
TIPS AND PROGRAMS FOR
THE HP-325

A SYNTHETIX Publication

TIPS AND PROGRAMS

FOR THE HP-32S

A Handbook for Science and Engineering

W.A.C. Mier-Jedrzejowicz, Ph.D.

A collection of tips and tricks for users of the

HP-32S RPN Scientific calculator, with a set of

example programs for science and engineering students.

Includes a table of commonly used constants.

"Tips and Programs for the HP-32S: A Handbook for Science and

Engineering"

by W.A.C. Mier-Jedrzejowicz, Ph.D.

First printing September 1988

ISBN 0-937637-05-X

Library of Congress Catalog number:88-62519

Published by:

SYNTHETIX,

P.O. Box 1080,

Berkeley, CA 94701-1080,

USA

Copyright (c) 1988, W.A.C. Mier-Jedrzejowicz

Copyright: the text of this book 1is copyright and may not be

reproduced in any form, either in whole or in part, without the

written consent of the author and publisher, except that short

extracts may be quoted for review or comment, and the programs

herein may be reproduced for personal use.

Disclaimer: The design of HP calculators may be changed from time to

time by the manufacturers. Hence, although reasonable care has been

taken that the material in this book will work correctly, this

cannot be guaranteed; all material in this book is published without

representation or warranty of any kind. Neither the publisher nor

the author nor Hewlett Packard Company or any of its subsidiaries

nor any of their agents shall have any liability, consequential or

otherwise, arising from the use of any material in this book.

INTRODUCTION

Do you own an HP-32S? If so, congratulations!

Or are you looking at this book and thinking of buying an HP-32S?

We hope it will help you make up your mind!

The HP-32S is a remarkable calculator - for little more than the

cost of an ordinary scientific calculator it gives you the extra

power of features such as a function Solver and RPN calculation,

together with the quality and prestige of a Hewlett Packard product.

As you read through this book you will see how you can use the HP-

32S to solve problems, and how you can find additional tricks and

shortcuts to make it work even faster and better during your studies

and after them.

This book has four chapters, each subdivided into specific points.

The first chapter describes tips and suggestions which can help you

use the HP-32S efficiently and quickly. Chapter 1 also includes

some notes for readers who have already used other HP calculators.

These readers will appreciate the comparison of the HP-32S with

other HP calculators, and suggestions for adapting programs written

for those calculators to the HP-32S. The second chapter shows short

programs of the type you might use in a college course - tricks

described in the first chapter will be used in these short programs

and new tricks will be introduced and explained. The third chapter

shows a few longer programs which add extra abilities to the HP-32S

statistics and integration functions. These programs are very

useful - even if the technical situations addressed do not suit your

needs they will show how to write programs for your own studies.

The fourth chapter lists further sources of information on your

calculator and programming, and other useful products.

A list of commonly used constants in both English and metric units

is given on the inside rear cover for those students who want to use

this book with their HP-32S in their courses. So far as possible

this book avoids using examples that are covered in the book of

Engineering examples produced by HP for the HP-32S.

I want to express my thanks to Tony Collinson and Mark Ellis of HP

UK for keeping me up to date on HP matters, and to members of HP

user clubs all over the world for their friendship and support. My

thanks go as ever to my Mother for helping while I wrote.

Special Keys and Symbols

Some HP-32S keys and symbols are difficult to represent using

ordinary printer characters - this page explains how they are shown

in the book.

The orange key is used to select the instructions or menus written

in orange above other keys. This is like a SHIFT key on a

typewriter; it will be called SHIFT. For example, to select the

statistics menu you press the orange key first, then the 2 key with

STAT in orange above it. Doing this will be written as just STAT.

The left-arrow or back-arrow or delete key deletes the character to

the immediate left of the cursor while numbers or long instructions

are being typed in, at other times it deletes a program step, clears

a message or menu, and if none of these is displayed then it clears

the value in the stack X register. I shall usually call this the

DEL key or <-.

The symbol for pi (SHIFT .) will just be written pi, the symbol for

"not equals" will be #. The sigma symbol will usually be printed as

2 and the integral symbol will be INTEGRAL. SQRT will be used for

the square root symbol. The multiplication symbol used by the HP-

32S looks very much like a small "x", so to avoid confusion I shall

use "x" for the small letter x, and an asterisk "*' as the

multiplication symbol. The SOLVE/INTEGRATE key will simply be

called SOLVE.

When a set of HP-32S keystrokes, or a program, is printed then keys

which are pressed separately are printed with spaces between them.

For example LN 1/x means "press the key marked LN, then press the

key marked 1/x". Numeric digits are printed without spaces between

them, so 123 means "press 1, then 2 and then 3." If numbers have

spaces between them then they are separate numbers, for example 45

6 represents the two numbers 45 and 6. Numbers followed by powers

of ten will be printed in the same way as the HP-32S shows them -

the number followed by an E and then the power of ten.

CONTENTS

Introduction

Special keys and symbols

CHAPTER 1. TIPS

1. 1 Before we begin

1. 2 Thinking about RPN

1. 3 Moving around the keyboard

1. 4 Variables and the stack

1. 5 Constants & Short Programs

1. 6 More Shortcuts

1. 7 Flags, modes and tests

1. 8 STOP/PSE/VIEW/RCL/INPUT

1. 9 The HP-32S and other calculators

1.10 Advanced features and non-standard commands

1.11 Take care!

CHAPTER 2. SHORT PROGRAMS

2. 1 Typing aids

Page

11

11

13

17

19

23

25

27

27

2. 2 A simple pendulum 30

2. 3 Black Bodies and Black Holes 35

2. 4 More variables - the Ideal Gas Law 38

2. 5 Deflection of a Cantilever Beam 40

2. 6 Body Surface Area 43

2. 7 Save Space and Time 50

CHAPTER 3. LONGER PROGRAMS 53

3. 1 Statistics and looping 53

3. 2 Complex arithmetic and the complex stack 62

3. 3 Improved standard deviations 64

3. 4 Integration with infinite limits 65

CHAPTER 4. MORE INFORMATION 73

4. 1 Books and shops 73

4. 2 Electronic bulletin boards 74

4. 3 Join a club? 74

INDEX 77

TABLE OF CONSTANTS Inside Back Cover

CHAPTER1

CHAPTER 1 - TIPS

1.1 BEFORE WE BEGIN As you go through this book (or the HP-32S

manual) you will sometimes find especially interesting points. You

might want to underline them or highlight them so you can easily

find them later. A better idea is to keep a pocket notebook with

your HP-32S and to keep notes of good ideas in that. The HP-32S is

about the same size as a small notebook, so you should have no

trouble carrying one around and it will be available whenever you

want to write down a new idea or program, or when you want to find

an old one.

This book is for anyone who wants some tips for using an HP-32S, but

it is particularly for science and engineering students. The HP-32S

can show numbers in "Scientific" notation, or in "Engineering"

notation, so to be even-handed about it I shall wuse neither!

Answers to examples will be shown as the calculator displays them if

it is set to FIX 4. It would be a good idea for you to press the

keys SHIFT then DISP, then the FX key (the key directly below FX

which is now in the display), and finally 4. That way numbers in

this book will agree with the results you see on your HP-32S when

you do the examples.

1.2 THINKING ABOUT RPN If you have read the HP-32S manual (you

certainly should do this!) you have already met the Reverse Polish

Notation (RPN) method of doing calculations. If you have not used

an RPN calculator previously then you might find it difficult to

understand RPN at first. With experience and after you have done

some examples you will get used to it. Here are a couple of helpful

ways to think about it.

When you first learned to do addition you were probably taught to do

it like this:

-1-

To add 123 and 456:

CHAPTER1

Write down the first number 123

Now write the second number below it 123

456

Now add them up 123

456 +

and write the answer under them 123

456 +

579

This is called "stack arithmetic". You write a stack of numbers

with the first one on top, the second one below it, and the answer

at the bottom. To do more complicated sums you just use a bigger

stack. To do another sum using the answer from the first one you

just write the next part of the sum under the previous answer and

carry on using the stack. Say you want to take away 321 from the

answer above.

Write 321 under the answer you already have

Subtract it

and write the new answer at the bottom

-2-

579

321

579

321 -

579

321 -

258

CHAPTER 1

Now try the same calculation on your HP-32S.

Type in the first number 123

press ENTER to get it out of the way 123

(you still see 123, but pressing ENTER

has told the HP-32S you have entered

the whole number and you are ready to

put in a new number)

Now type the second number below it 456

(the first number vanishes when you

put in the second one)

Now add them up (just press +) +

and you see the answer 579

The HP-32S does the arithmetic in the same way as you would have

done it!

Now carry on with the second part of the question:

Type 321 under the answer you already have 321

Subtract it (just press -) -

and see the new answer 258

Actually this is explained in the HP-32S manual (you have read it,

haven’t you?), but it helps to see it described as stack arithmetic

- often called "stack notation". You can see that the arithmetic

operation (plus or minus in this case) is done after everything else

has been written down. This might seem odd - we usually say "add

123 and 456", so it is called "reverse notation". Since it comes

from a notation invented by the Polish logician Jan Lukasiewicz it

is called "Reverse Polish Notation" or RPN, but you can call it

-3-

CHAPTER 1

"stack notation" instead - this might make it easier for you to

think about - and I won’t mind (well, not much, after all, I am

Polish).

All very good, you might say, but later on I learned to write things

down in "Algebraic Notation", for example:

123 + 456 - 321 = 258

so why go back to the old way? One reason is that this way of

calculating always lets you see intermediate answers and check them

- for example you could see the 579 after you did the addition.

Another is that it lets you correct mistakes because the number you

used last is saved and can be brought back with the LASTx key. A

third reason is that stack notation makes programs simpler - even

computers which use BASIC translate algebraic expressions into stack

notation before working them out.

You still might not be convinced and think "reverse notation" is the

wrong way to write things down - don’t we write SIN(x) or LOG(x)?

Not always - the factorial function is written x! with the symbol

after the x. If you find RPN difficult just think of these two

things - "stack notation" and factorial functions - soon you will

get used to it and will appreciate it.

1.3 MOVING AROUND THE KEYBOARD The HP-32S is there to make

life easier for you, so you should look for easy ways to use it -

and finding a way to do something with the smallest number of

keystrokes is one way to make life easier. There are often several

ways to carry out the same calculation on the HP-32S. To double a

number you can type it in twice and press + (silly!), you can enter

the number, then type 2 and multiply (better), or you can type in

the number and press ENTER then + (best). If you want a permanent

copy of the number you can STO it, and then do RCL+ to double it,

but ENTER + is much the simplest way.

Another example is squaring a number. You can type it in, then

-4-

CHAPTER 1

press SHIFT and x2, but pressing ENTER and multiply requires less

moving around the keyboard. x2 is best used in programs, where it

takes less memory ("ENTER multiply" and "x2" both require two

keystrokes, but x2 is stored in a program as one instruction instead

of two for ENTER multiply).

Again, to see what is in a register it is quicker to press RCL and

the register name, then RY (Roll-down, the key with R and a downward

arrow), than it is to press SHIFT VIEW register name, and then

backarrow to return to the normal display.

In the above cases, different methods to do the same thing can have

different effects on the stack. If you have important numbers in

the stack you might have to use an inefficient way of calculating

something rather than lose a value from the top register of the

stack. This is not always the case, for example, subtracting the

value in the second stack register (Y) from the bottom stack

register (X) can be done by pressing x<>y and then minus, but

pressing minus and then the sign change key (+/-) gives the same

result, has the same effect on the stack, and can be easier if your

finger is at the bottom of the keyboard after entering the number in

X.

There 1is still a difference though, because the number saved as

LASTx is not the same in the two cases - in each case the number

that was subtracted is saved as LASTx. An important point to note

is that the operation +/- does not save anything in LASTx. +/-

actually does two different jobs - it changes the sign of a number

(or its exponent) while you are typing the number in, or it changes

the sign of a number (but not its exponent) if the number is already

at the bottom of the stack. The second operation is an arithmetic

operation like addition or subtraction, it is stored in programs as

a separate step, not as part of a number, and you might expect it to

change what is in LASTx, but it does not!

There are plenty more cases where a bit of thought before a

calculation can save you unnecessary moving around the keyboard,

-5-

CHAPTER 1

wearing out the keys - and your fingers! Here is a last example; to

calculate X + SIN(X) you can press SIN then SHIFT LASTx, then plus,

or you can press ENTER, SIN and plus. The second saves you one

keystroke, which is useful if you are going to do this sort of

calculation a lot.

If you have a notebook as suggested earlier, you can write down

whichever of the above tips are of interest to you - leave some

space so you can add similar ideas of your own. Later on we shall

see more advanced ways to save on keystrokes - the idea is always to

make things easy for yourself with the HP-32S.

As you become familiar with the HP-32S keyboard you will learn that

some keys do many different things. By far the most important is

the ON key. Clearly ON turns the calculator on, and combined with

SHIFT turns it off - but the "C" on it reminds you that at other

times it acts as the Clear or Cancel key - it interrupts lengthy

activities or programs and makes the calculator pay attention to the

keyboard again. It also cancels special menus and the PRGM setting.

Pressing ON and + or ON and - changes the display contrast, pressing

ON and y* starts the self-test, and pressing ON and e* resets the

calculator. Sometimes this will not reset the calculator - for

example if the batteries become very low and the keyboard refuses to

respond. In such a case you will have to take out the batteries and

short-circuit the HP-32S battery compartment terminals with a metal

coin, as described in the manual.

1.4 VARIABLES AND THE STACK The RPN stack has four "registers"

each of which holds one number. The X register is the one whose

contents are normally shown in the display. The next register up is

the Y register - it is used in calculations such as + or / and it is

used to hold the imaginary part of complex numbers. The next two

registers are the Z and T registers. You can think of T as the

"Time" register if you think of the whole stack as X-Y-Z-T as in

Relativistic 4-vectors in Physics. Another way to think of T is as

the "Top" register of the stack - this is an important idea because

the top register is always copied when the bottom value in the stack

-6-

CHAPTER 1

changes and the values in the stack move down. There is another

register used with the stack - the L or LASTx register which

contains the number that was in X before X was last changed by a

mathematical operation. It is important to remember that CLX and

+/- are not treated as mathematical operations and do not change

LASTx. STO or RCL operations do not change LASTx, but RCL

arithmetic which changes X does copy X to register L first.

These five "stack registers" are always available - their space can

never be used for other purposes. All other registers can be used

to store ‘"variables", or programs, or statistics results, or

temporary values needed by SOLVE and INTEGRATE. When you store

numbers in these extra registers the HP-32S calls them "variables" -

for example variable C can be used to store the speed of light, or N

can be used to store the Avogadro number. It is important to

remember that these "variable registers" or "storage registers" are

not the same as the "stack registers". In particular, the stack

registers X,Y,Z,T,L are not the same as the storage registers called

by the same names. The names of the storage registers are really a

shorthand for their numbers - storage register A is really register

1, storage register B is register 2, and so on up to storage

register Z which 1is really register 26. The special storage

register "i" is really just register number 27, but it is used for

"indirect" operations too. If you think you might confuse the names

of the stack registers with the storage registers it might be wise

to avoid using storage registers X,Y,Z,T,L and it may be best to

avoid register I to avoid confusing it with "i".

If you clear a storage register, or store a zero in it, or carry out

an operation that puts a zero in it (for example - using 1E-499

STO*n to put a very small number in register n) then the space used

by that register is made free. The HP-32S has 27 "flags" which tell

it if a number is stored in each of these registers (or variables).

If the flag says there is nothing in the register then that register

uses no space, and the variable is treated as if it contained a zero

(for example if you try to RCL it). When you try to use any of

these registers, the HP-32S has to check all the register flags from

-7-

CHAPTER 1

1 up to the register you want, to check if each of these registers

exists. For every register which does exist, the HP-32S has to

allow for the space occupied when looking for registers beyond it.

