
HP-41 ADVANCED

PROGRAMMING TECHNIQUES

HP—-41C Advanced Programming Techniques

by Randy Cooper and John Nickel

® 1383, Inncvative Training Concepts
P.O. Box 218648

Houston, Texas 77218

This text may not be reproduced, either in whole or
in part, without the expressed, written consent of
Innovative Training Concepts.

ACKNOWLEDGEMENTS

Acknowledgements ares made to: Hewlett=-Packard for

designing the HP-41C Hand-Held Computer and all of its

peripherals with the user in mind, and to the PPC.

PEC

The 'EEG"CB&:&O&&E‘?%Ogamming Center), 1is.a non=-profit
€alifiornia. corporatiom: whose members are: dedicated to
prometing -~ ‘personal” computing. The PPG: has.thousands of
membars. arocund the wbfll&land'even behind the Irom Curtain.
They come firem allwalks of life: {Insuramnce salesmen,
chemisit s, fkafi&?o@&sQ .&n¢ eng'ineers. To the;PPC member, a

‘persamal”™ computer isyome that can be carried about ome”ss
person...availablet at’anystime. The first such device was
the HP=65 calculatior. :.;Thie: PPC had ifts origims’ in the HP-65
Users Group,~,uh1£hv5§as;50rmed in. 1974 by Ritchard Nelsonw.
THe PPE€ publishes® approximately 10 fssues of the.
PPC Caliculator Jourmal +'during a calendar year. A

PPC Computer Journal has been introduced in the last year to

accomodate thes many HECs.amd provide adequate coverage for
bocth calculator-type andmore complex HHC s. The PPC has

undertaken many projectsr, the most astounding to date has

been the PPC ROM. « It 1is an 8K <custom ROM containing

programs for synthetic programming, financial calculatioans,

data plotting and manipulation, and extended control of the

41C.

Personsy #nterested in obtaining more informatiom about
the PPC should send aj self-addressed, 9" x 12" stamped
envelope (R oz finst .class mail) to:

PPC CALCULATOR JOURNAL

Dept—ER~
2545 West Camden PBlace

Santa Ama, CA 92704

DISCLATMER

The material ‘gn;~znxsv book 1is supplied without

representation or: warranty of any kind. The authecrs and

Imnovative Traioing Comcepts assume no responsibility or

liabilicy, consequentialor otherwise, for the intentional

use or misuse of any waterial herein.

IP—-41 ADVANCED PROGRAMMING INDEX

SECTION 1

MACHINE ARCHITECTURE (ACTUAL/FUNCTION)

CALCULATOR INSTRUCTION SET / SAVING BYTES

INSTRUCTION TIMING / FASTER PROGRAMMING

SECTION IV

EXTENDED FUNCTIONS / EXTENDED MEMORY

SECTION V

SYNTHETIC PROGRAMMING

SECTION VI

APPENDICES

SECTION VII

HP—-41 / HPIL SYSTEM DICTIONARY

SECTION I

MACHINE ARCHITECTURE (ACTUAL/FUNCTION)

© Copyright 1383
INNOVATIVE TRAINING CONCEPTS

SECTION I

Machine Architecture (Actual/Functional)

"The HP-4LE Band Heldr Computer is truly a computer in its
own. right. gfg has: wfl of the fumetional components that
‘make up. a campuaegm‘ &*CPU” RAM}:tQ:&ge,: programmed, RQM”

off-Tine: mass &&oragé,,‘ports, 1mterféces;“amd peripheral&h

ALy off thfis;h&s beeni designed intor ar familiar caLéuYa&aE
‘sityle package.._With &kl of this: gephistication, it hagnmmr
aban&oned the fitLen&ly matufie ofa calcnlatoru; A caL&ul@@@n
is there fin. youm-maqd when you. need fit. It garfimrmfl

EeaEculwtionS* wpon your comwmaad,. with’ &lngle; keystrabes

wheldinmg powerful andi: co@plefiij'agemmcfons. . Eike: ‘g@@g
computern &g working %ncwteige, of {fus ‘architecture ffis

necessany: §a~mnigiae uas fulL capabil frcies. ~ The: Fohlawflmg

are .terms with which the architecture of the &41LC wiiLl
described:

PDefipitiomns:s

BIT = a bimary digit representing an ON/QFF,
_ “SET/CLEAR or a 1/0 state.
BYTE — a contiguous group of & bits. This 1is

theusualunit of information worked with

iny most computers. When usedas a unit
ef commundiication -uiormatlon, it may be
called a “character”) rezo

WIBBLE - a counvtiguous: group-ofi“éubitfi. - Thi's s
| swfficient to define a. single hexadecimal

or:-binary coded decimal (BCD) digict.

REGISTER - a hardware groupinog of 7 bytes used
by the HP—&1C to denote stack registers,
data regilsters, aod status rpegisters.

Thiiss %8s+ the same ’“register” that HP
refers to in their documentation.

CEARACTER -one byte of data corresponding to a
single displayed or printed character.

RAM - an acronym for ‘Random Access Memory”’
In. all refieremces here it will mean any

-semiconductor memwory within the 4IC that

is normally alterable, including extended

) REeMOTY ». ‘ ‘ e

ROM — an acronym for “Read Only Memory’, this

type of> .semiconductor memory is not

alterable and refers to that within the

41C and in external modules or

peripherals.

FURCTIONAL DESCRIPTIORN

The : 41C contains machine language programs in ROM that

tell it how to behave as a 4IC. Machine language 1is the

natural language of the CPU. Each machine language

instruction 1is made up of one or more 10 bit words in ROM

REemOTYy . This 1is in contrast to calculator instructiomé

which are from one to sixteen bytes long and may reside: Ln

RGM or RAM. © There are functionally three programs: - %g

editer, a rum-the interpreter, and am ogperating system-fkfiy

time the 41€C° stcuwned omi, youare Interactimg with one ofi

thesa programs.: >~These programs are interlaced to make ,the

most efficiemt ~ useof maemory space and-they. thrrze mamy

cCammOoD 3ubreutin§@

The_editor accept& keybioard input as instructions:. and

enters them fmto RAM memory, displaying the - contentst of
memory a% awcalcwlator ‘fnstruction and adding a computed

line number. This is the program that youconverse with whew

vou- invoke “PRGM’ mode andt key in yourcalculartor programs.:

It takes the function or string that you key in and converts

it into the appropriate: calculator imnstructiom ecoder for

subsequent review or execution.

The run-time interpreter is initiated by a R/S, XEQ;

time module <control alarm, auto-execute power=-on or card

read, or a wand execute command. It reads ianstructionsout

of memory amd performs all operaticns needed to execute

them, giving diagnostics and interfacing with peripheralks

where necessary. - It also compiles numeric branches and

checks for auwtc key assignments. When this program i's

ruoning, von are.in “RUN’ mode. '

The gperating svstem accepts nou-programzmable as well as

programmable commands and: executes them on a ome~to-one

basis. Mest of the housekeeping is done by the operating
system. When you f£irst turn the 41C on, this program will

inspect a RAM status register for system integrity and

ayecute a MEMORY LOST if corrupted. Tt also sets all of the.

display annunciatecrs to match their respective intermnal

states. The key assignment registers are checked for any

deletions thag c¢can be recovered for nuse. If the auto

execute flag is set it will transfer control to the run-time

interpreter. Peripheral status is checked and the wvalue of

the Y-register is displayed according to the current display

mode. Finally, this program will await vour command; Dbut

oot patientlwy...¥f more than ten minutes elapse between

kevystrokes with oo program runvcing and tahe continuous-on

flag is clear, {1t will turn itself off. ais program has

several modes: ‘normal’, “USER’, and “ALPHA .

All of these programs are contained in three intermal

ROM “s. The ROM for the 41C differs from other computers

in that it has 10 bitrs per word, rather thamn eight. Most

ROM“s that perform complex tasks are programmed in machine

language-. This should not be confused with applicatiom

ROM“s that are wusually ROM-based versions of calculator
language pregrams.

Figure= K. L shows~am example: of some -41C assembly
language: imstructions,.. - Liker the aissembly language:s

instructiems om mest computers, 1t is unreadable to most
people . The assembly L?ngfiége;iu&fituccibn‘mnemouics. shown
here ware created by PPC members who are deeply interested
,fiu~'éfii§.cy§e of programming. Assembly language programming
émg nfiegkifi’gequitqsifim&fi adiditiornal hardware and knowledge

off the fatenmal operatiom of rhe machine. =~ Thits mechod of
progamning is heyoeoxd ther needisr andt capabiliitiess of mosg
USELS.

READ 4.(X)
?NC XQ BINBCD

[O1AF)
“READ 6(N)
WRIT 12(b)
JN8C -0B
SLCT. Q
R=R -1
?ESET 6
RCR 2
C<>B ALL

SETF 1
CLRF 2
WRIT 11l(a)

Figure L.l — EBxample of HP-41C Assembly Language

Some adwamtages of assembly languageare: adding special

purpose ffastructions such as decimal~-to-hexadecimal

"conversion or alpha sortinmg, and dramatic speed 1increases

.zan be: realized over similar calculator instructioans. The

major disadvantages are: that it requires much additicnal

hardware, aissembly language conversion must be done by hand

or in another compurer, and there are no diagnostic routines

-tto. aid the zassembly language programmer.

NOTE: Assembly language programming is not supported by

Hewlett-Packard.

W

ROM: SPACE ORCANIZATION

, Rigure 1.2 shows the: layout of ROM memory space within

the 41C. The 41C can address up to 54K words of ROM memory

n 16 Dblocks of 4K words per block. The three internal

ROM“s. mentioned earlier reside in blocks 0 through 2. Al1l
oither ROM space i#is for external ROM’s. These ROM’s may be
of.two possible types: system ROM’s or application ROMs..

Ast prewiously menitioned’, whe application ROM’s; are
simpLy calculator instrpuctioms stored in a ROM memory. An
exceptionto thisrulex is the Petroleum Fluids Pac ROM: whiich

camtaius hoth.caLpul&fior in&tru;tlons anu machine cod&.;It

usess aachinefv&ode:Jm- Lgs: "all-base’ *onwersiom‘ facao:

prcgram to- increase anedn;fon speed« When plugged. in,. tb@se

ROM“s = take om an’‘addr‘eSS, da;in@a by theport in which - they

reside. The mechandtsmitha& mteates these- addresses: iisi buflit
nto.the port sg;ugtu:e itself.

gfiéqstem EOMflgs»gtagrammed;eflefinaly inmachine code amd

becomes a part of the operating system once it is attached.

These ROMs have a predetermined address regardless of which

port Imnto which they are plugged. . As shown Im Figure 1.2,

the timer module (Part me. §2182) has an address at block 5
no matter where it 1isplugged im. Most peripherals have

dedicated addresses in the first half of ROM memory. This

insures that there are no address conflicts whenever any

combination of.devices: are plugged in.

The space allocated for rhe “SERVICE ROM” is important
ime that when the 41C is powered up, a check I's made for the

existence. of a ROM at this address. If one doeg exist, all

contral is+ transfered to it. Tt <contains programs for

trouble~shooting the display, keyboard, and memory. The

“SERVICE ROM” isused by Hewlett-Packard for service check-
out of a 41C and £s anot. available to the public.

This tramsfer of control to a ROM at block 4 is used by

some assambly language programmers to create their own

operating system, independent of the regular operating

system. It may be speculated that someone may wuse this

feature to create other languages for the 41C such as BASIC,
FECRTRAN, oYtsomeapplication specific language.

HEX
BLOCK
ADDRESS® o

F T ‘
f ' PORT 4

- PORT 3 DEFAULT
, PORT
AADDRESSED!

 PORT 2 ROMS

HP—IL T
~ PRINTER(Either) EXTERNAL

SERVICE ROM V f

- (UNUSED) | l
SYSTEM ROM 3 ’f

SYSTEM ROM 2 INTERNAL ROMS

SYSTEM ROM 1 fiad 4

+1 BLOCK = 4,096 (4K) 10 BIT WORDS

 O
N
U
A
O
O
D
>
D
D

Figure 1.2 — ROM Space Addressing

RAM SPACE ORGANIZATION

The RAM space of the 41C is fairly complex in that it is

dynamically allocated by the operating sy tem for particular

tasks. Figure 1.3 shows a layout of the RAM space of the
41C, including that added by the Extended Functions Module

(XFM) and: the BExtended Memory Modules (XM). The RAM memorny

i orgawmized into ‘registers “”thatare 7 bytes wide. The

way that registers ace uculizadsfoa gtorage will be covered
later in. thilsi section.

The filipsit sifxfeem .registers .within RaM &gace, are
reserved &E thasEEW gtack and: status registers. - These

registers. cmmta&n‘im@ortant fnformwation. as to howPha rest

of RAM memory is te be Interpreted. These raglsters and:
their uses wfifil ‘be covered fm- detadill in the section: entl;;ai

“Synthetic Programming’.

There is: a “wodid’” between the top of the .status
registers amdthe bottom of the XFMmemory. Hewlett-Packard

may use this: area in future rewvisions or peripherals for the
41C. The XFM memory is added by plugging its module fnto a

pcrt. It adds. 127 registers for use as on-line files. Each

XM module added will increase this file capability by 238

registers, up toc a maximum of 603 registers. The

organization and use of the extended memcry will be

examined in Section IV.

The rest of RAM memory varies in size, depending upon

whether vyouw~hrawve a &ICV or a- 41C and a complement eof RAM

modules. Ta agy cases. Pigure L. 4. 3hows the relative layour
of what will be called “Gser RAM®. The data registers are

organized in descending numerical order from the top of user

RAM. Thes f£irst program stored will begin at the £first
regisrer beXow register R(O0 and continue on downward through

BEMO LY » Crher prnograms are stored below this one as they

are enteredor cleared. Key assignments are stored from the

bottom of user RAM and countinue on up as required, with two

key assignments per register used. The space just above the

key assignments {s used up by timer module alarms. The

memainiang 8space between the uppermost key assignment oOr

alarm and the permanent ~.END.’ is what is displayed as free

register space in the display 700 REG nnn”, where ann is the
number of firee registers. This number will vary based upon

the amount of key assignments made and deleted, alarms set,

program files (packed amd umpacked), and the current SIZE.

\
n

HEX 1 REGISTER ABSOLUTE
ADDRESS (7 BYTES WIDE) REGISTER

SFF | 1023

EXTENDED MEMORY #2
(238 RECISTERS)#

300 - 768
2FF | 7 - _

- EXTENDED MEMORY #1
w (238 REGISTERS)s

—200 512
1FF

USER RAM
(319 REGISTERS)

0Co_ | 192
OBF |EXTENDED FUNCTIONS MEMORY |
040 | (127 REGISTERS)» | 064

TT o
00F STATUS REGISTERS goy

sADDRESS DIFFERENCES WiILL SHOW THAT EXTENDED
MEMORY DOES NOT FILL THE ADDRESSES COMPLETELY.

REFER TO THE XFM / XM SECTION IV FOR MORE DETAILS.

Figure 1.3 — RAM Space Addressing

B
I
T
N
u
m
b
e
r

6
5
4

3
2
1

0
O

O
1

1
1

01
1

|
_

|

—

~ O

M
S
N

L
S
N

(M
os
T

SI
GN
IF
IC
AN
T_
NI
BB
LE
)

(L
EA
ST

SI
GN
IF
IC
AN
TN

IB
BL
E)

1
B
Y
T
E

Fi
gu

re
1.

5
—

D
a
t
a

N
o
m
e
n
c
l
a
t
u
r
e

DATA REPRESENTATION AND NCMENCLATURE

As in most microcomputers the 41C°s memory and most of

its communication with peripherals have to do with bytes. A

byte is a block cf eight contiguous bits and 1is usually

represented by a number in decimal notation frem O to 255,

or in hewxadecimal notation (base: 16) by two characters ‘007
te °“FF’. Bigure L.5 shows. hcwwe will referemce- thes parts

of the biyte im further discussions. The eight bits will be
mumbered*fron 0 to: 7 from the right to- the left. Further,
bits 7Ghzowgh 4. wfiLJ be designated as the "Most Signiflcawt

Nibble’" (MSN) and.bits, ¥ through0 will be shes ”U@aa&
&ignifif@;m&.fiibbfi@~“(LSNL

Biigupe 1.5 =Data. Nomenclacure

BCD NOTATION

The 41C uses the nibble in numeric data to represeat a

single decimal digit internally in what is termed “Binary

Coded Bac¢mal noctcation (BCD). That is, two. consecutive:

nibbles having the decimal notation of “97 would be:
interpreted as being99 in base 10 rather than base sixteen.

Figure .I.6 . gives some examples of BCD versus hexadecimal
(EEX) nqtatimn.

Bit Pattern n BASE 10 VALUE IF
in byte = HEX BCD INTERPRETED AS
(MS®) (LSN) NOTATICN NOTATION HEX BCD

¢A) oeoL ooro 12 - T2 18 12
(B) 0100- 0001 41 41 65 41
(C) 1061 Q111 97 97 151 97
(D) Q110 0111 67 67 103 67
(B) LLLI: k010 FA N¥OT VALID 250 ——
(F) PUIIBE 1601 39 99 153 89
{G) 801071011 2B " NOT VALID 43 ——
(H) 0:kCO OLOL &5 45 69 45

Figure 1.6 - EEX ws. BCD Notation

1

RE
GI
ST
ER

W
o
m
o
w

4

2

7
BY
TE
S

l
1]

13
11

92
 1
11
10

Fi
gu
re

1.
7
—

Re
gi
st
er

Or
ga
ni
za
ti
gn

ol

8

71

6
g

'
e
l
T
y

Y

1
4

N
I
B
B
L
E
S

(5
6

BI
TS
)

As 1is evident, BCD notation is the same as HEX notation

except that the nibbles are never allowed to be greater than

9. The 41C uses BCD notation to- store numeric data. To ar

computer, BECD is not the best notation to use for

computations, but it is the easiest notation to comnvert into

human readabler form. When the41C is operated as a manual
calculator, the result of every operation must beput into

the display. BCDnotation makes thisa quick and easy task.

On. large coemputerns: where calculatlons and. thraughput are:

in@ortamaw~.wther&, meltations: awe used” mowever”.« the

: progranming, tm denvernt rhese notations to a readable fo:m

for ouagut ceusum&s ;mheusands gff ‘bytes. "It would be

umeconomic o' use fhatmuch memoryin a hand-held _qnic

just togéisplay,&_mgmben.

THE REGISTER

The register is* ghe gross unit ofRAM memory in the &%1C.
A register may be said to be 7 bytes long, 14 nibbles long,

or 56 its long. A uwanit of 7 bytes is. unusual im
computers, but some unit of storage is- needed when talking

about or wmanaging wmemory. The unit used must have a

physical wmeaning for the user. Since a single register is

required to store a number in a numbered storage register,

the unit of storage was chosen as the register. Figure 1.7

show the convention used when referring to parts off a

register. B? also refers to this unit as a register 1im

their documentation.

Figure 1.7 - Register Organization

NI
BB
LE

#

1
1
1
0
,
9
8
,
7

6
,
5
4
,
3
2

1
1
4
1
1
1
5
9

|
2
!
/
6
|
5
|
4
]
0

 G
N

S
:

O M
A
N
T
I
S
S
A

O
o

9

M
A
N
T
I
S
S
A

1
0

B
C
D
D
I
G
I
T
S

W
I
T
H

I
M
P
L
I
E
D

D
E
C
I
M
A
L

P
O
I
N
T

B
E
T
W
E
E
N

N
I
B
B
L
E
S

2
A
N
D

3,
IN

N
O
R
M
A
L
I
Z
E
D

I
N
T
E
R
N
A
L

N
O
T
A
T
I
O
N
.

Fi
gu
re

1
.
8

—
N
u
m
e
r
i
c

Da
tg

St
oe

rg
ge

"E
XP
ON
EN
T

2
BC
D

DI
GI
TS

S
I
G
N

O
F

E
X
P
O
N
E
N
T

0
"

g
=
"

C'a
.z

t
h
e

e
x
p
o
n
e
n
t

is
ne
ga
ti
ve
,

it
is

e
x
p
r
e
s
s
e
d

in
h
u
n
d
r
e
d
'
s
c
o
m
p
l
i
m
e
n
t
)

NUMERIC DATA

The ’register' is used in many ways inside the 4IC.

Figure 1.8a shows the organization of the register when 1it.

contains numeric data. €xponent i store Qs

iDC)fi- C.vfiphuuu3%~

e -@4 [60
o ~ 04 e 4

GQ 6 —HexofEgee

Efié@re-la8a~- Numeric Data Sbarag&-

Nibble #13 contains the sign of the mantissa. A “0°
here denotes a positive number and a “97 denotes a negative

number. Nibbles 12 through 3 contain the tem digits of the
mantissa in BCD notation. Nibble #2 is the sign of the

exponent using the same convention as in nibble #13. The
expounent (base 10) is stored in the last two nibbles, 1l and

C. The exponent, if positive, 1is stored exactly as it is

written im BCD. When negative, the expounent is stored in

“hundreds cowmplement’ form. This means that the exponent is

subtracted from 100 and the resulting two digits will be

stored in its place.

NUMBER AS NORMALIZED STORAGE

IT IS ENTERED NIBBLE NUMBER

INTO TEE 4IC 13 121110 9 8 7 6 5 & 3 2 L 0O

(G) 987654 E-5
(8) -10.101981L
(I) -9.999999999E~99

(A) 6.082 E-26 0 6 0 8 2 0 0 6 0 0 0 9 7 &
(B) =—-. G078 3 7 & 0o @ 0 0 0 0 0 0 9 9 7
(C) 1492.1983 o I 4 9 2 T 9 & 3 0 0 0© 0 3
(D} 299.6 E-6 o 2 ¢ 9 6 0 0 0 0 0 0 9 9 &
() PT o ® 1 4 I 5 9 2 6 5 4 0 0 0
(F) ¢ ¢ ©0 0 0 0 6 0 0 0 0 O 0 0 0

¢ 9 8 7 6 5 &4 0 0 0 0 0 0 @
9 r o I o0 I 9% 8 1 © 0 0 0 1
9 9 9 9 9 9 9 9 9 9 9 $ 0 L

Figure 1..8b - Examples of Wuweric Data Storage

N
I
B
B
L
E

1
3
1
2
1
1
1
0

9
8

7
6
5

4
3
2
1

0

1
\
«
4
|
2

4
|
F
|
4
|
E
|
4
|
E
|
4
|
9
]
|
4
|
5

T
L
L
L
t
L
1

3
C
4

C
H

C
6

C
1

 C
2

AL
WA
YS

l
|
1
i

:

C
H
A
R
A
C
T
E
R

D
A
T
A
S
T
O
R
E
D

RI
GH

T—
JU

ST
IF

IE
D
A
N
D

LE
FT

FI
LL
ED

WI
TH

NU
LL

S
(0

0)

N
O
R
M
A
L
L
Y

"
O
"

(S
EE

DI
SC

US
SI

ON
) Fi
gu

re
1.

9a
—

Al
pi

ia
D
a
t
a

S
t
o
r
a
g
e

Figure 1.8b shows some examples of how different numbers
are stored. Note that no decimal point or “E” 1is stored
implicitly. The decimal point is assumed between nibbles L2

amd I1. The number 1s normalized after data entry or

numeric operations so that nibble #12 is non-zero, except if

the entire register is zero.

ALPHA DATA

Bhen an: "ASTO sa&raulon ts executed, an. "ALPHA DATAS
vaiue. fa Staggdhmto a statusz or numbered data registerns
ThfisAva&ue Ay, ccmfiaim,wg to &Lnficharaccers,. depanding upom

what' wa's fn thes alipha: registar b&fore the operation. - Figure

L. %a: shows ahe gsnaraLTayout of.a neghstencontaining alpha

data.

Eigune l.%a - Alpha Data Storage

The first mibble will have the value of “T°. The sgix

byces defined by nibbles Il through 0 will contaian the
actual alpha data. This data will be rnight justified and

filled ¢to the ITeft with nulls (00) if fewer than six

characters are stored. The data stored for each character
st the gsawmeas theprinter ACCHR or XFM XTOA code in HEX

fermat. (Wotethat the way a character displays and the way

that it prints owt are not necessarily the same. See Figure

1.9 for az:abl&baf displayed versus printable characters.)

Nibble fl’ ‘may countain a remnant from the seventh byte

‘i the alpitra registar, depending upon how many characters

are in the alpha regifster. It is this nibble that will

causetwo seemingly identical alpha data strings to compare
as not equal.

To demonstrate:

1) PRGM off, ALPHA on

2) Key °“ABCDEF’
3) ASTO X

4) Append “G°
5) .ASTO Y
o) ALPHA off
7y X=v? | |))

The &&splay wiLL.say&EQ Press the baakarrow key: to see
“ABCDEE’ Ffieafid‘gk>vtmtsee “ABCDEF’ Even though the
stings appaan;sequal,, ghley arved*fferent._fi Now key-tbe
é&llowingB fl,4- - o

8) MEPHAom
9) €LA. .

CL0) ARCE-X
'Lry ASTOX
) AL?H‘Ahi @F’I

L3) RYi7 _
The display should: powsay ~YES. In the precess of
ARCL“ing thei-buggy’ string, the problem was eliminmated.
This problem insome 41C%s has been dubbed “BUG 7° by the
PPC. Whenever .ar bug {s referred ts, 1t will mean a
deviation in caliculator behavior thanm is to be expected from

the Owner”s documentation. Several “bugs’® have been
cataloged by the PPC since the 41C was introduced. Many of

these have been corrected in later revisions of the internal

ROMs .. In a complex wmachiine there is always the chance that

some: . Features will mot-irehave asexpected.

Pigure L..9%: showssom: examples of register contents
after an ASTOoperation.

CONTENTS: OF ALBHA CONTENTS OF X AFPTER “ASTOX°
REGTISTER - ‘ BYTE #

-~ ®EFORETASTO: X7 & 5 &.3% 2 1 0

(A) ABCDEF | | 10 41 42 43 44 45 46
(B) ABC 10 0C 00 Q0 41 42 43
(C) T+Y=77 10 00 58 2B 59 3D 5A
D) s«TuCo 10 49 2E S4 2E 43 2E
(E) FILENAME? 1D 46 49 4C 45 4E 41
(F) ITEM COST? IF 49 54 45 4D 20 43
(€) 13 LETTERS. .. 10 31 33 20 4C 45 54
¢H) (clear) 19: 00 069 00 CO 00 0O
(1) 2nETEENLETTERS... 13 &4E 49 4E 45 54 45

Figure 1.9b —9Exanples cof Alpha Data Storage

The actunal byte values used in the alpha register may be

interpreted differently depending upon their use. In Figure

L.%c, it caan be seen that a byte with the value of 0l will

display as a “stick man’ in the 41C display but will print
out to the printer as a small “x’. The basic printable
characters of the 41C tend to follow standard ASCII

¢(American St.andiard. Code« for -Information Interchange)

conventione - Wiren wsimg: the Video Interface, ASCII
convention: 1iss followed for a2kl printable characters, - and
some control codes: ame implemenmtedi:s | Figure 1.9d showsthes
ASCIT code as: Iimplememted.biy &he’fiiiéd’fimterfagar

11

LEAST MOST SIGNIFICANT NIBBLE

SIGNIFICANT (SEE NOTE BELOW)

NIBBLE 0 1 2 3 4 5 6 7

0 - - SP 0 @ P * P

1 - - ! 1 A Q a Q

2 - - " 2 B R b r

3 - - i 3. C S c s

4 - — $- & D T d t

> - = 2. -3 E o e u

‘& - - § ’ 6 F v £ v

7 - - ’ 7 G W g W

8 BS. - (8 B X h X

9 - -) 9 I Y i y

A LF - * : J Z 3 z

B - ESC + 5 K [k {

C - - . < L \ 1 !

D CR = - = M] m ¥

E - - . > N - n =

¥ - -/ ? Q _ o

Note: = the video {interface will isplay va printable

character in reverse video if the most significant nibble 1is

greater tham 7. This in effect maps the MSN for reverse
video characters from 8 to F instead of 0 to 7. To reverse

a characcer using XTQOA or ACCHR, just add 128 to its decimal

character value.

Figure 1.9d - Video Interface ASCII Code Table

12

SECTION I - QUIZ

1. The HP-41C RPN stack (registers X, Y, Z, T, and L)

occupv:

a. 5 bytes

D~ 5 registers
(c..” 35 bytes
@ b andc —5csveech
ee. @ aad c

2. _When the HB-41C is turmed “ON7, the, first program
‘the user fmteracts with is: '

a;.. the editor
@ED the rua-time imterpreter

the aperating system
g ¢ or b ({f £Tag 1. sew

- e.. nome of the above-

3. HP=41C assembly language is:

«&s> organized in 10-bit words
b. wusually programmedinto ROM’s
c. wunintelligible to the average user

d. not supported by Hewlett-Packard

d?). all of the above —p(o¢rec*

4. A bare HP-41CV without peripherals. has:
12K se 3RO :

a . C}K of ROM7s built in
b. 319 registers of ROM available

C:} 319 registers of User RAM available (exc. status)
d. a and b

/(53 a and c¢ ;q“wl‘.zm ‘zk*«-gffi%‘o\,

5. A byte contaias the bit patterm: 0100 0101

It is:

& 45. coded in BCD

b. the ASCII letrer "E"

c. 69 coded in BCD Ty X>W7
fi:? a and b)

‘@« B andc

SECTION I - QUIZ (continued)

The register data in Figure 1.8a is the result of which

of the following keystrokes:

a. 3.14159265, ENTERT, lE&4, *
b. PI, LE&4, + |
Ca PI, &, Y‘TK

g 314L5.92654E~8,, ENTERT
a LE4, PT,'*

Whiich of Eha-fi@hl@@fing aibble &e&o&ing coulld mat have

been the resulit: ofan ASTO operation?

(2. Ol &1 42.43 44 45 46
b. LF 42 4B 4E 4E 49 45
c. 1000 00: 00 00 00 00
d. 13 00 00° 00 20 20 20
e. 1F F7 00° 00 00 41 2D

A value &isplays in: the Xregisteras: -3L4

Which of the following nibble patterms could produce

the display?

a. 93 14 15 92 54 00 0O

b. 10 2D 33 2E 31 34 20
c. 93 13 50" @60 00 08 QO

f&32 a anmd ¢
~all of rheabove

A deco&fing of the X register yields the following

nibbles: ‘ ;
0L 23 &5:66 89 09 56

the modesst ENG5, the display will show:

1.23456 —56a.

b. "12.3456 -~44
C . 12.3457 =57

il 1.23457 —44
12.3457 -445
Noue ,égiz. obove 12,3457 THS

-
m

10.

SECTION I -QUIZ (continued)

If the highest numbered storage register in an HP=-41CV is

register 14, and it has 13 packed key assignments, no

timer module, and the PRGM mode display shows:

M70 REG 256", then theprogram space occcupies:

a. &% registers

: 4'1* ._E&g-;i:s:t er
s

e vi&;fisgifitars

- dte. 35 registers .
nones aff theabiowves

2l

SECTION I - QUIZ

The HP-41C RPN stack (registers X, Y, Z, T, and L)

occupies:

a. 5 bytes

be 5 registers

cies 35 bytes
die¢ b and ¢
ele. a and c

Whafi the Efi;fiifilf5fufiéd 0N, thefirstc pwogram

the -wser imteracts:with is:

a. the editor

be. the runm=-time, imnterpreter

¢. .the operatingsystem
de ¢ or b (if £lag I'l set)

e. none of the above

HP-41C assembly language is:

a. organized in 10-bit words

b. wusually programmed into ROM's

c. unintelligible to the average user

d. not supported by Hewlett=-Packard

e. all of the above

"A bare HP-41CV¥ without peripherals has:

a.. 12K of ROM s builc in

b 319 registers of ROM available

c. 316 registers of User RAM available (exc. status)

de a and b '
e. a and c

A byte contains the. bit pattern: 0100 0101
Lt. is:

a. 45 coded in BCD

b. the ASCII letter "E"

Ce. 69 coded in BCD

dte. a and b

e. b and c

SECTION I - QUIZ (continued)

The register data in Figure 1.8a is the result of which

of the following keystrokes:

a. 3.14159265, ENTERT, LE4, *
b. PI, LE&4, + |

d. 31415.92654 H-8, BNTERT
e. LE4, PL, *

Which of the:following nibble decoding could not have

been the resuwlt of an ASTO operation?

a. 0Ol &1 42783 44 45 &5
b« 1F" 42 4F 4E 4E &9 45

C. 10 00 00 00 00 09CQ

d. 13 @0 00 00 206 20 20

e . IF E7 00 00 00 41 2B

A wvaluedisplays in the Xregister as: -3.14

Wonich of the following aibble patterns could produce

the display?

a. 93 14 15 92 54 09 GO

. 10 2D 33 2E 31 34 Z¢o

c. 93" 13 56-00 60 Q0 ¢G¢

d. a and c

e. all of the above

A decoding otf the ¥ register yields the following

nibdbles:

@1 23 43 66 8% C9 56

If the mode {is ERE 5, rthe display will snow:

2. 1-23456 =56
b. 12.3456 =45
c. 12.3457 =57
d. 1.23457 =45
e. 12.3457 =45

SECTION 1I

CALCULATOR INSTRUCTION SET/ SAVING BYTES

© Copyright 1383
INNOVATIVE TRAINING CONCEPTS

‘Taction IL

Calculator Instruction Set/Saving Bytes

The: wse off mem&ry'sgace for programming is transparent

to cbé‘casual prog:ammer in most situwations, except when&

keystroke yialds “PACKING” eseives "TRY AGAIN’. .. The user Cist
‘thien faced mith deleting kay dss;gnments” alarms, and

fprog*afls o'r *a&iziag his: memony for fewer data registerss.

The4 secious programmer of the 41C wants more than his:

woirk to Gtes thhin the confines of memory, but to use only

as- mum&mamary‘ as*is mecessary to perform all of thes

algorichms: reguiired. TFhis is merethan a matter of pride;:

using lessmemoryhas manyadvantages: |

More space is available for alaoms, key assignments,

or data registers. -

Smaller, cleaner programs tead to rum faster.

Fewer card reads or less extended memory is needed

to save a programe.

MemorTy Space saved can be used for enhanced user

prompting or error checking..

When writing programs for ROM installatiom, more

programs can f£it into the space allowed.

If most users will be keving the program in manually,

a shorter program would be appreciated.

In order to uwderstand byte saving technigques, the

manper in which rthe &41C stores calculator instructions ianto.

memory will be discussed. This section will look at byte
utilization of comparazble instruction combinations and the

classic case of subroutine usage versus in-line code. This

section is neot an attempt to show a lot of “tricks’ to save

MEMOTY « There are several excellent texts available that

list such ‘tricks’ . Calculator Tips and Routines, by John

Dearing, is an especially good cne and is the product of

many programmers and many years of calculator programming

experience. This section is inteunded to be an introduction

to the 41C°s instruction set and good prograzming
technigues.

INSTRUCTION SET

Definitions:

BEX TABLE - a matrix of 256 boxes (16 by 16)

contaiming the 41C calculator instruction

set. It may also contain the character
displayed- cr printed by the 4:1C when that

pia~ticular byte code is used. A hex table
fisy an' excellent guide toward understanding
thre mLé ianstruction set. Figure 2.1 shows

 such a table.. _

PREFLEX~' the = first ‘byte = of a* gwot byte
Anstructcion. An example 1is, ARCL 02; here
the _ARCL is the prefix and is represented
by the hex caode “3B. - : - #

POSTFIX - the: secondt byte of a two bytes
fastruction thact: acts as a pointer te a-

#lag or register. IT'f the highest order

‘bit of the postfix is 17, «the postfix is
undersitood to be an “IND“irect pointer.

