

Demonstrations on the HP-33E

Numerical Analysis Demonstrations on the HP-33E

Peter Henrici

Marie Louise Henrici

Copyright (C) 1982 by John Wiley \& Sons, Inc.
All Rights Reserved.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley \& Sons, Inc.

ISBN 0471059439
Printed in the United States of America

10987654321

PREFACE

This brochure is conceived as a supplement to the textbook by the senior author, ESSENTIALS OF NUMERICAL ANALYSIS, WITH POCKET CALCULATOR DEMONSTRATIONS. It contains HP-33E programs for virtually all demonstrations given in that text, and for most of the problems requiring numerical work. The documentation of the demonstration programs is sufficiently self-contained so that they can be used without previous programming experience. The presentation of the programs for the solution of homework problems is somewhat more concise; here some additional effort may be required for the complete understanding of the program.

Theory in numerical analysis is never (or should never be) an end in itself. Its ultimate goal is the creation of efficient and stable algorithms for the constructive solution of mathematical problems. Conventional mathematical notation usually provides only a very incomplete description of an algorithm. It does not account, for instance, for the storage requirements of an algorithm, or for the precise order in which the arithmetical operations are to be performed. To understand an algorithm completely, one has to program it. Working within the limitations of a pocket calculator provides the additional challenge that the programmer must concentrate on the essential features of an algorithm, and that he must pay particular attention to the allocation of storage. In this sense, a study of the programs in this collection should help the student to acquire the habit of writing efficient and lean programs for scientfic computation.

Even if an algorithm has been programmed with perfect logic and economy, it is by no means certain that it will perform satisfactorily in practice. Although theoretical numerical analysis will offer some guidance, such essential features as the efficiency, the reliability, and the numerical stability of an algorithm can be judged with finality only on the basis of tests in concrete situations, including situations with unusual or
extreme sets of data. One of the benefits for the users of these programs consists in the immediacy and concreteness in which they will experience the performance of the algorithms presented.

Many algorithms in this collection will, within the obvious physical limitation of the pocket calculator, produce satisfactory answers to numerical problems. In other algorithms, the data sets are too small to be useful in realistic situations. These algorithms then may at least serve as models for how to solve such problems on larger computers. Other programs are designed to illustrate the typical pitfalls of numerical computation such as cancellation, smearing, and numerical instability.

Regrettably, some areas of numerical analysis, such as numerical linear algebra and the numerical treatment of partial differential equations, cannot as yet be realistically illustrated on pocket calculators because of the large sets of data that would have to be processed. The presentation of such problems in the format of this book will have to wait until more powerful calculators are available.

We wish to express our thanks to a number of individuals who have contributed ideas to the programs presented here. Dr. O. Pretzel (London) has given permission to include his ingenious Runge-Kutta program. W. Frangen (Karlsruhe) through his numerous published programs has expanded our vision of what can be done on pocket calculators. The staff of John Wiley \& Sons, Inc., have responded most willingly to the particular requirements of this book. Once again, our thanks go to Brigitte Knecht for her unsurpassed ability to produce a cameraready manuscript out of our scribblings.
P. Henrici
M.-L. Henrici

Description of programs belonging to Demonstrations are arranged according to the following scheme:

1. Purpose
2. Method
3. Flow Diagram
4. Storage and Program
5. Operating Instructions
6. Examples

The statement of purpose usually is very brief. It informs the reader whether the program is intended for practical use, or whether it merely serves a didactic purpose.

The description of the method is strictly confined to what is being done. For analytical justification and for technical details, the reader is usually referred to the book ESSENTIALS OF NUMERICAL ANALYSIS, WITH POCKET CALCULATOR DEMONSTRATIONS, by P. Henrici, which is quoted simply as "Essentials". One reference is to ACCA I, which means vol. I of "Applied and Computational Complex Analysis" by the same author.

The flow diagrams do not follow any particular standard format. The intent is simply to make the structure of a program visible at a glance. In the case of some very simple programs the flow diagram is omitted.

The section entitled "Storage and Program", naturally, is the core of each program description. We use the symbol R_{k} to denote the storage register number k. Quantities that must be stored in the storage registers ahead of the computation are encased, thus:

```
x y z
```

The program listing uses the key symbols as they are found on the keys of the HP-33E calculator, with the exception of multiplication, which is indicated by * in order to avoid confusion with the letter "x". The listing is as compact as possible. For yellow and blue instructions it is understood that the keys "f" and "g" are to be pressed in advance; no ambiguity can arise by our abbreviated notation. The arrows \rightarrow in front of certain instructions are not part of the program. They simply indicate an entrance from a GTO instruction.

At the expense of a certain amount of repetition, we have attempted to keep the operating instructions reasonably self-contained. We also give indications and explanations of possible failures of some programs.

For the examples we usually give references to the appropriate demonstrations in "Essentials". In a few instances, additional examples are provided.

The descriptions of programs for numerical problems usually consist only of the one part above entitled "Storage and Program". Additional explanations are kept to a minimum.

And now: Have fun:

Demonstration 1.2-2:
NUMERICAL COMPUTATION OF A SUM

1. Purpose

To show that on the computer simple laws of algebra, which in theory are valid for the real numbers, may not hold.
2. Method

By computing numerically the specific sums

$$
s_{n}:=1+\sum_{k=1}^{n} \frac{1}{k^{2}+k}
$$

(I) as usual, from the beginning and (II) from the tail end, we do not obtain the same numerical values for a fixed n. Hence the associative law in the additive group of real numbers is violated. See Essentials §l.2.

3. Flow Diagram

4. Storage and Program

$\begin{array}{lllllllll}\text { (II) } & \mathrm{R}_{0} & \mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{R}_{3} & \mathrm{R}_{4} & \mathrm{R}_{5} & \mathrm{R}_{6} & \mathrm{R}_{7} \\ \mathrm{k} & \mathrm{s} & \mathrm{n} & & & & & \end{array}$

	00	10	20	30	40
0	\bigcirc	STO+1			
1	CLX	1			
2	STO 1	STO-0			
3	RCL 2	RCL 0			
4	STO 0	$\mathrm{x}>0$			
5	$\rightarrow \mathrm{RCL} 0$	GTO 05			
6	1	1			
7	+	STO+1			
8	*	RCL 1			
9	1/x	GTO 00			

5. Operating Instructions

Load program, move to RUN and load n into R_{2}. Upon pressing

FIX 9
PRGM
R/S
s_{n} will be computed and displayed. To obtain another s_{n} ' load new value of n into R_{2} and press R / S.

6. Example

See Essentials, Demonstration 1.2-2.

Demonstration 1.3-3:
NUMERICAL EVALUATION OF THE LENGTH OF A POLYGON

1. Purpose

To show that subtraction of two nearly equal numbers causes cancellation, see Essentials §l.3.

2. Method

We compute the length of the straight line segment joining the points $(1,0)$ and $(0,1)$ as special case of a formula for the length s_{n} of a polygon with vertices $\left(r_{k}, \phi_{k}\right), k=1,2, \ldots, n$, i.e. by

$$
\begin{align*}
& \text { (I) } \quad s_{n}=\sum_{k=1}^{n} \sqrt{r_{k}^{2}-2 r_{k} r_{k-1} \cos \left(\phi_{k}-\phi_{k-1}\right)+r_{k-1}^{2}} \tag{I}\\
& \text { (II) } \quad s_{n}=\sum_{k=1}^{n} \sqrt{\left(r_{k}-r_{k-1}\right)^{2}+4 r_{k} r_{k-1} \sin ^{2}\left(\frac{\phi_{k}-\phi_{k-1}}{2}\right)},
\end{align*}
$$

see Essentials, Demonstration 1.3-3.
3. Flow Diagram

(I) $\begin{array}{llllllll}R_{0} & R_{1} & R_{2} & R_{3} & R_{4} & R_{5} & R_{6} & R_{7}\end{array}$
$\begin{array}{llllllll}\mathrm{n} & \mathrm{r}_{\mathrm{k}-\mathrm{l}} & \mathrm{r}_{\mathrm{k}} & \phi_{\mathrm{k}} & \Delta \phi & 2 \cos \Delta \phi & \mathrm{~s} & \mathrm{k}\end{array}$

(II) $\begin{array}{lllllllll}R_{0} & R_{1} & R_{2} & R_{3} & R_{4} & R_{5} & R_{6} & R_{7}\end{array}$
n $\quad \mathrm{r}_{\mathrm{k}-1} \quad \mathrm{r}_{\mathrm{k}} \quad \phi_{\mathrm{k}} \quad \Delta \phi \quad 4\left(\sin \frac{\Delta \phi}{2}\right)^{2} \mathrm{~s} \quad \mathrm{k}$

5. Operating Instructions

Load program, move to RUN and load n into R_{0}. Upon pressing

FIX 9
PRGM
R/S
s_{n} will be computed and displayed. To obtain another s_{n} ' load new number n of vertices into R_{0} and press

PRGM
R/S

By rewriting subroutines 43 in (I) and 45 in (II) accordingly both programs can be used for other functions $r=r(\phi)$. If problems of programming space arise, instruction 01 and the assigning of initial values $02 \div 07$ can be executed in the RUN mode before pressing PRGM for the first time.
6. Example

See Essentials, Demonstration 1.3-3.

Demonstration 1.3-4:
ARCHIMEDEAN DETERMINATION OF π

1. Purpose

To demonstrate the fact that one half of the length of the circumference of a regular $n-g o n$ inscribed into the unit circle as $n \rightarrow \infty$ tends to $\pi=3.141592654$... . We impose the working rule that the only nonrational function which we are permitted to evaluate is the square root.

2. Method

Using elementary trigonometry and algebra one obtains the three following formulas for the determination of π; in each case $y_{1}=2, y_{2}=2 \sqrt{2}$, for $k=2,3, \ldots$

$$
\begin{equation*}
y_{k+1}=2^{k+1} \sqrt{\frac{1}{2}\left(1-\sqrt{1-\left[2^{-k} y_{k}\right]^{2}}\right.}, \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
y_{k+1}=y_{k} \sqrt{\frac{2}{1+\sqrt{1-\left[2^{-k} y_{k}\right]^{2}}}} \tag{II}
\end{equation*}
$$

$$
\begin{equation*}
y_{k+1}=y_{k} \sqrt{\frac{2 y_{k}}{y_{k-1}+y_{k}}} \tag{III}
\end{equation*}
$$

It will be seen that formula (I), though mathematically correct, is not suitable for numerical evaluation. Severe cancellation results. See Essentials, Demonstration 1.3-4.

3. Flow Diagram

Since (III) produces the correct values much faster than (II), only the flow diagram for (III) is given.

(II) $\begin{array}{lllllllll}R_{0} & R_{1} & R_{2} & R_{3} & R_{4} & R_{5} & R_{6} & R_{7} \\ & \mathrm{Y}_{\mathrm{k}} & 2^{\mathrm{k}} & & & & & & \end{array}$

	00	10	20	30	40
0	$\rightarrow<$	x^{2}	STO 0		
1	2	-	R/S		
2	Sto 0	\sqrt{x}	2		
3	Sto 1	+	STO*1		
4	$\rightarrow \quad 1$	2	GTO 04		
5	ENTER	$x \geqslant y$			
6	1	\div			
7	RCL 0	\sqrt{x}			
8	RCL 1	RCL 0			
9	\div	*			

$\begin{array}{lllllllll}\text { (III) } & R_{0} & R_{1} & R_{2} & R_{3} & R_{4} & R_{5} & R_{6} & R_{7}\end{array}$

	$\mathrm{y}_{\mathrm{k}-1}$	y_{k}			
	00	10	20	30	40
0	$\rightarrow<$	+			
1	CLX	\div			
2	STO 0	\sqrt{x}			
3	2	STO*1			
4	STO 1	RCL 1			
5	$\rightarrow \quad 2$	R/S			
6	*	GTO 05			
7	RCL 0				
8	RCL 1				
9	STO 0				

5. Operating Instructions

These are the same for all three programs. Load program. Move operating switch to RUN and select mode of displaying numbers. Computation is started by pressing R/S; after a short time Y_{2} is displayed. After each display R/S must be pressed again in order to start new cycle. If only short displays of y_{k} are desired, the R / S instruction should be replaced by PAUSE.

6. Timing

for the computation of $\mathrm{y}_{2}, \ldots, \mathrm{y}_{11}$ (10 values), see Essentials, Demonstration l.3-4, including short display

Program (I)	25 sec.
Program (II)	25 sec.
Program (III)	18 sec.

Demonstration 1.3-5:
RUNNING MEAN AND STANDARD DEVIATION OF A SEQUENCE OF DATA

1. Purpose

Given an open-ended sequence of real numbers $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$, to compute, in a numerically stable manner, their running mean

$$
\mu_{n}:=\frac{1}{n} \sum_{k=1}^{n} x_{k},
$$

and their standard deviation

$$
\sigma_{n}:=\left[\frac{1}{n} \sum_{k=1}^{n}\left(x_{k}-\mu_{n}\right)^{2}\right]^{1 / 2}
$$

and to provide for the possibility of removing data points from the sequence.
2. Method

The most obvious method to compute μ_{n} and σ_{n}, based on accumulating the sums

$$
s_{n}:=\sum_{k=1}^{n} x_{k}, \quad q_{n}:=\sum_{k=1}^{n} x_{k}^{2}
$$

is described by the following formulas

$$
\begin{equation*}
\mu_{n}=\frac{1}{n} s_{n}, \quad \sigma_{n}^{2}=\frac{1}{n} q_{n}-\mu_{n}^{2} \tag{I}
\end{equation*}
$$

It can produce totally inaccurate values for σ_{n}^{2} due to cancellation, See Essentials, Demonstration 1.3-5. Much more precise values of the standard deviation are obtained if the variances are computed recursively.

If s_{n} and σ_{n}^{2} are known, and if a new value x_{n+1} is added to $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, the new values of mean and variance are given by

$$
\begin{aligned}
& s_{n+1}=s_{n}+x_{n+1}, \quad \mu_{n+1}=\frac{1}{n+1} s_{n+1}, \\
& \sigma_{n+1}^{2}=\frac{n}{n+1} \sigma_{n}^{2}+\frac{1}{n}\left(\mu_{n+1}-x_{n+1}\right)^{2} .
\end{aligned}
$$

If the value x_{n} is removed from the data $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, the new values are

$$
\begin{aligned}
& s_{n-1}=s_{n}-x_{n}, \quad \mu_{n-1}=\frac{1}{n-1} s_{n-1}, \\
& \sigma_{n-1}^{2}=\frac{n}{n-1} \sigma_{n}^{2}-\frac{1}{n}\left(\mu_{n-1}-x_{n}\right)^{2} .
\end{aligned}
$$

Because the ordering of the data is clearly immaterial, the same formula applies if in place of x_{n} any of the values x_{1}, \ldots, x_{n} is removed. Both sets of formulas given above may be combined into one set in the following way: Let $s:=s_{n}, \mu:=\mu_{n}, \sigma:=\sigma_{n}$, let x denote the value being added to or removed from the data, and let s', μ ', σ^{\prime} denote the resulting new values of s, μ, σ. Also let

$$
n^{\prime}= \begin{cases}n+1, & \text { if data is added } \\ n-1, & \text { if data is removed }\end{cases}
$$

Then

$$
\begin{align*}
& s^{\prime}=s+\left(n^{\prime}-n\right) x, \quad \mu^{\prime}=\frac{1}{n^{\prime}} s^{\prime}, \tag{III}\\
& \left(\sigma^{\prime}\right)^{2}=\frac{n}{n^{\prime}} \sigma^{2}+\frac{n^{\prime}-n}{n}\left(\mu^{\prime}-x\right)^{2} . \tag{LIb}
\end{align*}
$$

On the HP-33E, s' and n^{\prime} are computed automatically in either case by pressing $\sum+$ and \sum - respectively.

3. Flow Diagram

Program I: See Essentials, Demonstration 1.3-5. Program II: Upper signs refer to data being added, lower signs to removal of data.

4. Storage and Program

$\begin{array}{llllllll}\text { (I) } & \mathrm{R}_{0} & \mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{R}_{3} & \mathrm{R}_{4} & \mathrm{R}_{5} & \mathrm{R}_{6}\end{array} \mathrm{R}_{7}$

(II)

5. Operating Instructions

The following instructions apply to both program (I) and program (II). Load program. Move operating switch to RUN. Press

> PRGM
> R/S

Calculator will display 0. This is a sign that data should be loaded into X-register. * After loading value of x, press

$$
\begin{aligned}
& \sum+ \\
& R / S
\end{aligned}
$$

if data is to be added or

$$
\begin{aligned}
& \sum- \\
& R / S
\end{aligned}
$$

if data is to be removed. Calculator will briefly display new values of μ and σ, and stop by displaying 0 . as an invitation to load new data. Return to *. - Display of μ and σ is in format chosen in step 05 of program (I) and 07 of program (II). This format may be chosen at will. If indeterminate displays of μ and σ are desired, change instructions 07 and 15 of program (I) or instructions 09 and 29 of program (II) to R/S. - The instructions $\sum+$ and $[-$ simultaneously carry out several statistical operations (e.g. computation of q, see HP-33Emanual); this accounts for registers $R_{4} \div R_{7}$ being used.

6. Examples

1 See Essentials, Demonstration l.3-5; program I, cancellation.

2 See Essentials, Demonstration 1.3-5; given data $\mathrm{x}_{\mathrm{k}}=1+\varepsilon \frac{2 \mathrm{k}-\mathrm{m}-1}{\mathrm{~m}-1}, \mathrm{k}=1, \ldots, \mathrm{~m}$, comparison of classical algorithm (I) with stable algorithm (II).

3 Addition and removal of data.

	x_{n}	μ	σ (Program I)	σ (Program II)	σ (exact)
	100468	100468.0000	0.00000000	0.00000000	0.00000000
	100472	100470.0000	0.00000000	2.00000000	2.00000000
	100495	100478.3333	12.24744871	11.89773555	11.89771220
	100473	100477.0000	10.48808848	10.55937577	10.55935605
remove	100495	100471.0000	0.00000000	2.16037550	2.16024690
remove	100473	100470.0000	0.00000000	2.00020835	2.00000000
remove	100472	100468.0000	0.00000000	0.04082769	0.00000000

Problem 1.3-1:
SOLUTION OF CUBIC EQUATION BY SERIES EXPANSION

R_{0}	R_{1}	R_{2}	$\mathrm{R}_{3} \quad \mathrm{R}_{4}$	R_{5}	$\mathrm{R}_{6} \quad \mathrm{R}_{7}$
p	q	Σ	$a_{m} \quad m$	$-\frac{2 q^{2}}{9 p^{3}}$	
	00	10	20	30	40
0	$>$	STO 2	STO+4	*	RCL 2
1	RCL 1	STO 3	RCL 4	1	RCL 3
2	2	STO*5	$\mathrm{STO} \div 3$	-	$+$
3	*	RCL 0	2	STO* 3	STO 2
4	RCL 0	2	*	1	$\mathrm{x}=\mathrm{y}$
5	3	*	1	-	GTO 00
6	*	$\mathrm{STO} \div 5$	+	STO*3	GTO 19
7	\div	0	STO $\div 3$	RCL 5	
8	STO 5	STO 4	RCL 4	STO*3	
9	CHS	$\rightarrow \quad 1$	3	RCL 2	

Finds zero x of

$$
x^{3}+3 p x+2 q=0
$$

from series expansion

$$
x=-\frac{2 q}{3 p} \sum_{m=0}^{\infty}(-1)^{m} \frac{(3 m)!}{m!(2 m+1)!} \frac{(2 q)^{2 m}}{(3 p)^{3 m}}
$$

(This is a special case of the Lagrange-Bürmann series, see ACCA I, chapter l.)

Demonstration l.4-1:
 EVALUATION OF THE EXPONENTIAL SERIES

1. Purpose

To demonstrate smearing, see Essentials §l.4.

2. Method

We evaluate $e^{-x}, x>0$, by summing the exponential series in floating point arithmetic, see Essentials, Demonstration l.4-l and §l.l. We stop summing as soon as two consecutive partial sums on the computer are equal. This criterion of termination is computer independent.

The following flow diagram and program apply to positive or negative values of x; hence the given program can also be used to evaluate $e^{x}, x>0$, without smearing, see Essentials, Demonstration l.4-1.
3. Flow Diagram

4. Storage and Program

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
x	s	a	k				
$-\mathrm{x} \in \mathrm{X}$							

5. Operating Instructions

Load program, move to RUN. Select mode of displaying numbers, e.g. by pressing

SCI 6

To compute $e^{-x}, x>0$, load $-x$ into x-register and press

PRGM
R/S

To obtain e^{-x} for other values of x load $-x$ into X-register and press

R/S

By pressing

MANT
after computing e^{-x} all the digits that are computed internally can be made visible briefly (for longer display do not lift finger from MANT key).
6. Examples

1 See Essentials, Demonstration 1.4-1

2 Some values of $e^{x}, x>0 ; ~ s e e ~ a l s o ~ E s s e n t i a l s, ~$ Demonstration l.4-1.

x	e^{x}	$e^{-x} b y 1 / e^{x}$
1	2.718281830	$3.678794410 * 10^{-1}$
5	$1.484131593 * 10^{2}$	$6.737946990 * 10^{-3}$
10	$2.202646580 * 10^{4}$	$4.539992975 * 10^{-5}$
15	$3.269017376 * 10^{6}$	$3.059023202 * 10^{-7}$

Here only the last digit of each computed value is unreliable.

Problem 1.4-1:
BESSEL FUNCTION OF INTEGER ORDER

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
n	$\frac{\mathrm{x}}{2}$	a_{k}	\sum	k	$\mathrm{n}!$		
$\mathrm{x} \in \mathrm{X}$							

	00	10	20	30	40
0	,	RCL 4	STO 3	$\mathrm{STO} \div 2$	GTO 24
1	2	$\mathrm{x}=0$	RCL 1	RCL 1	
2	\div	GTO 17	CHS	STO*2	
3	STO 1	STO*5	STO*1	RCL 3	
4	RCL 0	1	$\rightarrow \quad 1$	RCL 3	
5	STO 4	STO-4	STO+4	RCL 2	
6	y^{x}	GTO 12	RCL 4	+	
7	STO 2	RCL 5	$\mathrm{STO} \div 2$	STO 3	
8	1	STO $\div 2$	RCL 0	$\mathrm{x}=\mathrm{y}$	
9	STO 5	RCL 2	+	GTO 00	

Evaluates Bessel function $J_{n}(x)$ (n a nonnegative integer) from series

$$
J_{n}(x)=\left(\frac{x}{2}\right)^{n} \sum_{k=0}^{\infty}(-1)^{k} \frac{\left(\frac{x}{2}\right)^{2 k}}{k!(n+k)!}
$$

Problem 1.4-2:
FUNCTIONS $f_{n}(x):$ EXPLICIT FORMULA

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
n	x	k	a_{k}	s			
$\mathrm{x} \in \mathrm{X}$							

	00	10	20	30	40
0	,	STO+4	STO $\div 4$		
1	STO 1	1	RCL 3		
2	RCL 0	STO-2	STO-4		
3	STO 2	RCL 2	RCL 4		
4	STO 3	$\mathrm{x}=0$	CHS		
5	1	GTO 18	GTO 00		
6	STO 4	STO* 3			
7	\rightarrow RCL 1	GTO 07			
8	STO* 4	\rightarrow RCL 1			
9	RCL 3	e^{x}			

Evaluates

$$
f_{n}(x):=\int_{0}^{x} t^{n} e^{-t} d t
$$

by explicit formula

$$
f_{n}(x)=n!-e^{-x}\left\{x^{n}+n x^{n-1}+n(n-1) x^{n-2}+\ldots+n!\right\}
$$

Problem 1.4-2:
FUNCTIONS $f_{n}(x):$ UNSTABLE SERIES

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
n	x	\sum	a_{k}	$\mathrm{n}+\mathrm{k}+1$	k		
$\mathrm{x} \in \mathrm{X}$							

	00	10	20	30	40
0	\bigcirc	STO $\div 3$	STO $\div 3$	$y=x$	
1	STO 1	STO 4	RCL 5	GTO 00	
2	RCL 0	0	STO $\div 3$	STO 2	
3	1	STO 5	RCL 1	GTO 14	
4	+	\rightarrow RCL 4	CHS		
5	y^{x}	STO*3	STO*3		
6	STO 2	1	RCL 2		
7	STO 3	STO+5	RCL 2		
8	LAST X	+	RCL 3		
9	$\mathrm{STO} \div 2$	STO 4	+		

Evaluates

$$
f_{n}(x):=\int_{0}^{x} t^{n} e^{-t} d t
$$

by alternating series

$$
f_{n}(x):=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{n+l+k}}{k!(n+k+1)}
$$

Problem 1.4-2:
FUNCTIONS $f_{n}(x):$ STABLE SERIES

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
n	x	a_{k}	\sum	$\mathrm{n}+\mathrm{k}+1$			
$\mathrm{x} \in \mathrm{X}$							

	00	10	20	30	40
0	,	RCL 1	STO*2		
1	STO 1	e^{x}	RCL 3		
2	RCL 0	STO $\div 2$	RCL 3		
3	1	RCL 2	RCL 2		
4	STO 2	STO 3	+		
5	+	$\rightarrow \quad 1$	STO 3		
6	STO 4	STO+4	$\mathrm{x}=\mathrm{y}$		
7	$\mathrm{STO} \div 2$	RCL 4	GTO 00		
8	y^{x}	STO $\div 2$	GTO 15		
9	STO*2	RCL 1			

Evaluates

$$
f_{n}(x):=\int_{0}^{x} t^{n} e^{-t} d t
$$

by series of positive terms,

$$
f_{n}(x)=\sum_{k=0}^{\infty} \frac{n!x^{n+k+1}}{(n+k+l)!}
$$

Problem 1.4-3:
ERROR INTEGRAL, UNSTABLE SERIES

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
x	\sum	a_{n}	n	$-\mathrm{x}^{2}$			
$\mathrm{x} \in \mathrm{X}$							

Evaluates

$$
F(x):=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

by series

$$
F(x)=\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) n!}
$$

Problem l.4-3:
ERROR INTEGRAL, STABLE SERIES

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
x	\sum	a_{n}	$\mathrm{n}+\frac{1}{2}$	x^{2}			
$\mathrm{x} \in \mathrm{X}$							

	00	10	20	30	40
0	,	π	RCL 3	GTO 00	
1	STO 0	\sqrt{x}	1	STO 1	
2	x^{2}	\div	+	GTO 18	
3	STO 4	STO 1	STO 3		
4	CHS	STO 2	$\mathrm{STO} \div 2$		
5	e^{x}	2	RCL 1		
6	RCL 0	$1 / \mathrm{x}$	RCL 1		
7	*	STO 3	RCL 2		
8	2	\rightarrow RCL 4	+		
9	*	STO*2	$\mathrm{x}=\mathrm{Y}$		

Evaluates

$$
F(x):=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

by series

$$
F(x)=\frac{2 x}{\sqrt{\pi}} e^{-x^{2}} \sum_{n=0}^{\infty} \frac{x^{2 n}}{\left(\frac{3}{2}\right) n}
$$

Demonstrations 1.4-2, 1.5-1, 1.5-2, 1.5-3:
AN OBNOXIOUS FUNCTION TO EVALUATE

1. Purpose

To compute numerical values of the following functions y_{n}, defined by definite integrals,

$$
y_{n}:=\int_{0}^{1} \frac{x^{n}}{x+a} d x
$$

for a fixed value of $a>1$ and for $n=0,1,2, \ldots, 10$.
The algorithm used should not be sensitive to smearing or numerical instability.
2. Method

The following explicit or recursion formulas present themselves for the computation of the values y_{n}

$$
\begin{align*}
& \begin{aligned}
& y_{n}= \sum_{k=0}^{n-1}(-1)^{k} a^{k}\binom{n}{k}\left[(1+a)^{n-k}-a^{n-k}\right] \frac{1}{n-k} \\
&+(-1)^{n} a^{n} \log \frac{1+a}{a}, \\
& y_{0}= \log \frac{1+a}{a} ; y_{n}=\frac{1}{n}-a y_{n-1}, n=1,2, \ldots, 10, \\
& Y_{n} \text { large" } n:=0 ; \quad y_{n-1}=\frac{1}{a}\left(\frac{1}{n}-y_{n}\right),
\end{aligned}, l \tag{I}
\end{align*}
$$

$$
\begin{equation*}
y_{n}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(n+k+1) a^{k+1}}, \tag{IV}
\end{equation*}
$$

see Essentials, Demonstrations 1.4-2, 1.5-1, 1.5-2 and 1.5-3. By programming each formula, it will be seen that only (III) and (IV) are reliable numerically, whereas (I) and (II) are "smeared" or unstable, respectively.

