
HEWLETT-PACKARD

HP-34C
OWNER’'S HANDBOOK

AND PROGRAMMING GUIDE

“The success and prosperity of our company will pe assured only if we offer our
customers superior products thatfill real needs and provide lasting value, and that

are supported by a wide variety of useful services, both before and after sale.”

Statement of Corporate Objectives.
Hewlett-Packard

When Messrs. Hewlett and Packard founded our company in 1939, we offered one
superior product, an audio oscillator. Today, we offer over 3500 quality products,

designed and built for some of the world's most discerning customers.

Since we introduced our first scientific calculator in 1967, we've sold millions world-
wide, both pocket and desktop models. Their owners include Nobel laureates,
astronauts, mountain climbers, businesspersons, doctors, students, and
homemakers.

Each of our calculators is precision crafted and designed to solve the problems
its owner can expect to encounter throughout a working lifetime.

HP calculatorsfill real needs. And they provide lasting value.

HEWLETT |’!fi,| PACKARD

The HP-34C Programmable

Scientific Calculator
Owner’s Handbook and

Programming Guide

May 1979

00034-90001

Printed in U.S.A. © Hewlett-Packard Company 1979

Contents

The HP-34C Programmable Scientific Calculator
Keyboard and Memoriesi7
Function Key Index8
Program Control Index12

Section 1: Meet the HP-34C 14
Manual Problem Solving15
Programmed Problem Solving16
What Continuous Memory Meansto You 19

Section 2: Specific Features of the HP-34C20
Keyboard Operationi20
Storage Registers and Program Memory21
Number Alteration Keysi22
Absolute Value22
Integer Portion of a Number 22
Fractional Portion of a Number23

Mathematical Functions24
Factorial24
Gamma Function25
Percent Differencei26

Statistical Functions27
Accumulations27
Deleting and CorrectingData31
MeaN..32
Standard Deviation34
Linear Regressiont36
Linear Estimation39
Correlation Coefficient40

Vector Arithmetic40

Section 3: Simple Programming44
What Is @ Program?44
Why Write Programs?44
Three Calculator Modes...,45
Looking at Program Memory46

KeyCodest48
Problems49
Clearing a Programi49

3

4 Contents

Creating Your Own Program ...,49
Beginning a Program50
Endinga Program50
Loadinga Program51

Running a Program...53
Searching Foralabel53
Executing Instructions54

Automatic Memory Allocationi55
Converting Storage Registers to Program Memory55
Converting Program Memory to Storage Registers59
USING [MEM] . ..ote59

Writing a Third Program60
Program Stops and Pauses62
Planned Stops During Program Execution62
Pausing During Program Execution65
Unexpected Program Stops,66

Labels68

Flowcharts68
Problems72

Programming Techniquesi,76
Using Horner's Methodi,79
Further Applicationsi82

Problems82

Section 4: Program Editing84
Nonrecordable Operations84
Pythagorean Theorem Program86
Single-Step Execution of a Program87
Modifying a Program89
Single-Step Viewing Without Execution90
Resettingto Line 000i91
Goingto a Line Number91
Inserting Instructions in Longer Programs93
Stepping Backwards Through a Program93
Running the Modified Program95
Deleting Instructions96
Problems98

Section 5: Branching, Decisions, and Flags102
Unconditional Branching and Looping 102
Problems104
Conditionals and Conditional Branches 108
Problems116
Flags..o120
Problem124

Contents 5

Section 6: Subroutines126
Subroutine Usageo133
Subroutine Limits135

Using (n) at the End of Occupied Program Memory 137

Section 7: Advanced Programming 140
Controlling the I-Registeri140

Storing a Numberin the I-Register 140
Exchanging Xand |141
Incrementing and Decrementing the I-Register 141
ISG and DSE Limitst149

Problem149
Using the I-Register For Display, Storage Register,
and Program Control151

I-Register Display Controli,152
Exchanging Xand (i)i156
Indirect Store and Recall 158
I-Register Control of Branches and Subroutines 163
Problem170
Branching and Subroutines Using Line Number Addressing171

Section 8: Finding the Roots of an Equation 174

USING .«oottt174
WhenNo RootIsFound, 180
Choosing Initial Estimates182
How WOrKS..o186
Accuracy of the Root188
Interpreting Results192
Using inaProgram199
Restriction on the Use ofo ..,200
For Further Information200

Section 9: Numerical Integration202
USING oottt202
Accuracy of (/3]..o208
Using (/7] inaProgrami,212
For Further Information213

Appendix A: Advanced Use of214
Using With Polynomials214
Finding Several Roots219
Finding Local Extremes of a Function224

Using the Derivative224
Using an Approximate Slope227
Using Repeated Estimation230

Limiting the Estimation Time232

6 Contents

Counting lterations233
Specifyinga Toleranceciiiiiiiiiiaa.. .. 233

Using [sovel With .-oo233

Appendix B: A More Detailed Look at236
How WOTKS.o236
Accuracy, Uncertainty, and Calculation Time237
Accuracy of the Function to be Integrated241

Functions Related to Physical Situations242
Round-Off Error in Internal Calculations243

Uncertainty and the Display Format244
Calculating Integrals of Maximum Accuracy247
Obtaining the Current Approximation to an Integral250
Considerations that Could Cause Incorrect Results252
Considerations That Prolong Calculation Time260

Subdividing the Interval of Integration263
Transformation of Variables267

Appendix C: Service and Maintenance270

Appendix D: Error Conditions280

Appendix E: Stack Lift and LAST X284

General Index286

The HP-34C Programmable
Scientific Calculator

AUTOMATIC

I e
T

orr [l oN PRGM (L] RUN ! Z

rxxDEG SClRADe@o —

&= g Y
X %1 Re¢ R¢ [DSE () ISG

B § X Displayed

o@ LAST X

= \
: STORAGE REGISTERS

Permanent Shared

] R R,
PROGRAM MEMORY

Permanent Shared R, ‘[:——J

.2[000-] 071- R,
001- 072- R
002- 073- R,

.3

4

W
Rp
R]

2 — R, R|
: R
o i

Ro[]
Rl]

_/:4 A
R,068- 208-

069- 209- R,

070- 210- R,

.6

 .7

.8
 9

The basic program memory-storage register allocation is 70 lines of programming

and 72 data storage registers, plus the I-register. The calculator automatically

converts one data storage register into seven lines of program memory, one

register at a time, as you need them. Conversion begins with R.y and ends with

Ry.

7

Function Key Index

off[loN OFF-ON switch set to ON.
PrRGM [llII[I RUN PRGM-RUN switch set to RUN.
Function keys pressed from the keyboard execute individual functions as
they are pressed. Input numbers and answers are displayed. Except where
otherwise indicated, each function key listed below operates from the
keyboard and as a recorded instruction in a program.

Prefix Keys

¢ Pressed before
a function key,
selects gold function
printed above that
key.

(9] Pressed before
a function key,
selects blue function
printed above that
key.

(n] Pressed before
a function key, se-
lects black function
printed on slanted
face of that key.

CLEAR
(nonprogrammable)
cancels a partially
entered instruction
suchas [/}, [

ol @@ M
(sF), (+), ete.

Digit Entry

Enters a
copy of numberin
displayed X-register
into Y-register. Used
to separate
numbers.

Changes sign
of number or expo-
nent of 10 in dis-
played X-register.

(eex] Enter ex-
ponent. After press-
ing, next digits keyed
in are exponents of
10.

0 through 9 Digit
keys.

(-] Decimal point.

Number Alteration

Leaves only
integer portion of
number in displayed
X-register by truncat-
ing fractional
portion.

Leaves only
fractional portion of
number in displayed

X-register by trun-
cating integer por-
tion.

Gives abso-
lute value of number
in displayed X-
register.

Stack Manipulation

Rolls down
contents of stack for
viewing in displayed
X-register.

Rolls up con-
tents of stack for
viewing in displayed
X-register.

Exchanges
contents of X-and Y-
stack registers.

Clears con-
tents of displayed X-
register to zero.

Storage

Store. Fol-
lowed by address
key, stores dis-
played numberin the
storage register
(Ro through Rq, R,

through R, 1) speci-
fied. Also used to
perform storage
register arithmetic.

Recall. Fol-
lowed by address
key, recalls number

from storage regis-
ter (R, through R,

R, through R, 1)

specified into
the displayed X-
register.

Recalls num-
ber displayed before
the previous opera-
tion back into the dis-
played X-register.

CLEAR (reG]Clears
contents of all stor-
age registers (R,
through Rs, R,
through R, |) to
zero.

Display Control

Selects fixed
point display.

Selects scien-
tific notation display.

Selects engi-
neering notation dis-
play.

Displays as
many digits after the
decimal point as are

specified by the
numberin the I-

register (0 through

9).

Mantissa
(nonprogramma-

ble). Displays all 10
significant digits of
the numberin the X-
register as long as
the key is
pressed.

Percentage

Computes
percent of change
between number in
Y-register and num-
ber in displayed X-
register.

Computes x%
of value in the Y-
register.

Mathematics

CEHXEE]
Arithmetic opera-
tors.

Computes
square root of num-

ber in displayed X-
register.

Computes
square of number
in displayed X-
register.

Calculates fac-
torial x/, or Gamma
function I'(1+x).

Computes
reciprocal of number
in displayed X-
register.

(] Places value of
pi (3.141592654)
into displayed X-
register.

Integrate.
Computes definite
integral || f(x)dx
with expression f(x)
keyed into program
memory.

soLve| Solves for
real root of equation
f(x)=0, with expres-
sion f(x) keyed into
program memory.

Statistics

CLEAR Clears
statistical storage

registers (R, through
Rs).

Accumulates
numbers from X-
and Y-registers into
storage registers R,
through R;.

[z-] Subtracts x and
y values from stor-
ageregisters R,
through R; for
correcting
accumulations.

9

(3] Computes
mean (average) of x
and y values accum-
ulated by [7+].

(s] Computes
sample standard
deviations of x andy
values accumulated
by [=+].

Linear estimate.
Computes esti-
mated value of y for
a given value of x by
method of least
squares.

(r] Correlation
coefficient. Com-
putes “goodness of
fit” between the x
and y values accum-
ulated using
and the linear func-

tion that approx-
imates them.

Linear regres-
sion. Computes y-
intercept and slope
for linear function
that best approxi-
mates x and y
values accumulated
using (7+). The
value of the y-inter-
cept is placed in the
X-register; the value
ofthe slopeis placed
in the Y-register.

Polar/Rectangular
Conversion

Converts polar
magnitude r and
angle 60 in X- and
Y-registers to rec-
tangular x and y
coordinates.

Converts x, y
rectangular coordi-
nates placed in X-
and Y-registers to
polar magnitude r
and angle 6.

Trigonometry

Sets decimal
degrees mode for
trigonometric func-
tions.

Sets radians
mode for trigono-
metric functions.

Sets grads
mode for trigonome-
tric functions.

[Sin) (cos]
Computes sine, co-
sine, or tangent of
value in displayed
X-register.

Computes arc sine,
arc cosine, or arc
tangent of number in
displayed X-register.

Converts
degrees to radians.

Converts rad-
ians to degrees.

Converts
decimal hours (or
degrees) to hours,
minutes, seconds
(or degrees, min-
utes, seconds).

[+r] Converts hours,
minutes, seconds
(or degrees, min-
utes, seconds) to

decimal hours (or
degrees).

I-Register Control

[x=1] Exchanges
contents of dis-
played X-register
with those of the I-
register.

Exchanges
contents of dis-
played X-register
with those of the
register addressed
by the value stored
in the I-register.

1] l-register.
Storage register
for increment/de-
crement operations
and for indirect
control of dis-
play and program
execution.

10

(] Indirect opera-
tions command.
Used with and

for
indirect data
storage, recall, and
storage register
arithmetic.

Displays as
many digits after the
decimal point as are
specified in the

I-register.

Decrement,
skip when equal or
less than. Subtracts
specified decrement

value from counter

value. Skips one
program line if new
counter value is

equalto or less than
specified test value.

(1G] Increment,
skip when greater.
Adds specified
increment value to
counter value. Skips
one program line if
new counter value is
greater than speci-
fied test value.

Logarithmic and
Exponential

Computes
natural logarithm
(base e=
2.718281828...) of
number in displayed
X-register.

Natural anti-
logarithm. Raises e

(2.718281828) to
power of number in

displayed X-register.

Computes
common logarithm
(base 10) of number
in displayed X-
register.

Common
antilogarithm. Raises
10 to power of num-
ber in displayed X-
register.

Raises number
in Y-register to
power of number in

displayed X-register.

11

Program Control Index

Severalof the following keys operate only in PRGM mode; others operate
differently in PRGM mode than in RUN mode. For specific details of
operation, consult the indicated pages.

(mem] Displays

current status of pro-

gram memory/

storage registerallo-

cation (page 59).

(a] User-defin-

able program keys

for both program

labels and execution

(page 68).

0123456789

Label designators.

When preceded by

(LBL), define begin-

ning of a routine

(page 68).

Label. When

used with [a],

(8], or O through 9,

denote the begin-

ning of a program or

subroutine (page

68).

Go to. Used

with (a], (8], 0

through 9, or |1 .

From the keyboard:
causes calculator to

search downward in

program memory for

designated label and

halt. In a running

program: causes
calculator to transfer
downward in pro-
gram memory to

designated label
and resume pro-
gram execution
(page 102).

Go to sub-

routine. Used with

(2], (8), 0 through

9 or |. From the key-

board: causes cal-

culator to search

downward in pro-

gram memory for

designated label and

begin program exe-

cution. In a running

program: causes

calculator to transfer

downward in pro-

gram memory to

designated label and

begin subroutine

execution (page

126).

(*Jnnn Go to

line number. Posi-

tions calculator to

occupied line num-

ber specified by nnn

(page 85).

Back step.

Moves calculator

back one line in

occupied program

memory (page 84).

Single-step.

Moves calculator

forward one line in

occupied program

memory (page 84).

Delete. Used

in PRGM mode to

delete displayed in-

struction from pro-

gram memory. All

subsequent in-

structions are

moved up one line
(page 85).

CLEAR

Clears all instruc-

tions in program

memory and resets

calculator to line

000 (page 84).

12

Pause. Halts

program execution

for about one sec-

ond to display con-

tents of X-register,

then resumes

execution (page

65).

Run/stop.

Begins program
execution from

current line number

in program memory.

Stops execution if
program is running

(page 62).

Return.

Causes calculator

to return from any

line in occupied pro-

gram memory to line

000, or from subrou-

tine to appropriate

line elsewhere in

occupied program

memory (page
126).

Set flag.

Followed by flag

designator (0, 1, 2,

or 3) sets flag true

(page 120).

Clearflag.

Followed by flag

designator (0, 1, 2,

or 3) clears flag

(page 120).

Is flag true?

Followed by flag

designator (0, 1, 2,

or 3), tests design-

atedflag. Ifflag is set

(true) the calculator

executes theinstruc-

tionin the next line of

program memory. If

flag is cleared

(false), calculator

skips one line in

program memory

before resuming

execution (page
120).

Conditionals. Each

tests value in X-

register against O or

value in Y-register

as indicated. If true,

calculator executes

instruction in next

line of program

memory. If false,

calculator skips

one line in program

memory before

resuming execution

(page 108).

13

Section 1

Meet the HP-34C

Congratulations!

Your HP-34C Programmable Scientific Calculator with Continuous

Memory is a truly unique and versatile calculating instrument. Using the

Hewlett-Packard RPN logic system, your calculator can easily slice

through the most difficult calculations with ease. It is without parallel:

As a scientific calculator. The HP-34C features a multiple-entry

keyboard with each of the keys controlling up to four separate operations,

ensuring maximum computing power.

As a problem-solving machine. Following step-by-step instructions in

the HP-34C Applications books, you can key in programs from the

areas of mathematics, engineering, statistics, surveying, and otherfields

and begin using your calculator. Immediately.

As a personal programmable calculator. The HP-34C is so easy to

program and use that it requires no prior programming experience or

knowledge of mysterious programming languages. Yet even computer

experts can appreciate the calculator’s programming features:

= Continuous Memory, allowing programs and data to be remem-

bered by the calculator—even when the power switch is off.

= Automatic Memory Allocation: The basic 70 lines of program

memory plus 21 storage registers reallocates in 7-line increments

to as many as 210 lines of program memory plus 1 storage

register—automatically—as needed.

#= Fully merged prefix and function keys that mean more program-

ming power per line.

= Easy-to-use editing features for correcting and modifying pro-

grams.

#= Conditional and unconditional branching.

14

Meet the HP-34C 15

= Six levels of subroutines, 4 flags, 12 easily accessed and reusable

labels.

= Direct or indirect storage, recall, branching, and subroutine calls.

= Powerful root-finding and numerical integration operations using

the (soLveland (/3] keys.

And in addition, the HP-34C can be operated from its rechargeable

battery pack for complete portability, anywhere.

If you are new to HP calculators and their RPN logic system, you may

want to carefully work through Solving Problems With Your Hewlett-

Packard Calculator before consulting this handbook. Even if you

already own another HP calculator, you may find some new features in

the problem-solving book.

Now let’s take a closer look at your calculator to see how easy it is to

use, whether we solve a problem manually or use its programming power

to solve the problem automatically.

Manual Problem Solving

Before continuing, you should be comfortable solving problems

manually. If not, refer to the Getting Started section ofSolving Problems

With Your Hewlett-Packard Calculator.

Ready? Slide the OFF-ON switch to [N and be sure that the

PRGM-RUN switch is in the IlIlron position. Now press (7] [Fix]4
to be sure your HP-34C’s display setting matches the setting used in the

following pages.*

To see the close relationship between manual and programmed calcula-

tions, let’s first calculate the solution to a problem. Then we’ll use a

program to calculate the solution to the same problem and others like it.

If you were to calculate the surface area of a sphere, you would use the

formula A = md?® where:

* The display setting used with examples in this handbook is always @ 4 unless

otherwise indicated.

16 Meet the HP-34C

A is the surface area of the sphere.

d is the diameter of the sphere.

7 is the value of pi, 3.141592654

Example: Ganymede, one of Jupiter’s

12 moons, has a diameter of 3,200

miles. You can use the calculator to

manually compute the surface area of

Ganymede. Merely press the following

keys in order. (Be sure the PRGM-RUN

switch is in the [ruv position.)

Keystrokes Display

3200 3,200. Diameter of Ganymede.

(x3 10,240,000.00 Square of the diameter.

M@ 3.1416 The quantity 7.

x] 32,169,908.78 Surface area ofGanymede in

square miles.

Programmed Problem Solving
After calculating the surface area of Ganymede, suppose you decided

you want to calculate the surface area of each moon. You could repeat

the procedure you used for Ganymede 12 times, using a different diam-

eter d each time. However, an easier and faster method is to create a

program that will calculate the surface area of any sphere from its

diameter rather than pressing all the keys for each moon.

To calculate the area of a sphere using a program, you first write the

program, then you key the program into the calculator, and finally you

run the program to calculate each answer.

Meet the HP-34C 17

Writing the Program. You have already written it! A program is little

more than the series of keystrokes you would execute to calculate the

solution manually. Two additional operations, a label and a return, are

used to define the beginning and end of the program.

Loading the Program. To load the keystrokes of the program into the

calculator:

1. Slide the PRGM-RUN switch to prov [(program).

2. Press [] CLEAR [prGM]to clear program memory.

» Press the following keys in order. (When you are loading a

program, the display gives you information that you will find
useful later, but which you can ignore for now.)

Keystrokes Display

(v (A) 001- 25, 13, 11 Defines the beginning of the

program.
(9] (x3 002 - 15 3 These are the same keys you

(0 (@) 003- 2573 press to solve the problem

] 004 - 61 manually.

(n) (rTN) 005- 25 12 Defines the end of the

program.

The calculator will now remember this keystroke sequence.

Running the Program. To run the program to find the area of any sphere

from its diameter:

1. Slide the PRGM-RUNswitch to Iaun .

2. Key in the value of the diameter.

3. Press [a]to run the program.

When you press [A], the sequence of keystrokes you loaded is automat-

ically executed by the calculator, giving you the same answer you would

have obtained manually.

18 Meet the HP-34C

For example,to calculate the surface area of Ganymede with a diameter

of 3,200 miles:

Keystrokes Display

3200 3,200.

(a] 32,169,908.78 Square miles.

With the program you have loaded, you can now calculate the surface

area of any of Jupiter’s moons—in fact, of any sphere—using its

diameter. Leave the calculator in RUN mode and key in the diameter of

each sphere for which you want the surface area, then press (&].

For example, compute the surface area of Jupiter’s moon Io, with a

diameter of 2,310 miles.

Keystrokes Display

2310 (&) 16,763,852.56 Square miles.

Now compute the surface area of the moons Europa, diameter 1,950
miles, and Callisto, diameter 3,220 miles.

Keystrokes Display

1950 (&) 11,945,906.07 Area of Europa in square

miles.

3220 (a) 32,573,289.27 Area of Callisto in square

miles.

Programming is that easy! The calculator remembers a series of key-

strokes and then executes them whenever you wish. In fact, your HP-34C

can remember up to 210 separate operations (and many more keystrokes,

since many operations require two or three keystrokes).

Meet the HP-34C 19

What Continuous Memory Means to You
Your calculator contains Continuous Memory—one of the most ad-

vanced memory systems available in a scientific calculator. Continuous

Memory means the program memory, all 21 storage registers, and the

display mode stay ‘‘on’’ when your calculator is turned off. You can

store your favorite program (or programs) for days or weeks!

Continuous Memory is especially convenient when you want to retain

data, save battery life, or customize your calculator (e.g., if you use

20% of your programs in 80% of your calculations.) You save consider-

able time because you don’t have to key in those common programs again
and again—they are stored in your calculator. Continuous Memory

reduces human entry errors too; fewer keystrokes mean fewer chances

of making inadvertent errors. Perhaps the most important advantage of

Continuous Memory is that it enables you to customize or personalize

yourcalculator. The easiest way to customize your calculator is to make a

list of the problems you encounter most frequently, rate them in order of

priority, then write and save the specialized programs for those pro-

blems. Whenever you encounter a repetitive problem set, you just write

the program once, then use it at different times. You can even preserve

one or two favorite programs in the calculator.

Besides saving programs, Continuous Memory lets you save data in

up to 21 storage registers, depending on current program memory/data

storage allocation. Constants, accumulations, and intermediate answers

can be retrieved whenever you need them. And because display mode

is also saved in Continuous Memory, your HP-34C ‘‘wakes up’’ in

whatever (Fix], , or [ENG] setting you last used.

Continuous Memory helps save battery life because you don’t have to

keep the calculator turned on to save programs or data between calcu-

lations. And if your calculatoris left off, Continuous Memory can store

your programs and data for 1 month or longer. When you do use your

calculator, keying in fewer programs means less time that the display

is on—hence, less battery drain.

Section 2

Specific Features of the HP-34C

Most of the features found on the HP-34C are discussed in Solving

Problems With Your Hewlett-Packard Calculator. However, several

features unique to the HP-34C (or new to HP calculators) are discussed

in the following pages.

Keyboard Operation
Most keys on the HP-34C keyboard perform three or four functions. One

function is indicated by the symbol on the horizontal key face, while

another is printed in black on the slanted key face. A third function is

indicated by the gold symbol printed above the key. On keys designed

with four functions, the last function is indicated by the appropriate

blue symbol, also printed above the key.

To select the function on the horizontal face of a key, press the key.

To select the function printed in black on the slanted face of a key, press

the black prefix key (h], then press the function key.

To select the function printed in gold above a key, press the gold prefix

key (7], then press the function key.

To select the function printed in blue above a key, press the blue prefix

key (@], then press the function key.

To execute this function,

f press [f] .

To execute this function,

3 ' press (x3.

' —=______ To execute this function,

X simply press 3.

To execute this function,

press [n]) (9.

20

Specific Features of the HP-34C 21

Notice that for all four-function keys except E=Eamm, the function
printed in gold is above and to the left of the key and the function printed

in blue is above and to the right of the key.

Storage Registers and Program Memory

In addition to the four-register stack and the LAST X register, your

HP-34C features a shared program and data storage memory that is

controlled automatically. The HP-34C’s basic program memory/data

storage allocation is 70 lines of program memory and 20 data storage

registers, plus the I-register. According to your programming needs,

one or more of the data storage registers can be automatically exchanged

for seven lines each of program memory. And, by pressing (MEM]

your HP-34C will even tell you the current program memory storage

register allocation at any time! We will cover this important subject in

detail when we discuss programming.

Storing and Recalling Numbers. Your HP-34C’s twenty data storage

registers are denoted R, through Ry and R; through R4 (plus the I-regis-

ter, which we’ll cover later). As you learned in Solving Problems With

Your Hewlett-Packard Calculator, a copy of the numberin the displayed

X-register can be stored in registers R, through Ry by pressing

(store) and the number key of the register address (0-9). A copy of a

number in any register R, through Ry can be recalled to the displayed

X-register by pressing (recall) and the number key of the register

address (0-9). Notice, however, that store or recall operations involving

registers R, through R4 use an additional keystroke, (<], to correspond

to the decimal point in these register names. For example, to store a

copy of 7 in register R;:

Keystrokes Display

M@ 3.1416
s 3.1416 A copy of 7 is now stored in

Rs.

22 Specific Features of the HP-34C

To recall a copy of m from R;:

Keystrokes Display

0.0000
=5 3.1416

Storage Register Arithmetic. Registers R, through Ry in your HP-34C

are used for the direct storage register arithmetic operations described in

Solving Problems With Your Hewlett-Packard Calculator. However,all

storage registers (R, through Ry, R; through R4, and I) can be used to

perform indirect storage register arithmetic (we’ll cover this subjectlater,

in section 7).

Number Alteration Keys

Besides (cHs], your HP-34C has three keys provided for altering

numbers: , , and (FRAC].

Absolute Value

Some calculations require the absolute value, or magnitude, of a number.

To obtain the absolute value of the number in the displayed X-register,

press [n]followed by the (aBs](absolute value) key. For example, to

find the absolute value of -3.

Keystrokes Display

3 -3.

() 3.0000

Integer Portion of a Number

To extract and display the integer portion of a number, press the [h]

prefix key followed by the (INT](integer) key. For example, to display

only the integer portion of the number 111.222.

Specific Features of the HP-34C 23

Keystrokes Display

111.222 111.222
(n) 111.0000 Only the integer portion

remains.

333.444 -333.444
(n)(ONT) -333.0000 Again, only the integer

portion remains.

When (&) is pressed, the fractional portion of the numberis re-

placed by zero. The sign is unaffected. The original number, of course,

is preserved in the LAST X register.

(n])(LsTx] -333.4440 The original number.

Fractional Portion of a Number

To extract and display only the fractional portion of a number, press the

(n] prefix key followed by the (FRAC](fraction) key. For example, to
see the fractional portion of 555.666.

555.666 555.666

(n]) (FrAC] 0.6660 Only the fractional portion

of the number remains.

777.888 -777.888
(n] (FrAC] -0.8880 Again, only the fractional

portion remains.

When the (h](FRAC]is pressed, the integer portion of the number is

replaced by zero. The sign is unaffected. The original number is pre-

served in the LAST X register.

D8 -777.8880

24 Specific Features of the HP-34C

Mathematical Functions

Factorial

When the number in the X-register is a nonnegative integer n, pressing

(xgives you the factorial of n, which is denoted n/ and defined as the

product ofthe integers from 1 to n. This function enables you to quickly

and easily solve permutations and combinations.

Example: Willie’s Widget Works

wants a photograph of its product line

for advertising. How many different

ways can the photographer arrange their

eight widget models?

Solution: The number of arrangements is given by

Bl =8 XTX6X5X4X3X2X1

Keystrokes Display

8 MY 40,320.0000 The photographer can ar-
range the widgets 40,320

different ways.

Example: The photographer looks through her viewfinder and decides

that she can show only five widgets if her camera is to capture the

intricate details of the widgets on film. How many different sets offive

widgets can she select from the eight?

Solution: The number of sets is given by

8!

8 —=5)!5!

Keystrokes

8 [0 (=Y
8 (EnNTERY)

B
@
@

E3)

B
"
E

Gamma Function

Specific Features of the HP-34C 25

Display

40,320.0000

8.0000

3.0000

6.0000

120.0000

720.0000

56.0000 The photographer can select

56 different sets of five

widgets.

The (x! key can also be used* to calculate the Gamma function,

denoted by I'(x), which occurs in certain problems in advanced

mathematics and statistics. Pressing (xgives you I'(x + 1). To calcu-

late the Gamma function of any number, therefore, subtract 1 from the

number, then with the result in the X-register, press [n] (x1].

Example: Calculate I'(2.7).

Keystrokes

2.7

EmERg 1 ()
] &=

Display

2.7

1.7000

1.5447

Example: Calculate I'(-2.7).

Keystrokes

2.7 (Chs)
(entere) 1 (5]
(n] (=Y

Display

-2.7

-3.7000

-0.9311

Key in number.

Subtract 1.

r'ae.7.

Key in number.

Subtract 1.

I'(-2.7).

* The @key can be used for both the factorial and Gamma functions because when x is a

nonnegative integern, I'(x + 1) = I'(n + 1) = n!. The Gamma function can be regarded as

a generalization ofthe factorial function, since the numberin the X-registeris not limited to
nonnegative integers. Conversely, the factorial function can be regarded asa special case of

the Gamma function.

26 Specific Features of the HP-34C

Since I'(x) is not defined when x is a negative integer or 0, I'(x + 1),

the value returned by (x!], is not defined when x is a negative integer.

As x approaches these values, the magnitude of I'(x + 1) increases

without limit. Since the largest number your HP-34C can calculate

is 9.999999999 X 10%, if you press (m) (x)with a negative integer

in the X-register the calculator will display the overflow indication
-9.999999 99. Although I'(x + 1) as x approaches a negative integer

may be positive or negative, depending on the value ofx, the calculator

always displays a minus sign in the overflow display when x is a

negative integer. This differentiates the value from the overflow display

9.999999 99 for very large positive values ofx, at which I' (x) increases

without limit but is always positive.

Percent Difference

The operation gives you the percent difference—that is, the

relative increase or decrease—between two numbers. To find the per-

cent difference:

1. Key in the base number(typically, the number that occurs first in

time).

2. Press (ENTERs).

3. Key in the second number.

4. Press [n][(Aa%)

100(x — y)
————y .The formula used is: A% =

Using the above order of entry, a positive result signifies an increase,

while a negative result signifies a decrease.

Specific Features of the HP-34C 27

Example: Silas Silversaver’s coin

collection was appraised in 1974 at

$475. An appraisal in 1979 valued the

collection at $735. By what percent did

the value of the collection increase from
1974 to 1979?

Keystrokes Display

475 475.0000
735 (n](a%] 54.7368 Percent increase.

Statistical Functions

Accumulations

Pressing the key computes certain important sums and products of

the values in the X- and Y-registers. The results are automatically

accumulated in storage registers R, through R;. Before you start to

calculate accumulations with a new set of x and y values, you should

first clear these registers by pressing (] CLEAR [Z£]. Then, do the
following for each pair of x and y values in your data:

Key the y value into the X-register.

Press to raise the y value into the Y-register.

1

2

3. Key the x value into the X-register.

4. Press [1][z+].

28 Specific Features of the HP-34C

If your statistics problem involves only one variable (x) instead of two

(x and y), the procedure is similar. First clear statistical storage

registers R, through R;. In addition, if the contents of the Y-register are

not zero, you should clear the Y-register also. (A nonzero number in the

Y-register during one-variable calculations of s, r, L.R., or y may

result in a display of Error 3.) Pressing (] CLEAR will clear
registers R, through R;, but will also clear registers Rq through Ry, R

through R4, and I. Therefore, if there are numbers stored in these other

registers that you want to save, you should press the keys

(f] CLEAR [Z] instead of (] CLEAR [REG]. After clearing the
registers, do the following for each value of x in your data:

1. Key the number into the X-register.

2. Press (1] [Z4].

Each time you press [f] , the following operations are performed:

1. The number in the X-register is added to the contents of storage

register R;.

2. The square of the numberin the X-register is added to the contents

of storage register R,.

3. The number in the Y-register is added to the contents of storage

register Rj.

4. The square of the numberin the Y-registeris added to the contents

of storage register R,.

5. The number in the Y-register is multiplied by the number in the

X-register, and the product is added to the contents of storage

register R.

6. The number1 is added to the contents of storage register Ry. The

result—the number of (x,y) data pairs accumulated so far—

is copied into the displayed X-register.

After you press [f] , the number previously in the X-register is
placed in the LAST X register. The number previously in the Y-register

is not changed.

Specific Features of the HP-34C 29

To summarize, this is where the statistical accumulations are stored

inside your calculator:

Register Contents

Ro n: number of data pairs accumulated.

R, 2x: summation of x values.

R, 2.x2: summation of squares of x values.

R, 2y: summation of y values.

R, 2y2. summation of squares of y values.

Rs 2.xy: summation of products ofx values andy values.

Some sets of data consist of x or y values that all differ from some

number by a comparatively small amount. You can maximize the pre-

cision of any statistical calculation involving such data by entering into

the calculator only the differences between each value and a number

approximating the average of the values. When you do this, this number

must be added to the result of calculating X, y, or the y-intercept of

L.R. For example, if your x values consist of 665999, 666000, and

666001, you should enter the data as -1, 0, and 1. If afterwards you
calculate x, add 666000 to the answer. In some cases the calculator

cannot compute s, r, L.R., or y with data values that are too close to

each other, and if you attempt to do so the calculator will display

Error 3. This will not happen, however, if you normalize the data as

described above.

Note: Unlike storage register arithmetic, the and (z-]
operations allow overflow to occur in storage registers R,
through R; without indicating Error 1 in the display. (i.e.,

when executing [z+or [z-]would resultin an overflow in any
statistics register, 9.999999999 x 10% s placed in that regis-
ter without interrupting normal operation.)

To use any of the accumulations, you can recall the contents of the

desired storage register into the displayed X-register by pressing

followed by the number of the register. If this is done immedi-
ately after pressing [7] (or [@][z-]), the accumulation recalled is

written over the number of data pair entries (n) in the display.

30 Specific Features of the HP-34C

If you wantto use both 2x and 3y, press (RcL)() (z+). This simultane-
ously copies 2x from R, into the displayed X-register and copies 2y

from R; into the Y-register. If this is done immediately after pressing

[1])(z+], [9])[z=), [ctx], or (ENTERs], the numberin the Y-registeris first

lifted into the Z-register. Otherwise, the numbers in the X- and Y-

registers are first lifted into the Z- and T-registers, respectively.

Example: Find 2x, 2x2, 2y, 2y?, and Z.xy for the paired values ofx and

y listed below.

Keystrokes Display

(fJ CLEAR 0.0000 Clearstatistical storage

registers. (Display shown

assumes no results remain

from previous calculations.)

7 7.0000
5 [f] 1.0000 First pair is accumulated;

n = 1.
5 5.0000
3 (1] 2.0000 Second pair is accumulated;

n=2.

9 9.0000
8 () 3.0000 Third pair is accumulated;

n = 3.

1 16.0000 Sum of x values from

register R;.

2 98.0000 Sum of squares of x values

from register R,.

3 21.0000 Sum of y values from
register Rj.

4 155.0000 Sum of squares of y values

from register R,.

5 122.0000 Sum of products of x and y

values from register R;.
0 3.0000 Number of entries (n = 3)

from register R,.

Specific Features of the HP-34C 31

Deleting and Correcting Data

If you key in an incorrect value and have not yet pressed [f][z+],

press and key in the correct value.

If you want to change one of the values, orif you discoverafter pressing

(1] that one of the values was erroneous, you can correct the

accumulations by using the [z-] (summation minus) key as follows:

1. Key the incorrect data pair into the X- and Y-registers. (You can

use to return a single incorrect data value to the displayed

X-register.)

2. Press (9] [z-]to delete the incorrect data.

3. Key in the correct values for x and y. If one value of an (x,y) data

pair is incorrect, you must delete and reenter both values.

4. Press [1][z+].

For example, if the last data pair (8,9) in the previous example should

have been (8,6), you could correct the accumulation as follows:

Keystrokes Display

9 9.0000

8 8.

=3 2.0000

6 6.0000

0E 30000

Incorrect y value is entered

again.

Correct x value is entered
again.

Numbered of entries (n) is

now two.

Correct y value is entered.

X value is entered again.

Number of entries is again

three.

32

Mean

Specific Features of the HP-34C

Note: Although [£=)can be used to delete an erroneous
(x, y) pair, it will not delete any rounding errors that may
have occured when that pair was added into accumulating
registers R, through R;. Consequently, subsequent results
may be different than they would have been if the erroneous
pair (x,y) had not been entered via] [z+]and then deleted
via [@](z-} However, the difference will not be serious
unless the erroneous pair (x,y) have a magnitude that is
enormous compared with the correct pair; and in such a case
it may be wise to start over again and re-enter the data again
(and more carefully!).

Pressing [X]computes the arithmetic mean (average) of x and y values

accumulated in registers R; and Rj, respectively.

When you press [h] (%)

1.

2.

The contents of the stack registers are lifted just as they are when

you press [¥] [z+], as described on page 30.

The mean of the x values (¥) is calculated using the data accumu-

lated in registers R; (2x) and R, (n) according to the formula:

2x
n

f:

The resultant value for X appears in the displayed X-register.

The mean of the y values (¥) is calculated using the data accumu-

lated in registers R; (Xy) and R, (n) according to the formula:

The resultant value fory is available in the Y-register of the stack.

Specific Features of the HP-34C

Example: Below is a chart of daily high

and low temperatures for a winter week

in Fairbanks, Alaska. What are the aver-

age high and low temperatures for the

week selected?

33

I
1 o

H
I
|

A o
l

L 3

1 L >
i

i
l

1
B
l

|
[

lll
ll'

ll

I cn 1i |
Y o

o

= = - <
3

Sun Mon Tues Wed Thurs Fri Sat
High 6 11 14 12 5 -2 -9

tow | 22 -17 15 -9 24 29 -35

Keystrokes Display

(1] CLEAR (z] 0.0000 Accumulation registers
cleared. (Display shown

assumes no results remain
from previous calculations.)

6 22 22,

0 1.0000 Number of data pairs (n) is

now 1.
11 17 17.

(0 2.0000 Number of data pairs (n) is

now 2.

14 15 15.

™ 3.0000

12 9 9.

™ 4.0000

5 24 24.

M0 5.0000

2 -2.0000

29 M0 6.0000

34 Specific Features of the HP-34C

Keystrokes Display

9 -9.0000
35 (M 7.0000 Number of data pairs (n) is

now 7.
M -21.5714 Average low temperature.

5.2857 Average high temperature.

Standard Deviation

Pressing (n] (s]computes the standard deviation (a measure of disper-

sion around the mean) of the accumulated data. The formulas used by the

HP-34C to compute s,, the standard deviation of the accumulated x

values, and sy, the standard deviation of the accumulated y values, are:

5 = A\ / nEx* - Gx)? . = \ / n2y? — (2y)?
* nn—1) v nin—1)

These formulas give the best estimates of the population standard

deviations from the sample data. Consequently, the standard devia-

tion given by these formulas is termed by convention the sample

standard deviation.

When you press [h] (8}

1. The contents of the stack registers are lifted just as they are when

you press (1] [+ as described on page 30.

2. The standard deviation of the x values (sy) is calculated using the

data accumulated in registers R, (3x2), R; (2x), and R, (n)
according to the formula shown above. The resultant value for s,

appears in the displayed X-register.

3. The standard deviation of the y values (sy) is calculated using the

data accumulated in registers R, (2y?), R; (2y), and R, (n)
according to the formula shown above. The resultant value for s,

is available in the Y-register.

Specific Features of the HP-34C 35

Example: Norman Numbercruncher,

a rising young math professor at Mam-

moth University, has developed a new

test for measuring the mathematical

abilities of college freshmen. To eval-

uate its effectiveness, he administers
the test to the 746 students in Calculus

I. Exhausted after grading the tests,

Numbercruncher decides to randomly

select 8 of the 746 tests and estimate

the standard deviation ofall the scores from the sample of 8. The scores

on the tests selected were 79, 94, 68, 86, 82, 78, 83, and 89. What

standard deviation does Numbercruncher calculate?

Keystrokes Display

0.0000

(f) CLEAR (3) 0.0000

79 (1] 1.0000

94 (1) 2.0000

68 (1] 3.0000

86 (1) 4.0000

82 (1] 5.0000

78 (1] 6.0000

83 [f] 7.0000

89 [f] 8.0000

(] (=) 7.8365

Clear displayed X-register

and Y-register.

Clear statistical registers

First score is entered. Notice

that since this problem

involves only one variable,

you don’t have to enter a

y-value into the Y-register

using the key.

Display shows number of

scores entered so far.

Last score in sample.

Standard deviation

estimated for the 746 stu-

dents based on sample of 8.

