

HP-28S

Software Power Tools

Utilities

b

A Product of

Solve and Integrate Corporation

A GRAPEVINE PUBLICATION

HP-28S

Software Power Tools:

UTILITIES

A Product of

Solve and Integrate Corporation

Grapevine Publications, Inc.

P.O. Box 118

Corvallis, Oregon 97339-0118 U.S.A.

Acknowledgements

We extend our thanks once again to Hewlett-Packard for their top-

quality products and documentation.

© 1989, by Solve and Integrate Corporation. All rights reserved. No

portion of this book or its contents, nor any portion of the programs

contained herein, may be reproduced in any form, printed, electronic

or mechanical, without written permission from Solve and Integrate

Corporation and Grapevine Publications, Inc.

Printed in the United States ofAmerica

ISBN 0-931011-27-2

First Printing — November, 1989

Notice OfDisclaimer: Neither the authors, nor Solve and Integrate Corporation nor Grapevine

Publications, Inc. make any express or implied warranty with regard to the keystroke procedures

and program materials herein offered, nor to their merchantability nor fitness for any particular

purpose. These keystroke procedures and program materials are made available solely on an "as

is" basis, and the entire risk as to their quality and performance is with the user. Should the

keystroke procedures and program materials prove defective, the user (and not the authors, nor

Solve and Intzgrate corporation, nor Grapevine Publications, Inc., nor any other party) shall bear

the entire cost of all necessary correction and all incidental or consequential damages. Grapevine

Publications, Inc. shall not be liable for any incidental or consequential damages in connection

with, or arising out of, the furnishing, use, or performance of these keystroke procedures or

program materials.

CONTENTS

(0) Introduction To This Book 6

What You "Gotta" Do....cccccieiieiiieieeeeeeececeeeeeeeaes7

What You "Don't Gotta" Doeeeeeeereeeieiecteeceeeeeeceeeeeecee7

Reminders: Some HP-28S Basicsccccceeevueeeeieericceneneeeeeeeennn. 8

Notes On Using This BooK......cccccceevirrnrrirnrrrcrerecreeeceeeeenneene 14

(1) Stack Utilities 20

Contents LiStcoeeeeiieeiiieecceeeeceecceeecreecee tees eae seessere 21

The Program Routines..........cccooiiieeiieeiieecciieceeeeeeceeneeeeee22

DISCUSSION ..cveiiiiiiiiiecitieeeeeccrtreeeeecesaeeesees see sssssseeaeeeaeeas 40

(2) Real Number Utilities 44

Contents LiStcccovviieeiieirreereeieeceeeeecrecreecreeeee sates eee senna se sneaes 45

The Program Routines.........ccoceeeeeeeeeeiiiieiieiieeeeeneeeeereeeeeeesaeens46

DISCUSSION ...cceiiieeiiiieeeteeccee tree cetreeeeeceaatecesses seeene eae aeaeeas 60

(3) Complex Number Utilities 68

Contents LiStcccceeeeiiieieeeeeeccccee cetteteeta eee seae ees snee an 69

The Program Routines.........cccccereiieeiiieriiiiiiieiieeeeeeevee70

DISCUSSION c.eueiieeteieeeeeeeteteeeeeeeeereeeseaensnssnnnnneessssesssnnnnnnn senses esses 78

(4) Vector Utilities

Contents Listcccevueeeeereieeiiieeeieeeeeeeeeeeeeeeeens

The Program Routines........ccccccvevieririiiannnnnenn.

DISCUSSION .cevveieiieeeieieeeeeeiieeeeerreeeeeerernneenees eeesecscssssscscsccscecrsce

 (5) Array Utilities

Contents LiStccouvveiveeiieiiiiiiiieereeeeereceeeeennen.

The Program Routines..........ccccccevveinveeiiennnnnnn.

DISCUSSION .cuveniiiiiiiieeieeeiieeeeieeeeeeer eee eerenanes

(¢) Character String Utilities

Contents LiSt .ooeeeiieiieeieiieeeeeeeeeeeeeeeeneeeaeeanens

The Program Routines........ccccooeveeiieiiieenccnnnnns

DSTAVTSIS3Lo)oA

List Utilities

e0000ccsccccscsscccccccsnce

e0ececescececcccccscencense

eescscccessssssececccsocce

eecssccccccecesccccscssone

Contents LIS.ooveeieeeieeeeeeieeeeieeeeeeeeereneeeneeeanes

The Program Routines.........ccccceeeeiieecvnnnennnnnnn.

DISCUSSION c..eveeiiieeiieeeieieenerenerenerensennsennssnessasesnnne 0eeccccsecscsesevsscecccns

106

107

110

152

158

159

160

186

Directory Utilities 230

Contents LiSt ..ccuevreieiiiiiiiiieiiiiiieiieeeieeeeecriereeee ee sesesnsnsennnnnennes 231

The Program Routinesccccceimmiiiiniiniiiiniiciciiceeeeenenne 232

DISCUSSIONuuiiieerieeeiireeiiereeeeeeeeeeernrrreeeesearneessessensessessssesssnsnens 248

(s) Output Utilities 254

Contents LiStccccvvvurieiiiiiiiiieeeeeereeeceeeeenenesseeenneeeeeeessssenees 255

The Program Routinescccccooovviiriiiiniiiiiiinniiiinniciciiineennens 257

DISCUSSION... ceeeeeeeeieieieerieeierereeereeeeeaeeeaeeeeeeeeseesssssasessesesseensnnnnnes 280

Programming Utilities 284

Contents LiSt ..cuueeeeiiiiiiiiiiiiiiiiiiiiiecerca285

The Program Routinesccccceiiiiiiiiiiiniiieeiiiercceccrcccccceceeen, 288

DiSCUSSIONuuuieitenereerereeeeeeenteeetetereeesessnnnneeeeassssssassssasassanaens 306

(1) Index And Other Information 312

Utilities INAeX....coieeieieeiieeeieeeeeectsesseeeenee 312

All About Solve And Integrate Corporation 314

Comments And Order Formsccccoeeceirivviinineeeencennneneeeennnnne 315

All About Grapevine Publications, Inc.ccceeoverreerieeeenennnnee. 318

Comments And Order FOrmscoovvueeeiiiiuceiieereeeeeeeeneeeenneeens 319

Chapter 0

Introduction To This Book

This book is primarily a toolkit ofsmall HP-28S program routines that

can help you build bigger and better programs ofyour own. These are

not generally useful "all bythemselves" (indeed, most ofthese tools are

fairly boring and useless when invoked "one at a time," or "manually,"

from the keyboard). They are meant to be combined within programs

that you construct for your own purposes.

So this book is mainly a reference source of"canned software." It's not

a tutorial on programming itself (although you can learn a lot about

that subject by following the examples and discussions here).

If you want a true tutorial on the HP-28S, then you should read An

In Using The HP- (see the last few pages in this book

for more information on how to order this and other tutorial books).

So...

6 Chapter 0: Introduction To This Book

What You "Gotta" Do

* You “gotta” know the basics ofusing andprogramming the HP-28S

This book is not a primer on the HP-28S.

* You “gotta” key in, name, store and test some code (programs). How

much code? That depends on what you want to do with these tools.

* You "gotta" invest a little time. There are good reasons for the large

number ofpages you see here. It's just not realistic to expect to be

able to look up your particular programming task in the index, flip

to that page and instantly find the solution to your problem. You

need to learn to program and learn how these program tools are

meant to be used.

What You '"Don't Gotta" Do

* You "don’t gotta” read everything in the book (though it would be a

good idea at least tolook at the contents ofeach section (given on the

opening pages of that section).

e You “don’t gotta” key in everything in the book; you may never use

some of this stuff. Only after you decide what you want to do will

you know which routines will be helpful to get the job done.

* You "don’t gotta” be limited by this book. If you're a proficient and

interested programmer, then you can modify and expand upon

these tools, inventing entirely new sets for your own use.

What You '"Gotta'Do 7

Reminders: Some HP-28S Basics

In case you need a refresher, here are a few reminders about the steps

needed to key in, name, edit, store and use programs on your HP-28S:

"How Do I LoadA Program?"

Consider the following program:

€« *ab«a'F' STOx

b F + NUM "The answer

is " SWAP »*STR + CLLCD

1 DISP » =»

You might key it in this way:

FHI[TICHYEJSPACEANISWIEIR]SPACE)

DEAE)

You might key it in that way — or you might not — because there are

many ways to do it.

8 Chapter 0: Introduction To This Book

Take a look now at some ofthe details here, by studying the first few

keystrokes and what they mean:

(-]LC]A]SPACE]B)]...

The keystroke signals the beginning ofa program;it will always be

the first key you press when entering a program. It also turns on the

alpha cursor (I), so that certain typing aids will help to make loading

the program easier.

For example, you don't need to type spaces in between the keystrokes

andf=) —it's done automatically. This saves you many keystrokes,

because spaces must be keyed in exactly as they appear in a program

listing. Notice that most menu keys (e.g. EI[EN) will also automati-

cally put a space before and after the command names they type.

However, no spaces are needed around either the € or ' characters,

because they are delimiters (like " ,<, [, ,#, SPACE and NEWLINE),

used bythe HP-28S to delimit objects. The HP-28S puts spaces around

the & simply to improve readability.

Finally, notice that case is also significant. The a and b must be

lowercase, so you press before keying them in.

Reminders: Some HP-28S Basics 9

"How Do I Name It?"

Once you've keyed a program into the HP-28S (the example shown on

page 8) so that it's on the stack, you'll need to give it a name by which

you can call it and useit.

To give a program a name, the program mustbe on Level 1 ofthe stack.

Thenyou need to put a unique and fairly descriptive name on the stack

at Level 1 — thus pushing the program itself to Level 2. You must put

single quotation marks (') around the name to prevent the HP-28S

from trying to evaluate it when you it.

So, for example, to name the above program FRED (assuming the

correct and complete program is now sitting at Level 1 of the stack),

press ('JFIRIE[D]

Keep in mind that this procedure will overwrite any object named

FRED in the current directory, so you should take care that the name

is unique!

10 Chapter 0: Introduction To This Book

"How Do I Change It?"

Now suppose you want to change the stored program (you've keyed it

in wrongly or you want to enhance it). How can you do this?

You could recall the program (put it on the stack), edit it (with [EDIT)) and

re-store it, or you can it, which accomplishes all three ofthose

things at once.

Type ('JFJRIE]D)@VIST). You can now move around the program with

the cursor keys. And you can begin to edit right away, but keep in mind

that typing anything new will overwrite (replace) the current contents

unless you go into insert mode (NS), in which case what you type is

inserted. This is often handier.

For example, you could use insert mode to add a NEWLINE to the end

ofthe "The answer is " string. Todo this, pressVE»<.

The cursoris over the quotation mark. Press («)to delete the space and

(iNS)@NEWLINE) to insert the newline (notice that, while VISITing, NEWL-

INE characters actually cause a newline break in the program line).

Press now to accept the changes —or will abort the edit

without changing the program.

Then recall the program (press ('JFJR[EJD) @RcL). Notice that the

NEWLINE character is now represented by a ®. Notice also that this

recalled program is a copy of the FRED program; changesto this copy

won't affect the original unless you re-store it ("JFJRIEJD)(STO).

Press to remove the program from the stack.

Reminders: Some HP-28S Basics 11

"How Do I Use It?"

Once you've loaded your program,to use it, all you need to do is call it

by name: (F]R]EJD)[ENTER}

If the stack was empty before you started, you'll get an error (TOO

Few Argument s) because this particular program needs input.

The moral here is that you must alwaysknowthe requirements ofyour

program before you runit.

In this case, the program needs two real numbers on the stack and

another real number named 'F'.

So start again: (0)("JF)ET0)(1)(ENTER)2)ENTER) (FIRED) ENTER).

The answer is 2.

You should also notice that the name appears on a menu key

when you press (USER). All things that you, the user, create are stored

in user memory and showed to you by the USER menu.

Then, when you select from that USER menu,this is the same

as using any other command from any other menu: in immediate-

execution mode (i.e. when you see either the [] cursor or no cursor at

all), the name, FRED, is evaluated immediately; in alpha mode (the li

cursor and a annunciator), the name is loaded into the command line

—just as ifyou had typed it there. All this is exactly the way that built-

in system commands work; a named program is quite literally an

extension of your built-in catalog of commands!

12 Chapter 0: Introduction To This Book

"Where Else Can I Put It?"

For convenience, and organization, you can divide your USER menu

(user memory) into directories — named areas partitioned offfrom the

rest of user memory. The main directory is HOME, but you can create

other sub-directories. A typical diagram of directories might be:

HOME

| T~
"EE TEMP UTILS

/ /
"CIRC °UWERK OTHER STRNG

The directory you areinis the current directory. The directory contain-

ing your current directory is its parent. All directories sharing the

same parent are called sisters; all the subdirectories ofa directory are

its daughters. If you were in directory UTILS above, the parent

directory would be HOME ; the sister directories, "EE and TEMP; the

daughter directories, STRNG and OTHER. So, in this hypothetical

set-up, you could put FRED into UT ILS byfirst movingtoUT ILS (by

pressing (H[OJM)(E)ENTER)UJT)JLS)[ENTER)and then STOring FRED.

Here's why this matters: Typing the name of an object will evaluate

that object only if it can be found either in the current directory or its

parent (or grandparent or great-grandparent, etc.). If your current

directory is STRMNG in the above diagram, you could successfully evalu-

ate (run) your program, FRED, only if it were stored in STRNG,

UTILS or HOME. If it were anywhere else, you wouldn't be able to

"find" it. Thus, since HOME is every directory's ultimate parent, an

object "living atHOME" can be found and evaluated from any directory.

Reminders: Some HP-28S Basics 13

Notes On Using This Book

Before you key in anything, read these important preliminaries:

First, there are many ways to key things in on the HP-28S, and

it's just impossible to show every method. This book simply cannot

"read your mind" to know which menu or directory you're currently

using when you want to call one ofthese tools — so it can't give you the

most convenient set of keystrokes for your particular case.

In all programs and examples, therefore, rather than specifically tell-

ing you to press a key (e.g. or (DROP)) or select a menu item (e.g.

EESEEN), you'll see all commands in generic form (spelled out as

if you had typed them in): PURGE DROP R=2*C P3R, etc.

But keep in mind that, depending upon what you're doing, it might

sometimes be more convenient to use special keys or menu items than

to "type in" the commands character by character. That's up to you.

Secondly, a sample program description is shown on page 15.

This is the general format for the description of each utility.

To make things easier to find, the routines are presented alphabeti-

cally (byMAME) within their respective sections, and there's also a com-

plete index in the back, if you prefer.

14 Chapter 0: Introduction To This Book

Title:

A phrase that briefly tells you what the routine does.

Name Checksum)
The name identifying the routine, followed by an integer

to help you "proofread" the program after

you have keyed it in and named it.

« OBJECT =»

The program "code" itself, as it appears

if you RCL it in STD display mode.

Summary: A brief description of the routine's purpose and logic.

Example: One or more simple examples to give you the general

idea.

Inputs: A list of acceptable types and locations ofinput objects.

Outputs: A list of types and locations of output objects.

Errors: A list of things that could go wrong due to machine

conditions, bad input, etc.

Notes: Other things you ought to know: Does this routine use

(and therefore require) others from this book? How and

when might you want to use it? Etc.

Notes On Using This Book 15

To help you checkyour accuracywhen enteringthese program

tools, each routine is listed with its checksum, a test value generated

with the help of the CKSM routine (listed opposite, here).

Do This:

Question:

Answer:

Key in CKSM now (use the code listed on the opposite

page).... ThenSTOreit: 'CKSM' STO.

Remember that the directory in whichyou store it (where

you're “located” when you STO) will limit the memory

locations from which you can “call” it — limited only to

those locations “at” or "below" it on a directory tree.

How do youknow ifa utility routine is keyed in properly?

You key in the routine's name (using ' marks), then use

CKSM to test it. For example,to test whether or not you

keyed in and modified FRED properly back on pages 8-

11, you do this:

'"FRED' CKSM Correct Result: 292488

Ifyou get anincorrect result, you know there's a mistake

in the routine. Ifso, then edit it (' FRED ' (vis), find

and fix your typo(s), re-store the corrected version (EM-

TER), and repeat the test.

Important Conclusion: CKSM can and should be used after keying

in and storing any program in this book. It's your best protection

against typos!

16 Chapter 0: Introduction To This Book

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

Proofread A Named Object:

CKSM (1848278)

€ 2 32 ~~ RCLF + NF
S « N RCL STD HEX 64
STWS 43 SF 48 CF
+STR N »STR + 8 1 3

PICK SIZE FOR I OVER
I DUP SUB HUM I * +

DUP F MOD SWAP F ~

IP + NEXT SWAP DROP
S STOF » =»

CKSM (checksum) checks for "typos" by computing a

unique integer for a named object.

Problem: Test whetheryou can correctlykeyinCKSHM:

Solution: Key in and name the CKSM routine...then

use it "on itself" 'CKSM' CKSM
Result: (if all is well) 1848278

Level 1 — a name — the name of an object.

Level 1 — an integer — the checksum.

Bad Argument Type will occur ifthe inputis not

a name (or Undef ined Mame if it's undefined).

Other errors can occur ifa typo in the CKSM program

causes it to actually crash before returning a checksum.

CKSM is most generally useful in the HOME directory.

Notes On Using This Book 17

A few more details to bear in mind:

18

Whenever you see the object types required for inputs and outputs,

remember that symbolic expressions may also be allowable (to be

sure, check the documentation for each routine).

For example, a "real number" can mean either literally a real

number value or any object (such as an algebraic expression, for

example) that can be reduced to a real number with the *MUM or

EYAL commands. A similar argument applies for complex num-

bers, etc.

Remember that the states of flag 35 (constants mode) and flag 36

(results mode) will directly affect whether an object will be reduced

to an actual value! See pages 206-207 of your Owner's Manual if

you need to refresh your memory of these modes.

You can store any or all of these utility tools in HOME or any other

directory (and occasionally, as withCKSM, you'll read a recommen-

dation as to where it might be most useful).

Just bear in mind that when you invoke them, they must be in the

current directory or in a directory that is a "direct ancestor”(i.e. a

parent, grandparent, great-grandparent, etc.) of the current direc-

tory — anywhere in the direct pathway back to HOME, which is a

direct ancestor of all directories. You won't be able to find these if

they're stored in sister or daughter (or "aunt," "

directories.

niece" or "cousin”)

Chapter 0: Introduction To This Book

* These utility programs are collected in chapters according to sub-

ject. For the most part, each routine is either independent or uses

others from that same chapter. However, a few routines require the

use of others from different chapters. Admittedly, this isn't neces-

sarily the most convenient when you're keying in and testing

specific routines, but it will lead to their better efficiency of execu-

tion and memory usage once they're properly stored. To make this

easier, moreover, the ordering ofthe chapters has been arranged so

that ifyou proceed through the book, keyingin all the utilities in the

order presented, no routine will require any other from any other

chapter that you have not already keyed in.

Furthermore, the ordering of the chapters makes some attempt to

proceed logically — along the lines ofincreasing object complexity —

beginning with mechanical stack manipulations, then to real num-

bers, then to complex numbers, etc. Hopefully, then, even the pres-

entation of this book (as well as its contents, of course!) will help to

reinforce and remind you once again of the idea ofthe HP-28S as a

toolbox full oftools — to help you build even bigger and better tools!

Notes On Using This Book 19

Chapter 1

Stack Utilities

These routines provide quick and reliable ways to do certain manipu-

lations, operations and tests on the HP-28S stack.

Asshowninthe following list, the 19 programs are organized into three

logical groups, presented alphabetically. Within each group, the pro-

grams are also usually presented alphabetically (by MAME), although

in some cases, certain sets ofprograms maybe complementary or oth-

erwise so similar that they are presented together.

For a more in-depth discussion of the uses of these utilities, see page

40, immediately following these program listings.

20 Chapter 1: Stack Utilities

Name

EXCH
QSRT
REV3

REVN
ROLDN
ROLLM

MERGE
STARDD
STDIV

STMUL
STSUB
ST.OP

STOST

STET?
STHE?
STGE?
STGT?
STLE?

STLT?

Contents

Function

Manipulations

Exchange Levels M And N

Perform A QuickSort Of Levels M — N

Reverse The Order Of Levels 1-3

Reverse The Order Of Levels 1 —N

Roll Levels 1 — N Down A Given Distance

Roll Levels 1 — N Up A Given Distance

Operations

22

24

26

27

28

28

Combine Levels 1 — N With A Binary Operation 30

Add An Object To Level N

Divide Level N By An Object

Multiply Level N By An Object

Subtract An Object From Level N

Perform An Operation On Level N

Store An Object In Level N

Tests

Is Level N Equal To An Object?

Is Level N Not Equal To An Object?

32

32

32

32

34

34

36

36

Is Level N Greater Than Or Equal To An Object?36

Is Level N Greater Than An Object?

Is Level N Less Than Or Equal To An Object?

Is Level N Less Than An Object?

37

37

37

21

Summary:

Examples:

Inputs:

22

Exchange Levels MAnd N

EXCH (233939)

« NUM SWAP NUM IF
DUP2 > THEN SWAP END
+ AB «A ROLL B
ROLL SWAP B ROLLD RA
ROLLD =» =»

EXCH exchanges the contents of any two given stack

Levels. The Level indices works like Level arguments

for functions such as ROLL, indicating the stack Levels

ofobjects before the arguments were placed on the stack,

and the resulting modified stack assumes those Levels

once again after the manipulation is complete. The Lev-

el indices may be given in either order. Any fractional

portions ofthe indices are rounded before use. An index

less than 1 causes no action to be taken.

STD 1 2 3 4 1 3 EXCH Result:1 4 3 2

Level (n+2) — any object — an object to be exchanged.

Level (m+2) — any object — an object to be exchanged.

Level 2 — any object that evaluates to a real number, m

— one of the Levels to be exchanged.

Level 1 — any object that evaluates to a real number, n —

the other Level to be exchanged.

Chapter 1: Stack Utilities

Outputs:

Errors:

Notes:

Manipulations

Levels 1 to n — the modified stack contents.

Too Few Argument s will occur if the stack con-
tains fewerthan 2 objects or ifthe specified object Levels

don't exist.

Bad Argument Type will occur ifthe Level-1 ob-
ject does not evaluate to a real number.

None.

23

PerformA QuickSort Of Levels M - N

Summary:

Examples:

24

RSRT @482233)

« »RL«LR

IP PICK L R =»

« DO WHILE I P

{ REPEAT I 1 -

STO EMD WHILE J PICK

®X > REPERT J 1 + "J!

STO END IF I J >

THEN J ROLL I ROLL

SWAP I ROLLD J ROLLD

END IF I J > THEN I

1 -'I'" STO J 1 +

'J' STO END UNTIL I

J < END IF L J >

THEN J L QSRT END IF

I R> THEN R I QSRT
END 2 » »

+ 2 7

x IJ
ICK X
I

RSRT sorts the specified stack levels. The objectsin the

stack must be orderable (i.e., they must be either real

numbers, binary integers or strings). The resulting

stack Levels are arranged in descendingorder (proceed-

ing from lowest Level to highest Level).

STD6 47338117 QSRT
Result: 1 34 36 7 8

Chapter 1: Stack Utilities

Inputs:

Outputs:

Errors:

Notes:

Manipulations

STD 5432115 QSRT

Result: 1 2 3 4 3

STD 34 32124 QSRT

Result: 3 2 3 4 1

Levels 3 to (n+2) — the objects to be sorted.

Level 2 —a real number, m — the lowest stack Level to be

sorted.

Level 1 -areal number, n—the highest stack Level to be

sorted.

Levels 1to (n-m+1)—the original stack with the specified

levels sorted.

Too Few Arguments will occurif the stack con-

tains fewer than 3 objects or fewer objects than specified

by input Levels 1 or 2, or ifthe Level-2 object is greater

than the Level-1 object.

Bad Argument Type willoccurifeitherthe Level-
1 or Level-2 object fails to reduce to a real number,or if

any ofthe specified stack levels contain objects that are

unorderable.

RSRT is useful for creating lists and arrays whose ele-

ments are arranged in ascending order.

25

Reverse The Order Of Levels 1 -3

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

26

REV3 (11332)

« SWAP ROT =»

REY32 reverses the order of the bottom three stack

Levels (1, 2, and 3).

STD 1 2 3 REV3

Result: 2 2 1

Levels 1, 2 and 3 — any objects — the objects whose order

is to be reversed.

Level 3 — the previous Level-1 object.

Level 2 — the previous Level-2 object.

Level 1 — the previous Level-3 object.

Too Few Argument s will occur if the stack con-

tains fewer than 3 objects.

REV3 is generally useful for many stack manipulation

needs in programming and in constructing larger data

objects.

Chapter 1: Stack Utilities

Reverse The Order Of Levels 1 -N

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Manipulations

REVN 219414)

« NUM + L « IF L 1

> THEN 1 L FOR I I
ROLL MEXT END *» *

REYN reverses the order of the specified stack levels.

The Level indicator number works like the level argu-

ment for functions such as ROLL: it indicates the stack

Levels ofobjects before REYN's argument was placed on

the stack, and the resulting modified stack assumes

those Levels once again after the manipulation. Any

fractional portion of the Level index is rounded before

use. Arounded Level index less than 2 causes no action.

STD 1 2344 REVN Result: 4 3 2 1

Levels 2 to (n+1) — any objects.

Level 1-anyobject that evaluates to a real number—the

Level index.

Levels 1 to n — the previous objects in reversed order.

Too Few Arguments will occur if the stack is
empty or has fewer arguments than specified in Level 1.

Bad Argument Type willoccurifthe Level 1 object

does not evaluate to a real number.

None.

27

Roll Stack Levels 1 -N DownA Given Distance

ROLDN 336864)

« NUM SWAP +NUM + N
L«IFN1>L1>
AND THEM 1 N START L
ROLLD NEXT END » »

Roll Stack Levels 1 -N UpA Given Distance

Summary:

Examples:

28

ROLLHN (398463)

« NUM SWAP +NUM + N

L«IFN12>L1?>
AND THEW 1 MN START L
ROLL NEXT END * *

ROLDN performsROLLD the specified numberoftimes.

ROLLN performs ROLL the specified number oftimes.

STD 1 234535367890 10 4
ROLDN Result: 7 8 98 1 2 3456

ST 1 224367898 104
ROLLM Result: 3 67 8981234

Chapter 1: Stack Utilities

Inputs:

Outputs:

Errors:

Notes:

Manipulations

Levels 3 to (n+2) — any objects — the objects to be rolled

down or up.

Level 2—anyobject that evaluates to a real number—the

number of Levels, n, to be rolled.

Level 1-any object that evaluates to areal number—the

number of times to roll.

Levels 1 to n — the rolled stack.

Too Few Arguments will occur if the stack con-

tains fewer than 3 objects or fewer objects than specified

by the Level-2 input object.

Bad Argument Type willoccurifthe Level-1and

Level-2 objects do not reduce to real numbers.

You can use ROLDN and ROLLH in many useful ways.

Forexample,DEPTH DUP 2 ~» ROLDN,orDEPTH

DUP 2 # ROLLM swaps the upper and lower halves

of the stack.

Ageneral program for this might be SWAPN 61426):

« + HN « N »NUM DUP 2
ROLDN » »

or

« + N « N >NUM DUP 2
ROLLN » =»

SWAPH takes the argument at Level 1 to be the total

number of Levels to be manipulated, then divides and

swaps that much of the stack.

29

Combine Levels 1 - N WithA Binary Operation

Summary:

Example:

Inputs:

Outputs:

Errors:

30

MERGE (118938)

« NUM 1 - + F NHN «1

M START F EVAL NEXT
» ®

MERGE takes a binary operation and repeatedly ap-

plies it to stack Levels 1 and 2. The effect is to combine

all ofthe specified stack Levels usingthe given function.

STD 1 2 245 « ¥ » 5 MERGE

Result: 126

Levels 3 to (n+2) — any objects.

Level 2 — a program or user-defined function — the pro-

cedure to be used to merge all the specified stack Levels.

Level 1 —- any object that evaluates to a real number, n—

specifying the top Level to be combined.

Level 1 -an object—the result ofthe repeated operation.

Too Few Arguments will occurif the stack con-
tains fewer than 3 objects or if the Level-1 input object

refers to a non-existent stack Level.

Bad Argument Type willoccurifthe Level-1input

object does not evaluate to a real number, or ifthe Level-

2 program is incompatible with the specified argument.

Chapter 1: Stack Utilities

Notes: MERGE is designed to use a binary operation — a pro-

gram that takes two objects from the stack and returns

only one. Other types ofprograms can be used, but the

results are unpredictable.

Operations 31

AddAn Object To Level N

STADD (FB822)

<< + NL HNS+UW®®»L

ST.OP » »

Divide Level N ByAn Object

STDIV (72117)

€« + NL&K«HN~»»L

ST.OP » =»

Multiply Level N ByAn Object

STMUL (72499)

« + ML «<«N==»L

ST.OP » =»

Subtract An Object From Level N

STSUB (72382)

« > NL€«<N-=3=2>1L

ST.OP » »

32 Chapter 1: Stack Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

STADD adds the given object to the specified Level.

STDIY divides the specified Level by the given object.

STMUL multiplies the specified Level by the given ob-

ject. STSUB subtracts the given object from the speci-

fied Level. The Level index assumes the Levels of ob-

jects before the arguments were placed on the stack, and

those Levels are restored again afterwards. Ifthe Level

index has a fractional portion,it is rounded before use.

A Level index less than 1 causes no action.

STD 1 2 3 6 3 STADD Result: 7 2 3

STD 3 6 7 3 2 STDIV Result: 2 2 7
STD 34 5 8 2 STMUL Result: 3 8 3

STD 7 8 9 4 3 STSUB Result: 3 8 9

Level (n+2) — any object for which the operation is

defined — the first operand.

Level 2 — any object for which the operation is defined —

the second operand.

Level 1 — a real number, n — the Level of the operation.

Level n — an object — the result of the operation

Too Few Argument s will occur if the stack con-

tains fewer than 3 objects or the indexed Level is empty.

Bad Argument Type will occur ifthe Level-1 ob-

ject does not reduce to a real number,or ifthe objects at

Levels 2 and (n+2) are incompatible for the operation.

Notes: STADD,STDIY,STMUL andSTSUB useST. OP.

Operations 33

PerformAn Operation On Level N

Summary:

34

ST.0P 233483)

« MUM + f.. l.. «

IF 1.. 8 > THEN 1..
PICK f.. EVAL 1l..
STOST END » >»

Store An Object In Level N

STOST @93832)

« 3NUM + NL « IF L

8 > THEM IF DEPTH L
1 - ==THEN N L
ROLLD ELSE L ROLL

DROP N L ROLLD EMD
END » »

ST. OP performs the specified operation only on the

given stack Level. STOST copies the contents ofLevel

2 to the given stack Level, overwriting the previous

contents. The Level index works like the level argument

forfunctions such as ROLL: it indicates the stack Levels

of objects before the argument was placed on the stack.

Any fractional portion of the Level index is rounded

before use. A Level index less than 1 causes no action.

STOST will not store into a non-existent stack Level

except the first empty Level.

Chapter 1: Stack Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

Operations

STD 1 23 «1 +» 3 ST.OP

Result: 2 2 3

STD 'R' 'B' 'C' 1 3 STOST
Result: 1 'B! IC!

Level (n+2)— any object — the object to be operated upon

or overwritten.

Level2—aprogram oruser-defined function (forST . OP)

— the operation to be used, or (for STOST) any object —

the object to be stored.

Level 1 — any object that evaluates to a real number, n —

the Level index.

Level n — the newly-modified or newly-stored object.

Too Few Araument s will occur if the stack con-

tains fewer than 2 objects or ifthe specified object Level

doesn't exist, or (for STOST) if it is not the lowest-

numbered empty Level.

Bad Argument Type will occur ifthe Level-1 ob-
ject does not evaluate to a real number.

The operation used in ST . OP must take only one argu-

ment and return only one result, or else the stack may

be hopelessly disordered. The local names, f « «» and

1. ., were chosen for ST. OP to reduce the chances of

conflicts when operations such as€ STR+ * are ap-

plied to strings. Therefore, avoid usingf . « and 1. .

as global names in your own programming. ST. OP

uses STOST.

35

Is Level N Equal To An Object?

STET? @1319%)

€ NUM + NL « IF L
8 > THEN L PICK
+NUM ELSE @ EMD » »

Is Level N Not Equal To An Object?

STNE? 2133386)

« NUM + NL « IF L
8 > THEM L PICK N #
+NUM ELSE @ EMD » »

Is Level N Greater Than Or Equal To

An Object?

STGE? E12726)

€ NUM + N L « IF L
8 > THEN L PICK N 2
+NMUM ELSE 8 END » *

36 Chapter 1: Stack Utilities

Is Level N Greater ThanAn Object?

STGT? 218262)

« NUM + NL « I F L

8 > THEN L PICK N >
+NUM ELSE @ END » »

Is Level N Less Than Or Equal To An Object?

STLE? (213892)

« 3NUM » MN L « IF L
£@ > THEN L PICK HN

+NUM ELSE 8 END » »

Is Level N Less ThanAn Object?

