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PREFACE

This book is designed to be used as a course supplementfor teaching introductory

courses in matrix-oriented linear algebra. Intended to be textbook independent,it

presents an appropriate use of the HP-48S and HP-28S graphics programmable

calculators to enhance the teaching and learning of the basic concepts of elementary

linear algebra.

The material has been developed from classroom experiences in a calculator

enhanced, introductory course in matrix-oriented linear algebra taught by the author

at Clemson University since mid-1989. The course is at the sophomore level and is

taken by students majoring in a variety of fields: the biological and physical

sciences, computer information systems and computer science, several engineering

disciplines, mathematical sciences, and secondary mathematics education. Ours is

not an abstract, proof-oriented course. The main emphasis is on supplying the tools

needed to solve problems with matrix techniques and in developing a modest

theoretical background in matrix-oriented linear algebra needed for more advanced

work in mathematics, science and engineering We often concentrate on explanations

and examples in an effort to increase understanding.

ORGANIZATION

The book contains calculator-based activities, exercises and projects which

complement and extend the basic textbook material. After a brief chapter on

Calculator Preliminaries, Chapter 2 is concerned with a number of matrix editing

procedures using the calculator and also includes several specialized matrix builder

programs. There is no new mathematical content in this chapter, only material

intended to make the calculators easy to use.
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Chapter 3, Systems of Linear Equations, provides calculator routines which

implement Gaussian elimination, back substitution, LU-factorizations and Gauss-

Jordan pivoting. The latter is especially useful in a variety of settings, from

checking vectors in R™ for independence, to basis, dimension and eigenvector

calculations. We review the relevant mathematics as we proceed.

Orthogonality is highlighted in Chapter 4, a topic of fundamental importance

in many applications. We summarize the principal mathematical theory while

developing calculator-based procedures for least squares solutions,fitting polynomials

to data, orthonormal bases and QR-factorizations.

Chapter 5, Eigenvalues and Eigenvectors, includes calculator programs for

finding the characteristic polynomial and eigenvalues of a matrix, with applications

to real symmetric matrices.

Chapter 6 is an introduction to iterative methods and features the Jacobi and

Gauss-Seidel iterative techniques for solving large, sparse linear systems and the

power method for approximating dominant eigenvalues.

I have included four appendices. The first two are concerned with procedures

used to enter, store, run, edit and purge programs on the calculators and the efficient

organization of the programs for a course in linear algebra. Appendix 3 is devoted to

vector and matrix norms (needed for Chapter 6), while Appendix 4 contains some

useful polynomial routines developed at Hewlett-Packard.

THE ROLE OF CALCULATORS

Within the last two years, graphics programmable calculators with symbol

manipulation capabilities, the Hewlett-Packard 485 and 28S, have exploded into

undergraduate mathematics. For the first time, students have real graphical,

numerical and symbolic computing power in the palms of their hands - often more
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than the campus mainframes of 25 years ago. Though most of the early interest in

these devices has been directed towards their use in calculus, they are also proving

to be an attractive choice of technology to use in matrix-oriented linear algebra - the

course recommended as the first course in linear algebra by the 1990 Linear Algebra

Curriculum Study Group!.

The benefits of using technology in a first linear algebra course are readily

apparent:

e to remove the computational burden often associated with hand

performance of matrix algorithms, thus allowing beginning students to focus

more clearly on the underlying concepts and theory;

e  to encourage and enable students to engage in some exploratory/discovery

work on their own;

e to consider more interesting and realistic applications;

e to begin to think about some of the computational aspects of linear algebra;

and

e to demonstrate some of the advantages and power of technology in

mathematics.

To the extent that the HP calculators can help achieve these benefits, in a fairly

substantial way, I believe them to be an entirely appropriate form of technology.

When every student is equipped with his or her own calculator, they use it

almost daily for homework and classwork, there is immediate feedback, and a strong

element of active participation and interaction. My lecturing has given way to a

 

Funded by an NSF grant to "initiate substantial and sustained national interest in
improving the undergraduate linear algebra curriculum”.
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more informal discussion, interspersed with appropriate explanations and examples,

which students find more interesting.

The presence of calculators introduces a new dynamics into the learning process.

Students generally seem to be more involved in their thinking about the material,

and when they are able to effectively use these devices-in hand-to help achieve a

desired result, they often exhibit a strong sense of "personal ownership" of that

result. Indeed, it may well be the highly personalized nature of the HP's which, in

addition to their portability, makes them so attractive. Students see them as

especially applicable to their needs for they work equally well in hallways, in the

library, at park benches and lab benches, and are a constant companion in their

backpacks. They need not confine their explorations to central facilities nor spend a

lot of money on a computer. There is a genuine aura of excitement surrounding their

use, which can only be interpreted in a positive sense. At this level, I am primarily

interested in increasing students’ interest, involvement, comprehension and retention of

the course material.

THEMES AND OPPORTUNITIES

There are four major themes which tend to characterize introductory courses in

linear algebra, all well suited to serious calculator enhancement: Gaussian

elimination and LU-factorizations, vector space theory associated with matrices,

geometrical notions and orthogonality, and eigenvalues and eigenvectors. Because of

this, the calculator routines in this book are structured around these themes and are

organized into menus, each menu associated with a theme. In my course, calculator

use is regular (almost daily), but I am not interested in students acquiring program-

development skills. We use the basic built-in keystroke commands whenever possible

(e.g., matrix addition and multiplication, scalar multiplication, and the routine

computation of dot products, inverses, transposes and norms). Iterative methods
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extend the traditional material and point the way toward the powerful numerical

approaches used to solve large linear systems and to obtain eigenvalues and

eigenvectors.

In preparing the routines, I have been careful not to produce programs which

present final results at the expense of students becoming involved with the

underlying mathematical processes. Generally, the calculator programs are

interactive, requiring input and control at key steps. Thus, for example, the Gaussian

elimination routine requires that the user control the process by deciding when and

where to pivot, and which row interchanges are needed. And the practical pivoting

strategy known as partial pivoting, designed to avoid extremely small pivots which

tend to introduce error, is easy to implement in this setting. Likewise, in studying

Gram-Schmidt orthonormalization I recommend that students enter and evaluate a

simple program at each step; in so doing they demonstrate to me (and reinforce for

themselves) their understanding of the basic algorithm.

I am not concerned with introducing a substantial amount of new material into

the course. Nevertheless, the calculators have enabled me to achieve good results

with two modern topics which were often omitted in earlier versions of the course:

the interpretation of Gaussian elimination as an LU-factorization and its application

to linear systems with multiple right-hand sides, and the interpretation of the

Gram-Schmidt process as a QR-factorization and its application to least squares

problems. These topics are important today because they lie close to the heart of

many modern computer codes used to handle large linear systems.

By concentrating primarily on the vector spaces naturally associated with a

matrix, i.e., the row-space, column-space, null-space and their subspaces, I have been

more successful than before in helping students understand the concepts of spanning,

independence, bases and dimension. The calculators are a real help here since they
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facilitate students seeing these vector space notions in the context of linear systems.

Students make frequent use of the Gauss-Jordan pivot routine (which they control at

each stage) to reduce the associated matrices to their reduced row-echelon forms.

Many of the basic questions can be answered by examining these forms.

Eigenvalues and eigenvectors have always been difficult for students, primarily

because they were often unable to obtain the characteristic polynomial of even a

small, integer-valued matrix and, even when they could, had trouble finding the

eigenvalues as the roots of this polynomial. Stuck in unproductive hand

computations, only the most talented were able to move much beyond the basics. But

the HP's have changed all that. A simple calculator routine finds the coefficients of

the characteristic polynomial of a matrix A in terms of traces of powers of A. For

modest-sized matrices (say, 6x6 or smaller) having low-order, integer-valued entries,

the coefficients are accurately determined. A root-finder routine can then be used to

find the roots. Such an approach is, of course, unsuitable for finding eigenvalues of

the matrices encountered in most legitimate applications in science and engineering,

and I am careful to make that point. But it enables students to computationally

experience some of the theory and to move on to a consideration of real symmetric

matrices.

Calculators also provide an opportunity to dispel some of the computational

misconceptions which students tend to carry away from introductory courses.

Misconceptions like testing for a matrix's invertibility by computing its determinant,

solving non-singular linear systems by finding matrix inverses and, indeed, the entire

role of determinants and inverses in the practical application of matrices. And

although I have not restructured my course into one emphasizing numerical linear

algebra, I am at least able to give students a first-hand glimpse at some of the

troublesome numerical issues which are present.
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More than anything else, regular and systematic use of the calculators

throughout the conduct of the course changes not only what and how we teach, but

also what and how we test. I allow free use of the devices on all tests, and part of

the learning process is to determine just when, and when not, to use them. There is

plenty of room for both theoretical questioning (..."explain to me your complete

understanding of the concept of basis"...) as well as more computational questioning

(..."obtain a least squares solution to the following overdetermined linear system by

finding and applying a QR-factorization"...). I have been unable to obtain this level

of testing in a more computationally restricted environment.

Do students learn more linear algebra with the calculators? Do they better

understand what they learn? These are tough questions, questions which I am unable

to answer with any strong sense of accuracy. But my students have certainly seen the

material in a different light, have clearly shown me that they can grasp some of

the concepts better than before, and to the extent that they are all more interested

and involved in their learning I see this as a positive enhancement. They are

genuinely complimentary in their assessment of the role of calculators in the course.

SUPPLEMENTARY MATERIAL

The programs in this book have been structured into a calculator directory (the

MTRX directory) and loaded onto a computer disk which is available from the

publisher to instructors who wish to adopt the book for classroom use. The MTRX

directory may be transferred to students using the HP-48S either by calculator-to-

calculator infrared transmission or by computer-to-calculator serial transmission as

directed in the Owner's Manual. No such option is available for HP-28S users, and

the programs must be entered and organized by the individual users themselves, as

directed by Appendices 1 and 2.
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CHAPTER 1

CALCULATOR PRELIMINARIES

Before using this book, the reader should have a basic familiarity with the

HP-48S or HP-28S calculator and its operation, to the extent of being able to do

elementary keyboard calculations, perform routine real and complex number

arithmetic, and understand the basics of the stack. To acquire this basic familiarity

on the 48S, study pages 20-21 and 24-27 of Chapter 1 (Getting Started), Chapter 2

(The Keyboard and Display) and Chapter 3 (The Stack and Command Line) of the

Owner's Manual. On the 285, study Chapter 1 (Getting Started), Chapter 2 (Doing

Arithmetic) and Appendix C (Notes for Algebraic Calculator Users) of the Owner's

Manual.

No further background with the calculator is required in order to begin to

explore its capabilities relative to elementary linear algebra, for we shall develop

our skills and understanding as we proceed. Though you should have the calculator

manuals available to use if needed, our exposition is intended to be self-contained.

Readers who wish to acquire an increased level of insight and understanding into the

theory and operation of the calculator are strongly advised to obtain one of the books

"HP-48 Insights"! or "HP-28 Insights"? , by William C. Wickes.

To help you recognize various calculator keystrokes and commands, we shall

adopt certain notational conventions.

e With the exception of the six white keys on the top row, keys will be

represented by helvetica characters in a box: |ENTER|, |EVAL|, , ,

etc.

 

11991 by Larken Publications, 4517 NW Queens Avenue, Corvallis, Oregon 97330

2 1988 by Larken Publications, 4517 NW Queens Avenue, Corvallis, Oregon 97330
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On the 285 the symbol will represent the cursor menu key.

Shifted keys on the 485 may occasionally have the key name in a box

preceded by the appropriate shifts(s): @,,IE',

[o] Ca][B], [ [L], etc. But ordinarily, we will not show the shifts.

Similarly, shifted keys on the 28S may occasionally have the key name in a

box preceded by a black square [l to represent the red shift key: [ll{ARRAY|,

B M| Vx| -|CLEAR', etc. But ordinarily, we will not show the

shift key.

 

   

Menu keys for commands on various menus will show the key name in outline

form in a box:

48S 28S

DUP PRG STK menu STACK menu

PUT PRG OBJ menu LIST menu

RAND MTH PROB menu REAL menu

>ARRY PRG OBJ menu ARRAY menu

Menus generally have more labels than can be shown above the six white menu

keys, and the [NEXT| key will display the next row (page) of labels. Return

to the previous page with PREV|. For simplicity, we will not show these two

keys in this book.
  

   The four white arrow keys will be indicated by I—A—| , m, < I and 2
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e We will not put boxes around the comma, letter or number keys. For instance,

we shall write 4, 63 instead of [4][}][6][3], and ROW instead of [R][0O][W].

e Calculator operations and commands that appear in programs or in the text

material will be in helvetica characters, e.g., DUP SWAP INV.

e Finally, you should note that in certain entry modes some keys display

different characters from what is on them. For example, in algebraic entry

mode (activated by E]) or program entry mode (activated by EI on the 48S,

[«] on the 285):

 

Key Display

/
INV

*

x2 sQ
 

 

 

    
NUMBER OBJECTS. Real and complex numbers are two of the many different

types of "objects” that the calculator can recognize, manipulate and store.

A real number object is the calculator's representation of a 12-digit floating point

number:

mantissa X 1(Qexponent

where the mantissa is a 12-digit number between 1 and 9.99999999999, and -499 <

exponent < 499. Although the current display mode (STD, FIX, SCI or ENG)
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determines how real number objects are displayed, all internal calculations begin by

first expanding mantissas to 15 digits and exponents to 5 digits, performing the

calculations in that environment, then rounding back to 12-digit mantissas and 3-digit

exponents. However, this does not mean that all calculations are accurate to 12

digits: round-off errors from intermediate results may compound as the calculation

proceeds.

A complex number object is an ordered pair (x,y) of real numbers, and most

arithmetic, logarithmic, exponential and trigonometric operations treat real and

complex number objects uniformly. You are free to mix these two object types, and the

calculator will return a complex number if any input argument is complex.

DATA ENTRY. When keying a sequence of real numbers into the command line, say

1.1, 2.2 and 3.3, you must separate the numbers with spaces or commas for proper

recognition, asin 1.1 2.2 33 or 1.1, 2.2,3.3. We recommend that you use spaces

on the 485 and commas on the 28S for ease of use. For consistency throughout this

manual we will show commas, but you should always interpret them as spaces on the

48S. You need not insert commas or spaces between a real number and a complex

number (an ordered pair), or between two complex numbers, because the calculator

recognizes the parentheses as object delimiters.

Unless we specify otherwise, the examples and exercises in this book assume the

calculator is set to STD display mode.

PROGRAMMING. We shall require no skill or experience in writing programs but,

unless you obtain our routines by calculator-to-calculator infrared transmission or by

computer-to-calculator serial transmission (both options available for the 48S), you

will need to copy and enter simple programs into your calculator. In doing so, you

must be careful and copy the programs exactly as we show them. Special attention

should be given to correct spacing because the calculator recognizes commands that
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are separated by spaces. Instead of spelling out commands from the alphabet

keyboard, we recommend that you use the keystroke commands which appear either

as shifted keys (e.g., SWAP, DROP, PURGE) or as labels on the various menus;

keystroke commands will automatically insert spaces around each command. To use

the menu commands requires some familiarity with their location, but this can be

acquired in the course of entering programs. For the 48S the Operation Index, which

begins on page 707 of the Owner's Manual, gives the name, a description, and the

location of all HP-48S commands. The Operation Index for the 28S begins on page

323 of the Reference Manual.

Using keystroke commands will also increase your speed in keying in programs

and help avoid errors due to the insertion of extra spaces. For instance, using the

@, , and keys to enter the command R-C will produce R = C, and the

spaces surrounding the arrow will result in an error. The desired R-»C command

(real-to-complex conversion) can be found on the second page of the PRG OBJ

(program object) menu of the 485, and on the first page of the COMPLEX menu of the

28S.

Appendix 1 is a brief review of the procedures for entering, naming, storing,

editing, visiting, recalling and purging programs. Unless you are experienced in these

matters, you should read this appendix now before you begin to encounter programs in

Chapter 2.

Appendix 2 is a discussion of how the programs in the book should be organized,

and we recommend (especially to 28S users) that you read it immediately after

finishing Appendix 1.
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MATRICES

On the HP-48S and HP-28S, rectangular arrangements of real or complex numbers

are called arrays. Arrays can be one-dimensional (vectors) or two-dimensional

(matrices) and are considered to be single objects. Consequently, they can be

manipulated with many of the same basic commands used in ordinary arithmetic.

We shall begin by examining some of the ways of entering, editing, and manipulating

arrays.

2.1 ENTERING ARRAYS

A one-dimensional array (vector) is represented on the calculator by enclosing a

sequence of real or complex numbers in square brackets, as in [ 1 2 3 ] or

[(1,2) (3,4) (5,6)]. A two-dimensional array (matrix) is distinguished by an initial

square bracket [ , followed by each row vector, and ends with a closing square

[([123] 1+ 1+42i
i 241 242| wiappear as [456]] and the 3x2 complex matrix 30l 240 will appear as

[[(1,9),(1,2) ]

[(2,1), (2,2) ]

[(3.1),@.2) 1]
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ON THE 48S.

USING THE COMMAND LINE. The vector [ 1 2 3 ] is entered with keystrokes

IE] 1, 2, 3 |ENTER|. Be sure to insert spaces between the 1, 2, 3 with the

key. There are two ways of entering a matrix:

e row-by-row: start the matrix with [ [ by pressing the @ key twice, enter the

first row and press >

order and press ENTER].

EXAMPLE: Keystrokes

(] [1]]1,2,3|>] 4,5,6,7,8 9 [ENTER]

 

  , then continue entering the remaining entries in row
 

 

   

[[1 2 3]

will produce the matrix [4 5 6]

[7 8 9]]

 

  The D> key simply defines the number of columns. Now press DROP| to drop this

matrix from the stack. (When no command line is present you need not press the

to DROP.)

 

e as a dimensioned array: enter the numbers into the command line from left-to-

right in row order separated by spaces, then the dimensions as a list, {no. rows,

no. columns}, and press |[ENTER| to place all this on the stack. Then press

(on the PRG OBJ menu).

EXAMPLE: Keystrokes 1, 2, 3, 4,5, 6[{}] 2, 3

b . [[1 23]
return the matrix [456]]
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The numbers may be any mixture of real or complex numbers (ordered pairs), but

if any one entry is complex then the entire array will be complex To enter a single

complex number, say (1,2), press 1, 2 |[ENTER|. To enter the two

complex numbers (3,4) and (5,6) press 3, 4|p| [a]

5, 6 |[ENTER|. Notice the action of the | key and that the ENTER| completes

the entry.

 

   
 

   

USING THE MATRIXWRITER. Enter the MatrixWriter application by pressing

MATRIX|. This activates a spreadsheet-type display, with a dark cursor

resting in the 1-1 position. Check to see that the command is active by

noting a small white box within this menu label (if the box is not present, simply
 

  press the white key beneath the GO=>| label to activate it.) Key in the numbers
 

of the first row of the matrix in row order separated by spaces and then press

ENTER|. When you are ready to go to the second row press V|. This will define

 

   

the number of columns and position the cursor at the 2-1 entry. Now key in the

remaining entries of the matrix in row order (separated by spaces) and press

ENTER|. A final |[ENTER| will put the matrix onto the stack.

EXAMPLE. The keystrokes 1,23 I—l—l 4,5, 6, 7,8,

9 will produce this matrix on the stack:

[[12 3]
[45 6]
[7 8 9]]

Clearly, for entering simple matrices (say, with integer entries) the command

line is faster and easier to use than the MatrixWriter application. But the
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MatrixWriter has the advantage that for more complicated matrices, an entry can be

calculated (using RPN syntax) on the command line within the MatrixWriter

environment before it is entered into its position. As an example, construct the matrix

[[{17 In3]
[ e ®m/2])

Although the term MatrixWriter suggests that it can be used only for matrices,

it is actually an extremely versatile environment for entering, reviewing and editing

both vectors and matrices. To enter a vector using the MatrixWriter, say vector

[1 2 3 4], start with an empty stack and enter the MatrixWriter environment

with MATRIX|. Note that the menu key |VEC[ appears. If you press 1,

2,3,4 |ENTER| |ENTER|, vector[1 2 3 4] will show on the stack. The presence of

the white box in IVE@[D] | indicates that vector entry is active. If you toggle off this

key to see without the box, the keystrokes 1, 2, 3, 4 |ENTER| |ENTER| will

return the matrix[[1 2 3 4]].

 

   

 

 

Whenever you enter the MatrixWriter with MATRIX], the vector entry

mode |VECMO is active by default. But if you enter the MatrixWriter with V| to

 
 

      

review an array on level 1, the status of reflects the nature of the array:

|VE@[@' for a vector and for a matrix. Finally, note that you can quickly

convert the vector [1 2 3 4] to thematrix [[1 2 3 4]]and vice-versa by starting

 

 

  with either one on level 1, pressing V| to enter the MatrixWriter, then changing

the status of and pressing enter.

 

A final note about entering arrays using the MatrixWriter application. Array

entries may be real or complex numbers, but when you use the MatrixWriter to

initially enter a matrix into the calculator, the array object type (real or complex) is



10 CHAPTER2

determined by the 1-1 entry. Thus, if the 1-1 entry is real, you cannot enter a

subsequent entry as a complex number. But, if the 1-1 entry is a complex number (an

ordered pair), any subsequent entry of a real number x will be accepted and written as

the complex number(x, 0).

ON THE 28S. The vector [ 12 3 ] is entered with keystrokes [[| 1, 2, 3 [ENTER].

Note that the enter command actually produces the closing bracket for you. There

are two ways of entering a matrix:

e row-by-row: start the matrix with [, enter each row as a separate vector, then

press

EXAMPLE: Keystrokes

[l 1.2 3

[(4.5.6

[[1 2 3]
produce the matrix [456]]

Now press DROP| to drop this matrix from the stack.

e as a dimensioned array: enter the numbers from left-to-right in row order

separated by commas, then the dimensions as a list, {no. rows, no. columns},

then press (found on the |l menu).

EXAMPLE: Keystrokes 1,2, 3,4, 5,6 2, 3

[[1 2 3]

[456]]

Note, again, that pressing | ARRY| has the effect of closing the curly braces on

{2, 3}.

return the matrix
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The numbers may be any mixture of real or complex numbers (ordered pairs), but

if any one entry is complex then the entire array will be complex (try it!). Also, you

may use a space instead of a comma to separate number entries, but on the 28S the

SPACE]| key is located on the left keyboard, making it awkward to use.

NOTE: On the 485 and the 28S, as a matter of convenience, any n-vector

x = [x; X, ..x,] may be premultiplied by any mxn matrix A to obtain Ax. Thus, in

this context, x is treated as if it were an nx1 matrix. But you should note that this

treatment of x is peculiar to this context: in all other applications, x is a vector ... not a

matrix. You may not, e.g., perform a multiplication like xA for a matrix A, nor can

you transpose or take the determinant of a 1-vector [x].

EXERCISES 2.1

1. Set the number display mode to and practice entering the following

integer-valued matrices row-by-row. To see the hidden entries on the 48S,
 

  simply press V| to view the matrix in the MatrixWriter environment, where 

the four white arrow keys enable you to move to any position. The entry in the

cursor position is identified on the command line. On the 285, when the

command line is inactive ( press to clear or display it ) you can see 4 rows.

The keys ll|VIEW1T| and Jll|VIEW{| allow you to scroll vertically to view

more rows. Alternatively, on either calculator, with the matrix in level 1 you

may use EDIT]| to put it on the command line, where the white arrow keys can

be used to see any part of the matrix; press when you're finished viewing.
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1 -1

31 2 4 2 - 2 2
5 0 3 3 -3

(a)["é g ;:| b6 1 8 |4 4
0 29 5 -5

6 6

01-102-2023-304-+4
D|o5506607-708-8

2. Enter each of the matrices in Exercise 1 as a dimensioned array.

3. Set the number display mode to 2 FIX |, and go to the MTH PROB menu on

the 48S and the REAL menu on the 28S. Each press of the RAND| key will

produce a random number, rounded to 2 decimal digits. Practice entering a few

"random matrices" as dimensioned arrays. What happens if you try row-by-row

entry of random matrices?

2.2 EDITING ARRAYS

In working with arrays you will sometimes have to perform various editing

procedures such as taking a matrix apart, determining dimensions, extracting entries,

changing entries, extracting rows or columns, deleting rows or columns, separating into

rows or inserting additional rows or columns. These are the kinds of editing

procedures we are accustomed to performing when working with pencil and paper.
 

   TAKING AN ARRAY APART. Just as the menu key | ARRY| creates arrays, the

keys on the 48S and I ARRY= | on the 285 take an array apart. For

[[1 2 3]

[4 5§6]]

puts the entries on the stack in row order and the dimensions in level 1. For

 

 

example, with the matrix on level 1, pressing [ (O)QD@I or | ARRY=
 

example:
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123
[ { 456 } ] OBJ= |returns 1, 2, 3, 4, 5, 6, { 23 }. (This sequence is interpreted as

o [[123] ,
follows: with on level 1, pressing returns 1, 2, 3, 4, 5, 6 and[456]]
{ 2 3} to the stack with { 2 3 } on level 1).

DETERMINING DIMENSIONS. The menu key, located on the third

page of the PRG OBJ menu of the 48S and on the second page of the ARRAY (or

LIST) menu of the 28S, returns the dimensions of an array on level 1:

[{1 : 2;] returns { 23}, and [ 123 ]| SIZE| returns { 3 }.

EXTRACTING ENTRIES. To get a particular entry from an array use the menu key

( is on the PRG OBJ menu of the 485 and on the ARRAY menu of the

28S):

[[[ ‘11 2 :63]]] {12} returns 5. (Meaning: with the indicated array on level

2, and the list {12} on level 1, returns 5 to level 1.)

On the 48S there is an even better way to extract an array entry. Starting with

the array on level 1, press IE} to view it in the MatrixWriter environment and

move the cursor to the position whose entry you want to extract. Then press to
 

  turn to the next page of the MATRIX menu and press ®*STIK| to copy the entry to the

stack. Press |ENTER] to see the array on level 1 and the extracted entry on level 2.
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CHANGING ENTRIES. There are several ways to change entries in an array.

(i)

(ii)

You can copy the array from level 1 to the command line with |EDIT|,

where the white arrow keys then let you move to any desired entry and

change it. With the 48S you use the key to delete characters, then

simply key in the new characters. With the 28S the key toggles

between Replace Mode (a box cursor), in which new characters replace

existing ones, and Insert Mode (an arrow cursor), in which new characters

are inserted between existing ones. Return the edited matrix to level 1

with [ENTER].

Another way to change an entry in an array is to use the menu keys

(on the last page of the PRG OBJ menu on the 48S and the first page of

the ARRAY menu on the 28S).

. [[1 23]EXAMPLE: With ', o o0 on level 1, the keystrokes [(}] 1, 2[ENTER

7 return[[[l ; :;]”.(On the 28S use m instead of ).

CAUTION: If the number to be put into the array is complex, the array itself must be

(iii) On the 48S you may copy the array into the MatrixWriter with V|,

complex.
 

   

position the cursor over the entry to be changed, key the new entry into

the command line and press ENTER| to insert it at the cursor location.

Return to the stack with another |[ENTER|. This method is especially

useful because you can calculate the new entry on the command line in RPN

before entering it.
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(iv) You may use the following simple program NU.EL; but note that it is written

to handle only matrices and not vectors.

 

NU.EL (New matrix element)

Inputs: level 4: a matrix

level 3: an integer |

level 2: an integer J

level 1: a number NU

Effect: returns to level 1 the input matrix having

the number NU as the ( |, J )-entry.

« > 1 JNU « {1 J} NUPUT » »    
Key the program into the command line and press [ENTER| to put it onto level 1 of

the stack. Then press D, key in NU.EL, and press to store the program under

the name NU.EL in your user memory. Pressing on the 485 or |USER] on the

285 will display a new menu key NU.EL|. (Now is a good time to read

Appendices 1 and 2, if you have not done so already.)

[[1 2 3]

[4 56]]

17
keystrokes 1,2, 7 |NU.EL| will return[ 4 5 z]]

You may use program NU.EL to change the sign of an entry. But on the 48S it is

EXAMPLE. Starting with matrix on level 1 and performing the

to level 1.
]p

—
P

v

much easier to put the matrix into the MatrixWriter environment, position the cursor
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over the desired entry, and then press | EDIT| [+/.| [ENTER| [ENTER]. Since this

option is not available on the 28S, you may find it convenient to use the following

program CH.SN.