36 Specific Features of the HP-34C

When your data constitutes not just a sample of a population but rather

all of the population, the standard deviation of the data is the true

population standard deviation (denoted o). The formula for the true

population standard deviation differs by a factor of [(n— 1)/n] 1/2 from

the formula used for the (s]function. The difference between the values

is small, and for most applications can be ignored. Nevertheless, if you

want to calculate the exact value of the population standard deviation for

an entire population, you can easily do so with just a few keystrokes on

your HP-34C. Simply add, using the [f] [2+]key, the mean (x) of the
data to the data and then press [n] (s]. The result will be the true pop-

ulation standard deviation of the original data.

Example: Suppose the data from the previous example represented all

the final exam scores from Numbercruncher’s seminar on transcendental

functions. Since this is the first time Numbercruncher has given this

seminar, he wants to calculate the standard deviation ofthe test scores to

determine how good his exam was. Numbercrunchertakes his calculator

in hand, enters the data, then proceeds as follows:

Keystrokes Display

M®E 82.3750 Mean of scores.

(1] 9.0000 Mean is added to data.

Display shows nine total

entries.

(] (] 7.3304 Standard deviation for all

scores on final exam.

Linear Regression

Linear regression is a statistical method for finding a straight line that

bestfits a set of data points, thus providing a relationship between two

variables. After a group of data points has been totaled in registers R,

through R;, you can calculate the coefficients of the linear equation

y = Ax + B using the least squares method by pressing [n](LR].
(Naturally, at least two data points must be in the calculator before a

least squares line can be fitted to them.)

To use the linear regression function on your HP-34C, first key in a

series of data points using the [f] key. Then press [n](LR].

Specific Features of the HP-34C 37

When you press [(n](LR]:

1. The contents of the stack registersare lifted just as they are when

you press [¥] [z+], as described on page 30.

2. The slope (4) of the least squares line of the data is calculated

using the equation:

q=" 2xy — 2x 2y

n 2x2 — (2x)?

The slope is available in the Y-register of the stack.

3. The y-intercept (B) of the least squares line of the data is cal-

culated using the equation:

Bzzy 2x%—2x 2xy

n 2x2 — (2x)?

The y-intercept appears in the displayed X-register of the stack.

To use the value for A or to bring it into the displayed X-register,
simply exchange the stack contents with the key.

Example: Big George Gusher, owner-

operator of the Gusher Oil Company,

wishes to know the slope and y-intercept

of a least squares line for the consump-

tion of motor fuel in the United States

against time since 1945. He knows the
data given in the following table.

38 Specific Features of the HP-34C

Motor Fuel

Demand

(Millions of

Barrels) |696 994 1,330 1,512 1,750 2,162 2,243 2,382 2,484

Year |1945 1950 1955 1960 1965 1970 1971 1972 1973

Solution: Gusher could draw a plot of motor fuel demand against time

like the one shown below.

Demand
(Millions of Barrels)

2,500 1+

2,000 +

1,500 -

1,000

500 +

{{ — 1

Year 1945 1950 1955 1960 1965 1970 1975

L1l
LI

However, with his HP-34C, Gusher has only to key the data into the

calculator using the key, then press [h](LR].

Keystrokes Display

(] CLEAR (z] 0.0000 Clear statistical storage

registers. (Display shown

assumes no results remain

from previous calculations.)

696 696.0000

1945 (1) 1.0000

994 994.0000

1950 (1) 2.0000

1330 1,330.0000

1955 (7] 3.0000

1512 1,512.0000
1960 (1) 4.0000

Specific Features of the HP-34C 39

1750 1,750.0000

1965 (1] 5.0000

2162 2,162.0000

1970 (1] 6.0000

2243 2,243.0000

1971 (1] 7.0000

2382 2,382.0000

1972 (1] 8.0000

2484 2,484.0000

1973 (1] 9.0000 All data pairs have been

keyed in.

(M) (kr) -118,290.6295 The y-intercept of the line.

61.1612 Slope of the line.

Linear Estimation

With data accumulated in registers R, through R;, a predicted value for

y (denoted y) can be calculated by keying in a new value for x and

pressing (n] (5].

For example, with data intact from the previous example in registers

R, through Rj, if Gusher wishes to predict the demand for motor fuel

for the years 1980 and 2000, he keys in the new x value and presses

™ &

Keystrokes Display

1980 (n])(3) 2,808.6264 Predicted demand in

millions of barrels for the

year 1980.

2000 (n]) (3] 4,031.8512 Predicted demand in

millions of barrels for the

year 2000.

40 Specific Features of the HP-34C

Correlation Coefficient

Both linear regression and linear estimation presume that the relationship

between the x and y data values can be approximated, to some degree, by

a linear function (i.e., a straight line). You can use (r](correlation

coefficient) to determine how closely your data ‘‘fits’’ a straight line.

The correlation coefficient can range from r = +1 to r = —1. At

r = +1, the data falls exactly onto a straight line with positive slope,

while at r = —1, the data falls exactly onto a straight line with negative

slope. At r = 0, the data cannot be approximated at all by a straight line.

For example, to calculate the correlation coefficient for the example

above:

Keystrokes Display

™ 0.9931 The data approximates a
straight line very closely.

Vector Arithmetic

You can add or subtract vectors with your HP-34C by using [z+]and
(£=)in conjunction with and [+P).

Example: Federation starship Felicity has emerged victorious from a

furious battle with the starship Thanatos from the renegade planet

Maldek. However, its automatic pilot is kaput, and its main thrust en-

gine is locked on at 37.2 meganewtons directed along a angle of 25.2°

from the star Ultima. Consulting the ship’s star map, the navigatorre-

ports a hyperspace entrance vector of 51 meganewtons at an angle of

41.3° from Ultima. To what thrust and angle should the auxiliary engine

be set, for Felicity to achieve alignment with the hyperspace entrance
vector?

Solution: The required thrust vector of the auxiliary engine is equal to

the hyperspace entrance vector minus the thrust vector of the main

engine. The vectors are converted to rectangular coordinates using

(1] (+r], and their difference is calculated using [f] and =3

This difference is recalled to the X- and Y-registers using (1 =4.
Then, these rectangular coordinates of the auxiliary engine thrust vector

are converted to polar coordinates using [+p).

Ultima

25.2°

41.3°
Keystrokes

() CLEAR (z)

41.3

51 (f](+R)

Specific Features of the HP-34C 41

Display

0.0000

0.0000

41.3000

38.3145

Clear statistical registers.

(Display shown assumes no

results remain from previous

calculations.)

Ensures that trigonometric

mode is set to degrees.

Enter angle of hyperspace

entrance vector into Y-

register.
Enter magnitude of hyper-

space entrance vector into

X-register and convert to

rectangular coordinates.

42 Specific Features of the HP-34C

Keystrokes

K

25.2

37.2 (1]

=]

(Re (7]

x%)

Display

1.0000

25.2000

33.6596

0.0000

4.6549

18.4190

75.3613

Rectangular coordinates of

hyperspace entrance vector

accumulated in registers

R, and R;.

Enter angle of main engine

thrust vector into Y-register.

Enter magnitude of main

engine thrust vector into X-

register and convert to

rectangular coordinates.

Subtract rectangular coor-

dinates of main engine

thrust vector from rectang-

ular coordinates of hyper-

space entrance vector in

registers R, and Rj into X-

register and Y-register.
Recall rectangular coor-

dinates of auxiliary engine

thrust vector from registers

R, and R; into X-register and

Y-register.

Convert to polar coordi-

nates. Display shows re-
quired magnitude, in mega-

newtons, of auxiliary engine

thrust vector.

Required angle of auxiliary

engine thrust vector.

Section 3

Simple Programming

What Is a Program?

A program is a sequence of keystrokes that is remembered by the

calculator. You can execute a given program as often as you like—

typically with just one keystroke. The answer displayed at the end of

execution is the same one you would have obtained by pressing the keys

one at a time manually. No prior programming experience is necessary to

learn HP-34C programming.

Why Write Programs?

Programs are written to save time on repetitive calculations. Once you

have written the keystroke procedure for a particular problem and

recorded it in the calculator, you need no longer devote attention to the

individual keystrokes that make up the procedure. You can let your

HP-34C calculate the solution to each problem for you. And you can

have more confidence in the answer. Why? Because once you have

checked that your program is correctly recorded in the calculator, you

may be sure that the calculator will execute your commands faithfully,

without the slips you might make if you had to manually press the keys

over and over again. The calculator performs the drudgery, leaving

your mind free for more creative work.

Before proceeding, let’s take another look at the powerful programming

features designed into your HP-34C:

® An easily understood programming language.

m Twelve labels you can use (and re-use) to designate various

programs and portions of programs.

® Fully merged program lines. Commands requiring multiple

keystrokes—such as [7] [Sin] or 1—consume only

one line of program memory.

44

Simple Programming 45

= Automatic Memory Allocation. Possible memory combinations

range from 21 storage registers and 70 lines of programming to 1

storage register (the I-register) and 210 lines of programming.

Memory conversion occurs at the rate of seven lines of program-

ming for each data storage register—automatically!

= Decision-making capability for more sophisticated routines.

= [Easy to use editing features for correcting and modifying

programs.

= Six levels of subroutines and four flags to help simplify otherwise

complicated programs.

» Indirect storage, recall, branching, and subroutine calls to auto-

matically control data, decisions, and program control.

» Increment/decrement counter and looping control.

Together, these features provide you with the tools necessary to tackle

complex problems with confidence.

Three Calculator Modes

Your HP-34C calculator has three operational modes:

1. Manual run mode.

2. Program mode.

3. Automatic run mode.

Manual Run Mode. The functions and operations you have learned

about in the first part of this handbook and in Solving Problems With

Your Hewlett-Packard Calculator are performed manually one at a

time. These functions combined with the automatic memory stack enable

you to calculate with ease.

Program Mode. In program mode the functions and operations you have

learned about are not executed but instead are recorded, in a part of the

calculator called program memory, for later execution. To get into pro-

gram mode, simply slide the PRGM-RUN switch to rrom[T - All

operations on the keyboard except the following can be recorded for

later execution when the calculator is in program mode.

46 Simple Programming

These operations cannot be recorded:

(1) CLEAR (1) CLEAR (9) (MEm)
BHED G (2] nnn (&) (@A)
®ED ®e

You will find all of the above operations except [h] and
useful when keying in and editing your programs.*

Automatic Run Mode. As you have learned, the HP-34C will auto-

matically execute a list of operations when the calculator is in run mode

if they have previously been recorded in program memory. Instead of

pressing each key manually, the recorded operations are executed

sequentially in automatic run mode. Typically, you press only one key

to start the calculator at the beginning of the list. The entire list of

recorded operations is then executed much more quickly than you could

have executed them yourself.

Looking at Program Memory
As you may remember from the program you created in section 1,

the keystrokes used to calculate a solution manually are also used when
you write a program to calculate the solution automatically. These

keystrokes are stored in the calculator’s program memory. When you

slide the PRGM-RUN switch to ercom [[[[JJili] you can examine the

contents of program memory, one line at a time. Press (3000 to

return the calculator to the beginning of program memory. If you have

not already done so, slide the PRGM-RUN switch to prem [[[[JJij- The

display should show 000-.

Program memory consists of from 70 to 210 lines, together with a top-

of-memory marker which is the 000- you now see in your display.

Program memory operates separately from the stack, LAST X, I, and

available storage registers.

* Pressing]does nothing in program mode, but pressing in either
program or run mode will perform the self-check as instructed, and will clear the stack,

LAST X register, and flags, reset trig mode to degrees, and reset the calculator to line 000 in

program memory.

T ‘‘Available’” storage registers refers to data storage registers that are not converted to

program memory.

Simple Programming 47

000- -+— Top-of-Memory Marker

001-

002 -

003-

e
Program Memory 068-

069-
070- <+— Minimum Program Line

Allocation
/

-

208 -

209-
<+— Maximum Program Line

210- .
Allocation

With the PRGM-RUN switch set to pram [[[Jl] ; the number that you

see on the left side of the display indicates the line number of program

memory to which the calculator is set. Press [7] CLEAR

(v (), the first keystrokes of the Moon Surface Area program

(refer to page 17), and the display will change to:

Line number —» I0011-25, 13, 11

The calculator is now set to line 001 of program memory, as indicated

by the number 007 that you see on the left side of the display. The other

numbers in the display are keycodes for the keystrokes that have been

loaded into that line of program memory. Press (x?). Your display

shows:

002- 15 3

The number 002 on the left side of the display indicates that you are now

at line two of the program.

Each line of program memory can ‘‘remember’’ a single instruction,

whether that instruction consists of one, two, or three keystrokes. Thus,

one line of program memory might contain a single-keystroke instruction

like (cHs), while another line of program memory could contain the

three-keystroke instruction 6 (adds the value in the displayed

X-register to the contents of register number 6).

48 Simple Programming

But how do those numbers in the display relate to the actual keystrokes

of program commands? This question brings us to the next step in

mastering your HP-34C—keycodes.

Keycodes

Let’s take another look at the program instructions we just entered.

Press (n](8s7]). Your display will now show the first line of the Moon

Surface Area program:

Line number —» 001-25, 13, 11 <+—— Keycodes
—_1

As you know, the number code 0071 appearing on the left side of the

display designates the line number of program memory. The next digit

pair, 25, represents the [h] keystroke; 13, the keystroke; and

11, the (A]keystroke. The first digit of each pair denotes the row the

key is located in; the second digit denotes the number of the key in the

row. So 25 tells you that the key is in the second row on the calculator

and thatit is the fifth key in that row, or, the (hJkey. In this manner each

key on the keyboard is represented by a two-digit keycode, exceptfor the

digit keys zero through nine. For convenience, these keys and their

respective alternate functions are coded O through 9. Let’s see an exam-

ple. Press [n)(SsT) once. Your HP-34C’s display will now show the

second line of the Moon Surface Area program, x3:

Line number—» 002- 15 3 <«— Keycodes
—J —

From the above, we know that 002 is the program line number and 15 is

the first row, fifth key, or the [g]key. Because the prefix key is part

of this instruction, the 3 denotes the x? function which is located on the

3 digit key. In calculator jargon, (x?) is a *‘shifted function’’ ofthe

3 key, just as the asterisk is a shifted function of a typewriter key.

The remaining keystrokes for the Moon Surface Area program are shown

below with their corresponding displays. Press each key in turn and

verify the keycodes shown in the display.

Keystrokes Display

M@ 003- 2573

e 004- 61

™(rT) 005- 25 12

Simple Programming 49

In this case, a program consisting of 10 keystrokes takes only five lines

of program memory.

Problems
1. What would be the keycodes for the following operations:

(M CA), (9)(Gro), [1][+Hms], 1? (Answers: 25 2;
15 13; 14 6; 23, 51, 1).

2. How many lines of program memory would be required to load the

following sections of programs?

a. 2 (@R 3 (3.
b. 10 (s70) 6 [ReL) 6 (X).

c. 1003®m) ! OEME! @) ®E@
(Answers: a, 4; b, 5; c, 10.)

Clearing a Program

The Continuous Memory feature of your calculator preserves any pro-

grams loaded into program memory even while the calculator is turned

off. To clear program memory, turn the calculator on, slide the PRGM-

RUNswitch to erom [[[[Il , and press [CLEAR All lines of

program memory formerly occupied by programs you cleared using 1]

CLEAR are again available for storing new program instructions.

If the programs you cleared occupied more than 70 lines of program

memory, the lines the programs used in excess ofthe first 70 are auto-

matically reallocated to data storage registers. Note that if you press [

CLEAR [prem]in RUN mode, the calculator resets to line 000, but

program memory is not cleared.

If power to the calculator is interrupted (that is, battery failure), all

instructions in program memory and all data in the storage registers may

be lost. When poweris restored and the unit turned on, Pr Error appears

in the display to warn of this loss.

Creating Your Own Program
In Meet the HP-34C, at the beginning of this handbook, we created a

program that calculated the surface area of a sphere, given the diameter

ofthat sphere. Now let’s create another program to show you how to use

some of the other features of the HP-34C.

50 Simple Programming

If you wanted to use your HP-34C to calculate manually the area of a

circle using the formulaA = mr? you could first key in the radius r, then

square it by pressing [x7). Next you would summon 7 into the

display by pressing [n](x]. Finally you would multiply the squared

radius and 7 together by pressing (x].

Remember that a program to calculate a given solution is little more

than the keystrokes you would use to calculate that solution manually.

Thus,to create an HP-34C program for calculating the area of any circle,

you will want to identify the keystroke sequence used to calculate the

area of a circle manually.

The keystroke sequence for calculating the area of a circle according to

the formula A = 7rr? are:

(€3
@
J

You will load into program memory these keystrokes plus, normally,

two more operations, [h] (A) and (n](rTN]. (0] (a] is called

a label address and is used to begin the program. [n] is used to end
the program.

Beginning a Program

To define the beginning of a program use an [n] (label) instruction

followed by one of the letter keys ((A] or (8]), or by one of the digit keys

(0 through 9). The use of labels permits you to have several different

programs or parts of programs loaded into the calculator at any time, and

to run them in the order you choose.

Ending a Program

To define the end of a program, you can use an [h](RTN] (return)

instruction. When the calculator encounters a instruction while

executing a program, it immediately transfers execution to line 000 and

halts (unless executed as part of a subroutine—more about subroutines

later).

Simple Programming 51

Note: When a running program encounters the end of
occupied program memory, the effect is the same as if an
(n] (rTN) had been encountered. This means that when
programming, if your /ast instruction in occupied program
memory would be an [n](rTn], it can be eliminated, saving
you one line of memory space.

If you want a program to halt at a certain line in memory without return-

ing to line 000, you can key in a [R/S]instruction at that line. When a

running program encounters a instruction in program memory,

execution simply halts. If you switch from RUN to PRGM mode, you

will see the next line of program memory after the instruction.

(Remember that the calculator returns to line 000 and halts after execut-

ing the last instruction in program memory whenever the last instruction

is any command other than (R7S]), (GsB], (GT0), ora (RTn]from a sub-

routine; so there is normally no need to put (R/S]at the end of the last

program in memory to halt execution.)

The complete program to calculate the area of any circle given its radius

is:

) (a] Assigns name to and defines beginning of program.

(x3 Squares the radius.

M Summons 7 into the display.
g Multiplies r? by 7 and displays the answer.

(r] (rRTN) Defines the end of and stops the program.

Loading a Program

When the calculator is set to PRGM, the functions and operations that

are normally executed when you press the keys are not executed. Instead,

they are stored in program memory for later execution. All keyboard

operations except the nine listed on page 46 can be loaded into program

memory for later execution.

To prepare for loading a complete program into the calculator:

1. Slide the PRGM-RUN switch to eram [[THH -

2. Press [fJCLEAR [prGM]to clear program memory of any previous
programs.

52 Simple Programming

You can tell that the calculator is at the top of program memory because

the digits 000 appear at the left of the display. The digits appearing at the

left of the display when the calculator is in PRGM mode always indicate

the program memory line number being shown at the time.

The keys you press to load the program calculating the area of a circle are:

() (eL] (]
&3
&
J
(»] (BTn]

Press the first key, [n], of the program.

Keystrokes Display

() 000-

You can see that the display of program memory has not changed. Now

press the second and third keys of the program.

Keystrokes Display

000-

(a] 001-25, 13, 11

When a new program memory line number appears on the left of the

display, it indicates that a complete operation has been loaded into that

line. As you can see from the keycodes present on the right side of the

display, the complete operation is [h](keycode 25), (LBL](keycode 13),

(a)(keycode 11). Nothing is loaded into program memory until a com-

plete operation (whether one, two, or three keystrokes) has been

specified.

Now load the remainder of the program by pressing the following keys.

Observe the program memory line numbers and keycodes.

Keystrokes Display

x3 002- 15 3

M@ 003- 2573

] 004- 61

® 005- 25 12

Simple Programming 53

The program for solving the area of a circle given its radius is now loaded

into your HP-34C’s program memory. Notice that nothing could be

loaded into the top-of-memory marker, line 000.

Running a Program
Programs are executed in automatic run mode. With the PRGM-RUN

switchin [Jlirun position, key in any data that is required, and press

the letter key ((A) or (8]), that labels your program.

For example, to use the program now in the calculatorto calculate areas

of circles with radii of 3 inches, 6 meters, and 9 miles:

First, slide the PRGM-RUN switch to [Jru~ .

Keystrokes Display

3 (a] 28.2743 Square inches.

6 (&) 113.0973 Square meters.
9 (&) 254.4690 Square miles.

Now let’s see how the HP-34C executed this program.

Searching for a Label

When you switched the PRGM-RUN switch to RUN,the calculator was

set at line 005 of program memory, the last line you had filled with an

instruction when you were loading the program. When you pressed the

(aJkey, the calculator began searching sequentially downward through

program memory, beginning with line 005, for a (A]) instruction.

When the calculator searches, it does not execute instructions.

Because line 005 did not contain the [n) (a] instruction, and no

further lines of program memory were occupied, your HP-34C returned

to line 000 and resumed searching downward through program memory.

When the calculator found the [h] (a] instruction in line 001 it

then began executing your program.

54 Simple Programming

Executing Instructions

The calculator executes instructions in exactly the order you keyed them

in, performing the (x?operation in line 002 first, then [n] (x])in line

003, etc., until it executes an [h] (RTN] instruction, a (R7S](run/stop)

instruction, or encounters the end of occupied program memory. Since

there isan [h] instruction in line 005, execution returns to line 000

and halts. The calculator then displays the contents of the X-register.

It is normally best to use (a]Jor (B]to define the beginning of a program

and to save O through 9 for subroutine labels (more on subroutineslater).

Why? Labels (A]and require only one keystroke to begin execu-

tion, as in our area of a circle program. But if you have several short

programs to key into your HP-34C you can use labels O through 9 to

address some of the individual programs. Using numerical labels

requires an additional keystroke, (GsB), for program execution. To

illustrate, let’s load and execute our area ofa circle program using O for

the label.

Slide the PRGM-RUN switch to prem [N .

Keystrokes Display

(1] CLEAR 000-

(m) (e O 001-25,13, 0
(x3 002- 15 3

™)) 003- 2573

x] 004- 61

(v (rTN) 005- 25 12

Slide the PRGM-RUN switch back to [JIIJrw~ -

Now, execute the program using the example from page 53. This time,

because of our label change, press 0 instead of (A&].

Keystrokes Display

3 0 28.2743

6 0 113.0973

9 0 254.4690

Simple Programming 55

If you try to execute a label ((LBL)) that is not contained as an instruction

in program memory, the HP-34C will display Error 4. For example, if

your calculator contains only the program for area of a circle that you just

keyed in, you can cause an Error 4 condition by simply pressing a letter

key.

Keystrokes Display

Error 4

To clear the error message from the display, press (CLx]or any other key.

The calculator remains set at the current line of program memory.

Automatic Memory Allocation
Converting Storage Registers to Program Memory

The automatic memory allocation designed into your HP-34C gives you

increased versatility by converting storage registers to lines of program

memory only as needed. You begin programming with 70 lines of pro-

gram memory and 20 storage registers (plus the I-register, described in

section 7). With 0 to 70 instructions in program memory, the allocation

looks like this:

STORAGE REGISTERS PROGRAM MEMORY

Permanent Shared Shared Permanent

| :‘ R. ::I n m

R, |:| Sx 001-

R, I::] 3x, R, 002-

[v —
A7 e

0
o

0
0
0
0
0
0 0

 0
w

X >

R; (:l Sxy 068-

070-

R [::] R Shared

R, [:] R., -none-

R[] R

56 Simple Programming

When you key in the 71line of programming, storage register Rg

converts to 7 lines of additional program memory. Now the memory

allocation looks like this:

STORAGE REGISTERS PROGRAM MEMORY

Permanent Shared Shared Permanent

[]ml_]n 000-

o
002-Instruction

r, o

i
R[] L/
R.,B 068-Instruction

R, B
B
e
[

001-Instruction

R, 2 s

R5|:| Sxy R, 069-Instruction]

070-Instruction

i Shared

S s z
Rl] R

r—=-—A

] R]
aj

qe
ji

ea
e

Simple Programming 57

When you record a full 210 lines of program memory, the calculator’s

memory registers look like this:

STORAGE REGISTERS PROGRAM MEMORY

Permanent Shared Permanent
r———7 |

[Ja, bl 000-_]
. 0017-Instruction

r———"

R, L__.__JI 002-Instruction

°

r__D

-

2 —
—

I | I L
—

r=—-—- 068-Instruction

069-Instruction

070-Instruction

: Shared :

071-Instruction

072-Instruction

 i

209-Instruction

210-Instruction

Program memoryis separate from the four stack registers and the LAST

X register. Notice that instead of the original 21 storage registers (R,

through Ry, R(through R4, and I) we now have just the non-convertable

I-register. What happened to storage registers R, through Ry and R,

through R4? They were converted to program memory at the rate of

seven lines per register. The following table shows the allocation of the

lines of program memory to their respective storage registers.

58 Simple Programming

Ry, 071—077 Ry 141—147

Rg 078—084 Ry 148—154

R; 085—091 R; 155—161
Rg 092—098 R¢ 162—168
R; 099—105 Ry 169—175

R, 106—112 R, 176—182
Rz 113—119 R; 183—189

R, 120—126 R, 190—196

R, 127—133 R, 197—203

R, 134—140 R, 204—210
When all 210 lines of program memory are occupied, attempting to

insert an additional program instruction anywhere in memory results

only in Error 4 appearing in the display. The additional instruction will

be ignored and none of the original 210 lines will be lost.

As you can see, each time currently available programming space is

filled, keying in another command automatically converts the next

remaining storage register to seven more lines of program memory. For

example, filling the first 77 lines and then keying a command into line 78

converts register Rg to 7 more lines of program memory (lines 78-84),

and so on.

Note: Your HP-34C converts storage registers to program
lines in reverse numerical order, from R4to R and then from

R, to R,. Forthis reason it is good practice to program your
and operations using data registers in the oppo-

site order; that is, beginning with register R,. This procedure
helps avoid accidentally programming and for
data registers which have been converted to lines of program
memory. Remember also that the calculator does not retain
data previously stored in registers that are later converted
to lines of program memory.

Simple Programming 59

Converting Program Memory to Storage Registers

Pressing [CLEAR [prcm]in PRGM mode converts all shared program

memory (lines 071-210) to storage registers R, through R3. However,

deleting individual lines of program memory allows you to convert

portions of shared memory to storage registers without clearing all of

program memory. (More on deleting lines of memory in section 4,

Editing.)

Using (MeEwm]

The [MEM](memory) function on your calculator describes the current

memory allocation in or out of program mode. When you press

(Mem] the display shows both (1) the number of currently unused (avail-

able) program lines you must load before a storage register will be

converted, and (2), the name of the storage register which is next in

line to be converted (R4 through R4, Ry through Ry). For example, if

you press [9](Mem] with 44 lines of program memory occupied, you

will see the following display:

I——»p-zs r-.9<—‘

Lines remaining to be occupied The next storage register to be
before the calculator automati- converted.
cally converts a storage register
to 7 more program lines.

If you press [9](mem)with 173 lines of program memory occupied, you

will see this display:

l——-»p-oz r-4<——-|

Lines remaining to be occupied The next storage register to be
before the calculator automati- converted.
cally converts a storage register
to 7 more program lines.

60 Simple Programming

If you press [@](MEM) with 205 lines of program memory occupied, you
will see this display:

I—-»p-os r- 4——1

Lines remaining to be occupied No more storage registers can
beforeall lines of program mem- be converted to program mem-
ory are occupied. ory.

As long as you are pressing [MEM], the memory allocation will be dis-
played. When you release the (MEm] key, the calculator returns to the
original display. So at any time, you can find out the number of lines

available for programming and the number of registers available for

storing data. Because the I-register is a permanent storage register with

special functions, it is not covered by the [MEm] operation.

Note: Remember that the statistical functions involve
registers R, through R;. If one or more of these last six
registers are converted to lines of program memory, attempts
to execute statistical functions will result in an Error 2
display.

Writing a Third Program
To further explore the programming capabilities of your HP-34C let’s

write a third program. Suppose you want to write a program that will

calculate the increase in volume of a spherical balloon as its diameter

increases using the formula:

Increase in volume = Ygmr (d,® — d¢?),

where d,, is the original diameter of the balloon and d,is the new diame-

ter. If d, were entered in the Y-register and d, were keyed into the

X-register, the problem could be solved manually by pressing the keys

shown in the left-hand column below. The program keystrokes for this

problem are the same as the manual keystrokes. Switch the PRGM-RUN

switch to erem[[[[JJl] and press the keys shown below.

Keystrokes

(f) CLEAR
(v) (L)
3
) &)

3
3
=]
) (=]
]
6

(=)
() (BTn]

Display

000-
001-25, 13, 12

002 -

003-

004-

005 -

006 -

007-

008-

009-

010-

011-

012-

3

25 3

21

3

25 3

41

25 73

61

6

71

25 12

Simple Programming 61

Cube the new diameter.

Cube the original diameter.

Subtract the cubes.

Multiply by .

Divide by 6.

Slide the PRGM-RUNswitch to [JIrw~

Notice that an command was not included to separate the number
3 in line 002 from the digits you will key in later. Including

after the instruction would not cause an error in this example, but
is not necessary. Why? When a running program executes a [LBL

instruction, stack lift is enabled. When a new numberis then entered into

the X-register the stack automatically lifts. Here is how this works when

you run the above program with d, entered into the Y-register and d,

keyed into the X-register.

Stack Registers

001 002 003

di

) 3

If you are unsure how other operationsaffect the stack, see appendix E

Stack Lift and LAST X.
’

62 Simple Programming

Example: Find the increase in volume

of a spherical balloon if the diameter

changes from 30 feet to 35 feet.

Keystrokes Display

30 30.0000 Enter original diameter into

Y.
35 8,312.1306 Key new diameter into X

and run the program. The

answeris displayed in cubic

feet.

Program Stops and Pauses
When programming, there may be occasions when you want a program

to halt during execution so that you can key in data. Or you may want the

program to pause so that you can quickly view results before the program

automatically resumes running. Two keys, (R/S](run/stop) and

(pause), are used for program interruptions.

Planned Stops During Program Execution

The (R7S](run/stop) function can be used either as an instruction in a

program or as an operation pressed from the keyboard.

When pressed from the keyboard:

Simple Programming 63

1. If a program is running, (R/S]halts program execution.

2. If a program is stopped or not running, and the calculator is in

RUN mode, pressing (R/S]starts the program running. Execution

then begins with the first line of program memory following the

(r7s])instruction. (When (R7/S]is pressed and held in RUN mode,

it displays the line number and keycode of that current line—

when released, execution begins with that line.)

You can use these features of the instruction to stop a running

program at points where you want to key in data. After the data has been

keyed in, restart the program using the key from the keyboard.

Example: Universal Tins, a canning

company, needs to calculate the vol-

umes of various cylindrically-shaped

cans. Universal would also like to be

able to record the area ofthe base of each

can before the volume is calculated.

The following program calculates the area of the base of each can and

then stops. After you have written down the result, the program can be

restarted to calculate the final volume. The formula used is:

Volume = base area X height = wr?2 X h

The radius (r) and the height (&) of the can are keyed into the X- and

Y-registers, respectively, before the program is run.

64 Simple Programming

To record this program, set the PRGM-RUN switch to eram[l , then

key in the following program instructions.

Keystrokes Display

(f] CLEAR 000- Clears program memory and

displays line 000.

(v] (8] (&) 001-25, 13, 11
3 002- 15 3 Square the radius.

)@ 003- 25 73 Place 7 in X.

x] 004- 61 Calculate the area of the

base.

R/S 005- 74 Stop to record the area.

] 006- 61 Calculate the final volume.
(M) (rRTN) 007- 25 12

Set the PRGM-RUN switch to [ll[[M[lrev . Then use the program to
complete the table below:

Height | Radius | Areaof Base | Volume

25 10.0 ? ?
8 45 ? ?

Keystrokes Display

25 25.0000 Enter the height into the

Y-register.

10 (&) 314.1593 Key the radius into the

X-register and calculate

area. Program stops to

display the area.

R/S 7,853.9816 Volume of first can is

calculated.

8 8.0000 Enter the height into the

Y-register.

4.5 (a] 63.6173 Key the radius into the

X-register and calculate
area. Program stops to dis-

play the area.

R/S 508.9380 Second volume is

calculated.

Simple Programming 65

With the height in the Y-register and the radius in the X-register, pressing

(a])in automatic RUN mode calculates the area of the can’s base; the

program stops at the first instruction encountered. Pressing

calculates the volume of the can. Program execution then returns to

line 000 and halts.

Pausing During Program Execution

An [n](Psg] instruction executed in a program interrupts program

execution to display results momentarily before execution is resumed.

The length ofthe pause is about 1 second, but you can use more than one

consecutive [n](PSE] instruction to lengthen the time.

To see how [n) can be used in a program, we’ll modify the cylinder

volume program in the previous example. In the new program the area

of the base will be briefly displayed before the volume is calculated.

This example will also show how different programming approaches can

be taken to solve the same problem.

To key in the program, set the PRGM-RUN switch to rram[N -
Press (] CLEAR [prcw] to clear program memory and display line
000. Then key in the following program instructions.

Keystrokes Display

(1] CLEAR 000-

™) (teg) (&) 001-25, 13, 11
(x3 002- 15 3 Squares the radius in X.

™)@ 003- 25 73 Places 7 in X.

] 004- 61 Calculates the area of the

base.

() 005- 25 74 Pauses to show the base area

for one second.

] 006- 61 Calculates final volume of

can.

™ 007- 25 12

66 Simple Programming

This program also assumesthe height has been entered into the Y-register

and the radius has been keyed into the X-register. If you have stored the

instructions, set the PRGM-RUN switch to [Ji[Mrun - Now complete
the table below using the new program.

Height | Radius | Areaof Base | Volume

20 15 ? ?
10 5 ? ?

Keystrokes Display

20 20.0000 Enter the height into the

Y-register.

15 (&) 706.8583 Key the radius into the

X-register and calculate.

Area ofbase is displayed for

1 second.

14,137.1669 Program stops, displaying

the volume.
10 10.0000 Enter the second height into

Y.

5 (&) 78.5398 Key the radius into the

X-register and calculate.

Area ofbase is displayed for

1 second.
785.3982 Program stops, displaying

the volume.

Unexpected Program Stops

At times a mistake of some kind in your program will stop program

execution. To help you determine why the calculator stopped in the

middle of a program, possible reasons are listed below.

Executing [h) . Unless in a subroutine, whenever [h] is

executed in a program, the calculator immediately returnsto line 000 and
halts.

Simple Programming 67

Encountering the End of Program Memory. When the final instruc-

tion in program memory is not (GT0], , or (R7S], and is not in

a subroutine, a running program will encounter the end of occupied

program memory, transfer immediately to line 000, and halt.

Pressing Any Key. Pressing any key halts program execution. Be care-

ful to avoid pressing keys during program execution. The calculator has

been designed so that program execution will not halt in the middle of a

digit entry sequence. If you press any key while a numberis being placed

in the X-register by a running program, the entire number will be *‘writ-

ten’’ and the following line will be executed by the program before the

calculator halts.

When a program is halted, you can resume execution by pressing

from the keyboard in RUN mode. When you press (R/S], the program

resumes execution where it left off as though it had never stopped at all.

Error Stops. If the calculator attempts to execute any error-causing

operation (refer to appendix D, Error Indications) during a running

program, execution immediately halts and the calculator displays the

word Error and a number. To see the line number and keycode of the

error-causing instruction, you can switch the calculator to PRGM mode.

Overflow Calculations. Your HP-34C has been designed so that by

looking at the display you can always tell why the calculator stops. If

program execution stops because the result of a calculation in the X-

register is a number with a magnitude greater than 9.999999999 X 10%,

all 9’s are displayed with appropriate sign. It is then easy to determine

the operation that caused the overflow by switching to PRGM mode and

identifying the keycode in the display.

If an attempted storage register arithmetic operation would result in

overflow in a storage register, the calculator halts and displays Error 1.

The numberin the affected storage register remains unchanged from its

previous value. When you clear the error message, the last numberin the

display returns.

If the result of a calculation is a number with a magnitude less than

1.000000000 X 1099, zero will be substituted for that number and a

running program will continue to execute normally. This is known as an

underflow.

68 Simple Programming

Labels
The labels ((&), (8], 0-9) in your programs act as addresses—they tell

the calculator where to begin or resume execution. When a label is

encountered as part of a program, execution merely ‘‘falls through’” the

label and continues onward. For example,in the program segment shown

below,if you press (&), execution would begin at [n] (a] and con-

tinue downward through program memory, on through the [h] 3

instruction, until the was encountered and execution returned to

line 000 and halted.

(n] (B (&) When you press [A]... execution

begins here.

No (n](rTN] here ...
so execution falls through the

(n] 3 instruction and continues to the (RTN],

then transfers to line 000 and halts.
Flowcharts

At this point, we digress for a moment from our discussion of the calcu-

lator itself to discuss a fundamental and extremely useful tool in

programming—the flowchart.

A flowchart is an outline of the way a program solves a problem. With

210 possible instructions, it is quite easy to get ‘‘lost’” while creating a

long program, especially if you try to simply load the complete program

from beginning to end with no breaks. A flowchart is a shorthand that can

Simple Programming 69

help you design your program by breaking it down into smaller groups

of instructions. It is also very useful as documentation—a road map that

summarizes the operation of a program.

A flowchart can be as simple or as detailed as you like. Here is a flow-

chart that shows the operations you executed to calculate the area of a

circle according to the formula A = 7r2. Compare the flowchart to the

actual instructions for the program:

ooStart

Square radius. (¢J 3

‘
Summon pi. v (0

;
Multiply. >

'

=

70 Simple Programming

You can see the similarities. At times, a flowchart may duplicate the set

of instructions exactly, as shown above. At other times, it may be more

useful to have an entire group of instructions represented by a single

block in the flowchart. For example, here is another flowchart for the

program that calculates the area of a circle:

Calculate mr2.

Here an entire group of instructions was replaced by one block in the
flowchart. This is a common practice, and one that makes a flowchart

extremely useful in visualizing a complete program.

You can see how a flowchart is drawn linearly, from the top of the page

to the bottom. This represents the general flow of the program, from

beginning to end. Although flowcharting symbols sometimes vary,

throughout this handbook we have held to the convention of ovals for

the beginning and end of a program or subroutine, and rectangles to
represent groups of functions that take an input, processit, and yield a

single output. We have used a diamond to represent a decision, where a

single input can yield either of two outputs.

Simple Programming 71

For example, if you had two numbers and wished to write a program

that would display only the larger, you might design your program by

first drawing a flowchart that looks like this:

Input #1.

Y

 Input #2.

 Y Y

Display #2. Display #1.

After drawing the flowchart, you would go back and substitute groups of

instructions for each element of the flowchart. When the program was

loaded into the calculator and run, if #2 was larger than #1, the answer

to the question ‘‘Is #2 larger than #1?”’ would be YES,and the program

72 Simple Programming

would take the left-hand path, display #2, and stop. If the answer to the
question was NO, the program would execute the right-hand path, and

#1 would be displayed. You will see later the many decision-making

instructions available on your HP-34C.

As you work through this handbook, you will become more familiar with

flowcharts. Use the flowcharts that illustrate the examples and problems

to help you understand the many features of the calculator, or draw your

own flowcharts to help you create, edit, eliminate errors in, and

document your programs.

Problems

Here are four programming examples for you to try using material we’ve

already covered. Possible solutions for these examples are shown on the

following pages. However, you will receive the most benefit from the

exercises by coming up with your own solutions before finding out how

we’ve done it. Remember, there is usually more than one way to solve a

programming problem. Perhaps you can improve on our solutions!

1. You have seen how to write, load, and run a program to calculate

the area of a circle from its radius. Now write and load a program

that will calculate the radius r of a circle given its areaA using the

formula r = VA/mr. Be sure to slide the PRGM-RUN switch

to PRGM and press [f] CLEAR [prcm]first to clear program

memory. Define the program with [n] (A)and (n](RIN).

After you have loaded the program, run it to calculate the radii of

circles with areas of 28.2743 square inches, 113.0973 square

meters, and 254.4690 square miles.

(Answers: 3.0000 inches, 6.0000 meters, 9.0000 miles.)

2. Create a program to calculate the length of a chord £ subtended by

angle 60 on a circle of r radius using the equation £= 2r Sin % .

Simple Programming 73

Define this new program with [n) (8)and use it to complete

the following table:

r (meters) 6 L

25 30 ?
50 45 ?
100 90 ?

Design your program for a r, 6 order of data entry.

(Answers: 12.9410 meters, 38.2683 meters, 141.4214 meters.)

If you have difficulty programming for this example, go back to

page 60 and study Writing a Third Program.

3. Write and load a program that will convert temperature in degrees

Celsius to Fahrenheit, according to the formula F = 1.8 C + 32.

Define the program with [h] 0 and (n) and run it to

convert Celsius temperatures of —-40°, 0°, and +72°.

(Answers: -40.0000°F, 32.0000°F, 161.6000°F.)

