HEWLETT-PACKARD

Step-by-Step Solutions For Your HP Calculator Engineering Applications

HP-32S

Help Us Help You!

Please take a moment to complete this postage-paid card, tear it out and put it in the mail. Your responses and comments will help us better understand your needs and will provide you with the best procedures to solve your problems. Thank you!

HELP US HELP YOU!

Book: Engineering Applications Date acquired: \qquad
Name \qquad
Street \qquad
City, State, Zip
Phone \qquad) \qquad Business \qquad or Home \qquad

1. What calculator will you use this book with? 008 \square HP-32S 006 Other \qquad
2. How many other HP solution books have you bought for this calculator? \qquad
3. What is your OCCUPATION?
$101 \square$ Student $103 \square$ Professional $109 \square$ Other \qquad
4. Where did you purchase this book?
$403 \square$ Bookstore $404 \square$ Discount or Catalog Store 407 Mail Order 410 HP Direct

411 Other \qquad
5. How did you first hear about this book?
$501 \square$ HP Owner $503 \square$ Advertising $506 \square$ Salesperson $507 \square$ Brochure $508 \square$ Other
6. To what degree did this book influence your calculator purchase decision? $601 \square$ Major Influence $602 \square$ Minor Influence $603 \square$ No Influence
7. How well does this book cover the material you expected?
$701 \square$ Good $702 \square$ Moderate $703 \square$ Low
8. What level of knowledge is required to make use of the topics in this book? $801 \square$ High 802 \qquad Medium 803 \qquad Low
9. How clearly was the material in this book presented?

901 Good 902Moderate 903 \square Low
10. How would you rate the value of this book for your money? $111 \square$ High 112 Medium 113 \qquad Low

Comments: (Please comment on improvements and additional applications or subjects you would like HP to cover in this or another solution book.) \qquad
\qquad
\qquad
\qquad

$\|\|\|$

BUSINESS REPLY MAIL
postage will be paid by addressee

Engineering Applications

Step-by-Step Solutions for Your HP-32S Calculator

Edition 1 June 1988
Reorder Number 00032-90057

Notice

This manual and any keystroke programs contained herein are provided " as is" and are subject to change without notice. Hewlett-Packard Company makes no warranty of any kind with regard to this manual or the keystroke programs contained herein, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard Co. shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing, performance, or use of this manual or the keystroke programs contained herein.

- Hewlett-Packard Co. 1988. All rights reserved. Reproduction, adaptation, or translation of this manual, including any programs, is prohibited without prior written permission of Hewlett-Packard Company, except as allowed under the copyright laws. Hewlett-Packard Company grants you the right to use any program contained in this manual in this Hewlett-Packard calculator.

The programs that control your calculator are copyrighted and all rights are reserved. Reproduction, adaptation, or translation of those programs without prior written permission of Hewlett-Packard Co. is also prohibited.

Corvallis Division 1000 N.E. Circle Blvd. Corvallis, OR 97330, U.S.A.

Printing History

Contents

5 How to Use This Book

17 Electrical Engineering8 Reactance Chart
11 Impedance of a Ladder Network
15 Smith Chart Conversions
21 Transistor Amplifier Performance
226 Mechanical Engineering
27 Black Body Thermal Radiation
32 Ideal Gas Equation
35 Conduit Flow
40 Static Equivalent at a Point
45 Composite Section Properties
52 Soderberg's Equation for Fatigue
35 Civil Engineering
56 Mohr's Circle for Stress
63 Field Angle Traverse
469 Statistics
70 t Statistics
$70 \quad$ Paired t Statistics
71 t Statistic for Two Means
76 Chi-Square Evaluation
80 F Distribution
84 Analysis of Variance (One Way)
88 Binomial Distribution
92 Poisson Distribution
$5 \quad 95$ Mathematics
96 Triangle Solutions
102 Derivative of a Function
104 Linear Interpolation
106 Circle Determined by Three Points

How to Use This Book

The Engineering Applications solutions book provides sets of keystrokes and routines to help you solve a variety of engineering, statistics, and mathematics problems. The routines have been written to provide for easy use and minimum memory space. This book is to be used with the HP-32S calculator.

Before you use the solutions in this book, you should be familiar with the following concepts from the owner's manual:

- The basics of your calculator - how to perform arithmetic operations, move from menu to menu, and use the menu keys to do calculations.
- How to use the SOLVE function to solve for a variable.
- How to enter numbers for statistics.
- How to key in and run a program. You may wish to refer to the Function Index in your HP-32S Owner's Manual for information on how to key a particular function into a program.
- How to determine the number of bytes in a program and how to display the checksum.

Keys and Menu Selection. A key on the calculator keyboard is represented like this: STO. A shifted function is preceded by a shift key, like this: ASIN . A menu label is represented like this: $\{\mathrm{DEE}\}$. It is often necessary to go through several menus to obtain the desired

Display Formats. The examples in this book show numbers displayed to four decimal places. You may change the number of decimal places your calculator displays by pressing DISP $\{\mathrm{F} \times\}$ and the number of decimal places desired. If you wish to see the full 12-digit precision of a number regardless of the display format, press \square SHOW ; the full precision number is displayed as long as you hold down the SHOW key.

Programs. The HP-32S calculator uses single letters to denote program labels; you have up to 26 labels in program memory. When keying in the program listings in this book, your calculator will display a DUFLICAT. LEL error if you use a letter for a label that is already used in program memory. To avoid this problem, simply choose a different letter to designate the label. Be sure to change any XEQ or GTO statements that correspond to the newly-assigned label and make note of the changes so that when you execute the routine, you specify the proper label.

When you key in a number having more than three digits in its mantissa, the HP-32S automatically inserts appropriate commas into the number in both data-entry and programming modes.

Changing the label name of a program affects its checksum.

Checksum. A checksum is provided for each program listing as a verification that the program has been keyed in correctly. To view the checksum, press MEM $\left\{\mathrm{FFG}^{\prime} \mid 1\right\}$ and scroll through the listing to the program label you want to check. Press and hold [SHOW to display the checksum.

Our thanks to Tony Vogt of Oregon State University for developing the problems and equations in this book.

Electrical Engineering

Reactance Chart

This program calculates the resonant frequency, the inductance, or the capacitance of an LC circuit at resonance given the other two variables. It also calculates the capacitive and inductive reactances at resonance, which are equal.

$$
\begin{gathered}
f=\frac{1}{2 \pi \sqrt{L C}} \\
X=\frac{1}{2 \pi f C}
\end{gathered}
$$

where:
L = inductance in henrys.
$C=$ capacitance in microfarads.
$f=$ resonant frequency in hertz.
$X=$ reactance in ohms.

Program Listing.

When keying in steps R12 and R13, press 6 ENTER \square and $+/-$. These steps require less memory than keying in -6.

F61 LEL R	F 12 E
F62 IHFUT F	$\mathrm{F} 13+$
F6S IHFUT L	F 1416
RE4 IHFIIT E	F15 \times
R65 2	F1G FLLX E
F06 π	F17 FCLX W
$\mathrm{RG7} \times$	R18 1
F68 FCL \times F	R19 -
F09 ST0	Fig RTH
F1E FCLX L	Che日ksum = 6CDE
F11 STO $\%$	

Flags Used. None.
Memory Required. 30 bytes.
Remarks. The value of C is in microfarads to increase the precision of the SOLVE function.

Program Instructions.

1. Key in program listing; press C when finished.
2. Press SOLVE/S \{FH\} R.
3. Specify the unknown variable by pressing

SOLVE/S \{GOLVE $\}$ variable.
4. Key in the variable value at each prompt and press R / S.
5. See the variable for which the program is solving.
6. Press VIEW X to see the reactance.
7. For a new case, go to step 3.

Variables Used.

$L=$ inductance in henrys.
$C=$ capacitance in microfarads.
$F=$ resonant frequency in hertz.
$X=$ reactance in ohms.
$W=2 \pi f$ (angular velocity ω in radians per second).

Example. Resonant Frequency and Reactance.

Calculate F and X, when $L=1.0 \mathrm{mh}$ and $C=0.25 \mu$.
Keys:

-SOLVE/S $\{\mathrm{FH}\}$	$\mathrm{FN}=$ -	Prompts for program label.
R	value	Specifies program R.
$\underbrace{}_{\{S O L V E\}} \text { SOLVE/S }$	SOLVE _	Prompts for the unknown variable.
F	L?value	Starts program R; prompts for variables except F.
因 3 +/- R / S	C?value	C must be in microfarads.
. 25 R/S	$\mathrm{F}=10,065.8424$	Displays the resonant frequency.
- VIEW X	$\mathrm{X}=63.2456$	Displays the reactance.

Impedance of a Ladder Network

This program computes the input impedance of a ladder network. Elements are added one at a time from right to left. The first element must be parallel. The input impedance may be viewed at any point in the ladder as the elements are added.

Given an input impedance of $Y_{i n}$, adding a shunt (parallel) R, L, or C results in a new input impedance of:

$$
Y_{\text {new }}=\left\{\begin{array}{l}
Y_{\text {in }}+\left(\frac{1}{R_{p}}+j 0\right) \\
Y_{\text {in }}+\left(0-j \frac{1}{\omega L_{p}}\right) \\
Y_{\text {in }}+\left(0+j \omega C_{p}\right)
\end{array}\right.
$$

Adding a series R, L, or C, we have:

$$
Y_{\text {new }}=\left\{\begin{array}{l}
\left(\frac{1}{Y_{\text {in }}}+\left(R_{s}+j 0\right)\right)^{-1} \\
\left(\frac{1}{Y_{\text {in }}}+\left(0+j \omega L_{s}\right)\right)^{-1} \\
\left(\frac{1}{Y_{\text {in }}}+\left(0-j \frac{1}{\omega C_{s}}\right)\right)^{-1}
\end{array}\right.
$$

where $Z=\frac{1}{Y}$ and $\omega=2 \pi f$.

Program Listing．

HE1 LEL H
HEL IHFUT F
H03 2
$\mathrm{H} 04 \times$
H05 π
H06 \times
Nat STO W
Has a
Hag EHTER
H16 RTH
Checksum＝日ece
901 LEL 5
502 CHFLK1\％
603 R
S04 R4
$505 \mathrm{CHFLX} 1 \%$
S66 CMFLX＋
sal CMFLK1～x
Gas RTH
Checksum＝9EAS
FQ1 LEL P
FGE CMFLX＋
FGS RTH
Checksum＝ 9583
C01 LEL C
CaE IHFUT C
cas RCLX W
C04 1
0.5 RTH

Cherksum＝190H
L61 LEL L
Lee IfFUT L
Las RCLX W
LG4 $1 \times$
L6．5＋－
L6E 日
LG7 RTH
Chものksuri $=517 \mathrm{E}$
FQ1 LEL R
FQE
FGG IHFIIT R
F04 1／x
F0． 5 RTH
Checkeuri＝FBET
201 LEL 2
2日2 CMFLK1×
20G $1, x \rightarrow$ 日，r
204 STO 2
20.5 ※》

2日G STO A
207 VIEN A
206 ソIEN Z
269 ※》
21日 日，トゥ
211 CHFLK1\％
212 RTH
Cherksum $=5450$

Flags Used．None．
Memory Required． 75 bytes．

Remarks.

- The program performs calculations using the admittance in cartesian coordinates but displays the result as an impedance in polar coordinates.
- Angles must be consistent with the angular mode currently set in the calculator.

Program Instructions.

1. Key in the program listing and press C when finished.
2. Press XEQ N.
3. Key in the frequency and press R/S .
4. Select the appropriate element to add:

- Press XEQ R to add a resistor.
- Press XEQ L to add an inductor.
- Press XEQ C to add a capacitor.

5. Key in the value at the prompt and press R/S.
6. Select the appropriate means of adding the element:

- Press XEQ P to add the element in parallel.
- Press XEQ S to add the element in series.

7. To add another element, go to step 4.
8. Press $X E Q Z$ to see the angle of the input impedance.
9. Press R / S to see the magnitude of the input impedance.
10. Optional: press R / S to continue adding elements to the ladder.

Variables Used.

$R=$ resistance in ohms.
$L=$ inductance in henrys.
$C=$ capacitance in farads.
$Z=$ magnitude of the input impedance in ohms.
$A=$ input impedance angle.
$F=$ frequency in hertz.
$W=2 \pi f$ (angular velocity ω in radians per second).

Example: RLC Ladder Network. Find the input impedance of the following circuit at a frequency of 1 MHz :

Keys:

- MODES \{DIG

XEQ N
(6 R/S
XEQ R
100 R/S
XEQ P
XEQ C
650 [国 12 +/- R / S XEQ S

XEQP
XEQ R
1000 R/S
XEQ P
XEQ Z
R / S

Display:

F?value
0.0000

R?value
0.0100
0.0100

C?value
0.0000
0.0014

L?value
0.0000
0.0014

R? 100.0000
0.0010
0.0024
$A=-41.8224$
$Z=306.7333$

Description:

Sets degrees mode.
Inputs frequency.
Adds resistor in parallel
(first element must be in parallel).
Adds capacitor in series.

Adds inductor in parallel.

Adds resistor in parallel.

Displays the input impedance angle.
Displays the input impedance.

Smith Chart Conversions

The distance between a point on a Smith Chart and its center may be measured using a number of parameters. This program performs conversions between several of the most commonly used parameters: standing wave ratio, reflection coefficient, and return loss. It may also be used to convert between impedance and reflection coefficient.

$$
\sigma=\text { voltage standing wave ratio }=\frac{1+\rho}{1-\rho} .
$$

$S W R=$ standing wave ratio expressed in decibels.
$\rho=$ reflection coefficient.
R.L. = return loss.

