HP- 41 ADVANCED

PROGRAMMING TECHNIQVES

HP—-41C Advanced Programming Techniques

by Randy Cooper and John Nickel

® 1983, Innovative Training Concepts
P.0O. Box 218648
Houston, Texas 77218

This text may not be reproduced, either in whole or
ir part, without the expressed, written consent of
Innovative Training Concepts.

ACKNOWLEDGEMENTS

Acknowledgements are made to: Hewlett-Packard for
designing the HP-41C Hand-Held Computer and all of its
peripherals with the user in mind, and to the PPC.

BPEC

The 'EPG"(Eetsonaﬁ’B%Ogamming Center), 1is.a nomn=-profit
€alisffornia. corporatiom: whose members are dedicated to
prometing ~“personal’ computing. The PPE: has. thousands of
membars. arcund the wbnléland even behind the Irom Curtain.
They come from all walks of Life: imsurance salesmen,

ehemdisits;, fhaﬁ&?cQ&sﬁ}:&n¢ engineers. To the; PPC member, at
“persamal ™ computier isy ome that can be carried about ome”ss
person...availablet at’ anys time. = The first such device was

the HE=65 ealcmbaﬁwrﬁfrﬁﬁﬁarkPC had ifts origims® in the HP-65}
Users Group,hvwminh‘:bgsyEOImed in: 1974 by Ritchard Nelsonw.:
THe PPE€ publishes? approximately 10 fssues of the.
PBC Caliculator Jourmal v 'during a calendar year. A
PPC Computer Journal has been introduced in the last year to
accomodate the: many HEC ss.amd pfovide adequate coverage for
both «calculator-type and more complex HHC’ s. The FPPC has
undertaken many projectsr, the most astounding to date has
been the PPC ROM. « TITt. 1is an 8K custom ROM containing
programs for synthetie programming, financial calculations,
data plotting and manipulation, and extended control of the
41C.

Personss #nterested in obtaining more informatiom about
the PPC shouwld send aj self-addressed, 9" x 12" stamped
envelape (R oz fimst -class: mail) to:

k) Bk

PPC CALCULATOR JOURNAL
JDepe—P—&—R-

2545 West Camden PBlace
Santa Ama, CA 92704

DISCLATMER

The material 4n: ‘this book 1is supplied withourt
representation cr vétnanty of any kind. The authors and
Imnovative Traiaoing - Comcepts assume no responsibility or
liabilicy, consequential or otherwise, for the intentional
use or misuse of any waterial herein.

1P—-41 ADVANCED PROGRAMMING INDEX
SECTION 1
MACHINE ARCHITECTURE (ACTUAL/FUNCTION)

SECTION IT
CALCULATOR INSTRUCTION SET / SAVING BYTES

SECTION ITT
INSTRUCTION TIMING / FASTER PROGRAMMING

SECTION IV
EXTENDED FUNCTIONS / EXTENDED MEMORY

SECTION V
SYNTHETIC PROGRAMMING

SECTION VI
APPENDICES

SECTION VII
HP-41 / HPIL SYSTEM DICTIONARY

SECTION 1

MACHINE ARCHITECTURE (ACTUAL/FUNCTION)

© Copyright 1983
INNOVATIVE TRAINING CONCEPTS

SECTION T
Machine Architecture (Actual/Functional)

“The HP-4LE Band Helds Computer is truly a computer in iits
own. right. gt“ has: afl of the fumetional components that
‘make up. a computierik. a;iCPU,. RAM storage, . programme& RGm"
off-Tine: mass sitorage, <ports, 1@terf@cas;'amd peripher&l&u
ALlle off wﬁs,h&s beeni &ESLgned intor as familiar caLcuTacaw

sityle package... _ With &kl of Hhﬁs\gognystlcathon, it hagammr
abandoned the ﬁtlen&ly natmne of & calculator. A caheulaﬁog
is: - therer in your hand when you need f#t. It garimrmg
calicul ations: mpon your comwmaad,. with’ &1nglez keystrekas
wkelding pewerful andi: complexs - ogemacfon&- : Liﬁé, L@mﬁ
computen &' working Kknowledge. of {ts -architecture fﬁy
mecessany: Hoh wtllize iits. full capabilities. -~ The Fohlamﬂmg

.aFe. .terms. with which the architecture of the 41C wiill bes
diescribed:

Pefipitionss

BLT = a bimarv 'digit representing am ON/CFF,

. “'SET/CLEAR or a 1/0 state.

BYTE - a contiguous group of & bits. This {is
the usuwal unit of information worked with
iny most: computers. When used as a uanit
ef - commundication ~nformatlon, it may be
called a “character”. . -

WIBBLE' - a counviguous group of 4 bits. This ﬁ
swffictent. to define a- single hexadecimal
or:binary coded decimal (BCD) digit.

REGISTER - a hardware groupiaog of 7 bytes used
by the HP—&IC to denote smack wegisters,
data registers, aod sgtatus rpegisters.
Thdiss %s» the same ‘register’ that HP
refers to in their documentation.

CEARACTER - ome byte of data corresponding to a
single displayed or printed character.

RAM - am acronym for ‘Random Access Memory’.
In. all refieremces here it will mean any
-semiconductor memory within the 4IC that
is normally alterable, including extended

REeMOTY .. ‘ o
ROM - an acronym for “Read Only Mewmory’, this
type of: .semiconductor memory is not
alterable and refers to that within the
41C and in external modules or

peripherals.

FUNCTIONAL DESCRIPTION

Thee : 41C contains machine language programs in ROM that
tell it how to behave as a 41C. Machine language 1is the
natural language of the CPU. Each machine 1language
instruction is made up of one or more 10 bit words in ROM
memoTry . This is 1in contrast to calculator instructions
which are from one to sixteen bytes long and may reside: Im
RGM or RAM. . There are functionally three programs: @@
aditer, a rum—time interpreter, and am operating svysitem. ADy:
time the 41l€’ isi.curmed omw, you are interactimg with ome of
these programs.: - Theise pEOgrams are: interlaced to mékq the
most efficient ~use of memory space and - -they &tiﬁfz&*?ﬁ&mﬁ
caewmon subreutines. ’ ' ‘

The _aditer accepts keyboard input as instructions . and
enpters them fmto RAM memory, displaying the - contentsi off
memory &% ascalcuwlator ‘fnstruction anda adding a gom@uca&
line number. This is the program that you converse with whew
vou- invoke “PRGM’ mode andt key in your calculator programs.:
It takes the function or string that you key in and converts
it dinto the appropriater calculator imsrtructiom ecode- for
subsequent reviev:or execution.

The run-time interpreter is initiated »y a2 R/S, XEQ;
time module comntrol azlarm, auto-execute power=-on or card
read, or a wand execute command. It reads instructions out
of memory amd performs all operaticns needed to execurte
them, giving diagnostics and interfacing wich peripheralks
where necessary. ~ It also compiles numeric branches and
checks £for auwto key assignments. When this program is
ruaning, von'are .in “RUN" mode. '

The gperating gsvstem accepts nou-programmable as well as
programmable commands and: executes them on a ome-~to-one
basis. Mest of thes housekeeping is domne by the operating
system. Wwhen you £irst turn the 41C on, this program will
inspect a RAM status register for system integrity and
eyecute a MEMORY LOST if corrupted. It alsc sets all of the
display annunciaters to match their respective intermnal
states. The key assignment registers are checked for any
deletions thag can be recovered for wuse. If rthe auto
execuate flag 1is get it will transfer control to the run-time
interpreter. Peripheral status is checked and the wvalue of
the Y¥-register is displayed according to the current display
mode. Finally, this program will await yvouwr command; but
zxot patiently...¥f more than ten minutes elapse Dbetween
keystrokes with no program runoing and the continuous-on
£lag is clear, it will turn itself off. nis prcocgram has
several! modes: “normal’, “USER’, and “ALPHA .

All of these programs are contained in three intermal
ROM “s. The ROM for the 41C differs from other computers
in that it has !0 bits per word, rather than eight. Most
ROM“s that perform complex tasks are programmed in machine
language-. This should not be confused with applicatiom
ROM“s that are wusually ROM-based versions of calculator
language pregrams.

Figure - K. 1 shows ~ am example: of some -41C assembly
lYanguage imstructions.. - Liker the assembly languages
instructiems om wmest computers, It is unreadable to most
people - 3&& assembly Lgngﬁage;in&ffuc:Lon‘mnemauics. shown
here ware created by PPC members who are deeply {iaterested
ﬁm this: type of prggramming, Asisembly language programming
on: the 41€ neguires: mueh adiditional hardware and knowledge
off whe faotermal operatiom of rhe machine. =~ Thits mechod of
progamming it heyvemd the: neediy amdt capabiliivies of wmosg
WS ES .

READ 4.(X)
?NC XQ BINBCD
[01AF]
"READ 6(N)
WRIT 12(bH)
JNC -0B
SLCT. Q
R=R~1
?RSET 6
RCR 2
C<>B ALL
SETF 1
CLRF 2

WRIT 1l (a)

Figure Lol — BExample of HP-41C Assembly Laanguage

Some adwantages of assembly language are: adding special
purpose fastructions such as decimal-to-hexadecimal
conversion or alpha scortinmg, and dramatic speed increases
.zan be: realized over similar calculator 1imsctructioans. The
major disadvantages are: thuait it requires much additiocnal
hardware, assembly language conversion must be done by hand
or in another computrer, and there are no diagnostic routines
‘tto. aid the zassembly language programmer.

NOTE: Assewbly language programming is not supported by
Hewlett-Packard.

w

ROM: SPACE ORGANIZATION

Bigure 1.2 shows the: layout of ROM memory space within
the 41C. The 41C can address up to 64K words of ROM memory
iin 16 blocks of 4K words per block. The three internal
ROM“s. mentioned earlier reside in blocks 0O through 2. All
oither ROM space is for external ROM s. These ROM s may be
of. two possible types: 3system ROM's or application ROM s..

Ask gnawiouslf menitiouned:, the applicatiom ROM sy are
sifmply: calculator Instructioms stored in a ROM nmemory. An.
exceptian to this, rulex is the Petroleum Fluids Pac ROM whiich
cantadns hoth.. caLpul&ﬁar instruutlons and machine coda.v It
uses machine' ao&e; fm fts: Tall-base” *o:wersiom Eac&on
program o facrease amecu;ﬁon speed'« When plugged. in, these
ROM “s - Ele em an addreas defimed by the port in which - they
reside.. The mechanbsmithan mveates these- addresses: iisi buflt
finto: the port structuze itself.

&méqstem ROM' i1z programmed. ewtirely in machime code, ~amd
becomes a part of the operating system once it is attached.
These ROM’s have a predetermined address regardless of which
port Into which they are plugged. . As shown #m Figure 1.2,
the timer module (Part moe. §2182) has an address at block 5
no matter where it is plugged im. Most peripherals have
dedicated addresses in the first half of ROM memory. This
insures that there are no address conflicts whenever any
combination of.devices: are plugged in.

The space allocated Ffor the “SERVICE ROM” is important
ios that when the 41C is powered up, a check I's made for the

existence. of a ROM at this address. If one doeg exist, all
contraol is¢ transfered to it. Tt contains programs for
trouble~shocoting the display, keyboard, and memory. The

“SERVICE ROM” is used by Hewlett-Packard for service check-
out of a 41C and £s not. available to the public.

This tramsfer of control to a ROM at block 4 is used by
sowe assambly language programmers to create their own
operating system, independeat of the regular operating
system. It may be speculated that someomne may use this
feature to create -other languages for the 41C such as BASIC,
EGRTRAN, or some applicatiocon specific language.

HEX
BLOCK
ADDRESSs FEEE

| PORT 3 DEFAULT

| PORT

A ADDRESSED!
 PORT 2 ROMS

HP —IL T
PRINTER (Either) EXTERNAL
TIMER MODULE | oon

SERVICE ROM
(UNUSED) | l
SYSTEM_ROM 3 T
SYSTEM ROM 2 INTERNAL ROMS
SYSTEM ROM 1., L
1 BLOCK = 4,096 (4K) 10 BIT WORDS

O=NULWHOONO©PmODDM

Figure 1.2 — ROM Space Addressing

RAM SPACE ORGANIZATION

The RAM space of the 41C is fairly complex in that it is
dynamically allocated by the operating sy tem for particular
tasks. igure 1.3 shows a layout of the RAM space of the
41C, 1including that added by the Extended Functions Module
(XFM) and: the: Extended Hemo*y Modules (XM). The RAM memorny
is orgamized into ‘registers” that are 7 bytes wide. The
way that registers are wtnliza& for gtorage will be covered
later in. thilsi section.

The filimsit siixiteen: -registers .within RAM space arce
ceserved fonr Gher EPW stiack and: status registers. - These
regisiters. cmmtaﬁn important finformation. as to. how the rest
of RAM mewmory is to be interpreted. These registers and:

their uses wilkl-be coverad #m deeadil in the sectiom enslt;ad
“Symthetic Programming’ .

There 1s:i a “wodid’ between the top of the .status
registers and the biottom of the XFM memory. Hewlett-Packard
may use this: area . in future rewvisions or peripherals for the
41C. The XFM memory is added by plugging its module iInmto a
pecrt. It adds. 127 registers for use as on-line files. Each
XM module added will increase this file capability by 238
registers, = up to a wmaximum of 603 registers. The
organization and wuse of the extended wmemcry will be
examined in Section IV.

The rest of RAM memory varies in size, depending uapon
whether you -hawve a 41CV or as 41C and a complement eof RAM
modules. Ta agayr cases,. Pigure 1.4 shows the relative layour
of what will be called “User RAM . The data registers are
organized in descending numerical order from the tcop of user
RAM. Thes firsit program stored will begin at the £first
register below regiister RO0 and continue on downward through
BEMOIY o G8cher pnograms are stored below this one as they
are entered or cleared. Xey assignments are stored from the
bottom of user RAM and countinue on up as required, with two
key assignments per register used. The space just above the
key assignoments is used up by timer mwmodule alarms. The
memaining 8pace between the uppermost key assignment or
alarm and the permanent ~.END.’ is what is displayed as free
register gpace Lo the display ‘00 REG nnn”, where ann is the
number of firee registers. This number will vary based upon
the amount of key assignments made and deleted, alarms set,
program files (packed amd umpacked), and the current SIZE.

n

HEX 1 REGISTER ABSOLUTE
ADDRESS (7 BYTES WIDE) REGISTER
SFF | 1023
- EXTENDED MEMORY #2
(238 REGISTERS)s
300 768
2FF | T
| EXTENDED MEMORY #1
(238 REGISTERS)s
200 512
1FF
USER RAM
(319 REGISTERS)
0CO 192
OBF |EXTENDED FUNCTIONS MEMORY
040 | (127 REGISTERS)e 064
T [T
00F STATUS REGISTERS | go1

sADDRESS DIFFERENCES WiLL SHOW THAT EXTENDED
MEMORY DOES NOT FILL THE ADORESSES COMPLETELY.
REFER TO THE XFM / XM SECTION IV FOR MORE DETAILS.

FigUre 1.5 — RAM Space Addressing

ainibjousWioN DIpd — G| 84nbl4

J1A8 1

—ﬂql, 88N INVOIJINOIS 1Sva1) (3188IN INVOHINGIS

NS NSW

Lo (v [t]JoJo i]o
o LV ¢ ¢ + § 9 U7
JaquinN 1149

DATA REPRESENTATION AND NCOMENCLATURE

As in most microcomputers the 41C°s memory aand most of
its communication with peripnerals have to do with bytes. A
byte is a block of eight contiguous bits and 1is usually
represented by a number in decimal notation frem 0 to 255,
or in hexadecimal netation (base: 16) by two characters 700~

to “FE’. Bigure L.5 sthows. hcw we will referemce- the parts
of the biyte im further discussions. The eight bits will be:
numbered from 0 o 7 from the right to- the lefct. Further,

bits 7 shoough 4 will be designated as the “Most Siganificant
Nibble’” (MSN) amd. bits % through 08 will be ohe “Leass
Signifteant Nibble” (LSN).

Bfigure l.5 = Data. Nomenclacure

BCD NOTATION

The 41C uses the nibble in numeric data to represent a
single decimal digit internally in what is termed ‘Binary
Coded Decimal’ nctatton (BCD). That is, two consecutive
nibbles having the decimal notation of “97 would be:
interpretted as being 99 in base 10 rather than base sixteene.
Figure .I.6 _gives some exzmples of BCD versus hexadecimal
(EEX) notatiocn-

Bit Pattern . BASE 10 VALUE 1IF

in byte _ HEX BCD INTERPRETED AS

(MSN.) (LSN) NOTATICN NOTATION HEX BCD
GA) 060l 0010 12 - 12 18 12
(B) 0100- 0001 41 " 41 65 41
(C) 1061 Q1111 97 97 151 97
(D) 0110 0111 67 67 103 67
() ROSRES TN BEA N¥OT VALID 250 S
(F) 1001 1001 99 99 153 ‘99
(&) 901071011 2B ° NGT VALID 43 -_—
(H) 0k0O OLOL &5 45 69 45

Figure 1.6 - EEX ¥s. BCD Notation

UoRDZIUBBIQ Jeysibay ~— L'| 84nbi
(sllg 9G)

ST

ddIN ¥ 1

m_m

o__:

NP_nﬁ

¥ _m

m_\.
—

]

'z

SAlA8 L

-

-Ww

3

4315193 L

As is evident, BCD notation is the same as HEX notation
except that the nibbles are never allowed to be greater than
9. The 41C uses BCD notation to- store numeric data. To a

computer, BECD is not the best notation to use for
computations, but it is the easiest notaticn to comvert into
human readable form. When the 4.1C is operated as a manual

calculator, the result of every operation must be put into
the display. BED notation makes this a gquick and easy task.
On. large computers: where calculations and throughput .are:

importamt, - -oithers: metations aize rwsed; — however,. the
- programmingy Ed‘ cenvert these notatioms to a readable - form
for output consumes ;Eheusands»@qf ‘bytes. It - would be
umeconomicall to wuse that much memory fn a hamd-held . unit

just tor display a number.

THE REGISTER

The register is* che gross unit of RAM memory in the %41C.
A register may be saild to be 7 bytes long, 14 nibbles long,

or 56 bits long. A wait of 7 bytes is. unusual Im
computers, but some unit of sitorage is- needed when talking
about or wmanagiong wmemory. The: unit used must have a
physical mwmeaning for the user. Since a single register is
required to store a number in a numbered storage register,
the unit of storage was chosen as the register. Figure .7
show the convention wused when referring to parts of a
register. B? also refers to this uwnit as a register im

their documentation.

Figure lL.7 - Register Organizacion

ob0idis bibg dewhN ~ bg | ainbiy

C:mEMEan“m.v&uc:; Ui pesseisdxs 8] } 'eAlpboau s| jusuodxe 8y} Ji*)

nTa = m
wtu = 0 ‘NOILYLON T¥NYILNI
ININOX3 d3ZINMVWHON NI ‘€ ONV T
40 N9IS S31949IN NIIMLIG LNIOd TvWID3d w—n = 6
a3NdWl HLIM S1191a ao8 0l wta =0
VSSILNVYA VSSILNYI
*S1191d @09 ¢ 40
ININOJX3 | NOIS

viololv|slajzlels|L|{v]|L]c|oO

0 1z o'y c'g z'g 6oL ti'zl €1
37184IN

(4)
(B)
(C}
(D}
()
(F)
{(G)
(8)
(D)

NUMERIC DATA

The ‘register’ 1is used in many ways inside th

e

41C.

Figure l1.8a shows the organization of the register when it

contains numeric data.

Exponet stere

Qs

!OC)ﬂ- C,“ﬁyan."ﬁ.

te. -o4 |60
%) _ oy

G 6 > Hex of

wfgure l.8a -~ Numeric Data Storage

NMibble #13 contains the sign of the mantissa.

A

’~0_'

here denotes a positive number and a 797 denotes a negative
number. Nibbles L2 through 3 contain the ten digits of the

mantissa im BCD notation. Nibble #2 is the sign
exponent using the same convention as in nibble #13
expounent (base 10) is stored in the last two nibbles,

of

the:
The
1l and

C. The exponent, if positive, 1s stored exactly as it is
writtean im BCD. When negative, the expomnent is stored in
‘hundreds complement’ form. This means that the exponent is
subtracted from LQ0O and the resulting two digits will be

stored in {its place.

NUMBER AS NORMALTIZED STORAGE

IT IS ENTERED NIBBLE NUMBER
INTO TEE &4IC 12 121110 9 8 7 6 5 & 3 2 L 0O
6.082 E-26 0 & 0 8 2 0 0 ¢ 0 0 O 9 7 4
-. Q0078 9 7 & ¢ @ ¢ ¢ o0 0 0 0 9 9 7
1492.1983 0 I 4 9 2 1 9 &8 3 0 0 0 0 3
299.6 E-6 o 2 9 9 6 0 0 0 € 0 O 9 9 6
PL 0 ¥ I & L 5 % 2 6 5 4 ¢ 0 O
G C g: 0 0 G ©o 0 0 O O O 0 0 O
987654 E~-5 O g 8 7 6 5 4 0 0 € O 0 0 G
-10.10198L 9 r ¢ + ¢ »r 9 8 1 ¢ O 0 0 1
-9.999999993%E~99 9 g % 9 9 9 9 9 9 9% 9 g 0 L

Pigure 1..8b - Examples of Nuweric Data Storage

-+

S gona

 abpio)s DI bDudjly — DE'| 84nbi4

(NOISSNOSIa 33S)

l00) STINN HUM 40u ATIVAMON

a3Td L4371 ANV Q3141LSnr—1HO
d340LS VY1IVA ¥3LOVHVHO P

, "k
SAVM IV

¢0 19

90 GO 14° ¢

il

99 &9 vO &0
1yl
;

S|y |61y [T |y |3 A1y 1T v | *]l

0 L 2 ¢ vt 6 9 L & 6 0L LLZLEL

J144IN

Figure 1.8b shows some examples of how different numbers

are stored. Note that no decimal point or “E° 1is stored
implicitly. The decimal point is assumed between nibbles L2
amd 11. The number 1s normalized after data entry or

numeric operations so that nibble #12 is non-zero, except if
the entire register is zero.

ALPHA DATA

When an:. "ASTO0 eperation is executed, an ‘ALPHA DATAS
va&ue. fs ateggd hmta a status or numbered data remisterns
Thﬁs vakue may, comuain,wg to &Ln chraractiers:, . dependiing upom
what' wa's fn thed alipha regi&tar before the operation. - Figure
L. %a: shows ehe ganaraL Tayout of. a- neghsten containing alpha
data.

Figure l.%a - Al;ha Data Storage

The first mibble will have the value of “T°. The gix
bytes definmed by nibbles 1Ll through O will contain the

actual alpha data. This data will be rnight justified and
filled ¢to the Yeft with nulls (00) 1if fewer than six
characters are stored. The data stored for each character

#ss the gsame as the. printer ACCHR or XFM XTOA code im HEX
fermat. {Fote that the way a character displays and the way
that it prints owt are not necessarily the same. See Figure
I1+% for a table - of displayed versus printable characters.)

Nibble #12 mav contain a remnant from the seventh byte
‘Lixr the alpwa tegis:ar, depending upon how many characters
are in the alpha register. It is this nibble that will
cause Lwa seeningly fdentical alpha data strings to cempare
as mot egqmal.

To demonsctrate:

1) PRGM off, ALPHA on
2) Key “ABCDEF-

3) ASTO X

4) Append “G°

5) .ASTO Y

&) ALPHA off

TY K£T7 ,
Thie &L&play deL smwg WQ Press the baakétvow keys to siee
“ABCDEE” o4 ﬂw{see “ABCDEF’ Even though the
‘sitings I, ghey arve differemt-_f Now key Gbe
é&llowiag - R o

8) AEPHA om

9 @LA;¢

L0 &&CE X

LPY ASTO X

2) ALPHA: off

13 K=Y
The display should pew say “TES . In the precess of
ARCL“ing thei -Sbuggy’ string, the problem was eliminated.
This problem in some 41C%s has been dubbed “BUG 7° by the
PPC. Whenever .ar bug i3 referred to, {1t will wmean a
deviation in caliculator behavior than is to be expected from
the Owner”s documentation. Several “bugs” Thave been
cataloged by the PPC since the 41C was introduced. Many of
these have been corrected in later revisions of the internal
ROMs .- In a complex wmachdine there is always the chance that
some: . features will motiubrehave as expected.

Efgwﬁe 'Ei%&i $hgw§ som« examples of register contents
after an ASTO operation.

CONTENTS: OF ALBHA CONTENTS GF X AFTER “ASTO X°
REGISTER - : BYTE #

- #BFORE “ASTO: X 6§ 5 4.3 2 1 0
(A) ARCDEF ‘ 10 41 42 43 44 45 46
(B) ABC 10 00 00 00 41 42 43
(c) X+Y =7 10 00 58 2B 59 3D 5A
D) seTaCo 10 49 2E 5S4 2E 43 2E
(EY FILENAME? 1D &6 49 4C 45 4E 41
(P ITEM COST? IF 49 54 45 4D 20 43
(6) 13* LETTERS ... 10 31 33 20 4C 45 5S4
¢H) tclear) 13- 00 69 00 CO0 0Q 00

(1) 0nonETEEN LETTERSw—.. L5 &E 49 4E 45 54 45

Figure L.9b -?Exanples cf Alpha Data Storage

The actual byte values used in the alpha register may be
interpreted differently depending upon their use. In Figure
l.%9c, it can be seen that a byte with the value of 0l will
display as a “stick man’ in the 41C display but will print
out to the printer as a small “x’. The basic printable
characters of the 41C tend to follow standard ASCII
(American St.andiard. Code« for -Information Interchange)
‘convention ~ Wwren wsimwge the Video Interface, ASCII
convention: is followed for a2kl printable characters, - and
seme .comtrol codes: are implememtedi.c - Figure 1..9d shows thes
ASCIT code as: implemwemted by the Video Imterface.

11

LEAST MOST SIGNIFICANT NIBBLE

SIGNIFICANT (SEE NOTE BELOW)
NIBBLE 0 1 2 3 4 5 6 7
0 - - SP 0 @ P N P
1 - - ! 1 A Q a Q
2 - - " 2 B R b r
3 - - # 3. c S c s
& - - § 4 D T d t
5¢ - - P4l 5 .E 3] e u
§ - - ﬁ“A& F v £ v
7 - - ’ 7 G W g W
8 BSL -~ (8 B Z h x
9 - -) 9 I Y i y
A LF - * : J Z 3 z
B - ESC + 5 K [k {
c - - , < L \ 1 !
D CR - - = M] m)4
E - - . > N = ol =
¥ - - / ? 0 _ c
Note: the video interface will isplay a printable
character in reverse video if the most significant nibble is
greater tham 7. This in effect maps the MSN for reverse
video characters from 8 to F instead of 0 to 7. To reverse

a character using XTOA or ACCHR, just add 128 to its decimal
character value.

