
TIME AND DATE

FUNCTIONS

FOR THE

HP-28S

by Kevin P. Jessup

Copyright 1989

Kevin P. Jessup

All rights reserved

DISCLAIMER

The material in this manual is provided AS IS and published without representation or

warranty of any kind. Neither the publisher nor the author shall have any liability,

consequential or otherwise arising from the use or misuse of any of the material contained

herein.

COPYRIGHT NOTICE

The material in this manual may not be duplicated by electronic, optical, photographic or

any other means without the written consent of the author. Duplication without such

consent is subject to criminal prosecution.

INTRODUCTION

The HP-28S is undoubtedly the most powerful handheld calculator on the market. As a

previous HP-41CX owner however, | do miss the input/output capability and the time and

date functions. This software is an attempt to implement some of the time, date and

alarm functions that were available for the HP-41CX as well as some other useful time and

date functions and general purpose utilities.

Approximately 35 programs and utilities are described in this manual. The documentation

describes their function, the stack input and resulting output. Like most programs written

for the HP-28, these are highly structured and all programs in the package should be used

together within a single directory unless you choose to locate certain general utilities in an

upper level directory.

The first section of the manual is devoted to general purpose utilities. | suggest that the

programs be placed in the HOME directory as they will then be available for use by other

programs besides those contained herein. Section two is concerned with general

purpose time and date utilities. You may wish to place some of these in the HOME

directory as well if you believe they will be of use to you in other programs.

Sections three and four are devoted to the time/date programs and the alarm programs

respectively. All of these routines should be located in the same subdirectory. You will

probably want TIME to be the name of the subdirectory. If you plan on using alarms, you

will have to load all the programs in this manual.

These programs are too lengthy to be of any value on the HP-28C. Collectively, the

programs will require about 6500 bytes of memory. A basic time function for the HP-28C

is described in the book CUSTOMIZE YOUR HP-28 by W.A.C. Mier-Jedrzejowicz.

This manual assumes a solid understanding of the basic HP-28S functions and program

entry. An understanding of time and date mathematics or extensive HP-28S

programming experience is not required. Books on astronomy and computer science are

available if you wish to further your understanding of Julian and Gregorian calendars or

other time and date conversions. These programs should also serve as a solid base if

you desire to further their capabilities. If you are not experienced in HP-28S program

entry, read the owners manual before attempting to enter these programs.

GETTING STARTED

The programs will be described from the bottom up in order to provide a better

understanding of just how the upper level programs function. Also, the upper level

programs can not run without the low level subroutines, which is why they are presented in

this order. If you prefer, just key them all in and run the CLOCK function. If you did

everything right, the day of the week, date and time will be displayed on your HP-28S.

That assumes of course that you set the date and time first using SETDT.

It is however, highly unlikely that you will load all programs without any errors. It is

recommended that you key in each program and use the given example to verify its

operation before proceeding with the entry of the next program. Unless otherwise

specified, each program is required for both the time/date and alarm functions. Please

note these programs require that the LAST option be enabled.

Do not locate programs that are associated with the manipulation of lists or arrays in an

upper level directory. Keep all such programs and the global variables that they operate

on in the same directory as the programs that call them as subroutines. For example, the

DAT—S (date to string) program uses the MOY (month of year) list and both should be

located in the same directory that contains the CLOCK program (CLOCK calls DAT—S

which requires MOY). If this is confusing, just keep all programs in this manual in a

subdirectory called TIME and no problems will occur.

Each program has a specific name. Do not change the name of the program. If the

name is changed, other programs that call the program as a subroutine will not be able to

find it.

A listing for each program or variable is provided. Key in the operations after the

"Listing:"” header in the documentation.

Beginning HP-28S programmers will undoubtedly be confused by the presence of a colon

string (”:") within some of the programs here presented. The colon character does not

appear on any of the HP-28S keys. The following method can be used to load colons or

any other non-keyable character into an HP-28S program.

1.) Determine the number of colons required in the program.

2.) Place 58 in level one. Execute the CHR command. A ”":” string should now

be on level one.

3.) Duplicate the colon string on the stack so there are as many colon strings as

there are colons in the program.

4.) Use + to sum all the strings together.