STLT? 218379)

« 3NUM + ML « IF L
8 > THEN L PICK MN <
+NMUM ELSE 6 END » =»

Tests 37

Summary:

Examples:

38

STET?, STNE?, STGE?, STGT?, STLE?, and

STLT? all compare the contents of Level N with the

given object. In each of these tests, ifthe answer to the

question posed is "yes," a 1 (true) is returned. Other-

wise, a 0 (false) is returned.

The Level index for each of these tests works like the

level argument for functions such as ROLL: it indicates

the stack Levels of objects before the test's argument

was placed on the stack, and the resulting modified

stack assumes those Levels once again before returning

the result ofthe test. If the Level index has a fractional

portion, it is rounded before use. Level numbers less

than 1 will cause the test to return 0.

STD 1 2 2 2 3 STET? Result: 1 2 3 8

STD 1 2 3 1 3 STET? Result: 1 2 3 1

STD 1 2 3 2 3 STNE? Result: 1 2 3 1
STD 1 2 3 1 3 STHNE? Result: 1 2 3 8

STD 1 2 3 4 3 STGE? Result: 1 2 3 8
STD 2 3 2 2 STGE? Result: 2 3 1

STD 1 2 3 8 3 STGT? Result: 1 2 3 1
STD 2 2 2 2 STGT? Result: 2 3 ©

STD 1 2 3 8 3 STLE? Result:
STD 2 3 2 2 STLE? Result: 2 3 1

— r
n

w =

Chapter 1: Stack Utilities

Inputs:

Outputs:

Errors:

Notes:

Tests

STD 1 STLT? Result: 1

STD 2

2343 2 31
3 2 2 STLT? Result: 2 3 @

Level (n+2) — any object for whose type the specified test

is defined — one of the objects to be compared.

Level 2 — any object for whose type the specified test is

defined — the other object to be compared.

Level 1 — a real number, n, the stack Level to be tested

against the given object.

Level 1 — areal number (either 1 or 0) — the result ofthe

test.

Too Few Arguments will occur if the stack con-
tains fewer than 3 objects or ifthe specified stack Level

does not exist.

Bad Argument Type will occur ifthe Level-1 ob-
ject does not reduce to a real number, or ifthe objects at

Levels 2 and (n+2) are incompatible arguments for the

specific test being made.

Undef ined Mame willoccurifeitherLevel contains
an undefined name.

None.

39

Stack Utilities: A Discussion

The Main Idea

The stack deserves its own set oftools for several reasons: First of all,

these utilities are tools to help manipulate HP-28S data objects — and

the stack is a data object.

Secondly, the stack is the intermediate for almost everything; it is the

work area of the HP-28S. All manual calculations and most other

operations affect or occur on the stack, and decomposed objects place

their contents onto the stack for further manipulations with stack-

related commands. Therefore, new stack commands also extend your

ability to manipulate other objects.

Finally, because it's such a workhorse, the stack has been designed for

high efficiency — it's fast. Thus, programs like @SRT use it — instead

of directly accessing an array or list — to gain speed.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that

is listed in your current PATH. The easiest way to ensure that this is

the case is to place each of the programs in the HOME directory — the

ultimate parent of all other directories.

40 Chapter 1: Stack Utilities

Some Observations

Tracking stack objects through long and/or complex operations can be

areal chore. Sometimes the best strategy is to take an object from the

stack, do an operation on the stack, then return the object afterward.

In these cases, local variables are better solutions for managing and

keeping track ofobjects, and so all ofthese stack utilities exceptREY3

use local variables to store their arguments so that they're out of the

way when they're not needed but easily recallable when they are.

These routines are all quite straightforward — except forSRT, which

is rather large and logically complex. It is a classic implementation of

a recursive Quicksort: the program sorts to a point, then checksifthe

complete data set has been sorted. Ifnot, it simply adjusts the indices

and then "calls itself” to sort some more. Use ofrecursion rather than

iteration helped to keep the routine as small as it is, though an

iterative implementation may further enhance its speed.

Errors And Error Recovery

Each ofthese tools is designed to generate an error when invalid input

isentered—ratherthan continue and generate garbage outputs. When

inputs are questionable (e.g., negative numbers for stack Levels),

these utilities act similarly to the built-in stack commands (arguments

are ignored or treated as 1, whichever makes more sense). When

errors do occur, the stack is usually disrupted, and since the only way

to restore it then is with theUMD0 command,it's wisest to keep UNDO

mode (in the MODES) menu) active whenever you these utilities.

Discussion 41

How You Might Use These Utilities

These tools are extremely generic. That is, they are so basic as to be

useful in many different situations.

RSRT, being relatively large and very generally useful,is called by

several other programs in this book. Most of the rest of the routines

are small enough that, rather than have many other programs call

them, the actual program steps have been incorporated in the other

programs.

The Manipulations routines are intended to extend the built-in stack

manipulation commands ofthe HP-28S. EXCH is a generalization of

SWAP, allowing you to swap any two stack levels. ROLDM and

ROLLMN extend ROLLD and ROLL, respectively, providing a method

torepeatthe action, thereby "scrolling" the stack in the specified direc-

tion.

Reversingstack elements can also be considered an extensionofSWAP

(which reverses the order ofstack Levels 1 and 2). REY3 extends this

idea to the bottom three stack Levels, and REVN reverses the bottom

n Levels.

Finally, since you can considerall stack manipulations to be ordering

the stack in some fashion,SRT provides a method ofsortingaportion

ofthe stack into descending order. Note that @SRT is the only one of

these manipulation routines that cares whatthe actual contents ofthe

stack is; all the others simply move objects, but @SRT requires that

the objects be orderable.

42 Chapter 1: Stack Utilities

The Operations routines, with the exception ofMERGE, consider the

stack to be a collection of storage locations for which they provide

storage and storage arithmetic operations. The basic four operations

from the STORE menu (STO+,STO-,STO%* and STO) are repro-

duced for any arbitrary Level ofthe stack. Simple storage to any Level

isprovidedbySTOST (and note thatyou alreadyhave the generalized

analog to RCL in the built-in PI CK operation).

The Tests routines are the most straightforward: They simply extend

the idea of the tests ==,#,2, >, £and { to other Levels of the stack

besides Levels 1 and 2.

Discussion 43

Chapter 2

Real Number Utilities

These routines provide quick and reliable ways to do certain manipu-

lations with real numbers.

As shown in the following list, the 9 programs are organized into four

logical groups, presented alphabetically. Within each group, the pro-

grams are also usually presented alphabetically (by MAME), although

in some cases, certain sets ofprograms may be complementary or oth-

erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page

60, immediately following these program listings.

44 Chapter 2: Real Number Utilities

Name

GCD

LCM

RMD

FCTR
PRMS

IRAND
RRAND

IRMD
RRND

Contents

Function

Integer Arithmetic Functions

Find The Greatest Common Divisor

Of Two Positive Integers

Find The Least Common Multiple

OfTwo Positive Integers

Find The Remainder OfAn Integer Division

Prime Number Generators

Find The Prime Factors OfAn Integer

Generate A List Of The Prime Numbers

Between The Specified Limits

Random Number Generators

Generate A Random Integer Within Given Limits

Generate A Random Real Number

Within Given Limits

Rounding Routines

Round A Real Number To The Nearest Integer

Round A Real Number

To The Specified Decimal Place

46

46

48

50

52

54

54

58

Find The Greatest Common Divisor

Of Two Positive Integers:

GCD 314696)

« + AB «A IP ABS
+NUM B IP ABS NUM

WHILE OVER MOD SWAP
DUP REPEAT END DROP
» ®

Find The Least Common Multiple

Of Two Positive Integers:

LCM (123623)

« + AB «A IP ABS

+NUM B IP ABS NUM
DUP2 GCD ~ * » »

Summary: GCD finds the Greatest Common Divisor oftwo positive

46

integers. LCM returns the Least Common Multiple of

two positive integers. The Greatest Common Divisor of

two integers is the largest integer by which both num-

bers can be divided evenly. The Least Common Multiple

of two integers is the smallest integer which is a mul-

Chapter 2: Real Number Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

tiple of both numbers. Negative arguments are con-

verted to positive and fractional portions are truncated.

9 & GCD Result: 3

946 1462 GCD Result: 86
1492 1776 GCD Result: 4
8.2 -2 GCD Result: 2

4 8 LCM Result: 8
23 15 LCM Result: 343
48 13 LCM Result: 128
8.9 -2 LCH Result: 8

Level 2 — a real number.

Level 1 — a real number.

Level 1 — an integer — the GCD or LCM of the inputs.

Too Few Argument s will occur ifthere are fewer

than 2 arguments on the stack.

Bad Argument Type will occur for inputs other

than real numbers.

Undef ined Mame will occur if either of the argu-
ments contains an undefined name.

BothGCD andLCM use local variables to allow theiruse

within algebraic objects. LCM uses GCD.

Integer Arithmetic Functions 47

Find The Remainder OfAn Integer Division:

Summary:

Examples:

Inputs:

Outputs:

Errors:

48

RMD ©2782)

€« + XY «x IPY IP
pupz ~ IF * - » »

RMD finds the remainder of an integer division.

Real numbers are allowed as inputs, but any fractional

portions of those inputs are truncated.

19 2 RMD Result: 1

45 16 RMD Result: 13

8.3 4.5 RMD Result: ©

-6 4 RMD Result: -2

Level 2 — a real number — the dividend.

Level 1 — a real number - the divisor.

Level 1 —a real number — the remainder ofthe division.

Too Few Argument s will occur ifthere are fewer

than 2 arguments on the stack.

Bad Argument Type will occur for inputs other

than real numbers, names and algebraic objects.

Undef ined Mame will occur ifan undefined name

is input and symbolic results (flag 36) mode is not set.

Chapter 2: Real Number Utilities

Notes: While not strictly necessary, RMD uses local variables so

that it can be used within algebraic objects.

RMD will return an algebraic expression if either of its

inputs are symbolic and symbolic results mode is set.

For example:

'A' 'B' EMD Result:

"IP(RY-IP(BX*IPCIP(AY~IPC(B)>"

Integer Arithmetic Functions 49

Find The Prime Factors OfAn Integer:

Summary:

Examples:

50

FCTR 3387923)

« ABS IP DEPTH «

WHILE DUP 3 PICK ~

DUP FP NOT REPERT
SWAP DROP OVER ROT

ROT END DROP » + L D
« IF DUP 3 > THEN 2

SWAP D EVAL 3 ROT
DROP SWAP WHILE DUP
1 = OVER J IP 4 PICK

= AND REPEAT D EVAL
2 ROT + SWAP END
SWAP DROP IF DUP 1

== THEN DROP END END
DEPTH L - 1 + LIST
* »

FCTR finds the prime factors ofa given positive integer.

Negative arguments are converted to positive, and any

fractional portions are truncated.

8 FCTR Result: { 2 2 2 2

144 FCTR Result: { 2 22 2 3 3 2
83 FCTR Result: { 83 2
18642 FCTR Result: € 2 321 >

Chapter 2: Real Number Utilities

18.5 FCTR Result: € 2 3 3 2
-188 FCTR Result: { 2 2 3 3 2

Inputs: Level 1 — an integer or real number — the number to be

factored.

Outputs: Level 1 -a list ofone or more integers — the factors ofthe

original number.

Errors: Too Few Arguments will occur if there are no

arguments on the stack.

Bad Argument Type will occur for inputs other

than real numbers.

Undef ined Name will occur ifan undefined name

object is used in the input.

Notes: To regenerate the factored number (i.e. perform the

inverse operation), a routine like this might be useful:

« LIST+ 2 SWAP START

¥ NEXT »

Prime Number Generators 51

GenerateA List Of Prime Numbers:

Summary:

Examples:

Inputs:

52

PRMS (1443948)

« ABS IP SWAP ABS IP

IF DUP2 < THEN SWAP
END DUP 2 MOD NOT +

SWAP DEPTH + D « FOR
I 31 J WHILE DUP2 <

I 4 PICK » FP AND
REPEAT 2 ROT + SWAP

END > 'I' IFT 2 STEP
DEPTH D - 2 + LIST
» ®

PRMS generates a list of all prime numbers within the

two given limits. Negative limits are converted to posi-

tive and fractional portions are truncated. The limits

are included in the range and may be supplied in either

order.

1 3 PRMS Result: { 1 3 3 2
28 18 PRMS Result: ¢ 11 13 17 19 2
-23 38.1 PRMS
Result: € 23 29 31 37 41 43 47 >

Level 2 — a real number.

Level 1 — a real number.

Chapter 2: Real Number Utilities

Outputs: Level 1 — list of 0 or more prime numbers.

Errors: Too Few Argument s will occur ifthere are fewer

than 2 arguments on the stack.

Bad Argument Type will occur for arguments
other than real numbers.

Notes: None.

Prime Number Generators 53

GenerateA Random Integer

Within Given Limits:

IRAND 244362)

« *» HL «L IP HIP

IF DUPZ2 > THEN SWAP

END 1 + OVER - RAND
#¥ + IP » »

GenerateA Random Real Number

Within Given Limits:

RRAND (182849)

« + HL « L H DUP2
IF > THEN SWAP END
OVER - RAND * + » »

Summary: IRAND randomly generates an integer whose value is

between two given real-valued limits. Only the integer

portions ofthe limits will be used, and these are included

in the range ofpossible results. The limits may be sup-

plied in either order.

RRAND randomly generates a real numberwhose value

54 Chapter 2: Real Number Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

is between two given, real-valued limits, which may be

supplied in either order. The lower limit is included in

the range ofpossible results; the upper limit is excluded.

STD -3 2.3 IRAND

Result: = 1 (or any integer from -5 to 2)

STD 8 -8 IRAND

Result: = 7 (or any integer from -8 to 8)

STD -5 2.3 RRAND
Result: 1.44333879186 (oranyrealnumberfrom

-5 t0 2.29999999999)

STD .25 18 RRAND

Result: 1.62765141542 (oranyrealnumberfrom

.25 t0 9.99999999999)

Level 2 — a real number.

Level 1- a real number.

Level 1 — a real number — the random integer or real.

Too Few Argument s will occurifthere are fewer

than 2 arguments on the stack.

Bad Argument Type will occur for arguments

other than real numbers.

Both IRAND and RRAND use local variables so that

they can be used within algebraic objects.

Random Number Generators 55

RoundA Real Number To The Nearest Integer:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

56

IRND 28939)

« + N«HN.3 + FLOOR
NUM * »

IRND returns the integer value nearest the input

value. Fractional portions ofexactly 0.5 are rounded up.

1.5 IRND Result: 2

122.38 IRND Result: 122

-3.9 IRND Result: =3

Level 1 — a real number — the number to be rounded.

Level 1 — a real number — the integer nearest the input

value.

Too Few Arguments will occur if there is no ar-
gument on the stack.

Bad Argument Type will occurifthe argumentis

other than a real number.

Undef ined Name will occur if the argument con-

tains an undefined name object.

I RMD uses local variables so that it can be used within

algebraic objects.

Chapter 2: Real Number Utilities

Bearinmind that numberswith absolute values greater

than 10" don't have fractional portions on the HP-28S,

because all twelve of the machine's available digits are

required for the integer portions of such numbers.

Rounding Routines 57

RoundA Real Number

To The Specified Decimal Place:

Summary:

Examples:

Inputs:

Outputs:

58

RRND (188147)

« 2 XN « N IP ALOG
DUP X *¥ .3 + FLOOR
SWAP ~ » »

RRND returns a real number rounded to the specified

decimal place. Decimal places to the right ofthe decimal

point are specified with a positive integer; those to the

left of the decimal point are specified with a negative

integer.

STD mw *NUM & RRND Result: 3.141393
STD -.892664 2 RRND Result: -.89
STD 122.38 1 RRND Result: 122.4
STD 1492 -2 RRND Result: 13686

Level 2 — a real number, name or algebraic object — the

number to be rounded.

Level 1 — an integer, name, or algebraic object — the

value specifying the decimal places to be rounded.

Level 1-areal number or algebraic object—the rounded

number.

Chapter 2: Real Number Utilities

Errors: Too Few Argument s will occur ifthere are fewer

than 2 arguments on the stack.

Bad Argument Type will occur for inputs other

than real numbers, names or algebraic objects.

Undef ined Name will occur ifan undefined name

object is used in the input and symbolic results mode

(flag 36)is not set.

Notes: RRND uses local variables so that it can be used within

algebraic objects.

RRND will return an algebraic expression ifeither ofits

inputs are symbolic and symbolic results mode is set.

For example:

'A' 'B' RRND Result:

'FLOORCALOGCIPCBY 2%A
+.3)/ALOGCIPCBY 2!

Rounding Routines 59

Real Number Utilities: A Discussion

The Main Idea

The main intention of these real number utility routines is to extend

the basic real number functions of your HP-28S in clear and useful

ways. You should be able to imagine these programs listed as

commands in the REAL menu — and use them to build other, more

sophisticated programs —just like the HP-28S' built-in real numberop-

erations. Arguments are entered similarly, and results return simi-

larly; there should be no surprises.

Where To Put These Programs

As always, to be usable, these utility programs must be in a directory

that is listed in your current PATH (i.e. in your current directory or one

of its parent directories). Of course, the easiest way to ensure this is

to put the programs in the HOME directory — the ultimate parent ofall

other directories.

60 Chapter 2: Real Number Utilities

Some Observations

The algorithms behind the routines are quite straight-forward (i.e. you

should be able to follow what's going on and how they work) — except

for FCTR and PRMS:

If a numberis divisible by 2 or by any odd integer between 3 and the

square-root ofthe number,it's not prime. Both FCTR and PRMS use

this fact and perform successive divisions ofthe odd integers from the

lower limit to the square-root of the upper limit.

Notice also thatFCTR creates and uses a "local subroutine:" It creates

two local variables, L and D. L is used to store the argument taken

from the stack — the number to factor. I, on the other hand, is used to

store a postfix program that FCTR itself has put on the stack. Later

on in the program,the routine is evaluated © EVAL) at two separate

points. The alternatives would have been either to reproduce the same

program steps twice within the FCTR program, or to create a sepa-

rate, globally-named program and call it by name from within FCTR.

The first option wastes space, the second creates an otherwise useless

named object to clutter up the USER menu.

Another design point to notice is that the routines that take upper and

lower limits will do so in either order, thanks to these program steps:

IF DUP2 > THEM SKAP

END

In other words,if the Level 2 value is greater than the Level 1 value,

swap them (DUP2 is necessary because » consumes its arguments).

Discussion 61

The same thing could also have been accomplished with:

DUP2 > « SWAP » IFT
or

DUP2 MIN ROT ROT MAX

The first routine is basically a rewrite ofthe original routine, usingthe

IFT syntax (choosing IF...THEN vs. IFT is largely a matter ofper-

sonal preference). The second routine abandons conditional state-

ments entirely: performingaMIN and then aMAX on the same argu-

ments effectively puts them in proper order on the stack OUP2 is

necessary to copy the arguments forboththeM IN andMAX functions).

As you can tell, the HP-28S gives you nothing if it doesn't give you

options. IF...THEN..EMD was used in the routines in this chapter

simply because it is the easiest to read and understand —which can be

an important consideration.

Errors And Error Recovery

Consistent with the behavior of the built-in real number commands,

these programs do very little error-checking in input or output. So

when an error condition occurs, the program halts, displaying the

cause ofthe error (and probably a stack full of garbage).

The bestway to deal with this is to be sure that UNDO is enabled before

using the routines (check MODE[NEXT)to see ifUNDO is selected), then

use the UNDO command after the error. You will come to admire the

elegant simplicity — and life-saving ability — of an active UNDO.

62 Chapter 2: Real Number Utilities

HowYou Might Use These Utilities

Fractional Math

The programs FCTR, GCD, LCM, PRMS and RMD are chiefly useful

unto themselves: ifyou need a prime number within a certain range,

use PRMS; the remainder of a division is found with RMD, etc.

However, a routine like GCD can be used to easily construct another,

very useful routine, called RDC (63737) — "ReDuCe":

« DUP2 GCD SWAP OVER

ROT ROT ~ SHARP =»

Taking the real numbers on Levels 1 and 2 of the stack to be the de-

nominatorand numerator ofa fraction, respectively, RDC divides both

numbers by their Greatest Common Denominator (GCD) and thereby

reduces the fraction.

For example:

9 28 RDC Result: 1 4 (5/20 reduces to 1/4)

6 8 RDC Result: 3 4 (6/8 reduces to 3/4)

Discussion 63

This ability to easily reduce a fraction suggests further possibilities,

such as fractional addition. FADD (71482) adds two fractions whose

numerators and denominators are on the stack, then reduces the re-

sulting sum:

« + ABCD«DAR A =*

CB*+BD* RDC » »

Try adding 12and 3/4: 1 2 3 4 FADD Result: 9 4 (ie.5/4)

Add 1/4 to this result: 1 4 FADD Result: 3 2 (i.e.3/2)

Think about how FADD takes four arguments as the numerators and

denominators of two fractions in the following order:

< numerator, >

< denominator, >

< numerator, >

=
M
w
A

< denominator, >

Andthen it returns a single numeratorand denominator. So, howhard

would it be to create a complete set of fractional math routines? For

example:

1214 FSUB Result: 1 4 (112-1/4=1/4)

1 214 FMUL Result: 1 & (12x1/4=1/8)
1214 FDIV Result: 2 1 (12+1/4=2/1)

1 2 FINY Result: 2 1 (this is too easy!)

1 2 8 SCALE Result: 4 8 (1/2 scaled to "eighths”

= 4/8)

64 Chapter 2: Real Number Utilities

Random Numbers

Random number generators are generally useful for allowing a pro-

gram to generate unpredictable results. Suppose, for example, that

youwant to test a program or other tool with an unpredictable, random

set ofcircumstances. Or suppose that you're creating a game program

where you don't want the program to play the same way all the time.

So you want to simulate the occurrence ofunpredictable events, like a

toss of a die or the choice of a card from a deck.

TOSS (12974):

« 1 & IRAND =»

CARD @33793):

« STD 1 13 IRAND
STR nn n {

"HERRTS" "SPADES"

"DIAMOMDS" "CLUBS"
1 4 IRANMD GET + + =»

BothTOSS and CARD use I RAND because there are whole (integer)

numbers ofdie faces, card suits, and cards per suit. But what ifyou're

not so constrained? What ifyou're inventing a game, where you need

to place a player randomly on a 100x100-unit playing field — where

fractional units down to 1/100th are allowed? Try PUTIT (33197):

« @ 188 RRAMD 2 RRND 8
168 RRAND 2 RERAND R3*C =»

Discussion 65

100 is used for the maximum value with the assurance that it will be

included within the range because RRND will round 99.995 and up to
100.

Now consider the following alternative to PUTIT, called PLACE

(691358). Consider why it works:

« @ 18080 IRAND ©
10886 IRAND R»*C 166
a

And you might even test PLACE or PUTIT with the following

program, PTEST (179117):

« CLLCD <B,8> PMIN

(186, 18682 PMAx 1 166

START PLACE PIXEL
NEXT *

66 Chapter 2: Real Number Utilities

Rounding Notes

You might even think that once you've set the correct display format

(say,2 FIX, for dollars and cents), all results are properly rounded

for you. Don’t you believe it! For example, if you pay $1000/year for

three years — in 36 identical monthly payments — how much will you

payin total? Commonsense says, "$3000;" so does the HP-28S display:

2 FIX 1680 12 ~ 36 # Result: 3000.60

But that's not right. In reality, each monthly paymentis rounded tothe

nearest penny: 2 FIX 18688 12 ~ 2 RRMD Result:83.33

Now find the real total payment: 36 ¥ Result: 2999.88

Roundingisindependent ofthe display format! You could round to two

digits and yet have the display show you, say, one digit: 2999.9

Notice also this feature: STD 1492 -2 RRND Result: 1568

Digits to the left of the decimal point are rounded for negative argu-

ments; RRND effectively does 1492 18E-2 ¥ IRND 18E2 =*

One more thing: IRMD is not the same as the IP command. IP

truncates its argument to form an integer, while I RMD rounds it (and

the half-integer always rounds up: = 3.3 rounds up to = 3).

value IP IRND value IP IRND

3.14 3 3 -3.14 -3 -3

3.5 3 4 -3.9 -3 -3

3.79 3 4 -3.79 -3 -4

Discussion 67

Chapter 3

Complex Number Utilities

These routines provide quick and reliable ways to use alternative

formats when working with complex numbers.

As shown in the following list, there are 7 programs, generally pre-

sented alphabetically (by MAME), although in some cases,certain sets

ofprograms may be complementary or otherwise so similar that they

may be presented together.

For a more in-depth discussion of the uses of these utilities, see page

78, immediately following these program listings.

68 Chapter 3: Complex Number Utilities

Name

R»e

R+1i

R="

+a

+1

Contents

Function

Formatting Routines

Convert Two Real Numbers To ' M¥e~(i*ad>'

Convert Two Real Numbers To ' Re+i*¥Im'

Convert Two Real Numbers To ' * (My a>’

Polar Format Function

Convert (Rey Im? To 'M¥e*(i*q>'

Convert (Rey Im? To 'Re+i*Im'

Convert (Rey Im> To ' "CM, a2

69

Convert Two Real Numbers To

'M¥e™Ci®a)':

R+e 266189)

« NUM SWAP +NHUM
SWAP R+C C+R RCLF 36
SF 'i' ROT * 'e'
SWAP ~ ROT SWAP *
SWAP STOF =»

Summary: R+*e converts two real numbers into an expression of

the form 'M¥e™(i%¥a)', where M is the magnitude

and o is the angle of the complex vector.

Example: Problem: Key in the number 5%,

Solution: 2 FIX 5 .93 R=»e

Result: 'S¥e™(i*H,93>'

Inputs: Level 2 — a real number — the magnitude, M.

Level 1 — a real number — the angle, a, in radians.

Outputs: Level 1 — an algebraic object — the complex expression.

Errors: Bad Argument Type will occurfornon-realinput

values.

Notes: The angle (a) is always expressed in radians.

70 Chapter 3: Complex Number Utilities

Convert Two Real Numbers To 'Re+i®Im':

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

R+1 (293698)

« NUM SWAP +NUM
SWAP R+C C+R RCLF 36
SF ROT ROT 'i' OVER
SIGN * SWAP ABS * +

SWAP STOF =»

R+1 converts two real numbers into an expression of

the form 'Re+1i#Im', where Re is the real portion

and Im is the imaginary portion of the complex vector.

Problem: Key in the number 3+i4.

Solution: 2 FIX 3 4 R=>i

Result: '3+i%¥4'

Level 2 — a real number — the real portion, Re.

Level 1 — a real number — the imaginary portion, Im.

Level 1 — an algebraic object — the complex expression.

Bad Argument Type will occur for non-real input

values.

None.

Formatting Routines 71

Convert Two Real Numbers To ' "CM, a2 ':

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

72

R+® (192694)

« NUM SWAP +NUM

SWAP R»C RCLF STD
"ran ROT STR + STR»
SWAP STOF *

R+" converts two real numbers to a complex expression

in the polar form ' ® (My 2? ', where M is the magni-

tude and a is the angle of the complex vector.

Problem: Key in the number 5£53.13°.

Solution: 2 FIX 5 53.13 R»"
Result: '"(5,953.13>'

Level 2 — a real number — the magnitude, M.

Level 1 — a real number — the angle, a, in degrees.

Level 1 — an algebraic object — the complex expression.

Bad Argument Type will occur for non-real input

values.

The angle (a) is always in degrees.

Chapter 3: Complex Number Utilities

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

Polar Format Function:

“OG1127)

A « RCLF DEG M
P

+ M

R+C P+R SWAP STOF
»¥

D
R

?® is anauxiliaryfunction that convertstwo real numbers,

M and o, where M is the magnitude and a is the angle of

a vector (in degrees), into a rectangular complexnumber

ofthe form (Rey Im. This function is used whenever

a complex number that has been formatted in the polar

notation ' ® {My &? ' must be evaluated to an actual

numerical value.

None needed.

Level 2 — a real number — the magnitude, M.

Level 1 — a real number — the angle, a, in degrees.

Level 1 — a complex number — in rectangular format.

Bad Argument Type will occur for non-real input

values.

The angle (a) is always in degrees.

Formatting Routines 73

Convert (Re, Im) To 'M*¥e*~{i*a>':

+a 271112)

« (1,8) ¥ NUM C»R

R+C RCLF 3&6 SF RAD
SWAP R*P C3R 'i'

SWAP * 'e' SWAP ~ *
SWAP STOF =»

Convert (Rey Im) To 'Re+i*¥Im':

+1 (224829)

« (1,8) ® NUM CR
RCLF 36 SF ROT ROT
i' OVER SIGN * SWAP
ABS * + SWAP STOF =»

Convert (Rey Im? To '*(M, a> ':

+7 (244342)

€ (1,8) # NUM CR
R+C RCLF SWAP DEG
STD R+P +STR "'°"
SWAP + STR» SWAP
STOF »

Chapter 3: ComplexNumber Utilities

Summary: *& converts a complex number from any evaluable

formattothisexponential format: ' M¥e™1%a' where

M is the magnitude of the vector in the complex plane

and a is the directional angle, in radians.

+1 converts a complex number from any evaluable

formattoarectangularalgebraic format: ' Re+i*Im',

where Re is the real portion and Im is the imaginary

portion of the complex vector.

+" converts a complex number from any evaluable

format to this polar format: ' ® {My a2 ', where M is

the magnitude of the vector in the complex plane and a

is the directional angle, in degrees.

Examples: Problem: Find 4ei”+ 1.5ei%3%2 —in exponential format.

Solution: 2 FIX mw 4 » i ¥ EXP 4 *¥ RAD

(1.5,.32> P3*R + 2e

Result: 'D.38%¥e™(i*8.66)'

Problem: Find (-1.3+i0.5) + (4.4-i2.3). Again, express

the answer in ' M¥e™1%a' format.

Solution: 2 FIX ¢-1.3,.3) '4.4-i%¥2.3"'
+ =a

Result: '3.38%e”~(i*(-8.353>>'

Problem: Find 4e'™ + 1.5ei%% — in rectangular alge-

braic format.

Solution: 2 FIX mw 4 ~ 1 ¥ EXP 4 * RAD

(1.955.322 P*R + +i

Result: '4.25+1%3.28'

Formatting Routines 75

Inputs:

Outputs:

76

Pr m:

Solution:

Result:

Problem:

Solution:

Result:

Problem:

Solution:

Result:

Find (-1.3+10.5) + (4.4-i2.3). Again, express

the answer in ' Re+1#Im' format.

2 FIX ¢-1.3,.92 '4.4-1i%2.3'
+ >i

'3.18-1i%1.808'

Find 4ei+ 1.5€1°% — in degree polar format.

2 FIX md i # EXP 4 ¥ RAD
(1.5,.322 P3*R + 2°
'9(5.38,3r.82>'

Find (-1.3+i0.5) + (4.4-12.3). Again, express

the answer in ' ® (My «> ' format.

2 FIX (-1.3,.9> '4.4-i%2.3'
+ 2°

'9(3.38,-308.14)"'

Level 1 — any object that can be reduced to a real or

complex number by *+MNUM.

Level 1 — an algebraic expression — the formatted como-

plex number expression. #& ,#1,and+ generate al-

gebraic expressions withnounevaluatedvariables(' a"

and '1' are symbolic constants). Thus these expres-

sions behave as a symbolic complex numbers.

Certain conversions involving combinations of*&, *1

and #+" may produce odd results because of rounding

errors.

Chapter 3: Complex Number Utilities

For example, thesequence (By 22 +e +1 willreturn

'8.73323846264E-12+1%2" insteadof ' 1¥2"',

because*e gives ' 2¥e™(i¥]1,357879632679 »',

instead ofthe more accurate ' 2¥e”(1*¥mw-2> '. Note

that you can regard numbers smaller than 10° as 0;

often, in fact, you can use RMD and a proper display

mode @ FIX or4 SCI, etc.) to actually round to 8.

Errors: Bad Argument Type will occur if an input is not

reducible to a real or complex number.

Notes: R+P andP+#R are other conversion commands thatmay

be useful (and more familiar) to you in working with

complex numbers. But be careful! HP-28S system com-

mands (except for P#R) expect complex numbers to be

in — or reduce to — rectangular form only. Ifyou use any

ofthose system commands on complex numbers inpolar

form, you'll get incorrect results!

Formatting Routines 77

Complex Number Utilities: A Discussion

The Main Idea

The main intention ofthese complex number utility routines is to offer

some convenient conversions between commonly used real and com-

plex number formats — formats that were not built into the HP-28S.

You can do any sort of calculation with complex numbers in these

formats that you can do with the built-in complexformat (CReay Im»).

Where To Put These Programs

As always, to be usable, these utility programs must be in a directory

that is listed in your current PATH (i.e. in your current directory or one

of its parent directories). Of course, the easiest way to ensure this is

to put the programs in the HOME directory—the ultimate parent ofall

other directories.

78 Chapter 3: Complex Number Utilities

Some Observations

Symbolic vs. Numeric Calculations

The HP-28S is not just a calculator. It is also a symbolic expression

solver. For this reason, you must also consider not only how toperform

a calculation, but whatform your input is in and what form you want

your output to take.