These parameters are related as follows:
$S W R=20 \log \sigma$
R.L. $=20 \log \frac{1}{\rho}$
$\sigma=\frac{1+\rho}{1-\rho}$

These relationships are perhaps more clearly seen in this sketch:

For a system having characteristic impedance Z_{0}, the impedance and reflection coefficient are related by

$$
\Gamma=\rho \measuredangle \phi=\frac{\frac{\mathrm{Z}}{Z_{0}}-1}{\frac{\mathrm{Z}}{Z_{0}}+1}
$$

and

$$
\mathbf{Z}=Z \quad \Varangle \theta=Z_{0} \frac{1+\Gamma}{1-\Gamma}
$$

where:

$$
\begin{aligned}
& \Gamma=\text { complex reflection coefficient. } \\
& \rho=|\Gamma| \\
& \phi=\measuredangle \Gamma \\
& \mathbf{Z}=\text { impedance. } \\
& Z=|\mathbf{Z}| \\
& \theta=\not \mathbf{Z} .
\end{aligned}
$$

Program Listing．

H＠1 LEL A	HES 1
$\mathrm{FQ2}+\cdots$	H0S STO K
Chににksum＝130E	H04 IHFUT M
DE1 LEL D	HES IHFUT F
DG2 20	HEG IHFITT D
DG3－	HET IHFIIT E
［04 1020	HES FCL M
［095 RTH	HE9 FEL F
Cherksum $=$ E6ES	H1® $\mathrm{B}, \mathrm{r}^{+\prime \mathrm{tag}}$
E＠1 LEL E	H11 $\mathrm{FCL}+\mathrm{K}$
E＠こ STOK	H12 FCL M
E63 1	H13 FEL F
$\mathrm{EQ4}+$	H14＋
E65 1	H15 日，r＋y，
$\mathrm{EOG} \mathrm{FCL}-\mathrm{K}$	H1G FCL +K
BQ 7 －	H17 EMFL $\%$
EQ8 RTH	H1S FEL D
Cherksum $=6802$	H19 FEL E
EQ1 LEL E	Heg E，ringe
EQ2 STOK	H21 CMFL\％
E日S 1	Hza morerar
E64－	H2S STO 2
E05 1	
EQG FCL +K	H2S ST0 T
E 07 －	H2G UIEN T
E08 R RTH	H27 YIEN Z
Eheにksum＝170E	H2S FTH
FQ1 LEL F	Ch＠にkEum $=$ E610
F62 1／x	GQ1 LEL G
Cheにksum $=7789$	G02 IHFUT T
C01 LEL E	Les IHFUT 2
0.02 LOL	T04 IHFIIT D
［日S 20	LE5 IHFUT E
［04 \times	G06 FCL T
C05 RTH	GQ7 FEL 2
Cheにksum＝5C10	C08 $\mathrm{B}, \mathrm{r+rys}$
H01 LEL H	GEG FCL

G16 FCL C

G12 CMFL:
G13 STO A
G14 \ll >
$G 15 \mathrm{STO} \mathrm{E}$
G16 < >
G17 1
G18-
G19 RCL E
G20 1

Ge1 $\mathrm{FCL}+\mathrm{A}$
Gee CIFLK:
G23 $1, x+8, r^{-}$
G 24 STO F
G25 <>y
Ge6 STO M
GET YIEN M
Ge8 UIEN F
529 RTH
Checksuri $=6425$

Flags Used. None.
Memory Required. 130.5 bytes.

Remarks.

- Each routine is independent of the others. Therefore, key in only those routines that will be used.
- Angles must be consistent with the angular mode currently set in the calculator.

Program Instructions.

1. Key in the program listings of the routines to be used; press C when finished.
2. For conversions involving real number parameters (routines A thru F):

- Key in the variable and select the appropriate routine:
- Press XEQ A to convert R.L. to ρ.
- Press XEQ B to convert ρ to σ.
- Press XEQ C to convert σ to $S W R$.
- Press XEQ D to convert $S W R$ to σ.
- Press XEQ E to convert σ to ρ.
- Press XEQ F to convert ρ to R.L.
- Optional: continue converting by executing the next routine in the sequence.

3. To convert from \mathbf{Z} to Γ :

- Press XEQ G.
- Key in the values at each prompt and press R/S.
- See M; press R/S ; see P.

4. To convert from Γ to Z :

- Press XEQ H.
- Key in the variables at each prompt and press R/S.
- See T; press R / s; see Z.

5. For a new case, go to step 2,3 , or 4 .

Variables Used.

$Z=$ magnitude of the impedance.
$T=$ angle of the impedance.
$P=$ magnitude of the complex reflection coefficient.
$M=$ angle of the complex reflection coefficient.
$C=$ magnitude of the characteristic impedance.
$D=$ angle of the characteristic impedance.
$A, K, B=$ variables used for intermediate results.

Example 1. Convert a $10 \mathrm{~dB} S W R$ to σ.
Keys:
Display:
Description:

10 XEQ D
3.1623

Displays σ.

Example 2. Convert a 5 dB return loss to $S W R$.

Keys:	Display:	Description:
5 XEQ A	0.5623	
XEQ B	3.5698	Displays ρ.
XEQ C	11.0528	Displays σ.

Example 3. A 75Ω system is terminated with an impedance of 53 at an angle of 41°. Find the reflection coefficient.

Keys:	Display:	Descriptio
- MODES $\{\mathrm{DL}$ \}		Sets degrees
XEQ G	T? value	Inputs value
$41 \mathrm{R} / \mathrm{S}$	Z?value	
53 R/S	D?value	
0 R/S	C ? value	
75 R/S	$\mathrm{M}=118.3651$	Displays Γ.
R/S	$\mathrm{P}=0.4107$	Displays ρ.

Example 4. A reflection coefficient of 0.35 at an angle of 11° is observed in a 100Ω system. Find the impedance.

Keys:	Display:	Description:
XEQ H	M?value	Inputs values.
$11 \mathrm{R} / \mathrm{S}$	P ? value	
. 35 R/S	D?value	
$0 \mathrm{R} / \mathrm{S}$	C?value	
100 R/S	$\mathrm{T}=8.6547$	Displays angle.
R/S	$\mathrm{Z}=203.8784$	Displays magnitude of the impedance, Z .

Transistor Amplifier Performance

This program calculates several small-signal properties of a transistor amplifier given the h-parameter matrix and the source and load impedances. The properties computed are the current and voltage gains and the input and output impedances.

Definition of h-parameter matrix:

$$
\left[\begin{array}{l}
v_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{ll}
h_{i} & h_{r} \\
h_{f} & h_{o}
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
v_{2}
\end{array}\right]
$$

Current gain:

$$
A_{i}=\frac{i_{2}}{i_{1}}=\frac{-h_{f}}{1+h_{o} Z_{L}}
$$

Voltage gain:

$$
A_{v}=\frac{v_{2}}{v_{1}}=\frac{A_{i} Z_{L}}{Z_{\text {in }}}
$$

Voltage gain with source resistor：

$$
A_{v v}=\frac{v_{2}}{v_{S}}=\frac{A_{i} Z_{L}}{Z_{i n}+Z_{S}}
$$

Input impedance：

$$
Z_{\text {in }}=h_{i}+h_{r} Z_{L} A_{i}
$$

Output impedance：

$$
Z_{\text {out }}=\frac{h_{i}+Z_{S}}{h_{o} h_{i}+h_{o} Z_{S}-h_{f} h_{r}}
$$

Program Listing．

Tg1 LEL T
TGE CLVARS
T0S 1.012
T04 STO i
Checksum＝7FE4
X01 LEL X
xGE IHFIUT（i）
XGS ISGi
804 GTO X
805 RCL I
XGE RCL
XQ
X0S ETO．
809 x》ッ
810 STO I
X11 FCL G
K12 RCL $+K$
$813 \mathrm{FCL} H$
X14 FCLX L
815 日，r－ウリ，
8161
$817+$
K1E CMFLK1／s
819 FCL E
xeg RCL F

```
k21 +--
x2e 日,r+!,%
x23 CHFL%%
824 STO H
<25 <<>>
<2E STOM
x27 <<>>
<2S RED V
<E9 RCL C
8SG FCL+K
8B1 FCL D
see RCLX L
8SS 日,r`!日,*
XS4 EMFLS%
85 FCL F
NSE FCL E
<E7 日,r`!,%
4SE DMFLS+
89 STO F
846 <<>
841 STO O
X42 <<>y
843 CMFLX1/x
844 FCL M
845 RCL H
```

x2e $6, r-+4, x$
S2S CHFLS
Xe 4 STOH
x25 x》ы
xes sTo M
xe7 《＞＞
xes RED U
8 Cg RCL C
KOU FCL＋K
SB1 FCL
see RCLX L
XSE 日， $\mathrm{r}^{-+1.2 \%}$
8 S 4 DAFLX
855 ECL H
xGE FCL E
XS7 日，r－
8Se CMFLS＋
xeg STO F
846 \ll
841 ST0
X42 ※》！
K43 CMFLX1／s
844 FCL M
845 FOLH

K4E DMFL\％
$847 \mathrm{FCL} K$
$848 \mathrm{RCL} L$
$849 \mathrm{E}, \mathrm{r}^{-+13, \%}$
$85 \mathrm{CMFL} \times$
851 XEQ V
85 ECL O
853 FCL F
854 CMFLS
X55 RCL 0
85G RCL＋I
857 RCL F
X58 RCL＋J
859 CMFLK：
XG日 REQ V
XE1 FCL 0
8ee RCL F
863 REQ 4
864 FCL G
$865 \mathrm{RCL} H$
XGG 日，rチリンス
867 RCL I
XGE RCL
869 CHFLS×
X 76 ECL G
X71 RCL＋ H
$872 \mathrm{RCL} H$
X73 RCLX E


```
875 DMFLK+
87G RCL E
K77 FCL+ C
X7S RCL F
879 ECLx D
```



```
NS1 DHFLX-
SE2 EmFLX1/x
8SS FCL A
8E4 RCL E
485 日,\mp@code{Hy,*}
<EG RCL+ 」
8E7 <<>y
8GS FCL+ I
899 <<>
890 CMFL%%
Checksumi = 7200
V01 LEL v
VGE n,x+6,r
VGS STO R
VG4 x<\
V05 ETO T
VबE <<>
V07 日, r->y,*
UGE YIEN T
YGG VIEN R
W10 RTH
ChEcksuri = EFFE
```

Flags Used．None．
Memory Required． 164 bytes．

Remarks．

－This program clears all variables stored in Continuous Memory．
－Angles must be consistent with the angular mode currently set in the calculator．
－To limit the number of variables，the program uses variable T for the angle and R for the magnitude of all of the output results．

Program Instructions.

1. Key in the program listings; press C when finished.
2. Press XEQ T.
3. Key in the variables at each prompt and press R / S.
4. See the angle of A_{i} and press R/S.
5. See the magnitude of A_{i} and press R/S.
6. See the angle of A_{v} and press R / S.
7. See the magnitude of A_{v} and press R / S.
8. See the angle of $A_{v g}$ and press R / S.
9. See the magnitude of $A_{v g}$ and press R/S.
10. See the angle of $Z_{\text {in }}$ and press R / S.
11. See the magnitude of $Z_{i n}$ and press R/S.
12. See the angle of $Z_{\text {out }}$ and press R/S.
13. See the magnitude of $Z_{\text {out }}$.
14. For a new case, go to step 2 .

Variables Used.

$A=$ angle of h_{i}.
$B=$ magnitude of h_{i}.
$C=$ angle of h_{r}.
$D=$ magnitude of h_{r}.
$E=$ angle of h_{f}.
$F=$ magnitude of h_{f}.
$G=$ angle of h_{o}.
$H=$ magnitude of h_{o}.
$I=$ angle of $Z_{\text {in }}$.
$J=$ magnitude of $Z_{i n}$.
$K=$ angle of $Z_{\text {out }}$.
$L=$ magnitude of $Z_{\text {out }}$.
$T=$ angle of $A_{i}, A_{v}, A_{v s}, Z_{\text {in }}, Z_{\text {out }}$.
$R=$ magnitude of $A_{i}, A_{v}, A_{v s}, Z_{\text {in }}, Z_{\text {out }}$.
$N, M, O, P, i=$ variables used for intermediate results.

Example. Find the small-signal properties of a transistor that has the following h-parameter matrix with source and load impedances of 1000 and 5000 ohms, respectively.

$$
h=\left[\begin{array}{rr}
1000 & 150 \mathrm{E}-6 \\
75 & 50 \mathrm{E}-6
\end{array}\right]
$$

Keys:

- MODES \{DG\}

XEQ T	A?0.0000
R/S	B? 0.0000
1000 R/S	C? 0.0000
R/S	D? 0.0000
150 因 6 +/- R/S	E? 0.0000
R/S	F? 0.0000
75 R/S	G? 0.0000
R/S	H? 0.0000
50 因 6 +/- R/S	I? 0.0000
R/S	J? 0.0000
1000 R/S	K? 0.0000
R/S	L? 0.0000
5000 R/S	$\mathrm{T}=180.0000$
R/S	$\mathrm{R}=60.0000$
R/S	$\mathrm{T}=180.0000$
R/S	$\mathrm{R}=314.1361$
R/S	$\mathrm{T}=180.0000$
R/S	$\mathrm{R}=153.4527$
R/S	$\mathrm{T}=0.0000$
R/S	$\mathrm{R}=955.0000$
R/S	$\mathrm{T}=0.0000$
R/S	$\mathrm{R}=22,535.2113$

Description:

Sets degrees mode.

Inputs values.

Displays angle of A_{i}.
Displays magnitude of A_{i}.
Displays angle of A_{v}.
Displays magnitude of A_{v}.
Displays angle of $A_{v s}$.
Displays magnitude of $A_{v g}$.
Displays angle of $Z_{\text {in }}$. Displays magnitude of $Z_{\text {in }}$.
Displays angle of $Z_{\text {out }}$. Displays magnitude of $Z_{\text {out }}$.

2

Mechanical Engineering

Black Body Thermal Radiation

All bodies emit thermal radiation according to their temperature. The higher the temperature, the more thermal radiation emitted. A black body is one that emits the maximum possible amount of energy at every wavelength for a specified temperature. The figure below represents the black body thermal emission as a function of wavelength.