Figure 1.9d - Video Interface ASCII Code Table

12

SECTION I - QUIZ

1« The HP-41C RPN stack (registers X, Y, Z, T, and L)
occupy:

a. 5 bytes

D> 5 registers

(c..> 35 bytes

@ b and c —Hesverch
ee. a aand c

2. When the HP-41C is turmed “ON’, the. first program
‘the user ifmteracts with iss: '

a;.. the editor

ﬁE;) the rua-time Inmterpreter
the apelrating system

g ¢ or b ({f f£lag li sen

. e~ nome of the above-

3. HP=-41C assewbly language 1is:

«&s> organized in 10-bit words

b. wusually programmed into ROM’s

c. uniantelligible to the average user
d. not supported by Hewlett-Packard
d?)_ all of the above —p(o¢rect

4. A bare HP-41CV without peripherals has:
a- (3K of ROM”s built in
b. 319 registers of ROM available
C:} 319 registers of User RAM available (exc. status)
d. a and b
/(E; a: and ¢ g..f...,l.o.zm 'nk%wﬁafkfk'e-_

5. A byte contaias the bit pattern: 0100 Q1C1
It is:

a 45, coded in EBCD

b. ‘the ASCII letrer "E"
c. 69 coded in BCD Ty %X>97
€£7 a and b 7

‘@e. b aund c

SECTION I - QUIZ (continued)

6. The register data in Figure 1.8a 1s the result of which
of the following keystrokes:

a. 3.14159265, ENTERT, 1E4, *
bo PI, LE"P, +
Co. PI, 4, YTX

do 314L5.92654 E~8; ENTERT
a LE4, BT, *

7. Whitch of the: followfng nibble &e&ofing coulld mot. have
been the resulit: ofyan ASTO operation?

(2> Ol &L 4243 4445 46

b. LF 42 4B 4E 4R 49 &5
c. 1000 00: 00 00" 00 00
d. 13 00 00 00 20 20 20
e. 1E F7 00° 00 00 &1 2D

8. A value«iispléys~ﬁn.the X register as: -3 L4
Which of the following nibble patterms could produce
the display?

a. 93 14 15 92 54 00 00
b. 10 2D 33 2E 31 34 20
c. 93 13 50 @0 00 0@ 00
&2 a and ¢

all of trhe above

9. A deco&ﬁng of the X register yields the following
nibbles: ' ‘
0L 23 &5:66 89 09 56

If the moder st ENG 5, the display will show:

1.23456 —56
“12.3456 -44
12.3457 =57
1.23457 -44
12.3457 -44 ~ 5

e ,égzu,\;.wz 17,5487 ~4S

g L I

-

SECTION I - QUIZ (continued)

10. If the highest numbered storage register in an HP-4ICV is
register 14, and it has 13 packed key assignments, no
timer module, and the PRGM mode display shows:

M70 REG 256", then the program space occupies:

a. 42 registers
, &L _»é.erg;ts,t ers
&.. 36 registers
dt.. 35 registers
xones afi the abowes

2.

SECTION I - QUIZ

The HP-41C RPN stack (registers X, Y, Z, T, and L)
occupies:

a. 5 bytes

be 5 registers
cies - 315 bytes:
dte b amd ¢

efs. a and c

When the HB-&LC i'sf curned ‘0N, the first pwogram
the wser imteracts: with is:

a« the editor:

b. the runm=-time, interpreter
c. .the operating system

de. ¢ or b (if f£lag Il set)
e. none of the above

HP-41C assembly language is:

a. organized inm 10-bit words

b. usually programmed into ROM’s

c. unintelligible to the average user
d. not supported by Hewlectt-Packard
e. all of the above

"A bare HP-41CW withouwt peripherals has:

a. 12K of ROM”s builc in

b 319 registers cf ROM available

c. 315 registers of User RAM available (exc. status)
d. a and b

e. a and c

A byte contains the: it pattern: 0I0C 0101
Lt is:

a. 45 coded in BCD

b. the ASCII letwer "E"
Ce. 69 coded in BCD

dfe. a and b

@e. b and c

SECTION I - QUIZ (continued)

The register data in Figure 1.8a is the result of wnich
of the following keystrokes:

ae 3.14159265, ENTERT, LE4, *
b. PT, L[E&4, + '

c. PI, 4, YTX

d. 31415.92654 B-8, BNTERT

e. LE4, PIL, *

Which of the:following nibble decoding could not: have

been the reswlt of an ASTO operation?

a. ~Ql &1 42783 44 45 &6
b« 1F° 42 &4&F 4E 4E &9 45
Ce 10 @0 20 00 00 09 CQ
de. 13 @0 0Q 00 286 20 20
e. IF E7 00 00 00 41 2B
A value displays in the X register as: ~3.14

Wnich of the following aibdle patterns could produce
the display?

a. 93 14 15 92 54 09 GO
b 10 2D 33 2E 31 34 2§
c. 93 13 5G-00 00 Q00 ¢¢

d. a and c
e. all of the above

A decoding of the ¥ register yields the following
nibbles:
@1 23 43 66 83 G99 56

If the mode s ERG 5, the display will snow:

a. 1.23456 =56
b. 12.3456 =45
c. 12.3457 -57
d. 1.23457 -45
e. 12.2457 =45

SECTION 1II

CALCULATOR INSTRUCTION SET/ SAVING BYTES

© Copyright 13983
INNOVATIVE TRAINING CONCEPTS

‘S@ction IT
Calculator Instruction Set/Saving Bytes

The; wuse off mem&ry'space for programming is* transparent
to tbé‘casual progt&mmer in most situations, except when &
‘keystroke yiielids “PACKING «..:.. TRY AGAIN’. . The user Cfist
then faced with deleting key ass;gnments, alarms, and
programs or Psﬁizing hise mawony for fewer data registerss.

The’ seérious programmer of the &41C wants more than His:
work to- ﬁit thhin the confines of memory, but to use only
as: murch - ‘memory as ©is mecessary to perform all of &hes
algorithms: neguiired. TFhis is mere than a matter of prides;:
using less memory has many advantages: "

More space is available for alacoms, key a331gnments,
or data registers.

Smaller, cleaner programs tead to rumn faster.

Fewer card reads or less extended memory is needed
to save a program.

Memory Space saved cam be used for emhanced user
prompting or ercror checkinge..

When writing programs for ROM installatiom, more
pragrams can f£it into the space allowed.

If most users will be keying the program in manually,
a shorter program would be appreciated.

In order to uwderstand byte saving techniques, the
manner in which the 41C stores calculator inmstructiocns iato.

memory will be discussed. This section will look at byte
utilization of comparazble instruction combinations and the
classic case aof subroutine usage versus in-line code. This
section is nmeot an attempt to show a lot of “tricks’ to save
MEMCOTLY « There are several excellent texts available that
list such ‘tricks’ . Calculator Tips and Routines, by John

Dearing, is an especially good cne and is the product of
many programmers and many years of calculator programming
experience. This sectioun is intended to be an introduction
to the 41C°s instruction set and good programming
technigues.

INSTRUCTION SET

Definitions:

- BEX TABLE - a matrix of 256 boxes (16 by 16)
contaiming the 41C calculator imstruction
set. It may also contain the character
displayed- cr printed by the &41IC whem that
pa—ticular byte code is used. A hex table
iisy an excellent guide toward uanderstanding
tire &4LC instruction set. Figure 2.1 shows

~ such a table..

BREFEX ~' the = first ‘Byte. . of a * &gwo byte
fnstruction. An example is. ARCL 02; here
the _ARCL is the prefix and is represented
by the hex cade “3B7. - ; e &

POSTFIX = the: secondt byre of a = two bytes

fastruction that: acts as a pointer te a»
-B#lag or register. Tf the highest order

‘biit of the postfix is “1“, the postfix is
understood to be an “LND irect pointer.
Bor example, the byte seguemce “90 107
weans RCL 16; but the sequence “90 907 is
interpretted as. RCL IND 16.

The 41C calculator instruction set can be crganized into
the following <categories according to the number of bytes:
required f£or storage:

CNE BYTE INSTRUCTIONS

TWO. BYTE INSTRUCTIONS

=]
H

THREE BYTE INSTRUCTIONS

EQUR TO SIXTEEN BYTE INSTRUCTIONS

Figure -2.1 shows the &41C instruction set arranged inm a
table. to 'show the hexadecimal equivalent of the Dbase
instructiow. The base instruction is the first byte of the
program lime stcred in memory. When refering to a multiple
byte instructicm, this byte code will be referred to as the
“PREFIX". The second byte of a two byte iastruction will be-
referred to as the “POSTFIX . This terminolcgy will become-
evident as the various instructiomns are examined.

ra

Tt zl

wl 41 3/alo|8g8 | v.|6|812|9|siv|ec|2Z|Lt |0 "
LT ozl gzt 124! bed 144} (¥4§ ozl 8l gl Lhi oit Ght ril cil 41

l ° p o) q e -~ o] d 0 N W 1 X A z vz
Q10| M3IAV| A3QS| NYIW| LOosX NOIS| eA=X| LA=X X10{ XiSV1 NOY 4, 1S Id AOX KQ)
71 ot 801 :To] Lol 901 sol vou £ol tol 10t 001 66 86 L8 96

9 r | H 9 4 3 a 3 8 v (] 00! 66 86 L6 96 Q
120 ONY HH SWH Q- H-a ou4 ANl L0=X| LO>X| X4INI| ¢0<X| ¢O=X| 10V4 sav X i
c6 14 €6 t4.) ie 08 68 1] L] 98] 4 £e z8 I8 (o]")

q S6 v6 £e z6 18 08 68 88 L8 98 68 ra £8 t4°) 9 o8| G
030 Nviv| SOOY| NiSv NVL] 80D NIS| 1-Xi3 xiot 501 Xi3 SHD XiA| 1HOS Tix N1
6. 8L LL 9l N vl €L 2 ¥ 02 69 89 19 99 s9 »9

74 8L 8L L 9l sL (73 €L 4 V] 02 89 69 L% 99 $9 vo| b
d-4| He-d| HO% & aOW| -SwH| +smAmM -3 s A A ehox / . - +
£9 29 19 08 8¢ 8% LS 96 S¢S 125 £s 4 IS 0§ 6v 17

N €9 29 19 09 85 8¢ LS 9§ 5§ vs £s s IS 0s 6v ev| ©
SIL OL1S|{Pl OISl OLS|Z1 OIS|1'1 - 0LS[0I OL1S|60. 01S|80 O1S!|20 OLS|90 DLIS|{$0 OLS|$0 O1S| €O OLS|20 015|110 OL1S|00 OIS
it oY 1% 142 £h 47 it oy 8¢ 8¢ LE Q¢ Gt 1) £e te

rd Ly 9y G 13 £ 4/ ibl . ov 8¢ ee L o€ st ve €€ te| €
SL Y vl 0HlEL VY[ZL 1DH{ 1L 0401 104|680 10480 1OH! L0 1DH[90 1DHISO TOH! PO IOH €0 1D Z0 10|10 1|00 DM
e ot 62 a2 13 Y sz b2 £2 2z iz ot sl gl 0 ol

L ie ot 62 Bz iz 14 sz vz £z 22 1z 0z 6l 8l [ol b
IVAS| L 0IX| LOLD 93IN X33 : 6 8 ¢ 9 S v £ 4 1 0
Gl 4 €i 41 i ol 6 8 L 9 S 12 € 4 i 0

(0] Gt v et 2 (" ol 80 80 L0 90 $0 ¥0 £o 20 10 oo| O
vLoI81 €1 181 2L 181 81,00 191,60 18180 181/20 18190 18150 81 v0 181 €0 @1 20 18110 181{00 181 1NN

Wiy4/3/alo 8/v 6|8 |29 |s|tv|elZ|L]|o]|¥

dTdVL XHH AD/01v-dH

v

By

A2
wldl3|a|o|alv|6|8|2|o9|ls|iviec|ec]|t]|o0]|%
114 1 L1 14 szl o1ge 0s? (124 124 Ly? 124 1424 124 £rZ Ive 192 ove
n* ® ONI[P ONI[d ONiiQ aNiie aMij—< GNIG aMild ONI{O aNIIN OMI{W ONI{Y ONIIX ONIJA ONMI{Z ONEjL awN L
SLAXIL| S LAXIL | CLAXIL ZUAXIL | A AXIL {00 AXAL |6 IXAL!IQ IXAL|L AXAL]9 AXIL{S X3L|v AXAL € AX3IL{Z AX3IL[4 AXIL|O AX3IL
8ce ;o4 LE2 9¢c2 gtz pee £ez e (4 0te [Y44 144 Lee ‘144 144 1244
Jir oNih oMM ONID ONIjd aN 3 oNIiQ ONIjD ONI{8 ON!Y QNI[LOLONI|0OL ONI[66 ONI{86 ONIj{LB aNIj{96 aNI 3
TTOAX| T O0IX|TT 0AX|TTOIK|TT 0aAX| T 03X T 03I TT 03| T 03| T 03| T 0IN|TT 03I T 0IX| T 03IX| T 0IN| "7 03I
€22 eze 12z 0zz e1z| Bl ne o1z s1z viz £12 2z e o1z 60t g0t
(J Ise anilve aNiles aNIlz8 ONiiL8 ONIj{0B ONI|68 ONI|BS QNIjL8 ONI[OB ON![SB ONI{P8 ONI[CB ONI|ZB ONI| LB QNI/08 ONI Q
TTOLDTT 0D T OAD| T 04D TT 049 T OLDI T 01D T T 019 T 049 T 019 T 049! T 019! T 01D T 019! 7" 019] " 049
Lot 802 soz boz 14 202 102 002 86t 26i L8l g8l $681 vei £a8i 4.1
U 6L QGNI{BZ ONI[ZL QGNI[9. QNI{SZ ONIjPL QNIICL QMI[ZZ ONIILZ QGNI{OZ ONI{6S ONIIB9 QNI .9 ONI{9S ONIIGO aNIl P9 aNI U
TT o8 7T oX[IWE019 | B0 IVEOTID IVA0ID | VA0S VA1 | TYR0TH | A0 Y8019 VE019 | WH01D [Y8019 ! V8019 | w8010
161 081 881 g6l L8l gal; g8t paL €8l 411 8l 081 8.1 gLl L T
€l (€90 onjze anifLo aNij08 ONI{6S ONI{BS ONIlZS ONI{OS ONiiGs ONI|vS QNI{ES ONI[ZS ONIjLS amios oNijer anijer ant! £
PL OLO(£L OLS|Z) O1D L1 01D/ 0! O1D{A0 0L/ 80 OLD| L0 01D 80 O1D|$0 CLID|¥0 01D |€0 019|120 019!10 019]00 01D InwdS
Sl 2 £il AT L o/l 8ol 891 Lol T ¢ol TH £ol 161 191 ool
\f [{¥ ONij9Y ONlsY GMNIi PP ONIICY QGNIiZP ONIiLP ONIOP ONIIBE ONI|BE ONILLE ONIOE GNIISE ONI[¥E ONI|EC GNI{ZE ONI <
ant 93% oy oy L€-82 |22-¥2 [€2-02 (61-91 [St-21 |ti-8 [L-¥ £-0
3IHVdS 0L9| 04 ¢S41 2e04] Ousd 42 45 NOHX| WOUX| WOUX[WOHX| WOHX| WOHX| WOuX| WOMX
6Si 81 LS1 861 3Gt “poL £sl Zsi 151 0si 6vi avi ivi ovl svi 117
© [1c amoc ani|ez anilez aNijsz ami{oz oni[s? aNilvz amicz omiizz amiliz omioz antier aniidiL omilzi ami{er owi O
INOL ON3 108 Xid] 0uY| OISY] O3INT] MIIA 239 DSt 18 %18 -18 +iS 04S 0
evl i vl ovt aci gl LE) oci sl bl cel ZEl ict ot ot ozl
w SL ONI{®L ONI[EL aNI[Zl ONILL ONIOL ONI[BO ONI{BO ONIIZO ONI[90 ONI{SO ONII®O ONI EO QNI ZO ONI{LO ONI{OO QNI m
AQY | LdWOHd 440 NOY! 440V OHD 3Sd| 4HSY V10, 4338 Nid| dOLAS| I43INI|I QVHD avy 030
Wid4lajlajolaga|v 6|8 2|06 s viele| Lt |ol¥

dTdVL XIH AD/01v-dH

X AW | S - 4 S 7 { NN > SN 4 SRR ¥ { S o 74 W T N T SN WA TH SR -1} SR T § SR > F . Y |
] @] 4]) L] ‘ -
e T oL L= B
[] L] | 8 [] L] l l

LiL oLt 601 _mcp 2.: 90t SOl 0oL 66 86 96

— - Aﬁ o (]

OLLET A R N I =

L ”

S6 v6 £6 086 68 ve €8 Z8 8 08

(o] j to a e
LD~ 124 L5404
[] e .2 @

WD o o 1 ! 4 8
6L 8L Iy 92 v £ 89 19 29 S9 vo

IO

-
"1
o
2L
=1

G2
®
.
. B
6S

£9 29 19 09 LS 0S 1254
. s s e orings w——

o " % L) g ° . F .—
. ﬁl .

. -

o~
™

A
™
.ﬂ

R

4 -+(Le e[
~ 8
..l::f\

& -1

ey

G

' -
D

). 4[]

N

<

B -

-~ b
AN ™
P ——

DISPLAYED vs, PR1Z, fTED CHARACTERS

boxed star and may print with unusual ebleéts!

Bytes with a MSN greater than 7 will \(I,is!)lu'_\,: aso g

NOTE:

Each box determined by a hex code (combined MSN and LSN)
is arranged in the following format as shown in Figure 2.2Z.
The decimal equivalent of the hex code is in the lower left
hand corner of each box. The mnemonic displayed when im
PRGM mode is shown in the upper left hand corner of the box,
or else an explaination of the inmstruction appears 1if the
display may vary with subsequent bytes:.

Figﬁre 2.2 = Hex Table Format

The mwmiddle 1line {n the bYHox contains the register
-assigaoment (numeric register or status register) if the byte.
is interpreted as a postfiix. The upper half of the hex
table is interpreted as direct storage; that is, a postfix
of hex 73 means the instruction will use register X as 1its
argument or a hex 3F means that register number 63 will be
used (as in STO X, or RCL 63).

The lower half of the hex table, when interpreted as a
postfix, implies that the directed register contents will be
used as an INDIRECT poianter. Consider the hex postfix
F2; rthis would wmean that the addressing would be IND 2Z
(indirectly based on the contents of stack register Z).

Recw ©& of <tche hex table contains register references
above R99, which is the last directly addressable register

when using conventiomnal calculator imstructions. As canp be
inferred <£from these references, RI1l1l is really thellast
directly addressable numbered register. The code sequence

99 6F° displays as RCL J, and when executed recalls the
coutents of R111l, if it exists.

Row 7 shows more status registers thaa T, Z, Y, X, and
L. It shows 11 other registers that can be used as
postfixes. These postfixes all work, with gquite predictable
results and give the programmer much more power over the

41C. None of these postfixes are normally keyable and must
be achieved through “synthetic’ means. The functionm of
these registers and the techniques to use them will be
covered in Sectioa V of this course. Keep in mind that

these are part of the calculator iaostruction set and all
rules that goverm byte usage will apply.

ONE BYTE INSTRUCTIONS

The first one byte instructionm is perhaps the most
overlooked instruction, but the most used. It is the
“NULL’, represented by hex “007. The NULL will pever 1list
out or display when in PRGM mode, but it occupies one byte
of memory and takes a certain amount of time to execute.
+sts executiom is transparent to the user except when many
nulls are executed im a row, then a delay may be noticed.
Many NBLL s will alse introduce a delay in program editing
when: stepping from. ome line to anmcther. You wmay lhave
noticed such a delay after DEL’eting many program lines and
.not PACK ing.

The 4IC wses ﬁhe NULL as a space holder f#nternally
dwring program editing. If program lines are being insented
fntor memory amnd there are already iaonstructions in memory
after the current lime, the 4IC will move the instructions
lower in memory down by multiples of one register to make:
room for any added fnstructions. It places a register f£ull
of NULL’s at the current line and replaces the NULL’s with
instructions as they are keyed in, wuntil wmore room 1is

necessary and then the process is repeated. It can be seen
that extensive editing of a program camn introduce many
NULL”s into memory. To regain the space taken by the

NOLL s, you must °“PACK’ memory. PACK ing will remove all
unnecessary NULL’s from memory.

There is a case where a NULL has a purpose and canmot be
PACK ed away. Consider the following program lines:

Memory Contents Program Lines
0 11 12 13 01 123
28 02 RCL 0C8
40 63 +
14 15 16 04 4556
43 cs /

In PRGM mode, the commands GTO .0C2 amd DEL (002 are
executed to give: : '

00 Ll 12 13 01 123

Q.

agg

14 15 16 02 435
43 g2 /

A subseguent PACK will yield:

1112 13 01 123
00
14 15 16 02 456
43 03 /
The 4G iImterprets a« numeric entry- Line as any:

.combinmation .of bytes from hexi L0 to 1C as numeriec data.
This type off I'ime &s termimated. when any octHer byte not _ in
chis rang&:?t&ﬁsfmund. ‘A “null {s inserted before every
numeric enfny: Bine inwwase it #s following ‘another in:
memory, otherwise ‘the two lines would be combined into a
single limei. The - &LC makes this test when PACK’ ing or
entering anumeric data lines,. and fnserts thém.wﬁen.gee¢e¢.

It fs incorrect. to thiank that the NULL #s. the equivalent

af the’ “N@R* ("ne: operation") instruction’ omt other:
comput eriSi. Lt does occupy space and takes time to.execute,.

but it is ‘not recognized as a ‘line’ by the run-time
interpreter.

The codle 1C is the data entrv negation. It should not
be confused with CHS which is ccde 54. It does behave as a
CES to the data entry string in that it will negate a
mantissa or exponent when entered into the string. Negate

is the correct terminology for what it does, because if two
1C’s appear in the same portion (mantissa or exponent) of
the data string, 1t will negate the negative to yield a
positive number. This <case is only seen when using
synthetic programming or reading HP-67/97 program cards.

The remainder of row O contains the 1leocal numeric
labels, LBL 00 through LBL 1lé&. Rows 2 and 3 contain ~the
short form ST0”s and RCL"s, £from register RCO through R15.
Since most programs will have less than 15 labels and use
the £irst 16 registers, HP wmade these into one byte
instructions to save space in most programs.

Rows 4 through 8 all comtain one byte functions that are
adequately described by EP’s documentaticn, sSuch as HMS+ or
3EEP.

There is one remaining one byte instruction. It is the
TEXT 0 instrucrction. It stands alone ino memory with a . code
of FO0. .It is a synthetic instruction and must be created by
syn~hetic wmeans. When executed, it has no effect on the
contents of rhe ALPHA register. This makes it a contender
as a “NOP’ instruction.

There are three hex codes that are not used as
instructions on the 41C. These are 1F, AF, and BO. These
are referred to as °“SPARE’ instructions because no useful
purpose to date has bheen found for them.

TWO- BYTE ENSTRUCTIONS

‘Rows: 9. am&‘&?qf?;ha'hex table contain most of the two.
byte imstructicns. ‘Thhe simplestt of these reference a

storage cregister” such asv 9@ 25, which means RCL 373y o=
VIEW. IND X, which is stored as 98 E3. Another simple type
contains: one byte of diata as its postfiix. FIX 3 (9C 03),

TONE 9 (9% 09), and FC?C 29 (AB lD) are examples ofi this
Bype.

Row A contadns the catch—all {mstruction of the &41C; the
caner that emxables it to have am ever inmcreasing ianstruction

set.....the XROM. Those users whe have used peripheral
functions ia programs will remember the mysterious. XROM
instruction that appears when the peripheral 1is not
attached. The 41C encodes the “XROM” number of the

peripheral function into the last 1! bits of this two byte
instruction. The “XROM’ number may be decoded by converting
the first 5 bits of the 11 and the last & bits 1into their
decimal equivalent from binary.

For example, the code sequence "A7 46

Written ia binary: 1040 0/Y11 01/00 0110
XROM 29 e

Yields: XROM 29,06. The printer documentation tells us
that this 1is a BLDSPEC instruction. This applies to all
peripheral functions that are stored intc the 41C°s program
MEemoOry. '

In Row B we find the branching equivalent of the short
form STO0’s and RCL’s, the two byte GTO. Notice the values
range from GTO O0C to GTO 14 for the codes Bl to BF. If one
byte 1is sufficient to defime the label to bramch to, what is
stored 1in <the second byte? A branch imn an: 1interpreted
machine is usually a slow function, wespecially if it has to
search far for the desired label. HP knew that a battery
operated CMOS device would have a relatively slow processor,
and that interpreted 1instruction codes would take away
precious CPU rime. HP uses this seccnd byte to contain a
“compiled’ branch length. After the first executiocn of the

branch, it will store the direction and distance to the
label within the GTO so that subsequent branches will be
executed without searching and therefore much faster.

GTO Label + 1 Direction # of bytes # of registers

- —— G - " Ch_ - G - - m TR e M . - e W e e U - o - o

1011 001l 1 co0Q 1111

Figure 2.4 - Structure of Two Byte GTO

The first bit. of the branch byte determines the
direction of the branch: a ‘07 means forward (to a lower
absolute address) and a “1° means backward (to a higher
address). The remaining 7 bits contain a 3-bit byte count
and a &4=-bit register count. The maximum distance for a two
byte GTO is then: 7 bytes + 15 registers (105 bytes) or 112
bytes. In order ‘for the interpreter to know whether a

branch is <compiled or nort, the zero value 1is reserved.
Compilation occurs durimg a program ruonning or during
SST ing the GTC in RUN mode. Decompilation occurs after
program editing when PRGY mode is exited.

Note: On some older 41C°s, decompilation will NOT
occur if the calculator is turned OFF while in PRGM mcde.
This explains the strange unreprocducible behavior some

programmers nave experienced when testing mnewly edited
programs. The following example will test for this behavior:

In PRGM mode key imn the following program:

0l LBL 01
82 GTO 01

1) Exicz PRGM mode by pressing the the PRGM key.
2) Press R/S twice.

3) Eater PRGH mode.

4y GTC .001

5) Use the backarrow to delete LBL 01

6) Enter a BEEP instruction

7)Y Turn the 41C OFF, then ON
8) Press R/S. If vou have this BUG you will hear
continuous BEEP s, else NONEXISTENT will display.

