

1

Programming Notes and Hints for the

HP 35s Scientific Calculator

By

Frederick S. Ruland

2

Copyright © 2017 Frederick S. Ruland

All rights reserved

3

This book is dedicated to the memory of Marian Rejewski, Jerzy

Rozycki, and Henryk Zygalski, the Polish mathematicians who

broke the German Enigma code.

4

5

Table of Table of Table of Table of CCCCoooonnnntttteeeennnnttttssss::::

1.0 Quick Start Section ... 1

1.1 On and Off .. 1

1.2 Programming – A Quick Start Example 1

1.3 Running the Quick Start Example ... 2

1.4 Notes for the Quick Start Section ... 3

2.0 The Stack and the Display ... 3

2.1 Understanding the Stack... 4

2.2 Entering Numbers ... 5

2.3 Operations Where Both the X and Y Appear on the Keys 6

3.0 Memory for Programs and Data ... 7

4.0 A Bit about Reverse Polish Notation (RPN) 7

5.0 Storing (STO) and Recalling (RCL) Numbers 8

6.0 Clearing Operations .. 9

7.0 Memory Menu .. 10

7.1 The Checksum ... 12

7.2 Deleting Programs from Memory ... 13

8.0 RCL(recall) and ß VIEW .. 13

9.0 Editing Programs and More Details about the Commands 14

9.1 Let’s edit program B .. 16

9.2 Let’s add the two lines .. 16

10.0 Before writing a more useful program, let’s look at some

commands ... 18

6

10.1 RTN (Return) Statement .. 18

10.2 GTO (Go To) Statement .. 18

10.3 A Bit More About the GTO Statement 19

10.4 GTO (Followed and Not Followed by a Period) 20

10.4.1 When NOT in Programming Mode 20

10.4.2 When IN Programming Mode .. 20

11.0 XEQ Statement (and an Additional Function of the RTN

Statement) ... 21

11.1 An Aside Regarding GTO and XEQ .. 22

12.0 STO (Store) Statement .. 23

13.0 A Bit More About the RCL (Recall) Statement 24

14.0 à X?0 (Comparing the X Stack Register with Zero) 24

14.1 X?0 Example .. 25

14.2 Let’s Run the X?0 Program .. 27

15.0 Looping Capabilities .. 28

15.1 ß ISG (Increment and Skip if Greater Than) 28

15.2 Small Example to Shed Light on the ß ISG Command 29

15.3 What You Should See When Executing the ISG Program 30

15.4 Let’s Run the ISG Program .. 31

16.0 Guessing Game ... 32

17.0 ß X?Y (Comparing the X Stack Register With the Y Stack

Register) ... 34

17.1 Updated Guessing Game with ß X?Y 35

18.0 Simple Program with a Few Commands Not Yet Used

(Including Storage Arithmetic)... 36

7

19.0 More Looping capabilities: The à DSE (Decrement, Skip [next

command] if Equal or Less Than) .. 38

19.1 DSE Program to Loop Five Times .. 39

19.2 Let’s Run the DSE Program ... 40

20.0 Addressing Direct and Indirect Variables - The Functions (I) and

(J) ... 41

20.1 Use of variables I and J and the functions (I) and (J) 41

20.2 Example Referencing Direct Variables 41

20.3 Example Addressing Indirect Variables 42

20.3.1 Indirect Variable Storage Requirements 43

20.4 Small Program to Input Data into Indirect Variables 44

20.5 Small Program to Read Data from Indirect Variables 45

20.6 Let’s Run the Above Program to Read Data from the Indirect

Variables .. 46

20.7 To Erase/Clear Indirect Registers .. 47

20.8 Clearing the 0 Indirect Register .. 47

21.0 Addition to the Guessing Game (Section 16.0) using RAND and

INTG ... 48

22.0 Equation Solver (When the Equations Are Stored In the List) 50

22.1 Entering an Equation .. 50

22.2 Three Approaches When Evaluating Equations 51

22.2.1 Method 1. EQN followed by ENTER 51

22.2.2 Method 2. EQN followed by SOLVE 53

22.2.3 Method 3. EQN followed by XEQ ... 54

23.0 Equation Solver (When the Equations Are NOT Stored in the

Equation List) ... 56

8

23.1 FN = Program Label ... 56

23.2 How the ‘FN =’ Works Outside the Programming Mode 58

24.0 FLAGS .. 59

24.1 Flags Menu.. 59

24.2 FLAGS 0 through 4 .. 60

24.3 FLAGS 5 through 9 .. 61

24.4 FLAGS: 10 and 11 ... 61

24.4.1 With Flag 10 set; Flag 11 set; With ‘SOLVE = A’ statement in

the program ... 62

24.4.2 With Flag 10 set; Flag 11 set; Without the ‘SOLVE = A’

statement in the program.. 62

24.4.3 With Flag 10 clear; Flag 11 clear; With ‘SOLVE = A’ statement

in the program ... 62

24.4.4 With Flag 10 clear; Flag 11 clear; Without ‘SOLVE = A’

statement in the program.. 62

24.4.5 With Flag 10 clear; Flag 11 set; With ‘SOLVE = A’ statement in

the program ... 63

24.4.6 With Flag 10 clear; Flag 11 set; Without ‘SOLVE = A’

statement in the program.. 63

25.0 Displaying Messages in Programs (FLAG 10 and EQN) 64

26.0 Equivalent Traditional Programming Commands 66

26.1 Assignment Statements .. 66

26.2 COMMENTS .. 66

26.3 ARRAYS and INDICIES .. 67

26.4 IF STATEMENTS ... 67

26.5 DO LOOP ... 67

9

26.6 Go To ... 67

26.7 WRITE / PUT / PRINT .. 68

27.0 HP 35s ‘Do Loop’ Approach Example 68

28.0 IF THEN ELSE Equivalents (Using the à X?0 options) 69

29.0 Somewhat ‘Mysterious’ Commands 70

29.1 Pause: à PSE (pause) .. 70

29.2 RTN and STOP ... 70

29.3 Accessing the Stack Registers ... 71

29.3.1 Accessing the Stack Registers (Via the Equation List) 71

29.3.2 Accessing the Stack Registers (Via Programming Mode) 72

29.4 LASTX -- Last value of the X stack register (and something

interesting that happens) .. 73

29.5 UNDO .. 74

30.0 Miscellaneous ... 75

30.1 Unlabeled Program Stored Above the Other Programs 75

30.2 To ‘Grab’ Stack Contents and Store As a Variable 76

30.3 Comment on Evaluating Equations ... 77

30.4 How to Step through a Program ... 78

30.5 The Integer Function Key .. 79

30.6 “Culled” Material I Didn’t Have the Heart to Cull 80

30.6.1 Relationship between the XEQ statement and the RTN

statement .. 80

30.6.2 To Bring the T Stack Register into the X Stack Register 81

30.6.3 When Entering Numbers into an Executing Program 82

30.6.4 The Stack is the Key to Efficiency ... 82

10

31.0 Conditional Statement Summary ... 82

32.0 A Peculiarity about the Stack and the Recall (RCL) 83

33.0 Suggestion .. 84

11

Foreword

This little book is an attempt to supplement the HP 35s User’s Guide

for those things this author had trouble understanding or

discovered only after trial and error. It concentrates on topics such

as programming, using memory, using Reverse Polish Notation

(RPN), using stack registers, program construction, and working

with equations (the equation solver).

The book is a general programming guide, rather than a how-to

guide for specific specialty areas. It does not discuss integration,

mathematical transformations, logical operations, or conversion

factors. It assumes RPN (Reverse Polish Notation) throughout.

Although the HP 35s lacks a computer interface and a graphics

display, it is reasonably priced (about $50 in June 2017), and has

other desirable features. Its greatest strength is perhaps its capacity

to store custom programs and equations specific to an individual’s

needs.

This book does not cover every aspect of the HP 35s. Therefore it is

important to have the HP 35s User’s Guide which is available free

online via the following link:

http://support.hp.com/us-en/product/hp-35s-scientific-

calculator/3442983/manuals

1

1.0 Quick Start Section

1.1 On and Off

Pressing à ON or simply pressing C turns the calculator on.

Pressing ß OFF turns the calculator off.

1.2 Programming – A Quick Start Example

Here is a very simple (but admittedly not very useful) program, just

to give you a sense of some basics. The program asks for the value

of D, and then displays that value. Later there will be more

complete and useful examples.

Let’s assume you are in the non-programming mode where just two

lines of numbers appear in the display.

GTO . . Pressing GTO followed by two decimal points, sets a

pointer to the top of the program memory.

à PRGM Takes you into programming mode. (You will see

PRGM TOP)

Note: The line numbers below are automatically added using the

program label as a prefix. Also, you don’t have to move to the next

line to type another command. It will jump to the next line when

you start typing.

2

A001 à LBL A Gives the program a label (i.e., a name), in

this case ‘A’.

A002 ß INPUT D Lets you enter a value for variable D. (You

will be prompted to enter the value when

the program runs.)

A003 ß VIEW D Displays the value of variable D.

A004 ß RTN Marks the end of the program, i.e., a return

command.

Pressing C or pressing à PRGM will take you out of programming

mode.

Note: The letters A and D above are in red on the keys.

1.3 Running the Quick Start Example

XEQ A ENTER Press XEQ then A then ENTER (Starts

execution of program A.)

You will see the prompt “ D? ”

Type 1234 and press ENTER (Also see note below.)

Press R/S to continue execution. R/S is the Run / Stop command.

You will see “ D= 1,234 ”

Press R/S to continue execution.

At this point our simple program ends with the display of the X and

Y stack registers. Programming details will be presented later.

3

Note: Technically you can omit pressing ENTER in this situation and

go directly to pressing R/S. A bit more about this will be said in

Section 2.2.

1.4 Notes for the Quick Start Section

The letters A to Z, as well as being variable names are also used to

label (i.e., name) your programs. The variable names and program

labels are independent of each other. That is, you can have a

program labeled A, and also a variable named A.

The Run/Stop command (R/S) is used to restart the program when

it is stopped, as well as stop the program when it is running.

A number of commands require a colored ‘pre-selector’ key à or

ß. However the red program labels and variable names are

context sensitive and do not require a pre-selector key.

2.0 The Stack and the Display

The HP 35s has a four register stack. The registers are designated as

X, Y, Z, and T. The display window shows the contents of the X

register (in the lower line) and the Y register (in the upper line).

Above the Y register (but unseen) is the Z register, and further

above is the T register.

Using the à R↑ key, and the R↓ key you can scroll the contents

of the stack to different registers. I was originally under the

impression that the registers themselves scrolled. However, it is the

content which scrolls through the registers. Therefore, whatever

4

value you scroll into the lower display is then described as being in

the X stack register.

2.1 Understanding the Stack

In very general terms, as values are entered they proceed up

through the stack registers: X to Y, Y to Z, and Z to T. As the contents

are ‘consumed’, they drop down (T to Z, Z to Y). As the content of

the T register (which has no register above it) drops to the Z

register, the original content of the T register is replicated in the

new T register.

Here is an example:

First, clear the stack by pressing à CLEAR 5 (The 5 is the menu

option to clear the stack.) There will be more about the CLEAR

menu in Section 6.0.