Bor example, the byte sequence 90 107
mweans RCL 16; but the sequence “90 907 is
interpretted as. RCL IND 16.

The 41C calculator instruction set can be organized into

the following <categories according to the number of bytes:

required for storage: ‘

CNE BYTE INSTRUCTIONS

TWO. BYTE INSTRUCTIONS

THREE BYTE INSTRUCTIONS

BOUR TO SIXTEER BYTE INSTRUCTIONS

Figure -2.1 shows the 41C instruction set arranged ian a

table to show the hexadecimal equivalent of the Dbase

instructione. The base instruction is the first byte of the

program lime stecred in memory. When refering to a multiple

byte instructicn, this byte code will be referred to as the

"PREFIX". The second byte of a two byte instruction will be:

referred to as the “POSTFIX'. This terminolcgy will become-

evident as the various instructions are examined.

r
a

HP
-4
1C
/C
V
H
E
X
TA
BL
E

4
5

6
7

8
9

A
g
4 =

=

N
U
L
L

0
0

Le
8L

0
0

01

L
B
L

0
1

0
2

L
B
L

0
2

0
3

LB
L

03

04 4

L
B
L

0
4

0
5

L
B
L

0
5

0
8

6

L
B
L

©
6

o
7

L
e
L

0
7

0
8

L
B
L
0
8

0
9

9

L
B
L

0
9

10 10

LB
L
1
0

11 11

L
B
L

11

12 12

LB
L

12
13 13

L
a
L

1
3

1
4 14

L
B
L

1
4

i5 15

% o

18

17 17

18 18

19 19

4 2
0 20

21 21

6 2
2

2
2

2
3 s

2
3

2
4

2
4

9 2
5

2
5

26 26

E
E
X

21 2
l

NE
G

28 2
8

G
T
O
™

2
9 29

X
E
Q
”

30 30

S
P
A
R
E

3
1

N

3
2

3
2

R
C
L

0
0

R
C
L

0
1

3
3

3
3

R
C
L

0
2

3
4

3
4

RC
L

03
3
5

3
5

R
C
L

0
4

3
6

3
8

R
C
L

0
5

3
7

3
7

RC
L

06
3
8

3
8

R
C
L

0
7

3
9

3
9

R
C
L

0
8

4
0

4
0

R
C
L

0
9

4
1 41

R
C
L

10

4
2

4
2

R
C
L

1
1

43 43

R
C
L

12

44 4
4

R
C
L

1
3

4
5

4
5

R
C
L

14

46 46

R
C
L

1
5

4
7

4
7

4
8

4
8

S
T
O

0
0

S
T
O

0
1

4
9

4
9

S
T
O

0
2

5
0

5
0

S
Y
O

0
3

51 51

ST
O

04

52 52

ST
O

05

53 53

ST
Q

06
54 54

S
T
O

0
7

5
5

5
5

ST
O

08
56 56

S
T
O
0
9

57 57

S
T
O
1
0

58 58

'S
TO
1
1

59 59

60

S
T
G
1
3

61 61

S
T
O

1
4

62 62

S
T
O

1
§

6
3

6
3

64 64
6
5

6
5

6
6

1
)

8
7

6
7

X
<
Y
?

6
8

6
8

X>
Y7
?

6
9

6
9

X<
Y?

70 ’Q

S
e

71 7

¥
-

7
2

7
2

H
M
S
+

7
3

7
3

H
M
S

-

74 7
4

M
O
D

7
3

6
0

T
N 76 76

7
7

1
7

P
R

7
8

7
8

79 9

L
N

8
0

8
0

X
i
2

8
1

8
1

S
O
R
T

8
2

8
2

Y
i
X

8
3

8
3

C
H
S

6
4

8
4

E
t
X

8
5

8
%

L
O
G

8
6

8
6

10
4X

a
7

8
7

E
1
X
-
1

6
8

8
8

S
I
N

8
9

8
9

c
o
s

80 9
0

7
5

T
A
N

91 91

AS
IN

9
2

A
C
O
S

9
3

9
3

AT
AN

94 94

D
E
C

9
5

9
5

1
X

0
6

9
6

A
B
S

9
7

9
7

F
A
C
Y

0
8

0
8

X
=
0
7
?

0
o

9
9

X
»
>
Q
?

1
0
0 100

L
N
1
+
X

1
0
1

1
0
1

X
<
Q
7
?

A 1
0
2

X
=
0
7

1
0
3

I
N
T

10
4

FR
C

1
0
5

D
~
R

1
0
6

R
—
-
D

F 10
7

92 HM
S

G 10
8

H
R

10
9

R
N
D

1
0

o
C
Y

m

C
L
L

11
2

X
y

11
3

Pi 11
4

C
L
S
Y

Rt 11
6

R
D
N

1
7

L
A
S
T
X

N

C
L
X

1"
e

X
=
Y
?

1
2
0

X
=
Y
?

Q

SI
GN

X
<
0
7

ME
AN

b .
SD
EV

A
V
I
E
W

Cc
LO

 11

8

 1
8

 12
1

12
2

 12
4 c

 12
5

 12
6

 1
2
7

H
P
-
4
1
C
/
C
V
H
E
X
T
A
B
L
E

0
1

2
3

4
5

9
7

8
9

A
B
c

D
E

f:

D
E
G

IN
D

Q
O

12
8

R
A
D

iI
ND

O
i

12
9

G
R
A
D

IN
O

0
2

13
0

E
N
T
E
R
Y

iI
ND

0
3

13
1

s
T
o
p

IN
D

0
4

13
2

M

RC
L

IN
D

18
14
4

SY
O

IN
D

17
14

8

S
T
«

I
N
D

1
8

1
4
8

S
T
-

I
N
D

1
4
7

1
0

S
T
»

iI
ND

2
0

1
4
8e

R
T
N

iI
ND

05
8

13
3

B
E
E
P

IN
D

0
6

13
4

CL
A

IN
D

07
13
8

A
S
H
F

I
N
D

0
8

1
3
8

P
S
E

IN
D

0
9

13
7

CL
RG

IN
D

13
8

1
0

AO
FF

IN
D

11
1
8
9

A
O
N

i
N
D

1
4
0

1
2

OF
F

IN
D

13
14
1

P
R
O
M
P
T

I
N
D

1
4

14
2

A
D
V

I
N
D

1
5

1
4
3

8
7

IN
D

2
%

14
9

iI
SG

IN
D

22
15
0

DS
HE

IN
D

2
3

15
1

V
I
E
W

IN
D

24
15
2

T
R
E
G

IN
D

25
15
3

AS
TO

I
N
D

28
6

15
4
.

AR
CL

IN
D
27

16
8,

Fi
X

IN
D

15
6

28
1
8
C
i

I
N
D

_
2
9

15
7

E
N
G

I
N
D

3
0

1
5
8

T
O
N
E

I
N
D

3
1

1
5
9

NG

X
R
O
M -
3

I
N
D

3
2

1
8
0

X
R
O
M 4
-
7

I
N
D

3
3

18
1

X
R
O
M

8
-
1
9

i
N
D

3
4

1
6
2

X
R
O
M

1
2
-
1
8

I
N
D

3
8

1
6
3

X
R
O
M

1
6
-
1
9

I
N
D

3
6

1
6
4

X
R
O
M

2
0
-
2
3

i
N
D

3
7

1
6
5

X
R
O
M

2
4
-
2
3
7

I
N
D

3
8

1
6
8

X
A
R
O
M

28
-3
1

IN
D

3
8

18
7

S
F

I
N
D

4
0

1
6
8

T
C
F

I
N
D

4
1

1
6
9

FS
72
C

F
o
o
c

IN
D

42
!I

ND
4
3

1
7
0

17
1

F
S
?

IN
D

NO
4
4

17
2

F
C
?

I
N
D

1
7
3

4
5

1
G
Y
O

X
E
O
'
N
D

I
N
D

4
6

1
7
4

S
P
A
R
E

I
N
D

4
7

1
7
5

S
P
A
R
E

I
N
D

4
8

i
7
6

G
T
0
0
0

I
N
D

4
8

1
7
7

GT
O

01
IN
D

50
17
8

G
T
O
0
2

IN
D

5
1

17
9

G
T
O

0
3

IN
D

3
2

1
8
0

GY
TO

0
4

IN
D

3
3

18
1

G
T
O
05

IN
D

54

18
2

GT
O
08

IN
D

85
18
3

G
T
O

07
IN
D

56

18
4

G
T
O
0
8

IN
D

§
7

1
8
5

G
T
O
0
9

IN
D

58
18
6

G
T
O

10

IN
D

5
9

18
7

G
0

11

IN
D

80
Q

18
8

G
T
O

12
IN
D

61
18
9

GT
O

13
IN

D
62

18
0

G
T
O

1
4

iI
ND

6
3

19
1

G
L
O
B
A
L

I
N
D

6
4

19
2

G
L
O
B
A
L

I
N
D

6
5

%
3

GL
OB
AL

IN
D

66
1
9
4

G
L
O
B
A
L

I
N
D

6
7

1
9
5

G
L
O
B
A
L

I
N
D

6
8

18
86

G
L
O
B
A
L

I
N
D

€
9

1
9
7

G
L
O
B
A
L

IN
D

7
0

19
8

G
L
O
B
A
L

iI
ND

7
1

1
9
8

G
L
O
B
A
L

I
N
D

7
2

2
0
0

G
L
O
B
A
L

IN
D

73

20
1

G
L
O
B
A
L

IN
D

74
20
2

GL
OB

AL
IN
D

75

2
0
3

G
L
O
B
A
L

IN
D

78
6

2
0
4

G
L
O
B
A
L

IN
D

7
7

2
0
8

X
<
>

I
N
D

2
0
6

iL
BL

_
.

IN
D

2
0
7

< @00 Q

G
Y
0

I
N
D

2
0
8

8
0

G
T
O

.
.

i
N
D

8
1

2
0
9

G
T
0

..

IN
D

8
2

21
0

G
Y
O

.
.

I
N
D

8
3

2
n

G
T
O
.

I
N
D

B8
4

2
1
2

G
T
O

.
.

I
N
D

8
5

2
1
3

G
1
0

.
.

i
N
D

8
6

2
1
4

G
7
0
0

_
.

I
N
D

8
7

2
1
5

GT
O
..

IN
D

88
21

8

G
7
0

.
.

iI
ND

8
9

2
1
7

G
T
O

..
IN
D

90

G
Y
O
_
_

IN
D
8
1

2
1
9

T IN
D

9
2

22
0

GT
O

..
IN
D

93
22
1

G
T
O

_.
IN
D

22
2

G
T
O

I
N
D

2
2
3

13

X
E
Q

.

IN
D

2
2
4

9
6

X
E
Q

..

iI
ND

9
7

2
2
8

X
E
Q

.
.

I
N
D

6
8

2
2
0

X
E
Q

.
.

i
N
D

9
9

2
2
7

X
E
Q

_
.

I
N
D
1
0
0

2
2
8

X
E
Q

.
.

I
N
D
1
0
1

2
2
9

XE
Q

_ .
IN
D

A
23
0

XE
Q

_
.

IN
D

B
23
1

X
E
Q

_
.

I
N
D

C

2
3
2

XE
Q

..
IN
D

D
23
3

21
8

XE
Q

__
IN
D.

E
23
4

XE
Q

_.
I
N
D

F

23
5

X
E
Q

.
.

I
N
D

2
3
6

G
>

X
E
Q

.
.

I
N
D

H

2
3
7

XE
Q

..
I
N
D

|

23
8

XE
Q

IN
D

 J
23
9

< 00 Q| w

 T
E
X
T

O

I
N
D

T

2
4
0

T
E
X
T

1

IN
D

2

24
1

T
E
X
T
2

IN
D

Y

2
4
2

T
E
X
T

3

I
N
D

X

2
4
3

T
E
X
T

4

I
N
D

L

2
4
4

T
E
X
T

&

I
N
D

™

2
4
5

TE
XT

6
IN
D

N
24
8

T
E
X
T

7

I
N
D

O

2
4
7

T
E
X
T

8

IN
O

P

2
4
8

T
E
X
T
@

i
N
D

@

2
4
9

TE
XT
'1
0

IN
D

-

25
0

T
E
X
T
1
1

IN
D

a

2
5
7

TE
XT

12

IN
D

b
2
5
2

T
E
X
T
1
3

I
N
D

c

2
5
3

T
E
X
T
1
4

IN
DO

d

2
5
4

T
E
X
T
1
5

I
N
D

e

2
5
5

.

 O 1

 2 3 4 5 8
B

G
D

£
F

 G

:
)

P
R
I
N
T
E
D
C
H
A
R
A
C
T
E
R
S

g~
N

27I8

oF o

n— @ ;W!—,Z

= N <=zler IS

7 B

8
0
8
0
0

N

™
4

6 R 2
2

5 2
1

»

2
0i

1
9

1
8

3

Wt

e

3
7

3
6

3
5

Q
xR

!& =3
was

l—" fl

e | -

SR ,el .1e
P— L D

-'9 # 7

- QO egSsN® - -

@ <
10 TATEEE O\

- A

~ 85 E=l- i -

>-O T.—n
'w.1l Ao

5 .' 1‘4;

n110! l.!._llmu.fi

s =
< Q5 xS

B = o g

o Bk oe

= eet

-
@ N e
-%m i-u",

iz P~(e Ths
Y owm T

®

1
0
0

.
]

L1z 12

s =

il '

= o2 s

F o - o~ ™ < 0 © ~ B

w BeB L e D DT0 3R D 0 u

wR v BRI A elT2BRI

olrdN LSESmRSo

O 2& v-l i1R—o

M.BRm@B -4w eIrr_ er«Er 3= 2

D
I
S
P
L
A
Y
E
D

vs
.
P
R
1
Z
,
f
E
D
C
H
A
R
A
C
T
E
R
S

OB b BT-To| > - u..l.% 1%_ - o

® B8 - _wmm_:u SDIX e _ B |

7§£g5,-7FBGNN§?gw7

O« [2SRoSODL L ST B2eB T

 By
vt
es

w
i
t
h

a
M
S
N

g
r
e
a
t
e
r

t
h
a
n
7

wi
ll

T(l
‘i.

\i“
l-i

l;\
,"‘
i
y

 : — ~ey |
=R BRICS s — TDAA _dwg =-

| | L ,,
ei - | |

o) 4&I Cdinezro- » B o
- % L ! | W |
o w T ! ! b T T
(2 © | 7 N | ® T0w e~3 N

O
T
E
:

b
o
x
e
d

st
ar

a
n
d

m
a
y

pr
in
t

w
i
t
h
u
n
u
s
u
a
l
ef
de
ét

s)
,

Each box determined by a hex code (combined MSN and LSN)

is arranged in the following format as shown in Figure 2.2.

The decimal equivalent of the hex code is in the lower left

hand corner of each box. The mnemonic displayed when im

PRGM mode is shown in the upper left hand corner of the box,

or else an explaination of the imstruction appears if the

display may vary with subsequent bytes. |)

Figfire 2.2 = Hex Table Format

The wmfddle 1line tn the box contains the register
-assigaoment (numeric register or status register) if the byte.
is interpreted as a postfiix. The upper half of the hex

table is interpreted as direct storage; that is, a postfix

of hex 73 means the instructicn will use register X as 1its

argument or a hex 3F means that register number 63 will be

used (as in STO X, or RCL 63). , ~

The lower half of the hex table, when interpreted as a.

postfix, implies that the directed register contents will be

used as an INDIRECT pointer. Consider the hex postfix

F2; this would wean that the addressing would be IND Z

(indirectly based on the contents of stack register Z).

Row 6 of the hex table contains register references

above R99, which is the last directly addressable register
when using conventional calculator instructions. As cap be

inferred <£from these references, RI1l is really theflast

directly addressable numbered register. The code sequence

990 6H6F° displays as RCL J, and when executed recalls the
countents of R111, 1f it exists.

Row 7 shows more status registers than T, Z, Y, X, and

L. It shows 11 other wregisters that can be used as

postfixes. These postfixes all work, with gquite predictable

results amnd give the programmer much more power over the

41C. None of these postfixes are normally keyable and must

be achieved through “synthetic’ means. The function of
these registers and the techniques to use them will be

covered in Sectioa V of this course. Eeep in mind that

these are part of the calculator iostruction set and all

rules that goverm byte usage will apply.

ONE BYTE INSTRUCTIONS

The first one byte instructionmn is perhaps the most

overlooked instruction, but the most used. It is the

“NULL", represented by hex “007. The NULL will npever list
out or display when in PRCGM mode, but it occupies one byte

of mwmemory and takes a certain amount of time to execute.

wts executiom is transparent to the user except when many

nulls are executed fm a row, then a delay may be noticed.
Many NELL s will alse introduce adelay in program editing
when: stepping from. one line to amcther. You may lhave

noticed sucha delay after DEL’eting many program lines and
.mot PACKfng.

The 4ICwses réhe NULL as a space holder iInternally
during program editing. Ifprogram lines are being insented

#ntor memory amd there arealreadyianstructions in memory

‘after the current lime, the 4IC will move the instructions

lower in memory down by multiples of one register to make:

room for any added fnstructions. It places a register full

of NULL’s at the current line andreplaces the NULL’s with
instructions as they are keyed in, wuntil more room 1is

necessary and then the process is repeated. It can be seen

that extensive editing o0f a program caan introduce many

NULL”s into memory. To regain the space taken by the

NULL s, vyou must “PACK’ memory. PACK ing will remove all
unnecessary NULL s from memory.

There is a case where a NULL has a purpose and cannot be

PACKed away. GConsider the following program lines:

Memory Contents Program Lines

¢0 11 12 13 1l 123

28 02 RCL 08
40, G3 +

14 15 16 04 456
£3 cs /

are(@
]
PIn PRGM mode, the commaunds GTO .0C2 amd ZEL ¢

executed to give: 1 '

GO.L1 12 13 01 123
Q0.

G0

14 15 16 02 425

43 c3 /

A subseguent PACK will yield:

L1 12 13 0l 123
00
14 15 16 02 456
43 03 /

The 4)C. imterprets a« numeric emtry. Line as any
.combimation .of bytes from hex ' L6 to 1C as numeriec data.
This type mfi'fiimg s terminmatedwhen any otherbyte mnot _ iIn

this range .. 1is. =«found. -A null {3 inserted before every
~pumeric emfoy: Bine imwease it s following ‘another iIm:
memo Ly, achgtfith ‘ther twor Fines would be combined inte " a

single limnei. The - &LC makes this test wh&n>:BKCK'ing or

entering numeric data lines,. and inserts themwhenneeded.

It Qs"fincorr6et¥:g think. that the NULL #s. the equivalent
a:f the: “N@E” ("ne: operation") instructiom om other
computerise. Lt does occupy space and takes time to. execute,.

but it 1is ‘mnot recognized as a ‘line” by the run-time

interpreter.

The codle 1C is the data entry negation. It should not

be confused with CHS which is code 54. It does behave as a

CES to the data entry string in that it will negate a

mantissa or exponent when entered into the stringe. Negate

is the correct terminology for what it does, because if twe

IC°s appear in the same portion (mantissa or exponent) of

the data string, 1t will negate tne negative to yield a

positive naumber. This case 1is only seen when using

synthetic programming or reading HP-67/97 program cards.

The remainder of row O contains the leocal naumeric

lIabels, LBL 00 through LBL 1la4. Rows 2 and 3 contain ~the
short form STO0"s and RCL s, from register ROC through R15.
Since most programs will have less thanm 15 labels and use

tne first 16 registers, HP made these 1into one byte

instructions to save space in most programs.

Rows 4 through 8 all contain one bvte functions that are

adequately described by HP’s documentation, sSuch as HMS+ or

3EEP.

Threre is one remaining one byte instruction. It is the

TEXT O imstrucrtion. It stands alone in memory with a . code

of FO0. .It is a synthetic instruction and must be created by

synthetic means. When executed, it has noc effect on the

contents of the ALPHA register. This makes it a contender

as a "NOP’ instruction.

There are three hex codes that are not used as

instructions on the 41C. These are 1F, AF, and BO. These

are referred to as °“SPFARE’ instructions because no useful

purpose to date has been found for them.

TWO. BYTE LNSTRUCTIONS

‘Rows 9. and Aof the hex table contain most of the two
byte imstructions.. ;;ihev_simplest of these reference a

storage register® suchaswv 9@ 25, which meanss RCL 375 oz

VIEW IND ¥, which i#s stored as 98 E3. Another simple type
contains: owne byte of diata as its postfix. FIX 3 (9C 03),
TONE & (9F 39)., and FC?2C 29 (AB 1D) are examples oft this

ny.p;&.

RowA contadns the catch—all imstruction of the 41C; the

cner that emables it to haveanm ever imcreasing instruction

set.....the XROM. ~Those users who have wused peripheral

functions ia programs will remember the mysterious. XROM

instruction that apprears when the peripheral is not

attached. The &41C encodes the “XROM” number of the
peripheral function into the last 1l bits of this two byte

instruction. The ‘XROM’ number may be decoded by converting
the first 5 bits of the 11 and the last 6 bits into their
decimal equivalent £rom binary.

For example, the code sequence “A7 46 ...c0..

Written in bipary: 1910 0/Y11 01/00 0110
XROM 29 ge

Yields: ZXROM 29,06. The printer documentation tells us
that this 1is a BLDSPEC instruction. This applies to all

peripheral functions that are stored intoc the 41C°s program

mEemOry. /

In Row B we find the branching equivalent of the short

form STG s and RCL’s, the two byte GTO. Notice the wvalues
range from GTO O0C to GTO 14 for the codes Bl to BF. If one

byte is sufficient to defime the label to branch to, what 1is

stored 1in the second byte? A branch in an: 1interpreted

machine is usually a slow function, especially 1if it has to

search far for the desired label. HP knew that a battery

operated CMOS device would have a relatively slow processor,

and that ioterpreted 1instruction codes would take away

precious CPU rime. HP uses this second byte to contain a

“compiled’ branch length. After the first execution of the

branch, it will store the direction and distance to the

label within the GTO so that subsequent branches will ©be

executed without searching and therefore much faster.

GTO Label + 1 Direction # of bytes # of registers
——o~ — G.RGS— -GuS- TDI WY GESS SWG GamS AG G TW TR D G G W. NS W SND

1011 0o01ll 1 coo L1111

Figure 2.4 - Structure of Two Byte GTO

The f£irst bit of the branch byte determines the

direction of the branch: a ‘0 means forward (to a 1lower

absolute address) and a 17 means backward (to a higher

address) . The remaining 7 bits contain a 3-bit byte count

and a 4-bit register count. The maximum distance for a two

byte GTO is then: 7 bytes + 15 registers (105 bytes) or 112

bytes. In order ‘for the fnterpreter to know whether a

branch is <compiled or mot, the zero value 1is reserved.

Compilation occurs during a program rtunning or during

SST”’ing the GTC in RUN mode. Decompilation occurs after

program editing when PRGY mode is exited.

Note: On some older 41C°s, decompilation will NOT

occur 1if the calculator is turned OFF while in PRGM mcde.

This explains the strange wunreproducible behavior some

programmers nave experienced when testing newly edited

programs. The following example will test for this behavior:

In PRGM mode key imn the following program:

0l LBL C1

82 GTO 01

1) Exiz PRGM mode by pressing the the PRGM key.

2) Press R/S twice.

3) Eater PRGH mode.

&y GTC .001

5) Use the backarrow to delete LEBL Ol

6) Enter a BEEP instruction

7) Turn the 41C OFF, then ON

8) Press R/S. If vou have this BUG you will hear
continucus BEEP s, else NONEXISTENT will display.

Notice chat the “gocse’ in the display remains
statiocnary. It will move only when it executes a LBL

instruction.

4

branch, it will store the direction and distance to the

label within the GTC so that subsequent branches will bes

executed without searching and therefore much faster.

GTO Label + 1 Direction: # of bytes # of registers
eTw— IWSWSR SGDW WQUAT A T,WG -T TTER N IWDWIGWS GRS TWEDGOS-WGTNGOAWW

1011 G011 I 000 I11L

Eignra.Emé'ufSérud&uneeaf Two: Byte GTO

The f£irst bdit of the: branch byte determimes the
directiom of the Braanch: a “07imeans forward {(tor a lower

absoilute: a&dreésfl“'an&' a "L’ means backward (to;a higher

address). .The <rewaining 7 bits comtain a 3-bitbytecount
and a 4-bit. register count. The maximumdistance. for a. two:
byre GTQ i#s:then: 7 bytes + 15 registers(105 bytes) or 112
bytes. - Er. erder ‘forn the Interprefer toc know whether a
branch- #s compiled or not, the zero value #s reserved.

Compilation occurs during a program running or during

SST ing <the GTO in RUN mode. -Decompilaticn occurs after

program editing whem PRGM mode is exited..

BEote: Decompilation will NOT occur if the calculator is

turned OFF while in PRGM mode. This explains the strange

unreproducible behavior some programmers have experienced

when testing newly edited programs. Thefollowing example

will demonstrater

0 PRGM mode key in the followingr program: =

0L LBL 01 C’fi-—@.e«l -
02 GTO 01

1) Exit PRGM mode by pressing the the PRGM key.

2) Press R/S twice.

3 BEnter PRGM mode.

&) GTO .001 -

S) Use the backarrow to delete LBL Cl
6§) Znter a BEEP instruction

7Y Turm the 41C OFF, then ON

8) Press R/S. You should hear continuous BEEP s.

Notice that the “goose” {in the display remains

stationary. It will move only when it executes a LBL

instruction.

| coBlnSSCOY

frug 1TEO.

9) Press R/S to stop the noise.

10) Enter PRGM mode to examine the program, you will

see:

61 BEEP

0z GTO 01

1) Press the PRGM keyto exit the mede.

12} Press R/S. You may hear a BEEP, but the program

| wiill halit and: show "NONEXLSTENT .-

Simce thereis a: gossibility that a programmaycontain
packable nulls whem&fi&FLs run,, a PACK”ingand/or rvelocatiom

of the progrnam could make compiledbranches: erroneous. To.
save those precious compidlations and reduce PACKing time,

the edftor willi notdecompile a “PACKED™ file during a PACK..
The file’s END contaims bfts. that telll whecheir the. file fis
packed or mot. |

At the end of Row C are two more two byte instructions

X<>__ (CE) and LBL __ (CF). The “exchange x” instruction is
used like the two bytes RCL’s and STC s. The LBL here isthe
two byte local label: LBL CO through LBL 99 or LBL A
through LBL e (Note that the two byte LBL s 00 through 14
must Desvnthetically created). It can have any byte as its

postfix and should not be confused with the global LBL’s.

At location AE, thereis a multi-purpose imnstructiom, it

can be either the GTO IND __ or the XEQ IND __ imstructionm,
depending upon the highest crder bit ian {its postfix. This

is- the only exception to the INDirect postfix rule.If <this

bit is a 0, it will be interpreted as a GIC IND, else it is

an XE{ IND. Notice that an indirect branch <cannot be

compiled..

The last type o0of two byte 1instruction 1is the ©one

character text string of the form, Fl xx, where “xx° is any

byte value.

THREE BYTE IRSTRUCTIONS

Rows B and E contain the three byte GTO“s and XEQ's,
respectivelyv. These are long form instructioms in that

there are more bits to store a compiled branch. Notice that
these are local instructioas. The information is emcoded

simi’lar to the two bwte GTO:

GTO or XEQ # of bytes # of registers direction label

1110 11L 0 000C 0011 0 111 LLil

Figure 2.5 = Structure of Three Byte GTO or XEQ

The above example shows am "XEQ e’ compiled for a forward
branch of: 7 bytes + 3 registers or 28bytes. With 9 bits

for thenumberof registers, branches are limited to 512
registersvmgmotgfigban'E@é‘fififiiéqqf program memoryl |

The END: (fileamd) or .END.. (pezmanent end) ifnmstcructions"

are three bytes long. . They beginm with a byte im the range
off €O o CD. flThes&‘prefoes are also used for global

Yabels, ~which are four.or more bytes long. Because END's
and gdobai:«labe&s* sitare the same. prefix, they will be

discussedtogether.. When a “CAT I is executed, the 41C
displays alil of .the gfi&hal labels, END’s, andthe permanent

.END. from the top of memory down. To avoid scanning all of

memcry .for these catalog entries, the 41lC stores the
distance: from an END or label to the mearest END or label

above it, begiaoning with the permanent .END.. The &4IC

maintains & special pointer to know where the permanent

END. 4is at all times, se traversing the “global 1label
chain”® 1is a fairly easy matter. The information for this

‘chaining”® is encoded in the second, third and fourth
nibbles of the instruction in the same manner as the three

hyte GTO0 s. The third byte of the ianstructicn is where an
END 1is distinguished from a global label. If the £irst

nibble of the third byte is an “F’, the instruction is a
global Tabel with the second nibble in this byte being the

number of characters in the label plus one. Thus & third
byte of “F8° would denote a glocbal label of length 7. The
reason for this offset ef one is to tell the number of bytes

following the third byte. The fourth byte is always used to

record the keycode when the global label is assigned to a

key. When no assignment is made, a value of “00° is stored.

‘When the third byte is not of the type “Fn’, the
instruction 1s interpreted as aan END. The first nibble of

that byte tells the type of END. A “0” denotes a normal
file EBND, and a “2° denotes the permanent .END.. The second
oibble in this byvte comntaios information that tells whether

the filehas been packed, a “9° wmeans packed and a “D° means
unpacked. This oybble 1is set up when the file is editted.

FOUR TO SIXTEEN BYTE INSTRUCTIONS

The global 1labels discussed above are examples of

instructions that can take four or more bvtes. From the

instruction coding one would expect to £ind global 1labels

with text lengths from 0 to Ll4. These extremes can exist
only with synthetic programming, because the editor will
onky allow oneto seven bvtes for text. Even then, the-

editor will make local alpha labells cut of those that have
L ’ r ”ssingle characters from “A o “J° and "2’ to “e’.

The global GTC’s: amd XFQ”s are found at “LNL° and “LE’ fn
ther hex table. The sacoh%{byte of theseiastructions is a

text byteof the form” Fm™, where “n’ is the Length of ¢the
text string following. The instructioan XEQ "NPR" would be.
coded :

IF B34E 50 52

and woulds occupy five bytes. Like the- global labels, there

can be synthetic GTC®s and XEQ's with lengths outside the
range allowed by the editor. Note that there could also be

a global GTO "a" or XEQ "JI". This would allow indirect
branching based on a one character text striang, which is not

possible with a two byte, local alpha label. With synthetic

techniques, these instructions become a reality.

Text entry program lines are of the form: Fa bl bn,

where “n° is the aumber of characters (bytes) that follow
the prefix. This value can range from O, for a null text

string, to 15 characters in length. These characters can be

any . byte value from “00° co ‘FF’. The editor ill only
allow the normal keyboard characters to be entered, but

again synthetic programming will permit the iantroducticn of

any byte ianto a text line. This is esgpecially useful for

mixing =all upper and lower case letters for printer output,

or addiang special display characters 1like the stick man or

ampersand.

The last type of multiple DbDyte instruction 1is the

numeric entry line. Normally the editor will 1limit the

length of numeric enmtry lines to 16 bvtes: a signed mantissa

of ten difgits and a decimal point, and a signed exponent of

two digits; however the 41C will accept numeric entry lines

cf amy lengrth. Abnormally long entry linmes cam be made

syathetically or may be found upon reading or merging an HP-

67/97 program card (whem a separator null is lost). They

have little useful value for data entry because after ten

digits of the mantissa are loaded, all other mantissa digits

are 1ignored. Multiple signs, mnegate previous signs and

10

after an exponent 1s encountered, only two digits are

accepted, with its sign toggled as well.

COUNTING BYTES

In order to minimize the amount of memory a program

takes, a programmer must be able to calculate how many bytes

are consumed by various combinations of instructioms. Th e-

following ©pages contain examples of programs lines and rthe

number of bytes conttaimed in each. They are categorized by

instruction type fiorcomparison of different variatiomsie
Some general rules for byte counting are:

l. RBumerfc emtry lines contain as manybytes as

.there aredigits, decimal points, signs, and

E“s. Do net forget an: unpackable null 1f thew
Iine 18 preceded Dy another numeric entry line.

2. Text lines coatain “n“+ 1l bytes where ‘n’ 1is the
number of characters in the line, including the

append symbol.

3. Global labels contain “n”+ 4 bytes, where “n’ is
number of characters in the label. These lines

are distinguished from other labels by the text

“t” between the LBL and the text string.

4. Any INBD’irect instruction #s two bytes long.

S. END’s occupy three bytes. The permanent .EKD.

uses three bytes, but a CAT 1l printer or videc

interface listing will include the bytes used

to make up a full register.

6. All “functicmns’ that require no argument (postfix)
are one byte long.

7. Look for short form STO’s, RCL’s, and LBL s which
use onlyv ome byte. These are on rows (0, 2, and 2

of the hex table.

8. All peripheral functions and ROM calls use onl

two bytes..

9. Local (numeric and alpha) GTO0“s and XEQ’s take
up three bvtes, except for short form GTO0 s from
€T0 00 to GTO 14, which use only two bytes.

10.

11.

Any instruction not included above, that requires

a register reference, a flag reference, or a

single digit of data generally takes up two bytes.

Do not count packable nulls. These will disappear

after PACK ing and have no bearing on routine

comparisions.

12

SUBROUTINE USAGE

As on every computer that has a subroutine stack, the

question always arises as whether to use a subroutine call

or repeated in-lime code. Most programmers use intuition to

make this decision, and they are right in most cases. The
obvious cases are of long imstruction combinations with many
repetitions. To- determine in the not-so-cbvious cases, an

equation can be derived for the computatiom of actual bytes

saved. Figure 2.3 shows graphically the byte savings or

wasting from use or misuse of subrocutines. For a 5 byte

saguence, 4 repetitions are necessary before a subroutine

will sawveamy bytesy bute for sequences above 8 bytes, there

will always be saveable bytes. .t is important to note that

the equationis derived for short fiorm numeric lahels, the
least comsumptive of labelsi. Additional bytes will hawe to

be. coasidexed for longer liabelis. = Thederivation “of such

an equation will be, encountered as. a- problem in the: section

Cast .

Other considierations wmust be made when ILntroducing

subroutines. ‘If there are six. RTN’s pending on the
subroutine stack, another XEQ will push the sixth one out of

the stack and {t will belost. Subroutines tend to be

slower than equivalent in-line coding. Will the execution

time difference be acceptable for the applicaticn?

The feollowing pages containm examples of subroutine

usage versus Iin-line <«oding. Some: 0f the examples are

obvious, others are not. . Most cases that are passed over

for consideration by most people require modification to .the

procedure used in order to reazlize any byte savings. I1f

there are a ogumber of similiar, but not identical, lines

repeated, think about rewriting them to use a subroutine.

The byte savings are harder to calculate for these cases,

but theyv are often worth the effort.

E%u,-a_-(::au\ (}.ov- chq'\bsca bfim

(-17 (13=S = o el

 ifi;E%P' - b w3

3%—%8‘“:&“4

13

GENERAL RULES FOR SAVING BYTES

Use short form iastructions whereever possible.

This can lead to heavy competition for storage

registers RQCO-R15. Consider that an additional

sitorage register will consume 7 bytes. If short

foonm labels are used, remember the maximum branch.

length that can be compiled. If£ the branch is too

lLong for thier fmastructien type, it will never be
compiled and will execute muchslower, especially

in. Large pTograms.

Use text Lines and: globals lLabels sparingly. Be

conservative: in the number of characters in your:
labels ‘andprempts, but don’t sacrifice wsability

. 35 - . - g o q * 3 ¥) . .‘ 3 . : >fermemoryumless it {ifsabsolutely necessary.

Mzkeuseofsubroutimes whea they will save bytes.

