alculator Enhancement

for Linear Algebra
A Manual of Applications using HP-48S and

HP-28S Calculators

o . citnui)
128 c\'\\'\\f\“ﬁ 2
1 i/
7

D.R. L&TOITG.) Clemson University

(Calculator Enhancement

for Linear Algebra
A Manual of Applications using the HP-48S and

HP-28S Calculators

D . R LE[TOI' e, Clemson University

Saunders College Publishing
A Harcourt Brace Jovanovich College Publisher
Fort Worth Philadelphia San Diego New York Orlando Austin San Antonio

Toronto Montreal London Sydney Tokyo

Copyright© 1992 by Saunders College Publishing

All rights reserved. No part of this publication may be reproduced

or transmitted in any form or by any means, electronic or mechanical,
including photocopy, recording or any information storage and retrieval
system, without permission in writing from the publisher.

Requests for permission to make copies of any part of the work should

be mailed to: Permissions Department, Harcourt Brace Jovanovich, Publishers,

8th Floor, Orlando, Florida 32887.

Printed in the United States of America.

LaTorre: CALCULATOR ENHANCEMENT FOR LINEAR ALGEBRA: A MANUAL OF
APPLICATIONS USING THE HP-48S and HP-28S
CALCULATORS, 1/E

ISBN 0-03-092729-3

234 066 987654321

PREFACE

This book is designed to be used as a course supplement for teaching introductory
courses in matrix-oriented linear algebra. Intended to be textbook independent, it
presents an appropriate use of the HP-485 and HP-28S graphics programmable
calculators to enhance the teaching and learning of the basic concepts of elementary

linear algebra.

The material has been developed from classroom experiences in a calculator
enhanced, introductory course in matrix-oriented linear algebra taught by the author
at Clemson University since mid-1989. The course is at the sophomore level and is
taken by students majoring in a variety of fields: the biological and physical
sciences, computer information systems and computer science, several engineering
disciplines, mathematical sciences, and secondary mathematics education. Ours is
not an abstract, proof-oriented course. The main emphasis is on supplying the tools
needed to solve problems with matrix techniques and in developing a modest
theoretical background in matrix-oriented linear algebra needed for more advanced
work in mathematics, science and engineering We often concentrate on explanations

and examples in an effort to increase understanding.
ORGANIZATION

The book contains calculator-based activities, exercises and projects which
complement and extend the basic textbook material. After a brief chapter on
Calculator Preliminaries, Chapter 2 is concerned with a number of matrix editing
procedures using the calculator and also includes several specialized matrix builder
programs. There is no new mathematical content in this chapter, only material

intended to make the calculators easy to use.

iv. PREFACE

Chapter 3, Systems of Linear Equations, provides calculator routines which
implement Gaussian elimination, back substitution, LU-factorizations and Gauss-
Jordan pivoting. The latter is especially useful in a variety of settings, from
checking vectors in R® for independence, to basis, dimension and eigenvector

calculations. We review the relevant mathematics as we proceed.

Orthogonality is highlighted in Chapter 4, a topic of fundamental importance
in many applications. We summarize the principal mathematical theory while
developing calculator-based procedures for least squares solutions, fitting polynomials

to data, orthonormal bases and QR-factorizations.

Chapter 5, Eigenvalues and Eigenvectors, includes calculator programs for
finding the characteristic polynomial and eigenvalues of a matrix, with applications

to real symmetric matrices.

Chapter 6 is an introduction to iterative methods and features the Jacobi and
Gauss-Seidel iterative techniques for solving large, sparse linear systems and the

power method for approximating dominant eigenvalues.

I have included four appendices. The first two are concerned with procedures
used to enter, store, run, edit and purge programs on the calculators and the efficient
organization of the programs for a course in linear algebra. Appendix 3 is devoted to
vector and matrix norms (needed for Chapter 6), while Appendix 4 contains some

useful polynomial routines developed at Hewlett-Packard.
THE ROLE OF CALCULATORS

Within the last two years, graphics programmable calculators with symbol
manipulation capabilities, the Hewlett-Packard 48S and 28S, have exploded into
undergraduate mathematics. For the first time, students have real graphical,

numerical and symbolic computing power in the palms of their hands - often more

PREFACE v

than the campus mainframes of 25 years ago. Though most of the early interest in
these devices has been directed towards their use in calculus, they are also proving
to be an attractive choice of technology to use in matrix-oriented linear algebra - the
course recommended as the first course in linear algebra by the 1990 Linear Algebra

Curriculum Study Group!.

The benefits of using technology in a first linear algebra course are readily

apparent:

e to remove the computational burden often associated with hand
performance of matrix algorithms, thus allowing beginning students to focus

more clearly on the underlying concepts and theory;

* to encourage and enable students to engage in some exploratory/discovery

work on their own;
e to consider more interesting and realistic applications;

* to begin to think about some of the computational aspects of linear algebra;

and

e to demonstrate some of the advantages and power of technology in

mathematics.

To the extent that the HP calculators can help achieve these benefits, in a fairly

substantial way, I believe them to be an entirely appropriate form of technology.

When every student is equipped with his or her own calculator, they use it
almost daily for homework and classwork, there is immediate feedback, and a strong

element of active participation and interaction. My lecturing has given way to a

Funded by an NSF grant to "initiate substantial and sustained national interest in
improving the undergraduate linear algebra curriculum”.

vi PREFACE

more informal discussion, interspersed with appropriate explanations and examples,

which students find more interesting.

The presence of calculators introduces a new dynamics into the learning process.
Students generally seem to be more involved in their thinking about the material,
and when they are able to effectively use these devices-in hand-to help achieve a
desired result, they often exhibit a strong sense of "personal ownership" of that
result. Indeed, it may well be the highly personalized nature of the HP's which, in
addition to their portability, makes them so attractive. Students see them as
especially applicable to their needs for they work equally well in hallways, in the
library, at park benches and lab benches, and are a constant companion in their
backpacks. They need not confine their explorations to central facilities nor spend a
lot of money on a computer. There is a genuine aura of excitement surrounding their
use, which can only be interpreted in a positive sense. At this level, I am primarily
interested in increasing students’ interest, involvement, comprehension and retention of

the course material.
THEMES AND OPPORTUNITIES

There are four major themes which tend to characterize introductory courses in
linear algebra, all well suited to serious calculator enhancement: Gaussian
elimination and LU-factorizations, vector space theory associated with matrices,
geometrical notions and orthogonality, and eigenvalues and eigenvectors. Because of
this, the calculator routines in this book are structured around these themes and are
organized into menus, each menu associated with a theme. In my course, calculator
use is regular (almost daily), but I am not interested in students acquiring program-
development skills. We use the basic built-in keystroke commands whenever possible
(e.g., matrix addition and multiplication, scalar multiplication, and the routine

computation of dot products, inverses, transposes and norms). Iterative methods

PREFACE vii

extend the traditional material and point the way toward the powerful numerical
approaches used to solve large linear systems and to obtain eigenvalues and

eigenvectors.

In preparing the routines, I have been careful not to produce programs which
present final results at the expense of students becoming involved with the
underlying mathematical processes. Generally, the calculator programs are
interactive, requiring input and control at key steps. Thus, for example, the Gaussian
elimination routine requires that the user control the process by deciding when and
where to pivot, and which row interchanges are needed. And the practical pivoting
strategy known as partial pivoting, designed to avoid extremely small pivots which
tend to introduce error, is easy to implement in this setting. Likewise, in studying
Gram-Schmidt orthonormalization I recommend that students enter and evaluate a
simple program at each step; in so doing they demonstrate to me (and reinforce for

themselves) their understanding of the basic algorithm.

I am not concerned with introducing a substantial amount of new material into
the course. Nevertheless, the calculators have enabled me to achieve good results
with two modern topics which were often omitted in earlier versions of the course:
the interpretation of Gaussian elimination as an LU-factorization and its application
to linear systems with multiple right-hand sides, and the interpretation of the
Gram-Schmidt process as a QR-factorization and its application to least squares
problems. These topics are important today because they lie close to the heart of

many modern computer codes used to handle large linear systems.

By concentrating primarily on the vector spaces naturally associated with a
matrix, i.e., the row-space, column-space, null-space and their subspaces, I have been
more successful than before in helping students understand the concepts of spanning,

independence, bases and dimension. The calculators are a real help here since they

viii PREFACE

facilitate students seeing these vector space notions in the context of linear systems.
Students make frequent use of the Gauss-Jordan pivot routine (which they control at
each stage) to reduce the associated matrices to their reduced row-echelon forms.

Many of the basic questions can be answered by examining these forms.

Eigenvalues and eigenvectors have always been difficult for students, primarily
because they were often unable to obtain the characteristic polynomial of even a
small, integer-valued matrix and, even when they could, had trouble finding the
eigenvalues as the roots of this polynomial. Stuck in unproductive hand
computations, only the most talented were able to move much beyond the basics. But
the HP's have changed all that. A simple calculator routine finds the coefficients of
the characteristic polynomial of a matrix A in terms of traces of powers of A. For
modest-sized matrices (say, 6x6 or smaller) having low-order, integer-valued entries,
the coefficients are accurately determined. A root-finder routine can then be used to
find the roots. Such an approach is, of course, unsuitable for finding eigenvalues of
the matrices encountered in most legitimate applications in science and engineering,
and I am careful to make that point. But it enables students to computationally
experience some of the theory and to move on to a consideration of real symmetric

matrices.

Calculators also provide an opportunity to dispel some of the computational
misconceptions which students tend to carry away from introductory courses.
Misconceptions like testing for a matrix's invertibility by computing its determinant,
solving non-singular linear systems by finding matrix inverses and, indeed, the entire
role of determinants and inverses in the practical application of matrices. And
although I have not restructured my course into one emphasizing numerical linear
algebra, I am at least able to give students a first-hand glimpse at some of the

troublesome numerical issues which are present.

PREFACE ix

More than anything else, regular and systematic use of the calculators
throughout the conduct of the course changes not only what and how we teach, but
also what and how we test. I allow free use of the devices on all tests, and part of
the learning process is to determine just when, and when not, to use them. There is
plenty of room for both theoretical questioning (..."explain to me your complete
understanding of the concept of basis"...) as well as more computational questioning
(..."obtain a least squares solution to the following overdetermined linear system by
finding and applying a QR-factorization"...). I have been unable to obtain this level

of testing in a more computationally restricted environment.

Do students learn more linear algebra with the calculators? Do they better
understand what they learn? These are tough questions, questions which I am unable
to answer with any strong sense of accuracy. But my students have certainly seen the
material in a different light, have clearly shown me that they can grasp some of
the concepts better than before, and to the extent that they are all more interested
and involved in their learning I see this as a positive enhancement. They are

genuinely complimentary in their assessment of the role of calculators in the course.
SUPPLEMENTARY MATERIAL

The programs in this book have been structured into a calculator directory (the
MTRX directory) and loaded onto a computer disk which is available from the
publisher to instructors who wish to adopt the book for classroom use. The MTRX
directory may be transferred to students using the HP-48S either by calculator-to-
calculator infrared transmission or by computer-to-calculator serial transmission as
directed in the Owner's Manual. No such option is available for HP-28S users, and
the programs must be entered and organized by the individual users themselves, as

directed by Appendices 1 and 2.

X PREFACE

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to The Fund for the Improvement of
Postsecondary Education (FIPSE) which has provided substantial funding for this
project. I, my students and others who may ultimately benefit from the project am
thankful for FIPSE's dedication to innovation and improvement of American

postsecondary education.

Also, I wish to acknowledge the editors and production staff at Harcourt Brace
Jovanovich for their commitment to excellence in education through excellence in

publishing.

Don LaTorre

Contents

Preface...ccceiciiiiiiiiiiiiiiiiiiiiiiiicicicicereeee s e s ae e s s iii
Chapter 1: Calculator Preliminaries.........cccecceeieieeiiiiniiinniiiieneeeceee, 1
Number ODbjectS.....ceuuiiiiiiiiiiiiieeee 3
Data ENtry ..o 4
Programmingc.coeeueiiiiiiinniiiniie e s 4
Chapter 2: MatriCeS.....cceoiririiiiiiiiieciecece e 6
Entering AITays.......cooooiiiiiioiiiiiie e s 6
206 131 F= 2N o ¢ £ TN 12
Matrix ArithmetiC.....cooovviiiiiiiiiiiiiiii 25
Determinants and INVErSeS........cciiiiiiiiiniiiinniiinineie e 33
Matrix Builder ROUtINES........cccviiiiiiiiiiiiiiiiiiiiinncrrrr e 40
Chapter 3: Systems of Linear EQUationscoovuviiiniiiininiieniie e 48
Gaussian EImMinationooouueiiiiiiiiiiiniiiiiiiiecieiecene 48
LU-factoriZationsccouveiiiiiiiieiiiniieie et 55
Gauss-Jordan Reduction.........cceeiuuuiiiuiiiiiiniiiiiiiiiirieireeneeerneeereeeeeeensseeneseennns 66
Other Variants........ccccoiiiiiiniiiiiiniiicciie e 71
Applications to Vector Spaces.........ccceeevuriiiieeniiieiiieciitieecceciee 72
Linear Combinations and Spanning Sets.........cceceevevruvrerseiiuenicnennnennennenennn, 73
Dependence and Independencecocueeeueeeniiinieniiiniiene e 74
Bases and DImMEeNSION......ccoiviiiiiiiiiiiiiiiiiiiiiiiieieieierieee e 76
Change Of BasiSccouuiiiiiiiiiiiiiiiiiicciie e 78

xi

xii ~ CONTENTS

Chapter 4: Orthogonality......cccceeeueiiniiiiiiiiier e 82
Basic CONCEPLS....ccoiriiiiiiiiiiitien et s 83
Orthogomnality......ccccuueeiiiiiiiiiiiiiece e 84
Projections and Least SQUATres........cccceveeieesenieinieneneeitiniece sttt 88
Fitting Curves to Data........cccooviiiiiiiiniiiiiinc) 92
Orthonormal Bases........ccueviviiiiiniiiiiiiiientrenctteecee e 98
The Gram-Schmidt Processcccueeiieeniniiiininiiieienceenccene el 99
Orthogonal Matrices and QR-factorizations...........cccveeeevinieneeeiiniinnnneecnnnnnn, 102

Chapter 5: Eigenvalues and Eigenvectorscceevueeeniiiiiniiiiennnieneniienenn, 110
The Characteristic Polynomialcccoviiiiiiieiiiieiiiniiiiniiiecrie e, 111
Eigenvalue Calculations.........cccouviiiiiiiiiiiiiniiiiencn e 115
SIMUlATitY.ccoveeeeiieee 123
Real Symmetric Matrices........ccocuveriieniiieiiiiiiinieccrteencte e 128

Chapter 6: Iterative Methods.........ccueeiiiiniiiiinniiiiiiii e, 130
The Jacobi and Gauss-Seidel Methods......cccccceeeeevneereececreeeierecrrreneeeeecsennnens 131
The Power Method.......cccoviiiiiiiiiiiiiiieiin e 140

Appendix 1: Program HouseKeepingcccceeeeriurereeinnnnneieiiniiniieccecccinnieeeees 148

Appendix 2: Program Organization: Directories........cccceevvvveeeriininiereiiniennnnenen, 153

Appendix 3: Vector and Matrix NOImMS.......ccceetiiiniiiiiiiininiiiteiesccniesee e 157

Appendix 4: Polynomial ROUtINES......cccvveviiiiiiiniiiiiiiiiiieceectcrccee e, 163

Program INAeX L........oeeiiiiiniiiieee e e 170

Program Index IL.........iiiiiiiiiiiiieinineccnescnnieecnssneeesssssnneees 173

Subject INA@X...ucouieniiieiiiiieteetee e e e 175

CHAPTER 1
CALCULATOR PRELIMINARIES

Before using this book, the reader should have a basic familiarity with the
HP-48S or HP-28S calculator and its operation, to the extent of being able to do
elementary keyboard calculations, perform routine real and complex number
arithmetic, and understand the basics of the stack. To acquire this basic familiarity
on the 485, study pages 20-21 and 24-27 of Chapter 1 (Getting Started), Chapter 2
(The Keyboard and Display) and Chapter 3 (The Stack and Command Line) of the
Owner's Manual. On the 285, study Chapter 1 (Getting Started), Chapter 2 (Doing
Arithmetic) and Appendix C (Notes for Algebraic Calculator Users) of the Owner's

Manual.