3. Flow Diagram

The flow diagrams corresponding to (I) and (II) will not be given explicitly. In (I) the sum (increasing k) is computed first, then the log-term is added; the binomial coefficient is computed recursively.
(III)

(IV)

4. Storage and Program

$\begin{array}{rcccccccc}\text { (I) } & \mathrm{R}_{0} & \mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{R}_{3} & \mathrm{R}_{4} & \mathrm{R}_{5} & \mathrm{R}_{6} & \mathrm{R}_{7} \\ & \mathrm{n} & \mathrm{a} & \mathrm{n}-\mathrm{k} & \mathrm{k} & (-\mathrm{a})^{\mathrm{k}} & \binom{\mathrm{n}}{\mathrm{k}} & \mathrm{s} & \end{array}$

	00	10	20	30	40
0	-	$\rightarrow \mathrm{x}=0$	-	STO*4	\rightarrow RCL 1
1	RCL 0	GTO 40	RCL 5	RCL 2	1
2	STO 2	RCL 1	*	STO*5	+
3	CLX	1	RCL 4	1	RCL 1
4	STO 6	+	*	STO-2	\div
5	STO 3	RCL 2	RCL 2	STO+3	ln
6	1	y^{x}	\div	RCL 3	RCL 4
7	STO 4	RCL 1	STO+6	STO $\div 5$	*
8	STO 5	RCL 2	RCL 1	RCL 2	STO+6
9	RCL 2	y^{x}	CHS	GTO 10	RCL 6

(II) $\begin{array}{lllllllll}\mathrm{R}_{0} & \mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{R}_{3} & \mathrm{R}_{4} & \mathrm{R}_{5} & \mathrm{R}_{6} & \mathrm{R}_{7}\end{array}$

(IV) $\begin{array}{lllllllll}R_{0} & R_{1} & R_{2} & R_{3} & R_{4} & R_{5} & R_{6} & R_{7}\end{array}$ $\begin{array}{ccccc}n+n & a & \varepsilon & -\frac{1}{a} \quad \frac{(-1)^{k}}{a^{k+1}} & \mathrm{~s}\end{array}$

5. Operating Instructions

Load one of the programs (I) : (IV) and move to RUN; from now on they differ slightly for each program.
(I) Choose mode of displaying numbers, e.g. by pressing FIX 9. Then load n into R_{0} and a into R_{1}. Upon pressing

PRGM
R/S
y_{n} will be displayed. To obtain another y_{n}, load new n into R_{0} and press R / S etc.
(II) Here the Y_{n} have to be determined in their natural order, hence only load a into R_{1} and press

FIX 9

PRGM
R/S
Y_{0} will be displayed. To obtain $Y_{k}, k \geqq l$, press R / S after display of Y_{k-1}.
(III) Here backward recursion is used from an input index m on downward. Hence load m into R_{0} and a into R_{1}. Appropriate modes of displaying numbers are chosen automatically in the program. Press

PRGM
R/S

There results a brief display of $m-1$ and an indefinite display of Y_{m-1}. Press R / S to obtain $m-2$ and Y_{m-2}, etc.
(IV) The summation of the infinite series is stopped as soon as the next term to be added in absolute value is less than a given tolerance ε. Load n into R_{0}, a into R_{1} and ε into R_{2}, e.g. if $\varepsilon=10^{-12}$ by pressing

EEX
1
2
CHS

Then press

FIX 9

PRGM
R/S
to yield display of y_{n}. Load new n into R_{0} and press R / S to obtain corresponding Y_{n}, etc.

6. Examples

For (I) see Demonstration 1.4-2,
for (II) see Demonstration l.5-l,
for (III) see Demonstration 1.5-2,
for (IV) see Demonstration 1.5-3.

Problem 1.5-1:
FUNCTIONS $f_{n}(x)$: FORWARD RECURRENCE

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
n	x	$\mathrm{e}^{-\mathrm{x}_{\mathrm{x}} \mathrm{n}}$	f_{n}				
$\mathrm{x} \in \mathrm{X}$							

Evaluates

$$
f_{n}(x):=\int_{0}^{x} t^{n} e^{-t} d t, \quad n=0,1,2, \ldots
$$

by recurrence

$$
f_{0}=1-e^{-x}, \quad f_{n}=n f_{n-1}-x^{n} e^{-x}
$$

Problem 1.5-1:
FUNCTIONS $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$: BACKWARD RECURRENCE

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
R_{0}	x	$\mathrm{x}^{\mathrm{n} e^{-x}}$	f_{n}				
$\mathrm{x} \in \mathrm{X}$							

	00	10	20	30	40
0	,	\rightarrow RCL 2	RCL 3		
1	STO 1	STO+3	R/S		
2	RCL 0	RCL 0	RCL 1		
3	y^{x}	$\mathrm{x}=0$	STO -2		
4	STO 2	GTO 00	GTO 10		
5	RCL 1	STO $\div 3$			
6	e^{x}	1			
7	STO $\div 2$	-			
8	0	STO 0			
9	STO 3	PAUSE			

Evaluates

$$
f_{n}(x):=\int_{0}^{x} t^{n} e^{-t} d t
$$

by recurrence

$$
\mathrm{f}_{\mathrm{n}_{0}}^{*}=0, \quad \mathrm{f}_{\mathrm{n}-1}^{*}=\frac{1}{n}\left(\mathrm{f}_{\mathrm{n}}+\mathrm{x}^{\mathrm{n}} \mathrm{e}^{-\mathrm{x}}\right)
$$

For n_{0} sufficiently large, $f_{n}^{*} \approx f_{n}$.

Demonstration 1.7-5:
EVALUATION OF A NUMERICALLY ILL-BEHAVED FUNCTION

1. Purpose

To evaluate

$$
f(x):=\left\{\begin{array}{cl}
0, & x=0 \\
\frac{1}{\sqrt[8]{\log \frac{1}{x}}}, & x>0
\end{array}\right.
$$

2. Method

Straightforward.

3. Flow Diagram

Uninteresting, hence omitted.
4. Storage and Program

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
$\mathrm{x} \in \mathrm{X}$							

	00	10	20	30	40
0	S	GTO 00			
1	FIX 8	$\rightarrow \quad 1 / x$			
2	$\mathrm{x}>0$	ℓn			
3	GTO 11	8			
4	$\mathrm{x}<0$	1/x			
5	GTO 08	CHS			
6	0	y^{x}			
7	GTO 00	GTO 00			
8	$\rightarrow 0$				
9	FIX 0				

5. Operating Instructions

Load program, move to RUN. Load value of $x, x \geqslant 0$, into X-register. Upon pressing

$$
\begin{aligned}
& \text { PRGM } \\
& \text { R/S }
\end{aligned}
$$

$f(x)$ will be displayed. Load other value of x, if desired, and press

R/S
to obtain corresponding $f(x)$, etc. If $x<0$ is input
accidentally, the computer will display 0 . (instead of error message which would spoil computation of next $\mathrm{f}(\mathrm{x})$). The format is chosen in step 01.
6. Example

See Essentials, Demonstration 1.7-5.

Demonstration 1.7-15:

SOLUTION OF AN ILL-CONDITIONED INITIAL VALUE PROBLEM BY DISCRETIZATION

1. Purpose

To demonstrate the ill-conditioning of the initial value problem

$$
y^{\prime \prime}=y, \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

see Essentials, Demonstrations 1.7-8 and l.7-15.
2. Method

Discretization, see Essentials, Demonstration 1.7-15.

3. Flow Diagram

4. Storage and Program

5. Operating Instructions

Load program, move operating switch to RUN and load discretization step h into R_{0}. Upon pressing

PRGM
 R/S

the computation is started. The computer will always first briefly display x_{n} (in easy-to-read FIX 2 format) and then briefly show the corresponding y_{n} (in FIX 6 format). If other modes of displaying x_{n} and y_{n} are desired, then instructions 24 and 27 have to be changed accordingly. By replacing instructions 25 and 28 by R/S the brief displays of x_{n} and y_{n} become stops; to restart the computation R / S needs to be pressed.
6. Example

See Essentials, Demonstration 1.7-15.

Demonstrations 2.1-1 $\div 2.1-5:$
ITERATION

1. Purpose

Computation of the fixed point of a function f.
2. Method

As limit of the iteration sequence generated by f, see Essentials §2.1, in particular Theorem 2.1. Two programs will be given:
(I) simply constructs $x_{n}=f\left(x_{n-1}\right), n=1,2, \ldots$, without testing for convergence,
(II) stops as soon as two consecutive elements of the iteration sequence (on the computer) are equal, see Essentials, remarks at end of §2.1.

3. Flow Diagram

For (II) see Essentials, Fig. 2.la with test $" n=n_{\max }$?" removed.
4. Storage and Program

All the remaining programming spaces (and storage registers $R_{2} \div R_{7}$) are available for the subroutine computing and displaying $f(x)$; it should assume x in R_{1}, store $f(x)$ into R_{1} and end with the instruction RTN.

	II) R_{0}	$\mathrm{R}_{1} \quad \mathrm{R}_{2}$	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
	n	$\mathrm{x}_{\mathrm{n}-1} \quad \mathrm{x}_{\mathrm{n}}$					
	00	10	20		30	40	
0	\rightarrow						
1	CLX	GTO 03					
2	STO 0	\rightarrow RCL 2					
3	1	GTO 00					
4	$\mathrm{STO}+0$						
5	GSB 14						
6	RCL 1						
7	$\mathrm{x}=\mathrm{y}$						
8	GTO 12						
9	RCL 2						

All the remaining programming spaces (and storage registers $R_{3} \div R_{7}$) are available for the subroutine computing and displaying $f(x)$; unless each x_{n} needs to be registered,it is reasonable to use PAUSE for the display of $f(x)$. The subroutine should assume x in R_{1} and store $f(x)$ into R_{2} and end with the instruction RTN.
5. Operating Instructions

Load program (I) or (II) including subroutine to compute $\mathrm{f}(\mathrm{x})$. Move to RUN. Select mode of displaying numbers. Load starting value x_{0} into R_{1}. Also load possible constants of the function f into appropriate registers. Press

PRGM
R/S
to start computation. In (I) the computer will go on indefinitely, provided that the $f(x)$ within the subroutine are shown briefly (using PAUSE), otherwise R / S has to be pressed after each display; the convergence has to be checked by eye. In (II) the computer stops as soon as the criterion given in section 2 is satisfied; the number displayed is the fixed point of f. The number n of iteration steps can be obtained by pressing

RCL 0
6. Examples

1 See Essentials, Demonstration 2.l-l: $f(x):=\cos x$. Using (I) the soubroutine for f is:

07	RCL 1	09	\cos	11	PAUSE
08	RAD	10	STO 1	12	RTN

2 See Essentials, Demonstrations 2.l-2 and 2.l-5: $\mathrm{f}(\mathrm{x}):=\sqrt{2+\mathrm{x}}$. Using (II) the subroutine for f is:
$14 \begin{array}{llllll}\text { RCL } 1 & 17 & \sqrt{x} & 20 & \text { RTN }\end{array}$
15218 STO 2
$16+19$ PAUSE

3 See Essentials, Demonstrations 2.l-3 and 2.l-5: $f(x):=\frac{l}{a+x}$. Using (II) and assuming a in R_{7} the subroutine for f is:

14	RCL 1	17	1/x	20 RTN
15	RCL 7	18	STO 2	
16	+	19	PAUSE	

Demonstrations 2.2-1, 2.2-3:
ITERATION WITH AITKEN ACCELERATION

1. Purpose

Computation of the fixed point of a function f more rapidly than with ordinary iteration.

2. Method

Aitken acceleration. Along with the sequence $\left\{x_{n}\right\}$ (see program "Iteration") the sequence $\left\{x_{n}^{\prime}\right\}$ of accelerated values is generated:

$$
x_{n}^{\prime}:=x_{n}+\frac{\left(x_{n+1}-x_{n}\right)^{2}}{\left(x_{n+1}-x_{n}\right)-\left(x_{n+2}-x_{n+1}\right)}
$$

see Essentials, §2.2.
3. Flow Diagram

See Essentials, §2.2.
4. Storage and Program

R_{0}	R_{1}	R_{2}	$\mathrm{R}_{3} \quad \mathrm{R}_{4}$	R_{5}	R_{6}	R_{7}
x_{0}	x_{1}	x_{2}				
$\mathrm{x}_{0} \in \mathrm{X}$						
	00	10	20	30	40	
0	\bigcirc	STO 1	RCL 1			
1	STO 0	GSB 28	-			
2	GSB 28	STO 2	-			
3	STO 1	\rightarrow RCL 1	\div			
4	GSB 28	RCL 0	RCL 0			
5	STO 2	-	+			
6	GTO 13	x^{2}	R/S			
7	\rightarrow RCL 1	LAST X	GTO 07			
8	STO 0	RCL 2	\rightarrow			
9	RCL 2	PAUSE				

Program locations $28 \div 49$ (and storage registers $R_{3} \div R_{7}$) are available for the subroutine to compute $\mathrm{f}(\mathrm{x})$; it should assume x in X and also leave $f(x)$ in the X-register (and end with the instruction RTN).

5. Operating Instructions

Load the program, including the subroutine to compute f. Switch to RUN and select the mode of displaying numbers, for instance by pressing

FIX 8

First press the starting value x_{0} into the X -register and then

PRGM
R/S
to start the computation. The computer briefly displays x_{n+2} and stops at the display of x_{n}^{\prime}. Press

R/S
to start new cycle. Convergence is not tested nor are iterations counted.

6. Examples

1 See Essentials, Demonstration 2.2-1 and Program "Iteration", Example 1 : $f(x):=\cos x$. The subroutine for f is:

28 RAD
29 cos
30 RTN

2 See Essentials, Demonstration 2.2-2 and Program "Iteration", Example $2: \mathrm{f}(\mathrm{x})=\sqrt{2+\mathrm{x}}$. The subroutine for f is:

28	2	30	\sqrt{x}
29	+	31	RTN

Demonstrations 2.2-3 $\div 2.2-5:$

AITKEN-STEFFENSEN ITERATION

1. Purpose

To compute the fixed points of smooth functions f without restrictions on the slope of f.

2. Method

Aitken-Steffensen iteration. The sequence $\left\{x_{0}^{(k)}\right\}$ is generated according to the following rule: Given an initial value $x_{0}=: x_{0}^{(0)} *$ we construct $x_{1}=f\left(x_{0}\right)$, $x_{2}=f\left(x_{1}\right)$ and x_{0}^{\prime} by Aitken's rule, see program "Iteration with Aitken acceleration". Now we use x_{0}^{\prime} as starting point for a new iteration and go back to *. Convergence to the fixed point s takes place, provided that $\mathrm{f}^{\prime}(\mathrm{s}) \neq 1$ and that x_{0} is chosen "sufficiently close" to s, see Essentials §2.2.
3. Flow Diagram

See Essentials, §2.2.
4. Storage and Program

Program locations $19 \div 49$ (and storage registers $R_{3} \div R_{7}$) are available for the subroutine to compute $\mathrm{f}(\mathrm{x})$; it should assume x in X and also leave $f(x)$ in the X-register (and end with the instruction RTN).

5. Operating Instructions

They are the same as for the program "Iteration with Aitken acceleration". Each $\mathrm{x}_{0}^{(\mathrm{k})}$ is displayed.

6. Examples

1 See Essentials, Demonstration 2.2-3, Programs "Iteration" and "Iteration with Aitken Acceleration", Example 1 : $f(x)=\cos x$.

2 See Essentials, Demonstration 2.2-4, Programs "Iteration" and "Iteration with Aitken Acceleration", Example $2: \mathrm{f}(\mathrm{x})=\sqrt{2+\mathrm{x}}$.

3 See Essentials, Demonstration 2.2-5: $f(x)=10 \cos x$. The subroutine for f is:

19	RAD	21	1	23	*
20	\cos	22	0	24	RTN

Section 2.2:
BISECTION

1. Purpose

To find a zero of a continuous function f, i.e. a solution of the equation

$$
f(x)=0
$$

if points a and b are known such that

$$
f(a)<0 \text { and } f(b)>0 .
$$

(It is not required that $\mathrm{a}<\mathrm{b}$.)
2. Method

Successive bisection, see Essentials, §2.3. Let

$$
x:=\frac{a+b}{2}
$$

If $f(x)<0$, then f has a zero between x and $b ;$ we thus set $a:=x$ and repeat. If $f(x) \geqslant 0$, then f becomes zero between a and x (or possibly at x); we thus set $b:=x$ and repeat. The iteration is terminated if (on the machine)
$\mathrm{x}=\mathrm{a}$ or $\mathrm{x}=\mathrm{b}$. [It is not possible to use $\mathrm{a}=\mathrm{b}$ as a convergence test; because of rounding errors this condition may never be satisfied.]

3. Flow Diagram

4. Storage and Program

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
a	b	x					

	00	10	20	30	40
0	-	RCL 1	GTO 01		
1	\rightarrow RCL 0	RCL 2	\rightarrow RCL 2		
2	RCL 1	$\mathrm{x}=\mathrm{y}$	STO 0		
3	+	R/S	GTO 01		
4	2	PAUSE	\rightarrow		
5	\div	GSB 24			
6	STO 2	$\mathrm{x}<0$			
7	RCL 0	GTO 21			
8	$\mathrm{x}=\mathrm{y}$	RCL 2			
9	R/S	STO 1			

Locations $24 \div 49$ are reserved for the subroutine to compute $\mathrm{f}(\mathrm{x})$. This program may assume x in the X-register, and also in R_{2}. The subroutine should put $f(x)$ into the x-register (and its last instruction should be RTN). Registers $R_{3} \div R_{7}$ are available for auxiliary storage.

5. Operating Instructions

Load program, including subroutine to compute $f(x)$. (If f involves trigonometric functions, whose argument is measured in radians, include RAD instruction in subroutine.) Move operating switch to RUN position.

Select mode of displaying numbers. Load a with $f(a)<0$ into R_{0} and b with $f(b)>0$ into R_{1}. (The domain of definition of f must contain the closed interval bounded by a and b.) Pressing

PRGM
R/S
starts computation. The computer briefly displays each iterate x and stops when (on the machine) $x=\frac{1}{2}(a+b)$ coincides with either a or b.
6. Examples and Timing

1 Let $\mathrm{f}(\mathrm{x}):=\sin \mathrm{x}$. We want to find the smallest positive zero of f by bisection. We know that it has the exact value $\pi=3.1415926536 .$. and therefore set $\mathrm{a}:=4$ and $\mathrm{b}:=1$. The subroutine for f is

24 RAD 25 sin 26 RTN
and we obtain $x=3.141592654$. The error, as expected, is about 1 unit in the last digit displayed. Computing time 80 sec . Starting with $\mathrm{a}:=4$ and $\mathrm{b}:=3$ reduces the computing time by 5 sec .

2 Let

$$
f(x):=\log \frac{1}{x}-x \operatorname{Arctan} \frac{1}{x}-\log 2
$$

(see ACCA III, §l6.5). By experimentation we find $\mathrm{f}(0.1)>0, \mathrm{f}(\mathrm{l})<0$. We thus set $\mathrm{a}:=1$, b:=0.l. Calculation with the following subroutine yields $x=0.330587542$.

24	l / x	28	TAN $^{-1}$	32	2
15	LN	29	RCL 2	33	LN
26	LAST X	30	$*$	34	-
27	RAD	31	-	35	RTN

Computing time 135 sec.

3 The seemingly trivial problem of finding the zero of $\mathrm{f}(\mathrm{x}):=\mathrm{x}$ is not trivial for the bisection method as programmed here. If the absolute value of the solution is very small or zero, it takes many iterations to meet the criterion $\mathrm{x}=\mathrm{a}$ or $\mathrm{x}=\mathrm{b}$ due to the floating point representation used by the calculator. Thus in the present case, the iteration grinds down to values of $\mathrm{x}<10^{-99}$ before finally producing the correct solution $x=0$. In compensation, the solution is very accurate. It can be guaranteed to be between $\pm 10^{-99}$. The same effect occurs, for instance, in the solution of $\sin x=0$ for $a=-1, b=2$.

Demonstrations 2.3-1, 2.3-2:

NEWTON'S METHOD: SQUARE ROOT ITERATION, DIVISION

1. Purpose

To apply Newton's method to the problems of finding the square root and the reciprocal of a given positive number.

2. Method

Newton's method, see Essentials, §2.3. The Newton iteration function to determine is
a) $\sqrt{c}, c>0$ is $f(x)=\frac{1}{2}\left(x+\frac{c}{x}\right)$
b) $\frac{1}{a}, \quad$ is $f(x)=x(2-a x)$,
see Demonstration 2.3-1 and 2.3-2. The iteration is stopped as soon as two consecutive iterates differ by less than ε, the tolerance ε been chosen such that full machine accuracy is obtained, hence for the $\operatorname{HP}-33 \mathrm{E} \varepsilon:=10^{-10}$.

3. Flow Diagram

4. Storage and Program

R	R_{1}	R_{2}	R_{3}		R_{4}	R_{5}	R		R_{7}
C 0	a x_{0}								
	x_{n}	ε							
	00	10		20		30		40	
0	\rightarrow	STO 1							
1	1	-							
2	EEX	ABS							
3	1	RCL 2							
4	0	$\mathrm{x} \leq \mathrm{Y}$							
5	CHS	GTO 07							
6	STO 2	RCL 1							
7	\rightarrow RCL 1	R/S							
8	PAUSE	\rightarrow							
9	GSB 18								

Locations 18 and following are reserved for the subroutine computing values of the iteration function. It should assume x in R_{1} and c or a in R_{0} and then leave $f(x)$ in the x-register.