Notice chac the “gocse’ 1in the display remains
statiocnary . It will move only when it executes a LBL
instruction.

-1

branch, it will store the direction and distance to the
label withim the GTC so that subsequent branches will bes*
executed without searching and therefore much faster.

GTO Label + 1 Direction # of bytes # of registers

- ———— S - - . s " G —— - S — O - . - ———

1011 6011 I 000 111y

Figure 2.4 = Structure of Two: Byte GTIO

_The fgtsc-'&ﬁt of the: bwanch byte determinmes the

direction: of the braanch: a “07imeans forward (tor a lower
absolute: address:) and a “1° means backward (to; a higher
address) . -The <remaining 7 bits comtain a 3-bit byte count
and a 4-bit. register count. The; maximum distance for a two
byte GTQ #s:then: 7 bytes + 15 registers (105 bvtes) or 112
bytes. - Er.| order ‘fonr the Interpreter tc know whether a

branch ifs8 compiled or not, the zero value #s reserved.
Compilation occurs during a program running or during
SST"4ng <the GTO in RUN mode. -Decompilaticn occurs after
program editing whem PRGM mode 1s exited..

Eote: DRDecompilaticon will NOT occur if the calculator is
turned OFF while in PRGM mode. This explains the strange
unreproducibtle behavior some programmers have experienced
when testing newly edited programs. The following example
will demonstrater

0 PRCM mode key in the followingr program: =

0L LBL 01 C&-—a-eé_ -

02 GTO 01

1) Exitc PRGM mode. by pressing the the PRGM key.
2y Press R/S twice.

3 Enter PRGM mode.

4) 6T0 .001

5) Bse the backarrow to delete LBL Cl

6} EZnter a BEEP instruction

7)Y Turm the 41C OFF, then ON

8) Press R/S. You should hear continuous BEEP’ s.

Hotice that the “goose” in the display remains
stationary. It will move only when it executes a LBL
instruction.

| coBg SSOC ,

A.\.% htYeN

) Press R/S to stop the noise.
10) Enter PRGM mode to examine the program, you will
see:

61 BEEP
02 GTO 01

1) Press the PRGM key to exit the meode.
12} Press R/S. You may hear a BEEP, but the program
wiill hialit and: ghow "NONEXISTENT .

Simce there {s ar gossibility that a program may contain
packable nulils when: Li#“Ls rum, a PACK ing and/or relocatiom
of the progrnam could make compiled branchess erroneous. To.
save those prnecious compilations and reduce PACK ing rtime,
the edftor willi not decompile a "“PACKED”™ f£file during a PACK..
The file’”s END contalims bfts. that telll whetherr the. f£iler fis
packed or meot.

At the end of Row C are two more two byte instructions
X<>__ {(CE) and LBL __ (CF}). The ‘exchange x° instruction is
used like the two byte RCL”s and STC“s. The LBL here is the
two byte local label: LBL €GO through LBL 9% or LBL A
through L3L e (Note that the two byte LBL"s 00 through 14
must De svnthetically created). It can have any byte as its
postfix and should not be confused with the global LBL s.

At locationm AE, there is a multi-purpose instructiom, it
can be either the GTO IND ___ or the XEQ IND ___ imstructiom,
depending upon the highest corder bit in {ts postfix. This
is the only exception to the INDirect postfix rule.If this
bit is a 0, it will be interpreted as a GTO IND, else it is
an XE{ IND. Notice that an indirect branch cannot be
compiled.

The last type o0f two byte 1instruction is the ©omne
character text string of the form, Fl xx, where “xx’ is any
byte value.

THREEE BYTE IKSTRUCTIONS

RBows B and E contain the three byte GTO“s and XEQ s,

respectively. These are 1long form instructionms ia that
there are more bits to stere a compiled branch. Notice that
these are local instructioas. The information is emcoded

simi’_ar to the two bwywte GTO:

GTO or XEQ # of bytes # of registers direction label

. - ——— - - ——— o ——— e - a-— o — o - — -

1110 11t 0 0000 0011 0 111 LLil

Figure 2.5 = Structure of Three Byte GTO or XEQ

The abeve example shows an- "XEQ e.” compiled for a forward
branch of:.- 7 bytes + 3 registers or 28 bytes. With 9 bits
for the number of registers, branches are limited to 512
regigtersv»qmqrgwgban'tké'ELmiﬁ of program memoryl

The END: (file enmd) or -~END.. (pezmanent end) fmscructions
are three bytes long. . They begin with a byte in the range
of €O w©o €D. :These-prefixes are alsoc used for global
Yabels, -“which are four . or more bytes long. ' Because END’'s
and globall . labels sirare the same. prefix, they will be
discussed together.. When a “CAT LI” Is executed, the 4I1C
displays ailil of the gﬁ&bal labels, END’s, and the permanent
.END. from the top of memory down. To avaoid scanning all of
memory .for these catalog entries, the 41C stores the
distance from an END or label to the mearest END or label
above it, begioning with the permanent .END.. The &1C
waintains a special pointer to know where the permanent
END. is at all times, se traversing the “global 1label
chain’ is a fairly easy matter. The information for this
‘chaining” is encoded in the second, ¢third and fourth
nibbles of the instruction in the same manner as the three
hyte GTO’s. The third byte of the iastructicn is where an
END is distinguished from a global label. If the E£irst
nibble of the third byte is an “F’, the instruction is a:
global Yabel with the second nibble in this byte being the

number of characters in the label plus one. Thus a third
byte of “F8’ would demnote a glocbal label of length 7. The

reason for this offset of aone is to tell the number of bytes
following the third byte. The fourth byte is always used to
record the keycode when the global label is assigned to a
key. When no assignment is made, a value of “00° is stored.

When the third byte is not of the type “Fu’, the
instruction 1is imterpreted as an END. The first nibble of
that byte tells the type of END. A “0° denotes a normal
file END, and a “2° denotes the permanent .END.. The second
aibbile in. this byte comtains information that tells whether
the file BHas been packed, a “39° means packed and a "D’ means
unpacked. This oybble is set up when the file is editted.

FOUR TO SIXTEEN BYTE INSTRUCTIONS

The global 1labels discussed above are examples of
instructions that can take four or more bytes. From the
instruction coding one would expect to find global 1labels
with text lengths from 0 to Ll4. These extremes can exist
only with synthetic programming, because the editor will
onky allow one to seven bvtes for text. Evemn then, the-
editor will make local alpha Labells cut of those that have

> _r o _r

single characterns from A e “J° and "2’ to “e’.

The global GTO’s: amd XEQ’s are found at ‘LN’ and “LE’ in

ther hex table. The secoﬁ%(byte*bﬁ‘shase‘inaaructions is a
text byte of the form® Fm”, where “n’ is the Length of the
text string following. The instruction XEQ "NPR" would be
coded :

IE F3".4E 50 52

and woulds occupy five bytes. Like the- global labels, there
can be synthetic GTC’s and XEQ's with lengths outside the
range allowed by the editor. Note that there could also be

a global GTC "a" or XEQ "JI". This would allow indirect
branching based on a one character text striang, which is not
possible with a two byte, local alpha label. With synthetic
techniques, these instructions become a reality.

Text entry program lines are of the form: Fa bl bn,

where “n” is the aumber of characters (bytes) that follow
the prefix.. This value can range from 0, for a null text
string, to 15 characters in length. These characters can be
any . byte value from “00° to ‘FF”. The editor will only

allow the normal keyboard characters to be entered, but
again synthetic programming will permit the iantroduction of
any byte into a text line. This is egpecizally useful for
@eixing =all upper and lower case lettrers for printer output,
or adding special display characters like the stick man or
ampersand.

The 1last type of multiple byte iunstruction is the
numeric entry Lline. Hormally the editor will 1limit the
length of numeric entry lines to 16 bytes: a signed mantissa
of ten digits and a decimal point, and a signed exponent of
two digits; however the 41C will acceprt numeric entry lines

¢cf aay lengrth. Abnormally long entry lines cam be made
syathetically or may be found upomn readinog or merging an HP-
67/97 program card (whemn a separator null is lost). They

have little useful value for data entry because after ten
digits of the mantissa are loaded, all other mazantissa digits
are ignored. Multiple signs, mnegate previous signs and

10

after an exponent is encountered, only two digits are
accepted, with its sign toggled as well.

COUNTING BYTES

In order te minimize the amount of memory a program
takes, a programmer must be able to calculate how many bytes

are consumed by various combinations of instructioms. Th e-
following pages contain examples of programs lines and the
number of bytes contained in each. They are categorized by

instruction type fiorn coemparison of different wvariatiowmsie
Some general rules for byte counting are:

l. RWumeric entry lines contain as many bytes as
.there are digits, decimal points, signs, and
E“s. Do net forgat anr unpackable null 1If thes
Line I8 preceded by another numeric entry line.

2. Text lines contain “n“+ 1 bytes where ‘n’ 1is the
number of characters in the line, including the
append symbol.

3. Global labels contain “n’+ 4 bytes, where “n” is
number of characters in the label. These lines
are distinguished from other labels by the text
‘t’ between the LBL and the text string.

4. Any INB’irect insrtruction is two bytes long.

S. END’s occupy three bytes. The permanent .EKD.
uses three bytes, but a CAT |l printer or videc
interface listing will include the bytes used
to make up a full register.

§. All “functicns’ that reguire no argument (postfix)
are one byte long-.

7. Look for short form STO’s, RCL’s, and LBL"s which
use only ome byte. These are on rows (0, 2, and 2
of the hex table.

8. All peripheral fumnctions and ROM calls use o=zl
two bytes.

3. Local (nuneric and alpha) GTO“s and XEQ’s take
up three byvtes, except for short form GTO0’s from
6T0 00 to GIO 14, which use only two bytes.

10.

11.

Any instruction wmot included above, that requires
a register reference, a flag reference, or a
single digit of data generally takes up two bytesi.

Do not count packable nulls. These will disappear

after PACK“ing and have no bearing on routine
comparisions.

12

SUBROUTINE USAGE

As on every computer that has a subroutine stack, the
question always arises as whether to use a subroutine «call
or repeated in-linme code. Most programmers use intuition to
make this decision, and they are right in most cases. The
obvious cases are of long imstruction combinations with many
repetitions. To- determine: in the not-soc-obviocus cases, an
equatiom: can be derived for the computationm of actual ©bytes
saved. Figure 2.3 shows graphically the byte savings or
wasting f£rom use or misuse of subroutines. For a 5 byte
saquence, & repetitions are necessary before a subroutine
will sawe amy bytasy bute for sequences above 8 bytes, there
will always be saveable bytes. +t is important to note that
ther equation is derived for short form numeric labels, the
least comsumptive of labels. Additionmal bytes will hawe to
be. coasidexed for longer liabelis. -The deriwvation “of such
an equation will be, emwcountered. as. a- problem in the: section
Cast ..

Other considierations wmusit be made when iEnotroducing
subroutines. ‘If there are six. RTN’s pending on the
subroutine stack, another XEQ will push the sixth one out of
the stack and {t will be: lost. Subroutines tend to be
slower than equivalent in-line-coding. Will the &execution
time difference be acceptable for the applicaticn?

The following pages containm examples of subroutine

usage versus ian-lipne coding. Some: 0f the examples are
obvious, others are not. . Most cases that are passed over
for comsideration by most people require modification to.the
procedure used in order to realize anv byte savings. If

there are a number of similiar, but not identical, 1lines
repeated, think about rewriting them to use a subroutine.
The byte savings are harder to calculate for these <cases,
but they are often worth the effort.

£ %uaj::ac\ éov‘ Sauh u"& bﬁm
(-1 (13 =S = oyl el
o t_ £ 3 %
13 Rep. 3 st =
3 bJ‘Q =4

13

GENERAL RULES FOR SAVING BYTES

~d

Use short form imstructions whereever possible.
This can lead to heavy competition for storage
registers RCO-R15. Consider that an additional
sitorage register will consume 7 bytes. If short
foonm labels are wsed, remember the maximum branch.

‘lemgth that can be ccmpiled. If the branch is too
Long for the fmastructien type, it will never be

compiled and will execute much slower, especially
in. large programs.

Osei text liines amd. globals labels sparingly. Be
conservative: in the number of characters in your:
%abeIS"an& ptompts, but don’t sacrifice wsability
far memory unmless it {i's absolutelly necessary:

Mz ke use of subroutimes whea they will save bytes.
I£ you don’t have equations® handy to make a
comparision, count them by hand. In this manner
yow will dewvelop an intuition as whenm to use or
not use them.

‘Examine numeric entry lines for space wasting

ordering. If an exponent is used, a decimal
point may not be necessary. Avoid trailing
zerces where possible.

Look for poor use of the stack; there may be
too many STO s and RCL.s in the wmiddle of

yaur calculations. Try to recognize applications
for zegister arithmeric (ST+, ST*, etc.).

Lock for special instruction combimaticns and
save rhem for future use; such as: 1 I (2 bytes)
iostead of 100 / (4 bytes). Calculator Tips

2and Routines, by John Dearimg is an excellent
source of such tips.

Try to program in a “top-down’ or “structured’
manner. Many times there are as many branches
fn a program as there are calculatiocns; a poorly

placed program section can waste bytes. Flow-

charts are an excellent tool toe study program
flow. ‘

14

SECTION II - QUIZ

1. A peripheral function uses:
byte

@, bytes

1

2
C.. 3 bytes ,
d. 4 or mere bytes-
e. wvaries

2. A two Byte GTO cam branch a maximum of:

a. LO5 bytes

b. 15 registers
€y 112 byces

d. b and ¢

e. a amnd bt

3. Ccmptlactén‘o&curs for what combinations of the:
following instructioms:

I. 2 byte GTO’s
II. 3 bytes GTO s
LIT. XROM ‘s

Iv. alpha XEQ’s

V. indirect GTO s
a. I, II, III

5. I, II, IV

. all except V
@ I and IL

e. all of the above
4. The global label LBL"ABC" occupies:

a. 5 byvtes
@D 7 bytes
. 4 bytes
d. 8 bytes
e. none of the above
5. The following numeric entry line =1.2345678 E-4
contains:

@ 13 bvtes

b. 12 bytes
ce. Ll bytes
d. 14 bytes
e. none of the above

SECTION II -~ QUIZ (continued)

6. Which ef the fellewing instructiens is net 2 bytes

leng?

I. GT® INP &8
IT.. PRA

ITI. T®NE @
IV.. LBL 14

Ve LBL'" A"

a’. I only

b. I and IT

Ce. I, II and IV

€) IV and Vv

e mnone of the abover

7. The byte:s sequence: AB 85 is: whritch of the following
HP-41C calculator imstructions?

‘'« FS?7C IND2O0S
FC?C 85
FC?C IND 05

(v gy)
.

©

dé. FS?C IND 85
e. none of the above
8. The byte sequence F2Z 7F 20 is:

[

a peripheral function

an alpha entry line

a global label

an unclassified instruction
none of the above

©

a0
L

S. Which imstruction is not from Row 4 of the hex table?

@ ABS

D. *

cCe. HMS+
d. z

e. MCD

10. The longest HP-41C imstruction type (l6 bytes) is:

a. global label
b. numeric entry line

C:> alpha encry line
d. a and b

e. b and ¢

0
.

SECTION II - QUIZ (countinued)

Which of the following instructions is not 2 bytes
long?

I. GEBG. LND 00
IT. PRA

III. TONE 9

Iv. L3BL 14&

V. LBL™A"

I eonly
b. I and TT
Ce. I, II and IV
d. IV and VW
e. none of the above
e sequence: AB 85 s which of the following
C calculator instructions?

HP-4

a. rS?C IND 05

b. FC?2C 853

c. FC?C IND 053

d. FS?C 1D 85

e. mnone of the above

The byte sequence F2 7F 20 is:

a. a peripheral function

b. an alpha emtry line

c. a global label

d. an unclassified instruction
e. mnone of the above

Which instruction is not from Row 4 of the hex table?

a. ABX

D. *

cC. HMS+
d. 4

e. HOD

Thne longest normal 41C instcruction type (16 bytes) is:

a. global label

b. naumeric entry lige
c. alpha entry linme
d. a and b

e. b and c

SECTION III

INSTRUCTION TIMING / FASTER PROGRAMMING

© Copyright 1983
INNOVATIVE TRAINING CONCEPTS

SECTION IITI
Instruction Timing/Faster Programming

In the last sectiom, we learned how to compare different
instruction sequences in order to use the least amount of
memory; but there are further considerations to make when
writing a programe. ‘Gonsider rthe simple problem of
multiplying a number by twe. _Here are three posisible ways
to do it, alli of which nse: exactly two bytes:

2 ENTERT ST+ X
* +

Most people would have programmed it as shown on the far
left, wusing a multiply. This is a convemient way of doing
it from the keyboard and. comes to mind first. The seccond way
may be used by some progicammers who reascn that an addition
shculd be much faster than a multiply. It is just as easy
to use from the keyboard. The third method takes <four
keystrokes to implement (if the ST+ functiocn 1is ot
assigned) and is shunned by mcst people, except whem doing
register arithmetic. Wnich of the abecve should ©be the
choice of the advanced programmer? Examine the amount cof
time required to execute each combination:

§l.4 mS 38.6 mS 35.5 =S

Most people would have selected the combination <that
takes almost twice as long to execute. The intuitive
programmer would have been better off, but would noct have
achieved the fastest technigue. It is evident that there 1is
more to better programming than using the least amount of
byvtes.

This section 1is devcted to instruction timing of the
basic HP-41C instruction set and how to calculate relative
execution times of different instruction combinations. The
instruction timings given here were derived by the author on
his system (SN# 1952A manufactured December 197%8) and will
differ from 41C to 41C.™\

‘77'5'& C.f 3 aud ’(‘wh Fhis u;lﬂ.

SECTION III

Instruction Timing/Faster Programming

In the last section, we learnmed how to compare different
instruction sequences in order to use the least amount of
memory; but there are. further considerations to make when
writing a program. Consider the simple problem o:ff
multiplying a- number by two. Here are three possible ways
to do it, all of which use exactly two bytes:

2 ENTERT ST+ X
¥* +-

Most pecple would have programmed it as shown on the farn
left, wusing a multiply. This is a convenient way of doing
it from the keyboard and comes to mind first. The second way
may be used by some programmers who reason that an addition
should be much faster than a wultiply. It is just as easy
to use from the keyboard. The third method takes eight
keystrokes to implement (1f the ST+ function is not
assigned) and is shuomned by most people, except when doing
register arithmetice. Which of the above should be the
choice of the advanced programmer? Examine the amount of
time required to execute each combination:

€l.4 mS 38.6 =S 35.5 mS

Most ©people would have selected the ccmbinaticn that
takes almost twice as long to execute. The intuitive
programmer would have been better off, but would noct have
achieved the fastest technique. It is evident that there 1is
more to better programming than using the least amount of
bytes.

This secticn 1s devoted to instruction timing of the
basic HP-41C instruction set and how to calculate relative
execution times of different ianstruction combinmations. The
instruction timings given here were derived by the author on
his system (SN# 1952A manufactured December 1979) and will
differ from 41C to 41C.

~ There are four factors, other than programming, that
will affect execution time:

Battery strength
Ambient temperature
41C ROM revisiom

Peripherals attached

Like mest CMGS devicésw the 41C will run slightly fastler

with a higher voltage. This is not to suggest that one
shouwld put a higher voltage on their calculator; CMOS
circuits are delicate and are easily damaged. It does

suggest that a fresh set of batteries will make a differencer
when comparing execution speed.

The &4IC wuses an LC oscillator circuit to generate its
CPU clock, and like most clock circuits, temperature will
make a difference in speed. Remember that there are
temperature constraints set by the manufacturer 1if vyou
experiment with various temperatures.

The 41C intermal ROM’ s contain the programming that
actually performs the operatiomns that you program into 1it.
HP has been revisinog its ROM programming since the 41C was
first introduced and these changes can be expected to make
some 41C“°s run faster or slower on some operations tham
others.

When the 82143A printer is attached to the 41C, a marked
reduction in speed 1is noticed. Whenever flag 55 is set, the
41C will check printer status to determine whether it needs
to send it information; such as during TRACE mode when
everythicg m®must be sent to the printer. There are also
cccasions in the other two prianter modes, MANTUAL and NORMAL,
that information must be sent. The information transfer, of
course takes time, but even the checking itself takes time.
The HP-IL peripherals are another example of this speed
reduction. The video interface and the 82146A printer tend
to slow down the 41C. An extreme case is when power is not
applied to one of these loop devices; the time it takes to
perform an operatiom will nearly double.

r

In view of these factors, the user should try to keep a

fresh set of batteries around and keep flag 55 clear. This
second goal may be accompliished by not having the printer
attached (remember to pecwer all devices down before

connecting or disconnecting), or by synthetically clearing
flag 55. This flag, 1if cleared synthetically, must be
cleared within a program, because the 41C checks for printer
existence during all modes except RUN mode. Any time that
your program stops:, it will set flag 55 if a printer or EP-
1 output device is. present.

There are some 41C owners who have replaced their
timing capacitor® in order to increase execution speed.
This is not recommended by Hewlett-Packard. It can increase
speed by a factor of two, but there are problems associated

wicth doing chis.: The current drain on the power supply is
higher and theres 1is less time available after the BATT
anpnunciator comes: on to replace the batteries. This is
especiadly bad for NiCad wusers. - The operation of

peiripherals creates another problem. When writing data or a
program to magnetic wards using the card reader, the 41C
must be operating at iits desigrn speed, or the data may be
written incorrectly.

Another problem arises with the digital cassette. When
accessing a file that crosses a track boundary, a rewind
must be made to access the second part of the file. To

determine if the drive is fumctioning correctly, the HP-IL
uses a counter to check the amount of time required for the
posictiocning. ‘With a faster cleock rate, the counter expires
sgoner, giving am error.

To add to these problems, some 41C"s are more prone to

“crashes” at higher speeds than others. A “crasn’ is when
the 41C seems to get lost; the keyboard will hang up and
even the ON button will not respond. Battery removal for a

short period of time will recover from most crashes, but
mMemory contents may have been altered or lost. At any case,
this course is intended to teach “software’ techniques zand
solutions. Hardware “tinkering’ is neot for evervone and
should only be undertaken by a skilled techoician usiag
ntmost caution.

In view of these factors, the user should try to keep a

fresh set of batteries around and keep flag 55 clear. This
second goal may be accomplished by not having the printer
attached (remember to power all devices down before

connecting or disconnecting), or by synthetically clearing
flag 55. This flag, 1if cleared synthetically, must be
cleared within a program, because the 41C checks for printer
existence during all modes except RUN mode. Any time that
your program stops, it will set flag 55 if a printer or HP-
TL output device is present.

There are some 4IC owners who have replaced their
timing capacitor in order to increase execution speed.
This is not recommended by Hewlett-Packard. It can increase
speed by a faector of two, but there are problems associated

with dcing this. The current drain on the power supply is
higher and there is less time available after the BATT
annunciator «comes on to replace the batteries. This: dis
especially bad for NiCad wusers. The operation of

peripherals creates another problem. When writing data or a
program to magnetic cards using the card reader, the 41C
must be cperating at its design speed, or the data mey be
written incorrectly.

Another problem arises with the digital cassette. When
accessing a file that crosses a track boundary, a rewind
must be made to access the second part of the file. To

determine if the drive is functioning correctly, the HP-IL
uses a counter to check the amount of time required for the
positioning. With a faster clock rate, the counter expires
sooner, giving an error.

To add to these problems, some 41C°s are more prone to

“crashes” at higher speeds than others. A “crash’ is when
the &41C seems to get lost; the keyboard will hang up and
even the ON button will not respond. Battery removal for a

short period of time will recover from most crashes, but
memorvy contents may have been altered or lost. At any case,
this <course is intended to teach ‘software’” techniques and
soluticns. Hardware “tinkering” is not for everyone and
should omnly be undertaken by a skilled technician using
utmost caution.

DERIVATION OF INSTRUCTION TIMING

A relative timing table for the 41C had been derived
before by Ernie Gibbs ian 1981 and appeared in the February
1981 1issue of PPC Technical Notes (V1 N6 p3), published by
the Melbourne Chapter of the PPC Club.

The times presented here have been derived by the author
using synthetic techniques and the 82182A Time Module. The
basic techniquer was to set up a program ian memory that
contained: somes lines to set up and record an imitial
stopwatch (SW) time, 140 bytes:.of memory aligned on 20
register boundaries for storage of instructions, and some
lines to recalll the stopwatch timer after ther instructious
execution.

“The 140 bytes were omitted the first time through to
determine the overhead time for the storage and recall of

the stopwatch time. The 140 bytes were then entered and
repeatedly filled with different instructions. The elzapsed
time less the overhead time, divided by the number of
instructions executed vyielded the single instruction
execution time. All calculations were performed by the 41C
and the process was automated using the PPC ROM. wWith the

aid of the PPC ROM programs, arbitrary byte sequences were
stored into the 20 consecutive registers and the base
instruction times were determined.

Many o¢f the functions required special data in the X
register in order to function correctly. Whereever
possible, a range of data was examined to determime timing
variance for different paramecters. Some instructions, such
as the GTO0"s, were stored in compiled form with single line
forward branches. Other instructions required much
patience, such as 140 AVIEW’ s with O to 24 characters in the
alpha register.

These iastructicn times are relative, and are provided
for program speed comparisions. There will be differences
depending upon the installation and situation in which they
are encountered. If there are any major differences, please
iaform the author or the PPC of these differences for

further investigation. Most cof the information presented
in this <course was derived by 1independent users by
axperimentation. In order for the body of information on

the &1C to continue to grow, everyocne should carefully
record their observations for other users to examine and
use .

The system configuration used was a 41C, Quad Memory
Module, PPC ROM, Time Module, and an Extended Functions
Module all running on alkaline cells.

HP-41C Instruction Timing

All times are in milliseconds (mS).

Numeric Data and Manipulations

Numeric entry lines:
base time 29.5
of numeric digits 31.9
exponential “E’ 25.4
decimal point 18.9
each sign character 36.9

For example: -]« 234 E-9 would be

29.5 + 5%(3L.9) + 25.4 + 19.9 + 2%(36.9) = 308.1 mS
Note: unusual lines that contain more than !0 mantissa

digits, one decimal point, one exponent, or two signs
take much longer than expected.

Stack Manipulations:

CLST 10.7 RDN 17.4
CLX 10.1 T 12.4
ENTERT 12.0 X<>Y 1G.6
LASTX 13.3

Register Manipulations:

Numbered Register

Status Register

STO 22.5 (21.4) 17.0
RCL 26.0 (24.8) 21.¢9
ST+ 42.7 35.5
ST~ 44,0 38.9
ST* 48.6 43.3
ST/ 4G. 4 44.2
X<> 25.5 1%.9

Note: For STO and RCL, the values in parentheses
are for short form instructions using ROC-R1S.