5.) Edit the string of colons on level one.

6.) Go in and out of the editors insert mode to build your program around the

colon string. Break up the colon string as needed to move the individual

characters to wherever they are needed in the program.

7.) Hit ENTER to terminate the edit session.

GENERAL PURPOSE UTILITIES

Name: PAD

Type: Program

Function: Pad string with spaces. Left or right justified.

Listing: << — j << OVER SIZE - IF DUP 0 > THEN 1 SWAP START " " IF j

THEN SWAP END + NEXT ELSE DROP END >> >>

Input: Level 3: text string

Level 2: desired length real number

Level 1: n real number

Right justified if n=1, left justified if n=0.

Output: padded text string

Example: Pad the string "TEST"” so it totals 15 characters and is right justified.

Level 3: "TEST”

Level 2: 15

Level 1: 1

PAD

Level 1: TEST”

Notes: String is unchanged if string length is greater than or equal to the desired

length.

Name: CENST

Type: Program

Function: Take a string from level 1 and append spaces to the front so when displayed

on the LCD it will appear centered on the screen.

Listing: << DUP SIZE 2 / 11.5 + IP 1 PAD >>

Input: Level 1: text string

Output: Level 1: text string

Example: Level 1: "ABCDEFG”

CENST

Level 2: ” ABCDEFG”

Name: PRMT

Type: Program

Function: Prompt user for input using default value and text string on stack.

Listing: << DEPTH — str dep << CLLCD str 4 DISP HALT IF DEPTH dep ==

THEN SWAP DROP END >> >>

Input: Level 2: Default value any object

Level 1: Prompt string

Output: User is prompted with the default value in level one. This value may be edited

or replaced. A new object may simply be entered leaving the default object

one level above it. The user MUST press CONT when ready to proceed. Do

not DROP the default value without replacing it with an alternate value.

Notes: This program is used by the ALARM routines only.

Name: KEYW

Type: Program

Function: Wait for a key hit and return its text string value.

Listing: << DO KEY UNTIL END >>

Input: none

Output: Level 1: key string

Example: KEYW

User hits the up arrow.

Level 1. "UP”

Notes: This program is used by the ALARM routines only.

Name: TONE

Type: Program

Function: Sound a beep sequence.

Listing: << 1 5 START 2000 .02 BEEP 4000 .01 BEEP NEXT >>

Input: none

Output: tone sequence

Notes: This program is used by the ALARM routines only.

Name: KYWT

Type: Program

Function: Wait for key with TONE.

Listing: << DO TONE 1 WAIT UNTIL KEY END >>

Notes: Performs like KEYW above but beeps tone till key hit. This program is used

by the ALARM routines only.

Name: DLE

Type: Program

Function: Delete specified element from list.

Listing: << OVER RCL SIZE - n e s << IF e s < THEN 1 e FOR i n i GF

NEXT DROP IF s e > THEN e 1 + s FOR i n i GET NEXT END s

- —=LIST n STO END >> >>

Input: Level 2: "NAME'’ list name

Level 1: n element number to delete

Output: Modified list stored in memory.

Example: List named TEST contains: { "HELLO” (2,4) 3.14 }

Level 2: 'TEST’

Level 1: 2

DLE

List named TEST contains: { "HELLO” 3.14 }

Notes: List must be stored in the directory from which you execute the program. This

program is used by the alarm routines only.

TIME AND DATE VARIABLES AND LISTS

Name: TPAR

Type: Binary integer

Function: Clock counter comparison value.

Notes: This variable is used to by the JDATE routine to calculate the current Julian

date from the current clock counter value. It is set to its initial value by the

SETDT function. Thereafter, it is never modified. This variable will be created

when SETDT is run for the first time. SETDT must be run before the time/date

or alarm routines can be used!

Name: MOY

Type: List

Function: Month of year text string list.

LiSting: { !lJan ” ” Feb " ” Marl! "Apr!l "May ” "Jun"

"JUI" "Aug" "Sep” "OCt" "NOV" ”Decn }

Notes: This list is used to get a textual representation of the month based on a real

number.

Name: DOW

Type: List

Function: Day of week text string list.

