
David Holladay

401 Elmside Blvd.

Madison, Wi 53704

(608) 257-8833 (work)

(608) 241-2498 (home!

Hi
goivingFolynominalEquations of Degree Greaterthan Four

with an HP-285 AdvancedScientificCalculator

I have an HF-285 calculator, and a copy of the "Mathematical Applications”

Step by Step Solutions For Your HF Calculator. A large section of the book deals

with solutions to polynomials. The book contains closed form solutions to

polynomials up to the fourth degree. For polvnomials of fifth degree and above,

there is no closed form solution. I was determined to write a program which

would vyield all the roots (real and complex) of an arbitrary polynomial using

the Graetfe root sguare method.

This program starts where the FROOT program leaves off. It gives complete

solutions (all the roots, real and complex) for polvnomials of dearee 5 and

above. It does so without much manual intervention. The program beeps when it is

finished.

There are three drawbacks to the root squaring process on the HF-2BS5. One

is memory. These programs take up about 8k out of the 32k on the machine. The

second drawback is that it is slow. It does take several minutes to get a

solution.

Finally, the root square method uses big numbers. It would easily bust the

10999 1imit of the HF-Z85. I have a routine that stops the root sguaring process

before any coefficient reaches 10!'°9° Many times, not enough root sguaring

iterations are done to properly separate the roots. The result 1s error. To cope

with these errors, I have a scoring system to allow the user to instantiy know

it the results can be relied on or not. I+ the score shows there are errors, I

have a backup routine which separates the good roots from the bad, calculates

the reduced egquation and tries again. In all cases I have tested, one gets

accurate roots in the first or second try. I think that getting all Z0 roots

(all complex) of a 20 degree polynomial in 45 minutes is acceptable pertormance.

The operation of the program is simple. Flace a polynomial in list form at

level 1 of the stack. Execute program MROOT (for master root). After execution,

level 1 has a "score" to indicate the accuracy of the roots (a score of | is

ideal}. The second level has the roots in list form. I+ the polynomial is a

linear, quadratic, cubic, or quartic, then software from program FROOT is

executed. PROOT is documented in the HF "Mathematical Applications" Step by Step

boolk .

The Approach

The name for the algorithm in this program is the Grasfte root-sguaring

method with the Brodetsky and Smeal improvement using the Newton-Raphson method

for improving the roots. To tell the diftference between real and complex roots,

the program tests the discriminant b2®-4ac of adjacent trios of coefficients of

the final root-squared eguation. The root-sguaring process goes for 12 steps or

until one coefficient reaches 1019¢ (which ever comes first). This program uses

the Brodetsky-Smeal improvement for every calcuation.

The book that I have relied on is NumericalMat
B. Scarborough, Sixth Edition (John Hopkins Fress, |

book :

“The underlying principle of Graeffe’s method is this: Ths aiven esguatinon

is transtormed into another whose roots are hiagh powers of those of the original

equation. The roots of the transformed equation are widely separated, and

because of this fact are easily found. For sxample, if two of the roots of the

original equation are 3 and 2, the corresponding roots of the transformed

equation are 39 and 29, where g is the power to which the roots of the given

equation have been raised. Thus if g = 64, we have 344 = [(80.53& 7344 = {)

19.28¢, The two roots of the given eguation were of the same maanitude, hut in

the transformed equation the larger root is more than a hundred biflion times as

large as the smaller one. Stated otherwise, that ratio of the roots in the given

equation is Z/3, but in the transformed eguation it is 10S80-53&/j01%.284 =

17101127 op < 0,00000000001. The smaller root in the transformed egquation is

therefore negligible in comparison with the larger one. The roots of the

transtormed equation are said to be separated when the ratio of anv root to the

next larger is neglible in comparison with unity.”

Once a polynomial equation is separated, the roots can be found by taking

the gth root of the ratios of adjacent coefficients of the transformed sguation.