 

CH.SN (change sign)

Inputs: level 3: a matrix A

level 2: an integer |

level 1: an integer K

Effect: changes the sign of the (I, K)-entry of A

« > Al K « A 'A(l, K) EVAL NEG {IK} SWAP PUT » »   
 

Press D CH.SN to name and store the program in user memory. Press

or to see the new menu key.

. . [[1 23]
EXAMPLE. With matrix [456]] on level 1, keystrokes 2, 3 CH.SN return

[[1 2 3]

[456]]

EXTRACTING ROWS OR COLUMNS. There are times when you may want to

extract a particular row or column to use in some way. The following program will

extract a specified row from a matrix, put the extracted row onto level 1 and the

original matrix on level 2.
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C.ROW (Extract a matrix row)

Inputs: level 2: a matrix

level 1: aninteger L

Effect: puts row L of the matrix onto level 1

and the matrix onto level 2

« > AL « ASIZE 2 GET » N « 1 N FOR | "A(L, )

EVAL NEXT N -ARRY A SWAP » » »   
 

As with the earlier programs, key the program into the command line and press

ENTER| to place it onto level 1 of the stack. Then press II), key in C.ROW, and

press to store the program in user memory under its name. Pressing

or will display a new menu key.

[[6 3 5]
[4 8 7]

EXAMPLE. With matrix [ 9 -1 2] on level 1, the keystrokes 5 C.ROW| will

[3 4 1]
[-2 7 9]]

Q
.return this matrix to level 2 and the vector [ -2 7 9] to level 1.

The column version of program C.ROW is C.COL:

 

C.COL (Extract a matrix column)

« SWAP TRN CONJ SWAP C.ROW SWAP TRN CONJ

SWAP »   
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NOTE: The command CONJ appears twice in this program, each time immediately

after TRN. The command TRN returns the conjugate transpose of a matrix, which is

the transpose if the matrix is real. But if the matrix is complex, TRN must be

followed by CONJ to see the ordinary transpose of the matrix. See Section 2.3.

[[3.0 (1,1) 34]
Try this program on the matrix [ (1,-1) (4,0) (2,-3)] .

[ (3.-4) (2,3) (5,0) 1]

DELETING A ROW OR COLUMN. On the 48S, the MatrixWriter provides a way

to delete a specified row or column from a matrix on level 1. Simply display the

matrix in the MatrixWriter environment and move the cursor to any position in the

row (or column) you wish to delete, turn to the next page of the MATRIX menu with

and then press (or) to delete the row (or column). As

usual, return the new matrix to level 1 with [ENTER].

On the 28S, we recommend that you use the program DELROW [Wickes?, p. 275]

given below. By transposing the matrix, executing DELROW and then transposing

the result, you can also delete a column. But, it is more convenient to use a simple

program DELCOL which performs these operations for you. Finally, to delete both

a specified row and a specified column (i.e., to compute a specified minor of the input

matrix), program MINOR [Wickes, p. 275] may be used.
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DELROW (Delete a matrix row)

Inputs: level 2: a matrix

level 1: an integer r

Effect: Deletes row r of the matrix and returns

the modified matrix to level 1.

« - r « ARRY- LIST» DROP » nm« nr-m *

-LIST » s « m DROPN s LIST» DROP » n1 - m 2

-LIST 2ARRY » » »   
The column version of DELROW is DELCOL.:

 

DELCOL (Delete a matrix column)

« SWAP TRN SWAP DELROW TRN »    
[[1 2 3 4]

EXAMPLE. With [56 6 7 8] on level 1, keystrokes 3 DELRO| return

[9 10 11 12]]

[[1 23 4] [[1 3 4]
[5678]].'1'hen2 DELCO)]| returns (57 8]]
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MINOR (Computes a matrix minor)

Inputs: level 3: a matrix

level 2: an integerr

level 1: an integer c

Effect: returns the matrix with row r and column c deleted.

« 3 ROLLD DELROW TRN SWAP DELROW TRN »  
 

[[1 2 3 4]
EXAMPLE. With matrix [5 6 7 8 ] on level 1, keystrokes 1, 3| MINO

[9 10 11 12]]

SEPARATING INTO ROWS. After copying a matrix into the command line with

EDIT|, you can remove the starting and ending brackets of the matrix to separate it

into its row vectors.

You should try it on a matrix of your choice. A program which does all this in

a single keystroke is @* ROW [Vectors and Matrices, Copyright Hewlett-Packard

Company, 1987. Reproduced with permission.].
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-ROW (Separate into rows)

Inputs: level 1: a matrix

Effect: separates a matrix into its row vectors

« ARRY- LIST» DROP » nm « 1 n FOR i m 1

-LIST ARRY ni - m » i + ROLLD NEXT » »  
 

 

[[5 23] , [5 2 3]

EXAMPLE. With [1 6 2] onlevel 1, |2 ROW lreturns[1 6 2],
(89 1]] | (89 1]

A companion program, also by Hewlett-Packard [p. 41 in Vectors and Matrices], is

ROW-=-, which assembles a stack of row vectors into a matrix.

 

ROW- (Assemble row vectors into a matrix)

Inputs: levels 2 through n + 1: vectors v, V4.1, ..., V4

respectively

level 1: the integer n

Effect: assembles the n vectors into a matrix having v; as

row i.

« OVER SIZE LIST» DROP » nm « O n1-FORiim

* N i - + ROLL ARRY-> DROP NEXT n m 2 -LIST -»ARRY

» »  
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EXAMPLE. With the stack showing

3: [123]

2: [456]

1: [789]

[[1
3| ROW= returns [ 4

[7

 

o
N

3

6

9
   

e
t
S
t
S
t

]

INSERTING ADDITIONAL ROWS. The MatrixWriter application also includes a

way to insert additional rows or columns into a matrix. With the matrix displayed

in the MatrixWriter, the menu key (or) will insert a row (or

column) of zeros at the cursor position. You may then inset new entries in place of

the zeros.

But it is generally more convenient (and a necessity on the 285) to use a simple

program to do the insertion. Now that we have program -ROW which separates a

matrix into its (say, n) row vectors, it would seem natural that we merely insert an

additional vector into the list at the right place, then reassemble the (n + 1) vectors

into a new matrix. Program AD.ROW (additional row), does just that. Its column

analogue, AD.COL, can be used to insert an additional column.
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AD.ROW (Additional row)

Inputs: level 3: a matrix

level 2: a vector v

level 1: an integer K

Effect: inserts vector v into the input matrix as an

additional row, row K.

« > AVK« ASIZE1GET > M « A >ROW V M 1

+K-1+ ROLLD M 1 + ROW- » » »
 

 

AD.COL (Additional column)

Inputs: level 3: a matrix

level 2: a vector v

level 1: an integer K

Effect: inserts vector v into the input matrix as an

additional column, column K.

« ROT TRN CONJ 3 ROLLD AD.ROW TRN CONJ »  
 

1-2 37
EXAMPLE. To enlarge[ 0 5 -8 6] by inserting a row of alternating 1's and 0's as

2 -3 40

2 3 7]1

0 5 -8 6] onlevel2andand[1010] on level 1 and
2

[
row 3, we start with [

[ 3 4 0]]
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[[ 1 2 3 7]
[ 0O 6 -8 6] . ,

press 3 AD.RO |. The result (10 1 0] is returned. After entering

[2 -3 4 0]]

[[1-1 -23 7]
] [0 6 5-8 6]
[-1650], keystrokes 2| AD.CO return (1501 0]

[2 0-3 4 0]]

INTERCHANGING ROWS. One of the most useful editing procedures is to

interchange two rows, say rows K and L. The following program enables you to do

this.

 

RO.KL (Interchange rows K and L)

Inputs: level 3: a matrix A

level 2: an integer K

level 1: an integer L

Effect: interchanges rows K and L of matrix A

« » AKL «A SIZE 2 GET » N « A1 N FOR |

'A(K, 1)’ EVAL {L |} SWAP PUT NEXT 1N FORJ 'A(L,J)
EVAL {KJ} SWAP PUT NEXT » » »  
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[[
EXAMPLE. With matrix [

[
on level 1, press 1, 3 RO.KL| to return

W
N

=

W
N

=

1

2

3 ]

-
D
W

-
D
D
W

-
N
W

L
e

2.3 MATRIX ARITHMETIC

Addition and subtraction of matrices proceeds just as for real numbers. To

calculate A+B simply key in matrix A and press ENTER|, then key in B and press

. Pressing B instead of calculates A-B. Note that the commands and E]

add or subtract the object on level 1 to or from the one on level 2. In case A and B are

stored in user memory, you have two choices:

e with the menu keys and showing, press to add;

e alternatively, you may use algebraic entry mode and press D A + B [EVAL

to add.

SCALAR MULTIPLICATION. To multiply a matrix by a scalar c, key in the

matrix and press ENTER|, then key in scalar ¢ and press El If either the matrix

or the scalar is complex then the result will be a complex matrix. If the matrix is in

user memory, you may use the proper menu key or algebraic entry mode as above.

Multiplying by -1 can be done with a single keystroke by pressing the key on the

48S or the key on the 28S.

MATRIX MULTIPLICATION. To calculate a matrix product AB, proceed as in

forming A+B but press instead of . The important point to keep in mind is

that in calculating AB, matrix A must be on level 2 and matrix B on level 1. That is,
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the number of columns of the matrix on level 2 must equal the number of rows of the

matrix on level 1. Ordinarily, this means that you should enter the left-hand factor

first.

MATRIX POWERS. Unlike the case for real or complex numbers, you cannot use the

key to calculate powers of a square matrix A. You can, however, obtain A? by

using the [EI key or executing the command SQ. For more general powers of A, say

AKX whereK=1,2,3,..., you can use the following program.

 

A.KTH (K™ power of a matrix)

Inputs: level 2: a square matrix A

level 1: an integer K

Effect: returns AK, the K" power of A

«> AK « A SIZE 1 GET IDN 1 K FOR | A * NEXT » »  
 

0 -1

.(l) (1) , begin by entering the
10

Pgiven matrix and storing it in memory as matrix B. Now press 5| A.KTH to

O
O

=0

EXAMPLE. To calculate B> + B? + B for B = (1)
-1

[[ 0 16 0 -16]

put { 6 0 16 106} on level 1. Next, press 3 [A.KTH to put
[16 0 16 0 ]]
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on level 1. Finally, press B to show B® + B3 + B as

A
O
S
N

A
o
h
O

H
O

M
~
O

o o
O
h
~
o
O
P

]

[[0 21 0 -21]
[21 0 -21 0 ]
[0 -21 0 21]
[-21 0 21 0 ]]

More generally, given a square matrix A and an arbitrary polynomial

p(x) = a,x™ + a,_,x™! + ... + a;x + a5, we may want to find p(A) = A" +a;A™ + .. +

a,;A + a,l. The following program, P.OFA, does just that.

 

P.OFA (Polynomial evaluation at A)

Inputs: level2: alist{a, a,, ..a, a, } of coefficients

level 1: a square matrix A

Effect: returns p(A) = a,A" + a,,A™" + ... + a,A + g,

« > LA« ASIZE1GET » K«L 1 GET 2 L SIZE

FOR N A* L NGET KIDN * + NEXT » » »  
 

EXAMPLE. Find p(A) for p(x) = 1.3x5 - 4x* + 2.1x2 + 5x + 6.2 and

1 2 3 4

A= g -g ; g Write the coefficients as a list (1.3 -4 0 2.1 5 6.2).
S5 4 3 2

Next enter matrix A. Pressing P.OFA and using 3 FIX display mode we have
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[[12.455 6.677 7.099 7.521]
[16.975 23597 17.819 18.241]
[ 20.545 20.123 25.901 19.279 ]
[ 9.825 9.403 8981 14.759]]

p(A) =

CAUTION: You must use caution when calculating powers of a matrix. Because your

calculator only shows 12 digit mantissas, powers of even small matrices may lead to

[[9 9 9 9]
[9 9 9 9]
[9 9 9 9]
[9 9 9 9]]

found correctly on the calculator to be the constant 4x4 matrix whose entries are

47*98 = 705,277,476,864. But A? has entries 48*9%, a number which the calculator can

only represent as 2.5389989167E13, but which is 104 short of the actual

2.5389989167104E13.

computational inaccuracies. For example, if A = , then A8 can be

ADDING A CONSTANT. To add a constant c to each entry of a matrix A, use the

key (on the MTH MATR menu ofthe 485 and on the ARRY menu of the 285)

to create a constant matrix whose entries are c¢ , then add this new matrix to A.

With A on level 1 of the stack, you have two choices in creating the constant matrix

with the same dimensions as A:

¢ enter the dimensions of A as a list { m n }, where m is the number of rows and

n is the number of columns of A, then key in the constant ¢ and press .

o alternatively, and preferably, put a copy of A on level 2 with [ENTER| (or a

command, like DUP, which performs ENTER]|), then key in the constant ¢

and press.
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EXAMPLE. To add 1.95 to each entry in matrix A =[ _Z;g -_12? 28] , start with A

on level 1. Press [ENTER| to copy this matrix onto level 2, then 1.95.

These last two keystrokes replace the copy of A on level 1 with the constant matrix

[1.95 1.95 1.95195 195 1.95 ] Now press to add the constant matrix to the copy of A on

.| 273 1.79 2.61level 2. The result 15[ 106 1.74 2.64] .

TRANSPOSING. With a matrix on level 1, the menu key returns the

conjugate transpose (i.e., the conjugate of the transpose). Thus, if the matrix on level

1 is real,W returns its ordinary transpose. To obtain the ordinary transpose of

a complex matrix, press then CONJ |. The CONJ command returns

the complex conjugate of its input argument. On the 48S, you will find on

the MTH MATR menu and CONdJ on the MTH PARTS menu. On the 28S, both

commands are on the ARRAY menu.

EXAMPLE. With[ 2+:§ ;‘4i g+ ] on level 1, press to see the conjugate

2-3i i
transposel: 7+4i 2 ] Now press CONdJ to see the ordinary transpose

3 5-i-1

2431 -i o .
7-4i 2 of the original matrix.

3 S5+i
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EXERCISES 2.3

1. Enter the matrix A = as a dimensioned array, and verify its

a
n
d
w

N
N

&
oo
W

-
wu

W
O
~

correct entry.

(a) Disassemble A into its entries, drop the last 5 entries, and rearrange the

(b)

(c)

(d)

2. (a)

(b)

(c)

3. (a)

(b)

first 15 entries (in row order) into a new 5x3 matrix B.

Use |EDIT| to change the 7 in row three of B to 4 and the 8 in the last row

to 0. Transpose the result.

Now change the 9 in B to 11/8. Try this first using |EDIT| and see what

happens - press to return to level 1 when you want to. Now use

to effect the change. Verify your success by viewing the result.

Finally, use NU.EL| to change the 5 to V306.25. After viewing the final

matrix drop it from the stack.

Create a 5x4 matrix A = (a;) where a; = .jj .

Extract the submatrix B consisting of rows 2, 3 and 5.

Remove col 3 from B and square the result.

Enter matrix A by starting with the constant matrix of all 0's and then

inserting each non-0 entry

1000
2000

A=l 3400
5670

Calculate A - A2 + 2I using keystroke commands.
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111
Enter A = l: g % §:| . Enlarge A by inserting an additional row on the bottom

and an additional column on the right. Do this as follows:

(a) Insert a row of 4's, then a column of 5's.

(b) Now start over with A, and first insert a column of 5's, than a row of 4's.

(¢) Are the results in (a) and (b) the same?

1-34 7 0 -1
EnterA=| 2 50 |(andB=|5 3 2].

6 -3 8 96 0

(a) Form the partitioned matrix [ A] .
B

(b) Form the partitioned matrix [ A B ].

T

(Hint:[)Y(] =[x" ¥'])

—
>

O
w(c) Form the partitioned matrix [

(d) Form the partitioned matrix [

o
»

@
O



32 CHAPTER 2

0
3
2 —

—Enter A = [
Q
T
N
=

W
O
N |

T
(a) Form B = [ ;T] where x is column 2 and y is column 3 of A; calculate BA.

(b) Now let C be the submatrix of A consisting of columns 1 and 4 of A;

calculate CB.

W a
n
N

1-2 35 4
LetA=| 7 9 0-1 3|andB=]| -

3 86 21

-
J
N

W
=

Q
0

O
O

B
=

(a) Get the submatrix C of B consisting of rows 2 and 4.

(b) Form the partitioned matrix [ A CT ] = D and get the submatrix consisting of

the odd-numbered columns.

(c) Interchange rows 1 and 3 of D, then columns 2 and 4 of the result.

. . B3+1i 6
LeteA=|9+1 2-3i 1  |andB=| 0 2-i|.

4i 6-1 3+4i 4-3 1+i

(a) Find the conjugate transpose A* of A and the transpose BT of B.

(b) Calculate A* + B, A + BT , AA*, BTB and (2 - 3i)A.

2-1i -2i 3-2i
ForA=| 1+5i 3+2i 5 , find A2 - 4A* + 3AT - .

i 6 -1+2i
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7+1i 5+6i 3+2 -9-5i
10. Given A = }31_; 6li '42 : i’l é Y 8-?'211 , separate A into its real and

-6 7+4i -3-3i 9 +5i

imaginary parts with C=®R |, transpose the real part and recombine it (use
 

   
 

  R=>C ) with the imaginary part. Then get column 3 of the result. (The
 

 

  commands C=R and l F’R@@I appear in the PGM OBJ menu of the 48S and in

the REAL menu of the 28S.)
 

11. For this exercise, set your calculator to 3 FIX mode. Let A =

N
=
W

N
R
W
W

W
i
w

n
h
w
o
i

andx=[.1 .2 3 4]T.

(a) Examine the sequence A, A2, A3, ... to find lim {a"}.
N—oo

(b) Examine the sequence Ax, A?x, A3x, ... to find lim {An x} .
Nn—oo

(¢) What is the connection between the two limits in (a) and (b)?

12. Repeat parts (b) - (c) of exercise 11 using any vector x =[a b ¢ d IT of your

choice where a+b+c+d=1.

2.4 DETERMINANTS AND INVERSES.

With a square matrix A on stack level 1, pressing will return the

determinant of A, and will return A1 in the event that detA # 0. On the 48S

is on the MTH MATR menu. On the 285 you will find on the third

line of the ARRAY menu.
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[[2 4 2]

EXAMPLE. (a) Keyin matrix A= [4 10 6] and press| ENTER| |[ENTER
[4 6 4]]

ENTER]| to put 3 copies of A on the stack.

(b) Press to show detA = 8.

[[5 -[

(c) Use [DROP], then

[1/x]

to show A= [
[ o

,m
.

a
0

o;
m

1

-2

(d) Now press to check AA1 =1

However, as with any tool - no matter how sophisticated - some care must be

exercised with these commands in order to obtain results that are mathematically

correct. To make the point, you should complete the following experimental exercise.

EXPERIMENTAL EXERCISE

[ [[1 111
(a) Enterandstore A= [2 and B= [3 6 4

[2 36 4S
h
H
h 1

6

6 p
—

pu
m—

—
 
g
—

L
I
e

] 1
(b) Press | A |[ENTER] [ENTER], then to see detA. Since detA = 0, A is

singular and has no inverse. Check this by executing DROP| to remove the 0,

then to see what happens. The error message "INV Error: Infinite result”

 

alerts you to the fact that the calculator is unable to calculate an inverse for A.

(c) None of the above was unexpected; after all, A has two identical rows, so detA

is obviously 0 and thus A has no inverse.
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(d) Now put three copies of B on the stack and press to show detB =

(e)

(f)

3x1011. Use DROP|, then to obtain

[[ 2 66666666666.6 -66666666667 ]
B1= [-1 33333333333.3  -33333333333 ] . This looks suspicious, so

[ 0 -99999999999.9 100000000000 ] ]

[[1 0 O]

check by pressing [*] to show BB1= [0 0 1] . Since BB! #1I,this result is

[0 0 1]]

clearly incorrect.

Recapture the last arguments with on the 48S or with JlI|UNDO

on the 28S, use SWAP] to reverse the order of B and B!, then press to see

[[ 8 -4 4]
B1B= [-1 .8 .2] , which is even worse!

[ 3 6 .4]]

Matrix B, like A, has two identical rows. This guarantees that detB = 0, so B

has no inverse. Why has the calculator failed us in this case, and not with

matrix A?

One thing is clear: use of the calculator to calculate determinants and matrix

inverses may yield incorrect results. Certainly, a little forethought given to matrices A

and B would have been in order. That forethought may have told us that both

matrices have 0 determinants and therefore have no inverses.

Why, then, did we not get these results for matrix B? The answer is due to the

calculator's built-in routine for finding determinants and inverses and the fact thatit
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uses floating point arithmetic. Even without considering what that routine might be

(we shall say more about it in Chapter 3) the above determinants come down to

calculating

detA=2%[6-(2%3)], and

detB=3%[4-(3%4/3)].

In exact arithmetic, both are 0. The floating point calculation of detA is clearly 0,

but for detB we have

detB 3 *[4-(3*1.33333333333) ]

3 *[4-3.99999999999]

3 %[ 1x1017)

3x 101,

And, given that the routine returned a non-0 value for detB, it went on to calculate an

inverse.

In view of all this, how should a beginning linear algebra student use the

calculator to find determinants and inverses? Certainly, calculating a determinant as a

test for matrix invertibility is computationally impractical, due to the floating point

environment of the calculator. As in the above example, the calculator may well return

a non-0 value (the result of round-off) for the determinant of a singular matrix. And the

size of the determinant also has no bearing on the invertibility, for while multiplying an

nXxn matrix A by a non-0 number k does not change the invertibility, the

determinant of the resulting matrix is k™(detA). In fact, there is little, if any, need

to calculate determinants for matrices other than by hand for the low order, integer-

valued matrices used in elementary courses to reinforce the learning of the basic

theory. The inclusion of determinants in linear algebra courses is largely a carry-
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over from late 19'" century algebra and they play a key role in helping to develop

certain theoretical concepts; but they have no use in computational mathematics.

Regarding the calculation of matrix inverses,it is seldom necessary to actually calculate

a matrix inverse, A-l. For non-singular linear systems Ax = b, there are better and more

efficient ways to solve them than calculating x = A-1b, and most other apparent needs to

calculate A1 can be circumvented by an appropriate reformulation of the problem. In

summary: the numerical calculation of matrix determinants and inverses is extremely

sensitive to round-off error and choice of numerical algorithm in a floating point

environment. Although sophisticated, professional-level computer software is

generally responsive to this sensitivity, our advice is to proceed with extreme caution in

a calculator environment and, whenever possible, avoid calculating determinants and

inverses.

To clean up calculator round-off error, we recommend that you use a simple

program CLEAN.

48S VERSION

 

CLEAN (Clean-up routine)

Input:  level 2: an array

level 1: a positive integer N

Effect: cleans-up array entries which exhibit round-off.

Rounds-off to N decimalplaces.

« RND »    
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28S VERSION

 

CLEAN (Clean-up routine)

Input:  level 2: an array

level 1: a positive integer N

Effect: cleans-up array entries which exhibit round-off.

Rounds-off to N decimal places.

« FIX RND STD »  
 

-8 5 6
EXAMPLE. Put two copies of A = [ 04 -3] on the stack. Since A is triangular, its

007

determinant is clearly 224, so A-! exists. Use to find A-1 on your calculator,

then press E] to see AA-1 with round-off error:

[[1 O -.000000000001 ]
AAl= [0 1 .000000000001 ]

[0 0 .999999999999 ]]

[[1 0 0]

Now press 11 |CLEAN| to see AA'l= [0 1 0] correct to 11 decimal places.

[0 O 1]]

EXERCISES 2.4.

1. Cofactor expansions tell us that a matrix with all integer entries will have an

integer-valued determinant, so you may reason that, even if we failed to

111
recognize that B = l: 3 6 4] has two identical rows, detB is an integer. Thus,

3 6 4
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the calculator's result detB = 3x10-1! obviously shows a little round-off and, in

fact, detB = 0. But things aren't always that simple.

(a) Enter matrix

110101
113641

A_|01 1111
=l013641]|
011113
113641

multiply it by 100 and ask you calculator to calculate the determinant of

the result. is the calculator's result correct? Do you see a little round-off

error?

(b) Examine rows 2 and 6 of matrix A. What does this tell you about detA?

About det[100A]?

(c) Use the fact that for an nxn matrix A, det(kA) = k*detA to explain how

round-off error contributed to the result in (a).

(d) Go back and read again the italicized statements in Section 2.4.

Suppose you ignore our advice about using x = A"b to solve a linear system Ax =

b, and routinely apply this technique to solve Ax = b where

[[13 .6 .35] 1

A= [ 6 4 3] andb=[1}.

[35 3 .25]] 1

That is, put vector b on level 2 of the stack, A on level 1 and press to find

x = A'Tb.
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(a) What is your calculated solution? Is it reasonable?

[[0 9 .7]

(b) LetU= [0 .2 .6] . What does determinant theory tell you about

[0 0 5]]

detU? Put two copies of U on the stack and calculate UUT. What does

determinant theory tell you about det(UUT)? What does this tell you

about your answer to (a)?

(c) Go back and read again the italicized statements in Section 2.4.

2.5 MATRIX BUILDER ROUTINES.

In beginning courses in linear algebra it is especially helpful to manipulate a

number of simple matrices. The matrices should be easy to use, have integer entries

from Z,, = { 0, £1, #2, .., 29 }, and sometimes be of a special type: diagonal,

tridiagonal, triangular or symmetric. Such matrices may be readily generated with

the calculator and they can be used in a variety of discovery activities, as well as to

help formulate, disprove or verify conjectures.

We have included several calculator programs for this purpose.

RAN.Z - builds a random matrix over Z,,

DIAG - builds a random diagonal matrix over Z,,

U.TRI - builds a random upper-triangular matrix over Z,,

L.TRI - builds a random unit lower-triangular matrix over Z,,

TRIDIA - builds a random tridiagonal matrix over Z,,

SYMM - builds a random symmetric matrix over Z,,.
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Each of these programs calls upon the calculator's random number generator RAND to

construct a random matrix of the desired type over Z,,, with a random assignment of

* signs to the entries. The calculator command RAND (found on the MTH PROB menu

of the 485 and the REAL menu of the 28S) generates uniformly distributed pseudo-

random numbers x, where each x lies in the range O<x<1. Each execution of RAND

returns a value calculated from a seed based upon the previous RAND value, and the

seed can be changed by using the command RDZ (adjacent to RAND in the proper

menu). RDZ takes a real number z as a seed for the RAND command. If z is 0, the

seed is based upon the system clock. After a complete memory reset, a built-in seed is

used.

For classwork,it is often convenient to begin a particular discussion, example or

exercise by having everyone in the class use the same non-0 seed. In this event,

subsequent synchronous use of the RAND command by the class members will result in

a common sequence of random numbers. Such will occur, for example, with a common

non-0 seed and then synchronous use of any of the above six programs. Thus, with

only a few simple keystrokes, each member of the class can generate the same

random matrix over Z;;,. We have found this to be an effective classroom procedure

for class activities and for testing. Here are the six programs with illustrations of

their use. They should all be stored in the BILDR subdirectory.
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RAN.Z (Random Matrix Generator)

Inputs: level 2: an integer M

level 1: an integer N

Effect: returns a random M by N matrix over Z,, with a

random assignment of + to the entries.

« > MN«1MN* FOR | RAND 10 * FLOOR RAND 10 *

FLOOR -» X « X5 < -1 1 IFTE » EVAL # NEXT M N 2 -LIST

—)ARRY » »  
 

EXAMPLE. Press 6 to use the seed which begins this example, then press 4,

5| RAN.Z to generate

[[2 4 3 0 -3]
[6 5 0 -8 8]
[2 2 -6 7 0]
[7 4 2 0 -5]]

 

DIAG (Diagonal Matrix Generator)

Input. level 1: an integer N

Effect: returns a random N by N diagonal matrix over Z,,

with a random assignment of + to the entries.