Thus RCL Z is noticeably slower in a program than RCL A, because the

HP-32S has to check every register from 1 to 26 in order to find out

where register Z is. We’ll come back to this in the chapter on

short programs.

If you are going to use a variable a lot then it is sensible to use

one whose name is near the STO or RCL keys. The best variable name

of all is H, since you can recall this just by pressing the RCL key

twice! If you are going to use a variable to do a lot of arithmetic

then use the same trick - to add a lot of numbers to a variable it

might be wise to wuse variable Y, since pressing STO+Y is

particularly easy because Y is near the + key. In fact the (i) key

is even closer to + so it might be best to store a register number

in i (say 1) and then use STO+(i) repeatedly to add numbers to

register A (because this is register number 1). Whenever you do

storage arithmetic of this sort, remember to ‘"initialize" the

register first - STO a zero in a register before using STO+ to add

numbers in it, or STO a 1 in a register if you are going to use STO*

or STO/ to multiply or divide it. In any case it is usually easier

to use the stack for repeated additions or multiplications, as we

shall see below.

1.5 CONSTANTS AND SHORT PROGRAMS Some sorts of work need the

use of a constant. For example if you want to change a whole lot of

measurements from inches to centimeters then you will want to

multiply each measurement by 2.54. You could store 2.54 in variable

V, then type in every measurement and press RCL* V, but this takes

three keystrokes and a lot of moving around the keyboard. It is

much simpler to use the duplication of the top stack register. Type

2.54 and press ENTER three times. You now have 2.54 in the whole

stack. Type the first number you want to convert and press * to see

the converted result. The number in stack register Y will have been

used to multiply the number in X, the number in stack register Z

will have moved to Y, the number in T will have dropped down to Z,

-8-

CHAPTER 1

but it will also have been copied in T. To convert the next number

press the backarrow key (or the ON key) to clear stack register X,

then type in the next number and press * again. You can carry on

doing this for every number you need to convert - each conversion

now takes only two keys (multiply and clear) and both these keys are

near the numeric digits on the keyboard.

The same trick works for addition, but if you want to divide by a

constant or subtract a constant then you have to use a different

trick, involving LASTx. The first time you do a division (say by

2.54 to convert centimeters to inches) you must type in the first

number to convert, then press ENTER, then type in the constant (2.54

in this case), then press the divide key. You have your first

answer, and the constant is saved in stack register L. To convert

the next number just type it in, then press SHIFT, LASTx, divide.

You can carry on like this for every number, because dividing by the

constant always puts it back in L - the only problem is if you have

to do some other calculation in the meantime and lose your constant

from L. The same trick will work if you want to subtract a constant

repeatedly. With LASTx the number of keystrokes is the same as it

would be otherwise, but there is less moving around the keyboard.

Pressing SHIFT, LASTx, divide is three keystrokes - it is not much

easier than using RCL-divide-n. There should be an easier trick,

and there is! You can write a short program to do the whole

calculation. In case you have not written a program before, here

are the steps to follow (but you should have written a program by

now if you have read the manual!). First store your constant in a

variable - let’s say you use variable K. Now press

SHIFT GTO .. (that’s SHIFT, then the XEQ key, then the point key

twice. Next press SHIFT PRGM and you are ready to write your

program. Begin with a label, so press SHIFT LBL/RTN and then the

key below the display marked by LBL and an arrow in the display,

then press one of the keys marked A.Z - let’s use LBL D (for

Divide), so press the key marked with a D to its lower right (that’s

the y* key). You will see the first line of your program "DOl LBL

D". The next step of the program is to recall and divide by the

-9-

CHAPTER1

constant, so press RCL, then divide and K. The last step is to

finish the program by returning to its beginning, so press SHIFT

LBL/RTN and then the key marked RTN below the display. To finish

writing the program press the ON key, and to get to the beginning of

the program press the down-arrow key (the one just above SHIFT).

The program you have written should look like this:

D01 LBL D

D02 RCL: K

D03 RTN

You now have a program which divides the value in stack register X

by the constant in variable K. To divide a set of numbers by this

constant, you can at any time type each number into the HP-32S, then

press XEQ D. Actually this still takes two keys, but after you have

done it once the HP-32S has found the program for you, and has gone

back to its beginning because the program ends with RTN; it is

important to have that RTN at the end of your program. The second

and subsequent times you can therefore divide by the constant simply

by pressing R/S (the Run program and Stop program key). We have

reduced the business of dividing by a constant to a simple matter of

pressing just one key!

After you have used your HP-32S for some time you will have more

than one program in it, and you will only be able to use R/S to run

a program if you know that you are already at that program, and if

it is the first program in program memory. If it is not, then you

can use another trick which will be described in the next chapter.

As I said above, you should use XEQ to use the program the first

time, then you can re-use it just by pressing R/S. Should you

happen to change the value in variable K then the program will

divide by a different constant - you might want this if you want to

use the same program to divide by a different constant, but you

might prefer to write the constant right inside the program, so it

will not get changed by accident. In that case replace the program

line which says RCL : K with two lines - one containing the number

and one containing the divide instruction.

-10-

CHAPTER1

This trick of using a short program to divide by a constant can be

used equally well for adding, subtracting, multiplying or even

raising to a power. If you want to subtract numbers from a

constant, to divide a constant by different numbers, or to raise a

constant to different powers, then you must RCL the constant first,

do x<>y to exchange the constant with the number you are using, and

then do the subtract, divide, or y*. In all cases though, you will

have reduced the whole operation to a single press of the R/S key

once your program is written!

1.6 MORE SHORTCUTS The trick of using a short program to simplify

an operation can be used in many other cases. For instance if you

want to find the hyperbolic arc tangent of several numbers you have

to press SHIFT HYP SHIFT ATAN for every number. It would be much

quicker to write a program which contains the three steps:

HO!l LBL H

H02 ATANH

HO3 RTN

Every time you need to get a hyperbolic arc tangent now you need

only press XEQ H, or if you need to calculate several of them then

you can just press R/S repeatedly.

The same trick is worth using for any operation which uses more than

a few keystrokes. In the next chapter we shall come to some "real

programs" which do a complete calculation, but it is entirely

reasonable to use programs as described here, just to do one step.

Remember that using R/S this way only works for the first program in

memory, see Chapter 2 for a way to do the same thing with any

program.

A particularly interesting case is the calculation of a vector

amplitude:

-11-

CHAPTER 1

V = SQRT (A2 + B2 +C2+.)

You can calculate this by squaring each number, adding up all the

squares, and then taking the square root. The HP-32S does have a

vector amplitude function built into it though, so why not use that?

Type in the numbers A and B, then use the keystrokes SHIFT P<->R

and then press the key marked y,x->O,r . This calculates the vector

magnitude and direction, putting the amplitude in stack register X.

Stack register X now contains

X = SQRT (AZ + B?)

To add another vector, just type in its magnitude and repeat the

process. If you are calculating a sum of squares for many values

you can repeat this for all the values. The problem is that y,x->0O

,r takes four keystrokes each time, so entering each number,

squaring, adding, and taking the square root at the end is just as

quick. To get round this you can write another short program:

VOl LBL V

V02 y,x->0,r

V03 RTN

Now the business of adding up a vector sum of squares is reduced to

pressing XEQ V repeatedly (or just R/S after the first time). If

you really want the actual sum of the squares then you can finish by

pressing ENTER and multiply to square the final result! You could

get a sum of squares by using the summation operations instead and

then wusing the STAT menu to recall the sum of x-squared.

Unfortunately this uses six storage registers all at once, and you

have to remember to clear the statistics registers before you begin.

The operation y,x->O,r can do another useful thing - it can

calculate the complete arc tan of x and y. For example ATAN(y/x)

where x is -3 and y is -6 is -153.435 degrees, but if you

calculate -.3/-.6 and press ATAN then you get the answer in the

"first quadrant" - namely 26.565 degrees. To get the answer in the

-12-

CHAPTER 1

correct quadrant you can type in y, press ENTER, then type in x,

then use y,x->O,r and finally press the roll-down key to see the

calculated angle. If you have written the program above then you

can just press R/S and R* to get the results, and if you plan to use

this repeatedly just to get a complete arc tangent then you should

put the extra step RY after step 2 of the program.

The opposite operation O,r->y,x can be very useful too - for example

if you need the sine and the cosine of an angle then you can type in

the angle, put 1 in the X register, and use O,r->y,x to get the sine

in Y and the cosine in X. Once again, if you are going to use this

a lot then it is worth writing a very short program to avoid having

to press lots of keys.

There are more operations which can be used for extra purposes. An

example is that both 10X and the factorial function can be used in

programs to replace a zero with a one. In section 2.3 we shall come

to another important use of 10* to save space in programs.

1.7 FLAGS, MODES AND TESTS The HP-32S has seven "flags" which

you can set, clear or test. A flag can be treated as a number; O or

I, or it can be thought of as a "signal flag" which is raised (set)

or lowered (cleared). A flag can also be thought of as the answer

to a question; yes or no - or true or false. Flags 5 and 6 have

special meanings - flag 5 is the answer to the question "should

overflows stop a program?" - if flag 5 is set then the answer is

yes. Flag 6 answers the question "has an overflow occurred since

the last time flag 6 was cleared?" - if flag 6 is set then the

answer is yes.

Here is an example of using flag 6. If you are using factorials to

calculate the expression:

x!

y!

and one of the factorials overflows then you might get some odd

-13-

CHAPTER1

results - say you try to calculate:

254!

253!

It is obvious that the answer should be 254, but 254! is just bigger

than 1E500; it causes an overflow and the HP-32S gives the answer

1.9329, not 254. If you write a program to calculate the formula

above you can test flag 6 immediately after the calculation to check

if the result is likely to be wrong. You should of course clear

flag 6 before the calculation.

This is another case where you could use a different function - in

this case you could replace

x! with Pn,r

y!

where n = x, and r=x-y. The formula for Pn,r (permutation of n

objects taken r at a time) is:

n!

(n-r)!

The point is that Pn,r is calculated in such a way that it will not

overflow if its numerator or denominator overflow - it only

overflows if the final result is greater than or equal to 1E500. In

the example of 254!/253! you would use Pn,r with 254 in stack

register Y and 1 in stack register X and you would get the right

answer, namely 254.

You can use flags 0 to 4 in the same way, to answer questions. If

you are working in degrees Celsius or Fahrenheit you can set flag 0

to show you are using Celsius and clear it to show you are using

Fahrenheit. A program could test the flag and use different

formulae depending on which is true. A setting like this is called

a "mode" - flag 0 can be used to answer the question "am I in

Celsius mode or Fahrenheit mode?" The display shows if any of flags

-14-

CHAPTER 1

0 to 3 are set, and the little 0 is well suited to displaying the

temperature mode, as it looks like the degree symbol.

The HP-32S can also be set to one of three trigonometric modes -

DEG, RAD or GRAD. On some calculators a pair of flags is used to

let programs find out which mode is set - on the HP-32S you have to

use a short program instead. For example the program below sets

flag 1 if you are in RAD mode, and clears it otherwise:

Program step Comment

TOl LBL R Label "R" to check Radians mode

T02 CF 1 Assume Radians mode is not set, so clear flag 1

TO3 PI Put PI in register X

T04 COS COS(X) - on the HP-32S COS(PI) is exactly -1 in RAD

mode

TOS 1 put 1 in X

TO06 + and add it

TO07 x=0? result is zero if RAD mode is set

TO8 SF 1 if result is zero, then set flag 1

TO9 R roll down the result so the original value is put

back in X

T10 RTN finish the program with a RTN

(The checksum of this program is 7010.)

You can use this program to check for RAD mode, and a similar

program to check for GRAD mode (if neither is set then you must be

in DEG mode!). In fact it is usually easier to simply set the mode

you need.

REMEMBER! If you are doing some trigonometric work you must make

sure that you have set the correct trigonometric mode first. It is

no good at all handing in a completed piece of project work, one

minute before the deadline, and then remembering that you have done

all your calculus with the HP-32S set to DEG mode!

Checking the display mode (FIX, SCI, ENG or ALL) and the base mode

-15-

CHAPTER1

(BIN, OCT, DEC or HEX) from a program is much more difficult.

Checking the number of digits displayed can be done with a program

which rounds a number and then compares it with the original, but

that is not easy either. Fortunately there are only a few times

when you need to check one of these modes from a program.

The above program uses the test x=0?. The HP-32S provides one flag

test, four tests to compare X with zero, and four tests to compare X

with Y. If you need one of these tests you can rearrange a program

to use the test which is available - sometimes you need to use a GTO

and a LBL to jump around a piece of program. To create the test

X>=0? (i.e. "is X greater than or equal to zero" which is the

opposite to X<0?) you can use the two program steps X#0? X>0? which

have exactly the same effect in a program. The step following the

second of these two tests is carried out only if X is either zero or

greater than zero. You can use the same combination when testing X

against Y. This tip and many others like it were originally

suggested for older HP calculators such as the HP-67 or the HP-41

and they are described in some of the books listed in Chapter 4.

Some calculators let you do tests "from the keyboard" - for example

on the HP-41 you can press the X=Y? key just as if you were doing a

calculation and the result "YES" or "NO" is shown in the display.

This is much simpler than looking at the number in X, using x<>y to

see Y, then if they look the same using SHOW to see all the digits

of both, and remembering to use x<>y a second time to put X back

where it was. The HP-32S tests do not give any result if you try to

do them like a keyboard calculation - they are only useful in a

program, where they follow the "do if true" rule - the next program

step after the test is done only if the test was true. If you do

want to do a test "from the keyboard" then here are some tips.

First of all, you can see if flags 0, 1, 2 and 3 are set because

their status is shown in the display - you do not need to do any

test to check if they are set or clear! Flags 4, 5 and 6 are not

shown in the display, so you should avoid using them if you want to

see their settings. In fact, if you are writing a game program then

-16-

CHAPTER 1

you can use flags 0, 1, 2 and 3 to show what is happenning, and you

can use flag 4 to keep a note of something that is to be kept a

secret.

Secondly, you can always see if X 1is negative, zero, or positive,

since it is shown in the display. That leaves the tests which

compare X with Y. One trick is to press the minus key! If the

result is zero then X and Y were equal, if the result is negative

then X was larger, and if the result is positive then X was smaller.

You can then use LASTx and add to get the original value of Y, and

LASTx again to get the original value of X. If you prefer, you can

write a program which sets flag 0 if X and Y are equal, sets flag 1

if X is greater, and clears both flags if Y is greater.

The flags 0, 1, 2 and 3 can be used for other purposes too. Here is

a last example - if you write a long program which should not be

interrupted while it is rearranging some variables then you could

set flag 1 (the 1 looks like an exclamation mark) while the

rearranging is going on, to warn yourself not to interrupt the

program (with ON or R/S) at that time. When the important part is

finished, the program can clear the flag again.

1.8 PSE/VIEW/STOP/RCL/INPUT Each of these five instructions can

be used to show a number, but you have to make sure you choose the

right one. PSE is the simplest - it stops a running program for 1

second and lets you see the value in the stack X register. The

little PRGM annunciator in the display stays turned on to show that

a program is still running. After 1 second the program carries on

running. If you want to see a number for more than a second then

you can put two or more PSE instructions one after another. PSE is

useful in programs which slowly work their way through many

iterations - it can show the iteration number, or the latest answer,

and you can decide to stop the program when you are happy with what

you see.

PSE is only useful in a program, because while you are doing

-17-

CHAPTER1

keyboard calculations you can see what is in X anyway. If you want

to see a variable while doing keyboard calculations you can press

VIEW and the name of the variable. The variable is shown in the

display, and you can show all of its digits by pressing SHOW, but it

does not replace X, and you can show X again by pressing the

backarrow or ON keys. In a program, VIEW shows the variable, but it

stops a program instead of just pausing. This lets you use SHOW to

see the whole mantissa. You can also press ENTER to copy the number

into X, or CLEAR to clear the variable (both of these work from the

keyboard too, not just in programs), or ON, or backarrow to see X.

You can then carry on with the program by pressing R/S, or you can

go on through the program one step at a time by pressing the down-

arrow key.