No further background with the calculator is required in order to begin to
explore its capabilities relative to elementary linear algebra, for we shall develop
our skills and understanding as we proceed. Though you should have the calculator
manuals available to use if needed, our exposition is intended to be self-contained.
Readers who wish to acquire an increased level of insight and understanding into the
theory and operation of the calculator are strongly advised to obtain one of the books
"HP-48 Insights"! or "HP-28 Insights"? , by William C. Wickes.

To help you recognize various calculator keystrokes and commands, we shall

adopt certain notational conventions.

e With the exception of the six white keys on the top row, keys will be
represented by helvetica characters in a box: IENTER|, |EVAL , , [STOI,

etc.

11991 by Larken Publications, 4517 NW Queens Avenue, Corvallis, Oregon 97330
2 1988 by Larken Publications, 4517 NW Queens Avenue, Corvallis, Oregon 97330

2

CHAPTER 1

On the 28S the symbol will represent the cursor menu key.

Shifted keys on the 485 may occasionally have the key name in a box

preceded by the appropriate shifts(s): @, [][MATRIX], @,
IE , @ , etc. But ordinarily, we will not show the shifts.

Similarly, shifted keys on the 285 may occasionally have the key name in a
box preceded by a black square [l] to represent the red shift key: lJ|ARRAY|,

| I VX | B | Vx|, l[CLEAR], etc. But ordinarily, we will not show the
shift key.

Menu keys for commands on various menus will show the key name in outline

form in a box:

48S 28S
DUP PRG STK menu STACK menu
PUT PRG OBJ] menu LIST menu
MTH PROB menu REAL menu
<> ARRY PRG OBJ menu ARRAY menu

Menus generally have more labels than can be shown above the six white menu
keys, and the |[NEXT| key will display the next row (page) of labels. Return

to the previous page with | PREV|. For simplicity, we will not show these two
keys in this book.

The four white arrow keys will be indicated by m, m, d | and >

CALCULATOR PRELIMINARIES 3

¢ We will not put boxes around the comma, letter or number keys. For instance,

we shall write 4, 63 instead of EE]@, and ROW instead of @@

e Calculator operations and commands that appear in programs or in the text
material will be in helvetica characters, e.g., DUP SWAP INV.

¢ Finally, you should note that in certain entry modes some keys display

different characters from what is on them. For example, in algebraic entry
mode (activated by D) or program entry mode (activated by @ on the 485,
E] on the 28S):

Key Display
/

INV

-
x| 1! |+

x2 sQ

NUMBER OBJECTS. Real and complex numbers are two of the many different

types of "objects" that the calculator can recognize, manipulate and store.

A real number object is the calculator's representation of a 12-digit floating point
number:

mantissa x 1Qexponent

where the mantissa is a 12-digit number between 1 and 9.99999999999, and -499 <
exponent < 499. Although the current display mode (STD, FIX, SCI or ENG)

4 CHAPTER 1

determines how real number objects are displayed, all internal calculations begin by
first expanding mantissas to 15 digits and exponents to 5 digits, performing the
calculations in that environment, then rounding back to 12-digit mantissas and 3-digit
exponents. However, this does not mean that all calculations are accurate to 12
digits: round-off errors from intermediate results may compound as the calculation

proceeds.

A complex number object is an ordered pair (x,y) of real numbers, and most
arithmetic, logarithmic, exponential and trigonometric operations treat real and
complex number objects uniformly. You are free to mix these two object types, and the

calculator will return a complex number if any input argument is complex.

DATA ENTRY. When keying a sequence of real numbers into the command line, say
1.1, 2.2 and 3.3, you must separate the numbers with spaces or commas for proper
recognition, asin 1.1 2.2 3.3 or 1.1,22,3.3. We recommend that you use spaces
on the 485 and commas on the 28S for ease of use. For consistency throughout this
manual we will show commas, but you should always interpret them as spaces on the
48S5. You need not insert commas or spaces between a real number and a complex
number (an ordered pair), or between two complex numbers, because the calculator

recognizes the parentheses as object delimiters.

Unless we specify otherwise, the examples and exercises in this book assume the

calculator is set to STD display mode.

PROGRAMMING. We shall require no skill or experience in writing programs but,
unless you obtain our routines by calculator-to-calculator infrared transmission or by
computer-to-calculator serial transmission (both options available for the 48S), you
will need to copy and enter simple programs into your calculator. In doing so, you
must be careful and copy the programs exactly as we show them. Special attention

should be given to correct spacing because the calculator recognizes commands that

CALCULATOR PRELIMINARIES 5

are separated by spaces. Instead of spelling out commands from the alphabet
keyboard, we recommend that you use the keystroke commands which appear either
as shifted keys (e.g., SWAP, DROP, PURGE) or as labels on the various menus;
keystroke commands will automatically insert spaces around each command. To use
the menu commands requires some familiarity with their location, but this can be
acquired in the course of entering programs. For the 485 the Operation Index, which
begins on page 707 of the Owner's Manual, gives the name, a description, and the
location of all HP-48S commands. The Operation Index for the 285 begins on page
323 of the Reference Manual.

Using keystroke commands will also increase your speed in keying in programs
and help avoid errors due to the insertion of extra spaces. For instance, using the

@, , and keys to enter the command R-C will produce R = C, and the
spaces surrounding the arrow will result in an error. The desired R-»C command
(real-to-complex conversion) can be found on the second page of the PRG OBJ
(program object) menu of the 485, and on the first page of the COMPLEX menu of the
28S.

Appendix 1 is a brief review of the procedures for entering, naming, storing,
editing, visiting, recalling and purging programs. Unless you are experienced in these
matters, you should read this appendix now before you begin to encounter programs in

Chapter 2.

Appendix 2 is a discussion of how the programs in the book should be organized,
and we recommend (especially to 28S users) that you read it immediately after

finishing Appendix 1.

CHAPTER 2
MATRICES

On the HP-48S and HP-28S, rectangular arrangements of real or complex numbers
are called arrays. Arrays can be one-dimensional (vectors) or two-dimensional
(matrices) and are considered to be single objects. Consequently, they can be
manipulated with many of the same basic commands used in ordinary arithmetic.
We shall begin by examining some of the ways of entering, editing, and manipulating

arrays.

2.1 ENTERING ARRAYS

A one-dimensional array (vector) is represented on the calculator by enclosing a
sequence of real or complex numbers in square brackets, as in [1 2 3] or
[(1,2) (3,4) (5,6)]. A two-dimensional array (matrix) is distinguished by an initial

square bracket [, followed by each row vector, and ends with a closing square

bracket] . For example, in standard display mode the 2x3 real matrix[‘1 % g] will
1+ 1+2i

appear as (1 23] and the 3x2 complex matrix | 21 2+2i | will appear as
[456]] 3+ 3+2i

(a1, (.2]
[(2.1), (2,2)]
[3.1),B2)]]

MATRICES 7

ON THE 48S.

USING THE COMMAND LINE. The vector [12 3] is entered with keystrokes

IEI 1, 2, 3 |ENTER|. Be sure to insert spaces between the 1, 2, 3 with the

key. There are two ways of entering a matrix:

e row-by-row: start the matrix with [[by pressing the IE key twice, enter the

first row and press e

order and press | ENTER|.

EXAMPLE: Keystrokes

[(][[1]1,2,3|>] 4,5,6,7,8 9 [ENTER

, then continue entering the remaining entries in row

[[1 2 3]
will produce the matrix [4 5 6]
[7 8 9]]

The | B> | key simply defines the number of columns. Now press | DROP| to drop this

matrix from the stack. (When no command line is present you need not press the

to DROP.)

e as a dimensioned array: enter the numbers into the command line from left-to-

right in row order separated by spaces, then the dimensions as a list, {no. rows,
no. columns}, and press [ENTER| to place all this on the stack. Then press

(on the PRG OBJ menu).
EXAMPLE: Keystrokes 1, 2, 3, 4, 5, 6 [{]] 2, 3 [ENTER] [~ARR|

([1 23]
[456]]

return the matrix

8 CHAPTER2

The numbers may be any mixture of real or complex numbers (ordered pairs), but

if any one entry is complex then the entire array will be complex To enter a single

complex number, say (1,2), press 1, 2 |[ENTER|. To enter the two

complex numbers (3,4) and (5,6) press 3, 40| []
5, 6 |[ENTER|. Notice the action of the [D> | key and that the [ENTER| completes

the entry.

USING THE MATRIXWRITER. Enter the MatrixWriter application by pressing

[P] |MATRIX|. This activates a spreadsheet-type display, with a dark cursor
resting in the 1-1 position. Check to see that the command is active by

noting a small white box within this menu label (if the box is not present, simply

press the white key beneath the | GO=>| label to activate it.) Key in the numbers

of the first row of the matrix in row order separated by spaces and then press

ENTER|. When you are ready to go to the second row press | V|. This will define

the number of columns and position the cursor at the 2-1 entry. Now key in the
remaining entries of the matrix in row order (separated by spaces) and press

ENTER]. A final [ENTER| will put the matrix onto the stack.

EXAMPLE. The keystrokes [| [MATRIX] 1,2, 3 [ENTER] | V| 4, 5, 6, 7, 8,
9 |[ENTER| |ENTER| will produce this matrix on the stack:

[[12 3]
[45 6]
[789]]

Clearly, for entering simple matrices (say, with integer entries) the command

line is faster and easier to use than the MatrixWriter application. But the

MATRICES 9

MatrixWriter has the advantage that for more complicated matrices, an entry can be
calculated (using RPN syntax) on the command line within the MatrixWriter

environment before it is entered into its position. As an example, construct the matrix

[[{17 In3]

[e w2])

Although the term MatrixWriter suggests that it can be used only for matrices,
it is actually an extremely versatile environment for entering, reviewing and editing
both vectors and matrices. To enter a vector using the MatrixWriter, say vector

[1 2 3 4], start with an empty stack and enter the MatrixWriter environment

with | p | |MATRIX]. Note that the menu key |VECO | appears. If you press 1,

2,3,4 IENTER| |ENTERJ, vector[1 2 3 4] will show on the stack. The presence of
the white box in |[VECO | indicates that vector entry is active. If you toggle off this
key to see without the box, the keystrokes 1, 2, 3, 4 IENTER| [ENTER| will

return the matrix[[1 2 3 4]].

Whenever you enter the MatrixWriter with I (4] IMATRIX , the vector entry

mode |VEC | is active by default. But if you enter the MatrixWriter with | V| to
review an array on level 1, the status of reflects the nature of the array:
lVE@ O] for a vector and for a matrix. Finally, note that you can quickly

convert the vector [1 2 3 4] to the matrix [[1 2 3 4]]and vice-versa by starting

with either one on level 1, pressing V| to enter the MatrixWriter, then changing

the status of and pressing enter.

A final note about entering arrays using the MatrixWriter application. Array

entries may be real or complex numbers, but when you use the MatrixWriter to

initially enter a matrix into the calculator, the array object type (real or complex) is

10 CHAPTER2

determined by the 1-1 entry. Thus, if the 1-1 entry is real, you cannot enter a
subsequent entry as a complex number. But, if the 1-1 entry is a complex number (an
ordered pair), any subsequent entry of a real number x will be accepted and written as

the complex number (x, 0).

ON THE 28S. The vector [12 3] is entered with keystrokes m 1, 2, 3 |[ENTER|.

Note that the enter command actually produces the closing bracket for you. There

are two ways of entering a matrix:

e row-by-row: start the matrix with [, enter each row as a separate vector, then

press
EXAMPLE: Keystrokes
[l 1. 2. 3
[4.5.6

[[123]

produce the matrix [456]]

Now press [DROP| to drop this matrix from the stack.

® ags a dimensioned array: enter the numbers from left-to-right in row order

separated by commas, then the dimensions as a list, {no. rows, no. columns},

then press (found on the . menu).
EXAMPLE: Keystrokes 1, 2, 3,4, 5,6 [{| 2, 3

[[1 23]
[456]]

Note, again, that pressing | ARRY| has the effect of closing the curly braces on
{2, 3}.

return the matrix

MATRICES 11

The numbers may be any mixture of real or complex numbers (ordered pairs), but
if any one entry is complex then the entire array will be complex (try it!). Also, you

may use a space instead of a comma to separate number entries, but on the 28S the
SPACE| key is located on the left keyboard, making it awkward to use.

NOTE: On the 485 and the 285, as a matter of convenience, any n-vector
x = [x; X, .. x;] may be premultiplied by any mxn matrix A to obtain Ax. Thus, in
this context, x is treated as if it were an nx1 matrix. But you should note that this
treatment of x is peculiar to this context: in all other applications, x is a vector ... not a
matrix. You may not, e.g., perform a multiplication like xA for a matrix A, nor can

you transpose or take the determinant of a 1-vector [x].

EXERCISES 2.1
1. Set the number display mode to and practice entering the following

integer-valued matrices row-by-row. To see the hidden entries on the 48S,

simply press | V| to view the matrix in the MatrixWriter environment, where

the four white arrow keys enable you to move to any position. The entry in the

cursor position is identified on the command line. On the 285, when the
command line is inactive (press to clear or display it) you can see 4 rows.

The keys ll|VIEW?| and Jll|VIEW{| allow you to scroll vertically to view

more rows. Alternatively, on either calculator, with the matrix in level 1 you
may use | EDIT| to put it on the command line, where the white arrow keys can

be used to see any part of the matrix; press when you're finished viewing.

12 CHAPTER2

1 -1

31 2 4 2 1 2 2

5 0 3 3 3

(a){"; g ;:I Mb)6 1 8 @4 4
0 29 5 5

6 6

01-102-203-3204-+4
@Wlo5506-607-7028-8
2. Enter each of the matrices in Exercise 1 as a dimensioned array.

3. Set the number display mode to 2 | FIX |, and go to the MTH PROB menu on
the 485 and the REAL menu on the 28S. Each press of the | RAND| key will

produce a random number, rounded to 2 decimal digits. Practice entering a few
"random matrices" as dimensioned arrays. What happens if you try row-by-row

entry of random matrices?

2.2 EDITING ARRAYS

In working with arrays you will sometimes have to perform various editing
procedures such as taking a matrix apart, determining dimensions, extracting entries,
changing entries, extracting rows or columns, deleting rows or columns, separating into
rows or inserting additional rows or columns. These are the kinds of editing

procedures we are accustomed to performing when working with pencil and paper.

TAKING AN ARRAY APART. Just as the menu key | ARRY| creates arrays, the
keys on the 48S and | ARRY= | on the 28S take an array apart. For

[[123]
[456]]

puts the entries on the stack in row order and the dimensions in level 1. For

example, with the matrix on level 1, pressing l ©J=?>| or | ARRY=

example:

MATRICES 13

[[1 2 3]
[456]]

OBJ= | returns 1, 2, 3, 4, 5, 6, { 23 }. (This sequence is interpreted as

[[1 2 3]
[456]]

{ 2 3} to the stack with { 2 3 } on level 1).

follows: with on level 1, pressing | OBJ= | returns 1, 2, 3, 4, 5, 6 and

DETERMINING DIMENSIONS. The menu key | SIZE|, located on the third
page of the PRG OBJ menu of the 485 and on the second page of the ARRAY (or

LIST) menu of the 285, returns the dimensions of an array on level 1:

[{1 : 2}] returns{23},and[123]retums{3}.

