HEWLETT-PACKARD

HP.33E SURVEYING Applications

The material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of keystroke procedures or any part thereof.

HP-33E

Surveying Applications

March 1978

Introduction

This Surveying Applications book was written to help you get the most from your HP-33E calculator. The programs were chosen to provide useful calculations for many of the common problems encountered in surveying.
They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software.

You will find general information on how to key in and run programs under "A Word about Program Usage" in the Applications book you received with your calculator.
We hope that this Surveying book will be a valuable tool in your work and would appreciate your comments about it.

Contents

Introduction 2
Traversing 4
Azimuth-Bearing Conversions 4
Bearing Traverse 8
Field Angle Traverse 12
Inverse from Coordinates 16
Compass Rule Adjustment 21
Sideshots 26
Intersections 30
Bearing-Bearing Intersection 30
Dearing-Distance Intersection 34
Distance-Distance Intersection 38
Offset from a Point to a Line 42
Curves 46
Curve Solutions 46
Elevations Along a Vertical Curve 50
Other 54
Earthwork: Volume by Average End Area 54
Coordinate Transformation 59

Traversing

Azimuth-Bearing Conversions

Angle conventions for azimuths and quadrant bearings as used in this application book are shown below:

Thus azimuths are measured from the north meridian following North American surveying conventions. Bearings are measured from the meridian in the quadrant in which the line falls. Quadrant codes are shown in the above sketch.

Often it is desirable to have a quick, easy method to convert to or from azimuths and bearings. In this application book, for example, some inputs and outputs may be in azimuths rather than bearings, or vice versa, when you desire the alternate form. The following simple keystroke routines are helpful in making these conversions:

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	Azimuths to Bearings:			
1	Azimuth $=0^{\circ}$ to 90°	AZ (D.MS)	No Calculation	BRG (D.MS)
				QD $=1$
2	Azimuth $=90^{\circ}$ to 180°	180	ENTER4	
		AZ (D.MS)	(9) \rightarrow - \square	
			(1) \rightarrow H.MS	BRG (D.MS)
				$Q D=2$
3	Azimuth $=180^{\circ}$ to 270°	AZ (D.MS)	ENTER4 $180 \square$	BRG (D.MS)
				$Q D=3$
4	Azimuth $=270^{\circ}$ to 360°	360	ENTER4	
		AZ (D.MS)	(9) \rightarrow H -	
			$\rightarrow \rightarrow$ H.MS	BRG (D.MS)
				$Q D=4$
	Bearings to Azimuths:			
5	Quadrant $=1$	BRG (D.MS)	No Calculation	AZ (D.MS)
6	Quadrant $=2$	180	ENTER4	
		BRG (D.MS)	(9) +H	
			(f) \rightarrow H.MS	AZ (D.MS)
7	Quadrant = 3	BRG (D.MS)	ENTER4 180 +	AZ (D.MS)
8	Quadrant $=4$	360	ENTER4	
		BRG (D.MS)	(9) \rightarrow H -	
			(f) \rightarrow H.MS	AZ (D.MS)

If you have a number of conversions to perform the following program will be more convenient and faster. Lines 01 thru 24 convert bearings to azimuths. Lines 25 thru 39 convert azimuths to bearings. You may want to separate the two parts and only key in one section, if all your conversions are in one direction.

KEY ENTRY	DISPLAY		KEY ENTRY	DISPLAY	
\pm CLEAR PRGM	00		区	21-	61
$x ; y$	01-	21	\square	22-	41
(9+H	02-	156	4 - H.MS	23-	146
$x \leq y$	03-	21	GTO 00	24-	1300
Eentre	04-	31	(9)+ H $^{\text {c }}$	25-	156
ENTERA	05-	31	ENTERA	26-	31
2	06-	2	(f)	27-	147
\dagger	07-	71	(9) SIN^{-1}	28-	157
9 INT	08-	1532	9 \times x 0	29-	1541
1	09-	1	CHS	30-	32
8	10-	8	4 H.MS	31-	146
0	11-	0	R/S	32-	74
STO 0	12-	230	- $\mathrm{B}_{\text {+ }}$	33-	22
区	13-	61	9	34-	9
$x=y$	14-	21	0	35-	0
RCL 0	15-	240	\dagger	36-	71
\triangle	16-	61	1	37-	1
+ \cos	17-	148	\pm	38-	51
Ro	18-	22	9 INT	39-	1532
R0	19-	22	GTO 00	40-	1300
Rod	20-	22			

REGISTERS			
$\mathrm{R}_{0} 180$	R_{1}	R_{2}	R_{3}
R_{4}	R_{5}	R_{6}	R_{7}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	To convert bearing to			
	azimuth:			
	a Input bearing	BRG (D.MS)	ENTER4	
	b Input quadrant code	QD	GSB 01	AZ (D.MS)
3	To convert azimuth to			
	bearing:			
	Input azimuth	AZ (D.MS)	GSB 25	BRG (D.MS)
			R/S	QD

Example 1:

Convert azimuth of $162^{\circ} 15^{\prime} 32^{\prime \prime}$ to bearing/quadrant.
Keystrokes

| 162.1532 GSB 25 | 17.4428 | BRG (D.MS) |
| :--- | :--- | :--- | :--- |
| R/S | 2.0000 | QD |

Convert azimuth of $39^{\circ} 42^{\prime} 26^{\prime \prime}$ to bearing/quadrant.

Keystrokes
39.4226 GSB 25

R/S

Display

39.4226
1.0000

BRG (D.MS)
QD

Example 2:

Convert bearing S $34^{\circ} 56^{\prime} 37^{\prime \prime} \mathrm{W}$ to an azimuth.
Keystrokes Display
34.5637 ENTERA 3

Convert bearing N $85^{\circ} 24^{\prime} 47^{\prime \prime} \mathrm{W}$ to an azimuth.

Keystrokes

Display
85.2447 ENTERA 4

GSB 01
274.3513

AZ (D.MS)

Bearing Traverse

This program uses bearings and horizontal distances or slope distances to calculate coordinates in a surveying traverse. Starting from a known point, the calculations proceed point by point around the traverse. The total horizontal distance traversed is calculated as well as the area enclosed by the traverse (if it is a closed traverse).

Formulas Used:

1. $\mathrm{HD}=\mathrm{SD} \sin (\mathrm{ZA})$
2. $\mathrm{N}_{\mathrm{k}+1}=\mathrm{N}_{\mathrm{k}}+\mathrm{HD} \cos \mathrm{AZ}$
$\mathrm{LAT}_{\mathrm{k}}=\mathrm{N}_{\mathrm{k}+1}-\mathrm{N}_{\mathrm{k}}$
3. $E_{k+1}=E_{k}+H D \sin A Z$
$D E P_{k}=E_{k+1}-E_{k}$
4. Area $=\sum_{k=1}^{n} \operatorname{LAT}_{k}\left(1 / 2 \operatorname{DEP}_{k}+\sum_{j=1}^{k-1} \operatorname{DEP}_{j}\right)$
where: $\quad \mathrm{N}, \mathrm{E}=$ Northing, easting of a point
Subscript k refers to current point n equals number of points in the survey

$$
\begin{aligned}
& \mathrm{AZ}=\text { Azimuth of a course } \\
& \mathrm{HD}=\text { Horizontal distance } \\
& \mathrm{SD}=\text { Slope distance } \\
& \mathrm{ZA}=\text { Zenith angle }
\end{aligned}
$$

- All angular inputs and outputs are in the form degrees, minutes and seconds (D.MS).
- This program uses zenith angles to calculate horizontal distance from slope distance. If your instrument measures vertical angles rather than zenith angles, convert the vertical angle to a zenith angle by the following formula:

Zenith angle $=90^{\circ}$ - Vertical angle
(Remember to convert D.MS input to decimal degrees before subtracting from 90°).