If you want to see a variable without stopping a program then you

have to use RCL and PSE. One problem with this is that you are not

told which variable you are looking at - you have to be told by the

person who wrote the program, or you have to find out by looking at

the program! Remember to use roll-down after the PSE to get the

original values of X, Y and Z back to their places (the original T

will be replaced with the value you recalled). If you just want to

see the number in X then of course you can use STOP on its own.

INPUT is the most complicated of these instructions - in a program

it stops the program and gives you a chance to see the variable,

SHOW it, change it, or even do calculations with it. This is very

much like VIEW, but INPUT also brings a copy of the number to X (and

if you change the variable then the copy in X is changed as well).

INPUT can only be used in a program, and the INPUT annunciator is

turned on so you can tell you are using INPUT. When you use SOLVE

it checks each INPUT instruction and skips the INPUT of the variable

for which it is solving.

The HP-32S does not let you display messages - VIEW and INPUT are

the best you can do, and all they show is a one-letter variable

name. One way to show slightly longer messages is to to use VIEW or

INPUT together with a hexadecimal number! For example, to say that

-18-

CHAPTER 1

a result is bad you can store the number 2989 in register R, then

set HEX base mode, and VIEW R. You will see the helpful message "R=

BAD" which will certainly tell you something - presumably that the

result is bad!

Alternatively you could use INPUT R and see "R? BAD". This

could be a question asking if the result is bad, and you could enter

1 R/S if the result is indeed bad, or 0 R/S if the result is good.

The program could check whether the answer was 0 or 1, and if not

then it could repeat the question. You can make up many other words

using the hexadecimal digits A, B, C, D, E, F and 0 (for O), but how

many will make meaningful messages? BAD is quite understandable,

but what word would you use to ask if a result is good - the best I

can think of is ACE!

Even if you cannot make many useful messages this way, you can

certainly use this trick to make up some game-playing programs. The

words CEDE and DEAD come to mind at once! (Such as in "U= DEAD" at

the unsuccessful end of a game!)

Once we are on games - here is an extra tip. You can hide the

meaning of a message by storing the message as decimal number, or as

a negative number in hexadecimal, so that the text of the message is

unclear until you change its sign by using +/- and display it in HEX

mode.

1.9 THE HP-32S AND OTHER CALCULATORS The HP-32S design

follows in the line of earlier RPN calculators made by Hewlett

Packard. This means that many programs written for earlier HP

calculators will work on the HP-32S with little change or even none.

Tricks used on other RPN calculators will often work on the HP-32S

as well. Chapter 4 gives the titles of some good books about RPN in

general and about some older HP calculators - if you want to learn

more about RPN and to get the best from your HP-32S it would be a

good idea to look at some of those books.

The next few paragraphs compare the HP-32S with some previous HP

-19-

CHAPTER1

calculators; some of the tips and programs already described come

from such earlier calculators. I shall also compare the HP-32S with

some new HP calculators which use algebraic notation. In general

terms, the HP-32S uses some new technology and new internal

programming, so it provides results with 12 digits, instead of 10

digits as on most previous HP calculators - it also works 5 to 10

times faster than earlier calculators such as the HP-41 and the HP-

15C.

The HP-32S is more similar to the HP-15C than to any other previous

HP calculator. The HP-15C is an advanced scientific calculator with

most of the same mathematical functions as the HP-32S, with SOLVE

and INTEGRATE functions, and it is able to work with complex

numbers. Like the HP-32S, the HP-15C uses an "i" register for

indirect access to registers. Thus nearly any keyboard calculations

you can find for the HP-15C will work for the HP-32S.

Many programs written for the HP-15C will also work on the HP-32S,

but there are some important differences in the use of programs and

of "advanced features". First of all, programs were stored in the

HP-15C as a series of "keycodes", not as the names of the

instructions, but programs published for HP-15C users generally give

the names of functions used, as well as the keycodes, so you should

be able to type an HP-15C program into the HP-32S without needing to

translate keycodes. The HP-32S does not have the matrix

instructions of the HP-15C, but you can do some matrix calculations

using the example programs in the examples section of the HP-32S

manual. HP-32S complex arithmetic is done using the normal stack,

not with a special "complex" stack as on the HP-15C, and not all the

HP-15C complex functions are available on the HP-32S. The HP-32S

does not have as much memory as the HP-15C, so very long HP-15C

programs might not fit into an HP-32S. The HP-32S does not use

negative numbers in the "i" register to jump directly to a program

line number, as did the HP-15C (the older HP-67 did somecthing

similar, called "rapid reverse branching" - the HP-32S does not do

this either). SOLVE and INTEGRATE cannot call onc another on the

HP-32S, so you cannot SOLVE a function which contains an integral.

-20-

CHAPTER 1

Actually, you can SOLVE such a function, by writing your own

integration program. On the HP-32S SOLVE and INTEGRATE expect to

recall the unknown variable, whereas on previous models they

expected to find its value in the stack. The general rule is that

the more complicated an operation, the less likely it is that the

HP-32S will do it like previous calculators. In the end, you might

well have to check the manual for the calculator for which the

program was originally written.

The above might seem to suggest that the HP-32S compares poorly with

the HP-15C - but the HP-15C is much slower than the HP-32S (and

until recently it was much more expensive). It would be fairer to

compare the HP-32S to the HP-10C and the HP-11C, which were less

powerful versions of the HP-15C - they did not have the advanced

features of the HP-15C but otherwise were similar, and originally

they cost much more than the HP-32S. The HP-32S has all the

functions of the HP-11C, so any HP-11C program should work on an HP-

32S. Two other "series 10" calculators of the older style, the HP-

12C and the HP-16C were specialist financial and computer science

models. The HP-32S can display numbers in binary, octal and

hexadecimal bases, but it is not designed to do logical operations

such as AND, OR, SHIFT, ROTATE, which the HP-16C does. The HP-32S

can be programmed to do a few financial operations like the HP-12C,

but there is a different new HP model in the same price range as the

HP-32S, designed specifically for financial work.

The other calculator similar to the HP-32S is the HP-41. The HP-32S

copies HP-41 functions, as well as features such as displaying a

function name if its key is kept down, or displaying function names,

instead of keycodes, in programs. Keeping a key pressed down on an

HP-41 for more than a short while cancels that function -

unfortunately the HP-32S does not do this - HP-41 users (indeed all

users) who use an HP-32S must be very careful not to press the wrong

key because there is no way to cancel a function key once it has

been pressed.

There were actually three HP-41 models, and the HP-41 has many

-21-

CHAPTER1

features that allow it to be extended to act as a pocket computer,

able to control external equipment. The HP-32S does not copy any of

these features - its similarity to the HP-41 is restricted to the

fact that it has similar calculation and programming features. This

does mean, however, that HP-32S users can take advantage of the

large number of solution books and programs that are available for

HP-41 users. If you need a collection of programs in Physics,

Chemical Engineering, or Optometry, for example, then you can buy

the HP-41 Solution book for that subject, and adapt the programs for

your use on the HP-32S. There are a few important differences - the

HP-41 can RCL and STO into stack registers as well as storage

registers, any register can be exchanged with X, and any register

can be wused for "indirect" control - there is no special "i"

register. The HP-41 has a separate "alpha" mode and can create

messages made of words - much more versatile than INPUT. On the

other hand the HP-41 does not provide complex arithmetic or

hyperbolics (except on plug-in extension modules), nor RCL

arithmetic, and it is much more expensive than the HP-32S.

The HP-41 was followed by the HP-71B, a very advanced (but

expensive) handheld computer which uses the BASIC language, and can

be extended in many ways by the addition of plug-in modules. One

feature of the HP-71B of interest to HP-32S users is that a plug-in

module for the HP-71B allows it to run HP-41 programs, so some HP-41

style programs, which can be used on the HP-32S, have been written

for the HP-71B. The chip which controls the HP-32S was first used

in the HP-71B. Since then Hewlett-Packard has announced a whole

range of calculators which use the same chip. The HP-18B (Business

Consultant), HP-19B (Business Consultant II), and HP-17B are

specifically business calculators, and another low-cost business

calculator is to be announced soon after the HP-32S. The HP-28C and

HP-28S are very powerful technical calculators which use RPN, like

the HP-32S, but their RPN command set is more like the computer

language FORTH (available for the HP-71B too), so adapting their

programs to the HP-32S is not always easy. Nevertheless, if you

find a program for one of these calculators which does a job you

need, you should be able to modify it for your HP-32S - if you find

-22-

CHAPTER 1

this difficult then you might find someone to help you in your local

HP users’ club (see chapter 4). Many clubs also have a library

where you can find a manual for the older calculator so you can see

what needs changing. One important feature common to all these new

calculators is the SOLVE function, which works in a similar way on

all the different models.

There are also three new technical/scientific HP calculators which

have the Solver but which use algebraic notation. These are the HP-

278, the HP-22S and the HP-20S. There is some common ground between

these models and the HP-32S, but not much (although all have the

same design and look the same from a distance!). Programs written

for one sort have to be translated to work on the other sort, but

there will be times when this is worth the trouble. For example the

HP-22S (the algebraic model most similar to the HP-32S in price and

features) comes with a range of commonly used equations built into

it; you may find it worthwhile to borrow an HP-22S manual and see if

it is worth writing RPN versions of some of these equations for your

own use.

SOLVE and INTEGRATE were first provided as built-in commands on the

HP-34. Many programs and keyboard calculations for the HP-34 and

other HP calculators made before the HP-41 and the HP-15C will work

on the HP-32S as well. If you are trying to solve a particular

problem it is worth looking for a solution designed for use on one

of these older RPN calculators.

1.10 ADVANCED FEATURES AND NON-STANDARD COMMANDS The

SOLVE and INTEGRATE functions are much more complicated and

advanced than functions like + or SIN. When you first use them you

can just follow the instructions in the main part of the manual but

later on it is worth reading the extra information in the appendices

and using some extra tricks.

One useful trick is to modify the program you are solving or

integrating so it will provide extra information. For example, to

-23-

CHAPTER1

see how quickly SOLVE is approaching 0, put a PSE at the end of the

program which works out the function whose value is to be zero.

Every time the function is calculated, the program will stop for a

second and show you the value it found. If the value gets close to

zero you can stop the program without waiting for SOLVE to find an

exact result. The same program could display the value of the

unknown variable, by recalling it and doing a PSE. Another trick is

worth using if you think an exact solution is difficult to find, but

an approximate one is good enough. Decide how close to zero you

want to get - say you think any function value smaller than 2E-7 is

good enough. Then change your program so it will return zero if the

value it has calculated is smaller than this limit. The following

lines at the end of a program will do the trick:

Program Comment

x=0? If the result is exactly zero

RTN then there is no need to check it, return at once

ENTER Save a copy of the exact result

ABS A result on either side of zero is OK

2E-7 The limit below which a solution is acceptable

x>y? Are we below the limit?

0 If so, put in a zero

x#0? If the result is not zero, then recover the original value

R{ by rolling down the stack

RTN Return to finish this calculation

Instead of comparing the result to a specified limit, you could just

select a suitable display mode and round the result. BE WARNED:

this particular tip will not always work. For example the above

will claim to find a zero of the function:

x2 4+ 1E-7

at any value of x between x=-SQRT(1E-7) and x=SQRT(1E-7), whereas

the function actually does not have a zero anywhere. The point of

this tip is that it lets you speed up the search for a zero.

-24-

CHAPTER 1

When using SOLVE in a program you should allow for the fact that

SOLVE acts like a do-if-true test function. If a solution was found

then the next program step is carried out, if no solution was found

then the next step after SOLVE is skipped. This allows you to GTO

the next part of your program if SOLVE was successful, but stop or

try again if SOLVE failed to find a solution.

Advanced calculators like the HP-32S have the potential to create

instructions which are not described in the manual. Such "non-

standard" functions can be very useful - or very dangerous! If you

want to learn about them or to share your own discoveries then get

in contact with a user club (see Chapter 4).

1.11 TAKE CARE! The HP-32S is a robust calculator - it can survive

physical maltreatment and it has functions that let you correct

program mistakes - but there are limits! The HP-32S will usually

survive a drop of as much as one meter, but the physical shock might

lead to a MEMORY CLEAR. If you decide to pour a drink over the

keyboard then make sure it does not have sugar in it. Sugar will

dry out and will then make keys very "sticky", so avoid it. If you

are likely to pour things over your HP-32S, or to use it in wet,

sandy or dusty conditions then put it in a sealed plastic bag, or

two plastic bags one inside the other.

Be aware of conditions which can give unexpected results - overflow

or underflow are particularly insidious. Remember that keys can be

previewed, but cannot be cancelled once they have been pressed -

pressing another key before relecasing the first one does not cancel

the action of the first one - it just forces the action of the first

one to be carried out. If you are likely to confuse the stack

registers X,Y,Z,T,L or the indirect register "i" with variables of

the same name then avoid using those variables. Finally, be aware

that the HP-32S is a calculator - it will calculate what you tell it

to, but it is your business to make sure you give it the right

numbers and the right formulae. You are the student, and you are

supposed to know that the mass of a proton is 1E-27 kg, not 1E27 kg.

-25-

CHAPTER2

CHAPTER 2 - SHORT PROGRAMS

2.1 TYPING AIDS We have already seen that very short programs can

be used to help in keyboard calculations. Let us begin this chapter

with three more examples of short programs. First take Einstein’s

famous equation:

E=mc2

You might want to use this to find the energy equivalent of several

nuclear particles. Instead of typing in each particle’s mass, then

pressing ENTER, typing in the speed of light, pressing SHIFT and x2,

and then pressing multiply, you could use the program:

Program step Explanation

EO1 LBL E Label E - for "Energy"

E02 RCL*C Recall variable C (speed of light) and multiply

E03 RCL*C Same again to multiply by 2

EO0O4 RTN End the program - go back to top of program memory

Note: make sure that "c" is stored in register C, and that it has

the correct units!

The first time you write this program, you have to get to its

beginning. You can do this by pressing SHIFT GTO E, or

SHIFT GTO .EOl. If you have put the program at the top of program

memory then you can press GTO . . instead, so long as you do not put

another program at the top of memory. Immediately after you finish

typing in a new program which finishes with RTN and is at the top of

memory, you can leave program mode (press ON, or SHIFT PRGM), then

press the step-down key "v", above the shift key - this takes you to

the top of program memory, and therefore to the beginning of the

program. Once you are at the top of the program you can run it by

pressing R/S, or you can check it out by single-stepping through it

- by pressing the step-down key "v" repeatedly, seeing each program

-27-

CHAPTER 2

step in the display, and then seeing the result when you let go of

the key.

After you have checked the program, you can get back to it with

GTO E, or use it at any time with XEQ E. After using the program

once you can use it again just by pressing R/S so long as it is the

program at the top of program memory. If you want to use R/S to re-

use a program which is not at the top of program memory, then you

have to finish it in a different way, as below.

Program step Explanation

EO1 LBL E Label E - for "Energy"

E02 RCL*C Recall variable C (speed of light) and multiply

E03 RCL*C Same again to multiply by 2

E04 STOP Stop the program and display the result

EO05 GTO E Go back to LBL E, to repeat the calculation

Instead of finishing with RTN, this program stops after calculating

the result, then goes back and repeats itself if you press R/S.

A program like this is really a "typing aid", as the title of this

section says. The program does no more than save you the effort of

typlng "C", X2 and * many times over. This may seem to be a very

menial task for a program, but it makes life easier, and that is

what all programs should do!