Listing: { "Sunday” "Monday” "Tuesday” "Wednesday”

"Thursday” "Friday” ”"Saturday” }

Notes: This list is used to get a textual representation of the day of week based on a

real number.

Name: CLK12

Function: Sets 12 or 24 hour time display format.

Type: Real number

Notes: Create this variable and load it with O for 24 hour format or 1 for 12 hour

AM/PM format.

TIME AND DATE CONVERSION FUNCTIONS

Name: —DMY

Type: Program

Function: Convert compacted Day Month Year to expanded Day Month Year.

Listing: << IP LAST FP 100 * IP LAST FP 10000

Input: Level 1: DD.MMYYYY real number

Output: Level 3: DD real number

Level 2: MM real number

Level 1: YYYY real number

Example: Level 1: 27.111956

—DMY

Level 3: 27

Level 2: 11

Level 1: 1956

Name: DMY—

Type: Program

Function: Convert expanded Day Month Year to compacted Day Month Year.

Listing: << 10000 / + 100 / SWAP IP + >>

Input: Level 3: DD real number

Level 2: MM real number

Level 1: YYYY real number

Output: Level 1: DD.MMYYYY real number

Example: Level 3: 27

Level 2: 11

Level 1: 1956

DMY—

Level 1: 27.111956

Name: TM—=S

Type: Program

Function: Convert time from real number format to text string.

Listing: << RCLF 0 — time f pm << 9 FIX IF CLK12 THEN IF time 12 = THEN

1 'pm’ STO IF time 13 = THEN time 12 - ’'time’ STO END ELSE IF

time 1 < THEN time 12 + 'time’ STO END END END time 100 + —STR

DupP 2 3 SUB ":” +0OVER 5 6 SUB + ":” + SWAP 7 8 SUB + IF

CLK12 THEN IF pm THEN " PM” ELSE " AM” END + END f STOF >> >>

Input: Level 1: HH.MMSS real number

Output: Level 1: "HH:MM:SS" string

Example: Level 1: 17.3001

TM—S

Level 1: "05:30:01 PM” or "17:30:01" based on CLK12 value

Name: DAT—S

Type: Program

Function: Convert date from real number format to text string.

Listing: << RCLF 0 FIX SWAP —DMY 10000 + —=STR 2 5 SuB 3 ROLLD "-"

'MOY’ 3 ROLL GET + "-" + SWAP 100 + —=STR 2 3 SUB SWAP +

SWAP + SWAP STOF >>

Input: Level 1: DD.MMYYYY real number

Output: Level 1: "DD-Mmm-YYYY"” string

Example: Level 1: 27.111956

DAT—S

Level 1: "27-Nov-1956"

-10-

Name:

Type:

Function:

Listing:

Input:

Output:

Example:

G—JL

Program

Convert Gregorian date to Julian date.

<< = dmy<<<IFm3<THEN M 12 + 'm’ STOy 1 - 'y’ STO END

IF IF 1582 y > THEN 0 ELSE IF 1582 y< THEN 1 ELSE IF 10 m <
THEN 1 ELSE IF 10 m > THEN O ELSE IF d 15 < THEN 0O ELSE 1 END

END END END END THEN y 100 / IP DUP 4 / IP 2 3 ROLL- + ELSE O

END 365.25 y * IP + 30.6001m 1 + * IP + d + 1720994.5 + >> >>

Level 3: DD.ddddd real number

Level 2: MM real number

Level 1: YYYY real number

Level 1: DDDDDDDD.ddd real number

Find the Julian date for April 21, 1989 at 3:15:00 PM.

Place 3.1500 on the stack. Then convert the time to 24 hour format by adding

12 to the time. Then convert HMS to HRS by using the HMS— function

available in the TRIG menu. Divide by 24 to get the fractional portion of the

date. Add 21, the current day of the month. You now should have

21.6354166667 on the stack. Continue as shown below...

Level 3: 21.6354166667

Level 2: 4

Level 1: 1989

G—JL

Level 1: 2447638.13542 (the Julian date)

-11-

Name:

Type:

Function:

Listing:

Input:

Output:

Example:

JL-G

Program

Convert Julian date to Gregorian date.

