

RPN Scientific Calculator

Owner’s Manual

HP-325
(fifi HEWLETT

PACKARD

 (

A oidiaro

32S RPN SCIENTIFIC

v
\

2 LAST x PARTS MODES

GTO P« RECT He>HMS

A LBL/RTN LOOP

I SOLVE/ S STAT

s —b@) |(1.2).3).=5N

OFF INPUT SHOW

14

12

Cona),(),(.00.(2)
‘ D« RAD BASE

) |(... |
FLAGS TESTS

™|(3).(5).().6)
PRGM

—_— 10

1. Menu and menu keys.

. Letter keys for variables & labels.

. Steps through programs and lists.

. Shift key.

5. On; cancel display, menu, program
entry.

6. Shows all decimal places.

. Run/Stop toggle for programs.

10.

11.

12.

13.

14.

o

. For indirect addressing via i.

. Toggles in and out of program
entry.

User memory; stored variables
and programs.

Menu keys (boxed area)

Clears all or parts of memory.

Display formats.

Angular modes, periods &
commas.

The Hewlett-Packard
calculator you've just
purchased will serve you
faithfully for many years.
Whether you’re a student
or a seasoned professional,
your HP calculator will
help you solve the tough
problems your work
demands.

()oot

RPN SCENTFIC

The Perfect Complement
to a New HP Calculator

HP’s Step-by-Step solutions
books are the closest thing
to having a custom
calculator at your fingertips.
These handy books offer a
variety of examples and
keystroke procedures to help
you set up your calculations the
way you need them.

Specific to a wide range of
topics within science and
engineering, these books will
help you with precisely the
problems you need to solve.

For the HP-22S: For the HP-32S:

Science Student Applications Engineering Applications
(00022-90034) (00032-90057)
® Solve mathematical problems in ® Solve problems in electrical

$9.95 $9.95

algebra, trigonometry, linear
algebra, and calculus.

Learn methods for solving problems
in physics, chemistry, thermo-

dynamics, statics and dynamics,
and electrical fundamentals.

Learn advanced equation-writing
techniques.

engineering: reactance chart,
impedance of a ladder network,
Smith chart conversions, transistor
amplifier performance.

Perform mechanical engineering
calculations: black body radiation,
conduit flow, composite section
properties, and Soderberg’s
equation.

Calculate civil engineering
problems including Mohr’s circle
for stress and field angle traverse.

Perform statistics calculations of
Chi-square, t statistics, F distribu-
tion, and analysis of variance.

Solve math problems: triangle
solutions and linear interpolation.

Elegant Leather Cases

Protect your new HP-22S or HP-32S in style with a handsome
leather case.

Black (HP 92169K) $19.00
Brown (HP 92169L) $19.00
Burgundy (HP 92169M) $19.00

Owner’s Manuals

Each HP calculator comes with an owner’s manual. Additional
manuals may be ordered separately as well.

Manuals for HP calculators are also available in a variety of
languages. Contact your HP dealer or local HP sales office for more
information.

For More Information

For additional information on calculator accessories and a
demonstration of Hewlett-Packard professional calculators or
handheld computers, visit your nearest HP dealer. For the location

and number of the dealer nearest you, call toll-free 1-800-752-0900.

How To Order

To order items your local dealer does not carry, call toll-free
1-800-538-8787. Please refer to Call Code P180 when ordering.
MasterCard, Visa and American Express cards are welcome.

AREE
MasterCard VISA - fifi“;fij

X [

All prices are suggested U.S. list and are subject to change without notice.

[/ caciaro

Help Us Help You!

By taking a moment to fill out this card, you can help HP to better
understand your needs. Please read all questions first, then fill them
out. Thank you.

HELP US HELP YOU!

Model: HP-32S Date acquired

Name

Address

City, State, Zip

Age Phone () Business __ or Home

1. What is your POSITION OR OCCUPATION? (Please check only one)

101 [] Student

102 [] Educator, Researcher

103 [] Professional Staff

104 [] Middle Manager

105] Top Manager

106 [_] Owner, Principal, VP

107 [] Field Agent, Rep

108 [] Technician

109 [] Independent, self-employed

110 [] Retired

111] Other

2. What is your AREA OF ACTIVITY or FIELD OF WORK/STUDY? (Please check only one)

201 [] Mechanical Engineering

202 [] Civil Engineering

203 [] Electrical Engineering

204 [] Chemical Engineering

205 [] Other Engineering

206 [] Surveying

207 [] Data Processing

208 [] Quality Control

209 [] Purchasing, Scheduling, Inventory Cntrl.

210 [] Accounting, Auditing

211] Finance, Investment Analysis

212] General Administration/Management

213 [Marketing

214] Sales

215] Customer Service, Maintenance

216 [] Other

3. In what INDUSTRY do you work? (Skip if Student or Retired. Please check only one)

301 [] Education

302 [] Banking, Finance, Investment

303] Insurance

304 [] Real Estate

305 [] Business/Consulting Services

306 [] Technical Consulting

307 [] Software, Computer Services

308 [] Construction, Architectural

309 [] Mining, Qil Drilling, Exploration

310] Chemical, Refining

311] Agriculture, Forestry, Livestock

312] Food Processing/Distribution

313] Manufacturing Industrial Goods
314] Manufacturing Consumer Goods

315] Transportation

316 [] Communication, Utilities
317 [] Public Admin./Government/Military

318] Other

4. Where did your purchase your HP calculator? (Please check only one)

401 [] Retail Computer Store

402 [] Office Equipment Store

403 [] Bookstore

404 [] Department Store

406] Catalog Store

5. How did you first hear about this model?

501 [] Previous HP Owner

502 [] Advice of Friends, Collegues, Professor

503 [] Magazine or Newspaper Advertising

504] Press Articles

407 [] Mail Order

408 [] Specialty Store

409 [] Purchased by Company/School

410] Directly from HP

411] Other

505 [] Direct Mail

506] Salesperson

507 (] Brochure or In Store Literature

508 [] Other

 L
]

]III]IL
]

IL
]

I|

S
3
1
V
1
S
a
3
l
I
N
N

3
H
L

NI

a
3
a
v
i
n

di

A
H
V
S
S
3
0
3
N

3
9
V
1
S
O
d
O
N

8
8
6
6
-
0
€
€
.
6
H
O
S
I
T
I
V
A
H
O
O

"‘adAi1g
3
1
0
d
I
O
3
N

0001t
I
N
I
N
L
H
V
d
H
3
A

S3IIHINONI
A
N
V
A
N
O
O
@
d
V
v
M
O
V
d
-
L
1
3
T
M
3
H

3
3
S
S
3
H
A
A
V
A
9

d
l
v
d
3
9

711IM
3
D
V
1
S
O
d

H
O

'
S
I
T
I
V
A
H
O
O

S
€

'
O
N

L
l
I
N
H
3
d

I
V
I
N

S
S
V
Y
1
0
1
S
H
i
d

1IVIN
A'lddd

SSANISNG

Comments on the HP-32S
Owner’s Manual

We welcome your evaluation of this manual. Your comments and
suggestions help us improve our publications.

HP-32S Owner’s Manual

Printing date of the manual (from the title page)

Please circle a response for each of the statements below. You can use
the Comments space to provide additional opinions.

=Strongly Agree 4=Disagree
2=Agree 5=_Strongly Disagree
3=Neutral

The manual is well organized.

I can find the information | want.

The information in the manual is accurate.

I can easily understand the instructions.

The manual contains enough examples.

The examples are appropriate and helpful.

W
W

W
w
w
W
w
W
w
w
o
w

A
A

A
b
~
A

A
~

D
S

The layout and format are attractive and useful.

-
e

e
e
k
d

e
e

N
N
N
N

D
N

D
N

D
N

D
N

g
O

O
0

v
v

O
O

3 4

The manual length is: too long appropriate too short.

The illustrations are clear and helpful.

The chapter(s) and appendixes | refer to most frequently are:

1 2 3 4 56 7 8 9 10 11 12 13 14 A B C D

Messages Function Index Subject Index

Comments:

Name:

Address:

City/State/Zip:

Occupation:

S
3
L
V
L
S
d
3
l
I
N
N

3
H
L

NI
a
3
a
v
i

4di
A
H
V
S
S
3
O
3
N

3
9
V
1
S
O
d
O
N

8
8
6
6
-
0
€
€
.
6
H
O
S
I
T
I
V
A
H
O
O

"‘adA1g
3104HIO

3
N

0
0
0
1

N
O
I
S
I
A
I
Q
H
3
1
N
d
W
N
O
D
3
1
9
v
L
i
d
O
d

I
N
3
N
1
H
V
d
3
A
a

NOILVLIN3INNDOOAd
A
N
V
A
N
O
O

A
d
V
v
M
O
V
d
-
1
L
1
3
T
M
3
H

3
3
S
S
3
H
A
A
V
A
9

A
l
v
d
3
9
1
1
I
M
3
9
D
V
1
S
O
d

H
O

‘
S
I
T
I
V
A
H
O
O

8
€

'
O
N
L
I
N
H
3
d

TIVIN
S
S
V
1
O

L
S
H
I
d

1IVIN
A'lddd

SSANISNG

HP-32S
RPN Scientific Calculator

Owner’s Manual

/A paciano
Edition2 September 1988
Reorder Number 00032-90039

Notice

For warranty and regulatory information, see pages 248 and 252.

This manual and any keystroke programs contained herein are pro-
vided “as is” and are subject to change without notice. Hewlett-
Packard Company makes no warranty of any kind with regard to

this manual or the keystroke programs contained herein, includ-

ing, but not limited to, the implied warranties of merchantability

and fitness for a particular purpose. Hewlett-Packard Co. shall not

be liable for any errors or for incidental or consequential damages in
connection with the furnishing, performance, or use of this manual or

the keystroke programs contained herein.

© Hewlett-Packard Co. 1988. All rights reserved. Reproduction, ad-
aptation, or translation of this manual, including any programs,is
prohibited without prior written permission of Hewlett-Packard Com-
pany, except as allowed under the copyright laws. Hewlett-Packard
Company grants you the right to use any program contained in this
manual in this calculator.

The programs that control your calculator are copyrighted and all
rights are reserved. Reproduction, adaptation, or translation of those
programs without prior written permission of Hewlett-Packard Com-
pany is also prohibited.

Corvallis Division

1000 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 March 1988 Mfg. No. 00032-90040
Edition 2 September 1988 Mfg. No. 00032-90064

Welcome to the HP-32S

Your HP-32S reflects the superior quality and attention to detail in
engineering and manufacturing that have distinguished Hewlett-
Packard products for more than 40 years. Hewlett-Packard stands
behind this calculator: we offer accessories, worldwide service, and

expertise to support its use (see inside the back cover).

Hewlett-Packard Quality

Our calculators are made to excel, to last, and to be easy to use.

B This calculator is designed to withstand the usual drops, vibrations,
pollutants (smog, ozone), temperature extremes, and humidity vari-
ations that it may encounter in normal, everyday worklife.

B The calculator and its manual have been designed and tested for
ease of use. We selected spiral binding to let the manual stay open
to any page, and we added many examples to highlight the varied
uses of this calculator.

B Advanced materials and permanent, molded-in key lettering pro-
vide a long keyboard life and a positive feel to the keyboard.

® CMOS (low-power) electronics and the liquid-crystal display allow
data to be retained even when the calculator is off, and let the bat-

teries last a long time.

® The microprocessor has been optimized for fast and reliable com-
putations using 15 digits internally for precise results.

B Extensive research has created a design that has minimized the ad-
verse effects of static electricity (a potential cause of malfunctions
and data loss in calculators).

Welcome to the HP-32S 3

Features

The feature set of this calculator reflects needs and wishes we solic-

ited from customers. The HP-32S features:

B All functions available either on the keyboard or in menus: you do
not have to type their names in.

B Messages and program lines in English, such as DIVIDE BY 8 in-
stead of ERR 21. Data storage in variables A through Z.

B Our traditional RPN logic, which saves keystrokes.

B 390 bytes of memory to store data and programs.

B Advanced functionality for statistics, base conversions, complex-
number arithmetic, integration, and solving for the unknown

variable of an equation.

B Extensive HP programming capability, including editing, labeled in-
put and output, subroutines, looping, conditionalinstructions, flags,
and indirect addressing.

4 Welcome to the HP-32S

Contents

Part 1: Basic Operation

1 14
14
14
14
15
15
15
15
16
19
20
21
21
22
23
24
24
24
25
26
29
29
29
30
31
32
33
33
34

Getting Started

Important Preliminaries
Turning the Calculator On and Off
Adjusting the Display’s Contrast

Highlights of the Keyboard and Display
Shifted Keystrokes
The Letter Keys
Backspacing and Clearing
Using Menus
Exiting Menus
Annunciators

Keying In Numbers
Making Numbers Negative
Exponents of Ten
Understanding Digit Entry
Range of Numbers and OVERFLOW

Doing Arithmetic
One-Number Functions
Two-Number Functions
Chain Calculations
Exercises

Controlling the Display Format
Periods and Commas in Numbers
Number of Decimal Places (J(DISP])
SHOWing Full 12-Digit Precision

Messages
Calculator Memory
Checking Available Memory
Clearing All of Memory

Contents 5

35
36
37

38
39
40
41
42
43
44
45
46

48
49
50
50
50
51
53

55
56
56
56
56
57
59
59
60
60
63
64
65
67
67

6 Contents

The Automatic Memory Stack

What the Stack Is

Reviewing the Stack ([R+])
Exchanging the X- and Y-Registers in the Stack

(C2o)
Arithmetic—How the Stack Does It

How ENTER Works

How CLEAR x Works

The LAST X Register
Correcting Mistakes With B[LASTx]
Reusing Numbers With [LASTx]

Chain Calculations

Order of Calculation

Exercises

Storing Data Into Variables

Storing and Recalling Numbers
Reviewing Variables in the VAR Catalog
Clearing Variables
Arithmetic With Stored Variables
Storage Arithmetic
Recall Arithmetic

The Variable “i”

Real-Number Functions
Exponential and Logarithmic Functions
The Power Function (y*)
Trigonometry
Entering
Setting the Angular Mode
Trigonometric Functions

Hyperbolic Functions
Percentage Functions (%, %CHG)

Conversion Functions
Coordinate Conversions (P«+RECT)
Fractional Conversions (H—~HMS)
Angle Conversions (D«*RAD)

Probability Functions
Parts of Numbers
Names of Functions

Part 2: Programming

5 70
71
71
72
75
75
76
77
77
79
82
82
82
82
83
84
84
84
85
85
86
87
87

90
90
91
92
93
95
96
97
99
100
101
103
103
104
105

Simple Programming

Creating a Program
Program Boundaries (LBL and RTN)
Program Entry (PRGM)

Running a Program
Executing a Program (XEQ)

Testing a Program
Data Input and Output
Entering Data Into Variables (INPUT)
Displaying Data in Variables (VIEW)

Stopping or Interrupting a Program
Programming a Stop or Pause (STOP, PSE)
Interrupting a Running Program
Error Stops

Editing a Program
Program Memory
Viewing Program Memory
Memory Usage
The Catalog of Programs (MEM)
Clearing One or More Programs
The Checksum

Nonprogrammable Functions
Polynomial Expressions and Horner’s Method

Programming Techniques

Routines in Programs
Calling Subroutines (XEQ, RTN)

Nested Subroutines
Branching (GTO)
Conditional Instructions

Tests of Comparison (TESTS)
Flags

Loops (GTO, LOOP)
Conditional Loops (GTO)
Loops With Counters (DSE, ISG)

Indirectly Addressing Variables and Labels
The Variable “i”
The Indirect Address, (i)
Program Control With (i)

Contents 7

Part 3: Advanced Operation

7 110

111
112
113
118
119
119
120
124
125

8 126
127
128
128
131
132
132
134
136

9 137
138
139
142

10 144
146
147
148
149
149
150
151
151
151

8 Contents

Solving for an Unknown Variable in an

Equation

Using SOLVE
Writing Programs for SOLVE
Examples Using SOLVE

Understanding and Controlling SOLVE
Verifying the Result
Interrupting the SOLVE Calculation
Choosing Initial Guesses for SOLVE

Using SOLVE in a Program
For More Information

Numerical Integration

Using Integration (fFN)
Writing Programs for [FN
Examples Using [FN

Accuracy of Integration
Specifying Accuracy
Interpreting Accuracy

Using Integration in a Program
For More Information

Operations With Complex Numbers
The Complex Stack
Complex Operations
Using Numbers in Polar Notation

Base Conversions and Arithmetic
Arithmetic in Bases 2, 8, and 16

The Representation of Numbers
Negative Numbers
Range of Numbers
Windows for Long Binary Numbers
SHOWing Partially Hidden Numbers

Programming With BASE
Selecting a Base Mode in a Program
Numbers Entered in Program Lines

11 153 Statistical Operations
153 Entering Statistical Data ([2+], l(=-))
154 Entering One-Variable Data
154 Entering Two-Variable Data
155 Correcting Errors in Data Entry
156 Statistical Calculations
156 Mean and Standard Deviation
158 Linear Regression
160 Limitations on Precision of Data
161 Summation Values and the Statistics Registers
161 Summation Statistics
162 The Statistics Registers in Calculator Memory

Part 4: Application Programs

12 164 Mathematics Programs
164 Vector Operations
175 Solutions of Simultaneous Equations—

Determinant Method
183 Solutions of Simultaneous Equations—

Matrix Inversion Method
191 Quadratic Equation
198 Coordinate Transformations

13 204 Statistics Programs
204 Curve Fitting
215 Normal and Inverse-Normal Distributions

14 222 Miscellaneous Programs
222 Time Value of Money
229 Unit Conversions

235 Prime Number Generator

Contents

Part 5: Appendixes and Reference

A

10

240
240
240
242
242
243
245
245
246
248
248
248
249
249
250
250
251
251
251
252
252

253
253
254
255
256
257
257
258

259
259
261
267
272

Contents

Assistance, Batteries, and Service

Obtaining Help in Operating the Calculator
Answers to Common Questions

Power and Batteries
Low-Power Indicator
Installing Batteries

Environmental Limits
Determining if the Calculator Requires Service
Confirming Calculator Operation—the Self-Test
Limited One-Year Warranty
What Is Covered
What Is Not Covered
Consumer Transactions in the United Kingdom

If the Calculator Requires Service
Obtaining Service
Service Charge
Shipping Instructions
Warranty on Service
Service Agreements

Regulatory Information
Radio Frequency Interference

User Memory and the Stack
Managing Calculator Memory
Resetting the Calculator
Clearing Memory
The Status of Stack Lift
Disabling Operations
Neutral Operations

The Status of the LAST X Register

More About Solving an Equation

How SOLVE Finds a Root

Interpreting Results
When SOLVE Cannot Find a Root

Round-Off Error and “Underflow”

273
273
274
279

281

More About Integration

How the Integral Is Evaluated
Conditions That Could Cause Incorrect Results
Conditions That Prolong Calculation Time

Messages

Function Index

Subject Index

Contents 11

Part 1
Basic Operation

Page 14

35

47

54

1: Getting Started

2: The Automatic Memory Stack

3: Storing Data Into Variables

4: Real-Number Functions

Getting Started

Important Preliminaries

Turning the Calculator On and Off

To turn the calculator on, press [C]. Note ON printed below the key.

To turn the calculator off, press §(OFF]. Thatis, press and release the
shift key (Jl}), then press (which has OFF printed above it). Since
the calculator has Continuous Memory, turning it off does not affect

any information you've stored.

To conserve energy, the calculator turns itself off after about 10 min-
utes of no use.

Under most conditions, the calculator’s batteries last well over a year.
If you see the low-power indicator () in the display, replace the
batteries as soon as possible. See appendix A for details and
instructions.

Adjusting the Display’s Contrast

The display’s brightness depends on lighting, your viewing angle, and
the contrast setting. To darken or lighten the display, hold down the

key and press or [-].

14 1: Getting Started

Highlights of the Keyboard and Display

Shifted Keystrokes

Each key has two functions: one printed on its face and a shifted func-
tion printed in color above the key. Press the colored shift key ()
before these functions. For example, to turn the calculator off, press
and release [, then press [C]. This is written as [OFF].

Pressing [turns on the shift annunciator (__4"), which remains until
you press the next key. To cancel __4, just press [again.

2 <——————— Shifted function
X

 Jx A ~<———— Letter for alphabetic key

The Letter Keys

Most of the keys have a letter written next to them, as shown above.
Whenever you need to type in a letter—which is used to identify a
variable or a label—the A..Z annunciator appears in the display, indi-
cating that the letter keys are “active”. (Variables are covered in
chapter 3.)

Backspacing and Clearing

One of the first things you need to know is how to clear: how to
correct numbers, clear the display, and, in general, start over.

1: Getting Started 15

Keys for Clearing

Key Description

B(CLEAR]

Backspace. Erases the last character before the cursor (—) or

backs out of the current menu. For a completed number (no

cursor), (4] clears the entire number. Also clears error

messages.

During program entry: deletes the program line.

Clear or Cancel. Clears the displayed number to zero or can-

cels the current situation (such as a menu, a message, a

prompt for input, a catalog, or program entry).

The CLEAR menu. Gives you options for clearing data: {x},

{VARS}, {ALL}, and {Z}. These clear: the current num-

ber (called “x”), all variables, all of memory, and statistical data.

During program entry, the menu includes {PGM}, which

erases all of program memory.

There is a lot more power to the HP-32S than what you see printed
on the keyboard. This is because almost half of the shifted keys are
menu keys, which, when pressed, offer you several more functions—
or more options for more functions. This extra poweris easier to find
than if each function had its own key.

16 1: Getting Started

32S RPN SCIENTIFIC

(

HYP

EEIIIIIC]IIIII

GTO P« RECT He>HMS D«RAD BASE

W
Menu choices

= WARS ALL Zr
vy v Y
v ! ¥

10* % CHG

ACOS ATAN

LAST x PARTS DISP CLEAR

enter (),.(e).(¢)

(J.Ce].C].()
LBL/RTN LOOP FLAGS TESTS

C:JC:JC:JC:]
SOLVE/ S STAT

[2).3).(=)
INPUT SHOW PRGM VIEW

fFlF710$1£77

 @@
a@
@
6

—

Menu pointers

..-.m.€= Redefined top-row keys
matched to menu choices.

Menu keys
(boxed area)

Those shifted functions printed with lighter backgrounds on the cal-
culator (such as ELEAR) are menu keys. Pressing a menu key produces
a menu in the display—a series of choices.

1: Getting Started 17

HP-32S Menus

Menu Description Iin Chapter:

Numeric Functions

PARTS Number-altering functions (integer part, abso- 4

lute value, etc.).

P—RECT Conversions between polar and rectangular 4

coordinates.

H—~HMS Conversions between hours and hours-min- 4

utes-seconds.

D—RAD Conversions between degrees and radians. 4

BASE Base conversions. 10

SOLVE/[Functions for root-solving and integration. 7,8

STAT Statistical functions. 11

PROB Probability functions. 4

Programming Instructions

LBL/RTN Label, return (end), and pause. 5

LOOP Conditional looping and counting functions. 6

FLAGS Functions to set, clear, and test flags. 6

TESTS Conditional tests. 6

Other Functions

MODES Angular modes and decimal-point convention. 4, 1

DISP Display formats. 1

CLEAR Functions to clear data. 1,3, 5

MEM Status of memory: memory used for individual 1

variables and programs. Catalogs for variables

and programs.

18 1: Getting Started

For example, to find the factorial of 25:

Keys: Display: Description:

25 25_ Displays number.

B(ProB] Cn,r Pnr x! R Displays the Probabil-
ity menu.

{x!} (the key) 1.5511E25 25! is 1.5511 x 1025,

In this way, menus help you execute dozens of functions by guiding
you to them with menu choices. There is no need to remember the
exact names of all of the many functions available on the HP-32S nor
to search through many names printed on the keyboard.

Exiting Menus

Whenever you execute a function in a menu, the menu automatically
disappears, as in the example above. If you wish to leave a menu
without executing a function, you have three options:

B Pressing (¢] backs out of the menu, one step at a time.

123 123_

B(ProB] Ch,t Pnyr x! R

{R} RANDOM SEED

(¢) Chyr Pnsr x! R

(¢] 123.0000

B Pressing cancels the menu.

123 123_

B(ProB] Cn,r Pnr x! R

{R} RANDOM SEED

123.0000

1: Getting Started 19

B Pressing any other menu key replaces the old menu with the new

one.

123 123_

B(ProB] Ch,r Phr =! R

{R} RANDOM SEED

B(CLEAR] x VARS ALL =

Annunciators

The symbols shown here are called annunciators. Each one has a spe-
cial significance when it appears in the display.

VA 2 PRGM INPUT 01 2 3 GRAD HEX OCT BIN

@6 @P =1 | i

Annunciator Meaning

vA (v] and [A are active for stepping through a pro-
gram or a list (pages 33, 76).

_* Shift () is active (page 15).

PRGM Program entry is active (pages 72, 75).

INPUT Program is waiting for input; enter number and press

to resume the program (page 77).

01 2 3 Specifies which flags are set (page 98).

RAD GRAD Radians or Grads angular mode is set (page 57).

HEX OCT BIN Specifies which number base is active (page 144).

v Top-row keys are redefined according to the menu la-

bels above the menu pointers (page 17).

20 1: Getting Started

Annunciator

There are more digits to the left or right. Use [lSHOW to
see the rest of a decimal number; use left and right

scrolling keys ([Jz], [Z+]) to see the rest of a binary num-
ber (page 150).

The alphabetic keys are active (page 48).

Attention! Indicates a special condition or an error (pages

21, 32).

Battery power is low (page 242).

Keying In Numbers

You can key in a number that has up to 12 digits plus a 3-digit expo-
nent up to +499. If you try to key in a number larger than this, digit
entry halts and the A\ annunciator briefly appears.

If you make a mistake while keying in a number, press (4] to back-
space and delete the last digit, or press to clear the whole number.

Making Numbers Negative

The key changes the sign of a number.

B To key in a negative number, type that number, then press [F4].

B To change the sign of a number that was entered previously, just
press (*4]. (If the number has an exponent, affects only the
mantissa—the non-exponent part.)

1: Getting Started 21

Exponents of Ten

Exponents in the Display. Numbers with exponents of ten (such as

4.2 x107°) are shown in the display with an E preceding the expo-
nent (such as 4.2880E-5). A number whose magnitude is too large
or too small for the display format will automatically be displayed in
exponential form. For example, in FIX 4 format for four decimal

places, observe the effect of the following keystrokes:

Keys: Display: Description:

.000062 0.000062_ Shows number being
entered.

0.0001 Rounds number to fit
display format.

.000042 4,2000E-5 Automatically uses sci-
entific notation

because otherwise no

significant digits would
appear.

Keying In Exponents of Ten. Use (E] (exponent) to key in numbers
multiplied by powers of ten. For example, take Planck’s constant,
6.6262 x 10734,

1. Key in the mantissa (the non-exponent part) of the number. If
this part is negative, press [¥4].

6.6262 66262 _

2. Press [E]. Notice that the cursor moves behind the E.

(E] 6.6262E_

3. Key in the exponent. (Largest possible exponent is +499.) If it is
negative, press [¥.].

34 [*4) 6.6262E-34_

For a power of ten without a multiplier, such as 1034, just press (E] 34.
The calculator displays 1E34.

22 1: Getting Started

Other Exponent Functions. To specify an exponent of ten while en-
tering a number, use [E]. To calculate an exponent of ten (the base 10
antilogarithm), use [10%] (chapter 4). To calculate the result of any
number raised to a power (exponentiation), use [¥*] (chapter 4).

Understanding Digit Entry

As you key in a number, the cursor (_) appears in the display. The
cursor shows you where the next digit will go; it therefore indicates
that this number is not completed yet. In technical talk, we say that
digit entry is not terminated.

Keys: Display: Description:

123 123_ Digit entry is not ter-
minated: the number is
not completed.

If you execute a function to calculate a result, then the cursor disap-
pears because the number is complete. Digit entry has been
terminated.

1189085 Digit entry terminated.

Pressing also terminates digit entry. This is why you must sep-
arate two numbers with [ENTER]: to terminate one number before
starting to key in the second one.

123 1230000 A completed number.

5 128.0000 Another completed
number.

If digit entry is not terminated (the cursor is present), then (] back-
spaces to erase the last digit. If digit entry is terminated (no cursor),
then (€] acts like and clears the entire number. Try it!

1: Getting Started 23

Range of Numbers and OVERFLOW

The smallest magnitude of a number available on the calculator is
1Xx 107499, The largest magnitude is 9.99999999999 x 104%° (dis-
played as 1.608BES588 because of rounding).

B If a calculation produces a result that exceeds the largest possible
magnitude, then the number 9.99999999999 x 1049 is provided in-
stead. The warning message OVERFLOMW appears.

B If a calculation produces a result smaller than the smallest possible
magnitude, then zero is provided instead. There is no warning.

Doing Arithmetic

When you press a function key, the calculator immediately executes
the function written on that key. Therefore, all operands (numbers)
must be present before you press the function key.

All calculations can be broken down into one-number functions and

two-number functions.

One-Number Functions

To use a one-number function (such as [1/x], ({=z], B(=?], and [*4)):

1. Key in the number. (You do not need to press (ENTER].)

2. Press the function key. (For a shifted function, press the shift key
first.)

For example, calculate 1/32 and \/148.84 . Then square the last result
and change its sign.

Keys: Display: Description:

32 32_ Operand.

1/x 08.0313 Reciprocal.

148.84 12,2000 Square root.

24 1: Getting Started

B2 148.8400 Square of 12.2.

e -148.8400 Negation of 148.84.

The one-number functions also include the trigonometric functions,
the logarithmic functions, the hyperbolic functions, and the parts-of-
numbers functions, all of which are discussed in chapter 4.

Two-Number Functions

To use a two-number function (such as (+], (=], (x], and [£]):

1. Key in the first number.

2. Press to separate the first number from the second.

3. Key in the second number. (Do not press (ENTER].)

4. Press the function key. (For a shifted function, press the shift key
first.)

Remember to enter both numbers before executing the function.

For example:

To Calculate: Press: Display Is:

12 + 3 12 [ENTER) 3 (*) 15,0008

12 — 3 12 (EnTER) 3 [2) 20808
12 X 3 12 (ENTER] 3 [X] JE.08848

12 + 3 12 [ENTER] 3 (=) 48888

The order of entry is, of course, essential for noncommutative func-
tions such as (-] and [£]. If the numbers have been entered in the

wrong order, you can still get the correct answer without re-entering
the numbers by pressing to swap the order of the numbers. Then
perform the intended function. (This is explained in detail in chapter
2 under “Stack Manipulations.”)

1: Getting Started 25

Chain Calculations

The speed and simplicity of calculating with the HP-32S are apparent
during chain calculations (that is, calculations with more than one op-
eration). Even during the longest of calculations, you still work with
only one or two numbers at a time—the automatic memory stack stores
intermediate results until you need them, then it inserts them into the
calculation.*

® This method requires fewer keystrokes than other calculator logic
does, and it adapts itself naturally to programming.

® The process of working through a problem is the same as working
it out on paper, but the calculator does the hard part.

For example, solve (12 + 3) X 7.

Work From the Parentheses Out. If you were working this prob-
lem out on paper, you would first calculate the intermediate result of
(12 + 3)...

15
F=+3) x 7 =

...and then you would multiply the intermediate result by 7.

15 x 7 = 105

Solve the problem in the same way on the HP-32S, starting inside the
parentheses.

Keys: Display: Description:

12 3 15.0000 Calculates the interme-
diate result first.

You don’t need to press to save this intermediate result before
proceeding. Since it is a calculated result, it is saved automatically.

* Don’t worry now about the automatic (RPN) memory stack and how it works. The stack is
explained in chapter 2.

26 1: Getting Started

7 (x] 105.0000 Pressing the function
key produces the an-
swer. This result can be

used in further

calculations.

Now study these examples. Notice that you only press to sep-
arate sequentially entered numbers, such as at the beginning of a
problem. The operations themselves ([+], (=], etc.) separate subse-
quent numbers and save intermediate results. The last result saved is
the first one retrieved as needed to carry out the calculation.

 2 +3First calculate
10

Keys: Display:

2 (ENTER] 3 [+] 10 (] @.5008

Now calculate
3+ 10 °

Keys: Display:

3 10 13.0000

2 B 8.1538

14 +7 +3 —2
Calculatalculate 4

Keys: Display:

14 7(+]3[+])2
(=] 22,0000

4 (<] 550080

Description:

@2 + 3) =+ 10.

Description:

Calculates (3 + 10)
first.

Puts 2 before 13 so the
division is correct: 2 —+

13.

Description:

Calculates (14 + 7 +
3 — 2) first.

22 + 4.

1: Getting Started 27

4
14 + (7 X 3) — 2
 Now calculate

7 3 (x] 21.0000 Calculates (7 x 3).

14 2 (-] 33.0000 Calculates bracketed
numbers next.

4 33.0000 Puts 4 before 33 in
preparation for
division.

(+] 0.1212 Calculates 4 +~ 33, the
answer.

Problems that have multiple parentheses can be solved in the same
simple manner, using the automatic storage of intermediate results.
For example, to solve (3 + 4) X (5 + 6) on paper, you would

first calculate the quantity
inside these parentheses. ..

B+ 4) X (5 + 6)
™~

...and then the quantity
inside these parentheses. ..

...and then you would multiply the two intermediate answers together.

You work through the problem the same way with the HP-32S, except
that you don’t have to write down intermediate answers—the calcu-
lator remembers them for you.

Keys: Display: Description:

3 4 7.0000 First adds (3 + 4).

5 6 11,0000 Then adds (5 + 6).

E3 77.0000 Then multiplies the in-
termediate answers

together for the final
answer.

28 1: Getting Started

Remember. This method of entering numbers, called Reverse Polish
Notation, is unambiguous and therefore does not need parentheses.

® You never work with more than two numbers at a time.

® Use to separate two numbers keyed in sequentially.

B Pressing a function key immediately executes that function.

B Intermediate results appear as they are calculated, so you can check
each step as you go.

B Intermediate results are automatically stored. They reappear auto-
matically as they are needed for the calculation—the last result
stored is the first to come back out.

B You can calculate in the same order as you would with pencil and
paper.

Exercises

V(163805 x 5) _ o0 000
Calculate: 0.05

Solution: 16.3805 5 (x] .05

Calculate: \/[2 + 3) X (4 + 5)] + V[6 +7) x (8 + 9)] =

21.5743
Solution: 2 (ENTER] 3 [+] 4 (ENTER] 5 [+] (x] (=] 6 [ENTER] 7 [+] 8
(ENTER] 9 (+] [x] (=] [+]

Calculate: (10 — 5) +~ [(17 — 12) x 4] = 0.2500
Solution: 17 [ENTER] 12 (=] 4 [x] 10 [ENTER] 5 (-] [xxy] (3]
or

10 (ENTER] 5 (-] 17 [ENTER] 12 (=] 4 [x]]

Controlling the Display Format

Periods and Commas in Numbers

To exchange the periods and commas used for the decimal point (radix
mark) and digit separators in a number:

1. Press (MODES] to display the MODES menu.

1: Getting Started 29

2. Specify the decimal point by pressing { .} or {, } . For example,
the number one million looks like:

B 1,608,0000000 if you press {.}, or

B 1.000.000,0000 if you press {, }.

Number of Decimal Places ([DisP])

All numbers are stored with 12-digit precision,* but you can select the
number of decimal places to be displayed by using the J[DiSP] (dis-
play) function. The displayed number is rounded according to the
display format. The DISP menu gives you four options:

FX SC EN ALL

Fixed-Decimal Format ({Fx}). FIX format displays a number with

up to 11 decimal places (if they fit). After the prompt FIX _, specify
the number of decimal places to be displayed. For 10 or 11 places,
press (-] 0 or [-] 1.

Decimal places

123,456.80088

Any number that is too large or too small to display in the current
setting will automatically be displayed in scientific format.

Scientific Format ({SC}). SCI format displays a number in scien-

tific notation (one number before the decimal point) with up to 11
decimal places (if they fit) and up to three digits in the exponent. Af-
ter the prompt, SCI _, specify the number of decimal places. (The
integer part will always be less than 10.) For 10 or 11 places, press (-]
0 or [-] 1.

Decimal places Power of 10

12348E5
——

Mantissa

* During some complicated internal calculations, the calculator uses 15-digit precision for in-
termediate results.

30 1: Getting Started

Engineering Format ({EH}). ENG format displays a number in a

manner similar to scientific notation, but the exponent is a multiple of
three (and therefore there can be one, two, or three digits before the

decimal point). This is most useful for scientific and engineering cal-
culations that use units specified in multiples of 103 (such as micro-,

milli-, and kilo-units).

After the prompt, ENG _, specify the number of digits you want after
the first significant digit. (The integer part will always be less than
1,000.) For 10 or 11 digits, press (-] 0 or [-] 1.

Digits after first significant digit Power of 10 (multiple of 3)
D

12346E3
——

Mantissa

ALL Format ({ALL }). ALL format displays a number as precisely as
possible (12 digits maximum). If not all digits fit in the display, the
number is automatically displayed in scientific format.

123,456

SHOWing Full 12-Digit Precision

Changing the number of displayed decimal places affects what you
see, but it does not affect the internal representation of numbers. The
number stored internally always has 12 digits.

1428745632019
se

You see only these ...but these digits are
digits in {FIX} 4... also present internally.

To temporarily display a number with its full precision, press
B(sHOow]. This shows you just the mantissa (no exponent) of the num-
ber for as long as you hold down [SHOW].

1: Getting Started 31

Keys: Display: Description:

B(Disp] {FX} 4 Displays four decimal
places.

45 1.3 [x] 585000 Four decimal places
displayed.

B(oisP] {sc} 2 5.85E1 Scientific format: two
decimal places and an
exponent.

@(oisp] {ALL} 58.5 All significant digits;
trailing zeros dropped.

@(DisP] {Fx} 4 58,5000 Four decimal places, no
exponent.

1/x 006171

B(sHow] (hold) 170940170940 Temporarily shows full
precision.

Messages

The calculator responds to certain conditions or keystrokes by dis-
playing a message. The A\ symbol comes on to call your attention to
the message.

B To clear a message, press or (¢].

B To clear the message and perform another function, press any other
key.

If no message appears but 4\ does, then you have pressed an inactive
key (a key that has no meaning in the current situation, such as the (3]
key in Binary mode).

All displayed messages are explained in the list of messages on page
281.

32 1: Getting Started

Calculator Memory

There are 390 bytes of user memory in the HP-32S available to you
for any combination of stored data (variables or program lines). The
memory requirements of specific activities are given under “Managing
Calculator Memory” in appendix B.

Checking Available Memory

Pressing [[MEM] shows you the amount of memory still available:

2168 VAR PGM

Bytes of memory Catalog of variables Catalog of programs
available (See chapter 3, (See chapter 5,

page 49.) page 85.)

1. To enter the catalog of variables, press {VAR} . To enter the cata-
log of programs, press {PGM} .

2. To review the catalogs, press (V] or (4]

3. To delete a variable or a program, press ll[(CLEAR] while viewing
it in its catalog.

4. To exit the catalog, press [C].

1: Getting Started 33

Clearing All of Memory

Clearing all of memory erases all numbers and program lines you've
stored. It does not affect settings (modes and formats). (To clear
settings as well as data, see “Clearing Memory” in appendix B.)

To clear all of memory:

1. Press J[CLEAR] {ALL} . You will then see the confirmation
prompt CLR ALL? ¥ N, which safeguards against the unin-
tentional clearing of memory.

2. Press {Y} (yes).

34 1: Getting Started

2
The Automatic Memory

Stack

This chapter explains how calculations take place in the automatic
memory stack and why this method minimizes the number of key-
strokes for complicated calculations. You do not need to read and
understand this material to use the calculator. However, you will find
that understanding this material greatly enhances your use of the cal-
culator, especially when programming.

In part 2, “Programming”, you will see that the stack helps manipulate
and organize data for programs.

What the Stack Is

Automatic storage of intermediate results is the reason that the HP-32S
easily processes the most complex calculations, and does so without
parentheses. The key to automatic storage is the automatic, RPN mem-
ory stack.*

The memory stack consists of four storage locations, called registers,
which are “stacked” on top of each other. It is a work area for calcula-
tions. These registers—labeled X, Y, Z, and T—store and manipulate
four current numbers. The “oldest” number is the one in the T- (top)
register.

* HP’s operating logic is based on an unambiguous, parentheses-free mathematical logic
known as “Polish Notation,” developed by the Polish logician Jan Lukasiewicz (1878—
1956). While conventional algebraic notation places the operators between the relevant num-
bers or variables, Lukasiewicz’s notation places them before the numbers or variables. For
optimalefficiency of the stack, we have modified that notation to specify the operators after
the numbers. Hence the term Reverse Polish Notation, or RPN.

2: The Automatic Memory Stack 35

0.0000| “Oldest” number

0.0000

0.0000

0.0000| Displayed

X
<

N
-

The most “recent” number is in the X-register: this is the number you
see in the display.

In programming, the stack is used to perform calculations, to tempo-
rarily store intermediate results, to pass stored data (variables) among
programs and subroutines, to accept input, and to deliver output.

The X-Register Is in the Display. The X-register is what you see

except when a menu, a message, or a program line is being displayed.
You might have noticed that several functions’ names include an x or
y. This is no coincidence: these letters refer to the X- and Y-registers.
For example, [§(10*] raises ten to the power of the number in the X-
register (the displayed number).

B(CLEAR] {x} versus [C]. Pressing [)[CLEAR] {=} always clears the
X-register to zero, and it is also used to program this instruction. The

key, in contrast, is context-sensitive. It either clears or cancels the

current display, depending on the situation: it acts like [j[CLEAR] {x}
only when the X-register is displayed.* It cancels other displays:
menus, labeled numbers, messages, and program entry.

Reviewing the Stack ([(R+])

The (roll down) key lets you review the entire contents of the
stack by “rolling” the contents downward, one register at a time. You
can see each number when it enters the X-register.

* (@] also acts like [}CLEAR {x} when the X-register is displayed and digit entry is termi-
nated (no cursor present).

36 2: The Automatic Memory Stack

Suppose the stackis filled with 1, 2, 3, 4 (press 1 2 3
4). Pressing four times rolls the numbers all the way

around and back to where they started:

T|
Z| 2

Y| 3

X| 4

What was in the X-register rotates around and enters the T-register.
Notice that the contents of the registers are rolled. The registers them-
selves maintain their positions, and the X-register is always displayed.

Exchanging the X- and Y-Registers in the Stack

((x])

Another key that manipulates the stack contents is (x exchange y).
It swaps the contents of the X- and Y-registers without affecting the
rest of the stack. Pressing twice, of course, restores the original
order of the contents.