4. Create a program that will convert temperature in Fahrenheit

back to Celsius according to the formula C = (F — 32)5/9.
Define the program using () 1 and (®] (r7n]. Run this

new program to convert the temperatures in Fahrenheit you

obtained back to Celsius.

If you wrote and loaded the programs as called for in problems 3 and 4,

you should now be able to convert any temperature in Celsius to Fahren-

heit by pressing 0 and any temperature in Fahrenheit to Celsius by

pressing 1. Questions? Review Executing Instructions, beginning

on page 54, concerning the use of and labels O through 9 for

addressing individual programs.

74 Simple Programming

Vquotient

Key in C.

Start

1.8C

Y
Add constant.

Y

sin /2

v
2r

v
Multiply.

Y

Key in F.

Start

Subtract
constant.

:
difference X 5

0

 Y

(Stop)

Example Problem Solutions

Radius of a Circle

Length of a Chord

Convert Celsius to Fahrenheit

Convert Fahrenheit to Celsius

Keystroke Solutions

1. Area [a]= Radius

Simple Programming 75

Keystrokes

(] (eL] (&)
&E
-
(=
(~] (BTn]

(n] (cet] (&)
2
]
() E™
]
2
J
(&N

®EEo
1

()
(n) (RN

2. Radius 6 (8]= Length of Chord

Display

001- 25, 13, 11

002- 2573
003- 71
004- 14 3
005- 25 12

001- 25, 13, 12

002- 2
003- 71

004 - 14 7

005- 61

006- 2
007- 61

008 - 25 12

001-25,13, 0

002- 1
003- 73
004- 8
005- 61

006- 3
007- 2

008- 51

009- 25 12

001-25,13, 1

002 - 3

003 - 2

004 - 41

005- 5

006 - 61

007 - 9
008 - 71

009- 25 12

3. C(asB]0 =F

4. F(as8]1 =C

76 Simple Programming

Programming Techniques

The solutions to some types of problems require you to use the same
variable several times during your calculations. As you may know, there

is more than one way to program such solutions in your HP-34C. How-

ever, the program that is economical both in execution time and in

program space is often the most desirable. Let’s compare two different
ways we can approach the solution to a problem using the same variable

several times. For example, the polynomial f(x) = x* + 3x® — x% + 4x
— 1 uses the variable x four times;i.e., x*, x3, x2, x. This means that four

powers ofx will be needed to calculatef(x). Yourtask is to write a pro-

gram that both describesf(x) mathematically and makes available a copy

of the variable x each timeit is needed during program execution. You

can do this with reasonable efficiency in one of two ways. Either initially

store a copy of the variable for later recall wherever it is needed; or,

better, write your program so that the stack need only be filled with

copies of the variable prior to execution. The advantages of this stack

fill method over the storage method are:

1. Your program can easily be written to keep a copy ofthe variable

either ready for immediate use or accessible with an instruc-

tion. (Remember that each time the stack drops, the T-register

duplicates the number which last occupied it before the stack
dropped.) This means you use fewer lines of program memory

because and instructions are unnecessary.

2. A storage register is saved for other uses.

3. Stack fill is convenient for evaluating polynomial expressions

generally, and for use with most and applications
(more on and later).

Now let’s look at a program that evaluates the expression x* + 3x® —

x2+ 4x — 1 using the stack fill method. This time we’ll see just the

program instructions and stack contents. Examine the program instruc-
tions line by line and be sure you understand how and why each instruc-

tion affects the stack. Assume that the value ofx is already in the stack

when program execution begins.

77Simple Programming

Stack Registers

005

002 003001

&3(h)(tet] (&)

010009

007

] &3

013012011

x*+3x3—x?
(@) 3

016015014 U
N

A
J
‘

=
=

U
N

\
]
\
]
\

N
x|

3
x

=
l
+-

=

 \
I
\
T<4|+|

oo

=
1]=on+-=

N‘
]
\
]

o=|

Tl
=
<|
+
|

-o

N
N|

fi
l
\
fi
l
l

=
<

x
N

Y[

78 Simple Programming

Stack Registers

) o7o8 o ___
T x JLx] x]
z - %I
Y| x+3x3—x2+4x

|

| X 1L X |

X[1 [][rac]
1 =) (n) (r7N)

Notice that extra copies of the variable remain in the stack after the

program has been run. If, for any reason, you want to return a copy ofthe

variable to the display after evaluating f(x) at that variable, simply

press (xxY].

To experiment with the stack fill method, key in the program for evalu-

ating the above expression and try running some examples.

Slide the PRGM-RUN switch to pram [T -

Keystrokes Display

(fJCLEAR 000-

(n])(tey) (&) 001- 25, 13, 11

4 002- 4

) 003- 25 3

004- 21

3 005- 3

™) 006- 25 3
3 007- 3

] 008- 61

009- 51

X%y 010- 21

@) x3 011- 15 3
012- 41

013- 21

4 014- 4

x) 015- 61

016- 51

1 017- 1

=) 018- 41

() (r7N) 019- 25 12

Simple Programming 79

Slide the PRGM-RUNswitch to [l[Mlrun and evaluate the expression
at the following values of x: 1, 2, 7.1935, In 17.5.

Keystrokes Display

1
1.0000 Fill stack with variable.

) 6.0000 f(x)

2
2.0000 Fill stack with variable.

(&) 43.0000 f(x)
7.1935 (enTERY]

7.1935 Fill stack with variable.

A) 3,770.4359 f(x)

17.5 (1]
2.8622 Fill stack with variable.

@) 139.7118 f(x)

Using Horner’s Method

As you can see, the above program was logically and easily written; and

it produced the results we wanted. However, using a mathematical tech-

nique known as Horner’s method, we can write a program that is not

only logical, but is also simpler and shorter.

For a polynomial expression ap,x" + a,_x"'+,...,a,x! + a,, Horner’s

method essentially reduces all powers x™, x™! ... x! of the variable to x!.

As a result, the expression is stated as a series of arithmetic operations

involving the variable x and the coefficients a,, a,_,,...,a;, a,. For

example, applying Horner’s method to the polynomial expression we

calculated earlier:
x4 3— x4+ 4x — 1

(xX*+3x2—x+4dx — 1

((x2+3x — DHx + 4)x — 1

((x+3)x —Dx +dHx — 1

We can now write another program using the same stack fill method we

used in the previous program. But this time, because we rewrote f(x)

using Horner’s method, our program involves just seven arithmetic

operations instead of the six arithmetic and three exponential operations

needed earlier.

0 Simple Programming

Stack Registers

£

XIl
X i]lr X

11
i

X (x+3)x—1)x

L

A
N
N

Vv

((x+3)x—1)x

=] (n)(RTn]

Simple Programming 81

The above program uses only 13 lines of program memory, a savings of

6 lines over the previous program to calculate the same expression. Key

in the above program and try the same examples we ran earlier.

Slide the PRGM-RUN switch to prem [[[[Jll . If you have not executed
any other instructions since the previous evaluations off(x), you will

see 000- in the display. If this is not the case, press (GTo]J(s] 000

(more on later).

Keystrokes Display

() 001- 25, 13, 12

3 002- 3

003- 51

x) 004- 61

1 005- 1

B 006- a1
x) 007- 61

4 008- 4

009- 51

x) 010- 61

1 011- 1

(=] 012- 41

(M) (rTN) 013- 25 12

Slide the PRGM-RUNswitch to [[ll[[Mru~y and evaluate the expression

using the same values of x we used earlier.

Keystrokes Display

1
1.0000 Fill stack with variable.

6.0000 f(x)

2
2.0000 Fill stack with variable.

43.0000 f(x)
7.1935 (ENTERY]

7.1935 Fill stack with variable.

3,770.4359 f(x)

17.5 1]
2.8622 Fill stack with variable.

139.7118 f(x)

82 Simple Programming

Did you notice something different? In addition to reducing the size of

the program, using Horner’s method reduced execution time as well.

Further Applications

As you have seen, the stack fill technique provides a simple and useful

approach to evaluating an expression containing several occurrences of

the same variable. By applying Horner’s method to the problem, where

possible, we realize greater space savings and speed. Later, when we

discuss root-finding and numerical integration, you will see how the

automatic stack fill designed into the [soLve]and operations enhances

the power and convenience of your HP-34C’s programming and

problem-solving capability.

Problems

Using the stack fill technique and Horner’s method, write and execute

programs for evaluating the following expressions at x values of

1.5, 3.73, and -4.25.

1. 2x° —x*+2x2+x + 1

2. 0.97 Sin®x + 0.04 Sin*x — 1.73 Sinx — 1

Answers:

1. 17.1250, 1,283.0102, -3,066.5371.

2. -1.0452, -1.1121, -0.8720.

Section 4

Program Editing

Often you may wantto alter, correct, or add to a program thatis loaded in

the calculator. On your HP-34C keyboard, you will find several editing

functions that permit you to easily add or change steps in a loaded pro-

gram without reloading the entire program.

As you may recall, there are nine functions that cannot be recorded in

program memory. Seven of these functions are program editing and

manipulation functions, and can aid you in modifying and correcting

your programs.

Nonrecordable Operations

CLEAR is one keyboard operation that cannot be recorded in pro-

gram memory. When you press [f] CLEAR in PRGM mode,

program memory is cleared and the calculator is reset to the top of mem-

ory (line 000). Note that [CLEAR [prGm]does not reset a RAD or GRD

trig mode to DEG.

(single step) is another nonrecordable operation. When you press

(n]) (ss7), in PRGM mode, the calculator moves to and displays the next

line in occupied program memory. No program instructions are exe-

cuted. When you press [h] in RUN mode the calculator also moves

to and displays the next line of program memory. But when you release

the key, the calculator executes the instruction loaded in that line.

(back step) is a nonrecordable operation used in both PRGM and

RUN mode to move to and display the previous line of program memory.

In RUN mode the original contents of the display reappear when is

released. No program instructions are executed.

CLEAR is the nonrecordable operation used after a prefix key-
stroke ((7], [@],or (n))tocancel thatkeystroke. CLEAR also
cancels all keystrokes in an incomplete instruction such as [f] or

(+]. CLEAR [PREFIX] has no effect on a completed instruction (i.e.,

() (e s, I, etc.).
84

Program Editing 85

(go to) ((+] nnn is used for going to a specific line number, and is

another keyboard operation which cannot be loaded as an instruction.

(However, followed by a numbered label O through 9 can be

loaded as a program instruction. More about the use of this instruction

later.) Whether the calculator is in PRGM or RUN, when you press

(] followed by a three digit line number, the program memory is

set to that line number. No instructions are executed. If the calculatoris

in RUN mode, you can verify that the calculator is set to the specified

line by briefly switching to PRGM mode. The (GTo] (=] nnn opera-

tion is especially useful in PRGM mode because it permits you to jump

to any location in occupied program memory for editing or checking

purposes.

Note: Attempting to execute a (=] nnn instruction
to any lines of program memory that are unoccupied or
that the calculator has not converted from data storage
registers is an illegal operation which results in the error
signal Error 4.

The (DEL](delete) key is a nonrecordable operation that you can use in

PRGM mode to delete instructions from program memory. When the

calculator is in PRGM mode and you press [n] (DEL), the instruction at

the current line of program memory is erased. All subsequent in-

structions in program memory then move upward one line. Pressing

) in RUN mode does nothing.

The [MEM] (memory) function, displays the current memory allocation at

any time, in or out of program mode. To review [MEM], see page 59 in
section 3, Simple Programming.

Now let’s load a program from the keyboard and use your HP-34C’s

editing tools to check and modify it.

86 Program Editing

Pythagorean Theorem Program

The following program computes the

hypotenuse of any right triangle , given

the other two sides. The formula used is

c =Va®*+ b

Below are instructions for the program

(basically, the same keys you would

press to solve for ¢ manually), assum-

ing that values for sides a and b have

been input to the X- and Y-registers of

the stack.

To load the program:

First set the calculator to prom[[[[Jlfll mode. Then press (] CLEAR

to clear program memory of any previous programs and reset

the calculator to line 000 of program memory. Finally, load the program

by pressing the keys shown below.

Keystrokes

5 g
[

@
!
@

D - ZzB
E
E
E

Return the calculator to [JIMrun

Display

001- 25, 13, 11
002- 15 3
003- 21
004- 15 3
005- 51
006- 14 3
007- 25 12

b2

a2

a? + b?
\/a2 + b2

End of program; calculator

returns to line 000 and halts.

mode.

Program Editing 87

Now you can run the program. For example, calculate the hypotenuse of

a right triangle with side a of 22 meters and side b of 9 meters. (Notice

that the order of entry does not matter in this case.)

Keystrokes Display

22 (ENTER¢) 22.0000

9 9.

(A] 23.7697 Length of side ¢ in meters.

To compute the hypotenuse of a right triangle with a side a of 73 miles
and a side b of 99 miles:

Keystrokes Display

73 (ENTERY) 73.0000
99 99.
] 123.0041 Length of side ¢ in miles.

Now let’s see how we can use the nonrecordable editing features of the

calculator to examine and alter this program.

Single-Step Execution of a Program

With the Program Mode switch set to RUN mode, you can execute a
recorded program one line at a time by using [h] (single-step).

To single-step through the Pythagorean Theorem program using a

triangle with side a of 73 miles and side b of 99 miles:

Keystrokes Display

73 (ENTER®) 73.0000

99 99. Program initialized for this
set of data before running.

Now, press (h](ssT] and hold down to see the keycode for the

next instruction. When you release the (sst]key, that next instruction is

executed. (Remember that the (n] instruction in line 007 returned

the calculator to line 000 after the last execution of the program.)

88 Program Editing

Keystrokes Display

(n) (ssT) 001-25,13,11 Keycode for [h] (a)
seen when you hold

down.

99.0000) (a] executed when
you release [SsT).

(Notice that you didn’t have to press [A]. When you are executing a

program one line at a time, pressing [h](SsT] begins the program

from the current line of program memory; in this case, line 001.)

Continue executing the program by pressing [h) again. When you

hold down, you see the keycode for the next instruction. When you

release (SsT]), that instruction is executed.

Keystrokes Display

(n])(ss1) 002- 15 3 Keycode for (%7
9,801.0000 Executed.

When you press [h] (SsT]a third time in RUN mode, line 003 of pro-
gram memory is displayed. When you release the key, the instruc-
tion in that line, [xzY)], is executed, and the calculator halts.

Keystrokes Display

(n) 003- 21 Keycode for (xxY].

73.0000 Executed.

Continue executing the program by means of [n](SsT]. When you have

executed the (h] instruction in line 007, the calculator returns to

line 000 (later we will cover more on how works). You have

completed executing the program and the answeris displayed, just as if

the calculator had executed the program automatically, instead of via

®ED.

Program Editing 89

Keystrokes Display

(v 004- 15 3

5329.0000

(n) 005- 51

15,130.0000

(n) 006 - 14 3

123.0041

() 007- 25 12

123.0041 Final answer.

Note: [n](ssT] will not advance into unoccupied lines of
program memory. If you single-step from the last occupied
line of program memory in RUN or PRGM mode your HP-34C
conveniently returns to line 000. In RUN mode the original
contents of the display remain unchanged. In PRGM mode
000- indicating the top of program memory, is displayed.

You have seen how the key can be used in RUN mode to single-
step through a program. Using [h](ss7] in this manner can help you

create and correct programs. Now let’s see how you can use]

000, (ss7), (8], and (<] nan in PRGM mode to help you

modify a program.

Modifying a Program
Let’s modify the Pythagorean Theorem program so that the X-register

contents will automatically be displayed at certain points in the program.

We will do this by inserting the [n] instruction to halt the program

and display the contents of the X-register for about 1 second, then re-

sume execution. (More about later.) Here is the program you just

ran.

Keystrokes Display

(n) (8] (&) 001- 25, 13, 11

(9] (x3 002- 15 3

003- 21 We will insert an [h](PSE]

(9] (x3 004 - 15 3\ instruction after each of

005- 51 these instructions.

(1) 006- 14 3
™) (rTN) 007- 25 12

90 Program Editing

Single-Step Viewing Without Execution

You can use in PRGM mode to single-step to the desired line of

program memory without executing the program. When you switch the

calculator to PRGM mode, you will see that the calculatoris reset to line

000 of program memory as a result of executing the [n] instruction

in the above example. When you press [h] [SsT]once, the calculator now
moves to line 001 and displays the contents of that line of program

memory. No instructions are executed.

Slide the PRGM-RUN switch to prem[[IHN -

Keystrokes Display

000- Line 000 of program

memory.

(mM(ss7) 001- 25, 13, 11

You can see that the calculator is set at line 001 of program memory. If

you press a recordable operation now, it will be loaded in the next

line, line 002, of program memory, and all subsequent instructions

will be ‘‘bumped’’ down one line in program memory.

Thus, to load the (] (PSE] instruction so that the calculator will pause

and display the contents of the X-register:

Keystrokes Display

() 002- 25 74

Now let’s see what happened in program memory when you loaded that

instruction. With the calculator set at line 001, when you pressed

(n])(PSE], program memory was altered ...

Program Editing 91

... from this... ... to this.

001 (n) (&) 001 [h) (A . ‘
002 (9] (x7 ~ 002 (n)(PsE) <« [n] (PSE] instruction

003 003 = inserted here.

004 x3 § 004 All sub§equent

005 ~ [905 BT “bumped” down
006 () ~a 006 one line of program

007 [h) (&Tn) 007 (1] memory.

T 508 B
Resetting to Line 000
Your HP-34C automatically resets to line 000 when turned on. And, as

you know, when you press] CLEAR [prGm)with the calculator set to
PRGM mode, the calculator is reset to line 000 and all instructions in

program memory are erased. However, you can also reset the calculator

to line 000 while preserving existing programs in program memory by

pressing (] 000 in PRGM or RUN mode and (h) in RUN
mode.

To set the calculator to line 000 with the Pythagorean Theorem program

loaded into program memory:

Keystrokes Display

(-] 000 000-

Going to a Line Number
It is easy to see that if you wanted to single-step from line 000 to some

remote line number in program memory, it would take a great deal of

time and a number of presses of [h](ssT). To avoid such inconveniences

simply apply the (<] nnn procedure which you used previously to

jump to line 000. In a manner similar to (=] 000, when you press
(<] nnn, the calculator immediately jumps to the occupied line

number specified by nnn. No instructions are executed. If you press

(=] nnn in RUN mode,the display remains unchanged. Ifyou press

92 Program Editing

(=] nnn in PRGM mode, the line of occupied memory (line number

and keycodes) addressed by nnn appears in the display. In RUN mode,if

you then initiate a label search or program execution, the search or

execution will begin with that line of program memory. In PRGM mode,

any loading of additional instructions will begin with the next line of

program memory.

For example, to add an (n](PSE] instruction to review the X-register

contents after the squares have been added together by the instruction in

line 006, you can first press (GT0](go to) followed by a decimal point and

the appropriate three-digit line number of program memory. Then press

) to place that instruction in thefollowing line of program mem-

ory. Remember that when you add an instruction in this manner, each

subsequent instruction is moved down one line in program memory. To

add the (n](PsE]instruction after the instruction that is now loaded

into line 006, be sure the calculator is in PRGM mode, then:

Keystrokes Display

(<] 006 006- 51

(n)(PsE) 007- 2574

As you load the [(h) instruction into line 007, the instruction that

was formerly in line 007 is moved to line 008, and the instruction in

subsequent lines are similarly moved down one line.

When you added the [n](PSg] instruction after line 006, program
memory was altered ...

... from this... ... to this.

001 (%) (&) 001 (0 (1)
002 (n](PsE) 002 (n](PsE)

003 (x3) 003 x3

004 004

005 (g](x? 005 x3

006 006 (n]) (PSE] instruction
007 (i) 007 (n)(PsE) <inserted here.

008 (n) TN T008 (1) Subsequentinstruc-
T~ 009 (n) l tion bumped down
 one line in program

memory.

Program Editing 93

Inserting Instructions in Longer Programs

Afterthe initial 70 lines of program memory are occupied, the calculator

automatically converts storage registers to available program memory in

blocks of 7 lines at a time. This occurs block by block as each new

allocation of program linesis filled up with instructions. If only the first

70 program lines are occupied, inserting another instruction at any point

automatically causes the conversion of one storage register (Rg in this

case) to 7 more lines of available program memory and places the last
instruction of the program in line 71. You would then have 77 program
lines available and 71 occupied. (Refer to page 55, Automatic Memory
Allocation.) With 77 lines occupied, inserting one instruction converts
another storage register (Rg) to 7 program lines, and so on. If all 210

program lines are occupied, the calculator will not accept any additional
program instructions. If you attempt to add a new instruction at any point
in program memory with all 210 lines already occupied, Error 4 appears
in the display and program memory remains unchanged. (Remember—
pressing (mem] periodically while loading a long program will tell

you the current status of the program line/storage register allocation.)

Stepping Backwards Through a Program

The (back step) key allows you to back step through a loaded

program for editing whether the calculator is in RUN or PRGM mode.

When you press [h] , the calculator backs up one line in program

memory. If the calculator is in RUN mode, the previousline is displayed

as long as you hold down the (BsT]key. When you release it, the original

contents of the X-register are again displayed. In PRGM mode, of

course, you can see the line number and keycode of the instruction in the
display at all times. No instructions are executed, whether you are in

RUN or PRGM mode.

Note: When your HP-34C is at the top of the program

memory (line 000), pressing [h] moves the calculator
to the last line of occupied program memory. This feature is
particularly helpful when you want to quickly verify the length
of an existing program or to begin loading a new program or
subroutine that you want to follow a program or subroutine
already in memory.

94 Program Editing

You now have one more [n] instruction to add to the Pythagorean

Theorem program. The ([n](PSE] instruction should be added after the

instruction that is now loaded in line 004 of program memory. If

you have just completed loading [n] in line 007 as described above,

the calculatoris set at line 007 of program memory. You can use [BST]to

back the calculator up to line 004, then insert the [h) instruction in
line 005. To begin:

Ensure that the calculator is set to rem[[[[Jilij mode.

Keystrokes Display

007- 25 74 Calculator initially set to

line 008.

) 006- 51 Pressing (n] once
moves the calculator back

one line in program

memory.

Continue using the key to move backward through program

memory until the calculator displays line 004.

Keystrokes Display

™ 005- 15 3
(v 004- 21

Since you wish to insert the () instruction after the instruc-
tion now loaded in line 004, you move the calculator to line 004. As

always, when you key in an instruction, it is loaded into the next line

after the line being displayed. Thus, if you press [hn](PSE]) now, that

instruction will be loaded into line 005 of program memory, and all

subsequent instructions will be moved down, or ‘‘bumped,’’ one line.

Keystrokes Display

(n](PsE) 005- 25 74

You have now finished modifying the Pythagorean Theorem program so

that you can review the contents of the X-register at several points while

it runs.

Program Editing 95

The altered program is shown below:

Keystrokes Display

(n]) () (&) 001- 25, 13, 11

(n](PsE] 002- 25 74

(9] (x3) 003- 15 3

004- 21

(n) (PSE) 005- 25 74
(9) (x3 006- 15 3

007- 51

(n])(PsE) 008- 25 74

(1] 009- 14 3

(n)(rTN] 010- 25 12

If you wish, you can use [(h] in PRGM mode to verify that the

program in your calculator matches the one shown above.

Running the Modified Program
To run the Pythagorean Theorem program, you need only set the calcu-

lator to RUN mode, key in the values for sides a and b and press (&].
The calculator displays the X-register contents (side b), then squares side
b, exchanges the contents of the X- and Y-registers, and again reviews
the X-register contents (side a this time). Then the calculator squares

sidea, adds b* toa?, and reviews the X-register contents (a? + b?) a third
time. The hypotenuse is then calculated and execution returns to line 000
and halts.

For example, to compute the hypotenuse of a right triangle with sides

a and b of 22 meters and 9 meters:

Set the calculator to s~ .

Keystrokes Display

22 22.0000
9 (d] 23.7697 After reviewing the X-regis-

ter contents three times

during the running program,

the answer in meters is

displayed.

Now run the program for a right triangle with sides a and b of 73 miles

and 99 miles.

(Answer: 123.0041 miles.)

96 Program Editing

Deleting Instructions

Often in modifying or correcting a program you may wish to delete an

instruction from program memory. To delete the instruction to which the

calculator is set, merely press the nonrecordable operation [h](DEL)

(delete) with the calculator set to PRGM mode. (When you delete an

instruction from program memory using (DeL], all subsequent instruc-

tions in program memory are moved up one line. The calculator then

displays the linepreceding the line that held the instruction you deleted.)

For example,if you wanted to modify the Pythagorean Theorem program

that is now loaded into the calculator so that the X-register was only

reviewed once, for the sum of the squares, you would have to delete the

(n](PsE] instructions that are presently loaded in lines 002 and 005 of

program memory. To delete these instructions, you must first set the

calculator at these lines using [(n](Ss7], (n] , OT (*Jnnn, then
press [n](0EL]). To delete the (n](PSE] instruction now loaded in line

002:

First, set the calculator to prroM[T

Keystrokes Display

(-] 002 002- 25 74 Line 002 is displayed.
() 001- 25, 13, 11 The instruction in line 002 is

deleted and the calculator

moves to line 001.

You can use [h] to verify that the (n](PSE] instruction has been

deleted and subsequent instructions have been moved up one line.

Keystrokes Display

(n] (ssT) 002- 15 3 The instruction formerly in

003 was moved up to line

002, and all subsequent

instructions were moved up

one line when you pressed

(] (oEL).

When you set the calculator to line 002 of program memory and pressed

(n) (DEL), memory was altered ...

Program Editing 97

... from this... ... to this.

O Omm] (Bo002 (n)(PSE) 002 7 '
003 (4) 7 —7 003
004 7 004 (n](PsE) These instructions all
005 (n)(PsE) 7 005 3 move upward one

006 (3)) —7 006 line.
007 — [o07 D3

008 (n)(PsE) — 008 (1) =)
009 (1) (=) ;', 009 (1) (=rn)
010 (n](r7N]
To delete the [n](Psg] instruction now loaded in line 004 you can use

the key to single-step down to that line number and then delete

the instruction with the [n] operation.

Keystrokes Display

) 003- 21
[_T_] 004- 25 74

(n) 003- 21 The (n](PSE] instruction is
deleted from line 004 and the

calculator displays line 003.

Subsequent instructions

move up one line of program
memory.

If you have modified the program as described above, the X-registeris

reviewed only once, just after the sum of the squares is calculated. The

value of the hypoteneuse is then calculated and execution halts.

Set the calculator to [~ mode and run the program for right
triangles with:

98 Program Editing

Sides a and b of 17 and 34 meters. After reviewing the

X-register (sum of the squares = 1,445.0000 meters), the

rest of the program is executed and the calculator halts

displaying the hypoteneuse: 38.0132 meters.

Sidesa and b of 550 rods and 740 rods. After reviewing the

X-register (sum of the squares = 850,100.0000 rods), the

rest of the program is executed and the calculator halts,

displaying the hypotenuse: 922.0087 rods.

To replace any instruction with another, simply set the calculator to the

desired line of program memory, press [h](DEL] to delete the first

instruction, then press the keystrokes for the new instruction.

When deleting instructions from a program of more than 70 lines, the

process of automatically allocating storage registers to program lines

works in reverse. For example, deleting any instruction from a 78-line
program automatically converts program lines 78-85 back to storage
register R3 (Refer to Automatic Memory Allocation, page 55.)

The editing features of the calculator have been designed to provide

you with quick and easy access to any part of your program, whether

for editing, debugging, or documentation. If a program stops running

because of an error or because of an overflow, you can simply switch
the calculator to PRGM mode to see the line number and keycode of

the operation that caused the error or overflow. If you suspect a portion of

your program is faulty, you can use the (<] nnn operation from the

keyboard to go to the suspect section, then use the operation in

RUN mode to monitor every change in calculator status as you execute

the program one line at a time.

Problems

1. You may have noticed that there is a single keyboard operation,

, that calculates the hypotenuse, side ¢, of a right triangle

with sides a and b input to the X- and Y-registers. Replace the

(x7), (=), (x?, (#J, (Psg), and instructions in the

Pythagorean Theorem program with the single [+P]instruction

as follows:

Program Editing 99

a. Use (<) nnn and (n) to verify that the Pythagorean
Theorem program contains the instructions shown below.

Keystrokes Display

(n) (e (&) 001- 25, 13, 11
x3 002- 15 3

xxy 003- 21 Replace all of these instruc-

x3) 004- 15 3 tions witha instruc-
005- 51 tion.

(n](PsE] 006- 25 74
K3 007- 14 3
(0] (rR7N) 008- 25 12

b. Use the (<] nnn keyboard operation to go to line 007,

the last instruction to be deleted in the program.

c. Usethe [n](pEL)keyboard operation in PRGM mode to delete

the instruction in lines 007, 006, 005, 004, 003, and 002.

d. Load the instruction into line 002.

e. Verify that the modified program looks like the one below.

() (e (&) 001- 25,13, 11

(9) 002- 15 4

(W (rR7N) 003- 25 12

f. Switch to Il[Mrw~ mode and run the program for a right

triangle with sides a and b of 73 feet and 112 feet. (Answer:

133.6899 feet.)

2. The following program is used by the manager of a savings and

loan company to compute the future amounts of savings accounts

according to the formula FV = PV(1 + i)", where FV is future

value or amount, PV is present value, i is the periodic interest rate

expressed as a decimal, and n is the number of periods. With PV

entered into the Y-register, n keyed into the X-register, and an

annual interest rate of 7.5%, the program is:

100 Program Editing

Keystrokes Display
(n) 001- 25, 13, 12

(1 g 2 002- 14,11, 2
1 003 - 1
] 004 - 73
0 005- 0
7 006 - 7
5 007 - 5

008 - 21
v 9 009- 25 3
<] 010- 61
) 011- 25 12

. Load the program into the calculator.

Run the program to find the future amount of $1,000 invested

for 5 years.

(Answer: $1,435.63)

Of $2,300 invested for 4 years.

(Answer: $3,071.58)

Alter the program to account for a change of the annualinterest

rate from 7.5% to 8%.

Run the program for the new interest rate to find the future

value of $500 invested for 4 years; of $2,000 invested for 10

years.

(Answer: $680.24; $4,317.85)

The following program calculates the time it takes for an object to

fall to the earth when dropped from a given height. (Friction

from the air is not taken into account.) When the height 4 in meters

is keyed into the displayed X-register and (8]is pressed, the time

t in seconds the object to fall to earth is computed according to

the formula:

=\ /__2h
9.8

Program Editing 101

a. Clear all previously recorded programs from the calculator,

reset the display mode to Fix 4, and load the program below.

Keystrokes Display

(fJ CLEAR 000-
(n) 001- 25, 13, 12
2 002- 2
) 003- 61
9 004- 9
) 005- 73
8 006- 8
=] 007- 71
] 008- 14 3
(n])(rRTN 009- 25 12

b. Run the program to compute the time taken by a stone to fall

from the top ofthe Eiffel Tower, 300.51 meters high; and from

a blimp stationed 1000 meters in the air.

(Answers: 7.8313 seconds; 14.2857 seconds.)

Alter the program to compute the time of descent when the

height in feet is known, according to the formula:

o \/ 2
32.1740

Run the altered program to compute the time taken by a stone to

fall from the top of the Grand Coulee Dam, 550 feet high; and

from the 1350-foot height of the World Trade Center buildings

in New York City.

(Answers: 5.8471 seconds; 9.1607 seconds.)

Section 5

Branching, Decisions, and Flags

Unconditional Branching and Looping
You have seen how the nonloadable operation (] nnn can be used

from the keyboard to transfer to any line in occupied program memory.

You can also use the go to instruction as part of a program. However, in

order for (GTo]to be recorded as an instruction, it must be followed by a

label designator ((&) or (8], or O through 9). (It can also be followed by

(1]—more about using [1] later.)

When the calculator is executing a program and encounters a

instruction, for example, it immediately halts execution and begins

searching sequentially downward through program memory for that

label. When the first (n] (LBl instruction is then encountered,
execution resumes.

By using a (GT0]instruction followed by a label designator in a program,

you can transfer execution to any part of the program that you choose.

™) (&)

Execution branches to next (n)(tBL) (8). r -
1

I

I

L

1 (n)

A instruction used this way is known as an unconditional branch.
It always branches execution from the instruction to the specified

label. (Later, you will see how a conditional instruction can be used in

conjunction with a instruction to create a conditional branch—a

branch that depends on the outcome of a test.)

102

Branching, Decisions, and Flags 103

A common use of a branch is to create a ‘‘loop’’ in a program. For

example, the following program calculates and displays the square roots

of consecutive whole numbers beginning with the number 1. The

HP-34C continues to compute the square root of the next consecutive

whole number until you press (R/S]to stop program execution (or until

the calculator overflows).

To key in the program:

First, slide the PRGM-RUNswitch to Prov[. Press (7] CLEAR
[prGM]to clear program memory and to reset the calculator to line 000.

Keystrokes Display

(] (] (&) 001-25, 13, 11
0 002- 0

1 003- 23 1
(M (eyo 004- 25,13, 0
1 005- 1

1 006- 23,51, 1 Adds 1 to current number in
R;.

1 007- 24 1 Recalls current number

from R;.

(n](rsE) 008- 25 74 Displays current number.

1) 009- 14 3
DE3 010- 25 74 Displays square root of

current number.

0 011- 22 0 Transfers execution to

[~ 0.
(W) (rRTN) 012- 25 12

To run the program, slide the PRGM-RUN switch to Irn and
press (A]). The program will begin displaying a table of integers and their

square roots and will continue until you press (R/s]from the keyboard or

until the calculator overflows.

How it works: When you press (A], the calculator searches through

program memory until it encounters the (] (tBL] (A] instruction that

begins the program. It executes that instruction and each subsequent

instruction in order until it reaches line 011, the 0 instruction.

104 Branching, Decisions, and Flags

The 0 instruction causes the calculator to search once again, this
time for a 0 instruction in the program. When it encounters the

0 instruction loaded in line 004, execution begins again from

0. (Notice that the address after a instruction in a program
is a label, not a line number.) Since execution is transferred to the

0 instruction in line 004 each time the calculator executes the

(670]0 instruction in step 011, the calculator will remain in this ‘‘loop,’’

continually adding one to the numberin storage register R, and display-

ing the new number and its square root.

Looping techniques like the one illustrated here are common and extra-

ordinarily useful in programming. By using loops, you take advantage of

one of the most powerful features of the HP-34C—the ability to update

data and perform calculations automatically, quickly, and, if you so

desire, endlessly.

You can use unconditional branches to create a loop, as shown above, or

in any part of a program where you wish to transfer execution to another

label. When the calculator executes a instruction in a running

program it searches sequentially downward through program memory

and begins execution again at the first specified label it encounters.

In RUN mode you can also use for finding a label without running

the program in memory. When you execute ((a]), (8], orn) from

the keyboard you cause the calculator to go to the specified label and

halt. This feature is convenient when you want to simply review or edit

lines of memory following a certain label instead of executing them as

part of a program.

Problems

1. The following program calculates and pauses to display the square

of the number in storage register R, each time it is run. Key the

program in with the PRGM-RUNswitch set to prem [[[[Ill , then

switch to RUN mode and run the program a few times to see how

it works. (The answer will always be 1.000.) Finally, modify the

program by inserting a 1 instruction after the [h]

instruction at line 009 and inserting an [h] (t8L]1 instruction after

the (s70]1 instruction in line 003. This will create a loop that will

continually display a new number and its square, then increment

Branching, Decisions, and Flags 105

the number by 1, display the new number and compute and display

its square, etc. To load the original program, before modification,

slide the PRGM-RUN switch to prev [l . Then press:

Keystrokes Display

(f] CLEAR 000-

(] (L) 001- 25, 13, 12

0 002- 0

1 003- 23 1

1 004- 1

1 005- 23,51, 1

1 006- 24 1

(n](PsE) 007- 25 74

(9] (x3 008- 15 3

DE 009- 25 74

() (rRTN) 010- 25 12

Slide the PRGM-RUN switch to IE[[ruN and test the program
in its original form. After keying in the suggested modifications,

run the program again to generate a table of squares.

Use the following flowchart to create a program that computes and

pauses to display the future value (FV) of a compound interest

savings account in increments of one year according to the for-

mula:

FV =Pra +ir

where FV = future value of the savings account.

PV present value (or principal) of the account.

i = interest rate (expressed as a decimal fraction; e.g.,

6% is expressed as 0.06).

n = number of compounding periods (usually, years).

Il

106 Branching, Decisions, and Flags

Assume that program execution will begin with i entered into the

Y-register of the stack and with PV keyed into the displayed

X-register.

After you have written and loaded the program, run it for an

initial interest rate i of 6% (keyed in as .06) and an initial deposit

(or present value, PV) of $1000.

(Answer: 1% year, $1060; 2"? year, $1123.60; 37 year, $1191.02;

etc.)

The program will continue running until you press [R7S](or any

key), or until the HP-34C overflows. You can see how your

savings would growfrom year to year. Try the program for differ-

ent interest rates i and values of PV.

Branching, Decisions, and Flags 107

Define beginning Define beginning
of program with > of routine with

LBL A. LBL O.

v
Fix 2)

Display mode. Recall (1+1)
from R,.

! i
Store PV in

Storage register R,. Recall n from R,.

¥ - Y
Bring i into ause to

display by rolling dispiay n .
down stack. Y

Y , Compute (1 +i)"
Store quantity 1

in storage y
register R,.

Recall
Y PV from R,.

Add 1toi. ¥

Y Multiply PV
Store (1+ /) by (1 +i)?
in storage ¥

register R, .
Pause to

display result (FV).

Add 1tonin
register R,.

y
Go to

] LBL 0.

108 Branching, Decisions, and Flags

Solutions:

Here is a possible solution to problem 2.

® @)
(1] 2 Convenient financial display

mode.

0 Stores PV'.

Brings i into display.

1
1 Stores initial quantity (1) of n.

Adds 1 toi.

2 Stores (1 + i).

(@) 0
(RcL) 2 Recalls (1 + i).

1 Recalls n.
(n) Displays n.

(») Calculates (1 + i)™,

0 Recalls original PV from R,.

] Calculates new FV.

D3 Displays result (FV).
1
STO 1 Adds 1 ton in R;.

0 Unconditional branch.

) End of Program.

Conditionals and Conditional Branches

Often there are times when you want a program to make a decision. The

conditional operations on your HP-34C keyboard are program instruc-

tions that allow your calculator to make decisions. The conditionals

available on your HP-34C are:

(1] tests to see if the value in the X-register is less than or

equal to the value in the Y-register.

Branching, Decisions, and Flags 109

(f] tests to see if the value in the X-registeris greater than

the value in the Y-register.

(1 =] tests to see if the value in the X-register is not equal to

the value in the Y-register.

K3 tests to see if the value in the X-register is equal to the

value in the Y-register.

tests to see if the value in the X-registeris less than zero.

tests to see if the value in the X-register is greater than

Zero.

tests to see if the value in the X-register is not equal to

Zero.

tests to see if the value in the X-register is equalto zero.

(] [F2)n tests to see if flag n is set (more on flags later).

Each conditional essentially asks a question whenit is encountered as an

instruction in a program. If the answer is YES, program execution

continues sequentially downward with the next line in program memory.

If the answer is NO, the calculator branches around the next line. For

example:

|: Conditional Test == 7

Yes

1
1
-

No

110 Branching, Decisions, and Flags

You can see that after it has made the conditional test, the calculator will

do the next instruction if the test is true. This is the ‘DO IF TRUE”’

rule.

The line immediately following the conditional test can contain any

instruction. The most commonly used instruction you’ll find will be a

instruction. This will branch program execution to another section

of program memory if the conditional test is true.

l: Conditional Test = =1

Yes - 7 .
 . . J

Instruction -t No

instruction

instruction

instruction

"‘1 (n) (tB) 7

Example: Certified Public Accountant

Polly Preparer knows that persons with

incomes over $10,000 pay a tax of 20%

and persons with incomes of $10,000 or

less pay a tax of 17.5%. To make her job

easier, Preparer wants to write a program

that will allow her to compute taxes for

all her clients in the simplest way pos-

sible. She will use a program containing

conditional branches.

Branching, Decisions, and Flags

The flowchart for the program might look like this:

11

Yes

Use 20%.

v
Key in amount

of income.

'

 Is

income over

$10,0007?

y

Use 17.5%.

'

Compute tax.

;

112 Branching, Decisions, and Flags

To key in the program:

Slide the PRGM-RUN switch to

Keystrokes

(f) CLEAR
(v) (el (&)

A
V

9 g
»

@
5
[

- o
- @ r

N

E
E
R
E
"
E

] - z
rram[N .

Display

000-
001- 25, 13, 11

002- 33 Amount of $10,000 placed

003- 4(in Y-register.
004- 21)" 1f amountof income is
005- 14 51 } greater than $10,000, go to
006- 22 12 portion of program defined

by label B.