KEY ENTRY	DISPLAY			KEY ENTRY	DISPLAY		
（fCLEAR PACM	00			R／S	25－	74	
［ CLD 1	01－	24	1	GTO 31	26－	13	31
STO 5	02－	23	5	$x=y$	27－		21
R／S	03－		74	（9）$\square^{\text {a }}$	28－	15	6
$x=y$	04－		21	$\square \mathrm{SIN}$	29－	14	7
9 \square^{+1}	05－	15	6	区	30－		61
$x \geq y$	06－		21	STo ${ }^{\text {a }}$	31－23	51	3
EETERA	07－		31	HCL 0	32－	24	0
ENTER	08－		31	$x \geq y$	33－		21
2	09－		2	（1＋8	34－	14	4
\dagger	10－		71	STOT 5	35－23	51	5
9 INT	11－	153		STOL 1	36－23	51	1
RCD 7	12－		7	$x \geq y$	37－		21
\pm	13－		61	STOT 6	38－23	51	6
$x=y$	14－		21	STO ${ }^{\text {¢ }} 2$	39－23	51	2
RCL 7	15－		7	2	40－		2
\triangle	16－		61	\dagger	41－		71
$9 \times$	17－		8	RCL 6	42－		6
R ${ }^{\text {d }}$	18－		22	\square	43－		41
Rot	19－		22	区	44－		61
Ro	20－		22	STOL 4	45－23	51	4
区	21－		61	（RCL 1	46－	24	1
\square	22－		41	R／S	47－		74
STO 0	23－	23	0	（RCL 2	48－	24	2
$\square \rightarrow$ H．MS	24－	14	6	GTO 03	49－	13	03

REGISTERS			
$R_{0} A Z$	R_{1} Current N	R_{2} Current E	$R_{3} \Sigma$ HD
R_{4} Area	R_{5} LAT	R_{6} DEP	$R_{7} 180$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Initialize and store	180	(f) REG STO 7	180
	Starting point	N_{1}	STO 1	N_{1}
		E_{1}	STO 2	E_{1}
			GSB 01	N_{1}
3	Input bearing	BRG (D.MS)	ENTER ${ }^{\text {a }}$	
	and quadrant code	QD	R/S	$A Z_{i}$ (D.MS)
	or			
3a	azimuth	AZ (D.MS)	(9) \rightarrow GSB 23	$\mathrm{AZ}_{\mathrm{i}}(\mathrm{D} . \mathrm{MS})$
4	If horizontal distance	HD	R/S	N_{i}
			R/S	E_{i}
	or			
4a	If slope distance,			
	Input zenith angle	AZ (D.MS)	ENTER4	
	and slope distance	SD	GSB 27	N_{i}
			R/S	E_{i}
5	Repeat steps 3-4 for			
	successive courses			
6	Display total horizontal			
	distance traversed		RCL 3	$\Sigma H D$
7	Display area for closed			
	traverse (ignore sign)		(RCL 4	Area

Example:

Starting with point 1 with coordinates N100, E500, traverse the figure above and compute the coordinates of the other points.

Keystrokes
 Display

T REG 180 STO 7
100 STO 1

500 STO 2
GSB 01
86.0223 ENTER

1 R/S	86.0223	AZ_{2} (D.MS)
103.5 R/S	107.1482	N_{2}
R/S	603.2529	E_{2}
18.5843 ENTER4		
4 R/S	341.0117	AZ_{3} (D.MS)
87.1318 ENTER4		
102.08 GSB 27	203.5657	N_{3}
R/S	570.0939	E_{3}
64.1319 ENTER4		
3 R/S	244.1319	AZ_{4} (D.MS)
120.44 R/S	151.1880	N_{4}
R/S	461.6395	E_{4}
37.2651 ENTER4		
2 R/S	142.3309	AZ_{5} (D.MS)
63.17 R/S	101.0366	N_{1}
R/S	500.0490	E_{1}
(RCL 3	389.0700	$\Sigma \mathrm{HD}$
RCL 4	-8,855.4931	Area

Field Angle Traverse

This program calculates coordinates of a traverse from field angles and horizontal or slope distances. The total horizontal distance traversed and the enclosed area (for a closed traverse) are also calculated.
In running this program, the user inputs the northing and easting of his starting point, the reference azimuth, and then the direction and distance from each point in the traverse to the next point. The direction may be input either as a deflection right or left, or as an angle right or left. The distance may be input either as horizontal distance, or as slope distance with zenith angle.

Equations:

$\mathrm{HD}=\mathrm{SD} \sin (\mathrm{ZA})$
$\mathrm{N}_{\mathrm{k}+1}=\mathrm{N}_{\mathrm{k}}+\mathrm{HD} \cos \mathrm{AZ} \quad \quad \mathrm{LAT}_{\mathrm{k}}=\mathrm{N}_{\mathrm{k}+1}-\mathrm{N}_{\mathrm{k}}$
$K_{k+1}=E_{k}+H D \sin A Z$
$D E P_{k}=E_{k+1}-E_{k}$
Area $=\sum_{k=1}^{n} \operatorname{LAT}_{\mathrm{k}}\left(1 / 2 \operatorname{DEP}_{\mathrm{k}}+\sum_{\mathrm{j}=1}^{\mathrm{k}-1} \mathrm{DEP}_{\mathrm{j}}\right)$
where: $\quad \mathrm{N}, \mathrm{E}=$ Northing, easting of a point
Subscript k refers to current point
Subscript n equals number of points in the survey
$\mathrm{AZ}=$ Azimuth of a course
HD $=$ Horizontal distance
SD $=$ Slope distance
$\mathrm{ZA}=$ Zenith angle

- All angular inputs and outputs are in the form degrees, minutes and seconds (D.MS).
- This program uses zenith angles to calculate horizontal distance from slope distance. If your instrument measures vertical angles rather than zenith angles, convert the vertical angle to a zenith angle by the
following formula:

$$
\text { Zenith angle }=90^{\circ}-\text { Vertical angle }
$$

(Remember to convert D.MS input to decimal degrees before subtracting from 90°)

KEY ENTRY	DISPLAY		KEY ENTRY	DISPLAY	
($)$ CLEAR PRGM	00		GTO 30	25-	1330
(9) + H	01-	156	$x<y$	26-	21
1	02-	1	(9) H_{5}	27-	156
8	03-	8	f SIN	28-	147
0	04-	0	x	29-	61
\pm	05-	51	STO +3	30-23	513
STO 0	06-	230	RCL 0	31-	240
RCL 1	07-	241	$x \geq y$	32-	21
STO 5	08-	235	$\square \rightarrow$ R	33-	144
0	09-	0	STO +1	34-23	511
STO 3	10-	23 3	STO +5	35-23	515
STO 4	11-	234	$x \geqslant y$	36-	21
R/S	12-	74	STO +6	37-23	516
(9) + H	13-	156	STO +2	38-23	512
1	14-	1	2	39-	2
8	15-	8	\div	40-	71
0	16-	0	RCL 6	41-	246
\pm	17-	51	\square	42-	41
$\pm \rightarrow$ H.MS	18-	146	x	43-	61
$9 \rightarrow+\mathrm{H}$	19-	156	STO +4	44-23	514
RCL 0	20-	240	RCL 1	45-	241
\pm	21-	51	R/S	46-	74
STO 0	22-	230	RCL 2	47-	$24 \quad 2$
$\rightarrow \rightarrow$ H.MS	23-	146	GTO 12	48-	1312
R/S	24-	74			

REGISTERS			
$R_{0} A Z$	R_{1} Current N	R_{2} Current E	$R_{3} \Sigma$ HD
R_{4} Area	R_{5} LAT	R_{6} DEP	R_{7}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Initialize and		f REG	
	Input the starting point	N_{1}	STO 1	
	coordinates	E_{1}	STO 2	
3	Input the reference azimuth	Ref. AZ (D.MS)	GSB 01	0.0000
4a	If angle right	AR (D.MS)	R/S	
4b	If angle left	AL (D.MS)	CHS R/S	
4 c	If deflection right	DR (D.MS)	GSB 19	
4d	If deflection left	DL (D.MS)	CHS GSB 19	
5a	If horizontal distance	HD	R/S	N_{i}
			R/S	E_{i}
	or,			
5b	If slope distance, input			
	zenith angle and	ZA (D.MS)	ENTER4	
	slope distance	SD	GSB 26	N_{i}
			R/S	E_{i}
6	Repeat steps 4-5 for			
	successive courses			
7	Display total horizontal			
	distance traversed		RCL 3	$\Sigma H D$
8	Display area for closed			
	traverse (ignore sign)		RCL 4	Area

