/		
G124 D×(COS	C(HMS) input as 1 equ EQN Then sti before each a	uation roke [RCL] Joha input
G125 FS? 2		HP 35s
G126 FX(CUS (G)))	before eac	Scientific Coloviator
G127 FS? 2		
G129 FS? 2		Scientific Calcularor
G130 STO H		Han 53 SIN LBL C
G132 2×(D×F)X(COS input as 1	
(HMS+((E))) before eac	
G134 STO T	(RCL)	
G135 FS? 4	() + CO input as 1	
(F)-T)	EQN The. before eac	
G137 FS? 4 G138 STO H		
G139 SF 1		
G140 SF 4 G141 FS2 1		
G142 (D+F+H	1) ÷2 EQN Thei before eac	
G143 FS? 1		
G144 STU W G145 FS? 1		
G146 SORT(((WX(W- input as 1 equ EQN Then st	nation roke IRCL
6147 FS? 1	before each a	pha input
G148 STO T		Surveying Solutions
G149 F5? 1 G150 2×ACOS	(T) EQN Then st	ior the HP35s
G151 FS? 1	before each al	
G152 →HMS	6 6	
G155 F57 I G154 STO I		
G155 FS? 1	CODT//UV input as 1 equ	nation (
(N-D))	X EQN Then str before each al	oke RCL bha input
	TD94	7/3/000

TECHNICAL ASSISTANCE

The program material, instructions and procedures contained in this book assume that the user has a working knowledge of both surveying and the general operation of the Hewlett-Packard 33s calculators, as well as a working familiarity with the fundamentals of surveying calculations.

Technical assistance is limited to verification of the results shown in the various examples used in the Owner's Manual for this product, and is available only to those with registered copies of this product.

User Support staff are available between the hours of 6:00AM to 2:00 PM Tuesday through Thursday, 6:00 AM. to Noon on Fridays, (Pacific Time). For assistance, call (559) 297-8025.

We reserve the right to make minor adjustments or changes in the contents of the manuals, software or pricing from time to time as we see fit.

WARNING

THIS SOFTWARE AND MANUAL ARE BOTH PROTECTED BY U.S. COPYRIGHT LAW (Title 17 United States Code). Unauthorized reproduction and/ or sales may result in imprisonment of up to one year and fines of up to \$10,000 (17 USC 506). Copyright infringers may also be subject to civil liability.

No express or implied warranty is made by **D'Zign** or the author with regard to the procedures and program material offered or their merchantability or their fitness for any particular purpose. The procedures and program material are made available solely on an "as-is" basis, and the entire risk as to their quality and performance is with the user. Should the procedures or program material prove defective, the user (and not **D'Zign** nor any other party) shall bear any and all cost of all necessary correction and all incidental or consequential damages. **D'Zign** and/or the author shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

Surveying Solutions for the HP 35s Calculator

Manufactured in the United States of America

First printing December 2007 Second printing September 2008 Third printing July 2009 Fourth printing February 2010

Copyright© 2007 - 2010 by Ted J. Kerber

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including scanning, photocopying, recording, taping or information storage and retrieval systems - without written permission of the author.

published by **Software by D°ZZigm** Tollhouse, California, U.S.A.

10 9 8 7 6 5

contents

description	text page	Program steps
program cautions and comments	1	
direction of a line	2	
Azimuth to Bearing	2	LBL A page 2
Bearing to Azimuth	3	LBL B page 3
add-subtract Degrees, minutes and seconds	4	LBL D page 4
vertical curves and grades	7	LBL V page 1P
station with elevation known	10	LBL E page 1P
vertical intersections	11	LBL H page 2P
circular curves	12	LBL C page 3P
circular curve layout	16	(2nd part C) 5P
triangle solutions	19	LBL G page 6P
coordinate geometry	26	
point storage and recall	26	LBL P page 9P
traverse	28	LBL T page 9P
traverse closure	30	LBL K page 10P
inversing used separately	32	LBL L page 11P
used during a traverse	34	LBL X page 34
for stakeout calculations	35	LBL S page 11P
intersections	36	LBL I page 11P
calculating missing sides	40	
line/curve to curve intersections	43	
slope staking as intersection	43	
trouble-shooting your programs	44	
answer key	44	
Maintenance (setting/clearing coordinate registers)	14P	LBL Z page 14P
Partially clearing Registers	14P	
program LN and checksum chart	15P	

Describing a book is usually easy... in this case it's a little more difficult because it isn't just one kind of book. The intent is for this manual to be an instruction manual on programming your HP35s calculator, a book of programs for the calculator, a review course on surveying and engineering calculations, and a workbook. It's also a Third Printing.

First, let's look at the calculator. What you have is the result of 35 years of development by Hewlett Packard in the field of scientific calculators.

The first HP35, in 1972, was an absolute engineering marvel to engineers and surveyors... it had the trigonometric functions built right in. Appendix G in your calculator's manual took 17½ pages just to list the programmable functions in the HP35s. You can (should) use Appendix G as a quick reference to the keystrokes used to access each function as you write your programs.

In the first row, the R/S key is used when you are running a program, or STOP as a program step; the *right-shifted* R/S is PRG, and it is what you press to go into program mode. The MODE key is most important for it's two shifted functions, x?y x?0. These have menus for inputting the tests for whether or not x's relationship to y or 0. There are 6 options for each. The use of RCL and STO should be obvious, as should be the shifted functions of the 8 key.

The *left-shifted* up-scroll key is FLAGS and has a menu for clearing, setting or testing various flags. The shift keys access the extended functions of another key, and the EQN key you will probably learn to hate.

Why? Because the calculator allows us to use userdefined prompts for input rather than just the built-in prompts, and these prompts require that you stroke the RCL key before each alpha letter you use in the prompt.

Let's start programming

Looking at the partial program (above right) all programs start with a LABEL. Step A003 is typical of a prompt, and it is input just like an equation. The difference is, with flag 10 set it will prompt and pause for input, if flag 10 is clear it will evaluate the equation or expression. The instruction is also typical of the way we write an equation or prompt instruction in our keystroke examples. The actual keystrokes, in this example, are:

EQN RCLARCIZ RCLIRCLM RCLURCLIRCLH and then ENTER to complete the step.

If a prompt requires a space as separator between words, the space key is the *right-shifted* 0 (zero) key. Numbers and symbols do not require stroking RCL before entering them in the equation.

- 11	Sciennine Colcorator
	LBL [™] C ' LN=783

HP 35s

(in)

A 001	LBL A.	
A 902.	SF. 10	
A 003.	AZINUTH.	EQN Then stroke RCL before each alpha input
A 004.	HMS+	B 8

We're going to pretty much walk you through putting in each of the programs in this book, but if you don't bother reading the User's Guide that came with your calculator past the "how to insert the batteries" and "turning the calculator on" parts, at least look through chapters 13 and 14 to get somewhat familiar with what we're doing here. The first program we want to input is the same one we gave you a glimpse of on page 1, Label A. It performs azimuth-to-bearing calculations for you.

input your first program-subroutine

This is the first program you will input, and it will be used both as a stand-alone program and as a subroutine to several other programs later. All of these programs work in RPN and Degree mode. Make sure that you are in the proper mode before beginning by stroking MODE 5 MODE 1. Start at Program Top by stroking GO . and then R/S, to input the program steps in the order shown. The step numbers and instructions should look like the ones shown.

In step A002, 🖾 takes you to the flags menu and 🔟 selects Set Flag. Stroking ⊡ will automatically insert a 1, and stroking O completes the line. Input for step A003 was explained on page 1.

In step 6009, the ARG menu is accessed by stroking (TAN). IP is the sixth item in the menu. but instead of scrolling down to select it, just stroke 6.

In the U.S. azimuths are defined as the angle to the right from north, and range from 0° to 360° and bearings are defined by their quadrant, from 0° to 90°.

A001 A002 A003	LBL A SF 10 Azimuth	EXEQA EQN Then stroke KCL EQN Then stroke KCL
A004	HMS→	al 8
A005	ENTER	ENTER
A006	ENTER	ENTER
8007	90	90
A008	÷	Ð
A009	IP	TAN 6
A010	1	
A011	÷	(±
A012	STO Q	RCL Q
A013	R↓	Rŧ
A014	ENTER	ENTER
A015	SIN	SIN
A016	ASIN	🔁 SIN
A017	ABS	12 1/-
A018	→HMS	F2 8
8019	STO B	RCL B
A020	RCL Q	RCLQ
A021	RTN	I XEQ

Angles are measured right (quad 1) or left (quad 4) of North when in quadrant 1 or 4, or right (quad 3) and left (quad 2) from 180° in 2 and 3. When an angle in quadrant 1 (NE) exceeds 90° it automatically becomes quadrant 2 and must be subtracted from 180° to be correct. Mistakes happen more often in doing angle, or azimuth to bearing calculations than in any other type of calculation!

PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
		XEQ A ENTER	
AZIMUTH 0.0000	Input the Azimuth (D.ms)	R/S	BEARING (D.ms) QUAD CODE

PROGRAM: AZIMUTH TO BEARING/QUADRANT CODE

ALL of the programs in this manual, use Degrees, Minutes and Seconds (DMS) for input and output. The second most common error in doing angle or bearing calculations is forgetting to change to or from degrees to decimal (or back) during keyboard calculations. We've reduced your chance of minor errors already, by taking out the need for this conversion.

With the program completed, try the example below.

EXAMPLE: CHANGE THE AZIMUTH, 125°23'16", TO BEARING AND QUADRANT CODE

PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
		XEQ A ENTER	
AZINUTH	Input the Azimuth (D. ms)	125·2316 🕬	54.3644 (D.ms) 2.0000

If it didn't give the correct answer there's something wrong with the program. You can do this with several examples and assume that the program is correctly input, or there is an easier (and more accurate) way to check the program steps.

Each program has a specific size, measured by it's length, and a checksum. There is a complete chart on page 14P of the length (LN value) and checksum* (CK) to check your programs against. The chart also indicates which registers and flags have been used within the program. Stroke 🔄 to open the list of programs.

At this point you should see 19.78 stroke

and hold down ENTER to show

*In the earliest release of the HP35s calculators the checksums are not always the same in different calculators. For this book we will give the LN and checksum numbers, but you should not rely on the checksums to agree.

input your second program-subroutine

We've put in one program so far, and checked (or edited) it until it has the correct LN number, so this one should program faster. It has two prompts, the first for the bearing (has to be between 0° and 90°), the second for the quadrant code (see illustration on page 2).

Input the program. When you are finished, check it by stroking (2) to open the list of programs, scroll to LBL B. You should have:

LBL B LH=95	
----------------	--

If you got the right number, you're done, but you need to run some practice examples with it.

B001	LBL B	E XEQ B
B002	SF 10	B 100
B003	BEARING	EQN Then stroke RCL
		before each alpha input
B004	STO B	RCL B
B005	QUAD CODE	EQN Then stroke IRCL
		before each alpha input
RANP	ຮຸບພ	
B007	χ<>y	x+y
B008	HMS→	
B009	χ<>y	X++Y
B010	ENTER	ENTER
B011	ENTER	ENTER
B012	2	2
Ř013	÷	÷
R014	TP	TAN 6
R015	π	COS
RØ16	÷DEG	9
ŘŐ17	X	X
RA18	200	X++ Y
8019	Î ÂST~	ENTER
8020	X	X
D020	203	COSI
D021	D4	(F3) (F1)
D022	K I	Ø
D023	^	
D024	-	ത്ത
8022	7HN5	
8026	RIN	

If you didn't get the right LN, the problem is in one of the steps. Check for an extra line or a missing line first. Stroke **GOA** (ENTER), then enter program mode (stroke **E**(S)) and scroll through the program. You will be working on the program line that is in the X-register (the bottom one); it is an extra step and you can delete it by back-clearing it with the **E** key.

If you are missing a step, put the step that is supposed to be proceeding it in the X-register then type in the new step. When you're finished, do NOT forget to leave program mode by stroking **C**, then try the program again.

PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
	-	XEQ B ENTER	
BEARING	Input the Bearing (D.ms)	R/S	
QUAD CODE	Input the Quadrant Code	R/S	IZINUTH (D.ms)
EXAMPLE: 0 N 25°23'	HANGE THE BEARING, '16" W, TO AN AZIMUTH		
PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
BEARING	Input the Bearing (D.ms)	25·2316R/S	
QUAD CODE	Input the Quadrant Code	4 R/S	334.3644

PROGRAM: BEARING/QUADRANT CODE TO AZIMUTH

You will have noted that the response to a prompt in this calculator does not require that you ENTER the input. You stroke the **R/S** key instead, to tell the program that input is complete and the program should continue.

While that example (above) answer is still in the X-register, try this; stroke $(\underline{XEQ} \land \bigcirc \bigcirc 4$. That should turn your last answer back into a bearing/quad. The HP35s calculator allows us to execute a particular program step anywhere in program memory as long as we know the *address* of that step. What we've just done is the same conversion you typed in as LBL A, but we have bypassed the prompt and it ran automatically. This is how it will be used as a sub-routine in later programs.

input your third program-subroutine

We'll add the short program (right) to our collection (it adds and subtracts in D.ms). This one is different from the first two. In those, you executed the programs and they prompted for input. In this one, you input the numbers first and then execute the program. There are no prompts

INSTRUCTIONS	KEYSTROKES	OUTPUT
Input the 1st angle or azimuth (D.ms)	ENTER	
Input the 2nd angle or azimuth (D.ms) (to subtract, first stroke 🖾)	XEQ D ENTER	DIFFERENCE OR SUM

Start at the top of program memory by stroking \bigcirc and then $\square R/S$ to begin input. You should end up with LN=27, as shown in the chart on page 14P.

There are several ways to work this example, for instance you could change both bearings to azimuths and subtract them . . . but that is the angle from S 23°15'44" E to N 17°22'41" W, so you would have to subtract that answer from 360°. You could change the SE bearing to an azimuth and add the NW bearing angle to it.

This is essentially what we do in the solution below, but rather than run the bearing/quad to azimuth program, we just subtract the bearing value from 180° and come out with the same result (with less keystrokes and a better chance to actually look at the problem before we complicate it).

EXAMPLE:

Get the angle between North and		
S 23°15'44" E	230154412	
	XEQ D ENTER	156.4416
Add the other angle	17.2241 XEQ DENTER	174.0657

Now we'll start on the 'workbook' part of this book. You're going to do part of the exercises either longhand or with the calculator, but you want to remember that the calculator functions for adding and subtracting work in decimal degrees, not D.ms, and pay attention to bringing them back to D.ms after the calculation as well as changing them before input. The same thing applies to the trigonometric functions.

To change D.ms to decimal stroke 🗐 3 to change decimal to D.ms stroke 🗐 8. When you use the programs, none of this is necessary because it's done for you and you only work in D.ms.

Exercise 1 (do the first two longhand, then complete the exercise with the programs) The answer key for the exercises is in the back of the book, beginning on page 44

- Add the angles, 28°15'34", 102°52'41", and 16°16'08" ans: _____ 1.
- Subtract 28°15'34 from 102°52'41", then add 16°16'08" ans: 2.
- Add the angle, 102°52'41", to a bearing of N 62°45'23" W ans _____ 3.
- Subtract 98°15′59" from a bearing of N 01°14'17" E ans: _____ 4.

