
Peter Henrici

Marie Louise Henrici

u _

mjua
Sinias
SlnEa
Sinan
ap.)

NUMERICALTTT
Demonstrations on the HP-33E

Numerical Analysis

Demonstrations on the HP-33E

Peter Henrici

Marie Louise Henrici

NEAR
AS Jo

i807(\J/Jo82
“ome John Wiley & Sons

New York Chichester Brisbane Toronto Singapore

Copyright (©) 1982 by John Wiley & Sons, Inc.

All Rights Reserved.

Reproduction or translation of any part of

this work beyond that permitted by Section

107 or 108 of the 1976 United States Copyright

Act without the permission of the copyright

owner is unlawful. Requests for permission

or further information should be addressed to

the Permissions Department, John Wiley & Sons, Inc.

ISBN O 471 05943 9

Printed in the United States of America

10987654321

PREFACE

This brochure is conceived as a supplement to the text-

book by the senior author, ESSENTIALS OF NUMERICAL ANA-

LYSIS, WITH POCKET CALCULATOR DEMONSTRATIONS. It con-

tains HP-33E programs for virtually all demonstrations

given in that text, and for most of the problems re-

quiring numerical work. The documentation of the demon-

stration programs is sufficiently self-contained so that

they can be used without previous programming experience.

The presentation of the programs for the solution of home-

work problems is somewhat more concise; here some addi-

tional effort may be required for the complete under-

standing of the program.

Theory in numerical analysis is never (or should

never be) an end in itself. Its ultimate goal is the

creation of efficient and stable algorithms for the

constructive solution of mathematical problems. Con-

ventional mathematical notation usually provides only

a very incomplete description of an algorithm. It does

not account, for instance, for the storage requirements

of an algorithm, or for the precise order in which the

arithmetical operations are to be performed. To under-

stand an algorithm completely, one has to program it.

Working within the limitations of a pocket calculator

provides the additional challenge that the programmer

must concentrate on the essential features of an algo-

rithm, and that he must pay particular attention to the

allocation of storage. In this sense, a study of the

programs in this collection should help the student to

acquire the habit of writing efficient and lean pro-

grams for scientfic computation.

Even if an algorithm has been programmed with per-

fect logic and economy, it is by no means certain that

it will perform satisfactorily in practice. Although

theoretical numerical analysis will offer some guidance,

such essential features as the efficiency, the reliabi-

lity, and the numerical stability of an algorithm can be

judged with finality only on the basis of tests in con-

crete situations, including situations with unusual or

extreme sets of data. One of the benefits for the users

of these programs consists in the immediacy and concrete-

ness in which they will experience the performance of the

algorithms presented.

Many algorithms in this collection will, within the

obvious physical limitation of the pocket calculator,

produce satisfactory answers to numerical problems. In

other algorithms, the data sets are too small to be use-

ful in realistic situations. These algorithms then may

at least serve as models for how to solve such problems

on larger computers. Other programs are designed to illu-

strate the typical pitfalls of numerical computation

such as cancellation, smearing, and numerical instability.

Regrettably, some areas of numerical analysis, such

as numerical linear algebra and the numerical treatment

of partial differential equations, cannot as yet be

realistically illustrated on pocket calculators because

of the large sets of data that would have to be pro-

cessed. The presentation of such problems in the format

of this book will have to wait until more powerful cal-

culators are available.

We wish to express our thanks to a number of indivi-

duals who have contributed ideas to the programs pre-

sented here. Dr. O. Pretzel (London) has given permission

to include his ingenious Runge-Kutta program. W. Frangen

(Karlsruhe) through his numerous published programs has

expanded our vision of what can be done on pocket cal-

culators. The staff of John Wiley & Sons, Inc., have

responded most willingly to the particular requirements

of this book. Once again, our thanks go to Brigitte

Knecht for her unsurpassed ability to produce a camera-

ready manuscript out of our scribblings.

Zurich, March 1981 P. Henrici

M.-L. Henrici

INTRODUCTION

Description of programs belonging to Demonstrations are

arranged according to the following scheme:

1. Purpose

2. Method

3. Flow Diagram

4, Storage and Program

5. Operating Instructions

6. Examples

The statement of purpose usually is very brief. It

informs the reader whether the program is intended for

practical use, or whether it merely serves a didactic

purpose.

The description of the method is strictly confined

to what is being done. For analytical justification and

for technical details, the reader is usually referred to

the book ESSENTIALS OF NUMERICAL ANALYSIS, WITH POCKET

CALCULATOR DEMONSTRATIONS, by P. Henrici, which is

quoted simply as "Essentials". One reference is to

ACCA I, which means vol. I of "Applied and Computational

Complex Analysis" by the same author.

The flow diagrams do not follow any particular

standard format. The intent is simply to make the

structure of a program visible at a glance. In the case

of some very simple programs the flow diagram is omitted.

The section entitled "Storage and Program", naturally,

is the core of each program description. We use the

symbol Ry to denote the storage register number k.

Quantities that must be stored in the storage registers

ahead of the computation are encased, thus:

Lx y z |

The program listing uses the key symbols as they are

found on the keys of the HP-33E calculator, with the

exception of multiplication, which is indicated by *

in order to avoid confusion with the letter "x". The

listing is as compact as possible. For yellow and blue

instructions it is understood that the keys "f" and "g"

are to be pressed in advance; no ambiguity can arise by

our abbreviated notation. The arrows -» in front of cer-

tain instructions are not part of the program. They

simply indicate an entrance from a GTO instruction.

At the expense of a certain amount of repetition,

we have attempted to keep the operating instructions

reasonably self-contained. We also give indications and

explanations of possible failures of some programs.

For the examples we usually give references to the

appropriate demonstrations in "Essentials". In a few

instances, additional examples are provided.

The descriptions of programs for numerical problems

usually consist only of the one part above entitled

"Storage and Program". Additional explanations are kept

to a minimum.

And now: Have fun!

Demonstration 1.2-2:

NUMERICAL COMPUTATION OF A SUM

1. Purpose

To show that on the computer simple laws of algebra,

which in theory are valid for the real numbers, may

not hold.

2. Method

By computing numerically the specific sums

(I) as usual, from the beginning and (II) from the tail

end, we do not obtain the same numerical values for a

fixed n . Hence the associative law in the additive

group of real numbers is violated. See Essentials §l1l.2.

3. Flow Diagram

 a
l
-

1
Ss := s + K(k+1) A

(I) k :=k+1

(IT) k :=k-1

 (I) k <n?

(II) k > 0 ?

Y no

(II) s := s+1

 Output s

4. Storage and Program

(I) Rg R, R, Ry R

x =)
00 10 20 30 40

0 1

1 1 STO+0

2 STO 1 RCL 2

3 STO 0 RCL O

4/-> RCL O Xx {vy

5 1 GTO 04

6 + RCL 1

7 * GTO 00

8 1/x

9 STO+1

(IT) Rj Ry R, Ry R

k
00 10 20 30 40

0 STO+1

1 CLX 1

2 STO 1 STO-0

3 RCL 2 RCL 0

4 STO 0 x > 0

5|-» RCL 0 GTO 05

6 1 1

7 + STO+1

8 * RCL 1

9 1/x GTO 00

5. Operating Instructions

Load program, move to RUN and load n into R Upon2°

pressing

FIX 9

PRGM

R/S

Ss, will be computed and displayed. To obtain another Sv

load new value of n into R, and press R/S.

6. Example

See Essentials, Demonstration 1.2-2.

Demonstration 1.3-3:

NUMERICAL EVALUATION OF THE LENGTH OF A POLYCON

1. Purpose

To show that subtraction of two nearly equal numbers

causes cancellation, see Essentials §l1l.3.

2. Method

We compute the length of the straight line segment

joining the points (1,0) and (0,1) as special case of

a formula for the length s of a polygon with vertices

(rp rd) k=1,2,...,n, i.e. by

n
_ 2 _ _ 2

(I) s, = Lo Ve? 2r,r,cos (9, dy_1) + rq

n ¢, —9_ _ 2 2% %-1
(II) s, = Ll (r, r._1) + ar, Sin (——) »

see Essentials, Demonstration 1.3-3.

3. Flow Diagram

s : = 0; ¢ :=0

r :=1; k :=1

—
Ag == 4n

compute (I) 2 cos A¢

(II) 4 (sin 22)?

Y h

= ° * = 1op := ¢+Adp; r == Gos

compute s i= s + VV...

by (I) or (II) respectively

k == k+1

\
 i

Crs yes
n 2> »
-

\ y NO

Output s

4. Storage and Program

(I) R, Ry Ry R, Rg Re R,

re1 by Ap 2coshd s k

00 10 20 30 40

0 RCL O GSB 43 RCL 5 GTO 18

1 RAD * RCL 1 * RCL 6

2 CLX + x? - R/S

3] sTO 3 STO 4 RCL 2 Vx RCL 3

4 STO 6 cos x2 STO+6 cos

5 1 2 + 1 1/x

6 STO 1 * RCL 1 STO+7 STO 2

7 STO 7 STO 5 RCL 2 RCL 0 RTN

8 i! -» RCL 4 STO RCL 7

9 STO+3 * Xx Ly

(II) Rj Ry Rg R, Rg Re R,

rq by Ao 4(sind)2 s k

00 10 20 30 40

0 RCL 0 STO 5 RCL 2 RCL 7

1 RAD * RCL 4 STO 1 Xx {vy

2 CLX + STO+3 - GTO 21

3| sTO 3 STO 4 GSB 45 x? RCL 6
4 STO 6 2 RCL 1 + R/S

5 1 3 RCL 2 Vx RCL 3

6 STO 1 sin * STO+6 cos

7 STO 7 x? RCL 5 1 1/x

8 m 4 * STO+7 STO 2

9 4 * RCL 1 RCL O RTN

5. Operating Instructions

Load program, move to RUN and load n into R Upon0°

pressing

FIX 9

PRGM

R/S

Ss. will be computed and displayed. To obtain another Sv

load new number n of vertices into R, and press

PRGM

R/S

By rewriting subroutines 43 in (I) and 45 in (II)

accordingly both programs can be used for other functions

r = r(¢). If problems of programming space arise, in-

struction 01 and the assigning of initial values 02 + 07

can be executed in the RUN mode before pressing PRGM

for the first time.

6. Example

See Essentials, Demonstration 1.3-3.

Demonstration 1.3-4:

ARCHIMEDEAN DETERMINATION OF

1. Purpose

To demonstrate the fact that one half of the length of

the circumference of a regular n-gon inscribed into the

unit circle as n-»o tends to m=3.141592654... . We im-

pose the working rule that the only nonrational function

which we are permitted to evaluate is the square root.

2. Method

Using elementary trigonometry and algebra one obtains

the three following formulas for the determination of rm;

in each case yi = 2 y, =2/2, for k=2, 3, ...

= k+l fra - Vi-127%y,1° , (I)

Yi+1

2
Yr+1 = Yi / = 3 ’ (II)

1 + V1-[2 Yy

k+1 k "Yq * Y,

It will be seen that formula (I), though mathematically

correct, is not suitable for numerical evaluation.

Severe cancellation results. See Essentials, Demon-

stration 1.3-4.

3. Flow Diagram

Since (III) produces the correct values much faster than

(IT), only the flow diagram for (III) is given.

<
l
-

10

4, Storage and Program

(I) R, Ry R, R, Rg

Yi 2"

00 10 20 30 40

0 x2 STO 1

1 2 - *

2| STO 0 Vx STO 0

3] STO 1 - R/S

4|- 1 2 GTO 04

5| ENTER 3

6 1 Vx

7 RCL 0 RCL 1

8] RCL 1 2

9 3 *

(II) R, Ry R, R, Rg

Ye 2K

00 10 20 30 40

0 2 STO O

1 2 - R/S

2| STO 0 Vx 2

3] sTO 1 + STO*1

4/- 1 2 GTO 04

5| ENTER x < y

6 1 3

7! RCL 0 Vx

8| RCL 1 RCL 0

9 + *

11

0 1 2 3 4 5 6 7

Yp-1 Yk

00 10 20 30 40

0 +

1 CLX 4

2| STO 0 Vx

3 2 STO*1

4| sTO 1 RCL 1

5(- 2 R/S

6 * GTO 05

7 RCL 0

8| RCL 1

9| STO 0
5. Operating Instructions

These are the same for all three programs. Load program.

Move operating switch to RUN and select mode of display-

ing numbers. Computation is started by pressing R/S;

after a short time Yo is displayed. After each display

R/S must be pressed again in order to start new cycle.

If only short displays of y, are desired, the R/S in-

struction should be replaced by PAUSE.

12

6. Timing

for the computation of Yor «eer Yq, (10 values), see

Essentials, Demonstration 1.3-4, including short display

Program (I) 25 sec.

Program (II) 25 sec.

Program (III) 18 sec.

13

Demonstration 1.3-5:

RUNNING MEAN AND STANDARD DEVIATION OF A SEQUENCE OF DATA

1. Purpose

Given an open-ended sequence of real numbers

{x Xo Xqy ...}, to compute, in a numerically

stable manner, their running mean

= I

S
-

n

I ox,
k=1 K

and their standard deviation

Q Il

~
~

B
S
H

n
2.42

(x, =u) 7]
k=1 k n

and to provide for the possibility of removing data

points from the sequence.

2. Method

The most obvious method to compute My and 0 based on

accumulating the sums

n n
Ss =) X_ q_ =) Xx
noopZp kK n Zk

is described by the following formulas

14

1 1
Hp = 5 Sp! °° = 59, TH, (I)

It can produce totally inaccurate values for o? due to

cancellation, See Essentials, Demonstration 1.3-5. Much

more precise values of the standard deviation are ob-

tained if the variances are computed recursively.

If Ss, and 0? are known, and if a new value x is added
n+1

to IESE SYRRRY x} the new values of mean and variance

are given by

Sn+l n n+l ! n+l Tn + 1 n+l

2 n 2 1 —x 2

n+l n+1 n n Hn+l n+l

If the value xX is removed from the data {xr 2, coer xby

the new values are

_ 1

Sn-1 = °n ~ *n Ph-1 =n = 1 ®n-1"'

2 2-1 Cx 2
Sn-1 n-1"n n 'Hn-1 n’ °

Because the ordering of the data is clearly immaterial,

the same formula applies if in place of x any of the

values Riv eeor Xo is removed. Both sets of formulas given

above may be combined into one set in the following way:

Let s := S or M = Hy 0 = 0, let x denote the value

being added to or removed from the data, and let s', u',

o' denote the resulting new values of s, yu, oc. Also let

n+l , if data is added

n' =

n-1, if data is removed

15

Then

s' =s + (n'=-n)x , u' = — s' (IIa)

2 n' -n 22 (u' -x)2 . (IIb)(o') = = o +

On the HP-33E, s' and n' are computed automatically in

either case by pressing y+ and) - respectively.

3. Flow Diagram

Program I: See Essentials, Demonstration 1.3-5.

Program II: Upper signs refer to data being added,

lower signs to removal of data.

 A

S := sx, n' := ntl

(accomplished by single

instruction J+; g not used)

1

Show py := ov S

2 2 n 2 n'=n 2
og :=0 o =O + a (p=x)

1 7

Show 0 := Vo? >

4, Storage and Program

(I) R, Ry R, Ry Re Rg R.,

n S * * *

00 10 20 30 40

0 RCL 4

1 REG RCL 2

2» cLX 4

3| FIX 0

4 R/S Vx

5| FIX 8 |PAUSE (R/S)

6 x GTO 02

7 PAUSE (R/S)

8 2

9 CHS

(II) R, R; R, Ry Re Rg R.,

a2 n n' Ss * * *

00 10 20 30 40

0 LAST X * GTO 02

1 REG - RCL 0

2|-» RCL 2 x RCL 1

3] sTO 1 RCL 1 *

4 CLX x =0 RCL 2

5| FIX 0 GTO 27 :

6 R/S + +

7| FIX 8 RCL 2 |- STO 0

8 x RCL 1 Vx

9| PAUSE (R/S) - PAUSE (R/S)
17

5. Operating Instructions

The following instructions apply to both program (I) and

program (II). Load program. Move operating switch to RUN.

Press

PRGM

R/S

Calculator will display 0. This is a sign that data

should be loaded into X-register. * After loading value

of x, press

Y+

R/S

if data is to be added or

)-

R/S

if data is to be removed. Calculator will briefly dis-

play new values of yu and o, and stop by displaying O.

as an invitation to load new data. Return to *. - Display

of uy and 0 is in format chosen in step 05 of program (I)

and 07 of program (II). This format may be chosen at

will. If indeterminate displays of pu and o are desired,

change instructions 07 and 15 of program (I) or in-

structions 09 and 29 of program (II) to R/S. - The in-

structions)+ and)- simultaneously carry out several

statistical operations (e.g. computation of gq, see HP-33E-

manual); this accounts for registers R, + Ry being used.

18

6. Examples

See Essentials, Demonstration 1.3-5; program I,

cancellation.

See Essentials, Demonstration 1.3-5; given data

Xp = 1 + ¢ Roda k=1, ...,m, comparison

of classical algorithm (I) with stable algo-

rithm (II).

Addition and removal of data.

x u o o o
(Program I) (Program II) (exact)

100468 100468.0000 0.00000000 0.00000000 0.00000000

100472 100470.0000 0.00000000 2.00000000 2.00000000

100495 100478.3333 12.24744871 11.89773555 11.89771220

100473 100477.0000 10.48808848 10.55937577 10.55935605

remove 100495 100471.0000 0.00000000 2.16037550 2.16024690

remove 100473 100470.0000 0.00000000 2.00020835 2.00000000

remove 100472 100468.0000 0.00000000 0.04082769 0.00000000

19

Problem 1.3-1:

SOLUTION OF CUBIC EQUATION BY SERIES EXPANSION

0 1 2 5 7
2 2

[ed]) m “9p3

00 10 20 30 40

0 STO 2 STO+4 * RCL 2

1 RCL 1 STO 3 RCL 4 1 RCL 3

2 2 STO*5 STO=+3 =~ +

3 * RCL O 2 STO*3 STO

4 RCL 0 2 * 1 X =y

5 3 * 1 - GTO 00

6 * STO=5 + STO*3 GTO 19

7 + 0 STO+3 RCL 5

8 STO 5 STO 4 RCL 4 STO*3

9 CHS 1 3 RCL 2

Finds zero x of

2 + 3px + 2g = 0

from series expansion

go o20 7 opm Gm! eq"
3p m=0 m! (2m+1) ! (3p) °°

(This is a special case of the Lagrange-Bilirmann series,

see ACCA I, chapter 1.)

20

Demonstration 1.4-1:

EVALUATION OF THE EXPONENTIAL SERIES

1. Purpose

To demonstrate smearing, see Essentials §l.4.

2. Method

We evaluate e%, Xx > 0, by summing the exponential series

in floating point arithmetic, see Essentials, Demonstra-

tion 1.4-1 and §l.1. We stop summing as soon as two con-

secutive partial sums on the computer are equal. This

criterion of termination is computer independent.

The following flow diagram and program apply to positive

or negative values of x; hence the given program can

also be used to evaluate e”, Xx > 0, without smearing,

see Essentials, Demonstration 1.4-1.

21

3. Flow Diagram

s :=1; k :=1

a :=1

y -

a := a . 2

k k :=k+1

Ss := s+a

o
(ora S = new Ss

y yes

Output s

4, Storage and Program

Ro Ry R, R3 Ry Rg Re
X Ss a k

-X€X

00 10 20 30 40

0 RCL 1 -» RCL 1

1 STO 0 RCL GTO 00

2 1 RCL 1

3 STO 1 +

4 STO 2 STO

5 STO 3 X =Yy

6|-> RCL 0 GTO 20

7 STO*2 1

8 RCL 3 STO+3

9 STO=+2 GTO 06
22

5. Operating Instructions

Load program, move to RUN. Select mode of displaying

numbers, e.g. by pressing

SCI 6

To compute e%, Xx > 0, load -x into X-register and press

PRGM

R/S

To obtain e¥ for other values of x load -x into

X-register and press

R/S

By pressing

MANT

after computing e® all the digits that are computed

internally can be made visible briefly (for longer dis-

play do not lift finger from MANT key).

6. Examples

See Essentials, Demonstration 1.4-1

X .
Some values of e, x > 0; see also Essentials,

Demonstration 1.4-1.

23

xX e” eX by 1/e%

1 2.718281830 3.678794410%10"

5 1.484131593%10° 6.737946990%10>

10 2.202646580%10" 4.539992975%10>

15 3.269017376%10° 3.059023202%10

Here only the last digit of each computed

value is unreliable.

