HP-28S
Software Power Tools

Utilities

0

A Product of
Solve and Integrate Corporation

A GRAPEVINE PUBLICATION

HP-28S
Software Power Tools:

UTILITIES

A Product of
Solve and Integrate Corporation

Grapevine Publications, Inc.
P.O. Box 118
Corvallis, Oregon 97339-0118 U.S.A.

Acknowledgements

We extend our thanks once again to Hewlett-Packard for their top-
quality products and documentation.

© 1989, by Solve and Integrate Corporation. All rights reserved. No
portion of this book or its contents, nor any portion of the programs
contained herein, may be reproduced in any form, printed, electronic
or mechanical, without written permission from Solve and Integrate
Corporation and Grapevine Publications, Inc.

Printed in the United States of America
ISBN 0-931011-27-2

First Printing — November, 1989

Notice Of Disclaimer: Neither the authors, nor Solve and Integrate Corporation nor Grapevine
Publications, Inc. make any express or implied warranty with regard to the keystroke procedures
and program materials herein offered, nor to their merchantability nor fitness for any particular
purpose. These keystroke procedures and program materials are made available solely on an "as
is" basis, and the entire risk as to their quality and performance is with the user. Should the
keystroke procedures and program materials prove defective, the user (and not the authors, nor
Solve and Integrate corporation, nor Grapevine Publications, Inc., nor any other party) shall bear
the entire cost of all necessary correction and all incidental or consequential damages. Grapevine
Publications, Inc. shall not be liable for any incidental or consequential damages in connection
with, or arising out of, the furnishing, use, or performance of these keystroke procedures or
program materials.

CONTENTS

(o) Introduction To This Book 6
What You "Gotta" Do......cccoccevreinieieireeeeseeeeee et re e 7
What You "Don't Gotta" Do....cccccoceeviinuienirirrieeeeeeeceeecee e 7
Reminders: Some HP-28S Basicsccceceeveeverrervercvenevervrernesnenns 8
Notes On Using This BooK.......ccccecevtrvirruenreneceneecrereeeerneenennnes 14

(1 Stack Utilities 20
Contents LiStccccceevveeienerrtirtiiieecitereeeeereeeeesseessresseeeeessaeenne 21
The Program Routines.........ccccocevvieircieceerecerereeeeeeeeeeeecree e 22
DiSCUSSIONeeeeeiiieieeeieitrctrteteste et e e e e e e e s e sse e s e sae s easene 40

(2 Real Number Utilities 4
Contents LiStccceververeriririereriesiereeteiereereeeeeseeressessessessesseeseenes 45
The Program RoULINES........ccccevireeeeereereeeeteeciener v 46
DiSCUSSION ...ttt es 60

(3) Complex Number Utilities 68
Contents LiStccccocevurieereneieienintenieeereeree et cvee e e ne 69
The Program RoULINeS........ccocueeueereeeerieieiiiieeeeeeeeee e 70

DASCUSSIONeevieeeieiiiieeceieecre ettt eeeeeeeeessaeeeseanes seeennensens 78

(4) Vector Utilities

Contents LiStcccoceeveeerireerieieeeeeeeeeeeeeccnenneeeee
The Program Routines........ccccceeviiricveincnennne
DiSCUSSIONoeieeviieeeccree ettt

(5) Array Utilities

..........................

Contents LiSt ...ccooovvviviiiiieiiiiiiiceireeeeeeeeeeeeeeeenns
The Program Routines........ccccececuviiiiiecneenenn.
DiSCUSSION ...cooevieeiieeeeeeeeeeecee e

(6) Character String Utilities

Contents Listccoovvveveeeemeiieeceeeeeeeeeeeeeeeeeeeeeenns
The Program Routines.........cccccecveiecireennennnnen.
DISCUSSION ...ttt e

List Utilities

..........................

Contents LiStccovvveieiiiiriiiiiiceeeceeeeeeeeeeeeeeenn
The Program Routines...........cccoecviiivecceennnnne
DiISCUSSION ..ccevvvereirieeeieiiiiiteree e reeeeeeeeeeeeeeeeees

106

107
110
152

158

159

160
186

(8) Directory Utilities 230

Contents LiSt ...coeeeveeiiiiiiiiiiineeneieenrceeeecesenessereesteessaeeesennaeesas 231
The Program Routinesccccccceevviiiivieiniviiniiincennnccinnncninnne. 232
DiSCUSSION ..cevvivieeeeieeeieeeecieitreereeeeeeeesesssnneeeeassssanseasssssesessennssnnannns 248
(8) Output Utilities 254
Contents LISt ...cccccvveiiiieiiiirieercreteerrereeereeecssnesssansesessssnnanesseseas 255
The Program Routinescc.ccccoviirniiiiiiininnnnnnciennnecnnnnnnen 257
DiSCUSSION ..euvvritreeiieieceeiieirree et e ce e ereeeece ettt s e s ssaeseseseesnns 280
Programming Utilities 284
Contents LiStceeeiiieiiieiciieeiieceicee e cseeeseeceeeeseeeesaaeessneesennns 285
The Program Routinescccccoccieviieviineisiennninneeneceeceecenes 288
DiASCUSSIONceeieiitiiceieee ettt ceeee s eeeeeeeeeste e e saeeesseeeeesssnnanaeesees 306
() Index And Other Information 312
Utilities INdexX....ccccoiieoiieeiiee ettt e e eeeee e 312
All About Solve And Integrate Corporation.............ccceeeueenns 314
Comments And Order FOrmsccccceceeeveiereeeneeessceeecseneennnn 315
All About Grapevine Publications, Inc.......ccccecomeeeeeiieienenennnne 318

Comments And Order FOrmSccoovvvvviiviiiiiiiiiiiniiieneieeeneeennnnens 319

Chapter 0

Introduction To This Book

This book is primarily a toolkit of small HP-28S program routines that
can help you build bigger and better programs of your own. These are
not generally useful "all by themselves" (indeed, most of these tools are
fairly boring and useless when invoked "one at a time," or "manually,”
from the keyboard). They are meant to be combined within programs
that you construct for your own purposes.

So this book is mainly a reference source of "canned software." It's not

a tutorial on programming itself (although you can learn a lot about

that subject by following the examples and discussions here).

If you want a true tutorial on the HP-28S, then you should read An
I ing T P-28S (see the last few pages in this book

for more information on how to order this and other tutorial books).

So...

6 Chapter 0: Introduction To This Book

What You "Gotta" Do

* You "gotta” know the basics of using and programming the HP-28S
This book is not a primer on the HP-28S.

* You "gotta” key in, name, store and test some code (programs). How
much code? That depends on what you want to do with these tools.

* You "gotta” invest a little time. There are good reasons for the large
number of pages you see here. It's just not realistic to expect to be
able to look up your particular programming task in the index, flip
to that page and instantly find the solution to your problem. You
need to learn to program and learn how these program tools are
meant to be used.

What You '"Don't Gotta" Do

¢ You "don’t gotta” read everything in the book (though it would be a
goodidea atleast tolook at the contents of each section (given on the
opening pages of that section).

* You "don’t gotta” key in everything in the book; you may never use
some of this stuff. Only after you decide what you want to do will
you know which routines will be helpful to get the job done.

* You "don’t gotta” be limited by this book. If you're a proficient and
interested programmer, then you can modify and expand upon

these tools, inventing entirely new sets for your own use.

What You "Gotta" Do 7

Reminders: Some HP-28S Basics

In case you need a refresher, here are a few reminders about the steps
needed to key in, name, edit, store and use programs on your HP-28S:
"How Do I Load A Program?"

Consider the following program:
« *ab«a'F' STO*
b F + *NUM "The answer

is " SWAP *STR + CLLCD
1 DISP » »

You might key it in this way:

(«<E=JLc)A)sPACE[B]«J A" JLc F " STorRE) EiEA

(e B)SPACE[LCIF [=NME " [T JLC H)EISPACE]AINISJWIER]ISPACE)
(IS sPACE IS WAP IS TANG) ST (+M(CONTRLINEXT) [HNNHT
OEEEET=)

You might key it in that way — or you might not — because there are
many ways to do it.

8 Chapter 0: Introduction To This Book

Take a look now at some of the details here, by studying the first few
keystrokes and what they mean:

(=]LC]A]SPACE]B)...

The («) keystroke signals the beginning of a program; it will always be
the first key you press when entering a program. It also turns on the
alpha cursor (D), so that certain typing aids will help to make loading
the program easier.

For example, you don't need to type spaces in between the keystrokes
and =) —it's done automatically. This saves you many keystrokes,
because spaces must be keyed in exactly as they appear in a program
listing. Notice that most menu keys (e.g. IREEN) will also automati-
cally put a space before and after the command names they type.

However, no spaces are needed around either the € or ' characters,
because they are delimiters (like ", <, [, {,#, SPACE and NEWLINE),
used by the HP-28S to delimit objects. The HP-28S puts spaces around
the ¥ simply to improve readability.

Finally, notice that case is also significant. The a and b must be
lowercase, so you press (LC) before keying them in.

Reminders: Some HP-28S Basics 9

"How Do I Name It?"

Once you've keyed a program into the HP-28S (the example shown on
page 8) so that it's on the stack, you'll need to give it a name by which
you can call it and use it.

To give a program a name, the program must be on Level 1 of the stack.
Then you need to put a unique and fairly descriptive name on the stack
at Level 1 —thus pushing the program itself to Level 2. You must put
single quotation marks (') around the name to prevent the HP-28S
from trying to evaluate it when you it.

So, for example, to name the above program FRED (assuming the
correct and complete program is now sitting at Level 1 of the stack),

press (JFR(EDEO

Keep in mind that this procedure will overwrite any object named
FRED in the current directory, so you should take care that the name
is unique!

10 Chapter 0: Introduction To This Book

"How Do I Change It?"

Now suppose you want to change the stored program (you've keyed it
in wrongly or you want to enhance it). How can you do this?

You could recall the program (put it on the stack), edit it (with [EDIT)) and
re-store it, or you can it, which accomplishes all three of those
things at once.

Type (JFIRIEID)@VIST). You can now move around the program with
the cursor keys. And you can begin to edit right away, but keep in mind
that typing anything new will overwrite (replace) the current contents
unless you go into insert mode ((NS)), in which case what you type is
inserted. This is often handier.

For example, you could use insert mode to add a NEWLINE to the end
ofthe"The answer is " string. Todo this, press W[V
The cursor is over the quotation mark. Press(«)to delete the space and
(NS)@NEWLINE) to insert the newline (notice that, while VISITing, NEWL-
INE characters actually cause a newline break in the program line).

Press now to accept the changes — or (ONJ{ATTN) will abort the edit
without changing the program.

Then recall the program (press (" JFJR[EJ[D) @RCL). Notice that the
NEWLINE character is now represented by a ®. Notice also that this

recalled program is a copy of the FRED program; changes to this copy
won't affect the original unless you re-store it ("JFJRJEJD)(STO).

Press to remove the program from the stack.

Reminders: Some HP-28S Basics 11

"How Do I Use It?'

Once you've loaded your program, to use it, all you need to do is call it

by name: (F]RJEID)ENTER)

If the stack was empty before you started, you'll get an error (TOO
Few Argument s)because this particular program needs input.
The moral here is that you must always know the requirements of your
program before you run it.

In this case, the program needs two real numbers on the stack and
another real number named 'F '.

So start again: (Q(IHEONE=RRQEHERERETS.

The answer is 2.

You should also notice that the name I3 appears on a menu key
when you press (USER). All things that you, the user, create are stored
in user memory and showed to you by the USER menu.

Then, when you select from that USER menu, this is the same
as using any other command from any other menu: in immediate-
execution mode (i.e. when you see either the [] cursor or no cursor at
all), the name, FRED, is evaluated immediately; in alpha mode (the ll
cursor and a annunciator), the name is loaded into the command line
—just as if you had typed it there. All this is exactly the way that built-
in system commands work; a named program is quite literally an
extension of your built-in catalog of commands!

12 Chapter 0: Introduction To This Book

"Where Else Can I Put It?"

For convenience, and organization, you can divide your USER menu
(user memory) into directories — named areas partitioned off from the
rest of user memory. The main directory is HOME, but you can create
other sub-directories. A typical diagram of directories might be:

HOME
| T~
"EE TEMP UTILS
/ N\ /N
"CIRC °"MRK OTHER STRNG

Thedirectory you are inis the current directory. The directory contain-
ing your current directory is its parent. All directories sharing the
same parent are called sisters; all the subdirectories of a directory are
its daughters. If you were in directory UTILS above, the parent
directory would be HOME ; the sister directories, " EE and TEMP; the
daughter directories, STRMG and OTHER. So, in this hypothetical
set-up, you could put FRED intoUT ILS by first moving toUT ILS (by

pressing HOME)ENTER WD LIS)ENTER) and then STOring FRED.

Here's why this matters: Typing the name of an object will evaluate
that object only if it can be found either in the current directory or its
parent (or grandparent or great-grandparent, etc.). If your current
directory is STRHG in the above diagram, you could successfully evalu-
ate (run) your program, FRED, only if it were stored in STRHNG,
UTILS or HOME. If it were anywhere else, you wouldn't be able to
"find" it. Thus, since HOME is every directory's ultimate parent, an
object "living at HOME " can be found and evaluated from any directory.

Reminders: Some HP-28S Basics 13

Notes On Using This Book

Before you key in anything, read these important preliminaries:

First, there are many ways to key things in on the HP-28S,and
it's just impossible to show every method. This book simply cannot
"read your mind" to know which menu or directory you're currently
using when you want to call one of these tools — so it can't give you the
most convenient set of keystrokes for your particular case.

In all programs and examples, therefore, rather than specifically tell-
ing you to press a key (e.g. or (DROP)) or select a menu item (e.g.
IEESEER), you'll see all commands in generic form (spelled out as
if you had typed them in): PURGE DROP R3C P3R, etc.

But keep in mind that, depending upon what you're doing, it might
sometimes be more convenient to use special keys or menu items than
to "type in" the commands character by character. That's up to you.

Secondly, a sample program description is shown on page 15.
This is the general format for the description of each utility.
To make things easier to find, the routines are presented alphabeti-

cally (by MAME) within their respective sections, and there's also a com-
plete index in the back, if you prefer.

14 Chapter 0: Introduction To This Book

Title:
A phrase that briefly tells you what the routine does.

Name Checksum)

The name identifying the routine, followed by an integer
to help you "proofread” the program after
you have keyed it in and named it.

« OBJECT »
The program "code" itself, as it appears
if you RCL it in STD display mode.

Summary: A brief description of the routine's purpose and logic.

Example: One or more simple examples to give you the general
idea.

Inputs: A list of acceptable types and locations of input objects.
Outputs: A list of types and locations of output objects.

Errors: A list of things that could go wrong due to machine
conditions, bad input, etc.

Notes: Other things you ought to know: Does this routine use

(and therefore require) others from this book? How and
when might you want to use it? Etc.

Notes On Using This Book 15

To help you check your accuracy when entering these program

tools, each routine is listed with its checksum, a test value generated
with the help of the CKSM routine (listed opposite, here).

Do This:

Question:

Answer:

Key in CKSM now (use the code listed on the opposite
page).... ThenSTOreit: 'CKSM' STO.

Remember that the directory in which you store it (where
you're "located” when you STO) will limit the memory
locations from which you can "call” it — limited only to
those locations "at” or "below" it on a directory tree.

How do youknow ifa utility routine is keyed in properly?

You key in the routine's name (using ' marks), then use
CKSHM to testit. For example, to test whether or not you
keyed in and modified FRED properly back on pages 8-
11, you do this:

'"FRED' CKSM Correct Result: 232488

Ifyou get anincorrect result, you know there's a mistake
in the routine. Ifso, then editit (' FRED ' @@ visiT)), find
and fix your typo(s), re-store the corrected version (EM-
TER), and repeat the test.

Important Conclusion: CKSHM can and should be used after keying

in and storing any program in this book. It's your best protection
against typos!

16

Chapter 0: Introduction To This Book

Proofread A Named Object:

CKSM (1848278)

« 2 32 *“RCLF » NF
S « N RCL STD HEX &4
STWS 43 SF 48 CF
#STR N »STR + 8 1 3
PICK SIZE FOR I OVER
I DUP SUB NUM I #* +
DUP F MOD SWAP F -~
IP + NEXT SWAFP DROP
S STOF » »

Summary: CKSM (checksum) checks for "typos" by computing a
unique integer for a named object.

Example: Problem: Testwhetheryoucan correctlykeyinCKSM:
Solution: Key in and name the CKSM routine...then
use it "on itself:" 'CKSM' CKSM

Result: (if all is well) 1848278

Inputs: Level 1 — a name — the name of an object.
Outputs: Level 1 — an integer — the checksum.

Errors: Bad Argument Type will occur ifthe inputis not
a name (or Undef ined MName if it's undefined).
Other errors can occur if a typo in the CKSM program
causes it to actually crash before returning a checksum.

Notes: CKSM is most generally useful in the HOME directory.

Notes On Using This Book 17

A few more details to bear in mind:

18

Whenever you see the object types required for inputs and outputs,
remember that symbolic expressions may also be allowable (to be
sure, check the documentation for each routine).

For example, a "real number” can mean either literally a real
number value or any object (such as an algebraic expression, for
example) that can be reduced to a real number with the *NUM or
EYAL commands. A similar argument applies for complex num-
bers, etc.

Remember that the states of flag 35 (constants mode) and flag 36
(results mode) will directly affect whether an object will be reduced
to an actual value! See pages 206-207 of your Owner's Manual if
you need to refresh your memory of these modes.

You can store any or all of these utility tools in HOME or any other
directory (and occasionally, as with CKSM, you'll read a recommen-
dation as to where it might be most useful).

Just bear in mind that when you invoke them, they must be in the
current directory or in a directory that is a "direct ancestor” (i.e. a
parent, grandparent, great-grandparent, etc.) of the current direc-
tory — anywhere in the direct pathway back to HOME, which is a
direct ancestor of all directories. You won't be able to find these if

"o

they're stored in sister or daughter (or "aunt,” "niece” or "cousin")

directories.

Chapter 0: Introduction To This Book

e These utility programs are collected in chapters according to sub-
ject. For the most part, each routine is either independent or uses
others from that same chapter. However, a few routines require the
use of others from different chapters. Admittedly, this isn't neces-
sarily the most convenient when you're keying in and testing
specific routines, but it will lead to their better efficiency of execu-
tion and memory usage once they're properly stored. To make this
easier, moreover, the ordering of the chapters has been arranged so
thatif you proceed through the book, keying in all the utilities in the
order presented, no routine will require any other from any other
chapter that you have not already keyed in.

Furthermore, the ordering of the chapters makes some attempt to
proceed logically — along the lines of increasing object complexity —
beginning with mechanical stack manipulations, then to real num-
bers, then to complex numbers, etc. Hopefully, then, even the pres-
entation of this book (as well as its contents, of course!) will help to
reinforce and remind you once again of the idea of the HP-28S as a
toolbox full of tools — to help you build even bigger and better tools!

Notes On Using This Book 19

Chapter 1

Stack Utilities

These routines provide quick and reliable ways to do certain manipu-
lations, operations and tests on the HP-28S stack.

Asshowninthe following list, the 19 programs are organized into three
logical groups, presented alphabetically. Within each group, the pro-
grams are also usually presented alphabetically (by MAME), although
in some cases, certain sets of programs may be complementary or oth-
erwise so similar that they are presented together.

For a more in-depth discussion of the uses of these utilities, see page
40, immediately following these program listings.

20 Chapter 1: Stack Utilities

EXCH
QSRT
REV3
REVN
ROLDN
ROLLM

MERGE
STRDD
STDIV
STMUL
STSUB
ST.OP
STOST

STET?
STNE?
STGE?
STGT?
STLE?
STLT?

Contents

Function Page

Manipulations

Exchange Levels M And N 22
Perform A QuickSort Of Levels M — N 24
Reverse The Order Of Levels 1 -3 26
Reverse The Order Of Levels 1 - N 27
Roll Levels 1 — N Down A Given Distance 28
Roll Levels 1 — N Up A Given Distance 28
Operations

Combine Levels 1 — N With A Binary Operation 30

Add An Object To Level N 32
Divide Level N By An Object 32
Multiply Level N By An Object 32
Subtract An Object From Level N 32
Perform An Operation On Level N 34
Store An Object In Level N 34
Tests

Is Level N Equal To An Object? 36
Is Level N Not Equal To An Object? 36
Is Level N Greater Than Or Equal To An Object?36
Is Level N Greater Than An Object? 37

Is Level N Less Than Or Equal To An Object? 37
Is Level N Less Than An Object? 37

21

Summary:

Examples:

Inputs:

22

Exchange Levels MAnd N

EXCH (333939)

« »NUM SWAF »NUM IF
DUP2 > THEN SWAP END
+ A B « A ROLL B
ROLL SWAP B ROLLD A
ROLLD » =

EXCH exchanges the contents of any two given stack
Levels. The Level indices works like Level arguments
for functions such as ROLL, indicating the stack Levels
of objects before the arguments were placed on the stack,
and the resulting modified stack assumes those Levels
once again after the manipulation is complete. The Lev-
el indices may be given in either order. Any fractional
portions of the indices are rounded before use. An index
less than 1 causes no action to be taken.

STD 1 2341 3 EXCH Result:1 4 32

Level (n+2) — any object — an object to be exchanged.
Level (m+2) — any object — an object to be exchanged.
Level 2 — any object that evaluates to a real number, m
— one of the Levels to be exchanged.

Level 1 —any object that evaluates to a real number, n—
the other Level to be exchanged.

Chapter 1: Stack Utilities

Outputs:

Errors:

Notes:

Manipulations

Levels 1 to n — the modified stack contents.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects or if the specified object Levels
don't exist.

Bad Argument Type will occur if the Level-1 ob-
ject does not evaluate to a real number.

None.

23

Perform A QuickSort Of Levels M - N

Summary:

Examples:

24

QSRT @482233)

£ * RL&ELR+ 2 7~
IPPICK LR+ XIJ
« DO WHILE I PICK X
{ REPEART I 1 - 'I'

STO END WHILE J PICK
¥ > REPERT J 1 + 'J!
STOEND IF I J >
THEN J ROLL I ROLL
SWAP I ROLLD J ROLLD
END IF I J 2 THEN I
1 - 'I'" STOJ 1 +
'J' STO END UNTIL I
J<CEND IFL J2>
THEN J L QSRT END IF
I R> THEM R I QSRT
END » » »

RSRT sorts the specified stack levels. The objects in the
stack must be orderable (i.e., they must be either real
numbers, binary integers or strings). The resulting
stack Levels are arranged in descending order (proceed-
ing from lowest Level to highest Level).

STD 647 538117 QSRT
Result: 1 324 567 8

Chapter 1: Stack Utilities

Inputs:

Outputs:

Errors:

Notes:

Manipulations

ST 5432115 QSRT
Result: 1 2 3 4 5

ST 24 321 2 4 QSRT
Result: 3 2 3 4 1

Levels 3 to (n+2) — the objects to be sorted.

Level 2 —a real number, m —the lowest stack Level to be
sorted.

Level 1 -areal number, n—the highest stack Level to be
sorted.

Levels 1to (n-m+1)—the original stack with the specified
levels sorted.

Too Few Argument s will occur if the stack con-
tains fewer than 3 objects or fewer objects than specified
by input Levels 1 or 2, or if the Level-2 object is greater
than the Level-1 object.

Bad Araument Type willoccurifeitherthe Level-
1 or Level-2 object fails to reduce to a real number, or if
any of the specified stack levels contain objects that are
unorderable.

QASRT is useful for creating lists and arrays whose ele-
ments are arranged in ascending order.

25

Reverse The Order Of Levels 1 -3

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

26

REV3 (11332)

« SWAP ROT =»

REVZ reverses the order of the bottom three stack
Levels (1, 2, and 3).

STD 1 2 3 REVY3
Result: 3 2 1

Levels 1, 2 and 3 — any objects — the objects whose order
is to be reversed.

Level 3 — the previous Level-1 object.
Level 2 — the previous Level-2 object.
Level 1 — the previous Level-3 object.

Too Few Argument s will occur if the stack con-
tains fewer than 3 objects.

REY3 is generally useful for many stack manipulation

needs in programming and in constructing larger data
objects.

Chapter 1: Stack Utilities

Reverse The Order Of Levels 1 -N

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Manipulations

REVN 219414)

« 3NUM » L « IF L 1
> THEM 1 L FOR I I
ROLL NEXT END » »

REVN reverses the order of the specified stack levels.
The Level indicator number works like the level argu-
ment for functions such as ROLL: it indicates the stack
Levels of objects before REYN's argument was placed on
the stack, and the resulting modified stack assumes
those Levels once again after the manipulation. Any
fractional portion of the Level index is rounded before
use. Arounded Level index less than 2 causes no action.

STD 1 2 34 4 REVN Result: 4 3 2 1

Levels 2 to (n+1) — any objects.
Level 1-anyobject that evaluates to a real number—the
Level index.

Levels 1 to n — the previous objects in reversed order.

Too Few Arguments will occur if the stack is
empty or has fewer arguments than specified in Level 1.
Bad Argument Type will occurifthe Level 1object
does not evaluate to a real number.

None.

27

Roll Stack Levels 1 - N Down A Given Distance

ROLDN (336864)

« *NUM SWAP =NUM + N
L«IFNI12>L153
AND THEM 1 N START L
ROLLD MEXT EMD *» *

Roll Stack Levels 1 - N Up A Given Distance

Summary:

Examples:

28

ROLLN 338463)

« +NUM SWAP »NUM + N
L«IFN1>L1>
AND THEM 1 M START L
ROLL MEXT EMD *

ROLDHN performsROLLD the specified number of times.
ROLLHN performs ROLL the specified number of times.

STD 1 234567890 18 4
ROLDM Result: 7 8 9812345356

ST 1 23435
3

78908 186 4
ROLLN Result: 789091

&
6

Chapter 1: Stack Utilities

Inputs:

Outputs:

Errors:

Notes:

Manipulations

Levels 3 to (n+2) — any objects — the objects to be rolled
down or up.

Level 2—-anyobject that evaluates to a real number—the
number of Levels, n, to be rolled.

Level 1 —anyobject that evaluates to a real number —the
number of times to roll.

Levels 1 to n — the rolled stack.

Too Few Argument s will occur if the stack con-
tains fewer than 3 objects or fewer objects than specified
by the Level-2 input object.

Bad Argument Type will occurifthe Level-1and
Level-2 objects do not reduce to real numbers.

You can use ROLDM and ROLLHN in many useful ways.
Forexample, DEPTH DUP 2 # ROLDN,orDEPTH
DUP 2 # ROLLM swaps the upper and lower halves
of the stack.

A general program for this might be SWAPN (61426):

« + N « N *NUM DUP 2
ROLDN » »

or
« + N « N »NUM DUP 2
ROLLN » »

SWAPHN takes the argument at Level 1 to be the total
number of Levels to be manipulated, then divides and
swaps that much of the stack.

29

Combine Levels 1 - N With A Binary Operation

Summary:

Example:

Inputs:

Outputs:

Errors:

30

MERGE (118938)

« 3NUM 1 - + F N« 1
M START F EVAL NEXT
» %

MERGE takes a binary operation and repeatedly ap-
plies it to stack Levels 1 and 2. The effect is to combine
all of the specified stack Levels using the given function.

STD 1 2345 « ¥ » 5 MERGE
Result: 1268

Levels 3 to (n+2) — any objects.

Level 2 — a program or user-defined function — the pro-
cedure to be used to merge all the specified stack Levels.
Level 1 —any object that evaluates to a real number, n—
specifying the top Level to be combined.

Level 1—anobject —the result of the repeated operation.

Too Few Argument s will occur if the stack con-
tains fewer than 3 objects or if the Level-1 input object
refers to a non-existent stack Level.

Bad Argument Type willoccurifthe Level-1input
object does not evaluate to a real number, or if the Level-
2 program is incompatible with the specified argument.

Chapter 1: Stack Utilities

Notes: MERGE is designed to use a binary operation — a pro-
gram that takes two objects from the stack and returns
only one. Other types of programs can be used, but the
results are unpredictable.

Operations 31

32

Add An Object To Level N
STRDD (78822)

€« > NLE€<HN+@3®L
ST.OP » »

Divide Level N By An Object
STDIV F2117)

£ + NLEL<«HNU~#Z %»L
ST.OP » »

Multiply Level N By An Object
STMUL (F2499)

€« > NL&€<¢«HN@%*=3®L
ST.OP » »

Subtract An Object From Level N

STSUB (F72362)

€« > NL«<HN-2=21L
ST.OP » »

Chapter 1: Stack Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

STADD adds the given object to the specified Level.
STDIV divides the specified Level by the given object.
STMUL multiplies the specified Level by the given ob-
ject. STSUB subtracts the given object from the speci-
fied Level. The Level index assumes the Levels of ob-
jects before the arguments were placed on the stack, and
those Levels are restored again afterwards. If the Level
index has a fractional portion, it is rounded before use.
A Level index less than 1 causes no action.

STD 1 2 2 6 3 STADD Result: 7 2 3
STD S 6 7 3 2 STDIV Result: 5 2 7
STD 3 4 5 8 2 STMUL Result: 3 8 5
STD 7 8 9 4 3 STSUB Result: 3 8 9
Level (n+2) — any object for which the operation is

defined — the first operand.

Level 2 —any object for which the operation is defined —
the second operand.

Level 1 — a real number, n — the Level of the operation.

Level n — an object — the result of the operation

Too Few Argument s will occur if the stack con-
tains fewer than 3 objects or the indexed Level is empty.
Bad Araument Type will occurifthe Level-1 ob-
ject does not reduce to a real number, or if the objects at
Levels 2 and (n+2) are incompatible for the operation.

Notes: STADD,STDIY,STMUL andSTSUB useST. OP.

Operations

33

Perform An Operation On Level N

ST.0P @339489)

€ FNUM + f.. l.. <
IF 1.. 8 > THEN 1..
PICK f.. EVAL l..

STOST END » »

Store An Object In Level N

STOST @93832)

« *NUM + N L « IF L
@ > THEM IF DEPTH L
1 - ==THEN N L
ROLLD ELSE L ROLL
DROP N L ROLLD END
END » »

Summary: ST.0OP performs the specified operation only on the

34

given stack Level. STOST copies the contents of Level
2 to the given stack Level, overwriting the previous
contents. The Level index works like the level argument
for functions such as ROLL: it indicates the stack Levels
of objects before the argument was placed on the stack.
Any fractional portion of the Level index is rounded
before use. A Level index less than 1 causes no action.
STOST will not store into a non-existent stack Level
except the first empty Level.

Chapter 1: Stack Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

Operations

ST 1 23«1 + » 3 ST.OP
Result: 2 2 3

STD 'AR' 'B' 'C' 1 3 STOST
le 'B' 'O

Level (n+2) — any object — the object to be operated upon
or overwritten.

Level 2—a program or user-defined function (forST . OP)
— the operation to be used, or (for STOST) any object —
the object to be stored.

Level 1 —any object that evaluates to a real number, n -
the Level index.

Level n — the newly-modified or newly-stored object.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects or if the specified object Level
doesn't exist, or (for STOST) if it is not the lowest-
numbered empty Level.

Bad Argument Type will occur if the Level-1 ob-
ject does not evaluate to a real number.

The operation used in ST . OP must take only one argu-
ment and return only one result, or else the stack may
be hopelessly disordered. The local names, f . « and
1. ., were chosen for ST. OP to reduce the chances of
conflicts when operations such as4€ STR+ ¥ are ap-
plied to strings. Therefore, avoid usingf « « and 1. «

as global names in your own programming. ST.0OF

uses STOST.

35

36

Is Level N Equal To An Object?

STET? @13199)
« 3NUM + N L « IF L

8 > THEN L PICK ==
+NUM ELSE @ EMD *» »

Is Level N Not Equal To An Object?

STNE? @13336)
« 3NUM + N L « IF L

@ > THEN L PICK N =
+NUM ELSE @ END *» »

Is Level N Greater Than Or Equal To
An Object?
STGE? @12726)

« 3NUM » N L « IF L
8 > THEN L PICK N 2
+NUM ELSE 8 EMD » »

Chapter 1: Stack Utilities

Is Level N Greater Than An Object?
STGT? @18262)
« »NUM + M L « IF L

@ > THEN L PICK N >
+NUM ELSE @ END » »

Is Level N Less Than Or Equal To An Object?

STLE? @13892)
« 5NUM » N L « IF

L
8 > THEM L PICK N £
+NUM ELSE @ END » *»

Is Level N Less Than An Object?

STLT? 218379
« 3NUM » N L « IF L

@ > THEN L PICK N <
»NUM ELSE 6 EMD » *

Tests

37

Summary:

Examples:

38

STET?, STNE?, STGE?, STGT?, STLE?, and
STLT? all compare the contents of Level N with the
given object. In each of these tests, if the answer to the
question posed is "yes," a 1 (true) is returned. Other-
wise, a 0 (false) is returned.