1f you don’t have equations” handy to make a
comparision, count them by hand. In this maanner

you will dewvelop an intuition as whem to use or

not use them.

‘Examine numeric entry lines for space wasting

ordering. If an exponent is used, a decimal

point may not be necessary. Avoid trailing

zerces where possible.

Look for poor use of the stack; there may be
too many STOs and RCL. s in the widdle of
your. calculations. Try to recognize applicatioans

for megister arithmetic (ST+, ST*, etc.).

Look for special instruction combimatiocns and

save rthem for future use; such as: 1 I (2 bytes)

iostead of 100 / (4 bytes). Calculator Tips
and Rgoutiaes, by John Dearimg 1is an excellent

source of such tips.

Trv to program in a “top-down® or “structured’
manner. Many times there are as many branches

fn a program as there are calculations; a poorly

placed program section can wastebytes. Flow-

charts are an excellent tool tao study program

flow. '

14

SECTION II - QUIZ

1. A peripheral function uses:

byte

éi) ~bytes

1

2

C.e 2 bytes |

de 4 or mere bytes-
e. varies '

2. A two E&te GTO caa branch a wmaximum of:

a. LOS bytes
b. 15 registers
€y 112 bytes
d. b and ¢

€. a and bt

3. Ceompilationoccurs for what combinations of thes

following instructions: ’ ‘

I. 2 byte GTO0 s
II. 3 bytes GTO s
LITI. XROM ‘s

Iv. alphna XEQ’s
V. indirect GTO’s

ae. I, I1, II1II

Toe I, II, IV

. all except V

(i) I and IL
e. all of the above

4. The global label LBL"ABC" occupies:

a. 5 bvtes

@ 7 bytes
Ce 4 bytes

d. 8 bytes
e. none of the above

5. The following numeric entry Lline =-1.2345678 E-4
contains:

G) 13 byvtes

b. 12 bytes

ce. Ll bytes

d. 14 bytes

e. none of the above

6.

10.

SECTION II - QUIZ (continued)

Which ef the fellewing instructiens is net 2 bytes
leng?

'I. GT® INP &8

IT.. PRA

III. T&NE @

IV.. LBL 14

Ve LBL'"A!"

a. I only
b. I and IT

C e I, IT and IV

€) IV and V
none of the abover

The byte: sequence: AB 85 is: whrich of the
HP-=41€C calculator imstructions?

Which inmstruction is not

@

C e

de.

e

The

3.

b.

>
d.

e.

¥S?7C IND~0OS

FC?C 85

FC?C IND 05

FS?C IND 85

none of the above

byte sequence F2Z 7F 20 is:

a peripheral function

an alpha entry line

a global label

an unclassified instruction

none of the above

ABS
*

HMS+

4
MOD

following

from Row 4 of the hex table?

longest HP-41C imstruction type (l6 bytes) is:

global label

numeric entry line

alpha encry line

a and b

b and ¢

SECTION II - QUIZ (comtinued)

Which of the following instructions 1is not 2 bytes

long?

I. GTB. IND 00

II. PRA

IIT. TONE 9

Iv. L3L 14

V. LBL'A"

a. 1 only

b. I and TT

C . I, IT aond IV

d. IV and V

e. none of the above

The byte seguence: AB 85 is the following

HP-41C calculator instructions?

a. rS?C IND OS5

b. FC?C 85

c. FC?C IND 05

d. FS?C IID 85

e. muaone of the above

The byte sequemnce F2 7F 20 is:

a. a peripneral function

b. an alpha emtry line

c. a global label

d. an unclassified instruction

e. mnone of the above

Which instruction is not from Row 4 of the hex table?

a. A3X

bD. *

c. HMS+

d. <

e. 1:i0D

The longest normal 41C instruction type (16 bytes)

a. global label

b. numeric entry liae

c. alpha entry lime

d. a and b

e. b and c

SECTION III

INSTRUCTION TIMING / FASTER PROGRAMMING

© Copyright 1983
INNOVATIVE TRAINING CONCEPTS

SECTION III

Instruction Timing/Faster Programming

In the last section, we learned how to compare different

instruction sequemnces in order to use the least amount of
memory; but there are further considerations to make when

writing a programe.. Gonsiider the simple problem of

multiplyiag a number by twe. _Here are three posisible ways

to do it, alli of which nse: exactly two bygés:

2 ENTERT ST+ X
* +

Most people would have programmed it as shown on the far

left, using a multiply. This' is a convenient way of doing

it from the keyboard andcomes to mind first. The second way

may be used by some progfiammers who reascn that an addition

should ©be much faster than a multiply. It 1is just as easy

to use from the keyboard. The third method takes £four

keystrokes to implement (if the ST+ <functicn 1is not

assigned) and is shunned by mcst people, except whemn doing

register arithmetic. Wnich of the abecve should ©be the

choice of the advanced programmer? Examine the amcunt cof

time required to execute each combination:

1.4 mS 38.6 mS 35.5 mS

Most people would have selected the combination that

takes almost twice as long to execute. The intuitive

programmer would have been better off, but would not Hhave

achieved the fastest technigue. It is evident that there 1is

more to better prograemming than using the least amount of

bvtes.

This section 1is devcted to instruction timing of the

basic HP-41C instruction set and how to calculate relative

execution times of different instruction combinations. The

instruction timings given here were derived by the author on

his system (SN# 1952A manufactured December 1979) and will

differ from 41C to 41C.

77.' = C"L 2 ’“1 ’fiu’i‘ 'flu’s vul"‘ .

SECTION III

Instruction Timing/Faster Programming

In the last section, we learmed how to compare different

instruction sequences im order to use the least amount of
memory; but there are. further considerations to make when

writing a programe. Consider the simple problem o:f
mul tiplying a+ number bytwo. Here are three possible ways

to do it, all of which use exactly two bytes:

2 ENTERT ST+ X
x +

Most pecple would have programmed it as shown on the fan

left, wusing a mulciply. This is a convenient way of doing:

it from the keyboard and comes to mind first. The second way

may be used by some programmers who reason that an addition

should be much faster than a wmultiply. It is just as easy

to wuse from the keyboard. The third method takes eight

Keystrokes to implement (1if the ST+ function is not

assigned) and is shumned by most people, except when doing

register arithmetic. Which of the above should be the

choice of the advanced programmer? Examine the amount of

time required to execute each combination:

6l.4 mS 38.6 =S 35.5 mS

Most ©people would have selected the ccmbinaticn that

takes almost twice as long to execute. The intuitive

programmer would have been better o0ff, but would noct have

achieved the fastest technique. It is evident that there 1is

more to Dbetter preogramming than using the least amount of

bytes.

This secticn 1Is devoted to instruction timing of the

basic HP=-41C instruction set and how to calculate relative

execution times of different instruction combinations. The

instruction timings given here were derived by the author on

his system (SN# 1952A manufactured December 1979) and will

differ from 41C to 41C.

~ There are four factors, other than programming, that

will affect execution time:

Battery strength

Ambient temperature

41C ROM revision

Peripherals attached

Like mest CMOS devicésw the 41C will run slightly faster
with a igher voltage. This is not to suggest that one

shouvld put a higher voltage on their <calculator; CMOS

circuits are delicate and are easilv damaged. It doest

suggest that a fresh set of batteries will make a differencer

when comparing execution speed.

The &4IC wuses an LC oscillator circuit to generate 1its

CPU <clock, and like most clock circuits, temperature will

make a difference in speed. Remember that there are

temperature constraints set by the maanufacturer 1if vyou

experiment with various temperatures.

The 41C internal ROM%s contain the programming that

actually performs the operatiomns that you program into it.

HP? has been revising its ROM programming since the 41C was

first 1introduced and these changes can be expected to make

some 41C°s run faster or slower on some operations than

others.

When the 82143A printer is attached to the 41C, a marked

reduction in speed is noticed. Whenever flag 55 is set, the

41C will check printer status to determine whether it needs

to send it information; such as during TRACE mode when

everythizsg =must be sent to the printer. There are also

cccasions in the other two printer modes, MANTUAL and NORMAL,

that information must be sent. The information transfer, of

course takes time, but even the checking itself takes time.

The HP-IL peripherals are another example of this speed

reduction. The video interface and the 82146A printer tend
to slow down the 41C. An extreme case 1s when power 1s not

applied to opne of these loop devices; the time it takes to

perform an operation will nearly double.

r
o

In view of these factors, the user should try to keep a

fresh set of batteries around and keep flag 55 clear. This

second goal may be accomplished by not having the printer

attached (remember to pecwer all devices down before

connecting or disconnecting), or by synthetically clearing

flag 55. This flag, 1f cleared synthetically, must be

cleared within a program, because the 41C checks for printer

existence during all modes except RUN mode. Any time that

your program stops, It will set flag 55 if a printer or HP-

1. Output device is present.

There are some 41C owners who have replaced their

timing capacitor* in order to increase execution speed.

This is not recommended by Hewlett-Packard. It can increase

speed by a factor of two, but there are problems associated

with doing this.. The current drain on the power supply 1is

higher and rtheres 1s less time available after the BATT

apnunciator comes: on to replace the Dbatteries. This is

egspeciadly bad for NiCad users. - The operation of

peripherals creates another problem. When writing data or a

program to magnetic cards using the card reader, the 41C

must be operating at Iits desigrn speed, or the data may be

written incorrectly.

Another problem arises with the digital cassette. When

accessing a file that crosses a track boundary, a rewind

must be made to access the second part of the file. To

determine if the drive is functioning correctly, the HP-IL

uses a counter to check the amount of time required for the

positioning. ‘With a faster cleock rate, the counter expires

sooner, giving anm error.

To add to these problems, some 41C°s are more prone to

“crashes’ at higher speeds than others. A “crash’ is when

the 41C seems to get lost; the keyvboard will hang up and

even the ON button will not respond. Battery removal for a

short period of time will recover from most crashes, but

MEeWOTY contents may have been altered or lost. At any case,

this course is intended to teach “software’ techniques zand

sclutions. Hardware “tinkering” is not for evervone and

should only be undertaken by a skilled technician using

ntmost caution.

In view of these factors, the user should try to keep a
fresh set of batteries around and keep flag 55 clear. This
second goal may be accomplished by not having the printer

attached (remember to power all devices down before

connecting or disconnecting), or by synthetically clearing

flag 55. This flag, 1if cleared synthetically, wmust be

cleared within a program, because the 41C checks for printer

existence during all modes except RUN mode. Any time that
your program stops, 1t will set flag 55 if a printer or HP-

TL output device is present. ’

There are some 4I1IC owners who have replaced their

timing capacitof' in order to increase execution speed.

This is not recommended bv Hewlett-Packard. It can increase

speed by a faetor of two, but there are problems associated

with doing this. The current drain on the power supply 1is

higher and there 1is less time available after the BATT
annunciator comes on to replace the batteries. This: is

especially bad for NiCad wuserse. The operation o.f

peripherals creates another problem. When writing data or a

program to magnetic cards using the card reader, the 4IC

must be cperating at its design speed, or the data mey be

written incorrectly.

Another problem arises with the digital cassette. When

accessing a file that crosses a track boundary, a rewind

must be made to access the second part of the file. To

determine if the drive 1is functioning correctly, the HP-IL

uses a counter to check the amount of time required for the

positioning. With a faster clock rate, the counter expires
sooner, giving an error.

To add to these problems, some 41C°s are more prone to

“crashes” at higher speeds than others. A “crash’ is when
the &41C seems to get lost; the kevboard will hang up and

even the ON button will not respond. Battery removal for a

short periocd of time will recover from most crashes, beut

memcry contents may have been altered or lost. At any case,

this course is intended to teach ‘software’ techniques and

solutiocns. Hardware “tinkering” is not for everyone and

should omnly be undertaken by a skilled technician using

utmost caution.

DERIVATION OF INSTRUCTION TIMING

A relative timing table for the 41C had been derived

before by Ernie Gibbs in 1981 and appeared in the February

1981 d1issue of PPC Technical Notes (V1 N6 p3), published by
the Melbourne Chapter of the PPC Club.

The times presented here have been derived by the author

using synthetic techniques and the 82182A Time Module. The

basic techniquer was to set up a program in memory that
contained: somes lines to set up and record an imitial
stopwatch (SW) time, 140 bytescof memory aligned on %0

register boundaries for storage of instructiomns, and some

lines to recall the stopwatch timer after the imstructions
execution.

“The 140 bytes were omitted thefirst time through ¢to

determine the overhead time for the storage and recall of

the stopwatch time. The 140 bytes were thenmn entered and

repeatedly filled with different instructions. The elapsed

time less the overhead time, divided by the number ©of

instructions executed vyielded the single instruction

execution time. All calculations were performed by the 41C
and the process was autocomated using the PPC ROM. with the

aid of the PPC ROM programs, arbitrary byte sequences were

stored into the 20 consecutive registers and the Dbase

instruction times were determined.

Many of the functions required special data in the X

register in order to function correctly. Whereever

possible, a range of data was examined to determine timing

variance for different parameters. Some instructions, such

as the GTO0 s, were stored in compiled form with single line

forward branches. Other instructions required much

patience, such as 140 AVIEW s with O to 24 characters in the
alpha register.

These instructicn times are relative, and are provided

for program speed comparisions. There will be differences

depending upon the installation and situation in which they
are encountered. If there are any major differences, please

inform the authoer or the PPC of these differences for

further investigation. Most cf the information presented

in this course was derived by 1independent users by

axperimentation. In order for the body of information on

the 4&1C to continue to grow, everyone should carefully

recard their observations for other users to examine and

use .

The system configuration used was a 41IC, Quad Memory

Module, PPC RCM, Time Module, and an Extended Functions

Module all running on alkaline cells.

HP-41C Instruction Timing

All times are in milliseconds (mS).

Numeric Data and Manipulations

Numeric entry lines:

biase time 29.5

of numeric digits 31.8
exponential “E’ 25.4
decimal point 18.9
each sign character 36.9

For example: -]+ 234 E-9 would be

29.5 + 5%(3L.9) + 25.4 + 16.9 + 2%(36.9) = 308.1 mS

Note: unusual lines that contain more than !0 mantissa

digits, one decimal point, one exponent, or two signs

take much lcunger than expected.

Stack Manipulations:

CLST 10.7 RDN 17.4
CLX 10.1 RT 12.4
ENTERT 12.0 X<>Y 10. 6
LASTX 13.3

Register Manipulations:

Numbered Register Status Register

STO 22.5 (21.4) 17.0
RCL 26.0 (24.8) 21.9
ST+ 2.7 35.5
ST~ 44.0 38.69

ST* 48.6 £3.3
ST/ 49. 4 4442
X<> 25.5 1.9

Note: For STC and RCL, the values in parentheses

are for short form instructions using ROC-R1S5.

Indirect References:

IND add 15.3 mS

BP-41C

Flag Operations:

AOFF

AON

DEG
GRAD
RAD

X Conditionals:

X=Y7?

X>Y?

¥<Y?

X<=Y?

X#Y?

X=07?

X>07?

X<0?

X<=0?

X#07?

Srtatistical Functions:

ZREG n

S+
pg

CLZ
MEAN

SDEV

ENG n

FIX n

SCI n

CF aon

SF an

Triue. False

24.0 38.0
23..4 37.3

True False

10.6 21.4

24. 4 38.0

27.8 35.4

23.8 35.9

10. 6 21e2

1 2 « S 23 . 4

12.6 24.1

13.5 23.6

11.8 23.1

12.5 23.1

31.0

226.2 =*

235.1 =

245

4£81.2 =*

* - dependent upon contents
the summation registers

Instruction Timing (continued)

HP-41C Instruction Timing (continued)

Trigonometric

ACOS

ASIN

ATAN

cas

S‘IN

TAN

BE-R

R-P

Note:

the

radius of

Functions:

DEG mode

572

546

343

458

567

320

672

215

I.

Labels and Branches:

LBL, numeric, 1 byte

LBL, alpha or numeric

2 byte

Global label, n chars.

GT0 on, compiled, 2 bytes

GTO nn, compiled, 3 bytes

XEQ nn, compiled

RTN (or ERD after XEQ)

GTQO zlpna

XEQ alpha

Note:

the position of the iostruction and

RAD mode GRAD mode

471 546

489 520

255 317

379 459

471 568

242 321

574 6:72

162 189

all of the trig functions vary based upon

data that they are processing.

times above are

All of the

for an angle of 45 degrees and a

(n * 4)

£
r
o
W

O
W
0
W

.

m
W
e

25.0

(varies)

(varies)

tne alpha GTO and XEQ are dependent upon

the label

and upon the length of the desired label.

Null byre (20) 5.9

HP-41C Instruction Timing (continued)

Looping Conditiomnals: (evaluated FALSE)

Numbered Register Stack Register

DSE 75.7 67.9

ISG 73.9 66 .6

Note: these instructions depend upon the values

that are inecremented: oT decremented. It the

loep 1increment is 00 (defaultc' 1), execution 1is

slightly fasterm. When evaluated TRUE, execution

time depends upsen the instruction skipped.

runc tians:

+ 26.6 HMS 27.7

- 32.9 HMS+ 63.1

* 37.3 HME - 70..1

/ 38.1 HR 4U.8

AES 15.1 LNT 22.1

ADV 9.4 LOG 46-280 *

107X 102-223 =* LN 21=-252 *

1/X 36.0 LN1+X 193 *

BEEP 1070C. (F216 set) MOD 7.6

BEEP 15.3 (F26 clear) OCT 124.7 *

CHS 12.9 z 36.4

CLRG 11.8 + 2.8%(SIZE) IcH 6l.4

CLE 21.1L PIL 18.1

DEC 53-34 * PSE 1379. *

D-R 2.9 RND 21.8 *

ETX 77-242 * SIGN 21.8

ETX-1 125 * 72 36.4

FACT 21 + 4.7*(X) YTX 111=-552 =*

FRC 20.2

Note: most functioms above vary slightly, bu

the ones noted with

a range 1is given,

The faollowing

t

slightly more. Lf

is even greater.the variation

instructicns defy timing measurement:

OFF PROMPT STOP

The TONE n function wvaries greatly depending upon 1its

postfix. It can range from a few milliseconds to over five

seconds. Wirth F26 clear T executes in 16.5 millisecondse.

L T

11

HP-41C Instruction Timing (continued)

Looping Conditionals: (evaluated FALSE)

Numbered Register Stack Register

DSE 5.7 67.9

ISG 73.9 66.6

Note: these instructions depend upon the values

that are incremented or decremented. If the

loop increment is 00 (default 1), execution 1is
slightly faster. When evaluated TRUE, execution (L L Lot
time depends upon the instruction skipped. é:uf*' if

Functions:

+ .6 M S
- 32.9 BMS+
* 37.3 HMS -
/ 38.1 HR

ABS 15.1 INT
ADV 9.4 LOG L6-280 * <f zsY
101X 102-229 =* - LN 21-252 * Xeq 7’
1/X 3¢.0 LR 1+X 193 * CRL ¢l

BEEP 1070. (F26 set) MOD
BEEP 15.3 (F28 clear) 0CT

ACES 12.9 2
¢seim CLRG 11.8 + 2.8*(SIZE) 7CH
L J ¢LD 21.1 PI

DEC 53-94 * PSE
D-R 82.9 RND

-1 ¥S e ETX 77=-242 * SIGN 21.8 sceo (Ll e

\ cas-—»'fs"t’ ETX~1 125 * Xt2 36.4 M&scg;p

FACT 21 + 4.7%(X) YTX 111-552 *
FRC 20.2

Note: most functicus above vary slightly, but

the ones noted with “*"s vary slightly more. If
a2 range is given, the variation 1is even greater.

The following imstructions defy timing measurement:

QFF PROMPT STCP

The TONE n function varies greatly depending wupon 1its
pestfix. It can range from a few milliseconds to over five

secounds. With F26 clear it executes in 16.5 milliseconds.

HP-41C Instruction Timing (continued)

Alpha Data and Operations:

Alpha data 37.4 + 4%*n

here “n’ is the text length, including appends.

CLA 9.8

ARCL mnn

Alpha data in register o

n characters . 37.4 + 4%*n (as above)

if status register - 5.9

if indirect +13.3 (ASTO/ARCL only)

Numeric data in register
base timing 53.9

each numeric digit 9.8

decimal point 2.3
each comma separator 8«2

exponent E 1.3

if rounded 1.2

leading sign "-" 5.7
exponential sign "-" 10.2
if indirect 13.3 (ASTO/ARCL only)

if status register -5.9

For example: ARCL 05

ROS5= -1.234567890 E=-5°¢
FIX 4
SF 28, SF 29

S3.9 + %.8*(5) + 8.3 + 1.3 + 1.2 + 5.7 + 16.2 = 129.6 mS

ASTC nan (IND add 13.3 mS ASTO/ARCL only)

Alpha length Numeric Register Status Register

< 5 32.0 26.7
7 31.5 26.2

L4 > > 7 41.4-P 36.0-P
14 30.9 25.5

21 > > 14 39.9-P 34.5=-P
21 29.2 23.9
> 21 28.2-P 32.9-P

where P = 1.5 * MOD(alpha length, 7)

10

HP-41C TInstruction Timing (continued)

AVIEW

base timing 211

each full body char 1G

each comma 7

each period 8.

each colon 7
each character scrolled 582

For example: alpha containms AB=5.34 E-6, 2:00 AM

A

6, 27 will display before

0
The string “AB=5.34 E

: AM” (6 scrolled characters).scrolling, leaving “:0

The calculation:

211.6 + L7*(1Ce4) + 7.8 + 8.4 + 7.5 + 6*(582) = 3904.2 mS

A full body character is any character that does not

use the punctuation dots of the display. If there are two

consecutive punctuation characters, one full body character

must

two

be added to account for the included space between the

punctuation symbols. The semicolon does not use the

punctuation dots of the display.

VIEW na

Por ALPHA DATA: 118 + 7.5 * (# characters)

For numeric data:

SCI n mode: 127.4 + n

ENG n mode: .use SCI mode for total mantissa

digits that are displayed (i.e.
for 234.23 E03use SCI &4 (5 digits).)

FIX n mode: 128.2 4+ 1.3 * (total digits)

add 2.6 for each ","

For overflow, use SCI equivalent

ATLL modes:

lLeading "-"
e iexponent - P

(
D *

L
o

11

SPEED CALCULATIONS

The relative speed of a set of calculator instructions

may be calculated by looking up the instruction timing for

each instruction and adding them together. For example:

01 LBEL"POLY" . 41 + 4L*4 = 57.0

32 STO 01 short form STO 21.4
63 XxXT2 36.4

04 3.5 29.5 + 2*31.9 + 19.9 = 113.2

G5 =* 37.3

06 .78 29.5 + 2*%31.9 + 19.9 = 113.2

07 RCL 01 short form RCL 24.8

08 =*» ' 37.3

09 .432 2%.5 + 3*31.9 + 19.9 = 145.1

10 + ' 26.6
I'1 END - 25.0

637.3 mS

)84 a short form RCL is substituted for each numeric

entry line in the program, the execution time would be:

w637.3 - 113.2 - 113.2 - 14

This would make the rcutine almost 47 Z faster. The

overhead time for storing each of the constants was not

considered in thiscalculaztion. If the overhead time is

considered, a single pass execution would take more time,

but if the routine is executed repeatedlv, the time savings

could be calculated as follows:

Ignoring the time of the calling program...

0ld routine, n repetitions: n * 637.3

~-New routine, n repetitions: n * 340.2

‘~ -~
-Overhead set=-up (assuming short 1*ahafi LT

form STO s):

113.2 + 113.2 + 145.1 + 3*%21.4 = 435.7

The result:

Time saved = o * 297.1 - 435.7

The breakeven point is at:

435.7/297.1 = 1.47 repetitions

reksy
el + 3%*24.8 = 340.2 mS wu=x—loer®

It <can be seen that for two repetitions of the routine

POLY, there will be a savings in execution time. There is a

consideration for the number of bytes used by the extra

instructions and the storage registers. The choice of

csaving time or saving memory will depend upon the program

environment.

The easiest place to increase execution speed 1is in
numerical calcullations. There are usually two or three ways

to accomplish the same task computationally. The case of
doubling of a number ait the beginning c¢f this sectiocon is one
example. Consider the case of dividing a number by 100: "

%yc_m 100 26.5 +3*31.9 = 125.2
/ 38.1

163.3 mS

4%{:; (2)y LE2 29.5 + 2*31.9 + 25. = 118.7
/o 38.1

156.8 mS

gz(3) .01 29.5 + 2*31.9 + 19.9 = 113.2
J - 37.3

150.5 mS

596 (4) E2 29.5 + 31.9 + 25.4 = 86.8
‘ / 38.1

~ |
o

‘-l‘bgg

ba G Z 36.4

AES ABS D @, b s e————
oeWor Case 265i9m (—— | 97.8 mS

ST i lask K

These five cases are all fairly shert (2 to &4 byctes)

wavs to divide a number im X by 100. The most straight-

forward way used by most programmers, (1), is also the

slowest. The more experienced programmer might have chosen

either (2) or (3). The synthetic programmer would Thave

saved ome byte and 31.9 mS over (2) by using the truncated

exponent shown in (4). The speed demon programmer would have

sought yet a better way as shown in (5); 1t uses the fewest

bytes and takes advantage of the “X° instructiom which
divides the number in X by 100 and then multiplies the

result times the number ino Y.

THINGS TO CONSIDER

Do not forget that there are other considerations than

speed when comparing insctruction combinations:

What will be left in the LASTX register after

Will that value save time afterward?execution?

How many RPN stack levels will the combination

consume? Will additional STO0"s and RCL"s be
necessary? Will the stack 1ift be left emabled

or disabled after the calculation?

Will accuracy be affected? Smaller numbers

should always be added together before adding

to armuch larger number.

Is the speed increase really necessary? Short

calculations between prompts should be reduced

to the fewest bytes because the speed difference

is not easily noticed.

How much more memory will be used by the faster

combination? Each storage register consumes 7

bytes that could have been used otherwise.

Will s*reamliuing a program detract from the

program’s usability? Error trapping before a

time consuming calculaticn would prevent the

user from wasting time on a bad answer.

Does the useful lifetime of the program justify
the time spent in optimizing executiocn speed?

Many programs are used only for several hours;

gquick and dirty solutions are generally the

most efficient in terms of man-time saved.

—
_
_
\
W
M

¢y 00 0o0C OO DO © o O

'« S0 ©0C o0 00 ofg g4
6 , {_M 0w “ii #antmw.gga,ub

oJz10 ©02 00 0z pf 7 &Y 3
BJQAQuf'gF«g nzeé-fi EL—“”

lélf P%@Jfl)[avt'

r

14

GENERAL RULES FOR SPEED IMPROVEMENT

Use status registers (RPN stack, and M, N, OC,

and P) for computations whenever possible, they
use less time than numbered storage register

operations.

Limit the use of in-line numeric data entry

lines, especially within loops. This class of
instruction is particularly time consuming.

Tf they must be used, consider the different

ways of writing them to increase speed. If"

the number is merely a power of ten, use a

synthetic exponent, if possible. 1If the number

has an exponent, a decimal point can be omitted

if the resulting exponent does not increase b

a digit. TFor example: (12.3 E-6 vs. 123 E-7.

Try to use VIEW or AVIEW ianstead of PSE.

Remember that a VIEW ’ed value will remaia in
the display until another value is VIEW ed or
a CLD 1is executed. Im long calculaticns, the

VIEW may be displayed longer tham a PSE. A

VIEW can also display the contents of any

register, whereas the PSE only displays the

X or ALPHA registers.

Use local branches whereever possible. The use

of short form LBL’s acd GTO s are recommended
for byte savings, but remember that a short form

GTO that exceeds the compilable discance will

not compile, and will always take longer to

execute. The three byte GIC/LBL combination
executes slightly faster.

If global L3BL s are necessarv, trv to order the

program 8o that LBL s most often accessed are

lowest ian memory. This will shorten the global

label search. Keep the cnumber of characters to

a minimum; each one reduces speed and takes more

memory .

Avoid IKD irect branches as much as possible.

They must always search for their corresponding

LBL and do not compile.

Keep text strings short. The amount of time

spent scrolling one character is more than that

needed to display another 12 character line.

S PACK your programs before execution. Every null

takes 5.9 milliseconds to execute.

9. The local branches in a program can be compiled

without running the program by SST’ing in PRGM
mode to evervy GTO nn or XEQ nn, switching to

NORMAL mode and pressing SST. This insures that

every branch is compiled, without having to run

any data through the program. 0

B Copile it st ceun. o &t e 670 - -*’L

Vs Rwu(kwbéL SST Q{T L_;+4~;((¢9f:}d

PROGRAM EDITIRG

T O

The 4IC chains all of the END’s and global LBL’s
together from the permanent .END. backwards to the first.

global LBL or END. It has been noted that the global LEL

search proceeds from the lowest to the highest in memory and

that a lower LBL would result in a faster search time. In

PRGM mode, the 41C must compute the current line number from

the beginning of the program file. When BST ing a large

program, large delavs are noticed. These delays can be

shortened by adding a “dummy’ glebal LBL just above the
lines to be editted. Theeditor uses the next higher global

LBL to recompute the line number when BST ing. The LBL can
be easily found with a CAT 1 and deleted after editting.

Nulls are inserted by the editor when instructions are

deleted or when the adding cf instructions forces those

below it to be moved down to make room. If there is a large

contiguous block of nulls within a file, there can be a

noticeable delay when SST ing or BST ing. Periodic packs of
a program file <can compress these nulls out and lead to

faster single stepping.

Another way ¢to speed program entry is to remove any

ROM“s or peripherals that are not used in the program being

keved 1in. Whenever an XEQ "xxxxx" is used to invoke an
instruction nct on the kevyboard, the 41C must search the

global label chain for a match, then any ROM or peripheral

catalogs, and finally the basic 41IC instruction set. Most

functions that are used in programs are in the basic set.

The last way to speed the entry of program instructions

makes use of a special feature of the 41C, key assignments.

If an instruction nwot on the normal keyboard is used

repetitively, assign it to a convenient key. Remember that

vou must be in USER mode to make it work. If you are keying

in normal kevboard functions from rows I and 2 o©f the

16

keyboard, it would be better to have the USER mode off to

prevent a bothersome search for auto-local key assignments

(LBL A through LBL J and LBL a through LBL e). Synthetic

programming allows unusual key assignments, such as X<> 00

or LBL A to be made. The techniques used to generate these

assignments will be discussed in Section V.

2.

SECTION III - QUIZ

Which of the following will not affect execution speed?

a. battery strength

b. peripherals

c. .date manufactured

d. temperature

phase of the moan

The fastest flag operatian.requires:

a. 23.4 m$
b. 8.8 mS-

&,y 16.6 mS
d. 16. 7 m¥

e.. none of theabove

A conditiomal loop will execute faster 1f the

conditional evaluates:
!

c,‘.r < of-

. T rue ?

» £false

Ce. a or b

d. all of the above

e. none of the above

Wich £lag 26 clear...

a. BFE?P is faster than TONE O

De. TONE O is faster than BEEP

C . BEEP is faster than CLD

{a) a and c¢

e. b and c¢

In the modified routine "POLY", if long form RCL’s
are used, how many iterations are required before a

speed increase 1is realized?

>TU-
a. exactly 1.5 s ReL, ' ’ é'(
b. less than 2 (1 %3 = 34 8% - ~b*=’°"‘“““
¢. more than 2 geLAE Ll ““b“’é&’fi

d. nmever will g(Obl\; {-L‘.’*'} ;__E’ig— a‘ovw‘

none of the above ¢4

'* Zxa‘g‘ 5"*3{¢é=—" ‘f'\t—-k‘)w-l W’v_gfi”‘&'\u—g-

*:213j§:i>¢4; L\3Cd'LA$+
= b= (i oo= 434, ST

SECTION III - QUIZ (continued)

6. How many BEEP’s could be executed in the time it
takes to scroll ome alpha character inm an AVIEW?

Lo L% Hag 2637

T, What is the axpeqted execution time of the byte:

sequence 1B 4@? &%

- 9T.3@S —>corect 23S £ 2504+ 3.4 = A3 ~s,
b. 6.110 8mS

91..6mS:
. 37.7 mS.

g’ none of the above

8. The fastest crigonometric mode is:

a. DEG
(6. RAD
Co. GRAD

d. all of the above

e e none of the above.

g. An alpha entry 1ine thatAappendy/g;z:;—Z;QZQZZEFQNto the

ALPHA register takes: \;tjflgffi?, [//

d e 40. 4 =S

b. 41.4 @S > = 3.4+R q =D 53
C o [420& '_ns

de 43.4 mS
(&> of the above€ o ‘:IQI!E

1. The fastest instruction is:

cLa— ¥ |ae

d. the null"“ wot Bvuo.\\é»fi- s-«_s%ru.¢§vc

e. mnone of the above

SECTION IV

EXTENDED FUNCTIONS / EXTENDED MEMORY

© Copyright 1383
INNOVATIVE TRAINING CONCEPTS

T REGISTER

HEX ABSOLUTE
L= (7 _BYTES WIDE) ADDRESS

VOID 1023
SFO 1008
SEF

. . EXTENDED
Direction of Storage MEMORY

|

| MODULE
| #2
) (238 REG)

302 770
301 MANAGEMENT_WCRD #2

30C VUil 768
F 76

2F VOID 5/
2F0 752
2EF 751 — |

EXTENDED
. : \

Direction of Storage MEMORY
{ MODULE

L 7
502 5 (238 REG)

201 MANAGEMENT WORD #1
200 VOID | 512

QBF 191
O0BE FIRST FILE HEADER EXTENDED

D : R ‘ 189 =
osb Direction of Storage FUNCTION

. MEMORY
Q4] 065 (127 REG
040 — WORKING FILE PCINTER _ 064()

Figure 4.1 — Extended Memory Addressing

SECTION IV

Extended Functions Module/Extended Memory

The Extended Functions Module (XFM) and the Extended

Memory Modules (XM’ s) increase the 41C°s RAM capacity by 603

registers. This RAM 1is not available for key assignments,.

numbered storage, or program editting. Its purpose is to:

give the &1C file handling capability. The XFM alsc brings

some excellent data¥~éfi€3prog:amh§&aé$4&g functions to the:

41C’s: instruction set. These irctlude programmable SIZE,
programmable key assignments, block operations, and alpha

manipulations. The arrangement of of extended memory 1is

shown in PFigure 4&.1l.

XFM/XM ARRANGEMENT

The 127 registers that reside within the XFM partially

ill the void between the User RAM and the status registers.

t begins at register address CBF and continues down through

egister 04C. Location 040 contains the most 1important

pointer for XM, the working file pointer. Its seven bytes

c-ntain the curreat working file number, the top address of

the next ™ module, if present and in use, and the top

address of the current block of memory. If this register is

disturbed, a EMDIR (extended memory directory) will display

DIR EMPTY. The exact lavyout is as follows:

) 3\-o--l§ \BC

Nfbble Nugbe: { dcauon ot bt.

11 1¢ 9 5

o

8 7 €]

Working File Pointer Format (¢4¢)

NXT and CUR, top of next block and top of current block,

respectively, are in register hex address form. The file

ID# 1is set when a file is made the working file. When a

ASCII or DATA file is invoked by name or by a R/S during an
EMDIR, this value is set.

The first file header is stored in locatiocns OBF and OBE

and file storage progresses dcwnward within the XFM. The

storage in all of exteanded memory begins at the top of the

module and progresses downward to the last available

register in the module; then storage begins in a higher XM.

The format of XM“s 1 and 2 is similar to the XFM memory;
just below the last available register for storage 1is a.

memory management word. In the XM“s the register contains

the bottom address of the previous module (BCT), the top

address of the next higher module (NXT), and the top address

of the current module (CUR).

