
A Guide to the HP38G

Math Menu

and

Programming

Acknowledgments:

Thanks to Charles Patton of the design team of the HP38G for his help, both by

sharing an advance copy of the MATH menu specifications, and by providing

answers to many of my questions regarding syntax and usage. Also, many

thanks to Mark Howell, Sam Gough, and Jill Lovorn for sharing their programs and

expertise.

June 1995

A Guide to the HP38G

Math Menu

and

Programming

Acknowledgments:

Thanks to Charles Patton of the design team of the HP38G for his help, both by

sharing an advance copy of the MATH menu specifications, and by providing

answers to many of my questions regarding syntax and usage. Also, many

thanks to Mark Howell, Sam Gough, and Jill Lovorn for sharing their programs and

expertise.

June 1995

Contents

1. MATH FUNCTIONS

A catalog of all the built-in functions that don't appear on the keyboard of

the HP38G, along with specific syntax and explanations of the arguments

and the result returned by each function.

2. PROGRAM COMMANDS

A catalog of all the built-in commands that can be used on the HP38G

(either on the HOME screen or from within a program) along with specific

syntax and explanations of the arguments and action of each command.

3. PROGRAM CONSTANTS

A catalog of all the built-in constants which the HP38G uses to set

variables.

4. PROGRAM HINTS AND EXAMPLES

A discussion of programming basics, along with a collection of examples of

programs written for the HP38G.

Contents

Introduction

This is reference material in addition to that found in the Quick Guide for the

HP38G.

It includes a listing of all the different functions, commands, and constants

available on the HP38G, along with some hints on programming.

The MATH key provides the access to the catalogs for all the functions and

commands available that don't appear directly on the keyboard. When you press

MATH, you'll see the following menu labels along the bottom of the screen:

MTH CMDS CONS CANCL OK

The first three of these labels each activate a different "double” menu.

The currently active menu is indicated by a little white square lit up on one of

these three labels and also by a title bar you see at the top of the menu.

MTH activates the menu titled MATH FUNCTIONS

CMDS activates the menu titled PROGRAM COMMANDS

CONS activates the menu titled PROGRAM CONSTANTS

4 Introduction

Notes on Terminology and Conventions

What's the difference between a Function and a Command?

A Function always takes zero or more arguments and then returns exactly one

result. For example, RAND takes no arguments and returns a random number

between O and 1. COMB takes two arguments m and n and returns the number

of combinations of n items that can be chosen from m objects: COMB(m,n) =

m!/(n!{m-n)!). Functions can be used in any expression.

A Command also takes zero or more arguments, but it does not return a result.

Instead, a command may affect the value of a variable (STO> is a good example)

or it may perform some specific action (BEEP is an example). Commands are used

in programs, but you can also execute them from the HOME screen.

For each function and command, the syntax is given showing the required

punctuation (parentheses, comma's, semicolon's, etc.) and the order of any

needed arguments. Some specific types of arguments are indicated as follows:

<name> a variable name

<expr> any expression

<N#> a positive integer or expression that has a positive integer value

<R#> a real number or expression that has a real numeric value

<C#> a complex number or expression that has a complex value

<#> a real or complex number or expression

<{}> a list or an expression that has a list value
<M#> a matrix or an expression that has a matrix value

<V#> a vector or an expression that has a vector value

Other more descriptive abbreviations are sometimes used.

In this reference material you will find the following information provided for each

math function or programming command:

Name Syntax of usage (showing type and order of arguments)

FCN or CMD FCN(<arg1>,<arg2>...) or CMD <arg1>;<arg2>;...

Description of -> Description of Result or

Arguments Action

Additional notes of explanation are also provided as needed.

HELPWITH

If you type HELPWITH FCN or HELPWITH CMD on the HOME screen (where FCN

or CMD is a specific function name or programming command) a box comes up

which shows the syntax needed.

Notes on Terminology 5

Overview of the MATH FUNCTIONS Menu

1. Math Functions

Calculus Complex Constant Hyperb. List

0 ARG e ACOSH CONCAT

] CONJ i ASINH ALIST
TAYLOR IM MAXREAL ATANH MAKELIST

RE MINREAL COSH TILIST

T SINH POS

TANH REVERSE

ALOG SIZE

EXP TLIST
EXPM1 SORT
LNP1

Loop Matrix Polynom. Prob. Real

ITERATE COLNORM POLYCOEF COMB CEILING

RECURSE COND POLYEVAL ! DEG—RAD

z CROSS POLYFORM PERM FLOOR

DET POLYROOT RANDOM FNROOT

DOT UTPC FRAC

EIGENVAL UTPF HMS—

EIGENVV UTPN —HMS

IDENMAT UTPT INT

INVERSE MANT

LQ MAX

LSQ MIN

LU MOD

MAKEMAT %

QR %CHANGE

RANK %TOTAL

ROWNORM RAD—-DEG

RREF ROUND

SCHUR SIGN

SIZE TRUNCATE

SPECNORM XPON

SPECRAD

SVD

SVL

TRACE

TRN

Stat-Two Symbolic Test Trig

PREDX = < ACOT

PREDY ISOLATE < ACSC

LINEAR? == ASEC

QUAD * CoT

QUOTE > CSsC

| > SEC
AND

IFTE

NOT

OR

XOR

6 1. Math Functions

Syntax Guide to MATH FUNCTIONS

Calculus

0 o<name>(<expr>)

X, expression -----——-- > derivative of the expression

with respect to variable x

| J(<R#>,<R#>,<expr>,<name>)
a,b,expression,x ---------- > integral from a to b of

expression with respect to x

TAYLOR TAYLOR(<expr>,<name>,<N#>)

expression,x,n --—---——-- > Taylor polynomial about x =0

of order n

Complex

ARG ARG(<C#>)
complex number -------—-- > argument of complex number

[i.e., if the complex number z has polar form (r,t), then ARG(z) =

t]

CONJ CONJ(<C#>)

complex number -------—--- > conjugate of complex number

IM IM(<C#>)

complex number ---------- > imaginary part

RE RE(<C#>)

complex number -------—--- > real part

Constant (These take no arguments; they are special numbers with special

names.)

e the base of the natural log (rounded to 2.71828182846)

i (0,1) the standard square root of -1

MAXREAL the constant 9.9999999E499

(largest postive real number that can be represented on the

HP38G)

MINREAL the constant 1.0000000E-499

(smallest positive real number that can be represented on the

HP38G)

s the constant & (rounded to 3.14159265359)

1. Math Functions

Hyperb

ACOSH

ASINH

ATANH

COSH

SINH

TANH

ALOG

EXP

EXPM1

LNP1

ACOSH(< #>)

X emmmmeeees > inverse hyperbolic cosine of x

ASINH(< #>)

X e> inverse hyperbolic sine of x

ATANH(< #>)

X e> inverse hyperbolic tangent of x

COSH(< #>)

X e> hyperbolic cosine of x

SINH(<#>)

X e> hyperbolic sine of x

TANH(< #>)

X e> hyperbolic tangent of x

ALOG(<#>)

S> 10"x

NOTE: More accurate than the usual operation

EXP(<#>)

)> e"x

NOTE: More accurate than the usual operation e”x.