24

Problem 1.4-1:

BESSEL FUNCTION OF INTEGER ORDER

0 Ry 2 3 4 5 6 7
[n] 5 a,) k n!

x€eX

00 10 20 30 40

0 RCL 4 STO 3 STO2 GTO 24

1 2 x = 0 RCL 1 RCL 1

2 : GTO 17 CHS STO*2

3 sro 1 STO*5 STO*1 RCL 3

4| RCL 0 1 > 1 RCL 3

5| sto 4 STO-4 STO+4 RCL 2

6 ye GTO 12 RCL 4 +

7! sTO 2 RCL 5 STO+2 STO 3

8 1 STO2 RCL 0 Xx = vy

9| sTO 5 RCL 2 + GTO 00
Evaluates Bessel function J (x) (n a nonnegative integer)

from series

Xx, n k 2

LCD mTJ (x) = (5
n 2 k=0

25

Problem 1.4-2:

FUNCTIONS £ (x): EXPLICIT FORMULA

Rg Ry Ry Ry Re Rs
[n] X k Ss

XEX

00 10 20 40

0 STO+4 STO+4

1 STO 1 1 RCL 3

2 RCL O STO-2 STO-4

3 STO 2 RCL 2 RCL 4

4 STO 3 x =0 CHS

5 1 GTO 18 GTO 00

6 STO 4 STO*3

7!» RCL 1 GTO 07

8 STO*4 = RCL 1

9! RcL 3 e*

Evaluates

xX

£ (x) := | tet at
n

0

by explicit formula

on =X, Nn n-1 n-2 .
£ (x) =n! - e {x +nx +n(n-1)x + ...+n'}

26

Problem 1.4-2:

FUNCTIONS £ (x): UNSTABLE SERIES

Ro Ry Ry R3 Ry Rg
x) K n+k+l k

X€X

00 10 20 30 40

0 STO=+3 STO=+3 y = X

1 STO 1 STO 4 RCL 5 GTO 00

2 RCL O 0 STO+3 STO 2

3 1 STO 5 RCL 1 GTO 14

4 + = RCL 4 CHS

5 a STO*3 STO*3

6 STO 2 1 RCL 2

7 STO 3 STO+5 RCL 2

8 LAST X + RCL 3

9 STO=*2 STO 4 +

Evaluates

Xx
f (x) := | te t dt
n

0

by alternating series

© Kk LPFltk

Ea) =CDT me

27

Problem 1.4-2:

FUNCTIONS £ (x): STABLE SERIES

0 1 2 3 4 5

x a,) n+k+1

XEX

00 10 20 30 40

0 RCL 1 STO*?2

1| sTO 1 e® RCL 3

2 RCL O STO=x2 RCL 3

3 1 RCL 2 RCL 2

4 STO 2 STO 3 +

5 + -> 1 STO 3

6| sTO 4 STO+4 Xx =y

7 STO=+2 RCL 4 GTO 00

8 v> STO+2 GTO 15

9 STO*2 RCL 1

Evaluates

x
f (x) := | tn et dt

= 0

by series of positive terms,

£ (x) =)
n k=0

, n+k+1
X

(n+k+1)!

28

Problem 1.4-3:

ERROR INTEGRAL, UNSTABLE SERIES

Rg R, R, Rs Ry Rg

x) a n -x

xX€EX

00 10 20 30 40

0 x2 * RCL 1

1 STO 0 CHS 1 RCL 2

2 2 STO 4 - +

3 * 0 STO*2 X =y

4 T STO 3 2 GTO 00

5 Vx - 1 + STO 1

6 + STO+3 STO+2 GTO 15

7 STO 1 RCL 3 RCL 4

8 STO 2 STO=2 STO*2

9 RCL O 2 RCL 1

Evaluates

X 2

F(x) := — e% at
/m 0

by series

F(x) =

2n+1
X

29

(2n+1)n!

Problem 1.4-3:

ERROR INTEGRAL, STABLE SERIES

0 1 2 3 5

xX) a n+= xX

XEX

00 10 20 30 40

0 RCL 3 GTO 00

1| sTO © Vx 1 STO 1

2 x2 = + GTO 18

3 STO 4 STO 1 STO 3

4 CHS STO 2 STO+2

5 e* 2 RCL 1

6 RCL O 1/x RCL 1

7 * STO 3 RCL 2

8 2 = RCL 4 +

9 * STO*2 X =Y

Evaluates

X 2

F(x) := —2 | e”t at
ym 70

by series

2x _x? = x20
F(x) = =e” |] —3

ym n=0 (3),

Demonstrations 1.4-2, 1.5-1, 1.5-2, 1.5-3:

AN OBNOXIOUS FUNCTION TO EVALUATE

1. Purpose

To compute numerical values of the following functions

Yr defined by definite integrals,

1 ee

Yo *°7 J Xx + a dx
0

for a fixed value of a>1 and for n=20,1, 2, ..., 10.

The algorithm used should not be sensitive to smearing

or numerical instability.

2. Method

The following explicit or recursion formulas present

themselves for the computation of the values Yn

n-1© k_k n -k n-k, 1
y= I (-1)Fa“()[(1+a) Fea l=
n k=0 n-k

(I)

+(-1)"a" log +12 ,

_ 1+a _ 1 _
Yo = 1 SF YT gay_q¢ n=1,2,...,10 , (II)

1,1
=0; vy = =(=-v.), (III)

k
(=1)

Y. = ’ (IV)

D k=0 (n+k+1)a®tt

see Essentials, Demonstrations 1.4-2, 1.5-1, 1.5-2 and

1.5-3. By programming each formula, it will be seen

that only (III) and (IV) are reliable numerically,

whereas (I) and (II) are "smeared" or unstable,

respectively.

3. Flow Diagram

The flow diagrams corresponding to (I) and (II) will not

be given explicitly. In (I) the sum (increasing k) is

computed first, then the log-term is added; the binomial

coefficient is computed recursively.

(III)

/ Input a,m/

y

Yo :T 0, n:=m

y h

Stop | Ye n=20 2?

| no

1
Y = —(=-y_) A

 1

32

(IV)

s :=0, k :=0

compute —
p a' a

y -¢

k :=k+1

Kk compute

d := (-1) L k
: k+l n+k+1 (-1)

Stl

s := s+d
A

CIDE
yes

| output y,=s

4. Storage and Program

(1) Ry Ry R, Ry Ry, Rg Re Ro

k n[a] nk k (-a)" () s

00 10 20 30 40

0 -> x =0 — STO*4 -» RCL 1

1 RCL O GTO 40 RCL 5 RCL 2 1

2 STO 2 RCL 1 * STO*5 +

3 CLX 1 RCL 4 1 RCL 1

4 STO 6 + * STO-2 +

5 STO 3 RCL 2 RCL 2 STO+3 Ln

6 1 > % RCL 3 RCL 4

7 STO 4 RCL 1 STO+6 STO=5 *

8 STO 5 RCL 2 RCL 1 RCL 2 STO+6

9| RCL 2 yr CHS GTO 10 RCL 6

(IT) R, Ry R, R

n y

00 10 20 30 40

0 STO 0 R/S

1 RCL 1 RCL 1 GTO 11

2 1 CHS

3 + STO*2

4 RCL 1 RCL 0

5 + 1/x

6 Ln STO+2

7 STO 2 1

8 R/S STO+0

9 1 RCL 2

(ITT) R, R, R, R

(m]
n

00 10 20 30 40

0 + GTO 03

1 CLX STO 2

2 STO 2 1

3|- RCL 0 STO-0

4 x=0 RCL O

5 GTO 00 FIX 0

6 1/x PAUSE

7 RCL 2 RCL 2

8 - FIX 9

9 RCL 1 R/S
34

(IV) R R R Rg R R R R

0 1 2 4 5 6 7

al LoL
n+k+1 a

00 10 20 30 40

0 RCL 2 GTO 08

1 CLX RCL 4 |-» RCL 5

2| STO 5 RCL 0 GTO 00

3 RCL 1 3

4 1/x STO+5

5| STO 4 ABS

6 CHS x {vy

7| sTO 3 GTO 21

8|- 1 RCL 3

9| STO+0 STO*4
5. Operating Instructions

Load one of the programs (I) + (IV) and move to RUN;

from now on they differ slightly for each program.

(I) Choose mode of displaying numbers, e.g. by

pressing FIX 9. Then load n into Ry and a

into R,. Upon pressing

PRGM

R/S

Yn will be displayed. To obtain another Yr

load new n into R, and press R/S etc.

35

(II)

(III)

(IV)

Here the Y, have to be determined in their natural

order, hence only load a into R, and press
1

FIX 9

PRGM

R/S

Yo will be displayed. To obtain Yyr k>1, press

R/S after display of Yi-1-

Here backward recursion is used from an input

index m on downward. Hence load m into R, and

a into R,- Appropriate modes of displaying numbers

are chosen automatically in the program. Press

PRGM

R/S

There results a brief display of m-1 and an in-

definite display of Yp-1° Press R/S to obtain

m-2 and Yo etc.217

The summation of the infinite series is stopped

as soon as the next term to be added in absolute

value is less than a given tolerance e€. Load n

0’ a into Ry and € into Ry» 12

by pressing

into R e.g. if e=10

EEX

CHS

36

Then press

to yield display of Y,- Load new n into R

FIX 9

PRGM

R/S

0
press R/S to obtain corresponding Yr etc.

6. Examples

For (I) see

for (II) see

for (III) see

for (IV) see

Demonstration 1.4-2,

Demonstration 1.5-1,

Demonstration 1.5-2,

Demonstration 1.5-3.

37

and

Problem 1.5-1:

FUNCTIONS £ (x): FORWARD RECURRENCE

Rj R, R, Ry, Rc Re

-X n
n X e x

XEX

00 10 20 30 40

0 STO 3 RCL 3

1 STO 1 R/S R/S

2 CHS RCL 1 GTO 12

3 e* STO*2

4 STO 2 1

5 0 STO+0

6 STO 0 RCL O

7 1 STO*3

8 RCL 2 RCL 2

9 - STO-3

Evaluates

X

£ (x) i= | t? et at , n=0,1,2, ...
0

by recurrence

_ -X _ _ -X
£5 = 1 ’ = nf4 X e

38

Problem 1.5-1:

FUNCTIONS £ (x): BACKWARD RECURRENCE

Ro Ry R) Ry Rs
n xX xe®
0

xX€eX

00 10 20 30 40

0 - RCL 2 RCL 3

1 sto 1 STO+3 R/S

2 RCL 0 RCL 0 RCL 1

3 y= x =0 STO=2

4 STO 2 GTO 00 GTO 10

5 RCL 1 STO=3

6 e” 1

7 STO=2 -

8 0 STO 0

9! STO 3 PAUSE

Evaluates

X

£ (x) := | t? et at
n

0

by recurrence

1 n_-x
f* =0 £* = =(f_+x'e 7) .
ng n-1 nn

1 1 *For ng sufficiently large, £2 ~ £-

39

Demonstration 1.7-5:

EVALUATION OF A NUMERICALLY ILL-BEHAVED FUNCTION

1. Purpose

To evaluate

0 ’ x =0

f(x) :=

1 ’ x > 0

Y1og >

2. Method

Straightforward.

3. Flow Diagram

Uninteresting, hence omitted.

40

4, Storage and Program

Ro Ry Ry R3 Ry Rg Re Ry
xX€X

00 10 20 30 40

0 GTO 00

1 FIX 8 -» 1/x

2 x > 0 in

3 GTO 11 8

4 x <0 1/x

5 GTO 08 CHS

6 0 ve

7 GTO 00 GTO 00

8|-» 0

9 FIX 0

5. Operating Instructions

Load program, move to RUN. Load value of x, x>0, into

X-register. Upon pressing

PRGM

R/S

f(x) will be displayed. Load other value of x, if de-

sired, and press

R/S

to obtain corresponding f(x), etc. If x<0 is input

41

accidentally, the computer will display 0. (instead of

error message which would spoil computation of next

f(x)). The format is chosen in step Ol.

6. Example

See Essentials, Demonstration 1.7-5.

42

Demonstration 1.7-15:

SOLUTION OF AN ILL-CONDITIONED INITIAL VALUE PROBLEM

BY DISCRETIZATION

1. Purpose

To demonstrate the ill-conditioning of the initial

value problem

Y y(0) =1, y'(0) = -1,

see Essentials, Demonstrations 1.7-8 and 1.7-15.

2. Method

Discretization, see Essentials, Demonstration 1.7-15.

43

3. Flow Diagram

 A

Output x (FIX 2)

Output y (FIX 6)

!

4, Storage and Program

R R R R R

0 1 2 3 4 5

Yn-1 Yn h® *n

00 10 20 30

0 STO 4 *

1 1 -» RCL 0 +

2 STO 2 STO+4 STO 2

3 RCL O RCL 1 RCL 4

4 e* CHS FIX 2
5 STO 1 2 PAUSE

6 RCL 0 RCL 3 RCL 2

7 x2 + FIX 6

8 STO 3 RCL 2 PAUSE

9 0 STO 1 GTO 11

44

5. Operating Instructions

Load program, move operating switch to RUN and load dis-

cretization step h into R Upon pressing0°

PRGM

R/S

the computation is started. The computer will always

first briefly display xX (in easy-to-read FIX 2 format)

and then briefly show the corresponding Yn (in FIX 6

format). If other modes of displaying xX and y, are

desired, then instructions 24 and 27 have to be changed

accordingly. By replacing instructions 25 and 28 by R/S

the brief displays of x and Y, become stops; to restart

the computation R/S needs to be pressed.

6. Example

See Essentials, Demonstration 1.7-15.

45

Demonstrations 2.1-1 + 2.1-5:

ITERATION

l. Purpose

Computation of the fixed point of a function f.

2. Method

As limit of the iteration sequence generated by f, see

Essentials §2.1, in particular Theorem 2.1. Two programs

will be given:

(I) simply constructs x = f(x n=1,2,...,n-1) I

without testing for convergence,

(ITI) stops as soon as two consecutive elements of the

iteration sequence (on the computer) are equal,

see Essentials, remarks at end of §2.1.

3. Flow Diagram

For (II) see Essentials, Fig. 2.la with test "n=n__2?"

removed.

46

4. Storage and Program

(I) R R

n-1

00 10

20 30 40

CLX

STO 0

STO+0

GSB 07

GTO 03

O
W

0
0
J

6
U
1

Wb
»

Ww
W

N
D

+
H
O

All the remaining programming spaces (and storage

registers R, + R4) are available for the subroutine

computing and displaying f(x); it should assume

X in Rqv

struction RTN.

store f(x) into R, and end with the in-
1

47

(II) R R R R R R R R

0 1 2 3 4 5 6 7

n Xn-1 =

00 10 20 30 40

0 STO 1

1 CLX GTO 03

2| STO 0 |» RCL 2

3 1 GTO 00

4 STO+0 ->

5| GSB 14

6| RCL 1

7 X =Y

8| GTO 12

9 RCL 2
All the remaining programming spaces (and storage

registers R + Rg) are available for the subroutine
3

computing and displaying f(x); unless each xX

needs to be registered, it is reasonable to use

PAUSE for the display of f(x). The subroutine

should assume x in R, and store f(x) into R
1

and end with the instruction RTN.

2

5. Operating Instructions

Load program (I) or (II) including subroutine to compute

f(x). Move to RUN. Select mode of displaying numbers.

Load starting value x
0

into R,. Also load possible con-
1

stants of the function f into appropriate registers.

Press

PRGM

R/S

to start computation. In (I) the computer will go on in-

definitely, provided that the f(x) within the subroutine

are shown briefly (using PAUSE), otherwise R/S has to be

pressed after each display; the convergence has to be

checked by eye. In (II) the computer stops as soon as

the criterion given in section 2 is satisfied; the number

displayed is the fixed point of f. The number n of

iteration steps can be obtained by pressing

RCL 0

6. Examples

See Essentials, Demonstration 2.1-1: f(x) := cos X.

Using (I) the soubroutine for f is:

07 RCL 1 09 cos 11 PAUSE

08 RAD 10 STO 1 12 RTN

See Essentials, Demonstrations 2.1-2 and 2.1-5:

f(x) := V2 + x. Using (II) the subroutine for f is:

14 RCL 1 17 Vx 20 RTN

15 2 18 STO 2

16 + 19 PAUSE

49

See Essentials, Demonstrations 2.1-3 and 2.1-5:

f(x) := ——. Using (II) and assuming a in R

the subroutine for f is:

7

14 RCL 1 17 1/x 20 RTN

15 RCL 7 18 STO 2

16 + 19 PAUSE

With X, = 0 for a = 1 we get s = Xoy = 0.618033989;

if a = 1.000000001 the iteration sequence starts

to cycle between 0.618033988 and 0.618033989.

50

Demonstrations 2.2-1, 2.2-3:

ITERATION WITH AITKEN ACCELERATION

1. Purpose

Computation of the fixed point of a function f more

rapidly than with ordinary iteration.

2. Method

Aitken acceleration. Along with the sequence {x}

(see program "Iteration") the sequence {x} of

accelerated values is generated:

2
(x -xX)
n+l n

x' = x + ’

n n (x41 “Xp = (Xo = X40)

see Essentials, §2.2.

3. Flow Diagram

See Essentials, §2.2.

51

4. Storage and Program

Rg 1 Ry Ry Rg Re Ry

*0 1 %2

x, €X

00 10 20 30 40

0 STO 1 RCL 1

1 STO 0 GSB 28 -

2| GSB 28 STO 2 -

3] STO 1 |» RCL 1 3

4| GSB 28 RCL 0 RCL 0

5 STO 2 - +

6| GTO 13 x2 R/S

7|- RCL 1 LAST X GTO 07

8] STO 0 RCL 2

9 RCL 2 PAUSE
Program locations 28 + 49 (and storage registers

3
R * R,) are available for the subroutine to

compute f(x); it should assume x in X and also

leave f(x) in the X-register (and end with the

instruction RTN).

5. Operating Instructions

Load the program, including the subroutine to compute f.

Switch to RUN and select the mode of displaying numbers,

for instance by pressing

FIX 8

52

First press the starting value x

and then

0 into the X-register

PRGM

R/S

to start the computation. The computer briefly displays

xX and stops at the display of x. Press
n+2

R/S

to start new cycle. Convergence is not tested nor are

iterations counted.

6. Examples

See Essentials, Demonstration 2.2-1 and Program

"Iteration", Example [1]: f(x) := cos x. The

subroutine for f is:

28 RAD 29 cos 30 RTN

See Essentials, Demonstration 2.2-2 and Program

"Iteration", Example HE f(x) = V2 + x. The

subroutine for f is:

28 2 30 Vx

29 + 31 RTN

53

Demonstrations 2.2-3 + 2.2-5:

AITKEN-STEFFENSEN ITERATION

l. Purpose

To compute the fixed points of smooth functions f without

restrictions on the slope of f.

2. Method

Aitken-Steffensen iteration. The sequence (x is

generated according to the following rule: Given an

initial value Xy =: x, * we construct xy =£(x4),

x, = f(x) and X by Aitken's rule, see program

"Iteration with Aitken acceleration". Now we use

x as starting point for a new iteration and go back

to *. Convergence to the fixed point s takes place,

provided that f'(s) # 1 and that X, is chosen

"sufficiently close" to s, see Essentials §2.2.

3. Flow Diagram

See Essentials, §2.2.

54

4. Storage and Program

Ro Ry Ry Ry Rg Re R7

*0 1 *2

17% *2™1

x, €X

00 10 20 30 40

0 RCL 1

l{- sTO 0 x?

2 GSB 19 RCL 1

3] sTO 1 RCL 2

4 GSB 19 -

5 STO 2 +

6| RCL 1 +

7| STO-2 R/S

8 RCL 0 GTO 01

9| sTO-1 |~-

Program locations 19 + 49 (and storage registers

Ry + Ry) are available for the subroutine to com-

pute f(x); it should assume x in X and also

leave f(x) in the X-register (and end with the

instruction RTN).

5. Operating Instructions

They are the same as for the program "Iteration with

(k)
Each x,Aitken acceleration". is displayed.

55

6. Examples

See Essentials, Demonstration 2.2-3, Programs

"Iteration" and "Iteration with Aitken Accelera-

tion", Example [1]: f(x) = cos x.

See Essentials, Demonstration 2.2-4, Programs

"ITteration" and "Iteration with Aitken Accelera-

tion", Example HE f(x) = V2 + x.

See Essentials, Demonstration 2.2-5:

f(x) = 10 cos x. The subroutine for f is:

19 RAD 21 1 23 *

20 cos 22 0 24 RTN

56

Section 2.2:

BISECTION

1. Purpose

To find a zero of a continuous function f£, i.e. a

solution of the equation

f(x) =0

if points a and b are known such that

f(a) < 0 and f(b) > 0 .

(It is not required that a <b.)

2. Method

Successive bisection, see Essentials, §2.3. Let

a+b
> .

If f(x) <0, then £f has a zero between x and b; we thus

set a :=x and repeat. If f(x) >0, then f becomes zero

between a and x (or possibly at x); we thus set b:=x

and repeat. The iteration is terminated if (on the machine)

57

X=a or x=b. [It is not possible to use a=b as a

convergence test; because of rounding errors this

condition may never be satisfied.]

3. Flow Diagram

yY

Xx i= a+b

TT 2

Y

es
Y XxX =a?

A

yes
x =Db 2?)

stop, \

show x compute f(x)

Y

yes no
[f(x) <0?

\ Y

a := Xx b := x

58

4. Storage and Program

O
W

0
0

J
d
&

U
1

d=
»

Ww
W

N
D

+
H

o
O

1 2 3 4 5 7

x

00 10 20 30 40

RCL 1 GTO 01

-» RCL O RCL 2 -» RCL 2

RCL 1 X =Yy STO O

+ R/S GTO 01

2 PAUSE -

+ GSB 24

STO 2 x <0

RCL 0 GTO 21

X =Yy RCL 2

R/S STO 1

Locations 24 + 49 are reserved for the subroutine

to compute f(x). This program may assume XxX

X-register,

put f(x) into the X-register (and its last

struction should be RTN).

available for auxiliary storage.

and also in R..
2

5. Operating Instructions

Load program,

The subroutine

Registers R

in the

should

in-

are

including subroutine to compute f(x).