« > N«1 NFORI 1 NFORJIF I J - ABS 1 > THEN 0 ELSE

RAND 10 * FLOOR RAND 10 * FLOOR - X « X 5 < -1 1 IFTE »

EVAL * END NEXT {N N} -ARRY » »  
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EXAMPLE. Press 5 to use the seed which begins this example, then press 4

to generate

 

U.TRI (Upper Triangular Matrix Generator

Input:  level 1: an integer N

Effect: returns a random N by N upper triangular matrix

over Z,, with a random assignment of * to the

entries.

« > N« 1 NFORI 1 NFORJIFI J > THEN 0 ELSE RAND 10

* FLOOR RAND 10 * FLOOR - X « X 5 < -1 1 IFTE » EVAL #*

END NEXT NEXT {N N} -ARRY » »    
EXAMPLE. Press 4 to use the seed which begins this example, then press 4

to generate

[[-8 8 9 -4]
9 0 1]
0 4 -4]
0

0
[ 0
[ 0 0 2]



44 CHAPTER 2

 

L.TRI (Unit Lower Triangular Matrix Generator)

Input:  level1: an integer N

Effect: returns a random N by N unit lower triangular

matrix over Z,, with a random assignment of + to

the entries.

« > N« 1 NFORI 1 NFOR JIF I J < THEN 0 ELSE RAND 10

* FLOOR RAND 10 *# FLOOR -» X « X 56 < -1 1 IFTE » EVAL *

END NEXT NEXT {N N} ->ARRY DUP IDN + » »   
EXAMPLE. Press 3 to use the seed which begins this example, then press 4

to generate

0]
0]
0]

7 1]]

1 n

N
N

=
O

-
O
O

 

TRIDIA (Tridiagonal Matrix Generator)

Input:  an integer N

Effect: returns a random N by N tridiagonal matrix over

Z,, with a random assignment of + to the entries

« > N«1 NFORI1TNFORJIFI J-ABS 1 > THEN 0 ELSE

RAND 10 * FLOOR RAND 10 * FLOOR-» X « X 56 < -1 1 IFTE »

EVAL ¥ END NEXT NEXT { N N} -ARRY » »   
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EXAMPLE. Press 3 to use the seed which begins this example, then press 5

to generate

 

[[1 5 0 0 0]

[2 1 2 0 0]

[0 -7 4 1 0] .

[0 O -7 9 1]

[0 O 0 3 5]]

SYMM (Symmetric Matrix Generator)

Input:  level 1: an integer N

Effect: returns a random N by N symmetric matrix over Z,,

with a random assignment of + to the entries.

Requiredprogram: DIAG

« DUP » N« 1 NFORI 1 NFOR JIFI J > THEN 0 ELSE

RAND 10 * FLOOR RAND 10 * FLOOR -» X « X 5 < -1 1 IFTE »

EVAL * END NEXT NEXT {N N} -ARRY DUP TRN » 3 ROLL

DIAG + + »   
EXAMPLE. Press 1 to use the seed which begins this example, then press 5

to generate

9 -8 5]
8 -1 0]
1 5 3] .

8 -1 5 -2 3]
3 -3 5]]
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EXERCISES 2.5.

1. Generate and store a random 4x3 matrix A and a random 3x5 matrix B, both over

Zyp

(a) Separate A into its 4x1 column matrices and store them in their natural

order as A;, A, and A,.

(b) Separate B into its 1x5 row matrices and store them in their natural order

as B;, B, and B,.

(c) Calculate the matrix A;B; + A,B, + A;B; and compare with the matrix

product AB.

(d) Repeat parts (a) - (c) using the columns and rows of a random 3x4 matrix A

and a random 4x5 matrix B over Z,,,.

(e) Summarize your findings and formulate a conjecture based upon them, being

sure to write in complete English sentences. Be prepared to hand-in your

write-up and to discuss it in class. (Note: each of the products A;B,is

called an outer product.)

(a) For n =3, 4, 5: generate two random nxn upper triangular matrices over Z,,

and calculate their product. What do you observe? Would you expect

similar results for lower triangular matrices? Why?

(b) For n =3, 4,5: generate two random nxn unit lower triangular matrices over

Z,, and calculate their product. What do you observe? Would you expect

similar results for unit upper triangular matrices? Why?

(c) Is the product of two tridiagonal matrices also tridiagonal?
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3. (a) Forn=3,4,5: generate a random nxn unit lower triangular matrix L and

find L! with. Clean up any round-off error with 6 CLEAN |.

What do you observe?

(b) Repeat (a) using arbitrary random upper triangular matrices.

(c) Repeat (a) using random tridiagional matrices.

(d) Write-up your findings and formulate several conjectures based upon them,

being sure to write in complete English sentences. Be prepared to hand-in

your write-up and to discuss it in class.

ORGANIZING YOUR PROGRAMS. In working through this chapter you have

encountered a variety of matrix editing programs. As you proceed through subsequent

chapters, you will continue to meet programs which are pertinent to the topic of the

chapter. To make efficient use of the calculator, programs should be grouped by topic

and stored in a way that makes them easy to access. In particular, since the

programs in sections 2.2 - 2.4 of this chapter are largely matrix editing routines, we

recommend that you store them in a subdirectory called ED.IT. The matrix builder

routines from the current section should be stored in a subdirectory called BILDR.

Appendix 2, Program Organization, outlines the appropriate organizational scheme.

Before proceeding to Chapter 3, you should turn to Appendix 2 and structure your

calculator accordingly.
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SYSTEMS OF LINEAR EQUATIONS

Of the many topics studied in elementary linear algebra, none is more

fundamental than systems of linear equations. Such systems arise in practically

every field of mathematical application and their importance in beginning courses

cannot be overemphasized. For brevity, we shall refer to systems of linear equations

as linear systems and denote their matrix formulation as Ax = b.

The most popular methods for dealing with linear systems in introductory linear

algebra courses are the elimination methods, consisting of several variants of

Gaussian elimination with back substitution. Many beginning courses blur the

distinction between these variants in the interest of expediency. But with an eye

toward subsequent study in linear analysis or numerical methods and the use of

professional elimination codes, it is important that students carefully distinguish

between the traditional Gaussian elimination algorithm, the back substitution

process, partial pivoting and Gauss-Jordan reduction. Likewise, it is important to

understand Gaussian elimination for square matrices as a factoring process which

factors a matrix A into triangular factors, A = LU.

3.1 GAUSSIAN ELIMINATION

In its traditional from, the Gaussian elimination algorithm for solving a square

linear system Ax = b adds suitable multiples of one equation to the others with the

goal of obtaining an equivalent upper triangular system Ux = b', where the

coefficient matrix U has 0's below the diagonal. It may be necessary to interchange

equations at various times for the elimination process to continue. Back substitution

then solves Ux = b' systematically by solving the last equation for its single
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unknown, then putting this value into the next-to-last equation and solving for the

next-to-last unknown, and so on until all values for the unknowns have been

determined. All this is usually carried out without reference to the unknowns by

working with the augmented matrices [ Alb]and [ U/b']. Computationally, the only

source of error is round-off, induced by the computational device itself. It is

especially important that students view the elimination as an orderly, arithmetic

process which proceeds in a top-to-bottom, left-to-right fashion.

Once a basic understanding of Gaussian elimination has been established and

several examples have been worked by hand, the calculator can be used to efficiently

perform the row operations which transform [ Alb ] into [ Ulb' ]. Program ELIM,

given below, pivots on a specified entry - the pivot - to produce 0's below that entry.

The program is written to handle both real and complex matrices and can be used,

more generally, to convert a matrix to row-echelon form. Notice that the program

will abort and print the error message "PIVOT ENTRY IS 0" in case the intended

pivot is 0.

 

ELIM (Gaussian elimination)

Inputs: level 3: a matrix

level 2: an integer K

level 1: aninteger L

Effect: pivots on the (K,L)-entry of the matrix to produce

0's below the pivot.

« > A KL « IF 'AK, L)) EVAL 0 == THEN "PIVOT ENTRY IS 0"

ELSE A SIZE 1 GET - M « M IDN 'A(1, 1) EVAL TYPE IF THEN

DUP 0 CON R-»C END K M FOR | 'A(l, L) EVAL {I K} SWAP PUT

NEXT INV {KK} 1 PUT A * » 8 RND END » »   
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Note: The command 8 RND at the end of the program rounds the display to 8

decimal places to clean up round-off error. On the 285, the appropriate command is 8

FIX RND STD.

Store this program as ELIM in subdirectory GAUSS (see Appendix 2).

EXAMPLE 1. Apply Gaussian elimination to the linear system

2x + 4y + 8z = 6

X - y+2z=3

4x - y+7z=8

[[2 4 8 6] [[2 4 8 6] [[2 4 8 6]

[1 -1 2 3] 1,1[ELiM] [0 -3 -2 0] 22[ELIM] [0 -3 -2 0]
[4 11 7 8]] —> [0 -9 9 4]] — [0 0 -3 -4]]

Back substitution then gives the solution [ -5/9 -8/9 4/3]T.

To be genuinely useful, program ELIM must be used together with two other

routines, program RO.KL which interchanges rows K and L of a matrix, and

program BACK which performs the back substitution process. Program RO.KL may be

found at the end of section 2.2 of Chapter 2. You should keep a copy of RO.KL in

your GAUSS subdirectory.
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BACK (Back substitution)

Inputs: level 2: an nxn upper triangular matrix U

level 1: an n-vector b

Effect: Solves the linear system Ux=b by back substitution.

Solves for x, and halts until you press

(or II[CONT] on the 28S), then
backsolves for x,, and halts, etc. After x_, x_., ...,

X, are on the stack, a final [CONT] returns

X =[x, X5, ..., X,].

« > Ab « A SIZE1 GET - N « {N} 0 CON 'A(1,1)' EVAL TYPE

IFF THEN DUP R-»C END -» X « ED.IT N 1 AFOR J 'b(J)’ EVAL A J

C.ROW SWAP DROP X DOT - 'A(J,J)’ EVAL / 8 RND GAUSS HALT

ED.IT DUP X {J} ROT PUT 'X' STO -1 STEP GAUSS N DROPN X »

» » »   
 

Store this as program BACK in subdirectory GAUSS.

COMMENTS: BACK calls upon program C.ROW which is assumed stored in the

ED.IT subdirectory. Thus, BACK switches to the ED.IT subdirectory to use C.ROW

and then switches back to the GAUSS subdirectory. BACK halts after each

backsolve step so that beginning students may exercise the desired control over the

entire back substitution process. For the 285, replace 8 RND with 8 FIX RND STD.

EXAMPLE 2. Backsolve 2x; + 6x, -4x; - 13x, = -24

3%y +4x3 + 3x4, = -3

4, - x4, = -14

2x, = 4
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[[2 6 -4 -13]

[0 -3 4 3]

[0 O 4 -1]

[0 O 0O -2]]

BACIK| and four applications of CONT|, the solution is found tobe [-2 -1 -3 2].

To effectively use the calculator to apply Gaussian elimination and back

Put on level 2, and [ -24 -3 -14 -4] on level 1. After using

substitution to a (non-singular) linear system Ax=b, first apply ELIM to the

augmented matrix [Alb] to obtain an equivalent upper triangular system [U |b'], split

off vector b' from U with program SPLIT (below), then apply BACK to the arguments

Uand b'.
 

SPLIT (Split off last column)

Input:  level 1: a matrix

Effect: splits off the last column of the matrix, returns the

column to level 1 and the modified matrix to level 2.

« ED.IT DUP SIZE 2 GET DUP 3 ROLLD C.COL 3 ROLLD SWAP

DELCOL SWAP GAUSS »  
 

Store this as SPLIT in subdirectory GAUSS.

COMMENT. SPLIT calls upon programs C.COL and DELCOL in subdirectory ED.IT,

so it switches to ED.IT and then back to GAUSS.

EXAMPLE 3. To use Gaussian elimination and back substitution to solve the linear

system

S5, - 9%, + 16x;, + 6x, = 48

Sxp + 9% - 16x; - 8x, = 45

10x; - 9%, + 24x5 + 8x, = 72

bx; - % + 8y + 8, = 3
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begin with the augmented matrix [A I b]

[[5 -9 16 6 48]
[-5 9 -16 -8 -45]
[10 9 24 8 72]
[5 -9 8 8 3]]

on level 1. The sequence of commands 1,1; 2, 3;2, 2; 3,

4 RO.KL| returns the equivalent upper triangular system [U|b]

[[5 9 16 6 48]
[0 9 -8 -4 -24]
[0 0 8 6 3]
[0 0 0 2 3]]

Press SPLIT| to split off the last column. Then, BACK| followed by four

applications of CONT| show [3 -2 1.5 -1.5] as the solution.

We shall soon provide a calculator routine for the variant of Gaussian

elimination known as Gauss-Jordan reduction, the effect of which is to do both

elimination and back substitution in one routine.

We have already seen that row interchanges may be needed in order for

Gaussian elimination to proceed to its natural conclusion. In so doing we are simply

avoiding 0 pivots. For the practical real-world solution of large-scale linear systems,

it is just as important to avoid using pivots which are extremely small, at least in

relation to the other elements in the pivot column. This is because division by small

numbers in floating point arithmetic may ultimately induce considerable error. To

avoid this, a common pivoting strategy is to choose as the pivot any element in the

pivot column whose absolute value is maximum. This so-called partial pivoting

strategy is difficult to illustrate on the calculator because of its use of 12 digit

mantissas. Nevertheless, it is advisable that beginning students occasionally adopt
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the partial pivoting strategy by using the RO.KL program to reinforce their

understanding ofthis technique.

EXERCISES 3.1

1. Use partial pivoting to find row echelon matrices row-equivalent to each of the

following matrices:

2 2 56 68
A= 4 3 7 5 ’ B=

N
=

21 -5 -1

02 1 3
34 8 6],
7 -10 -19 13

45 -13 -2
i-1 11 8907 6

C= '6(1)11.8,D=-4328-7
l_i“i“‘_i 5116 2

3101 -1 9

2. Solve the following linear systems using Gaussian elimination with partial

pivoting and back substitution.

(a) 3x + x - 3x3 = 4

S5, + 6x, + 8x; = 8

(b) X - 4x, - 3x + 3 = 2

X; + 2% + 2% + 4, - x5 =0

X3 -12x, + 5x5 = 3

2 + 4xy, + 4xg + x5 = 2

X1+ 2% + X3 + 4x, - Xz =2
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(d) X; + 2 - 3x3 + 4x, = -1

2x; + 6x, + 10x3 - 8x, =

X; + 2%y - 2X3 + 5%, = 6

X + 3, + 5x3 + 4x =

(e) X; + 2%, + 33X + X3 = 2

3x; + 6, - 2x3 + 7x4 + 5x5 = 6

X; + 3%, - X3+ 3x + 2xg = 2

X + X - 2X3 + 2% + 3x3 = 2

X+ 2% - 3 =4

3.2 LU-FACTORIZATIONS

In addition to recognizing Gaussian elimination as an orderly process for

converting a square matrix to upper triangular form, it is important that students also

understand it as a factorization process. In its simplest form - when no row

interchanges are involved - the coefficient matrix A of a linear system Ax = b is

factored into two triangular matrices A = LU, where L is lower triangular and has 1's

on its diagonal (unit lower triangular). This viewpoint is not only interesting from a

purely algebraic standpoint; it also lies at the heart of many modern computer codes

(such as those in the LINPACK library) used to handle linear systems. Quite

properly, most linear algebra courses today include discussions of LU-factorizations,

and this topic is one well-suited to calculator enhancement.
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When the matrix A in a linear system Ax = b can be brought to upper triangular

form U by Gaussian elimination without row interchanges, then A = LU where L is

lower triangular with 1's along its diagonal and the entries below the diagonal are

the negatives of the multipliers used in the elimination process. For example, if 3

times row 1 was added to row 2 to produce a 0 in the (2, 1)-entry of U, then the (2, 1)-

entry of L is -3. When row interchanges are needed to avoid 0 pivots, then A = LU is

no longer valid; it is replaced by a factorization of the form PA = LU where P is a

permutation matrix which accounts for the various row interchanges.

In the simplest case - no row interchanges - it is easy to modify program ELIM so

that it will record the lower triangular entries of L beneath the diagonal entries of

U. But the modifications become more involved in the presence of row interchanges.

Since we are primarily interested in the pedagogical aspects of LU-factorizations, we

have chosen to use a calculator program which the student must control at each step,

just as in the case of hand calculations. Program LU, given below, is but a slight

modification of ELIM. In addition to performing the basic elimination step LU stores

the negatives of the multipliers below the diagonal in a matrix called "ELL", which

initially is the 0 matrix. Program MAKL creates the initial ELL. If row

interchanges are needed, the proper use of RO.KL must be made with both ELL and U

in order to continue. At the end, the calculator shows U, and the lower triangle of L

in matrix ELL. As before, complex matrices are allowed.
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LU (Used to get LU-factorizations)

Inputs: As a stored variable: a variable 'ELL’, obtained

from program MAKL (below) and containing a 0

matrix.

level 3: a square matrix A

level 2: an integer K

level 1: the integer K

Effect: Pivots on the (K, K)-entry to return a row-

equivalent matrix with 0's below the pivot; also puts

the negatives of the multipliers into column K of

ELL below the diagonal. Pressm to view

ELL. Used iteratively to obtain an LU-factorization.

« > AKL « IF 'AK, L) EVAL 0 == THEN "PIVOT ENTRY IS 0"

ELSE A SIZE 1 GET - M « M IDN 'A(1,1)' EVAL TYPE IF THEN

DUP 0 CON R-C END K M FOR | 'A(l, L)' EVAL {I K} SWAP PUT
NEXT INV {KK}1 PUT DUP A * SWAP K 1 + M FOR | DUP {IK}

GET NEG 8 RND 'ELL(l, K) STO NEXT DROP » 8 RND END » »   
Store the program as variable LU in the GAUSS subdirectory.

NOTE: For the 28S version, replace both occurrences of 8 RND with 8 FIX RND

STD.
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MAKL (Make ELL and P)

Input:  level 1: a square matrix A

Effect: Creates a variable ELL containing a 0 matrix, and a

variable P containing an identity matrix, both the

same size as A. Used as the initial start-up to obtain

an LU-factorization.

« DUP 0 CON 'ELL' STO DUP IDN 'P* STO »   
Store the program as variable MAKL in the GAUSS subdirectory next to LU.

1 2 1
EXAMPLE 1. To get an LU-factorization of A =[ % 17(') 1 ] , start with matrix A on

level 1.

Step 1:

Step 2:

Press MAKL| to create starting matrices ELL and P in user memory.

(You may press to verify that you have stored a 3x3 zero matrix

as ELL, and then to see a 3x3 identity matrix. Press DROP| twice

to remove these from the stack.)

[[1 2 1] [
Press 1,1tosee [0 3 -1],then to see

[0 12 -2]]

Now [DROP] this last matrix from the stack.

—
—
—

-
N
o

o
O
O

o
O
O

—
e
t
s



Step 3:

Step 4:

SYSTEMS OF LINEAR EQUATIONS 59

[[1 2 1]
Press 2, 2 to see [0 3 -1] = U. Now press to see

[0 0 2]]

[

-
N
o 0

0
4 o

O
O

e
y

g
r
—
 
g
—

] 0]
] . Execute 3 1DN] [+] to see 0] =L.
1] 111

(Check) Press [SWAP] * to check that LU = A. Now purge ELL and

P (which was not used in this example).

1

2

-1 H
=
2
O

2 3-1 2

EXAMPLE 2. Get an LU-factorization of A = -‘21 .2 _‘21 }

4 8 2 7

Step 1:

Step 2:

Enter A onto level 1, press MAKL| to create appropriate starting

[[2 3 -1 2]

matrices ELL and P, and press 1, 1 to see {g ?_g _?}

[0 2 4 3]]

Since the (2, 2)-entry of this last matrix is 0, we must interchange row 2

with some lower row, say row 3. Thus press 2, 3| RO.KL| to effect the

interchange, then bring ELL to level 1 with , make the same row

interchange and store the result in ELL. Now bring P to level 1 with

, make the same row interchange and store the result in P.
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[[2 8 -1 2]

Step 3: Now execute 2,2 to see {g :)-g 5]

[0 0 10 5]]

Step 4: Interchange rows 3 and 4 with 3, 4| RO.KL| , bring ELL to level 1 with

and make the same interchange, and store in ELL. Bring P to

level 1 with , make the same interchange and store in P.

[[2 3 -1 2] [[000 0]
. _ [0 1 -3 -1] _[1000]

Step 5: See U = [0 010 5] and ELL = [2200]

[0O0O O 5]] [-2 000]]

[[1 O O O]

GetL = {; ; ? g% with4,thendoE,tosee

[2 0 0 1]]

[[2 3 -1 2]

_[2 4-4 1]

LU= [4 8 2 7]
[-4 -6 2 1]]

Step 6: (Check) PA = LU where P = Py,P,,. Since P is a permutation matrix, we

know that P! = PT. Thus P-ILU = PTLU = A. Recall P to level 1 and get

PT, SWAP levels with LU and then use [E to see PTLU = A

Although most elementary texts present discussions of LU-factorizations, it will

not hurt to briefly summarize why this topic is so important.



(i)

(ii)

(iii)

SYSTEMS OF LINEAR EQUATIONS 61

As noted earlier, factorizations such as A = LU and PA = LU into

triangular matrices lie at the heart of modern computer codes for dealing

with large, square, linear systems.

In particular, in the case of A = LU, all the information regarding

Gaussian elimination on A is stored in the factors L and U. Matrix L

maintains a record of the multipliers used in the elimination process and

U records the results of that elimination. Thus, L and U may be viewed as

the storehouses of information about A which may be exploited later in a

variety of situations. With PA = LU, P records the row interchanges.

Once we have A = LU we can solve Ax = b for different b's by first using

forward substitution to solve Ly = b for y, then back substitution to solve

Ux =y for x. (In the case of PA = LU, we solve Ly = Pb in the first step.

Indeed, this is the preferred method for solving large scale linear systems.

Why? Assume that A is nxn and that both Al and the factors L and U

are available. Using A-! to obtain x = A'lb requires n?2 multiplications.

Solving Ly = b for y by forward substitution and then solving Ux =y for x

by back substitution also requires n? multiplications. But the difference is

seen in comparing the number of multiplications required to obtain A-! to

the number of multiplications required to obtain the factors L and U: n3
n . . . . .

verses 3~ . For large n, the savings in using L and U is substantial. For

example, using n = 1,000 (not an unrealistic occurrence in some of today's

applications) and assuming your computer performs 106 multiplications per

second (very fast!), the savings in using LU over A-! is over 11 seconds of

computer time. And if we have multiple b's to use in Ax = b, these savings

rapidly accumulate.
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To apply forward substitution to Ly = Pb on the calculator, use the

following program FWD.
 

FWD (Forward substitution)

Inputs: level 2: an nxn lower triangular matrix L

level 1: an n-vector b

Effect: Solves the linear system Lx = b by forward

substitution. Solves for x, and halts until you press

(or- on the 288S), then

solves for x, and halts, etc. After x,, x,, ..., X, are

on the stack, a final [CONT] returns x = [ x,, X,, ...,

X,].

« > Ab«ASIZE1GET » N « {N} 0 CON 'A(1,1) EVAL TYPE

IF THEN DUP R-C END » Y « ED.IT 1 N FOR J 'b(J) EVAL A J

C.ROW SWAP DROP Y DOT -'A(J,J)’ EVAL / 8 RND GAUSS HALT

ED.IT DUP Y {J} ROT PUT 'Y’ STO NEXT GAUSS N DROPN Y » »
» »    
Store this as program FWD in subdirectory GAUSS.

COMMENTS: FWD calls upon program C.ROW which is assumed stored in the

ED.IT subdirectory. Thus, FWD switches to the ED.IT subdirectory to use C.ROW

and then switches back to the GAUSS subdirectory. FWD halts after each

forward-solve step so that beginning students may exercise the desired control

over the entire forward substitution process. For the 28S, replace 8 RND with

8 FIX RND STD.
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EXAMPLE 3. To solve 2X; + X, - x3 + 2% = 1

4x, - 6X, + 23 + x4 = 2

2, + 4x, - M3 + x4 = 3

4x; + 8%, + 2X3 + 7x, = 4

by using an LU-factorization, we first obtain a PA = LU factorization of the

coefficient matrix

[[2 3 -1 2]
[-4 6 2 1]

T [2 4 -4 1]
[4 8 2 7]]

A

Since A is the matrix of our last example, we shall use the P, L and U obtained

there:

[([1 00 0] [[10 0 0] [[2 3 -1 2]
[0 01 0] [110 0] [0 1 -3 -1]

P=10001]" Y= [2210]" U= (0 0 10 5] "
[0 10 0]] [2 0 0 1]] [0 0 0 5]]

Letb=[1 2 3 4]. To solve Ly = Pb for y by forward substitution, calculate

Pb=[1 3 4 2]. Then, with L on level 2 and Pb on level 1, and four

applications of CONT| show ytobe[1 2 -2 4]. Then with U on level 2 and

[1 2 -2 4]onlevel 1,| BACIK]| and four applications of CONT| show the solution

xof Ax=btobe[-2.1 1 -6 8]

Finally, the factorization PA = LU of a matrix A is not unique. Consider, for

instance, the effect of choosing different pivots in Gaussian elimination. Each choice

of a pivot will give rise to a new LU-factorization. Some examples are included in

the exercises. We recommend that you keep a copy of in GAUSS to use

as necessary.
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Exercises 3.2

1. Find an LU factorization of each of the following matrices; do not interchange

rows. Check your answers; use GLEAN)| as necessary.

111 2 2 8
(a) A=| 2 3 5 ®) B=|1 3 -2

12 3 4 215

32-1-2 2 1+ i 3+4i
@ c=| 1139 (d)D=[1-_i 4 2-3i

3 4 2 1 3-4i 2+3i 5

. Re-do Exercise 1 using partial pivoting throughout.

. For each of the following matrices A:

(i) find a permutation matrix P and matrices L and U so that PA = LU is an

LU factorization; if you need to interchange rows, use the first available

row. Check your answers; use CLEAN| as necessary.

(ii) Use your PA = LU factorization to solve the linear system Ax=b for the

given b. Check your answers, using GLEAN)| as necessary.

36 3 2 32 4 6 -1
(a) A= |1 2 9| b=|1 b) A= 2 495 2| p=| 4

357 -1 3785 -1
2 9 3 -1 2
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0 -2 -
2401 8 1 3 g ; -? 2
3527 6(o) A= , b= d A= |2 -2 4 1 3{[b=]|0
1 310 -6 8 3 13 3 2 2
4 51 -1 6 ©

115 1 2 -1

4. Use LU-factorizations to solve Ax=b. Check your answers.

5 916 6 48
- -1

(a) A= 1% _99 22 -g , b= -;g (see Example 3, Section 3.1)

| 5 9 8 8 3

(2 -1 6 3 10
4 2 12 -7 25

() A= ¢ 2 3 4|b=|
4 0 9 7 25 

5. (a) Find an LU-factorization for each of the following tridiagonal matrices

and note the structure of L and U.

(b) Formulate a conjecture based upon your observations.

230 004200 £ 74000
A= |0 6 2 o B= [0 3 9 5 0

00 5 7 0 0 12 22 6
0 0 0 -10 34

3 2 0 00 0
27 23 4 0 0 0

c- 040 33 2 0 0
0 0 4 9 5 0
0 0 0 5 -21 -2
0 0 0 0-16 4
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3.3 GAUSS-JORDAN REDUCTION

Earlier, in connection with linear systems, we remarked that we would soon

provide a calculator routine for the variant of Gaussian elimination known as Gauss-

Jordan reduction, the effect of which is to do both elimination and back substitution

in one routine. Such a routine will provide a tool which is extremely useful not only

for classwork and homework dealing with linear systems per se, but also with other

concepts associated with these systems (e.g., linear independence). Though Gaussian

elimination with back substitution is more efficient than Gauss-Jordan reduction for

dealing with linear systems in general, and is certainly the preferred method in

professional computerlibraries, most students prefer to use Gauss-Jordan reduction for

the small-scale problems employed to learn the basic concepts.

Gauss-Jordan reduction differs from Gaussian elimination in two ways:

(i)  all the pivots are converted to 1.