Let us look at another typing aid. Say you are using the statistics

registers to fit a straight line to a set of measurements. This

does not in itself need a program - you first clear out any previous

statistics values with the CLZ key in the CLEAR menu, then you use

the + key to add each measurement to the statistics list. Once you

have put in all the measurements you use the STAT menu to select the

Linear Regression commands, and work out your straight line. This

sounds easy until you try it in a real lab! Then you will find you

have to take extra measurements, turn equipment on and off, talk to

other students or to a supervisor, and so on. The obvious result

-28-

CHAPTER 2

will be that you enter a few readings, then get interrupted, and

forget how many readings you have entered. If you are lucky then the

sequence number of the last data point is still in the display - but

it might not be! Never fear - you can use the "n" command to find

out how many measurements you have entered so far - then carry on

with the next one. The trouble is, finding the command "n" can take

quite a while. So... write a program to do it for you:

Program step Explanation

NOl LBL N Label N, as this program finds "n"

NO2 n Get "n", number of readings - in the STAT menu,

submenu

NO3 STOP Stop and show this number

N04 GTO N Go back and repeat this if you need it again

You can use this repeatedly by pressing XEQ N, or simply R/S, and

you will still be positioned at the program if you calculate a

linear regression for some measurements, then add a few more

measurements. (Using a command like Linear Regression does not

change your position in program memory.)

You can use this idea for your own purposes, whatever your use of

the HP-32S. Here is a third example. You might want two programs

which set DEG and RAD mode if you swap between them often - if you

write two programs then each one will save you one keystroke.

Actually, if you swap between DEG and RAD only, then it would be

simpler to use a combined program, as shown on the following page,

in the right hand column.

-29-

CHAPTER 2

Program to switch Program to switch Program to switch

from DEG to RAD from RAD to DEG between RAD and DEG

ROI LBL R DOI LBL D S01 LBL S
R02 RAD D02 DEG $02 90
RO3 RTN D03 RTN S03 COS

S04 x=0?
S05 RAD
S06 x#0?
S07 DEG
S08 R
S09 RTN

The first two programs set RAD mode and DEG mode and take two

keystrokes each (XEQ R) instead of three keystrokes (SHIFT MODES

RD). Saving just one keystroke is rarely worth the trouble, but

there might be times when it is. The third program switches from

one mode to the other, without knowing what the present mode is. It

can therefore be used as a subprogram by other programs which need

to switch modes, as well as from the keyboard. Even if you decide

the saving on keystrokes is not worth the trouble the program does

show several useful ideas:

1. Save labels by using one label for a program which does two jobs.

2. Use two alternative tests to select one of two alternative

actions.

3. Use R to restore X, Y, Z to their original values.

That should be enough about typing aids - the idea should be clear

by now.

2.2 A SIMPLE PENDULUM Let us (at last) look at a typical problem.

The period of a simple pendulum is given by the formula

-30-

CHAPTER 2

p = 2*pi*SQRT(1/g)

If "I" is the length of the pendulum in meters and "g" is the

acceleration due to gravity in meters per second squared then this

formula gives the period "p" in seconds. Here is a short program

which asks you for the length of a pendulum and gives its period:

PO1 LBL P Label for pendulum period program

P02 INPUT L Ask for pendulum length (answer must be in meters!)

P03 9.8 Approximate value for g in meters per second squared

P04 : Calculate g/l

P05 SQRT Calculate square root of g/l

P06 PI Get pi

P07 * Multiply by pi

P08 2 Get 2

P09 * Multiply by 2

P10 STO P Put the answer in variable P

P11 VIEW P View P - a suitable name for the period

P12 RTN Finish the program

Program length = 26 bytes

Checksum = 6043

Say you want to find the period of the pendulum in your grandfather

clock, whose pendulum is 30 cm long. Do XEQ P, and at the question

about L, type in 0.3 and press R/S. The period comes out at 1.0993

seconds (to 4 decimal places).

That’s fine, and the program works - but what if you now wanted to

work out the length that the pendulum should have to give a period

of exactly 1 second? The HP-32S gives you several ways to find the

answer. One way would be to try different values near 0.3 until you

got a period of 1 second. This can take a long time, but in any

case the HP-32S Solver is designed to do exactly the same, and much

faster. You want to find a value of L such that P is exactly 1.

This means you want to find L such that:

-31-

CHAPTER 2

P-1=0

You can rewrite the program above to recall L instead of just asking

for it, and to calculate P-1

PO1 LBL P Label for pendulum period program

P02 INPUT L Ask for pendulum length (reply must be in meters!)

P03 RCL L Get pendulum length for the calculation

P04 9.8 Approximate value for g in meters per second squared

P05 : Calculate g/l

P06 SQRT Calculate square root of g/l

P07 PI Get pi

P08 * Multiply by pi

P09 2 Get 2

P10 * Multiply by 2

P11 1 Get the number 1 (the period you want)

P12 - Subtract from period to get number which should be 0

P13 RTN Finish the program

Program length = 27.5 bytes

Checksum = DCAE

Now you can use this program with the Solver to find the exact value

of L that you want. Press SHIFT SOLVE and then FN and P to say you

want to solve the program (function) P. Then press SHIFT SOLVE

again and SOLVE L to say you want to solve for the independent

variable L. If you still have the value 0.3 meters in L then the

display will show the message SOLVING for only a few seconds, and

then the answer 0.2482 will be displayed. The pendulum should be

0.2482 meters long if the grandfather clock is to run accurately.

The Solver ignored the INPUT L line; L was the variable to be solved

for, so the Solver provided its own guesses for L. The Solver uses

the program P many times while looking for a value of exactly zero,

but if it did need to ask for L, it would do so only once, and would

then ignore the line INPUT L.

This shows how the Solver can be used, but the program is no longer

-32-

CHAPTER 2

suitable for calculating the period! Instead of writing a special

program to solve for the length only, we could use a general program

which calculates P or L by using the formula:

2*pi*SQRT(L/g) - P = 0

This formula can be used to select a value of L (for example 0.3 m

as above) or a value of P (for example 1 when we wanted a period of

1 second). Then the Solver can be used to find the other value.

PO1 LBL P Label for pendulum period program

P02 INPUT L Ask for pendulum length (reply must be in meters!)

P03 INPUT P Ask for period (reply must be in seconds!)

P04 RCL L Get pendulum length for the calculation

P05 9.8 Approximate value for g in meters per second squared

P06 : Calculate g/l

P07 SQRT Calculate square root of g/l

P08 PI Get pi

P09 * Multiply by pi

P10 2 Get 2

P11 * Multiply by 2

P12 RCL P Get the period

P13 - Subtract from calculated period to get number which

should be 0

P14 RTN Finish the program

Program length = 29 bytes

Checksum = 7D99

To get the period of the pendulum if it is 25 cm long:

1. Press SHIFT SOLVE and FN P to select the program P. (You do not

need to do this if you have not selected any other program for use

with Solve or Integrate since last selecting P.)

2. Press SHIFT SOLVE and SOLVE P to find a value of P which makes

the expression equal to zero.

-33-

CHAPTER 2

3. The HP-32S stops and displays L?0.2482 to show the present value

of L and to ask if you want a new value. Type .25 and press R/S to

solve for the period.

4. Wait a couple of seconds and see the answer 1.0035 - the clock

will be 0.35% slow (about 5 minutes a day).

You can now use the same program to see what length you would

require if you wanted a period of 2 seconds:

1. Press SHIFT SOLVE and SOLVE L to find a value of L - note that

you do not need to select the function (program) P, because it is

still selected.

2. See the HP-32S show P?1.0035 - type 2 R/S to solve for a period

of 2 seconds.

3. Wait a short while and see L=0.9929, the length needed to give a

period of 2 seconds.

We could make the value of "g" a variable too. If you wanted to

calculate periods very exactly in different places then you could

use INPUT G and RCL G instead of 9.8 in the program. This would let

you calculate the periods of pendulums on the Moon, or Mars, or

other exciting places too! You might have had enough of pendulums

for now, but there is another important point to note. Each of

these programs was more than 10 lines long. They are still short

programs, but it is easy to make a mistake, even when typing a

program this short. To help you check if the program is correct,

the checksum of each program is given at the end. You should

compare this with the checksum after you have typed in your program.

To do this press SHIFT MEM, then PGM and use the down-arrow if

necessary to move to LBL P. You will see the program length in

bytes, and if you press SHIFT SHOW then you will see the checksum.

If the HP-32S could be used with a printer, then I could print out

each program, and you could compare your program with that printout,

-34-

CHAPTER 2

or even make you own printout to compare. However the HP-32S does

not use a printer (this helps make it less expensive!) so it

provides checksums instead to help us compare our programs. This

checksum is important, especially for longer programs.

2.3 BLACK BODIES AND BLACK HOLES In the previous example we

started with a program to calculate a period given a length. This

required only one calculation, so the program went through the

formula once and gave the answer directly. After that we used the

Solver to look for answers that satisfied specific conditions, and

the program had to be used many times, until the Solver found a zero

value. Using the Solver is a neat trick, since you only have to

write the basic equation, and the Solver does the hard work of

solving it. There are a few disadvantages though. Firstly, the

Solver takes a while to find an answer - it has to guess instead of

just getting the right answer directly. Secondly, it can sometimes

guess a wrong answer. In the next example we shall put a little

more effort into writing our own program, so that it does not need

to use the Solver.

Calculating the properties of a black body requires a long program,

but using those properties, along with quantum mechanics, gives a

simple formula for the lifetime of a black hole.

L = m3*1073!

M is the mass of the black hole in kilograms, and L is its lifetime

in seconds. This is the time before the black hole loses all its

mass by pair creation at the Schwarzchild radius - and either

vanishes or becomes a naked singularity, according to the theory you

prefer!

We can write a program which begins by storing 0 in both L and M.

Then it can ask for values of L and M. The user can type in a value

for the known variable, and just press R/S to skip the unknown

variable. The program can check which variable is still zero - and

-35-

CHAPTER 2

can calculate that variable’s value from the other one. Here is the

program:

B0l LBL B Label - Black hole.

B02 0 Get 0

B03 STO L and store it in L and in M

B04 STO M to show they have no value.

BO5 INPUT L Get L.

B06 x=0? If it is zero then it was skipped,

B07 GTO C so go to ask for M.

B08 31 Get 31,

B09 10% calculate 1031
B10 * and multiply.

B11 3 Now get 3.

B12 1/x Calculate 1/3.

B13 yX Get third root.

B14 STO M Store the result in M,

B15 VIEW M and show it.

CO0l1 LBL C Come here to continue by asking for M.

C02 INPUT M Ask for M.

C03 x=0? If no value given for M or L,

C04 GTO B then go back to ask again.

C05 3 Get 3.

C06 y* Get M cubed.

C07 31 Now get 31,

Cco8 10% calculate 1031

CO09 : and divide.

Cl10 STO L Store the result in L,

Cl1 VIEW L and show it.

C12 RTN End the program.

Program lengths: B = 22.5 bytes, C = 18 bytes

Checksums: B = E63A, C =17C89

Type this into your HP-32S, check the program lengths and checksums,

and correct the programs if necessary. Actually, it is all one

program to calculate either the mass, or the lifetime, of a black

-36-

CHAPTER 2

hole, but the HP-32S separates program memory into easily managed

chunks by treating everything between one label and the next as a

separate part. In this program there is no RTN before LBL C, so the

program that begins at LBL B just carries on into the chunk labelled

with a C. The part labelled B stops at the VIEW M step, but in a

different program B could have just carried straight on into C.

Now try the program out. What would be the lifetime of a black hole

with the mass of the Earth?

1. XEQ B

2. See L?0.0000 - press R/S to leave this unchanged, as we want to

calculate a lifetime.

3. See M?0.0000 - type 6E24 - approximately the mass of the Earth in

kg, then press R/S.

4. See L=2.1600E43 - a black hole the mass of the Earth would

survive this many seconds, or about 7E35 years.

Assuming the age of the universe to be about 15 billion years, what

is the original mass of the smallest black hole that would still be

around if it was created at the big bang?

1. XEQ B

2. See L?0.0000 - calculate 15 billion years in seconds - 15E9 ENTER

365.25 * 24 * 3600 * and let the program run with this value of L by

pressing R/S.

3. See M=1.6791E16. Black holes of about this mass or more would

still exist (though their mass would be much lower by now, and if

they were originally close to this mass then they would now be

white-hot - not bad for a black hole!)

What do we learn from this? (Apart from something about the theory

-37-

CHAPTER 2

of black holes, that is!) Instead of wusing Solve to look for an

answer, we have written a program which decides which answer we

want, and then calculates that answer at once. This takes some more

program memory, and some more of the user’s time, but it gives

answers much more quickly. The same trick is worth using even in

calculations which use more than two variables.

We have used two other "tricks". One is that of letting two

programs run together, by not bothering to have a RTN before the

second label. This is done very often in large programs, but it

deserves to be emphasised even here. The second trick is that of

using as little space as possible to store constants. The program

uses 1031 in two places. Storing this number in a register would

use 8 bytes, plus 3 more bytes in the two places where it is

recalled - a total of 11 bytes. Getting the number by using 31 and

10X uses 3 bytes (positive integers below 100 take up only 1.5

bytes), so doing it twice uses 6 bytes - a significant saving.

People often use 31 CHS 10* * without thinking, instead of using 31

10* : which saves one and a half bytes. If the program had used the

actual number 1E31 then this would have taken up 9.5 bytes in each

place - a total of 19 bytes, instead of the 6 actually used. That

would indeed have been a black hole swallowing up valuable bytes!

2.4 MORE VARIABLES - THE IDEAL GAS LAW The ideal gas law is

another example of a commonly used equation which can show some

useful features of the HP-32S. (It is one of the equations built

into the HP-22S.) The equation is:

P*V = N*R*T

This involves the constant R (R=8.3143 J/mole-K in SI units) and

four variables. We could use the approach of section 2.2 above, and

write a program which asks for all the variables, then solves for

the unknown one, or we could use a program which uses the Solver to

find the unknown value. Let us use the latter, to make the program

as short as possible. The formula to be turned into a program is:

-38-

CHAPTER 2

P*V - N*R*T =0

GO0l LBL G Gas law program

GO02 INPUT P Get P, the pressure in N/m2

GO03 INPUT V Get V, the volume in m3

G04 INPUT N Get N, the number of moles of the gas

GO5 INPUT T Get T, the temperature in degrees Kelvin

G06 RCL P Now recall P,

G07 RCL* V multiply by V,

GO08 8.3143 put in the gas constant,

G09 RCL* N multiply it by N,

GIO RCL*T multiply by T,

Gll1 - and finally subtract NRT from PV.

G12 RTN End program - returns to the Solver.

Program length = 26 bytes

Program checksum 696

Enter this program, see that your checksum is correct, then use the

program to calculate the pressure of an ideal gas at temperature 273

degrees Kelvin, with 3 moles in a 4 liter container.

. SHIFT SOLVE FN G - selects the gas program to be solved

. SHIFT SOLVE SOLVE P - select P as the unknown variable

. See V? - type 4E-3 R/S (4 liters is 4E-3 M)

. See N? - type 3 R/S

. See T? - type 273 R/S

. See P=1,702,352.925 - the pressure in N/m2 (or 16.8009 atm.)

Note: the value in N/m2 is given to more significant figures than is

A
L

A
W

N
-

meaningful, and you would not normally write an answer like this.

The number is given here in the way it is displayed by the HP-32S if

you are sticking to FIX 4 display mode as suggested at the

beginning.

The program shown above does not introduce any stunning new tricks -

it just shows how a formula with many variables is written for the

-39-

CHAPTER 2

Solver. The use of RCL arithmetic makes the program considerably

shorter than it would otherwise be. One trick is worth mentioning -

the number 8.3143 takes 9.5 bytes in the program. If you were very

short of memory you could save some bytes by working the number out

using only positive 2-digit numbers. A way to do this is:

97 3 * 35 /

You can enter two numbers one after another, as shown above, by

typing in the first number, then pressing - and backarrow (this

makes sure the HP-32S knows that the first number is finished), then

typing the second number. (HP-41 users note - there is no wasted

space between the two numbers as there would be on an HP-41.) This

uses five steps, each 1.5 bytes long - a total of 7.5 bytes instead

of 9.5 bytes. While you are writing short programs and still have

free memory left then this sort of thing is hardly worth the

trouble, but when you are writing long programs it is worth

remembering. You may think that even though this saves 2 bytes it

wastes a lot of time - well, yes the program step 8.3143 takes 2.5

milliseconds, whereas the five steps shown above take 26

milliseconds - but that is still very little time!

