationship
atanh z = —i atan iz.

General Solution: ' TANHC(W>=2"' 'W' ISO0L returns
'"ATANHC(Z) +rXiknl’

Dictionary 119

-..COMPLEX

Principal Branch for ASIN(Z)

Domain: £ =

Principal Value: I

(u,vd = ASIHNIXx,y?

V//111111111117

B

1111111111717/

General Solution: 'SIN(W»=2"
'"ASINCZ 2% C(-12"nl +n¥nl"'.

120 Dictionary

INI

IS0L returns

-..COMPLEX

Principal Branch for ACOS (2Z)

Domain: £ = x,y>

\\ //
\ /
\ /
N NR////717//A
7777 o) 1 4
/
/ \
/ \

Principal Value: W = <u,v) = ACOS{x,y>

/1111171111111/

JTT77777777777.

General Solution: 'COS{W»=2" ‘W'

'sS1¥ACOSCEr +2%n¥nl !

3

IS0L returns

Dictionary

121

-..COMPLEX

Principal Branch for ATAN (Z)

Domain: £ = (x,y>

Principal Value: W =

,.,'
<
™
<
—
Il

ATANCX, y>

|
I
|
1
!
i
}
\

AN\

|

|

|

| o

i
.\\\\\\\\\\'\\l\\

General Solution: 'TAHCW»=Z2"' 'W' IS0L returns
'ATANCZ Y +0¥nl '

122 Dictionary

-..COMPLEX

Principal Branch for ACOSH (2)

Domain: £ = ix,y?

|
t
|
|
|
z

|

!

|

:

I o 1 |
[ITTIVITIT I
» |
!

t

|

|

|

»
!
r
!
\

Principal Value: Il = cu,v» = ACOSHOx,y?

R
§ e BT, SO N S S ST A)
N
i ﬁ///////////////////////

General Solution: 'COSHCW»=Z2"' 'W' IS0L returns
'"S1¥ACOSHCZ » +2%nkidnl !’

Dictionary 123

Evaluation

Evaluation occurs in all aspects of calculator use, but most evaluation
occurs automatically. This section describes commands for explicitly
evaluating an object on the stack.

For information about the result of evaluating a particular type of ob-
ject, see chapter 23, “Evaluation,” in the Owner’s Manual.

Keyboard Commands

EVAL Evaluate Object Command

Level 1

obj »

EVAL evaluates the object in level 1. The result of evaluation, includ-
ing any results returned to the stack, depends on the evaluated object.

The evaluation of functions is affected by the current Result mode
(see page 21). In Numerical Result mode, EVAL and =NUM have the
same effect.

-NUM Evaluate to Number Command
Level 1 Level 1
obj » z

-+NUM evaluates the object in level 1, temporarily selecting Numeri-
cal Result mode (see page 21) to ensure that functions return
numerical results. The current Result mode is restored when -NUM is
completed.

124 Dictionary

.Evaluation

Automatic Evaluation of Programs and
Algebraics
The following commands take programs or algebraics as arguments,
evaluating those arguments in the course of execution.

a4 COLCT ISOL

[DRAW EVAL

TAYLR ROOT (and Solver) -NUM
If you execute one of these commands and then execute LAST, LAST

returns the arguments to commands in the evaluated program or alge-
braic, not the arguments to the original command.

Automatic Evaluation of Arguments in a List

The following commands can automatically evaluate the contents of a
list and use the results as arguments.

B GET, GETI, PUT, and PUTI accept a list specifying the index. Eval-
uating the contents of the list must produce one or two real
numbers.

B —+ARRY accepts a list specifying the dimensions. Evaluating the
contents of the list must produce one or two real numbers.

® ROOT (or the Solver) accepts a list specifying the initial guess.
Evaluating the contents of the list must produce one, two, or three
real numbers.

B [accepts a list specifying the variable of integration (optionally)
and the limits of integration. Evaluating the last two objects in the
list must produce two real numbers.

Dictionary 125

.Evaluation

Evaluation of System Objects

SYSEVAL Evaluate System Object Command
Level 1
#n »

SYSEVAL is intended solely for use by Hewlett-Packard in application pro-
gramming. General use of SYSEVAL can corrupt memory or cause
memory loss. Use SYSEVAL only as specified by Hewlett-Packard
applications.

SYSEVAL evaluates the system object at the absolute address # n. You
can display the version number and copyright message of your
HP-28S by executing # 18d SYSEVAL.

126 Dictionary

LIST

-LIST LIST- PUT GET PUTI GETI
POS suB SIZE

A list is an ordered collection of arbitary objects, that is itself an ob-
ject and hence can be entered into the stack or stored in a variable.
The objects in the list are called elements, and are numbered from left
to right starting with element 1 at the left. The commands in the LIST
menu enable you to create and alter lists, and to access the objects
contained in lists.

In addition to the LIST menu commands, you can also use the key-
board function + to combine two lists.

+ Add Analytic
Level 2 Level 1 Level 1
{listy ¥ {listo ® { listy listy ¥
{list ¥ obj » { list obj ¥
obj {list » { obj list ¥

The + function concatenates two lists, or one list and an object
treated as a single-element list.

A complete stack diagram for + is given in the “Arithmetic” section.

Dictionary 127

-LIST

-LIST LIST- PUT GET PUTI GETI

-LIST Stack to List Command
Level n+1 ... Level2 Level 1 Level 1
obj; ... obj, n » {obj; ... obj,*

-LIST takes an integer number n from level 1, plus n additional ob-
jects from levels 2 through n + 1, and returns a list containing the n
objects.

-LIST is also available in the STACK menu.

LIST- List to Stack Command
Level 1 Level n+1 ... Level2 Level 1
{objy ... obj, ¥ » objy ... obj, n

LIST- takes a list of n objects from the stack, and returns the objects
comprising the list into separate stack levels 2 through n + 1. The
number 7 is returned to level 1.

LIST- is also available in the STACK menu.

128 Dictionary

-.LIST

PUT Put Element Command
Level 3 Level 2 Level 1 Level 1
Carray,1 index be » [array,]
' global ! index X »
CC-array, 1 index z » [C-array,1]
' global ' index z »
i listy ¥ index obj » sty k
' global ! index obj »

PUT replaces an object in the specified position in an array or list.
This section describes its use with lists; see “ARRAY” for its use with
arrays.

PUT takes three arguments from the stack:

B From level 3, a list or the name of a list.

® From level 2, a real number (by itself or in a list) specifying a posi-
tion in the list.

B From level 1, the object to be put in the list.
If the argument in level 3 is a list, PUT returns the altered list to the

stack. If the argument in level 3 is a name, PUT alters the list variable
and returns nothing to the stack.

GET Get Element Command
Level 2 Level 1 Level 1
Carray 1 index » z
' name' index » z
i list ¥ index » obj
' name ' index » obj

Dictionary 129

-.LIST

GET gets an object from the specified position in an array or list. This
section describes its use with lists; see “ARRAY” for its use with
arrays.

GET takes two arguments from the stack:

® From level 2, a list or the name of a list.

® From level 1, a real number (by itself or in a list) specifying the
position in the list.

GET returns the specified object to the stack.

PUTI Put and Increment Index Command
Level 3 Level 2 Level 1 Level 2 Level 1
Carray,1 index X » C[Carray,] indexy
' global* index X » ‘'global' indexo

CC-array,1 index z » [CC-array,1] indexo
' global ' index4 z » 'global' index,
i listy ¥ index obj » {listy} indexo
' global ! index4 obj » ‘'global' index,

Like PUT, PUTI replaces an object in the specified position in a list. In
addition, PUTI returns the list (or name) and the next position. You
can then put an object in the next position simply by putting the ob-
ject on the stack and executing PUTI again.

Generally, after putting an object in position n, PUTI returns n + 1 as
the next position and clears flag 46. However, when n is the last posi-
tion in the list, PUTI returns 1 as the next position and sets flag 46.

130 Dictionary

-LIST

The following example uses PUTI and flag 46 to put the contents of a
variable ¥ in a list, from the initially specified position (not shown) to
the last position.

...00 X PUTI UNTIL 46 FS? END...

GETI Get and Increment Index Command
Level 2 Level 1 Level 3 Level 2 Level 1
Carray] index ®» [arrayl indexo z
" name ' index » 'name' indexo z
{list ¥ index » { list ¥ indexo obj
' name' index ®» 'npame' index, obj

Like GET, GETI gets an object from the specified position in a list. In
addition, GETI returns the list (or name) and the next position. You
can then get the object in the next position simply by removing the
last-gotten object from level 1 and executing GETI again.

Generally, after getting an object from position n, GETI returns n + 1
as the next position and clears flag 46. However, when n is the last
position in the list, GETI returns 1 as the next position and sets flag
46.

The following example uses GETI and flag 46 to add list elements,
from the initially specified position (not shown) to the last position, to
a variable X.

...DO GETI 'x' STO+ UNTIL 45 FS? END...

Dictionary 131

-.LIST

POS SuUB SIZE

POS Position Command
Level 2 Level 1 Level 1
"' stringq " "string," » n
1 list ¥ obj » n

POS returns the position of obj within ¢ list ;. If there is no match for
obj, POS returns 0.

SUB Subset Command
Level 3 Level 2 Level 1 Level 1
"string4 " ny no » ‘'string,"
{listy ¥ ny ny » {listy}

SUB returns a list containing elements n; through n, of the original
list. If n, < n;, SUB returns an empty list.

SIZE Size Command
Level 1 Level 1
"string" n
{list » n
Carrayl w {list ¥
'symb' w» n

SIZE returns a number n that is the number of elements in the list.

132 Dictionary

LOGS

LOG ALOG LN EXP LNP1 EXPM
SINH ASINH COSH ACOSH TANH ATANH

The LOGS menu contains exponential, logarithmic, and hyperbolic
functions. All of these functions accept real and algebraic arguments;
all except LNP1 and EXPM accept complex arguments.

LOG ALOG LN EXP LNP1 EXPM

LOG Common Logarithm Analytic
Level 1 Level 1
z » log z
'symb' » 'LOG (symb> '

LOG returns the common logarithm (base 10) of its argument.

An Infinite Result exception results if the argument is 0 or
(0, 0).

ALOG Common Antilogarithm Analytic
Level 1 Level 1
z » 107
'symb' w» '"ALOG (symb> '

ALOG returns the common antilogarithm (base 10) of its argument—
that is, 10 raised to the power given by the argument.

Dictionary 133

-..LOGS

For complex arguments:
alog (x, y) = expcx cos cy + i exp cx sin cy,

where ¢ = In 10. (Computation is performed in radians mode).

LN Natural Logarithm Analytic
Level 1 Level 1
z » In z
'symb' » '"LHCsymb» '

LN returns the natural logarithm (base €) of its argument.

An Infinite Result exception results if the argument is 0 or
(0, 0).

EXP Exponential Analytic
Level 1 Level 1
z » exp z
'symb' w» "ExFP Csymbl !

EXP returns the exponential, or natural antilogarithm (base e) of its
argument—that is, e raised to the power given by the argument. EXP
returns a more accurate result than =~, since EXP uses a special algo-
rithm to compute the exponential.

For complex arguments:
exp (x, y) = expx cos y + i expx sin y.

(Computation is performed in radians mode).

134 Dictionary

-+.LOGS

LNP1 Natural Log of 1+x Analytic
Level 1 Level 1
X » In (1+x)
'symb' ® 'LNP1{symb) "

LNP1 returns In(1 + x), where x is the real-valued argument. LNP1 is
primarily useful for determining the natural logarithm of numbers
close to 1. LNP1 provides a more accurate result for In(1 + x), for x
close to zero, than can be obtained using LN.

Arguments less than 1 cause an Undefined Result error.

EXPM Exponential Minus 1 Analytic
Level 1 Level 1
X » exp (x)—1
'symb' » 'EXPM{symb)

EXPM returns e* — 1, where x is the real-valued argument. EXPM is
primarily useful for determining the exponential of numbers close to
0. EXPM provides a more accurate result for ¥ — 1, for x close to 0,
than can be obtained using EXP.

Dictionary 135

-..LOGS

SINH ASINH COSH ACOSH TANH ATANH
These are the hyperbolic functions and their inverses.
SINH Hyperbolic Sine Analytic
Level 1 Level 1
z » sinh z
‘symb' » 'SINH (symb>"'
SINH returns the hyperbolic sine of its argument.
ASINH Inverse Hyperbolic Sine Analytic
Level 1 Level 1
z » asinh z

‘symb' w» "ASINH(symb> '

ASINH returns the inverse hyperbolic sine of its argument.

136 Dictionary

-..LOGS

COSH Hyperbolic cosine Analytic
Level 1 Level 1
z » cosh z
'symb' w» 'COSH{symb> '
COSH returns the hyperbolic cosine of its argument.
ACOSH Inverse Hyperbolic Cosine Analytic
Level 1 Level 1
z » acosh z

'symb' w» 'ACOSH (symb> '

ACOSH returns the inverse hyperbolic cosine of its argument. For real
argumentsx < 1, ACOSH returns the complex result obtained for the

argument (x, 0).

TANH Hyperbolic Tangent Analytic
Level 1 Level 1
b4 » tanh z
‘'symb' » 'TANH (symb> '

TANH returns the hyperbolic tangent of its argument.

Dictionary 137

-..LOGS

ATANH Inverse Hyperbolic Tangent Analytic
Level 1 Level 1
z » atanh z

'symb' » '"ATANH Csymb> '

ATANH returns the inverse hyperbolic tangent of its argument. For
real arguments |x| > 1, ATANH returns the complex result obtained
for the argument (x, 0).

For a real argument x = *+1, an Infinite Result exception oc-
curs. If flag 59 is clear, the sign of the result (MAXR) is that of the
argument.

138 Dictionary

MEMORY

MEM MENU ORDER PATH HOME CRDIR
VARS CLUSR

The MEMORY menu contains commands that relate to variables, di-
rectories, and user memory in general.

Keyboard Commands

STO Store Command
Level 2 Level 1
obj ' global ! »
obj 'local ! »
obj ' global Cindex> ' w»

STO stores an object in a global variable, in a local variable, or as an
element in a list variable or array variable.