(ii) the basic pivot process is used to produce 0's both below and above the

pivot element.

Thus, Gauss-Jordan reduction, when applied to a non-0 matrix A, yields what is

popularly called the reduced row echelon form (RREF) of A:

(a) any O rows lie at the bottom;

(b) the first non-0 entry in any non-0 row (the pivot) is a 1, and lies to the

right of the pivot in any preceding row;

(c) the pivot is the only non-0 entry in its column.

The reduced row echelon form of A is important because it represents the

ultimate we can get from A by applying elementary row operations. As such,it is

uniquely associated with A; that is, each non-0 matrix A has one and only one RREF.
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When Gauss-Jordan reduction is applied to the augmented matrix [ Alb]of a

linear system Ax = b we obtain an equivalent linear system Ux = b' whose augmented

matrix [ Ulb' ] is the RREF and whose solutions are practically obvious.

Specifically, any variable (or unknown) associated with a pivot is called a pivot

variable while the other variables, if any, are called free variables. If the last non-0

row of [ Ulb' ] looks like [0 O ... 0 1], the system has no solution. In any other

case there is at least one solution: a unique solution if there are no free variables,

and infinitely many when free variables are present. The pivot variables are

usually expressed in terms of the free variables whose values may be arbitrarily

(i.e., freely) chosen. Although impractical for large linear systems, Gauss-Jordan

reduction is in popular use as a device to solve small systems. And it is easy to

devise a program for the calculator to carry out the reduction process.

The following program, GJ.PV (Gauss-Jordan Pivot) pivots on a specified entry

to convert the pivot to 1 and produce 0's above and below the pivot. When used in

conjunction with program RO.KL, it is reasonably effective in returning the RREF

matrix. The program accommodates complex matrices and is actually a simpler

version of program ELIM.
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GJ.PV (Gauss-Jordan Pivot)

Inputs: level 3: a matrix

level 2: an integer K

level 1: an integer L

Effect: converts the (K, L)-entry to 1 and then pivots on

that entry to produce 0's above and below the

pivot.

« » AKL « IF 'AK, L)’ EVAL 0 == THEN "PIVOT ENTRY IS 0"

ELSE A SIZE 1 GET - M « M IDN 'A(1, 1)' EVAL TYPE IF THEN

DUP 0 CON R-C END 1 M FOR | 'A(l, L) EVAL {I K} SWAP PUT

NEXT INV A * » 8 RND END » »    
Store this program as variable GJ.PV in your GAUSS subdirectory. On the 28S,

replace 8 RND with 8 FIX RND STD.

EXAMPLE 1. Solve the linear system

X, + X + 2% - 2x,

-3%, + 3 + x =0

6x; - 2%, - 4x3 + X,

1 0-1/3 0 -2/3
by applying GJ.PV to the augmented matrix. The result is 8 }) % (1) 02 .

Thus x5 is a free variable and all solutions are given by x =

[1/3x3-2/3, -3%;, x3, -2]T.
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EXAMPLE 2. Solve the linear system

2X; +3% - X3 + 4x,

6x; - 5x, + 3x5

" NX, +3% + 5x3 + 7x,

I p
—4x, +2x, + 6x3 + 8x, =

by applying GJ.PV to the augmented matrix. You should get

0 -7.37499997

8 '}95.'57,'3000000000122 . Use| CLEAN]| to see x = [ -7.375, -15.75, -9.5, 14.875 ].
1 14.8750001O

O

O
O

=
m
O

o
O
=
O
o
O
0
O

EXERCISES 3.3

1. Solve the following linear systems:

(a) X, + 2X, - 3x3 + 4x, = -1

2, + 6%, + 10x3 - 8, = 2

X; + 2% - 23 + 5%, = 6

X, + 3% + 53 + 4x, =1

(b) 4, + x + 3 - 2% + X = 5

8x; - 2%, - X + Dxq = -13

4x;, - X - 83 + x4 - 2% = -7

8, + 2%y - I3 - 7x4 - 2% = 9
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(c) X; + 2%, + 2%3 + x4, + 3x5 =

3x; + 6% + 6x3 + 7x4 - 2x5 =

X; + 2% + X3 + 3% - X5 =

X+ 2% + X3 + 24 - 2% =

X - 2X; - 2x4 - X =

(d) X; = 2% + X + X + 5x +

2 - 4x, + 3x3 + 4x, + 15x; +

3%, + 6x, + 4dx, + x5 +

4, - 8x, - Xy + 2x5

-5x; + 10x, + 7X4 + X5 +

X = 2% + 2% + 6x, + 15x; +

0

5

2

3

0

1B% - 9%
41x, - 25x,

12x, + 7x,

- %,
20x, + 15x,

S0x, - 15x,

2. Solve the following linear systems; check your answers.

(a) .235x, + 3.273x, + 1.564x, = 3.879

2.144x, + 5.029x, - 9.328x, = 7.790

8.224x; - 3.568x, + 2.806x, = 2.893

(b) (1+4i)x; + (-1+2i)x, + (4+7i)x; = 2

Sixy + (5+3i)xy +(-9+8i)x; = -1+6i

3x, + (-7+9i)x, + (142i)x3 =  8i

3. Solve the following linear systems

(a) 2%, + (1+4i)x, + (3+4i)x; = 2

(1-i)x, + dx, + (2-3i)x5 = -1+i

(3-4i)x; + (2+3i)x, + 5x; = 1-i

(b)  2.6x; - 3.9x, + 52x;+ 1.3x, = 2.6

2.2x, + 3.8x, - 34x3 - 6x, = 4.2

34x, - 56X, + 58x+ 12x, 5.4
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4. (From Gareth Williams, Stetson University, FL) Use the RAN.Z| key to

generate six 3x3 matrices. In each case, use G@J.P V| to get the RREF.

(a) What do you observe about the RREF ?

(b) Why does the answer turn out this way? (Hint: think geometrically)

3.4 OTHER VARIANTS

There are many variants of Gaussian elimination and its associated natural LU-

factorization. When the HP-48S or HP-28S is called upon to calculate detA or

produce A’l, it begins by finding a factorization A = LU or PA = LU which differs

from the natural one in that U has 1's along its diagonal and the pivots appear on

the diagonal of L. The method used to obtain this factorization is known as the

Crout decomposition and is especially well-suited to calculator use because it

efficiently overwrites A with L and the upper triangle of U: L fits on and below the

diagonal of A and the upper triangle of U fits on the corresponding part of A. This

is done in a manner which is very fast and more accurate than in a traditional LU-

factorization. The determinant of A is then calculated as a signed product of the

diagonal entries of L. Since A = P'LU, we have Al = U''L-’P. Because U and L are

triangular, their inverses are easy to calculate and A! is found by rearranging the

columns in the product U-'L-! as directed by P.

Although LU-factorizations are not unique, there is a similar factorization for

certain invertible matrices which is unique. Suppose an invertible matrix A can be

brought to upper triangular form U without row interchanges. Then A = LU where L

is lower triangular with 1's on its diagonal and U is upper triangular with non-0

diagonal entries u,q, Uy, . .. u,,. If D is the diagonal matrix D = diag [ u;; uy, ... up, |

then D! = diag [11111 W, ... unln] and A = LDD'U = LDU,, where the upper triangular
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matrix U; = D''U also has 1's on its diagonal. This is the LDU-factorization of A

and it can be shown to be unique.

The LDU-factorization is especially nice for symmetric matrices A. For then, in

addition to A = LDU,, we also have A = AT = (LDU,)T = U;rDTLT = UITDLT so the

uniqueness tells us that LT = U,. Thus, the LDU-factorization of a symmetric matrix has

the structure A = LDLT. Some examples are in the exercises.

EXERCISES 3.4

1. Find the LDU-factorization of each of the following symmetric matrices.

2 4 4
A=|4 12-20|, B=

4 -20 50

N
o
N
S

o
u
N

O
S
o
™

o
0
U
I
N

1 -1 0 0O
-1 2-1 0 O

2. (a) Find the LDU-factorizationof A=| 0 -1 2 -1 0

0 0 -1 2 -1
0O 0 0 -1 2

(b) Calculate A-! and find its LDU-factorization.

3.5 APPLICATIONS TO VECTOR SPACES

Linear systems are an effective tool to help understand some of the basic

concepts encountered in a beginning study of vector spaces: linear combinations and

spanning sets, dependence and independence, bases and dimension, change of basis.

Though these concepts initially may appear to be somewhat foreign to linear

systems, exactly the opposite is true: in the historical development of linear algebra
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it was from a study of linear systems and their associated matrices that these vector

space concepts emerged.

LINEAR COMBINATIONS AND SPANNING SETS. Recall that by a linear

combination of vectors vy, v,, ..., v, in a vector space V (you may regard V as R™ if

that helps) we mean any vector of the form x,v; + x;v; + ... + X,v, where the x;'s

are scalars (i.e., numbers). The set of all possible linear combinations of v;, v,, ..., v

is a subspace of V, often denoted by Span [ v;, v,, . .., v; ], and the vectors v, are said

to span this subspace. To determine whether a given vector u lies in Span

[ vy, Vo, . -+, V] we must determine whether u = x;v; + X,v, +. .. + x,v, for suitable

scalars x;.

The connection to linear systems comes from the fact that, symbolically, the

matrix equation Ax = b expresses b as a linear combination of the columns A: b =

X;A; + XA, + ... + X,A", where A, is column j of matrix A and x =[x, X, - . ., X,]T.

Thus, the columns of matrix A span CS(A) = Span [A,, A,, ..., A, ], otherwise known

as the column space of A. Vector b is a linear combination of the column's of A iff

Ax = b has a solution; and any solution to Ax = b expresses b as a linear combination

of these columns.

EXAMPLE 1. To investigate whetheru=[3 10 -2 18 ]T is a linear combination of

v;=[1-230]T,v,=[-1423]Tand v;=[2 0 -1 4]7, we set up the linear system

Ax = u where A has v,, v, and v, as its columns. Program ELIM can be used to

determine whether a solution exists, but an even better choice would be to use GJ.PV

because it will also give us all solutions. Applying @J.PV| to [ A lu ], we see that

[[1-1 2 3] [[1 0 0 -1]
[2 4 010] [0 1 0 2]
[3 2 -1 -2] — [0 0 1 3] -
[0 3 4 18]] [0 0 0 0]]
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from which we see u = -v, + 2v, + 3v,.

EXAMPLE 2. Whichofu,; =[0 3 -6 31T, u,=[4 7 4 0]Tandu, =[6 4.5 2 27T
are in the span of v;=[4 -1 0 2]Tand v, =[0 3 -2 1]T ? We investigate

Ax=u;(i=1,2,3) withA=[v,v,]. Applying GJ.PV] to the triple augmented

matrix [ Alu,; u, u;] to reduce A to its RREF wefind that

[[4 004 6] [[1 0 0-115]
[-1 3 3 7 -45] [01 02 -1]
[0264 2] > (0010 0]
[2 130 2]] [0000 0]]

Column 3 tells us that u, is not in Span [ v,, v, ] and columns 4 and 5 show that

Uy =-v;+2v, , u3=15v;-v,.

D EPENDENCE AND INDEPENDENCE. When a vector u is a linear

combination of some other vectors { v;}, u depends linearly upon the v;'s and we say

that the entire set of vectors is a "linearly dependent” set. More precisely, a set of

vectors { vy, V,, ..., vy } is called (linearly) dependent if one of these vectors is a

linear combination of the others. To the contrary, { v,, v, ..., v } is called (linearly)

independent if no one of these vectors is a linear combination of the others.

To relate these notions to linear systems, recall that they may be reformulated,

equivalently, as follows:

(a) {vy, vy ..., v }is dependent iff there are scalars x,, X,, . . ., X, not all 0,

such that x,v; + x,v, + ...+ x,v, =0,; thus

(b) {vy, vy... vy }is independent iff whenever x;v; + X,v, + ...+ x,v, =0,

then all x; = 0.

These are the standard notions of dependence and independence found in most

elementary texts, but you should not lose sight of the fact that they are the
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mathematically equivalent reformulations of the more intuitive ideas given earlier.

In terms of linear systems: if matrix A has vectors v,, v,, ..., v, as its columns then

we have

(a) {vy, vy... v} is dependent iff Ax = 0 has a non-0 solution; and

(b) {wvy, vy ... v} is independent iff Ax = 0 has only the 0 solution.

To put this to use, remember some of the conditions under which Ax = 0 has non-0

solutions: Ax = 0 has non-0 solutions iff

(i) A has fewer rows than columns, or

(ii) A is row-equivalent to a row echelon matrix having fewer non-0 rows than

columns; or

(iii) When A is square, A is singular.

(For in each of these cases, Gaussian elimination shows the existence of free

variables ... hence non-0 solutions.)

EXAMPLE 3. Investigate the dependence/independence of vectors v; =[-1 2 -1 3}

v,=[2 -1 4 1]andvy=[-4 5 6 5]in R4 If dependent, write a general

dependency equation.

[[-1 2 -4] [[1 0O 2]

_[2-15] [@d.pV] [0 1-1] i -A= (-1 4 6] > (00 0] , so by (ii) we see that Ax = 0 has

[ 3 1 5]] [0 0 O]]

non-0 solutions and { v;, v,, v5 } is dependent. In fact, all solutions are given by x =

[ -2a, o, a ]T, where o is freely chosen. Choosing a = 1 we get the particular

solution x = [ -2 1 1 ]T which says that -2v, + v, + v3 = 0, an equation which

expresses the general dependency among these vectors.
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It is almost obvious that the non-0 rows of any row echelon matrix are

independent, as are the columns which contain the pivots.

BASES AND DIMENSION. Spanning sets which are independent are especially

desirable because no one of the spanning vectors depends linearly upon the others.

By a basis for a subspace W of a vector space V (again, you may imagine V to be R"®

if it helps) we mean a collection of vectors from W which

(i) isindependent, and

(ii) spans W.

When you choose a basis for W, you have chosen a well-behaved set of vectors

to use in describing, or understanding W. Basis vectors are well-behaved in the sense

that they are independent vectors ... hence no dependency upon one another. They

may be used to describe W because each vector in W is a linear combination of them.

Together, we know that each vector in W can be written as a linear combination of

the basis vectors in only one way. Moreover, for finite-dimensional, non-0 vector

spaces, i.e., those non-0 spaces having finite spanning sets, the number of vectors in

any basis is invariant: all bases for W contain the same total number of vectors. This is

the dimension of W, dim W.

We are interested in three important subspaces associated with an mxn matrix

A:

e the row space RS(A): the subspace of R™ [ or C* ] spanned by the rows of A;

o the column space CS(A): the subspace of R™ [ or €™ ] spanned by the columns of

A; and

e the null space of A, NS(A): the set of all solutions x to Ax = 0.
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You should recall how we get bases for each of these subspaces: convert A to row

echelon form U by row operations; then

¢ the non-0 rows of U form a basis for RS(A);

e the columns in A corresponding to the pivot columns in U form a basis for

CS(A); and

e if NS(A) = 0,, we have no basis. Otherwise, we have free variables and all

solutions to Ax = 0 are obtained by choosing values for the free variables.

Construct special solutions as follows: assign, in turn, the value 1 to each free

variable and the value 0 to the other free variables. These special solutions

form a basis for NS(A). (It sounds more difficult than it is to do!)

Programs ELIM or GJ.PV may be used to get bases for RS(A) and CS(A); but GJ.PV

should be used to get a basis for NS(A).

EXAMPLE 4. Find bases for the row space, column space and null space of the

following matrix:

A
O
W
M
N

O
©
O
W
H
A
E
W

[[1 0O 1 0 1]

Applying GJ.PV| to A to get the RREF, we have A — {g :) :) (1) 'E} = U.

[0 OO 0 0]]

Thus, the first three rows of U are a basis for RS(A) while columns 1, 2, and 4 of A
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form a basis for CS(A). Clearly x, and x5 are free variables, and all solutions to

Ax = 0 look like

37 % 1 1
X3 + 2%; 1 2

x=| X ) =X3 (1) + X5 g
- xs -

x, 0 1

The two vectors on the right-hand side are a basis for NS(A). They were obtained

from the general solution by factoring out x; and x;; but notice that they are the

special solutions described earlier when you set x; = 1 and x; = 0, then x; = 0 and

XB=1.

EXAMPLE 5. The basis for the row space of A obtained in Example 4 consisted of

the non-0 rows of U. Since the rows of A span RS(A), we know they can be cut down

to obtain a basis for RS(A). Which of the original rows form a basis for RS(A)?

Convert AT to RREF and , as above, choose a basis for CS(AT) consisting of

columns of AT. Since CS(AT) = RS(A), transposing the basis vectors will give a basis

for RS(A) which is chosen from among the original rows of A. Try it. You should get

rows 1, 2, and 3 of matrix A.

CHANGE OF BASIS. The ability to change from one basis to another is of

fundamental importance in linear algebra. On a finite-dimensional vector space,

each linear operator may be represented in a concrete fashion by a matrix, and the

matrix itself depends upon the choice of the basis. Changing to a new basis may

well provide us with an easier, or more well-structured, matrix.

Although the particular notation used to discuss change of basis ideas will vary

from textbook to textbook, most follow a style somewhat as follows. Let
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B = {u,;, uy, ..., u, } be an ordered basis for a finite-dimensional vector space W (a

subspace of R", if you wish). Any vector w in W can be written in exactly one way

as a linear combination of the vectors in B:

w= xlul + XZU2+ e + xnun .

The column vector [wlg =[x, x, ... x,]T is called the coordinate matrix of w relative to

the B-basis. In R™ (or C"), finding the coordinate matrix [w]; for a given vector w

and basis B usually entails solving a linear system. But we are primarily interested

in how we move from the "old" ordered basis B to a "new" ordered basis

B' = {v;, vy .., v, }. The theorem describing how to do thisis as follows:

Let B = { u;, u,, ..., u,} and B’ = { v;, v,, ..., v, } be ordered bases for a vector space

W. Write each of the old basis vectors in terms of the new basis B’ and consider the

coordinate matrices [u;lg. , [u,lg. ... , [u,lg.. If P is the nxn matrix whose j** column is

[ujly. , then P is invertible and is the only matrix for which Plwlg = [wlg. , for all vectors w

in W. We call P the change-of-basis matrix from the B-basis to the B' basis. (Note

that P depends upon the order of the basis vectors as well as the vectors themselves.)

EXAMPLE 6.

(a) Find the change of basis matrix P from the "old" basis B to the "new" basis

B' given below.

(b) UsePtowritew=[3 -2 -11 17 ]T in terms of the new basis.

B=([10 -3 -3 10]T,[-3 23 10 -21]T,[-3 10 7 -13]T,[10 -21 -13 30]T}.

B={[21-12],[132-3],[-121-1]%,[2-3-14]T}).
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SOLUTION

(a) To find P we must write each vector in the B-basis in terms of the B'-basis.

Thus we consider a quadruple-augmented matrix and use GJ.PV|:

[[2 1-1 2 :10 -3 -3 10] [[1 000 :2 1-1 2]
[1 3 2-3: -3 23 10 -21] [01 0 O : -3]
[1 211310 7-13] 2[00 10:-121-1]"
[2-3-1 4 :10 -21-13 30]] [0 0 01 :2-3-1 4]]

[[2 1-1 2]
[1 3 2 -3]

Thus P = [1 2 1-1] "

[2 -3 -1 4]]

(b) Forw=[3 -2 -11 17]T, we mustfirst find [w]g:

[[10 83 -3 10 3] [[1 O

[-3 23 10 21 -2] _y [0 1
[-3 10 7 -13 -11] [0 O

[10 21 -13 30 17]] [0 0

and thus P[wlg =[5 4 1 -1]T.

0
0
1 ISO[W]B=['12°3 1]T

0 [
e
S
N

-1
2
-3
1]]

EXERCISES 3.5

1.  Which of the vectorsu; =[4 -3 -1 7]T,u,=[-113 0]Tandu;=[126 1]T

are linear combinations of v;=[1 -3 -3 2]T,v,=[-27 6 5]T, v;=[-3-1 94]T

and vy=[2 1 -6 -3]T ? Write any general dependency relations you find.

2. Investigate the dependence/independence of each of the following sets of

vectors. If dependent, write a general dependency equation.

(@) v;=[1i0]T,v,=[0i 14i]T, v;=[1- 3i OJT
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() v;=[31101T,v,=[63011T,v;=[10-141]T,v,=[7021]T

[[.72 .42
[.60 .24
[29 .27
[.12 .45

(c) The rows of

.58

.90

.82

4 6+8i
2+2i 4+6i

(d) The columns of 6+8i

141 -2+43i

21

37

.04

2+2i
8

4+6i
2

52]
32]
871 -
761]

Find bases for the row space, column space and null space of each of the

following matrices.

12
1-1

(a) A=| 2 1
-1 3

(b) B=

2 0 4 -2 0 2
-1 5§ 6 2 -1 0
3 8 -6 -5 1 2
4 10 9 5 4 -1
3 5 14 -2 -1 4
5-14 9-10 -1 5

Consider the two sets B = { u;, u,, u; } and B' = { v, v,, v} in R4, where

u,;=[10201%,u,=[204 -3]T,u;=[1221]Tand

v;=[214-11,v,=[1224],v,=[0201].

(a) Show that both B and B' are independent sets of vectors and that Span B =

Span B'.

(b) Let W =Span B = Span B'. Show thatw=[1 2 2 -2]isin W.

(c) Find the change-of-basis matrix P from the B-basis to the B' basis for W.

Then use P to express w in terms of the B'-basis.
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ORTHOGONALITY

Geometrically, a basis for R® is coordinate system. You can certainly see this in

the case where n = 2 or 3. To change from one basis to another amounts to changing to

a new coordinate system, and our experience with R2? and R3 suggests that we

naturally prefer rectangular coordinate systems, i.e., where the coordinate vectors are

perpendicular. But what if we change from one such system to another? What do

we know about the matrix which effects this change?

The answer to this question, and others associated with rectangular coordinate

changes, is provided by a study in R™ of the generalized notions of length, distance

and perpendicularity in R3. Ultimately, these notions come to focus on the really

important one, orthogonality, and every beginning course in linear algebra must devote

serious attention to it. Orthogonal subspaces, orthogonal bases and orthogonal

projections all play a key role in

(i) least squares solutions to inconsistent linear systems,

(ii) least squares fits to data, and

(iii) the Gram-Schmidt process for building orthonormal bases.

Though the Gram-Schmidt process is now standard fare for elementary linear algebra

courses, often missing is its interpretation as a factorization process: when applied to

the (independent) columns of a matrix A, we get A = QR where Q and R are well-

behaved matrices (Q has orthonormal columns and R is upper triangular). QR-

factorizations are important because if anything, they have as much applicability

as do the LU-factorizations associated with Guassian elimination.

82
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4.1 BASIC CONCEPTS

The geometry of R3 is readily extended to R™ and C* by means of the standard

inner product. In R™ the standard inner productis the dot product: for column vectors

x=[x; % ..x, JTandy=[y; y; .. y, IT , xoy = xTy = x;y; + y,¥, + ... + Xy,. InC™?,

where the underlying scalars are the complex numbers, the standard inner product of

x and y is their Hermitian product x*y (where x* is the conjugate transpose of x). On

the calculators, the menu key returns the dot product of two vectors (real or

complex). To get the Hermitian product you must apply the menu key CONJ| to

the first vector. On the 485, is on the MTH VECTOR menu and CONJ is on

the MTH PARTS menu. On the 28S, both commands are on the ARRAY menu.

EXAMPLE 1.

(a) Forx=[123]Tandy=[456]T returns xey = 32.

(b) Forx=[-142i 3+4iTandy=[1+i 2i]T returns xey = (-11,7); by
first applying CONJ| to x, returns x*y = (9,3).

For x = [ x; X, ... x, ]T the menu key returns the Euclidean length (norm)

 

lixll, = \/ X112 + [X2 + ... + [x[ of x, which is the usual notion of length in R™ or C®

is found on the MTH VECTR and MTH MATR menus of the 48S and on the

ARRY menu of the 285. When applied to an nxn matrix A = (a;), returns

»
the Frobenius matrix norm ||Allg _ [Z |aij | 2] . Two other vector and matrix norms are

i

provided on the calculators, but we will not use them in this chapter. You will find

a brief summary of norms in Appendix 3, which also includes the calculators'

approach.
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ORTHOGONALITY. From now on, we shall restrict our attention to R®. Recall

that two vectors x, y are called orthogonal if xey = 0. In R2 or R3 this amounts to

saying that x and y are perpendicular. A set B = { v;, v5, ..., v, } of mutually

orthogonal vectors (v;ev; = 0 for i # j) is called an orthogonal set, and any such set of

non-0 vectors is linearly independent. Thus B is a basis for the subspace W = Span

[ vy, V5, ..., Vi 1. An attractive feature of such a basis is the ease with which we can

obtain the coordinates of any vector w in W:

(W(e (w)w
+ ..

vy lI2 v, 112 I vy 112
 1) w=

Even better is the case where each basis vector has length 1, for then (1) becomes

T T Tw= (vlw) v, + (vzw) Vo) + .+ (vkw) Vi

Vectors of length 1 are called normal vectors, and we can "normalize" any vector

v by dividing by its length:

v
vl
 has length 1.

By normalizing any orthogonal basis for W we can obtain a basis of orthogonal,

normal vectors - an orthonormal basis - and it is of fundamental importance that any

non-0 subspace W of R™ has such a basis. The proof of this fact is the content of the

Gram-Schmidt process, which we shall examine later.

Look again at the criterion for the orthogonality of a set { v;, v,, ..., v; } in R™:

viev; =0 fori#j. Since vjev; = v;rvi is the (i,j)-entry of the kxk matrix ATA, where A

is the nxk matrix having columns v,, v,, ..., v, we see that { v, v,, ..., v, } is

orthogonal iff
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i.e., iff ATA is a diagonal matrix. Clearly { v,, v, ..., v, } is orthonormal iff ATA =

I, the kxk identity matrix.

On the calculators, matrices are entered in row order. Thus, to determine

S V1 R

. — VvV, .
whether vectors v,, v,, ..., v, are orthogonal we build A = 2 having the

—_ vk —_

— Vv, —

. — Vv, —
given vectors as rows, get AT and check to see if A*A T = 2

—_— vk —_

|
Vi Vy -+ Vi |is diagonal.

|
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EXAMPLE 2. To determine whether v,=[101 -1]T,v,=[4 6 3 7]Tand v, =

[[1 0 1 -1]

[-2 3 4 2]T are orthogonal, keyin [ 4 -6 3 7] and press |ENTER| twice; then
[2 3 4 2]]

[[3 0 0]

use and B to see that AAT= [0 110 0 ] , so the vectors are orthogonal.

[0 O 33]]

More generally, since the (i, j)-entry in A* B is the dot product (row of A)e(col j

of B), we see that A* B = 0 iff the rows of A are orthogonal to the columns of B.

Finally, we note that the row space, column space and null space of a matrix A

all give rise to orthogonal subspaces. Indeed,

x € NS(A) <=> Ax=0

<=> x is orthogonal to the rows of A

<=> x is orthogonal to RS(A).

Since the sameis true for AT, and the row space of AT is the column space of A, we

have the important result:

x € NS(AT) <=> x is orthogonal to CS(A).

EXERCISES 4.1

1. Let <x,y> denote the standard inner product of vectors x, y in R® or C*. Use the

following pairs of vectors to verify the Cauchy-Schwartz Inequality: |<x,y>| <

lixIl liyll.

(a) x=[1-23-5],y=[69 -7 31inZ,,,

(b) x=[1+i -243i i],y=[34i -i 5+i]in C3,
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(c) Any two random vectors of your choosing in Z140 .

Use the vectors in (a) and (b) of Exercise 1 to verify the triangle inequality:

lix+yll < lIx|l + llyll

The Pythagorean Equality in R™ says: for any orthogonal vectors u and v,

llu+vIP = Jfull? + [Ivi.

u+v

 

u

Verify this equality for the following pairs of orthogonal vectors:

(a) u=[-6437]" and v=[3 -2 4 2]T

(b) u=[2-1-11]" and v=[3 22 -2]T

Verify that the following sets of vectors are an orthogonal set:

(a) u;=[1-12-1]1,u,=[120-117,u3=[2002],u,=[-223 2]

) v;=[1/V6 1/V6 0 2/V61,v,=[-1/¥3 -1/3 0 1/431],
v,=[-1/V2 1/¥2 0 0]

(@ w;=[-15555],w,=[1111],wy=[0-211]

For the matrix A below:

(a) Find a basis for NS(A) and verify that the vectors are orthogonal to

RS(A) by checking that they are orthogonal to a basis for RS(A).