5. Operating Instructions

Load program including appropriate subroutine for the iteration function. Move to RUN. Load constant c or a into R_{0} and starting value x_{0} into R_{1}. Upon pressing

```
FIX 8
```

PRGM
R/S
the computation is started. The computer will briefly display each iterate (including x_{0}) until convergence has taken place, when it stops by displaying the result, i.e. the square root or the reciprocal. The iterations are not counted.
6. Examples

1 Square root, see Demonstration 2.3-1. The subroutine for the Newton iteration function is:

18	RCL 0	21	RCL 1	24	\div	
19	RCL 1	22	+	25	RTN	
20	\div		23	2		

2 Reciprocal, see Demonstration 2.3-2. Subroutine:

| 18 | RCL 0 | 21 | CHS | 24 | RCL l | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 19 | RCL 1 | 22 | 2 | 25 | $*$ | |
| 20 | $*$ | | 23 | + | 26 | RTN |

Problem 2.3-4:
DRIVING MECHANISM

R_{0}	R_{1}	R_{2}	$\mathrm{R}_{3} \quad \mathrm{R}_{4}$	R_{5}	$\mathrm{R}_{6} \quad \mathrm{R}_{7}$
L	R	r	$\mathrm{x} \quad \pi(\mathrm{R}+\mathrm{r})$	$\mathrm{R}-\mathrm{r}$	
	00	10	20	30	40
0	\rightarrow	\div	\div	*	RCL 3
1	RCL 0	STO 3	$\sin ^{-1}$	RCL 3	$\mathrm{x}=\mathrm{y}$
2	RCL 1	RCL 1	RCL 5	x^{2}	GTO 00
3	RCL 2	RCL 2	*	RCL 5	$x>y$
4	+	-	2	x^{2}	STO 3
5	π	STO 5	*	-	PAUSE
6	*	RAD	RCL 4	$\sqrt{\mathrm{x}}$	GTO 17
7	STO 4	\rightarrow RCL 0	+	2	
8	-	RCL 5	-	*	
9	2	RCL 3	RCL 3	\div	

Solves the equation $g(x)=L$, where

$$
g(x)=\pi(R+r)+2 \sqrt{x^{2}-(R-r)^{2}}+2(R-r) \arcsin \frac{R-r}{x}
$$

by Newton's method. Iteration function

$$
f(x):=x-\frac{g(x)-L}{g^{\prime}(x)}
$$

is evaluated as

$$
f(x)=x \frac{L-\pi(R+r)-2(R-r) \arcsin \frac{R-r}{x}}{2 \sqrt{x^{2}-(R-r)^{2}}} .
$$

Starting value is $x_{0}=\frac{1}{2}(L-\pi(R+r))$.

Demonstrations 2.3-3, 2.3-4:
HORNER ALGORITHM

1. Purpose

Given an arbitrary polynomial of degree $\leqq 4$ with real coefficients

$$
p(x)=a_{0} x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4},
$$

and given an arbitrary real number x_{0}, to determine the coefficients b_{m} in the representation of p in powers of $\mathrm{h}:=\mathrm{x}-\mathrm{x}_{0}$,

$$
p\left(x_{0}+h\right)=b_{0} h^{4}+b_{1} h^{3}+b_{2} h^{2}+b_{3} h+b_{4}
$$

that is, the Taylor coefficients of p at x_{0}.
2. Method

The Horner algorithm, see Essentials, §2.3.

3. Flow Diagram

Because an address modification is not available, the programming here is different from what it would be on a larger computer. By a cyclic permutation (here called rotation) of the a_{k} the coefficients operated on are always found in the same registers. After the algorithm is executed the Taylor coefficients b_{k} are stored where previously the coefficients a_{k} of the given polynomial were stored. A triangular array of coefficients has to be generated row by row; n and m are the row and column indices respectively.

R_{0}	R_{1}	R_{2}	$\mathrm{R}_{3} \quad \mathrm{R}_{4}$	R_{5}	$\mathrm{R}_{6} \quad \mathrm{R}_{7}$
a_{0}	a_{1}	a_{2}	$\mathrm{a}_{3} \quad \mathrm{a}_{4}$	x_{0}	n.m
	00	10	20	30	40
0	\rightarrow	4	3	STO 2	RCL 7
1	\rightarrow RCL 7	$\mathrm{x} \leqq \mathrm{y}$	$\mathrm{x} \leqq \mathrm{Y}$	RCL 4	FRAC
2	INT	GTO 23	GTO 49	STO 3	$\mathrm{x} \leqq \mathrm{Y}$
	STO 7	RCL 0	\rightarrow RCL 0	RCL 6	GTO 04
4	\rightarrow RCL 7	RCL 5	STO 6	STO 4	RCL 0
5	FRAC	*	RCL 1	-	PAUSE (R/S)
6	9	RCL 1	STO 0	1	1
7	*	+	RCL 2	STO+7	STO+7
8	RCL 7	STO 1	STO 1	-	GTO 01
9	+	RCL 7	RCL 3	4	\rightarrow RCL 0

Note: A fractional index n.m is used to save storage.

5. Operating Instructions

Load the program and switch to RUN. Load the coefficients a_{m} into $R_{m}(m=0,1, \ldots, 4)$. Also load x_{0} into R_{5} and initial value zero of fractional index $n . m$ into R_{7}. When

$$
\begin{aligned}
& \text { PRGM } \\
& \text { R/S }
\end{aligned}
$$

is pressed, the calculator computes the b_{m}; it briefly displays b_{0} after each Horner step and stops by displaying
b_{0} after all the b_{m} have been computed. At this time, the b_{m} are stored in $R_{m}(m=0, l, \ldots, 4$,$) , thus enabling the$ operator to continue the computation immediately with a different x_{0} (and after re-setting the index n.m equal to zero!). The original a_{n} are lost. If all the computed coefficients need to be recorded or if less than four Horner steps are desired, then instruction 45 should be changed to R/S, effecting a stop after each Horner step. At this time the coefficients can be found in corresponding registers as indicated above. Press R / S to continue the computation.
6. Examples and Timing

1 $p(x):=x^{4}-4 x^{3}+3 x^{2}-2 x+5$. To compute the Taylor coefficients at $x=2$, see Essentials, Demonstration 2.3-3. Computing time including short displays 38 sec .
$2 p(x):=x^{4}-2 x^{3}+8 x-16, p(-2)=0$. TO divide p by $x-(-2)$, see Essentials, Demonstration 2.3-4.

Demonstration 2.3-5:
NEWTON'S METHOD FOR POLYNOMIALS WITH AUTOMATIC DEFLATION

1. Purpose

To determine all real zeros of a real polynomial of degree 4 ,

$$
p(x):=a_{0} x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4}
$$

2. Method

Newton's method for polynomials, see Essentials, §2.3.

3. Flow Diagram

This is identical with the flow diagram Figure 2.3. of Essentials, §2.3 for $n=4$. For reasons of space the program given in section 4 does not check convergence and shows the new zero found only after the deflation has been performed.
4. Storage and Program

R_{0}	R_{1}	R_{2}	$\mathrm{R}_{3} \quad \mathrm{R}_{4}$	R_{5}	$\mathrm{R}_{6} \quad \mathrm{R}$
a_{0}	a_{1}	a_{2}	a_{3} a_{4}	b	c x
	00	10	20	30	40
0	$\xrightarrow{\text { cos }}$	RCL 3	$\rightarrow \mathrm{STO}+5$	*	RCL 3
1	$\rightarrow \quad 0$	GSB 20	RCL 7	STO+1	STO 4
2	STO 5	RCL 4	STO*6	RCL 1	RCL 2
3	STO 6	STO+5	RCL 5	RCL 7	STO 3
4	RCL 0	RCL 6	STO+6	*	RCL 1
5	GSB 20	STO $\div 5$	RCL 7	$\mathrm{STO}+2$	STO 2
6	RCL 1	RCL 5	STO*5	RCL 2	RCL 0
7	GSB 20	PAUSE	RTN	RCL 7	STO-0
8	RCL 2	STO-7	RCL 0	*	STO 1
9	GSB 20	GTO 01	RCL 7	STO+3	RCL 7

5. Operating Instructions

Load the program and then turn the operating switch to RUN. Select the mode of displaying numbers, for instance by pressing

FIX 8

Load the coefficients a_{i} of the given polynomial into R_{i}. [a_{0} is the coefficient of x^{4} etc.!] Load the starting value x_{0} into R_{7} (if $x_{0}=0$, it is already there). Press

PRGM

* R/S
to start computation. The computer will briefly display the corrections $-\Delta x_{n}=\frac{p\left(x_{n}\right)}{p^{\prime}\left(x_{n}\right)}$ [For indeterminate display change instruction 17 to R / S and press R / S after each display.] Their convergence has to be checked by eye. As soon as they are zero within the accuracy desired

$$
R / S
$$

should be pressed. At this point the zero can be found in R_{7}. But after pressing

GTO 28
R/S
the polynomial will be deflated automatically, and the computer will halt while displaying the zero just found. In the process of deflation the new coefficients are written over the old ones. To compute the next zero load new starting value into R_{7} (if this is omitted the last zero will be used as starting value) and repeat the process beginning with instruction * above. This may be done until all real zeros have been found.
6. Examples and Timing

1 Let $p(x):=p_{4}(x):=x^{4}-16 x^{3}+72 x^{2}-96 x+24$, the Laguerre polynomial of degree four. To determine all its zeros using Newton's method, see Essentials, Demonstration 2.3-5.
$2 p(x):=(x-1)(x+2)(x-3)(x-4)$

$$
=x^{4}-6 x^{3}+3 x^{2}+26 x-24
$$

Starting with $x_{0}=0$ we get the zero of smallest absolute value

$$
x_{1}=1.00000000
$$

after five iterations. Starting again with $x_{0}=0$ - deflation is done automatically by the program - after ten iterations the computer produces the zero

$$
x_{2}=4.00000000
$$

[Upon looking at the graph of p it can be understood, that not the zeros -2 and 3 with smaller absolute values have been determined first.] Again using $x_{0}=0$ as starting value we get

$$
x_{3}=-2.00000000
$$

after six iterations. After one more iteration we find - independently of the starting value now -

$$
x_{4}=3.00000000
$$

Computing time about 4 sec. per iteration.

3 Let $p(x):=E_{4}(x)=x^{4}-2 x^{3}+x$, the fourth
Euler polynomial. Obviously

$$
x_{1}=0
$$

is a zero of p. Hence the zeros of

$$
q(x):=x^{3}-2 x^{2}+1
$$

remain to be determined. Since $x=0$ is a zero of $q^{\prime}(x)$ we have to choose a nonzero starting value, egg. $x_{0}=.5$. After one iteration we obtain

$$
x_{2}=1.00000000
$$

Starting with $x_{0}=0$ after five iterations produce the zero

$$
x_{3}=-0.61803399
$$

and in one more iteration

$$
x_{4}=1.61803399
$$

Computing time about 4 sec . per iteration.

4 Let $p(x):=T_{8}(x)=128 x^{8}-256 x^{6}+160 x^{4}-32 x^{2}+1$, the Chebyshev polynomial of degree 8. To determine its zeros we first put $y:=x^{2}$ and look for the $\operatorname{zeros} y_{i}, i=1,2,3,4$, of

$$
q(y):=128 y^{4}-256 y^{3}+160 y^{2}-32 y+1
$$

The zeros of T_{8} will then be the roots of Y_{i}, i $=1,2,3,4$. In this example we will always use $\mathrm{x}_{0}=0$ as starting value. We obtain

$$
\begin{array}{ll}
\mathrm{y}_{1}=0.03806023 & \text { after } 4 \text { iterations } \\
\mathrm{y}_{2}=0.30865828 & \text { after } 6 \text { iterations } \\
\mathrm{y}_{3}=0.69134172 & \text { after } 6 \text { iterations } \\
\mathrm{y}_{4}=0.96193977 & \text { after } 1 \text { iteration }
\end{array}
$$

Hence the zeros of T_{8} are

$$
\begin{aligned}
& x_{1,2}= \pm 0.19509032 \\
& x_{3,4}= \pm 0.55557023 \\
& x_{5,6}= \pm 0.83146961 \\
& x_{7,8}= \pm 0.98078528
\end{aligned}
$$

and lie between -1 and +1 as expected. Computing time about 5 sec . per iteration.

Demonstration 2.4-1:
ITERATION FOR SYSTEMS OF TWO EQUATIONS

1. Purpose

To compute the solution of

$$
\left\{\begin{array}{l}
x=f(x, y) \\
y=g(x, y)
\end{array}\right.
$$

2. Method

Iteration, see Essentials, §2.4.
3. Flow Diagram

4. Storage and Program

R_{0}	R_{1}	R_{2}	$\mathrm{R}_{3} \quad \mathrm{R}_{4}$	R_{5}	R_{6}	R_{7}
x_{0}	Y_{0}	*			A	B
	00	10	20	30	40	
0	\rightarrow	RAD	RTN	+		
1	\rightarrow GSB 10	RCL 0	\rightarrow RAD	RTN		
2	STO 2	cos	RCL 0			
3	R/S	RCL 6	sin			
4	GSB 21	*	RCL 6			
5	STO 1	RCL 1	*			
6	R/S	sin	RCL 1			
7	RCL 2	RCL 7	cos			
8	STO 0	*	RCL 7			
9	GTO 01	-	*			

The foregoing program implements the example given below. If it is to be applied to another system, then use instructions $10 \div 49$ for the two subroutines computing f and g and change instructions 01 and 04 accordingly. Storage locations $R_{3} \div R_{7}$ are available for the computation of f and g.

5. Operating Instructions

Load program, including subroutines to compute f and g (see remark in section 4). Then switch to RUN and choose mode of displaying numbers. Load starting values x_{0} and
y_{0} into R_{0} and R_{1} respectively. Load constants for the computation of the functions f and g. Upon pressing

PRGM
R/S

the computation is started. The computer will stop by displaying x_{1}. Press R / S to obtain Y_{1} and again R / S to obtain x_{2}, etc. Convergence has to be tested by eye.
6. Example

Let $\quad f(x, y):=A \cos x-B \sin y$

$$
g(x, y):=A \sin x-B \cos y
$$

A, B constants, see Essentials, Demonstration 2.4-1.

Problem 2.4-1:

CIRCLE TOUCHING THREE GIVEN CIRCLES

R_{0}
R_{1}
x

Let the centers and radii of the three given circles be $(0,0), r_{1} ;(a, 0), r_{2} ;(0, b), r_{3}$. The center (x, y) of a circle touching the three circles, but not containing any of them, will satisfy

$$
\begin{aligned}
& d_{1}+r_{1}=d_{2}+r_{2}, \\
& d_{1}+r_{1}=d_{3}+r_{3},
\end{aligned}
$$

where $d_{1}:=\sqrt{x^{2}+y^{2}}, \quad d_{2}:=\sqrt{(x-a)^{2}+y^{2}}, d_{3}:=\sqrt{x^{2}+(y-b)^{2}}$. These equations may be cast in the form

$$
\begin{aligned}
& x=\frac{1}{2}\left\{a+\frac{1}{a}\left(r_{1}-r_{2}\right)\left(d_{1}+d_{2}\right)\right\} \\
& y=\frac{1}{2}\left\{b+\frac{1}{b}\left(r_{1}-r_{3}\right)\left(d_{1}+d_{3}\right)\right\}
\end{aligned}
$$

Program tries to solve these equations by iteration. Iteration will converge if

$$
\frac{\left|r_{1}-r_{2}\right|}{a}, \quad \frac{\left|r_{1}-r_{3}\right|}{b}
$$

are sufficiently small.

Problem 2.4-3:
SOLUTION OF 2×2 SYSTEM WITH SUCCESSIVE OVERRELAXATION

Solves system

$$
\begin{aligned}
x+a y & =c \\
b x+y & =d
\end{aligned}
$$

by iterating in the form

$$
\begin{aligned}
& x_{n+1}=\omega\left(c-a y_{n}\right)+(1-\omega) x_{n} \\
& y_{n+1}=\omega\left(d-b x_{n+1}\right)+(1-\omega) y_{n}
\end{aligned}
$$

(ω = overrelaxation parameter). Also shows length of residual vector \underline{r},

$$
|\underline{r}|=\sqrt{\left(c-x_{n}-a y_{n}\right)^{2}+\left(d-b x_{n}-y_{n}\right)^{2}}
$$

after each step.

Problem 2.5-1:

DELAYED EXPONENTIAL POPULATION GROWTH

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
α	x	y	r	ϕ			
$\mathrm{k} \in \mathrm{X}$							

	00	10	20	30	40
0	,	STO 2	RCL 0	$\rightarrow \mathrm{P}$	RCL 1
1	RAD	RCL 0	+	RCL 0	-
2	4	x < y	$\rightarrow \mathrm{P}$	*	STO+1
3	*	\div	STO 3	RCL 3	PAUSE
4	1	ℓn	R \downarrow	\div	$x \gg y$
5	-	STO 1	STO 4	$x \geqslant y^{\text {l }}$	RCL 2
6	2	RCL 2	RCL 2	RCL 4	-
7	\div	RCL 1	RCL 1	-	STO+2
8	π	e^{x}	1	$x>y$	PAUSE
9	*	$\rightarrow \mathrm{R}$	+	$\rightarrow \mathrm{R}$	GTO 16

Finds complex solution z of

$$
\begin{equation*}
z=\alpha e^{-z} \tag{*}
\end{equation*}
$$

by applying Newton's method to system of equations obtained by separating real and imaginary parts, starting with asymptotic solution value

$$
z_{0}=z_{0}^{(k)}:=\log \frac{2 \alpha}{(4 k-1) \pi}+i \frac{4 k-1}{2} \pi,
$$

where $k=1,2, \ldots$. Corrections $\Delta x, \Delta y$ are shown; after convergence to sufficient accuracy has been achieved, solution is $z=x+i y$ where $x \in R_{1}, y \in R_{2}$. Starting value

$$
z_{0}=z_{0}^{(k)}=\log \frac{2 \alpha}{(4 k-1) \pi}+i \frac{4 k-1}{2} \pi,
$$

where $k=1,2, .$. yields k-th complex root.

Algebraic simplification in Newton's equations results in iteration

$$
z_{n+1}=f\left(z_{n}\right)
$$

where

$$
f(z):=\frac{z+1}{e^{z}+\alpha}
$$

Use is made of polar representation of complex numbers to evaluate f.

Problems 2.5-2, 2.5-3:
EVALUATION OF REAL POLYNOMIAL OF DEGREE $\leqq 5$
AT A COMPLEX POINT

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	r	θ
	00	10		20	30	40	
0	\bigcirc	RCL 6		RCL 6	RCL 6	RCL 6	
1	RAD	*		*	*	*	
2	RCL 7	$\mathrm{x} \geqslant \mathrm{y}$		$\mathrm{x} \geqslant \mathrm{y}$	x < y	$\mathrm{x} \geqslant>$	
3	RCL 6	RCL 7		RCL 7	RCL 7	RCL	
4	RCL 0	+		+	+	+	
5	*	x २ Y		$x \geqslant y$	x २ y	$x \geqslant y$	
6	$\rightarrow \mathrm{R}$	$\rightarrow \mathrm{R}$		$\rightarrow \mathrm{R}$	$\rightarrow \mathrm{R}$	$\rightarrow \mathrm{R}$	
7	RCL 1	RCL 2		RCL 3	RCL 4	RCL	
8	+	+		+	+	+	
9	$\rightarrow \mathrm{P}$	$\rightarrow \mathrm{P}$		$\rightarrow \mathrm{P}$	$\rightarrow \mathrm{P}$	$\rightarrow \mathrm{P}$	

Evaluates

$$
\begin{aligned}
p(z) & =a_{0} z^{5}+a_{1} z^{4}+a_{2} z^{3}+a_{3} z^{2}+a_{4} z+a_{5} \\
& \left.=\left(\left(\left(a_{0} z+a_{1}\right) z+a_{2}\right) z+a_{3}\right) z+a_{4}\right) z+a_{5}
\end{aligned}
$$

where the a_{i} are real and z is complex, $z=r e^{i \theta}$. Data are preserved. Result appears in polar form, $p(z)=s e^{i \alpha}$, where $s \in X, \alpha \in Y$. If display in cartesian form $u+i v$ is desired, change instruction 49 to GTO 00.

Demonstrations 3.2-1 $\div 3.2-3:$

MODIFIED BERNOULLI METHOD FOR REAL OR FOR COMPLEX CONJUGATE ZEROS

1. Purpose

To determine the one real zero or the two complex conjugate zeros of smallest modulus of a real polynomial of degree 4,

$$
p(z):=a_{0} z^{4}+a_{1} z^{3}+a_{2} z^{2}+a_{3} z+a_{4}
$$

provided that the remaining zeros have larger absolute values.

2. Method

The modified Bernoulli method using balanced starting values, see Essentials, §3.2. We will also apply this method to polynomials with multiple zeros and see that the convergence is not impaired. The key definitions and formulas for $k=4$ used in the program given below are the following

$$
\hat{\mathrm{q}}_{\mathrm{n}}:=\frac{\mathrm{x}_{\mathrm{n}}}{\mathrm{x}_{\mathrm{n}+1}}
$$

Balanced starting values:

$$
\begin{aligned}
\hat{q}_{j} & =-\frac{a_{4}}{a_{3}+\hat{q}_{j-1}\left(a_{2}+\hat{q}_{j-2}\left(a_{1}-(j+1) \frac{a_{4}}{a_{3}} a_{4-j-1}\right)\right)} \\
j & =1,2,3, \text { where } \hat{q}_{-1}:=\hat{q}_{0}:=0
\end{aligned}
$$

Real zero z_{1} :

$$
\hat{q}_{k}=-\frac{a_{4}}{a_{3}+\hat{q}_{k-1}\left(a_{2}+\hat{q}_{k-2}\left(a_{1}+q_{1} a_{0}\right)\right)}
$$

$$
\text { then shift } \hat{q}_{j}:=\hat{q}_{j+1}, j=1,2,3
$$

$$
z_{1}=\lim \hat{q}_{n} ; \text { deflate with } z-z_{1} \text { and apply }
$$

the method to the deflated polynomial.

Complex conjugate zeros z_{1}, z_{2} :

$$
\begin{aligned}
& \hat{\mathrm{q}}_{\mathrm{k}} \quad \text { as in case of real zero } \\
& \hat{\mathrm{q}}_{\mathrm{k}-1}^{\prime}:=\frac{\hat{\mathrm{q}}_{\mathrm{k}-1}-\hat{\mathrm{q}}_{\mathrm{k}-2}}{\hat{\mathrm{q}}_{\mathrm{k}}-\hat{\mathrm{q}}_{\mathrm{k}-1}} \hat{\mathrm{q}}_{\mathrm{k}-1} \\
& \hat{\mathrm{~b}}_{\mathrm{n}} \quad:=\hat{\mathrm{q}}_{\mathrm{k}-1}+\hat{\mathrm{q}}_{\mathrm{k}-1}^{\prime}, \quad \hat{\mathrm{c}}_{\mathrm{n}}:=\hat{\mathrm{q}}_{\mathrm{k}} \hat{\mathrm{q}}_{\mathrm{k}-1}^{\prime} \\
& \hat{\mathrm{b}}:=\lim \hat{\mathrm{b}}_{\mathrm{n}}, \quad \hat{\mathrm{c}}:=\lim \hat{\mathrm{c}}_{\mathrm{n}} \\
& \mathrm{z}_{1} \text { and } \mathrm{z}_{2} \text { are the solutions of } \mathrm{z}^{2}-\hat{\mathrm{b}} \mathrm{z}+\hat{\mathrm{c}}=0 \text {; } \\
& \text { deflate with this quadratic factor and apply } \\
& \text { the method to the deflated polynomial. }
\end{aligned}
$$

3. Flow Diagram

See Essentials, §3.2, Figure 3.2.
4. Storage and Program

Load program, where instruction 32 discriminates between the real and the complex case (see section 4). Switch to RUN. Load the coefficients a_{i} of the given polynomial into R_{i}, $i=0,1,2,3,4\left(a_{i}\right.$ is the coefficient of z^{4-i}). * Also load $-2 \frac{a_{4}}{a_{3}}$ into R_{5} and zero into R_{6} and R_{7}. Press

PRGM

R/S
to start the computation. The computer will briefly display \hat{q}_{n} (real root) or first \hat{b}_{n} and then \hat{c}_{n} (complex roots). The convergence of the \hat{q}_{n} or \hat{b}_{n} and \hat{c}_{n} has to be checked by eye; if an indeterminate display of these quantities is desired change instruction 48 or instructions 44 and 48 to R/S and press R/S after each display to continue the computation. If the program should be used to compute further zeros of the polynomial, then it should be deflated with the corresponding linear or quadratic factor. This deflation has to be done by hand. If the coefficients of the deflated polynomial again are called $a_{0} \div a_{4}$, then $a_{0}=0$ in the real case and $a_{0}=a_{1}=0$ in the complex case. Before restarting the computation go to * above, etc.

6. Examples

$1 p(z)=z^{4}-16 z^{3}+72 z^{2}-96 z+24$, see Essentials, Demonstration 3.2-1. We apply the program for real roots. In order to deflate with $z-z_{1}$ we perform one Horner step by hand:

RCL 0

RCL 5
*
STO+1
RCL 1
RCL 5
*
$\mathrm{STO}+2$
RCL 2
RCL 5
*
STO+3
RCL 3
RCL 5
*
$\mathrm{STO}+4$

At this point the coefficients of the deflated polynomial of degree 3 are located in $R_{0} \div R_{3}$. The content of R_{4} is equal to $p\left(z_{1}\right)$ and therefore should equal zero (up to rounding errors). We now have to put these coefficients into the appropriate storage registers and load $R_{5} \div R_{7}$ accordingly:

```
RCL 3
STO 4
RCL 2
STO 3
RCL 1
STO 2
RCL 0
STO l
0
STO O
STO }
STO }
RCL 4
RCL 3
\div
2
*
CHS
STO 5
```

We now are ready to do the next Bernoulli real step. After the next zero has been found in this manner, we deflate and re-store as above etc.
$2 p(z)=(z-1)^{3}(z+2)=z^{4}-z^{3}-3 z^{2}+5 z-2$, see Essentials, Demonstration 3.2-2. Since $(z-1)^{3}=(z-1)(z-)^{2}$, it makes sense to try to find one zero with the value 1 with the real version of Bernoulli's method.
$3 p(z)=z^{4}-8 z^{3}+40 z^{2}-68 z+74$, see Essentials, Demonstration 3.2-3. Here the complex version of Bernoulli's method, i.e. with instruction 32 changed to GTO 33, is successful.