For example, it's clear what should happen when you do simple

arithmetic (say, add 1 and 2, likeso: 1 2 +). You should get one real-

valued result, 3. But what if you want to add the number 5 to the

number Z, (like so: ZA 3 +)? What kind ofanswer do you want - a

numeric or a symbolic result?

To more fully illustrate these questions, consider some examples:

* You want to build a symbolic expression ' A¥B~(A+B '. How?

* You have two variables 'A' and 'B"', containing numbers. How

would you calculate A x B/ (A + B) and get a numeric result?

* You want to evaluate the expression, ' A¥B-CA+B>', for many

different values of 'A' and 'B'. What do you do?

e You want to find the numeric value of +4. How?

Discussion 79

The possibilities are endless. And these are all quite commonandvalid

needs that you might have — and they are perfectly reasonable things

to expect your HP-28S to do. You must simply "know the recipes...."

To work confidently with yourHP-28S, you need to be familiarwith two

ofits system flags (internal status indicators which you can vary back

and forth between two opposite states). They are: Flag 35 (constants

mode) and Flag 36 (results mode).

Flag 35 (constants mode) determines what kind of result you'll get

when any of the system constants (1, &, MAXR, MINR and w) are

evaluated.

For example, when flag 35 is set (which you do like this: 39 SF), and

youperform ' m' EVAL, you'll get the symbolicresult: ' W'. Onthe

other hand, when flag 35 is clear (39 CF) performing 'm' EYAL

will give you 3. 141359265339, the nearest numerical equivalent.

Flag 36 (results mode) determines whether functions will reduce

name objects to their numeric contents.

For example, when flag 36 is set (via36 SF), the commands 'A' 1

+ give the result ' A+1 '. Setting flag 36 effectively tells functions to

"leave all name objects alone." But when this flag is clear (36 CF),

functions will evaluate all name objects so as to return numeric re-

sults: 2 'A' STO 'A' 1 + yields 3, for instance. Thus, if

you're working with flag 36 clear, you should remember that name

objects will function as places in which to store numbers — not as ab-

80 Chapter 3: ComplexNumber Utilities

stract variables. Indeed, names thatdont contain numeric objects will

cause errors when operated on under this flag setting.

Note also that symbolic constants are simply name objects with

specially reserved names. Therefore, if flag 36 is clear, the machine

"has permission” when using functions to reduce all names to their

numeric equivalents — including the specially reserved names. In

effect, then, when you clear flag 36, you are overriding the setting of

flag 35.

The settings of these two flags is, of course, up to you, butyou'll have

the mostflexibility ifyougenerally leave them both set, thus preserving

all names and constants in your results. Remember that when you

have a symbolic expression that you need to reduce to its numeric

equivalent, you can always do so easily with EYAL or +NUM.

Errors And Error Recovery

Each ofthe complex numberformat conversion routines is designed to

cause an error when invoked with invalid arguments — rather than

generating erroneous results. However, no provisions have been made

to clean up the stack before the program halts at such an error, so

"garbage" maybe left onthe stack at that point. In any event, the input

argument(s) will almost certainly have been consumed and the stack

disheveled. It's probably best, therefore, to use these tools with UNDO

active, because UNDO is certainly the most convenient way to restore

the stack after an error.

Discussion 81

HowYou Might Use These Utilities

Complex Number Calculations

The six conversion routines extend the HP-28S complex number com-

mandsbyallowingyou to constructcomplexnumberexpressions. They

always return symbolic results; they were designed to do so—to allow

you to generate complex numbers in alternate, symbolic formats.

However, just as with any other arithmetic, the results mode (flag 36)

does affect how these expressions are combined. Watch:

2 FIX 326 CF (turns off symbolic results)

1 2 R+1 Result: '1+i*2'

29 53 R=" Result: ' (5,53)

+ Result: (4.81,5.99>

That's what you'd get with symbolic results turned off(and you would

then need touse +1, %*e, or +" to put it back into a symbolic format,

if that's what you prefer). Now repeat this with symbolic results set:

36 SF (turns on symbolic results)

1 2 R+i Result: '1+i%2'

0 93 R»" Result: ' “(3,332

+ Result: '1+i¥2+°(35,33>'

Note that all symbolic expressions and constants are preserved —just

as you'd expect with flag 36 set. All six routines produce results that

behave this way. Then, ifyou want the numeric value, you use *NUM.

82 Chapter 3: Complex Number Utilities

Keying In Complex Numbers

As you may know, there are several different complex number formats

in widespread use among different disciplines. This is irrelevant, of

course, ifyou never encounter any format other than the one you now

know and love. But in case you do meet with a different format, it's

good to be able to convert back and forth — and to combine numbers in

different formats, reducing the results to your preferred format.

Thefirst thing to realize with the HP-28S is that it has its own formats

and conventions. The basic complex number on the HP-28S is the

Cartesian-coordinate (also called rectangular) form: {3342 where

the 3 is the real component and the 4 is the imaginary component. All

the HP-28S’s calculations assume that a complex number is in this rec-

tangularform (except those operations specifically intended to convert

from another form to this one).

All would be well if this rectangular form were the only one anybody

ever used, butlife is never that simple. There's also apolar form often

used in engineering and it is sometimes acceptable to the HP-28S:

(D393. 137, where the 5 is the magnitude of the complex vector,

and the D3. 13 is the angle it makes with the real axis. This angle

may be measured in degrees or radians (the HP-28S will assume one

or the other according to the current angle mode).

The problem is, there's no way to tell by looking at your calculator's

display in which form a complex number is being expressed. Indeed,

experienced users often develop the habit of using one form or the

other, converting between them only when necessary.

Discussion 83

But the HP-28S makes life even easier than that. It can create anduse

symbolic expressions (including the symbolic constants '@' and ' 1 ')

as easily as numbers, thus allowing the creation of other common

complexnumberformats: '3+i¥4' and 'D*¥e”(i¥8,93)>'

These are the machine's renderings ofthe algebraic rectangular form,

R+iC, and the exponential form, Mei*; they will reduce to numeric

valuesifyouuse*MNUM. Note that the HP-28S uses the mathematician's

i, rather than the engineer's j, to represent V-1. Note also that the ex-

ponential form is valid only for a in radians.

Unfortunately, there's yet another common complex number format —

the polar degree format (the engineers’ favorite), which is MZ a, with

oin degrees. The problem with this is that it's not at all convenient on

the HP-28S, because the machine lacks the Z character. However,

with a slightly different format, you can still present the same inform-

ation: ' "(3,953.13)". Here the DO is the magnitude, and the

93. 13 is the angle, a, in degrees. This is the polar degree format.

Ofcourse,all three ofthese alternate complex number forms would be

merely interesting novelties without some convenient methods for

creating and using them on your HP-28S. So this chapter provides

three commands that exactly parallel the HP-28S's R+C ("real-to-

complex") command — corresponding to each of these three symbolic

formats:

'Re+i*IM’ "Me™ (ixad’ "CM, 0!

R+i Re R="

84 Chapter 3: Complex Number Utilities

Just like R#C, each of these commands takes its components from

stack levels 1 and 2 and leaves the resulting expression on level 1:

2 FIx 1 1 R*i Result: '1+i'

21d md 7 R¥ Result: 'l.41%e”(i%8.79)'
2 4 45 R=" Result: '%(1.41,45>"

Of course, these commands are only for your convenience; you can

always key in these expressions directly. For example, to create the

expression ' 1+1i', you would press (\J1)#HLETH).

Discussion 85

Math With Mixed Complex Formats

The real beauty ofthese three complex formats is that they're funda-

mentally equivalent. Thatis, they'll all reduce to the HP-28S's Carte-

sian rectangularformwhenyou use*MNUM (indeed,ifyou apply*NUM

to the expressions on page 85, you'llget (1.88, 1.88) foreachone

of them — try it)! This means that you can enter complex numbers in

any ofthe three alternate formats, perform calculations on them, then

reduce the final result with one simple *NUM!

For example:

1 1 R+i Result: '1+1i'

3 34 R»" Result: '"(3,34>'

+ 2 7 Result: 'C1+i+%(3,34)>/2'
That's getting ugly.

2 FIX NUM Result: €1.74,1.34)

That's much better.

Yes, but what's this result in polar-degrees format? After all, if you're

used to working in a certain format, it would be ideal to get the final

result in that format, too — no?

+" Result: '°¢2.208,37.52)"

Note that this command is not R*® but +”. Keep in mind thatR*"

(along with R+1 and R*e) will always combine real numbers toform

a complex expression where there was none before. This is useful

mainly for entering complex numbers. By contrast, + (and *i and

+e) will actually convert an existing complex number from any other

allowable format to the desired format.

86 Chapter 3: ComplexNumber Utilities

Thus, you have four basic complex number conversion routines: *1,

+7 +eand*NUM. Thebuilt-in*MHUM commandisincluded, because

after all,it too will convert any ofthe other formats to a certain desired

format — the HP-28S's own Cartesian rectangular format!

So, ifin that last example, you really wanted to see the results in, say,

algebraic rectangular format, it wasn't necessary to use *NUM at all:

1 1 R*i 3 34 R+7 +

2 7 Result: 'C1+i+7(3,34))-2"'

+i Result: 'l.74+i*1.34"'

Try another one:

1 45 R=»" Result: '"(1,45>"

LN Result: 'LNC® (1,433)

+1 Result: '6.48E-13+i%0,79'

+1 (like any ofthe other conversion routines) automatically evaluates

the expression before converting it to Re+iIlm format. So any function

such as LN, that can take a complex expression as an argument, will

be evaluated by the conversion routines.

Notice that the result of LN(1£ 45°) has a very small real portion —

small enough to be considered rounding error and replaced by 0. To

do this, you could use IM to return the imaginary portion as a real

number. Then reenter the result as the imaginary portion ofa complex

number with a real portion of 0:

IM Result: 'IM(6.4BE-13+i%B.79)"'
8 SWAP
R+1i Result: 'i%@8.79'

Discussion 87

SolvingA Complex Expression

For A Complex Result

Sometimes you'll need to do algebra with complex numbers, forming

complexexpressions containingvariables: 'A+1¥B-"C(1,45)"'

You cannot build such an objectjust by usingthe conversion tools; you

must key in the variable names by hand. Here's one method:

'A' 'i' 'B' ®¥ + Result: 'A+i*B’
1 43 R»" - Result: 'A+i*B-"(1,43>"'

Of course, you can always perform further operations to build a more

complicated expression, but only after the variables have been given

values can you get its numeric result or convert its format:

8 'A' STO 12 'B' STO #i Result: '7.29+i%¥11.29'

You can also use the SOLV menu to conveniently store values into the

variables in such an expression and then evaluate the expression (with

the E#PR=], [LEFT=] or[RT= commands). For example, to evaluate the

expression, ' INV(INY(ZAX+INY(ZB) ', with these values...

ZA 1 '2-1%3' "(2,452

 ZB 3 243 ‘9180, 36>"'

do this: ' INV CINVY (ZAM +INV(ZB)) ' (so)

Then: 12a 13 Ze [EXPR Result: H. 79

88 Chapter 3: Complex Number Utilities

Then: '2-1%¥3' [Za 12.3 [2E [ERPRz]*1

Result: '1.47-i%8,358"

Then: 'ZR' PURGE '®(2,43>'(zn)'"(1688,36)"'

+1 Result: '%(1.96,44.82>"

Note, however, that since the "SOLVer" capability itself does not

extend to complex numbers, you cannot generally use it directly to

solve for the values of complex variables in complex expressions.

Instead, you must use IS0OL — and probably some other algebraic

rearrangement tools.

Before using I SOL, you should become comfortable with the use ofthe

solution mode flag (flag 34):

34 SF 'R*2=9' 'AR' ISOL Result: 3.88

34 CF 'A*~2=9' 'AR' IS0L Result: 's1#3'

34 SF 'A*3=9' 'A' ISOL Result: 2.88
34 CF 'A"3=9' 'R' ISOL

Result: 'ExXP(2¥w*i#nl-3)%2.088"

With flag 34 clear, the expression for the general solution in each case

is given. Arbitrary integers are represented by nl, n2, etc. Thus,

replacing Nl above with any integer will yield a valid answer.

Similarly, £1, 52, etc., represent arbitrary sign multipliers (+1), so

that replacing &1 above with either 1 or = 1 will yield valid results.

With flag 34 set, you get the principal value as a result. This value is

whatyou get when you substituted for all arbitrary integers and 1 for

all arbitrary signs.

Discussion 89

Chapter 4

Vector Utilities

These routines provide quick and reliable ways to do certain type and

dimension conversions and formatting of vectors.

As shown in the following list, the 8 programs are organized into three

logical groups, presented alphabetically. Within each group, the pro-

grams are also usually presented alphabetically (by MAME), although

in some cases, certain sets ofprograms may be complementary or oth-

erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page

100, immediately following these program listings.

90 Chapter 4: Vector Utilities

+20

+30

IJK
+ IJK

AY
VA

Cav
VC

Contents

Function

Dimension Conversion Routines

Convert A Vector From 3-Dimensional

To 2-Dimensional

Convert A Vector From 2-Dimensional

To 3-Dimensional

Formatting Routines

Convert A Vector From ' I +J+K' Format

Convert A Vector To ' I+J+K' Format

Type Conversion Routines

Convert A One-Column Array To A Vector

Convert A Vector To A One-Column Array

Convert A Complex Number To A Vector

Convert A Vector To A Complex Number

92

92

94

94

96

96

98

98

91

ConvertA Vector From

3-Dimensional To 2-Dimensional:

+20 ©19663)

« + A « A EVAL IF
DUP SIZE € 3 > #

THEN € > 1 GET END {

2 >» RDM IF A TYPE
DUP & == SWAP 7 ==
OR THEM A STO END *
®

ConvertA Vector From

2-Dimensional To 3-Dimensional:

+30 ©19789)

« + A « A EVAL IF
DUP SIZE € 2 > #

THEN € > 1 GET EMD {

3 » RDM IF A TYPE
DUP 6&6 == SWAP 7 ==
OR THEN A STO END =»
%

Chapter 4: Vector Utilities

Summary:

Examples:

Inputs:

Outputs::

Errors:

Notes:

+2D converts a 3-elementvectorinto a 2-element vector

(the third element is lost). #3D converts a 2-element

vector into a 3-elementvector (the third element is given

the value of zero). Ifthe vector is named, and the name

is used, the result vector will be stored in it.

[1 231 2D Result: [1 2 1]

[121 23D Result: [1 2 8 1

Level 1 — any object that evaluates to a 3-element/2-

element vector — the vector to be converted.

Level 1 — if the input object was a name containing a 3-

element/2-element vector, nothing is returned, but the

resulting 2-element/3-element vector is stored in that

name. Otherwise, that resulting 2-element/3-element

vector is returned.

Too Few Argument s willoccurforanemptystack.

Bad Argument Type will occurifthe input object

does not reduce to a vector.

Bad Argument Yalue will occur if the input

contains an undefined name or a vector of other than 3

elements (for #2D) or 2 elements (for +3D).

None.

Dimension Conversion Routines 93

ConvertAVector From ' [+J+K' Format:

IJK+ 312238)

« EVAL RCLF STD SWAP
+STR SWAP STOF

[188]
[B18]
[BB 1]
+ I JK « STR+ +NUM
» »

ConvertAVector To ' I +J+K' Format:

Summary:

+IJK ©38244)

« RCLF » f. « 36 SF
EVAL IF DUP SIZE { 3
> # THEN { > 1 GET
END ARRY+ DROP 'K' =
ROT 'I' * ROT 'J' #
ROT + + COLCT f.
STOF =»

I JK+ converts an algebraic expression, containing a

linear combinationof ' I ','J' and 'K"',intoa vector.

+I.JK converts a 3-element vector into an algebraic

expression that is a linear combination of 'I', 'J"'
and 'K'.

Chapter 4: Vector Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

STD 'I+J+K' IJK+ Result: [1 1 1 1]

STD '(3.9%I-2.23%K)*¥2+13*1' IJK»

Result: [22 8 -4.3 1

STD L 1 21 1 2IJK Result:' I+2%J+K'

STD [-3 8 1]3+IJK Result:'-(3%¥I)+K'

Level 1 — an algebraic object/vector — the vector whose

format is to be converted.

Level 1 — a vector/algebraic object — the vector in the

converted format.

Too Few Argument s willoccurforanemptystack.

Undef ined Mame will occur for I JK+ if the argu-

ment is an expression containing an undefined name.

Invalid Dimension will occur ifan operationin

the expression would involve multiplying two vectors.

Bad Argument Type willoccurif(for I JK+)there
isany operation in the expression whichisusedon ' I ',

'J' or 'K' andisundefined for vectors; or (for* I JK),

if the input object does not evaluate to an array.

Bad Argument Yalue willoccurwith+IJK ifthe
input has a valid SIZE but is not a 3-element vector.

I JKsimply evaluates the Level-1 object after assign-

ing vector values to the three variables, 'I','d"' and

'K'. Itis therefore not very sensitive to erroneous in-

puts. Expressionssuchas ' ', for example, are simply

evaluated and return no vector at all.

Formatting Routines 95

ConvertA One-Column Array To A Vector:

A*V (7323729)

« + A « A EVAL DUP
SIZE 2 GET IF 1 =
THEN € > 1 GET END

DUP SIZE 1 1 SUB RDM
IF A TYPE DUP & ==

SWAP 7 == OR THEM A
STO END *» x»

ConvertA Vector To A One-Column Array:

Summary:

96

V+A (638699)

€ + A « A EVAL DUP
SIZE DUP IF SIZE 1 =

THEN € > 1 GET END 1

+ RDM IF A TYPE DUP
& == SWAP ¥ == OR
THEN A STO END » =»

A+Y converts a one-column array i.e, LL 1 JIL 2

JL 3 11)toavector. ¥*A converts a vector to a one-

column array. If the input array/vector is stored in a

name and the name is used, the resulting vector/array

will be stored in that name.

Chapter 4: Vector Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

STD CC 1 IC 2 IC 3 11 AsY
Result: [1 2 3 1]

STD L123 1 VA
Result: [CL 1 JL 2 1C 3 11

Level 1 — any object that evaluates to a column array/

vector — the column array/vector to be converted.

Level 1- if the input object was a name that contained

a column-array/vector, nothing is returned, but the re-

sulting column-array/vector is stored in that name.

Otherwise, that resulting vector/column-array is re-

turned.

Too Few Arguments will occur if the stack is
empty.

Bad Argument Type will occur if the argument

does not reduce to an array/vector.

Bad Argument Value will occur ifthe input ob-

ject is an array containing more than one column (for

A+*Y) or is not a vector (for ¥*A).

None.

Type Conversion Routines 97

ConvertA Complex Number To A Vector:

CV 283497)

« + A « A EVAL C»R 2
+ARRY IF A TYPE DUP

== SWAP 7 == OR

THEN A STO END » »

ConvertA Vector To A Complex Number:

Summary:

98

VC ©81991)

« + A « A EVAL IF
DUP SIZE € 2 > =

THEN € > 1 GET END
ARRY+ DROP R=»C IF RA
TYPE DUP & == SWAP 7
== OR THEN A STO END
»

C*Y converts a complex number to a two-element

vector. If the complex number is named and the name

is used, the resultingvector is stored in that name. ¥3*C

converts a two-element vector to a complex number. If

the vector is named and the name is used, the resulting

complex numberis stored in that name.

Chapter 4: Vector Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

STD (1,2) C»V Result: [1 2 1]

STD CL 1 2 1 VC Result: C1422

Level 1-any object that evaluates to a complexnumber/

2-element vector — the complex number/2-element vec-

tor to be converted.

Level 1 — if the input object was a name containing a

complex number/2-element vector, nothing is returned,

but the resulting 2-element vector/complex number is

stored in that name. Otherwise, that resulting 2-ele-

ment vector/complex number is returned.

Too Few Argument s will occurforanemptystack.

Bad Argument Type will occur if the argument

does not reduce to a complex number/vector.

Bad Argument Yalue will occurwithY*C ifthe
input vector does not have exactly 2 elements.

None.

Type Conversion Routines 99

Vector Utilities: A Discussion

The Main Idea

The main purpose of these routines is to provide conversion utilities

between the different vector formats available to the HP-28S. The

"vectors" referred to here are the mathematically defined sort, and not

simply the vector object type provided by the HP-28S.

For example, in two dimensions, these are mathematically equivalent

for most operations, when used as vectors:

(1,2 [121 CC 11C 2 1]

And in three dimensions:

[123]

[C11C21C 311]

'I+2%J+3%K

But be careful! Not all vector-type operations work with every object

type. For example, although many common vector-type operations

will work with complex numbers (e.g. +, =, ABS, NEG, scalar multi-

plication), not all will (e.g. CROSS and DOT). And there are more

operations defined for complex numbers than for vectors (e.g. multipli-

cation of two complex numbers).

100 Chapter 4: Vector Utilities

Be warned also that the algebraic form (' I+2%¥J+3¥K"')is a valid

vector representation only ifthesymbols ' I ','J' and 'K"' have no

associated values, or ifthose valuesareL 1 8 8 1,[L 8 1 8 1]

and 8 8 1 1, respectively

In the former case, the algebraic expressions may be combined to form

mathematically correct expressions (with symbolic unit vectors). In

the latter case, evaluation ofthe expressions will yield correct HP-28S

vector objects — because those values are indeed the required unit

vectors. Any other values stored ineither 'I', 'J', or 'K' willyield

invalid results when evaluated.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that

is listed in your current PATH. The easiest way to ensure that this is

the case is to place each of the programs in the HOME directory — the

ultimate parent of all other directories.

Discussion 101

Some Observations

Arrays Vs. Vectors

Both mathematically and as objects on the HP-28S, vectors can be

considered to be a type ofarray: In math, a vector is a one-dimensional

array and may either be a row-vector or a column-vector. However, on

the HP-28S, a vector object is always a column-vector, represented by

numbers within single brackets (L 1 2 3 1). The dimension of a

vector object, asreturnedby theSI ZE command, is{ » 2,indicating

that the vector is one-dimensional and has n elements.

This representation of a column-vector as a vector object is simply

intended to make life easier for you. The alternative form of column

vectoris[L 1 1 [2 1 [3 11, where the single column is

represented as a list of one-element rows. However, on the HP-28S,

this representation is anarray object— not a vector object. Accordingly,

it is represented as a list ofnumbers within double brackets (LL 1 2

3 11), and its dimension is returned as¥ 1 » 2} where nis the

number of elements.

This would all be merely interesting trivia if it were not that certain

built-in HP-28S commands function only on vector objects and not on

column-vector arrays (CROSS, for example). On the other hand,

certain "array-ish” commands refuse to take vector objects as argu-

ments (e.g. TRM). For this reason, A+Y and ¥+#A have been included

in these utilities to allow you to easily convert between these forms.

102 Chapter 4: Vector Utilities

Calculations '"In Place"

All ofthe vector utilities except + I JK and IJK allow you the option

of providing a named object as the argument. In that case, the

resulting object will be restored in that name object as the end of the

calculation — and nothing will be returned to the stack. This feature

will work either on global or local name objects and is intended to be

analogous to the working ofthe storage arithmetic commands (see the

HP-28S's STORE menu).

Although similar, these utilities lack one of the major advantages of

the built-in storage math: Those built-in STORE menucommands will

perform their calculations "in-place" — on top of the contents of the

current array —thereby takingup less storage space than recallingthe

contents of the named objects, combining them, then overwriting the

original named object. These utilities must use the latter method.

Errors And Error Recovery

Each ofthese tools is designed to generate an error when invalid input

is entered—ratherthan continue and generate garbage outputs. When

inputs are questionable (e.g., negative numbers for stack Levels),

these utilities act similarly to the built-in stack commands (arguments

are ignored or treated as 1, whichever makes more sense). When

errors do occur, the stack is usually disrupted, and since the only way

to restore it then is with theUNDO command,it's wisest to keep UNDO

mode (in the MODES) menu) active whenever you these utilities.

Discussion 103

How You Might Use These Utilities

All ofthe vector utilities provide convenient means to convert between

equivalent (or nearly equivalent) forms of vectors — that's their pur-

pose. One pair of routines, however, provides conversion between a

numeric form and an algebraic form, and that algebraic form, in and

of itself, opens up new vistas for vector operations.

The algebraic (or "symbolic") form ofa vector is simply a linear combi-

nation of the symbolic unit vectors i, j and k. As such, all forms of

mathematical and symbolic operations can be performed on the vector

expression.

You must be careful, however, to perform only those mathematical op-

erations that are definedfor vector-type objects. The HP-28S will allow

you to perform many operations on a symbolic expression (such as

trigonometric and logarithmic functions) — operations which are in no

way defined for vectors. And the resulting object will be algebraically

correct if the names 'I', 'J"' and 'K' are associated with real or

complex objects, but notfor vector objects. This fact will manifest itself

when/ifyou apply I JK# toa symbolic expression: Bad Argument

Type will be the only result.

Try some examples:

104 Chapter 4: Vector Utilities

STD '4*I' '2#I' '3%*K' + +

Result: '4*I+(2*I+3%xK)>"'

COLCT Result: '6¥I+3%K'

IJK» Result: [6 8 3 1]

+2D Result: [6 8 1]

+3D Result: [6 8 8 1

+IJK Result: '6%I'

(2,32 C3Y +30 +*IJK Result: '2*I+3%J'

2 ~ COLCT Result: 'D¥(2¥I+3%J>'

EXPAN COLCT Result: 'I+1.35%J'

IJK+ 22D VC Result: C1,1.52

Unfortunately, most of the vector-oriented commands of the HP-28S

will not take symbolic arguments. Thus, you cannot "cross" two

symbolic vectors using the built-in command, CROSS. You can,

however, define similar commands, such asCROS (39588), like this:

« IJK+ SWAP IJK=>

SWAP CROSS +IJK *

This version will take either numeric or symbolic arguments and

return a symbolic cross product vector.

You can see how tempting it might be to define a whole set of similar

commands to make your HP-28S a little more useful with symbolic

expressions, no? Go ahead and do so on your own, as you wish....

Discussion 105

Chapter 5

Array Utilities

These routines provide convenient, "canned" methods for building,

editing and using arrays in the HP-28S.

Asshowninthe following list, the 30 programs are organized into three

logical groups, presented alphabetically. Within each group, the pro-

grams are also usually presented alphabetically (by MAME), although

in some cases, certain sets ofprograms may be complementary or oth-

erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page

152, immediately following these program listings.

106 Chapter 5: Array Utilities

AGETC
AGETR
ARPT

ASUB
ARY=>C
C+ARY

ARY-+*R
R+ARY
A>L
L+A

ADELC
ADELR

REX
REXC
REXR
RINSC
AINSR
APUTA
APUTC
RPUTR
AREY

Contents

Function

Building/Decomposition Routines

Get A Column From An Array

Get A Row From An Array

Create An Array By Duplicating An Object

Get A Subarray From An Array

Decompose An Array Into Columns

Compose An Array By Columns

Decompose An Array Into Rows

Compose An Array By Rows

Convert An Array To A List

Convert A List To An Array

Editing Routines

Delete A Column From An Array

Delete A Row From An Array

Exchange Elements Within An Array

Exchange Columns Within An Array

Exchange Rows Within An Array

Insert A Column Into An Array

Insert A Row Into An Array

Overwrite A Subarray Onto An Array

Overwrite A Column In An Array

Overwrite A Row In An Array

Reverse The Order Of The Elements

In An Array

110

110

112

114

116

117

119

120

122

123

125

125

128

130

130

132

132

134

136

138

140

107

Name Function Page

ASORT Sort An Array By Element 140

ASRTC Sort An Array By Column 142

ASRTR Sort An Array By Row 142

Miscellaneous Operations

ARI+N Convert An Array's Index List 144

To A Numeric Index

AN=+I Convert A Numeric Index 144

To An Array's Index List

ROP Perform An Operation On Each Element 146

OfAn Array

AROPC Perform An Operation On Each Column 146

OfAn Array

ROPR Perform An Operation On Each Row 147

OfAn Array
APOS Find The Position OfA Specified 150

Real Element Within An Array

108 Chapter 5: Array Utilities

Contents 109

Summary:

110

GetA Column FromAn Array:

AGETC (127941)

« NUM + N « EVAL
DUP SIZE 2 2 SUB ©
COM MN 1 PUT * » »

GetA Row FromAn Array:

AGETR ©668887)

« NUM + N « EVAL

DUF SIZE IF DUP SIZE
1 == THEM DROP N GET
{11 > »ARRY ELSE 1
1 SUB 1 SWAP + 8 CON
M 1 PUT SWAP * END *
*

AGETC extracts the specified column-vector from the

given array. AGETR extracts the specified row-array

from the given array or vector. Ifthe row/column selec-

torisbeyond the dimensions ofthe source array, an error

is reported. Any fractional portion of the row/column

selector is rounded.

Chapter 5: Array Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

STD IL 1 2310 45 6 11 3 AGETC
Result: [3 6 1

'A' « 2 I ®» AGETC

Result: (assuming that array 'A' is defined, you'll get

a vector — column 1 of the array ' A")

STD [CL 1 23231 456 1] 2 AGETR

Result: [L 4 5 6 11]

'B' « 2 I » AGETR

Result: (assuming thatarray ' B' is defined, you'll get

an array —row 1 of 'B')

Level 2 — any object that evaluates to an array or vector.

Level 1-anyobject that evaluates to a real number—the

row/column index.

Level 1-anarray orvector—the row or column, respect-

ively.

Too Few Argument s will occur if the stack con-

tains fewer than 2 objects.

Bad Argument Type will occur ifthe arguments

don't evaluate to their required types.

Bad Argument VYalue will occurif the column
index is out of range.

None.

Building/Decomposition Routines 111

Create An Array By DuplicatingAn Object

Summary:

Examples:

112

ARPT @62793)

« »NUM + A N « A

EVAL IF DUP TYPE NOT
THEM 1 LIST END N
CON IF AR TYPE & ==
THEN A STO END * *

ARPT creates an array by repeating a single number.

The dimensions of the resulting array are specified

either by an integer index,a list index, or an array. The

index determines the type of array/vector object re-

turned: Integers and single element lists return vectors,

while 2-element lists specifying numbers of rows and

columns will return the corresponding arrays. An ar-

ray-type index returns an array ofthe same dimensions.

All real-number indices are rounded before use.

STD { 2 3 > 8 ARPT
Result: [[8 6 6 1[L 6 6 6 1]

STD 3 16 ARPT
Result: [16 16 18 18 16 1

STD 1.5 1 ARPT

Result: [1 1 1

Chapter 5: Array Utilities

Inputs: Level 2-any object that evaluates to a real number,list,

array or vector — the dimensions of the desired array.

Level 1-anyobject that evaluates to areal number—the

value tobe repeated throughout the arraybeingcreated.

Outputs: Level 1 -If the Level-2 object was a name containing a

valid number,list, vector or array, nothing is returned,

but the resulting array or vector is stored in that name.

Otherwise the resulting array or vector is returned.

Errors: Too Few Argument s will occur if the stack con-

tains fewer than 2 objects.

Bad Argument Type willoccurifeither argument

is not of its prescribed type.

Undef ined Mame will occur ifthe Level-2 objectis

an undefined name.

Notes: None.

Building/Decomposition Routines 113

Summary:

114

GetA Subarray FromAn Array:

ASUB @743683)

« EVAL { > + ROT
EVAL ROT EVAL { > +

ROT LIST* 1 == 1 IFT

ROT LIST» 1 == 1 IFT
+ MCDRAB «MDUP

SIZE IF DUP SIZE 1
== THEN 1 + RDM ELSE
DROP EMD DUP DUP 'M'

B > GET DROP

GET DROP IF
B < OR THENw

D

DUP 1 = THEN + ELSE
DROP END +ARRY » x»

ASB extracts a sub-array from the given array. Two
indices are required: the upper left element ofthe sub-

array, and the lower right. A real number may also be

used as an index for a vector, or for a 2-dimensional

array, in which latter case, it will be taken to mean the

first column of that row in the array.

Chapter 5: Array Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

STD IL 1231045611 C123<
2 3 > ASUB
Result: [[2 3 IL 5 6 11]

STD 12343134 ASUB
Result: [3 4 1

Level 3 — any object that reduces to an array or vector —

the source array.

Level 2 — an object that reduces to a list or real number

— the index of the upper left corner of the sub-array.

Level 1 — an object that reduces to a list or real number

— the index of the lower right corner of the sub-array.

Level 1 — an array or vector — the extracted sub-array.

Too Few Arguments will occur if the stack con-
tains fewer than 3 objects.

Bad Argument Type will occurifany ofthe stack

objects do not evaluate to their prescribed types.

Bad Argument Yalue will occur if either of the
indices is out ofbounds.

Ofcourse, ASUB can be used to extract individual rows

and columns from an array, but HGETR and AGETC

are probably more convenient for those specific tasks.

Building/Decomposition Routines 115

DecomposeAn Array Into Columns:

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

116

ARY=*C 322341)

« EVAL TRN ARRY=>

LIST+ DROP + R C « 1
R FOR I C #*ARRY R I

- C * I + ROLLD NEXT
R » »

ARY+C decomposes the given array into its component

column arrays (vectors), which are left on the stack (in

order), along with a count of these vectors.