Exercise 2 (do #s 1, 2, 5 and 6 longhand, then complete the exercise with the programs) Calculate the angles indicated

Continued on the next page

Calculate the azimuth or bearing as indicated

9. Cosine 17°15′23" _____ 10. Tangent 104°52′26" _____ 11. Sine 92°00′10"

12. Find the Sine of 197°14'23", then find the arcsine of the answer and change it back to D.ms.

editing a program

We're going to go back and edit the last program, LBL D, adding a subroutine to the bottom of it. This subroutine will be used in future programming to clear leftover garbage from previous programs.

On the calculator, stroke GODOO? and then BS to enter program mode. You should see:

· 828	1	PRON	
1 D008	→HMS		1
ñããã l	DTU		
10003	KIN		

Type in the new steps D010 through D026, using the keystrokes shown at the right. (note that we show the face value of the keys instead of the function. When you are done, exit program mode and check the LN number for LBL D. It should now be LN=80.

D009	RTN	
D010	CLVARS	2-2
DØ11	CF 0	5^20
D012	CF 1	21
D013	CF 2	5 122
D014	CF 3	G ∧23
D015	FS? 4	G /34
D016	4	4
D017	STO X	RCL X
D018	CF 4	S A24
D019	≈≠0?	MODE 1
D020	SF 4	G 14
D021	CF 5	G 25
D022	CF 6	5 26
D023	0	
D024	STO X	RCL X
D025	CLSTK	
DØ26	RTN	E XEQ

What did I just do? Because we can address a subroutine directly, by address, we have just added a subroutine that can be used at the start of some new programs from now on, instead of each program having to start with essentially the flag/stack/vars clearing routine. Steps D015 through D020 are required because one of the programs we are going to input later uses Flag 04 to signal that it is to retain data. And, you've just learned how to edit a program.

On the next few pages we are going to look at some various vertical curve solutions. We'll also write the programs that make them work. The program pages start with Page 1P, located at the back of the book, after page 46. They are printed in a non-reproducible blue ink in an effort to help protect our copyright on the programs in this book. After you've read pages 8 and 9, start typing in the steps for LBL V on page P1.

vertical curves and grades

Vertical curves are usually described as 'crest' or 'sag' verticals, as shown to the left.

The form of the curve may be expressed as

 $y = ax^2 + bx$

where y is the height of the curve above or below the first tangent point, and x is the distance therefrom.

The highest or lowest point on the curve is at a point where the gradient of the tangent is equal to 0%. This is called the "turning point" of the curve. If both gradients have the same sign, there is no actual turning point, and the vertical direction is continuous. The gradient of the tangent may be found by differentiating y with respect to x in the equation above.

When

dy/dx = 0, x = -b/2a.

Our program for vertical curves is designed to do quick vertical curve and grade calculations. The number of entries you make during input tells the program whether you are calculating a grade or a curve.

Formulas for vertical curves and grades vary with the known values when you begin to solve the grade or curve. In most vertical curve cases, if you are working from a set of plans, you would know the beginning station (BVC) and it's elevation, the ending station (EVC) and it's elevation, the length and the grade in (Gi) and the grade out (Go). In most cases, the intersection point (PVI) is given too. The following would apply:

If the high or low point elevation and the beginning station (ELo and PVC) are known,

$$\left(\frac{Go-Gi}{200L}\right)(STA-BVC)^2 + \left(\frac{Gi}{100}\right)(STA-BVC) + (Elbvc-Elsta) = 0 \quad (ax^2 + bx + c = 0)$$

If the high or low point elevation and the intersection station (ELo and PVI) are known,

^{2.} L = 200(Elbrc - El₀)(Go - Gi)
$$\left(\frac{1}{Gi^2}\right)$$

^{3.} L = 200(Elbrc - El₀)(Go - Gi) $\left(\frac{1}{GoGi}\right)$

Where:

Gi = Beginning grade (grade in), expressed in percent Go = Ending grade (grade out), expressed in percent L = Length of curve, measured in along the horizontal STA = Station along horizontal with curve elevation E|sta = elevation at STA

BVC = Beginning station (point of curve)

Elbvc = Beginning elevation at BVC PVI = Point of tangent intersection

Elpvi = Elevation at the PVI

 $EL_0 = Elevation$ at high or Low point of curve

EVC = Ending station (end of curve)

Elevc = Elevation at the EVC

There is a question that often occurs in tests, but is never used in the real world; Given the High/ Low point elevation, the grades in and out, and either the PVI elevation or the BVC elevation and want to know the minimum length of curve that will work. Minimum lengths are NEVER used, and the difference in grades is used to select the required length from a table that takes passing sight distance into consideration.

If the PVI is given

or, if the BVC is given.

$$L = 200(ELpvi - EL_0)(G_0 - Gi) \begin{pmatrix} 1 \\ Gi^2 \end{pmatrix} \qquad L = 200(ELbvc - EL_0)(G_0 - Gi) \begin{pmatrix} 1 \\ G_0Gi \end{pmatrix}$$

We've not included a program that will do this type of problem but do suggest that the above formulas can be input as equations in the equation library in case you need them, rather than include a program for this one case, we programmed for the day to day vertical calculations that you are more likely to encounter.

PROGRAM: CALCULATING ALONG A VERTICAL TANGENT OR CURVE

PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
		XEQ V ENTER	
BEG STA	Input the station at the B.V.C.	<u>R/S</u>	-
BEG ELEV	Input the elevation at the B.V.C.	R/S	
GRADE IN	Input the % of grade for the tangent. (For a curve, input the % of grade for the incoming grade) Change sign if negative	R/5	
GRADE OUT	No input for a vertical tangent. For a curve, input the % of grade for the outgoing grade) Change sign if negative	R/5	
LENGTH	No input for a vertical tangent. (For a curve, input the length of the vertical curve)	<u>R/5</u>	
	When calculating along a vertical curve, tion and elevation are automatically outp (£/5) to continue	the turning point sta- out at this point. Stroke	STATION @ 0% Elevation @ 0%
INPUT STA	Input the next station you want to cal- culate the elevation for	R/S	STATION Elevation
	After writing down the answers, stroke (R/S) to continue with the next station	R/5	
INPUT STA	When finished with the calculations	C	

EXAMPLE

The vertical curve shown to the right will be used for the example. The B.V.C. station is 10+50, at elevation 106.00.

We will calculate the elevations for stations at 50 foot intervals along the curve, the 0% station and elevation (high/low point), in this example the low point. Later, you will also be able to calculate the station at which a particular elevation occurs, using [E] [E] [ENTER], after all of the information has been entered for the vertical tangent or curve you are working on.

	200'	vertical curve	
		8	200
			100
11/0			thOL:
-15%-+			
100			
}	¥		

PROGRAM EXAMPLE: CALCULATING ALONG A VERTICAL TANGENT OR CURVE

PROMPT	INSTRUCTIONS	KEYSTROKES OUT	
		XEQ V ENTER	
BEG STA	Input the station at the B.V.C.	1050 R/S	
BEG ELEV	Input the elevation at the B.V.C.	106 8/5	
GRADE IN	Input the % of grade for the incoming grade. (Change sign if negative)	TOS 🗹 📧	
GRADE OUT	Input the % of grade for the outgoing grade Change sign if negative	(4) (R/S)	
LENGTH	Input the length of the vertical curve. Output is high/low point sta & elev	200 R/S	1104.5455 105.5909
	· · · ·	<u>R/S</u>	
INPUT STA	Input the next station	1100 R/S	1100.0000 105.5938
		R/S	
INPUT STA	Input the next station	1150 RZS	1150.000 105.8750
		R/5	
INPUT STR	Input the next station	1200 R/S	1200.000 106.8438
		R/5	
INPUT STA	Input the next station	1250 R75	1250.000 108.5000
5		C	

NOTE: Because the calculator does not use menus, as the graphic calculators do, we use a sort of vertical menu. You Run/Stop through all of the possible prompts, only inputting data where you know it.

Once you have finished with the vertical curves and grades program, and have checked (and run) it, we'll put in this next one. It is LBL E, and the program steps begin on page 1P. With this one you can specify an elevation and it will calculate the station where that station occurs. Actually, it calculates two stations . . . only one of them will be within the curve you're working on, but it's easy to tell which one to use. It's also a good idea to run that station, by station, when you've returned to the curve.

When you press **RTS** after the calculation from this program the high/low information will be shown. Stroke **RTS** again for the INPUT STA prompt. The example below assumes you are still in the vertical curve in the last example.

PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
None	Input the elevation (two stations will be shown, verify that they are within the curve to be valid answers.		STATION STATION
a server	Next output is the high/low point	(R/S	STATION ELEVATION
	Return to original program	R/S	
INPUT STA		•	
PhiloR Distant	3-26-44-56-22-03-80000-19-00-346000-9-8-246000-9-8-24600-9-11-0-25-25-25	AND REAL PROVIDED AND AND REAL PROPERTY OF THE	ALTER CONSTRUCTION OF A
EXAMPLE ELEVATION	FIND THE STATION AT WHICH	TOSIES XEQEENTER	
	Output is the station(s) at which the elevation occurs.		11252800 1083.8100
		R/5	
	Output is the high/low point		1104.5455 105.5909
		R/S	
INPUT STA	Continue with input in main program		

PROGRAM: CALCULATE STATION WHEN ELEVATION IS KNOWN

Exercise 3

Calculate the indicated stations for a 300 foot vertical curve with a PVI at station 15+00, if the grade in is 2% and the grade out is -3% The elevation at the PVI is 102.75.

1. BVC station ______ elevation ______ high point station ______ elevation ______

EVC station ______ elevation _____

2. Calculate the elevations for the following stations:

14+20	14+50	15+22	15+50	16+10

At what station will the elevation 100.58 occur? _____ & _____

There are also times when you have known stations and elevations along two vertical tangents and need to calculate the point of intersection between them. This program will calculate the intersection point when the grades, any starting point, and any ending point are known.

Once the point of intersection (P.V.I.) is known, a curve length may be selected and a B.V.C. station and elevation calculated. From there, use the vertical program to calculate the stations along the curve.

The example will use the information from the illustration to the right. The known station at the beginning is 10+00, with an elevation of 120.00 and the known station at the end is 16+00 at elevation 125.00.

The two known grades are a +2.00 percent and a minus 1.60 percent. Follow the procedure below to obtain the station and elevation of the point of intersection.

PROGRAM: CALCULATE VERTICAL INTERSECTION

PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
		XEQ H ENTER	
STA 1	Input the first station	R/S	
ELEV 1	Input the elevation	R/S	
STA 2	Input the second station	R/S	
ELEV 2	Input the elevation	R/S	
grade in	Input the % of grade for the grade in. (Change sign if negative)	R/S	
grade out	Input the % of grade for the grade out (Change sign if negative)	R/S	PVI STATION Elevation

EXAMPLE: FIND THE STATION AND ELEVATION OF THE VERTICAL INTERSECTION

PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
		XEQ H ENTER	
STA 1	Input the first station	1000 8/5	
ELEV 1	Input the elevation	120 KS	
sta 2	Input the second station	1600 R/S	
ELEV 2	Input the elevation	125 1/5	
grade in	Input the % of grade for the grade in (Change sign if negative)	2 R/5	
grade out	Input the % of grade for the grade out (Change sign if negative)	1.6 纪 🛤	1405.5556 128.1111

Exercise 4:

1. Using the information from the example on the preceding page, calculate a 400' vertical curve to be used to round the grade along the roadway. Calculate the following:

circular curves

Curve Nomenclature The parts of a typical horizontal (circular) curve are shown above

You are probably very familiar with circular curves, but to better understand what these programs do, we'll review the definitions, symbols used, and the formulas for calculating the different parts.

PI, Point of Intersection is the point where the two tangents intersect.

Central Angle, commonly called Delta (Δ) or I, it is the deflection angle measured, at the point of intersection, between the back and forward tangents. Most often this is one of the known parts essential to the calculation of other parts of the curve.

Deflection angle (ϕ) , what we call the deflection angle is one-half the central angle, or the angle, turned at the BC of the curve, from the PI to the EC. There is also an angle from the BC to any point on the curve that is called the deflection angle when calculating stations for stakeout.

Length of curve (L), is the distance between the beginning and end of the curve measured along the curve. Arc Length. $L = 100\Delta R(\pi/180^{\circ})$

Tangent Distance (T), actually a "semi-tangent" to the curve, it is the distance between the PI and the beginning or end of the curve and the two tangents are always equal. $T = Rtan\Delta/2$

Radius (R), the "radius" is normally referred to by its length.

Long Chord (LC), the long chord is the distance between the beginning and end of the curve points of tangency, and is the length for angle Δ . $LC = 2Rsin\Delta/2$

Chord (C), Also called the 'chord', or 'short chord' is the distance from the BC of the curve to any point on the curve, for angle ϕ . $C = 2R \sin \phi/2$

BC (or PC), the 'beginning of curve' or 'point of curvature' both common usage in different parts of the U.S.

EC (or PT) the 'end of curve' or 'point of tangency' both common usage in different parts of the U.S.

Middle Ordinate (M), length of ordinate from the middle of the long chord to the middle of the curve.

$$M = R(1 - \cos \Delta/2) = Rvers\Delta/2$$

External (E), distance from PI to the middle of the curve.

$$E = R(sec\Delta/2-1) = Rexsec\Delta/2$$

Curve Area Nomenclature The three common measurements for areas of a typical horizontal (circular) curve are shown above

Segment area, the area between the arc of the curve and the long chord of the curve.

Sector area, the 'pie-shaped' area – from the radius point to the B.C., along the arc of the curve to the E.C. and back to the radius point.

Sector area =
$$\pi R^2 \Delta/360 = LR/2$$

Fillet area, the area between the tangents of the curve and the arc of the curve. Often used for calculating pavement areas at the returns on street intersections.

The Circular Curve program . . . The program for circular curve solutions, LBL C, begins on page 3P and is a long one. It uses a series of prompts that let you decide what known parts you have as you \mathbb{R}/\mathbb{S} through them.

We will also take advantage of the INPUT and PSE functions for the first time, and complete part of the program (and work with it) before going back to edit and expand it. Some of the expression (equation) input is longer than our column format will permit on just one line, but should be typed in as one line. This program is one that requires flexibility in input, and the HP35s doesn't include any functions for creating a user-defined menu. The program requires input of any two of five different options, so we've again created a sort of 'vertical' menu. Remember that you Run/Stop through *all* of the options.

You can solve a curve if you know the **Delta** Angle or **Radius** and any one of these parameters; Length, Chord or Tangent. As you $\boxed{R/S}$ through the prompts each option is presented (in the order above) for consideration. If for instance, you don't know the Delta value you stroke $\boxed{R/S}$ without any input. If you are prompted for one of the parameters that is known, input the value and *then* stroke $\boxed{R/S}$. You *must respond to all of the prompts*, one way or the other, until the end of the group and the program. The calculation then begins automatically.

Another new type of selection menu used in this program allows you to branch... to either of two options. The prompt, MORE=8 STAKE=1, will either take you back to the top of the program for calculation of a new curve or branch you to a sub-routine that lets you stake out the curve. To choose, input either 0 or 1 and stroke [R/S].

For now, we'll program steps C001 through C189. This includes the prompt portion, but not the programming for the stakeout sub-routine, we'll test and run the curve program first and complete the other routine later.

	PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
1		Begin the program	(XEQ C ENTER)	
2	DELTA	If the CENTRAL ANGLE is known, input it (D.ms format), if not known, no input Either the central angle or radius <i>must</i> be input as one of the known parts	<u>R/S</u>	
3	R?	If the RADIUS is known, input it, otherwise no input Either the central angle or radius <i>must</i> be input as one of the known parts	R/5)	
4	L?	If known, input the length of arc, other- wise no input	R/S	
5	C?	If known, input the chord distance otherwise no input	R/5	
6	T?	If known, input the tangent distance otherwise no input	R/S	I= Central Angle
7				R= Radius
8			R/S	L= Arc Length
9			R/S	C= Chord Distance
10			R/S	

PROGRAM: CIRCULAR CURVES

PROGRAM: CIRCULAR CURVES (Continued from previous page)

11			R/S	T= Tangent Distance
12			R/S	E= External Distance
13			R/S	M≕ Mid-Ordinate Distance
14		AREAS reminder displayed for 1 second	R/S	
15		SECTOR reminder (1 second prompt)	R/S	SECTOR AREA
16		SEGMENT reminder (1 second prompt)	R/S	SEGMENT AREA
17		FILLET reminder (1 second prompt)	R/S	FILLET AREA
18	MORE=0 Stake=1	To calculate another curve, input 0, or to calculate stakeout for this curve input 1 Or, to leave the program stroke C	<u>R/5</u>	

Exercise 5:

Complete the curve data for the following:

Complete the curve data for the following.			2 Dadius -	200.00	
1.	Radius =	510.23'	3.	Radius =	200.00
	Delta =			Delta =	
	Length =			Length =	10.26'
	Tangent =			Tangent =	
	Chord =	244.77'		Chord =	
	External =			External =	
	Mid-Ordinate =			Mid-Ordinate =	
~				Sector =	
2.	Radius = Delta =	400.00 ¹		Segment =	
				Fillet =	
	Length =				
	Tengent =		4.	Radius =	
	rangene –	125.16		Delta =	1°25'16"
	Chord =			Longth =	
	External =			rengm -	
	Mid-Ordinate =			Tangent =	
	Sector =			Chord =	400.00 ¹
	Segment =			External =	
	Fillet =			Mid-Ordinate =	

Circular Curve Layout

The most common method for staking out a curve is the deflection-offset method, using chord solutions to each of the station intervals to be staked.

Once a curve has been calculated using the circular curve program, you can continue into the layout program to calculate the chord and deflection angles to any stations to be set.

The layout program also calculates solutions for layout by the tangent-offset and chord-offset methods, and includes an option to stake the curve at an offset to the centerline instead of on the centerline itself. Offsets to

the curve on the outside are input as positive, if the offset is to the inside of the curve, input the offset as negative.

BC

Initial prompts are for selection of the type of output you want. Input a number for the type you want, and just stroke \mathbb{R}/\mathbb{S} for the others. This will be followed by a prompt for the offset, if any. To just calculate centerline stroke \mathbb{R}/\mathbb{S} or input the width of the offset and stroke \mathbb{R}/\mathbb{S} . The program will prompt for station and then output the stakeout information. You can run the program again to generate a different type, or input another curve and generate the stakeout information for it.

Return to page 5P and, on the calculator, stroke GOCIEP and then ERS. Complete the input of program LBL C.

The selection menu used in this program lets you \mathbb{R}/\mathbb{S} through the prompts for the types of output you don't want and, by typing in a 1 (or any number) before \mathbb{R}/\mathbb{S} pick the one you do want. This selection will tell the program which type of output you want. At the very start of the program the "SELECT TYPE" reminder will pop up and then go away after being displayed for one second . . . similar to the reminder for "RREAS" in the previous program.

PROGRAM: CIRCULAR CURVE LAYOUT

Γ	PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
1		After calculation of the curve, begin the curve layout program by responding to the final prompt in the curve program		
2	SELECT TYPE	Reminder prompt will be displayed for one sec- ond		
3	DEFLECTION	To select this option, input any number and stroke ICS OR to not use this type, just stroke ICS without input	-	
4	TAN-OS	To select this option, input any number and stroke E/S OR to not use this type, just stroke E/S without input		
5	CHD-OS	To select this option, input any number and stroke (R/S) OR to not use this type, just stroke (R/S) without input		
6	OFFSET=	To calculate the layout at an offset, input the size of the offset (change sign for offsets to the inside of the curve). For calculations along centerline, just stroke \mathbb{R}/\mathbb{S} without input	(R/S)	
7	BC STATION	Input the station of the B.C.	R/S	
8	INPUT STA	Input the station you want to calculate layout for. Output is selection dependent	R/S	
9	DEF ANGLE TAN DIST or CHD DIST	Selection dependent prompt	R/S	
				VALUE
			R/S	
10	CHORD or OFFSET	Selection dependent prompt	<u>R/S</u>	
11				VALUE
12			R/5	
	INPUT STA	Returns you to step 8. Input the next station you want to calculate and repeat steps 8 through 12, or stroke C to leave the layout program		

Exercise 6:

Complete the curve data for the following, and then calculate the layout information for the stations as indicated:

1. Layout by deflection and chord

		STATION	DEFLECTION	CHORD	
Radius =	510.23'	12+19.23 B.C.			
Delta =		12+50			
Length =		13+ <i>00</i>			_
Tangent =		13+50			
Chord =	244.77'	14+00			
External =		14+50			
Mid-Ordinate =		E.C.			

2. Layout by tangent-offset

		STATION	TANGENT DIST.	OFFSET
Radius =	400.00'	122+34.97 B.C.		
Delta =		122+50		
Length =		123+00		
Tangent =	125.16'	123+50		
Chord =		124+00		
External =		124+50		
Mid-Ordinate =		E.C.		

3. Layout by chord-offset

		STATION	CHORD DIST.	OFFSET
Radius =		53+24.37 B.C.		
Delta =	35°15'22"	53+50		
Length =	237.71	54+00		
Tangent =		54+50		
Chord =		55+ <i>00</i>		
External =		55+50		
Mid-Ordinate =		E.C.		

triangle solutions

The triangle shown to the right will be used for the examples. It should be noted that the output will vary slightly, depending on the number of places input, particularly in the input of the angles.

The notations for angles and sides is familiar to HP users, but is not the standard, or *textbook* notation which you will have learned in trigonometry (side a opposite angle A, side b opposite angle B, and side c opposite angle C). The sides and angles are numbered, in order, going around the triangle as shown below.

The example triangle (above) shows this style of labeling, compared to the standard notation for sides and angles.

Side I may be assigned to any side that is convenient to use, depending upon the available information about the triangle. It should be located at a side where the known information then falls into position for solution by one of the routines.

In the example shown below, the assigned designations go clockwise, if it will better fit the information available, the labeling may go counterclockwise instead, as shown to the left.

Remember, side 1 is wherever you put it.

The program begins with selection prompts for you to select the TYPE of solution needed. A brief reminder prompt, TYPE SELECTION, is displayed (one second) and then the 5 type options are offered. To **NOT** select one of the types just stroke \mathbb{R}/\mathbb{S} . To select one, input 1 (or any number).

Continue with (R/3) through any remaining TYPE SELECTION options until you get the first of the three input prompts. Which of the prompts you get will depend on the TYPE, and will be in the same order as that specific type calls for. The instructions are on the next page, and the program steps (LBL G) begin on page 6P.

PROGRAM: TRIANGLE SOLUTIONS

	PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
1		Begin the program	(XEQ G ENTER)	
2	TYPE SELECTION	APPEARS BRIEFLY AS A REMINDER		
3	\$1-\$2-\$3	SOLUTION FOR THREE SIDES KNOWN	Input a number to select this option or R/S to continue to next prompt	
4	A3-S1-A1	SOLUTION FOR TWO ANGLES AND THE INCLUDED SIDE KNOWN	Input a number to select this option or R/S to continue to next prompt	
5	\$1-A1-A2	KNOWN SIDE AND THE NEXT TWO FOLLOWING ANGLES KNOWN	Input a number to select this option or R/S to continue to next prompt	
6	S1-A1-S2	SOLUTION WHEN TWO SIDES AND THE INCLUDED ANGLE ARE KNOWN	Input a number to select this option or R/S to continue to next prompt	
7	\$1-\$2-A2	TWO SIDES AND THE FOLLOWING AN- GLE ARE KNOWN	Input a number to select this option or R/S to continue to next prompt	
8		Three input prompts will be shown. Input the value requested	R/S after each input	
9				SIDE 1
10			R/S	ANGLE 1
11			R/S	SIDE 2
12			R/S	ANGLE 2
13			R/S	SIDE 3
14			R/S	ANGLE 3
15			R/S	AREA
16	2ND SOLUTION	Appears when there is a second solution to the S1-S2-A2 type. The program will again repeat steps 9 through 15 but the output will not be in the same order as the original input	(R/S)	
17		When finished with the calculations, it will return you to the triangle program for next calculation, beginning at step 2	<u>R/S</u>	

Examples are shown on the following pages for each of the solution types individually, covering the prompt, input and output in each case.

	PROMPT		г	KEYSTROKES	OUTPUT
8a	INPUT	SIDE	1	8.364R/S	
8b	INPUT	SIDE	2	9.68R/S	
8c	INPUT	SIDE	3	5.745R/S	
9					SIDE 1
				R/S	8.3649
10				R/S	RINGLE 1
				R/S	36.1232
11				R/S	SIDE 2
	-			<u>R/S</u>	9.6800
12				R/S	RINGLE 2
				R/S	59.1912
13				R/S	SIDE 3
				R/S	5.7450
14		-		R/S	ANGLE 3
				R/S	84.2816
.15				R/S)	area
				R/S	23.9138

side 1, side 2, side 3 THREE SIDES KNOWN is one of the most

THREE SIDES RNOWN is one of the most used solutions for triangles, particularly since the accuracy of electronic distancemeasurement trilateration has, for the most part, replaced triangulation in several types of surveys. The example begins at the input prompts.

angle 3, side 1, angle 1

TWO ANGLES AND THE INCLUDED SIDE ARE KNOWN This solution is also used as a secondary solution to some of the other routines, after the problem has first been reduced to these three known parts.

	PROMPT			KEYSTROKES	OUTPUT
8a	INPUT	angle	3	59.1912 R/S	
8b	INPUT	SIDE	1	5.745R/S	
8c	INPUT	ANGLE	1	84·2818 R/S	
9					SIDE 1
				R/S	5.7450
10				R/S	ANGLE 1
				R/S	84.2818
11				R/5	SIDE 2
				R/S	8.3641
12				R/S	ANGLE 2
				R/S	36.1230
13				R/S	SIDE 3
				R/\$	9.6801
14				R/S	ANGLE 3
				R/5	59.1912
15				R/S	area
				R/5	23.9142

side 1, side 2, angle 2

TWO SIDES AND THE FOLLOWING ANGLE KNOWN has two possible solutions. When this configuration is used, both solutions may be output. The second solution will not necessarily show the parts in the same order as the input.

First Solution Output

Γ	PF	ROMP	т	KEYSTROKES	OUTPUT			
84	INPUT	SIDE	1	5.745R/S				
88	INPUT	SIDE	2	8.364 R/S				
80	: INPUT	ANGLE	2	360123 R/S				
9					SIDE 1			
				R/S	5.7450			
10				R/S	ANGLE 1			
				R/S	84.2823			
11				R/S	SIDE 2			
				R/S	8.3640			
12				R/S	ANGLE 2			
				R/S	36.1230			
13				R/S	SIDE 3			
				R/S	9.6802			
14				R/S	RINGLE 3			
				R/S	59.1907			
15				R/S	Area			
				R/5	23.9139			
	2ND Solut	ION		(RZS) (output will continue with the second solution option)				
16					SIDE 1			
				R/S	8.3640			
17				R/S	ANGLE 1			
		_		R/S	36.1238			
18				R/S	SIDE 2			
				R/S	3.8172			
19				R/S	ANGLE 2			
				R/S	120.4053			
20				R/S	SIDE 3			
				R/5	5.745			
21				R/S	ANGLE 3			
				R/S	23.9637			
22				R7S	area			
				R/S	9.4301			
Not	Note that the output is not in the same order as the original input.							

				7
	PROMPT	KEYSTROKES	OUTPUT	side 1, angle 1, side 2
8a	INPUT SIDE 1	5.745R/S		TWO SIDES AND THE INCLUDED
8b	INPUT ANGLE	84·2818 R/S		ANGLE KNOWN is resolved by findin
8c	INPUT SIDE 2	8-364R/S		triangle as shown on the previous page
9			SIDE 1	three sides known.
		R/5	5.740	
10		R/S	ANGLE 1	
		R/S	84.2818	
11		R/S	SIDE 2	
		R/S	8.3640	
12		R/S	ANGLE 2	SIDE 2
		R/S	36.1231	Ang 810 - 3.364
13		R/S	SIDE 3	A BATT
		R/5	9.6800	
14		R/S	ANGLE 3	
		R75	59.1911] जी
15		R/5	AREA	
		R/5	23.9138	

side 1, angle 1, angle 2

ONE SIDE AND THE TWO FOLLOWING ANGLES KNOWN This solution first solves for the third angle. The remainder of the triangle is solved as Angle, Side, Angle to determine the other missing sides.

	PROMPT			KEYSTROKES	OUTPUT
8a	INPUT	SIDE	1	5.745R/S	
8b	INPUT	ANGLE	1	84·2818 R/S	
8c	INPUT	ANGLE	2	36·123R/5	
9					SIDE 1
				R/S	5.7450
10				R/S	ANGLE 1
				R/S	84.2818
11				R/S	SIDE 2
				R/S	8.3641
12				R/S	ANGLE 2
				R/5	36.1230
13				R/S	SIDE 3
				R/5	9.6801
14				R/S	ANGLE 3
_				R/5	59.1912
15				R/S	AREA
				R/5	23.9142

Exercise 7:

1. Solve the triangle

2. Solve the triangle

3. Solve the triangle

Exercise 7 (Cont'd):

4. Solve the triangle

52. Solve the triangle

6. Solve the triangle

coordinate geometry

The backbone of Coordinate Geometry calculations is the relationship between coordinates with known values. If the coordinates for one point are known the direction and distance to a second point allows calculation of the new points coordinates, or if both points are known, we can calculate the direction and distance between them.

Bearings are input with quadrant codes and the quadrants are numbered with the same system that has been used by Hewlett-Packard since the first surveying programs for handheld HPs came out.

The bearing and quadrant code are prompted for, and all input (and output) is in Degrees, minutes and seconds (D.ms) format. After each input the \mathbb{R}/\mathbb{S} key is stroked. Our programming also includes the option to use azimuths instead of bearings... the azimuth is input (D.ms) and the \mathbb{R}/\mathbb{S} key is stroked. These options are presented at the beginning of each COGO program, and selected by your answer to the prompt, \mathbb{R}/\mathbb{S} BRG=1, where you enter either 0 (work in azimuth) or 1 (work in bearings) and then stroke the \mathbb{R}/\mathbb{S} key.

storing/recalling coordinates by point number

A great advantage with the HP35s is the ability to store and recall coordinates by point numbers. We used LBL P (for point) for the program that allows you to do both the storage and recalling. The program uses the INPUT functions to prompt for the item needed. For instance, the traverse program will prompt P? at the beginning, followed by the prompts for \mathbb{N} ? and E?, after each number is input you stroke [R/S]. If you are using LBL P as a stand-alone program for storing or recalling points, make sure Flag 10 is clear before starting. (after verifying the LN# you can modify the program to automatically clear Flag 10 by inserting the line CF 10 as new line 2).

That's easy, but what if you want to start with an already stored point? The point number is input, but you stroke before stroking , and the coordinates are recalled. The program steps for LBL P begin on page 9P.

	PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
1		Clear Flag 10, Begin the program		
2a	P?	To store a point input the point #	point # 🔝	# is stored and prompts continue at step 3
OR				
2Ь	P?	To recall a point input the point # as a negative number If this option is used the program will continue from here. Option 2a will bring up the additional prompts at 3 and 4	point # 扰 📧	# is recalled and parent program will continue from here
3	N?	Input the north coordinate	north coord R/S	
4	E?	Input the east coordinate	east coord R/S	parent program will continue from here, OR
5		If just using LBL P to input points, stroke I to view and check coordinates	RI	NORTH. COORDINATE. East. Coordinate

PROGRAM: STORE OR RECALL POINTS

Let's clear Flag 10 (E 2 0) and try an example of storing points ... Point #4, N= 502.27, E= 627.45 Point #5, N= 204.63, E= 424.56:

EXAMPLE: STORE POINTS

	PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
1		Clear Flag 10, Begin the program		
2a	P? #	(The last used point # will be shown in the x-register)	(1 R75)	Next prompt
3	N? #	(The last used north coordinate will be shown in the x-register) Input the new north coordinate	502.27R/S	Next prompt
4	E? #	(The last used east coordinate will be shown in the x-register) Input the new east coordinate	627-4583	parent program will continue from here
5		View and check coordinates	B	502.2700 627.4500
1		Begin the program	XEQ P ENTER	
2a	₽? #	(The last used point # will be shown in the x-register)	5 R/S	Next prompt 4.0000
3	N? #	(The last used north coordinate will be shown in the x-register) Input the new north coordinate	204-63R/5	Next prompt 502.2700
4	E? #	(The last used east coordinate will be shown in the x-register) Input the new east coordinate	424•56 R/S	Next prompt 627.4500
5	-	View and check coordinates	R	204.6308 424.5600

Okay, now let's try recalling those same points . . .

	PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
1		Clear Flag 10, Begin the program		
2a	P? #	(The last used point # will be shown in the x-register)	4 +Z R/S	502.2700 627.4500
1		Begin the program	XEQ P ENTER	
2a	P? #	(The last used point # will be shown in the x-register)	51%. R /5	204.6300 424.5600

When LBL P is being used as a subroutine by another program, traverse for instance, you will be traversing to the next point (which calculates the coordinates) and then prompted P? for the number to store it under. Instead of writing down the coordinates as you go you can just continue with the traverse, noting the point numbers on your sketch, and then recall them later to note the coordinate values.

let's talk about traverse types

A traverse may be thought of as either a "closed" or an "open" traverse. For use with this program, a CLOSED traverse may be either of two types. What we will call the Type A is similar to the one shown to the right.

In this type of traverse, the line from #1 to #2 is usually a known line which is included in the traverse. The two points used would be part of a property or monument line, and the basis of bearings would be the bearing (or azimuth) of the line. This type of traverse also closes back to the original point of beginning, and allows the turning of a closing angle, which is turned at the first (and last) point, foresighting the second point.

What we will consider to be a **Type B** closed traverse is one which begins at one known point and ends at another known point. For this type (previous page) the basis of bearings is usually obtained by backsighting another known point.

An OPEN TRAVERSE is one which, while it may begin at a known point, does NOT close to any point or line which allows adjustment of the traverse.

An OPEN TRAVERSE may also be considered as being an 'unfinished' traverse, in that it could later be used as a portion of a traverse which will be closed.

While an open traverse can **not** be closed, the Type 'B' closed traverse can. When you get to the end of the traverse, you can use the interfacing features of an inversing during a traverse program (*page 34*) to calculate the distance and bearing from your end point to the coordinates of the point it is

trying to match. A closure routine is essentially useless in this case, since it does not enclose an area (even though one is calculated). The precision, in this case, is the total distance traversed divided by the length of the error of closure.

Often the NCEES test questions will require you to calculate a small traverse before you can answer the question, but the question will be to determine the precision of the traverse or the area the traverse encloses.

The precision of a closed traverse can be calculated by dividing the sum of the distances by the distance of the closure error. We have included a 'closure' routine, LBL K, which may be used immediately after running the traverse calculations and will complete the needed information. It calculates the error of closure, area and precision.

The programming instructions begin below, and we have written them to include the use of the closure routine as a part of doing the traverse. Following that, we have proceeded to the inversing program. That program has been made flexible enough to interface with the traverse, do individual inverses or to be used for inversing layout ties. We recommend that you read through this whole group before beginning to input the programs. Then take a break on the program input before tackling the intersections. Program steps for LBL T begin on page 9P.

	PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
1		Begin the traverse program		
2	AZ=0 BRG=1	Selection Prompt To work in Azimuth mode, input 0. To work in Bearing/Quad mode input 1.	0 or 1, then 🕅	
3	Ρ?	To begin with an already stored point, input the point number and press 🖅 🕼 To skip this prompt, input # and press 🕼	#172. R/S) or #0 R/S)	shows last point # used
4	Ν?	If starting from a new point, input the North coordinate of the beginning point.	R/S	shows last northing used
5	E?	If starting from a new point, input the East coordinate of the beginning point.	R/S	shows last easting used

PROGRAM: TRAVERSE

	PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
6a	AZIMUTH	If Azimuth mode was selected Input the azimuth that defines the direction of the first course.	R/5	
	OR	-		
6b	BEARING	If Bearing/Quad mode was selected (a) Input the value of the bearing that defines the direction of the first course.	R/S	
6b	QUAD CODE	If Bearing/Quad mode was selected (b) Input the quadrant code for the bearing that was just input.	R/5	
	THEN			
7	DISTANCE	Input the distance for this course.	R/5	NNNNN. NNNN
			R/S	EEEE.EEEE
8	Ρ?	Input the point number for the point	R/S	
		Returns to the prompt for the direction of the next course (step 6 above)		
		Continue through the remaining courses of the traverse, repeating steps 5 and 6, until you have finished the calculations of the coordinates back to the beginning	r	

PROGRAM: TRAVERSE (Continued from page 29)

Now you can run a traverse. Tests don't usually ask you what the coordinates of a given figure are, they want to know the precision, or the area, or the error of closure. The next program in this group gives you all of those and throws in the sum of the traverse's legs too.

Calculate the traverse, closing back to the beginning point, then do the closure routine.

	PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
7		Begin the closure output	XEQ K ENTER	
8		CLOSE ERROR reminder prompt	<u>R/5</u>	DIRECTION DISTANCE
9		PRCSN 1: reminder prompt	R/S	PRECISION RATIO
10		AREA: reminder prompt	R/S	Area .
11		SUM H DIST: reminder prompt	R/S)	PERIMETER DIST.
		When finished with the calculations	С	

PROGRAM: TRAVERSE CLOSURE

Example/Exercise 8: Calculate the coordinates for points 2 through 6 in the figure to the right, then calculate the error of closure, precision and area.

N 400 E 600	1
	-

PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
	Begin the traverse program	XEQ T ENTER	
AZ=0 BRG=1	The example is in Bearing/Quad so it's easier to work in that mode	1 R/S	
P?	Input the beginning point number	1 R/S	Next Prompt
N?	Input the North coordinate of the beginning point.	400 R/S	Next Prompt
E?	Input the East coordinate of the beginning point.	600 R/S	Next Prompt
BEARING	Input the value of the bearing that defines the direction of the first course.	21•20 R/S	Next Prompt
QUAD CODE	Input the quadrant code for the bearing that was just input.	1 R/S	Next Prompt
DISTANCE	Input the distance for this course.	300 R/S	N= 679.4439
		R/S	E= 709.1380
Ρ?	Input the point # to be used	2 R/S	Next Prompt
BEARING	Continue with the traverse, noting the coordinates as you go. When finished, calculate the closure information	XEQ K ENTER	

	1	N:400.0000'	E:600.0000'
Check your results against these:		N 21°20'00" E 300.0000'	
	2	N:679.4439'	E:709.1380'
Closure Distance: 0.0191'		S 80°30'00" E 374.2000'	
Closure Bearing: N 27°26'31" W	3	N:617.6831'	E:1078.2060
Closure Azimuth: 332°23'29"		S 25°30'00" W 179.5000'	
Perimeter: 1308.5000'	4	N:455.6690'	E:1000.9293
Area: 64666.2216 sq ft		N 65°18'00" W 188.9000'	
Precision: 68424.0051	5	N:534.6041'	E:829.3121'
		S 59°35'00" W 265.9000'	
	6	N:399.9831'	E:600.0089

inversing

Next to traversing, the most used program is probably inversing, referred to as the "reverse solution" in some countries. There are several uses for inversing . . . as a stand-alone method of determining the direction and distance between two pairs of coordinate values, to determine which way to go toward a known point as you are traversing, and of course, to stake out points from a known control point and backsite. We'll take these one at a time, starting with just a "traverse by inverse" program (LBL L, program steps begin on page 11P). Type in the program, which works like this:

	PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
1		Begin the traverse by inverse program	XEQ L ENTER	
2	AZ=0 BRG=1	Selection Prompt To work in Azimuth mode, input 0. To work in Bearing/Quad mode input 1.	0 or 1, then R/S	
3	Ρ?	To begin with an already stored point, input the point number and press (*()(R/S). Go to step 6. For a new point input # and press (R/S)go to step 4.	#12. R/S) or #0 R/S	shows last point # used
4	N?	If starting from a new point, input the North coordinate of the beginning point.	R75)	shows last northing used
5	E?	If starting from a new point, input the East coordinate of the beginning point.	R/S)	shows last easting used
6	Ρ?	To inverse to an already stored point, input the point number and press 🔽 🖾. Go to step 9. For a new point input # and press 🖅 go to step 7.	#12_18/51 or #1018/51	shows last point # used
7	N?	If starting from a new point, input the North coordinate of the beginning point.	R75	shows last northing used
8	E?	If starting from a new point, input the East coordinate of the beginning point.	R/S	shows last easting used
9a		If Azimuth mode was selected	R/S	AZINUTH
	OR	-		
9b		If Bearing/Quad mode was selected	R/S	BEARING
10		If Bearing/Quad mode was selected	R/S	QUAD CODE
11			R/S	DISTANCE
12			R/5	NORTHING
13			R/S	EASTING
14			R/S	
-	Ρ?	Returns to the step 6 for input of the next point. Inverse will be from the PREVIOUS point.		

PROGRAM: INVERSING

Example / Exercise 9:

In the example/exercise on page 31 we calculated the coordinates for points 1 through 6, so we can use those for an exercise by inversing around the points already stored. Work in azimuth and note the azimuths and distances. Note that your answers will not be exactly the same as the traverse.

	N 400	
L	E 600	

	PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
1		Begin the traverse by inverse program	XEQ L ENTER	
2	AZ=0 BRG=1	Selection Prompt To work in Azimuth mode, input 0. To work in Bearing/Quad mode input 1.	1, then R 75	
3	P?	Beginnning with point number 1, stroke 📆 🗺. Go to step 6.	11203	shows last point # used
6	Ρ?	Inverse to #2, already stored point, stroke 2	2 15. R/S	shows last point # used
7	N?	If starting from a new point, input the North coordi- nate of the beginning point.	<u>R/5</u>	shows last nor- thing used
8	E?	If starting from a new point, input the East coordi- nate of the beginning point.	R/5	shows last easting used
9b		If Bearing/Quad mode was selected	R/S	21.1954
10		If Bearing/Quad mode was selected	R/S	1
11			R/S	299.9964
12			R/S	N= 679.4439
			R/S	E= 709.1280
			R/S	
	Ρ?	Returns to the step 6 for input of the next point. Inverse will be from the LAST point.		

Continue through the remainder of the traverse, checking your answers with those on page 31.

A separate program (LBL X, below) let's you inverse to another (known) point while you are traversing. The result is not saved, and does not affect the traverse in progress. For a stand-alone program for staking out points, there is LBL S, program steps on page 11P, and the instruction set on page 35. This program (LBL S) will output the direction and distance from the current traverse point.

another short program to input

X 0 0 1	LBL X		X015	XEQ 8004	XEQ A O O 4
X 0 0 2	CF 10	5.200	X 016	RCL H	RCLIH
X 0 0 3	ĊĹSŤŔ		X 017	STO N	RCL N
X 0 0 4	RCLN	RCL N	X 018	RCL I	RCL L
<u>Хйй5</u>	STO H	RCL H	X 019	STO E	(re) RCL E
XÃÃĂ	ŘCÍ E	RCLIE	X 020	RCL Z	RCL Z
X 0 0 7	STO I	RCL I	X 021	x=0?	MODE 6
X 0 0 8	X F 0 P 0 0 1	XEQIFICIO	X 022	VIEW A	s RIA
x 8 8 9	N-H	EQN Then simke RCL	X 023	FS? 2	6 ^ 3 2
0002	11 11	before each alpha input	X 024	VIEW B	E R B
X Ø 1 Ø	E - I	EQN Then stroke RCL	X 025	FS? 2	G ^ 3 2
		before each alpha input	X 026	VIEW Q	s Ri Q
X011	XEQ T062	XEQTOG2	X 027	VIEW D	S RI D
X 0 1 2	STO D	rei RCL D	X 028	GTO T017	GTO TO 17
X013	z{}y	x↔y	X 029	RTN	TT XEQ
X014	STO A	RCL A		LN=93	
			-		

PROGRAM: INVERSING - USED DURING A TRAVERSE

	PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
1		To do an inverse during a traverse, set Flag 4 before beginning	SA 14 XEQ X ENTER	
2	Ρ?	Input the point number. If this is an already stored point number, stoke	# or 🗹 # then 🕅	
3	NORTHING	Input the North coordinate of the ending point.	R/S	
4	EASTING	Input the East coordinate of the ending point.	R/S	
5		If Azimuth mode was selected	R/S	AZINUTH
	OR			
5a		If Bearing/Quad mode was selected	R/5	BEARING
5b		If Bearing/Quad mode was selected	R/S	QUAD CODE
6			R/S	DISTANCE
7			R/S	NORTHING
8			R/S	EASTING
9	BEARING	Returns you to the traverse program at the proper prompt to continue with the next traverse course	<u>R/S</u>	

PROGRAM: STAKEOUT

	PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
1		Begin the stakeout routine	XEQ S ENTER	
2	P?	Input the point number to be used for the instrument position	<u>R/S</u>	
3	N?	Input the North coordinate of the instrument position	<u>R/S</u>	
4	E?	Input the East coordinate of the instrument position	R/S	
5	Ρ?	Input the point number to be used for the backsight position	R/S	
6	N?	Input the North coordinate of the backsight position	R/S	
7	E?	Input the East coordinate of the backsight position	<u>R/S</u>	AZINUTH Distance
		This is the azimuth to put into the instrument while you sight the backsite point. The distance may be used to check accuracy.		
8	Ρ?	Input the point number to be used for the position you are staking out	<u>R/S</u>	
9	N?	Input the North coordinate of the position you are staking out	R/S	
10	E?	Input the East coordinate of the position you are staking out	R/S	AZIMUTH Distance
11		Stakeout the point	R/S	
		Returns you to step 8 for the next point's input		

Exercise 10:

Use the stakeout program to calculate the stakeout ties to the lot and building corners in the figure on the opposite page if the coordinates of the control point are N 500.00 and E 1100.00. Backsight N 702.89 and E 859.33. The coordinates of the lot corners are: Southwest corner N 527.9300, E 1214.0600; Southeast corner N 504.6886, E 1307.2763 and the building corner coordinates are N 553.4100, E 1235.8721.