2.5 DEFLECTION OF A CANTILEVER BEAM The equations used up to

now could all be solved for any variable simply by having the

variables rearranged. Let us now see how the Solver deals with a

fairly simple problem which is not linear in all the variables.

The equation for the vertical displacement of a cantilever beam (a

horizontal beam fixed at one end) with a load P applied at the free

end is given by:

P*x2*53*l-x) -y =0

6*E*I

1 = length of beam

P = load on free end

-40-

CHAPTER 2

E = Young’s modulus for beam

I = Moment of inertia of beam cross-section

y = vertical displacement, at horizontal distance x from fixed beam

end

Rewriting this equation to solve for x would be quite a nuisance, so

let’s see how the Solver will deal with the equation as it stands:

BO1 LBL B Beam equation

B02 INPUT P Ask for P

B03 INPUT E Ask for E

B04 INPUT I Ask for 1

BO5 INPUT L Ask for L

B06 INPUT X Ask for X

B07 INPUT Y Ask for Y

B08 RCL P Get P

B09 RCL* X Multiply by X

B10 RCL* X And again - a quick way to get x2

B11 6 Get 6

B12 : and divide by it

B13 RCL: E Divide by E

B14 RCL: 1 and by I

B15 3 Get a3

B16 RCL* L Multiply by L

B17 RCL- X Subtract x

B18 * Now multiply by (31-x)

B19 RCL- Y Finally subtract y

B20 RTN and finish the program

Program length = 30 bytes

Program checksum =C406

We’ll use this program in English units - the formula applies for

metric or English standards, as long as consistent units are used

throughout the equation for the measurements and for Young’s

modulus. Assume a beam of 120 inches, with a moment of inertia of 5

4 If a load of 200 poundsinches” and a Young’s modulus of 30E6 psi.

-41-

CHAPTER 2

is placed on the free end, what will the deflection be at 100 inches

away from the fixed point?

I. Type 0 STO Y (this is an initial guess for Y), then SHIFT SOLVE

FN B

2. SHIFT SOLVE SOLVE Y

3. See P?1,702,352.925. This is the P value we got from the

previous example - if you have cleared P or used it for something

else since the previous example then P will contain something

different. Type 200 R/S to give the P for this example.

4. See E?(something, it doesn’t matter what). Type 30E6 (or 3E7)

R/S.

5. See 1? - type 5 R/S.

6. See L? - type 120

7. See X? - type 100 R/S.

8. You should see SOLVING in the display. If you have done all the

examples so far and have not deleted any, then you might sce MEMORY

FULL - the HP-32S needs to grab 33.5 bytes to store numbers used

during solving, and this much space might not be available. In that

case you will have to delete some programs or variables - use SHIFT

MEM to check how much memory you have left and what programs and

variables you have - then use SHIFT CLEAR to delete some things you

no longer need - the statistics area is a good place to begin,

unless you still need some statistcs values you have previously

entered. While checking memory you might find that there are more

than 33.5 bytes free, yet you got MEMORY FULL - this happens if

there is not enough memory for the Solver and for the unknown

variable Y.

9. If the Solver ran out of memory, go back to step 2, but just

-42-

CHAPTER 2

press R/S for all inputs, since you have already typed in all the

values.

10. When the program does run successfully you should see that the

beam displacement y is 0.5778 inches. You will also notice that

this example takes longer than the previous ones to find a solution.

11. Now find the displacement at the end of the beam, where X is

equal to L, 120 inches. Repeat the above, but press R/S at each

input without entering a new value, except for X where you should

enter 120.

12. The Solver takes a much shorter time now to find that the

displacement at the end is 0.7680 inches.

13. Now go back and check the program by finding the X value which

gives a displacement of 0.5778 inches. Repeat everything, but SOLVE

for X, and give the value 0.5778 to Y. Even though there is a good

initial guess for X left in X from the previous calculation, the

Solver still takes a fairly long time to find the answer, which it

gives as X=100.024 inches.

The last part of the example demonstrates two points. First of all,

the Solver takes considerably longer to find an answer if the

equation involves powers or functions of the variable being solved

for - it is still fast, and certainly takes less time than it would

for you to rewrite the equation. Secondly, the answer 1is not

exactly 100 - the Solver finds a solution for X when Y is equal to

exactly 0.5778 - the actual value of Y when X was 100 inches was

0.577777777777, and with this value in Y we do get a result of

exactly 100 for X. This shows the effects of rounding - but we

would be unlikely to need results more accurate than this anyway.

2.6 BODY SURFACE AREA Here is another example of a formula which

involves powers and functions of variables. The body surface area

(BSA) of a person, used particularly in cardiac medicine, can be

-43-

CHAPTER 2

estimated from the height and weight of that person using the Boyd

formula:

BSA = W(0.7285 - 0.0188 logW) * H03 * 3207E-4

BSA = estimated body surface area in m2

W = body weight in grams

T = height in cm

These are not SI units, but let’s stick to the units of the original

equation.

You could try to rewrite this formula to solve for height or weight,

given the other two, but it is much simpler to let the Solver sort

this out. In any case, the formula is nearly always used to find

BSA. Let us write two programs, one of which calculates the right-

hand side minus the left-hand side (so it can be used by the

Solver), and a second program which calculates BSA directly from the

formula, or uses to find either ofthe Solver the other two

variables.

The program to find BSA is:

B0l LBL B Label B, short for BSA

B02 RCL W Get W

B03 0.7285 Get first part of power

B04 RCL W Get W again

B05 LOG LogW

B06 0.0188 Next constant

B07 * 0.0188 LogW

BOS8 - 0.7285 - 0.0188 LogW

B09 yX Now calculate w(0.7285 - 0.0188 LogW)

B10 RCL H Get H

Bl1 3 These three steps

B12 10 calculate 0.3 - put 10 after 3 by pressing : <- 10

B13 : in 4.5 bytes instead of using 9.5

B14 yX Get HO3
B15 * multiply first two terms

-44-

CHAPTER 2

B16 3.207E-4 Get last constant

B17 * and multiply to give the formula

B18 RCL B Get B

B19 - and subtract, giving the final result

B20 RTN Finish, or go back to calling program

Program length = 54 bytes

Program checksum = D949

This program does not input any of the variables - we shall leave

that up to the main program which "calls" this program to do the

Note that if then this

calculates the predicted value of the BSA.

calculation. the wvariable B is zero

Now for the second program, which uses the above program to

calculate any of the required variables.

MOl LBL M Label M - Main part of program.

MO02 0 Get 0,

M03 STO W and store it in W,

M04 STO H and in H,

M0O5 STO B and B.

MO06 SF 0 Set flag 0

MO7 INPUT W Input the weight.

MO8 x#0? If not 0 then W is not an unknown,

M09 CF 0 so clear flag 0.

MI10 INPUT H Input the height.

Mi11 x#0? If not 0 then H is not an unknown,

M12 CF 0 so clear flag 0.

M13 INPUT B Input the body area.

M14 x=0? If it is zero,

M15 GTO D then go to D to calculate B Directly.

M16 FS? 0 Is the flag still set?

M17 GTO E If so then neither H nor W were given so show error

message.

M18 FN= B We have B and either H or W, so we must SOLVE

function B.

-45-

M19 23

M20 8

M21 RCL W
M22 x=0?
M23 RY
M24 RY
M25 STO i
M26 STO (i)

M27 SOLVE (i)
M28 VIEW (i)
EOl LBL E

EO02 10

E03 ACOS

E04 GTO M

D01 LBL D

D02 RCL W

D03 RCL* H

D04 x=0?

D05 GTO E

D06 XEQ B
D07 STO B
D08 VIEW B
D09 RTN

Program lengths

Program checksums M = B94A,

Before going through an explanation,

CHAPTER 2

Put 23 (W) in stack.

Put 8 (H) in stack - press + <-- 8 to put it

after 23.

Get W.

If it is 0 then we must solve for W,

so roll down the 8.

Roll down once again, to get 8 or 23 in register X.

Put 23 (W) or 8 (H) in the indirect register.

Store this in unknown variable, otherwise first

guess is 0.

Solve for the selected variable.

Display the result.

Get here if SOLVE failed, or from an error at M17

or D04.

To show an error message,

try to take ACOS(10) - this stops and shows

INVALID DATA.

After an error, go back to M and start again.

Label D - direct calculation of B, without using

SOLVE.

Get W.

Get H and multiply.

If either is zero then product is zero,

which is wrong (both must be known), so go to error

message.

If neither is zero then calculate B.

Store result in B.

Display the result.

Finish the program.

M = 42 bytes, E = 6 bytes,

E = 9663,

D = 13.5 bytes

D = E06C

let’s try the program out.

First the simple case, what is the estimated body area of a person

with height 170 cm and body weight 70 kg?

-46-

CHAPTER 2

1. XEQ M (execute the Main program).

2. See W? - type in 70,000 (must be gm), and press R/S.

3. See H? - type in 170 (cm) and press R/S.

4. See B? - this is the unknown, so just press R/S.

5. See RUNNING and then the answer B=1.8347 at once. This person’s

body surface area is estimated at 1.8347 square meters.

Now try to find the the height predicted by this formula for a

person with height 170 cm and BSA 1.8347 square meters.

1. XEQ M.

2. See W? - press R/S as this is the unknown.

3. See H? - press 170 and R/S.

4. See B? - press 1.8347 and R/S.

5. See SOLVING for several seconds as the Solver struggles to find

an answer to the non-linear equation (it involves powers and

logarithms), then the answer W=70,002.0749. Once again, the answer

is not exact because the value of B was given to only 4 significant

figures. This hardly matters, since the equation provides only an

estimate.

If you try to find a solution but do not give two out of the three

variables then the program cannot give an answer, and it might try

to take the logarithm of zero as well. It therefore makes good

sense to check for such an error and display an error message if

necessary. The HP-32S does not let you write your own messages, but

you can use one of those built into the HP-32S, as is done by the

program with label E - see point E. below.

-47-

CHAPTER 2

If you give negative values for the weight, height or body surface

area, then the program will stop with some sort of arithmetic error,

such as LOG(NEG). The program could check for these errors too, but

this would take up more memory than is worth the trouble - a

negative value is clearly a mistake!

If you give nonsense values then the program will work, but will

give a nonsense answer! For example, remember to give the weight in

grams. This is an example of the famous GIGO law of computing -

Garbage In Garbage Out!

If you give values for all three variables then the program solves

for H.

Now let us look at the tricks and special techniques used by the

program.

A. First of all, the variable B contains 0 if it is the unknown

variable, so we can use the program B to find B directly in this

case, since it calculates the right-hand side of the original

equation, then subtracts 0 from it. If B does not contain 0 then we

are solving for one of the other variables anyway. This trick lets

us use the main program to calculate B directly, without using the

Solver. Note that LBL B and the variable B have been chosen to have

the same name, but you can choose any names - LBL B and variable B

are not the same thing.

B. The program wuses flag 0 to check if at least one of the values H

or W was given when B is given too. If flag 0 is still set then

neither was given, so the error message is displayed. In this case,

flag 0 stays set, but the program will presumably be used again, and

if the program runs correctly then flag 0 is cleared - which is the

normal default. It is usually best to leave the flags clear at the

end of a program.

C. To solve for either H (variable number 8) or W (variable number

23), the program puts both of these numbers on the stack, then puts

-48-

CHAPTER 2

W in the stack and checks if that is zero. If W is zero, then it is

the variable to solve for, and the program rolls the stack down once

to remove W, and again to remove the 6. If W is not zero, then H is

the variable to solve for, so the program rolls down only once to

remove W. Following this, the program stores the number in stack

register X into the indirect register "i". The value stored in the

unknown variable is still 0, and if this is used as the first guess

by the Solver then it might produce a LOG(0) error, so the program

stores the value in register X into the unknown variable to avoid

that. We could actually put a more sensible guess into the unknown

variable, but this trick saves some space and does fulfill the main

purpose - which is to use a non-zero value as the first guess. Now

the program solves for the variable given by "i", and displays this

variable.

D. If for some reason there is no solution, then the step after

SOLVE is skipped by the HP-32S, and the program falls directly into

the next program - the error program labelled E. Since the part of

the program beginning at label M does not finish with a RTN, the

program can "fall" straight into the next one - in fact it is all

the same program.

E. The "error message" program beginning at label E tries to

calculate ACOS of 10, making the HP-32S stop and display INVALID

DATA, a very appropriate message.

F. The part of the program that begins at D calculates B directly.

First of all it must check that values have been given to both W and

H - if neither has been given then it is zero. Instead of checking

W and H separately, the program multiplies the two together and

checks if the product is zero - thus saving 3 bytes. If neither W

nor H is zero then the program uses program B to calculate the value

of B, then it stores the result in B and finishes by displaying this

value. At this point the program does finish with a RTN to make

sure that an accidental push on R/S does not start another program.

This also means that yet another program could use M, and when M was

finished it would return to that program.

-49-

CHAPTER 2

2.7 SAVE SPACE AND TIME Well, this chapter is supposed to be about

"short programs", and you might feel that the program above which

begins at label M is not exactly short. It is certainly the longest

program so far in this book, but we shall see a longer one in the

next chapter. Let us finish this chapter with a summary of tips on

saving time and memory. (Yes, that’s what this section is about -

it is about saving memory space and program time in your HP-32S - it

is not a plea from a relativistic environmentalist) The tricks

used in the program above showed several examples of that. If you

are short of memory then delete the program written above unless you

plan to use it again.

That is one of the memory-saving tricks you should remember when

using the HP-32S - delete unwanted programs as soon as you have

finished with them. Otherwise you might forget what the program

does and be scared to delete it in case it is important. If a

program jis important but you no longer need it then you should copy

it into your notebook (mentioned at the beginning of Chapter 1).

Write down its checksum too so you can check the program if you ever

type it in again, then delete it at once.

A similar tip is that you should delete variables as soon as you no

longer need them. A particularly neat way to do this is:

RCL v STO- v (Where "v" is any variable)

This recalls the variable, then subtracts it from itself, leaving 0

in the variable, and thus saving the space it would otherwise

occupy.

Mention of STO- brings us to the whole range of STO and RCL

arithmetic. Use these wherever you can - using them makes programs

shorter, and therefore faster too. For example if you need to

calculate 1.7*Q then you could do:

RCLQ 1.7 *

-50-

CHAPTER 2

but the following is faster:

1.7 RCL*Q

If you are really short of memory then using the number 1.7 in a

program takes an unnecessarily large amount of space (9.5 bytes).

The following is shorter:

17 10 :+ RCL*Q

- it takes 4.5 bytes instead of 9.5 bytes for the number - but of

course it is a bit slower. A similar trick is to store small

negative numbers as:

number CHS instead of -number

This brings us to another point about numbers in programs. Whenever

you begin to type a number into a program the HP-32S checks if you

have at least 9.5 bytes of memory free to hold the number. This

happens even if the number you are typing will actually take only

1.5 bytes. After all, when you begin to type a number, the HP-32S

does not know if you plan to type in a zero or a positive integer

below 100, and only those numbers take 1.5 bytes. Say you have just

8 bytes of memory left, and you want to finish a program by typing:

35 + 3 yX

That would take only 6 of your 8 remaining bytes, but the HP-32S

will say MEMORY FULL as soon as you type the first "3". You can

still get this piece of the program in - go back and delete three

previous steps of the program (not numbers though!), so you have

12.5 bytes left, then type in the 35 and +. You now have 9.5 bytes

left; exactly enough to type in the 3 - after which you can put in

the last step, then go back and put in the steps you have had to

delete. If you are typing in a long program it may well be worth

typing in all the short numbers first, then going back and typing in

the rest of the program, so you will not be in danger of having to

-51-

CHAPTER 2

delete and re-enter some steps at the end.