007- 1
008- 7 Tax percentage for this

009- 73 portion of program is 17.5.

010- 5
011- 22 1
012- 25, 13, 12

013- 2} Tax percentage for this

014- 0 portion of program is 20.

015-25,13, 1

016- 25 41
017- 25 12

To run the program to compute taxes on incomes of $15,000 and $7,500:

Slide the PRGM-RUN switch toI ru~ .

Keystrokes

15000 (&)
7500 (&)

Display

3,000.00

1,312.50

Dollars of tax.

Dollars of tax.

Branching, Decisions, and Flags 113

All Preparer has to do to compute tax rates for her other clients is key in

their incomes and press (a]. The calculator automatically determines the

clients’ tax bracket and computes the tax.

Another place where you often want a program to make a decision is

within a loop. The loops that you have seen have, to this point, been

infinite loops—that is, once the calculator begins executing a loop,it

remains locked in that loop, executing the same set of instructions over

and over again, forever (or, more practically, until the calculator

overflows or you halt the running program by pressing (R/S]or any other

key).

You can use the decision-making powerof the conditional instructions to

shift program execution out of a loop. A conditional instruction can shift

execution out of a loop after a specified number of iterations or when a

certain value has been reached within the loop.

Example: Asyouknow, your HP-34C contains a value fore, the base of

natural logarithms. (You can display the calculator’s value fore by press-

ing 1 (7).) The following program shows that 1/n/ can be used to

verify that the seriese=1/0! + 1/1! + 1/2! + ... + 1/n! approximates the
value for e. After each iteration through the loop, the latest approxima-

tion is displayed and compared to the calculator’s value fore. When the
two values are equal, the execution is transferred out of the loop to stop

the program.

114 Branching, Decisions, and Flags

Yes

Recall total.

Recall n.

Calc./n!

Add 1/n! to total.

Store total.

Display total

Does
total =e?

Add 1

N

Branching, Decisions, and Flags 115

To load the program into the calculator:

Slide the PRGM-RUN switch to prov(I .

Keystrokes Display

(1] CLEAR 000-
(v (ceg (&) 001- 25, 13, 11

1 002- 24 1
0 003- 24 0

(n) 004- 25 1
™ 005- 25 2

006- 51
(1) [(FX)9 007-14,11, 9
s10] 1 008 - 23 1

(»](PsE) 009- 25 74
1 010- 1

011- 15 1
M 012- 14 71
(n])(rTN 013- 25 12

1 014- 1

STO 0 015-23,51, 0

®) 016- 22 11

Slide the PRGM-RUN switch toIruw

Ensure that the registers are cleared to zero. Then press (aA]to run the

program.

Keystrokes Display

(f) CLEAR 1,312.50 Clears all storage registers

to zero. (Displayed value
remains from previous

example.)

&) 2.718281828

You can see that execution continues within the loop until the approxi-

mation for e equals the calculator’s value for e. When the instruction

[*=y]in line 012 is finally true, execution is transferred out of the loop.

116 Branching, Decisions, and Flags

Problems

1. Write a program that tests for a negative angle and then converts

any negative angle to its positive equivalent. Use a conditional,

and, if the angle is negative, add 360 degrees to it to make the

angle positive. Use the flowchart below to help you write the

program.

Is angle
less than
zero?

Add 360
Degrees.

'

Branching, Decisions, and Flags 117

 Use the flowchart to help you

write a program that will allow a

dealer to compute sales staff

commissions at the rates of 10%

of sales of up to $1000, 12.5% for

sales of $1000 to $5000, and 15%

for sales of over $5000. The pro-

gram should display the amount

of sales and the amount of com- |

mission.

Load the program and run it for sales amounts of $500, $1000,

$1500, $5000, and $6000.

(Answers: $50.00, $125.00, $187.50, $625.00, $900.00.)

118 Branching, Decisions, and Flags

Yes

Key in sale
amount
&start.

 Y Y

Calculate
10% of sales.

Calculate

12.5% of sales.

Calculate
15% of sales.

l ot-

Y

Display
commission.

l

Branching, Decisions, and Flags 119

Solutions:

1. Keystrokes Display

(f] CLEAR 000-

(n) (ced) (A) 001- 25, 13, 11

002- 15 41
0 003- 22 0

™ 004- 25 12
() (tey) 0 005- 25,13, 0
3 006 - 3

6 007- 6

0 008- 0

009- 51
(n)(rRTN 010- 25 12

User instructions: After keying in program, set PRGM-RUN switch to

B run and set display mode to FIX 4. Input angle and press (a].

2. Keystrokes Display

(1] CLEAR 000-

(n] (teL) (&) 001- 25, 13, 11
(EEx] 002- 33

3 003- 3

M 004- 14 51
G10] 0 005- 22 0

5 006 - 5

007- 61

008- 21

M 009- 14 41
GTo] | 010- 22 1

1 011- 1

5 012- 5

n) % 013- 25 41
™) (R7N) 014- 25 12
™) 1 015- 25,13, 1

120 Branching, Decisions, and Flags

Keystrokes Display

1 016- 1

2 017- 2

] 018- 73

5 019- 5

™ % 020- 25 41
™) 021- 25 12

Dl 022- 25,13, 0
X%y 023- 21

1 024 - 1

0 025- 0

(n) 026- 25 41

™ 027- 25 12

User instructions: After keying in program, set PRGM-RUN switch to

B ~ov and set display mode to FIX 2. Input sales dollars and press

().

Flags

Besides the conditionals ([*=Y], [x>0], etc.), you can also use flags for

tests in your programs. A flag actually is a memory device that can be

either SET (true) or CLEAR(false). A running program can then test the

flag later in the program and make a decision, depending upon whether

the flag was set or clear.

There are four flags available in your HP-34C. They are numbered O, 1,

2, and 3. To set a flag true, use the instruction (sF](setflag) followed by

the proper digit key (0, 1, 2, or 3) of the desired flag. To set flag 3,
for example, you would use these keystrokes:

(283

Flags are cleared using the (clear flag) instruction followed by

the proper digit key. To clear flag 3 you would use these keystrokes:

DCIK

Branching, Decisions, and Flags 121

When using flags, decisions are made using the instruction (F?](is flag

true?) followed by the digit key (0, 1, 2, 3) specifying the flag to be

tested. When a flag is tested by a [h] (F?)n instruction, the calculator
executes the next line if the flag is set (this is the ‘DO if TRUE”

rule). If the flag is clear, the next line of program memory is skipped

before execution resumes.

Is flag 1 true?

Yes No

C ()1 ~

\

)
-’ if NQ, skip

one line before
resuming execution.

if YES,

continue execution

with next line.

A flag which has been set by an [h] (SFJn command remains set untilit

is cleared by one of the following:*

1. Executing an [n] (CFJn command.

2. Turning the calculator OFF.

Using flags

Like the the x/y and x/0 conditional tests, flags give you the capability to

either skip or execute individual lines in program memory. However,

while the x/y and x/0 conditionals function by comparing values, flags

function by telling the calculator whether or not a particular operation or

type of operation has been performed.

* Note that pressing [f] CLEAR does not clear a flag that has been set by an

(n] (SF) n instruction.

122 Branching, Decisions, and Flags

Example: The following program contains an infinite loop that illus-

trates the operation of a flag. The program alternately displays all 1’s and

all 0’s by changing the status ofthe flag, and hence, the result ofthe test

in line 006, each time through the loop. A flowchart for the program

might look like this:

Pause
to display

ones.

i
Clear flag 0.

Pause
to display
Zeros.

Set flag 0.

A

Branching, Decisions, and Flags 123

The program assumes that you have stored the number O in register R,

and the number 1.111111111 in register R,.

Slide the PRGM-RUN switch to prev [N .

Keystrokes Display

(f] CLEAR 000-

(] (] (A) 001-25, 13, 11

1 002- 24 1 Recalls and displays ones

from register R;.

(n](PsE] 003- 25 74

() 0 004-25,61, 0 Clears flag 0.

(n) () 005-25, 13, 12

DEL 006- 25,71, 0 Tests flag O.

(a] 007- 22 11 If set (true), go to (a).

0 008- 24 0 Otherwise, recall and dis-
(n) (PSE) 009- 25 74 play zeros from register R,

(n])(sFO 010-25,51, 0 set flag 0, and go to

011- 22 12 (8.

(n) (RN 012- 25 12

Now switch toI ru~ , load storage registers Ry and R,, then execute

the program.

Keystrokes Display

(1) 9 0.000000000

0 0 0.000000000

1.111111111 1.111111111
(sT0]1 1.111111111

&) 1.111111111 All ones and all zeros.
0.000000000

To stop the running program, press (or any other key).

124 Branching, Decisions, and Flags

How it works: After you have initialized the program by storing zero in

register R, and all onesin register R,, the program begins running when

you press (A]). The land (h] instructions in lines 002 and 003
pause to display all ones from storage register R;. The (] (CF]O instruc-

tion in line 004 clears flag 0. (Since the flag is already clear when you

begin the program, the status of the flag simply remains the same.)

There is no after the routine begun by (2], so execution

continues through the (8)instruction in line 005 to the test, [h]
0, in line 006. The [n] (F?)0 instruction asks the question *‘Is flag O set

(true)?’’ Since the flag has been cleared earlier, the answer is NO, and

execution skips one line of program memory and continues with the

0 instruction in line 008. The (RcL]O0 and (n] instructions in lines
008 and 009 pause to display all zeros from register R,. Flag O is then set

by the [h] (sF)O instruction in line 010 and execution is transferred to

by the instruction in line O11.

With flag 0 now set, the answer to the test [n] (F2)0 (‘‘Is flag O true?’’) is

now YES,so the calculator executes the (aJinstruction in line 007,

the next line after the test. After again pausing to display all ones, the

flag is cleared, and the program continues in an endless cycle, alternately

displaying ones and zeros, until you stop execution from the keyboard.

Problem

One mile is equalto 1.609344 kilometers. Use the following flowchart to

create and load a program that will permit you to key in distance in either

miles (define with (&)or kilometers (define with). Use
a flag for determining whether to multiply or divide to convert from one

unit of measure to the other. (Hint: [n] (x])yields the same result as

(=)

Set the calculator to [Fix] 4 display mode. Then run the program to

convert 26 miles into kilometers; to convert 1500 meters (1.5 kilometers)

into miles. (Answers: 41.8429 kilometers; 0.9321 miles.)

Branching, Decisions, and Flags 125

Key in Key in
miles. kilometers.
Start Start

Y

Clear flag Set flag.

Y

Place
1.609344

in X-register.

No Yes

Y y

Multiply. Divide.

Section 6

Subroutines

Often, a program contains a certain series of instructions that are

executed several times throughout the program. When the same set of

instructions occurs more than once in a program, it can be executed as a

subroutine. A subroutine is selected by the (go to subroutine)

operation, followed by a label address (a], (8], or O through9. Youcan

also select a subroutine with (1]—more about [1]]later.

A instruction transfers execution to the routine specified by the

label address, just like a instruction. However, after a in-

struction has been executed, when the running program then executes a

(rTN](return), execution is transferred back to the next instruction after

the (GsB]. Execution then continues sequentially downward through

program memory. The illustration below should make the distinction

between and more clear.

Branch

(h(tey) (&) 4 (h])(teL](e)

/
/

(h(rRTN) (m)(rRTn) Execution transfers
to line 000 and

halts.

Subroutine

(h)(eL)(a) (2)(eL) (6]

(cse)(e) |/

 Execution trans- (W(RTN) Mo (RIS

fers to line 000
and halts.

126

Subroutines 127

In the top illustration of a branch,if you pressed (a]from the keyboard,

the program would execute instructions sequentially downward through

program memory. If it encountered a (8]instruction,it would then

search for the next (8] and continue execution from there, until it
encountered a (RTn). When it executed the instruction, execu-
tion would transfer directly to line 000 and halt.

However, if the running program encounters a (8])(go to subrou-

tine B) instruction, as shown in the lowerillustration,it searches down-

ward for the next (8]and resumes execution. Whenit encounters a

(return), program execution is once again transferred, this time

back to the first line after the origin of the subroutine call ((&),
where execution resumes.

As you can see, the only difference between a subroutine and a normal

branch is the transfer of execution after the (rTn]). After a (GT0], the
next (RTN]causes execution to transfer to line 000 and halt; after a (GsB),
the next returns execution back to the main program, where it

continues until another (or a (R7S)) is encountered.

Example: Write a program for calcula-

ting the average slope of the graph of

f(x) between x; and x, where f(x) =

x2 — In(x2 + 7).

128 Subroutines

Solution: The average slope off(x) between x, and x, is given by

f(x2) = f(xy)

X9 — X3

_ [x? = In(x2 + e= [x2 = In(x,® + e™)]
Xo — X4

Notice that the solution requires two computations of the expression

x2 = In(x2 + 7).

The program below allows you to key in the values for x, and x, and

compute the average slope by pressing [(a].

) (a)

0 ‘
=0

3 (h(sTx

=
Calculates f(x,) .

(LsTx)
(e)hsTx These sections of %]

(3 program memory are

M identical.)

p Calculates f(x,) . \

X%y

(x7) 0

J =
CHS ™) Ew

Since the program section for calculatingf(x,) contains a large portion of

program memory identical to the section for calculating f(x,), you can

simply create a subroutine that will execute this section of instructions.

The subroutine is then called up and executed in calculating both f(x,)

and f(x,).

Subroutines 129

001 (] (ted] (a) _» 013 [n] (B0
002 (570) 0 oAo
00t (o) 0 7 eeo OE] P e

006 <« ——— —. ’ o8 8oCHS = = = — =

007 N 019
008 (GsB] 0= ==—~~-7N 020 (1)
009 -«RN 021
010 [Ret) 0 Sao s 022

So N
011 (&) ~o N, 023 (@)
012 [»)(rTN) ~h, 024

SN02s ®
With the modified program, when you press (A]Jwith x, in the Y-register

and x, in the displayed X-register, execution begins with the

() (a)instruction in line 001. When the 0 instruction in line
005 is encountered, execution transfers to the ([h](LBL)O instruction in

line 013 and calculates the quantity f(x,). If for example, we used a value

of 2 for x, and a value of 3 for x,, here is an illustration of what would be

happening in the stack as the average slope off(x) was calculated.

002

D B——

D, I . A, —

™ (a] 0 =o
(x; in Y-reg., (x2 in Ry) (x, in X-reg., (x; — x;in Ry)

X, in X-reg.) Xz in Y-reg.)

) 0
(Begin

subroutine)

(v ts1x)
(Recalls —x,)

s 30 Subroutines

(x%) (x+eX)) (n(x? + e™™) (=In(x? + e™*))

®
(f(xy) (Return to main

program)

From line 025 execution transfers back to the main program and con-

tinues with the first line after the last instruction. When the

0 instruction in line 008 is encountered, execution again transfers to the

() 0 instruction in line 013. To continue our illustration:

(Gs8) 0 (v edo
(=f(xy) (=f(x,) saved (Begin

in stack.) subroutine)

Subroutines 131

(n]) (ts7x)

(—x3) (e *2) (Recalls —x,)

(Return to main

program)

After the calculator passes through the subroutine under (L8L]0 a second

time to compute f(x,), the [h] instruction at line 025 causes

execution to return to the first instruction in the main program after the

last 0 instruction. f(x,) is in the X-register; —=f(x,) is in the Y-, Z-,

and T-registers.

132 Subroutines

009 010 012

4.2168

0] (n)
(f(x2) — f(xy) (xg = xy) (f(x2) — f(xy) (End of

+ (x, —xy)) Program)

When calculation halts, the average slope of f(x) between x; and x,

appears in the display. Extra copies of —f(x,) in the Y-, Z-, and T-

registers are ignored.

Now key in the program and try the problems on the next page. Slide

the PRGM-RUN switch to prem [-

Keystrokes Display

(t) CLEAR 000-

(] (] (A) 001- 25, 13, 11

0 002- 23 0

xxy 003- 21

(=JO 004-23,41, 0

0 005 - 13 0

006- 32

x%Y 007- 21

0 008- 13 0

009- 51

0 010- 24 0

=) 011- 71
(n])(rRTN 012- 25 12

(0] (eO 013- 25,13, 0

014- 31

CHS 015- 32

(9) 016- 15 1

(»])(sTx) 017- 25 0

(@) x3 018- 15 3

019- 51

(f] 020- 14 1
CHS 021- 32

Subroutines 133

022- 21
@ 023- 15 3

024- 51
™ EN) 025- 25 12

Slide the PRGM-RUNswitch to [Il[[[ru~ . Now find the average slope
of f(x) between the following pairs of points: (0, 0.5), (0.55, 1.15),

(1.25, 1.75).

Answers: 0.8097, 0.6623, 1.8804.

Subroutine Usage
Subroutines give you extreme versatility in programming. A subroutine

can contain a loop, orit can be executed as part of a loop. Another com-

mon and space-saving trick is to use the same routine as a subroutine and

as part of the main program.

Example: The program below simu-

lates the throwing ofa pair of dice, paus-

ing to display first the value of one die

(an integer from 1 to 6) and then pausing

to display the value of the second die

(another integer from 1 to 6). Finally the

values ofthe two dice are added together

to give the total value.

The ‘‘heart’” of the program is a random number generator (actually a

pseudorandom number generator) that is executed first as a subroutine

and then as part of the main program. When you key in a first number,

calleda ‘‘seed,’” and press (&), the digit for the first die is generated and

displayed using the [n](LBL]2 routine as a subroutine. Then ...e digit for

the second die is generated using the same routine as part of the main

program. The program then uses the generated number as a new seed for

successive ‘‘throws’’ of the dice.

134 Subroutines

To key in the program:

Set the calculator to prGM[[[[Ill mode.

Keystrokes Display

(] CLEAR 000-

1 001-

() (&) 002- 25,
0 003-

™ 1 004- 25,
0 005-

1 006-

2 007-

) 2 008- 25,
0 009-

9 010-

9 011-

7 012-

X) 013-
() 014-

0 015-

6 016-

X) 017-
1 018-

019-

(n) 020-
(1) [Fix)0 021- 14,
(n) (PsE) 022-

1 023- 23,
RCL] 1 024 -

™) 025-

22 1

13, 11

23

13,

23

0

1

0

1

13 2

\

13,

24

N
O
W
o
o
N

61

25 33

23 0

6

61

1

51

25 32

11, 0

25 74

51, 1

29 1

() 2 executed first as

a subroutine.

403 2 then executed as

the remainder of the main

program.

 25 12) Transfers execution to line

008 when 2 executed

as a subroutine; to line 000

when (LBL]2 executed as the

remainder of the main pro-
gram.

Subroutines 135

Now set the calculator to [[llJrun mode and “‘roll’’ the dice. To roll

the dice, key in the initial decimal *‘seed’’ (that is, 0 <n <1). Then

press [A]. The calculator will display first the number rolled by the first

die, then the number rolled by the second, and finally, when the program

stops, you can see the total number rolled by the dice. To make another

roll, press (R/S]. The program uses the last number as a new seed for the

roll.

You can play a game with your friends using the *‘dice.’” If your first

“‘roll’’ is 7 or 11, you win. If it is another number, that number becomes

your ‘‘point.”’ You then keep ‘‘rolling’’ (pressing (R/S]) until the dice

again total your point (you win) or youroll a 7 or 11 (you lose). To run

the program:

Keystrokes Display

.2315478 0.2315478 The seed.

A) 10. Your point is 10.

8. You missed your point.
5. Missed it again.
7. Whoops! You lose.

Now try it again using the last number as the new seed.

Keystrokes Display

8. Your point is 8.

8. Congratulations! You win.

Before you continue, reset the display to four decimal places.

Keystrokes Display

(1) (Fix)4 8.0000

Subroutine Limits

A subroutine can call up another subroutine, and that subroutine can call

up yet another subroutine. Subroutine branching is limited only by the

number of returns that can be held pending by the calculator. Six

subroutine returns can be held pending at any one time in the HP-34C.

136 Subroutines

The diagram below should make this more clear.

Main Program

LBLJ A

4
!

!

/

"
END

The calculator can return back to the main program from subroutines that

are six deep, as shown. However,if you attempt to call up subroutines

that are seven deep, the calculator will halt and display Error 8 when it

encounters the instruction attempting to call the seventh subroutine

level.

Main Program

@@ | 1 4 6

! /
I’ 4 ceey Y

1 Y ! 7
2 |!

RTN RTN

Execution
halts and
Error 8 is
displayed.

Subroutines 137

Naturally, the calculator can execute non-subroutine instructions
(transfer execution to line 000 and halt) any number of times. Also, if you

press or with (a], (8], or O through 9 from the keyboard,

any pending instructions are forgotten by the calculator.

Press (GsB)2
Execution

Main Program begins here.

LBL]] LBL|?2

Note that in PRGM mode, single-step execution of a program contain-

ing subroutines follows the same order of execution as in a running

program.

Using (] (rTn] at the End of Occupied

Program Memory

The programming examples in your HP-34C Owner’s Handbook and

Programming Guide include an (n] as the last line in occupied

program memory. This is done both to clearly indicate the ends of

programs and to illustrate how affects program execution.

However, you can omit [h] where it occurs as the last instruction

in occupied program memory without affecting program execution.

Why? Whenever the last instruction in program memory is not [h)

, program execution performsjust as if [n) existed immedi-

ately following the last instruction you keyed in. In other words, when

program execution encounters the end of occupied memory without

finding an () instruction:

138 Subroutines

1. If in a subroutine, execution returns to the first line after the last

instruction and resumes.

2. If not in a subroutine, execution returns to line 000 and halts.

If the last line in occupied memory contains a instruction, the cal-

culator executes the indicated subroutine, returns to line 000, and halts.

Notice that and instructions always cause the calculator to

searchforward in program memory for the specified label. This feature
often allows you to write a program in such a way thatit uses a given

label more than once.

Example: The following program to calculate the value of the expres-

sion VxZ+ y2+ z2 + r2uses (aJto identify both the beginning of
the program and a subroutine within the program. The program is

executed by placing the variables x, y, z, and 7 in the stack and pressing

(a].

Slide the PRGM-RUN switch to prem [l and key in the following
program.

Keystrokes Display

(rf] CLEAR 000-

™e (&) 001- 25, 13, 11
x3) 002- 15 3

A 003- 13 11

& 004- 13 11
@ 005- 13 11

(1 =) 006- 14 3

(n])(rRTN 007- 25 12

(0] () (&) 008- 25, 13, 11

009- 21

x3 010- 15 3

011- 51

) 012- 25 12

Subroutines 139

Slide the PRGM-RUN switch to [l[[[Jrun and key in the following set
of variables:

x=43,y=79,z=13,1t=8.0

Keystrokes Display

8 8.000
1.3 1.3000
7.9 @Ry 4.3 (&) 12.1074

Section 7

Advanced Programming

Controlling the I-Register
The I-register is one of the most powerful programming tools available

on your HP-34C. In addition to serving as aregister for the simple storage

and recall of data, the I-register can also be used in conjunction with other

instructions to perform the following:

» Increment or decrement a specified value from the current value

in I for loop control or other functions.

» Indirectly control the storage register address of (s10], (RCL],

and storage register arithmetic.

» Indirectly control the label address of and (GsB).

= Indirectly control the number of digits displayed by the [Fix],

(sci], and [Enc) modes.

= Transfer execution to any line of occupied program memory.

Storing a Number in the I-Register

To store a numberin the I-register, you use the key sequence M

[1]. For example, to store the number 7 in the I-register:

Ensure that the PRGM-RUN switch is set to [JIMru~ .

Keystrokes Display

7 0 7.0000

To recall a number from the I-register into the displayed X-register, you
use the key sequence (1 (0.

Keystrokes Display

0.0000
00O 7.0000 A copy of the numberstored

in I is recalled.

140

Advanced Programming 141

Exchanging X and |

In a manner similar to the operation, the [f][x%1](X exchange I)
operation exchanges the contents of the displayed X-register with those

of the I-register. For example, key the number 2 into the displayed X-

register and exchange the contents of the X-register with the value you

stored in the I-register in the previous example.

Keystrokes Display

2 2.

(1] (xx1) 7.0000 Contents of X-register and

I-register exchanged.

When you pressed [x*1], the contents of the stack and the I-register

were changed...

...from this... ...to this.

T

Y

!
To restore the X-register and I-register contents to their original

positions:

 Display Display

-
H
H
N
H

Keystrokes Display

(0 (1) 2.0000

Incrementing and Decrementing the I-Register

Another way ofaltering the contents ofthe I-register, and one that is most

useful in programming, is through the ISG (increment, then skip if

greater) and DSE (decrement, then skip if less than or equal) functions.

Both contain internal counters that allow you to control the execution of

a loop, as well as the sequential addressing operations covered later in

this section.

142 Advanced Programming

The ISG and DSE functions use a numberthat is stored in the I-register

and interpreted in a special way. The numberis called a loop control

value. The usual formatis:

nNNNN.XXXyy

A loop control value is interpreted as three separate integers, where:

=nnnnn is the current counter value,

XXX is the counter test value, and

yy is the increment or decrement value.

The nnnnn portion of the number tells your HP-34C that you wish to

count the number of passes through the loop beginning with that number.

If you do not specify an nnnnn value, the HP-34C assumes you wish to

begin counting at zero. An nnnnn value can be specified as one to five

digits.

The xxx portion of the numbertells the HP-34C that you wish to stop the

counting at that number. The xxx value must always be specified as a

three-digit number (e.g., an xxx value of 10 would be specified as 010).

The yy portion of the loop control numbertells the calculator how you

wish to count. Current counter value nnnnn is incremented or decre-

mented by the value of yy. If you do not specify a yy value, the HP-34C

automatically assumes you wish to count by ones (yy default = 01). A

specified yy value must be two digits (e.g., 02, 03, 55).

Increment, Then Skip if Greater. Each time [1SG] is executed, it first

increments nnnnn by yy. It then tests to see ifnnnnn is greater than xxx.

If it is, the HP-34C skips the next line in the program.

So, with the loop control value 100.20001 in the I-register, the [1SG])
instruction would begin counting up from 100. Each time the program

executed [1SG], the nnnnn portion of the loop control value would be

incremented by 1.

Contents of the I-register = 100.20001

Execution of [1SG] would:

Start counting up from 100.

Increment nnnnn by 1.

Test to see if nnnnn is greater

than 200.

Advanced Programming 143

After one execution or pass through the loop containing [1SG], the
I-register would contain 101.20001. After 10 executions or passes

through the loop, the I-register would contain 110.20001. Each time

(1sG] increments, it then checks to see if the current counter value

nnnnn is greater than 200 (xxx). When nnnnn is greater than 200,

program execution skips the next line of program memory following

the [1sG]instruction. You will see how skipping the next line in the

program is useful in a moment.

Decrement, then Skip if Equal (or Less Than). Each time is

executed, it first decrements nnnnn by yy. It then tests to see if nnnnn is

equal to (or less than) xxx. If it is, the HP-34C skips the next line in the

program.

So, with the number 100.01001 in the I-register, the [DSE]instruction

would begin counting down from 100. Each time the program executed

(psE], the nnnnn portion of the loop control value would be decremented
by 1.

Contents of the I-register = 100.01001

Execution of would:
Start counting down from 100.

Decrement by 1.

Test to see if xxx was equal to (or

less than) 10.

After one execution or pass through the loop, the I-register would contain

99.01001. After 10 executions or passes through the loop, the I-register

would contain 90.01001. Each time [psg]decrements, it then checks to

see if the counter value nnnnn is equal to or less than 010 (xxx). When

nnnnn is equal to or less than 010 (xxx), the calculator skips the next line

of the program.

Example: Here is a program that illustrates how [isG] works. It con-

tains a loop that pauses to display the current value in the I-register and

uses [15GJto control the number of passes through the loop and the value

of the squared number. The program generates a table of squares of even
numbers from 2 through 50.

144 Advanced Programming

Slide the PRGM-RUN switch to erem [[[[Ill and key in the following
program.

Keystrokes

(f) CLEAR
(v] (ted) (&)

(0 (Ex)5
2
CJ

N
O

O
w
n
©

5% (1) (1)
®!
(D) (1] (1)
®@D
D[c3
@&
BEE

(e] Cse)

(cTo]1
DG

Display

000-

001- 25, 13, 11

002- 14,11, 5

003- 2

004- 73

005- 0

006- 5

007- 0

008 - 0

009- 2

010- 23, 14, 23

011-25,13, 1

012- 24, 14, 23

013- 25 32

014- 25 74

015- 15 3

016- 25 74

017- 15 24

018- 22 1

019- 25 12

Program label

Current counter value

(nnnnn),

Counter test value (Xxx).

Increment value (yy).

Store loop control value in 1.

Begin the loop.

Recall the numberin I.

Take the integer portion.

Pause to display the integer.

Square the number.

Display the square of the
number.

Increment I by 2 and check

to see that the counter is not

greater than the final number
(50). If the counteris

greater than the final

number, skip the next line in

the program.

Loop back to label 1.

Halts the program.

Advanced Programming 145

Now run the program:

Slide the PRGM-RUN switch to [} rov and press (A].

Keystrokes Display

@) 2.00000 When the HP-34C begins
4.00000 executing, it first pauses to

display the number to be
4.00000 squared, then pauses to dis-

16.00000 play the square of the num-

. ber. When the loop counter

increments beyond 50, the

. program halts.

50.00000
2,500.00000

Here is what happens when you run the above program.

1. Under label (a], the number 2.05002 is stored in the I-register

as the loop control value. It is in the counter format: i.e.,

nnnnn XXX yy

(0000)2 050 02

Current counter Test Increment

Value Value Value

2. Underlabel 1, the following sequence occurs:

After 2 and 4 (the square of 2) are displayed, the current counter value in

I, 00002 (nnnnn), is incremented by the increment value 02 (yy). The

new numberin the I-register is 4.05002, which is interpreted by your

calculator as:

nnnnn XXX yy

(0000)4 050 02

Current Counter Test Increment

Value Value Value

The new counter value is then compared to the test value 050 (xxx). As

the counter value has not exceeded the test value, the calculator proceeds

to the next line, 1, and the process is repeated with the new

number.

146 Advanced Programming

3. After 25 even-numbers (2-50) and their squares are displayed,

the current counter value finally increments beyond 50. This

causesthe calculator to skip one line after the [@][iSG]at line 17.

As a result, the 1 command at line 18 is bypassed and the

command at line 19 is executed, causing the calculator

to return to line 000 and halt.

After running the program, press [#] [1]. The recalled I-register
value in your display should now look like this:

52.05002

Current Test Increment

Counter Value Value

Value

(nnnnn) (xxx) (yy)

Now let’s add a second program which uses your HP-34C’s [pse] func-
tion. Remember, the nnnnn.xxxyy format is the same as for [iSG).

You will, however, be decrementing the current counter value instead of

incrementing it.

The island of Manhattan was sold in the

year 1624 for $24. The following pro-

gram shows a simplified method to cal-

culate growth of the original amountifit

had been placed in a bank account draw-

ing 6% annual interest. The number of

years for which you want to calculate

growth is stored in the I-register as a loop
control value. The instruction is

then used to keep track of the number of

iterations through the loop.

Advanced Programming 147

Slide the PRGM-RUN switch to erem [[[[Ill . Executing the
instruction in line 019 of the previous program returned your calculator

to line 000. To add the following program to the end of currently occu-

pied program memory, press [h] (or (-] 019) to return to
line 019.

Keystrokes Display

] 019- 25 12 Last line of previous

program.

(n) 020- 25, 13,12 New program label.

(M0 [Fx)2 021- 14,11, 2

Mo 022-23,14,23 Stores user-input loop con-

trol value nnnnn.xxxyy in

the I-register.

1 023- 1

6 024- 6 Initial year
2 025- 2 ’

4 026- 4

027- 51 Final year.

0 028- 23 0 Stores final year.

i ggg: i } Initial dollar amount.

(»]) (cBL) 2 031-25,13, 2 Begins the loop.

1 032- 1

0 033- 0 Calculates annual growth.
6 034- 6

(v 035- 25 41
036- 15 23 Decrements the current

counter value nnnnn and

compares with the counter

test value xxx.

2 037- 22 2 If nnnnn>xxx, returns to

2.
0 038- 24 0

(] (PsE) 039- 25 74

040- 21 If nnnnn=<xxx, displays

(0] (rTN) 041- 25 12 final year, final growth
value, and halts.

148 Advanced Programming

Slide the PRGM-RUN switch to [~ and key in the number of
years (loop control value) for which you want to see the accumulated

amount. Press to store your input value in the I-register and to run

the program.

Keystrokes Display

5 5. Loop control value;

nnnnn = 5, xxx = 000,

yy = 00 (defaults to 01

internally).

32.12 Afterfive years, in 1629, the

account would have been

worth $32.12.

15 15. Loop control value;

nnn = 15, xxx = 000,

yy = 00 (defaults to 01

internally).

57.52 After 15 years, in 1639, the

account would have been

worth $57.52.

How it works: When you key in the number ofyears and press (8]your

entry is stored in the I-register and becomes the loop control value

(nnnnn.xxxyy).

nnnnn XXX yy

(0000)5 000 00

Current Counter Counter Test Decrement Value

Value Value (Defaults to 01 internally.)

(Notice that when the test value is 000 and the increment or decrement

value is 01, it is not necessary to enter them.)

The loop control value is then added to the initial year. This sum is the

final year and is stored in R, for later recall. The initial dollar amountis

then entered. Each time through the loop the dollar amountis increased

by 6%. The instruction then subtracts 1 from the I-register. If the

loop control value in I is not then zero, execution returns to 2 and

the loop is executed again.

Advanced Programming 149

When the loop control value in the I-register is decremented to zero

(nnnnn=xxXx), execution bypasses the 2 instruction at line 37 and

resumes with the (RcL]O instruction at line 38. The final year and dollar

value then appear in succession and the program halts.

ISG and DSE Limits

Note that [1SG] and can be used to increment and decrement any
number that the HP-34C can display. However, the decimal portion of

the loop control value will be affected by current counter values exceed-
ing the five-digit nnnnn value.

For example, the number 99,950.50055, when incremented using [1SG)

would become 100,005.5006. The initial number was incremented by

55. But since the new number 100,005.50055, cannot be fully displayed,

the decimal portion of the number was rounded. As the calculator

assumes a two-digit number for the increment value (yy), the next in-

crement would be by 60, not 55. And when the number becomes

999,945.5006, the next number would be 1,000,005.501, thus rounding

the decimal portion of the number again. Since no increment value yy is

present, the next increment would default to Ol instead of remaining at

60.

Problem:
1. Write a program that will count from zero up to a limit using the

(1SG] function, and then, in the same program, count back down

to zero using the [0se]function. Use the flowchart on the follow-

ing page to help you.

150 Advanced Programming

Start

STO nnnnnxxxyy
[1. iPause to display
NN

Ye » P4 o
Increment nnnnn.

 ¢
Set flag.

Set xxx to 0.
Decrement nnnnn.

Clearflag-

RCL nnnnnxxxyy. i

Advanced Programming 151

Using The I-Register For Display,
Storage Register, and Program Control

You have seen how the value in the I-register can be altered using (s70],

[x=1), [1sG], and operations. But the value contained in the

I-register can also be used to control display, storage register, branching,

and subroutine operations. First, let’s get a brief overview of these

operations. Then we’ll examine each one in detail.

(osp1)(display I) uses a number stored in the I-register to specify the

number of decimal places appearing in the display.

(X exchange indirect) exchanges the contents of the displayed

X-register with the contents of the available storage register addressed

by the absolute value of the number in the I-register.

[7] [w)(store indirect) stores the value that is in the display in the
storage register addressed by the absolute value of the number currently

in the I-register.

(7] [w](recall indirect) recalls the contents of the storage register

addressed by the absolute value of the number currently in the I-register.

(¥, &, (=], or (2)) [wl(indirect storage register arithmetic)

performs storage register arithmetic on the contents of the storage register

addressed by the absolute value of the number currently in the I-register.

(7] [1]) (go to label or line I) with a positive number in the

I-register transfers execution of a running program sequentially down-

ward in program memory to the next label specified by the number
currently in I. With a negative number in the I-register, execution

transfers to the occupied /ine number specified by the absolute value of

the number currently in I.

(7] [1] (8o to label or line I subroutine) with a positive number
in the I-register transfers execution of a running program sequentially

downward in program memory to the next label specified by the number

currently in I. With a negative number in the I-register, execution

transfers to the occupied line number specified by the absolute value of

the number currently in I. In both cases, when a (rn]is then encoun-

tered, execution transfers back to the line following the (GsB]instruc-

tion, and continues.

152 Advanced Programming

When executing any one of the above operations, if the number in the

I-register is inappropriate for that operation, the display will show an

Error message. Also, when using anumberin I for display, storage regis-

ter, or program control, remember that the calculator uses only the in-

teger portion of the number in 1. Thus, 12.99041276 stored in the

I-register retains its full value there, but when used to control any of

the above operations it is read as 12 by the calculator.

You can already see that using the I-register in conjunction with other

functions gives you a tremendous amount of computing power and

exceptional programming control. Now let’s have a closer look at

these operations.

I-Register Display Control

You can use a numberin the I-register to control the number of decimal

places appearing in the display. When [n](psP1]is performed, the

display is seen rounded to the number of decimal places specified by the

current value contained in the I-register. (The display is seen rounded,

but of course, the calculator maintains its full accuracy, 10 digits multip-

lied by 10 raised to a two-digit exponent, internally.) The above opera-

tion is most useful as part of a program, but it can also be executed
manually from the keyboard. For example, execute the following in

RUN mode.

Keystrokes Display

(J(FxJ4 0.0000 Clears display; normal FIX
display.

sto) (1] (1] 0.0000 Insures that zero is in the
I-register.

9.123456789 9.123456789

() 9. FIX display specified by the

zero value in the I-register.

(9] (1sG) 9. Increments value in

I-register to 1.

(n) 9.1 FIX display specified by the

the value in the I-register.
(9] (sG] 9.1 Increments value in I-

register to 2.

() 9.12 FIX display specified by the

value in the I-register.

Advanced Programming 153

Example: The following program pauses and displays an example of

FIX display format for each possible decimal place. It utilizes a loop

containing a instruction to automatically change the number of

decimal places.

Slide the PRGM-RUN switch to prom [Tl and key in the following

program.

Keystrokes Display

(f] CLEAR 000-

) (€80 (&) 001- 25, 13, 11
9 002- 9

0 (0 003- 23, 14, 23
(n) 0 004- 25,13, 0

(») (5P 005- 25 11
RcL) (1] [1] 006- 24, 14, 23

™) (PsE) 007- 25 74
008- 15 23

G10] 0 009- 22 0

@59 010- 15 51
0 011- 22 0

™) ("N) 012- 25 12

To display fixed point notation for all possible decimal places on your

HP-34C.

Slide PRGM-RUN switch to[ru~ .

Keystrokes Display

& 9.000000000
8.00000000
7.0000000
6.000000
5.00000
4.0000
3.000
2.00
1.0
0.
0.

154 Advanced Programming

To display scientific or engineering notation for all possible places,

replace the 9 at line 002 with a 6 and shift the calculator to SCI or ENG

mode by pressing [(scijor [][enc]and any digit 0-7.* Then press

(A] as you did in the above example.

Slide the PRGM-RUN switch rrem [l to PRGM.

Keystrokes Display

(-] 002 002- 9
(n) (oEL) 001- 25, 13, 11
6 002- 6

Slide the PRGM-RUN switch to [lIMrun .

Keystrokes Display

(f)(sc 4 0.0000 00 Normal [sci]display.

or
(fi(Eng) 4 0.0000 00 Normal [ewc)display.

&) 6.000000 00
5.00000 00
4.0000 00
3.000 00

2.00 00

1.0 00

0. 00
0. 00

If any number less than O is stored in the I-register, executing [n]

results in the same number of digits in the display as when you execute

(n) with 0 in the I-register.{ If a number greater than 9 is stored in

the I-register, executing [h) results in the same number of digits

in the display as when you execute [h](0sP1] with 9 in the I-register.

Note that in SCI and ENG modes any number greater than 6 in the

I-register results in a maximum of 6 digits and a 2-digit exponent

* In PRGM mode, pressing (1] [sci]or [7] [Enc) followed by 8 or 9 automatically

results in an [7] 7or (1] [Enc]7 in program memory.

T During execution of (/3] only, a number -6 through +9 in the I-register is used by

as an automatic parameter for (/3] calculations (more on (73] in section 9).

Advanced Programming 155

appearing to the right of the decimal. (Remember, however, that

[sci) or [enc] 7 rounds the display to one more digit than does or

(Enc] 6.)

Execute the following:

Keystrokes Display

[f][Fix])4 0.0000
1.999999999 1.999999999

1[0 2.0000

() 2.0

.9852 0.9852

1 1.0

() 1.

19 19.

(1l 19.
) 19.00000000

(1] (i) -19.00000000

(»] (osP -19.