STD [CL 1 2 IT 3 4 1L 3 6 11 ARY=C
Result: [1 331 [248612

Level 1 — any object that evaluates to an array — the

array to be decomposed.

Levels 2 to (n+1) — vectors — the array's columns.

Level 1 — a real number, » — the number of columns.

Too Few Araument s willoccurforanemptystack.

Bad Argument Type will occur if the argument

does not evaluate toan array (or Invalid Dimen-

S10n will occur for a vector argument).

Undef ined Mame will occur if the argument con-

tains an undefined name.

None.

Chapter 5: Array Utilities

Compose An Array By Columns:

C+ARY 48838+9)

« NUM .3 + IP + N «

M +LIST + L «L 1
GET EVAL SIZE LIST»

IF 2 == THEN DROP
END + R « { > 1 N
FOR I L I GET EVAL
DUP SIZE LIST» 1 ==
1 IFT IF SWAP R =
THEN

CL 11]
TRM EMD IF 1 == THEN

ARRY+ LIST» DROP
ELSE TRM ARRY+ LIST»
DROP # END LIST +

NEXT LIST+ R » R 2
+LIST *ARRY TRN » =»
» ¥

Summary: C+*ARY creates an array from the given column-arrays,

vectors, and/or arrays — combined column-wise (sym-

bolic arguments will be evaluated). Input arrays/vec-

tors must all have the same number ofrows. An integer

index must also be given to indicate how many stack

items to combined. Any fractional portion of the index

is rounded.

Building/Decomposition Routines 117

Examples:

Inputs:

Outputs:

Errors:

Notes:

118

STDL121LC34 1 [5613 C+HRY
Result: [[1 35 IL 2 4 6 1]

STD [CL 1 2 1C 3 4 11 DUP 2 CARY
Result: [L 1 21 2 10 343 4 1]

Levels 2 to (n+1) — any object that reduces to an array or

vector — the objects to be combined.

Level 1 — any object that evaluates to a real number, n—

the number of objects to be combined.

Level 1 — an array — the newly-created array.

Too Few Arguments will occur if the stack is
empty or there are fewer objects on the stack than are

specified in Level 1.

Bad Argument Type will occurifany ofthe stack

levels don't reduce to their respective object types.

Bad Argument Yalue will occur ifthe (rounded)

index value is less than 1.

Invalid Dimension willoccurifthe given arrays

and/or vectors do not all have the same row dimension.

None.

Chapter 5: Array Utilities

DecomposeAnArray Into Rows:

ARY*R 371489)

« EVAL RARRY=> LIST» 1
==1IFT + RC<«1R
FOR I € 1 C > *ARRY
RI-C=#=1I+ ROLLD
HEXT R » *

Summary: ARY*R decomposes the given vector or array into its

component 1-row arrays, left on the stackin order, along

an integer representing the total number ofthese rows.

Examples: STD [[1 2 IL 3 4 11 ARY=R

Result: LC 1 2 11 [CL 3 4 1] 2

STD L 1 2 3 1 ARY»R
Result: LC 1 11 CC 2 11 CC 2 11 3

Inputs: Level 1 — any object that evaluates to a vector or array.

Outputs: Levels 2 to (n+1) — the array’'s component rows.

Level 1 — a real number, n — the number ofcomponents.

Errors: Too Few Arguments will occur if the stack is
empty or if the argumentis a vector.

Bad Argument Type will occur if the argument

does not evaluate to a vector or array.

Notes: None.

Building/Decomposition Routines 119

Summary:

Examples:

120

ComposeAn Array By Rows:

R+ARY @131223)

« NUM .5 + IP + N «

N +LIST » L « L 1

GET EVAL SIZE 2 GET

+ C&«{ 21 HNFORI

L I GET EYAL DUP

SIZE IF 2 GET C =

THEN

CL 11

TRN END ARRRY=+ LIST»

DROP * LIST + NEXT

LIST+ C » C 2 =»LIST
SHERRY 2 » » »

R+ARY will create an arrayfrom the given arrays (sym-

bolic arguments will be evaluated). The component

arrays will be combined row-wise (input arrays must all

have the same number of columns). An integer index

must also be given to indicate how many stack items are

to be combined. Any fractional portion of the index is

rounded.

STD CC 12 1]1CC241]1ILCS5S6 113

R+ARY

Result: [[1 2 IL 2 4 1L 5 6 11]

Chapter 5: Array Utilities

STD [LC 1 2 IC 3 4 11 DUP 2 R+ARY
Result: [[L 1 2 10 34 1012 1 34 11

Inputs: Levels 2 to (n+1) — any objects that reduce to arrays; the

objects to be combined.

Level 1 — any object that evaluates to a real number, n —

the number of objects to be combined.

Outputs: Level 1 — an array — the newly-composed array.

Errors: Too Few Arguments will occur if the stack is

empty or there are fewer objects on the stack than are

specified in Level 1.

Bad Argument Type will occurifany ofthe stack

levels don't reduce to their respective object types.

Invalid Dimension will occurifthe given arrays

do not have the same column dimension.

Notes: None.

Building/Decomposition Routines 121

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

122

Convert An Array To A List:

A*L (183691)

« EVAL ARRY+> =» D « D
LIST» IF 2 == THEN #*
END LIST D *» =»

A+L converts the given array or vector into a list of its

elements, in row-major order. A second list will also be

returned, containingthe size informationfromthe origi-

nal array so that the array can be reconstructed.

STD CC 1 2 1C 2 4 11 RAR+L

Result: { 1 234 >{ 22 2

STD CL 12341 AL
Result: { 1 23 4 > { 4 >

Level 1 —-Any object that evaluates to an array or vector

— the array to be converted.

Level 2 — a list — the elements of the original array.

Level 1 — a list — the original dimensions of the array.

Too Few Argument s will occurforanemptystack.

Bad Argument Type will occur if the argument

does not evaluate to an array or vector.

None.

Chapter 5: Array Utilities

Summary:

Examples:

Inputs:

Convert A List To An Array:

L*A92837)

« EVAL SWAP EVAL + D

L « L SIZE D LIST»

IF 2 == THEN #* END
IF = THEN € > 1 GET
END L LIST+ DROP D
+ARRY » »

L+A converts the given list ofnumbers into an array or

vector ofthe elements from the list (in row-major order).

Asecond list mustbe given, containingthe size informa-

tionoftheresultingarray,i.e.,{ rows columns I.

STD {1234 {22 3%L=*A

Result: [CL 1 2 IL 3 4 11

STD {1234 >{4 3 LA
Result: [1 2 3 4 1

Level 2 — any object that evaluates to a list of real num-

bers — the list to be converted.

Level 1 — any object that evaluates to a list — the list

containing the dimensions of the desired array.

Building/Decomposition Routines 123

Outputs:

Errors:

Notes:

124

Level 1 —an array or vector, depending on the specifica-

tion — the object just converted from the input list.

Too Few Argument s will occur if the stack con-

tains fewer than 2 objects.

Bad Argument Type will occur ifthe arguments

do not evaluate to lists.

Bad Argument Yalue willoccurifthe dimensions
of the size list do not correspond to the number of ele-

ments in the elementlist.

None.

Chapter 5: Array Utilities

Delete A Column FromAn Array:

ADELC 322383)

« + AR « A EVAL TRH

R ADELR TRN IF HA
TYPE DUP & == SWAP 7
== OR THEN A STO END
» ®

Delete A Row FromAn Array:

Editing Routines

ADELR @327798)

« NUM .5 + IP + AR
« A EVAL DUP SIZE 1

R PUT GET DROP A

EVAL ARRY> LIST» 1
==1IFT+ NM&NR
- M=* LIST HM 1 +
ROLLD M DROPM LIST»
DROP M1 - IF M1 =
THEN M 2 »LIST END
+ARRY IF A TYFE DUP

& == SWAP 7 == OR
THEM R STO EMD » » »

125

Summary:

Examples:

126

ADELC deletes the specified columnfrom a given array.

ADELR deletes the specified row from a given array or

vector. The column/row number is rounded before use.

Ifthat rounded numberisless than 1 or greaterthan the

number ofcolumn/rows in the array, an error will occur.

If the name of an array variable is used, the modified

array is restored in the given name.

STOIC 1231436 10789112
RDELC
Result: [L 1 3 IL 4 6 IL 7 9 11

'A' 5 ADELC

Result: (assuming the array ' A" is defined,it losesits

fifth column but nothing is left on the stack.)

STD 3 IDN 'w' ADELC
Result: [[L 1 8 IL 8 1 1L 8 8 11

STDIL 1231043610789 1]12
ADELR

Result: [LC 1 2 3 IL 7 8 9 11

'A' 4 ADELR

Result: (assuming the array ' A’ is defined,it loses its

fourth row but nothing is left on the stack.)

STD CL 1 231 2 ADELR

Result: [1 3 1]

Chapter 5: Array Utilities

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

Level 2 — any object that evaluates to an array — the

array to be edited.

Level 1-anyobject that evaluates to areal number—the

column/row number.

Level 1 — if the input array is a name, nothing is re-

turned, but the modified array is stored in that name.

Otherwise the modified array is returned.

Too Few Arguments will occur if the stack con-
tains fewer than two objects.

Invalid Dimension will occur with ADELC if
the Level-2 object is a vector.

Bad Argument Type will occur ifthe Level-2 ob-
ject does not evaluate to an array (a vectoris also OKfor

RADELR), or if the Level-1 object does not evaluate to a

real number.

Undef ined Name will occur if the Level-1 object

contains an undefined name.

Bad Argument Yalue will occur with ADELR if

you try to delete the last remaining row or if the row

number is out of bounds.

ADELC uses ADELR.

127

Exchange Elements WithinAn Array:

Summary:

Examples:

128

AEX 693863)

« NUM SWAP +MNUM + A
MMH «AR EVAL DUP DUP
M GET SWAP M GET ROT
NHN ROT PUT M ROT PUT
IF A TYPE DUP & ==

SWAP 7 == OR THEN A
STO END » »

AEX exchanges any two elements ofthe given vector or

array. The indices for the two elements may be either

integers or lists. Any fractional portions ofinteger indi-

ces are rounded. If either index is beyond the valid di-

mensions of the array, an error occurs. If the array is

named and the name is used, the modified array will be

restored in the given name.

STD [CL 1 2 IL 3 4 11 1 2 AEX

Result: [L 2 1 IL 3 4 1]

[C121023411C11>{222HAEX
Result: [L 4 2 IL 3 1 11]

'A' 'XK-1' { 2 2 } REX
Result: (assuming that® and £ contain real values,the

array, ' A',is modified, but nothing is left on the stack.)

Chapter 5: Array Utilities

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

STD L 12311 3 AEX

Result: [3 2 1 1]

Level 3 — the array or vector — any object that evaluates

to either an array or a vector.

Level 2 — any object that evaluates to a real number or

a list of two real numbers — the index of one of the

elements to be exchanged.

Level 1 — any object that evaluates to a real number or

a list of two real numbers — the index of the other

element to be exchanged.

Level 1 —ifthe input array or vector is a name, nothing

is returned, but the modified array or vector is stored in

that name. Otherwise the modified array or vectoris re-

turned.

Too Few Arguments will occur if the stack con-
tains fewer than three objects.

Bad Argument Type will occurifthe Level-2 ob-

ject doesn't evaluate to an array or vector, or ifthe Level-

1 object doesn't evaluate to a real number or a list.

Undef ined Mame will occur if the Level-3 object

contains an undefined name.

None.

129

Exchange Columns WithinAnArray:

AREXC @11743)

« * ANM «A ARY2C
LIST N M REX LIST»
C+ARY IF A TYPE DUP

& == SWAP ¥ == OR
THEN A STO END » »

Exchange Rows WithinAnArray:

AEXR #14438)

« + ANMKA ARY*R
LIST N M REx LIST»

R+ARY IF A TYPE DUP
& == SWAP 7 == OR
THEN A STO END * »

Summary: AEXC exchanges any two columns of the given array.

AEXR exchanges any two rows ofthe given array. The

indices for the two columns/rows may eitherbe integers

or (single-element) lists. Any fractional portions ofinte-

gerindices are rounded. Ifeither ofthe indices is beyond

the dimensions ofthe array, an error occurs. Ifthe array

is named and the name is used, the modified array will

be restored in the given name.

130 Chapter 5: Array Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

STD [C1 2 IL 3 4 11 1 2 AERC

Result: [L 2 1 IL 4 3 11]

STD [C1 2 3 11 1 3 REXC

Result: [[3 2 1 11]

STD [C1 2 IL 3 4 11 1 2 AEXR
Result: [[L 3 4 1[L 1 2 11

STD L 12311 3 AER
Result: [[3 2 1 11

Level 3 — any object that evaluates to an array.

Level2—any object that evaluates to a real number—the

index of one of the columns/rows to be exchanged.

Level 1—anyobject that evaluates to a real number—the

index of the other column/row to be exchanged.

Level 1 — if the input array is a name, nothing is re-

turned, but the modified array is stored in that name.

Otherwise the modified input array is returned.

Too Few Argument s will occur if the stack con-

tains fewer than three objects.

Bad Argument Type will occur ifthe Level-3 ob-
ject does not evaluate to an array or if the Level-1 and

Level-2 objects do not evaluate to real numbers or lists.

Undef ined Name will occur if the Level-3 object
contains an undefined name.

AEXC uses ARY=C, C+ARY, and AEX. AEXR uses

ARY-+R, R+ARY, and AEX.

131

132

Insert A Column Into An Array:

RINSC ©26491)

« * AR VY «A EVAL

TRN R VV ¥ SIZE LIST»
1 == 1 IFT 2 LIST
RDM AINSR TRN IF A
TYPE DUP & == SWAP 7

== OR THEN AR STO END
%

Insert A Row Into An Array:

RINSR 2238433)

« EVAL TRN TRM SWAP

*NUM .5 + IP + AV R
« A EVAL ARRY+> LIST»
1 ==11IFT + NM<«N
R-1+M=* 2LIST V
ARRY> DROP M 1 +
ROLL LIST» DROP HN 1
+ IFM12> THEN M 2

+LIST END »ARRY IF A

TYPE DUP & == SHARP 7
== OR THEM AR STO END
» » %

Chapter 5: Array Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

AINSC inserts the given column into the given array.

AIMSR insertsthe given row into the given array. Ifthe

column/row numberis less than 1 an error is generated.

Acolumn/row index greaterthan the column/row-size of

the array will cause the new columnrow to be added to

the end ofthe array. The number ofcolumns/rows in the

inserted array and destination array must be equal. If

the name ofan arrayvariable is used, the modified array

is restored in the given name.

[C1 31046 1]121L23 1 AINSC
Result: [[L 1 2 3 1[4 5 6 11

STD L 1 2314 [CL 4 11 AINSR
Result: [1 2 3 4 1]

Level 3 — any object that evaluates to an array.

Level 2—any object that evaluates to a real number—the

column/row index.

Level 1 — any object that evaluates to a vector or array

— the column/row to be inserted.

Level 1 — if the input array was a name, nothing is re-

turned, but the modified array is stored in that name.

Otherwise the modified array is returned.

Too Few Argument s will occur if the stack con-

tains fewer than two objects.

Bad Araument Type will occuriftheinput objects

don't evaluate to their required types.

RAINSC uses AINSR.

133

OverwriteA Subarray Onto An Array:

APUTA &923463)

« EVAL SWAP EVAL +

Al A2 B « A2 ARRY=»
LIST» 1 == 1 IFT 2
+LIST *ARRY DUP SIZE

{11 > SWAP LIST»

DROP R+C B { 2 +
LIST+ 1 == 1 IFT R2C
SWAP OVER + (1,1» -

SWAP C»R ROT C»R ROT
SWAP Al EVAL ARRY=

LIST» 1 == 1 IFT 2

LIST »ARRY + NM A3
« FOR I NM FOR J

GETI AZ { I J > ROT
PUT 'A3' STO NEXT
NEXT DROP2 A3 *» DUP

SIZE LIST» DROP IF 1
== THEM { > + RDM

ELSE DROP END IF Al
TYPE DUP == SWAP 7
== OR THEN Al STO
END » »

Summary: HPUTRHputs the given sub-array into the given array,
overwriting the contents of the array with the contents

of the sub-array. An index specifies the position in the

array at which the upperleft corner ofthe sub-array will

134 Chapter 5: Array Utilities

Examples:

Inputs:

Outputs

Errors:

Notes:

Editing Routines

be located after the operation. This index may be a real

number if the destination array is a vector. If the des-

tination is a 2-dimensional array and the index is a real

number rather than a list, it is taken to mean the first

column of that row. The entire sub-array must fit into

the destination array or an error will occur.

STD [C1 2310436 1789 11]
{22 3>[L oo lL 6B 1] APUTA
Result: [[1 23 10 48060 1 766 1]

STDC 1234121068 8 1ARPUTA

Result: [1 6 8 4 1

Level 3 — any object that evaluates to an array — the

destination array.

Level 2 — any object that evaluates to a list or real

number — the index.

Level 1 -an object evaluatingto an array-the sub-array.

Level 1 — if the Level-3 input was a name, nothing is

returned, but the modified array is stored in that name.

Otherwise, the modified array is returned.

Too Few Arguments will occur if the stack con-
tains fewer than 3 objects.

Bad Araument Type will occurifany ofthe argu-

ments fail to reduce to their prescribed values.

Bad Argument Value willoccurifthe index does

not fall within the destination array.

None.

135

OverwriteA Column In An Array:

APUTC (1434082)

« * ACV «A EVAL
TRN C V EVAL ARRY=

LIST» 1 == 1 IFT 2
+LIST *ARRY TRH

RPUTR IF DUP SIZE

DUP SIZE 1 == THEN 1
+ RDM ELSE DROP END
TRMN IF A TYPE DUP 6
== SWAP ¢ == OR THEM
A STO END » =»

Summary: HPUTC will overwrite the specified column in the des-

136

tination array with the given column array or vector.

The column index is rounded before use and must then

be a real number between 1 and the number ofcolumns

inthe destination array. The column arraymust contain

only 1 column and have the same number ofrows as the

destination array. Ifthe destination array is named and

its nameis used, the resulting array will be stored in

that name. A vector is allowable as the column array,

since itis mathematically equivalent. Forexample, [1

2 3 Jand[[1 JL 2 IC 3 11 areboth valid.

Chapter 5: Array Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

STDIL1 2103410361120 086

@ 1 AFPUTC

Result: [[L 1 8 10 2 6 IL 3 @ 11]

STD [LC 1 234 11300 8 1 APUTC
Result: [[1 2 © 4 1]

Level 3 — any object that evaluates to an array — the

destination array.

Level 2—-any object that evaluates to arealnumber—the

column index.

Level 1 — any object that evaluates to a column array or

vector — the column vector.

Level 1 —-ifthe Level-3 input object was a name, nothing

is returned, but the modified array is stored in that

name. Otherwise, the modified array is returned.

Too Few Araument s will occurif the stack con-
tains fewer than 3 objects.

Bad Argument Type will occurifany ofthe input

objects fail to eveluate to their prescribed types.

Bad Argument Yalue will occur if the column

index is out of bounds or if the number of rows in the

column array does not equal the number of rows in the

destination array.

APUTC uses APUTR.

137

Summary:

138

OverwriteA Row InAn Array:

APUTR @415836)

« EVAL SWAP +NUM .5
+ IP>AVR<«A
EVAL ARRY=> LIST» 1
== 1 IFT + NM «NM
¥ LIST V ARRY>

LIST» IF 2 = ROT 1 =
OR RN > OR OVER M =

OR R 1 < OR THEM

[C11
2 GET EMD =+LIST OVER
RM#+*1+HNM=* SUB
+ SWAP 1 R 1 - M %

SUB SWAP + LIST»
DROP { N > IF M1 =
THEN M + END +RRRY
IF A TYPE DUP & ==
SWAP == OR THEN RA
STO END » » >»

APUTR overwrites the specified row in the destination

array with the given row array. The row index is round-

ed before use and must then specify an existing row in

the destination array. The row array must have the

same number ofcolumns as the destination array. Ifthe

destination array is a name, the resulting array will be

Chapter 5: Array Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

stored in that name. Avector is allowed for the destina-

tion array, since it is equivalent to column array. Butin

such cases, only the first representation will be returned

by APUTR, despite the input format.

STD [C1 2 IL 2 4 IL 3 6 11
2 [[8 8 11 APUTR
Result: [LC 1 2 JL 8 6 1L 5 & 11]

STD L 1 23412TLC 99 11 APUTR

Result: [1 99 2 4 1]

Level 3 — any object that evaluates to an array or vector

— the destination array.

Level 2—anyobject that evaluates to a real number—the

row index.

Level 1 — any object that evaluates to a row array.

Level 1 — if the Level-3 object was a name, nothing is

returned, but the modified array is stored in that name.

Otherwise, the modified array is returned.

Too Few Araument s will occurif the stack con-

tains fewer than 3 objects.

Bad Argument Type willoccurifany ofthe input

objects fail to evaluate to their prescribed types.

Bad Argument Value will occur ifthe row index
is out of bounds, if the numbers of columns in the row

array and destination array do not match, or if the row

array is given as a vector.

None.

139

Reverse The Order Of The Elements

In An Array:

AREY (372332)

« + A « A EVAL ARRY=
DUP LIST® 2 == « * »

IFT + SH «1 HN FOR
I I ROLL NEXT S
+ARRY » IF A TYPE

DUP & == SWAP 7? ==
OR THEM A STO EMD =»
®

Sort AnArray By Element:

ASORT (1846789)

€ + A « A EVAL ARRY>
LIST+ 1 == 1 IFT + R
C«1RC=#*QSRT {R
+ IF C1 = THEN C +
EMD *ARRY » IF A
TYPE DUP & == SWAP 7
== OR THEN A STO EMD
» ®

Summary: HREY reversesthe order ofthe elements ofthe specified

array. ASORTsorts the elements ofthe specified array

140 Chapter 5: Array Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

inrow-majorand ascending order. Ifthearrayisnamed,

and the name is used, the resulting array is restored in

that name. Since a vector is equivalent to a column

array, its format is valid also for the input array. In such

cases,only the first format will be returned by ASORT,

regardless of the input format.

STD CC 1 2 IC 3 4 11 AREY
Result: [[L 4 3 1[L 2 1 11]

STD L 3142 2 1 ASORT

Result: [1 2 3 4 3 1]

Level 1 — any object that reduces to an array or vector —

the array or vector whose elements are to be reversed or

sorted.

Level 1 — if the input object was a name, nothing is

returned, but the modified array or vectoris stored in

that name. Otherwise, an array or vector is returned —

the modified array or vector.

Too Few Object s will occur ifthe stack is empty.

Bad Argument Type will occur if the argument

does not evaluate to an array or vector.

Sortinga®t 1@ 18 2 arrayofrandom integers takes

about a minute. Sorting in descending order can be ac-

complished by applyingAREY after sorting. Sorting in

column major order can be accomplished by transposing

the array both before and after sorting.

141

142

Sort An Array By Column:

ASRTC 2421232)

« NUM + A C « A

EVAL ARY*R =» D « 1
CF DO 1D 1- START
IF DUP2 C GET SWAP C
GET SWAP > THEN SWAP
1 SF END D ROLLD
NEXT D ROLLD UNTIL 1

FC?C END D R+ARY =»
IF A TYPE DUP & ==
SWAP ¢ == OR THEM A
STO END » =»

SortAn Array By Row:

ASRTR 2422032)

« NUM + AC « RA

EVAL ARY2C +» D « 1
CF DO 1D 1 - START
IF DUP2 C GET SWAP C
GET SWAP > THEN SWAP

1 SF END D ROLLD
MEXT D ROLLD UNTIL 1
FC?C END D C»RRY *
IF A TYPE DUP ==
SWAP == OR THEN RA
STO END » x»

Chapter 5: Array Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

ASRTC sorts the rows of the given array in ascending

orderby the indexed column. ASRTR sorts the columns

in ascending order by the specified row. If the name of

an array is used, the resulting array is restored in that

name. The column/row index is rounded before use.

STD [CL 51 1042 10 36 1] 1 ASRTC
Result: [[36 10 4 2 IL 3 1 11

STD [LL 31 10 42 10 36 111 ASRTR
Result: [CL 1 3 IL 2 4 IL 6 3 11

Level 2 — any object that evaluates to an array — the

array to be sorted.

Level 1-anyobject that evaluates to a real number—the

column/row specifier.

Level 1 -Ifthe Level 2 object was a name containing an

array, nothing is returned to the stack, but the sorted

arrayis stored in that name. Otherwise it is returned.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects, or if the Level-2 object is a

vector or row array.

Bad Argument Type will occurifthe input objects

do not evaluate to their prescribed types.

Invalid Dimension will occur if the Level-2

object is a row-array or vector.

ASRTC usesARY*R andR+ARY. ASRTR usesARY*C

and CARY. ASRTC and ASRTR both use user flag 1

to indicate a sorted array.

143

144

Convert An Array's Index List

To A Numeric Index:

RI+*N &75494)

« EYAL LIST» 1 ==
IFT ROT EVAL LIST» 1
== 1 IFT 4 DUPN SWAP
4 ROLL < ROT ROT >
OR *NUM « { > 2 GET
¥» IFT SWAP DROP ROT
1 - ¥ + 3NUM »

ConvertA Numeric Index

To An Array's Index List:

AN+1 (14481086)

« NUM IP SWAP EVAL

LIST+ IF 2 == THEN 3
DUPM # > 2NUM « { 2
2 GET » IFT SHAP
DROP *NUM + N C « N
Cc ~ CEIL C OVER 1 -
N SWAP - 2 » ELSE

NUM OVER < « { 2 2
GET » IFT 1 END

+L IST »

Chapter 5: Array Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

AI+N generates an integer index for the given array

size, equivalent to the given index list. AN+*I does the

converse, generating anindexlist froman integer index.

A vector's (a single-column array's) index may be either

in the form of £ row Yor{ row 1 J.

3

ARI+N Result: 2

>] Result:{ 2 1 2

6 + 8 AN>I Result: € 8 >

Level 2 — any object that reduces to a list — the dimen-

sions of the array in question.

Level 1 — any object that reduces to a list (for AI *N) or

a real number (for AN*1I) — the index to be converted to

a real number (for HI #M) or a list (for ANI).

Level 1- a real number (for AI #M) — the (row-major)

single-value index equivalent; or a list (forANI)—the

row-column list index equivalent.

Too Few Araument s will occur if the stack con-

tains fewer than 2 objects.

Bad Argument Type will occur if either Level 2
contains an object that is not a list or ifLevel 1 contains

an object type other than that ofthe input requirement.

Bad Argument Yalue will occur if the specified

index is out of bounds for the specified array.

None.

Miscellaneous Operations 145

146

PerformAn Operation On Each Element

OfAn Array:

AOP (1361863)

« + AF « A EVAL

ARRY+ + § « § LIST»
2 == «&« % » IFT + N «

1 HN START F NUM N

ROLL MEXT * S +ARRY
IF RAR TYPE DUP & ==
SWAP 7 == OR THEN AR
STO END » » »

PerformAn Operation On Each Column

OfAn Array:

ROPC (718786)

RF « RA ARY2C +
1 HN START F +NUM

OLL NEXT N C+ARY
IF A TYPE DUP & ==

SWAP ¥ == OR THEN A
STO EMD » » =»

& >
N «

MR

Chapter 5: Array Utilities

PerformAn Operation On Each Row

OfAn Array:

ROPR (#22381)

€« + AF « A ARY?R =»

N « 1 N START F NUH

N ROLL NEXT N R+ARY

IF A TYPE DUP & ==
SWAP == OR THEN A
STO END » » >»

Summary: HOP performs given operation on every element ofthe

given array, replacing each element with the element

resulting from the operation. AOPC performs a given

operation on every column ofthe given array, replacing

each column arraywiththe column array resultingfrom

the operation. AOPR performs a given operation on

every row of the given array, replacing each row array

with the row array resulting from the operation. If the

name ofan array is used, the resulting array will be re-

stored in that name.

Examples: STD [[1 2 IL 3 4 11 « 1 - » AOP

Result: [L 8 1 IL 2 3 11]

STDL12341«3 x '®R2-1' » AOP

Result: [8 3 8 13 1]

Miscellaneous Operations 147

Inputs:

148

'A' 'B' AOP

Result: (assumingthat ' A' contains an array and that

'B' contains an operation, ' A' is modified, but noth-

ing is left on the stack.)

'@' « IF DUP 4 < THEM DROP 4 END =»

ROP

Result: All elements of the array, '@', with values

greater than 4 will be changed to 4.

[C121 34 1] «DUP ABS ~ *
ROPC 2 FIX
Result: [[8.32 8.45 1[6.93 8.89 11]

STD [CL 1 2 10 34 1C 56 11 « ARRY=
+ @ « ROT @ » »ARRY » ROPC
Result: [CL 3 4 1L 36 10 1 2 11]

[C121 34 11 «DUP ABS ~ »

AOPR 2 FIX

Result: [[8.43 6.89 1[8.60 6.80 11]

STD IL 1 2310436 11 «DUP 1 GET
%» AOPR
Result: [L 1 2 2 JL 1 1.23 1.5 11

Level 2 — any object that evaluates to an array — the

array to be operated upon.

Level 1 -any object that evaluates to a program or user-

defined function — the operation to be used.

Chapter 5: Array Utilities

Outputs:

Errors:

Notes:

Level 1 — if the Level-2 input was a name, nothing is

re-turned, but the modified array is stored in that

name. Otherwise, the modified array is returned.

Too Few Argument s will occur if the stack con-

tains fewer than 2 objects.

Bad Argument Type will occur if either of the

arguments is not of the prescribed type, or if the opera-

tion does not produce a real number (for HOP), a vector

(for AOPC) or a row array (for AOPR).

Operations on array columns or rows that don't produce

array columns or rows (respectively) would better be

served by use ofLOP (see Chapter 7):

ARY=*C +LIST « op * LOP or
ARY+*R *LIST « op * LOP

The results form a list and thus do not need to conform

to an array structure. This list can then be transformed

into other data objects ifappropriate: LIST+ *ARRY

Note that this would produce a columnvector as a result

(which is not necessarily what you want), and require

that the results of¥ OP # be numeric.

AOPC usesC*ARY andARY=*C. AOPR usesR*ARY

and ARY*R.

Miscellaneous Operations 149

Find The Position OfA Specified Real Element

Summary:

Examples:

150

Within An Array:

APOS (#17463)

« NUM 2 ®* 2 ~ NUM
+ N « EVAL ARRY=> + S

« § LIST» 2 == « #¥ %
IFT »LIST N POS IF

DUP THEN S SWAP AN+I
END » » »

APOS finds the position of the first occurrence of the

specified real number within the given array or vector

(searching in row-major order). Iffound, the position is

returned as a list-index ({ row column 2).
Otherwise, 8 is returned.

STD LC 2 4 1C 5 6 11 5 APOS

Result: € 2 1 >

STD L 343214 APOS

Result: £ 2 2

'A' 'CSRCDY' APOS
Result: € 9 14 > (forexample-if 'A','C"', and

'D' are defined)

STD L 1 42318 APOS Result: 8

Chapter 5: Array Utilities

Inputs: Level 2 — any object that will evaluate to an array or

vector.

Level 1 — any object that will reduce to a real number.

Outputs: Level 1-iffound, a list —the position ofthe target value;

otherwise, 8.

Errors: Too Few Argument s will occur ifthere are fewer

than 2 objects on the stack.

Bad Argument Type willoccurifeitherargument

does not reduce to its prescribed value.

Undef ined Hame will occur if the Level-1 object

contains an undefined name.

Notes: APOS uses AMI.

Miscellaneous Operations 151

Array Utilities: A Discussion

The Main Idea

Arrays as data objects — as opposed to as mathematically defined

matrices — are rather under-represented on the HP-28S,judging from

the tools provided to manipulate them. For instance, arrays of num-

bers are usually thought ofin terms ofrows and/or columns ofdata, but

the HP-28S gives you no built-in commands with which to build or

decompose arrays in either a column-wise or row-wise fashion.

The utilities in this chapter are intended to remedy this situation:

their main emphasis to allow manipulation of arrays as data objects,

not as matrices. Thus there are utilities to insert, delete, extract and

overwrite (i.e. GET and PUT) rows and columns, exchange, sort by, or

operate on elements, rows and columns, build and decompose by row

or column, extract a subarray, etc.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that

is listed in your current PATH. The easiest way to énsure that this is’

the case is to place each of the programs in the HOME directory — the

ultimate parent of all other directories.

152 Chapter 5: Array Utilities

Some Observations

Arrays vs. Vectors

Both mathematically and as objects on the HP-28S, vectors can be

considered tobe a type ofarray: In math, a vector is a one-dimensional

array and may either be a row-vector or a column-vector. However, on

the HP-28S, a vector object is always a column-vector, represented by

numbers within single brackets(L 1 2 3 J). The dimension ofa

vector object, asreturned bythe 5S I ZE command, is{ » Z*,indicating

that the vector is one-dimensional and has n elements.