Begin $\frac{N 150.000}{E 400.000}$

Keystrokes

Display

150 STO 1		
400 STO 2		
311.3955 GSB 01	0.0000	
113.3455 R/S		
177.966 R/S	224.5150	N_{2}
R/S	561.6150	E_{2}
100.2455 CHS		
GSB 19		
86.0139 ENTER4		
161.880 GSB 26	356.5285	N_{3}
R/S	468.5999	E_{3}
87.3559 R/S		
203.690 R/S	232.3373	N_{4}
R/S	307.1498	E_{4}
100.4559 CHS		
GSB 19		
124.0 R/S	149.9048	N_{1}
R/S	399.7829	E_{1}
(RCL 3	667.1471	Σ HD
(RCL 4	-26,558.8326	Area

You may wish to key in and run the Compass Rule Adjustment program at this point since data accumulated and stored by this program will already be in the registers ready for use in the example problem for the Compass Rule Adjustment.

Inverse from Coordinates

This program uses coordinates to calculate distances and bearings between points of a traverse. The area and the sum of the distances inversed are also computed.

$$
\begin{gathered}
H D=\sqrt{\left(N_{i}-N_{i-1}\right)^{2}+\left(E_{i}-E_{i-1}\right)^{2}} \\
A Z=\tan ^{-1} \frac{E_{i}-E_{i-1}}{N_{i}-N_{i-1}}
\end{gathered}
$$

$$
\begin{aligned}
\text { Area }= & 1 / 2\left[\left(N_{2}+N_{1}\right)\left(E_{2}-E_{1}\right)+\left(N_{3}+N_{2}\right)\left(E_{3}-E_{2}\right)+\right. \\
& \left.\ldots\left(N_{n}+N_{1}\right)\left(E_{1}-E_{n}\right)\right]
\end{aligned}
$$

where: $\quad \mathrm{N}, \mathrm{E}=$ Northing, easting of a point
Subscript i refers to current point
Subscript n refers to next to last point
Numeric subscript refers to point number
HD $=$ Horizontal distance
$\mathrm{AZ}=$ Azimuth of a course

- Calculation of area by inversing a closed traverse may be inaccurate in cases where the coordinates are quite large. This may be minimized by using the smallest appropriate coordinates.

REGISTERS			
R_{0} Prev. N	R_{1} Current N	R_{2} Current E	$R_{3} \Sigma$ HD
R_{4} Area	$R_{5} \Delta \mathrm{E}$	R_{6}	R_{7}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Input starting coordinates	N_{1}	ENTER4	
		E_{1}	GSB 01	N_{1}
3	Input next coordinates and			
	display distance	N_{i}	ENTER 4	
		E_{i}	R/S	HD
4	Compute bearing and			
	quadrant code		R/S	BRG (D.MS)
			R+	QD
5	Repeat steps 3-4 for			
	successive courses			
6	Display total distance			
	inversed		RCL 3	$\Sigma \mathrm{HD}$
7	Display area of closed figure			
	(ignore the sign)		RCL 4	Area

Keystrokes
Display
100 ENTERA 200
GSB 01
150 ENTERA 300

R/S	111.8034	HD
R/S	63.2606	BRG (D.MS)
R*	1.0000	QD
350 ENTER4		
R/S	201.5564	HD
R/S	7.0730	BRG (D.MS)
R*	1.0000	QD

Keystrokes		Display	
225 ENTER4	170		
R/S		199.1231	HD
R/S		51.0656	BRG (D.MS)
R ${ }^{\text {d }}$		3.0000	QD
100 ENTER4	200		
R/S		128.5496	HD
R/S		13.2945	BRG (D.MS)
R+		2.0000	QD
(RCL 3		641.0325	HD
RCL 4		-20,937.5000	Area

Compass Rule Adjustment*

This program adjusts a traverse by the compass rule. It is intended to be used immediately following the bearing or field traverse programs. In this case, if the calculator has not been turned off or the registers cleared or altered, the necessary data will already be stored in registers 1 thru 3.

If this program is not used immediately after the bearing or field angle traverse or if the storage registers have been altered or the calculator turned off since the traverse was run, enter the following data into the specified storage registers.

Register	Parameters to be Stored
1	Calculated ending northing
2	Calculated ending easting
3	Total distance traversed
4	Correct closing northing
5	Correct closing easting

The Inverse From Coordinates program may be used to obtain adjusted bearings, distances and area.

Formulas Used:

$$
C_{L}=\frac{(\Delta N)(H D)}{\sum H D} \quad C_{D}=\frac{(\Delta E)(H D)}{\sum H D}
$$

where: $\quad C_{L}=$ Correction to latitude of a course
$C_{D}=$ Correction to departure of a course
$\Delta \mathrm{N}=$ Closing latitude
$\Delta \mathrm{E}=$ Closing departure
HD $=$ Length of course to be corrected
Σ HD $=$ Total length of traverse

[^0]| KEY ENTRY | DISPLAY | | |
| :---: | :---: | :---: | :---: |
| \pm CLEAR PRGM | 00 | | |
| RCL 5 | 01- | | 5 |
| STO 6 | 02- | | 6 |
| RCL 2 | 03- | | 2 |
| \square | 04- | | 41 |
| RCL 3 | 05- | | 3 |
| \dagger | 06- | | 71 |
| STO 7 | 07- | | 7 |
| RCL 4 | 08- | | 4 |
| RCL 1 | 09- | | 1 |
| \square | 10- | | 41 |
| RCL 3 | 11- | 24 | 3 |
| \dagger | 12- | | 71 |
| STO 0 | 13- | | 0 |
| RCL 4 | 14- | | 4 |
| STO 3 | 15- | | 3 |
| R/S | 16- | | 4 |
| STO 2 | 17- | 23 | 2 |
| $x \geq y$ | 18- | | 11 |
| STO 1 | 19- | | 1 |
| RCL 4 | 20- | 24 | 4 |
| \square | 21- | 4 | 41 |

KEY ENTRY	DISPLAY		
STOT 3	22-23	51	3
$x \geqslant y$	23-		21
RCL 5	24-	24	5
\square	25-		41
STOT 6	26-23	51	6
9 + P	27-	15	4
STO 5	28-	23	5
RCL 7	29-	24	7
区	30-		61
STO +6	31-23	51	6
RCL 5	32-	24	5
RCL 0	33-	24	0
区	34-	6	61
STO $\dagger 3$	35-23	51	3
RCL 1	36-	24	1
STO 4	37-	23	4
RCL 2	38-	24	2
STO 5	39-	23	5
RCL 3	40-	24	3
R/S	41-		4
RCL 6	42-	24	6
GTO 16	43-	1316	16

REGISTERS			
$R_{0} \Delta N / \Sigma ~ H D$	R_{1} Closing N	R_{2} Closing E	$R_{3} \Sigma H D, N_{A D J}$
R_{4} Beg. N	R_{5} Beg. E	$R_{6} E_{A D J}$	$R_{7} \Delta E / \Sigma H D$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Store closure data:			
	a) Calculated ending northing		STO 1	
	b) Calculated ending easting		STO 2	
	c) Total distance traversed		STO 3	
	Note: These three steps may			
	be skipped if Traverse			
	program has just been run \&			
	calculator has not been			
	turned off.			
	d) Correct closing northing		STO 4	
	e) Correct closing easting		STO 5	
3	Initialize		GSB 01	
4	Input coordinates of un-			
	adjusted points \& obtain adj.			
	coordinates.	N_{i}	ENTER4	
		E_{i}	R/S	Adj. N_{i}
			R/S	Adj. E_{i}
	Note: Coordinates must be			
	reentered in same sequence			
	as originally traversed, start-			
	ing at the second point.			
5	For next point return to step 4.			
	For new case go to step 2.			