Nibble Nuqber ’

13 12 11 L0 9 /8 7 6|5 4 3

Memory Management Word Format

These registers have little wvalue to the syanthetic

programmer, because when their contents are altered,

subsequent XM accesses will usually correct them. Th e=

addresses stored in these registers have the same register

hex address format but are offset from the actual address by

one or two registers. It has been postulated, by Steve

wWright, PPC Calculator Journmal VS N3 pp 22-24, that the
purpose of this is to facilitate data movement when files

are delezed from XM.

There are several VOID s, or addresses of registers that

“don’t exist’, within XM. The VOID’s at locations 200 and

30C probably exist to prevent a downward read 1im these

modules to continue into the module below. In the case of

™ #1, the ‘module below’ would be the top cf User RAM.

There are two 16 register VOID’s at the top of the two XM°'s

and their use has not vet been determined.

The combination of seven FF bytes is used bv the 41C to

define a ‘partition register’. This partitionm register

appears where a filename would be expected and denotes the

end of XM used. It is anmalogous to an end=-of-file marker

for all of extended memory. The 41C searches £for this
partition register whenever a file is deleted. If the last

ile is deleted, its file header is written cover with seven

. The o0ld contents of memory are not clezred. If the

1 to be deleted is not the last £ile in memcrv, the 41C

arches for this marker and moves evervthiang <£from the

rker to the beginning of the first file after the deleted

e

t

QG
B

W
o
o

or
h 4

~
fi'
B

@
e

forward to £ill the gap-. If this byvyte pattern appears

hiz a file as data, a PURFL could result io lost data.

Re
gi

st
er

#1
—

Fi
le

N
a
m
e
:

7
ch

ar
ac

te
rs

,
ri

gh
t

ju
st

if
ie

d
pa
dd
ed

wi
th

sp
ac
es

(2
0)

6
5

4
35

2
]

0

4
2
1
4

F|
4
E
l
4
E
}

4
9
|
4
5
|
2
0

3
l
o
l
B
l
e
E
l
o
l
o
l
o
l
g
l
o
l
o
l
i
l
o
l
1
]
1

L
L

'
L

l
—
]

]
FI

LE
FI
LE

PO
IN

TE
R
AN
D

AD
DR

ES
S

DA
TA

FI
LE

SI
ZE

TY
PE

‘
(§

OF
RE

GI
ST

ER
S

IN
HE

X)
1=

PR
OG

RA
M

2=
DA

TA
3=

AS
Cl

I

Re
gi

st
er

##
2
—

Fi
le

At
tr

ib
ut

es
a
n
d

Po
in

te
rs

Fi
gu

re
4.

2
—

Fi
le

At
tr

ib
ut

es
a
n
d
P
o
i
n
t
e
r
s

FILE HEADERS

The 41C distinguishes between 3 types of XM files:

program files, ASCII files, and DATA files (P, A, and D).

The format of a generic file header is shown in Figure 4.2.

Figure 4.2 - File Header Registers

The first register in the two header registers contains

the file name: from one to seven characters, left justified

and right padded with spaces (hex 20), by the 41C, to make

seven bytes. The characters that make up the name can be

any byte value from 00 to FF.

WARNIKG: if you use any characters in a filename that

cannot be absolutely determined from the display, you will

have problems when ycu want to delete the file. In order to

PURFL (purge a file from XM), vou must specify the exact
filename. A filenamecannot be recalled from XM by normal

means .

The second register of the file header contains the file

type (P, D, or A), the file pointer aand address data, and
the £ile extent. The word “extent’ is used here because the

file “SIZE’ shown 1in an EMDIR is really the number of
registers in the extent. The actual file size is the extent

plus two registers for the file header. The extent is the

number of registers available for file stcrage under that

filename expressed in hex notation. The file type, 1in the

firsr oaibble of the second header register, will have the

value of 1 for a Program file, 2 for a Data file, and 3 for

an ASCII file. This nibble can be made to take on other

values, and the EMDIR will show a “€xxx” for file twvpe and
extent; but the file will not respond to any of the XFY file

manipulation instructions.

)

“values in nibbles 12 through 3 of the secgnd file
fregister differ from one file type to another and

w»f#discussed with each type of file.

)
; ~ -

Atz
Wikt

fl?fi< EMDIR instruction behaves like the global label

C}fifibgfi # in User RAM, except that the chain of filenames is

eT kwards. The 41C examines location 0BF for a wvalid
{Lg)xflwg' j,. ddsplays it with the file type and extent from the

¢ &h,~ egegister, calculates the address of the next possible:

fii? #%der from the current extent, and repeats the process

,fl«{hxfi : partition register is found. This same searchs

, iss used for all file access instructions. When~
f€£,-\? qv"“’ .

ie QWG’* ¥R is complete, &t leaves the number of XM registers:

VAF .4 o a%@e in cthe X register.)
e W o]t ™)

PH FILES

+~ f:ogram type XM file is just that...the image of a:
f¢¢§agan b- in User RAM moved to XM. Every feature of the

6¥*£ifiw § file is there: <compiled branches, the programEND,

Afé .&’#kiisuey assignments, and even nulls that were not packed.

- ff\ : o prevent a corrupted XM program file from being

e ft:fitfl- into User RAM, a three byte checksum is stored
cé*anQt"d 5, 4, and 3 of the second header register.

po 0 L : is computed from the bytes within the programe.j NPNE pProg
7fygaiffl l“ through 6 of the second header register are oot
LEARLE S any purpose with a program file.

" ! v"’"’. <L

@ LE

Nibble Number

r3r2111¢ 9 8 7 6 5 & 3 2 1 0

I CHECKSM EXTENT

G (mov 25%)

$ccond Beader Register Format for Progam Files

: ’program file extent is the number of registers
t_é"?~ &3 te hold all of the bytes of the program. It 1is

~ ~d as the number of bytes in the program divided by

a@ra- rounded up to the nearest whole number.

the END 1is stored with a program fiie, the

frob, ffi“' stored to indicate whether a program is
Pl L ®, or packed is also included with the copy. PRIVATE

£ 4Liis 1 % files may also be stored in X¥M.

The XFM instructions valid on a program file are:

GETP GETSUB PURFL RCLPT RCLPTA SAVEP

It has been discovered that within certain constraints,

a program file may be executed within extended memory.

Synthetic techniques for branching outside of User RAM are

necessary in order to uses this technique. Some of the

problems involwved are:

Globial label references can only be made to 1labels
within User RAM. Aniyglobal labels in the stored program

are mnot part of the global label chain, and <cannot be
called. XEQ’s to global labels in User RAM will not have

the correct return address stored on the subroutine return

stacke.

Numeric branches- should be compiled, in order to work.

1f they are not compiled, a RUN of the program may compile

them and make the checksum invalid. The program file cannot

then be recalled back to User RAM. If the program file

crosses over any XM module boundaries, the compiled branch

lengcths will not work correctly. '

Program files in extended memory can be editted if the

program pointer 1is placed there correctly (by syanthetic

means), but changes to program content will invalidate the

program file’s checksum.

Tn shorc, 1t is impractical to use extended memory for

running or editting programs. The technigues necessary to

doe this can be informative as to how program execution and

addressiag occurs, but are beyond the scope of this course.

DATA FILES

The Datrta file consists of comsecutive records that are

treated like numbered storage registers. Each record will

hold as much informationm as a single register, for each one

is a register.

Records may be accessed from one at a time sequentizally

or randomlv, to all of them at once, User Ra2M permitting.

When records are read or written to a data file, a pointer

is wmaintazined and incremented after every read or write.

This pointer is maintained in nibbles 35, 4, and 3 of the

second header register as a three digit hex address cof the

current record or end-of-file. The address of the first

record (record # 0) is kept in nibbles 12, 11, and 10 of

this header register.

Nibble Number

13 12 11 10 g 8 7 6 5 4 3 2 1 0
W...G.S—."N.GTMGNR et W W WD S e S— D w—

2 FilePtr Reg Ptr Extent

A}i éclft- ‘5

Ayl peieTer
Second Header Register Format for Data Files

The extent is the hex number of records available for

storage _.in the file. Since the record numbers are based

from O, the highest pecord number is- the extent less Fe

This is like the correspondence of highest numbered storage

register and the actuwal SIZE of User RAM. Nibbles 9§ through

6. of the second header register are mct used.

The XFM instructions valid cn a data file are:

CLFL CRFLD FLSIZE CATR GETRX GETX PURFL RKRCLPT

RCL2PT! SAVER SAVERX SAVEX SEEKPT SEEKPTA

ASCII FILES

An ASCII file allows the storage of wvariable length

records, <from 1 to 254 bvtes in length. Each byte stored

can take the range from 00 to FF hex, but again seven

consecutive FF Dbytes should be avoided to prevent false

partition registers. The ASCII file manipulations allow the

file pointer to be set at any byte position within any

record in the file.

The file pointer and register pointers are maintained

in the same position within the second header register as

with data files, but anocther pointer is necessary for the

alphabetic operations...a character pointer. Information 1is

retrieved from an ASCII file and placed within the ALPHA
register. Since a maximum of 254 bytes may be contained in

a single record, a character pointer must be maintained to

coordination reads and writes to the file. This character

pointer 1is encoded 1in hex and stored in the 7th and 6¢th

nibbles of the second header register.

] Nibble Number

1312 11 10 9 8 7 6. 5 & 3 2 1 0

3 FilePtr . o«CharPt RegPtr Extent

Second Header Register Format for ASCII Files

The 1information in an ASCII file 1is stored in a

streaming Ffashion without regard to register boundaries.

The first byte following the second header register is a hex

byte count of the number of byvtes in the first record. The

41C adds this byte count toc the address of that byte to

compute the location of the byte count for the next record.

The records are numbered starting at record 000 as the data

file records are.

For the 41C to access the 3lst record in an ASCII file,

it must start at the beginning of the file and read each

byte count byte and compute the address of the mnext one

thirty times. After the desired record is reached, the

character pointer is added to the address to find the

desired access point within the file. It is understandable

how ASCII file accesses can be time consuming.

The advantages of the ASCII file are that reccrds can be

of wvariable 1length and may contain any byte combinations.

Records may be inserted and deleted at will. More records

are easily appended to the end of the file without regard to

seeking a file pointer as with data files.

The wuse o0of a record byte count requires the user to

included them into the size of the file when it is created.

The size am extent of anm ASCII file is specified in whole

registers. The computation of an ASCII file memory

requirements are:

w - ,

ST oTbo4

)

——ed

,Na.**’"\(fl'é

, ‘,,\.J L puerds + oDok
You -t v

i ~
4

 L

ROUND UP

TO WHOLE

REGISTER

(# of bytes of data) + (# of records) + 1

Sizing Calculation for ASCII Files

Instructions valid on ASCII files:

APPCHR APPREC ARCLREC CLFL CRFLAS DELCER DELREC

FLSIZE GETAS GETREC INSCHR INSREC POSFL PURFL

RCLPT RCLPT SAVEAS SEEKPT SEEKPTA

Both DATA files and ASCII files have many instructions

for =storing and recalling information from the files, but

the biggest drawback of their implementation is that a

file“s size cannot be increased directly. The information

must first be transfered to an external storage device or to

User RAM, then the file must be deleted and recreated. Or

the information may be written to another file of the same

type with a larger size. The problem with direct file

transfer is that there must be more than twice as much

storage left as the original file occupied.

The 1instructions for manipulation of each of the file

types will now be discussed. It should be kept in mind that

several instructions are common between two or more file

tvpes and that their behavicr can be markedlv different.

ASCIT FILE INSTRUCTIORNRS

CRFLAS X=# cf registers ALPHA=1 to 7 character filename

This instruction creates an ASCII file of the size

specified under the name specified and makes it the working

file. Possible error messages are:

DATA ERROR X contains a zero register size

BUP FL Filename already exists

NAME ERR ALPHA register is empty

NC ROOM Not enough space 1is left in XM

ASCII FILE INSTRUCTIONS (continued)

CLFL ALPHA=1 to 7 character filename

This instruction will set the number of records in the:

file specified to zero and make the named file the working

file. Possible error messagesare:

FL &OT FOUND Named file does not exist.

FL TYPE ERR Named file is a program file
NAME ERR ALPHA register 1is empty

PURFL ALPBA=1 to 7'éfiaracfiérwfilename

This instruction will purge the named file from extanded

memory and move all files after it forward to £ill the space
¥eft by the ffle. WARNING > After this instruction, there
will he mo workingfile selected. Anv attempt to reference

a file without a current working file will cause the loss of

all files. Possible error messages are:

L NOT FOUND " The named file does not exist.

NAME ERR The ALPHA register is empty. -

SEEKPTA X=file pointer ALPHA=] to 7 character filename

Seek pointer byalpha. .The file pcinter is of the form
rrr.ccc where rrr 1s the record number and ccc 1is the:

character position within the record. Both consider zero to:
be the first record and first character. Possible error

messages are: '

DATA ERROR X is greater than 999

END OF FILE The desired pointer is beyond the

end of the f£ile. The file is

selected as the working file, but

its pointers are not changed.

END OF REC The desired pointer is bevond the

end of the desired record. The

file is made the working file and

the pointer is set after the last

character in the desired record.

FL TYPE ERR The filename specifies a program

file.

S el FT

P ScefT

"
\]

e~

R
r/fi

A;’/‘ « eeY

3

Y=g emlit

ig Free

LA wirha

i A ;‘".v,ac';)‘t_ - ¥

A
T N

ASCII FILE INSTRUCTIONS (continued)

SEEKPT X=file pointer rrr.ccc

This instruction is similar to SEEKPTA except that there,

is no filename specified. The file is assumed to be the

working file. The possible error messages are:

DATA ERROR X is greater than 999
END OF FILE The desired pointer is beyond the

end of the file. The file is

selected as the working file, but

its pointers are not changed.

END OF REC The desired pointer is beyond the

end of the desired record. The

file is made the working file and
the pointer is set after the last

character in the desired record.
FL TYPE ERR The filename specifies a program

file or there is no working file.
N

—_— s §
F*’“"’*Cbgovxf "l-:_-\os«sbh‘%& ‘PC‘KCA

RCLPTA ALPHA=<(O to Lacter {lename>

This instruction returns the current file pointer of the

file specified into theX register. The named file is made-

the working file. The pointer is in the format: rrr.ccc as

defired for SEEKPTA above. The only error message is:

FL NCT FOUND Named file does not exist.

RCLPT (no parameters)

This instruction functions 1ike RCLPTA except that

the working file is assumed. The error message:

FL NOT FOUND This indicates that there is no

working file.

FLSIZE ALPHA=] to 7 character filename or is empty

This instruction returns the size in registers of the

filename specified, or of the working file if the ALPHA

register 1is empty, to the X register. Possible error

messages are:

FL NOT FOOUND Named file does not exist or no

working file exists.

10

ASCII FILE INSTRUCTIONS (continued)

APPREC ALPHA=1 to 24 characters of text ! have Heem Storc orecera,
?-'HAM Jo~o. RC.L-PT @--"‘""“l&“

This instructien will append the contents of the ALEBHA fewloer Huw

registerr to the end of the current working file making it a c#s-&erb

new record. The file pointer is adjusted to after the lmst base

‘character in this new record. If thre ALPHA register Ck—‘zss

empty, mo action takes. place.. Possible error messages are& ; ‘

ENP OGF FL Attempt towrits past end of file. 555“’7
BL, TYPE ERR® Working. file is: mot an ASGILI file.

DELREC Comsens oob die lote gse’ Fecodde.

This¥wstruction dieletes the rpecord at which the workng
File poiucer is* positioned. ats ALl records afrer the

deleted recard’ aze moved Fforward By omnerecord number. The
file podmter is set to the begiiinring of the reconfi‘fifiat u&s

derl eted..- ‘Poissible error messages are:

"END OF EL. At tempt: to delete past end of fihle
FL NOT FOUND There is no working file.

BFL TYPE ERR Working file is ncot an ASCIL fiLe.

INSREC ALPHA=] rto 24 characters of text

This fomstruction inserts the contents of the- ALPHA

ragisterr ahead of the current record pointer as: a new

record wmowing subsegquent records back toc make room for it.

Possible errormessagess ace:

END OF FL Attempt to expand file past end

of file.

FL NOT FOUND There is no working file.

"EL. TYPE ERR Working file is not an ASCIT file.

s Nze
M

<) %h:s .f.é

CLX

ASCII FILE INSTRUCTIONS (continued)

APPCHR ALPHA=] to 24 characters of text

This instruction will append the contentsst oof the alpha

register to the end of the record specified by the file

pointer. The file pointer will now be positioned after the

end of the current record. An empty ALPHA register has no

effect. Possible error messages are:

END. OF FL At tempt to expandorwritebeyond
the end of the file.

BL NOT EQUND. There 1sf mo working f£ile. ‘
‘EL TYPE ERR Working file is not an ASCII file.
REC, TOOLONG The resulting record weuldexceed

254 bytes in length.

DELCHR X=# o ff ehafiact&rs to delete

Thie instruction will delieter Xcharacrers starting art
the current file pointer position in the working file. The

file pointer remains the same. Possible error messages are:

END OF FL At tempt to delete past end of £ile

FL NOT FOUND There is no working file. '

FL TYPE ERROR Wworking file is not an ASCII file.

INSCHR ALPHA=] to 24 characters of text

This. fnstruction will insert the contents of the ALPHA

register into the working file starting at the current file

pointer position. The file pocinter will be positioned after

the last character added. Possible error messages are:

END OF FL ' Attempt to expand file past end of

- file.

FL NOT FOUND There is no working file.

rL TYPE ERR Working file is nmot am ASCII file.

REC TOOC LONG At tempt was made to expand a

record beyond Z54 characters.

ASCII FILE INSTRUCTIONS (continued)

gt ?&3'|\POSFL ALPHA=] to 24 characters of text

This instruction causes the 41C to scan the working file

from the current file pointer position to find a match for

the text in the: ALPHA register. If a match is found, the
file pointer is set to the first character of the matching

string and the poimter is returned toethe X register. If no
match &s found, Bhe fiile pointer remains the same and a
value eff =L {'ss returnedto theX register. An empty ALPHA
register. willalways: geturn a =-l. Possiible arror messages,

are:

ELNOT FOUND There is oo working file.
FL TYRE ERR Worpking file is not anm ASCITI f£ile.:

GETREC (no parameters)

This instrweition will replace the contents ofthe ALPHA

register with .1 to 24 characters from the working file

starting at the current file pecinter position up to the end
of the current record. The file pointer will be set to the

next character to be sent. Flag 17 will be set if the end

0f record was not reached. It will be clear if the emd of

racord was reached. This coordination with flag 17 allows

text files to be easily used with the HP-IL Video Interface.

If flag 17 is set, the video interface will not place an

automatic carriage return and line feed after the OUTA

{output alpha register) instruction. Possible error messages

are: ' ‘

ERTZ OF FL Attempt to read past end of file.
FL XOT FOUND There is no working file.
EL TYPE ERR Working file i1s not an ASCII file.

13

ASCII FILE INSTRUCTIONS (continued)

ARCLREC (no parameters)

This inmstruction will append characters from the current

file pointer position of the working file until either the

ALPHA register is full or anm end of record has been reached.

The file pointer will be left pointing at the next character
to be sent. Flag 17 is manipulated as with GETREC; it is
sett if the end of record was mnot reached, and cleared
otherwise. Possible error messages are:

-END OF FL Avtempt to read past end of file.
“EL NOT FOUND There is no working file. , A

‘FL TYPE ERR Working file is not am ASCII file.

SAVEAS ALPHA=ASCIILfiile name <,mass storage filename>

This instructiom will transfer anm ASCII file to a wmass
storage device 1l1like the Digital Cassette, 1if one exists.
‘The mass storage filenameis optional; 1if omitted, the name

of the ASCII file will be used as the. mass storage filename.

The name must have been previouslv-initialized wusing the

CREATE command in the HP=-IL module. Possible error messages

are:

EZND QOF FILE The destination file was smaller

tthan the source file. Partial

- transfer of the contents was made.

FL NOT FOUND The ASCII filename does not exist.
FL TYPE ERR The named £ile is not an ASCIIL

file.

NAME ERR ALPHA register is empty.

NO DRIVE The HP-IL is not present or there

s no mass storage device on the

interface loop.

14

ASCII FILE INSTRUCIONS (continued)

GETAS ALPHA=mass storage filename <,ASCII file name>

This instruction will retrieve an ASCII file from a mass

storage device and place the contents into an ASCII file inm

extended memory. The ASCII f£ile in XM must have been

created previously If the end of either file is reached,

the transfer will stop. Possible error messages are:

END OFFL. The end of the XM file was reached

before the: transifer was complete:.

FL. NOT FOUND The named fiile does not exist iIm

, extended memory. R ,

BL TYPE ERR The named £ile was not.an ASCII
7_ file. - | .

NAME ERR The: ALPBA register is empty.
NO DRIVE There is nte: HP-LL modulie or mass

storage device on the interface
loop.

’
q
-
l

t
n

DATA FILE INSTRUCTIONS

CRFLD X=# of registers ALPHA=] to 7 character filemname

This instruction creates a data file with the specified

name and of the specified extent. The created file becomes

the working file. Pcssible error messages are:

DATA ERROR X-register contains a Q.
DUR FL. A f£file already exists with the

name specified.

NAME ERR The ALPHA register is empty.

NO ROOM Thereis: not enough extended
memory o create the size of file
gspaicified.

CLEL ALPHA=] to 7 character filemame

This ipnstruction will write the walueof zero into every
recorcd within the data file. Possible error messages are:

FL NOT FCUND The file specified does mot exist.

FL TYPE ERR The file named is a2 program file.

NAME ERR The ALPHA register is empty.

FLSIZE ALPHA=<({ to 7 character £filename>

This ifmstruction will return the number of records 1in

the named file or working file to the X register and uwmakes

the file referenced the working file. Possible error

messages are:

FI. NOT FQUND The named file does not exist or

there is: no working file.

PORFL ALPHA=] to 7 character filename

This instruction will purge the named file from extended

memory and move all files after it forward to £ill the space

left by the file. WARNING: After this dinscruction, there
will be no working file selected. Anv attempt to reference

a file wirthout a current working f£file will cause the loss of

all files. Possible error messages are:

FL NOT FOUND The named file does not existe.

NAME ERR The ALPHA register is empty.

16

DATA FILE INSTRUCTIONS (continued)

SEEKPTA X=rrr ALPHA=]1 to 7 character filename

This imnstruction will select the named file as the
working file and set the file pointer to the record value

specified 1in the X register. Only the integer portiom of
the X negister is used. Possible error messages are:.

DATA ERROR The number in X is greater than
999.

-END OR FL Attempt to position file pointer

‘bieyond the end of file. The £#le
wiill be selected as the workimg
file, but the f£ile pointer will

, not be change .
FL NOT FOUND The named file does not exist.

FL. TYPE ERR Thre named file is .a program file.

SEEEKPT X=rrr

This instruction will set the file pointer of ¢the
working file to that specified in the X register. Possible

error messages are:

DATA ERROR The number in X is greater than

§95.

END QOF FL Attempt to position file poiater

: bevond the end of file. The file

pointer will not be changed.

FL NOT FOUND There is no working file.

RCLPTA ALPHA=] to 7 character filemname

This 1iastruction will return the file pointer of the

named £file to the X register and selects it as the working

file. The file pointer is of the form rrr as in SEEKPTA and

SEEKPT. The only error message:

FL NOT FOUND " The named file does not exist.

17

DATA FILLE INSTRUCTIONS (continued)

RCLPT (noc parameters)

This instruction functions the same as RCLPTA except the

working file 1is assumed. The value of the working file

pointer #s returned to the ¥ register. The only error

message..

FE NOT FOUND There is no. working file.

SAVER ALPHA=<Q to&i“cbaracter'filgname>

This ifistructidmr will copy all of the current data
storage registers tos the named data file or tothe working

file 1if the ALPHA register is empty.. The contents of tmg

first data register RG0 will be saved as record 000,ROL
will ©be" saved into record 00l, -etc. The named data fike
will be made the working file. After the transfer, the fifié

pointer will be pointing tc the next available record or at

the END OF L. If there are more data registers than

records am EKD QOF FL error will result. This instruction is

analogous to the Card Reader WDTA 1instruction. Possible

error messages are:) ~

END OF FL There were more data registers

than records in the file.

FL NOT FOUND The named file does pmot exists or

there is no working file.

FL TYPE ERR The mamed or working file is not

a DATA file.

18

DATA FILE INSTRUCTIONS (continued)

SAVERX ZX=block control word: bbb.eee

This instruction copies the data registers denoted by

the block control word in the X register (bbb=beginning
register, eee=end register) into the current working file

beginning at the current file pointer. The transfer wilili

not take place if there is not enough room from the fille
pointer to - the end of the file to accomodate the block -oif

‘data registers. The file pointer will be left pointing:€0
the nmnext available register or to the end of £1le
This function fs analogous to the card reader”s WDTAX. The
possible error messages are:

END” OFFL Attempt to write past theend of

£ile. The file pointer remains

unchanged.

EL TYPE ERR. The working file is not a DATA
Hrle.

NONEXISTENT Attempt to save a register that

doess not exist in the current

SIZE..

SAVEX (no parameters)

This instruction will save the <contents of the X
register to the current working file at the current file

pocinter. The £ile pointer will be advanced to the next

available record or to the end of file. Possible error

mesSsages are:

END QF FL : Attempt to save a record beyond

the number of records available.

FL NOT FOUND There is no working file.

FL TYPE ERR ~The working file is not a DATA
file.

19

(terTE o {A /g P
AT A 'Ltf

22,/ GETA

o <
ShVE

£5 y

DATA FILE INSTRUCTIONS (continued)

GETR ALPHA=<0 to 7 character filename>

This instructiom will copy the contents of the named

file or working, file, if filename not present in ALPHA, to

‘the data storage registers. The first record (000) in the

file is transferrped to R00, the second record to ROlL, and so

on until’ no register§ are available in User RAMor an end of

file isreachedi. The FLL&»go*nter will be left pointingto

&be nextava;Lahle cecord or the endof file, depending upon

the conditionm rhat tarmiuafed the transifer, the exhaustion

of records oef data regi@ters. The named file willbecome

the working filen Thi's: insctruction is- analogous to readiag a

data card* wich. the: card reader. Possible error messages: are:

FL NOT ROTUND The named: fiile: dces not exist or

| ‘ there is no working file.

FL TYPE ERR Either the named fileor the
working £ile is not a DATA file.

GETRX X= block control word, bbbh.cee

Tris instruction will copy data from the working file,

beginning at the current file pocinter, to numbered data

registers beginning at register bbb and continuing to

re ister eee. The transfer will cease when the registers

specified have been filled or the end of file is reached.

The file pointer will be positionmed to the next record oz

the end of file. This instruction is the complement of

SAVERX or of the card reader”s RDTAZX. Possible error
messages are:

END OF FL Attempt to read beyond the end of

the file.

FL NOT FOUND There is no working file.

FL TYPE ERROR The workiog £ile is not a DATA

file.

NONEXISTENT At least one register in the range

specified does not exist in the

current SIZE.

20

DATA FILE INSTRUCTIONS (continued)

GETX. (no parameters)

This instruction will copy the record pointed at bythe

file pointer of theworking file to the X register. The

file pointer will be incremented by one. Possible ermor
messages are:

END OF PFL. Attempt to read beyond the end of
ther file.

FL NOT FOUND Thereis no working file.

FL TYPE ERR The workingfile is not a DATA
file.

PROGRAM FILE INSTRUCTIONS

GETP ALPHA=1 to 7 character filename

The named program file is copied from extended memory

into pregram memory. The copy will be placed between the

permanent .END. and the last program END, replacing any

program in between. If this ianstruction is executed from a

running program, control will be returned to the calling

program, unless that program has been replaced by the

execution of this instruction, then program executionm will

resume at the first line of thecopied program. If executed
from the keyboard, the program pointer is positioned to the

first lilne of the tramsferred program. If USER mode is on

before the transfer, any key assignments recorded with the

file will ©Dbe activated. This instruction is similar to

reading a program card with. the card reader. Bossible ernmon

messages are:

CHKSUM ERR The program file checksum is not

correct for the program file. The

contents of the file may have been

corrupted by: XFM/XM modules

removal, static memory loss, or

editting or execution with the

program pointer in extended

MEMOTY »

FL NOT FOUND The named file does not exist.

¥L TYPE ERR The named file is mot a program

filew]

NAME ERR The ALPHA register is empty.

NO ROOCM There is not enough room in

User RAM for the program. Try

reSIZEing for fewer data

registers, deleting key assign-

ments, Or clearing programs.

This message is only seen during

program execution.

PACKING The same as “NO ROOM® except that

this message is seen if GETP 1is

executed from the keyboard.

GETSUB ALPHA=] to 7 character filemame

This: instruction copies' the named file intoc User RAM

after the last program and just before the permanent .END..

Control is returned to the calling program 1f executed

within a program. The program pointer is not set to the

fi st line of the transferred program. If USER mode is om,
any key assignments recorded with the program will be

activated. This fnstruction is+ analogous ¢to the card
readier”s RSUB. Possible error messages are:

CHEKSUM ERR ‘The program file checksum. is not
correct for the program file. The
contents of the file may have been

corrupted by: XFM/IM modules
removal, static memory loss, or

editting or execution with the
preogram pointer in extended
MEemOry «

FL NOT" FOUND The named file does not exist.
FL TYPE ERR The mamed file is not a program

file. .

NAME ERRK The ALPHA register 1is empty.

NO ROQOM There is not encugh room in

User RAM for the program.. Try

reSIZEing for fewer data
registers, deleting key assign-

ments, or clearing programs.

This message is only seen during

program execution.

PACKING The same as “NO ROOM® except that
TRY AGAIN this message 1is seen 1if GETP is

executed” from the keyboard.

PURFL ALPHBA=] toc 7 character filename

This instruction will purge the named file from extended

memory and move all files after it forward to fill the space
left by the file. WARNING: After this instruction, there

will be no working file selected. Anv attempt to reference

a file without a current working file will cause the loss of

all files. Possible error messages are:

FL NOT FOUND The named file does not exist.

NAME ERR The ALPHA register is empty-.

23

PROGRAM FILE INSTRUCTIONS (continued)

RCLPT (no parameters)

This instruction will return the number of bytes in the

working file, 1if the working file is a program file. A
program file can be a working file if: an EMDIR is stopped

at the file, a RCLPTA or SAVEP with thefilename has Dbeem

axecuted amd no other filehas been purged or made the
working Eike' sinces. Th'f’si fnstruction cam be: confusing

because f#it is allowed om alil file types. The only erconm
message ilsu

FL. §O& EQUND There is no working file.

RCLETA -ALPHA=<0 to 7character filemame>

This fmstruction will return the number of bytes in the

named program file. If the ALPHA register is empty, the

instruction functions like RCLPT. The only error message

is: -

FL NOT FCUND The named file does not exist, or

if ALPHA empty, there is no work-

ing file. ’

SAVEP ALPHA= <program name><,filename>

This inmstructionm will copy the named program, Or current

pregram 1if program name is omitted, ¢tc a program file

specified by the filename. If the filename is cmitted, the

file will be given the same name as the program. In either

case, the ALPHA register must have - name 1in it. If a

program file already exists under that filsnmame, it will be

purged from extended memory and recreated. Possible error

messages are:

BUP FL A file of the same name exists in

extended memorv, but 1is not a

program file. The existent file

is made the working file.

NAME ERR The ALPHA register is empty.

¥J RX0CM There is not enough room in

extended memory to save the

specified program.

ROM The named program resides 1in

ROM.

EXTENDED MEMORY DIRECTOCRY

EMDIR (no parameters:)

This instructiomn wil7 *d@isplay a “directory” of extended

memory and place the number of extended memory registers:

that are not used into the X-register. If no files exist,

the message '"DIR EMPTY” will be displayed.

Each directory entry is shown as a single line,
containing, thefilemame, a filetype letter (Program, Data,

or ASCII), ‘%nd the extentof the f£ile. A. sample directory

iis. shown. belaows::

NPR P138

EXXXXXX DO1lO0

L AOQQL

MPG P098

CART De20

CARZ pG20

CARLX D.C.20

Each entry is .“paused” in the display like a CAT alog.

If any key other than R/S or ON is pressed during the

directory, the display will “hold” at that entry for review
for as long as the key is held down. Cn releasing the key,

the directory will continue.

1f the ON key was the key pressed, the directory will
df

“hol until the key is released, then the 4I1C will turn
off. If# the R/S key 1s pressed,. the directory will hold

until the key is released, control is then returmed to the

kevboard. The file that was displaved when either of these

twe key was pressed is made ther working file. After the

directory 1s stopped, the X register will contain the number

of XX registers that are unused. If the directory is not

stopped, Che working file remains the same as before the

"EMBIR.

The EMDIR instruction is programmable, but control does

not return to the calling program if the directory is

stopped. The stoppage of the directory is a good way for

the user to select a file without having to name the file,

but how to guide the user through toc restart the ©program?

The folleowing program linmes show a technique for using this

file feature:

25

"R/S AT FILE")
AON | -
TONE 7 l N
’IjggESS R/S"J owOf\ o
EMDIR

CLD

AQOFF

Thefirst message "R/S AT FILE" is displayed for a shorr
time with amattention getting TONE 7. The ALPHA register

i#is: then loaded with the message "PRESS R/S". Since ALPHA
mode wasselected, &f che BMDIR is stopped with a R/S, the
display will show "PRESS R/S". The user themn presses R/S to
continue. ~ _Ef the EMDIR was not stopped, the last £file

displayed!would be “frozen’ in the display wuntil ancther
view oype iwmstruetion or CLD is executed, hence the CLD.

The AOFF, of course, 1is to exit ALPHA mode. Remember...if

the EMDIR is stcopped, the file will become the working file.

+£ it - comtinues without stoppage, the previous selected

working file 1s still acrtive. If the previous operation was

a PURFL, any subsequent file operation will cause all £files

to be lost. '

26

EXTENDED ALPHA REGISTER INSTRUCTIONS

The XFM has several instructions that enhance the ALPHA

capabilities of the 41C. These instructions are similar to

string handling functions in the BASIC language that is used

cn other computers. The correspondence of these functions
are as follows:

XEM AEPHA FUNCTION APPROXIMATE BASIC EQUIVALENT

ATOX ASC(LEFTS("string™, E))

XTOA: "string"+CHRS (X)
OR

"string"+X$

ALENG LEN("sctring")

ANTUM VAL("string™)

POSA INSTR(1,"string",CHRS (X))
OR

INSTR(1l,"string",X$)

ARQT AS=LEFTS("string",X)

N=LEN("string")-X
BS=RIGHTS("string",N)
BS=BS+AS

These 1instructions are quite useful when working with

ASCII files, ALPHA input data, peripheral codes, and special

displays. A description of each of the functions follows:

XFM ALPHA INSTRUCTIONS

ALENG ALPHA=C to 24character string

This instructioan will retuvrmn a decimal value in the

ran e of 0 to 24 to the X register. This represents the

number of <characters present in the ALPHA register. The

character coumt starts from the £irst ncocn-null character 1in

the alpha register, and counts all characters thereafter,

including nulils. There are no error messages for this

instruccticn.

XFM ALPHA INSTRUCTIONS (continued)

ANTM ALPHA=0 to 24 character text string.

This 1s a very powerful instruction that is easily

misused. It will scanmn the ALPHA register for any

consecutive set of characters that might be interpretted as

ASCII encoded numbers and returns a normalized wvalue to the

X register thatrepresents thedecoding of that aumber. In

addition, 1f a walid string is found, £lag 22, the data

ewtry flag will be set. This instruction will not clear
flag 22. The decoding s controlled by the status of flags
28 amd 289.