From $\hat{b}=2 \operatorname{Re} z_{1}$ and $\hat{c}=\left|z_{1}\right|^{2}$ we find z_{l} and $z_{2}=\bar{z}_{1}$. If a polynomial of degree 4 is deflated with a quadratic factor we obtain a quadratic polynomial $q(z):=r z^{2}+s z+t$. Clearly $r=1$ and by comparing coefficients we get -2.01... + s $=-8$ and 9.96... $\operatorname{t}=74$, from which we can compute s and t and the zeros $z_{3,4}$ of q and p.

4 See Essentials, Demonstrations 3.2-4 and 3.2-5, + where polynomials of degree 6 and 8 are con-
5 sidered. The program given in section 4 can only handle degrees $\mathrm{k} \leqq 4$. The results given in the Essentials have been obtained on a HP-67 computer.

Demonstrations 3.3-6 $\div 3.3-8$:
QUOTIENT DIFFERENCE ALGORITHM

1. Purpose

To compute all the zeros of a real polynomial of degree 4,

$$
p(z):=a_{0} z^{4}+a_{1} z^{3}+a_{2} z^{2}+a_{3} z+a_{4}
$$

simultaneously. (If the convergence is too slow, the obtained approximate values can be used as good starting values for a faster method for determining a single zero.)

2. Method

The progressive form of the qd algorithm, see Essentials, §3.3. For the present purpose it can be summarized as follows:

Let $a_{0}, a_{1}, a_{2}, a_{3}, a_{4} \neq 0$; for $n=0,1,2, \ldots$ we generate arrays of numbers

$$
q_{n}^{(1)} e_{n}^{(1)} q_{n}^{(2)} e_{n}^{(2)} q_{n}^{(3)} e_{n}^{(3)} q_{n}^{(4)}
$$

by the initial conditions

$$
\begin{aligned}
& q_{0}^{(1)}:=-\frac{a_{1}}{a_{0}} ; \quad q_{0}^{(k)}:=0, \quad k=2,3,4 ; \\
& e_{0}^{(k)}:=\frac{a_{k+1}}{a_{k}}, \quad k=1,2,3 ;
\end{aligned}
$$

and the continuation rules

$$
\begin{aligned}
& q_{n+1}^{(k)}=\left(e_{n}^{(k)}-e_{n}^{(k-1)}\right)+q_{n}^{(k)} \\
& e_{n+1}^{(k)}=\frac{q_{n+1}^{(k+1)}}{q_{n+1}^{(k)}} e_{n}^{(k)}
\end{aligned}
$$

where always

$$
e_{n}^{(0)}:=e_{n}^{(4)}:=0
$$

One such array of numbers consists of one q and the following e row of the qd scheme (see Essentials, Example 3.3-6). If the zeros z_{k} all have different absolute values, then the qd scheme exists and

$$
\lim _{n \rightarrow \infty} q_{n}^{(k)}=z_{k} \quad \text { and } \quad \lim _{n \rightarrow \infty} e_{n}^{(k)}=0
$$

(convergence of the columns of the qd scheme, see Essentials, Theorems 3.3a and b). By means of auxiliary computation it is also possible to use these arrays to compute pairs of complex conjugate zeros (see Essentials, Theorem 3.3c). If, for instance, two q-columns, $q_{n}^{(1)}$ and $q_{n}^{(2)}$ say, show no convergence pattern and are flanked by e-columns which converge to (or are) zero, then z_{1} and
z_{2} can be found as zeros of the quadratic polynomial

$$
z^{2}-b_{k} z+c_{k}
$$

where

$$
\begin{aligned}
& b_{k}:=\lim _{n \rightarrow \infty}\left(q_{n+1}^{(1)}+q_{n+1}^{(2)}\right) \\
& c_{k}:=\lim _{n \rightarrow \infty} q_{n}^{(1)} \cdot q_{n+1}^{(1)}
\end{aligned}
$$

3. Flow Diagram

Straightforward. First initialize, then compute next array in the following order:

$$
q_{n}^{(1)} q_{n}^{(2)} e_{n}^{(1)} q_{n}^{(3)} e_{n}^{(2)} q_{n}^{(4)} e_{n}^{(3)} ;
$$

the q-values are displayed.
4. Storage and Program

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
a_{0} a_{1} a_{2} a_{3} a_{4} n $\mathrm{q}^{(1)}$ $e^{(1)}$ $q^{(2)}$ $e^{(2)}$$q^{(3)}$	$e^{(3)}$	$q^{(4)}$					

$a_{4} \in X$

	00	10	20	30	40
0	,	RCL 0	RCL 1	STO*2	RCL 6
1	RCL 3	STO -0	R/S	RCL 6	STO-7
2	\div	CHS	RCL 4	RCL 4	RCL 7
3	STO 6	STO $\div 1$	RCL 2	-	PAUSE
4	RCL 3	0	-	STO+5	RCL 5
5	RCL 2	STO 3	STO+3	RCL 5	\div
6	\div	STO 5	RCL 3	PAUSE	STO*6
7	STO 4	STO 7	PAUSE	RCL 3	1
8	RCL 1	\rightarrow RCL 2	RCL 1	\div	STO+0
9	$\mathrm{STO} \div 2$	STO+1	\div	STO*4	GTO 18

5. Operating Instructions

Load the program, then move the operating switch to RUN. Select mode of displaying numbers. Load the coefficients a_{k} of the given polynomial into $R_{k}, k=0,1,2,3,4$ (a_{0} is the coefficient of z^{4} etc.!) and leave a_{4} in the X-register (for reasons of programming space). Then press

PRGM
R/S
to start computation. The computer will then automatically generate the first two rows of the progressive form of the qd algorithm and stop by displaying $q_{1}^{(l)}$ For reasons of programming space $q_{0}^{(1)}=-\frac{a_{1}}{a_{0}}$ (see Essentials, Example 3.3-5) is never displayed and at this point already "overwritten" by $q_{l}^{(1)}$. But all the other quantities of the initial array can be inspected from the appropriate registers as indicated in section 4. This is the only place in the program, at which nondisplayed quantities may be recalled, because elsewhere, for reasons of programming space, the program is working with the quantities in the X -register. * Press

$$
\mathrm{R} / \mathrm{S}
$$

to continue the computation. The computer then will briefly display $q_{1}^{(2)}, q_{1}^{(3)}$ and $q_{1}^{(4)}$ and stop by displaying $q_{2}^{(1)}$; as above only now the other values of interest may be recalled. Now continue with * as above to get $q_{3}^{(1)}$ etc. Instead of the brief displays of $q_{n}^{(2)}$, $q_{n}^{(3)}$ and $q_{n}^{(4)}$ one can obtain stops by changing instructions 27,36 and 43 to R/S; then R / S has to be pressed after each display to continue the computation. The e-values will always have to be recalled after the display of $q_{n}^{(1)}$.

6. Examples

$1 \mathrm{p}(\mathrm{z}):=z^{4}-16 z^{3}+72 z^{2}-96 z+24$, see Essentials,
Demonstration $3 \cdot 3-6$. Here $q_{0}^{(1)}=-\frac{-16}{1}=16$.

2 $p(z):=z^{4}-8 z^{3}+39 z^{2}-62 z+50$, see Essentials, Demonstration 3.3-7. After running the program, we discover that the polynomial must have two pairs of complex conjugate zeros. We hence compute (no special program, since the q-values have to be punched in anyway) the corresponding b and c values, to obtain the two quadratic factors of the polynomial as indicated in Demonstration 3.3-7.
$3 p(z):=81 z^{4}-108 z^{3}+24 z+20$, see Essentials, Demonstration 3.3-8. The qd scheme for $\mathrm{p} *(\mathrm{z} *):=81 \mathrm{z} *^{4}+216 \mathrm{z} *^{3}+162 \mathrm{z} *^{2}+24 \mathrm{z} *+17$ is
(initial rows corresponding to $\mathrm{n}=0$ omitted):

n	$q_{n}^{(1)}$	$e_{n}^{(1)}$	$q_{n}^{(2)}$	$e_{n}^{(2)}$	$q_{n}^{(3)}$	$e_{n}^{(3)}$	$q_{n}^{(4)}$
1	-1.916667	0.235507	-0.601852	-0.137892	0.560185	-0.895661	-0.708333
2	-1.681159	0.136619	-0.975251	-0.027937	-0.197584	0.849168	0.187328
3	-1.544540	0.100819	-1.139807	0.016655	0.679521	-0.827074	-0.661840
4	-1.443721	0.085474	-1.223971	0.002234	-0.164208	0.832238	0.165234
5	-1.358247	0.082262	-1.307210	-0.001138	0.665795	-0.833749	-0.667004
6	-1.275986	0.089651	-1.390610	-0.000137	-0.166816	0.833393	0.166745
7	-1.186334	0.111874	-1.480398	0.000061	0.666714	-0.833312	-0.666648
8	-1.074460	0.165783	-1.592210	0.000006	-0.166660	0.833331	0.166663
9	-0.908678	0.320734	-1.757986	-0.000002	0.666665	-0.833334	-0.666667
10	-0.587944	1.133979	-2.078723	$.956743_{10}$	-0.166667	0.833333	0.166667

To obtain the two quadratic factors of the polynomial we form:

$\mathrm{b}_{\mathrm{n}}^{(0)}$	$\mathrm{c}_{\mathrm{n}}^{(0)}$	$\mathrm{b}_{\mathrm{n}}^{(2)}$	$c_{\mathrm{n}}^{(2)}$
-2.518519	1.604939	-0.148148	0
-2.656410	1.869231	-0.010256	0.104938
-2.684347	1.916197	0.017681	0.130769
-2.667692	1.890472	0.001026	0.112280
-2.665457	1.887247	-0.001209	0.109527
-2.666596	1.888792	-0.000071	0.111018
-2.666732	1.888967	0.000066	0.111208
-2.666670	1.888893	0.000003	0.111117
-2.666664	1.888886	-0.000002	0.111107
-2.666667	1.888890	0.000000	0.111111
\downarrow	\downarrow	\downarrow	\downarrow
$-\frac{8}{3}$	$\frac{17}{9}$	0	$\frac{1}{9}$

Now we compute the zeros $z_{1}^{*} \div z_{4}^{*}$ and $z_{1} \div z_{4}$
as indicated in Essentials, Demonstration 3.3-8.

Demonstrations 4.l-1, 4.1-2, 4.2-1 $\div 4.2-3,4.3-3,4.4-2:$ SIMULATION OF p-DIGIT DECIMAL ARITHMETIC

1. Purpose

To simulate a computer working with a mantissa of p decimal digits, $1 \leqq \mathrm{p} \leqq 5$.

2. Method

Any given machine number x is rounded to a p-digit floating number \tilde{x} in the following way:
(i) Check and store the sign ε of x and work with $|x|$.
(ii) Multiply $|x|$ with 10^{q}, where q - positive or negative - is chosen such that $|x| \cdot 10^{q} \in\left[10^{p-1}, 10^{\mathrm{p}}\right]$; store $f:=10^{-q}$ ("correction factor").
(iii) Round the auxiliary number $|x| \cdot 10^{q}$ to a p-digit integer by forming

$$
\operatorname{INT}\left(|x| \cdot 10^{q}+0.5\right)
$$

(iv) Multiply this integer with $\varepsilon \cdot f$ to obtain \tilde{x}.

Now ${ }^{\mathrm{x}}$ can be computed with; all the results of computations have to be rounded by the foregoing procedure.
3. Flow Diagram

4. Storage and Program

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
$\mathrm{~F}_{1} \mathrm{P}$	$\varepsilon \cdot \mathrm{f}$	10	$\tilde{\mathrm{Y}}$				

	00	10	20	30	40
0	\bigcirc	ENTER	STO*1	-	RCL 2
1	1	ABS	\div	5	STO -1
2	0	\div	GTO 15	+	*
3	STO 2	STO 1	$\rightarrow \mathrm{x}$ २ Y	INT	GTO 24
4	$\rightarrow \quad R / S$	LAST X	\rightarrow RCL 0	RCL 1	
5	$x \geqslant y$	\rightarrow RCL 0	RCL 2	*	
6	STO 3	$\mathrm{x}>\mathrm{y}$	\div	\rightarrow RCL 3	
7	$x \gtrless y$	GTO 23	$\mathrm{x}>\mathrm{y}$	$x \gtrless y$	
8	$\mathrm{x}=0$	x २ y	GTO 39	GTO 04	
9	GTO 36	RCL 2	$x \gtrless y$	$\rightarrow \mathrm{x} \gtrless \mathrm{Y}$	

The program stores the previously rounded number \tilde{Y} into R_{3} and preserves it (only) until the next number has been rounded, i.e. \tilde{x} has been found. This enables the user to perform operations with \tilde{x} and \tilde{y} without storing them outside the computer.

5. Operating Instructions

Load program, move to RUN. Load 10^{p} into R_{0}; if $\mathrm{p}=4$ press

EEX

Choose mode of displaying numbers by pressing

SCI
6
[To show the correctly rounded p-digit numbers it would of course be sufficient to display just the $p<6$ digits, but it is also interesting to see the zeros which have to appear after the rounding process.] Press

PRGM
R/S

The computer will stop right away, displaying lo. * Now load x into the X-register and press

R/S
to obtain \tilde{x}, the correctly rounded p-digit value of x. At this point the value shown previously can be found in R_{3}. Continue with * above. The registers $R_{4} \div R_{7}$ can be used for additional storage (e.g. if one \tilde{x} has to be preserved throughout several runs of the program).

6. Examples

1 Computations of Demonstration 4.1-1, with $\mathrm{p}=4$, for instance to obtain the (3,3)-element of the first reduced tableau, which equals $0.2000-0.3333$ * 0.3333 . The appearing product
is equal to 0.11108889 which is rounded to 0.1111. The difference then becomes 0.08890. See also Demonstrations 4.1-2, 4.2-1, 4.2-2, 4.2-3, 4.3-3, 4.4-2 for examples with $p=4$.

2 Demonstration 4.3-2 is carried out with $\mathrm{p}=3$.

3 The foregoing program can also be used to simulate computations in "simple" precision with $p=4$ versus "double" precision, i.e. full machine accuracy, see Demonstration 4.2-3.

Problem 4.2-7:
ITERATIVE REFINEMENT WITH "WRONG" L-R DECOMPOSITION

Applies iterative refinement to 2×2 system

$$
\begin{aligned}
2 x_{1}+x_{2} & =1 \\
x_{1}+2 x_{2} & =0,
\end{aligned}
$$

with exact solution $\mathrm{x}_{1}=\frac{2}{3}, \mathrm{x}_{2}=-\frac{1}{3}$. If $\left(\mathrm{x}_{1}^{(0)}, \mathrm{x}_{2}^{(0)}\right.$), is any trial solution, program shows length of
corresponding residual vector $\underline{r}^{(0)}$ and computes corrections $\underline{c}^{(0)}$ from

$$
\begin{aligned}
& \underline{L}^{(0)}=-\underline{\underline{r}}^{(0)}, \\
& {\underline{\mathrm{R}} \underline{\mathrm{c}}^{(0)}=\underline{\underline{w}}^{(0)}}^{(0)}
\end{aligned}
$$

where

$$
\underline{L}=\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right), \quad \underline{R}=\left(\begin{array}{ll}
l & d \\
0 & l
\end{array}\right)
$$

are alledged factors (possibly wrong) in L-R decomposition of matrix $\underset{\text {. }}{ }$

Similar program could be written for arbitrary 2×2
system $\underline{A} \underline{x}=\underline{v}$ where elements of \underline{A} and of \underline{v} are integers.

Demonstration 4.3-3:
STABLE LINEAR REGRESSION

1. Purpose

Given a sequence of data points (x_{i}, y_{i}), $i=1,2, \ldots, n$; to compute the coefficients of the linear regression function

$$
y=a x+b
$$

We also wish to allow for the possibility of adding or removing a point from the set of data points.
2. Method
(See Essentials, §4.3, last section) Straightforward application of the method of least squares to this problem yields the formulas

$$
\begin{align*}
& a=\frac{\sum x_{i} y_{i}-\frac{1}{n} \sum x_{i} \sum y_{i}}{\sum x_{i}^{2}-\frac{1}{n}\left(\sum x_{i}\right)^{2}} \tag{I}\\
& b=\frac{1}{n} \sum y_{i}-a \frac{1}{n} \sum x_{i},
\end{align*}
$$

in which all summations have to be extended from $i=1$ to $i=n$. These formulas, in general, are unstable. However, if we introduce the running means

$$
\mu:=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \text { and } \quad \nu:=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

and shift the origin of our coordinate system into the center of mass of the given data points (and thereby leaving the slope a of the regression line unchanged), the formulas (I) become

$$
\begin{align*}
& a=\frac{\sum\left(x_{i}-\mu\right)\left(y_{i}-v\right)}{\sum\left(x_{i}-\mu\right)^{2}}, \tag{II}\\
& b=v-a \mu,
\end{align*}
$$

and are stable. It is desirable to be able to compute the regression line dynamically, i.e. to add a new or remove an old data point without having to re-compute everything from scratch. To this end we define (now noting the dependence of the number n of data points)

$$
q_{n}:=\sum_{i=1}^{n}\left(x_{i}-\mu_{n}\right)^{2}, \quad r_{n}:=\sum_{i=1}^{n}\left(x_{1}-\mu_{n}\right)\left(y_{i}-\nu_{n}\right)
$$

and find recurrence relations

$$
q_{n \pm 1}=: Q\left(q_{n}\right), \quad r_{n \pm 1}=: R\left(r_{n}\right)
$$

(for details see Essentials, §4.3). In view of the implementation on the computer we again drop the subscripts and denote the new quantities obtained after adding or
removing the point (x, y) with a prime: Let

$$
n^{\prime}:= \begin{cases}n+1, & \text { if the point is added } \\ n-1, & \text { if the point is removed },\end{cases}
$$

then

$$
\begin{aligned}
& q^{\prime}=q+\left(n^{\prime}-n\right) \frac{n^{\prime}}{n}\left(x-\mu^{\prime}\right)^{2} \\
& r^{\prime}=r+\left(n^{\prime}-n\right) \frac{n^{\prime}}{n}\left(x-\mu^{\prime}\right)\left(y-v^{\prime}\right)
\end{aligned}
$$

If we define

$$
s:=\sum_{i=1}^{n} x_{i}, \quad t:=\sum_{i=1}^{n} y_{i},
$$

we obtain

$$
s^{\prime}=s+\left(n^{\prime}-n\right) x, \quad t^{\prime}=t+\left(n^{\prime}-n\right) y
$$

and

$$
\mu^{\prime}=\frac{l}{n^{\prime}} s^{\prime}, \quad \nu^{\prime}=\frac{l}{n^{\prime}} t^{\prime}
$$

and finally

$$
\begin{equation*}
a=\frac{r^{\prime}}{q^{\prime}}, \quad b=\nu^{\prime}-a \mu^{\prime} . \tag{II'}
\end{equation*}
$$

In order to demonstrate the difference between the unstable and stable versions, we provide programs based on both sets of formulas, (I) and (II'). In order to add or remove a data point, the key $\sum+$ or \sum - has to be pressed when running either program thereby updating n and all the sums automatically. (The sums which are not needed to implement (I) or (II') are either neglected or overwritten with temporary data; see also HP-33E manual, "statistical functions" for definition and location of sums.) To compute means, the instruction \bar{x} is used in both programs.
(I) The flow diagram is straightforward and hence omitted here. If only one data point has been read in, the calculator first "asks" for the next data point, before computing a and b (a would not be defined).
(II)

(I) $\begin{array}{llllllll}R_{0} & R_{1} & R_{2} & R_{3} & R_{4} & R_{5} & R_{6} & R_{7}\end{array}$ a $\quad n^{\prime} \quad s=\sum x \quad \sum x^{2} \quad t=\sum y \quad \sum y^{2} \quad \sum x y$

	00	10	20	30	40
0	\bigcirc	RCL 7	RCL 2	R/S	
1	REG	RCL 3	\div	GTO 02	
2	\rightarrow RCL 2	RCL 5	-		
3	FIX 0	*	\div		
4	R/S	RCL 2	R/S		
5	FIX 8	\div	STO 0		
6	R \downarrow	-	$\overline{\mathrm{x}}$		
7	R \downarrow	RCL 4	RCL 0		
8	$\mathbf{x}=0$	RCL 3	*		
9	GTO 02	x^{2}	-		

(II') $\begin{array}{lllllllll}R_{0} & R_{1} & R_{2} & R_{3} & R_{4} & R_{5} & R_{6} & R_{7}\end{array}$ $q \quad r \quad n^{\prime} \quad s \quad x \quad t \quad y \quad\left(n^{\prime}-n\right) \frac{n^{\prime}}{n}$

	00	10	20	30	40
0	,	STO 4	STO 7	x २ y	R/S
1	REG	R \downarrow	$\overline{\mathrm{x}}$	RCL 6	STO 7
2	\rightarrow RCL 2	$\mathrm{x} \geqslant \mathrm{y}$	RCL 4	-	$\overline{\mathrm{x}}$
3	FIX 0	$\mathrm{x}=0$	-	*	RCL 7
4	R/S	GTO 02	ENTER	RCL 7	*
5	FIX 8	-	x^{2}	*	-
6	$x \geqslant y$	LAST X	RCL 7	STO+1	R/S
7	STO 6	\div	*	RCL 1	GTO 02
8	R \downarrow	RCL 2	STO+0	RCL 0	
9	LAST X	*	R \downarrow	\div	

5. Operating Instructions

They are the same for both programs. Load program (I) or (II') and move to RUN. Press

PRGM
R/S

* On the display of n. ($n=$ number of data points already taken into account), load the data point (x, y) such that $x \in X$ and $y \in Y$ (thus y is to be loaded first). If the data point is added, press
$\Sigma+$
R/S
if the data point is removed, press
[-
R/S

Unless n was zero, when the calculator goes back to * right away, the updated value of a will be displayed, and after pressing

R/S
the updated value of b will be shown. Press

R/S
to get back to *, etc.

6. Example

Let $\mathrm{x}_{\mathrm{k}}=\pi, \mathrm{e}, \mathrm{e}^{-\pi}+10^{2 \mathrm{~m}}, \mathrm{~m}=0,1,2,3$,

$$
\mathrm{y}_{\mathrm{k}}=\sqrt{2} \mathrm{x}_{\mathrm{k}}+1 / 3
$$

see Essentials, Demonstration 4.3-3.

Problem 5.l-3:
BERNSTEIN POLYNOMIALS

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
n	x	x_{k}	k	c_{k}	\sum		
$\mathrm{n}-\mathrm{k}$							
$\mathrm{x} \in \mathrm{X}$							

Evaluates the n-th Bernstein polynomial associated with f,

$$
p_{n}(x):=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) x^{k}(1-x)^{n-k},
$$

for $x \in(0,1]$.

Demonstrations 5.4-1, 5.4-2, 5.4-3:
LAGRANGIAN INTERPOLATION: EQUIDISTANT KNOTS

1. Purpose

To evaluate, for any $n \geqq 0$ the polynomial p that interpolates a given function f at $n+1$ equidistant interpolating points $x_{k}:=x_{0}+k \cdot h, k=0, l, \ldots, n$, where h is a positive constant.

2. Method

Lagrangian interpolation. Evaluation by means of the barycentric formula, see Essentials, §5.4,

$$
p(x)=\frac{\sum_{k=0}^{n} w_{k}^{*} \frac{f_{k}}{x-x_{k}}}{\sum_{k=0}^{n} w_{k}^{*} \frac{1}{x-x_{k}}}
$$

where $f_{k}:=f\left(x_{k}\right)$ and the w_{k}^{*} are the modified (such that $w_{0}^{*}=1$) weights, which in the case of equidistant knots equal

$$
w_{k}^{*}=(-1)^{k}\binom{n}{k}=(-1)^{k} \frac{n!}{k!(n-k)!},
$$

see Essentials, §5.4. The weights are computed recursively by

$$
\mathrm{w}_{0}^{*}=1, \quad \mathrm{w}_{\mathrm{k}+1}^{*}=\frac{\mathrm{n}-\mathrm{k}}{-1-\mathrm{k}} \mathrm{w}_{\mathrm{k}}^{*} .
$$

3. Flow Diagram

See Essentials, Fig. 5.4a. s and t denote numerator and denominator of the barycentric formula. To avoid division by 0 if $x=x_{k}$, the program checks whether $x-x_{k}=0$ and if so replaces 0 by 10^{-30}; this generally will produce the correct display of $p\left(x_{k}\right)=f_{k}$, see Essentials, § 5.4.
4. Storage and Program

R_{0}	R_{1}	R_{2}	$\mathrm{R}_{3} \quad \mathrm{R}_{4}$	R_{5}	R_{6}	R_{7}
w*	* -k	t	s $\quad \mathrm{h}$	n	x_{0}	x
				$\mathrm{n}-\mathrm{k}$	x_{k}	
	00	10	20	30	40	
0	\rightarrow	-	GSB 37	RCL 1		
1	1	$\mathrm{x} \neq 0$	*	STO $\div 0$		
2	STO 0	GTO 18	STO+3	RCL 4		
3	CLX	CLX	RCL 5	STO+6		
4	STO 1	EEX	$\mathrm{x}=0$	GTO 07		
5	STO 2	CHS	GTO 35	$\overline{\mathrm{x}}$		
6	STO 3	3	STO*0	R/S		
7	\rightarrow RCL 0	0	1	\rightarrow		
8	RCL 7	$\rightarrow \quad \div$	STO-5			
9	RCL 6	STO+2	STO-1			

Instructions $37 \div 49$ are available for the subroutine computing $f(x)$. This subroutine should assume x in R_{6} and leave the computed value $\mathrm{f}(\mathrm{x})$ in the X -register. The subroutine must not change the content of the Y-register from the main program. Its last instruction should be RTN. Instruction 35 not only produces the desired quotient $\frac{S}{t}$ but also an unnecessary and "harmless" quotient; therefore we prefer the use of $\overline{\mathrm{x}}$ to the longer version

RCL 3
RCL 2
\div

5. Operating Instructions

Load program, including subroutine to compute $f(x)$. Move to RUN and select mode of displaying numbers. Load data as follows

```
h (= distance between knots)
    into R4
n (= degree of interpolating polynomial
        = number of knots minus one)
    into }\mp@subsup{R}{5}{
x
        into }\mp@subsup{\textrm{R}}{6}{
```

x (= point at which polynomial is evaluated)
into R_{7}

Pressing

PRGM
R/S
starts the computation. The calculator stops by displaying $p(x)$. If the calculation is to be repeated for a different x, then (for reasons of storage space) the values of n and x_{0} must be re-stored in the R_{5} and R_{6} registers (h need not be re-stored), and the new x must be loaded into R_{7}. Pressing

R/S
will yield new value of $p(x)$.

