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Introduction

What advantages does a programmable graphics calculator offer in a

differential equations course? How much class time is required for programming?

How much previous experience with the calculator is needed for this workbook? We

hope to begin answering these questions below.

Technology in a Differential Equations Course

Graphs of important solutions of initial value problems have been a traditional

classroom tool for presenting mathematical concepts in a differential equations

course. The asymptotic behavior of particular solutions and a comparison between

solutions of competing mathematical models are examples. Class time required to

produce a graph often impedes progress along a desired line of inquiry. Moreover, in

a differential equations course, the lack of an ability to obtain quick, accurate values

of definite integrals which require a numerical evaluation or to obtain solutions to

matrix equations will deter classroom study of many interesting problems. Thus the

use of graphics programmable calculators such as the Hewlett Packard 285 or 485X

adds new vitality to the course. This booklet is to be used as a textbook supplement

and addresses the use of an HP-28/48S. Microcomputers can also be employed to

stimulate learning especially by the construction of direction fields and the display

of multiple solutions of two dimensional dynamical systems. We suggest the

calculator be used during class and for homework: microcomputers will usually be

restricted to laboratory use.
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The calculator programs discussed in these notes do not require significant

programming time. The purpose of such technology is to emphasize the concepts

presented in the differential equations class and to begin adaptation to the

"workstation environment” now present in scientific careers.

Various textbooks can be used with this material. The notes have been

developed in a sophomore level course for engineering and science students. Regular

homework from this workbook is suggested to encourage a steady pace through the

course. The reader will discover that emphasis is given to the construction of graphs

of solutions of differential equations to better "understand” the original problem and

its solution. The differential equations course supported by this material should

include:

an introduction which includes the concept of directions fields, and a
presentation of Euler's method and the improved Euler method for solving
initial value problems,

sections on first order differential equations with sections on separable and
linear problems and equations which may be transformed to such a problem,

sections on mathematical models involving first order equations which includes
mixing, population, heating/cooling and falling body problems,

sections on second order differential equations with applications to
mechanical spring motion and electric circuits and with some special
nonlinear differential equations which may be "solved”,

sections on higher order linear differential equations and Laplace transform
methods, and

sections on systems of differential equations and matrix methods for linear
systems.

The reader should ask several times during the course what advantages does

technology gives for understanding concepts and analyzing possible solutions ! The

statement that programmable graphic calculators are appropriate classroom tools

should also be tested several times during this study ! Here is an example. The

solutions of the differential equations
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dy yBx2-y?) dv -x(x2-v?)
dx =x(x2- y2) ’ dx~ v(3x2-v2)

constitute two families of curves which have the property that members of one

family are orthogonal to members of the other at intersection points. The

differential equations may be integrated after some effort to give implicit formulas

for y(x) and v(x). One of these formulas is quite complicated and the time/effort to

construct a graph of the trajectories using this approach is prohibitive. Moreover,

this particular aspect of the problem overwhelms the concepts involved. Numerical

 

    
Sample Trajectories of Orthogonal Families of Curves

techniques may be quickly employed to give the figure shown. Now class discussion

can proceed to an analysis of the problem; for example, where do the curves have

vertical slope, what effects small changes in the differential equations may have,

some sense of the sensitivity to changes in initial conditions, etc.

Included in these notes are: (1) calculator programs for initial value problems

(Euler method, improved Euler method, an adaptive step size method) with
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numerical and graphical output, (2) programs to graph the solutions (outputs) of first

or second order linear constant coefficient differential equations for a large set of

input forcing functions, (3) programs for solving some nonlinear systems of equations,

(4) calculator programs to construct solutions of vector systems y' = Ay + f(t), (5) some

suggested problems from application areas such as encountered in population, pursuit,

mechanics, and heat models, and (6) some examples of chaotic solutions recently

featured in science columns of popular journals. A graph obtained on the HP-28/48S

calculator of an input output system dy/dt + y = f(t) in which the periodic output can

be readily found by analytical means is shown below. Other types of forcing

functions require numerical integration which is easily accomplished on this

calculator. Inputs such as triangular waves or square wave as well as complicated

combinations of elementary functions can be converted to output solutions quickly by

means of our program.

v(1)

¥(t) .

Sinusoidal input, sinusoidal output

It is suggested that graphical emphasis and use of the calculator be made in

virtually each class. Ideas present in this material include

® The "problem" dy/dt = f(t,y(t)), y(0) = y, defines a function y(t) which

satisfies the problem (y can be a vector function) and the solution doesn't

change much when the problem is slightly altered.
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® Problem comprehension is enhanced by construction of the solution graphs.

In particular graphs may draw attention to particular characteristics of

solutions such as asymptotic behavior, sensitivity of long range patterns

to changes in problem parameters.

® Rapid calculation of solutions of complex equations encountered in falling

body, compartmental model, and population problems enhances the study

of the original problems.

¢ The convenience of our computation tools allows the identification of

appropriate problem parameters from observation data.

¢ The study of limiting behavior of interesting discrete and continuous

dynamical systems is again made possible by the ease of computation.

® The determination of some eigenvalues/eigenvectors and the quick

solution of linear algebraic equations encountered in systems of linear

differential equations permits a deeper study of such systems.

Classes using precursors of these notes have been taught for the three years.

Student evaluations were collected at the end of each class. Based on the student

reactions (verbal and written) approximately 80% of the students felt the calculators

were valuable in understanding the material and in working the problems, 10% of

the students were unable to recognize benefits from their use: the remaining 10% of

the students did not particularly like to use the programmable graphics calculators.

Programs in this workbook have been designed to be understood by the student.

Modifications to the programs should be made whenever appropriate. Nevertheless,

the programs in this booklet are available on microcomputer disk by the publisher

for those instructors who adopt this workbook for classwork. In this way, students

who use the HP-48S can read the programs into the calculator and avoid entry errors.
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Calculator Preliminaries

Before using this book, the reader should have some familiarity with the HP-

28/48S calculator, to the extent of being able to do elementary keyboard calculations,

perform routine real number arithmetic, and understand the basics of the stack. To

acquire this basic familiarity, simply study Chapters 1-3 of the Owner's Manual.

No further background with the calculator is required in order to begin to explore

its capabilities relative to these notes, for we shall develop our skills and

understanding as we proceed. Though you should have the Owner's/Reference

Manual available to use if needed, our exposition is intended to be self-contained.

Readers who wish to acquire an increased level of insight and understanding into the

theory and operation of the HP-28/48S are advised to obtain the book "HP-48

Insights"] or the book "HP-28 Insights"2 , by William C. Wickes.

We call your attention to certain features.

e Commonly used keys on the HP-48S include the MTH, PRG, MODES,

MEMORY, VAR, PLOT, GRAPH menu keys. Some of these keys require

a left shift (the orange key) to access. When these keys are activated, a

menu appears on the first line of the screen. The white key directly

under the desired item will activate that "program feature". The reader

should become familiar with the items on each menu. For example on

the MTH menu are sub-menus labeled PARTS, PROB, HYP, MATR,

VECTR, and BASE. (You will notice a bar over the left side of each of

these menu items indicating that each has another level of menus.)

Continuing our example under the MTH PARTS menu is the second level

menu ABS, SIGN, CONJ, etc.

 

11988 by Larken Publications, 4517 NW Queens Avenue, Corvallis, Oregon 97330
21991 by Larken Publications, 4517 NW Queens Avenue, Corvallis, Oregon 97330
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On the HP-48S calculator to enter capital letters of the alphabet into the

command line press the O key, then the desired letter. If several such

letters are needed sequentially, pressing the Ot key twice will leave the

calculator in that mode until the & key is pressed again. Warning: when

the calculator & mode is active, the menu and some operation keys are

inaccessible until the & mode is turned off. Uncapitalized letters are

obtained by pressing the O key, then the left shift key, then the desired

letter.

Commonly used keys on the HP-28S include the MODE, LOGS, PLOT,

TRIG, SOLV, and USER menu keys on the right keyboard and the

ARRAY, COMPLEX, STRING, LIST, and MEMORY menu keys on the

left keyboard. Some of these keys require a shift ] to access. When

these keys are activated, a menu appears on the first line of the screen.

The white key directly under the desired item will activate that

"feature”. The reader should become familiar with the items on each

menu. Examples are SIN, COS, etc on the TRIG menu, LN and EXP on

the LOGS menu, STEQ, SOLVR on the SOLV menu, STEQ, RCEQ,

PMIN, PMAX, and DRAW on the PLOT menu, etc. Other keys used in

these notes include R—C and C—R on the COMPLEX menu, -LCD and

LCD— STRING menu and - LIST and LIST— on the LIST menu.

Finally, some keys display different characters from what is on them:

Key Display Key Display

B / 2] sQ

INV Vx v

d
* dx d
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Real and complex numbers are two of the eleven different types of "objects" that

the HP-28/48S can recognize, manipulate and store. A real number objectis the

calculator's representation of a 12-digit floating point number:

mantissa x 1(0exponent

where the mantissa is a 12-digit number between 1 and 9.99999999999, and -499 <

exponent < 499. Although the current display mode (STD, FIX, SCl or ENG)

determines how real number objects are displayed, all internal calculations begin by

first expanding mantissas to 15 digits and exponents to 5 digits, performing the

calculations to that level of accuracy, then rounding back to 12-digit mantissas and 3-

digit exponents. All calculations are not accurate to 12 digits: round-off errors from

intermediate results may compound as the calculation proceeds.

A complex number object is an ordered pair (x,y) of real numbers, and most

arithmetic, logarithmic, exponential and trigonometric operations treat real and

complex number objects uniformly. You are free to mix these two object types, and the

calculator will return a complex number if any input argument is complex.

You may notice that the 28/48S returns a complex number when asked to
5

calculate an odd-numbered root of a negative real number - like V-1 or V-32. The

result is simply the principal root. See the Owner's Manual to obtain the real root.

We shall require no skill or experience in writing programs for the HP-28/48S,

but you will need to copy and enter simple programs into your calculator. In doing so,

you must be careful and copy the programs exactly as we show them. Special

attention should be given to correct spacing because the calculator recognizes

commands that are separated by spaces. Instead of spelling out commands from the

keyboard, we recommend that you use the menu commands which appear as labels on

the various menus; their keystrokes will automatically insert spaces around each
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command. To use the menu commands requires some familiarity with their location,

butthis is readily acquired in the course of entering programs.

Using commands from menu labels will also increase your speed in keying in

programs and help avoid errors due to the insertion of extra spaces. For instance, if

R—C is the desired command, then R — C will produce an error message. The

desired R—C command (rectangular to polar conversion) can be found on the PRG

OBJ menu on the HP-48S or the COMPLEX menu on the HP-28S.

Appendix 1 is a brief review of the procedures for entering, naming, storing,

editing, visiting, recalling and purging programs. You may want to consult this

appendix initially as you begin to encounter programs.
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Chapter 1. First Order Initial Value Problems

Programs are given in this chapter for obtaining approximate solutions of first

order initial value problems for each of three algorithms. These programs

(particularly the first two) require relatively short execution times and can be used

in class for many problems. Each of these programs can be used in a graphics

program (called GRAF) to give pictures of the solutions. The chapter also includes

exercises to graph the output solution y(t) of a system dy/dt + ry = (t), y(0) = O for a

given input function f(t). Then periodic inputs f(t) are considered and the initial

condition is changed so that periodic outputs are obtained. We use the calculator's

numerical integration "key" to evaluate an integral in the solution "formula”.

Finally programs and exercises are included to encourage the students to study the

characteristics of solutions obtained in the portion of their course dealing with first

order differential equations.

Early in the course students should be aware of direction fields for differential

equations dy/dx = f(x,y) and the graphical implications of the uniqueness theorem

for solutions of initial value problems Then the student can get a overall view of the

solutions and focus on the interpretations. Indeed, solution formulae obtained for

initial value problems are only one step in the process of understanding the problems.

Sensitivity to parameter values and the asymptotic behavior of solutions may

suggest to the modeller how much trust to place in the results.
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Euler and Improved Euler Algorithms

The Euler algorithm for the solution of an initial value problem results from

assuming the slope of the solution of a differential equation dy/dx = f(x,y) is well

approximated by the constant f(x,, y,) in the interval x, <x <x, + h and the

algorithm is given by x,., =x, + h, y,,; =y, + hf(x,, y,) . (Herey, is the

approximation of y(x,) and it is assumed that initial values x;, and y, and the step

size h are given so the algorithm may be initiated.) Our program is called EULER

and takes x, y from the stack and returns the results of a single step using Euler's

algorithm. It will use the step size, H, which is stored and a stored program, FN,

which takes x,y from the stack and returns f(x,y). "Type" in the program:

<< DUP2 FN H * + SWAP H + SWAP (enter)

'EULER (enter) STO

To execute this program, we need a subprogram producing f(x,y) stored in FN, a

step size stored in H and the initial values of x and y on the stack. Try

<< SWAP DROP (enter) 'FN STO (then) .1 (enter) 'H STO

0. (enter) 1. (enter)

(An alternate form for FNis<<«c — X Y 'Y' >>. This form uses local variables

and algebraic format.)

Now execute EULER EULER EULER, etc. Note: Here we are solving y' =y, y(0)

= 1 using steps H = .1 and get the following results:

X y X y X y

.1 1.1 4 1.46 7 1.95

2 1.21 S 1.61 .8 2.14

3 1.33 .6 1.77 9 2.36
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and y at x = 1.0 is 2.59, a crude approximation of 2.718....

To aid in recalling quickly exactly the environment and requirements of this

program we provide the following formal listing of the program.

 

Program Name EULER

Purpose Generate new values of x and y resulting from

one step in Euler algorithm

Stored Quantities: H FN

Input Output

level 2 level 1 level 2 level 1

Xn Yn Xn+1 Yn+1

<< DUP2 FN H * + SWAPH + SWAP >>    
Exercise 1.1: To obtain approximate values of the solution of y' = sin(xy), y(0) =3,

execute the following steps: 'FN (enter) VISIT (Use the cursor to change FN

function to <<* SIN >> (alternatively << — X Y 'SIN(X*Y)' >>), then (enter). Put

initial values 0 3 on the stack and execute EULER, EULER,etc. You should get .1 3,

then .2 3.03, then .3 3.09, etc. (Make sure the calculator is in RAD mode.)

Exercise 1.2: Obtain approximations for the solution of dy/dx = 1 + xsin (2xy),

y(0) =1atx=.1,.2.3, 4,.5.

Suppose we want to execute EULER, say N, times and observe the output only at x

= Xy + NH. The following program, called RPT (for repeat) requires that N be

stored and initial values of x and y as input and outputs the final values of x and y.

<<1 N START EULER NEXT>>.
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The Improved Euler algorithm is another method for approximating the

solution of an initial value problem. We give next a short discussion of this

algorithm and a program for the algorithm. The method results from assuming the

slope of the solution is well approximated by the average of f(x,, y,) and a guess at

f(Xy,1, Yk41) in the interval x, < x < x, + h. The algorithm is given by

Xge1 = X + 1y Yigq = Yy + Bli) + £4, yicthE(x, yi1/2.

(Again y, is the approximation of y(x,) and x,, y, and h are given so the algorithm

may be initiated.) This program is named IULER and takes x y from the stack and

gives (x+h)  (y+h*[f(x,y)+f(x+h,y+h*f(x,y)]/2). Note EULER is part of this

 

program.

Program Name IULER

Purpose Generate new values of x and y resulting from

one step in Improved Euler algorithm

Stored Quantities: H FN EULER

Input Output

level 2 level 1 level 2 level 1

Xn Yn Xn+1 Yn+1

Instruction Resulting stack

<< DUP2 DUP2 EULER x y x y x+h y+hf(x,y)

FN 3 ROLLD x y f(x+h, y+hf(x,y)) x y

FN + 2 / x y (f(x+h, y+hf(x,y)+f(x,y)) /2

H*+ SWAP H + SWAP [y+h*{ f(x+h,y+h*f(x,y))+f(x,y)}/2] x+h   >
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Just as in the EULER program we require that the program FN and the step size

H be stored before execution. A multiple step program can be obtained by substituting

IULER for EULER in the program RPT given just after exercise 1.2.

Try IULER using the FN program << SWAP DROP >> H =.1 and initial data 0

1: execute 9 times. You should get 1 2.7140808--- . (Euler gives about 2.593742--, not

nearly so good an approximation of e = 2.71828---.) In general the improved Euler

method can be shown to be a better approximation when h is small.

How is an appropriate value of h chosen? If it is decided to use a constant step

size throughout the interval of interest [x,, x]] one common way to select h is to try a

nominal size of h, say (x; - x4)/50, and calculate the solution approximate y; at x;.

Then reduce h by half and recalculate the approximate at x;. If the values agree to

your satisfaction (for example, to three decimal places), use the last set of values

obtained; if not, reduce h by half and try again.

Exercise 1.3: Try EULER on the problem y' = (y2 +y)/x, y(1) =1 with h = .2,

Execute 5 times, then reduce h to .1 and execute 10 times. Next execute from the

initial value 20 times with H = .05. What is being indicated ? Hint: this problem

can be solved exactly and has an asymptote at x = 2. Here FN could be given by

<< DUP SQ + SWAP />>0r <« > X Y '(YA2+Y)/X' >>

Graphs of Initial Value Problem Solutions

Graphical output can be a powerful tool to study the solutions of initial value

problems. Sometimes it is a good idea to graph the values of the approximate

solution obtained to check that no crazy things happen. Moreover, we may want a

graph of the solution rather than just a set of numbers. Or we may want to compare

the solutions of different problems. This is easy on the HP-28/48S by using the
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following program, which we will call GRAF. This program takes x,yo from the

stack and uses IULER (or EULER) to advance N steps of size H. (N is also stored.)

On the HP-48S the user should enter the numbers Xmin Xmax as XRNG and the

numbers Ymin Ymax as YRNG for the graphics screen: on the HP-28S the user must

set the lower right corner PMIN = (xmin, Ymin) and the upper right corner PMAX =

(Xmax, Ymax), for the graphics screen.

 

Program Name GRAF HP-48S version

Purpose Graph N values of (x,y) obtained using

Euler algorithm

Stored quantities N, H, FN, IULER XRNG YRNG

Input Output

level 2 level 1 level 2 level 1

X0 Yo XN YN

and graph with cursor

<<{# 0d # 0d } PVIEW DRAX 1 N START IULER DUP2 R—»C

PIXON NEXT GRAPH >>   
 

Note: For HP-28S calculator replace the program given above with

 

<< CLLCD DRAX 1 N START IULER DUP2 R—C PIXEL NEXT

DGTIZ LCD—> >>   
 

and store PMIN, PMAX instead of XRNG, YRNG. Level 1 of the output stack

contains the picture as a 'string’ which can be reconverted to a graph with the

command —LCD. Levels 2 and 3 contain xN and yN.

GRAF contains a loop in which N new points (x,y) are calculated and plotted. In

the HP-28S version there is a command which activates the cursor. You may want
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to ERASE the graphics screen on the HP-48S. The program EULER may be inserted

in place of IULER so that GRAF uses whichever algorithm is desired. Notice also

that the last values of x and y remain on the stack after GRAF is executed. To

restore the stack screen, press ON.

We will often be interested in plotting the solutions of several initial value

problems on the same graph. On the HP-48S calculator, graphs can be added simply

by not erasing the previous result. On the HP-28S it is convenient to have a program

for adding a new graph after executing GRAF on the first problem. The following

 

program is suggested:

Program Name ADGF Required for HP-28S only

Purpose Graph N values of initial value problem

solution (x,y)

Stored quantities N, H, FN, IULER PMIN PMAX

Input Output

level 3 level 2 level 1 level 2 level 1

previous string X0 Y0 XN YN

and graph with cursor

<< CLLCD 3 ROLL DUP 'G1' STO —»LCD 1 N START IULER

DUP2 R—C PIXEL NEXT DGTIZ LCD- >>   
 

The previous picture is stored in G1 so that the previous graph is not destroyed.

Exercise 1.4: Consider the following differential equation together with several

initial conditions and plot the solutions on the same graph.

dy/dt = y(1-y), y(0) = .2, then 4, then .6, then 1.5
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where the solutions are plotted for 0 < t <5 and step size h = .05 is used. Here try

FN: <<SWAP DROP DUP SQ->>.

Enter 0 then .2 on the stack, then execute GRAF. (Remember H = .05 and N = 100 are

stored before execution.) Place another initial condition on the stack and add the

second solution graph. Notice the solution y = 1 is an attracting solution,i. e. nearby

solutions collapse to y = 1 as time increases.

y

  
2.5 S

Five solutions of dy/dt =y (1-y)

Exercise 1.5: Use GRAF for -5<x<8,-75<y<75withN=100,H = .08 and FN

given by << - SIN >>. Plot trajectories starting from y(0) = -7.5, y(0) = -1.57, y(0) =

4.71, y(0) =-1.9, y(0) = -2.5, y(0) = 2.5 and y(0) = 4.3.