In a Global Variable. If name is a global name, obj is stored in a
variable of that name in the current directory. If no variable of that
name exists in the current directory, a new variable is created; if a
variable of that name exists, its contents are replaced by obj.

In a Local Variable. Local variables are created only by the pro-
gram-structure commands - and FOR. A program that creates a local
variable can use STO to change the contents of that variable.

Dictionary 139

...MEMORY

An Element in a List Variable or Array Variable. When a list or
array is stored in a variable, you can replace an element by using the
variable name as a user function and the index to the list or array as
an argument. For example, "A(3)" acts as the “name” of the third ele-
ment in a list or vector A; you could store a value of 5 there by
executing

5 'ARC3EX' STO

Similarly, "A(3, 5)" acts as the “name” of the element in the third row
and fifth column of a matrix A.

RCL Recall Command

Level 1 Level 1

'name' ®» obj

RCL returns the contents of the specified variable. The object re-
turned is not evaluated. RCL searches the entire current path, starting
with the current directory.

PURGE Purge Command
Level 1
'global' »
globals ' w»

PURGE deletes one or more variables and empty directories from the
current directory. You must purge the contents of a directory before
you can purge the directory itself.

140 Dictionary

...MEMORY

MEM MENU ORDER PATH HOME CRDIR

MEM Memory Available Command
Level 1
» X

MEM returns the number of bytes of currently unused memory. This
number is only a rough indicator of usable available memory, since
recovery features (COMMAND, UNDO, LAST) consume or release
varying amounts of memory with each operation.

MENU Create Custom Menu Command

Level 1

{ names and commands »
STO names

n »

MENU creates a custom menu specified by a list of names, or it dis-
plays a standard menu specified by a real number.

Custom User Menu. You can combine built-in commands and your
own variables in one custom user menu. For example, after creating
user functions CSC (cosecant), SEC (secant), and COT (cotangent), you
could combine them in a menu with SIN, COS, and TAN by
executing:

{ SIM CSC CO0S SEC TAMW COT * MENU

o
ol

Dictionary 141

..MEMORY

Custom Input Menu. You can create a custom menu that automati-
cally stores values in variables. The first element in the list must be
STO; the other elements must be names. (You can’t include names of
built-in commands.) For example, you could make an input menu for
the variables A, B, and C by executing

{ STO A B C » MENU

Then executing 10 [A]20 & 130 [_c_] stores 10, 20, and 30
in variables A, B, and C.

Standard Menu. You can programmatically select a standard menu
by using MENU with a numerical argument. The menus are num-
bered in the order in which they appear on the keyboard.

Number | Standard Menu | Number Standard Menu
1 ARRAY 13 PROGRAM CONTROL
2 BINARY 14 PROGRAM BRANCH
3 COMPLEX 15 PROGRAM TEST
4 STRING 16 MODE
5 LIST 17 LOGS
6 REAL 18 PLOT
7 STACK 19 CUSTOM
8 STORE 20 Cursor
9 MEMORY 21 TRIG

10 ALGEBRA 22 SOLVE
11 STAT 23 USER
12 PRINT 24 Solver

142 Dictionary

...MEMORY

ORDER Order USER Menu Command

Level 1

{ names } ®»

ORDER rearranges the current directory so that variables appear in
the USER menu in the same order as specified in the list. Variables
not specified in the list remain in their previous order, appearing after
the reordered variables.

If the list includes the name of a large directory, there may be insuffi-
cient memory to execute ORDER. In this case, execute System Halt

((on]J[a]) and try again.

PATH Current Path Command

Level 1

» { HOME directory-names }

PATH returns a list containing the sequence of directory names that
identifies the path to the current directory. The first directory is al-
ways HOME, and the last directory is always the current directory
(which may also be HOME).

HOME Switch to HOME Directory Command

»

HOME makes the HOME directory the current directory.

Dictionary 143

...MEMORY

CRDIR Create Directory Command
Level 1
'name' ®»

CRDIR creates a subdirectory in the current directory, giving the new
directory the specified name. Executing CRDIR doesn’t change the
current directory; you must evaluate the name of the new
subdirectory to make it the current directory.

VARS CLUSR

VARS Variables Command

Level 1

» { npames }

VARS returns a list of all variables and subdirectories in the current
directory.

CLUSR Clear User Variables Command

CLUSR purges all variables and empty subdirectories in the current
directory.

Pressing cLUSR always writes the command name to the command
line, even in immediate or algebraic entry mode, to help prevent acci-
dental execution. To then execute CLUSR, press (ENTER].

144 Dictionary

MODE

STD FIX SCI ENG DEG RAD
CMD UNDO LAST ML RDX, PRMD

The MODE menu contains menu keys that control various calculator
modes: number display mode, angle mode, recovery modes, radix
mode, and multi-line display mode.

The menu key labels in this menu also act as annunciators: a small
box in a menu label indicates that the mode is selected.

In immediate entry mode, all MODE commands except FIX, SCI, and
ENG (which require arguments) execute without performing ENTER,
leaving the command line unchanged.

STD FIX SCi ENG DEG RAD

These functions set the number display mode and the angle mode.

The number display functions STD, FIX, SCI, and ENG control the
display format of floating-point numbers, as they appear in stack dis-
plays of all types of objects. In the algebraics, non-integer floating-
point numbers are displayed in the current format and integers are
always displayed in STD format.

Dictionary 145

...MODE

The current display mode is encoded in flags 49 and 50. Executing
any of the display functions alters the states of these flags; conversely,
setting and clearing these flags will affect the display mode. The cor-
respondence is as follows:

Mode Flag 49 | Flag 50
Standard 0 0
Fix 1 0
Scientific 0 1
Engineering 1 1

Flags 53-56 encode (in binary) the number of decimal digits, from 0
through 11. Flag 56 is the most significant bit.

STD Standard Command

»

STD sets the number display mode to standard format. Standard for-
mat (ANSI Minimal BASIC Standard X3]J2) produces the following
results when displaying or printing a number:

® Numbers that can be represented exactly as integers with 12 or
fewer digits are displayed without a radix or exponent. Zero is dis-
played as @.

® Numbers that can be represented exactly with 12 or fewer digits,
but not as integers, are displayed with a radix but no exponent.
Leading zeroes to the left of the radix and trailing zeroes in the
fractional part are omitted.

146 Dictionary

...MODE

B All other numbers are displayed in the following format:

(sign) mantissa E (sign) exponent

where the value of the mantissa is in the range 1 < x < 10, and
the exponent is represented by one to three digits. Trailing zeroes in

the mantissa and leading zeroes in the exponent are omitted.

The following table provides examples of numbers displayed in stan-

dard format:

" Representable
Number Displayed As With 12 Digits?
1M 100000000000 Yes (integer)
1012 1.E12 No
1012 . 00000 PB0BBOB1 Yes
1.2x10~1 ,000B6000B0BB12 Yes
1.23x10~1 | 1,23E-11 No
12.345 12,345 Yes
FIX Fix Command
Level 1
n »

FIX sets the number display mode to fixed format, and uses a real
number argument to set the number of fraction digits to be displayed
in the range 0 through 11. The rounded value of the argument is
used. If this value is greater than 11, 11 is used; if less than 0, 0 is

used.

Dictionary

147

...MODE

In fixed format, displayed or printed numbers appear as
(sign) mantissa

The mantissa appears rounded to n places to the right of the decimal,
where 7 is the specified number of digits. While fixed format is active,
the HP-28S automatically displays a value in scientific format in ei-
ther of these two cases:

® If the number of digits to be displayed exceeds 12.

B If a non-zero value rounded to n places past the decimal point
would be displayed as zero in fixed format.

SCI Scientific Command

Level 1

n »

SCI sets the number display mode to scientific format, and uses a real
number argument to set the number of significant digits to be dis-
played in the range 0 through 11. The rounded value of the actual
argument is used. If this value is greater than 11, 11 is used; if less
than 0, 0 is used.

In scientific format, numbers are displayed or printed in scientific no-
tation to n + 1 significant digits, where n is the specified number of
digits (the argument for SCI). A value appears as

(signh? mantissa E (sign) exponent

where 1 < mantissa < 10.

148 Dictionary

...MODE

ENG Engineering Command

Level 1

n »

ENG sets the number display mode to engineering format, and uses a
real number argument to set the number of significant digits to be
displayed, in the range 0 through 11. The rounded value of the argu-
ment is used. If this value is greater than 11, 11 is used; if less than
0, 0 is used.

In engineering format, a displayed or printed number appears as
{zign?» mantissa E (zign) exponent

where 1 < mantissa < 1000, and the exponent is a multiple of 3. The
number of significant digits displayed is one greater than the argu-
ment specified. If a displayed value has an exponent of —499, it is
displayed in scientific format.

DEG Degrees Command

»

DEG (degrees) sets the current angle mode to degrees. In degrees
mode:

Real-number arguments. Functions that take real-valued angles as
arguments interpret those angles as being expressed in degrees. (Com-
plex arguments for SIN, COS and TAN are always assumed to be in
radians.)

Dictionary 149

-..MODE

Real-number results. Functions that give real-valued angles as results
return those angles expressed in degrees: ASIN, ACOS, ATAN, ARG,
and R—P. (Complex results returned by ASIN or ACOS are always
expressed in radians.)

Executing DEG turns off the (27) annunciator and clears user flag 60.

RAD Radians Command

»

RAD (radians) sets the current angle mode to radians. In radians
mode:

Real-number arguments. Functions that take real-valued angles as
arguments interpret those angles as being expressed in radians. (Com-
plex arguments for SIN, COS and TAN are always assumed to be in
radians.)

Real-number results. Functions that give real-valued angles as results
return those angles expressed in radians: ASIN, ACOS, ATAN, ARG, and
R—P. (Complex results returned by ASIN or ACOS are always expressed
in radians.)

Executing RAD turns on the (27) annunciator, and sets user flag 60.

CMD UNDO LAST ML RDX, PRMD

The operations €MD , 'UNDO", [LAST , | ®WL ', and 'RDX, enable
and disable the following modes. When one of these menu labels
shows a small square, the corresponding mode is enabled.

150 Dictionary

...MODE

Mode Effect When Mode is Enabled

CMD» Command lines are saved. You can recover previous command
lines by pressing [l COMMAND].

UNDO= The stack is saved each time you press | ENTER . You can re-
cover the previous stack by pressing [} UNDO] (to “undo”
changes to the stack).

LAST= Arguments are saved. You can recover the arguments to the last
command by pressing [LAST]. To select this mode pro-
grammatically, set flag 31.

ML= The object in level 1 is displayed in “multi-line” format. To select
this mode programmaticaly, set flag 45.

RDX, = The radix mark is defined to be the comma—that is, the comma
is used as the decimal point. To select this mode programmati-
cally, set flag 48.

PRMD Print Modes Command
»

PRMD displays and prints a listing of current HP-28S modes. The
listing shows the states of the number display mode, multiline mode,
the angle mode, the binary integer base, and the radix mode, and

whether the UNDO, COMMAND, and LAST features are enabled or
disabled. A typical listing looks like this:

Format STD Base DEC
DEGREES Radix .
Undo ON Command 0N
Last ON Multiline ON

Dictionary 151

PLOT

STEQ RCEQ PMIN PMAX INDEP DRAW
PPAR RES AXES CENTR *W *H
STOZ RCLZ COLZ SCLZ DRWZ

CLLCD DGTIZ PIXEL DRAX CLMF PRLCD

The commands in the PLOT menu give you the capability of creating
special displays that supersede the normal stack and menu display.
You can plot mathematical functions, make scatter plots of statistical
data, and digitize information from plots.

The Display

The HP-28S liquid-crystal display (LCD) is an array of 32 rows of 137
pixels (dots), which is organized as four rows of 23 character spaces. A
character space is six pixels wide by eight pixels high, with the excep-
tion of the rightmost character space in each row, which is five pixels
wide. Normally, display characters are five pixels wide, which leaves
a blank column of pixels between characters.

For graphical data displays, the display is treated as a grid of

32 X 137 dots, or pixels. A pixel is specified by its coordinates, a com-
plex number representing an ordered pair of coordinates (x, y), where
x is the horizontal coordinate and y is the vertical coordinate. (We will
use the letters x and y to represent the horizontal and vertical direc-
tions during this discussion, but you can use any variable names you
choose for plotting on the HP-28S.)

152 Dictionary

-..PLOT

The scaling of coordinates to pixels is established by the coordinates
of the corner points P,,,, and P,,;,, which you set with the commands
PMAX and PMIN, respectively. P, is the upper-rightmost pixel in
the display; its coordinates are (X, Ymax): Pmin Xmins Ymin) 1 the
lower-leftmost pixel. The default coordinates of these points are
P, = (6.8,1.6) and P,,;, = (—6.8, —1.5). The coordinates of the
center of a particular pixel are

X = My Wy + Xy
y = n, wy t Ymin

where 1, is the horizontal pixel number and n, is the vertical pixel
number (P,;, has n, = 0 and n, = 0; Py, has n, = 136, n, = 31). w,

and w, are the horizontal and vertical pixel widths:

Wy = (xmax ~Xmin)/136-

w}/ = (ymax "'ymin)/3l-

The pixel with n, = 68 and n, = 15 is defined as the center pixel.
With the default values for P,,, and P, the center pixel has coordi-
nates (0, 0).

Mathematical Function Plots

A mathematical function plot is a plot of the values of a procedure
stored in the variable EQ (the same used by the Solver), as a function
of a specified independent variable. The procedure is fully evaluated
for each of 137/r values of the independent variable from x,,;, to
Xnaxwhere r is the resolution of the plot. A dot (pixel) is added to the
graph for each coordinate pair (independent-variable-value, procedure-
value), as long as the procedure value is within the plot range between
Ymin and Y. The plot also includes axes with tick marks every 10
pixels.

Dictionary 153

-..PLOT

The actual plot is produced by the command DRAW. If you execute
DRAW directly by pressing the menu key DRAW , you will be able to
use the cursor keys to digitize data from the plot.

A function plot will produce one or two plotted curves, according to
the definition of the EQ procedure:

B [f EQ contains an algebraic expression without an equals sign,
DRAW will plot a single curve corresponding to the value of the
expression for each value of the independent variable within the
plot range.