(1) (5c1) 4 -1.9000 01
1.1111119 (&ers) 1.1111 00
7 519 (1) (1IEy) 1.1111 00
(v) (osP 1.111111 00

6 (sto) (7] [1])(xxy) 1.111111

(n]) (osp1) 1.111112 00

Normal FIX display.

Display rounds to last

display format command.

Only the integer portion of

the value in I is read by

Display roundsto last format

command.

A value of <1 brings the

same result as a value of 0.

With 2 digitsto the left of the

decimal occupied, a value

> 9 stored in I brings

the same result as a value of
8 or9.

Stores a negative number

in L.

A negative numberstored in

I brings the same result as

a positive number <1.

Normal SCI display.

Display rounded to 7

decimal places.

Display rounded to 6

decimal places.

156 Advanced Programming

Exchanging X and (i)

Using you can exchange the contents of the displayed X-register

with those of any available storage register indirectly addressed by the

absolute value of any number -21<n< 21 in the I-register. The integers

from O through *9 address storage registers R, through Re. The

integers from * 10 through *19 address registers R, through R3. With

the number *£20 in the I-register, addresses the I-register itself!

The following diagram illustrates these addresses more clearly:

(i) Address (i) Address
R o Rol_ 10
R] R]
R]2 R |12
R |3 R.[|13
R |4 Rl |14
R[] Re|| 15
R |6 Re[| 16
Rl |7 R[] 17

Rl s SRt
ml o Ro 19

L 2
Before proceeding, set the display to FIX 4 and clear both the displayed

X-register and all storage registers.

Keystrokes Display

DFEx]4 0.0000
() CLEAR 0.0000

Now try the following examples using to store 1.234 in registers

Rj;, R.5, and 1.

Keystrokes

3 (002

1.2345 () =w)

(ReL) 3

15 (0 1)

() xx@)

(Ret)] 5

(f) CLEAR

15.3974 (cns)
(] (=]

X%y

(v x)

(Reu) (2 5

Display

0.0000

0.0000

1.2345

3.0000

1.2345

0.0000

1.2345

1.2345

-15.3974

0.0000

1.2345

0.0000

1.2345

Advanced Programming 157

Exchanges contents of dis-

played X-register and

I-register.

Exchanges contents of dis-

played X-register and R,

using the integer 3 in I for an

address.

Recalls a copy of the

contents of Rj.

Exchanges contents of dis-

played X-register and I.

Exchanges contents of dis-

played X-register and Y-
register.

Exchanges contents of dis-

played X-register and R5

using the integer 15 in I as

an address.

Recalls a copy of the

contents of R5.

Clears the contents of all

storage registers to 0.

Exchanges the contents of

the displayed X-register and

L.

Exchanges the contents of

the displayed X-register and

the Y-register.

Exchanges contents of dis-

played X-register and R5
using the integer portion of

the absolute value of

-15.3974 stored in I as an

address.

Recalls a copy of the con-

tents of R;

158 Advanced Programming

Keystrokes Display

20 (1) [x=1] -15.3974 Exchanges the contents of

the displayed X-register and

L.

1.2345 Exchanges the contents of

the displayed X-register and

the Y-register.

() 20.0000 Exchanges the contents of

the displayed X-register and

I, using the integer stored in

I as an address.

00l 1.2345 Recalls a copy of the con-
tents of I.

(f] CLEAR 1.2345 Clears the contents of all

storage registers to 0.

0.0000 Clears all stack registers.

Indirect Store and Recall

Like (x%w)], you can use the I-registerto indirectly address all 21 storage

registers for and operations. When you press (1] [@),

the value in the display is stored in the storage register addressed by the

numberin the I-register. (1] [w]addresses the storage registers in a

like manner, as do the storage register arithmetic operations

(@], =) (@, (x) (@], and [@]. (If you have for-
gotten the normal operation of the storage registers, or of storage regis-

ter arithmetic, go back and review section 4, Storing and Recalling

Numbers, inSolving Problems With Your Hewlett-Packard Calculator.)

When using (1) (@), [7] [w], or any of the storage register
arithmetic operations utilizing the [@]function, the I-register can contain
the same positive or negative values from O through 20, as used with

Advanced Programming 159

By using the calculator manually, you can easily see how (0 @
and (1] [w]are used in conjunction with the I-register to address

the different storage registers:

Ensure that the PRGM-RUN switch is set to [JMrun -

Keystrokes Display

(1) (ex) 4 0.0000
(1) CLEAR (reg) 0.0000 Clearsall storage registers,

including I, to zero.

5 a0 5.0000 Stores the number 5 in the

I-register.

1.23 (1] (@] 1.2300 Stores the number 1.23 in

the storage register ad-

dressed by the number in

[—that is, storage register

R;.

19 (1] 0] 19.0000 Stores the number 19 in the

I-register.

85083 (] (@] 85,083.0000 Stores the number 85083 in

the storage register R4

addressed by the current

number 19 in [.

12 (][O0 12.0000 Stores the number 12 in the

I-register.

77 (EEx] 43 77. 43

(1] (@) 7.7000 44 Stores the number 7.7 X 10*

in the storage register ad-

dressed by the number in

I—that s, in storage register

R.,.

160 Advanced Programming

To recall numbers that are stored in any register, you can use the

(recall) key followed by the number of the register address. However,

when the number currently stored in the I-register addresses the storage

register you want, you can recall the contents ofthat register with

(] [@].

Keystrokes Display

5 1.2300 Contents of storage register
Rj recalled to displayed

X-register.

(1) [@) 7.7000 44 Since the I-register still

contains the number 12, this

operation recalls the con-

tents of storage register R,,

which is addressed by the

number 12.

By changing the number in the I-register, you change the address

specified by (7] [w]or 7] [@]. For example:

Keystrokes Display

19 (0O 19.0000
(1 @) 85,083.0000 Contents of storage register

R4 recalled to displayed

X-register.

5 (sto] (1] [1] 5.0000

RcL] (1] (W) 1.2300 Contents of storage register

R; recalled to displayed

X-register.

Storage register arithmetic is performed upon the contents of the register

addressed by I by using @), =) (@], (<] (@], and

[(v]. Notice that it is not necessary to use the [shift function

key with these four operations.

Advanced Programming 161

Keystrokes Display

1 (@) 1.0000 One added to number in
storage register (Rs) cur-

rently addressed by the

I-register.

1) (W) 2.2300 Recalls the number stored
in R;.

2 0 (0] 2.0000 Multiplies the contents of

R by 2.
(1 (@) 4.4600 Recalls the new contents of

Rs.

0.0000 Clears display.

5 4.4600 Directly recalls the contents

of R;.

Note: When programming, storage register arithmetic
commands for register R, through R, can be keyed in as
eitherdirect or indirect storage operations. However, storage
register arithmetic commands for registers R, through R,

and the I-register are implemented using indirect storage
operations only.

Naturally, the most effective use ofthe I-register as an address for

and is in a program.

Example: The following program uses a loop to place the number

representing its address in storage registers R, through Rg and registers

Ro through R4. During each iteration through the loop, program execu-

tion pauses to show the current value of I. When I reaches 20, execution

is finally transferred out of the loop by the (1SG] instruction and the

program returns to line 000 and halts.

162 Advanced Programming

Slide the PRGM-RUN switch to pram [[[[Jil] and key in the following

program.

Keystrokes Display

(1) CLEAR [prGM] 000-
(n]) () (&) 001- 25, 13, 11
CJ 002- 73

003- 0
(1) 004- 1 Loop control number.

9 005- 9
(0[] 006- 23, 14,23 Store loop control number.

(0 (e 1 007- 25,13, 1
00 008- 24, 14,23 Current integer value of I

(v 009- 25 32 stored in storage register

(1) (@) 010- 23, 14,24 addressed by (i).

(] (PsE) 011- 25 74 Pause to display current

value of I.

(9)(1s6) 012- 15 24 Add one to value in I-

register and compare with

counter test value (019).

1 013- 22 1 IfI=<19, execute loop again.

™) 014- 25 12 If I>19, execution transfers
to line 000 and halts.

Slide the PRGM-RUNswitch to s~ .

When the program is run, it begins by placing zero in the I-register.

Then the program recalls the current value in the I-register (loop control
value) and stores the integer part of that number in the corresponding
address — for example, when the I-register contains the number 17.019,

that numberis recalled and the integer portion, 17, is stored in the indirect

storage register (R,;) that is addressed by the number 17. Each time

through the loop the I-register is incremented and the result is used both

as data and as an address by the (7] [@] instruction. When the
number in the I-register reaches 20, execution transfers out of the loop

and the program stops.

Advanced Programming 163

To run the Program:

Keystrokes Display

(&) 0.0000
1.0000
2.0000

19.0000

Notice that the contents of the I-register have been incremented to

20.0190.

Keystrokes Display

00 20.0190

I-Register Control of Branches and Subroutines

Like the addressing ofstorage registers using (7] (@)and 1
(], you can address routines, subroutines, even entire programs,

with the I-register.

To address a routine using the I-register, use the instruction (1]

[1]. When a running program encounters a (GTo] (] [1] instruction,

execution is transferred sequentially downward to the that is

addressed by the numberin the I-register. Thus, with the number 7 stored

in I, when the instruction (G10][7] [1] is encountered, execution is

transferred downward in program memory to the next 7 instruction

before resuming.

7

(stoJ (7] (1]
r— &0 0
i

|
L>+ (e

164 Advanced Programming

Naturally, you can also execute (7] (1] from the keyboard when
you wantthe calculator to go to the label addressed in the I-register and

halt.

Subroutines can also be addressed and utilized with the I-register. When

(1] [1])is executed in a running program, execution transfers to the

specified (LBL]and executes the subroutine. When a is then encoun-

tered, execution transfers back to the next instruction after the

(1] [1)and resumes. For example, with the number 7 stored in the
I-register, (1] (1] causes execution of the subroutine defined by

7 and (RTN].

e’

You can also execute (7] [1])from the keyboard when you want the

calculator to execute the program or subroutine addressed by the number

in I, then halt.

The simple-to-remember addressing using the I-register is the same for

(7] (1)and (1] [1). If the I-register contains zero or apositive

number from 1 through 9, or (1) (1] addresses 0
through 9. When the numberin I is a positive 10 or 11, (&) or

Advanced Programming 165

is addressed. Label addressing is illustrated below.

If the number (GTo) (f] [1]or 00
in I is; transfers execution to:

®@00
@@ !

r @ r

= o -

e
l

el
el

e]
e

e
l

e
e

e
e

.
B
\
O
O
O
\
]
O
\
U
I
A
M
N

L
o
V
N
A

UM
h
W
N

R~
O

- @ -

B
E
E
E
E
E
E
E
E
E

- @ -

Remember that label address numbers in the I-register must be O or a

positive value less than 12 (negative numbers cause transfer of program

execution, which we will discuss later), and that the calculator looks at

only the integer portion of the number in I when using it for an address.

Example: One method of generating pseudorandom numbers in a

program is to take a number (called a ‘‘seed’’), square it, and then

remove the center of the resulting square and square that, etc. Thus, a

seed of 5182 when squared yields 26853124. A random number

generator could then extract the four center digits, 8531, and square that

value. Continuing for several iterations through a loop would generate

several pseudorandom numbers.*

The following program uses the (f] [1]instruction to permit you to

key in a four-digit seed in any of three forms: nnnn, .nnnn, or nn.nn.

The seed is squared and the square truncated by the main part of the

program, and the resulting four-digit random number is displayed in the

form of the original seed: nnn, .nnnn, or nn.nn.

* As indicated, the numbers are not really random. After several such ‘‘pseudorandom’’

numbers have been generated by this mid-square method they may well begin behaving in a

very systematic, non-random way. The art of generating truly random numbersis beyond

the scope of this handbook.

Advanced Programming

A flowchart for the program might look like this:

Key in Key in Key in
number nnnn.] (number.nnnn. number nn.nn.

Start Start Start

Change to Change to
form nn.nn. form nn.nn.

Y v y
Store 1 Store 2 Store 3

in I-register. in l-register. in l-register.

Y
Square
number.

Extract new

seed of
form .nnnn.

LBL 1 i GTO | > LBL 3

y Y Y

Change to Change to
form nnnn. LBL 2 form nn.nn.

Advanced Programming 167

The use of the (1] [1] instruction lets you select, via your seed

format, the operations that are performed upon the numberafter the main

portion of the program.

By storing 1, 2, or 3 in the I-register depending upon the format of the

seed, the program selects the form of the result after it is generated by

the main portion of the program. Although the program shown here stops

after each result,it would be a simple matter to create a loop that would

iterate several times, increasing the apparent randomness of the result

each time.

Slide the PRGM-RUN switch to prem [[[[Jili] and key in the program.

Keystrokes Display

() CLEAR 000-

(M) (L 4 001- 25,13, 4

(eex] 002- 33

2 003- 2 } Changes nnnn to nn.nn.

004- 71

1 005 - 1 Places 1 in X-register for

storage in I.

7 006- 22 7

(W (eySs 007-25,13, 5

(eex] 008- 33

2 009- 2 } Changes .nnnn to nn.nn.

] 010- 61

2 011- 2 Places 2 in X-register for

storage in I.

7 012- 22 7

(n]) (B 6 013-25,13, 6

3 014- 3 Places 3 in X-register for

storage in I.

(n)(eg7 015- 25,13, 7

sto] (] (1) 016- 23, 14,23 Stores address of later

operation in [.

168 Advanced Programming

Keystrokes

€3

i
0

ge
r g

e B B
r @ - Y
t

PH
ER

ER
"F
E

Je
RE

] - z

B
@

B
E
E
"

:
D - z

Display

017- 21

018- 15 3

019- 33

020- 2

021- 61

022- 25 32

023- 33

024- 4

025- 71

026- 25 33

027- 22, 14, 23

028- 25, 13, 1

029- 33

030- 4

031- 61

032- 14,11, 0

033- 25 12
034- 25,13, 2

035- 14,11, 4

036 - 25 12

037- 25,13, 3

038- 33

039- 2

040- 61

041-14,11, 2

042- 25 12

Brings nn.nn to X-register.

Squares nn.nn.

Truncates two final digits of

square.

Truncates two leading digits

of square.

Transfers execution to

appropriate operational

routine.

Result appears as nnnn.

Result appears as .nnnn.

Result appears as nn.nn.

e
e
—

We could also have stored the digits for 100 (that is, (EEx] 2) and recalled

them for use in lines 002-003, 008-009, 019-020, and 038-039, but we

have used this more straightforward program to illustrate the use of the

(] (1] instruction.

Advanced Programming 169

When you key in a four-digit seed number in one of the three formats

shown, an address (1, 2, or 3) is placed in the R,-register. This address

is used by the (] (1] instruction in line 27 to transfer program
execution to the proper routine so that the new random number is seen

in the same form as the original seed.

Now run the program for seeds of 5182, .5182 and 51.82. To run the

program:

Set the calculator to [Iru~

Keystrokes Display

5182 4 8,531. Random number generated

in the proper form.
5182 5 0.8531
51.82 6 85.31

The program generates a random number of the same form as the seed

you keyed in. To use the random number as a new seed (simulating the

operation of an actual random number generator, in which a loop would

be used to decrease the apparent predictability of each succeeding

number), continue pressing and the appropriate label key:

Keystrokes Display

6 77.79

6 51.28

6 29.63

With a few slight modifications of the program, you could have used a

(1] [1]instruction instead of the (] (1]instruction.

170 Advanced Programming

Problem

Create and load a program using [1SG]and (1] [w)that permits you
to key in a series of values during successive halts. The values should be

stored in storage registers R, through Ry, R, through R¢ and I in the

order you key them in. Use the following flowchart to help you.

{ Start)

Y

Store counter
test value in I.

 Y

Clear display.

-!

Y

Halt to key
in number.

Y
Store number

in register

addressed by (i).

Y

Increment
I-register.

Advanced Programming 171

Branching and Subroutines Using Line Number Addressing

Using (f]) [1Jor (f] [1], with a negative number stored in
the I-register, you can actually branch to any occupied line number in

program memory.

As you know, when (f] (1] or (1] [1]is executed in a
running program, the calculator searches downward through program

memory until it locates the addressed by the positive numberin I.

Then execution resumes. However, when (f] (1Jor (1] (0]

is executed in a running program with a negative number stored in I, the

calculator does not search for a label. Instead, execution is transferred to

the occupied line number in program memory specified by the absolute

value of the negative number in I. This feature allows you to transfer

program execution even when all labels have been used or when you want
to execute only part of a subroutine or program without using an addi-

tional label.

For example, in the section of program memory shown below, -35 is

stored in the I-register. Then, when line 047, (f] (1], is executed,

the running program jumps immediately to line 035, where execution

begins again.

033- (n]

034- 3

| 035- 3 3. Execution

1. When is | 036- 4 resumes 'here

pressed, execution : 037- 5 Tr]]ctlilct(;]rgmfiu]es

gzglins at line ' 038 - ot line

' | 039- (] (sFO 040 is encoun-
| |od0- (W) (rRTN) tered.

2. With -35 stored : 041- (n](tey)
in I, execution I 042- 1]

transferred to | 043- 3
line 035 by | 044- 5

0 @ | |s

I y]o46- 7o)(1) (1]
L —loa7- [(1)

048-

172 Advanced Programming

When (] [1]is performed in a running program, execution then

continues until the next or instruction is encountered, and

then halts. If you pressed (B8] with the instructions shown above loaded

into the calculator, the instructions in lines 041 through 047 would be

executed in order. Then program execution would jump backward and

resume at line 035 and continue with 036, 037, etc., until the

instruction was encountered in line 040. Program execution would then

halt and the calculator would return to line 000.

Note that executing (1] (1] from the keyboard brings the same
results as execution in a running program except the calculator halts at

the specified line number instead of resuming program execution.

With a negative numberstored in the I-register, (1] [1)also trans-

fers execution to the occupied line of program memory specified by the

absolute value of the negative number in I. However, just as when using

with labels, subsequent instructions are then executed as a sub-

routine. Therefore, when the next is encountered, execution trans-

fers back to the instruction following the [f) (1] instruction.

The section of program memory below shows how (1) [T]oper-

ates. If you press (B8], -35 will be stored in the I-register. When the

(1) [1]at line 047 is then executed, the running program jumps
back to line 035 and resumes execution. When the instruction at

line 040 is encountered, execution returns to line 048 and continues.

Advanced Programming 173

033 (n) 09

034 3

r’ 035 3 3. Execution re-
' 036 4 sumes here.

| 037 5

| |38 (9)
| 039 (n](sF)O

| 040 (n])(rR7N) — 4. The subroutine

1 When (B]is 041 | ends here.
pressed, execution: >) |

begins at line 042 (1] |
041. I 043 3 |

I 044 5 |

I 045 (cHs I
2. Execution trans- | 5. Execution trans-046 |

ferred to line LY - (0 (1) ' fers back to first

035by (7] 2 (DO} | line after
. 048 { and resumes.

Like 0 (a3, (][] can be used to jump to a specific line of
program memory without running your entire program. When you exe-

cute 7] (1] from the keyboard using the absolute value of a

negative number in I as an occupied line address, the calculator jumps to

that line and begins execution. However, unlike the execution of

(f] (1])1in a running program, when a is encountered, the

calculator returns to line 000 and halts.

Section 8

Finding the Roots of an Equation

In many applications you need to solve equations of the form

f(x)=0.*

This means finding the values of x that

satisfy the equation. Each such value ofx

is called a root of the equation f(x) = 0

and a zero of the function f(x). These

roots (or zeros) that are real numbers are

called real roots (or real zeros). For many

problems the roots of an equation can be

determined analytically through algebraic

manipulation; in many other instances, \

this is not possible. Numerical techniques

can be used to estimate the roots when

analytical methods are not suitable. When you use the key on

your HP-34C, you utilize an advanced numerical technique that lets

you effectively and conveniently find real roots for a wide range of

equations.

Using
The basic rules for using are:

1. Key in a subroutine that evaluates the functionf(x) that is to be

equated to zero. This subroutine must begin with the instruction

(v] (tey] followed by O, 1, 2, 3, (&), or (8), and must place

the value off(x) into the X-register.

2. Key twoinitial estimates of the desired root, separated by (ENTER+],

into the X- and Y-registers. These estimates merely indicate to the
calculator the approximate range of x in which it should initially

seek a root off(x) = 0.

3. Press [1] followed by the label of your subroutine. The

calculator then searches for the desired zero of your function and

* Actually, any equation with one variable can be expressed in this form. For example,

f(x) =a is equivalent tof(x) —a = 0, andf(x) = g(x) is equivalent tof(x) — g(x) = 0.

174

Finding the Roots of an Equation 175

displays the result. If the function that you are analyzing equals

zero at more than one value ofx, the routine will stop when it finds

any one of those values. To find additional values, you can key in

different initial estimates and use [soLve|again.

Immediately before (soLvejuses your function subroutine, a value ofx is

placed inthe X-, Y-, Z-, and T-registers. This value is then used by your

subroutine to calculatef(x). Because the entire stack is filled with the x

value, this numberis continually available to your subroutine. (The use

of this technique is described on page 76).

Example: Use [soLve|to find the values of x for which

fx)=x*—3x—10=0.

Using Horner’s method (refer to page 79), you can rewritef(x) so that it

is programmed more effeciently:

f(x)=(x—3)x —10.

Slide the PRGM-RUN switch to prem [[[[Illl and key in the following

subroutine that evaluates f(x).

Keystrokes Display

(1] CLEAR 000- Clear program memory.

(nJ(el O 001-25,13, 0 Begin with

instruction.

3 002- 3
=] 003- 41

) 004- 61

1 005 - 1

0 006 - 0

a 007- 41
™ 008- 25 12

176 Finding the Roots of an Equation

Now slide the PRGM-RUN switch back to Prem [[[HM. Key two initial
estimates into the X- and Y-registers. Try estimates of 0 and 10 to look

for a positive root.

Keystrokes Display*

(1)0 300000 } Initial estimates.

You can now find the desired root by pressing] 0. When you do
this, the calculator will not display the answer right away. The HP-34C

uses an iterative algorithmto estimate the root. The algorithm analyzes

your function by sampling it many times, perhaps a dozen times or more.

It doesthis by repeatedly executing your subroutine. Finding a root will

usually require about 30 seconds to 2 minutes; but sometimes the process

will require even more time.

Press [f] 0 and sit back while your HP-34C exhibits one of its
powerful capabilities:

Keystrokes Display

0 0 5.0000 The desired root.

After the routine finds and displays the root, you can ensure that the

displayed number is indeed a root off(x) = 0 by checking the stack. You

have seen that the displayed X-register contains the desired root. The

Y-register contains a previous estimate of the root, which should be very

close to the displayed root. The Z-register contains the value of your

function evaluated at the displayed root.

* Press 1) [F1X] 4 to obtain the displays in this section. The display setting does not

influence the operation of

1 An algorithm is a step-by-step procedure for solving a mathematical problem. An

iterative algorithm is one containing a portion that is executed a number of times in the

process of solving the problem.

Finding the Roots of an Equation 177

Keystrokes Display

5.0000 A previous estimate of the

root.

0.0000 Value of the function at the

root, showing that

f(x)=0.

Quadratic equations, such as the one you are solving, can have two roots.

If you specify two new initial estimates, you can check for a second root.

Try estimates of 0 and -10 to look for a negative root.

Keystrokes Display

0 0.0000 Initi .
nitial estimates.

10 (cHs) -10. }

(1] (sowvegl0 -2.0000 The second root.

-2.0000 A previous estimate of the

root.

0.0000 Value off(x) at second root.

You have now found the two roots of

f(x) = 0. Note that this quadratic equa-

tion could have been solved

algebraically—and you would have ob-
tained the same roots that you found \ /

using [SOLVE).

N
Graph of f(x)

178 Finding the Roots of an Equation

The convenience and power of the [soLvelkey becomes more apparent

when you solve an equation for a root that cannot be determined

algebraically.

Example: Champion ridget hurler

Chuck Fahr throws a ridget with an

upward velocity of 50 meters/second.
If the height of the ridget is expressed as

h = 5000(1 — /2% — 200¢,

how long doesit take for it to reach the

ground again? In this equation, A is the

height in meters and ¢ is the time in

seconds.

Solution: The desired solution is the positive value of ¢ at which

h=0.

Slide the PRGM-RUN switch to erem [[[[Illl and key in the following
subroutine that calculates the height.

Keystrokes Display

(n) (&) 001-25,13,11 Begin with
instruction.

2 002- 2
0 003- 0

004- 71
005- 32
006- 15 1
007- 32

1 008- 1
009- 51

5 010- 5
0 011- 0
0 012- 0
0 013- 0
) 014- 61
xxY 015- 21 Bring ¢ value into

X-register.

Finding the Roots of an Equation 179

Keystrokes Display

2 016- 2

0 017- 0

0 018- 0

) 019- 61

G 020- 41
(n)(r7N 021- 25 12

Next, set the PRGM-RUN switch to Ilrw . Key in two initial
estimates ofthe time (for example, 5 and 6 seconds) and execute [SOLVE].

Keystrokes Display

2 g } Initial estimates.

1 (&) 9.2843 The desired root.

Verify the root by reviewing the Y- and Z-registers.

Keystrokes Display

9.2843 A previous estimate of the

root.

0.0000 Value of the function at the

root, showing that A = 0.

Fahr’s ridget falls to the ground 9.2843

seconds after he hurls it—a remarkable

toss.

I |

Graph of h versus t

180 Finding the Roots of an Equation

When No Root Is Found

You have seen how the [soLve| key estimates and displays a root of an

equation of the formf(x) = 0. However, it is possible that an equation

has no real roots(thatis, there is no real value ofx for which the equality

is true). Of course, you would not expect the HP-34C to find a rootin this

case. Instead,it displays Error 6.

Example: Consider the equation

x| = -1

value function is never negative. Ex-

which has no solution since the absolute \

press this equation in the required form

 |x|+1=0

Graphof f(x) = |x| + 1
and attempt to use [SoLve]to find a solu-
tion. With the PRGM-RUN switch set
to prov MM, key in the required function subroutine.

Keystrokes Display

D3] 1 001-25,13, 1 Begin subroutine with
instruction.

™) 002- 25 34
1 003- 1

004- 51
(n]) (rRTN) 005- 25 12

Because the absolute-value function is minimum near an argument of

zero, specify the initial estimates in that region, for instance 1 and -1.

Then attempt to find a root. After setting the PRGM-RUN switch to

Io
Keystrokes Display

1 (enTeRy) 1.0000
1 (cns) -1. } Initial estimates.

1) 1 Error 6 This display indicates that

no root was found.

Finding the Roots of an Equation 181

As you can see, the HP-34C stopped seeking a root off(x) = 0 whenit

decided that none existed—at least not in the general range ofx to which

it was initially directed. The Error 6 display does not indicate that an

‘‘illegal’’ operation has been attempted;it merely states that no root was

found where (soLve] presumed one might exist (based on your initial
estimates).

If the HP-34C stops seeking a root and displays an error message, one of

these four types of conditions has occurred:

® [frepeated iterations all produce a constant non-zero value for the

specified function, execution stops with the display Error 6.

®= If numerous samples indicate that the magnitude of the function

appears to have a nonzero minimum value in the area being

searched, execution stops with the display Error 6.

= If an improper argument is used in a mathematical operation as

part of your subroutine, execution stops with the display Error 0.

= If the result of any calculation has a magnitude greater than

9.999999999 X 10%, execution stops with all 9’s and the appro-
priate sign (or Error 1 in the case of register overflow) in the

display.

In the case of a constant function value, the routine can see no indica-

tion of a tendency for the value to move toward zero. This can occur for

a function whose 10 most significant digits are constant (such as when

its graph levels off at a nonzero horizontal asymptote) or for a function

with a relatively broad, local ‘‘flat’’ region in comparison to the range of

x values being tried.

In the case where the function’s magnitude reaches a nonzero minimum,

the routine has logically pursued a sequence of samples for which the

magnitude has been getting smaller. However,it has not found a value of

x at which the function’s graph touches or crosses the x-axis.

The two final cases point out a potential deficiency in the subroutine

rather than a limitation of the root-finding routine. Improper operations

may sometimes be avoided by specifying initial estimates that focus the

search in a region where such an outcome will not occur. However, the

[SoLve] routine is very aggressive and may sample the function over a

182 Finding the Roots of an Equation

wide range. It is a good practice to have your subroutine test or adjust

potentially improper arguments prior to performing an operation (for

instance, use prior to [/x]). Rescaling variables to avoid large

numbers can also be helpful.

The success of the [soLve|routine in locating a root depends primarily

upon the nature of the function it is analyzing and the initial estimates at

which it begins searching. The mere existence of a root does not ensure

that the casual use of the [soLvelkey will find it. If the functionf(x) has a

nonzero horizontal asymptote or a local minimum of its magnitude, the

routine can be expected to find a root of f(x) = 0 only if the initial

estimates do not concentrate the search in one of these unproductive

regions—and, of course, if a root actually exists.

Choosing Initial Estimates
When you use [soLve|to find the root of an equation, the two initial

estimates that you provide determine the values ofthe variablex at which

the routine begins its search. In general, the likelihood that you will find

the particular root you are seeking increases with the level of under-

standing that you have about the function you are analyzing. Realistic,

intelligent estimates greatly facilitate the determination of a root.

The initial estimates that you use may be chosen in a number of ways:

If the variable x has a limited range in which it is conceptually meaning-

ful as a solution, it is reasonable to choose initial estimates within this

range. Frequently an equation thatis applicable to a real problem has, in

addition to the desired solution, other roots that are physically meaning-

less. These usually occur because the equation being analyzed is appro-

priate only between certain limits of the variable. You should recognize

this restriction and interpret the results accordingly.

If you have some knowledge of the behavior of the function f(x) as it

varies with different values of x, you are in a position to specify initial

estimates in the general vicinity of a zero of the function. You can also

avoid the more troublesome ranges of x such as those producing a rela-
tively constant function value or a minimum ofthe function’s magnitude.

Finding the Roots of an Equation 183

Example: Using a rectangular piece of

sheet metal 4 decimeters by 8 deci-

meters, an open-top box having a vol-

ume of 7.5 cubic decimeters is to be

formed. How should the metal be
folded? (A tall box is preferred to a

short one.)

 Solution: You need to find the height

of the box (that is, the amount to be

folded up along each of the four sides) that gives the specified volume.

Ifx is the height (or amount folded up), the length of the box is (8 — 2x)

and the width is (4 — 2x). The volume V is given by

V=@8—-2x)4—2x)x.

By expanding the expression and then using Horner’s method (page 79),

this equation can be rewritten as

V=4((x — 6)x + 8)x.

To get V =17.5, find the values of x for which

f(x)=4(x—6)x +8)x—7.5=0.

Set the PRGM-RUN switch to prem [[[[Jll and key in the following
subroutine that calculates f(x).

Keystrokes Display

™ 3 001-25,13, 3 Begin with
instruction.

6 002- 6
= 003- 1
) 004- 61
8 005- 8

006- 51
= 007- 61
4 008- 4
<) 009- 61

184 Finding the Roots of an Equation

Keystrokes Display

7 010- 7

) 011- 73
5 012- 5

G 013- 41
M EW) 014- 25 12

It seems reasonable that either a tall, narrow box or a short, flat box

could be formed having the desired volume. Because the tall box is

preferred, larger initial estimates of the height are reasonable. How-

ever, heights greater than 2 decimeters are not physically possible

(because the metalis only 4 decimeters wide). Initial estimates of 1 and

2 decimeters are therefore appropriate.

Set the PRGM-RUNswitch to Il "N and find the desired height.

Keystrokes Display

; [BmEry) ; } Initial estimates.

3 3 1.5000 The desired height.

1.5000 Previous estimate.

0.0000 f(x) at root.

 By making the height 1.5 decimeters, a

5.0 X 1.0 X 1.5-decimeter box is

specified.

If you ignore the upper limit on the

height and use initial estimates of 3 and 4

decimeters (still less than the width),

you will obtain a height of 4.2026

decimeters—a root that is physically

meaningless. If you use small initial

estimates such as 0 and 1 decimeter, you Graph of f(x)
will obtain a height of 0.2974 decimeter

—producing an undesirable short,

flat box.

Finding the Roots of an Equation 185

As an aid for examining the behaviorof a function, you can easily evalu-

ate the function at one or more values ofx if your subroutine is in program

memory. To do this, key the value of x into the X-register, then press

to fill the stack. Calculate the value of the func-

tion by pressing (a], (8], or followed by your function label,

whichever is appropriate. The values you calculate can be plotted to give

you a graph of the function. This procedure is particularly useful for a

function whose behavior you do not know. A simple-looking function

may have a graph with relatively extreme variations that you might not

anticipate. A root that occurs near a localized variation may be hard to

find unless you specify initial estimates that are close to the root.

If you have no informed or intuitive concept of the nature of the function

or the location of the zero you are seeking, you can search for a solu-

tion using trial-and-error. The success of finding a solution depends

partially upon the function itself. Trial-and-error is often—but not

always—successful.

= If you specify two moderately large positive or negative estimates

and the function’s graph does not have a horizontal asymptote, the

routine will seek a zero which might be the most positive or

negative (unless the function oscillates many times, as the

trigonometric functions do).

= If you have already found a zero of the function, you can check for

another solution by specifying estimates that are relatively distant

from any known zeros.

= Many functions exhibit special behavior when their arguments

approach zero. You can check your function to determine values

ofx for which any argument within your function becomes zero,
and then specify estimates at or near those values.

Although two differentinitial estimates are usually supplied when using

[soLve), you can also use [soLve]with the same estimate in both the X- and

Y-registers. If the two estimates are identical, a second estimate is

generated internally. If your single estimate is nonzero, the second

estimate differs from your estimate by one count in the seventh signifi-

cant digit. If your estimate is zero, 1 X 1077 is used as the second

estimate. Then the root-finding procedure continues as it normally would

with two estimates.

186 Finding the Roots of an Equation

How Works

You will be able to use most effectively by having a basic
understanding of how the algorithm works.

 In the process of searching for a zero of

the specified function, the algorithm

uses the value of the function at two or

three previous estimates to approximate

the shape of the function’s graph. The

algorithm uses this shape to intelligently

‘‘predict’’ a new estimate where the

graph might cross the x-axis. The func-

tion subroutine is then executed, com-

puting the value of the function at the

new estimate. This procedure is performed repeatedly by the

algorithm.

 If any two estimates yield function

values with opposite signs, the algo-

rithm presumesthat the function’s graph

must cross the x-axis in at least one

place in the interval between these

estimates. The interval is systematically

narrowed until a root of the equation is

found.

A rootis successfully found eitherif the

computed function value is equal to zero

or if two estimates, differing by less than two or three units in their

least-significant (tenth) digit, give function values having opposite
signs. In this case, execution stops and the estimate is displayed.

As discussed earlier (refer to page 180), the occurrence of other situa-

tions in the iteration process indicate the apparent absence of a function

zero. This is a result of there being no way to logically predict a new

estimate that is likely to have a function value closer to zero. In such
cases, Error 6 is displayed.

Finding the Roots of an Equation 187

You should note that the initial estimates you provide are used to begin

the *‘prediction’’ process. By permitting more accurate predictions than

might otherwise occur, properly chosen estimates greatly facilitate the

determination of the solution you seek.

The (soLvelalgorithm will always find a root provided one exists, if any

one of four conditions are met:

= Any two estimates have function

values with opposite signs.

® The function is monotonic, mean-

ing that f(x) either always

decreases or else always increases

as x is increased.

188 Finding the Roots of an Equation

® The function’s graph is either

convex everywhere or concave
everywhere.

® The only local minimums and

maximums of the function’s

graph occur singly between

adjacent zeros of the function.

In addition, it is assumed that the [SoLve] algorithm will not be inter-

rupted by an improper operation or overflow condition.

Accuracy of the Root
When you use the [SoLvelkey to find a root of an equation, the root is

found accurately. The displayed root either gives a calculated function
value (f(x)) exactly equal to zero or else is a 10-digit number virtually

adjacentto the place where the function’s graph crosses the x-axis. Any

such root has an accuracy within two or three units in the tenth significant

digit.

Finding the Roots of an Equation 189

In most situations the calculated root is an accurate estimate of the

theoretical (infinitely precise) root of the equation. However, certain

conditions can cause the finite accuracy ofthe calculatorto give a result

that appears to be inconsistent with your theoretical expectation.

If a calculation has a result whose magnitude is smaller than

1.000000000 X 10-%°, the result is set equal to zero. This effect is

referred to as ‘‘underflow.’’ If the subroutine that calculates your func-

tion encounters underflow for a range ofx and ifthis affects the value of

the function, then a root in this range may be expected to have some

inaccuracy. For example, the equation

xt=0

has a root at x = 0. Because of underflow, [soLve| produces a root of

1.5060 -25 (for initial estimates of 1 and 2). As another example,

consider the equation

1/x2=0

whose rootis infinite in value. Because of underflow, gives a root
of 3.1707 49 (for initial estimates of 10 and 20). In each of these

examples, the algorithm has found a value ofx for which the calculated

function value equals zero. By understanding the effect of underflow,

you can readily interpret results such as these.

The accuracy of a computed value sometimes can be adversely affected

by ‘‘round-off’’ error, by which an infinitely precise number is rounded

to 10 significant digits. If your subroutine requires excessive precision

to properly calculate the function for a range ofx, the result obtained by

[sovelmay be inaccurate. For example, the equation

|x2—5| =0

has arootatx = V5. Because no 10-digit number exactly equals \/g, the

result of using (soLve]is Error 6 (for any initial estimates) because the

function never equals zero nor changes sign. On the other hand, the

equation

[(|x] + 1)+ 101%]2 = 1020

190 Finding the Roots of an Equation

has no roots because the left side of the equation is always greater than

the right side. However, because of round-off in the calculation of

fx)y=[(| x| + 1)+ 10%5]2 — 10%,

the root 1.0000 is found forinitial estimates of 1 and 2. By recognizing

situations in which round-off error may influence the operation of (soLve],

you can evaluate the results accordingly and perhaps rewrite the function

to reduce the effects of round-off.

In a variety of practical applications, the parameters in an equation—or

perhaps the equation itself—are merely approximations. Physical para-

meters have an inherent accuracy (or inaccuracy). Mathematical repre-

sentations of physical processes are only models of those processes,

accurate only to the extent that the underlying assumptions are true. An

awareness of these and other inaccuracies can be used to your advantage.

By structuring your subroutine to return a function value of zero when the

calculated valueis negligible for practical purposes, you can usually save

considerable time in finding a root with [SoLve|—particularly for cases

that would normally take a long time.

Example: Ridget hurlers such as Chuck Fahr can throw a ridget to

heights of 105 meters and more. In fact, Fahr’s hurls usually reach a

height of 107 meters. How long does it take for his remarkable toss,
described on page 178, to reach 107 meters?

Solution: The desired solution is the value of ¢ at which A = 107. The

subroutine from the earlier example calculates the height of the ridget.

This subroutine can be used in a new function subroutine to calculate

f()=h()— 107.

Slide the PRGM-RUN switch to Prem [T and key in a subroutine

that calculates f(7).

Keystrokes Display

) 001-25,13,12 Begin with
instruction.

(&) 002- 13 11 Calculates h(?).

Keystrokes

1
0
7
=
() (&N

Finding the Roots of an Equation 191

Display

003-
004-
005-
006-
007-

1

0

7

1M1

25 12

Calculates h(t) — 107.

Now slide the PRGM-RUN switch to [llI[rw . In order to find the
first time at which the height is 107 meters, use initial estimates of 0 and

1 second.

Keystrokes

0
1

1

Display

0.0000

1.

4.1718

4.1718

0.0000

Initial estimates.

The desired root.

A previous estimate of the

root.

Value off(¢) at root.

It takes 4.1718 seconds for the ridget to reach a height of exactly 107

meters. (It takes approximately one minute to find this solution.)

However, suppose you assume that the function A(#) is accurate only to

the nearest whole meter. You can now change your subroutine to give

f(t) =0 whenever the calculated magnitude of f(z) is less than 0.5

meter. Slide the PRGM-RUN switch to prem [[[[Jl] and key in the

following changes to your subroutine:

Keystrokes

(=] 006

(n] (aes]
)
5

[0 &Y

DG

Display

006 -

007-

008-

009-

010-

011-

012-

013-

41

25 34

73

5
14 51

34

15 61

25 0

Line before

instruction.

Magnitude off(z).

} Accuracy.

} Return zero if accuracy >

magnitude.

} Restore f(¢) if value is
nonzero.

192 Finding the Roots of an Equation

Slide the PRGM-RUN switchto [J[[[[j ruxv and execute again.

Keystrokes Display

0 (enTers) 0.0000
1 1 } Initial estimates.

(1] 4.0681 The desired root.

4.0681 A previous estimate of the

root.

0.0000 Value of modified f(¢) at

root.

After 4.0681 seconds, the ridget is at a height of 107 =0.5 meters. This

solution, although different from the previous answer, is correct con-

sidering the uncertainty of the height equation. (And this solution is

found in just under half the time of the earlier solution.)