Exercise 1.6: Try the GRAF program on the initial value problem where FN is

given by << * SIN >> with initial condition y(0) = 3, H = .06, N = 100 and plot

parameters so 0 < x < 6, 0 <y <5. Select a new starting point y(0) which may be

a point chosen by the cursor and COORD (on the HP-48S) or INS (on HP-28S). Now

add the new trajectory after changing (x,y) to x y (on the stack). (If we choose a

point x = 0, y(0) = 1.5, get new combination graph, then choose x = 0, y(0) = 1 and get

another combination graph, we see the bottom two trajectories approach each other.)
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The graphical study of solutions of dy/dx = sin(xy) led to an journal article

which gives mathematical proofs for some of the interesting behavior observed in

the graphs. See Mills, B. Weisfeiler and A. Krall, "Discovering Theorems with a

Computer”, The American Mathematical Monthly, volume 86 (1979), pages 733-739.

i H=.07,N = 150

6 Io se ",
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dy/dx = cos (.3xy)

Exercise 1.7: Graph the solutions of the two initial value problems dy/dt = y(1-y),

y(0) = .25 and dy/dt = -y Iny, y(0) = .25 (graphic screen parameters 0 < "x" < 5 and

0 <y <£1.2) on the same plot. In this case, we notice the solutions are similar.

Which one approaches y = 1 faster ?

Exercise 1.8: Graph the solutions of the two initial value problems dy/dt = y(1-y),

y(0) = .25 and dy/dt = y2 (1 - y2), y(0) = .25 (graphic screen parameters 0 < "x" < 5

and 0 <y < 1.2) on the same plot. In this case, we also notice the solutions are

similar. In which case is a change of concavity apparent ?

Exercises 1.4, 1.7 and 1.8 give initial value problems which model population

growth in a food limited environment. Which model is appropriate? This is a

tough question and input from biologists is needed or observation data could be used.

Suppose we have experimental data, and we can determine the limiting value of the

population and further we can estimate at what fraction of the limiting value of y
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an inflection point occurs. In exercise 1.7, the inflection points occur at 36.8% (for the

logarithm model) and 50% (for the quadratic model) of the limiting value of y

which in both cases is y = 1.

Example: Construct a model dy/dt = f(y) so that if y, < .75, y(t) has an inflection at
 

y =.75 and y(t) - 1 ast — «. Graph the solution starting at y(0) = .2 for 0 < t < 5.

Hint: one method is to try f(y) = g(k(y)) where g(y) = y(1-y) and k(y) = b(e2Y-1).

Notice k(0) = 0 and k'(y) > 0. (k(y) is a nonlinear scaling of the y axis. Since f(1) =

0 we have b = 1/(e? - 1). The requirement f '(.75) = 0 gives b = .5/[e7>2 - 1]. We use

the calculator to solve e + 1 =2 e/, (a = 2.4375 and so b = .0957.) The graphs of

f(y) vs y and the solutions of y' = f(y), y(0) = .2 are shown.

quadratic

 

 

 

 

 

Right side functions Dynamics fox Example

Exercise 1.9: Set plot parameters to show -5 < x £12.56, -5 <y < 3 and put FN to

<< > T Y "5*Y*(EXP(SIN(T))-Y)' >>. Take N = 120 and H = 12.56/N. Graph the

solutions with y(0) = 1, and y(0) = 3. Whatinitial condition gives periodicity ?

Exercise 1.10: Newton's law for a particle falling in a gravity field gives an initial

value problem dv/dt =g - k vI' where the resistance of the medium is modelled by

the term k vI. Use IULER and GRAF to plot the trajectories for the problem forr =1,
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r=15r=2,r=25. PlotusingH =.05v(0)=.2 forO<t<5and g =k =1. This

exercise also shows that trajectories from similar models are similar.

Exercise 1.11: Suppose a water storage tank has the shape of the lower half of the

ellipsoid (x2 + y2)/a2 + z2/b2 = 1. Wateris introduced into the tank at a net rate of,

say f(t)=.25 sin [r(20-t)/12], and evaporation occurs from the exposed surface at a rate

k(t) times the exposed surface area, say with k(t) = (10 - sin n(t-6)/12)/200. (Here

we are assuming the largest evaporation occurs during the daylight hours.) We want

the height p(t) of water in the tank at time t, given p(0) = pp. (Note if

p > b we have water overflow. The volume in the tank is given by

e 2
V=na2j[1-(b-s) /bz]ds

0

so the balance equation dV/dt = input rate - output rate gives

na2[1-(b-p)2/b2]%ft3 =f()-k(t) ta2[1-(b-p)?2 /b2].

We introduce the scaled variable u = p/b to get the equation

fdu__M0.
dt na?‘u(Z-u)

Use the following parameters (no physical units intended) and graph the solution for

0 <t <24 with a step size of 0.08: a =2,b =1, and p(0) = u(0) = .8.

Here is a program for storing values of approximate solutions. We are

emphasizing graphics in these notes; however in many cases it is desired to obtain

and store the values generated by using EULER or IULER. The following program

computes N steps, then records a data point (x, y) in the list XYV, and repeats this

M times. (So x increases from the initial point MN steps of length H.)
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Program Name: IESV1

Program to store the M values of (x,y) generated by improved Euler

algorithm over N steps of size H in a list XYV

Stored Quantities H FN M N IULER

Input Output

level 2 level 1 level 2 level 1

X Yo XMN ymn and list YV

<< { } ' XYV' STO DUP2 R—»C XYV + 'XYV'STO 1 M START

<<1 N START IULER NEXT >> EVAL DUP2 R—»C XYV +

'XYV' STO NEXT >>   
 

The list XYV can be converted to a graph later.

Input-Output Functions: Linear First Order Initial Value Problem

You can use the calculator algorithm for evaluating definite integrals. Consider

the following initial value problem

d

=YY=
for u > 0. The "separation of variables" technique gives the solution

X

2
y(x) = ,“/ 7 -llnt ,Int = I e ds

0

The program given below takes a number v from the stack and returns the value of

 

the integral of efrom 0 to v. The HP-48S version of this program is

<<'X' PURGE 3 FIX 0 SWAP 'EXP(X*X)' 'X' 3 NEG SF | 3 NEG CF >>
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and a corresponding program for the HP-28S is

<< 'X' PURGE X SWAP 0 SWAP 3 —LIST 'EXP(X*X)' SWAP .001/ DROP >>

Notes: (1) - LIST is in the LIST menu on the left side of the HP-28S calculator. (2)

students should note the stack order for integration in a program for their particular

calculator: e.g., on the HP-48S calculator, the lower limit is on level 4, the upper

limit is on level 3, the integrand is on level 2 and the variable of integration is on

level 1. Moreover the -3 flag is set before integration and cleared afterwards.

Values of x and y“(x) obtained by using the calculator program are

X Int y4(x) X Int yU(x)

S 545 455 .75 918  12.18

.6 .680 320 .79 99 103

7 .833 6.0 .8 1 oo

We note the program suggested above recalculates part of the integral Int for

each successive value of x. Clearly we can eliminate this duplication of effort.

Exercise 1.12: Use the integral "key" on the calculator to evaluate the solution at x

= .4, .8, 1.2, 1.6 for the problem:

dy soty 1+ cosx,y(0) =1.

Suppose a tank which contains V volume units of a mixture of water and a

chemical substance receives f(t) units (weight) of the chemical in solution per minute.

The chemical and water is vigorously mixed in the tank and the mixture drains from

the tank in such a way that constant volume in the tank is maintained. If y(t) is the

weight of chemical in the tank at time t, a balance equation gives dy/dt = rate that

the chemical enters the tank - rate that the chemical exits from the tank.
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This application gives one example of an important problem, namely, determine

the solution of

Y =0, 7O=0
g¢ T Y ERY Y=L

Here we assume r is a given constant. Commonly the function f(t) is called input to

the problem and the solution y(t) is called the output. Other examples of this

problem occur in electrical flow problems. The solution of this initial value problem

is

t

y(t) = e rtj e’ ° f(s) ds .

0

The input function f is transformed to the output function y = Tf. Notice T(af + bg) =

aTf + bTg where a and b are constants and f, g are input functions. This

superposition property of the "operation" T shows the transformation T to be a linear

operator.

Here we are interested in comparing the graphs of the input functions f to the

graphs of output functions y = Tf. Consider the examples,

(a) for input function f,(t) = 1, we have output y,(t) = (1 -e™)/r and

(b) for f,(t) = sin at, y,(t) = [R sin (at-0) + ae™/R2. Here R? = (a.2+1r2) and

cos0=r/R,sin®=0o/R.

There is an obvious similarity between the graphs of the input and output

functions. Suppose a signal f(t) = sin t is input into a device which produces output

as described above and it is desired to produce a "delayed" version of the signal, say

sin (t-n/4), after the second term dies out. What value of r will give this delayed
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signal? What distortion of another signal, say sin 3t, will be produced by this same

device?

If the input signals are not sine/cosine in form, it may be difficult or impossible

to find an analytical form of the output; however, a graph of the output may be

found by using GRAF. (Comment: it is possible to devise a program using the

numerical integration capability of the calculator to compute the solution to the

precision of the numerical integrator and plot the various y(t) values. However it

may be more productive for the student to use the GRAF program both to re-enforce

familiarity with GRAF and to become familiar with the input/output concept with

no program distractions.)

For N = 100, H= 5/N, r = 1, the plot parameters set to show 0<x<5, 0<y <15,

and the non-periodic input f(t) = Min (t,1) (which is called a ramp function),

the output is shown below.

Yamp input

 

output

 

Input-Output System

Exercise 1.13: Letr =1, N = 100, H = 3.14/N and set the plot parameters so 0 < x <

3.14, 0 < y < 1.2. Use the calculator to draw the following input functions with

DRAW and the resulting output functions with GRAF ( or ADGF on the HP-28S)
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(a) f(t) =1 -sin?(3t), (b) f(t) = 1 - sin10 (3t),

(c) f(t) = Max (sin 6t, 0).

The input signals in (a) and (b) are periodic spike-like disturbances of a constant

input and the input in (c) is a half-wave rectified sine function.

An unusually observant student may notice that each of the input functions in the

previous exercise is periodic with period T = n/3 and that the resulting outputis

nearly periodic over the last two periods. This leads one to suspect that the starting

condition y(0) = 0 is being forgotten and the resulting motion will become periodic.

How could we pick an initial condition so that the solution was periodic ? A

moment's reflection suggests the condition y(0) = y(T) replace the initial condition

y(0) = 0. Since the general solution of the differential equation is

t

y(®) = y©) ™ + Yo,y=€ ™[ eS f(s) ds,
0

this leads to the condition

 y(0) = yp(T) .
_eT T

Exercise 1.14: For each of the input functions in the previous exercise (where T =

n/3), use the numerical integration capability of the calculator, calculate the

appropriate initial condition, and plot the input function using DRAW and the

output using GRAF (or ADGF). (We suppose f(x) is stored in EQ and T = 1.047 = nt/3.)

The following programs can be used to calculate y(0):

HP-48S version: << 2 FIX 'X' PURGE 0 1.047 RCEQ 'EXP(X)' * 'X' 3 NEG

SF | 3 NEG CF 1 1.047 EXP SWAP - / >>
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HP-28S version: << 'X' PURGE RCEQ 'EXP(X)' * { X 0 1.047 } .01 | DROP

1 1.047 EXP SWAP - / >>

The function

f(t) = 2*CEIL(SIN(t/n)) - 1

has values given by: forO<t<1,f(t) =2-1=1,for1<t<2,f(t)=-1,for 2<t<3,

f(t) =2 -1=1, etc. This is called a square wave. The calculator numerical

integration "key" and graphing program can handle such a function even thoughit is

not defined at t = 1, t = 2, etc. The periodic input function and its periodic output are

shown for 0 < t < 4.

Input
l

e~\‘\;
Output

 

 

 

      

(Notice that the output functions for each of the input functions listed above can be

obtained from a table of integrals after several substitutions. An output function for

an input function such as f(t) = 1/(2 - sin*(3t)) could not.)

The student can construct other functions commonly used by engineering studies.

For example, the function u,(t) = .5[1 + (t-a)/ It-al] =0 when t <a and =1 when t >

a. This could be called a switch-on function. It can be used in connection with other

functions to produce many interesting functions. For example
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f(t) = Min (t/.5, 1) - us(t)

is a ramp function which is switched off at t = .5 . The switch function uj(t) can be

graphed using DRAW by storing (STEQ) the program

<< IF 'X < 1" THEN '0’' ELSE '1' END >> or 'IFTE(X < 1,0, 1)

Other interesting functions can be obtained using the MOD function on the calculator.

For example, f(x) = '"MOD(2*X,1)’ (on the HP-28S) or f(x) = '2*X MOD 1’ (on the

HP-48S) will produce repeated ramps of height 1. Finally, functions defined by

different formulae in different intervals can be produced by the IFTE command: for

example, f(x) = 2x for 0 < x < .5, f(x) = 1 - sin (x-.5) for 5 <x<.5 + n/2, x2 forx > .5 +

/2 is produced by 'IFTE(X < .5, 2*X, IFTE(X <.5+7/2, SIN(X-.5), X"2))".

Adaptive Step Size Selection

We will not give much discussion of higher order numerical methods for

differential equations such as the Runge-Kutta algorithms. Students are referred to

such material in differential equations and numerical analysis textbooks. These

algorithms take longer for the HP-28/48S to execute so that classroom exercise

selection is somewhat limited. However we do include a program for a Runge-Kutta

algorithm which calculates at each step an estimate of the local error ly(t,) - y,|

and determines (adaptively) an appropriate step size in the algorithm for the

solution of y' = f(t, y), y(t)) = ygto <t <t

By considering Taylor series for f(t+h, y(t+h)) for the initial value problem

dy/dt = {(t, y), y(t) =y,,

an algorithm results with increments in t and y given by
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Yne1 = ¥n + h[2k, + 3k, +4k31/9 t., =t +h,
k, = f(t,, y,), k, =f(t,+h/2, y,+hk,/2), ks = f(t, +3h/4, y,+3hk,/4),

and the analysis gives the following estimate for the possible error

esterr < | 2k, + 4k; - 6k, | /9.

See ]J. Thomas King, Introduction to Numerical Computation, 1984, McGraw Hill.

STP1 begins with t,, y, on the stack and a stored value of H and continues to reduce

H until esterr is less than .01, then stores 2H for the next step and exits with t,,,,

Yne1 ON the stack. (The "tolerance" .01 can be readily modified.)

 

Program Name STP1

Purpose Take one step using Runge-Kutta algorithm with step-

size H which meets estimated error criterion of .01,

selects new trial step H for next step

Stored Quantities FN H RK3

Input stack  level 2 level 1 Output stack level 2 level 1

th Yn thst Yn+1

<< DO RK3 UNTIL .01 < ENDDELY + SWAP H 2 * + SWAP

H 4 * 'H STO >>   
 

In the subprogram RKS3, the input (t,y) and the current value of H is used to

calculate and store a quantity DELY, to reproduce (t,y), and to produce an estimate of

the error for the current step size. At the end of RK3 the step size H is changed to

half of the input size of H. When STP1 finds the error estimate less than .01, the

values of t and y are updated (2*H was a successful step) and a new value of H is

stored, namely 2*successful step size.
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Subprogram Name: RK3

Purpose: calculate estimated error of algorithm using step size H

Stored Quantities FN H

Input Output

level 2 level 1 level 3 level 2 level 1

t, Yn t, Yn est error

<< DUP2 4 DUPN FNDUP2*6 ROLLDH*2/+ SWAPH 2/ +

SWAPFN3*DUP 4 ROLLDH* 4/ + SWAP H .75 * + SWAP

FN4 *3DUPN+ + H* 9 /'DELY' STO SWAP 2 * -+ ABS

9/ H 2/ 'HSTO>>   
 

A program listing is given which provides stack status at various program levels.

Command Resulting stack

DUP2 4 DUPN FN ty ty ty k

DUP 2 * tytytykr 2k

6 ROLLDH * 2/ + ty 2ky t y t y+Hky/2

SWAP H 2/ + ty 2k; ty y+Hky/2 t+H/2

SWAP FN 3 * DUP t y 2k1 t y 3ky 3kp

4 ROLLD H * 4 / +t y 2k1 3k t y+3Hkp/4

SWAP H .75 * + ty 2kj 3ka y+3Hky/4 t+.75H

SWAP FN 4 * t y 2k; 3kp 4k3

3 DUPN + + t y 2k1 3ky 4k3 2ki+3k2+ 4k3

H*9/ t y 2k1 3kp 4k3 HI[2ki+3ko+ 4k3]/9

'DELY' STO SWAP t y 2kj 4k3 3k2

2* -4+ ABS t y |2ki+4ks- 6kl

9/ H 2/ 'H STO ty |2kj+4ks-6k2!
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As a general rule, we will find that the algorithm will select small steps when

the solution is changing rapidly and will increase the step size when the solution is

somewhat flat. The reader will notice there are three function evaluations for each

step and that the algorithm gives the first three terms correctly in the Taylor series

in h for the model problem dy/dt =y, y(0) = 1.

To check this program we consider the problem dy/dt =y, y(0) = 1. Successive

executions of STP1 starting with h = .05 give answers accurate to three decimal

places and as the steps are applied h increases to .1, then to .2, then decreases to .1,

then to .05 near t = 2.

A second example for this algorithm is for the problem dy/dt = (y + y2)/t, y(1) =

1 (which has solution y = t/(2 - t)). Beginning with H = .05 successive executions give

t Yapp Yexact N t Yapp Yexat N
1.05 11053 1.1053 .05 1375 21998 2.2 025

1.1 1222 1222 .05 14 23332 23333 025

1.15 1.3529 1.3529 .05 1.425 24781 2.4783 025

1.2 1.4999 1.5 .05 14375 2.5554 2.5556 0125

1225 15806 1.5806 .025 145 26361 26364  .0125

1.25 1.6666 1.6667 .025 1.4625 2.7207 2.7209 0125

1275 17585 1.7586 .025 1475 28093  2.8095  .0125

13 18570 1.8571 .025 14875 29022 29024  .0125

1325 19628 1.9630 .025 1.5 29997 30 0125

135 20768 2.0769 .025 15125 3.1023  3.1026  .0125

The step is reduced again at t= 1.6 to .00625, etc. This algorithm is selecting smaller

and smaller h as the asymptote t = 2 is approached. It may be desirable to place a

lower bound on the size of h and have an error message when the esterr < .01 cannot

be maintained.
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Exercise 1.15: Use STP1 for the differential equation dy/dx = x® * y, y(0) = .5 with

an initial step H = .05. Note the value of H after each execution of STP1. Here the

step size is not decreased while 0 < x < .75 since x® is small and the size of dy/dx is

small.

Suppose we are given an interval 0 < t < t;., and an initial value y(0) and wish

to apply STP1 until we reach the time t;,,. Consider the following program

which begins with t, y, t;,, on the stack and H (an initial stepsize), FN stored.

The outputis a list YV which can be readily used to construct a graph.

 

Program Name ARK.1

Purpose Calculate and store values of the solution of

an IVP using STP1 from t, to t;

Stored Quantities H FN STP1 RK3

Input Output

level 3 level 2 level 1

to Yo tinal stored list YV

<< >TF << {} 'YV' STO DO STP1 DUP2 R—»C YV + 'YV’

STO 2 PICK H + UNTIL TF > 2 PICK TF SWAP - 'H' STO

RK3 DROP DELY + SWAP 2 H * + SWAP R-»C YV + 'YV’

STO >> >>   
 

A variant of this program could be used to solve the differential equation dy/dt =

f(t,y) where the "formula" for f(t,y) changes according as a criterion g(t,y) < 0 is or

is not satisfied. Note also that GRAF can be used directly with STP1; however

since the step size is not set, a graph with show only the results of N steps.
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Discrete Dynamical Systems

In somesituations, the problem of interest is to determine information concerning

the asymptotic behavior of solutions. This occurs often in differential equations;

however we will illustrate this type of problem by introducing a new type of

problem.

The sequence {y, }0* where y, is given by a recursive function of the form vy,, =

F(y, ) is called a discrete dynamical system. Euler's method, the improved Euler

method, and Newton's method for finding roots give such systems. Concepts such as

constant "solutions”, attractive or repelling solutions taken from differential

equations are also present in the study of such systems. Discrete dynamical systems

(in one dimension) have solutions with more complicated structure than do

differential equations. For example, y, = a constant (for all n) is called a period one

solution, y,4q , = & and yg,en n = B is a period two solution, y;,= &, Yam,1 =B, Yam.2 =

% is a period three solution, etc. Consider

Yooy =1 +a)y,-a(y)?and y, = .1.