The [xxy] function is used primarily for two purposes:

B To view y and then return it to the Y-register (press twice).
Some functions yield two results: one into the X-register and one
into the Y-register. An example is {».,=#8,r } , which converts rect-
angular coordinates in the X- and Y-registers into polar coordinates
in the X- and Y-registers.

® To swap the order of numbers in a calculation. For example, an
easy way to calculate 9 + (13 X 8) is to press 13 8(x]9

().

2: The Automatic Memory Stack 37

Arithmetic—How the Stack Does It

The contents of the stack move up and down automatically as new
numbers enter the X-register (lifting the stack) and as operators com-
bine two numbers to produce one new number (dropping the stack) in
the X-register. Suppose the stack is still filled with the numbers 1, 2,
3, 4. See how the stack drops and lifts its contents while calculating

3+4—09:

X
<

N
-

(8]

1 2 3

1 The stack “drops” its contents. (The top register replicates its contents.)

2 The stack ‘“lifts” its contents. (The top contents are “lost”.)

3 The stack drops.

B Notice that when the stack lifts, it pushes the top contents out of
the T-register, and that number is lost. You can see, therefore, that
the stack’s memory is limited to four numbers for calculations.

® When the stack drops, it replicates the contents of the T-register.

B Because of the automatic movement of the stack, you do not need

to clear the display before doing a new calculation.

B Most functions prepare the stack to lift its contents when the next
number enters the X-register. See appendix B for lists of functions
that affect stack lift.

38 2: The Automatic Memory Stack

How ENTER Works

You know that separates two numbers keyed in one after the
other. In terms of the stack, how does it do this? Suppose the stack is
again filled with 1, 2, 3, and 4. Now enter and add two new numbers:

5 + 6:

1 lost 2 lost

T 3

Z 4

Y 5

X (5] 5

1 2 3 4q

1 Lifts the stack.

2 Lifts the stack and replicates the X-register.

3 Does not lift the stack.

4 Drops the stack and replicates the T-register.

replicates the contents of the X-register into the Y-register. The
next number you key in (or recall) writes over the copy of the first
number left in the X-register. The effect is simply to separate two se-
quentially entered numbers.

You can use the replicating effect of to clear the stack quickly:
press O (ENTER] (ENTER] [ENTER]. All registers now contain zero. Note,

however, that you don’t need to clear the stack before doing
calculations.

Using a Number Twice in a Row. You can use the replicating fea-
ture of to other advantages. To add a number to itself, press

(ENTER](+].

Filling the Stack With a Constant. The replicating effect of
together with the replicating effect (from T into Z) of stack drop al-
lows you to fill the stack with a numeric constant for calculations.

2: The Automatic Memory Stack 39

Example: Constant, Cumulative Growth. Given a bacterial culture
with a constant growth rate of 50%, how large would a population of
100 be at the end of 3 days?

Replicates T-register

T| 15 15 15 15 15

Szl 15 15 15 15

15 15 15 15 15

(Enter) X 1.5 [100| 100 |(x]| 150 |(x]| 225 |(x]|337.5

1 2 3 4 5

1 Fills the stack with the growth rate.

2 Keys in the initial population.

3 Calculates the population after 1 day.

4 Calculates the population after 2 days.

5 Calculates the population after 3 days.

How CLEAR x Works

Clearing the display (X-register) puts a zero in the X-register. The next
number you key in (or recall) writes over this zero.

There are three ways to clear the number in the X-register, that is, to
clear x:

B Press [C].

B Press [¢].

B Press@J(CLEAR] {=}. (These keystrokes are mainly used in program
entry.)

40 2: The Automatic Memory Stack

Note these exceptions:

B During program entry, (4] deletes program lines and cancels
program entry.

® During digit entry, (¢] backspaces over the number.

B If the display shows a labeled number (such as A=2.888a), pressing
or (4] cancels that display and shows the X-register.

For example, if you wanted to enter 1 and 3 but mistakenly entered 1
and 2, this is what you would do to correctit:

T

4

Y 1 1 1 1

DX 1 1T @[2 0 (8| 3

1 2 3 4 5

1 Lifts the stack.

2 Lifts the stack and replicates the X-register.

3 Overwrites the X-register.

4 Clears x by overwriting it with zero.

5 Overwrites x (replaces the zero.)

The LAST X Register

The LAST X register is a companion to the stack: it holds the number
that was in the X-register before the last numeric function was exe-
cuted. (A numeric function is an operator that produces a result from
another number or numbers, such as [ix].) Pressing [LASTx returns
this value into the X-register. This ability to retrieve the “last x” has
two main uses: correcting errors and reusing a number in a
calculation.

See appendix B for a comprehensive list of the functions that save x
in the LAST X register.

2: The Automatic Memory Stack 41

Correcting Mistakes With [LASTx]

Wrong One-Number Function. If you execute the wrong one-
number function, use [[LASTx] to retrieve the number so you can
execute the correct function. (Press first if you want to clear the
incorrect result from the stack.)

Since (%] and M(%CHG] don’t cause the stack to drop, you can re-
cover from these functions in the same manner as from one-number

functions.

Example. Suppose that you had just computed In 4.7839 X
(3.879 x10°) and wanted to find its square root, but pressed by
mistake. You don’t have to start over! To find the correct result, just

press [[LAST=][(z].

Mistakes With Two-Number Functions. If you make a mistake
with a two-number operation ([+], (=], (x], (], or [¥*]), you can cor-
rect it by using [LAST=] and the inverse of the two-number function

(2 or [(+J, or [x], or [¥]):

1. Press [[LASTx] to recover the second number (x just before the
operation).

2. Execute the inverse operation. This returns the number that was
originally first. The second numberis still in the LAST X register.
Then:

B If you had used the wrong function, press [[LAST=] again to
restore the original stack contents. Now execute the correct
function.

B If you had used the wrong second number, key in the correct
one and execute the function.

If you had used the wrong first number, key in the correct first number,
press [l[LASTx] to recover the second number, and execute the func-
tion again. (Press first if you want to clear the incorrect result from
the stack.)

Example. Suppose you made a mistake while calculating

16 x 19 = 304.

There are three kinds of mistakes you could have made:

42 2: The Automatic Memory Stack

Wrong

Calculation

16 [ENTER] 19 -]

15 (ENTER] 19 [x]

16 [ENTER] 18 [x]

Mistake

Wrong function.

Wrong first
number.

Wrong second
number.

Correction

W(CAsT] (+] (AT (]

16 @(LAsT=] ¥

Reusing Numbers With [LASTx]

You can use JJ[LASTx] to reuse a number (such as a constant) in a

calculation. Remember to enter the constant second, just before exe-

B(LAsTx] (] 19 (]

cuting the arithmetic operation, so that the constant is the last
number in the X-register, and therefore can be saved and retrieved

with [[LASTx].

Example. Calculate

T

Zz

96.704 Y 96.704

(EnTER] X 96.704

 LASTX|[1 |

T

Z

Y

B(as:] X

LAST X

52.3947

52.3947

t

z

149.0987

52.3947 (=]

52.3947

96.704 + 52.3947

t

4

96.704

52.3947

t

t

z

2.8457

52.3947

t

t

z

149.0987

 52.3947

2: The Automatic Memory Stack

Keys: Display: Description:

96.704 96.7040

52.3947 149.8987 Intermediate result.

B(LASTx] 52,3947 Brings back display
from before [+].

(+] 2.8457 Final result.

Example. Two close stellar neighbors of Earth are Rigel Centaurus
(4.3 light-years away) and Sirius (8.7 light-years away). Use ¢, the
speed of light (9.5 x 10> meters per year) to convert the distances
from the Earth to these stars into meters.

to Rigel Centaurus = 4.3 yr. X (9.5 x 10! m/yr)
to Sirius = 8.7 yr. X (9.5 x 10> m/yr)

Keys: Display: Description:

4.3 4,3000 Light-years to R.
Centaurus.

9.5 (E] 15 9.5E15_ Speed of light, c.

(x] 4.085E16 Distance to R.
Centaurus.

8.7 B[LASTx] 9.50080E15 Retrieves c.

(x] 8.2650E16 Distance to Sirius.

Chain Calculations

The automatic lifting and dropping of the stack’s contents let you re-
tain intermediate results without storing or reentering them, and
without using parentheses. This is an advantage the RPN stack has
over other data-handling methods.

44 2: The Automatic Memory Stack

Order of Calculation

In chapter 1 we recommended solving chain calculations by working
from the innermost parentheses outward. However, you can also
choose to work problems in a left-to-right order.

For example, in chapter 1 you calculated:

4 +~ [14 + (7 x 3) — 2]

by starting with the innermost parentheses (7 X 3) and working out-
ward—just as you would with pencil and paper. The keystrokes were:

7 [ENTER] 3 [x] 14 [+] 2 (0] 4 (=] (]

Working the problem left-to-right, the solution would be:

4 (ENTER) 14 [ENTER] 7 (ENTER] 3 [x] [+] 2 (5] (=],

which takes one additional keystroke. Notice that the first intermedi-
ate result is still the innermost parentheses: (7 X 3). The advantage to
working a problem left-to-right is that you don’t have to use to
reposition operands for noncommutative functions ([-] and [+]).

The first method (starting with the innermost parentheses) is often
preferred because:

B |t takes fewer keystrokes.

B [t requires fewer registers in the stack.

When using a left-to-right method, be sure that no more than four
intermediate numbers (or results) will be needed at one time, since the
stack can hold no more than four numbers at once. This example,
when solved left-to-right, needed all the registers in the stack at one
point.

4 = [14 + (7 x 3) — 2]

2: The Automatic Memory Stack 45

Keys: Display: Description:

4 Saves 4 and 14 as in-
14 14,0000 termediate numbers in

stack.

7 3 3_ At this point the stack
is full with numbers

for this calculation.

(x] 21.0000 Intermediate result.

35.0000 Intermediate result.

2 (-] 33.0000 Intermediate result.

8.1212 Final result.

Exercises

Here are some extra problems that you can do to practice using RPN.

Calculate: (14 + 12) x (18 — 12) ~ (9 — 7) = 78.0000
A Solution: 14 (ENTER) 12 [+] 18 [EnTER) 12 (5] [X] 9 (ENTER] 7 (5] (5]

Calculate: 232 — (13 X 9) + ¥ = 412.1429
A Solution: 23 (?] 13 9(x](=)7

Calculate: \/(5.4 x 0.8) + (125 — 0.73) = 0.5961
A Solution: 5.4 8(x).7 3125] =B E
TO

5.4 (ENTER] .8 (x] 12.5 [ENTER] .7 (ENTER] 3 (] (-] (=] (5]

Calculate: \/8.33 X (4 — 5.2) + [(8.33 — 7.46) x 0.32] _ 45798
43 x (3.15 — 2.75) — (1.71 x 2.01)

A Solution: 4 5.2 (=] 8.33 [x) (LASTx] 7.46 [-] 0.32 [x] (=]
3.15 2.75 (=] 4.3 [x] 1.71 2.01 [x][=)

46 2: The Automatic Memory Stack

Storing Data Into
Variables

The HP-32S has 390 bytes of user memory: memory space that you
can use to store numbers or program lines. Numbers are stored in
locations called variables, each named with a letter from A through Z.
(You can choose the letter to remind you of whatis stored there, such

as B for bank balance and C for the speed of light.)*

32S RPN SCIENTIFIC
 B

Cursor prompts for input

Indicates letters

LAST x

GTO P«RECT

SOLVE/ S

INPUT
(1)

10x

HYP

ASIN

@..

%CHG

ACOS

PARTS MODES DISP

STAT

(2)
SHOW

X

(Ceven), (),(4.C)[+)
HesHMS

(D).l
D<«RAD

FLAGS

(D0
PROB

(3).=]3
Y

5.0,69
ATAN

CLEAR

[BASE

=
TESTS

MEM

f
@
@
a
@@
»a

PRGM VIEW

are active

-« Letter keys

 —/)

* Note that the variables X, Y, Z, and T are different storage locations from the X-register, Y-
register, Z-register, and T-register in the stack.

3: Storing Data Into Variables 47

Each white letter is associated with a key and a unique variable. The
letter keys are automatically active when needed. (The A..Z annunci-
ator in the display confirms this.)

Storing and Recalling Numbers

Numbers are stored into and recalled from lettered variables with the

(store) and (recall) functions.

To store a copy of a number from the display (X-register) to a

variable: press letter-key.

To recall a copy of a number from a variable to the

display: press letter-key.

Example: Storing Numbers. Store Avogadro’s number (approxi-
mately 6.0225 x 1023) in A.

Keys: Display: Description:

6.0225 (E] 23 6.8225E23_

STO STO _ Prompts for variable.

A ([J=] key) STO A Displays function as
long as key is held
down.

6.8225E23 Stores a copy of
Avogadro’s number in
A. This also terminates
digit entry (no cursor
present).

0.0000 Clears the number in
the display.

RCL RCL Prompts you for the
variable’s name.

A 6.0225E23 Copies Avogadro’s
number from A to the
display.

48 3: Storing Data Into Variables

Viewing a Variable Without Recalling It. The [VIEW] function
shows you the contents of a variable without putting that number in
the X-register. The display is labeled for the variable, such as:

H=152:L SETE

If the number is too large to fit completely in the display with its
label, it is rounded and the rightmost digits are dropped. (An expo-
nent is displayed in full.) To see the full mantissa, press l[SHOW].

B(VIEW] is most often used in programming, but it is useful anytime
you want to view a variable’s value without affecting the contents of
the stack.

To cancel the VIEW display, press (4] or once.

Reviewing Variables in the VAR Catalog

The B(MEM] (memory) function provides information about memory:

Number of bytes available in memory

nnn.n YAR FGH

by w
Catalog of variables Catalog of programs

To review the values of any or all non-zero variables:

1. Press @[VEM] {VAR}.

2. Press (v] or (4] to move the list and display the desired vari-
able. (Note the va annunciator, indicating that the arrow keys
are active.)

To see all the significant digits of a number displayed in the
{YAR} catalog, press @[sHOW]. (If it is a binary number with
more than 12 digits, use the and keys to see the rest.)

3. To copy a displayed variable from the catalog to the X-register,

press (ENTER).
4. To clear a variable to zero, press [CLEAR while it is displayed

in the catalog.

5. Press to cancel the catalog (or (¢] to back up to the menu).

3: Storing Data Into Variables 49

Clearing Variables

Variables’ values are retained by Continuous Memory until you re-
place them or clear them. Clearing a variable stores a zero there; a
value of zero takes no memory.

To clear a single variable: store zero in it.

To clear selected variables:

1. Press J(MEm] {VAR} and use [¥] or (4] to display the variable.

2. Press @[CLEAR].

3. Press to cancel the catalog, or (€] to back out.

To clear all variables at once: press J(CLEAR] {VARS}.

Arithmetic With Stored Variables

Storage arithmetic and recall arithmetic allow you to do calculations
with a number stored in a variable without recalling the variable into
the stack. A calculation uses one number from the X-register and one
number from the specified variable.

Storage Arithmetic

Storage atrithmetic uses [STO](+], [STO](=], [STO](X], or to do
arithmetic in the variable itself and to store the result there. It uses the

value in the X-register and does not affect the stack.

New value of variable = Previous value of variable {+, —, X, =~} x

For example, suppose you want to reduce the value in A (15) by the
number in the X-register (3, displayed). Press (-]A. Now A =
12, while 3 is still in the display.

50 3: Storing Data Into Variables

A| 15 Al 12 Result: 15—3,
that is, A—x.

X
<

N
-

(s1o] (=] (]
Recall Arithmetic

Recall arithmetic uses [RCL](+], (RCL](=], [RCL](X], or to do
arithmetic in the X-register using a recalled number and to leave the
result in the display. Only the X-register is affected; all other stack
registers are unaffected.

New x = Previous x {4+, —, X, =} Variable

For example, suppose you want to divide the number in the X-register
(3, displayed) by the value in A (12). Press A. Now x = 0.25,
while 12 is still in A.*

a[z] Az

t

4

<
N

-

y

(ReL] (+](a] X| 0.25

X
<

N
-

Result: 3+12,

that is, x+A.

* Recall arithmetic saves memory space in programs. Using A (one instruction) uses

half as much memory as A, (two instructions).

3: Storing Data Into Variables 51

More Examples. Suppose the variables D, E, and F contain the val-
ues 1, 2, and 3. Use storage arithmetic to add 1 to each of these
variables.

Keys:

1[s10) D
2 [STO)E
3 (sTO)F

1(s10][+] D
(sTo](zJ E
(sTo)(+] F

BvEW]D

BVEW]E

WVEW] F

(¢

Display:

3.86000

18000

D=2.60008

E=3.0000

F=4.860008

1.6000

Description:

Stores the assumed

values into the

variables.

Adds 1 to D, E, and F.

Displays the current
value of D.

Clears the VIEW
display; displays X-reg-
ister again.

Suppose the variables D, E, and F contain the values 2, 3, and 4 from
the last example. Divide 3 by D, multiply it by E, and add F to the
result.

Keys:

3 (¢]D

x)E

F

52 3: Storing Data Into Variables

Display:

1.5600

4,.50800

85000

Description:

Calculates 3 + D.

3+~ D X E.

3 +~D X E+ F.

The Variable “i”

There is a 27th variable—the variable i. (The [i] is located with the -]
key.) Although it stores numbers as other variables do,it is special in
that it can be used (via the function) to refer to other variables—a
technique called indirect addressing. Because this is a programming
technique, it is covered in chapter 6 under “Indirectly Addressing
Variables and Labels.”

3: Storing Data Into Variables 53

4
Real-Number Functions

This chapter covers most of the calculator’s functions that do com-
putations on real numbers, including some numeric functions
intended for programs (such as the absolute-value function):

Exponential and logarithmic functions.

Trigonometric functions.

Hyperbolic functions.

n

n

n

B Percentage functions.

B Conversion functions for coordinates, angles, and fractions.

B Probability functions.

n Parts of numbers (number-altering functions).

Arithmetic functions and calculations were covered in chapters 1 and
2. The advanced numeric operations (root-finding, integrating, com-
plex numbers, base conversions, and statistics) are in part 3 of this
manual.

54 4: Real-Number Functions

Many of the numeric functions appear on keys in the top two rows of
the keyboard. The rest appear in one of these menus:

IP FP RN ABS

LASTx PARTS DISP CLEAR

ENTERn
/|

P« RECT Hes D«RAD BASE
—

) (.05@O
SOLVE/ S STAT

(=) (7)./D=)
yx->0r0,r-y.x

[
Cnsr Pnr x!R -HR -HMS

RANDOM SEED

Exponential and Logarithmic Functions

Put the number in the display first, then execute the function. There
is no need to press (ENTER].

To Calculate: Press:

Natural logarithm (base e)

Common logarithm (base 10) B(LoG)

Natural exponential

Common exponential (antilogarithm) B§[(10%]

4: Real-Number Functions 55

The Power Function (y¥)

To calculate a number, y, raised to a power, x, key in y x [¥*].

For y > 0, x can be any rational number. For y < 0, x must be an
integer. For y = 0, x must be positive.

For example:

To Calculate: Press: Result:

152 15 B33 225.0000

214 2 1.4 X 0.3789

(—1.4) 1.4 35 —2.7440

Y2 or 2" 2 3) 1.2599

Trigonometry

Entering T

Press (=] to place the first 12 digits of = into the X-register. (The
number displayed depends on the display format.) Because this is a
function, = does not need to be separated from another number by

[ENTER].

Note that a calculator cannot exactly represent «, since = is an irratio-
nal number.

Setting the Angular Mode

The angular mode specifies which unit of measure to assume for an-
gles used in trigonometric functions. The mode does not convert
numbers already present (see “Conversion Functions” in this chapter).

56 4: Real-Number Functions

360 degrees = 2w radians = 400 grads

To set an angular mode, press J[MODES]. Then select an option.

Option Description Annunciator

{DG} Sets Degrees mode (DEG). Uses decimal frac- none

tions, not minutes and seconds.

{RD} Sets Radians mode (RAD). RAD

{GR} Sets Grads mode (GRAD). GRAD

Trigonometric Functions

With x in the display:

To Calculate: Press:

Sine of x.

Cosine of x.

Tangent of x. TAN

Arc sine of x. B(AsIN]

Arc cosine of x. |[ACOS]

Arc tangent of x. J§[ATAN]

v
Note

Calculations with the irrational number = cannot be ex-
pressed exactly with the 12-digit internal precision of the
calculator. This is particularly noticeable in trigonom-
etry; for example, the calculated sin 7 is not zero but

—2.0676 x 10713, a very small number close to zero.

4: Real-Number Functions 57

Example. Show that the cosine of (5/7)r radians and the cosine of
128.57° are the same.*

Keys: Display: Description:

B[voDES] {RD} Sets Radians mode;
RAD annunciator on.

5 [ENTER] 7 (] M=) (%] Cos (5/7)r.
CcOSs -B8.6235

@(vooEs] {DG} Switches to Degrees
128.57 -8.6235 mode (no annunciator)

and calculates cos

128.57°, which is the

same as cos (5/7)w.

Programming Note. Equations using inverse trigonometric functions
to determine an angle, 6, often look something like this:

0 = arctan (y/x).

If x = 0, then y + x is undefined, resulting in the error

DIVIDE BY 8. For a program, then, it would be more reliable to
determine 6 by a rectangular to polar conversion, which converts x, y to
1, 0. See “Coordinate Conversions,” later in this chapter.

* Actually, these calculated results are the same only to foursignificant digits due to the inex-
act representation of . (Press [JJ[SHOW]to see more digits.)

58 4: Real-Number Functions

Hyperbolic Functions

With x in the display:

To Calculate: Press:

Hyperbolic sine of x (SINH). B(HvP] (SIN]

Hyperbolic cosine of x (COSH). B(svr]

Hyperbolic tangent of x (TANH). B(:vr]

Hyperbolic arc sine of x (ASINH). B(=vr] @(ASIN]

Hyperbolic arc cosine of x (ACOSH). [(Hvr] l[Acos]

Hyperbolic arc tangent of x (ATANH). [(HYP] [[ATAN]

Percentage Functions (%, %CHG)

The percentage functions are special (compared with [x] and [+]) be-
cause they preserve the value of the base number (in the Y-register)
when they return the result of the percentage calculation (in the X-
register). You can then carry out subsequent calculations using both
the base number and the result without reentering the base number.

To Calculate: Key In:

x% of y y (ENTER] x (%]

Percentage change from y to x. (y # 0) y x [B(%CHG]

Example. Find the sales tax at 6% and the total cost of a $15.76
item. Use FIX 2 display format so the costs are rounded appropriately.

Keys: Display: Description:

B(oise] {FX} 2 Rounds display to two
decimal places.

4: Real-Number Functions 59

15.76 6 M%) 095 Calculates 6% tax.

16,71 Total cost (base price
+ tax).

Suppose that the $15.76 item cost $16.12 last year. What is the per-
centage change from last year’s price to this year’s?

Keys: Display: Description:

16.12 15.76 This year’s price

W(e:CHG] -2.23 dropped about 2.2%
from last year’s price.

B(DIsP] {Fx} 4 -2.2333 Restores FIX 4 format.

Note that the order of the two numbers is important for the %CHG
function. The order affects whether the percentage change is consid-
ered positive or negative.

Conversion Functions

There are three types of conversions: coordinate (polar/rectangular),
angular (degrees/radians), and fractional (decimal/minutes-seconds).

Coordinate Conversions (P—RECT)

Rectangular coordinates (x, y) and polar coordinates (r, f) are mea-
sured as shown in the illustration. Functions in the P«+RECT (polar
from/to rectangular) menu convert between the two. The angle 6 uses
the units set by the current angular mode. A calculated result for 6
will be between —180° and 180°, between —= and = radians, or be-
tween —200 and 200 grads.

60 4: Real-Number Functions

To convert between rectangular coordinates (x, y) and polar

coordinates (r, 0):

1. First enter the coordinates (in rectangular form or polar form)
that you want to convert. The order is y xorf r.

2. Press [P-RECT].

3. Execute the conversion you want: {».=x*8,r } (rectangular to po-
lar) or {B.,r+»,x} (polar to rectangular). The converted
coordinates occupy the X- and Y-registers.

4. The resulting display shows either r (polar result) or x (rectangu-
lar result). Press [xxy] to see 6 or y.

¥,x38,r

/ A
Y| vy o

X| x r

N /
B,r+»,=x

Example: Polar to Rectangular Conversion. Find x and y in the

right triangle on the left. Find r and 6 in the right triangle on the right.

4: Real-Number Functions 61

10

300 33
X 3

Keys: Display: Description:

M(voDES] {DG} Sets Degrees mode.

30 10 Calculates x.

B(P~RECT] {B,r+y,x} 86603

5.0000 Displays y.

4 3 Calculates the hypote-
B(P—RECT] {y,x»8,r} 5.0000 nuse (7).

xX 53.1301 Displays 6.

Example: Conversion With Vectors. Engineer P.C. Bord has deter-
mined that in the RC circuit shown on the next page at left, the total
impedance is 77.8 ohms and voltage lags current by 36.5°. What are
the values of resistance, R, and capacitive reactance, X,, in the circuit?

Use a vector diagram as shown with impedance equal to the polar
magnitude, 7, and voltage lag equal to the angle, 6, in degrees. When
the values are converted to rectangular coordinates, the x-value yields
R, in ohms, while the y-value yields X, in ohms.

62 4: Real-Number Functions

©

Keys:

B(moDES] {DG}

36.5

77.8

B(P—RECT] {B,r+»x}

Display:

-36.5000

778_

625401

-46.2772

R

9) -36.5°

77.8 Ohms

Y

Description:

Sets Degrees mode.

Enters 0, degrees of

voltage lag.

Enters r, ohms of total

impedance.

Calculates x, ohms re-

sistance, R.

Displays y, ohms reac-
tance, X..

For more sophisticated operations with vectors (addition, subtraction,
cross product, and dot product), refer to the “Vector Operations” pro-
gram in chapter 12 (“Mathematics Programs”).

Fractional Conversions (H—HMS)

Values for time (in hours, H) or angles (in degrees, D) can be con-

verted between a decimal-fraction form (H.h or D.d) and a minutes-
seconds form (H.MMSSss or D.MMSSss) using the H~+HMS menu
(hours from/to hours-minutes-seconds).

4: Real-Number Functions 63

To convert between decimal fractions and minutes-seconds:

1. Key in the time or angle (in decimal form or minutes-seconds
form) that you want to convert.

2. Press B(H~HMS],

3. Select {+HR} (hours-minutes-seconds to hours) or {+HMS} (hours
to hours-minutes-seconds). The result is displayed.

Example: Converting Time Formats. How many minutes and sec-

onds are there in %7 of an hour? Use FIX 6 display format.

Keys: Display: Description:

B(oisP] {Fx} 6

7 0.142857 One-seventh as a deci-
mal fraction.

B(HeHMS] {+HMS} 8.083429 Equals 8 minutes and
34.29 seconds.

B(DisP] {Fx} 4 Restores FIX 4 format.

Angle Conversions (D—RAD)

The D«RAD (degrees from/to radians) menu operates independently
of the angular mode. When converting to radians, the number in the
X-register is assumed to be degrees. Likewise, when converting to de-
grees, the number in the X-register is assumed to be radians.

To convert an angle between degrees and radians:

1. Key in the angle (in decimal degrees or radians) that you want to
convert.

2. Press @l[D~RAD].

3. Select {#DEG} (radians to degrees) or {+RRAD} (degrees to radi-

ans). The result is displayed.

64 4: Real-Number Functions

Probability Functions

The PROB (probability) menu has functions to calculate factorials,
combinations, and permutations, and to obtain random numbers.

The PROB Menu

Menu Label Description

{Cn,r }

{Pn,r}

{=!}

{R}

Combinations. Enter n first, then r. (Nonnegative integers

only.) Calculates the number of possible sets of n items

taken r at a time. No item occurs more than once in a set,

and different orders of the same r items are not counted

separately.

Permutations. Enter n first, then r. (Nonnegative integers

only.) Calculates the number of possible arrangements of n

items taken r at a time. No item occurs more than once in
an arrangement, and different orders of the same r items

are counted separately.

Factorial and Gamma. Calculates the factorial of the dis-

played positive integer (0 < x < 253).

To calculate the gamma function of a, ['(a), key in (a — 1)

and press [l(PROB] {x!}. (The {x!} function calcu-
lates ['(x + 1). The value for x cannot be a negative

integer.)

Random number generator. Has two options.

Pressing {RANDOM} generates a random number in the

range 0 < x < 1. Pressing {SEED} starts a new ran-

dom-number sequence with the number that is in the X-

register.
 * The random number generator in the HP-32S actually returns a number that is part of a

uniformly distributed pseudo-random number sequence. It passes the spectral test (D.

Knuth, Seminumerical Algorithms, vol. 2. London: Addison Wesley, 1981).

{RANDOM} uses a seed to generate a random number. Each random
number generated becomes the seed for the next random number.
Therefore, a sequence of random numbers can be repeated by starting
with the same seed. You can store a new seed with the {SEED} func-

tion. If memory is cleared, the seed is reset to zero.

4: Real-Number Functions 65

Example: Combinations of People. A company employing 14
women and 10 men is forming a 6-person safety committee. How
many different combinations of people are possible?

Keys: Display: Description:

24 6 6_ Twenty-four people
grouped six at a time.

B(ProB] Cn,r Pnr x! R Probability menu.

{Cn,r} 134,596.0000 Total number of com-

binations possible.

If employees are chosen at random, what is the probability that the
committee will contain six women? To find the probability of an event,
divide the number of combinations for that event by the total number
of combinations.

Keys: Display: Description:

14 6 6_ Fourteen women

grouped six at a time.

B(PrOB] {Cn,r} 3,003.0000 Number of combina-
tions of six women on

the committee.

xX 134,596.0000 Brings total number of
combinations back into

the X-register.

(+] 8.8223 Divides combinations
of women by total
combinations to find

probability that any
one combination

would have all women.

66 4: Real-Number Functions

Parts of Numbers

The functions in the PARTS menu alter the number in the X-register
in simple ways. These functions are used in programming.

The PARTS Menu

Menu Label Description

{IP} Integer part. Removes the fractional part of x and replaces

it with zeros. (For example, the integer part of 14.2300 is

14.0000.)

{FP} Fractional part. Removes the integer part of x and replaces

it with zeros. (For example, the fractional part of 14.2300 is

0.2300.)

{RN} Round (RND). Rounds x internally to the number of digits

specified by the display format. (If not rounded, the internal

number is represented by 12 digits.)

{ABS} Absolute value. Replaces x with its absolute value.

Names of Functions

You might have noticed that the name of a function appears in the
display when you press and hold the key to execute it. (The name
remains displayed for as long as you hold the key down.) For in-
stance, while pressing (Jz], the display shows S@RT. “SQRT” is the
name of the function as it will appear in program lines, and is the
name by which the function is alphabetized in the function index.

4: Real-Number Functions 67

S
Simple Programming

Part 1 of this manual introduced you to functions and operations that
you can use manually, that is, by pressing a key for each individual
operation. A program lets you repeat operations or calculations with-
out repeating the keystrokes. In this chapter you will learn how to
program a series of operations to occur automatically. In the next
chapter, “Programming Techniques,” you will learn about subroutines
and conditional instructions.

Introduction: A Simple Programming Example. To find the area

of a circle with a radius of 5, you would use the formula A = 7r? and

press

5BB

to get the result for this circle, 78.5398.

But what if you wanted to find the area of many different circles?
Rather than repeat the given keystrokes each time (varying only the
“5” for the different radii), you can put the repeatable keystrokes into
a program:

081 =2

ez

B3 X

This very simple program assumes that the value for the radius is in
the X-register (the display) when the program starts to run. It com-
putes the area and leaves it in the X-register.

70 5: Simple Programming

To enter this program into program memory, do the following:

Keys: Display: Description

B(PrRGM] This resets the program
Bco] (O PRGM TOP pointer.

B8X 8O1 x2
gez «

B3 x

B(PRGM]

Now try running this program to find the area of a circle with a ra-
dius of 5.

Keys: Display: Description:

@(cTo] (0 This sets the program
to its beginning.

5 78,5398 The answer!

Creating a Program

We will continue using the above program for the area of a circle to
illustrate programming concepts and methods.

Program Boundaries (LBL and RTN)

If you want more than one program stored in program memory, then
a program needs a label to mark its beginning (such as AB1 LBL R)
and a return to mark its end (such as ABS RTN). Notice that the line

numbers acquire an A to match their label.

Program Labels. Programs and segments of programs (called
routines) should start with a label. To record a label, press:

B(BL/RTN] {LBL} letter-key

5: Simple Programming 71

The label is used as identification for executing a specific program or
routine. The labelis a single letter from A through Z. The letter keys
are used as they are for variables (as discussed in chapter 3). You
cannot assign the same label more than once (this causes the message
DUPLICAT. LBEL), but a label can use the same letter that a variable
uses.

It is possible to have one program (the top one) in memory without
any label. However, adjacent programs need a label between them to
keep them distinct.

Program Line Numbers. Line numbers are preceded by the letter
for the label, such as A@1. If one label’s routine has more than 99

lines, then the line number appears with a decimal point instead of
the leftmost number, such as A.81 for line 101 in A. For more than

199 lines, the line number uses a comma, such as A,81 for line 201.

Program Returns. Programs and subroutines should end with a re-
turn instruction. The keystrokes are:

B(LBL/RTN] {RTN}

When a program finishes running, the last RTN instruction returns
the program pointer to PRGM TOP, the top of program memory.

Program Entry (PRGM)

Pressing [lPRGM toggles the calculator into and out of program entry
(PRGM annunciator on). Keystrokes during program entry are stored
as program lines in memory. Each instruction or number occupies one
program line, and there is no limit (other than available memory) on
the number of lines in a program.

To enter a program into memory:

1. Press [(PRGM]for program entry.

72 5: Simple Programming

2. Press J(GT0](-J(-] to display PRGM TOP. This sets the program
pointer to a known spot, before any other programs. As you en-
ter program lines, they are inserted before all other program lines.

If you don’t need any other programs that might be in memory,
clear program memory by pressing [j[CLEAR] {PGM} . To con-
firm that you want all programs deleted, press {Y} after the
message CL PGMS? ¥ N.

3. Give the program a label—a single letter, A through Z. Press
@(BL/RTN] {LBL } letter. Choose a letter that will remind you of
the program, such as “A” for “area.”

4. To record calculator operations as program instructions, press the
same keys you would to do an operation manually. Remember
that many functions don’t appear on the keyboard but must be
accessed using menus.

5. End the program with a return instruction, which sets the pro-
gram pointer back to PRGM TOP after the program runs. Press

B(BL/RTN] {RTN}.
6. Press (or [PRGM]) to cancel program entry.

Numbers in program lines are displayed as precisely as you entered
them, using ALL or SCI format. (If digits are hidden in a long number
by the line number or an exponent, press [[SHOW]to view them.)

Data Input and Output. For programs that need more than one in-
put or return more than one output, there are program instructions
that will prompt for a specific variable (INPUT) and display a labeled
variable (VIEW). These are covered later in this chapter under “Data
Input and Output.”

(C], (¢]), and PP(CLEAR] {x} in Program Entry. Note these special

conditions during program entry:

u always cancels program entry. It never clears a number to zero.

B (¢]deletes the current program line. It backspaces if a digit is being
entered (cursor present).

B To program a function to clear the X-register, use J[CLEAR] {=} .

5: Simple Programming 73

Function Names in Programs. The name of a function that is used

in a program line is not necessarily the same as the function’s name
on its key or in its menu. The name that is used in a program is usu-
ally a fuller abbreviation than that which can fit on a key or in a
menu. This fuller name appears briefly in the display whenever you
execute a function—as long as you hold down the key, the name is
displayed.

Example: Entering a Labeled Program. The following keystrokes

delete the previous program for the area of a circle and enter a new
one that includes a label and a return instruction. If you make a mis-
take during entry, press (4] to delete the current program line, then
reenter it correctly.

Keys: Display: Description:

B(PrGM] Activates program en-
try (PRGM on).

B(CLEAR] {PGM} {Y} PRGM TOP Clears all of program
memory.

B(LBL/RTN] {LBL} A AB1 LBL A Labels this program
routine A (for area).*

B8] AB2 x2 Enters the three pro-
B~ AB3 gram lines.
[x] AB4 x

B(LBL/RTN] {RTN} AB5 RTHN Ends the program.

Cancels program entry
(PRGM annunciator

off).

* If this causes the message DUPLICAT. LBL, then use a different letter or clear the exist-
ing program A.

74 5: Simple Programming

Running a Program

To run or execute a program, program entry cannot be active (no pro-
gram-line numbers displayed; PRGM off). Pressing will cancel
program entry.

Executing a Program (XEQ)

Press label to execute the program labeled with that letter.* The
PRGM annunciator blinks on and off while the program is running.

If necessary, enter the data before executing the program.

Example. Run the program labeled A to find the areas of three dif-
ferent circles with radii of 5, 2.5, and 27. Remember to enter the

radius before executing A.

Keys: Display: Description:

5 A 785398 Enters the radius, then
starts program A. The
resulting area is
displayed.

2.5 A 19.6350 Calculates area of sec-
ond circle.

2 B~ Calculates area of third
A 1248251 circle.

* If there is only one program in memory, you can also execute it by pressing (G10](-](-]

(run/stop).

5: Simple Programming 75

Testing a Program

If you know there is an error in a program, but are not sure where the
error is, then a good way to test the program is by stepwise execution.
It is also a good idea to test a long or complicated program before
relying on it. By stepping through its execution, one line at a time,
you can see the result after each program line is executed, so you can
verify the progress of known data whose correct results are also
known.

1. As for regular execution, make sure program entry is not active
(PRGM annunciator off).

2. Press [l(GTO] /abel to set the program pointer to the start of the
program (that is, at its LBL instruction). The go to instruction
moves the program pointer without starting execution. (If the
program is the first or only program, you can press l[GT0] (][5
to move to its beginning.)

3. Press and hold [v]. This displays the current program line. When
you release [¥], the line is executed. The result of that execution

is then displayed (it is in the X-register).

To move to the preceding line, you can press l[4]. No execution
occurs.

4. The program pointer moves to the next line. Repeat step 3 until
you find an error (an incorrect result occurs) or reach the end of
the program.

If program entry is active, then [v] (or ll(4]) simply changes the pro-
gram pointer, without executing lines. Holding down an arrow key
during program entry makes the lines roll by automatically.

Example: Testing a Program. Step through the execution of the

program labeled A. Use a radius of 5 for the test data. Check that
program entry is not active before you start.

76 5: Simple Programming

Keys:

5

B(c1o] A

[v] (hold)
(release)

(v] (hold)
(release)

(v] (hold)
(release)

(v] (hold)
(release)

(v] (hold)
(release)

Display:

S

2.80080

ARB1 LBL

580800

RBZ2 x2

25,0000

ARB3

31416

RB4 x

78,5398

AB3 RTN

7835398

Description:

Moves program
counter to label A.

A

Squares input.

Value of .

257,

End of program. Result
is correct.

Data Input and Output

The calculator’s variables are used to store data input, intermediate
results, and final results. (Variables, as explained in chapter 3, are

identified by a letter from A through Z, but the variables’ names have

nothing to do with program labels.)

Entering Data Into Variables (INPUT)

The INPUT instruction ([INPUT] variable) stops a running program
and displays a prompt for the given variable. This display includes
the existing value for the variable, such as

Prompt for information _j

Variable’s name

INPUT

R?0.0808
N

The current value in the variable

5: Simple Programming 77

Press (run/stop) or (¥] to resume the program. The value you
keyed in then writes over the contents of the X-register and is stored
in the given variable. If you have not changed the displayed value,
then that value is retained in the X-register.

The area-of-a-circle program with an INPUT instruction looks like
this:

ARGl LBL A

AB2 INPUT R

AB3 =x2

RB4

RBS X

AB& RTHN

Using INPUT in a Program.

1. Decide which data values you will need, and assign them names.
(In the area-of-a-circle example, the only input needed is the ra-
dius, which we can assign to R.)

2. In the beginning of the program, insert an INPUT instruction for
each variable whose value you will need. Later in the program,
when you write the part of the calculation that needs a given
value, insert a variable instruction to bring that value back
into the stack.*

For Example: See the “Time Value of Money” program on page 222
in part 4. The first thing that routine T doesis collect all the necessary
input for the variables N, I, B, P and F (lines TO2 through TO06).

* Since the INPUT instruction also leaves the value you just entered in the X-register, you
don’t have to recall the variable at a later time—you could INPUT it and use it when you
need it. You might be able to save some memory space this way. However, in a long pro-

gram it is simpler to just input all your data up front, and then recall individual variables as
you need them.

Remember also that the user of the program can do calculations while the program is
stopped, waiting for input. This can alter the contents of the stack, which might affect the
next calculation to be done by the program. Thus the program should not assume that the
X-, Y-, and Z-registers’ contents will be the same before and after the INPUT instruction. If
you collect all the data in the beginning and then recall them when needed for calculation,
then this prevents the stack’s contents from being altered just before a calculation.

78 5: Simple Programming

When the Program Runs. When you run the program,it will stop at
each INPUT, turn on the INPUT annunciator, and prompt you for that
variable, such as R?8.86086. The value displayed (and in the X-regis-
ter) will be the current contents of R.

B To change the number, key in the new number and press (R/S].* If
you need to calculate a number, you can do so before pressing
R/S |.

B To leave the number unchanged, just press [R/S].

B To calculate with the displayed number, press before key-
ing in another number..

B To cancel the INPUT prompt, press [C].T The current value for the

variable remains in the X-register. If you press to resume the
program, the canceled INPUT prompt is repeated.

B To display digits hidden by the prompt, press [J[sHow]. (If it is a

binary number with more than 12 digits, use the and keys
to see the rest.)

Displaying Data in Variables (VIEW)

The programmed VIEW instruction ([f§(VIEW variable) stops a running
program and displays and identifies the contents of the given vari-
able, such as

A=78.5338)

This is a display only, and it does not copy the number to the X-
register.

B Pressing copies this number to the X-register.

B If the number has more than 10 digits, pressing [j(SHOW displays
the entire number. (If it is a binary number with more than 12 dig-
its, use the and keys to see the rest.)

B Pressing (or (@]) erases the VIEW display and shows the X-
register.

* This new number writes over the old value in the X-register.

TIf you press during digit entry, it clears the number to zero. Press it again to cancel the
INPUT prompt.

5: Simple Programming 79

B Pressing B[CLEAR] clears the contents of the displayed variable.

Press to continue the program.

For Example: See the program for “Solutions of Simultaneous Equa-
tions—Determinant Method,” on page 175 in part 4. Lines 524
through 529 at the end of the S routine display the results for X, Y,
and Z. Note also that each VIEW instruction in this program—as in all
the applications programs—is preceded by a RCL instruction. The
RCL instruction is not necessary, but it is convenient because it brings
the VIEWed variable to the X-register, making it available for manual
calculations. (Pressing while viewing a VIEW display would
have the same effect.)