Type a 1 and press ENTER. Type a 2 and press ENTER. Type a 3 and

press ENTER. Type a 4 but DON’T press ENTER.

Using the R↓ key, observe the contents of the registers by scrolling

down.

Continue to scroll until 4 is again in the X stack register (lower

window).

Now press the + key.

You will see a 7 (the sum of the X and Y stack registers, i.e. the 4

and the 3) appear in the X stack register. (The value in the Y stack

register has basically been consumed.)

5

The 2 from the Z stack register drops, and is now in the Y stack

register.

The 1 from the T stack register drops and is now in the Z stack

register.

Now to see what is in the T stack register, use the R↓, to again

scroll.

You will see that another 1 has appeared. The reason is that when

the contents of the T stack register drops, the original content is

replicated in the new T stack register.

Scroll down again (to make 7 appear in the X stack register).

The stack (reading up) is now: 7, 2, 1, 1

2.2 Entering Numbers

As you type a number, it appears in the X stack register. What

happens after that depends on what you do next.

If you press ENTER, the number you typed is placed into both the X

and the Y stack registers.

For example: Type a 7 and press ENTER. You will then see a 7 in

both the X stack register (lower window display) and in the Y stack

register (upper window display).

If you now press the + key, the contents of the X and Y stack

registers are added and the sum (i.e., 14) is placed in the X stack

register.

6

If you type a 7 and don’t press ENTER, you will see 7 in the X stack

register and o in the Y stack register. (Zero because you previously

cleared the stack).

Now press +

This will add the contents of the X and Y stack registers, and the

result of the operation (7 + 0) will appear in the X stack register.

Note: The + always adds the contents of the X and Y stack registers.

2.3 Operations Where Both the X and Y Appear on the Keys

You will notice that on some keys both Y and X appear, for example

YX. (The displayed order on the key is important, that is, it does not

show the reverse XY.)

The way to enter the required values is to first enter the Y and then

the X. Take for example 23. (So Y will be the 2 and X will be the 3.)

Note: This is where the duplication which occurs when ENTER is

pressed is important.

So for the 23 calculation: Type 2 and press ENTER. This puts 2 into

both the X stack register and more importantly also into the Y stack

register. Now type 3 which — without pressing ENTER — will go

only into the X stack register.

At this point, you should see a 3 in the X stack register, and a 2 in

the Y stack register.

Now press the YX key, and you will see 8 appear in the X stack

register. Since the operation ‘consumes’ the previous values in the

7

X and Y stack registers, the Y stack register will now show 0

(assuming the stack was previously cleared). There will be more

about the stack a little later.

3.0 Memory for Programs and Data

You can save up to 26 programs using any letters A to Z, up to the

limit of available memory (30 KB) for programs and data —

specifically 30,192 bytes.

There are also 26 easily accessed locations for the storage of

numbers. These locations (referred to as direct variables) are

identified by the letters (i.e., variable names) A through Z. These

letters are displayed in red on the keys. The use of these direct

variables does not subtract from the available memory for

programs and data.

There is no connection between the letters used for program

names and the letters used for variable names. For example, you

can have a program A and also a variable A.

There is also no connection between the variable names (A to Z)

and the stack register names: X, Y, Z, and T. They are completely

separate things.

There is information about checking the memory status in the

Memory Menu Section 7.0.

4.0 A Bit about Reverse Polish Notation (RPN)

There is plenty of online information regarding the history of, and

use of, RPN. Here is an overly simplified explanation of using RPN.

8

To divide 100 by 20:

The 100 is entered, then (rather than an operator being given), the

20 is entered. Only after the numbers are entered is the operator

given.

Specifically:

100 Press ENTER

20 Don’t press ENTER

÷ Press divided by

5 Displayed

Note: There is a handy key [X<>Y] which exchanges the contents of

the X and Y stack registers, if you actually intended to divide 20 by

100.

Additional information about RPN will be interspersed as we go

along.

5.0 Storing (STO) and Recalling (RCL) Numbers

For Example, to store the value 123 in variable A:

Type 123. then à STO A

You will also see 123 displayed in the X stack register (lower line in

the display).

9

To confirm that 123 is stored in variable A, first clear the X stack

register by pressing the C key.

Now to recall variable A, press RCL A

You will see 123 appear in the X stack register.

Check Section 8.0 and 13.0 for more information on the RCL

command.

Note: There is a feature, a sort of combination of the STO and the

RCL, activated by the ß X⮀ key, which exchanges the contents of

the X stack register with the contents of any selected variable

(direct or indirect). The display, after pressing the above keys, looks

like X <> _. The chosen variable is typed where the underscore

appears. (See page 3.8 of HP 35 User’s Guide.)

6.0 Clearing Operations

If you press à CLEAR you will see the CLEAR menu:

Use the v key (under the MEM) to scroll down.

1X 2VARS

3ALL 4Σ

5STK 6CLVARX

à CLEAR 1 Clears only the X stack register.

à CLEAR 2 Clears the 26 variable storage registers (A to Z).

10

à CLEAR 3 Clears the four stack registers (x, Y, Z, and T), the

variables A to Z, and the stored programs (A to Z).

Note: After à CLEAR 3, you will see “CLR ALL? Y N”.

To clear all, use the < arrow to underline the Y, and press ENTER.

à CLEAR 4 Clears the 6 statistical registers: n Σx Σy Σx2 Σy2 Σxy

à CLEAR 5 Clears the 4 stack registers (X, Y, Z, and T).

à CLEAR 6 Clears the indirect registers. (More about this later.)

Before we get to any editing, you may want to see what programs

you have stored in memory.

7.0 Memory Menu

If you press ß MEM you will see something like the following:

1VAR 2PGM

0 30,168

Note: The 1 and 2 before 1VAR and 2PGM are the option numbers

and not the number of variables and number of programs.

You can use the first option to check the values of the 26 memory

variables (A to Z).

11

ß MEM 1 Press 1 for VAR

You might see something like the following:

A = 8.000 (i.e., variable A = 8)

Use the up and down arrows: ^ v to scroll the listing.

B = 2.000 (i.e., variable B = 2)

Press C to ‘escape’ from the list.

Use the second option to see the names (i.e., LBLs) of your stored

programs and their length (LN).

ß MEM 2 Press 2 for PGM option.

You will see, for example:

LBL B Your program labeled B

LN = 12 Length of program in bytes.

Use the up and down arrows: ^ v to scroll the listing.

LBL A Your program labeled A

LN = 24 Length of program in bytes.

When you press ß MEM, in addition to seeing 1VAR and 2PGM,

you will see two numbers in the lower row (the 0 and the 30, 168

above). The one on the left indicates the number of indirect

12

variables used (more about indirect variables in Section 20). The

one on the right indicates the amount of available memory.

7.1 The Checksum

In addition to the LN mentioned above, there is an additional useful

piece of information. This is the checksum. It is a four digit

hexadecimal number that uniquely identifies a program. For

example, if you delete a program and then retype it, or you enter a

program from the literature, the checksum gives you a way to check

on the accuracy of your entry.

To see the checksum, do the following:

When you have scrolled to a specific program label (as in the

above), press ß SHOW (and hold the SHOW key down).

You will see, for example:

LBL A

LN = 24

CK = 9C33 Checksum in hexadecimal.

Press C to ‘escape’ from the list.

Note: A change in a variable name (say you had called something B

but decide S would be better) does not change the length (i.e., the

LN =) of a program. However, it does change the checksum.

Note: Length of the Program (LN) and the Checksum (CK) are

covered on page B-2 of the User’s Guide.

13

7.2 Deleting Programs from Memory

ß MEM 2

Using the up and down cursor arrows ^ v select the label of the

program you wish to delete. Then pressing à CLEAR will delete

the program.

For example, to delete program A:

LBL A

LN = 24

à CLEAR

8.0 RCL(recall) and ßßßß VIEW

Recalling a variable puts that value into the X stack register, while

simply viewing a variable does not. One may, however, press ENTER

after viewing a variable, which will then put the viewed value into

the X stack register. (Although, this ENTER following a VIEW does

not work within a program.)

Doing a recall of a variable into the X stack register, does not

duplicate the value in the Y stack register. (It is not like typing a

value and pressing ENTER.)

14

Two recalls in a row will fill the X and Y stack registers. The first

recall ends up in Y stack register; the second recall ends up in X

stack register.

Recalling a variable does not clear the recalled register. The recalled

value is still there.

As an Aside: When doing a recall, the previous contents of X stack

register is pushed up to the Y stack register unless the X stack

register previously contained the ‘default’ zero, in which case the

zero is over written. A ‘default’ zero is the result of a clearing

operation. A zero which you have typed yourself will not be

replaced/overwritten, but will move up to the Y stack register.

Note: There is a bit more to know about recall capabilities. This will

be addressed below in Section 13.0.

9.0 Editing Programs and More Details about the Commands

This section will be better understood if you have at least two

programs saved. So, let’s enter two short programs.

First Program:

GTO .. GTO followed by two periods.

Note: The “ GTO. . ” to position the pointer can be done before or

after the à PRGM command.

à PRGM Takes you into the programming mode. (You

will see PRGM TOP)

15

A001 à LBL A Gives the program a name (label), in this

case ‘A’.

A002 ß INPUT D Permits you to enter a value for D. (You will

be prompted to enter the value when the

program runs.)

A003 ß VIEW D Displays the value of variable D.

A004 ß RTN Marks the end of the program.

Note: The RTN keeps this program from running into other

programs.

Pressing C or pressing à PRGM again takes you out of

programming mode.

Second Program:

Now, let’s enter a second program. (It can, for simplicity, be the

same program as the above just with a different label.) However,

you should position the ‘pointer’ at the top of the memory before

you enter the program.

Note: This second program is stored at the top. That is, above the

first program in memory (higher up as opposed to below).

GTO .. Puts the pointer at the top.

à PRGM Takes you into the programming mode. (You

will see PRGM TOP)

16

B001 à LBL B Gives the program a name (label), in this

case ‘B’.

B002 ß INPUT E Permits you to enter a value for E. (You will

be prompted to enter the value when the

program runs.)

B003 ß VIEW E Displays the value of variable E.

B004 ß RTN Marks the end of the program.

Pressing C or pressing. PRGM again takes you out of programming

mode.

9.1 Let’s edit program B

Let’s add another input statement and another view statement for

variable F.

GTO . . will take you to the top of the program memory, or you can

type GTO B ENTER. Although you won’t be able to see the jump to

program B (actually to line B001), when you eventually go into

programming mode, you will be at B001.

Note: You can then use the v ^ cursor keys to scroll to the proper

line or proper program.

9.2 Let’s add the two lines

à PRGM You will see B001 LBL B in the lower window.

Use the down arrow ‘v’ till you see ‘INPUT E’ in the lower window.

17

B002 INPUT E

In program editing mode, typing a new command adds that

command after the line appearing in the lower portion of the

display.

Therefore type:

B003 ß INPUT F (The line number will automatically be

inserted.)

Next scroll down till you see ‘VIEW E’.