(If £ involves trigonometric functions, whose argument

is measured in radians, include RAD instruction in

subroutine.) Move operating switch to RUN position.

59

Select mode of displaying numbers. Load a with f(a) <0

into R, and b with f(b) >0 into R,.

finition of £f must contain the closed interval bounded

(The domain of de-

by a and b.) Pressing

PRGM

R/S

starts computation. The computer briefly displays each

iterate x and stops when (on the machine) x = (a+b)

coincides with either a or b.

6. Examples and Timing

Let f(x) := sinx. We want to find the smallest

positive zero of f by bisection. We know that it

has the exact value m = 3.1415926536... and

therefore set a :=4 and b :=1. The subroutine

for ff is

24 RAD 25 sin 26 RTN

and we obtain x = 3.141592654. The error, as

expected, is about 1 unit in the last digit

displayed. Computing time 80 sec. Starting

with a :=4 and b :=3 reduces the computing

time by 5 sec.

60

Let

f(x) := Log - x Arctan = - Log 2

(see ACCA III, §16.5). By experimentation we

find £(0.1) >0, f£(1) <0. We thus set :=1,

b:=0.1. Calculation with the following sub-

routine yields x = 0.330587542.

24 1/x 28 Tan! 32 2

15 LN 29 RCL 2 33 LN

26 LAST X 30 * 34 -

27 RAD 31 - 35 RTN

Computing time 135 sec.

The seemingly trivial problem of finding the

zero of f(x) :=x is not trivial for the bi-

section method as programmed here. If the

absolute value of the solution is very small

or zero, it takes many iterations to meet the

criterion x=a or x=Db due to the floating

point representation used by the calculator.

Thus in the present case, the iteration grinds

down to values of x <10727 before finally pro-

ducing the correct solution x=0. In compensa-

tion, the solution is very accurate. It can be

guaranteed to be between £10727, The same effect

occurs, for instance, in the solution of sinx=0

for a=-1, b=2.

61

Demonstrations 2.3-1, 2.3-2:

NEWTON'S METHOD: SQUARE ROOT ITERATION, DIVISION

1. Purpose

To apply Newton's method to the problems of finding the

square root and the reciprocal of a given positive number.

2. Method

Newton's method, see Essentials, §2.3. The Newton

iteration function to determine is

. 1 C
a) ve, c>0 is f(x) = S(x+3)

b) , ¢ > 0 is f (x) I x nN I Q ® Ip
|

see Demonstration 2.3-1 and 2.3-2. The iteration is

stopped as soon as two consecutive iterates differ by

less than e£, the tolerance & been chosen such that

full machine accuracy is obtained, hence for the

HP-33E e :=1010.

62

3. Flow Diagram

no

Output X41

4, Storage and Program

Ro Ry Ry R3 Ry Rg
[c]or [a] X,

x €

00 10 20 30 40

0 STO 1

1 1 -

2 EEX ABS

3 1 RCL 2

4 0 Xx {vy

5 CHS GTO 07

6 STO 2 RCL 1

7|-» RCL 1 R/S

8 PAUSE

9 GSB 18
63

Locations 18 and following are reserved for the

subroutine computing values of the iteration

function. It should assume xXx in R, and c or a
1

in R, and then leave f(x) in the X-register.

5. Operating Instructions

Load program including appropriate subroutine for the

iteration function. Move to RUN. Load constant c or a

into R, and starting value x, into R,. Upon pressing

FIX 8

PRGM

R/S

the computation is started. The computer will briefly

display each iterate (including xq) until convergence

has taken place, when it stops by displaying the result,

i.e. the square root or the reciprocal. The iterations

are not counted.

6. Examples

Square root, see Demonstration 2.3-1. The sub-

routine for the Newton iteration function is:

18 RCL 0 21 RCL 1 24 +

19 RCL 1 22 + 25 RTN

20 + 23 2

64

Reciprocal, see Demonstration 2.3-2.

Subroutine:

18 RCL O 21 CHS 24 RCL 1

19 RCL 1 22 2 25 *

20 * 23 + 26 RTN

65

Problem 2.3-4:

DRIVING MECHANISM

Ro Ry R; R3 Ry Rs Re R7
|L R r| X T(R+r) R-r

00 10 20 30 40

0 + + * RCL 3

1 RCL 0 STO 3 sin~t RCL 3 X =y

2| RCL 1 RCL 1 RCL 5 x GTO 00

3| RCL 2 RCL 2 * RCL 5 X 2 Y

4 + - 2 x* STO 3

5 m STO 5 * - PAUSE

6 RAD RCL 4 Vx GTO 17

7| STO 4 |= RCL 0 + 2

8 - RCL 5 - *

9 2 RCL 3 RCL 3 :

Solves the equation g(x) = L, where

g(x) = m(R+r) + 2V/x2-(R-r)? + 2(R-r) arc sin ==

by Newton's method. Iteration function

f(x) := x - gx)=L
g' (x)

is evaluated as

L - m(R+r) - 2(R-r) arc sin B=X

£(x) = x 2.
2V/x?% - (R-r)?

= Z(L = 7 (RHD))

66

Starting value is x,

Demonstrations 2.3-3, 2.3-4:

HORNER ALGORITHM

l. Purpose

Given an arbitrary polynomial of degree <4 with real

coefficients

4 3 2
p(x) = a,x + a,x + a,x + ax + a, ’

and given an arbitrary real number x to determine the0’

coefficients b in the representation of p in powers of

h i= x=x,,

(x. +h) =D hn + b h3 + b h? + bh + bPX ~ 0 1 2 3 4"

that is, the Taylor coefficients of p at Xq

2. Method

The Horner algorithm, see Essentials, §2.3.

67

3. Flow Diagram

Because an address modification is not available, the

programming here is different from what it would be on

a larger computer. By a cyclic permutation (here called

rotation) of the a, the coefficients operated on are
k

always found in the same registers. After the algorithm

is executed the Taylor coefficients by are stored where

previously the coefficients a, of the given polynomial
k

were stored. A triangular array of coefficients has to

be generated row by row; n and m are the row and column

indices respectively.

] A

 1 0 0 1 n : = n+1l

Display b
Stop

68

4. Storage and Program

Rj Ry R, Rs R, Rc Re R,

a, a; a, aj a, X * n.m

00 10 20 30 40

0 4 3 STO 2 RCL 7

l|- RCL 7 Xx Ly X {vy RCL 4 FRAC

2 INT GTO 23 GTO 49 STO 3 Xx {vy

3 STO 7 RCL 0 -» RCL O RCL 6 GTO 04

4|-> RCL 7 RCL 5 STO 6 STO 4 RCL O

5 FRAC * RCL 1 . PAUSE (R/S)

6 9 RCL 1 STO O 1 1

7 * + RCL 2 STO+7 STO+7

8 RCL 7 STO 1 STO 1 . GTO 01

9 + RCL 7 RCL 3 4 -» RCL 0
Note: A fractional index n.m is used to save

storage.

5. Operating Instructions

Load the program and switch to RUN. Load the coefficients

a. into R (m=0,1, ..., 4). Also load X into Re and

initial value zero of fractional index n.m into Ro. When

PRGM

R/S

is pressed, the calculator computes the bi it briefly

after each Horner step and stops by displaying

69

displays b,

b, after all the b have been computed. At this time, the

b are stored in Ro (m=0,1, ...,4,), thus enabling the

operator to continue the computation immediately with a

different X (and after re-setting the index n.m equal to

zero!). The original a are lost. If all the computed

coefficients need to be recorded or if less than four

Horner steps are desired, then instruction 45 should be

changed to R/S, effecting a stop after each Horner step.

At this time the coefficients can be found in corre-

sponding registers as indicated above. Press R/S to

continue the computation.

6. Examples and Timing

p(x) := x - ax’ + 3x2 - 2x + 5. To compute the

Taylor coefficients at x=2, see Essentials,

Demonstration 2.3-3. Computing time including

short displays 38 sec.

p(x) := x? - 2x + 8x - 1s, p(-2) = 0. To divide

p by x- (-2), see Essentials, Demonstration 2.3-4.

70

Demonstration 2.3-5:

NEWTON'S METHOD FOR POLYNOMIALS WITH AUTOMATIC DEFLATION

1. Purpose

To determine all real zeros of a real polynomial of

degree 4,

2. Method

Newton's method for polynomials, see Essentials, §2.3.
~

3. Flow Diagram

This is identical with the flow diagram Figure 2.3. of

Essentials, §2.3 for n=4. For reasons of space the

program given in section 4 does not check convergence

and shows the new zero found only after the deflation

has been performed.

71

4. Storage and Program

0 R R, R

0 a a, a [x]

00 10 20 40

0 RCL 3 STO+5 RCL 3

l|-» 0 GSB 20 RCL 7 STO 4

2 STO RCL 4 STO*6 RCL 2

3 STO STO+5 RCL 5 STO 3

4 RCL RCL 6 STO+6 RCL 1

5 GSB STO=+5 RCL 7 STO 2

6 RCL RCL 5 STO*5 RCL O

7 GSB PAUSE RTN STO-0

8 RCL STO-7 RCL O STO 1

9 GSB 20 GTO 01 RCL 7 STO+3 RCL 7
5. Operating Instructions

Load the program and then turn the operating switch to

RUN. Select the mode of displaying numbers, for instance

by pressing

FIX 8

Load the coefficients a, of the given polynomial into R. .

[a, is the coefficient of x etc.!] Load the starting

value X into R, (if xy = 0, it is already there). Press

PRGM

* R/S
72

to start computation. The computer will briefly display

the corrections bx, = oe [For indeterminate display

change instruction 17 to R/S and press R/S after each

display.] Their convergence has to be checked by eye.

As soon as they are zero within the accuracy desired

R/S

should be pressed. At this point the zero can be found

in R,. But after pressing

GTO 28

R/S

the polynomial will be deflated automatically, and the

computer will halt while displaying the zero just found.

In the process of deflation the new coefficients are

written over the old ones. To compute the next zero load

new starting value into R, (if this is omitted the last
7

zero will be used as starting value) and repeat the pro-

cess beginning with instruction * above. This may be done

until all real zeros have been found.

6. Examples and Timing

Let p(x) := p, (x) t= x - 16x° + 72% - 96x + 24,

the Laguerre polynomial of degree four. To de-

termine all its zeros using Newton's method,

see Essentials, Demonstration 2.3-5.

73

p(x) := (x=1)(x+2)(x=-3)(x~-4)

= x - 6%° + 3x2 + 26x - 24

Starting with Xy=0 we get the zero of smallest

absolute value

xX, = 1.00000000

after five iterations. Starting again with

xX, =0 - deflation is done automatically by

the program - after ten iterations the computer

produces the zero

X, = 4.00000000

[Upon looking at the graph of p it can be under-

stood, that not the zeros -2 and 3 with smaller

absolute values have been determined first.]

Again using xX, =0 as starting value we get

Xy = -2.00000000

after six iterations. After one more iteration

we find - independently of the starting value now -

X, = 3.00000000

Computing time about 4 sec. per iteration.

74

4
Let p(x) := E, (x) = x - 2%°> + x, the fourth

4

Euler polynomial. Obviously

remain to be determined. Since x=0 is a zero of

q' (x) we have to choose a nonzero starting value,

e.g. Xg = . After one iteration we obtain

X, = 1.00000000

Starting with x, =0 after five iterations pro-
0

duces the zero

Xy = -0.61803399

and in one more iteration

Xy = 1.61803399

Computing time about 4 sec. per iteration.

Let p(x) := Tg (x) = 128x° — 256x° + 160% - 32x° + 1,

the Chebyshev polynomial of degree 8. To determine

its zeros we first put y I and look for the

Zeros Yi i=1,2,3,4, of

128y? - 256y> + 160y° - 32y + 1q(y)

75

The zeros of T
8

i=1,2,3,4.

will then be the roots of Yor

In this example we will always

use Xy = 0 as starting value. We obtain

Yq = 0.03806023 after 4 iterations

Yo = 0.30865828 after 6 iterations

Y4 = 0.69134172 after 6 iterations

Y, = 0.96193977 after 1 iteration

Hence the zeros

SI = *0

X34 = *0

Xs 6 = *0

X78 = %0

and lie between

of TT. are

.19509032

.55557023

.83146961

.98078528

-1 and +1 as expected.

Computing time about 5 sec. per iteration.

76

Demonstration 2.4-1:

ITERATION FOR SYSTEMS OF TWO EQUATIONS

1. Purpose

To compute the solution of

x = f(x,y)

y = g(x,y)

2. Method

Iteration, see Essentials, §2.4.

3. Flow Diagram

Input Xq1Y

Compute

X, i= £(xyry4)

y, = 9(x,r¥;)

A

77

4, Storage and Program

R, R, R, R, R, Rc Re Ro

X Yq *

00 10 20 30 40

0 - RAD RTN +

1» GSB 10 RCL O -» RAD RTN

2 STO 2 cos RCL O

3 R/S RCL 6 sin

4 GSB 21 * RCL 6

5 STO 1 RCL 1 *

6 R/S sin RCL 1

7 RCL 2 RCL 7 cos

8 STO 0 * RCL 7

9 GTO 01 - *
The foregoing program implements the example

given below. If it is to be applied to another

system, then use instructions 10 + 49 for the

two subroutines computing f and g and change

instructions 01 and 04 accordingly. Storage

locations R, + R, are available for the com-
3 7

putation of f£ and gq.

5. Operating Instructions

Load program, including subroutines to compute f and g

(see remark in section 4). Then switch to RUN and choose

mode of displaying numbers. Load starting values Xg and

78

Yy into Ry and Ry respectively. Load constants for the

computation of the functions f and g. Upon pressing

PRGM

R/S

the computation is started. The computer will stop by

displaying x Press R/S to obtain Yq and again R/S to

obtain Xo etc. Convergence has to be tested by eye.

6. Example

Let f(x,y) := Acosx - Bsiny

g(x,y) := Asinx - Bcosy ,

A,B constants, see Essentials, Demonstration 2.4-1.

79

Problem 2.4-1:

CIRCLE TOUCHING THREE GIVEN CIRCLES

Ro Ry R) Ry Rg Rg R,

xX a r.-r Yr.-r x2 dy 172 T17%3 1

00 10 20 30 40

0 RCL O * RCL 1 RCL 3

1{-> RCL 0 RCL 2 RCL 2 RCL 3 +

2 x2 - + - RCL 3
2 2

3 STO 6 xX RCL 2 xX +

4 RCL 1 RCL 1 + RCL 6 2

5 x2 x2 2 + +

6 + + + /x STO 1

7 vx Vx STO 0 RCL 7 PAUSE

8 STO 7 RCL 7 PAUSE + GTO 01

9 RCL 4 + RCL 5 *
Let the centers and radii of the three given circles be

(0,0), qi (a,0), r 27 (0,b), x 3° The center (x,y) of a

circle touching the three circles, but not containing

any of them, will satisfy

80

where d, :=vVx2 +y?, d, :=V/(x-a)? +y?, d, := Vx? + (y-b)?.

These equations may be cast in the form

1 1
x= 31 + Lr) mrp) (ap +a|

y = 3{» + Er) -ry) (A; +4y) |

Program tries to solve these equations by iteration.

Iteration will converge if

ry - x, ry — x5
a ! b

are sufficiently small.

81

Problem 2.4-3:

SOLUTION OF 2 x 2 SYSTEM WITH SUCCESSIVE OVERRELAXATION

R R, R, R Re R

a b C d xX Yo

X Y,

00 10 20 30 40

0 - w— PAUSE -

1 RCL 2 RCL 4 RCL 6 RCL 2 RCL 1

2| RCL O * * RCL 4 RCL 4

3 RCL + 1 - *

4 * STO 4 RCL 6 RCL O -

5 - PAUSE - RCL 5 -» P

6 RCL 6 RCL 3 RCL 5 * PAUSE

7 * RCL 1 * - PAUSE

8 1 RCL 4 + RCL 3 GTO 01

9 RCL 6 ® STO 5 RCL 5

Solves system

X + ay = cC

bx + yv = 4d

by iterating in the form

82

X41 w(c-ay) + (1 -w)x

IlYn+l w(d=-bx) + (l-wy,

(w = overrelaxation parameter). Also shows length of

residual vector r,

= - - 2 - - 2|r| VY (c x -ay)? + (d-bx-y)

after each step.

83

Problem 2.5-1:

DELAYED EXPONENTIAL POPULATION GROWTH

R, Ry R, R, R Rg R,

[a] x y r ¢

kEX

00 10 20 30 40

0 STO 2 RCL 0 > P RCL 1

1 RAD RCL 0 + RCL -

2 4 X 2 Y - P * STO+1

3 * 3 STO 3 RCL PAUSE

4 1 n R ¢ + Xx 2 y

5 - STO 1 STO 4 X z RCL 2

6 2 RCL 2 RCL 2 RCL -

7 S RCL 1 RCL 1 - STO+2

8 m e* 1 x 2 PAUSE

9 - R + -» R GTO 16
Finds complex solution z of

by applying Newton's method to system of equations ob-

tained by separating real and imaginary parts,

with asymptotic solution value

84

(*)

starting

_ (kk) _ 20 . 4k-1
Zz, = 2 = Log ak-1)1 + 1——o “0 °° mor

where k = 1, 2, Corrections Ax,Ay are shown; after

convergence to sufficient accuracy has been achieved,

solution is z = x + iy where x € Riv y € R,. Starting value

= (k) 20, . 4k-1
Z = Z, = Log (Ak-1) 7 + i > m™

where k = 1, 2, ... yields k-th complex root.

Algebraic simplification in Newton's equations results

in iteration

Zh+l = £(z)

where

f(z) := 2FL1
e +a

Use is made of polar representation of complex numbers

to evaluate f.

85

Problems 2.5-2, 2.5-3:

EVALUATION OF REAL POLYNOMIAL OF DEGREE <£ 5

AT A COMPLEX POINT

0 1 2 3 4 5 6 7

a, a; a, aj a, ag r 0

00 10 20 30 40

0 RCL 6 RCL 6 RCL 6 RCL 6

1 RAD * * * *

2| RCL 7 X 2 y X 2Y X 2Yy X 2

3 RCL 6 RCL 7 RCL 7 RCL 7 RCL 7

4 RCL 0 + + +

5 * X ZY X 2Y X 2y X 2Y

6 -» R -» R -» R - R > R

7 RCL 1 RCL 2 RCL 3 RCL 4 RCL 5

8 + + + + +

9 -» P -» P -> P -» P - P

Evaluates

_ 5 4 3 2
p(z) = a,z +a, z +ta,z +ta,z ta, z+ag

= ((((agz+a;)z+aj)z+aj)z+a,)z+ag

where the a; are real and z is complex, z =relf. Data

are preserved. Result appears in polar form, p(z) =se?,

where s €X, a €Y. If display in cartesian form u+ iv is

desired, change instruction 49 to GTO 00.

86

Demonstrations 3.2-1 + 3.2-3:

MODIFIED BERNOULLI METHOD FOR REAL OR FOR COMPLEX

CONJUGATE ZEROS

1. Purpose

To determine the one real zero or the two complex con-

jugate zeros of smallest modulus of a real polynomial

of degree 4,

4 3 2
p(z) := a,z taz +a,z tajz+a, ’

provided that the remaining zeros have larger absolute

values.

2. Method

The modified Bernoulli method using balanced starting

values, see Essentials, §3.2. We will also apply this

method to polynomials with multiple zeros and see that

the convergence is not impaired. The key definitions

and formulas for k=4 used in the program given below

are the following

X
n

q. ==
n Xn+1

87

Balanced starting values:

A ay

95 A - =

aj + qy_p (8p + ay_5(a;=(3+1) a, 4-3-1)

j=1,2, 3, where a_, = a, c= 0

Real zero zy:

A
a,

7
q =

k " ~
az + q_j(a,+q_,(a; +q, ay)

A

then shift dq = dy41 , J =1, 2, 3.

z, = lim q_ deflate with z -2z and apply
1 1

the method to the deflated polynomial.

Complex conjugate zeros ZyrZyt

ay as in case of real zero

Ay Tel 7%k-2 a
A%-1 7 = _ = Ik -1

9 7-a1

hn c= oq S10 “ . = ~ “a

by #5 Gg ty °n 7 91

b := lim b ’ Cc := lim ¢
n n

zy and z, are the solutions of 22 bz + & = 0;

deflate with this quadratic factor and apply

the method to the deflated polynomial.

88

3. Flow Diagram

See Essentials, §3.2, Figure 3.2.