Backsight Az?

Distance and azimuth to the southwest Lot Corner

Distance and azimuth to the southeast Lot Corner

Distance and azimuth to the building corner

intersection solutions

The solutions to intersections problems are needed all of the time in surveying. We use an intersection formula to find out where two lines cross, then make that point the new IP or lot corner. Or, we need to know how far a point is offset from a given line, and at what distance from the line's origin. Next to just plain traversing, this is the most used type of calculation in surveying.

We've included all of the normal solutions, the type being chosen as part of the input and then worked by use of flags instead of using up four separate lables plus one for coordinate input. This makes one longer program, but is actually shorter than the total of the other five needed the other way.

The illustration to the right allows using

all four of the intersection types for trying out the programming after you have input it. We have left everything in the 'bearing' format, rather than refer to 'directions' and distances, but you may work in either azimuth or bearing for your input and output.

Input for the program begins with prompts for the beginning and ending coordinate pairs, in this case N_1 , E_1 and N_2 , E_2 . The point to be output as the intersection will be N_3 , E_3 for the bearingbearing, bearing-distance and the distance-distance solutions.

For all of the distance/offset solutions, the intersection point will be somewhere along the bearing line from points 1 to 3, or that same line produced past 3, shown as N6,E6, N7,E7 and N8, E8.

The step-by-step program input/output instructions begin on the next page. We've used the program keystroke instructions to solve some of the various problems as shown in the table to the right. The user should solve the remaining Bearing-Offset problems for practice.

This is a program where we suggest that you input part of it, take a break, then complete the rest at a different sitting, to help reduce program input errors.

1	150.00	175.00
2	125.00	400.00
3	To be	calculated
4	300.00	200.00
5	400.00	150.00
6	To be	calculated
7	To be	calculated
8	To be	calculated

PROGRAM: Intersections

	PROMPT	INSTRUCTIONS	KEYSTROKES	OUTPUT
1		Begin the intersection program	(XEQ) [] ENTER	
3	Ρ?	This is the beginning point, input the point number and press (****). Go to step 4. For a new point input # and press (***********************************	#* <u>*_</u> [r/s] or #0[r/s]	shows last point # used
3	N?	If starting from a new point, input the North coordinate of the beginning point.	<u>R/S</u>	shows last northing used
3	E?	If starting from a new point, input the East coordinate of the beginning point.	R/5	shows last easting used
4	Ρ?	This is the ending point, input the point number and press 🔀 🖅 or 📧.	#12.R/S or #0.R/S	shows last point # used
5	N?	If starting from a new point, input the North coordinate of the ending point.	(R/S)	shows last northing used
6	E?	If starting from a new point, input the East coordinate of the ending point.	R/S	shows last easting used
7	AZ=0 BRG=1	Selection Prompt To work in Azimuth mode, input 0. To work in Bearing/Quad mode input 1.	1, then R 75	
8a	AZ-AZ=1 OR BRG-BRG=1 Depending on 7	If Azimuth mode was selected OR If Bearing/Quad mode was selected	To select this type, input ① , to NOT select this type, NO input. Stroke R/S	
8b	AZ-DIST=1 OR BRG-DIST=1 Depending on 7	If Azimuth mode was selected OR If Bearing/Quad mode was selected	To select this type, input 🚺 , to NOT select this type, NO input. Stroke 🛯	
8c	DIST-DIST=1	To select this type, input 1 to NOT select this type, NO input.	To select this type, input 1, to NOT select this type, NO input. Stroke R/S	
8d	AZ-05=1 OR BRG-05=1 Depending on 7	If Azimuth mode was selected OR If Bearing/Quad mode was selected	To select this type, input 1, to NOT select this type, NO input. Stroke <u>R/S</u>	

At this point you have input the beginning and ending coordinates, selected the type of input (azimuth or bearing) and the type of intersection you want to do. Separate instructions are given for each type of intersection solution (on the following pages), as examples, and will use either azimuth or bearing input. If you chose a different input than that shown in the example, the only difference will be the prompts for the directions. Output, in all cases will be the bearing (or azimuth) and distance from the beginning point to the intersection point, the coordinates of the intersection , then bearing (or azimuth) and distance to the ending point.

PROGRAM: Intersections (continued) BEARING – BEARING Selected

Working the problem as an input example, use the figure below for the input.

This example uses the input as bearing and quad code with the matching output.

	PROMPT	PROMPT KEYSTROKES	
9a	BEARING	15•303 R/S	
9b	quad code	1 R/S	
10a	BEARING	32.45185	
10b	quad code	2 R/S	B= 15.3030
11		R/S	Q= 1.9080
12		R/5	D = 235.4673
13		R/5	N= 376.8943
14		R/S	E= 237.9589
15		R/5	B= 32.4510
16		R/5	Q= 2,0009
17		R/S	D= 299.5130
18	P?	R/S Returns to the intersection program for new calculations. To leave the program stroke C	

PROGRAM: Intersections (continued) BEARING - DISTANCE Selected

Again working the problem as an input example, use Azimuth for the input on the figure below.

	PROMPT	KEYSTROKES	OUTPUT
9	AZINUTH	15.303 R/S	
10b	DISTANCE	2990513R/S	A= 15,3830
11			D= 235.4672
12		R/S	N= 376.8943
13		R/S	E= 237.9589
14		R/S	R= 147.1450
15		R/S	D= 299.5130
		(R/S) Returns to the intersection program for new calculations. To leave the program stroke C	

PROGRAM: Intersections (continued) DISTANCE – DISTANCE Selected

Working the problem as an		PROMPT	KEYSTROKES	OUTPUT
below and select azimuth for the directions.	9	DISTANCE	235-467R/S	
N5	10	DISTANCE	299•513R⁄S	R= 15.3030
ES	12		R75	D= 235.4670
\uparrow	13		R/S	₩= 376.8943
19.6601 (14		R/S	E= 237.9589
58°	15		(R/S)	8=. 147.1450
	16		(R/S)	0= 299.5130
EI 175.00 <u>N2 125.00</u> EZ 400.00			I /S Returns to the intersec- tion program for new calcula- tions. To leave the program stroke C	

NOTE: The last two types may have 2 possible solutions. For the 2nd solution in Bearing-Distance, just reverse the direction of the bearing and re-run the calculation. For the 2nd solution on the Distance-Distance type, run it backwards.

PROGRAM: Intersections (continued) BEARING - OFFSET Selected

For this one, we've calculated the offset to the second point as the example (N6, E6).

We're going to use the other two in the exercise.

	PROMPT	KEYSTROKES	OUTPUT
9	AZIMUTH	13•303 R/S	A= 15.3030
10		R/S	D= 36,0704
11		(R/S)	N= 184.7571
12		<u>R/S</u>	E= 184,6444
13		R75	A= 105.3030
14		<u>R/S</u>	D= 233,4926
		I /S Returns to the intersec- tion program for new calcula- tions. To leave the program stroke C	

calculating missing sides

E=1

It sometimes happens that some of the dimensions for a traverse (or deed) are missing. In order to solve for *any* missing part of a traverse, we have to first assume that the traverse closes, because any part we calculate is based upon the information furnished by the other parts, and will only work on a *closed* figure. When we calculate our answer, we are *forcing* a closure.

One side missing is the most obvious example of solving for a missing part. We have everything except the closing line.

If, using the traverse program, coordinates are put on each of the known corners, it is a simple matter to obtain the missing side's length and direction by inversing from #4 to #1.

Adjacent missing Parts. It also happens that you are missing TWO parts of a traverse and need to simultaneously solve for both parts. You can do this by reducing the traverse to a point where the difference in latitudes and departures of the *known* parts may be used to solve the two missing sides.

The illustration to the left shows the basic principles involved, and we can use the formulas

$$a = \frac{y (sinB) - x (cos B)}{sin(B - A)}$$

or
$$b = \frac{x (cos A) - y (sinA)}{sin(B - A)}$$

These formulas solve for missing lengths of two adjacent sides, and may also be re-written in the form

$$\sin (\beta - A) = \frac{y(\sin \beta) - x(\cos \beta)}{\beta} = \frac{x(\cos A) - y(\sin A)}{b}$$

When we have the sides and need to solve for the missing bearings. If you look at these formulas, you will notice that they are the formulas for doing a bearing-bearing and bearing-distance intersection. Additional needed information, from that point on, may be solved β

Additional needed information, from that point on, may be solved through the use of the Law of Sines. The Law of Cosines is used for solving distance-distance intersections.

Non-adjacent unknowns also occur. It may be that the missing parts will fall on sides of the traverse which are *not* adjacent to each A other. You can arrive at a solution by *re-arrangement* of the traverse. For purposes of *temporary* coordinate values you can connect the sides with known bearings AND distances together, making the missing sides adjacent.

The first step is to ignore the unknown courses and connect up all of the courses with *both* known bearings and distances. Simply rearrange the figure, leaving out the unknown sides.

A=2

As you can see below, it doesn't matter which part goes where, the figure leaves one side which may be inversed.

Calculate coordinates for the points in the rearranged figure and inverse for a closure (above). Next, the inversed side, combined with the two sides that contain unknowns, will form a figure like the one shown to the right. *This* figure may now be solved as a triangle, or as an intersection problem (in the case illustrated, use bearing-distance).

Once the unknowns are resolved, re-assemble the original figure and calculate actual coordinates for the angle points.

919

wersed

Side DE

... Thence, N 22°25' E 342.67 feet to a point in that line common to the property now or formerly owned by George W. Brown, as shown in that certain Grant Deed recorded May 16, 1923 in Book 243 of Official Records of Bohunk County at page 22; thence along said common line 435.96 feet to the most westerly line of the Smith property as shown in that certain Quitclaim Deed recorded September 24, 1940 in Book 136 of Official Records of Bohunk County at page 209; thence, along last said westerly line S 47°22' W to the point of beginning, containing...

And there you have a not uncommon source of unknown lines. The distance along Brown's line is known but not the direction, and Smith's line has a direction but not a distance.

When solving a problem like this it's important to understand that the answers (as in the simple inverse for closure) are a 'forced' solution. It is only as accurate as the other information that was used to calculate it. The answer is not 'real' by any definition but is a solution based on the known information. A look at Brown's deed might give a bearing for that line, but was written at a different time and not necessarily based on the same basis of bearings. Without more information being known there is no way to check the answers.

Exercise 11

Using the figure shown to the right, solve for the unknowns, then calculate and close the boundary.

- 1. What is the bearing of line B-C?
- 2. What is the distance for lint D-E?
- What is the area of the enclosed property? _____

4. Calculate the coordinates for Lot 85, shown to the left.

Pt #	North Coordinate	East Coordinate
2		
3		
4		

. What is the area of Lot 85?

_____ Sq. Ft.

6. Calculate the coordinates for point #6, the B.C and E.C. of the curve in the figure to the right. B.C. Sta = 115+24.96

Mid-Ordinate =

Calculate the curve data for the curve

curve to curve intersection

The intersection program will calculate the intersection point along the arcs of two curves when the two radii and the point numbers of the radius points are known. Use the Distance-Distance option, with the radii being the two distances, to solve the problem.

Input is ALWAYS counterclockwise, as seen from the intersection point.

line to curve intersection

You need to know the radius of the curve, the coordinates of its radius point, a known coordinate at any location on the line, and the direction of the line.

If the line point is on the *inside* of the curve, the direction of the line is given toward the point of intersection that you want to calculate. If *outside* the curve, it is often easiest to set a point on line that is inside the curve to avoid confusion.

Both of these problems can also be solved by calculation as triangle problems, although the intersection is quicker.

slope staking

Surveyors tend to think of slope staking as a trial-and-error field exercise, as it is done in the field. On a test it has to be generalized, and unless the illustration includes a grid at a given scale so you can count the squares for distance and elevation, the quick way is to use the intersection program. They will have to give you a picture with all of the slopes, distances, etc. to even formulate a problem.

Okay, turn the slopes into azimuths, calculate the distance to the far side of the vditch, work the slopes to get an elevation for that point.

Using the elevations as the north coordinates and the distances as the east coordinates, calculate the intersection at the catch point. It's just an azimuth-azimuth intersection problem.

trouble-shooting your programs

If you are running a program and encounter an error message, stop and stroke $\square \mathbb{R}/S$ to go into program mode. The calculator will have stopped at the point that is causing the problem.

In the case shown, "NONEXISTENT" will indicate that you have a label missing ... You didn't input a program that the calculator is looking for yet. "DIVIDE BY 0" would usually mean that an equation or program step is trying to divide by an empty register, and "INVALID EQN" tells you that something is wrong with an equation, maybe an extra parentheses or a missing one. Correct the error and try running the program again. If the program is correct, the LN and CK numbers (see chart on page 44) should be the same as shown in the chart.

If you need to take a break while programming, stroke \bigcirc to leave program mode and then stroke \bigcirc to turn the calculator off. When you come back, turn the calculator back on and stroke \bigcirc to go into program mode. You will be at the same place you left off.

During a programming session you can go to any particular step by stroking **EXEQ** . This brings up a prompt display like the one to the right. Type in the step you want to go to (i.e. \$027) and when you go into program mode you will be at that step.

answers to the exercises Exercise 1 (page 5) 3. N 40°07'18" E (az = 40°07'18") 4. S 82°58'18" W (az = 262°58'18") 1. 147°24'23" 2. 90°53'15" Exercise 2 (page 5,6) 1.117°41'34" 2.140°18'31" 6. S 04°20'46" E 3.63°54'38" 4.117°35'20" 5. 80°13'11" 12.-17.1423 11...9994 9. .9550 10. -3.7652 7. S 78°09'18" E 8. 223°49'17" Exercise 3 (page 10) 1. BVC station <u>13+50.00</u> elevation <u>99.750</u> high point station <u>14+70.00</u> elevation <u>100.950</u> EVC station 16+50 elevation 98.25 2. Calculate the elevations for the following stations: 14+20 100.74 14+50 100.92 15+22 100.72 15+50 100.42 16+10 99.32 At what station will the elevation 100.58 occur? 14+03.37 & 15+36.63 3. Exercise 4 (page 12) 1. BVC @ Station 12+05.56, Elevation BVC 124.11, high point Station 14+27.78, elevation 126.33, EVC @ Station 16+05.56, Elevation 124.91 2. 12+00 124.00 12+50 124.91 13+00 125.60 13+50 126.06 14+00 126.30 14+50 126.31 15+00 126.10 15+50 125.66 16+00 125.00

ми т мон **:** GTO .____

NONEXISTENT

Exercise 5 (page 15)