EXPM1(< #>) "exponential of # minus one"

X e> exp(x)-1

NOTE: More accurate near x =0 than with usual operations.

LNP1(<#>) logarithm of (# plus one)"
X e> In(x+1)

NOTE: More accurate near x=0 than with usual operations.

1. Math Functions

List

CONCAT

ALIST

IILIST

2LIST

MAKELIST

POS

REVERSE

SIZE

SORT

7. Math Functions

CONCAT(<{}>,<{}>) Concatenate two lists.

{X1,...,.xn}, e> {x1,...,xn,y1,...,ym}
{y1,...,ym}

NOTE: Joins two lists end to end to make a new list.

ALIST(< {}>) List of "first differences"
{x1,x2,...,xn} -> {x2-x1,x3-x2,...xn-x(n-1)}

IILIST(< {}>) Product of elements
{x1,...,xn} e> x1*x2*...*xn

ZLIST(< {}>) Sum of elements
{x1,...,xn} e> x1+...+xn

MAKELIST(<expr>,<name>,<#> ,<#>,<#>)

expression, variable name, starting value, end value, step size

---------- >
{expr|(name =start), expr|(name =start +step), ..., expr|(name =end) }

NOTE: Creates a list by evaluating the expression for each value of
the variable name obtained by stepping from the starting

value to the end value by the step size.

EXAMPLE: MAKELIST(X"2,X,1,5,2) creates {1,9,25}

POS(<{}>,<N#>) Position of value in list
{x1,...xn},y -> index value i such that xi = vy,

or O if no such i exists

REVERSE(< {}>)

list e> list in reverse order

SIZE(< {}>)
list e> size of the list (# of elements)

SORT(<{}>)
list e> list sorted in increasing order

Loop

ITERATE ITERATE(<expr>,<name>,<R#>,<N#>)

expression,name,x0,n ---------- > iterates the function

expression in variable name n

times starting with input x0

EXAMPLE: ITERATE(X"2,X,5,3) results in 390625 because we

have 52 = 25, 26%2 = 625, and 625”2 = 390625.

RECURSE RECURSE(<name>,<expr>,<N#>,<N#>)

index variable, Nth term, first term, second term

---------- >

allows you to store a sequence definition from within a program or from

the HOME screen.

EXAMPLE: RECURSE(N, N*2, 1, 4) STO> U1(N)

z 2(<name> = <N#>,<N#>,<expr>)

index n, starting index n1, ending index n2, expression for nth term

---------- >

summation of expression in index variable n fromn = ni1 ton = n2

Matrix

COLNORM COLNORM(<M#>)

matrix [[M]] =e> column-norm of M

COND COND(<M#>)

matrix [[M]] -> condition number of M

CROSS CROSS(<V#>,<V#>)

vectors [v1], [v2] --—------- > cross-product of v1 and v2

DET DET(<M#>)

matrix [[M]] e> determinant of M

DOT DOT(<V#>,<V#>)

vectors [v1], [v2] ---------- > dot-product of v1 and v2

EIGENVAL EIGENVAL(<M#>)

matrix [[M]] =-> [eigenvalues] (vector of

eigenvalues of M)

70 7. Math Functions

Matrix Continued

EIGENVV EIGENVV(<M#>)

matrix [[M]] -> {[[eigenvectors]],[eigenvalues]}

NOTE: list of matrix of eigenvectors and a vector of eigenvalues

IDENMAT IDENMAT(<N#>)

integern -> Creates an nxn identity matrix

INVERSE INVERSE(<M#>)

matrix [[M]] =-> multiplicative inverse M”™-1

NOTE: This performs exactly the same code as the x™-1 key.

LQ LQ(<M#>)

matrix [[M]] -> { [[L]] [[Q]] [[P]] }

LSQ LSQ(<M#>,<M#>)

matrices [[B]], [[A]] ---------- > matrix [[X]]

Note: X is the least squares solution of A*X =B

LU LU(SKM#>)

matrix [[M]] -> { [[L]] [[U]] [[P]] }

NOTE: result is list of three matrices L, U, and P, where P*L*U=M

and L is lower-triangular, U is upper-triangular with 1's on

the main diagonal, and P is a permutation matrix

MAKEMAT MAKEMAT(<expr>,<n1#>,<n2#>)

expression in | and J, n1 (number of rows), n2 (number of columns)

---------- >
matrix M(l,J) where the (I,J) entry is the value of the expression

QR QR(<M#>)

matrix [M]] -> { [[Q]] [[RI] [[P]] }

NOTE: result is list of three matrices Q, R, and P, where Q is

orthogonal, R is triangular, and P is a permutation

RANK RANK(<M#>)
matrix [[M]] -> computed rank of M

ROWNORM ROWNORM(<M#>)

matrix [[M]] -> row-norm of M

RREF RREF(<M#>)

matrix [[M]] -> reduced row-echelon form ofM

1. Math Functions 71

Matrix Continued

SCHUR SCHUR(<M#>)

matrix [[M]] =e> { [[Q]] [[U]] }

NOTE: result is list of two matrices where Q*U*Q"H = M

SIZE SIZE(<M#>)

matrix [[M]] =-> {n1, n2} (size of the matrix M)

SPECNORM SPECNORM(<M#>)

matrix [[M]] -> spectral norm of M

SPECRAD SPECRAD(<M#>)

matrix [[M]] =-> spectral radius of M

SVD SVD(<M#>)

matrix [[M]]---------- >{ [[U]] [[VI]] [S] }

NOTE: result is a list of two matrices and a vector where U"H * M

* V'H = diag(S) and U * diag(S) *V = M

SVL SVL(<M#>)

matrix [[M]] e> vector [S]

NOTE: Result is the vector [S] described in SVD as above

TRACE TRACE(<M#>)

matrix [[M]] e> trace of M

TRN TRN(<M#>)

matrix [[M]] =e> matrix transpose of M

72 1. Math Functions

Polynom

POLYCOEF POLYCOEF(<V#>)

[IN,...,r1] e> [aN,...,a1,a0]

vector of roots vector of coefficients

NOTE: The r's are the roots of the polynomial aNx*N + a(N-
1)*x*(N-1) + ... + alx + a0

POLYEVAL POLYEVAL(<V#>,<#>)

[aN,...,a1,a0], r --—--—-- > aNr*N+... +alr+a0

vector of coefficients, value of polynomial

real number

POLYFORM POLYFORM(<expr>,<name>,<name>...,)

expression, X, y... , ----—--——--- > expression

NOTE: Result is a polynomial in x whose coefficients are

polynomials in y whose coefficients are...