4, Storage and Program

R Ry R, R, Rg Re Ro

9
a a; a, a, =2 = 0 0

3

I-11 Fk-2 %-3
00 10 20 30 40

0 STO*7 STO 7 CHS +

1 GSB 13 GSB 13 * STO 5 RCL 6

2 2 GTO 11 RCL 2 GTO . *

3 STO+6 RCL 4 + RCL 6 +

4 3 RCL O RCL 5 RCL 6 PAUSE

5 STO*6 RCL 7 STO 6 RCL 7 LAST X

6 GSB 13 % * - RCL 5

7 3 RCL 1 RCL 3 RCL 5 *

8 STO=7 + + RCL 6 PAUSE

9 4 RCL 6 < - RTN

Real root: 32 GTO 48

Complex root: 32 GTO 33

89

5. Operating Instructions

Load program, where instruction 32 discriminates between

the real and the complex case (see section 4). Switch to

RUN. Load the coefficients a, of the given polynomial

into Rs i= 0,1,2, 3,4 (a, is the coefficient of 241.

* Also load 2-4 into R. and zero into R., and R_.,. Press
aj 5 6 7

PRGM

R/S

to start the computation. The computer will briefly dis-

play a, (real root) or first b_ and then c. (complex

roots). The convergence of the qa, or b and c, has to be

checked by eye; if an indeterminate display of these

quantities is desired change instruction 48 or instruc-

tions 44 and 48 to R/S and press R/S after each display

to continue the computation. If the program should be

used to compute further zeros of the polynomial, then it

should be deflated with the corresponding linear or

quadratic factor. This deflation has to be done by hand.

If the coefficients of the deflated polynomial again are

called ag ay then a, =0 in the real case and ay=a; =0

in the complex case. Before restarting the computation

go to * above, etc.

90

6. Examples

p(z) = z° - 162° + 722° - 962 + 24, see Essentials,

Demonstration 3.2-1. We apply the program for

real roots. In order to deflate with z -2z., we
1

perform one Horner step by hand:

RCL 0

RCL 5
*

STO+1

RCL 1

RCL 5
*

STO+2

RCL 2

RCL 5
*

STO+3

RCL 3

RCL 5
*

STO+4

At this point the coefficients of the deflated

polynomial of degree 3 are located in R, + R The
0 3°

content of R, is equal to p(z,) and therefore

should equal zero (up to rounding errors). We now

have to put these coefficients into the appropriate

storage registers and load Rg * R, accordingly:

91

RCL

STO

RCL

STO

RCL

STO

RCL

STO H
H

O
O

N
N

K
H

Ww
W

N
D

Bd
»

W
w

STO

STO

STO

RCL

RCL W
w
J

O&
O

O
o

CHS

STO 5

We now are ready to do the next Bernoulli real

step. After the next zero has been found in this

manner, we deflate and re-store as above etc.

p(z) = (z-1)3(z +2) == zd23 322452 -2, see

Essentials, Demonstration 3.2-2. Since

(z -1)° = (z-1)(z -)?, it makes sense to try

to find one zero with the value 1 with the real

version of Bernoulli's method.

92

p(z) = 2% — 823 + 402% - 682 + 74, see Essentials,

Demonstration 3.2-3. Here the complex version of

Bernoulli's method, i.e. with instruction 32

changed to GTO 33, is successful.

1 1
From b = 2Rez, and C = 2, | we find z, and

z If a polynomial of degree 4 is deflatedZz, = .

with +quadratic factor we obtain a quadratic

polynomial g(z) := rz’ + sz +t. Clearly r=1 and

by comparing coefficients we get -2.0l... +s = -8

and 9.96... * t = 74, from which we can compute

s and t and the zeros z of gq and p.
3,4

See Essentials, Demonstrations 3.2-4 and 3.2-5,

where polynomials of degree 6 and 8 are con-

sidered. The program given in section 4 can

only handle degrees k <4. The results given in

the Essentials have been obtained on a HP-67

computer.

93

Demonstrations 3.3-6 + 3.3-8:

QUOTIENT DIFFERENCE ALGORITHM

1. Purpose

To compute all the zeros of a real polynomial of degree 4,

4 3 2
p(z) := a,z +az +a,z tajzz+a, ’

simultaneously. (If the convergence is too slow, the ob-

tained approximate values can be used as good starting

values for a faster method for determining a single zero.)

2. Method

The progressive form of the gd algorithm, see Essentials,

§3.3. For the present purpose it can be summarized as

follows:

Let agr ays ass ag, a, # 0; for n=0,1, 2, ... we generate

arrays of numbers

(1) (1) (2) (2) (3) (3) gq‘?
n n n n n n n

by the initial conditions

94

1 1 k
aL aj = 0, k = 2, 3,4;

0

a
k k+1

el i= a ’ k =1, 2, 3;

k

and the continuation rules

(k) _ (k) _ _(k-1) (k)
n+l (e) ®n) + 9 !

(k+1)

ok) _ Th+1 o (K)
n+l (k) n !

n+1

where always

S(O)(4)
t= 0 .

n n

One such array of numbers consists of one g and the

following e row of the gd scheme (see Essentials,

Example 3.3-6). If the zeros z, all have different
k

absolute values, then the gd scheme exists and

lim qt) = Zz and lim eK) =0
n k n

n-co n-oco

(convergence of the columns of the gd scheme, see

Essentials, Theorems 3.3a and b). By means of auxiliary

computation it is also possible to use these arrays to

compute pairs of complex conjugate zeros (see Essentials,

Theorem 3.3c). If, for instance, two g-columns, qt and

q!? say, show no convergence pattern and are flanked by

e-columns which converge to (or are) zero, then zy and

95

z, can be found as zeros of the quadratic polynomial

2
z -byz +c,

where

i 14 (1) (2)
by := lim (q1) +a.)

n->oo

qa (1) (1)
Cp = lim q, 90471 °

n->oo

3. Flow Diagram

Straightforward. First initialize, then compute next

array in the following order:

(1) (2) (1) (3) (2) _(4) (3)
n n n n n n n ’

the g-values are displayed.

96

4. Storage and Program

Ry Ry Ry R3 Ry Rg Re R7
a9 a a, aj a,

nq Dc @ 3) 3) (4)

a,€x

00 10 20 30 40
0 RCL 0 RCL 1 STO*2 RCL 6
1 RCL 3 STO=0 R/S RCL 6 STO-7

2 : CHS RCL 4 RCL 4 RCL 7

3| sTO 6 STO:1 RCL 2 - PAUSE
4] Rew 3 0 - STO+5 RCL 5
5| ren 2 STO 3 STO+3 RCL 5 :

6 + STO 5 RCL 3 PAUSE STO*6

7| sto 4 STO 7 PAUSE RCL 3 1
8| RCL 1 RCL 2 RCL 1 : STO+0
9 STO=2 STO+1 + STO*4 GTO 18

5. Operating Instructions

Load the program, then move the operating switch to RUN.

Select mode of displaying numbers. Load the coefficients

ay of the given polynomial into Ry k =20,1,2, 3,4

(a, is the coefficient of =z 4

X-register (for reasons of programming space). Then press

etc.!) and leave a, in the

PRGM

R/S

97

to start computation. The computer will then auto-

matically generate the first two rows of the progressive

(1)
1

form of the gd algorithm and stop by displaying gq

(1) _ _a1
0 = "a (see

Essentials, Example 3.3-5) is never displayed and at

L But all the

For reasons of programming space gq

this point already "overwritten" by q

other quantities of the initial array can be inspected

from the appropriate registers as indicated in section 4.

This is the only place in the program, at which nondis-

played quantities may be recalled, because elsewhere,

for reasons of programming space, the program is working

with the quantities in the X-register. * Press

R/S

to continue the computation. The computer then will

briefly display a? ai? and a? and stop by dis-

playing ait; as above only now the other values of

interest may be recalled. Now continue with * as above

to get ait etc. Instead of the brief displays of q'?),

(4) n
n

structions 27, 36 and 43 to R/S; then R/S has to be

q!? and gq one can obtain stops by changing in-

pressed after each display to continue the computation.

The e-values will always have to be recalled after the

display of ait.

6. Examples

4 3 2 .
p(z) := z -16z" +72z -96z + 24, see Essentials,

(1) _ _-l60 1 = 16.Demonstration 3.3-6. Here gq

98

p(z) := 2? ~ 82> +3922 -62z + 50, see Essentials,

Demonstration 3.3-7. After running the program,

we discover that the polynomial must have two

pairs of complex conjugate zeros. We hence com-

pute (no special program, since the g-values have

to be punched in anyway) the corresponding b and

c values, to obtain the two quadratic factors of

the polynomial as indicated in Demonstration 3.3-7.

p(z) := 8lz” -108z> +242 + 20, see Essentials,

Demonstration 3.3-8. The gd scheme for

p*(z*) := 81lz*2 + 2162*%3 + 1622%2% + 242% + 17 is

(initial rows corresponding to n=0 omitted):

99

100

(1
)

9
,

(1
)

n

(2
)

9
p

(2
)

n

3 2
o (

3)
n

4 0

-
1
.
9
1
6
6
6
7

0
.
2
3
5
5
0
7

-
0
.
6
0
1
8
5
2

-
0
.
1
3
7
8
9
2

0
.
5
6
0
1
8
5

-
0
.
8
9
5
6
6
1

-
0
.
7
0
8
3
3
3

-
1
.
6
8
1
1
5
9

0
.
1
3
6
6
1
9

-
0
.
9
7
5
2
5
1

-
0
.
0
2
7
9
3
7

-
0
.
1
9
7
5
8
4

0
.
8
4
9
1
6
8

0
.
1
8
7
3
2
8

-
1
.
5
4
4
5
4
0

0
.
1
0
0
8
1
9

-
1
.
1
3
9
8
0
7

0
.
0
1
6
6
5
5

0
.
6
7
9
5
2
1

-
0
.
8
2
7
0
7
4

-
0
.
6
6
1
8
4
0

-
1
.
4
4
3
7
2
1

0
.
0
8
5
4
7
4

-
1
.
2
2
3
9
7
1

0
.
0
0
2
2
3
4

-
0
.
1
6
4
2
0
8

0
.
8
3
2
2
3
8

0
.
1
6
5
2
3
4

-
1
.
3
5
8
2
4
7

0
.
0
8
2
2
6
2

-
1
.
3
0
7
2
1
0

-
0
.
0
0
1
1
3
8

0
.
6
6
5
7
9
5

-
0
.
8
3
3
7
4
9

-
0
.
6
6
7
0
0
4

-
1
.
2
7
5
9
8
6

0
.
0
8
9
6
5
1

-
1
.
3
9
0
6
1
0

-
0
.
0
0
0
1
3
7

-
0
.
1
6
6
8
1
6

0
.
8
3
3
3
9
3

0
.
1
6
6
7
4
5

-
1
.
1
8
6
3
3
4

0
.
1
1
1
8
7
4

-
1
.
4
8
0
3
9
8

0
.
0
0
0
0
6
1

0
.
6
6
6
7
1
4

-
0
.
8
3
3
3
1
2

-
0
.
6
6
6
6
4
8

-
1
.
0
7
4
4
6
0

0
.
1
6
5
7
8
3

-
1
.
5
9
2
2
1
0

0
.
0
0
0
0
0
6

-
0
.
1
6
6
6
6
0

0
.
8
3
3
3
3
1

0
.
1
6
6
6
6
3

-
0
.
9
0
8
6
7
8

0
.
3
2
0
7
3
4

-
1
.
7
5
7
9
8
6

-
0
.
0
0
0
0
0
2

0
.
6
6
6
6
6
5

-
0
.
8
3
3
3
3
4

-
0
.
6
6
6
6
6
7

 1
0

 -
0
.
5
8
7
9
4
4

 1
.
1
3
3
9
7
9

 -
2
.
0
7
8
7
2
3

 ~
1
.
9
5
6
7
4
3

-
7

10
7]

-
0
.
1
6
6
6
6
7

 0
.
8
3
3
3
3
3

 0
.
1
6
6
6
6
7

To obtain the two quadratic factors of the

polynomial we form:

L (0)
n

-2.518519

-2.656410

-2.684347

-2.667692

-2.665457

-2.666596

-2.666732

-2.666670

-2.666664

-2.666667

¥

_8
3

Now we compute the zeros z

as indicated in Essentials,

2 (0)
n

1.604939

1.869231

1.916197

1.890472

1.887247

1.888792

1.888967

1.888893

1.888886

1.888890

¥

17
9

101

L (2)
n

-0.148148

-0.010256

0.017681

0.001026

-0.001209

-0.000071

0.000066

0.000003

-0.000002

0.000000

¥

0

* + z*¥ and z
1 4

(2)
n

0

0.104938

0.130769

0.112280

0.109527

0.111018

0.111208

0.111117

0.111107

0.111111

¥

1
9

A
4

Demonstration 3.3-8.

Demonstrations 4.1-1, 4.1-2, 4.2-1 + 4.2-3, 4.3-3, 4.4-2:

SIMULATION OF p-DIGIT DECIMAL ARITHMETIC

1. Purpose

To simulate a computer working with a mantissa of p

decimal digits, 1 < p < 5.

2. Method

Any given machine number x is rounded to a p-digit

floating number X in the following way:

(i) Check and store the sign e€ of x and work with |x

(ii) Multiply |x| with 109, where q - positive or nega-

+109 € 10°71, 10P1;
store f£f :=104 ("correction factor").

tive - is chosen such that |x

(iii) Round the auxiliary number |x| - 109 to a p-digit

integer by forming

INT (|x|-109+0.5) .

(iv) Multiply this integer with e+f to obtain X.

102

ny
Now x can be computed with; all the results of computa-

tions have to be rounded by the foregoing procedure.

3. Flow Diagram

103

yes Ge=02
<< F=07

y

Check sign € of x

Xx := |x|

\

no
10? > xX?)

A _ Xx)
X = 10 yes

£ := 10 10P71 5 x 2 yes

LL y no x := 10x

f
: Xx := x+0.5 £:=737

y |

xX := INTx

y

X = gfx

> \

Show x

4. Storage and Program

Ro Ry R) R3 Ry Rs Re Ry
10P| e.f 10

00 10 20 30 40

0 ENTER STO*1 . RCL 2

1 1 ABS 3 5 STO+1

2 0 3 GTO 15 + *

3] STO 2 STO1l |» x2 vy INT GTO 24

4|-> R/S LAST X |» RCL 0 RCL 1

5|] x2 vy RCL 0 RCL 2 *

6 STO 3 X > vy + -» RCL 3

70 x 2 vy GTO 23 X >y X 2Y

8 x =0 X 2Y GTO 39 GTO 04

9 GTO 36 RCL 2 X2y [|[»X2Yy

The program stores the previously rounded number y into

R3 and preserves it (only) until the next number has been
a]

rounded, i.e. x has been found. This enables the user to

. . uv nv . .
perform operations with x and y without storing them out-

side the computer.

5. Operating Instructions

Load program, move to RUN. Load 10P into Ryi if p=4

press

EEX

4

104

Choose mode of displaying numbers by pressing

SCI

6

[To show the correctly rounded p-digit numbers it would

of course be sufficient to display just the p< 6 digits,

but it is also interesting to see the zeros which have

to appear after the rounding process.] Press

PRGM

R/S

The computer will stop right away, displaying 10. * Now

load x into the X-register and press

R/S

to obtain x, the correctly rounded p-digit value of x.

At this point the value shown previously can be found in

R Continue with * above. The registers R, + R, can be
3° 4 7

used for additional storage (e.g. if one X has to be pre-

served throughout several runs of the program).

6. Examples

Computations of Demonstration 4.1-1, with p=4,

for instance to obtain the (3,3)-element of the

first reduced tableau, which equals

0.2000 - 0.3333 *0.3333. The appearing product

105

is equal to 0.11108889 which is rounded to 0.1111.

The difference then becomes 0.08890. See also

Demonstrations 4.1-2, 4.2-1, 4.2-2, 4.2-3, 4.3-3,

4.4-2 for examples with p=4.

Demonstration 4.3-2 is carried out with p= 3.

The foregoing program can also be used to simulate

computations in "simple" precision with p=4

versus "double" precision, i.e. full machine

accuracy, see Demonstration 4.2-3.

106

Problem 4.2-7:

ITERATIVE REFINEMENT WITH "WRONG" L-R DECOMPOSITION

R, R, R, Ry R, Rg Re R,

(0) 0)] _
a b Cc d Xq X, ry r,

(n) (n)
X1 i) v1 Ya

00 10 20 30 40

0 RCL 5 RCL O PAUSE

1 1 2 STO=*6 RCL 3

2 RCL 4 * RCL 6 *

3 2 + RCL 1 STO-6

4 * CHS * RCL 6

5 - STO 7 STO-7 STO+4

6 RCL 5 -» P RCL 2 PAUSE

7 - PAUSE STO=+7 GTO 01

8 STO 6 PAUSE RCL 7

9 RCL 4 -» R STO+5

Applies iterative refinement to 2 x 2 system

2x4 + X, = 1

3 + 2x, = 0

. . _ 2 _ 1 (0) (0)
with exact solution xX) = 3’ X, =-3- If (x, 1X,)

is any trial solution, program shows length of

107

(0)
corresponding residual vector r and computes

(0)corrections c from

Lw® = £0

(0) _ (0)

| 1
Q

where

= 2). ==(9)
are alledged factors (possibly wrong) in L-R decomposi-

tion of matrix A.

Similar program could be written for arbitrary 2 x 2

system AX = v where elements of A and of v are

integers.

108

Demonstration 4.3-3:

STABLE LINEAR REGRESSION

1. Purpose

Given a sequence of data points (x55) i=1,2, ..., n;

to compute the coefficients of the linear regression

function

y = ax + b .

We also wish to allow for the possibility of adding or

removing a point from the set of data points.

2. Method

(See Essentials, §4.3, last section) Straightforward

application of the method of least squares to this

problem yields the formulas

1
_ L XY - SLX yy

2 1 2
Lx - lx)

(I)

1
i Tani

109

in which all summations have to be extended from i=1 to

i =n. These formulas, in general, are unstable. However,

if we introduce the running means

X. and Vv
i .

1 i
Yi=

I

S
H

h
e
s
s

I

S
=

h
e

5

i 1

and shift the origin of our coordinate system into the

center of mass of the given data points (and thereby

leaving the slope a of the regression line unchanged),

the formulas (I) become

. Lixg =u) (yy -v)

2
) (x, =u)

+ (II)

b=v-au,

and are stable. It is desirable to be able to compute the

regression line dynamically, i.e. to add a new or remove

an old data point without having to re-compute everything

from scratch. To this end we define (now noting the de-

pendence of the number n of data points)

n 2 n

q, = I (x;-u)®, rro:=) (x -u))(y;-v)
i=1 i=1

and find recurrence relations

hey °° Qa) ! Thal °° R(x) !

(for details see Essentials, §4.3). In view of the im-

plementation on the computer we again drop the subscripts

and denote the new quantities obtained after adding or

110

removing the point (x,y) with a prime: Let

n+l, if the point is added
vo. =

bo | n-1, if the point is removed ,

then

q' =q + (n' =n) 2 (x -un?

r' =r + (n' =n) 2 (x-u') (y =v") .

If we define

we obtain

I n + 5 I 2 c
t I
c
t

+ 3 | 2 >s!

and

u' = = s' , v!' = = t'

and finally

1

a = = ' b=v' -au' .

111

(I1')

3. Flow Diagram

In order to demonstrate the difference between the un-

stable and stable versions, we provide programs based

on both sets of formulas, (I) and (II'). In order to add

or remove a data point, the key)+ or)- has to be

pressed when running either program thereby updating n

and all the sums automatically. (The sums which are not

needed to implement (I) or (II') are either neglected or

overwritten with temporary data; see also HP-33E manual,

"statistical functions" for definition and location of

sums.) To compute means, the instruction x is used in

both programs.

(I) The flow diagram is straightforward and hence omitted

here. If only one data point has been read in, the cal-

culator first "asks" for the next data point, before

computing a and b (a would not be defined).

112

(II)

| Initialize everything to 0

lL=

Read in new data point

(x,y)

 Y

(Press)+ or)-, hence:)

t= n*xl, s' :(=s*tx, t := tty

<
i |

n=0 2? > >CS

_
Y no

 u' ,v', gq", r'

1

Compute (n' -n) — and

according to (II')

y

1

Compute and show a=
gq

Y

Compute u' , v' (again) and

show b = v' -au'

L >

113

4, Storage and Program

(I) R, Ry R, Ry R, Rg Re Ro

a nos=lx Ix° tly Jy? Ixy
00 10 20 30 40

0 RCL 7 RCL 2 R/S

1 REG RCL 3 1 GTO 02

2|-» RCL 2 RCL 5 -

3| FIX 0 * 3

4 R/S RCL 2 R/S

5 FIX 8 + STO 0

6 R + - x

7 R ¥ RCL 4 RCL 0

8 Xx =0 RCL 3 *

9! GTO 02 x -

(II') R, Ry R, Ry R, Re Re R,

q r n' s x t y (n'-n)2-

00 10 20 30 40

0 STO 4 STO 7 X 2y R/S

1 REG R + x RCL 6 STO 7

2|> RCL 2 X 2 y RCL 4 - x

3| FIX 0 Xx =0 - * RCL 7

4 R/S GTO 02 ENTER RCL 7 *

5 FIX 8 — x2 * -

6| x 2 vy LAST X RCL 7 STO+1 R/S

7| STO 6 + * RCL 1 GTO 02

8 R V RCL 2 STO+0 RCL 0

9| LAST X * R + 3
114

5. Operating Instructions

They are the same for both programs. Load program (I) or

(II') and move to RUN. Press

PRGM

R/S

* On the display of n. (n = number of data points already

taken into account), load the data point (x,y) such that

Xx€X and y€Y (thus y is to be loaded first). If the data

point is added, press

+

R/S

if the data point is removed, press

)-

R/S

Unless n was zero, when the calculator goes back to *

right away, the updated value of a will be displayed,

and after pressing

R/S

the updated value of b will be shown. Press

R/S

to get back to *, etc.