EXTRACTING ENTRIES. To get a particular entry from an array use the menu key
| @ETI (| @ETI is on the PRG OBJ menu of the 48S and on the ARRAY menu of the

28S):

[[[1 2 :63]” {12} returns 5. (Meaning: with the indicated array on level

2, and the list {12 } on level 1, returns 5 to level 1.)

On the 48S there is an even better way to extract an array entry. Starting with
the array on level 1, press E to view it in the MatrixWriter environment and

move the cursor to the position whose entry you want to extract. Then press to

turn to the next page of the MATRIX menu and press | ®*STIK| to copy the entry to the
stack. Press | ENTER] to see the array on level 1 and the extracted entry on level 2.

14 CHAPTER2

CHANGING ENTRIES. There are several ways to change entries in an array.

(i)

(ii)

You can copy the array from level 1 to the command line with | EDIT],

where the white arrow keys then let you move to any desired entry and
change it. With the 48S you use the key to delete characters, then
simply key in the new characters. With the 28S the key toggles
between Replace Mode (a box cursor), in which new characters replace
existing ones, and Insert Mode (an arrow cursor), in which new characters

are inserted between existing ones. Return the edited matrix to level 1

with |ENTER].

Another way to change an entry in an array is to use the menu keys

(on the last page of the PRG OBJ menu on the 48S and the first page of
the ARRAY menu on the 28S).

o [[1 23]
EXAMPLE: With |, o o on level 1, the keystrokes [{}] 1, 2 [ENTER

7 return[[[l Z.) 2]])" (On the 28S use m instead of).

CAUTION: If the number to be put into the array is complex, the array itself must be

(iii) On the 48S you may copy the array into the MatrixWriter with | V|,

complex.

position the cursor over the entry to be changed, key the new entry into
the command line and press | ENTER| to insert it at the cursor location.

Return to the stack with another |[ENTER|. This method is especially
useful because you can calculate the new entry on the command line in RPN

before entering it.

MATRICES 15

(iv) You may use the following simple program NU.EL; but note that it is written

to handle only matrices and not vectors.

NU.EL (New matrix element)
Inputs: level 4: a matrix
level 3: an integer |
level 2: an integer J
level 1: a number NU
Effect: returns to level 1 the input matrix having
the number NU as the (I, J)-entry.

« > | J NU « {I J} NU PUT » »

Key the program into the command line and press [ENTER| to put it onto level 1 of
the stack. Then press E], key in NU.EL, and press to store the program under

the name NU.EL in your user memory. Pressing on the 485 or |[USER| on the
28S will display a new menu key [NU.EL|. (Now is a good time to read

Appendices 1 and 2, if you have not done so already.)

[[12 3]
[456]]

17
keystrokes 1,2, 7 | NU.EL| will retum[[[4 5 2]” to level 1.

You may use program NU.EL to change the sign of an entry. But on the 485 it is

EXAMPLE. Starting with matrix on level 1 and performing the

much easier to put the matrix into the MatrixWriter environment, position the cursor

16 CHAPTER2

over the desired entry, and then press I EDI]TI" |+/-| [ENTERI |ENTER]. Since this

option is not available on the 28S, you may find it convenient to use the following

program CH.SN.

CH.SN (change sign)
Inputs: level 3: a matrix A
level 2: an integer |
level 1: an integer K
Effect: changes the sign of the (I, K)-entry of A

« » Al K « A Al K EVAL NEG {1K} SWAP PUT » »

Press E] CH.SN to name and store the program in user memory. Press

or to see the new menu key .

. 1 23]
EXAMPLE. With matrix [456]]°" level 1, keystrokes 2, 3 | CH.SN | return

[[1 23]
[45-6]]

EXTRACTING ROWS OR COLUMNS. There are times when you may want to
extract a particular row or column to use in some way. The following program will
extract a specified row from a matrix, put the extracted row onto level 1 and the

original matrix on level 2.

MATRICES 17

C.ROW (Extract a matrix row)
Inputs: level 2: a matrix
level 1: aninteger L
Effect: puts row L of the matrix onto level 1
and the matrix onto level 2

« > AL« ASIZE 2 GET » N « 1 N FOR | "A(L, Iy
EVAL NEXT N -ARRY A SWAP » » »

As with the earlier programs, key the program into the command line and press
ENTER| to place it onto level 1 of the stack. Then press [Il, key in C.ROW, and

press to store the program in user memory under its name. Pressing

or will display a new menu key .

[[6 3 5]
[4 8 7]
EXAMPLE. With matrix [9 -1 2] on level 1, the keystrokes 5 | C.ROW/| will
[3 4 1]
[-2 7 9]]
a

return this matrix to level 2 and the vector [-2 7 9] to level 1.

The column version of program C.ROW is C.COL:

C.CoL (Extract a matrix column)

« SWAP TRN CONJ SWAP C.ROW SWAP TRN CONJ
SWAP »

18 CHAPTER2

NOTE: The command CONJ appears twice in this program, each time immediately
after TRN. The command TRN returns the conjugate transpose of a matrix, which is
the transpose if the matrix is real. But if the matrix is complex, TRN must be

followed by CONJ to see the ordinary transpose of the matrix. See Section 2.3.

([0 (1,1) (3.4)]
Try this program on the matrix [(1,-1) (4,0) (2,-3)] .
[(3-4) (2,3) (5,0) 1]

DELETING A ROW OR COLUMN. On the 48S, the MatrixWriter provides a way
to delete a specified row or column from a matrix on level 1. Simply display the

matrix in the MatrixWriter environment and move the cursor to any position in the

row (or column) you wish to delete, turn to the next page of the MATRIX menu with
and then press | - ROW | (or | -COL I) to delete the row (or column). As

usual, return the new matrix to level 1 with | ENTER|.

On the 28S, we recommend that you use the program DELROW [Wickes?, p. 275]

given below. By transposing the matrix, executing DELROW and then transposing
the result, you can also delete a column. But, it is more convenient to use a simple
program DELCOL which performs these operations for you. Finally, to delete both
a specified row and a specified column (i.e., to compute a specified minor of the input
matrix), program MINOR [Wickes, p. 275] may be used.

MATRICES 19

DELROW (Delete a matrix row)
Inputs: level 2: a matrix
level 1: an integer r
Effect: Deletes row r of the matrix and returns
the modified matrix to level 1.

« » 1 « ARRY- LIST» DROP » nm« nr-m *

-LIST » s « m DROPN s LIST» DROP » n1 - m 2
SLIST 2ARRY » » »

The column version of DELROW is DELCOL:

DELCOL (Delete a matrix column)

« SWAP TRN SWAP DELROW TRN »

[[1 2 3 4]
EXAMPLE. With [5 6 7 8] on level 1, keystrokes 3 | DELRO| return
[9 10 11 12]]

[1 23 4] [[1 3 4]
[5678]] Then 2 returns 578]]

— —

20 CHAPTER2

MINOR (Computes a matrix minor)
Inputs: level 3: a matrix
level 2: an integer r
level 1: anintegerc
Effect: returns the matrix with row r and column c deleted.

« 3 ROLLD DELROW TRN SWAP DELROW TRN »

[[1 2 3 4]

EXAMPLE. With matrix [5 6 7 8] on level 1, keystrokes 1, 3| MINO
[9 10 11 12]]

[

¢ [65 6 8]
UM e 1012]]"

SEPARATING INTO ROWS. After copying a matrix into the command line with
EDIT], you can remove the starting and ending brackets of the matrix to separate it

into its row vectors.

You should try it on a matrix of your choice. A program which does all this in
a single keystroke is » ROW [Vectors and Matrices, Copyright Hewlett-Packard
Company, 1987. Reproduced with permission.].

MATRICES 21

-ROW (Separate into rows)
Inputs: level 1: a matrix

Effect: separates a matrix into its row vectors

« ARRY- LIST» DROP » nm « 1 n FORi m 1
=LIST 2 ARRY ni - m » i + ROLLD NEXT » »

[[5 2 3] [5 2 3]
EXAMPLE. With [1 6 2] on level 1,retums[1 6 2],
[89 1]] [8 9 1]

A companion program, also by Hewlett-Packard [p. 41 in Vectors and Matrices], is

ROW=-, which assembles a stack of row vectors into a matrix.

ROW- (Assemble row vectors into a matrix)
Inputs: levels 2 through n + 1: vectors vy, Vq_1, ..., V§
respectively
level 1: the integer n
Effect: assembles the n vectors into a matrix having v; as

row i.

« OVER SIZE LIST» DROP » nm « 0 n1-FORiim
* N i -+ ROLL ARRY-» DROP NEXT n m 2 -LIST -»ARRY

» »

22 CHAPTER2

EXAMPLE. With the stack showing

3: [123]
2: [456]
1: [789]

[

. [1
3 | ROW= | returns [4 .
‘ [7]

INSERTING ADDITIONAL ROWS. The MatrixWriter application also includes a

[o IS BN V]

3
6
9

[N SRy —

way to insert additional rows or columns into a matrix. With the matrix displayed
in the MatrixWriter, the menu key | +ROW | (or | +COL |) will insert a row (or

column) of zeros at the cursor position. You may then inset new entries in place of

the zeros.

But it is generally more convenient (and a necessity on the 285) to use a simple
program to do the insertion. Now that we have program -ROW which separates a
matrix into its (say, n) row vectors, it would seem natural that we merely insert an
additional vector into the list at the right place, then reassemble the (n + 1) vectors
into a new matrix. Program AD.ROW (additional row), does just that. Its column

analogue, AD.COL, can be used to insert an additional column.

MATRICES 23

AD.ROW (Additional row)
Inputs: level 3: a matrix
level 2: a vector v
level 1: aninteger K
Effect: inserts vector v into the input matrix as an
additional row, row K.

« » AVK « ASIZE1 GET » M « A D ROW V M 1
+ K-1+ ROLLD M1 + ROW=> » » »

AD.COL (Additional column)
Inputs: level 3: a matrix
level 2: a vector v
level 1: an integer K
Effect: inserts vector v into the input matrix as an

additional column, column K.

« ROT TRN CONJ 3 ROLLD AD.ROW TRN CONJ »

1-2 37
EXAMPLE. To enlarge[0 5-8 6] by inserting a row of alternating 1's and 0's as
2 -3 40

[2 3 7]

1
0 5 -8 6] onlevel2andand[1010] on level 1 and
2 3 4 0]]

row 3, we start with

— p— p—

24 CHAPTER2

[[1 2 3 7]
[0O 5 -8 6] . .
press 3 | AD.RO |. The result [10 1 0] is returned. After entering

[2 -3 4 0]]

[[1-1 -23 7]

) [0 6 5-8 6]

[-1650], keystrokes 2| AD.CO | return (1501 0]

[2 0-3 4 0]]

INTERCHANGING ROWS. One of the most useful editing procedures is to

interchange two rows, say rows K and L. The following program enables you to do
this.

RO.KL (Interchange rows K and L)
Inputs: level 3: a matrix A
level 2: an integer K
level 1: aninteger L
Effect: interchanges rows K and L of matrix A

« > AKL «A SIZE 2 GET > N« A1 N FOR |

'A(K, 1) EVAL {L |} SWAP PUT NEXT 1N FORJ 'A(LJ)
EVAL {KJ} SWAP PUT NEXT » » »

MATRICES 25

[[
EXAMPLE. With matrix [
[

W N =

]
] on level 1, press 1, 3 | RO.KL| to return
]

- D W
- D W
- D W
[P

2.3 MATRIX ARITHMETIC

Addition and subtraction of matrices proceeds just as for real numbers. To
calculate A+B simply key in matrix A and press [ENTER|, then key in B and press
. Pressing B instead of calculates A-B. Note that the commands and EI
add or subtract the object on level 1 to or from the one on level 2. In case A and B are

stored in user memory, you have two choices:

e with the menu keys and showing, press to add;

¢ alternatively, you may use algebraic entry mode and press EI A + B |EVAL
to add.

SCALAR MULTIPLICATION. To multiply a matrix by a scalar c, key in the
matrix and press | ENTER|, then key in scalar ¢ and press E If either the matrix
or the scalar is complex then the result will be a complex matrix. If the matrix is in

user memory, you may use the proper menu key or algebraic entry mode as above.
Multiplying by -1 can be done with a single keystroke by pressing the key on the

48S or the key on the 28S.

MATRIX MULTIPLICATION. To calculate a matrix product AB, proceed as in
forming A+B but press instead of . The important point to keep in mind is

that in calculating AB, matrix A must be on level 2 and matrix B on level 1. That is,

26 CHAPTER2

the number of columns of the matrix on level 2 must equal the number of rows of the

matrix on level 1. Ordinarily, this means that you should enter the left-hand factor

first.

MATRIX POWERS. Unlike the case for real or complex numbers, you cannot use the
key to calculate powers of a square matrix A. You can, however, obtain A? by

using the EI key or executing the command SQ. For more general powers of A, say

AKwhereK=1,2,3,...,you can use the following program.

A.KTH (Kt power of a matrix)
Inputs: level 2: a square matrix A
level 1: an integer K
Effect: returns AK, the K power of A

«> AK« A SIZE1 GET IDN 1 K FOR | A * NEXT » »

0 -1
.(1) (1) , begin by entering the
10
P

given matrix and storing it in memory as matrix B. Now press 5| A.KTH | to

0
EXAMPLE. To calculate B5 + B3 + B for B = (1)
-1

[[0 16 0 -16]

put { 1: -106 '1: 106} on level 1. Next, press 3 | A.KTH | to put

[16 0 16 0]]

MATRICES 27

[[O 40 -4]

{321-?) 2% on level 1. Finally, press B | ENTER to show B® + B3 + B as
[-4 04 0]]

[[0 21 0 -21]

[21 0 -21 0]

[0 -21 0 21]

[21 0 21 0]]

More generally, given a square matrix A and an arbitrary polynomial
p(x) = a,x™ + a,;x™1 + ... + a;x + a5, we may want to find p(A) = A® + a,_A™! + ... +

a;A + a,l. The following program, P.OFA, does just that.

P.OFA (Polynomial evaluation at A)
Inputs: level2: alist{a, a,, ..a, a, } of coefficients

level 1: a square matrix A
Effect: returns p(A) = a,A" + a,,A™" + ... + a,A + a]

« > L A« ASIZE1 GET » K «L 1 GET 2 L SIZE
FOR N A* L N GET K IDN * + NEXT » » »

EXAMPLE. Find p(A) for p(x) = 1.3x5 - 4x* + 2.1x2 + 5x + 6.2 and

1 2 3 4

A= g g ; g Write the coefficients as a list {1.3 -4 0 2.1 5 6.2}.
5 4 3 2

Next enter matrix A. Pressing | P.OFA | and using 3 FIX display mode we have

28 CHAPTER2

[[12455 6.677 7.099 7.521]
[16.975 23597 17.819 18.241]
[20.545 20.123 25.901 19.279]
[9.825 9.403 8.981 14.759]]

p(A) =

CAUTION: You must use caution when calculating powers of a matrix. Because your
calculator only shows 12 digit mantissas, powers of even small matrices may lead to

[[9 9 9 9]
[9 9 9 9]
[9 9 9 9]
[9 9 9 9]]

found correctly on the calculator to be the constant 4x4 matrix whose entries are
47*98 = 705,277,476,864. But A9 has entries 4899, a number which the calculator can
only represent as 2.5389989167E13, but which is 104 short of the actual
2.5389989167104E13.

computational inaccuracies. For example, if A = , then A8 can be

ADDING A CONSTANT. To add a constant ¢ to each entry of a matrix A, use the
key (on the MTH MATR menu of the 485 and on the ARRY menu of the 28S)
to create a constant matrix whose entries are c , then add this new matrix to A.
With A on level 1 of the stack, you have two choices in creating the constant matrix

with the same dimensions as A:

¢ enter the dimensions of A as a list { m n }, where m is the number of rows and
n is the number of columns of A, then key in the constant ¢ and press .

e alternatively, and preferably, put a copy of A on level 2 with |ENTER| (or a
command, like DUP, which performs | ENTER|), then key in the constant ¢

and press .