Example: INPUTting and VIEWing Variables in a Program. Write

an equation to find the surface area and volume of a cylinder given its
radius and height. Label the program C (for cylinder), and use the
variables S (surface area), V (volume), R (radius), and H (height). Use

these formulas:

V = «R?H

S = 27R? + 27RH = 2 (xR?* + =RH).

Keys: Display: Description:

B(PrRGM] Program entry; sets
Bco][PRGM TOP pointer to top of

memory.

B(LBL/RTN] {LBL} C Labels program.
(C is the key) Ce1 LBL C

B@(NPUT] R C@2 INPUT R Instructions to prompt
B(ONPUT] H C@3 INPUT H for radius and height,

R CB4 RCL R to calculate the vol-
B2 CA5 =2 ume, and to store

H CB6 RCLx H volume in V.

B cer
Ce8 x

vV Ces STO V

(ReL)(=] H C18 RCL+ H Converts 7R2H to wR2.

80 5: Simple Programming

(RCL] R
(RCL](x] H
a-
]

2

]
(sT0) 8

BvEW] v
BlvEW] s

B(LBL/RTN] {RTN}

B(vEM] {PcM}
B(sHOW] (hold)

Cil RCL R

Ci2 RCLx H

Ci13 «

Cil4 x

cCi5 +

Cle 2

Clv x

C18 STO S

C19 VIEW V

C28 VIEW S

C21 RTH

LBL C 8315

CHKSUM=4682

Calculates wRH.

Calculates (wR? +
wRH).

Calculates 2 (wR? +
wRH) and stores result-
ing surface area in S.

Will display volume
and surface area.

Ends program.

Cancels program entry.

Checks memory usage
and checksum. A dif-
ferent checksum means
the program was not
entered exactly as it is
given here.

Now find the volume and surface area of a cylinder with a radius of
2.5 cm and a height of 8.0 cm.

Keys:

C
(C is the key)

2.5

8 (R/sS]

R/S

Display:

R?0.0000

H?0.06000

V=157.8796

5=1649336

Description:

Starts executing C;
prompts for R. (It dis-
plays whatever value
happens to be in R.)

Prompts for H. (It dis-
plays whatever value
happens to be in H.)

Resulting volume in
cm?.

Resulting surface area
in cm?2.

5: Simple Programming 81

Stopping or Interrupting a Program

Programming a Stop or Pause (STOP, PSE)

B Pressing (run/stop) during program entry inserts a STOP in-
struction. This will halt a running program until you resume it by
pressing from the keyboard. You can use STOP rather than
RTN in order to end a program without returning the program
pointer to the top of memory.

B Pressing @[LBL/RTN] {PSE} during program entry inserts a PSE
(pause) instruction. This will suspend a running program for about
1 second and display the contents of the X-register.

Interrupting a Running Program

You can interrupt a running program at any time by pressing or
(R/s]. The program completes its current instruction before stopping.
Press (run/stop) to resume the program.

If you interrupt a program and then press (XEQ], (GTO], or {RTH},
you cannot resume the program with [R/S]. Re-execute the program
instead ([xEQ] /abel).

Error Stops

If an error occurs in the course of a running program, program execu-
tion halts and an error message appears in the display. (There is a list
of messages and conditions in front of the indexes.)

To see the line in the program containing the error-causing instruc-
tion, press [l(PRGM]. The program will have stopped at that point.
(For instance, it might be a <+ instruction, which caused an illegal
division by zero.)

82 5: Simple Programming

Editing a Program

You can modify a program in program memory by inserting and de-
leting program lines. Even if a program line requires only a minor
change, you must delete the old line and insert a new one.

To delete a program line:

1. Select the relevant program or routine (M[GTO] /abel), activate
program entry (M(PRGM]), and press (V] or ll[4] to locate the
program line that must be changed. Hold the arrow key down to
continue scrolling. (If you know the line number you want,
pressing [l[GTO] (-] /abel nn moves the program pointer there.)

2. Delete the line you want to change by pressing (¢]. The pointer
then moves to the preceding line. (If you are deleting more than
one consecutive program line, start with the last line in the

group.)
3. Key in the new instruction, if any. This replaces the one you

deleted.

4. Exit program entry ((C] or [[PRGM]).

To insert a program line: Locate and display the program line that
is before the spot where you would like to insert a line. Key in the new
instruction; it is inserted after the currently displayed line.

For example, if you wanted to insert a new line between lines A04

and A05 of a program, you would first display line A04, then key in
the instruction or instructions. Subsequent program lines, starting
with the original line A05, are moved down and renumbered

accordingly.

5: Simple Programming 83

Program Memory

Viewing Program Memory

Pressing [J[PRGM toggles the calculator into and out of program entry
(PRGM annunciator on, program lines displayed). When program en-
try is active, the contents of program memory are displayed.

Program memory starts at PRGM TOP. The list of program lines is
circular, so you can wrap the program pointer from the bottom to the
top and reverse. While program entry is active, there are three ways
to change the program pointer (the displayed line):

® Use the arrow keys, (V] and [j(a]. Pressing [¥] at the last line
wraps the pointer around to PRGM TOP, while pressing (] at
PRGM TOP wraps the pointer around to the last program line.

To move more than one line at a time (“scrolling”), continue to hold
the [v] or (4] key.

B Press ()JC] to move the program pointer to PRGM TOP.

B Press (-] label nn to move to a labeled line number < 100.

If program entry is not active (no lines displayed), you can also move
the program pointer by pressing [J[GT0) /abel.

Canceling program entry does not change the position of the program
pointer.

Memory Usage

Each program line uses either 1.5 or 9.5 bytes.

® Numbers use 9.5 bytes, except for integer numbers from zero
through 99, which use only 1.5 bytes.

B All other instructions use 1.5 bytes.

84 5: Simple Programming

If during program entry you encounter the message MEMORY FULL,
then there is not enough room in program memory for the line you
just tried to enter. You can make more room available by clearing pro-
grams or other data. See “Clearing One or More Programs” below, or
“Managing Calculator Memory” in appendix B.

The Catalog of Programs (MEM)

The catalog of programs is a list of all program labels with the num-
ber of bytes of memory used by each label and the lines associated
with it. Press l(MEM] {PGM} to display the catalog, and press (V] or
B(4] to move within the list. You can use this catalog to:

B Review the labels in program memory and the memory cost of each
labeled program or routine.

B Execute a labeled program. (Press or while the labelis
displayed.)

® Display a labeled program. (Press M[PRGM] while the label is
displayed.)

m Delete specific programs. (Press ll(CLEAR] while the labelis
displayed.)

B See the checksum associated with a given program segment. (Press

BGEow))
The catalog shows you how many bytes of memory each labeled pro-
gram segment uses. The programs are identified by program label:

LBEL C 8315

Number of bytes used by program C.

Clearing One or More Programs

To clear (delete from memory) a specific program:

1. Press B(MEM] {PGM} and display (using [¥] and ll(4]) the label
of the program.

2. Press [CLEAR].

3. Press to cancel the catalog or [(¢] to back out.

To clear all programs in memory:

1. Press [PRGM]to display program lines (PRGM annunciator on).

2. Press [CLEAR] {PGM} to clear program memory.

3. The message CL PGMS? Y N prompts you for confirmation.
Press {Y}.

4. Press JJ[PRGM]to cancel program entry.

Clearing all of memory ((CLEAR] {ALL}) also clears all programs.

The Checksum

The checksum is a unique hexadecimal value given to each program
label and its associated lines (until the next label). This number is use-
ful for comparison with a known checksum for an existing program
that you have keyed into program memory. If the known checksum
and the one shown by your calculator are the same, then you have
correctly entered all the lines of the program. To see your checksum:

1. Press)(MEM] {PGM} for the catalog of program labels.

2. Display the appropriate label by using the arrow keys, if
necessary.

3. Press and hold J(sHow] to display CHKSUM=value.

For example, to see the checksum for the current program (the “cylin-
der” program):

Keys: Display: Description:

B(vEm] {PGM} LBL C 8315 Displays label C,

which takes 31.5 bytes.

B(sHow] (hold) CHKSUM=4682 If your checksum does
not match this number,

then you have not en-
tered this program
correctly.

You will see that all of the application programs provided in part 4
include CHKSUM values with each labeled routine so that you can
verify the accuracy of the program entry.

Nonprogrammable Functions

The following functions of the HP-32S are not programmable:

W[CLEAR] {PGM} @(GcTo) ([

B(CLEAR] {ALL} BGT0] (] fabel nn

(¢ B(vEm)

(v]), B(4] B(sHow]

W(PRGM]

Polynomial Expressions and Horner’s
Method

Some expressions, such as polynomials, use the same variable several
times for their solution. For example, the expression

flx) = Ax* + Bx® + Cx2 + Dx + E

uses the variable x four different times. A program to solve such an
equation could repeatedly recall a stored copy of x from a variable. A
shorter programming method, however, would be to use a stack
which has been filled with the constant (see “Filling the Stack With a
Constant,” on page 39 in chapter 2).

Horner’s Method is a useful means of rearranging polynomial expres-
sions to cut calculation steps and calculation time. It is especially
expedient with SOLVE and [FN, two relatively complex operations
that use subroutines.

5: Simple Programming 87

This method involves rewriting a polynomial expression in a nested
fashion to eliminate exponents greater than 1:

At 4+ Bx® + Cx2 + Dx + E

(Ax3 + Bx2 + Cx + D)x + E

((Ax2 + Bx + Cx + D)x + E

(Ax + Bx + Cx + Dyx + E

Example. Write a program for 5x* + 2x3 as ((5x + 2)x)x)x, then
evaluate it for x = 7.

W(BL/RTN] {LBL} P

B(iNPUT] X
ENTER

ENTER

ENTER

M
H
E
™

E
]
"
‘
I
I
I

B(BL/RTN] {RTHN}

[

Display:

PRGM TOP

PB1

Paz

PB3

PB4

P83

PBé6

rFav?

PB8

LBL P

INPUT

ENTER

ENTER

ENTER

FPBS +

P18 x

P11

P12

P13

X

RTHN

88 5: Simple Programming

Description:

You can skip the
if the display already
shows PRGM TOP.

Fills the stack with x,

then calculates 5x.

(5x + 2)x.

(5x + 2)x3,

Cancels program entry.

Now evaluate this polynomial for x = 7.

P X?value Prompts for x.

7 12,691.0000 Result.

A more general form of this program for any equation
(((Ax + B)x + C)x + D)x + E would be:

FPB1 LBL P

Faz2 INPUT

PB3 INPUT

PB4 INPUT

P83 INPUT

PBe INPUT

Py INPUT

P83 ENTER

P83 ENTER

P16 ENTER

P11 RCLX R

P12 RCL+ B

P13 x

F14 RCL+ C

P15 =

Ple RCL+ D

P17 x

F18 RCL+ E

P13 RTH

X
M
o
o

m
D
o
D

5: Simple Programming 89

Programming Techniques

Chapter 5 covered the basics of programming. This chapter delves
into more sophisticated but useful techniques:

® Using subroutines to simplify programs by separating and labeling
portions of the program that are dedicated to particular tasks. The
use of subroutines also shortens a program that must perform a
series of steps more than once.

® Using conditional instructions (comparisons and flags) to determine
which instructions or subroutines should be used in a particular
case.

B Using loops with counters to execute a set of instructions a certain
number of times.

B Using indirect addressing to access different variables using the
same program instruction.

Routines in Programs

A program is composed of one or more routines. A routine is a func-
tional unit that accomplishes something specific. Complicated
programs need routines to group and separate tasks. This makes a
program easier to write, read, understand, and alter.

90 6: Programming Techniques

For example, look at the program for “Normal and Inverse-Normal
Distributions” on page 215 in part 4. This program has four routines,
labeled S, D, N, and F. Routine S “initializes” the program by collect-
ing the input for the mean and standard deviation. Routine D sets a
limit of integration, executes routine N, and displays the result. Rou-
tine N integrates the function defined in routine F and finishes the
probability calculation of Q(x).

A routine typically starts with a label (LBL) and ends with an instruc-
tion that alters or stops program execution, such as RTN, GTO, or

STOP, or perhaps another label.

Calling Subroutines (XEQ, RTN)

A subroutine is a routine that is called from (executed by) another rou-
tine and returns to that same routine when the subroutine is finished.

The subroutine must start with a LBL and end with a RTN. A subrou-

tine is itself a routine, and it can call other subroutines.

B XEQ must branch to a label (LBL) for the subroutine. (It cannot
branch to a line number.)

B At the very next RTN encountered, program execution returns to
the line after the originating XEQ.

For example, routine N in the “Normal and Inverse-Normal Distribu-

tions” program is a subroutine (to calculate Q(x)) that is called from
routine D by line D83 XE® HN. Routine N ends with a RTN instruc-
tion that sends program execution back to routine D (to store and
display the result) at line D04.

D1 LBL D

Da2 INPUT X 1.

D3 XEQ N _.|Calls subroutine at LBL N.

DB4 STO @

Das VIEW @

Deé GTO D

P
r
m
m
m
m
w
m
w
e

Ne1l LBL N

NBz2 RCL X

Starts subroutine.

o
o
=
e
-
o
o
o
o
-

-=- HN1&6 RTH Returns to the calling routine.

6: Programming Techniques 91

Nested Subroutines

A subroutine can call another subroutine, and that subroutine can call
yet another subroutine. This “nesting” of subroutines—the calling of a
subroutine within another subroutine—is limited to a stack of subrou-
tines seven levels deep (not counting the topmost program level). The
operation of nested subroutines is as shown below:

Main program
(top level)

LEL A LEL B LEL C LEL D LEL E

: ,4 : Ll : l/ ; l/

XEQ B XEQ C XEQ@ D XEQ E :

SIN 32.1416 SORT RCL A :

: \, : I‘s : l‘\, : 1\,

RTH RTH RTH RTH RTH

End of
program

Attempting to execute a subroutine nested more than seven levels
deep causes an XEQ@ OVERFLOW error.

Example: A Nested Subroutine. The following subroutine, labeled
S, calculates the value of the expression

Va? + b2 + ¢ + d?

as part of a larger calculation in a larger program. The subroutine
calls upon another subroutine (a nested subroutine), labeled Q, to do
the repetitive squaring and addition. This keeps the program shorter
than it would be without the subroutine.

92 6: Programming Techniques

Returns to

main program

A

sa1

sB2

S83

S84

583

586

5687

5688

5689

S18

511

1512

2 —»513

3>5S14 513

P81

Raz

Q83

R84

— (85

LBL S

INPUT

INPUT

INFUT

INPUT

RCL

RCL

RCL

RCL
x2

XEQ

XEQ

XEQ

SERT

RTHN

LBL

AP

wZ

+

RTH

D

C

B

A

a
2

a
9

i

&

From main program,

KEQ S

Program Lines:—l

O
o
m
D

Description:

Starts the main subroutine.

Enters A.

Enters B.

Enters C.

Enters D.

Recalls the data for the calcula-

tion to follow.

Calculates A2
Calculates B?, then A2 + B2,
Calculates A2 + B2 + C2.
Calculates A2 + B2 + C2 + D2
Calculates

VA? 4 B2 4 C? + D?
Ends main subroutine; returns

execution to main program.
Starts nested subroutine.
Squares number and adds it to
the current sum of squares.

Ends nested subroutine, Q; re-

turns to first subroutine, S.

Branching (GTO)

As we have seen with subroutines, it is often desirable to transfer exe-

cution to a part of the program other than the next line. This is called
branching.

6: Programming Techniques 93

Unconditional branching uses the GTO (go to) instruction to branch to
a program label. It is not possible to branch to a specific line number
during a program.

B(GT0] Iabel

A Programmed GTO Instruction. The GTO /abel instruction trans-
fers the execution of a running program to the program line
containing that label, wherever it may be. The program continues
running from the new location, and it does not ever automatically re-

turn to its point of origination, so GTO is not used for subroutines.

For example, consider the “Curve Fitting” program on page 204 in
part 4. The GTO Z instruction branches execution from any one of
three independent initializing routines to LBL Z, the routine that is the
common entry point into the heart of the program:

S81 LBL S

5835 I;TCI Z l"‘-"l

L8l LBL L

L83 E:-‘TD Z

EB1 LBL E

EBS GTO Z

t
-
-

Z81 LBL Z

-

Using lI(GTO] From the Keyboard. If program entry is not active
(no program lines displayed; PRGM off), then you can use [ll(GTO] to
move the program pointer to a specified label or line number without
starting program execution.

B To a label: @(GTO] /abel (Example: l(GTO] A)

B To a line number: @(GTO] (] label nn (nn < 100. Example:
B(GT0] (] A0s.)

®m To PrRGH TOP: BGTO] (][9]

94 6: Programming Techniques

Conditional Instructions

Another way to alter the sequence of program execution is by a condi-
tional test, a true/false test that compares two numbers and skips the
next program instruction if the proposition is false.

For instance, if a conditional instruction on line A05 is x=87? (that is,

is x equal to zero?), then the program compares the contents of the X-
register with zero. If the X-register does contain zero, then the
program goes on to the next line. If the X-register does not contain
zero, then the program skips the next line, thereby branching to line
A07. This rule is commonly known as “Do if true.”

Do if true AB1 LBL A Skip if false

l ABS x=8? ‘-,
- ABE GTO B |
, AB7 LN -J
: ABS STO A I

to LBL B

The example above points out a common technique used with condi-
tional tests: the line immediately after the test (which is only executed
in the “true” case) is a branch to another label. So the net effect of the
test is to branch to a different routine under certain circumstances.

There are three categories of conditional instructions:

B Comparison tests. These compare the X- and Y-registers, or the X-
register and zero.

B Flag tests. These check the status of flags, which can be either set
or clear.

B Loop counters. These are usually used to loop a specified number
of times.

6: Programming Techniques 95

Tests of Comparison (TESTS)

There are eight comparisons available for programming in the TESTS
menu. Pressing [§[TESTS] displays the two categories of tests:

x7y =78

For tests comparing x and y. For tests comparing x and 0.

Remember that x refers to the number in the X-register, and y refers
to the number in the Y-register. These do not compare the variables X
and Y.

Select the category of comparison, then press the menu key for the
conditional instruction you want:

The TESTS Menu Keys

{x?y} {x70}

{#y} for x#y? {#8} for x#@7?

{£y} for x<y? {<8} for x<B7?

{>y} for x> »? {>8} for x>87?

{=y} for x=»? {=8} for x=@7

Although you can display these menus outside of program entry,
these functions have no purpose outside of programs.

For Example: The “Quadratic Equation” program on page 191 in
part 4 uses the x=87? and x<87? conditionals in routine Q.

@81 LBL @

@82 INPUT A

RB3 ==07 Checks the validity of A, which cannot be
zero.

R84 GTO @ If A = 0, then the program starts over.
@85 INPUT B If A #+ 0, then the program continues.

96 6: Programming Techniques

Lines Q14 through Q19 calculate B> — 4AC. The following lines test
for a negative value (which would produce an imaginary root).

Q280 x<07 Is result negative?
Q21 GTO I If yes, branches to different routine.
Q22 SART If positive, takes square root.

Flags

A flag is an indicator of status. It is either set (true) or clear (false).
Testing a flag is another conditional test that follows the “Do if true”
rule: program execution proceeds directly if the tested flag is set, and
it skips one line if the flag is clear.

Meanings of Flags. The HP-32S has seven flags, numbered 0

through 6. All of these flags can be set, cleared, and tested by a pro-
gram instruction. You can also set and clear flags from the keyboard.*

B Flags 0, 1, 2, 3, and 4 have no preassigned meanings. That is, their
status will mean whatever you define it to mean in a given pro-
gram. (See the example below.)

B Flag 5, when set, will interrupt a program when an overflow occurs
within the program, displaying OVERFLOW and A .1 If flag 5 is
clear, a program with an overflow is not interrupted, though
OVERFLOMW is displayed briefly when the program eventually stops.

B Flag 6 is automatically set by the calculator any time an overflow
occurs (although you can also set flag 6 yourself). It has no effect,
but can be tested.

* The only other action that clears flags is the three-key memory clearing operation described
in appendix B.

t An overflow occurs when a result exceeds the largest number that the calculator can handle.

The largest possible number is substituted for the overflow result.

6: Programming Techniques 97

Flags 5 and 6 allow you to control overflow conditions that occur dur-
ing a program. Setting flag 5 stops a program at the line just after the
line that caused the overflow. By testing flag 6 in a program, you can
alter the program’s flow or change a result anytime an overflow

occurs.

Annunciators for Set Flags. Flags 0, 1, 2, and 3 have annunciators

in the display that turn on when the corresponding flag is set. The
presence or absence of 0, 1, 2, or 3 lets you know at any time

whether any of these four flags is set or not. However, there is no
such indication for the status of flags 4, 5, and 6. These flags’ status
can be determined only by a programmed FS? instruction. (See “Test-
ing Flags (FS?)” below.)

Functions for Flags. Pressing iFLAGS displays the FLAGS menu:

SF CF FS?

After selecting the function you want, you will be prompted for the
flag number, 0-6. For example, to set flag 0, press [lj[FLAGS] {SF} 0.

The FLAGS Menu

Menu Key Description

{SF} n Set flag. Sets flag n.

{CF} n Clear flag. Clears flag n.

 {FS?} n Is flag set? Tests the status of flag n.

Testing Flags (FS?). A flag test is a conditionaltest that affects pro-

gram execution just as the comparison tests do. The FS? n instruction
tests whether the given flag is set. If it is, then the next line in the
program is executed. If it is not, then the next line is skipped. This is
the “Do if True” rule, illustrated on page 95 under “Conditional
Instructions.”

Although you can execute {FS?} outside of program entry, testing
flags has no purpose outside of programs.

98 6: Programming Techniques

It is good practice in a program to make sure that any conditions you
will be testing start out in a known state. Current flag settings depend
on how they have been left by earlier programs that have been run.
You should not assume that any given flag is clear, for instance, and
that it will be set only if something in the program sets it. You should
make sure of this by clearing the flag before the condition arises that
might set it. See the example below.

Example: Using Flags. The “Quadratic Equation” program on page
191 in part 4 uses flag 0 in conjunction with the x <8? comparison to
remember the sign of B. Note that line Q11 clears flag 0 to make sure
that it will be set for only the condition desired.

@11 CF B Makes sure that flag 0 is clear.
Q12 »x<07 Is B (in X-register) negative?
R13 SF B Sets flag 0 if B is negative.

R23 FS? 6 Is flag 0 set (is B negative)?
Q24 +-- If yes, change sign.
25 + In either case, add.

Other programs in part 4 that make use of flags are “Curve Fitting”
and “Unit Conversions.” They both use flags to remember which con-
dition the user wants solved (which type of curve, which type of
conversion), thereby affecting which options or calculations are
chosen.

Loops (GTO, LOOP)

Branching backwards—thatis, to a label in a previous line—makesit
possible to execute part of a program more than once. This is called
looping.

6: Programming Techniques 99

Dl LBL D

D2 INPUT M

D83 INPUT N

D4 INPUT T

D853 GTO D

This routine (taken from the “Coordinate Transformations” program
on page 198 in part 4) is an example of an infinite loop. It is used to
collect the initial data prior to the coordinate transformation. After en-
tering the three values, it is up to the user to manually interrupt this
loop by selecting the transformation to be performed (pressing N
for the old-to-new system or O for the new-to-old system).

Conditional Loops (GTO)

When you want to perform an operation until a certain condition is
met, but you don’t know how many times the loop needs to repeat
itself, you can create a loop with a conditional test and a GTO
instruction.

For example, the following routine uses a loop to diminish a value A
by a constant amount B until the resulting A is less than or equal to B.

Program Lines: Description:

AB1 LBL A

AB2 INPUT A

AB3 INPUT B

S81 LBL S

S92 RCL A It is easier to recall A than to remember
where it is in the stack.

$83 RCL- B Calculates A — B.
S84 STO A Replaces old A with new result.
S85 RCL B Recalls constant for comparison.
SB6 =<{y? Is B < new A?
S@7 GTO S Yes: loops to repeat subtraction.
seg VIEW A No: displays new A.
S89 RTH

100 6: Programming Techniques

Loops With Counters (DSE, ISG)

When you want to execute a loop a specific number of times, use the
DSE (decrement; skip if less than or equal to) or ISG (increment; skip if
greater than) conditional functions in the LOOP menu (l[LOOP)).
Each time a LOOP function is executed in a program, it automatically
decrements or increments a counter value stored in a variable. It com-
pares the current counter value to a final counter value, then
continues or exits the loop depending on the result.

For a count-down loop, use:

B(LoorP] {DSEY} variable

For a count-up loop, use:

B(LO0FP] {15G} variable

These functions accomplish the same thing as a FOR-NEXT loop in
BASIC:

FOR variable = initial-value TO final-value STEP increment

NEXT variable

A DSE instruction is like a FOR-NEXT loop with a negative
increment.

After pressing the menu key for {DSE} or {ISG}, you will be
prompted for a variable that will contain the loop-control number (de-
scribed below).

The Loop-Control Number. The specified variable should contain a
loop-control number +ccccccc.fffii, where:

B +ccccece is the current counter value (1 to 12 digits). This value
changes with loop execution.

B fff is the final counter value (must be three digits). This value does
not change as the loop runs.

B i is the interval for incrementing and decrementing (must be two
digits or unspecified). This value does not change. An unspecified
value for ii is assumed to be 01 (increment/decrement by 1).

6: Programming Techniques 101

Given the loop-control number ccccccc.fffii, DSE decrements cccccce to
cccccce — i, compares the new cccccce with fff, and makes program
execution skip the next program line if this cccceee < fff.

Given the loop-control number ccccccc.fffii, ISG increments cccceee to
cccceee + ii, compares the new cccccce with fff, and makes program
execution skip the next program line if this cccccee > fff.

Weal1 LBL W

If current value W89 DSE A —— If current value < final

> final value, Wi GTO W value, exit loop.

continue loop. Wil XEQ Xe

We1 LBL W

If current value WB9 ISG A= If current value > final

< final value, Wie GTO W value, exit loop.

 continue loop. Wil XEQ Xe

For example, the loop-control number 0.050 for ISG means: start
counting at zero, count up to 50, and increase the number by 1 each
loop.

The following program uses ISG to loop 10 times. The loop counter
(0000001.01000) is stored in the variable Z. Leading and trailing zeros
can be left off.

Lel LBL L

Lez 1.01

L8B3 STO

MB81 LBL

MBa2 ISG

MB3 GTO

Mad4 RTN

E
N
Z
=
E
I
N

Press [J[VIEW] Z to see that the loop-control number is now 11.0100.

102 6: Programming Techniques

Indirectly Addressing Variables and Labels

Indirect addressing is a technique used in advanced programming to
specify a variable or label without specifying beforehand exactly which
one. This is determined when the program runs, so it depends on the
intermediate results (or input) of the program.

Indirect addressing uses two different keys: (i (with [-]) and (with
[R/s]).* These keys are active for many functions that take A through
Z as variables or labels.

B | is a variable whose contents can refer to another variable or label.

It holds a number just like any other variable (A through Z).

u is a programming function that diracts, “Use the number in i to
determine which variable or label to address.” This is an indirect
address. (A through Z are direct addresses.)

Both [i] and are used together to create an indirect address. (See
the examples below.) By itself, i is just another variable. By itself, ()]
is either undefined (no number in i) or uncontrolled (using whatever
number happens to be left over in i).

The Variable “i”

You can store, recall, and manipulate the contents of i just as you can
the contents of other variables. You can even solve for i and integrate
using i.

Functions That Use i Directly

STO i INPUTi DSE i

RCL i VIEW i ISG i

STO +,—,%,+ i JFN i

RCL +,—, %,i SOLVEi

* The variable I has nothing to do with or the variable i.

6: Programming Techniques 103

The Indirect Address, (i)

Many functions that use A through Z (as variables or labels) can use
to refer to A through Z (variables or labels) indirectly. The function
uses the value in variable i to determine which variable or label to

address. This table shows how:

Indirect Addressing

If i contains: Then (i) will address:

+ 1 variable A or label A

+26 variable Z or label Z

=27 or <—27 0or 0 error: INVALID <1i>

Only the absolute value of the integer portion of the numberin i is
used for addressing.

Following are the functions that can use (i) as an address. For GTO,
XEQ, and FN=, (i) refers to a label; for all other functions it refers to
a variable.

Functions That Use (i) for Indirect Addressing

STO(i) INPUT(i)

RCL(i) VIEW())

STO+,—, %, = (i) DSE(j)

RCL+,—,x,+ (i) ISG(i)

XEQ(i) SOLVE(i)

GTO() [FN()

FN=(i)

104 6: Programming Techniques

Program Control With (i)

Since the contents of i can change each time a program runs—or even
in different parts of the same program—a program instruction such as
GTOCi> can branch to a different label at different times. This main-
tains flexibility by leaving open (until the program runs) exactly
which variable or program label will be needed. (See the first example
below.)

Indirect addressing is very useful for counting and controlling loops.
The variable i serves as an index, holding the address of the variable
that contains the loop-control number for the functions DSE and ISG.
(See the second example below.)

Example: Choosing Subroutines With (i). The “Curve Fitting” pro-
gram on page 204 in part 4 uses indirect addressing to determine
which model to use to compute estimated values for x and y. (Differ-
ent subroutines compute x and y for the different models.) Notice that
i is stored and then indirectly addressed in widely separated parts of
the program.

The first four routines (S, L, E, P) of the program specify the curve-
fitting model that will be used and assign a number(1, 2, 3, 4) to each
of these models. This number is then stored during routine Z, the
common entry point for all models:

Z83 STO i

Routine Y uses i to call the appropriate subroutine (by model) to cal-
culate the x- and y-estimates. Line Y03 calls the subroutine to
compute ¥:

YB3 REQC1iD

and line Y08 calls a different subroutine to compute X after i has been
increased by 6:

Y@8e ©

Y8y STO+ i

Y88 XEQC1iD

6: Programming Techniques 105

If i holds: Then XEQ(i) calls: To:

LBL A

LBL B

LBL C

LBL D

LBL G

LBL H

LBL I

LBL JO
©
W
O

N
&

W
O
N

=
-
—

Compute y for straight-line model.

Compute y for logarithmic model.

Compute y for exponential model.

Compute y for power model.

Compute x for straight-line model.

Compute x for logarithmic model.

Compute x for exponential model.

Compute x for power model.

Example: Loop Control With (i). An index value in i is used by the
program “Solutions of Simultaneous Equations—Determinant
Method” on page 175 in part 4. This program uses the looping in-
structions ISG i and DSE i in conjunction with the indirect
instructions RCL(i> and STO¢i> to fill and manipulate a matrix.

The first part of this program is routine A, which puts the initial loop-
control number in 1.

Program Lines: Description:

AB1 LBL A The starting point for data input.
AB2 1812 Loop-control number: loop from 1 to 12 in

intervals of 1.
AB3 STO i Stores loop-control number in i.

The next routine is L, a loop to collect all 12 known values for a 3 X 3
coefficient matrix (variables A-I) and the three constants (J-L) for the
equations.

106 6: Programming Techniques

Program Lines: Description:

LBl LBL L This routine collects all known values in
three equations.

LB2 INPUTC(i> Prompts for and stores a number into the
variable addressed by i.

L83 ISG i Adds 1 to i and repeats the loop untili
reaches 13.012.

L84 GTO L

L85 GTO A When i exceeds the final counter value, exe-
cution branches back to A.

6: Programming Techniques 107

Part 3
Advanced Operation

Page 110 7: Solving for an Unknown Variable in an Equation

126 8: Numerical Integration

137 9: Operations With Complex Numbers

144 10: Base Conversions and Arithmetic

153 11: Statistical Operations

7
Solving for an Unknown
Variable in an Equation

The SOLVE operation can solve for any one variable in an equation.
For instance, take the function

x2 — 3y.

This function can be set equal to zero to create the equation:

x2 — 3y = 0.*

If you know the value of y in this equation, then SOLVE can solve for
the unknown x. If you know the value of x, then SOLVE can solve for
the unknown y. This works for “word problems” just as well:

Markup X Cost = Price
Markup X Cost — Price = 0.

If you know any two of these variables, then SOLVE can calculate the
value of the third.

When the equation has only one variable, or when known values are
supplied for all the variables except one, then to solve for x is to find
the root(s) of the equation. A root of an equation occurs where the
graph of the function crosses the x-axis, because at that point the
value of the function equals zero.

* Actually, you can set the function equal to any real value, such as x> — y = 10. This can
then be expressed as x> — y — 10 = 0 to use SOLVE.

110 7: Solving for an Unknown Variable in an Equation

Value of the function

A

~

Using SOLVE

To solve for an unknown variable:

1. Enter a program that defines the function. (See “Writing Pro-
grams for SOLVE,” below.)

2. Select the program that defines the function to solve: press

B[SOLVE/T] {FN} label.
3. Solve for the unknown variable: press

B(SOLVE/[] {SOLVE} variable.

You can halt a running calculation by pressing or [R/S].

Initial Guesses. For certain functions it helps to provide one or two
initial guesses (in the variable and the X-register) for the unknown
variable before starting the calculation (step 3). This can speed up the
calculation, direct the answer toward a realistic solution, and find
more than one solution, if appropriate. See “Choosing Initial Guesses
for SOLVE” on page 120.

Results. The X-register and the variable itself contain the final esti-
mate of the root, the Y-register contains the previous estimate, and
the Z-register contains the value of the function at the last estimate of
the root (which should be zero).

For some complicated mathematical conditions, a definitive solution
cannot be found. See “Interpreting Results” and “When SOLVE Can-
not Find a Root” in appendix C.

7: Solving for an Unknown Variable in an Equation 111

To solve for a different unknown in the same equation: Just
specify the unknown variable: [[SOLVE/[] {SOLVE} variable. The
same program that was last specified (FN= Jabel) will be used again.

Writing Programs for SOLVE

Before you solve for an unknown variable, you must write a program
or subroutine that evaluates the function.*

Writing a Function From an Equation. First simplify the equation
by combining all like variables and all constants. Then move all the
terms to one side of the equation, leaving only zero on the other side.

For example, the equation for the volume of a box is given by

Length X Width X Height = Volume.

Rearranging the terms to make one side equal to zero yields

Length X Width X Height — Volume = 0, or

LxWXxH-—-V=0.

To write a program evaluating a function:

1. Begin with a label so that the program can be called by SOLVE.

2. Include an INPUT instruction for each variable, including the
unknown. (If there is only one variable in the function, omit the

INPUT instruction since it is ignored for the unknown anyway.)t

* SOLVE works only with real numbers. However, if you have a complex-valued function that
can be written to isolate the real and imaginary parts, SOLVE can then solve for the parts
separately.

TThe INPUT instructions are useful for multi-variable functions. Since the INPUT for the
unknown is ignored, you need write only one program, which contains INPUT instructions
for all variables. You can use the same program no matter which variable is the unknown.

112 7: Solving for an Unknown Variable in an Equation

3. Enter the instructions to evaluate the function. Use a RCL in-
struction any place a variable’s value is needed for a calculation.

4. End the program with a RTN. The program should end with the
value of the function in the X-register.

Each time that SOLVE executes your program (which could be many
times), the value of the unknown variable changes, as does the value

your program produces. When your program returns a zero, then a

solution has been found for the unknown variable.

Examples Using SOLVE

Example: Solving for the Dimensions of a Box. Use the following
program to evaluate the dimensions of a box (L X W X H — V). Note
that the program uses recall arithmetic, which takes less memory than
recalling a variable and doing arithmetic as separate operations.

Bol LBL B

B2 INPUT

B3 INPUT

B4 INPUT

B85S INPUT

Boe RCL L

BB? RCLX W

B88 RCLX H

BoS RCL- V

B18 RTN

<
I
=

First enter the program labeled B:

Keys: Display: Description:

B(PrcM] Starts program entry.
®co]M PRGM TOP Goes to the top of

memory (if necessary).

7: Solving for an Unknown Variable in an Equation 113

B[LBL/RTN] {LBL} B
BNPuUT) L
B(nPuT) W
@(\PuT] H
@(NPUT] V
(ReL] L
[RCL] [x] W
[(RCL] (] H
(ReLj (=] V
B[LBL/RTN] {RTN}

Bol LBL B

B2 INPUT

B3 INPUT

B4 INPUT

B85S INPUT

B8e RCL L

BB87? RCLx W

B8 RCLx H

B89 RCL- V

B18 RTN

<
T
=
Z
r

Enters program lines.

At this point, the X-

register will contain
the value of the func-

tion L X WX H-—V.

Ends program entry.
Displays whateveris in
X-register.

Solve for the volume of a box that is 8.5 cm high X 10 cm wide X 25
cm long. Afterward we will use the same function to solve for a dif-
ferent variable.

B(SoLvE/T] {FN}

B

B(SoLvE/] {sOLVE}

Y
25 (R/S]
10
8.5

R/S

FN

SOLVE _

L?value

W?value

H?value

SOLVING

V=2,125.0000

Prompts for the label
of the program that de-
fines the function.

Specifies program B.

Prompts for the un-
known variable.

Starts program B;

prompts for all data ex-
cept V, the variable

being solved.

The volume is 2,125

cm3.

Now solve for the length of this box if you change the volume (to
3,000 cm3), but leave the height and width the same. Remember that
you do not need to specify the program label again since we will use
the same one that was used last.

114 7: Solving for an Unknown Variable in an Equation

B(soLvE/[{SOLVE} Starts program B to
L W?10.0000 solve for L. Prompts

for unknown variables.

H?8.5000
v22,125.0000 To keep a same value,

3000 L=35.2941 just press [R/S]. Solves

for the length.

Example: The Equation of Linear Motion. The equation of motion

for a free-falling object is:

d = vgt + Yagt?

where d is the distance, v is the initial velocity, ¢ is the time, and g is
the acceleration due to gravity. Setting the equation equal to zero and
simplifying it yields

0 = vy + gt/2) — d.

The following program evaluates this function:

Ml LBL M

Maz2 INPUT

MB3 INPUT

MB4 INPUT

MBS INPUT

MB6 RCL G

MB7? 2

MB8 =+

MBS RCLX

N18 RCL+

M1l RCLX

Mi2 RCL-

M13 RTN

O
-
<

o
4

<
H

The acceleration due to gravity, g, is included as a variable to allow
you to change it for working with different units:

g = 9.8 m/s? = 32.2 ft/s2.

Enter the above program (LBL M). Calculate how far an objectfalls in
5 seconds, starting from rest.

7: Solving for an Unknown Variable in an Equation 115

Keys: Display: Description:

B(SOLVE/[{FN} M FN= M (briefly) Specifies LBL M for the
function.

B(SoLvE/[] Specifies D as the un-
{SOLVE}D VY?3,000.0000 known. Prompts for V

as it shows the current
value of V (used in the
last example).

0 (R/S T? value

5 (R/S G? value

9.8 (R/S D=122.5000 Resulting distance in
meters.

Try another calculation using the same equation: how long does it
take an object to fall 500 meters? Since vy and g are already stored,
there is no need to reenter them.

B(soLve/[] Specifies a different
{SOLVE}T V?0.0000 unknown; prompts forpromp

V.

G?9.8000
D?122.5000

500 T=108.1015 Result in seconds.

Example: Finding the Roots of an Equation. Consider the single-

variable equation

x} — 522 — 10x = —20.

Rearranging the equation so one side is zero yields

x* — 5x2 — 10x + 20 = 0.

Horner’s method (see chapter 5) simplifies this equation to use less
memory:

x(x(x — 5) — 10) + 20 = 0.

116 7: Solving for an Unknown Variable in an Equation

The following program evaluates this function:

RO1 LBL R

R@2 RCL X

RB3 5

RO4 -

RS RCLx X

RO6 10

rRe? -

R88 RCLx X

R@S 20

R16 +

R11 RTN

A plot of this function is:

x3-5x2-10x+20

The plot indicates that there are three roots because the curve crosses
the x-axis three times. The calculator can find all three roots if you
run SOLVE three times and supply different initial guesses each time.
(For more information, see “Choosing Initial Guesses for SOLVE.”)

Enter the above program (LBL R). The graph shows that the first root
is somewhere between x = —3 and x = —2, the second root is be-

tween 1 and 2, and the third root is between 6 and 7. Put each set of

guesses in the variable X and in the X-register, then solve for X.

7: Solving for an Unknown Variable in an Equation 117

Keys: Display: Description:

B(soLvE/S {FN} R Selects program LBL R.

3 X -3.0000 First initial guesses.
2 -2_

BI(SOLVE/[{SOLVE} X=-2.4433 Specifies the unknown;
X returns the first root.

1 X 1.0000 Second initial guesses.
2 2_

B(sOLVE/[{SOLVE} X=1.3416 The second root.
X

6 X 6.0000 Third initial guesses.
7 [

X=6,1017 The third root.B(SOLVE/[] {sOLVE}
X

If you did not enter any initial guesses, you could get only one of these
roots. Which one depends on whatever happened to be in the variable
X and in the X-register, since the calculator uses these values for initial

guesses whether you intend it to or not.

Understanding and Controlling SOLVE

SOLVE uses an iterative (repetitive) procedure to solve for the un-
known variable. The procedure starts by substituting two initial
guesses for the unknown into the function defined in the program.
Based on the result with those two guesses, SOLVE generates another,
better guess. Through successive iterations, SOLVE finds a value that
makes the function equal to zero.

Some equations are more difficult to solve than others. In some cases,

you need to enterinitial guesses yourself in order to find the solution.
(See “Choosing Initial Guesses for SOLVE,” below.) If SOLVE cannot
find a real solution, the calculator displays NO ROOT FHND.

See appendix C for more information about how SOLVE works.

118 7: Solving for an Unknown Variable in an Equation

Verifying the Result

After the SOLVE calculation ends, you can verify that the result is
indeed a root of f(x) by reviewing the values left in the stack:

® The display (the X-register) and the variable itself contain the solu-
tion (root) for the unknown; thatis, the value that makes f(x) = 0.

B The Y-register (press to view Y) contains the previous estimate

for the root. This number should be the same as the value in the X-
register. If it is not, then the root given was only an approximation
to the root, and the values in the X- and Y-register bracket the root.
These bracketing numbers should be close together.

B The Z-register (press again to view Z) contains the value of f(x)
at the value given in the X-register. For an exact root, this should
be zero. If it is not zero, then the root given was only an approxima-
tion, and this number should be close to zero.

If a calculation ends with NO ROOT FND, this means that the cal-
culation could not converge on a root, so the values in the X- and Y-
registers are probably not close together. (You can see the value in the
X-register—the final estimate of the root—by pressing or (€] to
clear the message.) These two values bracket the interval that was last
searched for the root. The Z-register contains the value of f(x) at the
final estimate of the root. This value should not be close to zero.