® [f EQ contains an algebraic equation, DRAW will plot two curves,
one for each side of the equation. Note that the intersections of the
two curves occur at the values of the independent variable that are
the roots of the equation, that can be found by the Solver.

B [f EQ contains a program, it will be treated as an algebraic expres-
sion and plotted as a single curve. This presumes that the program
obeys the syntax of an algebraic expression: it must take no argu-
ments from the stack, and return exactly one object to the stack.

The general procedure for obtaining a function plot is summarized
below. For details, refer to the descriptions of the individual
commands.

1. Store the procedure to be plotted in EQ, using STEQ.
2. Select the independent variable with INDEP.

3. Select the plot ranges, using PMIN, PMAX, CENTR, *H, and
XW.

4. Specify the intersection of the axes, using AXES.
5. Select the plot resolution with RES.
6. Execute DRAW.

Any of steps 1-5 can be omitted, in which case the current values are
used.

154 Dictionary

-..PLOT

Statistical Scatter Plots

A statistical scatter plot is a plot of individual points taken from the
current statistics array stored in variable ZDAT. You may specify any
column of coordinate values from the array to correspond to the hori-
zontal coordinate, and any other column for the vertical coordinate.
One point is then plotted for each data point in the matrix.

The general procedure for obtaining a scatter plot is summarized be-
low. For details, refer to the descriptions of the individual commands.

1. Store the statistical data to be plotted in ZDAT, using STOZ.

2. Select the horizontal and vertical coordinate columns with
COLZ.

3. Select the plot ranges, using SCLZ for automatic scaling, or
PMIN, PMAX, CENTR, *H, and *W.
4. Specify the intersection of the axes, using AXES.

5. Execute DRWZ.

Any of the steps 1-4 can be omitted, in which case the current values
are used.

Interactive Plots

If you execute DRAW or DRWZ by pressing the corresponding menu
key, the HP-28S enters an interactive plot mode that allows you to
digitize information from the plot while viewing it. When you start an
interactive plot:

1. The display is cleared.

2. Either DRAW or DRWZ is executed to produce the appropriate
plot. (If you press before the plotting is finished, plotting of
points halts, and the interactive mode begins).

Dictionary 155

-.PLOT

3. A cursor in the form of a small cross (+) appears at the center of
the display. (If the axes are drawn through the center, the cursor
will not be visible until you move it.)

4. The menu keys are activated:
B [INS] returns the coordinates as a complex number (x, y).

L] returns a string representing the current display. This ac-
tion is equivalent to the LCD- command (page 269).

® The four rightmost menu keys move the cursor up, down, left
or right by one pixel, or by several pixels if you hold down the
key, or to the edge of the display if you first press [j.

B (] displays the coordinates in line 4 while you hold down
the key.

You can digitize several points by moving the cursor and pressing [INS],
moving the cursor again and pressing again, and so on. As al-
ways, you can print the display by pressing at the same time.
To terminate interactive plot mode, press [ON].

To activate interactive plot mode from a program, follow the DRAW
or DRWZ command by DGTIZ (digitize). After plotting, the program
will halt while you digitize; when you press the program will
continue.

Plot Parameters

The scaling factors necessary for converting a coordinate pair to a dis-
play position, and vice-versa, are stored as a list of objects in the
variable PPAR. We will refer to them collectively as the plot param-
eters. They are:

156 Dictionary

..PLOT

Parameter Description

Ppin A complex number representing the coordinates of the lower
leftmost pixel. Set by PMIN, CENTR, *H, %W, and SCLZ.

Pmax A complex number representing the coordinates of the upper

rightmost pixel. Set by PMAX, CENTR, *H, %W, and SCLZ.

Independent | The global name corresponding to the horizontal axis in a
variable mathematical function plot. Set by INDEP.

Resolution A real positive integer representing the spacing of plotted
points in a function plot. Set by RES.

P axes A complex number representing the coordinates of the inter-
section of the plot axes. Set by AXES.

STEQ RCEQ PMIN PMAX INDEP DRAW

This set of commands allows you to select a procedure for a function
plot, set the primary plot parameters, and plot the procedure.

STEQ Store Equation Command
Level 1
obj »

STEQ takes an object from the stack, and stores it in the variable EQ
(“EQuation”). It is equivalent to 'EQ"' STO.

EQ is used to hold a procedure (the current equation) used as an im-
plicit argument by the Solver and by DRAW, so STEQ’s argument
should normally be a procedure.

Dictionary 157

lllPLoT

RCEQ Recall Equation Command
Level 1
» obj

RCEQ returns the contents of the variable EQ in the current directory.
To recall a variable EQ from a parent directory (when EQ doesn’t exist
in the current directory), execute 'ER@' RCL.

PMIN Plot Minima Command
Level 1
(X,y? »

PMIN sets the coordinates of the lower leftmost pixel in the display to
be the point (x, y). The complex number (x, y) is stored as the first
item in the list contained in the variable PPAR.

PMAX Plot Maxima Command
Level 1
CX,y?> »

PMAX sets the coordinates of the upper-rightmost pixel in the display
to be the point (x, y). The complex number (x, y) is stored as the sec-
ond item in the list contained in the variable PPAR.

158 Dictionary

-..PLOT

INDEP Independent Command
Level 1
'global' w»

INDEP takes a name from the stack, and stores it as the independent
variable name, the third item in the list contained in the variable
PPAR. For subsequent executions of DRAW, the name will be used as
the independent variable corresponding to the horizontal axis (ab-
scissa) of the plot.

DRAW Draw Command

DRAW produces mathematical function plots on the HP-28S display.
If you execute DRAW by pressing the 0RAW menu key, an interactive
plot is produced, as described in “Interactive Plots” on page 155.

DRAW automatically executes DRAX to draw axes, then plots one or
two curves representing the value(s) of the current equation at each of
137 /r values of the independent variable. The current equation is the
procedure stored in the variable EQ.

If EQ contains an algebraic equation, the two sides of the equation are
plotted separately, yielding two curves. If the current equation is an
algebraic expression or a program, one curve is plotted.

The resolution r determines the number of plotted points. r =1
means a point is plotted for every column of display pixels; r = 2
means every other column; and so on. r is set by the RES command.
The default value of r is 1; larger values of r may be used to reduce
plotting time.

Dictionary 159

..PLOT

DRAW checks the current equation to see if it contains at least one
reference, direct or indirect, to the independent variable. If the inde-
pendent variable was never selected, the first variable in the current
equation is used (and stored in PPAR). If the independent variable is
not referenced in the current equation, the message

name; Hot In Equation
U=sina name,

is displayed momentarily before the display is cleared and before the
actual plot begins. Here name, is the current independent variable de-
fined in PPAR, and name, is the first variable found in the current
equation. If the current equation contains no variables, the second line
of the warning message is replaced by Con=tant Equation. (The
independent variable name in PPAR will then be constant.)

PPAR RES AXES CENTR *xW *H

These commands provide alternate ways of setting plot parameters.

PPAR Recall Plot Parameters Operation
Level 1
» i plot parameters ¥

Pressing FPPAR is a convenient way for you to examine the current
plot parameters.

PPAR is a variable containing a list of the plot parameters, in the form

{ (xmiw ymin) (xmax' ymux) independent resolution (xuxist yaxis) }’

Pressing PPAR returns the list to the stack. The contents of the list are
described in “Plot Parameters” on page 156.

160 Dictionary

-..PLOT

RES Resolution Command

Level 1

n -

RES sets the resolution of mathematical function plots (DRAW) to the
value n. n is stored as the fourth item in the list contained in the
variable PPAR. n determines the number of plotted points: n = 1
means a point is plotted for every column of display pixels; n = 2
means every other column; and so on. The default value of n is 1; you
may wish to use larger values of n to reduce plotting time.

AXES Axes Command

Level 1

CX,y» »

AXES sets the coordinates of the intersection of the plot axes (drawn
by DRAX, DRAW, or DRWZX), to be the point (x, y). The complex
number (x, y) is stored as the fifth and last item in the list contained
in the variable PPAR. The default coordinates are (0, 0).

CENTR Center Command

Level 1

LX,yn »

CENTR adjusts the plot parameters so that the point represented by
the argument (x, y) corresponds to the center pixel (n, = 68, n, = 15)
of the display. The height and width of the plot are not changed. P,
and P,,;, are replaced by P,, and P,;,’, where:

4

- 1 _ [16 —
Xmax = X + 2 (xmax xmin)/ Ymax ¥ + 1% (ynmx }/min)

4

= — 1 — . L= — 15 — .
x}lli'l X /2 (xnm,\‘ XNHH)’ ymm ,1/ /31 (ymax ymm)

Dictionary 161

-.PLOT

xW Multiply Width Command
Level 1
factor »

*W adjusts x,,;, and x,,,, changing the horizontal scale but not the
center:

Xmax = Xmin’ = factor X (Xpay — Xpin)

Xmax' + Xminl _ Xmax + Xmin
2 2
*xH Multiply Height Command
Level 1
factor »

*H adjusts y,,;, and ¥,,,,, changing the vertical scale but not the
center:

ymax’ - ymin/ = factor X (.Ym:c(- ymin)

.

15 Y max + 16ymin’ _ 15 Y max + 16.Vmin

31 31

162 Dictionary

...PLOT

STOZ RCLZ COLZ SCLZ DRWZ2

This group of commands allows you to create statistics scatter plots.
See “STAT” for a description of the general statistical capabilities of
the HP-28S.

STOZ Store Sigma Command
Level 1
CR-array] »

STOZ takes a real array from the stack and stores it in the variable
ZDAT. Executing STOZ is equivalent to executing ' EDAT' STQ. The
stored array becomes the current statistics matrix.

RCLZ Recall Sigma Command
Level 1
» obj

RCLZ returns the contents of the variable ZDAT from the current di-
rectory. To recall the statistics matrix ZDAT from a parent directory
(when ZDAT doesn’t exist in the current directory), execute ZDAT.

Dictionary 163

-.PLOT

COL2 Sigma Columns Command
Level 2 Level 1
ny ny »

COLZ takes two real integers, n; and n,, and stores them as the first
two items in the list contained in variable ZPAR. The numbers iden-
tify column numbers in the current statistics matrix ZDAT, and are
used by statistics commands that work with pairs of columns. Refer to
“Stat” for details about ZPAR.

n; designates the column corresponding to the independent variable
for LR, or the horizontal coordinate for DRWZ or SCLZ. n, designates
the dependent variable or the vertical coordinate. For CORR and
COV, the order of the two column numbers is unimportant.

If a two-column command is executed when ZPAR does not yet exist,
it is automatically created with default values n; = 1 and n, = 2.

SCL2 Scale Sigma Command

»

SCLZ causes an automatic scaling of the plot parameters in PPAR so
that a subsequent statistics scatter plot exactly fills the display. That
is, the horizontal coordinates of P,,,, and P,,;, are set to be the maxi-
mum and minimum coordinate values, respectively, in the
independent data column of the current statistics matrix. Similarly, the
vertical coordinates of P,,, and P,,;, are set from the dependent data
column. The independent and dependent data column numbers are
those stored in the variable ZPAR.

164 Dictionary

..PLOT

DRW2 Draw Sigma Command

»

DRWZ automatically executes DRAX to draw axes, then creates a sta-
tistical scatter plot of the points represented by pairs of coordinate
values taken from the independent and dependent columns of the

current statistics matrix ZDAT. If you execute DRWZ by pressing the
prRWZ menu key, an interactive plot is produced, as described in “In-
teractive Plots” on page 155.

The independent and dependent columns are specified in the variable
2ZPAR (default 1 and 2, respectively). DRWZ plots one point for each
data point in the statistics matrix. For each point, the horizontal co-
ordinate is the coordinate value in the independent data column, and
the vertical coordinate is the coordinate value in the dependent data
column.

CLLCD DGTIZ PIXEL DRAX CLMF PRLCD

These commands allow you to create special displays, and to print an
image of the display on the HP-82440A printer.

CLLCD Clear LCD Command

»

CLLCD clears (blanks) the HP-28S display (except the annunciators)
and sets the system message flag.

Dictionary 165

-..PLOT

DGTIZ Digitize Command

»

DGTIZ enables programs to activate the interactive plot mode. Use
DRAW DGTIZ to make a mathematical function plot and then digi-
tize points, or use DRWZ DGTIZ to make a statistical scatter plot and
then digitize points. When you're done digitizing, press to con-
tinue the program.

PIXEL Pixel Command

Level 1

X,y »

PIXEL turns on one pixel at the coordinates represented by the com-
plex number (x, y) and sets the system message flag.

DRAX Draw Axes Command

»

DRAX draws a pair of axes on the display, and sets the system mes-
sage flag. The axes intersect at the point P,,,,, specified in the variable
PPAR. Tick marks are placed on the axes at every 10th pixel.

166 Dictionary

-..PLOT

CLMF Clear Message Flag Command

»

CLMF clears the internal message flag set by CLLCD, DISP, PIXEL,
DRAX, DRAW, and DRWZ. Including CLMF in a program, after the
last occurrence of any of these words, causes the normal stack display
to be restored when the program completes execution.

PRLCD Print LCD Command

»

PRLCD provides a means by which you can print copies of math-
ematical function plots and statistical scatter plots. Since PRLCD will
print only a copy of the current display, you must include PRLCD and
DRAW (or DRWZ) in the same command line. For example:

CLLCD DRAW PRLCD

will clear the LCD, plot the current equation, then print a replica of
the display.

Dictionary 167

PRINT

PR1 PRST PRVAR PRLCD CR TRAC
PRSTC PRUSR PRMD

The HP-28S transmits text and graphics data to the HP 82240A
Printer via an infrared light link. The infrared light-emitting diode is
situated on the top edge of the right-hand HP-28S case. Before print-
ing, check that the printer can receive the infrared beam from the
HP-28S. Refer to the printer manual for more information about
printer operation.

You can use the print commands to print objects, variables, stack lev-
els, plots, and so on. In addition, you can select TRACE mode to
automatically print a continuous record of your calculations.