Example:

Adjust the coordinates of points calculated in the Field Angle Traverse.
Values given below are stored automatically by running the above traverse:

Register Value

1	149.9048	Calculated ending northing
2	399.7829	Calculated ending easting
3	667.1471	Total distance traversed

The following values must be stored manually.

4	150	Correct closing northing
5	400	Correct closing easting

Using these values, the compass rule method of adjustment yields the following results:

Point
No.
2

3

4

Ending \& Beginning

Unadjusted
Coordinates
$\mathrm{N}=224.5150$
$\mathrm{E}=561.6150$

$N=356.5285$
$E=468.5999$

$\mathrm{N}=232.3373$
$\mathrm{E}=307.1498$

$N=149.9048$
$E=399.7829$

Adjusted

Coordinates

$\mathrm{N}=224.5404$
$\overline{\mathrm{E}=561.6729}$

$N=356.5769$
$E=468.7104$

$N=232.4148$
$E=307.3265$

$N=150.0000$

Keystrokes Display

If traverse program has not been run:
149.9048 STO 1
399.7829 STO 2
667.1471 STO 3
(Skip above steps if traverse has just been run and data is in registers.)
150 STO 4
400 STO 5
GSB 01
224.515 ENTER

561.615 R/S	224.5404	Adj. N_{2}
R/S	561.6729	Adj. E_{2}
356.5285 ENTER4		
468.5999 R/S	356.5769	Adj. N_{3}
R/S	468.7104	Adj. E_{3}
232.3373 ENTER4		
307.1498 R/S	232.4148	Adj. N_{4}
R/S	307.3265	Adj. E_{4}
149.9048 ENTER4		
399.7829 R/S	150.0000	Ending
R/S	400.0000	

Sideshots

This program may be used alone or in conjunction with one of the traverse programs. Used as stand-alone program, the reference bearing from a backsight is entered along with the coordinates of the occupied point. If used with a traverse program, these steps are omitted and data stored by the traverse program is used. In either case, the stored data is not destroyed, and the traverse operation may be carried out from the point occupied.
Slope angles are assumed to be entered as zenith angles. If your instrument measures vertical angles convert to zenith angles by subtracting the vertical angle from 90°.

Formulas Used:

$$
\begin{aligned}
& H D=S D \sin (Z A) \\
& N=N_{p}+\Delta N \\
& E=E_{p}+\Delta E \\
& \text { where: } \quad N, E=\text { Northing, easting of sideshot } \\
& N_{p}, E_{p}=\text { Northing, easting of occupied point } \\
& H D=\text { Horizontal distance } \\
& S D=\text { Slope distance } \\
& Z A=\text { Zenith angle } \\
& A Z=\text { Azimuth to sideshot } \\
& \Delta N=H D \cos A Z \\
& \Delta E=H D \sin A Z
\end{aligned}
$$

REGISTERS			
R_{0} Ref. AZ	R_{1} Current N	R_{2} Current E	$\mathrm{R}_{3} \Sigma$ HD
R_{4} Area	R_{5} LAT	R_{6} DEP	$\mathrm{R}_{7} 180$

STEP	INSTRUCTIONS	INPUT DATAUUNITS	KEYS	OUTPUT DATAUUNITS
1	Key in the program			
2	Input coordinates of occupied			
	point.	N_{p}	ENTER4	
		E_{p}	GSB 01	N_{p}
3	Input reference bearing and			
	quadrant of occupied point	BRG (D.MS)	ENTER4	
		QD	R/S	AZ (D.d)*
	Note: Steps 2 \& 3 may be			
	skipped if using in conjunction			
	with traverse program. If			
	so press:		GTO 28	
4	Input angle right	AR (D.MS)	R/S	
4a	or, angle left	AL (D.MS)	CHS R/S	
4b	or, deflection right	DR (D.MS)	GSB 33	
4c	or, deflection left	DL (D.MS)	CHS GSB 33	
5	Input horizontal distance	HD		
5 a	or, if slope shot, zenith angle			
	\& slope distance	ZA (D.MS)	ENTERA	
		SD	GTO 38	
6	Calculate sideshot coordinates		R/S	N
	* AZ is displayed as deci-		R/S	E
	mal degree (D.d).			

Example:

Keystrokes Display
If running traverse program; key in sideshot program, then:

GTO 28

If not running traverse program:
224.515 ENTER
561.615 GSB 01
65.145 ENTER4 1

In either case:
97 CHS R/S 88

R/S
R/S
118 R/S

ENTERA 121.5

GTO 38 R/S	344.3223 R/S	$\left.\begin{array}{l}\text { N } \\ \hline\end{array}\right\}$ PT 2

Intersections

Bearing-Bearing Intersection

This program calculates coordinates of the point of intersection of two lines for which the bearing of each line is known and the coordinates of a point on each line are known.

Formulas Used:

$\mathrm{N}=\mathrm{N}_{1}+\operatorname{Dist}\left(\cos \mathrm{AZ}_{1}\right)$
$\mathrm{E}=\mathrm{E}_{1}+\operatorname{Dist}\left(\sin A Z_{1}\right)$
Dist $=\frac{\text { Dist }_{12} \sin \left(A Z_{2}-A Z_{12}\right)}{\sin \left(A Z_{2}-A Z_{1}\right)}$
where: $\quad A Z_{1}=$ Azimuth of line 1
$\mathrm{AZ}_{2}=$ Azimuth of line 2
$A Z_{12}=$ Azimuth of line from point 1 to point 2
$\mathrm{N}_{1}, \mathrm{E}_{1}=$ Northing, easting of point 1
$\mathrm{N}_{2}, \mathrm{E}_{2}=$ Northing, easting of point 2
$\mathrm{N}, \mathrm{E}=$ Northing, easting of intersection point
Dist $=$ Distance from point 1 to intersection
Dist $_{12}=$ Distance from point 1 to point 2

KEY ENTRY	DISPLAY		
(fCLEAR PRGM	00		
STOO 2	01-		2
R0)	02-		22
STOO 1	03-	23	1
R/S	04-		4
STO 4	05-	23	4
(80)	06-		22
STO 3	07-	23	3
R/S	08-		4
(9) + H	09-	15	6
STOO 6	10-	23	6
[80	11-		22
(9)+	12-	15	6
STO 5	13-	23	5
RCD 4	14-	24	4
RCL 2	15-		2
\square	16-		41
RCL 3	17-	24	3
RCD 1	18-	24	1
\square	19-		41
(9)P	20-	15	4

KEY ENTRY	DISPLAY		
$x \geq y$	21-		21
(RCD 6	22-	24	6
$x=y$	23-		21
\square	24-		41
4 SIN	25-	1.4	7
区	26-		61
RCD 6	27-	24	6
RCL 5	28-		5
\square	29-		41
$\square \mathrm{Sin}^{\text {din }}$	30-		7
\bigcirc	31-		71
(RCL) 5	32-	24	5
$x=y$	33-		21
+ + R	34-	14	4
(RCL) 1	35-	24	1
\pm	36-		51
R/S	37-		74
$x=y$	38-		21
RCL 2	39-	24	2
\pm	40-		51
GT0 00	41-	130	00

REGISTERS			
R_{0}	$R_{1} N_{1}$	$R_{2} E_{1}$	$R_{3} N_{2}$
$R_{4} E_{2}$	$R_{5} A Z_{1}$	$R_{6} A Z_{2}$	R_{7}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Input coordinate of point 1	N_{1}	ENIER4	
		E_{1}	GSB 01	
3	Input coordinates of point 2	N_{2}	ENTERA	
		E_{2}	R/S	
4	Convert bearing 1 to			
	azimuth* \& input	$A Z_{1}$ (D.MS)	ENTER	
5	Convert bearing 2 to			
	azimuth* \& input	AZ_{2} (D.MS)		
6	Calculate coordinates of			
	intersection		R/S	N
			R/S	E
7	For a new case go to step 2.			
	* See Azimuth-Bearing			
	Conversions program			

Example:

Keystrokes	Display	
350 ENTER4 250		
GSB 01		
400 ENTER4 600 R/S		
45.455 ENIERA		
334.293 R/S	598.5457	N
R/S	505.2631	E

Bearing-Distance Intersection

This program calculates the coordinates of the point of intersection of two lines-one of known bearing through known coordinates and the other of known length from a point of known coordinates. Both solutions are computed.
The far solution is obtained by entering the bearing from point 1 and the near solution by entering the bearing into point 1 .