The mechanics of the Graeffe method is to transform the equation so the roots of

the new equation are the sguares of the previous equation. The process is

repeated several times to obtain the desired separation. To separate 2 and 3 as

above, the root squaring process would have to be repeated 6 times (2% = &4

(
3

Again, to quote from NumericalMathematicalAnalysis:

"The Graeffe method as explained and i1llustrated up teo this point is

sufficient for finding the real roots and one or two pairs of complex roots of

an algebraic equation. When an eguation has three pairs of compisx roots, thev

can be found without much difficulty by making further use of the relations

between roots and coefficients; but since the real parts must be +ound from a

quadratic equation, thus giving two values for the real parts, the proper value

must be determined by trial. When the given equation has four or more pairs of

complex roots, the practical difficulties in finding them are almost

insurmountable.

“"Brodetsky and Smeal avoided all these difficulties by moving the oriagin of

a small distance h and then applving the root-sguaring process to the

transformed squation. Their procedure enables all roots to be found without any

ambiguities and without much additional labor after the roots of the transformed

equation has been separated. The Brodetsky and Smeal improvement enables any

number of pairs of complex roots to be found with the same sase as one or two

pairs. The introduction of the auxiliary variable h more than doubles the tabor

of separating the roots, but does not cause any other additional labor in the

solution."”

The Root Squaring Frocess

If we have a given equation of degree 4, then there are 5 terms. We will

write the coefficients as alll through al%] to write the equation as:

alllu? +alZ1x® +al31¢= +aldly +als51 = 0

To manually perform one step of the root sguaring process, take a

polynomial and place the even terms on the left side and the odd terms on the

right as follows:

alllu® +al31x=2 +al5] + = —al21u® -aldlx

square both sides and substitute v = -4 2 you aet:

all1l2y® + (al212 - Zall1lal3)v® + (al312 - 2al2lal4] + ZalllalShv= +

{ald412 - 2al31alSliy + al512 = O

iThe roots of the new equation are the sgquares of the old equation. Here i

a computer proaram which generates the new array of coefficients. The input

array is a, the new array is newa.

INITIALIZE ARRAY newalnl

FOR i=1 TO n

FOR =1 TO n

LET k= (i+1)/2

IF k is an integer then:

newalk]l = newalk] + alil * aljl * (-1}" (i%j+1}

NEXT 3

NEXT i

Aftter repeating the root squaring process m times, the roots are

appropriately separated. The coefficients of the final transftormed equation can

be broken up into linear or quadratic fragments. The "Numerical Mathematical

Analysis" book describes a procedure of examining the pattern of sians of the

coefficients to determine which roots are real {(i.e. linear fragments! or

complex (guadratic fragments). It is usually difficult to get = computer to

understand patterns, so I took a different approach. The proaram takes each trio

of coefficients and applies the b%-4ac discrimenant test. I+ the discriminent

was negative, the program assumes a pair of complex roots (and advances two

units to get the next trio). I+ the discriment was positive, the program assumes

one real root (and advances one unit to examine the next trio). To find a real

root, take the 2°mth root of the ratios of the coefficients (the root sguaring
process was repeated m times).

But we are getting ahead of ourselves. The program uses the FBrodetsky and

Smeal improvement of the root squaring method. We use a different formula for

obtaininag the roots.

The Brodetsky and Smeal improvement uses an additional array for the h

coefficients. The original equation is transformed bv a small distance h from

the origin. All h squared terms in any computation are ignored (h iz vanishingly

small). The terms of the h coefficients are stored in the arrav b. The starting

array is the derivative of the polynomial. That is:

b[11 = O

bL2]l = n % alll

bl31 = (n-1) * alZl, etc.

Here i1s a computer program which generates the new array of b coefficients.

Both the arrays a and b are used in the calculation. The new array iz newb.