Indirect References:
IND

add 15.3 mS

BP-41C Ipnstruction Timing (continued)

Flag Operations:

AQFF 18.8 ENG n 16.7
AON 18.8 FIX n 16.7
SCI n 16.6
DEG 20.3
GRAD 21.1 CF an 32.5
RAD 20.4 SF an 28..4
True. False
FC? on 24.0 38.0
ES? nn 23..4 37.3
EC?2C an 35.0 49,7
£S72C. on 38..2 45.1
X Conditionals:
True False
X=Y? 10.6 21.4
X>Y? 24. 4 38.0
<Y ? 27.8 35.4
X#Y? 10.6 212
X=07? 12.5 23.4
X>07? 12.6 24.1
X<07? 13.5 23.6
X<=0? 11.8 23.1
X#07? 12.5 23.1

tatistical Functions:

ZREG n 31.0
S+ 229.2 =*
- 235.1 =*
CLZ 24.5
MEAN 136.9 =*
SDEV 481.2 *

* - dependent upon contents of X, Y and
the summation registers

HP~41C TInstruction Timing (continued)

Trigonometric Functions:

DEG mode
ACOS 572
ASIN 546
ATAN 343
cQas 458
S’IN 567
TAN 320
B-R 672
Nocte:

the

RAD mode GRAD wmode
471 546
489 520
255 317
376 459
-4 71 568
242 321
574 6:72
162 189

2ll of the trig functions vary based upon

data that they are processing.

All of the

times above are for an angle of 45 degrees and a

radius of

Labels and

10

Branches:

LBL, numeric, 1 byte
LBL, alpha or numeric

2 byte
Global label, n chars.
GT) on, compiled, 2 bytes
GTO nn, compiled, 3 bytes
XEQ nn, compiled
RTN {(or END after XEQ)
GTIQC zlpna
XEGQ alpha

Note:

the position

(o * &)

25.0

(varies)
(varies)

the alpha GTO and XEQ are dependent upon

of the instruction and

the label

and upon the length of the desired label.

Null byte (2C):

HP-41C Instruction Timing (continued)

Looping Conditiomnals: (evaluated FALSE)

Numbered Register Stack Register
DSE 75.7 67.9
ISG 73.9 66..6

Note: these iastructions depend upon the values
that are ineremented. or decremented. ILf the
Loep increment: is 80 (defaultc 1), execution is
slightly faster. Whem evaluated TRUE, execution
time depends upon the instruction skipped.

runc ticons:

+ 26.6 HMS 27.7

- 32.9 HMS+ 69%.1

* 37.3 HMS - 70..1

/ 38.1 HR aU.8

apS 15.¢1 LNT 22.1

ADV 9.4 LOG 46-280 *
107X 102-2293 =* LN 21-252 *
1/X 3.0 LN1+X 193 *
BEEP 107¢0C. (F26 set) HMO0D 7.6

BEEP 15.3 (F16 clear) OCT 124.7 *
CHS 12.9 x 36.4

CLRG 11.8 + 2.8%(SIZE) ICH 61.4

CLL 21.L PI 18.1

DEC 53-34 * PSE 1379. *
D-R &2.9 RND 21.8 *
ETX 77-242 * SIGN 21.8

ETX-1 125 * T2 36.4

FACT 21 + 4.7*(X) YTX 111-552 =%
FRC 20.2

Note: most functioms above vary slightly, but
the ones noted with “*°s vary slightly more. Lf
a range is given, the variation is even greater.

The following instructicns defy timing measurement:
OFF PROMPT STOP
The TONE n functionm wvaries greatly depending wupon 1its

postfix. It can raznge from a few milliseconds to over five
seconds. With F26 clear iz executes im 16.5 milliseconds.

HP-41C Instruction Timing (continued)

Looping Conditionals:

DSE
ISG

Note:

that are
increment. is 00

loop

slightly faster.
time depends upon

Functions:

+

*

/
ABS
ADV
107X
1/X
BEEP
BEEP
>CES
CLRG
CLD
DEC
D-R
ETX
ETX-1
FACT
FRC

C‘Wuﬁ:}

e

-1 = °{‘8-5 S
| eus = Bl

Note:

moSst
the ones noted with

(evaluated FALSE)

Numbered Register

5.7
73.9

incremented o

26.6
32.6
37.3
38.1
i5.1
9.4
102-229 =
39.0
1070. (F26 set)
15.3 (F26 clear)
12.9
11.8 + 2.8*(SIZE)

21.1

53-94 *
82.29

77=242 *
125 *
21 + 4.7*(X)
20.2

functiocus

™S
EMS+
HMS -
HR
INT
LOG
LN
LN1+X
MOD
oCT

y4

1CH
PI
PSE
RND
SIGN
T2
¥TX

above vary
“*"g vary

1379.

Stack Register

67.9
66.6

these instructions depend upon the values
decremented.
(default 1),
When evaluated TRUE,
the instruction skipped.

If the

execution is

execution . ol
éru;&es Lﬁﬁ ¢
617
s S
27.7— > | ¢o
69.1
70.1
40.8 -
22.1 Auelw
46-280 * =f zSY%
21-252 * YEQ ™?
193 * LBL ¢!
17.6 _
124.7 P—
6.4 be) o700 &/
6l.4 Tl et text

18.1

*
21.8 * ul\\&ﬁﬁci
21.8 SQMKuuvig
360 Jb Mgsc‘(a‘k
111-5352 *

slightly, but
If

slightly more.
a2 range is given, the variation is even greater.

The following imstructicns defy timing measurement:

The TONE n function varies greatly depending
It can range from a
With F26 clear it executes in

pestfix.
seconds .

QFF PROMPT

STCP

upon 1its

few milliseconds to over five
16.5

milliseconds.

HP-41C Instruction Timing (continued)

Alpha Data and Operatioamns:

Alpha data 37.4 + 4%

here “n’ is the text length, including appends.
CLA 9.8
ARCL mnn

Alpha data in register

n characters . 37.4 + 4%*n (as above)
1f status register - 5.9
if indirect +13.3 (ASTG/ARCL only)

Numeric data in register

base timing 53.9

each numeric digit 9.8

decimal point 2.3

each comma separator 8.2

exponent E 1.3

Lf rounded 1.2

leading sign "-" 5.7

exponential sign "-" 10.2

if indirect 13.3 (ASTO/ARCL only)

if status register -5.9

For example: ARCL 05

RO5= =-1.234567890 E-5¢
FIX 4

SF 28, SF 29

S3.9 + 9.8*%(5) + 8.3 + 1.3 + 1.2 + 5.7 + 16.2 = 12%.6 mS

ASTC un (IND add 13.3 mS ASTO/ARCL only)
Alpna length Numeric Register Status Register

< 5 32.0 26.7
7 31.5 26.2

14 > > 7 41.4-P 36.0-P
14 30.9 25.5

21 > > 14 39.9-P 34.5-P
21 29.2 23.9
> 21 28.2-p 32.9-P

where P = 1.5 * MOD(alpha length, 7)

10

HP-41C Instruction

Timing (continued)

AVIEW
base timing 211.6
each full body char 1C0.4
each comma 7.8
each period 8.4
each colon 7.6
each character scrolled 582.

For example:

alpha contaiaos

use the punctuation dots of the display.
consecutive punctuvation characters,

punctuation dots of

AB=5.34 E-6, 2:00 AM

X

‘AB=5.34 E-6,
leaving “:00 AM~

will display before
(6 scrolled characters).

The string
scrolling,
The calculation:

211.6 + L7*(10.4) + 7.8 + B.4 + 7.6 + 6*%(582) = 3904.2 mS
A is any character that does not
If there are two
cne full body character

the
the

full body character

be added to account for the included space between
punctuation symbols. The semicolon does not use
the display.

on
Por ALPHA DATA: 118 + 7.5 * (# characters)
For numeric data:
SCI n mode: 127.4 + n
ENG n mode: .use SCI mode for total mantissa
’digits that are displayed (i.e.
for 234.23 EO03 use SCI &4 (5 digits).)
FIX n mode: 128.2 + 1.3 * (total digits)
add 2.6 for each ", "
For overflow, use SCI equivalent
ALL modes:
leading "-" .8
exponent "-" 1.3

11

SPEED CALCULATIONS

The relative speed of a set of calculator instructions
may be calculated by looking up the instruction timing for
each instruction and adding them together. For example:

0L LBL"POLY" 41 + L*4 = 57.0
02 STO Ol sheort form STO 21.4
03 XT2 36.4
04 3.5 29.5 + 2*31.9 + 19.9 = 113.2
g5 =* 37.3
06 .78 29.5 + 2*%31.9 + 19.9 = 113.2
07 RCL 01 short form RCL 24.8
08 =*» , 37.3
09 .4&32 2%.5 + 3*31.9 + 19.9 = 145.1
10 + 26.6
I1 END 25.0
637.3 mS

If a short form RCL is substituted for each numeric

entry line in the program, the execution time would be:
-u«oe o.-ﬂ‘.'

637.3 = 113.2 = 113.2 - 145.1 + 3%24.8 =

This would make the routine almost 47 Z faster. The
overhead time for storing each of the constants was not
considered in thisscalculatiocn. If the overhead time 1is
considered, a single pass execution would take more time,
but if the routine is executed repeatedly, the time savings

could be calculated as follows:
Ignoring the time of the calling program...

0l1d routine, m repetitions: n * 637.3

~-New routine, n repetitions: n * 340.2

. e
~Overhead set-up (assuming short Tavel setep .
form STO s):
113.2 + 113.2 435.7

+ 145.1 + 3*%21.4 =

The result:
Time saved = o * 297.1 - 435.7
The breakeven point is at:

435.7/297.1 = 1.47 repetitions

rea s o

3402 mS wu=x—toesrs

(]

45

It can be seen that for two repetitions of the routine
POLY, there will be a savings in execution time. There is a
consideration for the number of bytes used by the extra
instructions and the storage registers. The choice of
saving time or saving memory will depend upon the program
environment.

The easiest place to increase execution speed 1is in

numerical calculiations. There are usually two or three ways
to accomplish the same task computationally. The case of
doubling of a number ait the begianing c¢f this sectiocn is one

example. Consider the case of dividing a number by 100:
45y(:'(1) 100 28.5 + 3*31.9 = 125.2
/ 38.1
163.3 mS
zBfC; (2) LE2 289.5 + 2*31.9 + 25. = [18.7
/ 38.1
156.8 mS
45u 1 (3) .01 29.5 + 2*31.9 + 19.9 = 113.2
/ * 37.3
150.5 mS
a?C (4) E2 29.5 + 31.9 + 25.4 = 86.8
- / 3801
124.9 mS
, (5) 1 29.5 + 31.9 = 6Hl.4
b (5 4 36.4
N AES ARS D 6.6~ mmm——
I A«»Q*’%Lst .}quyx — 7.8 mS
‘3"]’ Swet 'L-q‘;.&-)‘

These £ive cases are all fairly short (2 to &4 bytes)
wavs to divide a number in X by 100. The most straight-
forward way used by most programmers, (1), is also the
slowest. The more experienced programmer might have chosen
either (2) or (3). The synthetic programmer would have
saved ome byte and 31.9 mS over (2) by using the truncated

The speed demon programmer would have
it uses the fewest

exponent shown in (4).
sought yet a better way as shown ino (35);

bytes and takes advantage of the “X° instructionm which
divides the number in X by 100 and then multiplies the
result times the number in Y.

13

THINGS TO CONSIDER

Do not forget that there are other considerations than
speed when comparing insctruction combinations:

What will be left in the LASTX register after
execution? Will that wvalue save time afterward?

How many RPN stack levels will the combination
consume? Will additional STO"s and RCL’s be
necessary? Will the stack 1ift be left emabled
or disabled after the calculation?

Will accuracy be affected? Smaller numbers
should always be added together before adding
to armuch larger number.

Is the speed increase really necessary? Short
calculations between prompts should be reduced
tc the fewest bytes because the speed difference

is not easily noticed.

How much more memory will be used by the faster
combinatiocn? ©Each storage register consumes 7
bytes that could have been used otherwise.

Will streamlining a program dectract from the
pregram’s usability? Error trapping before a
time consuming calculaticn would prevent the
user from wasting time on a bad answer.

Does the useful lifetime of the program justify
the time spent in optimizing executicn speed?
Many programs are used only for several hours;
gquick and dirty solutions are generally the
most efficient in terms of man-time saved.

e e e e e e e

oy 00 00O OO 0O © o O

— . T¢ cC o0 00 pjg g4 LA B | -
oJzro ©c200 02 of 7 &9 wﬁwjo«« nad Huol ubic

*qukguf Yo nLeé-fi El—“‘ﬂs;l
'(f,g/uL ,.[é‘,_/ Pv\e_c;sl\o-a .

———

GENERAL RULES FOR SPEED IMPROVEMENT

Use status registers (RPN stack, and M, N, O,
and P) for computations whenever possible, they
use less time than numbered storage register
operations.

Limit the use of in-line numeric data entry
lines, especially within loops. This class of
instruction is particularly time consuming.

Tf they must be used, consider the different
ways of writing them to increase speed. If"
the number is merely a power of ten, use a
synthetic exponent, if possible. If the number
has an exponent, a decimal point can be omitted

if the resulting exponent does not increase b

a digit. For example: (EE;S E-§ wvs. 125r5:§2>
Try to use VIEW or AVIEW ianstead of PSE.
Remember that a VIEW ed value will remain in

the display until another value is VIEW ed or

a CLD is executed. Im long calculations, the
VIEW may be displayed longer thanm a PSE. A

VIEW can also display the contents of any

register, whereas the PSE only displays the
X or ALPHA registers.

Use local branches whereever possible. The use
of short form LBL’s and GTO0's are recommended
fur byte savings, but remember that a short form
GTO that exceeds the compilable distcance will
not compile, and will always take longer to
execute. The three byte GTO/LBL combination
executes slightly faster.

If global LBL s are necessary, trv to order the
program sSc that LBL s most often accesssd are
lowest in memory. This will shorten the global
label search. Keep the number of characters to
a minimum; each one reduces speed and takes more

memory .

Avoid IKD’irect branches as much as possible.
They must always search for their corresponding
LBL and do not compile.

Keep text strings short. The amount of time
spent scrolling one character is more than that
needed to display another 12 character line.

-1 PACK your programs before execution. Every null
takes 5.9 milliseconds to execute.

9. The local branches in a program can be compiled
without running the program by SST’ ing in PRGM
mode to evervy GTO nn or XEQ nn, switching to
NORMAL mode and pressing SST. This insures that
every branch is compiled, without having to run

any data through the program. 0
o BTO- -

.—E Couspie P runniué_ S)D A
5_, St [c,ow(ftto ,

v Ruw ol ssT el
PROGRAM EDITING

e

The 4IC chains all of the END’s and global LBL’s
together from- the permanent .END. backwards to the first.
global LBL or END. It has been noted that the global LEBL
search proceeds from the lowest to the highest in memory and
that a lower LBL would result ip a faster search time. In
PRGM mode, the 41C must compute the current linme number from
the beginning of the program file. When BST’ing a large
program, large delays are noticed. These delays can be
shortened by adding a “dummy’ global LBL just above cthe
lines to be editcted. The editor uses the next higher global
LBL to recompute the line number when BST ing. The LBL can
be easily found with a CAT 1 and deleted after editting.

Nulls are inserted by the editor when instructions are
deleted or when the adding cf instructions forces those
below it to be moved down to wmake room. If there is a large
contigucus block o0f nulls within a file, there can be a
noticeable delay when SST ing or BST ing. Periodic packs of
a program file <can compress these nulls out and lead to
faster single stepping-.

Another way to speed program entry is to remove any
ROM s or peripherals that are not used in the program being
keved 1in. Whenever an XEQ "xxxxx" is used to invoke an
instruction noct on the keyboard, =the 41C must search the
global label chain for a match, then any ROM or peripheral
catalogs, and finally the basic 41IC iostruction set. Most
functions that are used in programs are in the basic set.

The last way to speed the entry of program instructions
makes use of a special feature of the 41C, key assignments.
If an instruccion @wot on the normal keyboard is used
repetitively, assign it to a convenient key. Remember that
vou must be in USER mode to make it work. If you are keying
in normal kevboard <functions from rows 1 and 2 o©¢f the

16

keyboard, it would be better to have the USER mocde off to
prevent a bothersome search for auto-local key assignments
(LBL A through LBL J and LBL a through LBL e). Synthetic
programming allows unusual key assignments, such as X<> 00
or LBL A to be made. The techniques used to generate these
assignments will be discussed in Section V.

2.

SECTION III - QUIZ

Which of the following will not affect execution speed?

2.
b.
c.
4.

The

Se v

battery strength
peripherals

.date manufactured

temperature
phase of the moan

fasrtest flag operatiaon- requires:

2.3 4 =S
8.8 wS-
16.6 mS
16e7 mS
none of the above

A conditiomadl loop will execute faster if the
conditional evaluates:
4

C.
d.

2.

J.

true — <7 ¢
false

a or b

all of the above
none of the above

Wich £lag 26 clear...

2.
b.
C.

&

2.

BREEP is faster than TONE O
TCNE O is faster than BEEP
BEEP is £faster than CLD

a aund c

b and ¢

In the modified routine "POLY", if long form RCL’s

are

used, how many iterations are required before a

speed. increase is realized?

a.
b.
ce.
d.

>T0-
exactly 1.5 =3 REL : ’ A_(
less thanm 2 e %3 = 34 IS . btfv‘v*
"more than 2 geLAE LT (o L et
‘mever will 31’015*— Lefes ¥3 —,—iﬁ— aov'w ’
none of the above ¢4

n¥ 213 5-43¢.6= %uﬁw.l o Wk T

:i)caa L\Bof GJsf

= b= Ok*ﬁzaz's o
© 434 Zfﬂﬁf&*ﬂ"’“g

SECTION III - QUIZ (continued)

6. How many BEEP s could be executed in the time it
takes to scroll ome alpha character in an AVIEW?

g 26>
‘323“ ©- “}

i-’w@ 26 tlar
. & and‘
e. bl and: c.

Te;, What ig t:h° axpeqted execution time of the byte
sequemwce 1B 4G% g%

91-3‘*ur3 —ecorect 2] S 4 285 4+ o4 = 913 “s
b. 6ilie: 8mS
91..6: mS:
. 37..Z mS.
g none of the above

2

8. The fastest trigonometric mode is:
a. DEG
&> RAD
c. GRAD

d. all of the above
e+ none of rthe above.

9. An alpha entry line that appendy three charam'*o the

ALPHA register takes: U+ *e"‘ﬁﬂ"""‘l
a. 40.4 =S y /;;/
b &1. 4 mS M = 37. q"‘" q q :C{

c. 42. 4 nS
d. 43. 4 mS
@/b none of the above

1G. The fastest instruction is:

cra— ¥

ae

C . CLX— @)

d. the npull™— wot arva.\\cl_e— t-«.s&r..,¢§vo

e. mnone of the above

SECTION IV

EXTENDED FUNCTIONS / EXTENDED MEMORY

© Copyright 1383
INNOVATIVE TRAINING CONCEPTS

T REGISTER

HEX | | ABSOLUTE
SREes (7 _BYTES WIDE) ADDRESS
VOID 1025
SEQ 1008
SEF
Nirect: P EXTENDED
irection tor 0
ectio og torage MEMORY
MODULE
| 72
: (238 REG)
302 770
301 MANAGEMENT_WCRD 42
300 VUi 768
F 78
2F VOID g7
2F0Q 752
2EF 751 — ;
EXTENDED
: : A
Direction of Storage MEMORY
i MODULE
L 4
202 51 (238 REG)
201 MANAGEMENT WORD #1
200 VOID | 95172
QBF 191
oBE | FIRST FILE HEADER —
OBD b]] ‘ 189 EX | LNDED
Direction of Storage FUNCTION
! MEMORY
Q41 065 R
040 — WORKING FILE PCINTER L 064(1 27 PEG)

Figure 4.1 — Extended Memory Addressing

SECTICON IV
Extended Functions Module/Extended Memory

The Extended Functions Module (XFM) and the Extended
Memory Modules (XM“s) increase the 41C°s RAM capacity by 603
registers. This RAM is not available for key assignments,.
numbered storage, or program editting. Its purpose is to:
give the &1C file haud%ing capability. The XFM also brings
some excellent data'l ‘qbprogram;h&aé;éeg functions to the:
41C“s: imstructionm set. These include programmable SIZE,
programmable key assigpments, block operations, and alpha
manipulations. The arrangement of of extended memory 1is
shown in PFigure &.1.

IF¥ /XM ARRANGEMENT
The 127 registers that reside within the XFM partially

£i11 the void between the User RAM and the status registers.
It begins at register address CBF and continues down through

register 040C. Location 040 contains the most 1important
pointer for M, the working file pointer. Its seven bytes
ccntain the curreat working file number, the top address of

the next ™ module, if present and in use, and the top
address of the current block of memory. If this register is
disturbed, a EMDIR (extended memorv directory) will display
DIR EMPTY. The exact layout is as follows:
3\-‘»—1 L ‘BC
Hrbbie Nuybe: / deawon ot bebe.
13 12431110 948 7 6; 5 & 3/ 2 1 0

Working File Pointer Format (¢4¢)

NXT and CUR, top of next block and top of current block,
respectively, are in register hex address form. The file
ID# 1is set when a file is made the working file. When a
ASCII or DATA file is invoked by name or by a R/S during an
EMDIR, this value is set.

The first fils header is stored ia locatiomns OBF and OBE

and file storage progresses dcwnward within the XFM. The
storage 1in all of extended wmemory begins at the top of the
module and progresses downward to the last available

register in the module; then storage begins in a higher XM.

The format of XM“s 1 and 2 is similar to the XFM memory;
just below the last available register for storage is a
memory management word. In the XM“s the register contains
the Dbottom address of the previous module (BCT), the top
address of the next higher module (NXT), and the top address
of the current mocdule (CUR).

Nibble Numper I
13 12 11 L0 9 /8 7 6|5 & 3|2 j
——————————————— - —'-—--—---Lw——'m-—--l c"l‘%‘v\
. B 8] T \

Memory Management Word Format

These registers have 1lirctle value to the synthetic
programmer, because when their contents are altered,
subsequent X¥ accesses will usually correct them. Th e
addresses stored in these registers have the same register
hex address format but are offset from the actual address by
one Or two registers. It has been postulated, Dby Steve
Wright, ©PPC Calculactor Jourmnal VS N3 pp 22-2&4, that the
purpose of this is to facilitate data movement when files
are delezed from XM.

There are several VOID’s, or addresses of registers that

“don’t exist’, within XM. The VOID’s at locations 200 and
30C probably exist to prevent a downward read 1in these
modules to continue into the module below. In the case of

X #1, the “module below’ would be the top of TUser RAM.
There are two 16 register VOID’s at the top of the two X¥'s
and their use has not vet been determined.

The combination of seven FF bytes is used by the 41C to
define a “parctition register”’. This partitionm register
appears where a filename would be expected and denotes the
end of XM used. It is analogous to an end-oi-file marker
for all of extended memory. The 41C searches for this
partition register whenever a file is deleted. If the last
file is deleted, its file header is written over with seven

S The old contents of memory are not cleared. If the
e to be deleted is not the last file in memcrv, the 41C
arches for this marker and moves evervthiang £from the
rker to the beginning of the first file after the deleted
cne forward to £ill the gap-. If this byte pattern appears
withiz a file as data, a PURFL could result io leost data.

slajulod Ppub BaNquUNY ofld — Z'y einhbyy

849jUl0d pup saINQUYlY oltd — Z# dJeisibay

HOSv=¢
Viva=¢
WvyO0ud=1
(X3H NI
SH3LSIO3N 40 #) JdAL
EVAREERIE! Vivad SS3IMAAV ANV d3LINIOd 34 T4
| i | |

I .: | i

ﬁﬁ;o ﬁ;oomooom_mom

ozls¥vl6v AV 3V |dv]|
0 | é 3 1% G 9

("'0z) ssoods yum peppod
paynsnl jybu ‘sie)obipyd 4 ewboN oty — |# J9ysibay

FILE HEADERS

The 41C distinguishes between 3 types of XM files:
program files, ASCII files, and DATA files (P, A, and D).
The format of a generic file header is shown in Figure 4.2.

Figure 4.2 - File Header Registers

The first register in the two header registers contains
the file name: from one to seven characters, left justified
and right padded with spaces (hex 20), by the 41C, to make
seven bytes. The characters that make up the name can be
any byte value £rom 00 to FF.

WARNIKG: if you use any characters in a filename that
cannot be absolutely determined from the display, you will
have problems when ycu want to delete the file. In order to
PURFL (purge a file from XM), vyou must specify the exact
filename. A filename cannot be recalled from XM by normal
means.

The second register of the file header contains the file
type (P, D, or A), the file pointer and address data, and
the f£ile extent. The word “extent’ is used here because the
file “SIZE’ shown 1in an EXDIR is vreally the naumber of
registers in the extent. The actual file size is the extent

plus two registers for the file header. The extent is the
number of registers available for file storage under that
filename expressed in hex notation. The file type, 1in the

firsr aibble of the second header register, will have the
value of 1 for a Program file, 2 for a Data file, and 3 for
an ASCII file. This nibble can be made to take on other
values, and the EMDIR will show a “@xxx” for file type and
extent; but the file will not respond to any of the XFMY file
manipulation instructions.

(V%]

values in nibbles 12 through 3 of the secgnd file
register differ frcm one file type to another and
discussed with each type of file.

“TA4 EMDIR instruction behaves like the global label

C}jﬁbgj in User RAM, except that the chain of filenames 1is
T kwards. The 41C examines location OB® for a wvalid
c ,’Kjﬁg' »» ddsplays it with the file type and exteant fromw the
“f” A O egister, calculates the address of the next possible:
“ﬂ:LE; der from the current extent, and repeats the process
{bﬁywi partiticn register is found. This same search:
f:) is: used for all file access instructions. When:

whe EwCIE

is complete, &t leaves the number of XM registers
- in cthe X register.

P FILES

rogram type XM file is just that...the image of a:

ficgnﬁah in User RAM moved to XM. Every feature of the
cﬁ*{iﬂ file is there: «compiled branches, the program END,
= 'S .
/ . b ity assignments, and even nulls that were not packed.
“Lffv) to prevent a corrupted XM program file from being
gakrvet into User RAM, a three byte checksum is stored
I ,,QT\CI‘ -
P L BRS 8s 5, 4, and 3 of the second header register.
;pfi, I o is ccomputed from the bytes within the programe.
7ﬁy;imr’ 12 through 6 of the second header register are not
I EALE S any purpose with a program file.
f,._,ff: y P P g
L it
g
Nibble Number
¥3 r21r1¢c 9 8 7 6 5 & 3 2 1 @
¥ « <« « + «+« « o« CHECKSM EXTENT
- Y
S (Mmoo Z5%)
$econd Header Register Format for Progam Files
[:?q"ii)- ’program file extent is the number of registers
w o f o g

i
sgysr’ a¥

to hold all of the bytes of the program. It 1s
d as the number of bytes in the program divided by
rounded up to the nearest whole aumber.