115

6. Example

TT, €, e+ 10°, m=20,1, 2, 3,Let Xp

Yi V2 x, + 1/3,

see Essentials, Demonstration 4.3-3.

116

Problem 5.1-3:

BERNSTEIN POLYNOMIALS

Ro R R2 R3 Ry Rg Re R7
[n] x Xp k Cy)

n-k

xeX

00 10 20 30 40

0 + Xp eX RCL 4 RCL 0

1 STO 1 STO 2 and * -

2 RCL O Pro- Xp € R, STO+5 STO+4

3 STO 3 gram RCL 3 1

4 a to and x =0 RCL 1

5 STO 4 com- putting GTO 49 1/x

6 0 pute £(x) STO*4 =

7 STO 5 E(x) 1 STO*4

8 RCL 3 as- into - GTO 08

9 RCL O suming X STO 3 -» RCL 5

Evaluates the n-th Bernstein polynomial associated with f£,

n
k, k -kp(x) i=] fx (1-x"",

for x€ (0,1].

117

Demonstrations 5.4-1, 5.4-2, 5.4-3:

LAGRANGIAN INTERPOLATION: EQUIDISTANT KNOTS

1. Purpose

To evaluate, for any n>0 the polynomial p that inter-

polates a given function f at n+ 1 equidistant inter-

+keh, k =0,1, ..., n, where hpolating points x, :=x
k 0

is a positive constant.

2. Method

Lagrangian interpolation. Evaluation by means of the

barycentric formula, see Essentials, §5.4,

n fr

l We xox
k=0 k

p(x) = n ’

1

ra
k=0 k

where fr :=£(x;) and the wi are the modified (such that

wg =1) weights, which in the case of equidistant knots

equal

k nt= CDQ) = CDF Era*
k

118

see Essentials, §5.4. The weights are computed recur-

sively by

* = = n-k *

wo 1 Yk+1 T1-x "x °C

3. Flow Diagram

See Essentials, Fig. 5.4a. s and t denote numerator and

denominator of the barycentric formula. To avoid division

by 0 if X= Xp the program checks whether X== 0 and

if so replaces 0 by 10739, this generally will produce

the correct display of p(x) =f see Essentials, § 5.4.k'

4. Storage and Program

Ro Ry R) R3 Ry Rs Re Ry
w* -k t (h] n x

n-k

00 10 20 30 40

0| - GSB 37 RCL 1

1 1 XxX #0 * STO=0

2 STO 0 GTO 18 STO+3 RCL 4

3 CLX CLX RCL 5 STO+6

4] STO 1 EEX x =0 GTO 07

5 sTO 2 CHS GTO 35 x

6 STO 3 STO*0 R/S

7(-» RCL O 0 1

8 RCL 7 3 STO-5

9 RCL 6 STO+2 STO-1
119

Instructions 37 + 49 are available for the subroutine

computing f(x). This subroutine should assume x in R.

and leave the computed value f(x) in the X-register.

The subroutine must not change the content of the

Y-register from the main program. Its last instruction

should be RTN. Instruction 35 not only produces the

Ss

t —

quotient; therefore we prefer the use of x to the longer

desired quotient but also an unnecessary and "harmless"

version

RCL 3

RCL 2

5. Operating Instructions

Load program, including subroutine to compute f(x). Move

to RUN and select mode of displaying numbers. Load data

as follows

h (= distance between knots)

into R,

n (= degree of interpolating polynomial

= number of knots minus one)

into Rg

Xx. (= leftmost knot)
0

into Re

120

Xx (= point at which polynomial is evaluated)

into Ro

Pressing

PRGM

R/S

starts the computation. The calculator stops by dis-

playing p(x). If the calculation is to be repeated for

a different x, then (for reasons of storage space) the

values of n and xq must be re-stored in the Re and Re

registers (h need not be re-stored), and the new x

must be loaded into Ro. Pressing

R/S

will yield new value of p(x).

The program may also be used to interpolate a function

that is not generated internally. In this case the sub-

routine providing the values of the function should

look like this:

37 RCL 6

38 R/S

39 X 2 VY

40 R ¥

41 RTN

(Instructions 39 and 40 are necessary to re-store the

Y-register of the main program.) After loading the data

121

and pressing

PRGM

R/S

as above, the calculator then will halt and display Xe

One then should read in £(x,) into the X-register and

press

R/S

The calculator will stop and display x One then should1°

read in £(x). This process is continued until all £(x)

have been read in. After pressing

R/S

one last time the calculator displays p(x).

6. Examples

Cubic interpolation of f(x) = sinx (x given in

degrees) in the interval [44,46], using the inter-

polating points 42, 44, 46, 48, see Essentials,

§5.4, Demonstration 5.4-1. The subroutine for £

reads

37 RCL 6

38 DEG

39 SIN

40 RTN

122

and the input data are h=2, n=3, Xo =42 with

x = 44.2, 44.4, 44.6, ..., 45.8.

Interpolation of f(x) = x, at x=0.5, by a poly-

nomial of degree n, using x, =k, k=0,1, ..., n,
k

see Essentials, §5.4, Demonstration 5.4-2. The

subroutine is

37 RCL 6

38 RTN

and the input data are h=1, n=2" (2=0,1,...,6),

=0, x=0.5.%0

To compute sin(m/4) by interpolating the function

f(x) = sinx (x given in radians) by a polynomial

of degree n = 22 +1, 2 =0,1,2, ..., 63 using

the interpolating points

=
1+ (7 + m3) ’

m=20,1,2, ..., 2, see Essentials, §5.4, Demon-

stration 5.4-3. We use the subroutine

37 RCL 6

38 RAD

39 SIN

40 RTN

The input data are

123

h=mw/2, n=1, X, = 0 ’ Xx = 7/4

" n=3, x,=-1/2, "
] n=2>5 , x, = — , n

" n = 7 ’ Xo = -37/2 ’ "

" n=29, X, = -27 ’ "

" n=11, x, = -51/2, "

" n = 127, x, = -631/2, "

[4] Here we demonstrate the use of the program for

manual interpolation. Given the following values

of the Bessel function Jot

X Jo (%)

2.2 0.110362267

2.3 0.055539784

2.4 0.002507683

” 2.5 -0.048383776

-0.096804954

2.7 -0.142449370

We interpolate the value of J, at x = 2.404825558,
0

the first zero of Joe We work with n =1, 3, 5,

always using the points Xp closest to x. Results:

n p(x)

1 0.000051886

0.000000085

5 ~2.6 +100

124

Problem 5.4-2:

EXTRAPOLATION TO x=0 FROM VALUES AT GEOMETRIC PROGRESSION

R, R, R, Ry R, Rg Re R,

[nd] t s ' Ww
n-k

00 10 20 30 40

0 to and STO+2 1

1 0 com- * STO-0

2 STO 2 pute 5 €X, STO+3 -

3 STO 3 and RCL 1 STO*5

4 1 £(q5), putting STO*4 RCL 4

5 STO 4 RCL O 1

6 STO 5 as- £(q5) x =0 -

7|- RCL 4 suming GTO 49 STO=+5

8 Pro- into X CHS GTO 07

9|| gram qe Rs RCL 5 vo |» x

Evaluates p(0) where p(x) is polynomial of degree n inter-

polating f(x) at x =1,9g9, ..., a. p(0) is evaluated in

barycentric form,

n

Low £ (qd)
k=0p(0) = —/— ,
yw& k

k=0 1 k-n-1
= * = =-9 *where wa 1, w mn w¥1 .

l-g

125

Demonstrations 5.5-1, 5.5-2:

LAGRANGIAN INTERPOLATION: CHEBYSHEV KNOTS

1. Purpose

To evaluate, for any n> 0, the polynomial p that inter-

polates a given function f, defined on the interval

[-1,+1] at the n+ 1 "Chebyshev knots"

m1
X, = COS 9 t= (k+35) 77 k=0,1,...,n.
k

2. Method

As in the previous program ("Lagrangian Interpolation:

Equidistant knots"), the interpolating polynomial is

evaluated by means of the barycentric formula. For the

modified weights we obtain

k
wi = (=1) sin Op ’

see Essentials, §5.5. To save programming space, these

weights are computed as

126

wk = (-1)" sino, = cos km + sin ¢, + 0

= sin(¢, +km)

= sin(¢, + (2k+1 5-5)

= sin((n+2)¢, - 5)

= cos ((n+2) ¢;) .

Thus the weights are not computed recursively and there-

fore do not need to be stored.

3. Flow Diagram

We denote the numerator and denominator in the barycentric

formula by s and t respectively. We note that the in-

creasing sequence of the angles Pr starts with bo = TThsTY

and ends with ¢ —2n+l ooo the increment is always
n 2n+2 !

Ap =—— .
n+l

127

yes

s :=0

t :=0

be = Smsk °° 2(n+l)

y ~

2Pr > m3

y NO

x oo =wk cos[(n+2) ¢,]

Xp t= cos Py

wk

t := t+—

k

compute or read £(x)

wk

S = s+ —— e f(x,)
xX Xp k

Y

= JL
Op = Op toad

y

Show

- Sp(x) = t

128

4. Storage and Program

R, Ry R, Rg R, Rg Re R

¢ t Ss Ad [n] Xp [x]

_ Tm not not
n+l destroyed destroyed

00 10 20 30 40

0 STO 4 + GSB 39

1 RAD 2 * *

2 CLX + cos STO+3

3 STO 3 STO 1 RCL 7 RCL 4

4 STO 2 -> 0 RCL 1 STO+1

5 m Xx Ly cos RCL 1

6 RCL 5 GTO 37 STO 6 GTO 14

7 1 RCL 1 - > x

8 + RCL 5 + GTO 00

9 + 2 STO+2 -

Instructions 39 + 49 are available for the sub-

routine computing f(x). This subroutine should

assume Xx in Re and leave the computed value

f(x) in the X-register, and at the same time

it must not change the content of the Y-register

from the main program. Its last instruction

should be RTN. Instruction 37 not only computes

the desired quotient 2 but also z which, being

in the Y-register at the end of the computation,

does not do any harm; but the use of X saves us

two programming steps.

129

5. Operating Instructions

Load program, including subroutine to compute f(x). Move

to RUN and select mode of displaying numbers. Load data

as follows

n (= degree of interpolating polynomial

= number of knots minus one)

into Re

X (= point at which polynomial is evaluated)

into R,

Pressing

PRGM

R/S

starts the computation. The calculator stops by dis-

playing p(x). If the calculation is to be repeated for

a different x, load new value of x into R, and press

R/S

The calculator will stop by displaying p(x), etc.

The program may also be used to interpolate a function

that is not generated internally. In this case the sub-

routine providing the values of the function should

look like this:

130

39 RCL 6

40 R/S

41 X 29

42 R ¥

43 RTN

After loading the data and pressing

PRGM

R/S

the calculator will halt and display x Read in £(xg)0°

into the X-register and press

R/S

The calculator will stop displaying x Read in £(x,) etc.1°

until all £(x) have been read in. After pressing

R/S

one last time the calculator displays p(x).

Caution: If accidentally x equals one of the knots Xr

an error halt results, because the barycentric formula

then requires a division by zero. However, unless

£(x,) =0 the correct value of p(x) will generally be

obtained by loading on display "error" a very small

number, performing manually the following steps:

131

R + *)

CLX

EEX

CHS

3

0

R/S

[*) : To erase "error" any key could be pressed, but the

RY instruction can be thought of as bringing the un-

wanted denominator 0 on display.)

6. Examples and Timing

f(x) := x, see Essentials, Demonstration 5.5-1.

The subroutine for f simply is:

39 RCL 6

40 RTN

f(x) := |x|, see Essentials, Demonstration 5.5-2;

subroutine for f:

39 RCL 6

40 ABS

41 RTN

132

f(x) := arctan(x) . Here the subroutine for f is:

39 RCL 6

40 5

41 +

42 Tan?!

43 RTN

(The instruction RAD is already contained in the

main program.)

n x=0.2 x=1.0

2 0.31034546 1.55172728

0.49728439 1.31741228

8 0.69954553 1.36229895

16 0.78815414 1.37239249

32 0.78532124 1.37338140

[eo 7=0-78539816 arctan5=1.37340077]

133

Problem 5.5-3:

SALZER'S FORMULA

0 1 2 3 4 5 7

x D N k (DF cos I
XEX

00 10 20 30 40

0 RCL 4 £(x,) RCL 6 *

1 RAD -> 0 into - STO+3

2| sto 1 * X 3 1

3] RCL 0 RCL 0 as- 1 CHS

4 STO 4 + suming RCL 6 STO*5

5 0 cos Xe €X ABS STO+4

6| STO 2 STO 6 and + RCL 4

7 STO 3 Pro- I x, € Re INT Xx >y

8 1 gram RCL 5 + GTO 11

9| STO 5 placing RCL 1 STO+2 x
Evaluates polynomial p(x) interpolating f(x) at

Xp t= cos XI, k=0,1,...,n, in barycentric form due

to Salzer,

n Kk £(x;)

I D7 ey =
k=0 *x

p(x) = a
k 1I (17e =

k=0 Xx

where €, = €_ = 1 all other ¢
0 n 27 k

134

Demonstration 5.6-1:

2-POINT HERMITE INTERPOLATION, DATA PRESERVED

1. Purpose

Given a differentiable function f defined on an interval

I containing the two points x and Xq Let £ t= E(x)

fr t= £1 (x) k = 0,1. To evaluate the polynomial

p(x) of degree <3, which interpolates f and has the

same slope as f at the two given points, i.e. such that

= ! -_ ' =

This is a special case of Hermite interpolation in two

ways:

(1) only the first derivative (instead of my

derivatives at the point x) has to agree at each point,

(ii) there are only two (instead of n) inter-

polating points.

Exactly one such polynomial exists. For details see

£!', k=0,1,Essentials, §5.6. The input data x Kx’k’ fr

should be preserved.

135

2. Method

An application of a barycentric formula for the

evaluation of the Hermite interpolating polynomial

to our special case yields

1 2 2
p(x) = 2 {trex £o + (xx) £,

+ (emg) Gem) [(emg) (£54380) + (emg) (£422) 1}

where A := x, -X see Essentials, §5.6.
1 0’

3. Flow Diagram

Basically straightforward; since there are only two

storage registers available, the stack had to be used

extensively, which sometimes obliterates the clarity

of the program.

136

4, Storage and Program

0 1 2 4 5 6 7
: ; X-X X=XBE x, £, £) £7 : 0 , 1

00 10 20 30 40

0 RCL 4 RCL 3 + x2

1| ENTER RCL 1 2 RCL *

2| ENTER RCL 0 * * +

3] RCL 0 - - + RCL 3

4 - STO+6 RCL 6 RCL RCL 6

5| STO 6 STO+7 * * x2

6 R + * X 2Yy RCL *

7! RCL 1 LAST X RCL 2 * +

8 - RCL 5 2 RCL GTO 00

9! STO 7 * * RCL
5. Operating Instructions

Load program. Move to RUN. Select mode of displaying

numbers, e.g. by pressing

FIX 9

Load data as follows

xq into

Xq into

£o into

£, into J
xo

ox
A

Ww
N
H

Oo

137

f! into R,

into Rg

H
e
o

Now load the value of x, at which p has to be evaluated

into the X-register and press

PRGM

R/S

The calculator will stop and show p(x). If the value of

the polynomial for a different x is desired, load the

new Xx into the X-register and press again

PRGM

R/S

etc. (The input data do not need to be re-loaded.)

6. Example

f(x) := sinx (with x measured in degrees), X := 44,

xq := 46, see Essentials, Demonstration 5.6-1. After

pressing DEG we obtain the input data

£, = sin 44 = 0.694658371

£, = sin 46 = 0.719339800

£4 = 78g COS 44 = 0.012554848

£1 = T8g COS 46 = 0.012124076

138

Demonstration 5.7-1:

SOLVING EQUATION BY INVERSE 2-POINT HERMITE INTERPOLATION

1. Purpose

To solve the scalar non-linear equation

f(x) =0

by means of interpolating the inverse function gl-1] and

evaluating the resulting interpolating polynomial p(y)

at y=0.

2. Method

Iterated inverse 2-point Hermite interpolation, see

Essentials, §5.7: Choose starting values X and Xqr

such that Yq == £(x;) and Yq == f(x) have alternating

signs. Evaluate Yor Yqpr f', £!. Compute x, from
0’ "1 2

2x 2X
1 { 2 2 1 0 1 1

Xy 35 —5 {XY X,Y,YNY [(F+—)y t(ev——)Y 1}2 (v,-7q) 0<1 "140 “041 £5 Y17Y, 1 £5 Yq Yo 0

If Yo :=£(x,) =0 then X, is the desired solution. Other-

wise substitute Xy i= Xy, X) TX, and repeat the algo-

rithm.

139

3. Flow Diagram

Straightforward.

4. Storage and Program

R

R

0 1 2 3 4 5 6

0 1 Yo Yi |E7 (xo) E(x) Yo~Y1

x,€X

00 10 20 30 40

0 Xq RCL 2 RCL 5 x2

1 Put in RCL 3 STO 4 +

2 Yq X - RCL 7 STO-7

3 into Xq STO 6 - RCL 3

4 Rg in 3 RCL 2 STO 2

5 1 R STO 7 * STO*7

£7 (x0) 1
6 1 RCL O RCL 4 - RCL 7

7 into RCL 1 -— RCL 2 PAUSE

8 Rg STO O RCL 3 * STO-1

9| assuming - * RCL 6 RCL 1
Note: A more elegant program could be written by using

subroutines for the computation of Yq and 1/£' (x). But

this would require a few more programming places (e.g.

GSB .., RTN, etc.), which we prefer to save for more

complicated functions f.

140

5. Operating Instructions

Load program, including program to compute Yq and

1/£" (x27). Move to RUN. Load starting values as follows:

xX into0 Ro
Xq into Ry

Yo into R,

1/£' (x4) into R,

and put Xq into the X-register. Choose mode of displaying

numbers. Now press

PRGM

R/S

The computer will briefly

at the display of x For5°

R/S

The convergence has to be

putation of x, requires a
2

algorithm must be stopped

of £f by then has not been

display x, = x
1 2

a new iteration press

and then stop

eye-checked. Since the com-

division through Yo “Yq the

when Yg © Y1 = 0. If the zero

found, the algorithm has to

be restarted with new starting values.

141

6. Example

f(x) := x2 - a, x = 1, X1 := 10, see Essentials,

Demonstration 5.7-1. The initial program for this

function is:

00 10

01 x? 11

02 4 12

03 - 13

04 STO 3 14

05 RCL 1 15

06 2

07 *

08 1/x

09 STO 5

NOP

NOP

NOP

NOP

NOP

NOP

Input data: Yo = -3, 1/£' (x4) = 1/2.

142

Demonstration 5.9-1:

SPLINE INTERPOLATION

1. Purpose

Given a function f which is defined at least at the n+1

equidistant points Xy = xy t keh, k=1,2, ...,n, h>0.

To construct its spline interpolant g, i.e. the uniquely

determined (see Essentials, Theorem 5.8) function g with

the properties (i)-(iv) of Essentials, §5.8.

2. Method

Spline interpolation as described in Essentials, §5.8

(theory) and §5.9 (algorithm). g in each interval

[xr] is represented by a cubic polynomial q; (t),

the evaluation of which requires the knowledge of the

derivatives Sy of g at the interpolating points x, and

X . We recall that the vector s of the unknown hes,
i+l

can be determined as solution of As = b, where A is

tridiagonal (and independant of f) and b is the input

vector

143

(3 4 _ 3b, 3, 3f,

by 3f, - 3f,

b 3f, - 3f
- 2 — 3 1 .=b= | = , £, i= £(x,)

b__; 3f_ - 3f__,

(bl 3f -3f|
The algorithm proceeds in three phases.

Phases I and II: Find the L-R decomposition of A.

All elements #0 or 1 of L and R can be expressed in

terms of the Lr k=0,1, ...,n-1, i.e. the upper main

diagonal of R. The following formulas result:

11 .
ro = 2 7 rs, TS a<-r _ i=1,2,...,n-1,

i-1

and on the HP-33E with a 9-digit mantissa we may put

r, := 2 - /3 = 0.267949192 , i>09.

I: Solution of Ly = Db :

070

yy = r.(b;, -y,_q) ’ i=1,2,...,n-1,

_ b, Yn

Yn 2 -r :

144

II: Solution of Rs =Yy :

hs =vy

hs, = y; ~ r, (hs,i i=n-1,n-2,...,0.
+1)

Phase III: Evaluation of g at x in interval con-

taining all x
k

1) Determine interval [x.,], in which x lies,¥i+l
i.e. calculate integral part

X =X;

2) Calculate t :=5

2 2
g(t) = (L-t) £, + t £0

+ t(l-t)[(L-t)(2f, +hs,) +t(2f,, -hs,JI].