The Level index for each of these tests works like the
level argument for functions such as ROLL: it indicates
the stack Levels of objects before the test's argument
was placed on the stack, and the resulting modified
stack assumes those Levels once again before returning
the result of the test. If the Level index has a fractional
portion, it is rounded before use. Level numbers less
than 1 will cause the test to return 0.

STD 1 2 3 2 3 STET? Result: 1 2 3 B
STD 1 2 31 3 STET? Result: 1 2 3 1

STD 1 2 3 2 3 STHE? Result: 1 2 3 1
STD 1 2 31 3 STHNE? Result: 1 2 3 8

STD 1 2 3 4 3 STGE? Result: 1 2 3 @
STD 2 3 2 2 STGE? Result: 2 3 1

STD 1 2 3 8 3 STGT? Result: 1 2 3 1
STD 2 3 2 2 STGT? Result: 2 3 @

STD 1 2 2 8 3 STLE? Result: 1 2 3 8
STD 2 3 2 2 STLE? Result: 2 3 1

Chapter 1: Stack Utilities

Inputs:

Outputs:

Errors:

Notes:

Tests

STD

1 STLT? Result: 1
STD 2

2343 231
32 2 STLT? Result: 2 3 8
Level (n+2)—any object for whose type the specified test
is defined — one of the objects to be compared.

Level 2 — any object for whose type the specified test is
defined — the other object to be compared.

Level 1 — a real number, n, the stack Level to be tested

against the given object.

Level 1 —areal number (either 1 or 0) — the result of the
test.

Too Few Argument s will occur if the stack con-
tains fewer than 3 objects or if the specified stack Level
does not exist.

Bad Argument Type will occur if the Level-1 ob-
ject does not reduce to a real number, or if the objects at
Levels 2 and (n+2) are incompatible arguments for the
specific test being made.

Undef ined Mame willoccurifeither Level contains
an undefined name.

None.

39

Stack Utilities: A Discussion

The Main Idea

The stack deserves its own set of tools for several reasons: First of all,
these utilities are tools to help manipulate HP-28S data objects — and
the stack is a data object.

Secondly, the stack is the intermediate for almost everything; it is the
work area of the HP-28S. All manual calculations and most other
operations affect or occur on the stack, and decomposed objects place
their contents onto the stack for further manipulations with stack-
related commands. Therefore, new stack commands also extend your
ability to manipulate other objects.

Finally, because it's such a workhorse, the stack has been designed for
high efficiency — it's fast. Thus, programs like @SR T use it — instead
of directly accessing an array or list — to gain speed.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that
is listed in your current PATH. The easiest way to ensure that this is
the case is to place each of the programs in the HOME directory — the
ultimate parent of all other directories.

40 Chapter 1: Stack Utilities

Some Observations

Tracking stack objects through long and/or complex operations can be
areal chore. Sometimes the best strategy is to take an object from the
stack, do an operation on the stack, then return the object afterward.
In these cases, local variables are better solutions for managing and
keeping track of objects, and so all of these stack utilities except REY3
use local variables to store their arguments so that they're out of the
way when they're not needed but easily recallable when they are.

These routines are all quite straightforward —except for @SRT, which
is rather large and logically complex. Itis a classic implementation of
a recursive Quicksort: the program sorts to a point, then checks if the
complete data set has been sorted. If not, it simply adjusts the indices
and then "calls itself" to sort some more. Use of recursion rather than
iteration helped to keep the routine as small as it is, though an
iterative implementation may further enhance its speed.

Errors And Error Recovery

Each of these tools is designed to generate an error when invalid input
isentered —rather than continue and generate garbage outputs. When
inputs are questionable (e.g., negative numbers for stack Levels),
these utilities act similarly to the built-in stack commands (arguments
are ignored or treated as 1, whichever makes more sense). When
errors do occur, the stack is usually disrupted, and since the only way
torestoreit then is with the UMDO command, it's wisest to keep UNDO
mode (in the MODES) menu) active whenever you these utilities.

Discussion 41

How You Might Use These Utilities

These tools are extremely generic. That is, they are so basic as to be
useful in many different situations.

QSRT, being relatively large and very generally useful, is called by
several other programs in this book. Most of the rest of the routines
are small enough that, rather than have many other programs call
them, the actual program steps have been incorporated in the other
programs.

The Manipulations routines are intended to extend the built-in stack
manipulation commands of the HP-28S. EXCH is a generalization of
SWAP, allowing you to swap any two stack levels. ROLDN and
ROLLN extend ROLLD and ROLL, respectively, providing a method
torepeat the action, thereby "scrolling” the stack in the specified direc-
tion.

Reversingstack elements can alsobe considered an extension of SWAP
(which reverses the order of stack Levels 1 and 2). REY3 extends this
idea to the bottom three stack Levels, and REVN reverses the bottom
n Levels.

Finally, since you can consider all stack manipulations to be ordering
the stack in some fashion, @SRT provides a method of sorting a portion
of the stack into descending order. Note that @SRT is the only one of
these manipulation routines that cares what the actual contents of the
stack is; all the others simply move objects, but @SRT requires that
the objects be orderable.

42 Chapter 1: Stack Utilities

The Operations routines, with the exception of MERGE, consider the
stack to be a collection of storage locations for which they provide
storage and storage arithmetic operations. The basic four operations
from the STORE menu (STO+,ST0-,STO* and STO~) are repro-
duced for any arbitrary Level of the stack. Simple storage to any Level
isprovided by STOST (and note that you already have the generalized
analog to RCL in the built-in P ICK operation).

The Tests routines are the most straightforward: They simply extend

the idea of the tests ==, #,X, >, £ and £ to other Levels of the stack
besides Levels 1 and 2.

Discussion 43

Chapter 2

Real Number Utilities

These routines provide quick and reliable ways to do certain manipu-
lations with real numbers.

As shown in the following list, the 9 programs are organized into four
logical groups, presented alphabetically. Within each group, the pro-
grams are also usually presented alphabetically (by MAME), although
in some cases, certain sets of programs may be complementary or oth-
erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page
60, immediately following these program listings.

44 Chapter 2: Real Number Utilities

Name

GCD

LCH

RMD

FCTR
PRMS

IRAND
RRAND

IRND
RRND

Contents

Function

Integer Arithmetic Functions

Find The Greatest Common Divisor
Of Two Positive Integers
Find The Least Common Multiple
Of Two Positive Integers
Find The Remainder Of An Integer Division

Prime Number Generators
Find The Prime Factors Of An Integer

Generate A List Of The Prime Numbers
Between The Specified Limits

Random Number Generators

Generate A Random Integer Within Given Limits

Generate A Random Real Number
Within Given Limits

Rounding Routines

Round A Real Number To The Nearest Integer

Round A Real Number
To The Specified Decimal Place

g
(o
®

46

46

48

50
52

54
54

58

Find The Greatest Common Divisor
Of Two Positive Integers:

GCD 314696)

« *A B « A IP ABS
*MUM B IP ABS +NUM
WHILE OVER MOD SWAP

DUP REPEAT EMD DROP
» ®

Find The Least Common Multiple
Of Two Positive Integers:

LCM (123623)

« *RA B «A IP ABS
+NUM B IP ABS +NUM
DUP2 GCD ~ # » »

Summary: GCD finds the Greatest Common Divisor of two positive

46

integers. LCM returns the Least Common Multiple of
two positive integers. The Greatest Common Divisor of
two integers is the largest integer by which both num-
bers can be divided evenly. The Least Common Multiple
of two integers is the smallest integer which is a mul-

Chapter 2: Real Number Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

tiple of both numbers. Negative arguments are con-
verted to positive and fractional portions are truncated.

9 & GCD Result: 3
946 1462 GCD Result: 86
1492 1776 GCD Result: 4
8.9 -2 GCD Result: 2
4 & LCM Result: 8
23 15 LCHM Result: 343
48 15 LCHM Result: 128
8.5 -2 LCHM Result: 8

Level 2 — a real number.
Level 1 — a real number.

Level 1 — an integer — the GCD or LCM of the inputs.

Too Few Argument s will occur if there are fewer
than 2 arguments on the stack.

Bad Argument Type will occur for inputs other
than real numbers.

Undef ined Name will occur if either of the argu-
ments contains an undefined name.

BothGCD andL.CM use local variables to allow their use
within algebraic objects. LCM uses GCD.

Integer Arithmetic Functions 47

Find The Remainder Of An Integer Division:

Summary:

Examples:

Inputs:

Outputs:

Errors:

48

RMD @&2782)

€<+ XY« RIPYIP
DUP2 -~ IP # - % »

RMD finds the remainder of an integer division.

Real numbers are allowed as inputs, but any fractional
portions of those inputs are truncated.

19 3 RMD Result: 1
45 16 RMD Result: 13
8.3 4.5 RMD Result: %)
-6 4 RMD Result: -2

Level 2 — a real number - the dividend.
Level 1 — a real number — the divisor.

Level 1 —a real number — the remainder of the division.

Too Few Argument s will occurifthere are fewer
than 2 arguments on the stack.

Bad Argument Type will occur for inputs other
than real numbers, names and algebraic objects.
Undef ined Mame will occur if an undefined name
is input and symbolic results (flag 36) mode is not set.

Chapter 2: Real Number Utilities

Notes: While not strictly necessary, RMD useslocal variables so
that it can be used within algebraic objects.

RMD will return an algebraic expression if either of its

inputs are symbolic and symbolic results mode is set.
For example:

'A' 'B' RMD Result:

"IPCAY-IPCBX*IPCIPCAY/IPCBY)!

Integer Arithmetic Functions 49

Find The Prime Factors Of An Integer:

Summary:

Examples:

50

FCTR 338v929)

« ABS IP DEPTH «
WHILE DUP 2 PICK -
DUP FP NOT REPERT
SWAP DROP OVER ROT
ROT END DROP » > L D
« IF DUP 3 > THEN 2
SWAP D EVYAL 3 ROT
DROP SWAP WHILE DUP
1 # OVER { IP 4 PICK
> AND REPEART D EVAL
2 ROT + SWAP END
SWAP DROP IF DUP 1
== THEN DROP ENMD END

DEPTH L - 1 + »LIST
* %»

FCTR finds the prime factors of a given positive integer.
Negative arguments are converted to positive, and any
fractional portions are truncated.

8 FCTR Result: ¢ 2 2 2 %

144 FCTR Result: { 222238 2
83 FCTR Result: { 83

1642 FCTR Result: ¢ 2 321 >

Chapter 2: Real Number Utilities

18.5 FCTR Result: € 2 3 3
-168 FCTR Result: € 2 2 5 5 2
Inputs: Level 1 — an integer or real number — the number to be

factored.

Outputs: Level 1-alist of one or more integers — the factors of the
original number.

Errors: Too Few Arguments will occur if there are no
arguments on the stack.
Bad Argument Type will occur for inputs other
than real numbers.
Undef ined Mame will occur if an undefined name
object is used in the input.

Notes: To regenerate the factored number (i.e. perform the
inverse operation), a routine like this might be useful:

« LIST+» 2 SWAP START
NEXT »

Prime Number Generators 51

Generate A List Of Prime Numbers:

Summary:

Examples:

Inputs:

52

PRMS (1443948)

« ABS IP SWAP ABS IP
IF DUP2 < THEN SHWAP
END DUP 2 MOD MOT +
SWAP DEPTH + D « FOR
I 31 J WHILE DUP2 <
I 4 PICK » FP AND
REPEAT 2 ROT + SHWAP
END > 'I' IFT 2 STEP
DEPTH D - 2 + »LIST
P ¥

PRMS generates a list of all prime numbers within the
two given limits. Negative limits are converted to posi-
tive and fractional portions are truncated. The limits
are included in the range and may be supplied in either
order.

1 5 PRMS Result: € 1 3 5 2

28 16 PRMS Result: ¢ 11 13 17 19 3
-23 28.1 PRMS

Result: £ 23 29 31 37 41 43 47 2

Level 2 — a real number.
Level 1 — a real number.

Chapter 2: Real Number Utilities

Outputs: Level 1 - a list of 0 or more prime numbers.

Errors: Too Few Argument s will occurif there are fewer
than 2 arguments on the stack.
Bad Argument Type will occur for arguments

other than real numbers.

Notes: None.

Prime Number Generators 53

Generate A Random Integer
Within Given Limits:

IRAND 244362)

« > HL «L IPHIP
IF DUP2 > THEN SHWAP

END 1 + OVER - RAND
#¥ + IP » »

Generate A Random Real Number
Within Given Limits:

RRAND (182849)

« *HL «L HDUP2
IF > THEN SWAP END
OVER - RAND * + » »

Summary: IRAND randomly generates an integer whose value is
between two given real-valued limits. Only the integer
portions of the limits will be used, and these are included
in the range of possible results. The limits may be sup-
plied in either order.

RRAND randomly generates a real number whose value

54 Chapter 2: Real Number Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

is between two given, real-valued limits, which may be
supplied in either order. The lower limit is included in
the range of possible results; the upper limit is excluded.

STD -5 2.3 IRAND
Result: =1 (or any integer from -5 to 2)

STD 8 -8 IRAND
Result: =7 (or any integer from -8 to 8)

STD -5 2.3 RRAND
Result: 1.44333879186 (oranyrealnumberfrom
-5 to 2.29999999999)

STD .25 18 RRAND
Result: 1.62765141542 (oranyreal numberfrom
.25 t0 9.99999999999)

Level 2 — a real number.
Level 1- a real number.

Level 1 — a real number — the random integer or real.

Too Few Argument s will occurif there are fewer
than 2 arguments on the stack.

Bad Argument Type will occur for arguments
other than real numbers.

Both IRAND and RRAND use local variables so that
they can be used within algebraic objects.

Random Number Generators 55

Round A Real Number To The Nearest Integer:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

56

IRND (28939)

€« + NMN&«HN.S+ FLOOR
>NUM » »

IRMD returns the integer value nearest the input
value. Fractional portions of exactly 0.5 are rounded up.

1.5 IRND Result: 2
122.38 IRND Result: 122
-3.5 IRND Result: =3

Level 1 — a real number — the number to be rounded.

Level 1 — a real number - the integer nearest the input
value.

Too Few Argument s will occur if there is no ar-
gument on the stack.

Bad Argument Type will occurifthe argumentis
other than a real number.

Undef ined Name will occur if the argument con-
tains an undefined name object.

IRHND uses local variables so that it can be used within
algebraic objects.

Chapter 2: Real Number Utilities

Bearin mind that numbers with absolute values greater
than 10" don't have fractional portions on the HP-28S,
because all twelve of the machine's available digits are
required for the integer portions of such numbers.

Rounding Routines 57

Round A Real Number

To The Specified Decimal Place:

Summary:

Examples:

Inputs:

Outputs:

RRND (183147)

« + x N« N IP ALOG
DUP X ®¥ .3 + FLOOR
SWAP ~ » »

RRMND returns a real number rounded to the specified
decimal place. Decimal places to the right of the decimal
point are specified with a positive integer; those to the
left of the decimal point are specified with a negative
integer.

STD w »NUM & RRND Result: 3.141593
STD -.892664 2 RRMD Result: -.89
STD 122.38 1 RRND Result: 122.4
STD 1492 -2 RRMD Result: 15688

Level 2 — a real number, name or algebraic object — the
number to be rounded.

Level 1 — an integer, name, or algebraic object — the
value specifying the decimal places to be rounded.

Level 1-areal number oralgebraic object —the rounded
number.

Chapter 2: Real Number Utilities

Errors: Too Few Argument s will occurif there are fewer
than 2 arguments on the stack.
Bad Argument Type will occur for inputs other
than real numbers, names or algebraic objects.
Undef ined Name will occur if an undefined name
object is used in the input and symbolic results mode
(flag 36) is not set.

Notes: RRND uses local variables so that it can be used within
algebraic objects.

RRND will return an algebraic expression if either of its

inputs are symbolic and symbolic results mode is set.
For example:

'A' 'B' RRND Result:

'FLOORCALOGCIPCBY>*A
+.5)7ALOGCIPCBY !

Rounding Routines 59

Real Number Utilities: A Discussion

The Main Idea

The main intention of these real number utility routines is to extend
the basic real number functions of your HP-28S in clear and useful
ways. You should be able to imagine these programs listed as
commands in the REAL menu — and use them to build other, more
sophisticated programs—just like the HP-28S' built-in real number op-
erations. Arguments are entered similarly, and results return simi-
larly; there should be no surprises.

Where To Put These Programs

As always, to be usable, these utility programs must be in a directory
thatislisted in your current PATH (i.e. in your current directory or one
of its parent directories). Of course, the easiest way to ensure this is
to put the programs in the HOME directory — the ultimate parent of all
other directories.

60 Chapter 2: Real Number Utilities

Some Observations

The algorithms behind the routines are quite straight-forward (i.e. you

should be able to follow what's going on and how they work) — except
for FCTR and PRMS:

If a number is divisible by 2 or by any odd integer between 3 and the
square-root of the number, it's not prime. BothFCTR and PRMS use
this fact and perform successive divisions of the odd integers from the
lower limit to the square-root of the upper limit.

Notice alsothatF CTR creates and uses a "local subroutine:" It creates
two local variables, L and D. L is used to store the argument taken
from the stack —the number to factor. D, on the other hand, is used to
store a postfix program that FCTR itself has put on the stack. Later
on in the program, the routine is evaluated @ EVAL)attwoseparate
points. The alternatives would have been either to reproduce the same
program steps twice within the FCTR program, or to create a sepa-
rate, globally-named program and call it by name from within FCTR.
The first option wastes space, the second creates an otherwise useless
named object to clutter up the USER menu.

Another design point to notice is that the routines that take upper and
lower limits will do so in either order, thanks to these program steps:

IF DUP2 > THEM SHWAP
END

In other words, if the Level 2 value is greater than the Level 1 value,
swap them (DUP2 is necessary because > consumes its arguments).

Discussion 61

The same thing could also have been accomplished with:

DUPZ2 > « SWAP » IFT
or

DUP2 MIN ROT ROT MAX

The first routine is basically a rewrite of the original routine, using the
IFT syntax (choosing IF...THEN vs. IFT is largely a matter of per-
sonal preference). The second routine abandons conditional state-
ments entirely: performingaMIN and then aMAX on the same argu-
ments effectively puts them in proper order on the stack DUP2 is
necessary to copy the arguments for both theM I N and MAX functions).

As you can tell, the HP-28S gives you nothing if it doesn't give you
options. IF...THEN...EMD was used in the routines in this chapter
simply because it is the easiest to read and understand — which can be
an important consideration.

Errors And Error Recovery

Consistent with the behavior of the built-in real number commands,
these programs do very little error-checking in input or output. So
when an error condition occurs, the program halts, displaying the
cause of the error (and probably a stack full of garbage).

The best way to deal with this is to be sure that UNDO is enabled before
using the routines (check MODE[NEXT) to see if UNDO is selected), then
use the UNDQ command after the error. You will come to admire the
elegant simplicity — and life-saving ability — of an active UNDO.

62 Chapter 2: Real Number Utilities

How You Might Use These Utilities

Fractional Math

The programs FCTR, GCD,LCM, PRMS and RMD are chiefly useful

unto themselves: if you need a prime number within a certain range,
use PRMS; the remainder of a division is found with RMD, etc.

However, a routine like GCD can be used to easily construct another,
very useful routine, called RDC (63737) - "ReDuCe":

« DUP2 GCD SWAP OVER
ROT ROT -~ SWAP *

Taking the real numbers on Levels 1 and 2 of the stack to be the de-
nominator and numerator of a fraction, respectively, RDC divides both
numbers by their Greatest Common Denominator (GCD) and thereby
reduces the fraction.

For example:

S 28 RDC Result: 1 4 (520 reduces to 1/4)
& 8 RDC Result: 3 4 (6/8 reduces to 3/4)

Discussion 63

This ability to easily reduce a fraction suggests further possibilities,
such as fractional addition. FADD (7 1482) adds two fractions whose
numerators and denominators are on the stack, then reduces the re-
sulting sum:
« > ABCD«DAHA=*
CB*¥+BD#* RDC » »
Try adding 12and 3/4: 1 2 3 4 FRADD Result:S 4 (.e.5/4)
Add 1/4 to thisresult: 1 4 FARDD Result: 3 2 (ie.3/2)

Think about how FADD takes four arguments as the numerators and
denominators of two fractions in the following order:

< numerator, >
< denominator, >
< numerator, >

= MW ph

< denominator, >

And thenitreturns a single numerator and denominator. So, how hard
would it be to create a complete set of fractional math routines? For
example:

1214 FSUB Result: 1 4 (@1R2-14=1/4)
1214 FMUL Result: 1 8 (@12x1/4=1/8)
1214 FDIV Result: 2 1 (12+1/4=2/1)

1 2 FINY Result: 2 1 (this is too easy!)

1 2 8 SCALE Result: 4 8 (1/2 scaled to "eighths”

=4/8)

64 Chapter 2: Real Number Utilities

Random Numbers

Random number generators are generally useful for allowing a pro-
gram to generate unpredictable results. Suppose, for example, that
youwant totest a program or other tool with an unpredictable, random
set of circumstances. Or suppose that you're creating a game program
where you don't want the program to play the same way all the time.
So you want to simulate the occurrence of unpredictable events, like a
toss of a die or the choice of a card from a deck.

TOSS (12974):
« 1 & IRAND »

CARD 233799):

« STD 1 13 IRAND
_}STR n n {

"HEARTS" "SPADES"
"DIAMONDS" "CLUBS" 2
1 4 IRAND GET + + »

Both TOSS and CARD use IRAND because there are whole (integer)
numbers of die faces, card suits, and cards per suit. But what if you're
not so constrained? What if you're inventing a game, where you need
to place a player randomly on a 100x100-unit playing field — where
fractional units down to 1/100th are allowed? Try PUTIT (833197):

« @ 108 RRAMD 2 RRND B
168 RRAND 2 RRAND R»C *»

Discussion 65

100 is used for the maximum value with the assurance that it will be
included within the range because RRND will round 99.995 and up to
100.

Now consider the following alternative to PUTIT, called PLACE
(69150). Consider why it works:

« 0 10008 IRAND B
16006 IRAND R+C 106
-

And you might even test PLACE or PUTIT with the following
program, PTEST (179117):

« CLLCD <©,8> PMIN
(100,168> PMAX 1 166
START PLACE PIXEL
NEXT »

66 Chapter 2: Real Number Utilities

Rounding Notes

You might even think that once you've set the correct display format
(say,2 FIX, for dollars and cents), all results are properly rounded
for you. Don’t you believe it! For example, if you pay $1000/year for
three years — in 36 identical monthly payments — how much will you
payintotal? Common sense says, "$3000;" so does the HP-28S display:

2 FIX 1888 12 ~ 36 # Result: 3080.00

Butthat's not right. In reality, each monthly paymentis rounded tothe

nearest penny: 2 FIX 18688 12 -/ 2 RRMD Result:83.33
Now find the real total payment: 36 *# Result: 2999.88

Roundingisindependent of the display format! You could round to two
digits and yet have the display show you, say, one digit: 2999.9

Notice also this feature: STD 1492 -2 RRND Result: 1588
Digits to the left of the decimal point are rounded for negative argu-
ments; RRND effectively does 1492 18E-2 % IRND 18EZ2 *

One more thing: IRMD is not the same as the IP command. IP
truncates its argument to form an integer, while I RND rounds it (and
the half-integer always rounds up: =3. 3 rounds up to = 3).

value IP IRND value IP IRND
3.14 3 3 -3.14 -3 -3
3.5 3 4 -3.3 -3 -3
3.7 3 4 -3.72 -3 -4

Discussion 67

Chapter 3

Complex Number Utilities

These routines provide quick and reliable ways to use alternative
formats when working with complex numbers.

As shown in the following list, there are 7 programs, generally pre-
sented alphabetically (by NAME), although in some cases, certain sets
of programs may be complementary or otherwise so similar that they
may be presented together.

For a more in-depth discussion of the uses of these utilities, see page
78, immediately following these program listings.

68 Chapter 3: Complex Number Utilities

R+e
R+i
R>"®

*e
1

Contents

Function
Formatting Routines

Convert Two Real Numbers To 'M¥e®~(i¥q) '
Convert Two Real Numbers To ' Re+i*Im'
Convert Two Real Numbers To ' " (M, o'
Polar Format Function

Convert (Rey Im> To 'M*¥e {i%q)"'
Convert {Rey Im> To 'Re+i*Im'

Convert (Rey Im> To ' " (M, a2

69

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

70

Convert Two Real Numbers To
'Mee™Ci¥ad)':

R+e @66189)

« +*NUM SWAP +MNUM
SWAP R+C C+R RCLF 36
SF 'i' ROT # 'e'
SWAP ~ ROT SWAP =
SWAP STOF *»

R+e converts two real numbers into an expression of
the form 'M*¥e”(i%a) ', where M is the magnitude
and o is the angle of the complex vector.

Problem: Key in the number 5e°%,
Solution: 2 FIX S .93 R2e
Result: 'S*e™(i*H,93)>'

Level 2 — a real number — the magnitude, M.
Level 1 - a real number — the angle, o, in radians.

Level 1 — an algebraic object — the complex expression.

Bad Argument Type willoccur for non-realinput
values.

The angle () is always expressed in radians.

Chapter 3: Complex Number Utilities

Convert Two Real Numbers To 'Re+i*Im':

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

R+i 293699)

« *NUM SWAP +NUM
SWAP R»C C»R RCLF 36
SF ROT ROT 'i' OVER
SIGN * SWAP ABS #* +
SWAP STOF »

R+1 converts two real numbers into an expression of
the form 'Re+i#Im', where Re is the real portion
and Im is the imaginary portion of the complex vector.

Problem: Key in the number 3+i4.
Solution: 2 FIX 3 4 R»i
Result: '3+i*4'

Level 2 — a real number - the real portion, Re.
Level 1 - a real number — the imaginary portion, Im.

Level 1 — an algebraic object — the complex expression.

Bad Argument Type willoccurfornon-realinput
values.

None.

Formatting Routines 71

Convert Two Real Numbers To ' "¢My > ':

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

R+ (192694)

« NUM SWARP +MUM
SWAP R+C RCLF STD
nren ROT »STR + STR»
SWAF STOF »

R+" converts two real numbers to a complex expression
in the polar form ' " {My @2 ', where M is the magni-
tude and « is the angle of the complex vector.

Problem: Key in the number 5£53.13°.

Solution: 2 FIX 3 53.13 R»"
Result: '%(5,53.13>"'

Level 2 — a real number — the magnitude, M.
Level 1 — a real number — the angle, a, in degrees.

Level 1 — an algebraic object — the complex expression.

Bad Argument Type willoccurfor non-realinput
values.

The angle (o) is always in degrees.

Chapter 3: Complex Number Utilities

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

Polar Format Function:

“@112v)

+ M A « RCLF DEG M
R+C P+R SWAP STOF
»

¥ D R

? isanauxiliary function that converts tworeal numbers,
M and &, where M is the magnitude and o is the angle of
avector (in degrees), into a rectangular complex number
of the form (Rey IMmJ. This function is used whenever
a complex number that has been formatted in the polar
notation ' ® (My > ' must be evaluated to an actual
numerical value.

None needed.

Level 2 — a real number — the magnitude, M.
Level 1 — a real number — the angle, a, in degrees.

Level 1 — a complex number — in rectangular format.

Bad Argument Type willoccur for non-realinput
values.

The angle () is always in degrees.

Formatting Routines 73

Convert (Rey Im> To 'M*e*~{ixa>':

+a 271112)

« (1,8 ¥ 3NUM CaR
R+C RCLF 36 SF RAD
SWAP R3P C»R 'i'
SWAP # 'e' SHWAP ~ =
SWAP STOF »

Convert (Re, Im) To 'Re+i*¥Im':

+1 224829)

« (1,82 % »NUM C»R

RCLF 36 SF ROT ROT '
i' OVER SIGH * SHAP
ABS * + SWAP STOF »

Convert (Rey Im>» To ' " (M, x> ':

+% (244342)

€ ¢1,8> * 3NUM CsR
R+C RCLF SWAP DEG
STD R+P +STR "'°"
SWAP + STR+ SWAP
STOF »

Chapter 3: Complex Number Utilities

Summary: <& converts a complex number from any evaluable
formattothisexponential format: ' M¥e™1%0 ' where
M is the magnitude of the vector in the complex plane
and a is the directional angle, in radians.
+1i converts a complex number from any evaluable
formattoarectangularalgebraicformat: ' Re+i*¥Im',
where Re is the real portion and Im is the imaginary
portion of the complex vector.
+" converts a complex number from any evaluable
format to this polar format: ' " {M, ®> ', where M is
the magnitude of the vector in the complex plane and o
is the directional angle, in degrees.

Examples: Problem: Find 4ei¥*+ 1.5ei°% —in exponential format.
Solution: 2 FIX w 4 » i *# EXP 4 * RAD
(1.5,.32> P3R + 2e
Result: 'D.38%e"(i*B.66)'

Problem: Find (-1.3+i0.5) + (4.4-i2.3). Again, express
the answer in ' M¥e™i%x' format.

Solution: 2 FIX ¢-1.3,.9) '4.4-i%2.3"'
+ e

Result: '3.38%e”(i*¥(-08.33))"'

Problem: Find 4e' + 1.5e* — in rectangular alge-
braic format.

Solution: 2 FIX w 4 » 1 ¥ EXP 4 % RAD
(1.5,.32> P3R + =»i

Result: '4,25+i%3.28'

Formatting Routines 75

Inputs:

Outputs:

76

Problem: Find (-1.3+i0.5) + (4.4-i2.3). Again, express
the answer in 'Re+i%¥Im' format.

Solution: 2 FIX (-1.3,.9 '4.4-1%2.3"
+ i

Result: '3.18-i%1.88'

Problem: Find 4e™+ 1.5e!°% —in degree polar format.

Solution: 2 FIX w 4 ~ i ¥ EXP 4 * RAD
(1.5,.32> PR + »"

Result: '"(5.38,37.82>'

Problem: Find (-1.3+i0.5) + (4.4-i2.3). Again, express
the answerin ' " (M, > ' format.

Solution: 2 FIX <-1-8, l5> '414-1*213|
+ 30

Result: '"(3.958,-38.14>"'

Level 1 — any object that can be reduced to a real or
complex number by *MNUM.

Level 1 —an algebraic expression — the formatted como-
plex number expression. #& ,#1i,and*" generate al-
gebraic expressions with nounevaluated variables(' &'
and 'i' are symbolic constants). Thus these expres-
sions behave as a symbolic complex numbers.

Certain conversions involving combinations of *&, *1

and *” may produce odd results because of rounding
errors.

Chapter 3: Complex Number Utilities

Forexample, thesequence (B3 2> *& +1i willreturn
'8.73323546264E-12+1%2" |insteadof ' 1%¥2',
because*egives ' 2¥e"(i¥1.57879632679 »',
instead ofthe more accurate ' 2¥e*{i¥w-2) ' . Note
that you can regard numbers smaller than 10-° as 0;
often, in fact, you can use RMD and a proper display
mode @ FIX or4 SCI, etc.) to actually round to 8.

Errors: Bad Argument Type will occur if an input is not
reducible to a real or complex number.

Notes: R+P andP+*R are other conversion commands that may
be useful (and more familiar) to you in working with
complex numbers. But be careful! HP-28S system com-
mands (except for P#R) expect complex numbers to be
in — or reduce to — rectangular form only. If you use any
of those system commands on complex numbers in polar
form, you'll get incorrect results!

Formatting Routines 77

Complex Number Utilities: A Discussion

The Main Idea

The main intention of these complex number utility routines is to offer
some convenient conversions between commonly used real and com-
plex number formats — formats that were not built into the HP-28S.
You can do any sort of calculation with complex numbers in these
formats that you can do with the built-in complex format (CRey Im2).

Where To Put These Programs

As always, to be usable, these utility programs must be in a directory
that is listed in your current PATH (i.e. in your current directory or one
of its parent directories). Of course, the easiest way to ensure this is
to put the programs in the HOME directory —the ultimate parent of all
other directories.

78 Chapter 3: Complex Number Utilities

Some Observations

Symbolic vs. Numeric Calculations

The HP-28S is not just a calculator. It is also a symbolic expression
solver. For this reason, you must also consider not only how to perform
a calculation, but what form your input is in and what form you want
your output to take.

For example, it's clear what should happen when you do simple
arithmetic (say,add 1 and 2, likeso: 1 2 +). Youshould get one real-
valued result, 3. But what if you want to add the number 5 to the
number Z, (like so: ZA 3 +)? What kind of answer do you want — a

numeric or a symbolic result?