Interpreting Results
The numbers that [SoLve] places in the X-, Y-, and Z-registers help you

evaluate the results of the search for a root of your equation.* Even when

no root is found, the results are still significant.

When [SoLve|finds a root of the specified
equation, the root and function values

are placed in the X- and Z-registers. A

function value of zero is the expected

result. However, a nonzero function

value is also acceptable becauseit indi-

cates that the function’s graph appar-

ently crosses the x-axis within an
infinitesimal distance from the calcu-

lated root. In most such cases, the

function value will be relatively close to zero.

* The number in the T-register is the same number that was left in the Y-register by the

final execution of your function subroutine. Generally, this number is not of interest.

Finding the Roots of an Equation

Special consideration is required for a

different type of situation in which

[soLvelfinds a root with a nonzero func-

tion value. If your function’s graph has a

discontinuity that crosses the x-axis,

specifies as a root an x value

adjacent to the discontinuity. This is

reasonable because a large change in the

function value between two adjacent

values of x might be the result of a very

193

rapid, continuous transition. Because this cannot be resolved by the

algorithm, the root is displayed for you to interpret.

A function may have a pole, where its

value approaches infinity. If the function

value changes sign at a pole, the corre-

sponding value ofx lookslike a possible

root of your equation,just as it would for

any other discontinuity crossing the x-

axis. However, for such functions, the

function value placed into the Z-register

when that root is found will be relatively

large. If the pole occurs at a value of x

that is exactly represented with 10 digits, the subroutine may try that
value and halt prematurely with an error or overflow indication. In this

case, the [soLveloperation will not be completed. Of course, this may be

avoided by the prudent use of a conditional statement in your subroutine.

194 Finding the Roots of an Equation

Example: In her analysis of the stresses

in a structural component, design con-

sultant Lucy I. Beame has determined

that the shear stress can be expressed as

Q= { 3x3—45x2+350 for 0<x<10

1000 for 10=x<14

where Q is the shear stress in newtons - :

and x is the distance from one end in meters. Write a subroutine to com-

pute the shear stress for any value ofx. Use [soLvelto find the location of

zero shear stress.

Solution: The equation for the shear stress for x between 0 and 10 is

more efficiently programmed after rewriting it using Horner’s method:

0 = (3x — 45)x? + 350 for 0<x<10.

Slide the PRGM-RUN switch to prom[and key in the subroutine:

Keystrokes Display

(f] CLEAR 000- Clear program memory.

) 2 001-25,13, 2 Begin with

instruction.

1 002- 1

0 003- 0] Test for x range.

(1 004- 14 41

9 005- 22 9 Branch for x=10.

006- 34

3 007- 3

x] 008- 61

4 009- 4

5 010- 5

=] 011- 41

x) 012- 61

<) 013- 61

3 014- 3

5 015- 5

0 016- 0

Keystrokes

®
@EmW
@9
()

(] (&7n]

Finding the Roots of an Equation 195

Display

017- 51

018- 25 12

019- 25,13, 9

020- 33

021- 3

022 - 25 12

Now slide the PRGM-RUNswitch to [llMruN . Use initial estimates

of 7 and 14 to start at the outer end of the beam and search for a point of

zero shear stress.

Keystrokes

7
14

(1] sowve) 2

Display

7.0000 }
14.
10.0000

1,000.0000

Initial estimates.

Possible root.

Stress not zero.

The large stress value at the root points out that the [SoLveroutine has

found a discontinuity. This is a place on the beam where the stress

quickly changes from negative to positive. Start at the other end of the

beam (estimates of 0 and 7) and use [SoLvE| again.

Keystrokes

0
7

(1) Eowe)2
@@E®

Display

0.0000

7.

3.1358

2.0000 -07

—
—

Beame’s beam has zero shear stress at

approximately 3.1358 meters and an

abrupt change of stress at 10.0000

meters.

Initial estimates.

Possible root.

Negligible stress.

Graph of Q versus x

196 Finding the Roots of an Equation

When no rootis found and Error6 is displayed, you can press any key to

clear the display and observe the estimate at which the function was

closest to zero. By also reviewing the numbersin the Y- and Z-registers,

you can often determine the nature of the function near the root estimate

and use this information constructively.

If the algorithm terminates its search

near a local minimum of the function’s

magnitude, clear the Error 6 display and

observe the numbers in the X-, Y-, and

Z-registers by rolling down the stack. If

the value of the function saved in the Z-

register is relatively close to zero, it is

possible that a root of your equation has

been found—the number returned in the

X-register may be a 10-digit number

very close to a theoretical root. You can explore this potential minimum

further by rolling the stack until the returned estimates are back in the
X- and Y-registers and then executing (soLve|again using these numbers

as initial estimates. If an actual minimum has been found, Error 6 will

again be displayed and the number in the X-register will be approxi-

mately the same as before, but possibly closer to the actual location of

the minimum.

Of course, you may deliberately use (soLve|to find the location of a local

minimum of the function’s magnitude. However, in this case you must

be careful to confine the search in the region of the minimum. Remem-

ber, tries hard to find a zero of the function.

 If the algorithm stops searching and

displays Error 6 because it is working on

a horizontal asymptote (when the value

of the function is essentially constant for

a large range of x), the estimates in the

X- and Y-registers usually are signifi-

cantly different from each other. The

number in the Z-register is the value of

the potential asymptote. If you execute

[soLveJagain using as initial estimates the
numbers that were returned in the X- and Y-registers, a horizontal

Finding the Roots of an Equation 197

asymptote may again cause Error 6, but with numbers in the X- and

Y-registers that will differ from the previous numbers. The value of the

function in the Z-register would then be the same as that obtained

previously.

 If Error 6 is displayed as a result of a

search that is concentrated in a local

‘‘flat’’ region of the function, the esti-

mates in the X- and Y-registers will be

relatively close together or extremely (_W

small. Execute [SOLvE| again using for
initial estimates the numbers from the |

X- and Y-registers (or perhaps two

numbers somewhat further apart). If the

magnitude of the function is not a mini-

mum nor constant, the algorithm will eventually expand its search and

find a more significant result.

Example: Investigate the behavior of the function

20~ | x|fay=3+e M0 — 2%

First set the PRGM-RUN switch to pram [[[[Ill and key in the following
subroutine to calculate f(x).

Keystrokes Display

(»])(ego 0071-25,13, 0 Begin with
instruction.

(»] (aBS) 002- 25 34

(chs) 003- 32

004- 15 1
005- 21 Bring x value into

X-register.

3 006- 15 3
<] 007- 61

008- 15 1
2 009- 2

] 010- 61

011- 32

198 Finding the Roots of an Equation

Keystrokes

(»] (aes)

B
E
H
E
E

"
&

(] (Bn]

Display

012- 21

013- 25 34

014- 32

015- 1

016- 0

017- 71
018- 15 1

019- 51

020- 3

021- 51

022- 25 12

Bring x value into

X-register.

Slide the PRGM-RUN switch to Il ruv and use [S0LVE] with the
following single initial estimates: 10, 1, and 1020,

o~
5

& o

g3
&

<
o

m
>

o
&

-
Ef

oE
Ee

e
EE
E

[
S

p
@

0
:

- l
» E< m =

= 3

» O < m oH
E
E
E

F
E
E

0

B ©

Display

10.0000

Error 6

455.4335

48,026,721.85
1.0000

455.4335

Error 6

48,026,721.85

1.0000

1.0000

Error 6

2.1213

2.1471

0.3788

2.1213

Error 6

2.1213

0.3788

Single estimate.

Best x value.

Previous value.
Function value.

Restore the stack.

Another x value.

Same function value (an

asymptote).

Single estimate.

Best x value.

Previous value.

Function value.

Restore the stack.

Same x value.

Same function value (a

minimum).

Finding the Roots of an Equation

Keystrokes Display

(eex] 20 1.0000 -20
(t] [sovel0 Error 6

1.0000 -20
1.1250 -20
2.0000

(1) (1) 1.0000 -20
() (sove)0 Error 6

1.1250 -20
1.5626 -16
2.0000

In each of the three cases, ini-

tially searched for a root in a direction

suggested by the graph around theinitial

estimate. Using 10 as the initial esti-

mate, found the horizontal

asymptote (value of 1.0000). Using 1 as

the initial estimate, a minimum of

0.3788 at x =2.1213 was found.

Using 1072° as the initial estimate, the

function was essentially constant (at a

value of 2.0000) for the small range of

x that was sampled.

Using (sovelin a Program

Single Estimate.

Best x value.

Previous value.

Function value.

Restore the stack.

Another x value.

Previous value.

Same function value.

199

|Vs

You can use the [soLveloperation as part of a program. Be sure that the
program provides initial estimates in the X- and Y-registers just prior to

the [soLveloperation. The [soLve|routine stops with a value of x in the

X-register and the corresponding function value in the Z-register. If the

x value is a root (as explained on page 192), the program proceeds to
the next line. If the x value isn’t a root (as explained on page 196), the

next line is skipped. Essentially, the [soLve]instruction tests whether the x

value is a root and then proceeds according to the ‘DO IF TRUE"’ rule.

The program can then handle the case of not finding a root, such as by

choosing new initial estimates or changing a function parameter.

200 Finding the Roots of an Equation

The use of [soLvelas an instruction in a program utilizes one of the six
pending returns in the calculator. Since the subroutine called by

utilizes another return, there can be only four other pending returns.

Executed from the keyboard, on the other hand, [soLve]itself does not

utilize one of the pending returns, so that five pending returns are avail-

able for subroutines within the subroutine called by [soLve]. Remember

that if all six pending returns have been utilized, a call to another sub-

routine will result in a display of Error 8. (Refer to page 135).

Restriction on the Use of
The one restriction regarding the use of [SoLvelis that [SoLve|cannot be

used recursively. That is, you cannot use (SOLvE|]in a subroutine that is
called during the execution of [soLve]. If this situation occurs, execution

stops and Error 5 is displayed.

It is possible, however, to use with [/7], thereby using the
advanced capabilities of both of these keys. An example of a combined

application is given in appendix A.

For Further Information

In appendix A, Advanced Use of [so.ve|, additional techniques and

applications for using [(soLve]are presented. These include:

= Using [soLvelwith polynomials.

= Finding several roots.

= Finding local extremes of a function.

= Limiting the estimation time.

» Using [sowve with [/3].

Section 9

Numerical Integration

Many problems in mathematics, sci-

ence, and engineering require calculat-

ing the definite integral of a function. If

the function is denoted by f(x) and the

interval of integration isa to b, the integ-

ral can be expressed mathematically as

Z

 1 =f:f(x) dx.

The quantity / can be interpreted geometrically as the area of a region

bounded by the graph off(x), the x-axis, and the limitsx =g andx = b.*

When an integral is difficult or impossible to evaluate by analytical

methods, it can be calculated using numerical techniques. In the past,

this could be done only with a fairly complicated computer program.

With your HP-34C, however, you can easily do numerical integration

using the (integrate) key.

Using

The basic rules for using (/3] are:

1. Key in a subroutine that evaluates the function f(x) that you want

to integrate. This subroutine must begin with the instruction

™ followed by 0, 1, 2, 3, (a], or (8], and must place the
value off(x) in the X-register.

2. Key the lower limit of integration (a) into the displayed X-register,

then press (ENTER®] to lift it into the Y-register.

3. Key the upper limit of integration (b) into the X-register.

4. Press [f] followed by the label of your subroutine.

* Provided that f(x) is nonnegative throughout the interval of integration.

202

Numerical Integration 203

Example: Certain problems in physics and engineering require calcu-

lating Bessel functions. The Bessel function of the first kind of order 0

can be expressed as

™

Jo (x) =i f cos (x sin 0) d6.
T 0

Find Jo (1) =i f cos (sin 6) d6.
T 0

First, slide the PRGM-RUN switch to prem [[[[IM and key in the follow-
ing subroutine that evaluates the function f(8) = cos (sin 0).

Keystrokes Display

() CLEAR 000- Clear program memory.
(n(eyo 001-25,13, 0 Begin subroutine with a

(LBL] instruction. Sub-

routine assumes a value

of 0 is in X-register.

(f] (siN) 002 - 14 7 Calculate sin 6.

(1] 003- 14 8 Calculate cos (sin 6).

™&) 004- 25 12

Now, slide the PRGM-RUN switch back to I ru~ | and key the

lower limit of integration into the Y-register and the upper limit into the

X-register. For this particular problem, you also need to specify radians

mode for the trigonometric functions.

Keystrokes Display

0 0.0000 Key lower limit, 0, into

Y-register.
] 3.1416 Key upper limit, 7, into

X-register.

3.1416 Specify radians mode for

trigonometric functions.

204 Numerical Integration

Now you are ready to press] 0 to calculate the integral. When you

do so, you’ll find that—just as with [SoLveE|l—the calculator will not
display the result right away, as it does with other operations. Your

HP-34C calculates integrals using a sophisticated iterative algorithm.

Briefly, this algorithm evaluates f(x), the function to be integrated, at

many values of x between the limits of integration. At each of these

values, the calculator evaluates the function by executing the subroutine

you write for that purpose. You may recall that some of the programs and

subroutines you executed earlier in this handbook required several

seconds to yield an answer. This may not seem too long, but when the

calculator must execute the subroutine many times—as it does when you

press [/3]—you can’t expect an answer right away. Most integrals will

require on the order of 30 seconds to 2 minutes; but some integrals will

require even more. Later on we’ll discuss how you can decrease the

time somewhat; but for now, press [f] 0 and take a break (or read

ahead) while your HP-34C takes care of the drudgery for you.

Keystrokes Display

(J@Eo 2.4040 =f0 cos (sin 6) d6.

In general, don’t forget to multiply the value of the integral by whatever

constants,if any, are outside the integral. In this particular problem, we

need to multiply the integral by 1/7 to get J, (1):

Keystrokes Display

() 3.1416
0.7652 Jo(1).

Before calling the subroutine that evaluates f(x), the (/3] algorithm—

justlike the (soLvelalgorithm—places the value ofx in the X-, Y-, Z-, and

T-registers. Because every stack register contains the x value, your
subroutine can calculate with this number without having to recall it from

a storage register. The subroutines in the next two examples take advan-

tage of this feature. (A polynomial evaluation technique that assumes the

stack is filled with the value of x is discussed on page 79.)

Numerical Integration 205

Note: Since the calculator puts the value of x into all the stack
registers, any numbers previously there will be replaced by x.
Therefore,if the stack contains intermediate results that you'll
need after you calculate an integral, store those numbers in
storage registers and recall them later.

Occasionally you may want to use the subroutine that you
wrote for the operation to merely evaluate the function at
some value of x. If you do so with a function that gets x from
the stack more than once, be sure to fill the stack manually with
the value ofx, by pressing , before you
execute the subroutine.

Example: The Bessel function of the first kind of order 1 can be

expressed as

m

1
Jq (x)=—f cos (@ — x sin 6) d6.

o Jo

Find Ji (1) -1 f cos (0 — sin 0)d6.
o Yo

First, slide the PRGM-RUN switch to prem [[[[Jll and keyin the follow-
ing subroutine that evaluates the function f(0) = cos (6 — sin 0).

Keystrokes Display

) 1 001-25,13, 1 Begin subroutine with a

instruction.

(1] (siN) 002- 14 7 Calculate sin 6.

=] 003- 41 Since a value of 6 will be

placed into the Y-register by

the algorithm before it
executes this subroutine, the

(=] operation at this point

will calculate (6 — sin 6).
(1) 004- 14 8 Calculate cos (0 — sin 0).

(»] (rRTN) 005- 25 12

206 Numerical Integration

Now, slide the PRGM-RUN switch back toI run , and key the

limits of integration into the X- and Y-registers. Ensure that the trigono-

metric modeis set to radians, then press [f] 1 to calculate the inte-

gral. Finally, multiply the integral by 1/ to calculate J,(1).

Keystrokes Display

0 0.0000

m®E 3.1416

@ 3.1416

BliiR 1.3825

m@EE 0.4401

Example: Certain problems in com-

munications theory (for example,

pulse transmission through idealized

networks) require calculating an

integral (sometimes called the sine

integral) of the form

t .

Si(t)=f0 S‘:x dx.

Find Si (2).

Key lower limit into

Y-register.

Key upper limit into

X-register.

Ensure that trigonometric

mode is set to radians. (This
step is not necessary if you

have not switched your

calculator off nor reset the

trigonometric mode since

you last setit to radians.)

=f0 cos (6 — sin 0) d6.

J1(1).

Numerical Integration 207

First, slide the PRGM-RUN switch to prem (MM and keyin the follow-
ing subroutine that evaluates the function f(x) = (sin x)/x.*

Keystrokes Display

) 2 001-25,13, 2 Begin subroutine with a
instruction.

(1] (siIN) 002- 14 7 Calculate sin x.

003- 21 Since a value of x will be

placed in the Y-register by

the algorithm before it

executes this subroutine, the

operation at this point

will return x to the X-

register and move sin x to

the Y-register.

004 - 71 Divide sin x by x.

(W) (rR7N) 005- 25 12

Now, slide the PRGM-RUN switch back to I run , and key the

limits of integration into the X- and Y-registers. Ensure that the trigono-

metric mode is set to radians, then press [f] 2 to calculate the

integral.

* If the calculator attempted to evaluate f(x) = (sin x)/x at x = 0, the lower limit of

integration, it would terminate with Error 0 in the display (signifying an attempt to divide by

zero), and the integral could not be calculated. However,the (/3] algorithm normally does

not evaluate functions at either limit of integration, so the calculator can calculate the

integral of a function that is undefined there. Only when the endpoints ofthe interval of

integration are extremely close together, or the number of sample points is extremely large,

does the algorithm evaluate the function at the limits of integration.

208 Numerical Integration

Keystrokes Display

0 0.0000 Key lower limit into

Y-register.

2 2. Key upper limit into

X-register.

2.0000 Ensure that trigonometric

modeis set to radians. (This

step is not necessary if you

have not switched your

calculator off nor reset the

trigonometric mode since

you last setit to radians.)

(t] 2 1.6054 Si(2).

Accuracy of

The accuracy of the integral of any function depends on the accuracy of

the function itself. Therefore, the accuracy of an integral calculated using
(/7)is limited by the accuracy of the function calculated by your subrou-

tine.* To specify the accuracy of the function, set the display format so

that the display shows no more than the number of digits that you con-

sider accurate in the function’s values.t If you specify fewer digits, the

calculator will compute the integral more quickly;f but it will presume

that the function is accurate to only the number of digits specified in the

display format. We’ll show you how you can determine the accuracy of
the calculated integral after we say another word about the display

format.

* It is possible that integrals of functions with certain characteristics (such as spikes or very

rapid oscillations) might be calculated inaccurately. However, this possibility is very small.

The general characteristics of functions that could cause problems, as well as techniques for

dealing with them, are discussed in appendix B.

1 The accuracy of a calculated function depends on such considerations as the accuracy of

empirical constants in the function as well as round-off error in the calculations. These

considerations are discussed in more detail in appendix B.

f The reason for this is discussed in appendix B.

Numerical Integration 209

You’ll recall that your HP-34C provides three types of display format-

ting: [Fix], [sci], and [enc]. Which display format should be used is

largely a matter of convenience, since for many integrals you’ll get about

the same results using any of them (provided that the number of digits is

specified correctly, considering the magnitude of the function). Because

it’s more convenient to use [sci)display format when calculating most

integrals, we’ll use when calculating integrals in examples

throughout the rest of this handbook.

Note: Rememberthat once you have set the display format

to (sci], [EnG), or [Fix], you can change the number of
digits appearing in the display by storing a numberin the I-
register and then pressing (n] (osP1), as described in section
7. This capability is especially useful when (/7)is executed as
part of a program, and is essential in a particular situation
described in appendix B under Calculating Integrals of Max-
imum Accuracy.

Because the accuracy of any integral is limited by the accuracy of the

function (as indicated in the display format), the calculator cannot com-

pute the value of an integral exactly, but rather only approximates it.

Your HP-34C places the uncertainty* of an integral’s approximation in

the Y-register at the same time it places the approximation in the X-

register. To determine the accuracy of an approximation, check its

uncertainty by pressing .

* No algorithm for numerical integration can compute the exact difference between its

approximation and the actual integral. But the algorithm in your HP-34C computes an

‘‘upper bound’’ on this difference, which is the uncertainty of the approximation. For

example, if the integral Si(2) is 1.6054 * 0.0001, the approximation to the integral is

1.6054 and its uncertainty is 0.0001. This means that while we don’t know the exact differ-

ence between the actual integral and its approximation, we do know that the difference is

no bigger than 0.0001.

210 Numerical Integration

Example: With the display formatset to 2, calculate the integral

in the expression for J,(1) (from the example on page 205).

Keystrokes Display

0 0.0000 Key lower limit into

Y-register.

(0] (™) 3.1416 Key upper limit into

X-register.
3.1416 Ensure that trigonometric

modeis set to radians. (This

step is not necessary if you

have not switched your cal-

culator off nor reset the

trigonometric mode since

you last set it to radians.)

(1] 2 3.14 00 Set display format to

2.
(1] 1 1.38 00 Integral approximated in

2.
X%y 1.88 -03 Uncertainty of 2

approximation.

The integral is 1.38 £ 0.00188. Since the uncertainty would not affect

the approximation until its third decimal place, you can consider all the

displayed digits in this approximation to be accurate. In general, though,

it is difficult to anticipate how many digits in an approximation will be

unaffected by its uncertainty. This depends on the particular function

being integrated, the limits of integration, and the display format.

If the uncertainty of an approximation is larger than what you choose to

tolerate, you can decrease it by specifying a greater number of digits in

the display format and repeating the approximation.*

* Provided that f(x) is still calculated accurately to the number of digits shown in

the display.

Numerical Integration 211

Whenever you want to repeat an approximation, your HP-34C can save

you the trouble of keying the limits of integration back into the X- and Y-

registers. After an integral is calculated, not only are the approximation

and its uncertainty placed in the X- and Y-registers, but in addition the

upper limit of integration is placed in the Z-register, and the lower limit

is placed in the T-register. To return the limits to the X- and Y-registers

for calculating an integral again, simply press .

Example: For the integral in the expression for J,(1), you want an

answer accurate to four decimal places instead of only two.

Keystrokes Display

(] 4 1.8826 -03 Setdisplay formatto [sci4.

(9) 3.1416 00 Roll down stack until upper

limit appears in X-register.

(1] 1 1.3825 00 Integral approximated in

4.
1.7091 -05 Uncertainty of (sci]4

approximation.

The uncertainty indicates that this approximation is accurate to at least

four decimal places. Note that the uncertainty of the [Sci]4 approxima-

tion is about one-hundredth as large as the uncertainty of the 2

approximation. In general, the uncertainty of any approximation

decreases by about a factor of 10 for each additional digit specified in

the display format.

In the preceding example, the uncertainty indicated that the approxima-

tion might be correct to only four decimal places. If we temporarily

display all 10 digits of the approximation, however, and compareit to the

actual value of the integral (actually, an approximation known to be

accurate to a sufficient number of decimal places), we find that the

approximation is actually more accurate than its uncertainty indicates.

Keystrokes Display

1.3825 00 Return approximation to

display.

(n]) (mANT) 1382459676 All 10 digits of approxi-

mation.

212 Numerical Integration

The value ofthis integral, correct to eight decimal places, is 1.38245969.

The calculator’s approximation is accurate to seven decimal places rather

than only four. In fact, since the uncertainty of an approximation is cal-

culated very conservatively, the calculator’s approximation in most

cases will be more accurate than its uncertainty indicates. However,

normally there is no way to determine just how accurate an approxima-

tion is; we know only that the difference betweenit and the actual integral

is no bigger than the number in the Y-register.

We’ll take a more detailed look at the accuracy and uncertainty of

approximations in appendix B.

Using in a Program
can appear as an instruction in a program provided that the program

is not called (as a subroutine) by itself. In other words, cannot be

used recursively. Consequently, you cannot use to calculate

multiple integrals; if you attempt to do so, the calculator will halt with

Error § in the display. However, can appear as an instruction in a

subroutine called by . An example of doing so will be shown at

the end of appendix A.

The use of as an instruction in a program utilizes one of the six

pending returns in the calculator. Since the subroutine called by

utilizes another return, there can be only four other pending returns.

Executed from the keyboard, on the other hand, itself does not

utilize one of the pending returns, so that five pending returns are avail-

able for subroutines within the subroutine called by (/7). Rememberthat

if all six pending returns have been utilized, a call to another subroutine

will result in a display of Error 8. (Refer to page 135).

Numerical Integration 213

For Further Information
This section has given you the information you need to use with

confidence over a wide range of applications. In appendix B, A More

Detailed Look at , we will discuss more esoteric aspects of [/3].

These include:

= How [/7)works.

® Accuracy, uncertainty, and calculation time.

® Accuracy of the function to be integrated.

®= Uncertainty and the display format.

®= Calculating integrals of maximum accuracy.

#= Obtaining the current approximation to an integral.

= Considerations that could cause incorrect results.

= Considerations that prolong calculation time.

Appendix A

Advanced Use of

Section 8 includes the basic information needed for the effective use of

the algorithm. This appendix presents more advanced, supple-

mental considerations regarding [SOLVE].

Using With Polynomials

In many practical applications, functions known as polynomials are

useful for representing physical processes or more complex mathemat-

ical functions. Polynomials are easily understood and can be structured

to have a wide range of mathematical characteristics.

A polynomial of degree n can be represented as

apx" +ap,x"'+ ... +a,x +a,.

This function has at most n real values for which the function equals

zero. A limit to the number of positive zeros of this function can be

determined by counting the number of times the signs of the coeffi-

cients change as you scan the polynomial from left to right. Similarly, a

limit to the number of negative zeros can be determined by scanning a

new function obtained by substituting —x in place of x in the original

polynomial. If the actual number ofreal positive or negative zerosis less

than its limit, it will differ by an even number. (These relationships are

known as Descartes’ Rule of Signs.)

As an example, consider the third-degree polynomial function

f(x) =x3— 3x2 — 6x + 8.

It can have no more than three real zeros. It has at most two positive

real zeros (observe the sign changes from the first to second and third

to fourth terms) and one negative real zero (obtained fromf(-x) = —-x3

-3x%2 + 6x + 8).

214

Advanced Use of 215

Polynomial functions are best programmed by rewriting them in a

slightly different form that uses nested multiplication. This is sometimes

referred to as Horner’s method. As an illustration, the function from the

previous example can be rewritten as

fx) =[x —3)x —6]x+8.

This representation is more easily programmed and more efficiently

executed than the original form, especially since the stack contains the

value ofx in all fourregisters. (This technique is described on page 79.)

Example: During the winter of 78, Arctic explorer Jean-Claude

Coulerre, isolated at his frozen camp in the far north, began scanning

the southern horizon in anticipation of the sun’s reappearance. Coulerre

knew that the sun would not be visible to him until early March, when it

reached a declination of 5° 18'S. On what day and time in March wasthe
chilly explorer’s vigil rewarded?

Solution: The time in March when the sun reached 5° 18’S declination

can be computed by solving the following equation for ¢:

D = au* + ast® + a.t®* + a;t + a,

where D is the declination in degrees, ¢ is the time in days, and

as = 4.2725 X 1078

az; =-1.9931 X 107

a, = 1.0229 x 1073

a; = 3.7680 X 107!

a, = -8.1806.

This equation is valid for 1<t <32, representing March, 1978.

First convert 5° 18'S to decimal degrees by pressing 5.18

and obtaining -5.3000 (using [Fix)4 display mode). (Southern latitudes

are expressed as negative numbers for calculation purposes.)

216 Advanced Use of

The solution to Coulerre’s problem is the value of ¢ satisfying

-5.3000 = a,t* + ast® + axt® + at + a,.

Expressed in the form required by [soLve], the equation is

0 = aq* + aszt® + azt? + a,t — 2.8806

where the last, constant term now incorporates the value of the declina-

tion.

Using Horner’s method, the function to be set equal to zero is

f(t) = (((agt + ax)t + az)t + a;)t — 2.8806.

To shorten the subroutine, store and recall the constants using the regis-

ters corresponding to the exponent of z. Slide the PRGM-RUN switch to

rrom[[[[Il and key in the subroutine:

Keystrokes Display

(f] CLEAR 000- Clear program memory.

) (a] 001- 25, 13, 11 Begins with

instruction.
4 002- 24 4

x) 003- 61

3 004- 24 3

005- 51

] 006- 61

2 007- 24 2
008- 51

) 009- 61

1 010- 24 1

011- 51

] 012- 61

RcL] 0 013- 24 0

014- 51

(n]) (rRTN) 015- 25 12

Advanced Use of 217

Now set the PRGM-RUN switch to [Jl[[Mlruvy and key in the five coef-
ficients:

Keystrokes Display *

4.2725 (eex] 8 42725 -08
4 42725 -08 Coefficient of r*.

1.9931 (Eex]
5 3 -1.9931 -05 Coefficient of 3.

1.0229 (eex] 3 10229 -03
2 0.0010 Coefficient of 2.

3.7680 (EEx] 1 37680 -01
1 0.3768 Coefficient of .

2.8806 0 -2.8806 Constant term.

Because the desired solution should be between 1 and 32, key in these

two values for initial estimates. Then use to find the root.

Keystrokes Display

;2- ;20000 } Initial estimates.

K3 (&) 7.5137 Root found.
7.5137 Same previous estimate.

0.0000 Function value.

(1) 0 7.5137 Restore stack.

The day was March 7th. Convert the fractional portion of the numberto

decimal hours and then to hours, minutes, and seconds.

Keystrokes Display

(0] (Frac) 0.5137 Fractional portion of day.

24 (x] 12.3293 Decimal hours.

(f)(snms) 12.1945 Hours, minutes, seconds.

* Press (1] (F1x] 4 to obtain the display settings in this appendix.

218 Advanced Use of

Explorer Coulerre saw the sun on March 7th at 12" 19™ 45¢ (Coordinated

Universal Time).

By examining Coulerre’s function f(t), you realize that it can have as

many as four real roots—three positive and one negative. Try to find

additional positive roots by using [(soLve| with larger positive estimates.

Keystrokes Display

1000 1100 1,100. Two larger, positive

estimates.

(1) (a] Error 6 No root found.

278.4497 Last estimate tried.

276.7942 A previous estimate.
(9] 7.8948 Non-zero value of function.

(1 (1) 278.4497 Restore stack to original

state.
K3 (a] Error 6 Again, no root found.

cLX 278.4398 Approximately same

estimate.
278.4497 A previous estimate.

7.8948 Same function value.

You have found a positive local minimum rather than a root. Now try to

find the negative root.

Keystrokes Display

1000 -1,000.0000 } Two larger, negative

1100 -1,100. estimates.

(1] (a] -108.9441 Negative root.

-108.9441 Same previous estimate.

1.6000 -08 Function value.

Advanced Use of 219

 There is no need to search further—you

have found all possible roots. The nega-

tive root has no meaning since it is out-

side of the range for which the declina-

tion approximation is valid. The graph

of the function confirms the results you

have found.

Graph of f(t)

Finding Several Roots

Many equations that you encounter have more than one root. For this

reason, you will find it helpful to understand some techniques for finding

several roots of an equation.

The simplest method for finding several roots is to direct the root search

in different ranges of x where roots may exist. Your initial estimates

specify the range that is initially searched. This method is used through-

out section 8, Finding the Roots of an Equation. You can often find the

roots of an equation in this manner.

A more advanced method is know as deflation. This technique is useful

when the function in an equation has characteristics that make it difficult

for [soLvelto find all of the roots. Deflation is a method by which roots

are ‘‘eliminated’’ from an equation. This involves modifying the equa-

tion so that the first roots found are no longer roots, but the rest of the

roots remain roots.

If a function f(x) has a value of zero at x = g, then the new function

(f(—x)i-will not approach zero in this region (if a is a simple root
x—a

of f(x) = 0). You can use this information to eliminate a known

root. Simply add a few program lines at the end of your function sub-

routine. These lines should subtract the known root (to 10 significant

digits) from the x value and divide this difference into the function

value. In many cases the root will be a simple one, and the new function

will direct (so.velaway from the known root.

220 Advanced Use of

On the other hand, the root may be a multiple root. A multiple rootis one

that appears to be present repeatedly, in the following sense: at such a

root, not only does the graph off(x) cross the x -axis, but its slope (and

perhaps the next few higher-order derivatives) is equal to zero. If the

known root of your equation is a multiple root, the root is not eliminated

by merely dividing by the factor described above. For example, the

equation

fx)=x(x—a)®*=0

has a multiple root at x = a (with a multiplicity of 3). This root is not

eliminated by dividingf(x) by (x —a). But it can be eliminated by divid-

ing by (x —a)3.

Example: Use deflation to help find the roots of

60x* — 944x3 + 3003x2 + 6171x — 2890 = 0.

Using Horner’s method, this equation can be rewritten in the form

(((60x — 944)x + 3003)x + 6171)x — 2890 = 0.

Slide the PRGM-RUN switch to rrem [[[[Ill - Key in a subroutine to
evaluate the polynomial.

Keystrokes Display

™) (B 2 001- 25,13, 2
6 002-

003-
004- 6
005-
006-
007-
008- 4
009- 6
010-
011-
012-
013-

A
d
h
o
O
=
=
O
0
O
O

-
4

-
W
O
O
o
O
W

Advanced Use of 221

Keystrokes Display

014- 51

<] 015- 61

6 016- 6

1 017- 1

7 018- 7

1 019- 1

020- 51

(x] 021- 61

2 022- 2

8 023- 8

9 024- 9

0 025- 0

=] 026- 41

(] 027- 25 12

Slide the PRGM-RUN switch to [llMru~ . Key in two large, negative
initial estimates (such as -10 and -20) and use [so.ve/to find the most

negative root.

Keystrokes Display

10 (cHs)(enTers) -10.0000 .)
20 -20 } Initial estimates.

(t) 2 -1.6667 First root.

0 -1.6667 Store root for deflation.

4.0000 =06 Function value near zero.

Slide the PRGM-RUN switch to prem[[[[Jlll. Add instructions to your
subroutine to eliminate the root just found.

Keystrokes Display

(] 026 026- 41 Line before

instruction.

027- 21 Bring x into X-register.

Divide by (x — a), where a
29 - 41)

= 029 1s known root.

Rcy) 0 028- 24 0

= 030- 71

222 Advanced Use of

Now slide the PRGM-RUN switch to [Ji[[[Jrun - Use the same initial
estimates to find the next root.

Keystrokes Display

(cHS) (enTery) -10. I ,
;g -20 0000 } Same initial estimates.

(f] 2 0.4000 Second root.
1 0.4000 Store root for deflation.

0.0000 Deflated function value.

With the PRGM-RUN switch set to erem[[[[Jilj . modify your sub-

routine to eliminate the second root.

Keystrokes Display

(-J030 030- 71 Line before
instruction.

031- 21 Bring x into X-register.

1 032- 24 1
=] 033- 41 } Deflation for second root.
E3) 034- 71

Slide the PRGM-RUN switch to B[run. Again, use the same initial

estimates to find the next root.

Keystrokes Display

10 (cHs)(enTeRe) -10.0000
20 -20 } Same initial estimates.

(1) 2 8.4999 Third root.
2 8.4999 Store root for deflation.

-1.0929 -07 Deflated function value near

Z€ro.

Advanced Use of 223

With the PRGM-RUN switch set to prem [[[Jlj, change your subrou-
tine to eliminate the third root.

Keystrokes Display

(-] 034 034- 71 Line before
instruction.

035- 21 Bring x into X-register.

2 036- 24 2 }
= 037- 41 Deflation for third root.
= 038- 71

Slide the PRGM-RUNswitch to [[lllJrun and find the fourth root.

Keystrokes Display

(chs) (@veRe) -10. o
;g _23 0000 } Same initial estimates.

(1] 2 8.5001 Fourth root.

3 8.5001 Store root for reference.

(9) -0.0009 Deflated function value near

Z€r10.

Using the same initial estimates each

time, you have found four roots for

this equation involving a fourth-degree

polynomial. However,the last two roots

are quite close to each other, and are

actually one root (with a multiplicity of

2). That is why the root was not elim- W

inated when you tried deflation once at

this root. (Round-off error causes the

original function to have small positive Graph of f(x)

and negative values for values of x

between 8.4999 and 8.5001; forx = 8.5

the function is exactly zero.)

224 Advanced Use of

In general, you will not know in advance the multiplicity of the root you

are trying to eliminate. If, after you have attempted to eliminate a root,

(soLvelfinds that same root again, you can proceed in a number of ways:

= Use different initial estimates with the deflated function in an

attempt to search for a different root.

= Use deflation again in an attempt to eliminate a multiple root. If

you do not know the multiplicty of the root, you may need to

repeat this a number of times.

= Examine the behavior of the deflated function atx values near the

known root. If the function’s calculated values cross the x -axis

smoothly, either another root or a greater multiplicity is indicated.

= Analyze the original function algebraically. It may be possible to

determine its behavior for x values near the known root. (A
Taylorseries represéntation, for example, may indicate the multi-

plicity of a root.)

Finding Local Extremes of a Function

Using the Derivative

The traditional way to find local maximums and minimums of a func-

tion’s graph uses the derivative of the function. The derivative is a

function that describes the slope of the graph. Values of x at which the

derivative is zero represent potential local extremes of the function.

(Although less common for well-behaved functions, values of x where

the derivative is infinite or undefined are also possible extremes.) If you

can express the derivative of a function in closed form, you can use

to find where the derivative is zero—showing where the function may be

maximum or minimum.

Advanced Use of 225

Example: For the design of a vertical

broadcasting tower, radio engineer Ann

Tenor wants to find the angle from the

tower at which the relative field intensity

is most negative. The relative intensity

created by the tower is given by

cos(2mh cos 0) — cos(2mh)
E —_

[1 — cos(2mh)] sin 6

where E is the relative field intensity, & is the antenna height in wave-

lengths, and 6 is the angle from vertical in radians. The height is 0.6

wavelengths for her design.

Solution: The desired angle is one at which the derivative ofthe inten-

sity with respect to 6 is zero.

To save program memory space and execution time, store the following

constants in registers and recall them as needed:

RO =2mh and is stored in register R,

R1 =cos(2mh) and is stored in register R,,

R2 = 1/[1—cos(27rh)] and is stored in register R,.

The derivative of the intensity £ with respect to the angle 6 is given by

dE . cos(RO cos 8) —R 1
——=R2]RO RO H—-—— 1.
do [sin(R0 cos 6) sin 6 tan 6]

226 Advanced Use of

Slide the PRGM-RUN switch to prom[[[[lll and key in a subroutine to
calculate the derivative.

Keystrokes Display

(1) CLEAR 000-
(W (sy O 001- 25,13, 0
M 002- 14 8

0 003- 24 0
) 004- 61
M 005- 14 8

1 006- 24 1
007- 41

008- 21
(1) (5N) 009- 14 7

010- 71
011- 21

(1] AN 012- 14 9

013- 71
014- 32
015- 21

0 016- 14 8
0 017- 24 0

= 018- 61
(1) (sIN) 019- 14 7

0 020- 24 0
X 021- 61

022- 51
RCL] 2 023- 24 2

x) 024- 61
™ EWN 025- 25 12

Now slide the PRGM-RUN switch to [Jll[[lruv . In radian mode, calcu-
late and store the three constants.

Keystrokes Display

0.0000 Specify radian mode.

(Assumes display has been

cleared.)

Advanced Use of

Keystrokes Display

2 W) [x) 6.2832

.6 [x] 0 3.7699

M 1 -0.8090

(cns) 1 1.8090
) 2 0.5528

227

Constant RO.

Constant R 1.

Constant R 2.

Therelative field intensity is maximum at an angle of 90° (perpendicular

to the tower). To find the minimum, use angles closer to zero as initial

estimates, such as the radian equivalents of 10° and 60°.

Keystrokes Display

10 0.1745

60 1.0472

M 0 0.4899
(9] (9] -5.5279 -10

(] (1] 0.4899
(0 28.0680

The relativefield intensity is most nega-

tive at an angle of 28.0680° from verti-

cal.

Using an Approximate Slope

The derivative of a function can also be

approximated numerically. If you sam-

ple a function at two points relatively

close to x (namely x +A and x —4), you
can calculate an average slope of the

function’s graph

o Satd) —fx =)
2A '

} Initial estimates.

Angle giving zero slope.
Slope at specified angle.

Restore the stack.

Angle in degrees.

o
Graph of dE/d6 Versus 6

228 Advanced Use of

The accuracy of this approximation depends upon the increment A and

the nature of the function. Smaller values of A give better approxima-

tions to the derivative, but excessively small values can cause round-off

inaccuracy. A value of x at which the slope is zero is potentially a local

extreme of the function.

Example: Solve the previous example without using the equation for

the derivative dE/d 6.

Solution: Find the angle at which the derivative (determined numeri-

cally) of the intensity E is zero.

Slide the PRGM-RUN switch to prem[[[[lll and key in two subrou-
tines: one to estimate the derivative of the intensity and one to evaluate

the intensity function E. In the following subroutine, the slope is calcu-

lated between 6 + 0.001 and @ — 0.001 radians (a range equivalent to

approximately 0.1°).