3. Flow Diagram

For reasons of programming space each phase of the algo-

rithm had to be implemented by a separate program.

Phase I: See Essentials, Figure 5.9a.

Phase II: Straightforward.

Phase III: On a larger computer, the flow diagram

would be completely straightforward, i.e. first read Xr

h, x, then compute i, t and 1-t, then read £4 fin

hs, hs,4 and finally compute g(t). Program III given

145

below, for reasons of storage space, differs from this,

inasmuch as it first reads £, and hs, and computes the

terms involving these quantities and only then reads

f. and hs,
i+l 1

4. Storage and Program

to finish the computation of g(t).

Phase I:

R, R, R, Rg Ry, Rg R,

1 Ti-1 Yi-1
00 10 20 30 40

0 STO+3 STO 2 RCL 2

1 0 RCL 1 RCL 3 -

2 STO 1 RCL O * STO=+3

3 STO 3 - R/S RCL 3

4 2 Xx =0 CHS R/S

5 STO 2 GTO 29 STO 3 0

6» RCL 1 4 1 FIX 2

7 FIX 0 RCL 2 STO+1 GTO 00

8 R/S - GTO 06

9 FIX 8 1/x - 2

146

Phase II:

R, Ry R, R, R, Rg R, R

n] Ti 1 Yi+1

00 10 20 30 40

0 Xx <0 9 - -» STO*5

1 RCL 0 GTO 00 1 1/x RCL 0

2 FIX 0 Xx <vy 9 STO 2 FIX O

3 R/S GTO 25 2 1 R/S

4 FIX 8 . GTO 40 STO-4 FIX 8

5| STO 5 2 » STO 4 RCL 4 RCL 5

6|- 1 6 2 x <0 -

7| STO-0 7 STO 2 GTO 39 R/S

8 9 9 - 4 GTO 28 STO 5

9 RCL O 4 RCL 2 RCL 2 GTO 06

Phase III:

Rg Ry R, R, Ry Rg Re R

X, h t 1-t k * * *

x€eX

00 10 20 30 40

0 STO 2 RCL 3 STO 6 STO+5

lf RCL O - STO*5 Xx 2y RCL 2

2 - STO 3 x2 STO+6 STO*5

3] RCL 1 RCL 4 * STO+6 RCL 3

4 + FIX 0 STO 7 RCL 2 STO*5

5 INT R/S 1 STO*6 RCL 5

6| STO 4 STO 5 STO+4 x RCL 7

7 1 X 2Yy RCL 4 * +

8| LAST X STO+5 R/S STO+7 FIX 8

9| FRAC STO+5 CHS RCL 6 GTO 00

147

5. Operating Instructions

They are quite different for all three phases.

Phase I: Load program I, move to RUN. Load n into

R Press0°

PRGM

R/S

* When integer i (in FIX 0 notation) is shown, load b,

into the X-register and press

R/S

When the calculation stops, the number displayed is Yy

and should be recorded. Press

R/S

to get back to * (i increasing from 0 to n). When 0.00

is shown, phase I is terminated.

Phase II: Load program II, move to RUN. Load n

into Ry. Press

PRGM

R/S

* When integer i (in FIX 0 notation) is shown, load Yy

(as computed in phase I) into the X-register and press

148

R/S

Unless i =n (when hs=y_ and therefore the calculator

goes back to * right away and displays i =n-1) the

number displayed at the next stop is hes, and should be

recorded. Press

R/S

to get back to * (i decreasing from n to 0). When

-1.00000000 is shown, phase II is terminated.

Phase III: Load program III, move to RUN. Load

leftmost interpolating point X into R, and h into R,.

Load the value of x, at which the spline interpolant g

should be evaluated into the X-register. * Press

PRGM

R/S

At the first stop the integer i (corresponding to the

interval, in which x lies) is shown in FIX 0 notation.

Load

£s into Y , hs, into X

(as computed in phase II) and press

R/S

At the final stop g(x) is shown. If g has to be evaluated

for another x, load new value of x into X and go back to *.

149

6. Example

Let n := 20, x, i= -1+h‘k, h=20.1, k=20,1,2,...,20,

£10 = 1, £ = 0 for k # 10, see Essentials, Demonstra-

tion 5.9-1. Input to

phase I: n= 20; b =0 for k #9,11, by =3, b,,=-3

ITI: n=20 and results from I

III: xX, = 1, h=0.1 and results from II

150

Demonstrations 6.1-1, 6.3-1:

MIDPOINT, TRAPEZOIDAL, AND SIMPSON VALUES

OF DEFINITE INTEGRAL

1. Purpose

Given a definite integral

b

I := | f(x)dx , b> 0 ;

0

to compute, for n = 0,1, 2, ..., its midpoint, trape-

zoidal and "Simpson" (i.e. first Romberg acceleration

of trapezoidal value) values.

2. Method

According to Essentials, §6.1 (midpoint and trapezoidal)

and §6.3 (including problem 8, Simpson). We recall the

formulas to be implemented:

2-1 1 b

Midpoint: M_:=h) £((k+3)h), bh = =;
k=0 2

Trapezoidal: T i= Lr +M) ;
P : ntl © 2''n nf

Simpson: S t= T* = Lig + 2M)
: n+l ° ntl °° 3''n n’ °

151

3. Flow Diagram

We put M:=M, T:=T1+ Tp n *Ton+1’ TM,

/ Input b,T, /

Y

h :=b; M:=0

X := b-2

y M:=0

M := M+ f(x) Ty :=T *)

X = x-h _h
h := >

Y

nO

Compute and display

M := h-*M

1
T := S(T, +M)

1
S := 3 (Ty + 2M)

L

The sum in the formula for M, in terms of the sampling

points used, is evaluated from right to left (rather than

from left to right as indicated by) from k=0 to k=2"-1).

In the program given in section 4 below the instructions

in the box *), for reasons of economical use of the pro-

gramming locations, are intertwined with the computation

of M, T and S.

152

4. Storage and Program

R Ry R, R Rg Re R.

x 0]
h M

00 10 20 30 40

0 STO-2 + STO-4

lf RCL © RCL 2 2 +

2 RCL 1 x >0 STO=+1 3

3 2 GTO 07 + $

4 + RCL 1 STO 3 GTO 00

5 - STO*4 R/S

6| STO 2 RCL 3 R ¥

7(-» GSB 35 RCL 4 RCL 4

8| STO+4 R/S +

9 RCL 1 RCL 3 RCL 4

Programming locations 35 + 49 are available for

the subroutine to compute f(x), assuming x in X

and x in R,. The subroutine must terminate with

RTN. Storage registers R_. + R5 5 may be used for

additional storage.

5. Operating Instructions

Load program,

to RUN and select mode of displaying numbers, e.g. by

pressing

FIX 8

153

including subroutine to compute f(x). Move

Load data as follows:

b = upper limit of integration

both into R, and R,.

Tr := 2(£(0) + £(b)) into R0 FT 3 3°

0 into Ry.

Press

PRGM
R/S

to start the computation. *) After a while (longer as n

increases) the calculator will display Mo. Upon pressing

R/S

Tos is computed (quickly) and displayed. After pressing

R/S

once more, S is computed (quickly) and displayed. To
n+l

compute the next set of values M, T, and S, press

R/S

and again follow the instructions from *).

154

6. Example

f(x) := 22DX b i= 7 , £(0) := lim f(x) = 1 ,
X x-0

see Essentials, Demonstration 6.1-1 for values M and T

and Demonstration 6.3-1 for values S. Subroutine to

compute f(x):

35 RAD

36 sin

37 RCL 2

38 %

39 RTN

155

Demonstration 6.2-2:

STIRLING'S FORMULA

1. Purpose

To test the accuracy of Stirling's formula to

approximate ni! .

2. Method

Computation of F :=n!, the Stirling approximation

S := 2mm ()° and the quotient of the two, see

Essentials, §6.2.

3. Flow Diagram

Show F
5

| compute and show S i

156

4. Storage and Program

Ro Ry R; R3 Ry Rs Re Ry
n k F

nex

00 10 20 30 40

0 STO-1 RCL O +

1| sTo 0 GTO 05 T GTO 00

2 STO 1 |» RCL 2 *

3 1 R/S 2

4| STO 2 RCL 0 *

5|» RCL 1 1 Vx

6 x =0 e” *

7 GTO 12 3 R/S

8 STO*2 RCL 0 RCL 2

2 1 yo Xx 2Y
5. Operating Instructions

Load program, move to RUN and choose mode of displaying

numbers, e.g. by pressing

SCI 6

Load n into X-register and press

PRGM

R/S

157

*) The computer will first compute and show n! , then,

after pressing

R/S

the Stirling approximation and, after pressing

R/S

once more, their quotient. Load next value of n into

X-register, press

R/S

and go to *), etc.

6. Examples

See Essentials, Demonstration 6.2-1. It can be verified

numerically, that lim z = 1.
Nn—->co

158

Problem 6.2-4:

PIPPENGER'S PRODUCT

0 1 2 3 4 5 6 7

v2 v2| p' old p f 2m

p old Pp m

00 10 20 30 40

0 STO+6 GTO 07 STO 0 -

1|- RCL 6 RCL 6 RCL 5 - 1

2 2 x2 RCL 6 3 5

3 * STO=5 1/x + +

4| sTO 7 1 v= - -

5 1 STO+6 STO*1 STO 3 R/S

6| STO 5 RCL 6 RCL 1 R/S GTO 01

7|-> RCL 6 STO*5 R/S RCL 2

8| STO*5 RCL 7 RCL 0 RCL 3

9 1 X >y RCL 1 STO 2

Evaluates partial products of Pippenger's product,

where

159

_ (22

m := 2K ,

_ m
fr = (

m+2 m+2

m+l m+l m+3 °°

2m 2m

*t 2m-1

and applies Romberg convergence acceleration twice.

Values are

N
D

1.

1.373178096

1.362672263

1.360025257

1.359362072

1.359196217

1.359154741

p'

1.359499607

1.359170319

1.359142922

1.359141044

1.359140924

1.359140916

160

1.359148366

1.359141096

1.359140919

1.359140916

1.359140915

1.359140914

Demonstrations 6.3-2 + 6.3-4:

MIDPOINT RULE WITH STEP REFINEMENT AND TWO-FOLD

ROMBERG CONVERGENCE ACCELERATION

1. Purpose

To approximate the integral

b

I := | f(x)dx , b>0,

0

by computing its midpoint values and accelerating their

convergence.

2. Method

Midpoint rule (see Essentials, §6.1) and Romberg

acceleration (see Essentials, §6.3). We compute the

first three columns of the Romberg scheme by means

of the formulas

M :=h m £((k+2)h_) ’ h == ' n=0,1,2,...,

(midpoint values)

161

M* es = M -—

n n (M
n-1 _M,) ’ n=1,2,...,

w
l

(first accelerated values)

M* * e= M* -— L(x

n n

- M* =se(MX_ -M}) , n=2,3,...,

(second accelerated values)

3. Flow Diagram

Though the first and second accelerated values are only

defined for n>1 or n> 2, respectively, the program given

below does not treat the cases n=0 and n=1 separately.

Instead it indiscriminately carries through all the

formulas given in section 2 for n=0,1, 2, This

measure is not dangerous (e.g. no division by zero or

accumulation of wrong values) and saves a lot of pro-

gramming space, but it causes the second, third and

sixth values after starting the program to be meaning-

less (see section 5). We put h :=h M :=M_ last

M:=M M* :=M¥*, last M* :=M* _, M** = M**
n n n-1 n-1'

162

 A

last M* := M*

last M := M *)

h

h :=73

A

Compute and show

M := h*M

1
M* = M-3 (last M - M)

M** := M* — = (last M#* — M¥*)
15

L y

As in the preceding program (Midpoint, Trapezoidal,

Simpson) the sum for M, with respect to the interval

of integration, is evaluated from right to left. And

the instructions in the box *) are intertwined with

the computations of M, M* and M** to save programming

space.

163

4. Storage and Program

R Ry 5 R, Rg

last M M* last M¥*

00 10 20 30 40

0 STO=1 STO 5

1 0 STO+3 RCL 3 R/S

2| STO 3 RCL 1 R/S RCL 6

3] RCL 0 STO-2 RCL 4 RCL 5

4 RCL 1 RCL 2 RCL 3 STO 6

5 2 x >0 STO 4 -

6 3 GTO 09 - 1

7 - RCL 1 3 5

8| STO 2 STO*3 * +

91>» 2 - -
Programming locations 09 + 20 should be used for

the program (not subroutine, to save space) to

compute f(x). This program should assume x in X

and x in R, and put f(x) into X. R, is available
2 7

for additional storage.

5. Operating Instructions

Load program, including program to compute f(x). Move to

RUN. Select mode of displaying numbers, e.g. by pressing

FIX 8

164

Load b, the upper limit of integration, both into R, and
0

R,. Press

PRGM

R/S

The calculator computes and displays the first midpoint

value Mg - Upon pressing

R/S

a meaningless number (MJ is not defined) will be dis-

played. Pressing

R/S

once more produces another meaningless number (ME* is

not defined). After pressing

R/S

again, the calculator will start the computation of the

second row of the Romberg scheme and stop at the display

of My. Press

R/S

to obtain My - After pressing

R/S

again, the last meaningless number (M*} is not defined)

165

will be computed and shown. From now on all the numbers

produced by the program are meaningful. Press

R/S

to reach the next row of the scheme. After a while

(its length is proportional to 2M) M is displayed. Press

R/S

to obtain Mx and

R/S

again, to obtain MX*. Proceed as indicated above to ob-

tain the values of the next row. If only the second

accelerated values are to be recorded, then instructions

32 and 41 can be changed to

PAUSE

in which case

R/S

has to be pressed only once, that is, after the com-

putation of a whole row of the scheme.

166

6. Examples

sin x .
f(x) := =—=— , b :=m, see Essentials, Demon-

stration 6.3-2. The program to compute f is

09 RAD

10 sin

11 RCL 2

12 +

13 NOP

20 NOP

The fourth and fifth columns given in Essentials,

have to be computed by hand using the formulas

(now written without stars):

M t= M -—(M -M), n=3,4,... ’

(third accelerated values)

1 -M) , n=4,5,... .M = M3 355M37M3

(fourth accelerated values)

f(x) := -Loglizx) | b = 1, see Essentials,

Demonstration 6.3-3. Program to compute f:

09 CHS

10 1

11 +

167

12

13

14

15

16

20

LN

RCL 2

CHS

NOP

NOP

f(x) := (VI —kZsinZx) ©, see Essentials, Demon-

stration 6.3-4. The program for f, assuming kx?

in Roy is:

09

10

11

12

13

14

15

16

17

18

19

20

+

1/x

NOP

NOP

Before starting the program Kk? needs to be stored

into R.. The results for
7

b =

and
b =

(
S
T
E

1

and k
2

and x2

0.5 or 0.99

0.5

can be looked up in Essentials.

168

Demonstration 6.3-5:

CONVERGENCE ACCELERATION IN THE COMPUTATION OF

AND OF OTHER CONSTANTS

1. Purpose

To demonstrate convergence acceleration in non-linear

recurrence relations

_ 2

Yoel © Yq Yo_1 !
1+

Yn

Yo and Yi given starting values.

2. Method

It can be shown that these recurrence relations satisfy

an error law of the form

n -2n -(m+1l)k_ - -mn
Yo, = s+C.,4 +C,4 t...+C4 + 0(41) ’

where s is the limit of the sequence ly} and Crt

k=1,2,...,m are constants. Hence the Romberg

algorithm (see Essentials, §6.3) may be applied. Along

with y, we generate four more columns of the Romberg

scheme by:

169

1* = - = -
Yn Yn 3(¥n yp) !

yXx* == y* -— L (yr -y¥*)

n n 15 '“n-1 n’ '

(3) = kk — 1 * % -— * %

Yn BE £4 63 Yhi1 Yn)

(4) _ (3) _ 1 ,.(3)__(3)
Yn = Yj 255 (Yn21 Yn)

The values ym are meaningful only if n>m+l.

3. Flow Diagram

/ Input Yor¥Yy

Y

Compute and show

(m) __ (m)
Yel (see section 1) Yn = Yo]

Y (m) (m
Yn-1 *< ¥p

Compute and show

—

3 4
yr, yxx, yyl8)

 (see section 2)

[—.

In order to save programming space the program given in

section 4 below

a) for n> 2 computes all the numbers ym, i.e.

generates a rectangular scheme and hence some

meaningless numbers,

170

b) performs the shifts of the box on the right hand

side of the flow diagram along with the computation

(m)of the Yi

the last time).

(right after they have been used for

4, Storage and Program

R, Ry R, Ry R, Re R R,

Vo vi] Aa vi own ovr nov
Yn-1 Yn

00 10 20 30 40

0 STO*1 R/S (PAUSE) |R/S (PAUSE)|R/S (PAUSE)

1 2 RCL 1 RCL 2 RCL 4 RCL 6

2| RCL 0 |R/S (PAUSE)| RCL 3 RCL 5 RCL 7

3] RCL 1 RCL 0 STO 2 STO 4 STO 6

4 STO 0 RCL 1 - - -

5 + - 1 6 2

6 1 3 5 3 5

7 + + + + 5

8 + - - - +

9 Vx STO 3 STO 5 STO 7 -
5. Operating Instructions

Load program, move to RUN, select mode of displaying

numbers. Load starting values: Yq into Ry Yq into R,.

Press

171

PRGM

R/S

to start the computation of the rows of the scheme. The

numbers

3 4
Yo or y3 ' Y3* ys) ’ y})

(3) (4)* %* %
Yj I ¥3 I ¥Y3 I Yi ’ Yj

will be displayed row by row. After each display, press

R/S

to continue.

Note: In the display of the k-th row the numbers y

are meaningless if m > k because insufficient data are

available for the construction of the complete Romberg

scheme. Thus, only from the 5th row onward all numbers

displayed are meaningful.

mmy,
the Romberg scheme, converges to the limit most rapidly

Since the sequence {y the last computed column of

(see Essentials, Theorem 6.3), it is reasonable to

change the instructions 12, 20, 30 and 40 to

172

PAUSE

Then Yr Yh YE*, y! will be shown briefly and the

computer will stop at the display of yi. Then

R/S

has to be pressed to start the computation of the next

row.

6. Examples

Yo = 0, Yq = 1, then Yn = 2%sin (27m) and Yo -> Tm,

see Essentials, Demonstrations 1.3-4 (recurrence

relation and limit) and 6.3-5 (numerical values).

Yo = xv/1 - x2, y, = Xx (0 <x <1), then
n-1

Yn
2 sin (217? arc sin x) and y ~~ arc sin x

(see Essentials, §1.3, problem 4%*4d).

If x=1, then Yo =0y y,=1, and hence all the

columns of the scheme should converge to

arc sinl = 1.57079633. Indeed we obtain:

173

1.00000000
1.41421356
1.53073373
1.56072258
1.56827424

1.55228475

1.56957379

1.57071886

1.57079147

1.57072639

1.57079520 1.57079629

1.57079631 1.57079633 1.57079633

We see that Ye has only one correct decimal digit,

(3) (4)
5 5

when y and y have converged already. Only

Yqis shows full accuracy.

If x=v/2/2, then Yo =1/2 and y, =v2/2, and we have

to exhibit convergence to arc sin /2/2 = 7m/4

= 0.78539816. Results:

0.70710678

0.76536686 0.78478689

0.78036129 0.78535943 0.78539760

0.78413712 0.78539573 0.78539815 0.78539816

Convergence has been reached already.

1,1 = Jx-28B] vy = 5x 2’ y, = vx . (x>0), then

-n -n

Y, = 201 (2 -x) and y, Log x

(see Essentials, §1.3, problem 4*c).

If x=e, then Yo =1.17520119 and y; =1.04219061.

The computation yields:

174

1.01044927 0.99986882

1.00260620 0.99999185 1.00000005

1.00065117 0.99999949 1.00000000 1.00000000 ,

indeed Loge = 1.

If x=10, then Yo =4.45 and y, =2.84604989, and

we get:

2.43187617 2.29381826

2.33450889 2.30205313 2.30260212

2.31054929 2.30255209 2.30258536 2.30258509 = Log 10

Ten more iterations would be required for Yn to

converge.

175

Problem 6.3-7:

PLANA INTEGRAL

R, R, R, R, Rg

1
h, 50, 0

-k
2 h, y Ss

00 10 20 30 40

0 1 RCL O RCL 2

l|»Program - STO+1 RCL 3

2 to + GTO 01 RCL 2

3| place RCL 2 RCL 0 STO-2

4 gy) RCL 1 X 2y STO*2 STO 3

5||linto X, T STO+2 STO 1 PAUSE

6 |assuming * X 2y 2 -

7 yer, 2 RCL 2 STO%0 3

8 * X =y 4 3

9 e” GTO 33 STO+:1 -

Evaluates

co

(y)
I := | dy

0 2my 1

using midpoint rule with steps hy, 5g ah, .

and applying convergence acceleration once.