Interrupting the SOLVE Calculation

To halt the calculation, press or [R/S]. The current best estimate of
the root is in the unknown variable; use [ViEw] to view it without
disturbing the stack. To resume the calculation, press [R/S].*

* Pressing (XEQ], (GTO], or {RTN} cancels the SOLVE operation. In this case, start the pro-
gram over rather than resuming it.

7: Solving for an Unknown Variable in an Equation 119

Choosing Initial Guesses for SOLVE

The two initial guesses come from:

B The number currently stored in the unknown variable.

B The number in the X-register (the display).

These sources are used for guesses whether you enter guesses or not. If
you enter only one guess and store it into the variable, then the sec-
ond guess will be the same value since the display also holds the
number you just stored into the variable. Entering your own guesses
has these advantages:

® By narrowing the range of the search, guesses can reduce the time
required to find a solution.

B If there is more than one mathematical solution, the guesses can
direct the SOLVE procedure to the desired answer or range of an-
swers. For example, the equation of motion

d = dy + vot + Yagt?

can have two solutions for ¢. You can direct the answer to the only
meaningful one (! > 0) by entering appropriate guesses.*

B If an equation does not allow certain values for the unknown,
guesses can prevent these values from occurring. For example, the
equation

y =t + logx

results in an error if x < 0 (LOG<B®>, LOG(NEG)>).

The example in the previous section (“Finding the Roots of an Equa-
tion”) used guesses to find three solutions to one equation. Here is
another example that examines the dimensions of a box (as does the
example on page 113) but with more restrictions.

* The example using this equation on page 116 did not need to enter guesses before solving
for t because in the first part of the example we stored a value for T and solved for D. The
value that was left in T was a good (realistic) one, and it was used as a guess when solving
for T.

120 7: Solving for an Unknown Variable in an Equation

Example: Folding a Box. Using a rectangular piece of sheet metal
40 centimeters by 80 centimeters, form an open-top box having a vol-
ume of 7500 cubic centimeters. You need to find out the height of the
box (that is, the amount to be folded up along each of the four sides)
that gives the specified volume. A taller box is preferred to a shorter
one.

T TR
S ! '

~ 9D ! '
o N 1 1

% ! 1[b
1 1

v A A
<«ff>|a——— 80-2——>}-H>]
- 80 >

If H is the height, then the length of the box is (80 — 2H) and the
width is (40 — 2H). The volume, V, is:

V = (80 — 2H) x (40 — 2H) x H

and the function equal to zero is

0 =80 — 2H) X (40 — 2H) X H — V
= 4H [(40 — H) (20 — H)] — V

7: Solving for an Unknown Variable in an Equation 121

One program to define this function would be:

Vel LBL V

Va2 INPUT H

VB3 INPUT V

Va4 408

Ve5 RCL- H

Vee 20

Va7 RCL- H

veg x

vVes 4

Vig x

Vi1l RCLx H

Viz RCL- V

V13 RTN

It seems reasonable that either a tall, narrow box or a short, flat box
could be formed having the desired volume. Because the taller box is
preferred, larger initial estimates of the height are reasonable. How-
ever, heights greater than 20 centimeters are not physically possible
because the metal sheet is only 40 centimeters wide. Initial estimates
of 10 and 20 centimeters are therefore appropriate.

Keys: Display: Description:

BI(SOLVE/T] {FN} V Selects program V as
the function to solve.

10 H 10.0000 Stores upper and lower
20 20_ limits.

B(SoLVE/[] {sOLVE} Prompts for volume.
H V?value

7500 SOLVING This is the desired
H=15.0000 height.

Now check the quality of this solution—that is, whetherit provided
an exact root—by looking at the values of the previous estimate (in
the Y-register) and f(x) at the root (in the Z-register).

122 7: Solving for an Unknown Variable in an Equation

150000 This value from the Y-
register is the estimate
made just prior to the
final result. Since it is

the same as the solu-

tion, the solution is an

exact root...

0.00060 ...and, as this value
from the Z-register
shows, f(x) = 0 at the
root.

The dimensions of the desired box are 50 X 10 X 15 cm. If you
ignored the upper limit on the height (20 cm) and used initial esti-
mates of 30 and 40 cm, you would obtain a height of 42.0256 cm—a
root that is physically meaningless. If you used small initial estimates
such as 0 and 10 cm, you would obtain a height of 2.9744 cm—pro-
ducing an undesirably short, flat box.

Using Graphs to Select Initial Guesses. As an aid to understand-

ing the behavior of a particular function, you can graph it. Use your
program routine to evaluate the function for several values of the un-
known. For each point on the graph, store the value for the x-
coordinate in the variable, and then obtain the corresponding value for
the y-coordinate by pressing label. For the problem above, you
would always set V = 7500 and vary the value of H to produce dif-
ferent values for the function. The plot of this function looks like this:

4H (40-4) (20-#) -7500

7: Solving for an Unknown Variable in an Equation 123

Using SOLVE in a Program

You can use the SOLVE operation as part of a program. If appropri-
ate, include or prompt for initial guesses (into the unknown variable
and into the X-register) before executing the SOLVE variable instruc-
tion. The two instructions for solving an equation for an unknown
variable appear in the program as:

FN= label

SOLVE variable

Labeling Output. The programmed SOLVE instruction does not pro-
duce a labeled display (variable=value) since this might not be the
significant output for your program (that is, you might want to do
further calculations with this number before displaying it). If you do
want this result displayed, add a VIEW variable instruction after the
SOLVE instruction.

Conditional Execution if No Solution. If no solution is found for
the unknown variable, then the next program line is skipped (in ac-
cordance with the “Do if True” rule, explained in chapter 6). The
program should then handle the case of not finding a root, such as by
choosing new initial estimates or changing an input value.

Example: Time Value of Money. The “Time Value of Money” pro-

gram in chapter 14 solves loan and savings problems by solving for
an unknown in the given TVM equation. This equation is defined as a
function in routine T, which relates the variables for present balance,

future balance, payment, interest rate, and number of payments.

124 7: Solving for an Unknown Variable in an Equation

Given any four of these variables, the SOLVE instruction (line L04)
finds the solution for the fifth one:

Lol LBL L

LB2 STO i Stores an index value that indicates which
variable had been specified as the unknown.

LB3 FN= T Selects the function defined in program T.
L84 SOLVECi)> Solves for the indicated unknown variable

in program T.
LBS VIEWC(i) Displays the resulting solution.
LB6 GTOCi> Returns to the initializing subroutine to pre-

pare for another calculation.

This SOLVE operation works fine without the user supplying initial
guesses.

Limitations. The SOLVE instruction cannot call a routine that con-
tains another SOLVE instruction; thatis, it cannot be used recursively
(SOLVE(SOLVE> error). Nor can SOLVE call a routine that contains a
FN= Jabel instruction (SOLVE ACTIVE error). SOLVE cannot call a
routine that contains an [FN instruction (SOLVE ¢ fFN)> error), just as
JFN cannot call a routine that contains a SOLVE instruction
(F<SOLVE> error).

The SOLVE variable instruction in a program uses one of the seven
pending subroutine returns in the calculator. (Refer to “Nested Sub-
routines” in chapter 6.)

For More Information

This chapter gives you instructions for solving for unknowns or roots
over a wide range of applications. Appendix C contains more detailed
information about how the algorithm for SOLVE works, how to inter-
pret results, what happens when no solution is found, and conditions
that can cause incorrect results.

7: Solving for an Unknown Variable in an Equation 125

Numerical Integration

Many problems in mathematics, science, and engineering require cal-
culating the definite integral of a function. If the function is denoted
by f(x) and the interval of integration is a to b, then the integral can be
expressed mathematically as

I = fab f(x) dx.

The quantity I can be interpreted geometrically as the area of a region
bounded by the graph of the function f(x), the x-axis, and the limits
x = a and x = b (provided that f(x) is nonnegative throughout the in-
terval of integration).

The [FN operation integrates a specified function with respect to a
specified variable.* The function must be defined beforehand in a la-
beled program, and it may have more than one variable.

* [EN works only with real numbers.

126 8: Numerical Integration

Using Integration (/FN)

To integrate a function:

1. Enter a program that defines the integrand’s function. (See
“Writing Programs for [FN” below.)

2. Select the program that defines the function to integrate: press
B(SoLvE/ {FN} label.

3. Enter the limits of integration: key in the lower limit and press
(ENTER], then key in the upper limit.

4. Select the variable of integration: press

B(soLvE/[] {SFN} variable.

This starts the calculation.

This operation uses far more memory than any other operation in the
calculator. If executing {fFN} causes a MEMORY FULL message, re-

fer to appendix B.

You can halt a running integration calculation by pressing or [R/S].
(However, no information about the integration is available until the

calculation finishes normally.) To resume the calculation, press [R/S].*

Accuracy. The display format setting affects the level of accuracy as-
sumed for your function and used for the result. Integration is more
precise but takes much longer in the {ALL } and higher {F®}, {SC},
and {EM} settings. The uncertainty of the result ends up in the Y-
register, pushing the limits of integration up into the T- and Z-
registers. For more information, see “Accuracy of Integration,” page
131.

Results. The X-register contains the integral, the Y-register the un-
certainty, the Z-register the upper limit, and the T-register the lower
limit. (The variable of integration contains an immaterial value.)

* Pressing (XEQ], [(GTO], or {RTN} cancels the [FN operation. In this case, start the opera-
tion over rather than resuming it.

8: Numerical Integration 127

To integrate the same function with different information: Skip

the first two steps above. If using the same limits of integration, press
to bring them back into the X- and Y-registers. (If not using

the same limits, repeat step 3.) Then execute [[SOLVE/[] {fFN}
variable. (To work another problem using a different function, start
over with a different program for the function.)

Writing Programs for [FN

To write a program defining the integrand’s function:

1. Begin with a label so that the program can be called by [FN.

2. Include an initial INPUT instruction for each variable, including
the variable of integration. (If there is only one variable in the
function, you can omit the INPUT instruction.)*

3. Enter the instructions to define the function. Use a RCL instruc-
tion any place a variable’s value is needed for a calculation.

4. End the program with a RTN. The program should end with the
value of the function in the X-register.

Examples Using [FN

Example: Bessel Function. The Bessel function of the first kind of

order 0 can be expressed as

Jo) = Y= fow cos (x sint) dt.

Find the Bessel function for x-values of 2 and 3.

* The INPUT instructions are useful for multi-variable functions. Since the INPUT for the
variable of integration (integrand) is ignored, you can write one program that contains IN-
PUT instructions for all variables, which you can then use no matter which variable you
specify as the variable of integration.

128 8: Numerical Integration

This program evaluates the function f(t) = cos (x sint):

Ja1i

Jaz

Jo3

Jo4

Jas

Joe

Jav

Jesg

Josg

LBL J

RAD

INPUT X

INPUT T

RCL T

SIN

RCLx ¥

cos

RTHN

These keystrokes enter the program:

Keys: Display:

M(PrcM)
Bcol (0] PRGM TOP

B(LBL/RTN] {LBL} J Jo1l LBL J
@(moDES] {RD} J82 RAD
B(nPUT] X Jo3 INPUT X
BONPUT] T Jo4 INPUT T
(RCL] T (SIN] Jes SIN
(RcL] [x] X [cos] Jog cos
B(LBL/RTN] {RTN} J@9 RTHN

Description:

Starts program entry;
places program pointer
at the top of memory.

Enters program.

At this point, the X-
register will contain
the value of the
function.

Ends program entry.

Now integrate this function with respect to ¢ from zero to =; x = 2.

B(soLvE/[] {FN} FN= _
J

0 (ENTER] ([~ 3.1416

BI(sOLVE/[] {SFN} JEN d _
T X ?value

8: Numerical Integration

Selects routine J for the

function.

Enters limits of inte-
gration (lower first).

Specifies T as the vari-
able of integration.
Prompts for the value
of x.

129

2 1=0.7034 x = 2. Starts integrat-
ing and produces the
result for [§ f(t).

To complete the calculation, remember to multiply the value of the
integral by the constant (1/7) outside the integral. (You could also in-
clude this multiplication as part of the program.)

B 8.2239 Final result for Jy(2).

Now calculate Jy(3) with the same limits of integration. You don't
have to respecify the function (routine J), but you must respecify the
limits of integration (0, 7) since they were pushed off the stack by the
subsequent division by .

0 B 3.1416 Displays upper limit.

B(SOLVE/[) {SFN} T X?2.0000 Starts integration;
prompts for x.

3 f=-08.8170 Integral of f(¢).

B(=] -9.2601 Result for Jy(3).

Example: Sine Integral. Certain problems in communications the-
ory (for example, pulse transmission through idealized networks)
require calculating an integral (sometimes called the sine integral) of
the form

iy = [t (%) dx.

Find Si(2).

Key in the following program to evaluate the function
f(x) = (sinx) + x.*

* If the calculator attempted to evalutate this function at x = 0, the lower limit of integration,
an error (DIVIDE BY 8) would result. However, the integration algorithm normally does
not evaluate functions at either limit of integration, unless the endpoints of the interval of
integration are extremely close together or the number of sample points is extremely large.

130 8: Numerical Integration

$81 LBL S

582 RAD

583 RCL X

S84 SIN

583 RCL+ X

S86 RTHN

Now integrate this function with respect to x (that is, X) from zero to
2 (t=2).

Keys: Display: Description:

B(soLvE/[] Selects routine S for
{FN} S the function.

0 2 2_ Enters limits of inte-
gration (lower first).

MB(soLvE/[]
{SFN}X S=1.6054 Result for Si(2).

Accuracy of Integration

Since the calculator cannot compute the value of an integral exactly, it
approximates it. The accuracy of this approximation depends on the
accuracy of the integrand’s function itself, as calculated by your pro-
gram.* This is affected by round-off error in the calculator and the
accuracy of the empirical constants.

* Integrals of functions with certain characteristics such as spikes or very rapid oscillations
might be calculated inaccurately, but the likelihood is very small. The general characteristics
of functions that can cause problems, as well as techniques for dealing with them, are dis-
cussed in appendix D.

8: Numerical Integration 131

Specifying Accuracy

The display format’s setting determines the precision of the integration
calculation: the greater the number of digits displayed, the greater the
precision of the calculated integral (and the greater the time required
to calculate it). The fewer the number of digits displayed, the faster
the calculation, but the calculator will presume that the function is
accurate to only the number of digits specified in the display format.

To specify the accuracy of the integration, set the display format so
that the display shows no more than the number of digits that you
consider accurate in the integrand’s values. This same level of accuracy
and precision will be reflected in the result of integration.

Interpreting Accuracy

After calculating the integral, the calculator places the estimated un-
certainty of that integral’s result in the Y-register. Press to view
the value of the uncertainty.

For example, if the integral Si(2) is 1.6054 + 0.0001, then 0.0001is its
uncertainty.

Example: Specifying Accuracy. With the display format set to SCI
2, calculate the integral in the expression for Si(2) (from the previous
example).

Keys: Display: Description:

B(oisp] {sc}2 1.61E0 Sets scientific notation
with two decimal
places, specifying that
the function is accurate
to two decimal places.

0 2 2_ Limits of integration.

B(soLve/[] {FN} S 2.00ED Selects routine S for
the function.

B(soLveE/S {JFN} X [f=1.61ED Integral approximated
to two decimal places.

132 8: Numerical Integration

xX 1.88E-3 The uncertainty of the
approximation of the
integral.

The integral is 1.61+0.00100. Since the uncertainty would not affect
the approximation until its third decimal place, you can consider all
the displayed digits in this approximation to be accurate.

If the uncertainty of an approximation is larger than what you choose
to tolerate, you can increase the number of digits in the display for-
mat and repeat the integration (provided that f(x) is still calculated
accurately to the number of digits shown in the display). In general,
the uncertainty of an integration calculation decreases by a factor of
10 for each additional digit specified in the display format.

Example: Changing the Accuracy. For the integral of Si(2) just cal-

culated, specify that the result be accurate to four decimal places
instead of only two.

Keys: Display: Description:

@(Disp] {sc} 4 1.0000E-3 Specifies accuracy to
four decimal places.
The uncertainty from
the last example is still
in the display.

2.0000ED Rolls down the limits
of integration from the
Z- and T-registers into
the X- and Y-registers.

B(SOLVE/S] {SFN} X [f=1.6054E0 Result.

1.0000E-5 Note that the uncer-

tainty is about Y100 as
large as the uncertainty
of the SCI 2 result cal-
culated previously.

B(DoisP] {FX} 4 Restores FIX 4 format.

8: Numerical Integration 133

This uncertainty indicates that the result might be correct to only four
decimal places. In reality, this result is accurate to seven decimal
places when compared with the actual value of this integral. Since the
uncertainty of a result is calculated conservatively, the calculator’s ap-
proximation in most cases is more accurate than its uncertainty indicates.

For more information, see appendix D.

Using Integration in a Program

Integration can be executed from a program. Remember to include or
prompt for the limits of integration before executing the integration,
and remember that accuracy and execution time are controlled by the
display format at the time the program runs. The two integration in-
structions appear in the program as:

FN= label

JFN d variable

Labeling Output. The programmed [FN instruction does not produce
a labeled display (J =value), since this might not be the significant out-
put for your program (that is, you might want to do further
calculations with this number). If you do want this result displayed,
add a PSE (B(LBL/RTN] {PSE}) or STOP ([R/S]) instruction to dis-
play the result in the X-register after the [FN instruction.

Example: Normal Distribution. The “Normal and Inverse-Normal

Distributions” program on page 215 in part 4 includes an integration
of the equation of the normal density function,

2()
dD.

1 D
S\Var Jae

134 8: Numerical Integration

This function is defined in routine F:

Fal1 LEL F

Faz RCL D

FB3 RCL- M

Fad4 RCL+ S

FB3 ==

Fae 2

Fay =+

Fag +--

Fag e=

F1a RTH

Other routines prompt for the known values and do the other calcula-
tions to find Q(D), the upper-tail area of a normal curve. The
integration itself is set up and executed from routine Q:

281 LEL @

R@2 RCL M Recalls the lower limit of integration.

RB3 RCL X Recalls the upper limit of integration. (X =
D.)

QB4 FH= F Specifies the function defined by LBL F for
integration.

@85S fFH d D Integrates the normal function for the vari-
: able D.

Limitations. The fFN variable instruction cannot call a routine that
contains another [FN instruction; that is, it cannot be used recursively,

so you cannot calculate multiple integrals (f < fFHN> error). Nor can
JEN call a routine that contains a FN= /abel instruction (JFH
ACTIVE error). [FN cannot call a routine that contains a SOLVE in-
struction (f ¢S0OLVE» error), just as SOLVE cannot call a routine that

contains an integration instruction (SOLVEC[FHN> error).

The fFH d variable instruction in a program uses one of the seven

pending subroutine returns in the calculator. (Refer to “Nested Sub-
routines” in chapter 6.)

8: Numerical Integration 135

For More Information

This chapter gives you instructions for using integration in the
HP-32S over a wide range of applications. Appendix D contains more
detailed information about how the algorithm for integration works,
conditions that could cause incorrect results, conditions that prolong
calculation time, and obtaining the current approximation to an
integral.

136 8: Numerical Integration

Operations With Complex
Numbers

The HP-32S can use complex numbers in the form

x + iy.

It has operations for complex arithmetic (+, —, X, <), complex

trigonometry (sin, cos, tan), and the mathematics functions —z, 1/z,
z1%2, In z, and €* (where z; and z, are complex numbers).

Complex numbers in the HP-32S are handled by entering each part
(imaginary and real) of a complex number as a separate entry. To en-
ter two complex numbers, you enter four separate numbers. To do a
complex operation, press [lCMPLX before the operator. For example,
to do

2 + i4) + (3 + i5),

press 4 (ENTER] 2 (ENTER] 5 (ENTER]3CMPLX] [+]. The result is 5 + 9.

(Press [xxy] to see the imaginary part.)

9: Operations With Complex Numbers 137

The Complex Stack

The complex stack is really the regular memory stack split into two
double registers for holding two complex numbers, z;, + iz;, and
2oy + iZzyI

T| ¢

Z| :z

Y| vy
X| x

Real Stack Complex Stack

Since the imaginary and real parts of a complex number are entered
and stored separately, you can easily work with or alter either part by
itself.

z, {

-
Complex input: Complex result, z

Zorzyand z,

Complex function
s

y imaginary part

(displayed) x real part
Always enter the imaginary part (the y-part) of a number first. The real por-

tion of the result (z,) is displayed; press [xxy] to view the imaginary
portion (z,).

138 9: Operations With Complex Numbers

Complex Operations

Use the complex operations as you do real operations, but precede the
operator with Jj[CMPLX].

To do an operation with one complex number:

1. Enter the complex number z, composed of x + iy, by keying in y

X.
2. Select the complex function:

Functions for One Complex Number, z

To Calculate: Press:

Change sign, —z [[CMPLX]

Inverse, 1/z B(cvrPix]
Natural log, In z B(cvPLx]

Natural antilog, e B[CMPLX]

Sin z B(cvrLx]
Cos z E(cvPLx]
Tan z B(CvPix]

To do an arithmetic operation with two complex numbers:

1. Enter the first complex number, z; (composed of x; + iy;), by
keying in y; x1 (ENTER]. (For z;%, key in the base part, z;,
first.)

2. Enter the second complex number, z,, by keying in y, X5.
(For z4%, key in the superscript, z,, second.)

3. Select the arithmetic operation:

9: Operations With Complex Numbers 139

Arithmetic With Two Complex Numbers, z, and z,

To Calculate: Press:

Addition, z; + z, B(cvrix](+]

Subtraction, z, — z, B(cvrPLx] (=]

Multiplication, z; x z, BB[CMPLX] [x]

Division, z; + 2, Bcvrix] (+]

Power function, z,22 [cvPLX] [¥*]

Examples. Here are some examples of trigonometry and arithmetic
with complex numbers:

Evaluate sin (2 + 13).

Keys: Display: Description:

3 2 Real part of result.

B(cwPLX] (SIN] 9.1545

(xxy] -4,1689 Result is
9.1545 — i4.1689.

Evaluate the expression

21 + (2 + z3),

where Z21 = 23 + 113, 2, = -2 + i, 23 = 4 — 3.

Since the stack can retain only two complex numbers at a time, per-
form the calculation as

zp X [1 = (z + z3)].

140 9: Operations With Complex Numbers

Keys: Display:

1 [(ENTER] 2 (4]
(ENTER] 3 (3] (ENTER] 4
@(CvPix] [+] 2.0000

@(CvPix] 8.2500

13 23
B(cvrLx] (%] 25000

X% 9.8000

Description:

Adds z, + z3; displays
real part.

1 + (z; + z3).

z21 + (20 + z3).

Result is 2.5 + 9.

Evaluate (4 — i2/5) (3 — i2/3). Do not use complex operations when
calculating just one part of a complex number.

Keys: Display:

2 5 -0.4000

4 40000

2 3 (=) -0.6667

3 @(cvPix] [x] 11,7333

-3.8667

Description:

Calculates imaginary
part using real
operations.

Enters real part of first
complex number.

Calculates imaginary
part of second complex
number.

Completes entry of
second number and
then multiplies the two
complex numbers.

Result is 11.7333 —

13.8667.

Evaluate ¢ 27 where z = (1 + i). Use @[cMPLX] [*] to evaluate z7%;
enter —2 as —2 + 10.

9: Operations With Complex Numbers 141

Keys: Display: Description:

1 [ENTER] 1 [ENTER] O Intermediate result of

2 1+ iy2
B(cvrix] [¥] 0.0000

B(cmrix] 8.8776 Real part of final
result.

-0.4794 Final result is

0.8776 — 10.4794.

Using Numbers in Polar Notation

Many applications use real numbers in polar form or phasor notation.
These forms use pairs of numbers, as do complex numbers, so you
can do arithmetic with these numbers by using the complex opera-
tions. Since the HP-32S’s complex operations work on numbers in
rectangular form, convert polar form to rectangular form (using
BP-RECT)) before executing the complex operation, then convert the
result back to polar form.

a + tb = r(cos § + isin §) = reft
=r/6 Polar or phasor form

imaginary

i

 » real

Example: Vector Addition. Add the following three loads. You will
first need to convert the polar coordinates to rectangular coordinates.

142 9: Operations With Complex Numbers

—

Ly

170 LB A 143°

185 LB & 62°

I3
100 LB & 261°

Keys: Display:

B(MoDES] {DG}

62 185
B(P~RECT] {B,r+y,x} 868522

143 170
B(FP-RECT] {B,r+»,x} -1357680

B(cvrix] (+] -489158

261 100
.{BJr-)y.Ix} -15.6434

B(cvpPix] (+] -64.5592

B(P-~RECT] {»,x*B,r} 1789372

X% 111.1489

Description:

Sets Degrees mode.

Enters L; and converts

it to rectangular form.

Enters and converts L,.

Adds vectors.

Enters and converts Lj.

Adds Ll + L2 + L3.

Converts vector back

to polar form; displays
.

Displays 0.

9: Operations With Complex Numbers 143

1
Base Conversions and
Arithmetic

The BASE menu ([BASE]) lets you change the number base used for
entering numbers and other operations (including programming).
Changing bases also converts the displayed number to the new base.

The BASE Menu

Menu Label Description

{DEC}

{H®}

{0C}

{BH}

Decimal mode. No annunciator. Converts numbers to base

10. Numbers have integer and fractional parts.

Hexadecimal mode. HEX annunciator on. Converts num-

bers to base 16; uses integers only. The top-row keys

become digits through (F].

Octal mode. OCT annunciator on. Converts numbers to

base 8; uses integers only. The (8], (9], and unshifted top-

row keys are inactive.

Binary mode. BIN annunciator on. Converts numbers to

base 2; uses integers only. Digit keys other than (0] and

(1], and the unshifted top-row functions are inactive. If a
number is longer than 12 digits, then the outer top-row

keys ([J=] and [Z+]) are active for viewing windows. (See
“Windows for Long Binary Numbers” in this chapter.)

Examples: Converting the Base of a Number. The following key-
strokes do various base conversions.

Convert 125.99;, to hexadecimal, octal, and binary numbers.

144 10: Base Conversions and Arithmetic

Keys:

125.99 J(EASE] {HX}

B(ersE] {oc}

W(BASE] {BN}

B(eAsE] {DEC}

Display:

7D

175

1111101

12599008

Description:

Converts just the inte-
ger part (125) of the
decimal number to
base 16 and displays
this value.

Base 8.

Base 2.

Restores base 10; the
original decimal value
has been preserved, in-
cluding its fractional
part.

Convert 24FF¢ to binary base. The binary number will be more than
12 digits (the maximum display) long.

BI(BASE] {HX} 24FF

B(BASE] {BN}

M(eAsE] {DEC}

24FF _

g18011111111

10

0160611111111

9,471.06000

Use the key to
type “F".

The entire binary num-
ber does not fit. The

4 annunciator indi-

cates that the number

continues to the left;

the ¥ annunciator
points to [Jx].

Displays the rest of the
number. The full
number is
10010011111111,.

Displays the first 12
digits again.

Back to base 10.

10: Base Conversions and Arithmetic 145

Arithmetic in Bases 2, 8, and 16

You can perform arithmetic operations using [(+], (=], (x], and [+] in
any base.* Arithmetic in bases 2, 8, and 16 is in 2’s complement form
and uses integers only:

B If a number has a fractional part, only the integer part is used for
an arithmetic calculation.

B The result of an operation is always an integer (any fractional por-
tion is truncated).

Whereas conversions change only the displayed number and not the
number in the X-register, arithmetic does alter the number in the X-

register.

If the result of an operation cannot be represented in 36 bits, the dis-
play shows OWERFLOW and then the largest positive or negative
number possible.

Examples. Here are some examples of arithmetic in Hexadecimal,
Octal, and Binary modes:

12F16 + E9A16 = ?

Keys: Display: Description:

B(BASE] {HX} Sets base 16; HEX an-

nunciator on.

12F E9A FC9 Result.

* The only function keys that are actually deactivated outside of Decimal mode are ,
(e*], (LN], (»*), (17x]), (=+]). However, you should realize that most operations other than
arithmetic will not produce meaningful results since the fractional parts of numbers are
truncated.

146 10: Base Conversions and Arithmetic

B(BAsE] {oC} 7711 Sets base 8; OCT an-
nunciator on. Converts

displayed number to
octal.

7760 4326 (-] 3432 Result.

100g + 5 = ?

100 5 14 Integer part of result.

5A0,5 + 1001100, = ?

B(BASE] {HX} 5A0 SAB_ Sets base 16; HEX an-
nunciator on.

B(BASE] {BN} Changes to base 2; BIN

1001100 18911086_ annunciator on. This

terminates digit entry,
SO no is needed

between the numbers.

181111981188 Result in binary base.

B(BASE] {HX} SEC Result in hexadecimal
base.

B(BAsE] {DC} 1,5168008 Restores decimal base.

The Representation of Numbers

Although the display of a number is converted when the base is
changed,its stored form is not modified, so decimal numbers are not
truncated—until they are used in arithmetic calculations.

10: Base Conversions and Arithmetic 147

When a number appears in hexadecimal, octal, or binary base,it is
shown as a right-justified integer with up to 36 bits (12 octal digits or
9 hexadecimal digits). Leading zeros are not displayed, but they are
important because they indicate a positive number. For example, the
binary representation of 125, is displayed as:

1111101

which is the same as these 36 digits:

000000000000000000000000000001111101

Negative Numbers

The leftmost (most significant or “highest”) bit of a number’s binary
representation is the sign bit; it is set (1) for negative numbers. If there
are (undisplayed) leading zeros, then the sign bit is 0 (positive). A
negative numberis the 2’s complement of its positive binary number.

Keys: Display: Description:

546 [(BASE] {HX} 222 Enters a positive, deci-
mal number; then

converts it to

hexadecimal.

L FFFFFFDDE 2’s complement (sign
changed).

B(BASE] {BN} 119111011110 Binary version; <=
indicates more digits.

111111111111 Displays the leftmost
window; the number is

negative since the
highest bit is 1.

B(BASE] {DEC} -546.0000 Negative decimal
number.

148 10: Base Conversions and Arithmetic

Range of Numbers

The 36-bit word size determines the range of numbers that can be
represented in hexadecimal (9 digits), octal (12 digits), and binary
bases (36 digits), and the range of decimal numbers (11 digits) that
can be converted to these other bases.

Range of Numbers for Base Conversions

Base Positive Integer Negative Integer

of Largest Magnitude of Largest Magnitude

Hexadecimal 7FFFFFFFF 800000000

Octal 377777777777 400000000000

Binary o11111111111111111 100000000000000000

1111111111111 000000000000000000

Decimal 34,359,738,367 —34,359,738,368
When you key in numbers, the calculator will not accept more than
the maximum number of digits for each base. For example,if you at-
tempt to key in a 10-digit hexadecimal number, digit entry halts and
the A annunciator appears.

If a number entered in decimal base is outside the range given above,
then it produces the message TO0O BIG in the other base modes. Any
operation using TO0 BIG causes an overflow condition, which sub-
stitutes the largest positive or negative number possible for the too-
big number.

Windows for Long Binary Numbers

The longest binary number can have 36 digits—three times as many
digits as fit in the display. Each 12-digit display of a long number is
called a window.

10: Base Conversions and Arithmetic 149

36-bit number

111111111111 B9888H00606000 (111111111111

e ——

Highest window Lowest window
(displayed)

When a binary number is larger than the 12 digits, the 4= or ==
annunciator (or both) appears, indicating in which direction the addi-
tional digits lie. Press the indicated key ([Jz] or [Z+]) to view the
obscured window.

111111111111 |B80080B80AA01111111111111
 Ve -V

Press to display vy Press to display
left window. right window.

SHOWing Partially Hidden Numbers

The @[VIEW] and [INPUT] functions work with non-decimal numbers
as they do with decimal numbers. However, if the full octal or binary
number does not fit in the display, the leftmost digits are replaced
with ellipses (..). Press [l[SHOW] to view the digits obscured by the
A=.. or A?.. labels.

Keys: Display: Description:

B(BAsE] {oc} Enters a large octal
123456712345 23456712345_ number.

[sTO] A 123456712345

150 10: Base Conversions and Arithmetic

BVEwW] A A=..456712345
Drops leftmost three
digits.

BsHow] (hold) 123456712345 Shows all digits.

Programming With BASE

You can program instructions to change the base mode using
BBASE]. These settings work in programs just as they do as functions
used from the keyboard. This allows you to write programs that ac-
cept numbers in any of the four bases, do arithmetic in any base, and
display results in any base.

When writing programs that use numbers in a base other than 10, set
the base mode both as the current setting for the calculator and in the
program (as an instruction).

Selecting a Base Mode in a Program

Insert a BIN, OCT, or HEX instruction into the beginning of the pro-
gram. You should usually include a DEC instruction at the end of the
program so that the calculator’s setting will revert to Decimal mode
when the program is done.

An instruction in a program to change the base mode will determine
how input is interpreted and how output looks during and after pro-
gram execution, but it does not affect the program lines as you enter
them.

The SOLVE and [FN operations automatically set DEC mode.

Numbers Entered in Program Lines

Before starting program entry, set the base mode. The current setting
for the base mode determines the base of the numbers that are en-
tered into program lines. The display of these numbers changes when
you change the base mode.

10: Base Conversions and Arithmetic 151

Program line numbers always appear in base 10.

An annunciator tells you which base is the current setting. For in-
stance, compare the program lines below in the left and right
columns. Notice that the hexadecimal number, like all non-decimal
numbers, is right-justified.

Decimal mode set Hexadecimal mode set

PRGM PRGM HEX=~

AB9 HERXR AB9 HERX

PRGM PRGM HEX*

Al 23 A1\ 17

T
Program line numbers

are always decimal.
Current base mode set.

152 10: Base Conversions and Arithmetic

11
Statistical Operations

The STAT (statistics) menu provides functions to statistically analyze a
set of one- or two-variable data.

B One-variable data: mean and standard deviation.

B Two-variable data (r,y): linear regression and linear estimation (X
and 7).

B Weighted mean (x weighted by y).

B Summation statistics: n, Zx, Zy, Zx2, Zy?, and Zxy.

STAT

|
| | | |
z Xy s L.R.

n x y x2 y2 xy SX sy |

X y Xw X ¥y rmob

Entering Statistical Data ((=+], [2-])

One- and two-variable statistical data are entered in similar fashion.

The data values are accumulated as summation statistics in six statis-

tics registers, whose values are displayed under [j(STAT] {Z}.

11: Statistical Operations 153

Entering One-Variable Data

1 .

2-

3.

Press @[CLEAR] {Z} to clear previous statistical data.

Key in each x-value and press [Z+].

The display shows n, the number of statistical data values now
accumulated.*

To recall a value to the display immediately after it has been entered,

press W[LASTs .

Entering Two-Variable Data

When your data consist of two variables, x is the independent variable
and y is the dependent variable. Remember to enter an (x, y) pair in
reverse order so that y ends up in the Y-register and x in the X-
register.

1.

2.

3.

4.

5.

Press [CLEAR] {2} to clear previous statistical data.

Key in the y-value first and press [ENTER].

Key in the corresponding x-value and press [Z+].

The display shows 7, the number of statistical data pairs now
accumulated.

Continue entering x,y-pairs. The n-value is updated with each
entry.

To recall an x-value to the display immediately after it has been en-
tered, press [LASTx].

* This procedure actually enters two variables into the statistics registers because the value

already in the Y-register is accumulated as the y-value. For this reason, the calculator will
do linear regression and show you values based on y even when you have entered only x-
data—or even if you have entered an unequal number of x- and y-values. No error occurs,
but the results are obviously not meaningful.

154 11: Statistical Operations

Correcting Errors in Data Entry

If you make a mistake in entering statistical data, delete the incorrect
data and add the correct data. Even if only one value of an x, y-pair is
incorrect, you must delete and then reenter both values.

To correct statistical data:

1. Reenter the incorrect data, but instead of pressing [(Z+], press
B=-]. This deletes the value(s) and decrements n.

2. Enter the correct value(s) using [Z+].

If the incorrect values were the ones just entered, you can simply
press [LASTx] to retrieve them, then [[Z-] to delete them. (The in-
correct y-value was still in the Y-register, and its x-value was saved in

the LASTx register.)

Example. Key in the x, y-values on the left, then make the correc-
tions shown on the right.

Initial x, y Corrected x, y

20, 4 20, 5

400, 6 40, 6

Keys: Display: Description:

B(CLEAR] {Z} Clears previous statisti-
4 20 1.0000 cal data, then enters
6 400 2.0000 two data pairs. Display

shows n, the number
of data pairs entered.

B(LAsTx] 400.0000 Brings back last x-
value. Last y is still in
Y-register. (Press
twice to check y.)

B:-) 1.6000 Deletes and replaces
6 40 2.0000 last data pair (400, 6 to

40, 6).

11: Statistical Operations 155

4 20 B[=] 1.0000 Deletes and replaces
5 20 2.0000 the first pair (20, 4 to

20, 5). Still two pairs

total.

Statistical Calculations

Once you have entered your statistical data, you can use the functions
in the STAT menu. Press [STAT] to display the STAT menu.

The STAT Menu

Menu Label Description

{Z} The summation menu: n, Zx, Zy, =x2, Zy2, Zxy. See “Sum-
mation Statistics.”

{=,»} The mean menu: X, y and weighted x (Xw). See “Mean and

Standard Deviation.”

{s} The standard-deviation menu: s, and s,. See “Mean and

Standard Deviation.”

{L.R.} The linear-regression menu: curve-fitting (r, m, b) and linear

estimation (X, ¥). See “Linear Regression.”
Mean and Standard Deviation

The Mean (x, y) Menu.

B Press @I(STAT] {%,5} {%} for the arithmetic mean (average) of the
x-values.

B Press @I[STAT] {%,5} {7} for the arithmetic mean (average) of the
y-values.

156 11: Statistical Operations

B Press [(STAT] {=.#} {=w} for the weighted mean of the x-values
using the y-values as weights or frequencies. The weights can be
integers or non-integers.

The Standard Deviation (s) Menu. Standard deviation is a measure

of how dispersed the data values are about the mean.

B Press §(STAT] {s} {sx} for the standard deviation of the x-

values.*

B Press (STAT] {s} {s»} for the standard deviation of the y-
values.*

Example: Mean and Standard Deviation With One Variable.

Production supervisor May Kitt wants to determine how long a cer-
tain process takes. She randomly picks ten people, observes each one
as he or she carries out the process, and records the number of min-
utes required:

155 9.25 10.0

125 120 85

Calculate the mean and standard deviation of the times. (Treat all

these data as x-values.)

Keys: Display: Description:

B(CLEAR] {Z} Clears the statistics
registers.

15.5 1.0000 Enters the first time.

9.25 10 3.0000 Enters the remaining
12.5 12 5.0000 data.
8.5 6.0000

B(sTAT] {z%} {=} 11,2917 Calculates mean.

* This calculates the sample standard deviation (using n—1 as a divisor), which assumes the
data is a sampling of a larger, complete set of data. If your data constitute the entire popula-

tion of data, the true population standard deviation can be computed by calculating the mean
of the original data, adding the mean to the statistical data using [Z+], and then calculating

the standard deviation.

11: Statistical Operations 157

B(sTAT] {s} {sx} 25808 Calculates standard

deviation.

Example: Weighted Mean. A manufacturing company purchases a
certain part four times a year. Last year’s purchases were:

Price per Part (x) $4.25 $4.60 $4.70 $4.10

Number of Parts (y) 250 800 900 1000

Find the mean price paid for this part. Remember to enter y, the
weight (frequency), before x, the price.

Keys: Display: Description:

B(CLEAR] {=} Clears the statistics
registers.

250 4.25 1.0000 Enters the data and
800 4.6 2.0000 their weights.
900 4.7 3.0000
1000 4.1 40000

B(sTAT] {z7} {xw} 44314 Calculates mean price
weighted for quantity
purchased.

Linear Regression

Linear regression (also called linear estimation) is a statistical method
for finding a straight line that best fits a set of x,y-data. Be sure to
enter your data values before using these functions.

B To find an estimated value for x (or y), first key in a given hypo-
thetical value for y (or x), then press [[STAT) {LR.} {%} (or

{#}).

B To find the values that define the line that best fits your data, press
B(s7AT] {L.R.} followed {r}, {m}, or {b}.

158 11: Statistical Operations

The Linear Regression (L.R.) Menu

Menu Label Description

{%} Estimates (predicts) x for a given hypothetical value of y,

based on the line calculated to fit the data.

{#} Estimates (predicts) y for a given hypothetical value of x,

based on the line calculated to fit the data.

{r} Correlation coefficient for the (x,y) data. The correlation co-

efficient is a number in the range —1 through +1 that

measures how closely the calculated line fits the data.

{m} Slope of the calculated line. {b} y-intercept of the calculated line.

Example: Curve Fitting. The yield of a new variety of rice depends
on its rate of fertilization with nitrogen. For the following data, deter-
mine the linear relationship: the correlation coefficient, the slope, and
the y-intercept.

X, Nitrogen Applied (kg per 0.00 20.00 40.00 60.00 80.00

hectare)

Y, Grain Yield (metric tons 4.63 5.78 6.61 7.21 7.78

per hectare)

Keys: Display: Description:

B(CLEAR] {=} Clears any previous
statistical data.

4.63 0 Enters data; displays n:
5.78 20 5 data pairs entered.

6.61 40
7.21 60
7.78 80 5.0000

B(sTAT] {LR} % rmb Displays linear-
regression menu.

{r} 08.9880 Correlation coefficient;

the data closely
approximate a straight
line.

11: Statistical Operations 159

B(sTAT] {LR} {m} 9.0387 Slope of the line.

B(STAT] {LR} {b} 4.8560 y-intercept.

y

8.501

’

X (70,9).50 v’ Y
r=0.9880 ’

e

6.501 ’
s’

»” m=0.0387

550+
s

, ’

b ®

4.50 } t 1 } X
0 20 40 60 80

Whatif 70 kg of nitrogen fertilizer were applied to the rice field? Pre-
dict the grain yield based on the above statistics.

Keys: Display:

70 70_

B(sTAT] {LR} {5} 75615

Description:

Enters hypothetical x-
value.

The predicted yield in
tons per hectare.

Limitations on Precision of Data

Since the calculator uses finite precision (12 to 15 digits), it follows
that there are limitations to calculations due to rounding. Here are
two examples:

160 11: Statistical Operations

Normalizing Close, Large Numbers. The calculator might be un-

able to correctly calculate the standard deviation and linear regression
for a variable whose data values differ by a relatively small amount.
To avoid this, normalize the data by entering each value as the differ-
ence from one central value (such as the mean). For normalized x-
values, this difference must then be added back to the calculation of X
and ¥, and § and b must also be adjusted. For example, if your x-
values were 7776999, 7777000, and 7777001, you should enter the
data as -1, 0, and 1; then add 7777000 back to ¥ and . For b, add
back 7777000 X m. To calculate i, be sure to supply an x-value that
is less 7777000.