Keystrokes Display

™) [0 (&) 001- 25, 13, 11
(EeX) 002- 33

003- 32
3 004- 3 Evaluate E at 6 + 0.001.

005 - 51
006- 31
007- 13 12
008 - 21

(€ex) 009- 33
010- 32

3 011- 3 Evaluate E at § — 0.001.
= 012- 41

013- 31
014- 13 12

o 015- 41
2 016- 2

G 017- 33
018- 32

3 019- 3

= 020- 71
(n]) (RN 021- 25 12

Keystrokes

@@
[0 (cos)

g0
p-
Cp

-
X
E
|
-

@Ew

Advanced Use of

Display

022- 25, 13, 12

023- 14 8

024- 24 0

025- 61

026- 14 8
027- 24 1

028- 41

029- 21

030- 14 7

031- 71

032- 24 2

033- 61

034- 25 12

229

Slide the PRGM-RUN switch to [ll[[M~u~ . In the previous example,
the calculator was set to radian mode and the three constants were stored

in registers 0, 1, and 2. Key in the same initial estimates as before and

execute .

Keystrokes

0 (8]

H
e
E
&
3

F
E
E
E
E
E

B
@
é
fl

2
@

|
E

& &

Display

0.1745

1.0472

0.4899

0.0000

0.4899

0.2043

0.4899
28.0679

} Initial estimates.

Angle giving zero slope.

Slope at specified angle.

Restore the stack.
Use function subroutine to

calculate minimum inten-

sity.

Recall 6 value.

Angle in degrees.

This numerical approximation of the derivative indicates a minimum

field intensity of —-0.2043 at an angle of 28.0679°. (This angle differs

from the previous solution by 0.0001°.)

230 Advanced Use of

Using Repeated Estimation

 A third technique is useful when it is not

practical to calculate the derivative. It is

a slower method because it requires the

repeated use of the [soive key. On the

other hand, you do not have to find a

good valuefor A of the previous method.

To find a local extreme of the function

f(x), define a new function

gx) =f(x) —e

where e is a numberslightly beyond the

estimated extreme value off(x). If e is

properly chosen, g(x) will approach

zero near the extreme off(x) but will not

equal zero. Use [soLve|to analyze g(x)

near the extreme. The desired result is
Error 6.

m If Error 6 is displayed the number in the X-register is an x value

near the extreme. The numberin the Z-registertells roughly how

far e is from the extreme value off(x). Revise e to bring it closer

(but not equal) to the extreme value. Then use to examine
the revised g (x) near the x value previously found. Repeat this

procedure until successive x values do not differ significantly.

m If a root of g (x) is found, either the number e is not beyond the

extreme value off(x) or else [soLve has found a different region

wheref(x) equals e. Revise e so thatit is close to—but beyond—

the extreme value off(x) and try again. It may also be

possible to modify g (x) in order to eliminate the distant root.

Advanced Use of 231

Example: Solve the previous example without calculating the deriva-

tive of the relative field intensity E.

Solution: The subroutine to calculate E and the required constants have

been entered in the previous examples.

Slide the PRGM-RUN switch to erom[[[[Jiilj- Key in a subroutine

which subtracts an estimated extreme number from the field intensity E.

The extreme number should be stored in a register so that it can be man-

ually changed as needed.

Keystrokes Display

) 1 001-25,13, 1 Begin with

instruction.

002- 13 12 Calculate E.

9 003- 24 9 } Subtract extreme estimate.
=) 004- 41

(W (rR7N) 005- 25 12

Slide the PRGM-RUN switch to [[l[[[Jruv . Estimate the minimum
intensity value by manually sampling the function.

Keystrokes Display

10 (g) 0.1745
-0.1029

30 (9] 0.5236 Sample the function at

-0.2028 10°, 30°, 50°,...

50 [9) 0.8727
0.0405

232 Advanced Use of

Based on these samples, try using an extreme estimate of -0.25 and

initial [soLve| estimates (in radians) near 10° and 30°.

Keystrokes Display

.25 9 -0.2500 Store extreme estimate.

é ([ExTERs) 3:2000 } Initial estimates.

(1) 1 Error 6 No root found.
4 0.4849 Store 6 estimate.

5 0.4698 Store previous 6 estimate.

0.0457 Distance from extreme.

9 X 0.0411 } Revise extreme estimate

by 90 percent of the

’ 0.0411 distance.
4 0.4849 Recall 6 estimate.

-0.2043 Calculate intensity E.

0.0000 Reca.ll otl‘ler 6 estimate,

5 0.4698 } l.<eep1ng flrst estimate

in Y-register.
(1] 1 Error 6 No root found.

0.4898 0 estimate.

0.4893 Previous 6 estimate.
0.4898 Recall 6 estimate.

-0.2043 Calculate intensity E.

0.4898 Recall 6 value.

1 28.0660 Angle in degrees.

The second iteration produces two 6 estimates that differ in the fourth

decimal place. The field intensities E for the two iterations are equal

to four decimal places. Stopping at this point, a minimum field intensity

of -0.2043 is indicated at an angle of 28.0660°. (This angle differs from

the previous solutions by about 0.002°.)

Limiting the Estimation Time

Occasionally, you may desire to limit the time used by to find a

root. You can use two possible techniques to do this—counting iterations
and specifying a tolerance.

Advanced Use of 233

Counting Iterations

While searching for aroot, typically samples your function at least

a dozen times. Occasionally, may need to sample it one hundred

times or more. (However, will always stop by itself.) Because

your function subroutine is executed once for each estimate thatis tried, it

can count and limit the number of iterations. An easy way to do this is

with an [ISG] instruction to accumulate the number ofiterations in the

I-register. If you store an appropriate number in the I-register before

using , your subroutine can interrupt the algorithm when

the limit is exceeded. The (sG] instruction is discussed on page 141.)

Specifying a Tolerance

You can shorten the time required to find a root by specifying a tolerable

inaccuracy for your function. Your subroutine should return a function

value of zero if the calculated function value is less than the specified

tolerance. This tolerance that you specify should correspond to a value

that is negligible for practical purposes or should correspond to the

accuracy of the computation. This technique eliminates the time required

to define the estimate more accurately than is justified by the problem.

(Example of this method are given on page 190 and below.)

Using (sove) With

Example: For a phase-modulated radio signal, the amplitude of the

carrier signal is proportional to J(x), the zero-order Bessel function of

the first kind, where x is the modulation index. What is the smallest

modulation index at which the carrier signal is suppressed (thatis, its

amplitude is zero)?

Solution: The desired index is the smallest value of x for which

To(x) Zfo cos (xflsm 0) 46 =0.

You can use [soLve|to determine this value. The function Jy(x) must

be calculated by using (/7).

234 Advanced Use of

The approximation of Jy(x) calculated by (/3] has an uncertainty that is

returned in the Y-register. Whenever the magnitude of Jy(x) is less than

this uncertainty, Jo(x) can be considered to be zero. By using this

technique, you can prevent [soLve| from seeking unreasonable accuracy.

Slide the PRGM-RUN switch to prem[[[[llll . Key in a subroutine that
calculates Jy(x) and a subroutine that calculates the function to be

integrated.

Keystrokes Display

(] CLEAR 000- Clear program memory.

() &) 001- 25, 13, 11 Begin with

instruction.

0 002- 23 0 Store argument x.

0 003- 0 L . .& 004— 25 73 } Limits of integration.

M 3 005- 14,72, 3 Calculate Jy(x).

() 006- 25 34 Magnitude of Jy(x).

) =Y 007- 14 41 } Return zero if

008 - 34 Jo(x) < uncertainty.

(9] 009- 15 61 } Restore Jo(x) if value
(n])(sTx 010- 25 0 is nonzero.
NN 011- 25 12

(r)(tey) 3 012- 25,13, 3

(1) (5IN) 013- 14 7

(Rc O 014- 24 0

x] 015- 61 Calculate function
(f) (cos 016- 14 8 to be integrated.

(M 017- 25 73

=] 018- 71

) (rRTN) 019- 25 12

In order to shorten the time to find the desired root, initially specify

(sc1)0 display mode for the integration. After an approximate solution

has been found, specify a greater integration accuracy (by using [sc1]3).

Then let home in on the root using the more accurate function.

This procedure eliminates the need to integrate with great accuracy for

values of x not near the root, saving considerable time.

Advanced Use of 235

Slide the PRGM-RUN switch to [ll[[Jrux and perform the following
steps. Keep in mind that samples your function many times and

that often requires up to a minute or more to evaluate an integral. For

these reasons the executions that follow take about 3 and 6 minutes

to be completed.

Keystrokes Display

() 0 0. 00 Specify the

accuracy.
(Assumes that the display
has been cleared.)

0. 00
0 0. 00 Initial estimates to

1 1. } search near 0.
(] (a) 2. 00 Desired root.

) 3 2480 00 Specify greater
accuracy.

2.4 2.400 00 } Initial estimates near
2.5 2.5 first approximation.

(f) (a) 2405 00 Desired root.
(] (Fix] 4 2.4049 View in [Fix] 4 format.

0.0000 Jo(x)is less than
uncertainty.

0.0001 Uncertainty from (/7).

A modulation index of 2.4049 causes the carrier signal amplitude to be

suppressed by at least 99.99%. (Thatis, its amplitude is less than 0.0001

of maximum.)

Appendix B

A More Detailed Look at

Section 9 presented the basic information you need to use know-

ledgeably in most applications. This appendix discusses more esoteric

aspects of that may be of interest to you if you use often.

How Works
The [/7)algorithm calculates the integral of a functionf(x) by computing

a weighted average of the function’s values at many values ofx (known

as sample points) within the interval of integration. The accuracy of the

result of any such sampling process depends on the number of sample

points considered: the more sample points, the greater the accuracy. If

f(x) could be evaluated at an infinite number of sample points, the

algorithm could—neglecting the limitation imposed by the inaccuracy

in the calculated function f(x)—provide an exact answer.

Evaluating the function at an infinite number of sample points would

take a very long time (namely, forever). Fortunately, this is not neces-

sary, since the maximum accuracy of the calculated integral is limited by

the accuracy ofthe calculated function values. Using only a finite num-

ber of sample points, the algorithm can calculate an integral that is as

accurate as is justified considering the inherent uncertainty in f(x).

The algorithm at first considers only a few sample points, yielding

relatively inaccurate approximations. If these approximations are not

yet as accurate as the accuracy off(x) would permit, the algorithm is

iterated (that is, repeated) with a larger number of sample points. These

iterations continue, using about twice as many sample points each time,

until the resulting approximation is as accurate as is justified considering

the inherent uncertainty in f(x).

The uncertainty of the final approximation is a number derived from the

display format, which indicates the uncertainty in the function.* At the

end of each iteration, the algorithm compares the approximation calcu-

lated during that iteration with the approximations calculated during two

* The relationship between the display format, the uncertainty in the function, and the

uncertainty in the approximation to its integral are discussed later in this appendix.

236

A More Detailed Look at (73) 237

previousiterations. If the difference between any ofthese three approxi-

mations and the other two is less than the uncertainty of the final approx-

imation, the algorithm terminates, placing the current approximation in

the X-register and its uncertainty in the Y-register.

The algorithm is designed so that it is extremely unlikely that the

error in each of three successive approximations—thatis, the differences

between the actual integral and the approximations—would all be less

than the disparity among the approximations themselves. Consequently,

the error in the final approximation will be less than its uncertainty.*

Although we can’t know the error in the final approximation, we can

be very confident that the erroris less than the displayed uncertainty of

the approximation. Thus, the uncertainty of the approximation is an

“‘upper bound’’ on the difference between the approximation and the

actual integral.

Accuracy, Uncertainty, and Calculation Time

The accuracy of an [/5)approximation does not always change when you

increase by just one the number of digits specified in the display format.

Similarly, the time required to calculate an integral sometimes changes
when you change the display format, but sometimes does not.

Example: The Bessel function of the first kind of order four can be

expressed as

Jix) = —l—f cos (46 — xsin0) do.
T 0

Calculate the integral in the expression for J4(1),

LJ‘ cos (46 — sin6) do.
T YO

* Provided thatf(x)is sufficiently smooth, a consideration we will discuss in more detaillater

in this appendix.

238 A More Detailed Look at

First, slide the PRGM-RUN switch to prem[[[[lll, and key in a sub-

routine that evaluates the function f(68) = cos (46 — sin).

Keystrokes

(f) CLEAR
(v (e 0
4

B

X A
V Y

H

(cos]

B
E
O
C

8
Display

000-
001-25,13, 0
002- 4
003- 61
004- 21
005 - 14 7

006- 41
007- 14 8
008- 25 12

Now, slide the PRGM-RUN switch back to [ll[[Mlruv, and key the

limits of integration into the X- and Y-registers. Ensure that the trigo-

nometric mode is set to radians, and set the display format to 2.

Finally, press (1] 0 to calculate the integral.

Keystrokes

0

&)@

() (scd 2

WL@Bo

Display

0.0000

3.1416

3.1416

3.14 00

7.79 -03

1.45 -03

Key lower limit into

Y-register.

Key upper limit into

X-register.
Ensure that trigonometric

mode is set to radians. (This

step is not necessary if you

have not switched your cal-

culator off nor reset the

trigonometric mode since

you last setit to radians.)

Set display format to

2.
Integral approximated in

2.
Uncertainty of 2

approximation.

A More Detailed Look at 239

The uncertainty indicates that the displayed digits of the approximation

might not include any digits that could be considered accurate. Actually,

just like the last approximation in section 9, this approximation is more

accurate than its uncertainty indicates.

Keystrokes Display

7.79 -03 Return approximation to

display.

(n)(manT) 7785820888 All 10 digits of 2
approximation.

The actual value of this integral, correct to five significant digits, is

7.7805 X 1073. Therefore, the error in this approximation is about

(7.7858 — 7.7805) X 1073 = 5.3 X 1078, This erroris considerably less

than the uncertainty, 1.45 X 1073. The uncertainty is only an upper

bound on the error in the approximation; the actual error will generally

be smaller.

Now let’s calculate the integral in [SC1]3 and compare the accuracy ofthe

resulting approximation to that of the 2 approximation.

Keystrokes Display

(1) 3 7.786 -03 Change display format to

3.
(8] 3.142 00 Roll down stack until upper

limit appears in X-register.

3 0 7.786 -03 Integral approximated in

3.
X%y 1448 -04 Uncertainty of (sci]3

approximation.

X%y 7.786 -03 Return approximation to

display.

(n])(mANT] 7785820888 All 10 digits of 3

approximation.

240 A More Detailed Look at

All 10 digits of the approximations in 2 and in 3 are identi-
cal: the accuracy of the approximation in 3 is no better than the

accuracy in 2, despite the fact that the uncertainty in 3is less
than the uncertainty in [SC1]2. Why is this? Remember that the accuracy

of any approximation depends primarily on the number of sample points

at which the function f(x) has been evaluated. The (/7] algorithm is

iterated with increasing numbers of sample points until the disparity

among three successive approximations is less than the uncertainty,

which is a number derived from the display format. After a particular

iteration, the disparity among the approximations may already be so

much less than the uncertainty that it would still be lessif the uncertainty

were decreased by a factor of 10. In such cases, if you decreased the

uncertainty by specifying one more digit in the display format, the algo-

rithm would not have to consider additional sample points, and the result-

ing approximation would be identical to the approximation calculated

with the larger uncertainty.

If you calculated the two preceding approximations on your calculator,

you may have noticed that it took just as long to calculate the integral in

3asin 2. Thisis because the time to calculate the integral of a

given function depends on the number of sample points at which the

function must be evaluated to achieve an approximation of acceptable

accuracy. For the 3 approximation, the algorithm did not have to

consider more sample points that it did in 2, so it did not take any

longer to calculate the integral.

Often, however, increasing the number of digits in the display format

will require evaluating the function at additional sample points, so that

calculating the integral will take more time. Let’s now calculate the same

integral in 4.

Keystrokes Display

() 4 7.7858 -03 Change display format to

4,
3.1416 00 Roll down stack until upper

limit appears in X-register.
1] 0 7.7807 -03 Integral approximated in

(scy4.

A More Detailed Look at 241

This approximation took about twice as long as the approximation in

3or 2. In this case, the algorithm had to evaluate the function

at about twice as many sample points as before in order to achieve an

approximation of acceptable accuracy. Note, however, that we received

a reward for our patience: the accuracy of this approximation is better,

by almost two digits, than the accuracy of the approximation calculated

using half the number of sample points.

The preceding examples show that repeating the approximation of an

integral in a different display format sometimes will give you a more

accurate answer, but sometimes it will not. Whether or not the accuracy

is changed depends on the particular function, and generally can be

determined only by trying it.

Furthermore, if you do get a more accurate answer, it will come at the

cost of about double the calculation time. This unavoidable trade-off

between accuracy and time is important to keep in mind if you are con-

sidering decreasing the uncertainty in hopes of obtaining a more accurate

answer.

Note: The time required to calculate the integral of a given
function depends not only on the number of digits specified in
the display format, but also, to a certain extent, on the limits
of integration. When the calculation of an integral requires an
excessive amount of time, the width of the interval of integra-
tion (that is, the difference of the limits) may be too large
compared with certain features of the function being inte-
grated. For most problems, however, you need not be con-
cerned about the effects of the limits of integration on the
calculation time. These considerations, together with exam-
ples where the limits may be unduly prolonging the calcula-
tion time as well as techniques for dealing with such
situations, will be discussed later in this appendix.

Accuracy of the Function to be Integrated

The accuracy of an integral calculated using depends on the accuracy

of the function calculated by your subroutine. This accuracy, which you

specify using the display format, depends primarily on three consider-

ations:

1. The accuracy of empirical constants in the function.

242 A More Detailed Look at

2. The degree to which the function may accurately describe a

physical situation.

3. The extent of round-off error in the internal calculations of the

calculator.

Functions Related to Physical Situations

The functions we’ve integrated so far in section 9 and this appendix—
cos (sin @), cos (6 — sin @), cos (46 — sin 0), and (sin x)/x—are exam-

ples of pure mathematical functions. In this context, this means that

the functions do not contain any empirical constants, and neither the

variables northe limits of integration represent actual physical quantities.

For such functions, you can specify as many digits as you want in the

display format (up to nine) to achieve the desired degree of accuracy in

the integral.* All you need to consider is the trade-off between the

accuracy and calculation time.

There are additional considerations, however, when you’re integrating

functions relating to an actual physical situation. Basically, with such

functions you should ask yourself whether the accuracy you would like

in the integral is justified by the accuracy in the function. For example,

if the function contains empirical constants that are specified to only,

say, three significant digits, it might not make sense to specify more than

three digits in the display format.

Another important consideration—and one which is more subtle and

therefore more easily overlooked—isthat nearly every function relating

to a physical situation is inherently inaccurate to a certain degree,

because it is only a mathematical model of an actual process or event. A

mathematical modelis itself an approximation that ignores the effects of

known or unknown factors which are insignificant to the degree that the

results are still useful.

An example of a mathematical model is the normal distributionfunction

dx,
J‘ t e—(x — w)*20?

> oV2mw

* Provided thatf(x)is still calculated accurately, despite round-off error, to the number of

digits shown in the display.

A More Detailed Look at (73) 243

which has been found to be useful in deriving information concerning

physical measurements on living organisms, product dimensions,

average temperatures, etc. A similar mathematical modelis

o

Co
C - \/,n-Dt X/Z\/a

e~ y?/4Dt dy ,

which is a particular solution of the diffusion equation for semiconduc-

tors. Such mathematical descriptions typically are either derived from

theoretical considerations or inferred from experimental data. To be

practically useful, they are constructed with certain assumptions, such

as ignoring the effects of relatively insignificant factors. For example,

the accuracy ofresults obtained using the normal distribution function as

a modelof the distribution of certain quantities depends on the size ofthe

population being studied. The accuracy of results obtained using the

solution to the diffusion equation ignores quantum effects. And the

accuracy of results obtained from the equation s = s, — %2 gt%, which

gives the height of a falling body, ignores the variation with altitude ofg,

the acceleration of gravity.

Thus, mathematical descriptions of the physical world can provide

results of only limited accuracy. If numerical results of the model are

needed to only, say, three significant digits, the effects of many factors

and assumptions can be ignored. On the other hand, such factors and
assumptions might,if they could be included in a more precise mathe-

matical description—which would still be only a model—affect the

digits in the fifth and succeeding decimal places. If you calculated an

integral with an apparent accuracy beyond that with which the model

describes the actual behavior of the process or event, you would not be

justified in using the calculated value to the full apparent accuracy.

Round-Off Error in Internal Calculations

With any computational device—including your HP-34C—calculated

results must be ‘‘rounded off’’ to a finite number of digits (10 digits in

your HP-34C). Because of this round-off error, calculated results—

especially results of evaluating a function that contains several mathe-

matical operations—may not be accurate to all 10 digits that can be
displayed. Note that round-off error affects the evaluation ofany mathe-

matical expression, not just the evaluation of a function to be integrated

using (/7).

244 A More Detailed Look at (f3)

Iff(x) is a function relating to a physical situation, its inaccuracy due to

round-off typically is insignificant compared to the inaccuracy due to

empirical constants, etc. Iff(x) is what we have called a pure mathemat-

ical function,its accuracy is limited only by round-off error. Generally,

it would require a complicated analysis to determine precisely how many

digits of a calculated function might be affected by round-off. In prac-

tice, its effects are typically (and adequately) determined through exper-

ience rather than analysis.

In certain situations round-off error can cause peculiar results, particu-

larly if you should compare the results of calculating integrals that are

equivalent mathematically but differ by a transformation of variables.

Describing such situations—which you are unlikely to encounter in

typical applications—is beyond the scope of this handbook.

Uncertainty and the Display Format

Because of round-off error, the subroutine you write for evaluating

f(x) cannot calculate f(x) exactly, but rather calculates

Fx) = fx) = 8,(x),

where 6,(x) is the uncertainty of f(x) caused by round-off error.

Iff(x) relates to a physicalsituation, then the function you would like to

integrate is not f(x) but rather

F(x) = f(x) = 8,(x),

where 8,(x) is the uncertainty associated withf(x) that is caused by the

approximation to the actual physical situation.

Since f(x) =f(x) *+ 8,(x), the function you want to integrate is

F(x) =f(x) £ 8,(x) % 8,(x)

or F (x) = f(x) £ 8(x),

where &(x) is the net uncertainty associated withf(x).

A More Detailed Look at (/3] 245

Therefore, the integral you want is

b b .

L F(x) dx:fa [f(0) £ 8(x)] dx

=fab]f(x) dx :fab 8(x) dx

=]*A

b
where / is the approximation to] F(x) dx and A is the uncertainty

a

associated with the approximation. The algorithm places the number

I in the X-register and the number A in the Y-register.

The uncertainty &(x) off(x), the function calculated by your subroutine,

is determined as follows. Suppose you consider three significant digits of

the function’s values to be accurate, so you set the display formatto

2. The display would then show only the accurate digits in the mantissa of

a function’s values: for example, 1.23 -04.

Since the display format rounds the number in the X-register to the

number displayed, this implies that the uncertainty in the function’s

values is =0.005 X 1074 = *0.5 X 1072 X 10~* = 0.5 X 107%. Thus,

setting the display format to n or n, where n is an integer,

implies that the uncertainty in the function’s values is

d(x) =0.5x 10" x [Qm™

=05 X% 107n+m(x)

In this formula, n is the number of digits specified in the display format

and m (x) is the exponent of the function’s value at x that would appearif

the value were displayed in display format.

The uncertainty is proportional to the factor 10™*, which represents the

magnitude of the function’s value at x. Therefore, and [ENG] dis-

play formats imply an uncertainty in the function that is relative to the

function’s magnitude.

246 A More Detailed Look at (7]

Similarly, if a function value is displayed in [F1x] n, the rounding of the
display implies that the uncertainty in the function’s values is

6(x) =0.5 X 10™.

Since this uncertainty is independent of the function’s magnitude, [Fix]
display format implies an uncertainty that is absolute.

Each time the algorithm samples the function at a value ofx, it also

derives a sample of 6(x), the uncertainty of the function’s value atx. This

is calculated using the number of digits n currently specified in the dis-

play format and (if the display format is set to [SCI]or [ENG]) the mag-
nitude m (x) ofthe function’s value at x. The number A, the uncertainty

of the approximation to the desired integral, is the integral of & (x):

b

A =f, 8(x) dx

b

=f [0.5 x 107" m®)] dy.

This integralis calculated using the samples of 8(x) in roughly the same

way that the approximation to the integral of the function is calculated

using the samples off(x).

Because A is proportional to the factor 10", the uncertainty of an approx-

imation changes by about a factor of 10 for each digit specified in the

display format. This will generally not be exact in or [(ENG] display
format, however, because changing the number of digits specified may

require that the function be evaluated at different sample points, so that
6 (x) ~ 10m* would have different values.

Note that when an integral is approximated in [F!x] display format,
m(x) = 0 and so the calculated uncertainty in the approximation turns

out to be

A=0.5X%X10"b —a).

A More Detailed Look at 247

Normally you do not have to determine precisely the uncertainty in the

function. (To do so would frequently require a very complicated analy-

sis.) Generally, it’s more convenient to use [SCi]or [ENG]display format
if the uncertainty in the function’s values can be more easily estimated as

a relative uncertainty. On the other hand, it’s more convenient to use

[Fix] display format if the uncertainty in the function’s values can be

more easily estimated as an absolute uncertainty. [Fix]display format

may be inappropriate to use (leading to peculiar results) when you are

integrating a function whose magnitude and uncertainty have extremely

small values throughout the interval of integration, or a function whose

magnitude and uncertainty vary through extremely large and small

values within the interval of integration. Likewise, display format

may be inappropriate to use (also leading to peculiar results) if the mag-

nitude of the function becomes much smaller than its uncertainty. If the

results of calculating an integral seem strange, it may be more appropri-

ate to calculate the integral in the alternate display format.

Calculating Integrals of Maximum Accuracy

In or [ENG) display format, numbers can be displayed with a man-
tissa containing up to seven digits. Specifying 8 or [SC1]9 generally

results in the same display as 7. However, the uncertainty of

integrals calculated in 8 or [5C1]9 is smaller than the uncertainty of

integrals calculated in 7. The sameis true, of course, for integrals

calculated in [EnG) display format.

You can calculate an integral of greatest possible accuracy with the

display modeset to (or [ENG)) 9.* If the calculator is in RUN mode,

you can do so either directly by pressing [](Sci]9, or indirectly by

pressing 9 (1) (1) (when the display formatis already set

to or [EnG)). If the calculator is in PRGM mode, however, you

cannot set the display mode directly to [Sc1]8, [SC1)9, [ENG]8, or [ENG]9.

If you attempt to do so, the resulting keycode will indicate [SC1)7 or[EnG]
7, and integrals will be calculated with an uncertainty derived from a

* Provided, of course, that f(x) is calculated accurately to 10 significant digits.

248 A More Detailed Look at ()

display format specifying seven digits. To calculate integrals of

maximum accuracy in PRGM mode, therefore, you must set the display

format indirectly using (osp1].*

To see how this is done, slide the PRGM-RUN switch to rram[N
and key in the following (trivial) program, which calculates the integral

of (sin x)/x with maximum accuracy. Afterwards, we’ll execute the

program to calculate Si(2).

Keystrokes

(v (&)

9

(sTo) (1] [1]
(»] (osp1]

@B 2

() (rTn)
() (e 2

() (5N

]
() (&7

Display

001- 25, 13, 11

002- 9

003- 23, 14, 23

004- 25 11

005- 15 22

006- 14,72, 2

007- 25 12

008- 25, 13, 2

009- 14 7

010- 21

011- 71

012- 25 12

Label of program containing

in program line.
Key 9 into X-register.

Store 9 in I-register.

Sets display format to nine

digits. (This program

assumes that the display

format will have been

manually set to before

the program is executed.)

Roll down the stack so that
the 9 entered into the X-

register in program line 002

does not become the upper

limit of integration.

Calculate the integral

b

fa (sinx)/x dx.

Label of subroutine that

evaluates f(x) = (sin x)/x.

* If there is a negative numberin the I-register when you press (] (o8P1), numbers will be

displayed as they would appear if 0 were in the I-register. However, the negative number

algorithm in determining the uncertainty of an approxima-

tion. The minimum number that can be considered in determining the uncertainty of an

approximation is —-6. If the I-register contains a number less than -6, the approximation

will be considered by the

will be performed as if -6 were in the I-register.

Keystrokes

(1) (sc] 3

0 (EnTERe)

(n]) (manT]

A More Detailed Look at 249

Now, slide the PRGM-RUNswitch back to s~ . To calculate
Si(2), key the limits of integration into the X- and Y-registers, then

press [a] to execute the program.

Display

0.000 00

0.000 00

2.

2.000 00

1.605412 00

6.000000-10

1.605412 00

1605412977

Specify [sci]display for-

mat. Executing the subse-

quent program (by pressing

(a)) will change the number

of digits specified from 3 to

9. (Display shown assumes

no results remain from

preceding example.)

Key lower limit into

Y-register.
Key upper limit into

X-register.

Ensure that trigonometric

mode is set to radians. (This

step is not necessary if you

have not switched your cal-

culator off nor reset the

trigonometric mode since

you last set it to radians.)

Si(2) calculated with

maximum accuracy.

Uncertainty of

approximation.

Return approximation to

display.
All 10 digits of

approximation.

Since the most significant digit of the uncertainty occurs in the tenth

decimal place, the uncertainty indicates that the estimate is correctto at

least nine decimal places. Indeed, the estimate agrees to all nine decimal

places with the value given fori (2) in tables of mathematical functions.

250 A More Detailed Look at

Obtaining the Current Approximation to an
Integral

Pressing while your HP-34C is calculating an integral halts the
calculation, just as it halts the execution of a running program. When you

do so, the calculator stops at the current program line in the subroutine

you wrote for evaluating the function, and displays the result of execut-

ing the preceding program line. Note that after you halt the calculation,

the current approximation to the integral is not the number in the X-

register nor the number in any other stack register. Just as with any

program, pressing again starts the calculation from the program
line at which it was stopped.

When the calculation of an integral is requiring more time than you care

to wait, you may want to stop and display the current approximation.

You can obtain the current approximation, but notits uncertainty. The

algorithm updates the current approximation and stores it in the

LAST X register after evaluating the function at each new sample point.
To obtain the current approximation, therefore, simply halt the calcu-

lator, single-step if necessary through your function subroutine until the

calculator has finished evaluating the function and updating the current

approximation, then recall the contents of the LAST X register.

Note that while the calculator is updating the current approximation, the

display does notflash asit usually does while the calculatoris executing

your function subroutine. Therefore, you might avoid having to single-

step through your subroutine by halting the calculator at a moment when

the display is blank.

In summary, to obtain the current approximation to an integral, follow

the steps below.

1. Press (R7S]to halt the calculator, preferably while the display is

blank.

2. When the calculator halts with a number in the display, slide the

PRGM-RUNswitch to pram[T -

a. If the display shows the program line containing the label of

your function subroutine, slide the PRGM-RUN switch back

to [[Jrw~ and proceed with step 3.

A More Detailed Look at 251

b. If you didn’t press (R7S]at a moment when the display was
blank, the display will now show some other program line

within your subroutine. Slide the PRGM-RUN switch back

to M~ and press (n) repeatedly until the
display shows 25 12 at the right (or 000~ at the left*) while

the key is held down; then release the key and wait

for the calculator to halt with a number in the display.

3. Press [n](tsTx]). The current approximation will appear in the
display. If you want to continue calculating the final approxima-

tion, press (R7S]. Thisrefills the stack with the current

x value and restarts the calculator.

For example, let’s calculate the integral Si(2) again and obtain the

current approximation after a minute or two.

Keystrokes Display

2.000000 00 Roll down stack until upper

limit appears in X-register.

(&) (flashing) Start calculation of integral.

After a minute or two, halt the calculator and check the current

approximation:

Keystrokes Display

R/S 6.771087-01 Halt the calculator by pres-

sing (R/S] while the display
is blank. (Of course, the

particular number in your

calculator’s display depends

on the moment you pressed

®75),)
* This will occur only when you have not included a instruction at the end of your

subroutine.

252 A More Detailed Look at

Now slide the PRGM-RUN switch to erem[[[[Illl to verify that the
calculator has stopped at the label of your subroutine.

Display

001-25,13, 2 Label 2.

Since the calculator stopped at the label of your subroutine, you can

recall the current approximation from the LAST X register after sliding

the PRGM-RUN switch back to J[Jrun -

Keystrokes Display

(n])(sTX) 1.605412 00 Current approximation to

integral. (Again, the partic-

ular number in your calcu-

lator’s display depends on

the moment you pressed

[@75))

To continue with the calculation and obtain the final approximation:

Keystrokes Display

6.771087-01 Return current x value to

X-register.

R/S 1.605412 00 Final approximation to

integral.

Considerations That Could Cause Incorrect

Results

Although the algorithm in your HP-34C is one of the best available,

in certain situations it—Ilike nearly all algorithms for numerical
integration—might give you an incorrect answer. The possibility of this

occurring is extremely remote. The algorithm has been designed to

A More Detailed Look at 253

give accurate results with almost any smooth function. Only for func-

tions that exhibit extremely erratic behavioris there any substantial risk

of obtaining an inaccurate answer. Such functions rarely occur in prob-

lems related to actual physicalsituations; when they do, they usually can

be recognized and dealt with in a straightforward manner.

Let’s take a more detailed look at the operation of the algorithm to

see how it might calculate an incorrect answer. This will enable us to

identify the general characteristics of functions that could cause prob-

lems. Finally, we’ll see how you can verify the accuracy of an approxi-

mation if you should ever want to.

As we discussed on page 236, the algorithm samples the function

f(x) at various values of x within the interval of integration. By calcu-

lating a weighted average of the function’s values at the sample points,

the algorithm approximates the integral off(x).

Unfortunately, since all that the algorithm knows aboutf(x) are its values

at the sample points, it cannot distinguish between f(x) and any other

function that agrees withf(x) at all the sample points. This situation is

depicted in the illustration below, which shows (over a portion of the

interval of integration) three of the infinitely many functions whose

graphs include the finitely many sample points.

f(x)

|

254 A More Detailed Look at

With this number of sample points, the algorithm will calculate the same

approximation for the integral of any of the functions shown. The actual

integrals of the functions shown in black and gold are about the same, so

the approximation will be fairly accurate iff(x) is one of these functions.

However, the actual integral of the function shown in blue is quite dif-

ferent from those of the others, so the current approximation will be

rather inaccurate iff(x) is this function.

Suppose that the approximation using this number of sample points

differs from previous approximations by less than the uncertainty, which

was derived from the number of digits specified in the display format.

The algorithm will then terminate, returning the current approxima-

tion as the best approximation to the integral given the uncertainty you

have implicitly agreed to tolerate. Thus, for certain functions—such as

the function shown in blue—the calculator can give you a rather inac-

curate approximation because it samples the function at only a finite

number ofpoints. This situation represents the extreme case of the trade-

off we mentioned earlier (page 241) between accuracy and calculation

time: because you don’t want to wait an infinitely long time (to sample

the function at an infinite number of points), you can’t be absolutely

confident that the calculator’s approximation is as accurate as its

uncertainty indicates.

Suppose, in contrast to the situation above, that the derived uncertainty

in the approximation is so small (because you have specified sufficiently

many digits in the display format) that the approximation to the integral

using this number of sample points is not sufficiently accurate. The

algorithm will then samplef(x) at additional sample points. This situa-

tion is depicted in the next illustration, which shows the same three

possible functions whose graphs include the first set of sample points.

A More Detailed Look at 255

f(x)

Although all three functions shown in this illustration have identical

values at the smaller number of sample points, the function shown in

blue has very different values at the new sample points. When the algo-

rithm processes these new function values, it will find that the disparity

between the current approximation and the previous ones is much larger

than the acceptable uncertainty. Consequently, the algorithm will con-

tinue evaluating the function at more and more sample points until

successive approximations agree sufficiently closely. In this case, the

calculator can give you an accurate approximation because, in saying

that you would accept only a relatively small uncertainty, you agreed to

wait as long as necessary.

Practically speaking, however, you wouldn’t want to wait forever for an

answer. (You probably wouldn’t need it then!) By imposing this restric-

tion on the algorithm, you must accept that the function cannot be

evaluated at infinitely many sample points and that consequently a sharp

and narrow ‘‘spike’’ in the function can be overlooked by the algorithm.

This situation is depicted in the next illustration, which shows a func-

tion that is smooth except for a prominent spike.

256 A More Detailed Look at

f(x)

Despite a relatively high density of sample points, none of the sample

points happens to discover the spike in the function. Since the approxi-
mations after successive iterations agree quite closely, the algorithm

would terminate with an approximation that is significantly incorrect

because the spike remains undetected by the algorithm.

Why is the spike not detected? Becauseit is so unlike the mild behavior

of the function elsewhere throughout the interval of integration. Except

for the spike, the function is smooth throughout the interval shown in the

illustration. (Actually, if you viewed the graph of these functions over

the entire interval of integration, they might not appear smooth but

instead exhibit rapid fluctuations. The illustrations show an expanded

view of a small portion of the interval of integration, so that characteris-

tic rapid variations in the functions appear to be smooth.) By sampling
the function with sample points of sufficient density, the algorithm

comes to know the general behavior of the function. If the spike were not

so unlike the rest of the function, either it or similar variations would be

detected by the algorithm at some iteration. When this happens, the

number of sample points is increased until successive iterations yield

approximations that take into account the presence of the most rapid, but

characteristic, fluctuations.

A More Detailed Look at (73) 257

For example, consider the approximation of

x<

f xe™ dx.
0

Since we’re evaluating this integral numerically, we might think (naively

in this case, as we will see later) that we should represent the upper limit

of integration by 10%°, which is virtually the largest number you can key

into the calculator. Let’s try it and see what happens.

Slide the PRGM-RUN switch to prem [[[[Jjjij and key in a subroutine

that evaluates the function f(x) = xe.

Keystrokes Display

(M) (e 1 001- 25,13, 1

002- 32

003- 15 1
] 004- 61

(0] (rTN) 005- 25 12

Now slide the PRGM-RUN switch back to IR~ |, set the display

format to 3, and key the limits of integration into the X- and

Y-registers.

Keystrokes Display

M 3 0.000 00 Set display format to
3. (Display shown assumes

no results remain from

preceding example.)

0 0.000 00 Key lower limit into

Y-register.

(EEx]99 1. 99 Key upper limit into

X-register.
3 1 0.000 00 Approximation of integral.

258 A More Detailed Look at

The answer returned by the calculator is clearly incorrect, since the

actual integral off(x) = xe™ from 0 to = is exactly 1. But the problem is

not that we represented % by 10%, since the actualintegral of this function

from O to 10% is very close to 1. The reason we got an incorrect answer
becomes apparent if we look at the graph off(x) over the interval of

integration:

f(x)

The graph is a spike very close to the origin. (Actually, to illustrate

f(x) we have considerably exaggerated the width of the spike. Shown in

actual scale over the interval of integration, the spike would be indis-

tinguishable from the vertical axis of the graph.) Because no sample

point happened to discover the spike, the algorithm assumed that f(x)

was identically equal to zero throughout the interval of integration.

Even if you increased the number of sample points by calculating the

integral in 9, none of the additional sample points would discover

the spike when this particular function is integrated overthis particular

interval. We’ll mention a better solution after we briefly describe the

general nature of functions that could cause problems.

We have seen how the algorithm can give you an incorrect answer

whenf(x) has a wiggle somewhere that is very uncharacteristic of the

behavior of the function elsewhere. Fortunately, functions exhibiting

such aberrations are unusual enough that you are unlikely to have to

integrate one unknowingly.

Functions that could lead to incorrect results can be identified most

precisely by describing them from the mathematical viewpoint of com-

A More Detailed Look at 259

plex analysis.* But in more simple terms, such a function can be identi-

fied by how rapidly it and its low-order derivatives vary across the

interval of integration. Basically, the more rapid the variation in the

function or its derivatives, and the lower the order of such rapidly vary-

ing derivatives, the less quickly will the (/7] algorithm terminate, and the

less reliable will the resulting approximation be.

Note that the rapidity of variation in the function (or its low-order

derivatives) must be determined with respect to the width of the interval

of integration. With a given number of sample points, a function f(x)

that has three ‘‘wiggles’’ can be better characterized by its samples when

these variations are spread out over most of the interval of integration

than if they are confined to only a small fraction of the interval. (These

two situations are shown in the next two illustrations.) Considering

the variations or wiggles as a type of oscillation in the function, the cri-

terion of interest is the ratio of the period of the oscillations to the width

of the interval of integration: the largerthis ratio, the more quickly the

algorithm will terminate, and the more reliable will be the resulting

approximation.