The & annunciator appears whenever the HP-28S transmits data
from the infrared diode. The calculator can’t determine whether
printing is actually occurring because the transmission is one-way
only. Make sure that TRACE mode is not active unless a printer is
present—otherwise, the frequent infrared transmissions slow down
keyboard operations and decrease battery life.

Print Formats

Multi-line objects can be printed in compact format or multi-line for-
mat. Compact print format is identical to compact display format.
Multi-line printer format is similar to multi-line display format, ex-
cept that the following objects are fully printed:

® Strings and names that are more than 23 characters long are con-
tinued on the next printer line.

168 Dictionary

-« PRINT

B The real and imaginary parts of complex numbers are printed on
separate lines if they don’t fit on the same line.

® Arrays are printed with an index before each element. For example,
the index 1,1: precedes the first element.

In TRACE mode, the print format depends on whether multi-line dis-
play format is enabled or disabled (flag 45 is set or clear). The print
command PRSTC (print stack compact) prints in compact format. All
other print commands print in multi-line format.

Faster Printing

When the printer is battery powered, its speed declines as its batteries
discharge. The HP-28S normally paces data transmission to match the
printer’s speed when its batteries are nearly exhausted.

When your printer is powered by an AC adapter, it can sustain a
higher speed. You can increase the calculator’s data transmission rate
to match the higher speed of the printer by setting flag 52. For subse-
quent battery-powered printing, clear flag 52 to return to slower data
transmission.

Don't set flag 52 when the printer is battery powered. Although a
printer with fresh batteries can print at the higher rate, it will eventu-
ally slow down enough to lose data sent by the HP-28S. This loss of
data corrupts printed output and can cause the printer to change its
configuration.

Double-Space Printing

You can select double-space printing (one blank line between text
lines) by setting flag 47. To return to normal printing, clear flag 47.

Dictionary 169

-«PRINT

Configuring the Printer

You can set various printer modes by sending escape sequences to the
printer. An escape sequence consists of the escape character (character
27) followed by an additional character. When the printer receives an
escape sequence, it switches into the selected mode. The escape se-
quence itself isn't printed. The HP 82240A printer recognizes the
following escape sequences.

Printer Mode Escape Sequence
Print Column Graphics | 27 001...166
No Underline* 27 250
Underline 27 251
Single Wide Print* 27 252
Double Wide Print 27 253
Self Test 27 254
Reset 27 255

* Default mode.

You can use CHR and + to create escape sequences and use PR1 to
send them to the printer. For example, you can print Underline as
follows:

27 CHR 251 CHR + "Under" + 27 CHR + 258 CHR +
"line" + PR1

170 Dictionary

IIUPRINT

PR1 PRST PRVAR PRLCD CR TRAC

PR1 Print Level 1 Command

Level 1 Level 1

obj » obj

PR1 prints the contents of level 1 in multi-line printer format. All
objects except strings are printed with their identifying delimiters.
Strings are printed without the leading and trailing " delimiters. If
level 1 is empty, the message CEmpty Stack] is printed.

Printing a Text String

You can print any sequence of characters by creating a string object
that contains the characters, placing the string object in level 1, and
executing PR1. The printer prints the characters and leaves the print
head at the right end of the print line. Subsequent printing begins on
the following line.

Printing a Graphics String

You can print graphics by printing a string object that begins with the
escape character (character 27) and a character whose number n is
from 1 through 166. Together, these characters instruct the printer to
interpret the next n characters (n < 166) as graphics codes, with each
character specifying one column of graphics. Refer to the printer man-
ual for details about graphics codes.

The printer prints the graphics and leaves the print head at the right
end of the print line. Subsequent printing begins on the following
line. When you turn on the printer, you must print text or execute CR
before printing graphics.

Dictionary 171

--.PRINT

Accumulating Data in the Printer Buffer

You can print any combination of text, graphics, and objects on a sin-
gle print line by accumulating data in the printer. The printer stores
the data in a part of its memory called a buffer.

Normally, each print command completes data transmission by send-
ing CR (carriage right) to the printer. When the printer receives CR, it
prints the data in its buffer and leaves the print head at the right end
of the print line.

You can prevent the automatic transmission of CR by setting flag 33.
Subsequent print commands send your data to the printer but don’t
send CR. The data accumulates in the printer buffer and is printed
only at your command. When flag 33 is set, observe the following
rules:

B Send CR (character 4) or newline (character 10), or execute the
command CR, when you want the printer to print the data that it
has received.

® Don’t send more than 200 characters without causing the printer to
print. Otherwise, the printer buffer fills up and subsequent charac-
ters are lost.

® Allow time for the printer to print a line before sending more data.
The printer requires about 1.8 seconds per line.

B Clear flag 33 when you're done to restore the normal operation of
the print commands.

PRST Print Stack Command
... Level 1 ... Level 1
.. obj » ... o0bj

PRST prints all objects in the stack, starting with the object in the
highest level. Objects are printed in multi-line printer format.

172 Dictionary

-«PRINT

PRVAR Print Variable Command
Level 1
' global' »
{ global, global,. .. * »

PRVAR searches the current path for the specified variables and prints
the name and contents of each variable, using multi-line printer
format.

PRLCD Print LCD Command

»

PRLCD prints a pixel-by-pixel image of the current HP-28S display
(excluding the annunciators).

The width of the printed image of an object is narrower using PRLCD
than using a print command such as PR1. The difference results from
the spacing between characters. On the display there is a single blank
column between characters, and PRLCD prints this spacing. Print
commands such as PR1 print two blank columns between adjacent
characters.

CR Carriage Right Command

»

CR prints the contents, if any, of the printer buffer.

Dictionary 173

--«PRINT

TRACE Mode

You can print an on-going record of your calculations by selecting
TRACE mode. Each time you execute ENTER, either by pressing
or by pressing an immediate-execute key, the calculator prints
the contents of the command line, the immediate-execute command,
and the resulting contents of level 1.

To enable TRACE mode, press | TRAC . The menu label then shows a
box, indicating that TRACE mode is enabled. You can enable TRACE
mode within a program by setting flag 32.

To disable TRACE mode, press TRAC a second time. You can disable
TRACE mode within a program by clearing flag 32.

The print format for the object in level 1 depends on whether multi-
line display format is enabled or disabled (flag 45 is set or clear). If
multi-line display mode is enabled (flag 45 is set), the object is printed
in multi-line printer format. If compact display mode is active (flag 45
is clear), the object is printed in compact format.

PRSTC PRUSR PRMD

PRSTC Print Stack (Compact) Command
... Level 1 ... Level 1
.. obj » ... o0bj

PRSTC prints all objects in the stack, starting with the object in the
highest level. Objects are printed in compact format.

174 Dictionary

--.PRINT

PRUSR Print User Variables Command

»

PRUSR prints a list of all names of variables in the current directory;
it is equivalent to ¥YARS PR1. The names are printed in the order
they appear in the USER menu. If there are no user variables, PRUSR
prints No User Variables.

PRMD Print Modes Command

PRMD displays and prints the current selections for number display
mode, binary integer base, angle mode, radix mode, and whether
UNDO, COMMAND, LAST, and multi-line display are enabled or
disabled.

Dictionary 175

Programs

A program is a procedure object delimited by « characters contain-
ing a series of commands, objects, and program structures, that are
executed in sequence when the program is evaluated. Certain pro-
gram structures, such as those described in “PROGRAM BRANCH" or
those specifying local names, must satisfy specific syntax rules, but
otherwise the contents of a program are much more flexible than that
of algebraic objects, the other type of procedure.

A program, in simplest terms, is a command line for which evaluation
is deferred. Any command line can be made into a program by insert-
ing a « at the beginning of the line; then when is pressed, the
entire command line is put on the stack as a program. The individual
objects in the program are not executed until the program is
evaluated.

By making a command line into a program, you can not only defer
evaluation, you can also repeat execution as many times as desired.
Any number of copies of the program can be made on the stack, us-
ing ordinary stack manipulation commands; or you can store a
program in a variable and then execute it by name—or by pressing
the corresponding menu key in the USER menu. Once a program is
stored in a named variable, it becomes essentially indistinguishable
from a command. (Actually, the commands themselves are just pro-
grams that are entered in ROM instead of RAM.) As you program the
HP-28S, you are extending its programming language.

Evaluating Program Objects

Evaluating a program puts each object in the program on the stack
and, if the object is a command or unquoted name, evaluates the ob-
ject. For example, with the stack:

3. 080
« DUP INV »

=MW R

176 Dictionary

...Programs

pressing yields:

MW p

3. 080
A.125

DUP was evaluated, copying 8.000 into level 2, then INV was evalu-
ated, replacing the 8.000 in level 1 with its inverse.

Simple and Complex Programs.

The simplest kind of program is just a single sequence of objects,
which are sequentially executed without halting or looping. For exam-
ple, the program « S % 2 + » multiplies a number in level 1 by 5
and adds 2.

If this were an operation you performed frequently, you could store
the program in a variable, then execute the program as many times as
you want by pressing the USER menu key assigned to the variable.

You can add complexity to a program in one or more of the following
ways:

Conditionals. By using the IF... THEN...END or IF... THEN...
ELSE...END branch structures (or the equivalent commands IFT and
IFTE), programs can make decisions based upon computed results,
then select execution options accordingly.

Loops. You can cause repeated execution of a program or portion of
a program, a definite or indefinite number of times, by using the pro-
gram loops FOR...NEXT, START.. .NEXT, DO...UNTIL...END, and
WHILE. . .REPEAT...END.

Error Traps. By using the IFERR... THEN.. END or IFERR...
THEN .. .ELSE...END conditional, you can make a program deal with
expected or unexpected errors.

Dictionary 177

...Programs

Halts. The HALT command allows you to suspend program execu-
tion at predetermined points for user input or other purposes, then
resume with [[CONT] or 88T .

Programs Within Programs. Just as you can postpone evaluation of
a command line by enclosing it with « #, you can create program
objects within other programs by enclosing a program sequence
within # . When the “inner” program is encountered during execu-
tion of the “outer” program, it is placed on the stack rather than
evaluated. It can be subsequently evaluated with EVAL or any other
command that takes a program as an argument.

As you add length and complexity to a program, it can grow beyond a
size that is conveniently readable on the HP-28S display or too big to
enter. For this reason, and to promote orderly programming practices,
it is recommended that you break up long programs into multiple
short programs. For example, the program « A B C D * can be re-
written as # AE COD @#, where AB is the program « A E ¥, and CD
is the program « C O =.

The process of writing a large program as a series of small programs
makes it straightforward to “debug” the large program. Each second-
ary program can be tested independently of the others, to insure that
it takes the correct number and type of arguments from the stack, and
returns the correct results to the stack. Then it is simple to link the
secondary programs together by creating a main program consisting
of the unquoted names of the secondary programs.

Local Variables and Names

A local variable is the combination of an object and a local name,
which are stored together in a portion of memory temporarily re-
served for use only during execution of a procedure. When a
procedure completes execution, any local variables associated with
that procedure are purged automatically.

178 Dictionary

Local names are objects used to name local variables. They are subject
to the same naming restrictions as ordinary names. You can use local
variables, within their defining procedures, almost interchangeably
with ordinary names. However, there are several important
differences:

® When local names are evaluated, they return the object stored in
the associated local variables, unevaluated. They do not automati-
cally evaluate names or programs stored in their local variables, as
ordinary names do.

® You cannot use a quoted local name as an argument for [VISIT] or
for any of the following commands: CON, IDN, PRVAR, PURGE,
PUT, PUTI, RDM, SCON]J, SINV, SNEG, STO+, STO-, STO%,
STO/, TAYLR, or TRN.

B Local variables will not appear in the Solver variables menu.

If you have an ordinary variable with the same name as a local vari-
able, any use of the common name within the local variable proce-
dure will refer only to the local variable, and leave the ordinary
variable unchanged. Similarly, if a local variable structure is nested
within another, the local names of the first (outer) structure can be
used within the second (inner).

It is possible for local names to remain on the stack or within proce-
dures and lists even after their associated local variables have been
purged. For example, 1 + x « 'x' »[ENTER]leaves the local name
'x' on the stack. If you attempt to evaluate the local name, or use it
as an argument for STO, RCL, or PURGE, the error

Undefined Local Mame will be reported.

To minimize any confusion that might arise between names and local
names, it is recommended that you adopt a special naming conven-
tion for local names. One such convention used in this manual is to
use lower-case letters to name local variables (which can never appear
in menu key labels), and upper-case for ordinary variables.

Dictionary 179

...Programs

Creating Local Variables

Local variables are created by using program structures. This section
describes two local variable structures, which are the primary means of
creating local variables. There are also two program branch structures,
FOR...NEXT and FOR...STEP, which define definite loops in which
the loop index is a local variable. These program branch structures are
described in “PROGRAM BRANCH.”

The local variable structures have the form:
+ name; name,...& program *
+ name; name,...' algebraic '

The = command begins a local variable structure. (The + character is
B (U] on the left-hand keyboard. Here = is a command in itself, so it
is followed by a space.) The names specify the local names for which
local variables are created. The program or algebraic is called the de-
fining procedure of the local variable structure. Its initial delimiter, « or
', terminates the sequence of local names.

When - is evaluated, it takes one object from the stack for each of
the local names, and stores each object in a local variable named by
the corresponding name. The objects and local names are matched up
so the order of the names is the same as the order in which the ob-
jects were entered into the stack. For example:

123 45+ abcde

assigns the number 1 to the local variable a, 2 to b, 3 to ¢, 4 to d, and
5 to e. (Since these are local variables, there is no conflict with the
symbolic constant e.)

Once the local variables are created and their values assigned, the
procedure that follows the name list is evaluated. Within that proce-
dure, you can use the local variable names just like ordinary names
(except for the restrictions listed above). When the procedure has fin-
ished execution, the local variables are purged automatically.

180 Dictionary

..Programs

As an example, suppose you wish to take 3 numbers from the stack,
and multiply the first (level 3) by 4, the second (level 2) by 3, and the
third (level 1) by 2, and add the results. A simple program for this
purpose would be:

€ 2 % SWAP 3 % + SHAP 4 ¥ + =,
Using local variables, the program would become:
¥ *abc®ad¥bI ¥ +c2F +row,

The use of local variables has eliminated the SWAP operations. In this
simple case, the use of local variables is of marginal value, but as the
complexity of a program grows, local variables can help you write the
program in a simpler, less error-prone manner than if you try to man-
age everything on the stack.