The program may also be used to interpolate a function that is not generated internally. In this case the subroutine providing the values of the function should look like this:

37 RCL 6
38 R/S
39 x そ y
40 R \downarrow
41 RTN
(Instructions 39 and 40 are necessary to re-store the Y-register of the main program.) After loading the data
and pressing

PRGM
R/S
as above, the calculator then will halt and display x_{0}. One then should read in $f\left(x_{0}\right)$ into the x-register and press

$$
\mathrm{R} / \mathrm{S}
$$

The calculator will stop and display x_{1}. One then should read in $f\left(x_{1}\right)$. This process is continued until all $f\left(x_{k}\right)$ have been read in. After pressing

$$
\mathrm{R} / \mathrm{S}
$$

one last time the calculator displays $p(x)$.

6. Examples

I Cubic interpolation of $f(x)=\sin x$ (x given in degrees) in the interval [44,46], using the interpolating points $42,44,46,48$, see Essentials, §5.4, Demonstration 5.4-1. The subroutine for f reads

37 RCL 6
38 DEG
39 SIN
40 RTN
and the input data are $h=2, n=3, x_{0}=42$ with $\mathrm{x}=44.2$, 44.4, 44.6, ..., 45.8.

2 Interpolation of $f(x)=x$, at $x=0.5$, by a polynomial of degree n, using $x_{k}=k, k=0,1, \ldots, n$, see Essentials, §5.4, Demonstration 5.4-2. The subroutine is

37 RCL 6
38 RTN
and the input data are $h=1, n=2^{\ell}(\ell=0,1, \ldots, 6)$, $x_{0}=0, x=0.5$.

3 To compute $\sin (\pi / 4)$ by interpolating the function $f(x)=\sin x$ (x given in radians) by a polynomial of degree $n=2 \ell+1$, $\ell=0,1,2, \ldots ., 63$ using the interpolating points

$$
\frac{\pi}{4} \pm\left(\frac{\pi}{4}+m \cdot \frac{\pi}{2}\right)
$$

$m=0,1,2, \ldots . \ell$, see Essentials, §5.4, Demonstration 5.4-3. We use the subroutine

37	RCL 6
38	RAD
39	SIN
40	RTN

The input data are

$$
\begin{aligned}
& \mathrm{h}=\pi / 2, \mathrm{n}=1, \quad \mathrm{x}_{0}=0 \quad, \quad \mathrm{x}=\pi / 4 \\
& \text { " } \\
& \text { " } \\
& n=3, \quad x_{0}=-\pi / 2 \\
& \mathrm{n}=5, \quad \mathrm{x}_{0}=-\pi \quad \text {, " } \\
& \text { " } \\
& \mathrm{n}=7, \quad \mathrm{x}_{0}=-3 \pi / 2 \text {, " } \\
& \text { " } \\
& \mathrm{n}=9, \quad \mathrm{x}_{0}=-2 \pi \text {, " } \\
& \mathrm{n}=11, \quad \mathrm{x}_{0}=-5 \pi / 2 \text {, } \\
& \text { " } \\
& \text { " } \\
& \mathrm{n}=127, \mathrm{x}_{0}=-63 \pi / 2,
\end{aligned}
$$

4 Here we demonstrate the use of the program for manual interpolation. Given the following values of the Bessel function J_{0} :

\[

\]

We interpolate the value of J_{0} at $x=2.404825558$, the first zero of J_{0}. We work with $n=1,3,5$, always using the points x_{k} closest to x . Results:

$$
\begin{array}{cc}
\mathrm{n} & \mathrm{p}(\mathrm{x}) \\
1 & 0.000051886 \\
3 & 0.000000085 \\
5 & -2.6 * 10^{-10}
\end{array}
$$

Problem 5.4-2:
EXTRAPOLATION TO $\mathrm{x}=0$ FROM VALUES AT GEOMETRIC PROGRESSION

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
n	q	t	s	q^{k}	w		

$\mathrm{n}-\mathrm{k}$

Evaluates $p(0)$ where $p(x)$ is polynomial of degree n interpolating $f(x)$ at $x=1, q, \ldots, q^{n}, p(0)$ is evaluated in barycentric form,

$$
p(0)=\frac{\sum_{k=0}^{n} w_{k}^{\star} f\left(q^{k}\right)}{\sum_{k=0}^{n} w_{k}^{*}},
$$

where $w_{0}^{*}=1, \quad w_{k=0}^{*}{ }_{k}=-\frac{1-q^{k-n-1}}{1-q^{k}} w_{k-1}^{*}$.

Demonstrations 5.5-1, 5.5-2:
LAGRANGIAN INTERPOLATION: CHEBYSHEV KNOTS

1. Purpose

To evaluate, for any $\mathrm{n}>0$, the polynomial p that interpolates a given function f, defined on the interval [-l,+l] at the $n+1$ "Chebyshev knots"

$$
\mathrm{x}_{\mathrm{k}}:=\cos \phi_{\mathrm{k}}, \quad \phi_{\mathrm{k}}:=\left(\mathrm{k}+\frac{1}{2}\right) \frac{\pi}{\mathrm{n}+1}, \quad \mathrm{k}=0,1, \ldots, \mathrm{n} .
$$

2. Method

As in the previous program ("Lagrangian Interpolation: Equidistant knots"), the interpolating polynomial is evaluated by means of the barycentric formula. For the modified weights we obtain

$$
\mathrm{w}_{\mathrm{k}}^{\star}=(-1)^{\mathrm{k}} \sin \phi_{\mathrm{k}}
$$

see Essentials, §5.5. To save programming space, these weights are computed as

$$
\begin{aligned}
\mathrm{w}_{\mathrm{k}}^{\star} & =(-1)^{\mathrm{k}} \sin \phi_{\mathrm{k}}=\cos \mathrm{k} \pi \cdot \sin \phi_{\mathrm{k}}+0 \\
& =\sin \left(\phi_{\mathrm{k}}+\mathrm{k} \pi\right) \\
& =\sin \left(\phi_{\mathrm{k}}+(2 \mathrm{k}+1) \frac{\pi}{2}-\frac{\pi}{2}\right) \\
& =\sin \left((n+2) \phi_{k}-\frac{\pi}{2}\right) \\
& =\cos \left((n+2) \phi_{k}\right)
\end{aligned}
$$

Thus the weights are not computed recursively and therefore do not need to be stored.

3. Flow Diagram

We denote the numerator and denominator in the barycentric formula by s and t respectively. We note that the increasing sequence of the angles ϕ_{k} starts with $\phi_{0}=\frac{\pi}{2(n+1)}$ and ends with $\phi_{n}=\frac{2 n+1}{2 n+2} \pi<\pi$; the increment is always $\Delta \phi=\frac{\pi}{n+1}$.

Instructions $39 \div 49$ are available for the subroutine computing $f(x)$. This subroutine should assume x in R_{6} and leave the computed value $f(x)$ in the X-register, and at the same time it must not change the content of the Y-register from the main program. Its last instruction should be RTN. Instruction 37 not only computes the desired quotient $\frac{S}{t}$ but also $\frac{n}{t}$ which, being in the Y-register at the end of the computation, does not do any harm; but the use of $\overline{\mathrm{x}}$ saves us two programming steps.

5. Operating Instructions

Load program, including subroutine to compute $f(x)$. Move to RUN and select mode of displaying numbers. Load data as follows

$$
\begin{aligned}
& \mathrm{n} \text { (= degree of interpolating polynomial } \\
& \text { }=\text { number of knots minus one) } \\
& \text { into } R_{5} \\
& x \text { (= point at which polynomial is evaluated) } \\
& \text { into } R_{7}
\end{aligned}
$$

Pressing

PRGM
R/S
starts the computation. The calculator stops by displaying $p(x)$. If the calculation is to be repeated for a different x, load new value of x into R_{7} and press

$$
\mathrm{R} / \mathrm{S}
$$

The calculator will stop by displaying $p(x)$, etc.

The program may also be used to interpolate a function that is not generated internally. In this case the subroutine providing the values of the function should look like this:

39 RCL 6
40 R/S
$41 \quad x$ そ y
42 R \downarrow
43 RTN

After loading the data and pressing

PRGM
R/S
the calculator will halt and display x_{0}. Read in $f\left(x_{0}\right)$ into the X -register and press

$$
\mathrm{R} / \mathrm{S}
$$

The calculator will stop displaying x_{1}. Read in $f\left(x_{1}\right)$ etc. until all $f\left(x_{k}\right)$ have been read in. After pressing

R/S
one last time the calculator displays $p(x)$.

Caution: If accidentally x equals one of the knots x_{k}, an error halt results, because the barycentric formula then requires a division by zero. However, unless $f\left(X_{k}\right)=0$ the correct value of $p(x)$ will generally be obtained by loading on display "error" a very small number, performing manually the following steps:
R \downarrow *)
CLX
EEX
CHS3

$$
0
$$

R/S
[*) : To erase "error" any key could be pressed, but the $R \downarrow$ instruction can be thought of as bringing the unwanted denominator 0 on display.)

6. Examples and Timing

```
    1 \(f(x):=x\), see Essentials, Demonstration 5.5-1.
    The subroutine for \(f\) simply is:
```

 39 RCL 6
 40 RTN
 \(2 f(x):=|x|\), see Essentials, Demonstration 5.5-2;
 subroutine for \(f:\)
 39
RCL 6
40 ABS
41 RTN
$3 f(x):=\arctan (x)$. Here the subroutine for f is:

39 RCL 6
405
41 *
$42 \mathrm{TAN}^{-1}$
43 RTN
(The instruction RAD is already contained in the main program.)

n	$\mathrm{x}=0.2$	$\mathrm{x}=1.0$
2	0.31034546	1.55172728
4	0.49728439	1.31741228
8	0.69954553	1.36229895
16	0.78815414	1.37239249
32	0.78532124	1.37338140
$[\infty$	$\frac{\pi}{4}=0.78539816$	$\arctan 5=1.37340077]$

Problem 5.5-3:

SALZER'S FORMULA

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
n	x	D	N	k	$(-1)^{k}$	$\cos \frac{k \pi}{n}$	

$x \in X$

	00	10	20	30	40
0	,	RCL 4	$f\left(x_{k}\right)$	RCL 6	*
1	RAD	\rightarrow	into	-	STO+3
2	STO	*	x	\div	1
3	RCL	RCL 0	as-	1	CHS
4	STO	\div	suming	RCL 6	STO*5
5	0	cos	$\mathrm{x}_{\mathrm{k}} \in \mathrm{X}$	ABS	STO+4
6	STO	STO 6	and	+	RCL 4
7	STO	Pro-	$\mathrm{x}_{\mathrm{k}} \in \mathrm{R}_{6}$	INT	$\mathrm{x}>\mathrm{y}$
8	1	gram	RCL 5	\div	GTO 11
9	STO	placing	RCL 1	STO+2	x

Evaluates polynomial $p(x)$ interpolating $f(x)$ at $x_{k}:=\cos \frac{k \pi}{n}, k=0,1, \ldots, n$, in barycentric form due to Salzer,

$$
p(x)=\frac{\sum_{k=0}^{n}(-1)^{k} \varepsilon_{k} \frac{f\left(x_{k}\right)}{x-x_{k}}}{\sum_{k=0}^{n}(-1)^{k} \varepsilon_{k} \frac{1}{x-x_{k}}}
$$

where $\varepsilon_{0}=\varepsilon_{n}=\frac{1}{2}$, all other $\varepsilon_{k}=1$.

Demonstration 5.6-1:
2-POINT HERMITE INTERPOLATION, DATA PRESERVED

1. Purpose

Given a differentiable function f defined on an interval
I containing the two points x_{0} and x_{1}. Let $f_{k}:=f\left(x_{k}\right)$, $f_{k}^{\prime}:=f^{\prime}\left(x_{k}\right), k=0,1$. To evaluate the polynomial $p(x)$ of degree ≤ 3, which interpolates f and has the same slope as f at the two given points, i.e. such that

$$
p\left(x_{k}\right)=f_{k}, \quad p^{\prime}\left(x_{k}\right)=f_{k}^{\prime}, \quad k=0,1
$$

This is a special case of Hermite interpolation in two ways:
(i) only the first derivative (instead of m_{k} derivatives at the point x_{k}) has to agree at each point,
(ii) there are only two (instead of n) interpolating points.

Exactly one such polynomial exists. For details see Essentials, §5.6. The input data $\mathrm{x}_{\mathrm{k}}, \mathrm{f}_{\mathrm{k}}, \mathrm{f}_{\mathrm{k}}^{\prime}, \mathrm{k}=0,1$, should be preserved.
2. Method

An application of a barycentric formula for the evaluation of the Hermite interpolating polynomial to our special case yields
$p(x)=\frac{1}{\Delta^{2}}\left\{\left(x-x_{1}\right)^{2} f_{0}+\left(x-x_{0}\right)^{2} f_{1}\right.$

$$
\left.+\left(x-x_{0}\right)\left(x-x_{1}\right)\left[\left(x-x_{1}\right)\left(f_{0}^{\prime}+\frac{2}{\Delta} f_{0}\right)+\left(x-x_{0}\right)\left(f_{1}^{\prime}-\frac{2}{\Delta} f_{1}\right)\right]\right\}
$$

where $\Delta:=x_{1}-x_{0}$, see Essentials, §5.6.

3. Flow Diagram

Basically straightforward; since there are only two storage registers available, the stack had to be used extensively, which sometimes obliterates the clarity of the program.

5. Operating Instructions

Load program. Move to RUN. Select mode of displaying numbers, e.g. by pressing

```
FIX 9
```

Load data as follows

$$
\begin{array}{lll}
\mathrm{x}_{0} & \text { into } & \mathrm{R}_{0} \\
\mathrm{x}_{1} & \text { into } & \mathrm{R}_{1} \\
\mathrm{f}_{0} & \text { into } & \mathrm{R}_{2} \\
\mathrm{f}_{1} & \text { into } & \mathrm{R}_{3}
\end{array}
$$

f_{0}^{\prime}	into	R_{4}
f_{1}^{\prime}	into	R_{5}

Now load the value of x, at which p has to be evaluated into the X -register and press

$$
\begin{aligned}
& \text { PRGM } \\
& \text { R/S }
\end{aligned}
$$

The calculator will stop and show $p(x)$. If the value of the polynomial for a different x is desired, load the new x into the x-register and press again

$$
\begin{aligned}
& \text { PRGM } \\
& \text { R/S }
\end{aligned}
$$

etc. (The input data do not need to be re-loaded.)
6. Example
$f(x):=\sin x$ (with x measured in degrees), $x_{0}:=44$, $x_{1}:=46$, see Essentials, Demonstration 5.6-1. After pressing DEG we obtain the input data

$$
\begin{aligned}
& \mathrm{f}_{0}=\sin 44=0.694658371 \\
& \mathrm{f}_{1}=\sin 46=0.719339800 \\
& \mathrm{f}_{0}^{\prime}=\frac{\pi}{180} \cos 44=0.012554848 \\
& \mathrm{f}_{1}^{\prime}=\frac{\pi}{180} \cos 46=0.012124076
\end{aligned}
$$

Demonstration 5.7-1:
SOLVING EQUATION BY INVERSE 2-POINT HERMITE INTERPOLATION

1. Purpose

To solve the scalar non-linear equation

$$
f(x)=0
$$

by means of interpolating the inverse function $f^{[-1]}$ and evaluating the resulting interpolating polynomial $p(y)$ at $y=0$.

2. Method

Iterated inverse 2-point Hermite interpolation, see Essentials, §5.7: Choose starting values x_{0} and x_{1}, such that $y_{0}:=f\left(x_{0}\right)$ and $y_{1}:=f\left(x_{1}\right)$ have alternating signs. Evaluate $Y_{0}, Y_{1}, f_{0}^{\prime}, f_{1}^{\prime}$. Compute x_{2} from
$x_{2}:=\frac{1}{\left(y_{1}-y_{0}\right)^{2}}\left\{x_{0} y_{1}^{2}+x_{1} y_{0}^{2}-y_{0} y_{1}\left[\left(\frac{1}{f_{0}^{\prime}}+\frac{2 x_{0}}{y_{1}-y_{0}}\right) y_{1}+\left(\frac{1}{f_{1}^{\prime}}-\frac{2 x_{1}}{y_{1}-y_{0}}\right) y_{0}\right]\right\}$.
If $y_{2}:=f\left(x_{2}\right)=0$ then x_{2} is the desired solution. Otherwise substitute $x_{0}:=x_{1}, x_{1}:=x_{2}$ and repeat the algorithm.

Straightforward.
4. Storage and Program

Note: A more elegant program could be written by using subroutines for the computation of y_{1} and $l / f^{\prime}\left(x_{1}\right)$. But this would require a few more programming places (e.g. GSB .., RTN, etc.), which we prefer to save for more complicated functions f.

5. Operating Instructions

Load program, including program to compute Y_{1} and l/f' (x_{1}). Move to RUN. Load starting values as follows:

x_{0}	into	R_{0}
x_{1}	into	R_{1}
Y_{0}	into	R_{2}
$1 / \mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)$	into	R_{4}

and put x_{1} into the X-register. Choose mode of displaying numbers. Now press

$$
\begin{aligned}
& \text { PRGM } \\
& \text { R/S }
\end{aligned}
$$

The computer will briefly display $x_{1}-x_{2}$ and then stop at the display of x_{2}. For a new iteration press

$$
R / S
$$

The convergence has to be eye-checked. Since the computation of x_{2} requires a division through $y_{0}-y_{1}$, the algorithm must be stopped when $y_{0}-y_{1}=0$. If the zero of f by then has not been found, the algorithm has to be restarted with new starting values.

6. Example

$f(x):=x^{2}-4, \quad x_{0}:=1, \quad x_{1}:=10$, see Essentials, Demonstration 5.7-1. The initial program for this function is:

00		10	NOP
01	x^{2}	11	NOP
02	4	12	NOP
03	-	13	NOP
04	STO 3	14	NOP
05	RCL 1	15	NOP
06	2		
07	$*$		
08	$1 / \mathrm{x}$		
09	STO 5		

Input data: $y_{0}=-3, \quad l / f^{\prime}\left(x_{0}\right)=1 / 2$.

Demonstration 5.9-1:
 SPLINE INTERPOLATION

1. Purpose

Given a function f which is defined at least at the $n+1$ equidistant points $\mathrm{x}_{\mathrm{k}}:=\mathrm{x}_{0}+\mathrm{k} \cdot \mathrm{h}, \mathrm{k}=1,2, \ldots, \mathrm{n}, \mathrm{h}>0$. To construct its spline interpolant g, i.e. the uniquely determined (see Essentials, Theorem 5.8) function g with the properties (i)-(iv) of Essentials, §5.8.
2. Method

Spline interpolation as described in Essentials, §5.8 (theory) and §5.9 (algorithm). g in each interval $\left[x_{i}, x_{i+1}\right]$ is represented by a cubic polynomial $q_{i}(t)$, the evaluation of which requires the knowledge of the derivatives s_{i} of g at the interpolating points x_{i} and x_{i+1}. We recall that the vector \underline{s} of the unknown $h \cdot s_{i}$ can be determined as solution of $\underline{A} \underline{s}=\underline{b}$, where \underline{A} is tridiagonal (and independant $O f f$) and \underline{b} is the input vector

$$
\underline{b}:=\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
\vdots \\
b_{n-1} \\
b_{n}
\end{array}\right)=\left(\begin{array}{c}
3 f_{1}-3 f_{0} \\
3 f_{2}-3 f_{0} \\
3 f_{3}-3 f_{1} \\
\vdots \\
3 f_{n}-3 f_{n-2} \\
3 f_{n}-3 f_{n-1}
\end{array}\right), \quad f_{i}:=f\left(x_{i}\right) .
$$

The algorithm proceeds in three phases.

Phases I and II: Find the L-R decomposition of \underline{A}. All elements $\neq 0$ or 1 of \underline{L} and \underline{R} can be expressed in terms of the $r_{k}, k=0,1, \ldots, n-1$, i.e. the upper main diagonal of R. The following formulas result:

$$
r_{0}=\frac{1}{2}, \quad r_{i}=\frac{1}{4-r_{i-1}}, \quad i=1,2, \ldots, n-1
$$

and on the HP-33E with a 9-digit mantissa we may put

$$
\begin{aligned}
& r_{i}:=2-\sqrt{3}=0.267949192, \quad i \geqq 9 . \\
& I: \text { Solution of } \underline{L} \underline{y}=\underline{b}: \\
& y_{0}=r_{0} b_{0}, \\
& y_{i}=r_{i}\left(b_{i}-y_{i-1}\right), \quad i=1,2, \ldots, n-1, \\
& y_{n}=\frac{b_{n}-y_{n-1}}{2-r_{n-1}} .
\end{aligned}
$$

II: Solution of $\underline{R} \underline{s}=\underline{y}$:
$h s_{n}=y_{n}$
$h s_{i}=y_{i}-r_{i}\left(h s_{i+1}\right), \quad i=n-1, n-2, \ldots, 0$.

Phase III: Evaluation of g at x in interval containing all x_{k} :

1) Determine interval $\left[x_{i}, x_{i+1}\right]$, in which x lies, i.e. calculate integral part
$i:=\left[\frac{\mathrm{x}-\mathrm{x}_{0}}{\mathrm{~h}}\right]$.
2) Calculate $t:=\frac{x-x_{i}}{h}$,

$$
\begin{aligned}
q(t)= & (1-t)^{2} f_{i}+t^{2} f_{i+1} \\
& +t(1-t)\left[(1-t)\left(2 f_{i}+h s_{i}\right)+t\left(2 f_{i+1}-h s_{i+1}\right)\right]
\end{aligned}
$$

3. Flow Diagram

For reasons of programming space each phase of the algorithm had to be implemented by a separate program.

Phase I: See Essentials, Figure 5.9a.
Phase II: Straightforward.
Phase III: On a larger computer, the flow diagram would be completely straightforward, i.e. first read x_{0}, h, x, then compute i, t and $l-t$, then read f_{i}, f_{i+1}, $h s_{i}, h s_{i+1}$ and finally compute $q(t)$. Program III given
below, for reasons of storage space, differs from this, inasmuch as it first reads f_{i} and $h s_{i}$ and computes the terms involving these quantities and only then reads f_{i+1} and $h s_{i+1}$ to finish the computation of $q(t)$.

4. Storage and Program

Phase I:

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
n	i	r_{i-1}	$-y_{i-1}$				

	00	10	20	30	40
0	$\rightarrow \times$	STO+3	STO 2	RCL 2	
1	0	RCL 1	RCL 3	-	
2	STO 1	RCL 0	*	STO $\div 3$	
3	STO 3	-	R/S	RCL 3	
4	2	$\mathrm{x}=0$	CHS	R/S	
5	STO 2	GTO 29	STO 3	0	
6	\rightarrow RCL 1	4	1	FIX 2	
7	FIX 0	RCL 2	STO+1	GTO 00	
8	R/S	-	GTO 06		
9	FIX 8	1/x	$\rightarrow \quad 2$		

Phase II:

R_{0}	$0 \quad \mathrm{R}_{1}$	R_{2}	$\mathrm{R}_{3} \quad \mathrm{R}_{4}$	R_{5}	$\mathrm{R}_{6} \quad \mathrm{R}_{7}$
n		r_{i}	i	Y_{i+1}	
	00	10	20	30	40
0	\rightarrow	$\mathrm{x}<0$	9	-	\rightarrow STO*5
1	RCL 0	GTO 00	1	$1 / \mathrm{x}$	RCL 0
2	FIX 0	$\mathrm{x} \leqq \mathrm{Y}$	9	STO 2	FIX 0
3	R/S	GTO 25	2	1	R/S
4	FIX 8	-	GTO 40	STO-4	FIX 8
5	STO 5	2	\rightarrow STO 4	RCL 4	RCL 5
6	$\rightarrow \quad 1$	6	2	$\mathrm{x}<0$	-
7	STO-0	7	STO 2	GTO 39	R/S
8	9	9	$\rightarrow \quad 4$	GTO 28	STO 5
9	RCL 0	4	RCL 2	\rightarrow RCL 2	GTO 06

Phase III:

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
x_{0} h $\mathrm{x} \in \mathrm{X}$	t	$1-\mathrm{t}$	k	$*$	$*$	$*$	

	00	10	20	30	40
0	S	STO 2	RCL 3	STO 6	STO+5
1	RCL 0	-	STO*5	x २ y	RCL 2
2	-	STO 3	x^{2}	STO+6	STO*5
3	RCL 1	RCL 4	*	STO+6	RCL 3
4	\div	FIX 0	STO 7	RCL 2	STO*5
5	INT	R/S	1	STO*6	RCL 5
6	STO 4	STO 5	STO+4	x^{2}	RCL 7
7	1	$\mathrm{x} \gtrless \mathrm{y}$	RCL 4	*	+
8	LAST X	STO+5	R/S	STO+7	FIX 8
9	FRAC	STO+5	CHS	RCL 6	GTO 00

5. Operating Instructions

They are quite different for all three phases.