Similar inaccuracies can result if your x and y values have greatly dif-
ferent magnitudes. Again, scaling the data can avoid this problem.

Effect of Deleted Data. Executing [=-] does not delete any
rounding errors that might have been generated in the statistics regis-
ters by the original data values. This difference is not serious unless
the incorrect data have a magnitude that is enormous compared with
the correct data; in such a case, it would be wise to clear and reenter

all the data.

Summation Values and the Statistics

Registers

The statistics registers are six unique locations in memory that store
the accumulation of the six summation values.

Summation Statistics

Pressing [STAT] {Z} gives you access to the contents of the statistics
registers:

B Press {n} to see the number of accumulated data sets.

B Press {x} to see the sum of the x-values.

B Press {»} to see the sum of the y-values.

11: Statistical Operations 161

B Press {x2}, {»2}, and {x»} to see the sums of the squares and

the sum of the products, values that are of interest for performing
other statistical calculations besides those provided by the
calculator.

The Statistics Registers in Calculator Memory

The memory space (48 bytes) for the statistics registers is automati-
cally allocated (if it doesn’t exist already) when you press or
The registers are deleted and the memory deallocated when you exe:

cute @[CLEAR] {Z}.

If not enough calculator memory is available to hold the statistics reg:
isters when you first press (or (=-]), the calculator displays
MEMORY FULL. You will need to clear variables or programs (or
both) to make room for the statistics registers before you can enter
statistical data. Refer to “Managing Calculator Memory” in
appendix B.

162 11: Statistical Operations

Part 4
Application Programs

Page 164 12: Mathematics Programs

204 13: Statistics Programs

222 14: Miscellaneous Programs

12
Mathematics Programs

The memory usage and checksum for each program label can be
checked using the catalog of programs (page 85).

Vector Operations

This program performs the basic vector operations of addition, sub-
traction, cross product, and dot (or scalar) product. The program uses
three-dimensional vectors and provides input and output in rectangu-
lar or polar form. Angles between vectors can also be found.

 Y

.
.
.
.
"
0
*

Vector Coordinate Systems

164 12: Mathematics Programs

This program uses the following equations.

Coordinate conversion:

X = R sin(P) cos(T) R=VX2+Y + 272

Y = R sin(P) sin(T) T = arctan —;—

Z
Z = R cos(P) P = arctan —/——

VX? + v?

Vector addition and subtraction:

vitv,=X+Wi+ Y+ V)j+Z+ Wk

vy —vi=U-X)i+V-Y)j+W-— 2k

Cross product:

vi X vp = (YW — ZV)i + (ZU — XW)j + XV — YU)k

Dot product:

D= XU+ YV + ZW

Angle between vectors (y):

G = arccos ————
R, X R,’

where

vi =Xi +Y + Zk

and

v, = Ui + Vj + Wk

The vector displayed by the input routines (LBL P and LBL R) is V;.

12: Mathematics Programs 165

Program Listing:

Program Lines: Description:

RB1 LBL R Defines the beginning of the rectangular
input/display routine.

RB2 INPUT ¥ Displays or accepts input of X.
RB3 INPUT Y Displays or accepts input of Y.
RB4 INPUT 2 Displays or accepts input of Z.
Bytes and Checksum: 006.0, 80FB

RB1 LBL @ Defines beginning of rectangular-to-polar
conversion process.

@2 RCL Y

@83 RCL R

RB4 »,x38,r Calculates \/(X?> + Y?) and arctan(Y/X).

B3 =<{>y¥

RB6 STO T Saves T = arctan(Y/X).
RB7 R+ Gets (X% 4+ Y?) back.

@B8 RCL Z

RB9 y,x28,r Calculates \/(X2 + Y2 + Z?) and P.

R18 STO R Saves R.
R11 =<>y

@12 STO P Saves P.
Bytes and Checksum: 018.0, D6D5

PB1 LBL P Defines the beginning of the polar
input/display routine.

PB2 INPUT R Displays or accepts input of R.
PB3 INPUT T Displays or accepts input of T.
PB4 INPUT P Displays or accepts input of P.
PBS RCL T

P8e RCL P

PBY RCL R

PB8 B,r2y,x Calculates R cos(P) and Rsin(P).
P89 STO 2 Stores Z = R cos(P).
P18 R+

P11 B,r3y,= Calculates R sin(P) cos(T) and R sin(P)
sin(T).

P12 STO X Saves X = R sin(P) cos(T).
P13 =<>»

166 12: Mathematics Programs

P14
P15

STO

GTO

Y
P

Saves Y = R sin(P) sin(T).
Loops back for another display of polar
form.

Bytes and Checksum: 022.5, AA98

Ea1l

EB2

EG3

EG4

EBS

EB6

EB?

EG8

Bytes

xa1

xaz

x83

x84

®@5

xee

xar

Xe8

xB39

xip

x11

xiz2

x13

x1l4

®15

xle

X117

LBL

RCL

STO

RCL

STO

RCL

STO

GTO

E

x
P
E
M
N
C
<
C

Defines the beginning of the vector-enter
routine.

Copies values in X, Y and Z to U, V and W

respectively.

Loops back for polar conversion and
display/input.

and Checksum: 012.0, 7137

LBL

RCL

RCL

STO

2>y

STO

RCL

RCL

STO

x>y

STO

RCL

RCL

STO

x>y

STO

GTO

X

X

u

X

u

Y

v

Y

v

zZ

W

zZ

W

Q

Defines beginning of vector-exchange
routine.
Exchanges X, Y and Z with U, V and W
respectively.

Loops back for polar conversion and
display/input.

Bytes and Checksum: 025.5, EADS8

12: Mathematics Programs 167

A1

RB2

A83

AB4

RA3

ABe

Ravy

RAS

AB9

Al@

A11

Bytes

581

o
)

= M

w
o
w
o
w
W

D
D

D
R
l

]
g

=
=

—
8
'
3
1

w

ca:z

cas

cad4d

Cas

cac

cary

Ccas

cas

c1a

c11

168

LEL A

RCL X

RCL+ U

STO X

RCL W

RCL+ ¥

STO ¥

RCL £

RCL+ W

Defines beginning of vector-addition
routine.

Saves X + U in X.

Saves V 4+ Y in Y.

Saves Z + W in Z.
Loops back for polar conversion and
display/input.

and Checksum: 016.5, F888

LBL S

-1

STOx ¥

STOx Y

STOx 2

GTO R

Defines the beginning of the vector-
subtraction routine.
Multiplies X, Y and Z by (—1) to change the
sign.

Goes to the vector-addition routine.

and Checksum: 017.0, 250B

LEL C

RCL %

RCLx* W

RCL £

RCLx W

RCL 2
RCLx= U

RCL ¥
RCL W

Defines the beginning of the cross-product
routine.

Calculates (YW — ZV), which is the X
component.

Calculates (ZU — WX), which is the Y

component.

12: Mathematics Programs

ci1z

C13

ci4

C13

Cle

civy

c1s

c19

cze

cz21

czz

Bytes

Da1

Daz

Da3

Da4

Das

Dae

Dary

Das

Das

D1a

011

D12

D13

D14

D15

D1le

D17

D18

013

Dza

D21

o
o

M
y

M
o

G
l
M

RCL ¥

RCLx W

RCL Y

RCLx U

STO 2

R+

STO ¥
R+

STO =X

GTD @

Stores (XV — YU), which is the Z
component.

Stores Y component.

Stores X component.
Loops back for polar conversion and
display/input.

and Checksum: 033.0, D74B

LEL D

RCL X

RCLx U

RCL ¥

RCLx W
+

RCL 2Z

RCLx W
+

STO D

VIEW D

RCL D

RCL R

RCL W

RCL V¥

RCL U

v,x38,r

= Ay

E4

w38,

wxry

R+

Defines beginning of dot-product and
vector-angle routine.

Stores the dot product of XU + YV + ZW.
Displays the dot product.

Divides the dot product by the magnitude of
the X-, Y-, Z-vector.

Calculates the magnitude of the U, V, W
vector.

12: Mathematics Programs 169

D24 + Divides previous result by the magnitude.
D25 ACOS Calculates angle.
D26 STO G

D27 VIEW G Displays angle.
D28 GTO P Loops back for polar display/input.
Bytes and Checksum: 042.0, 739F

Flags Used: None.

Memory Required: 280.5 bytes: 192.5 for program, 88 for variables.

Remarks: The length of routine S can be shortened by 6.5 bytes.
The value —1 as shown uses 9.5 bytes. If it appears as 1 followed by
+-- , it will require only 3 bytes. To do this, you must key in a
dummy step between the 1 and the +--, and then delete the
dummy step.

The terms “polar” and “rectangular,” which refer to two-dimensional
systems, are used instead of the proper three-dimensional terms of
“spherical” and “Cartesian.” This stretch of terminology allows the la-
bels to be associated with their function without confusing conflicts.
For instance, if LBL C had been associated with Cartesian coordinate
input, it would not have been available for cross product.

Program Instructions:

1. Key in the program routines; press when done.

2. If your vectoris in rectangular form, press R and go to step
4. If your vector is in polar form, press P and continue with
step 3.

3. Key in R and press [R/S], key in T and press [(R/S], and key in P
and press [R/S]. Continue at step 5.

4. Key in X and press [R/S], key in Y and press [R/S], and key in Z
and press [R/S].

5. To key in a second vector, press E (for enter) and go to
step 2.

170 12: Mathematics Programs

6. Perform desired vector operation:

a. Add vectors by pressing A;

b. Subtract vector one from vector two by pressing S;

c. Compute the cross product by pressing C;

d. Compute the dot product by pressing D and the angle
between vectors by pressing [R/S].

7. Optional: to review v; in polar form, press P, then press
repeatedly to see the individual elements.

8. Optional: to review v; in rectangular form, press R, then
press repeatedly to see the individual elements.

9. If you added, subtracted, or computed the cross product, v; has
been replaced by the result. v, is not altered. To continue cal-
culations based on the result, remember to press E before
keying in a new vector.

10. Go to step 2 to continue vector calculations.

Variables Used:

XY Z The rectangular components of v;.

uvw The rectangular components of v,.

R T P The radius, the angle in the x-y plane (0), and the
angle from the Z axis of v; (®).

D The dot product.

G The angle between vectors (7).

Example 1. A microwave antenna is to be pointed at a transmitter
which is 15.7 kilometers North, 7.3 kilometers East and 0.76 kilome-

ters below. Use the rectangular to polar conversion capability to find
the total distance and the direction to the transmitter.

12: Mathematics Programs 171

N(A 7.3]
------------ Transmitter

15.7

Antenna

E ()

Keys: Display: Description:

R X ?value Starts rectangular
input/display routine.

7.3 ¥ ?value Sets X equal to 7.3.

15.7 2?value Sets Y equal to 15.7.

.76 R=17.3308 Sets Z equal to —0.76
and calculates R, the
radius.

R/S T=65.0631 Calculates T, the angle
in the x/y plane.

R/S P=925134 Calculates P, the angle
from the z-axis.

Example 2. What is the moment at the origin of the lever shown
below? What is the component of force along the lever? What is the
angle between the resultant of the force vectors and the lever?

172 12: Mathematics Programs

A F1=17
T=215°
p=17°

Fp=23

T=80°
P=74°

First, add the force vectors.

Keys: Display: Description:

P R?value Starts polar input
routine.

17 T?value Sets radius equal to 17.

215 P2value Sets T equal to 215.

17 R?17.0000 Sets P equal to 17.

E R?17.0000 Enters vector by copy-
ing it into v,.

23 T?-1450000 Sets radius of v; equal
to 23.

80 P?17.0000 Sets T equal to 80.

74 R?23.0000 Sets P equal to 74.

A R?29.4741 Adds the vectors and
displays the resultant
R.

R/S T?90.7032 Displays T of resultant
vector.

12: Mathematics Programs 173

R/S P?39.9445

E R?29.4741

Displays P of resultant
vector.

Enters resultant vector.

Since the moment equals the cross product of the radius vector and
the force vector (r X F), key in the vector representing the lever and
take the cross product.

Keys: Display:

1.07 T298.7032

125 P239.9445

63 R?1.86700

C R?18.8209

R/S T?55.3719

R/S P?124.3412

R X?8.4554

R/S ¥Y?12.2439

R/S Z2?-10.1660

Description:

Sets R equal to 1.07.

Sets T equal to 125.

Sets P equal to 63.

Calculates cross prod-
uct and displays R of
result.

Displays T of cross
product.

Displays P of cross
product.

Displays rectangular
form of cross product.

The dot product can be used to resolve the force (still in v,) along the
axis of the lever.

174 12: Mathematics Programs

Keys: Display:

P R?18.0209

1 T?55.3719

125 P?124.3412

63 R?1.0000

D D=24.1882

R/S G=34.8490

R/S R?1.0000

Description:

Starts polar input
routine.

Defines the radius as

one unit vector.

Sets T equal to 125.

Sets P equal to 63.

Calculates dot product.

Calculates angle be-
tween resultant force

vector and lever.

Gets back to input
routine.

Solutions of Simultaneous Equations—
Determinant Method

This program solves simultaneous linear equations in two or three un-
knowns. The program uses Cramer’s method, also know as the
method of determinants.

Given a system of three linear equations

AX + DY + GZ =]

BX + EY + HZ = K

CX+ FY+1Z=1L

the three unknowns X, Y, and Z may be computed from determinants.

12: Mathematics Programs 175

Det
X X =

Det

A D

Det = |B E

C F

A]

Dety =|B K

C L

Program Listing:

Program Lines:

AB1 LBL A

RBZ 1012

AB3 STO 1

Dety Det

Y = Z =
Det Det

G] D G

H Det, =|K E H

I F I

G A D]]

H Det,=|B E K

I C F
Description:

Starting point for input of all known values.
Loop-control value: loops from 1 to 12, 1 at

a time.

Stores control value in index variable.

Bytes and Checksum: 012.5, 7878

Lel LBL L

L2 INPUTCiD

Le3 ISG i

Le4 GTO L

L83 GTO A

Starts the input loop.
Prompts for and stores the variable pointed
to by 1.
Adds one to i.
If i is less than 13, goes back to LBL L and

gets the next value.
Returns to LBL A to review values.

Bytes and Checksum: 007.5, C1DE

S81 LBL S

sez 9

$83 STO i

176

Starting point for simultaneous equation
solutions.
Index value of I for indirect addressing.
Stores index value.

12: Mathematics Programs

583

S06

sav

508

s83

518

S11

512

513

S14

o
o

0
0
0

o
W

M
M
M
M

M
)
=
=
=
i

=
]
T
N
M

=
W

0
=
l

Ty
C
n

0
w
0
0

0
0
0

W
M

P
f
a
M
M

=
W

0
0

XER E

®EQ

STO

“EQR

&

STO

REQ E

m
r
r
O

-

®EG D

STO Y

®ER E
3

STO 1

XEQ m

“EQR

STO

“EQR

“ER o
m
z
x

0
O

STO+ ¥

STO= Y

5TO+ £

RCL =

VIEW =X

RCL Y

VIEW ¥

RCL £

VIEW Z

RTH

Exchanges solution column and coefficients
column containing I.
Calculates determinant.
Saves determinant in Z.
Restores determinant to original form.
Index value of F for indirect addressing.
Stores index value.
Exchanges solution column and column
containing F.
Calculates determinant.
Saves determimant in Y.
Restores determinant to original form.
Index value of C for indirect addressing.
Stores index value in index variable.
Exchanges solution column and column
containing F.
Calculates determinant.
Saves determinant in X.
Restores determinant to original form.
Calculates determinant of original
coefficients.
Divides by original determinant.

Recalls and displays results for X, Y and Z.

Returns to the calling program or to
PRGM TOP.

and Checksum: 045.0, 3971

LEL E

RCLC12

RCL L

STOCL

This routine exchanges columns for
Cramer’s rule.

Gets last element from column of coefficient

determinant.

Gets last element from solution vector.

Saves vector element in determinant.

12: Mathematics Programs 177

EBS

Ede

EBY

EB8

E@9

Elo

El1l

ElZ2

E13

E14

E15

Ele

E17

Elg

E12

EZ2B

E21

Bytes

Da1

Daz

Da3

ha4d

Das

D86

Davy

Das

Das

Dia

D11

D12

D13

D14

178

RR

STO L

OSE 1

RCLCiD

RCL K

STOC1?

=L >y

STO K

DSE i

RCLC1D

RCL J

STOCi?

=Ly

STO J

2

STO+ i

RTH

Gets the coefficient element back.

Saves the element in the vector.

Sets index value to point to middle element
in column of determinant.

Gets middle element from column of

determinant.

Gets middle element from vector.

Saves vector element in determinant.

Gets the coefficient element back.

Saves the coefficient element in the vector.

Sets index value to point to top element in
column of determinant.

Gets top element from column of
determinant.

Gets top element from vector.
Saves vector element in determinant.

Gets the determinant element back.

Saves the determinant element in the vector.

Restores i to its original value when routine
started.
Returns to the calling program or to
FPRGM TOPF.

and Checksum: 031.5, 8420

LEL D

RCL A

RCLx E

RCLx I

RCL D

RCLx H

RCLx C
+

RCL G

RCLx F

RCLx B
+

RCL G

RCLx E

This routine calculates the determinant.

Calculates A XE X1.

Calculates (AXEXI) + (DXxHXxC).

Calculates (AXEXI) + (DXHxC) +
(G X FxB).

12: Mathematics Programs

D15

Die

D17

Dig

D13

D28

D21

D22

D23

D24

D25

RCLx C

RCL R

RCLx F

RCLx H

RCL D

RCLx B

RCLx I

RTH

(AXEXI) + (DXHXC) + (GXFXB) —
(GXEXOQ).

(AXEXI) + (DXHXxXC) + (GXFxB) —
(GXEXC) — (AXFxH).

(AXEXI) + (DXHXC) + (GXFXB) —
(GXExXC) — (AXFxXH) — (DXBXI).
Returns to the calling program or to
PRGM TOP.

Bytes and Checksum: 037.5, 152E

Flags Used: None.

Memory Required: 262 bytes: 134 for program, 128 for variables.

Program Instructions:

1.

Variables Used:

Key in the program routines; press when done.

Press A to input coefficients (that is, A through L) of linear
equations.

Key in coefficient (A through L) at each prompt and press (R/S].

Optional: to compute determinant of a 3 X 3 system, D.

Compute solution to system of equations by pressing S.

See value of X and press to see the value of Y.

Press to see the value of Z.

For a new case, go back to step 2.

A through I

J through L

X through Z

1

Coefficients of equations.

Right-hand sides of equations.

Unknowns.

Loop-control value (index variable).

12: Mathematics Programs 179

Remarks: This program is for a system of two or three equations
(that is, a matrix of n < 3).

For 2 X 2 solutions use zero for coefficients C, F, G, H, and L. Use 1
for coefficient I. For non-square matrices, use zero for the “missing”
coefficients.

Not all systems of equations have solutions. If not, they cause the
error DIVIDE BY @ at line S21.

Example 1. For the system below, compute the determinant and the
system solution. Then substitute the values back into the first equa-
tion to verify that the left side of the equation is actually equal to the
right side (1).

23X + 15Y + 172 = 1

8X + 11y — 6Z =1

4X + 15Y + 122 =1

Keys: Display: Description:

A A?value Starts input routine.

23 B?value Sets first coefficient, A,
equal to 23.

8 C?value Sets B equal to 8.

4 D?value Sets C equal to 4.

15 E?value Sets D equal to 15.

Continues entry for all
values (E through L).

1 A?23.0000 Returns to first coef-

ficient entered.

D 4,598.0000 Calculates the
determinant.

180 12: Mathematics Programs

S X=0.0043

R/S ¥Y=0.8787

R/S Z=-08.0165

Now, to verify the result:

Keys: Display:

23 X 0.1000

15 x]Y 1.1809

1.2810

17 (x]Z -0.2810

1.0000

Solves system of equa-
tions and displays X.

Displays Y.

Displays Z.

Description:

Multiplies X by 23.

Multiplies Y by 15.

Adds the last two

results.

Multiplies Z by 17.

Completes the left side
of the equation. Since
the left and right sides
are both equal to one
(to 11 significant dig-
its), the solution is

correct.

Example 2. Solve for the loop currents in the circuit below:

8Q2

L 1

D,
+

12: Mathematics Programs 181

First write the equations for the voltage drops around each loop.

For loop 1: 4X — 4Y + 15X — 15Z — 40

For loop 2: 4Y — 4X + 8Y + 10Y — 10Z

=0

=0

For loop 3: 10Z — 10Y + Z + 15Z — 15X = 0

Combining like terms within each equation produces

19X — 4Y — 15Z = 40

—4X + 22Y — 10Z = 0

—15X — 10Y + 26Z = 0

Keys: Display:

A A?value

19 B?value

4 C?value

15 D?value

0 A?19.0000

S X=7.8601

R/S ¥Y=4.2298

R/S Z2=6.1615

182 12: Mathematics Programs

Description:

Starts input routine.

Sets first coefficient, A,

equal to 19.

Sets B equal to —4.

Sets C equal to —15.

Continues entry for D
through L.

Enters L and returns to

first coefficient

entered.

Solves system of equa-
tions and displays X.

Displays Y.

Displays Z.

Solutions of Simultaneous Equations—
Matrix Inversion Method

This program solves simultaneous linear equations in two or three un-
knowns. It does this through matrix inversion and matrix
multiplication.

A system of three linear equations

AX + DY + GZ =]

BX + EY + HZ = K

CX+FY+1Z =1

can be represented by the matrix equation below.

A
W

>

m
o
m

O

~
O

N
< I

-~
R
~

The matrix equation may be solved for X, Y, and Z by multiplying the
result matrix by the inverse of the coefficient matrix.

A D G|]|] X

B E HI||K|=]Y

¢ F r L Z

Specifics regarding the inversion process are given in the comments
for the inversion routine, I.

12: Mathematics Programs 183

Program Listing:

Program Lines: Description:

A@1 LEL A Starting point for input of coefficients.
ARBz 1812 Loop-control value: loops from 1 to 12, 1 at

a time.

AB3 STO i Stores control value in index variable.

Bytes and Checksum: 012.5, 7878

L8l LBL L Starts the input loop.
LB2 INPUTCi? Prompts for and stores the variable ad-

dressed by i.
LA3 ISG i Adds one to 1.

La4 GTO L If i is less than 13, goes back to LBL L and
gets the next value.

L5 GTO A Returns to LBL A to review values.

Bytes and Checksum: 007.5, C1DE

Iel LBL I This routine inverts a 3 X 3 matrix.

162 HE@ D Calculates determinant and saves value for

the division loop, J.

Ia2 STO H

Ia4 RCL A

Ias RCLx I

Iss RCL C

Ia7y ECLx G

Iag -

Ia2 STO X Calculates E’ X determinant = AI — CG.

118 RCL C

I11 RCL= D

I12 RCL H

I13Z RCL® F

I114 -

I15 STO ¥ Calculates F# X determinant = CD — AF.

Il RCL B

I17 RCLx G

I12 RCL H

I12 RCLx H

I2za -

I21 STO 2 Calculates H” X determinant = BG — AH.

I22 ERCL A

184 12: Mathematics Programs

I23 RCLx E

124 RCL B

I25 RCLx D

126 -

I27 STO i Calculates I’ X determinant = AE — BD.

128 RCL E

129 RCLx 1

1386 RCL F

I31 RCLxX H

132 -

I33 STO A Calculates A” X determinant = EI — FH.

134 RCL C

I35 RCLxX H

136 RCL B

137 RCLx 1

138 - Calculates B’ X determinant = CH — BI.

139 RCL B

I486 RCLX F

I41 RCL C

I42 RCLx E

143 -

I44 STO C Calculates C’ X determinant = BF — CE.

145 R+

I46 STO B Stores B’.

147 RCL F

148 RCLX G

I49 RCL D

I58 RCLx I

IS1 - Calculates D’ X determinant

IS2 RCL D

IS3 RCLxX H

154 RCL E

IS5 RCLx G

156 -

IS? STO G Calculates G’ X determinant = DE — EG.

IS8 R+

I59 STO

168 RCL

I61 STO

I62 RCL

I63 STO

FG — DI

Stores D’.

Stores I'.

m
x
X

=
~
=

0
O

Stores E’.

12: Mathematics Programs 185

Ie4 RCL

Ie3 STO

I66 RCL

Ie? STO

Ieg S

Ie9 STO i

N
T
<

I76 RCL W

Stores F'.

Stores H'.

Sets index value to point to last element of
matrix.

Recalls value of determinant.

Bytes and Checksum: 105.0, E5C1

Jol LBL J

Jaz STO+Ci)

Ja3 DSE i

Jad4 GTO J

Jas RTHN

This routine completes inverse by dividing
by determinant.
Divides element.
Decrements index value so that it points
closer to A.
Loops for next value.
Returns to the calling program or to
PRGM TOP.

Bytes and Checksum: 007.5, A354

M1 LBL M

Maz 7

MB3 XEQ N

Ma4 8

MB35 XEQ@ N

MBe 9

This routine multiplies a column matrix and
a 3 X 3 matrix.
Sets index value to point to last element in
first row.

Sets index value to point to last element in
second row.

Sets index value to point to last element in
third row.

Bytes and Checksum: 009.0, 0A85

NB81 LBL N

NB2 STO

NB83 RCL

N84 RCL

N85 RCL L

NBe RCLxCi?

N8B8¢ XEQ P

-
~
e

This routine calculates product of column
vector and row pointed to by index value.
Saves index value in 1.
Recalls | from column matrix.
Recalls K from column matrix.
Recalls L from column vector.
Multiplies by last element in row.
Multiplies by second element in row and
adds.

186 12: Mathematics Programs

NB3

Na9

N1@

N11

N12

N13

HN14

Bytes

Fa1

Faz

PB3
Fa4

PBS5
FBae

Faz

FPBs3
Bytes

Da1

bDez2

Da3

Da4

Das

Dae

pary

DBas

Das

D16

D11

D12

D13

Di4

D15

Die

XEQ P

23

STO+ i
R+

STOC1i?

VIEWC1D

RTH

Multiplies by third element in row and
adds.
Sets index value to display X, Y, or Z based
on input row.

Gets result back.
Stores result.
Displays result.
Returns to the calling program or to
PRGM TOP.

and Checksum: 021.0, BBBF

LBL P

Ay

DSE 1

DSE 1

DSE 1

RCLxC(1i)
+

RTH

This routine multiplies and adds values
within a row.
Gets next column value.
Sets index value to point to next row value.

Multiplies column value by row value.
Adds product to previous sum.
Returns to the calling program.

and Checksum: 012.0, 520E

LeL D

RCL A

RCLx E

RCLx 1

RCL D

RCLx H

RCLx C
+

RCL G

RCLx F

RCLx B
+

RCL G

RCLx E

RCLx C

This routine calculates the determinant.

Calculates A XE X1.

Calculates (AXEXI) + (DxHXC).

Calculates (AXEXI) + (DXHXC) +
(G X F X B).

(AXExXI) + (DXHXC) + (GXFXB) —
(GXEXC).

12: Mathematics Programs 187

D17

D18

D19

Dza

D21

D22

D23

D24

D25

RCL A

RCLx F

RCLx H

- (AXEXI) + (DXHXC) + (GXFXB) —
(GXEXC) — (AXFXH).

RCL D

RCLx B

RCLx 1

- (AXEXI) + (DXHXC) + (GXFXB) —
(GXEXC) — (AXFxH) — (DXBXI).

RTH Returns to the calling program or to
PRGM TOP.

Bytes and Checksum: 037.5, 152E

Flags Used: None.

Memory Required: 348 bytes: 212 for program, 136 for variables.

Program Instructions:

1.

2.

188

Key in the program routines; press when done.

Press A to input coefficients of matrix and column vector.

Key in coefficient or vector value (A through L) at each prompt
and press (R/S].

Optional: press D to compute determinant of 3 X 3 system.

Press I to compute inverse of 3 X 3 matrix.

Optional: press A and repeatedly press to review the
values of the inverted matrix.

Press M to multiply the inverted matrix by the column vec-
tor and to see the value of X. Press to see the value of Y,
then press again to see the value of Z.

For a new case, go back to step 2.

12: Mathematics Programs

Variables Used:

A through I Coefficients of matrix.

J through L Column vector values.

W Scratch variable used to store the determinant.

X through Z Output vector values; also used for scratch.

i Loop-control value (index variable); also used for
scratch.

Remarks: For 2 X 2 solutions use zero for coefficients C, F, H, G and

for L. Use 1 for coefficient I.

Not all systems of equations have solutions.

Note that routines A, L, and D are common to this program and to
the “Solutions of Simultaneous Equations—Determinant Method”
program.

Example. For the system below, compute the inverse and the system
solution. Review the inverted matrix. Invert the matrix again and re-
view the result to make sure that the original matrix is returned.

23X + 15Y + 17Z = 31

8X + 11Y — 6Z = 17

4X + 15Y + 12Z = 14

Keys: Display: Description:

A A?value Starts input routine.

23 B?value Sets first coefficient, A,
equal to 23.

8 C?value Sets B equal to 8.

4 D?value Sets C equal to 4.

15 E?value Sets D equal to 15.

Continues entry for D
through L.

12: Mathematics Programs 189

14 [R/8]

(xEQ] M

R/S

R/S

XEQ

R/S

R/S

R/S

R NS

R NS

R/S

0 N w

R NS

XEQ

XEQ

R/S

190

I

A

L

A

R?23.60080

4,598.0000

X=0.9386

¥Y=0.7943

Z2=-0.1364

R?0.8483

B?-0.8261

C?8.8165

D?8.8163

E?8.8452

F?-0.0620

G?-0.0682

H?8.8596

178.8289

8.8002

A?23.80000

B?8.00008

12: Mathematics Programs

Returns to first coef-

ficient entered.

Calculates the inverse

and displays the
determinant.

Multiplies by column
vector to compute X.

Calculates and displays
Y.

Calculates and displays
Z

Begins review of the
inverted matrix.

Displays next value.

Displays next value.

Displays next value.

Displays next value.

Displays next value.

Displays next value.

Displays next value.

Displays next value.

Inverts inverse to pro-
duce original matrix.

Begins review of in-
verted inverted matrix.

Displays next value,...

...and so on.

Quadratic Equation

This program uses the quadratic formula to solve for the real and
complex roots of a second-degree polynomial.

A polynomial of degree two

ax> + bx + ¢ =0

can be solved for x using the quadratic formula

—b + Vb* — 4ac
x=—

2a ’

where b2 — 4ac is the discriminant. In the case of complex roots
(where the discriminant is negative), the real part is

while the imaginary part is

For real roots, the program always calculates the root of the greatest
absolute value first. It does this to minimize inaccuracies that can be
introduced if the square root of the discriminant is nearly equal to b.
Once thefirst root, x;, is found, the second root, x,, is computed using
the relationship

Numerical errors, like the one avoided by this program, are common
in computer software. Any computer that uses a finite number of dig-
its for computation will fail numerically unless care is taken in
selection and implementation of the method of solution. Inaccurate

12: Mathematics Programs 191

results produced by the computer are often preventable by careful
software design. Example 4 illustrates the numerical problem that is
avoided by this quadratic-formula program.

Program Listing:

Program Lines:

Qa1

QB2

83

@64

QB35

RO6

Ray

Res

Qa9

@18

@11

Q12

213

@214

@13

R1e

Q17

218

@19

Q20

Q21

Rz22

Q23

Q24

Q235

Q26

Q27

P28

R29

192

LBL @

INPUT R

==87?

GTO @

INPUT B

INPUT C

==87?

GTO @

RCL B
+/-

CF ©

=<87?

SF 8

RCL B

x2

4

RCLx R

RCLx C

= <07

GTO I

SART

FS? @
+/=

RCL+ A

STO X

Description:

Defines the beginning of the quadratic-
equation routine.
Prompts for and stores the value of A.
If A is zero, goes back and asks for A again.

Prompts for and stores the value of B.
Prompts for and stores the value of C.
If C is zero, goes back and asks for all inputs
again.

Recalls B.
—B.

Clears flag 0. (Assumes that (—B) is
positive.)
Is (—B) negative?

Sets flag 0 if it is.

Calculates B2.

Calculates B2 — 4AC.
Tests to see if the roots are imaginary.
Branches to imaginary routine if they are.

V(B> — 4AC).
Tests to see if (—B) is negative.

Selects root of largest absolute value.

—B — \/(B? — 4AC) or —B + /(B> — 4AC).

Calculates X of largest absolute value.
Stores value of X with largest absolute
value.

12: Mathematics Programs

R38

231

Q32

33

R34

R33

R36

Bytes

Iail

Iaz

183

Iaqg

Ias

Ide

Iay

Ias

Ias

Ilg

I11

Ilz

I13

I14

I15

Ile

I1v

VIEW X

RCL C

RCL+ A

RCL+ X

STO =

VIEW =®

GTO @

Displays X.
Calculates second value of X.

Calculates X = C + AX.

Stores second value of X.

Displays X.
Goes back for a new case.

and Checksum: 054.0, A04D

LBL I

AES

SERT

2

RCL* R

STO I

RCL B

+.—

LAST =

STO R

RCL I

RCL R

VIEW E

VIEW 1

CTO @

Defines the beginning of the imaginary
computation routine.

Calculates absolute value of

V(B> — 4AC) + 2A.
Stores the imaginary part.

Retrieves 2A.

Stores the real part in R.
Retrieves the imaginary part of X.
Retrieves the real part of X.
Displays the real part.
Displays the imaginary part.
Goes back for a new case.

Bytes and Checksum: 025.5, DA3B

Flags Used: Flag 0 is used to remember the sign of (—B). If (—B) is

negative, then flag 0 is set. Flag 0 is tested later in the program to
assure that the first real root computed is the one of largest absolute
value. If (—B) is negative (flag 0 is set), then the routine subtracts the
square root of the discriminant from (—B). If (—B)is positive (flag 0 is
clear), then the routine adds the square root.

12: Mathematics Programs 193

Memory Required: 127.5 bytes: 79.5 for program, 48 for variables.

Remarks: Expanding this program to handle cubic equations would
be quite easy. Since a cubic equation always has at least one real root,
the SOLVE function could be used to find the root. Then synthetic
division could reduce the cubic equation to a quadratic equation
which would be solved by this program.

Program Instructions:

1. Key in the program routines; press when done.

2. Press Q to start the quadratic equation routine.

3. Key in A and press [R/S].

4. Key in B and press (R/S].

5. Key in C and press (R/S].

6. See the first value of X, if the roots are real, or see the real part,

R, if the roots are imaginary.

7. Press to see the second value of X, or to see the imaginary
part, I, if the roots are imaginary.

8. For a new case, press and go back to step 3.

Variables Used:

Coefficient of x2.

Coefficient of x.

Constant.

The first or second real value of x.

The real portion of the complex root.

~
R

X
0O

R
o>

The positive, imaginary part of the complex root.

Example 1. Find the roots of 3x2 + 5x — 3 = 0.

194 12: Mathematics Programs

Keys: Display:

Q A?value

3 B?value

5 C?value

3 X=-2,1350

R/S x=0.4684

Description:

Starts the quadratic
equation program.

Stores 3 in A.

Stores 5 in B.

Stores —3 in C and

calculates the first

value of X.

Calculates second

value of X.

Example 2. Find the roots of 3x2 + 5x + 3 = 0. Note that the only
difference between this problem and example 1 is the sign of C. If you
have already run example 1, all you have to do is change the sign
of C:

Keys: Display:

R/S A?3.8000

R/S B?5.860088

R/S C?-3.8800

R=-8.8333

R/S I=8.5528

Description:

Resumes the program.

Keeps A.

Keeps B.

Changes the sign of C
and calculates the real
part of the complex
root.

Calculates the positive
value of the imaginary
root.

Example 3. A ball is thrown straight up at a velocity of 20 meters
per second from a height of 2 meters. Neglecting air resistance, at
what time will it reach the ground? The acceleration of gravity is 9.81
meters per second?.

12: Mathematics Programs 195

According to Newtonian mechanics, this problem may be expressed
as a second degree polynomial, where T is time in seconds.

f(T) = (—9.81 = 2)T2 + 20T + 2

Keys: Display: Description:

Q A?value Starts the quadratic
equation program.

9.81 2 (+] Stores (—9.81/2) in A.
R/S B?value

20 C?value Stores 20 in B.

2 X=4,1751 Stores 2 in C and cal-
culates X (which in this
case is also known as

T).

R/S K=-8.8977 Calculates the other

root.

Note that since a negative time has no meaning in the context of this
problem, the first result, 4.1751 seconds, is the meaningful answer.

Example 4. Find the roots of the following second-degree polyno-
mial using the program as it is listed. Then change the sense of the
comparison at line Q12 so that the second root is computed first and
then the results are compared. Remember to restore the original line
or clear the program when you finish this example.

x2 + (3 x 105 + 1 =0

Keys: Display: Description:

Q A?value Starts program.

1 B?value Stores 1 in A.

3(E)6 C?value Stores 3 X 106 in B.

1 X=-3,000,000.80 Stores 1 in C and cal-

culates the first root.

196 12: Mathematics Programs

R/S ®=-3.3333E-7 Calculates the second

root.

B(PrGM] R36 GTO @ Switches to program
entry.

Bco]() Q12 R12 <07 Moves program pointer
to line Q12.

(¢] Q11 CF @ Deletes line Q12.

B(TEsTS] {x70} Adds the conditional
{>8} 12 x>8? test x>07?.

-3.3333E-7 Cancels program entry.

Q A?1.0000 Starts program.

Skips data entry since
values are already
stored.

R/S X=0.0000 Calculates first root us-
ing previous inputs.

R/S DIVIDE BY © Attempts to compute
second root.

As you can see, the results of a simple change in the order of calcula-
tion can be quite significant.

If you substitute the first values calculated back into the equation, you
will find that the left-hand side of the equation is zero for the root of
smaller absolute value (as it theoretically should be) and 1 for the root

of larger absolute value. Does this mean that the result of
—3,000,000.0000 is incorrect? The answer to this question is a quali-
fied no. If you increment or decrement this value by one count in the
least significant digit and substitute the result back into the original
equation, then the left-hand side will be 31 or —29. Thus,

—3,000,000.0000, while not being exactly correct, is the best possible
12-digit result that could be generated.

12: Mathematics Programs 197

Coordinate Transformations

This program provides two-dimensional coordinate translation and
rotation.

The following formulas are used to convert a point P from the Carte-
sian coordinate pair (x, y) in the old system to the pair (4, v) in the
new, translated, rotated system.

u = (x — m)cosf + (y — n) sinf

v = (y — n)cosl — (y — n) sinf

The inverse transformation is accomplished with the formulas below.

X = u cos — v sinf + m

y = usinf + v cosf + n

The HP-325 complex and polar-to-rectangular functions make these
computations straightforward.

Y

old coordinate\"""" BP
system \

(0,0) \l ;
’

 d

New coordinate
system

A Two-Dimensional Rotation About the Axis

198 12: Mathematics Programs

Program Listing:

Program Lines: Description:

De1 LBL D This routine defines the new coordinate
system.

DB2 INPUT M Prompts for and stores M, the new origin’s
x-coordinate.

D83 INPUT N Prompts for and stores N, the new origin’s
y-coordinate.

D84 INPUT T Prompts for and stores T, the angle 6.
DBS GTO D Loops for review of inputs.
Bytes and Checksum: 007.5, 1CD9

NB1 LBL N This routine converts from the old system to
the new system.

NB2 INPUT ¥ Prompts for and stores X, the old x-

coordinate.
NB3 INPUT Y Prompts for and stores Y, the old y-

coordinate.
N@4 RCL X Pushes Y up and recalls X to the X-register.
NB5 RCL N Pushes X and Y up and recalls N to the X-

register.
NB&é RCL M Pushes N, X, and Y up and recalls M.

NB7 CMPLX- Calculates (X—M) and (Y—N).
NBes8 RCL T Pushes (X—M) and (Y—N) up and recalls T.
NB9 +,/- Changes the sign of T because sin(—T)

equals —sin(T).
Ni@ 1 Sets radius to 1 for computation of cos(T)

and —sin(T).
N1l 8,ry,x Calculates cos(T) and —sin(T) in X- and Y-

registers.
N12 CMPLXX Calculates (X—M) cos(T) + (Y—N) sin(T)

and (Y—N)cos(T) — (X—M) sin(T).
N13 STO U Stores x-coordinate in variable U.
N1d4 =<>y Swaps positions of the coordinates.
N15 STO V Stores y-coordinate in variable V.
N16 x<>y Swaps positions of coordinates back.
N17 VIEW U Halts program to display U.
N18 VIEW V Halts program to display V.
N19 GTO N Goes back for another calculation.
Bytes and Checksum: 028.5, 6078

12: Mathematics Programs 199

081 LEBL O This routine converts from the new system
to the old system.

082 INPUT U Prompts for and stores U.
083 INPUT W Prompts for and stores V.
084 RCL U Pushes V up and recalls U.
085 RCL T Pushes U and V up and recalls T.
086 1 Sets radius to 1 for the computation of

sin(T) and cos(T).
087 B,r+y,= Calculates cos(T) and sin(T).
088 CMPLXx Calculates U cos(T) — V sin(T) and U sin(T)

+ V cos(T).

082 RCL M Pushes up previous results and recalls N.
018 RCL M Pushes up results and recalls M.
011 CHMPLE+ Completes calculation by adding M and N

to previous results.
012 STO ¥ Stores the x-coordinate in variable X.
013 =<y Swaps the positions of the coordinates.
014 STO Y Stores the y-coordinate in variable Y.
015 =<y Swaps the positions of the coordinates back.
016 VIEW X Halts the program to display X.
017 VIEMW ¥ Halts the program to display Y.
018 GTO O Goes back for another calculation.
Bytes and Checksum: 027.0, 9AE6

Flags Used: None.

Memory Required: 119 bytes: 63 for program, 56 for variables.

Program Instructions:

1. Key in the program routines; press when done.

2. Press D to start the prompt sequence which defines the co-
ordinate transformation.

3. Key in the x-coordinate of the origin of the new system M and
press [R/S].

4. Key in the y-coordinate of the origin of the new system N and
press .

200 12: Mathematics Programs

5.

10.

11.

12.

13.

14.

15.

16.

Key in the rotation angle T and press [R/S].

To translate from the old system to the new system, continue
with instruction step 7. To translate from the new system to the
old system, skip to step 12.

Press N to start the old-to-new transformation routine.

Key in X and press (R/S].

Key in Y, press [R/S], and see the x-coordinate, U, in the new
system.

Press and see the y-coordinate, V, in the new system.

For another old-to-new transformation, press and go to
step 8. For a new-to-old transformation, continue with step 12.