This representation of a column-vector as a vector object is simply

intended to make life easier for you. The alternative form of column

vectoris [LL 1 1 0 2 1 [3 11], where the single column is

represented as a list of one-element rows. However, on the HP-28S,

this representation is anarray object— not a vector object. Accordingly,

itis represented as a list ofnumbers within double brackets (LL 1 2

3 11), and its dimension is returned as{ 1 »n J} where nis the

number of elements.

This would all be merely interesting trivia if it were not that certain

built-in HP-28S commands function only on vector objects and not on

column-vector arrays (CROSS, for example). On the other hand,

certain "array-ish" commands refuse to take vector objects as argu-

ments (e.g. TRN).

Discussion 153

For this reason, as far as possible, the array utilities make no distinction

between vectors and column arrays. And, in most cases, when the

result of an array utility would be a column array, it is returned as a

vectorbecausevectors are most convenient. It maybehoove you, there-

fore, simply to forget that the HP-28S's column-array format even

exists, using instead the vector form, because these array utilities

allow for that.

Calculations 'In Place"

Many ofthe array utilities allow you the option of providing a named

object as the argument. In that case, the resulting object will be re-

stored in that name object as the end ofthe calculation — and nothing

will be returned to the stack. This feature will work either on global

or local name objects and is intended to be analogous to the working of

the storage arithmetic commands (see the HP-28S's STORE menu).

Although similar, these utilities lack one of the major advantages of

the built-in storage math: Those built-in STORE menu commands will

perform their calculations “in-place” — on top of the contents of the

current array —thereby takingup less storage space than recalling the

contents of the named objects, combining them, then overwriting the

original named object. These utilities must use the latter method.

154 Chapter 5: Array Utilities

Errors And Error Recovery

Each ofthese tools is designed to generate an error when invalid input

isentered—ratherthan continue and generate garbage outputs. When

inputs are questionable (e.g., negative numbers for stack Levels),

these utilities act similarly to the built-in stack commands (arguments

are ignored or treated as 1, whichever makes more sense). When

errors do occur, the stack is usually disrupted, and since the only way

to restore it then is with theUNDO command,it's wisest to keep UNDO

mode (in the MODES) menu) active whenever you these utilities.

Discussion 155

HowYou Might Use These Utilities

When you use an array simply as a convenient object in which to store

and manipulate data (rather than a mathematically significant ob-

ject), you might, for example, want to consider each row or column as

a coherent data set. In that case, it's very useful to be able to mani-

pulate each such data set as a unit.

For example, suppose you're collecting data on a population. Thedata

for each individual is sex (0O=male, 1=female), age in years, height in

inches, and weight in pounds.

First, you would enter the data in that order, asrows in the XDAT array,

using the Z+ command in the STAT menu. Then you can perform the

following computations:

To segregate the males and females, try this: ' ZDAT' 1 ASRTC.

Since 0 is less than 1, the males will be first in the array (the lower

numbered rows).

Likewise, to sort by age, you could do this: ' ZDAT' 2 ASRTC.

To find the first female entry in the already gender-segregated data,

you could do this: ' ZDAT' 1 AGETC 1 ARFOS.

This finds the first occurrence of 1 (female) in the first column (sex).

156 Chapter 5: Array Utilities

Or, to find the median weight, you could use this short program:

"MEDW' (137916)

« 'ZDAT' 4 AGETC

ASORT MZ 2 ~ DUPZ2
GET ROT ROT IP GET +
2 7 ®

To convert the height data from inches to meters, this would work:

'ZDAT' DUP 3 AGETC .8234 * 3 SWAP APUTC

To add a column for marital status and insert it as the new column 2,

you could do it this way: 'ZDAT' 2 ROT ARINSC.

To delete an erroneous entry: ' ZDAT' <number> ADELR.

As you can see, these array utilities provide you with many possib-

lilites for data management within the structure of an array. You can

easily imagine and create other operations on other sorts of data.

Discussion 157

Chapter 6

Character String Utilities

These routines provide convenient, "canned" methods for building/

decomposing, editing, andformatting character strings in the HP-28S.

Asshowninthe followinglist, the 21 programs are organized into three

logical groups, presented alphabetically. Within each group, the pro-

grams are also usually presented alphabetically (by MAME), although

in some cases, certain sets ofprograms may be complementary or oth-

erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page

186, immediately following these program listings.

158 Chapter 6: Character String Utilities

SIP

SPAT

SRPT
STG
+STG

SCUT

SDEL
SINS

SPUT
SLC
suc
SREY
SROT

SRPL

SZAP
SZAPL
SZAFPR

SCTR
sLd
SkJ
SPRDL

SPADR

Contents

Function

Building/Decomposition Routines

Convert An Integer To A String

Generate The LCD Pattern OfA String

Form A String By Repetition OfA String

Split A String Into Characters

Combine A Stack Of Objects Into A String

Editing Routines

Split A String At A Specified Character

Delete A Substring

Insert A Substring

Put A Substring

Convert Uppercase Letters To Lowercase

Convert Lowercase Characters To Uppercase

Reverse The Characters In A String

Rotate The Characters In A String

Replace All Occurrences OfA Substring

Remove All Occurrences OfA Substring

Remove Characters From The Left End

Remove Characters From The Right End

Formatting Routines

Center A String In A Field Of Spaces

Left-Justify A String In A Field Of Spaces

Right-Justify A String In A Field Of Spaces

Pad A String On The Left With Spaces

Pad A String On The Right With Spaces

160

161

162

164

165

167

168

170

170

172

173

174

175

176

177

178

178

180

180

181

184

184

159

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

160

ConvertAn Integer To A String:

SIP 89682)

« NUM IP +NUM RCLF

SWAP STD +STR SHAP
STOF =»

SIP evaluates the object at stack Level 1, takes the

integer portion, then converts that to a string.

123.43 SIF Result: "123"

-15.9682 SIP Result: "-13"
1E-12 SIP Result: "8"

Level 1- a real number.

Level 1 — a character string — the character representa-

tion of the integer portion of the input real number.

Too Few Argument s will occur if the stack con-
tains no objects.

Bad Argument Type willoccurifthe input object

does not reduce to a real number.

Undef ined Mame will occur ifthe input object con-

tains an undefined name.

None.

Chapter 6: Character String Utilities

Generate The LCD Pattern OfA String:

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

SPAT (162163)

« +5TR LCD» SWAP DUP

1 DISP SIZE & *% LCD»
1 ROT SUB SWAP =+LCD
%

SPAT takes a string version ofthe object in stack Level

1 and creates a pattern string suitable for +LCD,

DFAT, orPRPAT. Ifthe original object string is longer

than 23 characters, the resultingpattern stringwill con-

tain only its first 22 characters, plus an ellipsis (wu).

"A" SPAT
Result: "wasu~a!

"123" enter) SPAT
Result: "=B¥@wsbQIIF="IIIo="

Level 1 — the object whose character string representa-

tion is to be used to make a character pattern.

Level 1 — the resulting character pattern string.

Too Few Argument s willoccur foranemptystack.

None.

Building/Decomposition Routines 161

FormA String By Repetition OfA String:

Summary:

Examples:

Inputs:

Outputs:

162

SRPT (796841)

« NUM ABS IP NUM

IF DUP NOT THEN
DROP2 "" ELSE SWAP
EVAL SWAP OVER SIZE
OVER # ROT ROT LN 2
LN » IP 8 SWAP START
DUP + NEXT 1 ROT SUB

END *

SRPT creates a character string by concatenating cop-

ies of the given character string.

"Ha" 12 SRPT

Result: "HaHaHaHaHaHaHaHaHaHaHaHa"

"7" 7? SRPT Result: "7reerere”

"mt "nm! Res It: "rum"

Level 2 —any object that evaluates to a character string

— the string to be the repeat pattern.

Level 1-anyobject that evaluates to a real number—the

number of repetitions.

Level 1 — the resulting character string.

Chapter 6: Character String Utilities

Errors: Too Few Argument s will occur if the stack con-

tains fewer than 2 objects.

Bad Araument Type will occur ifthe arguments

are not reducible to their prescribed types.

Undef ined Name will occur ifthe Level-1 object is

an undefined name.

Notes: Caution should be observed when using something

other than a real number for the repeat value since its

absolute value is taken. Complex numbers and arrays

in particular will probably cause undesirable results.

Building/Decomposition Routines 163

Split A String Into Characters:

STG» (312399)

« *STR DEPTH + D « 1
OVER SIZE FOR I DUP
I DUP SUB SWAP NEXT

DROP DEFTH D - 1 + =»
®

Summary: STG? converts the input object to a string and then

breaks that down into characters, placing them in order

on the stack. The SIZE ofthe original string conversion

is also placed on the stack. Some string conversions may

contain NEWLINE characters at certain points.

Examples: "123" STG? Result: "1" "2" "3" 2

Inputs: Level 1 — the object whose character-string representa-

tion is to be decomposed into its component characters,

which will then be placed onto the stack.

Outputs: Levels 2 to (n+1) — the n characters of the input string.

Level 1 —a real number, n — the number of characters in

the input string.

Errors: Too Few Argument s willoccur for an emptystack.

Notes: A STG+-broken string can be recomposed with +STG.

164 Chapter 6: Character String Utilities

Combine A Stack Of Objects Into A String:

+5TG (284916)

« »NUM IP AES =+MUM

SWAP +5TR 1 ROT 1 -
START SWAP +STR SWAP
+ MEXT »

Summary: STG forms a composite string out ofa number ofitems

from the stack. All stack items are converted to strings

before being added to the resultant string. The number

of items to be used is taken from stack Level 1.

The fractional portion and sign ofthe item count at Level

1areignored. No spaces are placed around stack objects

before they are added to the resulting string; ifdelimiter

characters are necessary, they must be placed explicitly

on the stack in their appropriate positions.

Examples: STD 1 2 3 3 #STG Result: "123"

STD Wg n i n 11] i n + n Wa 1 6 +STG

Result: "€ 1 1 + »"

HAM NE" NCn gt STR

Result: "AEC"

Building/Decomposition Routines 165

Inputs:

Outputs:

Errors:

Notes:

166

Levels 2 to (n+1)—n objects which, after being converted

to strings, will be appended together.

Level 1 — any object that evaluates to a real number, n—

the count of objects to be taken from the stack and

combined into a character string.

Level 1 — a character string — the resulting composite

string.

Too Few Argument s will occur either ifthe stack
is empty or if the number in Level 1 is greater than the

number of other items on the stack.

Bad Argument Type will occur if the Level-1
object is not a real number.

Undef ined Name will occur if the Level-1 object

contains an undefined name.

Caution should be observed when using something

other than a real number for the number ofobjects since

its absolute value is taken. Complex numbers and ar-

rays in particular may cause undesirable results.

Chapter 6: Character String Utilities

Split A String At A Specified Character:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

SCUT (168833)

« NUM SWAP EVAL

SWAP DUP2 1 SWAP 1 -
SUB ROT ROT OVER

SIZE SUB =»

SCUT cuts a character string into two sub-strings. The

break will occur to the left of the position specified.

"HI THERE" 3 SCUT 2 SCUT
Result: "HI" " " "THERE"

Level 2 — any object that reduces to a character string —

the string to split.

Level 1 — any object that reduces to a real number — the

position after the cut.

Level 2 — a string — the characters to the left of the cut.

Level 1- a string — the characters to the right ofthe cut.

Too Few Argument s will occur ifthere are fewer

than 2 objects on the stack.

Bad Argument Type will occurifthe Level-2 ob-

ject does not reduce to a string or if the Level-1 object

does not reduce to a real number.

None.

167

Summary:

Examples:

168

Delete A Substring:

SDEL @e677V)

« NUM ROT EVAL ROT
+MUM ROT + MM « DUP
1 M1- SUB SWRP M 1
+ OVER SIZE SUB + »
#

SDEL deletes a sub-string from the string in stack

Level 3. The sub-string is specified with indices to its

first and last characters (at stack Levels 2 and 1,

respectively). The indexed characters are included in

the deletion. If the sub-string's starting index is less

than 1, 1 is used. If the sub-string's ending index is

greater than the size ofthe source string, the size of the

source string is used. If the starting index is greater

than the ending index, no characters are deleted.

"DELIBERATE" 1 2 SDEL
Result: "LIBERATE"

"TEN CHARS." & 14 SDEL
Result: "TEM CHA"

"123436789" 3 6 SDEL
Result: "12789"

Chapter 6: Character String Utilities

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

Level 3 —any object that evaluates to a character string

— the original string.

Level 2—any object that evaluates toa real number—the

position of the start of the substring.

Level 1-any object that evaluates toarealnumber—the

position of the end of the substring.

Level 1 — a character string — the modified string.

Too Few Argument s will occur if the stack con-

tains fewer than 3 objects.

Bad Argument Type will occur ifthe arguments

do not reduce to the specified types.

None.

169

InsertA Substring:

SINS 363327)

« EVAL ROT EVAL ROT

+NUM 1 - DUPZ2 SWAP
SIZE IF > THEN SLJ

SWAP + ELSE 1 + SCUT
ROT SWAP + + END =»

Put A Substring:

SPUT ©Ge6286)

« EVAL ROT EVAL ROT
NUM 1 MAX IP 1 -
+NUM DUP2 SWAP SIZE

IF > THEM OVER SIZE
- SPADR SWAP + ELSE
1 + SCUT 3 PICK SIZE
1 + OVER SIZE SUE
ROT SWAF + + END »

Summary: SINS inserts a string immediately before the indexed

170

character in the destination string. SPUT replaces

(overwrites) a portion ofone string with another, begin-

ning at the indexed position. Ifthe index is less than 1,

1 is used. If the index or resulting string exceeds the

Chapter 6: Character String Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

SIZE ofthe destination string, the destination string is

padded with spaces or extended.

"ABCDEFGHIJKL" 3 "44" SINS
Result: "AB44COEFGHIJKL"

"ABCDEFGHIJKL" 3 "44" SPUT

Result: "AB44EFGHIJKL"

Level 3 — any object that reduces to a character string —

the original string.

Level 2 — any object that reduces to a real number — the

character position after the insertion point or at the

start of the replacement.

Level 1- any object that reduces to a character string —

the string to be inserted or "put" into the original.

Level 1 — a character string — the newly edited string.

Too Few Argument s will occur ifthere are fewer
than 3 objects on the stack.

Bad Argument Type will occurifthe Level-2 ob-

ject cannot be reduced to a real number.

Undef ined Name will occur if the Level-2 object

contains an undefined name.

SINS uses SCUT and SLJ. SPUT uses SCUT and

SPADR. The order of the inputs is similar to the HP-

28SPLIT command. Use caution when using something

other than a real number for the index value. Complex

numbers and arrays in particular will probably cause

undesirable results.

171

Convert Uppercase Letters To Lowercase:

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

172

SLC 283688)

€ EVAL

"ABCDEFGHI JKLMNOPGRSTUYNWXYZ"

+ SAH«"" 1S SIZE

FOR I SI DUP SUB A

SWAP POS 32 8 IFTE

CHR + MEXT S OR » »

SLC converts a string's uppercase characters to lower-

case. Lowercase and non-alphabetic characters are un-

altered.

"HI THERE" SLC Result: "hi there"

Level 1 — any object that reduces to a character string —

the string to be converted.

Level 1 —- a character string — the converted string.

Too Few Argument s will occurforanemptystack.

Bad Argument Type will occurifthe Level-1 ob-
ject does not reduce to a string.

Undef ined Mame will occur if the Level-1 object

contains an undefined name.

None.

Chapter 6: Character String Utilities

Convert Lowercase Characters To Uppercase:

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

SUC 238128)

« EVAL

"abcdefghijklmnopgrstuvwxyz"

+ SA« "1S SIZE

FOR I S I DUP SUB RH

SWAP POS 95 255 IFTE

CHR + MEXT S AND » 2»

SUC converts all lowercase characters in the given

string to uppercase. Uppercase characters and nonal-

phabetic characters remain unaltered.

"hi there" SUC Result: "HI THERE"

Level 1 —any object that evaluates to a character string

— the string to be converted to all uppercase characters.

Level 1 — a character string — the converted string.

Too Few Araument s will occurforanemptystack.

Undef ined Mame will occur ifthe Level-1 object is

an undefined name.

Bad Araument Type will occur ifthe Level-1 ob-

ject does not reduce to a string.

None.

173

Reverse The Characters InA String:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

174

SREY (2808689)

« EVAL "" SWAP 1

OVER SIZE FOR I DUP

I DUP SUE ROT + SWAP
NEXT DROF »

SREY evaluates the Level-1 object, then reverses the

order of the resulting string's characters.

STD "12343" SREY Result: "54321"
"HI THERE" SREV Result: "EREHT IH"

Level 1 —any object that evaluates to a characterstring.

Level 1 — a character string — the reversed string.

Too Few Argument s willoccurforanemptystack.

Bad Argument Type will occur if the argument

does not evaluate to a character string.

None.

Chapter 6: Character String Utilities

Rotate The Characters OfA String

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

SROT (163882)

« NUM IP MEG +NUM

SWAP EYAL SWAP OVER
SIZE MOD 1 + SCUT
SWAP + »

SROT rotates a string by the specified number ofchar-

acters. A positive rotation index rotates to the right, a

negative to the left (fractional parts of the index are

truncated).

"12345" 1 SROT Result: 51234

Level 2 —any object that evaluates to a character string

— the string to be rotated.

Level 1-anyobject that evaluates to areal number—the

characters to be rotated.

Level 1 — the rotated string.

Too Few Argument s will occur if the stack con-

tains fewer than 2 objects.

Bad Argument Type will occur ifthe arguments

cannot be reduced to their appropriate types.

Undefined Mame will occur if the Level-1 object

contains an undefined name.

SROT uses SCUT.

175

Replace All Occurrences OfA Substring:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

176

SRPL (1248333)

« EVAL SWAP EVAL

DEPTH =» B A MN « IF
DUP A POS THEN WHILE

DUP A POS DUP REPEAT
SCUT A SIZE 1 + OVER
SIZE SUB SWAP B +

SWAP EMD DROP MN

DEPTH START + MEXT
END » %

SRPL searches the object string for every occurrence of

the pattern string, substituting the replacement string.

"123123" "3" "8" SRPL Result: "128128"

Level 3 — the object string.

Level 2 — the pattern string.

Level 1 — the replacement string.

Level 1 — the modified string.

Too Few Argument s will occur ifthere are fewer

than 3 objects on the stack.

Bad Argument Type will occur ifthe arguments

do not reduce to character strings.

SREPL uses SCUT.

Chapter 6: Character String Utilities

Remove All Occurrences OfA Substring:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

ZAP @61386)

« EVAL SWAF EVAL

SWAP "" SRPL =»

SZAP deletes all occurrences of a substring from an-

other string.

"12343" "3" SZAP Result: "12435"
"RYRYXY" "YY" SZAP Result: "Xxx"

"ABCDEF" "Q" SZAP Result: "ABCDEF"

Level 2 — any object that evaluates to a character string

— the original string to be edited.

Level 1 —any object that evaluates to a character string

— the substring to be deleted from the original string.

Level 1 — a character string — the modified string.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type will occur if either of the
arguments fails to reduce to a character string.

SZAP uses SRFL.

177

Remove Characters From The Left End:

SZAPL @79268)

« EVAL NUM CHR SWAP

EVAL SWAP + S «
WHILE DUP NUM CHR S

== REPEAT 2 OVER
SIZE SUB END » >»

Remove Characters From The Right End:

Summary:

178

SZAPR 87608)

« EVAL NUM CHR SWAP

EVAL SWAP + S <«
WHILE DUP SIZE DUP2
DUP SUB S == REPERT
1 SWAP OVER - SUB
END DROP » =»

SZAPL repeatedly removes the specified character

from the beginning of a string until there are none

remaining. SZAPR repeatedly removes the specified

character from the end of a string until there are none

remaining. Only the first character ofthepattern string

is used as a delete pattern.

Chapter 6: Character String Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

ngu un SZAFPL R 1t: ngu

"3331212" "OS" SZAPL Result: "1212"
ngu nn SZAPR Result: ngn

"S5.08008" "8" SZAPR Result: "35."

Level 2 — any object that evaluates to a character string

— the string to be "trimmed."

Level 1 — any object that evaluates to a character string

—the string whose first characteris to be deleted repeat-

edly from the beginning or end of the target string.

Level 1 — the modified string.

Too Few Argument s will occur if the stack con-

tains fewer than 2 objects.

Bad Argument Type will occurifeither ofthe ar-

guments fails to evaluate to a character string.

None.

179

CenterA String InA Field Of Spaces:

SCTR @77644)

« NUM SLAF +STR DUP

SIZE ROT DUP ROT - 2
« IP »NUM IF DUP @ =z
THEM " " SWAP SRPT
ROT + SWAP SLJ ELSE

DROP 1 SWAP SUE END
®

Left-JustifyA String In A Field Of Spaces:

SLJ @21888)

« MUM RBS IP MUM
SWAP +STR DUP SIZE
ROT SWAP IF DUP2 <

THEN DROP 1 SHARP SUB
ELSE - " " SWAP SRPT
+ END »

180 Chapter 6: Character String Utilities

Right-Justify In A Field Of Spaces:

Summary:

Examples:

SRJ @63387)

« NUM ABS IP NUM
SWAP +STR DUP SIZE
ROT SWAP IF DUP2 <
THEN DROP 1 SWAP SUB
ELSE - " " SWAP SRPT
SWAP + END =»

SCTR converts the object from stack Level 2 into a

string and centers it within a specified field of spaces.

Similarly, SLJ left-justifies and SR.J right-justifies the

object within the field. Any fractional portion ofthe field

width value is truncated before use. Ifthe field width is

smaller than the object, the object string is truncated to

fit within the specified field size. Ifthe field size is zero

or less, the resulting string will be empty. NEWLINE

characters are counted when determining the length of

the object. A centered object may be placed one charac-

ter to the left of center, as necessary.

STD 8 7 SCTR Result: " 28 "

STD 8 ¥ SLJ Result: "3 "

STD 8 7 SRJ Result: " a"

Formatting Routines 181

Inputs:

Outputs:

Errors:

Notes:

182

Level 2 — the object to be centered or justified.

Level 1 — any object that evaluates to a real number —

the"field-width."

Level 1 — a character string — the object as a string

centered or justified within a field of spaces.

Too Few Argument s will occur if the stack con-

tains fewer than 2 objects.

Bad Argument Type will occurifthe Level-1 ob-
ject does not evaluate to a real number.

Undef ined Name will occur if the Level-1 object

contains an undefined name.

SCTR usesSLJ. SCTR,SLJ and SRJ all use SEPT.

Caution should be observed when using something

other than a real number for the field-width value, since

its absolute value is taken. In particular, complex num-

bers and arrays will probably cause undesirable results.

Chapter 6: Character String Utilities

Formatting Routines 183

PadA String On The Left With Spaces:

SPADL @3229)

« " " SWAP SEPT SWAP
+STR + »

PadA String On The Right With Spaces:

SPADR (38673)

« " " SWAP SEPT SWAF
+STR SWAP + »

Summary: SPRDL adds the specified number ofspaces to the left

side of a character string. SPADR adds the specified

number of spaces to the right side. If the object to be

padded is not a string,it is converted before padding.

Examples: "HI" 5 SPARDL Result: " HI"

7 7 SPRDL Result: " "
"HI" 5 SPADR Result: "HI "

7 7 SPADR Result: "7 "

Inputs: Level 2 — the object whose string equivalent is to be

padded with spaces.

Level 1 — a real number — the number of spaces to be

added as "padding."

184 Chapter 6: Character String Utilities

Outputs: Level 1 — the padded string.

Errors: Too Few Arguments will occur if the stack con-

tains fewer than 2 objects.

Bad Argument Type will occur if the Level-1
object is not reducible to a real number.

Undef ined Name will occur if the Level-1 object

contains an undefined name.

Notes: SPADL and SPADR use SEPT. Caution should be ob-

served when using something other than a real number

for the "padding number," since its absolute value is

taken. In particular, complex numbers and arrays may

cause undesirable results.

Formatting Routines 185

Character String Utilities: A Discussion

The Main Idea

Character strings are the most versatile data objects provided by the

HP-28S; they can be converted from and to any other HP-28S data

object. They can contain the representations of one or many objects,

and once assembled, their contained object(s) can be sequentially

evaluated using STR+#, just like a program. And of course, strings

have the unique ability to present information to you in your own

language: words.

Such versatility and ability might suggest that a rather large collec-

tion of string-related commands is surely built into the HP-28S. Not

so — there are very few. However, with these powerful few, all of the

possibilities inherent in character strings can be realized by writing a

handful of relatively straightforward programs — and that's what this

collection of utilities is all about.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that

is listed in your current PATH. The easiest way to ensure that this is

the case is to place each of the programs in the HOME directory — the

ultimate parent of all other directories.

186 Chapter 6: Character String Utilities

Some Observations

As shown in the list of contents (page 159), each of the string utilities

belongs basically to one of several different functional groups:

Building/Decomposition: building and tearing down strings from

and to characters and objects ofother types — including one command

(SPAT) that gives you the ability to build a display pattern from a

character string (the HP-28S provides a method of capturing and

redisplaying its LCD using character strings, so manipulation of the

pattern string can allow you to build interesting displays).

Editing: These are the commands that perform actual physical modi-

fications to a string object: adding and deleting characters, splitting

and concatenating strings, inserting and overwriting characters in a

string, replacing and removing substrings, trimming excess charac-

ters, reversing and rotating a string.

Formatting: Any object type can be converted to a character string,

and because the content of a string is virtually unrestricted, you can

create representations ofthe objects which would otherwise be impos-

sible. Objects canbe labelled, positioned within fields ofspaces, special

characters can be added, extraneous characters removed, etc.

Discussion 187

Notes About Conversions

Conversions of objects to strings depends on current system modes,

among other factors. The conversion of real numbers (or compound

objects containing real numbers) to strings uses the current display

format. Thus2 FIX 1.2345 *STR gives "1.23" and then

STR=+ returns 1.23 regardless of the current display format. In

other words, information is lost.

Other objects, like binary integers, are converted using the current

base and word size, and these forms are static regardless ofhow these

system states may have been altered since their conversion.

Another less obvious artifact of conversion is that large objects like

programs are converted to strings using the form they would take

during an EDIT or VISIT, including embedded NEWLINE characters.

Thus,[LL 1 JL 2 1] wouldbecome" [CL 1 1s [2 11", for

example, when converted to a string in STD display mode (regardless

of the current multiline mode.)

Errors And Error Recovery

Each ofthese tools is designed to generate an error when invalid input

isentered—ratherthan continue and generate garbage outputs. When

errors do occur, the stack is usually disrupted, and since the only way

to restore it then is with the UMDO command,it's wisest to keep UNDO

mode (in the MODES) menu) active whenever you these utilities.

188 Chapter 6: Character String Utilities

How You Might Use These Utilities

Sometimes the best explanation is simply a set of examples. Here is

such a set (you'll notice that in some cases, it's most convenient to use

these String utilities in concert with some of the List utilities from

chapter 7):

How manyE's are in a given string? To find out, you could do this (the

LSORT routine used here is from chapter 7):

STG+ »LIST LSORT LIST+ #STG
DUP "E" POS SCUT

SREY DUP "E" POS SCUT SIZE

To convert a string to a list ofcharacter codes, try this (the LOP routine

is from chapter 7):

STG+ »LIST « NUM *» LOP

Toconvert "& ft 2 374 in" to areal number of inches, here's

one method:

n ft u "xin SEPL n in" mn SEPL

nom onguw cpp win SLIAP + STR EVAL

Discussion 189

To convertt. B23E23 to "6. 823%187(23>", youcould do this:

STD »STR
"E™"® "eig~(" SREPL man +

This could be a handylittle program to have, ifyou wanted to nameit,

right?

To convert every occurrence of*MUM in an object to EYAL try this:

STR ny un u " SRPL

" aNUM " " EVAL " SRPL STR=.

The ® you see here is the NEWLINE character. Notice that you use

spaces to bracket the match string, so that patterns like ' ¥*MUM'

don't match.

Notice also that all NEWLINE's (®'s) are converted to spaces first

because *MUM might occur next to one, in which case you would

otherwise need to search for and replace " *NUM ","=s3NUM ",

" 3NUM=" and "=+NUM=" as special cases.

190 Chapter 6: Character String Utilities

You can break up an arbitrary string into individual "words," with a

little routine such as BREAK (717843):

« "af UW SRPL WHILE

DUP " " POS REPEAT
n n n n SRFL END

" " 34 CHR DUP +

SRPL 34 CHR SWAP
OVER + + DEPTH + D «

STR+ D » DEPTH SWAP
- %

Or, suppose you wanted to display a set of eight numbers in two

columns in the display. Here's a routine, DISP8 (187922), to do

that:

« 1 4 START 8 ROLL

12 SLJ 8 ROLL 11 SRJ
"s" + NEXT + + + + +

+ + 1 DISP »

Note that not all display formats will work here (you might also try

replacing SLJ and SRJ with SCTR).

Discussion 191

Chapter 7

List Utilities

These routines provide convenient, "canned" methods for building/

decomposing, editing, and operating on lists in the HP-28S.

As showninthe followinglist, the 19 programs are organized into three

logical groups, presented alphabetically. Within each group, the pro-

grams are also usually presented alphabetically (by MAME), although

in some cases, certain sets ofprograms may be complementary or oth-

erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page

224, immediately following these program listings.

192 Chapter 7: List Utilities

Name Function Page

Building/Decomposition Routines

AL Convert An Array To A List 194

L+A Convert A List To An Array 195

LRPT Form A List By Repetition OfAn Element 197

Editing Routines

FLTR Filter A List With A Procedure 198

LCUT Split A List At A Specified Point 200

LDEL Delete The Specified Sublist 202

LER Exchange Elements Within A List 204

LINS Insert An Object Into A list 206

LPUT Put A Sublist Into A List 206

LREY Reverse The Order Of The Elements 209

LROT Rotate The Positions Of The Elements 210

LRPL Replace All Occurrences OfAn Element 212

LSORT Sort A List By Element 214

LZAP Remove All Occurrences OfAn Element 216

Miscellaneous Operations

ENG Add An Element To The End OfA Queue 218

UHR Remove The First Element From A Queue 218

LOP Perform An Operation On Each Element 220

FOP Remove The Last Element From A Stack 222

PLUSH Add An Element To The Bottom OfA Stack 222

Contents 193

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

194

Convert An Array To A List:

A+L (183691)

« EVAL ARRY+ + D « D
LIST+ IF 2 == THEM #*
END 2LIST D » »

A-+L converts the given array or vector into a list ofits

elements, in row-major order. A second list will also be

returned, containingthe size informationfrom the origi-

nal array so that the array can be reconstructed.

STD CC 1 2 IC 3 4 11 RA=L

Result: { 1 234 {222

STD L 1234 1AL
Result: { 1 234 >{ 4

Level 1 -Any object that evaluates to an array or vector

— the array to be converted.

Level 2 — a list — the elements of the original array.

Level 1 — a list — the original dimensions of the array.

Too Few Argument s will occurforanemptystack.

Bad Argument Type will occur if the argument

does not evaluate to an array or vector.

None.

Chapter 7: List Utilities

Summary:

Examples:

Inputs:

Convert A List To An Array:

L+A @92837)

« EVAL SWAP EVAL + D
L « L SIZE D LIST»

IF == THEN #* END

IF = THEM € > 1 GET
END L LIST+ DROP D

+ARRY » *

L+A converts the given list ofnumbers into an array or

vector ofthe elements from the list (in row-major order).

Asecond list mustbe given, containingthe size informa-

tionoftheresultingarray,ie.,{ rows columns 2X.

STD{ 1234 {22 L*A

Result: [CL 1 2 IL 3 4 11]

STD {1234 {4 > L>A
Result: [1 2 3 4 1

Level 2 — any object that evaluates to a list of real num-

bers — the list to be converted.

Level 1 — any object that evaluates to a list — the list

containing the dimensions of the desired array.

Building/Decomposition Routines 195

Outputs:

Errors:

Notes:

196

Level 1 —an array or vector, depending on the specifica-

tion — the object just converted from the input list.

Too Few Arauments will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type will occur ifthe arguments

do not evaluate to lists.

Bad Argument Yalue will occurifthedimensions

of the size list do not correspond to the number of ele-

ments in the element list.

None.

Chapter 7: List Utilities

FormA List By Repetition OfAn Element:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

LRPT @92768)

€ NUM .3 + FLOOR =»

ENC ZIFNL2
THEN 1 N START E +

NEXT END » »

LRPT creates a new list through an indexed repetition

of a given element or list. Any fractional portion of the

repetition index is rounded before use. If a list is used

as the repeated object, the resulting list is formed by

repeating all of the objects in the repeat list, in order.

STD 'A' 3.6 LRPT Result: { AAR AA

STD "HI" 8 LRPT Result: { 2
STD {1 23 > 2 LRPT

Result: € 1 2312 3 2

Level 2 — any object — the object to be repeated.

Level 1 — a real number value — the repetition index.

Level 1 —a list — that formed by repetition ofthe object.

Too Few Argument s will occur if the stack con-

tains fewer than 2 objects.

Bad Argument Type willoccurifthe Level-1input

object does not evaluate to a real number.

None.