”

Sin e the END 1s stored with a program fiie, the

fevelow e £TOIN @ stored to indicate whether a program is

V=N , or packed is also included with the copv. PRIVATE
£ 4Laiis files may also be stored in XM.

The XFM instructions valid on a program file are:

GETP GETSUB PURFL RCLPT RCLPTA SAVEP

It has been discovered that within certain <constraints,
a program file may be executed within extended memory.
Synthetic techniques for branching outside of User RAM are
necessary in order te uses this techmique. Some. of the
problems involwed are:

Global 1label references can only be made to labels
within User RAM. Amy global labels in the stored program
are mnot part of the global label chain, and cannot be
called. XEQ’s to global labels in User RAM will not have
the <correct return address stored on the subroutine return
stacke.

Numeric branches- should be compiled, 1in order to work.
1f they are not compiled, a RUN of the program may compile
them and make the checksum invalid. The program file cannot
then be recalled back to User RAM. If the program file
crosses over any XM module boundaries, the compiled branch
lengcths will not work correctly. '

Program files in extended memory can be editted if the
program pointer 1is placed there —correctly (by synthetic
means), but changes to program content will invalidate the
program file’s checksum.

Ta shorc, it is impractical to use extended memory for
running or editting programs. The technigues necessary to

de this can be informative as to how program executionm and
addressiag occurs, but are beyond the scope of this course.

DATA FILES

The Darcz file consists of comsecutive records that are

treated like numbered storage registers. Each record will
hold as much informationm as a single register, for each one
is a register.

Records may be accessed from ome at a time sequentially
or randomlv, to all of them at once, User Ri:M permitting.
When records are read or written to a data file, a pointer
is wmaintained and incremented after every read or write.
This pointer is maintained in nibbles 5, 4, and 3 of the
second header register as a three digit hex address of the

current record or end-of-file. The address of the first
record (record # 0) is kept in nibbles 12, 11, and 10 of
this header register.

Nibble Number
13 12 11 10 ¢ 8 7 6 5 4 3 2 1 0

2 FilePtr Reg Ptr Extent
4 éelit. - 65

nayt peiTer
Second Header Register Format for Data Files

The extent is the hex number of records available Ffor
storage _.in the file. Since the record numbers are based
from 0, the highest cecord number is- the extent less I
This is like the correspondence of highest numbered storage
register and the actual SIZE of User RAM. Nibbles 9 through
6. of the second header register are mct used.

The XFM instructions valid cn a data file are:
CLFL CRFLD FLSIZE GATR GETRX GETX PURFL RCLPT

RCLPTA SAVER SAVERX SAVEX SEEKPT SEEKPTA

ASCII FILES

An ASCII f£ile allows the storage of variable length
records, <from ! to 254 bytes in length. Each byte stored
can take the range from 00 to FF hex, but againm seven
consecutive FF bytes should be avoided to prevent false
partition registers. The ASCII file manipulations allow the
file pointer to be set at any byte position within any
record in the file.

The file pointer and register pointers are maintained
in the same position within the second header register as
with dataz files, but another pointer is necessary for the
alphabetic operations...a character pointer. Information is

retrieved from an ASCII file and placed within the ALPHRA

register. Since a maximum of 254 bytes may be contained in
a single record, a character pointer must be maintained to
coordination reads and writes to the file. This character

pocinter 1is encoded in hex and stored in the 7th and 6th
nibbles of the second header register. .

) Ni:bble Number
1312 11 10 9 8 7 6 5 4 3 2 1 0

———— . ——— v —— ————— T — o~ —— —————— ", - - —— — ——— ————

3 FilePtr . . CharPt RegPtr Extent
Second Header Register Format for ASCII Files

The 1information in an ASCII file is stocred in a
streaming Ffashion without regard to register boundaries.
The first byte follocwing the second header register is a hex
byte count of the number of bytes in the first record. The
41C adds this byte count to the address of that byte to
compute the location of the byte count for the next record.
The records are numbered starting at record 00O as the data
file records are.

For the 41C to access the 3lst record in an ASCIT file,
it must start at the begiaoning of the file and read each
byte count byte and compute the address c¢cf the mnext one

thircy times. After the desired record is reached, the
character pointer is added to the address to find the
desired access point within the file. It is understandable

how ASCII file accesses can be time consuming.

The advantages of the ASCII file are that records can be
of variable 1length and may contain any byte combinations.
Records may be inserted and deleted at will. More records
are easily appended toc the end of the file without regard to
seeking a file pointer as with data files.

The wuse of a record byte count requires the user to
included them into the size of the file when it is <created.
The size oz extent of anm ASCII file is specified in whole
registers. The computation of an ASCII file memory
requirements are:

_ —

N y .
p e —— | e et
- Y Reemd

| P

¢ Puxﬂ‘és £ torat Chavuckes +|

- rou$& v

ROUND UP
TO WHOLE
REGISTER

(# of bytes of data) + (# of records) + 1

Sizing Calculation for ASCII Files

Instructions valid on ASCII files:
APPCHR APPREC ARCLREC CLFL CRFLAS DELCHR DELREC
FLSIZE GETAS GETREC INSCHR INSREC POSFL PURFL

RCLPT RCLPT SAVEAS SEEKPT SEEKPTA

Both DATA files and ASCII files have many instructions
for storing and recalling information from the files, but:
the biggest drawback of their implementation is that a

file’s size cannot be increased directly. The information
must first be transfered to anm external storage device or to
User RAM, then the file must be deleted and recreated. Or
the information may be written to another file of the same
type with a larger size. The problem with direct file

transfer is that there must be more than twice as much
storage left as the original file occupied.

The 1instructions for manipulation of each of the file
types will now be discussed. It should be kept in mind that
several instructions are common between twoOo O more file
tvpes and that their behavicr can be markedly different.

ASCIT FILE INSTRUCTIOKRS
CRFLAS X=# cf registers ALPHA=]1 to 7 character filename
This instruction creates an ASCII file of the size

specified under the name specified and makes it the working
file. Possible error messages are:

DATA ERROR X contains a zero register ‘'size
BUP FL Filename already exists
NAME ERR ALPHA register is empty
O ROOM Not enough space is left in XM

ASCII FILE INSTRUCTIONS (continued)
CLFL ALPHA=]1 to 7 character filename
This instruction will set the number of records in the

file specified to zero and make the named file the working
file. Possible error messages are:

FL NOT FOUND Named file does not exist.
FL TYPE ERR Named file is a program file
NAME ERR ALPHA register is emprty

PUGRFL ALPHBA=1 to 7 character filename

This instruction will purge the named £ile from extanded
memory and move all files after it forward to f£ill the space
Yeft by the ffle. WARNING Afrer this instruction, there
wiill he mo workimg file selected. Any attempt ro reference
a file without a current. working file will cause the loss of
all files. Possible error messages are:

L NOT FOUND The namsd file does not exist.
NAME ERR The ALPHA register is empty.

SEEKPTA X=file pointer ALPHA=]l to 7 character filename

Seek pointer by alpha. .The file pointer is of the form
rrr.ccc where rrr 1is the record number and ccc is. the:
character position within the record. Both consider zero to:
be the first record and first character. Possible error
messages are:

DATA ERROR X is greater than 999
END OF FILE The desired pointer is beyond the
end of the file. The file is

selected as the working file, but
its pointers are not changed.

END OF REC The desired pointer is beyond the
end of the desired record. The
file is made the working file and
the pointer is set after the last
character in the desired record.

FL TYPE ERR The filename specifies a program
file.

Cer RS

l C_"‘ G\
. 7 ~ o 17
ke SaEn) CXEEL

i

N P RN

Lol PT="> ff

Y=o emd!/t ‘ L
! / ’ Loy /Dw ~ "?ﬂ > [2T

T
y

;! v
2 L4
1 &/ by
P . ’
S p el
[
o -_4_,.«»\.4,.‘1 . o
(,/"/ﬂ— g ; /

A

4 A e
A

ASCII FILE INSTRUCTIONS (continued)

SEERKPT X=file pointer rrr.ccc

This instruction is similar to SEEKPTA except that there,
is no filename specified. The file is assumed to be the
working file. The possible error messages are:

DATA ERROR X is greater than 999

END OF FILE The desired pointer is beyond the
end of the file. The file is
selected as the working file, but
its pointers are not changed.

END OF REC The desired pointer is beyond the
end’ of the desired record. The
file is made the working file and
the pointer is set after the last
character in the desired record.

FL TYPE ERR The filename specifies a program
file or there is no working file.

.=::§1—-——' 4/0 yi?\

x*ou—\ . srr %\ ?c&q’_“
RCLPTA ALPHA=<0 to 5 hg acter 1fé§§ie>

This instruction returns the current file pointer of the
file specified into the X register. The named file is made
the working file. The pointer is in the format: rrr.ccc as
defired for SEEKPTA above. The only error message is:

FL NCT FOUND Named file does not exist.

RCLPT (no parameters)

This instruction functions 1ike RCLPTA except that
the working file is assumed. The error message:

FL NOT FOUND This indicates that there is no
working file.

FLSIZE ALPHA=! to 7 character filemame or is empty

This instruction returns the size in registers of the
filename specified, or of the working file if the ALPHA
register 1is empty, to the X register. Possible error
messages are:

FL NOT FOOUOND Named file does not exist or no
working file exists.

10

ASCII FILE INSTRUCTIONS (continued)

APPREC ALPHA=L to 24 characters of text'' have Toe— Storc ,“'*?G‘ré'
T Hoen do- a0 RUPT Oom——

This instructioen will append the contents of the ALBEA‘Rﬁ~;ﬂ"Af
register to the end of the current working file making it a s 2e&D
new record. The file pointer is adjusted to after the last |base
character in this new record. If thre ALPHA register 1s ,é%,,£§§
empty, mo action takes. place. Possible error messages ar&r 5““¥;

END OF FL Attempt to writs past end of file. SEEAFT
EL TYPE ERR Working filer is. mot an ASGII file.
& RTERNT - J
DRLREC Cons: e Serk mL ;4‘2 LO.:R 't‘{thcmi‘.‘e_'co(- <.
' Th#s *astruction dieletes the: pecord at which the workng
Fike pointer isv positioned at. ALl records afrer ‘the
deleted recard’ arze moved forward by one record number. Tﬁ

file podmter is set to the beginming of the record rhat uas
del eted. -~ Possible error messages are?:

"END OF FL. Attempt: to delete past end of ﬁhle
FL NOT FOUND There is no working file.
FL TYPE ERR Working file is not an ASCIL fiLe.

INSREC ALPHA=] to 24 characters of text

This fwmstruction inserts the ccntents of the- ALPHA
ragisterr ahead of the current record pointer as a new
record wmowing subsegquent records back toc make room for it.
Possible error messages: ace:

END OF FL Attempt to expand file past end
of file.
FL NOT FOUND There is no working file.
"EL. TYPE ERR Working file is not am ASCIT f£ile.
(3N “tc “
R

SOSFL —> Fam%om pol At d‘“ws‘ o ceuram e

%\ %Jﬂ':s -/"a
— , VL

C Xt

ASCII FILE INSTRUCTIONS (continued)

APPCHR ALPHA=] to 24 characters of text

This 1instruction will append the contentst oof the alpha
register to the end of the record specified by the file
pointer. The file pointer will now be positioned after the
end of the current record. An empty ALPHA register has no
effect. Possible error messages are:

END. OF FL At tempt to expand or write beyond
the end of the file.

BFL NOT EQUND. There isf mo working £ilew 7

FL TYPE ERR Working file is noet an ASCII file.

REC T0O LONG The Tesulting record weuld exceed

254 bytes in lengrth.

DELCHR X=# of chamacters to delete

Thirs fnstruction will delieter X characwers starting ar
the current file pointer position in the working file. The
file pointer remains the same. Possible error messages are:

END OF FL At tempt to delete past end of £ile
FL NOT FOUND There 1s no working file.
FL TYPE ERROR Working file is not an ASCII file.

INSCHR ALPHA=] to 24 characters of text

This. *nstruction will insert the contents of the ALPHA
register into the working file starting at the current file
pointer position. The file pointer will be positioned after
the last character added. Possible error messages are:

END OF FL Attempt to expand file past end of
- file.

FL NOT FOUND There is no working file.

rL TYPE ERR Working file is not am ASCII file.

REC TOO LONG Attempt was made to expand a

record beyond 254 characters.

ASCII FILE INSTRUCTIONS (continued)

§C¢ ?ﬁf’r\

POSFL ALPHA=] to 24 characters of text

This instruction causes the 41C to scan the working file
from the current file pointer position to find a match for
the text in the ALPHA register. If a match is found, the
file pointer is set to the first character of the matching
string and the poimter is returned te the X register. If no
match is found, the. fiile pointer remains the siame and a

value ef =L I'ss returmed to the X register. An empty ALPHA
register. will always: geturn a =-1l. Poissiible arror messages,
are:

EL NOT FOUND There is no working £ile.

FL. TYRE ERR Working file is not am ASCII file.:

GETREC Gno»g&:anetgrs)

This instrweition will replace the contents of the ALPHA
register with 1 to 24 characters from the working file
starting at the current file pcinter position up to the end
of the currenoc record. The file pointer will be set to the

next character to be sent. Flag 17 will be set if the end
of record was not reached . It will be clear if the emd of
record was reached. This coordination with flag 17 allows

text files to be easily used with the HP-IL Video Interface.
If flag 17 is set, the video interface will not place an
automatic carriage return and line feed after the OUTA
{(cutput alpha register) instructicn. Possible error messages
are: '

ENRD OF FL Attempt to read past end of file.
FL NOT FOUND There is no working file.
EL TYPE ERR Working file is not anm ASCII file.

13

ASCII FILE INSTRUCTIONS (continued)

ARCLREC (no parameters)

This inmstruction will append characters from the current
file wpointer position of the working file until either the
ALPHA register is full or an end of record has been reached.
The file pointer will be left pointing at the next character
to be sent. Flag 17 is manipulated as with GETREC; it ifs
set 1f the end of record was not reached, and cleared
otherwise.. Possible error messages are:

_ERD OF FL Attempt to read past end of file.
“EL NOT FOUND There is no working file.
FL TYPE ERR Working file is not an ASCII file.

SAVEAS ALPHA=ASCIIL fiile name <,mass storage fillename>

This instructiom will transfer an ASCII file to a wmass
storage device 1like the Digital Cassette, 1f one exists.
‘The mass storage filename is optional; 1if omictted, the name
of the ASCII file will be used as the. mass storage filename.
The mname must have been previouslv-initialized wusing the
CREATE command in the HP=-IL module. Posgzible error messages
are:

END OF FILE The destination file was smaller
tthan the source file. Partial
: transfer of the contents was made.
FL NOT FOUND The ASCII filename does not exist.

FL TYPE ERR The named file is not am ASCII
file.

RAME ERR ALPHA register is empty.

NO DRIVE The HP-IL is not present or there

#s no mass storage device omn the
interface loop.

14

ASCII FILE INSTRUCIONS (continued)

GETAS ALPHA=mass storage filename <,ASCII file name>

This instructicn will retrieve an ASCII file from a mass
storage device and place the contents into anm ASCII file im
extended wmemory. The ASCII file in XM must have been
created previously If the end of edither file is reached,
the transfer will stop. Possible error messages are:

END OF FL. - The end of the XM file was reached

before the: transifer was: complete:.
PL. NOT FOUND The named £file does not exist im
) extended memory. P A ,
BL TYRE ERR The named £ile was not. an ASCII
file. » ’ ‘ B
NAME ERR The: ALPEA register is empty.
NO DRIVE There is nte: HP-ILL. module or mass
sstorage m%vice on the interface
loocp-

[l
n

DATA FILE INSTRUCTIONS

CRFLD X=# of registers ALPHA=1 to 7 character filemame

This 1insitruction creates a data file with the specified
name and of the specified extent. The created file becomes
the working file. Pocssible error messages are:

DATA ERROR X-register contains a Q.

DUR FL. A f£ile already exists with the
name specified.

NAME ERR The ALPHA register 1is empty.

&O_ROOM There is: not enough extended

memory o create the size of file
speicified.

CLEL ALPHA=] to 7 character filemame
Th'is instruction will write the walue of zero finto every
record within the data file. Possible error messages are:

FL NOT FCUND The file specified does not exist.
FL TYPE ERR The file named is a program file.
NAME ERR The ALPHA register is emptye.

FLSIZE ALPBA=<(0 to 7 character filename>

This instruction will return the number of =records in
the named file or working file to the X register and wmakes
the file referenced the working file. Possible error
messages are:

F1. NOT FOUKND The named file does not exist or
there isi no working file.

PURFL ALPRA=] to 7 character filename
This instruction will purge the named file from extended

memory and move all files after it forward to £ill the space
left by the file. WARNING: After this inscruction, there

will be no working file selected. Anv attempt to reference
a file without a current working file will cause the loss of
all files. Possible error messages are:

FL NOT FQOUND The named file does mot exist.
NAME ERR The ALPHA register is empty.

16

DATA FILE INSTRUCTIONS (continued)

SEEKPTA X=rrr ALPHA=] to 7 character filename

This imstruction will select the named file as the
working file and set the file pointer to the record value
specified in the X register. Only the integer portion of
the X negister is. used. Possible error messages are:.

DATA ERROR The number in X is greater than
399.
-END OR FL Attempt to position file polnter

‘bieyond the end of file. The E£fle
witll be selected as the working
file, but the f£ile pointer will
_ not be change .
FL NOT FOUND The named file does not exist.
FL. TYPE ERR Thte named file is a program file.

SEEKPT X=rrr

This dinstruction will set the file ©pointer of the

working file to that specified in the X register. Possible
error messages are:

DATA ERROR The number in X is greater than
§9¢5.
END QF FL Attempt to position file poianter

beyond the end of file. The file
pointer will not be changed.
FL NOT FOUXND There is no working file.

RCLPTA ALPHA=] to 7 character filemname

This 1ifastruction will return the file pointer of the
named £file to the X register and selects it as the working
file. The file pointer is of the form rrr as in SEEKPTA and
SEEKPT. The only error message:

EL NOT FOUND " The named file does not exist.

17

DATA FLLE INSTRUCTIONS (continued)

RCLPT (no parameters)

This instruction functions the same as RCLPTA except the
working £file 1is assumed. The value of the working file
pointer is returned to the ¥ register. The only error
message:.

FE NOT FOUND There is no working file.

SAVER ALPHA =<0 tof?‘character-filgname>

This imstructiom will copy all of the —current data

storage registers to: the named data file or to the working

file if the ALPHA register is empty. The contents of the
first data reglster R0O0Q will be saved as record 000, ROI
will be' saved into record 001, -etc. The named data fiKe

will be made the working file. After the transfer, the file
pointer will be pointing to the next available record or at

the END OF FL. If there are more data registers than
records am EEKD OF FL error will result. This instruction is

analogous to the Card Reader WDTA instruction. Possible
error messages are: ' :

END OF FL There were more data registers
than records in the file.

FL NOT FOUND The named file does nmot exists or
there is no working file.

FL TYPE ERR The mamed or working file is not

a DATA file.

18

DATA FILE INSTRUCTIONS (continued)

SAVERX X=block control word: bbb.eee

This instruction copies the data registers denoted by
the block control word in the X register (bbb=beginning
register, eee=end register) into the current working file
beginning at the current file pointer. The transfer wilil
not take place if there is not. enough room from the file
pointer o the end of the file to accomodate the block - of
‘data registers. The file pointer will be left pointing;éﬁ
the mext available register or to the end of file
This fumction #s amalogous to the card reader”s WDTAX. The
possible error messages are:

END OF FL Attempt to write past the end of
£ile. The file pointer remains
unchanged.

EL TYPE ERR. The working file is not a DPATA
Hile.

NONEXISTENT At tempt to save a register that
doess not exist ian the current
SIZE..

SAVEX (no parameters)

This instruction will save the contents of the X
register to the current working file at the current file
pocinter. The file pointer will be advanced to the next
available record or to the end of file. Possible error

messages are:

END OF FL Attempt to save a record beyond
the number of records available.

FL NOT FOUND There is no workipng file.

FL TYPE ERR The working file is not a DATA
file.

19

CeetTE
- ”{ '/
SiA=T A fw,:’

j/ GEeTA
e SLue ¥
s |
24

DATA FILE INSTRUCTIONS (continued)

GETR ALPHA=<0 to 7 character filename>

This instructiom will copy the contents of the named
file or workinmg, file, if filename not present in ALPHA, to
‘the data storage registers. The first record (000) in the
file is' transferrped to R0OO, the secomnd record to ROl, and se
on until’ no register? are available in User RAM or an end of
file is reachedi. The file poimter will be left pointing to
the nmext avaLLanle cecord or the end of file, depend:ding upoen
the conditiom that tarwina?ed the transifer, the exhaustion
of records or ef data regi&ters. The named f£ile will become
the working £ilen Thi's- insctruction is: analogous to reading a
data card* with the: card reader. Possible error messages: are:

FL NOT' ROTBND The nmamed: £iler dces not exist or
‘ there is no working file.
FL TYPE ERR Ei ther the wmamed file or the

working £ile is not a DATA file.

GETRX X= block control word, bbb.ecee

Tris instruction will copy data from the working £file,
beginning at the current file pointer, to numbered data
registers beginning at register bbb and continuing to
re ister eece. The transfer will cease wnen the registers
specified have been filled or the end of file is reached.
The £file pointer will be positiomed to the next record otz
the end of file. This instructicn is the complement of
SAVERX or of the card reader’s RDTAX. Possible error
messages are:

END OF FL Attempt to read beyond the end of
the file.

FL NOT FOUND There is no working file.

FL TYPE ERRCR The working £ile is not a DATA
file.

NONEXISTENT At least one register in the range

specified dcoes not exist in the
current SIZE.

20

DATA FILE INSTRUCTIONS (continued)

GETX. (no parameters)

This instruction will copy the record pointed at by the
file pointer of the workinmg file to the X register. The
file pointer will be incremented by one. Possible erwor
messages ares

END OF PBL. Attcempt to read beyond the end. of
ther file.

FL NOT FOUND There is no working file.

FL TYRPE ERR Th.e workiug,ﬁile is not a DATA
file.

PROGRAM FILE INSTRUCTIONS
GETP ALPHA=] to 7 character filename

The named program file is copied from extended memory

into precgram memory. The copy will be placed between the
permanent .END. and the last program END, replacing any
program in between. If this instruction is executed from a

running program, control will be returned to the calling
program, unless that program has been replaced by the
execution of this instruction, then program execution will
resume at the first line of the copied program. If executed
from the keyboard, the program pointer is positioned to the

first Yine of the trawmsferred program. If USER mode is on
before the transfer, any key assignments recorded with the
file will be activated. This instruction is similar to

reading a program card with the card reader. BRossible ernor
messages are:

CHKSUM ERR The program file checksum is net
correct for the program file. The
contents of the file may have been
corrupted by: XFM/XM modules
removal, static memory loss, or
editting or execution with the
program pointer in extended

MEemOoTry .
FL NOT FOUND The named file does not exist.
¥L TYPE ERR The named file is mot a program
file~ :
NAME ERR The ALPHA register is empty.
NC ROOM There is not enough room in

User RAM for the program. Try
reSIZEianag for fewer data
registers, deleting key assign-
ments, or clearing programs.
This message is only seen during
program execution.

PACKING The same as “NO ROOM’ except that
this message is seen if GETP 1is
executed from the keyboard.

-

14
-

I

GETSUB ALPHA=]1 to 7 character filemame

This: instructionmn copies the named file into User RAM
after the lYast program and just before the permanent .END..
Control 1is returned to the calling program 1if executed
within a program. The program pointer is not set to the
fi st line of the transferred program. If USER mode is om,
any key assignments recorded with the program will be
activated. This fnstruction is: analogous to the card
readier”s RSUB. ' Possible error messages are:

CHKSUM ERR ‘Thee program file checksum. is not
correct for the program file. The
coptents of the file may have been
corrupted by: XFM/IM modules
removal, sitatic memory loss, or,
editting: or execution with the
preogram pointer in extended

WEemory «
FL NOT" FOUXND The named file does not exist.
FL TYPE ERR The mamed file is not a program
file. :
NAME ERR The ALPHA register is empty.
NO ROOM There is not encugh room in

User RAM for the program.. Try
reSIZEing for fewer data
registers, deleting key assign-
ments, or clearing programse.
This message is only seen during
program execution.
PACKING The same as “NO ROOM® except that
TRY AGAIN this message is seen 1f GETP 1is
executeds from the keyboard.

PURFL ALPBA=] to 7 character filename

This instruction will purge the named file from extended
memory aund move all files after it forward to fill the space
left by the file. WARNING: After this instruction, there
will be no working file selected. Anv attempt to reference
a file without a current working file will cause the loss of
all files. Possible error messages are:

FL NOT FOUND The named file does nmot exist.
NAME ERR The ALPHA register is empty.

23

PROGRAM FILE INSTRUCTIONS (continued)

RCLPT {no parameters)

This dinstruction will return the number of bytes in the
working file, if the working file is a program file. A
program file can be a working file if: an EMDIR is stopped
at the file, a RCLPTA or SAVEP with the filename has beenm
axecuted awmd no other file has been purged or made the
working ﬁike silacer. Th'i’si ifnstruction cam be: confusing
because #it is allowed on alil file types. The only ercon
message Lsw

FL. §QR EQUND There is no working file.

RCLETA -ALPHA=<0 to 7 character filemame>

This fmstruction will return the number of bytes in the

named program file. If the ALPHA register is empty, the
instruction fuanctions like RCLPT. The only error message
is:
FL NOT FOUND The named £file does not exist, or
~ if ALPHA empty, there is no work-

ing file.

SAVEP ALPHA= <program name><,filename>

This inmscructionm will copy the named program, Or current
pregram 1if program name is omitted, tc a program file
specified by the filename. If the filename is cmitted, the
file will be given the same name as the program. In either
case, the ALPHA register must have o name in it. If a
program f£ile already exists under that filename, it will be
purged from extended memory and recreaced. Possible error
messages are:

BUP FL A file of the same name exists in
extended memory, but is not a
program file. The existent file

, s made the workiaog file.

NAME ERR The ALPHA register is empty.

¥3J ROOM There is not enough room in
extended memory to save the
specified program.