To more fully illustrate these questions, consider some examples:

* You want to build a symbolic expression ' A¥B~{A+B>'. How?

* You have two variables ' A' and 'B"', containing numbers. How
would you calculate A x B/ (A + B) and get a numeric result?

* You want to evaluate the expression, ' A¥B/(A+B> ' for many
different values of 'A' and 'B'. What do you do?

¢ You want to find the numeric value of n+4. How?

Discussion 79

The possibilities are endless. And these are all quite common and valid
needs that you might have — and they are perfectly reasonable things
to expect your HP-28S to do. You must simply "know the recipes...."

To work confidently with your HP-28S, you need to be familiar with two
of its system flags (internal status indicators which you can vary back
and forth between two opposite states). They are: Flag 35 (constants
mode) and Flag 36 (results mode).

Flag 35 (constants mode) determines what kind of result you'll get
when any of the system constants (1, &, MAXR, MINR and m) are
evaluated.

For example, when flag 35 is set (which you do like this: 35 SF), and
youperform ' m' EVAL,you'll get the symbolicresult: ' W' . Onthe
other hand, when flag 35 is clear (39 CF) performing 'm' EYAL
will give you 3. 14159265339, the nearest numerical equivalent.

Flag 36 (results mode) determines whether functions will reduce
name objects to their numeric contents.

For example, when flag 36 is set (via 36 SF), the commands 'A"' 1

+ give the result ' A+1 ' . Setting flag 36 effectively tells functions to
"leave all name objects alone." But when this flag is clear (36 CF),
functions will evaluate all name objects so as to return numeric re-
sults: 2 'A' STO 'A' 1 + yields3, for instance. Thus, if
you're working with flag 36 clear, you should remember that name
objects will function as places in which to store numbers — not as ab-

80 Chapter 3: Complex Number Utilities

stractvariables. Indeed, names thatdon 't contain numeric objects will
cause errors when operated on under this flag setting.

Note also that symbolic constants are simply name objects with
specially reserved names. Therefore, if flag 36 is clear, the machine
"has permission” when using functions to reduce all names to their
numeric equivalents — including the specially reserved names. In
effect, then, when you clear flag 36, you are overriding the setting of
flag 35.

The settings of these two flags is, of course, up to you, but you'll have
the most flexibility if you generally leave them both set, thus preserving
all names and constants in your results. Remember that when you
have a symbolic expression that you need to reduce to its numeric
equivalent, you can always do so easily with EYAL or *MUM.

Errors And Error Recovery

Each of the complex number format conversion routines is designed to
cause an error when invoked with invalid arguments — rather than
generating erroneous results. However, no provisions have been made
to clean up the stack before the program halts at such an error, so
"garbage" may be left on the stack at that point. In any event, the input
argument(s) will almost certainly have been consumed and the stack
disheveled. It's probably best, therefore, to use these tools with UNDO
active, because UNDO is certainly the most convenient way to restore
the stack after an error.

Discussion 81

How You Might Use These Utilities

Complex Number Calculations

The six conversion routines extend the HP-28S complex number com-
mands by allowing you to construct complex number expressions. They
always return symbolic results; they were designed to do so—to allow
you to generate complex numbers in alternate, symbolic formats.
However, just as with any other arithmetic, the results mode (flag 36)
does affect how these expressions are combined. Watch:

2 FIX 36 CF (turns off symbolic results)

1 2 R»1 Result: '1+i%x2'
9 53 R»" Result: ' "(5,53>"'
+ Result: (4.81,5.99)>

That's what you'd get with symbolic results turned off (and you would
then need touse*1,%e,or*" to put it back into a symbolic format,
if that's what you prefer). Now repeat this with symbolic results set:

36 SF (turns on symbolic results)

1 2 R2i Result: '1+i%2'

o 93 R»" Result: ' (5,293>'

+ Result: '1+1i%¥2+°(5,53>"'

Note that all symbolic expressions and constants are preserved —just
as you'd expect with flag 36 set. All six routines produce results that
behave this way. Then, if you want the numeric value, you use *MUM.

82 Chapter 3: Complex Number Utilities

Keying In Complex Numbers

As you may know, there are several different complex number formats
in widespread use among different disciplines. This is irrelevant, of
course, if you never encounter any format other than the one you now
know and love. But in case you do meet with a different format, it's
good to be able to convert back and forth — and to combine numbers in
different formats, reducing the results to your preferred format.

The first thing to realize with the HP-28S is that it has its own formats
and conventions. The basic complex number on the HP-28S is the
Cartesian-coordinate (also called rectangular) form: {3443, where
the 3 is the real component and the 4 is the imaginary component. All
the HP-28S's calculations assume that a complex number is in this rec-
tangular form (except those operations specifically intended to convert
from another form to this one).

All would be well if this rectangular form were the only one anybody
ever used, but life is never that simple. There's also a polar form often
used in engineering and it is sometimes acceptable to the HP-28S:
(9, 93. 132, where the D is the magnitude of the complex vector,
and the 93. 13 is the angle it makes with the real axis. This angle
may be measured in degrees or radians (the HP-28S will assume one
or the other according to the current angle mode).

The problem is, there's no way to tell by looking at your calculator's
display in which form a complex number is being expressed. Indeed,
experienced users often develop the habit of using one form or the
other, converting between them only when necessary.

Discussion 83

But the HP-28S makes life even easier than that. It can create and use
symbolic expressions (including the symbolicconstants '€ ' and '1 ')

as easily as numbers, thus allowing the creation of other common
complexnumber formats: '3+i%¥4' and 'S¥e™(i¥B.93>'

These are the machine's renderings of the algebraic rectangular form,
R+iC, and the exponential form, Me*; they will reduce to numeric
valuesifyouuse*MUM. Note that the HP-28S uses the mathematician's
i, rather than the engineer's j, to represent V-1. Note also that the ex-
ponential form is valid only for o in radians.

Unfortunately, there's yet another common complex number format —
the polar degree format (the engineers' favorite), which is MZ a, with
o indegrees. The problem with this is that it's not at all convenient on
the HP-28S, because the machine lacks the £ character. However,
with a slightly different format, you can still present the same inform-
ation: ' "C(9392.13>'. Here the 9 is the magnitude, and the
93. 13 is the angle, a, in degrees. This is the polar degree format.

Of course, all three of these alternate complex number forms would be
merely interesting novelties without some convenient methods for
creating and using them on your HP-28S. So this chapter provides
three commands that exactly parallel the HP-28S's R#*C ("real-to-
complex") command — corresponding to each of these three symbolic
formats:

'Re+i*IM' "Mee™Ci%ad! "Myt

R>i R+»= R=>"

84 Chapter 3: Complex Number Utilities

Just like R#C, each of these commands takes its components from
stack levels 1 and 2 and leaves the resulting expression on level 1:

2 FIX 1 1 R*i Result: '"1+i'
24 w4 7 R¥e Result: 'l.41%e”(i*B,79>'
2 ¥ 45 R»" Result: '"C1.41,43>"'

Of course, these commands are only for your convenience; you can
always key in these expressions directly. For example, to create the

expression ' 1+1 ', you would press ([J)HLIDETR.

Discussion 85

Math With Mixed Complex Formats

The real beauty of these three complex formats is that they're funda-
mentally equivalent. Thatis, they'll all reduce to the HP-28S's Carte-
sian rectangular form when you use *MUM (indeed, if you apply *NUM
tothe expressions on page 85,you'llget {1 .88, 1.88) foreachone
of them — try it)! This means that you can enter complex numbers in
any of the three alternate formats, perform calculations on them, then
reduce the final result with one simple *NUM!

For example:
1 1 R»1 Result: '1+1i'
3 34 R»" Result: '"(3,34>'
+ 2 7 Result: '(1+i+°(3,34)>,2'
That's getting ugly.
2 FIX »NUM Result: ¢(1.74,1.34)
That's much better.

Yes, but what's this result in polar-degrees format? After all, if you're
used to working in a certain format, it would be ideal to get the final
result in that format, too — no?

30 Result: '"(2.28,37.52>'

Note that this command isnotR#+® but +°. Keep in mind thatR+"
(along withR*1 and R+e) will always combine real numbers to form
a complex expression where there was none before. This is useful
mainly for entering complex numbers. By contrast,*® (and #1 and
“e) will actually convert an existing complex number from any other
allowable format to the desired format.

86 Chapter 3: Complex Number Utilities

Thus, you have four basic complex number conversion routines: *1,
2% »e,and *NUM. The built-in*MUM command isincluded, because
after all, it too will convert any of the other formats to a certain desired
format — the HP-28S's own Cartesian rectangular format!

So, if in that last example, you really wanted to see the results in, say,
algebraic rectangular format, it wasn't necessary to use *NUM at all:

1 1R2i 3 34 R+" +

2 7 Result: 'C1+i+"(3,34>2-2"
i Result: '1.74+i*1.34"'
Try another one:
1 45 R»" Result: '"(1,45>"'
LN Result: 'LNC" (1,452
>1 Result: '6.4BE-13+i%#8.79'

+1 (like any of the other conversion routines) automatically evaluates
the expression before converting it to Re+iIm format. So any function
such as LM, that can take a complex expression as an argument, will
be evaluated by the conversion routines.

Notice that the result of LN(1£ 45°) has a very small real portion —
small enough to be considered rounding error and replaced by 0. To
do this, you could use IM to return the imaginary portion as a real
number. Then reenter the result as the imaginary portion of a complex
number with a real portion of 0:

IM Result: 'IM(6.4BE-13+i*0.79)>'
8 SWAP
R>i Result: 'i#8.79'

Discussion 87

Solving A Complex Expression
For A Complex Result

Sometimes you'll need to do algebra with complex numbers, forming
complex expressions containingvariables: 'A+i¥B-"(1,45>"'

You cannot build such an object just by using the conversion tools; you
must key in the variable names by hand. Here's one method:

'A' 'i' 'B' ¥ + Result: 'A+i*B’
1 43 R»° - Result: 'A+i*¥B-"(1,45>"

Of course, you can always perform further operations to build a more
complicated expression, but only after the variables have been given
values can you get its numeric result or convert its format:

8 'A' STO 12 'B' STO #i Result: '7.29+i%11.29'

You can also use the SOLV menu to conveniently store values into the
variables in such an expression and then evaluate the expression (with
the EXPR=, LEFT=| or[RT= | commands). For example, to evaluate the
expression, ' INVCINV(ZAX+INY(ZB)> ', with these values...

ZA 1 | '2-1i%3' 'R (2,452
ZB 3 2.3 '%C188,36>"

do this: ' INVCINV(ZAI+INVY(ZBY) ' (sov)

Then: 128 132k] [EXPRI Result: B.735

88 Chapter 3: Complex Number Utilities

Then: '2-1#3'[2a]2.3 (26 | [ERFRI*1
Rgsult: '1-4?"'1*9. 58l

Then: 'ZR'PURGE '®"(2,43)'(za)'"(168,36>'
»° Result: '%(1.96,44.82>'

Note, however, that since the "SOLVer" capability itself does not
extend to complex numbers, you cannot generally use it directly to
solve for the values of complex variables in complex expressions.
Instead, you must use ISOL — and probably some other algebraic
rearrangement tools.

Before using I SOL, youshould become comfortable with the use of the
solution mode flag (flag 34):

34 SF 'A*2=9' 'A' ISOL Result: 3.008
34 CF 'A*2=9' 'A' ISOL Result: 's1#3'

34 SF 'A*3=9' 'R' ISOL Result: 2.88
34 CF 'A*3=9' 'R' ISOL
Result: 'EXP(2*¥m#i¥nl/3)%2.68'

With flag 34 clear, the expression for the general solution in each case
is given. Arbitrary integers are represented by N1, N2, etc. Thus,
replacing Nl above with any integer will yield a valid answer.
Similarly, 1, 52, etc., represent arbitrary sign multipliers (+1), so
that replacing 1 above with either 1 or =1 will yield valid results.
With flag 34 set, you get the principal value as a result. This value is
what you get when you substitute @ for all arbitrary integers and 1 for
all arbitrary signs.

Discussion 89

Chapter 4

Vector Utilities

These routines provide quick and reliable ways to do certain type and
dimension conversions and formatting of vectors.

As shown in the following list, the 8 programs are organized into three
logical groups, presented alphabetically. Within each group, the pro-
grams are also usually presented alphabetically (by MAME), although
in some cases, certain sets of programs may be complementary or oth-
erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page
100, immediately following these program listings.

90 Chapter 4: Vector Utilities

Iﬂ ame

»2D

+3D

IJK+
+IJK

A»Y
V2R
CaV
VaC

Contents

Function

Dimension Conversion Routines

Convert A Vector From 3-Dimensional
To 2-Dimensional

Convert A Vector From 2-Dimensional
To 3-Dimensional

Formatting Routines

Convert A Vector From ' I +J+K' Format
Convert A Vector To ' I +J+K ' Format

Type Conversion Routines

Convert A One-Column Array To A Vector
Convert A Vector To A One-Column Array
Convert A Complex Number To A Vector
Convert A Vector To A Complex Number

92

92

94
94

96
96
98
98

91

Convert A Vector From
3-Dimensional To 2-Dimensional:

»2D ©19683)

« +* A « A EVAL IF
DUP SIZE € 3 > =
THEM € > 1 GET END £
2 > RDM IF A TYPE
DUP & == SWAP ¢ ==

OR THEN A STO END *
®

Convert A Vector From
2-Dimensional To 3-Dimensional:

+30 ©19788)

€ * A « A EVAL IF
DUP SIZE € 2 > =
THEN € > 1 GET END £
3 > RDM IF A TYPE
DUP & == SWAP 7 ==

OR THEN AR STO END ®
b3

Chapter 4: Vector Utilities

Summary:

Examples:

Inputs:

Outputs::

Errors:

Notes:

+2D converts a 3-element vectorinto a 2-element vector
(the third element is lost). #3D converts a 2-element
vectorintoa 3-element vector (the third elementis given
the value of zero). If the vector is named, and the name
is used, the result vector will be stored in it.

L 123122 Result: [1 2 1
L 121330 Result: [1 2 B 1

Level 1 — any object that evaluates to a 3-element/2-
element vector — the vector to be converted.

Level 1 - if the input object was a name containing a 3-
element/2-element vector, nothing is returned, but the
resulting 2-element/3-element vector is stored in that
name. Otherwise, that resulting 2-element/3-element
vector is returned.

Too Few Argument s willoccur for an emptystack.
Bad Argument Type will occurifthe input object
does not reduce to a vector.

Bad Argument VYalue will occur if the input
contains an undefined name or a vector of other than 3
elements (for #2D) or 2 elements (for +3D).

None.

Dimension Conversion Routines 93

Convert A Vector From ' [+J+K' Format:

IJK* (312238)

« EVAL RCLF STD SWAP
+STR SWAP STOF

88 1]
1 81
811
J K « STR+ +NUM

¥ M
¥ -0 0 -

Convert A Vector To ' I[+J+K' Format:

Summary:

+IJK ©38244)

« RCLF » f. « 36 SF
EVAL IF DUP SIZE { 3
> # THEN { > 1 GET
END ARRY+ DROP 'K' =
ROT 'I' *# ROT 'J' =
ROT + + COLCT f.
STOF =»

IJK+ converts an algebraic expression, containing a
linear combinationof ' I ','J"' and 'K',intoavector.
+IJK converts a 3-element vector into an algebraic
expression that is a linear combination of 'I ', 'J"
and 'K"'.

Chapter 4: Vector Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

STD 'I+J+K' IJK+* Result: [1 1 1 1
STD '(3.5*%I-2.25%*K>»*2+13*%I"' IJK»
Result: [22 8 -4.5 1

STD L 1 21 1 +IJK Result:' I+2%J+K"
STD [-3 8 1 1-+IJK Result:'-(3*I)+K'

Level 1 - an algebraic object/vector — the vector whose
format is to be converted.

Level 1 — a vector/algebraic object — the vector in the
converted format.

Too Few Araument s willoccurfor anemptystack.
Undef ined Name will occur for I JK+ if the argu-
ment is an expression containing an undefined name.
Invalid Dimension will occurifan operationin
the expression would involve multiplying two vectors.
Bad Argument Type willoccurif (for I JK+)there
isany operation in the expression whichisusedon'I ',
'J' or'K' andisundefined for vectors;or (for* I JK),
if the input object does not evaluate to an array.

Bad Argument Yalue willoccurwith+IJK ifthe
input has a valid SIZE but is not a 3-element vector.

I JK+ simply evaluates the Level-1 object after assign-
ing vector values to the three variables, ' I ','J"' and
'K'. Itis therefore not very sensitive to erroneous in-
puts. Expressionssuchas ' ', for example, are simply
evaluated and return no vector at all.

Formatting Routines 95

Convert A One-Column Array To A Vector:

A3V (732379)

« * A « A EVAL DUP
SIZE 2 GET IF 1 =
THEN € > 1 GET END
DUP SIZE 1 1 SUB RDM
IF A TYPE DUP & ==
SWAP 7 == OR THEN A
STO END » »

Convert A Vector To A One-Column Array:

Summary:

96

V+R ©638699)

€ + A « A EVAL DUP
SIZE DUP IF SIZE 1 =
THEN { > 1 GET END 1
+ RDM IF A TYPE DUP
== SWAP 7 == OR
THEN AR STO END » »

A+Y converts a one-column array G.e., [L 1 1L 2
1L 3 11)toavector. ¥*+A converts a vector to a one-
column array. If the input array/vector is stored in a
name and the name is used, the resulting vector/array
will be stored in that name.

Chapter 4: Vector Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

STD [C 1 1C 2 1L 3 11 A=Y
Result: [1 2 3 1

STD L 1 23 1 VA
Result: [C 1 1L 2 1C 3 11

Level 1 — any object that evaluates to a column array/
vector — the column array/vector to be converted.

Level 1-if the input object was a name that contained
a column-array/vector, nothing is returned, but the re-
sulting column-array/vector is stored in that name.
Otherwise, that resulting vector/column-array is re-
turned.

Too Few Arguments will occur if the stack is
empty.

Bad Argument Type will occur if the argument
does not reduce to an array/vector.

Bad Argument ‘Yalue will occur if the input ob-
ject is an array containing more than one column (for
A+Y) or is not a vector (for ¥*A).

None.

Type Conversion Routines 97

Convert A Complex Number To A Vector:

C2V 283497)

« * A « A EVAL C»R 2
+ARRY IF A TYPE DUP
== SWAP 7 == OR

THEN R STO END » »

Convert A Vector To A Complex Number:

Summary:

98

V2C ©81991)

« * A « A EVAL IF
DUP SIZE € 2 > =
THEN { > 1 GET END
ARRY+ DROP R»C IF A
TYPE DUP & == SWAP 7

== OR THEN A STO END
b 3

C*Y converts a complex number to a two-element
vector. If the complex number is named and the name
isused, the resulting vector is stored in that name. ¥*C
converts a two-element vector to a complex number. If
the vector is named and the name is used, the resulting
complex number is stored in that name.

Chapter 4: Vector Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

STD (1,2> CaV Result: [1 2 1
STD L 121 V¥aC Result: (1,22

Level 1 -anyobject that evaluates to a complex number/
2-element vector — the complex number/2-element vec-
tor to be converted.

Level 1 - if the input object was a name containing a
complex number/2-element vector, nothing is returned,
but the resulting 2-element vector/complex number is
stored in that name. Otherwise, that resulting 2-ele-
ment vector/complex number is returned.

Too Few Argument s willoccurfor an emptystack.
Bad Argument Type will occur if the argument
does not reduce to a complex number/vector.

Bad Argument Yalue willoccur with ¥+C ifthe
input vector does not have exactly 2 elements.

None.

Type Conversion Routines 99

Vector Utilities: A Discussion

The Main Idea

The main purpose of these routines is to provide conversion utilities
between the different vector formats available to the HP-28S. The
"vectors" referred to here are the mathematically defined sort, and not
simply the vector object type provided by the HP-28S.

For example, in two dimensions, these are mathematically equivalent
for most operations, when used as vectors:

(1,22 (121 (C11¢C211
And in three dimensions:
[1231
(C11C021¢C 311
'I+2%J+3%K'

But be careful! Not all vector-type operations work with every object
type. For example, although many common vector-type operations
will work with complex numbers (e.g. +, =, ABS, NEG, scalar multi-
plication), not all will (e.g. CROSS and DOT). And there are more
operations defined for complex numbers than for vectors (e.g. multipli-
cation of two complex numbers).

100 Chapter 4: Vector Utilities

Be warned also that the algebraic form (' [+2%J+3#K"')is a valid
vector representation onlyifthesymbols ' I','J"' and 'K' haveno
associated values, or ifthosevaluesareL 1 8 8 1,L 8 1 8 1]
and[@ @ 1 1, respectively

In the former case, the algebraic expressions may be combined to form
mathematically correct expressions (with symbolic unit vectors). In
the latter case, evaluation of the expressions will yield correct HP-28S
vector objects — because those values are indeed the required unit
vectors. Any other values storedineither 'I', 'J ', or 'K ' will yield
invalid results when evaluated.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that
is listed in your current PATH. The easiest way to ensure that this is
the case is to place each of the programs in the HOME directory — the
ultimate parent of all other directories.

Discussion 101

Some Observations

Arrays Vs. Vectors

Both mathematically and as objects on the HP-28S, vectors can be
considered to be atype of array: In math, a vectoris a one-dimensional
array and may either be a row-vector or a column-vector. However, on
the HP-28S, a vector object is always a column-vector, represented by
numbers within single brackets (L 1 2 3 1J). The dimension of a
vector object, asreturned by the SI ZE command,is{ » 2,indicating
that the vector is one-dimensional and has » elements.

This representation of a column-vector as a vector object is simply
intended to make life easier for you. The alternative form of column
vectorisLL 1 1 [2 1 [3 11, where the single column is
represented as a list of one-element rows. However, on the HP-28S,
thisrepresentation is an array object —not a vector object. Accordingly,
it is represented as a list of numbers within double brackets (C[L 1 2
3 11), and its dimension is returned as{ 1 » } where n is the
number of elements.

This would all be merely interesting trivia if it were not that certain
built-in HP-28S commands function only on vector objects and not on
column-vector arrays (CROSS, for example). On the other hand,
certain "array-ish" commands refuse to take vector objects as argu-
ments (e.g. TRM). For this reason, A+Y and ¥+A have been included
in these utilities to allow you to easily convert between these forms.

102 Chapter 4: Vector Utilities

Calculations '"In Place"

All of the vector utilities except * I JK and I JK+ allow you the option
of providing a named object as the argument. In that case, the
resulting object will be restored in that name object as the end of the
calculation — and nothing will be returned to the stack. This feature
will work either on global or local name objects and is intended to be

analogous to the working of the storage arithmetic commands (see the
HP-28S's STORE menu).

Although similar, these utilities lack one of the major advantages of
the built-in storage math: Those built-in STORE menu commands will
perform their calculations "in-place” — on top of the contents of the
current array —thereby taking up less storage space than recalling the
contents of the named objects, combining them, then overwriting the
original named object. These utilities must use the latter method.

Errors And Error Recovery

Each of these tools is designed to generate an error when invalid input
is entered —ratherthan continue and generate garbage outputs. When
inputs are questionable (e.g., negative numbers for stack Levels),
these utilities act similarly to the built-in stack commands (arguments
are ignored or treated as 1, whichever makes more sense). When
errors do occur, the stack is usually disrupted, and since the only way
to restore it then is with the UNDO command, it's wisest to keep UNDO
mode (in the MODES) menu) active whenever you these utilities.

Discussion 103

How You Might Use These Utilities

All of the vector utilities provide convenient means to convert between
equivalent (or nearly equivalent) forms of vectors — that's their pur-
pose. One pair of routines, however, provides conversion between a
numeric form and an algebraic form, and that algebraic form, in and
of itself, opens up new vistas for vector operations.

The algebraic (or "symbolic") form of a vector is simply a linear combi-
nation of the symbolic unit vectors i, j and k. As such, all forms of
mathematical and symbolic operations can be performed on the vector
expression.

You must be careful, however, to perform only those mathematical op-
erations that are defined for vector-type objects. The HP-28S will allow
you to perform many operations on a symbolic expression (such as
trigonometric and logarithmic functions) — operations which are in no
way defined for vectors. And the resulting object will be algebraically
correct ifthenames 'I ', 'J' and 'K' are associated with real or
complex objects, but not for vector objects. This fact will manifest itself
when/if you apply I JK+# to a symbolic expression: Bad Argument

Type will be the only result.

Try some examples:

104 Chapter 4: Vector Utilities

STD '4=I' '2%I' '3*K' + +

Result: '4*I+(2%I+3%K>'
COLCT Result: '6¥I+3%K'
IJK=» Result: [6 B8 3 1
*2D Result: [6 68 1
+3D Result: [6 8 8 1]
+IJK Result: '6%I'
(2,3> C»V 23D »IJK Result: '2%¥I+3%J'
2 +~ COLCT Result: '.3*#(2%I+3%J>'
EXPAN COLCT Result: 'I+1.5%J'
IJK+ 2D V=2C Result: {1,1.53>

Unfortunately, most of the vector-oriented commands of the HP-28S
will not take symbolic arguments. Thus, you cannot "cross” two
symbolic vectors using the built-in command, CROSS. You can,
however, define similar commands, such asCR0OS (39388), like this:

« IJK+ SWAP IJK=+
SWAP CROSS »IJK »

This version will take either numeric or symbolic arguments and
return a symbolic cross product vector.

You can see how tempting it might be to define a whole set of similar
commands to make your HP-28S a little more useful with symbolic
expressions, no? Go ahead and do so on your own, as you wish....

Discussion 105

Chapter 5

Array Utilities

These routines provide convenient, "canned" methods for building,
editing and using arrays in the HP-28S.

Asshowninthefollowing list, the 30 programs are organized into three
logical groups, presented alphabetically. Within each group, the pro-
grams are also usually presented alphabetically (by MAME), although
in some cases, certain sets of programs may be complementary or oth-
erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page
152, immediately following these program listings.

106 Chapter 5: Array Utilities

AGETC
AGETR
ARPT
ASUB
ARY=C
C+ARY
ARY-*R
R+ARY
AL
L=+A

RDELC
RDELR
REX
AEXC
REXR
RINSC
AINSR
RPUTA
RPUTC
RPUTR
RREY

Contents

Building/Decomposition Routines

Get A Column From An Array
Get A Row From An Array

Create An Array By Duplicating An Object

Get A Subarray From An Array
Decompose An Array Into Columns
Compose An Array By Columns
Decompose An Array Into Rows
Compose An Array By Rows
Convert An Array To A List
Convert A List To An Array

Editing Routines

Delete A Column From An Array
Delete ARow From An Array
Exchange Elements Within An Array
Exchange Columns Within An Array
Exchange Rows Within An Array
Insert A Column Into An Array
Insert A Row Into An Array
Overwrite A Subarray Onto An Array
Overwrite A Column In An Array
Overwrite A Row In An Array
Reverse The Order Of The Elements
In An Array

110
110
112
114
116
117
119
120
122
123

125
125
128
130
130
132
132
134
136
138
140

107

Name Function Page

ASORT Sort An Array By Element 140
ASRTC Sort An Array By Column 142
ASRTR Sort An Array By Row 142

Miscellaneous Operations

AI+N Convert An Array's Index List 144
To A Numeric Index

AM+I Convert A Numeric Index 144
To An Array's Index List

AOP Perform An Operation On Each Element 146
Of An Array

AROPC Perform An Operation On Each Column 146
Of An Array

AOPR Perform An Operation On Each Row 147
Of An Array

APOS Find The Position Of A Specified 150

Real Element Within An Array

108 Chapter 5: Array Utilities

Contents 109

Summary:

110

Get A Column From An Array:

AGETC (127941)

« »NUM + N « EVAL
DUP SIZE 2 2 SUB B8
COM N 1 PUT * » »

Get A Row From An Array:

AGETR ©660887)

« »NUM + N « EVAL

DUP SIZE IF DUP SIZE
1 == THEN DROP N GET
{11 > +ARRY ELSE 1
1 SUB 1 SWAP + © CON

M 1 PUT SWAP # END »
»

AGETC extracts the specified column-vector from the
given array. AGETR extracts the specified row-array
from the given array or vector. If the row/column selec-
torisbeyond the dimensions ofthe source array, an error
is reported. Any fractional portion of the row/column
selector is rounded.

Chapter 5: Array Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

STD CC 1

31456 11 3 AGETC
Result: [3]

2
6
'A' € 2 I » AGETC

Result: (assumingthatarray 'A' is defined, you'll get
a vector — column 1 of the array'A ')

STD LL 1 2 3 1L 4 5 6 11 2 AGETR
Result: [[4 5 & 11

'B' €« 2 I » AGETR
Result: (assuming thatarray 'B' is defined, you'll get
an array—row 1of 'B')

Level 2 — any object that evaluates to an array or vector.
Level 1-anyobject that evaluates to a real number —the
row/column index.

Level 1-anarray or vector —the row or column, respect-
ively.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type will occur if the arguments
don't evaluate to their required types.

Bad Argument Yalue will occur if the column
index is out of range.

None.

Building/Decomposition Routines 111

Create An Array By Duplicating An Object

Summary:

Examples:

112

ARPT @&2793)

« *MUM > A N « A
EVAL IF DUP TYPE NOT
THEM 1 »LIST END M
COM IF A TYPE & ==
THEN A STO END » »

ARPT creates an array by repeating a single number.
The dimensions of the resulting array are specified
either by an integer index, a list index, or an array. The
index determines the type of array/vector object re-
turned: Integers and single element lists return vectors,
while 2-element lists specifying numbers of rows and
columns will return the corresponding arrays. An ar-
ray-typeindex returns an array of the same dimensions.
All real-number indices are rounded before use.

STD € 2 2 > B ARPT
Result: [[8 8 B 1L B B8 8 1]

STD 3 18 ARPT
Result: [18 16 16 16 16 1

STD 1.5 1 ARPT
Result: [1 1 1]

Chapter 5: Array Utilities

Inputs:

Outputs:

Errors:

Notes:

Level 2-any object that evaluates to a real number, list,
array or vector — the dimensions of the desired array.

Level 1—anyobject that evaluates to areal number —the
valuetobe repeated throughout the array being created.

Level 1 - If the Level-2 object was a name containing a
valid number, list, vector or array, nothing is returned,
but the resulting array or vector is stored in that name.
Otherwise the resulting array or vector is returned.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type willoccurifeither argument
is not of its prescribed type.

Undef ined Mame will occur if the Level-2 object is
an undefined name.

None.

Building/Decomposition Routines 113

Summary:

114

Get A Subarray From An Array:

ASUB @v743689)

« EVAL € > + ROT
EVAL ROT EVAL € > +
ROT LIST+ 1 == 1 IFT
ROT LIST» 1 == 1 IFT
+ MCDAB «MDUP
SIZE IF DUP SIZE 1

= THEN 1 + RDM ELSE
P END DUP DUP 'M'
B > GET DROP
GET DROP IF
B

A
b
D B < OR THEN

DUP 1 = THEN + ELSE
DROP END »*RRRY » »

ASUB extracts a sub-array from the given array. Two
indices are required: the upper left element of the sub-
array, and the lower right. A real number may also be
used as an index for a vector, or for a 2-dimensional
array, in which latter case, it will be taken to mean the
first column of that row in the array.

Chapter 5: Array Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

STDIL 1231456 11{1223<
2 3 > ASUB
Result: [[L 2 3 1L 5 6 11

STDL 12345183 4 ASUB
Result: [3 4 1

Level 3 —any object that reduces to an array or vector —
the source array.

Level 2 — an object that reduces to a list or real number
— the index of the upper left corner of the sub-array.
Level 1 —an object that reduces to a list or real number
— the index of the lower right corner of the sub-array.

Level 1 — an array or vector — the extracted sub-array.

Too Few Rrgument s will occur if the stack con-
tains fewer than 3 objects.

Bad Argument Type will occurifany ofthe stack
objects do not evaluate to their prescribed types.

Bad Argument VYalue will occur if either of the
indices is out of bounds.

Of course, ASUB can be used to extract individual rows
and columns from an array, but AGETR and AGETC
are probably more convenient for those specific tasks.

Building/Decomposition Routines 115

Decompose An Array Into Columns:

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

116

ARY=*C 322341)

« EVAL TRN ARRY=
LIST+ DROP + R C « 1
R FOR I C #*ARRY R I
- C % I + ROLLD NEXT
R » »

ARY+C decomposes the given array into its component
column arrays (vectors), which are left on the stack (in
order), along with a count of these vectors.

STD [CL 1 2 1L 3 4 1L 5 & 11 ARY=C
Result: [1 331 [248612

Level 1 — any object that evaluates to an array — the
array to be decomposed.

Levels 2 to (n+1) — vectors — the array's columns.
Level 1 — a real number, n — the number of columns.