<< .5 + DUP IP SWAP FP 0 0 0 O —- i f c d e g << IF i 2299160 >

THEN i 1867216.25 - 36524.25 / IP DUP 4 / IP - 1 + i + ELSE i END

1524 + '¢c’ STO ¢ 122.1 - 365.25 / IP 'd” STO d 365.25 * IP 'e’ STO

c e - 306001 / IP 'g” STO c e - f + g 30.6001 * IP - IF g DUP

13.5 < THEN 1 ELSE IF g 13.5 >THEN 13 ELSE O END END - IF DUP

2.5 > THEN 4716 ELSE IF DUP 2.5 < THEN 4715 ELSE O END END d

SWAP - >> >>

Level 1: DDDDDDDD.ddd real number

Level 3: DD.ddddd real number

Level 2: MM real number

Level 1: YYYY real number

Find the Gregorian equivalent of Julian day number 2435804.5

Level 1: 2435804.5

JL—=G

Level 3: 27

Level 2: 11

Level 1: 1956

-12-

UPPER LEVEL TIME AND DATE PROGRAMS AND UTILITIES

Name: RSCLK

Type: Program

Function: Read system timer.

Listing: << #11CAh SYSEVAL >>

Input: none

Output: Level 1: count 48 bit binary integer

Notes: For version 2BB of the HP-28S. If your machine has a different SYSEVAL call

for the system clock, modify this routine with the corresponding address. See

the table below.

ROM Version SYSEVAL ADDRESS

1BB #123E hex

1CC #1266 hex

2BB #11CA hex

New Version #7777? hex

The binary word size of the HP-28S must be at least 48 bits in length for this

function to return an accurate value. Note that the upper level time and date

routines that make use of this function take care of that for you. You can find

the version of your HP-28 by placing #Ah on the stack and executing

SYSEVAL. The system timer provides the time standard for all the time date

and alarm functions. The programs in this manual will not run if this routine

does not return the system timer value. The author is not responsible for

changes to the HP-28S internal program code that result in a timer SYSEVAL

address other then those listed above.

Name: SSCLK

Type: Program

Function: Continuously display system timer.

Listing: << RCLF 64 STWS CLLCD DO RSCLK 1 DISP UNTIL KEY END DROP

STOF CLMF >>

Input: none

Output: Timer count on line 1 of LCD display.

Notes: Hit any key except ON to exit. This routine is not required by any of the time,

date or alarm functions.

-13-

Name: LPYR

Type: Program

Function: Determines if year is a leap year.

Listing: << =+ y <<y 4 MOD NOT y 100 MOD AND y 400 MOD NOT OR >> >>

Input: Level 1: yYyyy real number

Output: Level 1: n real number

Note: Output is 1 if a leap year, else 0.

Notes: None of the programs in this manual use this routine. It is provided for your

conveniance only.

Name: RDOW

Type: Program

Function: Determine day of week given Gregorian date.

Listing: << RCLF 0 FIX SWAP —DMY G—=JL 1.5 + 7 MOD SWAP STOF >>

Input: Level 1: DD.MMYYYY real number

Output: Level 1: n real number

Example: Level 1: 27.111956 November 27, 1956

RDOW

Level 1: 2 Tuesday

Notes: Output ranges from 0 to 6 for Sunday to Saturday.

Name: SDOW

Type: Program

Function: Same as DOW above but output is a text string.

Listing: << 'DOW’ SWAP RDOW 1 + GET >>

Example: Above example would return "Tuesday” to the stack.

-14-

Name: DDATE

Type: Program

Function: Calculate new date given count and starting date on stack.

Listing: << =DMY G—=JL + JL—=G DMY— >>

Input: Level 2: count real number

Level 1: DD.MMYYYY real number

Output: Level 1: DD.MMYYYY real number

Example: What was the date 1000 days previous to April 1, 1987?

Level 2: -1000

Level 1: 1.041987

DDATE

Level 1: 5.071984 July 5, 1984

Name: DDAYS

Type: Program

Function: Calculate number of days between two dates.

Listing: << —DMY G—JL SWAP —=DMY G—JL - >

Input: Level 2: DD.MMYYYY real number (start)

Level 1: DD.MMYYYY real number (end)

Output: Level 1: n real number (delta)

Example: Find the number of days between November 27, 1956 and January 31, 19889.