EXAMPLE: POLYFORM(X"2*Y*2+X*2*Y,X)

results in the polynomial (Y*2 +Y)*X"*2

POLYROOT POLYROOT(<V#>)

[aN,...,a0] -> [TN,...,r1]

vector of coefficients vector of roots

NOTE: The r's are the roots of the polynomial aNx"N + a(N-

1)*x*(N-1) + ... + alx + a0

Prob

COMB COMB(<N#>,<N#>) combinations

integersn, k ------——-- > n choose k

(n*(n-1)*..(n-k+ 1))

(1*¥2* .. (k-1)*k

! (<N#>)! factorial

integern cmmmmmeee- > n/!

(1*2%*, . .*n)

PERM PERM(<N#>,<N#>) permutations

integersn, k ----————- > n¥*in-1)*..(n-k+1)

RAND RAND

no arguments ---------- > random # between O and 1

1. Math Functions 13

Prob Continued

UTPC UTPC(<N#>,<R#>)

integer N, real X ----—-—-—-- > upper-tail chi-square distrib. Of

order N evaluated at X

UTPF UTPF(<N#>,<N#>,<R#>)

integers N1, N2, -> upper-tail F-distrib. of real

X order N1, N2, evaluated at X

UTPN UTPN(<R#>,<R#>,<R#>)

realsm, v, X =-> upper-tail normal distrib. Of

mean m, variance v evaluated

at X

UTPT UTPT(<N#>,<R#>)

integer N, real X -——-—-——-- > upper-tail Student’s T-distrib. N

of order N evaluated at X

Real

CEILING CEILING(<R#>)

real number x =-> least integer ° x

DEG—RAD DEG—>RAD(<R#>)

real number x =-> convert x degrees to

corresponding radians

FLOOR FLOOR(<R#>)

real number x --—------- > greatest integer ? to x

FNROOT FNROOT(<expr>,<name>,<R#>)

expression, x,x0 ---——————-- > r such than expr|(x=r) = 0.

Search is started near x0.

FRAC FRAC(<R#>)

real number x =e> fractional part of x

EXAMPLE: FRAC(23.438) returns .438 as result.

HMS— HMS— (< expr>)

real number x -—————eem- > convert hours/minutes/seconds

format to decimal hours

—->HMS —->HMS(<expr>)

real number x -—---———--- > converts decimal hours to

hours/minutes/seconds format

14 1. Math Functions

Real Continued

INT INT(<R#>)

real number x --———-mm-- > integer part of x

EXAMPLE: INT(23.438) returns 23 as result.

MANT MANT(<R#>)

real number x =-> mantissa of x

MAX MAX(<R#>,<R#>)

real numbers x,y-> maximum of X,y

MIN MIN(<R#>,<R#>)

real number x,y -------———-- > minimum of x,y

MOD <N#> MOD <N#>

integers m, n -> integer remainder when m is

divided by n

EXAMPLE: 27 MOD 4 returns a result of 3

% %(<R#>,<R#>)

real numbers x,p --------—-- > x*p*0.01

%CHANGE %CHANGE(<R#>,<R#>)

real numbers x,y ---------- > 100*(y-x)/x

%TOTAL %TOTAL(<R#>,<R#>)
real numbers x,y --——-—-—--- > 100*y/x

RAD->DEG RAD->DEG(<R#>)

real number x -> convert x radians to degrees

ROUND ROUND(<R#>,<N#>)

real x,integern ----————-- > round x to n digits

SIGN SIGN(< #>)

real or complex x ---------- > x/ABS(x) if x 0O if x=0

TRUNCATE TRUNCATE(<R#>,<N#>)

real x,integern ---------- > truncate x to n digits

XPON XPON(<R#>)
real number x ---------- > exponent of x when written in

1. Math Functions

scientific notation

75

Stat-Two

PREDX

PREDY

Symbolic

PREDX(<name>,<#>)

predicted value for the "independent” variable of the indicated

statistical dataset, given the "dependent” value

PREDY(<name>,<#>)

predicted value for the "dependent” variable of the indicated

statistical dataset, given the "independent” value

ISOLATE

LINEAR?

QUAD

QUOTE

(WHERE)|

16

This is an equational operator used to define equations like

A+C=C/2, but it is not a predicate (like = = in Test).

ISOLATE(<expr>,<name>)

expression or equation, name of a specific variable

---------- >

symbolic expression for specific variable in terms of the others

NOTE: An expression is interpreted as an equation with the

expression on one side and O on the other side of the =.

LINEAR?(<name>)

expression name ---------- > flag indicating whether the

expression is linear

QUAD(<expr>,<name>)

quadratic expression or equation, name of a specific variable

---------- >

symbolic expression for the two complex roots

NOTE: An expression is interpreted as an equation with the

expression on one side and O on the other side of the =.

QUOTE(<expr>)

expression ---memme- > suppresses expression eval.

NOTE: Single quote marks also work as in '<expr>"

| <expr> | (<name> = <#>,<name> = <#>,...) "substitution"
expression ,x, p1, y, p2,...

---------- >

expression evaluated where x=p1, y=p2, etc.

1. Math Functions

Test

IA
H

v

AND

IFTE

NOT

OR

XOR

<R#>

a b

<R#>

a, b

<R#>

a b

<R#>

a b

<R#>

a b

<R#>

a b

<R#> AND <R#>

a b

< <R#>

*

> <R#>

<R#>

<R#>

<R#>

<R#>

1 if a<b, O otherwise

1 if a<b, O otherwise

1 if a=b, O otherwise

1 if a=b, O otherwise

1 if a>b, O otherwise

1 if a=b, O otherwise

1 if both a and b #0,

O otherwise

IFTE(<predicate >, <true-clause >, <false-clause >)

a, expression1,

expression2

NOT <R#>

a

<R#> OR <R#>

a, b

<R#> XOR <R#> "exclusive or"

---------- >a b

1. Math Functions

---------- > expression1 if a=0,

expression2 otherwise

1ifa=0,

O otherwise

1 if a or b are non-zero,

O otherwise

1 if a=0 or b=0, but not both,

O otherwise

17

Trig

ACOT

ACSC

ASEC

COoT

CSC

SEC

ACOT(< #>)

X

ACSC(< #>)

X

ASEC(< #>)

X

COT(<#>)
X

CSC(<#>)

X

SEC(<#>)

X ---------- >

inverse cotangent of x

inverse cosecant of x

inverse secant of x

cotangent of x

cosecant of x

secant of x

Functions which are not in the MATH menu and not on the keyboard:

NEG

78

NEG(< # or V# or M# or {} or expr or grob>)

NOTE: same functionality as -x key.