Apart from using short numbers whenever possible in programs, you

can save memory by avoiding unnecessary instructions. A RTN at the

end of a program is useful to show that the program is finished, and

if you press R/S by accident then it stops you again (but see

below). If you are very short of space though, then these are

unnecessary luxuries! A program which stops with a VIEW or a STOP

does not really need a RTN as well, and the last program in memory

does not need a RTN either, since the program stops when it comes to

the end of memory. If you are really short of memory and a program

sets modes with commands such as DEG or SCI 7 then you can remove

these steps and set the modes from the keyboard before using the

program.

There are times when you cannot remove RTN as described above. RTN

is the "return" instruction, and when one program uses XEQ to run

another one as a subroutine the RTN is used at the end of the

subroutine to go back to the first program. In such cases, the RTN

is necessary, unless the subroutine is the last program in memory

(just before PRGM TOP) - in which case the end of memory behaves

like a RTN.

Well, having reached the end of memory, we have also reached the end

of this chapter. The next one will use two fairly long programs to

show further tricks worth using in programs.

-52-

CHAPTER3

CHAPTER 3 - LONGER PROGRAMS

3.1 STATISTICS AND LOOPING In this chapter we shall study two

programs which add extra features to the HP-32S. They will use some

of the tips and tricks introduced earlier, and will show a few new

useful ideas. In effect, these examples are "case studies" of

advanced programming on the HP-32S. Our first example will be a

program to help in the use of the statistics functions.

There are three possible problems with the statistics functions

built into the HP-32S. One is that you cannot keep track of each

number used - they are just added up into the summation registers.

If you get an unexpected mean value and want to review the numbers

you typed in, to see if one was wrong, you cannot recall each number

you had entered. Some of the more expensive HP calculators keep a

"list" of all the numbers used, and the program below will make a

list like that as well, provided you do not use more numbers than

the HP-32S can store. The second problem is that large numbers with

small variations can give inaccurate statistical results. This can

lead to the third problem, small differences between large numbers

can cause an underflow and then standard deviations cannot be

calculated at all. The program below calculates a mean value, then

subtracts it from the list of measurements, and recalculates the

mean and standard deviation more accurately. It also lets you

review the numbers you entered, in case some need to be corrected.

SO01 LBL S Statistics program

S02 CLZ Clear out any old statistics values

S03 0

S04 STO i1 Set loop counter to 0

EO1 LBL E Loop to Enter statistics values

E02 STOP Stop, show number of values so far, wait for next

value

EO03 ISG i Increase counter to store next x value

E04 RADIX. A do-nothing instruction to follow ISG

EO05 STO (1) Store x value

-53-

E06 x<>y

EO07 ISG i

E08 RADIX.

E09 STO (1)

E10 x<>y

El1l +

E12 GTO E

M0l LBL M

MO02 X

MO03 STOP

M04 y

MO05 STOP

MO06 sx

M07 STOP

MO8 sy

M09 STOP

ROl LBL R

R02 XEQ T

C0l1 LBL C

C02 RCL(i)

C03 ISG 1

C04 RCL(1)

C05 x<>y

Co6 -

C07 DSE 1

C08 RADIX.

CO09 INPUT(i)

Cl10 ISG i1

C11 INPUT(i)
C12 DSE i

C13 RADIX.

C14 RCL(i)

Cl5 +

CHAPTER 3

Swap x and y values

Increase counter to store next y value

Do-nothing instruction again

Store y value

Swap back x and y values

Add this pair to the statistics registers

Go to get next value or pair of values

Show the Mean values and standard deviations

Get mean x

Stop to display it

Get mean y

Stop to display it

Get standard deviation on x

Stop to display it

Get standard deviation on y

Stop to display it

Continue into Review section

Count total number of values to review and put in i

Loop to Correct any values

Get original x

Increase counter so as to...

get original y

Swap x and y

Subtract the original values from the statistics

registers

Decrease counter again to get at original x

Do-nothing step, otherwise DSE would skip the next

step

Display present x value and let user change it

Increase loop counter

Display present y and let user change it

Decrease counter again...

and put in a do-nothing step

Recall new x in case stack was changed by

calculation of y

Add new x and y (they might not have changed!) to

stats

-54-

C16 ISG i

Cl17 ISG i

C18 GTO C

C19 GTO M

NOI LBL N

N02 XEQ T

NO3 x

NO4 +/-

NO5S y

NO06 +/-

NO7 CL

L0l LBL L

L02 RCL(i)

L03 ISG i

L04 RCL(i)

L05 CMPLX+

L06 STO(1)

L07 x<>y

L08 DSE i

L09 STO(i)

L10 +

L1l R

L12 R

L13 ISG i

L14 ISG i

L15 GTO L

L16 GTO M

TOl LBL T

TO02 n

TO3 2

TO4 *

TOS 3

CHAPTER 3

Increase counter back to position of y

Increase counter to position of next x if any more

left

Go back to continue Correction loop if any more

values left

If all values done then GTO C is skipped - go back

to M

Normalize the stored values by subtracting the

current means

Count total number of values to review and put in i

Get mean x

Change its sign, so it can be subtracted

Get mean y

Change its sign, so it can be subtracted

Clear stats registers to store the normalized set

Loop to normalize

Recall next x value

Increase counter to get next y value

Recall next y value

This subtracts mean x and y from next x and y in

one step

Put back normalized y

Swap x and y

Decrease counter to get position of x

Put back normalized x

Add to new statistics set

Remove x,

and y, putting mean x and y back in Y and X registers

Increase counter again (back to y position), no skip

Increase i to next x, will skip next step if all done

Repeat loop if any more x,y pairs left

If all done then go to display new means

Subprogram to get Total number of values to review

Recall number of values

Double it (as there are x and y values)

-55-

CHAPTER 3

T06 10% Calculate 1000 in 3 bytes, (save 6.5 bytes)

TO7 = Divide number of values to give loop limit

TO8 1

TO9 + Add 1 to give initial register (A) for loop

T10 STO i Store this loop counter in i

T11 RTN Return to place which called T (also marks program

end)

Lengths S= 6, E=18, M=135, R= 3, (=285, N=10)5,

Checksums S=412A, E=D981,M=C3CE, R=EFC4, C=68E6, N=127C,

Lengths L =24, T=16.5

Checksums L =94EIl, T=22A1

Most of what this program does is explained in the comments next to

each line - let us have a look at a short example before looking at

the special tricks used.

An experiment gives four readings which are 1,875,015.3

1,875,017.1

1,875,016.8

and 1,875,014.9

Find their mean and standard deviation.

1. XEQ S to run the statistics program. See 0.0000 - 0 results have

been stored so far.

2. Type 1875015.3 and press R/S. See 1.0000 - 1 result has been

stored.

3. Type 1875017.1 and press R/S. See 2.0000.

4. Type 1875016.8 and press R/S. See 3.0000.

5. Type 1875149 and press R/S. Yes, I know this is wrong, but we

are going to use it as an example of something going wrong. Sece

-56-

CHAPTER 3

4.0000 - we have now got four results stored, and that is everything

we have, so we can now look at the mean value and the standard

deviation.

6. XEQ M - to look at the mean values. See 1,453,141.0250 - you

notice that something is wrong because the value does not begin with

the digits 1,875 as all the results did. This will tell you that at

least one result was entered wrongly (or that something is wrong

with the program?). Press R/S and see 1.5000 - this is the mean of

the y values, but we are not interested in it. If the measurements

had consisted of x and y values then we would have typed in pairs of

values, separated by ENTER, in points 2 to 5 above, and we would be

interested in the y mean.

7. As we are not interested in the y mean, press R/S again at once

and see 843,750.7500 which is the standard deviation on the results.

This is clearly wrong, since all the results were within a few units

of each other - we shall have to review the values we typed in.

Press R/S and see 1.2910 which is the standard deviation on the y

values, which we are not using.

8. Press R/S again to go on to the review section. We could do XEQ

R instead. See A?1,875,015.3000. This is the first result and is

correct. Press R/S and see the value of B - the first y value,

which we are ignoring, so press R/S again. If we had been using x

and y values then we would have wanted to check the y value too.

9. See the correct value 1,875,017.1000 in C, so keep pressing R/S

to ignore y values and check x values. At G?187,5149000 we see

that the number is less than a million - it must be the wrong one.

Type in the correct value 1875014.9 and press R/S. See the value of

H which is to be ignored again, so press R/S again. Since the

reviewing procedure subtracts the old values from the statistics

registers and then puts in the new ones, it i1s dangerous to

interrupt the review procedure at a random place. It is best to go

through the whole process - this also makes sure you find any

further mistakes, instead of stopping at the first mistake and

-57-

CHAPTER 3

assuming there are no more!

10. Press R/S again (or XEQ M) to see the new means and standard

deviations. The mean is now 1,875,016.025 but the standard

deviation gives STAT ERROR ! This can happen when the numbers are

all large, particularly if the differences between them are small.

It is one reason for using the next part of the program which

"normalizes" the values to a range of values around zero, so the

differences are not small compared to the sizes of the numbers.

Since we cannot get the standard deviation, we shall go straight on

to the normalization. That will change the mean values to zero, so

be sure to make a note of the mean values first.

11. XEQ N - execute the normalization. When the normalization is

finished it goes back to the display of the mean values. The new x

mean is 0.0000, since the program has subtracted the mean value from

each result. This confirms that the program has run correctly.

Press R/S again to see the new mean value of the y values, which can

be ignored (but should be zero as well), then press R/S again and

sece the standard deviation on the x values, which now comes out as

1.0874. A final press on R/S will show the standard deviation on y

(meaningless in this example).

12. Well, that’s it. By normalizing the original results we have

made it possible to calculate an exact standard deviation. The

results stored in the HP-32S have now all had the original mean

value subtracted from them - if you need the original values you

will have to add the mean to them again.

13. In this example I have provided very simple test results on

purpose, so you can check if the above results are correct. It

would have been just as easy to ignore the leading digits which were

the same in all the results and to find the mean and standard

deviation of 153, 17.1, 16.8, and 14.9. These would have been

16.0250 and 1.0874, as we found by using the program. That shows

the program worked correctly!

-58-

CHAPTER 3

Now we can look at the use of the program in general, and at the

extra tips it shows. The program can be used to analyze up to 13

single measurements or X,y pairs of measurements. It is then using

all of registers A to Z, and i, and the statistics registers; in

addition, all except 6 bytes of the remaining memory are used to

hold the program. Maybe you can think of 4 useful extra steps to

put in those 6 bytes!

The loop at LBL E lets you put in pairs of numbers into registers 1

and 2 (A and B), then 3 and 4 (C and D), and so on. The loop uses a

counter in the "indirect" variable "i". This counter is set at zero

to begin with, but no upper limit is given - that means you can

store away as many results as your HP-32S memory will allow. If you

have only this program in memory then you can store up to 13 pairs

of measurements in registers A to Z - if you try to store any more

you get the message INVALID (i). If you have some other programs in

memory then you will be able to store fewer results - it would be

wise to do CLVARS (SHIFT CLEAR VARS) before using the program in

this case, so as to make sure you can use as many variables as

possible. If you use this program with other programs in the HP-32S

then you can keep storing measurements until you see the message

MEMORY FULL. Most likely you will not get either message but will

simply put in all your variables (it is surprising how many lab

experiments consist of taking exactly ten measurements!). No matter

how you finish - with all measurements stored or with an error

message, you can carry on to find the means by using XEQ M.

The program uses ISG to repeatedly add 1 to the counter - this is

simpler than using 1 STO+ i R*. Since the program imposes no

upper limit on the number of measurements, the loop counter begins

with 0.0000 - this means that the upper limit for ISG is zero and

ISG will always skip the next step after it. (The ISG is being used

only to add 1 to i, not as a loop test.) As this step will always

be skipped, you can put any instruction you like in there - but

(just in case something goes wrong!) it is best to wuse an

instruction which does nothing. Sometimes when you ISG or DSE to

increase or decrease a number you will not know whether the step

-59-

CHAPTER 3

after ISG or DSE will be carried out or not. Then you must make the

step after ISG or DSE a do-nothing step - so it does not matter

whether it is carried out or not. Many computers and calculators

have a special instruction called a NOP (Null OPeration) for this

purpose. The HP-32S has no special NOP command - I have used

RADIX. because this does not alter the way results are calculated

(some people use DEG as a NOP), nor does it change the way results

are displayed. (If you use European notation you should put

RADIX, in place of RADIX)) The only other instruction that it

would be safe to use as a NOP would be a LBL, but there is only a

limited number of LBLs, whereas you can use RADIX. as often as you

like. This is an important tip - if you use ISG or DSE to increase

or decrease numbers without using the skip part then use RADIX.

after these instructions.

The program lets you work with pairs of results (measurements), or

with single results. If you are using pairs of measurements then

you should type in the y value, press ENTER, type in the x value,

and press R/S. If you are using single measurements then press R/S

each time. If you do this then the y value will normally be the

number of measurements stored so far - this is the number in X at

the beginning of the loop. If you use the stack to calculate each

measurement before entering it, then the number in stack register Y

might be almost anything - and it might make the y mean and standard

deviation act oddly. If you do use the stack to calculate an x

value then it is best to press ENTER R/S so that the x and the y

values will be the same (and presumably safe). This is another tip

- do not do statistics on the x register with undetermined values in

the y register.

When you use XEQ M to see the mean values you are shown the x mean;

then you press R/S to see the y mean, then R/S again to see the x

standard deviation, and then the y standard deviation. (These are

"sample" standard deviations - a footnote in Chapter 11 of the

manual shows a trick to let you calculate "true population" standard

deviations.) If you press R/S one more time then the program goes

straight into the review section - another example of letting one

-60-

CHAPTER 3

program section go straight into another without a RTN between them.

The review section lets you see each result - this is the difference

between using this program and just using the statistics functions

on their own. Remember that the results are in pairs (in the order

X,y) - A then B for the first pair, then C and D, and so on. If you

have been entering single measurements then the second value of each

pair is irrelevant - just press R/S to skip it. If any value is

wrong then you can just type in the correct value and press R/S - if

a value is correct then just press R/S to see the next one. This

time you want to check only the values you previously entered, so

the loop counter "i" has to be stored with a limit. Since the

counter is used again in the normalization section, it is set up by

a separate "subprogram" or "subroutine" beginning with LBL T and

ending with a RTN. This subprogram can be used by other parts of

the program which just XEQ T to do the job. The subprogram ends

with a RTN, and this RTN is also used to mark the end of the whole

program. As I mentioned earlier, this RTN is not really needed if

it comes at the end of the last program in memory. You can delete

it from this program if you need to squeeze in five more program

steps.

Since the review section does not know in advance which values (if

any) will be corrected, it retrieves the x and y values of each

pair, subtracts every measurement from the statistics registers

before letting you change it, then adds it to them again. In order

to do these manipulations, then let you change the values if

desired, the program uses ISG i and DSE i alternately. The ISG

steps do not skip the following steps until all the results have

been checked, but the DSE steps do skip the following step, so

RADIX. is again used as a do-nothing filler after DSE. To make sure

that the x and y values are viewed in the expected order the program

has to swap them from time to time. After each pair has been

subtracted, checked, and added again, ISG is used twice - once to go

to the x value, and again to get to the next pair. It is only this

second ISG that can skip the following step. Since the measurements

come in pairs, there is no need for a NOP after the first ISG of the

-61-

CHAPTER 3

pair - the GTO C after the second ISG goes back to continue the loop

until all the results have been checked. When the check has been

accomplished the program goes back to LBL M to let you see the new

mean values and standard deviations.

Once you are happy with the mean values, you can use the

"normalization" section to subtract the mean x and y values from

each measurement. As discussed earlier this technique brings the

measurements to a range near zero, and thus allows the calculation

of more exact standard deviations. Subtracting the x and y means

from each measurement would require that they be stored somewhere,

or that they be recalled from the statistics registers at each step.

The new statistics results have to be worked out in a separate loop.