MATRICES 29

EXAMPLE. To add 1.95 to each entry in matrix A =[_gg -_To_? gg] , start with A

on level 1. Press [ENTER| to copy this matrix onto level 2, then 1.95 .

These last two keystrokes replace the copy of A on level 1 with the constant matrix

[1.95 195 1.95

195 195 1.95] Now press to add the constant matrix to the copy of A on

.| 273 1.79 2.61
level 2. The result 15[106 1.74 2.64] .

TRANSPOSING. With a matrix on level 1, the menu key returns the

conjugate transpose (i.e., the conjugate of the transpose). Thus, if the matrix on level
1 is real, W returns its ordinary transpose. To obtain the ordinary transpose of

a complex matrix, press | TRN | then | CONJ | The | CONJ | command returns
the complex conjugate of its input argument. On the 485, you will find on
the MTH MATR menu and | CONJ | on the MTH PARTS menu. On the 28S, both

commands are on the ARRAY menu.

EXAMPLE. With [2"'?3; ;'4i g +] on level 1, press to see the conjugate

2-3i i

transpose|: 7+4i 2] Now press | CONJ | to see the ordinary transpose
3

-i

2+3i -i . .
7-4i 2 of the original matrix.
3 5+i

30 CHAPTER2

EXERCISES 2.3

1. Enter the matrix A =

as a dimensioned array, and verify its

andw
[ENIN
Soow
—_Now!
Womo

correct entry.

(a)

(b)

(0

(d)

2. (a)
(b)
(0)

3. (a)

(b)

Disassemble A into its entries, drop the last 5 entries, and rearrange the

first 15 entries (in row order) into a new 5x3 matrix B.

Use | EDIT| to change the 7 in row three of B to 4 and the 8 in the last row

to 0. Transpose the result.

Now change the 9 in B to 11/8. Try this first using [EDIT| and see what

happens - press to return to level 1 when you want to. Now use

to effect the change. Verify your success by viewing the result.

Finally, use | NU.EL| to change the 5 to V306.25. After viewing the final

matrix drop it from the stack.

Create a 5x4 matrix A = (ay) where a;; = .ij .

Extract the submatrix B consisting of rows 2, 3 and 5.
Remove col 3 from B and square the result.

Enter matrix A by starting with the constant matrix of all 0's and then

inserting each non-0 entry

1000
2000
A=l 3400
5670

Calculate A - A3 + 2I using keystroke commands.

MATRICES 31

111
Enter A = I: 22 2] . Enlarge A by inserting an additional row on the bottom
333

and an additional column on the right. Do this as follows:
(a) Insert a row of 4's, then a column of 5's.
(b) Now start over with A, and first insert a column of 5's, than a row of 4's.

(c) Are the results in (a) and (b) the same?

1-314 7 0 -1
EnterA=|2 50|andB=|5 3 2].
6 -38 9 -6 0

(a) Form the partitioned matrix [‘g] .

(b) Form the partitioned matrix [A B].

T
(Hint:[)y(] =[XT YT])

—
Ow

(c) Form the partitioned matrix [

(d) Form the partitioned matrix [

o»
= O

32

CHAPTER 2

0
3

Enter A = [
-2

GIN =

2
0 -
3

— -

|

T
(a) Form B = [;T] where x is column 2 and y is column 3 of A; calculate BA.

(b) Now let C be the submatrix of A consisting of columns 1 and 4 of A;

calculate CB.

—

6 2

1-2 354 35
LetA=| 7 9 0-1 3|andB=]| -2 8
38621 7 1

1-3

NOAO W

(a) Get the submatrix C of B consisting of rows 2 and 4.

(b) Form the partitioned matrix [A CT] = D and get the submatrix consisting of

the odd-numbered columns.

(c) Interchange rows 1 and 3 of D, then columns 2 and 4 of the result.

. . 3+i 6
LetA=|5+1 2-3i 1 |andB=| 0 2-i .
4 6-1i 3+4i 4-31 1+i

(a) Find the conjugate transpose A* of A and the transpose BT of B.

(b) Calculate A* + B, A + BT , AA*, BTB and (2 - 3i)A.

2-i -2i 3-2i
ForA=| 1+5i 3+42i 5 , find A2 - 4A* + 3AT - L.
i 6 -1+2i

MATRICES 33

7+ 1 5+46i 3+2i -9-5i
10. Given A = _131; 6li ’Z I ill }) - 8i 8-%11 , separate A into its real and

-6 7+4i -3-3i 9 +5i

imaginary parts with , transpose the real part and recombine it (use
R=>C |) with the imaginary part. Then get column 3 of the result. (The

commands | C=R | and | R=®C| appear in the PGM OBJ menu of the 48S and in
the REAL menu of the 28S.)

11. For this exercise, set your calculator to 3 FIX mode. Let A =

(SRR

ST Y REX
i w
nwoio

andx=[.1 .2 3 4]T.

(a) Examine the sequence A, A% A3, ... to find lim {A"} .

n—oe

(b) Examine the sequence Ax, A%x, A3, ... to find lim {An x} .

n—oo
(¢) What is the connection between the two limits in (a) and (b)?

12. Repeat parts (b) - (c) of exercise 11 using any vector x =[a b ¢ d]T of your

choice where a+b+c+d=1.

2.4 DETERMINANTS AND INVERSES.

With a square matrix A on stack level 1, pressing will return the
determinant of A, and will return A1 in the event that detA # 0. On the 48S

is on the MTH MATR menu. On the 285 you will find on the third

line of the ARRAY menu.

34 CHAPTER2

[
EXAMPLE. (a) Key in matrix A =

H AN
HON

4
10
6

— p— P

]
] and press |[ENTER| [ENTER|
1]

ENTER| to put 3 copies of A on the stack.

(b) Press to show detA = 8.

o
]

[[
(c) Use [DROP|, then to show A= |
[

N -
o o;m
L}
oo

(d) Now press [*] to check AA1=1.

However, as with any tool - no matter how sophisticated - some care must be
exercised with these commands in order to obtain results that are mathematically

correct. To make the point, you should complete the following experimental exercise.

EXPERIMENTAL EXERCISE

[

[[1
andB= [3
[3

(a) Enter and store A =

DN =
»bh =
MO =
[N —
(2 I <> B
b=
[—

]]

(b) Press [A |[ENTER] [ENTER], then to see detA. Since detA = 0, A is
singular and has no inverse. Check this by executing [DROP| to remove the 0,
then to see what happens. The error message "INV Error: Infinite result"

—_——

alerts you to the fact that the calculator is unable to calculate an inverse for A.

(c) None of the above was unexpected; after all, A has two identical rows, so detA

is obviously 0 and thus A has no inverse.

MATRICES 35

(d) Now put three copies of B on the stack and press to show detB =

(e)

(f)

3x10'11, Use |DROP)|, then to obtain

[[2 66666666666.6 -66666666667 |
Bl= [-1 33333333333.3 -33333333333 | . This looks suspicious, so
[0 -99999999999.9 100000000000] |

[[1 0 O]
check by pressing [*] to show BB1= [0 O 1] . Since BB! %I, this result is
[0 0 1]]

clearly incorrect.

Recapture the last arguments with on the 48S or with [lI|{UNDO

on the 285, use | SWAP| to reverse the order of B and B!, then press E to see

[[8 -4 4]
B1B= [-1 .8 .2] , which is even worse!
[3 6 .4]]
Matrix B, like A, has two identical rows. This guarantees that detB = 0, so B
has no inverse. Why has the calculator failed us in this case, and not with

matrix A?

One thing is clear: use of the calculator to calculate determinants and matrix

inverses may yield incorrect results. Certainly, a little forethought given to matrices A

and B would have been in order. That forethought may have told us that both

matrices have 0 determinants and therefore have no inverses.

Why, then, did we not get these results for matrix B? The answer is due to the

calculator's built-in routine for finding determinants and inverses and the fact that it

36 CHAPTER2

uses floating point arithmetic. Even without considering what that routine might be
(we shall say more about it in Chapter 3) the above determinants come down to

calculating
detA=2%[6-(2%3)],and
detB=3%[4-(3%4/3)].

In exact arithmetic, both are 0. The floating point calculation of detA is clearly 0,

but for detB we have

detB = 3 *[4- (3% 1.33333333333)]

3 *[4 -3.99999999999]

3 %[1x1017)

3x 101,

And, given that the routine returned a non-0 value for detB, it went on to calculate an

inverse.

In view of all this, how should a beginning linear algebra student use the
calculator to find determinants and inverses? Certainly, calculating a determinant as a
test for matrix invertibility is computationally impractical, due to the floating point
environment of the calculator. As in the above example, the calculator may well return
a non-0 value (the result of round-off) for the determinant of a singular matrix. And the
size of the determinant also has no bearing on the invertibility, for while multiplying an
nxn matrix A by a non-0 number k does not change the invertibility, the
determinant of the resulting matrix is k"(detA). In fact, there is little, if any, need
to calculate determinants for matrices other than by hand for the low order, integer-
valued matrices used in elementary courses to reinforce the learning of the basic

theory. The inclusion of determinants in linear algebra courses is largely a carry-

MATRICES 37

over from late 19*" century algebra and they play a key role in helping to develop
certain theoretical concepts; but they have no use in computational mathematics.
Regarding the calculation of matrix inverses, it is seldom necessary to actually calculate
a matrix inverse, A-l. For non-singular linear systems Ax = b, there are better and more
efficient ways to solve them than calculating x = A'lb, and most other apparent needs to
calculate A-! can be circumvented by an appropriate reformulation of the problem. In
summary: the numerical calculation of matrix determinants and inverses is extremely
sensitive to round-off error and choice of numerical algorithm in a floating point
environment. Although sophisticated, professional-level computer software is
generally responsive to this sensitivity, our advice is to proceed with extreme caution in
a calculator environment and, whenever possible, avoid calculating determinants and

inverses.

To clean up calculator round-off error, we recommend that you use a simple

program CLEAN.

48S VERSION

CLEAN (Clean-up routine)
Input: level 2: an array
level 1: a positive integer N
Effect: cleans-up array entries which exhibit round-off.
Rounds-off to N decimal places.

« RND »

38 CHAPTER2

28S VERSION

CLEAN (Clean-up routine)
Input: level 2: an array
level 1: a positive integer N
Effect: cleans-up array entries which exhibit round-off.
Rounds-off to N decimal places.

« FIX RND STD »

85 6
EXAMPLE. Put two copies of A = l: 04 -3} on the stack. Since A is triangular, its
007

determinant is clearly 224, so A-! exists. Use to find A-1 on your calculator,
then press to see AA'1 with round-off error:

[[1 O -.000000000001]
AAl= [0 1 .000000000001] .
[0 0 .999999999999]]

[([(1 0 0]
Now press 11 [CLEAN| to see AA'= [0 1 0] correct to 11 decimal places.
[0 O 1]]

EXERCISES 2.4.

1. Cofactor expansions tell us that a matrix with all integer entries will have an

integer-valued determinant, so you may reason that, even if we failed to

111
recognize that B = [3 6 4} has two identical rows, detB is an integer. Thus,
3 6 4

MATRICES 39

the calculator's result detB = 3x10-11 obviously shows a little round-off and, in

fact, detB = 0. But things aren't always that simple.

(a) Enter matrix

110101
113641
A|011111
=lo13641]|
011113
113641

multiply it by 100 and ask you calculator to calculate the determinant of
the result. is the calculator's result correct? Do you see a little round-off

error?

(b) Examine rows 2 and 6 of matrix A. What does this tell you about detA?
About det[100A]?

(c) Use the fact that for an nxn matrix A, det(kA) = k"detA to explain how

round-off error contributed to the result in (a).
(d) Go back and read again the italicized statements in Section 2.4.

Suppose you ignore our advice about using x = A"lb to solve a linear system Ax =

b, and routinely apply this technique to solve Ax = b where

[[13 .6 .35] 1
A= [6 4 3] andb=[1]
[.35 3 .25]] 1

That is, put vector b on level 2 of the stack, A on level 1 and press to find
x = Alb.

40 CHAPTER2

(a) What is your calculated solution? Is it reasonable?

[[0 9 .7]
(b) LetU= [0 .2 .6] . What does determinant theory tell you about
[0 0 5]]

detU? Put two copies of U on the stack and calculate UUT. What does
determinant theory tell you about det(UUT)? What does this tell you

about your answer to (a)?

(c) Go back and read again the italicized statements in Section 2.4.

2.5 MATRIX BUILDER ROUTINES.

In beginning courses in linear algebra it is especially helpful to manipulate a
number of simple matrices. The matrices should be easy to use, have integer entries
from Z,, = { 0, 1, 2, ..., 39 }, and sometimes be of a special type: diagonal,
tridiagonal, triangular or symmetric. Such matrices may be readily generated with
the calculator and they can be used in a variety of discovery activities, as well as to

help formulate, disprove or verify conjectures.
We have included several calculator programs for this purpose.
RAN.Z - builds a random matrix over Z,,
DIAG - builds a random diagonal matrix over Z,,
U.TRI - builds a random upper-triangular matrix over Z,,
L.TRI - builds a random unit lower-triangular matrix over Z,,
TRIDIA - builds a random tridiagonal matrix over Z,,

SYMM - builds a random symmetric matrix over Z,,.

MATRICES 41

Each of these programs calls upon the calculator's random number generator RAND to
construct a random matrix of the desired type over Z,;, with a random assignment of
* signs to the entries. The calculator command RAND (found on the MTH PROB menu
of the 485 and the REAL menu of the 285) generates uniformly distributed pseudo-
random numbers x, where each x lies in the range O<x<1. Each execution of RAND
returns a value calculated from a seed based upon the previous RAND value, and the
seed can be changed by using the command RDZ (adjacent to RAND in the proper
menu). RDZ takes a real number z as a seed for the RAND command. If z is 0, the
seed is based upon the system clock. After a complete memory reset, a built-in seed is
used.

For classwork, it is often convenient to begin a particular discussion, example or
exercise by having everyone in the class use the same non-0 seed. In this event,
subsequent synchronous use of the RAND command by the class members will result in
a common sequence of random numbers. Such will occur, for example, with a common
non-0 seed and then synchronous use of any of the above six programs. Thus, with
only a few simple keystrokes, each member of the class can generate the same
random matrix over Z,;,. We have found this to be an effective classroom procedure
for class activities and for testing. Here are the six programs with illustrations of

their use. They should all be stored in the BILDR subdirectory.

42 CHAPTER2

RAN.Z (Random Matrix Generator)
Inputs: level 2: an integer M
level 1: an integer N
Effect. returns a random M by N matrix over Z,, with a

random assignment of + to the entries.
« > MN«1MN®#* FOR | RAND 10 * FLOOR RAND 10 #*

FLOOR » X « X5 < -1 1 IFTE » EVAL * NEXT M N 2 -LIST
—)ARRY » »

EXAMPLE. Press 6 to use the seed which begins this example, then press 4,

5 to generate

DIAG (Diagonal Matrix Generator)
Input. level 1: aninteger N
Effect: returns a random N by N diagonal matrix over Z,,

with a random assignment of + to the entries.
« > N«1 NFORI1NFORJIFI J-ABS 1 > THEN 0 ELSE

RAND 10 * FLOOR RAND 10 * FLOOR - X « X 5 < -1 1 IFTE »
EVAL * END NEXT {N N} -ARRY » »

MATRICES 43

EXAMPLE. Press 5 to use the seed which begins this example, then press 4

to generate

(-5

O O = 0O

[0
[0
[0

0
0
6
0

0]

0]

0]"
711

entries.