1. Math Functions

Overview of the PROGRAM COMMANDS Menu

2. PROGRAM COMMANDS

Aplet Branch Drawing Graphic Loop

CHECK IF ARC DISPLAY—> FOR

SELECT THEN BOX —DISPLAY =

SETVIEWS ELSE ERASE —GROB TO

UNCHECK END FREEZE GROBNOT STEP

CASE LINE GROBOR END

IFERR PIXOFF GROBXOR DO

RUN PIXON MAKEGROB UNTIL

STOP TLINE PLOT— END

—PLOT WHILE

REPLACE REPEAT

SUB END

ZEROGROB BREAK

Matrix Print Prompt Stat-One Stat-Two

ADDCOL PRDISPLAY BEEP DO1VSTATS DO2VSTATS

ADDROW PRHISTORY CHOOSE RANDSEED SETDEPEND

DELCOL PRVAR DISP SETFREQ SETINDEP

DELROW DISPTIME SETSAMPLE

EDITMAT EDITMAT

RANDMAT FREEZE

REDIM GETKEY

REPLACE INPUT

SUB MSGBOX

SCALE WAIT

SCALEADD

SWAPCOL

SWAPROW

Not In Any Menu

DEMO

ON-1
ON-PLOT
LIBEVAL (not documented in manual)

PINIT (not documented in manual)

SYSEVAL (not documented in manual)

VERSION (not documented in manual)

WSLOG (not documented in manual)

2. Program Commands 79

Syntax Guide to PROGRAM COMMANDS

Aplet These commands control Aplets.

CHECK CHECK <N#>

integern e> checks the corresponding

function in current aplet

EXAMPLE: CHECK 3 means check F3 if the current aplet is

Function.

SELECT <AplLetname >
SELECT

ApLetname -> makes this ApLet the currently

active one.

UNCHECK UNCHECK <N#>

integern o> unchecks the corresponding

function in current ApLet

EXAMPLE: UNCHECK 3 means uncheck F3 if current ApLet is

Function.

SETVIEWS SETVIEWS <prompt_1>; <program_name_1>;<view#1>;
<prompt2>;<program_name_2>;<view#2>;

<prompt_n>;<programname_n>,<view#n>;

Usage of the SETVIEWS command:

Each triple prompt/program/view defines one line of the menu as follows:

<prompt> is a string to display in the menu.

<program_name > is name of a program to run if this line is selected.

<View#> is number of view to start after the program finishes

running.

The prompt can be specified in two ways besides an explicit prompt string

<prompt>. First, if <prompt> is an empty string (e.g., nothing appears

between two semicolons), the program name is used as the prompt.

Second, if both <prompt> and <program> are empty strings, and

<view > is one of the default "“special views', the normal prompt for that

view (e.g., ~Auto Scale’) is used.

The program can prompt for information and display information, and it can

modify all sorts of variables, and it can select another aplet, but it can't

directly start a view. That happens only indirectly when the program is

20 2. Program Commands

finished. If no program is desired, specify an empty string. The views are

numbered as follows:

1. PLOT 2. SYMB 3. NUM

4. PLOT setup 5. SYMB setup 6. NUM setup

7. VIEWS 8. NOTE 9. SKETCH

In addition, five catalogs are available as views numbered 10 - 14, and if

the ApLet has N default "“special views’, they are numbered views 15

through N +14.)

10. LIB 11. LIST 12. MATRIX

13. NOTEPAD 14. PROGRAM 15-? SPECIAL

If the prompt specified for a view is exactly the string ~Reset', or 'Start’,

the associated program is considered the ApLet's special reset or start

mechanism. Pressing the RESET or START softkey in the LIB catalog will

run the special reset or start program.

It can be useful to associate a program with an ApLet even though the

program isn't used directly in the menu of custom views. For example, the

program may be a subroutine called by other programs. To accomodate this

case, if <prompt> is exactly one space (" "), this triple is not presented in

the menu.

Branch These commands work in various combinations to make one or

more tests and to execute one clause of several. (See PART 4 for

examples of branching structures)

IF

THEN

ELSE

END

CASE

IFERR

RUN RUN <progname>

program name --—--—-—---- > runs the specified program

STOP STOP

no arguments ---------- > stops the current program

2. Program Commands 217

Drawing These commands act on the display.

ARC

BOX

ERASE

FREEZE

LINE

PIXOFF

PIXON

TLINE

22

ARC <cent-x#>;<cent-y#>; <radius#>; <start#>;<end#>

x,y,rns,e ceeeeeeee- > draws arc with center (x,y),

radius r, start s, and end e on

the display

BOX <x1#>;,<y1#>,;,<x2#>,<y2#>

x1,y1,x2,y2 e> draws a box with opposite

corners (x1,y1) and (x2,y2) in

the display

ERASE

no arguments ----———- > causes the display to be erased

FREEZE

no arguments ---————--- > causes display to not be

updated

NOTE: This can be used to "freeze" the display the way it was

when the program stopped running.

LINE <x-start#>;<y-start#>;<x-end#>;<y-end#>

x1,y1,x2,y2 -> draws a line from (x1,y1) to

(x2,y2) in the display

PIXOFF <x#>;<y#>

X,y e> turns off pixel with indicated

X,y coordinates in the display

PIXON <x#>;<y#>

X,y e> turns on pixel with indicated

X,y coordinates in the display

TLINE <x-start#>; <y-start#>; <x-end#>;<y-end#>

x1,y1,x2,y2 e> toggles a line from (x1,y1) to

(x2,y2) in the display

2. Program Commands

Graphic

DISPLAY—

—DISPLAY

—>GROB

GROBNOT

GROBOR

GROBXOR

MAKEGROB

PLOT—

These program commands use grob-variables (GO,...,G9) as

arguments.

DISPLAY— <name>

name —eeeee— > Stores display as a grob in

name

—DISPLAY <grob>

grob e> puts grob in the display

—>GROB <name>; <font#> <object>

name,f, o0bj ------ > creates a display grob using

font number f and stores the

result in name.

NOTE: The text that is converted into a grob is specified by object,

which can be either a grob-variable-name or a grob-

expression. (A grob-expression is an expression which

returns a grob.)

GROBNOT <name>

name —-eemeeee- > replaces the grob in name with

the "inverted” grob from name

GROBOR <name1>;<pos>;<name2>

name1,position, nameZ2

---------- >

replaces the grob in name1 with the bitwise OR with the grob in

nameZ2 starting at pos. (nameZ2 can also be a grob-expression)

GROBXOR <name1>;<pos>;<name2>

namel, position, nameZ2

---------- >

replaces the grob in name1 with the bitwise XOR with the grob in

nameZ2 starting at pos (nameZ2 can also be a grob-expression)

MAKEGROB <name>;<width> <height> <hex-data>

name, width, height, hex-data

--------- >

creates a GROB with the given width height and hex-data and

stores it in name

PLOT— <name>

name -> stores the Plot view display as

a grob in name

2. Program Commands 23

Graphic Continued

—->PLOT —>PLOT <name>

name ---e———e- > puts grob from name into the

Plot view display.

NOTE: Plot view is erased first, and grob is placed in upper left

corner of Plot view display.

ZEROGROB ZEROGROB <name>;<width>; <height>

name of grob variable, width, height

---------- >

creates a blank GROB with given width and height and stores it in

name

The following two commands also apply to matrices and lists.

SUB SUB <name>; <object>;<start><end>

name, obj, start, end ---------- > stores the indicated subobject

in name

NOTE: SUB takes matrix, list, or grob arguments. The object can

be a matrix-variable-name, a list-variable-name, a grob-

variable-name, a matrix-expression, a list-expression, or a

grob-expression.