We want to regard a as a parameter and want to study the effect on the "solution

sequence { y, }" as a is varied. In particular we wantto study a = 1.8, 2.3, 2.5 and 3

as well as near by values of a.

After several numerical experiments, we find that for a = 1.8 the terms of the

sequence approach 1, but for a = 2.3, the terms of the sequence approach 1.18 for even

n and .69 when n is odd, etc. This leads us to the following graphical program:

Set the value of a. Calculate the first 50 terms, then graph the values of the

next 100, then change the value of a and repeat. To get these cases on a single graph

we plot the values of y, on the horizontal axis and the values of a on the vertical
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axis. The following programs can be used: Store A =1.8 and N = 100, and set the

plot parameters so -.5 < x < 1.5 and 1.6 <y < 3.2, then enter the programs

 

Program Name

Purpose

Stored Quantities

No input:

 

DDS HP-48S version

Plot the asymptotic value of a discrete system

for several values of the parameter a

FN1 DDS1 DDS2 A N XRBRNG YRNG

Output is a graph

<<{# 0d # 0d } PVIEW .1 112 START DDS1 A .1 +'A’

STO .1 NEXT GRAPH »>>

 

For the HP-28S calculator, replace the program given above with

<< CLLCD .1 112 START DDS1 A .1 +'A" STO .1 NEXT

LCD— >>

and store PMIN and PMAX instead of XRNG, YRNG. Subprograms are:

 

Subprogram Name

Purpose

 

FN1

Create the new value of y, given the previous

value

<< DUP SQA*SWAP A 1 +*SWAP->>
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Subprogram Name DDS1

Purpose Execute FN1 50 times, call DDS2

<< 1 50 START FN1 NEXT DDS2 >>   
 

 

Subprogram Name DDS2

Purpose Repeat FN1 N times, plot points

<< 1 N START FN1 DUP A R—>C PIXON NEXT >>

Use PIXEL for the HP-28S program in place of PIXON   
 

(The 50 executions of FN1 with out graphing allows the sequence to come to "steady

state" before the graphing begins.) Execute DDS.

2 NS S &8 = eRE W - EEEEE B e s Nls L L EEE - ISD

A SEEEEEE EEES S IEEEEE B =B SN s HE SEEEEEE SEE NN CENS B 5SS

 
 

Discxete Dynamical System

Exercise 1.16. Change FN1 to repeat the process for the system

Vne = (1 +a)y, +2a(cosy,-1)and y, = .1.

An appropriate range of the parameter a begins at 2.0.
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User Directories: First Order Initial Value Problems

The reader should consider placing the programs presented in this chapter

which are likely to be used repeatedly in a directory identified with first order

initial value problems. A separate directory can be established for programs for

higher order problems. See Appendix 2 for suggestions.

As a final note in this chapter, the HP-48S calculator permits the following

program to remind the user for most of the ingredients required for GRAF. As

written, the user must create and store the FN program which takes X Y from the

stack and produces the derivative f(X, Y), then the composite program will prompt

for initial conditions, step size, number of steps, etc.

 

Program Name: INIT1

HP-48S Program to set required ingredients for GRAF

Stored Quantities: FN

<< "KEY IN # OF STEPS"” " " INPUT OBJ— °'N' STO "KEY IN

STEP SIZE" " " INPUT OBJ—> 'H' STO "KEY IN XRNG" ""

INPUT OBJ—> XRNG "KEY IN YRNG" "" INPUT OBJ-

YRNG "KEY IN INITIAL X" " " INPUT OBJ— "KEY IN

INITIALY" "" INPUT OBJ—> ERASE »>>   



Chapter 2. Initial Value Problem Variables and Parameters

There are many problems in a differential equations course in which a number (or

numbers) satisfying a somewhat complicated equation is needed. We may treat a

problem of this type in several ways. In one type of example we may simply use the

equation solver routine contained in the calculator. We will give examples of this

below. In another type of problem we can use the graphing capability of the

calculator to display the inverse of a particular function and thus calculate the

graph of a desired solution. A third type of problem, illustrated in the section on

parameter identification below, is to solve a vector equation F(w) = 0 of a vector

variable w. We will give a sequence of programs which may be combined to solve

such a problem using Newton's method.

Implicitly Defined Solutions of Initial Value Problems

Implicitly defined solutions may arise arise in the study of first order

differential equations, particularly in those problems in which variables are

"separated and integrated” or in exact equations.

Example: Graph the solution of

dx/dt=1-x%2, x(0)=1/2

for 0 <t <25. Clearly the solution x(t) will approach 1 as t increases. Using

separation of variables, we obtain
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We make the substitution x = y2 and use a partial fraction decomposition for the

fraction to obtain the implicit equation F(x) = t where F(x) = f(x) - f(.5) and

1.5 f(x) = In {‘—/—(—1—1—:(?} -3 Arctan {l%fi} .

The graph of F(x) versus x for 0 < x < .99 can be obtained quickly on the calculator

and is part of the figure shown below.

y = F(x)

  

 

y= Inverse F

 
 

Since F is an increasing function for 0 < x < .99, there is an inverse function

F1(w) for F(.5) = 0 < w < F(.99) = 2.7. The solution to our initial value problem is

given by x(t) = F1(t). We include a graphical construction of the inverse function F!

in the figure show above. The following program for the HP-48S, called INV.F will

overlay y = F(x) with a graph of F- 1(x). F should be stored in EQ. The input to this

program is a pair of numbers A B. The program creates a graph of F~ 1 on the

interval A < x < B.

<<DUP2 SWAP - 100 / > A B H << RCEQ CLLCD 'X' STEQ DRAW

STEQ A B FOR I | 'X' STO X EVAL SWAP R—»C PIXON H STEP

'X' PURGE GRAPH >>

Here, use plotting parameters to show -2 < x £2.75, -2 <y <2.75 with {X .5 .99} as

the INDEP setting to draw y = F(x). Put .5 .99 on the stack and execute INV.F.
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For the HP-28S in INV.F change the command PIXON to PIXEL and the command

GRAPH to -»LCD. The user should save the picture of F(x) as a string on the stack

and combine that string with the output of this program with the command OR. To

show the composite picture execute -LCD (on the STRING menu). Warning: the

particular graphs F and F-1 in this exercise are of limited instructional use on the

HP-28S because of the screen dimensions.

Exercise 2.1: Determine the solution of x' =1 - x25, x(0) = .5 using separation of

variables technique. Then use the inverse function to graph x(t).

Use of SOLVE in Application Problems

Suppose we wish a number x so that an equation f(x) = g(x) is satisfied. Enter

the equation on the stack enclosed between ' marks. Then STEQ. Set plot

parameters so that when both sides of the equation are drawn, a crossing is shown.

Use the cursor (and the INS key on the HP-28S) to locate the approximate crossing

coordinates. On the HP-48S execute ISECT. On the HP-28S go to the SOLV menu and

use the SOLVR key. Depress the X key, then the shift X key for the result.

Mixing Problem: Initially a large tank holds 2000 gallons of pure water. An

stream of 5 gallons per minute with salt content of 2 #/gallon is input into the tank

and 4 gallons per minute of the well mixed solution is drained from the tank. When

is there Q, pounds present in tank ? The usual model dQ/dt = input rate - output rate

gives

(2000)°
Q=2|2000+t- 2

(2000 + t)
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Putting Q(t) = Q, gives

% 42000 -> +t 2000 ]

2000 = 12000 + t

to solve for t. For Q, = 100, we get

4
1950 + t _ _M] ,
2000 L2000+t ]~

and if we use plotting parameters to show 0 < x <20, .9 <y <1, we get an intersection

at about 10 as shown:

T

  

  

Right side of equation

   Leftside of €

 

10

. . * . time

Mixture Problem

  
Exercise 2.2: A tank initially contains 300 gallons of pure water. Brine containing

1.5# of salt per gallon enters the tank at 2 gallons/minute and the well mixed
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solution leaves at 3 gallons per minute. When will the tank contain 21 # of salt ?

(There may be more than one solution.)

Falling body problem: For mass m = 500 kg, gravity g = 9.81, resistance coefficient k

=50, v(0) =0, and dv/dt = g - kv/m, the time when displacement = 1000 is

1000 = 981[t-10 (1-e19)]

1981-98.1t = 981 e-1t

If we use plotting parameters to show 0 < x <20, 0 <y <500, we obtain a graph

with intersection at t = 18.64.

Population Problem: In a logistic population model dp/dt = ap - b p2 with

parameters a, b and p, = 3.93, p(50) = 17.07 we get

3.93 ema)
al17.07

bPo=.

Now if we take p = 75.99 at t = 110, we get

3.93 -50 a 3.93 -110a
Too < 355 - e e

Set x = 50 a then 110 a = 2.2x. We wish to solve

[e>-.23023] (1-e2%) = [e2?*-.05172 ] (1-e™).

If we use plotting parameters to show 1 < x <2, -0.05 <y <.02, we get a solution at x

= 1.53 which means that a = .031. Suppose that data for a year other than t = 50 is

available. What would happen if we computed a using that data?
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The problem of obtaining a general solution of

  ignl+a1 in:’]( +a2(::_§ +...+a,x =0
t t

where the coefficients a,, a,, . . . a, are given constants, is solved by making an

"educated guess" for x = et for the solution which leads to the algebraic equation r

+a,r™1+ ...+ a,= 0, sometimes called the characteristic equation. The roots of this

equation can be used to construct all solutions of the differential equation. When

factors of the left side of this equation are not available a calculator graph of f(r) =

™ +a,r"1+ ... + a, gives an approximate solution. SOLVE may be used to find a

better approximation.

Exercise 2.3: Find all solutions of the form x = e™ to the differential equations

d_sx_ dx Lg‘_,,zd_Bx_g,dzx dx

g deY g Tg T

Project Exercise: Travel time for a sliding bead as a function of trajectory shape:

We want to specify the shape of a curved wire by a function y=f(x), which

connects the point A with coordinates (x;,y,) to the origin (0,0) (denoted as point B)

so that a bead of mass m will slide along the wire from A to B in a minimum amount

of time. The bead begins with initial velocity zero and slides with no friction under

the force of gravity g.
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y initial point A

   
texminal point
4

B:(0,0) Sliding Bead

 '
x

The arclength formula,

 

X, 2

J’ . df(r) g
s(x) = rr T,

the principal of conservation of energy (this is a conservative system),

-%—m V2 + mgy = mgy, ,

and the expression for the travel time,

T S(0) 4 s(0)1
t

T=6[dt =6'. d_sds=! Vds,

leads to the equation
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where we have explicitly noted that T depends on the curve y = f(x). (We have

used the technique of changing the variable of integration and the Fundamental

Theorem of Calculus.)

We further specialize the example by taking x, = 200, y, = 100 and g = 1. Later

for this case we will find there is a curve such that the travel time T is

approximately 25.231. For these parameters the following curves connect the points

A and B:

(a) f(x) =x2/400, (b) f(x) = exp(( x In 101)/200) - 1, (c) f(x) =100[1 - cos (rx/400)].

We will evaluate the travel time integrals given above using numerical integration

for each of these curves.

For f(x) = x2/400 the descent time integral becomes

 

  

3 I

°
3

 

Put x/200 = z, evaluate the integral to get T = 26.779 (attempted accuracy: 0.01).

Find T for the functions given in (b) and (c). (Note that so far, no differential

equation has arisen.)
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The differential equation

dy  [K-017Y)
dx— Y.-Y

can be shown to give the minimum time of descent. We have

eY
JK-(17Y)

Use the change of variables

y, -y = k? sin? 522

to get

2
dx = - k2 sin? gd(p, x=C-k? (¢ - sin @).

At 9=0,x=x1 and y = y1 and at ¢ = @1 (to be determined), x =y = 0.

Thus the solution to the differential equation along with the transformation y to

¢ yields a parametric representation (x(¢),y(¢)) of the curve of minimum descent

time. There are two constants, k2 and @1, to be determined.

1(2 . k2

x=x-[0-sin @], y=y -7-[1-cos0], 0<psq,

The constraint x(¢1) = y(91) = 0 leads to the equation
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k2o 2y, _ 2%,

sin2 ® 1-coseq, @, -sing,
  

We may solve

X1
G((p)=(p-sin<p--y—(1 -cos@)=0

1

for ¢ = ¢, with the calculator. Notice there is a positive solution. Now determine

k2. Using the differential equation in the expression for the descent time

 

But y1 -y = k2[1 - cos ¢1/2, dx = - k2 [1 - cos @ld¢ so

2
k

T(yopt) = g P, -

Use the values you get for ¢, and k? to evaluate T. You should find

T(Yop) = 25.231.
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The reader may note that the slope of the optimal curve is infinite at the initial

point. This results in a quick start for the sliding bead. The optimal curve is called

a cycloid. Optimality is shown in the study of the calculus of variations. Notice

however, the exponential curve gives a travel time similar to the optimal curve.

Project Exercise: Travel time up a hill versus initial energy

This project is also concerned with the shape of a unknown function f(x). Suppose

we give to a particle with initial position at the origin energy E in the form of

initial velocity. The particle sliding on the shape function f(x) (we assume that f is

an increasing function) leaves the origin, travels up the "hill" f(x), reaches the limit

of its travel at which all its energy has been converted into potential energy and

then returns to the origin. We observe the time required to do this (as a function of

the initial energy). (This problem is also illustrated by the figure given for the

previous project.) The time between the particle's leaving and arriving back at the

X(E) ' 2

T(E) = {2m | y1+1P0T dx,
0 ,/ E - mgf(x)

origin is given by

and x(E) = f 1(E/mg), that is E - mgf(x) = 0.

Suppose the shape of the hill (i. e. the curve f (x) ) is one of the functions given

in the previous project (i. e. a parabola, an exponential function, or a trignometric

function). Graph T vs E for E = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 (numerical

integration required).
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Now read the first part of the article by Keller on Inverse Problems in the

American Mathematician Monthly, volume 83, 1976, pages 107-118, and describe what

is meant by the inverse problem.

Parameter Identification Using Observations on IVP Solutions

Several mathematical models lead to second order ordinary differential

differential equations with constant coefficients. These coefficients are usually

obtained from measurements either directly on the physical system or on solutions of

the system. Here we will concentrate on a technique of deducing coefficient values

using measurements on the solutions.

First an example: A common solution function has the form

y(®) = ae"Pt + be-qt,

where a, b, p, q are parameters. Suppose a set of values { (t,y) } is obtained by

making measurements. There is usually some experimental error in measurements so

the entire set { (t,y) } will be used to find the parameters. In this example suppose

the measurements are:

{,1), (1,.30), (.2, -.20), (.3,-.60), (.4, -.88), (.5, -1), (.6, -1.2), (.7, -1.2), (.8, -1.3),

(.9, -1.3), (1, -1.2), (1.5,-1), (2,-.70), (2.5, -.50), (3, -.3), (3.5,, -.17), (4,-.11)}

This list is stored in the calculator as L1.
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Graphs of Solution Observations

The graphs shown are generated with the HP-48S program

<< CLLCD DRAX L1 LIST»> 1 SWAP START PIXON NEXT GRAPH >>

<< CLLCD DRAX L1 LIST-»> 1 SWAP START C—»R ABS LN

R—>C PIXON NEXT GRAPH >>.

Programs for the HP-28S are similar: the command PIXELis used in place of PIXON

and the command GRAPH is omitted.

To get approximations for a, b, p, and q we proceed as follows: suppose p > q,

then y(t) = e" 9 t(ae(P-Dt + b). Since the first term becomes negligible as t increases,

b < 0 (we replace b with -1bl) and a plot of (t, Inly!) is a straight line for large t

with slope -q. From the second graph we get q = -.5 In (.11/.7) = .925 from the data

points (4, -.11) and (2, -.7). The first data point gives a = Ibl + 1 (which is, of course,

an approximate equation), and dy/dt(.85) = 0 gives p(1+Ibl) e8> P = 42|bl. Finally

we use the approximate equation In -y(t) = In |bl -.925 t = 0 at t = 1.5 which gives

Ibl =4,a=5,pe8P = .336. This equation has two solutions p = .525 and p = 2.2.

Since we want p > q, we take p = 2.2. These approximate values will be taken later

as starting values to an iterative process to determine the parameter values. First

however we give a somewhat simpler example.
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Suppose { (t, y) } data is given for the solution of an initial value problem and

we wish to determine appropriate values of two parameters p and q in a function y =

g(t,p,q) to fit the data, say in a least squares sense. That is, we want to choose p

g, p, q)]2

By taking partial derivatives with respect to p and q and setting them to 0 we

and q to minimize the sum

|
|
M
2

obtain equations

[y g(t p,q)]—‘(t p,qQ=

[y g(t p,q)]—(t p,q=

a
n
'
fi
M
z

i

We take the left sides of these equations as components of a vector F, and attempt to

solve the vector F(p, q) = 0. We will assume we have starting values for p and q and

give an iterative process.

The reader should view this is a special case of the problem of finding a solution

of a vector equation F(w) = 0 of a vector variable w. (In this application if we have

m parameters, w will be the m vector of parameters and F will be the m vector of

partial derivatives.) If the components of the function F are smooth, and we have an

approximate solution w,, then Taylors theorem gives the approximate formula

F(w) = F(wg) + J(wp) (w - wy)

where the matrix | has i, j element dF;/dw; If w is to be a good approximation of the

solution, the left side of this equation is zero and we get a "formula" for an improved
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vector solution w in terms of the old approximate w,. We will return to this method

in chapter three and use some of the same calculator programs there.

Here is an outline the problem: First we create calculator programs for

og og

then we will construct a program called DER for finding the derivatives of these

functions with respect to p, q, etc. After execution, the derivatives can be used to

create terms in the Hessian matrix J used in Newton's method.

Next we form the list { (t; y,), (t;y,), ..., (t,y,)} by entering the number pairs

on the stack, then entering n and the command —LIST and store this as DTA1.

Finally we create a program called JACM to accumulate the data sums in the

Hessian matrix after assigning values to p and q. Now we have the ingredients of

the Newton formula:

PRq.. |7 q| 1P Fira

and can find new values of p and q.

Many engineering and science problems require the solution of several nonlinear

equations. Newton's method is one such algorithm. Most methods to accomplish this

can fail under a variety of conditions. Good starting guesses are essential.

HP-285/48S programs are listed below for Newton's method for this problem.

Here we assume there are M parameters and N data points

1. Store the value of M in M and M parameters in a list named PL={P Q }:2

parameters (or in the case of five parameters, say PL ={P Q R U V}). Make

sure each of the parameter "variables" in PL has been purged.
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2. Purge the variables T and Y and store the components for the M functions F(T,Y,

P, Q) in a list named FL. For example,

{'(Y-3*EXP(-P*'T) + EXP(-Q*T) )*3*T*EXP(-P*T)’

(Y - 3*EXP(-P*T)+ EXP(-Q*T))*'T*EXP(-Q*T)'}

would result from trying to fity =3 e-Pt-e qt to data.

3. The subprogram DER will use the calculator's ability to take appropriate

derivatives of the functions in FL

 

Subprogram Name DER

Purpose Creates list JL puts the FL functions on the

stack and executes DERA M times

<< {}'JL' STO FL LIST-» 1 SWAP START DERA NEXT>>    
by calling the subprograms

 

Subprogram Name DERA

Purpose Creates M -1 more copies of the first element

on the stack for use in the next subprogram

<<1M1 - START DUP NEXT DERB >>   
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Subprogram Name DERB (replace d in HP-28 program with d/dx)

Purpose Takes M copies of a function in FL, creates the

derivatives with respect to each parameter in

PL and stores them in JL

<<1 M FORIPLIGETO M 1 + | - ROLLD NEXT

M —LIST JL + 'JL'STO>>.   
 

4. Store the the N elements of data { (T, Y ) } in a list DTA1.

5. Now create the programs (which assume values are assigned to P, Q)

 

Program Name JACM

Purpose Create matrix JMAT, gets a data point t,y

and calls the subprogram JEVP and does this for

each data point

<< {M M} 0 CON'JMAT'STO 1 N FOR | DTA1 | GET C—R

"Y' STO 'T" STO JEVP NEXT >>

 

 

Subprogram Name JEVP

Purpose Evaluates the elements in JMAT at the data

point and adds it to the value to the previous

sum in the JMAT element

<< JL LIST—» 1 SWAP START -NUM M SQ ROLLD NEXT {M M}

—ARRY JMAT + 'JMAT' STO >>    
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JMAT will be the Hessian matrix of derivatives.