INITIALIZE ARRAY newbinl

FOR i=1 TO n

FOR =1 TO n

LET k= (i+3})/2

IF k£ is an integer then:

newblk]l = newalk] + alil * bl3j] ¥ (~1)" (i%3j+1)

NEXT J

NEXT i

In the program S5TF which calculates does one step of the root squaring

process, there are no actual arrays newa and newb. These were included in the

above programs to make them easier to read. Frogram STF uses the stack to create

the new arrays.

After going through this process several times, it is time to calculat

roots. The process is done with program FRTSE. First, FRTSE uses the

discriminant test to divide the equation into linear and quadratic fragments. A

linear fraagment is given as follows:

(ali-11 + bli-1Jhixe + (alil + blilh) = 03 where g=2m

the

A little rearanging gives:

oo~ .
o= & W

(bfi-13/ali-11 - blLil/ali]}

Notice that using this formula, we obtain the correct sign of the root

without any trial and error.

A gquadratic fraament is given as follows:

(ali-11 + bLi-11h)y2 + (alil + blilh)y + (ali+11 + bLi+llh} = ©

where v = (x-h)m™

After a fair amount of manipulations (see Numerical Mathematical Analvsis),

you obtain the magnitude of the complex roots (r) {from:

r2m = ali+1l/ali-11]

The complex roots can be written u+iv and u-iv where:

u = (bli-11/ali-11 - bli+11/ali+1]) (p2/2m*1)

and v = 5@R (r® - u®)

0f course, these are just estimated values of the roots. To obtain better

values, we use the Newton-Raphson method. The method geometrically approaches &

root by setting z = 2o - f(za)/f (20!

After getting a better value for z, the process can be repsated. This

method works for real and complex roots. The program repeats the root correction

up to 20 times. Experience has shown that in some situations, the convergence to

the correct root is slow.

Why the Frogram Fails, and How to Cope

When the root squaring process has not gone enough steps, then the program

cannot hope to give the right answers. Sometimes the program returns doubled

roots when there are no doubled roots in reality. Sometimes it returns unstable

values (the Newton-Raphson corrections swing back and forth). There may be other

patterns, but I have not noticed them. I have supplied an additional program

BORT. The program (which also calls program STBL) takes a Tist of "roots" an

throws away the duplicates and the unstable ones. The remaining roots are used

to create a new polynomial as follows:

{(x-r[11} (¢-r[21} (x-ri31)

This polynomial is divided into the original polynomial that we want to

solve. This new polvnomial, of lesser degree than the original, (called the

reduced equaiton) is solved using MROOT. The roots of it and the "anod roots®

are placed on a combined list. A new score is generated to ses if we can trust

the revised list of roots.

Required Frograms

It is assumed that vou will only want root squaring on fifth degree

equations and above. For lower degree, it uses QUD, CURIC, or QUAR found in the

HF book Mathematical Applications. These programs give closed form solutions for
these eguations.

Required programs: QUD, CUBIC, QUAR, PMULT, FPDIYV, and FVAL

I have made some minor changes to some of these programs. The programs U,

CURIC, and QUAR have been modified so that they return all the roots in 1ist

form in level 1.

At the end of program QUD, add the following: 2 ->LIST

At the end of program CURIC, add the following: 3 -:LIGT

Frogram QUAR has more extensive changes. QUAR has a reference to CUBIC.

Omit the 3 -:LIST after it (this is now done by CURBIC). There are two references

to QUDN. Add LIST-> DROF after these. At the very end, add the following: 4

-=LIST

The program uses several HP-ZBS programs: MRDOT, RTSR, 5TF, Ti00, TWEEK,
FRTSG, SCORE GDRT, and STBL. MRDOT is the master program, a replacement for

FROOT. It decides whether to use the roots squaring process for polvnomials of

degree 5 or above, or to use one of the HF programs for guadratic, cubic, or

quartic egquations. Frogram RTSE starts the root sguaring process. The program

5TF executes one step of the root squaring process (with the Brodetsky and Smesl

improvement) . The program T100 tests whether the coefficients are getting foo

close to the 10599 limit of the calculator. FRTED takes the final cosfticients

and calculates the rough roots (both real and complex). TWEEE executes the

Newton-Raphson method a number of times to improve the rough calculation.