Too Few Argument s willoccurfor an emptystack.
Bad Argument Type will occur if the argument
does not evaluatetoan array(orInvalid Dimen-
S1on will occur for a vector argument).

Undef ined Mame will occur if the argument con-
tains an undefined name.

None.

Chapter 5: Array Utilities

Compose An Array By Columns:

C+ARY @838338v9)

« 3NUM .5 + IP + N «
M +LIST » L <« L 1
GET EVAL SIZE LIST+
IF 2 == THEN DROP
END + R« { 21N
FOR I L I GET EVAL
DUP SIZE LIST+ 1 ==
1 IFT IF SWAP R =
THEN

[11

TRM END IF 1 == THEMN
ARRY+ LIST+ DROP
ELSE TRN ARRY+ LIST=
DROP # EMND »LIST +
MEXT LIST+ R » R 2
3LIST #ARRY TRN » »
» ®

Summary: C+ARY createsan array from the given column-arrays,
vectors, and/or arrays — combined column-wise (sym-
bolic arguments will be evaluated). Input arrays/vec-
tors must all have the same number of rows. An integer
index must also be given to indicate how many stack
items to combined. Any fractional portion of the index
is rounded.

Building/Decomposition Routines 117

Examples:

Inputs:

Outputs:

Errors:

Notes:

118

SThCL121CLC34

1L56 13 C*ARY
Result: [[1 3353 1L 2461

]

STD [C 1 2 1L 3 4 11 DUP 2 C3ARY
Result: [1 21 2 1L 34 3 4 11

Levels 2 to (n+1) — any object that reduces to an array or
vector — the objects to be combined.

Level 1 —any object that evaluates to a real number, n—
the number of objects to be combined.

Level 1 — an array — the newly-created array.

Too Few Arguments will occur if the stack is
empty or there are fewer objects on the stack than are
specified in Level 1.

Bad Argument Type will occurifany of the stack
levels don't reduce to their respective object types.
Bad Argument Yalue will occurifthe (rounded)
index value is less than 1.

Invalid Dimensionwilloccurifthe givenarrays
and/or vectors do not all have the same row dimension.

None.

Chapter 5: Array Utilities

Decompose An Array Into Rows:

ARY+*R 371489)

« EVAL ARRY+ LIST» 1
==1IFT+ RC<«1R
FOR I € 1 C > *ARRY
RI-C=#=1I+ ROLLD
MEXT R » *

Summary: ARY*R decomposes the given vector or array into its
component 1-row arrays, left on the stack in order, along
an integer representing the total number of these rows.

Examples: STD [[1 2 1L 3 4 11 ARY*R
Result: [L 1 2 11 [3 4 11 2

STD L 1 2 3 1 ARY+*R
Result: LL 1 11 CC 2 11 CC 3 11 3

Inputs: Level 1 - any object that evaluates to a vector or array.

Outputs: Levels 2 to (n+1) — the array’'s component rows.
Level 1 — areal number, n — the number of components.

Errors: Too Few Arguments will occur if the stack is
empty or if the argument is a vector.
Bad Argument Type will occur if the argument
does not evaluate to a vector or array.

Notes: None.

Building/Decomposition Routines 119

Summary:

Examples:

120

Compose An Array By Rows:

R+ARY @191223)

« #NUM .5 + IP + N «
M +LIST > L L1
GET EVAL SIZE 2 GET
+ C« {21 NFORI
L I GET EVAL DUP
SIZE IF 2 GET C =
THEN

L 11

TRN END RRRY=> LIST»
DROP # »LIST + NEXT
LIST+ C » C 2 »LIST
3ARRY » » » »

R+ARY will create an array from the given arrays (sym-
bolic arguments will be evaluated). The component
arrays will be combined row-wise (input arrays must all
have the same number of columns). An integer index
must also be given to indicate how many stack items are
to be combined. Any fractional portion of the index is
rounded.

STDIC12311CC341]1L[C56 1123
R=+ARY
Result: [L 1 2 1L 2 4 1L 5 6 11

Chapter 5: Array Utilities

STD CL 1 2 1L 3 4 11 DUP 2 R*ARY
Result: L[1 2 10 34 10121034 11

Inputs: Levels 2 to (n+1) — any objects that reduce to arrays; the
objects to be combined.
Level 1 —any object that evaluates to a real number, n—
the number of objects to be combined.

Outputs: Level 1 — an array — the newly-composed array.

Errors: Too Few Arguments will occur if the stack is
empty or there are fewer objects on the stack than are
specified in Level 1.
Bad Araument Type will occurifany of the stack
levels don't reduce to their respective object types.
Invalid Dimensionwill occurifthegivenarrays
do not have the same column dimension.

Notes: None.

Building/Decomposition Routines 121

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

122

Convert An Array To A List:

A+L (183691)

« EVAL ARRY+ + D « D
LIST+ IF 2 == THEN #%
END »LIST D » »

A+L converts the given array or vector into a list of its
elements, in row-major order. A second list will also be
returned, containing the size information from the origi-
nal array so that the array can be reconstructed.

STD CC 1 2 1C 23 4 11 A»L
Result: { 1234 {2237

STD L 12341RARL
Result: { 1 234 > { 4 2

Level 1 -Any object that evaluates to an array or vector
— the array to be converted.

Level 2 — a list — the elements of the original array.
Level 1 — a list — the original dimensions of the array.

Too Few Argument s willoccurforan emptystack.
Bad Argument Type will occur if the argument
does not evaluate to an array or vector.

None.

Chapter 5: Array Utilities

Summary:

Examples:

Inputs:

Convert A List To An Array:

L*A @9208357)

« EVAL SWAP EVAL + D
L « L SIZE D LIST»
IF 2 == THEN % END
IF = THEN { > 1 GET
END L LIST+ DROP D
+ARRY *» »

LA converts the given list of numbers into an array or
vector of the elements from the list (in row-major order).
A second list must be given, containing the size informa-
tionoftheresultingarray,i.e.,{ rows columns .

ST 1234 {22 72%L=*A
Result: [L 1 2 1L 3 4 11

ST 123434 3L*A
Result: [1 2 3 4 1

Level 2 — any object that evaluates to a list of real num-
bers — the list to be converted.

Level 1 — any object that evaluates to a list — the list
containing the dimensions of the desired array.

Building/Decomposition Routines 123

Outputs:

Errors:

Notes:

124

Level 1 —an array or vector, depending on the specifica-
tion — the object just converted from the input list.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type will occur if the arguments
do not evaluate to lists.

Bad Argument Yalue willoccurifthedimensions
of the size list do not correspond to the number of ele-
ments in the element list.

None.

Chapter 5: Array Utilities

Delete A Column From An Array:

Delete A Row From An Array:

Editing Routines

ADELC 322383)

« + AR « A EVYAL TRN
R ADELR TRN IF A
TYPE DUP & == SHWRP ¥
== QR THEN R STO END
» ®

ADELR @327 798)

« *NUM .53 + IP * AR
« A EVAL DUP SIZE 1
R PUT GET DROP A
EVAL ARRY+ LIST+ 1
==11IFT+* NM&NR
- M* 2LISTHM1 +
ROLLD M DROPN LIST+
DROP M1 - IFM1=
THEN M 2 3LIST END
+ARRY IF A TYPE DUP
& == SWAP 7 == OR
THEN R STO END » *» »

125

Summary:

Examples:

126

ADELC deletes the specified column from a given array.
ADELR deletes the specified row from a given array or
vector. The column/row number is rounded before use.
Ifthat rounded numberislessthan 1 or greater than the
number of column/rows in the array, an error will occur.
If the name of an array variable is used, the modified
array is restored in the given name.

STDIL 12314561l 7891]12
ADELC
Result: [1 3 1L 46 1L 7 9 11

'A' 5 ADELC
Result: (assuming the array ' A' is defined, it loses its
fifth column but nothing is left on the stack.)

STD 3 IDN 'w' ADELC
Result: [[1 8 1L 81 1L 8 8 1]

STDIL 12314561789 112
ADELR
Result: [1 2 3 1L 7 8 9 11

'A' 4 ADELR
Result: (assuming the array ' A" is defined, it loses its
fourth row but nothing is left on the stack.)

STD L1 2312 ADELR
Result: [1 3 1

Chapter 5: Array Utilities

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

Level 2 — any object that evaluates to an array — the
array to be edited.

Level 1 -anyobject that evaluates to a real number—the
column/row number.

Level 1 — if the input array is a name, nothing is re-
turned, but the modified array is stored in that name.
Otherwise the modified array is returned.

Too Few RArgument s will occur if the stack con-
tains fewer than two objects.

Invalid Dimension will occur with ADELC if
the Level-2 object is a vector.

Bad Argument Type will occur if the Level-2 ob-
ject does not evaluate to an array (a vector is also OK for
ADELR), or if the Level-1 object does not evaluate to a
real number.

Undef ined Mame will occur if the Level-1 object
contains an undefined name.

Bad Argument Yalue will occur with ADELR if
you try to delete the last remaining row or if the row
number is out of bounds.

RDELC uses ADELR.

127

Exchange Elements Within An Array:

Summary:

Examples:

128

REX (693863)

« *NUM SWAP +NUM + A
MM« R EVAL DUP DUP
M GET SWAP M GET ROT
N ROT PUT M ROT PUT
IF A TYPE DUP & ==
SWAP ¢ == OR THEMN A
STO EMD » »

AEX exchanges any two elements of the given vector or
array. The indices for the two elements may be either
integers or lists. Any fractional portions of integer indi-
ces are rounded. If either index is beyond the valid di-
mensions of the array, an error occurs. If the array is
named and the name is used, the modified array will be
restored in the given name.

ST [C 1 2 1L 3 4 11 1 2 AEX
Result: [L 2 1 1L 3 4 11

[C12103411{113>{227%AEX
Result: [[L 4 2 1[2 1 11

'"A' 'X-1' { 2 2 > REX
Result: (assumingthat® and £ contain real values, the

array, ' A',is modified, but nothingis left on the stack.)

Chapter 5: Array Utilities

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

STD L1 2311 3 AREX
Result: [3 2 1 1]

Level 3 —the array or vector — any object that evaluates
to either an array or a vector.

Level 2 — any object that evaluates to a real number or
a list of two real numbers — the index of one of the
elements to be exchanged.

Level 1 — any object that evaluates to a real number or
a list of two real numbers — the index of the other
element to be exchanged.

Level 1 —if the input array or vector is a name, nothing
is returned, but the modified array or vector is stored in
that name. Otherwise the modified array or vectoris re-
turned.

Too Few Argument s will occur if the stack con-
tains fewer than three objects.

Bad Argument Type will occur if the Level-2 ob-
jectdoesn't evaluate to an array or vector, or if the Level-
1 object doesn't evaluate to a real number or a list.
Undef ined Mame will occur if the Level-3 object
contains an undefined name.

None.

129

Exchange Columns Within An Array:

REXC @11743)

« * ANM <« A ARY2C
2LIST N M AREX LIST»
C+ARY IF A TYPE DUP
== SWAP 7 == OR
THEN A STO END *» »

Exchange Rows Within An Array:

Summary:

130

AEXR #14438)

« *ANMZA ARY2R
3LIST N M AEX LIST=»
R+ARY IF A TYPE DUP
& == SWAP 7 == OR

THEN A STO END » »

AEXC exchanges any two columns of the given array.
RAEXR exchanges any two rows of the given array. The
indices for the two columns/rows may either be integers
or (single-element) lists. Any fractional portions of inte-
gerindices arerounded. Ifeither of the indicesis beyond
the dimensions of the array, an error occurs. Ifthe array
is named and the name is used, the modified array will
be restored in the given name.

Chapter 5: Array Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

STD L 1 2 1L 3 4 111 2 AEXC
Result: [[L 2 1 1L 4 3 11

STD [C 1 2 3 11 1 3 REXC
Result: [[3 2 1 11

STD L 1 2 1L 234111 2 AEXR
Result: [L 3 4 1L 1 2 11

STD L 1 2311 3 AEXR
Result: [L 3 2 1 11

Level 3 — any object that evaluates to an array.

Level 2—any object that evaluates to areal number—the
index of one of the columns/rows to be exchanged.
Level 1—anyobject that evaluates to a real number—the
index of the other column/row to be exchanged.

Level 1 — if the input array is a name, nothing is re-
turned, but the modified array is stored in that name.
Otherwise the modified input array is returned.

Too Few Argument s will occur if the stack con-
tains fewer than three objects.

Bad Argument Type will occur if the Level-3 ob-
ject does not evaluate to an array or if the Level-1 and
Level-2 objects do not evaluate to real numbers or lists.
Undef ined Name will occur if the Level-3 object
contains an undefined name.

REXC uses ARY*C, C+ARY, and AEX. AEXR uses
ARY=+R, R+ARY, and AEX.

131

Insert A Column Into An Array:

RINSC ©26491)

« * AR VY « A EVAL
TRN R ¥ ¥ SIZE LIST»
1 ==1 IFT 2 »LIST
RDM AINSR TRM IF A
TYPE DUP &6 == SWAP ¥

== OR THEN A STO END
-

Insert A Row Into An Array:

AINSR @238433)

« EVAL TRN TRM SLAP
#NUM .5 + IP + AV R
« A EVAL ARRY+ LIST»
1 ==11IFT > NM<«N
R=-1+M#% 2LIST V
ARRY+ DROP M 1 +
ROLL LIST» DROP M 1
+ IFM1>THEN M 2
+LIST END *ARRY IF A
TYPE DUP & == SHAP 7
== OR THEM A STO END
b

132 Chapter 5: Array Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

AIMSC inserts the given column into the given array.
AINSR insertsthegivenrowinto the given array. Ifthe
column/row number is less than 1 an error is generated.
A column/row index greater than the column/row-size of
the array will cause the new columnrow to be added to
the end of the array. The number of columns/rows in the
inserted array and destination array must be equal. If
the name of an array variableis used, the modified array
is restored in the given name.

(C1 31046 112TLC25 1 AINSC
Result: [[1 2 3 1L 4 536 11

STD L 12314I[IC4 11 AINSR
Result: [1 2 3 4 1

Level 3 — any object that evaluates to an array.

Level 2—anyobject that evaluates to areal number—the
column/row index.

Level 1 - any object that evaluates to a vector or array
— the column/row to be inserted.

Level 1 - if the input array was a name, nothing is re-
turned, but the modified array is stored in that name.
Otherwise the modified array is returned.

Too Few Arguments will occur if the stack con-
tains fewer than two objects.

Bad Argument Type will occuriftheinputobjects
don't evaluate to their required types.

RINSC usesAINSR.

133

Overwrite A Subarray Onto An Array:

APUTA ©923463)

« EVAL SWARP EVAL =
Rl A2 B « A2 ARRY=>
LIST» 1 == 1 IFT 2
+LIST *ARRY DUP SIZE
{11 > SWRP LIST=»
DROP R+C B € 2 +
LIST» 1 == 1 IFT R=C
SWAP OVER + (1,1)> -
SWAP C+R ROT C+R ROT
SWAP Al EVAL ARRY=>
LIST+ 1 == 1 IFT 2
2LIST *ARRY » N M A3
« FORINMFOR J
GETI A3 { I J X ROT
PUT 'A3' STO NERT
NEXT DROPZ A3 » DUP
SIZE LIST» DROP IF 1
== THEN { > + RDM
ELSE DROP END IF A1

TYPE DUP 6 == SWAP 7
== OR THEN Al STO
END » »

Summary: APUTA puts the given sub-array into the given array,
overwriting the contents of the array with the contents
of the sub-array. An index specifies the position in the
array at which the upper left corner of the sub-array will

134 Chapter 5: Array Utilities

Examples:

Inputs:

Outputs

Errors:

Notes:

Editing Routines

be located after the operation. This index may be a real
number if the destination array is a vector. If the des-
tination is a 2-dimensional array and the index is a real
number rather than a list, it is taken to mean the first
column of that row. The entire sub-array must fit into
the destination array or an error will occur.

STDIC 1 2310436 10789 11
{22 [CBB8 186 11 APUTA
Result: [[1 23 1L 488 1L 766 1]

ST L1 2234121000681 APUTAH
Result: [1 8 8 4 1]

Level 3 — any object that evaluates to an array — the
destination array.

Level 2 — any object that evaluates to a list or real
number — the index.

Level 1 -anobject evaluatingto an array—the sub-array.

Level 1 - if the Level-3 input was a name, nothing is
returned, but the modified array is stored in that name.
Otherwise, the modified array is returned.

Too Few Arguments will occur if the stack con-
tains fewer than 3 objects.

Bad Argument Type will occurifany ofthe argu-
ments fail to reduce to their prescribed values.

Bad Argument Yalue willoccuriftheindexdoes
not fall within the destination array.

None.

135

Overwrite A Column In An Array:

APUTC (1434082)

« * ACVY « A EVAL
TRN C V EVAL ARRY=>
LIST» 1 == 1 IFT 2
+LIST *ARRY TRM
ARPUTR IF DUP SIZE
DUP SIZE 1 == THEN 1
+ RDM ELSE DROP END
TRM IF A TYPE DUP &
== SWAP 7 == OR THEN
A STO END » »

Summary: HAPUTC will overwrite the specified column in the des-

136

tination array with the given column array or vector.
The column index is rounded before use and must then
be a real number between 1 and the number of columns
inthedestination array. The column array must contain
only 1 column and have the same number of rows as the
destination array. If the destination array is named and
its name is used, the resulting array will be stored in
that name. A vector is allowable as the column array,
sinceitis mathematically equivalent. Forexample,[1

2 3 Jand[[L 1 1IC 2 1L 3 117 arebothvalid.

Chapter 5: Array Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

STDIC 1210341056111 20086
@ 1 APUTC
Result: [C 1 @ 1L 28 1L 5 8 1]

STDLC 1 223411308 1APUTC
Result: [[1 2 B8 4 11

Level 3 — any object that evaluates to an array — the
destination array.

Level 2—anyobject that evaluates to a real number—the
column index.

Level 1 —any object that evaluates to a column array or
vector — the column vector.

Level 1 -ifthe Level-3 input object was a name, nothing
is returned, but the modified array is stored in that
name. Otherwise, the modified array is returned.

Too Few Argument s will occur if the stack con-
tains fewer than 3 objects.

Bad Argument Type willoccurifany of the input
objects fail to eveluate to their prescribed types.

Bad Argument Yalue will occur if the column
index is out of bounds or if the number of rows in the
column array does not equal the number of rows in the
destination array.

APUTC uses APUTR.

137

Summary:

138

Overwrite A Row In An Array:
APUTR 4415836)

« EVAL SWAP +NUM .5
+IP+*AVYR«A
EVAL ARRY+ LIST=> 1
==1IFT+ NM«NM
¥ 3LIST V ARRY>
LIST» IF 2 # ROT 1 =
OR RMN>OR OVER M =
OR R 1 < OR THEN

L 11

2 GET END +LIST OVER
RM=#*1+MNM= SUB
+ SWAP 1 R1 - M %
SUB SWAP + LIST+
DROP { N X IF M 1 =

THEM M + END +ARRY
IF A TYPE DUP & ==
SWAP 7 == OR THEN R
STO END *» » »

APUTR overwrites the specified row in the destination
array with the given row array. The row index is round-
ed before use and must then specify an existing row in
the destination array. The row array must have the
same number of columns as the destination array. Ifthe
destination array is a name, the resulting array will be

Chapter 5: Array Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

stored in that name. A vector is allowed for the destina-
tion array, since it is equivalent to column array. Butin
such cases, only the first representation will be returned
by APUTR, despite the input format.

ST IC 1 2 1L 34 1L 5 6 11
2 [[L 8 8 11 APUTR
Result: [[1 2 1L 8 8 1L 5 & 11

ST L 123412ILC99 11 APUTR
Result: [1 99 3 4 1

Level 3 — any object that evaluates to an array or vector
— the destination array.

Level 2—anyobject that evaluates to a real number—the
row index.

Level 1 — any object that evaluates to a row array.

Level 1 — if the Level-3 object was a name, nothing is
returned, but the modified array is stored in that name.
Otherwise, the modified array is returned.

Too Few Araument s will occur if the stack con-
tains fewer than 3 objects.

Bad Argument Type willoccurifany ofthe input
objects fail to evaluate to their prescribed types.

Bad Argument VYalue will occurifthe row index
is out of bounds, if the numbers of columns in the row
array and destination array do not match, or if the row
array is given as a vector.

None.

139

Reverse The Order Of The Elements
In An Array:

AREVY (@72332)

€« + A « A EVAL ARRY>
DUFP LIST® 2 == « * »
IFT + SH « 1 N FOR
I I ROLL MEXT S
+ARRY *» IF A TYPE
DUP & == SWAP 7 ==
OR THENM A STO EMD »
%

Sort An Array By Element:

ASORT (1846789)

€ + A « A EVAL ARRY=>
LIST+ 1 == 1 IFT + R
C«1RC=#*QSRT {R
> IFC1=THEN C +
END +ARRY » IF R
TYPE DUP 6 == SWAP 7
== OR THEN A STO EMD
» %

Summary: HREY reversesthe order of the elements of the specified
array. ASORT sorts the elements of the specified array

140 Chapter 5: Array Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

inrow-major and ascending order. Ifthe arrayisnamed,
and the name is used, the resulting array is restored in
that name. Since a vector is equivalent to a column
array, its format is valid also for the input array. In such
cases, only the first format will be returned by ASORT,
regardless of the input format.

STD CC 1 2 1C 3 4 11 AREY
Result: [L 4 3 1L 2 1 1]

STD L 5142 3 1 ASORT
Result: [1 2 3 4 3 1]

Level 1 —any object that reduces to an array or vector —
the array or vector whose elements are to be reversed or
sorted.

Level 1 — if the input object was a name, nothing is
returned, but the modified array or vector is stored in
that name. Otherwise, an array or vector is returned —
the modified array or vector.

Too Few Object s will occur if the stack is empty.
Bad Argument Type will occur if the argument
does not evaluate to an array or vector.

Sortinga{ 1@ 1B 2 arrayofrandom integers takes
about a minute. Sorting in descending order can be ac-
complished by applying HREY after sorting. Sortingin
column major order can be accomplished by transposing
the array both before and after sorting.

141

Sort An Array By Column:

ASRTC @421232)

« »NUM » AC « A
EVAL ARY*R =+ D « 1
CFDO1D1 - START
IF DUP2 C GET SWAP C
GET SWAP > THEM SWAP
1 SF END D ROLLD
NEXT D ROLLD UNTIL 1
FC?C END D R»*ARY »
IF A TYPE DUP & ==
SWAP 7 == OR THEN A
STO END » »

Sort An Array By Row:

ASRTR @422032)

« 3NUM + A C « A
EVAL ARY2C =+ D « 1
CFDO1D1 - START
IF DUP2 C GET SWAP C
GET SWAP > THEN SWAP
1 SF END D ROLLD
MEXT D ROLLD UNTIL 1
FC?C END D C3ARY *
IF A TYPE DUP & ==
SWAP 7 == OR THEN R
STO END » »

142 Chapter 5: Array Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

ASRTC sorts the rows of the given array in ascending
order by the indexed column. ASRTR sorts the columns
in ascending order by the specified row. If the name of
an array is used, the resulting array is restored in that
name. The column/row index is rounded before use.

ST IC 311042 1L 36 111 ASRTC
Result: [[36 1L 4 2 1L 51 11

STD L S 1104210 36 111 ASRTR
Result:[[L 1 5 1L 2 4 1L &6 3 11

Level 2 — any object that evaluates to an array — the
array to be sorted.

Level 1-anyobject that evaluates to a real number —the
column/row specifier.

Level 1 -Ifthe Level 2 object was a name containing an
array, nothing is returned to the stack, but the sorted
array is stored in that name. Otherwise it is returned.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects, or if the Level-2 object is a
vector or row array.

Bad Araument Type willoccuriftheinputobjects
do not evaluate to their prescribed types.

Invalid Dimension will occur if the Level-2
object is a row-array or vector.

ASRTC usesARY*R andR*ARY. ASRTR usesARY*C
and C*ARY. ASRTC and ASRTR both use user flag 1

to indicate a sorted array.

143

Convert An Array's Index List
To A Numeric Index:

RI+N @&75494)

« EVAL LIST» 1 ==
IFT ROT EVAL LIST+ 1
== 1 IFT 4 DUPN SWAP
4 ROLL < ROT ROT >
OR »NUM « ¢ > 2 GET
*» IFT SWAP DROP ROT
1 - % + 2NUM »

Convert A Numeric Index
To An Array's Index List:

AN+I (1440106)

« 3NUM IP SWAP EVAL
LIST+ IF 2 == THEN 3
DUPN * > »NUM « { 32
2 GET » IFT SHWAP
DROP #MUM » M C « N
c »~ CEIL C OVER 1 -
¥ N SWAP - 2 » ELSE
*NUM OVER < « { 2 2
GET » IFT 1 EMD
+LIST »

Chapter 5: Array Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

AI+N generates an integer index for the given array
size, equivalent to the given index list. AN+I does the
converse, generating anindexlist from aninteger index.
A vector's (a single-column array's) index may be either
in the form of { row *or{ row 1 2.

{44 {23 > AI*N Result: 7
{3 3{2 > RAIsN BﬁSllltz
{22 %3 AN+ Result:{ 2 1 2
{ 16 > 8 AN=»I Result: { 8 2

Level 2 — any object that reduces to a list — the dimen-
sions of the array in question.

Level 1 — any object that reduces to a list (for HI #+N) or
a real number (for AN+ I) — the index to be converted to
a real number (for AL *M) or a list (for AN=+1).

Level 1- a real number (for AI*N) - the (row-major)
single-value index equivalent; or a list (for AN+) —the
row-column list index equivalent.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type will occur if either Level 2
contains an object that is not a list or if Level 1 contains
an object type other than that of the input requirement.
Bad Argument Y“alue will occur if the specified
index is out of bounds for the specified array.

None.

Miscellaneous Operations 145

Perform An Operation On Each Element
Of An Array:

ROP (1361863)

« * AF « A EVAL
ARRY+ » S « S LIST»
2 ==& % » IFT + N «
1 N START F =*NUM N
ROLL MEXT ®» S *HARRY
IF A TYPE DUP ==
SWAP 7 == OR THEN A
STO END » » »

Perform An Operation On Each Column
Of An Array:

ROPC (7187¥36)

« + AF « A ARY=C »
M « 1 N START F 2NUM
N ROLL NEXT N C=RARY
IF A TYPE DUFP & ==
SWAP 7 == OR THEN A
STO END » » »

146 Chapter 5: Array Utilities

Perform An Operation On Each Row

Summary:

Examples:

Of An Array:

ROPR (F22381)

R F « R ARY*R =»
1 N START F +NUM
OLL NEXT N R=2ARY
IF A TYPE DUP
SWAP ¢ == OR THEN A
STO END » » »

& >
N «
N R

AQP performs a given operation on every element of the
given array, replacing each element with the element
resulting from the operation. AOPC performs a given
operation on every column of the given array, replacing
each column array with the column array resulting from
the operation. AOPR performs a given operation on
every row of the given array, replacing each row array
with the row array resulting from the operation. If the
name of an array is used, the resulting array will be re-
stored in that name.

STD CC 1 2 1C 3 4 11 «1 - » ROP
Result: [L @ 1 1L 2 3 11

STDL 122341« X 'w2-1'» ROP
Result: [8 3 8 15 1

Miscellaneous Operations 147

Inputs:

148

'A' 'B' AOP

Result: (assumingthat ' A' contains an array and that
'B' contains an operation, ' A" is modified, but noth-
ing is left on the stack.)

'Q@' « IF DUP 4 < THEN DROP 4 END »
AROP

Result: All elements of the array, '@ "', with values
greater than 4 will be changed to 4.

(C 121 34 1] «DUP ABS ~ »
ROPC 2 FIx
Result: [[8.32 8.43 1L B.95 8.89 11

STD L1 21024 1036 1] « ARRY=
+ @ « ROT @ » *ARRY * AOPC
Result: [[L 3 4 1L S 6 1L 1 2 11

(C121C 34 11 «DUP ABS -~ »
AOPR 2 FIX
Result: [[8.45 6.89 1[8.68 8.80 1]

STDIL 12310436 11 «DUP 1 GET
< % ROPR
Result: [L 1 2 2 10 1 1.25 1.5 11

Level 2 — any object that evaluates to an array — the
array to be operated upon.

Level 1-any object that evaluates to a program or user-
defined function — the operation to be used.

Chapter 5: Array Utilities

Outputs:

Errors:

Notes:

Level 1 — if the Level-2 input was a name, nothing is
re-turned, but the modified array is stored in that
name. Otherwise, the modified array is returned.

Too Few Araument s will occur if the stack con-
tains fewer than 2 objects.

Bad Araument Type will occur if either of the
arguments is not of the prescribed type, or if the opera-
tion does not produce a real number (for HOP), a vector

(for AOPC) or a row array (for AOPR).

Operations on array columns or rows that don't produce
array columns or rows (respectively) would better be
served by use of LOP (see Chapter 7):

ARY=C »LIST « op » LOP or
ARY*R »LIST « op * LOP

The results form a list and thus do not need to conform
to an array structure. This list can then be transformed
into other data objectsifappropriate: LIST+ +ARRY
Note that this would produce a column vector as a result
(which is not necessarily what you want), and require
that the results of & Op * be numeric.

AOPC usesC+*ARY andARY>C. ROPR usesR*ARY
and ARY=*R.

Miscellaneous Operations 149

Find The Position Of A Specified Real Element

Summary:

Examples:

150

Within An Array:

APOS (717463)

« *NUM 2 * 2 ~ +NUM
+ N « EVAL ARRY+* » S
« § LIST» 2 == « % %
IFT 2LIST N POS IF
DUP THEN S SWAP AN»I
END » » »

APOS finds the position of the first occurrence of the
specified real number within the given array or vector
(searching in row-major order). If found, the position is
returned as a list-index ({ row column).
Otherwise, 8 is returned.

STD LC 2 4 1L 5 6 1] 5 APOS
Result: € 2 1 2

STD L 543214 APOS
Result: € 2 2

'AR' 'C/SQCD>' APOS

Result: £ 9 14 2 (forexample—if 'A','C"',and
'D' are defined)

STD L 1 423 18 APOS Result: 8

Chapter 5: Array Utilities

Inputs: Level 2 — any object that will evaluate to an array or
vector.
Level 1 — any object that will reduce to a real number.

Outputs: Level 1-iffound, a list —the position of the target value;
otherwise, 8.

Errors: Too Few Argument s will occurifthere are fewer
than 2 objects on the stack.
Bad Argument Type willoccurifeither argument
does not reduce to its prescribed value.
Undef ined Mame will occur if the Level-1 object
contains an undefined name.

Notes: APOS uses AM+I.

Miscellaneous Operations 151

Array Utilities: A Discussion

The Main Idea

Arrays as data objects — as opposed to as mathematically defined
matrices — are rather under-represented on the HP-28S, judging from
the tools provided to manipulate them. For instance, arrays of num-
bers are usually thought of in terms of rows and/or columns of data, but
the HP-28S gives you no built-in commands with which to build or
decompose arrays in either a column-wise or row-wise fashion.

The utilities in this chapter are intended to remedy this situation:
their main emphasis to allow manipulation of arrays as data objects,
not as matrices. Thus there are utilities to insert, delete, extract and
overwrite (i.e. GET and PUT) rows and columns, exchange, sort by, or
operate on elements, rows and columns, build and decompose by row
or column, extract a subarray, etc.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that
is listed in your current PATH. The easiest way to énsure that this is"
the case is to place each of the programs in the HOME directory — the
ultimate parent of all other directories.

152 Chapter 5: Array Utilities

Some Observations

Arrays vs. Vectors

Both mathematically and as objects on the HP-28S, vectors can be
considered to be a type of array: In math, a vector is a one-dimensional
array and may either be a row-vector or a column-vector. However, on
the HP-28S, a vector object is always a column-vector, represented by
numbers within single brackets(L 1 2 3 1). The dimension of a
vector object, asreturned by the S I ZE command,is€ » Z,indicating
that the vector is one-dimensional and has n elements.

This representation of a column-vector as a vector object is simply
intended to make life easier for you. The alternative form of column
vectorisLL 1 1 [2 1 [2 1], where the single column is
represented as a list of one-element rows. However, on the HP-28S,
this representation is anarray object —not a vector object. Accordingly,
itis represented as a list of numbers within double brackets (CL 1 2
3 11), and its dimension is returned as{ 1 » ¥ where n is the
number of elements.

This would all be merely interesting trivia if it were not that certain
built-in HP-28S commands function only on vector objects and not on
column-vector arrays (CROSS, for example). On the other hand,
certain "array-ish" commands refuse to take vector objects as argu-
ments (e.g. TRN).