6. Now for FVEC (F vector). In the following P, Q values have been assigned.

 

Subprogram Name FACM

Purpose Create FVEC, get a data point t, y and call

FEV: do this for each data point

<<{M} 0 CON 'FVEC' STO 1 N FOR | DTA1 | GET C—>R

'Y' STO 'T" STO FEVP NEXT>>

 

 

Subprogram Name FEVP

Purpose Evaluate the functions in FL at t,y, P, Q, ...

and add the value to the previous value stored in

FVEC

<< FL LIST—> 1 SWAP START -NUM M ROLLD NEXT {M}

—ARRY FVEC + 'FVEC' STO >>   
 

Procedure: Store PL, FL, N, M and execute DER to get JL (] list). Put a vector [p,q]

with initial values of P and Q on the stack and execute a program NST1 given by

<< DUP OBJ—» DROP 'Q" STO 'P' STO JACM FACM FVEC JMAT / >>

The result is a copy of the old value of [P,Q] and the increment [AP, AQ]. Execute

the command - and repeat. (For the HP-28 program replace OBJ— with ARRY— .)
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Exercise 2.4: Use starting values p = .25, q = 2 and the data to determine p and q in

y=3ePt-2e9t:

{©, 1), (4, 1.89), (.8, 2.01), (1.2, 1.9), (1.6,1.72), (2,1.53),

(2.4, 1.34), (2.8, 1.18), (3.2, 1.03), (3.6, .903), (4, .79), (5, .57) }

Exercise 2.5: Suppose p = .33 and q = 2.5 and the resulting function is a solution of

2d d
Liky=0
a

Determine the damping and spring constants in this linear spring motion.

Project Exercise: Data Fit in a Population Problem. Data showing population

numbers { pj } at times { t; } in a model dp/dt = ap - bp? is given. For payoff function

2
ap,

P ( *,a,b)=n P;- -
Po i;, bp(’;+(::1-bp(;)ea

 

t,
1

we wish to choose po*, a and b to minimize P. Good starting values for the three

equations obtained by setting the partial derivatives of P with respect to p,, a, and b

to zero can be obtained by using the data in the year t = 0 (1790) and the years when

t = 50 and when t = 100. Use Newton's method to solve this problem.

Year Population Year Population Year Population Year Population

1790  3.93 1840 17.07 1890  62.95 1940 131.67

1800  5.31 1850  23.19 1900 75.99 1950 151.33

1810 7.24 1860 31.44 1910 91.97 1960 179.32

1820  9.64 1870  39.83 1920 105.71 1970 203.21

1830 12.87 1880  50.16 1930 122.78 1980 226.50
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Second Order Linear, Constant Coefficient Problems

We consider here some linear second order differential equations with constant

coefficients with and without a forcing term. An important differential equation

which models the displacement of a linear spring with linear damping is

dzy dy 2
——2-+2b'a-t—+(0 y=0.

dt

Case I: Damped oscillatory motion: ©2 > b2

For ®2 = 9.25, b = .5, y(0) = 0, y'(0) = 3, the solution is y(t) = e~ t sin 3t.

Exercise 2.6: Graph y(t), 0 < t < 6.28 with the plot parameters chosen so -1 <y < 1.

For what values of t does y(t) have a relative maximum ? What is the spacing of

the relative maxima ? Comment: To better understand the structure of this

important graph, add a plot of y = + "2 t to the graph. (On the HP-48S, this can be

done by using the DRAW command after EQ is modified to ‘et = - et ' without

erasing the graphics screen. On the HP-28S, the DEL key should be pressed after the

first graph is drawn to record the screen as a string on level one of the stack. After

modifying EQ to 'e>t = -2 t', STEQ and DRAW. Press DEL to record this graph

as a string, then return to the stack by pressing ON. Combine levels one and two of

the stack with OR (enter) and bring the composite graph to the screen with -LCD

which is on the STRING menu.) This composite graph, shows a solution envelope.

This solution graph is typical of damped oscillatory motion. If other initial

conditions or other parameters b and w2 are used(with ®2 > b2), the solution graph

is similar in form, but scales on the t, y axes are modified. For example, if b and 02

remain the same but initial conditions are y(0) = 3 and y'(0) = 10.5, the solution is

y(t) =5 e2t [.6 cos 3t + .8 sin 3t] =5 e~ O t sin (3(t+.2145))

= 5 -5(.2145) o- .5 (t+.2145) gjn (3(t+.2145))

= 5.566 e > (t+.2145) sin (3(t+.2145)).
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Before we leave this case, let us note that solutions z1 (t) and z(t) of the

differential equation which satisfy the conditions z1 (0) = 1, z1'(0) = 0, z2 (0) = 0,

29'(0) = 1 are z1 (t) = e~ Pt [cos ut + (b/p) sin ut],

z9 (t) = (1/p) e~ P tsin pt, with p = (02 - b2)1/2,

Case II. Overdamped motion: @2 < b2

For this case solutions zj (t) and zp (t) of the differential equation which satisfy

the conditions z1 (0) =1, z1'(0) =0, z (0) =0, z2'(0) = 1 are

z1 (t) = e~ Pt [cosh Bt + (b/P) sinh Bt], zp (t) = (1/u) e" P tsinh Bt, P = (b2 -02)1/2,

Exercise 2.7. Suppose ®2 =9, y(0) = 0 and y'(0) = 3. For the plotting screen set so

0<t<.5and 0 <y <.5, graph the solution of the differential equation for each of

the following cases: b=2,b=2.7,b=2.99,b=3.01,b=234and b = 3.7 and combine

into a single graph to compare the solutions to all of the initial value problems.

(In three of the cases, you draw y = 3 e~ P tsin ((9-b2)1/2 t)/(9-b2)1/2 andin three of

the cases you draw y = 3 e" P tsinh (b2 - 9)1/2 t)/(b2 - 9)1/2 )

Exercise 2.8: Obtain the solution of

dy 49 dyd_tz—+Ty=3 cos (5t/2), y(0)=a-(0) =0

by analytical methods, then graph the solution for 0 < t < 6.28 using plotting

parameters so -1 <y < 1. To see an envelope of the solution, generate the graphy =+

sin t/2 and combine the graphs.
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Exercise 2.9: The steady state solution to the forced system

2
d d
= +2b—y +m2y=Kcosyt

ar

is y(t) = M (y) sin (yt + 6) where

0?7
by -

 

M (y) = ,tan 0 =
K

2 2
\/(coz-yz) +4b 72

Forw =1,K=1,and b=1, graph M (y) for 0 <y <2. (Choose plot parameters so 0 <

M <3.) Repeat forb=.5and b =.2. In each case what value of y gives maximum

amplitude ? In each case what is the maximum amplitude ? For b = .2, what values

of y give amplitude larger than 2 ?

Exercise 2.10: Forow =1,b=.5,K=1,L=1and y = 1, graph the steady state

solution of

d2 d
—;, +2bd—y +m2y=Kcosyt+Lc0527t

dt t

for 0 < t <12.56. Use plot parameters to show -1.5 <y <1.5.



INITIAL VALUE PROBLEMVARIABLES AND PARAMETERS 49

El:/\f\ : /\/\ T
T vt

Steady state solution fox

cos t + 5 cos 3t foxcing

w=1,b=.5

Exercise 2.10 and the figure motivate the study of a differential equation of the

same form as that studied above, but with a general forcing (non-homogeneous) term

f(t). The method of variation of parameters will give a formula solution which

contains an integral. Such a integral can be evaluated numerically on the HP-28/48

when f(t) is given and a graph can be constructed. It is easy to write a program to

construct such a graph; however in these notes we will obtain the solution of such a

system using a numerical method on the initial value problem. Such a strategy will

allow us to concentrate on the initial value problem program rather than on

constructing a new program. (However we do give an interesting exercise on this

subject using the complex exponential function in Appendix 5.) We will return to this

problem in the next chapter.

On Compartment Models with a Delay

Some mathematical models contain assumptions which are known to be only

approximate simply because the resulting mathematical problem has an elementary

solution. For example, suppose Q(t) is the weight of salt in a tank solution with

volume V. Suppose also the tank has an inlet stream of a brine solution with

concentration of 2 pounds of salt per gallon entering the tank at 3 gallons per minute,
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and the tank drains at 3 gallons per minute. Then dQ/dt = 6 - output rate ofsalt.

The last term in the balance equation for the exiting amount of salt is approximated

by 3Q(t)/V. This results from assuming the tank is vigorously mixed so that the

concentration of salt in the tank is uniform throughout the tank. The geometry of the

tank inlet and drain may be such that a better approximation for this term is

3 Q(t-r)/V. Here the factor Q evaluated at t-r indicates that the salt concentration

at the drain is retarded by r minutes from the average concentration Q(t)/V. Of

course, the amount of delay may need to be determined by a parameterfit to

observed data. In this section we use the graphic and programmable features of the

calculator to study such a model.

The problem dQ/dt = 6 - 3Q/500, Q(-50) = 500 has solution

Q(t) = 1000-500 e 006(t+50)

The graph of this solution rises smoothly from 500 and approaches 1000 as t

increases.

Now consider the modified problem

dQ 3Tt) =6 - 500 Q(t-50)

with initial function Q(t) = 500 + 13(t+50)/5 for -50 < t < 0. (This line approximates

the solution of the original model over the interval -50 < t < 0.) For the interval 0 <

t < 50, by direct integration, we obtain Q(t) = 630 + 3t - 39t2/5000, similarly for 50 < t

< 100, we obtain Q(t) = 760.5 + 111(t-50)/50 -9*10°3(t-50)2 + (117/75)*10-5(t-50)3. An
interesting exercise is to graph this composite function and compare the results with

the first model.

Exercise 2.11: Graph the function

'IFTE(X<0, 500+2.6*(X+50), IFTE(X<50, 630+3*X-39*X"2/5000,

760.5+2.22*(X-50)-9*(X-50)"2/1000+.117*(X-50)"3/7500))'

for -50 < X < 100. Use plot parameters to show 500 <Y <1000. Compare this with

the graph of 1000 - 500 e~ -006(x+50),
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Exercise 2.12: Assume the initial function is Q(t) = 1000 - 500e” 006(t+50) on the

interval -50 < t <0: derive the solution formulae for the intervals 0 < t <50 and 50 <

t < 100. Plot the result and compare with the function derived above.

The modified modelis called a delay differential equation. A somewhat less

modest example is: dy/dt(t) = f(t,y(t), y(t-r)). To uniquely define a solution, the

initial function segment , say defined on -r < t <0, must be given. Then the problem

may be solved sequentially in time steps of length r.

In many cases we want to know the overall solution behavior over a time

interval 0 <t < M*r (here M is a positive integer). Direct extensions of Euler's

method or improved Euler's (and other algorithms) method lead can be formulated.

We will construct a program for the approximate solution and its graph for

dy
-a-t-(t) =a - b y(tr)

where the numbers a, b, r > 0 are given as well as the initial function y(t) for -r < t <

0 over an interval -r < t < M*r. In this program we will take steps of length r/N.

Suppose that y-N, y-N+1, - - -, Y0, Y1, Y2, - - - Yk approximate the values of the

solutionatt=-r,t=-r+h,...,t=0, t=r,t=2%... and t = k*r. Then
t
ndy

yn=yn_1+tj FPdt=y +5hla-by +a-by ln=12..,NM
n1

results by approximating the integral using the trapezoidal rule. We note that to

construct yn we need the values of y N-1 and N steps back. One way to accomplish

this is to construct a list L1 which initially contains points on the initial function

segment and modify L1 at each step adding the new value yn and deleting the value

yn-1-N- The initial function is stored in the variable INT.F, and the output is a

graph of the y function, -r < t < M"r.
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Program Name DLAY (for delay system given above)

Purpose Calculates/plots values of the initial

function and the approximate solution

for -R <t < M*R using step size R/N

Stored Quantities R N M INT.F PO P1 P2 XBRNG YRNG

<< { # 0d # 0d } PVIEW INT.F R N / PO P1 L1 DUP

N1+ GET 0O SWAP R N/ > H << 1 N M * START

H P2 NEXT GRAPH >> >>.  
 

We require a subprogram to define the initial "history” of the solution:

 

Subprogram Name PO

Purpose Creates a list L1 containing values on the

initial function spaced at R/N time units

Stored Quantities R N XRNG YRNG

Comment: Program creates L1 and uses the global variable X and

leaves H on the stack.

<< > H << R NEG X' STO 1 N 1 + START DUP EVAL

SWAP X H + 'X" STO NEXT DROP N 1 + —LIST 'L1' STO

X' PURGE H >> >>.  
  

and a subprogram to plot the initial function or -r < t < 0:
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Subprogram Name P1

Purpose Plots points created from the list L1 thus

graphing the initial function

Stored Quantities L1 R N XRBNG YRNG

Comment: Program creates L1 and uses the global variable X and

leaves H on the stack.

<< > H << R NEG 1 L11N1 + START SWAP GETI

SWAP 3 ROLLD 4 ROLL DUP H + 5 ROLLD SWAP R-C

PIXON NEXT 3 DROPN >> >>.   
 

The following subprogram contains the governing differential equation and may

be altered to other systems:

 

Subprogram Name P2

Purpose Calculates/plots values of the approximate

solution of the delay equation for

R/N < t < M*R using step size R/N

Stored Quantities R N XBRNG YRNG A B

Comment: Program DLAY leaves a copy of the list L1 on the stack

before executing this subprogram.

<< > H << 3 ROLL DUP DUP 1 GET SWAP 2 GET + B* A

2 *SWAP - H2/* 3 ROLL + DUP 3 ROLLD + 2 N 2 +

SUB 3 ROLLD SWAP H + SWAP DUP2 R—C PIXON >> >>.   
 

The purpose of the programs given above is to study the responses (0 < t <100)

for various initial functions. We show below three such responses corresponding to
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10001Y

500

 

-30 0 100

Delay Model for Mixing Problem

(3 initial functions shown)

initial functions (1) y(t) = 1000 - 500 e~ -006 (+50) (2) y(t) = 629.5, and (3) y(t) = 500

e~006 (t+50) 4 2591 - 5.18 t all for -50 < t < 0. Notice input (1) < input (2) < input (3)

for -50 < t < 0. The outputs have the reverse order: i. e. output (1) < output (2) <

output (3). Output (3) = 786 at t = 100, output (1) = 849 at t = 100. The ordinary

differential equation model gives the value 797.

Some population biologists have considered population models with a delay

term. If a population is large enough that a continuous model gives information and

P(t) is the population at time t, then a delay model might take the form

dP P(t-r)
'a't‘(t) =r[1- "'K—] P(t).

This model (for r = 0) is called a logistic model for a population size where growth

is constrained by a space or food limiting term. The lag term models a delay in the

population’'s perception that space or food resources limits are being approached.

The model assumes that such a perception will influence the population to reduce

birth rates. An initial function is required on a interval of length r, say -r <t < 0.
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The result is an ordinary differential equation on the intervals 0 < t<r, r<t <?2r,

etc.

Following the ideas introduced for the mixing model, suppose Py, is an

approximation for P(ty) and at each stage of an improved Euler-type algorithm we

keep a record of the N+1 values { Ph-N, Pn+1-N, - - -, Pn} and where ty,1 - tn = r/N.

Then by integrating the term dP(t)/dt from t, to th41 we get

— £ _ _ * *(1 _P=Ph+5[(A-POP+(A-P PP +h1-P)P)]
n+1-N

forn=1,2,... We assume that the initial function is given and so the original list

{P.N,...,Pp}is available. The student is encouraged to devise a calculator

program for this algorithm and compare the results to those obtained using the

ordinary differential equation logistic model.



Chapter 3. Initial Value Problems: Two Differential Equations

This chapter contains a program for obtaining approximate solutions of an initial

value problem for each of three algorithms. The initial value problems consists of

two differential equations and the initial values of the two dependant variables.

The student should note that a second order initial value problem

2
d x dx dx .
—=8t x, E)’ x(to), a(to) given

dt

can be reduced to a first order system of differential equations

dx dy
T=Y =8t xy

and initial values of x and y. We will show how to graph trajectories of such

systems, and study some solution characteristics. A discrete dynamical system in the

complex number system (so there are two dependant variables) is given and the

asymptotic behavior of solutions is illustrated by graphing points in the Julia set.

Some of the programs given below can be simplified by attacking the problem

using vector instead of scaler objects. This approach will be used in the next chapter

for the Euler and improved Euler algorithms.

Euler and Improved Euler Algorithms in Two Dimensions

We consider an initial value problem for the equations

dx dy
'&'{' = f(t, X, y), d—t = g(t, X, y)

56
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The Euler algorithm is based on the same assumption as for one differential equation

and is given by tn+1 = th + h, Xn4+1= Xn+hf(tn,Xn, yn), Yn+1= yn+hg(tn,xn, yn).- The

following program requires we have subprograms FN and GN which taket x y off

the stack and return f(t, x, y) or g(t, x, y). H is stored. The program begins with t x

y on the stack and terminates with new values of t x y on the stack.

 

Program Name EULE2

Purpose Generate new values of t, x, and y resulting

from one step in Euler algorithm

Stored Quantities H FN GN

Input Output

level 3 level 2 level 1 level 3 level 2 level 1

tn Xn Yn th+1 Xn+1 Yn+1

<<3 DUPN 3 DUPN GN 4 ROLLD FN 3 ROLLD H * + 3

ROLLD H * + 3 ROLLD SWAP H +3 ROLLD >>   
 

The calculator stack contents at various stages of the program is show below:

Command Resulting

<<3 DUPN 3 DUPN GN txytxy gtxy

4 ROLLD FN t x y gt x,y) ft, x, y)

3 ROLLD t x fit, x, y) y gt x,y)

H* + t x f(t, x, y) y+H*g(t, x, y)

3 ROLLD t y+H*g(t,xy) x f(tx,y)

H* + t y+H*g(t,x,y) x+H*f(t,x,y)

3 ROLLD x+H*f(t,x,y) t y+H*g(tx,y)

SWAP H + x+f(t,x,y) y+H*g(t,x,y) t+H

3 ROLLD >> t+H x+H*f(t,x,y) y+H*g(t,x,y)
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Example: For the problem dx/dt =y, dy/dt = -9x, x(0) = 1, y(0) = 0, the solution is

x(t) = cos 3t, y(t) = - 3 sin 3t. If we choose H = /48 = .065.. and use FN, GN given by

<< 3 ROLLD DROP2 >> and << DROP SWAP DROP 9 * NEG >> respectively

after execution of EULE2 4 times we get t = 262, x =.770 and y = -2.26. The correct

values of x and y are .707 and -2.12. This somewhat disappointing accuracy can be

improved by changing our algorithm for the initial value problem.

The Improved Euler Method for IVP with Two Differential Equations is also

based on the same assumptions as in Chapter 1 and the equations for the new values

of t, x, and y are given by an obvious extension. Our program for this algorithm

deliberately avoids the use of obvious vector subprograms to remain a simple

extension of the previous construction.

 

Program name IULE2

Purpose Generate new values of t, x, and y resulting

from one step using the Improved Euler Method

Stored Quantities EULER H FN GN

Input Output

level 3 level 2 level 1 level 3 level 2 level 1

t X y new t new X newy

<< 3 DUPN 6 DUPN EULE2 3 DUPN FN 7 ROLLD GN 8 ROLLD FN

+H*2 /6 ROLLD GN + H* 2/ + 3 ROLLD + SWAP 3

ROLL H + 3 ROLLD >>   
 

The reader should notice there are three FN function and three GN function

evaluations for each step. The program can be rearranged so there are only two of

each per step; howeverit is not clear that the resulting program is faster for many
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problems. The calculator stack contents at various stages of the program is show

below. The subscript e means the Euler approximation or the function evaluated at

the Euler approximate values.

Command Resulting stack

<<3 DUPN 6 DUPN EULE2 txytxytxyte xe ye

3 DUPN FN 7 ROLLD txytxyfetxyteXe Ve

GN 8 ROLLD txygetxyfetxy

FN + H* 2/ txygetxy [fe +HI*H/2

6 ROLLD GN + H * 2/ t x [fe +f1*H/2 y [ge + g]*H/2

+ 3 ROLLD + t y+lge + gI*H/2 x+ [fe +f]*H/2

SWAP 3 ROLL x+ [fe +fI*H/2 y+[ge + gI*H/2 t

H + 3 ROLLD >> t+H x+ [fe +{I*H/2 y+[ge + g]*H/2

For the example problem given after the listing for EULE2: namely dx/dt =y,

dy/dt = -9x, x(0) = 1, y(0) = 0 and H = 1t /48, after 4 executions of IULE2, we get t =

262, x = .704, y = -2.13. The increase in accuracy for this problem leads us (in these

notes) to concentrate on the improved Euler algorithm for many problems !