Building/Decomposition Routines 197

Summary:

Examples:

198

Filter A List With A Procedure:

FLTR (1987293)

€ + lo. toe «0 31
l1.. EVAL SIZE IF DUP
THEN FOR i.. 1l..
EVAL i.. GET IF DUP
t.. EVAL THEN 1

+LIST + ELSE DROP
END NEXT ELSE DROPZ

END IF 1.. TYPE DUP
& == SWAP 7 == OR
THEN 1.. STO END » =»

FLTR will filter all objects out of a list that fail a user-
defined test procedure. Only those elements that pass

the test (i.e. return a 1 rather than a @ to stack Level 1)

will be used to form the return list. If the list is stored

in a name and that name is used, the resulting list will

be stored in that name.

STD{ 1234367 «4%» FLTR

Result: { 1 2 3 2

STD {S678 9108 >» «+ X 'IFTE
(X"2<58,1,8>' » FLTR

Result: { 5S 6 7 2

Chapter 7: List Utilities

STD { A4 £1 > (2,2) 2

€ TYPE 5 == 2» FLTR

Result: € € 1 > 2

Inputs: Level 2 — any object that will evaluate to a list — the list

to be filtered.

Level 1 — either a program or a user-defined function

that takes one argument from the stack and returns

either a 1 or 0 to the stack — the filtering test.

Outputs: Level 1 — if a name containing a list was given as the

Level-2 argument, the resulting list will be restored in

that name. Otherwise, the filtered list is returned.

Errors: Too Few Arguments will occur if the stack con-

tains fewer than 2 objects.

Bad Argument Type willoccurifeitherthe Level-

2 object is not a list or the test procedure in Level 1isin-

compatible with an object in the list.

Unpredictable errors will occur if the Level-1 object

is not a program or user-defined function, if the test

takes more than one object from the stack, or ifthe test

returns more than one object to the stack.

Notes: The local names, 1. «,t..« and 1. . were chosen to

reduce the chances of conflicts when operations such as

4 STR+* * are applied to lists of strings. Therefore,

avoidusingl..,t.. andi. . asglobalnamesinyour

own programming.

Editing Routines 199

SplitA List AtA Specified Point:

LCUT 163719)

€ NUM =» L E «€ L

EVAL DUP 1 E 1 - SUB

SWAP E OVER SIZE SUB
» ®

Summary: LCUT cuts a list from stack Level 2 into two sub-lists.

The point ofthe break is specified by the real number in

Level 1. The list will be split between the specified

element and the element to its left.

Examples: STD { 1 2 3 4 3 > 4 LCUT

Result: € 1 2 3 > C 4 3 2%

Inputs: Level 2 — any object that evaluates to a list — the list to

be split.

Level 1-anyobject that evaluates to a real number—the

point, n, in the list before which the split is to be made.

Outputs: Level 2 — a list — the (n-1) elements of the original list

which were to the left of the cut.

Level 1 —a list — the (SIZE-n+1) elements ofthe original

list which were to the right of the cut.

200 Chapter 7: List Utilities

Errors: Too Few Argument s will occur ifthere are fewer

than 2 objects on the stack.

Bad Argument Type will occurifthe Level-2 ob-

jectis not alist or the Level-1 object is not a real number.

Notes: None.

Editing Routines 201

Summary:

Examples:

202

Delete The Specified Sublist:

LDEL (#88391)

« + L NM<«L EVAL

DUP 1 N +NUM 1 -
+NUM SUB SWAP M +NUM

1 + *NUM OVER SIZE
suB + IF L TYPE DUP

7 == SWAP & == OR
THEN L STO END » =»

LDEL will delete the specified element or sub-list of

elements from the given list. Two indices are required:

the first element to delete and the last elementto delete.

All elements between and including these indexed ele-

ments are deleted. Ifthe beginning index is less than 1,

lis used. Likewise,if the ending index is greater than

the size of the list, the size of the list is used. If either

index is non-integer, the value is rounded. If the list is

named and the name is used, the modified list is re-

stored in the name.

STD {1 23456 1 3 LDEL

Result: { 4 5 6

{ ABCDEF > 35 LDEL

Result: £{ AB F >

Chapter 7: List Utilities

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

STD € "HI" A 4 > 'L' STO 'L' 8 3
LDEL L Result: { "HI" A

STD {123456 24108 LDEL
Result: ¢ 1 2 3 >

Level 3 — any object that evaluates to a list — the list to

be edited.

Level 2—anyobject that evaluates to arealnumber—the

index of the beginning of the sublist to be deleted.

Level 1-anyobject that evaluates to a real number—the

index of the end of the sublist to be deleted.

Level 1 -ifthe Level-3 objectwas a name that contained

a list, the result is stored in that name. Otherwise a list

is returned — the newly-edited list.

Too Few Arguments will occur if the stack con-

tains fewer than 3 objects.

Bad Argument Type will occurifthe input objects
do not evaluate to their prescribed types.

None.

203

Exchange Elements WithinA List:

Summary:

Examples:

Inputs:

204

LEX (F88343)

« NUM SWAP NUM + L

MMN<«L EYAL DUP DUP
N GET SWAP M GET ROT
MN ROT PUT M ROT PUT
IF L TYPE DUP & ==

SWAP ¥ == OR THEN L
STO END » x»

LEX exchanges the positions of the two specified ele-

ments within the given list. If either index is non-

integer, the value is rounded before use. If the name of

a list is used, the resulting list is restored in that name.

CABCDEF >16 LEX
Result: { FB CDER >

STD {436 > 'L' STO 'L' 2 1
LE= L Result: { 3 4 6 2

Level 3 — any object that evaluates to a list — the list to

be edited.

Level 2—any object that evaluates to a real number—the

index of one of the elements to be exchanged.

Level 1—-any object that evaluates to areal number—the

index of the other element to be exchanged.

Chapter 7: List Utilities

Outputs: Level 1 -if the Level-3 object was a name containing a

list, the result is stored in that name. Otherwise, a list

is returned — the newly-edited list.

Errors: Too Few Arguments will occur if the stack con-

tains fewer than 3 objects.

Bad Argument Type willoccurifthe input objects

do not evaluate to their prescribed types.

Bad Argument Yalue will occur if either of the

indices is out ofbounds for thelist.

Notes: None.

Editing Routines 205

Summary:

206

Insert An Object Into A list:

LINS (389339)

« + L NS «LN LCUT

S SWAP + + IF L TYPE
DUP & == SWAP 7 ==
OR THEN L STO END »
»

Put An Object Into A List:

LPUT (313346)

« + LLNS « L NLCUT
S SWAP OVER SIZE 1 +
LCUT SWAP DROP + +
IF L TYPE DUP ==
SWAP == OR THEN L
STO END » =»

L INS inserts an object into a list at the specified loca-

tion. Ifthe inserted object is another list, all ofthat list's

objects will be inserted, in order, at the indexed location.

LPUT overwrites a list with the contents ofanother list,

starting at the indexed location. Ifthe index has a frac-

tional portion, it will be rounded before being used. If

Chapter 7: List Utilities

Examples:

Editing Routines

the index is less than 1, 1 will be used. If the index is

greaterthanthesize ofthe list, the size ofthe list is used.

If the objects being inserted or placed would write past

the end of the destination list, the destination list is

extended. If the destination list's name is used, the re-

sulting list will be restored in that name.

STD £1 2 3 > 2 15 LINS

Result: { 1 153 2 3

STD € 1 2 3 > 8 13 LINS

Result: { 1 2 3 13 2

STD € 1 23 >2{ 436 > LINS
Result: { 1 4 36 2 3 2

STD {123 232 { € 13 > > LINS
Result: { 1 € 15 > 2 3 2

STb{ 12343 3>8{ABC > LPUT
Result: { ABC 4 3 32

STD{ 12345 2>1{{ABC > LPUT

Result: { A BC 43 >

STD {12343 >3{ABC LPUT

Result: { 1 2 ABC 2

ST {12343 >4{ABC > LPUT

Result: { 1 2 3 ABC 3%

207

Inputs:

Outputs:

Errors:

Notes:

208

STD {12343 6 { ABC > LPUT

Result: £ 1 2 34 5ABC 2

Level 3 — any object that evaluates to a list — the list to

be edited.

Level 2—anyobject that evaluates to a real number—the

insertion/replacement point.

Level 1 — (for LINS) any objects — the objects to be

inserted, or (forLPUT) any object that evaluates to alist

— the replacementlist.

Level 1 —ifthe Level-3 object was the name ofa list, the

result is stored in that name and nothing is returned to

the stack. Otherwise, the newly-edited list is returned.

Too Few Argument s will occur if the stack con-

tains fewer than 3 objects.

Bad Argument Type willoccuriftheinput objects

fail to evaluate to their prescribed types.

LINS and LPUT both use LCUT.

Chapter 7: List Utilities

Reverse The Order Of The Elements:

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

LREVY (338639)

« + L « L EVAL LIST»
+ N« IF HN THEM 1 N

FOR I I ROLL MEXT

END N LIST » IF L
TYPE DUP 6 == SWAP 7

== OR THEN L STO END
» ®

LREY reverses the order of the elements within a list.

If the name of a list is specified, the resulting list is re-

stored in that name.

STD { 1 2 3 > LREY Result:{ 321 2

Level 1 — any object that evaluates to a list — the list

whose elements are to be reversed.

Level 1-ifthe input object was a name containing a list,

the result is stored in that name, and nothing is re-

turned to the stack. Otherwise, a list is returned — the

input list with its elements reversed.

Too Few Argument s will occurforanemptystack.

None.

209

Rotate The Positions Of The Elements:

Summary:

Examples:

210

LROT ©24938)

« + LN«L EVAL N
NUM .3 + FLOOR NEG
+NUM OVER SIZE MOD 1

+ LCUT SWAP + IF L
TYPE DUP & == SWAP 7

== OR THEN L STO END
» ®

LROT rotates the positions of elements of a list to the

left or right by the specified number of elements. A

positive rotation index specifies rotation to the right; a

negative index specifies rotation to the left. Ifthe index

has a fractional portion,it is rounded before use. Ifthe

list is named and the name is used, the resulting list is

stored in that name.

STD (122343 1 LRAT
Result: { 31 2 2 4 2

STD{ 12343 > -1LROT

Result: { 2 34 3 1 2

STD {1 2343 > 3 LROT
Result: { 34 312 2

Chapter 7: List Utilities

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

Level 2 — any object that evaluates to a list — the list

whose elements are to be rotated.

Level 1-anyobject that evaluates to a real number—-the

index specifying the extent and direction ofthe rotation.

Level 1 -ifthe Level-2 input object was a name contain-

ing a list, the resultis stored in that name and nothing

is returned to the stack. Otherwise, a list is returned —

the inputlist with its elements properly rotated.

Too Few Argument s will occur if the stack con-

tains fewer than 2 objects.

Bad Argument Type willoccurifeitherargument

does not reduce to its prescribed type.

LROT uses LCUT.

211

Replace All Occurrences OfAn Element:

Summary:

Examples:

212

LRPL (988117)

« + LAB «L EYAL
IF A B SAME NOT THEN
WHILE DUP A POS DUP

REPERT B PUT END
DROP END IF L TYPE
DUP & == SWAP 7 ==
OR THEN L STO END =»
»

LRPL replaces every occurrence ofagiven object within

a list with a second object. If a list name is used, the

resulting list is stored in that name.

STDC 3331212323356 LRPL
Result: { 666121272

STD {123453 26 7 LRPL
Result: { 1 2 3 4 5 3

STD{ABCDEF > 'C'" "HI" LRPL
Result: { A B "HI" DE F 2

Chapter 7: List Utilities

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

Level 3 — any object that evaluates to a list — the list to

be edited.

Level 2 — any object — the target object to be replaced.

Level 1 — any object — the replacement object.

Level 1 — if the Level-3 object was a name containing a

list, the result is stored in that name and nothing is

returned to the stack. Otherwise,a list is returned— the

newly-edited list.

Too Few Argument s will occur if the stack con-

tains fewer than 3 objects.

Bad Argument Type willoccurifthe Level-3input

object does not evaluate to a list.

None.

213

Summary:

Examples:

Inputs:

Outputs:

214

Sort A List By Element:

LSORT (#38384)

L « L EYAL LIST»
« IF N1 > THEN

RSRT END N »LIST

F L TYPE DUP ==
WAP ¥ == OR THEN L

STO END » =»

& >

+ N
1 N

#1
S

LSORT will sort the given list so that the elements are

arranged in ascending order. The elements of the list

must be orderable (i.e., they must be either real num-

bers, binary integers, or strings) or an error will occur.

If a list name is used, the resulting list will be stored in

that name.

STD { 84 6 3 2 > LSORT
Result: { 8 2 3 4 8 >

CZHTFY > « 25TR » LOP LSORT
« STR+ » LOP Result: { FHT Y 2 2

Level 1 — any object that evaluates to an orderable list

— the list to be sorted.

Level 1 — if the input object was a name, the result will

be stored in that name. Otherwise a listisreturned—the

Chapter 7: List Utilities

Errors:

Notes:

Editing Routines

newly-sorted list.

Too Few Argument s will occurforanemptystack.

Bad Araument Type will occur if the inputlist

does not evaluate to a list or if the list is not orderable.

LSORT assumes that the elements ofthelist are order-

able. As shown in the second example (opposite), ifthe

elements ofthe list are unorderable as is, then perform

€ *STR » LOP beforethesortand4 STR+ *» LOP

after the sort to effectively sort the elements based on

their decompiled ("character-string”) representations.

LOP is described on page 220.

To sort the elements of a list in descending order, use

LREY on the sorted list. To sort the evaluated values of

alist,use « *MUM » LOP or « EVAL » LOP

before sorting. LSORT uses QSRT.

215

Remove All Occurrences OfAn Element:

Summary:

Examples:

Inputs:

Outputs:

216

LZAP 18821)

« + L E «L EVAL

WHILE DUP E POS DUP
REPEAT DUP LDEL END
DROP IF L TYPE DUP ©
== SWAP 7 == OR THEN
L STO END * x»

LZAP deletes all occurrences of the specified object

from the given list. If the list has a name and the name

is used, the result is restored in that name.

ST {53531212321 LEAP

Result: { 23 3 2 2

{ABC > 'C'" LZAP Result: { A B >

Level 2 — any object that evaluates to a list — the list to

be edited.

Level 1 -any object—the target object all ofwhose occur-

rences are to be deleted from the list.

Level 1 -ifthe Level-2 input object was a name contain-

ing a list, the result is stored in that name and nothing

is returned to the stack. Otherwise, a list is returned to

the stack — the newly-edited list.

Chapter 7: List Utilities

Errors:

Notes:

Editing Routines

Too Few Arguments will occur if the stack con-

tains fewer than 2 objects.

Bad Argument Type if will occurif the Level-2

input object does not evaluate to a list.

LZAP uses LDEL.

217

AddAn Element To The End OfA Queue:

ENR (326692)

« + @ N«NQ EVAL

LIST+ 1 + =LIST IF @
TYPE DUP 6&6 == SWAP 7

== OR THEN @ STO END
J

Remove The First Element FromA Queue:

Summary:

218

UNR 321988)

« + 0 « @ EVAL LIST»

SWAP + N « 1 - LIST
N IF @ TYPE DUP 6 ==
SWAP ¢ == OR THEN
SWAP &@ STO END » » =»

ENQ adds a given element to the given queue. UNG

removes a given element from the given queue (a queue

is a list whose elements are accessed on a first-in-first-

out basis; the first object put into a queue will be the first

object taken out). Ifthe queueis stored in either a local

or global name and the name is used, the resulting

queue is restored in that name.

Chapter 7: List Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

{ > 1 EN@ 2 ENQ 3 ENR

Result: ¢ 3 2 1 2

{4321 2UNQ Result: € 4 3 2 > 1

Level 2 (for EN® only) — any object that evaluates to a

list — the queue to be added to.

Level 1 — the object to be added to the queue (for ENG)

or the queue to be edited (for UNG).

Level 1 — the unqueued object (for UN), or (for EM®) if

the Level-2 input object was a name, the result is stored

in that name and no object is returned to the stack. Oth-

erwise, a list is returned — the modified queue.

Level 2 (for UN@ only) — a list — the modified queue.

Too Few Argument s will occur if the stack con-

tains fewer than 2 objects (for ENR), or (for UNR) if the

stack contains no objects or the input list is empty.

Bad Argument Type will occur for ENR if the
Level-2 object does not evaluate to a list.

Coordinated use of EN®@ and UN® will allow you to

maintain a named or unnamed queue. The commands

LIST+ 1 + 2LIST inENRQ are less efficient than

the equivalent + but provide the benefit of generating

an error if the Level-1 object (' @') is not a list.

Miscellaneous Operations 219

Summary:

Examples:

220

PerformAn Operation

On Each Element OfA List:

LOP (1497943)

€ + lo. foo «1...
EVAL LIST+ IF DUP
THEN + n.. «1 n..
START n.. ROLL f..

EVAL NEXT n.. LIST
#» IF 1.. TYPE DUP ©

== SWAP 7 == OR THEN
l.. STO END ELSE

DROP END » »

LOP performs the specified operation on each element

of the given list. The operation must take exactly one

object from the stack and return exactly one object to the

stack, replacing the element operated on. Ifa list name

is used, the resulting list will be stored in that name.

STDC 12234 > «SQ » LOP
Result: { 1 4 9 16 2

STD £1 234 «+ KX 'K*2' » LOP

Result: € 1 4 9 16 2

STD 242-7308 'l' STO « 'X¥' I
~% 1 'I' STO+ » LOP
Result: £ 2 'd4%x' '3xx"2' '-(7¥R"3)' 2

Chapter 7: List Utilities

STD {36789 > «IF DUP 7 £ THEN

SQ EMD » LOP
Result: £ 23 36 49 § 9 2

Inputs: Level 2 — any object that evaluates to a list — the list to

be operated upon.

Level 1 — a program or user-defined function — the

operation to be performed on each element in the list.

Outputs:: Level 1 —if the Level-2 object was a name containing a

list, the result is stored in the name and nothing is

returned to the stack. Otherwise, a list is returned —

with the newly-modified elements.

Errors: Too Few Araument s will occur if the stack con-

tains fewer than 2 objects.

Bad Argument Type will occur ifthe Level-2 ob-
ject does not evaluate to a list or if the operation is not

valid for an element of the list.

The stack will fill with garbage ifthe Level 1 object

is not a program or user-defined function.

Various unpredictable errors can occur ifthe opera-

tion is not valid over the whole range oflist elements.

Notes: The local names, l« « ,f « » and N. . were chosen to

reduce the chances of conflicts when operations such as

€ STR+* * are applied to lists of strings. Therefore,

avoidusingl. .,f « « and. . asglobalnamesinyour

own programming.

Miscellaneous Operations 221

Remove The Last Element FromA Stack:

POP 321242)

« + Q@ « @ EVAL LIST»
SWAP + N « 1 - LIST
MN IF @ TYPE DUP & ==

SWAP 7 == OR THEN

SWAP @ STO END » » 2»

AddAn Element To The Bottom OfA Stack:

Summary:

222

PUSH (369391)

« + SN «S EVAL

LIST+ N SWAP 1 +
+LIST IF S TYPE DUP

6 == SWAP ¥ == OR
THEN S STO END » »

POP removes the next element from the given stack.

PUSH adds the given elementto the givenstack (a stack

is a list whose elements are accessed on a first-in-last-

outbasis; the first objectputinto a stack is the last object

taken out — as with the HP-28S' own internal stack). If

astack name is used, the resulting stackisstored in that

name.

Chapter 7: List Utilities

Example:

Inputs:

Outputs:

Errors:

Notes:

STD { 321 > POP Result: { 32 2 1

STD { 32 > 1 PUSH Resut:{ 321

Level 2 (forFUSH only) — any object that evaluates to a

list — the stack to be amended.

Level 1 — (for POP) any object that evaluates to a list —

the stack to be edited, or (for PUSH) any object — the

object to be added to the list.

Level 2 (for POP only) — ifthe input object was a name,

the modified stack is stored in that name. Otherwise it

returns here.

Level 1 — (for POP) an object — the object just removed

("popped") from the input stack, or (for PUSH) if the

Level-2 input object was a name, the modified stack is

stored in that name. Otherwise, it returns here.

Too Few Argument s will occur (for POP)if the

stack is empty or ifthe given list is empty, or (for PUSH)

if the stack contains fewer than 2 objects.

Bad Argument Type will occur (for POP) if the
input object does not evaluate to a list, or (for PUSH) if

the Level-2 input object does not evaluate to a list..

Coordinated use of POP and PUSH will allow you to

maintain a named or unnamed stack. POP is identical

to UNG.

Miscellaneous Operations 223

List Utilities: A Discussion

The Main Idea

Lists are the most general purpose data objects provided by the HP-

28S. They may be any size from 0 to the limits ofmemory— containing

any HP-28S data objects in any combination — including other lists.

This flexibility gives you tremendous control over what you put into

lists and how you use them.

On the other hand, because lists are so generic, there are very few

commands built into the HP-28S to manipulate them. Yet with these

powerful few, many of the possibilities of lists can be realized with a

handful of programs. The tools in this section are such a handful — a

set of some of the more generally useful list operations. They're still

very generic — because only you will know the specifics of manipulat-

ing the actual lists you've created — but they can still help you mani-

pulate yourlists regardless ofhow you've organized their information.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that

is listed in your current PATH. The easiest way to ensure that this is

the case is to place each of the programs in the HOME directory — the

ultimate parent of all other directories.

224 Chapter 7: List Utilities

Some Observations

Lists have properties that make them similar to arrays (and vectors)

and characters strings. You can see this in that the first "page" of the

LIST menu is similar to that ofthe first page ofthe ARRAY menu, while

the second page of the LIST menu is similar to that of the STRING

menu. The + operation is also analogous between strings and lists, as

it appends the two objects in stack Levels 1 and 2.

The ability to GET and PUT objects from and to a list allows you to

create and maintain ordered sets ofobjects in the same waythat arrays

do. But unlike arrays, the dynamic length (SIZE) of a list and the

ability to search a list by content — as well as by index — allows you to

create dynamic data structures, like stacks or queues, that shrink or

grow based on their current information.

You'll therefore find utilities here that exploit both these characteris-

tics oflists, and these routines are indeed very analogous to string and

array tools found elsewhere in this book.

Errors And Error Recovery

Each of the tools is designed to generate an error for invalid input,

rather than continue and possibly generate garbage outputs. When

errors do occur, the stack is almost invariably disrupted, and since the

only way to restore a disrupted stack is with the UNDO command,it's

wisest to activate UNDO mode (in the MODES menu) and leave it

active throughout your use of these utilities.

Discussion 225

HowYou Might Use These Utilities

One ofthe advantages oflists is their ability to contain different types

of objects. You can thus create different data aggregates that are

effectively new data types. And once you define such a data type, you

can then create the tools you need to operate on it.

Consider, for example, a list in which each entry contains a person's

name, birthdate and telephone number:

{ "Smith, John" { 2 6 1939 > 3553426 2

You could easily create a list of such objects and then (not quite as

easily) create new commands to do things such as these:

Add an element (an entry).

Delete an element, given its index.

Display an entry, based on its index.

Sort the list by last name.

Sort the list by some other attribute.

Search for a name and return that element.

Find all of the birthdates that fall on today's date.N
S
M
h
R
D
d
D

To implement each of these seven commands, here's how you

might proceed:

226 Chapter 7: List Utilities

1. Create the new element and add it to the end ofthe list (with +)

or insert it somewhere among the current entries (with L INS).

Note that since each elementis itself a list, you must put it into

another list before adding. Thatis,

{ "Doe, Jane" { 6 2 1968 > 3339812
{ "Smithy, John" { 2 6 1939 > 33533426 2
+

gives

{ "Doe, Jane" { 6 2 1968 > 5559812 "Smith,

John" € 2 6 19539 3 3553426 2whichisincorrect;

the information from both entries has been combined into a

single list.

However,

{{ "Doe, Jane" { 6 2 1968 > 5359812 2
€{ "Smith, John" { 2 & 1939 } 33553426 iI
+

gives

{ { "Doe, Jane" { 6 2 1968 > 53559812 2
{ "Smith, John" € 2 6 1939 > 5333426 2 1,
which is correct.

2. UselLDEL.

Discussion 227

228

Use GET to get the element and a routine something like the

following to display it: DSP (165631)

€ « 2STR » LOP LIST»
DROP gn + ROT gn +

ROT "=" + ROT + + 1

DISP »

(The ® characters are NEWLINE characters and should be keyed

in as such.)

Fortunately, the last name is the first thing in the object. So a

procedure such as

« STR » LOP LSORT « STR+ » LOP

will do the job.

Generally, any time you want to sort the list, you'll need to

convert its objects into strings so that they can be compared (and

keep in mind that in the general case, the object to be sorted by

is not necessarily the first object in the element). You'll therefore

need a conversion routine to transform the element both before

and after the sort. To sort by birthdate (or rather, birth-month),

for example, the simplest procedure would be:

« 1 2 LEX #STR » LOP LSORT « STR+* 1 2 LEX
» LOP

Chapter 7: List Utilities

6. What you want to do is filter the list, returning only those

elements that contain the search string. So:

« *STR "Smith" POS » FLTR

The "Smith" is the search string — whatever name you're

searching for.

7. Something like this will work:

« 2 GET 1 25UB { 26 > ==2%* FLTR,

whereL 2 6 2 isan example list of today's month and day.

Discussion 229

Chapter 8

Directory Utilities

These routines provide quick and reliable ways to edit, test and tra-

verse directory structures in your HP-28S.

Asshowninthe following list, the 10 programs are organized into three

logical groups, presented alphabetically. Within each group, the pro-

grams are also usually presented alphabetically (by MAME), although

in some cases, certain sets ofprograms may be complementary or oth-

erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page

248, immediately following these program listings.

230 Chapter 8: Directory Utilities

DSORT

KILLD

MOVE
STACKEM

DIR?
MT?

NTYPE

DU
FIND
GOTO

Contents

Editing Routines

Sort The Contents

Of The Current Directory

Remove A Directory And Its Contents

Move And/Or Rename An Object

Place The Contents OfA Directory

Onto The Stack

Testing Routines

Test WhetherAn Object Is A Directory

Test For An Empty Name

Find The Type OfThe Named Object

Traversing Routines

Move Up One Directory

Find AName In The Directory Tree

Go To A Directory By Using A Path List

232

233

235

238

240

242

243

244

245

247

231

Alphabetically Sort

The Contents Of The Current Directory:

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

232

DSORT @66834)

« VARS IF DUP SIZE

THEN « *STR * LOP

LSORT « STR» » LOP
ORDER ELSE DROP END
%

DSORT reorders the contents ofthe current directory so

that the USER menu is displayed in alphabetical order.

DSORT

None.

None.

None.

DSORT usesLOP andLSORT from Chapter 7. DSORT

can take a few minutes to run ifthe current directory is

a large one.

Chapter 8: Directory Utilities

Remove A Directory And Its Contents:

Summary:

Example:

Inputs:

Outputs:

Errors:

Editing Routines

KILLD (1628927)

€ + nN.. &€ IF N..

DIR? THEN n.. EVAL

YARS 'DIR?' FLTR IF

DUP SIZE THEN + d..

« 1 d.. SIZE FOR 1i..

de. i.. GET KILLD

NEXT » ELSE DROP END

CLUSR DU END n..

PURGE » »

KILLD removes (purges) a directory and its contents.

If it is used on a named object, the name is purged. It

cannot be used on the HOME directory.

'@"' KILLD

Level 1 — a directory or name — the directory to be

purged.

None.

Too Few Argument s will occurforanemptystack.

Bad Araument Type will occurifthe input object

is not a nameor directory.

233

Notes: KILLD usesDIR?,DU and FLTR (from Chapter 7).

Caution: KILLD provides no margin for error and can

quickly destroy huge amounts of data!

234 Chapter 8: Directory Utilities

Move And/Or RenameAn Object:

MOVE (6293966)

€ 8+ a.. bos P.. X

IF b.. TYPE 5 ==
THEN b.. 1 OVER SIZE
1 - SUB b.. DUP SIZE
GET 'b..' STO ELSE
PATH END 'p..' STO
PATH p.. GOTO IF

b.. DIR? b.. 1 LIST
{ HOME > == OR THEN

P.a bao + 'p..' STO
a.. 'b..' STO END
DUP GOTO IF a.. DIR?
THEN DEPTH + d.. «
a.. STACKEM DROP p..
GOTO b.. DUP CRDIR

EVAL DO EYAL UNTIL
DEPTH d.. == END »
ELSE a.. RCL a..
PURGE p.. GOTO b..
STO END GOTO » »

Summary: MOVE will move the named object from the current

Editing Routines

directory to the specified directory. The object to be

moved may be either a named object or a directory. The

235

Examples:

Inputs:

Outputs:

Errors:

Notes:

236

destination may be either a directory path or name. If

the destination name or the last name in the directory

path is not a directory, the object tobe moved will also be

renamed using that name.

'PETE' 'FRED' MOVE
'PETE' { HOME JAME FRED > MOVE

Level 2 — a name object — the name of the object to be

moved from the current directory.

Level 1 —a name object or list —the destination to which

to move the Level-2 object.

None.

Too Few Arguments will occur if the stack

contains fewer than 2 objects.

Bad Argument Type will occurifthe Level-2 ob-
ject is not a name or directory.

Undef ined Mame (and maybe a stackful of gar-

bage) will occur if the Level-2 name is empty, or if the

destination directory is a sub-directory of the directory

tobe moved, or ifany ofthe names in the destination list

except the last one are undefined.

MOVE is a sophisticated command with potentially de-

structive effect. It should therefore be used only by ex-

perienced HP-28S users. DONOTtry to move a parent

directory to one of its descendents. The remains ofthe

parent directory will be left on the stack with little

Chapter 8: Directory Utilities

Editing Routines

chance of restoring it. Having a corrupt or otherwise

incorrect destination path is perhaps the worst of all

possible errors, because the source directory will have

already been removed and placed on the stack before an

attempt is made to move to the destination. Therefore,

the best procedure is to move to the target directory and

invoke the PATH command to get the correct destina-

tion path.

MOVE uses GOTO, DIR? and STACKEM. MOVE,
GOTO,DIR? and STACKEM must be in the PATHS of

both the source and destination directories. The only

reasonable place for these four tools, therefore,is in the

HOME directory.

237

Place The Contents OfA Directory

Summary:

238

Onto The Stack

STACKEM 3132376)

€ + n.. «IF n.. DIR?

THEN 'DU' n.. EVAL

YARS IF DUP SIZE

THEN + 1.. «1 1l..

SIZE FOR i.. l.. i..

GET STACKEM NEXT =»

ELSE DROP END "&"

n.. *STR " CRDIR "

OVER " EVAL»" + + +

+ STR» DU n.. PURGE

ELSE n.. RCL ne. nN...

FURGE « STO » EMD =»
®

STACKENMplaces the contents of the name object onto

the stack, along with the name and any commands

necessary to recreate the object. The previous contents

ofthe name object arePURGE 'd as ifwithKILLD. The

stacked information can then be restored by repeated

execution ofEYAL until all of the stacked objects have

been removed.

Chapter 8: Directory Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

1 'AR' STO 'A' STACKEM

Result: 1 'A' « STO »

'A' CRPIR A 'B' CRDIRB & 'C' STO DU
DU 'A" STACKEM

Result: (on the stack)

DU!

‘DU!

6
Cc!

« STO *»
« 'B' CRDIR 'B' EVAL *
« 'A' CRDIR 'R' EVAL *

Level 1 — a name object — the name of the object to be

stacked.

Levels 1 to n — the contents of the object, along with the

commands necessary to recreate it.

Too Few Araument s will occur ifthere are no ar-

guments on the stack.

Bad Argument Type will occur if the Level-1
object is not a name or directory.

STACKEM usesDU and DIR?

Editing Routines 239

Test WhetherAn Object Is A Directory:

Summary:

Examples:

Inputs:

Outputs:

Errors:

240

DIR? 363890)

« RCLF » D F « 31 CF

IFERR D RCL THEN &4
STWS ERRN # 12Rh ==
ELSE DROP @ END F

STOF » =»

DIR? tests the given object to see if it is a directory. It

returns 1 if the objectis a directory and 8 if not.

1 DIR? Result: ©

'FRED' DIR? Result: 1

IF J DIR? THEN YES ELSE NO END

Result: (this example program segment will evaluate

the routine YES ifthe object, J, is indeed a di-

rectory; or the routine, MO if it is not.)

Level 1 — the object to be tested.

Level 1 — a real number — either 1 or @ (true or false).

Too Few Arguments will occur if the stack is

empty.

Chapter 8: Directory Utilities

Notes:

Testing Routines

The binary integer in the program listing is shown in

hexadecimal. It will appear differently if the current

binary modeis other than HEX. The results of DIR?

are intended to be compatible with other logical tests in

the HP-28S (as illustrated with the IF statement in the

examples).

241

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

242

Test ForAn Empty Name:

MT? (2808133)

« RCLF SWAP 31 CF
IFERR RCL THEN 64
STWS ERRM #204h ==
ELSE DROP © END SWAP

STOF =»

MT? tests a named object to determine whether or not

it is empty. All non-name objects are considered to be

non-empty and therefore return a 8.