Formulas Used:

$A Z_{12}=\tan ^{-1} \frac{E_{2}-E_{1}}{N_{2}-N_{1}}$
$\mathrm{h}=$ Dist $_{12} \sin \phi$
$\mathrm{b}=\sqrt{\text { Dist }_{2}{ }^{2}-\mathrm{h}^{2}}$
$\mathrm{N}=\mathrm{N}_{1}+\left[\left(\right.\right.$ Dist $\left.\left._{12} \cos \phi\right)+\mathrm{b}\right] \cos \left(\mathrm{AZ}_{1}\right)$
$E=E_{1}+\left[\left(\right.\right.$ Dist $\left.\left._{12} \cos \phi\right)+b\right] \sin \left(A Z_{1}\right)$
where: $\quad A Z_{12}=$ Azimuth of line from point 1 to point 2 $A Z_{1}=$ Azimuth of line 1 $\phi=$ Angle between line 1 and line from point 1 to point 2 $\mathrm{h}=$ Perpendicular distance from point 2 to line 1
$\mathrm{b}=$ Distance from point of intersection to the point where the perpendicular (h) intersects line 1
Dist $_{2}=$ Length of line 2 (the known distance)
$N_{1}, E_{1}=$ Northing, easting of point 1
$\mathrm{N}_{2}, \mathrm{E}_{2}=$ Northing, easting of point 2
Dist $_{12}=$ Distance from point 1 to point 2

Reverse $A Z=\left\{\begin{array}{l}A Z_{1}+180^{\circ}\left(A Z_{1}<180^{\circ}\right) \\ A Z_{1}-180^{\circ}\left(A Z_{1}>180^{\circ}\right)\end{array}\right.$

KEY ENTRY	DISPLAY		
OCLEAR PRGM	00		
STO 2	01-		2
R+	02-		22
STO 1	03-		1
R/S	04-		74
STO 4	05-	23	4
R0	06-		22
STO 3	07-		3
R/S	08-		74
STOO 6	09-	23	6
[日	10-		22
9 \square^{+H}	11-		6
STOO 5	12-		5
RCL 4	13-	24	4
RCL 2	14-	24	2
\square	15-		41
RCL 3	16-	24	3
RCL 1	17-	24	1
\square	18-		41
9 + +	19-		4
STO 7	20-	23	7
®nt	21-		22
9 \times x 0	22-	15	41
GSB 46	23-	124	46
RCL 5	24-	24	5

KEY ENTRY	DISPLAY		
\square	25-		41
ECL 7	26-	24	7
-	27-		4
$x \geqslant y$	28-		21
9 x^{2}	29-	15	0
(RCL 6	30-	24	6
9 x^{2}	31-	15	0
$x=y$	32-		21
\square	33-		41
10 \sqrt{x}	34-		0
\pm	35-		51
(RCL 5	36-		5
$x<y$	37-		21
(1)	38-	14	4
RCL 1	39-	24	1
\pm	40-		51
R/S	41-		74
$x \geq y$	42-		21
RCL 2	43-		2
\pm	44-		51
GTO 00	45-		00
RCL 0	46-		0
\pm	47-		51
9 RTN	48-	15	12

REGISTERS			
$R_{0} 360$	$R_{1} N_{1}$	$R_{2} E_{1}$	$R_{3} N_{2}$
$R_{4} E_{2}$	$R_{5} A Z_{1}$	R_{6} Dist 2	R_{7} Dist $1 \rightarrow 2$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Initialize	360	STO 0	
3	Input coordinates of point 1	N_{1}	ENTERA	
		E_{1}	GSB 01	N_{1}
4	Input coordinates of point 2	N_{2}	ENTER4	
		E_{2}	R/S	N_{2}
5	* For solution \#1:			
	Input azimuth from point 1			
	to intersection	$A Z_{1}$ (D.MS)	ENTER4	
5a	or, * For solution \#2:			
	Input reverse			
	azimuth	AZ (D.MS)	ENTER	
	If $A Z_{1}<180^{\circ}$	180	\pm	
	If $A Z_{1}>180^{\circ}$	180	\square	
6	Input distance from point 2			
	to intersection and calculate			
	intersection	Dist.	GSB 09	N
			R/S	E
7	For second solution go			
	to step 5a.			
8	For a new case start at step 3			
	* There can be 2 solutions:			
	To obtain solution \#1 (far)			
	Enter azimuth as away from			
	point 1. To obtain solution			
	\#2 (near) enter azimuth as			
	into point $1\left(A Z_{1} \pm 180^{\circ}\right)$			

Example:
(FAR SOLUTION-

$$
\begin{array}{ll}
\text { AZIMUTH ENTERED AS } & \mathrm{N}=\mathbf{6 9 3 . 2 0 9 6} \\
\text { AWAY FROM POINT 1) } & \mathrm{E}=\mathbf{6 6 8 . 6 0 8 9}
\end{array}
$$

(NEAR SOLUTIONAZIMUTH ENTERED AS
TOWARD POINT 1) /

Keystrokes
Display

```
360 STO 0
300 ENTERA 200
```

GSB 01
350 ENTERA 600 R/S
50 ENTER4 350

GSB 09	693.2096	N	
R/S	668.6089	E $\}$	Solution \#1 (far)
50 ENTER4 180			
± 350 GSB 09	342.0311	N	
R/S	250.0907	E	Solution \#2 (near)

Distance-Distance Intersection

Given two lines, each of known length and originating from two known points, this program computes the intersection coordinates. There are two possible solutions; this program calculates the one found by proceeding in a clockwise direction from the first known point to the second known point. The other solution is found by reversing the entry of the known point coordinates.

Formulas Used:

$\phi=\cos ^{-1} \frac{\text { Dist }_{12}{ }^{2}+\text { Dist }_{1}{ }^{2}-\text { Dist }_{2}{ }^{2}}{2\left(\text { Dist }_{1}\right)\left(\text { Dist }_{12}\right)}$
$A Z=\tan ^{-1} \frac{E_{2}-E_{1}}{N_{2}-N_{1}}$
$\mathrm{N}=\mathrm{N}_{1}+$ Dist $_{1} \cos (\mathrm{AZ}-\phi)$
$\mathrm{E}=\mathrm{E}_{1}+$ Dist $_{1} \sin (\mathrm{AZ}-\phi)$
where: $\quad \phi=$ Angle between line 1 and line $1 \rightarrow 2$
Dist $_{12}=$ Distance from point 1 to point 2
Dist $_{1}=$ Known distance along line 1
Dist $_{2}=$ Known distance along line 2
$N_{1}, E_{1}=$ Northing, easting of point 1
$\mathrm{N}, \mathrm{E}=$ Northing, easting of intersection point
$A Z=$ Azimuth of line from point 1 to point 2

KEY ENTRY	DISPLAY		KEY ENTRY	DISPLAY		
TCLEAR PRGM	00		(9) x^{2}	22-	15	0
STO 2	01-	232	\pm	23-		51
- $\mathrm{R}_{\text {d }}$	02-	22	RCL 6	24-	24	6
STO 1	03-	231	9 x^{2}	25-	15	0
R/S	04-	74	\square	26-		41
STO 4	05-	234	2	27-		2
R+	06-	22	\bigcirc	28-		71
STO 3	07-	233	[RCL 7	29-	24	7
R/S	08-	74	[RCD 5	30-	24	5
STO 6	09-	236	区	31-		61
R+	10-	22	\square	32-		71
STO 5	11-	$23 \quad 5$	9 $\cos ^{-1}$	33-	15	8
[RCD 4	12-	244	\square	34-		41
(RCL 2	13-	$24 \quad 2$	RCL 5	35-	24	5
\square	14-	41	$\square \bigcirc$	36-	14	4
RCL 3	15-	$24 \quad 3$	RCD 1	37-	24	1
RCL 1	16-	241	\pm	38-		51
\square	17-	41	R/S	39-		74
9 + P	18-	154	$x \leq y$	40-		21
STOO 7	19-	237	RCL 2	41-		2
9 x^{2}	20-	150	\pm	42-		51
RCL 5	$21-$	$24 \quad 5$	GTO 00	43-	13	00