B004 VIEWE Was line B003, but will have automatically

updated to B004 when the above line was

inserted.

Therefore type:

B005 ß VIEW F

à PRGM or pressing C takes you out of programming mode.

Note: If you make a mistake, or want to delete a line, pressing <--

(above CLEAR) deletes the line in the lower portion of the display.

Let’s run program B:

XEQ B ENTER

E? Enter any number and press R/S

F? Enter any number and press R/S

You will see E = With your value of E, then press R/S

18

You will see F = With your value of F, then press R/S

At this point our tiny program will end.

Note: After you enter a value, as opposed to simply pressing R/S, it

is also possible to press ENTER followed by R/S. However, there is a

subtle difference which will be covered later.

10.0 Before writing a more useful program, let’s look at some

commands

10.1 RTN (Return) Statement

You have already met the return statement. It marks the end of a

program. Without the RTN, one program will simply run into the

next program (but see note below). RTN also has another function

which you will see in Section 11.0.

Note: A RTN statement is technically not absolutely necessary

depending upon the nature of the last program statement. For

example, you might have a GTO statement (see 10.2 below) which

loops back to the start of the program. Just make sure that the

current program will not run into the following program. Without

the RTN, however, the program will not return to the beginning

when it stops.

10.2 GTO (Go To) Statement

In addition to being an editing command to position the pointer in

memory, GTO is also a programming command.

19

Note: In programming mode, you will notice a cursor (underscore)

as you type the GTO. This is because it is expecting additional

‘information’ to follow. If you type only GTO A and press ENTER, it

will assume A001, and the cursor will disappear.

Let’s say we want to edit program A so that it loops back to the

input statement:

A001 LBL A

A002 INPUT D

A003 VIEW D

A004 GTO A002 Add this statement

A005 RTN

This program will then ask again and again for values of D, and then

show you the values.

Note: The old values of D will still be there. Simply type a new

value.

Simply press XEQ A ENTER to run — and C to escape from the

program.

10.3 A Bit More About the GTO Statement

20

When in programming mode: A very clever feature of the HP 35s is

that, if you change the program (add or subtract statements), the

GTO statement automatically updates the line number of the GTO

statement ‘target’. (Note: I found that this works well, but it is not

foolproof.)

When not in programming mode: That is, when you can see the X

and Y stack registers, you can send the program pointer to a

specific spot in your stored programs. For example, you can press

GTO A002 ENTER. Then if you shift to programming mode à

PRGM, you will be at line A002.

10.4 GTO (Followed and Not Followed by a Period)

In the HP 35s User’s Guide, you may see the GTO command

followed by a period and a line number: GTO. A002 for example.

Let’s look at the difference with, and without, the period, when in,

and not in, programming mode.

10.4.1 When NOT in Programming Mode

The GTO. A002 (with the period) and GTO A002 (without the

period) are the same when not in programming mode. The

program pointer is positioned at A002 in both cases (although not

visible, because you are not in programming mode).

10.4.2 When IN Programming Mode

21

The GTO. A002 (with the period) when in programming mode is an

editing command, and the pointer jumps, right before your eyes, to

that spot in the program memory; whereas, GTO A002 (without the

period) simply becomes a statement in your program.

11.0 XEQ Statement (and an Additional Function of the RTN

Statement)

You have already seen one application of XEQ, that is, in executing

a program:

XEQ A ENTER

However, XEQ can also be a statement in a program.

Let’s look at an example (again not very useful) but which illustrates

the mechanics of XEQ’s operation:

Note: You have seen the RTN statement in its role of ending a

program (i.e., defining the end). Here, in association with the XEQ

statement, the two statements function together somewhat like a

subroutine. The RTN in this case ‘remembers’ where to return.

Note: Below there are two programs, one starting with line

numbers A and one starting with line numbers B.

A001 LBL A

A002 INPUT E

A003 VIEW E

A004 XEQ B Will jump to program B at B001 (Line will display as

XEQ B001).

22

A005 VIEW E

A006 RTN

B001 LBL B

B002 INPUT F

B003 VIEW F

B004 RTN Returns to program A at A005 and then displays E

via the VIEW E command.

Note: You will need to press ENTER to complete the statement after

typing XEQ B.

11.1 An Aside Regarding GTO and XEQ

The GTO, as mentioned above, and the XEQ when typed as

program statements will have the cursor (underscore) trailing

along. For example:

GTO A_ and XEQ A _

If ENTER is pressed, 001 will be filled in showing: GTO A001 and

XEQ A001.

In other words: For any statement, when it is not obvious whether

it is complete or not, it may be necessary to press ENTER. (This may

also apply to entering numbers (constants) inside a program, but

this will be discussed later.)

23

Note: While one usually sees, for example, XEQ A001, it is possible

to execute a program starting from a different line number, for

example: XEQ A005.

12.0 STO (Store) Statement

There are five forms of this statement. All are followed by a variable

name (A to Z). Note: The first one below is without an operator

before the variable name.

à STO A Copies the value in the X stack register to variable A.

à STO + A Adds the value in the X stack register to the value in

variable A.

à STO – A Subtracts the value in the X stack register from the

value in variable A.

à STO ÷ A Divides the value in variable A by the value in the X

stack register.

à STO × A Multiplies the value in variable A by the value in the

X stack register.

Note: In each case the result of the operation ends up being stored

in the chosen variable (A to Z).

As an aside: In addition to the above variables A to Z, the functions

(I) and (J) discussed in Section 20 can also be used as ‘variables’. For

example: à STO + (I)

24

13.0 A Bit More About the RCL (Recall) Statement

There are five forms of the RCL statement. All are followed by a

variable name (A to Z). Note: The first one below is without an

operator before the variable name.

RCL A Copies the A variable to the X stack register.

RCL + A Adds the A variable to the value in the X stack

register.

RCL – A Subtracts the A variable from the value in the X

stack register

RCL ÷ A Divides the X stack register by the value in the A

variable.

RCL × A Multiplies the X stack register by the value in the A

variable.

Note: In each case the result of the operation ends up in the X stack

register. (The value in the chosen variable remains the same.)

We now have the commands necessary to do some simple

straightforward programs. What we are lacking, at this point, are

commands to modify the program during its operation. Let’s take a

look at a few commands with ‘conditional’ capabilities.

14.0 àààà X?0 (Comparing the X Stack Register with Zero)

— The X?0 Menu

When you press à X?0 you will see a menu:

25

1 = ≠ 2 = ≤ 3 = <

4 = > 5 = ≥ 6 = =

To select one of the options, either enter the corresponding

number, or use the arrow cursors to underline your choice and

press ENTER.

We can use this feature to do some conditional branching.

Note: The X?0 decision rule is: Do [next command] if true.

Otherwise skip the next command.

Note: See also the HP 35s User’s Guide page 14.6

14.1 X?0 Example

Let’s say you enter two numbers (D and E).

You want to take the difference (D – E) and store in F.

If the difference (D – E) is zero or negative you want to: look at the

difference; change the sign; replace in F; see the number again; and

start over.

For Example: Say that D=2 and E=5. You will see –3 change to +3.

If the difference is positive, you want to store in G; view G; add 10;

store in G; view G; and start over.

For Example: Say the D=6 and E=1. You will see 5, then 15.

à PRGM

B001 à LBL B Names the program

26

B002 INPUT D

B003 ß INPUT E

B004 – Does subtraction D – E.

B005 à STO F Stores difference in F

B006 RCL F Recalls F

B007 à X≤0? To obtain this, press à X?0 followed by

option 2. The ‘memory tool’ for X?0 is: “Do

[next] if true.”

B008 GTOB010 Will go here if X≤ 0 is true.

B009 GTOB015 Will go here if X≤ 0 is false.

B010 ß VIEW F

B011 +/– Change the sign

B012 à STO F

B013 ß VIEW F

B014 GTO B002

B015 à STO G

B016 ß VIEW G

B017 RCL G

B018 10

B019 +

27

B020 à STO G

B021 ß VIEW G

B022 GTO B002

B023 ß RTN

Note: If you do ß MEM 2 and scroll to program B, you should see

the following.

LBL B

LN = 71

CK = 7533 When you press ß SHOW and hold down the SHOW.

Note: Strictly speaking, there are a few non-essential statements in

the program. However, for now, I hope they make it easier to follow

what is going on. We will address efficiency more as we progress.

Note: Regarding lines B008 and B009: It is common practice to

follow the X?0 (as well as other HP 35s conditional commands) with

two GTO statements.

14.2 Let’s Run the X?0 Program

XEQ B ENTER

D? Type 2 then R/S to continue.

E? Type 5 then R/S

28

You will see: F = –3 (Because 2 – 5 is negative.) R/S

Then you then will see: F = 3 (Now a positive number.) R/S

The program will repeat: (This time let’s make the difference a

positive number.)

D? 10 R/S (The 2 you typed earlier will still be there.

Just type a 10)

E? 2 R/S (The 5 you typed earlier will still be there.

Just type a 2)

You will see: G = 8 (Because 10 – 2 is positive.) R/S

You will then see: G = 18 (Because 10 has been added to 8.) R/S

The program will then cycle back to ask for D.

Press C to escape from the program.

15.0 Looping Capabilities

With looping capabilities, we can write more complex programs.

15.1 ßßßß ISG (Increment and Skip if Greater Than)

The ISG command functions as an automatic counter. It is

commonly used in conjunction with two GTO statements.

The ‘memory tool’ is: Increment [the index variable] and Skip [the

next command] if [the index variable is] Greater than [the specified

limit].

29

The ß ISG command requires a variable, say D, which contains the

counter/index instructions.

For Example: ß ISG D

Let’s say we want to loop 5 times. We would store 0.005 in variable

D.

The part after the decimal point (the number of times to loop)

must be a three digit number. The value to the left of the decimal

point is the starting number (which increments before starting).

15.2 Small Example to Shed Light on the ßßßß ISG Command

A001 à LBL A Program A

A002 0.005 Information to loop 5 times

A003 à STO D Stores 0.005 in variable D

A004 ß ISG D D tells ISG what to do

A005 GTOA007 Will be executed while counter (part before

decimal point) is less than or equal to 5.

A006 GTOA009 Will be executed when counter value is

greater than 5.

A007 ß VIEW D Should see counter value increment from

1.005 to 5.005

A008 GTO A004 Returns to ß ISG command.

30

A009 ß VIEW D Will be the sixth ‘escape’ value shown,

should be 6.005

AO10 ß RTN Return command.

Note: Be aware that the counter increments when line Ao04 is

executed. That is, it increments before being evaluated.

Note Program Info:

LN = 35

CK = 02AD

15.3 What You Should See When Executing the ISG Program

1.005

2.005

3.005

4.005

5.005

The above represent the counter values while in the loop.

6.005

The above represents the counter value after escaping the loop.

The program then ‘returns’ and ends.

31

15.4 Let’s Run the ISG Program

XEQ A ENTER

You will see:

D = 1.005 First time through loop (first digit has already

incremented). R/S

D = 2.005 Second pass. R/S

D = 3.005 Third pass. R/S

D = 4.005 Fourth pass R/S

D = 5.005 Fifth pass R/S

Note: The counter is now greater than 5, and the program escapes

the loop.