In these notes, we want to emphasize the behavior of solutions of initial value

problems over time. A major tool toward such an emphasis will be a graphical

presentation of an approximate solution. For the case of two differential equations

we may graph x vs t, y vs t or x vs y. A program for any of these cases will be a

simple modification of the GRAF program of Chapter 1. In that program there was

a repeated sequence of steps (a loop) in which we obtained new values of the

variables with the improved Euler algorithm, then we created the coordinates of

the point we wanted to graph, used the command PIXON (or PIXEL) and continued to

the next step in the loop. We will repeat this scheme for IULE2.
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Program Name GRXY

Purpose Graph N values of (x,y) resulting from the

improved Euler algorithm which creates a

sequence of N values of t, x and y.

Stored Quantities N H FN GN EULE2 IULE2 XBRNG YRNG

Input Output

level 3 level 2 level 1 level 3 level 2 level 1

to X0 Yo tn Xn Yn

and graph

<<{ # 0d # 0d } PVIEW DRAX 1 N START IULE2 DUP2

R—C PIXON NEXT GRAPH >>   
 

For the HP-28S calculator replace { # 0d # 0d } PVIEW with CLLCD and

GRAPH with DGTIZ —LCD.

 

Program Name GRXT

Purpose Graph N values of (t,x) resulting from the

improved Euler algorithm which creates a

sequence of N values of t, x and y.

Stored Quantities N H FN GN EULE2 IULE2 XRNG YRNG

Input Output

level 3 level 2 level 1 level 3 level 2 level 1

to X0 yo tn Xn Yn

and graph

<<{ # 0d # 0d } PVIEW DRAX 1 N START IULE2 3 DUPN

DROP R—C PIXON NEXT GRAPH >>   
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For the HP-28S calculator replace { # 0d # 0d } PVIEW with CLLCD and

GRAPH with DGTIZ —»LCD.

At this point we return to a problem considered in the last chapter: namely to

determine the solution of a non-homogeneous second order differential equation with

constant coefficients. The problem is treated in many textbooks (also in the last

chapter) for special types of forcing, usually sine or cosine forcing functions. A model

for an elastic spring with damping and with external forcing f(t) or a model for a

simple electrical circuit loop with external voltage is:

d dx 2 d 2 .2EX42+ 07 x = (1), x(0)=H(0)=0,0">b .
2 dt dt

dt

The solution is given by

t 2
x(t) =—1—; [ ePtsiny 0Z-b (t-s) f(s) ds .

\/ m2-b 0

The exercise to be given below is to graph the output function x(t) for a given

input function f(t). First some examples: for

f(t) = 1: x(t) = —-13[ 1- e‘bt (cos ut +%sin ut)]
®

where p2 = @2 - b2 and for

2
K

f(t) = K cos yt: x(t) = o sin (yt+60), o= [mz-vz) +4b272

where tan 6 = (0?-y2)/(2by). (Here only the steady state solution is given: the

other term in the complete solution is multiplied by e™Pt.)
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As indicated at the beginning of this chapter, the problem given above is

equivalent to the pair of differential equations dx/dt =y, dy/dt = f(t) - 2by - ©2 x.

Example: Take 02 = .41, b =.5 (so p2 = .16) and f(t) = sinZ(1.5t). Set FN and GN as

<< 3 ROLLD DROP2 >> and << 3 ROLL 1.5 * SIN 2 A 3 ROLLD SWAP .41

* + - >> respectively, put N = 100, H = 9.42/N, and the plotting parameters to show

0<x<942,0<y<2. PutO O O on the stack and execute GRXT. Next overlay a

graph for the input function. The forcing function (input) and solution (output)

resulting from this program are shown below.

 

a1y

=,NNo - ~

A, ~C K -, -~
. o7 < ¢
. - . . .

oL
PRAR N/ N e  \y X

{4 8.5

Exercise 3.1 : Find the output graph for f(t) =1 - sin%(3.14*) forp=1,b=.5N =

150 and H = 6/N. Choose plot parameters to show -4 <x<6,-4 <y < 1.2. Add the

input function graph as an overlay. Comment: The output functions for this input

functions can be obtained from a table of integrals after several substitutions using

the method of undetermined coefficients and a lot of work. An output function for an

input function such as f(x) = 1/(1 - sin%(3.14*x)) could not.

Suppose the forcing function f(t) is periodic with period length T for the

differential equation. If we change the initial conditions so that x(T) = x(0) and

x'(T) = x'(0), then the resulting solution is periodic. Moreover if the damping

coefficient b > 0, then all solutions will eventually be a close approximate of the

periodic solution when viewed over one period. We may want to view such a

solution without waiting for asymptotic behavior to emerge. Suppose we determine
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solution x1(t) and x2(t) of the associated homogeneous system so that x1(0)= x'2(0) = 1

and x'1(0) = x2(0) = 0, then a general solution is x(t) = a x1(t) + b xa(t) + xp(t) where

xp(t) is the solution constructed above for 0 initial conditions for x and x'. Expressions

for x1(t) and x2(t) are given in chapter 2. Use the calculator to compute xp(T) and

x'p(T) numerically and to solve the periodicity condition for a and b:

l-xl(T) -x2(T) [ ]_ p

-x'(T)  1-x(T) b Xo(T)

Output for f(t) = (sin 3t)8,b = .25 and p = 1 using the initial conditions x(0) =

dx/dt(0) = 0 is shown below. This input is periodic with period ©/3. The periodic

response is also shown over two periods. Notice the average value for this forcing

f(t) is ©/6. Since f(t) = [f(t) - ®/6] + =/6, a portion of the periodic response is the

constant function with value 1/(602) = .493. This seemsto be the constant part of the

periodic solution as shown.

1(t) x(1)

JAAAALAAL, ey
 

 

4.5 5

Input: £(t) = (sin(3t))A8 Output

7 x(t)

SR

-3 /3 2n/3

Periodic Response

Exercise 3.2 : Find and graph using the calculator the periodic output response for

f(x) =1-sin%(3.14x) forp=1,b=.5 N =100and H = 3.14/N. Add input graph.
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Pursuit Problem: A rabbit starts at (0,1) and runs along y =1 with speed 1. At the

same time a dog starts at (0, 0) and pursues the rabbit with speed 1.3. The dog

always proceeds directly toward the rabbit. What is the path of the dog ? This

problem can be solved exactly but it takes a while. The equations of motion are:

x' =13 (t-x)/[t-x)2+(1-y)2]5,  y ' = 1.3 (1-y)/[(t-x)2+(1-y)2]-> x(0) = 0, y(0) = 0.

When does capture occur ? A stopping criteria might be |x - t| <.03 and 1-y <.01. In

our program we will not give a stopping condition. FN, GN functions for f(t,x,y) and

g(t,x,y) are given by:

FN: <<1-SQ3ROLLD-DUP3ROLLDSQ+ V /1.3*>>

GN: <<1-DUP4ROLLD SQ3ROLLD-SQ++V /1.3*NEG >>

We modify the GRXY program and call the new program GR.P so that the

trajectories of both dog and rabbit are shown dynamically. Note effective capture

occurs when the objects first close on each other; however after that time the dog

effectively turns around, chases backward until the rabbit passes by again, etc. This

occurs because the approach is exponential and never really becomes zero. We will

return to this problem in the next chapter with a more realistic model.

 

Program to graph trajectories of rabbit and dog

Stored Quantities FN GN HN

No input on stack The output is a graph of rabbit and dog paths

<<{ #0d #0d } PVIEW 00001 R>C 4 ROLLD DRAX

1 N START IULE2 DUP2 R—C PIXON 4 ROLL

H 0 R->C + DUP PIXON 4 ROLLD NEXT GRAPH >>   
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(Replace { # 0d # 0d } PVIEW with CLLCD and omit the command GRAPH in

the corresponding HP-28S program. ) Use plot parameters to show -4 < x < 2,

-4 <y <125, take H = .05 and N = 40.

The student should also consider a pursuit problem on the HP-485X screen in

which the rabbit travels around the unit circle and the dog starts from the center. A

third pursuit problem is to graph the trajectories of "creatures" who begin at the

vertices of a triangle and travel towards their left neighbor with unit speed.

A topic which occurs early in many differential equation textbooks is that of

determining trajectories which are orthogonal to the members of a one parameter

family of curves, say W(x,y,p) = 0. The usual technique is first to find the

differential equation satisfied by the members of the given curve family, say dy/dx

= m(x,y); then curves which are orthogonal satisfy dy/dx = -1/m(x,y). If the

original family is given in the form dy/dt = f(x,y), dx/dt = g(x,y), trajectories for

orthogonal curves satisfy dy/dt = - g(x,y), dx/dt = f(x,y). This latter form is to be

e
&  

o
o
o
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o
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Orthogonal Trajectories dy/dx = -y/x, dy/dx = x/y
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preferred if the curves in either family must be specified in terms of a parameter t.

Clearly, the programs IULE2 and GRXY can be used to sketch members of both the

given family of curves and the orthogonal trajectories. This is our first example of

whatis called an autonomous system. A specific example is shown above.

Exercise 3.3: Set the plot parameters to show -5 <x <3.5,-5<y<3.5and set N to

80. PutFNto<c » T X Y 'X*(X22-YA2)' >>,and GNto<<c » T X Y

'Y*(3*XA2-YA2)' >>. Put H = .05 and use GRXY to draw a trajectory which starts at

(t, x, y) = (0, .5, .1). (This takes slightly over a minute.) Next overlay a trajectory

which starts at (t, x, y) = (0, .75, .1). Then reduce H to .025 and overlay a trajectory

which starts at (t, x, y) = (0, 1, .1). Finally overlay trajectories which start at (t, x,

y) = (0, 1.5, .5) and (t, x, y) = (0, 1, .4). At this point we see a family of five oval

trajectories. Orthogonal trajectories will result from the FN givenby << —» T X Y

-Y*(3*XA2-YA2)' >>and GN givenby << —» T X Y 'X*(XA2-YA2)' >>. Reduce H

to .01 and overlay trajectories starting at the (t, x, y) points (0, 0, 3.4), (0, 0, 2.5), (0,

0, 1.5), (0,3, 0), and (0, 2, 0). The result should resemble the figure given in the

introduction to this workbook.

Note to HP-285 users: For this exercise and others which require several overlaying

graphs constructed using GRXY, we create an add graph program. The following

program can be used after execution of GRXY to enter the first graph. Recall that

after GRXY the stack contains a string version of the LCD screen on level one. New

starting values for t, x, and y are required to start another trajectory so entry into the

following program requires string on level 4, start value of t on level 3, start value of

x on level 2 and start value of y on level 1. The program is called AD.G2.

<< CLLCD 4 ROLL DUP 'G1' STO —»LCD 1 N START IULE2

DUP2 R—C PIXEL NEXT DGTIZ LCD— »>>
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Autonomous Problems in Two Dimensions

Graphs in the x-y plane of solutions (x(t), y(t)) of differential equations

x' = f(x,y), y' = g(x,y) are called phase plane graphs. If f(x,y) and g(x,y) have

continuous partial derivatives, solutions to initial value problems are unique and it is

elementary to show that under such circumstances, solution trajectories arising from

different initial points either coincide or do not intersect. If fact, it is easy to see

that if (x(t), y(t)) is a solution of an equation of this form and a is any constant, then

(x(t+a), y(t+a)) is also a solution. Closed trajectories in the phase plane indicate

periodic solutions. Constant solutions, that is, points (x,y) such that f(x,y) = g(x,y) =

0 are called critical point solutions (also equilibrium solutions). Other trajectories of

particular interest are those nearby to a critical point.

® If trajectories arising at all points within some circle around a critical point

(x¢, ye) leave the vicinity of (x¢, y¢) as t — oo, (x¢, y¢) is called a repelling

solution, i. e. unstable.

® If trajectories arising at all points within some circle around a critical point

(xc, Ye) approach (xc, y¢) as t = oo, (X¢, y¢) is called an attracting solution,i.

e. asymptotically stable.

Some well studied examples of autonomous are presented below. Note the

asymptotic behavior of the solution trajectories as indicated by the graphs.

Example. Systems called Lotka-Voltera systems may be scaled to the form

dx/dt =x(3 -y), dy/dt=y(x-3).
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Such systems arise in the study of populations of two species, one of which feeds on

the other. Trajectories which initiate in the first quadrant are periodic. We can

obtain graphs byfirst creating the subprograms

FN: <<3 ROLL DROP 3 SWAP - *>> GN: <<3 ROLL DROP SWAP 3-* >>

Then we set the plot parameters to show 0<x<6,0<y<6, N =45,and H = .05,

start at t, x,y = 0, 2, 2 and execute GRXY.

Example. The differential equations

X'+cx'+sinx=0 or x'=y, y' =-sinx-cy

arise in the study of the displacements of damped (or undamped) pendulums. The

critical points are (0,0) and (nx, 0). For c > 0, (0, 0) is an attracting solution. Use

GRXY, ¢ =.3, FN: <<3 ROLLD DROP DROP>> and GN: << 3 ROLL DROP C*

SWAP SIN + NEG>> to obtain the graph shown below. (For ¢ = 0, there is a family

of periodic solutions.)

3 [ y
-a
N
- -h——‘__‘

—n/hgé\/;
- . _\\ Ry -— n X

r‘_. — LW..

-3

L 
Damped Pendudum Motion (¢ = .3)
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Example. The system

dx/dt =-2y +x(1-r2)/r, dy/dt = 2x + y(1-r9)/r:

where (r2 = x2 + y2) has an isolated periodic solution r = 1. Here nearby solutions

spiral towards the circle r = 1. To obtain graphs use GRXY and the functions

FN: <<3 ROLL DROP DUP2 SQ SWAP SQ + DUP ¥ SWAP1 -

NEG SWAP/ 3ROLL* SWAP2 * - >>

GN: << 3 ROLL DROP DUP2 SQ SWAP SQ + DUP Y SWAP 1 -

NEG SWAP/ * SWAP2 * + >>.

Another problem which has an isolated attracting periodic solution is the Van

der Pol differential equation. This equation was studied in connection with its

application to an electronic component. This example in usually studied as a

function of a parameter U contained in the "damping” term. Our figure shows a

 

dx/dt=y, dy/dt=-[x+ .3(xz- Dy]

typical graph: here p = .3. Note the motion is counterclockwise and the solution was

started at (x, y) = (2, 2). The solution quickly moves close to its asymptotic shape

which is periodic. Solutions starting inside the closed curve (except from (0, 0)) also
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move out to the periodic solution. Variation of the parameter u causes dramatic

changes in the shape and period of the solution.

Exercise 3.4: In this exercise we will examine the cycle time of periodic solutions of

several special differential equations. The equations under consideration have

solutions which resemble the trajectories graphed in the figure below.

' F(y)
 

<

— F(z)1. '

 

 

 
Periodic Txajectories Construction for Trajectories

(See region between F[z] & Fly] )

Here we suppose that y(t) satisfies the initial value problem

2
dy dy=0 y=0 =25 @ =0.

where the essential feature of f(y) is that it change sign from negative to positive as

y increases thru zero. We multiply by dy/dt and integrate from 0 to t to obtain

dy y

-~ =1 JF@)- F(y) , where F(y) = 2 J f(s) ds.

Suppose we denote by T/2 the time for the trajectory to proceed from the starting

point to the state y(T/2) = z1, dy/dt(T/2) = 0, then
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T/2 z dy
T=2[ dt=2] ———.

0 z, ,/ F(z) - F(y)

We list the value y; for several examples:

(a) f(y) =y, Fy)=y% z1=-2

(b) f(y)=y +y3, Fy)=y2+y%/2, z1=-z

(c) f(y) =siny, F(y)=2[1-cosyl, z1=-z

(d) fy) =y +y2 F(y) = y2 + 2y3/3, z1 = largest negative

2.2 .11 2 ] 22]_rootof-é-y +[ +32y+[z+3z =0.

(e) f(y) =y +ycosdy +.25sindy F(y) = y2 + 5y sindy, z1 = -z

Notice that in (a)-(c) and (e), the function F is even in y, (d) is not. Calculate and

plot the values of T for one of the examples (a), (b), (c) or (d) listed above for

several values of z. Use the numerical integration key (program) on your calculator

with a tolerance 0.005. The following values of T are for part (e) above:

z values .25 5 .75 1 1.25 1.5 1.75 2 2.25

T values 394 529 1274 2154 829 574 504 545 8.37.

Note dy/dt=0and y = n/4 and dy/dt =0, y = 3n/4 are equilibrium points.

Linear autonomous systems can be solved analytically. These systems have the

form:

dx/dt = aj1x + a1y, dy/dt =az1x + a2y

We will consider the case det (A) # 0, which means the origin (0,0) is the only

critical point. Special solutions have the form w = column [ x, y] = eM v where A is
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a solution of the equation det (A- AI) = 0 and v will be given below. Such a number

A is called an eigenvalue of the system. The equation det (A- AI) = 0 is called the

characteristic equation or the eigenvalue equation for the system. Suppose that A is

an eigenvalue for the system, then the vector v = column [c,d] is a non-zero solution of

(A- AD)v = 0. Other solutions of our system are linear combinations of these special

solutions (in most cases).

The solution graphs of such systems near the origin (0,0) are particularly

interesting. Examples fall into the following cases: closed trajectories (indicating a

family of periodic solutions), spiraling trajectories (inward or outward spirals) and

curved spoke-like trajectories (again traveling toward or away from the origin). The

cases correspond to the type of eigenvalues for the system, viz. purely imaginary

values, complex numbers with non-zero real parts and real eigenvalues.

Example: Consider the system

dx/dt=x-4y, dy/dt=-x+2y.

The associated matrix A has eigenvalues A = .5(3+ 17-°) and corresponding

eigenvectors ¢ = column [ 4, 1.56] and ¢ = column [4, 2.56]. When a solution starts on a

multiple of the first eigenvector, it proceeds toward the origin exponentially. When

a solution starts on a multiple of the second eigenvector it travels away from the

origin exponentially. Other solutions are a linear combination of these two solutions

and eventually proceed away from the origin. Typical trajectories are shown in the

figure below. The procedure was to start on the eigenvector solution and trace that

trajectory. Other solutions starting very near these special solutions were followed

for short periods.
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ijectories neay Saddle Point

Exercise 3.3. For the case A is complex and has negative real part the origin (0,0) is

called a spiral point critical point (so we have an attracting critical point). Use

IULER2 and GRXY to study

dx/dt=-5x + 4y, dy/dt=-4x-.5y

with

FN: <<3 ROLL DROP 4 *SWAP 5* ->>,

GN: << 3 ROLL DROP .5* SWAP 4 * + NEG >>

Start at (t, x, y) = (0, 0, 1): Set the plot parameters to show -2<x<2,-1<y<1.

Use N =120, H = .025.

Exercise 3.4. Show the origin (0,0) is neither an attracting or repelling critical

point solution for the system x' = -(2x + y), y' = -x + 2y and use IULE2 to graph the

trajectories initiating at (t,x,y) = (0, 0, 1) and at (0, -1, 0). What are the

eigenvectors for this systems ? Can you see them on the graphs ?

Solution graphs of autonomous near a critical point solution

can be studied using a linear approximation. Suppose that the vector w = column

[x,y] and we have the system dw/dt = F(w) where F(w) = column [f(x,y), g(x,y)] and
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where f(x¢, yo) = g(Xc, yo) =0. Solution behavior near the critical point w¢ = (x¢,

yco) can be determined by studying the linear variational matrix J(w¢) = Fy(w)

defined below. If all eigenvalues of this matrix have negative real parts, the

solution w = w¢ is an attracting solution. If one of the eigenvalues has a positive

real part, some solutions leave immediate neighborhoods of the critical point. The

matrix J(wg) has i-j element

oF,
—(W)
ow.

)

Example: Consider the system dx/dt = 2x2 + y2-9, dy/dt = x2 + y2 - 5, which has

critical point solutions (2,1), (-2,1), (2,-1), (-2,-1). The variational matrix for the last

critical point has eigenvalue equation A2 + 16A + 8 = 0. The roots of this equation

clearly are negative so that (-2,-1) is an attracting critical point.

Finding critical points is not always easy. Newton's method (introduced in

Chapter 2) may be used to find critical points of a system if an approximate location

Wo = column [x,, yol of the critical point is known. Then better approximations of

the critical point may result from one or more applications of the following

algorithm:

Wp =W, - ]'l(wo)F(WO), W >W

We modify the procedure given in Chapter 2 as follows:

1. Put functions f(x,y) g(x,y) in the list FL, store M = 2, store { X Y } in PL, purge X

and Y. Execute DER to obtain JL= {fx (xy) fy(x, y) gx(x, y) gy(x, y)}.