U.TRI (Upper Triangular Matrix Generator
Input: level 1: aninteger N

Effect: returns a random N by N upper triangular matrix
over Z,, with a random assignment of + to the

« > N«1NFORI1NFORJIFIJ>THEN 0 ELSE RAND 10
* FLOOR RAND 10 * FLOOR -» X « X 6 < -1 1 IFTE » EVAL *
END NEXT NEXT {N N} -ARRY » »

EXAMPLE. Press 4 to use the seed which begins this example, then press 4

to generate

[[-8 8
-9

0
[0 O
[0 O

9
0
4

4]
1]

-4]'
2]

44 CHAPTER2

L.TRI (Unit Lower Triangular Matrix Generator)
Input: level 1: aninteger N
Effect: returns a random N by N unit lower triangular
matrix over Z,, with a random assignment of + to

the entries.
« > N« 1T NFORI 1 NFORJIFI|J < THEN 0 ELSE RAND 10

* FLOOR RAND 10 * FLOOR - X « X 56 < -1 1 IFTE » EVAL *
END NEXT NEXT {N N} ->ARRY DUP IDN + » »

EXAMPLE. Press 3 to use the seed which begins this example, then press 4

to generate

0]
0]
0]
7 1]]

-—-T..—-—-.
(3]
NN = O
- O o

TRIDIA (Tridiagonal Matrix Generator)
Input: aninteger N

Effect: returns a random N by N tridiagonal matrix over
Z,, with a random assignment of + to the entries

« > N«1NFORI1NFORJIFIJ-ABS 1 > THEN 0 ELSE
RAND 10 * FLOOR RAND 10 * FLOOR -+ X « X 5 < -1 1 IFTE »
EVAL * END NEXT NEXT {N N} -ARRY » »

MATRICES 45

EXAMPLE. Press 3 to use the seed which begins this example, then press 5

to generate

[
[2
[o
[o
[o

ooy

& pp O

WO =2 00

0]
0]
0]
1]
511

DIAG + + »

Required program: DIAG

SYMM (Symmetric Matrix Generator)
Input: level 1: aninteger N
Effect: returns a random N by N symmetric matrix over Z,,

with a random assignment of £ to the entries.

« DUP » N« 1 NFORI 1 NFORJIF I J2>THEN 0 ELSE
RAND 10 * FLOOR RAND 10 * FLOOR - X « X 5 < -1 1 IFTE »
EVAL * END NEXT NEXT {N N} -ARRY DUP TRN » 3 ROLL

EXAMPLE. Press 1 to use the seed which begins this example, then press 5

to generate

W o=

-8
-1

5
-2
-3

-5]
0]
3]

-3]‘

511

46 CHAPTER 2

EXERCISES 2.5.

1.

Generate and store a random 4x3 matrix A and a random 3x5 matrix B, both over
Zyo

(a) Separate A into its 4x1 column matrices and store them in their natural
order as A, A, and A,.

(b) Separate B into its 1X5 row matrices and store them in their natural order
as B;, B, and B,.

(c) Calculate the matrix A;B; + A,B, + A;B; and compare with the matrix

product AB.

(d) Repeat parts (a) - (c) using the columns and rows of a random 3x4 matrix A

and a random 4x5 matrix B over Z,,.

(e) Summarize your findings and formulate a conjecture based upon them, being
sure to write in complete English sentences. Be prepared to hand-in your

write-up and to discuss it in class. (Note: each of the products A;B; is

called an outer product.)

(a) For n =3, 4, 5: generate two random nxn upper triangular matrices over Z,,
and calculate their product. What do you observe? Would you expect

similar results for lower triangular matrices? Why?

(b) Forn=3,4,5: generate two random nxn unit lower triangular matrices over
Z,, and calculate their product. What do you observe? Would you expect

similar results for unit upper triangular matrices? Why?

(c) Is the product of two tridiagonal matrices also tridiagonal?

MATRICES 47

3. (a) Forn=3,4,5: generate a random nxn unit lower triangular matrix L and
find L! with . Clean up any round-off error with 6 | CLEAN |.

What do you observe?
(b) Repeat (a) using arbitrary random upper triangular matrices.

(c) Repeat (a) using random tridiagional matrices.

(d) Write-up your findings and formulate several conjectures based upon them,
being sure to write in complete English sentences. Be prepared to hand-in
your write-up and to discuss it in class.

ORGANIZING YOUR PROGRAMS. In working through this chapter you have
encountered a variety of matrix editing programs. As you proceed through subsequent
chapters, you will continue to meet programs which are pertinent to the topic of the
chapter. To make efficient use of the calculator, programs should be grouped by topic
and stored in a way that makes them easy to access. In particular, since the
programs in sections 2.2 - 2.4 of this chapter are largely matrix editing routines, we
recommend that you store them in a subdirectory called ED.IT. The matrix builder
routines from the current section should be stored in a subdirectory called BILDR.
Appendix 2, Program Organization, outlines the appropriate organizational scheme.
Before proceeding to Chapter 3, you should turn to Appendix 2 and structure your
calculator accordingly.

CHAPTER 3
SYSTEMS OF LINEAR EQUATIONS

Of the many topics studied in elementary linear algebra, none is more
fundamental than systems of linear equations. Such systems arise in practically
every field of mathematical application and their importance in beginning courses
cannot be overemphasized. For brevity, we shall refer to systems of linear equations

as linear systems and denote their matrix formulation as Ax = b.

The most popular methods for dealing with linear systems in introductory linear
algebra courses are the elimination methods, consisting of several variants of
Gaussian elimination with back substitution. Many beginning courses blur the
distinction between these variants in the interest of expediency. But with an eye
toward subsequent study in linear analysis or numerical methods and the use of
professional elimination codes, it is important that students carefully distinguish
between the traditional Gaussian elimination algorithm, the back substitution
process, partial pivoting and Gauss-Jordan reduction. Likewise, it is important to
understand Gaussian elimination for square matrices as a factoring process which

factors a matrix A into triangular factors, A = LU.

3.1 GAUSSIAN ELIMINATION

In its traditional from, the Gaussian elimination algorithm for solving a square
linear system Ax = b adds suitable multiples of one equation to the others with the
goal of obtaining an equivalent upper triangular system Ux = b', where the
coefficient matrix U has 0's below the diagonal. It may be necessary to interchange
equations at various times for the elimination process to continue. Back substitution

then solves Ux = b' systematically by solving the last equation for its single

SYSTEMS OF LINEAR EQUATIONS 49

unknown, then putting this value into the next-to-last equation and solving for the
next-to-last unknown, and so on until all values for the unknowns have been
determined. All this is usually carried out without reference to the unknowns by
working with the augmented matrices [Alb]and [Ulb']. Computationally, the only
source of error is round-off, induced by the computational device itself. It is
especially important that students view the elimination as an orderly, arithmetic

process which proceeds in a top-to-bottom, left-to-right fashion.

Once a basic understanding of Gaussian elimination has been established and
several examples have been worked by hand, the calculator can be used to efficiently
perform the row operations which transform [Alb]into [U|b']. Program ELIM,
given below, pivots on a specified entry - the pivot - to produce 0's below that entry.
The program is written to handle both real and complex matrices and can be used,
more generally, to convert a matrix to row-echelon form. Notice that the program
will abort and print the error message "PIVOT ENTRY IS 0" in case the intended

pivot is 0.

ELIM (Gaussian elimination)
Inputs: level 3: a matrix
level 2: an integer K
level 1: aninteger L
Effect: pivots on the (K,L)-entry of the matrix to produce
0's below the pivot.

« > A KL « IF 'AK, L) EVAL 0 == THEN "PIVOT ENTRY IS 0"
ELSE A SIZE 1 GET - M « M IDN 'A(1, 1)) EVAL TYPE IF THEN

DUP 0 CON R-»C END K M FOR | 'A(l, L) EVAL {I K} SWAP PUT
NEXT INV {KK} 1 PUT A * » 8 RND END » »

50 CHAPTER3

Note: The command 8 RND at the end of the program rounds the display to 8
decimal places to clean up round-off error. On the 285, the appropriate command is 8
FIX RND STD.

Store this program as ELIM in subdirectory GAUSS (see Appendix 2).
EXAMPLE 1. Apply Gaussian elimination to the linear system

2x +4y + 8z = 6
X - y+2z=3
4x - y+7z=8

[[2 4 8 6] [[2 4 8 6] [[2 4 8 6]
[1-1 23] 1,1[ELim] [0 -3 -2 0] 22[ELIM] [0 -3 -2 0]
[4 17 8]] —> [0 -9 -9-4]] —> [0 0 -3 -4]]

Back substitution then gives the solution [-5/9 -8/9 4/31T.

To be genuinely useful, program ELIM must be used together with two other
routines, program RO.KL which interchanges rows K and L of a matrix, and
program BACK which performs the back substitution process. Program RO.KL may be
found at the end of section 2.2 of Chapter 2. You should keep a copy of RO.KL in
your GAUSS subdirectory.

SYSTEMS OF LINEAR EQUATIONS 51

BACK (Back substitution)
Inputs: level 2: an nxn upper triangular matrix U
level 1: an n-vector b
Effect: Solves the linear system Ux=b by back substitution.

Solves for x, and halts until you press

(or . on the 28S), then

backsolves for x,_, and halts, etc. After x, x,,, ...,
X, are on the stack, a final |CONT| returns

X =[Xy, X5, ooy X

« > Ab « A SIZE1 GET » N « {N} 0 CON 'A(1,1)' EVAL TYPE
IF THEN DUP R-»C END -» X « ED.IT N 1AFOR J 'b(J)’ EVAL A J
C.ROW SWAP DROP X DOT - 'A(JJ)' EVAL / 8 RND GAUSS HALT
ED.IT DUP X {J} ROT PUT 'X' STO -1 STEP GAUSS N DROPN X »

» » »

Store this as program BACK in subdirectory GAUSS.

COMMENTS: BACK calls upon program C.ROW which is assumed stored in the
ED.IT subdirectory. Thus, BACK switches to the ED.IT subdirectory to use C.ROW
and then switches back to the GAUSS subdirectory. BACK halts after each
backsolve step so that beginning students may exercise the desired control over the
entire back substitution process. For the 28S, replace 8 RND with 8 FIX RND STD.

EXAMPLE 2. Backsolve 2x; + 6x, -4x3 - 13x, = -24
3x, +4x3 + 3x, = -3

4%, - X, = -14

2%, = 4

52 CHAPTER 3

[[2 6 -4 -13]
[0 3 4 3]
[0 0 4 -1]
[0 0 0 -2]]

BACK]| and four applications of | CONT|, the solution is found tobe [-2-1 -3 2].

To effectively use the calculator to apply Gaussian elimination and back

Put on level 2, and [-24 -3 -14 -4] on level 1. After using

substitution to a (non-singular) linear system Ax=b, first apply ELIM to the
augmented matrix [AIb] to obtain an equivalent upper triangular system [U |b'], split
off vector b' from U with program SPLIT (below), then apply BACK to the arguments
Uand b'.

SPLIT (Split off last column)
Input: level 1: a matrix
Effect: splits off the last column of the matrix, returns the
column to level 1 and the modified matrix to level 2.

« ED.IT DUP SIZE 2 GET DUP 3 ROLLD C.COL 3 ROLLD SWAP
DELCOL SWAP GAUSS »

Store this as SPLIT in subdirectory GAUSS.

COMMENT. SPLIT calls upon programs C.COL and DELCOL in subdirectory ED.IT,
so it switches to ED.IT and then back to GAUSS.

EXAMPLE 3. To use Gaussian elimination and back substitution to solve the linear

system
5%, - 9% + 16x3 + 6x, = 48
S5x, + 9%, - 16x; - 8x, = 45
10, - 9%, + 24x3 + 8x, = 72
Sx; - 9% + 8 + 8 = 3

SYSTEMS OF LINEAR EQUATIONS 53

begin with the augmented matrix [A |b]

[[5 9 16 6 48]
[5 9 -16 -8 -45]
[10 -9 24 8 72]
[5 9 8 8 3]]

on level 1. The sequence of commands 1,1 | ELIM|; 2, 3 I lF’R@.,K[q; 2, 2 | E[LI][M]I; 3,
4 | RO.KL| returns the equivalent upper triangular system [U|b]

[[5 9 16 6 48]
[0 9 -8 -4 -24)
[0 0O 8 6 3]
[0 0 0 2 3]]

Press | SPLIT| to split off the last column. Then, | BACK| followed by four

applications of [CONT| show [3 -2 1.5 -1.5]as the solution.

We shall soon provide a calculator routine for the variant of Gaussian
elimination known as Gauss-Jordan reduction, the effect of which is to do both

elimination and back substitution in one routine.

We have already seen that row interchanges may be needed in order for
Gaussian elimination to proceed to its natural conclusion. In so doing we are simply
avoiding 0 pivots. For the practical real-world solution of large-scale linear systems,
it is just as important to avoid using pivots which are extremely small, at least in
relation to the other elements in the pivot column. This is because division by small
numbers in floating point arithmetic may ultimately induce considerable error. To
avoid this, a common pivoting strategy is to choose as the pivot any element in the
pivot column whose absolute value is maximum. This so-called partial pivoting
strategy is difficult to illustrate on the calculator because of its use of 12 digit

mantissas. Nevertheless, it is advisable that beginning students occasionally adopt

54 CHAPTER3

the partial pivoting strategy by using the RO.KL program to reinforce their

understanding of this technique.
EXERCISES 3.1

1. Use partial pivoting to find row echelon matrices row-equivalent to each of the

following matrices:

2 2 56 68 1
A= |4 3 7 5 |, B= |1
2

NWOo

21 -5 -1 -1

(=]
'

—

o

2 1 3
4 8 6|,
13

, 45 -13 -2
i-1 11 8907 6
C= '6(1)1:_i8,D=-4328-7
15 02 5116 2
3101 -1 9

2. Solve the following linear systems using Gaussian elimination with partial

pivoting and back substitution.
(@) 3 + x - 3x; = 4
4, + 2% - 2% = -3
5%, + 6x, + 8x; = 8

(b) x; - 4x, - 3x, + 3x = 2
X + 2% + 2X3 + 4x, - x5 =0

X3 -12x, + 5% = 3

2+ Axy + 4 + x5 =2

X+ 2% + x5 + 4dx, - x5 =2

SYSTEMS OF LINEAR EQUATIONS 55

(d) X, + 2% - 3x3 + 4x, = -1
2, + 6x) + 10x3 - 8x4 =
X+ 2X - 2x3 + 5% = 6
X + 33X + 5x3 + 4dxy =

(e) X, + 2%, + 3 + x5 = 2
3, + 6X; - 2% + 7x, + 5x5 = 6
X+ 3x - X3+ 3% + 2% = 2
X; + X - 2X3 + 2% + 3x5 = 2
X + 2X - 3x =4

3.2 LU-FACTORIZATIONS

In addition to recognizing Gaussian elimination as an orderly process for
converting a square matrix to upper triangular form, it is important that students also
understand it as a factorization process. In its simplest form - when no row
interchanges are involved - the coefficient matrix A of a linear system Ax = b is
factored into two triangular matrices A = LU, where L is lower triangular and has 1's
on its diagonal (unit lower triangular). This viewpoint is not only interesting from a
purely algebraic standpoint; it also lies at the heart of many modern computer codes
(such as those in the LINPACK library) used to handle linear systems. Quite
properly, most linear algebra courses today include discussions of LU-factorizations,

and this topic is one well-suited to calculator enhancement.

56 CHAPTER3

When the matrix A in a linear system Ax = b can be brought to upper triangular
form U by Gaussian elimination without row interchanges, then A = LU where L is
lower triangular with 1's along its diagonal and the entries below the diagonal are
the negatives of the multipliers used in the elimination process. For example, if 3
times row 1 was added to row 2 to produce a 0 in the (2, 1)-entry of U, then the (2, 1)-
entry of L is -3. When row interchanges are needed to avoid 0 pivots, then A = LU is
no longer valid; it is replaced by a factorization of the form PA = LU where P is a

permutation matrix which accounts for the various row interchanges.