To simplify all this, the negative x and y values are stored in the

stack, and then subtracted simultanecously from each x and y pair by

adding them to the pair with CMPLX+. This is a neat trick, and it

lets you keep the mean values in the stack at all times so they do

not use any of the variable registers. Before looking at the rest

of the program let us have a quick look at how the complex stack

works.

3.2 COMPLEX ARITHMETIC AND THE COMPLEX STACK The

CMPLX+ trick described above works because of a special feature of

complex arithmetic on the HP-32S. Normally when you use the stack,

the addition operation drops the stack one value, and register T is

duplicated. For example, the stack and the LASTx register might

look like before and after an addition:

before + after +

T 4 T 4

Z3 Z4

Y 2 Y 3

X1 X3

L? L1

-62-

CHAPTER 3

The previous X is saved in L, the stack values Z and T drop down,

and a new copy of T is put in T. Now, if you use CMPLX+ to add two

complex numbers:

zl =a +ib z2 =c + id

the stack will look like this before and after the addition:

before CMPLX+ after CMPLX+

T d T d

Z c Z c

Y b Y b+d

X a X a+c

L ? L a

Only the real part of zl is saved in L, but the whole of z2 is

copied into Z and T. The complex number at the top of the stack is

copied when the HP-32S does complex arithmetic, just as the top real

number is copied in real arithmetic.

This means that arithmetic operations with two complex numbers do

save the whole of one of them - not in LASTx but in registers Z and

T. Say you want to calculate z1 + 2*¥z2. You can not use LASTx to

recover zl, as you would do with real numbers but you can swap the

two complex numbers. Enter zl first, or enter z2 and then zl as

usual, then press RY twice to swap the two complex numbers. Now you

can just press CMPLX+ twice and get z1 + 2*¥z2. You can use this

method in general to treat stack registers Z and T as a complex

LAST.

The statistics program uses this, but with an extra twist. We need

to subtract the mean x and y values from each pair, but with the

least effort possible. The trick is to store the negative of each

mean in registers Z and T, so the CMPLX+ operation does the

-63-

CHAPTER 3

following:

before CMPLX+ after CMPLX+

T-y T-y

Z -X Z -X

Yy Y y-y
X x X x-X

L? L x

Neat, isn’t it? Now, I'll let you into a secret - it would actually

have been just as easy not to change the signs of the mean x and y

values but to use CMPLX- CMPL+/- instead! This would have

subtracted the values from the means, then changed the signs in both

X and Y, giving the same result - but then we wouldn’t have had a

chance to discuss the above trick, would we? Now let’s go back to

the rest of the statistics program.

3.3 IMPROVED STANDARD DEVIATIONS After the mean values have

been subtracted from all the values, and the new statistics values

have been set up, the program goes back to LBL M again to display

the new mean values and standard deviations. The new mean values

might not be exactly zero if the statistics summations required more

than 12 digits to store exactly. The new standard deviations should

be the same as they were before - except if the original data used

were large then the new standard deviations are more exact. The

calculation of the standard deviation involves sums and differences

of squares - and this is bound to lose accuracy if you are using

large numbers. As was shown in the example, the original

calculation can even overflow completely and give no useful result.

It is possible to obtain better accuracy by using an alternative set

of formulae to store the statistical values. Articles on this have

been published in mathematical journals, and in the magazines of HP

user clubs. If you dislike the program presented here you can try

-64-

CHAPTER 3

looking up the alternative formulae and using them instead.

3.4 INTEGRATION WITH INFINITE LIMITS The HP-32S integration

function integrates between finite limits. One of the examples in

the manual shows what can happen if you try to integrate to an

infinite limit by using a very large number as the upper limit. If

you want to integrate with one or two infinite limits you can do one

of two things:

1. Write your own integration program which can integrate to finite

or infinite limits. The High-Level Math Solution book for HP-41

users shows such a program which uses Gaussian quadrature. You

might like to adapt that program for use on the HP-32S, or write a

similar one of your own.

There is a second reason for writing your own integration program

even if you do not need to work with infinite limits; the HP-32S

Solver and Integrator cannot be used at the same time. If you want

to Solve a function whose program uses integration then the HP-32S

will not let you do that - nor can you integrate a function which

uses the Solver. If you want to do either of these things then you

can do it by writing your own integration program and using that

instead of the built-in Integrate function.

2. You can change the variable of integration to a new variable

whose range is finite. This is what we shall do here.

Whichever method you use, it is worth noting that the program need

only integrate to one infinite limit:

oo

I = ff(x) dx

a

Any program which does this also lets you integrate between minus

infinity and infinity by doing the integration in two parts:

-65-

CHAPTER 3

oo 0 oo

I= :{;f(x) dx = !i(x) dx + /f;x) dx

= '/(;;:-x) dx + 412() dx

In general /f(x) dx = /f(x) dx

= oo

so a program for integration from a finite value to plus infinity

can also be used to integrate from minus infinity to a finite value,

or from minus infinity to plus infinity as shown above. A Gaussian

quadratic integration program will usually use a selected number of

intervals, so if you want to use more steps to obtain greater

accuracy, you have to try something else. Replacing infinity with

the largest number the HP-32S can handle can lead to nonsensical

results since most of the values of the integrand will be calculated

at very large values of x, as is shown in the manual. Looking for

a reasonable wupper limit by trial and error can take a very long

time.

Let us therefore look at the alternative method of changing the

variable that has infinite limits to one that has finite limits. The

built-in integration program uses a user-supplied routine to

calculate the function f(x) at a value x and then makes a choice of

x values which lets it estimate the integral. If the variable is

changed from one that has infinite limits to one that has finite

limits then this general-purpose program can still be used provided

that the routine to calculate f(x) is supplemented by a second

routine that makes the change of variable. In the following, I shall

call these routines F and T respectively. A reasonable choice for

the change of variable is:

-66-

CHAPTER 3

x = TAN(O)

or

O = ATAN(x)

because TAN(infinity) is pi/2 radians, so infinity can be replaced

by pi/2, and the integral can then be rewritten:

b arctan b

I = f £(x) dx _ f f[tan(@)] dO
a arc tan a c032@

When you make this change of variable the following things happen:-

Where a lower limit is -oo it becomes - pi/2

Where an upper limit is +eoo it becomes + pi/2

Where the routine to evaluate f(x) was F, it now becomes a new

routine T which uses F as follows:-

TOl LBL T

T02 RAD

T03 RCL V

T04 ENTER

TO5 COS

T06 x2
TO07 X=0?

T08 RTN

T09 STO n

T10 x<>y

T11 TAN

T12 STO V

T13 XEQ F

T14 RCL n

-67-

CHAPTER 3

T15 STO-n

TI16 =

T17 RTN

The steps do the following:

02 Put the HP-32S into RADians mode for correct integration.

03 Recall © from V (the variable we are integrating over)

04,05,06 Get 0052@ but keep a copy of O in register Y

07 & 08 If c0529 is zero, then return with zero in stack

register X since the integrand has to be zero at pi/2 or

-pi/2 if it is a closed integral. C0529 is compared to

zero in preference to Cos © as it reaches zero sooner.

09 Store c052@ in a variable. You can use any variable

you like so long as it is not used by the function program

F, nor by any other program which uses the INTEGRATE

command to work out the integral.

10 & 11 Put tan O into variable V. (It would be infinite if cos

© were zero, but the RTN at line 08 avoids this.) Use the

value of © which was saved in stack register Y. Tan O is

equal to X, the original unknown variable used by the

original function F before the variable was transformed.

Putting the transformed value © and then X both in

variable V may seem a little confusing, but it saves one

register.

12,13 Now execute the original function F, or whatever its

label is. Note that the angular mode is RAD; F may need

to change it. We are assuming that F is a function of

the independent variable stored in V, so we take the

variable © from V, transform the variable using the

program T, then pass the transformed value X to F.

-68-

CHAPTER3

14,15,16 Divide the result by c052@ and use STO- to put 0 in

variable n so as to save space.

17 Return to the INTEGRATE command.

To calculate a numerical integral with an infinite limit using the

HP-32S INTEGRATE command with T do:

1) Enter the function f(x) as a program in the HP-32S. The

program is assumed to start with x in variable V and to

return with f(x) in stack register X.

2) Enter the function T as above. At lines 09, 14 and 15 use a

variable that is not needed by the integration or the f(x)

program. At line 13, use the name of the f(x) program, or

use the i register with the program label in it.

3) Run the HP-32S integration command as usual except:

i/ Give the lower limit as ATAN(a) in radians instead of

a, or as -pi/2 instead of - infinity.

ii/ Give the upper limit as ATAN(b) in radians instead of

b, or as pi/2 instead of + infinity.

iii/ Give the function name T instead of the original

function name (which I have called F in these notes).

For example calculate:

by doing the following:

1) Enter into your HP-32S the two programs given below

-69-

CHAPTER 3

TO1 LBL T FO1 LBL F

T02 RAD F02 RCL V

T03 RCL V FO3 +/-

T04 ENTER F04 X

T05 COS F04 RCL* X

T06 x2 F05 RTN
TO7 X=0?

T08 RTN

T09 STO A

T10 x<>y

T11 TAN

T12 STO V

T13 XEQF

T14 RCL A

T15 STO- A

T16 :

T17 RTN

Program lengths T=25.5, F= 9 bytes

Checksums T=A9A6, F=92B6

(These checksums will agree with yours only if you use A for the

variable called n earlier on, and if you use the program names T and

V, and the variable V.)

2)

3)

4)

3)

Do SHIFT SOLVE FN T to tell the HP-32S you want to

integrate T.

Execute 0 PI 2 : to give the lower and upper

limits to the integration program. These are ATAN(0), which

is itself 0, for the lower limit, and pi/2 to replace

infinity for the upper limit.

Do SHIFT SOLVE then press the integrate FN key and press X

to integrate over the independent variable X.

Wait for the answer: 1.0000 accurate to four decimal

places.

-70-

CHAPTER 3

For comparison, an attempt to estimate the integral of xe* from 0

to infinity by using the HP-32S integration function with the limits

0 and 1E499 gives the result 0.

The program T sets RAD mode - if you normally use DEG or GRAD mode

then you must remember to set that mode after the integration is

finished.

Naturally enough this whole section assumes that the functions to be

integrated do not have any singularities in the range of integration

and that the integrals are closed (finite).

This program does not show many new tricks for the HP-32S itself.

The program T sets RAD mode every time, in case the mode is changed

by F - this is a sensible precaution. RTN is used in two places -

steps TO8 and T17 - this shows that RTN does not have to be used

only at the end of a program - it can be used wherever a subprogram

needs to return to a program which called itt RCL n followed by

STO- n is used to save space because this pair of instructions puts

a zero into variable n, and saves 8 bytes. The two extra

instructions (STO- n and : which could otherwise be input RCL: n)

use 3 bytes, so 5 bytes are saved.

The main purpose of this last program is to show an equally

important trick - working things out for yourself. If the HP-32S

does not do exactly what you want and you cannot find some clever

trick using HP-32S functions then you should think through the

problem and see if you can find a way to restate the problem in such

a way that the HP-32S can deal with it. In this case we used

changing the variable of integration as an example of that, but this

is the most general of all tricks described in this book. It goes

something like this -

THINK FOR YOURSELF!

-71-

CHAPTER 3

Once you have mastered that final trick, you will truly be an expert

HP-32S user. Maybe you will start finding new tricks and sharing

them with others. Let us finish this chapter on that optimistic

look into the future!

-72-

CHAPTER 4 - MORE INFORMATION

4.1 BOOKS AND SHOPS This (short) Chapter lists sources of further

information for HP-32S use, including companies and clubs that can

provide such information. First of all, the HP-32S comes with an

Owner’s Manual - I have suggested several times already that you

should read it! A booklet of programming examples has also been

published by HP, and more may be published.

Some of the HP-32S mathematical functions are taken from the HP-15C.

The "HP-15C Advanced Functions Handbook" has many of the details

that an advanced HP-32S user may want but cannot find in the Manual.

It has the best discussion of numerical accuracy on calculators that

I have ever seen. It is to be hoped that HP will produce a similar

handbook for the HP-32S, in the meantime serious users should

consider buying the HP-15C version.

Books of tips and suggestions for other calculators can give you

useful ideas, in particular books for the HP-41. Probably the best

book of this kind is "Calculator Tips and Routines - Especially for

the HP-41C/CV" edited by John Dearing (1981) published by Corvallis

Software Inc., P.O. Box 1412, Corvallis, OR 97339-1412, USA. Some

of the tips in this book have come from ideas in HP club journals,

see below. The Boyd formula for body surface area comes from Edith

Boyd, "Growth of the Surface Arca of the Human Body", University of

Minnesota Press, 1935. It was quoted in the Cardiac/Pulmonary book

of HP-41 Users’ Library Solutions.

General RPN books are very useful too, in particular "Algorithms for

RPN Calculators" by John A. Ball (1978) published by John Wiley &

Sons, Inc. The book "Scientific Analysis on the Pocket Calculator”

by Jon M. Smith (1977) is also published by Wiley - it gives

detailed instructions for some important operations, it compares

algebraic and RPN calculators, and has appendices with useful tricks

-73-

CHAPTER 4

and operations such as matrix manipulations. If you get this book,

look at its cover upside-down! A list of other books about the HP-

41 and RPN calculators in general is given in Appendix A of my book

"Extend your HP-41" (1985) also published by SYNTHETIX. Their

address is P.O. Box 1080, Berkeley, CA 94701-1080, USA.

Books like these can be ordered for you by shops and bookstores

which specialize in HP calculators. If there are none near you then

try EQuCALC Mail Store, 27953 Cabot Road, Laguna Niguel, CA 92677,

U.S.A. who sell all these books and print a catalog of products,

over 100 pages long, several times a year. They accept credit card

orders from the U.S.A. or overseas by telephone and will send you

their catalog if you ask for one. EduCALC also sells spare manuals

for HP calculators. This is handy if you find a particularly good

program for another HP calculator and want to translate it for the

HP-32S, then you can buy a manual for the other calculator. Hewlett

Packard also sells spare manuals for their calculators.

4.2 ELECTRONIC BULLETIN BOARDS If you have access to electronic

mail then you will be able to access electronic bulletin boards.

Some of these mention HP calculators in passing, and some have been

set up by keen users of HP handheld calculators and computers.

Several of these are available on FidoNet. There is also an

electronic newsgroup called COMP.SYS.HP where people exchange ideas

specifically on HP products. How you get access to these bulletin

boards depends on where you are and what equipment you use for

email. One way to get this information is from a user club.

4.3 JOIN A CLUB? Further information, on bulletin boards, and on

real person-to-person meetings, is best obtained from user clubs.

Smaller, local, clubs usually hold meetings once a month, where you

can ask for advice or exchange ideas and information. Larger clubs

including the U.S. club HPX publish regular journals as well - this

is particularly useful if you live far from the nearest club meeting

place. The larger clubs should be able to tell you if a local group

-74-

CHAPTER 4

is active near you. Many user clubs run on the active work of only

a few members, so their address and meeting place can change when a

few members leave or join. When writing to user clubs, include a

return address on your letter and if you write to one club and

receive no reply, try another one - all will understand a letter in

English.

UK and other European Countries

HPCC,

Geggs Lodge

Hempton Road

Deddington

Oxon OX35 4QG

United Kingdom

PCX

Postbus 205

B-8000 Brugge 1

Belgium

PPC-Paris

BP 604

75028 Paris Cedex 01

France

STAK

c/o Tapani Tarvainen

Yliopistonkatu 10 B 21

SF-40100 Jyvaskyla

Finland

HP-GC

Quellinjnstraat 47-3

1072 XP Amsterdam

The Netherlands

PPC-Denmark

c/o Steen Peterson

GIl. Landevej 19

DK-2620 Albertslund

Denmark

CCD e.V.

P.O. Box 110411

Schwalbacherstr. 50 Hhs.