In many cases you will be familiar enough witt the function you want to

integrate that you’ll know whether the function has any quick wiggles

relative to the interval of integration. If you’re not familiar with the

function, and you have reason to suspect that it may cause problems, you

can quickly plot a few points by evaluating the function using the

subroutine you wrote for that purpose.

If for any reason, after obtaining an approximation to an integral, you

have reason to suspectits validity, there’s a very simple procedure you

can use to verify it: subdivide the interval of integration into two or more

adjacent subintervals, integrate the function over each subinterval, then

add the resulting approximations. This causes the function to be sampled

at a brand new set of sample points, thereby more likely revealing any

previously hidden spikes. If the initial approximation was valid, it will

equal the sum of the approximations over the subintervals.

* The approximations computed by the HP-34C will converge rapidly to the correct answer

provided the integrand f(z), regarded as an analytic function of the complex variable z,

has no singularities on nortoo near the interval of integration, and has an average value on

that interval not drastically smaller than its magnitude near that interval.

260 A More Detailed Look at (/)

Calculated integral
of this function

will be accurate.

Calculated integral
of this function
may be inaccurate.

Considerations That Prolong Calculation
Time

In the example on page 257, we saw that the algorithm gave an incorrect

answer becauseit never detected the spike in the function. This happened

because the variation in the function was too quick relative to the width of

the interval of integration. If the width of the interval were smaller, we

would get the correct answer; but it would take a very long time if the

interval were still too wide.

A More Detailed Look at 261

For certain integrals, such as the one in that example, calculating the

integral may be unduly prolonged because the width of the interval of

integration is too large relative to certain features of the function being

integrated. Let’s consider an integral where the interval of integration is

wide enough to require excessive calculation time but not so wide that it

would be calculated incorrectly. Note that because f(x) = xe™™ ap-

proaches zero very quickly as x approaches %, the contribution to the

integral of the function at large values of x is negligible. Therefore,

we can evaluate the integral by replacing %, the upper limit of integra-

tion, by a number not so large as 10", say 107

Keystrokes Display

0 0.000 00 Key lower limit into

Y-register.

(eex) 3 1. 03 Key upper limit into

X-register.

(1 1 1.000 00 Approximation to integral.
1.824 -04 Uncertainty of

approximation.

This is the correct answer, but it took a very long time. To understand

why, compare the graph of the function over the interval of integration,

which looks about identicalto that shown on page 258, to the graph of the

function between x = 0 and x = 10.

f(x)

262 A More Detailed Look at (73

By comparing the two graphs, you can see that the function is *‘inter-

esting’’ only at small values ofx. At greater values ofx, the function is

‘‘uninteresting,’’ since it decreases smoothly and gradually in a very

predictable manner.

As we discussed earlier, the algorithm will sample the function

with higher densities of sample points until the disparity between suc-
cessive approximations becomes sufficiently small. In other words, the

algorithm samples the function at increasing numbers of sample points

until it has sufficient information about the function to provide an

approximation that changes insignificantly when further samples are

considered.

If the interval of integration were (0, 10) so that the algorithm needed to

sample the function only at values where it was interesting but relatively

smooth, the sample points after the first few iterations would contribute

no new information about the behavior of the function. Therefore, only

a few iterations would be necessary before the disparity between suc-

cessive approximations became sufficiently small that the algorithm

could terminate with an approximation of a given accuracy.

On the other hand,if the interval of integration were more like the one

shown in the graph on page 261, most of the sample points would capture

the function in the region where its slope is not varying much. The few

sample points at small values ofx would find that values of the function

changed appreciably from one iteration to the next. Consequently, the
function would have to be evaluated at additional sample points before

the disparity between successive approximations would become

sufficiently small.

In orderfor the integral to be approximated with the same accuracy over

the larger interval as over the smaller interval, the density ofthe sample

points must be the same in the region where the function is interesting.

To achieve the same density of sample points, the total number of sam-
ple points required over the larger interval is much greater than the num-

ber required over the smaller interval. Consequently, several more

iterations are required over the larger interval to achieve an approxima-

tion with the same accuracy, and therefore calculating the integral

requires considerably more time.

A More Detailed Look at 263

Because the calculation time depends on how soon a certain density of

sample points is achieved in the region where the function is interesting,

the calculation of the integral of any function will be prolonged if the

interval of integration includes mostly regions where the function is not

interesting. Fortunately, if you must calculate such an integral, you can

modify the problem so that the calculation time is considerably reduced.

We will discuss two techniques of doing so: subdividing the interval of

integration, and transformation of variables.

Subdividing the Interval of Integration

In regions where the slope off(x) is varying appreciably, a high density

of sample points is necessary to provide an approximation that changes

insignificantly from one iteration to the next. However, in regions where

the slope of the function stays nearly constant, a high density of sample

points is not necessary. This is because evaluating the function at addi-

tional sample points would not yield much new information about the

function, so it would not dramatically affect the disparity between suc-

cessive approximations. Consequently, in such regions an approxima-

tion of comparable accuracy could be achieved with substantially fewer

sample points; so much of the time spent evaluating the function in these

regions is wasted. When integrating such functions, you can save time

by using the following procedure:

1. Divide the interval of integration into subintervals over which the

functionis interesting and subintervals over which the function is

uninteresting.

2. Over the subintervals where the function is interesting, calculate

the integral in the display format corresponding to the accuracy

you would like overall.

3. Over the subintervals where the function either is not interesting

or contributes negligibly to the integral, calculate the integral with

less accuracy, thatis, in a display format specifying fewer digits.

4. To get the integral over the entire interval of integration, add

together the approximations and their uncertainties from the

integrals calculated over each subinterval. You can dothis easily

using the key.

264 A More Detailed Look at ()

Before subdividing the interval of integration, check whether the calcu-

lator underflows when evaluating the function around the upper (or

lower) limit of integration.* Since there is no point in evaluating the

function at values ofx for which the calculator underflows, in some cases

the upper limit of integration can be reduced, saving considerable

calculation time.

Remember that once you have keyed in the subroutine that evaluates

f(x), you can calculatef(x) for any value of x by keying that value into

the X-register and pressing followed by the

label of the subroutine.

If the calculator underflows at the upper limit of integrat’ n, try smaller

numbers until you get closer to the point where the calculator no longer

underflows.

Keystrokes Display

(eex] 3 1. 03 Key upper limit into

X-register.

1.000 03 Fill the stack with x.
1 0.000 00 Calculator underflowsat the

upper limit.

300
3.000 02 Try a smaller value of x.

1 0.000 00 Calculator still underflows.

200
2.000 02 Try a smaller value of x.

1 2,768 -85 Calculator does not under-

flow at x = 200; try a num-

ber between 200 and 250.

225
2.250 02

1 4.324 -96 Calculator is close to

underflow.

At this point, you can use to pinpoint the smallest value of x at

which the calculator underflows.

* Remember that when the calculation of any quantity would result in a number less than

10-%, the result is replaced by zero. This condition is known as underflow.

Keystrokes

(t] Sowe) 1

A More Detailed Look at 265

Display

2.250

2.280

02

02

Roll down stack until the

last value tried is in the X-

and Y-registers.

The minimum value of x at

which the calculator under-
flows is about 228.

We have now determined that we need integrate only from O to 228.

Since the function is interesting only for values of x less than 10, let’s

divide the interval of integration there. The problem has now become:

1000 28 10 228

fo xeX dxzfo xeX dx =f0 xe™ dx +f10 xeX dx.

Keystrokes

0

10

D@1

(f) CLEAR (5

[0y

(kY (g Ry

Display

0.000

10.

9.995

9.995

1.000

1.841

1.000

00

-04

01

Key in lower limit of

integration over first

subinterval.

Key in upper limit of

integration over first
subinterval.

Integral over (0, 10)

calculated in 3.

Clear statistical storage

registers.

Sum approximation and its

uncertainty in registers R,

and R;.

Uncertainty of

approximation.

Roll down stack until upper

limit offirst integral appears

in X-register.

266 A More Detailed Look at (/3]

Keystrokes Display

228 228.

[0 0 2.

(1] 1 5.

© 3 5.328

7.568

x%Y 5.328

M 2.000

@ 1.000

2.598

02

00

00

-04

Key upper limit of second

integral into X-register.

Upper limit of first integral

is lifted into Y-register,

becoming lower limit of

second integral.

Specify 0 display for-

mat for a quick calculation

over (10, 228). If the uncer-

tainty of the approximation

turns out not to be accurate

enough, we can repeat the

approximation in a display

format specifying more

digits.

Integral over (10, 228)

calculated in [sci]0.
Change display format back

to 3.

Check uncertainty of

approximation. Since it is

less than the uncertainty of

the approximation over the

first subinterval, (sci]0
yielded an approximation of

sufficient accuracy.

Return approximation and

its uncertainty to the X- and

Y-registers, respectively,

before summing them in

statistical storage registers.

Sum approximation and its
uncertainty.

Integral over total interval

0, 228).

Uncertainty of integral.

Calculating the integral over the two subintervals took only a fraction of

the time to calculate the integral over (0,228); and the combined uncer-

A More Detailed Look at (73] 267

tainty of the total approximation is not appreciably larger than the

uncertainty of the single approximation over the entire interval.

Transformation of Variables

In many problems where the function changes very slowly over most of a

very wide interval of integration, a suitable transformation of variables

may decrease the time required to calculate the integral.

For example, consider again the integral

Let u=-e>*

Then x=—Inu

and dx = — d_u
u

Substituting,

fxe‘xdx=f((= Inu) (u) (‘fl‘
0 e u

0

:fl In u du.

Slide the PRGM-RUNswitch to prem[[[[Illl and key in a subroutine that

evaluates the function f(u) = In u.

Keystrokes Display

(») ey 3 001-25,13, 3
(1) 002- 14 1
™) ("N 003- 25 12

268 A More Detailed Look at

Slide the PRGM-RUNswitch back to [ll[[Mlrov and key in the limits of
integration, then press |1 3 to calculate the integral.

Keystrokes Display

1 1.000 00 Key in lower limit of

integration.

0 0. Key in upper limit of

integration.

K3 3 9.998 -01 Approximation to equiva-

lent integral.
2.130 -04 Uncertainty of

approximation.

Considering the uncertainty of this approximation, it agrees with the

value calculated above for the original integral. Yet, it required only a

fraction of the calculation time.

Appendix C

Service and Maintenance

Your Hewlett-Packard Calculator

Your calculator is another example of the award-winning design,

superior quality, and attention to detail in engineering and construction

that have marked Hewlett-Packard electronic instruments for more than

30 years. Each Hewlett-Packard calculatoris precision crafted by people

who are dedicated to giving you the best possible product at any price.

AC Line Operation

Your calculator contains a rechargeable battery pack consisting of

nickel-cadmium batteries. When you receive your calculator, the battery

pack inside may be discharged, but you can operate the calculator
immediately by using the ac adapter/recharger.

Note: Do not attempt to operate the calculator from an ac
line with the battery pack removed.

The procedure for using the ac adapter/recharger is as follows:

1. You need not turn the calculator off.

2. Insert the ac adapter/recharger plug into the connector on the top

of the calculator, with the snap release tab on the plug facing

toward the right side of the calculator.

3. Insert the power plug into a live ac power outlet.

Note: It is normal for the ac adapter/recharger (and the
battery pack) to be warm to the touch when plugged into an
ac outlet.

270

Service and Maintenance 271

CAUTION

The use of a charger other than the HP recharger supplied
with the calculator may result in damage to your calculator.

Use only the “B” suffix version ac adapter/recharger
shipped with your calculator (see product number on
recharger). Earlier “A” suffix version rechargers will not
damage your calculator, but may clear continuous memory
when plugged in.

Battery Operation
To operate the calculator from battery power alone, simply disconnect

the recharger plug from the calculator by grasping the plug between your

thumb and forefinger, squeezing to depress the snap release tab, and

pulling gently. (Even when not connected to the calculator, the ac

adapter/recharger may be left plugged into the ac outlet.)

Using the calculator on battery power gives the calculator full port-

ability, allowing you to carry it nearly anywhere. A fully charged battery

pack typically provides 3 hours of continuous operation. By turning the

power off when the calculator is not in use, the charge on the battery

pack should easily last throughout a normal working day.

Low Power

When you are operating from battery power and the batteries get low, a

raised decimal is turned on at the far left of the display to warn you that

you have between 1 minute and 25 minutes of operating time left.

*1.23

If the display contains the low power indication, the minus sign looks like

an incomplete divide sign.

=1.23

To return to full power either connect the ac adapter/recharger to the

calculator as described under AC Line Operation, or substitute a fully

charged battery pack for the one in the calculator.

272 Service and Maintenance

Battery Charging
The rechargeable batteries in the battery pack are charged while you

operate the calculator from the ac adapter/recharger. Batteries will

charge with the calculator on or off, provided batteries are in place and

recharger is connected. Normal charging times between the fully dis-

chargedstate and the fully charged state are (depending on ac line voltage

value):

Calculator off: 5 to 9 hours

Calculator on: 17 hours

Shorter charging periods will reduce the operating time you can expect

from a single battery charge. Whether the calculator is off or on, the

calculator battery pack is never in danger of becoming overcharged.

Note: The ac adapter/recharger is a sealed unit and is not
repairable. Return it to Hewlett-Packard if service is required.

Using Continuous Memory
When you turn your calculator off, the following information is retained:

= All programs that are loaded into the calculator.

= Contents of the storage registers.

= Display status (FIX, SCI, or ENG, and number of displayed

digits).

Regardless of where you stopped in a program, the calculator returns to

line 000 (top of program memory) when you turn it on again.

Numbers in the stack, LAST X, and trigonometric mode status (DEG,

RAD, or GRAD) are not preserved when you turn the calculator off.

Also, all flags and pending subroutines are cleared.

Continuous memory requires that the batteries be kept in the calculator.

If the low power indicator appearsin the display, turn your calculator off

immediately and connect it to an ac outlet or insert a new battery pack.

If you allow the battery to discharge completely, the information in

continuous memory will be lost.

Service and Maintenance 273

If you drop or traumatize your calculator, or if power to the continu-

ous memory is interrupted, whether the calculator is off or on, the con-

tents of program memory and the data storage registers may be lost. If

this occurs, when the calculator is next turned on with power available,

Pr Error (powerfailure) will appearin the display. (Pressing any key will

clear this and all other error signals.)

Battery Pack Replacement

If it becomes necessary to replace the battery pack, use only another

Hewlett-Packard battery pack like the one shipped with your calculator.

Continuous memory requires that batteries be replaced as quickly as

possible. Normally you have a minimum of 5 seconds to change the

batteries. Leaving batteries out of the calculator for extended periods will

result in loss of information in continuous memory.

CAUTION

Use of any batteries other than the Hewlett-Packard battery
pack may result in damage to your calculator.

To replace the battery pack use the following procedure:

1. Set calculator ON-OFF switch

to OFF and disconnect the ac

adapter/recharger from the

calculator.

274 Service and Maintenance

2. Press down on the short ridges

of the battery door, close to the

edge, until the door release

snaps open. Slide the door

open.

3. When door is removed, turn

calculator over and gently

shake, allowing the battery

packto fall into the palm of your
hand.

4. Place the new battery pack into

the calculator. Your calculator

will turn on only if the battery

pack is inserted correctly.

.
.

5. Insert battery door and slide

door back into place.

Service and Maintenance 275

6. Turn calculator over and turn

power on to assure proper

battery installation. If the dis-

play does not light, make sure

the battery pack is correctly

placed in calculator.

Battery Care
When not being used, the batteries in your calculator have a self-

discharge rate of approximately 1 percent of available charge per day.

After 30 days, a battery pack might have only 50 to 75 percent of its

charge remaining, and the calculator might not even turn on. If a calcu-

lator fails to turn on, you should substitute a charged battery pack, if

available, for the one in the calculator, or plug in the ac adapter/

recharger. The discharged battery pack should be charged for at least 12

hours.

If a battery pack will not hold a charge and seems to discharge very

quickly in use, it may be defective. If the one-year warranty on the

battery pack has not expired, return the defective pack to Hewlett-

Packard according to the shipping instructions. (If you are in doubt
about the cause of the problem, return the complete calculator along with

its battery pack and ac adapter/recharger.) If the battery pack is out of

warranty, see your nearest dealer to order a replacement.

WARNING

Do not attempt to incinerate or mutilate the battery pack—
the pack may burst or release toxic materials.

Do not connect together or otherwise short-circuit the battery
terminals—the pack may melt or cause serious burns.

276 Service and Maintenance

Temperature Range
Temperature ranges for the calculator are:

Operating 0° to 45°C 32°t0 113°F
Charging 15° to 40°C 59°to 104°F
Storage —40° to 55°C —40°to 131°F

Service

Blank Display

If the display blanks out, turn the calculator off, then on. If the display

remains blank, check the following:

1. If the ac adapter/rechargeris attached to the calculator, make sure

it is plugged into an ac outlet.

2. Examine the battery pack to see if the contacts are dirty.

Substitute a fully charged battery pack, if available, for the one

that was in the calculator.

4. Ifthe display is still blank, try operating the calculator using the ac

adapter/recharger (with the batteries in the calculator).

5. If, after step 4, the display is still blank, service is required.

(Refer to Limited One-Year Warranty.)

Limited One-Year Warranty

What We Will Do

The HP-34C and its accessories are warranted by Hewlett-Packard

against defects in materials and workmanship for one year from date of

original purchase. If you sell your calculator or give it as a gift, the war-

ranty is automatically transferred to the new owner and remains in effect

for the original one-year period. During the warranty period we will

repair or, at our option, replace at no charge a product that proves to be

defective provided that you return the product, shipping prepaid, to a

Hewlett-Packard repair center.

Service and Maintenance 277

How to Obtain Repair Service

Hewlett-Packard maintains repair centers in most major countries

throughout the world. You may have your calculator repaired at a

Hewlett-Packard repair center anytime it needs service, whether the

unit is under warranty or not. There is a charge for repairs after the one-

year warranty period. Please refer to the Shipping Instructions in

this handbook.

Hewlett-Packard calculators are normally repaired and reshipped within

five (5) working days of receipt at any repair center. This is an average

time and could possibly vary depending upon time of year and work load

at the repair center.

The Hewlett-Packard United States Repair Center for handheld and

portable printing calculatorsis located at Corvallis, Oregon. The mailing

addressis:

Hewlett-Packard

Corvallis Division e Service Department

1000 N.E. Circle Boulevard/P.O. Box 999

Corvallis, Oregon 97330

What Is Not Covered

This warranty does not apply if the product has been damaged by

accident or misuse, or as a result of service or modification by other than

an authorized Hewlett-Packard repair center.

No other expressed warranty is given. The repair or replacement of a

product is your exclusive remedy. ANY IMPLIED WARRANTY OF

MERCHANTABILITY OR FITNESS IS LIMITED TO THE ONE-

YEAR DURATION OF THIS WRITTEN WARRANTY. Some

states do not allow the exclusion or limitation of incidental or conse-

quential damages, so the above limitation or exclusion may not apply to
you.

This warranty gives you specific legal rights, and you may also have

other rights which vary from state to state.

278 Service and Maintenance

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of

manufacture. Hewlett-Packard shall have no obligation to modify or

update products once sold.

Warranty Information Toll-Free Number

If you have any questions concerning this warranty, please call 800/

648-4711. (In Nevada call 800/992-5710.)

Shipping Instructions
The calculator should be returned, along with completed Service Card,

in its shipping case (or other protective package) to avoid in-transit

damage. Such damage is not covered by warranty and Hewlett-Packard

suggests that the customer insure shipments to the repair center. A calcu-

lator returned for repair should include the ac adapter/recharger and the

battery pack. Send these items to the address shown on the Service Card.

Remember to include a sales slip or other proof of purchase with your

unit.

Whetherthe unit is under warranty or not,it is your responsibility to pay

shipping charges for delivery to the Hewlett-Packard repair center.

After warranty repairs are completed, the repair center returns the unit

with postage prepaid. On out-of-warranty repairs, the unit is returned

C.0.D. (covering shipping costs and the service charge).

Programming and Applications Assistance

Should you need technical assistance concerning programming, calcu-

lator applications, etc., call Hewlett-Packard Customer Support at

503/757-2000. This is not a toll-free number, and we regret that we

cannot accept collect calls. As an alternative, you may write to:

Hewlett-Packard

Corvallis Division Customer Support

1000 N.E. Circle Boulevard

Corvallis, OR 97330

Service and Maintenance 279

A great number of our users submit program applications or unique

program key sequences to share with other HP owners. Hewlett-Packard

will only consider using ideas given freely to us. Since it is the policy of

Hewlett-Packard not to accept suggestions given in confidence, the

following statement must be included with your submittal:

*“I am voluntarily submitting this information to Hewlett-Packard

Company. The information is not confidential and Hewlett-Packard may

do whateverit wishes with the information without obligation to me or

anyone else.”’

Further Information

Service contracts are not available. Calculator circuitry and design are

proprietary to Hewlett-Packard, and service manuals are not available

to customers. Should problems arise regarding repairs, please contact

your nearest Hewlett-Packard repair center. The address for the United

States Repair Center for handheld and portable printing calculators is:

Hewlett-Packard Company

Corvallis Division e Service Department

1000 N.E. Circle Boulevard/P.O. Box 999
Corvallis, Oregon 97330

Note: Not all Hewlett-Packard repair centers offer service

for all models of HP calculators. However, you can be sure

that service may be obtained in the country where you bought
your calculator.

If you happen to be outside of the country where you bought

your calculator, you can contact the local Hewlett-Packard
repair center to seeif service capability is available for your

model. If service is unavailable, ship your calculator to the
above address. A list of repair centers for other countries

may be obtained by writing to the above address.

All shipping and reimportation arrangements are your
responsibility.

Appendix D

Error Conditions

If you attempt a calculation containing an improper operation—say divi-

sion by zero—the display will show Error and a number. To clear an

error message, press any key.

The following operations will display Error plus a number:

Error 0: Improper Mathematical Operation

Illegal argument to math routine;

(=], where x = 0.

(>*), wherey = 0 andx < 0, ory < 0 and x is non-integer.

(%], where x < 0.
(%), where x = 0.

, where x < 0.

, where x < 0.

(sw), where | x | is > 1.

(cos), where | x | is > 1.

(=), where x = 0.
, where the value in the y-register is O.

Error 1: Storage Register Overflow

Storage register overflow (except (Z+], [£-]). Magnitude of number in
storage register would be larger than 9.999999999 X 10%.

Error 2: Improper Register Number

Named storage register currently converted to program memory, or

nonexistent storage register.

280

Error Conditions 281

Error 3: Improper Statistical Operation

 n=0

(s] ns1
1 ns1

G ns1

CR) n<1

Note: Error 3 is also displayed if division by zero or the
square root of a negative number would be required during
computation with any of the following formulas:

-\/_M o=\ / N __P
¥ n(n—1) Y n(n—1) VM

4=F B = M2y — P2x (A and B are the values re-
M n.M turned by the operation (LR,

where y = Ax + B.)

~_ M3y+P(n-x—2x)

Y n-M

where:

M=nZx*— (Zx)?
N =nZy?— (3y)?
P=nZxy — 2x23y

Error 4: Improper Line Number or Label Call

Line number called foris currently unoccupied, or nonexistent (>210),
attempt to load more than 210 lines of program memory, or label
called does not exist.

Error 5

Recursive call to or , 1.e., within a subroutine called by
another or within a subroutine called by another [soLve].

282 Error Conditions

Error 6

[soLve|unable to find a root using given estimates.

Error 7

Illegal label (4-9) used with or [sowvel, or illegal flag name (4-9).

Error 8

Subroutine level too deep.

Error 9

Self-test discovered circuitry problem. Note that program memory,
storage register contents, and display setting are not cleared by executing
the self-test).

Pr Error

Continuous memory cleared because of power failure.

Appendix E

Stack Lift and LAST X

Your HP-34C calculator has been designed to operate in a natural

manner. As you have seen as you worked through this handbook, you are

seldom required to think about the operation of the automatic memory

stack—you merely work through calculations in the same way you

would with a pencil and paper, performing one operation at a time.

There may be occasions, however, particularly as you program the

HP-34C, when you wish to know the effect of a particular operation

upon the stack. The following explanation should help you.

Digit Entry Termination
Most operations on the calculator, whether executed as instructions in a

program or pressed from the keyboard, terminate digit entry. This means

that the calculator knows that any digits you key in after any of these

operations are part of a new number.

Stack Lift
There are three types of operations on the calculator, depending upon

how they affect the stack lift. These are stack-disabling operations,

stack-enabling operations, and neutral operations.

Disabling Operations

There are only four stack-disabling operations on the calculator. These

operations disable the stack lift, so that a number keyed in after one of

these disabling operations writes over the current number in the dis-

played X-register and the stack does not lift. These special disabling

operations are:

=)

Enabling Operations

The bulk of the operations on the keyboard, including one- and two-

number mathematical functions like [x?Jand (x], are stack enabling

284

Stack Lift and LAST X 285

operations. These operations enable the stack lift, so that a number keyed

in after one ofthe enabling operations lifts the stack. Note that switching

from PRGM mode to RUN mode is an enabling operation.

Neutral Operations

Some operations, like (chs]and [Fix], are neutral; that is, they do not

alter the previous status of the stack lift. Thus, if you disable the stack

lift by pressing (ENTERs], then press f [Fix] n and key in a new number,

that number will write over the number in the X-register and the stack
will notlift. Similarly, if you have previously enabled the stack lift by

executing, say (x?], then execute a [Fix] instruction followed by a digit
entry sequence, the stack will lift.

The following operations are neutral on the HP-34C:

(Fix] CJnnn CLEAR
CLEAR(@Eg)

(EnG] (In RUN mode (SST CLEAR (z)
may execute an instruc- (chs)*

tion that does enable MANT

the stack.)

(Mem)

LAST X

The following operations save x in LAST X:

=]
=) (x7)

X
(=] A% (siN]

&)
9

cos™

TAN-'

* (CHS) is neutral during digit entry of a number from keys, as in 1, 2, 3, (CHS] to enter
-123; or, 123 (€EEX)(CHS) to enter 123 X 10-%. But otherwise, (CHS] enables the stack, as

you would expect.

Index

A

Absolute value, 22

AC line operation, 270

Accumulations, 27, 33, 38

Addresses

label, 165
negative number, 171

storage register, 156

Altering programs, 84-101
Arithmetic, storage register, 22, 158, 160

Assistance, programming and applications, 278

Automatic memory allocation, 55-60

Automatic run mode, 46

Available program memory, 59, 93

Average (mean), 32-34

B

Backstepping, 84, 93

Batteries, 270-275

Bessel function

first kind, order 0, 203, 233-235

first kind, order 1, 205, 210

first kind, order 4, 237-238

Blank display, 276

Branching, 102-120

conditional, 108-120

I-register, 151, 163-173

unconditional, 102-108

C

Charging the battery, 272

Clearing

flags, 120, 121

286

Index 287

pending subroutines, 137, 272

prefix keys, 84

program memory, 49, 84

storage registers, 58

Conditional tests, 108-110, 120

Continuous memory, 19, 272

Converting memory, 55-60

Correcting statistical data, 31

Counter, I-register, 141-143

Counter test value, 142

Current counter value, 142

D

Decision instructions, 108-125

Decrementing the I-register, 141-149

Deflation of an equation, 219-224

Deleting program instructions, 85, 96-98

Deleting statistical data, 31

Descartes’ rule of signs, 214

Display

blank, 276
error, 280

low power, 271

overflow, 67, 181

Display control, indirect, 152, 247

Display I, 152-155

Displaying I-register contents, 140-141

E

Editing a program, 84-101

End of memory, 67

End of program, 50
Error conditions, 280

Error display, 67, 280

Exchanging X and I, 141

Exchanging X and (i), 156

Executing a program, 54, 87

Executing instructions, 54

Extreme of a function, finding, 224-232

288 Index

F

Flags, 120-125

Flags, clearing, 120-121

Flowcharting, 68-72

Fractional portion of a number, 23

Function key index, 8

G

Go to

branch, 102-108, 126

I, 151, 163, 171

nnn, 85, 91

subroutine, 126

subroutine I, 151, 164, 171

H

Halting execution, 51

Horner’s method, 79-82, 175, 183, 194, 216, 220

I

Incrementing the I-register, 141-149

Indirect display control, 152, 209, 247-250

Indirect exchange, 151, 156

Initial estimates for , 174, 182, 185
Inserting an instruction, 90-93

Integer portion of a number, 22

Integration, numerical, 202-213, 233-268

accuracy, 208-212, 236-244, 252-260, 262

automatic stack fill, 204-208

calculation time, 204, 208, 240-242, 260-268

current approximation, 250-252

display format, 208-211, 236, 244-249

how works, 204, 236-237, 240, 252-260

labels of subroutine called, 202

LAST X register, 250

multiple, 212

program containing , 212, 247-249

, used with, 212, 233-235, 264-265

subdividing interval of integration, 263-267

Index 289

transformation of variables, 267-268

uncertainty of approximation, 209-212, 234, 236-239, 244-247

Interrupting a program, 62

ISG and DSE limits, 149

I-register, 140-173

displaying contents, 140-141

indirect store and recall, 151, 158

indirect storage register arithmetic, 151, 160

integer portion of a number in I, 152
storing a number in I, 141

K

Key index, 8

Keycodes, 48

L

Label addresses, 165

Label search, 53

Labels, 54, 68

LAST X, 285

Limits, ISG and DSE, 149

Limits, subroutine, 135-137, 200, 212

Limits of integration
accuracy of approximation, 210

entering, 202

evaluatingf(x) at, 207

remaining in stack, 211

Line 000, 91

Lines, program, 46-47, 52

Loading a program, 51
Loop, 103, 113, 133, 141-149, 153, 161

Loop control, 141-149, 153, 161

Loop control value, 142

Low power display, 271

M

Manual run mode, 45

Mathematical functions, 24-27, 174, 202

290 Index

Maximum of a function, finding, 224-232

(MEM) , 59, 85
Memory

allocation, 58

converting program memory to storage registers, 59
converting storage registers to program memory, 55-58

end of memory, 67

program, 7, 21, 46, 55

registers, 7, 21, §§

Minimum of a function, finding, 224-232

Model, mathematical, 242-243

Multiple root, 220, 224

N

Nonrecordable operations, 46, 84

Number generator, pseudorandom, 133, 165

Numerical integration (see Integration, numerical)

O

Occupied program memory, 59, 93, 137

Operating temperature, 276

Overflow, storage registers, 67, 181, 280

Overflow display, 67, 181

P

Pause, 65, 89
Pending subroutines, 135-137, 272

Polynomial, roots of, 214-219

Polynomial evaluation, 76-82

Power failure, 49, 282

Prefix keys, 20

Prefix keys, clearing, 84

Program

available memory, 59, 93

deleting instructions, 85, 96

editing, 84-101

end of, 50

execution, 54, 87

inserting instructions, 89-93

Index 291

lines, 46-48

loading, 51-53

memory, 7, 21, 46, 55-60

modifying, 89

running, 53, 95

single-step execution, 87

viewing, 90

Program control index, 12

Programming 44-82, 140-173
techniques, 76

R

Random number generator, 133, 165

Real roots, finding, 174-200, 214-235

Recall, indirect, 151, 158
Recalling numbers, 21

Recharging the battery, 272

Registers

memory, 7, 21, 55

stack, 7

Repair, 277

Replacing the battery, 273

Resetting to line 000, 49, 91

Return, 50, 91, 126, 135-139

Roots of an equation, finding, 174-200, 214-135

asymptote, effect of, 181, 196

deflation of an equation, 219-224

discontinuity, effect of, 193, 195

minimum, effect of, 181, 196

multiple root, 220, 224

pole, effect of, 193

polynomial equation, 214-218

several roots, 219-224

Rounding, 155

Roundoff error, 189, 209, 242-244
Run/stop function, 51

S

Self-discharge rate, battery, 275

Shipping, 278

292 Index

Shared memory, 55-60

Sine integral, 206-208, 248-249

Single-step, 84, 87, 90

Slope of a graph, 224-230
(See also Roots of an equation, finding.)

accuracy, 188-192

error message, 180, 181, 196-199, 200

execution time, 176, 232

initial estimates, 174, 182, 185

labels, use of, 174

operation, 186-188

programming with, 199-200

recursive use, 200

results, interpreting, 192-199

rules for use, 174

stack contents, 176, 192

Stack fill, 76-82, 175, 204-205

Stack lift, 284

Start of program, 50

Statistical data, correcting and deleting, 31

Statistical registers, 7, 28

Stepping backwards, 84, 93

Stops, 62, 66

Storage, indirect, 151, 158

Storage register arithmetic, 22, 158-161

Storage registers, 7, 21, §§

Storage temperature, 276

Store indirect, 151, 158

Storing numbers, 21

Subroutines, I-register, 151, 163-173

Subroutines, pending, 135-137, 272

Summations, 27-30

T

Temperature ranges, 276

Test value, 142

Tests, conditional, 108

Top-of-memory marker, 47, 52, 91

Index 293

U-Z

Uncertainty, 209-212, 236, 237-241, 244-250

Viewing program memory, 90

Warranty, 276

X exchange I, 141

X exchange indirect, 151, 156

Zero of a function, 174

HP-34C
Owner’s Handbook

and
Programming Guide

Addendum

This addendum contains updating information for the

HP-34C Owner’'s Handbook and Programming Guide,
manual part number 00034-90001, printed May 1979.

NOTE ON INTEGRATION FUNCTION

If the same numberis mistakenly entered as both the upper

and lower limits ofintegration(J. , the function will

usually return a meaningless, non-zero answer. The

X-register (display) must be cleared prior to further opera-

tions.

If a program contains limits of integration that are calculated

rather than fixed, instructions should be included in the

program to determine whether the upper and lower limits

are equal and, if so, to avoid executing the integration.

Here is one method that can be used:

(1) Tests whether the upper limit

(in the X-register) is equal to

the lower limit (in the Y-

register).

R/S If x =y, halts the program.
X

(1) LBL If x= y, continues with. y
the integration.

HEWLETT|’!fi PACKARD

00034-90041 6/79 Printed in U.S.A

Useful Conversion Factors

The following factors are provided to 10 digits of accuracy where possible.

Exact values are marked with an asterisk. For more complete information

on conversion factors, refer to Metric Practice Guide E380-74 by the
American Society for Testing and Materials (ASTM).

Length
1 inch
1 foot
1 mile (statute)t
1 mile (nautical)t
1 mile (nautical)t

Area
1 square inch
1 square foot
1 acre
1 square milet

Volume
1 cubic inch
1 cubic foot
1 ounce (fluid)t
1 ounce (fluid)t
1 gallon (fluid)t

Mass
1 ounce (mass)
1 pound (mass)
1 ton (short)

Energy
1 British thermal unit
1 kilocalorie (mean)
1 watt-hour

Force
1 ounce (force)
1 pound (force)

Power
1 horsepower(electric)

Pressure

1 atmosphere
1 atmosphere
1 atmosphere

Temperature

Fahrenheit
Celsius
Kelvin
Kelvin
Kelvin

1 U.S. values shown.

o
o

m
n

W
I
T
l

i
o

e

25.4 millimeters*
0.304 8 meter*
1.609 344 kilometers*
1.852 kilometers™
1.150 779 448 miles (statute)t

6.451 6 square centimeters*
0.092 903 04 square meter*
43 560 square feet
640 acres

16.387 064 cubic centimeters*
0.028 316 847 cubic meter
29.573 529 56 cubic centimeters
0.029 573 530 liter
3.785 411 784 liters*

28.349 523 12 grams
0.453 592 37 kilogram*
0.907 184 74 metric ton*

1 055.055 853 Joules
4 190.02 Joules
3 600 Joules*

0.278 013 85 Newton
4.448 221 615 Newtons

746 watts*

760 mm Hg at sea level
14.7 pounds per square inch
101 325 Pascals

1.8 Celsius + 32
5/9 (Fahrenheit — 32)
Celsius + 273.15
5/9 (Fahrenheit + 459.67)
5/9 Rankine

* Exact values.

HEWLETT "!fi,l PACKARD

1000 N.E. Circle Blvd., Corvallis, OR 97330

For additional sales and service information contact your
local Hewlett-Packard Sales Office or Call 800/648-4711.
(In Nevada call 800/992-5710.)

00034-90001 Printed in U.S.A.

	Cover
	Contents
	The HP-34C Programmable Scientific Calculator
	Keyboard and Memories
	Function Key Index
	Program Control Index

	Section 1. Meet the HP-34C
	Manual Problem Solving
	Programmed Problem Solving
	What Continuous Memory Means to You

	Section 2. Specific Features of the HP-34C
	Keyboard Operation
	Storage Registers and Program Memory
	Number Alteration Keys
	Absolute Value
	Integer Portion of a Number
	Fractional Portion of a Number

	Mathematical Functions
	Factorial
	Gamma Function
	Percent Difference

	Statistical Functions
	Accumulations
	Deleting and Correcting Data
	Mean
	Standard Deviation
	Linear Regression
	Linear Estimation
	Correlation Coefficient

	Vector Arithmetic

	Section 3. Simple Programming
	What Is a Program?
	Why Write Programs?
	Three Calculator Modes
	Looking at Program Memory
	Keycodes
	Problems
	Clearing a Program
	Creating Your Own Program
	Beginning a Program
	Ending a Program
	Loading a Program

	Running a Program
	Searching for a Label
	Executing Instructions

	Automatic Memory Allocation
	Converting Storage Registers to Program Memory
	Converting Program Memory to Storage Registers
	Using [MEM]

	Writing a Third Program
	Program Stops and Pauses
	Planned Stops During Program Execution
	Pausing During Program Execution
	Unexpected Program Stops

	Labels
	Flowcharts
	Problems
	Programming Techniques
	Using Horner's Method
	Further Applications

	Problems

	Section 4. Program Editing
	Nonrecordable Operations
	Pythagorean Theorem Program
	Single-Step Execution of a Program
	Modifying a Program
	Single-Step Viewing Without Execution
	Resetting to Line 000
	Going to a Line Number
	Inserting Instructions in Longer Programs
	Stepping Backwards Through a Program
	Running the Modified Program
	Deleting Instructions
	Problems

	Section 5. Branching, Decisions, and Flags
	Unconditional Branching and Looping
	Problems
	Conditionals and Conditional Branches
	Problems
	Flags
	Problem

	Section 6. Subroutines
	Subroutine Usage
	Subroutine Limits
	Using [h] [RTN] at the End of Occupied Program Memory

	Section 7. Advanced Programming
	Controlling the I-Register
	Storing a Number in the I-Register
	Exchanging X and I
	Incrementing and Decrementing the I-Register
	ISG and DSE Limits

	Problem
	Using The I-Register For Display, Storage Register, and Program Control
	I-Register Display Control
	Exchanging X and (i)
	Indirect Store and Recall
	I-Register Control of Branches and Subroutines
	Problem
	Branching and Subroutines Using Line Number Addressing

	Section 8. Finding the Roots of an Equation
	Using [SOLVE]
	When No Root Is Found
	Choosing Initial Estimates
	How [SOLVE] Works
	Accuracy of the Root
	Interpreting Results
	Using [SOLVE] in a Program
	Restriction on the Use of [SOLVE]
	For Further Information

	Section 9. Numerical Integration
	Using [∫ₓʸ]
	Accuracy of [∫ₓʸ]
	Using [∫ₓʸ] in a Program
	For Further Information

	Appendix A: Advanced Use of [SOLVE]
	Using [SOLVE] With Polynomials
	Finding Several Roots
	Finding Local Extremes of a Function
	Using the Derivative
	Using an Approximate Slope
	Using Repeated Estimation

	Limiting the Estimation Time
	Counting Iterations
	Specifying a Tolerance
	Using [SOLVE] With [∫ₓʸ]

	Appendix B: A More Detailed Look at [∫ₓʸ]
	How [∫ₓʸ] Works
	Accuracy, Uncertainty, and Calculation Time
	Accuracy of the Function to be Integrated
	Functions Related to Physical Situations
	Round-Off Error in Internal Calculations

	Uncertainty and the Display Format
	Calculating Integrals of Maximum Accuracy
	Obtaining the Current Approximation to an Integral
	Considerations That Could Cause Incorrect Results
	Considerations That Prolong Calculation Time
	Subdividing the Interval of Integration
	Transformation of Variables

	Appendix C: Service and Maintenance
	Your Hewlett-Packard Calculator
	AC Line Operation
	Battery Operation
	Low Power

	Battery Charging
	Using Continuous Memory
	Battery Pack Replacement
	Battery Care
	Temperature Range
	Service
	Blank Display

	Limited One-Year Warranty
	What We Will Do
	How to Obtain Repair Service
	What Is Not Covered
	Obligation to Make Changes
	Warranty Information Toll-Free Number

	Shipping Instructions
	Programming and Applications Assistance
	Further Information

	Appendix D: Error Conditions
	Appendix E: Stack Lift and LAST X
	Digit Entry Termination
	Stack Lift
	Disabling Operations
	Enabling Operations
	Neutral Operations

	LAST X

	General Index
	Addendum