Our example problem also lends itself to an algebraic form. We can
write our program this way:

* a b c '4¥a3+3%¥b+2%c' =

and obtain the same result.

User-Defined Functions

The = command in a special syntax can be used to create new alge-
braic functions. An algebraic function is a command that can be used
within algebraic object definitions. Within those definitions, the func-
tions takes its arguments from a sequence contained within paren-
theses following the function name. The command SIN, for example,
is a typical algebraic function taking one argument. Within an alge-
braic definition, it is used in the form 'SIH<{X»' where the X
represents its argument.

Dictionary 181

...Programs

A user-defined function of n arguments is defined by a program with
the following syntax:

€ % name; name, ... name, 'expression' *

where name; name, ... name, is a series of n local variable names.
expression is an algebraic expression, containing the local variable
names, that represents the mathematical definition of the function.
No objects can precede the - in the program, and none can follow
" expression '

As an example, consider the algebraic form of the program defined in
the preceding section:

€ % a b c '4¥a+3¥b+2%c' ¥

It takes three arguments, multiplies them by 4, 3, and 2, respectively,
and sums the products. Because nothing precedes the - nor follows
the algebraic, this program is a user-defined function. Suppose that
we name the user-defined function XYZ by storing the program in
variable XYZ:

€ * a b c '"4¥a+3%kb+2¥c' » 'XYVZ' STO.

In RPN syntax, we can execute 1 2 3 XYZ to obtain the result 16
(4 X1+ 3 X2+ 2 X 3). But we can also use algebraic syntax:
'®Y¥YZ¢1,2,3>' EVAL also returns the result 16. You are not re-
stricted to numerical arguments; any of XYZ'’s three arguments can be
an algebraic. XYZ itself can appear in any other algebraic expression.

182 Dictionary

PROGRAM BRANCH

IF IFERR THEN ELSE END
START FOR NEXT STEP IFT IFTE
DO UNTIL END WHILE REPEAT END

The PROGRAM BRANCH menu ([ll[BRANCH]) contains commands
for making decisions and loops within a program. These commands
can appear only in certain combinations called program structures.
Program branch structures can be grouped into four types: decision,
error trap, definite loops, and indefinite loops.

In the following, a clause is any program sequence.

1.

Decision structures.

IF test-clause THEN true-clause END. If test-clause is true, then
execute true-clause. (IFT is a single-command form of this
structure.)

IF test-clause THEN true-clause ELSE else-clause END. If test-
clause is true, execute true-clause; otherwise, execute else-
clause. (IFTE is a single-command form of this structure.)

Error trapping structures.

IFERR trap-clause THEN error-clause END. If an error occurs
during execution of trap-clause, then execute error-clause.

IFERR trap-clause THEN error-clause ELSE normal-clause END.
If an error occurs during execution of trap-clause, then execute
error-clause; otherwise, execute normal-clause.

Definite loop structures.

start finish START loop-clause NEXT. Execute loop-clause once
for each value of a loop counter incremented by one from
start through finish.

start finish START loop-clause step STEP. Execute loop-clause
once for each value of a loop counter incremented by step
from start through finish.

Dictionary 183

...PROGRAM BRANCH

W start finish FOR name loop-clause NEXT. Execute loop-clause
once for each value of a local variable name, used as a loop
counter, incremented by ones from start through finish.

B start finish FOR name loop-clause step STEP. Execute loop-
clause once for each value of a local variable name, used as a
loop counter, incremented by step from start through finish.

4. Indefinite loop structures.

® DO loop-clause UNTIL test-clause END. Execute loop-clause re-
peatedly until test-clause is true.

® WHILE test-clause REPEAT loop-clause END. While test-clause
is true, execute loop-clause repeatedly.

These structures are described later in this section, following two introductory
topics.

Tests and Flags

All program structures (except definite loops) make a branching deci-
sion based upon the evaluation of a test clause. A test clause is any
program sequence that returns a flag when evaluated. A flag is an
ordinary real number that nominally has the value 0 or 1. If the flag
has value 0, we say that it is “false” or “clear”; for any other value, we
say that the flag is “true” or “set”.

All program branch decisions are made by testing a flag taken from
the stack. For example, in an IF test-clause THEN true-clause END

structure, if evaluation of test-clause leaves a non-zero (real) result,
true-clause will be evaluated. If test-clause leaves 0 in level 1, execu-
tion will skip past END.

A test command is one that explicitly returns a flag with a value 0 or
1. For example, the command < tests two real numbers (or binary
integers, or strings) to see if the number in level 2 is less than the
number in level 1. If so, < returns the flag 1; otherwise, it returns 0.
The other test commands are >, <, =, ==, #, FS?, FC?, FS?C, and
FC?C, all of which are described in “PROGRAM TEST.”

184 Dictionary

...PROGRAM BRANCH

Replacing GOTO

Programmers accustomed to other calculator programming languages,
such as the RPN language of other HP calculators, or BASIC, may
note the absence of a simple GOTO instruction in the HP-28S lan-
guage. GOTO'’s are commonly used to branch depending on a test
and to minimize program size by reusing program steps. We'll look at
how GOTO'’s are used in HP-41 RPN and BASIC, and show how to
obtain equivalent results with the HP-28S.

® Using GOTO instructions to branch depending on a test. For exam-
ple, the programs below execute the sequence ABC DEF if the
number in the X register or variable is positive, or execute the se-
quence GHI JKL otherwise.

HP-41 RPN BASIC

01 X>07? 10 IF X>0 THEN GOTO 50
02 GTO 01 20 GHI

03 GHI 30 JKL

04 JKL 40 GOTO 70

05 GTO 02 50 ABC
06 LBL 01 60 DEF
07 ABC :

08 DEF
09 LBL 02

Here is an HP-28S equivalent:
IF 8 » THEN RBC DEF ELSE GHI JKL EHND

B Using a GOTO instruction to minimize program size by reusing
program steps. Both programs below contain a sequence MNO
PQR STU that is common to two branches of the program.

Dictionary 185

-..PROGRAM BRANCH

HP-41 RPN BASIC

01 ABC 10 ABC

02 DEF 20 DEF

03 GTO 01 30 GOTO 200
10 GHI 100 GHI

11 JKL 110 JKL

12 GTO 01 120 GOTO 200

20 LBL 01 200 MNO

21 MNO 210 PQR
22 PQR 220 STU

23 STU

In the HP-28S, the common sequence MNO PQR STU...would be
stored as a separate program:

MNO PGR STU .. = 'COMMON' STO
Then each branch of the program would execute COMMON:
. AREC DEF COMMON .. GHI JKL COMMON ..

The advantage of HP-28S programming is that any program has only
one entrance and one exit. This makes it simple to write programs and
test them independently. When you combine the programs into a
main program, you need to test only that the programs work together
as you intended.

IF IFERR THEN ELSE END

These commands can be combined in a variety of decision structures
and error trapping structures.

186 Dictionary

...PROGRAM BRANCH

IF test-clause THEN true-clause END. The command THEN takes a
flag from the stack. If the flag is true (non-zero), the true-clause is
evaluated, after which execution continues after END. If the number
is false (0), execution skips past END and continues. (Note that only
THEN actually uses the flag—the position of the IF is arbitrary as
long as it precedes THEN. test-clause IF THEN will work the same as
IF test-clause THEN). For example:

IF » 8 > THEN "Positiwve" END
returns the string "FPositiwve" if X contains a positive real number.

IF test-clause THEN true-clause ELSE false-clause END. The command
THEN takes a flag from the stack. If the flag is true (non-zero), the
true-clause is evaluated, after which execution continues after END. If
the flag is false (0), the false-clause is evaluated, after which execution
continues after END. (Note that only THEN actually uses the flag—
the position of the IF is arbitrary as long as it precedes THEN. test-
clause IF THEN will work the same as IF test-clause THEN). For
example:

IF ¥ B = THEN "Positive" ELSE "Negatiwe" EHND

returns the string "Positive" if X contains a non-negative real
number, or "Negative" if X contains a negative real number.

IFERR trap-clause THEN error-clause END. This structure evaluates
error-clause if an error occurs during execution of trap-clause.

When trap-clause is evaluated, successive elements of the clause are
executed normally unless an error occurs. In that case, execution
jumps to error-clause. The remainder of trap-clause is discarded. For
example:

IFERR WHILE 1 REFPERT + END THEN "OK" 1 DISP END

sums all numbers on the stack. The + function is executed repeatedly
until an error occurs, indicating that the stack is empty (or a mis-
matched object type has been encountered). The error-clause then
displays 0OK.

Dictionary 187

...PROGRAM BRANCH

When you write error clauses, keep in mind that the state of the stack
after an error may depend on whether LAST is enabled. If LAST is
enabled, commands that error will return their arguments to the stack;
otherwise the arguments are dropped.

IFERR trap-clause THEN error-clause ELSE normal-clause END. This
structure enables you to specify an error-clause to be evaluated if an
error occurs during execution of a trap-clause, and also a normal-clause
for execution if no error occurs:

When trap-clause is evaluated, successive elements of the clause are
executed normally unless an error occurs.

® If an error occurs, the remainder of the trap-clause is discarded and
the error-clause is evaluated.

B If no error occurs, evaluation of the trap-clause is followed by eval-
uation of the normal-clause.

In either case execution continues past END.

START FOR NEXT STEP IFT IFTE

start finish START loop-clause NEXT. The START command takes two
real numbers, start and finish, from the stack and stores them as the
starting and ending values for a loop counter. Then a sequence of
objects loop-clause is evaluated. The NEXT command increments the
loop counter by 1; if the loop counter is less than or equal to finish,
loop-clause is evaluated again. This continues until the loop counter
exceeds finish, whereupon execution continues following NEXT. For
example:

1 18 START XYZ HNEXT

evaluates XYZ 10 times.

188 Dictionary

...PROGRAM BRANCH

start finish START loop-clause increment STEP. This structure is sim-
ilar to START .. .NEXT, except that STEP increments the loop counter
by a variable amount, whereas NEXT always increments by 1.

START takes two real numbers, start and finish, from the stack and
stores them as the starting and ending values for a loop counter. Then
a sequence of objects loop-clause is evaluated. STEP increments the
loop counter by the real number increment taken from level 1.

If step is positive and the loop counter is less than or equal to finish,
loop-clause is evaluated again. This continues until the loop counter
exceeds finish, whereupon execution continues following STEP.

If step is negative and the loop counter is greater than or equal to
finish, loop-clause is evaluated again. This continues until the loop

counter is less than finish, whereupon execution continues following
STEP. For example:

1

-
v

1

[y]
—
I
el
—
rd
|
M
o
—
m
m

evaluates XYZ five times.

start finish FOR name loop-clause NEXT. This structure is a definite

loop in which the loop counter name is a local variable that can be
evaluated within the loop. (The name following FOR should be en-
tered without quotes.) In sequence:

1. FOR takes two real numbers start and finish from the stack. It
creates a local variable name, and stores start as the initial value
of name.

2. The sequence of objects loop-clause is evaluated. If name is eval-
uated within the sequence, it returns the current value of the
loop counter.

3. NEXT increments the loop counter by 1. If its value then exceeds
finish, execution continues with the object following NEXT, and
the local variable name is purged. Otherwise, steps 2 and 3 are
repeated.

Dictionary 189

...PROGRAM BRANCH

For example:

1 5 FOR x x S0 HEXT

places the squares of the integers 1 through 5 on the stack.

start

finish FOR name loop-clause increment STEP. This structure is a

definite loop in which the loop counter name is a local variable that

can

be evaluated within the loop. (The name following FOR should

be entered without quotes.) It is similar to FOR...NEXT, except that
the loop counter is incremented by a variable amount. In sequence:

1.

For

FOR takes two real numbers start and finish from the stack. It
creates a local variable name, and stores start as the initial value
of name.

The sequence of objects loop-clause is evaluated. If name is eval-
uated within the sequence, it returns the current value of the
loop counter.

STEP takes the real number increment from the stack and incre-
ments the loop counter by increment. If the loop counter then is
greater than finish (for increment > 0) or less than finish (for in-
crement < 0), execution continues with the object following
STEP, and the local variable name is purged. Otherwise, steps 2
and 3 are repeated.

example:

1 11 FOR = x S& 2 STEP

places the squares of the integers 1, 3, 5, 7, 9, and 11 on the stack.

190

Dictionary

...PROGRAM BRANCH

IFT If-Then Command

Level 2 Level 1

flag obj »

IFT is a single-command form of IF... THEN.. .END. IFT takes a flag
from level 2, and an arbitrary object from level 1. If the flag is true
(non-zero), the object is evaluated; if the flag is false (0), the object is
discarded. For example:

® B8 > "Positiwve" IFT

leaves "Positive" in level 1 if X contains a positive real number.

IFTE If-Then-Else Function

Level 3 Level 2 Level 1

flag true-obj false-obj ®

IFTE is a single-command form of IF...THEN...ELSE.. END. IFTE
takes a flag from level 3, and two arbitrary objects from levels 1 and
2. If the flag is true (non-zero), false-object is discarded, and true-ob-
ject is evaluated. If the flag is false (0), true-object is discarded and
false-object is evaluated. For example:

X Bz "Positive" "Negatiwve" IFTE

leaves "Positiwve" on the stack if X contains a non-negative real
number, or "Negative" if X contains a negative real number.

IFTE is also acceptable in algebraic expressions, with the following
syntax:

' IF TE < test-expression , true-expression , false-expression» *

Dictionary 191

...PROGRAM BRANCH

When an algebraic containing IFTE is evaluated, its first argument

test-expression is evaluated as a flag. If it returns a non-zero real num-
ber, true-expression is evaluated. If it returns zero, false-expression is
evaluated. For example:

"IFTECR=28, SINCKI #X, 12!

is an expression that returns the value of sin(x)/x, even for x = 0,
which would normally cause an Infinite Result error.