'FRED' PURGE 'FRED' MT? Result: 1

1 'PETE' STO 'PETE' MT? Result: ©

Level 1 — an object — the object to be tested.

Level 1 — a real number — either 8 or 1 (false or true).

None.

None.

Chapter 8: Directory Utilities

Find The Type Of The Named Object:

NTYPE @28162)

« + N « IF N MT?

THEN -1 ELSE IF HN
DIR? THEN 11 ELSE N
RCL TYPE END END » »

Summary: HNTYPE tests the named object and returns its type

(consistent with that returned by the built-in command,

TYPE, plus added type values of =1 and 11): -1 =

Empty; 8 = Real; 1 = Complex; 2 = String; 3 = Real

array; 4 = Complex array; 9 = List; & = Global name; 7

= Local name; 8 = Program; 9 = Algebraic; 1 8 = Binary

integer; 1 1 = Directory.

Example: { 5 > 'A' STO 'A' NTYPE Result: 5

Inputs: Level 1 —a name —the object whose type is to be tested.

Outputs: Level 1-an integer from -1 to 11 — the type of the input.

Errors: Too Few Argument s will occurforanemptystack.

Bad Argument Type willoccurifthe Level-1input

object is neither a name object nor a directory object.

Notes: NTYPE usesMT? and DIR?.

Testing Routines 243

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

244

Move Up One Directory

(Directory Up):

DU 142239)

« PATH DUP SIZE 1 -
IF DUP THEN GET EVAL
ELSE DROP2 END »

DU moves from the current directory up to the one

immediately above it. Ifthe current directory is already

the HOME directory, no action is taken.

DU

None.

None.

None.

None.

Chapter 8: Directory Utilities

Find AName In The Directory Tree:

Summary:

Example:

FIND (1376833)

« + N « IF VARS DUP

MN POS THEN PATH SWAP
END 'DIR?' FLTR IF
DUP SIZE THEM + D «

1 DSIZE FOR I DI

GET DUP 1 DISP EVAL
MN FIND DU NEXT *»

ELSE DROP EMD *» CLMF
»

F IMD recursively traverses the directory tree — start-

ing at the current directory — looking for the given name

object. It returns the path (a list of directories) of the

directory in which the named object is found. If the

name exists in more than one directory, the path to each

occurence will be returned. Ifthe name is not found, no

path is returned. Since it can take some time to search

all subdirectories, F IMD displays the name ofthe direc-

tory it's currently searching to show how far it has

progressed.

‘FRED' FIND
Result: { HOME PETE JOE EMILY 2

Traversing Routines 245

Inputs:

Outputs:

Errors:

Notes:

246

Level 1 — a name object — the object being sought.

Levels 1 to n — the paths to each of n occurences of the

name. Nothing is returned if the name is not found.

None.

Ifthe Level 1 object is not a name,F I MND will still search

the directory tree for a match, but ofcourse it won't find

one.

FIND usesDIR?,DU, and FLTR (from Chapter 7).

Chapter 8: Directory Utilities

Go To A Directory By UsingA Path List:

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

GOTO (1218662)

« { HOME > LIST»

DROP + H « LIST» IF
DUP THEN 1 FOR I I

ROLL IF DUP DIR?
OVER H == OR THEN

EVAL ELSE 1 LIST»
END -1 STEP ELSE

HOME DROP END » =»

GOTO moves to the directory specified by the given

PATH list. The PATH list need not start from HOME —

just some directory in the path of the current directory.

{ HOME AR B C > GOTO

Level 1 — a list — the PATH list of directory entries.

None.

Too Few Argument s willoccurforanemptystack.

Bad Argument type willoccureitherifthe argu-

ment is not a list or it contains a non-directory element.

GOTO usesDIR?.

Traversing Routines 247

Directory Utilities: A Discussion

The Main Idea

Directories are great for organizing and partitioning user memory.

Logical groups ofdata and programs can be created and named within

their own directory. Then movingbetween directories and calling rou-

tines in other directories is as easy as calling their names — as long as

they can be found in the current directory's PATH (i.e. as long as they're

somewhere between where you're "calling from" and HOME).

These directory tools enhance the usefulness of directories with their

often-needed functions. You can: MOVE to any directory; FIND any

object within the subtree of the current directory; DSORT the names

in the current directory; purge an entire directory sub-tree; move up to

the parent directory; and do some useful directory-related tests.

Where To Put These Programs

Unlike most ofthe other utilities in this book, the directory utilities are

almost useless unless they're placed in the HOME directory. This is

because many of them can "move you" out of the current PATH, thus

preventing you any further access to commands that exist only in that

PATH. The only directory that is always a member of all PATHs is the

HOME directory, so put these utilities in the HOME directory.

248 Chapter 8: Directory Utilities

Some Observations

The HP-28S' directory structure is a fairly standard, multi-way tree.

That bears a bit of explaining: The "tree" is the overall structural

pattern, startingwith a main (HOME) level, or "root node." Everypoint

of branching is called a node. At a node there might be one or more

"leaves" (items with actual evaluable data in it) and/or "branches"

(paths leading to further nodes).

In some tree structures, there are rules about how many leaves and

branches can be attached to any one node. The good news is that a

multi-way tree (as in the HP-28S) has no limit to these numbers: you

can put as many leaves (programs or data objects) and branches (sub-

directories in any directory level (node) as you want.

Recursive programmingtechniques are one ofthebestways to perform

tree traversals and access the data in the nodes and leaves. Therefore,

all of the routines that either move or remove data from node to node

do so recursively.

Ifyou have some difficulty understanding what the previous sentence

is saying, you get the point: The routines in this chapter are probably

the most sophisticated routines in this book, and it would take farmore

space than is available here to fully explain recursive programming

techniques.

However, ifyou want to begin to explore them, the best way is to study

how they are used here — in the programs that "call themselves:"

FIND, KILLD, and STACKEM. You might also look at @SRT in
Chapter 1.

Discussion 249

Some ofthese routines are useful mainly as keyboard commands, but

several are particularly handy in writing your own programs (and you

can get some idea of their relative usefulness by noting the frequency

with which they occur within other programsin this section): DIR?,

DU, GOTO, MT? and NTYPE.

STACKEM was developed as a subprogram for MOYE, but you may

find it convenient as a tree "pruner” and "grafter” in your own pro-

grams — without the additional overhead ofMOVE.

Errors And Error Recovery

For the most part, these tools make every effort to cause errors before

much movement of data has occurred. But to keep the routines rela-

tively small, not all conceivable precautions have been implemented.

It is very possible to destroy a lot of information with these routines.

In most cases UNDO will not help you either, because data movement

and /or destruction has occurred outside ofthe stack.

250 Chapter 8: Directory Utilities

HowYou Might Use These Utilities

Tests

Unfortunately, the built-in TYPE command isn't particularly consis-

tentwhen dealing with directories. Ifyou create a directory, thenplace

its name on the stack and invoke TYPE, you'll get 6, telling you that

the object was a name. This is "sort of" correct but not really: You can't

store into or recall from a directory as you can with a name.

Therefore, the tools in this section include some functions that allow

you to test whether or not an objectis specifically a directory. DIR?

asks the question, "Is this object a directory?” MNTYPE actually

extends the idea of object types to return the type of the given named

object, including type number -1 for an empty name and 11 for a

directory. MT? tests to see if the Level-1 name is empty and returns

0 — false — if it contains a directory.

GoingAnd Coming Back

The information returned by the PHTH command is nice to tell you

where you are within the directory tree, but you can't do anything else

with it. GOTO remedies this by allowing you to go to the directory

specified by the PATH list.

Discussion 251

Then, when you go somewhere, it's nice to know how to get back. Use

the following methods to "remember" where you've been and get back:

PATH whereto GOTO dosomething GOTO

or

PATH + whereiwas «€ whereto GOTO

dosomething whereiwas GOTO *»

whereto is the PATH-list of your (temporary) destination and

dosomething is what you want to do while you're there. You use

PATH before GOTO to get the location ofthe current directory. Then,

after the task is completed, you recall this previous PATH and use

GOTO to get back there once again.

FIND And GOTO

GOTO is also useful after the F IMD command - to go to the directory

containing the object you just found. For example:

€ PATH + thing

whereiwas € thing

FIND GOTO thing EVAL

whereiwas GOTO » »

The program takes the name of an object to be sought (+ hing) and

the current directory PATH from the stack. F IND findst hing inthe

directory tree and GOTO goes to it. thing is evaluated and GOTO

then returns to the previous directory (this assumes that F IND will

actually find a t hing and that it will find only one of them).

252 Chapter 8: Directory Utilities

STACKEM As An Alternative To MOVE

You can think about the MOYE utility as a mess ofpreparation to call

the STACKEM program. MOYE checks and corrects the inputs, then

uses STACKEM, then moves to the destination directory and repeat-

edly invokesEYHAL to placed the stacked objects in the new directory.

If you're uncomfortable with this level of automation (and with your

own hard-won data and programs at stake,this is quite understand-

able), you can invokeSTACKEM manually, then move to the target di-

rectory and press repeatedly to restore the information. Ifyou're

unsure ofyourselfor the program, watching it work in this way can be

reassuring.

KILLD Versus PURGE And CLUSR

PURGE deletes either a single object or a list ofnamed objects from the

current directory. CLUSR deletes evey named object in the current

directory. But neitherPURGE norCLUSR will delete a non-empty di-

rectory.

KILLD, on the other hand, deletes a single named object from the

current directory — even if that object is a non-empty directory. Thus

KILLD "rounds out" your ability to remove objects from memory by

allowing you to delete a directory in one fell swoop. As such, KILLD

is a very destructive command and should be used with extreme

caution, much as you would CLUSRE — only more so!

Discussion 253

Chapter 9

Output Utilities

These routines provide convenient, "canned" methods for formatting

output to the HP-28S display or printer — both with character and

graphic information.

As shown in the following list, the 20 programs are organized into five

logical groups, presented alphabetically. Within each group, the pro-

grams are also usually presented alphabetically (by MAME), although

in somecases, certain sets ofprograms may be complementary or oth-

erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page

280, immediately following these program listings.

254 Chapter 9: Output Utilities

Name Function Page

Display Positioning Routines

DCTR Center An Object In A Display Line 257

DLJ Left-Justify An Object In A Display Line 257

DRJ Right-Justify An Object In A Display Line 257

DPUT Put An Object Into A Display Line, 260

Beginning At A Specified Column

Display Special Effects

DPAT Display A Graphics Pattern 262
DINY Invert A Display Line (To Inverse Video) 264

DUDL Underline A Display Line 264

LCD Graphics

LINE Draw A Line Between Two Points 266

PLOT Draw A Line From The Current Plot Position 268

To The Specified Position

POLYL Plot A Series Of Connected Points 270

PSET Move To A New Point In A Plot 272

PXDM Get The Dimensions OfA Pixel 2173

Contents 255

Name Function Page

Printer Positioning Routines

PRCTR Print An Object Centered 274

FPRLJ Print An Object Left-Justified 274

PRRJ Print An Object Right-Justified 274

PRPUT Print An Object At A Specified Column 276

Printer Special Effects

PRDW Print An Object Double-Wide 277

PRINY Print An Object In Inverse (White On Black) 277

PRUDL Print An Object Underlined 277

PRPAT Print A Character Pattern 279

256 Chapter 9: Output Utilities

CenterAn Object InA Display Line:

DCTR 33294)

« SWAP 23 SCTR SWAP

DISP *

Left-JustifyAn Object InA Display Line:

DLJ ©6189)

« DISP *»

Right-Justify An Object InA Display Line:

DRJ 30638)

« SWAP 23 SRJ SWAP
DISP »

Summary: DCTR displays the Level-2 object, centering it on the

display line specified in Level 1. DLJ displays the

Level-2 object left-justified, starting on the display line

specified in Level 1. DRJ displays the Level-2 object

right-justified on the display line specified in Level 1.

Display Positioning Routines 257

Examples:

258

Ifthe line specified is less than 1, then line 1 is used. If

the line specified is greater than 4, then line 4 is used.

The line specifier is rounded before use. Since the dis-

play's width is an odd number of characters (23), cen-

tered objects with an even number ofcharacters will be

spaced one character farther to the left than to the right.

If an object contains NEWLINE characters, DLJ and

DRJ will begin its display onthe line specified, then con-

tinue on subsequent lines as directed bythe NEWLINE's.

"HI" 2 DCTR Result:

3:
HI

1:
"HI" 2 DCTR
"HI" 2 DLJ Result:

 I" 2 DLJ

"HI" 2 DRJ Result:

3:
HI

WHI" 2 DRJ
Chapter 9: Output Utilities

Inputs: Level 2 — the object to be displayed.

Level 1 — a real number — the line on which that object

is to be displayed.

Outputs: (Displays such as in the Examples.)

Errors: Too Few Argument s will occur if the stack con-
tains fewer then 2 objects.

Bad Argument Type willoccurifthe Level-1linput

object is not a real number.

DCTR will fail if the object to be displayed contains a

NEWLINE character or leading or trailing spaces.

Notes: DCTR usesSCTR. DRJ usesSRJ. DLJ is an alias for

the HP-28Scommand, I SP, so as to be consistentwith

the naming ofDRJ and DCTR.

Display Positioning Routines 259

Put An Object Into A Display Line,

Beginning At A Specified Column:

Summary:

260

DPUT &47693)

« 1 MAX .3 + FLOOR
23 MIN SWAP 1 MAX .5

+ FLOOR 4 MIN + CR
« 3S5TR 1 24 C - SUB

LCD+ SWAP SPAT 137 R
1 -%C1l1-6=%+
SWAP SPUT LCD *» »

DPUT displays the specified object, starting atthe given

line and column, without clearing the rest of that line

(unlike DISP). If the line specified is less than 1 or

greater than 4, the object is displayed on line 1 or 4,

respectively. If the column numberis less than 1, it is

treated as 1. If the specified column is greater than 23,

nothing is displayed. If the displayed object extends

beyond the end of the display or contains a NEWLINE

character, itis truncated at that point. Line and column

numbers are rounded before use.

Chapter 9: Output Utilities

Example:

Inputs:

Outputs:

Errors:

Notes:

CLLCD "HI" 1 DISP "THERE" 1 4 DPUT

Result:

HI THERE

Level 3 — the object to be displayed.

Level 2 — a real number — the line on which the object is

to be displayed.

Level 1 — a real number — the column at which the ob-

ject's display is to begin.

(A display such as in the Example.)

Too Few Argument s will occur if the stack con-

tains fewer then 3 objects.

Bad Argument Type will occurifthe Level-1and

Level-2 objects are not both real numbers.

DPUT uses SPAT and SPUT.

Display Positioning Routines 261

Summary:

Example:

262

Display A Character Pattern:

DPAT (338121)

« 1 MAX .3 + FLOOR
23 MIN 1 - & * SWAP
1 MAX .5 + FLOOR 4

MIM + C R « C OVER
SIZE + 137 SWAP -

OVER SIZE + 1 SWAP
SUE LCD+ SWAP 137 R
1 -%C+ 1 + SWAP
SPUT LCD » »

DPAT takes a character string from Level 3 ofthe stack

(which is ofthe form returned byLCD) and displays it

(as #LCD) starting at the display line as given by the

number in Level 2 and at the character column within

that line, as given by the number in Level 1. If the line

number specified is less than 1, 1 is used. If the line

specified is greater than 4, 4 is used. If the column

number is less than 1, 1 is used. If the column number

is greaterthan 23,23 is used. Line and column numbers

are rounded before use.

94 CHR 97 CHR 1 CHR
97 CHR 94 CHR 8 CHR
+ + + + + 'Om' STO

15 1 DPISPOm 1 2 DPAT Result:

Chapter 9: Output Utilities

150)
2
1:
15 1 DISP Om 1 3 DPAT

Inputs: Level 3 —a character string—the character pattern to be

displayed.

Level 2-areal number—the line onwhich the character

is to be displayed.

Level 1 — a real number — the column at which the char-

acter's display is to begin.

Outputs: A display such as in the Example.

Errors:: Too Few Argument s will occur if the stack con-

tains fewer then 3 objects.

Bad Argument Type will occurifthe Level-3 ob-
jectis not a character string, or ifthe Level-1 and Level-

2 objects are not both real numbers.

Notes: DPAT uses SPUT. The typical HP-28S character is 6

columns wide, with each character in the pattern build-

ing a column. The 6th column is usually blank (charac-

ter 0) so as to leave space between adjacent characters.

DPAT is useful for buildingand displayinguser-created

special characters (e.g. greek math symbols).

Display Special Effects 263

Invert A Display Line (To Inverse Video):

Summary:

264

DINV 234186)

« LCD+ SWAP 1 - 3
MIN .5 + FLOOR 137 #*

1 + SCUT 138 SCUT

SWAP NOT SWAP + +

+LCD =»

Underline A Display Line:

DUDL (393389)

« 1 MAX .3 + FLOOR 4
MIM +NUM LCD» SWAP 1
- 137 * 1 + SCUT 138

SCUT SWAP 128 CHR
137 SRPT OR SWAP + +

+LCD »

D INV inverts the specified display line (black to white

and vice versa). DUDL underlines the specified display

line. The line specifier defaults to 1 and 4 for inputs out-

side ofthose limits. Fractional portions ofline specifiers

are rounded.

Chapter 9: Output Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

2 DINY Result:

3:

2s
EE
3 DINV

1 DUDL Result:

3:
2
1:
1 DUDL

Level 1 — a real number — the display line to be inverted

or underlined.

(A display such as in the Example above.)

Too Few Argument s willoccurforanemptystack.

Bad Argument Type will occurifthe Level-1 ob-

ject is not a real number.

Undef ined Mame will occur ifthe Level-1 object is

an undefined name.

DINY uses SCUT. DUDL uses SCUT and SRPT.

Display Special Effects 265

DrawA Line Between Two Points:

LINE (1472131)

« NUM SWAP +HUM + R

L « L PIXEL IF L R =
THEN PXDM C3R R L -

DUF C+R 4 ROLL ~ ABS
SWAP 4 ROLL ~ AES

MAX PPAR 4 GET ~
SWAP OVER ~ L 1 4
ROLL START OVER +

DUP PIXEL NEXT DROPZ

R PIXEL END » *

Summary: LIME drawsalinein the displaybetween the two given

Example:

266

points (complex number objects). The current PPAR

values PMIN, PMAX, and RES) are used. IfRES is

greater than 1, the line is drawn to the specified resolu-

tion. If the variable PPAR does not exist,it is created

with default values.

(8,82 PMIN (3,32 PMAX 1 RES
(1,1> (2,2> CLLCD LINE Result:

—

Chapter 9: Output Utilities

Inputs:

Outputs:

Errors:

Notes:

LCD Graphics

Level 2 — an object that reduces to a complex number —

the coordinates of the "from" point.

Level 1 -An object that reduces to a complex number —

the coordinates of the "to" point.

A line is drawn in the display.

Too Few Araument s will occur if the stack con-

tains fewer than 2 objects.

Bad Argument Type will occuriftheinput objects

do not reduce to complex numbers.

L INE does nottest to see if the points it is plotting are

out ofbounds for the display. L IME uses PXDM.

267

DrawA Line From The Current Plot Position

Summary:

Example:

Inputs:

Outputs:

268

To The Specified Position:

PLOT (373667)

€ NUM + NH « IF

coord DUP TYPE 6 ==

THEN <@,8> DUP ROT

STO END M LINE HN

'coord' STO » »

PLOT draws a line from the point established byPSET

to the specified point. The current plot position — the

value of 'coord' - is updated to be that of the

specified endpoint. If 'Coord'has no value, it is

given a value of (@y B). Ifthe variable PPAR does not

exist, it is created with default values.

'PPAR' PURGE C1,1> PSET
(2,32 CLLCD PLOT Result:

!

Level 1- an object that reduces to a complex number.

A line is drawn in the display.

Chapter 9: Output Utilities

Errors:

Notes:

LCD Graphics

Too Few Argument s will occurforan emptystack.

Bad Argument Type will occur ifthe input value

or the contents of ' COOrd' is not a complex number.

PLOT does not test whetherthe points beingplotted are

out of bounds for the display. PLOT uses LINE.

269

Plot A Series Of Connected Points:

Summary:

Examples:

270

POLYL @747868)

« EVAL + L « L 1 GET
*NUM 2 L SIZE IF DUP

TYPE 5 == THEM LIST»

2 == « ¥ » IFT END
FOR I L I GET =NUM
SWAP OVER LINE MEXT
DROP » »

POLYL ("poly-line") takes a list ofcomplex numbers or

a complex array object and plots lines between the

points it contains. The first point is taken to be the

origin, so the first line is drawn from that point. Arrays

are traversed in row-major order. IfRES isgreaterthan

1, the line is drawn to the specified resolution. If the

variable PPAR does not exist,it is created with default

values.

'PPAR' PURGE { (8,8) (i1,1> (-1,1>

(B,8> 2» CLLCD POLYL

Result:

NS

Chapter 9: Output Utilities

(-18,-3> PMIN (18,3) PMAK

[(5.32.42) (3,2) (-8,-2.1) 1]

CLLCD POLYL

Result:

TT

Inputs: Level 1 — any object that evaluates to a list, array or

vector — the series of point coordinates to be plotted.

Outputs: A plot is generated.

Errors: Too Few Argument s willoccurforanemptystack.

Bad Argument Type will occurifthe input object

does not evaluate to a list, array or vector, or if one or

more of its components is not a complex number.

Notes: POLYL does nottest to see ifthe points it is plotting are

out ofbounds for the display. POLYL uses LIME.

LCD Graphics 271

Move To ANew Point InA Plot:

PSET @4268)

« NUM C»R R=2C

'coord' STO »

Summary: PSET establishes a point in the plotting area from

which a subsequent line can be drawn with the PLOT

program.

Example: (2,2> PSET

Result: (nothing changes in the display)

Inputs: Level 1 -a complex number; the coordinates ofthe point

to which to move.

Outputs: None.

Errors: Too Few Arguments will occur if the stack is

empty.

Bad Araument Type will occurifthe input object

is not a complex number.

Notes: PSET creates the variable ' coord' in the current

directory, overwriting any variable of the same name.

272 Chapter 9: Output Utilities

Get The Dimensions OfA Pixel

PxDM 1362139)

« PPAR 1 2 SUB LIST

DROP SWAP - C»R 31 ~

SWAP 136 ~ SWAP R=C
»

Summary: PXRDM determines the height and width of a display

pixel (a single dot), given the current plotting parame-

ters (i.e. the contents ofthePPAR variable). The dimen-

sions are returned as a complex number. PXDM as-

sumes that the PPAR variable exists.

Examples: STD 'PPAR' PURGE (8,8) PIXEL PxXDM

Result: C.ls.12

Inputs: None.

Outputs: Level 1 — a complex number — the dimensions of a dis-

play pixel under the current plotting parameters.

Errors: Bad Argument Type will occurif ' PPAR" does
not exist or does not contain a valid plotting parameter

list.

Notes: None.

LCD Graphics 273

PrintAn Object Centered:

PRCTR (E3377)

« 24 SCTR PR1 DROP

PrintAn Object Left-Justified

PRLJ @4143)

« DEPTH « PR1 » IFT
DROP »

Print An Object Right-Justified

PRRJ 22866)

« 24 SRJ PR1 DROP =»

Summary: PRCTR prints the given object, centered on the printer

paper. PRLJ prints it left-justified; PRRJ prints it

right-justified. If the object contains NEWLINE charac-

ters, PRRJ and PRLJ will begin displaying the object

on the line specified, then continue on subsequent lines

as directed by the NEWLINE's in the object.

274 Chapter 9: Output Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

"HI" PRCTR Result: (printed on the paper):

"Whoop" PRLJ Result: (printed on the paper):

"Mi" PRRJ Result: (printed on the paper):

Level 1 — the object to be printed.

(print-outs such as in the examples.)

Too Few Araument s will occurforanemptystack.

PRCTR will fail to center its output if the object con-

tains a NEWLINE characterorleading ortrailingspaces.

PRLJ andPRRJ will fail ifthe print buffer is not empty

before the command is invoked (the print buffer is

emptied by CR or any printing command executed with

flag 33 clear), orif the object contains leading spaces.

PRCTR uses SCTR. PRRJ uses SERJ.

Printer Positioning Routines 275

Print An Object AtA Specified Column:

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

276

PRPUT (1233086)

« " " SWAP 1 MAX
+NUM 1 - SRPT SWAP

+STR + PR1 DROP =»

PRPUT prints the given object at the given printer col-

umn. Acolumn number less than 1is treated as 1. Col-

umn numbers greater than 24 will print the object on

line number (n DIV 24), column number (n MOD 24) + 1.

"HI" 268 PRPUT Result:

Level 2 — the object to be printed.

Level 1 — a real number — the printer column on which

to begin printing the object.

(A print-out such as in the Example.)

Too Few Argument s will occur if the stack con-

tains fewer then 2 objects.

Bad Argument Type will occur ifthe Level-1 ob-

ject is not a real number.

Undef ined Mame if the Level 1 object is an unde-

fined name.

PPUT uses SRPT.

Chapter 9: Output Utilities

PrintAn Object Double-Wide:

PRDHW (148624)

« 2¢ CHR DUP 233 CHR

+ ROT *STR + SWAP

252 CHR + + PR1 DROP
*

PrintAn Object In Inverse (White On Black)

PRINY (1386187)

« RCLF + 5S « 3&TR

"=" + 33 SF WHILE
DUP "=" FOS DUP

REPEAT SCUT 2 SCUT
SWAP DROP SWAP DO 23
SCUT SWAP SPAT MOT
FRPAT UMTIL DUP SIZE
NOT END DROP CR END
DROP2 S STOF » »

Print An Object Underlined:

PRUDL (145498)

« 27 CHR DUP 231 CHR
+ ROT +STR + SWAP
238 CHR + + PR1 DROP
®

Printer Special Effects 277

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

278

PRDprints the given object double-wide on the printer

paper. PRINY prints it in inverse (white on black).

PRUDL prints it underlined.

"HELLO" FRDW

Result: (printed on the paper):

"Hi there." PRINY

Result: (printed on the paper):

"Object" PRUDL

Result: (printed on the paper):

Level 1 — the object to be printed.

(A print-out such as in the Example above.)

Too Few Argument s willoccurforanemptystack.

PRINY uses SCUT, SPAT and PRPAT.

Chapter 9: Output Utilities

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

Print A Character Pattern:

PRPAT 386187)

« DO DUP 1 1e6 SUB

27 CHR OVER SIZE CHR

+ SWAP + PR1 DROP 1
166 SDEL UNTIL DUP
SIZE NOT END DROP =»

PRPAT takes a character string from Level 1 of the

stack (of the form returned by LCD+#) and prints the

corresponding character pattern.

94 CHR 97 CHR 1 CHR
97 CHR 94 CHR © CHR

+ + + + + 'Om' STO

33 SF 15 PRLJ 33 CF Om PRPAT

Result: (printed on the paper):

Level 1 —a character string —the character pattern to be

printed.

(A print-out such as in the Example.)

Too Few Argument s will occurforanemptystack.

PRPAT uses SDEL.

Printer Special Effects 279

Output Utilities: A Discussion

The Main Idea

The HP-28S is not intended to be a general purpose computer. It is

intended to be a very competent calculator. For that reason (as you

have certainly noticed), very little emphasis is placed on sophisticated,

built-in input and output capabilities. Indeed, the only way to put

information into the machine is with your own fingers; and the only

ways to get information out of it are through the display and through

the (optional) infrared printer.

Even so, sometimes a bit of output formatting becomes important.

Displayed results of complicated or data-intensive programs may be

quite confusing — and you'll often need to refer to printouts long after

the actual calculations have been performed — so you'll certainly need

some intelligible organization and labelling for both the display and

printer. The tools in this section let you do just that.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that

is listed in your current PATH. The easiest way to ensure that this is

the case is to place each of the programs in the HOME directory — the

ultimate parent of all other directories.

280 Chapter 9: Output Utilities

Some Observations

Most ofthe printer and display commands are applications of related

string commands, including the ability to make general, graphical

patterns. Underlining and inverse video (white on black printing) and

are common display/printing enhancements that are also included.

There is also a handful of plotting extensions, including a general

purpose line-drawing routine (L INE) that allows you to draw a line

between any two points in the plotting window. The other routines

basically extend thisidea by allowing you to plot several lines consecu-

tively.

Errors And Error Recovery

Each of the tools is designed to generate an error with invalid input,

ratherthan continue and potentially generate garbage outputs. When

errors do occur, the stack is almost invariably disrupted, and since the

only way to restore a disrupted stack is with the UNDO command,it's

wisest to activate UNDO mode (in the MODES menu) and leave it

active throughout your use of these utilities.

Discussion 281

HowYou Might Use These Utilities

Connect Data Points With DRWZ

Suppose that the array YDAT contains data that you've just entered

and sorted by the independent variable's column (you know how to do

this with the Array utilities from Chapter 5, right?).

Suppose also thatYPAR contains valid COL} data. Youmight then use

POLYL to connect the points in the DRWY scatter plot, thereby

outlining a trend (if any), with the help of this short program, called

CNCTZ 368196):

« 8 PREDY DROP RCLZ

ZPAR 1 GET AGETC
RCLZ ZPAR 2 GET
AGETC <(B8,1> * + VA

SCLZ CLLCD DRWZ
POLYL *

Labelling Printouts

Suppose you have an array ofdata that you want to print out column

by column, with each column labelled. You might use the following

program, called PCOL (1346283):

282 Chapter 9: Output Utilities

€« + A « CRON CR

"COLUMN DRTAR" PRCTR

"=" 24 SRPT PRLJ CR

A EVAL SIZE LIST»

DROP + RC «1 C FOR

J "Column " J SIP +

PRLJ 1 R FOR IA

EVAL € I J > GET

FRRJ MEXT CR NEXT =»
® ¥

Extending Display Graphics

Suppose you wantto be able to draw certain patterns and shapes in the

display — arcs, boxes, arrows, etc. How would you go about building

your own extended set of display graphics utilities?

The first thing to do, ofcourse, is to decide what capabilities you want,

then recognize the core routines you would need to make them work.

Just to get you started, here's a couple of possibilities (the program-

ming is left up to you):

ARC1 Given a center ofcurvature, one endpoint ofthe arc, and

an angle (current angular mode), HRC 1 plots the arc,

using ARCZ, P®DM and ' PPAR ' as needed.

ARC2 Given a center of curvature and the two endpoints ofan

arc, ARCZ plots the corresponding arc, using F¥DM

and ' PPAR" as needed.

Discussion 283

Chapter 10

Programming Utilities

These routines provide convenient, "canned" methods for conducting

various object and system tests, controlling system parameters, and

for allowing dynamic program control and evaluation.

As shown in the following list, the 41 programs are organized into ten

logical groups, presented alphabetically. Within each group, the pro-

grams are also usually presented alphabetically (by MAME), although

in some cases, certain sets ofprograms may be complementary or oth-

erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page

306, immediately following these program listings.

284 Chapter 10: Programming Utilities

CASE

ON

ERREF
MEM=

BEEP?
BFOFF
BPON

CR?
CROFF
CRON

Contents

Function

Evaluations Based Upon Test Values

Evaluate The Object Corresponding To A

Test Value

Evaluate The Object Indexed By A Test Value

Miscellaneous Functions

Generate An Error Beep

Find The Percentage Of Total System Memory

Still Available

TestAnd Controls For The Beeper

Is The Beeper Enabled?

Disable The Beeper

Enable The Beeper

TestAnd Controls For The Printer's

Automatic Carriage Return

Is The Automatic Carriage Return Enabled?

Disable The Automatic Carriage Return

Enable The Automatic Carriage Return

288

290

291

292

293

293

293

294

294

294

285

Name Function Page

Tests For Angle Modes

ANG? What Is The Angle Mode? 295

DEG? Is The Angle Mode DEGrees? 295

RAD? Is The Angle Mode RADians? 295

Tests For Array Dimensionality

AR1D? Is The Given Array 1-Dimensional? 296

AR2D? Is The Given Array 2-Dimensional? 296

DIM? What Is The Dimensionality 296

Of The Given Array?

Tests For Binary Modes

BASE? What Is The Binary Mode? 298

BIN? Is The Binary Mode BINary? 298

DEC? Is The Binary Mode DECimal? 298

HEX? Is The Binary Mode HEXadecimal? 298

QCT? Is The Binary Mode OCTal? 299

Tests For Display Formats

DIGS? How Many Digits Are Being Displayed? 300

EMG? Is The Display Format ENGineering? 300

286 Chapter 10: Programming Utilities

FIX?

FMT?

SCI?
STD?

ALGB?
RRRY?
BNRY?

CARY"?

CPLR?
LIST?
LOCL?
MAME?
FPRGM?

RARY?

REAL?
STR?

GETK

Function

Is The Display Format FiXed Point?

What Is The Display Format?

Is The Display Format SClentific?

Is The Display Format STandarD?

Tests For Object Types

Is The Given Object An Algebraic Object?

Is The Given Object An Array Or Vector?

Is The Given Object A Binary Integer?

Is The Given Object A Complex-Valued

Array Or Vector?

Is The Given Object A Complex Number?

Is The Given Object A List?