(b) Find a basis for NS(AT) and verify that the vectors are orthogonal to

CS(A) by checking that they are orthogonal to a basis for CS(A).
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1 2 2 -1 2 2
0 01-1 10

A=(1 2 2 0 1 3
2 4 3 -2 4 2
1 2 1 -2 3 2

4.2 PROJECTIONS AND LEAST SQUARES

The orthogonal projection Pyx of a vector x in R™ onto another vector y is a

simple, yet important, idea.

Figure 1.

AsFigure 1 suggests, the projection of vector x onto vector y is a scalar

multiple of y. In fact,

(1) px=Y d
Iyl 2"

(2) x-Pyxis orthogonal to y.

The following program, PROJ, may be used to calculate the projection vector Px

of x onto y.
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PROJ (Projection vector)

Inputs: level 2: a vector x

level 1: a vector y

Effect: Returns the projection vector P,x to level 1

« > XY « XYDOTY *YYDOT/ » »    
Store variable PROJ in your ORTH subdirectory, next to a copy of CLEAN.

EXAMPLE 3. Forx=[5 15 5]Tandy=[3 4 5] find P)x and verify that x-Px is

orthogonal to y.

Put two copies vector x on the stack, followed by two copies of vector y. The

command 4 ROLLD will rearrange the stack to

level 4: y

3:

2: x

1. y

Press to see Px, then E to see x-Pyx, then to see yo(x-Pyx).

More generally, we may consider the orthogonal projection Pyb of a vector b onto

a subspace:
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b-P.b

v bR

2N
P,b

 

 

Figure 2.

We shall later define this projection vector Py,b more precisely, but for now all

we need to know is what our geometric intuition tells us: that vector b-Pyb is

orthogonal to each vector in W.

There is a subtle but important connection between orthogonal projections and

orthogonal subspaces which is frequently exploited when attempting to solve

overdetermined linear systems, systems with more equations than unknowns.

Intuitively, with more equations than unknowns we are asking too much of the

unknowns, and might therefore expect that no solution exists.

More precisely, given an overdetermined system, say Ax = b where A is mxn and

m>n, we have rank A < n < m. Thus dim CS(A) = rank A < m, so CS(A) cannot be all

of R™. Consequently, there will be vectors b in R™ for which Ax = b has no solution.

However, we may be willing to settle for the next best thing: find a vector x* in R™®

which is "as close as possible” to being a solution to Ax = b; that is, a vector x* for

which the distance ||Ax*-b|| from Ax* to b is minimal. Such an x* is called a least

squares solution to Ax = b because minimizing ||Ax*-b|| is equivalent to minimizing

IAx*-b||2 , which is a sum-of-squares.

We thus seek x* so that vector Ax*, which lies in the column space W of A,is

closest to b. Looking back at Figure 2 we see that Ax* must be the projection of vector

b onto the column space W, in which case b-Ax* is orthogonal to each vector in
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CS(A). Remembering that the vectors which are orthogonal to CS(A) are precisely

the vectors in NS(AT), we are practically forced into AT[b-Ax*] = 0, or equivalently

ATAx* = ATb.

The linear system appearing above is referred to as the system of normal

equations; thus, vector x* is a least squares solution to Ax = b iff it is a solution to the

system of normal equations. In general, the normal equations will have more than

one solution. But in the special case that A has maximal rank, i.e., rank A = n, we

know that ATA is invertible, so ATAx* = ATb has a unique solution x*.

EXAMPLE 4. Given the overdetermined system Ax = b:

2x; - X + x =0

2 + 3% - x3 =1

3, - 3% +3x3 =8

3 + X + X3 =6

Put two copies of the augmented matrix [ Alb ] on the stack and then use ELIM| to

verify that the system has no solution, but rank A = 3. Drop the result from level 1,

use SPLIT| to split-off b and then swap with A. Use [ENTER| to put two more

copies of A on the stack. Use to get AT, swap levels with A and calculate

ATA. Now swap with A and calculate AT. Use toputb=[0 1 8 6]on

level 1 and AT on level 2, then calculate ATb = [ 44 -15 29 ]T. Build the augmented

matrix [ ATA| ATb ] with AD.CO| and solve the normal system with |GJ.PV| to

get x* = [ -1.6666667 3.8333334 7.91666686 ]. You may your result check by

calculating x* = ( ATA )1ATb.
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FITTING CURVES TO DATA

We shall now see how least squares solutions arise in curve-fitting problems.

Suppose we have n data points (x;, y;), (X, ¥5), -, (X, y,) where all the x;'s are

distinct. Consider the problem of finding a polynomial P(x) = ¢; + ¢;t + ... + ¢t™ of

degree < m which passes through these data points, i.e. fits the data. We shall

require n 2 m+1. Thus our requirements are P(x,) =y, fori=1, ..., nor

Q@+ X + . + X =Yy

G+ X+ o+ X =Y,

Q@ + X + o + X =Y,

This linear system has n equations and (m+1)-unknowns (the coefficients of P(x)).

In terms of matrices, the system is Ac = y, where

1 x xl2 x" S, Yi

1 2 . x® c Y2
(¥ A= %2 x2 2 ,and ¢ = ;1 andy =|

1 x, x,z‘ . X Cm Yn

Since we require n > m+1, there are at least as many equations as unknowns, so

the system will, in general, be overdetermined and we naturally seek a least squares

solution. However, A has independent columns, for if Ac = 0 had a non-0 solution,

this would mean that there exists a non-0 polynomial P(x) of degree < m having m+1

roots! Since A has independent columns, we know there is a unique least squares

solution, given as the unique solution to the normal equations
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(ATA) = ATy.

Notice what happens in case A is square (n = m+1): A is square with

independent columns, so A is invertible and ¢ = A'ly is the unique polynomial of degree

< n-1 passing through the n data points. In this case we call P(x) the interpolating

polynomial for this data, and the square matrix

is known as a Vandermonde matrix.

The following program, P.FIT, may be used to create the coefficient matrix A for

fitting a polynomial of degree < m to n data points (x;, y;) ,i=1, .., n. Whenn =

m+1, A will be a Vandermonde matrix.

 

P.FIT (Polynomial Fit Matrix)

Input:  level 2: an integer M

level 1: a list {x,, X,, ..., Xy}

Effect: Returns the matrix

2 M
1 x1 x1 x1

2 M
1 x2 x2 x2

2 M
1 xN xN xN

« DUP SIZE » MIst N « 1 N FOR J Ist J GET » x « 1 1 M

FOR I x | A NEXT » NEXT N M 1 + 2 ->LIST -ARRY » »   
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Store variable P.FIT in your ORTH subdirectory, next to PROJ.

EXAMPLE 5. For the data given below:

(a) Find the least squares cubic polynomial which fits the data.

(b) Find the interpolating polynomial for the data.

X |1|2|3|4|5
 

v Lslizlz o
Key in the number 3, then the list {1 2 3 4 5} of the x-coordinates of the data

and press to see

[[11 1 1]
[12 4 8]

A=[13 9 27]
[1 4 16 64]
[1 5 25 125]]

Put two additional copies of A on the stack. Get AT with, swap with A and

get ATA with [Z' Swap with A and get AT. Puty=[.6 1.2 2 2.8 4.1] on the

stack and press El to get ATy = [ 10.7 40.7 170.7 7559 ]. Use 5

to build the augmented matrix ATA| ATy]. Use and

toseec=[-16 .85 -125 .025]. Thus the least squares cubic polynomial fit is P5(x) =

-.16 + .85t - .125t2 + .025¢3.

For part (b), key in the number 4, the list {1 2 3 4 5} of x-coordinates of the data

and press P.FIT| to see
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(1 1 1 1 1]
[1 2 4 8 16]

A=[1 3 9 27 81]
[1 4 16 64 256]
[1 5 25 125 625]]

Since A is known to be invertible, we may obtain the solution ¢ = A-ly by applying

toAandy=[.6 12 2 28 4.1]". Enter y and press SWAP 3 CLEAN| to

show ¢ = [ 1.1 -1.525 1.321 -325 .029 ] to 3 decimal places. Thus the

interpolating polynomial is approximately

P(x) = 1.1 - 1.525t + 1.321t2 - .32583 + .029t4.

Though the above example does not show it, experience has shown that the

coefficient matrix ATA of the normal system, with A given by (%), is often ill-

conditioned, in the sense that very small errors in the entries of ATA may produce

very large errors in the solution. Thus, in most real-world problems we seek other

ways to solve the normal equations. We will return to this point later.

COMMENT: If you wish to plot the data points and then overlay the graph of a

least squares polynomialfit, you may use the follwing program to plot the data.

48S VERSION

 

DPLOT (Data Plot)

Inputs: levels 2 and above: the x- and y-coordinates of N

data points X, ¥,, X5, Yo, «-ss Xn» YN

level 1: the number N of data points

Effects: plots the data points (x;, y;)

« 2 * -LIST - Ist « ERASE DRAX 1 Ist SIZE FORJ Ist DUP J

GET SWAP J 1 + GET R-»C PIXON 2 STEP GRAPH » »   
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Store DPLOT next to P.FIT in the ORTH subdirectory.

28S VERSION:

 

« 2 % LIST - Ist « CLLCD DRAX 1 Ist SIZE FOR J Ist DUP J

GET SWAP J 1 + GET R-»C PIXEL 2 STEP LCD- 'SCR' STO DGTIZ

  » »
 

Since the 28S calculator has no built-in provision for overlaying graphs, you may use

the following program OVLAY.

FOR 28S ONLY:
 

OVLAY (Overlay a plot)

Input:  the function f to be graphed

Effect: draws the graph of f over the plot produced by

DPLOT

« STEQ SCR -»LCD DRAW DGTIZ »   
 

On the 28S, store DPLOT and OVLAY in the ORTH subdirectory next to P.FIT.

EXAMPLE 6. To use DPLOT on the data in EXAMPLE 5, begin by entering the x- and

y-coordinates of the data: 1, .6, 2, 1.2, 3, 2, 4, 2.8, 5, 4.1. Then enter 5 and press

| @PL@TI. If you are using the defalut PPAR, on the 485 you will see only 4 

plotted points, and on the 285 only 2. Thus, you need to adjust the vertical scale in

order to see all 5 points. Press to remove the graph, then recall the data from

the last stack with STACK] on the 48S or with IlI[UNDO] on the 28S.

Change the y-range appropriately (on the 48S, load -2, 4.3 into YRNG| on the

PLOTR menu; on the 28S press 3 on the PLOT menu). Return to your ORTH

subdirectory and again execute 5| DPLOT] to see all 5 points plotted.
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To overlay the plot with the least squares cubic fit polynomial

P,y(x) = -.16 + .85x - .125x2 + .025x3

remove the plot with [ON], then enter ™-.16 + .85% X - .125* XA2 + .025 * XA3' onto
level 1. On the 28S, simply press OVLAY| to overlay the plotted data with the

graph of P,(x). On the 485, go to the PLOTR menu with PLOT], load P,(x)

with DRAW]|, the press DRAW|. When you're finished, purge from

ORTH the variables left there by the plotting: EQ , PPAR (and in the 285, SCR).

EXERCISES 4.2

1. (a) Generate a random 4x3 matrix over Z,, whose columns will be called u, v

and w.

(b) Find P,u and verify that u - Pu is orthogonal to v.

(c) Find P,u and verify that u - Pu is orthogonal to w.

4
2. (a) Generate a random 4x3 matrix A over Z,; and a random vectorbinZ.

Apply Gaussian elimination to the normal equations ATAx = AT to obtain

a least squares solution to Ax = b.

(b) Repeat using a random 5x3 matrix A over Z,, and a random vector b in Z:o .
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3. The following program FEVAL is useful for evaluating functions:
 

FEVAL (Function Evaluation)

Inputs: level 2: 'f(x)', where f(x) is the function to be

evaluated

level 1: a value x,

Effect: Returns f(x,) to level 2 and f(x) to level 1 (awaiting

another x,)

« 'X' STO DUP EVAL SWAP 'X' PURGE »    
(a) Use FEVAL to fill -in the following table of values for f(x) = (x+2)%e-*

(round to 3 decimal places).

X |-2.2|-1|.5|1.5|3

(b) Use DPLOT to plot the 5 data points.

 

 y = (x+2)%e™

(c) Find the least squares cubic polynomial P4(x) fit to this data; overlay your

data plot with the graph of P;(x).

(d) Find the interpolating polynomial P,(x) for this data; overlay your data

plot with the graph of P,(x).

4. Suppose you wanted to fit a fifth degree polynomial to 20 data points ( x,, y, ),

where x; = i. Whatis the coefficient matrix of the system of normal equations?

4.3 ORTHONORMAL BASES

We have already seen some of the advantages in having an orthonormal basis

Vi, Vo, ..., Vi for a subspace W of R™. The basis vectors are mutually orthogonal and
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have length 1, so in this respect they are just like the standard basis vectors e,, e,,

.., € for R¥, where e; is column j of the identity matrix. More importantly,

orthonormal bases are valued for the ease with which they enable us to write any

vector w in W:

= [vT T T.w = (5wl +(e + o+(v

The coefficients in this equation are just dot products, so can be found by a simple

matrix multiplication instead of the more involved process of solving a linear

system:

- v vIiw
1 | 1

- vl v'zrw

.2 w =

T | Ta— v c—

k VkW

Orthonormal bases are also just what we need to determine the projection Pyb of

a vector b onto subspace W. If v, ..., vis an orthonormal basis for W then P,b is

(uniquely !) given by

Pyb = [VITb)v1 + (v;b)v2 + ..+ (v;fb)vk .

This projection was the key to understanding least squares solutions to a linear

system Ax = b.

THE GRAM-SCHMIDT PROCESS

The Gram-Schmidt process is a way to build an orthonormalbasis q;, q,, ..., g

from a given basis x;, x,, ..., X, for W. Here's how it works.
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X
We let q, be the normalized version of x; : q; = il—x—lfi . Then, inductively,

1

having constructed orthonormal vectorsqj,..., g;, we construct g, as follows:

(*)  Gju1 = X4 - (the sum of the projections of x;,; onto q, qy, ..., q;), normalized.

Thus, before normalization, q;,; = x;,; - (the projection of x;,; onto the subspace

spanned by qy, ..., gy

Let's look at several steps:

Step 1: q, = x,;, normalized

Step 2: q;=X,- (x,°q,)q,,normalized
(I
projection of X, onto q,

Step 3: q3=%3-(x;0q,)q, - (x;°q,)q, , normalized
L J
 

projections of X3 onto q, and 9,

etc.

This is the standard Gram-Schmidt process (there are variations). You should recall

that, at each stage, Span [ x,, ..., X; ]=Span[q,,... q; 1, so when we're done, W =

Span [ x;,...,x.] =Span[qy,... qx ] and we have an orthonormal basis for W.

Relative to using the calculator to do the calculations, our position is that it is

not pedagogically sound for beginning students to use a program which "doesit all"

and thus hides the underlying step-by-step process. We prefer instead to prepare and
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execute a simple program to carry out each step of the construction. Begin with the

basis vectors stored as variables X1, X1, ..., XK in user memory.

Step 1: « X1 X1 ABS / [] Q1 (calculates q; and

stores it as Q1)

Step 2: « X2 X2 Q1 PROJ - DUP ABS / [[] @2
(calculates q, and stores it as Q2)

Step 3: « X3 X3 Q1 PROJ - X3 Q2 PROJ - DUP ABS / |ENTER| |EVAL

E] Q3 (calculates g, and stores it as Q3)

. and so on.

EXAMPLE 6. Apply the above construction to the vectors

x;=[210]T

x“=[011]T

x3=[20 2]

Though you may not recognize the entries, the Q1, Q2 and Q3 you constructed are

actually the calculator's approximations to

1
q; ="§ [210]T

\/—

_..1_. [_2 4 5]

L=

q3=% [2 4 4]

Once you have Q1, Q2, Q3 as stored variables, you should check to see how close

they are to being orthonormal by putting Q1, Q2, Q3 on the stack (in that order),



102 CHAPTER4

 

   

— Q1 —

pressing 3 ROW= to create a matrix Q =| —— Q2 —— |, then |ENTER

— Q3 —

to see QQT. Due to the floating-point calculations you won't see I;; but clean-up

with CLEAN| and you should see I,.

You may, of course, calculate Q1, Q2 and Q3 directly on the stack without

entering the algorithm each time as a simple program. But, with the programs, you

may check your work before execution and thus avoid procedural errors. We have

found this to be a useful teaching device.

EXERCISES 4.3

1. (a) Generate a random 4x3 matrix over Z,, whose columns will be called x,, x,

and Xj.

(b) Construct an orthonormal basis { q,;, q, } for W =Span [ x; x, ].

(c) Find the projection vector Pyx, of x onto W.

(d) Verify that x4 - Pyyx; is orthogonal to W by checking that it is orthogonal

to both x; and x, .

2. Repeat exercise 1 with a random 5x4 matrix over Z,; ; let W = Span [ x; x, x,].

4.4 ORTHOGONAL MATRICES AND QR-FACTORIZATIONS

We now return to a question raised at the outset of the chapter. What do we

know about the change of basis matrix, call it Q, from one orthonormal basis B to

another orthonormal basis B'? Without going into the details here, it is not hard to

see that QTQ = I, or in other words, the columns of Q are orthonormal vectors. Even
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moreis true: since Q is square, QTQ = I guarantees that QQT = I, which says that Q

also has orthonormal rows and Q1 = QT.

In general, we shall call a square matrix Q orthogonal if QTQ = I. Any

orthogonal Q has orthonormal columns, orthonormal rows, and QT = Q1. Two other

properties of such matrices are worth noting;:

(i) Q preserves lengths, [[Qx|| = [Ix]| , all x

(ii) detQ =#1.

If we are called upon to solve a linear system Qx = b with Q orthogonal,it is

easy: x =Q'b = QT™b. When Q is not square, but nevertheless has orthonormal

columns, we still have QTQ = I which can be used to solve an inconsistent system Qx

= b by solving the normal equations QTQx = QTb. Here, x = QTb just as in the square

orthogonal case.

Not only do orthogonal matrices occur when we change from one orthonormal

basis to another (as for instance, when we rotate R3), they lie at the very heart of

the Gram-Schmidt process. In fact, just as Guassian elimination on a matrix A

amounts to an LU-factorization A = LU, the Gram-Schmidt process applied to a

matrix A having independent columns amounts to a QR-factorization A = QR where

Q has orthonormal columns and R is invertible and upper (or right) triangular.

To see this, look back at the Gram-Schmidt process, and in each step solve for

the x-vector:
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Step 1: x, is a scalar multiple of q,, say x; = r;q,

Step 2: x, is a linear combination of q, and q,, say x, = r,q; + I'»q,

Step 3: xjis a linear combination of q,, q, and q,, say X3 = r13q; + I'3q, + I'33q3

Step j: X is a linear combination of qy, qy, ..., Gj, say X; = Iyjq; + I, + ... + ;e

Let A have x,;, X,, ..., X, as its columns, left-to-right, and let Q have q,, q,, ..., q,

as its columns, also left-to-right. Let R be the right triangular matrix

In terms of the matrices A, Q and R the above steps show that

col1of A = Q(col 1 of R)

col2of A = Q(col 2 of R)

col3of A = Q(col 3 of R)

coljof A = Q(col jof R)

A=QR.

Moreover, since q;, q,,--» q, is orthonormal, we know that the it* coefficient in

X; = Iy + Tpy + oo + T
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is r; = q;*x; . Also, r;# 0 because ry; = ||xl, rp, # 0 because ry;, =[x, - (x,°q,)q;l, etc.,

and so R is invertible.

Thus, when the Gram-Schmidt process is applied to the columns of an mxn

matrix A (whose columns are assumed independent) we get a factorization A = QR,

where Q is the same size as A and has orthonormal columns, and R is the nxn

(square), invertible, right triangular matrix whose non-0 entries are given by r; =

qex;

TO OBTAIN A = QR ON THE CALCULATOR

(1)

(2)

(3)

(4)

Start with A and its columns X1, X2, ..., XN in user memory.

Construct Q1, Q2, ..., Qy from X1, X2, ..., XN by the Gram-Schmidt process.

Construct matrix Q:

Q1 Q2 .. N N |rRow=| [TRN| [+] Q

Construct matrix R:

 

   

Build R by putting its entries onto the stack in row order, then use

l < ARRY|. Remember that in the upper triangle, r;; = g;*x; for i <j, so use

. Enter 0's for the lower triangle. Store with |Z| R .

You may verify that A = QR as follows:

Press E to put A on level 2 and Q* R on level 1, then

use as necessary to clean-up Q* R. Now press I SAM E]. (| SA[M]EI

is located on the first page of the PRG TEST menu on the 48S and on the second

page of the PROGRAM TEST menu on the 285; a 1 indicates A = QR, and a 0

indicates A # QR. If you forget to clean-up QR, you probably won't get A = QR.)

 

 

EXAMPLE 7.
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(1) Continuing with the vectors from Example 6:

(2) Construct A as

> i

p
—
p
—
p
—

O
=
N

—
_
-
O

M
O

]

(3)  After constructing Q you should see

[[.894427191  -.298142397 333333333334 ]

Q= [ .4472135955 .596284794 -.666666666665 ]

[ 0 .7453559925 .666666666665 ] ]

(4) After constructing R you should see

[ [ 2.2360679775 4472135955 1.788854382 |

R= [ 0 1.3416407865 894427191 ]

[ 0 0 2 11

Verify that A = QR:

[*] I @LEAN' 8 | SA[M]E' returns 1. Now purge R,

Q, A, Q3, Q2, Q1, X3, X2, X1 from user memory.

 

The factorization A = QR of a matrix A with independent columns can be used to

find the least squares solution to Ax = b. The unique least squares solution is given by

the unique solution to the normal equations ATAx = ATb; but the coefficient matrix

ATA is often ill-conditioned, especially if it is a large Vandermonde matrix arising

from a polynomial fit, so we do not want to calculate (ATA)-l. From A = QR we

have ATA = (QR)TQR = RTQTQR = RTR, so the normal equations read

RTRx = RTQTb.
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Since R is invertible, so is RT and we may simplify the normal equations to

Rx = QTb.

Since R is upper-triangular, back substitution may now be used to find x, the

unique least squares solution to Ax = b.

EXAMPLE 8. Apply the QR-factorization to obtain the least squares solution to the

inconsistent linear system

2x; + w3 | p
—

1

Here, A = -2] and has a QR-factorization where
-4p

—
p
—
p
—

W
=
N

]

[ [ .534522483825 .829227982898 ]

Q= [.267261241913 -.349148624378 ] and

[ .801783725738 -.436435780472 ] ]

g o [ [3:74165738678  -3.20713490295|
T 0 3.27326835354 ] ]

To solve Rx = QTb, put R on the stack and build QTb = [ 2.93987366104

-1.09108945118 ]. Then apply BACK| to return x = [.5 -3 1T as the unique least

squares solution.

You should be aware that the Gram-Schmidt process, as we have presented it, is

numerically unstable in floating point arithmetic. That is, round-off errors may

conspire to produce vectors which are not, numerically, orthogonal. There is,
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however, a variation of the Gram-Schmidt process which is more stable; but we

have avoided it because it is not so obvious to a beginning student . And although

the Gram-Schmidt process does produce a QR-factorization, in practice other methods

are used: Householder reflections or Givens rotations. These are orthogonal matrices

which can be used very effectively to obtain QR-factorizations. A Householder matrix

is simply any matrix of the form

H=1-2wwT

where w is a column vector with |wll, = 1. The Gram-Schmidt algorithm generates a

matrix Q of the same size as A and having independent columns, but Householder

matrices produce a factorization A = QR where Q is square and orthogonal. Among

the columns of Q will be an orthonormal basis for the column space of A. QR-

factorizations are important in many modern computer codes for solving linear

systems and for calculating eigenvalues of matrices.

EXERCISES 4.4

: -
1. (a) Generate a random 4x3 matrix A over Z,; and a random vectorbin Z.

(b) Obtain a QR-factorization for A. Check your results.

(c) Use your QR-factorization to get a least squares solution to Ax = b.

2. Repeat Exercise 1 for a random 5x3 matrix A over Z,, and a random vector b in

4

10°
Z

3. (a) Normalizev=[1 -2 1 -3 1]" to get a unit vector w.

(b) Use w to build a Householder matrix H =1 - 2wwT.

(c) We have previously noted that H is orthogonal. Look at H. What else is

obvious?
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(d) In view of your conclusion in (c), without calculating, what will H-1 be?

(e) Verify your result in (d) with a calculation.

. . . 4

Repeat exercise 3 with a random vector v in Z,-

Refer to the vectors u,, u,, u,, u, in Exercise 4(a) of Section 4.1, where you were

asked to show that they are orthogonal.

(a) Normalize these vectors to obtain an orthonormal basis B'= { v,, v,, v5, v, }

for R4.

(b) Find the change-of-basis matrix P from the standard basis B =

{ €, €5 €3, €, } to the B' basis.

(c) Verify that P is orthogonal.

Let W be the subspace of R* spanned by the orthogonal vectors w;, w,, wj in

Exercise 4 (c) of section 4.1.

(a) Normalize w,, w,, w; to obtain an orthonormal basis w: , w; , w; for W.

(b) Show that x;=[1 00 0],x,=[0100],x=[0011]isan

orthogonal basis for W; normalize to an orthonormal basis xi , x; , x; .

(c) Find the change-of-basis matrix P from the xi1 - basis to the w: -basis and

verify that P is orthogonal.
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EIGENVALUES AND EIGENVECTORS

We come now to the last of the several major themes which characterize

beginning courses in linear algebra: eigenvalues and eigenvectors. Eigenvalue-

eigenvector considerations are of paramount importance in many real applications of

linear algebra, especially those involving systems of linear differential equations.

Typically, students are called upon to work through a variety of elementary

problems as they begin to meet eigenvalue-eigenvector notions to help reinforce their

understanding of the concepts. But it has been the author's observations, more often

than not, that the hand calculations which are required soon overwhelm all but the

most able of students, and many never get to move much beyond the basics. Bogged

down in calculations, they do not get a real chance to seriously consider what is often

a major objective of the course: the orthogonal diagonalization of a real symmetric

matrix.

The HP-48S and HP-28S calculators can help by substantially removing the

computational burden associated with hand calculation of characteristic

polynomials, eigenvalues and associated eigenvectors, and the construction of an

orthogonal diagonalizing matrix Q. Actually, this chapter is quite short because we

have already seen how to use the calculator to solve linear systems (useful for

finding eigenvectors) and to construct orthonormal bases (useful in building an

orthogonal diagonalizing matrix Q). What remains is to see how we might

reasonably use them to calculate eigenvalues.

110
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5.1 THE CHARACTERISTIC POLYNOMIAL

Given a square, nxn matrix A, any real or complex number A for which there is a

non-0 vector x such that Ax = Ax is called an eigenvalue of A, and the non-0 vector x is

an associated eigenvector. To find such pairs ( A, x ) we consider the equation Ax = Ax,

which is clearly equivalent to (A — AI)x = 0. 1 Thus A is an eigenvalue, and x an

eigenvector, iff x is a non-0 solution to the homogeneous linear system with

coefficient matrix A — Al. A non-0 solution exists iff A — AI is singular, which

happens precisely when det(A — AI) = 0. The left-hand side, det(A - Al), is a

polynomial of degree n in A, often called the characteristic polynomial of matrix A.

Some authors prefer to use det(Al — A) instead, but the difference is minor since these

two polynomials differ only by a factor of (-1)*. What really counts is that the

eigenvalues of A are the roots of either of these polynomials, and for any such root A

the associated eigenvectors are the non-0 solutions to (A - AD)x = 0.