DO UNTIL END WHILE REPEAT END

DO /oop-clause UNTIL test-clause END. This structure repeatedly eval-
uates a loop-clause and a test-clause, until the flag returned by test-
clause is true (non-zero). For example:

OO ¥ IMCH ® - UNTIL .88a1 < EHND.

Here INCX is a sample program that increments the variable X by a
small amount. This routine will execute INCX repeatedly, until the
resulting change in X is less than .0001.

WHILE test-clause REPEAT /oop-clause END. This structure repeatedly
evaluates a fest-clause and a loop-clause, as long as the flag returned
by test-clause is true (non-zero). When the test-clause returns a false
flag, the loop-clause is skipped, and execution resumes following
END. The test-clause returns a real number, which REPEAT tests as a
flag. For example:

WHILE STRINWNG "P" FOS REPEAT EREMOVEF EHND.

Here REMOVEDP is a sample program that removes a character F from
a string stored in the variable STRING. The sequence repeats until no
more F’s remain in the string.

192 Dictionary

PROGRAM CONTROL

SST HALT ABORT KILL WAIT KEY
BEEP CLLCD DISP CLMF ERRN ERRM

The PROGRAM CONTROL menu ([[CONTRL]) contains commands
for interrupting program execution and for interactions during pro-
gram execution.

Suspended Programs

Evaluating a program normally executes the objects contained in the
program’s definition continuously up to the end of the program. The
commands in the PROGRAM CONTROL menu allow programs to
pause or halt execution at points other than the end of the program:

Command Description

HALT Suspends program execution, for continuation later.

ABORT Stops program execution, which then cannot be resumed.

KILL Stops program execution, and also clears all other suspended
programs.

WAIT Pauses program execution, which resumes automatically af-
ter a specified time.

A suspended program is a program that is halted during execution, in
such a way that the program can be continued (execution resumed) at
the point which it stopped. While a program is suspended, you can
perform any HP-28S operation (except system halt, memory reset,
and the KILL command)—enter data, view results, execute other pro-
grams, and so on—then continue the program.

Dictionary 193

...PROGRAM CONTROL

The © annunciator indicates that one or more programs are
suspended.

The command HALT causes a program to suspend at the location of
the HALT in the program. To resume program execution you can:

B Press [CONT] (continue) to resume continuous execution at the
next object in the program after the HALT. You can use HALT in
conjunction with [l(CONT]in a program when you want to stop the
program for user input, then continue.

B Press | 88T (single-step—in the PROGRAM CONTROL menu) to
execute the next object in the program after the HALT. Repeated
use of | 88T continues program execution, one step at a time. This
is a powerful program debugging tool, since you can view the stack
or any other calculator state after each step in a program.

If you do not choose either of these options, the program will remain
suspended indefinitely, unless you execute KILL or a system halt,
which clear all suspended programs.

You can “nest” suspended programs—that is, you can execute a pro-
gram that contains a HALT while another program is already
suspended. If you continue ([ll[CONT]) the second program, execution
will halt again when it has finished. Then you can press [CONT]
again to resume execution of the first program.

While a program is suspended, the stack save and recovery associated
with UNDO are “local” to the program. If you alter the stack, resume
program execution, and then execute UNDO when the program is
completed, the stack is restored to its state before you executed the
program.

194 Dictionary

..PROGRAM CONTROL

SST HALT ABORT KILL WAIT KEY

Single Step

SST executes the “next step” in a suspended program. “Next step,” in
this context, means the object or command that follows, in the order
of program execution, the most recently evaluated object or command.

When you press | 88T , the program step about to be executed is dis-
played briefly, in inverse video, then it is executed. After each step,
the stack and menu key labels are displayed in the normal fashion.
Between steps, you can perform calculator operations without affect-
ing the suspended program. Of course, if you alter the stack, you
should insure that it contains the appropriate objects before resuming
program execution.

For any of the program loops defined with FOR...NEXT,
START...NEXT, DO...UNTIL.. END, or WHILE.. REPEAT.. .END,
the initial command (FOR, START, DO, or WHILE) is displayed only
as a step the first time through the loop. On successive iterations,
each loop will start with the first object or command after the initial
loop command.

If an error occurs when you single-step an object, the single-step does
not advance. This allows you to correct the source of the error, then
repeat the single-step.

Pressing '88T when an IFERR is the next step executes the entire
IFERR...THEN...END or IFERR...THEN.. .ELSE...END structure as
one step. To step through a clause of the structure, include HALT in-
side the clause.

Similarly, pressing §8T when - is displayed executes the entire -+
name, name, ... name, structure as one step. If the local names are
followed by an algebraic, the algebraic is immediately evaluated in
that same step.

Dictionary 195

...PROGRAM CONTROL

HALT Halt Program Command

»

HALT causes a program to suspend execution at the location of the
HALT command in the program. HALT:

1. Turns on the Q annunciator.

2. Assigns memory for a temporary saved stack, if UNDO is
enabled.

3. Returns calculator control to the keyboard, for normal
operations.

Programs resumed with @(CONT]or sst will continue with the ob-
ject next in the program after the HALT command.

ABORT Abort Program Command

»

ABORT stops execution of a program, at the location of the ABORT
command in the program’s definition. Execution of the program can-
not be resumed.

KILL Kill Suspended Programs Command

»

KILL aborts the current program, and also all other currently sus-
pended programs. None of the programs can be resumed.

196 Dictionary

...PROGRAM CONTROL

WAIT Wait Command

Level 1

X »

WAIT pauses program execution for x seconds.

KEY Key Command
Level 2 Level 1
» 0
» 'string" 1

KEY returns a string representing the oldest key currently held in the
key buffer, and removes that key from the key buffer. If the key
buffer is empty, KEY returns a false flag (0). If the key buffer cur-
rently holds one or more keys, KEY removes the oldest key from the
buffer, and returns a true flag (1) in level 1 plus a string in level 2.
The string “names” the key removed from the buffer.

The HP-28S key buffer can hold up to 15 keys that have been
pressed but not yet processed. When KEY removes a key from the
buffer it is converted to a readable string. The string contains the
character(s) on the key top, except for:

Key String Key String
INS "IHE" (] "CURSOR"
"DEL" («] "BRCE"
@) | “upe "o
(v] "OOWH" "l
(« "LEFT"
) "RIGHT"

Dictionary 197

...PROGRAM CONTROL

The key retains its role as the key and interrupts the cur-
rent program.

The action of KEY can be illustrated by the following program:
« DO UNTIL KEY END "¥" SAME =,

When this program is executed, pressing (Y] returns 1 (true) to level 1,
and pressing any other key returns 0 (false).

BEEP CLLCD DISP CLMF ERRN ERRM

BEEP Beep Command

Level 2 Level 1

frequency duration ~ »

BEEP causes a tone to sound at the specified frequency and duration.
Frequency is expressed in Hertz (rounded to an integer). Duration is
expressed in seconds.

The frequency of the tone is subject to the resolution of the built-in
tone generator. The maximum frequency is approximately 4400 Hz;
the maximum duration is 1048.575 seconds (# FFFFF msec). Argu-

ments greater than these maximum values will default to the maxima.

Setting flag 51 disables the beeper, so that executing BEEP will pro-
duce no sound.

198 Dictionary

...PROGRAM CONTROL

CLLCD Clear LCD Command

»

CLLCD clears (blanks) the LCD display (except the annunciators), and
sets the system message flag to suppress the normal stack and menu
display.

DISP Display Command

Level 2 Level 1

obj n »

DISP displays obj in the nth line of the display, where n is a real
integer. n = 1 indicates the top line of the display; n = 4 is the bot-
tom line. DISP sets the system message flag to suppress the normal
stack display.

An object is displayed by DISP in the same form as would be used if
the object were in level 1 in the multi-line display format, except for
strings, which are displayed without the surrounding " delimiters to
facilitate the display of messages. If the object display requires more
than one display line, the display starts in line n, and continues down
the display either to the end of the object or the bottom of the
display.

CLMF Clear Message Flag Command

»

CLMEF clears the internal message flag set by CLLCD, DISP, PIXEL,
DRAX, DRAW, and DRWZ. Including CLMF in a program, after the
last occurrence of any of these words, causes the normal stack display
to be restored when the program completes execution.

Dictionary 199

...PROGRAM CONTROL

ERRN Error Number Command
Level 1
» #n

ERRN returns a binary integer equal to the error number of the most
recent calculator error. A table of HP-28S errors, error messages, and
error numbers is given in Appendix A.

ERRM Error Message Command

Level 1

» "error-message"

ERRM returns a string containing the error message of the most recent
calculator error. A table of HP-28S errors, error messages, and error
numbers is given in Appendix A.

200 Dictionary

PROGRAM TEST

SF CF FS? FC? FS?C FC?2C
AND OR XOR NOT SAME ==
STOF RCLF TYPE

The PROGRAM TEST menu (@(TEST]) contains commands for
changing and testing flags and for logical calculations.

Test commands return a flag as the result of a comparison between
two arguments, or of a user-flag test. The comparison operators #,
<, >, <, and > are present on the left-hand keyboard as characters.
The remaining test commands FS?, FC?, FS?C, FC?C, SAME, and ==
are present in the TEST menu. In addition, the TEST menu contains
the logical operations AND, OR, XOR, and NOT, that allow you to
combine flag values. Note that the = function is not a comparison
operator; it defines an equation. Both == and SAME test the equal-
ity of objects.

Keyboard Functions

#* Not Equal Function
Level 2 Level 1 Level 1
obj4 objo » flag
z 'symb' ®» 'z#symb'
'symb ' z » 'symb#z'
'symb, ' 'symb,' w» ' symby#symb, '

takes two objects from levels 1 and 2, and:

B If either object is not an algebraic or a name, returns a false flag (0)
if the two objects are the same type and have the same value, or a
true flag (1) otherwise. Lists and programs are considered to have
the same values if the objects they contain are identical.

Dictionary 201

...PROGRAM TEST

If one object is an algebraic or a name, and the other is a number, a

name, or an algebraic, # returns a symbolic comparison expression
of the form 'symby#symb,', where symb; represents the object

from level 2, and symb, represents the object from level 1. The re-
sult expression can be evaluated with EVAL or =“NUM to return a

flag.
< Less Than Function
Level 2 Level 1 Level 1
X y » flag
ny # ny » flag
" string4 " "string," » flag
X 'symb' w» 'x<symb'
'symb' X » 'symb<x"
'symb, ' 'symby,' ®» ' symbq <symb,"
> Greater Than Function
Level 2 Level 1 Level 1
X y » flag
ny # n, » flag
"'string," "string," » flag
X ‘symb' w» ' x>symb'
'symb' X » 'symb>x'
'symb, ' 'symby,' ®» ' symb 4> symb, '

202 Dictionary

...PROGRAM TEST

< Less Than or Equal Function
Level 2 Level 1 Level 1
X y » flag
ny #n, @ flag
"string," "string," w» flag
X ‘symb' w» ' x£symb '
'symb' X » ' symb£x '
' symb, ' ‘symby' ® ' symbq£symb,
= Greater Than or Equal Function
Level 2 Level 1 Level 1
X y » flag
ny #n, @ flag
" string, " "string," » flag
X 'symb' ' xasymb'
'symb' X » ' symbxx '
'symb, ' ‘symby' ®» ' symb,2symb, "

The following description refers to the four stack diagrams above.

Each of the four commands <, >, <, and > takes two objects from
the stack, applies the logical comparison corresponding to the com-
mand name, and returns a flag according to the results of the

comparison. The logical order of the comparisons is level 2 test level 1,
where test represents any of the four comparisons. For example, if
level 2 contains a real number x, and level 1 contains a real number y,
then < returns a true flag (1) if x is less than y, and a false flag (0)

otherwise.

Dictionary 203

...PROGRAM TEST

<, >, <, and >, because they imply an ordering, apply to fewer
object types than #, ==, or SAME:

® For real numbers and binary integers, “less than” means numeri-
cally smaller (1 is less than 2). For real numbers, “less than” also
means “more negative” (—2 is less than —1).

B For strings, “less than” means alphabetically previous (“ABC” is less
than “DEF”; “AAA” is less than “AAB”; “A” is less than “AA”). In
general, characters are ordered according to their character codes.
Note that this means that “B” is less than “a”, since “B” is character
code 66, and “a” is character code 97.

SF CF FS? FC? FS?C FC?C

This group of commands sets, clears, and tests the 64 user flags. In
this context, “to set” means “to make true” or “to assign value 17, and
“to clear” means “to make false” or “to assign value 0.

SF Set Flag Command

Level 1

n »

SF sets the user flag specified by the real integer argument n, where
1<n<64

CF Clear Flag Command

Level 1

n »

CF clears the user flag specified by the real integer argument n, where
1 <n< 64

204 Dictionary

...PROGRAM TEST

FS? Flag Set? Command?

Level 1 Level 1

n » flag

FS? tests the user flag specified by the real integer argument 1, where
1 < n < 64. If the user flag is set, FS? returns a true flag (1); other-
wise it returns a false flag (0).

FC? Flag Clear? Command
Level 1 Level 1
n » flag

FC? tests the user flag specified by the real integer argument 1, where
1 < n < 64. If the user flag is clear, FC? returns a true flag (1); other-
wise it returns a false flag (0).

FS?C Flag Set? Clear Command
Level 1 Level 1
n » flag

FS?C tests, and then clears, the user flag specified by the real integer
argument 1, where 1 < n < 64. If the user flag is set, FS?C returns a
true flag (1); otherwise it returns a false flag (0).

Dictionary 205

...PROGRAM TEST

FC?C Flag Clear? Clear Command
Level 1 Level 1
n » flag

FC?C tests, and then clears, the user flag specified by the real integer
argument 1, where 1 < n < 64. If the user flag is clear , FC?C returns
a true flag (1); otherwise it returns a false flag (0).

AND OR XOR NOT SAME ==

The commands AND, OR, XOR, and NOT can be applied to flags
(real numbers or algebraics), to binary integers, and to strings. In the
first case, the commands act as logical operators that combine true or
false truth values into result flags. In the other cases, the commands
perform logical combinations of the individual bits of arguments.