If flag, 28 is set, a "." will be fnterpretted as the
decimal point. Lf flag 28 1is clear, .a "," will be

interpreszted 2s the decimal point. Flag 29 controls whether

or aot comma digit group delimiters, 1if fflag 28 set (or

periods, if £lag 28 is clear) will be accepted as numeric . «

data entry. A oo én 5....5 AN

you 54i+§'ua§”5

) \
For example, ALPHA="S55,362.8/12"

If F28=set and F2%=set, ANUM returns: 55,362.8 } |
Z d%fi’-'t‘t_\‘

If F28=set and F2%9=clear, ANUM returns: 55 { S
\ O LJ'.AJM

~ ~ o . - r i !

£ FlZ8=clear and F29%=set, ANUM returns: 55,3628 .;{'guti OeMt
0

4 N

If FPZ8=clear and F2%=clear, ANUM returns: 55,3¢€2 g~

The processing commences from the first data entrf%£j7 -

character (0 1 2 3 4 56 7 8 8 E + -,) based upoa the

statuses of f£lags 28 and 29 and contiagues until a non-dats

entry character 1s encountered. The functioning is 1like

that of a numeric entry line. If there are multiple plus’s

or miaus s, their net effect is considered. The “E’ behaves
differemtly, in that a numeric digit musc proceed the EF
Any embedded spaces will stop numeric conversicn. At least
one numeric digit must be found before any processing will

oCcCcuT. If there 1s nac convertible strimg ia the ALPHA

register, the X register is left unchanged as well as £flag

2Z. There is no error message for this instruction.

W 5 —c e e wuel rReBsSEr wsllé ;G’

S'Q,‘{: t.uLl/“e +Q~‘—- Froqw })—vc_a‘(couv"(-@.

b
t

XFM ALPHA INSTRUCTICNS (continued)

AROT ALPHA=0 to 24 character string , X=+ 0 to 255

This imstruction will rotate the contents of the ALPHA
register by the number of characters and direction specified

by the X ragister. A positive number in X, rocates to the

left, and a negative number rotates to the right. This

enables the permutation of the ALPHA register in a keychain

type manwmer. That is, each character can be thought of as a

key on a eircular keychain; every time a rotation 1is

perfiormei, some keys are moved about the keychdin, o the

other side. Their relative order is maintained.

Ef there are mull bytes (00) within the ALPHA register,

they wilkl be lost-if a rotatiom stops or any wmamipulation

results: Iin these.nulls becoming the Yeftmost characters.

Thee ALBHA ‘register wusfes the pulli byte: to fill the space

ahead ef .amny characters entexed intoc the register. The

first wmon-null character from the left is the start of all

data. Any mnulls following that charazcter. are included 1in

the workable contents of the register. The only error

message 1is:

DATA ERRCR The absolute value of X exceeds

255.

ATOX " ALPHA=0 to 24 characters

This instruction will returm the decimal equivalemt of

the bvte code for the first character in the ALPHA register.

The first byte of the ALPHA register will be removed, making

the 1length of the string one less (see comments on nulls in

the explaination of the AROT instruction). If «the ALPHA

register is empty, a value of 0 will be returned. There are

no errxor essages for this instruction.

b 0

XFM ALPHA INSTRUCTIONS (continued)

POSA X= + 0 to 255 or ALPHA data Y qou. wb*+>jfi\o oARET
(.nm,{c,v e ‘s\MWD b{ ot

This instruction will returm to the X register the first £
position of ¢the absolute value of the byte code, or ALPHA

string, within thg ALPHAregiscter. The first character

position 1is O, like the ASCII file character pointer. If

the string or byte 1Is not found, a =l is: ceturned ta the X °i}1chii
t -

register. Theonlky error message 1is:

DATA: BERROR The absoclute walue of X exgeeds

x535.

XTOA I=decimal- walue (0-255) or. ALPHA data

Thi's instcruction: will encode the decimal wvwalue in ‘Xinto

a hexadecimal byte and append this bvteto the contents: of

the ALPBA reg:dister.. If the X register contains ALPHA darta,

the string will beappended to the contents of the ALPHA

register. The only error message 1is: ~

DATA ERROR The absolute value of X exceeds

-~ 255.

These functions can lend themselves to quite advanced

technigques. Consider the following program lines: '

ANTM

STO IND 0OOC

LBL Q!

ATOX

&7

X#Y?

GTC 01

This set of instructions will decode a number from the

contents of the ALPHEA register and then take bytes from the

front of the ALPHA register until a delimitiang "/" is found.
This technique enables the use o0f delimited numbers in ASCII

files. A DATA file uses 7 bytes to save a single number,

but if the number is less than 7 bytes wnhnen ASCII encoded,

an ASCII file record may save rocme.

Either of the ianstructions, ARCT or XTCA mav be used in
conjuction with flag 25, the error ignore flag, to check a

aumber in the range of =255 to +255. These limits are quite

common in computer applications.

30

FLAG REGISTER INSTRUCTIONS

The XFM contains three instructions that enable extended

control of flags FOO through F43. These functions are

explained below:

RCLFLAG (mo parameters)

This tfnstruction will return an ALPHA data type wvalue

to the X register containing the statuses of £flags FOO

through F43. The resulting register is encoded as follows:

Nibble Number

-8 7 6 S5 4 3 o P
t

(&
)

The nibbles 10 through 0 contain the binary status of

flags FCO through F43, respectively in 4 bit grcups. The

two F values stored inm nibbles 12 and 1! distinguish this

data type from normal ALPHA data in an apparent attempt to

prevent 1indiscriminate storing of values into the flags.

Bug 7, the ASTO bug, allows a method of creating this data

tvpe in thealpha register. Recall that with 7 —characters

in the alpha register, the second nibble of the seventh

character will be stcored with the ALPHA data value of an

ASTO operation. If BUG 7, the ASTC bug, is present in your

41C a STO/RCLFLAG data type may be created by entering 6

characters 1into the ALPHA register with the first nibble of

the first character being an “F’. This maev be easily done

with the XTOCA instruction. A byte is then appended to the

end cf these 6 characters with any one of several

instructions: ao append text line, XTCa, or ARCL. This byte

will be found in the 16th column of the hex table. A good

append text line would be one containing a “?77. An ASTO X

is then executed to vield the RCLFLAG data tvpe in register

X. In this mnanner a RCLFLAG value mav be ARCL‘ed for

storage intc an ASCII f£ile and reconstructed for a later
STOFLAG operation; but cnly 1if BUG 7 is present.

31

FLAG REGISTER INSTRUCTIONS

The ZXFM contains three instructions that enable extended

control of flags FOO through F43. These functions are

explained below:

RCLFLAG (no parameiters)

This dfnstruction wil'lreturn an ALPHAdata type value
to the X register containing thestatuses of flags FOO
through F43. The resultingregister 1is: encoded as follows:

Nibb:le Number

1312 1110 9 8 7 5 5. & 3 2 1 0

l F F . . - - . .

The nibbles 106 through C contain the binary status of

flags FOO through F&43, respectively in 4 bit groups. The
two F values stored in unibbles 12 and 11 distinguish this

data type from normal ALPHA data in an apparent attempt to

prevent indiscriminate storing of values into the lags.

Bug 7, the ASTO bug, allows a method of creating this data

type ia the alpha register. Recall that with 7 characters

in the alpha register, the second nibble cf the seventh

character will be stored with the ALPHA data value o0of an

ASTC operation- In order to create a RCLFLAC data type, 6

characters must be entered into the ALPHA register with the

first nibble of the first character being an "F~. This may
be easily done with the XTOA instruction. A byvte is then

appended to the end of these 6 characters with any one of

several ianstructions: an append text line, XTCA, or ARCL.

This byte will be found in the 16th column of the hex table.

A good append text line would be one coutaining a “?77. An

ASTO X is then executed to yield the RCLFLAG data type in

register X. In this manner a RCLFLAG value mav be ARCL ed
for storage into an ASCII file and recoanstructed for

a later STCOFLAG operation.

31

FLAG REGISTER INSTRUCTIONS (continued)

STOFLAG X=RCLFLAG data type or contrcl word, bb.ee

Y=RCLFLAG data type if X contains control word

This 1instruction will cause the restoration of the

statuses of flags FOO through F43 if X contains the RCLFLAG

data. If Xcontains a control word, bb.ee, where bb and ee

can be from 00 to 43, the Y register must comtain the

RCLFLAGdata. Only the flag statuses defined by the control
word: -are —rCestored. For example a ccontrol word of 36.43
would only ©restore the trigonometric mode and display £fix

flagsie The other £lags FOG through F35 would be unaffected.

Ef more than gdne group of <consecutive flags need

restoratian, w®multiple executiom of this imstructiomn with
differemt control words will accomplish <¢that. -Possibles

ACTOT messages: are:

BATA. ERROR The value in either X (or Y if a
control word is used) does not

conform to the RCLFLAG data

tormat.

NONEXISTENT The control word specified in X

references flags out of the range

of 00 to 43.

X<>F X=+0 to 235

This 1instruction will exchange the contents of the X

register and the statuses of flags FO0QO through FQ7,
interpreting each flag to repres=nt its binmary power of 2.

For example, flag seven would be 2 to the 7th power or 128,

flag six would be 2 to the 6th power or 64, etc. This

instruction allows for binary encoding or decoding of data

without @mathewatical gperatiocns. This imstruction should

not be confused with the X<> _ instruction within the 41C’s
basic instruction set. The only error message is: ‘

DATA ERROR The absolute value of X exceeds

255.

It wmight at first be thought that this function would

lend itself to setting bit 7 ¢f a single byte for reverse

video on the Video Interface; however, a timed execution

reveals that the instruction secquence: X<>F, SF 07, X<>F 1is

in fact slower thanm 128, +.

BLOCK REGISTER INSTRUCTIONS

The XFM contains two functions that enable Dblockwise

manipulation of <contiguous blocks o0of numbered sitorage

registers in User RAM. They are:

REGMOVE ZX=control word, sss.dddnnn

This imstruction will «copy a block of registers of

Yength “nan’, starting at register number “sss’ to a block
of registers starting at register number “ddd”. If there 1is
overlapping between the bilocks, the transfer is ordered such

that no register contemts are lost. If the ‘nan’ of the
control word is zero, onme register will be: copied. The only

error message is: |

HGREXI§£ENK The control word specifies data

regristers that are not inecluded #n

the current SIZE.

REGSWAP ZX=control word, sss.dddann

This instruction will swap the contents of two blocks of

data registers specified by the control word as defined for

the REGMOVE instruction. Again, if the blocks overlap, the
transfer is ordered. such that nc registers are lost. If nnn

is zero, one register will be exchanged.. The only error

message 1is:

NONEXISTENT The control word specifies data
regiscters that are not included in

the current SIZE.

These two 1astructions allow manipulation of mass

amouncts of data. Possible applications are: rapid sorting

of data registers, array manipulation and sharing of

registers RT3 through 15 by multiple programs to take

advantage of the speed and bvte saving of short form STO’ s

and RCL s.

Do ot confuse the “onn” block length wich the increment
or decrement used with the ISG amd DSE instructions.

GETKEY (no parameters)

This instruction stands out among the other XFM

instructions. It will cause the 41C to wait approximately

10 seconds for a key to be pressed. The keycode of the

pressed key is returned to the X register. If no key was

pressed before the instruction “timed out’, the value 0 1is

returned. Note that the keycode of any key, including R/S,

OFF, USER,PRGM, ALPHA, and SHIFT will be returned.

The keycode is computed as:

row * 10 + column

where the &row containing the OFF key is row. 0 and the row

containing the’ R/'S isrrow 8. Rows 0 and 4 comtainonly four

columns, all of the others contain five, the leftmost key
being coluwmn I. Note: that the keycode. returned will ,nefe:

take a negative value as shown whea wsing the ASN function,

ssince the SRIFT key would return a walue of 31. This holds
true even 1f the SHIFT flag is set before executing GETKEY.

This ifnstruction lends i#tself to speciazlized data entry.

Only a single keystroke is allowed, and the value returned

has a 1limited range. It could be used for example for:

setting up programmable key assignments, games input such as

pinball paddles, and single kevstroke recall of arrayed

data.

The first test that @most programmers put this
instruction to is similar to the following program:

¢: LBL 01

02 GETKEY

03 VIEW X

G4 GTO Ol

They would begin punching keyvs and examining the

keycodes displayed £for any of the keys on the 41C. Thevy

would scon f£ind that a simple R/S will not stop their
program, but return an 8%. An OFF kevpress would retura an
0l. How do you stop the program? The 41C recognizes the

R/S kev as aprogram STOP when any other instruction but

GETKEY 1is executed. If two R/S°s are pressed in rapid
succession, the program should stop at lines 01, 03, or 04%.

Tha fear imtroduced by this first confusing encounter causes

most programmers ta shy away from this instruction, but

there is ne reason for caution. This instruction should be

used as any other instruction would tcoc make the best use of

data entry technigque.

34

PROGRAMMABLE KEY ASSIGNMENTS

CLKEYS (no parameters)

This instruction will clear all key assignments from the

41C, including all global label assignments. There 1is no

error message for this instruction.

PASN: ALPHA=0 to7 character name X=signed keycode

This instruction allows the selective assignment O

clearing. of USER mode. key asisignments.. Upon execution, the

Lastruction or . gTobalTabel specified in the ALPHA regiscar

is assigned = to the keycode in X. If the value in X = is
negative, che*assigoment will be to a shifted keys #E
pasitive, to -an unshifteds key. If the ALFPHA register is

empty,. ghe’.aséfignmeut at the specified keycode will Ee

deleted. ““Only . primary &1C instructions, peripmeral

iastructions, or . global labels may be assigned to a key.

This instruction will not allow assignments to be made 'to

the SBIFT keyvy or anv key on row 0 of the keyboard. Possible

erTOr messages are:

KEYCCDE ERR At tempt to assign to a prohibited

or non-existent kevcode.

PACKING There is not enough memory to

TRY ACAIN implement the key assignment.

This instruction is quite powerful, but difficulc to
wield in programs, since a function name can be up to 7

characters in length and a keycode takes 2 or 3 bytes for a-

numeric entry line. A possible solution is a generalized

kev assignment routione that stores the key assignments 1in

extended memory for subsequent recall and i1mplementation.

This would enable easy key assignment setups as required for

special menus and Application Pacs.

PROGRAMMABLE SIZE CONTROL

The XFM has finally given the progammer what he or she

has been craving for since the 41C was first introduced...a

programmable SIZE.

PSIZE X=size to be sized, 0 to 999

This instruwction will cesize the numbered data storage
registers as specified by the number off registers in X.

Remember that the highest numbered regiister is one less than
the SIZE. This fnstruction can also be executed from the
keyboard wiith the same effect. Bossible error messages are:

‘DATA ERROR The wvalue in X is greater than

| 999. This may not be a portent of
future expansion to more: than 319

registers. It may have been an

expediency since the file pointers

are limiced to the same value.

NO” ROOM There is not enough room for the
SIZE specified (during program

execution conly).

PACKING There is not enough room for the

TRY AGAIN SIZE specified (during keyboard

execution only).

SIZE? (noc parameters)

This dinstruction <returns the current SIZE to the X

register as a positive integer. There is no error message

for this instruction.

These two instructions can be used together to set a

minimum size within which a program will execute:

T7F°?2 Y
7\:.(Zi/ \\ ,‘ o« @

/ O~c < -’é '

>Y? o *o“-

PSIZE 4

This Sequence will resize User RAM for 7 data registers

only if the current size is less than 7.

The most obvious use cf SIZE? 1is to determine how "'much

storage space is available for a program to use.

36

PROGRAMMABLE CLEAR PROGRAMS

PCLPS ALPHA=0 to 7 character program name

This 4imstruction will clear the named program, or the
current program if the ALPHA register is empty, and all

programs afterward dowm to the permanent .END. from memory.

I£f the currently executing program clears itself, execution
terminates ag wouwld be expected. Possible error messages
are: ‘

MAMEZERQ’ The named file does not exist in

User RAM.
ROM The named file is in ROM memary or

_the program poeinter is positioned

in ROM and ALPHA is clear.

This instruetion, combined with the GETP and GETSUB of

the Extended Functions Module, the RSUB and MRG of the Cardt
Reader, and theREADA, READP and READSUBof the HP-IL enable

the wuse of ‘dynamic programming’. It is now possible to
have programs coordinate the execution and storage of other

programs...a featureonly found before on larger computers.

A program can be “transient’, only residing in User RAM when
it 1is needed; allowing more space for other programs and

data.

Dowpk pack s Clear e,

37

SECTION IV - QUIZ

of them w Y| - -With only an XFM, a single file that

extended memory would have an extent o
g

H
h
o
W
n

a. 127 registers

b. 125 regiscers

c. 124 registers

de < 124 registers

e. mnone of the above

If a £ile header is decoded to read:

X v o v .. .0020010

one may deduce...

3. a: data file

b. length 10

Ce. an ASCII file

d. lengch 16

e. 2 and 4

To select a working file with EMDIR, it is necessary

te press which of the following keys?

a. R/S

bDe. QN

Ce SsST

d. a and b

e. a and c

a PURFL operation, a RCLPT imstruction willF
h

()

m
+y

.09
P»

P
4 4

a. the value of the current working file peocinter

b. the number of bytes if the working file is a

program file

c. the valuve 0.00020

d. am error

e. munone of the abaove

The highes: record anumber in a DATA file of extent 16

a. i6

b. 15

Ce. §cQ

d. none of the above

) y

-y
de

SECTION IV - QUIZ

an a single file that uses all of the

i remcry would have an extent of: fegiszers,x‘;eglsters -\ .‘{J;;Q\.k‘%“?,}-:k ‘fg;‘\.,c 7.;:;3

AJegiaters ¢ #*

az rzgistes
e.%cf‘tue ahove-

0
w

(
]

.

1 . TN T : 2 =To ng file with EMDTR, it is neceassary

To the folliowing kevs?

& e

I
L @&

c-
~£0

< 'O

Sy
S e

A5 vazion, & RCLFT insztructicn will

Ziv

a-. T“he curTent workiang f£file poimrter

b bvres 1f the worwxing file 1is 3

T e Gace

de
A Ve ku:)h! 3 t v e LDt &= -&; i the agove ge g&

Thefet record number ino a DATA file of extent Lo

is:é

(&
N O o m

Te.

SECTION IV - QUIZ (continued)

If the program pointer is between the last END and the

permanent .END., a GETP instruction will:

a. copy the named file after the .END.

be copy the named file after the program pointer
€. copy the: nmamed file after thelast END
dse overwriteany file between: the END and .END.
<:> c and gt | o

o0.099099
If the Xregister contains -£+99%% and a REGMOVE

Lnstruction is executed, providing tlrere is sufficient

numbered storage registers, where will thecontents of
register 88 be movedto?

3. R188

b. RI187

c. R99

d. RE9 ,

e. none of the above 1

/
If the X register contains the fullgw* GE.defl dedg: %FE//

Y 2
1 FO 00 00 00 E@34,3—, 38 _53 4o 414243

\‘___________/_’

what is the display fix set by a subsequent STOFLAG? & { &“3..

&> sCL 2, DEG I FIX & - Lo TR
5. FIX 8. DEC 2. RELFLAG L EEx/ENG

c. ENG 8: RAD 3 $ENG O-1% :

d. SCI 2, GRAD Y. “vaid
, ACQ

e. none of the above s, STO FL

Afrer a DELCHR iaostruction in an ASCII f£file, the file

pointer is positioned to:

a. the end of file

b. the start of the record number deleted

c. the end of the previous record

depends on the contents of x

é stays the same

SECTION IV - QUIZ (continued)

1C. Af trer a GETREC instruction on an ASCII file, if flag L7

is set, it indicates:

a. the end of £ile has beer reached

b. the alpha register is full

d;} the end of record has not been reached
. b and c

e. mnone of the abowve

PROGRAM LISTING

 45 FS™T 25
f4le.

Sg
v

Page 1 of 3

Ce7 097 @41

STEP/ KEY CODE - STEP/ KEY CODE
LUNE XEY ENTRY (67797 onty) COMMENTS LINE KEY ENTRY (67/97 onty) COMMENTS

(B1eLBL "MPS 4 per Gallon Fe eIo o loop until found
o ..read last odomefer

82 SIZE? SIZE greater than 7 48 HNUM ~83 7 required 49 STO B6 save for MPG calec.

a4 X>¥7? SBeLBL 18

85 PSIZE 51 ~“EMNMTER D ask if data entry

85 RCLFLAG save flag statuses AT~ desired.
87 STO 28 52 XEQ8@ default=YES
88 CF 21 set printing off. 33 FL2C85 705 set=yes
83 FIX 8 set display modes 24 L0 ‘j.'@
8 SF 28 and AVOM decoding 5:?":8’{-‘159 ‘ enter 0il/Gas Co.

1 CF 29 | 756.- GRS CO. letter
12+LBL 1S . S
13 "CAR Ng. ProuEeforcar £ o AGN

- ‘ 58 TONE S

14 XEQ <8 59 PROMPT
1S “CRR-" < . 68" ROFF

16 48 bulld tilename 61 ATOX ~ getleading letred
{7 o+ 62 STO @2 =
18 XTOR 63 "ODOMETE prompt for odometar:

19 RSTO ail R reading

21 SF 25 enslon ille 55 STO 82

22 CLX o &6 “"F-GAHL” prompt for price

23 STO B% zero first odometer 67 XE& 98 per gallon for
24 SEEKPTH select file as 68 STO 85 gascline

25 F3S? 25 working file 63 "PRICES prompt for total
o GTO 16 ?,9 XEQ 38 purchase cost
27 CF 25 1f nonexistent, cl STO ©4
28 “"NEW FIL display "NEWFILE" 2 RCL B-fl calculate MPG fr

£- message and create 73 RCL 8BS cost data and
29 AVIEW 2 new file 74 x=a7 miles traveled
383 TONE 8 73 GTO 28 if last odometer
31 CLAR ‘6 - =) then nocalc.

32 ARCL @1 77 RCL wv4 is displayed
33 2@ 78 RCL @5 |

0 x /34 CRFLAS go directly to gg 7
35 GTO 18 DATA ENTRY .
Is+LBL 15 81 FI>~._‘B . 1

37 "FX- o open th 8_% ‘Hfi’i.a:“ display tank MPG

38 SEEKPTH tIZ:l:ten.s:icm fize §3 ARCL X

39 FC? 25 if there, use it g3 QVIEHQ

8 SF 85 else thefirst 85 TONE °

42eLBL 17 end en:im e 87 RCL 83 shift current
43 CLA r to of file 88 STO @& odometer into
44 GETREC fairialA 89 SF 2S5 last odometer

needed for empty XEQ 78 try to save data
& x 57 OWNERSOB WG SSIGAAEG GOCE'O B0 wvsrouss

Nt Rety © 410 CRNERS «ANOBOTF W SROGRAMMNG GUOE ' sDBCHC rHOMMANon On KeySYOKES The ICHON NJes S Tund 3e very bacx of he ~@andbook Reter 10 Agpenam £ n

PROGRAM LISTING

Page , of

Q67 97 941(:

STEP/ KEY CODE STEP/ KEY CODE
LINE KEY ENTRY (67/S7 onty) COMMENTS LINE KEY ENTRY (§7/97 onty) COMMENTS

21 F‘L?L 23 if error try to 1:_5:2- FC7C ‘fs if error, look fof
9z XEQ@ V2 133 GTO <96 {ion
93 “MORE~" open extension 134 DELREC extens

- ask if more data) after print, delet
34 XE& 8@ 135 ATOx decode for print
95 FS?C 85 _ ‘ 136 STO &2 formattin
96 GTO 19 if so,. loop back 137 ANUM g
I7eLBL =98 printout section 138 STO w3
S8 FC? 355 check for printer 133 XERQ 73
39 GTO <98 if none, skip 148 RNUM
188 "PRINTOU prompt for print- 141 STO @4
T- out desired 142 RER 73
181 XEQ 88 143 ANUM
i82 FC?C B85 144 STO 85
183 G700 383 145 CLR build print image
184 CF 86 if so, do it 146 RCL 82

185 CF 12 set printer modes 147 XTUOH gas co.
186 CF 13 1343 = -~
187 SF 21 149 FIX @
183 RDV build heading 158 RRCL B3 sdometer
189 “MILERGE 151 = -
FQR 152 FIX 2
118 ARCL 81 153 RCL ©4
i11 PRA 154 RCL 85
112 CL i35 -
113 STO @86 158 18 align decimal pt.
114 RADY 1S7 X>v¥W7
11S ~C ODOM. 158 -+ -
YOLUME 159 RKARCL Y volume

116 *“F+PRICE" 168 “F =
117 PRA 151 FIX 2
118 =0 MILES i52 RCL 84
GALS 163 X<Y? align decimal pt.

119 = % 164 = -
MPG 165 ARCL X price (total)
12 PRA 166 “F+

‘ iz - m———— 167 FIX B
------ 1623 RIHN

122 ~“"Fr————— 163 RCL @5
- 178 X=@7 blank out first

123 PRR i71 GTG 42 mpg calculation

124 CLAR 72 "k ="
125 RRCL ©B1 173 GTO 43
125«BL 48 open base file for 174eLBL 42 calculatempg
127 CLX reading 175 RCL 83
128 SEEKPTH 176 -
129eLBL 41 177 CHS
138 SF 25 read a record for 178 RCL T

131 GETREC printing 179 -
Mot Swmer @ P410 OMWNERS RANDOBOON AND PROGRAMMNG GUTE ' SDechc mh0r: OF WEwITTME. e —ITION NOEE S 'Tund 3 e very Dacx O P Hardboos Reter 10 Agpeadx £ n

& > 37 TWNERS ~ANDBOOK AND PROGAAMENG GUICE o exal wewsitnes

PROGRAM LISTING

& o §7 OWRERS =aBOUK AMD PROGRALMING GUIDE 'or SxBg] kowsixnms.

Page 3 of 3

Os7 Q97 Rs1C -‘

STEPY KEY CODE STEP/ KEY CODE
UNE KEY ENTRY (67/S7 onty) COMMENTS LINE KEY ENTRY (67/97 onty) COMMENTS

188 RARCL X m 227 TONE 7181eLBL 43 P 28 PROMPT prompt for Y/N

182 PRR print. the record 229 ROFF

183 RCL @3 save current odom- 238 893

185 GTO 41 loop back 232 ATOoX

183ceLBL 7@ 233 89
187 CLA Fogtinefobuild 234 X=Y?

3 ‘ > - ; T
O sseess/on.pe/0. a0t 552 R0
198 FIX 8 where §=char S3TelLBL 9@ rmfine to prompt;;

191 ARCL 83 #=number 238 “p=7~ for numeric s

192 =F-- -~decimal pt S>354¢BL 91 ~data ol

195 =p.r - 242 PROMPT keged in.
18 FLIX 3 243 FC?C 22
197 RARCL 83 244 GTO <91

198 RPPREC append to working, 245 RTN :

182 RTN file 245«BL 96 com pletiontest

2@«BL 71 routine to open 247 CLA
281 FC? @6 and or create 248 RRCL @t
282 GTO 72 axtension file 249 FC? @b _
283 "PRINT-R msg for both files 25@ PURFL if working file
EDO " full. 251 =Fx- is base, purge
284 RON use printout to 252 FS? B¢ ¥ working fileig
285 STOP regain room 253 GTOQ S7 elextenSiozé skig
28seLBL 72 , 254 SF 8o Se open the287 CLA fyidextension 2S5 SF 25 extension if11
288 RRCL 81 258 FLSIZE exists, else
283 X" 257 FS7? 25 done

218 29 258 GTO <46
211 CRFLRS create it 259 SF 25
212 SF 8o 26BeLBL S7 purge extension
213 GTO 7\ if ck, retry save 261 PURFL file whendome
213+BL 73 routine to delete 262 CF Bo

215 47 all characters i=n 263 RIDY

2iceiBL 4 ALPEA until the 264 RIDVY paper out
217 RTOX delimirer is 263 CF 21 reset print mode
218 XI>Y reached coseBL 28

219 X=¥Y7? 2587 ~"RKRNOTHER ask if another
228 GTO 74 CRR~ car is desired
221 RTHN 268 XEG 89
222eLBL 886 Yes/No prompcing 269 FS?C ©5
223 CF 85 routine 278 GT0 15

224 AON Default=Yes 271eLBL 99 exit routine
225 “F2- 272 RCL 8o restore flags
225 CF 23 273 STOFLAG clear X,ALPEA,

274 CLXo= oLD and display

276 END

max e© P40 OWSERS HAMOBOOK AND PROGRAMMIMG GUIDTI meoic riregior 0n amubones. e Funceons @el3 9w very Dack of Tw Handoo. Reler 1 Acoends £»

PROGRAM LISTING Page 1 of 1

Cs7 QOg7

STEP/ CODE STEP/ KEY CODE -
LINE KEY ENW onty) COMMENTS LINE KEY ENTRY (67/S7 onty) COMMENTS

{ 51

Bl s Status program LAaL 3T

- s \,/I}_: (ot /

géu_ OR prompt for load COFD il Mew

‘2 or new statusa3 g~
84 PRLMPT
a5 3)('

86 r7X” "¢ default is LOAD o
a7y <-Y~, begin build of
88 : :& program name

L a3 - els to call
s T &2 .

}“$1s N :
11 - get the program

Tr iAD *lfé 74 X transfer control
G TN Xx_l"*é Bj‘"\ to the program

4 Coadiveck assass of o ALPHR RAREL

. This program is

45 bytes long

and would require

- an XM file of 7

L registers.

. No flags are used

3’ - and no registers 80

are used.

b

[a0 90

p

50 00
R ey © <10 MEOCK anC FOOGRAMMING GUIDE 'O SpecHtc riormaion Of civSroRms TN FunCson romm S DUC @ Te very Sack o e~ancbook Reter 10 Agoenan £

o37 OmRNERSB TROGAAMMING GUEDE ‘O exact keysirokes

PROGRAMLISTING

Page of

Cs7 QOs7 FaC

/ XKEY CODE STEP/ KEY CODE
LINE KEY ENTRY (67797 only) COMMENTS LINE KEY ENTRY (67/97 only) COMMENTS

8?1"_8!— NST New Status file :5 ?F 96 ask whether absolute
5 MIN OR

82 RCLFLAG generating ARST~ size or minimum

83 STO 85 GiOBTI 47 PROMPT . ;if‘; ‘eqizf‘ed
a4 CF 21 ave current flag 48 ATOX efault=minimum

865 SF 23 statuses and 49 &5

a6 CF 29 set those required S8 X=Y7?

a7eLBL @9 by’ the program S1 SF 85
@8 -FILENAM Frospc for the S2 "SIZE=7" Ask for thedesired

E>"- fi;lename to 53 A0OFF size

8% AGN storeunder S4 PROMPT
18 STOP S5 STO @l

11 RSTO 89 save filenzme. SeelLBL 82
[12 SF 2% S7Y “FLRAGS" Ask whethera flag

13 CLX set the file lags S8 XER 19 status is desireg
14 {>F IO X=Y? default=no
15 SF &7 683 GTO 83

17 SEEKPTH file to determine 62 RCLFLRG
18 FC?C 25 existence &3 STO 82

M~19 G700 &8t ¥ {f so. ask whether &4 “SET THE Prompt for flags tq

[28 "OK TO PY 5 turge it N RsS*" be set as desirec
‘ URGE? " O = 65 PROMPT
| 21 xE® 11wy ‘ &6 RCLFLAG
| 22 X=¥7? 4 67 X< > 82 save these and get
' 23 GTO ee default=xO 68 STOFLAG the previous *

24 CLA else, purge it 62 CF 22 Prompt for a flag
25 RARCL @8 78 “MASK="" masgk, defaulcs
26 PURFL 71 ROFF no mask

27elLBL 81 72 PROMPT
23 =NO. OF mumber of key 73 FS7?C 22

KEYS?™- assigrments to 74 SF 43

29 ROFF make. this is 7S STO 83

38 PROMPT needed to size YoelBL 823
31 STO 84 the file 77 “CLKEYS agk whether to clear
32 9 1sT?" all key assigmments
33 * F8 XER 11 before making the
34 13 73 X=Y¥7 current ones.

35 7 81 CLR

37 7 82 FIX B2
38 CLA 83 X< >F get file flag byte

39 RRCL 89 84 XTOH
48 CRFLRAS create the file 85 XL{>F restore it for use
41 -SIiIZE" Ask whether tc 86 FS7? 86 here

42 XEQ 18 SIZE. .default=NO 87 RKRRCL 91 build the file data
33 X=Y7 88 RPPREC and’ save it

44 (70 82 83 CLHRH

Mo Qev P40 ORIRER'S =anBOOK Al FROGRAMBENG GUIDE O sDEORC mROrMEton On ROySTORES he Sunchon naBx S Iounc a3 e very Dack Of the Nandboos. Raker 10 AcoerdEx £

F o T TENERS ~anDBOOK A SSOGRAMMING GH0E o miac wysrines

///'
-~ i -

S
4/

Lol

PROGRAM LISTING

Page 2 of 2

STEP/ KEY CODE
COMMENTS LINE KEY ENTRY (67/S7 only) COMMENTS

137 AROAGT ,
138 APPREC
139 1SG B84 .
148 GTO 94 loop until dome:

; 141 RCL 85
L 142 STOFLAG restore flags: to:

143 CLST entry states: |

i 144 CLA clean up by clearing
145 ROFF program from

generate a loop 146 PCLPS uger memory’
control number | j147eLBL 10 General YES/NO
for key entry o 148 "k YsN7?T prompting routime

LT 143eLBL 11 second entry peint
158 RUON

prompt for desired 151 PROMPT

key assignwent 152 ATOX

1_53 873 lets calling
L34 .END. sequence handle

the logic

B Note: no normal
- end since this is

,,,,, . a transient progrim.

account for shifted - }
keys and shifted | Uses flags:

shifts o . FOQ-F07,F21,F22,
. F25,F28,F29, set$

B - FIZXes and uses
= - - AON/AOQFF.

shifred . |
ormalize to 1 to ¥ Uses registers

B 169 for use as a -
oo leading byte —— - -

e L - T T T T byvtes in RAM
&V 123’:; - Prompt for functiom g —— - 334 bytes A

gl 12: 4 - - —_— -~ _
g 128 2 zzrngi:mkeme - 1 51 registers in
- 129 - K&y -) ; extended memory

—z O L o Sel 1se T
fo.ty 132 cheav kegs. ———— - -
f':f: 1 133 §1 build key record o o - _4

oy 134 and save it - -
- 135 = B o 3

4’-"‘;”" 136 00 o ’

X7 A

Shir
AND PROGRAGINING GIDE o speclic clorsaton o waprsonms. The Suncson tdies & Ouns 3 e very Dack of Poo, Rete © Appondx E »

PROGRAMMN: GUIDE o el SoysPones.