D = 6.005 The value outside the loop. R/S

The program now ends and the X and Y stack registers are

displayed.

Note: Just as an aside, the values in the X and Y stack registers

when the program finishes show 0.005. This is the value entered at

the beginning of the program. The view commands do not enter

values into the X stack register.

Note: A common programming approach with ß ISG is to follow

with two GTO commands.

32

Note: For more ISG details see page 14.18 of the HP 35s User’s

Guide. There is also a good looping example in the HP 35s User’s

Guide under Conditional Loops (GTO) on page 14.17.

16.0 Guessing Game

Let’s now combine the last two commands (X?0 and ISG) to make a

simple guessing game. The first ‘player’ will enter a single digit

whole number ‘N’ between 0 and 9. The second ‘player’ will have

four chances ‘G’ to guess the number. If they guess correctly the

display will show 999. Note: Shortly, rather than displaying 999, you

will see how to display a message like ‘WINNER’.

B001 LBL B

B002 0.004 Control for the ISG statement.

B003 à STO D Stores control in D for 4 guesses.

B004 999 Displayed value for a correct guess indicator.

B005 à STO F Stores 999 value to display.

BO06 ß INPUT N Opponent enters number ‘N’ for you to

guess.

B007 ß ISG D Starts looping counter operation.

B008 GTOB010 Goes to B010 if D <= 4

B009 GTO B020 Goes to B020 if > 4. Remember: ISG “skips

next if > 4”.

33

B010 ß INPUT G Enter your guess (you get 4 tries).

B011 RCL N Will recall your opponent’s chosen number.

B012 – Y stack register minus X stack register.

B013 à STO E Stores difference in E.

B014 à X=0? X?0 Option 6 Checks if E is zero. “Do next if

true.”

B015 GTOB017 Do this if E = 0.

B016 GTOB019 Do this if E ≠ 0

B017 ß VIEW F Will display 999 (you guessed correctly).

B018 ß RTN Program will end.

B019 GTOB 07 Goes back to ISG, and you guess again.

B020 ß RTN You used all 4 guesses. Program ends.

LN = 92

CK = 139C

Note: Our program is not very sophisticated. It doesn’t check for

the correct range of integer numbers (in this case 1 to 10). The

program doesn’t have word prompts, so you have to remember

what to enter just by the variable names N and G. We will address

these shortcomings as we proceed.

This program does require some knowledge of the stack operation.

For example lines B010 to B013. At B010 you enter your guess. It

goes into G, but also into the X stack register. The RCL of N at B011

34

goes into the X stack register pushing the previous value to the Y

stack register. The subtraction at B012 puts the difference (i.e., Y-X)

into the X stack register, which is saved into E at B013 (which strictly

speaking isn’t necessary). One other thing: at B014 the X stack

register is actually being evaluated, as opposed to E, if one is being

technical.

Note: Later there will be a single player modification for the above

program, where the number to guess will be chosen at random.

See Section 21.0

17.0 ßßßß X?Y (Comparing the X Stack Register With the Y Stack

Register)

When you press ß X?Y you will see a menu:

1 = ≠ 2 = ≤ 3 = <

4 = > 5 = ≥ 6 = =

To select one of the options, either enter the corresponding

number, or use the arrow cursors to underline your choice and

press ENTER.

We can use this feature to do some conditional branching.

Note: The X?Y decision rule is: Do [next command] if true.

Otherwise skip the next command.

Note: See also the HP 35s User’s Guide pages 14.7, 14.8

35

With our new ß X?Y command, we have increased our

programming flexibility. We can now directly compare the X and Y

stack registers, whereas in the Guessing Game (Section 16.0), we

had to first compute a difference, and then compare that difference

with zero using X?0.

17.1 Updated Guessing Game with ßßßß X?Y

The new Guessing Game commands start at B009.

B001 LBL B

B002 0.004 Control for the ISG statement.

B003 à STO D Stores control in D for 4 guesses.

B004 999 Displayed value for a correct guess indicator.

B005 à STO D Stores 999 value to display.

B006 ß INPUT N Opponent enters number ‘N’ for you to

guess.

B007 ß ISG N Starts looping counter operation.

B008 GTOB010 Goes to B010 if D <= 4

B009 GTO B018 Goes to B018 if > 4. Remember: IG “skips

next if > 4”.

B010 ß INPUT G Will end up in Y register.

B011 RCL N Will be in X register

36

B012 ß X?Y X?Y with option 6. (Decision rule: “Do next

if true.”)

B013 GT0B015 Do this if X = Y.

B014 GT0B017 Do this if X + Y.

B015 ß VIEW F Will display 999 (you guessed correctly.

B016 ß RTN Program will end.

B017 GTO B007 Goes back to ISG, and you guess again.

B018 ß RTN You used all 4 guesses. Program ends.

LN = 62

CK = A979

Note: The entry order of X and Y makes a difference (but not in the

present case). For example, with option 3, (the < option), the

evaluation will be true if the X stack register is less than the Y stack

register.

18.0 Simple Program with a Few Commands Not Yet Used

(Including Storage Arithmetic)

Below is a simple program to demonstrate a few commands not yet

used. (Again it is not a very useful program, mainly because there is

a built-in statistical routine that does the same thing: (HP 35s User’s

Guide, page 12.1)

37

This program allows you to enter a series of numbers, one at a

time, and when you finish you can view the sum, sum of squares,

and N (the number of observations entered).

This is the first program which contains a number in among the

commands (see lines A004, and A007).

Make sure registers A through C are set to zero at the start. (Note:

This can be done automatically which will be shown below under

Clearing Variables.)

The program stores the sum in variable A, the squares in variable

B, the number of observations in variable C.

Note: Don’t forget the plus signs in lines 3, 6, and 8.

A001 à LBL C Names (labels) the program.

A002 ß INPUT D Enter your observation

A003 à STO + A Add X stack register to variable A (sum of

observations)

A004 2 Displayed in X stack register (Sets up

squaring operation)

A005 yx Squares value in Y stack register (Value

entered at A002)

38

A006 à STO + B Sums values in X register (sums of squared

observations)

A007 1 Value for counter (increment value)

A008 à STO + C Stores number of observations (times

through loop)

A009 GTO A002

A010 ß RTN

Specifications to check entry of program: LN = 32, CK = 8969

Note: You can now (in non-programming mode) VIEW the

variables: A (sum), B (sum of squares), and C (n, number of

observations).

Clearing Variables: à CLEAR 2 Option 2 (This will display in a

program as ‘CLVARS’.) Note: This clears only the direct variables A

through Z. You could make this the second line (before INPUT) in

the program above.

19.0 More Looping capabilities: The àààà DSE (Decrement, Skip

[next command] if Equal or Less Than)

The following presents the minimum information required to use

the à DSE command. For more details, see page 14.18 of the HP

35s User’s Guide.

The ‘memory tool’ is: Decrement [the index] and skip [the next

command] if less than or equal to [the reference value].

39

Below is a small example to shed light on the à DSE command.

Let’s say we want to loop five times. The à DSE command is

followed by a variable which contains the counter instructions.

We store 6.000 in variable B, which follows the command, à DSE

B. (Note: To loop five times we indicate 6.000 and not 5.000)

Note: The part before the decimal point indicates the starting value

of the counter and will decrement before starting. The part

following the decimal point (the reference value) must be a three

digit number.

19.1 DSE Program to Loop Five Times

B001 à LBL B Program B

B002 6.000 Value to loop 5 times (Note the value of 6

and not 5.)

B003 à STO D Stores 6.000 in variable D

B004 à DSE D

B005 GTOB007 Will be executed while counter value is

greater than 000.

B006 GTOB009 Will be executed when counter value is

equal or less than 000.

B007 ß VIEW D Should see counter value decrement 5.000

to 1.000

B008 GTOB004 Returns toll DSE command.

40

B009 ß VIEW D Will be sixth value shown, should be 0.000

B010 ß RTN Return command.

LN = 35 CK = BDD8

Note: Be aware that the counter decrements when B004 is

executed. That is, it decrements before being evaluated.

19.2 Let’s Run the DSE Program

XEQ B ENTER

Note: Press the R/S key after each display. The first five are ‘views’

from line B007:

D = 5.000 First time through loop (first digit has already

decremented).

D = 4.000 Second pass.

D = 3.000 Third pass.

D = 2.000 Fourth pass

D = 1.000 Fifth pass.

Note: The counter is now equal or less than the value 000, and the

program escapes the loop.

D = 0.000 View from line B009 outside the loop.

The program now ends and the X and Y stack registers are

displayed.

41

Note: Just as an aside, the value in the X stack register when the

program finishes shows 6. This is the value entered at line B002.

Note: Again, as with the ISG command, a common programming

approach when using the DSE command is to follow it with two

GTO commands.

Note: For more complete information on DSE see page 14.18 of the

HP 35s User’s Guide.

20.0 Addressing Direct and Indirect Variables - The Functions (I)

and (J)

20.1 Use of variables I and J and the functions (I) and (J)

The direct variables I and J can be used with the function keys (I)

and (J) to address other variables, both direct and indirect.

For example: If J = –1, then the function (J) represents variable A If J

= - 2 then the function (J) represents variable B, etc. Note the

negative signs.

Note: –1 addresses variable A, –2 addresses B. .. –26 addresses Z.

20.2 Example Referencing Direct Variables

–1 Note the minus sign. Use +/– key to obtain the

minus.

à STO I Letter I

123

42

à STO (I) Note: You don’t have to precede (I) with the ß or

à key.

Essentially the above says to store 123 in variable A, since I = –1

references A.

–2

à STO J Letter J

456

à STO (J)

Essentially the above says to store 456 in variable B, since J = –2

references B.

ß VIEW A or ß VIEW (I) (Will display 123)

ß VIEW B or ß VIEW (J) (Will display 456)

Note: Using the above technique you can access an additional 801

indirect variables (discussed below).

20.3 Example Addressing Indirect Variables

When I or J is set to 0 through 800, the (I) and (J) functions

reference the corresponding indirect variables 0 through 800.

(Recall that –1 through –26. i.e., with minus signs, reference the

direct variables A through Z)

Note: I don’t suggest using the indirect variable 0, in that the

clearing of that variable requires an extra step. See Section 20.8.

43

1

à STO I Direct variable I = 1

123

à STO (I) Stores 123 in the indirect variable 1 via (I) function.

2

à STO I Direct variable I = 2

456

à STO (I) Stores 456 in the indirect variable 2 via (I) function.

20

à STO I Direct variable I = 20

987

à STO (I) Stores 987 in the indirect variable 20 via (I) function.

Note: You can also use (I) and (J) like regular variable names. For

example:

VIEW (I), STO (I), RCL (J), STO + (J), INPUT (I), etcetera.

Note: One might think, as a first impression, that there are 2 X 801

indirect variables, one set associated with (I) and a second set

associated with (J). This is not the case. For example, if I and J are

both set to 1, and you store, say, 999 in (I), if you then view (J) you

will see the same 999.