Program SCORE calculates the ratioc of the product of the roots and the last

coefficient. I+ all the roots are correct, this value should be 1.

When you execute MROOT, level one of the stack should contain the

coefficients of the polynomial to solve in list format. When the program

finishes several minutes later, level one contains the score, and the second

level of the stack contains the roots in list format.

Additional programs GTRT and STEL are used in the event the score shows the

program did not return the correct roots. To use GTRT, put the list of ronts,

good and bad {(as returned by MROOT et. al.). It returns a new score and a

revised set ot roots.

MROOT Program

Input Level 1:

Output Level Z:

Output Level 1:

Output Level 1:

[if degree

[if degree

OUF IF SIZE 1 > THEN
DUF IF SIZE 5 > THEN

12 RTSR 450 .25 BEEFP
ELSE LIST-> ->ARRY

DUF 1 GET 7/
ARRY-> LIST-> DROF
1 - DUF 2 + ROLL DROF
{<<NEG 1 ->LIST:>
GuD CUBRIC GQUAR)
SWAF GET EVAL

END
ELSE DROF {

END
>

}

RTSE Frogram

TFu
& onInput Level

coefficients of polynomial

[if degree >

SoftwareListingov eoe remrme

in tist form

47 list of roots

* 4Y score in string form

<= 4] list of roots

if 0 or 1 elements in list, return nothing

if over S elements, use root square

ask {for 12 steps, beep when finished

old FROOT for degree 1-4

divide by +irst coefficient

level 1 has deagree plus 1

discard leading coefficient

a list of programs to

evaluate for each dearee

evaluate the right ons!

if 0 or 1 elements in list, return empty list

coefficients in list form

save equation in array (real onlv!)

normalize {(divide by first coefficient)

put back into list {form

Input Level 1: 12

Output: see FRTSE Program

SWAF LIST-> ->ARRY RE

ODUF 1 GET /

ARRY-> LIST-» DROF -:LIST

ODUF SIZE -> nt a n

£ {n1i1-1230CON

ARRY->» LIST-> DROF -:LIST

inil-FOR i

a i BET n i - % SWAF FUT

NEXT ‘DPNEQ’ STO

a ‘FNER’ 5TO

a O DPNED LIST->

SWaF

1 nt FOR i

STF IF T100 THEN

i ‘nt’ STO 200

END

NEXT

nt FRTSQ >
&

1 + ->LIST

i’ 8TO

nt is the number of times to repeat root sguare

a is the list of coefficients

n is the number of terms

blank array for derivative

put into list form

calculate derivative

save derivative in DFNED

store polynomial in FNER

use the derivative for h coefficients

Tevel 1 has regular: level 2 has h coefficients

do the root sguare, test size of coefficients

save revised nty stop FOR NEXT loop

finish up calucation

STk

Input Level Z:

Input Level 1:

Output Level 2:

Output Level 1:

DUF SIZE O
-*bank <<

{n 1} 0 CON

Frogram

old B lTist

old A list

new B list

new A list

{(1ist of h coefficients)

(1ist of root square coefficients)

h coefticient list;

coefficient list

number of terms (highest power plus 1)

temporary value=
3
w

o

ARRY-> LIST-» DROP ->LIST DUF two new lists for the new coefficients

I n FOR 1
I n FOR 3
i3+ 27k

IF k FF 0 ==
DUF k GET

STO

THEN

a i GET

a jGET * -1 1 3 *

1 + 7 % + k SWAF FUT

outer loop for new a

inner loop for new a

(i+3)/2 1s used often; save a

test if k is even

IH]

save new value for a list

entire new set of a coefficients; SWAP +for b

outer loop for new b

inner loop for new b

{(i+3) /2 is used often: save as k

test if k 15 even

save new value for b list

entire new set of b coefficients

a in level 13 b in level 2

END

NEXT

NEXT SWAF

1n FOR 1

1nFOR 3

iJd+ 2/ 7k’ 8T0O

IF k FF O == THEN

DUF k GET a 1 BGET

b J GET 2 % # -1 1 J *

1 + % % + k SWAF PUT

END

NEXT

NEXT

SWAF =

T100 Progaram

Input Level 1:

Output Level 1:

A list of coefficients

Dutput Level Z: unchanged A list

true if one or more values exceed 1E100

DUF SIZE -> a n <4

a01nFOR i

a 1 BET ABS 1

ABS 100 > +

NEXT

+ LOG

standard a and n

for each element

check if over 1E100

Input Level

Input Level

Output Level

Output Level

3 ROLLD DUF
SIZE 0 0O

FRTSE Froaram

=2: final B array

1: +inal A array
Z2: roots in list form

1: score (based on product of roots)

->»mbanru <<

2 n FOR 1

IF i n == THEN 1
ELSE a 1 GET DUF *

4 ail

ail+

END

IF THEN
“ b

1 —

GET

GETP
t

fu
t.

 f
ee
te
5

m -

k
W
O

W
X

R
I
L

L
M

O
R

m

P
+

1
+

W
b
e

b
t
s

S
e
B

+
o
+

fr
od

e
t

e
t

fe
ek

e
t
b

e
k

e
t

r DUFo

- GET

GET * * =

i1 - GET
GET /

/ - 7 TWEEK

GET

GET / ABRS

TINV T S

GET

GET /

GET

GET 7/ - r DUF

1+ ° /7 ‘u’ STOD

* u DUF =

870

- ABS wv= R-:C TWEEE
ouF CONJ
i1+ 717 5T0

END
NEXT
n 1 - -:LIST

SCORE

is actual # of times we did the root sguare

is the epsilon coefficient array

is the regular root square array

is number of coefficients

is a temporary

u is a temporary

loop through the roots

report true for last root

O
O
w
3

calculating discriminant

report true for real; false for comple:x

real root

calculate real root and improve

else a complex root

r is the radius of the complex root

u is the real portion of the root

calculate and improve complex root

conjugate complex root

bump 1 by 1 since we have two roots

put roots into list form

obtain the accuracy score

TWEEE Frogram

Input Level 1: raw unimproved roct

Output Level 1: root improved by manvy repetitions of the Newton-Raphson method

1 20 FOR 1 repeat up to 20 times

DUF DUF DUF FPNER SWAF FVAL get function value at "root"

DFNER ROT PVAL get derivative at "root"