Press O to start the new-to-old transformation routine.

Key in U (the x-coordinate in the new system) and press [R/S].

Key in V (the y-coordinate in the new system) and press to
see X.

Press to see Y.

For another new-to-old transformation, press and go to
step 13. For an old-to-new transformation, go to step 7.

Variables Used:

<
S
S

=
x
S
z

The x-coordinate of the origin of the new system.

The y-coordinate of the origin of the new system.

The rotation angle, 6, between the old and new systems.

The x-coordinate of a point in the old system.

The y-coordinate of a point in the old system.

The x-coordinate of a point in the new system.

The y-coordinate of a point in the new system.

Remarks: For translation only, key zero for T. For rotation only, key
zero for M and N.

Example: For the coordinate systems shown below, convert points
Py, P,, and P3, which are currently in the (X,Y) system, to points in

the (X’,Y’) system. Convert point P’4, which is in the (X’,Y’) system, to

the (X,Y) system.

12: Mathematics Programs 201

° £1(-9,7) y' *Ale8

T
® P3(2.7,-3.6)

Py(-5,-4)
@

/ (HN)=(7,-4)
r=27°

Keys: Display: Description:

@(voDES] {DG} Sets Degrees mode
since T is given in
degrees.

D M?value Starts the routine
that defines the
transformation.

7 N?value Stores 7 in M.

4 T?value Stores —4 in N.

27 M?7.0000 Stores 27 in T.

202 12: Mathematics Programs

[(xEQ) N

9 (4] (Rss]

7 [R/8]

R/S

R/S

5 (4] (R/S)

4 (4] (R/S]

R/S

R/S

6 (R/S]

8 (R/S]

R/S

(xEa] O

2.7

3.6

R/S

¥ ?value

Y 2?value

U=-9.2622

V=17.8649

X?-9.80000

Y?7.0000

U=-10.6921

V=5.4479

X?-5.0000

Y?-4.00080

U=4.3569

V=11.1461

uU?4.5569

v?11.1461

X=118401

¥=-59818

Starts the old-to-new

routine.

Stores —9 in X.

Stores 7 in Y and cal-

culates U.

Calculates V.

Resumes the old-to-

new routine for next

problem.

Stores —5 in X.

Stores —4 in Y.

Calculates V.

Resumes the old-to-

new routine for next

problem.

Stores 6 in X.

Stores 8 in Y and cal-

culates U.

Calculates V.

Starts the new-to-old

routine.

Stores 2.7 in U.

Stores —3.6 in V and

calculates X.

Calculates Y.

12: Mathematics Programs 203

13
Statistics Programs

The memory usage and checksum for each program label can be
checked using the catalog of programs (page 85).

Curve Fitting

This program can be used to fit one of four models of equations to
your data. These models are the straight line, the logarithmic curve,
the exponential curve and the power curve. The program accepts two
or more (x, y) data pairs and then calculates the correlation coefficient,
r, and the two regression coefficients, m and b. The program includes
a routine to calculate the estimates X and j. (For definitions of these
values, see “Linear Regression” in chapter 11.)

Samples of the curves and the relevant equations are shown below.
The internal regression functions of the HP-32S are used to compute
the regression coefficients.

204 13: Statistics Programs

Straight Line Fit Exponential Curve Fit

S E
Y Y

y=B + Mx y:Bgfll(

\

/

7 X X

Logarithmic Curve Fit Power Curve Fit

y L y P

y=B + M In x y=BxW¥

 / X X

To fit logarithmic curves, values of x must be positive. To fit exponen-
tial curves, values of y must be positive. To fit power curves, both x
and y must be positive. A LOGC(HEG>» error will occur if a negative
number is entered for these cases.

Data values of large magnitude but relatively small differences can
incur problems of precision, as can data values of greatly different
magnitudes. Refer to “Limitations in Precision of Data” in chapter 11.

13: Statistics Programs 205

Program Listing:

Program Lines:

Sa1 LBL S

sez 1

Se3 CF o

S84 CF 1

S@5 GTO 2

Bytes and Checksum

Lel LBL L

Lez2 2

LBe3 SF ©

Le4 CF 1

LBS GTO 2

Bytes and Checksum

E61 LBL E

EB2 3

EB3 CF ©

EB4 SF 1

EBS GTO 2

Bytes and Checksum

P81 LBL P

PB2 4

PB3 SF ©

PB4 SF 1

Bytes and Checksum

Description:

This routine sets the status for the straight-
line model.
Enters index value for later storage in i (for
indirect addressing).
Clears flag 0, the indicator for InX.

Clears flag 1, the indicator for InY.
Branches to common entry point Z.

: 007.5, 17CA

This routine sets the status for the logarith-
mic model.
Enters index value for later storage in i (for
indirect addressing).
Sets flag 0, the indicator for InX.
Clears flag 1, the indicator for InY.
Branches to common entry point Z.

: 007.5, 6047

This routine sets the status for the exponen-
tial model.
Enters index value for later storage in i (for
indirect addressing).
Clears flag 0, the indicator for InX.
Sets flag 1, the indicator for InY.
Branches to common entry point Z.

: 007.5, COF1

This routine sets the status for the power
model.
Enters index value for later storage in i (for
indirect addressing).
Sets flag 0, the indicator for InX.
Sets flag 1, the indicator for InY.

: 006.0, A26B

206 13: Statistics Programs

2681

282

203

284

LBL 2

CLZ

STO i

e

Defines common entry point for all models.
Clears the statistics registers.
Stores the index value in i for indirect
addressing.
Sets the loop counter to zero for the first
input.

Bytes and Checksum: 006.0, CC1B

Wa1

Waz2

We3

Wa4

WB5

Wae

Wev

Wes

Was

Wig

Wil

W12

W13

W14

W13

LBL W

1

+

STO X

INPUT X

FS? ©

LN

STO B

INPUT V¥

FS? 1

LN

STO R

RCL B
Z+

GTO W

Defines the beginning of the input loop.
Adjusts the loop counter by one to prompt
for input.

Stores loop counter in X so that it will ap-
pear with the prompt for X.
Displays counter with prompt and stores X
input.
If flag O is set...
...takes the natural log of the input.
Stores that value for the correction routine.
Prompts for and stores Y.
If flag 1 is set...
...takes the natural log of the input.

Accumulates B and R as x,y-data pair in sta-
tistics registers.
Loops for another X, Y pair.

Bytes and Checksum: 022.5, 1A43

uei

uez

ue3

ve4

ues

LBL U

RCL R

RCL B
2_

GTO W

Defines the beginning of the “undo”
routine.

Recalls the most recent data pair.

Deletes this pair from the statistical
accumulation.
Loops for another X,Y pair.

Bytes and Checksum: 007.5, 5D02

13: Statistics Programs 207

RB1

ka2

RB3

RBo4

RB5

451

ra?

rBs

R@a3s

R18

k11

R1z2

Bytes

Y1

Tas

Ya3

Y18

Bytes

AE1

Aaz

A3

AB4

R85

Bytes

208

LEL R Defines the start of the output routine.
r Calculates the correlation coefficient.
STO R Stores it in R.
VIEW R Displays the correlation coefficient.
b Calculates the coefficient b.
Fs? 1 If flag 1 is set, takes the natural antilog of b.
eX

STO B Stores b in B.
VIEW B Displays value.
m Calculates coefficient m.
STO M Stores m in M.
VIEW M Displays value.
and Checksum: 018.0, 7492

LEL ¥ Defines the beginning of the estimation
(projection) loop.

INPUT ¥ Displays, prompts for, and, if changed,
stores x-value in X.

RERCLD Calls subroutine to compute 7.
STO Y Stores y-value in Y.
IMPUT ¥ Displays, prompts for, and, if changed,

stores y-value in Y.
&

STO+ i Adjusts index value to address the appropri-
ate subroutine.

HEQCiD Calls subroutine to compute X.
STO ¥ Stores ¥ in X for next loop.
GTO Y Loops for another estimate.

and Checksum: 015.0, 9AEA

LEL A This subroutine calculates § for the straight-
line model.

RCL M

RCL»* =

RCL+ B Calculates § = MX + B.
RTH Returns to the calling routine.
and Checksum: 007.5, OE85

13: Statistics Programs

GB1l LEL G This subroutine calculates ¥ for the straight-
line model.

Gaz STO- i Restores index value to its original value.
Gai RCL Y

84 RCL- B

GBS RCL+ M Calculates ¥ = (Y — B) + M
GBE RTH Returns to the calling routine.
Bytes and Checksum: 009.0, FDF1

BBl LBL E This subroutine calculates ¥ for the logarith-
mic model.

BBz RCL =

BEaZ LH

BEdd4 RCLx M

EAS RCL+ E Calculates § = M InX + B.
EBe RTH Returns to the calling routine.
Bytes and Checksum: 009.0, 1B06

H@1 LEL H This subroutine calculates ¥ for the logarith-
mic model.

Hez sTO- i Restores index value to its original value.
HB3 RCL ¥

Ha4 RCL- B

Ha83 RCL+ M

HAag e= Calculates ¥ = elY = B) = M
HB7 RTH Returns to the calling routine.
Bytes and Checksum: 010.5, C783

C81 LEL C This subroutine calculates i for the ex-
ponential model.

Ccaz RCL M

CA3 RCL® =W

cad4 e=

C8S RCLx B Calculates §j = BeMX,
Ce&e RTH Returns to the calling routine.
Bytes and Checksum: 009.0, B411

13: Statistics Programs 209

I81 LBL I This subroutine calculates X for the ex-

ponential model.
IB2 STO- i Restores index value to its original value.
Ie3 RCL Y

164 RCL+ B

I85 LN

I86 RCL+ M Calculates X = (In(Y = B)) ~ M.
187 RTHN Returns to the calling routine.
Bytes and Checksum: 010.5, 01D6

DB1 LBL D This subroutine calculates i for the power
model.

DB2 RCL X

DB3 RCL M

DB4 »*

D85 RCLX B Calculates Y = B(XM).
D86 RTN Returns to the calling routine.
Bytes and Checksum: 009.0, B4D4

Jo1l LBL J This subroutine calculates X for the power
model.

JB2 STO- i Restores index value to its original value.
Ja3 RCL ¥

Jo4 RCL+ B

JB83 RCL M

Jae 1.x

Ja7 »x Calculates ¥ = (Y/B)I/M,
JB8 RTN Returns to the calling routine.
Bytes and Checksum: 012.0, FAA4

Flags Used: Flag 0 is set if a natural log is required of the X input.
Flag 1 is set if a natural log is required of the Y input.

Memory Required: 270 bytes: 174 for program, 96 for data (statis-
tics registers 48).

210 13: Statistics Programs

Program Instructions:

1.

2.

10.

11.

12-

13-

Key in the program routines; press when done.

Press and select the type of curve you wish to fit by
pressing:

B S for a straight line;

B L for a logarithmic curve;

® E for an exponential curve; or

B P for a power curve.

Key in x-value and press [R/S].

Key in y-value and press (R/S].

Repeat steps 3 and 4 for each data pair. If you discover that you
have made an error after you have pressed in step 3 (with
the ¥ ?value promptstill visible), press again (displaying the
¥ ?value prompt) and press U to undo (remove) the last data
pair. If you discover that you made an error after step 4, press

U. In either case continue at step 3.

After all data are keyed in, press R to see the correlation
coefficient, R.

Press to see the regression coefficient B.

Press to see the regression coefficient M.

Press to see the X?value prompt for the X-, j-estimation
routine.

If you wish to estimate based on x, key in x at the ¥?value
prompt, then press to see § (Y?).

If you wish to estimate X based on y, press until you see the
Y ?value prompt, key in y, then press to see X (X?).

For more estimations, go to steps 10 or 11.

For a new case, go to step 2.

13: Statistics Programs 211

Variables Used:

B

Statistics registers

Regression coefficient (y-intercept of a straight
line); also used for scratch.

Regression coefficient (slope of a straight line).

Correlation coefficient; also used for scratch.

The x-value of a data pair when entering data;
the hypothetical x when projecting ; or X
(x-estimate) when given a hypothetical y.

The y-value of a data pair when entering data;
the hypothetical y when projecting X; or ¥
(y-estimate) when given a hypothetical x.

Index variable used to indirectly address the cor-
rect X-, j-projection equation.

Statistical accumulation and computation.

Example 1. Fit a straight line to the data below. Make an intentional
error when keying in the third data pair and correct it with the undo
routine. Also, estimate y for an x value of 37. Estimate x for a y value
of 101.

38.6 379 36.2 35.1 34.6

 Y 104.5 102 100 97.5 95.5 94

Keys:

(xEq] s

405

104.5

Display: Description:

X?1.0000 Starts straight-line
routine.

¥ ?value Enters x-value of data

pair.

®?2.0000 Enters y-value of data
pair.

212 13: Statistics Programs

38.6 Y?104.5000

102 X?3.0000

Enters x-value of data

pair.

Enters y-value of data
pair.

Now intentionally enter 379 instead of 37.9 so that you can see how
to correct incorrect entries.

379 Y?102.0000

R/S X?4.0000

U X?3.0000

Now proceed with the correct data entry.

37.9 ¥Y?102.0000

100 X?4.0000

36.2 Y?100.0000

97.5 X?5.0000

35.1 Y?97.5000

95.5 X?6.0000

34.6 ¥?95.5000

94 X?7.0000

R R=08.9955

Enters wrong x-value
of data pair.

Retrieves X? prompt.

Deletes the last pair.

Enters correct x-value

of data pair.

Enters y-value of data
pair.

Enters x-value of data

pair.

Enters y-value of data
pair.

Enters x-value of data

pair.

Enters y-value of data
pair.

Enters x-value of data

pair.

Enters y-value of data
pair.

Calculates the correla-

tion coefficient.

13: Statistics Programs 213

R/S

R/S

R/S

37 (/8]

101

B=33.5271

M=1.7601

X?7.0800

¥?98.6526

X?383336

Calculates regression
coefficient B.

Calculates regression
coefficient M.

Prompts for hypotheti-
cal x-value.

Stores 37 in X and cal-

culates ¥ .

Stores 101 in Y and

calculates ¥ .

Example 2. Repeat example 1 (using the same data) for logarithmic,
exponential and power curvefits. The table below gives you the start-
ing execution label and the results (the correlation and regression
coefficients and the x- and y-estimates) for each type of curve. You
will need to reenter the data values each time you run the program
for a different curve fit.

Logarithmic Exponential Power

To start: L E P

R 0.9965 0.9945 0.9959

B —139.0088 51.1312 8.9730

M 65.8446 0.0177 0.6640

Y (y when X=37) 98.7508 98.5870 98.6845

X (x when Y=101) 38.2857 38.3628 38.3151

214 13: Statistics Programs

Normal and Inverse-Normal Distributions

Normal distribution is frequently used to model the behavior of ran-
dom variation about a mean. This model assumes that the sample
distribution is symmetric about the mean, M, with a standard devi-
ation, S, and approximates the shape of the bell-shaped curve shown
below. Given a value x, this program calculates the probability that a
random selection from the sample data will have a higher value. This
is known as the uppertail area, Q(x). This program also provides the
inverse: given a value Q(x), the program calculates the corresponding
value x.

Y

X X

1 x e—((x - X) + a)2 = 2 dx.Q(x) = 0.5 —
o 2w X

This program uses the built-in integration feature of the HP-32S to
integrate the equation of the normal frequency curve. The inverse is
obtained using Newton’s method to iteratively search for a value of x
which yields the given probability Q(x).

Program Listing:

Program Lines: Description:

Se1 LBL S This routines initializes the standard-

deviation program.
Spz2 0 Stores default value for mean.

S83 STO M

S84 INPUT M Prompts for and stores mean, M.

13: Statistics Programs 215

N

0
0

0
™ o
o

-]
1T
y

x
| =
J

b
-
-
I Fa

u
G
O

Bytes

TE1

—
o

D
o
n

]

Ty
N
e
)

[a
n]

T
1

—
o
l

™ el W
O

o
0

—
=4

4
4
4
4
4
4
4

[

1
=

=
)

P
t
b

—

|R

-
-
— £

T13

216

1

STO S

IMFUT =

FETH

Stores default value for standard deviation.

Prompts for and stores standard deviation,

S.

Stops displaying value of standard
deviation.

and Checksum: 012.0, 1F60

LEL DO

INFUT

“ER 0@
STO @

VIEW @

GTO O

This routine calculates Q(X) given X.
Prompts for and stores X.
Calculates upper tail area.
Stores value in Q so VIEW function can dis-

play it.
Displays Q(X).
Loops to calculate another Q(X).

and Checksum: 009.0, 002C

LEL I

IMFUT @2

FECL M

STO

This routine calculates X given Q(X).
Prompts for and stores Q(X).

Recalls the mean.

Stores the mean as the guess for X, called
Xguess

and Checksum: 006.0, ED6E

LEL T

HEQ @
ECL- @

FECL

STO D

R+
HEQ F
RCL+ T

+ A7

m
- [

=
I

=
1

A.,
_
N - e
l - el —

GTO T

ECL X

This label defines the start of the iterative

loop.
Calculates (Q(Xguess) — Q(X)).

Calculates the derivative at Xgyeq.

Calculates the correction for Xge

Adds the correction to yield a new Xges.

Tests to see if the correction is significant.
Goes back to start of loop if correction is
significant. Continues if correction is not
significant.

13: Statistics Programs

Tie WIEMW ¥ Displays the calculated value of X.
TI? GTO I Loops to calculate another X.
Bytes and Checksum: 033.5, 4355

@Al LEL & This subroutine calculates the upper-tail
area Q(x).

BEZ RCL M Recalls the lower limit of integration.
HEZ RCL = Recalls the upper limit of integration.
@E4 FH= F Selects the function defined by LBL F for

integration.
#B5S SFH o D Integrates the normal function using the

dummy variable D.
B

Hay o
BES x

HE3 SART

H1e RCL S

1l Calculates S x \/2r .
@12 STO T Stores result temporarily for inverse routine.

B13 +
214 +--

@215 a5

Ble + Adds half the area under the curve since we
integrated using the mean as the lower limit.

@17 RTH Returns to the calling routine.
Bytes and Checksum: 033.5, 4B20

Fal LEL F This subroutine calculates the integrand for
the normal function e~ (X-M=97=2,

Foz RECL D

FBz ECL- M

Fa4 ECL+ =

FEs ==

Foe =2

Fay <
FRg +.-
FAs e
Fia RETH Returns to the calling routine.
Bytes and Checksum: 015.0, 034D

Flags Used: None.

13: Statistics Programs 217

Memory Required: 157 bytes: 109 for program, 48 for variables.

Remarks: The accuracy of this program is dependent on the display
setting. For inputs in the range between +3 standard deviations, a
display of four or more significant figures is adequate for most appli-
cations. At full precision, the input limit becomes +5 standard
deviations. Computation time is significantly less with a lower num-
ber of displayed digits.

In routine N, the constant 0.5 may be replaced by 2 and [1/x]. This
will save 6.5 bytes at the expense of clarity.

You do not need to key in the inverse routine (in routines I and T) if
you are not interested in the inverse capability.

Program Instructions:

1. Key in the program routines; press when done.

2. Press S.

3. After the prompt for M, key in the population mean and press
(R/s]. (If the mean is zero, just press (R/S].)

4. After the prompt for S, key in the population standard deviation
and press (R/S]. (If the standard deviation is 1, just press [R/S].)

5. To calculate X given Q(X), skip to step 9 of these instructions.

6. To calculate Q(X) given X, D.

7. After the prompt, key in the value of X and press [R/S]. The
result, Q(X), is displayed.

8. To calculate Q(X) for a new X with the same mean and standard
deviation, press and go to step 7.

9. To calculate X given Q(X), press L

10. After the prompt, key in the value of Q(X) and press (R/S]. The
result, X, is displayed.

11. To calculate X for a new Q(X) with the same mean and standard
deviation, press and go to step 10.

218 13: Statistics Programs

Variables Used:

D

4
»
o

X

Dummy variable of integration.

Population mean, default value zero.

Probability corresponding to the upper-tail area.

Population standard deviation, default value of 1.

Variable used temporarily to pass the value S\/2x to the inverse
program.

Input value that defines the left side of the upper-tail area.

Example 1. Your good friend informs you that your blind date has
”3¢” intelligence. You interpret this to mean that this person is more
intelligent than the local population except for people more than
three standard deviations above the mean. Suppose that you intuit
that the local population contains 10,000 possible blind dates. How
many people fall into the “3¢” band? Since this problem is stated in
terms of standard deviations, use the default values of zero for M and
1 for S.

Keys: Display: Description:

S M?0.0000 Starts the initialization
routine.

R/S 571.0000 Accepts the default
value of zero for M.

R/S 1.0000 Accepts the default
value of 1 for S.

D X?value Starts the distribution
program and prompts
for X.

3 R=0.0014 Enters 3 for X and
starts computation of
Q(X). Displays the ra-
tio of the population
smarter than everyone

within three standard
deviations of the mean.

13: Statistics Programs 219

10000 135049 Multiplies by the
population. Displays
the approximate num-
ber of blind dates in
the local population,
which meet the
criteria.

Since your friend has been known to exaggerate from time to time,
you decide to see how rare a “2¢” date might be. Note that the pro-
gram may be rerun simply by pressing [R/S].

Keys: Display: Description:

R/S X?3.0000 Resumes program.

2 R=08.0227 Enters X-value of 2
and calculates Q(X).

10000 (x] 227.4937 Multiplies by the
population for the re-
vised estimate.

Example 2.. The mean of a set of test scoresis 55. The standard devia-
tion is 15.3. Assuming that the standard normal curve adequately models
the distribution, whatis the probability that a randomly selected student
scored 90 or above? What is the score that only 10 percent of the students
would be expected to have surpassed? What would be the score that only
20 percent of the students would have failed to achieve?

220 13: Statistics Programs

Keys:

(xEq) 8

55

15.3

(xEq] D

90 (R/8]

Display:

M?70.0000

57180008

15,3600

X?value

@=00111

Description:

Starts the initialization

routine.

Stores 55 for the mean.

Stores 15.3 for the

standard deviation.

Starts the distribution

program and prompts

for X.

Enters 90 for X and

calculates Q(X).

Thus, we would expect that only about 1 percent of the students
would do better than score 90.

Keys:

(xEq] I

1 [R/8]

R/S

8 [R/S]

Display:

78068111

X=746078

2708.1800

X=42.1232

Description:

Starts the inverse

routine.

Stores 0.1 (10 percent)
in Q(X) and calculates
X.

Resumes the inverse

routine.

Stores 0.8 (100 percent
minus 20 percent) in
Q(X) and calculates X.

13: Statistics Programs 221

14
Miscellaneous Programs

The memory usage and checksum for each program label can be
checked using the catalog of programs (page 85).

Time Value of Money

Given four of the five values of the time-value-of-money equation,
this program solves for the fifth. It is useful in a wide variety of finan-
cial applications such as consumer and home loans and savings
accounts.

The equation used to solve problems for the time value of money is:

. -N
P[l 1Z+Z]+I—‘(1+Z)_N+B=0.

Balance, £

Payments, P

1 2 3

Future VYalue, F

A Cash-Flow Diagram

222 14: Miscellaneous Programs

The signs of the cash values (balance, B; payment, P; and future bal-
ance, F) correspond to the direction that the cash flows. Money that
you receive has a positive sign while money that you pay has a nega-
tive sign. Note that any problem can be viewed from two perspec-
tives. The lender and the borrower view the same problem with
reversed signs.

Program Listing:

Program Lines:

NB1 LBL N

NB2 14

NB3 GTO L

Bytes and Checksum:

Iel LBL I

Iez S

Ie3 GTO L

Bytes and Checksum:

Bl LBL B

Baz 2

Be3 GTO L

Bytes and Checksum:

P81 LBL P

PB2 16

PB3 GTO L

Bytes and Checksum:

Fel1 LBL F

Faz2 6

Bytes and Checksum:

Description:

This routine calculates the number of pay-
ments, N.

Enters the number that corresponds to N for
indirect addressing.
Branches to the common control routine, L.

004.5, 61E5

This routine calculates the interest rate, I.

Enters the number that corresponds to I for
indirect addressing.
Branches to the common control routine, L.

004.5, DA0O4

This routine calculates the initial balance, B.
Enters the number that corresponds to B for
indirect addressing.
Branches to the common control routine, L.

004.5, 98EB

This routine calculates the periodic pay-
ment, P.
Enters the number that corresponds to P for
indirect addressing.
Branches to the common control routine, L.

004.5, A556

This routine calculates the future value, F.

Enters the number that corresponds to F for
indirect addressing.

003.0, 6779

14: Miscellaneous Programs 223

Las

Lo

Bytes

Ta1

Taz

Taz3

Ta4

TAS

Tae

Tar

Tas

Ta9

T1i@

T11

T12

T13

T14

T13

Tl

-
~
— o
=
l

—
—
-
-

M
M
o
O

M
o
=
@

224

STO i

FN= T

SOLVECLD

VIEWC1

GTOC1D

2

This label controls the computation of the
selected variable.

Stores the index value (for indirect address-
ing) in 1.
Selects the T routine, which contains the
equation, for SOLVE.

Solves for the variable indirectly addressed
by 1.
Displays the result addressed by i.
Goes back for another calculation.

and Checksum: 009.0, 7878

LEL T

INPUT

INPUT

INPUT

INFUT

INFUT

RCL I

==@87

GTO K

1846

STOiy r
J

RCL H
+.-

e o=

EMTER

M
T

M
m
e
~

This routine contains the equation defining
the time value of money.
Prompts for and stores N.
Prompts for and stores I.
Prompts for and stores B.
Prompts for and stores P.
Prompts for and stores F.
Recalls the interest rate in percent.
If I=0...
...then uses the equation in routine K.

Converts I to decimal form and stores it

inZ.

Calculates (1 + Z).

Calculates (1 + Z)~N.
Duplicates quantity so that it can be used
later.

Calculates 1 — (1 + Z)~N.
Calculates (1 — (1 + Z)™N) = Z.

14: Miscellaneous Programs

T23 RCLx P Calculates P X (1—(1+2Z)~N)=-Z.
T24 =<{>y Swaps duplicate copy of (14+Z)~N (from

line T18) into the X-register.
T25 RCLx F Calculates FXx(1+2)~N.
T26 + Calculates Fx(1+Z)~N +

Px(1—(1+Z)y~Ny+2Zz.
T27 RCL+ B Calculates FX (1+Z)~N +

Px(1—(14+2Z)~N)+Z+B.
T28 RTHN Returns to calling routine.
Bytes and Checksum: 050.0, 429C

Kal LBL K This routine is called if I = 0.
Kaz2 RCL P

K83 RCLx N

Ka4 RCL+ F

Ka5 RCL+ B Calculates P X N + F + B.
KBe RTH Returns to calling routine.
Bytes and Checksum: 009.0, F2E0

Flags Used: None.

Memory Required: 145 bytes: 89 for program, 56 for variables.

Remarks: Since all of the computation for the program is done in
routines T and K,it is possible to shorten the program by eliminating
the other user-interface routines. To run the program in this shortened
form, select the function defined by LBL T ([(SOLVE/[] {FN=} T)
and then solve for the variable you need ([(SOLVE/[] {SOLVE}
variable).

Program Instructions:

1. Key in the program routines; press when done.

2. Select the appropriate routine:

u N to calculate the number of compounding periods;

n I to calculate the periodic interest;

u B to calculate the initial balance of a loan or savings
account;

14: Miscellaneous Programs 225

u P to calculate the periodic payment;

m F to calculate the future value or balance of a loan.

Key in the values of the other four variables as they are
prompted for, and press after each value.

After the last [R/S], the result is displayed.

To recalculate the same variable using different data, press
and go to step 3.

For a totally new case go to step 2.

Variables Used:

N

I

Y
W

N

i

The number of compounding periods.

The periodic interest rate as a percentage rate. (For example,if the
annual interest rate is 15% but there are 12 payments per year,
then the periodic interest rate is 15+12=1.25%.)

The periodic interest rate as a decimal.

The initial balance of loan or savings account.

The periodic payment.

The future value of a savings account or balance of a loan.

The index variable, used here for indirect addressing.

Example: Part 1. You are financing the purchase of a car with a 3-
year loan (36 months) at 10.5% annual interest compounded monthly.
The purchase price of the car is $7,250. Your down paymentis
$1,500. What are your monthly payments?

226 14: Miscellaneous Programs

£=17,250-1,500
1=10.5% per year

N =36 months

Keys:

W(oise] {Fx}2

(xEq] P

36 (R/S]

10.5 [ENTER) 12 [5)

R/S

7250 1500 (5]

R/S

0 (R/8]

Display:

N?value

I ?value

178.88

B?value

B?5,7508.80

F2?value

P=-186.89

)

Description:

Sets the display format
to FIX 2.

Selects routine P,

which calculates the

periodic payment.

Stores 36 in N.

Converts the annual

interest rate to a

monthly rate.

Stores the monthly in-
terest rate in I.

Calculates the begin-
ning loan balance.

Sets B equal to the be-
ginning balance.

Stores zero in F, the fu-
ture or ending balance,
and calculates the pay-
ment of the loan.

The answer is negative since the loan has been viewed from the
borrower’s perspective. Money received by the borrower (the begin-
ning balance) is positive, while money paid out is negative.

14: Miscellaneous Programs 227

Part 2. What interest rate would reduce the monthly payment by

$10?

Keys:

I

R/S

R/S

10 (+]

R/S

R/S

12 [x]

Display:

N?36.80

B?5,750.80

P?-186.89

P?-186.89

P?-176.89

F?0.00

I1=8.56

6,75

Description:

Selects routine I, which

calculates the periodic
interest rate.

Accepts 36 as the num-
ber of payments.

Accepts $5,750.00 as
the initial balance.

Copies payment in
stack so that you can
calculate with it. (The
X-register will be over-
written by the next
number entered.)

Reduces the monthly
payment by $10.00.

Stores the modified
payment value.

Accepts zero as the fu-
ture balance and
calculates I, the
monthly interest rate.

Calculates the annual

interest rate.

Part 3. Using the interest rate of 6.75%, assume that you sell the car
after 2 years. What balance will you still owe? In other words, what is
the future balance in 2 years?

228 14: Miscellaneous Programs

Keys:

(xEq] F

24 (R/8)

R/S

R/S

R/S

Display:

N?36.00

1?70.56

B?5,750.80

P?-17689

Description:

Selects routine F,

which calculates the

future value.

Changes the number
of payments to 24
months.

Accepts the monthly
interest rate.

Accepts $5,750.00 as
the initial balance.

Accepts the payment
value and calculates
the future balance.
Again, the sign is neg-
ative, indicating that

you must pay out this
money.

Unit Conversions

This program consists of two routines that convert one type of unit to
another. One routine converts among Celsius, Fahrenheit, Rankine
and Kelvin temperatures. The other routine converts among inches,
feet, and meters, and among square inches, square feet and square
meters. The programs can easily be modified to convert other types of
units.

14: Miscellaneous Programs 229

Both routines are based on the “Ferris wheel principle.” The program
has a circular structure. When the program is started,it loops through
a cycle (or series) of input prompts. You repeatedly ignore the
prompts (by pressing [R/S]) until the prompt that corresponds to the
units of your input comes up. For instance, if you wanted to input
kelvins, you would start the temperature program by pressing T
and then by pressing until the K? prompt appeared. At the
prompt you would key in the temperature in kelvins and press
until you come to the prompt indicating the units that you desired
(F? for Fahrenheit, for example). The value displayed with the
prompt would be the temperature in degrees Fahrenheit. To end the
program, press [C].

input /output

C=K-273.15 07|Fgc32

input /output 4—»‘,l'? <> input /output

/(:%,9\- R=F +459.67

!
input Joutput

Ferris Wheel Structure for Temperature Conversion

The program has been designed to minimize the use of the stack.
When the program is terminated, the values you had in the X- and Y-
registers are left in the Y- and Z-registers, respectively, and the
converted value is displayed. If the value that you wish to convert is
in the X-register (the display) when you start the program, press
to retrieve it when you get to the correct prompt.

The length- and area-conversion routines give good examples of flag
usage. Note that flag 2 was selected so that the 2 annunciator in the
display would indicate that the unit is squared.

230 14: Miscellaneous Programs

Program Listing:

Program Lines: Description:

TB1 LBL T Starts the temperature-conversion routine.
TB2 INPUT C Displays the temperature in °C, or requests

and stores Celsius input.
T3 9

T84 X

T8S 5

Toe =+

Tay? 32

Teg + Converts from Celsius to Fahrenheit.
T3 STO F Stores Fahrenheit temperature in F.
T18 R+ Drops stack so that only one level is used.
Ti1 INPUT F Displays temperature in °F, or requests and

stores Fahrenheit input.
T12 4358967

T13 + Converts from Fahrenheit to Rankine.
Ti4 STO R Stores Rankine temperature in R.
T15 R+ Drops stack so that only one level is used.
Ti6 INPUT R Displays temperature in °R, or requests and

stores Rankine input.
T17 8

Ti8 =+

T19 3

T28 X Converts Rankine to Kelvin.
T21 STO K Stores Kelvin temperature in K.
T22 R¥ Drops stack so that only one level is used.
T23 INPUT K Displays temperature in kelvins, or requests

and stores Kelvin input.
T24 273.15

T25 - Converts Kelvin to Celsius.
T26 STO C Stores Celsius temperature in C.
T27 R+ Drops stack so that only one level is used.
T28 GTO T Loops back for more conversions.
Bytes and Checksum: 058.0, 9EF4

14: Miscellaneous Programs 231

AE1

A2 =

=)

Bytes

LAl

Laz

Bytes

Ra1

= = M

o
o
D

S
S

T
N

f
G
l

= =
W
0
0
=
0

L
o

=

@1a

211

[

@13

214

215

Rle

o
D

= — =

o
o

M
O
M
M
M
o
=

G
M

o
=
3
0
0

=!

Bytes

232

GTO @

Starts the area-conversion routine.

Sets flag 2 to indicate area conversion
(squared length).
Branches to the conversion routine.

and Checksum: 004.5, 2A52

LEL L

CF 2

and Checksum

LEL @

INPUT I

T
-

I

B

]

™

STO F

R+

IMFUT F

M
R

(
)
S
5

M
o
o

<
N

STO M

E+

INPUT ™

R+

GTO @

and Checksum

Starts the length-conversion routine.
Clears the area-conversion flag.

: 003.0, 2C3C

Starts the combined length- and area-con-
version routine.
Displays inches or square inches, or accepts
input.
Enters conversion factor for inches to feet.
Tests whether this is an area conversion.
If yes, squares the conversion factor.
Calculates result.
Stores feet or square feet.
Drops stack so that only one level is used.
Displays feet or square feet, or accepts
input.
Enters conversion factor for feet to meters.
Tests whether this is an area conversion.
If yes, squares the conversion factor.
Calculates the result.
Stores meters or square meters.

Drops stack so that only one level is used.
Displays meters or square meters, or accepts
input.
Enters conversion factor for meters to

inches.
Tests whether this is an area conversion.
If yes, squares the conversion factor.
Calculates the result.
Stores inches or square inches.
Drops stack so that only one level is used.
Loops back for more conversions.

: 050.5, 2A15

14: Miscellaneous Programs

Flags Used: Flag 2.

Memory Required: 164 bytes: 116 for program, 48 for variables.

Program Instructions:

1.

2.

Key in the program routines; press when done.

Press and the appropriate label.

B A for area conversion, or

® L for length conversion, or

® T for temperature conversion.

Press until the appropriate input prompt appears.

Key in input (or press to recover the input if it had been in
the display when the routine was started).

Press until the prompt (with a result) corresponds to the
units you want to find.

Go to step 3 for another conversion.

Press to clear the prompt and end the program.

Variables Used:

T
=

X
®™

T
0O Temperature in degrees Celsius.

Temperature in degrees Fahrenheit; or feet.

Temperature in degrees Rankine.

Temperature in kelvins.

Inches.

Meters.

Example 1. Convert 212°F to kelvins.

Keys: Display: Description:

T C?value Selects the temperature

R/S

conversion routine.

F ?value Searches for the Fahr-

enheit prompt.

14: Miscellaneous Programs 233

212 R?671.6700 Enters Fahrenheit tem-
perature and converts
to degrees Rankine.

R/S K?373.1500 Converts to kelvins.

Example 2. A floor measures 108 X 127 inches. How many square
feet is this?

Keys: Display: Description:

108

127 (x] K?13,716.0000 Calculates area in
square inches.

A I ?value Selects area-conversion
routine.

1713,716.0000 Rolls down from the
Y-register the value
you previously calcu-
lated for in2.

R/S F?95.2500 Calculates the square
feet.

95.2500 Cancels the prompt
and ends the program.

Example 3. Suppose that the result of a lengthy calculation is 3.787
and that it is currently in the display of your calculator. Further sup-
pose that this value must be divided by a length specified in meters to
complete the problem. You know that the length you need to divide
by is 25.73 feet. Compute the final answer.

234 14: Miscellaneous Programs

Keys: Display:

3.787 3.787

L I ?value

R/S F ?value

25.73 M?7.8425

7.8425

(+] 8.4829

Description:

Enters the hypothetical
result.

Selects the length-
conversion routine.

Moves to the prompt
for feet.

Enters the divisor in

feet, then converts it to

meters.

Cancels the prompt
and ends the program.

Calculates the final

result.

Prime Number Generator

This program accepts any odd, positive integer greater than 3. If the
number is a prime number (not evenly divisible by integers other than
itself and 1), then the program returns the input value. If the inputis
not a prime number, then the program returns the first prime number
larger than the input.

The program identifies non-prime numbers by exhaustively trying all
possible factors. If a number is not prime, the program adds 2 (assur-
ing that the valueis still odd) and tests to see if it has found a prime.
This process continues until a prime number is found.

14: Miscellaneous Programs 235

236

Note: x is the
value in the
x-register.

@

__

VIEW Prime

+2——>x

X — P

3—/

FP [P/fl] —_ X

i

no

yes

no

D+2—=p

Prime Number Flow Chart

14: Miscellaneous Programs

Program Listing:

Program Lines: Description:

Y@l LBL ¥ This routine displays the prime number.
Y@z VIEW P Displays the prime number P.
Bytes and Checksum: 003.0, 9D08

Z81 LBL 2 This routine adds 2 to P before testing to
see if P is prime.

Zez 2

Z83 RCL+ P

Bytes and Checksum: 004.5, E455

P81 LBL P This routine stores the input value for P.
PB2 STO P

PB3 3 Stores 3 in test divisor, D.
PB4 STO D

Bytes and Checksum: 006.0, 9E38

X81 LBL X This routine tests P to see if it is prime.
x@2 RCL P

X803 RCL+ D

X@4 FP Finds the fractional part of P=D.
KOS5 x=87? Tests for a remainder of zero (number not

prime).
XB6 GTO 2 If the number is not prime, tries next

possibility.
X8v RCL P

X88 SQART

X839 RCL D

X108 x>»7? Tests to see whether all possible factors
have been tried.

X11 GTO ¥ If all factors have been tried, branches to
the display routine.

Xiz2 2 Calculates the next possible factor, D + 2.
X13 STO+ D

14: Miscellaneous Programs 237

®14 GTO ¥ Branchesto test the potential prime with the
new factor.

Bytes and Checksum: 021.0, 43F2

Flags Used: None.

Memory Required: 50.5 bytes: 34.5 for program, 16 for variables.

Program Instructions:

1. Key in the program routines; press when done.

2. Key in an odd integer.

3. Press P to start program. The prime number, P, will be
displayed.

4. To see the next prime number, press [R/S].

Variables Used:

P Prime value and potential prime values.

D Divisor which is being used to test the current value of P.

Remarks: No tests are made to assure that the input is an odd, posi-

tive integer greater than 3.

Example. What is the first prime number after 789? Whatis the next
prime number?

Keys: Display: Description:

789 P P=797.0000 Keys in 789 and starts
program; displays first
prime number.

R/S P=809.0000 Calculates the next
prime number after
797.

238 14: Miscellaneous Programs

&rt 5
Appendixes and

Reference

Page 240

253

259

273

281

286

299

A: Assistance, Batteries, and Service

B: User Memory and the Stack

C: More About Solving an Equation

D: More About Integration

Messages

Function Index

Subject Index

A
Assistance, Batteries, and

Service

Obtaining Help in Operating the Calculator

We at Hewlett-Packard are committed to providing the owners of
HP calculators with ongoing support. You can obtain answers to your
questions about using the calculator from our Calculator Support
Department.

We suggest that you read the next section, “Answers to Common
Questions,” before contacting us. Past experience has shown that
many of our customers have similar questions about our products.

If you don’t find an answer to your question, you can contact us using
the address or phone number listed on the inside back cover.

Answers to Common Questions

Q. How can I determine if the calculator is operating properly?

A. Refer to page 246, which describes the diagnostic self-test.

Q. How do I change the number of decimal places in the display?

A. Use the [DISP] function (page 30).

Q. My numbers contain commas instead of periods as decimal points.
How do I restore the periods?

A. Use the @[mODES function (page 29).

240 A: Assistance, Batteries, and Service

Q. How do I clear all or portions of memory?

A. BCcLEAR displays the CLEAR menu, which allows you to clear all
variables, all programs (in program entry only), the statistics registers,
or all of user memory (not during program entry).

Q. What does an “E” in a number (for example, 2.51E—13) mean?

A. Exponent of ten; that is, 2.51 x 10713,

Q. The calculator has displayed the message MEMORY FULL. What
should I do?

A. You must clear a portion of memory before proceeding. (See ap-
pendix B.)

Q. Why does calculating the sine (or tangent) of = radians display a
very small number instead of 0?

A. 7 cannot be represented exactly with the 12-digit precision of the
calculator.

Q. Why do I get incorrect answers when I use the trigonometric
functions?

A. You must make sure the calculator is using the correct angular

mode ([MODES).

Q. What does the symbol in the display mean?

A. This is an annunciator, and it indicates something about the status
of the calculator. See “Annunciators” in chapter 1.

A: Assistance, Batteries, and Service 241

Power and Batteries

The calculator is shipped with alkaline batteries. A fresh set of three
alkaline batteries provides approximately a year of normal use. How-
ever, expected battery life depends on how the calculator is used;
frequent, long calculations require more power than short, periodic
calculations. The calculator consumes the most power while running
programs or doing long calculations (like SOLVE or [FN). For any
level of use, mercury and silver oxide batteries last about twice as
long as alkaline batteries.

Use only fresh button-cell batteries. Do not use rechargeable batteries.
The following batteries are recommended for use. Not all batteries are
available in all countries.

Alkaline Mercury Silver Oxide

Panasonic LR44 Panasonic NP675 Panasonic SR44W or

SP357

Eveready A76 Eveready EP675E Eveready 357

Varta V13GA Toshiba NR44 or MR44 Varta V357

Radio Shack NR44 or Ray-O-Vac 357
MR44

Duracell LR44 Duracell MP675H

Low-Power Indicator

When the low battery annunciator (§€]) comes on, you should re-

place the batteries as soon as possible.