Level 2: 27.111956

Level 1: 31.011989

DDAYS

Level 1: 11753 positive difference

-156-

Name: TDS

Type: Program

Function: Get text strings for time, date and day of week.

Listing: << DUP DAT—-S SWAP SDOW 3 ROLL TM—=S 3 ROLLD >>

Input: Level 2: hh.mmss real number

Level 1: dd.mmyyyy real number

Output: Level 3. time string

Level 2: date string

Level 1: day of week string

Example: Level 2: 16.1530

Level 1: 8.061989

TDS

Level 3: "04:15:30 PM”

Level 2: "08-Jun-1989”

Level 1: "Thursday”

Name: SETDT

Type: Program

Function: Set current date and time.

Listing: << RCLF 64 STWS RSCLK 4 ROLL —DMY 6 ROLLD 6 ROLLD 4 ROLL

HMS— 24 / + 5 ROLL 5 ROLL G—JL 707788800 * R—>B -

#9CCECB6C7C6B4AFB5h XOR 'TPAR’' STO STOF >>

Input: Level 2: DD.MMYYYY real number (todays date)

Level 1: HH.MMSS real number (current time)

SETDT

Output: TPAR updated so routines involving current date and time return correct

values. Routine leaves no parameters on stack.

Example: Set date and time to April 24, 1989 at 2:00:01 PM.

Level 2: 24.041989

Level 1: 14.0001

SETDT

Notes: SETDT must be run if the remaining routines in this manual are to produce a

valid output.

-16-

Name: JDATE

Type: Program

Function: Get todays Julian date.

Listing: << RCLF 64 STWS RSCLK TPAR #9CCEC6C7C6B4AFB5h XOR - B—R

707788800 / SWAP STOF >>

Input: none

Output: n real number

Notes: Run SETDT first to set the current date and time.

Name: DATE

Type: Program

Function: Return two real numbers representing the current date and time to the stack.

Listing: << JDATE JL—=-G 3 PICK FP 24 * —HMS 4 ROLLD DMY— >>

Input: none

Output: Level 2: HH.MMSS real number

Level 1: DD.MMYYYY real number

Example: DATE

Level 2: 21:5902 (9:59:02 PM)

Level 1: 1.021986 (February 1, 1986)

Notes: Run SETDT first to set the current date and time.

Name: CLOCK

Type: Program

Function: Make a digital clock on the LCD display.

Listing: << CLLCD DO DATE TDS " " + SWAP + CENST 1 DISP CENST 3 DISP

UNTIL KEY END DROP CLMF >>

Input: none

Output: Clock on LCD display.

Notes: Hit any key except ON to gracefully exit. Run SETDT first to set the current

date and time.

-17-

Name:

Type:

Function:

Listing:

Input:

Output:

Notes:

PTD

Program

Print time and date. (HP 82240 printer required)

<< DATE TDS " " + SWAP + CENST PR1

CR >>

none

Time and date is printed.

Run SETDT first to set the current date and time.

-18-

CR DROP CENST PR1 DROP

ALARM FUNCTIONS

Name:

Type:

Function:

Listing:

Input:

Output:

Notes:

Example:

ASET

Program

Set an alarm.

<< CLLCD DATE SWAP "Time (HH.MMSS) ?” PRMT HMS— 24 / SWAP

"Date (DD.MMYYYY) ?” PRMT —DMY 4 ROLLD 4 ROLLD + 3 ROLL 3

ROLL G—JL "” "Message ?” PRMT 0 "Reschedule (HHH.MMSS) ?”

PRMT HMS— 24 / 3 —=LIST 1 —=LIST 'ADAT' IFERR RCL THEN STO

ELSE + 'ADAT' STO END >>

User is prompted.

ADAT variable created or modified.

ASET will prompt for...

1.) Alarm time (with current time default in level 1)

2.) Alarm date (with current date default in level 1)

3.) Alarm message (with null text string default in level 1)

4.) Reschedule interval (with O default in level 1)

Set an alarm for 5:30 AM on January 1st, 1990 so you can get up and enjoy

your hangover. Just to make sure you do get up, set a 10 minute reschedule

interval.