20.3.1 Indirect Variable Storage Requirements

Each indirect variable requires 37 bytes of storage. Contrast this

with a single programming line which requires only 3 to 4 bytes, or

44

numbers in programs which require a varying number of bytes

depending upon the number of digits. For example: 1 digit (0 – 9) =

4 bytes; 2 digit (10 – 99) = 5 bytes; 3 digit (100 – 999) = 6 bytes,

etcetera.

As an Aside: If, for some reason, you store a value in, let’s say, the

indirect variable location (500), upon doing this, memory is

immediately also allocated for all indirect variables below that

location (i.e., 0 to 499). Therefore, if you assigned location 800, i.e.

the maximum limit, you will allocate essentially the total amount of

memory available in the calculator. That is: 801 X 37 bytes = 29,637

bytes. Recall the total available is 30,192.

20.4 Small Program to Input Data into Indirect Variables

Note: Let’s enter: 2, 4, 6, 8, 10 when asked.

E001 à LBL E Program E

E002 1 Increment value for indirect variables.

E003 à STO + I Storage Addition adds increment value to

variable I. (See Note below.)

E004 ß INPUT N Asks for data value.

E005 à STO (I) Stores data value as an indirect variable.

E006 GTOE002 Loops back to start process again.

E007 ß RTN Return marks end of program.

Program specifics: LN = 22 CK = DB6A

45

Note: This is a barebones program which assumes certain things

have already been done or specified — things which could be

automated. For example, it assumes variable I is cleared (i.e., starts

at zero). You could start at another location if desired, for example,

to use higher registers.

20.5 Small Program to Read Data from Indirect Variables

(Program sums the recalled data into variable A; the sums of

squares into variable B; the count of the number of observations

into variable C.)

Note: Make sure variables A, B, C, and I are cleared before starting.

F001 à LBL F Program F

F002 1 Increment (index) value for indirect

variables (I) function.

F003 à STO + I ‘Storage Addition’ which adds increment

value to variable I.

F004 ß VIEW I Basically, to see where you are.

F005 RCL (I) Recalls the data value from storage.

F006 ß VIEW (I) Basically to see the recalled data value.

F007 à STO + A To store sums.

F008 à X2 To square values.

F009 à STO + B To store squares.

46

F010 1 Value for following command to count.

F011 à STO + C To store number of observations.

F012 GTOF002 To loop back to beginning.

F013 ß RTN Marks end of program.

Program specifies: LN = 41 CK = FF8A

Note: The above is still a rather primitive program. That is, you

must make sure certain registers are cleared before you start. Also,

you must know when to stop processing the data, that is, the

number of data values which were stored. And you must view the

results stored in variables A, B, and C when the program finishes.

These are all factors which could be automated.

20.6 Let’s Run the Above Program to Read Data from the Indirect

Variables

Note: First clear VARS: à CLEAR 2 Option 2

Remember the data entered were 2, 4, 6, 8, and 10.

XEQ F ENTER

You will see:

I = 1. Press R/S from VIEW I, the observation number.

(I) = 2. Press R/S from VIEW (I), the actual observation.

I = 2. Press R/S

(2) = 4. Press R/S

I = 3. Press R/S

47

(3) = 6. Press R/S

I = 4. Press R/S

(4) = 8. Press R/S

I = 5. Press R/S

(5) = 10. Press R/S

I = 6. At this point press C (to exit the program).

Now ß VIEW A. Should be 30 Sum of the observations.

Now ß VIEW B. Should be 220 Sum of the squared values.

Now ß VIEW C. Should be 5 Number of observations.

20.7 To Erase/Clear Indirect Registers

To clear the indirect registers, do the following:

à CLEAR 6 then 000 (Enter option choice 6, then after CLVAR,

enter 000)

This clears all registers above 000, (i.e., 1 to 800), but not register 0.

This is the reason I do not suggest using register 0.

See: Keys for Clearing (continued): HP 35s User’s Guide, page 1.5.

20.8 Clearing the 0 Indirect Register

When you check MEM after clearing as in Section 20.4, it will still

show 1 indirect variable being used (i.e., register 0). To clear the

register, do the following:

48

0 Zero

à STO I Direct variable I = 0

0 Zero

à STO (I) Stores 0 in indirect register 0 via (I) function.

To see if it is cleared:

ß VIEW (I) If it says, “INVALID (I)” it is has been cleared.

Note: Repeating something mentioned earlier, the number of

indirect variables used actually references the index number of the

highest variable used. For example, if you store a number in the

indirect variable 20 (and don’t even use 0 to 19), when you check

the memory ß MEM, it will show 21. That is, it indicates that 0 to

20 are in use.

21.0 Addition to the Guessing Game (Section 16.0) using RAND

and INTG

In Section 16.0 we had a guessing game where your opponent

enters a single digit whole number N between 0 and 9 for you to

guess (see line B006). We can modify this program such that the

number to guess is entered at random by the program. You would

insert the following between lines B005 and B007 to replace line

B006. (Of course, this will affect the line numbers as well as the

GTO statements which will have to be modified to reflect this.)

The following are the statements to insert, but see the explanation

below of what takes place in the stack.

49

à RAND Appears as RANDOM in the program.

10

X

ß INTG 6 Option 6 to obtain the Integer Part of 5.850. (It will

appear as ‘IP’ in the program.)

à STO N Stores the number chosen at random for you to

guess.

Activities in the stack:

à RAND gives a number > 0 and < 1, for example, 0.5850, which

will appear in the X stack register. (For RAND, see HP 35s User’s

Guide page 4.15 and page B-4)

0.5850 From RAND

5.850 Result of multiplying 0.5850 by 10

5.0000 Integer portion, the result of ß INTG 6

à STO N Stores the number chosen at random for you to

guess.

Note: For more on INTG, see HP 35s User’s Guide pages 1.6, 4.2,

and C-4.

Note: RAND works in combination with ß SEED. If you start with a

specific seed number, the same sequence of pseudorandom

numbers will be generated.

50

To set the seed, enter a number, for example 976, and press ß

SEED. See page 4.15 of the HP 35s User’s Guide for details.

22.0 Equation Solver (When the Equations Are Stored In the List)

See also the HP 35s User’s Guide Sections 6 and 7.

22.1 Entering an Equation

To start the process, press EQN to trigger the equation input mode

and to see the list of the built in equations.

As you use the “arrow” keys to scroll, you will see:

EQN LIST TOP

2*2 lin solve (a built in)

3*3 lin solve (a built in)

With the 3*3 lin solve in the lower window, let’s type in our

formula.

A new line will automatically be started when you begin to type.

Note: Equations are typed as if you were in algebraic mode.

Let’s say we want to type: A = B + C

Note: To type the variable names (i.e. letters A to Z), precede the

letter with the RCL key.

RCL A ß = RCL B + RCL C (Note: You will only see A = B + C)

51

Notes:

Blinking Cursor: After the above C is typed, the cursor ‘_’ will still

be blinking. Press ENTER to complete the formula.

Editing: You can use the cursor arrows and the <-- (arrow above the

CLEAR) key to edit the EQN lines.

Deleting Equations from the List: Scroll the equation you would

like to delete into the bottom line of the display, then press the <--

(arrow above the CLEAR) key.

Hidden Symbol Key: The YX key inserts the sign. (As in 3 squared:

3^2.)

Exiting: Press C to exit the equation mode.

22.2 Three Approaches When Evaluating Equations

22.2.1 Method 1. EQN followed by ENTER

See also the HP 35s User’s Guide page 6.3

With the first approach, the EQN command is followed by ENTER.

As a simple introduction, say you want to evaluate A in the

following equation:

A= B + C (Entered per Section 22.1 above)

To execute the program:

52

Press EQN to see the list of equations if they are not already visible.

Then using the cursor keys, scroll until the desired equation (A = B +

C) is in the bottom window.

ENTER Press ENTER to evaluate the equation.

You will be prompted for those variables on the right side of the

equation:

B? For example type 2 and press R/S (i.e., Run/Stop)

C? Type 3 and press R/S

You will then see A = 5

Press C to leave equation mode.

Note: The 5 (from A = 5) will also be in the X stack register.

Note: The A, B, and Care direct variables and will retain their values

after you exit the EQN mode.

Editing the Equation List: You can use the cursor arrows and the <--

(arrow above the CLEAR) key to edit the EQN lines.

Deleting equations from the list: Scroll the equation you would like

to delete into the bottom line of the display. Then press the <--

(arrow above the CLEAR) key.

Press C to leave equation mode.

53

22.2.2 Method 2. EQN followed by SOLVE

With the second approach the EQN command is followed by

SOLVE.

You enter the equation as demonstrated in Section 22.1 above.

Let’s assume the equation is A = L x W

Using the SOLVE approach, the program will ask which variable you

would like to solve for.

To execute the program:

Press EQN to go to the list of saved equations if they are not

already visible.

Scroll to see A = L x W in the lower window.

Press à SOLVE and you will see:

SOLVE _ Let’s say you type W.

A? Say you type 100 and press R/S.

L? Say you type 20 and press R/S. You will then see:

W = 5 That is, when A = 100 and L = 20, then W = 5.

Press C to leave the equation mode.

Note: The 5 (from W = 5) will also be in the X stack register.

54

22.2.3 Method 3. EQN followed by XEQ

With the third approach the EQN command is followed by XEQ.

This approach is a bit different from those shown above. This

approach wants to either:

1.) Evaluate an expression (for example: A+ B + C),

or

2.) If the expression includes an equal sign, for example: A = B x C,

this approach wants to balance both sides of the equation by giving

the adjustment for the right hand side.

You enter the equation as in Section 22.1 above.

Let’s take the first case (A + B + C): If A = 1, B = 2, and C = 3, you will

see 6 in the X stack register.

Let’s take the second case (A = B x C): If A = 1, B = 2, and C = 3, you

will see –5 (i.e., minus 5) in the X stack register. In other words if

the expression is 1 = 2 x 3, then –5 is the adjustment to make the

right side equal the left side. That is 1 = (2 x 3) – 5.

To execute the program:

Press EQN to go to the list of saved equations if they are not

already visible.

Now, let’s take the first example: A+ B + C. (Note: No equal sign.)

Let’s say A = 1, B = 2, and C = 3.

Scroll to see A + B + C in the lower window.

55

Press XEQ and you will see:

A? Type 1 and press R/S.

B? Type 2 and press R/S.

C? Type 3 and press R/S. You will then see in the X stack register:

6 That is: 1 + 2 + 3

Press C to leave the equation mode.

Now, let’s take the second example: A= B x C

Scroll to see A = B x C in the lower window.

Press XEQ and you will see:

A? Type a 1 and press R/S.

B? Type 2 and press R/S.

C? Type 3 and press R/S. You will then see in the X stack register:

–5 That is, subtract 5 from the right side to make things equal:

1 = (2 x 3) – 5

Press C to leave the equation mode.

Note: All of the above methods put the answer into the X stack

register, but only the first and second display the answer during

execution.

Note: Section 30.2 discusses an example from the HP 35s User’s

Guide which is a bit more complicated.

56

23.0 Equation Solver (When the Equations Are NOT Stored in the

Equation List)

23.1 FN = Program Label

You have already seen a bit about how to use the equation solver

when the equations are stored in the Equation List. Now let’s take a

look at solving equations which are embedded in a program.