242 A: Assistance, Batteries, and Service

If you continue to use the calculator after the battery annunciator
comes on, power can eventually drop to a level at which the display
becomes dim and stored data may be affected. If this happens, the
calculator requires fresh batteries before it will operate properly. If
stored data has not been preserved due to extremely low power, the
calculator displays MEMORY CLERR.

Installing Batteries

Once the batteries are removed, replace them within a minute to

save Continuous Memory.

To install batteries:

1. Have three fresh button-cell batteries at hand. Hold batteries by the
edges. Do not touch the contacts. Wipe each battery with a clean,
lint-free cloth to remove dirt and oil.

2. Make sure the calculator is off. Do not press again until the
entire procedure for changing batteries is completed. Chang-

ing batteries with the calculator on can erase the contents of

Continuous Memory.

3. Hold the calculator as shown. To remove the battery-compart-
ment door, press down and outward on it until it slides off

(away from the center).

A: Assistance, Batteries, and Service 243

4. Turn the calculator over and shake the batteries out.

%‘ Do not mutilate, puncture, or dispose of batteries in

fire. The batteries can burst or explode, releasing haz-

Warning ardous chemicals.

5. Hold the calculator as shown and stack the batteries, one at a
time, in the battery compartment. Orient the batteries according
to the diagram inside the battery compartment. Be sure the
raised and flat ends match the diagram.

-y

6. Insert the tab of the battery-compartment door into the slot in

the calculator case, as shown.

A
—_—

244 A: Assistance, Batteries, and Service

Now turn the calculator back on. If it does not function, check that
the orientation of the batteries is correct. If the calculator still does not
function, you might have taken too long to change the batteries or
inadvertently turned the calculator on while the batteries were out.
Remove the batteries again and lightly press a coin against both battery
contacts in the calculator for a few seconds. Put the batteries back in
and turn the calculator on. It should display MEMORY CLERAR.

Environmental Limits

To maintain product reliability, observe the following temperature
and humidity limits:

B Operating temperature: 0° to 45°C (32° to 113°F).

B Storage temperature: —20° to 65°C (—4° to 149°F).

B Operating and storage humidity: 90% relative humidity at 40°C
(104°F) maximum.

Determining if the Calculator Requires

Service

Use these guidelines to determine if the calculator requires service.
Then, if necessary, read “If the Calculator Requires Service” on page
249.

B If the calculator won’t turn on (nothing is visible in the display):

1. Attempt to reset the calculator. (Hold down the key and
press [LN].)

2. If the calculator fails to respond after step 1, replace the bat-
teries (see page 242).

If steps 1 and 2 fail to restore calculator function,it requires service.

A: Assistance, Batteries, and Service 245

B If the calculator doesn’t respond to keystrokes (nothing hap-

pens when you press any of the keys):

1.

3'

Attempt to reset the calculator. (Hold down the key and
press [LN].)

If the calculator fails to respond after step 1, attempt to clear
memory. (Hold down (C], (=], and as described on page
255). This will erase all the information you’ve stored.

If the calculator fails to respond after steps 1 and 2, remove
the batteries (see page 243) and lightly press a coin against
both calculator battery contacts. Put the batteries back in and
turn on the calculator. It should display MEMORY CLERR.

If steps 1 through 3 fail to restore calculator function, the calculator
requires service.

B If the calculator responds to keystrokes but you suspect that it

is malfunctioning:

1-

3.

Do the self-test (described below). If the calculator fails the
self test, it requires service.

If the calculator passes the self-test, it is likely that you've
made a mistake in operating the calculator. Try rereading por-
tions of the manual and check “Answers to Common
Questions” at the beginning of this chapter.

Contact the Calculator Support department. The address and
phone number are listed on the inside back cover.

Confirming Calculator Operation—
the Self-Test

If the display can be turned on, but it appears that the calculator is
not operating properly, you can do a diagnostic self-test.

1. To start the self-test, hold down the key while you press

7).

* Holding down as you press starts a continuous self-test that is used at the factory.

If you accidentally start this self-test, you can halt it by pressing any key.

246 A: Assistance, Batteries, and Service

2. Press any key eight times and watch the display as various pat-
terns are displayed. After you've pressed the key eight times, the
calculator displays the copyright message COPR. HF 1287 and
then the message KED @1.

3. Starting at the upper left corner ([Jx]) and moving from left to
right, press each key in the top row. Then, moving left to right,
press each key in the second row, third row, etc., until you've
pressed each key.

B If you press the keys in the proper order and they are func-
tioning properly, the calculator displays KED followed by two-
digit numbers. (The calculator is counting the keys using
hexadecimal base.)

B If you press a key out of order, or if a key isn’t functioning
properly, the next keystroke displays a fail message (see step
4).

4. The self-test produces one of these two results:

B The calculator displays 325 - 0K if it passed the self-test.
Go to step 5.

B The calculator displays 325 - FAIL, followed by a one-digit
number, if it failed the self-test. If you received the message
because you pressed a key out of order, you should reset the
calculator (hold down and press [LN]), and do the self-test
again. If you pressed the keys in order, but got this message,
repeat the self-test to verify the results. If the calculator fails
again, it requires service (see page 249). Include a copy of the
fail message with the calculator when you ship it for service.

5. To exit the self-test, reset the calculator (hold down and press

[LND).

A: Assistance, Batteries, and Service 247

Limited One-Year Warranty

What Is Covered

The calculator (except for the batteries, or damage caused by the bat-
teries) is warranted by Hewlett-Packard against defects in materials and
workmanship for one year from the date of original purchase. If you sell
your unit or give it as a gift, the warranty is automatically transferred
to the new owner and remains in effect for the original one-year pe-
riod. During the warranty period, we will repair or, at our option,
replace at no charge a product that proves to be defective, provided
you return the product, shipping prepaid, to a Hewlett-Packard ser-
vice center. (Replacement may be with a newer model of equivalent
or better functionality.)

This warranty gives you specific legal rights, and you may also have
other rights that vary from state to state, province to province, or

country to country.

What Is Not Covered

Batteries, and damage caused by the batteries, are not covered by the
Hewlett-Packard warranty. Check with the battery manufacturer about
battery and battery leakage warranties.

This warranty does not apply if the product has been damaged by
accident or misuse or as the result of service or modification by other
than an authorized Hewlett-Packard service center.

248 A: Assistance, Batteries, and Service

No other express warranty is given. The repair or replacement of a
product is your exclusive remedy. ANY OTHER IMPLIED WARRANTY
OF MERCHANTABILITY OR FITNESS IS LIMITED TO THE ONE-YEAR

DURATION OF THIS WRITTEN WARRANTY. Some states, provinces,

or countries do not allow limitations on how long an implied war-
ranty lasts, so the above limitation may not apply to you. IN NO
EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR

CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do
not allow the exclusion or limitation of incidental or consequential
damages, so the above limitation or exclusion may not apply to you.

Products are sold on the basis of specifications applicable at the time
of manufacture. Hewlett-Packard shall have no obligation to modify
or update products once sold.

Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not
affect the statutory rights of a consumer. In relation to such transac-
tions, the rights and obligations of Seller and Buyer shall be
determined by statute.

If the Calculator Requires Service

Hewlett-Packard maintains service centers in many countries. These
centers will repair a calculator or replace it (with an equivalent or
newer model), whether it is under warranty or not. There is a charge
for service after the warranty period. Calculators normally are
serviced and reshipped within 5 working days of receipt.

A: Assistance, Batteries, and Service 249

Obtaining Service

In the United States: Send the calculator to the Calculator Service

Center listed on the inside of the back cover.

In Europe: Contact your HP sales office or dealer, or HP’s Euro-

pean headquarters for the location of the nearest service center. Do
not ship the calculator for service without first contacting a Hewlett-
Packard office.

Hewlett-Packard S.A.

150, Route du Nant-d’Avril

P.O. Box CH 1217 Meyrin 2
Geneva, Switzerland

Telephone: (022) 82 81 11

In other countries: Contact your HP sales office or dealer or write
to the U.S. Calculator Service Center (listed on the inside of the
back cover) for the location of other service centers. If local service
is unavailable, you can ship the calculator to the U.S. Calculator
Service Center for repair.

All shipping, reimportation arrangements, and customs costs are
your responsibility.

Service Charge

There is a standard repair charge for out-of-warranty service. The
Calculator Service Center (listed on the inside of the back cover) can
tell you how much this charge is. The full charge is subject to the
customer’s local sales or value-added tax wherever applicable.

Calculator products damaged by accident or misuse are not covered
by the fixed service charges. In these cases, charges are individually
determined based on time and material.

250 A: Assistance, Batteries, and Service

Shipping Instructions

If your calculator requires service, ship it to the nearest authorized
service center or collection point. Be sure to:

® Include your return address and description of the problem.

B Include proof of purchase date if the warranty has not expired.

B Include a purchase order, check, or credit card number plus expira-
tion date (Visa or MasterCard) to cover the standard repair charge.
In the United States and some other countries, the serviced calcu-
lator can be returned C.O.D. if you do not pay in advance.

® Ship the calculator in adequate protective packaging to prevent
damage. Such damage is not covered by the warranty, so we rec-
ommend that you insure the shipment.

B Pay the shipping charges for delivery to the Hewlett-Packard ser-
vice center, whether or not the calculator is under warranty.

Warranty on Service

Service is warranted against defects in materials and workmanship for
90 days from the date of service.

Service Agreements

In the U.S., a support agreement is available for repair and service.
Refer to the form that was packaged with the manual. For additional
information, contact the Calculator Service Center (see the inside of
the back cover).

A: Assistance, Batteries, and Service 251

Regulatory Information

Radio Frequency Interference

U.S.A. The HP-32S generates and uses radio frequency energy and
may interfere with radio and television reception. The calculator com-
plies with the limits for a Class B computing device as specified in
Subpart J of Part 15 of FCC Rules, which provide reasonable protec-
tion against such interference in a residential installation. In the
unlikely event that there is interference to radio or television reception
(which can be determined by turning the calculator off and on or by
removing the batteries), try:

B Reorienting the receiving antenna.

B Relocating the calculator with respect to the receiver.

For more information, consult your dealer, an experienced radio or
television technician, or the following booklet, prepared by the Fed-
eral Communications Commission: How to Identify and Resolve
Radio-TV Interference Problems. This booklet is available from the U.S.
Government Printing Office, Washington, D.C. 20402, Stock Number
004-000-00345-4. At the first printing of this manual, the telephone
number was (202) 783-3238.

West Germany. The HP-32S complies with VFG 1046/84, VDE
0871B, and similar non-interference standards. If you use equipment
that is not authorized by Hewlett-Packard, that system configuration
has to comply with the requirements of Paragraph 2 of the German
Federal Gazette, Order (VFG) 1046/84, dated December 14, 1984.

252 A: Assistance, Batteries, and Service

User Memory and the
Stack

This appendix covers

® The allocation and requirements of user memory,

® How to reset the calculator without affecting memory,

® How to clear (purge) all of user memory and reset the system de-
faults, and

® Which operations affect stack lift.

Managing Calculator Memory

The HP-32S has 390 bytes of user memory available to you for any
combination of stored data (variables or program lines). SOLVE, [EFN,
and statistical calculations also require user memory. (The [FN opera-
tion is particularly “expensive” to run.)

All of your stored data is preserved until you explicitly clear it. The
message MEMORY FULL means that there is currently not enough
memory available for the operation you just attempted. You need to
clear some (or all) of user memory. For instance, you can:

B Clear the contents of any or all variables (see page 50).

B Clear any or all programs (see page 85).

B Clear the statistics registers (press @[CLEAR] {Z}).

® Clear all of user memory (press B[CLEAR] {ALL}).

B: User Memory and the Stack 253

Memory Requirements

Data or Operation Amount of Memory Used

Variables 8 bytes per non-zero value. (No bytes for zero

values.)

Instructions in pro- 1.5 bytes.

gram lines

Numbers in program Integers 0 through 99: 1.5 bytes.

lines All other numbers: 9.5 bytes.

Statistics data 48 bytes.

SOLVE calculations 33.5 bytes.

JFN (integration) 140 bytes.

calculations
To see the total memory requirement of specific programs, press
B(VEM]{PGM} . Press (v] or l[4] to view the entries. (For an exam-
ple, see page 86.)

To manually deallocate the memory allocated for a SOLVE or [FN
calculation that has been interrupted, press B[LBL/RTN]| {RTN} .This
deallocation is done automatically whenever you execute a program
or another SOLVE or [FN calculation.

Resetting the Calculator

If the calculator doesn’t respond to keystrokes or if it is otherwise be-
having unusually, attempt to reset it. Resetting the calculator halts the
current calculation and cancels program entry, digit entry, a running
program, a SOLVE calculation, an [FN calculation, a VIEW display, or
an INPUT display. Stored data usually remain intact.

254 B: User Memory and the Stack

To reset the calculator, hold down the key and press [LN]. If you
are unable to reset the calculator, try installing fresh batteries. If the
calculator cannot be reset, or if it still fails to operate properly, you
should attempt to clear memory using the special procedure described
in the next section.

The calculator can reset itself if it is dropped or if power is
interrupted.

Clearing Memory

The usual way to clear user memory is to press @[CLEAR| {ALL }.
However, there is also a more powerful clearing procedure that resets
additional information and is usefulif the keyboard is not functioning
properly.

If the calculator fails to respond to keystrokes, and you are unable to
restore operation by resetting it or changing the batteries, try the fol-
lowing procedure. These keystrokes clear all of memory, reset the
calculator, and restore all formats and modes to their original, default

settings (shown below).

1. Press and hold down the key.

2. Press and hold down ().

3. Press (2+]. (You will be pressing three keys simultaneously).
When you release all three keys, the display shows
MEMORY CLERAR if the operation is successful.

B: User Memory and the Stack 255

Default Settings

Category Default Status

Angular mode. Degrees.

Base mode. Decimal.

Contrast setting. Medium.

Decimal point. “"

Display format. FIX 4.

Flags. Cleared to zero.

FN= (current function). Null.

Program pointer (current line). PRGM TOP.

Program memory. Cleared.

Random-number seed. Zero.

Stack lift. Enabled.

Stack registers. Cleared to zero.

Variables. Cleared to zero.

Memory may inadvertently be cleared if the calculator is dropped orif
poweris interrupted.

The Status of Stack Lift

The four stack registers are always present, and the stack always has a
stack-lift status. That is to say, the stack lift is always enabled or dis-
abled regarding its behavior when the next numberis placed in the X-
register. (Refer to chapter 2, “The Automatic Memory Stack.”)

Any function not in the following two lists will enable stack lift.

256 B: User Memory and the Stack

Disabling Operations

There are four operations that disable stack lift. A number keyed in
after one of these disabling operations writes over the number cur-
rently in the X-register. The Y-, Z- and T-registers remain unchanged.

ENTER 24+ 22— CLx

In addition, when and [¢] act like CLx, they also disable stack lift.

The INPUT function disables stack lift as it halts a program for
prompting (so any number you then enter writes over the X-register),
but it enables stack lift when the program resumes.

Neutral Operations

The following operations do not alter the previous status of the stack
lift:

DEG,RAD, FIX,SCl, DEC,HEX, CLVARS

GRAD ENG,ALL OCT,BIN

PSE SHOW RADIX.;RADIX, CLZ

OFF and STOP [a], (V) (c)*, (eJ*

(MEM){VAR}T (MEM]{PGH}T (0 (GTO](:] /abel nn
Switching binary Digit entry Errors and pro-
windows gram entry

* Except when used like CLx.

tIncluding all operations performed while the catalog is displayed except {VAR}

and {PGM} [XEQ], which enable stack lift.

B: User Memory and the Stack 257

The Status of the LAST X Register

The following operations save x in the LAST X register:

+, —, X, + SQRT, x2 ex, 10

LN, LOG y* 1/x

%, %CHG 2+, 2— RCL+,—,x,+*

X,y SIN, COS, TAN ASIN, ACOS, ATAN

SINH, COSH, TANH ASINH, ACOSH, IP, FP, RND, ABS

ATANH

y.x=0,r; 6,r-y.x -HR, -HMS -DEG, -RAD

Cn,r; Pn,r x! CMPLX+/—

CMPLX+,—, X ,+ CMPLX e&*, LN,y*, 1/x CMPLX SIN,COS,TAN

* Note that the recall-arithmetic sequence x variable stores a different value in the
LAST X register than the sequence x variable does. The former stores x in LAST X;
the latter stores the recalled number in LAST X.

258 B: User Memory and the Stack

More About Solving an
Equation

This appendix provides information about the SOLVE operation be-
yond that given in chapter 7.

How SOLVE Finds a Root

SOLVE is an iterative operation; that is, it repetitively executes the
specified function. It starts with an estimate for the unknown vari-
able, x, and refines that estimate with each successive execution of the

function, f(x).*

If any two successive estimates of the function f(x) have opposite
signs, then SOLVE presumes that the function f(x) crosses the x-axis in
at least one place between the two estimates. This interval is sys-
tematically narrowed until a root is found.

For SOLVE to find a root, the root has to exist within the range of
numbers of the calculator, and the function must be mathematically
defined where the iterative search occurs. SOLVE always finds a root,
provided one exists (within the overflow bounds), if one or more of
these conditions are met:

B Two estimates yield f(x) values with opposite signs, and the
function’s graph crosses the x-axis in at least one place between
those estimates (figure a, next page).

* f(x) is mathematical shorthand for a function defined in terms of the unknown variable x.

C: More About Solving an Equation 259

B f(x) always increases or always decreases as x increases (figure b,
below).

B The graph of f(x) is either concave everywhere or convex every-
where (figure c, below).

B If f(x) has one or more local minima or maxima, each occurs singly
between adjacent roots of f(x) (figure d, below).

f(x) flx)

A A

flx)] flx)

Functions Whose Roots Can Be Found

In most situations, the calculated root is an accurate estimate of the
theoretical, infinitely precise root of the equation. An “ideal” solution
is one for which f(x)=0. However, a very small non-zero value for f(x)
is often acceptable because it might result from approximating num-
bers with limited (12-digit) precision.

260 C: More About Solving an Equation

Interpreting Results

The SOLVE operation will produce a solution under either of these
conditions:

B If it finds an estimate for which f(x) equals zero (see figure a,
below).

B If it finds an estimate where f(x) is not equal to zero, but the calcu-
lated root is a 12-digit number adjacent to the place where the
function’s graph crosses the x-axis (see figure b, below). This occurs
when the two final estimates are neighbors (thatis, they differ by 1
in the 12th digit), and the function’s value is positive for one esti-
mate and negative for the other.* In most cases, f(x) will be
relatively close to zero.

flx] flx)

5
Cases Where a Root Is Found

| =
b

To obtain additional information about the result, press to see the
previous estimate of the root (x), which was left in the Y-register.

Press again to see the value of f(x), which was left in the Z-regis-
ter. If f(x) equals zero or is relatively small, it is very likely that a
solution has been found. However, if f(x) is relatively large, you must
use caution in interpreting the results.

* Or they are (0, 10~%%°) or (0, —10~%%).

C: More About Solving an Equation 261

Example: An Equation With One Root. Find the root of the

equation:

—2x3 + 4x2 — 6x + 8 = 0,

which, using Horner’s method (chapter 5), simplifies to

x(x(—2x + 4) — 6) + 8 = 0.

Enter the function as the program:

o
I

= LEL A

-2

RCL®

I
I
I
I
I
I

=
S

=
S
=
=

T
N

B
)
P
O

A
+

) r \
"
’

I
I
I
I

e
=
5

P
o
=
=

W
0

0
0

=
)

o
I

Keys:

BB[SOLVE/[] {FN}A
0 (ST0) X 10
W(SoLvE/[]
{SOLVE}X

262 C: More About Solving an Equation

Display:

X=165086

1.6506

-1.80080E-11

Description:

Calculates x using
guesses 0 and 10.

Final two estimates are

the same to four deci-

mal places.

f(x) is very small, so the
approximation is a
good root.

Example: An Equation With Two Roots. Find the two roots of the
parabolic equation:

2 4+x—6=0.

Enter the function as the program:

D@1
Daz

LEL D
RCL X

RCL+ ¥
&

a i
z J

o
o
o

=
=

T
N

RTH] = =
]

Keys:

M(sOLvE/[] {FN} D
0 (ST0] X 10
B(soLVE/[] {sOLVE}
X

(R+] @(SHOW]

0 (s10] X 10 [*4]
B(soLve/[]
{SOLVE} X

(R+](R+] M(SHOW]

Certain cases require special consideration:

Display:

X=2.0800

20000

A.806B0BABA0OAG

X=-3.80000

0.08008080B080

Description:

Calculates the positive
root using guesses 0
and 10.

Final two estimates are

the same.

fx) = 0.

Calculates the negative
root using guesses 0
and —10.

f) = 0.

B If the function’s graph has a discontinuity that crosses the x-axis,
then the SOLVE operation returns a value adjacent to the disconti-
nuity (see figure a, next page). In this case, f(x) may be relatively
large.

C: More About Solving an Equation 263

B Values off(x) may be approaching infinity at the location where the
graph changes sign (see figure b, below). This situation is called a
pole. Since the SOLVE operation determines that there is a sign
change between two neighboring values of x,it returns the possible
root. However, the value for f(x) will be relatively large. If the pole
occurs at a value of x that is exactly represented with 12 digits, then
that value would cause the calculation to halt with an error
message.

flx) flx)

A / \“\Ji

Special Cases: A Discontinuity and a Pole

Example: A Discontinuous Function. Find the root of the

equation:

IP(x) — 1.5 = 0.

264 C: More About Solving an Equation

Enter the function as the program:

EB1 LBL E

EB2 RCL =¥

EB3 IP

EB4 1.5

EBS -

RBe RTH

Keys: Display: Description:

B(sOoLvE/[{FN}E Finds a root with
0 X5 guesses 0 and 5.

M(SoLvE/[)
{SOLVE}X X=2.0000

B(sHow] 1.99999999999 Shows root to 11 deci-
mal places.

B(sHow] 2.00PPPOOVORG The previous estimate
is slightly bigger.

-8.5000 f(x) is relatively large.

Note the difference between the last two estimates, as well as the rel-
atively large value for f(x). The problem is that there is no value of x
for which f(x) equals zero. However, at x = 1.99999999999, there is a

neighboring value of x that yields an opposite sign for f(x).

Example: A Pole. Find the root of the equation

As x approaches V6, f(x) becomes a very large positive or negative
number.

C: More About Solving an Equation 265

Enter the function as the program:

Fal LBL F

Faz RCL ¥

Fa3 ==z

Fa4 &

Fas -

Fae RCL X

FA7 =<>+

Fags =+

Fas 1

Fi1a

F11 RTH

Note that you can shorten the program by deleting lines FO6-F07 and
adding a second RCL ¥ instruction after line F02.

Keys: Display:

W(SoLVE/T]
{FN}F
2.3 X 2.7
W(soLvE/[]
{SOLVE} X X=2.4495

81,649,658,092.0

Description:

Calculates the root using
guesses that bracket \/6.

f(x) is relatively large.

There is a pole between the final estimates. The initial guesses yielded
opposite signs for f(x), and the interval between successive estimates
was narrowed until two neighbors were found. Unfortunately, these
neighbors made f(x) approach a pole instead of the x-axis. The func-
tion does have roots at —2 and 3, which can be found by entering
better guesses.

266 C: More About Solving an Equation

When SOLVE Cannot Find a Root

Sometimes SOLVE fails to find a root. The following conditions cause
the message NO ROOT FND:

The search terminates near a local minimum or maximum (see fig-
ure a, below). If the ending value of f(x) (stored in the Z-register) is
relatively close to zero,it is possible that a root has been found; the
number stored in the unknown variable might be a 12-digit num-
ber very close to a theoretical root.

The search halts because SOLVE is working on a horizontal asymp-
tote—an area where f(x) is essentially constant for a wide range of x
(see figure b, below). The ending value of f(x) is the value of the
potential asymptote.

The search is concentrated in a local “flat” region of the function
(see figure c, below). The ending value of f(x) is the value of the
function in this region.

flx) flx)

flx)

]
T

C

Cases Where a Root Is Not Found

C: More About Solving an Equation 267

The SOLVE operation returns a math error if an estimate produces an
operation that is not allowed—for example, division by zero, a square
root of a negative number, or a logarithm of zero. Keep in mind that
SOLVE can generate estimates over a wide range. You can sometimes
avoid math errors by using good guesses. If a math error occurs, press

unknown variable (or [VIEW variable) to see the value that pro-
duced the error.

Example: A Relative Minimum. Calculate the root of this parabolic
equation:

x2 — 6x + 13 = 0.

It has a minimum at x = 3.

Enter the function as the program:

Gal LBL G

Gaz RCL =

GA3 ===

Gad4 &

GAS RCLx K

Gdg -

cay 13

Gag +

GA2 ETH

Keys: Display: Description:

B(soLve/ {FN}G Search fails with
0 X 10 guesses 0 and 10.

B(soLve/T]
{SOLVE }X NO ROOT FND

(«] @(SHOW 3.000000100601 Displays the final esti-
mate of x.

B(sHow] 300000468443 Previous estimate was
not the same.

40000 Final value for f(x) is
relatively large.

268 C: More About Solving an Equation

Example: An Asymptote. Find the root of the equation

10 - L —o
X

Enter the function as the program:

I
=

o
m - I

=

T
y
]
o

—
T
-

-
[-

»

I
T
T
T
T
T

T

|

p
—
! FTH

Keys: Display:

B(SOLVE/] {FN}H
.005 X 5
BB(SoLVE/[]
{SOLVE} X X=0.1000

9.1000

B(sHow] B BEEEERERREE

Description:

Solves for x using
guesses 0.005 and 5.

Previous estimate 1is

the same.

f) = 0.
Watch what happens when you use negative values for guesses:

Keys: Display:

1 X 2
B(soLve/[]
{SOLVE } X NO ROOT FND

(¢] -46,666,666,692.1

-S5.775@E15

10.0000

Description:

No root found for f(x).

Displays last estimate
of x.

Previous estimate was
much larger in
magnitude.

f(x) for last estimate is
rather large.

C: More About Solving an Equation 269

It's apparent from inspecting the equation that if x is a negative num-
ber, the smallest that f(x) can be is 10. f(x) approaches 10 as x becomes
a negative number of large magnitude.

Example: A Math Error. Find the root of the equation:

Vix = (x + 0.3)] — 05 = 0.

Enter the function as the program:

Ial LBL I

Iaz RCL X

Ia3 a3z

Ia4 RCL+ X

Ias =+

Iae

Iav

Ias

I3 RETH

RT

=
W

o
n

o
o

First attempt to find a positive root.

Keys: Display: Description:

B(soLve/[] {FN} I Calculates the root us-
0 X 10 ing guesses 0 and 10.

B(SOLVE/[] {sOLVE}
X X=0.1000

Now attempt to find a negative root by entering guesses 0 and —10.
Notice that the function is undefined for values of x between 0 and
—0.3 since those values produce a positive denominator but a nega-
tive numerator, causing a negative square root.

0 X 10 Math error.

BI(SOLVE/T] {SOLVE}
X SART(NEG)

B(viEw] X X=-0.1308 Displays the final esti-
mate of x.

270 C: More About Solving an Equation

Example: A Local “Flat” Region. Find the root of the function

x + 2if x<—1

fx) = 1 for —1<x< 1
—x + 2 if x>1

Enter the function as the program:

Jail LBL J

Jaz 1

JB83 ENTER *

Jag 2

JAS RCL+ X

JAE = <y?

Jay RTH

Jag 4

Jas

J18 +--

J11l =>?

J12 R+

J13 RTH

(a local flat region)

Solve for X using initial guesses of 10~8 and —10~8,

Keys: Display: Description:

B(soLvE/S {FN} J No root found using
(E] 8 X very small guesses

1[Z)(E]) 8
BI(SOLVE/[{sOLVE}
X NO ROOT FND

near zero (thereby re-
stricting the search to
the flat region of the
function).

(¢] 1.0000E-8 The last two estimates
0.8825 are far apart, and the
1.0000 final value of f(x) is

large.

If you use larger guesses, then SOLVE can find the roots, which are
outside the flat region (at x=2 and x=—2).

* You can subsequently delete line J03 to save memory.

C: More About Solving an Equation 271

Round-Off Error and “Underflow”

Round-off Error. The limited (12-digit) precision of the calculator
can cause errors due to rounding off, which adversely affect the itera-
tive solutions of SOLVE and integration. For example,

[(Ixl + 1) + 10152 — 1030 = 0

has no roots because f(x) is always greater than zero. However, given
initial guesses of 1 and 2, SOLVE returns the answer 1.0000 due to

round-off error.

Round-off error can also cause SOLVE to fail to find a root. The

equation

Ix2 — 71 =0

has a root at \/7 . However, no 12-digit number exactly equals \/7 , so
the calculator can never make the function equal to zero. Further-
more, the function never changes sign. SOLVE returns the message
NO ROOT FND. However, the final estimate of x (press (¢] to see it) is
the best possible 12-digit approximation of the root when the routine
quits.

“Underflow.” Underflow occurs when the magnitude of a numberis
smaller than the calculator can represent, so it substitutes zero. This
can affect SOLVE results. For example, consider the equation

1
x2

whose root is infinite in value. Because of underflow, SOLVE returns a

very large value as a root. (The calculator cannot represent infinity,
anyway.)

272 C: More About Solving an Equation

More About Integration

This appendix provides information about integration beyond that
given in chapter 8.

How the Integral Is Evaluated

The algorithm used by the integration operation, fFFN d x, calculates
the integral of a function f(x) by computing a weighted average of the
function’s values at many values of x (known as sample points)
within the interval of integration. The accuracy of the result of any
such sampling process depends on the number of sample points con-
sidered: generally, the more sample points, the greater the accuracy. If
f(x) could be evaluated at an infinite number of sample points, the
algorithm could—neglecting the limitation imposed by the inaccuracy
in the calculated function f(x)—always provide an exact answer.

Evaluating the function at an infinite number of sample points would
take forever. However, this is not necessary since the maximum accu-
racy of the calculated integral is limited by the accuracy of the
calculated function values. Using only a finite number of sample
points, the algorithm can calculate an integral that is as accurate as is
justified considering the inherent uncertainty in f(x).

The integration algorithm at first considers only a few sample points,
yielding relatively inaccurate approximations. If these approximations
are not yet as accurate as the accuracy of f(x) would permit, the algo-
rithm is iterated (repeated) with a larger number of sample points.
These iterations continue, using about twice as many sample points
each time, until the resulting approximation is as accurate as is justi-
fied considering the inherent uncertainty in f(x).

D: More About Integration 273

As explained in chapter 8, the uncertainty of the final approximation
is a number derived from the display format, which specifies the un-
certainty for the function. At the end of each iteration, the algorithm
compares the approximation calculated during that iteration with the
approximations calculated during two previous iterations. If the dif-
ference between any of these three approximations and the other two
is less than the uncertainty tolerable in the final approximation, the
calculations ends, leaving the current approximation in the X-register
and its uncertainty in the Y-register.

It is extremely unlikely that the errors in each of three successive ap-
proximations—that is, the differences between the actual integral and
the approximations—would all be larger than the disparity among the
approximations themselves. Consequently, the error in the final ap-
proximation will be less than its uncertainty (provided that f(x) does
not vary rapidly). Although we can’t know the error in the final ap-
proximation, the error is extremely unlikely to exceed the displayed
uncertainty of the approximation. In other words, the uncertainty esti-
mate in the Y-register is an almost certain “upper bound” on the
difference between the approximation and the actual integral.

Conditions That Could Cause Incorrect

Results

Although the integration algorithm in the HP-32S is one of the best
available, in certain situations it—like all other algorithms for numeri-
cal integration—might give you an incorrect answer. The possibility of
this occurring is extremely remote. The algorithm has been designed to
give accurate results with almost any smooth function. Only for func-
tions that exhibit extremely erratic behavior is there any substantial
risk of obtaining an inaccurate answer. Such functions rarely occur in
problems related to actual physical situations; when they do, they
usually can be recognized and dealt with in a straightforward manner.

Unfortunately, since all that the algorithm knows about f(x) are its
values at the sample points, it cannot distinguish between f(x) and any
other function that agrees with f(x) at all the sample points. This situa-
tion is depicted below, showing (over a portion of the interval of
integration) three functions whose graphs include the many sample
points in common.

274 D: More About Integration

flx)
A

 > X

With this number of sample points, the algorithm will calculate the
same approximation for the integral of any of the functions shown.
The actual integrals of the functions shown with solid and dashed
lines are about the same, so the approximation will be fairly accurate
if f(x) is one of these functions. However, the actual integral of the
function shown with a dotted line is quite different from those of the
others, so the current approximation will be rather inaccurate if f(x) is
this function.

The algorithm comes to know the general behavior of the function by
sampling the function at more and more points. If a fluctuation of the
function in one region is not unlike the behavior over the rest of the
interval of integration, at some iteration the algorithm will likely de-
tect the fluctuation. When this happens, the number of sample points
is increased until successive iterations yield approximations that take
into account the presence of the most rapid, but characteristic,

fluctuations.

For example, consider the approximation of

oo

f xe *dx.
0

Since you're evaluating this integral numerically, you might think that
you should represent the upper limit of integration as 104°°, which is
virtually the largest number you can key into the calculator. Try it and
see what happens. Enter this program that evaluates the function
f(x) = xe™*.

D: More About Integration 275

Fol LBL F

Fez2 RCL X

FB3 +--

FB4 e*

FB5 RCLx X

FBe RTHN

Set the display format to SCI 3, specify the lower and upper limits of
integration as zero and 10%%%, then start the integration.

Keys: Display: Description:

@(Disp] {sc} 3 Specifies accuracy level
0 (E] 499 1E499_ and limits of

integration.

@(soLvE/[] {FN} F Approximation of
B(SOLVE/[] {SFN} X [=0.000ED integral.

The answer returned by the calculator is clearly incorrect, since the
actual integral of f(x) = xe™* from zero to oo is exactly 1. But the
problem is not that co was represented by 104, since the actual inte-
gral of this function from zero to 10%°? is very close to 1. The reason
for the incorrect answer becomes apparent from the graph of f(x) over
the interval of integration:

flx)

A

 Y S

276 D: More About Integration

The graph is a spike very close to the origin. Because no sample point
happened to discover the spike, the algorithm assumed that f(x) was
identically equal to zero throughout the interval of integration. Even if
you increased the number of sample points by calculating the integral
in SCI 11 or ALL format, none of the additional sample points would
discover the spike when this particular function is integrated over this
particular interval. (For better approaches to problems such as this,
see the next topic, “Conditions That Prolong Calculation Time.”)

Fortunately, functions exhibiting such aberrations (a fluctuation that is
uncharacteristic of the behavior of the function elsewhere) are un-
usual enough that you are unlikely to have to integrate one unknow-
ingly. A function that could lead to incorrect results can be identified
in simple terms by how rapidly it and its low-order derivatives vary
across the interval of integration. Basically, the more rapid the varia-
tion in the function or its derivatives, and the lower the order of such

rapidly varying derivatives, the less quickly will the calculation finish,
and the less reliable will be the resulting approximation.

Note that the rapidity of variation in the function (or its low-order
derivatives) must be determined with respect to the width of the in-
terval of integration. With a given number of sample points, a
function f(x) that has three fluctuations can be better characterized by
its samples when these variations are spread out over most of the in-
terval of integration than if they are confined to only a small fraction
of the interval. (These two situations are shown in the following two
illustrations.) Considering the variations or fluctuation as a type of
oscillation in the function, the criterion of interest is the ratio of the
period of the oscillations to the width of the interval of integration:
the larger this ratio, the more quickly the calculation will finish, and
the more reliable will be the resulting approximation.

D: More About Integration 277

Calculated integral
of this function
will be accurate.

=
=

=
=
=

N
e
b
h
o
o
e
m
e
-

Calculated integral
of this function
may be inaccurate.

N
=
-

o
=
f
m
m
e
e
-
-
-

In many cases you will be familiar enough with the function you
want to integrate that you will know whether the function has any
quick wiggles relative to the interval of integration. If you're not fa-
miliar with the function, and you suspect that it may cause problems,
you can quickly plot a few points by evaluating the function using the
subroutine you wrote for that purpose.

If, for any reason, after obtaining an approximation to an integral,
you suspectits validity, there’s a simple procedure to verify it: subdi-
vide the interval of integration into two or more adjacent subintervals,
integrate the function over each subinterval, then add the resulting
approximations. This causes the function to be sampled at a brand
new set of sample points, thereby more likely revealing any previ-
ously hidden spikes. If the initial approximation was valid, it will
equal the sum of the approximation over the subintervals.

278 D: More About Integration

Conditions That Prolong Calculation Time

In the preceding example, the algorithm gave an incorrect answer be-
cause it never detected the spike in the function. This happened
because the variation in the function was too quick relative to the
width of the interval of integration. If the width of the interval were
smaller, you would get the correct answer; but it would take a very
long time if the interval were still too wide.

Consider an integral where the interval of integration is wide enough
to require excessive calculation time, but not so wide that it would be

calculated incorrectly. Note that because f(x) = xe™* approaches zero
very quickly as x approaches oo, the contribution to the integral of the
function at large values of x is negligible. Therefore, you can evaluate
the integral by replacing co, the upper limit of integration, by a num-
ber not so large as 104%°—say 103.

Re-run the previous integration problem with this new limit of inte-
gration. If you have not run any other integrations in the meantime,
you do not have to re-specify FH= F.

Keys: Display: Description:

0 3 1E3_ New upper limit.

B(SOLVE/S] {FFN} X [f=1008ED Integral. (The calcula-
tion takes a while.)

xxy 1.824E-4 Uncertainty of
approximation.

This is the correct answer, but it took a very long time. To understand
why, compare the graph of the function between x = 0 and x = 103,
which looks about the same as that shown on page 276, with the
graph of the function between x = 0 and x = 10:

D: More About Integration 279

f(x)

A

 > X

0 10

You can see thatthis function is “interesting” only at small values ofx.
At greater values of x, the function is not interesting, since it decreases
smoothly and gradually in a predictable manner.

The algorithm samples the function with higher densities of sample
points until the disparity between successive approximations becomes
sufficiently small. For a narrow interval in an area where the function
is interesting, it takes less time to reach this critical density.

To achieve the same density of sample points, the total number of
sample points required over the larger interval is much greater than
the number required over the smaller interval. Consequently, several
more iterations are required over the larger interval to achieve an ap-
proximation with the same accuracy, and therefore calculating the
integral requires considerably more time.

Because the calculation time depends on how soon a certain density
of sample points is achieved in the region where the function is inter-
esting, the calculation of the integral of any function will be
prolonged if the interval of integration includes mostly regions where
the function is not interesting. Fortunately, if you must calculate such
an integral, you can modify the problem so that the calculation time is
considerably reduced. Two such techniques are subdividing the inter-
val of integration and transformation of variables. These methods
enable you to change the function or the limits of integration so that
the integrand is better behaved over the interval(s) of integration.

280 D: More About Integration

The calculator responds to certain conditions or keystrokes by display-
ing a message. The 4\ symbol comes on to call your attention to the
message. For significant conditions, the message remains until you
clearit. Pressing or (¢] clears the message; pressing any other key
clears the message and executes that key’s function.

JFH ACTIVE

A running program attempted to select a program label (FH=/abel)
while an integration calculation was running.

JCTFHD
A running program attempted to calculate an integral
(FFH d variable) while another integration calculation was running.

JCSOLVE?

A running program attempted a SOLVE operation while an integra-
tion calculation was running.

ALL VYARS=8

The catalog of variables (M(MEM {VAR}) indicates no values stored.

CALCULATING

The calculator is executing a function that might take a while.

DIVIDE BY @

Attempted to divide by zero. (Includes if Y-register contains
Zero.)

DUFLICAT. LBL

Attempted to record a program label that already exists for another
program routine.

Messages 281

INTEGRATING

The calculator is calculating an integral. This might take a while.

INVALID DATH

Data error:

B Attempted to calculate combinations or permutations with r>n,
with non-integer r or n, or with n=>1012.

B Attempted to use a trigonometric or hyperbolic function with an
illegal argument: with x an odd multiple of 90°; or
(ASIN] with x < —1 or x > 1; [HYP]J(ATAN] with x < —1 or x = 1;

with x < 1.

INVALID =!

Attempted a factorial or gamma operation with x as a negative

integer.

INVALID =
Exponentiation error:

B Attempted to raise 0 to the Oth or to a negative power.

B Attempted to raise a negative number to a non-integer power.

B Attempted to raise the complex number (0 + i0) to a number with
a negative real part.

INVALID €12

Attempted an operation with an indirect address, but the number in
the index register is invalid (il =27 or 0 < lil < 1).

LOGCA

Attempted to take a logarithm of zero or (0 + i0).

LOGCHEG >

Attempted to take a logarithm of a negative number.

MEMORY CLERR

All of user memory has been erased (see page 255).

282 Messages

MEMOEY FULL

The calculator has insufficient memory available to do the operation.
See appendix B.

HOHE=TSTENT

Attempted to refer to a nonexistent program label (or line number)
with [GT0], [GTO](-], [XEQ], or {FH} . Note that the error

HOMEXISTEMT can mean either (1) you explicitly (from the keyboard)
called a program label that does notexist; or (2) the program that you
called referred to another label, which does not exist.

HO LAEELS

The catalog of programs ([MeEv {FGM}) indicates no program la-
bels stored.

HO EOOT FHD

SOLVE cannotfind the root of the equation using the currentinitial
guesses (see page 120 and page 261). A SOLVE operation exccuted in a
program does not produce this error; the same condition causes it instead
to skip the next program line (the line following the instruction SOLYE
variable).

HO STRT DOATH

Attempted to do a statistics calculation with no statistics data stored.

OVERFLOW

Warning (displayed momentarily); the magnitude of a result is too
large for the calculator to handle. The calculator returns
£9.99999999999E499 in the current display format. (See “Range of
Numbers and Overflow” on page 24.) This condition sets flag 6. If
flag 5 is set, then overflow has the added effect of halting a running
program and leaving the message in the display until you press a key.

FEGHM TOF

Indicates the “top” of program memory. The memory scheme is circu-
lar, so FRGM TOF is also the line after the last line in program
memory.

FUHHIHG

The calculator is running a program (other than a SOLVE or [FN
routine).

Messages 283

SELECT FH

Attempted to execute SOLVE variable or fFH d variable without a se-
lected program label. This can happen only the first time that you use
SOLVE or [FN after the message MEMORY CLERR, or it can happen
if the current label no longer exists.

SOLVE RACTIVE

A running program attempted to select a program label (FH=/abel)
while a SOLVE operation was running.

SOLVECSOLVE?