Phase I: Load program I, move to RUN. Load n into R_{0}. Press

PRGM
R/S

* When integer i (in FIX 0 notation) is shown, load b_{i} into the X -register and press

R/S

When the calculation stops, the number displayed is Y_{i} and should be recorded. Press

> R/S
to get back to * (i increasing from 0 to n). When 0.00 is shown, phase I is terminated.

Phase II: Load program II, move to RUN. Load n into R_{0}. Press

PRGM
R/S

* When integer i (in FIX 0 notation) is shown, load y_{i} (as computed in phase I) into the X-register and press

R/S

Unless $i=n$ (when $h s_{n}=y_{n}$ and therefore the calculator goes back to * right away and displays $i=n-1$) the number displayed at the next stop is $h \cdot s_{i}$ and should be recorded. Press

R/S
to get back to * (i decreasing from n to 0). When -l. 00000000 is shown, phase II is terminated.

Phase III: Load program III, move to RUN. Load leftmost interpolating point x_{0} into R_{0} and h into R_{1}. Load the value of x, at which the spline interpolant g should be evaluated into the x-register. * Press

PRGM
 R/S

At the first stop the integer i (corresponding to the interval, in which x lies) is shown in FIX 0 notation. Load

$$
f_{i} \text { into } Y, \quad h s_{i+1} \text { into } X
$$

(as computed in phase II) and press

R/S

At the final stop $g(x)$ is shown. If g has to be evaluated for another x, load new value of x into x and go back to *.

6. Example

Let $\mathrm{n}:=20, \mathrm{x}_{\mathrm{k}}:=-1+\mathrm{h} \cdot \mathrm{k}, \mathrm{h}=0.1, \mathrm{k}=0,1,2, \ldots, 20$, $f_{10}=1, \quad f_{k}=0$ for $k \neq 10$, see Essentials, Demonstration 5.9-1. Input to
phase I: $\quad n=20 ; b_{k}=0$ for $k \neq 9,11, b_{9}=3, b_{11}=-3$
II: $n=20$ and results from I
III: $x_{0}=-1, h=0.1$ and results from II

Demonstrations 6.1-1, 6.3-1:
MIDPOINT, TRAPEZOIDAL, AND SIMPSON VALUES
OF DEFINITE INTEGRAL

1. Purpose

Given a definite integral

$$
I:=\int_{0}^{b} f(x) d x, \quad b>0
$$

to compute, for $n=0,1,2, \ldots$, its midpoint, trapezoidal and "Simpson" (i.e. first Romberg acceleration of trapezoidal value) values.

2. Method

According to Essentials, §6.l (midpoint and trapezoidal) and §6.3 (including problem 8, Simpson). We recall the formulas to be implemented:

$$
\begin{array}{ll}
\text { Midpoint: } & M_{n}:=h_{n} \sum_{k=0}^{2^{n}-1} f\left(\left(k+\frac{1}{2}\right) h_{n}\right), h_{n}:=\frac{b}{2^{n}} ; \\
\text { Trapezoidal: } & T_{n+1}:=\frac{1}{2}\left(T_{n}+M_{n}\right) ; \\
\text { Simpson: } & S_{n+1}:=T_{n+1}^{*}:=\frac{1}{3}\left(T_{n}+2 M_{n}\right) .
\end{array}
$$

3. Flow Diagram

We put $M:=M_{n}, T:=T_{n+1}, T_{0}:=T_{n}, S:=S_{n+1}, h:=h_{n}$.

The sum in the formula for M, in terms of the sampling points used, is evaluated from right to left (rather than from left to right as indicated by \sum from $k=0$ to $k=2^{n}-1$). In the program given in section 4 below the instructions in the box*), for reasons of economical use of the programming locations, are intertwined with the computation of M, T and S .

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
b	b	x	T_{0} 0 h T M				

	00	10	20	30	40
0	$\rightarrow<$	STO-2	+	STO-4	
1	RCL 0	RCL 2	2	+	
2	RCL 1	$\mathrm{x}>0$	STO -1	3	
3	2	GTO 07	\div	\div	
4	\div	RCL 1	STO 3	GTO 00	
5	-	STO*4	R/S	\rightarrow	
6	STO 2	RCL 3	R \downarrow		
7	\rightarrow GSB 35	RCL 4	RCL 4		
8	STO+4	R/S	+		
9	RCL 1	RCL 3	RCL 4		

Programming locations $35 \div 49$ are available for the subroutine to compute $f(x)$, assuming x in x and x in R_{2}. The subroutine must terminate with RTN. Storage registers $R_{5} \div R_{7}$ may be used for additional storage.
5. Operating Instructions

Load program, including subroutine to compute $f(x)$. Move to RUN and select mode of displaying numbers, e.g. by pressing

FIX 8

Load data as follows:

```
b = upper limit of integration
    both into }\mp@subsup{R}{0}{}\mathrm{ and }\mp@subsup{R}{1}{}
T
0 into R4.
Press
```

PRGM
R/S
to start the computation. *) After a while (longer as n increases) the calculator will display M_{n}. Upon pressing R/S
$\mathrm{T}_{\mathrm{n}+1}$ is computed (quickly) and displayed. After pressing R/S
once more, S_{n+1} is computed (quickly) and displayed. To compute the next set of values M, T, and S, press

R/S

and again follow the instructions from *).

6. Example

$f(x):=\frac{\sin x}{x}, \quad b:=\pi, \quad f(0):=\lim _{x \rightarrow 0} f(x)=1$,
see Essentials, Demonstration 6.1-1 for values M and T and Demonstration 6.3-1 for values S. Subroutine to compute $\mathrm{f}(\mathrm{x})$:

35 RAD
36 sin
37 RCL 2
$38 \div$
39 RTN

Demonstration 6.2-2:
STIRLING'S FORMULA

1. Purpose

To test the accuracy of Stirling's formula to approximate n: .

2. Method

Computation of $F:=n$! , the Stirling approximation $S:=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$ and the quotient of the two, see Essentials, §6.2.
3. Flow Diagram

4. Storage and Program

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
n	k	F					
$\mathrm{n} \in \mathrm{X}$							

	00	10	20	30	40
0	\rightarrow	STO-1	RCL 0	\div	
1	STO 0	GTO 05	π	GTO 00	
2	STO 1	\rightarrow RCL 2	*		
3	1	R/S	2		
4	STO 2	RCL 0	*		
5	\rightarrow RCL 1	1	\sqrt{x}		
6	$\mathrm{x}=0$	e^{x}	*		
7	GTO 12	\div	R/S		
8	STO*2	RCL 0	RCL 2		
9	1	y^{x}	$\mathrm{x} \geqslant \mathrm{y}$		

5. Operating Instructions

Load program, move to RUN and choose mode of displaying numbers, e.g. by pressing

```
SCI 6
```

Load n into X -register and press

$$
\begin{aligned}
& \text { PRGM } \\
& \text { R/S }
\end{aligned}
$$

*) The computer will first compute and show n ! , then, after pressing

$$
R / S
$$

the Stirling approximation and, after pressing

$$
R / S
$$

once more, their quotient. Load next value of n into X-register, press

$$
R / S
$$

and go to *), etc.

6. Examples

See Essentials, Demonstration 6.2-1. It can be verified numerically, that $\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{F}}{\mathrm{S}}=1$.

Problem 6.2-4:

PIPPENGER'S PRODUCT

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
$\sqrt{2}$	$\sqrt{2}$	p' old	p^{\prime}		f	2	2 m
p old	p					m	

	00	10	20	30	40
0	$\rightarrow<$	STO+6	GTO 07	STO 0	-
1	\rightarrow RCL 6	RCL 6	RCL 5	-	1
2	2	x^{2}	RCL 6	3	5
3	*	STO $\div 5$	$1 / \mathrm{x}$	\div	\div
4	STO 7	1	y^{x}	-	-
5	1	STO+6	STO* 1	STO 3	R/S
6	STO 5	RCL 6	RCL 1	R/S	GTO 01
7	\rightarrow RCL 6	STO*5	R/S	RCL 2	
8	STO*5	RCL 7	RCL 0	RCL 3	
9	1	$\mathrm{x}>\mathrm{Y}$	RCL 1	STO 2	

Evaluates partial products of Pippenger's product,

$$
p:=\prod_{k=1}^{\infty} f_{k}
$$

where

$$
\begin{aligned}
& f_{1}=\left(\frac{2}{1}\right)^{12}, \quad f_{k}=\left(\frac{m}{m+1} \frac{m+2}{m+1} \frac{m+2}{m+3} \cdots \frac{2 m}{2 m-1}\right)^{\frac{1}{2 m}}, \\
& m:=2^{k},
\end{aligned}
$$

and applies Romberg convergence acceleration twice.

Values are

p	p^{\prime}	p
1.		
1.373178096	1.359499607	
1.362672263	1.359170319	1.359148366
1.360025257	1.359142922	1.359141096
1.359362072	1.359141044	1.359140919
1.359196217	1.359140924	1.359140916
1.359154741	1.359140916	1.359140915
$\frac{\mathrm{e}}{2}=$		1.359140914

Demonstrations 6.3-2 $\div 6.3-4$:
MIDPOINT RULE WITH STEP REFINEMENT AND TWO-FOLD ROMBERG CONVERGENCE ACCELERATION

1. Purpose

To approximate the integral

$$
I:=\int_{0}^{b} f(x) d x, \quad b>0
$$

by computing its midpoint values and accelerating their convergence.
2. Method

Midpoint rule (see Essentials, §6.1) and Romberg acceleration (see Essentials, §6.3). We compute the first three columns of the Romberg scheme by means of the formulas

$$
M_{n}:=h_{n}^{2^{n}-1} \prod_{k=0}^{f}\left(\left(k+\frac{1}{2}\right) h_{n}\right), \quad h_{n}:=\frac{b}{2^{n}}, \quad n=0,1,2, \ldots
$$

(midpoint values)

$$
\begin{aligned}
& M_{n}^{*}:=M_{n}-\frac{1}{3}\left(M_{n-1}-M_{n}\right), n=1,2, \ldots, \\
& \text { (first accelerated values) } \\
& M_{n}^{* *}:=M_{n}^{*}-\frac{1}{15}\left(M_{n-1}^{*}-M_{n}^{*}\right), n=2,3, \ldots,
\end{aligned}
$$

(second accelerated values)

3. Flow Diagram

Though the first and second accelerated values are only defined for $\mathrm{n} \geqq 1$ or $\mathrm{n} \geqq 2$, respectively, the program given below does not treat the cases $n=0$ and $n=1$ separately. Instead it indiscriminately carries through all the formulas given in section 2 for $\mathrm{n}=0,1,2, \ldots$. This measure is not dangerous (e.g. no division by zero or accumulation of wrong values) and saves a lot of programming space, but it causes the second, third and sixth values after starting the program to be meaningless (see section 5). We put $h:=h_{n}, M:=M_{n}$, last $M:=M_{n-1}, M^{*}:=M_{n}^{*}$, last $M^{*}:=M_{n-1}^{*}, M^{* *}:=M_{n}^{* *}$.

As in the preceding program (Midpoint, Trapezoidal, Simpson) the sum for M, with respect to the interval of integration, is evaluated from right to left. And the instructions in the box *) are intertwined with the computations of M, M^{*} and $M * *$ to save programming space.

Programming locations $09 \div 20$ should be used for the program (not subroutine, to save space) to compute $f(x)$. This program should assume x in X and x in R_{2} and put $f(x)$ into $x . R_{7}$ is available for additional storage.

5. Operating Instructions

Load program, including program to compute $f(x)$. Move to RUN. Select mode of displaying numbers, e.g. by pressing

Load b, the upper limit of integration, both into R_{0} and R_{1}. Press

PRGM
R/S

The calculator computes and displays the first midpoint value M_{0}. Upon pressing

R/S
a meaningless number (M_{0}^{*} is not defined) will be displayed. Pressing

R/S
once more produces another meaningless number (M** is not defined). After pressing

R/S
again, the calculator will start the computation of the second row of the Romberg scheme and stop at the display of M_{1}. Press

R/S
to obtain M_{1}^{*}. After pressing

R/S
again, the last meaningless number ($M * *$ is not defined)
will be computed and shown. From now on all the numbers produced by the program are meaningful. Press

R/S
to reach the next row of the scheme. After a while (its length is proportional to 2^{n}) M_{n} is displayed. Press R/S
to obtain $\mathrm{M}_{\mathrm{n}}^{*}$ and

R/S
again, to obtain $M_{n}^{* *}$. Proceed as indicated above to obtain the values of the next row. If only the second accelerated values are to be recorded, then instructions 32 and 41 can be changed to

PAUSE
in which case

R/S
has to be pressed only once, that is, after the computation of a whole row of the scheme.

6. Examples

$1 f(x):=\frac{\sin x}{x}, b:=\pi$, see Essentials, Demonstration 6.3-2. The program to compute f is

09	RAD
10	sin
11	RCL
12	\div
13	NOP
\vdots	\vdots
20	NOP

The fourth and fifth columns given in Essentials, have to be computed by hand using the formulas (now written without stars):

$$
\begin{aligned}
& M_{n, 3}:=M_{n, 2}-\frac{1}{63}\left(M_{n-1,2}-M_{n, 2}\right), n=3,4, \ldots, \\
& \text { (third accelerated values) } \\
& M_{n, 4}:=M_{n, 3}-\frac{1}{255}\left(M_{n-1,3}-M_{n, 3}\right), n=4,5, \ldots . \\
& \text { (fourth accelerated values) }
\end{aligned}
$$

$2 f(x):=-\frac{\log (1-x)}{x}, b=1$, see Essentials, Demonstration 6.3-3. Program to compute f:

09
 CHS

101
$11+$

```
L2 LN
13 RCL 2
14 \div
15 CHS
16 NOP
! :
20 NOP
```

$3 f(x):=\left(\sqrt{1-k^{2} \sin ^{2} x}\right)^{-1}$, see Essentials, Demonstration 6.3-4. The program for f, assuming k^{2} in R_{7}, is:

09 RAD
10 sin
$11 x^{2}$
12 RCL 7
13 *
14 CHS
15 1
$16+$
$17 \quad \sqrt{\mathrm{x}}$
18 1/x
19 NOP
20 NOP

Before starting the program k^{2} needs to be stored into R_{7}. The results for
$b=\frac{\pi}{2}$ and $k^{2}=0.5$ or 0.99
and
$\mathrm{b}=1$ and $\mathrm{k}^{2}=0.5$
can be looked up in Essentials.

Demonstration 6.3-5:
CONVERGENCE ACCELERATION IN THE COMPUTATION OF π AND OF OTHER CONSTANTS

1. Purpose

To demonstrate convergence acceleration in non-linear recurrence relations

$$
y_{n+1}=y_{n} \sqrt{\frac{2}{1+\frac{y_{n-1}}{y_{n}}}}
$$

y_{0} and y_{1} given starting values.

2. Method

It can be shown that these recurrence relations satisfy an error law of the form

$$
y_{n}=s+c_{1} 4^{-n}+c_{2} 4^{-2 n}+\ldots+c_{m} 4^{-m n}+0\left(4^{-(m+1) k}\right),
$$

where s is the limit of the sequence $\left\{y_{n}\right\}$ and C_{k}, $\mathrm{k}=1,2, \ldots, \mathrm{~m}$, are constants. Hence the Romberg algorithm (see Essentials, §6.3) may be applied. Along with y_{n} we generate four more columns of the Romberg scheme by:

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{n}}^{*}=\mathrm{y}_{\mathrm{n}}-\frac{1}{3}\left(\mathrm{y}_{\mathrm{n}-1}-\mathrm{y}_{\mathrm{n}}\right) \\
& \mathrm{y}_{\mathrm{n}}^{* *}=\mathrm{y}_{\mathrm{n}}^{*}-\frac{1}{15}\left(\mathrm{y}_{\mathrm{n}-1}^{*}-\mathrm{y}_{\mathrm{n}}^{*}\right) \\
& \mathrm{y}_{\mathrm{n}}^{(3)}=\mathrm{y}_{\mathrm{n}}^{* *}-\frac{1}{63}\left(\mathrm{y}_{\mathrm{n}-1}^{* *}-\mathrm{y}_{\mathrm{n}}^{* *}\right) \\
& \mathrm{y}_{\mathrm{n}}^{(4)}=\mathrm{y}_{\mathrm{n}}^{(3)}-\frac{1}{255}\left(\mathrm{y}_{\mathrm{n}-1}^{(3)}-\mathrm{y}_{\mathrm{n}}^{(3)}\right)
\end{aligned}
$$

The values $y_{n}^{(m)}$ are meaningful only if $n \geqq m+l$.

3. Flow Diagram

In order to save programming space the program given in section 4 below
a) for $n \geqq 2$ computes all the numbers $y_{n}^{(m)}$, i.e. generates a rectangular scheme and hence some meaningless numbers,
b) performs the shifts of the box on the right hand side of the flow diagram along with the computation of the $y_{n}^{(m)}$ (right after they have been used for the last time).
4. Storage and Program

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
Y_{0}	Y_{1}	$\mathrm{Y}_{\mathrm{n}-1}^{*}$	$\mathrm{Y}_{\mathrm{n}}^{*}$	$\mathrm{Y}_{\mathrm{n}-1}^{* *}$	$\mathrm{Y}_{\mathrm{n}}^{*}$	$\mathrm{Y}_{\mathrm{n}-1}^{(3)}$	$\mathrm{Y}_{\mathrm{n}}^{(3)}$

$$
Y_{n-1} \quad Y_{n}
$$

	00	10	20	30	40
0	\bigcirc	STO*1	R/S (PAUSE)	R/S (PAUSE)	R / S (PAUSE)
1	2	RCL 1	RCL 2	RCL 4	RCL 6
2	RCL 0	R/S (PAUSE)	RCL 3	RCL 5	RCL 7
3	RCL 1	RCL 0	STO 2	STO 4	STO 6
4	STO	RCL 1	-	-	-
5	\div	-	1	6	2
6	1	3	5	3	5
7	+	\div	\div	\div	5
8	\div	-	-	-	\div
9	\sqrt{x}	STO 3	STO 5	STO 7	-

5. Operating Instructions

Load program, move to RUN, select mode of displaying numbers. Load starting values: Y_{0} into R_{0}, Y_{1} into R_{1}. Press

PRGM R/S

to start the computation of the rows of the scheme. The numbers

$$
\begin{array}{llll}
\mathrm{y}_{2}, & \mathrm{y}_{2}^{*}, & \mathrm{y}_{2}^{* *}, & \mathrm{y}_{2}^{(3)}, \\
\mathrm{y}_{3}^{(4)}, & \mathrm{y}_{3}^{*}, & \mathrm{y}_{3}^{* *}, & \mathrm{y}_{3}^{(3)}, \\
\mathrm{y}_{3}^{(4)}
\end{array}
$$

will be displayed row by row. After each display, press R/S
to continue.

Note: In the display of the k-th row the numbers $y_{k}(m)$ are meaningless if $m \geqslant k$ because insufficient data are available for the construction of the complete Romberg scheme. Thus, only from the 5 th row onward all numbers displayed are meaningful.

Since the sequence $\left\{y_{4}^{(m)}\right\}$, the last computed column of the Romberg scheme, converges to the limit most rapidly (see Essentials, Theorem 6.3), it is reasonable to change the instructions $12,20,30$ and 40 to

PAUSE

Then $Y_{n}, Y_{n}^{*}, Y_{n}^{* *}, Y_{n}^{(3)}$ will be shown briefly and the computer will stop at the display of $y_{n}^{(4)}$. Then

R/S

has to be pressed to start the computation of the next row.

6. Examples

(1) $y_{0}=0, y_{1}=1$, then $y_{n}=2^{n} \sin \left(2^{-n} \pi\right)$ and $y_{n} \rightarrow \pi$, see Essentials, Demonstrations l.3-4 (recurrence relation and limit) and 6.3-5 (numerical values).
2) $y_{0}=x \sqrt{1-x^{2}}, y_{1}=x \quad(0<x \leq 1)$, then $y_{n}=2^{n-1} \sin \left(2^{l-n} \arcsin x\right)$ and $y_{n} \rightarrow \arcsin x$ (see Essentials, §l.3, problem 4*d).

If $\mathrm{x}=1$, then $\mathrm{y}_{0}=0, \mathrm{y}_{1}=1$, and hence all the columns of the scheme should converge to arc $\sin l=1.57079633$. Indeed we obtain:
1.00000000
1.414213561 .55228475
1.530733731 .569573791 .57072639
$1.56072258 \quad 1.57071886 \quad 1.57079520 \quad 1.57079629$
$\underline{1.56827424} \underline{\underline{1.57079147} \quad \underline{1.57079631} \quad \underline{1.57079633} \quad \underline{1.57079633}}$

We see that Y_{5} has only one correct decimal digit, when $Y_{5}^{(3)}$ and $Y_{5}^{(4)}$ have converged already. Only Y_{15} shows full accuracy.

If $\mathrm{x}=\sqrt{2} / 2$, then $\mathrm{y}_{0}=1 / 2$ and $\mathrm{y}_{1}=\sqrt{2} / 2$, and we have to exhibit convergence to arcsin $\sqrt{2} / 2=\pi / 4$ $=0.78539816$. Results:
0.70710678
0.765366860 .78478689
$0.78036129 \quad 0.785359430 .78539760$
$\underline{0.78413712 \quad \underline{0.78539573 ~} \underline{0.78539815} \quad \underline{0.78539816}}$

Convergence has been reached already.
$3 y_{0}=\frac{1}{2}\left(x-\frac{1}{x}\right), y_{1}=\sqrt{x}-\frac{1}{\sqrt{x}} \quad(x>0)$, then
$y_{n}=2^{n-1}\left(x^{2^{-n}}-x^{-2^{-n}}\right)$ and $y_{n} \rightarrow \log x$
(see Essentials, §l.3, problem 4*c).

If $x=e$, then $y_{0}=1.17520119$ and $y_{1}=1.04219061$. The computation yields:

```
1.01044927 0.99986882
1.00260620 0.99999185 1.00000005
1.00065117 0.99999949 1.00000000 1.00000000 ,
indeed Loge = l.
If }\textrm{x}=10,\mathrm{ then }\mp@subsup{Y}{0}{}=4.45\mathrm{ and }\mp@subsup{Y}{1}{}=2.84604989, and
we get:
2.43187617 2.29381826
2.33450889 2.30205313 2.30260212
2.31054929 2.30255209 2.30258536 2.30258509 = Log 10
Ten more iterations would be required for \(Y_{n}\) to converge.
```

Problem 6.3-7:
PLANA INTEGRAL

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}
h_{0}	$\frac{1}{2} \mathrm{~h}_{0}$	0				
$2^{-\mathrm{k}_{\mathrm{h}}}$	y	s				

	00	10	20	30	40
0	$\xrightarrow{\text { Coser }}$		1	RCL 0	RCL 2
1	\rightarrow Program		-	STO+1	RCL 3
2	to		\div	GTO 01	RCL 2
3	place		RCL 2	\rightarrow RCL 0	STO-2
4	$\mathrm{g}(\mathrm{y})$	RCL 1	x そ y	STO*2	STO 3
5	into X,	π	STO+2	STO 1	PAUSE
6	assuming	*	x < y	2	-
7	$y \in R_{1}$	2	RCL 2	$\mathrm{STO} \div 0$	3
8		*	$\mathrm{x}=\mathrm{Y}$	4	\div
9		e^{x}	GTO 33	STO $\div 1$	-

Evaluates

$$
I:=\int_{0}^{\infty} \frac{g(y)}{e^{2 \pi y}-1} d y
$$

using midpoint rule with steps $h_{0}, \frac{1}{2} h_{0}, \frac{1}{4} h_{0}, \ldots$ and applying convergence acceleration once.

$$
q(y)=\frac{2 y}{1+y^{2}}
$$

$$
\begin{array}{clc}
h_{0}=1 & 0.036207166 & - \\
& 0.066297263 & 0.076327295 \\
& 0.074582005 & 0.077343585
\end{array}
$$

Demonstration 6.4-1:
CLASSICAL RUNGE-KUTTA METHOD:
INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

1. Purpose

To integrate numerically an ordinary differential equation (ODE)

$$
y^{\prime}=f(x, y)
$$

subject to the initial condition

$$
y\left(x_{0}\right)=y_{0}
$$

2. Method

Classical Runge-Kutta method, see Essentials, §6.4. Choosing an integration step h, we determine approximate values y_{n} of the values $y\left(x_{n}\right)$ of the exact solution $y(x)$ at the points $x_{n}:=x_{0}+n \cdot h, n=1,2, \ldots$, by the formula

$$
y_{n+1}=y_{n}+\frac{1}{3}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
$$

where

$$
\begin{aligned}
& \mathrm{k}_{1}:=\frac{h}{2} \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right) \\
& \mathrm{k}_{2}:=\frac{\mathrm{h}}{2} \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}+\frac{\mathrm{h}}{2}, \mathrm{y}_{\mathrm{n}}+\mathrm{k}_{1}\right) \\
& \mathrm{k}_{3}:=\frac{\mathrm{h}}{2} \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}+\frac{\mathrm{h}}{2}, \mathrm{y}_{\mathrm{n}}+\mathrm{k}_{2}\right) \\
& \mathrm{k}_{4}:=\frac{\mathrm{h}}{2} \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}+\mathrm{h}, \mathrm{y}_{\mathrm{n}}+2 \mathrm{k}_{3}\right) .
\end{aligned}
$$

3. Flow Diagram

The very ingenious program given in section 4 below is due to Dr. Oliver Pretzel. It basically follows the pattern of the flow diagram for the classical Runge-Kutta method given in Essentials, Fig. 6.4d. However, in order to use one integer, once it is available in the X-register, for more than one purpose, the author lets the indices of the k_{j} range from -l to 2 rather than 1 to 4 . Together with putting $j:=j+l$ before the last branching point, this enables him to compute k_{1} and k_{2} with $y^{*}=y+j \cdot k_{j}$. Furthermore the denominator 3 in the formula for Y_{n+1} can also be used to compute j := j-3, i.e. to re-set j := -l before starting the algorithm for a new x.