In the simplest case - no row interchanges - it is easy to modify program ELIM so
that it will record the lower triangular entries of L beneath the diagonal entries of
U. But the modifications become more involved in the presence of row interchanges.
Since we are primarily interested in the pedagogical aspects of LU-factorizations, we
have chosen to use a calculator program which the student must control at each step,
just as in the case of hand calculations. Program LU, given below, is but a slight
modification of ELIM. In addition to performing the basic elimination step LU stores
the negatives of the multipliers below the diagonal in a matrix called "ELL", which
initially is the 0 matrix. Program MAKL creates the initial ELL. If row
interchanges are needed, the proper use of RO.KL must be made with both ELL and U
in order to continue. At the end, the calculator shows U, and the lower triangle of L

in matrix ELL. As before, complex matrices are allowed.

SYSTEMS OF LINEAR EQUATIONS 57

LU (Used to get LU-factorizations)

Inputs: As a stored variable: a variable 'ELL', obtained
from program MAKL (below) and containing a 0
matrix.
level 3: a square matrix A
level 2: an integer K
level 1: the integer K

Effect: Pivots on the (K, K)-entry to return a row-
equivalent matrix with 0's below the pivot; also puts
the negatives of the multipliers into column K of
ELL below the diagonal. Press @ to view

ELL. Used iteratively to obtain an LU-factorization.

« » A KL « IF 'AK,L) EVAL 0 == THEN "PIVOT ENTRY IS 0"
ELSE A SIZE 1 GET » M « M IDN 'A(1, 1)’ EVAL TYPE IF THEN

DUP 0 CON R-C END K M FOR | 'A(l, L)’ EVAL {1 K} SWAP PUT
NEXT INV {KK}1 PUT DUP A * SWAP K 1 + M FOR | DUP {IK}

GET NEG 8 RND 'ELL(l, K} STO NEXT DROP » 8 RND END » »

Store the program as variable LU in the GAUSS subdirectory.

NOTE: For the 28S version, replace both occurrences of 8 RND with 8 FIX RND
STD.

58 CHAPTER3

MAKL (Make ELL and P)
Input: level 1: a square matrix A
Effect: Creates a variable ELL containing a 0 matrix, and a
variable P containing an identity matrix, both the
same size as A. Used as the initial start-up to obtain
an LU-factorization.

« DUP 0 CON 'ELL' STO DUP IDN 'P' STO »

Store the program as variable MAKL in the GAUSS subdirectory next to LU.

1 2 1
EXAMPLE 1. To get an LU-factorization of A =[% 170 ;:' , start with matrix A on

level 1.

Step 1: Press | MAKL| to create starting matrices ELL and P in user memory.
(You may press to verify that you have stored a 3x3 zero matrix

as ELL, and then to see a 3x3 identity matrix. Press | DROP| twice

to remove these from the stack.)

(2 1] [

Step 2: Press 1, 1 tosee [0 3 -1], then to see

[0 12 -2]]
Now |DROP]| this last matrix from the stack.

———
- N o
o O o
o O o
— et et

Step 3:

Step 4:

2 3-1 2
EXAMPLE 2. Get an LU-factorization of A = -‘21 '2 _Ei %
4 8 2 7

Step 1:

Step 2:

SYSTEMS OF LINEAR EQUATIONS 59

[[1 2 1]

Press 2, 2 to see [0 3 -1] = U. Now press to see

[0 0 2]]
[[000O0] [[100]
[200].Execute3 tosee [210] =L
[-1 40]] [-141]]

(Check) Press | SWAP E] to check that LU = A. Now purge ELL and
P (which was not used in this example).

Enter A onto level 1, press | MAKL| to create appropriate starting

[[2 3 -1 2]
matrices ELL and P, and press 1, 1 to see {g ? _g _?i
[0 2 4 3]]

Since the (2, 2)-entry of this last matrix is 0, we must interchange row 2

with some lower row, say row 3. Thus press 2, 3| RO.KL| to effect the
interchange, then bring ELL to level 1 with , make the same row

interchange and store the result in ELL. Now bring P to level 1 with

, make the same row interchange and store the result in P.

60 CHAPTER3

[[2 8 -1 2]
Step 3: Now execute 2, 2 to see Eg 2) -g 1]
[0 0 10 §]]

Step 4: Interchange rows 3 and 4 with 3, 4| RO.KL|, bring ELL to level 1 with
and make the same interchange, and store in ELL. Bring P to
level 1 with , make the same interchange and store in P.

[[2 3 -1 2] [[000 0]
. _ [0 1-3-1] _[1000]
Step 5: See U = [0 010 5] and ELL = [2200]
[00O 0 5]] [2000]]
[[1 0 0 0]
GetL = {; ; ? g; with4,thendo|—£,tosee
[2 0 0 1]]
[[2 3-1 2]
_[2 4-4 1]
LU= [4 8 2 7]
[-4 -6 2 1]]

Step 6: (Check) PA = LU where P = Py,P,;. Since P is a permutation matrix, we

know that P-1 = PT. Thus P-'LU = PTLU = A. Recall P to level 1 and get
PT, SWAP levels with LU and then use [* | to see PTLU = A

Although most elementary texts present discussions of LU-factorizations, it will

not hurt to briefly summarize why this topic is so important.

(i)

(ii)

(iii)

SYSTEMS OF LINEAR EQUATIONS 61

As noted earlier, factorizations such as A = LU and PA = LU into
triangular matrices lie at the heart of modern computer codes for dealing

with large, square, linear systems.

In particular, in the case of A = LU, all the information regarding
Gaussian elimination on A is stored in the factors L and U. Matrix L
maintains a record of the multipliers used in the elimination process and
U records the results of that elimination. Thus, L and U may be viewed as
the storehouses of information about A which may be exploited later in a

variety of situations. With PA = LU, P records the row interchanges.

Once we have A = LU we can solve Ax = b for different b's by first using
forward substitution to solve Ly = b for y, then back substitution to solve
Ux =y for x. (In the case of PA = LU, we solve Ly = Pb in the first step.
Indeed, this is the preferred method for solving large scale linear systems.
Why? Assume that A is nxn and that both A-! and the factors L and U
are available. Using Al to obtain x = A-'b requires n? multiplications.
Solving Ly = b for y by forward substitution and then solving Ux = y for x
by back substitution also requires n? multiplications. But the difference is
seen in comparing the number of multiplications required to obtain A-! to
the number of multiplications required to obtain the factors L and U: n3

n
verses 3~ . For large n, the savings in using L and U is substantial. For

example, using n = 1,000 (not an unrealistic occurrence in some of today's
applications) and assuming your computer performs 10 multiplications per
second (very fast!), the savings in using LU over A-! is over 11 seconds of
computer time. And if we have multiple b's to use in Ax = b, these savings

rapidly accumulate.

62

CHAPTER 3

To apply forward substitution to Ly = Pb on the calculator, use the

following program FWD.

FWD
Inputs:

Effect:

(Forward substitution)
level 2: an nxn lower triangular matrix L
level 1: an n-vector b

Solves the linear system Lx = b by forward
substitution. Solves for x, and halts until you press

(or I[CONT] on the 28S), then

solves for x, and halts, etc. After x,, x,, ..., X, are
on the stack, a final [CONT| returns x = [x,, X, ...,

X,

« > Ab«ASIZE1GET » N « {N} 0 CON 'A(1,1)' EVAL TYPE
IF THEN DUP R-C END » Y « ED.IT 1 N FOR J 'b(J) EVAL A J
C.ROW SWAP DROP Y DOT -'A(J,J)' EVAL / 8 RND GAUSS HALT
ED.IT DUP Y {J} ROT PUT 'Y' STO NEXT GAUSS N DROPN Y » »

» »

Store this as program FWD in subdirectory GAUSS.

COMMENTS: FWD calls upon program C.ROW which is assumed stored in the
ED.IT subdirectory. Thus, FWD switches to the ED.IT subdirectory to use C.ROW
and then switches back to the GAUSS subdirectory. FWD halts after each
forward-solve step so that beginning students may exercise the desired control

over the entire forward substitution process. For the 28S, replace 8 RND with

8 FIX RND STD.

SYSTEMS OF LINEAR EQUATIONS 63

EXAMPLE 3. To solve 2 + 3%y - X3+ 2 = 1
4x; - 6 + D3 + x4 = 2
2, +) - M3+ x, = 3
dx; + 8 + 25 + x4, = 4

by using an LU-factorization, we first obtain a PA = LU factorization of the

coefficient matrix

[[2 3 -1 2]
[-4 6 2 1]
“[2 4 4 1]
[4 8 2 7]]

A

Since A is the matrix of our last example, we shall use the P, L and U obtained

there:
[[1 00 0] [[100 0] [[2 3 1 2]
[001 0] [110 0] [0 1 3 -1]
P=100011" LY5[2210]" U= 100 10 5] °
(010 0]] [2 00 1]] [0 0 0 5]]

Letb=[1 2 3 4]. To solve Ly = Pb for y by forward substitution, calculate
Pb=[1 3 4 2]. Then, with L on level 2 and Pb on level 1, and four

applications of | CONT| show yto be [1 2 -2 4]. Then with U on level 2 and

[1 2 -2 4]onlevel 1, | BACK| and four applications of [CONT| show the solution

xof Ax=btobe[-21 1 -6 8]

Finally, the factorization PA = LU of a matrix A is not unique. Consider, for
instance, the effect of choosing different pivots in Gaussian elimination. Each choice
of a pivot will give rise to a new LU-factorization. Some examples are included in

the exercises. We recommend that you keep a copy of | CLEAN| in GAUSS to use

as necessary.

64 CHAPTER3

Exercises 3.2

1. Find an LU factorization of each of the following matrices; do not interchange

rows. Check your answers; use | GLEAN| as necessary.

[11 1 2 2 8
(a) A=| 23 5 ®) B=|1 3 -2
12 3 4 215
[32-1-2 2 1+ i 3+4i
@ c | 17139 (d) D= [1-; 4 2-3i
| 3421 3-4i 2+3i 5

2. Re-do Exercise 1 using partial pivoting throughout.
3. For each of the following matrices A:

(i) find a permutation matrix P and matrices L and U so that PA = LU is an

LU factorization; if you need to interchange rows, use the first available

row. Check your answers; use | CLEAN)| as necessary.

(ii) Use your PA = LU factorization to solve the linear system Ax=b for the

given b. Check your answers, using | GLEAN)| as necessary.

3632 3
2 4 6 1

(a) A= |1 2 9| b=]| 1 b)) A= | 2 45 2| p|4

35 7 1 3785 1

2. 9 3-1 2

SYSTEMS OF LINEAR EQUATIONS

02 3 1

2 401 8 1 3 5 2

(© A= | 352 7|6 d A= |2 2 4 1
1310 6 8 31 3 3

451 -1 6 115]

4. Use LU-factorizations to solve Ax=b. Check your answers.

5 -9 16 6 48
5 9 -16 8
(@) A= | 10 9 24 8 |/b= ';g (see Example 3, Section 3.1)
| 5 9 8 8 3
[2 11 6 3 -10
4 2 12 -7 25
|4 0 9 -7 25

65

5. (a) Find an LU-factorization for each of the following tridiagonal matrices

and note the structure of L and U.

(b) Formulate a conjecture based upon your observations.

230 00
_“;%‘1’8 47 4 00
A= |8 209 B= |0 39 5 0
06272 0012 -2 6
0 0 0 -10 34

32 0 00 0

2723 4 0 0 0

c- |0 40 33 2 0 0

0 0 4 9 5 0

0 0 0 5 -21-2

0 0 0 0-16 4

66 CHAPTER3

3.3 GAUSS-JORDAN REDUCTION

Earlier, in connection with linear systems, we remarked that we would soon
provide a calculator routine for the variant of Gaussian elimination known as Gauss-
Jordan reduction, the effect of which is to do both elimination and back substitution
in one routine. Such a routine will provide a tool which is extremely useful not only
for classwork and homework dealing with linear systems per se, but also with other
concepts associated with these systems (e.g., linear independence). Though Gaussian
elimination with back substitution is more efficient than Gauss-Jordan reduction for
dealing with linear systems in general, and is certainly the preferred method in
professional computer libraries, most students prefer to use Gauss-Jordan reduction for

the small-scale problems employed to learn the basic concepts.
Gauss-Jordan reduction differs from Gaussian elimination in two ways:
(i) all the pivots are converted to 1.

(ii) the basic pivot process is used to produce 0's both below and above the

pivot element.

Thus, Gauss-Jordan reduction, when applied to a non-0 matrix A, yields what is

popularly called the reduced row echelon form (RREF) of A:
(a) any O rows lie at the bottom;

(b) the first non-0 entry in any non-0 row (the pivot) is a 1, and lies to the

right of the pivot in any preceding row;
(c) the pivot is the only non-0 entry in its column.

The reduced row echelon form of A is important because it represents the
ultimate we can get from A by applying elementary row operations. As such, it is

uniquely associated with A; that is, each non-0 matrix A has one and only one RREF.

SYSTEMS OF LINEAR EQUATIONS 67

When Gauss-Jordan reduction is applied to the augmented matrix [Alb] of a
linear system Ax = b we obtain an equivalent linear system Ux = b' whose augmented
matrix [Ulb'] is the RREF and whose solutions are practically obvious.
Specifically, any variable (or unknown) associated with a pivot is called a pivot
variable while the other variables, if any, are called free variables. If the last non-0
row of [Ulb'] looks like [0 0 ... 0 1], the system has no solution. In any other
case there is at least one solution: a unique solution if there are no free variables,
and infinitely many when free variables are present. The pivot variables are
usually expressed in terms of the free variables whose values may be arbitrarily
(i.e., freely) chosen. Although impractical for large linear systems, Gauss-Jordan
reduction is in popular use as a device to solve small systems. And it is easy to

devise a program for the calculator to carry out the reduction process.

The following program, GJ.PV (Gauss-Jordan Pivot) pivots on a specified entry
to convert the pivot to 1 and produce 0's above and below the pivot. When used in
conjunction with program RO.KL, it is reasonably effective in returning the RREF
matrix. The program accommodates complex matrices and is actually a simpler

version of program ELIM.

68 CHAPTER3

GJ.PV
Inputs:

Effect:

(Gauss-Jordan Pivot)

level 3: a matrix

level 2: an integer K

level 1: aninteger L

converts the (K, L)-entry to 1 and then pivots on
that entry to produce 0's above and below the
pivot.

« » AKL « [F 'AK, L) EVAL 0 == THEN "PIVOT ENTRY IS 0"
ELSE A SIZE 1 GET - M « M IDN 'A(1, 1)' EVAL TYPE IF THEN
DUP 0 CON R-»C END 1 M FOR | 'A(l, L)’ EVAL {Il K} SWAP PUT
NEXT INV A * » 8 RND END » »

Store this program as variable GJ.PV in your GAUSS subdirectory. On the 28S,

replace 8 RND with 8 FIX

RND STD.

EXAMPLE 1. Solve the linear system

3, + X + 2% - 2x,

-3, + 3 + x =0

6x; - 2% - 4 + X4

]

1 0-1/30 -2/3
by applying GJ.PV to the augmented matrix. The result is 8 }) 3

0
01

Thus x; is a free variable and all solutions are given by

[1/3x3-2/3, 3%y, x5, -2]T.

0
-2

X

J.