This program can be used to calculate:

- The wavelength of maximum emissive power for a given temperature.
- The temperature corresponding to a particular wavelength of maximum emissive power.
- The total emissive power for all wavelengths.
- The emissive power at a particular wavelength and temperature.

$$
\begin{gathered}
\lambda_{\max } \mathrm{T}=c_{3} \\
E_{b(0-\chi)}=\sigma \mathrm{T}^{4} \\
E_{b \lambda}=\frac{2 \pi c_{1}}{\lambda^{5}\left(e^{c_{2} / \lambda \mathrm{T}}-1\right)}
\end{gathered}
$$

where:
$\lambda_{\text {max }}=$ wavelength of maximum emissivity in microns.
$\mathrm{T}=$ absolute temperature in ${ }^{\circ} \mathrm{R}$ or K .
$E_{b(0-x)}=$ total emissive power in $\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}$ or watts $/ \mathrm{cm}^{2}$.
$E_{b \lambda}=$ emissive power at λ in $\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-\mu \mathrm{m}$ or watts $/ \mathrm{cm}^{2}-\mu \mathrm{m}$.
$c_{1}=1.8887982 \times 10^{7} \mathrm{Btu}-\mu \mathrm{m}^{4} / \mathrm{hr}-\mathrm{ft}^{2}=5.9544 \times 10^{3} \mathrm{~W} \mu \mathrm{~m}^{4} / \mathrm{cm}^{2}$.
$c_{2}=2.58984 \times 10^{4} \mu \mathrm{~m}-{ }^{\circ} \mathrm{R}=1.4388 \times 10^{4} \mu \mathrm{~m}-\mathrm{K}$.
$c_{3}=5.216 \times 10^{3} \mu \mathrm{~m}-{ }^{\circ} \mathrm{R}=2.8978 \times 10^{3} \mu \mathrm{~m}-\mathrm{K}$.
$\sigma=1.713 \times 10^{-9} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}{ }^{\circ} \mathrm{R}^{4}=5.6693 \times 10^{-12} \mathrm{~W} / \mathrm{cm}^{2}-\mathrm{K}^{4}$.
$\sigma_{\text {exp }}=1.731 \times 10^{-9} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{R}^{4}=5.729 \times 10^{-12} \mathrm{~W} / \mathrm{cm}^{2}-\mathrm{K}^{4}$.

Program Listing.

E日1 LEL E
BGE IHFIIT W
EGS IHFUT T
EO4 RCL W
B6.5 1/x
E06 RCLX E
E067 RCL \div
E098 e^{*}
E09 1
E10 -
E11 1/x
E1E RCL 4
E13 5
E14 ${ }^{2}$
E15 -

E1G 2
E17 \%
E18 π
E19 \%
E2G FCLX A
EE 1 STO F
E2e vIEN F
E23 RTH
Checksum = 52E5
EQ1 LEL E
EG2 IHFUT T
E63 4
E64 붕
E0.5 RCLX S
EGE STO E

E07 UIEN E	WET FETH
EQS RTH	Chロロトこum＝F204
Eh心にkこum＝1506	TE1 LEL T
WQ1 LEL H	TEG IHFIIT 4
WEE IHFUT T	TEG FCL E
WGS FEL E	T04 FCL \div ，
W64 FCL \div T	TES STOT
W日S ETO	TEG YIEN T
WEE YIEN い	TET ETH

Flags Used．None．
Memory Required． 67.5 bytes．
Remarks．The values of the constants differ between sources．

Program Instructions．

1．Key in the program listing；press C when finished．
2．Store the constants A, B, C ，and S in the appropriate storage registers．

3．Select the appropriate routine：
－Press XEQ W to calculate the wavelength of maximum power for a given temperature．
$■$ Press XEQ T to calculate the temperature corresponding to a particular wavelength of maximum power．
－Press XEQ E to calculate the total emissive power．
－Press XEQ B to calculate the emissive power at a particular wavelength．
－Key in the variables at each prompt and press R／S．
－See the variable for which the program is solving．
4．For a new case，go to step 3.

Variables Used．

$$
\begin{aligned}
& T=\text { temperature. } \\
& W=\text { wavelength. } \\
& E=\text { total emissive power. } \\
& P=\text { emissive power at a given wavelength. } \\
& A=\operatorname{constant} c_{1} . \\
& B=\operatorname{constant} c_{2} . \\
& C=\operatorname{constant} c_{3} . \\
& S=\operatorname{constant} \sigma .
\end{aligned}
$$

Example．If sunlight has a maximum wavelength of $.550 \mu \mathrm{~m}$ ，what is the sun＇s temperature in K ？Assume the sun is a black body．What is the total emissive power and the emissive power at $\lambda_{\max }$ ？What is the emissive power at $\lambda=0.400 \mu \mathrm{~m}$（ultraviolet limit）and $0.700 \mu \mathrm{~m}$（infrared limit）？

Keys：	Display：	Description：
5.9544 罭 3 STO A		Stores constants．
1.4388 国 4 STO B		
2.8978 因 3 STO C		
5.6693 因 12 ＋／－		
STO S		
XEQ T	W？value	
． 55 R／S	$\mathrm{T}=5,268.7273$	Displays temperature．
XEQ E	T？5，268．7273	
R／S	$\mathrm{E}=4,368.7009$	Displays the total emissive power．
XEQ B	W？0．5500	Correct value already stored in W ．

Displays the emissive power.
XEQ B
W?0.5500
. 4 R/S
T?5,268.7273
R/S
$\mathrm{P}=3,964.8581$
Displays the emissive power.
XEQ B
W? 0.4000
. 7 R/S
T?5,268.7273
R/S
$\mathrm{P}=4,593.4033$
Displays the emissive
power. power.

Ideal Gas Equation

Many gases obey the ideal gas law at high temperatures and low pressures. This program calculates any one of the four variables of the ideal gas equation when the other three are known.

$$
P V=n R T
$$

where:
$P=$ pressure.
$V=$ volume.
$n=$ number of moles.
$R=$ Universal Gas Constant.
$T=$ absolute temperature.

Table 2-1. Values of the Universal Gas Constant

Value of R	Units of R	Units of P	Units of V	Units of T
8.314	$\mathrm{N}-\mathrm{m} / \mathrm{g}$ mole-K	N/M ${ }^{2}$	$\mathrm{m}^{3} / \mathrm{g}$ mole	K
83.14	cm^{3}-bar/g mole-K	bar	$\mathrm{cm}^{3} / \mathrm{g}$ mole	K
82.05	$\mathrm{cm}^{3}-\mathrm{atm} / \mathrm{g}$ mole-K	atm	$\mathrm{cm}^{3} / \mathrm{g}$ mole	K
0.08205	liter-atm/g mole-K	atm	liter/g mole	K
0.7302	atm- $\mathrm{ft}^{3} / \mathrm{lbm}$ mole- ${ }^{\circ} \mathrm{R}$	atm	$\mathrm{ft}^{3} / \mathrm{lbm}$ mole	${ }^{\circ} \mathrm{R}$
10.73	psi-ft ${ }^{3} / \mathrm{lbm}$ mole- ${ }^{-} \mathrm{R}$	psi	$\mathrm{ft}^{3} / \mathrm{lbm}$ mole	${ }^{\circ} \mathrm{R}$
1545	psf-ft ${ }^{3} / \mathrm{lbm}$ mole- ${ }^{\circ} \mathrm{R}$	psf	$\mathrm{ft}^{3} / \mathrm{lbm}$ mole	${ }^{\circ} \mathrm{R}$

Program Listing.

Flags Used. None.
Memory Required. 19.5 bytes.
Remarks. Value of R must be compatible with units of P, V, and T.

Program Instructions.

1. Key in program listing; press C when finished.
2. Press SOLVE/S \{FH\} G, then specify the unknown variable by pressing SOLVE/S \{GOL'VE variable.
3. Key in the variables at each prompt and press R/S.
4. See the variable for which the program is solving.
5. For a new case, go to step 2.

Variables Used.

$P=$ absolute pressure.
$V=$ volume.
$N=$ number of moles present.
$R=$ Universal Gas Constant.
$T=$ absolute temperature.

Example 1: Pressure. If 1.2 moles of air are enclosed in $40,000 \mathrm{~cm}^{3}$ at 1500 K , what is the pressure in atmospheres?

Keys:	Display:	Description:
-SOLVE/S \{FH\}	$\mathrm{FN}=$	Prompts for program label.
G		Specifies program G.
$\begin{aligned} & \text { SOLVE/S } \\ & \{S O L V E\} \end{aligned}$	SOLVE	Prompts for the unknown variable.
P	V?value	Starts program G;
40000 R/S	N ? value	prompts for variables
1.2 R/S	R ? value	except P.
82.05 R/S	T? value	
1500 R/S	$\mathrm{P}=3.6923$	Displays the pressure.

Example 2: Specific Volume. What is the specific volume ($\mathrm{ft}^{3} / \mathrm{lbm}$) of a gas at a pressure of 3 atmospheres and a temperature of $540^{\circ} \mathrm{R}$? The molecular weight is $32 \mathrm{lbm} / \mathrm{lbm}$-mole.

Keys:	Display:	Description:
$\begin{aligned} & \text { SOLVE/S } \\ & \left\{\operatorname{SOL} \mathrm{V}^{\prime} \mathrm{E}\right\} \end{aligned}$	SOLVE	Prompts for the unknown variable. (It is not necessary to redefine the program label being executed since it was defined in the last example.
V	P ? value	Starts program G;
$3 \mathrm{R} / \mathrm{S}$	N ? value	prompts for the variables
32 1/x R/S	R ? value	except V.
. 7302 R/S	T?value	
540 R/S	$\mathrm{V}=4.1074$	Displays specific volume.

Conduit Flow

This program solves for either the average velocity or the pressure drop for viscous, incompressible flow in conduits.

For laminar flow ($R e<2300$):

$$
f=16 / R e
$$

For turbulent flow ($R e>2300$):

$$
\begin{gathered}
V^{2}=\frac{\Delta P / \rho}{2\left(f \frac{L}{D}+\frac{K_{T}}{4}\right)} \\
f=\frac{0.0772}{\left\{\log \left[\frac{6.9}{\operatorname{Re}}+\left(\frac{\varepsilon}{3.7 D}\right)^{1.111}\right]\right\}^{2}}
\end{gathered}
$$

where:
$V=$ average velocity.
$\Delta P=$ pressure drop.
$L=$ conduit length.
$D=$ conduit diameter. If the conduit is not circular, use an equivalent diameter defined by:

$$
D_{e q}=4 \times \frac{\text { Cross Sectional Area }}{\text { Wetted Perimeter }}
$$

$\varepsilon=$ surface irregularity.
$R e=$ Reynolds number; $R e=D V / \nu$.
$\nu=$ fluid kinematic viscosity.
$\rho=$ fluid density
$f=$ Fanning friction factor.
$K_{T}=$ sum of fitting factors.

Table 2-2. Fitting Coefficients

Fitting	K
Globe valve, wide open	$7.5-10$
Angle valve, wide open	3.8
Gate valve, wide open	$0.15-0.19$
Gate valve, $3 / 4$ open	0.85
Gate valve, $1 / 2$ open	4.4
Gate valve, $1 / 4$ open	20
90° elbow	$0.4-0.9$
Standard 45° elbow	$0.35-0.42$
Tee, through side outlet	1.5
Tee, straight through	0.4
180° bend	1.6
Entrance to circular pipe	$0.25-0.50$
Sudden expansion	$\left(1-A_{u p} / A_{d n}\right)^{2 *}$
Acceleration from $V=0$ to $V=V_{\text {entrance }}$	1.0
$* A_{u p}$ is the upstream area and $A_{d n}$ is the downstream area.	

Table 2-3. Surface Irregularities

Material	$\boldsymbol{\varepsilon}$ (Feet)	$\boldsymbol{\varepsilon}$ (Meters)
Drawn or smooth tubing	5.0×10^{6}	1.5×10^{6}
Commercial steel or wrought iron	1.5×10^{4}	4.6×10^{5}
Asphalted cast iron	4.0×10^{4}	1.2×10^{4}
Galvanized iron	5.0×10^{4}	1.5×10^{4}
Cast iron	8.3×10^{4}	2.5×10^{4}
Wood stave	6.0×10^{4} to	1.8×10^{4} to
	3.0×10^{3}	9.1×10^{4}
Concrete	1.0×10^{3} to	3.0×10^{4} to
	1.0×10^{2}	3.0×10^{3}
Riveted steel	3.0×10^{3} to	9.1×10^{4} to
	3.0×10^{2}	9.1×10^{3}

Program Listing.

Flags Used. None.
Memory Required. 121 bytes.

Program Instructions.

1. Key in program listing; press \square when finished.
2. Press SOLVE/d $\{F H\} C$, then specify the unknown variable by pressing SOLVE/S \{GOL'VE variable.
3. Key in the variables at each prompt and press R / S.
4. See the variable for which the program is solving.
5. Optional: Press VIEW R to see the Reynolds number.
6. Optional: Press VIEW F to see the Fanning friction factor.
7. For a new case, go to step 2.

Variables Used.

$V=$ average velocity.
$P=$ pressure drop.
$L=$ conduit length.
$D=$ conduit diameter.
$E=$ surface irregularity.
$R=$ Reynolds number.
$B=$ fluid kinematic viscosity.
$S=$ fluid density.
$F=$ Fanning friction factor.
$K=$ fitting coefficient.

Example：Pressure Drop．A 60－meter pipe has three 180 degree bends（ $K_{T}=3 \times 1.6$ ）．The fluid is water $\left(\nu=9.3 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}, \rho=1000\right.$ $\mathrm{kg} / \mathrm{m}^{3}$ ）．The pipe diameter is 0.030 m and the surface roughness is $3 \times$ $10^{-4} \mathrm{~m}$ ．If the average velocity is $3.20 \mathrm{~m} / \mathrm{s}$ ，what is the pressure drop in Pascals？What is the Reynolds number？What is the Fanning friction factor？

Keys：	Display：
SOLVE／S $\{\mathrm{FH}\}$	FN＝
C	value
SOLVE／S	SOLVE＿
\｛SOLVE\}	
P	E？value
3 因 4 ＋／－R／S	D？value
． 03 R／S	V ？value
3.2 R／S	B ？value
9.3 因 7 ＋／－R／S	L？value
60 R／S	K ？value
4.8 R／S	S？value
［国3 3 ／S	$\mathrm{P}=418,351.2590$
－VIEW R	$R=103,225.8065$
VIEW F	$F=0.0096$

Description：

Prompts for program label．

Specifies program C．
Prompts for the unknown variable．

Starts program C；
prompts for variables except P ．

Displays the pressure drop．
Displays the Reynolds number．

Displays the friction factor．

Static Equivalent at a Point

This program calculates the two reaction forces necessary to balance any given two-dimensional force vectors, provided the vectors act through the same point. The direction of the reaction forces must be specified as an angle relative to an arbitrary axis.

Equations:

$$
\begin{aligned}
R_{1} \cos \theta_{1}+R_{2} \cos \theta_{2} & =\sum F \cos \phi \\
R_{1} \sin \theta_{1}+R_{2} \sin \theta_{2} & =\sum F \sin \phi
\end{aligned}
$$

where:

$$
\begin{aligned}
& F=\text { magnitude of each known force. } \\
& \phi=\text { direction of each known force. } \\
& R_{1}=\text { first reaction force. } \\
& \theta_{1}=\text { direction of } R_{1} . \\
& R_{2}=\text { second reaction force. } \\
& \theta_{2}=\text { direction of } R_{2} .
\end{aligned}
$$

Program Listing.