Though the above is rather elegant from a purely algebraic viewpoint, it can be

a computational nightmare in the real world. In the first place, the defining

equation for the characteristic polynomial, det(A - AlI), is computationally

impractical for all but modest sized, or highly-specialized matrices. And secondly,

it is no easy task to determine the roots of a polynomial; certainly, most sophomores

have trouble finding the roots of even well-behaved cubic polynomials.

Given an nxn matrix A, the following calculator program, CHAR, calculates the

coefficients of det(Al — A) = A" + ¢,,A™! + ... + ¢;A + ¢, which is the characteristic

polynomial of A, or (-1)" times the characteristic polynomial of A, depending upon

your point of view. The program implements the SOURIAU-FRAME method, which

uses traces of the first n powers of A. For the details and a proof, see Matrices and

Linear Transformations, by Charles Cullen, Addison-Wesley, 1966, p.193.
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 CHAR (Characteristic polynomial)

Input: level 1: an nxn matrix A

Effect: returnsalist{1 c,,... ¢, Cq} of coefficients of

detAl—A) =A"+cA" + ...+ C,A +C

« DUP SIZE 1 GET (1} » mtx n poly « mtx 1 n FOR j 0 1 n FOR k

OVER {k k} GET + NEXT j NEG / 'poly’ OVER STO+ mix DUP ROT #*
SWAP ROT # + NEXT DROP poly » »  
 

For HP-28S: remove the ' marks from 'poly' and replace STO+ with + 'poly' STO

For convenience, we also include a program to calculate the trace of a matrix.

 TRACE (Trace of a matrix)

Inputs:  level 1: a square matrix

Effect:  returns the trace of the matrix on level 1

« DUP SIZE 1 GET » DN « 0 1 N FOR | 'D(l,l)' EVAL

+ NEXT » »  
 
Store CHAR and TRACE in your EIGV subdirectory.

[[112]

EXAMPLE 1. Enter [2 1 1] . Press CHAR| and see {1 -4 -4 -5). Thus
[2 3 2]]

det(Al - A) = A3 - 472 - 4\ - 5. Retrieve the matrix and press TRACE| to see 4 for

the trace.
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[[4 8 2 5]

0 1 6 -2
EXAMPLE 2. Enter [ ] Press CHAR| to see the coefficients list[9 0 7 1]°

[7 3 8 9]]

{1 -21 144 421 -4623 ). Thus det(Al — A) = A4 - 21A3 + 144A2 - 421- 4623. Retrieve

the matrix and press TRACE| to see 21 for the trace.

EXERCISES 5.1

1. (a)

(b)

(c)

(d)

2. (a)

(b)

(c)

(d)

3. (a)

(b)

(¢)

Generate random 3x3 matrices A and B over Z,;and store them.

Compare trace A, trace B and trace (A+B). What do you observe?

Repeat (a) - (b) using random 4x4 matrices.

Formulate a conjecture on the basis of your observations. Prove your

conjecture.

Generate a random 3x4 matrix A and a random 4x3 matrix B, both over Z,,.

Compare trace (AB) and trace (BA); what do you observe?

Repeat (a) - (b) for random 3x5 and 5x3 matrices over Z,,.

Formulate a conjecture on the basis of your observations. Prove your

conjecture.

Generate a random 3x3 matrix A over Z,,.

Calculate the characteristic polynomials of A and AT. What do you

observe?

Repeat (a) - (b) for random 4x4 and 5x5 matrices over Z,,.
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(d) Formulate a conjecture based upon your observations.

(e) Prove your conjecture.

4. Let A(1) denote the nxn matrix of all 1's.

(a) Find det[AI-A(1)l forn=2,3,4,5.

(b) For arbitrary n what will det[AI - A(1)] be ?

(c) What are the eigenvalues of A(1)?

5. Given the polynomial p(A) = A® + ¢__,A™! + ... + ¢;A + ¢, its companion matrix is

01 0. 0
00 1. 0

c=| ° :
O 0 0.. 1

-C()-Cl-(‘.z...-(ln_1

(a) For each of the following polynomials find the characteristic polynomial

det[AI - C] of the companion matrix:

(i) pA)=A3+5A2-3L+2

(ii) pA)=A%-6A3+2A2-5\ +7

(iii) p(A) =A5+ 50 +4A3 + 302+ 20 + 1

(b) What is the characteristic polynomial of the companion matrix for

pA) =x"+cAT+ .+ch+cy?



6. (a)

(b)

(c)

(d)

7. (a)

(b)

(c)

(d)

(e)
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Generate two random 3x3 matrices A and B over Z,, and calculate the

characteristic polynomials of AB and BA. What do you observe?

Repeat (a) for random 4x4 and 5x5 matrices over Z,,,.

Repeat (a) - (b) for random 3x3, 4x4 and 5x5 complex matrices over Z,,.

Formulate a conjecture based upon your observations. Discuss your conjecture

and its implications with your instructor.

Generate a random 3x3 matrix A over Z;, and put two copies of A on the

stack.

Find the characteristic polynomial p(x) of A and evaluate p(A).

Repeat (a) - (b) using random 4x4 and 5x5 matrices over Z,,.

Repeat (a) - (c) using random 3x3, 4x4 and 5x5 complex matrices over Z,,.

Formulate a conjecture based upon your observations. Discuss your conjecture

with your instructor.

5.2 EIGENVALUE CALCULATIONS

Eigenvalue and eigenvector concepts are best learned in the context of examples,

and although low order matrices having integer entries are not always typical of the

matrices encountered in scientific and engineering applications, they serve us well in

the learning process. But even with such matrices, finding the eigenvalues by hand

as the roots of the characteristic polynomial is a difficult ... if not impossible ..

task, unless the matrices are highly contrived. To avoid such contrivance, we may

use polynomial root-finding programs on the calculator, and Hewlett-Packard has

provided us with two such programs.
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The first, due to William C. Wickes of Hewlett-Packard, is program PROOT.

PROOT implements a closed-form technique for finding all roots, real or complex, of a

polynomial of degree <4 having real or complex coefficients. You will find PROOT

in Appendix 4 of this book. Although there is no closed-form formula for the roots of

a general polynomial of degree 5, the calculator's solver can be used to find a real

root X, a polynomial divide routine can be used to factor out x-x;, and PROOT can

then obtain the other four roots. Because of a result due to Perron, this process may

be extended to positive matrices of higher order, though it can become unwieldy for

n>6. We recommend that HP-28S users store this program in the EIGV subdirectory,

together with the required subroutines QUD, CUBIC and QUAR in Appendix 4.

For those who have the HP-48S, we have obtained permission from Hewlett-

Packard to use a more powerful and robust polynomial root-finder program, also

named PROOT, written in machine language and not yet available in the public

domain. This PROOT uses advanced numerical methods to produce all roots of an

arbitrary polynomial. Because the code is protected, you can only obtain this program

by calculator-to-calculator infrared transmission, or by computer-to-calculator serial

transmission from a diskette. The diskette is available from the publisher, Harcourt

Brace Jovanovich, to instructors who intend to adopt this book for classroom use.

Appendix 4 also contains three other programs that are especially helpful for

working with the characteristic polynomial of a matrix:

e PSERS (Polynomial Series)

e PVAL (Polynomial Value)

e PDIV (Polynomial Divide)

PSERS and PVAL can be used to get algebraic expressions for a polynomial having

specified real or complex number coefficients, and to evaluate such polynomials at a
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particular real or complex number. PDIV is used to divide one polynomial by

another. You should store them in your POLY subdirectory. Be sure to put a copy of

CLEAN into this subdirectory also.

For HP-28S users, the PROOT program for polynomials of degree < 4 requires as

input a list { a, a,; .. a; ay } of coefficients of the polynomial ax® + a,_;x™! + ... +

a,x + ap, with n<4, and returns the roots to stack levels 1-4. For HP-48S users with

access to the more powerful PROOT, the input must be in the form of a vector [ a, a,,

. a; ag ] and PROOT returns to level 1 a vector whose components are the roots.

Thus, to more effectively use this more powerful PROOT for eigenvalue calculations,

we recommend using the following auxiliary program A.VALUES.

 

A.VALUES (Eigenvalues)

Input:  level 1: a list of coefficients { a, a,, ... a, a,}

Effect: returns on levels 1 through n all roots, real or

complex, of the polynomial a,x" + a,.,x™' + ... +

a,x + a,.

Requiredprogram: PROOT (machine-language version)

« OBJ-» -ARRY PROOT OBJ- DROP »   
 

Store A.VALUES next to PROOT in your EIGV subdirectory.

[[5 1 4]
EXAMPLE 4. Start with [-6 2 6] as your matrix A. Make another copy with

[0 O -1]]

ENTER|. Press| CHAR| tosee {1 -6 9 16 ). Thus the characteristic polynomial

(up to a % sign) is A3 - 6A2 + 9L + 16. To obtain the eigenvalues press A.VAL| on

the 48S, or PROOT| on the 285. On the 28S you'll notice that one root needs a
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little clean-up. The eigenvalues are -1 and 3.5 * i(1.9364916731). In case you don't

recognize it, 1.9364916731 is your calculator's decimal approximation to 5V15.

To find the eigenvectors associated with A = -1, we must solve (A - (-1)I) x =

[
A+Dx=0. PutA+I= [-

[ o
o

O
,

o
o

H1 4]
3 6] onlevel 1 and use @J.PV| to get

0 0] ]

[[1 0 .25]

[0 1 25] . Thus, all eigenvectors associated with A = -1 are scalar multiples

[0 O 0 ]]

of[-25 -25 1]T.

[[-14 -16 -26 -9]
[ 16 19 28 12]
[ -7 -8 -11 -7]
[ 13 14 24 14]]

another copy with |ENTER|. | @[HlAlF’Rl returns { 1 -8 10 48 -99 }, so the

characteristic polynomial is A% - 8A3 + 10A2 + 48\ - 99. Press I A.VA ILI (or | P[F’B@@Tl

EXAMPLE 5. This time we use as our matrix A. Make

 

 

on the 285) to show (after a little clean-up) four real roots: A =3, 3, -2.464101615 and

4.464101615. In case you don't recognize the last two, they are decimal

approximations to 1 - 2V3and 1 + 2\[5, respectively. Drop all roots except 1 + 23,

 put this root into real form with | @*l?fil, and DROP the imaginary part. Do

(01' ) 4 E‘ toget(A—M), where A = 1+ 243.

Now use and to see a 1-dimensional eigenspace spanned by

[.19403439 .57664426 -.83880688 1 ]T.
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EXAMPLE 6. Enter two copies of the following matrix

[[7 2 4 6]
_[6 -1 -4 -4]
"4 4 5 2]°

[-16 -12 -14 -3]]

A

This time CHAR| returns {1 -8 22 -40 25}, so p(A) = A4— 8A3 + 222 — 40\ + 25.

[ A.VA LJ or | PIF-’R@@Tl tells us that the roots are A = 1, 5 and 1+2i. To find the
 

 

eigenspace associated with A = 1-2i we proceed as before: with (1, -2) on level 1 and

A on level 2, do or, 4 IE to see the complex matrix

[ A-(1-2i)I ]. Gauss-Jordan elimination with GJ.PV| showsthat[-1+i 1 -i 1]

spans the eigenspace.

EXAMPLE 7. Make two copies of this 6x6 matrix A:

[[ 140 40 -22 -6 -14 16]
[265 -74 43 11 27 -34]
[ 422 124 -64 -19 -43 45]
[ 78 28 -8 -4 -8 -4]
[29 8 5 1 5 -4]
[ 3 0 -1 0 0 1]]

CHAR|returns{1 4 -9 64 -100 48 0]}. Thus

p(A) =A6—4A5-9)4 + 6423 — 100A2 + 48\

= A (A5 — 474 - 9A3 + 64A2 — 100A + 48).

USING THE 48S: A.VAL| returns 4, 3, 2, 2, 1 and 0 as the eigenvalues. Since A =2

has multiplicity two, let's find the associated eigenspace. Apply GJ.PV| with

partial pivoting to (A — 2I) and obtain
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[[1 0 0 -5 5 0]
[0 1 0 .75 -1.25 0]
[0 0 1-15 15 0]
[0 00 0 0 1]
[0 00 0 0 0]
[0 00 0 0 0]]

Thus, the eigenspace for A = 2 has dimension two and you may verify that the

vectors[.5 -75 1.5 10 01Tand [-5 1.25 -1.5 0 1 0 ]T are a basis.

USING THE 28S: Use EDIT to remove the 0 from {1 4 -9 64 -100 48 0}, press

ENTER| to make a duplicate copy of the edited list, then use X PSERS| to

generate the polynomial expression

p(x) = x5 - 4x4 - 9x3 + 64x2 - 100x + 48.

Now graph p(x) using the default plotting parameters. Inspection of the display

shows a root near x = 1, so move the cursor to x=1, initialize with , and use the

SOLVER to obtain the zero x=1. Build the list { 1 -1} representing x-1 and use

PDIV| to divide p(x) by x-1. The quotient listis {1 -3 -12 52 48} and PROOT

returns the remaining four eigenvalues -4, 3, 2, 2. Now proceed according to the

instructions given above for using the 48S to find the eigenspace associated with A=2.

Program PROOT ON THE 28S does not apply to polynomials of degree 5 or

higher, but the technique used in Example 7 may be used on any 6x6 matrix. To

graphically locate a real root of the characteristic polynomial with the 285 may

require that you adjust the plotting parameters. You may also use this approach on

positive matrices of higher order (although the work may become a little unwieldly

for sizes beyond 6x6) because of the (advanced) theorem due to Perron:

A real, square matrix having only positive entries has a real eigenvalue A which is a

simple (i.e., not repeated) root of the characteristic polynomial, and all other eigenvalues

have absolute value < [2/.
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In view of this, for a positive 6x6 matrix, we may graphically locate the

dominant real eigenvalue A, divide the characteristic polynomial by (x - A) and then

graphically obtain a real root A, of the quotient polynomial. After dividing the

quotient by (x - A;) we may use PROOT to obtain the remaining eigenvalues. An

example is in the exercises.

It should be clear that by using the calculator to find the eigenvalues as roots of

the characteristic polynomial, you will avoid the tedious computations that will be

required if you resort to traditional paper-and-pencil methods. Moreover, you will be

able to consider a wider variety and size of matrices with the calculator. But,

finding characteristic polynomials of matrices with non-integer entries is not usually

done, because small errors in the coefficients may induce sizeable errors in the

computation of the eigenvalues. Thus our procedure is not generally recommended for

the majority of the matrices which arise in most legitimate applications of science

and engineering. It really comes down to the question of how accurate you want to be

in your calculations; for matrices of order <6, the above procedures may be

satisfactory in most instances.

The question of numerically obtaining the eigenvalues of matrices is much more

complicated than, say, the numerical solution of linear systems, and any discussion of

the appropriate procedures is certainly beyond the scope of this manual. We have,

however, touched upon some of the fundamental ideas in the previous chapter: QR-

factorizations and Householder matrices. You may refer to any good book which

addresses numerical linear algebra for the details. In particular, you may enjoy

reading the excellent expository section 7.3 in Gil Strang's Linear Algebra and its

Applications, 3*¢ Edition, Harcourt, Brace Jovanovich, 1988.

EXERCISES 5.2
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1. Adding a multiple of a row to another row will not change the determinant of a

square matrix A. Will this change the eigenvalues? The characteristic

polynomial? Use your calculator to investigate these questions for the matrix

6 10 -28
A=|-2 3 4 |.

1 2 -7

2. For each of the matrices A in Examples 4-7:

(a) Calculate the trace of A (tr A) and detA; record your results.

(b) Compare tr A and detA with det(AI - A); what do you observe? Express

your observation as a conjecture.

(c) Compare tr A with the sum, YA, of the eigenvalues of A; what do you
1

observe? Express your observation as a conjecture.

(d) Compare ];[li, the product of the eigenvalues of A, with detA; what do you

observe? Express your results as a conjecture.

(e) Discuss your conjectures with your instructor.

3. For each of the following matrices, find:

(a) the characteristic polynomial

(b) all eigenvalues

(c) for the eigenvalue A of maximum absolute value, the associated eigenspace.
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2 8 -1 6 5
4321 1 712 2

A=|3 214 B=|-11-16 0 10 5
2143 7 8 -1 10 4
1432 7 81 60

8 6 8 5 3 54 22 4 -2 -12 -6
9 8 109 1 91 34 9 2 22 8

170 70 -12 -7 -37 -20
C=| 32321 D=|92 47 0 -8 -15 -18

11 11 12 12 1 27 75 0 7 0

8 -9 -8 -8 -1 0 0 0 0 0 1

5.3 SIMILARITY

Having concentrated on eigenvalues in the last section, we now briefly focus on

eigenvectors.

Given that we earlier made a case for having independent sets of vectors - sets in

which no one vector depends linearly on the others - we may reasonably ask

"independence questions” about the eigenvectors of A. In particular, how many

independent eigenvectors may A have? Certainly no more than n because

eigenvectors lie in R™, which has dimension n. And the case where A has n

independent eigenvectors, say x,, Xy, ..., X,, is especially nice. Then P-1AP =D =
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1. where A, is the eigenvalue associated with x; and P is the matrix having

I I
Xy, Xo, -y Xy, @S its columns: P =|: X, 7:2 )Icn:I .

I

In fact, the equation P-'AP = D is equivalent to saying that A has n

independent eigenvectors. This equation is just a rearrangement of AP = PD which,

when read column-by-column, simply says Ax; = A,x,. The x;'s are independent because

they are the columns of the invertible matrix P. We are thus led to focus on the case

where the nxn matrix A has n independent eigenvectors as the desirable one, and

we call any nxn matrix A having fewer than n independent eigenvectors defective.

The equation P-'AP = D for a non-defective A has important ramifications. For

in general, we call matrices A and B similar provided P-1AP = B for some invertible

matrix P. The term "similar" probably derives from the elementary result that

similar matrices have the same characteristic polynomial, hence the same eigenvalues,

determinant and trace. When A is similar to a diagonal matrix D we say that A is a

diagonalizable matrix, and the above discussion may be summarized as follows:

A is diagonalizable iff A has n independent eigenvectors.

Of fundamental help in determining if A is diagonalizable is the result that

eigenvectors associated with distinct eigenvalues are independent.

Consequently, if A has n distinct eigenvalues, then A has n independent

eigenvectors - one associated with each eigenvalue - so A is diagonalizable. Butit is

also possible for A to be diagonalizable even when it has fewer than n distinct

eigenvalues. There are two keys to understanding how this may happen:
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(1) For any eigenvalue A of A, dim NS(A - Al), i.e., the dimension of the

eigenspace associated with A, does not exceed the multiplicity of A as a

root of the characteristic polynomial;

(2) If Ay, Ay, .., Ay are the distinct eigenvalues of A and B,, B,, ..., B, are bases

for the associated eigenspaces then the union of these bases is an

independent set of eigenvectors of A.

Think about the characteristic polynomial of A in factored form:

detAI - A) = (A=A)1A -A)2 .. A=A)K

where 1., ..., A, are the distinct eigenvalues and m,, .., m, are their respective

multiplicities. Since det(AI — A) is a polynomial of degree n, we have n = m; + m, +

.. + m,. According to (1), we have dim NS(A - XiI) < m,, for each j = 1, ..., k. Thus,

in the case where equality holds for every j, the bases in (2) will contain exactly m,

vectors and their union will produce n independent eigenvectors for A. But in the

case where we have dim NS(A - AJ]) < m; for even one j, the union of the bases in (2)

will fail to produce n independent eigenvectors and A will be defective.

A is defective iff for some eigenvalue A there are not enough

independent eigenvectors associated with A.

EXAMPLE 8. Program CHAR| returns {1 6 9 0 0} for matrix

) »

W
o
o
, 0

7
1

-1

p
—
p
—
e

p
e
—

N
O
=
N

w
W
w
o
m

]

Thus the characteristic polynomial is A* + 6A3 + 9A2 = A2(A2 + 6A + 9) = A2(A+ 3)? and

the distinct eignevalues are 0 and -3, each having multiplicity 2. A quick
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application of GJ.PV| to A - 0I and A + 3I shows that NS(A - 0I) and NS(A + 3I)

each have dimension 1, so A is (doubly) defective.

3 -2 0 -4]
-4 5 -4 0 -4]

EXAMPLE 9. Consider A= [4-3 6 0 4] . Program CHAR)| returns
[4-3 4 3 5]

-6 0 -2]]

{1 -12 55 -120 124 48]} for the list of coefficients of the characteristic polynomial.

Our earlier procedures show the eigenvalues as A = 2, 2, 3, 4. Since A = 2 is the only

repeated root, to settle the question whether A is diagonalizable or defective we

must determine dim NS[A - 2I]. Program @J.PV| shows two free variables, so dim

NS[A - 2I] = 2, the multiplicity of 2 as a root of the characteristic polynomial. Thus

A is diagonalizable. In fact, a basis for the eigenspace associated with A = 2 consists

of the vectors[-1 0 1 0 0]and [0 1.3 0 -1 1]. The eigenspaces associated with A

=1,3and4have[1 1 -1 -1 1],[0 0 01 OJand[-1 O O 1 1] as bases,

respectively. Using these basis vectors as the columns of matrix

[[-1 0 1 0 -1]

[013 1 0 0]

P=[1 0 -1 0 0],
[0 -1 -1 1 1]
[0 1 1 0 1]]

22
you can verify that P1AP =D = 1
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EXERCISES 5.3

[[ 7 2 4 6] [[O0 -1 -1-1]

[ -6 -1 -4 -4] _[1 100] .1. (a) Use A= [ 4 4 5 -2] and P = [1 0 10] to find the

[-16 -12 -14 -3]] [1 0 0 1]]

similar matrix B = P-1AP.

(b) Use| CHAR)| to find the characteristic polynomials of A and of B.

Verify that they are the same.

(c) Verify that A and B have the same trace and determinant.

2. Determine whether the following matrices A are diagonalizable or defective.

For each one that is diagonalizable, find an invertible P and a diagonal D for

which P1AP = D.

[[0 1-2 0] [[10 -5 12 0]
[2 3 -4 0] [9 -4 12 0]

@ 1001 0] ® (5 35 0]
[1-10-1]] [-7 2 9 -2]]

[[1 030 -3 3]
[[8-3 8 0 5] [1 2 2 1 -2 3]
[9 4120 9] [0 0 0 -2 2 2]

(© [-53 -50-5] d [2 20 40 0]

[-7 2 -9 0 -3] [2 23 -1 5 2]
[2-2 40 5]] [0 0-1 -1 1 4]]
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5.4 REAL SYMMETRIC MATRICES

We shall conclude with a very brief review of an extremely interesting class of

matrices, the real symmetric matrices. Such matrices play an important role in a

variety of applications.

The first thing to remember about real symmetric matrices is that their

eigenvalues are real numbers, i.e., no complex eigenvalues occur. But more importantly,

eigenvectors associated with distinct eigenvalues are orthogonal. Being orthogonal, of

course, is stronger (and better) than simply being independent. Finally, the really

big result is that no real symmetric matrix is defective; that is, every real symmetric

matrix is diagonalizable. This is because for each eigenvalue A, there are "enough"

eigenvectors. And since we are free to choose the basis vectors for each eigenspace in

any way we wish, why not choose them to be orthonormal? Putting all this

information about the eigenvectors together, we have the truly elegant result:

for any real symmetric matrix A there is an orthogonal

matrix Q such that Q"1AQ = D is diagonal.

Since Q is orthogonal, Q! = QT. The columns of Q are orthonormal eigenvectors

of A which form a basis for R®. They correspond, in order, to the eigenvalues of A

which form the diagonal of D.

The steps to follow in constructing such an orthogonal diagonalizing Q for a real

symmetric nxn matrix A should also be clear:

Step 1: Find the eigenvalues of A.

Step 2: For each eigenspace, construct an orthonormal basis (perhaps by using the

Gram-Schmidt process).

Step 3: The union of the orthonormal bases constructed in step 2 will be an

orthonormal basis for R?; use these basis vectors as the columns of Q.
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[[2 1 0 1]

, : A _ [1 2 0]
EXAMPLE 10. Given the real symmetric matrix A = [0020] " CHAR

[1-1 0 2]]

returns { 1 -8 21 -22 8} as the coefficients of the characteristic polynomial.

A.VAL| (or PROOT| on the 28S) then finds the eigenvalues as A =1, 1, 2, 4.

Applying GJ.PV| to both (A - 2I) and (A —4I) weobtain[0 0 1 O]Jand[1 -1 O

1 ] as bases for the associated eigenspaces, respectively. Normalize [1 -1 0 1] to

get [ .577350269189 -.577350269189 0 .577350269189 ]. Now apply @J.PV| to

(A-Dtogetthebasis {[1 1 0 0] [-1 0 0 1]}. Gram-Schmidt these to get

[ .707106781188 .707106781188 0 0 ] and [ -.408248290463 .408248290466 0

816496580929 ]. Usel ROW= | and TRN| to build

[

 

[0 577350269189 .707106781188 - 408248290463 |
[0 -577350269189 .707106781188  .408248290466 ]

Q= 4 0 0 0 ]
[ 0 577350269189 0 816496580929 ]]

EXERCISES 5.4

Find an orthogonal matrix Q and a diagonal matrix D such that Q1AQ = D.

[([4 1 1 1] [[31 1 0]
[1 41 1] [1 3 1 0]

@ 144 44 ® 1113 0]
[1 1 1 4]] [0 0 0 4]]

[[1-4 14 1]
[[14 10 10 12] (122 2 2]
[10 18 16 10] d 12 33 3

© 110 16 18 10] () {_1 > 3 44}
[12 10 10 14]] (12 34 5]]
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ITERATIVE METHODS

Gaussian elimination can be costly for large linear systems. The number of

multiplications/divisions required to solve Ax=b, where A is nxn, is

n’-n o
3 multiplications/divisions for the elimination phase, 

followed by

n? additional multiplications/divisions for the back-substitution phase

for a total of

n’-n n3 n
3~ +n’=7 +n’-73 multiplications/divisions. 

3
When n is large, the %— term dominates, so that, for example, if n is doubled the

number of multiplications/divisions increases by a factor of 8.

Fortunately, many of the large linear systems which arise in practice have

sparse coefficient matrices A, i.e., all but a small fraction of the entries are 0. And

there are versions of Gaussian elimination for sparse matrices which capitalize upon

the sparseness. Iterative techniques also use sparseness to good advantage and

generate a sequence of increasingly better approximations to a solution. By way of

introduction to iterative techniques, we briefly discuss two simple approaches: the

Jacobi and Gauss-Seidel iterations.

We also consider the elementary iterative process known as the power method

for approximating the dominant eigenvalue and an associated eigenvector of certain

matrices. Though severely limited in its applicability, the power method sets the

stage for a subsequent study of the preferred iterative technique for finding

130
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eigenvalues, the QR-algorithm. However, the QR-algorithm is beyond the scope of

this course.

All calculator programs in this chapter should be stored in your ITERA

subdirectory.

6.1 THE JACOBI AND GAUSS-SEIDEL METHODS

The Jacobi and Gauss-Seidel methods for solving a linear system Ax = b are

based upon splitting the matrix A into two factors A = M - N, and then rewriting

Ax = b as Mx = Nx + b. Starting with an initial estimate x, for x, we generate a

sequence of successive approximations { x, } where

(1) Mx, =Nx,; +b (k>1).

With suitable choices for M and N the sequence { x, } will converge to a solution x.

In particular, M should be invertible in order that x, be uniquely defined:

X, = MI(Nx,; + b) = MIN)x,; + MTb

The matrix M-IN is called the iteration matrix and is the key to convergence.

e The Jacobi iteration takes M to be the diagonal part of A, so N = M - A is the

negative of the off-diagonal part of A.

e The Gauss-Seidel iteration takes M to be the lower triangular part of A, so

N = M - A is the negative of the strictly upper triangular part of A.

Convergence of { x, } to x is usually defined in terms of the vector max norm:

{x )~ x if Umjx -x|_=0.

This is equivalent to requiring that each component of { x, } converge to the

corresponding component of x.
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More advanced work shows that for arbitrary x,, { x, } = x iff ]| < 1 for each

eigenvalue A of the iteration matrix M-IN, or equivalently, iff the spectral radius

p(M-IN) =max { Al } < 1.