Discussion 153

Forthis reason, as far aspossible, the array utilities make no distinction
between vectors and column arrays. And, in most cases, when the
result of an array utility would be a column array, it is returned as a
vector because vectors are most convenient. It may behoove you, there-
fore, simply to forget that the HP-28S's column-array format even
exists, using instead the vector form, because these array utilities
allow for that.

Calculations '"In Place"

Many of the array utilities allow you the option of providing a named
object as the argument. In that case, the resulting object will be re-
stored in that name object as the end of the calculation — and nothing
will be returned to the stack. This feature will work either on global
or local name objects and is intended to be analogous to the working of
the storage arithmetic commands (see the HP-28S's STORE menu).

Although similar, these utilities lack one of the major advantages of
the built-in storage math: Those built-in STORE menu commands will
perform their calculations "in-place” — on top of the contents of the
current array —thereby taking up less storage space than recalling the
contents of the named objects, combining them, then overwriting the
original named object. These utilities must use the latter method.

154 Chapter 5: Array Utilities

Errors And Error Recovery

Each of these tools is designed to generate an error when invalid input
is entered —ratherthan continue and generate garbage outputs. When
inputs are questionable (e.g., negative numbers for stack Levels),
these utilities act similarly to the built-in stack commands (arguments
are ignored or treated as 1, whichever makes more sense). When
errors do occur, the stack is usually disrupted, and since the only way
to restore it then is with the UNDO command, it's wisest to keep UNDO
mode (in the MODES) menu) active whenever you these utilities.

Discussion 155

How You Might Use These Utilities

When you use an array simply as a convenient object in which to store
and manipulate data (rather than a mathematically significant ob-
ject), you might, for example, want to consider each row or column as
a coherent data set. In that case, it's very useful to be able to mani-
pulate each such data set as a unit.

For example, suppose you're collecting data on a population. The data
for each individual is sex (0=male, 1=female), age in years, height in
inches, and weight in pounds.

First, youwould enter the datain that order, as rows in the EDAT array,

using the 2+ command in the STAT menu. Then you can perform the
following computations:

To segregate the males and females, try this: ' ZDAT' 1 ASRTC.
Since 0 is less than 1, the males will be first in the array (the lower
numbered rows).

Likewise, to sort by age, you could do this: ' ZDAT' 2 ASRTC.

To find the first female entry in the already gender-segregated data,
you could do this: ' ZDAT' 1 AGETC 1 AFOS.

This finds the first occurrence of 1 (female) in the first column (sex).

156 Chapter 5: Array Utilities

Or, to find the median weight, you could use this short program:
"MEDW' (137916)
« 'ZDAT' 4 AGETC
ASORT NZ 2 ~ DUPZ2

GET ROT ROT IP GET +
2 7/ »

To convert the height data from inches to meters, this would work:

'"ZDAT' DUP 3 AGETC .8234 * 3 SWAP APUTC

To add a column for marital status and insert it as the new column 2,

you could do it this way: 'ZDAT' 2 ROT AIMSC.

To delete an erroneous entry: ' ZDAT ' <number> ADELR.

As you can see, these array utilities provide you with many possib-
lilites for data management within the structure of an array. You can
easily imagine and create other operations on other sorts of data.

Discussion 157

Chapter 6

Character String Utilities

These routines provide convenient, "canned"” methods for building/
decomposing, editing, and formatting character strings in the HP-28S.

Asshown inthe following list, the 21 programs are organized into three
logical groups, presented alphabetically. Within each group, the pro-
grams are also usually presented alphabetically (by NAME), although
in some cases, certain sets of programs may be complementary or oth-
erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page
186, immediately following these program listings.

158 Chapter 6: Character String Utilities

SIP

SPRAT
SRPT
STG»
+5TG

SCUT
SDEL
SINS
SPUT
SLC
suc
SREY
SROT
SRPL
SZAP
SZAPL
SZAPR

SCTR
sLJ
SRJ
SPADL
SPADR

Contents

nction
Building/Decomposition Routines

Convert An Integer To A String

Generate The LCD Pattern Of A String
Form A String By Repetition Of A String
Split A String Into Characters

Combine A Stack Of Objects Into A String

Editing Routines

Split A String At A Specified Character
Delete A Substring

Insert A Substring

Put A Substring

Convert Uppercase Letters To Lowercase
Convert Lowercase Characters To Uppercase
Reverse The Characters In A String
Rotate The Characters In A String
Replace All Occurrences Of A Substring
Remove All Occurrences Of A Substring
Remove Characters From The Left End
Remove Characters From The Right End

Formatting Routines

Center A String In A Field Of Spaces
Left-Justify A String In A Field Of Spaces
Right-Justify A String In A Field Of Spaces
Pad A String On The Left With Spaces

Pad A String On The Right With Spaces

160
161
162
164
165

167
168
170
170
172
173
174
175
176
177
178
178

180
180
181
184
184

159

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

160

Convert An Integer To A String:

SIP @96382)

« sNUM IP »NUM RCLF
SWAP STD +STR SWAP
STOF »

SIP evaluates the object at stack Level 1, takes the
integer portion, then converts that to a string.

123.43 SIP Result: " 123"
-15.9682 SIP Result: "-13"
1E-12 SIP Result: "@"

Level 1- a real number.

Level 1 - a character string — the character representa-
tion of the integer portion of the input real number.

Too Few Argument s will occur if the stack con-
tains no objects.

Bad Argument Type willoccuriftheinput object
does not reduce to a real number.

Undef ined Mame will occurifthe input object con-
tains an undefined name.

None.

Chapter 6: Character String Utilities

Generate The LCD Pattern Of A String:

Summary:

Example:

Inputs:

Outputs:
Errors:

Notes:

SPAT (162168)

« »STR LCD» SHWAP DUP
1 DISP SIZE & % LCD=+
1 ROT SUB SWAP =LCD
®

SPAT takes a string version of the object in stack Level
1 and creates a pattern string suitable for +LCD,
DPAT,or PRPAT. Ifthe original object string is longer
than 23 characters, the resulting pattern string will con-
tain only its first 22 characters, plus an ellipsis ().

"A" @TE) SPAT
Result: LW E T

"123" enern) SPAT
Result: "=B¥EwsbQIIF="III&="

Level 1 — the object whose character string representa-
tion is to be used to make a character pattern.

Level 1 - the resulting character pattern string.
Too Few Argument s willoccur foran empty stack.

None.

Building/Decomposition Routines 161

Form A String By Repetition Of A String:

Summary:

Examples:

Inputs:

Outputs:

162

SRPT (/96841)

€« *NUM ABS IP +NUM
IF DUP NOT THEN
DROPZ2 "" ELSE SWAP
EVAL SWAP OVER SIZE
OVER # ROT ROT LN 2
LN ~ IP B SWAP START
DUP + NEXT 1 ROT SUB
END »

SRPT creates a character string by concatenating cop-
ies of the given character string.

"Ha" 12 SRPT
Result: "HaHaHaHaHaHaHaHaHaHaHaHa"

"7" ? SRPT Result: "7?777rrr"

u“u ! R 1t: Il“.n..n.ll

Level 2 —any object that evaluates to a character string
— the string to be the repeat pattern.

Level 1-anyobject that evaluates to a real number—the
number of repetitions.

Level 1 - the resulting character string.

Chapter 6: Character String Utilities

Errors: Too Few Argument s will occur if the stack con-
tains fewer than 2 objects.
Bad Argument Type will occur if the arguments
are not reducible to their prescribed types.
Undef ined Mame will occur if the Level-1 object is
an undefined name.

Notes: Caution should be observed when using something
other than a real number for the repeat value since its
absolute value is taken. Complex numbers and arrays
in particular will probably cause undesirable results.

Building/Decomposition Routines 163

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

164

Split A String Into Characters:

STG* 312398)

« *STR DEPTH » D « 1
OVER SIZE FOR I DUP
I DUP SUB SWAFP MEXT

DROF DEFTH D - 1 + »
b3

STG* converts the input object to a string and then
breaks that down into characters, placing them in order
on the stack. The SIZE of the original string conversion
isalsoplaced on the stack. Some string conversions may
contain NEWLINE characters at certain points.

"123" STG?Result: "1" "2" "3" 3

Level 1 — the object whose character-string representa-
tion is to be decomposed into its component characters,
which will then be placed onto the stack.

Levels 2 to (n+1) — the n characters of the input string.
Level 1 —a real number, n —the number of characters in
the input string.

Too Few Araument s willoccur for an emptystack.

A STG+#-broken string can be recomposed with #STG.

Chapter 6: Character String Utilities

Combine A Stack Of Objects Into A String:

+5TG @84916)

« #NUM IF AES +NUM
SWAP +STR 1 ROT 1 -
START SWARFP +STR SWAP
+ MEXT »

Summary: +STG forms a composite string out of a number of items
from the stack. All stack items are converted to strings
before being added to the resultant string. The number
of items to be used is taken from stack Level 1.

Thefractional portion and sign of the item count at Level
lareignored. No spaces are placed around stack objects
before they are added to the resulting string; if delimiter
characters are necessary, they must be placed explicitly
on the stack in their appropriate positions.

Examples: STD 1| 2 3 3 #5STG Result: "123"

STD Il« n 1 n n 1 n + n II»II 6 _}STG
Result: "« 1 1 + »"

|IHI| IIBII IICII 1 T 1 _-’STG
&m: " HBC [}

Building/Decomposition Routines 165

Inputs:

Outputs:

Errors:

Notes:

166

Levels 2to (n+1)—n objects which, after being converted
to strings, will be appended together.

Level 1 - any object that evaluates to a real number, n -
the count of objects to be taken from the stack and
combined into a character string.

Level 1 — a character string — the resulting composite
string.

Too Few Argument s will occur eitherifthe stack
is empty or if the number in Level 1 is greater than the
number of other items on the stack.

Bad Argument Type will occur if the Level-1
object is not a real number.

Undef ined MName will occur if the Level-1 object
contains an undefined name.

Caution should be observed when using something
other than a real number for the number of objects since
its absolute value is taken. Complex numbers and ar-
rays in particular may cause undesirable results.

Chapter 6: Character String Utilities

Split A String At A Specified Character:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

SCUT (168833)

« +NUM SWAP EVAL
SWAP DUP2 1 SWAP 1 -
SUB ROT ROT OVER
SIZE SUB »

SCUT cuts a character string into two sub-strings. The
break will occur to the left of the position specified.

"HI THERE" 3 SCUT 2 SCUT
R 1|_ llHIll un n IITHEREII

Level 2 — any object that reduces to a character string —
the string to split.

Level 1 — any object that reduces to a real number —the
position after the cut.

Level 2 — a string — the characters to the left of the cut.
Level 1- a string — the characters to the right of the cut.

Too Few Argument s will occur if there are fewer
than 2 objects on the stack.

Bad Argument Tupe will occur if the Level-2 ob-
ject does not reduce to a string or if the Level-1 object
does not reduce to a real number.

None.

167

Delete A Substring:

SDEL @86777)

« »NUM ROT EVAL ROT
+NUM ROT =+ N M « DUP
1 N1-SUB SWAP M 1

+ OVER SIZE SUB + »
®

Summary: SDEL deletes a sub-string from the string in stack
Level 3. The sub-string is specified with indices to its
first and last characters (at stack Levels 2 and 1,
respectively). The indexed characters are included in
the deletion. If the sub-string's starting index is less
than 1, 1 is used. If the sub-string's ending index is
greater than the size of the source string, the size of the
source string is used. If the starting index is greater
than the ending index, no characters are deleted.

Examples: "DELIBERATE" 1 2 SDEL
Result: "LIBERATE"

“TEM CHARS." & 14 SDEL
esult: "TEN CHAR"

"123456789" 2 & SDEL
Result: "12789"

168 Chapter 6: Character String Utilities

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

Level 3 —any object that evaluates to a character string
— the original string.

Level 2—-any object that evaluates to a real number—the
position of the start of the substring.

Level 1 -anyobject that evaluates to areal number —the
position of the end of the substring.

Level 1 — a character string — the modified string.
Too Few Argument s will occur if the stack con-
tains fewer than 3 objects.

Bad Argument Type will occur if the arguments

do not reduce to the specified types.

None.

169

Summary:

170

Insert A Substring:

SINS @63327)

« EVAL ROT EVAL ROT
*NUM 1 - DUPZ2 SWAP
SIZE IF > THEM SLJ
SWAP + ELSE 1 + SCUT
ROT SWAP + + END »

Put A Substring:
SPUT @66206)

« EVAL ROT EVAL ROT
+NUM 1 MAX IP 1 -
+NUM DUPZ2 SWAFP SIZE
IF > THEM OVER SIZE
- SPADR SWAP + ELSE
1 + SCUT 2 PICK SIZE
1 + OVER SIZE SUB
ROT SWAFP + + END »

SINS inserts a string immediately before the indexed
character in the destination string. SPUT replaces
(overwrites) a portion of one string with another, begin-
ning at the indexed position. If the index islessthan1,
1 is used. If the index or resulting string exceeds the

Chapter 6: Character String Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

SIZE of the destination string, the destination string is
padded with spaces or extended.

"ABCDEFGHIJKL" 3 "44" SINS
Result: "AE44CDEFGHIJKL"

"ABCDEFGHIJKL" 3 "44" SPUT
Result: "AB44EFGHIJKL"

Level 3 — any object that reduces to a character string —
the original string.

Level 2 — any object that reduces to a real number — the
character position after the insertion point or at the
start of the replacement.

Level 1- any object that reduces to a character string —
the string to be inserted or "put” into the original.

Level 1 — a character string — the newly edited string.

Too Few Argument s will occurifthere are fewer
than 3 objects on the stack.

Bad Argument Type will occur if the Level-2 ob-
ject cannot be reduced to a real number.

Undef ined Mame will occur if the Level-2 object
contains an undefined name.

SINS uses SCUT and SLJ. SPUT uses SCUT and
SPADR. The order of the inputs is similar to the HP-
28SPLIT command. Use caution when using something
other than a real number for the index value. Complex
numbers and arrays in particular will probably cause
undesirable results.

171

Convert Uppercase Letters To Lowercase:

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

172

SLC (2838688)

« EVAL

"ABCDEFGHI JKLMNOPRRSTUYVIKYZ"
+ SA«" 185 SIZE

FOR I S I DUP SUB A

SWAP POS 32 B IFTE

CHR + MEXT S OR »

SLC converts a string's uppercase characters to lower-
case. Lowercase and non-alphabetic characters are un-
altered.

"HI THERE" SLC Result: "hi there"

Level 1 — any object that reduces to a character string —
the string to be converted.

Level 1 — a character string — the converted string.

Too Few Argument s willoccurfor an emptystack.
Bad Argument Type will occur if the Level-1 ob-
ject does not reduce to a string.

Undef ined Mame will occur if the Level-1 object
contains an undefined name.

None.

Chapter 6: Character String Utilities

Convert Lowercase Characters To Uppercase:

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

SUC @381:28)

€« EVAL

"abcdef ghijklmnopgrstuvuxyz"
+ SA« " 1S SIZE

FOR I S I DUP SUB A

SWAP POS 95 255 IFTE

CHR + MNEXT S AND » »

SUC converts all lowercase characters in the given
string to uppercase. Uppercase characters and nonal-
phabetic characters remain unaltered.

"hi there" SUC Result: "HI THERE"

Level 1 —any object that evaluates to a character string
—the string to be converted to all uppercase characters.

Level 1 — a character string — the converted string.
Too Few Argument s willoccur for an empty stack.
Undef ined Mam= will occur if the Level-1 object is
an undefined name.

Bad Rraument Type will occur if the Level-1 ob-
ject does not reduce to a string.

None.

173

Reverse The Characters In A String:

Summary:

Examples:

Inputs:
Outputs:

Errors:

Notes:

174

SREY (280689)

« EVAL "" SWAP 1
OVER SIZE FOR I DUP
I DUP SUB ROT + SWAP
NEXT DROF »

SREY evaluates the Level-1 object, then reverses the
order of the resulting string's characters.

STD "12343" SREY Result: "54321"
"HI THERE" SREV Result: "EREHT IH"

Level 1 -any object that evaluates to a character string.
Level 1 — a character string — the reversed string.

Too Few Argument s willoccurforanemptystack.
Bad Argument Type will occur if the argument

does not evaluate to a character string.

None.

Chapter 6: Character String Utilities

Rotate The Characters Of A String

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

SROT (163882)

€« »NUM IP NEG +NUM
SWAP EVAL SWAP OVER
SIZE MOD 1 + SCUT
SWAP + »

SROT rotates a string by the specified number of char-
acters. A positive rotation index rotates to the right, a
negative to the left (fractional parts of the index are
truncated).

"12345" 1 SROT Result: 51234

Level 2 —any object that evaluates to a character string
— the string to be rotated.

Level 1-anyobject that evaluates to a realnumber—the
characters to be rotated.

Level 1 — the rotated string.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type will occur if the arguments
cannot be reduced to their appropriate types.

Undef ined Mame will occur if the Level-1 object
contains an undefined name.

SROT uses SCUT.

175

Replace All Occurrences Of A Substring:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

176

SRPL (1248333)

« EVAL SWAP EVAL
DEPTH =+ B A N « IF
DUP A POS THEN WHILE
DUP R POS DUF REPERT
SCUT A SIZE 1 + OVER
SIZE SUB SWAP B +
SWAP END DROP M
DEPTH STRART + MEXT
END » »

SRFL searches the object string for every occurrence of
the pattern string, substituting the replacement string.

"123123" "3" "8" SRPL Result:"1268128"

Level 3 — the object string.
Level 2 — the pattern string.
Level 1 - the replacement string.

Level 1 — the modified string.

Too Few Argument s will occurif there are fewer
than 3 objects on the stack.

Bad Argument Tupe will occur if the arguments
do not reduce to character strings.

SEPL uses SCUT.

Chapter 6: Character String Utilities

Remove All Occurrences Of A Substring:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

SEAP @6136)

« EVAL SWAFP EVAL
SWAP "" SRPL »

SZAP deletes all occurrences of a substring from an-
other string.

"1234353" "3" SZAP Result: "12435"
TRYRYRY" "Y" SZAP Result: "XXR"
"ABCDEF" "Q" SZAP Result: "ABCDEF"

Level 2 —any object that evaluates to a character string
— the original string to be edited.

Level 1 —any object that evaluates to a character string
— the substring to be deleted from the original string.

Level 1 — a character string — the modified string.
Too Few Argument s will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type will occur if either of the
arguments fails to reduce to a character string.

SZAP uses SRFPL.

177

Remove Characters From The Left End:

SZAPL @79268)

« EVAL NUM CHR SWAP
EVAL SWAP + S «
WHILE DUP NUM CHR S
== REPEAT 2 OVER
SIZE SUB END » »

Remove Characters From The Right End:

Summary:

178

SZAPR QB7e08)

« EVAL NUM CHR SWAP
EVAL SWAP + S <«
WHILE DUP SIZE DUP2
DUP SUB S == REPEAT
1 SWAFP OVER - SUB
END DROP »

SZAPL repeatedly removes the specified character
from the beginning of a string until there are none
remaining. SZAPR repeatedly removes the specified
character from the end of a string until there are none
remaining. Only the first character of the pattern string
is used as a delete pattern.

Chapter 6: Character String Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

Il8ll uw n SZHPL RJ_Snli: ll8ll
"5551212" "3" SZAPL Result: "1212"
|I8|l n - n SZHPR Bﬂﬂl&. II8II
"5.0088" "@" SZAPR Result: "S5."

Level 2 - any object that evaluates to a character string
— the string to be "trimmed."

Level 1 -any object that evaluates to a character string
—the string whose first characteris to be deleted repeat-
edly from the beginning or end of the target string.

Level 1 — the modified string.

Too Few Arguments will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type will occurif either of the ar-

guments fails to evaluate to a character string.

None.

179

Center A String In A Field Of Spaces:

SCTR @vV7edd)

« +MUM SWAP »STR DUP
SIZE ROT DUP ROT - 2
« IP »NUM IF DUP B =2
THEM " " SWAP SRPT

ROT + SWARP SLJ ELSE

DROP 1 SWAP SUB END
b3

Left-Justify A String In A Field Of Spaces:

SLJd @21388)

« »*NUM ABS IP =+NUM
SWAP +STR DUP SIZE
ROT SWAP IF DUPZ2 <
THEN DROP 1 SWAP SUB
ELSE - " " SWAP SRPT
+ END »

180 Chapter 6: Character String Utilities

Right-Justify In A Field Of Spaces:

Summary:

Examples:

SRJ @63987)

« *NUM ABS IP +NUM
SWAP +STR DUP SIZE
ROT SWAP IF DUPZ <
THEN DROP 1 SWAP SUB
ELSE - " " SWAF SRPT
SWAP + END »

SCTR converts the object from stack Level 2 into a
string and centers it within a specified field of spaces.
Similarly, SLJ left-justifies and SRJ right-justifies the
object within the field. Any fractional portion of the field
width value is truncated before use. If the field width is
smaller than the object, the object string is truncated to
fit within the specified field size. Ifthe field size is zero
or less, the resulting string will be empty. NEWLINE
characters are counted when determining the length of

the object. A centered object may be placed one charac-

ter to the left of center, as necessary.

STD 8 7 SCTR Result: " 8 "
STD 8 7 SLJ Result: "8 "
STD & 7 SRJ Result: " "

Formatting Routines

181

Inputs:

Outputs:

Errors:

Notes:

182

Level 2 — the object to be centered or justified.
Level 1 — any object that evaluates to a real number —
the"field-width."

Level 1 — a character string — the object as a string
centered or justified within a field of spaces.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type will occur if the Level-1 ob-
ject does not evaluate to a real number.

Undef ined Name will occur if the Level-1 object
contains an undefined name.

SCTR usesSLJ. SCTR,SLJ and SRJ all use SRPT.
Caution should be observed when using something
other than a real number for the field-width value, since
its absolute value is taken. In particular, complex num-
bers and arrays will probably cause undesirable results.

Chapter 6: Character String Utilities

Formatting Routines 183

Pad A String On The Left With Spaces:

SPADL @3229)

« " " SWAP SRPT SHWAP
+STR + »

Pad A String On The Right With Spaces:

SPADR Q8&73)

« " " SWAP SRPT SHAP
3STR SWAP + »

Summary: SPRDL adds the specified number of spaces to the left
side of a character string. SPADR adds the specified
number of spaces to the right side. If the object to be
padded is not a string, it is converted before padding.

Examples: "HI" 5 SPRDL Result: " HI"
7 7 SPARDL ult: " "
"HI" 5 SPRDR Result: "HI "
7 7 SPADR Result: "7 "
Inputs: Level 2 — the object whose string equivalent is to be
padded with spaces.

Level 1 — a real number — the number of spaces to be
added as "padding.”

184 Chapter 6: Character String Utilities

Outputs: Level 1 — the padded string.

Errors: Too Few Argument s will occur if the stack con-
tains fewer than 2 objects.
Bad Argument Type will occur if the Level-1
object is not reducible to a real number.
Undef ined Name will occur if the Level-1 object
contains an undefined name.

Notes: SPADL and SPADR use SRPT. Caution should be ob-
served when using something other than a real number
for the "padding number,” since its absolute value is
taken. In particular, complex numbers and arrays may
cause undesirable results.

Formatting Routines 185

Character String Utilities: A Discussion

The Main Idea

Character strings are the most versatile data objects provided by the
HP-28S; they can be converted from and to any other HP-28S data
object. They can contain the representations of one or many objects,
and once assembled, their contained object(s) can be sequentially
evaluated using STR+, just like a program. And of course, strings
have the unique ability to present information to you in your own
language: words.

Such versatility and ability might suggest that a rather large collec-
tion of string-related commands is surely built into the HP-28S. Not
so — there are very few. However, with these powerful few, all of the
possibilities inherent in character strings can be realized by writing a
handful of relatively straightforward programs — and that's what this
collection of utilities is all about.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that
is listed in your current PATH. The easiest way to ensure that this is
the case is to place each of the programs in the HOME directory — the
ultimate parent of all other directories.

186 Chapter 6: Character String Utilities

Some Observations

As shown in the list of contents (page 159), each of the string utilities
belongs basically to one of several different functional groups:

Building/Decomposition: building and tearing down strings from
and to characters and objects of other types —including one command
(SPAT) that gives you the ability to build a display pattern from a
character string (the HP-28S provides a method of capturing and
redisplaying its LCD using character strings, so manipulation of the
pattern string can allow you to build interesting displays).

Editing: These are the commands that perform actual physical modi-
fications to a string object: adding and deleting characters, splitting
and concatenating strings, inserting and overwriting characters in a
string, replacing and removing substrings, trimming excess charac-
ters, reversing and rotating a string.

Formatting: Any object type can be converted to a character string,
and because the content of a string is virtually unrestricted, you can
create representations of the objects which would otherwise be impos-
sible. Objects canbelabelled, positioned within fields of spaces, special
characters can be added, extraneous characters removed, etc.

Discussion 187

Notes About Conversions

Conversions of objects to strings depends on current system modes,
among other factors. The conversion of real numbers (or compound
objects containing real numbers) to strings uses the current display
format. Thus2 FIX 1.2345 *STR gives"1.23" and then
STR+* returns 1. 23 regardless of the current display format. In
other words, information is lost.

Other objects, like binary integers, are converted using the current
base and word size, and these forms are static regardless of how these
system states may have been altered since their conversion.

Another less obvious artifact of conversion is that large objects like
programs are converted to strings using the form they would take
during an EDIT or VISIT, including embedded NEWLINE characters.
Thus,[L 1 1L 2 1] wouldbecome"LL 1 1= [2 11", for
example, when converted to a string in STD display mode (regardless
of the current multiline mode.)

Errors And Error Recovery

Each of these tools is designed to generate an error when invalid input
isentered —ratherthan continue and generate garbage outputs. When
errors do occur, the stack is usually disrupted, and since the only way
torestore it then is with the UNDO command, it's wisest to keep UNDO
mode (in the MODES) menu) active whenever you these utilities.

188 Chapter 6: Character String Utilities

How You Might Use These Utilities

Sometimes the best explanation is simply a set of examples. Here is
such a set (you'll notice that in some cases, it's most convenient to use
these String utilities in concert with some of the List utilities from
chapter 7):

How manyE's are in a given string? To find out, you could do this (the
LSORT routine used here is from chapter 7):

STG» »LIST LSORT LIST» #STG
DUP "E" POS SCUT
SREY DUF "E" POS SCUT SIZE

To convert a string to a list of character codes, try this (the LOP routine
is from chapter 7):

STG*» »LIST « MUM » LOP

Toconvert "6 ft 2 374 in" toareal number of inches, here's
one method:

"o omgia" SRPL " in" "" SRPL
nomouwgw opp|l o win SLAP + STRe EVAL

Discussion 189

To convertb . B23E23 to " 6. 823187 (23> ", you could do this:

STD »STR
IIElI II*IBA(II SRPL ll)ll +

This could be a handy little program to have, if you wanted to name it,
right?

To convert every occurrence of *MUM in an object to EYAL try this:

_}STR ngnn n " SRPL
" aNUM " " EVAL " SRPL STR=.

The ® you see here is the NEWLINE character. Notice that you use
spaces to bracket the match string, so that patterns like ' ®*NUM'
don't match.

Notice also that all NEWLINE's (®'s) are converted to spaces first
because #*MUM might occur next to one, in which case you would
otherwise need to search for and replace " *NUM " "=3NUM ",
" 3NUMs=" and " =+NUM=" as special cases.

190 Chapter 6: Character String Utilities

You can break up an arbitrary string into individual "words,"” with a

little routine such as BREAK (717843):

« "ot W W SRPL WHILE
DUP " " POS REPEART
n 1] n 1] SRPL EHD

" " 34 CHR DUP +

SRPL 34 CHR SWAP
OVER + + DEPTH » D «

STR+ D » DEPTH SWAP
- %

Or, suppose you wanted to display a set of eight numbers in two
columns in the display. Here's a routine, DISP8 (187922), to do
that:

« 1 4 START 8 ROLL
12 SLJ 8 ROLL 11 SRJ
"a" 4+ NEXT + + + + +
+ + 1 DISP »

Note that not all display formats will work here (you might also try
replacing SLJ and SRJ with SCTR).

Discussion 191

Chapter 7

List Utilities

These routines provide convenient, "canned” methods for building/
decomposing, editing, and operating on lists in the HP-28S.

Asshowninthefollowinglist, the 19 programs are organized into three
logical groups, presented alphabetically. Within each group, the pro-
grams are also usually presented alphabetically (by MAME), although
in some cases, certain sets of programs may be complementary or oth-
erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page
224, immediately following these program listings.

192 Chapter 7: List Utilities

Name Function Page

Building/Decomposition Routines

A+l Convert An Array To A List 194
L+A Convert A List To An Array 195
LRPT Form A List By Repetition Of An Element 197
Editing Routines
FLTR Filter A List With A Procedure 198
LCUT Split A List At A Specified Point 200
LDEL Delete The Specified Sublist 202
LEX Exchange Elements Within A List 204
LINS Insert An Object Into A list 206
LPUT Put A Sublist Into A List 206
LREY Reverse The Order Of The Elements 209
LROT Rotate The Positions Of The Elements 210
LRPL Replace All Occurrences Of An Element 212
LSORT Sort A List By Element 214
LZAP Remove All Occurrences Of An Element 216

Miscellaneous Operations

ENQ Add An Element To The End Of A Queue 218
UNQ Remove The First Element From A Queue 218
LOP Perform An Operation On Each Element 220
FOP Remove The Last Element From A Stack 222
PUSH Add An Element To The Bottom Of A Stack 222

Contents 193

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

194

Convert An Array To A List:

R+L (183691)

« EVAL ARRY> > D « D
LIST» IF 2 == THEMN *
END 2LIST D » »

A-+L converts the given array or vector into a list of its
elements, in row-major order. A second list will also be
returned, containing the size information from the origi-
nal array so that the array can be reconstructed.

STD [C 1 2 1C 3 4 1] AL
Result: € 1 234 >{ 227

ST L 1234 1AL
Result: { 1 23 4 >{ 4 3

Level 1 -Any object that evaluates to an array or vector
— the array to be converted.

Level 2 — a list — the elements of the original array.
Level 1 — a list — the original dimensions of the array.

Too Few Argument s willoccur for an emptystack.
Bad Argument Type will occur if the argument
does not evaluate to an array or vector.

None.

Chapter 7: List Utilities

Summary:

Examples:

Inputs:

Convert A List To An Array:

L+A @92837)

« EVAL SWAP EVAL =+ D
L « L SIZE D LIST»
IF 2 == THEN # END
IF = THEN € > 1 GET
END L LIST+ DROP D
+ARRY » »

LA converts the given list of numbers into an array or
vector of the elements from the list (in row-major order).
A second list must be given, containing the size informa-
tionoftheresultingarray,i.e.,{ rows columns 2.

STD {1234 >{227L*A
Result: [L 1 2 1L 3 4 11

STD {1234 >{4 LA
Result: [1 2 3 4 1]

Level 2 — any object that evaluates to a list of real num-
bers — the list to be converted.

Level 1 — any object that evaluates to a list — the list
containing the dimensions of the desired array.

Building/Decomposition Routines 195

Outputs:

Errors:

Notes:

196

Level 1 —an array or vector, depending on the specifica-
tion — the object just converted from the input list.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type will occur if the arguments
do not evaluate to lists.

Bad Argument Yalue willoccurifthedimensions
of the size list do not correspond to the number of ele-
ments in the element list.

None.

Chapter 7: List Utilities

Form A List By Repetition Of An Element:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

LRPT @292768)

« *NUM .3 + FLOOR =
EN&{ZIFNILX
THEM 1 N START E +
NEXT END » »

LRPT creates a new list through an indexed repetition
of a given element or list. Any fractional portion of the
repetition index is rounded before use. If a list is used
as the repeated object, the resulting list is formed by
repeating all of the objects in the repeat list, in order.

STD 'A' 3.6 LRPT Result: { A AAA %
STD "HI" @ LRPT Result: { 2
STD {12 3 » 2 LRPT

Result: ¢ 1 2312 3 3

Level 2 — any object — the object to be repeated.
Level 1 — a real number value — the repetition index.

Level 1 —a list — that formed by repetition of the object.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type willoccurifthe Level-1input
object does not evaluate to a real number.

None.

Building/Decomposition Routines 197

Filter A List With A Procedure:

FLTR 1987293)

€« > l.. te. €0 21
l.. EVAL SIZE IF DUP
THEN FOR i.. l..
EVAL i.. GET IF DUP
t.. EVAL THEN 1
+LIST + ELSE DROP
END NEXT ELSE DROP2
END IF l.. TYPE DUP
& == SWAP 7 == OR
THEN 1.. STO END *» »

Summary: FLTR will filter all objects out of a list that fail a user-
defined test procedure. Only those elements that pass
the test (i.e. returna 1 rather than a@ to stack Level 1)
will be used to form the return list. If the list is stored
in a name and that name is used, the resulting list will
be stored in that name.