S01 LEL 5	Fis IHFIUT E
5 SGE CLVARS	H19 Sill
S日S IHFUT H	Heg sto m
Checksum $=0090$	Hel LFETe
H61 LEL A	H2e dos
Hag IHFUT T	Hes sto d
H0] INFIUT F	He4 FCL ${ }^{\text {P }}$
H64 FCL T	H25 RCL\% E
H06. FCL F	HEG ROL D
	HET RCLX Y
H6] STO+ X	H2e
H6S x》y	Heg mil h
H69 STO+ Y	H30 RCLX
F16 DEE H	H31 REL C
H11 GTO A	HSE RCL\% E
H12 IHFIUT H	H3E
H1S SIH	H34
H14 STO A	H35 ST0 R
H15 LAST\%	HEG VIEN R
H16 006	her Lfete
A17 STO C	HES FCL C

H39	FELX＇$~$＇
F41	FLLX H
H 42	－
H 43	＜

```
H44 %
H45 STO F:
H4G YIEN R
H47 RTH
ミトににkこコM = EGSに:
```

Flags Used．None．
Memory Required． 75 bytes．

Remarks．

－This program clears all variables stored in Continuous Memory．
－A positive value of force（tension）points away from the origin；a negative value（compression）points toward the origin．
－Angles must be consistent with the angular mode currently set in the calculator．

Program Instructions．

1．Key in the program listing；press C when finished．
2．Press XEQ S．
3．Key in the variables at each prompt and press R／S ．
4．See the first reaction force，then press R / S ．
5．See the second reaction force．
6．For a new case，go to step 2 ．

Variables Used．

$N=$ number of known forces．
$T=$ angle of each known force．
$F=$ value of each known force．
$A=$ direction of the first reaction force．
$B=$ direction of the second reaction force．
$R=$ value of the unknown forces R_{1} and R_{2} ．
$D, X, Y, C=$ variables used for intermediate results．

Example 1: Balancing a Single Vector. Find the reaction forces in the following diagram:

Keys:
XEQ S
1 R/S
135 R/S
75 R/S
30 R/S
270 R/S

R/S

Display:
N?0.0000
T? 0.0000
F? 0.0000
A? 0.0000
B? 0.0000
$\mathrm{R}=61.2372$
$R=83.6516$

Description:

Example 2: Forces in a Bridge Truss. Find the reaction forces in structural members AE and CE. Assume pin connections at the joint.

Keys:
XEQ S
2 R/S
45 R/S
100 R/S
180 R/S
120 R/S
R/S
135 R/S
R/S

Display:
N?0.0000
T? 0.0000
F? 0.0000
T? 45.0000
F? 100.0000
A? 0.0000
B? 0.0000
$R=-21.4214$
$R=-100.0000$

Description:

Inputs known values.

Displays the first reaction force.
Displays the second reaction force.

Composite Section Properties

The mechanical properties of a constant cross section member composed of a finite number of rectangular elements can be computed by adding the contribution of each rectangular region individually. This program uses this principle to calculate the area of a section, the moments of inertia about the specified set of axes, the moments of inertia about an axis translated to the centroid, the moments of inertia of the principal axes, and the angle of rotation between the translated axes and the principal axes.

$$
\begin{gathered}
A_{s i}=\Delta x_{i} \Delta y_{i} \\
A=A_{s 1}+A_{s 2}+A_{s 3}+\cdots+A_{s n} \\
\bar{x}=\frac{\sum_{i=1}^{n} x_{0 i} A_{s i}}{A} \\
\bar{y}=\frac{\sum_{i=1}^{n} y_{0 i} A_{s i}}{A} \\
I_{x y}=\sum_{i=1}^{n} x_{0 i} y_{0 i} A_{s i} \quad \sum_{\bar{x} \bar{y}}^{n}=I_{x y}-A \bar{x} \bar{y} \\
\left.I_{y}=\sum_{i=1}^{n}\left(y_{0 i}^{2}+\frac{\Delta y_{i}^{2}}{12}\right) A_{s i}=I_{x}-A \bar{y}^{2}+\frac{\Delta x_{i}^{2}}{12}\right) A_{s i} \\
J=I_{x}+I_{y} \\
I_{\bar{y}}=I_{y}-A \bar{x}^{2} \\
\phi=\frac{1}{2} \tan ^{-1}\left(\frac{2 I_{\bar{x} \bar{y}}}{I_{\bar{x}}-I_{\bar{y}}}\right) \\
I_{\bar{x} \phi}=I_{\bar{x}} \cos ^{2} \phi+I_{\bar{y}} \sin ^{2} \phi+I_{\bar{x} \bar{y}} \sin 2 \phi \\
I_{\bar{y} \phi}=I_{\bar{y}} \cos ^{2} \phi+I_{\bar{x}} \sin ^{2} \phi+I_{\bar{x} \bar{y}} \sin 2 \phi \\
J_{\phi}=I_{\bar{x} \phi}+I_{\bar{y} \phi}
\end{gathered}
$$

where:
$\Delta x_{i}=$ width of a rectangular element.
$\Delta y_{i}=$ height of a rectangular element.
$A_{s i}=$ area of an element.
$A=$ total area of the section.
$\bar{x}=x$-coordinate of the centroid.
$\bar{y}=y$-coordinate of the centroid.
$x_{0 i}=x$-coordinate of the centroid.
$y_{0 i}=y$-coordinate of the centroid.
$I_{x}=$ moment of inertia about the x-axis.
$I_{y}=$ moment of inertia about the y -axis.
$J=$ polar moment of inertia about the origin.
$I_{x y}=$ product of inertia about the origin.
$I_{\bar{x}}=$ moment of inertia about the x-axis translated to the centroid.
$I_{\bar{y}}=$ moment of inertia about the y -axis translated to the centroid.
$I_{\overline{x y}}=$ product of inertia about the translated axis.
$\phi=$ angle between the translated axis and the principal axis.
$I_{\bar{x} \phi}=$ moment of inertia about the principal x -axis.
$I_{\bar{y} \phi}=$ moment of inertia about the principal y -axis.
$J_{\phi}=$ polar moment of inertia about the principal axis.

Program Listing．

SQ1 LEL S	134 FLL $\%$
SES ELWHFS	13S FOL \％Y
S63 IHFIIT H	UBE FLL E
	U37 ST0＋F
UQ1 LEL II	USE［SE H
162 IHFUT $\%$	139 GTO
U⿴囗 IFIFITT Y	140 FiL F
104 IHFIIT 3	1141 FCL C
1105 IHFIIT T	U4E FELX 0
10G FCLX	1143 FCL $\div \mathrm{F}$
1107 STO E	1144－
109 STI＋ A	$11459 T 0$
169 FCL <1	146 ECL C
U1E ETO＋	U47 FEL $\div \mathrm{F}$
U11 FEL X	U4G UIEN H
U12 FEL E	1149 STO
U13 STO＋区	15G 9 IEN 8
U14 FEL＇Y	$151>2$
115 2	15 FLL
U1E FLL T	$15 \mathrm{FCL} \div \mathrm{F}$
U17	154 STO \because
111812	155 UIEM γ
$119 \div$	U56
120＋	$157 \mathrm{FLCL} \times \mathrm{H}$
Uこ1 FCL E	$158+$
いこと STO＋H	$159 \mathrm{ELL} H$
Uご FOL $\%$	UEG YIEN H
124 $\times 2$	161＋
UES FCL 3	UE2 STOH
ШЕ6 2	163 F
いご 12	UE4 FEL H
128 \div	1165＋－
$129+$	DEG FIL I
U36 FCL\％E	BGT UIEN I
U31 ETI＋I	DES UIEN－
132＋	169 WIEN F
U3S STO＋．	118＋

1171 STOI	WG1 LEL ψ
UFE FOL H	WGこ STO
リア3 ST0－	WG3 YIEN G
1174 UIEN H	W64 2
UP5－－¢	W65 \times
\TE UIEH I	WGE SIH
$1177 \quad$ ETOT	WG7 FCLC F
178－	W6E＋－
179 STD D	WEG FEL G
1EG FEL 0	Y10 SIH
UE1 STO F	V11
UB2 UIEN F	V12 FCLX ${ }^{\text {d }}$
188 － 10	V13－
UE4 LTO 4	V14 FCL +H
$185 \div$	W15 STOH
U86 1\％	V1G WIENH
1187	W17 FOL－－
$188 \times$	V18＋－
1189 HTAH	U19 STOI
1962	W2Q UIEN I
$1191 \div$	W21 UIEサ－
192＋－	W2e RTH
EREにkEum $=$ F4E6	Chににくこum $=68 \mathrm{ET}$

Flags Used．None．
Memory Required． 175.5 bytes．

Remarks．

－This program clears all variables stored in Continuous Memory．
－For a given origin，the polar moment of inertia is constant regardless of the angular rotation．Therefore，$J_{\overline{x y}}$ is equal to J_{ϕ} ．
－It is possible to obtain a negative value for the product of inertia．

Program Instructions.

1. Key in the program listing; press C when done.
2. Press XEQ S.
3. Key in the variables at each prompt and press R / S.
4. See the results as they are displayed and press R / S.
5. For a new case, go to step 2 .

Variables Used.

$X=x_{0 i}$ and \bar{x}.
$Y=y_{0 i}$ and \bar{y}.
$S=\Delta x_{i}$.
$T=\Delta y_{i}$.
$H=I_{x}, I_{\bar{x}}$, and $I_{\bar{x} \phi}$.
$I=I_{y}, I_{\bar{y}}$, and $I_{\bar{y} \phi}$.
$J=J$ and J_{ϕ}.
$P=I_{x y}, I_{\overline{x y}}$.
$A=$ total area of the entire section.
$G=$ angle between the translated axis and the principal axis.
$N=$ number of sections.
$D, C, B, Q=$ variables used for intermediate results.
Example 1: Rectangular Section. Calculate the section properties of the following cross section:

Table of Inputs

x	y	$\Delta \mathrm{x}$	$\Delta \mathrm{y}$
2	1.5	4	3

Keys:

XEQ S
1 R/S
2 R/S
$1.5 \mathrm{R} / \mathrm{S}$
4 R/S
3 R/S

Display:
N?0.0000
X?0.0000
Y?0.0000
S?0.0000
T? 0.0000
$A=12.0000$
$X=2.0000$
$Y=1.5000$
$H=36.0000$
$\mathrm{I}=64.0000$
$J=100.0000$
$\mathrm{P}=36.0000$
$\mathrm{H}=9.0000$
$\mathrm{I}=16.0000$
$\mathrm{P}=0.0000$
$\mathrm{G}=0.0000$
$H=9.0000$
$I=16.0000$
$J=25.0000$

Description:

Inputs known values.

Displays area.
Displays \bar{x}.
Displays \bar{y}.
Displays I_{x}.
Displays I_{y}.
Displays J.
Displays $I_{x y}$.
Displays $I_{\bar{x}}$.
Displays $I_{\bar{y}}$.
Displays $I_{\overline{x y}}$.
Displays ϕ.
Displays $I_{\bar{x} \phi}$.
Displays $I_{\bar{x} \phi}$.
Displays J_{ϕ}.

Example 2: Composite Section. Calculate the section properties of the following section:

Table of Inputs

	x	y	$\Delta \mathrm{x}$	$\Delta \mathrm{y}$
1	5	11.5	6	1
2	1	6	2	12
3	7	1	10	2

Keys:

XEQ S
3 R/S
5 R/S
11.5 R/S

6 R/S
1 R/S
1 R/S
6 R/S
2 R/S
12 R/S
7 R/S
1 R/S
10 R/S
2 R/S
R / S
R/S

Display:
N?0.0000
X? 0.0000
Y? 0.0000
S? 0.0000
T?0.0000
X?5.0000
Y?11.5000
S? 6.0000
T? 1.0000
X? 1.0000
Y? 6.0000
S?2.0000
T? 12.0000
$A=50.0000$
$X=3.8800$
$Y=4.6600$
$\mathrm{H}=1,972.6667$
$\mathrm{I}=1,346.6667$
$\mathrm{J}=3,319.3333$
$\mathrm{P}=629.0000$
$\mathrm{H}=886.8867$
I=593.9467
$\mathrm{P}=-275.0400$
$\mathrm{G}=30.9814$
$H=1,052.0261$
I = 428.8072
$\mathrm{J}=1,480.8333$

Inputs known values.
Description:

Displays area.
Displays \bar{x}.
Displays \bar{y}.
Displays I_{x}.
Displays I_{y}.
Displays J.
Displays $I_{x y}$.
Displays $I_{\bar{x}}$.
Displays $I_{\bar{y}}$.
Displays $I_{\overline{x y}}$.
Displays ϕ.
Displays $I_{\bar{x} \phi}$.
Displays $I_{\bar{x} \phi}$.
Displays J_{ϕ}.

Soderberg's Equation for Fatigue

This program calculates any one of the six variables in Soderberg's equation for fatigue when the other five are known. Soderberg's equation is shown graphically in the figure below.

Equation:

$$
\frac{s_{y p}}{F S}=\frac{s_{\max }+s_{\min }}{2}+K\left(\frac{s_{y p}}{s_{e}}\right)\left(\frac{s_{\max }-s_{\min }}{2}\right)
$$

where:
$s_{y p}=$ yield point stress.
$s_{e}=$ endurance stress from reversed bending tests.
$s_{\text {max }}=$ maximum applied stress.
$s_{\text {min }}=$ minimum applied stress.
$K=$ stress concentration factor ．
$F S=$ factor of safety．

Program Listing．

501 LEL 5
S02 IHFIIT Y
503 IHFIIT E
604 IHFUT A
505 IHFUT E
SEG IHFUT K
S07 IHFIIT F
SGS FEL＇$'$
$569 \mathrm{FCL} \div \mathrm{F}$
S1E FEL A
$511 \mathrm{FCL}+\mathrm{E}$
5122
$513 \div$
514－
515 FCL A
S16 FCL－E
$S 172$
S18 \div
319 FCLX γ
E2G FCL \div E
521 FCLX K
S22－
523 FTH
Chににkシum＝ C 95 D

Flags Used．None．
Memory Required． 34.5 bytes．

Remarks．

－Soderberg＇s equation is valid for ductile materials only．
－Fatigue effects are magnified in corrosive environments．

Program Instructions．

1．Key in the program listing，pressing C when finished．
2．Press SOLVE／S \｛FH\} S, then specify the unknown variable by pressing SOLVE／S \｛GOLVE $\}$ variable．
3．Key in the variables at each prompt and press R / S ．
4．See the variable for which the program is solving．
5．For a new case，go to step 2.