REPLACE REPLACE <name >;<start>; <object>

name,start,object --------—-- > replaces the object in

<name> with <object>

Starting at <start>

NOTE: REPLACE takes matrix, list, or grob arguments. The object

can be a matrix-variable-name, a list-variable-name, a grob-
variable-name, a matrix-expression, a list-expression, or a

grob-expression.

Loop These commands are used in combinations to conditionally repeat

a clause several times. (See PART 4 for examples of looping

structures.)

FOR FOR ... = ... TO ... STEP ... END

DO DO ... UNTIL ... END

WHILE WHILE ... REPEAT ... END

BREAK

24 2. Program Command's

Matrix

ADDCOL

ADDROW

DELCOL

DELROW

EDITMAT

RANDMAT

REDIM

REPLACE

SCALE

These commands store their results in specified matrix variables.

ADDCOL <name>;<V#>;,<N#>

matrix name, vector of columndata, column position n

---------- >
inserts the vector of columndata as column n of the matrix stored

in name

ADDROW <name>;<V#>;,<N#>

matrix name, vector of rowdata, column position n

---------- >

inserts the vector of rowdata as column n of the matrix stored in

name

DELCOL <name>;<N#>

matrix name, position n

---------- >

deletes column n of the matrix stored in name

DELROW <name>;<N#>

name, positionn ---------- > deletes row n of the matrix

stored in name

EDITMAT <name>

matrix name --—--—---- > fires up the matrix editor on

the specified matrix

NOTE: Returns to program execution after you press OK

RANDMAT <name>; <row#>;<col#>

matrix name, number of rows n, number of columns m

---------- >

creates a random matrix with n rows, m columns, and stores the

result in <name>.

REDIM <name>;<size>

redimensions the object in <name> to <size>

REPLACE <name>;<start>; <object>

NOTE: See under Graphic for explanation.

SCALE <name>;<factor>; <row#>

matrix name, scale factor s, row number n

---------- >

multiplies row n of the matrix stored in name by factor s

2. Program Commands 25

Matrix Continued

SCALEADD SCALEADD <name>;<factor>;<row#1>;<row#2>

matrix name, scale factor s, row numbers n1,n2

---------- >

adds the product of s and row n1 of the matrix stored in name to

row n2

SUB SUB <name >; <object>; <start> <end>

NOTE: see under Graphic for explanation.

SWAPCOL SWAPCOL <name>;<pos1>;<pos2>

matrix name, column position n1, column position n2

---------- >

swaps columns n1 and n2 of the matrix stored in name

SWAPROW SWAPROW <name>;<pos1>;<pos2>

matrix name, row position n1, row position n2

---------- >

swaps rows n1 and n2 of the matrix stored in name

Print These commands print to an HP "Redeye" InfraRed printer.

PRDISPLAY PRDISPLAY

NOTE: Prints the current display on the IR printer

PRHISTORY PRHISTORY

NOTE: Prints the history "stack" of results from the HOME screen

on the IR printer

PRVAR PRVAR <name>

NOTE: Prints a variable's name and contents on the IR printer

PRVAR <name>;PROG

NOTE: Prints program's name and contents on the IR printer

PRVAR <name>;NOTE

NOTE: Prints a note's name and contents on the IR printer

26 2. Program Command's

Prompt

BEEP

CHOOSE

DISP

DISPTIME

EDITMAT

These commands ask for information or provide information to the

user.

BEEP <freq#>;<time#>

frequency f (cycles per second), duration time s (seconds)

---------- >

emits a tone at frequency f for s seconds

CHOOSE <var-name>;<prompt>;<item-1>;...;<item-n>

< var-name > is the name of the variable from which the number

of the initially-highlighted item will be gotten and into which the

number of the chosen item will be stored;

<prompt> is the top-of-box prompt or null, meaning no prompt;

<item-1> through <item-n> are the items to be displayed.

————————— >

CHOOSE displays a choose box and sets the specified variable to

real number O through n corresponding to whether the choose box

is cancelled (0) or an item is chosen (1 through n).

EXAMPLE: 3 STO> A CHOOSE A;

"AngleMode"; "Degrees("Degrees")";
"Radians("Radians")";

"Grads("Grads")"; "Current("HAngle")"

This displays a choose box with the prompt "Angle

Mode" and three choices "Degrees(1)", "Radians(2)",

"Grads(3)", "Current(??)" with "Grads(3)" (item 3)

highlighted initially. All of the arguments but <var-

name > are text items. (See Text Item Conventions

below.)

DISP <N#>;<item>

line n, text-item

---------- >

display on line n of the display text that was created from the text

item <item>

NOTE: Uses same conventions as MSGBOX. (See Text ltem

Conventions below.)

DISPTIME

no arguments -------—-—- > Displays current date and time.

EDITMAT <name>

matrix name

---------- >

fires up the matrix editor on the specified matrix; then returns to

program execution with OK

2. Program Commands 27

Prompt Continued

FREEZE FREEZE

no arguments ---——--—-- > Causes display to not be

updated.

NOTE: Freezes the display the way it was when the program

stopped running.

GETKEY GETKEY <name>

NOTE: Waits for a keystroke, then stores the corresponding

keycode in the given name

INPUT INPUT <name>;<title>; <label>; <help>; <default>

name, title, label, help, default

---------- >

1) prompts the user with title, label, and help,

2) initializes a command line with default, and

3) saves the resulting input in name.

NOTE: <title>, <label>, and <help> are text-tems, and

< default> is an expression and is evaluated. (See Text

Item Conventions below.)

MSGBOX MSGBOX <text-item>

NOTE: Displays a text-item in a message box.

WAIT WAIT <time#>

time in seconds -—--——--- > waits s seconds

Text Item Conventions

A text item is either a quoted string of text characters (for example, "ABC")

or an expression which will be evaluated and turned into a string of

characters (for example, SIN(O) is egivalent to "0") or a sequence of these.

The results of all of these will be concatenated together to form a single

string of characters.

An explicit character string can be delimited by either double quotes

("ABC") or single quotes ('"new" improved!'). Sequences of explicit

character strings will be concatenated ("Alice's " '"new"' " ApLet is here”

). (Note that sequences of expressions may be interpreted using implicit

multiplication.)

All this allows you to display labels and values. For example, with the text

item "A:" SIN(O), the displayed string would be "A: 0". Null arguments are

allowed.

28 2. Program Commands

Stat-One These commands are used for one-variable statistics.

DO1VSTATS DO1VSTATS <datasetname>

<datasetname> may be H1, H2, ..., or H5

---------- >

calculates STATS using <datasetname> and stores results in the

following variables: N2, TOTX, MEANZX, PVARZS, SVARJ, PSDEV,

SSDEV, MINZ, Q1, MEDIAN, Q3, and MAXZ.

RANDSEED RANDSEED <R#>

seed values -—————-- > sets random number seed to s

SETFREQ SETFREQ <datasetname >; < definition>

<datasetname> may be H1, H2, ..., or H5

--------- >

defines <datasetname> frequency according to <definition>

expression.