PROGRAM LISTING

Page 1 of

Oe7 O97 @eiC

STEP/ KEY CODE STEP/ KEY CODE
LINE KEY ENTRY (6797 onty) COMMENTS LINE KEY ENTRY (67/97 only) COMMENTS

Bl1eLBL “"LST "oad Status" 47 GETREC get mask

St 48 SF 28 set flags for
B2 “FILENAM prompt for 49 CF Z9 proper ANUM

E?" £ilename 568 RNUM
a3 ACGN SielLBL @93
84 STOP 52 STOFLAG set flag status:

85 RAUOFF S53eLBIL. 84

a6 CLX 5S4 CLA clear LSTSfroms
@7 SEEKPTAH calect fileas S5 PCLtF’S User RAM
3 GETREC working file. S6 .END. |
83 ATOxX get file flags. (Since thisprognam

18 XI{>F isretrieved Efrom:

11 FC? 86 size? extended memory|
12 GTO @9a under program
13 SIZE? find size control, there
14 ANUM get savedsize will never be &
15 FC? 85 if ... absolute regular END, just
16 X>Y7? - or too saall . the permanent.
17 PSIZE then resize 70- .END.
18«0BL @8

1S FC? @4 skip flag status
29 GTO 8 USAGE:
21 GETREC

22 FS? 83 Uses no data
23 GETREC and mask for now registers.
24«BL ©9

25 FsS? ez clear keys first? Flag statuses
26 CLKEYS 30 are either sat
27eLBL @1 loop until F25 by the program
28 SF &5 cleared or left at:
29 GEZREC get kev assigmmnt

38 FC?C 25 FO0-07=file flagsg
Ei GTO B8z F25 exit F25-clear
32 RTOx get key code F28-set
gi ?5 normalize to F29-clear

35 PASN =84 to;8“
36 GTO B1 assign 1t
STeLBL 82 90 Program execution

38 FCT B84 take care of is directed by

32 oTO 94 flags 1if another program,
28 1 desired control will be.
41 SEEKPT position to flag - returned to the:

42 GETREC record - keyboard upon

43 =7~ use BUG 7 tech. completion.
- toc generate

:; gézoag STOFLAG data XFM SIZE=(Cl7

46 GTO @3 0 114 bytes

e Reww v 9PTRNERS ~ANDBCTK anl SROGRAMMENG GUIDE Or S0s0ic nOnMaton on MeysiolEs. The Funcaon ez S und 3 e very Sack of e ~archook Seter 10 Apoanax £ n

& 7 I ONBERS ~ANDBOOK AN SROGFAMMNG GUOE O cwac wrestrones

SECTION V

SYNTHETIC PROGRAMMING

© Copyright 1883
INNCVATIVE TRANING CONCEPTS

SECTION V

Synthetic Programming

The power of the HP-41C/CV sSystem is truly
overwhelming. Op to this point only the standard HP
documented techniques; and some commen sense have been used

to 1increase the capabilities of the 41. But with all of

this there 1is still a more powerful set of functions

available to the user; these are the synthetic functions.

Synthetic functions cannot - be keyed im by mormal
techniques and thus are callesd synthetic because their code

is “synthesized’ #m the calculator’s. memory. The begiannings
of synthetic programming (SP) on the 4l can be traced back

to the first machines sold. Their microcode contained somne

anomalies that allowed the user to STO/RCL IND to very large

register numbers (704-999). Another anomaly was the ability

to SF/CF IND for all of the 41°s 56 flags. These two
anomalies became known as "BUGS" 2 and 3€ There are, or |,

were, several other bugs inm the box; a list of these 1is

shown in Figure S.1l. For now, we will only deal with Bugs |
2, 3, and 9.

Malee o Tt Ci.or Lo Buas .
Bug No. iscription Referance

1 %+ and3 - don’t save X in LASTX V6 N5 P28
2 STO/RCL IND 704 through 999 "
3 SF/CF IND all 56 flags "
4 Small angle SIN error V6 N5 P30

5 Incomplete CLP of large programs "

6 Pigit termination 41 tramslation

of HP-67/97 progr :ms V6 N8 P23
7 Fragmented seven character alpha "

8 Non-compile if OFF in PRGM mode "
9 Too small or too large line numbers V7 NG P25

10 Statistics/Error ignore
Figure 5.1 - Table cf Documented Bugs

Bug two 1is a very useful «critter. It makes the

calculator appear to have a full 999 registers available to

store data in. If you have a 41C with a Quad RAM, or a

41CV, what it is really doing is wrapping around in memory.

With the YFM and XM modules, it is actually accessing those

registers. This will be discussed again in the section on
-~addressing. The advantage of BUG 2 was that it gave access

i

e .| Y4
i jui“

“ 7 M\

| use
\ -4
erdT)
y _—

/

//

A avmbod o gl b, Phe = _

7 . _R
1

AJCJYQES\% mQ,M—Of

j\'t szc}:o‘,\ oue we m“ze,l \;ouif “%-Lo. “%\«c""flfl 9

‘\‘&fl.. Hl's Mfiwc"a\ Let ws (.AOLL ap\q\fif\ C:.* 9—9.4:_ Hl'e
v

'mfiwcfa Sfiuc}wre, C\WQ\L houe *Qfi. M h’e-F* teaFeokb 27

nsTrucnonyS- L:.. yy_f,w_cfé_ RQWW\)?QF% ‘4"{% /'//é ‘v}l..i_l

TL\ASQ M u\veas M% »—Ls—-oza arc kCS‘Ql 'Ué
J

rwe co-méo({v‘cg 5?;&“;& I/@ é;ws‘ 7.1:“5/’9':,{' 4 ont

,. / /
«)—*fi,_ Feasous wi{a /:DoflL %46-4/6'5 woré— auJ are Clfi!'J&M‘LJG e ous

c : J
|o

Thd o llews be+ o KA Mca/ué tnd a EOMMOC‘/{& ba,

¥ aderéS“se'c/ T &L Sawsl PC"t O 4’;4_ CO‘\CK{»A‘)‘OT\

- !

For w’a-uf'& éa?’fi" « e /’V."afé fla;/fié G- J *‘[-4 ’Quad}

mé’Mo("f can h{, Lot*fi»& Sa =t PC‘fTQ:{N .SaM€ J"‘"*‘é.o

Q? Oé:@‘&r/{dc*u:€ %/uf % to /-Q‘éilfl a JM*&(‘{'

“ feature. _J

O«j)(ér& 4—((&_ f,’@r?L 84‘4{641'6,(/’5 w %—4.71 some OV s e

Ferwu«.bs% adjre.;sec/fi)"Zebwer J;a,flo (0 7)@0)

ROpr7 space, -J:fi:@gé:' C%r QC)}”& {f/wcj‘} rj *(M_

afFLwiflou {?OP')‘Y‘:_) are por'f &A}YO_L Q!. l")c\r‘\"é

Holr &Jc}rc_ss o C)el{fhi“&‘ii %, ot Gpor‘i' t{’ -

pLu:)\cifli o, for Sueple Tt Ftroloom Flads medils

aw;l Timie My oo b cou /;/ é& w*'i:g Seimt port

ot e sowe Huep Tle & because He ,”efiméd«

FZ«/J; paL Co Wr/’a Ja/ressécl o c; +QL Tivee M°<‘-LL

LArc_i aéc‘nssec/ G PC\%'Q 5 c.: /?OW7 W'a .

SW T+ « /Da.s.sf'gé A Cbmgfu..c fi#fi? M(/«/éo

fnilacy

ch’ ée/‘:j Sur<€ x !% A// /"'dv(. #én.:r ;fyraoaer ao/Jress

w{recj . Tt o é{ e oé\h\bus b aJci/ress«\vD tw e

4l e ax Q«-Far{a«‘{ /-240_#»1 % &u:/érjvé.uc/. 4 lo# /
Lot &

P‘{;ua.’; Mc‘{ ATs “Jfl pc_s:;- lo ‘i,Q.. c “'C-L ‘7// é.eco o

~ ¥

- desicaldl
M‘t Ofliuy Fas_sizi/é téu'{ wwjmw WL4+L‘L

aodresSe ol meoe m,«JQ-L 71 & u»cfl/C'—f‘/flo“’/' Le+ <s ol ey
3‘?' 2 424 _rlruc-/-ure.;/ 4‘£¢ ‘///1: dd/c/re-fJfO/‘k@r‘

Lxamine

Tle same a-:[c/r(s.s Po[ufir p.d uséc/ a/Az« ‘}—ét'

| (o 5;[g/r{55§\a e\;‘lé.er Rflm of F(:O m. _TLa strucare

- . ;7 I/

L e pointr x SL:(/LJ:.lj/;{ C/\%//f/(r&.f;rfi‘r eac[\ wse,i
r

[~

m

W Lé“l:} (flC}t‘, cflg 4€~L ROP? uJ?_r_S,‘;H

cLu*s-’, T H/'d cove dd/é{rej_s G 4—5'11{ Oé(6‘//(a/orés

%,J RCFY(' wl%rj . ‘TZNL Jcrm cé %CJ- GJQ}Y?S Po]u(.fl/';

\

use_& C\: ad"(&ffib rom Lo *‘Q\L A—c\M\ L;ar \/chrm uj.egl,
\/, (

(’35 Ms't co ~fu. rs E o lc\mess p._‘{—uvcr:)- 14 uses “&L

iju ‘\l LUO L":;TJ-A OJ “'J(':Jb PO\\\«*CL/V - ga(;.iv\. uJO‘(Jh&. ci.‘rec;%

C

o\élressci arrom ¢¢¢,@' o FFEF

_/’krl. 7‘?14/77 pofw‘&/ «;n[f so 5r’rc«j[j/¢rm.rc[

as He FCPT poil Tle B RANM o e 4l S
. 7 i) .

armwtrécs, Lon b LOCLS cl J€pent e’;/Tm C,O\i{.'Z&_ e s Uurs
J C < v ’

————
= A ! < " = . 9 < i

Iy TN Cle‘r‘ AoUAdl Atan S"ror\\,*_;;\ Mé wxauit’)(/s(_a,'hkx.\
/ - \d d

\ .)
i BLrs B\-‘JL WLQM. ¥Fu) Ca ATO \} L4 AESSGro mmba P"O‘\;JT A J

b N o ' Con. n
T ac dress Wa x.“;‘_,,.. év‘qk Lfléfio Lt TRs e rcrgfsJCC(L,

U

BQC«QWSC— ‘-'Ci *‘Q..)lA \R:‘-& o !bb-t.'(, o.Q\Lcif?-‘-S FQ\\/:EY ¢¢

isro &"Cé’.'v\ :&;\m z.,.:t.o Tau0 JC;GL'TQ"j A.& {ég .

r)- - (- |
Mraure 3.2 g\véwi —+Hg b(e.&fi dowor

LJ:

Z-_.-

. { b v £ F = \
Tl Airst Hacee bbb s C ATL use & as

v

‘ : \ (. |
e rcaxs_‘tzv Fowj:tfi. \‘fi-e— (_&5‘* a \oL‘e 8) o used

} 0 -,L-— , : +C T | .
s A bd‘t(, PO!LLJ—"Y’. L{fs GXAkt bl b rcg)‘su, Po;h:t-b(

— < , -4 ‘OW (‘3$1

Seest. LU e FATEC m [,L&A ex 1L Bamfl b uses
[

Jk% e lawer 1D bits. TL«; ma ke possgé(l;

10

Jo & chfefifi *\u—é ‘t\ é /02Y Tk .// rears lvs /Z

e

fif{‘g(@ EFF\ i~ Suu\@ bé, H.(:Hcedl, M u:‘\nc,»..

£ CPUL w QQQ—QS&:\fé — Rley *"&L !O:g b
U

‘Lq G Oxi\wog ;D/ (Mk V«iu@(é Q,xlemgL. C\‘h*a.\ ¢¢¢ r //:!_/:)}

Qw = ou\‘»a wolen xmw-’f'\-a\o aws&}, L\A ’f‘p«u IO& L‘c* set,

Lli. e 2¥aw~e Ha cubrouhie returw s e c we

\ . o . ' g*h \'”(‘\t‘,S'Le/f')

(S \\ sR<€ L-JL)--\ J-—LM i w-g;;o«“"’—«j, —TL;L mS'%Aoo\:\

C | r~

- ~ JXFF -5 € ’t % ‘\»L / 2,L¢¢ O :) YR ‘\ps&S\‘« omva w N or

\ | /)
ek*b«.dg{,d_ elBA lem G vR F"tsi*"g—, _TL"’ ff“\\fia‘f

CG.\V:T\;,r \»0 uSié & 42“ *‘6{, C‘PM ww Y€a;:-\-!f(

(fl RFH?? 4& d (,.9 P&ajl"‘ acces Sy .

J 0
2oe * 4" . { v ./7

TLq. l: <€ Pc.wu(X ST, b\p e ”&, e
. C/

aé:xresg Fo\t«'te:v. A r<a§:-‘t‘/” Cov\l-.'a]vu seden \cbfl‘:

eacin, 1] Lo CPUW U T kuse wiech the o H

o , ' - .

Wt e—u.cu."ab{-c, /Oroqraot (ws :"r‘:/f,{"/oht (X(e ALLLSSGr 9 -Z;‘

l/ /

C/

bwoeus Q){-ufc A Co M{-‘Q«L\ A Yeofiwt'&’ . ?rOgraM L;-SLT\.\Q‘}‘)'OQ_s
_/ .

J \{ it !‘ ‘ (\ v T ‘

Jow wSwa | } o e w2~ ,7“ L reaizsle~r SO e oY
% < L &

oard .
-~ . . 1 . i 4;

e £ 'ML‘r“c,‘chfi - 5Q¢<Jo akj 2'vee #eeqs lar,
."/ (_/

! . \

Tl ouTe ppeider o cleons sot T | &% bale
& U < ‘_//~/

rdr:,m Lo vurt exasctabl Cobochan o o progre-.

Tle value mm e rUlr quo,?fi_ Con 3?@%&%}

F w & wlel Lse 4 dicee mmum Hee Jour kus

coada bl ™ U,

pe——— 0 r L C—=
NO re Ve L Hoan ATNPP a resl %O,rz.(»\.\ é\fld

J\.\ \ s
’

\M_,O*.I}m, e \M‘~1Uvr %o«.) \e YvA\L C(F»A Dflnml\u.m_(rh), NO&)\N

U
! ’ r . . tCae A s ..l..\k! Nflg,*,V\fiuflflfi(hl .flosr\.\«nrs\v @I\O({f g&“\.& o

A Tle secoud fiwo/}\} ¥ Fm@,w i aéce—=iuc .\rm\b.\«\w

~ . t .u\w ~—. - 4

)g Ow\bAcrf _M.fiufv +ae w\“_r»\fl\g Jufi& 2 n&mfluhmm\,\ O N -
s

¢

(\MUO,\C/M\F\K) @ I.fi\\((.tb E nM\D\cbe.. U\,J\.ol,.fl(% r:.r. .\v; (Tl pmu-w) /D‘.rn_«

(.

. » - ~ v \ m

QMV«.NWV QQON/.. w %01} il i «&m(.l/‘.mx,\wh\.\ 1}\0/ ec NQUJU.3

ooo 4t reqistee
“

to all of the 41°s registers. This includes the Status, Key

assignment, program and c-ata registers at the same time.

This allowed us to store things directly into memory where

we wanted it, to create synthetic codes.

The other useful bug was BUG 3. This bug allowed us

to set or clear any of the 56 flags as we choose. This gave

us a quick way of decodeing arbitrary bytes stored into

registers.. It also gave us access to the system flags

which allowed us to do things like clear flag 55 when the

printer was attached but not needed, or set the CAT £lag.

It wasn’t loug ‘before HP corrected most of these

"BUGS" and they were no more. Those who still had the bugs
continued to explore with them and wmake discoveriers. They

began teoe automate their exploratiocn and write programs that
would simulate the actions of some of the bugs like 2 and 3

which had desirable effects. Their efforts gave all 41ls the

capabilities to rum synthetics. This made the 41 more and

more like a true miniture computer.

Cur goal in this portion of the course is to lead you

through the forest and let you look at the different speices

of trees 1living there. This will let you create and use

synthetics on your machine and save you time trying to learn

all of the material from several differenmt sources.

ADDRESSIRG MEMORY

In section I, we examined the organization of the 41l°s

memorv. Lets take another look at this organization and see

how 1its addressed by the machine. There are two wavs to

address scomthing, so lets define a couple of terms before we

get started.

Definitions:

Absolute Address - the address cf the register regardless

of what is stored in or associated

with the register. For RAM @9P@-3FF,
for ROM PP@P-FFFF.

Belartive Address - the distance between two addresses or

the address associtated with certisz

registers at certian times.

The addressing scheme for RAM is really rather simple.

Each address cousists of two bytes. These two bytes are

broken into twec different fields, the byte pointer and the

St
ru

ct
ur

e
of

a
t
w
o

by
te

a
d
d
r
e
s
s

po
in

te
r

B
y
t
e

|P
oi
nt
er

|
Re
gi
st
er

Po
in
te
r

|

T
i
a

&
e

Jo
rm
K
b

a
.
l
l
m
s
d

d
o
o
‘
\
b
:
t
l
h

L-
.

*)
(M
.

“
“
Q

A
fl
v
R
A
M

ve
a-
eo
r
.

.
‘
.
‘
(
a
u
a

s
e
f

U
a
.
r
:
.
c
d
"
;
O
M
S
é
‘
w

3
2

'
1

O
e

a
\
\
A
*
Q
L
G
T
O
‘
.
S
M

6
&
*
’

co
w}
é»
:l
‘-
.l

2.
E
N
D

&
b
t
t
n

Z
.
S
u
b
r
o
w
h
e
t
S
t
e
c
b
s

v

N

v

—AK—

Fi
gu
re

5.
2

register pointer. This 1is shown in figure 5.2. The

register pointer is contained in the first three nuaibbles,

and byte pointer is contained im ther last nibble.

Figure 5.2 =Stouctune ofa. Addrelsss Pointer

The 41hasregisteraddress’ form HEX ¢p@ ©o LEF fer
theHser RAMaad 200 to3FF for' the.extended memory-. It fs
here that che. odd behavior of Bug -2 bhecomes: apparent.
Notice that 3FF (HEX) is L1024 (DEC). This means the .41
should have a2 EulX 1024 tegisters.fihomé¢$¢kto - L@23. Where
are they? ®™igure 1.3 shows the addresses of the segments of
RAM memory, with ZM from 040 to OBF and 200 to 3¥F with- a
void from 01@ to Q3F. When bug 2 was used to access these

large registers it was trying to locate these XM registers

but instead wrapped around in memory to STO/RCL into the

User RAM and Sratus registers. With extended memory these

registers’ became Legitament and so indirect access was

gained to the XM. The register pointer in RAM them can have

values from 88€ to 3FF in it.

A distinction must be made here between the addressing

of RAM and ROM. There are a total of 1024 RAM registers

available 1if one counts XFM/XM modules also. In ROM there

are 54X of 1@ 5it words available to the CPU. The: important

differance bpertween RAM and ROM is that the 41 uses two

different I/f©® lines to address them. So their Address

Pointers are a little different. The ROM Address Pointer
dcesn’t have abete pointer. It is a 2 byte address from

@$99¢ to FFFF. But it is still kept in the same location and
an intermnal flag 10 (CPU) is used to distingish whica is
beingaddressed.

The dyre poiater for RAM is the 4th nibble of the
Address Poiater. It points to which byte is the next to be
processed &y the CPU. Since there are seven bytes to a

register it «can have values of 0 to 6. So a givem RAM
address thaz had the following values in it

Example of the address pointer

)

6 5 4 S5 2 1 O

15

Address Pointer = fi;OCZ

Figure 5.3

0CS

0C4

0CJS

0C2

0C1

OBF

OBE

0BD
;

“40C2°

Would peoint into memory as shown im figure 5.3.

Pigure: 5.3 ~ BxamplieoifRaM Address: Bointer

By storimgl uhg‘pragafi'cade iwcor tie.address poinmtere

can meve fifieeh& arownd.#al Eoth-RAH.and?fl@& BEMOTYo This rs
useful for. Emvlwrfi;4;fiha\aystam ami.seafng.how»things &re

dome - _‘__e_v\s@‘(‘t /‘fié\.:.\.*) we;&-mq\ @v\ A//UN

‘ _L.,u:Q "I’zw EaN

STATUS REGISTERS | masnen) '~\v . Se»'-3ol e"‘“‘0
One of the.most powerful results of SP is the -~ability

to access directly411 of the 16 status registers that tihe

41 uses. These i.Vr'.;e'gisz‘tew:'s are located at the bottom of

memory, from address 000 to 00F. -~ Eigure 5.4 shows a block
diagram of these:regidsters. We: will leok in® more detail at

Figure 5.4 - Status Registers

AN¢

Tince we are ‘O?r To Um\ mmm\fl?}) E,L»

Oite &
Qoo Mfu«mm lw «a@m\fl«a , e mgfi Kwawo how

Tleve ave seve ra Lp&mffi.\mFlm T,So/,v O& ,?,fiwoawf?to,_

+.mrP o | mer_rm Cu,,tf.

W wrngrr NUP.TW

),flmurr Deacta

*_..UWOO/«,D{, T struchouws
J

¥ ; \D.vr.»w&\& w;\wufl&\c Whumv*.f.%

T/0 U.cflw&k& m \mni,mf%.,ufr (2

) r ; 3 - . Mo cechouws —
Lets seg T\of Heo Ml dereruwawes rcr% 4 Ex&m/y; o

W

\ \ . - . - .

MTO«.&Q. cn.ur..,um) L r\wb flmm)\,.wfl(&,w . Tn m.m«rh\pfi Z(rr}h:fi\

q_ v

oC)nM\O.\ D;muor LP*P .,b g%&h&hn” To WMOVQ.»FM Orr_rmvmf

k%_IP M«O«Qf.fi an,._m.fi(\m maglm}x,v.\muflumfi»flfil _r._fim,cflu@

an/wwhfinflmflnnnflufl,/ xU%O.Q/fiore\r .,S\w.f.yffir,muvrm ard Ocrf«..

b\K%@PlNMM o an\voc:}nw Aw‘«O.\r ,M.cu.« b€ low MN% G

QQ.).M :\.n\”(r\rL,fm »flm}.P e mzwo » xflm pMm.,_ur, !.(Dtrfi

/

ad St & gOPrOS &fi\& D(«M mb(rfx.fiw Qdfi:\bsL

mvc.bb\nw Tm(or Gma@. - D/Q?S mrfi,flf«u Dmiommu.hfi.w

¢

..ctr.m\wu_o..\%,‘(w nmwfm_\ i\,ulp _W‘Ahm &U_,Uilku. D.‘rm, H\Q

)

Wc@%.\h arxe ,?\r?rmowp.o(mr$ PR *@Ehm.. Recomse

fi ,p&PLEr&(Ax To m\xqfl.mmwr.\rd

Cevriam :

)lo VYo mew~o oA 4 uses

U

Getia— arveas T

e 3% wbble o e 3Pd Tbl @ ®

rUfimuS :flm\: what zr} 0 ofl .Sfinxi.joS L stored

E»L)nr)

Qifl&n&g +m/b| #mn ,nlflb\o &b’%flfi\m Tu,\;fl 5.9 MF&FC

«.b.h‘ FO,MM\.\ ffp Afi.fd Lo« g\fflf %%W«m\rfiw Jwv\v%n0\\ Lfir

U

., . .L%v weheo , Ca

shred [« B mleora U ke @ Steved M daie ceor ST

L \i\fi\xeor Yoo n—™ ?0&«9(‘ v« Prn\c M\yvfiv.fi.

\MN- .\i\\. w PF.(JUU. r VVD wa«.{s?.@'mbp\(t.fl@ ’.u Weca<ANDCUKQJ

.\ - e .uop toliz ac rosS M&/,&«r fo(xu ?M.Lo L

a revisTe, Jhll.(.w r. LS w k S(O.m noq:.mflou

v T ..qmn/_WQ< w san 4 T
‘

\ ,L O WALY \ [ml
a g
D<€ e- 1(04.(1?/du.\m. a.

o lave ou .fic:é%.?,n\ DJOF

d

e wi : Com boutrd

L...rm me oA

. ¢ Ufif&b rcmi Nmmw L‘mnflflMMu!nO.ctw ..ViO@«.P:) oe . T\mm “sE3

o = - Mu b r . : . —f {
N\PIA«.. s o storse tw Tk flfifl.Mnm\,\w &,PFFEL Mv.n\

.(\ \flx, (

L WOl W;Ofl.\.\ffix.ma o Hoa G Lolr A olYO Yrams

L.
J.

‘

«.Q&@.,- fir.m, +.VM¢P

\\[,y
(Mflfiay QS?W mvo_V]88 Mfifl?«*b& ¢ -

, e bt @ el TLL b wlkeenabon
i

1muuuflflm J

. ' _ .

- SkOs AwmeriC or P#%/x&f Sa OS*N,N\

or Tr,rb Lusrruc T,OIM
J

R_\\[te=s .vmn.o»hq v¢ \\4 (O ?A

-~

+ .t

m.rD%Hflfl«,un \m\mmhfl\tb .
-

Memirie deta splie ale H wibble vt

W't'o "{d[eg/:/‘./.? -//Lié /ji‘; u"ééé— I M.Se(,\) “s « j,jlf

J,jr‘f J,r 76'(r}ya«‘fvs.n(1# (ras *’9_&, chtu_a_ figfrr

oo EO‘&('H&Q Mumge,r MA (7 d‘or o Méa'Jv‘\At nuwg_u'

bl (28 . |
Tl wext 10 s?a% Wintaa The 10 gt wanhssa,

eatw fl;LL’{Q cos eue J‘\Ji -(*£4 u“""}{ss“j/ BrasT
o

. o .
| ., ‘

S‘\:Mccyt“’;mj O':v\ tfl. n< éi{;(‘ /o . L(,aj"/" j-’;’:/fijf';fi«j o 3'

TAJ—&C /{7 "'éé’ifi ca« (_!oufl-,q &UAC.S Al’éuC{vf ¢ { :?‘

Tle 2 wbble o #e 6%'060«1’/«:&* G;S\« ijt [ke

7 * . .) { G

‘9’{_{ MAM“W::J“\ _‘55\4 G tow Wauve o uab.»e_ C‘é @o-r \

f\)\‘b\:‘km 52(3—-41 (cowiw *€~‘~ Mf)ocu‘j 3 T+ caw Lae ua(.;.,e,g

Slor wA’\D'\/‘A (\GL‘{CCL UJJQM (}JQW'ZA “ o re

' A

7!
&~ :

a\if;{/q\ e cmred . The oler & eleoeselas 55[24

. r o | _‘ Qs

QC!A"’T\‘H Foe é CL&\’&Q&’.*S 5te’rec:’ A “fé(reég:,t;&} S

4leir Asc_fl%u;m&,fi, 1) (cos €ee 5ix clarailirs
/

- 1" ° 4- - * t ® . J 4

vl L~ i rec (S« M Y€ J JwS‘," V1€ Cen
</

v—q;j\c}&‘c‘. wvf‘*{;\ V\\A\\S.

An creephor to Ha cboce ,ud'@,—m;;m b e shhos

,7,',*:33. Tlese (6 rej‘gtw:, ot atmtcdf t\u\(‘jc,r»c.ah‘o-.‘

ot o Jorwathed o Larisuc szgm St bt /?3;;51:43,

Iol doto was recatled OLAM oue cfCase regrsclrs

and /&'Icrma/'zc.—i by some weews He oieoo 0 CE

('ou—l:—ikl—c{ wou/c/ Lo le<t, 7l C'"ZIZZ ,(/-orec'{ e prost I‘fi}mé‘C/
o

f f » b !’—“’ f~—) ‘S o

ooty < *&e Co lae res~izizars & 5 S€et af«["’“’“ '/7.%’&-7*»,
\j K‘y

u.rbooy SeNn -\‘\ ~/

— . ‘ ! ‘f‘ !
JRL rormral 2o Rew ?’k.@A/beyfflj nadl

: Y / ’ \ ‘ { DY T [-
,Uu-u:nc a7 o g e dow C dQ_S‘iTO‘v\ ‘]LL. W./’of"vt\hi”\

S o
| i

1. o Lack-wy
e sowt Cases Hos W\J CauwsE *39’55%,/! k{g&x\'@’

o

lest,
U

/ {. { . .

A "o n—w\'wfé«!*l‘—éé numé*‘f/ e av&b v\b\m}’i‘iv VCJ

- . “
CC',\A%‘C(\WI a_ U&(‘v‘ufl c= JM @/ //9 “a 4‘é~7-€ /5 ntéét/ej

[,{ r&< rrj.eu,,«@ MlL Jcn-u N va".u(A’"F‘ o e WK}7;1_35T

er ex f)o"-—‘j mer U"\t“‘L Ou“‘(Haan fl or 3

CPMC‘W Mamhéfid and 2 ugfl'—m‘wc ot

y_; ‘}&L V\ % wL’; ’ fA—»’-la #70

Stad s r«fi{:fid ave N'ijvg*&»aart Coutnmad er P(‘:;o4 Lol ij'a. %asw.:)

2l a MV at an oppériuint A—t can couse o lot
~

Al tron ble whin cue w dEER éo;“é; —ff;&(/'[’C

“ 3 N . <

glfog-rw‘uj) ¢ x spei&t U—% - +Cu\ stetus rcfjrsms .

égwuse OC\ &a we. v\e,ei To be addave A w{,aj;

~—

é’»‘mc‘—:ou CQU \mcr-—«—a{:?e_ Co 4 /M'f/,

/\/orma,/,t\?d%‘o‘l O'j /V/V/‘/
d

‘.4_,?4', u.e€J E} {){ LoTE ‘f{uaj Y)Qr'n—o\'ait?cu’v'a-—v Ca

-- .)

octyr c{,_g U_)Lfid' ~§—uv~t"’70bg o “ Cause lj T occur.

-7) 0 L
g wrAOo LT COWMmOy vs axe *‘Q&@SQW operc:ta O

cflc\‘tc\ .Storec) t\m‘l'€~&_ :lc«‘(m P€6:S (m'/' .STZ)/ KCL

X<> VELW, AVILw , ASTO JARCL . W] ok

~
i

O e Owni a_,‘& TU

/M
bN

~—

L r o ‘ | '
Hase et on Ko Aola (1T exacT (»\7 CCpias

‘:L" -) v ~

£ . o ') I » ' / 1
T \')jcrwcx%"l:'v\ (L ¢ X - r‘Cja‘éu&v - (® "}'t\e :pcczfi;‘cé

\
! L \l'

-— / [, '
:'C:‘\‘«Sk(v_ ,}VO nerw—al, ’E—a}wau ecduwrs .

N,

ROLe
-~ A . | 'RIL wx\\ \"\.‘JTMAL%Q \»\C&sar»«&'}"b&; stered 1w =

C e : . C 1 ——
S ® o\lr vlr . O GL(P‘-M‘ é/,d.a. . ng_) £-

c
H

(s ncha\h ?—&J c}{f’ev\cL«. Oen 4«‘2‘(uatwt (n W S\§ 4

13 /~ |/ ~ A
e‘.f}t*(fi’n.é.éé d,\ T+ #le _j:ju C)'C},f comtans « ¢¢sr

9 He ik ¢ mormalittd G awmeric diTa . T Ll

Mse D*'va ? ucLL(ld Lv«c)uaLLAL 5-’0&\'&4 o T (A“’F)f{qo(_

/ - . . ' 5
r:;er‘{ T #«L.Lm céc/ ma/efi“,uau au(’! CarriCr a ome e o ffi(

iyt d".j,'t. T o demon=baad L o d’a[(o,,‘.w_ o0
¢

(™

¢¢.,._) Hex Q‘;JCJ f{NN

X-reg b T8 #F

X- r? ¢G

Qgfi——!’/{oh«@a&e cpéfi
/—___________,/

. /\,'U/&/ CPJ-L <

'YQ»\ N-&LJ—;:&V

aftenfieg/?n 25

EM NS Folz—cé ¢

‘i L€ G g’j&(‘fivL

(’XW——@ (}—‘

£ 4

T‘-/i— A (;3 !Q (.Jfif,‘\ G Mfi S0 C\\\ VS N

N

| - [- . -

« carry & the b B givt '}/’L‘(. Tl ¢ u He exgonet
/ J

. o
Q"\ La i-'(a d 4SS M:A\'QTtw{ L,Klq'jo\/\(v&) \'.\'\-A--»Al(

\z
~’

ML b e —fZ‘/,fZ‘ {_?GVJ—W\,

s [EA] 96 HC 38 63 [Bflmrww MUN o

Z, 1L i

7836852 —-FS —————— frcé &

s.7¢ c{'x’- 522 ‘”82’ x r0 A ELLM

— o/

o5 [ig] e sz zl €7 [Heedadem&

- f ! —

e q4C By"fif o Cluw-ard T 5L . C = 12 dec.

arue=s Hd+l 2 = 5&,7& C o e e,xgc,u\&jalzwg
<

wg*’(« T{«L m.efia’{*:w; 5-3\,« ca € o '22’ c?(coouj,

o \

(I \ ' 3 // '

t“*‘-— Q,r,rit,—" :/_ vOX il I Ba fCP'[% rece // taw b{ g,wu

~, U { . . \

disc s Buress e ANA ,t jtfl_g-; &t Céung‘ia e W Huswly

Lol -

-~ "
;) " 1 ":'

I‘ e X iCka "J_:Q\'t’ 2T '“’E'C[SISlit g 9"&&‘

-~ - L/’/’

*‘{AM O q 0"\"/’/{ ‘\'{A.L ®O tb‘;‘&»;'o-—\ <0 rf@ déph Ja/z;w

/

f

/ _— — NNM
Fer cia—p ZScqd 25 [£C 29 @1 [Z7 M ol

-S.é‘{/‘;% ’Zi—7i X'/y 19§4r(STC g(gz{

(,u) A ? Xorec as RCL jfd
[o/ i l f

T3] cv 27 [29 @1 [2H] roemsemttormaliacd coc
i

FRs Cow E(. se€wn cu.\;u;*jfl& 33 B “LL(Q was cl«awg@d
{J .

-
y

budt ta A'QSPEAE);*H é e MAL L 16« X-refl{sa« bas

G.-*{’;J'L! c {iérec(, CSCC é‘-\s,‘—: (\Q_\)\‘iy‘c\ A‘IA//‘V).
VS C/ N J \

o

e— v A . [< . {

! e %C)—CQ'\ T‘;‘CL e éqrsf chl-‘fra——uwc’ -'lo}

i !)] .

L wore—ali e A Nwadsav 0~«C‘l a((3‘3‘*‘5 contuiving
Z

+ ‘fc_.i _3(“3(4

]\ . . ; ,"‘ i . (.A v)‘ \

de4 § L Ge DT e il Bl fi‘*}\ 5'\%(4 datfl‘t
‘~ \) o -

- < : o
< . '\ i ’ /

Lo CLAV\F\(- C K«éi a -i-/ - A "'&*—L C}C‘*Lq Frected
~/

S c'\".p{,_a, Tue owiw ex}_,x;gs-\ .A“'_/! +€4\ < i€t Jtcfi‘ w
. <) v J o

S p » -TL.I_ T‘?—fi\-\.{“rt “d a. WNiorea \}’-?'ff-/ f’?CSl. }';"{ ""“"""Ll "
<

VVIEW

\ 2L 3)’;{-4&6.; ‘*C/.L SGw€ 5 ;;?CLI ::> lare

5 b L }
\ {, O ?
"
-
\

A \ 5 ¢ . S
j
_

/

X <> _ dnie . | .
-F\-«L tfl'}';;.{ e f’e.L X reffl(,-aar_s & C,OFI.(C! [-A't

'/

Y A(‘s:fixa,té rco‘:{-“s/fw ..;r“*"-{o;;{ Kérma/u‘af'w-«- TLL ec:.;:;amz
w4 v

- 7~ < - I J \ ~ 7

i T rea'slE- o Hreq 7€ as r‘} a RLL ~as ,;Pe”jé”""c
J O !

@

ASTO

Ofi/m $ M_,£ Qxy sed 2w rr\\mvhb QQ,(KWYW u.o/rc..fin,/.
hw

\D _& .b +thr muhu TV\K Tm.h O.F%(Afim ,,\rU\l\.&pfi..m OQ.\.M\M

ef he Jiot siv byta of #he W
< -

-5 &C 29 @/ 3F wn
25 b4PRAF4—IF e code

7o d) A T Aela kelASTO g
y z8 oc 29 ¢l B SRS‘ . 3 Q.fi&d

3(..§~\,I|f~\.<~vh H fi.hu&.vxp

The las+ ‘G*‘nr\m\w ?&O«ffitoa o (o5 {J&(r

e ;T / . / . m.
o mec Ty, et o Chonmced No data & nm&tfn\nm

/ J

/
i P e -

Qtr,.mm oL F..JF @ ghw .\

ARC!
[-

/
L.