Variables Used.

$Y=$ yield point stress.
$E=$ endurance stress.
$A=$ maximum applied stress.
$B=$ minimum applied stress.
$K=$ stress concentration factor.
$F=$ factor of safety.

Example. What is the maximum allowable applied stress if the minimum applied stress is 15,000 psi?

$$
\begin{aligned}
& s_{y p}=80,000 \mathrm{psi} . \\
& s_{e}=30,000 \mathrm{psi} . \\
& K=1.5 . \\
& F S=2.0 .
\end{aligned}
$$

Keys:	Display:	Description:
- SOLVE/S \{FH\}	$\mathrm{FN}=$	Prompts for program label.
S	value	Specifies program S.
$\begin{aligned} & \text { SOLVE/S } \\ & \{S O L V E\} \end{aligned}$	SOLVE	Prompts for the unknown variable.
A	Y?value	Starts program S;
80000 R/S	E?value	prompts for variables
30000 R/S	B?value	except A.
15000 R/S	K ? value	
1.5 R/S	F?value	
$2 \mathrm{R} / \mathrm{S}$	$\mathrm{A}=25,000.0000$	Displays the maximum applied stress.

3

Civil Engineering

Mohr's Circle for Stress

This program calculates the 2-D Mohr's circle for stress from equiangular or rectangular strain gage data or directly from known stresses.

Configuration Code	Rectangular	2
Type of Rosette	Delta (Equiangular)	

$$
\begin{gathered}
\tau_{\max }=\left[\left(\frac{S_{x}-S_{y}}{2}\right)^{2}+\tau_{x y}^{2}\right]^{\frac{1}{2}} \\
S_{1}=\frac{S_{x}+S_{y}}{2}+\tau_{\max } \\
S_{2}=\frac{S_{x}+S_{y}}{2}-\tau_{\max } \\
\theta=\frac{1}{2} \tan ^{-1}\left(\frac{2 \tau_{x y}}{S_{x}-S_{y}}\right) \\
S=\frac{S_{1}+S_{2}}{2}+\tau_{\max } \cos 2 \theta^{\prime} \\
\tau=\tau_{\max } \sin 2 \theta^{\prime}
\end{gathered}
$$

Program Listing．

IG1 LEL I
IGE IHFUT E
I $6=$ IHFUTT G
IE4 IHFIIT A
I65 IHFUT E
IGE IHFUT E：
IG7 FEL E
IGG 1
IG9 FCL－
I1日 \div
I11 STG ，
I12 EL L E
I 131
I14 $\mathrm{FCL}+\mathrm{Q}$
I15 \div
I16 STO
I17 FEL H
I1s FEL E
I19 FEL
Iこ日 FTH
「トにににこ」ル＝9144
FE1 LEL F：
FQ2 KEO I
$\mathrm{FG} \mathrm{FCL}+\mathrm{H}$
F04 2
F65－
FEG FOL－E
FET FCL E：
FQS RCL H
F69 GTO M

EG1 LEL E
EG2 XEO I
E03－
E64 3
EQ5 GORT
EGE：

EGT FCL E
EGG FOL＋I
E69 2
E19 \times
E11 FEL－ H
E12 3
E13 \div
E14 FCL A
E15 GTO
EREにKこムM＝BHEG
G区1 LEL
E区E IHFUT S
S63 IHFUIT \because
G区4 IHFIIT \％
E6 1
GQE STO ，
SGT STO F
GQE FUL G
Eg＋－
G1区 FEL＇$'$
$S 11$ FLL X

HE1 LEL 1
ME ETOL

M04 2
10．5 \div
MEG STOK－
MET FOL－L
MES FES

川16 STO\％ F
M11 シ्ञ
サ12 2
$113 \div$
M14 ETD
M15 FCL E

M1G FLL + －	M29 SIH
M17 STG	MBE LAST天
M18 UIEM い	HS1 E0S
M19 FCL	132 FL （\％ F
M2G FCL－ F	$13 \mathrm{ECL}+\ldots$
Mご STOL	184 ST0 ${ }^{1}$
Mこと UIEN L	HS5 UIEN F
M23 YIEM F	M36 Ft
M24 UIEN G	M37 FLCL E
MES IHFIIT W	H3E STOT
MEG FOLC G	HE9 YIEA T
M27 2	M40 ETH
Mzs \times	ChEにくこ」m $=$

Flags Used．None．
Memory Required． 142.5 bytes．

Remarks．

－Tensile forces are considered positive，compressive stresses negative．
－This program calculates the principal stresses for a two dimensional stress state only．A knowledge of the stresses in the z－direction is necessary to determine the overall maximum and minimum stresses．
－Angles must be consistent with the angular mode currently set in the calculator．

Program Instructions．

1．Key in the program listings of the routines to be used；press C when finished．

2．Select the appropriate routine：
－Press XEQ E if equiangular strain gage readings are known．
－Press XEQ R if rectangular strain gage readings are known．
－Press XEQ S if stresses are known directly．
3．Key in the variables at each prompt and press R／S．
4．See each result as it＇s displayed．Press R／S to display the next one．
5．Optional：At the prompt，key in rotation angle W and press R / S to obtain the normal stress at that orientation；press R / S again to see the shear stress．

Variables Used.

$A=\varepsilon_{0}$.
$B=\varepsilon_{45}$ or ε_{60}.
$C=\varepsilon_{90}$ or ε_{120}.
$E=$ Young's modulus.
$V=$ Poisson's ratio.
$X=$ normal stress on the x-face, σ_{x}.
$Y=$ normal stress on the y-face, σ_{y}.
$S=$ shear stress, $\tau_{x y}$.
$U=$ maximum principal stress, σ_{1}.
$L=$ minimum principal stress, σ_{2}.
$R=$ maximum shear stress, $\tau_{\text {max }}$.
$G=$ clockwise angle from the specified x-axis to the maximum principal axis.
$W=$ arbitrary angle counterclockwise from the specified x-axis, β.
$P=$ normal stress at angle β.
$T=$ shear stress at angle β.
$J=$ variable used for intermediate results.

Example 1：Equiangular Strain Gage．An equiangular rosette strain gage measures the following strains：

$$
\begin{aligned}
& \varepsilon_{0}=180 \mu . \\
& \varepsilon_{60}=200 \mu . \\
& \varepsilon_{120}=-290 \mu .
\end{aligned}
$$

Find the principal stresses and their orientation．The material properties are $E=30 \times 10^{6}$ psi and $\nu=0.3$ ．

Keys：

－MODES \｛DG
$\mathrm{XEQ} \mathrm{E} \quad \mathrm{E}$ ？value

30 因 6 R／S
． 3 R／S
180 因 6 ＋／－ R / S
200 因 6 ＋R R／S
290 ＋／－国 $6+/ \rightarrow$
R／S
R／S
R／S
R／S

Display：

E ？value

V？value
A？value
B ？value
C？value

$$
\begin{aligned}
& U=8,675.1358 \\
& L=-6,103.7072 \\
& R=7,389.4215 \\
& G=31.0333
\end{aligned}
$$

Description：

Sets degrees mode．
Begins equiangular rosette routine．

Inputs strain gage

 readings．Displays σ_{1} ．
Displays σ_{2} ．
Displays $\tau_{\text {max }}$ ．
Displays θ ．

Example 2: Known Stresses. The stresses acting on an element are shown below (all stresses are in MPa).

Find the principal stresses and their orientation, and the stresses on the face of the element oriented 45° counterclockwise from the x-axis.

Keys:
XEQ S
30 R/S
20 +/- R/S
75 R/S
R/S
R/S
R/S
R/S
45 R/S
R/S

Display:
S?value
Y?value
X ?value
U = 83.6805
$\mathrm{L}=-28.6805$
$R=56.1805$
$\mathrm{G}=-16.1378$
W?value
$\mathrm{P}=57.5000$
$\mathrm{T}=47.5000$

Description:
Begins stress routine.
Inputs stresses.

Displays σ_{1}.
Displays σ_{2}.
Displays $\tau_{\text {max }}$.
Displays θ.
Inputs angle.
Displays σ.
Displays τ.

Field Angle Traverse

This program calculates the coordinates of a traverse, the total horizontal distance traversed, and the enclosed area (for a closed traverse). The user must input the northing and easting of the starting point, the reference azimuth, and the direction and distance from each point in the traverse to the next point. The direction may be input either as a deflection right or left or as an angle right or left. The distance may be input either as a horizontal distance or as a slope distance with a zenith angle.

$$
\begin{gathered}
H D=S D \sin (Z A) \\
N_{k+1}=N_{k}+H D \cos (A Z) \\
E_{k+1}=E_{k}+H D \sin (A Z) \\
L A T_{k}=N_{k+1}-N_{k} \\
D E P_{k}=E_{k+1}-E_{k} \\
\text { Area }=\sum_{k=1}^{n} L A T_{k}\left(\frac{1}{2} D E P_{k}+\sum_{j=1}^{k-1} D E P_{j}\right)
\end{gathered}
$$

where:
$N, E=$ northing, easting of a point.
$k=$ a current point.
$n=$ number of points in the survey.
$A Z=$ azimuth of a course.
$H D=$ horizontal distance.
$S D=$ slope distance.
$Z A=$ zenith angle.

Program Listing．

FQ1 LEL F	565 SH
F6E EF 区	S6e \times
F63 ELWHES	SET STOH
Fe4 IHFIUT H	S日S EF 日
F65 IHFUTT E	Eheにksum＝505
FEG IHFIIT F	HE1 LEL H
$\mathrm{FQT}+\mathrm{HF}$	HE2 FS？日
FGS 180	HES IHFUT H
FQg ＋	H04 ETO＋T
F1日 ET0 F	HES FLCL F
F11 STOF	HEGEF 日
Eちににくこ」m＝1001	
HQ1 LEL A	
Heg IHFUT H	H09 ETO＋H
H6S +HF	H19 \quad－
H04 186	H11 STO＋E
H65＋	H12 STO 8
HQG STO＋F	H132
H6T STOF	H14
－heにksum＝0137	H15 FCL +K
［01 LEL D	H1E \times
DEE IHFUT D	H17 ETO＋ F
［09 $\rightarrow \mathrm{HF}$	H1S FCL 8
［04 ETO＋F	H19 STO＋K
［05 STOF	H2日 UIEN H
ChEにkこum＝बき5F	Hこ1 WIEN E
EQ1 LEL 5	H2e UIEN T
Exz IHFUT S	HES YIEN F
S区S IHFITT 2	H24 RETH
S64 +HF	Ch＠にksum $=\mathrm{ES50}$

Flags Used．Flag 0.
Memory Required． 98.5 bytes．

Remarks.

- This program clears all variables stored in Continuous Memory.
- Right angles and deflections are positive; left angles and deflections are negative.
- This program requires the calculator to be set to degrees mode; angular inputs must be in degrees-minutes-seconds (D.MS) format.
- The program uses zenith angles to calculate the horizontal distance from slope distance. If you are using vertical angles rather than zenith angles, convert the vertical angle to a zenith angle by using:

$$
\text { zenith angle }=90^{\circ}-\text { vertical angle. }
$$

(Remember to convert D.MS input to decimal degrees before subtracting from 90 .)

Program Instructions.

1. Key in the program listing and press C when finished.
2. Press XEQ F.
3. Key in N and press R / \mathbf{S}; key in E and press R / \mathbf{S}; key in F and press R/S.
4. Select the appropriate routine to input the direction:

- For an angle right or an angle left:
- Press XEQ A.
- Key in A.
- If angle left, press $+/-$
- Press R/S.
- For a deflection right or a deflection left:
- Press XEQ D.
- Key in D.
- If deflection left, press $+/-$.
- Press R/S .

5. Select the appropriate routine to input the distance:

- For a horizontal distance:
- Press XEQ H .
- Key in A and press R/S.
- See N and press R/S.
- See E.
- For a slope distance with zenith angle:
- Press XEQ S.
- Key in S and press R/S.
- Key in Z and press R/S.
- See N and press R/S.
- See E.

6. When the final distance and angle have been keyed in, press R / S to see T.
7. Press R/S to see R.

Variables Used.

$N=$ the northing of each point.
$E=$ the easting of each point.
$F=$ reference azimuth away from the starting point.
$A=$ angle change of direction.
$D=$ deflection change of direction.
H = horizontal distance.
$S=$ slope distance.
$Z=$ zenith angle.
$T=$ total distance traversed.
$R=$ enclosed area.
$X, K=$ variables used for intermediate results.

Example: Field Angle Traverse. Find the coordinates of each point, the total distance, and the area enclosed for the following field:

Keys:

MODES \{DG
XEQ F
150 R/S
400 R/S
311.3955 R/S

XEQ A
113.3455 R/S

XEQ H
177.966 R/S

R/S
XEQ D
100.2455 +/- R/S

XEQ S
161.88 R/S
86.0139 R/S

R/S
XEQ A
87.3559 R/S

XEQ H
203.69 R/S

R/S
XEQ D
100.4559 +/- R/S

XEQ H
124 R/S
R/S
R/S
R/S

Display:

N?0.0000
E? 0.0000
F? 0.0000
491.6653

A? 0.0000
293.5819

H?0.0000
$\mathrm{N}=224.5150$
$\mathrm{E}=561.6150$
D?0.0000

- 100.4153

S? 0.0000
Z?0.000
$\mathrm{N}=356.5285 \quad$ Displays N_{3}.
$\mathrm{E}=468.5999 \quad$ Displays E_{3}.
A? 113.3455
267.5997

H?161.4911
$\mathrm{N}=232.3373 \quad$ Displays N_{4}.
$E=307.1498$
D? - 100.2455

- 100.7664

H?203.6900
$\mathrm{N}=149.9048 \quad$ Displays N_{1}.
$\mathrm{E}=399.7829 \quad$ Displays E_{1}.
$T=667.1471 \quad$ Displays total distance.
$R=26,558.8326 \quad$ Displays area.

Description:

Sets degrees mode.

Inputs starting point data.

Displays N_{2}.
Displays E_{2}.

Displays E_{4}.

4

Statistics

t Statistics

This program performs t statistics calculations for either paired statistics or for two means.