To see how the Jacobi and Gauss-Seidel methods differ, write iteration equation

(1) in detail (the components of x, will be displayed as x, = [x,® X,® ... x®]). For

the Jacobi iteration, we have

_ -1 -1 -1
a;%,® = = ap*V - a;xED - - a,%Y + b

_ 1 _ ) _ _ -1ayX,® = -ayx,&D ayyXy*D .. a,x,*? + b,

_ -1 -1 -1
a,x,® = -a,x&D - a- L. - an,n-lxn-l(k ) + b,

Thus, to obtain the components of x, on the left-hand side we clearly need to have all

a; #0. Moreover, it is apparent that with the Jacobi method the components of the

vector x,_; calculated during the (k-1)*t iteration (on the right-hand side) are used to

obtain the components of the x, (on the left-hand side) during the k" iteration.

When equation (1) is written in detail for the Gauss-Seidel iteration and the

diagonal terms are isolated on the left, we see a difference:

_ -1 -1 -1
a;® = — apx®D - apx*D - ... - ax%V + b

_ -1 -1

_ -1
X® = ayx*D - a0 - L. - an,n-lxn-l(k) + b,

That is, when we calculate x,¥ from the first equation we immediately useit in the

second equation to calculate x,%, then we use both x,® and x,®in the third equation

to get x,®, etc. Thus, in Gauss-Seidel, components from the k't iteration are used as

soon as they are available to build other components in that iteration. Because of

this continual updating of components, the Gauss-Seidel process often (but not
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always) converges faster than the Jacobi process. But there are matrices A for which

only one of these two processes will converge. Thus, we need them both.

Earlier, we noted that a necessary and sufficient condition for convergence of

either iterative method is that the spectral radius of the iteration matrix M-IN be

less than 1: p(M-IN) < 1. Since for any square matrix B, p(B) < ||B|| for any matrix

norm, estimates on p(M-IN) are usually expressed in terms of matrix norms; thus a

sufficient condition for convergence is that |[M-IN|| < 1, for any matrix norm. Because

the row-sum norm |j¢||, and the column-sum norm |le]|, are so easy to calculate, they are

popularly used. (See Appendix 3 for a discussion of these matrix norms.)

Another popular criterion sufficient for the convergence of either process is that

the coefficient matrix A be strictly diagonally dominant:

n

layl > =1 Iaijl fori=1,2,..n
j=1

The basis for this criterion is the following result:

THEOREM.

(a) A is strictly diagonally dominant iff the Jacobi iteration matrix has row-

sum norm <1.

(b) If A is strictly diagonally dominant then the Gauss-Seidel iteration matrix

has row-sum norm < 1. (The converse is false; see Exercise 3.)

We shall use the row-sum and column-sum norms in two calculator programs to

test the iteration matrices for convergence. But you should remember that these tests

are only sufficient for convergence ... not necessary. Thus, it is possible for the tests

to fail and still have convergence.
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Here are several calculator programs which may be used to implement the

Jacobi and Gauss-Seidel iterations. They should be stored in your ITERA subdirectory.

JTEST tests the Jacobi iteration matrix to see if its row-sum norm |je|| or

column-sum norm |¢]|,is less than 1.

JACOBI performs the Jacobiiterative process.

D.DOM tests the coefficient matrix for strict diagonal dominance.

STEST tests the Gauss-Seidel iteration matrix to see if its row-sum norm |fe||

or column-sum norm |[|¢}, is less than 1.

SEIDL performs the Gauss-Seideliterative process
 

 

JTEST (Test Jacobi iteration matrix)

Input:  level 1: an nxn matrix A

Effect: tests the Jacobi iteration matrix for Ax=b to see if

its row-sum norm or column-sum norm is less than

1. Returns an appropriate message.

« > A« ASIZE1 GET - N « N IDN DUP 1 N FOR | "A(lLl)

EVAL {1 |} SWAP PUT NEXT A SWAP / — - itmtrx « IF itmtrx RNRM

1 < THEN "RNRM < 1" ELSE IF itmtrx CNRM 1 < THEN "CNRM < 1"

ELSE "RNRM, CNRM > 1" END END » » » »   
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JACOBI (Jacobi iteration)

Inputs: level 3: an nxn matrix A

level 2: an n-vector b

level 1: an accuracy level € in the form .00005

Effect: returns, at timed intervals, the successive terms of

the Jacobiiteration for Ax=b starting with x, = 0;

terminates when the components of two successive

terms agree to within n decimal places, where n is

the number of 0's in the accuracy level which

precede the 5; display is set to (n+1)FIX

« > Abe « ASIZE1 GET » N « N IDN 1 N FOR | "A(lly EVAL

{1 1} SWAP PUT NEXT DUP A — - M K « 0 'ct STO € XPON NEG

FIX {N} 0 CON 'XN' STO DO XN 'XO' STO K XO * b+ M / 'XN'

STO XN CLLCD 3 DISP .5 WAIT 1 'ct' STO+ UNTIL XN XO — RNRM

€ <ct 50 == OR END XN {ct XO XN} PURGE » » » »   
 

EXAMPLE 1. Consider the linear system Ax=b where

[[6 2 -2] 9

A=[2 6 -2] and=[10].

[2 -2 10]] 3

A is strictly diagonally dominant, hence invertible, so Ax=b has a unique solution.

With A on level 1, JTEST returns the message "RNRM<1". To apply Jacobi iteration

to determine the solution x to 3 decimal place accuracy, enter A, b and .0005. Press

JACOB| to see the iterations converge to [ -.2499 1.7501 -.0001 ]T after 15

iterations. @J.PV| applied to the augmented matrix shows x = [ -25 1.75 0 ]T.

Notice that with 3 decimal place accuracy we actually show the 4" decimal digit.
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D.DOM (Diagonal dominance)

Input:  level 1: an nxn matrix A

Effect: tests to see if A is strictly diagonally dominant.

Returns one of the messages "DIAG DOMINANT"

or "NOT DIAG DOMINANT".

« > A« ASIZE1 GET » N« 1 NFOR | A | ED.IT C.ROW SWAP

DROP DUP {1} GET ABS 2 #* SWAP CNRM IF < THEN MAXR

-NUM 'I' STO ITERA "NOT DIAG DOMINANT" END IF I N == THEN

"DIAG DOMINANT" END NEXT ITERA » » »   
 

NOTE: Program D.DOM calls upon program C.ROW which is assumed to be in your

ED.IT subdirectory.

 

STEST (Test Gauss-Seidel iteration matrix)

Input:  level 1: an nxn matrix A

Effect: tests the Gauss-Seidel iteration matrix for Ax=b to

see if its row-sum norm or column-sum norm is less

than 1. Returns an appropriate message.

« > A« ASIZE1 GET » N « NIDN DUP 1 N FOR I 11 FOR J

'‘A(l,J)' EVAL {1 J} SWAP PUT NEXT NEXT A SWAP / - - itmtrx «

IF itmtrx RNRM 1 < THEN "RNRM<1" ELSE IF itmtrx CNRM 1 <

THEN "CNRM<1" ELSE "RNRM, CNRM>1" END END » » » »   
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SEIDL (Gauss-Seideliteration)

Inputs: level 3: an nxn matrix A

level 2: an n vector b

level 1: an accuracy level € in the form .00005.

Effect: returns, at timed intervals, the successive terms of

the Gauss-Seideliteration for Ax=b starting with

X, = 0; terminates when the components of two

successive terms agree to within n decimal places,

where n is the number of 0's in the accuracy level

which precede the 5; display is set to (n+1)FIX

« > Abe « ASIZE1 GET > N« NIDN 1 NFOR I 11 FOR J

'A(J)’ EVAL {1 J } SWAP PUT NEXT NEXT DUP A - > M K « 0

‘et STO € XPON NEG FIX {N} 0 CON 'XN' STO DO XN 'XO' STO

K XO * b+ M/ 'XN' STO XN CLLCD 3 DISP .5 WAIT 1 ‘et STO+

UNTIL XN XO —RNRM € < ct 50 == OR END XN {ct XO XN}

PURGE » » » »   
 

EXAMPLE 2. Use the linear system of EXAMPLE 1. With € = .0005, SEIDL

shows the iterations converging to [ -.2500 1.7500 .0000 ] after only 6 iterations. As

before, with 3 decimal digit accuracy, we display 4 decimal digits.

EXERCISES 6.1

1. Consider the linear system 4x + 2y + z = 11

x + 3y - z = 4

212x + 2y + 5z

whose coefficient matrix is strictly diagonally dominant.
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(a)

(b)

Consider the linear system 2x + 8y + 4z

(a)

(b)

(c)

(d)

(e)

(a)

(b)

Solve the system to 4 decimal place accuracy using Jacobi iteration; count

the iterations.

Solve the system to 4 decimal place accuracy using Gauss-Seidel iteration;

count the iterations.

10

i N10x + 2y - 5z

3x - 2y + 6z

Is the coefficient matrix strictly diagonally dominant?

Apply JTEST|. What is your conclusion?

Apply STEST|. What is your conclusion?

Rearrange the equations to get an equivalent system with a strictly

diagonally dominant coefficient matrix.

Solve the rearranged system by Gauss-Seidel iteration, accurate to 4

decimal places.

[[9 2 -3]

Use matrix A= [-1 4 2] to show that the converse of part (b) of the

[2 -3 5]]

Theorem in Section 6.1 is false.

Test the Jacobi iteration matrix for Ax=b for convergence.
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Consider this tridiagonal system:

2, + % = 5

X, + 2% + X = -2

X, + 2% + x, = -13

 

(a) Apply | @.D@MII, l JTESTI and I STEST]| as tests for convergence.
 

(b) On the basis of your results in (a), apply an iterative method to solve the

system to 4 decimal place accuracy.

Solve the following tridiagonal system to 4 decimal place accuracy with an

iterative process.

4x, - X = 2

X t A - X = 9

- X + 4x - Xy = -8

- [t Ay - x5 =7
- x4, + 4x = 6

The following tridiagonal system is diagonally dominant. Test the Gauss-Seidel

iteration matrix and then solve the system with the Gauss-Seidel iterative

process, accurate to 6 decimal places.

2, - X% = 5

X o+ 3x - X = -11

- X -3 - X = 1

- X+ X - X5 = -3

- X -3 - X = 2

i u- Xg +2%
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7. Consider the tridiagonal system

X1 - X = 4

X + 3 - X = 11

- X -3 - X = -1

- X+ X - X = 3

- X -3 - X = -2
- X3 + X = -3

(a) Apply all our tests for convergence. What can you conclude?

(b) Remember, these tests are only sufficient conditions for convergence. Thus,

ignore the test results and try for an iterative solution anyway - accurate to

4 decimal places.

6.2 THE POWER METHOD

The power method is a simple iterative technique for finding an approximation

to the dominant eigenvalue and an associated eigenvector of a matrix A. By a

dominant eigenvalue we mean an eigenvalue A; of multiplicity m (so A; = A, =..=

A,) satisfying

Al > Ayl 2. 2 A

where A}, A,, ..., Aare all the eigenvalues of A. Since a matrix may fail to have a

dominant eigenvalue, the power method is not a general purpose technique.

However,it is the basis for other iterative methods; in particular, the powerful QR-

algorithm.

The power method is based upon the following assumptions about matrix A:

(a) A is real and diagonalizable;
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(b) A has a dominant eigenvalue A,.

We start with an arbitrary vector y, and form the sequence of unit vectors { y, } as

_ Ay
Y= I Ay, Il fork =1, 2, ... . Here, we are using the usual Euclidean vector norm (or

k-1
Ayo __An _ _Ay
IAy,7 Y2 1Ay, 117 Y3 i Ay,|

assumptions given above and another one which will soon be apparent, the power

  length). Thus y, = , etc. Under the two

method asserts that

(i) the sequence { y, } converges to a unit eigenvector v associated with A, ;

and

(ii) the sequence of numbers { Ay, ¢ y, } converges to the dominant eigenvalue

A

To see why, recall that because A is assumed to be diagonalizable, A has n

independent eigenvectors, say X, X,, ..., X, Where each x; is associated with A;; Ax; =

ijj. Since { x,, ..., X, } is a basis for R",

(1) Yo = @1Xg + @5Xy + ... + &,X,

for some scalars a; (j =1, ..., n). Consider the sequence z;, = yy, 2, = Az,; (k=1,2,..)

without normalization:

z, = Ayy 2, = Az, = Alyy, ..., 7 = Azy;= Ay,

 

Using (1), A¥x; = Akx; and A= ... =4, we have

z,=Aky, = allli X; + oo + an}»l:‘ X,

= (al)»’; Xp + oo + amll; Xm) + (amlkkm+1 Xpyqo ankl; X,)

A A
(2) = kf[(alx1 +otaX)+ ag,; ( ifl)k Xpep + oo + @ (—f‘—)k xn] :

1 1
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Al-=

Ayo Z Ay, kel Az, 2
Now y1 =T Ay, ~ iz’ ¥2 = TAy,1 = a2A

Iz, |l

and in general, y, = -I-Iizk—fi Looking back at (2), we see
k

A A
kl;[(alx1 + oo+ apXy) + A, ( xl)k Xpyp + - + Ay (—l—: k xn]

(3) yk=

 I 7»1; I ”(alx1 + .ot agX,) + A, (lxl)k Xopq ¥ o+ Ay (fi)k xn”

  

2.
Since | M| > | Afor j = m+1,..., n, we have 73- <1 for j=m+l, .., m. Thus from (3),

1

(a;x; + ... +a_x_)
"ask = oo, y, >t 1 al’"’":v,
lla;xq + ... +a,Xl

which is a unit eigenvector associated with A, in case at least one of a,, ..., a,, is #0.

(This is now our third assumption.)

Finally, since y, = v, Ay, @ Av = A,v, so that Ay, ¢ y, = A,v ev = A,(Vev) =

MlIvIZ = A,. This completes the argument.

In summary, under our three assumptions, the power method gives us two

sequences:

e a sequence of vectors { y, } converging to an eigenvector v associated with the

dominant eigenvalue A, ;

e an associated sequence of numbers { Ay,ey, } converging to the dominant

eigenvalue A, .

In practice, we calculate the sequences together, term-by-term; because the

convergence of {y, } to a vector v amounts to the convergence of the components of y,
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to the corresponding components of v, we base our stopping criterion on the sequence

{yy). The sequence of numbers { Ay, ey, Joften converges more rapidly.

To implement the entire process on the calculator requires a program to calculate

both sequences, term-by-term, and to apply the desired stopping criterion. Program

POWER doesjust that.
 

POWER (Power method)

Input:  level 3: a real nxn matrix A, assumed to be

diagonalizable and have a dominant

eigenvalue A

level 2: an n-vector y,, assumed to have a non-0

component in the direction of an

eigenvector associated with A

level 1: an accuracy level € in the form .00005

Effect: returns, at timed intervals, the successive terms of

a sequence of vectors which approach a dominant

eigenvector, and a corresponding sequence of

numbers which approach the dominant eigenvalue;

terminates when two successive terms of the

sequence of vectors agree to within n decimal

places, where n is the number of 0's in the accuracy

level which precede the 5; display is set to (n+1)

FIX.

« > Ay, € « 0'ct STO e XPON NEG FIX y, 'YN' STO DO YN

'YO' STO A YO * DUP ABS / 'YN' STO A YN * YN DOT CLLCD

1 DISP YN 4 DISP .5 WAIT 1 ‘ct' STO+ UNTIL YN YO - RNRM € <

ct 60 == OR END A YN * YN DOT YN {ct YO YN} PURGE » »    
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EXAMPLE 3. Enter and store the matrix

[[ 7 33 -6 -16]

[ 14 -72 -12 -38]

[-19 105 20 53]

[-19 96 15 b52]]

Using the methods of Chapter 5, you can verify that A is diagonalizable with

eigenvalues 3, 3, 2 and -1. Thus A = 3 is dominant eigenvalue of multiplicity two.

Lety,=[1 1 1 1]T and proceed on the assumption that y, has a non-0 component in

the direction of an eigenvector associated with A = 3. Using 4 decimal place accuracy

specified by € = .00005, shows a sequence of numbers converging to A=

3.00024 and a sequence of vectors converging to x = [ .04091 -.43558 .57141 .69433 |T

after 19 iterations. With 4 decimal place accuracy we display 5 decimal digits. To

see how close the pair @&, x) is to being an eigenvalue-eigenvector pair for A:

duplicate x with |[ENTER , recall A to level 1 with and press SWAP E to

see Ax = [ .12282 -1.30684 171432 2.08317 |T. Now do 3 ROLLD| [* to see

A x =[.12273 -1.30684 1.71436 2.08314 ]T. Compare levels 1 and 2.

COMMENT. As in this example, we usually do not know in advance whether the

initial y, has a non-0 component in the direction of a dominant eigenvector. But this

rarely causes difficulty in practice because the round off errors which appear after a

few iterations usually perturb the problem to the point where this is the case.

EXAMPLE 4. To see the effect of different initial vectors y,, return to the matrix A

of EXAMPLE 3 using y,=[1 0 -1 0], thenwithy,=[1 2 3 4]. With 4 place

accuracy, the first choice shows A =3.00026 and x = [ -.03984 .43533 -.57388 -.69253 T

while the second choice shows A = 3.00024 and x = [ .04456 -.43620 .56503 .69891 I,

both after 19 iterations.
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Finally, since real symmetric matrices are diagonalizable and have only real

eigenvalues, they are natural candidates for the power method.

EXERCISES 6.2

1. For each of the following matrices A:

(a)

(b)

(c)

2. (a)

(b)

Find the eigenvalues by finding the roots of the characteristic polynomial.

Verify that A has a dominant eigenvalue A.

Apply the power method via program POWER)|, starting with the

vector of all 1's and using 5 decimal place accuracy; count the iterations.

6 2 3

(i) A=|25 4
3 4 -1

(ii) The matrix A obtained as follows: seed the random number generator

with 2 (press 2 ), then go to the BILDR subdirectory and press

+ [Bv
Repeat exercise 1 for the 55 matrix obtained as follows: seed the random

number generator with 3, then press 5| § Y M M| in the BILDR

subdirectory. Be sure to count the iterations and pay close attention to the

sequence of vectors being generated.

How many iterations occurred? This is the maximum number allowed by

program POWER.

To see why this many iterations occurred, notice that the stopping criteria in

POWER is : || yx,1 - Yi l. <€ or ct =60 (where ct is the iteration counter). For

this particular matrix, after 17 iterations, the components of y,,, and y, agree to
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5 decimal places except for a sign : y,.; =-y,. Thus y,.1- ¥= 2y4.1, 50 | Yiuq -

Vi e = I 2¥x41 ll. = 2l Yi4q l. which ceases to decrease. Thus the iterations

continue to the maximum allowable.

3. Looking back at equation (2) in our derivation of the power method, you can see

that the rate of convergence is governed by the factor %fl (remember: A, =
1

AM=..=A and | A |>]A,,;]12...2] A, D. The smaller this factor, the faster

the convergence. That is, the convergence will be faster if A, strongly dominates

the next largest eigenvalue. To see this in practice, consider the following two

matrices A and B, which differ only in their (1,1)-entries.

  

    

2-1 00 6-100

Ac|l1 110 g_|11-10
0-1 1 -1 0-11-1

00-11 0 0-11

For matrix A, K” =~ .6946 whereas for matrix B, K” = .3796 ... a little
1 1

more than one-half the value for matrix A.

(a) Apply the power method to matrix A using yo=[1 1 1 1] with 4 decimal

place accuracy; count the number of iterations required.

(b) Now apply the power method to matrix B usingy,=[1 1 1 1] with4

decimal place accuracy; count the number of iterations required and

compare with the corresponding numberin (a).

(c) In light of this, if the convergence proceeds so slowly (you should watch

the sequence of vectors... not the sequence of A,'s) that you reach the maximum

allowable iteration count before convergence, you should change the maximum

iteration count in program POWER.
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(a) Our presentation of the power method required a unigue dominant

(b)

(c)

eigenvalue A; (of multiplicity m>1). What happens if, say, A and its

negative -A dominate? Thatis, if |A|=|-M|>1M]2..2 |2, |? To

find out, apply the power method to the following matrix A, using

yo =[1 1 1 1] and 5 decimal place accuracy. Watch the vectoriterations

very carefully and count the number ofiterations.

310 0
A=|13-10

0 -1 3 -1
0 0-1 -3

Has the sequence of vectors converged to a unique approximate eigenvector

before reaching the maximum allowable number of iterations? Repeat the

iteration as necessary to see again what is happening.

Formulate a conjecture based upon your observations for discussion with your

classmates and instructor.
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PROGRAM HOUSEKEEPING

The term user memory refers to that part of the calculator's memory which is

accessible to a user through the VAR menu on the 48S and the USER menu on the

28S. User memory is where we store the various types of objects recognized by the

calculator, e.g., real or complex numbers, arrays, programs, lists, etc. These objects

are stored as global variables (in calculator terminology) which you may regard as the

name of the object. Here we are concerned with the basic "housekeeping" procedures

associated with programs. By "housekeeping”, we mean the simple procedures used

to enter, name and store, run, edit and purge programs. The Owner's Manuals

minimally address programming; but anyone desiring to become really proficient in

developing and using programs across a broad spectrum of applications is strongly

advised to study the books "HP-48 Insights" and "HP-28 Insights", by William C.

Wickes.

WHAT IS AN HP-485/28S PROGRAM? A program is a sequence of data objects,

procedures, commands and program structures - the program body - enclosed between

program delimiters:

« program body » .

ENTERING PROGRAMS. Programs are keyed into the command line and entered

onto the stack (level 1) with |ENTER|. You need not key in the necessary closing

program delimiters because pressing ENTER| will automatically insert them for you.

NAMING AND STORING PROGRAMS. To name and store a program which has

been entered onto level 1 of the stack, press l:l to signify algebraic entry mode

(suitable for entering names and expressions), then key in the desired name and press

148



PROGRAM HOUSEKEEPING 149

. The program will be stored in user memory under its name, and pressing

on the 485 (or [USER| on the 28S) will show a user menu key with an

abbreviated name (up to 5 characters).

TO RUN A PROGRAM. To run a program, simply press the white menu key

beneath the program's abbreviated name; alternatively, key the full name into the

command line and press |ENTER| [EVAL|. If the program happens to be on level 1,

you may simply press EVAL| . Of course, if the program requires input data for its

proper execution then you must first provide that data in an appropriate way, either

on the stack or as stored variables which are named in the program body.

EXAMPLE. The program « DUP SQ SWAP INV + vV INV » takes a number "a"

from level 1 as input data and returns the calculated value of— to level 1.
Va2+1/a

Key in the program by first pressing E’ on the 48S (or El on the 28S), then

ENTER] on the 485 (or the STACK menu key on the 285), followed

by the other indicated commands. Press [ENTER| to add the closing program

delimiters and copy the program to the stack.

Press El PGM1 to name this program PGM1 and store it in user memory

under this label. Press (or ) to see the menu key.

Now, run the program using as input data the number 2: key in 2 and press

. The answer, .471404520791, will be displayed on level 1. Notice that

you did not have to enter the data onto the stack before pressing. This is

typical; pressing the menu key automatically entered the data for you.

Run the program with some more inputs.
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SYNTAX ERRORS. When keying a program into the command line, if an object is

accidentally entered in an invalid form, then pressing |[ENTER| will cause the

calculator to refuse to copy the program onto the stack and display a message

indicating a syntax error. To remove the message from the screen so you can correct

the syntax, simply press on the 48S (or I@ on the 285).

EXAMPLE. Keyin: « - ARRY |ENTER| . Notice what happens. Now remove the

message, delete the space after the =, and press ENTER]|.

EDITING PROGRAMS. To make any change in the body of an existing program

you must edit the program.

e If the program is on stack level 1, the [EDIT| key will copy it into the

command line where you can then make the required changes. Press |ENTER

to return the corrected version to level 1.

o If the program is not on stack level 1, but stored in user memory under, say,

'NAME' the keystrokes D NAME will recall the program to level 1

and you can proceed as above. Alternatively (and indeed, preferably),

D NAME| |VISIT| will copy the program directly from user memory onto

the command line for editing; [ENTER| will then replace the old stored

program with the newly edited version in user memory.

EXAMPLE. Start this example with the program « PROGRAM MODI » stored in

user memory as :

(i)  Recall it to stack level 1 with [1] .

(ii) Copy it to the command line with EDIT|, and change MODI to BODI.

(iii) Copy back to level 1 with [ENTER|, then replace the old version with the

new one by pressing D .
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(iv) Now copy this new version directly to the command line with EI TRY1T

VISIT| , and change BODI to BODY.

(v)  Replace the earlier version by pressing ENTER] .

(vi) Finally, check your last work by recalling to level 1, examining the result,

then dropping it from the stack with DROP|.

HP-48S SHORTCUTS:

e You can recall to level 1 the contents of any stored variable, say TRY1, by

pressing TRY1|. Thus, rightshift will recall.

e Likewise, you can store (or load) an object on level 1 into any stored variable,

by pressing , then the variable's menu key. Thus, leftshift will load. Try

this by loading « + SQ COS » into TRY 1|; now recall the contents.

PURGING. Imagine that you have stored an object under variable PGM1 in your

user memory. The object may be any one of the variety of objects recognized by the

calculator: a real number, an array, a program, etc. To purge variable PGM1 is to

remove it and its contents entirely from user memory. Purging a single variable is

usually done with the keystrokes D | P@Mfll IPURGEI. The label disappears

from the menu and its contents are removed from user memory. To purge several

variables at the same time press on the 48S (or E m on the 28S), then the

menu key for each variable you wish to purge, then ENTER|. Now press PURGE

to purge the variables in this list.

EXAMPLE. Start by storing the numbers 1, 2 and 3 in variables 'X' 'Y' and 'Z' in user

memory. With your VAR or USER menu active, purge 'X' by pressing E'

PURGE|; watch disappear. Now purge the two remaining variables at
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the same time by building a list { Y Z } and pressing |PURGE|. Watch these

variables disappear.

EXERCISE. The following program takes numbers X, y from the stack and returns

(x+y)2\/x+y.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

« + DUP SQ SWAP ¥ * »

Key in this program and store it under variable "EX.1".

Run the program with inputs 9, 16.

Change the program body by replacing the * with / and adding NEG at the

end.

Run the new program with 9, 16.

In terms of x and y, what does the new program calculate?

Purge this program.

Purge programs TRY1 and PGM1 simultaneously.
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PROGRAM ORGANIZATION: DIRECTORIES

Just as a file cabinet organizes stored material in an office for convenient access,

directories enable you to organize the programs (variables) you store in user memory.

The original user memory is itself a directory - the HOME directory, and you can

always go to HOME. And, in much the same way that certain drawers in a file

cabinet are further subdivided into sections, you can create subdirectories within the

directories. The basic idea is to group together programs associated with a

particular topic or subtopic.

A convenient directory structure for the material in this book is as follows:

 

         

  
one
level :
down ITERA BILDR| EIGV ORTH| GAUS| ED.IT POLY         

 
 

two

Legfvl?‘ : .-+ |RO.KL

|

DELCO] DELRO] NU.EL| CH.SN| MINO          

HOME contains various entries, one being the MTRX subdirectory, in which you

may group together all the stored programs which deal with matrix topics. HOME

is the parent directory of subdirectory MTRX, and MTRX is the parent of the

subdirectories appearing in the next level: POLY, ED.IT, GAUSS, ORTH, EIGV,

BILDR and ITERA. Each subdirectory groups together the programs associated with

a particular topic.

153
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The programs in this book have already been structured into a MTRX directory

and loaded onto a computer disk which is available from the publisher to instructors

who wish to adopt the book for classroom use. The MTRX directory may be

transferred to students using the HP-48S either by calculator-to-calculator infrared

transmission or by computer-to-calculator serial transmission as directed in the

Owner's Manual. No such option is available for HP-28S users, and the programs

must be organized into subdirectories by the individual users themselves.

e Subdirectory ED.IT:

¢ Subdirectory GAUSS:

e Subdirectory ORTH:

e Subdirectory EIGN:

e Subdirectory BILDR:

e Subdirectory ITERA:

e Subdirectory POLY:

contains the matrix editing programs from sections 2.2. -

2.4 of Chapter 2.

contains the programs relating to Gaussian elimination

from Chapter 3.

contains the programs relating to orthogonality concepts

form Chapter 4.

contains the eigenvalue/eigenvector programs from

Chapter 5.

contains the programs from section 2.5 of Chapter 2 used

to build various matrices over Z,,.

contains the programs dealing with the iterative

methods of Chapter 6.

contains some useful programs from Hewlett-Packard for

working with polynomials; the programs appear in

Appendix 4.