I. Radius	s =	510.2	23	2. Ra	dius =	400.00	3. Radius	;=	200.00	' 4. Ra	dius =	16,1	27,45
Delta	i= .	27°45'	25"	I)elta =	34°44'59"	Delta	.= -	2°56'21	" D	elta =	1°24	5'16''
Length	i= .	247.1	8'	Le	ngth =	242.60	- Length	.= -	10.26	Ler	igth =	400	0.01'
Tangent	t = -	126.0	7'	Tan	gent =	125.16'	- Tangent	= -	5.13'	Tan	gent =	200	0.02'
Chord	l = -	244.7	7'	C	hord =	238.90'	Chord	= -	10.26'	CI	aord =	400	0.00'
External	=	15.3	4'	Exte	rnal =	19.12'	External	= -	0.07	Exte	rnal =	1.	24'
Mid-Ordinat	e= -	14.9	0'	Mid Ore	tinate =	18.25'	Mid Ordinate	ə= ⁻	0.07	Mid-Ord	inate =	1.	24,
				Se	ector =	48,519.88¤ ^t	Sector	= _	1,026.00	D ¹			
				Segn	nent =	2,920.360	Segment	= "	0.45¤'				
				F	'illet =	1,544.120	Fillet	= ~	0.230				
Exercis	e 6 (p	age 18)				-,							
l=			STATI	DN	DEFLECTION	A CHORD				STATION	TA	INGENT DIST,	OFFSET
Radius =	510	0.23'	12+19.23	B.C.	0°	0.00	. 2. Rad	ius =	400.00*	122+34.97		0.00	0.00'
Delta =	27*4	5'25"	12+5	0	1*43'40"	30.77'	. Ix	ita =	34*44'59"	122+50		15.03	0.28
Length *	24	7.18	13+0	0	4"32'06"	80.69	Len Tree	gun ⊶.	242.60	123+00		64.74	5.27:
Tangent =	120	5.06	13+5	0	7°20'32"	130.41	iang	ent -	125.16	123+50		13.45	10.45
Chord =	244	6.77	14+04	2	10"08"59"	179.65	. Exter		236.90	124+00		00.39	55.50
Distantian -		.34	14+5		12-57-25	228.81	Mid Ordin	ote II	19.12	124127.62 8	<u>c</u>	39.00	71.24
Aud Ordinate =		.89 1	4+60.4	EC.	15"52"42"	244.77	Microrum	aug	18.23	124+11316	.c. 2	20.00	/1.34
			3.			STATION	CHORD DI	ST. 6	OFFSET				
			F	tadius =	386.31	53+24.37	0.00		0.00				
				Delta =	35°15'22	" 53+50	24.67*		6.95				
			1	ength =	237.71'	54+00	73.85		15.72				
			Ta	ngent =	122.75	54+50	123.76		18.08				
				Chord =	233.98	55+00	173.56		13.98'				
			Ex	ternal ==	19.03	55+50	222.41		3.48'				
		1	Mid-Or	dinate =	18.14	55+62.08 E.C	233.98		0.00				
Exercise	7 (p	age 24)											
1. Sid	le 1	12.163		2. S	ide 1 2	29.682	3. Side 1	15		4. Side 1	65.4	167	
Ang	le 1	76°03'5	6"	An	gle 1	75°14'51"	Angle 1	84°	28'18"	Angle 1	L 84°2	28'18"	_
Sid	le 2	18.364		S	ide 2 _ 2	3.9162	Side 2	21.8	8384	Side 2	109	.4502	
Ang	le 2	37°24'3	5"	An	gle 2 6	50°19'18''	Angle 2	36°	12'30"	Angle 2	32°1	17'00"	_
Sid	le 3	19.432		s	ide 3 3	3.0374	Side 3	25.2	2745	Side 8	122.	.0028	_
Angl	le 3	66°31'2	9"	An	gle 3 4	4°25'51"	Angle 3	59°	19'12"	Angle 3	63°1	4'42"	
A	rea	108.394	1	-	Area 3	43.240	Area	163	.0263	Area	ı 3,56	6.0253	
			5. g	Side 1	18.249		6. Si	ide 1	32.416				
			A	ngle 1	79°22'0	6"	An	gle 1	87°13'5	1"			
			5	Side 2	24.6097	7	Si	ide 2	38.1001				
			A	ngle 2	40°10'3	0"	An	gle 2	41°32'56	5".			
			5	Side 3	27.8020)	Si	ide 3	48.8168				
			A	ngle 3	60°27'2	4"	Ang	gle 3	51°13'13	3"			
				Area	220.696	5	1	Area	616.804	8			

Exercise 10 (page 35) Backsight Az? <u>310°07'54"</u>

Distance and azimuth to the southwest Lot Corner

117.4298 76°14'26"

Distance and azimuth to the southeast Lot Corner

207.3293 88°42'16"

Distance and azimuth to the building corner

145.9927 68°32'26"

Exercise 11 (page 42) 1. What is the bearing of line B-C? <u>S 40°08'17.6" E</u>

- 2. What is the distance for line D-E? 199.0998
- 3. What is the area of the enclosed property? 132,944.6772 sq ft

 Calculate the coordinates for point #6, the B.C and E.C. of the curve in the figure to the right.

 Radius =
 300

 Delta =
 37°48'00"

 Length =
 197.92

 Tangent =
 102.71

 Chord =
 194.35

 External =
 17.10

 Mid-Ordinate =
 16.17

 Calculate the coordinates for Lot 85, shown to the left.

Pt#	North Coordinate	East Coordinate
2	552.9356	904.2714
3	605.0925	977.6177
4	517.8285	1039.7095

What is the area of Lot 85?

6,577.70 Sq. Ft.

8 What is the station at the intersection of the curve and line? 116+68.66

7.

Ve	rtical Curves and	Grades	1 1043	<u>+</u>	÷
V001	I BL V		V044	STO M	RCL M
V002	XED 0010	XEQDOID	V045	RCLI	RCL 1
V003	SEIO		V046	RCLXL	RCL × L
V004	REC STR	EQN Then stroke RCL	V047	RCLI	RCL II
1001	DEG OTH	before each alpha input	V048	RCI - 0	RCL
V005	STO S	RCL S	V049	÷	(Ŧ)
V006	BEG ELEV	EQN Then stroke RCL	V050	ENTER	[ENTER]
110.07	070 5	before each alpha input	0051	PCI + P	RCL [+] [R]
Y007	510 E		U052	STO S	REL RCL S
A008	GRHDE IN	EQN Then stroke RCL	0052	PCI - P	RCL - R
VAAO	STO 1		V054	100	กดด
0010			0055	100 4	(†
UQII		FON Then stroke RCL	V055	ENTER	(FNTER)
1104	GRADE UUI	before each alpha input	V0J0 U057	CHICK	ENTER
V012	STO O	RCL O	0050		RELIXIM
V013	CL×		1050	DOLA T	RCIEI
V014	LENGTH	EQN Then stroke RCL	10/0	KULT I	
		before each alpha input	1000	DCL + E	ങ്ങന
V015	STOL	RCL L	1001	KULT C	
V016	x#0?	MODE 1	1062	KUL S	(Table)
V017	SF. 1		1063	x\/y	(0)
V018	RCL S	RCLES	7064	OTO C	
V019	STO R	RCL R	¥065	510 5	
V020	0	0	¥066	K+	K4
Y021	STO S	RCL S	V067	STUP	R/S
V022	FS? 1	A	V068	INPUT SIN	before each aloba input
Y023	GTO V036	GIO V 0 3 6	V069	STR S	RCL S
V024	INPUT STA	EQN Then stroke RCL	V070	GT0 V053	GO V 0 5 3
0025	сто с	Defore each alpha input	V071	RTN	KEQ XEQ
1023	510 5 DCL. D		1914	610	
0020	RGL K	Real Contraction of the second	Eleva	tion - Find Sta	tion
1201	100		FOOT 1	D1 F	(1999) (VEZ) (Z)
1020	100		E001 L	BL L	
1022	- v		1002 J		
0000	DOLT E		E003 K	UL L	
1000	KULT C		£009 x	=0/ TO FO47	
1032	KUL S	(Kat)	E005 G	10 6097	
1004	X\/Y CTOD	(B/E)	2005 K	U U	(KCL) (C)
1034	510F		E007 R	CL- I	
1033	610 Y024		E008 1	00	000
1030	KUL L	(SATEO)	E009 7		E
1037	ENIEK		E010 R	UL? L	
1020	RUL U		E011 S	IU T	
1010	KUL I	(XaX)	E012 R	UL E	
V040	21/2	(7)(7)	E013 R	UL- H	
Y041	20	a a	E014 S	IU H	(Continued on next nave)
V042	7	E			10 output on most buget

E015	RCL Y	RCL Y
E016	2	2
E017	x	X
618	STO K	RCL K
610	RCLX A	RCL X A
6020	STO K	RCL K
6021	RCL I	RCL
6922	100	100
6023	÷	÷
F024	STO X	RCL X
F025	22	122 JX
F 926	RCL- K	RCL
F 927	12	18
F928	ŚŤO K	RCL K
629	RCI X	RCL X
F030	+/-	12.
F031	+	(±)
632	RCL ÷ Y	RCL + Y
633	RCI + R	RCL + R
6934	STOS	RCL S
6935	RCI X	RCL X
6036	4/-	[型]
6327	RCI - K	RCLI
6339	PCL + Y	RCLIFIY
6030	PCI + P	RCL + R
640	STO T	RCL T
5040	0 1 0 1	RCLISI
5042	NOL U	X*** ¥
5042	STOP	(R/S)
5944	FC2 1	(() ()
C045	CT0 9036	GOVOIS
C045		(COL) (XEQ)
047	DOL F	RCELE
5040	PCI - H	RCI
C040		RCLITI
C047	100	100
051	100	(F)
C0J1 C052	-	(a)
032	· · · ·	12
054	DCIA D	RCOHR
C034	STO S	RCLIS
6054	945U Q	
E050	A D D D D D D D D D D D D D D D D D D D	
6050	STO S	INCL (S)
C050	DTN	INTER DECO
C0J2	NIN	Contra Contract

-Vertical	Intersections

	D H
H003 SF 10) []]]]
H005 STO T REC H006 ELEV I EQN 77	ach ai DCD hen st ach al
H007 STO F H008 STA 2 EGN 77 before 9	hen sl
H009 RCL- T RCL) = H010 STO M RED RCL H011 FLFV 2 RCN17/	LM hen sl
H012 RCL F RCL E H013 x⟨⟩y X+Y	ach a]
H014	hen sl
H017 100 100 H018 ÷ ÷ H019 STO I ₩200 CD017	
H020 GRN0E 001 Before a H021 100 100 H022 ÷ È H023 STO 0 ₩2€	ach al
H024 RCL N RCLIN H025 RCL 0 RCLIO H026 ENTER ENTER H027 RCL N RCLIN	
H028 x⟨⟩y (x-y) H029 ÷ H030 RCL+ M (RCL) ±	3.80
H031 RCL× 0 RCL)× H032 RCL I RCL) H033 RCL- 0 RCL)=)©]]©]
H034 ÷	300
H037 STO X INDIA KONTER H038 ENTER (Enter) H039 RCL-T (RCL)	
H040 RCL× I RCL × H041 RCL+ F RCL ∓	

XEQ H 00010 N Then stroke RCL fore each alpha input RCL QN Then stroke RCL fore each alpha input RCLE IN Then stroke RCL fore each alpha input i)ell RCL M ON Then stroke RCL fore each alpha input CL E ** Y 1 RCLN ON Then stroke RCL fore each alpha input 00 1 RCL N Then stroke RCL fore each alpha input 00 1 RCLO CL N 10 NTER ФŸ CI X O 3 <u>_</u> RCLX NTER

H042 H043 H044	RCL X ×<>> RTN	RCL (X) X-+Y (S) (XEQ)	C039 C040 C041	INPUT C FS? 2 2×ASIN(C÷ (R×2))	IN X+Y C IN () () () () () () () () () () () () ()
-Circ	ular Curves —		6942	F\$2 2	SN (~ 32)
C001 C002 C003 C004	LBL C XEQ D010 SF 10 DELTA	XEQ C XEQ D 0 1 0 Image: Comparison of the state	C043 C044 C045 C046	ABS FS? 2 STO D ×≠0?	
C005 C006 C007 C008	CF 10 HMS→ STO D ×≠0?		C048 C049	FS? 1 C÷(2×SIN (D÷2)) FS? 1	Input as 1 equation EQN Then stroke (CL) before each alpha input
C009 C010 C011 C012	SF 1 INPUT R ×≠0? SF 2		C051 C052 C053 C054	ABS FS? 1 STO R ≈≠0?	(2) (*) (3) (*) (7) (C) (*) (7) (C) (*) (7) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)
C013 C014 C015 C016	RCL D RCL R × ≠0?		C055 C056 C057 C058	CF 1 INPUT T FS? 2 ATAN(T÷R)×2	Contractions and a stoke BCL
C018 C019 C020 C021 C022 C022 C023 C024	CF 1 x≠0? CF 2 x≠0? SF 3 INPUT L FS? 2 L×180÷(π×R)		C059 C060 C061 C062 C063 C064 C065	FS? 2 ABS FS? 2 STO D x≠0? CF 2 FS? 1	below each sipha input Image: Signal Sign
C025 C026 C027 C028 C029 C030 C031 C032	FS? 2 ABS FS? 2 STO D x≠0? CF 2 FS? 1 L×180÷(π×D)	before each alpha input	C066 C067 C068 C069 C070 C071 C072 C073	T÷TAN(0.5×D) FS? 1 ABS FS? 1 STO R x≠0? CF 1 CF 1	input as 1 equation ECN Then stroke RCL before each sephs input COM - 3 1 COM - 3 1
C033 C034 C035 C036 C037 C038	FS? 1 ABS FS? 1 STO R x≠0? CF 1	(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	C074 C075 C076 C077 C078 C079	CF 2 RCL L ×≠0? SF 1 RCL C ×≠0?	Image: Constraint of the second sec

C080 C081	SF 2 RCL T		C122 C123	TAN(D÷2) FS? 3	EQN Then stroke RCL before each alpha input
0002	<pre>X≠0:</pre>		C124	х	×
C084	FS2 1		C125	FS? 3	S
C085	R×TAN(D÷2)	EQN Then stroke RCL	0126	RBS	
0007	E00 (before each alpha input	0127	r 5 / 5 9 T 0 T	
0000	ABS		C129	RCLD	RCL D
0007	FS2 1		C130	→HMS	8
Č089	STO T	RCL T	C131	STO I	RCL (
C090	FS? 1	a ^31	C132	VIEW I	
C091	2×R×(SIN	input as 1 equation	C133	VIEW R	
	(D÷2))	before each alpha input	C134	VIEW L	
C092	FS? 1	A31	0130	VIEW C	
C093	ABS		C137	TXTAN(D+4)	EQN Then stroke [RCL]
0094	FS? 1		0101		before each alpha input
0900	510 C DVDV(#±100)	FON Then strates (RCD)	C138	ABS	
6020	KVDV(N±100)	before each alpha input	0139	SIU E	
C097	FS? 2	A 32	C140	PX(1-COS	input as 1 equation
C098	ABS		6171	(B+2))	EQN Then stroke RCL
0099	FS? 2		0142	000	before each alpha input
C100	510 L EC2 2		C142	STO M	RCL M
C102	PXTAN(D+2)	EQN Then stroke [RCL]	C144	VIEW M	
	Korna (V C)	before each alpha input	C145	SF 10	
C193	FS? 2		C146	AREAS	EQN Then stroke RCL
0104	HBS ECO O		C147	PCF	before each alpha input
C105	r 0 ? 2 STO T		C148	T	COS
C107	FS2 3		C149	RCL R	RCL R
C108	RxDx(π÷180)	EQN Then stroke RCL	C150	x ²	122 18
0100	500.0	before each alpha input	C151	Х	×
0109	r 5 / 5 ABC		C152	RCL D	RCLID
6111	FS2 3		0153	360	300
či i 2	STO L	RCL L	0104	÷	
C113	FS? 3	A 33	0156	ŜTO S	RCL S
C114	2×R×SIN	input as 1 equation	C157	0	0
	(D÷2)	before each alpha input	C158	x<>y	$x \rightarrow y$
C115	FS? 3	A 33	C159	SECTOR	EQN Then stroke RCL
C116	ABS		C160	PSE	x+y
0117	F5? 3		C161	STOP	R/S
0110	510 0		C162	RCL D	RCLD
C120	RCIR	RCL R	C163	2	2
C121	FS? 3	M <u></u> 33	C164	÷	1.
					(Pourthwood ou word right)