Examples: STD { 1 234567 >« 4 < » FLTR
Result: { 1 2 3 2

STDL{ S 678910 >« =+ X 'IFTE

(X"2<358,1,8>' » FLTR
Result: { 56 7 2

198 Chapter 7: List Utilities

STDL{AR4C1 > (22 2
« TYPE 3 == » FLTR
Result: ¢ € 1 > 2

Inputs: Level 2 — any object that will evaluate to a list — the list
to be filtered.
Level 1 — either a program or a user-defined function
that takes one argument from the stack and returns
either a 1 or 0 to the stack — the filtering test.

Outputs: Level 1 - if a name containing a list was given as the
Level-2 argument, the resulting list will be restored in
that name. Otherwise, the filtered list is returned.

Errors: Too Few Arguments will occur if the stack con-
tains fewer than 2 objects.
Bad Argument Type willoccurifeitherthe Level-
2 object is not a list or the test procedure in Level 1isin-
compatible with an object in the list.
Unpredictable errors will occur if the Level-1 object
is not a program or user-defined function, if the test
takes more than one object from the stack, or if the test
returns more than one object to the stack.

Notes: The local names, L« «,t .. and 1. . were chosen to
reduce the chances of conflicts when operations such as
€ STR+* * are applied to lists of strings. Therefore,
avoidusingl« «,t «« andi. . asglobalnamesinyour
own programming.

Editing Routines 199

Split A List At A Specified Point:

LCUT 163719

« NUM » L E « L
EVAL DUP 1 E 1 - SUB

SWAP E OVER SIZE SUB
» »

Summary: LCUT cuts a list from stack Level 2 into two sub-lists.
The point of the break is specified by the real number in
Level 1. The list will be split between the specified
element and the element to its left.

Examples: STD { 1 2 34 5 > 4 LCUT
Result: { 1 23 {4535 2

Inputs: Level 2 — any object that evaluates to a list — the list to
be split.
Level 1-anyobject that evaluates to a real number—the
point, n, in the list before which the split is to be made.

Outputs: Level 2 — a list — the (n-1) elements of the original list
which were to the left of the cut.
Level 1 —a list — the (SIZE-n+1) elements of the original
list which were to the right of the cut.

200 Chapter 7: List Utilities

Errors: Too Few Argument s will occurif there are fewer
than 2 objects on the stack.
Bad Argument Type will occur if the Level-2 ob-
jectis not alist or the Level-1 object is not a real number.

Notes: None.

Editing Routines 201

Delete The Specified Sublist:

LDEL (/88391)

« * L NM«L EVAL
DUP 1 N #NUM 1 -
+NUM SUB SWAP M +NUM
1 + »NUM OVER SIZE
SuB + IF L TYPE DUP
7 == SWAP &6 == OR
THEN L STO END » »

Summary: LDEL will delete the specified element or sub-list of
elements from the given list. Two indices are required:
the first element to delete and the last element to delete.
All elements between and including these indexed ele-
ments are deleted. Ifthe beginning indexislessthan 1,
1lis used. Likewise, if the ending index is greater than
the size of the list, the size of the list is used. If either
index is non-integer, the value is rounded. If the list is
named and the name is used, the modified list is re-
stored in the name.

Examples: STD { 1 2 34 36 > 1 3 LDEL
Result: { 4 3 & 2

{ABCDEF > 3 5 LDEL
Result: { A B F >

202 Chapter 7: List Utilities

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

STD { "HI" A 4 > 'L' STO 'L' 3 3
LDEL L Result: ¢ "HI" A »

STD{ 123436 >4 18 LDEL
Result: € 1 2 3

Level 3 — any object that evaluates to a list — the list to
be edited.

Level 2—anyobject that evaluates to a real number—the
index of the beginning of the sublist to be deleted.
Level 1-anyobject that evaluates to areal number —the
index of the end of the sublist to be deleted.

Level 1 -ifthe Level-3 object was a name that contained
a list, the result is stored in that name. Otherwise a list
is returned — the newly-edited list.

Too Few Argument s will occur if the stack con-
tains fewer than 3 objects.
Bad Argument Type will occurifthe input objects

do not evaluate to their prescribed types.

None.

203

Exchange Elements Within A List:

Summary:

Examples:

Inputs:

204

LEX (F88343)

€« SNUM SWARP +NUM + L
M N« L EVYAL DUP DUP
N GET SWAP M GET ROT
M ROT PUT M ROT PUT
IF L TYPE DUP & ==
SWAP 7 == OR THEN L
STO END *» »

LEX exchanges the positions of the two specified ele-
ments within the given list. If either index is non-
integer, the value is rounded before use. If the name of
a list is used, the resulting list is restored in that name.

{ABCDEF >1 6 LEX
Resut: { FBCDER 2>

ST { 436 > 'L'" STO 'L' 2 1
LEX L Result: € 3 4 6 2

Level 3 — any object that evaluates to a list — the list to
be edited.

Level 2—anyobject that evaluates to a real number —the
index of one of the elements to be exchanged.

Level 1-anyobject that evaluates to areal number—the
index of the other element to be exchanged.

Chapter 7: List Utilities

Outputs: Level 1 —if the Level-3 object was a name containing a
list, the result is stored in that name. Otherwise, a list
is returned — the newly-edited list.

Errors: Too Few Argument s will occur if the stack con-
tains fewer than 3 objects.
Bad Argument Type will occurifthe input objects
do not evaluate to their prescribed types.
Bad Argument Yalue will occur if either of the
indices is out of bounds for the list.

Notes: None.

Editing Routines 205

Summary:

206

Insert An Object Into A list:

LINS (38933%)

« L NS «L NLCUT
S SWAP + + IF L TYPE
DUP & == SWAF 7 ==
OR THEN L STO END =»
»

Put An Object Into A List:

LPUT (313346&>

« L NS «L MNLCUT
S SWAP OVER SIZE 1 +
LCUT SWAP DROP + +
IF L TYPE DUP & ==
SWAP 7 == OR THEN L
STO END » »

L INS inserts an object into a list at the specified loca-
tion. Ifthe inserted objectis another list, all of that list's
objects will be inserted, in order, at the indexed location.
LPUT overwrites a list with the contents of another list,
starting at the indexed location. Ifthe index has a frac-
tional portion, it will be rounded before being used. If

Chapter 7: List Utilities

Examples:

Editing Routines

the index is less than 1, 1 will be used. If the index is
greaterthanthesize of the list, the size of the list is used.
If the objects being inserted or placed would write past
the end of the destination list, the destination list is
extended. If the destination list's name is used, the re-
sulting list will be restored in that name.

STD {1 23 > 2 15 LINS
Result:{ 1 15 2 3 2

STD { 1 2 3 > 8 15 LINS
Result: < 1 2 3 13 >

STD £ 1223 >2{4356 > LINS
Result:{ 1 4 56 2 3 %

STb{ 123322

¢ {153 > > LINS
Result:{ 1 € 15 > 2 3 2

STP{123433>8{ABC »LPUT
Result: ¢ A B C 4 3 2

ST 1234321 {ABC >LPUT
Resut: { A B C 4 35 2

ST {1 2345>3{ABC > LPUT
Result: € 1 2 AB C >

ST 1234354 {ABC > LPUT
Result: { 1 2 3 RARBC 2

207

Inputs:

Outputs:

Errors:

Notes:

208

STD {12345 6{ABC > LPUT
Result: { 1 23 4 5ABC 2

Level 3 — any object that evaluates to a list — the list to
be edited.

Level 2—anyobject that evaluates to a real number—the
insertion/replacement point.

Level 1 — (for LINS) any objects — the objects to be
inserted, or (forLPUT) any object that evaluates toa list
— the replacement list.

Level 1 —if the Level-3 object was the name of a list, the
result is stored in that name and nothing is returned to
the stack. Otherwise, the newly-edited list is returned.

Too Few Argument s will occur if the stack con-
tains fewer than 3 objects.

Bad Argument Type will occuriftheinputobjects
fail to evaluate to their prescribed types.

LINS and LPUT both use LCUT.

Chapter 7: List Utilities

Reverse The Order Of The Elements:

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

LREVY (338639)

« » L « L EVAL LIST»
+ N« IF N THEN 1 N
FOR I I ROLL MEXT
END N 2LIST » IF L
TYPE DUP & == SWRP ¥

== OR THEN L STO END
» »

LREY reverses the order of the elements within a list.
If the name of a list is specified, the resulting list is re-
stored in that name.

STD {1 23 > LREY Resut:{ 3212

Level 1 — any object that evaluates to a list — the list
whose elements are to be reversed.

Level 1-ifthe input object was a name containing a list,
the result is stored in that name, and nothing is re-
turned to the stack. Otherwise, a list is returned — the
input list with its elements reversed.

Too Few Argument s willoccurforan empty stack.

None.

209

Rotate The Positions Of The Elements:

Summary:

Examples:

210

LROT ©&24938)

« L N«L EVYAL N
3NUM .5 + FLOOR MEG
+NUM OVER SIZE MOD 1
+ LCUT SWAP + IF L
TYPE DUP & == SWRP ¢

== OR THEN L STO END
» %

LROT rotates the positions of elements of a list to the
left or right by the specified number of elements. A
positive rotation index specifies rotation to the right; a
negative index specifies rotation to the left. Ifthe index
has a fractional portion, it is rounded before use. If the
list is named and the name is used, the resulting list is
stored in that name.

ST {12345 > 1LROT
Result: { 21 2 3 4 2

ST {12345 > -1LROT
Result: { 2 3451 2

ST {12345 >3 LROT
Result: € 34 31 2 2

Chapter 7: List Utilities

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

Level 2 — any object that evaluates to a list — the list
whose elements are to be rotated.

Level 1—-anyobject that evaluates to areal number —the
index specifying the extent and direction of the rotation.

Level 1-ifthe Level-2 input object was a name contain-
ing a list, the result is stored in that name and nothing
is returned to the stack. Otherwise, a list is returned —
the input list with its elements properly rotated.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type willoccurifeither argument
does not reduce to its prescribed type.

LROT uses LCUT.

211

Replace All Occurrences Of An Element:

Summary:

Examples:

212

LRPL (988117)

« *LAB «L EVAL
IF A B SAME NOT THEN
WHILE DUP A POS DUP
REFEART B PUT END
DROP END IF L TYPE
DUP & == SWAP 7 ==
OR THEN L STO END »
»

LRPL replacesevery occurrence of a given object within
a list with a second object. If a list name is used, the
resulting list is stored in that name.

ST {3551 2127%2356 LRPL
Resut: { 666121273

STD {12345 367 LRPL
Result: ¢ 1 2 3 4 35

ST {ABCDEF > 'C'" "HI" LRPL
Result: { A B "HI" D E F >

Chapter 7: List Utilities

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

Level 3 — any object that evaluates to a list — the list to
be edited.

Level 2 — any object — the target object to be replaced.
Level 1 — any object — the replacement object.

Level 1 —if the Level-3 object was a name containing a
list, the result is stored in that name and nothing is
returned to the stack. Otherwise, alistis returned —the
newly-edited list.

Too Few Argaument s will occur if the stack con-
tains fewer than 3 objects.
Bad Argument Type willoccurifthe Level-3input

object does not evaluate to a list.

None.

213

Summary:

Examples:

Inputs:

Outputs:

214

Sort A List By Element:

LSORT (758384)

L « L EVAL LIST»
« IF N1 > THEN
@SRT END N »LIST
F L TYPE DUP & ==
WAP 7 == OR THEN L
STO END » »

€« 3
+ N
1 N
I
S

LSORT will sort the given list so that the elements are
arranged in ascending order. The elements of the list
must be orderable (i.e., they must be either real num-
bers, binary integers, or strings) or an error will occur.
If a list name is used, the resulting list will be stored in
that name.

STD € 84 6 3 2 > LSORT
Result: { 8 2 3 4 8 >

{ZHTFY > « 38TR » LOP LSORT
« STR+ » LOP Result: { FHTY 2 2

Level 1 — any object that evaluates to an orderable list
— the list to be sorted.

Level 1 —if the input object was a name, the result will
be stored inthat name. Otherwise a listis returned —the

Chapter 7: List Utilities

Errors:

Notes:

Editing Routines

newly-sorted list.

Too Few Argument s willoccurfor an emptystack.
Bad Argument Type will occur if the input list
does not evaluate to a list or if the list is not orderable.

LSORT assumes that the elements of the list are order-
able. As shown in the second example (opposite), if the
elements of the list are unorderable as is, then perform
% +STR » LOP beforethesortand% STR+ » LOP
after the sort to effectively sort the elements based on
their decompiled ("character-string”) representations.
LOP is described on page 220.

To sort the elements of a list in descending order, use
LREY on the sorted list. To sort the evaluated values of
alist,use € *NUM *» LOP or « EVAL *» LOP
before sorting. LSORT uses @SRT.

215

Remove All Occurrences Of An Element:

Summary:

Examples:

Inputs:

Outputs:

216

LZAP ©18821)

« L E « L EVAL
WHILE DUP E POS DUP
REPEAT DUP LDEL EMD
DROP IF L TYPE DUP &
== SWAP 7 == OR THEM
L STO END » »

LZAP deletes all occurrences of the specified object
from the given list. If the list has a name and the name
is used, the result is restored in that name.

ST { 5551212731 LEAP
Result: { 235 5 2 2 2

{ABC X 'C'" LZAP Result: { A B 2

Level 2 - any object that evaluates to a list — the list to
be edited.

Level 1—-any object—the target object all of whose occur-
rences are to be deleted from the list.

Level 1-ifthe Level-2 input object was a name contain-
ing a list, the result is stored in that name and nothing
is returned to the stack. Otherwise, a list is returned to
the stack — the newly-edited list.

Chapter 7: List Utilities

Errors:

Notes:

Editing Routines

Too Few RArgument s will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type if will occur if the Level-2
input object does not evaluate to a list.

LZAP uses LDEL.

217

Add An Element To The End Of A Queue:

ENQ 326692)

« * Q@ N«NQ@EVAL
LIST+ 1 + »LIST IF @
TYPE DUP & == SHWAP 7

== OR THEM @ STO END
» ®

Remove The First Element From A Queue:

Summary:

218

UNQ 321988)

« + Q « @ EVYAL LIST»
SWAP » N « 1 - 3LIST
N IF @ TYPE DUP & ==
SWAP 7 == OR THEN

SWAP @ STO END » » »

ENQ adds a given element to the given queue. UNQ@
removes a given element from the given queue (a queue
is a list whose elements are accessed on a first-in-first-
out basis; the first object put into a queue will be the first
object taken out). Ifthe queueis stored in either a local
or global name and the name is used, the resulting
queue is restored in that name.

Chapter 7: List Utilities

Examples: £ 2> 1 ENQ@ 2 ENQ 3 EN@
Result: £ 32 1 >

{4321 UM Resut: { 4 32 31

Inputs: Level 2 (for EN® only) — any object that evaluates to a
list — the queue to be added to.
Level 1 — the object to be added to the queue (for ENQ)
or the queue to be edited (for UNR).

Outputs: Level 1 - the unqueued object (for UN®), or (for EN@) if
the Level-2 input object was a name, the result is stored
in that name and no object is returned to the stack. Oth-
erwise, a list is returned — the modified queue.

Level 2 (for UNQ only) — a list — the modified queue.

Errors: Too Few Argument s will occur if the stack con-
tains fewer than 2 objects (for EN@), or (for UNR) if the
stack contains no objects or the input list is empty.
Bad Argument Type will occur for EN@ if the
Level-2 object does not evaluate to a list.

Notes: Coordinated use of EM®@ and UNQ will allow you to
maintain a named or unnamed queue. The commands
LIST+ 1 + 2LIST inENQ areless efficient than
the equivalent + but provide the benefit of generating
an error if the Level-1 object (' @') is not a list.

Miscellaneous Operations 219

Summary:

Examples:

220

Perform An Operation
On Each Element Of A List:

LOP (1497343)

« »l.. fo. € 1..
EVAL LIST+ IF DUP
THEN + n.. € 1 n..
START n.. ROLL f..
EVAL NEXT n.. 2LIST
» IF 1.. TYPE DUP &
== SWAP 7 == OR THEN
l.. STO END ELSE
DROP END » »

LOP performs the specified operation on each element
of the given list. The operation must take exactly one
object from the stack and return exactly one object to the
stack, replacing the element operated on. Ifalist name
is used, the resulting list will be stored in that name.

STD L1 234 >« S0 » LOP
Result: { 1 4 9 16

STD {1 234 3« X '®v*2' » LOP
Result: { 1 4 9 16 %

ST {243 -7 308 'l' STO « 'X' I
~ % 1 'I'" STO+ » LOP
Result: £ 2 'd*X' '3%¥X"2' '-(7P%X"3>'

Chapter 7: List Utilities

Inputs:

Outputs::

Errors:

Notes:

STD{ 36789 >« IF DUP 7 £ THEN
SR END » LOP
Result: € 25 36 49 8 9 %

Level 2 — any object that evaluates to a list — the list to
be operated upon.

Level 1 — a program or user-defined function — the
operation to be performed on each element in the list.

Level 1 —if the Level-2 object was a name containing a
list, the result is stored in the name and nothing is
returned to the stack. Otherwise, a list is returned —
with the newly-modified elements.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type will occur if the Level-2 ob-
ject does not evaluate to a list or if the operation is not
valid for an element of the list.

The stack will fill with garbage if the Level 1 object
is not a program or user-defined function.

Various unpredictable errors can occur if the opera-
tion is not valid over the whole range of list elements.

The local names, L« «,f « « and N. .« were chosen to
reduce the chances of conflicts when operations such as
% STR+ * are applied to lists of strings. Therefore,
avoidusingl. . ,f « « andn. . asglobalnamesinyour
own programming.

Miscellaneous Operations 221

Remove The Last Element From A Stack:

POP G21242)

€« » Q@ « @ EVAL LIST»
SWAP + N « 1 - =LIST
M IF @ TYPE DUP & ==
SWAP 7 == OR THEN

SWAP @ STO END » » »

Add An Element To The Bottom Of A Stack:

Summary:

222

PUSH 369591)

« * SN «S EVAL
LIST+ N SWAP 1 +
»LIST IF S TYPE DUP
6 == SWAP 7 == OR
THEN S STO END » »

POP removes the next element from the given stack.
PUSH addsthe given element to the given stack (astack
is a list whose elements are accessed on a first-in-last-
outbasis; the first object putinto a stack is the last object
taken out — as with the HP-28S' own internal stack). If
astack nameis used, the resulting stack is stored in that
name.

Chapter 7: List Utilities

Example:

Inputs:

Outputs:

Errors:

Notes:

> POP Result: { 32 > 1
1 PUSH Result:{ 321 >
Level 2 (for PUSH only) — any object that evaluates to a
list — the stack to be amended.

Level 1 — (for POP) any object that evaluates to a list —
the stack to be edited, or (for PUSH) any object — the
object to be added to the list.

Level 2 (for POP only) — if the input object was a name,
the modified stack is stored in that name. Otherwise it
returns here.

Level 1 — (for POP) an object — the object just removed
("popped”) from the input stack, or (for PUSH) if the
Level-2 input object was a name, the modified stack is
stored in that name. Otherwise, it returns here.

Too Few Argument s will occur (for POP) if the
stack is empty or if the given list is empty, or (for PUSH)
if the stack contains fewer than 2 objects.

Bad Argument Type will occur (for POP) if the
input object does not evaluate to a list, or (for PUSH) if
the Level-2 input object does not evaluate to a list..

Coordinated use of POP and PUSH will allow you to
maintain a named or unnamed stack. POP is identical

to UNQ.

Miscellaneous Operations 223

List Utilities: A Discussion

The Main Idea

Lists are the most general purpose data objects provided by the HP-
28S. They may be any size from 0 to the limits of memory — containing
any HP-28S data objects in any combination — including other lists.
This flexibility gives you tremendous control over what you put into
lists and how you use them.

On the other hand, because lists are so generic, there are very few
commands built into the HP-28S to manipulate them. Yet with these
powerful few, many of the possibilities of lists can be realized with a
handful of programs. The tools in this section are such a handful — a
set of some of the more generally useful list operations. They're still
very generic — because only you will know the specifics of manipulat-
ing the actual lists you've created — but they can still help you mani-
pulate your lists regardless of how you've organized their information.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that
is listed in your current PATH. The easiest way to ensure that this is
the case is to place each of the programs in the HOME directory — the
ultimate parent of all other directories.

224 Chapter 7: List Utilities

Some Observations

Lists have properties that make them similar to arrays (and vectors)
and characters strings. You can see this in that the first "page"” of the
LIST menu is similar to that of the first page of the ARRAY menu, while
the second page of the LIST menu is similar to that of the STRING
menu. The+ operation is also analogous between strings and lists, as
it appends the two objects in stack Levels 1 and 2.

The ability to GET and PUT objects from and to a list allows you to
create and maintain ordered sets of objects in the same way that arrays
do. But unlike arrays, the dynamic length (SIZE) of a list and the
ability to search a list by content — as well as by index — allows you to
create dynamic data structures, like stacks or queues, that shrink or
grow based on their current information.

You'll therefore find utilities here that exploit both these characteris-
tics of lists, and these routines are indeed very analogous to string and
array tools found elsewhere in this book.

Errors And Error Recovery

Each of the tools is designed to generate an error for invalid input,
rather than continue and possibly generate garbage outputs. When
errors do occur, the stack is almost invariably disrupted, and since the
only way to restore a disrupted stack is with the UNDO command, it's
wisest to activate UNDO mode (in the MODES menu) and leave it
active throughout your use of these utilities.

Discussion 225

How You Might Use These Utilities

One of the advantages of lists is their ability to contain different types
of objects. You can thus create different data aggregates that are
effectively new data types. And once you define such a data type, you
can then create the tools you need to operate on it.

Consider, for example, a list in which each entry contains a person's
name, birthdate and telephone number:

{ "Smith, John" { 2 & 1939 3353426 2

You could easily create a list of such objects and then (not quite as
easily) create new commands to do things such as these:

1. Add an element (an entry).

2. Delete an element, given its index.

3. Display an entry, based on its index.

4. Sort the list by last name.

5. Sort the list by some other attribute.

6. Search for a name and return that element.

7. Find all of the birthdates that fall on today's date.

To implement each of these seven commands, here's how you
might proceed:

226 Chapter 7: List Utilities

1. Create the new element and add it to the end of the list (with +)
or insert it somewhere among the current entries (with L INS).

Note that since each element is itself a list, you must put it into
another list before adding. That is,

{ "Doe, Jane" { &6 2 1968 2 3359812

{ "Smith, John" { 2 6 1939 > 5553426
+

gives

{ "Doe, Jane" { 6 2 19668 > 5559812 "Smith,
John" { 2 6 1959 > 3553426 I, whichisincorrect;

the information from both entries has been combined into a
single list.

However,

{{ "Doe, Jane" { 6 2 1968 > 5559812 32

{{ "Smith, John" { 2 & 1959 } 5553426 33
+

gives

{ { "Doey, Jane" { & 2 1968 5559812 2
{ "Smith, John" { 2 & 1939 > 5553426 > 2,

which is correct.

2. UseLDEL.

Discussion 227

5.

228

Use GET to get the element and a routine something like the
following to display it: DSP (165651)

« « »STR » LOP LIST=»
DRDP gt + RDT g +
ROT "=" + ROT + + 1
DISP »

(The ® characters are NEWLINE characters and should be keyed
in as such.)

Fortunately, the last name is the first thing in the object. So a
procedure such as

« +STR » LOP LSORT « STR»> » LOP

will do the job.

Generally, any time you want to sort the list, you'll need to
convert its objects into strings so that they can be compared (and
keep in mind that in the general case, the object to be sorted by
is not necessarily the first object in the element). You'll therefore
need a conversion routine to transform the element both before
and after the sort. To sort by birthdate (or rather, birth-month),
for example, the simplest procedure would be:

« 1 2 LEX »STR » LOP LSORT « STR+ 1 2 LEX
» LOP

Chapter 7: List Utilities

6. What you want to do is filter the list, returning only those
elements that contain the search string. So:

&« +STR "Smith" POS » FLTR

The "Smith" is the search string — whatever name you're
searching for.

7. Something like this will work:
« 2GET 1 28UB {26 > === FLTR,

where{ 2 & 2 isan example list of today's month and day.

Discussion 229

Chapter 8

Directory Utilities

These routines provide quick and reliable ways to edit, test and tra-
verse directory structures in your HP-28S.

Asshowninthe followinglist, the 10 programs are organized into three
logical groups, presented alphabetically. Within each group, the pro-
grams are also usually presented alphabetically (by MAME), although
in some cases, certain sets of programs may be complementary or oth-
erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page
248, immediately following these program listings.

230 Chapter 8: Directory Utilities

DSORT

KILLD
MOVE
STACKEM

DIR?
MT?
NTYPE

DU
FIND
GOTO

Contents

Function
Editing Routines

Sort The Contents
Of The Current Directory
Remove A Directory And Its Contents
Move And/Or Rename An Object
Place The Contents Of A Directory
Onto The Stack

Testing Routines

Test Whether An Object Is A Directory
Test For An Empty Name
Find The Type Of The Named Object

Traversing Routines
Move Up One Directory

Find A Name In The Directory Tree
Go To A Directory By Using A Path List

232

233
235
238

240
242
243

244
245
247

231

Alphabetically Sort

The Contents Of The Current Directory:

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

232

DSORT @66834)

« VARS IF DUP SIZE
THEN « »STR » LOP
LSORT « STR+ » LOP
ORDER ELSE DROP END
®

DSORT reorders the contents of the current directory so
that the USER menu is displayed in alphabetical order.

DSORT
None.
None.

None.

DSORT usesLOP andLSORT from Chapter7. DSORT

can take a few minutes to run if the current directory is
a large one.

Chapter 8: Directory Utilities

Remove A Directory And Its Contents:

Summary:

Example:

Inputs:

Outputs:

Errors:

Editing Routines

KILLD (1628927)

€ *nN.. € IF Nn..
DIR? THEN n.. EVAL
VYARS 'DIR?' FLTR IF
DUP SIZE THEN =+ d..
« 1 d.. SIZE FOR 1i..
d.. i.. GET KILLD
NEXT *» ELSE DROP END
CLUSR DU END n..
PURGE » »

KILLD removes (purges) a directory and its contents.
If it is used on a named object, the name is purged. It
cannot be used on the HOME directory.

'Q' KILLD

Level 1 — a directory or name — the directory to be
purged.

None.
Too Few Argument s willoccur for an empty stack.

Bad Argument Type will occurifthe input object
is not a name or directory.

233

Notes: KILLD usesDIR?,DU and FLTR (from Chapter 7).
Caution: KILLD provides no margin for error and can
quickly destroy huge amounts of data!

234 Chapter 8: Directory Utilities

Move And/Or Rename An Object:

MOVE ©293966)

€08 % a.. boe P.. &
IF b.. TYPE 5 ==
THENM b.. 1 OVER SIZE
1 - SUB b.. DUP SIZE
GET 'b..' STO ELSE
PATH EMD 'p..' STO
PATH p.. GOTO IF
b.. DIR? b.. 1 =LIST
{ HOME » == OR THEN
Pes boo + 'pP..' STO
3.. 'b..' STO END
DUP GOTO IF a.. DIR?
THENM DEPTH » d.. «
a.. STACKEM DROP p..
GOTO b.. DUP CRDIR
EVAL DO EVYAL UNTIL
DEPTH d.. == END »
ELSE a.. RCL a..
PURGE p.. GOTO b..
STO EMD GOTO » »

Summary: MOVE will move the named object from the current
directory to the specified directory. The object to be
moved may be either a named object or a directory. The

Editing Routines

235

Examples:

Inputs:

Outputs:

Errors:

Notes:

236

destination may be either a directory path or name. If
the destination name or the last name in the directory
pathis not a directory, the object tobe moved will also be
renamed using that name.

'PETE' 'FRED' MOVE
'"PETE' { HOME JAME FRED > MOVE

Level 2 — a name object — the name of the object to be
moved from the current directory.

Level 1 —a name object or list — the destination to which
to move the Level-2 object.

None.

Too Few RArguments will occur if the stack
contains fewer than 2 objects.

Bad RArgument Type will occur if the Level-2 ob-
ject is not a name or directory.

Undef ined Name (and maybe a stackful of gar-
bage) will occur if the Level-2 name is empty, or if the
destination directory is a sub-directory of the directory
tobe moved, or if any of the names in the destination list
except the last one are undefined.

MOVYE is a sophisticated command with potentially de-
structive effect. It should therefore be used only by ex-
perienced HP-28S users. DO NOT try to move a parent
directory to one of its descendents. The remains of the
parent directory will be left on the stack with little

Chapter 8: Directory Utilities

Editing Routines

chance of restoring it. Having a corrupt or otherwise
incorrect destination path is perhaps the worst of all
possible errors, because the source directory will have
already been removed and placed on the stack before an
attempt is made to move to the destination. Therefore,
the best procedure is to move to the target directory and
invoke the PHTH command to get the correct destina-
tion path.

MOYE uses GOTO, DIR? and STRCKEM. MOVE,
GOTO,DIR? and STACKEM must be in the PATHs of
both the source and destination directories. The only
reasonable place for these four tools, therefore, is in the
HOME directory.

237

Place The Contents Of A Directory

Summary:

238

Onto The Stack

STACKEM (3132376)

€ * n.. «IF n.. DIR?
THEN 'DU' n.. EVAL
VARS IF DUP SIZE
THEN =+ 1.. « 1 1..
SIZE FOR i.. l.. i..
GET STACKEM NEKT =»
ELSE DROP ENMD "&"
n.. *STR " CRDIR "
OVER " EVAL»" + + +
+ STR+ DU n.. PURGE
ELSE n.. RCL n.. n..

PURGE « STO » END »
b3

STACKEM places the contents of the name object onto
the stack, along with the name and any commands
necessary to recreate the object. The previous contents
of the name object are PURGE 'd as if withKILLD. The
stacked information can then be restored by repeated
execution of EVAL until all of the stacked objects have
been removed.

Chapter 8: Directory Utilities

Examples: 1 'A' STO 'A' STACKEM
Result: 1 'A' « STO »

'A' CRDIR A 'B' CRDIREB & 'C' STO DU
DU 'A' STRCKEM

Result: (on the stack)

IDUl

IDUI

&

ICI

« STO »

« 'B' CRDIR 'B' EVAL »
« 'A' CRDIR 'AR' EVAL »

Inputs: Level 1 — a name object — the name of the object to be
stacked.

Outputs: Levels 1 to n —the contents of the object, along with the
commands necessary to recreate it.

Errors: Too Few Araument s will occur if there are no ar-
guments on the stack.
Bad Argument Type will occur if the Level-1
object is not a name or directory.

Notes: STACKEM usesDU and DIR?

Editing Routines 239

Test Whether An Object Is A Directory:

Summary:

Examples:

Inputs:

Outputs:

Errors:

240

DIR? 363890

« RCLF =+ D F « 31 CF
IFERR D RCL THEN &4
STWS ERRN # 12Rh ==
ELSE DROP 8 END F
STOF » »

DIR? teststhe given object to see if it is a directory. It
returns 1 if the object is a directory and @ if not.

1 DIR? Result: @
'FRED' DIR? Result: 1

IF J DIR? THEM YES ELSE NO END

Result: (this example program segment will evaluate
the routine YES if the object, J, is indeed a di-
rectory; or the routine, NO if it is not.)

Level 1 — the object to be tested.

Level 1 — a real number — either 1 or 8 (true or false).

Too Few Arguments will occur if the stack is
empty.

Chapter 8: Directory Utilities

Notes:

Testing Routines

The binary integer in the program listing is shown in
hexadecimal. It will appear differently if the current
binary mode is other than HEX. The results of DIR?
are intended to be compatible with other logical tests in
the HP-28S (as illustrated with the I F statement in the
examples).

241

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

242

Test For An Empty Name:

MT? 2808133)

« RCLF SWAP 31 CF
IFERR RCL THEN &4
STWS ERRMN #204h ==
ELSE DROFP @ END SWAP
STOF »

MT? tests a named object to determine whether or not
it is empty. All non-name objects are considered to be
non-empty and therefore return a 8.

'"FRED' PURGE 'FRED' MT? Result: 1
1 'PETE' STO 'PETE' MT? Result: 8

Level 1 — an object — the object to be tested.
Level 1 — a real number — either @ or 1 (false or true).
None.

None.

Chapter 8: Directory Utilities

Find The Type Of The Named Object:

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

Testing Routines

NTYPE @28182)

« » N« IF N MT?
THEN -1 ELSE IF N
DIR? THEN 11 ELSE N
RCL TYPE EMND EMD » »

NTYPE tests the named object and returns its type
(consistent with that returned by the built-in command,
TYPE, plus added type values of =1 and 11): -1 =
Empty; 8 = Real; 1 = Complex; 2 = String; 3 = Real
array; 4 = Complex array; 3 = List; & = Global name; 7
=Local name; 8 = Program; 9 = Algebraic; 1 8 = Binary
integer; 1 1 = Directory.