On the 28S, each subdirectory should contain a variable QUIT which may be used to

return you to HOME, and each subdirectory two levels below HOME should also
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contain a variable UP which may be used to return you to the parent directory.

QUIT and UP are not needed in HP-48S subdirectories since HOME and UP are

accessible with the shifted ] key.

Here's how to create the first subdirectory, subdirectory MTRX: press D

MTRX CRDIR| (note that CRDIR| appears on the MEMORY menu). A new

label M T R X| will appear in your VAR or USER menu. Pressing MT R X| will

send you to this new MTRX subdirectory, which is empty since you haven't stored any

variables there yet.

The first variable to store in the MTRX subdirectory on the 28S, indeed in any

28S subdirectory, is QUIT - which will send you back to HOME. Create variable

QUIT by pressing « HOME []auir . Notice that the label

appears as the first label in the MTRX subdirectory. As you enter other variables

QUIT will be pushed to the right and always remain as the last (right-most)

variable.

You should now create the following subdirectories within MTRX: POLY, ED.IT,

GAUSS, ORTH, EIGV, BILDR and ITERA. Make sure you are in the MTRX

subdirectory before creating these new directories. After you have created them, you

should enter each one and create the QUIT program, followed by the UP program. To

create UP, press « MTRX III UpP. Pressing will send you up to

the MTRX directory.

Now that you have established an appropriate directory structure, you should

put into ED.IT all the matrix editing programs from Sections 2.2 - 2.4 of Chapter 2.

Since these programs may initially be in your HOME directory, you may need to

transfer them to ED.IT. To transfer a variable from HOME, recall its contents to the

stack with and enter the name. Then go to the ED.IT subdirectory and press

. Finally, purge the variable from HOME.
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The contents of subdirectories GAUSS, ORTH, EIGV, BILDR, ITERA and POLY

are detailed in the above bullets.

After entering the required programs into a subdirectory, you may arrange them

in any order you prefer. For 28S directories, we recommend that QUIT be the last

(i.e., the right-most) variable in the directory, immediately preceded by UP.

Program Index I contains an alphabetical listing of the programs within each

subdirectory, and Program Index II is an alphabetical listing of all the programs in

this book.

Let's say you have variables U, V, W and Z in a directory and want to arrange

them in left-to-right order as W, Z, V, U. Simply build alist { W Z V U}

containing the variables in the desired order and press, located on the

MEMORY menu. When you return to your subdirectory, the variables will appear in

that order.



APPENDIX 3

VECTOR AND MATRIX NORMS

NORMS IN GENERAL. When a vector v = (x,, X, X;) in R3 is interpreted

geometrically, its length is given by |v|| = (xf + xi + xg)V2, The well-known

properties of vector lengths include:

(1) Ivll>0if v#0,

(2) llawvll = lod |Ivll for any scalar a and any vector v,

(3) |lv + wll < |Ivll + [lw]l for any vectors v, w.

It would seem natural to adopt the corresponding notion for length, or

magnitude, in R*: for v =(x;, X, ... , X)), |Vl = (x? + xi +... + xi)”2, But there are

situations where other scalar measures of the "size" of vectors in R™ is more

meaningful. For instance, if the components of v = ( 6, 3, 2, 5, 9 ) record the average

times required to complete different components in an assembly operation, then

(62 + 32 + 22+ 52 + 92)1/2 js somewhat meaningless when compared to 6 + 3 +2 + 5+ 9

(the sum of the average assembly times) or max { 6, 3, 2, 5, 9 } (the largest average

assembly time). Thus, in general, several different notions of length, or size, or

vectors may be useful.
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The term norm is usually applied to any generalization of Euclidean length in

R3, as long as the above three conditions are met. The most commonly used norms for

vectors in R™ are:

1”2
. 2

e The Euclidean vector norm: ||vll, = [E |xi| ]
i

o The vector sum norm: vil, =Y, Ix
i

e The vector max norm: [Ivll., = max [x;|.
i

All of these are true vector norms, in the sense that they satisfy conditions (1) -

(3) above.

Analogous to vector norms are matrix norms, ||A|| , which are scalar measures of

square matrices. To qualify as a matrix norm, the number ||A|| must satisfy:

(1) NAlI>0if A=#0,

(2) JlaAll = |ol JIAll, for any scalar o and any matrix A,

(3) 1A + BlI<|IAll + |Bl, for any matrices A, B,

(4) IIAB|I<[IAIlIB]| , for any matrices A, B.

Conditions (1) - (3) are the same as for vector norms, but (4) is new and implies that

IAM| < JJAJ*. Thus if ||A]l < 1 then ||A?]| = 0asn = oo.

When our earlier examples of vector norms are applied to square matrices, the

first two are matrix norms:
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1”

o the Euclidean (or Frobenius) norm: ||Allg = [E Ixijlz] , and

i

o the sum norm: JAll= 2, lay;
ij

but the third one, ||A|| = max Iaijl fails to be a matrix norm only because condition (4)
i,

need not hold.

While there are many ways to define matrix norms,it is especially useful to use

a matrix norm that is connected to an existing vector norm. This may be done as

follows: given a vector norm [[x|| on vectors x in R", define a matrix norm ||A]| for

square matrices by ||A|l = T"Tx\"a_f 1AX]|.

This produces a true matrix norm (i.e., (1) - (4) hold) which measures the

amount by which a vector x of norm 1 is "magnified” by matrix A. We call ||A|| the

matrix norm induced by the vector norm |x]. The most important properties of

induced matrix norms are

(5) IAx|I < 1Al IIx]l for all x, and

6) I =1.

When the earlier three vector norms are used to induce matrix norms, it can be

proved! that:

e the vector sum norm induces

IAll; = max ), lag| , the column-sum norm of A
iq

¢ the vector max norm induces
 

ISee, e.g., Section 5.6 in Matrix Analysis, by Horn and Johnson, Cambridge University
Press, 1985.



160  APPENDIX 3

IAll.= max  |a;l, the row-sum norm of Aax 2
j

¢ the Euclidean norm induces

IAll, = max {‘/7» : A is an eigenvalue of ATA},the spectral norm of A.

Of these norms, the column-sum and row-sum norms are in widespread use because

they are so easy to calculate. The Frobenius norm is also easy to calculate but is not

induced by a vector norm. The spectral norm, on the other hand, is much more

difficult to obtain and is mainly for theoretical use.

The spectral norm is not the only connection between matrix norms and

eigenvalues. For any square matrix A, its spectral radius p(A) is defined by

p(A) = max { |A] : A is an eigenvalue of A } , and it can be shown that p(A) < ||A|| for

any matrix norm. Thus the column-sum and row-sum norms provide easy estimates of

p(A).

NORMS ON THE CALCULATOR. Three matrix and vector norms are provided on

the MTH MATR menu of the 48S and on the ARRAY menu of the 28S: the Euclidean

norm, the co-norm and the 1-norm.

¢ The Euclidean (Frobenius) matrix norm: [|A|l;z =. Since vectors on the

calculator are 1-dimensional arrays sensed as column vectors, applied

to a vector v returns its vector Euclidean norm ||v]j,.

e Therow-sum, or e-norm: ||A]l_=| RNRM)|. For a vector v, RNR M| returns

its vector max norm |jv]|_, .

e The column-sum, or 1-norm: ||All; = CNRM)|. For a vector v , CNRM

returnsits vector sum norm ||v]|,.
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EXAMPLE

[[4 -3 0]

(a) ForA= [0 5 -1] , press to return ||All; =8, RNRM)| to return

[2 0-3]]
lAll, =7 and CN RM)| to return ||A]l, = 8.

(b) Forv=[-1251-21], returns |v|l, =6, RNRM| returns ||v]|_ =5,

and CN R M| returns |jv]l, = 12.

EXERCISES

1. (a)

(b)

(c)

2. (a)

(b)

(c)

Calculate the Frobenius norm for I, I, I;, I, and I.

On the basis of your results in (a), formulate a conjecture about||L||.

Prove your conjecture.

Compare the row-sum and column-sum norms for each of the following

matrices:

([0 10 -2]
[[ 0]111 3] R _[13-4 2]

A s2n PR C=1o0-4-1 0]
(2 2 0 5]]

Formulate a conjecture based on your results in (a).

Prove your conjecture.
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Use the matrix A and vector x given below to verify that ||Ax|| < ||A]| [x|| for the

three matrix and vector norms provided by the calculator.

-
O

x=[-121]> n

-
N
W

1 H &
0
o

S
l

C
o
n
d
S
l

Consider the attempt to define a matrix norm by ||A|| = r‘i‘?" la;l. Experiment

with random 3 x 3 matrices over Z,, to find a pair A, B for which the

inequality |IABIl < |A|l IIBl is invalid. (To calculate 15 |a;| for matrix A,

separate A into its entries with on the 485 or with | ARRY= I on the

28S, then reassemble into a vector v with ®ARRY|. Now apply RNRM

to v.)
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POLYNOMIAL ROUTINES

In the course of calculating the eigenvalues of a matrix A as the roots of the

characteristic polynomial (see Chapter 5), we have found it convenient to use several

polynomial routines for the 285 prepared by William Wickes of Hewlett-Packard.

These are among a host of such routines, as well as other interesting programs and

examples for the 285, which are the principal contents of Mathematical Applications,

Copyright Hewlett-Packard Company, 1988. We strongly recommend that you

purchase this booklet [call toll-free 1-800-752-0900 for the location and number of the

U.S. dealer nearest you]. To make this book as self-contained as possible, Hewlett-

Packard has granted permission to reproduce the several programs we need here.

The polynomial routines we require are:

e PROOT (finds all roots, real and complex, of a polynomial of degree <4

having real or complex coefficients).

e PSERS (returns an algebraic expression (or value) from a list of coefficients)

e PVAL (uses Horner's method to return an algebraic expression (or value)

from a list of coefficients)

e PDIV  (implements the division algorithm for polynomials; returns quotient

and remainder)

We shall present these routines in reverse order.
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PDIV (Polynomial Divide)

Inputs: level2: adividendlist{a, a,, ... a; a,}

level 1: a divisor list { b, by, ... b; by}

Effect: divides a(x) = a,x" + a,,x™! + ... + a,x + a, by

b(x) = b,x™ + b,,..x™! + ... + b;x + b, to obtain a

quotient q(x) and a remainder r(x); the quotient,

remainder and divisor polynomials are shown in list

form:

level 3: { quotient }

level 2: { remainder}

level 1: { divisor}

« DUP 1 GET OVER SIZE - dtn « { } SWAP DUP

SIZE n - 1 + 1 SWAP START DUP 1 GET t / COLCT

ROT OVER 1 -LIST + 3 ROLLD 1 n FOR m OVER m

GET d m GET 3 PICK * - ROT m ROT PUT SWAP NEXT
DROP 2 100 SUB NEXT d » »   
 

Store this program with D PDIV in your POLY subdirectory.

EXAMPLE 1. To divide x> + 2x* + x3-3x2-6x-3 by x3-3 press { 1, 2, 1, -3, -6, -3

then {1, 0,0, -3[ PDIV]. You will see:

level 3: {1 2 1]}, the quotient list

level 22 {0 0 0]}, the remainder list

level 1: {1 0 0 -3}, the divisor list.
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PVAL (Polynomial value)

Inputs: level 2: a list of coefficients { a, a,, ... a, a,}

level 1: a number, or a variable, x

Effect: returns ( ... (@,X + @,.)X + @,0)X + ... ) + &,, in

Horner's form; if x is a real or complex number,

the result is also a real or complex number, the

result is also a real or complex number; if x is

symbolic, say "x", the result is the indicated

symbolic Horner expression.

« = st x « st 1 GET 2 st SIZE FOR n x * st n GET +

NEXT » »   
 

Store with l:l PVAL in your POLY subdirectory.

EXAMPLE 2.

(a) {4,3,2,1|ENTER| X| PVAILIretumS'((4* X+3)*X+2* X+1

(b) IUNDO| 2 | PVAL' returns 49, the value of the result in (a) when x = 2.
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PSERS (Polynomial series)

Inputs: level 2: a list of coefficients { a, a,, ... a, a,}

level 1: a number, or variable, x

Effect: returns ax" +a,,x"! + ... + a,x + a,; if x is a real

or complex number this result is a real or complex

number;if x is symbolic, say "x", the result is the

indicated symbolic expression.

« » x « LIST» 0 SWAP 1 FORnn 1+ ROLLxn 1 -4

* 4+ -1 STEP » »   
 

Store with D PSERS in your POLY subdirectory.

EXAMPLE 3.

(a) {4,3,2,1|ENTER|X| PSEF‘BSIretums'4* XA3+3 % XA2+2% X+1°

(b) |UNDO| 2 PSERS]| returns 49, the value of the result in (a) when x = 2.
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PROOT (Polynomial root finder)

Inputs:  Level 1. a list of coefficients { a,, a,, ... a, a,}

where n < 4

Effect: Returns on levels 1 thru 4 all roots, real or complex,

of the polynomial: ax" +a,. x™' + .. +a,x + a,

Requiredprograms: ¢ QUD

e CUBIC

e QUAR

« LIST» -ARRY DUP 1 GET / ARRY- LIST-» DROP 1 -

DUP 2 + ROLL DROP { NEG QUD CUBIC QUAR} SWAP

GET EVAL »   
Store in your POLY subdirectory with D PROOT [STO|.

 

 

QuD (Quadratic subroutine)

« SWAP 2 / NEG DUP SQ ROT - ¥ DUP2 + 3

ROLLD - »   
Store in your POLY subdirectory with [+ QUD [STO.
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CUBIC (Cubic solve subroutine)

« 3 PICK -3/ 3 PICK 5 PICK SQ 3 / - 5 ROLL DUP 3

A2 % SWAP 9 * 6 ROLL * - 27 / 4 ROLL + NEG

OVER ABS 0 IF == THEN 3 INV »* SWAP DROP 0

SWAP ELSE 2 / DUP SQ 3 PICK 3227/ +V -3

INV A~ SWAP OVER / 3 / NEG END -1 3 ¥ R-C 2/

4 ROLLD 3 DUPN 3 DUPN + + 8 ROLLD 7 PICK #*

SWAP 7 PICK / + + 5 ROLLD 4 PICK / SWAP 4 ROLL
* 4+ 4+ »  
 

Store in your POLY subdirectory with D CcuBIC .
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QUAR (Quartic solver subroutine)

Required Subprograms: ¢ QUD

e CUBIC

« 3 PICK NEG DUP 6 ROLLD 5 PICK 4 PICK * 3 PICK

4%-5ROLL 4 * 6 PICK SQ - 4 PICK * 5 PICK SQ -

CUBIC 3 -»LIST1 3 FOR n DUP n GET 2/SQ n 2 +

PICK - ABS SWAP NEXT 4 ROLLD DUP2 IF < THEN

SWAP DROP 3 ELSE DROP 2 END 3 ROLLD IF > THEN

DROP 1 END GET 4 ROLL 2 / SWAP 2 / DUP SQ 4

ROLL - ¥ IF DUP ABS THEN 3 DUPN 3 ROLLD * 6

ROLL 2 / - SWAP / ELSE 3 PICK SQ 6 ROLL + 3 PICK

2% +\END 5 ROLL DROP 3 ROLLD 4 DUPN + 3

ROLLD + SWAP QUD 6 ROLLD 6 ROLLD - 3 ROLLD -
SWAP QUD »   
 

Store in your POLY subdirectory with D QUAR .

EXAMPLE 4. To find all the roots of 3x* + 6x2 - 24, press { 3, 0, 6, 0, -24 |ENTER

.Then use 9 and to see the following roots:

-1.414213562

1.44213562

2i

-2i
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(Alphabetically within subdirectories)

ED.IT SUBDIRECTORY

AD.COL Additional CoOlUMN.....ccccevvueeiiiiiiiieemnniieriiieenieeanecssessseesssnes23

AD.ROW Additional ROW ..ceeueeeiiiiiiiniiiiiineniireinneeeineennssnnesssssssenses23

A.KTH Kt Power of @ MatriX.....ccoceeveeereeernenreecseeeneenseesseeeseessaessenes26

C.COL Extract a Matrix COlUMN .......cccveuueeiirmenniereeneneeeeeeneeeeeeennnnns17

CLEAN Clean-up Round-Off......ccccoeummmmrminririiiiiiiiiiiiiiiiiciniiieiinn,37

C.ROW Extract @ Matrix ROW....cccecieuiiniiiniiiniiiiiiniinciecrnnceneeenneennes17

CH.SN Change SigN........ceieeeiiiiiiiinitieeeeccrneeee,16

DELCOL Delete a Matrix Column.........cccceueeiuiiniieeiinceeneeenceneeenerenens19

DELROW Delete a Matrix ROW.....ccevviirvmnivnnniniiinniiniinniienieennesnenees19

MINOR MatriX MIiNOT...ciiuiiiiiiiiirnciiiiennniiiieeneecinieemnceseesnnseeesennnns20

NU.EL New Matrix Element......ccccuceieiiiniiiniieniieiiiniceecenceencenncennenn.15

P.OF.A Polynomial Evaluation at A...........ieiiinniinnnnnnnnee.27

RO.KL Interchange Rows K and L..........uceuieieiiiiiiiiiiininiiiiniiiinnnnnne.24

ROW- Assemble Rows into @ MatriX .....c.ccceevriveiereniinniinnccinncnennnn.21

-ROW Separate into ROWS........uuiiiiiiiiiiiiiiiiiiiiiinieennenneeneae,21

GAUSS SUBDIRECTORY

BACK Back Substitution .......ccceeeeeiniiieiieiineiiciciecrcreeeeeeenees51

CLEAN Clean-up Round-off............cuvrueniiiiiiiiiiiiiiinininiiiiieeeenenenne.37

ELIM Gaussian Elimination .......ccccceeeeeiennieneieeiieeieencrenceeieencennernnns49

FWD Forward Substitution.......cccccuvieeiiieiiieiiiiiieniiniiincienrencenneennns62

GJ.PV Gauss-Jordan PivOt.....cccccccccieiieeiiieeieeennneenceeceeeeeeaeeeennenneenns68

LU LU-Factorization.....cccceeiiniiieeiiineiereecreeneeeneernnerenseenncesnesnns57

MAKL Make L and P Subroutine.......c.cccceevtuirveiinniinnceenninecennnnnen.58

RO.KL Interchange rows Kand L..........ccooeviiiiiiiiiiniiiiininicnenenee.24

SPLIT Split-off last column...........ccievvvenisninnniinieeninnecninneeennee.52
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ORTH SUBDIRECTORY

CLEAN

DPLOT

FEVAL

P.FIT

PROJ

OVLAY

EIGV SUBDIRECTORY (48S VERSION)

CHAR

CLEAN

A.VALUES

PROOT

TRACE

Clean-up Round-off........ccccovvmmniniiiiiiiiiiiiininiiiininnnine.37

Data Plot....ccooueuiiieeiiiiiiiiiiitiniriricrens95

Function Evaluation.............cciiiiininiiiiiiineiinnnecennas98

Polynomial Fit MatriX ........cccceeiiiiiiiiinininiiiiiiiinineiiinnnnnnennas93

Projection VeCtOr........ccouiiiiiiiniiineiiiinneinecennnneneeeenens89

Overlay a Plot (285 only) .......ceeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiinnnnnnaes96

Characteristic Polynomial..........cceuueueiiiiiiiiiineiininnennnes 112

Clean-up Round-off........ccooveummmimriniiiiiiiiiiiiiiiinininn,37

Eigenvalues...........uueeeiiiniiieiiiiinicicinnncee117

Polynomial Root Finder (code protected)...................... disk

Trace of @ MatriX ....ccouvueeeeiiiiiiiiiiiiiiiiiiiciiiiniiccceeenean, 112

EIGV SUBDIRECTORY (28S VERSION)

CHAR

CLEAN

CuBIC

PROOT

QUAR

QuUD

TRACE

Characteristic Polynomial..........cccocoiviiiiiiiiiiiiiiiininnnnnnne. 112

Clean-up Round-off.........ccccoeiiiiiiiiiiiiiniiiiiinnninnninnennne.37

Cubic Solve SUbroutine..........ccceeeeeeeneerencrieneceeenneeennnennnn 168

Polynomial Root Finder (n<4)........ccveevveviinvrvennennennnne. 167

Quartic Solver Subroutine.......c.ccccceeeeeeeeeeeeeeeeeeeeeeeeeeeeneenne 169

Quadratic Subroutine.........ccceeeeeiieeiiiriniieienceieeneerennen. 167

Trace of @ MatriX ...ccveeeiiiineniriinniiireencieenniereneeenneeeeneceeennes 112

POLY SUBDIRECTORY

CLEAN

PDIV

PSERS

PVAL

Clean-up Round-off........cccoovummmimimniiiiiiiiiiiiiiiinincencncccniene,37

Polynomial Divide.......ccoeeeiiiiivininnniiiiniiniiiiiiiiiinieennnen, 164

Polynomial Series.........ccccovvvvummiurnirniniieiiiiiiiiiiiininiinnn, 166

Polynomial Value........ccccccoeiiiiiiiiiiiiiiiiiiiiniiiiiiiiinineennnne, 165
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BILDR SUBDIRECTORY

DIAG

L.TRI

RAN.Z

SYMM

TRIDIA

U.TRI

Diagonal Matrix Generator .............cccoeeveiiiiiiiiiiiniinennnnnnnnns42

Unit Lower Triangular Matrix Generator.............cccucvueueecs44

Random Matrix Generator ..........ccccoeeeeeiiiiiiiininininnnnnnnnnnnnnns42

Symmetric Matrix Generator ..............cecevvviiiiniiiiiiiiiinininnns45

Tridiagonal Matrix Generator ...........ccccoevvvviiiiiiiiinenenenenens44

Upper Triangular Matrix Generator...........cccoeuvvvcrnnecnnnnns43

ITERA SUBDIRECTORY

D.DOM

JACOBI

JTEST

POWER

SEIDL

STEST

Diagonal DOminance ..........cccceeeeeeeiininnnnneicinnnisnneeeceennn. 136

Jacobi Tteration.......cccceceiieeeeiirneeiiiieniiernneereeeeeneeeeenneess 135

Test Jacobi Iteration MatriX.....ccccceueereeneiciiiiiireeeeenennennee. 134

Power Method.......cuuiveniieiiiiiietccecceecceeccecceeccee143

Gauss-Seidel Iteration..........ccceeueeeeeereeneeieereeeieereneneeeennn. 137

Test Gauss-Seidel Iteration MatriX....c.ceeveeeeeeeenvneeennenencnns 136



PROGRAM INDEX II
(alphabetical order)

AKTH....oooooeeeeeerreeecceeneeenne Kt Power of @ MatriX .....ccccevvveeeeernnereeecinnneeecnnnnee.26

AD.COL.........ceriirrirrircnreenne Additional Column........ccccueveeererinneeriennnneeneennnnnnes23

AD.ROW.......iriiiirrrrrneeecrnennennnnesAdditional ROW.....cccevvvrrvivvvveeennceienniinneeeennnnnnn.23

BACK...rcreecceeceeeneeeeBack Substitution.......ccccceeeeeeeeeueneneeennccciieeeeeennnn.51

C.COL...ircerrrreeceeeeene Extract a Matrix Column.........cccceveueierennereernnnnenennn.17

C.ROW......rrcrrcrreenneeeee,Extract a Matrix ROW .....ccceeuiiuuiiiiniiiniiiniieiiienniennns17

CH.SN....ccoviiiiiiiie,L1F:117= 0-0|N16

CHAR......ccciriiiiiiree,Characteristic Polynomial............cccoevuevininnnninnnnnen. 112

CLEAN......coirrrrirriiriirreenee,Clean-up Round-off ........cccooouummimrnnnnnnnininnnnnnnenenne.37

CUBIC......corrrcrvecccrecnneeeensCubic Solve Subroutine.........ccccoveueeeeeeeeeeeeeicerenrnnnee 168

D.DOM.........cccuuumueurrcininiriincnnnnne Diagonal Dominance..............eeeuvueuiiiiiiiriennnnnenns 136

DELCOL......ccoovrrriiiiriiririrricneneDelete a Matrix Column........cccceeeueerueieenciinnreenrnnenne.19

DELROW.......oirreireecciiecnreneens Delete a Matrix ROW....ccoceeeeiriiiiiiininiinniiniiencennennens19

DIAG....cccciriinnnnnnnneenetieeeeee, Diagonal Matrix Generator........ccccccveviiiiiiiiiiiiiniinnnns42

(0] 2 T0LData Plot....cccoveviiiiiiinniiiiiiieciieiniinieneceennnnes95

ELIM....coorirriiiiiciriceeeae,Gaussian Elimination.........cccceeeieeiiiniirnneennnceneiannnns49

FEVAL.......c.ceirirvirieiiieiincnnnene Function Evaluation..........cccccoeeeiiiniinieninennnnnnnennne.98

FWD...oooiiiiiiriiieirinicicracnaaesForward Substitution.......c...cccceuerueirniiniinernecenenennns62

GU.PVrcrrtcccveceneceeeeesGauss-Jordan Pivot......ccccceeeeuenicerrneniiiereenncieneennnee.68

GRAM-SCHMIDT.................... Orthonormal Procedure .......ccccceevueiiniieeiinciencinncennns 101

JACOBL....ccoterrerreirecireerneennsnenenes Jacobi Iteration .........ccceueveeeenneenernnernrenncenneennns 135

JTEST .ccorrrirniniireennnnscnnnene Test Jacobi Iteration MatriX......cccceovvvvenenneneeneeeeeennnn. 134

L.TRL.ueennnnae, Unit Lower Triangular Matrix Generator..........cccccceeeeeenenen..44

AVALUES..................Eigenvalues via PROOT (code protected)..........ccceuvrueneneen.. 117

LUNLU-Factorization......ccccceveviunienieninnriienrenecennnnnes57

MAKL.....coieieiieiiiiecrnnceeaeee Make L and P Subroutine......c.ccccoeeeiniuiiiniiinrinenennnen.58
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MINOR...,Matrix MInOr.......ccevcviiieniiiiiiicinneenccenenee,20

NUEL.....ccirmriiiiinininenenneeee,New Matrix Element..........cccooevrerinnniiiinnninnnnnnnnne.15

P.FITe,Polynomial Fit Matrix.......cccecuvrnniiiennninenninnennnnns93

P.OFA......iiiniiiinnes Polynomial Evaluation at A.......c..cccooeeiiiiiininnnnnnnnnnne.27

PDIV...rPolynomial Divide.......ccccceeeniiiiiiiiiiinnnnnnnnns 164

POWER........cocemrmeeeicccicninnnneeeeeePower Method........ccccvvviiiiiririinnnniiiniinennnnnne. 143

4{01NProjection Vector ..........cuueeeeiiiiiiiiiniinniiiienenennnnn89

PROOT......oovrirriiiirininnnnae Polynomial Root Finder (n<4) .........cccocuvuviiiiirinnnnnnne. 167

PROOT......cccvnrrinnanes Polynomial Root Finder (code protected)............ccoeverenenenn disk

PSERS.......ccoovvrrrrrrrireiiieerereeeeee, Polynomial Series........cccceeviiiiiiiiininininiinnnnnnnnnne. 166

PVAL...tPolynomial Value.......cccccceeevrvinnnnnnnnnnnnnnnnnnnnnes 165

QUAR........coeeeveeeececeeenaes Quartic Solver SUbroutine ........ccceeeveeveuveniereencennennen. 169

(e1§0NQuadratic Subroutine........ccceeveeveerereeierenennereennnnn 167

ROKL.....coorriiiiienrnnne,Interchange Rows K and L..........ccccccoiiiiinnnnnnninnnnnn.24

ROW=e,Assemble Rows into a MatriX.........ceeeervevnnecnnnnnenen.21

SEIDL.......ccvrrrrrirenrencseGauss-Seidel Iteration...........cccuueevveeececiiencniannnnnn. 137
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