~— A . I = f

\..wu/hh mvmmrb,(‘mlv StU v e ;v/oc thh.,xU,W f..wbwu\)f

~S

T!,h.nHk< l«.lf.fl “WL..V.W.T&. 6 Of?fi.flu._k\wyb .Mu D\).hUA Qr: th'm\
N

\S...T.wnwh\b flhflwr f.-rPM\rP.\bwmh.w. A*HO_\ ED SN mu FM

/ .

1S ¢4 2% @C 79 @1 3F Hex wa
“S.lyzsize ~77 X-Tes STO L

nw m\t.vw. N‘ bv:ory, L,LQVN)J afier \u%mr«\n

” (‘J » “ ~

rUrrF) +. 137 x,wuwfifi Lo nrrrrk\nm‘ ,v\rnw. SrPGP\ <
o <

H . bw\k\m / Wh baves \%NA SB Eprfiu ,

NNN rt T jo% »...aurr,mv

NNN doct Q/E?UW mnaumbfm as m.\\nuomanwfin\ If

{)) \ #Azl\wo.,\» wey Qoflfi\of.}bfi((g wfi\.@ N\.K.Q\.\(D\Uhpb OrmUOC..AQ \uOr/

guufl\fi_ “\(n(& V(Ofnmw é W wa-Q Al O : iu.(n

\f\>\< dos \U pfi\q\n n\ S B \b.t(\,..h - t/eww;g ~..Ao ‘ Ifl‘r(P L,,m»_mu FU».U

oAM NNN & \\,Grfisfi e Femrpar Sioc € meaislis and
/ W 4

_ I/ I a
bpo-_rfif nrm%u @ Ui N..A\ Wh cis mQMumL S\N\K\.m ‘

el & do !
(W,N./n\vfmfrd, (d.%gr.rw

b.vmb “ g {a +mrm uw”hur» .n...... Mf.\» T w‘\é flvmfl(.Yr»s m,u“\ ,\lm

.fi“& IO A e~ AP da au mh,t...‘o. Hnfi Tl d n..fi,.* w « 1
F.\v U -~ J

c) ¥
vV

G- d.S
. " . I / ”

-t - \& el < \Uowlq.}m ib U \nur\\.\n‘ \u..)nsfirh«\
/

. . y ! i . e

! ; i /) / : ! ,
Va lwl wb resw ..P.- I LN& Kam% Kw.fn ! 4 e cheg

) - }

s < v =

. {
1li€y

b L RN : ; (- / N /
Vn,th(nwx ?OGK\A = uI\cm. flfsnfifim‘u\u o | h\chfiowb,r,m.(;%

-~He same NNA o« FIX S, S5CI, ENG 5 % o!/

rfGiws € hx«.r.\N\M\A}n\ D\C %\LL.M\-

IS cARE3 2/ 6C PF
C.s7og¢ 4322~ X 9

57096430 ~FH scr S
57096 4932+ —@3 ENG T

/ t] { /

A/CAC(', //L-C C‘_dl(v,L’lC.“!b g/j P(&:IWC‘/’L‘;} a O.bm.crwal valid

‘ 0 ‘ / /)
e e 646;90;/\1/4} Stg at las Oan]“66 | //é{ /V/{J’//‘/;‘,

/

dos p Loyc’fi..,“’T‘cw*(‘fiie wied T duplod
Com-t_ Stfi(‘\-\ i; Ji?:.*‘

A Mek | R

B :' £7

c b 2

D / H -
~ \

F X G
b /- L .

1 we g 50\#(va ey J{‘*(& xW San Lo L ‘1 o LA ¥ kan

N C/_;

'Y ‘ . cheron w 1© cons o2 S8 L. Chavadie, SHM&ot L Tk ROoAs (0 lwiemn ,1or' Qv

o T£

(w (tFLJJ’(

\ - . Apage—
C’hv Mcc{i . IF Tle kg - F 2@pecygTbb

N~

,

1

N : ! - o Eoy
*—*C.L GXOOMQ{ T‘k&Q?)' J\& 6:{.4»& < Loo v FrRouu Hor <\L

!
A0 ¢ J

~> r { £

ch.\w\.fl T+ +Hu~e M@pe-@ Te AC a A-F « bem HZ{

\ '{ i/ f | { : : /.

e’fi?M‘v\:’ S"C\‘p\ 6—«-—’;S i- ni é.‘{au_ ?‘Q\JM “J')(CD“‘EJ"-‘\L Q &:M“‘(.(.

< < ~

' , . -) 1) .

ot L\A‘:}LL.r c L\.&r&:.&:‘, ‘é\ Mc“ "QL rtba.‘wcbv--ca‘{ féfl ';Qfi'wi

{ - } [

J‘-Q h.(.{_g MJ’f Sefwj bt OO0t Ceryp c?r f(«.(ur-.c,/

rzuu—»zxr;.

Ow\a *(A{ (Ab'f Six £9>l4-(< w” J%F(&Afl as %”,

A\C“ ecéu e LAIQ T‘C #C«,LW CJ%PC-M

! ,r‘; f \n

Cac«:{ (_3_5{) (A»a m CL@:«OC‘T&Y’ (,X O(djcf)er;gfs 2 _150_/‘[

char e b dapl.
/@ 2% 29 238 29 2% 29 AN o de

(} () () J-spérr‘-fhv—vb‘*ts\ <*'C<CLr(

g OO \i;\"‘\S\P;

—Twe CV\LJ A*Cx“\o(Frc b(u:.—\ c.o ‘r‘éu‘z eelag g
Nall oyks (FF). Thaeare 3 sigprased jeon

Ha di plag.
{ AN co de

5 {D #—-—-—*-e&vjmck m¢

(¢ 28 g @z 7 28 7

.T~! * ! — N \ . §

It CGv (\Md o “{-_—L 3 !u“*-grpt,.,_;h‘hoj C,J}

¢
f ‘

,UN"V C,C&L(

4» SALPHA REGISTER DI PLAVY

Nt j °

Lo M T A'/fY/:‘y’ o doploed w ALPHA —ele

Te
N,

4?‘7‘(._,?!& é'up(:z:] L.(-&rtcfl* LA u:,-t E{ c"mp(aa_ed}‘l'én l)or

LT Y C!-‘é pb«cg &as & SEvuCw Q(«_ar«c_‘;‘e/ 56

1%

. f . .
Sravr A .SLéUJPt - fi TL\L eGe é)rcg' L_LTC\-O ..Uc"&

\ s ! | . f

N \ l b}\/}{_’) T‘t\-‘LV‘\\ C((‘&v\i d,LQ r M{_ é) Oy Can
N

7

/)3,
-

-«H’«.ewc\\,\ O?‘Q-LV v\u\(b:ftia m‘_ “'éq 5*"']&47 ave c(z_gftl;jcé

~ 3 / .
St

v) /)n

os He over bav. TIE oo NN con be pliced o

2 —e Alpla clu;pé? Ho X Funchor ATOX cawbe

u;eJ T 3@,4-{{41 d‘&um/; Q%C&(ua(‘-‘/cj 3),"1—4 fiL‘mC/[:fi'.

Ne ¢ . The fi/\—-c, Jy‘fib’wa M CXe v‘}’o\ 717}'11— /n

The recdl F shts Vs fumbed resrs Fees s e

A-re 7f> Fie Ao~a3 A FA c{v)‘\ A e r'efu/'é/q’/

7?- ~ hopo bo cmi" re ,':'%m, : Tie st s f‘&//;fcfi ~Q

(f—o.\,i/'-p(c?b-, “;\//'E, ed c«:,.r,r“][Y Qh.c{/ a4~ ¢ ho 7 Repann /:‘f_“/

a_,J'\ < x e,.flLL A [ess /7&4‘_,

N
u
m
b
e
r

Al
ph
a

Keg
yfs

sig
e

P
"
“
"
a'
rq
“,
\

[y
w
-
t

e

N
O
N

—
N
O
R
M
A
L
I
Z
E
D

N
U
M
B
E
R
S

1
3
1
2
1
1
1
0

9
8

7
6

5
4
3

2
1

0

SI
GN

o
__

SI
CN
EX
F’
ON
EN
T*
;\
‘

0/
9

M
A
N
T
I
S
S
A

~
0
-
9

_l
nz
al

n
z
a

Er
pl
e

1
0

AS
CI
I

O
r
e

o}
e

gr
ea
te
rt

ad
vo
m
co
s
o

eo
mp
ud
er
S

w
j
o

re
al
iz
ah
o
o

bo
tt
y

d
a
t
e
o
O

Pr
O
G
v

c
o
l
d
e

p
l
o
r
e
d
i

w
a
t
e
s
S
t
i
t

-
-

Fl
g

Al
b

)b
0

reg
ta]
—

4

w
i
V
A
A
V
s

dn
ak

Ho
ug
y

.
‘
a
‘
-
fl

A_
A

Jl
:.
'i
f:
f}
m.
b“
d(
).
.
P

:
.

N
f1

.
&

.
»
u
J
(
:
\
:
u
r

P
o
\
v
x
.
\
“
“
f

B
B

i
re
e

Fi
gu

re
5
9
.
-
¢
—
=

%

05 6A 96 43 21 6C 00 HEXR

5+7696432~00 X -N3>\-w Qs70%“(35
will become: - ,-.xq ShY ,__L‘-—- _ [le) 52 “‘&@ -

ceca ||

£ éhe Ngn digfit contains any othervalue it is 1

andthe.numbd r is treated as alpha~data.“

| "d:\‘a:&?dé"a LG byte: rothe
firomzu Eheif ‘ 1 .as \M ~ dau&,ffamthen amn‘ IS
hovevenafinimlzesriameithamga& mag tor .Ghe NNN. Laading;

6 a5 01 78 HEX
® T K % ALPHA P«w‘-}

. T O AfiC(,

Agp aS®lAfer RSO/
ENNs IE IEE DIS“LAI

Ihedisplayng cf an NfiN\\Qs rather difficult ve

explain.' _Thev on“t alwavysdispl thre same. - Lets look

firstc at an in theX register am¢ them an ¥NN im the
Alpha display. b - - : N

X RECISTER.
if the;

sign &igi; contains a 1 thewy the svstem trys to

NEN as; alpha data iom the X egister. "If the

'is @ then the NNN fs displayad as a positive

‘/jzf' the sign digit is anything else then it is
d as a negative number. For example Yhe NNN

f S 1¢ ¢0 01 GO 01 C1 €O
displayas an Alpha striag of.three little

JR}&X

xi 5 %wq -

¢ ‘*TIhef'maaber of digits displayed and the display
" @il1l also affect rhe waythe NNN displays. If the NKNN

excugh digitrs in the display the digits greater them 9 will

carry a ome ou to the next digir. If there aren’t enoug

11

digits-tg do this chem theywill displayas follows:

aane%‘0t. :!sg;h&yfié;_ Anyt
che ; 4 wEl11e &i&sgliamead

't:%m he;fidfiissg‘ayed; thegsi.g ,
Satterne The |%tz‘fe;mfe&E’fnawfie@smad\ufiafi;_,zu oA
hte. used togde@ae'zhege..

»V,'f/ ; :a‘“ p; ‘1?“' v ~4“““:- e :

- a5 . dhtexSEaxT:‘f?afr:
¥ A

XfiumcGL@m‘c‘:anz‘

12

HP—41C/CV Status Registers

6,5,4,3,2,1,0
 {ora

Shn‘ted Keys e O0OF &7

. Flags d 00E f;‘é.:*

— ey - 00D oo
Subroutine b ooc |

Subroutine a ooB|

B Unshift Keys + = °* 00A==

_ Scratch Q B} 009 _
. Alpha P ' 008 ...

Alpha O 7 007 [

Alpha N \ OOSJ

Alpha M T 005

Stack L 0041

Stack X 003

|

vot

Stack Y 002

|

="~

Stack Z 001

Stack T 000

-} 4 u’ufiv 45 peirer

Lo These il e Ay a5 e e
<asc H aad T W*‘J iy

Fen rems.,/in,(/ it F—gure 5.4
befeo oo)

A
l
p
h
a

R
e
g
i
s
t
e
r
s

28
T
27

1
26

1
25

T
24

T
23

22
SC
RA
TC
H

<
l

P
(0

08
)

21
{
z
o
i

1
9
%

1
8
5

17
}

1
6

1
1
5

0
(
O
O
7
>

Q.
.;
_\
x(
oo
e)

3
.

*+
é

M
(
O
O
S
)

6
5

4
3

2
1

0
i

s
s
e
e
b

B
Y
T
E

N
U
M
B
E
R

nu
wb
ar
s

co
rr
es
po
ml
:.
,a

'—
(b

’
F
a
.
g
i
l

o
‘
b
@
'

S elPuAITIS

|

1
4
1
1
3
1
1
2
1
1
1

1
1
0
1

9
|

8

Fi
gu
re

5.
5

each associated section ofthese Tregisters. Thre. E£irst
group we egxcou:n&er. is. the Staiek. Raegiss:t:er:s*

STACK REGISTERS

ge- wom"tdiscusgtheigtack:“]":m*detail®HeratMeeauyse 1t
Lfi"%%@—kaa

.

exss‘eaasm:v.igre‘alta“t:ad&Lfi&;th&awnge‘rsimmuaf”f‘&nid‘ :

4 ;fiii'e ALPHA
9*‘z‘.'eigg.st*en:’sf

g 23cond’
thes- addre

gq:fl&e,fiha&émx.z

2 Ay By esn%lg26of .28
wse&. fiq‘;r’*i:hvefdsis:gduas}fi:’ &33@&‘affthi'e. f’s}umcC’fifi'fl;&fg t&mp
the &&sgfi&y“ work wa’ithg;oru“p:ss of 6 charact t;,ss."'q‘: a.. :,i«m{e..
EAS'IG‘}?&K&LHandles enzl,ye«sim c&‘am&c&‘&rs‘ébe,camse«atbe@ flu‘b-yte*is
useads tai“c:ade the dats as a:lph&.*‘“I’n thiss way :LE“wkes: sense

hew tma*t “the d?isplay be a:n; Lxfitegn‘al number® o;fi" $ix in
length.’ Bu~t do we attuallyhave28bytes av'afi'lh&e for the
display? Pigure 5.5shows the difsplay r‘eggiasst'e*z:sfiin greater
detail & - Lets Leok and. see how charactems ace e;n‘fzene¢ into

*h%. @fsplay and _wbac ha,p*pemate, the cf‘rarazczm €
alweady: in‘the dns?lay when&new cha‘na‘cter fis~'em:&ered".

Pigere:5.5 Alpha Display

1. Thenew characters enter the display in ther # byte:
of the M regiscer..

2. The @chen qharactefis are shifted one byte to the

left to make room for the new characters

ia@cb&n&cbar is ahifted omt*of UWCe,fauwof

fige i6henewchaflaegér

"yfirmgpamqgfimiagsfmzm&term&:eifsiwhat Sfifififfifigfiiag

iRe 51&&2&&‘@&ome.fang~28 byte regiscem;m chee EHe
; ‘@MEha

fieésg sigmi“icant.;““%nsteufour“fihe&hrfitiwg of“ he l&

ch&ractfir' aur’ of thenHisplay and infio position 25&&nsesyi“
to b& fio&t*zs far as+~ohe system is concerned. But It is;

stillk :hafia:an¢,ud’1‘mot Felost ameil .#fr is shlfteduout oE

the .P registier. So we *eally de have 28characters: thatcan

be accessed’ svntnetzcafily-r ‘There 1is. however one catch. The

system use the Xast’‘our bytes of E as system scratch. This

is: most awfi&ent—durlng dav&\awtrv datar display, .or status

vard woitcimg. 2 So amythxng ‘stored in P’ .syntheticly .caa
skould becemsideredvolatdile..

Thiis:‘suggulacion novewer &oesut apply to the other

three ALPBA- registers M, SN, @- - These may ble used
synthe;icaLIy for many things.

@ REGISTER

‘Thie fiext'xeglster is theQregister at address: 00%«

This register is used so frequently by the CPU that it is
not ‘very useful 2as amother ‘data register 1like the ALPHA

registers...Host of the timeQ contains. the characters of
che laSt fifinctian executedbyname in.reverse ender.‘j"fie
will - see: a?mse for ghis when we talk about the @ Loader.

Another usefulfeactsre of the Q register is that - when ‘an
BOM iuncgfian s assigped to a key the Q register contains

the-XROM aumber in its Znd amd3rd bytes and the ‘microcode
eatry pointaddress imx its $#th and Ist bytes. We can make
some use of the Q register synchetically, although mot €o
the extent we will with the ALPHEA registers.

K
e
y

A
s
s
i
g
n
m
e
n
t

Re
gi

st
er

s
S
H
I
F
T
E
D

4
3

2
,
1
,

0

g
g
g
g
_

Li
ne

N
u
m
b
e
r
€

1
5

5
4

1
4

5
3

2
5

6
4

2
4

6
3

3
5
7
4
3
4

7
3

4
5
4
8
4
S

4
4
3
8
3

6
O

13
52

12
51

11
23

62
22

61
21

1
33

72
32

71
[f
su
sr
ke
i

4
3
%
8
2
O
“
-~
—0
W

u
l
\
g
o

en
de
r
e
y

U
N
S
H
I
F
T
E
D

4
J
R

SC
RA
TC
H

-

15
54

14
53

25
64

24
63

35
74
,
34

73
45

4
B4
k
44
3
83

1
3

5
2

1
2

51
11

2
3

6
2

2
2

61
21 e

33
72

32
71

g
j
s
w
k
c
a

43
1
82

(),
8
1
o
,

l~
\\

e
be
r

F
i
g
u
r
e

5.
6(
)
g

)
€
a
c
l
i
r
o
w

s
l
o
u
l
d

b
e

c
o

«.
‘,
r

c
o
t
e
d
o

Lfi
«l
(r

J
Q
J
&
:
L
?

‘J
'

KEY ASSTGNMENTELAGREGISTERS

Thre nexg megister up is the #F register, 00A . This

HrEgiStefinwand,rfi&&-*eregister go together to make the Key

’&sSLgnment Flmg:ragl&ters.\iThey bothmap their &irs;f"fi_
bics chekeys o“*:hegneat of tkecalculator.s.""""When _a
Key Es.pres ‘,’ U _cheoks e
uarreSpdafiingyl
rer

Figuzé §§6fi5;Key Awgsigaoment Flag Regiisters

With only. 36. ‘bits used ourr of each: - register that
lLeaves 5 nibbles Lmre&cn tufacccunf fibr:zlfiim~the h-reglster

they are -usedas system scratch. In"the e- reglstet the

irst uhneémfifiblasof e are the line number in the current
DrOgram.« fiér will see: an interesting application of this

later oun. ‘The next twe aibbles {3 and 4) are thekey co&e

gf the East‘keyagressed.

~ Of gemeral"interest Is tha t in the key assignment
flags there arevbinfi cor?esponéing,to‘the SHIFT kKey. and the

hiddem key mmder~Ghe BNTERT burtaon. This means. that
syacheticlly wei:.nay‘make ¥ey assignments tco these keys,
although: she: smifit'kev would them be of little use in USER
mode a&& there is mocontact for the hidden key, unless we

put ome «im.

4
0
0

2
0
0

d
o
o

L
G

einbiy

9
!

l
¢

¢
Y

S
9

|
|

N
N
L
3

N
a
N
.
L
3
d

N
d
N
L
I

N
a
n
l
3
y

Q
a
l
H
L

H
L
l
d
N
O
4

H
L
d
l
4

H
L
X
I
S

d
3
L
N
I
O
d

!
N
d
N
L
3
Y

N
a
N
n
l
i
d

N
a
N
L
l
3
d

ssayaav
|

1
S
y
l

aN0D3S
QYIHL

L
C
p
p
p

A
i
o
w
a
p
y

Jo
u
o
l
p
a
n
b
i
y
u
o
n

MEMORY MAP REGISTERS

The next -chree registers weontain a lot of -very
Imteresiging and wseful informatiom. They are also very

damwgerous to use. The wrong code- stored inm here could do

aaything from locking up your keyboard to. '"MBMORY LOST".
The a and b registers contain the address poidnter and the
six. level subroutine return stack. * The.cregister comtains

four" pctn;ers to. &1i£erent parts of RAM. Figune 5.7.shows

how. the" registers are“divided..

Figure 5.7 - ConfigurationofMemorj

Lets look f£irst at a and b registers. The first two
bytes (0,1} of b contadin the Address Pointer described in

the . last sec¢tion. By placing the proper code inrtes- this:

pointer we may wonder through all of RAM and. ROM. The rest

ot b and all of a conra¥ams thesubroutinereturn stacki. The

ceturnr addresses are "not always copies of rthe Address:

Potnter at the time the subroutinewas called. If rche

return is ©o RCMthen the return address is a copy of the

Address Pointer. FE: the return is t£o RAM then the vreturn

address 1is a coded versdion of the Address Pointer. Since

the Dyte pointer io RAM mever is greater then & it uses only

three bits ¢f the last nibble of ¢the Address Pointer.

Likewise the register pointer never is greater the 3 ia the

last oibble and so doesu’t use the last three bits of the

third aibble. So for RAM returns the Address Poianter 1is

compressed by placing ‘the three bits wused by the. byte
peinter * fimto- the last three bits of"the register pointer..
This is.illistrarted by rhe following. - Supposea subroutine
is ealled whem the: Address Pointer 1is at 3160. . The Address

Pointexr is compressed to 0C68and added to the return stack.

The ¢'Tegister (system register) contaims a let of
zseful but dangerous information. A wrong number im this

register cam cause a lot of fustraticn. The £first tharee

Fl
ag

R
e
g
i
s
t
e
r

4
3

2

') Y

0
3

0
2

01 0
0

0
7
0
6
0
5
0
4

11 1
0

0
9
0
8

1
5
1
4

1
3

1
2

1
9
1
8

1
7
1
6

2
3

2
2

21 2
0

2
7
2
6
2
5
2
4

31 3
0

2
9
2
8

3
5
3
4

3
3

3
2

Fi
gu
re

5.
8

3
9
3
8

3
7
3
6

D
t:

jt
“?

43
:;

4
7

51
5
5

4
2
p
46
«
5
0

5
4

4
1
\
»
4
5

4
9

5
3

4
"

4
4
5

4
8
\
5
‘
5
2

nibbles are a register podinter that contains the present

location of the permenent .END.. This number is referedto
e ervtime a glagbal tabel search or a GAT 1! is executed. The
next three anibbles contafnanother register pointer that

contains the ©present location of the curtain between 'the

data registers amnd the program ctegisters. Manipulation of
‘this numher swgrhetxclly cam be of use when we want to hide

data registers.-The next &bree m;bblesficautain a "COLD '
START™-eonsmmnt ‘(b69 .;3fflfi-tbzt mumber ever ;hanges the
unrelentfing 'mEMORY LTS5 sbles L0 and 11 are
w&ed By theeprrnter&m;s&nmCC_ - Efiquast” cnreef‘mibbies
contaian & poznion EofQfia“fififéwfmf t&grsgmnatLon registers.

Wecan sometimesuse”fi&q“lfif mation Sop

'fiuve the: curtaim up

: . : . '@fimgtechnlque.”fl;&s

e.asm he.bsedn aiqa: c&mkhaflgdmd?itbffihefi_'éQfitr:e'e ‘reg LSstars+,but

¥ ra e

_ e
9@&?h&é&b§lv

ELAGCREGISTER

This isf;th&‘& register (00E). Since: a - register
contaims 56 bics ft:hourdn.t:be te surprising to find that
all 56 flags are contained in one.of the status registers.
Figure 5.8shows the correspondance between theregister and

the Elags-.

Figure 5.8 - FlagRegister

By sbe'ing the g_oner code fmto this reglster we can

set or clezr blocks c* single flags.all at the same time.

¥e <can use STO 4 toset wp our display, aungular mode and

oumber of digits fer a< program akl at the same time. There

are alsc some intereasting . :hingsryanatan deo such as setting

_lag 30 the uAI‘flag and Iist rhe emntire 4096 entries. - Alkso

Bug 10 can Beusedtoimcrement the flags as a loop counter.

SYNTHETIC EUNCTIONS

Part of the definition of a synthetic function was that
it was not kevable by normal means. If this is true, - then

how do we get to them? The origins of siynthetics came from

the bugs in the microcode that allowed wusers access €O

registers amnd fi&ncfi&ns thiat they weremot supposed to be

able to get &t~r But as stated before,j~these bugs .were

extermluataé byfiE& 1n’dua course., Fortumately for us,flpgbé

first peopb& Cg uge” syntnethes developed programs- and egher
meamns to gemeran&synshugi&aom‘mon-buggefifmachlnes.- beq.us

_fifn&t makei: ag’™ ganeraLLLfiétmfi-the mcsc~ffiommomm synthetic
functions a:udi'”tdhafn,KtoFfHow‘to geot.atithem.

Thte nuubefi‘mfi xyg

‘bun"Lh&. EESTfi%mm

below:

;fie&fld~fumgnaons L& aLmo@L fiufllwxse,

a,:d,use&,mnes.afie,:hfl&m& in. the table

menetion: Deiscrprion
—ei ooe e

STO Sore“daca: %ol anyiof the status neg*stersu
Bnas.not cause norwaLizatLon.

RCI Recalldatafrom the statusregisters.
~Dees:not uormalize data.

X<> Xaxchange with any of thé status
- regilsters. Does not aormalize data.

DSE Decrement awmd skip if egqual in aay of the,
status registers (usually M, ¥, and O)%.
Boes net normalize data.

ISG ‘Encrementand skip if greater, im any of-
the status registers (usually M, ¥, and

@)~Poes not mormalizedata.

Text Iines oftext that contain characters. not
available on the keyboard. Save bytes
in creating special’ characters.

Keys Syathetic key assignments of all functions

both synthetic and normal.

T,XEQ Ppecompiled GTO’s and ¥EQ”s that are
ate&ted‘syfitheticallv.

e a

Short EetmzS%e:t fc-n.afi the EKX does not have che 1

expoaeutiaI§ in fromt of it (55 instead of 1 E5).

The application of these functions makes for a very wide

variety of synthetic programs. Now let us explore how to

get these functionms into our programs.

There are seweral ways to load synthetics 1into the 41C:

the card rvead, wand, Bug 2, PEC ROM, Bug 9, pulling modules,
and a few otians1 We will talk about the card reader, wand,

PPC ROM aud Bug Q.. Eet us. sitart with Bug 9 and see hoew 1t
works aad then: <ymtn331ze our first synthetic function.

BUG 9

Whoem register?= wa&wéisbmssadh‘ wer saw that the Eipst
qhree mimhLas*a@mta*naagyfie current Lime number fLn. mhe PRGH.
When.a* CAT "L,xfi‘&xeamzed‘chifis: cumber is setido. 090. ¢Su?p05=

ffi“ftAFflnfiflPRGM model. afl&;atop 1mmeai&telyn ~ The ~lime
number *fiasan%mg;&wapaac3waeth@’&ystam;&oas moft ¥mow @hm&g
llne; Ttaxpect.-- ‘Now: Smpp0$$.we dlelete one, Itne with. DEL

901._;'25 “wou&aw *Jmouahmm&i Ssee a. vesv L&Ege ILine: munbcr'

around - AO9T.. ,fi&t.w& d"quyt.havwan‘nprograms wichgRat
many. I ine mum&ens'lm the caliculatorl Wh&& has: nappened ifs
that we Have :deleted and jumped {ntothe wop af cthe - key

assigonments o-itaaus registers Lf wo keys: are assigned.

Well, ofwhat u&gfins citf's tous?Let us do ‘the. LOLIOWng.
eove aplued sw bl vileo Wl]

mgcouccon¥SREeU LN TATT

————g IR cade

l« ASN OFF 3+ ASN OFF LI
2. ASN QFF $- ASN OFF =11
3« GTO =™ . PACKING
4o PRGM 00 REG ____
S. €AT 1/STOP LBL ___ or .END. REG
§. DEL 0Gl - DEL oql '
7 SSE (2 HO1%

| 03 8845 OFF
8. Backarrow (2) or 7
F. ALPHA A ALPHA 02 Ta.

Ig. PRGN, run mode
1le GEBOA PACKING e ';“es AS Yl

Bxiample #1

What have we’'justaccomplished? We have just created in

che. hex‘assignsms registers a synthetie function known ast a

"ByrteJh-per Th¥s fuonction -in turn can now be used to

create otherT smnthet*c functions. We will discuss this

Fu.n*ct:lom%T‘moTre -“im the next. section. This technigque of

assigoing any‘fiumccxon to aykey and then using Bug 9 to . go

in amd Tedic"™ the key assignment is one way Co generate
svacthetric kev assiguoments. The most important thing is that

I3

all HR-41C/CV’s have this Bug. Tou de not need amy
pecipherals. £q do- ft.e But Lt.is limdced i#nwhat it can do.

CARD' READER

fig.h&va &&enamaqR&&v%%c&a‘ha,u3g&5geqreage symfifiat&q

‘ewfipzeg;amsqchafi%qgg; f m%nwhaCL; COde~jViq+
_m'batwmamwtw@a;r&efia‘ Efiflcnacessa:yg

% | 3 wsette@
eP T efitefii -the

g;efixbybew(gfifl"” fghan;qgfiord tne‘ Arhe STOvyae

ands she byte deqigm&thng;the -will be&p fr beffleen the
tracks.- ;How ge ba&fi.rmthe pnogram.and.r&place the STOGwith
ENTERT,and.che 7“'wi€h theproper postfix bytes and record
and” secomd set&fcards. ¥owto get the synthetic code,
read im the firsttrack from the firstrecording and the

second track from the second recording. You should nowsee
the svynthetic STO funmction as aprogram line. Clean up the

temporary £iller bytes amdyou have your program. This:

technique #is fairly versatile and can create most of the

synthatia,program codesr iy wsdiingtheapproepriate prefix and

postfix’ by:es- 5TeFe fairly lLonmgand the card reader will
drain -yeur batteti&s, but Lt cam be.fbne -when all else
fails.

WAND

Anmether fastwayteemter symrthefic code into programs

is. with:.the wand... Bar code can bemade for most of the
synthetic funcoiems and characters, fhez by simply scaaning
the bar code if is- entered into the program. The only really
hlghitch is:that differemt wand .revisions will not read the.

symtheticstha.sane. Iz sewe, thenull hftes canpnot be read

withont Lachmng mguhe.kaybaa:d orIosizg memoTy. This is

most m&rortunate-‘f*Eut it will ge&:acst af the synthetics
ixte the calieulatords

PPC ROM

By far the most versatile and aasiest to use are the

routines ia the PPC ROM. . These routimeswere writen by the

people who started synthetics om the 4L andi were tested

choroughly before being accepted for the ROM as a program.

The omes that are most used are the Leoad Bytes and Make Key
assignment prograws._ Efiese{tvuwili mglowyou to create any
&rbltraryaetmfi:bytes1A pI ’ssign any functimn to
& k&y' ' gA&sociafied prqgrams

tof seid flagsi, anemte

LLace.‘df :

Eha

BB meu, irfitcht:*lze@ m’cm,:;xss:*‘as‘cm,"
g}*esses ¢RSFe52 prnam%‘ "y fim‘.th, '"xsroifi{‘mn;?"

iz ghe dLspla};_ 3 oflkfi£ dnifer youte &a&dred
bytes fa- thet gfinzgazerdeq‘an&”iomfifil~kmwe uraafediwyour
syathetic. cade.: ggffiisn sEY'.~am.the- @@Siest candnosm

versatile vay*fot’c:eattng @rognam c&daukv You cam emter any

anmb*na**an gf bytes at any-..Pocation in- your prmgram. The*e

are also supnarting routines, that help@cr&mte NNN s forthe

purposea of sterimg them Ln the status registers while a
program is rumuning, or to create- speCLal characters fmr the

grinter withoutusiangBLDSPEC.

Lets create & short prdgram to. swa;p tthe M, N, ;nfi"o

regiscers around In rhe Alpha display. We will use "LB'to
create the svnthec}c nan&nicns E&qui:ei.

- . L <EE

L. ER&M JOTT LBL"SWAP™ Tsflfififivks &

*02 LBLs"R+
03-17 = +
18 XROM "LB"

2. PRCM
3. RS

&. DEC/BEX INPUT5
£1 07142
#2 0F 147

#3.0F 147 ,

#4 OF14T @
£5 OF&r&E HOF

7 OoF 142

§. SST ¢ T7T
z. o2y | ,

g. 618 .. 31 Packiag .

L5

9% 'ALPHA ABC -VWX ALPHA «s
EOW. XEQ "SWAR"™ .-#

EXAMPLE #2

'}:he ot,h@l:\ reu.r:ine‘,&‘ ”BK‘J ise.ve;l:vus*e;ful for creatimg key

‘ gvfih&tgb»fimmcthem&. These ‘;§gp
assdgnnentsv “3E$Q£POE Vf&mctions\:an.mmL&ibyt&
?umctionsn‘ oumine-fis exeflutedgkthe programUe1154

yaui« h‘ofi m&n;y?*Ke.gj:ss&éns rfiwe,re are; freefor jassigmments.: /a,zgc
qup QFOmPfiw ggui&n‘ah&pgaflix,,gestmlm~a&Rey. cg&&qg‘Whemny

\"ug*gfian-regLiss e»rfe:i?‘-orfhé

Gfi&_wfiaim&paamloush&f-assifigamts,‘ané'

. fl'@rog*am gGmahsxfiag-&QEV»BQyflefi fihar&

a:agfisoAruwbnesifiwrpwmk.;mg %&y afifilgmen@'fiegfiSEQrsmacr

u‘
,
J
:
;
:

nenav&n\ ;gmgziw&fihafinEEimss&gnme&t *&gm&cew@rfiémsiysitem:
\13&:.1

Le CEEQXE" i3 ~#*;§V£”
2« PRB/POST/KEL..__. LS9 ENTERT ’

1% NTERT | pue D
- Z3 RAS

3. PRE/POST/KEY R/S

WSER o~
g EXAMPLE #3,

BYTE JUMPING/GRABBING

Qnes *¢fthe wmost useful Ffumcrions sythetics has givenus
s the Dbyte jumper.. :This functiom is the result of &

svrthetic key assignmentflof any byte from row F with anvy

othker byte. Erom “the hex: ;able.gg The function has some.

interestiag and useful properties that wecan use ©O our

advantage-«

o

The 4L, .when presented with a code, must LIy tc execute

that codeas:bes* #it cam.. Thebytejumper has the code "E_
. bhytes-.from the F row of the hex table are the

TEXT Line&esignators.f The F tells the system that text 1is
Fahuowing imad ehe\uexuanihble 13 how many characters (Qf&~

amé, &r?}wgm-!he 3€qoadnhrce_ofi che instruction (postfix) is-

nat .1povtant a2t this time. wWhen this functiom is execurted
‘the :nn;la&e, -ETseesthe ?;meau$ng cext and then looks

ag'the Lzstaibbleaf the hycte preceding the address pointer

to> determinef Rew many characters follow. Figures 5. k0z.and
2. i0b szow how a byte jumper works. Let us try a short

example o see whathappens when we execute the Dylte jumper ..