Take the equation A = B + C which is rather trivial, but its difficulty is

not the focus right now.

First we have the program that contains the equation:

à LBL K

ß INPUT B

ß INPUT C

A= B + C Press EQN, then RCL A ß = RCL B + RCL C then

ENTER to complete.

ß RTN

Now the program that calls the above:

à LBL L

ß FN K FN refers to a programmed function. K is the above

program name.

57

à SOLVE A The variable to solve. (Also see ** below.)

ß VIEW A

ß RTN

Let’s run our program:

XEQ L ENTER L is the ‘calling’ program.

B? Program asks for value of B. Type a 5 followed by R/S

C? Program asks for value of C. Type a 2 followed by R/S

You will see ‘SOLVING’ followed by:

A= 7 Press R/S to finish.

Note: I recommend that you now skip directly to Section 23.2, at

least if this is your first reading of the book.

Although flags are not discussed until Section 24.0, I wanted to

make sure that a few comments were made here regarding their

connection with equations. In short, make sure that you don’t have

Flag 10 set, which would cause the program to ignore the

processing of the equations.

Also: One could eliminate both input statements in program Kif

Flag 11 is set. With flag 11 set, the program will prompt for both B

and C. However, since flag 11 automatically clears itself after a

program runs, it is useful to insert the second line below to make

sure that the flag is set, (if that is desired):

à LBL K First line

58

ß FLAGS followed by option 1, followed by . 1 (i.e., a period

followed by a one). It will appear as SF11 (Set Flag 11) in the

program.

A = B + C Press EQN, then RCL A ß = RCL B + RCL C then

ENTER to complete.

ß RTN

** The SOLVE can be replaced by ENTER (and no variable name), in

which case the command acts in a manner similar to XEQ.

23.2 How the ‘FN =’ Works Outside the Programming Mode

(Note: The following assumes you have program K)

ß FN K From the keyboard (i.e., outside programming

mode).

à SOLVE A From the keyboard (i.e., outside programming

mode).

B? You will be prompted (since flag 11 is set). Type 5

then R/S

C? You will be prompted. Type 10 then R/S

A = 15 Answer

Of course you could also solve for B or C.

As an Aside: This ‘FN =’ approach has some advantages, under

certain conditions, as opposed to using the Equation List. For

example: Let’s say you have, once again our trivial equation A= B +

59

C. However, if B is affected by D, E, and F, only two of which you

need depending upon other factors, these computations and

conditional decisions can be made in program K while leaving

program L (or the 23.2 approach above) quite simple in form.

24.0 FLAGS

The HP 35s has 12 flags numbered o through 11. They are either

‘set’ or ‘cleared’. Before any specifics, let’s look at the flag menu.

24.1 Flags Menu

To see the menu, press ß FLAGS

You will see:

1 SF 2 CF

3 FS?

The first option SF stands for Set Flag. Pressing 1 results in seeing

SF __. You can then enter a number between 0 and 11. (Note: For

numbers 10 and 11, you type a period for the 1 in the tens position,

followed by either a 0 or a 1. That is: period 0 = 10, and period 1 =

11.)

The second option CF stands for Clear Flag. This operates in the

same fashion as the above, but clears the indicated flag.

The third option FS? stands for the question: [Is the] Flag Set?. This

queries the flag in which you are interested. The response when

not in program mode is displayed as YES or NO.

60

Note: In programing mode the response to FS? is either to: do the

next command if the flag is set, or skip the next command if the

flag is not set (i.e., it is cleared). The memory rule is: Do next

[program command] if true [that the flag is set]. If the flag is not

set, the immediate following command is skipped. Keep in mind

that flags can be set or cleared from within a program, or externally

to a program.

24.2 FLAGS 0 through 4

Flags 0 through 4 have no preassigned meanings. They are available

like ‘switches’ in a program that can be queried and operated upon.

You might have a rather complex program capable of doing a

number of things. Using the flags, you can, for example, turn on or

off certain paths through the program to select only the desired

outputs. They might also be used during debugging. A flag might be

set or cleared if the program execution takes an unusual turn of

events.

A typical statement, for example, to set flag 4 in a program would

be entered as follows:

ß FLAGS 1 Option 1 to set a flag.

SF __ An SF with an underscore appears in the program.

Type a 4 to set flag 4.

SF 4 This is how the statement will appear in your

program.

61

24.3 FLAGS 5 through 9

Flags 5 through 9 have to do with error and overflow messages and

the display of fractions. These will not be discussed. See the HP 35s

User’s Guide page 14.9

24.4 FLAGS: 10 and 11

Flags 10 and 11 have to do with the equation solver (EQN)

discussed in Sections 22.0 and 23.0. These two flags are a bit

confusing, and will therefore be our focus.

When flag 10 is set, equations are not processed, but simply

displayed like text. The situation is usually such, that the ‘equation’

is some message or prompt which it is desired to display.

When flag 11 is set, the program prompts for the variables involved

in the equation.

Note: Flag 11 is automatically cleared after the program (i.e., the

equation) executes. Therefore if the same program is executed

more than once, the flag is cleared unless reset. (Discussed near

the end of Section 23.1 under ‘Also.’)

Let’s say we have the simple equation:

A = B + C (Where A = 0, B = 10, and C = 5, just to have some specific

values.)

We will consider six situations when using the equation solver:

With and without flag 10 being set:

With and without flag 11 being set:

62

With and without a SOLVE statement in the program:

24.4.1 With Flag 10 set; Flag 11 set; With ‘SOLVE = A’ statement in

the program

Formula will display; program will ask for B and C; formula will

display again; you will see SOLVING — and program may ‘hang up’.

You can press C to interrupt. Note: If variables A, B, and C don’t

have any values (other than zero), program simply stops and shows

0 in the X stack register.

24.4.2 With Flag 10 set; Flag 11 set; Without the ‘SOLVE = A’

statement in the program

Formula will display; X register is displayed; formula displays; X

register is displayed;

Conclusions with Flag 10 set: With flag 10 set, the formula displays,

but EQN doesn’t process.

24.4.3 With Flag 10 clear; Flag 11 clear; With ‘SOLVE = A’

statement in the program

Program will ask for B and C; you will then see SOLVING; then you

will see 15 in X register;

24.4.4 With Flag 10 clear; Flag 11 clear; Without ‘SOLVE = A’

statement in the program

Displays RUNNING briefly, then displays the X register; Note: If

variable B and C are preloaded with, say 10 and 5, the answer

appears in X register as –15. (This assumes variable A = 0. This is

explained below.) Note: With neither flag 11 set, nor a SOLVE

statement there was no prompting for variables.

63

24.4.5 With Flag 10 clear; Flag 11 set; With ‘SOLVE = A’ statement

in the program

Shows RUNNING briefly; then asks for A (let’s say 0); then asks for B

(say 10); then C (say 5); asks for B again; asks for C again; then

displays SOLVING; then 15 is displayed in X register; Note: Even if

you give a value of 2 for A, the answer in the X stack register is still

15. Note: Flag 11 is cleared when program executes. As an aside:

Flag 11 is responsible for the first round of prompts; SOLVE is

responsible for the second round.

24.4.6 With Flag 10 clear; Flag 11 set; Without ‘SOLVE = A’

statement in the program

Program will asks for A (let’s say 0); B (say 10); C (say 5); will show –

15 in X register. Note: This time (without the SOLVE), if I enter A as

2, the answer of –13 appears in the X register (see reason below).

Note: Flag 11 is cleared when program executes.

Conclusions with Flag 11 set: (Assuming A = 0, B = 10, C = 5)

Asks for all variables A, B, and C.

With SOLVE A: Gives 15 in X stack register.

Without SOLVE A: Gives –15 in X stack register.

Conclusions with Flag 11 clear:

With the SOLVE A statement: Program asks for only B and C; then

shows 15 in X stack register.

Without the SOLVE A: Program uses any values previously stored in

A, B, and C, and shows –15.

64

Regarding the Negative Values:

Without a SOLVE statement specific to a particular variable, for

example ‘SOLVE A’, the EQN procedure does essentially the

following:

Let’s assume: A = 2, with B = 10, and C = 5 for the equation A = B +

C, in other words 2 = 10 + 5.

The 2 is moved to the right side with the sign changed: 10 + 5 – 2

To make the right side (and therefore both sides) equal to zero, the

solution is to add minus 13 to the right side. Therefore –13 would

appear in the X stack register.

For more information on specific flags, see the User’s Guide pages

14.9 through 14.16

25.0 Displaying Messages in Programs (FLAG 10 and EQN)

In Section 16.0 there was a guessing game. In that program if you

guessed correctly a 999 was displayed. In this section we will use a

FLAG 10 command and an equation (EQN) to display the word

‘WINNER’. Setting FLAG 10 instructs the equation processor to not

actually process the equation, but simply display it.

L001 LBL L

L002 0.004 Control for the ISG statement.

L003 à STO D Stores control in D for 4 guesses.

L004 ß INPUT N Opponent enters number ‘N’ for you to

guess.

65

L005 ß ISG D Starts looping counter operation.

L006 GTOL008 Goes to L008 if D<= 4 (You get to guess.)

L007 GTO L019 Goes to L019 if > 4. Remember: ISG “skips

next if > 4”.

L008 ß INPUT G Enter your guess (you get 4 tries).

L009 RCL N Will recall your opponent’s chosen number.

L010 – Y stack register minus X stack register.

L011 à STO E Stores difference in E

L012 à X= 0? X?0 Option 6 Checks if E is zero. “Do next if

true.”

L013 GTOL015 Do this if E = 0. (Number guessed correctly)

L014 GTOL018 Do this if E ≠ 0

L015 SF10 ß FLAGS, then option 1 to set flag, then . 0

(i.e., period zero).

L016 WINNER Press EQN, then RCL before each letter, then

ENTER to complete. Note the underscore:

(WINNER_ ENTER to turn off the EQN

mode.)

L017 ß RTN Program will end.

L018 GTOL005 Goes back to ISG, and you guess again.

L019 ß RTN You used all 4 guesses. Program ends.

Note: Program specifics: LN = 68, and CK = AAAA

See the User’s Guide Section 14.11 and 14.14 regarding Flag 10.

66

26.0 Equivalent Traditional Programming Commands

Although at first glance the HP 35s doesn’t appear to have

traditional style programming statements, it does have a number of

equivalent statements.

26.1 Assignment Statements

Left is a version of the traditional assignment statement — Right is

the HP 35s equivalent (with commas separating the commands).

A = 15 15, STOA

A = A + 15 RCL A, 15, STO + A

A = A + B RCL A, RCL B, +, STO A

A = 3 + 4 3, ENTER, 4, +, STO A

26.2 COMMENTS

I haven’t found anything for the HP 35s similar to the traditional

program comment statement found in other programming

languages. One can make short messages appear during program

execution using EQN with the FLAG 10 set (See Section 25.0), but

other than this, which is not really a comment statement, I haven’t

found anything.

67

26.3 ARRAYS and INDICIES

While there are no arrays and dimensions, as such, one can use the

(I) (J) functions, along with the direct and indirect variable

addressing, to simulate arrays, if one is clever.