0145	000	COS	C207	x≠0?	MODE 1
0100	DCLV D	RCLIXIR	6208	SF 3	60-13
0100	DOLY C	RCIXIC	6289	CL x	[m] ← 1
0101	2	[2]	6210	OFFSET	EQN Then stroke RCL
0100	<u>د</u>	(Ŧ)	0210	011021	before each alpha input
0107	Ŧ		C211	STO O	RCL O
6170	0	0	C212	RCL+ R	RCI + R
6173	0 	X +> V	C213	RCL÷ R	RCL ÷ R
0170	X1/Y CECHENT	FON Then storks RCL	C214	STO K	RCL K
6113	SEGRENI	before each alpha input	0215	BC ST8	EQN Then stroke RCL
C174	PSE	[===] X ↔ Y			before each alpha input
C175	STOP	R/S	C216	STO B	RCL B
C176	RCLR	RCL R	C217	RCL+ L	RCL + L
C177	RCLX T	RCL × T	C218	STO H	RCL H
C178	RCL- S	RCL - S	C219	RCL D	RCL (D)
C179	0	0	C220	2	2
C180	x{}y	X ++ Y	C221	÷	÷
C181	FILLET	EQN Then stroke RCL	0222	RCL÷ L	RCL 😫 L
	0.00	before each alpha input	0223	STO F	RCL F
0182	PSE	(F)(2)	0224	SE 10	CO 0
0183	STUP A ATOKE 1	K/S	0225	TNPHT STA	EQN Then stroke RCL
C184	MORE=0 STHRE=1	before each alpha input	6220	THEOL OLD	before each alpha input
0185	x=02	MODE 6	C226	RCL- B	RCL — B
C186	GTO C190 E	GTOCOOI	C227	STO J	RCL J
C187	×≠0? Ξ ↔	MODE 1	C228	RCL× F	RCL × F
C188	GTO C001	GTO C 1 9 0	C229	STO A	RCL A
0189	RTN 53	KEQ XEQ	0230	SIN	SIN
	¥		0231	RCLX R	RCL × R
C190	SF 10		0222	2	2
C191	CF Ø		0232	X	×
C192	CF 1		0200	о 9 0 Г	
C193	CF 2		0204	510 0	
C194	CF 3		0200	FO: A	FON Thee storks RCL
C195	SELECT TYPE	EQN Then stroke IRCL	6236	DEL UNGLE	before each alpha input
0196	PSF	[22] X++Y	C237	FS? 2	S ^ 3 2
C197	01.2		C238	TAN DIST	EQN Then stroke RCL
C198	DEELECTION	EQN Then stroke RCL			before each alpha input
0100	DEFECTION	before each alpha input	C239	FS? 3	
C199	×≠0?	MODE 1	C240	CHD DIST	EQN Then stroke RCL
C200	SF 1		0241	CE 10	
C201	CLx		0242	CC2 1	C C C C C C C C C C C C C C C C C C C
C202	TAN-0S	EQN Then stroke RCL	0242	101 (Q)	EON Theo stroke RCL
0202	v ± 0 2	MODE 1	6243	2009/07	before each alpha input
0203	QF 2		C244	FS? 2	A32
0204	01 2		C245	K×(C×COS	input as 1 equation
0200	002	EQN Then stroke (RCL)		(A))	EQN Then stroke RCL
6206	040-02	before each aloha input			pelore each alpha inplu

C246	FS? 3	MA33	G012	A3-S1-A1	EQN Then stroke RCL
C247	K×C×COS(input as 1 equation	6913	×≠0?	MODE 1
	(D÷2)-A)	EQN Then stroke RCL	6014	SF 2	A 12
C248	0	0	G015	CL×	m - 1
C249	x<>y	X-++ Y	G016	S1-A1-A2	EQN Then stroke RCL
C250	STOP	R/S	0017		before each alpha input
C251	SF 10		6017	x # 0 ?	
C252	F\$? 1	E [<u></u>]	6010	or o	
C253	CHORD	EQN Then stroke RCL	6017	0LX 01_01_02	FON Then storks ICL
0254	ES2 2		0020	31-01-32	before each alpha input
C255	OFFSET	EQN Then stroke RCL	G021	x≠0?	MODE 1
0054	500 0	before each alpha input	G022	SF 4	
0256	FS? 3		G023	CL×	
6297	OFFSET	before each alpha input	G024	\$1-\$2-A2	EQN Then stroke RCL
C258	CF 10	SA2.0	6925	× ≠ 9.2	MODE 1
C259	FS? 1	A 31	6026	SF Ø	
C260	Kx(2×R×SIN	input as 1 equation	G027	SF 10	
	(A))	before each alpha input	G028	FS? 1	S (3)
C261	FS?2	A3 2	GØ29	XEQ G227	XEQ G 2 2 7
C262	K×(C×SIN	input as 1 equation	G030	FS? 3	III ^ 3 3
	(A))	EQN Then stroke ECU before each aloba input	GØ31	XEQ G227	XEQ G 2 2 7
C263	FS? 3	<u> </u>	G032	FS? 4	5 3 4
C264	K×C×SIN	input as 1 equation	G033	XEQ G227	XEQ G 2 2 7
	((D÷2)-A)	EQN Then stroke RCL	G034	FS? 0	G (~ 30
C265	0	0	G035	XEQ G227	XEQ G 2 2 7
C266	x{}y	X == Y	GØ36	FS? 1	<u>6</u>
C267	STOP	R/S	G037	STO D	RCL D
C268	GTO C224	GIOC 224	G038	FS? 3	
C269	RTN	SSI (XEQ)	6039	510 0	
70			6040	F5/ 4	BUC 34
- 1 rs	angle Solutions		6041	510 0	
G001	LBL G	I XEQ G	0042		
G002 :	XEQ D010	XEQ D010	COAA	510 0	
G003	CF 4	24	C045	XE0 0233	XE0(G[2]3]3
G004	SF 10		6946	FS2 2	
G005	TYPE SELECTION	EQN Then stroke RCL	6947	STOT	ICH RCL ET
60061	PSE	x⇔y	6948	FS? 1	a (31)
G007 (CLx		GØ49	XEQ G231	XEQ G 2 3 1
G008	\$1-\$2-\$3	EQN Then stroke RCL	G050	FS? 1	E A 3 1
0000	*0.0	before each alpha input	G051	STO F	RCL F
0007	270/		6052	FS? 2	A 32
00103			GØ53	XEQ G227	XEQ G 2 2 7
00110	LX.		GØ54	FS? 2	32

d'rationed on next name

6055	STO D	IZ RCL D	10002	05.0	
6056	FS? 3	A33	6096	51 2	
6957	XED 6229	XEQ G 2 2 9	6097	FS? 3	
6058	FS2 3	61633	G098	CF 3	
0050	STO F	RELIE	G099	F5? 0	
0007	510 L EC2 4		G100	ASIN((F÷D)X(S)	Input as 1 equation
0000	F0: 7 VED 0000			(HMS+(G))))	before each alpha input
6001	ACW 6267		G101	FS? 0	M (30)
6062	F3/ 4		G102	→HNS	(FEE) (B)
6063	510 E		G103	FS? 0	C 30
6064	F5 (0		G104	STO I	RCL (1)
6065	XEQ 6231		G105	FS? 0	E [<u>^</u>]
6066	F5? 0		G106	180-(HMS+(I)	FON They stroke RCL
6067	510 F			+HMS→(G))	before each alpha input
G068	157 1		G107	FS? 0	C 30
GØ69	INPOT SIDE 3	EQN Then stroke RCL	G108	→HMS	8
6970	ES? 1	<u>a</u> ^31	G109	FS? 0	S (1)
6971	STO H	RCL H	G110	STO E	RCL E
6072	FS2 2	ST (^ 3 2)	G111	FS? 0	61 ^ 3 0
0073	XE0 6229	[XEQ] G [2] 2] 9	G112	SF 2	LA 1 2
6974	FS2 2	[] [] [] []	G113	FS? 2	6 132
0075	STO E	TREAT	G114	180-(HMS+(I)	Input as 1 equation
0076	FS2 3	<u>(3)</u>		+HMS→(E))	before each alpha input
0077	INPUT ANCLE 2	EQN Then stroke [RCL]	G115	FS? 2	S ^ 3 2
0011	throt model c	before each alpha input	G116	→HMS	(FI) (B)
G078	FS? 3	M ^33	G117	FS? 2	E1 3 2
G079	STO G	RCL G	G118	STO G	RCL G
G080	FS? 4	A34	G119	FS? 2	MA 32
G081	XEQ G231	XEQ G 2 3 1	G120	D×(SIN(HMS+(I)) + input as 1 equation
G082	FS? 4	G (134)		(SIN(HMS→(G)))) EGN Then stroke (KCC) before each alpha input
G083	STO F	RCL F			
G084	FS? 0	SA 30	G121	FS? 2	S ^ 3 2
GØ85	INPUT ANGLE 2	EQN Then stroke RCL	G122	STO F	RCL F
0007	E60 0	before each alpha input	G123	FS? 2	SA32
6000	F 5 (0 CTO C		G124	D×(COS(HMS+	Input as 1 equation
6087	510 6			(1)))	before each alpha input
6088	UF 10		G125	FS? 2	C 32
6089	100 (100)/5)	input as 1 equation	G126	F×(COS(HMS→	Input as 1 equation
6090	180-(4857(2))	EQN Then stroke RCL		(G)))	before each alpha input
	HN57(6/)	before each alpha input	G127	FS? 2	A 32
GØ91	FS? 3		G128	+	(±)
G092	+ HM S		G129	FS? 2	32
G093	FS? 3	A 33	G130	STO H	RCL H
G094	STO I	(ma) RCL []	G131	FS? 4	
G095	FS? 3	A 3 3		((Continued on next page)

G132	2x(DxF)x(COS	Input as 1 equation	G168	→HMS	1
	(HMS→(E)))	before each alpha input	G169	FS? 1	G (31)
6133	ES2 4	CR (^34)	G170	STO E	RCL E
6134	STO T	RCL T	G171	CF 1	G <u>^</u> 21
0105	E 6 2 4		G172	SF 10	
0100	CODT(CO(D)+CO	input as 1 equation	6173	SIDE 1	EQN Then stroke RCL
6150	20K1(20(0/120)	EQN Then stroke RCL			before each alpha input
0107		before each alpha input	G174	RCL D	RCLID
6137	15/ 9		G175	STOP	R/5
G138	STUH		G176	ANGLE 1	EQN Then stroke RCL
G139	SF 1		0177	DC1 E	RCI IF
G140	SF 4	614	0170	CTOD	(0/5)
G I 4 I	F\$? 1		6170	510F	EON Then starks RCL
G142	(D+F+H)÷2	EQN Then stroke RCL	6179	510E Z	before each alpha input
0140	500 1	before each alpha input	6180	RCL F	RCL F
6145	F 5 / 1		6181	STOP	R/S
6144	510 W		6182	ANGLE 2	EQN Then stroke RCL
G145	FS? 1		0102	Indee e	before each alpha input
G146	SQRTCCCWXCW-	(FON) Then strates (PCL)	G183	RCL G	RCL G
	F))÷(D×H)))	before each alpha input	G184	STOP	R/S
G147	FS? 1	G (31)	G185	SIDE 3	EQN Then stroke RCL
G148	STO T	RCL T	0106	Det U	Detore each alpha input
G149	FS? 1	M ^31	0100	CTOD	(8/5)
6150	2x8C0S(T)	EQN Then stroke RCL	6107	010F 2	FON Then cimics RCU
		before each alpha input	6100	HNGLE 0	before each alpha input
G151	FS? 1		G189	RCL I	RCL I
G152	→HMS	8	G190	STOP	R/S
G153	FS? 1	M (31)	G191	CF 10	61 ^ 2 • 0
G154	STO I	RCL I	G192	0.5×(D×H×SIN	input as 1 equation
G155	FS? 1	(3)		(HMS→(I)))	EQN Then stroke RCL
G156	ACOS(SQRT((W×	input as 1 equation	6193	STO B	RCL A
	(W-D))÷	before each alpha input	C194	SF 10	
	(F×H)))		C195	APEA	EQN Then stroke [RCL]
G157	FS? 1	a 31	0170	IIKCH	before each alpha input
G158	2	2	G196	RCL A	RCL A
6159	ES2 1	(3)	G197	STOP	R/S
C160	X	×	G198	FS? 0	5 30
0100			G199	XEQ G202	XEQ G 2 0 2
0101	ABMC		G200	GTO G001	GOGOOI
0102	7000		G201	RTN	(51) (XEQ)
6165	F0(1 CTO C		G202	2ND SOLUTION	EQN Then stroke RCL
6164	510 6		0000	05 10	cetore each alpha input
6165	157 1		6203	100-(NH67(1))	FON Then dealed RCU
G166	180-(HMS)(I)	EQN Then stroke RCL	6204	100-(4057(1))	before each alpha input
	+HMS+(G))	before each alpha input			
G167	FS? 1	A 31		6	Continued on next page)

G205	RCL G	RCL (
6296	STO E	(22) (8
6207	P1	R#
0201	2 H H G	12017
0200	9 TO C	
62.07	510 G	0201
6210	KUL F	
6211	510 D	
G212	180-(HMS+(E)	(EQN)
	HNS(G))	before
G213	+ HM S	
G214	STO I	(2) R
G215	SIN(HMS+(I))	EQN
6216	SINCHMS+(C))	EQN
9510	01010000000	hefore
G217	÷	÷
G218	RCL× D	RCL
G219	STO F	12 K
G220	D×(COS(HMS+	input a
	(1)))	EQN
6221	Fx(COS(HMS)	input a
50 to 50 to	(G)))	EQN
6222	4	Defore
0222	сто µ	
0220	010 n	
6229	070 0170	
6225	GTU G172	GO
6226	KIN	
G227	INPUT SIDE 1	EQN 7
6228	RTN	
G229	INPUT ANGLE 1	EQN
	570	before (
6230	KIN CINC O	
6231	INPUT SIDE Z	before (
G232	RTN	XI
G233	INPUT ANGLE 3	EQN 7
0004	074	before o
6234	KIN	
D -2	4 Stores and Decel	
P010	n storage and Recal	
P001	LBL P 💷	XEQ
P002	INPUT P 📧	X⇔y
P003	RCL P 📧	CI PI
P004	x(0? 🕮	MOD

C. G 31 RC. E 3 31 8 31 8 31 RC. G C. F	P0 P0 P0 P0
RCL D RCL D Rot Then stroke (RCL fore each alpha input S RCL L RCL	P0 P0 P0 P0 P0 P0
RCL F	P0 P0 P0 P0
DN Then stroke (SCL) fore each alpha input put as 1 equation DN Then stroke (SCL) fore each alpha input	P0 P0 P0 P0
	P0 P0 P0 P0
Then stroke (CC) fore each alpha input (XEQ) 2N Then stroke (CC) fore each alpha input (XEQ) 2N Then stroke (CC) fore each alpha input (XEQ)	T0 T0 T0 T0 T0 T0 T0
9 P 9 P	T01 T01 T01 T01 T01