D-6000 Frankfurt 1

West Germany

CHHU-IT

c/o Stefano Tendon

Cantone delle Asse 5

29100 Piacenza

Italy

-75-

CHAPTER 4

Australia

PPPM Inc. CHHU Sydney

P.O. Box 512 C/- K. Besley

Ringwood, Vic. 3134 Charlie Business Services

Australia 22 Elsie Street

Burwood, N.S.W. 2134

Australia

USA/International

HPX

P.O. Box 4160

Des Plaines, IL 60016

U.S.A.

This last club is located in the USA but acts as an international

club too. HPX (The Handheld Programming Exchange) has taken over

many of the activities of the club CHHU (which you may have heard

of, but which has closed down, although local CHHU groups are active

in some places.)

You may want to put new club addresses here.

-76-

Algebraic notation, 3

ATANH, 10

Backarrow, 7

Ball

John A., 73

Base modes, 14

Black hole lifetime, 35

Black hole mass, 35

Books, 73

Boyd formula, 73

Bulletin boards, 74

Business Consultant, 21

Caculator Tips and Routines,

73

Cancelling keys, 20

Checksum, 34

CMPLX+, 62

Complex arithmetic, 63

Complex stack operations, 63

Constants, 8

Carecting statistics values,

53

INDEX

Dearing

John, 73

DEL, 7

Display

Display modes, 14

DSE, 59

Einstein equation, 27

End of memory, 52

ENG

Extend Your HP-41, 73

Factorial function, 3

Filler, 61

FIX 4

FORTH, 21

Games, 18

GIGO,48

HP-10C,
HP-11C,

HP-12C,
HP-14B,

HP-15C,

HP-16C,
HP-17B,
HP-18C, 21

HP-19B, 21
HP-20S, 21

19

19

19

21

18, 73

19

21

-77-

HP-228S, 21 Older calculators, 18

HP-27S, 21 Older HP calculators, 18, 22

HP-28C, 21 ON, 5

HP-28S, 21 Orange key, 7

HP-41, 20

HP-41 Solution books, 21 Pendulum, 31

HP-71B, 21 Pendulum length, 31

Pendulum period, 31

Ideal Gas Law, 38 PI, 7

Indirect operations register, Population standard deviation,

6 61

INPUT, 17 Powers of ten, 7

Instruction times, 40 Programs for using constants,

INTEGRAL, 7 8

Integration with infinite PSE, 16

limits, 65

Integration with Solve, 65 R/S to repeat programs, 9

ISG, 59 RADIX,, 59

RCL, 17

Keyboard, 3 RCL arithmetic, 50

Register arithmetic, 7

Lukasiewicz J., 3 Registers, 6

Lab measurements, 29 Resetting the HP-32S, 5

LASTx and +/, 4 Right-arrow key, 7

LASTx for arithmetic with RPN

constants, 8 RPN books, 18

RTN, 52

Manual, 73 RTN at the end of programs, 8

Manuals, 74

MEMORY FULL, 51 Sample standard deviation, 61

Messages with HEX, 17 Saving memory space, 38

Missing tests, 15 Saving space, 40, 49

Multiplication symbol, 7 Saving time, 49

SCI

N, 29 Scwarzchild radius, 35

Naked singularity, 35 Series 10, 19

NOP, 59 SHIFT key, 7

Notebook

Nuclear particles, 27

-78-

Short numbers, 51 X, 7

SIGMA, 7 XEQ, 52

Simple pendulum, 31

Smith

Jon M., 73

Solving for one of two

variables, 36

Special keys, 7

Special symbols, 7

Stack, 6

Stack notation, 3

Stack registers, 6

Standard deviation, 61

Standard deviation overflows,

53

Statistics functions, 53

Statistics with large numbers,

53

STO arithmetic, 50

Storage registers, 6

Subroutines, 52

SYNTHETIX, 73

Top of program, 28

Top of program memory, 28

Trigonometric modes, 14

Typing aids, 29

Useful books, 73

Using Integrate and Solve, 65

Using Solve, 33

Variable registers, 6

VIEW, 16

White-hot black holes, 37

Working in a laboratory, 29

-79-

Other Products Available from SYNTHETIX

Customize Your HP-28, by W.A.C. Mier-Jedrzejowicz

Written for all users of HP-28 calculators, whether a 28C or

the new 28S. This book shows you tips to use your HP-28 more

effectively, and tailor it to your exact needs. The powerful but

obscure SYSEVAL command is explored in detail, as it is the "trap

door" through which you will gain full control of your HP-28.

Machine language programming, internal hardware layout, and

instructions on expanding the memory of the HP-28C are all included.

228 pages, softcover

SKWIDBC -- The HP-41 Barcode Generation Module, by Ken Emery

If you have access to either a Laserjettm or a Thinkjettm

printer, you can now instantly and economically produce HP-41

barcode in any size you want. All types of HP-41 barcode are

supported. You cann swap programs by mail with anyone that has an

optical wand, or use barcode as the ultimate backup memory system!

ROM and complete instruction manual, $199.95

SKWIDBC Plus by Ken Emery

A super speed version of SKWIDBC, for users of the HP LaserJet

Plus or Series Il printers. (SKWIDBC+ creates a soft font, so it

does not work with the original Laserjet.) Also compatible with the

Thinkjet. ROM and instruction manual $249.95, or upgrade your

SKWIDBC for $50.00 plus tradein

Advanced Programming Tips for the HP-41, by A. McCornack & K. Jarett

Serious programmers will appreciate this book on efficient

programming. Modular programming is explained, along with ways to

save program bytes and running time. Several important synthetic

programming techniques not covered in other books are discussed,

including TEXT 0 prefix key assignments, Catalog 1 crash recovery

techniques, and making programs PRIVATE without peripherals. A

special feature 1is line-by-line analyses of all the synthetic

programsin HP-41 Synthetic Programming Made Easyand HP-41 Extended

Functions Made Easy. HP-41 Machine code (M-code) is described, so

you can decide whether this exciting area is for you. Several

application routines for the ZENROM and CCD modules are explained in

detail. 340 pages, bar code for programs, softcover, $20.95

Control the World with HP-IL, by Gary Friedman

Use that old HP-41 that’s sitting idle for an entirely new kind

of project. Team it with an HP-IL to build and control such diverse

items as an intelligent telephone autodialer/answering machine

(complete with a speech synthesizer!), an automated photographic

darkroom controller, an ultrasonic distance measurement unit, a

slide projector dissolve controller for two projectors, and more.

Imagine being able to accomplish all this with your battery powered,

portable, calculator/computer.

The photos, illustrations, and circuit diagrams throughout the

book are easy to follow. The general-purpose building blocks are so

clever that you’ll find dozens of your own uses for them. 340

pages, bar code for programs, plastic spiral binding, $24.95

Extend Your HP-41, by W.A.C. Mier-Jedrzejowicz

Over 650 pages of information, this is the ultimate reference

book for your HP-41 system. This book leads you from the basics of

keyboard operation and programming, to the latest advanced

techniques. A few of the many topics are efficient use of flags and

looping 1instructions, integration to infinite limits, and random

number generation. The Advantage module, the Time Module, Extended

Functions, and Extended Memory and other modules are described with

useful hints. An appendix lists all the known "bugs" of the HP-41

system, and ways for you to determine which ones your system has.

Extend Your HP-41 is by far the largest and most complete

collection of useful facts on the HP-41 system. Beginner or expert,

no HP-41 owner should be without it. Over 650 pages, bar code for

programs, concealed plastic spiral binding, $29.95

HP-41 MCODE for Beginners, by Ken Emery

MCODE is the internal machine code used by the HP-41, and

programs in MCODE run 7 to 120 times faster than programs in the

normal user code. This book makes the previously mysterious world

of MCODE understandable to any user who enjoys programming an HP-41

calculator. Learn how to build a Function Address Table, and

continue from there in easy steps. Also included are application

programs and detailed appendices for MCODE experts. NOTE:

Additional equipment for your HP-41 is required to do MCODE

programming. 190 pages, plastic spiral binding, $24.95

Price reduced for Closeout sale!

HP-71 BASIC Made Easy, by Joseph Horn

Fascinating applications to help you calculate confidently

using CALC mode and command stack. General tips on keyboard BASIC,

and details on how to use PEEK and POKE are included. A 20 page

syntax guide lists hundreds of HP-71 keywords for quick reference.

HP-71 BASIC Made Easy is an excellent tutorial and an essential

reference. 164 pages, plastic spiral binding, $9.95

Inside the HP-41, by Jean-Daniel Dodin

Unlock the secrets of your HP-41! This book is a wonderful

sampler of many techniques for the HP-41. The concepts of both

synthetic programming and M-Code programs are introduced. Learn the

geography of the status registers, and how to manuipulate them to

your advantage. 264 pages, softcover, $12.95

HP-41 Extended Functions Made Easy, by Keith Jarett

This book helps you maximize from your extended functions and

extended memory. All 14 extra HP-41CX functions are included, most

of which can be simulated on the HP-41C or CV. Also presented are

powerful application programs: a mailing list manager, text editor,

HP-16 simulator, solve, integrate, and utility programs. Over 250

pages, bar code for programs, plastic spiral binding, $16.95

HP-41 Synthetic Programming Made Easy, by Keith Jarett

Synthetic programming is the creation and use of instructions

that cannot be keyed up by normal means. Applications of synthetic

instructions include 21 additional display characters expanding USER

mode key assignment capability and using the ALPHA register as three

data registers. Besides its utility, synthetic programming 1is just

plain FUN. Includes a Quick Reference Card, a $2.00 value.

192 pages, bar code for programs, plastic spiral binding, $16.95

HP-41 Synthetic Quick Reference Guide (SQRG), &

Quick Reference Card for Synthetic Programming (QRC)

Both are musts for synthetic programming, "indestructible" and

sized to fit neatly in an HP-41 case. SQRG $5.95, QRC $2.00

ORDER BLANK

Price
per
copy Qty Amount

For HP-328
TipsandPrograms for the HP-32S by W.A.C. Mier-Jedrzejowicz $9.95

For HP-28C’s & HP-28S’s
Customize Your HP-28, by W.A.C. Mier-Jedrzejowicz $16.95

Closeout! Price Reduced!
For HP-71'S
HP-71 Basic Made Easy, by Joseph Horn $9.95

For HP-71'S & HP-41’S
Control the World with HP-IL, by Gary Friedman $24.95

For HP-41’S
HP-41 Advanced Programming Tips, by A. McCornack & K. Jarett $20.95

HP-41 M-Code for Beginners, by Ken Emery $24.95

Inside the HP-41, by Jean-Daniel Dodin $12.95

Extend Your HP-41, by W.A.C. Mier-Jedrzejowicz $29.95

HP-41 Extended Functions Made Easy, by Keith Jarett $16.95

HP-41 Synthetic Programming Made Easy, by Keith Jarctt $16.95
(Includes one Quick Reference Card)

Quick Reference Card for Synthetic Programming $2.00

Synthetic Quick Reference Guide (SQRG) $5.95

ROM'’s

SKWIDBC -- Barcode Generation Module by Ken Emery $199.95

SKWIDBC Plus -- for LaserJet Plus or Series II $199.95
(Upgrade from SKWIDBC for $50 plus SKWIDBC tradein)

AECROMby Redshift Software $ 99.00

Sales tax (California orders only, 6 or 7%)

Add’l
Shipping Ist book books

within USA, book rate (4th class) $1.50 $0.50
USA 48 states, United Parcel Service $2.50 $1.00
USA, Canada, air mail $3.00 $1.50
clsewhere, book rate (6 to 8 weeck wait) $2.00 $1.00
elsewhere, air mail $12.05 for Extend Your HP-41, $6.05 for others

Free shipping for ROM’s, QRC plastic cards or SQRG (any numbcr)

Enter shipping total here $

Total due $

Checks must be in U.S. funds, and payable through a U.S. bank.

Name
Address

City State Zipcode
Country

Mail to:
SYNTHETIX, P.O.Box 1080, Berkeley, CA 94701-1080, USA Phone (415) 428-9009

1 radian

1 ft

1 R

1 Btu

1 centipoise

CONVERSION FACTORS

1/2 pi circle

0.1592 revolutions

57.3 degrees

3,438 minutes

2.06ES5 seconds

0.3048 m

3.05E5u

10E-8 cm

1E-4 p

2.93E-4 kw hr

3.93E-4 hp hr

0.252 kg cal

1055 joules

1.055E10 ergs

778 ft/lbg

0.01 g/cm sec

6.72E-4 1b/ft sec

2.42 1b/ft hr

1 1b

1 psia

1 1b/ft3

1 £t3/min

1 ft/sec

4.464E-4 long ton

5E-4 short ton

4.54E-4 metric ton

0.454 kg

454 grams

0.068 atm

2.31 ft H,0
6.895 kPa

51.72 mm Hg

0.07703 kg/cm?

0.016 g/cm>

0.125 gal/sec

0.4720 liter/sec

0.682 mile/hr

1.097 km/hr

18.29 m/min

30.48 cm/sec

Useful Constants

¢, speed of light in a vacuum

N, Avogadro number

G, gravitational constant

e, electron charge

m,, electron mass

h, Planck constant

R, gas constant

Velocity of sound

Heat of fusion of water

Heat of vaporization of water

2.99792458E8 m/sec

186,000 miles/sec

6.02252E23 molecules/gmol

6.670E-11 Nm?/kg?

1.60210E-19 coulomb

9.1091E-31 kg

1.05459E-34 J/sec

6.624E-27 erg/sec

8.3141 J/gmol K

0.0821 atm liter/gmol K

1.987 gcal/gmol K

1.987 Btu/lbmol R

10.73 (Ib-force/in?) ft3/Ibmol R

(in dry air, 0 deg C, 1 atm)

33,136 cm/sec

1089 ft/sec

(at 1 atm, 0 deg C)

79.7 cal/gram

144 Btu/lb

(at 1 atm, 100 deg C)

540 cal/gram

972 Btu/lb

TIPS AND PROGRAMS
FOR THE HP-32S

A Handbook for Science and Engineering

The HP-32S is a remarkable new calculator - and this book

will help you make the most of it! There are four chapters

leading you step by step from quick tips and routines to

detailed programs to solve scientific and engineering

problems. Professionals and students alike will appreciate

the explanations of programming techniques and the programs

themselves.

Chapter 1 presents a series of tips on efficient use of the

HP-32S, both from the keyboard and in short program

sequences. The detailed comparison of the HP-32S to other

calculators makes this book worth buying as an investment

guide to selecting the best calculator for your needs.

Chapter 2 has short programs to solve typical problems from

science and engineering plus explanations of the programming

techniques used. Chapter 3 presents longer programs and

more advanced techniques. The powerful SOLVE/INTEGRATE

function of the HP-32S is discussed to allow you to make

full use of this extraordinary feature. Chapter 4 lists

sources of further information.

An added value is the table of commonly used engineering

constants and conversion factors

ISBN 0-937k37-05-X

9 "780937"637050

	Cover
	Introduction
	Special keys and symbols
	Table of Contents
	Chapter 1. Tips
	1.1 Before we begin
	1.2 Thinking about RPN
	1.3 Moving around the keyboard
	1.4 Variables and the stack
	1.5 Constants & Short Programs
	1.6 More Shortcuts
	1.7 Flags, modes and tests
	1.8 STOP/PSE/VIEW/RCL/INPUT
	1.9 The HP-32S and other calculators
	1.10 Advanced features and non-standard commands
	1.11 Take care!

	Chapter 2. Short Programs
	2.1 Typing aids
	2.2 A simple pendulum
	2.3 Black Bodies and Black Holes
	2.4 More variables - the Ideal Gas Law
	2.5 Deflection of a Cantilever Beam
	2.6 Body Surface Area
	2.7 Save Space and Time

	Chapter 3. Longer Programs
	3.1 Statistics and looping
	3.2 Complex arithmetic and the complex stack
	3.3 Improved standard deviations
	3.4 Integration with infinite limits

	Chapter 4. More Information
	4.1 Books and shops
	4.2 Electronic bulletin boards
	4.3 Join a club?

	Index
	Table of Constants