SYSTEMS OF LINEAR EQUATIONS 69

EXAMPLE 2. Solve the linear system

2 +3% - X + 4x, =7
6x; - 5%, + 3x, =

X +3% + 5% + 7x4 = 2
& +2x + 6x3 + 8x, =1

by applying GJ.PV to the augmented matrix. You should get

0 -7.37499997

8 '395"57300000000("22 . Use | CLEAN] to see x = [-7.375, -15.75, -9.5, 14.875 .
1 14.8750001

[N R
OO =O
oO=OoOO0O

EXERCISES 3.3
1. Solve the following linear systems:

(a) X; + 2% - 3x3 + 4x, =-1
2, + 6x, + 10x3 - 8, = 2
X + 2x - 2 + 5% =6
X, + 3% + 5x + 4dx, =1

(b) 4x; + X%+ 3% - 2% + X = 5
Bx - 2% - x + 5x4 = -13
4x, - X - 83 + X - 2% = 7
8, + 2% - g - X4 - 2% = 9

70 CHAPTER 3

(o)

X
-
+ + + 4+

X
Nt
1

3% +
4x, -

5x; +

10x,

+ + + 4+

2x,

6x,

X3

2x4

3x,

X; = 2% + 2X4

+ + o+ 4+
N
&

- 3x,
+ 7x,

+ 6%,

+ X +
+ 15x; +

0

5

2

3

0

By, - %,

41x, - 25x,

12x, + 7x;
- %

20x, + 15x,

50x, - 15x,

2. Solve the following linear systems; check your answers.

(a) .235x, + 3.273x, + 1.564x, = 3.879
2.144x, + 5.029x, - 9.328x, = 7.790
8.224x,; - 3.568x, + 2.806x,; = 2.893

(b) (1+4i)x; + (-1420)x, + (4+7i)x; =
Six, + (5+30)x, +(-9+8i)x,

3x; + (-749i)x, + (142i)xg

3. Solve the following linear systems

(a)

(1-i)x, +

(B-4i)x;, + (2+3i)x, +

(b)

-2.2x, + 3.8x, - 34x, -

2, + (1+i)x, + (3+4i)x,

5x4

2.6x; - 3.9x, + 5.2x; + 1.3x,

6x,

34x; - 5.6x, + 5.8x; + 1.2x,

|
N

-1+6i
8i

-1+
1-i

2.6
4.2
5.4

SYSTEMS OF LINEAR EQUATIONS 71

4. (From Gareth Williams, Stetson University, FL) Use the | RAN.Z| key to

generate six 3x3 matrices. In each case, use | @Jd. PVI to get the RREF.

(a) What do you observe about the RREF ?

(b) Why does the answer turn out this way? (Hint: think geometrically)

3.4 OTHER VARIANTS

There are many variants of Gaussian elimination and its associated natural LU-
factorization. When the HP-48S or HP-28S is called upon to calculate detA or
produce A’l, it begins by finding a factorization A = LU or PA = LU which differs
from the natural one in that U has 1's along its diagonal and the pivots appear on
the diagonal of L. The method used to obtain this factorization is known as the
Crout decomposition and is especially well-suited to calculator use because it
efficiently overwrites A with L and the upper triangle of U: L fits on and below the
diagonal of A and the upper triangle of U fits on the corresponding part of A. This
is done in a manner which is very fast and more accurate than in a traditional LU-
factorization. The determinant of A is then calculated as a signed product of the
diagonal entries of L. Since A = P-'LU, we have Al = U'L-'P. Because U and L are
triangular, their inverses are easy to calculate and A™! is found by rearranging the
columns in the product U-IL"! as directed by P.

Although LU-factorizations are not unique, there is a similar factorization for
certain invertible matrices which is unique. Suppose an invertible matrix A can be
brought to upper triangular form U without row interchanges. Then A = LU where L
is lower triangular with 1's on its diagonal and U is upper triangular with non-0

diagonal entries uy;, Uy, . .. u,. If D is the diagonal matrix D = diag [u;; uy, ... u,, 1

then D! = diag [“111 u, ... u,}n] and A = LDD''U = LDU,, where the upper triangular

72 CHAPTER3

matrix U; = D''U also has 1's on its diagonal. This is the LDU-factorization of A

and it can be shown to be unique.

The LDU-factorization is especially nice for symmetric matrices A. For then, in
addition to A = LDU,, we also have A = AT = (LDU,)T = U;FDTLT = U;rDLT so the
uniqueness tells us that LT = U,. Thus, the LDU-factorization of a symmetric matrix has

the structure A = LDLT. Some examples are in the exercises.
EXERCISES 3.4

1. Find the LDU-factorization of each of the following symmetric matrices.

2 4 4 10 7 8 7
A=|4 1220|, B= | 72 3 63
4 20 50 8 6 10 9
7 5 910
1-1 000
-1 2-1 00
2. (a) Find the LDU-factorizationof A=| 0 -1 2 -1 0
0 0-1 21
0 0 0 -1 2

(b) Calculate A! and find its LDU-factorization.

3.5 APPLICATIONS TO VECTOR SPACES

Linear systems are an effective tool to help understand some of the basic
concepts encountered in a beginning study of vector spaces: linear combinations and
spanning sets, dependence and independence, bases and dimension, change of basis.
Though these concepts initially may appear to be somewhat foreign to linear

systems, exactly the opposite is true: in the historical development of linear algebra

SYSTEMS OF LINEAR EQUATIONS 73

it was from a study of linear systems and their associated matrices that these vector

space concepts emerged.

LINEAR COMBINATIONS AND SPANNING SETS. Recall that by a linear
combination of vectors vy, v,, ..., v, in a vector space V (you may regard V as R™ if
that helps) we mean any vector of the form x;v; + x;v; + ... + x, v, where the x;'s
are scalars (i.e., numbers). The set of all possible linear combinations of v;, v,, .. ., v,
is a subspace of V, often denoted by Span [v,, v, ..., v,], and the vectors v, are said
to span this subspace. To determine whether a given vector u lies in Span
[vy, v, . .., Vi] we must determine whether u = x;v; + X,v, + . . . + x, v, for suitable

scalars x;.

The connection to linear systems comes from the fact that, symbolically, the
matrix equation Ax = b expresses b as a linear combination of the columns A: b =
X1A; + XA, + . .. + X, A", where A, is column j of matrix A and x =[x, X, - . ., X,IT.
Thus, the columns of matrix A span CS(A) = Span [A,, A,, ..., A,], otherwise known
as the column space of A. Vector b is a linear combination of the column's of A iff
Ax = b has a solution; and any solution to Ax = b expresses b as a linear combination

of these columns.

EXAMPLE 1. To investigate whetheru=[3 10 -2 18]T is a linear combination of
v;=[1-2301T,v,=[-1423]Tand v;=[2 0 -1 4]T, we set up the linear system
Ax = u where A has v;, v, and v, as its columns. Program ELIM can be used to

determine whether a solution exists, but an even better choice would be to use GJ.PV

because it will also give us all solutions. Applying | GJ.PV| to [Alu], we see that

[[l
[0

— [0
[0

0 -1]
2]

1 3]

0 0]]

-t

3

onN
e

’

[VP —

1
0
0

oCwmnN =
(A3 VR
L]

0
-2
8

[
[-
[
[1

n o=

74 CHAPTER3

from which we see u = -v; + 2v, + 3v;.

EXAMPLE 2. Whichofu;=[03 6 31T, u,=[47 4 0]Tanduy=[6 4.5 2 2]T
are in the span of v;=[4 -1 0 2]Tand v, =[0 3 -2 1]T ? We investigate
Ax=u(i=1,23) withA=[v,v,]. Applying to the triple augmented
matrix [Alu; u, u,] to reduce A to its RREF we find that

[[4004 6] [[100-15]
[-1 3 3 7 -45] [01 02 -]
[02-64 2] > (0010 0]
[2130 2]] [0000 0]]

Column 3 tells us that u, is not in Span [v;, v,] and columns 4 and 5 show that

Uy =-v;+2v, , uz3=15v;-v,.

D EPENDENCE AND INDEPENDENCE. When a vector u is a linear
combination of some other vectors { v;}, u depends linearly upon the vj's and we say
that the entire set of vectors is a "linearly dependent" set. More precisely, a set of
vectors { vy, v,, ..., vy } is called (linearly) dependent if one of these vectors is a

linear combination of the others. To the contrary, { v,, vy, ..., v } is called (linearly)

independent if no one of these vectors is a linear combination of the others.

To relate these notions to linear systems, recall that they may be reformulated,

equivalently, as follows:

(a) {vy, vy ... v) is dependent iff there are scalars x,, x,, . . ., X, not all 0,

such that x,v; + X,V, + ... + X v, = 0,; thus

(b) { vy, vy ... v} is independent iff whenever x;v, + x,v, + ...+ x.v, =0,
then all x; = 0.

These are the standard notions of dependence and independence found in most

elementary texts, but you should not lose sight of the fact that they are the

SYSTEMS OF LINEAR EQUATIONS 75

mathematically equivalent reformulations of the more intuitive ideas given earlier.
In terms of linear systems: if matrix A has vectors v,, v,, ..., v as its columns then

we have
(a) {vy, vy ..., v} is dependent iff Ax = 0 has a non-0 solution; and
(b) { vy, vy ... vy }is independent iff Ax = 0 has only the 0 solution.

To put this to use, remember some of the conditions under which Ax = 0 has non-0

solutions: Ax = 0 has non-0 solutions iff
(i) A has fewer rows than columns, or

(ii) A is row-equivalent to a row echelon matrix having fewer non-0 rows than

columns; or
(iii) When A is square, A is singular.

(For in each of these cases, Gaussian elimination shows the existence of free

variables ... hence non-0 solutions.)

EXAMPLE 3. Investigate the dependence/independence of vectors v; =[-1 2 -1 3]
vy=[2 -1 4 1]landvy=[-4 5 -6 5]in R4 If dependent, write a general

dependency equation.
[[-1 2 -4] [[1 0 2]
[2-1 5] - [0 1 -1] .. _
A= [4-6] S [00 0] , so by (ii) we see that Ax = 0 has
[3 1 5]] [0 0 0]]

non-0 solutions and { v;, v,, v3 } is dependent. In fact, all solutions are given by x =

[-2a, o, a T, where a is freely chosen. Choosing a = 1 we get the particular
solution x = [-2 1 11T which says that -2v; + v, + v3 = 0, an equation which

expresses the general dependency among these vectors.

76 CHAPTER3

It is almost obvious that the non-0 rows of any row echelon matrix are

independent, as are the columns which contain the pivots.

BASES AND DIMENSION. Spanning sets which are independent are especially
desirable because no one of the spanning vectors depends linearly upon the others.
By a basis for a subspace W of a vector space V (again, you may imagine V to be R

if it helps) we mean a collection of vectors from W which
(i) is independent, and
(ii) spans W.

When you choose a basis for W, you have chosen a well-behaved set of vectors
to use in describing, or understanding W. Basis vectors are well-behaved in the sense
that they are independent vectors ... hence no dependency upon one another. They
may be used to describe W because each vector in W is a linear combination of them.
Together, we know that each vector in W can be written as a linear combination of
the basis vectors in only one way. Moreover, for finite-dimensional, non-0 vector
spaces, i.e., those non-0 spaces having finite spanning sets, the number of vectors in
any basis is invariant: all bases for W contain the same total number of vectors. This is

the dimension of W, dim W.

We are interested in three important subspaces associated with an mxn matrix

e the row space RS(A): the subspace of R™ [or C*] spanned by the rows of A;

e the column space CS(A): the subspace of R™ [or €™] spanned by the columns of
A; and

e the null space of A, NS(A): the set of all solutions x to Ax = 0.

SYSTEMS OF LINEAR EQUATIONS 77

You should recall how we get bases for each of these subspaces: convert A to row

echelon form U by row operations; then
¢ the non-0 rows of U form a basis for RS(A);

e the columns in A corresponding to the pivot columns in U form a basis for
CS(A); and

e if NS(A) = 0,, we have no basis. Otherwise, we have free variables and all
solutions to Ax = 0 are obtained by choosing values for the free variables.
Construct special solutions as follows: assign, in turn, the value 1 to each free
variable and the value 0 to the other free variables. These special solutions

form a basis for NS(A). (It sounds more difficult than it is to do!)

Programs ELIM or GJ.PV may be used to get bases for RS(A) and CS(A); but GJ.PV
should be used to get a basis for NS(A).

EXAMPLE 4. Find bases for the row space, column space and null space of the

following matrix:

[[1 2 3 4 5]
A- [1 3 455]
" [3 6 9 2-5]
[2 4 6 1-4]]
[[1 010 1]
. [0O1 1 0-2] _
Applying | GJ.PV| to A to get the RREF, we have A — (0001 2] =U.
[0 O O O 0]]

Thus, the first three rows of U are a basis for RS(A) while columns 1, 2, and 4 of A

78 CHAPTER3

form a basis for CS(A). Clearly x, and x5 are free variables, and all solutions to

Ax = 0 look like

XX 1 1
-X3+2XS _1 2
x=[% |7 1]+ 0
- xs _2

X5 0 1

The two vectors on the right-hand side are a basis for NS(A). They were obtained
from the general solution by factoring out x, and xg; but notice that they are the
special solutions described earlier when you set x; = 1 and x; = 0, then x; = 0 and

XS= 1.

EXAMPLE 5. The basis for the row space of A obtained in Example 4 consisted of
the non-0 rows of U. Since the rows of A span RS(A), we know they can be cut down
to obtain a basis for RS(A). Which of the original rows form a basis for RS(A)?

Convert AT to RREF and , as above, choose a basis for CS(AT) consisting of
columns of AT. Since CS(AT) = RS(A), transposing the basis vectors will give a basis
for RS(A) which is chosen from among the original rows of A. Try it. You should get

rows 1, 2, and 3 of matrix A.

CHANGE OF BASIS. The ability to change from one basis to another is of
fundamental importance in linear algebra. On a finite-dimensional vector space,
each linear operator may be represented in a concrete fashion by a matrix, and the
matrix itself depends upon the choice of the basis. Changing to a new basis may

well provide us with an easier, or more well-structured, matrix.

Although the particular notation used to discuss change of basis ideas will vary

from textbook to textbook, most follow a style somewhat as follows. Let

SYSTEMS OF LINEAR EQUATIONS 79

B = {u;, u,, .., u, } be an ordered basis for a finite-dimensional vector space W (a
subspace of R, if you wish). Any vector w in W can be written in exactly one way

as a linear combination of the vectors in B:

w= Xlul + x2u2+ e+ xnu.n .
The column vector [wlg =[x; X, ... x,]T is called the coordinate matrix of w relative to
the B-basis. In R™ (or C€™), finding the coordinate matrix [wlg for a given vector w
and basis B usually entails solving a linear system. But we are primarily interested

in how we move from the "old" ordered basis B to a "new" ordered basis

B' = { v, vy, ..., v, }. The theorem describing how to do this is as follows:

Let B = { uy, u,, ..., u, } and B’ = { v}, v,, ..., v, } be ordered bases for a vector space
W. Write each of the old basis vectors in terms of the new basis B’ and consider the
coordinate matrices [ujlg. , [Uylg. ..., [u,lg.. If P is the nxn matrix whose j** column is
[ulg. , then P is invertible and is the only matrix for which Plwlg = [wlg. , for all vectors w
in W. We call P the change-of-basis matrix from the B-basis to the B’ basis. (Note

that P depends upon the order of the basis vectors as well as the vectors themselves.)

EXAMPLE 6.

(a) Find the change of basis matrix P from the "old" basis B to the "new" basis

B' given below.
(b) UsePtowritew=[3 -2 -11 17]T in terms of the new basis.
B=([10 -3 -3 10]T,[-3 23 10 -21]T,[-3 10 7 -13]T,[10 -21 -13 30]T}.

B=([21-12],[132-3],[-121-1]T,[2-3-14]T).