SETSAMPLE SETSAMPLE <datasetname >; <definition >

< datasetname> may be H1, H2, ..., or H5

---------- >

Defines <datasetname> sample according to <definition>

expression.

Stat-Two These commands are used for two-variable statistics.

DO2VSTATS DO2VSTATS <datasetname>

< datasetname> may be S1, S2,..., or S5

---------- >

calculates STATS using <datasetname > and stores results in

corresponding variables: MEANX, XX, 2X*2, MEANY, XY, XY"2,

2X*Y, CORR, COV, and FIT.

SETDEPEND SETDEPEND <datasetname>; <definition>

< datasetname> may be S1, S2, ..., or S5

---------- >
Defines <datasetname> dependent according to <definition>

expression.

SETINDEP SETINDEP <datasetname >; <definition >

< datasetname> may be S1, S2, ..., or S5

---------- >

defines <datasetname> dependent according to <definition>

expression.

2. Program Commands 29

Program Commands Not Found In Any Menu

Documented In Manual

DEMO

ON-1

ON-PLOT

DEMO

NOTE: This displays the an animated demonstration of some of the

HP38G's features.

ON-1

NOTE: Pressing ON and 1 keys at the same time causes the

current display information to be sent out through the cable

connection.

ON-PLOT

NOTE: Pressing ON and PLOT keys at the same time causes the

current display to be stored as a grob in GO.

Not Documented In Manual

LIBEVAL

PINIT

KULES
SYSEVAL

VERSION

WSLOG

30

LIBEVAL <library_number>; <routine_number>

NOTE: This executes the specified rompointer.

PINIT

NOTE: This is for port initialization.

SYSEVAL <address>

NOTE: This executes system object at specified address.

VERSION

NOTE: This displays the version and HP copyright message in a

message box.

WSLOG

NOTE: This displays the warmstart log.

2. Program Commands

3. PROGRAM CONSTANTS

Used for setting variables. All constants listed below (with the exception of

StatMode constants) also appear in input forms.

The name in the MATH menu is always the same as the name that appears

in the corresponding input form field. In some cases, the CHOOS-list that

corresponds to the input form field will show longer names.

The value of each constant is the same as its position in the MATH Menu

(which is also the same as its position in the CHOOS-/ist).

EXAMPLE: Degrees =1, Radians =2, and Grads = 3.

Overview of the PROGRAM CONSTANTS Menu

Angle Format SeqgPlot

Degrees Standard Stairstep

Radians Fixed Cobweb

Grads Sci

Eng

Fraction

S1...56fit* StatMode StatPlot

Linear Stat1Var Hist

LogFit Stat2Var BoxW

ExpFit

Power

QuadFit

Cubic

Logist

User

* constants in S1...5fit category are used to set S1fit,...,S5fit

CHOOS-list Versions of the Constant Names

Angle Format SeqPlot

Degrees Standard Stairstep
Radians Fixed Cobweb

Grads Scientific

Engineering
Fraction

S1...5fit StatPlot

Linear Histogram
Logarithmic BoxWhisker

Exponential

Power

Quadratic

Cubic

Logistic

User Defined

317 3. Program Constants

4. PROGRAM HINTS AND EXAMPLES

What is a program?

At its very simplest, a program is just a sequence of commands, each of which

performs an action. On the HP38G, a colon (:) is used to separate commands

from one another, while a semicolon (;) is used to separate the arguments to a

single command.

It is possible to write a program directly on the HOME screen in the Editline.

For example,

1 STO> A: 2 STO> B: 3 STO> C

followed by ENTER will return a result of 3 in Ans (the last command was 3

STO> C), but all three STO> commands were executed.

The PROGRAM CATALOG

To save a program and give it a specific name, press PROGRAM, and you will see

a title bar for the PROGRAM CATALOG. This contains a directory of all your
programs (even including the Editline). The menu keys here are:

EDIT NEW SEND RECV RUN

To create a new program, press NEW. You are prompted for a name for the

program. After you type in the name of your choice (it can be virtually anything

you please and of any length), press ENTER or OK.

The PROGRAM EDITOR

Now you are in the editor for your specific program, and the title bar should

indicate the name of the program. For example, if you named your program

MINE, then the title bar should read MINE PROGRAM at the top of the screen.

The menu keys now are:

STO> SPACE A.Z BKSP

The A...Z key is an "alpha-lock” which is can be toggled on or off (when it is on,

you will see a white square lit up on the menu label and the a symbol lit at the top

of the screen). If you press the colored shift key before toggling on A...Z, it

changes the key to a...z, a lower-case "alpha-lock".

32 4. Program Hints and Examples

Typing in your program

The flashing cursor arrow is an insertion marker. While typing a program you can

use the directional arrows for moving from line to line or from character to

character.

SPACE is on the menu for typing convenience

BKSP (backspace) is on the menu for typing convenience

STO> is the one command provided on the menu (performs the same action

as the STO> key in HOME).

DEL deletes the character under the insertion arrow (or the last character if

you are at the very end)

ENTER is aline feed

Numbers, letters, and other characters can be typed from the keyboard as usual.

You will find yourself making frequent use of the CHARS menu (for retrieving

relational symbols like <, >, 2, ® and the ' or " symbols). To use CHARS, use

the directional arrows to highlight the character you want, and then press OK. If

there are several characters in a row that you want to retrieve from the CHARS

menu, press ECHO first and then each of the characters you want (press OK

when you are done). Functions and variable names can either be typed in

character-by-character or retrieved from the VAR or the MATH menus.

All other programming commands (other than STO>) are found in the MATH menu

when CMDS is toggled on. An overview and the syntax for all these commands

are found in PART 2 of this reference.

When you are finished...

Once you are finished typing in a program, there is no special action necessary to

"EXIT". Simply go somewhere else! For example, you could press HOME to

return to the HOME screen, or you could press PROGRAM to create a new

program or RUN the program you have just written.

If you highlight the name of a program in the PROGRAM CATALOG, you can EDIT
it (this returns you to the program editor where you can make changes). SEND

and RECV are used to send and receive programs through infra-red

communications with another HP38G, or by serial wire connection to a disk drive.

Cutting and pasting the contents of one program into another

Sometimes you may find that you have several lines of program code that you

want to use in another program (perhaps with some slight editing). Rather than

type the code in again "from scratch”, there is a neat way to cut and paste one

program into another:

4. Program Hints and Examples 33

1. Position the flashing cursor at the location in the current program where you

want to paste in the contents of another program

Press VAR

highlight the Program category and press OK

highlight the name of the program whose contents you want to paste

toggle on the VALUE menu key (instead of NAME)

press OKo
s
W
b

Program structures

Programs that are simply sequences of commands can be very useful, but the real

power of programs becomes evident when they allow for conditional execution of

commands (branching) or repeated execution of several commands over and over

again (looping). You will see that the HP38G's programming language does not

use line numbers or labels and GO TO statements to accomplish branching and

looping.

HP38G Branching structures

You can either type these commands in character-by-character or retrieve them

from the Branch category of the CMDS menu in MATH.