Paired t Statistics

Given a set of paired observations from two normal populations with unknown means μ_{1} and μ_{2} :

x_{i}	x_{1}	$x_{2} \cdots x_{n}$
y_{i}	y_{1}	$y_{2} \cdots y_{n}$

let:

$$
\begin{gathered}
D_{i}=x_{i}-y_{i} \\
\bar{D}=\frac{1}{n} \sum_{i=1}^{n} D_{i} \\
s_{D}=\left[\frac{\Sigma D_{i}^{2}-\frac{1}{n}\left(\Sigma D_{i}\right)^{2}}{n-1}\right]^{\frac{1}{2}}
\end{gathered}
$$

The test statistic

$$
t=\frac{\bar{D}}{s_{D}} \sqrt{n}
$$

has $n-1$ degrees of freedom ($d f$) and can be used to test the null hypothesis $H_{0}: \mu_{1}=\mu_{2}$.

t Statistic for Two Means

Suppose $\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{n_{2}}\right\}$ are independent random samples from two normal populations having means μ_{1} and μ_{2} (unknown) and the same unknown variance σ^{2}.

To test the null hypothesis $H_{0}: \mu_{1}-\mu_{2}=d$, where d is a given number, use the following equations:

$$
\begin{gathered}
\bar{x}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} x_{i} \\
\bar{y}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} y_{i} \\
{\left[\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\left(\frac{\Sigma x_{i}^{2}-n_{1} \bar{x}^{2}+\Sigma y_{i}^{2}-n_{2} \bar{y}^{2}}{n_{1}+n_{2}-2}\right]\right]^{\frac{1}{2}}}
\end{gathered}
$$

You can use this t statistic, which has the t distribution with $n_{1}+n_{2}-2$ degrees of freedom (df), to test the null hypothesis H_{0}.

Program Listing．

FG1 LEL F
FGE CLE
FGG IHFIIT H
Checksum＝FCFE
KG1 LEL K
KGE IHFIIT X
KGE IHFIIT Y
KG4 ROL X
K0．RCL－Y
KGE B＋
KG7 DSE H
K日G GTOK

K16 STo 0
$k 11 \equiv \%$
k 12 STO 5
K13－
K14
K 15 SQRT
k16 \times
K 17 ETO T
k18 ก
K19 1
K2－
K21 ST0 F
Ke VIEN D
Kes पIENS
K24 VIEN T
Ke5 UIEN F
KeE RTH
Cherksum＝16ET
TE1 LEL T
TGe IHFIJT H
TGS CLE
TG4 sTOF
T0．5 x
TGE STO A

TV7 8 sez
TQG STO E
TQ9
T1日 STO
T11 CLE
Tiz STOF
T13
T14 5T0．
T15 $\mathrm{x} \mathrm{x}^{2}$
T1E STOK
T17
T13 ETOL
T19 RCL E
Teg ROL A
TE1 x 2
Te2 FCLX C
T23－
Te4 $\mathrm{FCL}+\mathrm{K}$
Te5 RCL
TEE x^{2}
TEて RCLX L
Tes－
Te9 ROL C
TEU RCL＋L
$\mathrm{T} \geqslant 12$
TS2－
TSS STO F
$T \geqslant 4 \div$
TS5 SORT
TEG 1／x
TET RCL A
TES RCL－J
TSY RCL－H
T4日 x
T41 FOL C
T4E 1．x
T43 RCL L

T44 12\％	T49 \％IEN T
T4．5＋	TS＠UIEN F
T4E SQRT	TS1 RTH
T47 \div	Chににくこum
T4S ETO T	

Flags Used．None．
Memory Required． 120 bytes．

Remarks．

－This program clears all statistical data stored in Continuous Memory．
－The two routines are independent of each other．

Program Instructions．

1．Key in the programs to be used；press C when finished．
2．For paired t statistics：
－Press XEQ P．
－Key in N and press R／S．
－Key in each X and press R／S ；key in the corresponding Y and press R／S．
－See the results as they are displayed．Press R／S to display the next result．

3．For t statistics of two means：
－Press XEQ T．
－Key in H and press R／S．
－Key in each x－value and press $\Sigma+$
－When all of the x－values have been entered，press R／S．
－Key in each y－value and press $\Sigma+$ ．
■ When all of the y－values have been entered，press R／S to calculate the test statistic T ．
\square Press R／S to calculate the degrees of freedom．

Variables Used.

$X=x$-value of a pair of observations.
$Y=y$-value of a pair of observations.
$N=$ number of paired values.
$D=$ average difference, \bar{D}.
$S=$ standard deviation, s_{D}.
$F=$ number of degrees of freedom, $d f$.
$H=$ null hypothesis difference, d.
$T=$ test statistic.
$A, B, C, J, K, L=$ variables used for intermediate results.

Example 1: Paired Observations. Calculate the test statistic and degrees of freedom of the following data pairs for the null hypothesis $H_{0}: \mu_{1}=\mu_{2}$.

\mathbf{x}	15	16.9	15.3	17	19.1	15.3
\mathbf{y}	18	19.3	17	20.3	19.7	18

Keys: Display: Description:

XEQ P	N ? value	
6 R/S	X ? value	Inputs values.
$15 \mathrm{R} / \mathrm{S}$	Y?value	
18 R/S	X? 15.0000	
16.9 R/S	Y?18.0000	
19.3 R/S	X?16.9000	
15.3 R/S	Y? 19.3000	
17 R/S	X? 15.3000	
17 R/S	Y?17.0000	
20.3 R/S	X?17.0000	
19.1 R/S	Y?20.3000	
19.7 R/S	X? 19.1000	

$15.3 \mathrm{R} / \mathrm{S}$
Y?19.7000
18 R/S
R/S
R/S
$D=-2.2833$
Displays \bar{D}.
$\mathrm{S}=0.9908$
Displays s_{D}.
R/S
$T=-5.6450$
Displays t.
Displays $d f$.

Example 2: Two Means. Calculate the test statistic and degrees of freedom of the following data for the null hypothesis $H_{0}: \mu_{1}=\mu_{2}$.

\mathbf{x}	86	109	112	91	103	121	107	100	97
\mathbf{y}	93	101	111	117	105	97	99		

Keys:	Display:	Description:
XEQ T	H ? value	
0 R/S	0.0000	
86 E+	1.0000	Inputs x-values.
109 E+	2.0000	
112 E+	3.0000	
91 E+	4.0000	
103 E+	5.0000	
121 E+	6.0000	
107 [E +	7.0000	
100 [+	8.0000	
97 [$2+$	9.0000	
R/S	9.0000	
93 E+	1.0000	Inputs y-values.
101 E+	2.0000	
111 E+	3.0000	
117 E+	4.0000	
105 E+	5.0000	
97 [$2+$	6.0000	
99 [t	7.0000	
R/S	$\mathrm{T}=-0.0801$	Displays t.
R/S	$\mathrm{F}=14.0000$	Displays $d f$.

Chi-Square Evaluation

This program calculates the value of the χ^{2} statistic for the goodness of fit test using the equation:

$$
\chi^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} \quad(d f=n-1)
$$

where:

$$
\begin{aligned}
& O_{i}=\text { the observed frequency } \\
& E_{i}=\text { the expected frequency. }
\end{aligned}
$$

If the expected values are equal:

$$
E=E_{i}=\frac{\Sigma O_{i}}{n} \text { for all } i
$$

then:

$$
\chi^{2}=\frac{n \Sigma O_{i}^{2}}{\Sigma O_{i}}-\Sigma O_{i}
$$

Program Listing.

U61 LEL U	D11 UIEN C
162 -	D1E RTH
1163 STO C	Checksum $=9890$
U64 IHFIUT H	EQ1 LEL E
Checksum $=0.062$	EGE CLE
DG1 LEL D	EGS IHFIUT H
DGE IWFUT 0	Checksum $=22 \mathrm{E}$
DGS IWFIIT E	K01 LEL K
004 RCL	K日E IHFIUT
$005 \mathrm{FCL}-\mathrm{E}$	k0s $\mathrm{E}+$
$066 x^{2}$	K64 DEE H
$0 \mathrm{Ca} 7 \mathrm{ECL} \div \mathrm{E}$	K0.5 GTO K
DGE STO+ C	K6E ${ }^{1}$
0 dg DSE H	1098
D19 GTO D	k06 x

K15
ト1G ETIE
K17 UIEH E
K1S FTH

Flags Used. None.
Memory Required. 55.5 bytes.

Remarks.

- This program clears all statistical data stored in Continuous Memory.
- The two routines (the unequal case and the equal case) are independent of each other.

Program Instructions.

1. Key in the program listing; press C when finished.
2. Select the appropriate routine:

- Press XEQ U if the expected values are unequal.
- Press XEQ E if the expected values are equal.

3. Key in the variables at each prompt and press R/S.
4. After all data is input, the χ^{2} value is calculated and displayed.
5. For a new case, go to step 2 .

Variables Used.

$O=$ observed frequency.
$E=$ expected frequency.
$C=\chi^{2}$.
$N=$ number of data pairs (unequal case) or values (equal case).

Example 1: Unequal Expected Frequencies. Find the χ^{2} statistic for the goodness of fit for the following data set:

Observed	8	50	47	56	5	14
Expected	9.6	46.75	51.85	54.4	8.25	9.15

Keys:

Display:
Description:

XEQ U	N ? value	
6 R/S	O?value	Inputs values
8 R/S	E ? value	
9.6 R/S	O?8.0000	
$50 \mathrm{R} / \mathrm{S}$	E?9.6000	
46.75 R/S	O?50.0000	
47 R/S	E?46.7500	
51.85 R/S	O?47.0000	
56 R/S	E?51.8500	
54.4 R/S	O?56.0000	
5 R/S	E?54.4000	
8.25 R/S	O?5.0000	
$14 \mathrm{R} / \mathrm{S}$	E?8.2500	
$9.15 \mathrm{R} / \mathrm{S}$	$\mathrm{C}=4.8444$	Displays χ^{2}.

Example 2: Equal Expected Frequencies. The following table shows the frequencies observed in tossing a die 120 times. χ^{2} can be used to test if the die is fair $(d f=5)$. Assume that the expected frequencies are equal.

i	1	2	3	4	5	6
Observed	25	17	15	23	24	16

Keys:	Display:	Description:
XEQ E	N ? value	
6 R/S	O?value	Inputs values.
$25 \mathrm{R} / \mathrm{S}$	O?25.0000	
$17 \mathrm{R} / \mathrm{S}$	O?17.0000	
$15 \mathrm{R} / \mathrm{S}$	O?15.0000	
23 R/S	0?23.0000	
24 R/S	O?24.0000	
16 R/S	$\mathrm{C}=5.0000$	Calculates and displays χ^{2}.

The value of χ^{2} for $d f=5$ and 5% significance ${ }^{*}$ is 11.070 . Since 5.00 is less than 11.070 , no statistically significant differences exist between the observed and expected frequencies.

[^0]
F Distribution

This program evaluates the integral of the F distribution:

$$
Q(x)=\int_{x}^{\infty}\left[\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right) y^{\frac{\nu_{1}}{2}-1}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}}}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)\left(1+\frac{\nu_{1}}{\nu_{2}} y\right)^{\frac{\nu_{1}+\nu_{2}}{2}}}\right] d y
$$

where $\mathrm{x}>0$ and ν_{1} and ν_{2} are the degrees of freedom, provided either ν_{1} or ν_{2} is even and both are greater than two.

The following series are used to evaluate the integral．
If ν_{1} is even：

$$
\begin{aligned}
Q(x)= & t^{\frac{\nu_{2}}{2}}\left[1+\frac{\nu_{2}}{2}(1-t)+\frac{\nu_{2}\left(\nu_{2}+2\right)}{2 \cdot 4}(1-t)^{2}+\cdots\right. \\
& \left.+\frac{\nu_{2}\left(\nu_{2}+2\right) \cdots\left(\nu_{2}+\nu_{1}-4\right)}{2 \cdot 4 \cdots\left(\nu_{1}-2\right)}(1-t)^{\frac{\nu_{1}-2}{2}}\right]
\end{aligned}
$$

If ν_{2} is even：

$$
\begin{aligned}
Q(x)= & 1-(1-t)^{\frac{\nu_{1}}{2}}\left[1+\frac{\nu_{1}}{2} t+\frac{\nu_{1}\left(\nu_{1}+2\right)}{2 \cdot 4} t^{2}+\cdots\right. \\
& \left.+\frac{\nu_{1}\left(\nu_{1}+2\right) \cdots\left(\nu_{2}+\nu_{1}-4\right)}{2 \cdot 4 \cdots\left(\nu_{2}-2\right)} t^{\frac{\nu_{2}-2}{2}}\right]
\end{aligned}
$$

where：

$$
t=\frac{\nu_{2}}{\nu_{2}+\nu_{1} x}
$$

Program Listing．

FQ1 LEL F	E日c EF 日
FES EF	EGS FCL A
FES IHFUTT H	EG4 FCL E
Fe4 IHPITT E	EQS ST0 A
F6，IHFIIT 8	EQ6 x＞
FEG FCLX A	EQ7 ST0 E
FQ7 FCL +E	E68 1
$\mathrm{FES} \mathrm{FCL} \div \mathrm{E}$	EG9 FCLL T
F99 1 F	E19 ST0 T
F1日 STOT	Ehセロk Eum＝こFFE
F11 FETH	DE1 LEL 0
Cheにksum＝4069	D62 9
EQ1 LEL E	D03 STO I

01041
［G5 STOK
［GE STO H
［日G FCL A
0 DE 2
D69－
01日 2
D11 \div
［12 STO H
「ちににksum＝9R
F＇G1 LEL F^{\prime}
FGE 1
FGB STO＋I
FQ4 $\mathrm{FCL}-\mathrm{T}$
FGS FCLXK
F曰G 2
FGT RCL I
FQ日
FQ9－
F1G FCL I
F11 1
F12－
F13 2
F14 x

F15 FCL $+E$
Fig＊
F17 STOK
Fis STO＋H
F19 FCL H
FCG FCL－I
Fこ1 ※キロ？
Fこe GTO F
FZ FEL E
Fこ4 2
F2S－
FこG FCL T

FCS
Fこg FCLX H
FSG1
FS1 $2 \gg$
FS2 FS？ 9
F33－
FB4 ST0 9
FSS UIEN Q
FBE RTH

Flags Used．Flag 0.