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}
$\frac{\mathrm{h}}{2}$	-1	0	x_{0}	Y_{0}		
	j	S	x	Y		

$y_{0} \in X$

	00	10	20	30	40
0	\rightarrow		1	STO 1	GTO 01
1	\rightarrow		RCL 1	$\mathrm{x}=0$	\rightarrow RCL 3
2			$\mathrm{x}>\mathrm{y}$	GTO 37	PAUSE
3			GTO 41	x ¿ y	RCL 2
4			$\mathrm{x}=0$	STO+2	STO-2
5			GTO 29	*	3
6			RCL 0	GTO 38	STO-1
7		RCL 0	STO+3	$\rightarrow \quad \mathrm{R} \downarrow$	\div
8		*	R \downarrow	\rightarrow RCL 4	STO+4
9		STO+2	$\rightarrow \quad+$	+	RCL 4

Instructions $01 \div 16$ should be used for the program to compute $f\left(x, y^{*}\right)$, assuming Y^{*} in X and x in R_{3}; this program should put $f\left(x, y^{*}\right)$ into the X-register. Registers R_{5}, R_{6}, R_{7} are available for temporary or permanent storage. In this form (i.e. without using subroutines) the program can even be used on the HP-25 (after interchanging instructions 20 and 21 and changing instruction 22 to $\mathrm{x}<\mathrm{y}$).

5. Operating Instructions

Load program, including program to compute $f(x, y *)$. Move to RUN. Select mode of displaying numbers and load data as follows:

$\frac{h}{2}$	into	R_{0}
-1	into	R_{1}
0	into	R_{2}
x_{0}	into	R_{3}
y_{0}	into	R_{4},

and leave y_{0} in the X-register (if data are input in indicated order, it is already there). Press

PRGM
R/S
to start the computation. After a while x_{1} will be shown briefly and the calculator will stop at the display of Y_{1}. Press

R/S
to obtain x_{2} and y_{2}, etc.
6. Example
$y^{\prime}=x^{2}-y^{2}, \quad x_{0}=0, \quad y_{0}=1, \quad$ see Essentials, Demonstration 6.4-1. Here the function to compute $\mathrm{f}\left(\mathrm{x}, \mathrm{y}^{*}\right)$ is:

01	x^{2}	
02	CHS	
03	RCL	3
04	x^{2}	
05	+	
06	NOP	
\vdots	\vdots	
16	NOP	

The accelerated values (by a variant of the Runge-Kutta algorithm) $y *(h)$ and $y * *(h) ~ c a n ~ b e ~ c o m p u t e d ~ " b y ~ h a n d " . ~$

Demonstration 6.5-1:
SIMPLIFIED RUNGE-KUTTA METHOD FOR SYSTEMS OF 2 EQUATIONS

1. Purpose

To integrate numerically a system of two first order differential equations

$$
\begin{aligned}
& y^{\prime}=f(x, y, z) \\
& z^{\prime}=g(x, y, z),
\end{aligned}
$$

subject to the initial conditions

$$
\begin{aligned}
& y\left(x_{0}\right)=y_{0} \\
& z\left(x_{0}\right)=z_{0} .
\end{aligned}
$$

Since a single second order differential equation

$$
y^{\prime \prime}=g\left(x, y, y^{\prime}\right),
$$

subject to the initial conditions

$$
\begin{aligned}
& y\left(x_{0}\right)=y_{0} \\
& y^{\prime}\left(x_{0}\right)=z_{0}
\end{aligned}
$$

by introducing $z:=y^{\prime}$ can be reformulated as system of two first order ODEs, it can be integrated with the same algorithm.

2. Method

Simplified Runge-Kutta method for systems of first order ODEs, see Essentials, §6.5. We recall the formulas for a system of 2 equations:

$$
\begin{aligned}
y_{n+l}= & {\left[y_{n}+\frac{h}{2} f\left(x_{n}, y_{n}, z_{n}\right)\right] } \\
& +\frac{h}{2} f\left(x_{n}+h, y_{n}+h f\left(x_{n}, y_{n}, z_{n}\right), z_{n}+h g\left(x_{n}, y_{n}, z_{n}\right)\right) \\
z_{n+l}= & {\left[z_{n}+\frac{h}{2} g\left(x_{n}, y_{n}, z_{n}\right)\right] } \\
& +\frac{h}{2} g\left(x_{n}+h, y_{n}+h f\left(x_{n}, y_{n}, z_{n}\right), z_{n}+h g\left(x_{n}, y_{n}, z_{n}\right)\right)
\end{aligned}
$$

3. Flow Diagram

This flow diagram is based on the assumption that $h>0$ (forward integration). During one iteration the branching point " $\frac{h}{2}>0$?" is reached twice. First the answer will be "no", and the calculator continues by computing the arguments of f and g on the right hand side of the formula (see section 2); the absolute value bars in the box *) are for clarity only, since x - expressed in terms of the input h - is computed as $x-\left(-\frac{h}{2}\right)-\left(-\frac{h}{2}\right)$, i.e. with the "new" $\frac{h}{2}$, whereas z and y (by $a R \downarrow$ instruction) are computed with the "old" $\frac{h}{2}$. When the second time the answer is "yes", the appropriate sums to obtain Y_{n+1} and z_{n+1} have been computed. The program does not actually count the iterations (and hence not carry out " $\mathrm{n}:=0$ " or $\mathrm{n}:=\mathrm{n}+\mathrm{l}$ ", as indicated in the flow diagram).

4. Storage and Program

Instructions $01 \div 21$ should be used for the program computing $f(x, y, z)$ and $g(x, y, z):$

Assume	Z in X, Y in Y
Put	f into X, g into Y

Registers $R_{4} \div R_{7}$ are available for temporary or permanent storage.

5. Operating Instructions

Load program, including program computing fand g. Move to RUN, select mode of displaying numbers. Load data as follows:

$\frac{\mathrm{h}}{2}$	into	R_{0}	(h must be $>0)$
x_{0}	into	R_{1}	
y_{0}	into	R_{2}	
z_{0}	into	R_{3}	

and put y_{0} into the Y-register and z_{0} into the X-register of the stack (if data are input in indicated order, they are already there); this must not be forgotten: Press

PRGM
R/S
to start the computation. The calculator will briefly display x_{1} and stop at the display of y_{1}. Press

R/S
to obtain z_{1}. * Upon pressing

> R/S
the next iteration is started; x_{n} is displayed briefly, y_{n} indefinitely, and after pressing

R/S
again, z_{n} is displayed. Continue with *, etc.

6. Example

Oscillations of a mathematical pendulum of length L and mass m, see Essentials, Demonstration 6.5-1. Resulting first order system:

$$
\begin{array}{ll}
y^{\prime}=z & =: f(x, y, z) \\
z^{\prime}=-\frac{g}{L} \sin y & =: g(x, y, z)
\end{array}
$$

with initial conditions

$$
\begin{aligned}
y(0) & =y_{0} \\
y^{\prime}(0) & =0 \quad \text { (pendulum is released, not pushed) },
\end{aligned}
$$

where the gravitational constant $g=9.81\left(\mathrm{~m} / \mathrm{sec}^{2}\right)$. We set $L:=1$ and store the constant g into R_{4}. Hence the program computing the functions f and g can be written

```
01 x \gtrless y
02 sin
03 RCL 4
04 CHS
05 *
06 x < Y
07 GTO 22
09 NOP
    \vdots :
    21 NOP
```

Numerical example: $y_{0}:=\pi / 3$. Therefore
needs to be pressed before starting the computation. We initially set

$$
h=0.0125
$$

and obtain

x_{n}	y_{n}	z_{n}
0.000000	1.047198	0.000000
0.012500	1.046534	-0.106196
0.025000	1.044543	-0.212311
-•••	
0.100000	1.004885	-0.842598
. . .	.	
0.300000	0.680345	-2.332724
....	. . .	
0.500000	0.119155	-3.109734
0.512500	0.080192	-3.121939
0.525000	0.041106	-3.129374
0.537500	0.001957	-3.132015
0.550000	-0.037194	-3.129856

Now $y_{n}<0$ for the first time. Since our program only works with $h>0$ we set $h:=\frac{h}{2}=0.00625$ and use the underlined data as input (remember, that y_{n} in Y and z_{n} in X). This yields

$$
0.543750-0.017618 \quad-3.131535
$$

again a negative Y_{n}. We repeat this process. Now $h=0.003125$, yielding

$$
0.540625-0.007831-3.131925
$$

i.e. $\mathrm{a} \mathrm{Y}_{\mathrm{n}}<0$. Also $\mathrm{h}=0.001563$ and $\mathrm{h}=0.000781$ are unsuccessful. But $\mathrm{h}=0.000391$ yields

0.537891	0.000734	-3.132020
0.538281	-0.000490	-3.132021

With $h:=\frac{h}{2}=0.000195$ and the underlined data as input there results

0.538086	0.000122	-3.132021
0.538282	-0.000489	-3.132020

With $\mathrm{h}=0.000098$ and $\mathrm{h}=0.000049$ and the underlined data we still obtain negative values Y_{n}, but $h=0.000024$ leads to

0.538110	0.000046	-3.132021
0.538135	-0.000031	-3.132021

Putting $h:=\frac{h}{4}=0.000006$ and using the underlined data as input yields

0.531160	0.000027
0.538122	0.000008
0.538128	-0.000011

Always continuing in the same manner, we finally get

$$
0.538125 \quad 0.000000
$$

and hence the period T of the pendulum

$$
T=4 x_{n}=2.1525
$$

Problem 6.5-1:

PREY-PREDATOR MODEL

Solves system

$$
\begin{aligned}
& y^{\prime}=a y-b y z=y(a-b z) \\
& z^{\prime}=c y z-d z=z(d y-d)
\end{aligned}
$$

by simplified Runge-Kutta method.

Demonstration 6.6-1:
DIFFERENTIAL EQUATION OF FIRST ORDER: TRAPEZOIDAL METHOD

1. Purpose

To integrate numerically an ordinary differential equation (ODE)

$$
y^{\prime}=f(x, y)
$$

subject to the initial condition

$$
y\left(x_{0}\right)=y_{0}
$$

2. Method

Trapezoidal method, see Essentials, §6.6, i.e. choose integration step h and determine approximate values Y_{n} to $y\left(x_{n}\right)$ of the exact solution $y(x)$ at the points $x_{n}=x_{0}+n \cdot h$. The $y_{n}, n=1,2, \ldots$, are computed by iteration according to

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{n}+1}^{(0)}=\mathrm{y}_{\mathrm{n}}+\frac{\mathrm{h}}{2} \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right) \\
& \mathrm{y}_{\mathrm{n}+1}^{(\mathrm{m}+1)}=\mathrm{y}_{\mathrm{n}}+\frac{\mathrm{h}}{2}\left\{\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+1}^{(\mathrm{m})}\right)\right\} ;
\end{aligned}
$$

$m=0,1, \ldots$... the iteration is stopped when two successive iterates differ by less than ε. Then

$$
\mathrm{y}_{\mathrm{n}+1}:=\mathrm{y}_{\mathrm{n}+1}^{(\mathrm{m}+1)}
$$

3. Flow Diagram

See Essentials, Fig. 6.6a.
4. Storage and Program

Instructions $24 \div 49$ should be used for the subroutine computing $f(x, y)$. This subroutine should
assume x in R_{2} and y in R_{3} and leave $f(x, y)$ in the X-register. Its last instruction should be RTN.

5. Operating Instructions

Load program, including subroutine for f. Move operating switch to RUN. Choose mode of displaying numbers, e.g. by pressing

FIX 6

Load data as follows:

Integration step	h	into	R_{0}
Tolerance	ε	into	R_{1}
Starting values	x_{0}	into	R_{2}
	y_{0}	into	R_{3}
	$\frac{h}{2} f_{0}:=\frac{h}{2} f\left(x_{0}, y_{0}\right)$	into	R_{4}

Press

PRGM
R/S
to start the computation. After a while x_{1} will be displayed briefly, and the calculator will stop at the display of Y_{1}. Press R/S
to obtain x_{2} and Y_{2}, etc.

6. Example

$y^{\prime}=x^{2}-y^{2}=: f(x, y), y(0)=1$, see Essentials, Demonstration 6.6. Subroutine to compute f:

24 RCL 2
$25 \mathrm{x}^{2}$
26 RCL 3
27
x^{2}
28 -
29 RTN

Input of $\varepsilon:=10^{-9}$:

EEX
9
CHS
STO 1
$\mathrm{x}_{0}=0, \mathrm{y}_{0}=1, \mathrm{f}_{0}=-1$. With integration steps $\mathrm{h}=0.2$,
$0.1,0.05$ (step is successively halved) approximations
T_{1}, T_{2}, T_{3} to $Y(2)$ are computed. In view of the application of Romberg acceleration, it is reasonable to press

FIX 9
before computing the final value for each h. There results

$$
\begin{aligned}
& \mathrm{T}_{1}=1.677871265 \\
& \mathrm{~T}_{2}=1.679066690 \\
& \mathrm{~T}_{3}=1.679361196
\end{aligned}
$$

With the formulas

$$
\begin{aligned}
& T_{n}^{*}=T_{n}-\frac{1}{3}\left(T_{n-1}-T_{n}\right), \quad n=2,3, \\
& T_{3}^{* *}=T_{n}^{*}-\frac{1}{15}\left(T_{2}^{*}-T_{3}^{*}\right),
\end{aligned}
$$

the accelerated values can be found.

Problem 6.6-5:
SIMPSON METHOD FOR $y^{\prime}=f(x, y)$

R_{0}	R_{1}	R_{2}	$\mathrm{R}_{3} \quad \mathrm{R}_{4}$	R_{5}	$\mathrm{R}_{6} \quad \mathrm{R}_{7}$
h	ε	x_{1}	$\begin{array}{ll}\mathrm{Y}_{0} & \mathrm{Y}_{1}\end{array}$	$\frac{h}{3} f_{0}$	$\frac{h_{3}}{} \mathrm{f}_{1}$
	00	10	20	30	40
0	$\xrightarrow{ }$	STO 5	$E\left(x_{1}, y_{1}\right)$	putting	STO 6
1	RCL 5	4	assuming	f	-
2	RCL 3	*	x_{1}	into	STO-4
3	+	STO+4	in	x	ABS
4	RCL 4	RCL 0	R_{2}	RCL 0	RCL 1
5	STO 3	STO+2	and	3	$\mathrm{x} \leqq \mathrm{Y}$
6	-	\rightarrow Program	Y_{1}	\div	GTO 16
7	STO+4	to	in	*	RCL 2
8	RCL 6	com-	R_{4}	RCL 6	PAUSE
9	STO-6	pute	and	$x \geqslant y$	RCL 4

To start press

PRGM
R/S

Problem 6.6-7:
NUMEROV METHOD FOR $y^{\prime \prime}=\mathrm{f}(\mathrm{x}, \mathrm{y})$

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	$\mathrm{R}_{6} \quad \mathrm{R}_{7}$	
h	ε	x_{1}	Y_{0}	Y_{1}	$\frac{h^{2}}{12} \mathrm{f}_{0}$	$\frac{\mathrm{h}^{2}}{12} \mathrm{f}{ }_{1}$	
	00	10		20	30	40	
0	$>$	STO 5		com-	into	STO 6	
1	RCL 5	1		pute	X	-	
2	RCL 3	0		$f(x, y)$	RCL 0	STO-4	
3	-	*		assuming	x^{2}	ABS	
4	RCL 4	STO+4		$\mathrm{x} \in \mathrm{R}_{2}$	1	RCL 1	
5	STO 3	RCL 0		and	2	$\mathrm{x} \leqq \mathrm{y}$	
6	+	STO+2		$y \in R_{4}$	\div	GTO 17	
7	STO+4	$\overrightarrow{\\|}$ Pro-		and	*	RCL 2	
8	RCL 6	gram		putting	RCL 6	PAUSE	
9	STO-6	to		f	$x \geqslant y$	RCL 4	

To start press

> PRGM
> R/S

Demonstration 7.1-1:
SLOW FOURIER TRANSFORM, REAL DATA, $\mathrm{n}=8$, PERIOD 1

1. Purpose

Given $n=2 m=8$ real data f_{j} stemming from a periodic function f with period $T=1$. To compute the coefficients $c_{k}, k=-4,-3, \ldots, 4$, of the balanced trigonometric polynomial of degree $m=4$, interpolating f (see Essentials, §7.1 for definitions, Theorem 7.la for Existence and Uniqueness).

2. Method

Computation of the "ordinary", i.e. slow Fourier Transform, see Essentials, §7.1. Since for real data $f_{j}{ }^{\prime}$ $c_{-k}=\overline{c_{k}}, k=0,1, \ldots, 4$, only $c_{0}, c_{1}, \ldots, c_{4}$ need to be computed by

$$
c_{k}=\frac{1}{8} \sum_{j=0}^{7} f_{j} \cdot z_{l}^{-k j}, \quad \text { with } \quad z_{l}:=e^{-i \frac{\pi}{4}}
$$

For the implementation on the calculator this can be written in a Horner-like form

$$
c_{k}=\frac{1}{8}\left\{f_{0}+z\left(f_{1}+z\left(f_{2}+\ldots z\left(f_{6}+z f_{7}\right) \ldots\right)\right)\right\}
$$

where $z:=z_{1}^{-k}$. Define

$$
c_{k}=: c_{k}^{\prime}+i \cdot c_{k}^{\prime \prime}
$$

It can be shown that c_{0} and c_{4} are real, i.e. $c_{0}^{\prime \prime}=c_{4}^{\prime \prime}=0$.
3. Flow Diagram

The index j has been used in the flow diagram for clarity only; it is not actually used in the program, given in section 4 below. Furthermore, since the z, always being roots of unity, all have modulus 1 , the program only works with their arguments. The multiplication $z\left(f_{j}+s\right)$ is implemented in the subroutine starting with instruction 4l. This subroutine first transforms $f_{j}+s$ into polar coordinates, then multiplies the two factors by adding the arguments (and does not multiply $l \cdot\left|f_{j}+s\right|$) and transforms back to cartesian coordinates. Since all the storage registers are occupied by the f_{j}, the stack has to be used extensively.

4. Storage and Program

R_{0}	R_{1}	R_{2}	$\mathrm{R}_{3} \quad \mathrm{R}_{4}$	R_{5}	$\mathrm{R}_{6} \quad \mathrm{R}_{7}$
f_{0}	f_{1}	f_{2}	$\mathrm{f}_{3} \quad \mathrm{f}_{4}$	f_{5}	$\mathrm{f}_{6} \quad \mathrm{f}_{7}$
	00	10	20	30	40
0	$3<$	GSB 41	RCL 1	\div	GTO 03
1	RAD	RCL 4	+	R/S	$\rightarrow \mathrm{P}$
2	STK	+	GSB 41	R \downarrow	R \downarrow
3	RCL 7	GSB 41	RCL 0	π	+
4	GSB 41	RCL 3	+	4	R \downarrow
5	RCL 6	+	8	\div	R \downarrow
6	+	GSB 41	\div	-	CLX
7	GSB 41	RCL 2	R/S	ENTER	+
8	RCL 5	+	R \downarrow	ENTER	$\rightarrow \mathrm{R}$
9	+	GSB 41	8	0	RTN

5. Operating Instructions

Load program, move to RUN. Select mode of displaying numbers, e.g. by pressing

FIX 8

Press

PRGM
R/S
to start the computation. If

R/S

is pressed after each display, the results are obtained in the following order:

$$
\begin{aligned}
& c_{0}^{\prime}, c_{0}^{\prime \prime} \\
& c_{1}^{\prime}, c_{1}^{\prime \prime} \\
& c_{2}^{\prime}, c_{2}^{\prime \prime} \\
& c_{3}^{\prime}, c_{3}^{\prime \prime} \\
& c_{4}^{\prime}, \\
& c_{4}^{\prime \prime}
\end{aligned}
$$

6. Example

Daily temperatures in Johnson City, New Mexico, see Essentials, Demonstration 7.1-1.

Demonstration 7.1-1:

FOURIER SYNTHESIS, REAL DATA, $\mathrm{n}=8$, PERIOD 1

1. Purpose

Given the coefficients $c_{k}:=c_{k}^{\prime}+i c_{k}^{\prime \prime}, k=0,1, \ldots, 4(=m)$, of the balanced trigonometric polynomial $t(\tau)$ of degree 4, interpolating a real valued function f, given at $\mathrm{n}=8=2 \mathrm{~m}$ points $\tau_{\mathrm{k}}, \mathrm{k}=0,1, \ldots, \mathrm{n}-1$. To evaluate $t(\tau)$ for arbitrary τ, see Essentials, §7.1 and previous program "Slow Fourier Transform".

2. Method

Evaluation of

$$
\begin{aligned}
t(\tau) & :=\sum_{k=-3}^{3} c_{k} e^{2 \pi i k \tau}+\frac{1}{2}\left(c_{4} e^{2 \pi i 4 \tau}+c_{-4} e^{-2 \pi i 4 \tau}\right) \\
& =c_{0}+2 \operatorname{Re}\left\{\sum_{k=1}^{3} c_{k} e^{2 \pi i k \tau}+\frac{1}{2} c_{4} e^{2 \pi i 4 \tau}\right\},
\end{aligned}
$$

$c_{k}:=c_{k}^{\prime}+i c_{k}^{\prime \prime}, ~ b y ~ H o r n e r ' s ~ r u l e, ~ s e e ~ E s s e n t i a l s, ~ § 7 . l . ~$ The fact, that $c_{0}^{\prime \prime}=c_{4}^{\prime \prime}=0$, in the case of real data, is taken into account before starting the computation.

3. Flow Diagram

Straightforward implementation of Horner's algorithm. Similar remarks as in the previous program "Slow Fourier Transform" hold with respect to the arithmetic of complex numbers and the use of the stack.
4. Storage and Program

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
C_{0}^{\prime}	C_{1}^{\prime}	$\mathrm{C}_{1}^{\prime \prime}$	c_{2}^{\prime}	$\mathrm{C}_{2}^{\prime \prime}$	C_{3}^{\prime}	$\mathrm{C}_{3}^{\prime \prime}$	C_{4}^{\prime}
$\tau \in \mathrm{X}$							

	00	10	20	30	40
0		2	RCL 3	RCL 2	$x \geqslant y$
1	RAD	\div	+	+	R \downarrow
2	2	$\rightarrow \mathrm{R}$	x そ y	$x \geqslant y$	x < y
3	*	RCL 5	RCL 4	GSB 39	R \downarrow
4	π	+	+	2	R \downarrow
5	*	$\mathrm{x} \geqslant \mathrm{y}$	$x \geqslant y$	*	R \downarrow
6	ENTER	RCL 6	GSB 39	RCL 0	+
7	ENTER	+	RCL 1	+	$x \geqslant y$
8	ENTER	x < y	+	GTO 00	$\rightarrow \mathrm{R}$
9	RCL 7	GSB 39	x そ y	$\rightarrow \mathrm{P}$	RTN

5. Operating Instructions

Load program, move to RUN, choose mode of displaying numbers. Load data as follows:

c_{0}^{\prime}	into	R_{0}
c_{1}^{\prime}	into	R_{1}
$c_{1}^{\prime \prime}$	into	R_{2}
c_{2}^{\prime}	into	R_{3}
$c_{2}^{\prime \prime}$	into	R_{4}
c_{3}^{\prime}	into	R_{5}
$c_{3}^{\prime \prime}$	into	R_{6}
c_{4}^{\prime}	into	R_{7}

(and do not load $c_{0}^{\prime \prime}$ and $c_{4}^{\prime \prime}$, which are zero). Load the value τ, at which t should be evaluated, into the X-register. Press

PRGM
R/S

The calculator will stop at the display of $t(\tau)$. If the polynomial has to be evaluated for another τ, load new value of τ into X and press

R/S
etc.

6. Example

Daily temperatures in Johnson City, New Mexico, see
Essentials, Demonstration $7.1-1$. Input to this program
are the coefficients c_{k}, computed by means of the pre-
vious program "Slow Fourier Transform". Now we can com-
pute the temperature at any other time h of the day,
by letting $\tau=$ fraction of the day, elapsed at time h.
(This has to be done, since the period T is assumed
to be l, i.e. here l day.)