2. Create matrix JMAT with a new program called JEV given by
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<< JL LIST-> 1 SWAP START -NUM M SQ ROLLD NEXT

{M M} SARRY 'JMAT' STO >>

3. Create vector FVEC with the new program called FEV given by

<< FL LIST-»> 1 SWAP START -NUM M ROLLD NEXT

{M} —-ARRY 'FVEC' STO >>

4. Put an approximation of the critical point [ X Y ] on the stack and execute the

new program NSTP given by

<< DUP ARRY— DROP 'Y' STO 'X' STO JEV FEV FVEC JMAT / >>

At this point you have an incremental vector [X - Xp, Y - Yn] on the stack. If this is

sufficiently small, stop with the new vector, which is obtained by the command - (a

minus command). If not execute -, then NSTP again, etc.

To determine the eigenvalues of the variational matrix we use the programs DER

and JEV given in the previous program to find the matrix Fy(w,) as follows:

Put functions f(x,y) g(x,y) in the list FL, store M = 2, store { X Y } in PL, purge

X and Y. Execute DER to obtain JL= {fx (xy) fy(x,y) gx(x,y) gy(x, y)}. Assign

values to X and Y, create JMAT with JEV.

The eigenvalues satisfy the quadratic equation A2 + (JMAT[1,1}+JMAT[2,2DA +

WJMAT([1,1]*JMATI[2,2] - JMATI[1,2]*JMATI[2,1]) = 0. You could use the program

QUAD as described in the Hewlett-Packard Reference Manual for this task.

Exercise 3.5: Find a critical point of the system

dx/dt =sinx + cos y - x, dy/dt = cos x - siny -y

near x = 1.9 and y = .2, and determine the eigenvalues of the variational matrix.

(Answer x = 1.9235, y = -.17315, A = -1.66 £ i .244)
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Adaptive Step Size Method: Autonomous Differential Equations

In many cases, larger step sizes can be taken without loss of accuracy during part

of a trajectory, but when sharp changes are encountered, a reduction in step size is

needed to maintain accuracy. A straightforward modifications of the adaptive step

size Runge Kutta algorithm for a single differential equation can be made. For the

problem

dx/dt = f(x,y), dy/dt = g(x)y)

the algorithm is obtained by considering Taylor series for f(x(t+h), y(t+h)) and

g(x(t+h), y(t+h)). Formulas with increments in x, y and t are given by

Xn+1 = Xn + h[2k1 + 3k +4k31/9, yn+1 = yn + h[2K71 + 3K2 + 4K3]/9

th+1=th + h

where

ki = f(xn, Yn), k2 = f(xn+hk1/2, yn+hK1/2), k3 = f(xn +3hk2/4, yn+3hK2/4)

K1 = g(xn, yn), K2 = glxn+hk1/2, yn+hK1/2), K3 = g(xn +3hkp/4, yn+3hK2/4)

and the analysis gives the following estimate for the possible error

esterr <[ | 2k1 + 4k3 - 6k2 |+ 2K1 + 4K3 - 6K2 1]1/9.

Such an algorithm extends easily into the case of n simultaneous differential

equations. A program which takes advantage of the vector capability of the

calculator has fewer steps and is easy to understand. Thus at this point we consider

the differential equation

dw/dt = F(w)
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where w and F are vectors. (In the the two dimension notation used previously,

w =[x, y] , F(w) = [f((x,y), g(x,y)].) Again an algorithm for this problem is obtained

by considering the Taylor series for F(w(t+h)) which gives the formulas for

increments in w and t

wn+1 = wn + h[2K(,1) + 3K(,2) + 4K(,3)1/9, th+1=th +h

where

K(,1) = F(wyn), KC(,2) = F(wn+hK(,1)/2), K(,3) = F(wn +3hK( ,2)/4)

and further analysis gives the following estimate for the possible error

esterr < [| | 2K(,1) + 4K( ,3) - 6K(,2) | 1]1/9.

The program for the HP-485/28S given below requires a subprogram VN which

accepts input vector w and outputs the vector F(w). Following the format used

previously for a single differential equation, we store the subprogram RK3A which

accepts input t w and gives output t w esterr and has stored increments in x in the

vector DELW. RK3A and the single step program STPN are given below. The

reader should also note a higher order adaptive step size algorithm in Appendix 4

for non-autonomous systems.
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Subprogram Name RK3A

Stored Quantities VN H

Input t and vector w with N components

Output t w esterr: (delw has been stored)

Command Resulting stack

<< DUP DUP2 t 4 copies of w

VN t 3 copies of w K(,1)

DUP 2 * t 3 copies of w K(,1) 2*K(,1)

4 ROLLD H2/* tw 2*K(,1) w w .5HK(,1)

+ t w 2K(,1) w w+.5HK(,1)

VN DUP 3 * t w 2K(,1) w K(,2) 3K(,2)

3 ROLLD t w 2K(,1) 3K(,2) w K(,2)

H.7 ** + t w 2K(,1) 3K(,2) w +.75HK( ,2)

VN 4 * t w 2K(,1) 3K(,2) 4K(,3)

SWAP t w 2K(,1) 4K(,3) 3K( ,2)

3 DUPN t w 2K(,1) 4K(,3) 3K(,2) 2K(,1) 4K( ,3) 3K(,2)

+ + t w 2K(,1) 4K( ,3) 3K(,2) [2K( ,1)+4K( ,3)+3K( ,2)]

H9 / * t w 2K(,1) 4K(,3) 3K(,2) [2K( D+

4K( ,3)+3K(,2)]H/9

'DELW' STO t w 2K(,1) 4K( ,3) 3K(,2)

2 NEG * t w 2K(,1) 4K(,3) -6K( ,2)

+ + t w [2K(,1)+4K( ,3)-6K( ,2)]

CNRM 9 / t w estimated error

H2/'H STO >>  
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Subprogram Name STPN

Purpose take one time step of length, compute new value of x

Input: t w

Output t+H new value of w (an adjustment in step size has

been made)

Stored Quantities RK3A

<< DO RK3A UNTIL .01 < END DELW + SWAP H 2 * +

SWAP H 4 * 'H STO>>   
 

Project exercise in acoustical dynamics. The speed of sound traveling underwater

depends on depth. We will use a ray model for underwater acoustic propagation and

let z(x) denote the depth of a sound ray at position x, measured along the ocean

surface. Snell's law can be written in the form cos 6/C(z) is a constant where tan 0 is

the slope dz/dx and C(z) denotes the speed of sound transmission at depth z. Change

the variable by y = C(z) dz/dx to obtain

iz _y &
*xD & -C'(2) .

Determine C(z) by a least squares fit of the form C(z) = a e~ bzt ¢+ mz (a, b, cand

m are constants to be determined) using the data

 

z 0 500 1000 1500 2000 2500 3000 3500 4000 5000

C(z) 5042 4995 4948 4887 4868 4863 4865 4869 4875 4875

z 6000 7000 8000 9000 10000 11000 12000

C(z) 4887 4905 4918 4933 4949 4973 4991 
 

Next, find a value of 6 for the initial conditions:
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z(0) = zg, y(0) = C(zg) tan 6,

so that for z(x¢) = zf, a prescribed number. For this problem take zg = 2000, xf =

24(5280), z¢ = 3000. Plot the ray trajectory.

The function C(z) can be approximated by a least squares fit to data to another

type of function (see Forsythe, George, Michael Malcolm and Cleve Moler, Computer

Methods for Mathematical Computations, Prentice Hall, 1977.) Such a fit is given by

C(z) = 4779 + 0.01668 x + 160,295/(x+600).

Re-scale the variables x, and z by t =x/104, X = z/1000: the equation become

dy/dt = - 10 f(X), dX/dt = 100y/f(X)

where f(X) = C(1000X). Now we want to find y(0) = f(2) tan 6 and X(0) = 2 so that

X(12.672) = 3. Dividing the differential equations gives dy/dX = -f'(X) f(X)/(10y)

integration gives 10 y2 + f2(X) = a constant. Phase plane graphs are shown. (The

adaptive step method was used to obtain the graphs.)

It is interesting to compare the graph of the solution z(x) obtained by using the

C(z) given above with that obtained using the C(z) function given in the project

exercise above. Any interpolation formula used for C(z) instead of a least squaresfit

also gives an interesting comparison.
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Discrete Dynamical Systems in the Complex Plane

The discrete dynamical system studied in Chapter 1 had the form yn11= F(ypn), n

=0,1,2,... for given yg. There we studied the behavior of yh asn — . We

consider here the case zn+1 = F(zn ,c),n=0, 1, 2,... for given z9, where all the z

elements are complex numbers (a two component vector with special algebraic rules)

and the complex parameter number c is given. The purpose is again to focus

attention on the asymptotic behavior of the dynamical system solution sequence

{zn). In particular we will study systems of the form zp+1 = zn2 + ¢, g given, where

c will be fixed in each system. For each number ¢ depending on the starting position

zg one of three things can happen: (1) lim Iz, | = o, (2) lim |z, | = some number, or

(3) neither of the above. We show the dependance of the elements of the system on

the starting value zp = a by using the notation z,(a) for the elements. The "Julia"

set for this sequence is the boundary of the set A = {a: lzp(a)| — o }. (Elements

on the boundary of this set do not belong to the set.) Many of the elements of the

Julia set have a wandering property, that is, they do not have a limit and so their

behavior is called chaotic. (Iterates f(a), f(f(a)), f(f(f())), . . . wander around the

Julia set.)

The following program is to graph members of the Julia set. At first to establish

a procedure of finding lots of members of this set seems tricky because the

requirement to be in the set is quite delicate and any roundoff error may cause a

sequence o, f(a), f(f(a)), f(f(f(ar))), . . . beginning with a in the Julia set to drift out

of the set. The algorithm to be given is based on the property that for any fixed c,

the inverse images of a repelling fixed point belong to the Julia set, that is, for w in

the set, the images f-1(w), f1(f1(w)), f-1(f-1(f-1(w))), . . . also belong to the set.

(Here f'1(w) = +V(w-c).) It can be shown that the latter sequence is stable for this

function f, whereas the sequence of direct images is not stable to roundoff error.
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Suppose the mapping z — f(z) = z2 + ¢ has hasa fixed point, that is z2 + ¢ = z.

There are two such values of z, namely

1+41-4c
zZ= >

The student should obtain this number z or several values of the complex numberc to

see how the HP-28S handles complex square roots and to verify that the absolute

value |f(one of these two values of z)| > 1. Such a value of z is called a repelling

fixed point of the mapping f. (Complex numbers w near such z have the property

that f(w), f(f(w)), f(f(f(w))), . . . get further and further from w.)

We call the repelling fixed point located by z, compute and graph members of

the sequence f1(z), f-1(f1(2)), £1(f1(f1(z))),... It can be shown that all such

complex numberssatisfy |w| < (1+ V(1+41cl))/2. For a complex number w since there

are two inverse images, viz. +V(w-c), the particular sequence of inverse iterates

chosen involves a random choice of .

Choose and store a complex number C1. To set the drawing screen and compute

the repelling fixed point z we execute the following subprogram, named PREP.

HP-48S version: << C1 DUP ABS4*14++v 1 + 2 / DUP NEG SWAP DUP2

XRNG YRNG 4 * 1 SWAP - V1 + 2/ >

HP-28S version: << C1 DUP ABS4*1++V 1 + 2 / DUP 2 * SWAP R—»C DUP

NEG PMIN R->C PMAX 4 * 1 SWAP - Vv 1 + 2/ >

The output is a fixed point of f. If the output has absolute value larger than .5 call

the number Z, if not put Z = 1 - the output. Store Z and execute the program BACK

given by
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HP-48S version: <<{ # 0d # 0d } PVIEW Z BCK1 >>,

HP-28S version << CLLCD Z BCK1 >>

Here BCK1 for the HP-48S is

<< 1500 START C1 - ¥ ONE * DUP PIXON NEXT DROP GRAPH >>

The HP-28S version is

<<1 500 START C1 - ¥ ONE * DUP PIXEL NEXT DROP LCD- >>

and the subprogram ONE is given by

<< (1,0) IFRAND .5 < THEN NEG END »>>.

For ¢ = (-.12256, .7449), the following "graph" results

=~ <N
\l.‘l‘ ‘\0}

t_»-::,"?

Douady's Rabbit: ¢ = (123, .745)

Exercise 3.6: Execute the program sequence given above for ¢ = (-1,0), ¢ = (-.5, -.1).



Chapter 4. Higher Order Systems

In this chapter we consider linear systems of differential equations of the form

y' = Ay + f(t) where y and f(t) are vectors with, say n components, and A is an n by n

matrix. Following this we give some introduction to nonlinear systems. In particular

we give some examples where the "eigenvalues” of the linear systems which result

when a nonlinear problem is linearized around a critical point can be used to specify

whether the critical point solution is repelling, attracting, or neither. For linear

homogeneous systems of differential equations we can use the graphing feature of the

calculator to solve for real roots of the nth order polynomial "eigenvalue" (or

characteristic) equation. The real roots may be factored out of the polynomial and a

program given by Hewlett Packard can be used to find other roots. The linear system

solver is quite useful in determining constants in the solution of linear differential

equations when initial values are given. We will give a program which allows us to

find solutions of the singular systems which result when "eigenvalues" and

corresponding "eigenvectors" are determined. We will use the calculator's ability to

find derivatives to determine the characteristics of critical point solutions of

nonlinear systems. To find critical points may require the solution of several

algebraic equations: a job for Newton's method again. We will only introduce the

matrix algebra in these notes. A more complete discussion is contained in Calculator

Enhancement for a Linear Algebra Course by D. R. LaTorre and published by Harcourt

Brace and Jovanovich.

Solutions for y' = Ay + £(t)

Considerfirst the vector problem dy/dt = Ay. Here we want to find all solutions

of the differential equation. It is readily shown that if n independent vector

85
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functions which satisfy the differential equation can be determined and placed in

the columns of a matrix Y(t), then all solutions have the form Y(t)c where c is a

vector with n components. The "educated guess" y(t) = eMc (here y(t) and c are

vectors) leads to the nth order polynomial equation det(A-AI) = 0 which is called

the eigenvalue or characteristic equation, and to the problem of determining

nontrivial solution vectors ¢ to the problem (A-Al)c = 0 (where A is a solution to the

eigenvalue equation). Thus the problem breaks into several parts: (1) find the

eigenvalue equation, (2) find the solutions of the eigenvalue equation, (3) for each

solution A, find a corresponding eigenvector c, and (4) assemble the matrix Y(t). We

will illustrate the solution process first for n = 3 component systems, then give two

programs which will assist in the higher dimensional situations. Examples will be

given.

A calculator program to display the eigenvalue equation in the 3 by 3 case is:

 

Program Name EIG3 HP-48S version

Purpose: Display the eigenvalue equation

Stored Quantities: 3 by 3 matrix A

<< 'X' PURGE A DET 8 RND — DT1 <<'XA3-(A(1,1) +

A(2,2) + A(3,3))*X*2 + (A(1,1)*A(2,2) - A(1,2)*A(2,1) +

A(1,1)*A(3,3) - A(1,3)*A(3,1) + A(2,2)*A(3,3) - A(3,2)*A(2,3))*X -

DT1' EVAL >> >>   
 

For the HP-28S replace 8 RND with 8 FIX RND STD The program as given will

display the eigenvalue equation as a cubic in x. (Note: make sure x is not defined in

the HOME directory.)

Exercise 4.1: Find the characteristic equation for the matrices
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12 -1 16 3 5 8 -12
A=| 1 01| A=|383| a=|-6-10-0].

445 6 12 4 6 10 13

(The first matrix has the eigenvalue equation x"3 - 6x2 + 11x - 6.)

To find the roots of the eigenvalue equation isolate one root or more roots by

storing the equation (STEQ) and using the DRAW and SOLVR programs. You may

have to try several settings of the plot parameters (XRNG, YRNG on the HP-48S or

PMIN and PMAX on the HP-285).

Exercise 4.2: Find the eigenvalues of the matrices given in exercise 4.1. (Eigenvalues

BH
The eigenvalue equation is x*3 - x - 1. A zero ofthis equation obtained by the

SOLVE routine is x = 1.3247--—-. If we divide x - 1.3247--- into x*3 - x - 1 we obtain the

for the first matrix are 1, 2, 3.)

Consider the matrix

-
O
O

—
_
O
=

O
=
O

quotient x"2 + 1.3247---x +(1.3247--72-1). Zeros ofthis quadratic are complex

eigenvalues. At this point the x has a value stored in it. To avoid confused notation

we take an extra step: bring the value in x to the stack and store it in R. Now place

'xA2 + r*x +(r’2-1)' on the stack, 'X' PURGE and EVAL. You now have the desired

quadratic on the stack, enter ‘X' and execute QUAD (on the ALGEBRA menu for the

HP-48S: on the SOLVE menu on the HP-28S). Follow the usual procedure for the

QUAD program to obtain the roots -.662 + i .563.
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Exercise 4.3: Determine the eigenvalues for

010 010 11 -8 -12
A=| 00 1| A=-[001]| A=| 2 1 4

4 30 130 6 4 5

When an eigenvalue A is determined, the matrix (A-Al) is singular and the linear

system solver is not appropriate to solve the equation (A-Al)c = 0. Place (A-AI) on the

stack and use the programs named PIV and ROKL to obtain the Gauss-Jordon echelon

form to determine the row space of (A-AI) and nontrivial solution vectors c.

 

Program Name PlV HP-48S version

Purpose Gauss pivot on element K L

Input: Matrix A, integers K L Output: Altered matrix A

<< > A K L << IF 'A(K,L)' EVAL 0 == THEN "PIVOT ENTRY

ISO" ELSE A SIZE 1 GET > M << M IDN 'A(1,1)

EVAL TYPE IF THENDUP 0 CON R—»C END

1 M FOR | 'A(LL)’ EVAL { | K } SWAP PUT NEXT INV

A * >> 8 RND END >> >>   
 

For the HP-28S calculator replace 8 RND with 8 FIX RND STD

 

Program Name ROKL

Purpose Interchange rows K and L

Input: Matrix A, integers K L Output: Altered matrix A

<< > AKL<<ASIZE2 GET > N << A 1 NFOR I

'A(K,I)) EVAL { L | } SWAP PUT NEXT 1 N FOR J 'A(L,J)

EVAL { K J } SWAP PUT NEXT >> >> >>   
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Notice that the programs PIV and ROKL given above are valid for any size

square matrix.

Example: The first matrix in the exercise 4.1 has eigenvalues 1, 2, and 3.

For A = 1 the equation for c is

If this matrix is placed on the stack and the command 1, 2 ROKL is given we get

1

0

4

now give the command 1,1 PIV to get

)
p
d

now 2,2 PIV gives

S

-1 1

2 -1

4 4
’

0 5

1 -5

0 O

The solution relations c] =-.5¢3, ¢2 =.5 c3 result: i.e.,, c=[-1, 1, 2] or any nonzero

multiple of this vector. For A = 2, we obtain that any multiple of ¢ = [-2, 1, 4] is a

corresponding eigenvector; for A = 3, we obtain that any multipleof c=[-1,1, 4] isa

corresponding eigenvector.
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Example: The matrix

6 7 8
A=| 202

4 66

has eigenvalues A = -2 and 1 +i. The procedure shown above gives the eigenvector

c= column [1, 0, -1] corresponding to A = -2. For A = 1 +i, the matrix A-A I is

61 7 8
A= -2 ('1 1'1 ) -2

-4 6 (71

When weuse1 1 PIV, then2 2 PIV we obtain

(1,0) 00 @,-5)

0,0 @0 (5.5

0 0 0

This leads to the eigenvector ¢ = column [(-1,.5), ((-.5,-.5), 1]. Recall for the

conjugate eigenvalue, there is a eigenvector conjugate to this ¢ vector.

The next step is to assemble a fundamental matrix of solutions Y(t) which has

columns the vector solutions determined above. For the first matrix in exercise 4.1 we

have determined eigenvalues and corresponding eigenvectors in the example just after

the ROKL program. We have

-et 2e2t -e3t

Y(t) = et eZt eBt

2et 4e2t 4e3t

Exercise 4.4: Now give the solution of y' = Ay: with conditions: y(0) = [1 3 -5]t.