26.4 IF STATEMENTS

The X?Y and X?0 operations are the closest thing to the traditional

IF statement. With their various ‘equality/inequality’ options you

have a great deal of flexibility. Keep in mind that the memory rule

is: Do next statement if true. (If false, the next statement is skipped

over.) See 28.0 for some IF, THEN, ELSE equivalents.

26.5 DO LOOP

There are no do loops, as such, but the ISG (Section 15.0) and the

DSE (Section 19.0) commands perform a similar function. See also

section 27.0 for an approximate HP 35s do loop approach.

Note: Contrast the above IF STATEMENT rule with the rules for the

ISG (Increment and Skip if Greater than) and DSE (Decrement and

Skip if Equal or less) commands. Here the next command is

executed unless the index value exceeds the cutoff value.

26.6 Go To

In this case, the HP 35s has almost an exact equivalent with its GTO

command.

68

Note: In most cases, when a program is edited, the GTO statements

will automatically be updated with the correct ‘go to addresses’.

However, I have updated some programs where the addresses have

gotten mixed-up. I haven’t been able to pinpoint when exactly this

occurs, but perhaps when I started editing at the bottom of the

program, or jumped around, making the changes.

26.7 WRITE / PUT / PRINT

Probably the closest thing although only a display — would be the

ß VIEW command. It is also worth knowing that, when outside

the programming mode, if you press ENTER after VIEW, you can

‘paste’ the viewed result into the X stack register. This does not

work, however, in programming mode when an ENTER statement

follows a VIEW statement. In this situation, any value currently in

the X stack register is simply entered again.

27.0 HP 35s ‘Do Loop’ Approach Example

For Example, DO A = 1 to 5 (Featuring the X?Y Command)

N001 à LBL N

N002 0 To set up lower index.

N003 à STO A To store the lower index.

N004 5 To set up upper index.

N005 à STO B To store the upper index.

N006 ß INPUT S Just some operation to perform as a

reference point.

69

N007 1 Increment value.

N008 à STO + A Add increment value to A.

N009 RCL A Recall current increment value.

N010 RCL B Recall upper index.

N011 ß X=Y? X?Y with option 6 To test if increment value

equals upper index. (Memory tool: Do next

[command] if true.)

N012 ß RTN Ends the program since upper index was

reached.

N013 GTON006 Goes back to INPUT statement.

N014 ß RTN Bottom of program marker.

28.0 IF THEN ELSE Equivalents (Using the àààà X?0 options)

Note: Only the skeleton of a program is shown.

Assume a value has been entered into the X stack register (with any

necessary computations performed) for a comparison with zero

below.

{Miscellaneous previous statements here}

A005 X<0? The à X?0 with option 3. Remember: Do

next if true.

A006 GTOA012 Do this if above is true.

A007 X=0? The à X?0 with option 6.

A008 GTOA013 Do this if above is true.

A009 X>0? The à X?0 with option 4.

70

A010 GTOA014 Do this if above is true.

A011 GTOA015 Almost like an ELSE statement, but

unnecessary here.

Note: Strictly speaking, not all of the above statements are needed.

That is, if X is not less than or equal to zero, it must be greater than

zero. Also, if no alternatives exist, an else is unnecessary.

29.0 Somewhat ‘Mysterious’ Commands

I wasn’t sure whether to call this section Odds and Ends or

something else. In any case, I’ve put a few items here which just

seemed to clutter other sections.

29.1 Pause: àààà PSE (pause)

In general, a PSE command in a program will cause the program,

when it executes, to display the contents of the X stack register for

about one second.

Also, if PSE follows a VIEW statement, that VIEW will only remain

for about one second. Otherwise, a VIEW will temporarily stop the

program execution and require that you press R/S to continue.

Note: For some exceptions and additional information, see the HP

35S User’s Guide, pages: 13.19, 14.11, and 15.10. Page 13.19 is very

informative.

29.2 RTN and STOP

71

There is no STOP key on the calculator. In programming mode the

R/S key inserts the STOP command.

In general, both the RTN and the STOP command terminate a

program’s execution. However, RTN repositions the ‘pointer’ to the

top of the program, whereas the STOP command does not.

29.3 Accessing the Stack Registers

As already mentioned, the HP 35s has a four register stack. On

occasion, it may be useful to access these registers via an approach

other than simply scrolling them into the X and Y stack registers.

29.3.1 Accessing the Stack Registers (Via the Equation List)

If you press EQN followed the R↓ key, you will see the following:

X Y Z T one of which will be underlined.

If you continue to press the R↓ key the underscore will move.

Displayed below the above letters will be the content of that

particular stack register.

Let’s say the underscore is below the Y. If you now press ENTER, you

will see REGY appear in the equation list. Now press + (for addition)

and then the R↓ key again.

This time, underline the X and press ENTER.

You will now see REGY + REGX_ blinking cursor. Press ENTER to

complete the expression, followed by C to escape the equation list.

72

Now as an example, let’s put an 8 in the Y stack register, and a2in

the X stack register: Type 8; press ENTER; type 2 (Don’t press

ENTER); then EQN; then ENTER.

You will see 10 (the sum of the Y and X stack registers) appear in

the lower display line.

This is a very trivial example, i.e., REGY + REGX, but keep in mind

that the equation could contain other variables, constants,

functions, etcetera. I should add that these are typed as if in

algebraic mode.

29.3.2 Accessing the Stack Registers (Via Programming Mode)

A simple program equivalent to the one above would be as follows:

GTO . .

à PRGM

à LBL M Program M for example

REGY + REGX (See Note Below)

Note: For the above: Press EQN (won’t show) then the R↓ key then

underscore Y then ENTER then + (plus sign) then R↓ key then

underscore X then ENTER and finally another ENTER to complete

the line.

ß RTN

C to escape program entry mode.

73

Now to run the above:

Type 8 then press ENTER then type 2 (Don’t press ENTER).

Then press XEQ M ENTER

You should now see 10, the sum of the X and Y stack registers in the

lower display. (If I had used registers Z and T, this example might

have been more impressive.)

29.4 LASTX -- Last value of the X stack register (and something

interesting that happens)

à LASTX recalls the last X stack register value that was actually

‘acted upon’ (as opposed to just ‘appearing’ there).

For example, type the following commands:

2

ENTER

1/X 1/X key Now shows 0.5000 in X register.

9 Some other random value entered just to simulate

activity.

ENTER

à LASTX Shows 2.000 and not 0.5000 or 9.

Now with 9 in Y and 2 in the X registers.

YX Shows 81.000 (i.e., 92)

74

Now with 0.5 in Y and 81 in X register.

à LASTX Shows 2.000 and not 81.

3 a random number typed (NO ENTER) Now with 2 in

Y and 3 in X.

+ Now shows 5

à LASTX Shows 3.

At this point, I thought I knew what was going on: It was the LASTX

of the number that was actually entered. However, look at the

following:

5 Typed

1/X 1/X key

0.2 Now shows in X register.

1/X 1/X key

5 Now shows in X register.

à LASTX Shows 0.2 in the X register. Not a number that you

entered.

Moral of the story: Be sure to check what actually happens in your

application when using LASTX. See page 2.8 and page B.6 in the HP

35s User’s Guide.

29.5 UNDO

75

ß UNDO is useful during programming or when in equation mode.

If you delete a program line or an equation (or part of an equation),

UNDO can get it back.

UNDO is also useful if you have entered a number, but then

mistakenly delete it; or if you cleared some digits and didn’t mean

to, by pressing UNDO repeatedly, the digits will reappear.

30.0 Miscellaneous

30.1 Unlabeled Program Stored Above the Other Programs

Note: You can put an additional (twenty-seventh) unlabeled

program at the top of the program memory.

To enter the program, (while the X and Y stack registers are visible),

press GTO . . (This puts the programming pointer at the top of the

programming memory.)

Next press, à PRGM to go into programming mode. (You will see

PRGM TOP in the lower window.) You won’t be able to label the

program, so skip that step.

ß INPUT D Some command, just as an example.

ß VIEW D Some command, just as an example.

ß RTN A return marks the end of the program.

à PRGM To exit programming mode.

76

To execute this program (while you are seeing the X and Y stack

registers), you press GTO . . This takes you to the top of the

programming memory, and then press R/S to run the program.

However, this program has limitations. One is that it is not possible

to use commands such as GTO, in that the statement lines have no

letter prefix. (That is, rather than looking like A001, the lines are

just 0000. In addition, with no label, other programs will not be

able to branch to this program. (See HP 35s User’s Guide, pages

13.2 and 13.4)

Note: This program will also not show up when you choose 2PGM

on the MEM menu.

30.2 To ‘Grab’ Stack Contents and Store As a Variable

Let’s say you want to grab the Z stack register contents during a

program, and then store the contents in variable A. We’ll label the

program P.

à LBL P

REGZ Press EQN, then the R↓ key underlining Z, then ENTER, then

ENTER (to escape).

à STO A

ß VIEW A

ß RTN

Note: The result will also be put in the X stack register, pushing the

previous contents up.

77

See the HP 35s User’s Guide B-7.

30.3 Comment on Evaluating Equations

(An Example from the HP 35s User’s Guide Page 6.11):

The example shows:X2 + y2 = R2

Let’s say you want to solve for R when X = 2 and Y = 3

If you use the EQN followed by ENTER as in the Method 1 (Section

22.2.1 above), you will get an answer of 13. That is, it doesn’t

exactly solve for R but rather it solves for the right side of the

equation. The routine will ask for X, then Y, and then R. When asked

for R, enter 0 and press R/S, and 13 will appear in the X stack

register.

Note: If you entered R^2 = X^2 + Y^2 (i.e., with R^2 on the left), you

will get an answer of –13 (minus 13).

If you use the EQN followed by SOLVE as in the Method 2 (Section

22.2.2 above), you will be asked for which variable to solve. Enter R.

You will then be asked for values of X and Y. Enter 2 and 3.

In this case you will get an answer of 3.6056. That is, the actual

value of R (the square root of 13).

Note: This approach works regardless of whether R^2 is on the left

or right side.

78

If you use the EQN followed by XEQ as in the Method 3 (22.2.3

above), you will get an answer of 13. That is, it doesn’t exactly solve

for R but rather it solves for the right side of the equation.

The routine will ask for X, then Y, and then R. In the first two cases,

enter 2, then 3. When asked for R, enter 0 and press R/S, and 13

will appear in the X stack register.

Again, if you reverse the equation, you will get –13.

Comment: Method 2 with EQN followed by SOLVE is probably the

method of choice in this particular case. SOLVE actually gives you

an ‘identified’ answer, i.e., “R = 3.6056”.

30.4 How to Step through a Program

Sometimes it is useful to step through a program, one line at a

time. This is particularly useful if the program is not working

properly.

To do this, go to the top of the desired program, for example B, as

follows:

GTO B _ _ _ ENTER (001 will be automatically added.)

Press and hold the down arrow key (v symbol below MEM).

This will show each line as it is executed, pausing for any input or

view responses.

79

30.5 The Integer Function Key

This function can be very useful. Below is the description of the

menu’s six options.