{3 2 'A'" STO 'A' NTYPE Result: 5

Level 1 —aname - the object whose type is to be tested.
Level 1 - aninteger from -1 to 11 — the type of the input.
Too Few Argument s willoccurfor anemptystack.

Bad Argument Type willoccurifthe Level-1input
object is neither a name object nor a directory object.

NTYPE usesMT? and DIR?.

243

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

244

Move Up One Directory
(Directory Up):

DU 142239)
« PATH DUP SIZE 1 -

IF DUP THEN GET EVAL
ELSE DROPZ END »

DU moves from the current directory up to the one
immediately above it. Ifthe current directory is already
the HOME directory, no action is taken.

DU

None.

None.

None.

None.

Chapter 8: Directory Utilities

Find A Name In The Directory Tree:

FIND (1376839

€ + N « IF VYARS DUP
N POS THEM PRTH SWAP
END 'DIR?' FLTR IF
DUP SIZE THEN » D «
1 DSIZEFOR I DI
GET DUP 1 DISP EVAL
N FIND DU NEXT »

ELSE DROFP EMD » CLMF
»

Summary: F IND recursively traverses the directory tree — start-

Example:

ing at the current directory —looking for the given name
object. It returns the path (a list of directories) of the
directory in which the named object is found. If the
name exists in more than one directory, the path to each
occurence will be returned. Ifthe name is not found, no
path is returned. Since it can take some time to search
all subdirectories, F I MD displays the name of the direc-
tory it's currently searching to show how far it has
progressed.

'FRED' FIND
Result: £ HOME PETE JOE EMILY 2

Traversing Routines 245

Inputs: Level 1 — a name object — the object being sought.

Outputs: Levels 1 to n — the paths to each of n occurences of the
name. Nothing is returned if the name is not found.

Errors: None.
Notes: Ifthe Level 1 object is not a name,F I ND will still search

the directory tree for a match, but of course it won't find
one.

FIND usesDIR?,DU, and FLTR (from Chapter 7).

246 Chapter 8: Directory Utilities

Go To A Directory By Using A Path List:

GOTO (1213662)

« { HOME > LIST=»
DROP » H « LIST» IF
DUP THEN 1 FOR I I
ROLL IF DUP DIR?
OVER H == OR THEN
EVAL ELSE 1 LIST=»
EMD -1 STEP ELSE
HOME DROP EMD = »

Summary: GOTO moves to the directory specified by the given
PATH list. The PATH list need not start from HOME —
just some directory in the path of the current directory.

Example: < HOME R B C > GOTO

Inputs: Level 1 —a list — the PATH list of directory entries.
Outputs: None.

Errors: Too Few Argument s willoccur foran empty stack.

Bad Argument type willoccureitherifthe argu-
ment is not a list or it contains a non-directory element.

Notes: GOTO usesDIR?.

Traversing Routines 247

Directory Utilities: A Discussion

The Main Idea

Directories are great for organizing and partitioning user memory.
Logical groups of data and programs can be created and named within
their own directory. Then moving between directories and calling rou-
tines in other directories is as easy as calling their names — as long as
they can be found in the current directory's PATH(i.e. as long as they're
somewhere between where you're "calling from" and HOME).

These directory tools enhance the usefulness of directories with their
often-needed functions. You can: MOVE to any directory; FIND any
object within the subtree of the current directory; DSORT the names
in the current directory; purge an entire directory sub-tree; move up to
the parent directory; and do some useful directory-related tests.

Where To Put These Programs

Unlike most of the other utilities in this book, the directory utilities are
almost useless unless they're placed in the HOME directory. This is
because many of them can "move you" out of the current PATH, thus
preventing you any further access to commands that exist only in that
PATH. The only directory that is always a member of all PATHs is the
HOME directory, so put these utilities in the HOME directory.

248 Chapter 8: Directory Utilities

Some Observations

The HP-28S' directory structure is a fairly standard, multi-way tree.
That bears a bit of explaining: The "tree" is the overall structural
pattern, starting with a main (HOME)level, or "root node.” Every point
of branching is called a node. At a node there might be one or more
"leaves" (items with actual evaluable data in it) and/or "branches"”
(paths leading to further nodes).

In some tree structures, there are rules about how many leaves and
branches can be attached to any one node. The good news is that a
multi-way tree (as in the HP-28S) has no limit to these numbers: you
can put as many leaves (programs or data objects) and branches (sub-
directories in any directory level (node) as you want.

Recursive programming techniques are one of the best ways to perform
tree traversals and access the data in the nodes and leaves. Therefore,
all of the routines that either move or remove data from node to node
do so recursively.

If you have some difficulty understanding what the previous sentence
is saying, you get the point: The routines in this chapter are probably
the most sophisticated routinesin this book, and it would take far more
space than is available here to fully explain recursive programming
techniques.

However, if you want to begin to explore them, the best way is to study
how they are used here — in the programs that "call themselves:"

FIMD,KILLD, and STACKEM. You might also look at @SRT in
Chapter 1.

Discussion 249

Some of these routines are useful mainly as keyboard commands, but
several are particularly handy in writing your own programs (and you
can get some idea of their relative usefulness by noting the frequency

with which they occur within other programs in this section): DIR?,
DU,GOTO,MT? and MTYPE.

STACKEM was developed as a subprogram for MOYE, but you may
find it convenient as a tree "pruner” and "grafter” in your own pro-
grams — without the additional overhead of MOVE.

Errors And Error Recovery

For the most part, these tools make every effort to cause errors before
much movement of data has occurred. But to keep the routines rela-
tively small, not all conceivable precautions have been implemented.
It is very possible to destroy a lot of information with these routines.
In most cases UNDO will not help you either, because data movement
and /or destruction has occurred outside of the stack.

250 Chapter 8: Directory Utilities

How You Might Use These Utilities

Tests

Unfortunately, the built-in TYFE command isn't particularly consis-
tent when dealing with directories. If you create a directory, then place
its name on the stack and invoke TYPE, you'll get 6, telling you that
the object was a name. This is "sort of" correct but not really: You can't
store into or recall from a directory as you can with a name.

Therefore, the tools in this section include some functions that allow
you to test whether or not an object is specifically a directory. DIR?
asks the question, "Is this object a directory?” NTYPE actually
extends the idea of object types to return the type of the given named
object, including type number -1 for an empty name and 11 for a
directory. MT? tests to see if the Level-1 name is empty and returns
0 — false — if it contains a directory.

Going And Coming Back

The information returned by the PATH command is nice to tell you
where you are within the directory tree, but you can't do anything else
with it. GOTO remedies this by allowing you to go to the directory
specified by the PATH list.

Discussion 251

Then, when you go somewhere, it's nice to know how to get back. Use
the following methods to "remember" where you've been and get back:

PATH whereto GOTO dosomething GOTO
or
PATH + whereiwas €« whereto GOTO
dosomething whereiwas GOTO »

wheret o is the PATH-list of your (temporary) destination and
dosomet hing is what you want to do while you're there. You use
PATH before GOTO to get the location of the current directory. Then,
after the task is completed, you recall this previous PATH and use
GOTO to get back there once again.

FIND And GOTO

GOTO is also useful after the F I MD command - to go to the directory
containing the object you just found. For example:

%« PATH + thing
whereiwas € thing
FIND GOTO thing EVYAL
whereiwas GOTO » »

The program takes the name of an object to be sought (A hing) and
the current directory PATH from the stack. F IND findst hinginthe
directory tree and GOTO goes to it. thing is evaluated and GOTO
then returns to the previous directory (this assumes that F IND will
actually find a t hing and that it will find only one of them).

252 Chapter 8: Directory Utilities

STACKEM As An Alternative To MOVE

You can think about the MOVE utility as a mess of preparation to call
the STACKEM program. MOYE checks and corrects the inputs, then
uses STACKEM, then moves to the destination directory and repeat-
edlyinvokesEVAL to placed the stacked objects in the new directory.

If you're uncomfortable with this level of automation (and with your
own hard-won data and programs at stake, this is quite understand-
able), you can invoke STACKEM manually, then move to the target di-
rectory and press repeatedly to restore the information. If you're
unsure of yourself or the program, watching it work in this way can be
reassuring.

KILLD Versus PURGE And CLUSR

PURGE deletes either a single object or a list of named objects from the
current directory. CLUSR deletes evey named object in the current
directory. But neither PURGE nor CLUSR will delete a non-empty di-
rectory.

KILLD, on the other hand, deletes a single named object from the
current directory — even if that object is a non-empty directory. Thus
KILLD "rounds out” your ability to remove objects from memory by
allowing you to delete a directory in one fell swoop. As such, KILLD
is a very destructive command and should be used with extreme
caution, much as you would CLUSR — only more so!

Discussion 253

Chapter 9

Output Utilities

These routines provide convenient, "canned” methods for formatting
output to the HP-28S display or printer — both with character and
graphic information.

As shown in the following list, the 20 programs are organized into five
logical groups, presented alphabetically. Within each group, the pro-
grams are also usually presented alphabetically (by MAME), although
in some cases, certain sets of programs may be complementary or oth-
erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page
280, immediately following these program listings.

254 Chapter 9: Output Utilities

DCTR
DLJ
DRJ
DPUT

DPAT
DINV
DUDL

LINE
PLOT

POLYL

PSET
PXDM

Contents

Function
Display Positioning Routines

Center An Object In A Display Line
Left-Justify An Object In A Display Line
Right-Justify An Object In A Display Line
Put An Object Into A Display Line,
Beginning At A Specified Column

Display Special Effects

Display A Graphics Pattern
Invert A Display Line (To Inverse Video)
Underline A Display Line

LCD Graphics

Draw A Line Between Two Points

Draw A Line From The Current Plot Position
To The Specified Position

Plot A Series Of Connected Points

Move To A New Point In A Plot

Get The Dimensions Of A Pixel

257
257
257
260

262
264
264

266
268

270
272
273

255

Name Function Page

Printer Positioning Routines

PRCTR Print An Object Centered 274
PRLJ Print An Object Left-Justified 274
PRRJ Print An Object Right-Justified 274
PRPUT Print An Object At A Specified Column 276
Printer Special Effects
PRDW Print An Object Double-Wide 277
PRINY Print An Object In Inverse (White On Black) 277
PRUDL Print An Object Underlined 277
PRPAT Print A Character Pattern 279

256 Chapter 9: Output Utilities

Center An Object In A Display Line:

DCTR 332%94)

« SWAP 23 SCTR SWAP
DISP =»

Left-Justify An Object In A Display Line:

DLJ ©189)

« DISP »

Right-Justify An Object In A Display Line:

DRJ (38638)

« SWAP 23 SRJ SHWAP
DISP »

Summary: DCTR displays the Level-2 object, centering it on the
display line specified in Level 1. DLJ displays the
Level-2 object left-justified, starting on the display line
specified in Level 1. DRJ displays the Level-2 object
right-justified on the display line specified in Level 1.

Display Positioning Routines 257

Examples:

258

If the line specified is less than 1, then line 1 is used. If
the line specified is greater than 4, then line 4 is used.
The line specifier is rounded before use. Since the dis-
play's width is an odd number of characters (23), cen-
tered objects with an even number of characters will be
spaced one character farther to the left than to the right.
If an object contains NEWLINE characters, DLJ and
DRJ will begin its display on the line specified, then con-
tinue on subsequent lines as directed by the NEWLINE's.

"HI" 2 DCTR Result:

3:
HI

1:
"HI" 2 DCTR

"HI" 2 DLJ Result:

I" 2 DLJ

"HI" 2 DRJ Result:

3:
HI

WHI" 2 DRJ

Chapter 9: Output Utilities

Inputs:

Outputs:

Errors:

Notes:

Level 2 — the object to be displayed.
Level 1 — a real number — the line on which that object
is to be displayed.

(Displays such as in the Examples.)

Too Few Argument s will occur if the stack con-
tains fewer then 2 objects.

Bad Argument Type willoccurifthe Level-1input
object is not a real number.

DCTR will fail if the object to be displayed contains a
NEWLINE character or leading or trailing spaces.

DCTR usesSCTR. DRJ usesSRJ. DL J is an alias for
the HP-28S command, D I SP, so as to be consistent with
the naming of DRJ and DCTR.

Display Positioning Routines 259

Put An Object Into A Display Line,
Beginning At A Specified Column:

Summary:

260

DPUT ©47693)

« 1 MRx .3 + FLOOR
23 MIN SWAP 1 MAX .5
+ FLOOR 4 MIMN » C R
« 35TR 1 24 C - SUB
LCD+ SWAP SPAT 137 R
1-*C1l-86=%+
SWAP SPUT =2LCD » »

DPUT displays the specified object, starting at the given
line and column, without clearing the rest of that line
(unlike DISP). If the line specified is less than 1 or
greater than 4, the object is displayed on line 1 or 4,
respectively. If the column number is less than 1, it is
treated as 1. If the specified column is greater than 23,
nothing is displayed. If the displayed object extends
beyond the end of the display or contains a NEWLINE
character, itis truncated at that point. Line and column
numbers are rounded before use.

Chapter 9: Output Utilities

Example:

Inputs:

Outputs:

Errors:

Notes:

CLLCD "HI" 1 DISP "THERE" 1 4 DPUT
Result:

HI THERE

Level 3 — the object to be displayed.

Level 2 — a real number - the line on which the object is
to be displayed.

Level 1 - a real number — the column at which the ob-
ject's display is to begin.

(A display such as in the Example.)

Too Few Argument s will occur if the stack con-
tains fewer then 3 objects.

Bad Argument Type willoccurifthe Level-1and
Level-2 objects are not both real numbers.

DPUT uses SPAT and SPUT.

Display Positioning Routines 261

Summary:

Example:

262

Display A Character Pattern:

DPAT (938121)

« 1 MAX .5 + FLOOR
23 MIN 1 - & % SWAP
1 MAx .5 + FLOOR 4
MIN + C R « C OVER
SIZE + 137 SWAP -
OVER SIZE + 1 SHAP
SUB LCD+ SWAP 137 R
1 -*=C+ 1 + SWAP
SPUT =»LCD » »

DPAT takes a character string from Level 3 of the stack
(which is of the form returned by LCD+) and displays it
(as #L.CD) starting at the display line as given by the
number in Level 2 and at the character column within
that line, as given by the number in Level 1. If the line
number specified is less than 1, 1 is used. If the line
specified is greater than 4, 4 is used. If the column
number is less than 1, 1is used. If the column number
is greaterthan 23,23 isused. Line and column numbers
are rounded before use.

94 CHR 97 CHR 1 CHR
97 CHR 94 CHR B8 CHR
+ + + + + 'Om' STO
15 1 PISPOm 1 3 DPAT Result:

Chapter 9: Output Utilities

Inputs:

Outputs:

Errors::

Notes:

1 DISP Om 1 3 DPAT

Level 3 —a character string —the character pattern to be
displayed.

Level 2—-areal number —theline on which the character
is to be displayed.

Level 1 —a real number —the column at which the char-
acter's display is to begin.

A display such as in the Example.

Too Few RArgaument s will occur if the stack con-
tains fewer then 3 objects.

Bad Argument Type will occur if the Level-3 ob-
jectis not a character string, or if the Level-1 and Level-
2 objects are not both real numbers.

DPAT uses SPUT. The typical HP-28S character is 6
columns wide, with each character in the pattern build-
ing a column. The 6th column is usually blank (charac-
ter 0) so as to leave space between adjacent characters.
DPAT is useful for building and displaying user-created
special characters (e.g. greek math symbols).

Display Special Effects 263

Invert A Display Line (To Inverse Video):

Summary:

264

DINV @341086)

« LCD+ SWAP 1 - 3
MIN .5 + FLOOR 137 =
1 + SCUT 138 SCUT
SWAP NOT SWAFP + +
+LCD »

Underline A Display Line:

DUDL (393389)

« 1 MAX .5 + FLOOR 4
MIN +MUM LCD+ SWAP 1
- 137 #= 1 + SCUT 138
SCUT SWAP 128 CHR
137 SRPT OR SWAP + +
+LCD »

DINY inverts the specified display line (black to white
and vice versa). DUDL underlines the specified display
line. The line specifier defaults to 1 and 4 for inputs out-
side of those limits. Fractional portions ofline specifiers
are rounded.

Chapter 9: Output Utilities

Examples:

Inputs:

Outputs:

Errors:

Notes:

3 DINY Result:
3:
2
i: |
3 DINY
1 DUDL Result:
3:
2
i:
1 DUDL
Level 1 —a real number — the display line to be inverted

or underlined.
(A display such as in the Example above.)

Too Few Argument s willoccurfor an empty stack.
Bad Argument Type will occur if the Level-1 ob-
ject is not a real number.

Undef ined Name will occur if the Level-1 object is
an undefined name.

DINY uses SCUT. DUDL uses SCUT and SRPT.

Display Special Effects 265

Draw A Line Between Two Points:

LINE (1472131)

€« +NUM SWAP +NUM + R
L «LPIXKEL IF LR =
THEN PXDM C*R R L -
DUF C»R 4 ROLL ~ RABS
SWAP 4 ROLL -~ ABS
MAx PPAR 4 GET ~
SWAP OVER ~ L 1 4
ROLL START OVER +
DUP PIXKEL NEXT DROP2
R PIKEL END *» »

Summary: L IMNE drawsalinein the displaybetween the two given

Example:

266

points (complex number objects). The current PPAR
values PMIN, PMAX, and RES) are used. IfFRES is
greater than 1, the line is drawn to the specified resolu-
tion. If the variable PPAR does not exist, it is created
with default values.

(8,0 PMIN (3,3> PMAX 1 RES
(1,1> (2,2 CLLCD LINE Result:

Fﬂf"fﬁdf

Chapter 9: Output Utilities

Inputs:

Outputs:

Errors:

Notes:

LCD Graphics

Level 2 — an object that reduces to a complex number —
the coordinates of the "from" point.

Level 1 —An object that reduces to a complex number -
the coordinates of the "to" point.

A line is drawn in the display.

Too Few Argument s will occur if the stack con-
tains fewer than 2 objects.

Bad Argument Type willoccuriftheinputobjects

do not reduce to complex numbers.

L IME does not test to see if the points it is plotting are
out of bounds for the display. L INE uses PXDM.

267

Draw A Line From The Current Plot Position

Summary:

Example:

Inputs:

Outputs:

268

To The Specified Position:

PLOT 3V3667)

« *NUM + N « IF
coord DUP TYPE & ==
THEN <8,8> DUP ROT
STO END N LINE N
'coord' STO » »

PLOT draws aline from the point established by PSET
to the specified point. The current plot position — the
value of 'coord' - is updated to be that of the
specified endpoint. If 'coord'has no value, it is
givenavalueof (8, @7 . Ifthe variable PPAR does not
exist, it is created with default values.

'"PPAR' PURGE <1,1> PSET
(2,3> CLLCD PLOT Result:

!

Level 1- an object that reduces to a complex number.
A line is drawn in the display.

Chapter 9: Output Utilities

Errors:

Notes:

LCD Graphics

Too Few Argument s willoccurfor an emptystack.
Bad Argument Type will occurifthe input value
or the contents of ' COOrd' is not a complex number.

PLOT doesnot test whether the points being plotted are
out of bounds for the display. PLOT uses LINE.

269

Plot A Series Of Connected Points:

Summary:

Examples:

270

POLYL @&74768)

« EVAL » L « L 1 GET
*NUM 2 L SIZE IF DUP
TYPE 5 == THEMN LIST»
2 == &« % » [FT END
FOR I L I GET =+NUM
SWAP OVER LINE MEXT
DROFP » »

POLYL ("poly-line") takes a list of complex numbers or
a complex array object and plots lines between the
points it contains. The first point is taken to be the
origin, so the first line is drawn from that point. Arrays
are traversed in row-majororder. If RES isgreater than
1, the line is drawn to the specified resolution. If the
variable PPAR does not exist, it is created with default
values.

'"PPAR' PURGE { (8,8 (1,1> ¢(-1,1>
(B,8> > CLLCD POLYL
Result:

N

Chapter 9: Output Utilities

Inputs:

Outputs:

Errors:

Notes:

LCD Graphics

(-18,-3> PMIN (16,3> PMAX

[(5.3,2.4) (3,2) (-8,-2.1> 1
CLLCD POLYL

Result:

/

Level 1 — any object that evaluates to a list, array or
vector — the series of point coordinates to be plotted.

A plot is generated.
Too Few Arguments willoccur for an empty stack.
Bad Argument Type willoccuriftheinputobject

does not evaluate to a list, array or vector, or if one or
more of its components is not a complex number.

POLYL does not test to see if the points it is plotting are
out of bounds for the display. POLYL uses LIME.

271

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

272

Move To A New Point In A Plot:

PSET @4268)

€ +NUM C2R R=»C
'coord' STO »

PSET establishes a point in the plotting area from
which a subsequent line can be drawn with the PLOT
program.

(2,2> PSET
Result: (nothing changes in the display)

Level 1 —a complex number; the coordinates of the point
to which to move.

None.
Too Few Argument s will occur if the stack is
empty.
Bad Argument Type will occurifthe input object

is not a complex number.

PSET creates the variable ' coord’ in the current
directory, overwriting any variable of the same name.

Chapter 9: Output Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

LCD Graphics

Get The Dimensions Of A Pixel

PxDM 136213)

« PPAR 1 2 SUB LIST+
DROP SWAP - C»R 31 -
SWAP 136 -~ SWAP RsC
®

PXDM determines the height and width of a display
pixel (a single dot), given the current plotting parame-
ters(i.e. the contents ofthePPAR variable). The dimen-
sions are returned as a complex number. PXDM as-
sumes that the PPAR variable exists.

STD 'PPAR' PURGE (8,8> PIXEL PxXDM
Result: C.15.12

None.

Level 1 — a complex number — the dimensions of a dis-
play pixel under the current plotting parameters.

Bad Argument Type willoccurif ' PPAR' does
not exist or does not contain a valid plotting parameter

list.

None.

273

Print An Object Centered:

PRCTR @3%977)

« 24 SCTR PR1 DROP »

Print An Object Left-Justified

PRLJ @4143)

« DEPTH « PR1 *» IFT
DROP =

Print An Object Right-Justified

PRRJ 220866)

« 24 SRJ PR1 DROP x»

Summary: PRCTR prints the given object, centered on the printer
paper. PRLJ prints it left-justified; PRRJ prints it
right-justified. Ifthe object contains NEWLINE charac-
ters, PRRJ and PRLJ will begin displaying the object
on the line specified, then continue on subsequent lines
as directed by the NEWLINE's in the object.

274 Chapter 9: Output Utilities

Examples:

Inputs:
Outputs:

Errors:

Notes:

Printer Positioning Routines

"HI" PRCTR Result: (printed on the paper):

"Whoop" PRLJ Result: (printed on the paper):

"hi" PRRJ Result: (printed on the paper):

Level 1 — the object to be printed.
(print-outs such as in the examples.)

Too Few RArgument s willoccur for an empty stack.
PRCTR will fail to center its output if the object con-
tains a NEWLINE characterorleading or trailing spaces.
PRLJ and PRRJ will fail if the print buffer is not empty
before the command is invoked (the print buffer is
emptied by CR or any printing command executed with
flag 33 clear), or if the object contains leading spaces.

PRCTR uses SCTR. PRRJ uses SRJ.

275

Print An Object At A Specified Column:

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

276

PRPUT (123386)

« " " SWAP 1 MAX
+NUM 1 - SRPT SWAP
+STR + PR1 DROP

PRPUT prints the given object at the given printer col-
umn. A column number less than 1is treated as 1. Col-
umn numbers greater than 24 will print the object on
line number (n DIV 24), column number (n MOD 24) + 1.

"HI" 28 PRPUT Result:

Level 2 — the object to be printed.
Level 1 — a real number — the printer column on which
to begin printing the object.

(A print-out such as in the Example.)

Too Few Argument s will occur if the stack con-
tains fewer then 2 objects.

Bad Argument Type will occur if the Level-1 ob-
ject is not a real number.

Undef ined MName if the Level 1 object is an unde-
fined name.

PPUT uses SRPT.

Chapter 9: Output Utilities

Print An Object Double-Wide:
PRDHW (148624)

« 27 CHR DUFP 233 CHR
+ ROT +STR + SWAP
252 CHR + + PR1 DROP
®

Print An Object In Inverse (White On Black)

PRINY (1386187)

« RCLF + S « 3ETR
"=" + 33 SF WHILE
DUP "=" POS DUP
REPEART SCUT 2 SCUT
SWAF DROFP SWAP DO 23
SCUT SWAP SPAT MNOT
FRPAT UNTIL DUP SIZE
NOT EMD DROP CR END
DROPZ S STOF » »

Print An Object Underlined:
PRUDL (143490)

« 27 CHR DUP 231 CHR
+ ROT *STR + SHWAP
258 CHR + + PR1 DROP
®

Printer Special Effects 277

Summary: PRDMW printsthe given object double-wide on the printer
paper. PRINY prints it in inverse (white on black).
PRUDL prints it underlined.

Examples: "HELLO" PRDW
Result: (printed on the paper):

"Hi there." PRINY
Result: (printed on the paper):

"Object" PRUDL
Result: (printed on the paper):

Inputs: Level 1 — the object to be printed.
Outputs: (A print-out such as in the Example above.)
Errors: Too Few Argument s willoccur for anempty stack.

Notes: PRINY uses SCUT,SPAT and PRPAT.

278 Chapter 9: Output Utilities

Summary:

Example:

Inputs:

Outputs:
Errors:

Notes:

Print A Character Pattern:

PRPAT 3@86187)

« DO DUP 1 1le6 SUB
27 CHR OVER SIZE CHR
+ SWAP + PR1 DROP 1
166 SDEL UNTIL DUP
SIZE NOT END DROP »

PRPAT takes a character string from Level 1 of the
stack (of the form returned by LCD+) and prints the
corresponding character pattern.

94 CHR 97 CHR 1 CHR
97 CHR 94 CHR 8 CHR
+ + + + + 'Om' STO
33 SF 15 PRLJ 33 CF Om PRPAT
Result: (printed on the paper):

Level 1 -a character string —the character pattern to be
printed.

(A print-out such as in the Example.)
Too Few ARraument s willoccurfor an empty stack.

PRPAT uses SDEL.

Printer Special Effects 279

Output Utilities: A Discussion

The Main Idea

The HP-28S is not intended to be a general purpose computer. It is
intended to be a very competent calculator. For that reason (as you
have certainly noticed), very little emphasis is placed on sophisticated,
built-in input and output capabilities. Indeed, the only way to put
information into the machine is with your own fingers; and the only
ways to get information out of it are through the display and through
the (optional) infrared printer.

Even so, sometimes a bit of output formatting becomes important.
Displayed results of complicated or data-intensive programs may be
quite confusing — and you'll often need to refer to printouts long after
the actual calculations have been performed — so you'll certainly need
some intelligible organization and labelling for both the display and
printer. The tools in this section let you do just that.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that
is listed in your current PATH. The easiest way to ensure that this is
the case is to place each of the programs in the HOME directory — the
ultimate parent of all other directories.

280 Chapter 9: Output Utilities

Some Observations

Most of the printer and display commands are applications of related
string commands, including the ability to make general, graphical
patterns. Underlining and inverse video (white on black printing) and
are common display/printing enhancements that are also included.

There is also a handful of plotting extensions, including a general
purpose line-drawing routine (L INE) that allows you to draw a line
between any two points in the plotting window. The other routines
basically extend thisidea by allowing you to plot several lines consecu-
tively.

Errors And Error Recovery

Each of the tools is designed to generate an error with invalid input,
rather than continue and potentially generate garbage outputs. When
errors do occur, the stack is almost invariably disrupted, and since the
only way to restore a disrupted stack is with the UNDO command, it's
wisest to activate UNDO mode (in the MODES menu) and leave it
active throughout your use of these utilities.

Discussion 281

How You Might Use These Utilities

Connect Data Points With DRWZE

Suppose that the array YDAT contains data that you've just entered
and sorted by the independent variable's column (you know how to do
this with the Array utilities from Chapter 5, right?).

Suppose also that X PAR contains valid COLY data. You might then use
POLYL to connect the points in the DRWY scatter plot, thereby

outlining a trend (if any), with the help of this short program, called
CMCTZ 368196):

« 0 PREDY DROP RCLZ
ZPAR 1 GET AGETC
RCLZ ZPAR 2 GET
RAGETC <8,1> * + V=»A
SCLZ CLLCD DRMWZ
POLYL *

Labelling Printouts

Suppose you have an array of data that you want to print out column
by column, with each column labelled. You might use the following

program, called PCOL (1346283):

282 Chapter 9: Output Utilities

€« + A « CRON CR
"COLUMN DATAR" PRCTR
"=" 24 SRPT PRLJ CR
A EVAL SIZE LIST»
DROP + R C « 1 C FOR
J "Column " J SIP +
PRLU1 RFOR I A
EVAL € I J > GET

PRRJ NEXT CR NEXT =»
%

Extending Display Graphics

Suppose you want to be able to draw certain patterns and shapesin the
display — arcs, boxes, arrows, etc. How would you go about building
your own extended set of display graphics utilities?

The first thing to do, of course, is to decide what capabilities you want,
then recognize the core routines you would need to make them work.
Just to get you started, here's a couple of possibilities (the program-
ming is left up to you):

ARC1 Given a center of curvature, one endpoint of the arc, and

an angle (current angular mode), ARC1 plots the arc,
using ARCZ, PXDM and ' PPAR ' as needed.

ARCZ2 Given a center of curvature and the two endpoints of an
arc, ARCZ plots the corresponding arc, using FXDM
and 'PPAR' as needed.

Discussion 283

Chapter 10

Programming Utilities

These routines provide convenient, "canned” methods for conducting
various object and system tests, controlling system parameters, and
for allowing dynamic program control and evaluation.

As shown in the following list, the 41 programs are organized into ten
logical groups, presented alphabetically. Within each group, the pro-
grams are also usually presented alphabetically (by NRME), although
in some cases, certain sets of programs may be complementary or oth-
erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page
306, immediately following these program listings.

284 Chapter 10: Programming Utilities

CRSE

ON

ERREF
MEM=

BEEP?
EPOFF
EPON

CR?
CROFF
CROM

Contents

Function
Evaluations Based Upon Test Values

Evaluate The Object Corresponding To A
Test Value
Evaluate The Object Indexed By A Test Value

Miscellaneous Functions

Generate An Error Beep
Find The Percentage Of Total System Memory
Still Available

Test And Controls For The Beeper

Is The Beeper Enabled?
Disable The Beeper
Enable The Beeper

Test And Controls For The Printer's
Automatic Carriage Return

Is The Automatic Carriage Return Enabled?
Disable The Automatic Carriage Return
Enable The Automatic Carriage Return

288

290

291
292

293
293
293

294
294
294

285

Name Function Page

Tests For Angle Modes
ANG? What Is The Angle Mode? 295
DEG? Is The Angle Mode DEGrees? 295
RAD? Is The Angle Mode RADians? 295

Tests For Array Dimensionality

AR1D? Is The Given Array 1-Dimensional? 296
ARZD? Is The Given Array 2-Dimensional? 296
DIM? What Is The Dimensionality 296
Of The Given Array?
Tests For Binary Modes
BASE? What Is The Binary Mode? 298
BIN? Is The Binary Mode BINary? 298
DEC? Is The Binary Mode DECimal? 298
HEX? Is The Binary Mode HEXadecimal? 298
QCT? Is The Binary Mode OCTal? 299
Tests For Display Formats
DIGS? How Many Digits Are Being Displayed? 300
ENG? Is The Display Format ENGineering? 300

286 Chapter 10: Programming Utilities

FIX?
FMT?
SCI?
STD?

RALGB?
ARRY?
BNRY??
CARY?

CPLX?
LIST?
LOCL?
NAME?
PRGM?
RARY?

REAL?
STR?

GETK

Function

Is The Display Format FIXed Point?
What Is The Display Format?

Is The Display Format SClentific?
Is The Display Format STandarD?

Tests For Object Types

Is The Given Object An Algebraic Object?

Is The Given Object An Array Or Vector?

Is The Given Object A Binary Integer?

Is The Given Object A Complex-Valued
Array Or Vector?

Is The Given Object A Complex Number?

Is The Given Object A List?

Is The Given Object A Local Name?

Is The Given Object A Global Name?

Is The Given Object A Postfix Program?

Is The Given Object A Real-Valued Array
Or Vector?

Is The Given Object A Real Number?

Is The Given Object A Character String?