For the matrix example given just above the preceding paragraph (one real and a

pair of complex eigenvalue) we proceed as follows. If a matrix A has eigenvalues
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A = o + Bi and corresponding eigenvectors ¢ = a * ib, by adding the exponential

solutions obtained it is known that the quantities

e®t (cos Bt a - sin Bt b) and e®t (sin Bt a + cos Bt b)

are real valued solutions of the differential equation y' = Ay. Consequently for this

example we get the fundamental matrix of solutions

et (cost + .5sint) et (-sint + .5 cos t) e'2t

Y(t) = .5et (-cos t + sin t) -.5et (sin t + cos t) 0

et cos t el sin t -e'2t

Exercise 4.5: Find a fundamental matrix of solutions of dy/dt = Ay for

4 4 5 010

A=(-1-1-1] A=100T1]|

4 4 5 4 3 0

When there is a eigenvalue A of multiplicity two, either there are two independent

eigenvectors c such that (A - A)c = 0 or there is a solution of the form y(t) =

eM (ct + d). c will be an eigenvector and (A - A)2d = 0. For

311
A=| 1-3-1

4 21

A = -2 is a eigenvalue of multiplicity 2 and A = -1 is a simple eigenvalue. The

eigenvectors corresponding to A = -2 are multiples of ¢ = column [1,-1, 2] and the

eigenvectors corresponding to A = -1 are multiples of ¢ = column [1, -1, 3]. The equation

(A+20)2 d = 0 has a solution d = column [0, 1, 0]. (Such a vector is easily obtained on

the calculator, first by calculating (A+21)2 , then using PIV to obtain d.) Forthis

matrix A we have a fundamental matrix of solutions
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-t -2t -2t
e e te

_e-t _e-2t a-t)e-2t

YO = 4+ 2 -2t

For the matrix

5 -2 -3
A=l 0 3 0

2 2 0

A = -3 is a eigenvalue of multiplicity 2 and A = -2 is a simple eigenvalue. The

eigenvectors corresponding to A = -3 are linear combinations of ¢ = column [1, -1, 0] and

¢ = column [ -3, 0, 2]. The eigenvectors corresponding to A = -2 are multiples of ¢ =

column [1, 0, -1]. A fundamental matrix of solutions is

] ] -3t2 o

Yoo 0 -e-?’t 0
t) = . 3t |
e 0 2

Exercise 4.6: Find a fundamental matrix of solutions for the system y' = Ay where

011 310
A=[1 01| A=| 031

110 48 2

We wish to present a program which accepts an n by n matrix as input and

generates its eigenvalue equation. There is a algorithm for the coefficients of this

equation which combines many subdeterminants to form the coefficients. Such an

algorithm seems cumbersome for the HP-48/28S; however another less well known

algorithm involves products and sums of n by n matrices and the computation of the

trace of some of these matrices, something this calculator does with little trouble.

The following algorithm is taken from Cullen, Linear Algebra with Applications, Scott
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Foresman and Company, 1988: Let A be an n by n matrix, set Bg = I and then for k =

1,2,..., nlet

Ax = ABk-1, ck = -(1/k) tr(Ay), Bx = Ak + ckl.

Then the characteristic polynomial is given by

AN+ Al 4 A24+ cpigA + Cp

 

Program Name CHAR HP-48S version

Purpose Find the eigenvalue equation for a matrix in

level 1 on the stack

Input stack: square matrix Output stack: list of the

coefficients in characteristic equation

<<DUPSIZE 1 GET { 1} > mtx n poly <<mtx 1 n FOR j

01 n FOR k OVER { k k } GET + NEXT

j NEG / 'poly’ OVER STO+ mtx DUP ROT * SWAP ROT *

+ NEXT DROP poly >> >>   
For HP-28S, remove the ' marks from 'poly' and replace STO+ with + 'poly’ STO

Example: Place the matrix

3 4 6 4
1 1 1 1

A=l ¢ g8 7 38
-11 -12 -15 -14

on the stack and execute CHAR. You should receive output {1 5 13 19 10} meaning

the eigenvalue equation is A% + 513 + 13 A2 + 19X + 10 = 0. This equation has two

real zeros, A = -1 and A =-2. Dividing A2 + 3A+ 2 into the eigenvalue equation gives

a factor A2 + 21 + 550 A = -1 i are two remaining eigenvalues. The procedure given
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above for 3 by 3 matrices extends to n by n matrices and therefore a fundamental

matrix of solutions is

-t -t -t .
4e 0 e cos2t e sin2t

et e-2t 0 0
-t t . -t

Y(b)= -2e 0 € sin2t e cos?2t
= t - - -

-2e -e2t et(sinst-c052t) -et(c052t+sin2t)

Exercises 4.7: Find a fundamental matrix of solutions for y' = Ay when

25 25 35 -5
1 2 2 1

A=l 5 4 6 6
45 85 -55 -7.5

The booklet, Mathematical Applications, Step by Step Solutions for your HP-28S

Calculator, published by Hewlett-Packard contains a sequence of programs to solve

polynomial equations. By combining such programs with the material given above,

the student should be able to determine many solutions to a system dy/dt = Ay.

To obtain solutions of the nonhomogeneous equation y' = Ay + f(t), suppose that a

fundamental matrix Y(t) of solutions for the associated homogeneous equation is

known ( so Y'(t) = AY(t)). It is easy to see that

t
-1

yO =Y® c+ [ Yt-5)Y (0) f(s) ds
0

is a solution for any vector c. If initial conditions are known we may determine c. In

the general case a program which uses the numerical integration capability of the

calculator can produce values at various times t for the components of the integral

listed above. If the functions in f(t) are elementary we can use the method of

undetermined coefficients to construct a particular solution. Of course this technique
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will require the solution of linear algebraic equations to compute the coefficients, an

easy step on this calculator.

Euler Algorithm for Vector Equations

The following program is for one step in the solution of

dw/dt = F(t, w),

with suitable initial conditions. Here w and F(t,w) are vectors. We assume that

that the step size H is stored and there is a subprogram VN which takes t w from

the stack and returns F(t, w). The program begins with t w on the stack and

terminates with the new values of t w after one step on the stack.

 

Program Name EULN

Purpose generate new values of t w (vector) resulting

from one step using the Euler algorithm

Stored Quantities H VN

Input Output

level 2 level 1 level 2 level 1

t w thew Whew

<<DUP2VN H * + SWAP H + SWAP>>   
 

Notice the program is an exact copy of EULER (chapter 1) except VN replaces FN.

The program IULER should be changed to treat vector problems and called IULN.

Pursuit Problem: A rabbit starts at (0,1) and runs along y =1 with speed 1. At the

same time a dog starts at (0, 0) and pursues the rabbit with speed 1.3. The dog

attempts to point at the rabbit at all times but is constrained by his momentum.
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That is, for the angle z between the dog's direction and the x axis, dz/dt is

restricted. What is the path of the dog ? The equations of motion are:

dx/dt =13 cosz, dy/dt=13sinz, dz/dt=-(z-6(tx,y))

x(0) =0, y(0) =0, z0) =22.

Here 6(t,x,y) is the angle between the dog-rabbit vector and the x axis. We take H =

05, N = 120, plot parameters to show -1 < x <6, -.5 <y < 2, repeatedly apply EULN

and watch the trajectory. Suitable functions for f(t, x, y, z), g(t, x, y, z), and H(t,x,y)

(here F(w) = column [f, g, H]) are given by:

FN: << 4 ROLLD DROP DROP DROP COS 13 * >»

GN: << 4 ROLLD DROP DROP DROP SIN13 * >>

HN: <<4 ROLLD 1 - DUP 4 ROLLD SQ 3 ROLLD - DUP 3

ROLLD SQ ++Y 3 ROLLD DUP 3 ROLLD THTA - NEG>>

THTA: << 0 IF > THEN THT1 ELSE THT2 END >>

THT1: << 0 IF < THEN SWAP / ACOS ELSE

SWAP / ACOS NEG END »>>

THT2: << 0 IF < THEN NEG SWAP / ACOS ® —»>NUM

SWAP - ELSE NEG SWAP / ACOS m®w —HNUM + END >>

VN: << DUP2 DUP2 ARRY— DROP FN 5 ROLLD ARRY-» DROP GN

4 ROLLD ARRY— DROP HN 3 —ARRY >»>

An easy modification of the GRAF program can be used to follow the action. The

program requires a starting stack of 0, [0, 0, 1.8] and the trajectories of both dog and

rabbit are shown dynamically as follows:
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HP-48S version:

<<{ #0d # 0d } PVIEW 0 1 R>C 3 ROLLD DRAX 1 N START IULN

DUP OBJ—» DROP2 R—C PIXON 3 ROLL H 0 R»C + DUP PIXON 3

ROLLD NEXT GRAPH >>

For the HP-28S version replace { # 0d # 0d } PVIEW with CLLCD, replace

OBJ— with ARRY— , replace PIXON with PIXEL (twice) and replace GRAPH

with DGTIZ LCD—

A Nonlinear Problem: the Lorentz Equations

Consider the problem:

dx/dt = o(y-x), dy/dt = (r-z)x -y, dz/dt = xy - bz.

This set of equations was studied by E. Lorentz (1963) in connection with convective

heat transfer between the earth's surface and the atmosphere. A point (x,y,z)

represents convection velocities and temperature profile, vertical and horizontal. An

equilibrium or periodic solution to the system represents predictable behavior. The

graphs of particular solutions gave particularly surprising results because most

trajectories never seem to approach such predictability. The paper has been one of

the seminal studies in the area of chaos.

First the three critical points (that is, points (x, y, z) where the right sides of

the differential equations are zero) are (0, 0, 0) and (i(b(r-l))'5, i(b(r-l))~5, r-1).

s o 0
The variational matrix at (0, 0, 0) is [ r -1 O] , with system eigenvalues are -b

0 0 -1

and .5(-(c+1) + V (5-1)2 + 4ot ).

The variational matrices near the remaining critical points are
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c o 0

1 -1 -8|:8=+vb1) .
6 & b

Here eigenvalues satisfy the equation

A3 + (G+b+1)A% + br+o)A + 20b(r-1) = 0 .

For r > 1, b>0, o >0 one of the variational eigenvalues near (0, 0, 0) is positive, so

most trajectories starting near (0, 0, 0) leave that neighborhood. For r sufficiently

near one, the eigenvalues of the remaining variational matrices are negative and the

corresponding critical points are attracting solutions. When r is slightly larger, one

of the variation eigenvalues has a positive real part and the critical point is

repelling. It can be shown that solutions starting near the critical points stay

bounded and thus the trajectories have interesting behavior as t increases.

Exercise 4.8: Compute a solution for initial values x(0) = 13.25, y(0) =19, z(0) =26

for o = 10, r = 28, and b = 8/3 using the program STPN given in chapter 3 and using

initial value of H = .01 for 0 <t < 1. Part of a typical trajectory is shown below. A

continuation of the trajectory reveals no asymptotic pattern other than a continual

looping in two of the x, y, z octants. Your initial point occurs after the trajectory has

looped several times in a negative x, y octant and briefly returned to the positive x,

y octant. The following table shows partial results rounded to three decimals. (The

first entry shows how many applications to STPN were applied to get the result.)
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50

100
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200
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300
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2181

3431

X y z

14.709 17.996 31.799

15.145 14.482 36.646

14.271 9.441 39.490

12.269 4.601 38.711

9.688 1.158 36.533

4914 -1477 30.805

0412 -1.161 21.745  
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A Nonlinear Problem: Earth, Moon, Satellite Motion

Consider the model problem where the moon is circling the earth and a satellite

is in motion in the plane of the earth-moon orbit. The "restricted three body"

problem results when the satellite mass can be ignored when compared to the masses

of the moon and earth. (See Celestial Mechanics, Part II by S. Sternberg, W. A.

Benjamin Company, 1969) If a rotating coordinate system is used so the coordinates

of the earth are (-11,0) and the coordinates of the moon are (1-i,0) and the

coordinates of the satellite are denoted by (x(t), y(t)), the equations of motion are

gt =W a% =2v+x-(1—;;—u2(x+u)-u%

where

r2=(x+u)2+y2, p?-=(x+u-1)2+y2

The constant p is a ratio of the masses of the earth and moon (= mp/(mp+mp) =

1/82.45). For the "earth-moon" system it has been discovered that a solution with

period approximately 6.1922 results from the initial conditions

x(0) = 1.2 u(0) =0, y(0) =0, v(0) = -1.04936...

We take the vector w = [x, u, y, v] and create the subprogram

 

Subprogram Name RN HP-48S version

Stored Quantities none

input w: output: R1 =r3 R2=p>

<< OBJ—»> DROP2 SWAP DROP SQ SWAP 82.45 INV +

DUP2 SQ + 1.5 23 ROLLD 1 - SQ + 1.5 A >>   
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For the HP-28S version, replace OBJ— with ARRY— Then VN which takes w to

F(w) for the HP-48S can be as follows:

<< DUP RN 82.45 INV - R1 R2 MU <<OBJ—» DROP 3 ROLLD MU DUP

R2 / SWAP 1 - R1 /-1 - NEG * SWAP DUP 5§ ROLLD 2 * - 3 ROLLD

SWAP DUP MU + 1 - R2 / MU * SWAP DUP 3 ROLLD MU + 1 MU - Rt

/' * + - SWAP DUP 2 * 3 ROLL + 3 ROLLD SWAP 3 —ARRY >> >>

Replace OBJ— with ARRY— for the HP-28S version.

Since this program is complex, we provide a stack status at various program
steps:

Instruction Stack contents

DUP RN 82.45 INV w R1 R2 MU

— R1 R2 MU w

OBJ—» DROP Xuyv

3 ROLLD MU DUP R2 / Xvuyppu/R2

SWAP 1 - R1 / x vuy p/R2 (u-1)R1

-1 - NEG * x v u y*¢-D[p /R2-(n -1)/R1 -1]

SWAP DUP § ROLLD 2 * - u x v {y*-D[n /R2-(n -1)/R1 -1]-2u}

3 ROLLD SWAP u last equation v x

DUP MU + 1 -R2/ MU * u last equation v x u[x+p—-1]/R2

SWAP DUP 3 ROLLD u last equation v x p[x+p-1J/R2 x

MU + 1 MU - R1 / u last equation v x p[x+u—-11/R2 x+u (1-pw)/R1

* + - SWAP DUP u last equation x-p[x+pu-11/R2+(x+u) (1-u)/R1v v

2 * 3 ROLL + 3 ROLLD SWAP —ARRY >>

The figure shown below results from an initial tolerance setting in the STPN

program of 0.01 and the initial conditions given above with adjustments in the

tolerance as follows. As the satellite approaches the earth, the step size becomes
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small, so the tolerance is increased while the satellite is near the earth: later it is

reduced back to 0.01, etc.

carth y

 

X

ZoomView from Origin Axea

 

 

Satellite near Earth-Moon System

Another interesting periodic solution occurs for the approximate initial conditions

x(0) = 0, u(0) = 1.58, y(0) = 1.2, v(0) = 0.

We note equilibrium points for the restricted three body satisfy

u=v=0, y[1-Aw/r3-u/p31=0, x = 1-w(x+w)/r3 + p(x-1+p)/p3.

Project: Find the equilibrium solutions of this system and determine their stability

properties. Notice that for y = 0, we need only solve an equation of the form

g(x) = 0, but for other solutions, we need to find the solution of a pair of nonlinear

algebraic equations. We can use Newton's the procedure presented in Chapter 3 for

finding such values of x and y if we can find a suitable starting point xo, yo.

Appendix 3 outlines a method to do this using the calculator. (Two of the

equilibrium points are located at x = .48787, y = + .86603.) To determine the
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stability, we need to find the eigenvalues of the 4 by 4 variational matrices

associated with each critical point solution.

Parameter Identification Problems Revisited

In chapter 1, we studied several population models containing space/food

limitations on growth. See exercises 1.4, 1.7, 1.8 and 1.9. In chapter 2, we showed

how to choose problem parameters to achieve a fit to data observations when the

functional form of the solution g(t, p, q) is known. New problem: choose p and q so

that the solution of

dy/dt=qy (1 -yP), y(0)=.2

best fits the (t, y) data (1, .4), (2, .5), (3, .75), and (4, .9).

Here we have an initial value problem, say for population growth, of the form

dy/dt = f(y,p,q), y(0) = yo and wish to choose the parameters p and q so that a close

fit to data is achieved. The solution must be obtained by using a numerical method

(improved Euler, Runge Kutta, etc.) and the functional form of the solution is

unknown. Even though we may attack a vector initial value problem of this type,

for simplicity we will assume y, p, and q are real numbers and for values of y, p, q in

the domain of f, f(y, p, q) is a real number. If we also assume f is a smooth function,

we can differentiate the differential equation with respect to p to obtain

du _qt = fy y,prQu+ fp y,p Q@

where u = dy/dp and fy and fp denote the partial derivatives of f with respect to y

and p respectively. A similar equation holds for v = dy/dq. Consider the vector

initial value problem dw/dt = F(w) with w = w(0) at t = O for
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f(y, p, Q) y
y 0

w=|ul|l, Fw=|fHPdu+fly,p. 9| woy=|,

Vv fy y,pQ v+ fq (y,p, 9@ 0

Ourcriterion for bestfit is to choose p, q to minimize the payoff function

N 2
I = Zl [Yi - Y(tlr pr q)] .

1=

Here the data observations are { (t1, y1), (t2, y2), . . ., (tN, yN),and y(t, p, q) is the

solution of the original problem (and the first component of the solution of the vector

equation). If we set the derivatives of ] with respect to p and q to zero, we get

N N
> Ly, -yt p, Plut,p, =0, 3 [y, -y, p, Pl vit, p, @ =0.
i=1 i=1

to determine p and q.

Ourfirst thought here may be to apply Newton's method to determine solutions

p, q of these two nonlinear equations. However, recall that Newton's method would

require partial derivatives of u and v with respect to p and q. This could be done by

differentiating the original differential equation more times, but then we would need

to solve an initial value problem containing 6 differential equations !

Alternately, suppose that we have a trial set of parameters p and q and wish to

choose better values p + Ap, q + Aq. If the incremental values are small then

dy dy
y(ti, p+Ap, q+AqQ) = y(ti, p,q + Bi;(ti’ p-qQAp + fi(ti’ p, @ Aq

Define a vector z with components y; - y(t, p,q),i=1,2,... Nand an N by 2

matrix A with components A(i, 1) = dy/dp(tj, p, @) and A(, 2) = dy/aq(ti, p, @), i =1,

2, ..., N. The payoff at p + Ap, q + Aq is
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N 2
J= % ly;-y(t, p+Ap, q+Aq)]

i=1

and we wish to choose Ap and Aq so that the new value of | is minimized. If we

substitute the approximate value of y(tj, p+Ap, q+Aq) into ], we need to choose the

vector § = column [Ap, Aq] so that the quantity | | AS - z| 12 is minimized. Here |1A$§

- z1 12 is the sum of squares of the components of the vector AS - z. Thisis called a

linear least squares problem. The solution is determined by solving

AtA$ = Atz where At is A transpose. (There is a better numerical method to

determine § presented in standard linear algebra textbooks.) We change to the new

values of p and q and repeat the process several times until either this process

converges to good values of p and q or until it is clear the process is not converging. In

the latter case, we need new starting values of p and q.

Thus our procedure is to take an initial guess for p and q and solve the initial

value problem for w and recording the values of y, u, v at the various tj measurement

points, forming the matrix A and vector z and solving for the incremental vector §,

correcting p and q and cycling thru this sequence of steps until a conclusion arises.

Exercise 4.9: Choose p and q so that the solution of

dy/dt=qy (1 -yP), y(0) =.2

best fits the (t, y) data (1, 4), (2, .5), (3, .75), and (4, .9). Thus our criterion for a

good fit is to minimize

P =[y1 -y, p, Q12 + [y2 - y2, p, P12 + [y3 - y3, p, 912 + [ys - y4, p, 912

where y1 = 4,y2 =.5,y3 =.75,y4 = .9 and y(t, p, q) is the solution of the original

problem. Choose starting values of p and q near 1 and 1.
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USER Menu Housekeeping

The term user memory refers to that part of the calculator's memory which is

accessible to a user through the VAR menu on the 485 and the USER menu on the

28S. User memory is where we store the various types of objects recognized by the

calculator, e.g., real or complex numbers, arrays, programs, lists, etc. These objects

are stored as global variables (in calculator terminology) which you may regard as the

name of the object. Here we are concerned with the basic "housekeeping” procedures

associated with programs. By "housekeeping”, we mean the simple procedures used

to enter, name and store, run, edit and purge programs. The Owner's Manuals

minimally address programming; but anyone desiring to become really proficient in

developing and using programs across a broad spectrum of applications is strongly

advised to study the books "HP-48 Insights" and "HP-28 Insights”, by William C.

Wickes.

What is an HP-485/285 program ? A program is a sequence of data objects,

procedures, commands and program structures - the program body - enclosed between

program delimiters:

« program body » .

Entering programs. Programs are keyed into the command line and entered onto the

stack (level 1) with |ENTER|. You need not key in the necessary closing program

delimiters because pressing ENTER| will automatically insert them for you.