IF ... THEN ... ELSE ... END

The syntax for this structure is as follows:

IF test clause Test clause is some statement that is true (1) or false (0)

THEN

do some thing:

do some other thing: These statements are executed if the test clause is true

and so on:

ELSE (The ELSE part is optional)

do some thing:

do some other thing: These statements are executed if the test clause is false

and so on:

END: Marks the end of the IF THEN ELSE structure

NOTES:

1. In the statements that follow either THEN or ELSE, it’s possible to have loops

or additional branch structures, including other IF THEN ELSE END structures.

2. The test clause can actually be any expression, and could have a value other

than 1 or 0. The THEN part is executed if the test clause has a nonzero value,

while the ELSE part is executed only if the test clause has the value zero.

34 4. Program Hints and Examples

Example:

IF A<0

THEN If A is negative, then the sign of A is reversed.
-A STO> A: (Note that this piece of code has no ELSE part.)
END:

Example: This program records the sign of A in S

IF A<O

THEN

-1 STO> S: S = -1 if A is negative

ELSE

IFA=0

THEN

0 STO> S: S=0ifA =0

ELSE

1 STO> S: S = 1if A is positive

END:

END:

CASE

This structure is handy if you have several clauses to test in order, and you want

to branch when you encounter the first true clause. The syntax for CASE is:

CASE

IF first test clause

THEN

do some thing:

do some other thing:

and so on:

END

IF second test clause

THEN

do some thing:

do some other thing:

and so on:

END

END:

4. Program Hints and Examples 35

Here are two examples to illustrate the distinction between the use of CASE and

simply a sequence of several IF THEN statements.

Example 1: Example 2:

CASE

IFI>5 IFI>5

THEN I-5 STO> S: THEN I-5 STO> S:

END END:

IFI>5 IFI>5

THEN 0 STO> S: THEN 0 STO> S:

END END:

IFI <5 IFI <5

THEN 5 — I STO> S: THEN 5 — I STO> S:

END END:

END:

Suppose we store 7in |l (7 STO> | on the HOME screen), and then run the first

program involving CASE. The result will be that 2 is stored in S, because the

clause in the second IF THEN statement won't even be tested.

In contrast, if the second program is run, the final result will be that O is stored in

S, for all three of the clauses in the IF THEN statements will be tested.

NOTE the punctuation differences between these two examples, particularly the

use of colons.

IFERR ... THEN ... ELSE

This structure is one designed for "error trapping.” Some program statements

may result in an error (thus causing the program to stop) depending on the values

of certain variables at the time of execution. IFERR will check any number of

statements for such errors and give you the chance to gracefully branch.

36 4. Program Hints and Examples

The syntax for IFERR is:

IFERR

first command:

second command:

et cetera:

THEN If an error resulted from any of these commands

do some thing: then these statements are executed

do some other thing:

and so on:

ELSE Optional—if no error resulted

do some thing else: then these statements are executed instead

do some other thing

else:

and so on:

Example:

IFERR

ABS(COT(X)) STO> C: If this statement results in an error

THEN (for example, when X=0)

1 STO> A: then store 1 in A

MAXREAL STO> C: and store the largest real number in C

ELSE If no error resulted,

0 STO> A: then store O in A instead

END:

For example, if X had the value O at execution, the attempt to store ABS(COT(X))

as the value of C would result in an error.

Rather than stopping, this program branches to store the largest real number that

can be represented on the HP38G as the value of C, and 1 is stored in A (as a

marker that an error occurred, perhaps).

If the X has a value that does not result in an error, then ABS(COT(X)) is stored in

C and O is stored in A.

4. Program Hints and Examples 37

RUN

You can also branch to other programs using the RUN command. The syntax is:

RUN name: where name is the name of the program.

HP38G Looping Structures

You can either type these commands in character-by-character or retrieve them

from the Loop category of the CMDS menu in MATH.

FOR = TO ... STEP ... END

The syntax for this basic loop structure is:

FOR <index variable> = <start value> T0 <end value> STEP <increment value >

do some thing:

do some other thing:

and so on:

END:

Example:

0 STO> S:

1 STO> P:

FOR I =1 TO 10 STEP 1;

S+I STO> S:

P*I STO> P:

END:

The result of this program is that the sum of the integers 1 through 10 is stored in

S, and their product is stored in P.

38 4. Program Hints and Examples

DO ... UNTIL ... END

This loop structure will repeatedly execute a body of statements until some test

clause is true. The syntax is:

DO

some thing:

some other thing:

and so on:

UNTIL <test clause>

END:

Example:

0 STO> S:

1 STO> P:

1 STO> I:

DO

S+I STO> S:

P*I STO> P:

I+1 STO> I:

UNTIL I > 10

END:

The result of this program is the same as the previous one: the sum of the

integers 1 through 10 is stored in S, and their product is stored in P.

WHILE ... REPEAT ... END

This structure repeats the execution of some body of statements while a test

clause remains true. The syntax is:

WHILE <test clause>

REPEAT

do some thing:

do some other thing:

and so on:

END:

4. Program Hints and Examples 39

Example:

0 STO> S:

1 STO> P:

1 STO> I:

WHILE T < 10

REPEAT

S+I STO> S:

P*I STO> P:

I+1 STO> I:

END:

The result of this program is the same as the previous two: the sum of the

integers 1 through 10 is stored in S, and their product is stored in P.

Example:

This example assumes that a positive integer has been stored in M. Then it sets

N =M and calculates 3N+ 1 if N is odd or N/2 if N is even. This becomes the new

value of N and the process is repeated until N=1. The value of S at the end of

the program's execution is the number of different values of N. (S=0 if M is not a

positive integer). NOTE: It is an open question whether S is finite for all positive

integers M.

IF (M <0) OR (M= INT(M))

THEN 0 STO> S:

ELSE

1 STO> S:

M STO> N:

WHILE N = 1

REPEAT

IF N MOD 2

THEN

3*N+1 STO> N:

S+1 STO> S:

ELSE

N/2 STO> N:

S+1 STO> S:

END:

END:

40 4. Program Hints and Examples

EXAMPLE PROGRAMS

Probably the best way to learn how to program the HP38G is to study some

interesting working programs that actually use many of the basic programming

constructions. We provide a few examples here along with line-by-line

documentation.

Simply entering these programs will give you some practice in finding commands

and familiarize you with the most important elements of program syntax. Some

suggestions are made for ways that you could adapt some of the programs to

perform other tasks.

HP38G EXAMPLE 1.

This program looks for perfect numbers (positive integers N with the property that

N = S, the sum of all positive integer factors < N). It tests all the positive

integers from 2 to 1000, displaying each along with the sum of its divisors. When

N =S, the program displays that value with the label "PERFECT". Hence, you

will see the last perfect number found by the program as it runs.

The program illustrates the use of WHILE REPEAT loops as well as IF THEN

statements. It also illustrates the use of the DISP command for displaying text

and values on specified lines of the display screen.