ß INTG Menu: All results are based on the value in the X stack

register.

1SGN 2INT÷

3Rmdr 4INTG

5FP 6IP

ß INTG 1 If < 0 returns –1; if 0 returns 0; if > 0 returns 1. The

returns go into the X stack register. This command is

interesting, in that it gives three outcomes.

ß INTG 2 Gives the result of integer division. That is: 7 / 2 = 3

ß INTG 3 Gives the remainder from division. That is: 10 / 3 = 1

ß INTG 4 Gives greatest integer. That is, INTG (8.9) = 8

ß INTG 5 Gives fractional part. That is: INTG(8.9) = 0.9

ß INTG 6 Gives the integer portion of number.

That is: IP(5.3) = 5

80

30.6 “Culled” Material I Didn’t Have the Heart to Cull

30.6.1 Relationship between the XEQ statement and the RTN

statement

This is a program (actually only the essence of a program) that

originally puzzled me.

The program was basically supposed to VIEW A (11), then VIEW B

(222), then VIEW W(999), and then stop. However, after viewing A

and B, it was viewing W (999) twice.

First, to get things underway, store 111 in A, 222 in B, and 999 in W.

The program consists of two consecutive XEQs and some VIEW

statements.

A001 LBL A

A002 VIEW A 111

A003 XEQ B001

A004 XEQ W001

W001 LBL W

W002 VIEW W 999

W003 RTN

B001 LBL B

B002 VIEW B 222

81

B003 RTN Go back to A004

Note: The RTN at W003 goes back to W001 (i.e., the line following

the XEQ the first time through), and goes to the PRGM TOP the

second time. My error, which caused the program to VIEW W (999)

twice, was failing to put a RTN after the second XEQ.

In regards to the RTN statement: It seems to be the case (although I

have no access to the code), that the ‘default’ action of a RTN

command is to return to the program top. However, if the program

contains an XEQ statement, that statement appears to issue a one-

time instruction to the RTN it ‘activates’, telling it to return to the

line following the XEQ.

30.6.2 To Bring the T Stack Register into the X Stack Register

Note: The example use the T stack register, but it also works for the

Y, or Z stack register.

LBL X

REGT EQN, then R↓, then underline T, then ENTER (See note

below.)

RTN

Note: Rather than the REGT, one may substitute three R↓

statements.

LBL X

R↓

82

R↓

R↓

RTN

In both cases, the contents of the T stack register will end up in the

X stack register.

30.6.3 When Entering Numbers into an Executing Program

You have two choices after entering a number: If you press ENTER

(before pressing R/S), the number goes into both the X and Y stack

registers. However, if you just press R/S, the number enters only

the X stack register.

30.6.4 The Stack is the Key to Efficiency

Watch the stack during complex program testing. By knowing what

is in the stack (primarily the X and Y registers), a number of

commands can usually be omitted.

31.0 Conditional Statement Summary

The X?0 decision rule is: Do [next command] if true. Otherwise skip

the next command. See section 14.0

The X?Y decision rule is: Do [next command] if true. Otherwise skip

the next command. See section 17.0

83

The FS? decision rule is: Do [next command] if true [that the flag is

set]. If the flag is not set (i.e., is cleared), the following command is

skipped.

Note: For the above, the next command is executed if the query is

true.

ISG The ‘memory tool’ is: Increment [the start value index] and Skip

[the next command] if [the index is] Greater Than [the terminal

value]. See section 15.1

DSE The ‘memory tool’ is: Decrement [the start value index] and

Skip [the next command] if [the index is] Less than or Equal to [the

terminal value]. See section 19.0

Note: For both of the above (and to state things a little differently),

the next command is processed as part of the loop. The ‘escape’

skips over the next command.

32.0 A Peculiarity about the Stack and the Recall (RCL)

Since the stack is at the heart of most operations, it is worth

knowing of any peculiarities. The ‘legitimacy’, for lack of a better

word, of a zero in the X stack register affects what happens during a

recall.

For example:

Store 123 in the A variable: Type 123, then à STO A

Press C to clear the 123 from the X stack register.

84

Type 456 and press ENTER Note: The 456 is now in both the X and Y

stack registers.

Press the C to clear the X stack register. Note: The 456 is still in the

Y stack register.

Observe that the ‘default’ 0.0000 is in the X stack register and will

NOT move up into the Y stack register when we recall the value of

the A variable in the next step. It will simply be replaced.

RCL A

Now 123 is in the X stack register and the 456 is in the Y stack

register.

In other words, if the ‘default’ 0.000 is in the X stack register it is

not moved up to the Y stack register. However, if you enter a 0 in

the X stack register, it does move up when the recall takes place.

33.0 Suggestion

Since one can’t include comments in the program itself to

document what’s going on, I recommend keeping a small notebook

that includes:

Purpose of the program; date written; program label; meaning of

the single letter variable ‘names’; any ‘housekeeping’ required

(variables to be cleared, flags to be set or cleared, required

contents of any registers or variables entered at the start, prompts

and order of any data to be entered, description of output (views,

stack contents); LN =; CK=; and, of course, one could copy (write

out) the program statements themselves, including line numbers.

	Cover
	Table of Contents
	Foreword
	1.0 Quick Start Section
	1.1 On and Off
	1.2 Programming – A Quick Start Example
	1.3 Running the Quick Start Example
	1.4 Notes for the Quick Start Section

	2.0 The Stack and the Display
	2.1 Understanding the Stack
	2.2 Entering Numbers
	2.3 Operations Where Both the X and Y Appear on the Keys

	3.0 Memory for Programs and Data
	4.0 A Bit about Reverse Polish Notation (RPN)
	5.0 Storing (STO) and Recalling (RCL) Numbers
	6.0 Clearing Operations
	7.0 Memory Menu
	7.1 The Checksum
	7.2 Deleting Programs from Memory

	8.0 RCL(recall) and [⮢] VIEW
	9.0 Editing Programs and More Details about the Commands
	9.1 Let’s edit program B
	9.2 Let’s add the two lines

	10.0 Before writing a more useful program, let’s look at some commands
	10.1 RTN (Return) Statement
	10.2 GTO (Go To) Statement
	10.3 A Bit More About the GTO Statement
	10.4 GTO (Followed and Not Followed by a Period)
	10.4.1 When NOT in Programming Mode
	10.4.2 When IN Programming Mode

	11.0 XEQ Statement (and an Additional Function of the RTN Statement)
	11.1 An Aside Regarding GTO and XEQ

	12.0 STO (Store) Statement
	13.0 A Bit More About the RCL (Recall) Statement
	14.0 [⮣] X?0 (Comparing the X Stack Register with Zero)
	14.1 X?0 Example
	14.2 Let’s Run the X?0 Program

	15.0 Looping Capabilities
	15.1 [⮢] ISG (Increment and Skip if Greater Than)
	15.2 Small Example to Shed Light on the [⮢] ISG Command
	15.3 What You Should See When Executing the ISG Program
	15.4 Let’s Run the ISG Program

	16.0 Guessing Game
	17.0 [⮢] X?Y (Comparing the X Stack Register With the Y Stack Register)
	17.1 Updated Guessing Game with [⮢] X?Y

	18.0 Simple Program with a Few Commands Not Yet Used (Including Storage Arithmetic)
	19.0 More Looping capabilities: The [⮣] DSE (Decrement, Skip [next command] if Equal or Less Than)
	19.1 DSE Program to Loop Five Times
	19.2 Let’s Run the DSE Program

	20.0 Addressing Direct and Indirect Variables - The Functions (I) and (J)
	20.1 Use of variables I and J and the functions (I) and (J)
	20.2 Example Referencing Direct Variables
	20.3 Example Addressing Indirect Variables
	20.3.1 Indirect Variable Storage Requirements

	20.4 Small Program to Input Data into Indirect Variables
	20.5 Small Program to Read Data from Indirect Variables
	20.6 Let’s Run the Above Program to Read Data from the Indirect Variables
	20.7 To Erase/Clear Indirect Registers
	20.8 Clearing the 0 Indirect Register

	21.0 Addition to the Guessing Game (Section 16.0) using RAND and INTG
	22.0 Equation Solver (When the Equations Are Stored In the List)
	22.1 Entering an Equation
	22.2 Three Approaches When Evaluating Equations
	22.2.1 Method 1. EQN followed by ENTER
	22.2.2 Method 2. EQN followed by SOLVE
	22.2.3 Method 3. EQN followed by XEQ

	23.0 Equation Solver (When the Equations Are NOT Stored in the Equation List)
	23.1 FN = Program Label
	23.2 How the ‘FN =’ Works Outside the Programming Mode

	24.0 FLAGS
	24.1 Flags Menu
	24.2 FLAGS 0 through 4
	24.3 FLAGS 5 through 9
	24.4 FLAGS: 10 and 11
	24.4.1 With Flag 10 set; Flag 11 set; With ‘SOLVE = A’ statement in the program
	24.4.2 With Flag 10 set; Flag 11 set; Without the ‘SOLVE = A’ statement in the program
	24.4.3 With Flag 10 clear; Flag 11 clear; With ‘SOLVE = A’ statement in the program
	24.4.4 With Flag 10 clear; Flag 11 clear; Without ‘SOLVE = A’ statement in the program
	24.4.5 With Flag 10 clear; Flag 11 set; With ‘SOLVE = A’ statement in the program
	24.4.6 With Flag 10 clear; Flag 11 set; Without ‘SOLVE = A’ statement in the program

	25.0 Displaying Messages in Programs (FLAG 10 and EQN)
	26.0 Equivalent Traditional Programming Commands
	26.1 Assignment Statements
	26.2 COMMENTS
	26.3 ARRAYS and INDICIES
	26.4 IF STATEMENTS
	26.5 DO LOOP
	26.6 Go To
	26.7 WRITE / PUT / PRINT

	27.0 HP 35s ‘Do Loop’ Approach Example
	28.0 IF THEN ELSE Equivalents (Using the [⮣] X?0 options)
	29.0 Somewhat ‘Mysterious’ Commands
	29.1 Pause: [⮣] PSE (pause)
	29.2 RTN and STOP
	29.3 Accessing the Stack Registers
	29.3.1 Accessing the Stack Registers (Via the Equation List)
	29.3.2 Accessing the Stack Registers (Via Programming Mode)

	29.4 LASTX -- Last value of the X stack register (and something interesting that happens)
	29.5 UNDO

	30.0 Miscellaneous
	30.1 Unlabeled Program Stored Above the Other Programs
	30.2 To ‘Grab’ Stack Contents and Store As a Variable
	30.3 Comment on Evaluating Equations
	30.4 How to Step through a Program
	30.5 The Integer Function Key
	30.6 “Culled” Material I Didn’t Have the Heart to Cull
	30.6.1 Relationship between the XEQ statement and the RTN statement
	30.6.2 To Bring the T Stack Register into the X Stack Register
	30.6.3 When Entering Numbers into an Executing Program
	30.6.4 The Stack is the Key to Efficiency

	31.0 Conditional Statement Summary
	32.0 A Peculiarity about the Stack and the Recall (RCL)
	33.0 Suggestion