The following descriptions apply to the use of the commands with
real number arguments (flags). The “BINARY” section describes their
application to binary integers and strings.

AND, OR, XOR, and NOT are allowed in algebraic objects. AND and
NOT have higher precedence than OR or XOR. AND, OR, and XOR
are displayed within algebraics as infix operators:

'Y AND ¥' 'S+X WOR Z AND Y
NOT appears as a prefix operator:
"HOT w' '"Z+NOT <A AND B>

If you enter the commands in this form, be sure to separate the com-
mands from other commands or objects with spaces. You can also
enter these commands into the command line in prefix form:

"ANDCH, Y2 "ANDCKOR xR, E2, 2!

206 Dictionary

...PROGRAM TEST

AND And Function
Level 2 Level 1 Level 1
X y » flag
X ‘symb' w» 'x AND symb'
'symb' X » 'symb AND x'
' symb, 'symb,' ® ‘'symb; AND symb,'

AND returns a flag that is the logical AND of two flags:

First Argument x | Second Argument y | AND Result
true true true
true false false
false true false
false false false

If either or both of the arguments are algebraics, the result is an alge-
braic of the form 'symb; AND symb,', where symb; and symb,
represent the arguments.

OR Or Function
Level 2 Level 1 Level 1
X y » flag
X 'symb' w» 'x OR symb'
'symb' X » 'symb OR x'
'symb, ' 'symb,' ®» 'symby QR symb,'

Dictionary 207

...PROGRAM TEST

OR returns a flag that is the logical OR of two flags:

First Argument x | Second Argument y | OR Result

true true true
true false true
false true true
false false false

If either or both of the arguments are algebraics, the result is an alge-
braic of the form 'symb; OR symb,', where symb; and symb,
represent the arguments.

XOR Exclusive Or Function
Level 2 Level 1 Level 1
X y » flag
X 'symb' w» 'x KOR symb'
'symb' X » 'symb XOR x'
'symb, ' 'symb,' ® 'symb; XOR symb,'

XOR returns a flag that is the logical exclusive OR (XOR) of two flags:

First Argument x | Second Argument y | XOR Result
true true false
true false true
false true true
false false false

208 Dictionary

...PROGRAM TEST

If either or both of the arguments are algebraics, the result is an alge-
braic of the form 'symb; ®0OR symb,', where symb; and symb,
represent the arguments.

NOT Not Function
Level 1 Level 1
X » flag
'symb' ®» 'HOT symb'

NOT returns a flag that is the logical inverse of a flag:

Argument x | NOT Result

true false

false true

If the argument is an algebraic, the result is an algebraic of the form
"MOT sumb', where symb represents the argument.

SAME Same Command

Level 2 Level 1 Level 1

obj objo » flag

SAME takes two objects of the same type from levels 1 and 2, and
returns a true flag (1) if the two objects are identical, or a false flag (0)
otherwise.

SAME is identical in effect to ==, for all object types except
algebraics and names. == returns a symbolic (algebraic) flag for
these object types.

Dictionary 209

...PROGRAM TEST

SAME returns a (real number) flag for all object types, and is not al-
lowed in algebraic expressions.

== Equal Function
Level 2 Level 1 Level 1
obj obj, » flag
z ‘symb' » 'z==symb'
'symb' z » 'symb==z"
'symb, ' 'symby,' ® ' symb,==symb, "'

= takes two objects from levels 1 and 2, and:

If either object is not an algebraic (or a name), == returns a true
flag (1) if the two objects are the same type and have the same
value, or a false flag (0) otherwise. Lists and programs are consid-
ered to have the same values if the objects they contain are
identical.

If one object is an algebraic (or a name), and the other is a number
or an algebraic, == returns a symbolic comparison expression of
the form 'symb,==symb,', where symb, represents the object from
level 2, and symb, represents the object from level 1. The result
expression can be evaluated with EVAL or =NUM to return a flag.

The function name == is used for the equality comparison, rather
than =, to distinguish between a logical comparison (==) and an
equation (=).

210 Dictionary

...PROGRAM TEST

STOF RCLF TYPE

STOF Store Flags Command
Level 1
#n »

STOF sets the states of the 64 user flags to match the bits in a binary
integer # n. A bit with value 1 sets the corresponding flag; a bit with
value 0 clears the corresponding flag. The first (least significant) bit of
n corresponds to flag 1; the 64th (most significant) corresponds to
flag 64.

If # n contains fewer than 64 bits, the unspecified most significant bits
are taken to have value 0.

RCLF Recall Flags Command
Level 1
» # n

RCLF returns a 64-bit binary integer # n representing the states of the
64 user flags. Flag 1 corresponds to the first (least significant) bit of
the integer; flag 64 is represented by the 64th (most significant) bit.

You can save the states of all user flags, using RCLF, and later restore
those states, using STOF. Remember that the current wordsize must
be 64 bits (the default wordsize) to save and restore all flags. If the
current wordsize is 32, for example, RCLF returns a 32-bit binary inte-
ger; executing STOF with a 32-bit binary integer restores only flags 1
through 32 and clears flags 33 through 64.

Dictionary 211

...PROGRAM TEST

Following a memory reset, RCLF will return the value
288252350278139984d, corresponding to the default settings
of the 64 flags.

TYPE Type Command

Level 1 Level 1

obj » n

The command TYPE returns a real integer representing the type of an
object in level 1. The object types and their type numbers are as
follows:

Object Types and TYPE Numbers

Object TYPE Number

Real number

Complex number

String

Real vector or matrix
Complex vector or matrix
List

Name

Local name

Program

© O N O O A~ W N =+ O

Algebraic

-
o

Binary integer

212 Dictionary

REAL

NEG FACT RAND RDZ MAXR MINR
ABS SIGN MANT XPON

P FP FLOOR CEIL RND
MAX MIN MOD %T

An HP-28S real number object is a floating-point decimal number
consisting of a 12-digit mantissa, and a 3-digit exponent in the range
—499 to +499. Real numbers are entered and displayed as a string of
numeric characters, with no delimiters and no intervening spaces.
Numeric characters include the digits 0 through 9, +, —, a radix (*.”
or “,” according to the current radix mode), and the letter E to indicate
the start of the exponent field. The general real number format is

(sign) mantissa E (sign) exponent
When you enter a real number, the format is as follows:

B The mantissa sign can be a +, a —, or omitted (implying +).

B The mantissa can be any number of digits, with one radix mark
anywhere in the sequence. If you enter more than 12 digits, the
mantissa is rounded to 12 digits. (Half-way cases are rounded up in
magnitude.) Leading zeros are ignored if they are followed by non-
zero mantissa digits.

B An exponent is optional; if you include an exponent, it must be
separated from the mantissa by an “E”.
® The exponent sign can be a +, a —, or omitted (implying +).

® The exponent must contain three or fewer digits, and fall in the
range 0 to 499. Leading zeros before the exponent are ignored.

Real numbers are displayed according to the current real number dis-
play mode. In general, the display may not show all of the significant
digits of a number, but the full 12-digit precision of a number is al-
ways preserved in the stored version of the number.

Dictionary 213

-.REAL

The REAL menu contains functions that operate upon real number
(and real-valued algebraic) arguments, or enter special real numbers
into the stack. In addition to the menu functions, % and %CH are
provided on the keyboard.

Keyboard Functions

% Percent Function
Level 2 Level 1 Level 1
X y » xy/100
X 'symb' w» "% (x,symb> !
'symb' X » "X {symb, x>
'symb, ' 'symb,' w ' {symby,symby>"'

% takes two real-valued arguments x and y, and returns x percent of
y—that is, xy/100.

%CH Percent Change Function
Level 2 Level 1 Level 1
X y » 100(y —x)/x
X ‘symb' » '%CH<x,symb> '
'symb' X » '%CHCsymb, x> !
' symb, " 'symb,' w 'XCHC{symb,,symby>"'

%CH computes the (percent) increase over the real-valued argument x
in level 2 that is represented by the argument y in level 1. That is,
%CH returns 100(y — x)/x.

214 Dictionary

-..REAL

T . Analytic

Level 1

» 3.14159265359

l.n.l

m returns the symbolic constant 'm' or the numerical value
3.14159265359, the closest machine-representable approximation to
m. For information on symbolic constants, see page 27.

e e Analytic
Level 1
» 2.71828182846
. 1 e 1

e returns the symbolic constant 'e' or the numerical value
2.71828182846, the closest machine-representable approximation to e,
the base of natural logarithms. For information on symbolic constants,
see page 27.

NEG FACT RAND RDZ MAXR MINR

NEG Negate Analytic
Level 1 Level 1
z » -z
'symb' w» '-symb'

NEG returns the negative of its argument. When no command line is
present, pressing executes NEG. A complete stack diagram for
NEG appears in “Arithmetic.”

Dictionary 215

-..REAL

FACT Factorial (Gamma) Function
Level 1 Level 1
n » n!
X » ["(x+1)
'symb' w» 'FRCT (symb>"'

FACT returns the factorial n! of a positive integer argument n. For
non-integer arguments x, FACT(x) = ['(x + 1), defined for x > —1 as

Fx+1) = fo‘”e*ftx dt

and defined for other values of x by analytic continuation. For x >
253.1190554375, FACT causes an Ciwet-f 1o exception; for x <
—254.1082426465, FACT causes an Unid=rf 1o exception; for x a
negative integer, FACT causes and Irnfinite Fezult exception.

RAND Random Number Command
Level 1
» X

RAND returns the next real number in a pseudo-random number se-
quence, and updates the random number seed.

The HP-28S uses a linear congruous method and a seed value to gen-
erate a random number x, which always lies in the range 0 < x < 1.
Each succeeding execution of RAND returns a value computed from a
seed based upon the previous RAND value. You can change the seed
by using RDZ.

216 Dictionary

-..REAL

RD2Z Randomize Command

Level 1

X »

RDZ takes a real number as a seed for the RAND command. If the
argument is 0, a random value based upon the system clock will be
used as the seed. After memory reset, the seed value is
.529199358633.

MAXR Maximum Real Analytic

Level 1

» 9.99999999999E499
» '"MA=E’

MAXR returns the symbolic constant ' MAXR ' or the numerical value
9.99999999999E499, the largest machine-representable number. For
information on symbolic constants, see page 27.

MINR Minimum Real Analytic

Level 1

» 1.00000000000E-499
» "MINE'

MINR returns the symbolic constant 'MIHE' or the numerical value
1E—499, the smallest positive machine-representable number. For in-
formation on symbolic constants, see page 27.

Dictionary 217

-..REAL

ABS SIGN MANT XPON

ABS Absolute Value Function
Level 1 Level 1
z » |z|
Carrayl = ||array||
'symb' w» '"ABS (symb} '

ABS returns the absolute value of its argument. See “ARRAY” and
“COMPLEX” for the use of ABS with other object types. ABS can be
differentiated but not inverted (solved) by the HP-28S.

SIGN Sign Function

Level 1 Level 1

Z4q » Zy
'symb' » 'SIGN(symb>»"'

SIGN returns the sign of its argument, defined as +1 for positive real
arguments, —1 for negative real arguments, and 0 for argument 0.
See “COMPLEX” for complex arguments.

218 Dictionary

-..REAL

MANT Mantissa Function

Level 1 Level 1

X » y
‘symb' ®» '"MANT (symb> '

MANT returns the mantissa of its argument. For example,

1.2E34 MANT returns 1.2.

XPON Exponent Function
Level 1 Level 1
X » n
'symb' ® 'XPONCsymb)'

XPON returns the exponent of its argument. For example,

1.2E34 XPON returns 34.

IP FP FLOOR CEIL RND
P Integer Part Function
Level 1 Level 1
X » n
'symb' » 'IP Csymb> '

IP returns the integer part of its argument. The result has the same
sign as the argument.

Dictionary 219

IIIREAL

FP Fractional Part Function
Level 1 Level 1
X » y
'symb' ®» '"FFP{symbx»'

FP returns the fractional part of its argument. The result has the same
sign as the argument.

FLOOR Floor Function

Level 1 Level 1

X » n

'symb' w» 'FLOOR Csymb '

FLOOR returns the greatest integer less than or equal to its argument.
If the argument is an integer, that value is returned.

CEIL Ceiling Function
Level 1 Level 1
X » n
'symb' » 'CEILCsymbx'

CEIL returns the smallest integer greater than or equal to its argu-
ment. If the argument is an integer, that value is returned.

220 Dictionary

-..REAL

RND Round Function
Level 1 Level 1
Z1 » 22
Carray;1 = Carray, 1
'symb' w» '"RND (symb> '

RND rounds a real number, or each real number in a complex number
or array, according to the current display mode:

® In STD display mode, no rounding occurs.

® In n FIX display mode, the number is rounded to n decimal places.

B In n SCI or n ENG display mode, the number is rounded to n + 1
significant digits.

Numbers greater than or equal to 9.5E499 are not rounded if rounding
would cause the result to exceed MAXR.

MAX MIN MOD %T

MAX Maximum Function
Level 2 Level 1 Level 1
X y » max(x,y)
X 'symb' » 'MAX(x,symb> "'
'symb' X » '"MAX Csymb, x> '
'symb, ' 'symb,' » 'MRAX {symby,symby '

MAX returns the greater (more positive) of its two arguments.

Dictionary 221

-.REAL

MIN Minimum Function
Level 2 Level 1 Level 1
X y » min(x,y)
X ‘symb' » "MINCx,symb> '
'symb' X » '"MIMCsymb, x>
'symb' 'symb,' ® 'MIMNCsymb,,symby) '

MIN returns the lesser (more negative) of its two arguments.

MOD Modulo Function
Level 2 Level 1 Level 1
X y » x mod y
X ‘symb' w» 'MOD(x, symb> '
'symb' X » 'MOD{symb, x> '
'symb' 'symb,' ® 'MOD(symb,,symby> '

MOD applied to real-valued arguments x and y returns a remainder

defined by

xmody={

x — y floor (x/y)
x

y#0

y=0

Mod (x, y) is periodic in x with period y. Mod (x, y) lies in the interval
[0, y) for y > 0 and in (y, 0] for y < 0.