Naming and storing programs. To name and store a program which has been

entered onto level 1 of the stack, press D to signify algebraic entry mode (suitable

for entering names and expressions), then key in the desired name and press
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. The program will be stored in user memory under its name, and pressing

on the 48S (or on the 28S) will show a user menu key with an

abbreviated name (up to 5 characters).

To run a program. To run a program, simply press the white menu key beneath the

program's abbreviated name; alternatively, key the full name into the command line

and press |ENTER| |[EVAL|. If the program happens to be on level 1, you may

simply press |EVAL| . Of course, if the program requires input data for its proper

execution then you must first provide that data in an appropriate way, either on the

stack or as stored variables which are named in the program body.

Example. The program « DUP 2 - NEG * » takes a number "y" from level 1 as

input data and returns the calculated value of y(2-y) to level 1. Key in the program

by first pressing on the 48S or [ZI on the 285, then on the

485 (or the STACK menu key [DUP]|M on the 285) followed by the other indicated
keys. Press to add the closing program delimiters and copy the program to

the stack.

Press D PGM1 to name this program PGM1 and store it in user memory

underthis label. Press or to see the menu keyM .

Now, run the program using as input data the number 4: key in 4 and press

M. The answer, 8, will be displayed on level 1. Notice that you did not

have to enter the data onto the stack before pressing M. This is typical;

pressing the menu keyM automatically entered the data for you. Run the

program with some more inputs.

Syntax Errors. When keying a program into the command line, if an object is

accidentally entered in an invalid form, then pressing |[ENTER| will cause the
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calculator to refuse to copy the program onto the stack and display a message

indicating a syntax error. To remove the message from the screen so you can correct

the syntax, simply press on the 48S (or Il_N_EJ on the 285).

Example. Keyin: « — ARRY |[ENTER| . Notice what happens. Now remove

the message, delete the space after the — and press ENTER]|.

Editing programs. To make any change in the body of an existing program you must

edit the program.

e If the program is on stack level 1, the [EDIT| key will copy it into the

command line where you can then make the required changes. Press ENTER

to return the corrected version to level 1.

e If the program is not on stack level 1, but stored in user memory under, say,

'NAME' the keystrokes DM will recall the program to level 1

and you can proceed as above. Alternatively (and indeed, preferably),

II]M VISIT| will copy the program directly from user memory onto

the command line for editing; |ENTER| will then replace the old stored

program with the newly edited version in user memory.

Example. Start this example with the program « 1 N START NEXT » stored in

user memory as M,

(i) Recall it to stack level 1 with DM .

(ii) Copy it to the command line with EDIT|, and change EULER to IULER.

(iii) Copy back to level 1 with [ENTER|, then replace the old version by

pressing‘] TRY1|M .

(iv) Now copy this new version directly to the command line with EI

[TRY1]M , and change IULER to EULER.
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(v)  Replace the earlier version by pressing ENTER]| .

(vi) Finally, check your last work by recalling to level 1, examining the result,

then dropping it from the stack with DROP|.

HP-48S Shortcuts:

e You can recall to level 1 the contents of any stored variable, say TRY1, by

pressing TRY1|M. Thus, rightshift will recall.

e Likewise, you can store (or load) an object on level 1 into any stored variable,

by pressing , then the variable's menu key. Thus, leftshift will load. Try

this by loading « + SQ COS » into TRY1; now recall the contents.

Purging. Imagine that you have stored an object under variable PGM1 in your user

memory. The object may be any one of the variety of objects recognized by the

calculator: a real number, an array, a program, etc. To purge variable PGM1 is to

remove it and its contents entirely from user memory. Purging a single variable is

usually done with the keystrokes E] [PGM1|M IPURGEI. The label disappears
 

 

from the menu and its contents are removed from user memory. To purge several

variables at the same time press on the 48S, or E’ on the 28S, then the

to purge
 

 menu key for each variable you wish to purge, then IENTER]. IPURGE
 

the variables in this list.

Example. Start by storing the numbers 1, 2 and 3 in variables 'X' 'Y' and 'Z' in user

memory. With your VAR or USER menu active, purge 'X' by pressing 'X left shift

; watch EM disappear. Now purge the two remaining variables at the

same time by building a list { Y Z } and pressing. Watch these variables

disappear.
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Exercise. The following program takes numbers X, y from the stack and returns

sin (xy).

« * SIN »

(a) Key in this program and store it under variable "EX.1".

(b) Run the program with inputs .5, ®. You will get an expression instead of a

number. To get a numerical value use the —NUM key.

(c) Change the program body by adding NEG at the end.

(d) Run the new program with .5, 1 -NUM. What does the new program

calculate ?

(e) Purge programs TRY1, PGM1, and EX.1.
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USER Menu Organization: Directories

Just as a file cabinet organizes stored material in an office into convenient

groupings, HP-28/48S directories enable you to organize the variables and programs

that you store in memory. In the HP-28S this memory is called USER: in the HP-48S

this memory is called VAR. The USER/VAR memory is itself a directory - the

HOME directory, and you can always go to HOME. Moreover, in much the same way

that certain drawers in a file cabinet are further subdivided into sections, you can

create subdirectories within the directories. The basic idea is to group together

variables associated with a particular topic or subtopic.

A convenient directory structure for the material in this bookis as follows:

 

HOME: DE1 DE2 DEN MTX WKSP NWT
       
 

 

 

level2: GRAF ADGF FN N H IULER       
 

(The variables EULER PPAR and QUIT should be stored on the next "page”,

with other programs such as STP1, RK3 and ARK.1 if they are needed.)

HOME contains various entries, one being the DE1 subdirectory - in which you

may group together all the stored quantities for first order differential equations.

HOME is the parent directory of subdirectory DE1. The figure shows a directory

appropriate for the HP-28S. Programs ADGF and QUIT are not needed for the HP-

48S. The reader should note that programs for the HP-48S in this book have been
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structured into directories and loaded into a computer disk which is available from

the publisher to instructors who wish to adopt the workbook for classroom use.

Here's how to create our first subdirectory, subdirectory, DE1: press D DE1

[CRDIR]M (note that [CRDIR|M appears on the MEMORY menu). A new

label M appears in the original USER/VAR menu. PressingM will send

you to this new DE1 subdirectory, which is now empty.

On the HP-28S the first variable to store in the DE1 subdirectory, indeed in any

subdirectory, is QUIT - which will send you back to HOME. Create variable QUIT by

pressing « HOME D QUIT .

You should now transfer the following programs to DE1: EULER, IULER,

GRAF(and ADGF on the HP-285).. Later you will create an FN program, and

variables H, and N. Since these programs are likely to be in your HOME directory,

you will need to transfer them to DE1. To transfer a variable from HOME, first

recall its contents to the stack with , activate the DE1 subdirectory and store

the variable name there, then purge it from HOME.

You may want to arrange the programs in a particular order in DE1. To do this

enter {} on the stack. If GRAF is to be first (i. e. on the left side of the menu), press

D GRAF + to create the list { GRAF }. If the next program is to be

ADGF, press El ADGF + to create { GRAF ADGF }. Continue in this way

until you have an ordered list of the elements of DE1 that you care to order. Then

press ORDER on the MEMORY menu to rearrange the menu.

Subdirectory DE2 should contain GRXY, GRXT, ADG.2, FN, GN, N, H, IULE2,

EULE2, and PPAR. DEN should contain IULN, EULN, RK3A, and STPN. NWT

should contain the programs for Newton's method to find the solution of several

equations. MTX should contain the PIV, ROKL, and CHAR programs from Chapter

4. You may want an WKSP directory for odds and ends. The serious differential

equations student should create a subdirectory for the programs in Appendix 4.
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Starting Points for Newton's Method

This appendix gives an outline of programs to determine an approximate location

of the solution of two equations f(x,y) = g(x,y) = 0 in two unknowns. We select a

rectangle in the x,y plane, a grid within that rectangle, evaluate a function, say

f(x,y) at the grid points and turn on a pixel at the grid point if the function is

positive at the point. The boundary of the points with pixels showing is the set of

points with value 0. We select several points we think are on this boundary using

the INS key and connect the points with straight lines using the lines program. We

repeat for the other function and superimpose the graphs containing the line

segments. Intersections are starting points for Newton's method for the solution of a

set of equations:

1 £) X
Wi= Wi -] (wk) g(xk’ yk) , where w = y |

We select the rectangle by choosing plot parameters to show xp, < x < x)\g, and

ym <Yy < yM, and the grid by

H1 =( xM - xm)/N, K1 = (yM - ym)/P

Xj =xm +1iH1, yj=ym +jK1, i=0,1,...N, j=0,1,...P

The subprogram STG1 sets the grid size. The input to STG1 is a pair of positive

integers (for N, P).
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Program Name STG1

Purpose Sets the grid size, evaluates f at grid and

plots those points where f > 0

Stored Quantities STG2 STG3 FN plot parameters

Input Output

level 2 level 1

N P graph with active cursor

<< 'N'STO 'P' STO PPAR 1 GET DUP PPAR 2 GET

SWAP - C»R P/ 'K1' STO N / 'HI' STO C-R

STG2 'K1' PURGE 'H1' PURGE >>    
The second subprogram STG2 evaluates a function at the grid points. The

 

Program Name STG2 HP-48S version

Purpose Evaluates f at grid and plots those points

where f > 0

Stored Quantities PPAR STG3 FN

Input Output

level 2 level 1

Xm Ym graph with active cursor

<<{ #0d # 0d ) PVIEW K1+ 1 P 1 - START1 N 1 -

START SWAP H1 + SWAP DUP2 STG3 NEXT K1 + SWAP

H1 N 1 * SWAP NEXT GRAPH >>    
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Because the program for double loop has not arisen in these notes we give here a

stack accounting at various stages in the program.

<< { # 0d # 0d } PVIEW

K1 + at this point the stack is x;, y1

1 P 1 - START call this stack xp y;j

1 N1 - START call this stack xj-1 y;j then

SWAP H1 + SWAP Xi Yij

DUP2 STG3 NEXT bottom of loop on i

K1 + SWAP H1 N 1- * - SWAP now stack becomes x0  yj+1

NEXT GRAPH >> bottom of loop on j

For the HP-28S replace { # 0d # 0d } PVIEW with CLLCD and omit GRAPH in

the programs above.

The purpose of the following subprogram STG3 is to test if f(x,y) > 0, if so

record a pixel, if not continue. The input is a pair of numbers x y. For the HP-48S

<< DUP2 FN 0 IF > THEN DUP2 R—C PIXON >>

(replace PIXON with PIXEL for the HP-28S). Finally FN is a subprogram to

calculate the value of a function of x and y whose 0 level curve is to be studied. It

should take x y off the stack and produce f(x, y).

When the program has been executed select several points on the boundary of the

plotted points and connect them with lines. (On the HP-48S, this can be done using

the cursor and the LINES command. On the HP-28S select the points by using the

INS key. When the stack display has been activated compile these points into a

list which is stored as L1. This list can be used as input for the program SKETCH

given in the book HP-28 Insights by William C. Wickes, Larken Publications 4517

NW Queens Avenue, Corvallis, Oregon 97330 (notice a program called LINES must

also be entered).) In both cases we have produced a crude plot of the approximate
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zero level curve of f. Store the graph as a string. Repeat this for the function g(x,y)

(this time storing the list as L2) and obtain a plot of the approximate zero level

curve for g on the same graph. Use the cursor to indicate any intersection. Such an

intersection is a starting point for Newton's method.



Appendix 4

Runge-Kutta Adaptive Step Size Algorithm

Elementary algorithms have been featured in this workbook primarily for

pedagogical reasons; however they also permit quick execution times. There is a loss

of accuracy, but it is thought the simplicity of the programs will permit students to

learn valuable programming skills. In this appendix, we present an extension of the

adaptive step method presented in the first chapter for the solution of initial value

problems. The extension is a program for the popular Runge-Kutta Feldberg 4/5

algorithm which calculates the new value of y using a result which is accurate to

fifth order in h whenever an estimated error test is passed. When the test is

successful the step size is increased and the next step is attempted. If the test fails,

then the step size is reduced and another attempt is made to find a step size in t

which gives at most an extremely small error in the new value of y. For simplicity,

in our programs no check is made to prevent extremely small steps. If the user wants

to prevent ridiculously small steps, appropriate program steps should be

incorporated. The algorithm is given by:

Ynew =Y + (16/135)k1 +( 6656/12825)k3 + (28561/56430)k4 - (9/50)k5 +(2/55)kg

and
esterr = (1/360)kq - (128/4275)k3 + -(2197/75240)k4 + (1/50) ks + 2/55 kg

where

k1 = hf(ty), ko = hf(t+h/4, y+k1/4) k3 = hf(t+3h/8, y+3k1/32+9k3/32)

kg = hf(t+12h/13, y+1932k1 /2197-7200k2/2197+7296k3/2197)

ks = hf(t+h, y+439k1/216 - 8ko+ 3680k3 /513 - 845k4 /4104)

kg = hf(t+h/2, y - 8k1/27 + 2k- 3544k3 /2565 + 1859k /4104 - 11ks /40)
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Given t, y, and h, the process of calculating the term ynew using these formulae is

coded into the following program. At the end of the program, the step size is

divided by 2 and stored.

 

Subprogram Name FBG

Stored Quantities FN H

Input Tand Y

Output T Y esterr (H has been reduced 50% &

DELY has been stored)

<« > TY

<< TYFNH* DUP DUP2 3 DUPN 4/Y +TH24/ +

SWAP FN H * DUP DUP2 9 * 5§ ROLL 3 * + 32 /Y + TH

3*8/ + SWAP FN H * DUP DUP DUP27296 * 6 ROLL

7200 * - 8 ROLL 1932 * + 2197 /Y + T H 12 * 13 / +

SWAP FN H * DUP DUP2 845 * 4104 / 5 ROLL 3680 * 513

/| SWAP - 8 ROLL 8 * - 9 ROLL 439 * 216 / + Y + T H +

SWAP FN H * DUP DUP 11 * 40 / 4 ROLL 1859 * 4104 /

SWAP - 6 ROLL 3544 * 2565 / - 8 ROLL 2 * + 8 ROLL 8 *

27 /- Y + TH 2/ + SWAP FN H * DUP 2 * 55 / 3 ROLL

9 * 50 / - 4 ROLL 28561 * 56430 / + 5 ROLL 6656 * 12825

/| + 6 ROLL 16 * 135 / + 'DELY' STO 2 * 55 / SWAP 50 /

+ SWAP 2197 * 75240 / - SWAP 128 * 4275 / - SWAP 360

/| + ABS TY ROT H 2/ 'H STO END >> >>    
The reader should notice that to calculate yhew and esterr, k1 is needed 7 times

(once each for k2, k3, k4, k5, k6 ynew and esterr), kp is needed 4 times (once each for

k3, kg, ks, kg ), k3 is needed 5 times (once each for k4, k5, kg, Vnew, €sterr), kq is
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needed 4 times (once each for ks, k¢, ynew, esterr), ks is needed 3 times (once each for

k6, ynew. esterr), and kg is needed 2 times (once for ypew , once for esterr). In the

program listing, each time the commands FN H * are executed, one of the k terms

has been calculated. The next commands create the appropriate number of copies of

these numbers.

The FBG program is used as a subprogram to the program RKFS program listed

below:

 

Subprogram Name RKFS

Stored Quantities FN H FBG

Input Tand Y

Output Thew Ynew H (H has been altered)

<< DO FBG UNTIL .00001 < END DELY + SWAP H 2 * +

SWAP H 4 * '"H' DTO >>   
The tolerance used in the program (.00001) may require adjustment. In fact, this

quantity can easily be changed to a variable and used as input to the driver program

listed below:

 

Program Name RKF

Stored Quantities FN H FBG RKFS

Input: Tinitial Yinitial Tfinal Output: Stored List YV

<< — TF << { } 'YV' STO DO RKFS DUP2 OBJ— DROP

2 —>ARRY YV + 'YV' STO 2 PICK H + UNTIL TF > 2

PICK TF SWAP - 'H' STO FBG DROP DELY + SWAP 2 H *

+ OBJ> DROP 2 —5ARRY YV + 'YV' STO >> >>    
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As written, the program is designed for a single differential equation. However,

the entire program will work for a vector system dy/dt = f(t,y) with y and f as

vectors with M components except the user should replace in two places in RKF the

sequence of commands OBJ—» DROP 2 —ARRY with OBJ»> DROP (M+1)

—ARRY Here substitute the number M+1 into the command or use a variable named

M and put M 1 + in for (M+1). Of course, the program FN takes T and the vector

Y from the stack and returns the vector f (T,Y).



Appendix 5

Graphs for an Input-Output System

We return here to an important linear second order differential equation with

constant coefficients, a forcing term f(t) and zero initial conditions. The forcing term

can be regarded as an input to the system and the resulting solution as the

corresponding output. Our subject will again be a spring model

2
dy dy 2 W 22
—C;t—z-+2ba+m y = f(t), y(O)—a-E—(O)—O,(o >b .

The solution is given by

1 b 2 ,2y) =——— [ ¢sinVo-b (t-s) f(s) ds.
w2-b° 0

The problem here is to graph the output function y(t) for a given input function

f(t) using the integration program provided on the calculator. In Chapter 3 we did

this problem using IULE2 and GRXT partly because the student should become

thoroughly familiar with those important programs. Now we want to use the

calculator integration program to do the same problem because our treatment for this

problem is an excellent exercise on the basic properties of exponential functions

evaluated at suitable complex numbers.

We want to calculate and graph the output function at points {(t;, y,)} for an

input function suitably stored where t; = jH for j=0,1,2,... N and we want to
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avoid recalculating any parts of the integral already computed. To do this we will

take advantage of a key property of the exponential function for complex argument,

namely that the product of two such expressions can be obtained by adding the

exponents. Consequently the program involves complex arithmetic. First we define

5 (b+ip) (t.-s)
zt)=[e ' f9ds j=1,2..N

0

where p2 = ®2 - b2 and after some work we note

b+, +h) Gt h-b+ip)(t. + -(b+i

atpre [ €Tgds
t

(The studentis urged to verify this equation!) Even though z(t)) is an integral from 0

to tj, to calculate z(t;) we need only z(tj.1) and an integral on the interval tj.1 to t;!

We want to calculate only enough point to recognize the output graph. That is,

N does not need to be large since there is no loss of accuracy for small N. Suppose we

store the numbers p, b, and h in U, B and H and we create and store the following

subprograms for the integrands

INT1 ‘EXP(B*X*)*COS*(U*X)*F(X)’ INT2 'EXP(B*X)*SIN(U*X)*F(X)'.
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Subprogram Name SP.3 HP-48S version

Input t

t+H t+H

Output | e*cosusfs)ds, - [ €sinpsf(s)ds
t t

Stored Quantities H INT1 INT2

<<'X' PURGE 3 FIX DUP DUPH + DUP 3 ROLLD INT1 X 3

NEG SF/ 3 ROLLD INT2 X | 3 NEG CF

NEG R-C >>.    
The HP-28S version is given by

 

SP.3 for the HP-28S (same input, output, stored quantities)

<< 'X' PURGE X SWAP DUP H + 3 —LIST DUP INT1

SWAP .001 /| DROP SWAP INT2 SWAP .001 /| DROP

NEG R-C >>    
 

Subprogram Name SP.1

Input z(t) t

Output z(t+h) t+h

Stored Quantities SP3 HBU

<< DUP DUP SP.3 SWAP H + B NEG U R—»C * EXP *

3 ROLLB NEGU R->C H * EXP * + SWAPH +>>    
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Subprogram Name SP.2

Input z(t) t

Output z(t) t and a point (t, z(t)) on the graphing

screen:

<< DUP2 SWAP C—»>R SWAP DROP R—C PIXON >s>.

(For the HP-28S replace PIXON with PIXEL)

 

Next we set the plot parameters for the output graph and execute a program loop

to calculate and plot the output graph.

In the HP-28S program, replace { # 0d # 0d } PVIEW with CLLCD DRAX,

replace GRAPH with DGTIZ LCD— store PMIN, PMAX instead of XRNG YRNG.

Problem: Find the output graph for f(x) =1 - sin*(4x) forp=1,b=.5 N =25and

 

 

Program GR.Y HP-48S version

Purpose Graph output of the second order IVP

Stored Quantities SP.1 SP.2 SP.3 N XBRNG YRNG

<<{ # 0d # 0d } PVIEW DRAX (0,00 0 SP.21 N START SP.1

SP.2 NEXT GRAPH »>>.

 

H = 3.14/N. (By the methods in Chapter 2, the output function for this input

function can be obtained from a table of integrals after several substitutions. An

output function for an input function such as f(x) = 1/(1 - sin%3x)) could not.)
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