Program PERFECTN

ERASE: NOTE: Here are some possible

2 STO> N adaptations you could make to this

WHILE N < 1000 program:

REPEAT a) Save the list of the perfect numbers

2 STO> F: found in LO.

1 STO> S: b) Allow the user to input the value of N

WHILE F < WN (the largest integer checked).
REPEAT c) Search for prime numbers (or other

IF N MOD F = 0 THEN integers with special properties).

S+F+(N/F) STO> S:

END:

F+1 STO> F:

END:

IF N=S THEN

DISP 3; "PERFECT: "N:

END:

DISP 1;"N= ";N:

DISP 2;"S= ";S:

N+1 STO> N:

4. Program Hints and Examples 41

HP38G EXAMPLE 2.

This program illustrates the use of PIXON to light specific pixels on the display

screen, as well as the use of nested WHILE REPEAT loops. It assumes that your

viewing window is the default window [-6.5, 6.5] by [-3.1,3.2]. The program

checks the coordinates of each pixel in the third quadrant and uses the integer

part of the value of X*2+Y”*2 MOD 2 (i.e., the remainder after division by 2) to

decide whether to light up the pixels or not (1 for yes, O for no). It also lights up

the other three symmetrically located pixels in the other three quadrants. It takes

a while to run, but the result is a striking picture exhibiting some interesting

diffraction patterns. (The picture is stored in the SKETCH view of the current

Aplet.)

NOTE: Try replacing the expression X*2 + Y*2 with another expression

symmetric in X and Y to produce a more exotic picture.

Program RIPPLES

ERASE:

(Xmax-Xmin)/130 STO> H:

(Ymax-Ymin)/63 STO> K:

Xmin STO> X:

WHILE X < 0

REPEAT

Ymin STO> Y:

WHILE Y < 0

REPEAT

IF INT (X*2+Y*2) MOD 2

THEN

PIXON X;Y:

PIXON X;Ymax-(Y-Ymin):

PIXON Xmax- (X-Xmin);Y:

PIXON Xmax- (X-Xmin);

Ymax- (Y-Ymin):

END:

Y+ K STO> Y:

END:

X+H STO> X:

END:

DISPLAY— Page

42

Clear the display screen

Calculate pixel width H

Calculate pixel height K

Initialize X to left edge of screen

OuterWHILE loop begins

Initialize Y to bottom of the screen

InnerWHILE loop begins

If the integer part of

X2+Y*2MOD 2is 1, then

light up that pixel

and the symmetrically located

pixels in the other 3 quadrants

Increment pixel y-coordinate

Inner WHILE loop ends

Increment pixel x-coordinate

Outer WHILE loop ends

Save finished picture in SKETCH

4. Program Hints and Examples

HP38G EXAMPLE 3.

This program "animates" a numerical limit by displaying a simultaneous readout of

X and F(X) values. (In this case, the particular function used is SIN(X)/X.) Pay

particular attention to the INPUT statements, for they provide a very simple way

to give a professional look to your programs, complete with a title bar, a

highlighted input form (with a default value supplied if you wish), and a help

message to the user to prompt for the necessary input.

NOTE: This program can be adapted to investigate the limit of an arbitrary

function by adding an input statement that allows the user to select a function in

the SYMB menu. This program can also be used to investigate limits "at infinity"

by using MAXREAL or -MAXREAL as the TARGET value A, and setting a suitably

large increment H.

Program LIMITS

INPUT X;

"LIMIT ANIMATION";

"INITIAL X";

"ENTER STARTING X";

1:

INPUT A;

"LIMIT ANIMATION";

"TARGET" ;

"ENTER DESTINATION";

0:

INPUT H;

"LIMIT ANIMATION";

"DELTA X";

"ENTER INCREMENT";

.1

ERASE :

IF (X-A)H>0

THEN -H STO> H:

END:

WHILE 1

REPEAT

DISP 1;"X "X:

IFERR SIN(X)/X STO> Z

THEN 0 STO> Z:

END:

DISP 3;

"SIN(X)/X "Z:

4. Program Hints and Examples

Begin INPUT statement for X

Title bar

Label for input blank for X

Help message to prompt user

Default value for X

Begin INPUT statement for A

Title bar (same as before)

Label for input blank for A

Help message to prompt user

Default value for A

Begin INPUT statement for H

Title bar (same as before)

Label for input blank for H

Help message to prompt user

Default value for H

Clears the display screen

If H has the same sign as X-A,

then reverse the sign of H

This WHILE loop will run

until the user presses ON

Display the value of X on line 1

If the evaluation of SIN(X)/X results

in an error, set the value to O

Display the value of SIN(X)/X on line 3

X STO> 0: Store current value of X in O

X+H STO> X: Increment X by H

IF (A-X)(A-0) <0 If the new value of X is equal to A or
THEN on the opposite side as the previous
ERASE : value of X, then clear the display,
0 STO> X: restore the old value of X, and
H/10 STO> H: reduce increment by a factor of 10
END:

END:

44 4. Program Hints and Examples

HP38G EXAMPLE 4.

This is actually a "suite" of four programs (three are used as subroutines of the

main program, called ARCHIMEDES). They provide an exploration of the

Archimedean method for approximating the area of a circle. This program shows

how the SETVIEWS command operates. Look at PLOT to see the graph of a

regular polygon that can be inscribed in the unit circle. Look at VIEWS after

running the program ARCHIMEDES for special interactive options to change the

number of sides and to see the computed area of the regular polygon.

Program ARCHIMEDES

SELECT Polar:

1 STO> Angle:

1 STO> HAngle:

1 STO> R1(0):

0 STO> Omin:

361 STO> Omax:

CHECK 1:

3 STO> N:

120 STO> Ostep:

SETVIEWS

"DOUBLE # SIDES";

ARCHI.1:1;

"INPUT # SIDES";

ARCHI.2;1;

"AREA A=?";

ARCHI.3;1

Program ARCHI. 1

2*N STO> N:

360/N STO> Ostep:

Program ARCHI.2

INPUT N;

"ARCHIMEDES" ;

"# SIDES";
"ENTER NUMBER OF SIDES";N:

360/N STO> Ostep:

Program ARCHI.3

ERASE :

DISP 1;"A= ".5*N*SIN(360/N):

FREEZE:

4. Program Hints and Examples

Activate Polar ApLet

Set ApLet mode to degrees

Set Home mode to degrees

Set unit circle polar equation in R1

Set starting angle to O

Set ending angle to 361

Check R1 in SYMB

Initialize number of sides to N=3

Initialize angle step to 360/3 =120

Set up special views

First special view allows user

to double number of sides

Second special view allows user

to set number of views

Third special view will display

area of the inscribed N-gon

Double size of N, the number of sides

Set the corresponding new angle step

INPUT for N, number of sides

Title bar

Label for input blank

Help message to prompt user

Set the corresponding new angle step

Erase the display

Compute the area of the polygon

Freeze the display screen

45

46 4. Program Hints and Examples

	Cover
	Contents
	1. Math Functions
	2. Program Commands
	3. Program Constants
	4. Program Hints and Examples