Memory Required． 103.5 bytes．

Program Instructions．

1．Key in the program listing；press C when finished．
2．Press XEQ F．
3．Key in the variables as they are prompted for，pressing R／S after each entry．
4．Select the appropriate routine to calculate $Q(x)$ ：
－Press XEQ E if ν_{1} is odd and ν_{2} is even．
－Press XEQ D if ν_{1} is even and ν_{2} is odd．
－Press XEQ D if both ν_{1} and ν_{2} are even．
5．For a new case，go to step 2.

Variables Used.

$$
\begin{aligned}
& A=\nu_{1} . \\
& B=\nu_{2} . \\
& X=x . \\
& Q=Q(x) .
\end{aligned}
$$

$T, I, K, H, N=$ variables used for intermediate results.

Example 1. Calculate Q (3.92), where $\nu_{1}=9$ and $\nu_{2}=6$.
Keys:
Display:
Description:

XEQ F
$9 R / S$
6 R/S
3.92 R/S

XEQ E

A?value
B ? value
X ?value
0.1453
$\mathrm{Q}=0.0552$
Displays Q (3.92).

Example 2. Calculate Q (1.85), where $\nu_{1}=4$ and $\nu_{2}=16$.

Keys:

XEQ F
4 R/S
16 R/S
$1.85 \mathrm{~B} / \mathrm{S}$
XEQ D

Display:
A?value
B ?value
X ?value
0.6838
$\mathrm{Q}=0.1687$

Description:

Inputs values.

Displays $Q(1.85)$.

Analysis of Variance (One Way)

One way analysis of variance tests the difference between the population means of k treatment groups. Group $i(i=1,2, \ldots, k)$ has n_{i} observations. Treatment groups may have equal or unequal numbers of observations.

$$
\begin{gathered}
\text { Sum }_{i}=\sum \text { of observations in treatment group } i=\sum_{j=1}^{n_{i}} x_{i j} \\
\text { Total } S S=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{i j}^{2}-\frac{\left(\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{i j}\right)^{2}}{\sum_{i=1}^{k} n_{i}} \\
\text { Treat } S S=\sum_{i=1}^{k}\left[\left(\frac{\left.\sum_{j=1}^{n_{i}} x_{i j}\right)^{2}}{n_{i}}\right]-\frac{\left(\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{i j}\right)^{2}}{\sum_{i=1}^{k} n_{i}}\right. \\
\text { Error } S S=\text { Total } S S-\operatorname{Treat} S S \\
d f_{1}=\operatorname{Treat} d f=k-1 \\
d f_{2}=\text { Error } d f=\sum_{i=1}^{k} n_{i}-k \\
\text { Treat } M S=\frac{\operatorname{Treat} S S}{\operatorname{Treat} d f} \\
\text { Error } M S=\frac{\text { Error } S S}{\text { Error } d f} \\
F=\frac{\text { Treat } M S}{\text { Error } M S} \text { (with } k-1 \text { and } \sum_{i=1}^{k} n_{i}-k \text { degrees of freedom) }
\end{gathered}
$$

Program Listing.

F61 LEL A	L2e x^{2}
Hege Clvirs	L23 RCL +H
HES INFIUT K	L24
H64 STO	L25 LfSTx
Checksum $=$ E956	L26 + -
L01 LEL L	$\mathrm{L} 27 \mathrm{RCL}+\mathrm{C}$
Las CLx	L28
LG3 CLE	L29 Lrste
L64 STOF	L301
L6.5 \% \%	L31 1/\%
LGE STO 5	L3e RCL K
LG7 UIENS	LЗ3 1
LGE STO+ H	L34
L69 8\% ${ }^{\text {2 }}$	LS5 STO D
L1日 STO+ E	LSE VIEND
L11 \quad !	L37
Lie STO+ N	Lse RCL H
L13 E \%	L39 RCL-K
L14 x^{2}	L49 STO D
L15 ${ }^{\text {a }}$	L41 VIEN D
L1E	L42 \times
L17 STO+ [L43 ST0 F
Lig DEE -	L44 UIEN F
L19 GTO L	L45 ETH
Leg FCL E	Checksum $=1443$
Le1 RCL H	

Flags Used. None.
Memory Required. 73.5 bytes.
Remarks. This program clears all variables and statistical data stored in Continuous Memory.

Program Instructions.

1. Key in the program listing; press when finished.
2. Press XEQ A.
3. Key in K (the number of treatment groups) and press R / S.
4. Key in each observation and press $\Sigma+$.
5. Press R/S when all of the observations in the treatment group have been entered.
6. See the sum and press R/S .
7. See the treatment degrees of freedom $\left(d f_{1}\right)$ and press R / S.
8. See the error degrees of freedom $\left(d f_{2}\right)$ and press R / \mathbf{S}.
9. See the F ratio (F).

Variables Used.

$K=$ number of treatment groups.
$S=$ sum of observations in a treatment group.
$D=d f_{1}$ and $d f_{2}$.
$F=\mathrm{F}$ ratio.
$J, A, B, N, C=$ variables used for intermediate results.

Example. Find $\mathrm{Sum}_{1}, \mathrm{Sum}_{2}, \mathrm{Sum}_{3}, d f_{1}, d f_{2}$, and F for the following:

$\quad{ }^{j}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	10	13	12	15	17	
$\mathbf{2}$	8	10	12	13	11	9
$\mathbf{3}$	8	9	12	7		

Keys: Display: Description:

XEQ A	K?0.0000	Prompts for number of treatment groups.
3 R/S	0.0000	
10 [E	1.0000	Inputs observations in
13 E+	2.0000	first treatment group.
12 [Σ	3.0000	
15 E+	4.0000	
17 E+	5.0000	
R/S	$S=67.0000$	Displays Sum_{1}.
R/S	0.0000	Inputs observations in
8 [\quad +	1.0000	second treatment group
10 Et	2.0000	
12 [3.0000	
13 [$\mathrm{E}+$	4.0000	
$11\left[\begin{array}{l}\text { ¢ }\end{array}\right.$	5.0000	
9 ¢	6.0000	
R/S	$\mathrm{S}=63.000$	Displays Sum_{2}.
R/S	0.0000	Inputs observations in
8 [E	1.0000	third observation group
9 ¢	2.0000	
12 Et	3.0000	
7 [+	4.0000	
R/S	$\mathrm{S}=36.0000$	Displays Sum_{3}.
R/S	$\mathrm{D}=2.0000$	Displays $d f_{1}$.
R/S	$\mathrm{D}=12.0000$	Displays $d f_{2}$.
R/S	$F=4.5700$	Displays F.

Binomial Distribution

This program calculates the probability of a value falling within a specified range of values, that is, the cummulative distribution $\sum_{x=B}^{A} p(x)$, in a binomial distribution. It also calculates the mean, the variance, and the standard deviation of the distribution, and can be used to find the value of each term in the distribution.

$$
p(x)=\binom{n}{x} r^{x}(1-r)^{n-x}
$$

where $x=0,1,2, \ldots$ and $r<1$.

Program Listing.

EG1 LEL E	Y12
EGE Clvars	Y13 LAETx
EGS IHFIIT H	Y14 RCL H
E064 IHFUT R	Y15 <<>
E065 IHFUIT E	Y16 En,
EGE IHFIUT A	Y17 F
	Y18
E06 -	Y19 FS? ${ }^{\text {¢ }}$
Ed9 STO+ E	Ye STOF
Checksum $=6.651$	Yel sTO+ F
Y日1 LEL Y	Yec ISGE
YGe 1	Yes rio $\%$
YGS RCL- R	Ye4 YIEN F
YG4 ROL H	Yes rol H
YG5 RCL E	YeG RCLx R
Y0e IF	Y27 ST0 M
967	Yes 1
Y08 $4 \times$	Ye9 RCL- F
Y69 RCL E	Y80 8
Y10 RCL E	Ye1 STO Y
Y11 IF	Ye gort

```
YG STO S
Y4 YIEW M
YS WIEW Y
```

```
YE UIEW S
OF FTH
ロトにににミリM= 2ロ13
```

Flags Used．Flag 0.
Memory Required． 77 bytes．

Remarks．

－This program clears all variables stored in Continuous Memory．
－The upper and lower limits of the range are inclusive（ $B \leq x \leq A$ ）．If the limits are exclusive or noninteger values，round the lower limit to the next highest integer and the upper limit to the next lowest integer．
－The limits A and B have no effect on the mean，variance， and standard deviation．
－An invalid data error will result if $B<0$ or if $A>n$ ．

Program Instructions．

1．Key in the program listing；press C when finished．
2．Press XEQ B．
3．Key in the variables at each prompt and press R / S ．
4．Optional：To see each term of the distribution，set flag 0 ；press R／S to continue execution．
5．See each result as it is displayed and press R／S．
6．For a new case，go to step 2 ．

Variables Used.

$N=$ number of events.
$R=$ probability of the occurrence of a single event.
$A=$ upper limit of the range.
$B=$ lower limit of the range.
$P=$ probability of a value falling in the range.
$M=$ mean.
$V=$ variance.
$S=$ standard deviation.

Example 1. A fair coin $(r=0.5)$ is tossed 10 times. What is the probability that at least seven heads will occur? Find the mean, variance, and standard deviation.

Keys:

- FLAGS \{DF\} 0

XEQ B
10 R/S
. 5 R/S
7 R/S
10 R/S
R/S
R/S
R/S

Display:
value
N?0.0000
R?0.0000
B? 0.0000
A?0.0000
$\mathrm{P}=0.1719$
$M=5.0000$
$V=2.5000$
$S=1.5811$

Description:

Clears flag 0 .

Inputs values.

Displays probability.
Displays mean.
Displays variance.
Displays standard deviation.

Example 2. Find the terms of the binomial distribution with $n=5$ and $r=0.75$.

Keys:

- FLAGS $\{\mathrm{SF}\} 0$ value

XEQ B N?0.0000
5 R/S
.75 R/S
R/S
5 R/S
R/S
R/S
R/S
R/S
R/S

Display:

R?0.0000
B? 0.0000
A? 0.0000
0.0010
0.0146
0.0879
0.2637
0.3955
0.2373

Description:

Sets flag to display each term of distribution.

Inputs values.

Displays $p(0)$.
Displays p (1).
Displays p (2).
Displays p (3).
Displays p (4).
Displays p (5).

Poisson Distribution

This program calculates the probability of a value falling within a specified range of values，that is，the cummulative distribution $\sum_{x=B}^{A} p(x)$ ，in a Poisson distribution．It also calculates the mean，the variance，and the standard deviation of the distribution，and can be used to find the value of each term in the distribution．

$$
p(x)=\frac{e^{-\lambda} \lambda^{x}}{x!}
$$

where $x=0,1,2, \ldots$ and $\lambda>0$

Program Listing．

FQ1 LEL F
FGE CLVARS
FGS IHFIIT L
FO4 IHFIIT E
FG．IHFIIT A
FGE 1， 106
PG7 \div
FQS STO＋E
Checksum＝日edg
801 LEL 8
8Ge RCL L
803 RCL E
KO 4 IF
人0．5 日＊
XGE LfETs
8072 ！
x68 \div
$809 \mathrm{FCL} L$
$816+-$
$811 e^{2}$
x12 \times
X13 FS？ 6
$\times 14$ STOF
815 STO＋F
x16 ISG E
X17 GTO 8
X1E VIEN F
819 FCL L
xeg STOM
x 2 sTo V
xe2 gort
xes STO 5
K24 VIEN M
X25 UIEN V
x2G VIEN 5
8 CO RTH
ChE日k Eum＝E9ER

Flags Used. Flag 0.
Memory Required. 60.5 bytes.

Remarks.

- This program clears all variables stored in Continuous Memory.
- The upper and lower limits of the range are inclusive $(B \leq x \leq A)$. If the limits are exclusive or noninteger values, round the lower limit to the next highest integer and the upper limit to the next lowest integer.
- The limits A and B have no effect on the mean, variance, and standard deviation. A must be $\leq 999, B$ must be ≥ 0.

Program Instructions.

1. Key in the program listing; press C when finished.
2. Press XEQ P.
3. Key in the variables at each prompt and press R/S .
4. Optional: To see each term of the distribution, set flag 0 ; press R/S to continue execution.
5. See each result as it is displayed and press R / S.
6. For a new case, go to step 2.

Variables Used.

$$
L=\lambda .
$$

$A=$ upper limit of the range.
$B=$ lower limit of the range.
$P=$ probability of a value falling in the range.
$M=$ mean.
$V=$ variance.
$S=$ standard deviation.

Example 1. For a Poisson distribution with $\lambda=2$, find the probability that $0<x<2.5$; also find the mean, the variance, and the standard deviation. (Remember that the Poisson distribution deals only with integers. Therefore, the only x values in this range are 1 and 2.)

Keys:	Display:	Description:
- FLAGS \{CF\} 0	value	Clears flag 0 .
XEQ P	L? 0.0000	
2 R/S	B? 0.0000	Inputs values.
1 R/S	A? 0.0000	
2 R/S	$\mathrm{P}=0.5413$	Displays probability.
R/S	$\mathrm{M}=2.0000$	Displays mean.
R/S	$\mathrm{V}=2.0000$	Displays variance.
R/S	$\mathrm{S}=1.4142$	Displays standard deviation.

Example 2. Find the first six terms (from $x=0$ to $x=5$) of the Poisson distribution with $\lambda=3$.

Keys:

- FLAGS \{SF\} 0 value
XEQ P

3 R/S
R/S
5 R/S
R/S
R/S
R/S
R/S
R/S

Display:

L?0.0000
B?0.0000
A? 0.0000
0.0498
0.1494
0.2240
0.2240
0.1680
0.1008

Description:

Sets flag to display each term of distribution.

Inputs values.

Displays p (0).
Displays p (1).
Displays p (2).
Displays p (3).
Displays p (4).
Displays p (5).

5

Mathematics

Triangle Solutions

This program may be used to find the sides, angles, and area of a plane triangle.

In general, the specifications of any three of the six parameters of a triangle (three sides and three angles) is sufficient to define a triangle (the exception is that three angles will not define a triangle).
This program will handle all five cases:

- Three sides (SSS).
- Two angles and the included side (ASA).
- Two angles and the adjacent side (SAA).
- Two sides and the included angle (SAS).
- Two sides and the adjacent angle (SSA).

The last case listed (SSA) may result in two solutions to the triangle. This program will calculate both solutions.

If the three known input values are selected in a clockwise order around the triangle, the output values will also follow a clockwise order.