REGISTERS			
R_{0}	$R_{1} N_{1}$	$R_{2} E_{1}$	$R_{3} N_{2}$
$R_{4} E_{2}$	R_{5} Dist 1	R_{6} Dist 2	R_{7} Dist $1 \rightarrow 2$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Input coordinates of point 1	N_{1}	ENIERA	
		E_{1}	GSB 01	N_{1}
3	Input coordinates of point 2	N_{2}	ENTER	
		E_{2}	R/S	N_{2}
4	Input distance 1 \& distance 2			
	\& calculate coordinates of			
	the point of intersection	Dist 1	ENTER	
		Dist 2	R/S	N
			R/S	E
5	*For alternate solution go to			
	step 2 and input point 2, then			
	step 3 and input point 1, then			
	step 4.			
6	For a new case start at step 2			
	* Calculated solution is			
	always clockwise from			
	point 1 to point 2. For			
	alternate solution, reverse			
	the order of input, starting			
	at point 2.			

Example:

Note:
Computed solution is always clockwise from point 1 to 2 . For alternate solution, start at point 2 .

Keystrokes

Display

95.601 ENTER4			
26.073 GSB 01			
17.382 ENTER4			
147.747 R/S			
179.169 ENTER4			
132.377 R/S	139.0558	N	Solution
R/S	199.8925	E	Solution \# 1
17.382 ENTER			
147.747 GSB 01			
95.601 ENIER4			
26.073 R/S			
132.377 ENTER			
179.169 R/S	-80.5716	N	Solution \#2
R/S	58.7034	E $\}$	Solution

Offset from a Point to a Line

Given a point with known coordinates (the base point) on a line of known azimuth and another point of known coordinates offset from the line (the offset point), this program calculates offset distance from the point to the line, the distance from the base point to the point of intersection; the coordinates of the point of intersection and the azimuth from the base point to the offset point and from the offset point to the point of intersection.

Formulas Used:

$\operatorname{Dist}_{B O}=\sqrt{\left(\mathrm{N}_{\mathrm{B}}-\mathrm{N}_{\mathrm{O}}\right)^{2}+\left(\mathrm{E}_{\mathrm{B}}-\mathrm{E}_{\mathrm{O}}\right)^{2}}$
$\alpha=\mathrm{AZ}_{\mathrm{BI}}-\mathrm{AZ}_{\mathrm{BO}}$
Dist $_{\text {BI }}=$ Dist $_{\text {BO }} \cos \alpha$
Dist $_{\text {OI }}=$ Dist $_{\text {BO }} \sin \alpha$
$\mathrm{N}_{\mathrm{I}}=\mathrm{N}_{\mathrm{B}}+$ Dist $_{\mathrm{BI}} \cos \mathrm{AZ}_{\mathrm{BI}}$
$\mathrm{E}_{\mathrm{I}}=\mathrm{E}_{\mathrm{B}}+$ Dist $_{\mathrm{BI}} \sin \mathrm{AZ}_{\mathrm{BI}}$
where: $\quad N_{B}, E_{B}=$ Coordinates of basepoint
$N_{0}, E_{0}=$ Coordinates of offset point
$N_{I}, E_{I}=$ Coordinates of point of intersection
Dist $_{B C}=$ Distance from base to offset point
Dist $_{B I}=$ Distance from base to point of intersection
Dist $_{\text {OI }}=$ Distance from offset to point of intersection
$A Z_{B I}=$ Azimuth of base line from P_{B}
$\alpha=$ Angle between base line and line from base to offset

KEY ENTRY	DISPLAY		
fCLEAR PRGM	00		
STO 1	01-		1
$x \geq y$	02-		21
STO 0	03-		0
9RTN	04-	15	12
RCL 1	05-		1
\square	06-		41
$x: y$	07-		21
RCL 0	08-		0
\square	09-		41
9-P	10-		4
STO 3	11-		3
[\square_{0}	12-		22
9 $x<0$	13-		41
GSB 43	14-	12	43
$\square \rightarrow+$ H.MS	15-		6
R/S	16-		74
9 0 H	17-	15	6
STO 2	18-		2
$x \geq y$	19-		21
9 + +	20-		6
\square	21-		41
9 ABS	22-	15	34
STO 4	23-	23	4

KEY ENTRY	DISPLAY		
RCL 3	24-		3
-	25-		4
STO 6	26-		6
$x \geqslant y$	27-		21
STO 7	28-	23	7
RCL 2	29-		2
RCL 6	30-		6
+ \rightarrow -	31-		4
STO $\dagger 0$	32-23	51	0
R0)	33-		22
STO 1	34-23	51	1
RCD 0	35-		0
R/S	36-		74
RCL 1	37-		1
R/S	38-		74
GSB 01	39-	12	01
R $\cos ^{\text {d }}$	40-		22
R*	41-		22
GTO 05	42-	13	05
3	43-		3
6	44-		6
0	45-		0
\pm	46-		51
9RTN	47-	15	12

REGISTERS			
$\mathrm{R}_{0} \mathrm{~N}$'s	$\mathrm{R}_{1} \mathrm{E} ' s$	$\mathrm{R}_{2} \mathrm{AZ}_{\mathrm{BI}}$	$\mathrm{R}_{3} \mathrm{D}_{\mathrm{BO}}$
$\mathrm{R}_{4} \alpha$	R_{5}	$\mathrm{R}_{6} \mathrm{D}_{\mathrm{BI}}$	$\mathrm{R}_{7} \mathrm{D}_{01}$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Input coordinates of the base			
	point (P_{B})	$\mathrm{N}_{\text {B }}$	ENTER4	
		E_{B}	GSB 01	$\mathrm{N}_{\text {B }}$
3	Input coordinates of the offset			
	point (P_{0}) and read the			
	azimuth from P_{B} to P_{O}	N_{0}	ENTER4	
		E_{0}	R/S	$\mathrm{AZ}_{\mathrm{BO}}$ (D.MS)
4	Convert the bearing of the			
	base line (P_{B} to intersection)			
	to azimuth* and input	$\mathrm{AZ}_{\mathrm{BI}}$ (D.MS)		
5	Calculate coordinates of			
	point of intersection		R/S	N_{I}
			R/S	E_{1}
6	Reinput coordinates of offset			
	point (P_{o}) and calculate			
	azimuth from P_{o} to			
	intersection	N_{0}	ENTER4	
		E_{0}	R/S	$\mathrm{AZ}_{\text {OI }}$ (D.MS)
7	Read distance from base			
	point to intersection		RCL 6 (9BS	$\mathrm{D}_{\text {BI }}$
8	Read distance from offset			
	point to intersection		RCL 7 (9BS	$\mathrm{D}_{\text {or }}$
9	For new case go to step 2.			
	* See Azimuth-Bearing			
	Conversions program.			

Example:

Keystrokes	Display	
150 ENTER4		
320 GSB 01		
350 ENTERA 1420		$\mathrm{AZ}_{\mathrm{BO}}$ (D.MS)
R/S	79.4143	$\mathrm{~N}_{\mathrm{I}}$
53.0748 R/S	750.0009	E_{I}
R/S	$1,119.9982$	
350 ENTER4 1420		$\mathrm{AZ}_{\mathrm{OI}}$ (D.MS)
R/S	323.0748	D_{BI}
RCL 6	999.9991	D_{OI}
RCL 7	500.0018	

Curves

Curve Solutions

Given the central angle and radius, or central angle and tangent distance this program calculates the chord length, arc length, and either the tangent distance or radius. It also calculates the sector and segment areas.