ASET

ASET prompts: Time (HH.MMSS) ?

You enter: 5.3 then press CONT

ASET prompts: Date (DD.MMYYYY)

You enter: 1.011990 then press CONT

ASET prompts: Message ?

You enter: "Get up.” then pres CONT

ASET prompts: Reschedule ?

You enter: .1 then press CONT

The variable ADAT should have been created. Press ADAT in the user menu

to recall it to the stack. It should look like this:

{ { 2447892.72917 "Get up.” 6.94444444446E-3 } }

The first element is the Julian date at which the timer will alarm. The second

element is the alarm message and the third is the reschedule interval in days.

If the reschedule interval is set to 0, the alarm will not be rescheduled after it

times out. In other words, if you want the alarm to sound only once, enter a

reschedule interval of zero. As more alarms are added the ADAT list will grow

in size. You MUST run ASET from the directory in which the time, date and

alarm programs are located.

-19-

4 DISP

Name: ADISP

Type: Program

Function: Display an ADAT alarm element.

Listing: << 1 GETI JL=-G 3 PICK FP 24 * —HMS 4 ROLLD DMY— TDS DROP

"DATE: " SWAP + 1 DISP "Time: " SWAP + 2 DISP GETI

GET IF DUP THEN 24 * —HMS CLK12 0 'CLK12' STO SWAP TM—S

SWAP ’'CLK12’ STO "Repeat: " SWAP + 3 DISP ELSE DROP END >>

Input: Level 1: { n "string” n } ADAT list element

Output: Alarm data displayed.

Example: Level 1: { 2447892.72917 "Get up.” 6.94444444446E-3 }

ADISP

Will display...

Date: 01-Jan-1990 on line 1

Time: 05:30:00 AM on line 2

Repeat: 00:10:00 on line 3

Get up. on line 4

Notes: This is a subroutine called by ALIST and ACHEK described below. If the

reschedule interval of the alarm is = 100 hours, the hours portion will be

truncated to 2 digits. If the reschedule interval is zero, it will not be displayed.

Name: ALIST

Type: Program

Function: Lists all alarms.

Listing: << |IFERR 'ADAT’ RCL THEN DROP ELSE SIZE 1 'ADAT’ — s

CLLCD WHILE s i = i AND REPEAT n i GET ADISP IF KEYW DUP "C”

== THEN DROP "DELETED” CENST CLLCD 2 DISP n i DLE i

STO s 1 - ’'s’” STO ELSE IF "Q” == THEN s '’ STO END END i 1

'i' STO END CLMF >> END >>

Input: none

Output: Alarms are displayed as described in ADISP above. Display halts with each

alarm. Hit any key except ON, C or Q to display the next alarm. Hitting C will

clear the displayed alarm. Hitting Q will exit the program.

automaticly exit after displaying the last alarm in the list.

-20-

i n <<

1 — ’i’

Program will

+

Name:

Type:

Function:

Listing:

Input:

Output:

ACHEK

Program

Sound an alarm if it has timed out.

<< IFERR ’'ADAT' RCL THEN DROP ELSE IF SIZE DUP THEN 1

SWAP — i e << DO 'ADAT' i GET IF DUP 1 GET JDATE <

THEN CLLCD DUP ADISP IF KYWT CLLCD "ENTER” == THEN " ALARM

ACKNOWLEDGED...” 1 DISP IF DUP 3 GET THEN "RESCHEDULED”

CENST 3 DISP JDATE OVER 1 GET - OVER 3 GET / LAST SWAP

DROP SWAP IP 1 + * OVER 1 GET + 1 SWAP PUT ’'ADAT' SWAP

SWAP PUT ELSE "DELETED" CENST 3 DISP 'ADAT' i DLE i 1 - 'V

STO e 1 - '@ STO DROP END ELSE DROP END CLMF ELSE DROP

END UNTIL i 1 + '’ STO i e > END >> ELSE DROP END END >>

none

If an alarm has timed out, it will be displayed as in ADISP above with a

repeating beep tone till a key is hit. If the ENTER key is hit, the alarm will be

rescheduled based on the reschedule interval. If the reschedule interval is 0O,

the alarm will be deleted. If any other key (except ON) is hit, the program will

not acknowledge the alarm. This process will repeattill all alarms have been

checked.