Program Listing．

H®1 LEL H	E6S FCL +E
HEz IHFUT A	CWE SIH
HES IHFUT ©	CQ7 ECL 0
F04 IHFUT E	E6S SIH
H0．5 RCL H	E09 -
HEG FCL E	E1E FCLX A
	E11 STO
H08 2 己	■12 GTGK
H09 FCL E	Eヶに日に
H19	EQ1 LEL E
H11－	E日2 EF 2
H12 2	EG3 IHFUT A
$\mathrm{H} 13 \mathrm{FCL} \times \mathrm{H}$	EQ4 IHFUT E
F14 FCLX C	EQS ECL A
F15－	EGE FLL E
H1G FCOS	E®7－＞y？
H17 STO E	E日S 5F 2
H1G GTOK	E69 IHFUT D
「トににkこum＝9E72	E1ESIN
E®1 LEL E	E11 RCL $\div \mathrm{H}$
EGZ IHFUT F	$\mathrm{E} 12 \times$
E03 IHFUT H	E1S FSIH
E04 IHFIIT E	E14 FCL + ［
E®S RCL F	E15 XEQ 2
E06 SIH	E1G STO E
Eब7 RCL E	E17 XEQ K
$\mathrm{EQS} \mathrm{FOL}+\mathrm{F}$	E1S ROL F
E09 EIH	E19 XEQ 2
E19－	E2Q STO F
E11 FCLX A	E21 FCL＋${ }^{\text {a }}$
$\mathrm{E12}$ STO C	Eここ XEQ 2
E13 GTOK	E23 STO E
Chににksum $=50 \mathrm{DE}$	E24 GTOK
C01 LEL C	Lhe日ksum＝FESE
C02 IHFUT A	DG1 LEL D
C03 IHFUT E	Dez IHFIIT H
C04 IHFIIT D	D03 IHFIIT E

D04 IHFIIT E	K172
Cheロksum＝2HE7	K E －
K01 LEL K	K 9 STO
K02 FCL E	K2＠YIEN A
K03 FEL A	K21 YIEN E
K04 日，river	K2c YIEN E
K05 FCL－C	K3 WIEN D
K06＋	K24 YIEN E
	K25 UIEN F
K08 ST0 E	K2E UIEN G
169	K27 RTH
K1® STO 0	Chセロksum＝80FG
K11 FCL +E	201 LEL 2
K12 KEQ 2	202 Cos
K13 STO F	$203+$
K14 5IH	204 ACOS
K15 \times	20.5 FTH
K1G FCLX H	ChEにksum $=929 \mathrm{E}$

Flags Used．Flag 2.
Memory Required． 154.5 bytes．

Remarks．

－Angles must be consistent with the angular mode currently set in the calculator．
－Routines A through E are independent of each other．Therefore，key in only those routines that will be used．Routines K and Z must be keyed in to use any of the five routines．
－The triangle notation used by this program is not consistent with standard triangle notation；in other words，A_{1} is not opposite S_{1} ．
－The accuracy of the solution decreases for triangles containing extremely small angles．

Program Instructions.

1. Key in the programs to be used; press \square when finished.
2. Select the appropriate routine:

- Press XEQ A if three sides are known (SSS).
- Press XEQ B if two angles and an included side are known (ASA).
- Press XEQ C if two angles and an adjacent side are known (SAA).
- Press XEQ D if two sides and an included angle are known (SAS).
- Press XEQ E if two sides and an adjacent angle are known (SSA).

3. Key in the variables at each prompt and press R / S.
4. See each result as it is displayed. Press R/S for subsequent results.
5. If flag 2 is displayed on the calculator screen while executing routine E, a second possible solution exists. Press R/S and return to step 4 to see the second set of results.

Variables Used.

$A=$ side $_{1}$.
$B=$ angle $_{1}$.
$C=\operatorname{side}_{2}$.
$D=$ angle $_{2}$.
$E=$ side $_{3}$.
$F=$ angle $_{3}$.
$G=$ the area.

Example 1: Three Known Sides. A farmer uses three sections of straight fence to enclose a field. The lengths are 100 feet, 120 feet, and 150 feet. Find the area enclosed and the angles formed.

Keys:

- MODES \{DG

XEQA
100 R/S
120 R/S
150 R/S
R/S
R/S
R/S
R/S
R/S
R/S

Display:

A?value
C?value
E ?value
$A=100.0000$
$B=85.4593$
$C=120.0000$
$D=41.6497$
$E=150.0000$
$\mathrm{F}=52.8910$
$\mathrm{G}=5,981.1684$

Description:
Sets degrees mode. Inputs lengths.

Displays S_{1}. Displays A_{1}. Displays S_{2}.
Displays A_{2}.
Displays S_{3}.
Displays A_{3}.
Displays area.

Example 2: Two Possible Solutions. Given two sides and a nonincluded angle, solve for the triangle.

$$
\begin{aligned}
S_{1} & =22.5 \\
S_{2} & =37.5 \\
A_{2} & =31.3^{\circ}
\end{aligned}
$$

Keys:

MODES \{DIT
XEQE
$22.5 \mathrm{R} / \mathrm{S}$
$37.5 \mathrm{R} / \mathrm{S}$
31.3 R/S

R/S
R/S
R/S
R/S
R/S
R/S
R/S

R / S
R / S

Display:

A? value
C?value
D?value
$A=22.5000$
$B=88.7184$
$C=37.5000$
$\mathrm{D}=31.3000$
$E=43.2984$
$\mathrm{F}=59.9816$
$\mathrm{G}=421.7695$
$A=22.5000$
$B=28.6816$
$C=37.5000$
$D=31.3000$
$E=20.7860$
$F=120.0184$
$G=202.4757$

Description:

Sets degrees mode.

Inputs values.
Flag 2 is displayed.
Displays S_{1}.
Displays A_{1}
(first solution).
Displays S_{2}.
Displays A_{2}.
Displays S_{3}.
Displays A_{3}.
Displays area.
Displays S_{1}. (second soution).
Displays A_{1}.
Displays S_{2}.
Displays A_{2}.
Displays S_{3}.
Displays A_{3}.
Displays area.

Derivative of a Function

This program calculates the derivative of a function at a given value. The function must be defined by a separate program label.

$$
f^{\prime}(x) \approx \frac{f(x+\delta)-f(x-\delta)}{2 \delta}
$$

Program Listing.

DG1 LEL D	[15 FCL $\%$
DES IHFUT i	D1E FOL- $\%$
[0] IHFUT $\%$	[17 XEQCi)
D04 HES	D1S FGL 2
[05 2×0	[19 -
DE6 LDG	D20 +
D07 IF	D21 FCL -9
0084	D22 2
D69 -	[23
[10 16\%	[24 ETO 0
D11 ST@ Y	[25 WIEN [
D12 FCL +8	DEE FTH
[13 XEQCi)	Eh@にkEum $=200 \mathrm{CF}$
014 STO	

Flags Used. None.
Memory Required. 39 bytes.
Remarks. The program defining the function must place the value of the function in the X-register.

Program Instructions.

1. Key in the program listing; press C when finished.
2. Key in the program that defines the function. The program should take the value in the X-register as input and leave the resulting value of the function in the X-register as output.
3. Press XEQ D. When the prompt i?value is displayed, specify the function by entering the number between 1 and 26 corresponding to
the program label (in other words, $A=1, B=2$, and so on), then press R / S.
4. Key in the X-value where the function is to be evaluated and press R / S to display the derivative at that value.
5. For a new point, go to step 3 .
6. For a new function, go to step 2.

Variables Used.

$D=$ derivative of the function.
$X=$ the value at which the derivative of the function is evaluated.
$i=$ the index variable, used to specify the label of the program that defines the function.
$Y, Z=$ variables used for intermediate results.
Example. If $f(x)=3 \ln \left(x^{2}-1\right)$, find $d f / d x$ when $x=1.5$.
First, enter the program for the function:

F61 LEL F	F6. 5 LH
FG2 <2	FQ6 3
FG3 1	FG7 \times
FG4 -	FGE RTH
	Checksum $=3 \mathrm{F9E}$

Then follow these keystrokes:

Keys:	Display:	Description:
XEQ D	i?value	Prompts for number corresponding to program label that defines the function.
$6 \boxed{R / S}$	X ? value	Prompts for value where the derivative of the function is to be evaluated.
$1.5 \boxed{R / S}$	$\mathrm{D}=7.2000$	Displays the derivative of the function.

Linear Interpolation

Numerical relationships are often available in the form of tables．This program uses a straight line approximation to estimate a y－value given a corresponding x－value．Two pairs of x－and y－values of the relationship must be known．

$$
y=\left(\frac{y_{1}-y_{2}}{x_{1}-x_{2}}\right)\left(x-x_{1}\right)+y_{1}
$$

Program Listing．

LG1 LEL L	L11 \div
L62 IHFUT 8	L12 FCL $\%$
LES IHFUTT A	L13 FCL－ A
L04 IHFUT E	L14 x
L05 IHFUT C	L15 FCL +E
LE6 IHFUT D	L1G STO Y
LQ7 REL E	LIF UIEN Y
LES FCL－${ }^{\text {a }}$	L13 RTH
L69 ECL H	Eトににくこ」M＝96\％F
L10 FCL－E	

Flags Used．None．
Memory Required． 27 bytes．
Remarks．The approximation is most accurate when one of the tabulated x－values is greater than the desired x－value and the other is less．

Program Instructions．

1．Key in the program listing；press C when finished．
2．Press XEQ L．
3．Key in the variables at each prompt and press R / S ．
4．See the y－value approximation．
5．For a new case，go to step 2.

Variables Used.

$X=$ the x-value not found in the table.
$A=$ the x-value of the first pair of tabulated values.
$B=$ the x-value of the second pair.
$C=$ the y-value of the first pair of tabulated values.
$D=$ the y-value of the second pair.
$Y=$ the corresponding y-value approximation.

Example. The saturation pressure of steam at $110^{\circ} \mathrm{F}$ is 1.2763 psi , and at $120^{\circ} \mathrm{F}$ it is 1.6945 psi . What is the saturation pressure when the temperature is $113^{\circ} \mathrm{F}$?

Keys:	Display:	Description:
XEQ L	X?value	
113 R/S	A?value	Inputs known values.
110 R/S	B ? value	
120 R/S	C?value	
1.2763 R/S	D?value	
1.6945 R/S	$Y=1.4018$	Displays approximation of the saturation pressure.

Circle Determined by Three Points

This program calculates the center $\left(x_{0}, y_{0}\right)$ and radius (r) of the circle defined by three noncollinear points．

$$
r^{2}=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}
$$

Program Listing．

CQ1 LEL C
CGE INFIIT A
Cas IHFUT E
CO4 IHFIUT E
［0．5 IHFIIT D
CGE IHFUT E
CGT IHFIUT F
Cug RCL A
C09 STO－C
C10 STO－E
E11 FCL E
C12 STO－ 0
E13 STO－F
C14 FOL D
［15 RCL
C16 $1, \mathrm{xAB}_{\mathrm{B}}^{\mathrm{r}}$
$0175 \mathrm{TO} \%$
［18 $<\gg y$
019 STO T
Ceg ROL F
Ce1 RCL E

Ce3＜＞y
Ce4 ECL－T
C25＜＞y
C26 日，r－ $1, \%$
027 STO 2

029 sTo Y
030 \div
OS RCL 2
CEC RCL－ 8
－83 \％
C34 RCL＋Y
CS5 ROL 8

cos 2
$08 \div$
0 ETO E
C4G ROL T
C41
C4E CHFLS＋
C43 日，r－4．
044 RCL E
C45 ECL H
C4E CMFLX＋
$047 \mathrm{ETO} \%$
048 ＜》！
049 sTo Y
CSG YIEN X
CS1 VIEN Y
C5E YIEN R
C5S RTH
Checksum $=\mathrm{A} 34 \mathrm{E}$

Flags Used. None.
Memory Required. 79.5 bytes.
Remarks. A divide-by-zero error occurs if the three points are collinear. The program modifies the variables that store x_{2}, y_{2}, x_{3}, and y_{3}; so if you repeat the program, you must reenter these values.

Program Instructions.

1. Key in the program listing; press C when finished.
2. Press XEQ C.
3. Key in the x - or y-coordinate (A through F) at each prompt and press R/S.
4. After the y-coordinate of the third point is entered (with R / S), the x-coordinate of the center of the circle is displayed.
5. Press R/S and see the y-coordinate of the center.
6. Press R/S and see the radius of the circle.
7. For a new case, go to step 2.

Variables Used.

$A=$ the x-coordinate of the first point.
$B=$ the y-coordinate of the first point.
$C=$ the x-coordinate of the second point.
$D=$ the y-coordinate of the second point.
$E=$ the x-coordinate of the third point.
$F=$ the y-coordinate of the third point.
$X=$ the x-coordinate of the center of the circle.
$Y=$ the y-coordinate of the center of the circle.
$R=$ the radius of the circle.
T, $Z=$ variables used for intermediate results.

Example. Find the center and radius of the circle defined by the points $(1,0),(2,4.5)$, and ($-4.4,3$).

Keys:	Display:	Description:
XEQ C	A?value	
$1 \mathrm{R} / \mathrm{S}$	B?value	Inputs coordinates.
$0 \mathrm{R} / \mathrm{S}$	C?value	
2 R/S	D?value	
4.5 R/S	E?value	
$4.4+/-\mathrm{R} / \mathrm{S}$	F ? value	
$3 \mathrm{R} / \mathrm{S}$	$X=-0.9775$	Displays the x-coordinate of the center.
R/S	$Y=2.8005$	Displays the y-coordinate of the center.
R/S	$\mathrm{R}=3.4283$	Displays the radius.

Step-by-Step Solutions for Your HP-32S Calculator

Engineering Applications contains a variety of programs, examples, and solutions to show how you can easily solve your engineering problems.

- Electrical Engineering

Reactance Chart • Impedance of a Ladder Network •Smith Chart Conversions • Transistor Amplifier Performance

- Mechangical Engineering

Black Body Thermal Radiation • Ideal Gas Equation • Conduit Flow - Static Equivalent at a Point - Composit Section Properties

- Soderberg's Equation for Fatigue
- Civil Engineering

Mohr's Circle for Stress • Field Angle Traverse

- Statistics
t Statistics • Chi-Square Evaluation •F Distribution • Analysis of Variance (One Way) • Binomial Distribution • Poisson Distribution
- Mathematics

Triangle Solutions • Derivative of a Function • Linear Interpolation - Circle Determined by Three Points

Reorder Number 00032-90057

[^0]: * See page 438 of J.E. Freund's Mathematical Statistics, 2nd edition.