176

S

0.036207166

0.066297263

0.074582005

177

0.076327295

0.077343585

Demonstration 6.4-1:

CLASSICAL RUNGE-KUTTA METHOD:

INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

1. Purpose

To integrate numerically an ordinary differential

equation (ODE)

y' = £(x,y)

subject to the initial condition

y (x4) = Yo *

2. Method

Classical Runge-Kutta method, see Essentials, §6.4.

Choosing an integration step h, we determine approximate

values Yn of the values y (x) of the exact solution y (x)

at the points xX, t= x,+n*h, n=1,2, ..., by the
0

formula

_ 1=y + 3k; +2k, +2k, +k) ,Yn+1 2 3

where

178

~

1] | Hh ws ~1 2

k, == hex + = +k.)2 *T 2 2" In TX

k, := bfx += +k,)3 5 32 r YT Xo

k := Df(x +n + 2k.)4 * 2 r Y 3 .

3. Flow Diagram

The very ingenious program given in section 4 below is

due to Dr. Oliver Pretzel.

It basically follows the pattern of the flow diagram

for the classical Runge-Kutta method given in Essentials,

Fig. 6.4d. However, in order to use one integer, once

it is available in the X-register, for more than one

purpose, the author lets the indices of the Ly range

from -1 to 2 rather than 1 to 4. Together with putting

j := j+ 1 before the last branching point, this enables

him to compute k, and k, with y* = y+3J-ky. Furthermore
1 2

the denominator 3 in the formula for Yne1 Can also be

used to compute j := j-3, i.e. to re-set j := -1 before

starting the algorithm for a new x.

179

4, Storage and Program

Rg Ry R, Ry R, Rg R

2 -1 0 X Yq

J S| X y

YX

00 10 20 30 40

0 1 STO 1 GTO 01

1|- RCL 1 x =0 RCL 3

2 X >y GTO 37 PAUSE

3 GTO 41 XxX 2Yy RCL 2

4 x =0 STO+2 STO-2

5 GTO 29 * 3

6 RCL 0 GTO 38 STO-1

7 RCL 0 STO+3 |» R ¥ 3

8 * R ¥ -» RCL 4 STO+4

9 STO+2 |» + + RCL 4
Instructions 01 + 16 should be used for the pro-

gram to compute f(x,y*),

X in Ri

the X-register. Registers R57 Rgr RyR., are

assuming y* in X and

this program should put f(x,y*) into

available for temporary or permanent storage.

In this form (i.e. without using subroutines)

the program can even be used on the HP-25

(after interchanging instructions 20 and 21

and changing instruction 22 to x<y).

180

5. Operating Instructions

Load program, including program to compute f(x,y*). Move

to RUN. Select mode of displaying numbers and load data

as follows:

s into R,

-1 into Ry

0 into R,

X, into R,

Yo into R, ’

and leave Yq in the X-register (if data are input in

indicated order, it is already there). Press

PRGM

R/S

to start the computation. After a while Xq will be shown

briefly and the calculator will stop at the display of

y,. Press

R/S

to obtain X, and Yor etc.

6. Example

2 2 .
y'=x"-y , x,=0, y,=1, see Essentials,

Demonstration 6.4-1. Here the function to compute

f(x,y*) is:

181

01 xX

02 CHS

03 RCL 3

04 x2

05 +

06 NOP

16 NOP

The accelerated values (by a variant of the Runge-Kutta

algorithm) y*(h) and y**(h) can be computed "by hand".

182

Demonstration 6.5-1:

SIMPLIFIED RUNGE-KUTTA METHOD FOR SYSTEMS OF 2 EQUATIONS

1. Purpose

To integrate numerically a system of two first order

differential equations

f(x,y, z)

g(x,y,2z) ,

y'

Zz!

subject to the initial conditions

y (x4) Yo

z (x) = Z, .

Since a single second order differential equation

y" = g(x,y,¥y"')

subject to the initial conditions

y (x4) Yo

y' (x4) = 245

by introducing z := y' can be reformulated as system of

two first order ODEs, it can be integrated with the same

algorithm.

183

2. Method

Simplified Runge-Kutta method for systems of first order

ODEs, see Essentials, §6.5. We recall the formulas for a

system of 2 equations:

h
Yop ly, t38(xsyvz)]

h
+ E(x+h,y+hf(x,y,2),z+hg(x_,y_,2z))

h

n+l [z+39(xvy, r2))]

h
+ 59 (x+h,y+hf(x,y_.z),zthg(x,y,2))

184

3. Flow Diagram

h
/nput xg g12, /

Y

n :=0

-¢

X := X4 Y= Yys 23% 2

-<

Compute

f := £(x,y,2) 3; 9g := g(x,yY,2)

h hsim y+ (Bes £m ze (Rg
h _ _h
2°72

y

yes /h . Ov

N2__
y no

*)n+l Xx := x+ |h]

h
z := t+|3lg

h
y == s+ [3] f

L >

Co Show

xX t= xX, Yi t= ss, 2. t= t

185

This flow diagram is based on the assumption that h > 0

(forward integration). During one iteration the branching

point "250 ?" is reached twice. First the answer will be

"no", and the calculator continues by computing the argu-

ments of £f and g on the right hand side of the formula

(see section 2); the absolute value bars in the box *)

are for clarity only, since x - expressed in terms of

the input h - is computed as x = (-3) = (-2) , i.e. with

the "new" 2, whereas z and y (by a RY instruction) are

computed with the "old" h When the second time the2 o

answer is "yes", the appropriate sums to obtain ANY

and Zo+1 have been computed. The program does not

actually count the iterations (and hence not carry out

"n:=0" or "n:=n+l", as indicated in the flow diagram).

186

4. Storage and Program

Ro 1 2 4 5 7
h
2 0 Yo
-2 S

5 XY
Yo&Y ’ z,€X

00 10 20 30 40

0 RCL 0 X 2 VY

1 CHS RCL 2

2 RCL 0 STO 0 +

3 ABS x > 0 X 2 Y

4 * GTO 45 GTO 01

5 STO+2 STO-1 RCL 1

6 X 2 Y STO-1 PAUSE

7 LAST X R + RCL 2

8 * RCL 3 R/S

9 STO+3 + RCL 3

Instructions 01 + 21 should be used for the pro-

gram computing f(x,y,z) and g(x,vy,2):

Assume z in X , y in Y

Put f into X , g into Y

Registers R, + R, are available for temporary
4 7

or permanent storage.

187

5. Operating Instructions

Load program, including program computing f and g. Move

to RUN, select mode of displaying numbers. Load data as

follows:

h .
> into R, (h must be > 0)

x, into Ry

Yo into R,

zg into Rg

and put y. into the Y-register and z, into the X-register
0 0

of the stack (if data are input in indicated order, they

are already there); this must not be forgotten! Press

PRGM

R/S

to start the computation. The calculator will briefly

display Xq and stop at the display of Yq: Press

R/S

to obtain Zq * Upon pressing

R/S

the next iteration is started; x is displayed briefly,

Yn indefinitely, and after pressing

R/S

again, zp is displayed. Continue with *, etc.

188

6. Example

Oscillations of a mathematical pendulum of length L and

mass m, see Essentials, Demonstration 6.5-1. Resulting

first order system:

y' = z =: £(x,y,2)

-2 siny =: g(x,y,2)z!

with initial conditions

y (0)

y' (0)

Yo
0 (pendulum is released, not pushed) ,

where the gravitational constant g=9.81 (m/sec?) . We

set L :=1 and store the constant g into Ry. Hence the

program computing the functions f and g can be written

01 x 2 vy

02 sin

03 RCL 4

04 CHS

05 *

06 X 2 Vy

07 GTO 22

09 NOP

21 NOP

Numerical example: Yq :=m/3. Therefore

189

needs to be pressed before starting the computation.

We initially set

h = 0.0125

and obtain

%n Yn %n

0.000000 1.047198 0.000000

0.012500 1.046534 -0.106196

0.025000 1.044543 -0.212311

0.100000 1.004885 -0.842598

0.300000 0.680345 -2.332724

0.500000 0.119155 -3.109734

0.512500 0.080192 -3.121939

0.525000 0.041106 -3.129374

0.537500 0.001957 -3.132015

0.550000 -0.037194 -3.129856

Now y, <0 for the first time. Since our program only

works with h>0 we set h :=2=0.00625 and use the under-

lined data as input (remember, that Yn in Y and Zz in X).

This yields

0.543750 -0.017618 -3.131535 ,

190

again a negative Y,- We repeat this process. Now

h = 0.003125, yielding

0.540625 -0.007831 -3.131925 ,

i.e. a y, <0- Also h=0.001563 and h=0.000781 are un-

successful. But h=0.000391 yields

 0.537891 0.000734 -3.132020

0.538281 -0.000490 -3.132021

With h :=2=0.000195 and the underlined data as input

there results

0.538086 0.000122 -3.132021

0.538282 -0.000489 -3.132020

With h=0.000098 and h=0.000049 and the underlined data

we still obtain negative values Yr but h=0.000024

leads to

0.538110 0.000046 -3.132021

0.538135 -0.000031 -3.132021

Putting h :=2=0.000006 and using the underlined data as

input yields

0.531160 0.000027

0.538122 0.000008

0.538128 -0.000011

191

Always continuing in the same manner, we finally get

0.538125 0.000000

and hence the period T of the pendulum

T = 4x_ = 2.1525 .
n

192

Problem 6.5-1:

PREY-PREDATOR MODEL

Ro Ry Ry R3 Ry Rs
h
> X Y, zg a b

00 10 20 30 40

0 * NOP

1] x2 vy R + NOP

2| ENTER *

3 ENTER RCL 5 continue

4 RCL 6 * as in

5 * CHS Demo.

6| RCL 7 Xx 2y 6.5-1

7 - RCL 4

8] x2 vy *

9 R ¥ +

Solves system

y' = ay - byz = y(a-bz)

z2' = cyz - dz = z(dy -4d)

by simplified Runge-Kutta method.

193

Demonstration 6.6-1:

DIFFERENTIAL EQUATION OF FIRST ORDER: TRAPEZOIDAL METHOD

1. Purpose

To integrate numerically an ordinary differential

equation (ODE)

y' = f(x,y)

subject to the initial condition

2. Method

Trapezoidal method, see Essentials, §6.6, i.e. choose

integration step h and determine approximate values Yq

to yx) of the exact solution y(x) at the points

x = X.+n+*h. The Yr n=1,2,..., are computed by
0

iteration according to

(0) _ h
Yne1 = Yq + 5; B(xry)

(m+1l) _ h (m)
n+l =Y, + SIEry+ E(xhey9) !

194

m=20,1, ...; the iteration is stopped when two suc-

cessive iterates differ by less than e. Then

(m+1)

Yn+1 :Yn+1

3. Flow Diagram

See Essentials, Fig. 6.6a.

4. Storage and Program

0 1 2 3 4 5 6 7

h € X Yq 2

xX Y, k

00 10 20 30 40

0 x RCL 2

1 RCL 4 RCL 4 PAUSE

2| STO-4 X 2 Y RCL 3

3 STO+3 STO 4 GTO 00

4 RCL 0 - ->

5 STO+2 STO-3

6|-> GSB 24 ABS

7 RCL O RCL 1

8 2 Xx Ly

9 + GTO 06
Instructions 24 + 49 should be used for the sub-

routine computing f(x,y). This subroutine should

195

assume x in R, and y in Ry

the X-register. Its last instruction should be

and leave f(x,y) in

RTN.

5. Operating Instructions

Load program, including subroutine for f. Move operating

switch to RUN. Choose mode of displaying numbers, e.g.

by pressing

FIX 6

Load data as follows:

Integration step h into R,

Tolerance € into Ry

Starting values Xg into R,

Yo ° into Ry

5fo :=5E(xyry,) into R,

Press

PRGM

R/S

to start the computation. After a while x, will be dis-
1

played briefly, and the calculator will stop at the dis-

play of Yq- Press

R/S

to obtain x3; and y,, etc.

196

6. Example

y' = 22 - y2 =: f(x,y), y(0) = 1, see Essentials, Demon-

stration 6.6. Subroutine to compute f:

24 RCL 2

25 x

26 RCL 3

27 x2

28 -

29 RTN

-9
Input of € := 10 7:

CHS

STO 1

Xy = 0, yg = 1, £ = -1. With integration steps h = 0.2,

0.1, 0.05 (step is successively halved) approximations

ISK Toe Ty to y(2) are computed. In view of the applica-

tion of Romberg acceleration, it is reasonable to press

FIX 9

before computing the final value for each h. There results

T, = 1.677871265

T, = 1.679066690

T, = 1.679361196

197

With the formulas

1
* - — — -— =T T, 3 (T, 1 T) ’ n 2, 3,

Tx*% = Tk - L (rx - T*
3 1572 371

the accelerated values can be found.

198

Problem 6.6-5:

SIMPSON METHOD FOR y' =f (X,Y)

Ro Ry Ry 3 Ry Rg Re Ry

h © i! Yo Yy 3% 36)

00 10 20 30 40

0 STO 5 (x7¥,) putting STO 6

li RCL 5 4 Assuming f -

2] RCL 3 * Xy into STO-4

3 + STO+4 in X ABS

4 RCL 4 RCL 0 R, RCL 0 RCL 1

5| sTO 3 STO+2 and 3 Xx <y

6 - -» Program Yq + GTO 16

7 STO+4 to in * RCL 2

8| RCL 6 com- R, RCL 6 PAUSE

9 STO-6 pute and X 2Yy RCL 4
To start press

PRGM

R/S

199

Problem 6.6-7:

NUMEROV METHOD FOR y" = f(x,y)

Ro Ry R2 3 Ry 5 Re Ry
2

h © *1 Yo Yy 13% 6)

00 10 20 30 40

0 STO 5 com-— into STO 6

1 RCL 5 1 pute X -

2 RCL 3 0 f(x,y) RCL 0 STO-4

3 - * Assuming x2 ABS

4] RCL 4 STO+4 X €R, 1 RCL 1

5| sTO 3 RCL 0 and 2 Xx <y

6 + STO+2 Y ER, : GTO 17

7 STO+4 = Pro- and * RCL 2

8 RCL 6 gram putting RCL 6 PAUSE

9| STO-6 to f X 2Yy RCL 4
To start press

PRGM

R/S

200

Demonstration 7.1-1:

SLOW FOURIER TRANSFORM, REAL DATA, n=8, PERIOD 1

1. Purpose

Given n=2m=8 real data £, stemming from a periodic

function f with period T=1. To compute the coefficients

Cpr k=-4,-3, ...,4, of the balanced trigonometric poly-

nomial of degree m=4, interpolating f (see Essentials,

§7.1 for definitions, Theorem 7.la for Existence and

Uniqueness).

2. Method

Computation of the "ordinary", i.e. slow Fourier Trans-

form, see Essentials, §7.1l. Since for real data £0

Cc k=0,1,...,4, only Co’ Cy eeeys C need to-k ~ Sk’ 4
be computed by

For the implementation on the calculator this can be

written in a Horner-like form

Cc, = F {toravate, ooo 256 +2£,) 0) | ’

201

where z i= 2". Define

= ' fa
Cr 2 Cp t 1c

It can be shown that and Cy are real, i.e. Cp=Cy=0-

3. Flow Diagram

/ Input Eorenity |

-

 A

j = 3-1

Y

{3 =02)>5

A
y ves

s := f +s

Compute and show

1
! [I—Cx : g Re s

1
" == —Cx : 8 Ims

 z
z = —

1
 Y

202

The index J has been used in the flow diagram for clarity

only; it is not actually used in the program, given in

section 4 below. Furthermore, since the z, always being

roots of unity, all have modulus 1, the program only

works with their arguments. The multiplication z(f45 +s)

is implemented in the subroutine starting with instruc-

tion 41. This subroutine first transforms fF +s into

polar coordinates, then multiplies the two factors by

adding the arguments (and does not multiply 1-]£5 +s)

and transforms back to cartesian coordinates. Since all

the storage registers are occupied by the £0 the stack

has to be used extensively.

4. Storage and Program

0 1 2 3 4 5 6 7

to fy £5 £5 £4 fg te £
00 10 20 30 40

0 GSB 41 RCL 1 + GTO 03

1 RAD RCL 4 + R/S -» P

2| STK + GSB 41 R R
3| RCL 7 GSB 41 RCL 0 m +
4 GSB 41 RCL 3 + 4 R +

5| RCL 6 + 8 : R 4
6 + GSB 41 + - CLX

7 GSB 41 RCL 2 R/S ENTER +

8 RCL 5 + R ¥ ENTER -» R

9 + GSB 41 8 0 RTN
203

5. Operating Instructions

Load program, move to RUN. Select mode of displaying

numbers, e.g. by pressing

FIX 8

Press

PRGM

R/S

to start the computation. If

R/S

is pressed after each display, the results are obtained

in the following order:

)Q
O
-

-

W
=

N
=

H
=
-

~
-

w
nN

>

6. Example

Daily temperatures in Johnson City, New Mexico,

see Essentials, Demonstration 7.1-1.

204

Demonstration 7.1-1:

FOURIER SYNTHESIS, REAL DATA, n=8, PERIOD 1

1. Purpose

Given the coefficients c, :=c' + ic!" k =20,1,...,4(=m),
k k k'

of the balanced trigonometric polynomial t (Tt) of degree

4, interpolating a real valued function f, given at

n=8=2m points 1 k =0,1,...,n-1. To evaluate t(T1)k’

for arbitrary tT, see Essentials, §7.1 and previous pro-

gram "Slow Fourier Transform".

2. Method

Evaluation of

3 . . .
t(1) := y e2mikt LL c2midT 2midt,

k 2 74 -4
k=-3

3 2mik 1 2mid
=c. +2Re{ J c eT izc eT) |

0 k 2 4
k=1

Sy z=cyp +icy , by Horner's rule, see Essentials, §7.1l.

The fact, that Ch =C4=0¢ in the case of real data, is

taken into account before starting the computation.

205

3. Flow Diagram

Straightforward implementation of Horner's algorithm.

Similar remarks as in the previous program "Slow Fourier

Transform" hold with respect to the arithmetic of com-

plex numbers and the use of the stack.

4. Storage and Program

0 1 2 3 4 5 6 7

<5 cq cq <5 5 c3 C3 c!

TEX

00 10 20 30 40

0 2 RCL 3 RCL 2 X 2 Y

1 RAD + + + R +

2 2 -» R x 2 y X 2Y X 2 y

3 * RCL 5 RCL 4 GSB 39 ¥

4 ii + + 2 R +

5 X ZY X ZY * R +
6| ENTER RCL 6 GSB 39 RCL 0 +

7 ENTER + RCL 1 + X 2 Y

8| ENTER X 2 Y + GTO 00 -» R

9 RCL 7 GSB 39. X 2 Y -> P RTN

5. Operating Instructions

Load program, move to RUN, choose mode of displaying

numbers. Load data as follows:

206

. .
So into R,

. .
ci into Ry

n 1
cy into R,

c,) into R

ch into R

C3 into R

C3 into R

c! into R

(and do not load 5 and cc", which are zero). Load the

value 1, at which t should be evaluated, into the

X-register. Press

PRGM

R/S

The calculator will stop at the display of t(t). If the

polynomial has to be evaluated for another 1, load new

value of 1 into X and press

R/S

etc.

207

6. Example

Daily temperatures in Johnson City, New Mexico, see

Essentials, Demonstration 7.1-1. Input to this program

are the coefficients c computed by means of the pre-’

vious program "Slow Fourier Transform". Now we can com-

pute the temperature at any other time h of the day,

by letting tv = fraction of the day, elapsed at time h.

(This has to be done, since the period T is assumed

to be 1, i.e. here 1 day.)

208

Demonstration 7.2-1:

UNSTABLE TRIGONOMETRIC INTERPOLATION, n EVEN

1. Purpose

To demonstrate that the representation

sin nol k
t(r) = 2222TT) (-1) cot [m(t-1)) 1] * f

n k

for the balanced trigonometric polynomial interpolating

a real-valued function f with period 1, given at the

points

k
Ty 35 4 7 k=20,1, ..., n-1,

fr :=£(1) n even, is unstable, see Essentials, §7.2.

2. Method

Using the facts, that cota = tan a’ tan(a-m) = tana,

f(0) =£(1) and letting Th :=1, we can write

sin nmt o k £(1)

tlt) = n ! (=1) tan[n(t-1,)]
k=1 k

209

3. Flow Diagram

Straightforward. The summation is started with the term

for k =n. The program given in section 4 below assumes,

that f is given by a formula (rather than data points

only).

4. Storage and Program

0 2 4 5 7

[n] k T Ss Ty

TEX

00 10 20 30 40

0 x = 0 * GTO 09 GTO 00

1 RAD GTO 31 tan -» RCL 2

2 STO RCL O +

3 RCL O + RCL 3

4 STO STO 5 * RCL O

5 0 GSB 41 STO+4 STO+4

6 STO RCL 2 1 *

7 1 RCL 5 STO-1 sin

8 STO 3 - CHS STO*4

9|- RCL ™ STO*3 RCL 4
Instructions 41 + 49 are available for the sub-

routine computing £(r,0. This subroutine should

in X and 1, in R leave £f. in X and
k k 5' k

terminate with the instruction RTN. Storage re-

assume T

can be used for additionalgisters Re and R,

storage.

210

5. Operating Instructions

Load program, including subroutine computing fe Move to

RUN, select mode of displaying numbers. Load n (even)

into Ry. Load Tt, at which t should be evaluated, into X.