Demonstration 7.2-1:
UNSTABLE TRIGONOMETRIC INTERPOLATION, n EVEN

1. Purpose

To demonstrate that the representation

$$
t(\tau)=\frac{\sin n \pi \tau}{n} \sum_{k=0}^{n-1}(-1)^{k} \cot \left[\pi\left(\tau-\tau_{k}\right)\right] \cdot f_{k}
$$

for the balanced trigonometric polynomial interpolating a real-valued function f with period l, given at the points

$$
\begin{gathered}
\tau_{k}:=\frac{k}{n}, \quad k=0,1, \ldots, n-1, \\
f_{k}:=f\left(\tau_{k}\right), n \text { even, is unstable, see Essentials, §7.2. }
\end{gathered}
$$

2. Method

Using the facts, that $\cot \alpha=\frac{1}{\tan \alpha}, \tan (\alpha-\pi)=\tan \alpha$, $f(0)=f(1)$ and letting $\tau_{n}:=1$, we can write

$$
t(\tau)=\frac{\sin n \pi \tau}{n} \sum_{k=1}^{n}(-1)^{k} \frac{f\left(\tau_{k}\right)}{\tan \left[\pi\left(\tau-\tau_{k}\right)\right]} .
$$

3. Flow Diagram

Straightforward. The summation is started with the term for $k=n$. The program given in section 4 below assumes, that f is given by a formula (rather than data points only).
4. Storage and Program

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
n	k	τ	ε_{k}	s	${ }^{\tau_{k}}$		
$\tau \in \mathrm{x}$							

	00	10	20	30	40
0	\bigcirc	$\mathrm{x}=0$	*	GTO 09	GTO 00
1	RAD	GTO 31	tan	\rightarrow RCL 2	\rightarrow
2	STO 2	RCL 0	\div	π	
3	RCL 0	\div	RCL 3	*	
4	STO 1	STO 5	*	RCL 0	
5	0	GSB 41	STO+4	$\mathrm{STO} \div 4$	
6	STO 4	RCL 2	1	*	
7	1	RCL 5	STO-1	sin	
8	STO 3	-	CHS	STO*4	
9	\rightarrow RCL 1	π	STO* 3	RCL 4	

Instructions $41 \div 49$ are available for the subroutine computing $f\left(\tau_{k}\right)$. This subroutine should assume τ_{k} in X and τ_{k} in R_{5}, leave f_{k} in X and terminate with the instruction RTN. Storage registers R_{6} and R_{7} can be used for additional storage.

5. Operating Instructions

Load program, including subroutine computing f_{k}. Move to RUN, select mode of displaying numbers. Load n (even) into R_{0}. Load τ, at which t should be evaluated, into X. Press

PRGM
R/S

The calculator will stop at the display of $t(\tau)$. If the polynomial has to be evaluated for another τ, load new value of τ into X and press

R/S
etc.

6. Example and Timing

We try the behavior of the representation of $t(\tau)$, given in section 1 , for $f(\tau) \equiv 1$, see Essentials, Demonstration 7.2-l. Subroutine for f:
41 1

42 RTN

Time used to compute one value $t(\tau)$ approx. 27 sec.

Demonstration 7.2-2:
TRIGONOMETRIC INTERPOLATION, BARYCENTRIC FORMULA, PERIOD 1

1. Purpose

To evaluate the balanced trigonometric polynomial $t(\tau)$ of degree m interpolating a real-valued function f with period l, given at the points

$$
\tau_{k}:=\frac{k}{n}, \quad k=0,1, \ldots, n-1
$$

by means of the barycentric formula, which is a stable representation for $t(\tau)$, see Essentials, §7.2.

2. Method

If $n=2 m$ is even, we use the facts that $\cot \alpha=\frac{1}{\tan \alpha}$, $\tan (\alpha-\pi)=\tan \alpha, f(0)=f(1)$ and let $\tau_{n}:=1$, we obtain

$$
t(\tau)=\frac{\sum_{k=1}^{n}(-1)^{k} \frac{f\left(\tau_{k}\right)}{\tan \left[\pi\left(\tau-\tau_{k}\right)\right]}}{\sum_{k=1}^{n}(-1)^{k} \frac{1}{\tan \left[\pi\left(\tau-\tau_{k}\right)\right]}},
$$

see Essentials, Theorem 7.2a.

If $n=2 m+1$ is odd, for similar reasons the foregoing formula with "tan" replaced by "sin" results.
3. Flow Diagram

*) If n is odd, "tan" has to be replaced by "sin". The program given in section 4 below assumes, that f is given by a formula.

Instructions $16 \div 29$ should be used for the program to evaluate $f_{k}:=f\left(\tau_{k}\right)$, assuming τ_{k} in X and in R_{3} and putting f_{k} into $X . R_{7}$ is available for additional storage. Instruction 35 is "tan" if n is even and "sin" if n is odd.

5. Operating Instructions

Load program, including program to compute f_{k}. Move to RUN. Load n into R_{0} and τ into the x-register. Press

```
        FIX 9
        PRGM
        R/S
to obtain t(\tau). If t needs to be evaluated for another \tau,
then load new value of }\tau\mathrm{ into }X\mathrm{ and press
R/S
etc.
6. Example and Timing
Let \(\mathrm{f}(\tau):=\cos \mathrm{n} \pi \tau, \mathrm{n}=12\), see Essentials, Demonstration 7.2-2. Program computing \(f_{k}\) :
\begin{tabular}{cll}
16 & RCL & 0 \\
17 & \(*\) & \\
18 & \(\pi\) & \\
19 & \(*\) & \\
20 & \(\operatorname{COS}\) \\
21 & NOP \\
\(\vdots\) & \(\vdots\) \\
29 & NOP
\end{tabular}
```

Time needed to compute one value $t(\tau)$ approx. 37 sec.

Demonstrations 7.2-3, 7.4-1:
DYNAMIC TRIGONOMETRIC INTERPOLATION, PERIOD 1

1. Purpose

Given a real-valued periodic function f with period 1. To compute, for $\ell=0,1,2, \ldots$, the balanced trigonometric polynomials $t_{\ell}(\tau)$ interpolating f at the $n:=2^{\ell}$ points $\tau_{k}:=k / n, k=0,1,2, \ldots, n-1$.
2. Method

The $t_{l}(\tau)$ are generated recursively by

$$
t_{\ell}(\tau):=\frac{a_{\ell}-r_{\ell}}{b_{\ell}-s_{\ell}},
$$

where

$$
a_{0}=f(0) \cot \pi \tau, \quad b_{0}=\cot \pi \tau, \quad r_{0}=s_{0}=0
$$

and

$$
\begin{aligned}
& a_{\ell+1}=a_{\ell}+r_{\ell}, \quad b_{\ell+1}=b_{\ell}+s_{\ell}, \\
& r_{\ell}=\sum_{k=1}^{n-1} f\left(\tau_{k}\right) \cot \pi\left(\tau-\tau_{k}\right),
\end{aligned}
$$

$$
s_{l}=\sum_{k=1}^{n-1} \cot \pi\left(\tau-\tau_{k}\right),
$$

see Essentials, Theorem 7.2b.

3. Flow Diagram

The program given in section 4 below basically follows the pattern of the flow diagram in Fig. 7.2a of Essentials. Thus the sums in the formulae for r_{ℓ} and s_{ℓ} are evaluated from $k=n-1$ downward.
4. Storage and Program

Instructions $06 \div 15$ should be used for the program to compute $f_{k}:=f\left(\tau_{k}\right)$, assuming τ_{k} in X and putting f_{k} into X. R_{1} is available for additional storage. The instruction $\overline{\mathrm{x}}$ (see 05 and 17) has been used in order to save programming space; together with $\frac{k}{n}=\tau_{k}$ it furnishes another quotient (in Y), which is not needed.

5. Operating Instructions

Load program, including program to compute f_{k}. Move to RUN. Select mode of displaying numbers. Load data as follows:

$$
\begin{array}{lll}
1 & \text { into } & R_{2} \text { and } R_{3} \\
0 & \text { into } & R_{4}, R_{5}, R_{6}, R_{7}
\end{array}
$$

and τ, the value at which the polynomials t_{ℓ} should be evaluated, into the x -register. Press

```
PRGM
R/S
    R/S
to obtain th(\tau), etc.
```

At the first stop $t_{0}(\tau)$ is shown. Press

6. Examples and Timing

$1 \mathrm{f}(\tau):=|2(\tau-[\tau])-1|$, see Essentials, Demonstration 7.2-3, when [τ] denotes the largest integer $\leq \tau$. For $\tau>0$ the program computing f_{k} can be written as:

06	ENTER	or	06	FRAC
07	INT		07	2
08	-		08	$*$
09	2		09	1
10	*		10	-
11	1		11	ABS
12	-	12	NOP	
13	ABS		13	NOP
14	NOP		14	NOP
15	NOP		15	NOP

(If $\tau<0$ the INT operation yields [$\tau]+1$, but we know that $\mathrm{f}(\tau)=\mathrm{f}(-\tau)$ for any τ, see Figure 7.2b.) The computing time for $\ell=1$ is approx. 4 sec . and doubles at each step; for $\ell=14$ it is about 6 hrs .
$2 \mathrm{f}(\tau):=(1+\varepsilon \cos 2 \pi \tau)^{-1 / 2}$, see Essentials, Demonstration $7.4-1$, where $\varepsilon=0.9$ and $\tau=0.2$. If we store the constant 2π in R_{1}, the program computing f_{k} is:

06	RCL 1	11	$*$
07	$*$	12	1
08	\cos	13	+
09	-	14	$\sqrt{\mathrm{x}}$
10	9	15	$1 / \mathrm{x}$

Note: If the program given in section 4 above should be used for a function, which to program takes a little more than 10 instructions, then the main program can slightly be shortened e.g. by

- storing τ into R_{0} "by hand"
- pressing RAD "outside"
- rearranging the program such that $t_{\ell}(\tau)$ is in the X -register after instruction 49 has been completed (and thereby saving one instruction R/S)

Demonstrations 7.3-1, 7.3-2, 7.3-3:
COMPLEX FOURIER COEFFICIENTS, DATA GENERATED, PERIOD 1

1. Purpose

To compute the complex Fourier coefficients of a given function f with period 1.

2. Method

For $k:=k_{0}, k_{0}+1$, ... we compute the trapezoidal values \hat{c}_{k} of the complex Fourier coefficients c_{k} by

$$
\hat{c}_{k}=\frac{1}{n} \sum_{m=0}^{n-l} f\left(\frac{m}{n}\right) e^{-\frac{2 \pi i k m}{n}}
$$

see Essentials, §7.3 (also for estimates of the error $\hat{c}_{k}-c_{k}$, e.g. Theorem 7.3b). We assume that f is given by a formula and hence have to generate the values f_{k} of f at the sampling points $\tau_{k}:=k / n$. Letting

$$
\theta:=\frac{2 \pi k}{n},
$$

since exp (any integer multiple of $2 \pi i$) $=1$, the foregoing formula can be written as

$$
\hat{c}_{k}=\frac{1}{n} \sum_{m=1}^{n} f_{n-m} e^{-i m \theta}
$$

3. Flow Diagram

Since $|z|:=\left|e^{i m \theta}\right|=1$, using polar coordinates, in order to multiply $f_{k} \cdot z$, only the arguments of f_{k} and z have to be added and $\left|f_{k} z\right|=\left|f_{k}\right|$; therefore $|z|$ is not explicitly used. See also the remarks to the flow diagram of "Slow Fourier Transform".

4. Storage and Program

Instructions $24 \div 40$ are reserved for the program computing f_{k}. This program should assume τ_{k} in X and add the real part of f_{k} to the content of R_{6}, and add the imaginary part of f_{k} to the content of $R_{7} \cdot R_{0}$ is available for additional storage.

5. Operating Instructions

Load program, including program to compute f_{k}. Move operating switch to RUN. Press

RAD

(otherwise the results will be wrong!). Select mode of displaying numbers and load data as follows:

k_{0}	into	R_{1}
n	into	R_{2}
$\frac{2 \pi}{\mathrm{n}}$	into	R_{4}

The computation is started by pressing

> PREM
> R/S

The calculator will stop, displaying the real part of the first computed Fourier coefficient $\hat{c}_{k}\left(k=k_{0}\right)$. Press REL 7
to obtain the imaginary part of \hat{c}_{k}. To compute \hat{c}_{k+1} press

$$
R / S
$$

At stop $\operatorname{Re} \hat{c}_{k+1}$ will be displayed and $\operatorname{Im} \hat{C}_{k+1}$ stored in R_{7}, etc.

I $f(\tau):=|2 \tau-1|$, see Essentials, Demonstration 7.3-1. Program to compute and store f (i.e. here, since f is real-valued, add it to the contents of R_{7}, see section 4):

24	2	30	NOP
25	$*$	\ldots	
26	1	40	NOP
27	-		
28	ABS		
29	STO +6		

For $n=4,8$ it is interesting to compute all the coefficients $\hat{c}_{k}, k=0,1, \ldots, 7$; thus it can be verified, that the coefficients with even index are zero (within the accuracy used on the calculator) and that $\hat{c}_{k}=\hat{c}_{k+n}$. For $n \geqq 16$ the computations are more time-consuming and we therefore only compute the coefficients with odd indices. To this end we let $\mathrm{k}_{0}:=1$ and change instruction 44 to "2" (this corresponds to $\mathrm{k}:=\mathrm{k}+\underline{2}$ in the last box of the flow diagram in section 3). To verify that the \hat{c}_{k} are real, press

RCL 6
to obtain $\operatorname{Im} \hat{c}_{k}=0$. The accelerated values (for $k=1$) have been computed "by hand".
$2 f(\tau):=(1+\varepsilon \cos 2 \pi \tau)^{-1 / 2},|\varepsilon|<1$, see Essentials, Demonstration 7.3-2. f again is real-valued. If ε is stored in R_{0}, the program to compute and store f can be written as:

24	π	30	$*$	36	NOP
25	$*$	31	1	37	NOP
26	2	32	+	38	NOP
27	$*$	33	\sqrt{x}	39	NOP
28	COS	34	$1 / x$	40	NOP
29	RCL 0	35	STO+6		

After loading the program (with instruction 44 changed back to "l"), $\varepsilon=0.9$ has to be stored into R_{0}.
$2 f(\tau):=e^{i x \cos 2 \pi \tau}$, x parameter, see Essentials, Demonstration 7.3-3. Program to compute and store f , assuming x in R_{0} :

24	2	30	$*$	36	NOP
25	$*$	31	1	37	NOP
26	π	32	$\rightarrow \mathrm{R}$	38	NOP
27	$*$	33	STO+6	39	NOP
28	COS	34	$x \geqslant y$	40	NOP
29	RCL 0	35	STO+7		

The foregoing program computes $f(\tau)$ in polar coordinates first (instr. $24 \div 30$: argument, instr. 31: modulus) and then transforms it to rectangular coordinates. Before starting the
computation $x=4.5$ has to be loaded into R_{0}. It is seen that

$$
\hat{c}_{k}= \begin{cases}\text { real }, & k \text { even } \\ \text { purely imaginary, }, & k \text { odd }\end{cases}
$$

The program given in section 4 automatically only displays $\operatorname{Re} \hat{c}_{k}$. To obtain $\operatorname{Im} \hat{c}_{k}$ press RCL 7

Demonstrations 7.6-1, 7.7-6, 7.7-7, 7.8-1:
FAST FOURIER TRANSFORM

1. Purpose

Given a data vector $\underline{x}=\left(x_{k}\right)$ of length $n=2^{\ell}, k=0,1,2$, ..., n-l. To compute the Fast Fourier Transform $\underline{y}=\underline{F}_{n} \underline{x}$ (or its conjugate $\overline{\underline{F}}_{n} \underline{x}$), abbreviated $F F T$, of \underline{x}, see Essentials, §7.5.

2. Method

The basic idea in the construction of the FFT is to use the duplication theorem 7.5a of Essentials repeatedly. The program given in section 4 below, is based on the implementation of the FFT, as described in Essentials, §7.6, where the storage requirements have been kept low. We recall the crucial definitions and formulas. The bit reversion function $p(m)$ assigns to the integer $m<2^{j}$ with binary representation $m_{0} m_{1} \ldots m_{j-1}$ the integer m^{\prime} with binary representation $m_{j-1} m_{j-2} \ldots m_{0}$. The 2^{j} vectors of length $2^{\ell-j}, j=\ell, \ell-1, \ldots, 0$ in each row of the scheme in Fig. 7.6d are combined into a single vector $\underline{y}_{j}:=\left(y_{j}[k]\right)$ (from now on we use brackets instead of indices for the components of a vector); the vector \underline{y}_{0} in the top row of the scheme is the FFT of \underline{x}, which
we have to construct, starting from the bottom row \underline{Y}_{ℓ}. Theorem 7.6a yields

$$
\mathrm{y}_{\ell}[\mathrm{m}]=x\left[p_{\ell}(m)\right]
$$

$m=0,1, \ldots, 2^{\ell}-1$. In other words: The bit reversion function has to be applied to the given data vector first, and the resulting vector equals \underline{y}_{ℓ}. The duplication theorem 7.5a yields for the upper rows ($j \leq \ell-1$), using the abbreviations

$$
\begin{aligned}
& y:=y_{j}, \quad y^{\prime}:=y_{j-1} \quad(j=\ell, \ell-1, \ldots, l), \\
& s:=2^{\ell-j}, \\
& r_{j}:=e^{2 \pi i \cdot 2^{-j}, \quad r_{\ell-j+l}=: e^{i \phi}, \quad r_{\ell-j+l}^{h}=: e^{i \psi},} \\
& y^{\prime}[h]=\frac{1}{2}\left\{y[h]+e^{i \psi} y^{\prime}[h+s]\right\}, \\
& y^{\prime}[h+s]=\frac{1}{2}\left\{y[h]-e^{i \psi} y^{\prime}[h+s]\right\},
\end{aligned}
$$

where h, defined as $h:=2 \cdot s \cdot m+k$, where $m=0,1, \ldots, 2^{j}-1$ and $k=0,1, \ldots, s-1$, runs from 0 to s.

3. Flow Diagram

See Essentials, Fig. 7.6e. In the program for the HP-33E calculator for reasons of programming space the bit inversion function has to be applied by hand, and for reasons of storage space the input of the data has to be done gradually (see section 5). The vector \underline{Y}^{\prime} is
computed by the formulas given in section 2 . In terms of the ("little") vectors in the scheme of Fig. 7.6d the three loops in the flow diagram can be explained as follows:

If $|\psi|<\pi$ (program tests $h+s<2^{j}$) then compute corresponding element of other vector of pair of vectors (j+l pairs).

If $h<n$ then compute next pair of vectors.
If $\mathrm{s}<\mathrm{n}$ then compute next (upper) row.

4. Storage and Program

R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
Rey	Imy	n	$\mathrm{k}=\mathrm{h}+\mathrm{s}$	h	1	$\arg \mathrm{p}$	$\pm \pi$
					2^{j}		ϕ

RAD

	00	10	20	30	40
0		+	STO-1	R/S	RCL 5
1	0	R/S	2	RCL 7	STO+4
2	STO	$\rightarrow \mathrm{P}$	STO -0	STO+6	RCL 4
3	0	x そ y	$\mathrm{STO} \div 1$	1	RCL 2
4	STO	RCL 6	CLX	STO+3	$\mathrm{x}>\mathrm{y}$
5	STO	+	RCL 1	STO+4	GTO 03
6	RCL	$\mathrm{x} \geqslant \mathrm{y}$	+	RCL 3	2
7	R/S	$\rightarrow \mathrm{R}$	x そ y	RCL 5	STO*5
8	RCL	STO-0	RCL 0	$\mathrm{x}>\mathrm{y}$	STO -7
9	RCL 5	$\mathrm{x} \geqslant \mathrm{y}$	+	GTO 06	GTO 01

As in previous programs, the option of transforming into polar (\rightarrow P) and back to rectangular (\rightarrow R) coordinates has been used to implement the arithmetic with complex numbers.

5. Operating Instructions

Load program, move to RUN, select mode of displaying numbers. Load data as follows:

$$
\left.\begin{array}{ccc}
\begin{array}{c}
n \\
1
\end{array} & \begin{array}{c}
\text { into } \\
\text { into }
\end{array} & \mathrm{R}_{2} \\
-\pi \\
+\pi
\end{array}\right\} \text { into } \mathrm{R}_{5}\left\{\begin{array}{l}
\text { if } \frac{\mathrm{F}_{n} \underline{x}}{\overline{\mathrm{~F}}_{n} \underline{x}} \text { is to be computed. }
\end{array}\right.
$$

Apply the bit inversion function (see section 2) manually to x. Hence at the beginning the position h contains
$\mathrm{Y}_{\mathrm{p}[\mathrm{h}]}$. Thus for $\mathrm{n}=8$ the starting situation is

h	$y_{p}[h]$
0	y_{0}
1	y_{4}
2	y_{2}
3	y_{6}
4	y_{1}
5	y_{5}
6	y_{3}
7	y_{7}

The typical operation is

$$
\begin{align*}
& \mathrm{y}_{\mathrm{h}}^{\prime}=\frac{1}{2}\left[\mathrm{y}_{\mathrm{h}}+\mathrm{py}_{k}\right] \\
& \mathrm{y}_{\mathrm{k}}^{\prime}=\frac{1}{2}\left[\mathrm{y}_{\mathrm{h}}-\mathrm{py} \mathrm{y}_{\mathrm{k}}\right] \tag{*}
\end{align*}
$$

where $y=R e y+i \operatorname{lm} y$ are complex numbers, h and k indices, $0 \leq h, k \leq n$, and p is a certain root of unity. The computation of each new pair $Y_{h}^{\prime}, Y_{k}^{\prime}$ according to (*) involves 3 R/S stops. At the first stop, the index h is shown. The operator is to load

$$
\operatorname{Re} y_{h} \text { into } R_{0}, \quad \quad \operatorname{Im} y_{h} \text { into } R_{1} \text {, }
$$

At the next stop, the index k is shown. The operator is to load

$$
\operatorname{Re} y_{k} \quad \text { into } x, \quad \operatorname{Im} y_{k} \text { into } Y .
$$

(Thus $\operatorname{Im} y_{k}$ should be loaded first.) At the last stop

$$
\begin{array}{lll}
\operatorname{Re} y_{h}^{\prime} & \text { is in } X, & \operatorname{Im} y_{h}^{\prime} \text { is in } Y \\
\operatorname{Re} y_{k}^{\prime} \text { is in } R_{0}, & \operatorname{Im} Y_{k}^{\prime} \text { is in } R_{l}
\end{array}
$$

These quantities should be recorded in the h and k positions of the new column. Now (do not forget to) press

RAD
and

PRGM

R/S
to start the computation.

6. Examples

1 Let $\underline{x}=\left(x_{k}\right)$, where $x_{k}:=f\left(\frac{k}{8}\right), k=0,1, \ldots, 7$, $f(\tau):=\exp (i x \cos 2 \pi \tau)$ and the parameter x set to 4.5. To compute $\underline{F}_{8} \underline{x}$, see Essentials, Demonstration 7.6-1. This example is identical with Demonstration 7.3-3, where the slow Fourier transform of \underline{x} was computed. It can be verified for $\mathrm{n}=8$ that the slow and the fast FT yield the same results.

2 To smooth the periodic sequence $\underline{x}:=\|: \begin{array}{lllllllll}7 & 4 & 8 & 3 & 2 & 9 & 6 & 5 & \text { || }\end{array}$ by the smoothing sequence $\underline{s}:=\frac{1}{4}\|: 211000001:\|$, as explained in Essentials, Example 7.7-3, see Essentials, Demonstration 7.7-6. According to the Convolution Theorem 7.7a we first compute $\hat{\underline{x}}:=\underline{F}_{8} \underline{x}$ (using the program of section 4 with $\phi=-\pi$) and $\underline{\hat{s}}:=\underline{F}_{8} \underline{s}$ (can be done analytically). Then we manually perform the multiplications $n^{2} \cdot \hat{s}_{k} \cdot \hat{x}_{k}$, $n=8, k=0,1, \ldots, 7$. Finally $\bar{F}_{8}\left(n^{2} \cdot \hat{s} \cdot \hat{x}\right)$ (using the program of section 4 with $\phi=+\pi$)
is computed.

3 To compute the product 241 * 769 by the convolution theorem see Essentials, Demonstration 7.7-7 and Example 7.7-5. With

$$
\begin{aligned}
& \underline{p}:=\|: 1,4,2,0,0,0,0,0:\| \\
& \underline{q}:=\|: 9,6,7,0,0,0,0,0:\|,
\end{aligned}
$$

$\mathrm{n}=8$, we have to compute $\hat{\mathrm{p}}, \underline{\hat{q}}$ (program of section 4 with $\phi=-\pi$), then $64 \cdot \hat{p} \hat{q}$ (by hand) and finally $\overline{\mathrm{F}}_{8}(64 \cdot \hat{\mathrm{p}} \hat{\mathrm{q}}$) (program of section 4 with $\phi=+\pi$) 。

4 Let $\{0.2,0.9,-0.4,-0.1\}, m=4$, be a time series. To compute the covariance function \underline{r}, the power spectrum \underline{f} and the smoothed power spectrum g (weights $\frac{1}{4}, \frac{1}{2}, \frac{1}{4}$) (see Essentials, §7.8 for definitions), see Essentials, Demonstration 7.8-1. Two methods are available:

Method A (conventional)

Method B (avoids convolutions)