IF DUF O == THEN DROF © if derivative is zero,., don’t change root

ELSE / ratio; function divided by derivative

END - improved root value:; root minus ratio

DUF RDT - R-F RE find how much root has chanaed

IF O == THEN 1 18 MAX if unchanged, advance the loop counter

717 STO END

NEXT loop through more times

>

SCORE Frogram

Input Level 1: roots in list format

Output Level Z: unchanged list of roots

Output Level 1: score in string format

DUk LIST-> —-> n n has the number of roots

¢ 1 n 1 - START * NEXT multiply all the roots

PNEG n 1 + GET get last coefficient

ODUF IF O == THEN DROF "O ™ it last coefficient is zero, don’t divide

ELSE /7 NEG "1 " if it is non-zer, get the ratio

END SWAF ->5TR + =3 place on the stack the score as a string

GDORT Froaram

Input Level 1: List of roots in list form: some are incorrect

Output Level Z: List of roots in list form, hopefully all correct

Output Level 1: score in string form

<« DUF SIZE ->* r n r is the list of roots

n is the number of roots

<5 0 k78TO IF n 1t » THEN init k3 lTook for duplicate roots if n > 1

PFNEE 1 n 1 - FOR i put poly on stack

0 ‘v’ BTD

1 +n FOR § looping through the roots

IF r 1 BGET r 3 GET compare ith and Jith root to see it egual

- R-*F RE 1E-10 < THEN if two roots are virtually identical

1 ‘v’ STO END set a marker that indicatez a duplicate

NEXT IF v O == THEN if not a duplicate

r 1 BET STBL END STBL puts the unique root on the "good" list

NEXT ‘v’ FURBE finish comparing all! the combinations

END r n GET STEL throw the last one on the list as well

kb —>LIST DUF LIST-> DROF { 1 } put good roots into the stack

1 & START SWAF Toop through the good roots

NEG 1 SWAF Z —>LIST FMULT create polvnomial of good roots

NEXT PNER SWAF FOIV DROFP DROF divide into original equation

kY PURGE MROOT tind roots of reduced equation

DUF IF TYPE 2 == THEN DROF if top is string (the score! then drop it

END + SWAF ‘FNER’ STO SCORE »»> add the new roots to the previous list
B then score the combined list

STEL Frogram

Input Level 1: possible good root

Dutput Level 1: good root if it is stable, otherwise nothing

<¢ DUF DUF FNEQ SWAF FVAL
DFNEG ROT PVAL / calculate root correction

R-*F RE IF .000001 < THEN it the root is stable

k1 + 'k’ 5TO remember it

ELSE DROF if unstable, foraet about it

END

SomeExamples

One particularly ditficult equation is:

x® + 7.73x7 + 12.8B4x% - 1.111xS - 55,744 - 1|

To solve, place the list of coefficients 1

{1 7.73 12.84 -1.111 -55.7 -125.3 -157.9 -

1
l

- 157.94v2 - 112.3x - 54.3 = OB
25.3¢3

ist:
—mh .3L

l

r-
J
m 1

12.3

After about 4 minutes, we get the answer. The score is 1, so we can trust

the results. The roots are:

-. 273981481707 +- 957681452645 1

-.06F421123577 +- 1.33932524678 1

-1.29450777126 +- 715583217023 1

2.17457247033

-5.62475171764

This equation is nasty for the root sguaring process because it has three

pairs of complex roots, and because the magnitude of two of the pairs vary by a

ratio of only 1.02. The program, with its use of the EBrodetsky and Smeal

improvement is not confused by the number of complex roots. The repeated use of

the Newton—-Raphson method vields accurate results despite the slow convergence

of the roots. While four mininutes is a long time to solve a problem, doing this

manually (with only a few decimal places) would take davs. Scarborough uses this

equation as an exercise, but gives the wrong solution in the end of the book’

Here is a 20 degree equation in list form:

{1 0-32.98-125 824 -30 00 45 -60 157.2 -52 41 42 4 2.5 2}

After we run MRODT, we get a very bad score (.001604) . What has happened is

that the program accidentially repeated one pair of complex roots. In addition,

it reported é real roots when actually there are no real roots at all. Fress

DROF to get rid of the score and bring the list of roots to level 1. Press GDRT

to try again. It eliminates the B bad roots, creates a 12 degree equation based

on the 12 good roots, and divides into the original polynomial to get an Bth

degree polynomial. The reduced equation is solved (correctly). The revised list

of roots and the revised score is returned by the program. The new score is

799999999945, which is close enough to 1. This means we can trust the 10 pairs
of complex roots. It is quite impressive that the program was able to deal with

10 pairs of complex roots. Total execution time was about 45 minutes. Here is

the correct list of roots:

-1.80777576529 +- 771777519729 1
1.34801982239 +- 79552493042 i
L075056314795 +- 1.01360455599 i
LA50179787303 +- 742890160974 1

-.045129877568 +- “Ub81781691 1
184783179144 +- S1367269368 i
703544043027 +- 1.3378609926 1

1.30962750061 +- LA5566993B%931 1
-1.183335801 +- GZALAL0TE4ATE A
- . 674963520093 +- 1.12090106013 i