Formulas Used:

$\mathrm{C}=2 \mathrm{R} \sin (\Delta / 2)$
$\mathrm{L}=\Delta \mathrm{R}$ (Δ in radians)
$\mathrm{T}=\mathrm{R} \tan (\Delta / 2)$
Sector area $=\mathrm{LR} / 2$
Segment area $=$ Sector area $-1 / 2 R^{2} \sin (\Delta)$
where: $\quad \mathrm{R}=$ Radius
$\mathrm{C}=$ Chord length
$\mathrm{L}=$ Arc length
$\mathrm{T}=$ Tangent distance
$\Delta=$ Central angle

REGISTERS			
$\mathrm{R}_{0} \Delta$	$\mathrm{R}_{1} \Delta / 2$	$\mathrm{R}_{2} \mathrm{R}$	R_{3}
R_{4}	R_{5}	R_{6}	R_{7}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Input central angle	$\Delta,(\mathrm{D} . \mathrm{MS})$	GSB 01	
3	Input radius and calculate:			
	chord, arc length and			
	tangent dist.	R	R/S	Chord
			R/S	Arc length
			R/S	Tangent dist
	or,			
3 a	Input tangent distance and			
	calculate: radius, chord and			
	arc length	T	GSB 24	Radius
			R/S	Chord
			R/S	Arc length
4	For new case go to step 3			
	To Calculate Areas:			
5	Input central angle (if not			
	already input)	Δ, (D.MS)	GSB 01	$\Delta / 2$ (D.d)
6	Input radius and calculate			
	sector area	R	GSB 28	Sector area
7	Calculate segment area		R/S	Segment area
8	For a new case go to step 6			

Example:

Given central angle and tangent distance from above curve; calculate the radius, chord and arc length.

Keystrokes
45.3023 GSB 01
93.6022 GSB 24 R/S
R/S

Display

22.7532	$\Delta / 2$ (D.d)
223.1810	Radius
172.6360	Chord
177.2585	Arc length

For same curve, calculate sector and segment areas:

223.181 GSB 28	$19,780.3597$	Sector area
R/S	$2,014.9969$	Segment area

Elevations Along A Vertical Curve

This program calculates the elevation at any specified station along a vertical curve as well as the elevation at the highest or lowest point on the curve and the station at that point. Program inputs are: beginning and ending grades, length of curve, the station and elevation at the beginning of the curve and the station at which elevation is desired.

In the program, stations are entered in the form xxxx.xx for station $x x+x x . x x$. For example, $20+10.00$ is entered as 2010.00.

Formulas Used:

Elevation at any station $=1 / 2 A Z^{2}+G_{1} Z+E_{0}$
Distance in stations from beginning station to station of lowest elevation $=-\mathrm{G}_{1} / \mathrm{A}$
where: $\quad \mathrm{E}_{0}=$ Elevation at beginning of curve
$\mathrm{Z}=$ Distance in 100 foot stations-measured from beginning
of curve
$\mathrm{G}_{1}=$ Grade in $\%$ at beginning of curve
$\mathrm{G}_{2}=$ Grade in $\%$ at end of curve
$A=100\left(G_{2}-G_{1}\right) / L$
$\mathrm{L}=$ Length of curve in feet

KEY ENTRY	DISPLAY		KEY ENTRY	DISPLAY		
f CLEAR PRGM	00		RCL 3	$\begin{array}{\|l\|} 24- \\ \hline 25- \end{array}$	24	3
$x \geq y$	01－	21	区			61
STO 1	02－	231	$x \geq y$	26－		21
\square	03－	41	（RCL 1	27－	24	1
5	04－	5	区	28－		61
0	05－	0	\pm	29－		51
区	06－	61	ECL 2	30－	24	2
STO 3	07－	$23 \quad 3$	\pm	31－		51
CLX	08－	34	GTO 15	32－	13	15
R／S	09－	74	［RCL 1	33－	24	1
STO 6	10－	236	$\mathrm{CHS}^{\text {S }}$	34－		32
R／S	11－	74	2	35－		2
STO $\% 3$	12－23	713	\dagger	36－		71
R \sim_{0}	13－	22	RCL 3	37－	24	3
STO 2	14－	$23 \quad 2$	\dagger	38－		71
R／S	15－	74	GTO 21	39－	13	21
RCL 6	16－	246	RCL 4	40－	24	4
\square	17－	41	EEX	41－		33
EEX	18－	33	2	42－		2
2	19－	2	区	43－		61
\square	20－	71	RCL 6	44－	24	6
STOO 4	21－	234	\pm	45－		51
ENTER	22－	31	GTO 15	46－	13	15
9 $x^{\text {x }}$	23－	150				

REGISTERS			
R_{0}	R_{1} Grade 1	R_{2} Beg．Elev．	$R_{3} A / 2$
R_{4} sta．\＃	R_{5}	R_{6} Beg．sta．	R_{7}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Input beginning and ending			
	grades	$\mathrm{G}_{1}, \%$	ENIERA	
		$\mathrm{G}_{2}, \%$	GSB 01	
3	Input beginning station	Beg. Sta.	R/S	Beg. Sta.
4	Input beginning elevation and			
	curve length	E_{0}	ENTERA	
5	Input station and calculate		R/S	E_{0}
	elevation	Sta.	R/S	E
6	Calculate max or min			
	elevation			
7	Display station (step 6 may			$\mathrm{E}_{\text {max or min }}$
	be executed any time after			
	initial data is input.)			Sta.
8	For a new curve go to step 2			

Example:

(IN STATIONS)
G_{1} (beginning grade) $=-1.065 \%$
G_{2} (ending grade) $=1.600 \%$
L (length of curve) $=340 \mathrm{ft}$.
$\mathrm{E}_{0}\left(\right.$ elevation at $\left.\mathrm{G}_{1}\right)=614 \mathrm{ft}$.
Beginning station $=17+00.00$

Station

$$
\begin{aligned}
& 18+00.00 \\
& 19+00.00 \\
& 20+00.00 \\
& 20+40.00
\end{aligned}
$$

Elevation (E)
613.3269
613.4376
614.3322
614.9095

Station of lowest elevation $=18+35.8724$
Lowest elevation $=613.2765$

Keystrokes Display

1.065 CHS ENTER
1.6 GSB 01
0.0000

1700 R/S 614

ENTER4 340 R/S	614.0000	E_{0}
1800 R/S	613.3269	E
1900 R/S	613.4376	E
2000 R/S	614.3322	E
2040 R/S	614.9095	E
GSB 33	613.2765	$\mathrm{E}_{\text {min }}$
GSB 40	$1,835.8724$	Stat. at $\mathrm{E}_{\text {min }}$

Other

Earthwork: Volume by Average End Area

This program calculates earthwork volumes by average end area. The required information is the elevation and offset distance (distance from centerline) for each point on the cross-section and the interval between cross-sections. The program calculates accumulated volume to the present station, volume from the previous station, and area of the cross-section.

Formulas Used:

$\mathrm{VOL}=\left(\mathrm{AREA}_{\mathrm{i}}+\mathrm{AREA}_{\mathrm{i}-1}\right) \frac{\mathrm{INT}}{2}$
AREA $=1 / 2\left[E L_{1}\left(D_{2}-D_{n}\right)+\ldots+E L_{n}\left(D_{1}-D_{n}-1\right)\right]$
where: \quad VOL $=$ Average volume between two stations
AREA $=$ Cross-sectional area at a station
INT $=$ Interval between stations
EL = Elevation at a point on a cross-section
D $=$ Horizontal distance (offset) from centerline
$\mathrm{i}=$ Subscript referring to current point
$\mathrm{n}=$ Subscript referring to last point
Numeric subscript refers to point or station number

- Volumes are calculated in cubic yards, areas in square feet. If you desire to have volumes calculated in cubic feet delete 54 at steps $26 \& 27$ and insert 2 in its place.
- It makes no difference what point you start with on the cross-section, and the elevations and distances may be measured from any base lines as long as the same lines are used for the whole section. Also, you may work around the section clockwise (CW) or counter clockwise (CCW).