21—

ALARM USAGE

Detecting an alarm requires that you manually execute the ACHEK program. There is no

hardware control that will automaticly sound an alarm as on the HP41. One thing you may

want to do is place an ACHEK call within the CLOCK program. That way, alarms will sound

whenever one times out while the CLOCK program is running. If you want to do this, insert

the ACHEK call just before the UNTIL command in the CLOCK program described above.

When setting an alarm, the alarm time may vary by as much as one second from the time

you intended. For example, an alarm set for 8:00 AM may be displayed as 07:59:59.

This is normal and due to rounding errors.

When a continuous alarm is rescheduled, it is set to the next alarm interval after the

current time. For example, if a continuous alarm was due at 10:00 AM with a 1 hour

reschedule interval and it is 1:15 PM when detected, the alarm will be rescheduled for

2:00 PM.

It is impractical to set alarm reschedule intervals of less than 1 hour. Unless you have no

other goals in life, you probably don’t want to spend your evenings watching alarms time

out! The alarm programs were written to provide a simple method of reminding you of

daily meetings or other activities. They should not be used to provide audible indications

of time intervals that require the accuracy of a stopwatch.

When an alarm is detected, the 28S will beep till acknowledged with a key hit. You should

not be away from the 28S (at such a distance that you can not hear the alarm) for an

extended period of time with alarm monitoring active or battery drain will be excessive.

You can run the clock program continuously if you like but remember that running any

program continuously can cause accelerated battery drain.

TIMER ROLL-OVER

The HP-28S has a 48-bit timer that these programs use as a time base. With 8192

increments of this timer occurring every second, this gives a range of (2 " 48) / 8192 or

34359738368 seconds or about 1088 years. Unfortunately, this is only true if the timer

value is O when the time is set. If the timer rolls over or becomes corrupted for any other

reason, the time and date will have to be reset. To check when timer roll-over will occur

on your system, follow the procedure below. Make sure the binary word size is set to 49

bits or greater before proceeding.

Place #1000000000000h on the stack.

Run the RSCLK program described in this manual.

Push the - key (subtract the two numbers).

Execute B—R (binary to real).

Divide by 707788800.b
o
w
n
N
D
=
o

-22-

This gives the number of days till timer roll over. Divide by 365.25 to get the number of

years till roll-over. In all probability, one of the following will occur before this happens.

1.) You will lose battery power and the timer will change to a random value.

2.) You will accidentally write over the timer with a complex assembly

language program.

3.) The 28S will fail.

4.) HP will have made something much better than the 28S so you won’t be

using it anyway!

5.) You won't be around for the event!

As you can see, timerroll-over should not be a source of great anxiety when other factors

have a much greater affect on its long term stability or importance.

LONG TERM ACCURACY

The accuracy of the time and date over an extended period is entirely dependent on the

accuracy of the HP-28S oscillator hardware. The routines were tried on five different

HP-28S systems and accuracy was within 3 seconds per month on one machine and

within 2 minutes per month on the worst of the five. If accuracy is a problem, please note

that it is not that difficult to reset the time and date once or twice a month.

SYSTEM SPEED MODIFICATIONS

There are a variety of ways to increase the clock speed of an HP-28S. Some of these

affect the 48-bit system timer, others do not. An unmodified HP-28S increments the

system timer 8192 times a second. If the speed up you have implemented changes this

increment rate, the SETDT and JDATE algorithms will have to be modified to account for a

greater system clock speed. If, for example, you have done a 2 times speed up, double

the constant of 707788800 (this is the number of ticks per day) found in the SETDT and

JDATE routines. The author is not responsible for changes to the HP-28S circuit design or

program code that change the timer increment rate, thus rendering these programs

inaccurate.

Congratulations. By now you have finished the laborious, but hopefully worthwhile entry of

the time and date functions. Words of praise, death threats, job offers and other

commentary may be sent directly to me at the address below.

Kevin P. Jessup

9118 North 85th Street

Milwaukee, WI 53224

-23-