RaOM The named program resides in
ROM.

EXTENDED MEMORY DIRECTCRY
EMDIR (no parameters:)

This instructiom wil? *@&isplay a “directory’ of extended
memory and place the number of extended memory registers-
that are not used into the ZX-register. If no files exist,
the message '"DIR EMPTY” will be displayed.

Each directory="entry is shown as a single line,
ceontaining theinLemame” a filetype letter (Program, Data,
or ASCII), and the extent of the £file. A. sample directory

413 shown. belows::

NPR P138
EXXXXXX DO1lOC
L ' AQO1
MPG ‘P098
CART De20
CARZ G20

CARLX D.C.20

Bach entry is .paused” in the display like a CAT alog.
If any key other than R/S or ON is pressed during the
directory, the display will “hold” at that entry for review
for as long as the key is held down. Cn releasing the key,
the directory will continue.

If the ON key was the key pressed, the directory will
df

‘hol until the key 1is released, then the 41C will turn
off. If the R/S key 1is pressed, the directory will hcld
unptil the key is released, control is then returmed to the
kevboard. The file that was displayved when either of these
twe key was pressed is made ther working file. After the
directory is stopped, the X register will contain the number
of XM registers that are unused. If the directory is not

stopped, the working file remains the same as before the
EMBIR.

The EMDIR instruction is programmable, but countrol does
not returm to the calling program if the directory is
stopped. The stoppage of the directory is a good way for
the wuser to select a file without having to name the file,
but how to guide the user through to restart the program?
The following program limes skhow a technique for using this
file feature:

25

"R/S AT FILE")

AON ‘ \ <

TONE 7 C:au_wtth W \

PSE - N —1L
[SAgLA)

"PRESS R/S" Sleas W A

EMDIR .

CLD g‘cb’-’

AQFF

The fiwst message "R/S AT FILE" is displayed for a short
time with am attention getting TONE 7. The ALPHA register
i#s: then loaded with the message '"PRESS R/S". Since ALPHA
mode was selected, &f che EMDIR 1is stopped with a R/S., the
display will show "PRESS R/S". The user them presses R/S to
continuwe. ~Ef the EMDIR was not stoppedi; the last £file
displayed! would be “frozen” in the display wuntil anocther
view t&ype imstruetion or CLD is executed, hence the CLD.
The AGFF, of course, 1is to exit ALPHA mode. Remember...if
the EMDIR is stoepped, the file will become the working file.
+f it "~ continues without stoppage, the previous selected
working file is still active. If the previous coperation was
a PURFL, any subsequent file operation will cause all files
to be lost. ’

26

EXTENDED ALPHA REGISTER INSTRUCTIONS

The XFM has several imstructions that enhance the ALPHA

capabilities of the 41C. These instructions are similar to
string handling functions in the BASIC language that is used
cn: other computers. The correspondence of these fumctions

are as follows:

XFM AEPHA FUNCTTION APPROXIMATE BASIC EQUIVALENT
ATOX ASC(LEFTS("string™, L))
XT QA "string"+CHRS (X)
OR

"ﬁtring"#&é

ALENG LEN("scring")

ANTUM VAL("string'™)

BOSA INSTR(1,"striang",CHRS (X))
OR

INSTR(l,"string",X$)

ARCT AS=LEFTS("string",X)
N=LEN("string")-X
BS=RIGHTS("string",N)
B$=B S+AS

These instructions are quite useful when working with
ASCII files, ALPEA input data, peripheral codes, and special
displays. A description of each of the fumctions follows:

XFM ALPHA INSTRUCTIONS
ALENG ALPHA=C to 24 character string

This inscructioan will retern a decimal value in the
ran e of 0 to 24 to the X register. This represents the
number of <characters present in the ALPHA register. The
character coumt starts from the £irst ncn-null character in
the alpha register, and counts all characters thereafter,
including wnulls. There are no error messages for this
instructicne.

XFM ALPEA INSTRUCTIONS (continued)

ANTM ALPHA=0 to 24 character text string.

This 1is a very powerful instruction that 1is easily
misused. It will scan the ALPHA register for any
consecutive set of characters that might be interpretted as
ASCII encoded numbers and returns a normalized wvalue to the
X register that represents the decoding of that aumber. In
addition, if a walid string is found, flag 22, the data
ewtry flag will be set. -~ This instruction will not clear
flag 22. The decoding is- controlled by the status of £flags
28 amd 29.

If flag, 28 is set, a "." will: be fnterpretted as the
decimal point. Lf flag 28 is clear, .a "," will be
interpreszted a2s the decimal point. Flag 29 ceontrols whether
or aot comma digit group delimiters, if fflag 28 set (or
periods, 1if £lag 28 is clear) will be accepted as numeric . «
data entry. A leo &n 5_...5 AN

you b&i+§ ot —S
For example, ALPHA="S55,362.8/12"

i \

If Fl8=set and F2%=set, ANUM returns: 55,262.8 i }
2 (A R
If F28=set and F29=clear, ANUM returns: 55 (. -
Oq\uhapfw
:£ Fl8=clear and F29=set, ANUM returns: 55,3628 L&bguti éf?ugﬂ
If P28=clear and F29%=clear, ANUM returms: 55,362 G e
The processing commences from the first data entrf%QjT -
character (1 2 3 4567 889 E + -, .) based upon the
statuses of £lags 28 and 29 and continues until a2 rpon-datsa
entry character 1is encountered. The functioning is like
that of a numeric entry line. If there are multiple plus”’s
or mianus”s, their net effect is considered. The “E’ behaves
differently, in that 2 numeric digit mustc proceed the ‘E”
Any embedded spaces will stop numeric conversicn. At least
one numeric digit must be found before any processing will
oCccur. It there 1s nc convertible strimg ian the ALPEA

register, the X register is left unchanged as well as <flag
2Z. There is no error message for this instruction.

o 3 — e uel rReBsSer “‘é‘lé A

XFM ALPHA INSTRUCTICNS (continued)

AROT ALPHA=0 to 24 character string , X=+ 0 to 255

This imstruction will rotate the contents of the ALPHA
register by the number of characters and direction specified
by the X register. A positive number in X, rotates tc the
left, and a negative number rotates to the right. This
enables the permutation of the ALPHA register in a keychain
type mamnmer. That is, each character cam be thought of as a
key ~on a eircular kaychain; every time a rotation 1is
performed, socme keys are moved about the keychaiu. o the
other side. Their relative order is wmaintained.

Ef there are mull bytes (00) within the ALPHA register,
they wilkl be lost-if a rotatiom stops or any wmaomipulation
results: 1In thHese.nulls becoming the ZYeftmost characterss.
The ALPHA regiscer wuses the pull: byte: to f£ill the space

ahead @ef .amy characters: entered intc the register. The
first woon-null character from the left is the start of all
data. Any nulls following that character. are included in
the workable contents of the register. The only error

message is:

DATA ERRCR The absolute value of X exceeds
255.
ATOX " ALPHA=0 to 24 characters

This instruction will returnm the decimal equivalemt of
the bvte code for the £irst character in the ALPHA register.
The first byte of the ALPHA register will be removed, making
the 1length of the string one less (see comments on nulls in
the explaination of the ARCT instruction). If the ALPHA
register is empty, a value of 0 will be returned. There are
no error essages for this instruction.

[3S]
0

XFM ALPHA INSTRUCTIONS (continued)

POSA X= + 0 to 255 or ALPHA data % youw wo*+>Aﬁ\ V7/#&F§5T

W‘(Lv wn ‘~\ IS

This instruction will returm to the X register the first *Q*,

position of ¢fhe absolute value of the byte code, or ALPHA
string, within the ALPHA register. The first character
position is 0, like the ASCII file character pointer. If
the string ot byte is not found, a =l is returned ta the X
register. The onlky erreor message is:

DA'TA: ERROR The absolute walue of X exgeeds
255.
XTOA X=decimal wvalue (0~255) or. ALPHA data

This instruction: will encode the decimal value in ‘X into
a hexadecimal byte and append this byvte to the contents: of
the ALPHA register. If the X register contains ALPHA data,
the string will be appended to the contents of the ALPHA
register. The only exrror message 1is:

DATA ERROR The absolute value of X exceeds
- 255.

These functions <can lend themselves to quite advanced
techniques. Consider the following program lines:

ANTM

STO IND GO
LBL 01
ATOX

<57

X#Y?

GTC 01

This set of instructions will decode a number from the
contents of the ALPHA register and then take bytes from the
front of the ALPHA register until a delimiting "/" is found.
This technique enables the use o0f delimited anumbers in ASCII
files. A DATA file uses 7 bytes to save a single naumber,
but if the number is less than 7 bytes when ASCII encoded,
an ASCII file record may save rocm.

Either of the instructions, ARCT or XTCA mav be used in
conjuction with flag 25, the error ignore flag, to check a
aumber in the range of -255 to +255. These limits are quite
common in computer applications.

30

N

FLAG REGISTER INSTRUCTIONS

The XFM contains three instructions that enable extended
control of £flags FOO through F43. These functions are
explained below:

RCLFLAG (no parameters)

This fnstruction will return an ALPHA data type value
to the X register containing the statuses of £flags FO0O
through F43. The resulting register is encoded as follows:

Nibble Number
- 8 7 6 5 4 3

(35
p—
<

The nibbles 10 through O contain the binary status of
flags FQCO through F43, respectively in 4 bit groups. The
two F values stored in nibbles 12 and 11 distinguish this
data type from normal ALPHA data in an apparent attempt to
prevent 1indiscriminate storing of values into the flags.
Bug 7, the ASTO bug, allows a method of creating this data
tvpe in the alpha register. Recall that with 7 characters
in the alpha register, the second nibble of the seventh
character will be stored with the ALPHA data value of an
ASTO operation. If BUG 7, the ASTC bug, is present in your
41C a STO/RCLFLAG data tvype may be created by entering 6
characters 1into the ALPHA register with the first nibble of
the first character being an “F’. This mav be easily done
with the XTOA instruction. A byte is then appended to the
end cf these 6 characters with any omne of several
instructions: azn append text line, XT0A, or ARCL. This byte
will be found in the 16th column of the hex table. A good
append text line would be one containing a “?7. An ASTO X
is then executed to yvield the RCLFLAG data =vpe in register
X. In this moanner a RCLFLAG value mavy be ARCL’ed for
storage intc an ASCII f£ile and reconstructed for a later
STOFLAG operation; but cnly if BUG 7 is present.

31

FLAG REGISTER INSTRUCTIONS

The XFM contains three instructions that enable extended
control of <flags FOO through F43. These functions are
explained below:

RCLFLAG (ne parameiters)
This fZnstruction wil'l return an ALPHA data type value

to the X register containing the statuses of flags FOO
through F43. The resulting register 1s. encoded as follows:

Nibbile Number
13 12 1110 9 8 7 6 5 4 3 2 1 0

1 ¥ F

The nibbles 10 through O contain the binary status of
filags FO0O through Fé&3, respectively im 4 bit groups. The
two F values stored in nibbles 12 and 11 istinguish this
data type from normal ALPHA data in an apparent attempt to
prevent indiscriminate storing of values into the lags.
Bug 7, the ASTO bug, allows a method of creating this data
type ino the alpha register. Recall that with 7 —characters
in the alpha register, the second nibble cf the seventh
character will be stored with the ALPHA data value of an
ASTC operation. Iz order to create a RCLFLAGC data type, 6
characters must be entered into the ALPHA register with the
first nibble of the first character being an "F’. This may
be easily done with the XTO0A instruction. A byvte is then
appended to the end of these 6 characters with any one of
several iastructions: an append text line, XTCA, or ARCL.
This byte will be found in the 16th column of the hex table.

A good append text line would be one coutaining a “?77. An
ASTO0 X is then executed to yield the RCLFLAG data ctype in
register X. In this manner a RCLFLAG value mav be ARCL ed

for stocrage into am ASCII file and reconstructed for
a later STOFLAG operation.

31

FLAG REGISTER IRSTRUCTIONS (continued)

STOFLAG X=RCLFLAG data type or contrcl word, bb.ee
Y=RCLFLAG data type if X contains control word

This instruction will cause the restcration of the
statuses of flags FOO through F43 if X contains the RCLFLAG
data. If X contains a control word, bb.ee, where bb and ee
can be from €0 to 43, the Y register must comtain the
RCLFLAG data. Only the flag statuses defined by the control
word: -are ©rCestored. For example a control word of 36.43
would omly ©restore the trigonometric mode and display fix
flagsi» The other £lags FO0G through F35 would be unaffected.

If more thanm dme group of consecutive flags need
restoratiaon, w®multiple executiom of this dinstruction with
differemat econtreol words will accomplish <that. Possible:
@CTOTr messages: are:

BATA. ERROR The value in either X (or Y if a
control word is used) does not
conform to the RCLFLAG data
format.

NONEXISTENT The control word specified in X
references flags out of the range
of 00 teo 43.

X<>F X=+ 0 to 235

This instruction will exchange the contents of the X
register amd the statuses of flags FO00O through FQ7,
interpreting each flag to repres=nt its binary power of 2.
For example, flag seven would be 2 to the 7th power or 128,

flag six would be 2 to the 6th power or 64, etc. This
instruction allows for binary encoding or decoding of data
without wmathewatical aoperatiocus. This imstruction should
not be confused with the X<> _ instruction within the 41C”s
basic inmstruction set. The only error message is:
DATA ERROR The absolute value of X exceeds
255.

Ir wmwight at first be thought that this function would
lend icself to setting bit 7 cf a single byte for reverse
video on the Video Interface; however, a timed =execution
reveals that the instruction sequence: X<>F, SF 07, X<>F 1is
in fact slower thanm 128, +.

BLOCK REGISTER INSTRUCTIONS

The XFM contains two functions that enable blockwise
manipulation of contiguous blocks of numbered sitorage
registers in User RAM. They are:

REGMOVE X=control word, sss.dddnnn

This iamstruction will <@eopy a block of registers of
Yength “nan’, starcting at register number “sss’ to a block
of registers starting at register number “ddd”. If there is
overlapping between the bidlocks, the transfer is ordered such
that no register contemts are lost. If the “non’ of the
control word is zero, ome register will be copied. The only
error message 1is

NONEXISTENT The control word specifies data
regdisters that are not imeluded #In
the current SIZE.

REGSWAP ZX=control word, sss.dddann

This instruction will swap the contents of two blocks of
data registers specified by the control word as defined for

the REGMOVE instruction. Again, i1f the blocks overlap, the
transfer is ordered. such that nc registers are lost. If nnn
is zero, one register will be exchanged. The only error

message is:

NONEXISTENT The control word specifies data
registers that are nct included in
the current SIZE.

These twvo iastructions allow manipulation of mass
amounts of data. Possible applications are: rapid sorting
of data registers, array manoipulation and sharing of
registers RGO through 15 by multiple programs to take

advantage of the speed amd bvte saving of short form STO’s
and RCL s.

Do mot comnfuse the “mnn” block length wicth the increment
or decrement used with the ISG and DSE instructions.

GETKEY (no parameters)

This instruction stands out among the other XFH
instructions. It willi cause the 41C to wait approximately
10 seconds for a key to be pressed. The keycode of the
pressed key is returned to the X register. If no key was
pressed before the instruction “timed out’, <the value 0 is
returned. Note that the keycode of any key, including R/S,

OFF, USER,. PRGM, ALPHA, and SHIFT will be returned.
The keycode is computed as:
vow * 10 + column

where the row containing the OFF key is row. 0 and the row
containing the" R/fS isr row 8. Rows. 0 and 4 comtain. only four
columns, all off the others contain five, the leftmost key
being colwmn L. Note: that the keycode returmned will never
take a negative value as shown when wsing the ASN funcetion,
s:ince the SHIFT key would return a walue of 31. This holds
true even 1if the SHIFT flag is set before executing GETKEY.

This fmstruction lends itself to specialized data entry.
Only a single keystroke is allowed, and the value returaoed
has a 1limited range. It could be used for example for:
setting up programmable key assignments, games input such zas
pinball paddles, and single keystroke recall of arrayed
data.

The firse test that most programmers put this
instruction to is similar to the following program:

¢: LBL 01
02 GETKEY
03 VIEW X
04 GTO Q1

They would begin punching keys and examining the
keycodes displayed £or anyv of the keys on the 41C. Thevy
would scon find that a simple R/S will not stop their
program, but return an 8%4. An OFF kevpress would returan zan

0l. How do you stop the program? The 41C recognizes the
R/S kev as a program STOP when any other 1instruction but
GETKEY 1is executed. 'If two R/S°s are pressed in rapid

succession, the program should stop at limes 01, 03, or 04.
The fear introduced by this first confusing encounter causes
most programmers tao shy away from this instruction, but
there is nao reason faor caution. This instruction should be
used as any other imnstruction would te make the best use of
data entry technigue.

34

PROGRAMMABLE KEY ASSIGNMENTS

CLKEYS (nc parameters)

This instruction will clear all key assignments from the
41C, 1including all global label assignments. There 1is no
error message for this instruction.

PASN: ALPHA=0 to 7 character name X=signed keycode

This instruction allows the selective assignment OT
clearing: of USER mode key asisignments.. Upon execution, the
iastruction or global Tabel specified in the ALPHA registar
is assigned . o the keycode in X. If the value in X ' is
negative, chefﬂaséigﬁment "will be to a shifted keygx ﬁi
positive, to an unshifted: key. If the ALFHA register is
empty, che assilgnment at the specified keycode will be
deleated. ““Only . primary &IC instructions, garxpmerél

imstructioms, or .global labels may be assigned to a . keye.
This imnstruction will not allow assignments to be made 'to
the SEIFT keyv or any key on row 0 of the keyboard. Possible
error messages are:

KEYCOGBE ERR At tempt to assign to a prohibited
or non=-existent kevcode.

PACKING There is not enough memory to

TRY AGAIN implement the key assignment.

This instruction is quite powerful, but difficult to
wield in programs, since a function name can be up to 7

characters in length and a keycode takes 2 or 3 bytes for a

aumeric entry line. A possible solution is a genmeralized
kevy assigoment routine that stores the key assignments in
extended memory for subsegquent recall and implementation.

This would enable easy key assignment setups as required for
special menus and Application Pacs.

PROGRAMMABLE SIZE CONTROL

The XFM has finally given the progammer what he or she
has been craving for since the 41C was first introduced...a
programmable SIZE.

PSIZE X=size to be sized, 0 to 999

This: fnstruction will nesize the numbered data storage
registers as specified by the number off registers in X.
Remember that the highest numbered register is one less than
the SIZE. This instruction can also Be executed from the
keyboard with the same effect. Bossible error messages are:

‘DATA ERROR The walue in X is greater than
999. This may not. bie a portent of
future expansion to more: thamn 319
registers. It may have been an
expediency since the file pointers
are limicted to the same value.

NO” ROOM There is not enocugh room for the
SIZE specified (during program
execution cnly).

PACKING There is not enough room for the
TRY AGAIN SIZE specified (during keyboard
execuzion only).
SIZE? (ne parameters)

This instruction returns the current SIZE to the X
register as a positive integer. There is no error message
f£or this instruction.

These two instructions can be used together to set a
minimum size within which a program will execute:

IZE? !
e G- %

/ ot < /e .
>Y? O w
PSIZE 35

This sequence will resize User RAM for 7 data registers
onrly if the current size is less than 7.

The most obvious use cf SIZE? is to determine how 'much
storage space 1is available for a program to use.

36

PROGRAMMABLE CLEAR PROGRAMS

PCLPS ALPHA=0 to 7 character program name

This imstruction will clear the named program, or the
current program 1if the ALPHA register is empty, and all
programs afterward dowm to the permanent .END. from memory.
If the currently executing program clears itself, execution

terminates as would be expected. Possible error messages
are: ' ' '
NAME. ERR The named file does not exist im
User RAM.
ROM The named file is in ROM memory or

the program poeinter is positioned
in ROM and ALPHA is clear.

This instruetion, combined with the GETP and GETSUBR of’
the Extended Functions Module, the RSUB and MRG of the Card
Reader, and the READA, READP and READSUB of the HP-IL enable
the wuse of “dynamic programming’. It is now possible to
have programs coordinate the execution and storage of other
programs...a feature only found before on larger computers..
A program can be “transient’, only residing in User RAM when
it is needed; allowing more space for other programs and
data.

Poes wo™ chh v e e

37

SECTION IV - QUIZ

With only an XFM, a single file that uses all of the
extended memory would have an extent of:

a. 127 registers

b. 125 regiscers

c. 124 registers

d. < 124 registers
e. mnone of the above

ILf a2 file header is decoded to read:

%2 e v s v . . .002010
one may deduces..
3.. a dara fiile
b. length 10
ce. an ASCII file
d. le

e
e. a and d

To select a working file with EMDIR, it is necessary
te press which of the following keys?

a. R/S
D QN
C. SST

d. a and b
e. a and ¢

8]

a PURFL operation, a RCLPT ianstruction will

o Fh
(al

0o B
P4
p
m

a. the value of the current working file pointer

b. <the number of bytes if the working file is a
program file

c. ¢the value (G.00320

d. am error

e. mnone of the abave

The highest record number in a DATA file of extent 16

a. i6

b. 13

[3¢9

d. nane cof the above

SECTION IV -

QUIZ

an XFM, a single f£ile that uses all of the
 memcry woulcd have an extent of:
Fegisters -2 Heoden
P . % P .
jegiscers =4 werkiaa L peieg
eglartears - o
; rzgiztes
0f the ahove
teader is decoded te read:
i A{k
e e e e e e w00 2,0 1 0
LA By Tt - 1
- v
- { SR DY I =S
onafleduce . e el b <
?; -
Fe. ga .‘:.il
De g 10
z. $2II £1ile
d. ¥n 16
Eo§ ¢
To worping file with EZMDTR, {t is neceassary
Te ch of the folliowing kevs
& .
b
-{;% }
(s
S .
5T <fURFL opevation, a RCLFT imstruction will
givy

a. e of The currentc

b er of bwvraes 1f tl
file

ol e 0. 0GGC0

4

é ; E Yoavae &

& tne aacove %o

Th

(al
194
M
w
[}
o}
4
1]

53}:_ _L c.ns-t.kah‘:)'- .

record number in a DATA file of

rointer
ile 1s =z

(o
I

extent

SECTION IV - QUIZ (continued)

If the program pointer is between the last END and the
permanent .END., a GETP instruction will:

a. copy the named file after the .END.
b. copy the named file after the program pointer
€. copy the named file after the last END
diq overwrite any file between: the END aind .END.
(:; c and 4+ A

o0.099099
If the X register comntains -6+993% and a REGMOVE
igstruction is executed, providing tlrere is sufficient
numbered storage registers, where will the contents of
register 88 be mioved to?

a. R188

b.. R187

c. R9S

d. R8&9

e. none of the above el

r/
If the X register contains the fo llg:ggg dec dedy: ;ﬁf/

IF FO 00 00 00 @2 3637 38 .sﬁ 4o 44243
N~ “_’__’ i

e o SCY
what is the display fix set by a subsequent STOFLAG? e 1 &‘3
(@, SCL & DEG I FIX & -¥ L o “If(

b. FIX 8 DEG 2. RELFLAG I EEw/ENG
c. ENG 8, RAD 3, $ENG f-‘t

Yy
c. acme of the above 5. ST R

After a DELCHR instruction in an ASCII file, the file
pointer is positioned to:

a. the end of file

b. the start of the record number deleted

c. the end of the previous record
depends on the contents of x

é stays the same

SECTION IV - QUIZ (continued)

1C. Af rer a GETREC instruction on an ASCII file, if flag 17
is set, it indicates:

a. the end of file has beer reached

b. the alpha register is full

A;) the end of record has not been reached
. b amd c

e. none of the abowve

PROGRAM LISTING

Page 1 of 3
Oe7 0987 g4
STEP/ KEY CODE - STEP/ KEY CODE
UNE KEY ENTRY (67797 onty) COMMENTS LINE KEY ENTRY (67/97 onty) COMIMENTS
JBLeLBL "MPL yiies Per Gallon 2% Srox loop uatil found
- ..read last odomefger
82 SIZE? SIZE greater than 7 43 HNUM .
f 83 7 required 49 STO 86 save for MPG calc.