Waits For Keystrokes

Wait For A Keystroke And Return Its Name

KEYWAIT Wait For A Keystroke

Contents

g

300
300
300
301

302
302
302
302

302
302
303
303
303
303

303
303

305
305

287

Evaluate The Object Corresponding To

A Test Value:

CASE 322911)

€« IVROKIFYV

EVAL I POS DUP THEM
R SWAP GET EYAL ELSE
DROF O EVAL EMD » »

Summary: The CASE conditional allows you to evaluate one of

Examples:

288

several objects based on the value of the supplied object
In other words, in the case that the test object has such
and such a value, such and such object will be evaluated.

Its value lies in replacing "nested" IF statements (IF
.. THEN IF .. THEM IF ..).

8{B81272>{ "REAL" "CPLX" "STR" 2
"INVALID" CASE Result: "REAL"

2{81273{ "REAL" "CPLRX" "STR" X
"IMVALID" CASE Result: "STR"

2¢{8B 12> { "REAL" "CPLX" "STR"Z
"INVALID" CASE Result: " INVALID"

Chapter 10: Programming Utilities

Inputs: Level 4 —any object — the object of the test.
Level 3 — a list — the choice of possible objects.
Level 2 — a list — the outcomes corresponding to the ob-
ject choices.
Level 1 —any object — a default object to be evaluated if
the test object does not match any of the choices.

Outputs: The possible outputs dependent on which of the objects
are evaluated and what that evaluation yields.

Errors: Too Few Argument s will occur if there are fewer
than 4 objects on the stack.
Bad Argument Type willoccurifthe Level 2 and
3 objects do not evaluate to lists.

Notes: None.

Evaluations Based Upon Test Values 289

Evaluate The Object Indexed By A Test Value:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

290

ON ©3933)

« > CL<«LEVALC
+NUM GET EVAL » »

ON provides a means of selecting an action based on the
value of an object, which is used directly as an index to
a list of options. The selected option is then evaluated.
Theindex value is rounded to an integer before use. The
index must select a valid option or an error will occur.

2 L “"A" wB" "C" 3 0ON Result: ngw
STD41{«SQ1->»«8R2%2-%
> ON Result: 13

Level 2—any object that evaluates to a real number—the
index.
Level 1 —-any object that evaluates to a list - the options.

The output is dependent on the option evaluated.

Too Few Arguments will occur if the stack
contains fewer than 2 objects.

Bad Argument Type willoccurifthe objectsdon't
evaluate to their prescribed types.

Bad Argument VYalue willoccuriftheindexisout
of range for the list.

Various unpredictable errors can occur based on the
evaluation of the selected list object.

Chapter 10: Programming Utilities

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

Generate An Error Beep:

ERRBFP @8649)
% 1480 .075 BEEP »
ERRBP generates abeep of the same pitch and duration

as the standard error beep. It can be used to signal
errors in user-created programs.

ERRBP

None.

None.

None.

Flag51 controls the status of the HP-28S tone generator.

Ifthisflagisclear,aBEEP will produce a tone; if the flag
is set, no action is taken.

Miscellaneous Functions 291

Find The Percentage Of Total System Memory

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

292

Still Available:

MEMX @B031)
« MEM 32397.5 SWAP
%T 2 RRND »

MEM? returns the percent of memory free. Amaximum
available memory of 32397 . 3 bytes is assumed and
the result is rounded to 2 decimal places.

STD MEM¥* Result: 71.51
None.
Level 1 — A real number.

None.

MEM* uses RRMD.

Chapter 10: Programming Utilities

Test And Controls For The Beeper:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

BPON (78688)
« 51 CF »

BPOFF @873)
€« 51 SF »

BEEP? (9633)
« 51 FC? »
BPON and BPOFF turn the internal beeper on and off
respectively, thus enabling/disabling subsequent execu-

tions of BEEP. BEEP? tests to see whether the beeper
is enabled, returning a 1 (true)ifitis and a@ otherwise.

BPOM STD BEEP? Result: 1
BPOFF STD BEEP? Result: 8

None.

Level 1 (for BEEP? only) — a real number, either a 0 or
1 — the result of the test

None.

None.

Test And Controls For The Beeper 293

Test And Controls For

The Printer's Automatic Carriage Return

Summary:

Examples:

Inputs:

Outputs:

Errors:
Notes:

294

CR? (7448)
€« 33 FC? »

CROFF @910)
« 33 SF »

CRON (#837)
« 33 CF »

CRON andCROFF enable and disable, respectively, the
printer's automatic carriage return. CR? tests whether
itisenabled, returninga 1 (true)ifsoand a® otherwise.

CRON STD CR? Result: 1
CROFF STD CR? Result: @

None.

Level 1 (for CR? only) — a real number, either a @ or 1
— the result of the test.

None.

None.

Chapter 10: Programming Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Tests For Angle Modes:

ANG?? 36822)
« { DEG RAD > RAD? 1
+ GET »

DEG? ©8382)
« 68 FC? »

RAD? @368)
« 68 FS? »

These routines test the current angle mode. DEG? and
RAD? return a1 (true) or @ (false), indicating whether
the tested-for mode is active. ANG? returnsthe current
mode's name: DEG or RAD.

DEG RAD? Result: 8 DEG DEG? Result: 1
RAD ANG? Result: RAD

None.

DEG? and RAD? return either a 1 or B to Level 1.
ANG? returns a program object, either DEG or RAD.

None.

ANG? returns evaluable program objects. ItusesRAD?.

Tests And Controls For The Printer's Carriage Return, Angle Modes 295

Tests For Array Dimensionality:

AR1D? 12332)

« DIM? = %

AR2D? 12377)

« DIM? 2 ==

DIM? (31480)

« SIZE LIST+ 1 ==
IFT 2 =»LIST 1 POS 1
2 IFTE »

Summary: Theseroutinesalltestthe dimensionsofthe givenarray.
DIM? returns the dimension of the array: 1 or 2 (HP-
28S vector objects are considered to be one-dimensional
arrays). ARZD? returnstrue orfalse, based on whether
the given array is two-dimensional or not. AR 1D? per-
forms a similar test for one-dimensional arrays.

Examples: STD [1 2 2 1 DIM? Result: 1

296 Chapter 10: Programming Utilities

Inputs:

Outputs:

Errors:

Notes:

ST L 1 2 3 1 ARZD? Result: 8
STD L 1 2 3 1 ARID? Result: 1

STD L 1 2 1C 34 11 AR2D?
Result: 1

STD [CL 1 2 3 1] ARID? Result: 1
Level 1 — an array or vector object.

Level 1 — DIM? returns either 1 or 2, AR2D? and
AR1D? return either@ or 1.

Too Few Arguments will occur if the stack is
empty.

Bad Argument Tupe willoccur if the input object
is not an array or vector.

None.

Tests For Array Dimensionality 297

298

Tests For Binary Modes:

BASE? (F6471)

R

{ DEC BIM OCT HEX
43 FS? 2 # 44 F§?
1 + GET =»

+ W

BIN? @3273)

&

43 FC? 44 FS? AND

DEC? @22724)

£

43 FC? 44 FC? AND

HEX? @3677)

£

43 FS? 44 FS? AND

Chapter 10: Programming Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

OCT? 23466)

€« 43 FS? 44 FC? AND
®

These routines all return information about the current
binary integer format.

Allthe othertests returneitheral (true)or® (false),de-
pending upon whether or not the tested-for mode is
active. BASE? returnsthe current mode'sname: BIN,

DEC,HEX or OCT.

BIN BASE? Result: BIN

HEX BIN? Result: @
OCT OCT? Result: 1
None.

BIN?, DEC?, HEX? andOCT? all return eithera
1 or@ to Level 1. BASE? returns one of the following
program objects: BIM, DEC, HEX, OCT.

None.

The objects returned by BASE? are actually evalu-
atable programs.

Tests For Binary Modes 299

Tests For Display Formats:

DIGS? @3483)

« 33 FS? 34 FS? 2 =
+ 33 FS? 4 ¥ + 36
FS? 8 ¥ + »

ENG? 23389)
49 FS? 58 FS? AND

R

FIx? @3493)

&

49 FS? 5@ FC? AND

FMT? (93483)

{ STD SCI FIX ENG
49 FS? 2 * 58 FS?
1 + GET »

R

+ W

SCI? @3389)
« 49 FC? 58 FS? AND

300 Chapter 10: Programming Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

STD? @3444)

« 49 FC? 28 FC? AMD
»

These tests all return information about the current
numerical display format. FIX?,SCI?, ENG? and
STD? allreturn eithera 1 (true) or@ (false), indicating
whether the tested-for mode is active. DIGS? returns
the number of displayed digits in the current mode (8 is
returned for STD mode). FMT? returns the current
mode's name: FIX, SCI,ENG or STD.

4 FIX DIGS? ult: 4. 68889

STD DIGS? Result: 8

11 SCI FMT? Result: SCI

8 ENG STD? Result: 8. 00BBBHBBED
3 SCI sCI? Result: 1.B0@B8EHD

None.

Level1-FI®X? SCI? ENG? andSTD? returnareal
number, either a 1 or@ —the result of the test. DIGS?
returns a real number, between @ and 1 1 — the number
of display digits. FMT ? returns a program object, either
FIX,SCI,EMG, or STD —the current display format.

None.

The evaluable objects returned by F MT 7 take the number
of display digits from the stack (except for STD).

Tests For Display Formats 301

Tests For Object Types:

ALGB? (13821)
« TYPE 9 == »

ARRY? (33313)

« TYPE { 3 4 > SWAP
POS »

BNRY? (14804)
« TYFE 1@ == »

CARY? (134386)
TYPE 4 == »

R

CPLX? 13332)
« TYPE 1 == »

LIST? 13634)
TYPE 5 == »

R

302 Chapter 10: Programming Utilities

LOCL? (133308)

« TYPE 7 == »
NAME? (13172)
« TYPE 6 == »
PRGM? (13332)
« TYPE 8 == »
RARY? (13633)
« TYPE 3 == »
REAL? 13178)
« TYPE 8 == »

STR? (122608)
« TYPE 2 == »

Summary: These routines are all tests that return true or false (1
or@)based on whether or not the object is of the type for
which the test is being made:

Tests For Object Types 303

Routine Object Type Being Tested For

ALGB? Algebraic Object
ARRY? Array or Vector
BNRY? Binary Integer
CARY? Complex-Valued Array
CPLR? Complex Number
LIST? List
LOCL? Local Name
NAME? Global Name
FRGM?? Program Object
RARY? Real-Valued Array
REAL? Real Number
STR? Character String
Examples: "HI" STR? Result: 1
STD <1,8> CPLX? Result: 1
« STD » RERL? Result: 8

Inputs: Level 1 — any object

Outputs: Level 1 —areal number, either a 1 or 0 —the result of the

test.
Errors: Too Few Argument s willoccur for an empty stack.
Notes: None.

304 Chapter 10: Programming Utilities

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

Waits For Keystrokes:

GETK 32633
« DO UNTIL KEY END »

KEYWAIT 23930)

« DO UNMTIL KEY END
DROF »

GETK pauses program execution to get a key. Once a
key is pressed, the key name is returned and the pro-
gram continues. KEYWRAIT waits for a keystroke be-
fore continuing, but does not return a value.

GETK (9 Result: "9"
KEYWRIT Result: (wait)
None. After the routines are invoked, any keystroke

other than will be accepted.

Level 1 - (GETK only) a character string — the name of
the key pressed.

None.

Pressing will interrupt either routine, potentially
leaving a B on the stack.

Waits For Keystrokes 305

Programming Utilities: A Discussion

The Main Idea

Most of these tools are in the Programming section because they are
useless in manual calculations. For instance, how often would you
need a program to tell you the type of object in stack Level 1 when you
can look right at it and see for yourself? On the other hand, this sort
of tool is very useful within a program to give it the intelligence to
determine such conditions — what the Level 1 object is, or what the
current display mode is, etc.

There are also some tools here that give you new ways to control
program evaluation, control calculator states and gather user input.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that
is listed in your current PATH. The easiest way to ensure that this is
the case is to place each of the programs in the HOME directory — the
ultimate parent of all other directories.

306 Chapter 10: Programming Utilities

Some Observations

Perhaps here more than in any other chapter of this book the use of the
tools is governed by your own preferences. Most of the tests and flag
controlling commands are very short programs, barely necessary un-
less you can't remember the number of the beeper control flag, or the
type number of a character string. Their (hopefully) meaningful
names and one-keystroke entries are timesavers. And if you design
programs that use them heavily, you might save some memory, also.

You'll probably find that in most situations, the programs you write are
independent of the current calculator state. It is easy to save the cur-
rent state, set a new state for the duration of the program, then reset
the previous state before leaving. Take SIP as an example:

€« »NUM IP »NUM RCLF
SWAP STD +STR SWAP
STOF »

RCLF recalls the states of all the system and user flags. Then various
other modes may be safely set by the program (in this case STD), since
they will be undone afterward, by a restoration of the original flag
settings with STOF. This is how you can make any program mode
independent — so that it will work the same regardless of what modes
it encounters as it begins execution.

Note, however, that you can also write programs that work differently
with different system settings. For example, you might have a pro-
gram calculation whose accuracy varies according to the current dis-
play setting, or which gets different results in degrees orradians mode.
With that in mind, some of the more useful routines in this section are

Discussion 307

those that allow you to direct program control dynamically. For
example, GETK and KEYWAIT allow programs to interact with the
user, taking actions based on the identity of a single keystroke.

OM (after the HP-BASICON. . .GOTO. . . statement) simply evaluates
an argument and uses the integer result to select and evaluate an ob-
ject from a list. Since the objects in the list may be programs or names
of procedure objects, ON is a conditional evaluation based on an index.

The CASE command is similar, but takes an argument and compares
it with a list of values. If it matches one of the values, the returned
index is used to select an object to be evaluated from a second list. If
the argument matches none of the options, a catch-all object is
evaluated. Thus, CASE is similar to the following Pascal construct:

CASE object IN
1 : first_condition;
2 : second_condition;
3 : third_condition;
OTHERWISE not_1 2 or 3;
END;

Errors And Error Recovery

Each of these tools is designed to generate an error with invalid input,
rather than to continue and possibly generate bad output. When er-
rors do occur, the stack is usually disrupted, and since the only way to
restore a disrupted stack is with the UNDO command, it's wisest to
activate UNDO mode (in the MODES menu) when using these utilities.

308 Chapter 10: Programming Utilities

How You Might Use These Utilities

GETK

Because GETK returns a string object to the stack, a program that
uses GETK can use the return value in several ways to provide condi-
tional action. First, using CASE, you could do this:

GETK € "LEFT" "RIGHT" "UP" "DOWN" 2
{ GOLEFT GORIGHT GOUP GODOWM > 'IDLE' CARSE

But consider this simpler and faster approach:

GETK "GO" SWAFP + STR=+

Or, you could provide the ' IDLE ' option in the following way:
GETK "GO" SWAP + STR+ DROFP IDLE

Thus, for example, if you press (3), STE+* evaluates to ' GO "' which
(hopefully) does not name an object and therefore the name is left on
the stack. The program continues, DROP ping the name and running
the IDLE routine. Beware of possible errors though: After STR+
evaluates the named routine, DROP expects to drop something and
IDLE is evaluated regardless.

Discussion 309

Now, if all of the called routines were designed to return a 1 to indicate
their completion, the following routine could be used:

GETK "GO" SWRP +
STR» IF 1 SAME NOT
THEN IDLE EMND

or:

GETK "GO" SWAP +
STR+ 1 SAME MNOT
"IDLE"' IFT

(As you can see, the only real difference here is the form of the I F test
being used.)

Type Testing

ON and CASE provide convenient means of branching — choosing at
"run-time" among several program options, based upon values arrived
at during the program. A common example of this is testing a pro-
gram's arguments to see what TYPE they are and processing differ-
ently based on the object. For example:

<« DUP TYPE L B 1 2 3
{ Real Complex String >
"Bad Type" CRSE =»

310 Chapter 10: Programming Utilities

Here is a routine that decomposes "decomposable” objects, but does

nothing for other types of objects. Note that there is one list element
for every possible value returned by TYPE.

0BJ» (€84234)

« DUP TYPE 1 + { « »
€« C3R » « STR* » «
ARRY+> DROP » « ARRY=
DROP » « LIST+ DROP
IS NS EEEE X

» 3 0N »

Or, to avoid having to provide a list element for every TYPE value, you

can use an I F test to restrict the range:

Discussion

OBJZ2» (983461)

« DUP TYPE IF DUP B
> OVYER & < AND THEN
{ €« C*R » €« STR>» » «
ARRY+ DROP » &« ARRY=
DROP » « LIST» DROP

» > OM ELSE DROP END
®

311

ADELC
ADELR
REX
REXC
REXR
AGETC

AGETR
AINSC
AINSR
AI+N
ALGB?
ANG?
AN=+I
AOP
AOPC
AOPR
APOS
APUTA
APUTC
APUTR
AR1D?
AR2D?
AREY
ARPT
ARRY?
ARY»C

ARY=R

ASORT
ASRTC
ASRTR
ASUB
AL
A2V
BASE?
BEEP?
BIN?

312

125-127

125-127, 157

128-131

130-131

130-131

110-111, 115, 156-
157, 282

110-111, 115

182-133, 157

132-133

144-145

302, 304

295

144-145, 150-151

146-149

146-149

147-149

150-151

134-135

136-137, 157

138, 136-137, 139

296-297

296-297

140-141

112

302, 304

116,130-131, 143,
146, 149

119,130-131, 143,
147, 149

140-141, 157

142-143, 156

142-143

114-115

122,194

96-97, 102

298-299

293

298-299

Utilities Index

BNRY?
BPOFF
BPON
BRERK
CARD
CARY?
CASE
CNCTZ
CPLX?
CR?
CROFF
CRON
CROS
C+ARY

Cay
DCTR
DEC?
DEG?
DIGS?
DIM?
DINV
DIR?

DIsSPg
DLJ
DPAT
DPUT
DRJ
DSORT
DSP

bUDL
ENG?

302, 304

293

293

191

65

302, 304

288, 308-310

282

302, 304

294

294

294, 283

105

117-118,130-131,
142-143, 1486,
149

98-99, 105

257-259

298-299

295

300-301

296-297

264-265

240,233-235,237-
239, 241, 243,
245, 247, 250-
251

191

257-259

262, 161, 263

260-261

257-259

232

228

244,233-234,238-
239, 245-246,
250

264-265

300-301

ENG 218-219

ERRBP 291

EXCH 22, 42

FADD 64

FCTR 50-51, 61, 63

FIND 245-246, 249, 252

FIX? 300-301

FLTR 198-199,229,233-
234, 245-246

FMT? 300

GCD 46-47, 63

GETK 305, 309-310

GOTO 247,235,237, 250-
252

HEX? 298-299

IJK» 94, 103-105

IRAND 54-55, 65-66

IRND 56, 67

KILLD 233-234,238,249,
253

KEYWARIT 305

LCM 46-47, 63

LCUT 200,206,208, 210-
211

LDEL 202-203, 216-217

LEX 204, 228

LINE 266-267,269,271,
281

LINS 206-208, 227

LIST? 302,304

LOCL? 303-304

LOP 220, 149, 189,214-
215, 221, 228,
232

LPUT 206-208

LREY 209

LROT 210-211

LRPL 212

LRPT 197

Chapter I: Index And Other Information

LSORT 214,189,215,228,

232

LZAP 216-217

L»A 123, 195

MEDW 157

MEM~ 292

MERGE 30,43

MOVE 235-237, 250, 253

MT? 242-243, 250-251

NAME? 303, 304

NTYPE 248, 250-251

0BJ> 311

0BJ2» 311

ocT? 299

ON 290, 308, 310-311

PCOL 282-283

PLACE 66

PLOT 268-269, 272

POLYL 270-271,282

POP 222-223

PRCTR 274-275,283

PRDMW 277-278

PRGM? 303-304

PRINY 277-278

PRLJ 274-275, 283

PRMS 52, 61,63

PRPAT 279, 161, 277-278

PRPUT 276

PRRJ 274-275, 283

PRUDL 277-278

PSET 272, 268

PTEST 66

PUSH 222-223

PUTIT 65-66

PXDM 273, 266-267, 283

QASRT 24-25, 4042, 140,
214-215, 249

RAD? 295

RARY? 303-304

Utilities Index

RDC
REAL?
REV3
REVYN
RMD
ROLDN
ROLLN
RRAND
RRND
R>ARY

R2e
R>i
R»®
SCI?
SCTR

SCUT

SDEL
SINS
SIP
sSLC
SLJ

SPADL
SPADR
SPAT

SPUT
SREV
SRJ

SROT
SRPL

63

303-304

26, 41-42

27,42

48-49, 63

28-29, 42

28-29, 42

54-55, 65

58-59, 65-67, 292

120-121, 130-131,
142-143, 147,
149

70, 84-86

71, 82, 84-87

72, 82, 84-88

300-301

180-182, 191,257,
259, 274-275

167,170-171,175-
176, 189, 264-
265, 277-278

168, 279

170-171

160, 283, 307

172

180,170-171,181-
183

184-185

184, 170-171, 185

161, 187,260-261,
277278

170-171, 260-263

174, 189

181-183,257,274-
275

175

176-177, 189-191

SRPT 162, 180-182,184-
185, 264-265,
276, 283

ST.0OP 34

STACKEM 238,235,237-239,
249-250, 253

STADD 32-33

STD? 301

STDIV 3233

STET? 36,38

STGE? 36,38

STGT? 37-38

STG» 164

STLE? 37-38

STLT? 37-39

STMUL 32-33

STNE? 36,38

STOST 34-35,43

STR? 303-304

STSUB 3233

suc 173

SWAPN 29

SZ2AP 177

SZAPL 178-179

SZAPR 178-179

TOSS 65

UNQ 218-219, 223

VA 96-97, 102, 282

VaC 98-99, 105

e 73, 75-76, 82, 84,-
88

2D 92-93, 105

»3D 92-93, 105

313

PO Box 1928 SOLVE and INTEGRATE Coruvallis, OR 97339 (503) 754-1207

What Is The Users' Library?

In 1974 Hewlett-Packard established a Users' Library to provide
HP calculator users with useful and easily available programs. Users
(like you) submitted programs on topics ranging from technical solu-
tions to business and entertainment. They were reviewed and, if
accepted, made available to other users for the cost of reproduction.

Who Is Solve And Integrate?

In February of 1988, Solve and Integrate took over management of
the Users' Library. Prior to founding Solve And Integrate, John Loux,
worked at Hewlett-Packard for over 5 years, reviewing programs and
providing technical support. Though not affiliated with Hewlett-Pack-
ard, Solve And Integrate aims to provide you the same fine service, plus
new and exciting products and services in the future.

How Does The Library Work?

Over 9,000 programs are described in three catalogs (HP-41/71/75;
HP-67/97; and Series 80), sold separately or with membership, which
includes a current catalog, software credit toward Library programs,
and a subscription to the quarterly newsletter. Also available are HP
calculators and accessories (peripherals, modules, Solution Books,
Application Pacs). HP-28S memberships include a collection of pro-
grams and a subscription to the quarterly newsletter.

The Library And You

It's your Library, and to keep pace with new products, it needs new
program submittals — especially for the relatively new machines like
the HP-28S and HP-42S. So if you've written programs you're proud
of, send them in and help build the Library of the future!

PO Box 1928 SOLVE and INTEGRATE Corvallis, OR 97339 (503) 754-1207

For the HP-28S:

____ Please send me a list of available HP-28S software.
I'd like to be a Users' Library member. Annual membership includes a
collection of programs and a quarterly newsletter.
Enclosed is $25 (US and Canada)
Enclosed is $40 (All other countries)

I have some software to submit. Please send me a program submittal package.

For the HP41, HP-71B, HP-75:

Please send me a list of current catalogs.
Enclosed is $10 (US and Canada)
Enclosed is $15 (All other countries)

I'd like to be a Users' Library member. Annual membership includes a
selection of catalogs, $20 credit toward Library software, and a quarterly
newsletter.

Enclosed is $25 (US and Canada)

Enclosed is $40 (All other countries)

I have some software to submit. Please send me a program submittal package.

For the Series 80:

Please send me the current software catalog.
Enclosed is $5 (US) or $10 (Canada)
Enclosed is $15 (All other countries)

I'd like to be a Users' Library member. Annual membership includes a
catalog, $25 credit toward Library software and a quarterly newsletter.
Enclosed is $25 (US and Canada)
Enclosed is $40 (All other countries)

I'have some software to submit. Please send me a program submittal package.

(Prices are subject to change without notice.)

OVER =

General Information: Solve and Integrate will translate any exist-
ing Library program, write new software to your specifications, or
print HP-41 barcode for your HP-41 program.

Please send me information on Custom Programming.
Please send me information on Custom Barcode.

I would like to ask or comment about something:

Please make your check payable to Solve and Integrate Corp.,or

VISA or MasterCard # Exp.
Your signature
Phone ()
Name
Address
City State Zip
Return form to: Solve and Integrate
P.O. Box 1928

Corvallis, OR 97339
(503) 754-1207

Are You A Programmer Or An Author?

If you have talents for programming or writing that you would like to
share with others, then consider publishing your work:

¢ If you have written and completely documented software for any
Hewlett-Packard handheld calculator/computer, then send it with
a self-addressed stamped envelope to:

Solve and Integrate Corporation
Attention: Submittals Editor
P.O. Box 1928
Corvallis, Oregon 97339-1928 U.S.A.

Depending upon the scope of the software you've developed, you
could be considered for:

(i) Contributor status in Solve and Integrate's Users' Library;
(i) Co-author status for a "Software Power Tools" book.

¢ Ifyouhave a manuscript or proposal for a book that teaches readers
concepts and problem-solving in some area of math, science or tech-
nology, then send it with a self-addressed, stamped envelope to:

Grapevine Publications, Inc.
Attention: Submittals Editor
P.O. Box 118
Corvallis, Oregon 97339-0118 U.S.A.

Here are some of our other great books:

An Easy Course In Using The HP-28S

If you're looking for a clear, straightforward
explanation of the powerful HP-28S, then this
is your book! Authors Loux and Coffin sort
through the myriad features of this machine,
giving you the pictures and the practice you
need to make the HP-28S your favorite calcu-
lating tool.

You'll learn about these and more:

¢ The Display ¢ Menu keys
e Posting Memos + Keyboards
¢ Real Numbers e Flags
e Strings e Lists

¢ Complex Numbers ¢ Matrices
¢ Algebraic Objects e Vectors
¢ Programs

¢ User Defined Functions

HP-28S Software Power Tools:
Electrical Circuits

Here's the solutions book you've been waiting
for! First, youbuild a friendly and easy-to-edit
description of your circuit, which may have any
of the following elementsin series or in parallel:

¢ Resistors ¢ Capacitors

¢ Inductors ¢ Impedences
¢ Independent Voltage Sources
¢ Independent Current Sources

You can do either mesh or nodal analysis,
construct general networks or ladders, and use
a host of small utility routines to do side calcu-
lations as you wish. And naturally, you can
vary the frequency of your sources and plot
results, either on the display or the infrared
printer. Every routine is explained, and every
piece of the program is documented!

And we have Easy Courses and other related books on many different
HP calculators. See our order blank (opposite page, here) or contact us

for a free catalog!

Grapevine Publications, Inc.
P.O. Box 118
Corvallis, OR 97339-0118
(503) 754-0583

To Order:

Call our Toll-Free for the location of the GPI dealer nearest you, OR
Charge the books to VISA or MasterCard, OR
Send this Order Form to: Grapevine Publications, P.O. Box 118, Corvallis, OR 97339

copies of An Easy Course In Using The HP-42S ...ccceee. @ $22.00 ea.= $
copies of An Easy Course In Using The HP-32Suwamiy e @ $22.00ea.= $ __
copies of An Easy Course In Using The HP-22Sccceee.. @ $22.00 ea.= $

copies of An Easy Course In Using The HP-19B ...cccceveeee @ $22.00 ea.= $
copies of The HP-19B Pocket Guide: Just In Case....... @$ 500ea.=$
copies of An Easy Course In Using The HP-17B....ccceeee. @ $22.00 ea.= $
copies of The HP-17B Pocket Guide: Just In Case @$ 500ea=$
copies of The HP Business Consultant Training Guide (18C). @ $22.00 ea.= $
copies of An Easy Course In Using The HP-12Cccccceen. @$22.00ea.= $
copies of The HP-12C Pocket Guide: Just In Case @$ 5.00ea.= $
copies of An Easy Course In Using The HP-28S ...ccceeeeee. @ $22.00 ea.= $

copies of HP-28S Software Power Tools: Utilities..cee.. @ $18.00 ea.= $

copies of HP-28S Software Power Tools: Electrical Circuits.. @ $18.00 ea.= $
copies of An Easy Course In Using The HP-27S ...c.ceceee.. @ $22.00 ea.= $
copies of An Easy Course In Programming The HP-41... @ $22.00 ea.= $
copies of Computer Science on Your HP-41(Using Advantage) ... @3$15.00ea.= $
copies of Using Your HP-41 Advantage: StaticS....ccc.. @ $12.00 ea.= $
copies of An Easy Course In Using The HP-16C ...cccceeeee. @ $22.00 €2.= $

T

(Prices valid through February 5, 1990) Subtotal = $
SHIPPING INFORMATION:
For orders less than $10.00 ADD $1.00 $
or
For all other orders — Choose one:Post Office shipping and handling.... ADD $2.50 $
(allow 2-3 weeks for delivery) or
UPS shipping and handling............... ADD $ 3.75 S
(allow 7-10 days for delivery)
International Mail Surface Post $4.50.......... cessasssesssssssssascscss ADD $ 4.50 $__
(allow 6-8 weeks for delivery)

Air Parcel (Please contact us for correct amount or add $10 per book to Canada and Mexico. Add $25 per book
to all other countries. We will refund any cash excess, or charge exact shipping cost to credit cards. Allow 2-3 weeks delivery)

TOTAL AMOUNT: > 8

PAYMENT:

Your personal check is welcome. Please make it out to Grapevine Publications, Inc. OR
(International Check or Money Order must be in U.S funds and drawn on a U.S bank)

Your VISA or MasterCard #: Exp.date:
Your signature: Phone: ()
Name
Shipping Address
(Note: UPS will not deliver to a P.O. Box! Please give a street address for UPS delivery.)
City State Zip
For Orders Only

call: 1-800-338-4331

(In Oregon 754-0583)

Reader Comments

We here at Grapevine love to hear feedback about our publications. It
helps us write books tailored to our readers' needs. If you have any
specific comments or advice for our authors after reading this book,
we'd appreciate hearing from you!

Which of our books do you have?

Comments, Advice and Suggestions:

May we use your comments as testimonials?
Your Name: Profession:
City, State where you live:

How long have you had your HP calculator?

Please send Grapevine Catalogues to the following persons:

Name

Address

City State Zip

Name

Address

City State Zip

HP-28S Software Power Tools: Utilities

Here's a must-have collection of HP-28S tools — program routines
to make your own programming go more quickly and smoothly!

You get ten different sets of "canned” solutions, ready for "off the
shelf" use: Utilities for the stack, real numbers, complex num-
bers, vectors, arrays, strings, lists, directories, output, and
program development.

Each routine is documented, and there's a discussion at the end of
each set, to give you some examples of how to use those utilities.
You'll find this book to be a great collection of advice, good habits
and sound programming principles. Whether you're just starting
to program or are experienced already, these all-purpose tools
belong in your HP-28S and under your fingers — don't miss them!

FROWTHE PRESS AT
GRWEVINE. PUBLICATIONS, INC,

%2 P.O.Box 118 ¢ Corvallis, Oregon 97339-0118 ¢ U.S.A. * (503) 754-0583

ISBN 0-931011-27-2

0 "'112841M00027%"

HP Part # 92220Y

	Cover
	Contents
	0. Introduction To This Book
	What You "Gotta" Do
	What You "Don't Gotta" Do
	Reminders: Some HP-28S Basics
	Notes On Using This Book

	1. Stack Utilities
	Contents List
	The Program Routines
	Discussion

	2. Real Number Utilities
	Contents List
	The Program Routines
	Discussion

	3. Complex Number Utilities
	Contents List
	The Program Routines
	Discussion

	4. Vector Utilities
	Contents List
	The Program Routines
	Discussion

	5. Array Utilities
	Contents List
	The Program Routines
	Discussion

	6. Character String Utilities
	Contents List
	The Program Routines
	Discussion

	7. List Utilities
	Contents List
	The Program Routines
	Discussion

	8. Directory Utilities
	Contents List
	The Program Routines
	Discussion

	9. Output Utilities
	Contents List
	The Program Routines
	Discussion

	10. Programming Utilities
	Contents List
	The Program Routines
	Discussion

	I. Index And Other Information
	Utilities Index
	All About Solve And Integrate Corporation
	Comments And Order Forms
	All About Grapevine Publications, Inc
	Comments And Order Forms