REGISTERS			
R_{0} EL	$R_{1} D$	$R_{2} D M D$	R_{3} Area
R_{4} Area	R_{5} Volume	R_{6} Total volume	R_{7}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Initialize		GSB 01	0.0000
3	If station has zero end area,			
	go to step 6			
4	Input elevation and hori-			
	zontal or offset dist.	EL (ft.)	ENTER	
		D (ft.)	R/S	
5	Repeat step 4, working			
	around the section (clockwise			
	or counterclockwise) until			
	first EL \& D have been reinput			
6	Input interval from previous			
	station and calculate total			
	volume	Int (ft.)	GSB 21	Tot. Vol.
				(cu. yds.)
	(Note: Input 0 interval for			
	first station)			
7	Read volume of interval		RCL 5	Int. Vol.
				(cu. yds.)
8	Read area of cross-section		RCL 4	Area
				(sq. ft.)
9	Initialize for next section		R/S	
10	Go to step 3 for next section			
11	Go to step 2 for a new case			

Example:

Keystrokes
Display
(Station 1)
0 GSB 21
0
Tot. Vol.
(Station 2)
GSB 01
0 ENIER4 0 R/S
0 ENIER 10 R/S
2 CHS ENTERA 12

Keystrokes	Display	
R/S 7 ENIER 20		
R/S 6 ENTER		
3 CHS R/S 7		
ENTER4 18 CHS		
R/S 2 CHS ENTER		
12 CHS R/S 0		
ENTERA 10 CHS		
R/S 0 ENTER4 0		
(R/S 25 GSB 21	100.0000	Tot. Vol. (cu. yds.)
(RCL) 5	100.0000	Int. Vol. (cu. yds.)
(RCL) 4	216.0000	Area (sq. ft.)

Initialize for next station:

R/S
(Station 3)
0 ENTRA 0 R/S
0 ENTERA 12 R/S
1 CHS ENTERA
14 R/S 1 CHS
ENTERA 15 R/S 10
ENTER 30 R/S
8 ENTERA 6 R/S
7 ENTERA 21 CHS
R/S 4 ENTER4
17 CHS R/S 1
CHS ENTERA 10
CHS R/S 0 ENTER
8 CHS R/S 0
ENTERA 0 R/S
50 GSB 21
597.6852

RCL 5
RCL 4
497.6852
321.5000

Tot. Vol. (cu. yds.)
Int. Vol. (cu. yds.)
Area (sq. ft.)

Coordinate Transformation

This program translates, rotates, and rescales coordinates. The traverse rotation angle is entered as a negative value for counterclockwise rotation and positive for clockwise rotation. The translation factors are calculated by entering old and new grid system coordinates for the same point; rotation is also about this point.

Formulas Used:

$$
\begin{aligned}
& A Z_{R}=\phi+\tan ^{-1} \frac{E_{i}-E_{p}}{N_{i}-N_{p}} \\
& H D_{S}=S \sqrt{\left(N_{i}-N_{\mathrm{p}}\right)^{2}+\left(E_{i}-E_{p}\right)^{2}} \\
& N=H D_{S} \cos \left(A Z_{R}\right)+N_{T 1} \\
& E=H D_{S} \sin \left(A Z_{R}\right)+E_{T 1}
\end{aligned}
$$

where: $\quad A Z_{R}=$ Rotated azimuth
$\phi=$ Rotation angle
$N_{i}, E_{i}=$ Northing, easting of current point before transformation
$N_{p}, E_{p}=$ Original northing, easting of pivot point
$\mathrm{HD}_{\mathrm{S}}=$ Scaled horizontal distance
$\mathrm{S}=$ Scale factor
$\mathrm{N}, \mathrm{E}=$ Northing, easting after transformation
$\mathrm{N}_{\mathrm{T} 1}, \mathrm{E}_{\mathrm{T} 1}=\underset{\text { mation }}{\text { Northing, easting of pivot point after transfor- }}$

KEY ENTRY	DISPLAY		KEY ENTRY	DISPLAY		
(1) CLEAR PRGM	00		\square	23-		41
STOO 2	01-	$23 \quad 2$	-9+P	24-	15	4
$x \geq y$	02-	21	(RCL 6	25-	24	6
STO 1	03-	231	\pm	26-		61
R/S	04-	74	$x \geq y$	27-		21
Ros	05-	22	RCL 5	28-	24	5
\square	06-	41	\square	29-		41
STOO 3	07-	$23 \quad 3$	$x=y$	30-		21
目昭	08-	22	+ + +	31-	14	4
$x \geq y$	09-	21	RCL 1	32-	24	1
\square	10-	41	\pm	33-		51
STOO 4	11-	$23 \quad 4$	RCL 3	34-	24	3
R/S	12-	74	\square	35-		41
(9) + H	13-	156	$x<y$	36-		21
STOO 5	14-	$23 \quad 5$	RCL 2	37-	24	2
1	15-	1	\pm	38-		51
R/S	16-	74	RCL 4	39-	24	4
STO 6	17-	236	\square	40-		41
R/S	18-	74	$x \leq y$	41-		21
RCD 2	19-	$24 \quad 2$	R/S	42-		74
\square	20-	41	$x=y$	43-		21
$x \geq y$	21-	21	GTO 18	44-	13	18
RCL 1	22-	$24 \quad 1$				

REGISTERS			
R_{0}	$R_{1} N_{p}$	$R_{2} E_{p}$	$R_{3} N_{p}-N_{T 1}$
$R_{4} E_{p}-E_{T 1}$	$R_{5} \phi$	R_{6} Scale Factor	R_{7}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATAUUNITS
1	Key in the program			
2	Input coordinates of pivot			
	point in old system	$\mathrm{N}_{\text {old }}$	ENTER	
		$E_{\text {old }}$	GSB 01	$\mathrm{N}_{\text {old }}$
3	Input coordinates of pivot			
	point in new system	$\mathrm{N}_{\text {new }}$	ENTERA	
		$E_{\text {new }}$	R/S	
4	Input rotation angle (+ for			
	clockwise, - for counter-			
	clockwise	\pm angle	R/S	1
5	(Optional) If scale factor is			
	other than 1 , input it	Scale factor		
6	Store scale factor (1 by			
	default if step 5 not executed)		R/S	
7	Input coordinates of point to			
	be transformed and read new			
	coordinates	$\mathrm{N}_{\text {old }}$	ENTERA	
		$\mathrm{E}_{\text {old }}$	R/S	$\mathrm{N}_{\text {new }}$
			R/S	$E_{\text {new }}$
8	Return to step 7 for the next			
	point			
9	For a new case, go to step 2			

Example:

Coordinates before transformation are those computed by Compass Rule Adjustment program.

Coordinates In Old System

$\frac{\text { N 150.000* }}{\text { E } 400.000}$

N 224.540
E 561.673

$\frac{N 356.577}{\text { E } 468.710}$

N 232.414
E 307.327

Coordinates

In New System
$\frac{\text { N 100.000* }}{\text { E } 350.000}$
N 165.9765
E 515.3526

N 302.6979
E 429.4272

$N 187.1512$
$E 261.7672$

* Rotated about this point

Rotation Angle $=-3^{\circ} 00^{\prime} 00^{\prime \prime}$
Scale Factor $=1.00$
Keystrokes Display
150 ENTER 400
GSB $01 \quad 150.0000$

100 ENIERA 350		
R / S	3 [CHS R/S	1.0000

R/S 1.0000
224.540 ENTER4

561.673 R/S	165.9765	$\mathrm{N}_{\text {new }}$
R/S	515.3526	$\mathrm{E}_{\text {new }}$
356.577 ENTER4		
468.710 R/S	302.6979	$\mathrm{N}_{\text {new }}$
R/S	429.4272	$\mathrm{E}_{\text {new }}$

Etc.

NOTES

NOTES

HEWLETT hp PACKARD

1000 N.E. Circle Blvd., Corvallis, OR 97330

For additional sales and service information contact your local Hewlett-Packard Sales Office or call 800/648-4711. (In Nevada call 800/992-5710.)

[^0]: * Also known as the Bowditch adjustment