84 X>Y? SBeLBL 18
as PSIZE 51 T“ENTER D ask if data entry
s RCLFLAG save flag statuses ATA™ desired.
a7 STo 88 ® Se xER g4 default=YES.
88 CF 21 set printing off 33 FC?C 83 FOS set=yes
83 FIX O set display modes 54 GTO 38
8 SF 23 and AVOM decoding SSeLBL 19 enter 0%1/Gas Co.
11 CF 29 756- GRS CO. letter
12+LBL 1S o
13 -cAR Ng. PromREforcar i 57 @8N

- 58 TONE S
14 XEQ 98 S9 PROMPT
Is ~CAR- e 60" BOFF
16 48 build filename 61 ATOX get leading lecres
Lo . 62 STO @2
18 XTOA 63 "ODOMETE prompt for odomerar
19 RSTO 8ail rR= reading
21 SF 25 ension ille 55 STO 82
22 CLX o 66 “F-GAL-" prompt for price
23 STO 8% zero first odometer &7 XEQ 98 per gallon for
24 SEEKPTH select file as 58 STO 83) gascline
25 FS? 2S5 working file 63 PRICES prompt for total
26 GTO 16 ?‘g XEQ 98 purchase cost
27 CF 2S5 if nonexistent, ?,1 SIO Bi
28 "NEW FIL display "NEWEILE" v RCL 832 calculate MPG fl‘(!q

E- message and create 73 RCL 85 cost data and
29 AVIEW a new file 74 X=a7 miles traveled
38 TONE 8 7S5 GTO Ze if last odometer
31 CLA 5 - =) then no calc.]
32 RARCL @1 77 RCL B84 is displayed
33 28 78 RCL 85
34 CRFLAS go directly to gg g
35 GTO 18 DATA ENTRY .
36+LBL 16 81 FIx 8 .
37 "EX- to open th 8% -HFi'u'—'" display tank MPG
38 SEEKPTH uthensgcn fi;.e g3 ARrRCL X
32 FC? 25 if there, use it gl RVIEHQ
48 SF 86 else che’first S L ONE
41 SF 25 il i used 86+LBL 28
42eLBL 17 end € 1s us e 87 RCL 83 shift current
43 CLA T to end of file 88 STO @6 odometer into
44 GETREC initialfCLA 83 SF 25 last odometer
45 FST 2S5 ﬁleied or empty w_99 XEQ 78 try toc save data

Notr Rety © 40 CRNER S ~ANOBOTF W SROGRAMMNG GUIOE ' sOBCEC riONMAaton on KeYSIOKES The TITHON NJex S TUNC 3 W very Dack Of he ~andbook Reter 10 Aopenam £ n
& x 7 OWNERS ~NCBOOK WG “SOGRAMAMG GAOE ' e=a0 wwsronss

PROGRAM LISTING

Page 2 of 3
067 O97 QaC
STEP/ KEY CODE STEP/ KEY CODE
LINE KEY ENTRY (67/97 onty) COMMENTS LINE KEY ENTRY (§7/97 onty) COMMENTS
31 F.l.,?L. 25 1f error try to 132 FC?C 5'5 if error, look fot
9z XE& 72 133 GTO S5 extension
93 “MORE" open extension 134 DELREC ,
ask if more data) after print, delete
94 XEG 36 135 ATOX decode for print
35 FS?C 85 } , 1356 STO &2 formatting
9¢ GTO 19 if so,. loop back 137 ANUM
IreLBL 328 printout section 138 STO g3
88 FC? 55 check for printer 133 XEQ 73
39 GTO <8 if none, skip 148 RNUM
188 “PRINTOU prompt for print- 141 STO 84
T out desired 142 REQ 73
181 XE® 89 143 ANUM
i82 FC?C B5 144 STO B85
183 G700 383 145 CLR build print image
184 CF 86 1f so, do it 146 RCL 82
185 CF 12 set prianter modes 147 XTQR gas co.
186 CF 13 143 =F -~
187 SF 21 1439 FIX @
183 KDV build heading 158 RRCL 83 odometer
182 “MILERGE 151 “+ -~
FOR 152 FIX 2
118 ARCL 81 153 RCL 64
i11 PRA 154 RCL @5
112 CLX i35 ~
113 STO @86 1S5 18 align decimal pt.
114 RADY 157 X>W¥W7?
11S ~C ODOM. 158 -+ -
YOLUME 159 RARCL Y volume
116 "+PRICE"™ 168 ~“F =~
117 PRRA 161 FIX 2
118 0 MILES 152 RCL B84
GALS 183 X<Y7? align decimal pt.
118 =k E: 3 isd = -
MPG*- 165 ARCL X price (total)
i2a PRA 166 ~“F -~
iz2z1i - ———— 187 FIX B
------ 1628 RIN
122 “Fr————— 1683 RCL 95
—_ 178 X=87 blank out first
123 PRRA 171 GTG 42 mpg calculation
i24 CLR 172 =+ —-"
125 RARCL 81 173 GTO 43
126eLBL 48 open base file for 174eLBL 42 calculate mpg
127 CLX reading 1¥S RCL 83
i28 SEEKPTH 176 -
123%eLBL 41 177 CHS
138 SF 25 read a record for 178 RCL T
~131 GETREC printing 179 -

& 3 37 TWNERS RANDBOOK AND PROGAASENG GUICE 7 xal weysiones

Mot Spmer @ P 410 OWNERS MANDBOON AMD PROGRAMMNG SUHDE ' SOSOMC FRSF ™SS0 IF Wil e —rITIOr NOE S W0 3 e very Dacx O e Handbook Reter 10 Agpena £ n

PROGRAM LISTING

Page 3 of 3
Ce7 Q97 JRsiC
STEPY KEY CODE STEP/ KEY CODE
UNE XEY ENTRY (67/S7 onty) COMMENTS LINE KEY ENTRY (67/97 onty) COMMENTS
igg RARCL = m 227 TONE 7
181+LBL 43 P 525 PROMPT prompt for Y/N
182 PRA print the record 229 ROFF
183 RCL @3 save current odom- 238 89
184 STO 86 eter as the last 231 FS?C 23
185 GTO 41 loop back 232 RATOX
135«eLBL 79 233 89
187 CLA FoRtine to bulld 234 X=Y?
o - T ~
R setese/o.s8/.088 oao of 97
, . where $=char ==5 raitine to prompt
198 FIX @ ; 237eLBL 9@ : P
91 arcCL 83 #enumber 538 ~p=7-~ for numeric
192 =k - smdecimal pt 33e(BL 91 Jata
193 FIX 2 /=delimiter oS4 CF 22 it Yill loop
1394 QRCL G4 241 TONE S until a value fs
19S5 = 242 PROMPT keed in.
188 FIX 3 243 FC?C 22
1397 RARCL 835 244 GTO 91
138 RPPREC append to working, 24S RTN .
13% RTN file Z245eLBL 96 com pletion test:
g+ BL 71 routine to open 247 CLRA
281 FC? @so and or create 248 RRCL @1
282 GTO 72 sxtension file ' 249 FC? @6 7
283 "PRINT~-R neg for both files <£5@ PURFL if working file
EDO " full. 251 X" is base, purge
284 RON use printout to 252 FS? 8§ ¥ working file ig
285 STOP regain room 253 GTO 97 Elex:ensior; skit
28ce BL 72 254 SF 86 se open e
287 CLA fyiid extension 255 SF 25 extension if i
288 RRCL 81 298 FLSIZE exists, else
283 X" 257 FS7? 25 done
21ia 28 2538 GTO <@
211 CRFLRS create it 2899 SF 2S5
212 SF @86 26BeLBlL. S7 purge extension
213 6TO 78\ if ok, retryv save 261 PURFL file when. dome
213+ BL 73 routine to delete 262 CF Bo
215 47 all characters in 263 RKRIDY
2i6eLBL 74 ALPEA until the 264 RDV paper out
217 ATOX delimirer is 263 CF 21 reset print mode
218 XI>»Y reached Z2es+ BL 98
228 GTO 74 CRR"~ car is desired
221 RTHN 26383 XEG 898

222+ BL 886
223 CF 85
224 RON

Yes/No prompting
routine

269 FS?C B85
278 G770 15
271+ BL 9SS

Default=Yes - exit routine

225 “+7?7- 272 RCL 8© restore flags
225 CF 23 273 STOFLAG clear X.ALPEA
274 CLX : .

= nd displz

27S CLD N peay

276 END
Bar Rawr © P40 OWNER'S HAMOBOOK AMD PROGRAMMIMG GUIDT I wecit miregior on acadones. ™ Funcacs raes & K & 9w very Dack of e Reter @ Eo

7 @ §7 TWNERS =aQBO0K AMD PROGRAMMING GUIOE ™ 1of SxBc kovsiones.

PROGRAM LISTING page 1 of 1

Os7 Qg7
STEP/ CODE STEP/ KEY CODE -
LINE KEY ENW only) COMMENTS LINE KEY ENTRY (67/S7 only) COMMENTS
51
. Blel 37> Status program LA ST
o frs /'/
22“. OR prompt for load COFR o New
8-§ N “N or new status
84 LrapT
85 3)(
86~ 7Y defaulr is LOAD s
a7 Y ":,,u»j-_? begin build of
88 >xg= I program name
L a3 a2, to call
11 4 get the program
—_ ~M _,1'_% '8 x transfer control
GTL NI x 13 & to the program
b R :
L4 Tudireek apess A a ALPHR LAREL
20) 70
. This program is
45 bytes long
and would reqguire
an XM file of 7
registers.
,. : Ne flags are used
3' - and no registers 80
are used.
40 90
30 00

Mot Sewr © ~F<IT MBOOR Al FROGRAMMING GUIDE ' Spechtc riormaion of ceySroRms The FunCIon Fomm S DUNC @ The vy Sack O P ~ancdook Reter 10 Agoenan £
o 37 OWRERS WC TROGAAMBMING GUSDE ™ 'O exac! xeysirones

PROGRAM LISTING

Page of
Os7 097 Faic
STEP/ KEY CODE STEP/ KEY CODE
LINE KEY ENTRY (67797 only) COMMENTS LINE KEY ENTRY (67/87 only) COMMENTS
S?IOLBL NST New Status file :S ?F 86 ask whether absolute
=) MIN OR
a2 RCLFLAG generating ABS T size or minimum
o3 STo o5 e a7 promer phoe st
a4 CF 21 ent tliag 48 RTOX efault=minimm
85 SF 28 statuses and 49 &5
a6 CF 29 set those required 58 X=Y7?
a7 eLBL @@ by’ the program S1 SF 85
@8 -FILENAM rrospc for the S2 "SIZE=7" Ask for the desired
E> - filename to 53 AOFF size
89 AON store under 54 PROMPT
18 SToP 55 STO @911
11 RSTO 89 save filenzme SeeLBL @2
12 SF 2% 57 “FLRAGS"T Ask whether a flag
i3 CLX set the file f‘lags 58 XER 19 status is desireq
ig <>F 59 X=Y¥Y7? default=no
15 SF 87 68 GTO 63
15 CLX try to select the '3?1 SF 84 save current statug
17 SEEKPTRA file to determine 52 RCLFLAG
18 FC?C 25 existence 63 STO @2
m™~19 G700 4t 'Y 4f so. ask whether 64 “SET THE Prompt for flags td
[28 ~OK Ta P to ;mr"e it N R-S* be set as desireq
‘URGE?" e s 65 PROMPT
| 21 =E® IBES\ ‘ 66 RCLFLAG
| 22 xX=v7? N 67 X< > 82 save these and get
| 23 GTO oo defaule=NO 68 STOFLAG the previous ;
24 CLRA else, purge it 69 CF 22 Prompt for a flag
25 RRCL Qg 8 “MASK=7" mask, defaulcs
258 PURFL 71 ROFF no mask
27elLBL 81 72 PROMPT
23 “"NO. QgF mumber of key 3 FS?C 22
KEYS?- asgigrments to 74 SF 83
29 ROFF make. this is S STO 83
38 PROMPT needed to size voelBL 83
31 STO 84 the file 7¢ “CLKEYS Ask whether to clear
32 9 15T~ all key assigm
33 = 78 XER 11 before making the
34 123 79 X=Y7 current ones.
3Is 7 81 CLR
37 - 82 FIxX B3
23S CLR 83 X<>F get file flag byte
39 RARCL 69 84 XTOH
48 CRFLRAS create the file 85 X< >F restore it for use
41 =SIiIZE*™ Ask whether to 86 FS7?7 86 here
42 XEQ 10 STZE. .default=NO 87 ARCL ©1 build the file datg
343 X=¥Y7? 88 RAPPREC and’ save it
44 GTO 82 83 CLR

Moax Aawr v P40 DRRER'S =AnOBOCK AT SROGRAMBENG GUINE 'OF SDSCRC "ROrmason On koysiones The Sunchon noex < Iounc 3l e very Dack Of the ~andboos. Fater 10 Acoerdx £
& o 37 TNERS ~aANDBOOK AMC SR0GRAMMING GUCE o miac wysrines

ts

Ll e ’r %

PROGRAM LISTING

Note: no normal

v CODE STEP/ KEY CODE
97 only) COMMENTS LINE KEY ENTRY (67/S7 only)
a2 137 AROT .
: 138 APPREC
139 ISG ©4
148 GTO B4
141 RCL 85
3 : 142 STOFLAG
{ 143 CLST
i 144 CLR
145 ROFF
generate a loop 146 PCLPS
control number ! 147eLBL 10
for key emtry | 148 "F Y/N?2T
5 149eLBL 11
158 RON
k prompt for desired 151 PROMPT
key assignwent 152 ATOX
4 153 89
154 .END.
account for shifted
keys and shifted ;
shifts E
L ;
shifred
normalize to 1l to =
169 for use as a
leading byte _ — = —
- Prompt for funmctionm — =
a4 or program name - - =
for thar key P :
hllovs you @alse T
cheav ks i —
build key record =~ = B I
and save it - T
o _ i

. AON/ACFF.

Page 2 o

COMIMENTS

loop until done.

restore flags: to:

entry states:
clean up by clear:
program from
user memory’
General YES/NO,

prompting routime
second entry peint

laets calling-
sequence handle
the logic

end since this is
a transient progri

Uses flags:
F00-FO7,F21,F22,

F25,F28,F29, sets

FIXes and uses

Uses registers
ROC-ROS

354 bytes in RAM

51 registers in
extended memory

—)

-

hio .

The Funceoe e » Duns 3 e very Dack of e

En

PROGRAM LISTING

Page ! of
O e7 Oe7 @ 41C
STEP/ KEY CODE STEP/ KEY CODE
LINE KEY ENTRY (67'97 onty) COMMENTS LINE KEY ENTRY (67/97 only) COMMENTS
81eLBL "LST "Load Status” 47 GETREC get mask
S~ 48 SF 22 set flags for
92 “FILENAM prompt for 49 gﬁuﬁ‘a proper ANUM
E? filename 58 -
a3 AGN SieLBL 893
84 STOP 2 STOFLAG set flag status:
85 AQOFF S3eLBL 84
as CLX 54 CLA clear LSTS froms
E_B? SEEKPTH select file as gg Pghgs User RAM
&3 GETR‘EC working file. ~END.
a3 [RATOxX get file flags (Since this proian
18 X< >F ' : is retrieved from:
11 FC? 86 size? extended memory:
12 GTO @8 : under program
13 SIZE™? find size control, there
4 ANUM get saved size will never ber a
15 FC? 85 if ... absolute regular END, justy
16 X>Y7? - or too small rhe permanent.
17 PSIZE then resize 70 .END.
18«LBL @83
1S FC? a4 skip flag status
29 GTO uv8 USAGE:
21 GETREC
zz2 FS? 83 Uses no data
Eo ﬁSTRSg and mask for now registers.
249 e .
25 Fs? ez clear keys first? Flag statuses
26 CLKEYS 50 are either sat
zf’EBL_ﬁal loop until F25 by the program
28 SF 23 cleared or left at:
D EIETD, e e e
il 6o FO0-07=file flagd
31 010.%° F25 exit F25-clear
2 N get key code F28-set
gi ?5 normalize to F29-clear
&
35 PASN a::ig?i:a
36 GT0 B1
o= - 90 Program execution
S ’LBL 82 P
38 FC- 84 take care of is directed by
" flags if another program,
39 GTO @84
a8 1 desired control will be
41 SEEKPT position to flag returned to the:
42 GETREC record keybocard upon
43 ~F2- use BUG 7 tech. completion.
44 ASTO X to generate
45 FC? 83 STOFLAG data XF SIZE=017
48 GTO &3 0 114 bytes

& 7 I OWSESS ~anDBOCOK WL SROGTAMMING GUCE O @wic wresStrones

Boan: Reww P L0 TRNESS ~ANDBCUK anC SROGRAMMNG GUIDE Tr 080 rOnmEton on weysiokas. The Funcson noex s und 3 e very Sack of e

SECTION V

SYNTHETIC PROGRAMMING

© Copyright 13983
INNOVATIVE TRANING CONCEPTS

I

SECTION V

Synthetic Programming

The power of the HP-41C/CV system is truly

overwhelming. Op to this point only the standard HP
documented techniques; and some commcon sense have been used
to increase the capabilities of the 41. But with all of

this there 1is still a more powerful set of functions
available to the user; these are the synthetic functions.

Synthetic functions cannot - be keyed in by mormal
techniques and thus are callesd synthetic because their code
is* “synthesized’ #mn the calculator’s. memory. The begianings
of synthetic programming (SP) on the 4l can be traced back
to the first machines sold. Their microcode contained some
anomalies that allowed the user to STO/RCL IND to very large
register numbers (704-999). Another anomaly was the ability
to SF/CF IND for all of the 41°s 56 flags. These two
anomalies became known as "BUGS" 2 and 3% There are, or
were, several other bugs im the box; a list of these |is

shown in Figure S.1. For now, we will only deal with Bugs!

2, 3, and 8.

ﬁﬁ;ke,cg GJQQ:}QV 424— Esvfp‘

Bug No. iscription Referance
1 Z + and3S - don’t save X in LASTX V6 N5 P28
2 STO/RCL IND 704 through 999 "
3 SF/CF IND all 56 flags "
4 Small angle SIN error V6 N5 P30
5 Incomplete CLP of large programs "
6 Digit termination 41 tramslation

of HP-67/97 progr :ms V6 N8 P23

7 Fragmented seven character alpha '

8 Non-compile if OFF in PRGM mode "

9 Too small or too large line numbers V7 NG P25

10 Statistics/Error ignore

Figure 5.1 - Table of Documented Bugs

Bug ¢two 1is a very useful «critter. It makes the
calculator appear to have a full 999 registers available to
store data in. If you have a 41C with a Quad RAM, or a

41CV, what it is really doing is wrapping around in memory.
With the YFM and XM modules, it is actually accessing those
registers. This will be discussed again in the section on

~

addressing. The advantage of BUG Z was that it gave access

R ambod od it

!
e _ -
/ —_

1

PAc. = /

/

/

AJJreﬁS\% m;_wr

3»\ SCC,'I’TDV\ oug we LA“Q,J Lo«[b *Hq;_ “:\—ruc-’—u?’t 2"“

. Hl's M*m‘a‘ Let ws laok agq\w\ & He w
uwméf stuctoge &wq_ howe *CA.L Hi Kee ps *’ra%c.ké;
. e iy |
W}S*—(U\maw L W.L“«cfé R&wm)lir% “’I A//g bu.i
W@' botl, RAM ad ROV NMYA«&W&
TL\ASQ M J\(Qg:s Mcé »4.\-0 arc MQS‘Ql b
@,
tuwe o (.l_v‘*tf{, n.és /O L. S. T hes s
w o=y) 532%’ / £ / /nv ot
1;1 +{2~4 F eCS OUS wéy /DQML Még.»r/c’! worL auJ ore Gﬁé‘JQMl’OCQOuS.

)

Tli cllecws hoth a FAPI modile sud « ROV model o e

& adlt'i!rés\sac/ T ‘PEL Sawad p:r‘t o w 4—?4, ca'\cu[\n%n
Fo- vy‘auﬁ‘(l zéa"g « He /‘7@7‘{: M?Da/xé G c] *’Lc L?uaa,’

mé’mcr-; Can be, L fé.L Sa wte pcr‘ro:‘(‘}él, 54»16 1‘1%,

,&Q ,L}uc/-éef/ac e J—/uj’ é=§ lo R/é:ﬂ « uw«.*&r-e

“ feature.

L‘JiXé/j e port 84'/641611/’5 b AT some JErT s e

permsantly o dhessed & Ao bsir Foses (0°7))
ROPT space, swmamatiar Ciber ROV (st | e
opp Licaton ROWL) sre cord adlvozsed qu+6{
fude addeess & dereomied by Ll port & 0

plagacd Wi, Frsapl Ha il L medile

awé fmu’" /770 rL é C O /;,/ ée_ w%&&, Sl Po—f‘(‘
oX ?‘QL Sawe hugy T o éecauge, e /@l—roé#..,
F‘ﬁ‘l/}/) paL 40 ,(?’Jrf"a Ja/re:-sed o A +€¢ Tivee MQJJ'Q

« LArcE Ckse;‘frssecj o Pog;‘,e 5- c; /?OW7 W’a .

W T+ « lpo_s.s/'éé & Crmé«—c ﬁ#ﬂ? MC/«/&O

Stmilarky

éa Le/lnj Sur<€ ,& !£c,u A// /"Ov(w‘-é:.:r Frodaer ao/JrQSS
wrrecj o:»- % st Oé\, Ous fﬂ»o_j ach?‘StVD l-«"‘Q.L

4l e an .A‘»Far{au:—zj /4’4« Fure o aAJC/_’AKJ. 4 bt ::/

"‘\?W
/-]

Hovme: et uorwtla pc.&\-- lo [l *'QL ‘// beco -

/ ‘LP&\O(J./
wet OH;'/? Fassiz{:’— ry—-a‘d?‘uz-mé_y— a/LLm-H“-C

ptc:d”r?sszu% OC{ »ue»-_c(\a OM“‘QL 2104 uKJC’-f’[""‘/' Le* a-<

A

;Z‘?. EX B VZ‘. J‘*tfucA«re_[C/ 4[2 "7‘///1: a‘ol{:/r&é.)fofkbrl

Cxamine
Tie same ac/c/r(s& Pa/uﬁr ’?.4 u5€c/ u//uu 14&.,

|

T ,.JJNSS% e der RAM o RO M. Tle etruckare
C

ec:‘ Yar pointzr - ::[% L/f/é(VV/[C &:7% eaLL e, ke

W Le{; (bCk.a’,‘Q' 4{\‘_ ROY"? U‘Qr_S“opp

J_Jrg-J, The 4/d cove aai..{re;_s I H&t OO'(64K Lo

%i FCP" w~2~or . lv“- 9«:(-—\ c 4-'<~'L ac)el\"?ﬁé Po‘v\(.a/

\ \ . R BN
used G od’§fﬁ.‘a_5 rem w Ha C]Lc\m\ Lor acfm Qﬁ&i
(’35 Ms‘t foXo] «T:tr,s T alc\.»ess wﬁcVCf“d« .—14 uses &
éu. \\\ LUO LDTM E){ ‘Lé.n. Po\\\«t‘.v - ea(-_,\«, uJOYJKA J:re(;‘;%
adleesse aﬂ»ﬁ PEpd = FFER.
7ZL 7?/91”7’ pof‘«‘&/ @ nel so S#aj[j/&/wrcf
J i< 7 - -7 -0 .
as Fe Valonid ch/t-:‘&:r. e %R‘Am s 'fé-()//u
N .) .
frravaed e ééocAs c‘/{ sevent b g Ca\(:zc]_ req s lers
J C d O s
T*M Q CLY‘ cmuleu.‘ﬂl(ﬁt:,\:u Steriue a«é Man;e:(».(a#u\
num‘la{rs. Bs«;k w\w« t¥uunl‘\»9 [pr‘O%(T‘ng -L} LA NMSS&rg
T address Ko nd il dee U byt wofin e enistoen
o
Bemusc ol fé.,\g \Ki& Fo io'Q Q‘Liress o'\«tv .
. C.L b o F) &
Leo }tc_u\ dowm wlo taus AC;VLWQ,JQ' 01'2’ Hs
-~ - r . \
Fiouvre 3.2 5\,4:,\1&35. g been & Q\oww,

(V)

2 -
| : bl fe \
-{_:/ Arrst Faree bbb les P T YL wse & as

AV

e reé“s_@' ch\.t/v. ﬁﬁ. (_;,s‘* MEL«{e) & usﬁ&
s A bd'f(_ Poﬂ«]‘if L{B CXAM 1 Al w\ﬁv.;, rcs{s_[udpo\(c,(

gt
r“‘"5§' I& q; .‘*‘;{rf(’ n(./)L&A oY 12 l;)-.h)';ty uses

c

sly #e luwer (D bie. Tles wakes possible

/10

Hq\a_ aC]erCﬁ& i‘ug*). & 0‘ /OQ‘/ Dv‘u{/ reﬁfs (i7$ /Z}

éﬁﬁ(s 3{:):t I~ 3\1\0u\d Lgé, nc%\ced', w LJLQ,”L

.

+—-p».£_, CPU\ VA acuss_:Vé .«-q.w\ mﬂu—(@/l *&L loﬁ L)rﬁ
U
Qwa c\,_\-d wolex XMMfQ\o GoLEssed o He 107 bix set,
Lbi . e 2davws Ha 5u£rou«.¥»«: reFuru s‘ro\c‘]c we
. . o R ' H*Lg ru\fskbv'_\
ul\\, sce wL»..\ J,,f_,u_,, “ M@;N{qu, _}VLJ» N5+/‘}4\0:~
@, | r~

3.¢52(c SFF YR 9s‘€$€w—t ou\,"va u_)\.mk\r\ [or 2o

oo / i
e&*b—\,d{,‘t [PEw-E e Nt Walwb.»o G v ch,sf,«vg—. —H-q., rec\\gt,«

s

@dw:ﬂr w use_é [-}e"\\ +‘C.e, CPU w‘w«j reais‘t/r

w RADT +§¢ A (,« Pc,se-:a\j act&é&s\«i).

— 0 AR {7
Tl L‘-{Cﬁ Pc\u‘LL'(wXe S 5\0 e y{ —f'é-:_
< O

-+

aé:xres:_ Fow(@r. A r<ai:~»u/ tontuins seuen ‘oth::

eacla, Icl Lo PR L B ke bl LJ*CP: o+

g ‘ - .
hixt egacctab e procra— vws oy Fow oA miecssaryg G
o

kKO‘\,’ u)L"‘{ u k‘A M*&L\ Os Yec\utat(_/" . ?roc“rkm L;-SLT\-.Q‘B'OQj
o/ o

1. i | o) T '
»Ou{ WS va to T w42 wil reaisler SO0 =2 oY
\& Q 7 o

oare <

e - £ ;ML‘V“Q.L?‘CW-‘ - 5—[gr<~! o a:‘] 7'-1“8‘1 "(-‘vjt’.
7 </

] - . -) .

[[ouls pcw:cr o alwous set T ¥ @i bale
rd o <y </
LN - ~ Nt

L)‘Ciore "'CL (,uc/;tf V=5 SN X0 uéé 4:_5“*“,4: /70_‘ @:, c\é)foc}m,__
7T e o 1 X G ra—=4e lbrom
Jle Ua(G(i’gue, L)au Po Tn o r a_,,_d,

P b wlel wie g theee of e four bis
&UC;’.{(LL(Q ’Cb Je

- r i -
Jo reveiw ‘. Ha ad‘c\res: Fc\:\—a/ L\M"&:,o

ACf‘n—\S‘ TL& ,\Y(Pb‘x éofw \\c &«5<,<J wLM aQCQ,gs}v\a‘ RC*L"('
&, < i

\ S , . . C |
G o b Z‘?‘Gi}/pfca(\ Folx::trr d—ro—«a gﬁ@fﬁ o
A, Tle secowd é}avwx Ce u;¢é ol acce,:.a\\uz,) FAT‘/L

.

\T:_“; C},a"._\ &pus ‘P’:A %w«i:/r A—Co a Reé(ﬁtx o—«-q\ {QD 'y,
po\:t«L/v @ \TJM L (_I/i‘_w\ovx f)rc_tif;é o

Ve 5-3 . TL.‘;_

O -

atlress 002w poudioe T resicter P2 e Lol
) .

.
P S L v e .
o - f—é\

/JC(G! 5:Jt’ c seC’;’O-' }/ L‘(fjl/-‘ur.ﬂr:u:-

to all of the 41°s registers. This includes the Status, Key
assignment, program and <ata registers at the same time.
This allowed us to store things directly into memory where
we wanted it, to create synthetic codes.

The other useful bug was BUG 3. This bug allowed us
to set or clear any of the 56 flags as we choose. This gave
us a quick way of decodeing arbitrary bytes stored into
registers. It also gave us access to the system flags
which allowed us to do things like clear flag 55 when the
prianter was attached but not needed, or set the CAT flag.

It wasn’t long before HP corrected most of these
"BUGS" and they were no more. Those who still had the bugs
continued toc explore with them and make discoveriers. They
began to automate their exploration and write programs that
would simulate the actions of some of the bugs like 2 and 3
which had desirable effects. Their efforts gave all 41ls the
capabilities to rum synthetics. This made the 4] more and
more like a true miniture computer.