80 CHAPTER3

SOLUTION

(a) To find P we must write each vector in the B-basis in terms of the B'-basis.
Thus we consider a quadruple-augmented matrix and use | G@J.PV|:

[[2 1-12:1 -3 -3 10] [[1t 000 :21-1 2]
[1 3 2-3: -3 2310 -21] [01 00 :1 3 2-3]
[(1 211 310 7 -13] [0010:-121-1]
[2-3-1 4 :10 -21-13 30]] [0 00 1:2-3-14]]
(2 1-1 2]
[1 3 2-3]
Thus P = [1 2 1-1] "
[2-3-1 4])

(b) Forw=[3 -2 -11 17]T, we must first find [wlg:

[[10
[-3
[-3
[10

3 3 10 3] [[1 0 0-1]

23 10 21 2] _y [0 1 0 2] o
10 7 13 -11] [0 0 1-3) OMWe=[1231F
21 -13 30 17]] [0 0 0 1]]

and thus P[w]g =[5 4 1 -1]T.

EXERCISES 3.5

1. Which of the vectorsu; =[4 -3 -1 71T, u,=[-113 0]Tanduy;=[12 6 1]T

are linear combinations of v;=[1 -3 -3 2]T,v,=[-27 6 -5]T, v;=[-3-1 94]T

and vy=[2 1 -6 -3]T ? Write any general dependency relations you find.

Investigate the dependence/independence of each of the following sets of

vectors. If dependent, write a general dependency equation.

(@) v;=[1i0]1,v,=[0i 14i]T, v;=[1 3i 0T

SYSTEMS OF LINEAR EQUATIONS 81
(b) v1=[3 11 0]T,v2=[6 30 I]T,v3=[10 -14 I]T,v4=[7 021]T

[[.72 42 58 83 .52]
[60 24 90 21 .32]
[29 27 .44 37 87] °
[12 45 82 .04 .76]]

(¢) The rows of

4 6481 2+2i

(@) The columnsof | 151 10" 46
14 243 2

Find bases for the row space, column space and null space of each of the

following matrices.

2 0 4 -2 0 2
1 -1 56 2 -1 0
1 3 86 -5 1 2
6 (b) B=| 4 10 9 5 4 -1
1 3 514 -2 -1 4
5-14 9-10-1 5

-1 2-3

1-1 2
(@) A= 2 1 2

-1 33
Consider the two sets B = { u;, u,, u; } and B' = { v,, v,, v5 } in R4, where
u;=[1020]%u,=[204-3]%,u;=[1221]Tand
v;=[214-11T,v,=[1224],v,=[020 1]

(a) Show that both B and B' are independent sets of vectors and that Span B =
Span B'.

(b) Let W =Span B = Span B'. Show thatw=[1 2 2 -2]isin W.

(c) Find the change-of-basis matrix P from the B-basis to the B' basis for W.

Then use P to express w in terms of the B'-basis.

CHAPTER 4
ORTHOGONALITY

Geometrically, a basis for R™ is coordinate system. You can certainly see this in
the case where n = 2 or 3. To change from one basis to another amounts to changing to
a new coordinate system, and our experience with R2 and R?3 suggests that we
naturally prefer rectangular coordinate systems, i.e., where the coordinate vectors are
perpendicular. But what if we change from one such system to another? What do

we know about the matrix which effects this change?

The answer to this question, and others associated with rectangular coordinate
changes, is provided by a study in R™ of the generalized notions of length, distance
and perpendicularity in R3. Ultimately, these notions come to focus on the really
important one, orthogonality, and every beginning course in linear algebra must devote
serious attention to it. Orthogonal subspaces, orthogonal bases and orthogonal

projections all play a key role in
(i) least squares solutions to inconsistent linear systems,
(ii) least squares fits to data, and
(iii) the Gram-Schmidt process for building orthonormal bases.

Though the Gram-Schmidt process is now standard fare for elementary linear algebra
courses, often missing is its interpretation as a factorization process: when applied to
the (independent) columns of a matrix A, we get A = QR where Q and R are well-
behaved matrices (Q has orthonormal columns and R is upper triangular). QR-
factorizations are important because if anything, they have as much applicability

as do the LU-factorizations associated with Guassian elimination.

82

ORTHOGONALITY 83

4.1 BASIC CONCEPTS

The geometry of R3 is readily extended to R and C* by means of the standard
inner product. In R™ the standard inner product is the dot product: for column vectors
x=[%x; % .x, ITand y =[y; y5 .. ¥, IT , X0y = xTy = x;y; + Yoy, + .. + X y,. InC",
where the underlying scalars are the complex numbers, the standard inner product of

x and y is their Hermitian product x*y (where x* is the conjugate transpose of x). On
the calculators, the menu key returns the dot product of two vectors (real or

complex). To get the Hermitian product you must apply the menu key | CONJ| to
the first vector. On the 488, is on the MTH VECTOR menu and CONJ is on

the MTH PARTS menu. On the 28S, both commands are on the ARRAY menu.
EXAMPLE 1.
(a) Forx=[123]Tandy=[45 61T returns xey = 32.

(b) Forx=[-142i 3+4i]Tandy=[1+i 2i]T returns xey = (-11,7); by
first applying | @@NJ| to x, | @©T| returns x*y = (9,3).

For x = [x; X, ... x,]T the menu key returns the Euclidean length (norm)

lixll, = \/ X112 + xR + ... + Ix,[* of x, which is the usual notion of length in R or C®
is found on the MTH VECTR and MTH MATR menus of the 485 and on the

ARRY menu of the 285. When applied to an nxn matrix A = (a;), returns

”
the Frobenius matrix norm ||All: _ la..|2| . Two other vector and matrix norms are
F = ij

i,j

provided on the calculators, but we will not use them in this chapter. You will find
a brief summary of norms in Appendix 3, which also includes the calculators'

approach.

84 CHAPTER4

ORTHOGONALITY. From now on, we shall restrict our attention to R®. Recall
that two vectors x, y are called orthogonal if xey = 0. In R2 or R3 this amounts to
saying that x and y are perpendicular. A set B = { v;, vy, .., v, } of mutually
orthogonal vectors (viev; = 0 for i # j) is called an orthogonal set, and any such set of
non-0 vectors is linearly independent. Thus B is a basis for the subspace W = Span
[vy, V9, ., Vi 1. An attractive feature of such a basis is the ease with which we can
obtain the coordinates of any vector w in W:

(v (v ()

+ + ...
Il vy II2 vy Il 2 I vy 112

(1) w=

Even better is the case where each basis vector has length 1, for then (1) becomes
T T T
W= (VIW) vy + (VZW) Vo + .. + (VkW) Vi

Vectors of length 1 are called normal vectors, and we can "normalize" any vector
v by dividing by its length:

\4

vl

has length 1.

By normalizing any orthogonal basis for W we can obtain a basis of orthogonal,
normal vectors - an orthonormal basis - and it is of fundamental importance that any
non-0 subspace W of R™ has such a basis. The proof of this fact is the content of the

Gram-Schmidt process, which we shall examine later.

Look again at the criterion for the orthogonality of a set { v;, v,, ..., v, } in R™

viev;=0fori#j. Since viev;=v]v, is the (i,)-entry of the kxk matrix ATA, where A

is the nxk matrix having columns v;, v,, ..., v, we see that { v, v, ..., v, }is

orthogonal iff

ORTHOGONALITY 85

T T
Vi Y

i.e., iff ATA is a diagonal matrix. Clearly { v,, v,, ..., v } is orthonormal iff ATA =

I,, the kxk identity matrix.

On the calculators, matrices are entered in row order. Thus, to determine

whether vectors v;, vy, ..., v, are orthogonal we build A = 2

given vectors as rows, get AT and check to see if A*A T =

Vy -+« V¢ | is diagonal.

|
Vi
|

having the

86 CHAPTER4

EXAMPLE 2. To determine whether v;=[101 -1]T,v,=[4 -6 3 7]Tand v, =

[([1 0 1-1]
[-2 3 4 2]T are orthogonal, keyin [4 -6 3 7] and press |[ENTER| twice; then
[-2 3 4 2]]
[[3 0 0]
use and E] to see that AAT= [0 110 0] , so the vectors are orthogonal.
[0 0 33]]

More generally, since the (i, j)-entry in A* B is the dot product (row of A)e(col j

of B), we see that A* B = 0 iff the rows of A are orthogonal to the columns of B.

Finally, we note that the row space, column space and null space of a matrix A

all give rise to orthogonal subspaces. Indeed,

x € NS(A) <=> Ax=0
<=> x is orthogonal to the rows of A

<=> x is orthogonal to RS(A).

Since the same is true for AT, and the row space of AT is the column space of A, we

have the important result:
x € NS(AT) <=> x is orthogonal to CS(A).
EXERCISES 4.1

1. Let <x,y> denote the standard inner product of vectors x, y in R® or C*. Use the
following pairs of vectors to verify the Cauchy-Schwartz Inequality: |<x,y>| <
Il My -

(a) x=[1-2351,y=0[69 -7 3]inZ,

(b) x=[1+ -243i i],y=1[34i -i 5+i]in C3,

ORTHOGONALITY 87

(c) Any two random vectors of your choosing in Z:0 .

Use the vectors in (a) and (b) of Exercise 1 to verify the triangle inequality:

lix+yll < lIxIl + liyll

The Pythagorean Equality in R™ says: for any orthogonal vectors u and v,
lu+vIP = Jjul? + [IvI.

u+v

u

Verify this equality for the following pairs of orthogonal vectors:

(a) u=[-6437]T and v=[3 -2 4 2T

(b) u=[2-1-11]" and v=[3 22 2]T

Verify that the following sets of vectors are an orthogonal set:

(@) u;=[1-12-1],u,=[120-1]",u3=[2002],u,=[-2232]

) v,=[1/V6 1/V6 0 2/v61,v,=[-1/V3 -1/¥3 0 1/431,
vs=[-1/N2 1/¥2 0 0]

(© wy;=[-15555,w,=[1111],wy=[0-211]
For the matrix A below:

(a) Find a basis for NS(A) and verify that the vectors are orthogonal to
RS(A) by checking that they are orthogonal to a basis for RS(A).

(b) Find a basis for NS(AT) and verify that the vectors are orthogonal to
CS(A) by checking that they are orthogonal to a basis for CS(A).

88 CHAPTER 4

1 2 2 -1 2 2
0 01-110
A=|1 2 2 0 1 3
2 4 3 -2 4 2
1 2 1-2 3 2

4.2 PROJECTIONS AND LEAST SQUARES

The orthogonal projection Pyx of a vector x in R™ onto another vector y is a

simple, yet important, idea.

Figure 1.
As Figure 1 suggests, the projection of vector x onto vector y is a scalar
multiple of y. In fact,

(1) px=0Y

iy ad

(2) x-Pyxis orthogonal to y.

The following program, PROJ, may be used to calculate the projection vector P x

of x onto y.

ORTHOGONALITY 89

PROJ (Projection vector)
Inputs: level 2: a vector x

level 1: a vectory
Effect: Returns the projection vector Pyx to level 1

« > XY « XYDOTY *Y Y DOT/ » »

Store variable PROJ in your ORTH subdirectory, next to a copy of CLEAN.

EXAMPLE 3. Forx=[5 15 5]Tandy=[3 4 5] find Px and verify that x-P x is
orthogonal to y.

Put two copies vector x on the stack, followed by two copies of vector y. The

command 4 ROLLD will rearrange the stack to

level 4: y
3 x
2: x
1. y

Press to see P, then E to see x-Pyx, then to see yo(x-Pyx).

More generally, we may consider the orthogonal projection Pyb of a vector b onto

a subspace:

90 CHAPTER4

o

'y

P,b

Figure 2.

We shall later define this projection vector Pyb more precisely, but for now all
we need to know is what our geometric intuition tells us: that vector b-Pyb is

orthogonal to each vector in W.

There is a subtle but important connection between orthogonal projections and
orthogonal subspaces which is frequently exploited when attempting to solve
overdetermined linear systems, systems with more equations than unknowns.
Intuitively, with more equations than unknowns we are asking too much of the

unknowns, and might therefore expect that no solution exists.

More precisely, given an overdetermined system, say Ax = b where A is mxn and
m>n, we have rank A £ n < m. Thus dim CS(A) = rank A < m, so CS(A) cannot be all
of R™. Consequently, there will be vectors b in R™ for which Ax = b has no solution.
However, we may be willing to settle for the next best thing: find a vector x* in R™®
which is "as close as possible” to being a solution to Ax = b; that is, a vector x* for
which the distance ||JAx*-b|| from Ax* to b is minimal. Such an x* is called a least
squares solution to Ax = b because minimizing |[Ax*-b|| is equivalent to minimizing

IAx*-b|? , which is a sum-of-squares.

We thus seek x* so that vector Ax*, which lies in the column space W of A, is
closest to b. Looking back at Figure 2 we see that Ax* must be the projection of vector

b onto the column space W, in which case b-Ax* is orthogonal to each vector in

ORTHOGONALITY 91

CS(A). Remembering that the vectors which are orthogonal to CS(A) are precisely
the vectors in NS(AT), we are practically forced into AT[b-Ax*] = 0, or equivalently

ATAx* = AThb.

The linear system appearing above is referred to as the system of normal
equations; thus, vector x* is a least squares solution to Ax = b iff it is a solution to the
system of normal equations. In general, the normal equations will have more than
one solution. But in the special case that A has maximal rank, i.e., rank A = n, we

know that ATA is invertible, so ATAx* = ATb has a unique solution x*.
EXAMPLE 4. Given the overdetermined system Ax = b:
2 - X+ x3 =0
2 + 3 - x =1
3x; - 3% +3x% =8
3 + X + X =6
Put two copies of the augmented matrix [Alb] on the stack and then use | ELIM| to

verify that the system has no solution, but rank A = 3. Drop the result from level 1,

use | SPLIT| to split-off b and then swap with A. Use |[ENTER| to put two more

copies of A on the stack. Use to get AT, swap levels with A and calculate
ATA. Now swap with A and calculate AT. Use toputb=[0 1 8 6]on

level 1 and AT on level 2, then calculate ATb = [44 -15 29]T. Build the augmented
matrix [ATA| ATb] with | AD.CO| and solve the normal system with |G@J.PV| to
get x* = [-1.6666667 3.8333334 7.91666686]. You may your result check by
calculating x* = (ATA)1ATb.

92 CHAPTER4

FITTING CURVES TO DATA

We shall now see how least squares solutions arise in curve-fitting problems.
Suppose we have n data points (x;, y;), (X, ¥5), - , (X, ¥,,) where all the x/'s are
distinct. Consider the problem of finding a polynomial P(x) = ¢, + ¢;t + ... + ¢ t™ of
degree < m which passes through these data points, i.e. fits the data. We shall
require n 2 m+1. Thus our requirements are P(x) =y, fori=1,..,nor

Q+ X + o + X =y
@t + o+ X =Y,

Q + Xy + o+ X =Y,
This linear system has n equations and (m+1)-unknowns (the coefficients of P(x)).

In terms of matrices, the system is Ac =y, where

1 x, xl2 . XP [N Vi

1 2 . x (¢ Y2
* A= %2 x2 2 ,and ¢ = ;1 andy =

1 x, x,z‘ . X2 Cm Yn

Since we require n > m+1, there are at least as many equations as unknowns, so
the system will, in general, be overdetermined and we naturally seek a least squares
solution. However, A has independent columns, for if Ac = 0 had a non-0 solution,
this would mean that there exists a non-0 polynomial P(x) of degree < m having m+1
roots! Since A has independent columns, we know there is a unique least squares

solution, given as the unique solution to the normal equations

ORTHOGONALITY 93

(ATA) = ATy.

Notice what happens in case A is square (n = m+1): A is square with
independent columns, so A is invertible and ¢ = A'ly is the unique polynomial of degree
< n-1 passing through the n data points. In this case we call P(x) the interpolating

polynomial for this data, and the square matrix

2 m
1 X, X X;
1 X, x% xz‘“
A= :
2 m
1 xm+1 xmﬂ Xm+1

is known as a Vandermonde matrix.
The following program, P.FIT, may be used to create <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>