16

! .
i
@
fi
?
k
%
fi
*

gl
5
:
’
,
‘
"
'
]

2
L

) x4
)
. >A

&

Wha

whenéfieé&vfiejl
forp-ther *

last

ENTER

Type in. program 01l LBL "B
@2 STO 02

. 03_ "AB'C"V

04 ENTERT
05 ENTERT
06 END

6TQ...083 ABC
P4&CK PACKING
gggg 0..00°
Bytietjumper XROM: G55, 01
PREM. 93 =*
ST s/
SSHT 05 ENBERT

Fxample £4 Tipeqs ASFE-

;ifi'fiflhe,taxs Linesthat:we were!dispLaying
 an?wms&exaeace£@=

amfl?/*fiumcti@ns.~
is 41 hex and"fibrmfih& fis &2bex.

aibhle of tbe.S”O 02 functiom to Fump-two

gfié&.w@vfio&bw& the” code:

XW@ see chiaftt the. ca&e for the-h

‘Thre bxtesjumpem used the:
‘bytes: into

the alddle of the§:ext ABC and tchendlSplayed the B and C as

their

pesition

5.108sa

us mak2 use of

Sappose

program..

to genecate ft.

1.

2.

rthat -

standgalom& fumctions *

af the address pointer camn be followed in
{before jump) amd 5.10b (after jump)

the~hyte jumper to create amwactual functionm.

GTO .003
BAEK
PRGM .
&fiqé.iunp;efiifi

BRGM,

XEQX<>22
@xqauoaa
REWy
€TQ;. QQ3
PAGK

fia‘s&
Byca .Funpa%g\'é‘
PRGX o

&IQ80

GTQ-G03

3$¢fi,
Ex

.and. - £,

‘youw wanteds tor do X<OM: as-linme 3 in
2Eet us. follow rhrough the mext example and see how

" ABC

respectlvely» Th e+

Figures

Qkay, now let

your

: : 2 e% ASFL
PACKIRG :
0.00
XROM 65, 0K
03 %
06 X<522
03 ABE
04 EDN
03 ABR
PACKING-
8.00
XROM
g3, *

0S,.01

84 STO. 0O
83 ARO
G4 X<> M

Exanple'#S

17

Now let us see what we have done. The first 5lines

simply repeat what we did earlier. They place the proegram
pointer into the middle of the text lime at the B. The 6th
Iine places a X<> 22 fumction into the program between what

was the B and the C of the text 1line. The next step (79

reestablishes the textline, but the C is replaced with the

code for Xx> o b The 22 and the C are left as their stand

alone Euactiqn& &f -6“;&&& [R5“Step (8) glaces ""MBN“

instnwctflquimne@i&tefiyafter'ame Lext 1iner.’ “Fhe. séepd@9)

dhaeug&wééh3)‘mepaat che’by;e jumpingpro;eéureu~~'8tep (l&%
places m‘&afimy byte betveem»tbewB and.the, X<> and when-ahe’
&{& @@%f&«iona,;{ehedummybyte is fincorporated'imaawp‘

§qxtE~vaa&é‘gke‘£2>fis Fforced out',;fl e X<> Lg,flmq;ad_
sy "E‘als& ;mfe@Lx:hyte:»gandvmeeds ar p*e;s'ar‘fix byte. c.oma.lce}t"fit;?
Co 5#8&ilam£fxso toplicksupthe. EDW byte and we.getlthe
fi&suIéfififiX"fif*‘v';é&fiémfikovnwin Figure 5.‘Oa-&fl

Thils tecBoiquer cambe ‘wsed oolcpeate, almost Aoy
fignthet¢¢.cafib&&g&id&iQfiat& pnagramm'awxhe;rwo program Linest
FTe G&a%&i&ig.gzai.- Limes are Qeaified ‘ther cemtrel and

geae:aeon linas, Zresp&ctlvely. Wfithwfime proper combination-

ef - chese two Iimes you can create most of the fumnctions.

The byte jumpsx ¢an jump at most 15 cnaractars;ff"fwis~ ig

Yecause the wibble comtroling the jump distancei -.can have

values from 0 to I3 (Ey». Let us wew£ocus our attentien om
another aspect of the: byte jumper that at firsc: is not
obviocus.

The byte “fumper is a text instruction and when 1t is
executed LT &rys: tor dio just that...pwt a text string into

the alpha dispiay-.. V&efi L:e byte jumper jumps the two biytes

into the middle of thatext lime it copies what .is jumped
into the dis?,av.' Tafs cam be very useful. We can now use

the byte jumper to decode preogram lines thhat contain more

than one byte. Eor instance: '

I's

Example of Byte Jumper
,A-\.-uL

Our six hne progrcm in Inemory

£3100 |42 [4A|321F3|41
ENTEIL |FOTIR |eo—FEND F—=

Figure 47 143(8383|C0|00 |90
. a

After GTQ 003 our address pointer
is pointing to this position and is
displaying "ABC"

F3100(42|4A|32(F3 |41
,N‘n:fi} Pl e——F+END—~4—>Figure ¥/

510b 4214318383 ({C0{00 {90

Now after Byte jumping the address
pointer is in this position and
displaying 03 = 42

Example of Byte Jumper

£3100(42|4A |32 |F3 |41
<> ¢ ¢ 7| fa fver BN

Figure *

5.10¢ ECE 00]4318383|CO

00|90

Now GTO . 003 and the text line shows

"ABM ." Now add the line 04 RDN pack
and GTQ 003

FS{QQ14214A 132 |F3 |41

shq |42|CE|75|43|83[83|CO
00|90

F3 00 AN 32
TexxX

F3 41

42 30
< ™e
/9] 43

EITERY

83
ERTERS

83

 CO
N&

00|

BL "BJ"
STO 02
TABO
X<>M

/
ENTER °
ENTER *
END

Figure 3.10E

Synthetic Code

1. GEe@ .003 ABO
2. PAGK GS PACKING

3. Byte Jump-~ " X¥ROM 05,01
4. ALPHAALPHA #|A ‘
5. ATeX 243
6. ATOX : 65
7. Byte_qumméa? XROM Q5,01
8. ALPHA &fiEKA B
9. ATOX : 66
Lo agy.-:,ef, _Ja mew &35,0 L
Bl &":Qn 1%844
j%; ETOX 206
k3. Byteqump‘#fl« }"ZOM, 55,60
L4 ATOX EL7.
15. drvox 74
Le. ATOX G2
P ATOX 5
8. &i@%fié{ g

‘Example #6

what we have just done s to decode the entire program
from line 03 wntil the END. The 192/2/9 is the END
statement for our program. This technique can be used to

decode GTO‘s and XEQ's after they have been compiled.. It
can also be used to a Limited extent to explore the ROM's.

The byte jumper _is avery useful tool and practice is

suggested so that you can use Lt

BYTE GRABBEK

It is mot necessary that the byte jumper beexecutred im

in PRGMRUN¥ wmode omly. Wheno rthe byte jumper is executed

mode, it called she "Byte CGmabber” This is because of the
way it behavesn. Suppose we make the fellowing assignment:

postfix.247,65 to a key. This is a text sevean and the - ‘
Let usWhat would happen if this was pressed in PRGM mode?

fellow through —he next example and see.

Suppose we have thefollowing program:

Qf 'LBL "aA"
g2 ENTER
03 STO 22
04 ENTER
¢5 EXD

Now let -ust do the fo’]—f’l-@fiin‘,gz and see ‘what wey g<e.~E, for Oiml:

effort. 5 YU

L. mze .OGh ;
Z. B‘yt:‘e Gn'a_;hb
3_m m ‘V%3

&%, B‘S"Il (ZEp=

S B{wtz’e Gr,afi‘j

$Eand see”S’T@“!{‘

l

Kaie

j,u‘st_txafofinai‘ @eg;3%M-
byteg;ra’hbén ‘&fi?_ B
mull,a{&&
this fs: anfififi‘fs"

F700 EEQ00000682

The F7 byte is:thel:ax@,ateme.m i‘ndfiq&twfa&lave:d bythe.text

s‘trz_ngn.z, ”her Tast bymerof5‘t‘emt* sts‘:!:‘ng @9“"*)&Tis- EheSTO g*efim

that was byte GRA—EBED when ‘.he; byteg:r’a:b&betwas. executed.

This is caLed prefix masking. The mexfl: step wa's to imsert

the RDN function after the text line. ‘Thiis RDN will become

the vew gcst‘ix for the STO prefix. Wethen went back to
just befcre the text limeand nressed the byte grabber
again.. Ihxis‘ had:the effect of masking-t.ke ftpst E7. byte
that Semec&ted and f'husmr?e,leasbed &h'&t‘.ext: striag to irs

stand a:}.cmg funictiens. Noate that:mospa oiff fhesewere, .nb-ulls
and’ themefere dox’t.appeaer" in Eken» program as’ ‘“inae*s.% But
mestC iapcr:ta.nc‘}.y‘The’ l-ta&t hyte (tke; STO prefix) is - teheased

and looksfora pastfl‘x, ta go with 1:.«3‘Whnat it finds is the

RDN Dbyte vai;xa‘g\w,foz:g “#r¢and the result s the STO M

fenction.-

2L

K
e
y

A
s
s
i
g
n
m
e
n
t

R
e
g
i
s
t
e
r

6
5
,

4
,

3
2
,

1
,
0

-
0

g;
&d
"

S
e
c
o
n
d

Ke
y

As
si
gn
me
nt

Fl
rs

t
Ke

y
As

si
gn

me
nt

Fi
gu

re
5—

-1
1

Lets try the following example and see what the “result

is. "Lt. will prove very interesting. PBollow verv cloesly.

I% GTO ..@05 iy

2. Byte Grab » §$
3. !lHllHi!ll!l!i!I ™

-EXANPLE #8

SYNTHETIC EKBYASSTGEMENTS:

The abifilty. .o, ssslga sy&thm&i#ffimmcaian& tor Keyse fst73
nealeime say&n&g%;*anyfinaacen,; f &fiigrstandh@wuhegh

a&signmama&%@fkmkafwaulilf Losen.+w®k at..what rhe'1 &eés
when a&key ass&@fi%géjw'fgw.“°’ »Fhen Ketssee hov w& ‘can
modify: the Keyassiigowentst dnd make useroff them syntheticky.

The: &L7"ddesydwoehiiogs: wienafeniqtiom fs &m&lgn“"*%&
kay: fiinsn: i.c.. sfe,zzfl;&filag imteLc.ha:r.: mhxe; 1—-r:egist:e;:;
regtst&rv&ep&m&*mg@‘an'whether theEbw s uvoskiited@f

shiftred. ~ Tr éhen’seores ar fihree byte @ode‘nnto the next

availble postlan Ln.the Key Aséignmemt registers. Let's look

cloeser aw Ghesa kev assignment Tegisters: and what. &héit

structure ise. Plgure 5.1l shows what the fields are in a

%iggggi$f1§}€%Key Assignment Register

key a&signzenc teglsterm.r The &th byte is the header byte
and i&snalw&ys FG- . ‘Each kev assignment register has chis

cade as~fitsfimesu significant byte. Bytes (C=2 correspond to
the first key 3531gnaent placed im that register. The bytes

3-5 correspond to the second key zssignment made im that

register. S

The. individual” key assignments are a three byte code

that | deflne Ehe fanaction amd the key it 1is assigned to-.

Figure 5.12;'shevs the structure ef a three byte key

asszgnnemt caden.. '

Key Assignment Code

[.

| Function Code Key Code|

o | 4
A XROM#l Function #

synthetfi y two byte code

Mainfra

XROM

Figure 5.12

Bi¥gure S5oL2mThreeByteuKeyAssdignment

E@cf%gmhe‘LGw
'QBEH o;umd

 ,bangé¢fm%
iksi56w,Gollama:

‘ff@sBhLWS AN ey

Boshifted =(¥-1)A hex
&hifitéfi= (B-T)(A+8)Rex

Thfisx_givé§f§§G¢?é§&?&%gfié'heiideCimai number’ that {is SCGtéfi
in the. least. significantbyte of the key assigaoment.

Novf*féts' Took a&figbe coding of the function byteé;

Tbe:e are two bytesavailble to store the functions hex code

4in. * Mostmain frame functiocns use omly the first of thesew
The sthen'(nora &Lgmhfitcant bvte is f£illed with a 04 bytes

(any byte frsn.taw zeno will work). = Sc the assignment of

the. LOG function to theLOG key wouLd appear as:

04,36 31

Thke 04bytecerrespomds to the f‘ler LYyte used, the 36 is

the Eéx cade_fidxwthe BGGffiunctlon“anmd the31 is thekey code

Eordhe,L&G kaWa?*EL anfiyuone of tha.two bytes are used for

ualn*finaxe fu&cfiien, ‘then whyare there rwo bytes availble

&mr“t&e»‘nnct*ou‘code. ‘One of the main advantages of the 41

fS‘_iEs afiiltytunadd:ess XROM ‘s, and these XROM functions
' be.assggned to keys. These functions do take two

s ad Ed&'keynéfi These two bytes are its XROM

aumber&s&&iscfifibed #msectionm TI. ~Lets take the time to

wark.anyexanglgpani seer if there are any guestions about key

assmgnnen:sEoEmisgoimt.‘

R TN G L LT , - T e o

Lets” - sappose wewant to wmake the following ~ two.

assigoments im the order shown. el * o

23

Fanction: Key:

ISG Shifted CHS
DSE CHS |

Write out the 7 byte HEX code for these two key assignments
aprearing in the same registes.

New: to; further test ourskill lets decodean assignment

register amnd sae what hheeafisigament register contains.

BT041DLl 04TR6%

Writetheadsiznments inoRder”shac chiy vememade Heliowd

AT RGF

‘f@fi&tweafl%fifhggém;kfim.fiey dssiignment:
and, see What :&ey »andop__g@us symthani&llvv' Vi &

‘Efiwpve'sxfiéggggéf" : c@éa:NEMer*mh&n &Q;OEromf_
;th&,maswififigmfifii'afitmgaawg;jfié \ st el
gertwhat mre’cgihafiipsuai *EK@H : IbeaarmalKRGMmumbe39
.are Q0. te: 3‘2 “buw REROMIS]canhavi@-;grmuhets:fffiom 0%+dod.6idu
‘This . . is.7kav Cwel U gets Wey © assignments” ¢at ;‘mdltibyte
lnat*uc*ians Lik&}ST@xth%gY&u;have a¢rea¢3seen ome example

of this in the byte: ywwperthat we created with bug . . It
is the assignment oft a-Fl anda %1 bytes tor a single key.

The ‘'synthetic fiunction¢5$0 M is assigned as91 75. When
pressed im run mode you see a breif display of a PXROM

number. Xow lets try writing a key assignment for the

following twoassignments .- ‘ _
cIse w fio ESG key {(=4&2)
Dcfii“.to CHS: key (4&2)

Write. che a351gum&m: fimm»tne two fuwmctions -as the HEXcode
inthe newt line.

Wi*a cRe -‘use OE‘KERs'vecan s'c*e the apgralat@ code im
to “the block of key ass;gnment registers sctarting ‘at (CGC.

This wil¥ giveany key assignmenr we wish tao wmake. The
programs IPike "MK" do Fustithat for us.,

@/LOADER

ler wusrevisit the@register aad see If it can’t DbHe
of more use to usui‘ Thismegister comtaians the label of the
Iast “executed (IEQ) functiun or gleobal . label spelled ‘in
reverse. - It was found that whena a bByre frowm row oneof the
table was assigned te a key syncthecricallzy, the results were

245

unexpected . When executed In run mode the proper digit was
placed in the X register. Bat i{n- PRGM mode the results werre

even more Interesting. - The digit was entered but a text

Iine was. also ionserted. Lt was soon flound that what ever
was in qhe—Q register at the time was lcaded into the temt

lLine bat iIm correct order. . We can make use of . this ’to

create. synthetic text lines of special characters of up to

sevien bytes im,LengtmupiLets.ereate the: follow1ng text line
in a2 p&ognanm..Tha,charactens are‘"(egJ;;Aa ymw~c&n see:
these aga torwal,charact&ts.%w Ehar‘we die: .isato;cn&ate a NNN
that .fiafl CE&@Qde.fibs*the tafltle im reverse Gti&fiu :iwe

than goégmltme grac%Lm.owrNnagram whar@.wewnshCQS?LHSQDE

the linéfigg& g@vgmjgéf} TO Q)

eseemng
fhasecandklfima.

itrfag;ag;

ERESTFew “apl-my
Sttlng&gimte ggnwprqggamuiu

GENERALTECHENIQUES

In this &ectiomg we will review some genefial uses of
synthetics chat we feel are important amd regularly used.

The technigues discussed will be alpha manipulation, curtaian

raising, , £lag comtreoel, synthetic tones, byte saving,

branching, speed mp,‘nana the. use of NNN’sin 3vn£hetics.

Let ugstart aur’ dificus&ion wlth the use ofNNN Ste

Whem@ we wishr ro® modify #he srtatus. registers otT Qlace a
certain:coée in wmemorTy sowe place, weneed to use NNN's to
dos it -~This means that we must be able to.easily code and

decode N¥X “s. There are severa7 progtams or versions of the
same progras available to do this. The BRC ROMreutime "HN"

 (Eet_~toifixflfi) takesa-seven.byte RNY 1inthe. alpha ddsplay
(enteredas .pormal 0-9°and A-B).and codlesit fmto .a NNN.
TNHT €X¥H to:“Hex) does just the opposite. ~“The programs
"CODE"awd "DECODE"™ .alse do this. The use of the programs
will onY¥yBier demonstrared here. More thorough explainations
of these’ routimes is im Synthetic ProgrammingMade Easy.
Let us see hos.the two-routines, "HN" and "NH" work and then
nflve an ;mfuse ENN s«kn s?ncnetlcs. Suppose we want to take

vhe folléwing hexcode amd turn it into a NNN.

€8 F¥ 00 G0 PE A9 FFE

h
a
W

We would do the following:

L. ALPEACOFECOQOFFAIFF ALPHA
2.. XEQ Tt H‘Nl" .

e gl65000L6-11

To aeao&a the: NNN,“place iu.fiq,fihéfki:egfiseét andde .the

follewing* ‘

?‘fifi@inE-*&&Lst&n

TmqN
‘3B&&EHAhfiGEKQG@QEEAQFF“

- “them

s aagnaépq:&flimna.&mcng -~the
ma flfiqtha‘“fifia» We' ca Ehe;afon@

T2 o&Lre@t

& - weg ' X

: h;@ffieymta.aeada&améQ”ben

ijag:grwaeedt&r@ug&-t&&?ra@fi;wfV

ALPHA RE@fE?'S*I&PIfi‘Tm“ s%mm..ms;:

The ~alphagqgfistet?‘serve~manv purposes- im ‘synthetics.
Thev re wused a=?’ ‘an’ extemsion to thes stack, ' to display

special ch&ractera; TempoTrary.stecage ofNNN7s. Lets look

first atusing them as dataregisters.

ALl of. theregis;er operations can be used fmiconjuntion
with the alpha~regiscers. This allows us' to use them for
starag@wf dafia” far Loop comtrol wordg. Lets wnite a short
rogram to¢ Zoofiton Gte @ and sound Che tome of the Loop

'coa»:cL POtd .acfi time. ©Letsuse the M register as our Loap

counter.’” Writeygurwersicn in the space below.

¥e canzlsewse the Alpha registers toemter NNN's fnto

the system. ji'fip"‘isr&pessiblé%fo stores ax NNas_a text
striag imsvcurgrbgran;, aund when'i: #sneeded teo, do. a,‘RCE
(aigha)- ,~Ihi3flen:eréfiehe NN into- the X negfiscer whtbout

germalizing it.’ " Thefoellowing linesof programwing ‘couldbe

o

A
l
e
e

td

o
T
R
e

(N3
28

g
019

96

K
M3ILA

S8
(
”
\

X
+15

9

16
1971016

4
1
4
,

187609

26/18
W
Y
L
¥

used to: ereate, the speeial character X . If we used’ the-
normal method of buildimg the character the progrnaming

becomes prohibativly byte consumings

GE& .

RCL M40115
AGSFEG

oofor//)o

TV

\;an_&qukfiaémebaqathq;&kaw&thfimgtba&§f

i

»aome&w&figt*as
Bt

dh;@fhaughi

SYRTHREIC TONES

 Agg’ youisaweankier fu ‘section Tl,tha toue fiunc&Lom\'&éST
the BEX code9F- -T5'Where thesecond Byte fs a- postflx from
00 to 09%.~With svnthetlcs,we c&n mow use and byte we.wish
as the posttfx Los*the §F. ' .We findby’experlmeflCatlon that,
us&ng anybyte Erom the lower halz'efrghe byte, rable resul ts.
in 28 dlffi&renc'tanes., Using any byte from tne tep tralf of

the byte table results ia TOKE IND __.

Wirh further workwe find that the fone’s frequancy is.
dependant on- the. Och anibble of the fiBSt fix, and the tone’s:
duration : Lfi dageméant»-gn the lIst u1bs1e of the. pestfix.

Thiss means that/ thereare 16 tones with varing durations.
However they aredifferentand have some uses.

The wvery §&ort tonres are goodfor use with am alpha

prompt for &mta nput from the keyboard. The prompt Is» slow

‘encugh and a-tone eam slow it further to- the point where you
may misentera number . ,$he.shorter'gones help here.

Afiothérihseffis to give the kevs a tonale feedback. Each

key ~can beassigwmed a tone that sounds before the function

on‘itexecutes.

For hHardwarebufs tire tones can be used to turu devices:
an;and mfi£,4¢ifferent durations setting .different conditons.

CORTAIN MOVING

Lets go back amd look again at register ¢ We faumf
that f#t contained four three wibble pointers. The firse
always gave the pré&emt register of the permantent «END.,

the secoud pointed to' the absolute address of the RGO data

register (curtaia between - program registers rand data

regiaters), the=z thind wasa.cald start constant, am& the

‘foufith was the aasolufie ad&ressof"Qhe :1r&t ‘REG. At times
le,wea~d be. banfif*ca* govhlde a group. af: d&ta ragistezs wneu
mere then ona,gtog:am' or. the s&nergrogammas to' _access gh&

,sa&a.hook Qn,aaQa regiaters am&;mould"&wstroy the."dat%

stana& .bgce.,w&fiéfifiagac1ng¢Lna‘vqpnrecrbfih8 frnte “fh@ &
E@gistamr #Eis: possibiliertemgwg.tha cureain- ups.o downr an&
‘émwfi,fifiavemfiem,nfififimé§.5~groflvaf- ueglsters.if Dets see..fiow»
shiiss works.

ko RGEé

2. ZEQ.CNET e
3 ‘;EQOLb%LGELGB» T mewdie
v Ldd ten(A)to the LEE £

5. IB30ClL&6%LD9LICB
8. @L STO 00 1l STO LI
7« Bllace HEZXcode in ALPHA
8. XEQ TENT :

8. STC ¢
10. RCL 06277777

&@é@}ffi&éfiffi@féfiha

EXAMPLE #%%

What happened to the 0.1 that we stored into the RG0? We

raised the”curtain IG”registers and’ what was R1! is mnow ROC.
Now letsput the gurEain‘back and see if the (0l we stored inmn

RC0 1is scill there. Type in the EBEX code for the orginal

curtain and XE¢ "HN",. themn STO e¢. Recall 0G0 and theres the
0l. Now "clear X, ‘and STOc. This is the result of a
mistake et of latenight editing.

FLAG CONTROL

The El&gregistet (d)can also be used for a lot of
things. - Eets *&o‘,é%cauple»ofi ewamples. Lets” load the
fmkléwing PTogram grom tape and rum it then see what 1is

bappenimg.

28

1. ALPHA FLAG ALPHA

3. RON

What are all those stramge displays. that are appearing?.

We used ?‘sp&@iwl.Eixe to incremeant the flags until flag 30
the CATflagW&&'sqtfi; we &hen STOP andwhen we pressed RUN:
the next"timeqfieCfl&sstafifiedup,heoamseE‘ag3@ was.set

fl¥ag 55.° | Leits”
‘aflagr&mgnflngg.

>amz‘”kmm’t&msfeguRs Priidcern
=0 \ sm;n¢m&

EKAHPTE f:yo
with rhm?fiLangS«$ettneremecut;af fis somewhatslower. Thdst
s mesc sigalFxmant”_vhen a long program 13“.uunning' am@

v € the grfinfer ORLF att theend” of the
progrznfl,eanékso use NNK’s to-setup theflags as we
want fer agiten progran by lecciogthe Firsc few lLines: be-as

NNK with a° ST@ & fiollawing’thea@ a “ S

29

3.

S.

SECTION V - QUIZ

If you wanted to assign the synthetic function X<> d

to the shifted STO key, what would the hex code be for

the assignment? CE = 2B

EC E7 B2 7é;

CE 78 2B ' UI7
04 CE glt‘ N , ‘tg M-fi ,s;c:)c—u, ca 'f‘ g&fia»

naone of the. above ‘ ' ' s

It fLégs l; 7, lZ, 27, and 40 are to beset with a

STO 4 instructionm. What is the hex code that should be

stored into the d register?

@/
b.

C .

d.

€ .

The

a.

bh.

&

&1 08 00 LO 00 - 80. Q1
100 68 00 01 00 80 14
AQ 00 00 0C 01l 00 Ol
61 80 10 0C 00 08 10
none of the above

¢ register may be used as a synthetic register

only in program mode

only when there are no subroutines pending

only if the 169 constant is saved

never

only on Sundays

ICE
The following address p&ig er is pointing at the next

executable instruction in your program. WwWhat is the

register and what bvte is that iastruction in?

a.

b'.

Ce

&
e .

byte E register 51C

byte 5 register EC1

byte 6 register 51C

bvyte 5 register ICE

none of the zbove

A NNN is defined as:

3 e

C e

a number that has not been operated on DY the systen

a2 number that has anomolous dig-.7s im its sign digit

or other fields

a number that has been changed by the RCL instruction

8.

1G.

SECTIOR V - QUIZ (continued)

The byte grabber should not be used in PRGM mode if

you are:

@ close to the .END.

in the middle of a program

in the middle of a ROM

none of the above "

L e

Coe

d.

can be usad to create a syanthetic text line

characters?

The Q@ loader
of up tox

a. 2

b. 8

&1d. 1

e. none of the above

‘The byte jumper uses the fith nibble of the byte

preceeding the address pointer to determine how many

bytes it should jump. What is the wmaximum number it

can jump?

a. 16

b. 8

Ce. 7

15

e. mnone of the above

Which of the status registers are used by the system

for scratch?

. " . 5 Pq“EL\.D B-é

a . -9 Ll “ty \\ \i

b. Q, a, c., d &”ba Vé‘b.\-{@

?, s > C _'\ bew

Goe a, b, ¢, '- C’:s& hb&b‘ ‘Oq P\‘*"‘:C(

€. none of the abave

in RAM or

have a

The address

ROM. If it

pointer may point to any place

is pointing to ROM it does not

é} byte pointer

. register pointer

not part part of the status
’

can't be done

b

e registers

d

FINAL EXAMINATION

The following codes describe what functions...

81 75

CFr 77

82 75

a. RCL M STC 0 X<> M
b. RCL M X<> 0 STO M

a{) STO © X<> M RCL O

&/ sTM rLol O SM
€. sWo el o 3TFO
The key assizunment registers comtain _____ assiguments

in each?

a. 3

& 2
c. 7

d. 1

e. none of the above

Write out the kev assignments for the following

functions:

1. byte jumper

2. g=loader

The following nibble pattern was obtained by what

pe of ocperation?
-

1 FFO0OO0OCO0OOOCOOO0S88D

3. & numeric entry line

b. a RCLFLAG operation
c. an ASTO operation on a BUG 7 wmachine

Cég, b and ¢
e. none of the above

Write the program lines necessarv¥ to create an

ASCITI £ile mamed "QWERTY" with an exteant of 16,

enter two records of your choice and position

the file pointer to the second character oI the

second record.

o
n

FINAL EXAMINATION - (continued)

If the ALPHA register contains "ADVANCED COURSE"
and the X register contains 67, what would be the

resulting value in the X register from a POSA

instruction?

a. -1

b. 3
Ce. 4

d. 5,

e §

An ENG IRD 99 imstructicn would take how long two

execute? '

a. 16.7 mS

b. 16.6 mS

C. 32.0 mS

d. 30.0 mS

e. mnone of the above

The fastest executing numeric entry line tc generate

the number =-1.2345 E-5 would be:

a. =-1.2345 E=5S

b. 1.2345 E-5, CEHS

c. =12345 E=-9

d. 12345 E-§, CHS

e. none of the above

The local alpha label: LBL A occupies:

a. 2 bytes

5. 1 byte

Ce. 3 bytes

d. 5 bytes
e. none oI the above

The HP-41C is which of the following:

a. a persomal computer

b. a tool

c. a toy

d. none cf the above

e. a, b, aand ¢

2

SECTION VI

APPENDICES

© Copyright 1983
INNOVATIVE TRAINING CONCEPTS

References and Recommended Reading

Owner s Handbook and Programming Guide, HP-41C/CV,
Hewlett-Packard Company.

82104A Card Reader Owner s Handbook, Hewlett-Packard

8214

Company .-

3JA Printer QOwner s Handbook, Hewlett-Packard Companyi.

Extended PBunctions/Memorv Module Owner”s Manual,

Hewlett-Pagkard Company.

Jarett, Ke ftH,, HP=41 Synthetic Programming Made Easvy,

Syntheéfifig Manhattan Beach, CA, 982.

Wickes, W...C., Synthetic Programming on the HP-4IC,

Larken Publiecations, College Park, MD, 1980.

Dearing, John, Calculator Tips & Routimes, Especially for

PRC

the HP=-41C/41CV, Corvallis Software, Inc., Corvallis,,

OR, 1981.

ROM USER”S MANTAL, PPC, Santa Ana, CA, 198l.

Hewlett=-Packard Jourmal, March 1980, Hewlett-Packard Co.

PPC

Wong and Conklin, "Pocwerful Personal Calculator System
Sets New Standards”.

Steiger, "Packaging the HP-41C".
Johnson and Marache, "Bulk CMOS Technology for the

HP-41C".

Calculator Journasl, PPC, Santa Ana, CA.

This publication is recommended for programmers and

users of all levels of expertise. It contains programs

and data spanning a wide variety of applications. It is

also a forum for BEC programmers tc share their
discoveries, tips, and opinions. The following articles

are some of the more important articles that deal with

the topics of this course. The references will be of

the form Volume, Number, and Page.

For a price schedule of reprints, send a SASE (38" x 12")

to:
PPC, Reprints

2345 West Camden Place

Santa Ana, CA 92704

PPC Calculator Jourmal

Kennedy, "HP-41C Combined Hex Table" V6 NS
Nelson, "Bugs in the Box?" en

McClellan, "Inside the HP-41C - Photos, Schematics"
Vé N6

Booper, "Editing Speed" "o
"Bugs Four & Five" "o

Wicke%,."HP-filC Status Register Access" Ve N7-

Nelson, "Bug Update = Bugs 6, 7 & 8" V6 N8

Wickes, "Through the HP-41C with Gun and Camera" * "

Nelsom, "HP=4IC Tomes™ V7 N1

Wickes, "EBreedom From Bugs" V7 N2

"Synthetic Key Assignments" "oon
Istok, "Pseudo XROM“s on the HP=-41C" v

Folb, "Two Byte Assignments"” w. n
Cullings, "Shift Key Reassignments" "eon

Close, "Bug 2 - A Practical Applicaticn V7 N3
Edelen, "eGOBEEP" " "

Cadwallader, "Flag 30 Catalogs" V7 N4
Wickes, "Byte Jumping” "ton

Wickes, "Direct Addressing of RCM Routines"” V7 NS

Albille, "Upniversal Byte Jumper" V7 N6
Jarett, "A Byte-Jumper Coockbook" reoon
Story, "Caveats for the Novice Byte-Jumper” voon

McGechie, "XKey-Assigned Numbers & Q Register Uses”

: V7 N7

Close, "Using Register P" V7 N8
McGecaie, "Register Q TUses, Alpha GTO" "o
Dearing, "41C M N & O Register Operations” "oon

Ruble, "HF-41C Saving Bytes” V7 N9
MacLean, "Catalog Bus (PPC BUG 9) won

Stern, "Synthetic Programming Tips" V7 X10

P22

p:27

P 4
P30

B3L

P23
P27

P'L7

P38

P30
P32
P36
P38

P21

P27

P27
P29

PPC Calculator Journal

Close, "Romping Thru ROM"
Massman, "Installing Modules Inside the HP-41C"
Stern, "Program Mode “Byte Jumpers’"

Close, "Erasable ROM for the HP-41C"
Cadwallader, "Merging HP-41C Key Assignments"
Cadwallader, "HP-41C/V Reassigned Keys"

Nelson, "4l Assembly Language Programming"

Gibbs, "4l Function Timing"
Mc Gechie, "Namerical Entry Times™
Colklett, ™"Ewerythiang About Rey Assignments"
Baldrige, "Seme Useful Byte-Jumpers"
tlose, "FIX 9 - A DECODE Alterpmative'
Ciose, "BUG 9 Comments'™

Al tman, "The HP-41 at 2X Speed" |
Wickes, "Symthetic Programming - A Perspective"
Klous, "BUG & Synthetics"

Llose, "More BUG 9"
MacLean, "SST Bugs"

"Error Ignoring Errors"
Brockman, "An Enhanced “Byte-Jumper’"
Baldrige, "¥3 Bvyte Jumper"

Cheeseman, "Long (Svynthetic) Labels"
Gosteli, "Generalized Fn Byte Maskers"

Stern, "The P Register"
Jensen, "Decoding Register P"
Cadwallader, "The 41°s 4096 CAT 3 Functions"

Kendall, "Bare Bones Prefix Masker"
Bill, "Pseudo Names - Synthetic Assignments"”
McCurdy, "HP-41 Long Form Branching to Short

 Form Labels™
Schmill, "-2 -2 = 227"
Massman, "More HP-41 Speedup"”
Jensen, "The 41 °“SCRATCH’ Registers”

HBerzfeld, "More GTC Branching"

Cocper, "FIX e on the HP-41"

tlose, "HP-41 Crash Recovery Tips"
Horn, "Q-Register-Sharing Functions

Ve
"

"

V8
11

V8

w

i*
n

%
.

:
2
3

rg
1
r
g

£
3

=
N

Plé4
P20
P31

P43

P46
P47

P L6

e
o
y

r
a
M

P
b

PPC Calculator Journal

Lipschultz, "Extended Memory Topics'' V3 N3 P21
Bailey, "Exploring Extended Memory" """ P21
Wright, "EFM/EM Structure" "o p22
Wagner, "A Program File Can Run?" " " P24
actwoed, "EFM Observations" " P24
Cardinale, "EFM Comments” | " "™ P25
Karras, "How to Use ASTO b to Jump in Memory'" " p25

Borrebach, "Lonngg GTO s and XEQ s" V3 N4 P19
Szablowski, "Structuresof Complex HP-4l

smstructions” " Pl

Maloga, "Upside-Down: RAM" oo™ P36
Katz, "All Prefix Zexzo Key Assignments' " "™ Pe7

White, "Addressing the HP-41C" V9 N5 P18

McCurdy, "3-Byte GTO KAS amdKey te IND Labels" V9 N7 P 9
Bailey, "Time Module Alarms & I/0 Buffer" "M Ppll
Smich, "XS XEQ in the Stack" "o"mpl3
Lambert, "Synthetic Programming Using the 41

Card Reader” """ Pl4
Mathewson, "EFM Verify Bug" "o " P19
Cadwallader, "256 Assignments on one HP-41 Key" """ P20

Erickson, "The Care and Feeding of the HP-41
at 2X" VG N8 Pl

Bernstein, "EFM - Tutorial for Running Programs
Stored In" V10 N1 P44

Close, "HP-41C/CV Normalized RCL" " " P64

	Cover
	Index
	Section 1: Machine Architecture
	Section 2: Calculator Instruction Set
	Section 3: Instruction Timing
	Section 4: Extended Functions
	Section 5: Synthetic Programming
	Section 6: Appendices