MODE 3

P005 P006 P007 P008 P009 P010	GTO P013 RCL P STO J INPUT N INPUT E [N,E]	
P011 P012 P013 P014 P015 P016 P017	STO(J) RTN RCL P ABS STO J RCL(J) [1,0]	
P018 P019 P020 P021 P022	x<>y X STO N LASTx [0,1]	
P023 P024 P025 P026 P027 P028	X STO E RTN INPUT P STO J [N,E]	
P029 P030 P031 P032	STO(J) RCL N RCL E RTN	
—т	raverse	-
T001 T002 T003 T004	LBL T XEQ D010 SF 10 AZ=0 BRG=1	
T005 T006 T007 T008 T009 T010 T011 T011	STO Z ×≠0? SF 2 CF 10 XEQ P001 RCL E STO W STO 0	

GTOPOIS
RCL P
RCL J
(S) X++Y (N)
(X4+3) E
EQN Then stroke RCL
before each alpha input
RCL •
(KEQ)
RCL P
RCL J
RCL •
EQN Then stroke RCL
before each alpha input
X => Y
×
RCL N
[m] ENTER
EQN Then stroke RCL
before each alpha input
×
RCL E
XEQ
KS X↔Y P
RCL J
EQN Then stroke RCL
before each alpha input
RCL •
RCL N
RCLE
XEQ

THE XEQ T
XEQ D 0 1 0
EQN Then stroke RCL
before each alpha input
RCL Z
MODE 1
<u> </u>
XEQ POO1
RCL E
RCL (W)
RCL O

T013	RCL N	RCL IN	1058	x{}y	$x \leftrightarrow y$
T014	STO Y	RCL Y	T059	LAST×	[72] ENTER
T015	STO U	RCL U	T060	X	×
T016	x{}y	X++Y	T061	RTN	(AT) XEQ
T017	SF 10		T062	i	I ENTER
TØ18	RCL Z	RCL Z	T063	Х	×
T019	x=0?	MODE 6	T064	+	+
T020	AZIMUTH	EQN Then stroke RCL	T065	ABS	
7001	F00 0	before each alpha input	T066	LAST×	(PP) [ENITER]
1021	157 Z		1067	ARG	
1022	XEQ 8001		1068	360	360
1023	510 H		1069	RMDR	LEN LIAN 3
1029	nno7		1070	→HHS	
1020	DISTANCE	before each alpha input	1071	X()Y	(X++)
T026	STO D	RCL D	1072	RIN	LET (XEQ)
Ť027	STO+ S	RCL (+ (5)	-Tra	verse Closure	
T028	CF 10	<u>a</u> ~200	1001		INFO IK
T029	XEQ T051	XEQ 1051	V001		RCIINI
T030	x<>y	X++Y	V002		RELEIY
TØ31	STO L	III RCL L	K003	RUL I	
T032	STO+ N	RCL	1009	KUL E	
T033	x{}y	X++ Y	KUUJ	KUL- W	
T034	STO O	(FRI O	K000	AER 1002	
T035	STO+ E	I RCL (+) (E)	K007	510 0	
T036	RCL L	RCLE	K008	2(7)	(T)(T)(T)
TØ37	RCL 0	RCLO	K009	180	
T038	2	2	K010	+	
T039	÷	D	K011	360	3 6 0
T040	RCL+ M	RCL + M	K012	RMDR	ITAN 3
T041	х	×	K013	STO A	IRCLIA
T042	+	Ŧ	KØ14	FS? 2	<u> </u>
TØ43	STO+ G	😰 ((C) (+ G)	KØ15	XEQ 8004	XEQIA 0 0 4
T044	RCL 0	RCLO	K016	CLOSE ERROR	EQN Then stroke RCL
T045	STO+ M	RCL + M	K917	PCF	[22] [X+Y]
T046	VIEW N	📼 RJ N	VAIO	EC2 2	
T047	VIEW E	E RE	VAIO		I A A A A A A A A A A A A A A A A A A A
T048	XEQ P026	XEQP026	V017	71EW D	
TØ49	GTO T017	601017	V021		
T050	RTN	Les XEQ	1021		
T051	x<>y	X+>Y	1022	KUL 2	
T052	SIN	SIN	1023	X-0:	
T053	x<>y	X +> Y	KOZA	VIEN N	(1990) (51) (51)
T054	LASTx	(**) ENTER	K020	VIEW U	
T055	COS	COS	K020	KUL S	CC C C
T056	х{}х	X-1> Y	KUZ/	KUL÷ D	
T057	X	×	K028	510 R	RCC R

K029	PRCSN RATIO	EQN Then stroke RCL	L001	LBL L	FE XEQ L
1000	DOF	Despre each alpha linpur	L002	XEQ D011	
1020			L003	SF 1	
K031	VIEN K		1004	SF 3	613
KØ32	RCL G	RCL G	1005	SE IA	
K033	ABS	1721 FZ	1000	VED 1027	XEQILIO 27
K034	STO A	RCL A	1007	AE& L021	
KØ35	AREA	EQN Then stroke RCL	L007	CF 10	
		before each alpha input	L008	13/ 3	
K036	PSE	72 X-0 Y	LOOA	XE0 5004	
K037	VIEW A	(51) (E) (A)	L010	CF 3	
KØ38	SUM H DIST	EQN Then stroke RCL	L011	XEQ S005	XEQ S 0 0 5
		before each alpha input	L012	RCL A	RCL A
K039	PSE	[7:1] (X↔Y	L013	XEQ A004	XEQ A 0 0 4
K040	VIEW S	RI RI S	L014	FS? 2	SA32
K041	CF 2	G (^22)	L015	VIEW B	RI B
KØ42	CLSTK	12 (-)	1016	FS? 2	<u>()</u> () () () () () () () () () () () () ()
K043	RTN	XEQ	1017	VIEW D	(I) (I) (I)
04-1			inis	RCLZ	RCL Z
	ceour	and the particulary states.	inin	v=02	MODE 6
S001	LBL S	XEQ S	1020	ÛTEN A	A REAL
S002	XEQ D011	XEQ D 0 1 1	1021		RT D
S003	CF 10	E [<u>^2</u> .0	1022		ERRIN
S004	XEQ P001	XEQ POOL	1022		
S005	RCL N	RCL IN	L023	VIEN E	
\$006	STO H	(m) RCU H	L024	F57 4	
\$007	RCL E	RCL E	L025	GIU L034	
5008	STO I	RCL (1	L026	GIO LOID	
5009	XEQ P001	(XEQ POOI	LUZT	F57 Z	
SALA	RCIN	RCL IN	L028	RIN	
SALL	STO V	RCL V	L029	AZ=0 BRG=1	EGN Then stroke (KCL)
\$012	RCI F	RECITE	1020	CT0 7	
0012		RELIKI	1000	010 6	
0013			L031	X+0 /	
0019		C C	L032	51 2	
5013			L033	KIN	
5015	KUL K		LØ34	CF 4	
5017	KUL- I		L035	GTU LUII	GOLULI
5018	XEW 1062		L036	RTN	Let XEQ
5019	STUD	KCL D	Inte	ersections	
S020	х<>у	xoy	1001	I DI T	
SØ21	STO A	IRCL IA	1001	LDL I	
SØ22	x<>y	x++y	1002	VER DOID	
SØ23	FS? 1		1003	6F 4	
S024	GTO L012	GTO [0 1 2	1004		
\$025	STOP	R/S	1005	UF 10	
S026	XEQ S009	XEQ 5009	1006	XEW POUL	
S027	STOP	R/S	1007	KCE N	USCL (N)
S028	RTN	KEQ XEQ			(Continued on next page)

I008	STO Y
I009	RCL E
I010	STO W
I011	XEQ P001
I012	RCL N
I013	STO U
I013	RCL E
I015	STO 0
I016	RCL- W
I017	RCL U
I021	RCL- Y
I021	×{>y
I022	XEQ T062
I022	STO S
I022	×{>y
I0223	HNS→
I0224	STO T
I0225	CL×
I0226	SF 10
I0227	AZ=0 BRG=1
I028	x≠0?
I029	SF 2
I030	x=0?
I031	SF 6
I032	STO Z
I033	CLx
I034	FS? 6
I035	AZ-AZ=1
1036	FS? 2
1037	BRG-BRG=1
1038	×≠0?
1039	SF 1
1040	CL×
1041	FS? 6
1042	AZ-DIST=1
1043	F S ? 2
1044	B R G - D I S T = 1
I045	×≠0?
I046	SF 3
I047	CL×
I048	DIST-DIST=1
1049	×≠0?
1050	SF 4

RCL Y	1051	CL×
RCLE	1052	FS? 6
RCL W	1053	AZ-0S=1
XEOPOOT		F 0 0 0
RCL N	1054	FS? 2
RCI (U	1055	BRG-0S=
RCLE	1056	×≠0.2
RCL O	1057	SE Ø
	1058	01-0
RCLU	1050	EC2 0
	1040	VE0 112
(44)	1000	CC0 113
	1001	F5/ 1
KCL (S)	1062	XEQ 113
(A12)	1063	FS7 3
	1064	XEØ 113
	1065	STO C
	1066	→HMS
EQN Then stroke [RCL]	1067	STO A
before each alpha input	1068	RCL T
MODE 1	1069	RCL- C
	1070	STO V
MODE 6	1071	90
	1072	STO H
RCL Z	1072	510 11
	1010	100
	1074	180
EQN Then stroke RCL before each alpha input	1075	-
<u>.</u>	1076	+/-
EQN Then stroke RCL	1077	STO K
before each alpha input	1078	FS? 4
IMODE 1	1079	DISTANCE
	1000	E63 4
	1000	CTO D
	1001	510 0
before each alpha input	1082	UF 10
<u> </u>	1083	F5? 0
EQN Then stroke RCL	1084	SXSIN(V)
before each alpha input	1085	ES2 Ø
	1086	STO G
	1027	SF 10
EQN Then stroke [RC]	1000	E60 1
before each alpha input	1000	F01 1 VC0 1100
MODE 1	1009	AEQ 1139
M A114	1030	FS? 1

S ^ 3 6 EQN Then stroke RCL before each alpha input CI A 32 G-0S=1 EQN Then stroke RCL before each alpha input MODE 1 **E**(^)()() **m** - 1 <u>C</u> 30 I139 XEQ 1139 CA 31 Q 1139 XEQ 1139 **E (**^33) Q I139 XEQ []] 3 9 2 128 C 8 RCL A RCLT RCLICI RCI. V 90 RCL H + 180 ---1 RCL K **A** TANCE EQN Then stroke RCL before each alpha input **M** (1) 3 4 RCL D 61 ^ 2 • 0 **G** 30 IN(V) EQN Then stroke RCL before each alpha input RCL G <u>a</u>^31 I139 XQ 1139 **G**[^3]] (Continued on next page)

Page 12P

1091	STO P
1092	FS? 3
1093	Distance
1094	FS? 3
1095	STO G
1096	FS? 4
1097	DISTANCE
I098 I099 I100 I101 I102 I103 I104 I105 I106 I107 I108 I109 I110 I111 I111	FS? 4 STO G CF 10 FS? 0 XEQ I184 FS? 1 XEQ I184 FS? 3 XEQ I168 FS? 4 XEQ I168 FS? 4 XEQ I157 RCL C RCL D XEQ T051
I 112 I 113 I 114 I 115 I 116 I 117 I 118 I 119 I 120 I 121 I 122	RCL+ W STO E RCL+ Y RCL+ Y STO N XEQ I146 VIEW D VIEW D VIEW E RCL E RCL = 0 PCL W
I 123 I 124 I 125 I 126 I 127 I 128 I 129 I 129 I 130	RCL-U x()y XEQ T062 STO D x()y 180 t
1131	360
1132	RMDR
1133	STO A
1134	XEQ I146

RCL P
S (3 (3 (3 ()
EQN Then stroke RCL
before each alpha input
FON Then stroke [RC]
before each alpha input
A 34
RCL G
<u> </u>
S (30)
XEQ 1 1 8 4
I 🛆 3 🗓
XEQ 1177
A 33
XEQ 1 1 6 8
S A 3 4
XEQ 1157
RCL
RCL D
XEQ 1051
RCL + W
RCL E
X ** Y
RCL + Y
RCL N
XEQ 1146
RI D
KIRI N
EN RI E
RCL E
RCL
RCL N
RCL - U
[X++y]
XEQ TO 6 2
RCL D
x++y
180
+
360
TAN 3
RCL A
XEQ 1146

[135	VIEW D
[136	CF 6
[137	GTO 1001
[138	RTN
[139	RCL Z
[140	×=0?
[141	AZIMUTH
1142 1143 1144 1145 1145 1145 1145 1145 1151 1152 1153 1155 1155 1156 1157	FS? 2 XEQ B001 HNS→ RTN FS? 6 VIEW A FS? 2 RCL A FS? 2 XEQ A004 FS? 2 VIEW B FS? 2 VIEW B FS? 2 VIEW B FS? 2 VIEW Q RTN SQ(S)+SQ(D)- SQ(G)
158	2×S×D
159	÷
160	ACOS
161	STO V
162	RCL T
163	RCL- V
164	STO C
165	→HMS
166	STO A
167	RTN
168	(S×SIN(V))^2
169	STO M SQ(G)
171	STO L
172	S×COS(V)

RH D GO 1001 XEQ RCL Z MODE 6 EQN Then stroke RCL before each alpha input **G** ^ 32 XEQ BOOI **6** 8 CO3X [72] **G** (136) RI RI A **C1 A 3 2** RCLA <u>6</u> <u>3</u> 2 XEQA004 **G**[^32] **E R H B G** (1) **E R** Q (Len) (XEQ) input as 1 equation EQN Then stroke RCL before each alpha input EQN Then stroke RCL before each alpha input ÷ COS RCL V RCL T RCL RCL C 8 RCL A XEQ EQN Then stroke RCL before each alpha input RCL M EQN Then stroke RCL before each alpha input RCLL EQN Then stroke RCL before each alpha input

I173	SQRT(L-M)	EQN Then stroke (RCL)	I181	(SXSIN(K))÷	input as 1 equation
I174	+	÷		510(0)	before each alpha input
1175	STO D	RCL D	1182	STO D	RCL D
1176	RTN	CA XEQ	1183	RTN	
1177	P-T	EQN Then stroke RCL	1184	SXSIN(V)	EQN Then stroke IRCL before each alpha input
	ATA //	before each alpha input	I185	STO G	RCL G
1178	STU K	RCL K	1186	S×COS(V)	EQN Then stroke RCL
I179	180-(K+V)	EQN Then stroke RCL	1107	070 0	before each alpha input
I 1 8 0	STO H	RCL H	1187 1188	RTN	

Maintenance (setting/clearing coordinate registers)

Partially clearing Registers

Again, looking at the control number at step 2004, assume that you have 45 or so used coordinate registers and you want to clear all but numbers 1-15 because they are the basic Control Points for your project that you will be using again tomorrow.

Use the number 150.01501. This means the highest register is 150, you want to stop clearing at 15 (015 because it requires three digits) and you are decrementing by 1 (01 because it requires two digits). The program will now clear only registers above 15 and below 151.

*In the earliest release of the HP35s calculators the checksums are not always the same in different calculators. For this book we will give the LN and checksum numbers, but you should *not* rely on the checksums to agree.

If you have the right LN number and the program seems to work, you are probably correct in your input, however you can have the correct LN number and still have an error in a line such as STO A when it should have been STO B. At the time of this THIRD PRINTING we still do not know if the checksum problem has been fixed in the calculators yet.