Press

PRGM

R/S

The calculator will stop at the display of t(t). If the

polynomial has to be evaluated for another 1, load new

value of 1 into X and press

R/S

etc.

6. Example and Timing

We try the behavior of the representation of t(t),

given in section 1, for f(t) =1, see Essentials, De-

monstration 7.2-1. Subroutine for f:

41 1

42 RTN

Time used to compute one value t(t) approx. 27 sec.

211

Demonstration 7.2-2:

TRIGONOMETRIC INTERPOLATION, BARYCENTRIC FORMULA, PERIOD 1

1. Purpose

To evaluate the balanced trigonometric polynomial t (Tt)

of degree m interpolating a real-valued function f with

period 1, given at the points

T = ’ k = o, 1, eo oy n-1,
k B

S

by means of the barycentric formula, which is a stable

representation for t(t), see Essentials, §7.2.

2. Method

If n=2m is even, we use the facts that cota = 1 ’
tan a

tan(o-m) = tana, £(0) =£f(1l) and let Th :=1,

we obtain

Tonk
k=1 tan[w(t-1,) 1]

t(T1) = n r

J (-1)¥ 1

tan[m(t-1,)]

= =

see Essentials, Theorem 7.2a.

212

If n=2m+1 is odd, for similar reasons the foregoing

formula with "tan" replaced by "sin" results.

3. Flow Diagram

Input n

\

/ Read T

|

k :t=nj; s :=t := 0; Ep = 1

Y

ves . (k=02>

Yy no A

T, == k
k ° n

compute fr t= £01)

Y = *) _ -1A z= e,(tan [m(T TD

t :=t+A; s := s+f4

k :=k-1; 1 t= ~€p

Compute and show

t(t) := =

*) If n is odd, "tan" has to be replaced by "sin". The

program given in section 4 below assumes, that f is

given by a formula.

213

4. Storage and Program

Rj R R, Ry R, Rg Re R,

[n] k T Tye €x S t

TEX

00 10 20 30 40

0 - RCL 1 RCL 2 *

1 RAD x =0 RCL 3 STO+5

2 STO GTO 47 - 1

3 RCL 0 RCL O m STO-1

4 STO + CHS

5 0 STO 3 tan (sin) STO*4

6 STO 1/x GTO 10

7 STO RCL 4 -» RCL 5

8 1 * RCL 6

9 STO STO+6 +
Instructions 16 + 29 should be used for the ro-

in X

ram to evaluate fr := f(t), assuming Tt

and putting f£f

k
and in R into X. R, is available

3 k 7
for additional storage. Instruction 35 is "tan"

if n is even and "sin" if n is odd.

5. Operating Instructions

Load program, including program to compute f£ Move tok°*

and t into the X-register.RUN. Load n into R Press
0

214

FIX 9

PRGM

R/S

to obtain t(t). If t needs to be evaluated for another 7,

then load new value of 1 into X and press

R/S

etc.

6. Example and Timing

Let f(t) := cosnmt, n=12, see Essentials, Demonstration

7.2-2. Program computing fe

16 RCL 0

17 *

18

19

20 cos

21 NOP

29 NOP

Time needed to compute one value t(t) approx. 37 sec.

215

Demonstrations 7.2-3, 7.4-1:

DYNAMIC TRIGONOMETRIC INTERPOLATION, PERIOD 1

1. Purpose

Given a real-valued periodic function f with period 1.

To compute, for 2=0,1, 2, ..., the balanced trigono-

metric polynomials to (1) interpolating £ at the n := 2%

points Ty :=k/n, k=0,1, 2, ..., n=-1.

2. Method

The t, (1) are generated recursively by

€ (1) i= aT Ty
«= - ’

2 b, Sg

where

a, = £(0) cotmt, b, = cotrmt, r, = Sg = 0

and

Qpe1 = Bg FT Ty Bot1 = Bg * 8g +

n-1

r, =) f(t.) cotm(t-1,) ,
2 kel k k

k odd

216

n-1

L=)
k=1

0 Il cotm(t-1,) ’

see Essentials, Theorem 7.2b.

3. Flow Diagram

The program given in section 4 below basically follows

the pattern of the flow diagram in Fig. 7.2a of Es-

sentials. Thus the sums in the formulae for r., and s

2 2
are evaluated from k =n-1 downward.

4. Storage and Program

Rg Ry R, Ry Ry Rg Re R,

T [1 1 0 0 0 0 |

TEX

00 10 20 30 40

0 - RCL 3 STO-7

1 RAD m x >0 STO+5

2 STO 0 GTO 05 -

3 1 tan RCL 4 +

4 STO-3 1/x RCL 6 R/S

5|- x STO+7 STO-6 RCL 2

6 RCL 0 * STO+4 STO+2

7 x STO+6 - RCL 2

8 Xx 2y 2 RCL 5 STO 3

9 R V STO-3 RCL 7 GTO 03
217

Instructions 06 + 15 should be used for the program to

x: x in X and putting £0 into

X. Ry is available for additional storage. The instruc-

tion x (see 05 and 17) has been used in order to save

compute f = f(t) assuming tT

programming space; together with Eo, it furnishes

another quotient (in Y), which is not needed.

5. Operating Instructions

Load program, including program to compute f Move toK*

RUN. Select mode of displaying numbers. Load data as

follows:

1 into R., and R
2 3

0 into Ryv Re, Rey .

and t, the value at which the polynomials to should be

evaluated, into the X-register. Press

PRGM

R/S

At the first stop to (1) is shown. Press

R/S

to obtain t, (1), etc.

218

6. Examples and Timing

f(t) := |2(t-[t]) -1| , see Essentials, Demon-

stration 7.2-3, when [1] denotes the largest

integer <1. For 1 >0 the program computing fr

can be written as:

06 ENTER or 06 FRAC

07 INT 07 2

08 - 08 *

09 2 09 1

10 * 10 -

11 1 11 ABS

12 - 12 NOP

13 ABS 13 NOP

14 NOP 14 NOP

15 NOP 15 NOP

(If Tt <0 the INT operation yields [tT] +1, but

we know that f(t) =f(-1) for any 1, see Figure

7.2b.) The computing time for 2 =1 is approx.

4 sec. and doubles at each step; for 2=14 it

is about 6 hrs.

f(t) := (1+¢ cos 2mt) Y?, see Essentials, Demon-

stration 7.4-1, where €e¢=0.9 and 1t=0.2. If we

store the constant 2m in R the program com-1’

puting fr is:

219

*06 RCL 1 11

07 * 12 1

08 cos 13 +

09 14 /x

10 9 15 1/x

Note: If the program given in section 4 above

should be used for a function, which to program

takes a little more than 10 instructions, then

the main program can slightly be shortened e.g.

by

- storing 1 into R, "by hand"

- pressing RAD "outside"

- rearranging the program such that to (1)

is in the X-register after instruction

49 has been completed (and thereby

saving one instruction R/S)

220

Demonstrations 7.3-1, 7.3-2, 7.3-3:

COMPLEX FOURIER COEFFICIENTS, DATA GENERATED, PERIOD 1

1. Purpose

To compute the complex Fourier coefficients of a given

function f with period 1.

2. Method

For k i=kgr kotl, ... we compute the trapezoidal values
0

Cp of the complex Fourier coefficients Cy by

A . n-1 _ -21k

cy =n L f(D e ’
m=0

see Essentials, §7.3 (also for estimates of the error
A

c, —-cC e.g. Theorem 7.3b). We assume that f is given
k k'

by a formula and hence have to generate the values £

of £f at the sampling points Ty :=k/n. Letting

p := 27K
n

since exp (any integer multiple of 2mwi) = 1, the fore-

going formula can be written as

221

3. Flow Diagram

2
/1nput ko mo]

k =k,

-

m :=n

argz :=0; 6 ;= 21%

A

 yes

 Y

222

. im6 . . :
Since |z| := |e” | = 1, using polar coordinates, in

order to multiply f, *z, only the arguments of f, and z
k

therefore |z| is not
k

have to be added and [£2] = | £|

explicitly used. See also the remarks to the flow dia-

gram of "Slow Fourier Transform".

4. Storage and Program

0 1 2 3 Ry 5 6 7
ky [n] m ul 6 u Vv

00 10 20 30 40

0 1 STO 6

1| RCL 2 STO-3 R + RCL 3

2| sTO 3 RCL 7 STO 7 x > 0

3] RCL 1 RCL 6 x GTO 10

4] RCL 4 > P 1

5 * xX 2 STO+1

6 STO 5 RCL 5 RCL 2

7 0 - STO%6

8| STO 6 X 2Yy STO=+7

9| STO 7 > R RCL 6

Instructions 24 + 40 are reserved for the program

Kk This program should assume Ty in X

and add the real part of fr to the content of Re

and add the imaginary part of fr to the content

of R,. R, is available for additional storage.

computing £f

223

5. Operating Instructions

Load program, including program to compute £ Movek°

operating switch to RUN. Press

(otherwise the results will be wrong!). Select mode of

displaying numbers and load data as follows:

k into R
0 1

n into R,

1: into R
n 4

The computation is started by pressing

PRGM

R/S

The calculator will stop, displaying the real part of

the first computed Fourier coefficient c (k=kg). Press
k

RCL 7

to obtain the imaginary part of c To compute Cpl pressKk

R/S

At stop Rec, 4 will be displayed and Ime, 4 stored in

Ros etc.

224

6. Examples

f(t) := [21-1] , see Essentials, Demonstration

7.3-1. Program to compute and store f (i.e. here,

since f is real-valued, add it to the contents of

R see section 4):7’

24 2 30 NOP

25 * coo

26 1 40 NOP

27 -

28 ABS

29 STO+6

For n=4,8 it is interesting to compute all the

coefficients ¢,, k=0,1, ..., 7; thus it can be’

verified, thatthe coefficients with even index

are zero (within the accuracy used on the cal-

culator) and that C =Cin” For n> 16 the com-

putations are more time-consuming and we there-

fore only compute the coefficients with odd

indices. To this end we let k, :=1 and change

instruction 44 to "2" (this corresponds to

k :=k +2 in the last box of the flow diagram in

section 3). To verify that the c, are real, press
k

RCL 6

to obtain Imc, = 0. The accelerated values

(for k=1) have been computed "by hand".

225

f(t) := (1+ ¢€ cos 2m) "Y?, le| <1, see

Essentials, Demonstration 7.3-2. f again is

real-valued. If € is stored in R,, the program
0

to compute and store f can be written as:

24 om 30 * 36 NOP

25 * 31 1 37 NOP

26 2 32 + 38 NOP

27 33 Vx 39 NOP

28 cos 34 1/x 40 NOP

29 RCL 0 35 STO+6

After loading the program (with instruction 44

changed back to "1"), €=0.9 has to be stored

into Rj-

ix cos 27mT .
f(t) :=e , X parameter, see Essentials,

Demonstration 7.3-3. Program to compute and store

f, assuming x in R0

24 2 30 * 36 NOP

25 * 31 1 37 NOP

26 m 32 - R 38 NOP

27 * 33 STO+6 39 NOP

28 cos 34 X 2 9Y 40 NOP

29 RCL O 35 STO+7

The foregoing program computes f(t) in polar

coordinates first (instr. 24 + 30: argument,

instr. 31: modulus) and then transforms it to

rectangular coordinates. Before starting the

226

computation x=4.5 has to be loaded into R,- It

is seen that

. real, k even

Cp =

purely imaginary, k odd

The program given in section 4 automatically

only displays Re Cy . To obtain Im Cy press

RCL 7

227

Demonstrations 7.6-1, 7.7-6, 7.7-7, 7.8-1:

FAST FOURIER TRANSFORM

l. Purpose

Given a data vector x= (x) of length n= 2% k=0,0,1, 2,

..., n=1. To compute the Fast Fourier Transform y=FEx

(or its conjugate Fx), abbreviated FFT, of x, see

Essentials, §7.5.

2. Method

The basic idea in the construction of the FFT is to use

the duplication theorem 7.5a of Essentials repeatedly.

The program given in section 4 below, is based on the

implementation of the FFT, as described in Essentials,

§7.6, where the storage requirements have been kept low.

We recall the crucial definitions and formulas. The bit

reversion function p(m) assigns to the integer m< 23

with binary representation m ve Ty the integer m'o™1 1 :
with binary representation my _1M5-2 seem. The 27

vectors of length 2%=3, j=2, 2-1, ..., 0 in each row

of the scheme in Fig. 7.6d are combined into a single

vector yy += (vyIk]) (from now on we use brackets instead

of indices for the components of a vector); the vector

¥, in the top row of the scheme is the FFT of x, which

228

we have to construct, starting from the bottom row Y,-

Theorem 7.6a yields

yom] = x[p, (m)] ,

m=0,1, ..., 2%_1. In other words: The bit reversion

function has to be applied to the given data vector

first, and the resulting vector equals Yg- The dupli-

cation theorem 7.5a yields for the upper rows (J £4-1),

using the abbreviations

Y = Yy ’ y' == Yy-1 (J = 2,2-1, ..., 1),

Ss := 2%] ’

Lao g2mic2’? , _. Git hb _. oiv
j ! L=j+1 ° ’ L=j+1

' _ 1 iy,y' [h] = 3 yh] +e "y'[h+s]; ,

y' [hts] = 3{vin1- ety ines1) }

where h, defined as h :=2¢s*m+k, where m=0,1, ..., 27-1

and k=0,1, ..., s-1, runs from 0 to s.

3. Flow Diagram

See Essentials, Fig. 7.6e. In the program for the HP-33E

calculator for reasons of programming space the bit in-

version function has to be applied by hand, and for

reasons of storage space the input of the data has to

be done gradually (see section 5). The vector y' is

229

computed by the formulas given in section 2. In terms of

the ("little") vectors in the scheme of Fig. 7.6d the

three loops in the flow diagram can be explained as

follows:

If || <7 (program tests h+s < 23) then compute

corresponding element of other vector of pair of vectors

(Jj +1 pairs).

If h<n then compute next pair of vectors.

If s <n then compute next (upper) row.

4. Storage and Program

R R R R R R R R

0 1 2 3 4 5 6 7

Re y Imy k=h+s h arg p +

27 ¢

00 10 20 30 40

0 + STO-1 R/S RCL 5

1 0 R/S 2 RCL 7 STO+4

2| STO 4 -> P STO=0 STO+6 RCL 4

3 0 XxX 2y STO+1 1 RCL 2

4| STO 6 RCL 6 CLX STO+3 X > y

5 STO 3 + RCL 1 STO+4 GTO 03

6| RCL 4 X 2y + RCL 3 2

7 R/S -» R X 2 Y RCL 5 STO*5

8 RCL 4 STO-0 RCL 0 X >y STO=+7

9 RCL 5 X 2 Yy + GTO 06 GTO 01
230

As in previous programs, the option of transforming into

polar (-» P) and back to rectangular (-» R) coordinates has

been used to implement the arithmetic with complex

numbers.

5. Operating Instructions

Load program, move to RUN, select mode of displaying

numbers. Load data as follows:

n into R,

1 into Rg

= F x

into R if —n is to be computed.
+7 F x

-—NnN—

Apply the bit inversion function (see section 2) manually

to x. Hence at the beginning the position h contains

Yp[hl® Thus for n=8 the starting situation is

O
°

Yp[h]

NS
N

O0
0
o
x
W
N
H
O

~<
=

231

The typical operation is

yp = ly, + py,]

(*)

= Ly -py,]Yg 2t¥n “PY

where y = Rey +i Imy are complex numbers, h and k

indices, 0<h, k<n, and p is a certain root of unity.

The computation of each new pair yp r Yy according to

(*) involves 3 R/S stops. At the first stop, the index

h is shown. The operator is to load

Rey, into R Imyy into R
0’ 1’

At the next stop, the index k is shown. The operator

is to load

Rey, into X, Imy, into Y.

(Thus Imy, should be loaded first.) At the last stop

Re yp is in X, Imyp is in Y

Re yy is in Ry» Imyy is in Ry

These quantities should be recorded in the h and k

positions of the new column. Now (do not forget to)

press

and

232

PRGM

R/S

to start the computation.

6. Examples

Let x= (x), where x, i= £(5), k=0,1, ..., 7,

f(t) :=exp(ix cos 2nt) and the parameter x set

to 4.5. To compute F_ xX, see Essentials, Demon-

stration 7.6-1. Thisexample is identical with

Demonstration 7.3-3, where the slow Fourier

transform of x was computed. It can be verified

for n=8 that the slow and the fast FT yield

the same results.

To smooth the periodic sequence

x:=1:748329675:|

by the smoothing sequence

si=7l:21000001:],

as explained in Essentials, Example 7.7-3, see

Essentials, Demonstration 7.7-6. According to the

Convolution Theorem 7.7a we first compute x :=Fgx

(using the program of section 4 with ¢ =-m) and

s:=F s (can be done analytically). Then we
8

manually perform the multiplications n° © 5, * Xp

n=8, k=0,1, ..., 7. Finally Fg (n° cS. R)
(using the program of section 4 with ¢ = +m)

is computed.

233

To compute the product 241 * 769 by the convolu-

tion theorem see Essentials, Demonstration 7.7-7

and Example 7.7-5. With

p:=1Il:1,4,2 0,00 0 0c¢]

6, 7, 0, 0, 0, 0, 0 : || ,h
a I ©

n=38, we have to compute p,q (program of sec-

tion 4 with ¢=-m), then 64 - Pg (by hand) and

finally Fg (64 - pq) (program of section 4 with

o=+m).

[4] Let {0.2, 0.9, -0.4, -0.1} , m=4, be a time

series. To compute the covariance function r,

the power spectrum f and the smoothed power

1 1 1

7'2'7)
§7.8 for definitions), see Essentials, Demon-

spectrum g (weights (see Essentials,

stration 7.8-1. Two methods are available:

Method A (conventional)

(convolution) F (by hand)

 X — I >

(¢p =-m)

[+
h

— J

Method B (avoids convolutions)

(Hadamard

pt product) (by hand)

IX » a >

(p =+m, F

factor n) (Hadamard

(d=-) product)

r

> J

F
iLE

(¢p ==)

234

ISBN 0-471-05943-9

	Cover
	Preface
	Introduction
	Chapter 1
	Numerical Computation of a Sum
	Numerical Evaluation of the Length of a Polygon
	Archimedean Determination of π
	Running Mean and Standard Deviation of a Sequence of Data
	Solution of Cubic Equation by Series Expansion
	Evaluation of the Exponential Series
	Bessel Function of Integer Order
	Functions fₙ(x): Explicit Formula
	Functions fₙ(x): Unstable Series
	Functions fₙ(x): Stable Series
	Error Integral, Unstable Series
	Error Integral, Stable Series
	An Obnoxious Function to Evaluate
	Functions fₙ(x): Forward Recurrence
	Functions fₙ(x): Backward Recurrence
	Evaluation of a Numerically Ill-Behaved Function
	Solution of an Ill-Conditioned Initial Value Problem by Discretization

	Chapeter 2
	Iteration
	Iteration with Aitken Acceleration
	Aitken-Steffensen Iteration
	Bisection
	Newton's Method: Square Root Iteration, Division
	Driving Mechanism
	Horner Algorithm
	Newton's Method for Polynomials with Automatic Deflation
	Iteration for Systems of Two Equations
	Circle Touching Three Given Circles
	Solution of 2 x 2 System with Successive Overrelaxation
	Delayed Exponential Population Growth
	Evaluation of Real Polynomial of Degree ≤ 5 at a Complex Point

	Chapter 3
	Modified Bernoulli Method for Real or for Complex Conjugate Zeros
	Quotient Difference Algorithm

	Chapter 4
	Simulation of p-Digit Decimal Arithmetic
	Iterative Refinement with "Wrong" L-R Decomposition
	Stable Linear Regression

	Chapter 5
	Bernstein Polynomials
	Lagrangian Interpolation: Equidistant Knots
	Extrapolation to x = 0 from Values at Geometric Progression
	Lagrangian Interpolation: Chebyshev Knots
	Salzer's Formula
	2-Point Hermite Interpolation, Data Preserved
	Solving Equation by Inverse 2-Point Hermite Interpolation
	Spline Interpolation

	Chapter 6
	Midpoint, Trapezoidal, and Simpson Values of Definite Integral
	Stirling's Formula
	Pippenger's Product
	Midpoint Rule with Step Refinement and Two-Fold Romberg Convergence Acceleration
	Convergence Acceleration in the Computation of π and of Other Constants
	Plana Integral
	Classical Runge-Kutta Method: Initial Value Problems for Ordinary Differential Equations
	Simplified Runge-Kutta Method for Systems of 2 Equations
	Prey-Predator Model
	Differential Equation of First Order: Trapezoidal Method
	Simpson Method for y' = f(x,y)
	Numerov Method for y" = f(x,y)

	Chapter 7
	Slow Fourier Transform, Real Data, n = 8, Period 1
	Fourier Synthesis, Real Data, n = 8, Period 1
	Unstable Trigonometric Interpolation, n Even
	Trigonometric Interpolation, Barycentric Formula, Period 1
	Dynamic Trigonometric Interpolation, Period 1
	Complex Fourier Coefficients, Data Generated, Period 1
	Fast Fourier Transform