Is The Given Object A Local Name?

Is The Given Object A Global Name?

Is The Given Object A Postfix Program?

Is The Given Object A Real-Valued Array

Or Vector?

Is The Given Object A Real Number?

Is The Given Object A Character String?

Waits For Keystrokes

Wait For A Keystroke And Return Its Name

KEYWARIT Wait For A Keystroke

Contents

g

300

300

300

301

302

302

302

302

302

302

303

303

303

303

303

303

305

305

287

Evaluate The Object Corresponding To

A Test Value:

CASE 322911)

« + I VROXIFYV
EVAL I POS DUP THEN

R SWAP GET EYAL ELSE
DROP O EVAL EMD » =»

Summary: The CASE conditional allows you to evaluate one of

Examples:

288

several objects based on the value ofthe supplied object

In other words,in the case that the test object has such

and such a value, such and such object will be evaluated.

Its value lies in replacing "nested" IF statements (IF

.. THEN IF ... THEM IF ..).

a{B812>{ "REAL" "CPLX" "STR" 3}
"INVALID" CASE Result: "REAL"

2< 812% { "REAL" "CPLX" "STR" 2
"INVALID" CASE Result: "STR"

24812 > "REAL" "CPLX" "STR"
"INVALID" CASE Result: " INVALID"

Chapter 10: Programming Utilities

Inputs: Level 4 —any object — the object of the test.

Level 3 — a list — the choice of possible objects.

Level 2 — a list — the outcomes corresponding to the ob-

ject choices.

Level 1 — any object — a default object to be evaluated if

the test object does not match any of the choices.

Outputs: The possible outputs dependent on which ofthe objects

are evaluated and what that evaluation yields.

Errors: Too Few Argument s will occur ifthere are fewer

than 4 objects on the stack.

Bad Argument Type will occurifthe Level 2 and

3 objects do not evaluate to lists.

Notes: None.

Evaluations Based Upon Test Values 289

Evaluate The Object Indexed ByA Test Value:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

290

ON (63933)

« + CL<«L EVAL C
+NUM GET EVAL » »

OH provides a means ofselecting an action based on the

value of an object, which is used directly as an index to

a list of options. The selected option is then evaluated.

The indexvalue is rounded to an integer before use. The

index must select a valid option or an error will occur.

2 "A" wp" "Cv 3 ON Result: ng

STD 41{ «SQ 1->»«502%2-23
> ON Result: 13

Level 2—-any object that evaluates to areal number—the

index.

Level 1 —any object that evaluates to a list— the options.

The output is dependent on the option evaluated.

Too Few Arauments will occur if the stack

contains fewer than 2 objects.

Bad Argument Type will occurifthe objectsdon't

evaluate to their prescribed types.

Bad Argument Value willoccuriftheindexisout
of range for the list.

Various unpredictable errors can occur based on the

evaluation of the selected list object.

Chapter 10: Programming Utilities

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

GenerateAn Error Beep:

ERRBP 28649)

« 1468 .875 BEEP »

ERRBP generates a beep ofthe same pitch and duration

as the standard error beep. It can be used to signal

errors in user-created programs.

ERRBP

None.

None.

None.

Flag51controlsthe status ofthe HP-28S tone generator.

Ifthisflagisclear,aBEEP will produce a tone; ifthe flag

is set, no action is taken.

Miscellaneous Functions 291

Find The Percentage Of Total System Memory

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

292

Still Available:

MEM: (8031)

« MEM 32397.3 SWAP

AT 2 RRND =»

MEM? returns the percent ofmemory free. Amaximum

available memory of32397 . OD bytes is assumed and

the result is rounded to 2 decimal places.

STD MEMX Result: 71.51

None.

Level 1 — A real number.

None.

MEM*% uses RRND.

Chapter 10: Programming Utilities

Test And Controls For The Beeper:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

BPON (7200)

« 51 CF =»

BPOFF ©3873)

« 51 SF »

BEEP? (3633)

« 51 FC? »

BPON and BPOFF turn the internal beeper on and off

respectively, thus enabling/disabling subsequent execu-

tions ofBEEP. BEEP? tests to see whether the beeper

is enabled, returning a 1 (true)ifitis and a@ otherwise.

BPON STD BEEP? Result: 1
BPOFF STD BEEP? Result: 8

None.

Level 1 (for BEEP? only) — a real number,either a 0 or

1 — the result of the test

None.

None.

Test And Controls For The Beeper 293

TestAnd Controls For

The Printer's Automatic Carriage Return

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

294

CR? (F440)

« 33 FC? »

CROFF ©9106)

€ 33 SF »

CRON (#837)

€ 33 CF »

CRON andCROFF enable and disable,respectively, the

printer's automatic carriage return. CR? tests whether

itis enabled, returning a 1 (true)ifso anda® otherwise.

CRON STD CR? Result: 1
CROFF STD CR? Result: ©

None.

Level 1 (for CR? only) — a real number, either a @ or 1

— the result of the test.

None.

None.

Chapter 10: Programming Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Tests For Angle Modes:

ANG? E6822)

« { DEG RAD > RAD? 1
+ GET »

DEG? 8382)

« 60 FC? »

RAD? S368)

« 68 FS? »

These routines test the current angle mode. DEG? and

RAD? return al (true) or @ (false), indicating whether

the tested-for modeis active. ANG? returns the current

mode's name: DEG or RAD.

DEG RAD? Result: 8 DEG DEG? Result: 1
RAD AMG? Result: RAD

None.

DEG? and RAD? return either a 1 or B to Level 1.

ANG? returns a program object, either DEG or RAD.

None.

ANG? returns evaluable program objects. ItusesRAD?.

Tests And Controls For The Printer's Carriage Return, Angle Modes 295

Summary:

Examples:

296

Tests ForArray Dimensionality:

ARLD?Y? (12332)

« DIM? 1 ==»

AR2D? (1237¢7)

« DIM? 2 == >»

DIM? (31408)

« SIZE LIST» 1 ==

IFT 2 2LIST 1 POS 1

2 IFTE =»

These routines all test the dimensions ofthe given array.

DIM? returns the dimension of the array: 1 or 2 (HP-

28S vector objects are considered to be one-dimensional

arrays). AR2D? returns true orfalse, based onwhether

the given array is two-dimensional or not. AR1D? per-

forms a similar test for one-dimensional arrays.

STD L 1 23 1 DIM? Result: 1

Chapter 10: Programming Utilities

Inputs:

Outputs:

Errors:

Notes:

STD L 1 2 2 1 AR2D? Result: 8

STD L 1 2 3 1 AR1D? Result: 1

STD CC 1 2 1C 34 11 AR2D?

Result: 1

STD [CL 1 2 3 1] ARID? Result: 1

Level 1 — an array or vector object.

Level 1 — DIM? returns either 1 or 2, AR2D? and

AR 1D? return either @ or 1.

Too Few Arguments will occur if the stack is

empty.

Bad Argument Type willoccur ifthe input object

is not an array or vector.

None.

Tests For Array Dimensionality 297

298

Tests For Binary Modes:

BASE? (F641)

R { DEC BIN OCT HEX
43 FS? 2 * 44 FS?

1 + GET =»+

BIN? @3273)

R 43 FC? 44 FS? AND

DEC? E2724)

R 43 FC? 44 FC? RAND

HEX? 23677)

« 43 FS? 44 FS? AND

Chapter 10: Programming Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

OCT? 23466)

« 43 FS? 44 FC? AND
%

These routines all return information about the current

binary integer format.

All the othertests return eitheral (true)or@ (false), de-

pending upon whether or not the tested-for mode is

active. BASE? returnsthe current mode'sname: BIN,

DEC, HEX or OCT.

BIN BASE? Result: BIN
HEX BIN? Result: 8

OCT OCT? Result: 1

None.

BIN?, DEC?, HEX? and OCT? all return either a

1 or@ to Level 1. BASE? returns one of the following

program objects: BEIM, DEC, HEX, OCT.

None.

The objects returned by BASE? are actually evalu-

atable programs.

Tests For Binary Modes 299

Tests For Display Formats:

DIGS? ©3483)

« 33 FS? 24 FS? 2 *

+ 30 FS? 4 # + 36
FS? 8 * + »

ENG? @3389)

49 FS? 58 FS? ANDR

FIX? @3493)

fk 49 FS? 58 FC? AND

FMT? (33483)

« { STD SCI FIX ENG
> 49 FS? 2 # 50 FS?
+ 1 + GET =»

SCI? @3389)

49 FC? 36 FS? ANDR

300 Chapter 10: Programming Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

STD? 23444)

« 49 FC? 38 FC? AMD
»

These tests all return information about the current

numerical display format. FIX?, SCI?, ENG? and

STD? all return eithera l (true) ord (false), indicating

whether the tested-for mode is active. DIGS? returns

the numberofdisplayed digits in the current mode (8 is

returned for STD mode). FMT? returns the current

mode's name: FIX, SCI ENG or STD.

4 FIX DIGS? Result: 4.8068

STD DIGS? Result: @

11 SCI FMT? Result: SCI

28 ENG STD? Result: @. A0BBEAEARER

3 SCI SCI? Result: 1.BE@BEAR

None.

Level 1-FIX?,SCI?ENG? andSTD? returnareal

number,either a 1 or @ — the result ofthe test. DIGS?

returns a real number, between d and 1 1 — the number

ofdisplay digits. FMT? returns a program object, either

FIXSCI,EMG, or STD — the current display format.

None.

The evaluable objects returned byFMT? takethe number

of display digits from the stack (except for STD).

Tests For Display Formats 301

Tests For Object Types:

ALGB? (13821)

€ TYPE 9 == »

ARRY? (33313)

« TYPE € 3 4 > SWAP

POS =»

BNRY? (14884)

« TYPE 18 == »

CARY? (134386)

TYPE 4 == »R

CPLX? 13332)

TYPE 1 == »fk

LIST? (13634)

TYPE 5 == »R

302 Chapter 10: Programming Utilities

LOCL™? (13338)

« TYPE 7 == »

NAME? (13172)

« TYPE 6 == »

PRGM? (13332)

« TYPE 8 == »

RARY? (13633)

« TYPE 3 == »

REAL? 13178)

« TYPE © == »

STR? (12268)

« TYPE 2 == »

Summary: These routines are all tests that return true or false (1

or8) based on whether or not the objectis ofthe typefor

which the test is being made:

Tests For Object Types 303

Examples:

Inputs:

Outputs:

Errors:

Notes:

304

Routine

RALGB?
ARRY?
BNRY?
CARY?
CPLR?
LIST?

LOCL?

MAME?
FRGM?

RARY?
REAL?
STR?

"HI" STR?

Object Type Being Tested For

Algebraic Object

Array or Vector

Binary Integer

Complex-Valued Array

Complex Number

List

Local Name

Global Name

Program Object

Real-Valued Array

Real Number

Character String

Result: 1

STD (1,82 CPLR? Result: 1
« STD » REAL?

Level 1 — any object

Result: 8

Level 1 -a real number, either a 1 or 0 —the result ofthe

test.

Too Few Argument s willoccurforanemptystack.

None.

Chapter 10: Programming Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Waits For Keystrokes:

GETK 32639)

« DO UNTIL KEY END »

KEYWAIT (03938)

« DO UNTIL KEY EMD

DROP =»

GETK pauses program execution to get a key. Once a

key is pressed, the key name is returned and the pro-

gram continues. KEYWAIT waits for a keystroke be-

fore continuing, but does not return a value.

GETK (9 Result: "9"

KEYWARIT Result: (wait)

None. After the routines are invoked, any keystroke

other than will be accepted.

Level 1 — (GETK only) a character string — the nameof

the key pressed.

None.

Pressing will interrupt either routine, potentially

leaving a 8 on the stack.

Waits For Keystrokes 305

Programming Utilities: A Discussion

The Main Idea

Most of these tools are in the Programming section because they are

useless in manual calculations. For instance, how often would you

need a program to tell you the type ofobject in stack Level 1 when you

can look right at it and see for yourself? On the other hand, this sort

of tool is very useful within a program to give it the intelligence to

determine such conditions — what the Level 1 object is, or what the

current display modeis, etc.

There are also some tools here that give you new ways to control

program evaluation, control calculator states and gather user input.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that

is listed in your current PATH. The easiest way to ensure that this is

the case is to place each ofthe programs in the HOME directory — the

ultimate parent of all other directories.

306 Chapter 10: Programming Utilities

Some Observations

Perhaps here more than in any other chapter ofthis book the use ofthe

tools is governed by your own preferences. Most of the tests and flag

controlling commands are very short programs, barely necessary un-

less you can't remember the number of the beeper control flag, or the

type number of a character string. Their (hopefully) meaningful

names and one-keystroke entries are timesavers. And if you design

programs that use them heavily, you might save some memory, also.

You'll probably find that inmost situations, the programs youwrite are

independent of the current calculator state. It is easy to save the cur-

rent state, set a new state for the duration of the program, then reset

the previous state before leaving. Take SIP as an example:

« 3NUM IP MUM RCLF

SWAP STD »STR SWAP

STOF =»

RCLF recalls the states ofall the system and userflags. Then various

other modes may be safely set by the program (in this case STD), since

they will be undone afterward, by a restoration of the original flag

settings with STOF. This is how you can make any program mode

independent — so that it will work the same regardless ofwhat modes

it encounters as it begins execution.

Note, however, that you can also write programs that work differently

with different system settings. For example, you might have a pro-

gram calculation whose accuracy varies according to the current dis-

play setting, orwhichgets different results in degrees orradians mode.

With that in mind, some ofthe more useful routines in this section are

Discussion 307

those that allow you to direct program control dynamically. For

example, GETK and KEYWAIT allow programs to interact with the

user, taking actions based on the identity of a single keystroke.

OM (after the HP-BASIC ON. . .GOTO. . . statement) simply evaluates

an argument and uses the integer result to select and evaluate an ob-

ject from a list. Since the objects in the list may be programs or names

ofprocedure objects, ON is a conditional evaluation based on an index.

The CASE command is similar, but takes an argument and compares

it with a list of values. If it matches one of the values, the returned

index is used to select an object to be evaluated from a second list. If

the argument matches none of the options, a catch-all object is

evaluated. Thus, CASE is similar to the following Pascal construct:

CASE object IN

1 : firstcondition;

2 : secondcondition;

3 : thirdcondition;

OTHERWISE not_12or3;

END;

Errors And Error Recovery

Each ofthese tools is designed to generate an error with invalid input,

rather than to continue and possibly generate bad output. When er-

rors do occur, the stack is usually disrupted, and since the only way to

restore a disrupted stack is with the UNDO command,it's wisest to

activate UNDO mode (in the MODES menu) when usingthese utilities.

308 Chapter 10: Programming Utilities

How You Might Use These Utilities

GETK

Because GETK returns a string object to the stack, a program that

uses GETK can use the return value in several ways to provide condi-

tional action. First, using CASE, you could do this:

GETK ¢ "LEFT" "RIGHT" "UP" "DOWN" 3
{ GOLEFT GORIGHT GOUP GODOWM 3 'IDLE' CASE

But consider this simpler and faster approach:

GETK "GO" SWAP + STE=+

Or, you could provide the ' IDLE" option in the following way:

GETK "GO" SWAP + STR+ DROP IDLE

Thus, for example, ifyou press (3), STRE* evaluates to ' G09 "' which

(hopefully) does not name an object and therefore the name is left on

the stack. The program continues, DROPping the name and running

the IDLE routine. Beware of possible errors though: After STR

evaluates the named routine, DROP expects to drop something and

IDLE is evaluated regardless.

Discussion 309

Now, ifall ofthe called routines were designed to return a 1 to indicate

their completion, the following routine could be used:

GETK "GO" SWAP +
STR+ IF 1 SAME NOT

THEN IDLE EHD

or:

GETK "GO" SWAP +
STR+ 1 SAME NOT

"IDLE" IFT

(As you can see, the only real difference hereis the form ofthe IF test

being used.)

Type Testing

ON and CASE provide convenient means of branching — choosing at

"run-time" amongseveral program options, based upon values arrived

at during the program. A common example of this is testing a pro-

gram's arguments to see what TYPE they are and processing differ-

ently based on the object. For example:

« DUP TYPE € B 1 2

{ Real Complex String 2

"Bad Type" CRSE »

310 Chapter 10: Programming Utilities

Here is a routine that decomposes "decomposable" objects, but does

nothing for other types of objects. Note that there is one list element

for every possible value returned by TYPE.

0BJ+ (804234)

« DUP TYPE 1 + € « »
« CR » « STR» » «

ARRY+ DROP *» « ARRY<%

DROP *» « LIST+ DROP
2 EE FE 2 LEIP LK 2L

®» 3 OM »

Or, to avoid having to provide a list element for every TYPE value, you

can use an IF test to restrict the range:

Discussion

0BJz+ (983461)

« DUP TYPE IF DUP B

> OVER & < AND THEN

{ « C3R » « STR» » «

ARRY+ DROP » « ARRY->

DROP » « LIST» DROP

» > OM ELSE DROP END
®

311

ADELC
ADELR
REX
REXC
REXR
AGETC

AGETR
RINSC
AINSR
AI>N
ALGB?
ANG?
AN>I
ROP
AOPC
AOPR
APOS
APUTA
APUTC
APUTR
AR1D?
AR2D?
AREY
ARPT
ARRY?
ARY=C

ARY=>R

ASORT
ASRTC
ASRTR
ASUB
A=L
AsV
BASE?
BEEP?
BIN?

312

125-127
125-127, 157
128-131
130-131
130-131
110-111, 115, 156-

157, 282
110-111, 115
132-133, 157
132-133
144-145
302, 304
295
144-145, 150-151
146-149
146-149
147-149
150-151
134-135
136-137, 157
138, 136-137, 139
296-297
296-297
140-141
112
302, 304
116, 130-131, 143,

146, 149
119, 130-131, 143,

147, 149
140-141, 157
142-143, 156
142-143
114-115
122,194
96-97, 102
298-299
293
298-299

Utilities Index

BNRY?
BPOFF
BPON
BREAK
CARD
CARY?
CASE
CNCTZ
CPLX?
CR?
CROFF
CRON
CROS
C»ARY

Cav
DCTR
DEC?
DEG?
DIGS?
DIM?
DINV
DIR?

DISPS
DLJ
DPAT
DPUT
DRJ
DSORT
DSP

DUDL
ENG?

302, 304
293
293
191
65
302, 304
288, 308-310
282
302, 304
294
294
294, 283
105
117-118, 130-131,

142-143, 146,
149

98-99, 105
257-259
298-299
295
300-301
296-297
264-265
240, 233-235,237-

239, 241, 243,
245, 247, 250-
251

191
257-259
262, 161, 263
260-261
257-259
232
228
244, 233-234, 238-

239, 245-246,
250

264-265
300-301

ENQ 218-219

ERRBP 291

EXCH 22, 42

FRDD 64

FCTR 50-51, 61, 63

FIND 245-246, 249, 252

FIX? 300-301

FLTR 198-199, 229,233-

234, 245-246

FMT? 300

GCD 46-47, 63

GETK 305, 309-310

GOTO 247,235,237,250-

252

HEX? 298-299

IJK» 94, 103-105

IRAND 54-55, 65-66

IRND 56, 67

KILLD 233-234,238,249,

253

KEYWRIT 305

LCM 46-47,63

LCUT 200,206,208, 210-

211

LDEL 202-203, 216-217

LEX 204, 228

LINE 266-267, 269,271,

281

LINS 206-208, 227

LIST? 302,304

LOCL? 303-304

LOP 220, 149, 189,214-

215, 221, 228,

232

LPUT 206-208

LREY 209

LROT 210-211

LRPL 212

LRPT 197

Chapter I: Index And Other Information

LSORT 214,189,215,228,

232

LZAP 216-217

L=A 123,195

MEDH 157

MEM*% 292

MERGE 30,43

MOVE 235-237, 250, 253

MT? 242-243, 250-251

NAME? 303, 304

NTYPE 243, 250-251

oBJ» 311

oBJ2» 311

0CcT? 299

ON 290, 308, 310-311

PCOL 282-283

PLACE 66

PLOT 268-269, 272

POLYL 270-271,282

POP 222-223

PRCTR 274-275,283

PRDW 277-278

PRGM? 303-304

PRINY 277-278

PRLJ 274-275, 283

PRMS 52, 61, 63

PRPAT 279, 161, 277-278

PRPUT 276

PRRJ 274-275, 283

PRUDL 277-278

PSET 272, 268

PTEST 66

PUSH 222-223

PUTIT 65-66

P¥DM 273, 266-267, 283

QSRT 24-25, 40-42, 140,

214-215, 249

RAD? 295

RARY? 303-304

Utilities Index

RDC

REAL?

REV3

REVYN

RMD

ROLDN

ROLLMN

RRAND

RRND

R>ARY

Re

Ri

R»®

SCI?

SCTR

SCUT

SDEL
SINS
SIP
SLC
SLJ

SPADL
SPADR
SPAT

SPUT
SREY
SRJ

SROT
SRPL

63
303-304
26, 41-42
27, 42
48-49, 63
28-29, 42
28-29, 42
54-55, 65
58-59, 65-67, 292
120-121, 130-131,

142-143, 147,
149

70, 84-86
71, 82, 84-87
72, 82, 84-88
300-301
180-182, 191,257,

259, 274-275
167,170-171,175-

176, 189, 264-
265, 277-278

168, 279
170-171
160, 283, 307
172
180, 170-171, 181-

183
184-185
184, 170-171, 185
161,187, 260-261,

277-278
170-171, 260-263
174, 189
181-183, 257, 274-

275
175
176-177, 189-191

SRPT 162,180-182, 184-

185, 264-265,

276, 283

ST.OP 34

STACKEM 238, 235,237-239,

249-250, 253

STRADD 32-33

STD? 301

STDIV 32-33

STET? 36,38

STGE? 36,38

STGT? 387-38

STG» 164

STLE? 87-38

STLT? 37-39

STMUL 32-33

STNE? 36,38

STOST 34-35,43

STR? 303-304

STSUB 32-33

suc 173

SWAPN 29

SZAP 177

SZAPL 178-179

SZAPR 178-179

TOSS 65

UNQ 218-219, 223

VA 96-97, 102, 282

YC 98-99, 105

a 73, 75-76, 82, 84,-

88

32D 92-93, 105

+3D 92-93, 105

313

PO Box 1928 SOLVE and INTEGRATE Corvallis, OR 97339 (503) 754-1207

What Is The Users' Library?

In 1974 Hewlett-Packard established a Users' Library to provide

HP calculator users with useful and easily available programs. Users

(like you) submitted programs on topics ranging from technical solu-

tions to business and entertainment. They were reviewed and, if

accepted, made available to other users for the cost of reproduction.

Who Is Solve And Integrate?

In February of 1988, Solve and Integrate took over management of

the Users’ Library. Prior to founding Solve And Integrate, John Loux,

worked at Hewlett-Packard for over 5 years, reviewing programs and

providing technical support. Though not affiliated with Hewlett-Pack-

ard, SolveAnd Integrate aims to provide you the same fine service, plus

new and exciting products and services in the future.

How Does The Library Work?

Over 9,000 programs are described in three catalogs (HP-41/71/75;

HP-67/97; and Series 80), sold separately or with membership, which

includes a current catalog, software credit toward Library programs,

and a subscription to the quarterly newsletter. Also available are HP

calculators and accessories (peripherals, modules, Solution Books,

Application Pacs). HP-28S memberships include a collection of pro-

grams and a subscription to the quarterly newsletter.

The LibraryAnd You

It's your Library, and to keep pace with new products, it needs new

program submittals — especially for the relatively new machines like

the HP-28S and HP-42S. So if you've written programs you're proud

of, send them in and help build the Library of the future!

PO Box 1928 SOLVE and INTEGRATE Corvallis, OR 97339 (503) 754-1207

For the HP-28S:

Please send me a list of available HP-28S software.

I'd like to be a Users' Library member. Annual membership includes a

collection of programs and a quarterly newsletter.

Enclosed is $25 (US and Canada)

Enclosed is $40 (All other countries)

I have some software to submit. Please send me a program submittal package.

For the HP-41, HP-71B, HP-75:

Please send me a list of current catalogs.

Enclosed is $10 (US and Canada)

Enclosed is $15 (All other countries)

I'd like to be a Users' Library member. Annual membership includes a

selection of catalogs, $20 credit toward Library software, and a quarterly

newsletter.

Enclosed is $25 (US and Canada)

Enclosed is $40 (All other countries)

Ihave some software to submit. Please send me a program submittal package.

For the Series 80:

Please send me the current software catalog.

Enclosed is $5 (US) or $10 (Canada)

Enclosed is $15 (All other countries)

I'd like to be a Users' Library member. Annual membership includes a

catalog, $25 credit toward Library software and a quarterly newsletter.
Enclosed is $25 (US and Canada)

Enclosed is $40 (All other countries)

I have some software to submit. Please send me a program submittal package.

(Prices are subject to change without notice.)

OVER w=

General Information: Solve and Integrate will translate any exist-

ing Library program, write new software to your specifications, or

print HP-41 barcode for your HP-41 program.

Please send me information on Custom Programming.

Please send me information on Custom Barcode.

I would like to ask or comment about something:

Please make your check payable to Solve and Integrate Corp.,or

VISA or MasterCard # Exp.

Your signature

Phone ()

Name

Address

City State Zip

Return form to: Solve and Integrate

P.O. Box 1928

Corvallis, OR 97339

(503) 754-1207

Are You A Programmer OrAn Author?

If you have talents for programming or writing that you would like to

share with others, then consider publishing your work:

e If you have written and completely documented software for any

Hewlett-Packard handheld calculator/computer, then send it with

a self-addressed stamped envelope to:

Solve and Integrate Corporation

Attention: Submittals Editor

P.O. Box 1928

Corvallis, Oregon 97339-1928 U.S.A.

Depending upon the scope of the software you've developed, you

could be considered for:

(1) Contributor status in Solve and Integrate's Users’ Library;

(ii) Co-author status for a "Software Power Tools" book.

¢ Ifyou have a manuscript or proposal for a book that teaches readers

concepts and problem-solving in some area ofmath, science or tech-

nology, then send it with a self-addressed, stamped envelopeto:

Grapevine Publications, Inc.

Attention: Submittals Editor

P.O. Box 118

Corvallis, Oregon 97339-0118 U.S.A.

Here are some ofour other great books:

An Easy Course In Using The HP-28S

Ifyou're looking for a clear, straightforward

explanation of the powerful HP-28S, then this

is your book! Authors Loux and Coffin sort

through the myriad features of this machine,

giving you the pictures and the practice you

need to make the HP-28S your favorite calcu-

lating tool.

You'll learn about these and more:

e The Display ¢ Menu keys

e Posting Memos + Keyboards

¢ Real Numbers ¢ Flags

* Strings e Lists

e Complex Numbers + Matrices

e Algebraic Objects e Vectors

¢ Programs

e User Defined Functions

HP-28S Software Power Tools:

Electrical Circuits

Here's the solutions book you've been waiting

for! First, youbuild a friendly and easy-to-edit

description ofyour circuit, which may have any

ofthe followingelements in series or in parallel:

* Resistors e Capacitors

¢ Inductors ¢ Impedences

* Independent Voltage Sources

* Independent Current Sources

You can do either mesh or nodal analysis,

construct general networks or ladders, and use

a host of small utility routines to do side calcu-

lations as you wish. And naturally, you can

vary the frequency of your sources and plot

results, either on the display or the infrared

printer. Every routine is explained, and every

piece of the program is documented!

And we have Easy Courses and other related books on many different

HP calculators. See our orderblank (opposite page, here) or contact us

for a free catalog!

Grapevine Publications, Inc.

P.O. Box 118

Corvallis, OR 97339-0118

(503) 754-0583

To Order:
Call our Toll-Free for the location of the GPI dealer nearest you, OR
Charge the books to VISA or MasterCard, OR
Send this Order Form to: Grapevine Publications, P.O. Box 118, Corvallis, OR 97339

copies of An Easy Course In Using The HP-42S @ $22.00 ea.= $
copies of An Easy Course In Using The HP-32Suwiwsiysa @ $22.00 ea.= $ __
copies of An Easy Course In Using The HP-22Scce... @ $22.00 ea.= $
copies of An Easy Course In Using The HP-19B...ccceeeee. @ $22.00 ea.= $
copies of The HP-19B Pocket Guide: Just In Case @$ 5.00ea.= $
copies of An Easy Course In Using The HP-17Bcceeeeee. @ $22.00 ea.= $

copies of The HP-17B Pocket Guide: Just In Case @$ 500ea.=$
copies of The HP Business Consultant Training Guide (18C). @ $22.00 ea.= $
copies of An Easy Course In Using The HP-12C............. @ $22.00 ea.= $
copies of The HP-12C Pocket Guide: Just In Case @$ 5.00ea.= $
copies of An Easy Course In Using The HP-28S ...ccece.. @ $22.00 ea.= $
copies of HP-28S Software Power Tools: Utilities....cceee @3$18.00ea.= $

copies of HP-28S Software Power Tools: Electrical Circuits... @ $18.00 ea.= $

copies of An Easy Course In Using The HP-27S @ $22.00 ea.= $
copies of An Easy Course In Programming The HP-41... @ $22.00 ea.= $
copies of Computer Science on Your HP-41(Using Advantage) @ $15.00 ea.= $

copies of Using Your HP-41 Advantage: Statics.......cc... @$12.00ea.= §
copies of An Easy Course In Using The HP-16Ccceeeeeee @$22.00ea.= $

(Prices valid through February 5, 1990) Subtotal = $

SHIPPING INFORMATION:

For orders less than $10.00 ADD $1.00 $

or

For all other orders — Choose one:Post Office shipping and handling... ADD $2.50 §_____
(allow 2-3 weeks for delivery) or

UPSshipping and handling ADD $3.75 $_____
(allow 7-10 days for delivery) or

International Mail SUTTGCe $4.50 eeueeeereraerssassscssoscoseseneos ADD $4.50 $
(allow 6-8 weeks for delivery)

Parcel (Please contact us for correct amount or add $10 per book to Canada and Mexico. Add $25 per book

to all other countries. We will refund any cash excess, or charge exact shipping cost to credit cards. Allow 2-3 weeks delivery)

TOTAL AMOUNT: ——-cemermrcemmeee—> §

PAYMENT:

Your personal check is welcome. Please make it out to Grapevine Publications, Inc. OR
(International Check or Money Order must be in U.S funds and draun on a U.S bank)

YourVISAorMasterCard #: Exp. date:

Yoursignature: Phone: ()

Name

Shipping Address
(Note: UPS will notdeliver to a P.O. Box! Please give a street address for UPS delivery.)

City State Zip

For Orders Only

call: 1-800-338-4331
(In Oregon 754-0583)

Reader Comments

We here at Grapevine love to hear feedback about our publications. It

helps us write books tailored to our readers’ needs. If you have any

specific comments or advice for our authors after reading this book,

we'd appreciate hearing from you!

Which of our books do you have?

Comments, Advice and Suggestions:

May we use your comments as testimonials?

Your Name: Profession:

City, State where you live:

How long have you had your HP calculator?

Please send Grapevine Catalogues to the following persons:

Name

Address

City State Zip

Name

Address

City State Zip

HP-28S Software Power Tools: Utilities

Here's a must-have collection ofHP-28S tools — program routines

to make your own programming go more quickly and smoothly!

You get ten different sets of "canned" solutions, ready for "off the

shelf" use: Utilities for the stack, real numbers, complexnum-

bers, vectors, arrays, strings,lists, directories, output, and

program development.

Each routine is documented, and there's a discussion at the end of

each set, to give you some examples of how to use those utilities.

You'll find this book to be a great collection of advice, good habits

and sound programming principles. Whether you're just starting

to program or are experienced already, these all-purpose tools

belong in your HP-28S and under your fingers — don't miss them!

FROMTHE PRESS AT

GRWEVINE. PUBLICATIONS, INC,
%a P.O.Box 118 * Corvallis, Oregon 97339-0118 * U.S.A. © (503) 754-0583

ISBN 0-931011-27-2

00027%"12841

HP Part # 92220Y

	Cover
	Contents
	0. Introduction To This Book
	What You "Gotta" Do
	What You "Don't Gotta" Do
	Reminders: Some HP-28S Basics
	Notes On Using This Book

	1. Stack Utilities
	Contents List
	The Program Routines
	Discussion

	2. Real Number Utilities
	Contents List
	The Program Routines
	Discussion

	3. Complex Number Utilities
	Contents List
	The Program Routines
	Discussion

	4. Vector Utilities
	Contents List
	The Program Routines
	Discussion

	5. Array Utilities
	Contents List
	The Program Routines
	Discussion

	6. Character String Utilities
	Contents List
	The Program Routines
	Discussion

	7. List Utilities
	Contents List
	The Program Routines
	Discussion

	8. Directory Utilities
	Contents List
	The Program Routines
	Discussion

	9. Output Utilities
	Contents List
	The Program Routines
	Discussion

	10. Programming Utilities
	Contents List
	The Program Routines
	Discussion

	I. Index And Other Information
	Utilities Index
	All About Solve And Integrate Corporation
	Comments And Order Forms
	All About Grapevine Publications, Inc
	Comments And Order Forms