A running program attempted a SOLVE operation while another
SOLVE operation was running.

SOLVECSFND

A running program attempted to calculate an integral while a SOLVE
operation was running.

SOLVING

The calculator is solving an equation for its root. This might take a
while.

SERTCHEGS

Attempted to calculate the square root of a negative number.

STAT ERROR

Statistics error:

m Attempted to calculate s, s, X, J, m, r, or b with n = 1.

B Attempted to calculate 7, ¥, or Xw with x-data only (all y-values
equal to zero).

B Attempted to calculate X, i, r, m, or b with all x-values equal.

B Attempted to do a statistics calculation after has reduced n to
zero.

284 Messages

TOO BIG

The magnitude of the number is too large to be converted to HEX,
OCT, or BIN base. The number must be in the range

—34,359,738,368 < n < 34,359,738,367.

®EQ@ OVERFLOW

A running program attempted an eighth nested XE® /abel. (Up to
seven subroutines can be nested.) Since SOLVE and [FN each use a
level, they can also generate this error.

Messages 285

Function Index

This section is a quick reference for all functions and operations and
their formulas, where appropriate. The listing is in alphabetical order
by the function’s name. This name is the one used in program lines.
For example, the function named FIX n is executed as @[Disp| {FX }n.

Those functions that are not programmable have their names in key
boxes, such as [¢].

Non-letter characters and Greek letters are alphabetized before all the
letters; function names preceded by arrows (e.g. »DEG) are alphabet-
ized as if the arrow were not there.

Function Name Keys and Description Page

+/— Y 21
Changes the sign of a number.

+ 25
Addition. Returns y + x.

_ 25
Subtraction. Returns y — x.

X (x] 25
Multiplication. Returns y X x.

= 25
Division. Returns y + x.

(¢] Deletes the last digit keyed in; clears x; 16, 19,
clears a menu; deletes a program step. 32, 83

B(a) Displays previous entry in catalog; moves 33, 76
program pointer to previous step.

286 Function Index

Function Name Keys and Description Page

¥

1/x

10X

%

%CHG

2+

X

>x2

Zxy

Zy

Sy?

Displays next entry in catalog; moves pro-

gram pointer to next step (during program

entry); executes the current program line

(not during program entry).

Reciprocal.

W0
Common exponential. Returns 10 raised to

the x power.

()
Percent. Returns (y x x) = 100.

B(%CHa]
Percent change. Returns (x — y)(100 + y).

B
Returns the approximation

3.14159265359.

Accumulates (y, x) into statistics registers.

o]
Removes (y, x) from statistics registers.

W[STAT) {2} {=}
Returns the sum of x-values.

BSTAT] {2} {=2}
Returns the sum of squares of x-values.

BI(STAT) {2} {=»}
Returns the sum of products of x- and y-

values.

BSTAT] {2} {»}
Returns the sum of y-values.

WSTAT] {2} {»%}
Returns the sum of squares of y-values.

33, 76

24

55

59

59

56

154

155

161

162

162

161

162

Function Index 287

 halts a running program.

Function Name Keys and Description Page

b.r+y.x BI(P=RECT] {B.r +y,x} 61
Polar to rectangular. Converts (r, 6) to (x,

y)-

[FN d variable B(SOLVE/[{IFNY} variable 127
Integrates the current function with respect

to the variable, using lower limit in Y-regis-

ter and upper limit in X-register.

ABS B(PARTS] {AES} 67
Absolute value. Returns Ix|.

ACOS @ (Acos] 57
Arc cosine. Returns cos~! x.

ACOSH E(5vpr] [(AcOS] 59
Hyperbolic arc cosine. Returns cosh~—! x.

ALL @(DisP] {ALL} 30
Selects display of all significant digits.

ASIN B(AsIN] 57
Arc sine. Returns sin~1 x.

ASINH W(Hve] @(ASIN] 59
Hyperbolic arc sine. Returns sinh—1 x.

ATAN B(ATAN] 57
Arc tangent. Returns tan—! x.

ATANH @(HvP) [(ATAN] 59
Hyperbolic arc tangent. Returns tanh—1 x.

b B(STAT] {LR} {b} 159
Returns the y-intercept of the regression

line: y — mx.

B(BAsE] Displays the menu for base conversions. 144

BIN B(eAsE] {EN} 144
Selects Binary (base 2) mode.

Turns on calculator; clears x; clears mes- 14, 16,
sages and prompts; cancels menus; 19, 32,

cancels catalogs; cancels program entry; 36, 73

288 Function Index

Function Name Keys and Description Page

CF n BI(FLAGS] {CF}n 98
Clears flag n (0 < n < 6).

B(CLEAR] Displays the menu to clear numbers or 16, 33
parts of memory; or clears the indicated

variable or program from a MEM catalog.

B(CLEAR] {ALL} Clears all stored data and programs. 34

B(CLEAR] {PGM} Clears all programs. 86

CLZ M(CLEAR] {2} 154
Clears statistics registers.

CLVARS B(CLEAR] {VARS} 50
Clears all variables to zero.

ClLx W(CLEAR] {x} 36, 40,
Clears x to zero. 73

B(cvrLx] Displays the CMPLX_ prefix for complex 139
functions.

CMPLX+/— @(cvPLx] 139
Complex change sign. Returns —(z, +

iz,).

CMPLX+ B(cvPLx] 140
Complex addition. Returns (z1 + iz,)

. x 1y
+ (sz + /zzy).

CMPLX— B(cvrix] (-] 140
Complex subtraction. Returns

(zu + /z1y) — (22x + lzzy).

CMPLX x B(cvpPix] [x] 140 Complex multiplication. Returns (z,, +

IZ1y) X (22x + IZzy).
Function Index

Function Name Keys and Description

CMPLX=

CMPLX1/x

CMPLXCOS

CMPLX e*

CMPLXLN

CMPLXSIN

CMPLXTAN

CMPLX y*

Cn,r

COS

COSH

DEC

-DEG

@(cvrix] (2]
Complex division. Returns (z, + iz1y) +
(z,, + IZzy).

B cvPLX
Complex reciprocal. Returns 1/(z, + iz).

@(cvrix][cos]
Complex cosine. Returns cos (z, + izy).

@(cvpPix] ()
Complex natural exponential. Returns
er + IZy.

W(CvPLx] [LN]
Complex natural log.

Returns log, (2, + izy).

W(CcvPLx] [SIN]
Complex sine. Returns sin (z, + iz).

@(cvrLx]
Complex tangent. Returns tan (z, + izy).

W(cvPix] ()
Complex power. Returns

(22x + izzy)
(z1x + iz,

B(PROB] {Cn,r}
Combinations of n items taken r at a time. Re-

turns n! = (r'(n — r)).

COS

Cosine. Returns cos x.

W(+Hvr][cos)
Hyperbolic cosine. Returns cosh x.

B(BASE) {DEC}
Selects Decimal mode.

B(D-RAD] {+DEG}
Radians to degrees. Returns (360/2x)x.

140

139

139

139

139

139

139

140

65

57

59

144

64

290 Function Index

Function Name Keys and Description

DEG

@(oisP]

@(o-RAD]

DSE variable

ENG n

ENTER

FIX n

B(FLAGs]

FN= label

FP

@[MODE] {DG}
Selects Degrees angular mode.

Displays the menu to adjust the display

format.

Displays the menu to convert between de-

grees and radians.

B(LoorP] {DSE} variable
Decrement, Skip if Equal or less. For con-

trol number cccccccfffii stored in a

variable, subtracts ii (incremental value)

from cccccec (counter value) and,if the re-

sult < fff (final value), skips the next

program line.

Begins entry of exponents and adds “E” to

the number being entered. Indicates that a

power of ten follows.

Natural exponential. Returns e raised to

the x power.

B(DisP] {EN} n
Selects Engineering display with n digits

following the first digit. 0 < n < 11.

Separates two numbers keyed in sequen-

tially; copies x into the Y-register, lifts y

into the Z-register, lifts z into the T-regis-

ter, and loses t.

B(DIsP] {F®} n
Selects Fixed display with n decimal

places. 0 < n < 11.

Displays the menu to set, clear, and test

flags.

B(SOLVE/T {FN} label
Selects the /abeled program as the current

function (used by SOLVE and [FN).

B(PARTS] {FF}
Fractional part of x.

57

30

64

101

22

55

30

23, 39

30

98

111, 127

67

Function Index 291

Function Name Keys and Description

FS? n B(FLAGS) {FS?} n 98
If flagn (0 < n < 6) is set, executes the
next program line; if flag n is clear, skips the

next program line.

GRAD BI(VMODES {GR} 57
Sets Grads angular mode.

GTO label B(GT0] 1abel 93, 100
Sets the program pointer to the program /a-

bel in program memory.

B(GT0]] 1abel Sets the program pointer to the program 94
nn line label nn.

Bcol (0] Sets the program pointer to PRGM TOP. 94

HEX B(BASE] {HX} 144

Selects Hexadecimal (base 16) mode.

B(HyP] Displays the HYP_ prefix for hyperbolic 59
functions.

B(H~H™MS] Displays the menu to convert between frac- 63
tional hours and hours-minutes-seconds.

~HMS B(HeHMS {+HMS} 64
Hours to hours, minutes, seconds. Converts

x from a decimal fraction to minutes-sec-

onds format.

~HR B(H~Hvs] {+HR} 64
Hours, minutes, seconds to hours. Converts

x from minutes-seconds format to a decimal

fraction.

(i) The indirect parameter. Addresses (indi- 103

rectly) the variable or label whose letter

corresponds to the numeric value in the

variable i.

INPUT variable B[InPUT variable 77

Recalls the variable to the X-register, dis-

plays the variable name along with the

contents of the X-register, and halts pro-

gram execution; pressing (or (¥]))
stores the number in the variable. (Used

only in programs.)

P B(PARTS] {IP} 67
Integer part of x.

292 Function Index

Function Name Keys and Description Page

ISG variable B(LoorP] {1SG }variable 101
Increment, Skip if Greater. For control number

ccccccc. fffii stored in variable, adds ii (incre-

mental value) to cccccece (counter value) and,

if the result > fff (final value), skips the next

program line.

LASTx B(CasTY) M
Returns number stored in LAST X register.

LBL letter B(LBL/RTN] {LBL} label 71
Labels a program with a single letter for refer-
ence by XEQ, GTO, or FN operations. (Used

only in programs.)

B(LBL/RTN] Displays the menu for LBL, RTN, and PSE. 7

LN 55
Natural logarithm. Returns log, Xx.

LOG B(og) 55
Common logarithm. Returns logiq X.

B(Loor] Displays the menu for DSE and ISG. 99

(LR} B(5AT) {LR} 158
Displays menu for linear regression.

m BETAT) {LR} {m} 159
Returns the slope of the regression line:

2 — X)(yvi — 7)1 + Z(x; — X)2

B(vEm] Displays the amount of available memory and 33
the catalog menu.

B[vEmM] {PGM} Begins catalog of programs. 85

B(vEv] {VAR} Begins catalog of variables. 49

B(MODES Displays the menu to set angular modes and 29
the radix (. or ,).

n BW(sTAT] {Z} {n} 161
Returns the number of sets of data points.

OCT @(BAsE] {0OC} 144
Selects Octal (base 8) mode.

B(oFF] Turns the calculator off. 14

B(P~RECT] Displays the menu for converting between po- 60
lar and rectangular coordinates.

Function Index 293

Function Name Keys and Description

B(PARTS

Pn,r

B(PRGM
@(ProB]
PSE

-RAD

{R}

RAD

RADIX,

RADIX.

RANDOM

RCL variable

RCL+ variable

RCL— variable.

Displays the menu for selecting parts of

numbers.

W(PROE] {Pn.r}
Permutations of n items taken r at a time. Re-

turns n! = (n —)l

Activates or cancels program entry (toggles).

Displays the menu for probability functions.

W(LBL/RTN {PSE}
Pause. Halts program execution briefly to dis-

play x, then resumes. (Used only in programs.)

B[sTAT] {LR} {r}
Returns the correlation coefficient between

the x- and y-values: Z(x; — X)(y; — V)

Ve, — %2 x 2y, — 7%
@(o-RAD| {*RAD}
Degrees to radians. Returns (27/360)x.

@(ProB) {R}
Displays random-number menu.

B(MODES {RD}
Selects Radians angular mode.

@(moDES {, }
Selects the comma as the radix mark (decimal

point).

@(moDES { . }
Selects the period as the radix mark (decimal

point).

B(PrOB] {R} {RANDOM}
Returns a random number in the range

O0<x<1.

variable

Recall. Copies variable into the X-register.

variable
Returns x + variable.

(=] variable.
Returns x — variable.

67

65

72

65

82

159

64

65

57

29

29

65

48

51

51

294 Function Index

Function Name Keys and Description Page

RCL x variable. (x] variable. 51
Returns x X variable.

RCL+ variable. (+] variable. 51
Returns x -+ variable.

RND BI(PARTS |{RN} 67
Rounds x to n decimal places (in FIX n dis-

play option) or to n + 1 significant digits

(in SCI n or ENG n display option).

RTN BI(LBL/RTN] {RTHN} 71, 91
Return. Marks the end of a program; the

program pointer returns to the top or to

the calling routine.

R/S Run/stop. Begins program execution at the 82

current program line or stops a running

program.

R4 36
Roll down. Moves t to Z-register, z to Y-

register, y to X-register, and x to T-register.

SCl n B(DisP] {sC}n 30
Selects Scientific display with n decimal

places, 0 < n < 11.

SEED @(rPrOB] {R} {SEED} 65
Restarts the random-number sequence

with the seed IxI.

SF n BI(FLAGS] {SF}n 98
Sets flag n (0 < n < 6), indicating “true.”

B(sHow] Shows the full mantissa (all 12 digits) of x 31
(or the number in the current program line).

SIN 57
Sine. Returns sin x.

SINH W(HvP] [SIN] 59
Hyperbolic sine. Returns sinh x.

B(soLvE/[] Displays the menu for solving for an un- 111, 127 known and for integration.

Function Index 295

Displays the labeled contents of variable with-
out recalling the value to the stack.

Function Name Keys and Description Page

SOLVEvariable B(SOLVE/[{SOLVE} variable 111
Solves the current function for the variable,

using initial estimates in variable and x.

SQRT 24
Square root of x.

B(sTAT) Displays the menu for statistical functions. 156

STO variable variable 48
Store. Copies x into variable.

STO+ variable variable 50
Stores variable + x into variable.

STO— variable (=] variable 50
Stores variable — x into variable.

STO X variable (x] variable 50
Stores variable x x into variable.

STO+ variable variable 50
Stores variable + x into variable.

STOP 82
Halts program execution and displays the X-

register.

sX B(STAT] {s} {sx} 157
Returns the standard deviation of x-values:

VE(x, — %)% + (n — 1) -

sy B(sTAT] {s}{s»} 157
Returns the standard deviation of y-values:

Vay, —7)? + (n — 1) -
TAN TAN 57

Tangent. Returns tan x.

TANH |[& 59
Hyperbolic tangent. Returns tanh x.

@(TESTS] Displays the menu of conditional tests. 96

VIEW variable B[VIEW] variable 79

Function Index

Function Name Keys and Description Page

XEQ /abel label 75, 91
Executes the program identified by /abel.

x2 B2 24
Square of «x.

B(sTAT] {Z5} {®} 156
Returns the mean of x values: Zx;+n.

% B(STAT) {LR} {%} 159
Given a y-value in the X-register, returns the

x-estimate based on the regression line:

X=(y — b))+ m.

x! B(PROB] {x!} 65
Factorial (or gamma). Returns

xX)x — 1)...2)1), or ['(x+1).

i

Xw B(sTAT] {%.7} {=w} 157
Returns the weighted mean of x values:

(Zyx;) + Zy;.

X< >y (xxy] 37
x exchange y. Moves x to the Y-register and

y to the X-register.

x<0? B(TeEsTS] {=?8} {<@} 96

If x < 0, executes the next program line;

if x = 0, skips the next program line.

x<y? BTESTS] {=?»} {<») 96
If x <y, executes the next program line; if x

= y, skips the next program line.

x=0? B(TESTS] (=70} {=8} 96
If x = 0, executes the next program line; if

x # 0, skips the next program line.

x=y? BTESTS] {=?»} {=»} 96
If x = y, executes the next program line; if x

y, skips the next program line.

x> 07 B(TEsTs) {x78} {>8} 96
If x > 0, executes the next program line; if

x < 0, skips the next program line.

Function Index 297

Function Name Keys and Description

x>y?

x#07?

x#y?

BTESTS) {=?»} {>»}
If x > y, executes the next program line; if x

< y, skips the next program line.

B[TESTS] {x708} {28}
If x #+ 0, executes the next program line; if x

= 0, skips the next program line.

BITESTS] {x?»} {=v}
If x # y, executes the next program line; if x

= y, skips the next program line.

B(ETAT) (=5} {7}
Returns the mean of y values: Zy;=n.

B(STAT] {LR} {5}
Given an x-value in the X-register, re-

turns the y-estimate based on the

regression line: y = mx + b.

B(P=RECT] {».x28.,r}
Rectangular to polar. Converts (x, y) to (r,

0).

Fad
Power. Returns y raised to the x power.

96

96

96

156

159

61

56

298 Function Index

Index

Page numbers in bold type indicate primary references. To look up
functions by name, use the function index that is before this index.

Special Characters
—4%.15

A, 32
]242
Vv, 17
& —> 150
vaA, 49

+. See Backspace
w, 56, 57
0123 98

A
A.Z, 15, 48

Absolute value, 67

Accuracy, specifying for integration,
132

Address, indirect, 103-106

ALL format, 31

Angles, converting between degrees
and fractions, 64

vector, 164, 171

Angular mode, 56-57
Annunciators, 20-21

flag, 98

Arc cosine, 57

Arc sine, 57

Arc tangent, 57

Area conversions, 229-235

Area of a circle, 70, 74, 78

Arithmetic, 24-29, 38-46

complex, 139-140

nondecimal. See Base arithmetic

in stack, 38

with stored variables, 50-52

vector, 164-175

Assistance, 240

Average. See Mean

Backspace, 16, 19, 23, 32, 40, 73

Balance, 226

Base

arithmetic, 146-148

conversions, 144-145

modes, programming, 151-152

Batteries,

damage from, 248
installing, 243-245
types of, 242

Bessel function, 128-130

Binary numbers, 144-150

large, 49
long, 149

positive, 148

Bit, most significant, 148
Box, solving for dimensions of, 113,

121

Branching, 93-94, 95

backwards, 99-102

unconditional, 94

Brightness, display, 14
Bytes in programs, 85

C
C. See Cancel key
Calculator malfunction, 245-247,

249-250

Cancel key, 16, 19, 32, 36, 40, 73

Canceling the display, 36
Cartesian coordinates. See Rectangu-

lar coordinates

Cash values, positive and negative,

223

Catalog
of programs, 85

of variables, 49

Celsius conversion, 229-235

Chain calculations, 26, 44-46

Change sign, 21
Checksum, 85, 86-87

Clear key. See C
Clear x, 36, 40-41, 73

Clearing, 15-16
memory, 34, 253, 255-256

programs, 85-86
statistical data, 154

variables from catalog, 49

Column vector, 189

Combinations, 65-66

Commas in numbers, 29

Comparison tests, 95-97

Complex arithmetic, 139-140
Complex numbers, 137-143

entering, 137, 138

with integration, 126

with SOLVE, 112

Complex roots, quadratic, 191
Compounding periods, 226
Conditional instructions, 95-99, 100

SOLVE, 124

fEN, 134

300 Index

Constant, using, 39-40, 43

Constant growth, 40

Continuous Memory, 14, 243
Contrast, 14

Conversions,

angular, 64
coordinate, 60-62

fractional, 63-64

Coordinate transformations, 198-203

Coordinates, converting, 60-62

Copying numbers. See Storing
numbers

Copying variables from catalog, 49
Correcting errors using LAST X, 41,

42-43

Correlation coefficient, 159, 204, 211-

212

Cosine, 57

Counter value, 101

Cramer’s method, 175

Cross product, vector, 164, 171

Cube root, 56

Cubic equation, 194
Cursor, 15-16, 23

Curve fitting, 158-160

nonlinear, 204-214

Curve models, 204, 211

Curves, limitations on, 205

Damage, 250

Data, displaying, 79-80
Data entry, in a program, 78
Decimal places, 30
Decimal point, 29
Decrement loop counter, 101
Default settings, restoring, 255-256
Defects, 248
Definite integral, 126
DEG, 57
Degrees, converting, 64

Degrees mode, 57
Deleting program lines, 82
Dependent variable, 154
Determinant method, 175-182

Digit
entry, 23

entry, terminating, 23

separator, 29
Digits, maximum number of, 21

Discontinuity, SOLVE function,
263-264

Display
contrast, adjusting, 14
format, 29-31

format for integration, 127
inoperative, 245-246
of stack, 36, 40

temporary, 31
Displaying numbers in a program,

79-80
Dot product, vector, 164, 171

Dots in display, 150
DSE, 101-102

E, 22
e, 55

Ellipses in display, 150
ENG format, 30
Engineering format, 30
ENTER, 23, 25-27, 39
Equation solving, 110-125
Error

with a function, correcting, 42

message, 32, 82, 281-285

stops in a program, 82
Errors, integration, 274
Errors, numerical,

in quadratic equations, 191, 197

in SOLVE, 272
in statistics, 161, 205

in trigonometry, 57
Exponent, 22-23, 30

digits in, 21
keying in, 22

Exponential,

common, 55

natural, 55

curve, 204-205, 211

Exponentiation. See y*

F

f(x), 126

in integration, 273
in SOLVE, 259

Factorial, 19, 65

Fahrenheit conversion, 229-235

Feet conversion, 229-235

Ferris wheel principle, 230

Financial calculations. See Time value

of money
FIX format, 30

Fixed-decimal format, 30

Flag
clearing, 98
numbers, 97

setting, 98
status, 98-99

testing, 95, 97, 98-99

Flags,
overflow, 97-98

types of, 97-98
FOR-NEXT loop, 101

Force vector, 174

Fractional part, 67
nondecimal arithmetic, 146

Fractions, converting, 63-64

Frequencies, statistical, 157
Frequency curve, normal, 215
Function,

evaluating (SOLVE), 112-113
evaluating (/FN), 128
key, 24
names, 67

names in programs, 74
one-number, 24-25

two-number, 25

Index 301

Functions,

index of, 286-298

numeric, 54-69

SOLVE, 112

SOLVEable, 259-260

Future value, 226

G-I
Go to. See GTO

GRAD, 57

Grads mode, 57

Graphing SOLVE functions, 123
GTO, 76, 84, 93-94, 100

Hexadecimal numbers, 144-149

Highest bit, 148

Horner’s method, 262

programming, 87-88
Humidity limits, 245
Hyperbolic functions, 25, 59

i, 103-106

functions that use, 103

the variable, 53

(1), 103-106

functions that use, 104

for program control, 105
Imaginary numbers, 137

Inactive key, 32
Inch conversion, 229-235

Increment loop counter, 101

Independent variable, 154
Index value, 105

Indirect addressing, 103-106

Initial guesses (SOLVE), 111, 118,

120

locations of, 120

selecting, 123
INPUT, 77-79

canceling, 79

effect on stack of, 257

with integration, 128

with nondecimal numbers, 150

with SOLVE, 112

302 Index

Input, program, 78
Inserting program lines, 82
Integer part, 67

in nondecimal arithmetic, 146

Integral, approximating, 131
Integrand, 127, 131
Integration, 126-136

accuracy of, 127, 131-134

algorithm, 130, 272-274

anomalies, 275-277

approximations, 273-274
calculation time, 279-280

conditional, 134

errors, 274

function for, 128

how it works, 273-280

interrupting, 127
iterations, 274

limitations on, 135

limits, 127, 130, 134

method, 274

multi-variable input with, 128

nested, 135

output, 134
in programs, 134-135
results, 127, 134, 274-278

results, verifying, 278

sampling, 274, 277
uncertainty of, 127, 132, 274

using, 127

writing program for, 128
Interest rate, 226

Interference, radio frequency, 252

Intermediate results, 26, 28, 35,

44-46

Internal precision, 30-31

Inverse, matrix. See Matrix inverse

Inverse trigonometry, 57, 58
Inverse-normal distribution, 215-221

Inverses, complex, 139

ISG, 101-102

K-L
Kelvin conversion, 229-235

Yukasiewicz, 35

Labels. See Program labels
Largest numbers for base conversion,

149

LAST X register, 41-44
operations affecting, 258

LBL, 71-72, 73. See also Program
labels

Length conversions, 229-235
Letter keys, 15, 48, 71
Line numbers, program, 72

Linear

estimation. See Linear regression
motion, solving for, 115

regression, 156, 158-160

Loan calculations. See Time value of

money

Lock-up, calculator, 245-246

Logarithm,

common, 55

complex, 139

natural, 55

Logarithmic
curve, 204-205, 211

functions, 25, 55, 139

LOOP, 99, 101

Loop,
conditional, 100

control number, 101

with counter, 95, 101-102

currents, 181

infinite, 100

Looping, 99-102
with (i), 106

Low power, 242-243

Magnitude, 24

Mantissa, 22, 30-31, 49

Matrices, solving. See Simultaneous
equations

Matrix
coefficient, 183
formulas, 175-176, 183

inverse, 183-190

inversion, 183-190

result, 183
Mean, 156-157

population, 219
weighted, 157-158

MEM,33, 49, 85
Memory,

available, 33, 49
checking, 33
MEMORY CLEAR, 243, 245, 255
Memory
clearing, 34, 50, 253

clearing all, 255-256
deallocating, 254

MEMORY FULL, 85, 162, 253
Memory

loss, low power, 243
loss after battery installation, 245

management, 253-254
program, 72, 78, 84-87

requirements, 254

saving, 51
space. See Memory, user
stored, 253-254

usage, 254

usage for statistics, 162
usage for programs, 84-85
user, 47
for variables, 50

Menu, 17

canceling, 19

exiting, 19-20
keys, 16-19

types of, 18
using a, 16-19

Messages, 32, 281-286

Meter conversion, 229-235
MODES menu, 29

Moment, 174

Money, sign of, 223
Money calculations. See Time value

of money

Index 303

304

Negative
integer, largest, 149

numbers, 21

nondecimal numbers, 148

Newton’s method, 215

NO ROOT FND, 119, 267

Noncommutative functions, 25, 37,

45

Nonprogrammable functions, 87
Normal distribution, 215-221

Number,

-altering functions, 67
displayed, 30
labeled, 41

magnitude of, 24, 272

range, 24, 272

rounded, 30

two-function, 25

using twice, 39

Numbers,

complex, 137-143

correcting, 15-16, 41

internal representation of, 147-148
keying in, 21
negative, 21
nondecimal, 144-150
nondecimal, internal representa-

tion of, 147-148
partially hidden, 150

prime, 235-238
in program lines, 73, 151
real, 54

right-justified, 148
separating, 23, 27, 39
size of, 21
too large, 21, 22, 49

too small, 22

o
Octal numbers, 144-149

Off, 14

Index

On, 14

One-variable data, 154

Operation,
checking, 245-247
help with, 240

Operations, index of, 286-298

Order

of calculation, 26, 45-46

of entry, 25
of numbers, 37

Output, program, 78
Overflow, 24

flagged, 97-98
in nondecimal arithmetic, 146

program, 98

P+—RECT, 60-62

Parentheses, 26, 28, 45

PARTS menu, 67

Parts-of-numbers functions, 25, 67

Pause, programmed, 82
Payment, 226
Percent, 59-60

Percentage change, 59-60
Periods in numbers, 29

Permutations, 65

Phasor form, complex, 142
Polar

coordinates, converting, 60-62
form, complex, 142

vector coordinates, 170

Pole, SOLVE function, 264-265

Polynomial
expressions, programming, 87-88
second-degree, 191-197

Positive integer, largest, 149
Power

consumption, 242
curve, 204-205, 211

function, 56

function, complex, 140

Precision,

full, 31

integration, 132

numeric, 30-31

SOLVE, 272

of statistical data, 160-161

trigonometric, 57

PRGM, 72, 73, 75

PRGM TOP, 72, 73, 84

moving to, 84, 94

Prime number generator, 235-238
PROB menu, 65

Probability, 65-66
normal, 215-221, 219

Program,
boundaries, 71-72

catalog, 85

checking a, 86

deleting, via catalog, 85

displaying, via catalog, 85
editing, 82
entry, 72-73
executing, 75
executing via catalog, 85
executing step by step, 76
interrupting, 82

Program labels, 71-72, 73, 77, 85, 86,

94, 95

branching to, 94
in catalog, 85
duplicate, 72

indirect, 103, 104

Program line numbers,

moving to, 84, 94

in nondecimal modes, 151

Program lines, 72
deleting, 73, 82

inserting, 82

in nondecimal modes, 151

renumbering, 82
Program
memory, 72, 84-87

names. See Program labels
pointer, 76, 84, 94

resuming, 78, 82

returns, 72, 73

running a, 75, 76, 85
stepping through, 76
stopping, 82
testing, 75-76
writing a, 71-74

Programming, 70-89
Programming with base modes,

151-152
Programs, clearing, 85-86
Prompt for variable, 77, 79

Q-R
Quadratic equation, 191-197

Questions, 240-241

R4, 36-37

RAD, 57

Radians, converting, 64
Radians mode, 57

Radius vector, 174

Radix mark, 29

Raising a number to a power, 56
Random number

generator, 65

seed, 65

Range of numbers, 24, 149

Rankine conversion, 229-235

RCL, 48

Real numbers, 54

Recall arithmetic, 51-52

Recalling numbers, 48

in a program, 78
Rectangular

coordinates, converting, 58,60-62

form, complex, 142
vector coordinates, 170

Reference, function, 286-298

Register, LAST X, 41-44

Registers,
stack, 35-41, 78

storage. See Variables
swapping, 37

Regression. See also Linear regression
coefficients. See Slope and

y-intercept
nonlinear, 204-214

Index 305

Repair, 248. See also Service
Resetting memory, 254-255
Retrieving numbers. See Recalling

numbers
Reusing numbers with LAST X, 41,

43-44

Reverse Polish Notation. See RPN
Roll down, 36-37

Root,

approximation to, 119, 197, 261

of equation, 110, 116-117, 119

-finding, 259-260
function, 56

maximum, 267

minimum, 267-268

no, 267-271

quadratic, 191-197
Rotation, coordinate, 198-203
Round-off error with integration, 131
Rounding, 24, 30, 49, 67

Routines, program, 90
RPN (Reverse Polish Notation),

25-26, 28, 35, 44-46
RTN, 72, 73. See also Program returns
RTN, subroutine, 91

Run/stop, 78

Savings calculations. See Time value
of money

Scalar product, vector, 164, 171

SCI format, 30

Scientific format, 30

Scrolling, 84

Self-test, calculator, 246-247

Service, 249-251

centers, 250

charge, 250
contracts, 251

international, 250

Shift, canceling, 15
Shift key, 15
Shipping, 251
Shorting, 246

306 Index

SHOW, 31, 49, 79

nondecimal numbers, 150

Sign bit, 148

Significant digits, 22, 31, 49

Simultaneous equations,
determinant method of, 175-182

matrix-inversion method of,

183-190

Sine, 57

integral, 130-131
Slope, 159, 204, 211-212

Solutions. See SOLVE results

SOLVE, 259-272

asymptote, 267, 269
calculation, interrupting, 119
conditional, 124

defining functions for, 112-113
with discontinuous function,

263-264

estimates, 261

flat region, 267, 271

iterations, 118, 259

how it works, 259-260

limitations on, 125

math error, 270

maximum, 267

method, 259-260

minimum, 267-268

multivariable input with, 112

nested, 125

with one-root function, 262

output, 124

precision, 272
programs (functions), 112-113

in programs, 124

restrictions, 259-260

results, 111, 119, 120, 124, 268,

272

results, interpreting, 261
results, no, 267-271

search, 120, 267-268

with two-root function, 263

underflow, 272

using, 111-113

Solving for unknown variables,
110-125

Spherical coordinates. See Polar
coordinates

Stack,

automatic memory 35-46
complex, 138
drop, 38, 39

filling with a constant, 39-40

Stack lift, 38, 39

disabling, 257
enabling, 257
neutral, 257

operations affecting, 256-257

Stack,

reviewing, 36

subroutine, 92, 125, 135

viewing without affecting, 49
Standard deviation, 156-157

population, 219
sample, 157
true, 157

STAT menu, 156

Statistical calculations, 156-162

limitations of, 160-161

Statistical data,

accumulated, 161

clearing, 154, 162

correcting, 155
deleting, 154, 161

entering, 153-154

normalizing, 161

precision of, 160-161
predicting, 158-160
sets, number of, 154, 161

Statistics, 153-162

Statistics registers, 161-162
allocating, 162
clearing, 162

STO, 48

Storage arithmetic, 50-51
Stored data, 253

Storing numbers, 48
Subroutines, 91

nested, 92

Sum

of products, 162

of squares, 162

of x-values, 161

of y-values, 161
Summation values, statistical, 156,

161-162

Support, customer, 240

Surface area of a cylinder, 80-81

Swapping numbers (X- and Y-regis-
ters), 25, 37

T
T-register, 35-36, 38-40, 47

Tangent, 57

Temperatures,
converting, 229-235
operating, 245
storage, 245

TESTS, 96

Tests, conditional, 95-99

Time, converting between minutes
and fractions, 63-64

Time value of money, 222-229
Translation, coordinate, 198-203

Trigonometry, 25, 56

complex, 139
Troubleshooting, 245-247
True/false test, 95-99

Truncation in nondecimal arithmetic,

146, 147

Two’s complement, 146, 148

Two-variable data, 154

U-W
Underflow, 24

SOLVE, 272

Unit conversions, 229-235

Variable, viewing a, 49

Iindex 307

Variables, 47-53 testing, 95-96

catalog of, 49 with Y-register, comparing, 95-96
clearing, 49-50 with zero, comparing, 96
copying, 49 XEQ, 75
current value of, 77 subroutine, 91
displaying, 49 y-estimate, 158-159, 212
indirect, 103 y-intercept, 159, 204, 211-212

integration, 128 Y-register, 35-37, 47

listing, 49 and integration, 132
names of, 47-48, 77 for statistical data, 154
in programs, 77 y*, 56
in programs, copying, 79-80 Z-register, 35-36, 47
in programs, displaying, 79-80 Zero, 40
SOLVE, 112 Zero in variable, 50

unknown, 110-112, 120

Vector
addition, 142

components, 171

operations, 164-175
converting to rectangular coordi-

nates, 62

VIEW, 49, 79-80

with nondecimal numbers, 150

Volume of a cylinder, 80-81
Warranty, 248-249

service, 251

United Kingdom, 249
Weighted mean. See Mean, weighted

Windows, 149-150

Word size, 149

Wrong function, correcting, 42
Wrong numbers, correcting, 42

)CF4
x-estimate, 158-159, 212

X-register, 35-40, 47

clearing, 40-41
clearing in a program, 73
exchanging with Y-register, 37
and integration, 128
in programming, 70
with SOLVE, 113, 120
for statistical data, 154

308 Index

Contacting Hewlett-Packard

For Information About Using the Calculator. If you
have questions about how to use the calculator, first check
the table of contents, the subject index, and “Answers to

Common Questions” in appendix A. If you can’t find an
answer in the manual, you can contact the Calculator Sup-
port Department:

Hewlett-Packard
Calculator Support
1000 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

(503) 757-2004
8:00 a.m.to 3:00 p.m. Pacific time
Monday through Friday

For Service. If your calculator doesn’t seem to work prop-
erly, see appendix A to determine if the calculator requires
service. Appendix A also contains important information
about obtaining service. If your calculator does require ser-
vice, mail it to the Calculator Service Center:

Hewlett-Packard
Calculator Service Center
1030 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

(503) 757-2002

For Information About Hewlett-Packard Dealers,

Products, and Prices. Call the following toll-free
number:

(800) 752-0900

Contents

Page 13 Part 1: Basic Operation

Getting Started « The Automatic Memory Stack ¢ Storing
Data Into Variables ¢ Real-Number Functions

69 Part 2: Programming

Simple Programming ¢ Programming Techniques
109 Part 3: Advanced Operation

Solving for an Unknown Variable in an Equation
* Numerical Integration ¢ Operations With Complex
Numbers ¢ Base Conversions and Arithmetic
» Statistical Operations

163 Part 4: Application Programs

Mathematics Programs e Statistics Programs
* Miscellaneous Programs

239 Part 5: Appendixes and Reference

Assistance, Batteries, and Service « User Memory and the
Stack « More About Solving an Equation « More About
Integration ¢ Messages ¢ Function Index ¢ Subject Index

HEWLETT
flfi] PACKARD

Reorder Number

00032-90039

00032-90064 English

Printed in U.S.A. 9/88

	Cover
	Welcome to the HP-32S
	Contents
	Part 1: Basic Operation
	1. Getting Started
	Important Preliminaries
	Turning the Calculator On and Off
	Adjusting the Display's Contrast

	Highlights of the Keyboard and Display
	Shifted Keystrokes
	The Letter Keys
	Backspacing and Clearing
	Using Menus
	Exiting Menus
	Annunciators

	Keying In Numbers
	Making Numbers Negative
	Exponents of Ten
	Understanding Digit Entry
	Range of Numbers and OVERFLOW

	Doing Arithmetic
	One-Number Functions
	Two-Number Functions
	Chain Calculations

	Controlling the Display Format
	Periods and Commas in Numbers
	Number of Decimal Places ([][DISP])
	SHOWing Full 12-Digit Precision

	Messages
	Calculator Memory
	Checking Available Memory
	Clearing All of Memory

	2. The Automatic Memory Stack
	What the Stack Is
	Reviewing the Stack ([R↓])
	Exchanging the X- and Y-Registers in the Stack ([x⇄y])

	Arithmetic - How the Stack Does It
	How ENTER Works
	How CLEAR X Works

	The LAST X Register
	Correcting Mistakes With [][LASTx]
	Reusing Numbers With [][LASTx]

	Chain Calculations
	Order of Calculation
	Exercises

	3. Storing Data Into Variables
	Storing and Recalling Numbers
	Reviewing Variables in the VAR Catalog
	Clearing Variables
	Arithmetic With Stored Variables
	Storage Arithmetic
	Recall Arithmetic

	The Variable "i"

	4. Real·Number Functions
	Exponential and Logarithmic Functions
	The Power Function (yˣ)
	Trigonometry
	Entering π
	Setting the Angular Mode
	Trigonometric Functions

	Hyperbolic Functions
	Percentage Functions (%, %CHG)
	Conversion Functions
	Coordinate Conversions (P↔RECT)
	Fractional Conversions (H↔HMS)
	Angle Conversions (D↔RAD)

	Probability Functions
	Parts of Numbers
	Names of Functions

	Part 2: Programming
	5. Simple Programming
	Creating a Program
	Program Boundaries (LBL and RTN)
	Program Entry (PRGM)

	Running a Program
	Executing a Program (XEQ)
	Testing a Program

	Data Input and Output
	Entering Data Into Variables (INPUT)
	Displaying Data in Variables (VIEW)

	Stopping or Interrupting a Program
	Programming a Stop or Pause (STOP, PSE)
	Interrupting a Running Program
	Error Stops

	Editing a Program
	Program Memory
	Viewing Program Memory
	Memory Usage
	The Catalog of Programs (MEM)
	Clearing One or More Programs
	The Checksum

	Nonprogrammable Functions
	Polynomial Expressions and Horner's Method

	6. Programming Techniques
	Routines in Programs
	Calling Subroutines (XEQ, RTN,
	Nested Subroutines

	Branching (GTO)
	Conditional Instructions
	Tests of Comparison (TESTS)
	Flags

	Loops (GTO, LOOP)
	Conditional Loops (GTO)
	Loops With Counters (DSE, ISG)

	Indirectly Addressing Variables and Labels
	The Variable "i"
	The Indirect Address, (i)
	Program Control With (i)

	Part 3: Advanced Operation
	7. Solving for an Unknown Variable in an Equation
	Using SOLVE
	Writing Programs for SOLVE
	Examples Using SOLVE

	Understanding and Controlling SOLVE
	Verifying the Result
	Interrupting the SOLVE Calculation
	Choosing Initial Guesses for SOLVE

	Using SOLVE in a Program
	For More Information

	8. Numerical Integration
	Using Integration (∫FN)
	Writing Programs for ∫FN
	Examples Using ∫FN

	Accuracy of Integration
	Specifying Accuracy
	Interpreting Accuracy

	Using Integration in a Program
	For More Information

	9. Operations With ComplexNumbers
	The Complex Stack
	Complex Operations
	Using Numbers in Polar Notation

	10. Base Conversions andArithmetic
	Arithmetic in Bases 2, 8, and 16
	The Representation of Numbers
	Negative Numbers
	Range of Numbers
	Windows for Long Binary Numbers
	SHOWing Partially Hidden Numbers

	Programming With BASE
	Selecting a Base Mode in a Program
	Numbers Entered in Program Lines

	11. Statistical Operations
	Entering Statistical Data ([Σ+] [][Σ-])
	Entering One-Variable Data
	Entering Two-Variable Data
	Correcting Errors in Data Entry

	Statistical Calculations
	Mean and Standard Deviation
	Linear Regression

	Limitations on Precision of Data
	Summation Values and the Statistics Registers
	Summation Statistics
	The Statistics Registers in Calculator Memory

	Part 4: Application Programs
	12. Mathematics Programs
	Vector Operations
	Solutions of Simultaneous Equations - Determinant Method
	Solutions of Simultaneous Equations - Matrix Inversion Method
	Quadratic Equation
	Coordinate Transformations

	13. Statistics Programs
	Curve Fitting
	Normal and Inverse-Normal Distributions

	14. Miscellaneous Programs
	Time Value of Money
	Unit Conversions
	Prime Number Generator

	Part 5: Appendixes and Reference
	A: Assistance, Batteries, andService
	Obtaining Help in Operating the Calculator
	Answers to Common Questions
	Power and Batteries
	Low-Power Indicator
	Installing Batteries

	Environmental Limits
	Determining if the Calculator Requires Service
	Confirming Calculator Operation - the Self-Test
	Limited One-Year Warranty
	If the Calculator Requires Service
	Regulatory Information

	B: User Memory and the Stack
	Managing Calculator Memory
	Resetting the Calculator
	Clearing Memory
	The Status of Stack Lift
	Disabling Operations
	Neutral Operations

	The Status of the LAST X Register

	C: More About Solving anEquation
	How SOLVE Finds a Root
	Interpreting Results
	When SOLVE Cannot Find a Root
	Round-Off Error and "Underflow"

	D: More About Integration
	How the Integral Is Evaluated
	Conditions That Could Cause Incorrect Results
	Conditions That Prolong Calculation Time

	Messages
	Function Index
	Subject Index