222 Dictionary

-..REAL

%T Percent of Total Function
Level 2 Level 1 Level 1
X y » 100y/x
X 'symb' » '%T{x,symb> "'
'symb' X » 'ETCsymb, x> !
'symb, ' 'symby,' w 'XT{symby,symby>'

%T computes the (percent) fraction of the real-valued argument x in
level 2 that is represented by the argument y in level 1. That is, %T
returns 100y /x.

Dictionary 223

SOLVE

STEQ RCEQ SOLVR ISOL QUAD SHOW
ROOT

The SOLVE menu ([SOLV]) contains commands that enable you to
find the solutions of algebraic expressions and equations. By solution,
we mean a mathematical root of an expression—that is, a value of one
variable contained in the expression, for which the expression has the
value zero. For an equation, this means that both sides of the equa-
tion have the same numerical value.

The command ROOT is a sophisticated numerical root-finder that can
determine a numerical root for any mathematically reasonable expres-
sion. You can use ROOT as an ordinary command, or you can invoke
the root-finder through the soLur key. soLVR activates an interactive
version of the root-finder called the Solver. The Solver provides a
menu for data input and for selecting a “solve” variable, and returns
labeled results with messages to help you interpret the results.

It is also possible to solve many expressions symbolically, that is, to
return symbolic rather than numerical values for the roots of an ex-
pression. The command ISOL (isolate) finds a symbolic solution by
isolating the first occurrence of a specified variable within an expres-
sion. QUAD returns the symbolic solution of a quadratic equation.

In many cases, a symbolic result is preferable to a numerical result.
The functional form of the symbolic result gives much more informa-
tion about the behavior of the system represented by a mathematical
expression than can a single number. Also, a symbolic solution can
contain all of the multiple roots of an expression. Even if you are only
interested in numerical results, solving an expression symbolically be-
fore using soLWR can result in a significant time savings in obtaining
the numerical roots.

224 Dictionary

--.SOLVE

Interactive Numerical Solving: The Solver

The Solver is an interactive operation that automates the process of
storing values into the variables of an equation, and then solving for
any one of the variables. The general procedure for using the Solver is
as follows:

1. Use STEQ (“Store Equation”) to select a current equation.
2. Press soLWR to activate the Solver variables menu.

3. Use the variables menu keys to store values for the equation
variables, including a “first guess” for the value of the unknown
variable.

4. Solve the equation for an unknown, by pressing the shift key
(B) then the menu key corresponding to the unknown variable.

Each of these steps is described in detail in the following sections.

The Current Equation

The current equation is defined as the procedure that is currently
stored in the user variable EQ. The term current equation (and the
name EQ) is chosen to reflect the typical use of the procedure; how-
ever, the procedure can be an algebraic equation or expression, or a
program. A program used with the Solver must be equivalent to an
algebraic; that is, it must not take arguments from the stack, and
should return one result to the stack.

You can think of the current equation as an “implicit” argument for
SoLYR (it is also the argument for DRAW). An implicit argument
saves you from having to place a procedure on the stack every time
you use S0LYR or DRAW.

Dictionary 225

- SOLVE

For the purpose of solving (root-finding) equations and expressions,
you can consider an expression as the left side of an equation with its
right side 0. Alternatively, you can interpret an equation as an expres-
sion by treating the = sign as equivalent to — (subtract).

Described next are STEQ and RCEQ, which are commands for storing
and recalling the contents of EQ.

STEQ Store Equation Command
Level 1
obj »

STEQ takes an object from the stack, and stores it in the variable EQ
(“EQuation”). EQ is used to hold the current equation used by the
Solver and plot applications, so STEQ’s argument should normally be
a procedure.

RCEQ Recall Equation Command
Level 1
» obj

RCEQ returns the contents of the variable EQ from the current direc-
tory. To recall a variable EQ from a parent directory (when EQ doesn’t
exist in the current directory), execute 'E@' RCL.

226 Dictionary

lllsoLVE

Activating the Variables Menu

Pressing $0LYR activates the Solver variables menu derived from the
current equation. The variables menu contains:

B A menu key label for each independent variable in the current
equation. If there are more than six independent variables, you can
use the and M[PREV] keys to activate each group of (up to)
six keys.

® One or two menu keys for evaluating the current equation. If EQ
contains an algebraic expression or a program, the key is
provided for evaluating the expression or program. If EQ contains
an algebraic equation, [LEFT= and [ET=_| allow you to evaluate
separately the left and right sides of the equation.

How The Variables Menu Is Configured. An independent variable
named in the current equation is either a formal variable, or a variable
that contains a data object, usually a real number. A variable contain-
ing a procedure will not appear in the variables menu. Rather, the
names appearing in that procedure are taken as possible independent
variables; those that contain data objects are added to the variables
menu. The process continues until all independent variables are iden-
tified in the menu. The variables menu is continuously updated, so
that if you store a procedure into any of the variables in the menu,
that variable will be replaced in the menu by the new independent
variables contained in the procedure.

For example, if the current equation is ' A+B=C", the variables menu:

TR e [t J[LeFTe [Ri=|

results if A, B, and C do not contain procedures. But if we store
'D+E"' in C, the menu will become

CA e o [E |[CEFTe [FT=]

(If a current equation variable itself contains an equation, the latter
equation is treated as an expression by replacing the = with a —, for
the purpose of defining the variable.)

Dictionary 227

--.SOLVE

Storing Values into the Independent Variables

Pressing a Solver variables menu key [rname, where name is any of
the independent variable names, is similar to executing the sequence
‘name’' STO. That is, {rname| takes an object from the stack and
stores it as the value of the variable name.

To confirm input, {rame | also displays name: object in display line 1,
where object is the object taken from the stack. The message will dis-
appear at the next key press.

At any time, you can review the contents of a variable by pressing ("]

(nane| and then M(RCL], @(VISIT], or (EVAL].

Choosing Initial Guesses

In general, algebraic expressions and procedures can have more than
one root. For example, the expression (x — 3) (x — 2) has roots at

x = 3 and x = 2. The root that the root-finder returns depends on the
starting point for its search, called the initial guess.

You should always supply an initial guess for the root-finder. The

guess is one of the required arguments for the command ROOT. For
the Solver, the current value of the unknown variable is taken as the
initial guess. If the unknown variable has no value, the Solver will
assign it an initial guess value 0 when you solve for it, but there is no
guarantee that this default initial guess will yield the root you desire.

You can speed up the root-finding, or guide the root-finder to a par-
ticular root, by making an appropriate initial guess. The guess can be
any of following objects:

® A number, or a list containing one number. This number is con-
verted to two initial guesses, as described next, by duplicating it
and perturbing one copy slightly.

228 Dictionary

. SOLVE

B A list containing two numbers. The two numbers identify a region
in which the search will begin. If the two numbers surround an
odd number of roots (signified by their procedure values having
opposite signs), then the root-finder can usually find a root be-
tween the numbers quite rapidly. If the procedure values at the two
numbers do not differ in sign, then the root-finder must search for
a region where a root lies. Selecting numbers as near a root as pos-
sible will tend to speed up this search.

B A list containing three numbers. In this case the first number
should represent your best guess for the root of interest. The other
two numbers should surround the best guess, and define a region
in which the search should begin. The list of three numbers re-
turned when you interrupt the root-finder with the key
corresponds to the current guess in this format.

Any of the numbers described above can be complex; in that case
only the real parts are used.

The best way to choose an initial guess is to plot the current equation.
The plot gives you an idea of the global behavior of the equation and
lets you see the roots. For an equation, the roots are the values of the
independent (horizontal) variable for which the two curves represent-
ing the equation intersect; for an expression (or a program), the roots
are the points at which the curve intersects the horizontal axis (verti-
cal coordinate = 0). If you use the interactive plotter (ORAW), you
can move the cursor to the desired root, and digitize one or more
points. Then you can use the point coordinate(s) as the initial
guess(es) for the solver.

Dictionary 229

. SOLVE

Solving for the Unknown Variable.

To solve the current equation for an “unknown” variable name, press
the shift key] and then the menu key [rname]. This activates the nu-
merical root-finder, to determine a value of the unknown variable
that is a root of the current equation (that is, makes the current equa-
tion have the value zero). While the root-finder is executing, the
message

Solving for name

is displayed in display line 1. When execution is completed, the result
is returned to the stack, and display line 1 shows

name: result
(until you press a key). Line 2 gives a message that qualifies the result.
While the Solver root-finder is executing, you can:

B Press to stop the root-finder iteration and return to the normal
stack display. When the root-finder is halted in this manner, it dis-
plays its current best value for the root to the unknown variable,
and returns a list containing current best value plus two additional
real numbers specifying the search region. If you wish to restart the
root-finder, you can just press the unknown variable menu key to
store the list into the variable, then the shifted menu key. By using
the list as a guess, you can restart the root-finder at the same point
where it was interrupted.

B Press any other key to display the intermediate results of the root-
finder as it seeks a root. Lines 2 and 3 of the display will show two
current guesses used by the root-finder, plus the signs of the value
of the current equation evaluated at the guesses. If the current
equation is undefined at a guess point, the sign is shown as 7.

230 Dictionary

-..SOLVE

The intermediate results are the points where the root-finder is sam-
pling the procedure values. The root-finder first searches the domain
of the procedure for two points where the procedure values have op-
posite signs; during this stage, the search region may grow. Once it
finds a sign reversal, the root-finder tries to narrow the search region
to a point where the procedure value is zero. By watching whether
the search region is growing or shrinking, you can track the root-
finder’s progress.

Interpreting Results

The HP-28S root-finder seeks a real root of a specified procedure,
starting with the first guess that you have supplied. In most cases, the
root-finder returns a result. The command ROOT just returns the re-
sult to the stack. The Solver returns the result to the stack, displays a
labeled result in line 1 of the display, and shows a qualifying message
in line 2. The qualifying message provides a rough guide to the nature
of the root found:

Message Meaning
Zero The Solver found a point where the procedure value is
zero.
Sign The Solver found two points where the procedure values
Reversal have opposite signs, but it can’t find an intermediate

point where the procedure value is zero because (a) the
two points are neighbors or (b) the procedure is not real-
valued between the two points. The Solver returns the
point where the procedure value is closer to zero. If the
procedure is a continuous real function, this point is the
calculator’s best approximation to an actual root.

Extremum The Solver found a point where the procedure value ap-
proximates a local minimum (for positive values) or
maximum (for negative values), or it stopped searching
at the point +9.99999999999E499 because there are no
larger machine-representable numbers.

Dictionary 231

. SOLVE

After you have obtained a result using the Solver or ROOT, you
should evaluate the procedure for which the result was obtained, in
order to interpret the results. (If you are using the variables menu,
you can use [EXFE=| for an expression or a program, or [LEF1=} and
['ET="] for an equation.) There are two possibilities: the value of the
procedure at the value of the unknown variable returned by the root-
finder is close to zero; or it is not close to zero. It is up to you to
decide how close is close enough to consider the value a root.

The best way to understand the nature of a root is to plot the proce-
dure in the neighborhood of the root. The plot will show you whether
the root is a proper root, or a discontinuity, much more clearly than
any qualifying message that the Solver can return.

During its search for a root, the root-finder may evaluate the proce-
dure at values of the unknown variable that cause mathematical
exceptions. No error is generated, but the appropriate mathematical
exception user flags will be set.

Errors

In two cases the root-finder will fail, indicating the problem with an
error message:

Error Message Meaning
Bad One or both initial guesses lie outside of the domain of
Guess(es) the procedure. That is, the procedure returns an error

when evaluated at the guess points.

Constant? The procedure returns the same value at every point
sampled by the root-finder.

232 Dictionary

. SOLVE

ROOT Root-Finder Command
Level 3 Level 2 Level 1 Level 1
“program: ' global! guess » root
“program: ' global ! {guesses: ® root
'symb' ' global! guess » root
'symb' ' global! {guesses: ® root

ROOT takes a procedure, a name, and either a single guess (a real
number or a complex number) or a list of one, two, or three guesses,
and returns a real number root. Root is a value of the variable name
that is returned by the HP-28S numerical root-finder. Where the
mathematical behavior of the procedure is appropriate, root is a math-
ematical root—a value of the variable for which the procedure has a
numerical value zero. Refer to “Interpreting Results” for more in-
formation on interpreting the results of the root-finder.

The single guess, or the list of guesses, are guesses of the value of the
root that you must supply to indicate to the root-finder the region in
which the search for a root is to begin. “Choosing Initial Guesses”
explains how to choose initial guesses.

If you interrupt ROOT by pressing the key, the procedure is re-
turned to level 3, the name to level 2, and a list containing three

intermediate values of the unknown variable to level 1. The current
best value for the root is stored in the unknown variable. The list is
suitable for use as a first guess if you wish to restart the root-finder.

Dictionary 233

-.SOLVE

Symbolic Solutions

ISOL Isolate Command

Level 2 Level 1 Level 1

'symb, ' ‘global' w» ‘'symb,'

ISOL returns an expression symb, that represents the rearrangement
of its argument algebraic symb; to “isolate” the first occurrence of vari-
able name. If the variable occurs only once in the definition of symb;,
then symb, is a symbolic root (solution) of symb,. If name appears
more than once, then symb, is effectively the right side of an equation
obtained by rearranging and solving symb; to isolate the first occur-
rence of name on the left side of the equation. (If symb; is an
expression, consider it as the left side of an equation symb; = 0.)

If name appears in the argument of a function within symb;, that
function must be an analytic function—the HP-28S must be able to
compute the inverse of the function. Thus ISOL cannot solve
IP(X) = 0 for X, since IP has no inverse. Commands for which the
HP-28S can compute an algebraic inverse are identified as analytic
functions in this manual.

234 Dictionary

. SOLVE

QUAD Quadratic Form Command
Level 2 Level 1 Level 1
'symb, ' 'global' w® 'symb,'

QUAD solves an algebraic symb, for the variable name, and returns an
expression symb, representing the solution. QUAD computes the sec-
ond-degree Taylor series approximation of symb; to convert it to a

quadratic form (this will be exact, if symb; is already a second order
polynomial in name).

QUAD evaluates symb, before returning it to the stack. If you want a
symbolic solution, you should purge any variables th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>