Our goal ia this portion o0f the course is to lead you
through the forest and let you look at the different speices
of trees 1living there. This will let you create and wuse
synthetics on your machine and save you time trying to learn
all of the material from several differemt sources.

ADDRESSIKG MEMORY

In section I, we examined the organization of the 41l°s
memory. Lets take another look at this organization and see
how 1its addressed by the machine. There are two wavs to
address scmthing, so lets define a couple of terms before we
get started.

Definitions:

Absolute Address - the address of the register regardless
of what is stored in or associated
with the register. For RAM @P@-3FF,
for ROM PP@P-FFFF.

Belative Address - the distance between two addresses or

the address associtated with certisz
registers at certian times.

The addressing scheme for RAM is really rather simple.
Each address <consists of two bytes. These two bytes are
broken into twe different fields, the byte pointer and the

2'G @unbyy

‘ MN_QJVTW JRISQL qQVs ‘2
vy e w3 7 R ¢
pig—e 4o
&ﬂ@p\él-)@.*v\s |2~ O —\ | N m
f, ﬁ nso“..fo.,..db 9% f.uw. ‘) 4
.W..vo\}z Ei,l \'D.W d:J
™ ;_Ux(:.oeo ST
mph Go msof e ey

~
A
N

—

| Jo3uiod 4o}sibayy | 48julod|
8}Ag

Jojujod ssauppp 8}4Aq Om} D JO @4n}onig

register pointer. This is shown in figure 5.2. The
register pointer is contaimed in the first three nunibbles,
and byte pointer is contained im ther lLast nibble.

Figure 5.2 = Stoucctunre of a. Address: Pointer

The' 4L has register address’ form HEX @#9@ co LEP feor
the Bser RAM aad l&O‘ta»3FF'ﬁ@n”tha}én:end&d LemOLY . I s
here that the. odd behavior of Bug 2 becomes apparent.
Notice <that 3FF (HEX) is 1024 (DEC). This means the .41
should have 2 full 1024 registers from: §@dP to 1823. Where
are cthey? Pifgure 1.3 shows the addresses of the segments of
RAM memory, with ZM from 040 to OBF and 200 to 3¥FF with- a
void from 01@ to G3F. When bug 2 was used to access these
large registers it was trying to locate these XM registers
but instead wrapped around in memory to STO/RCL into the
User RAM and Szatus registers. With extended memory these
registers’ became legitament and so fndirect access was
gained to: the XM. The register polnter in RAM them canm have
values from @8C to 3FF in it.

A distioction must be made here between the addressing
of RAM and ROM. There are a total of 1024 RAM registers
available if ocne counts XFM/XM modules also. In ROM there
are 54X of 1@ it words availablle to the C€CPU. The important
differance bpetween RAM and ROM is that the 41 uses two

different TI/©@ 1lines to address them. So their Address
Pointers are a little different. The ROM Address Pointer
dcesn’t have a bwyte pointer. It is a 2 byte address from

@§99¢ to FFFF. But it is still kept in the same location and
an internal flag 10 (CPU) is used to distingish whica 1is
being addressed.

The 0byre poiater for RAM is the 4th nibble of the

Address Poiater. Ir points to which byte is the aext to be
pracessed &y cthe CPU. Since there are seven bytes to a
register ic can hkave values of 0 to 6. So a givem RAM

address thaz had the following values in it

Example of the address pointer

65 5 14 3 2 1 0

0CS3
0C4

‘ , | 0C3
:>> 118 ' 0C2)
0C1

OBF
OBE
0BD

Address Pointer = ﬁJOCZ

Figure 5.3

“40C2°

Would point into memory as shown Im figure 5.3.

PYgure 3.3 - Byxample: of Ra4M Address: Bointer

By storing’ thel p o.p.em" code imeos the. address poimterxn. we
can move ﬁseeh&_a:omnd 0. bioth RAHfande@& memary. _ This rs
useful for E&Dldﬁﬁgggyha‘systam amiAseafng‘hOW»tthgs are

dome- wws-evt ﬂé\c;u.) W&W\R\ By /\//‘/N
J-Cﬁb +€u4 ckerhb

maehet oy P St-a.m »_g,fj‘"&‘tlf: . 0“-*0.

One of the.most powerful results of SP is the ~ability
to aeccess directly &1l of the 16 status registers that the
41 uses. These _registers are located at the bottom of
memory, ELrom address 000 to 00F. ~ Eigure 5.4 shows a block
diagram of these: regidsters. Wer will leok in® more detail at

STATUS REG

Figure S.4 - Status Registers

NN
‘ . | l
Since We oxe aoiw To be. gealinme (,LJH’L\
e &
datru - =tored (o reéé(z{s ,we Swu kwace how
He Hi dedermes oot w (old w‘\L(A.‘g.\ ids re%{g‘:{(&
Tleve ave geveral 4’65¢ng*{: R\V\Ab O(S ‘\véorwu%'ovl
#E.n_ “‘H Jec\\s wl*r‘u.
r\)k%rl‘c_ DC\%‘K

A\PLQ Da*«

N\ '
ProGeaws Jwshruchbus
A

Ko P oss) 1o iz X5 {
® C Y E / B B"‘\m
: ; Aur—««s i ut\}:%{’,'(b R%;M‘u;
I/O :5'*(\%5'*('5 ' ' 2(\)'\(\) i.’g’bwg (‘-;i‘
ot R ?o\'w‘\t =

\ L ; 3 . . Moo = e hauws
Lets see Lxﬂu.) Lo Hl deteruaves u)La_‘i’ W] h...m'-\;’
w

=

\ \ N N s * A
gi—créd qu'?L\ Ll Lla re&\ﬁ,uvq-:, . Tw (cuzns.ral M\«MNL
) <

. \ \ .
awcl/Or A‘\@C« Ja‘\“a [P {,{_Pef_*ecl To E‘C"Q&Ké Cb\‘u’:).«_

*‘LL Shovace reci<ties CW*R"‘\V\).,?% Ltice\.o};e
o “ C

':ct»'»LrA'—f'L’“""‘ﬁ\ PTC}VC/\(‘Q\A ;»\,Slﬁ“uc_‘}‘tcous ard ow&a
W&tg o Eeaow\é X}«ow ius*.’ ibiébu) Rw &
awé {\AC__I‘\AAJ\VE LJ'E--Q e EMDQ » kf_é 0\53;3(1 nult«iz

/

see stacl 4 locabon ¢C¢ awg covhnas u.dowarc]

quoa(l f&g QEMD. . A\arm Bbt‘ﬁfevf, mg%&r“:
Q

Y - 5
';vﬂ—e/(\:la.'—_;‘\?“.’ %kr’ +o o .’<€C~4 Qg:,l‘jmj

f‘cwq_ Yl las o ,q;n.vuzra,t \\A,QCMJLQL&:* To M(J’QC+ Q(“L\'wé

c eran

w}*‘r»\ Yo ee«h-a«—s areas % 4O Mu»or\;_Aj 4 uses
de 13 wbbl oo s o™ Lk

BDQ) = "&/H u)La:f’ —h\ v c(xv‘chM‘ho‘ﬂ a S*’ﬂ’{’u
p_)\'\“L\\\‘\

m ‘Qx&. *eQ t';tbr, @‘W f‘jurc 5.9 SL_awg

Lo LAO&(rw (g (or e CJ(LK(O:] T), 'W“” (JGJLT'\
d 7

fo | “‘cg"““‘"’ ! e
Shred [« B meeora : g ctoved u e R

W li\.tc_
Fis.

é_c(.._o)‘u\u ~toe (‘ tne vaév‘k“- v« lhx ;:Hat
‘;V; 7 c..kw o4y Y ALA O’wx‘&eﬁlw‘& Kj e YC(\HJ‘_W
oW j(i toiaz acrosSS savew \Ov(.c P 4 -
. c 4 o%q .
- —uu:,‘Q T‘:&} é’; BJQL; d et eornspa-.A ~
Q\G‘Nq e '\“‘“‘L' c "I»A‘\ Tuwia "fQC\(Brl_.v - :>0\\; 1Y

b(N v - v_ofv—o;\ NS

e wr H Coucguj*nwz love on Y\uw«ir‘c, Ok“FL‘é\f

I . A;'s,Cus*CCl
Qwé Proava cio:(l\ . F/Q':) ui:ia»u.quis Wi \l }96 J.‘.W—J
; J C .

(-

lather Bmr Dhm sioccd iw i reci<livs MQJJJ’V

&}
F

-) 1 C \ .
O rams Vs el l,.‘,orw—ah-Ed wiHl a L—Q&:LQI V\‘O{’)(Q
N iV

or Ej’&, Tushruce bows (oea}w aj“ +1’:.1 ?j {90-{ (&Lh:’{\

L / f
(‘ awAC} ‘ 2 ﬁgw#ﬂé{ (/Ir //'/1;/@ tonsecatine

b A%

rCf)&ﬁtI;S ()\,rovg L:o!“' t&; Y‘ti(f\f_ TLLA; ;6 “ia tLL (\v\(}y(a—ago'-—_

- .) . z)
Hol w skbred as Aumeric or q\&\«k Ao w.HZ@,

:{]4-;;&‘,,(€ cz;:t/hs. .

~ ~

Mo ie dota <pliss L Ig wibble re;jf:@r
- /] [\
W‘&) /{Ola/dlj 77*{1 /331, M'Léé. L; M_S(’LJ &S« j’.j‘f
J.J{,"f Jfr ﬁ‘(Mkw“l'f;‘:.ﬂ(1‘4 (/\JS *‘e_&‘, \/a(\,_,t_ ﬁ’)c}r/

-. 630-5‘4_1‘,1: huwxgu o«_c& (7 d‘or ca Maa'J{V-L MHWLD-Q/‘

ni\p\:(&a OZ‘B) A)
Tle et 1C :‘csc‘% Ontan He 10 4«3\{ wv\-;-fssa\‘

caca ﬂ;LL’(Q cowdoius eue 453-1 “(*64 ijﬂ‘ss‘ywzad
J

., Lo N . [N -
S«\’:(«ta‘\:n.j‘ d:vx = B Ell';(c /O Lea st ff;»:}_/:cajw .
Tlhase /0 W bllo cou couta a uaAa, betoeen S’Zar—wa’ 7.

Tle 2 wbble o e ex'um«b&* 3;8\« éj\t Like

oy ' s . \ 4 Cc
+{J\ wamt S8 a ke Fd tauw Wkave o Lo e c“,j @ or 1,

t\)xL’-‘\l\m Q(Pé t cowtaiw *&—i aFccuj 3 T+ caw lase uaL.,e,;

;}’“"" Q= 9.
Ag\D,\/‘-& LXCL{TCK LLJ«\QM SJ\‘C*"CA w oore (’.‘-Cg/((‘3
N .

ales C}o(~ K Il (;gﬂ‘ Io:;b oo {¢ wlon
a\FL\J\ \.c. 51'6‘,.(;’_ . TLJ; O"‘C&Q/\’ 6 Qi-cazﬁf-_wzs 56&4

. ~ - N) @S
aontow Fe & clacaclons 55»’e<J (-~ ‘é{ rej.':,t;g}s—
“&&:{.\f Aic_ﬂ é&ul‘va [‘Az¢ IC}, (Lg_‘) é,..(,‘,« 54\,\' CLAmE&X?
[- e reqéstf *L-u; aYe “'CH ;\wﬁ‘;'\)Jt.C;J e d

, /

~
‘ -
m,}él:é wi*& V\u\l&.

Av\ (A’(‘—Cjﬂ,‘/b—t ‘Co f‘£4 Gé{,‘f.*e R r'mq;g‘éu‘ (/;)"Z{. j/ﬂﬂ’:_;

|

= '.57::'3 - T(“‘“SQ l (3 re \‘gaﬁ (Oh'i‘ﬂ;w a (40# f‘{ e ¢r-c~4'|!°"\
J J g '
‘fé.p.f (:o ager NL}&A l;- uar‘[oui Gy < (5e¢ Sta }u_f /?3;/512(),
v

Icl da to. wass rCuﬁ& A O‘;cm oe C’{ e ra"/"-
2

Mc} ﬁ’i-r»-a/}té Z&‘Cv" SOt €SS “ﬁ/s{ /\M 4?7'4«-(17&»”4 A

— I J / / / N N
Oon Lo it o woac! Af 4.:1‘5. 7la dala shred o mest ”7”(‘;"
._/
ooy Yo He Al renclar: w7 scvew arbitrer bile,
o /'7
ar by Sevta -
.) %
Tic ﬂorﬁa/gﬁ};a% ?! aw K @é)ks r07 r W

: { . ‘o .
Muwtric ar Jt// ;{;(ca dow \c\ destroy Hw v oravihin
RALU
\ L | A [T Lok
Cdd m sowt CaseS oo cou ld fpuse 4:9558‘ kﬁj‘xma

o (-‘ . vy
O w0 ;_\# <sT ‘

U

A no u,,chLJfE%c‘ nunrb£e La awb Mumlﬁev V;J

- . -3
toduies o value o¥er Han B1,G L He 13adLL,

”

[,{ re;, rc:f).g'&,,« w nuwxr:g ciaLu\ [N V&.‘L»{ p\"f’: ‘.. f'Lc WK}";UCT
Pl .

er ex fx;mjj éﬁ—?.trt er O Ua[% Ou“(4—&5_44 ﬁ or (i

CPM"W Mo ruck sk and uq:/n'a—m‘wa -
L; -I'&_L V\ % VL-’L ¥ fkﬁlaid
Shat s r«.s{:& awe Nij:g*ﬁaa art Lo taiad g P(L;:o 4 Wl A‘.*h; ras.s)

Al a MWV at an woppériime bt can cowce o let
~ ,'f’

o menble whin cue o dmme doieg sadebe

A(ocar e s

U

ﬁ B Clause

é\ UuachHows

3 N " \ .
s ¢ x spe_ud La - Hae stetus reg
()

j !

OC& #{’L:A we Ml To be adave Cf‘;‘ u)‘vd

i

C QU hcf‘—v«{-\?e. [=W 2 /“//‘!/7‘/

vy
>\&rs .

@

(&

/\/orma//\?d/";‘oﬂ Od’/ A//V/{/

!.4}{. n.eCEJ 'E: {9{ A TE *Hf\gj n;’;r»o\,li 85\7"1'o~—v cay
, (ﬂ . . ‘N -
ooty r G,_Ql o kot ﬂv\c'}'?OM\s it &! cauvse d T occur.

. wA0 ST COwimory CwesS axe J?é«ega o operc?& ow
~

date S'tb(ecr wi‘ﬁ& u{a’*w\ Peé:S s) .S]Z), RTL

X<> VELW, AVIFw, ASTO JARCL . wli] ok

YO
= L — ||
Mlay e e U—'f'{ cuv Ha éfkk&) it exoacT ~ Copias
i .\/v N
< ! 4 ¢ 7 ' / ;
< \%)orwxa S e X -(CSEJJY o He Spec ré
N Y
-— ;Yf [Vo
3’6»‘\-.5\4’\,_ (=] MnEeTrwal, ZE 10 ~Ccwrs
~
ROL v
\——, =
Pl \ , i
::\“L Wit \\ V\QYML T e “'\’}iar‘*‘&'}’)b"! stored 1w &
@

N — - . H f 3 : —_
w{c‘:\g"’w ‘® o Toar ol r . O &“(_;LA‘. Cl{)::.d , ng.) &
e ’\C(Mck{l e d cl{pe»/\ (:1.5 S 4—\&{ ua{wt (e +€-L S8
[J/ Ij\ ~ L/ {
ewst“\'(tg‘n'!‘pb o? . I." Flag T1é Le c.a,{ Com taws o 1¢"”

J (%

»] . j. / - I
>4 He Jatk norn—a/xfﬂc) B AL rmeric :142:,. J—‘C NI S POUN

!

mse D*'Lu' ? HnLL(ld L\AC’UCLLM SrPaTuy 4&.« e (A“’F)ff._;oc_

/i - . . : 5
+é~4»r dé(‘/md/ef"“u/au ab«cl CaArriCr a ome (s Lo {'ﬁ(

receri To

Gt Tl o demeeiti] L i, T
L4 Jj

430 1) @ @’Q‘.—-—h Hex coded NNN
3oz M xeeeg b E0 FF
,-L - <75¢ — 4O f‘((‘;“ \g ii(
S l\ F(_Z;) ¢¢"‘°”0qung, H’C)‘ e P
J ’/—_—_—/

L—
8y P CR/ < | 8e o Hex AWM ¢ @ o
’ «rg,\ s_a;;ﬁw
i SsEEAROL 27
DM N - o .Hé i’

Tle A o (2 Atc‘\w«) mé S0 ouv€Es @ ¢ oo+l

G carTy T f{,ﬂ Q To q':wL ';';25 . vau(. C_ («. 4{4 exqbowj
/ <J

. . -4
[f-’ea’ﬁé &S A V_e:;\c\‘-é{ C,K?OV\?;A) _f,._.__é c\\g.*é

s\
d N\ </

,

- = ._H.s“x‘\ e c:;r'r/. u!:b«.u., Pc\c "'f‘ff g_x(?ov.z.w{"l

€z 25 [eA] 56 HC s @3 BE}—M WIUN code
£73 LT -Fd —— 1!65 belre STO ;5[
X r‘(’J—\ (== F‘LLM

z zl 69 @—;Hé‘ck;&::n‘hé‘éoéc

’v'
Noctl zed code

e 40 byt < clmaed - 52 . 0= 12 de.
/ -

qiwex Hd+l 2 = 52, Fe ¢ w AL exponct aibwé

<

(,uwt"«\ TﬁL vxe;_!c(‘%:w; Srea Cé?vf & '22’ c%coouuj,
iy .

! _ YV A A / | — \
discas Burews Ta YAN A ey < Clamis & i iddwctrTr AUedriC

Ao .

O N N L S
+ T e X iCta RICRES :::v\ru;;.gc-’ SOl Tar ey 2
7

Hogm o Q or 4(/_ Lo nof"—a“:?ﬁ‘i‘ec'—\ "c o dé«p/q JQL~
‘ . NNN
Fer exa-f‘: ’ ié_'_,g iy o2& _EE 9 g/ |27 Hex Her code
$122-7] X-ree, belwe STO &
1 T 7 (ﬁ
a } . X-rec ot R_CL [2([
E Ly 2% @ 29 ¢ 2 F/ ng-—ée-&_dor-—d{ e d co do

Bs couw bi seen enly e ;» Bubble was clawged
3 3

budt A“:SPQAE);“,‘«‘ é Lo ML L L X—re/cv‘sfw bas
) ~ <

a{ierec(, (see AI‘SF(&‘?\.“" /VA//V>

G.‘ A&L
~ N u

e

I

The eldeet RCOL #ar & dirst dedermned Ly

+J:~L 5:3\—\ ézg\\§' (Mn}agfr, IB\Iff ¢C(_c? f‘eu\ ém*ﬁ

_ I

i ' \ ' .
k) “Of‘-gb?t,c\ "=} G N eads2 v av\cl a(('&3!*‘5 ..‘Ou"“‘aw-u..:.,
(—

% ~ P = / ' - A .
Dectwes et e -7 art werw—alirze~ L+ 182 3iga

~

/A _ { { 8 A : 1oy
die A B mac aea ~to s U‘-Lua B e Saan St
[O ' - J

N , 3 i Vsl
) C!\«\AV\F_(C.h‘aic "ki} gmé ‘fE_L c)a.J’GL “'TCK'L{J
~/

A “'\"pLQ, T OWQ w’nga-—‘ .,e“ul "r(»-a g Amﬁ‘ -
M C) hd Jd J o

Saa p » TL-!_ T‘bwl*’t L.‘J G WNorea \;?{J ‘,’;’CS,‘ j7'£~€ Mumbll—.

VIEW

s . ey -

Vieww behaves e sawe as /T0L. Ss zare
; ; \ [= ‘.(“ S

e le a2 lss bt Fe ot 3 .

X <>

T datu . . _ .
-TLL ba'];{ e feu; X f‘éﬁ\cear.s =3 COF/'(C! L«t
J

f H 1 . . . ,, CzA
e AlS;&\JVCé rzq-'s’fw ..;H’éopj Kar»-«/fv'uf'?d‘-'» TLL ﬁ-c:::;Lg:zw

u) e

— . . ’
. tﬁ_l_ rf&}.’s &r - ',Jrfa‘ifJ as t/‘} a }?CL “was ‘PU}V{’-{C
(94 [i

<

Z A (3

@

A STO
OW\B $ S!\\x CJ Sedfn Q\/TzQ cav\\bﬁ Sq\»cc).
C)

A I¢ o He éﬁ Byf—c Hle oﬁ‘f{y;s \/S-Q‘)a.yc caf,?;

C(/'g "él. J.'fs‘-* Six lr;;/ﬁaéj o NAN
25 H AR PE LEF+—2E b code

T d (u) A TE el begweASTOcz;!
{ > AL N AN Su

Mormilited Code

i las+ b}".ﬁt 9",’ wdmwcu‘ic:n G lost bud 48

e
C

e } - i / - {
O‘{Ai_(4 55}&; e Gt C/L,A-—\L/ec’i /\/a data @ C(«-w:ed
/ J J

©

HRCL Pe LS Simia T v e TKQL) éxuip‘t :«-A‘x‘};{.\.«
N

an bhlas Qdf* u—:LAf«-". Tor exo_\.\?(.gz

1S ¢Y 285 &C 79 @1 3F Hex wa
-S.lyzsiz2 ~77 K-Tes STOTL
d (/U)X 7 & A“ok.\ c(‘.séo(‘.j afier ARCLIY
{5 LYy 7% ﬂc, 29 ¢[3F /\»/cr‘..,'/-ﬁcc’ E:Jg
(

Ouly 4 = oLLL . chaned and wilde w

l . fd-"\/{-l.'-é w/ bc L‘*KS }24 Sa -2 wa_:) s

NNN u« T D"Zpuk:)
NNN doct G\wa»&\‘\‘a
$

{f_p{aa as e/;doec_'ch. If
(\jo«,\ wey & C}g”@w‘w\a)‘Qz e,xo‘ﬂ«.(p(m c\\DO&%g ,Son\
M\ﬁk’\,‘ ‘/\Au{ (’\-OX’CQA *e\ad‘ +C~_L uJCma At C; fe«.L
N’NA/ J,SPLJJQ/ (s grw’é‘;/ L{L‘jq(\f, _Tfk_g J\‘S,F(&b(:j
ch NN o & "Cw 2, Ferpa Sioc b mecislias and

/ () <

. I/ | -
Al[.\’l,\« J(S{) O u-)'l'/]DC Cis CUSSE & W{,

J%-Lrefj :Sty\ c(\»:,‘o: Csusl‘
Aga.‘“ A (o Hee 55 “)"5"‘? Hoadt parﬂa e&;u_,.z

‘V:«{ uuoa o~ AP Jm@ucs : 'J =

. r RN » /
e o a0 des P e as A!pZA
g

Jx-,*‘f’ ’v,é Ho < 'Pesx.hw: nu-”l"f rcéu/lé, A—y\c,'&_tv‘
w/

<G
SrGe
.' . " Vi /) . E
valae weil reswls ra He J:spu‘;'ua a4 hes e
) j
T s./" (./ =~
{
AR S
VAR o bl o e 4ol de. D L
o T2 P”O M Y7 o Ufz;; —o - (/:.s’gaj'\«g
g

He same NNN o« FIXS , S5CI ENG 9 = o[/

fawse C'i[érd J«‘} (P%ﬁf"
FS GAX432/ 6C pF
c.stogc 4322~ Frx 7
5709643 ~ @& sz 7
57096 4932. —@2 ENS T

10

/ -7 |] [/ [/
Nehew [le G.ddlec-f 2 p(ac.‘vat‘;; o abrermal valee

' V2, ‘ / 2 .
w e eiﬂowj Stgut has Oa j(ﬁ,; o o p’aé{ /‘V/L’//*/‘o
¢ V/
CA“Z/Q/QCEC wsed T c/;««,,od—"jﬁ_;-
e o
e
Ql 2]
£
s
/
\
—
E

\ - . *ﬁtA PO Y s
éﬂv W\-Cc{/i N 1r m A“’F a??ecu' Mm«bgi{

fa} . ’ ! - N 1
PQ{ QLPOV\.LJ WJR& pw\/} < S =L oww w‘%&* ‘@uré

o [P TE Hu~ L&ﬁ:{l&‘n\s %" be a A-F < bero
engAj Siam emd 1T abbl e, wo eombive T SMH{*
U L.A'::\\‘r c haracT, Jég,wc! e r.w;w;‘cé rén dec) el
velue X e = aféééé. T+ & wot case T c/ecodfﬁ ﬂﬂ;{»

JQP &3{5 M(j fé/\r SeeM(:j ot COt kaj;r He ur-«,/
o~ bis,

T4 e srger d/~_'.."f r/utf/red; z be a 1 ~d

A WNA a"«.:.p»/»}, s a;'pc{; d’a.a faz. g,/‘réj&-j' e F so Lad

Ouly o last six byses W Japlocy as sharr

ASCTT equivalts IC Hoe W o
(b o F J

Caw{

-

2 [T
sSSP (“d jaeve QL««ocTur X afpecus asl o _1307_’
ctac o He daC

P RS P N
v

/(@ 2% 29 28 29 2% 29 WA e de
(}()(/) Js'pérr—v@—%—‘-—cs‘ <*‘t.cL(
g OGO

— al \{v\ ""Syv
_rv\.e _‘»\LA Ol \or e L:)u;.ﬂ 182Y \L‘g EL—N 'La 1 o
J £ 2

Nll bytcs (Fg). Thweare ¥ oigprared Jeon

(¢ 28 @gf BB 27 28 27 w#¥ code
g) {) #——-—'-tﬁ-vjv’z:ck rec.
T 0) o lptn dap
Tl‘*’;‘\ CG v L‘.'_)de —-L; f‘é..L ““:J ;ukrpg,._“}l?’!v.o7 c,/t

/

v
MNAK ao de

ALPHA REGISTER DISPLARY

daploed o ALPHA —ole
c{«: pu-j,qé as & SEeuCw Q(—\.ar«d‘e/ Sér}\,j\ I£
4P(rrcru{!.z_ éup(as L.(uxroct« e u:—t L)(Jup(‘midl‘l-é.q bok

. I . .
Srar slewu . B The wain UOr-c&D‘ lare w «.zv*‘&

{

t - L s

hLAH 1;:}\/}{_; Y€~LM\ QrtJ Ax:gp{nﬂ{é) fyean
U [~N _

7
./)3,
g

e

‘HA—BMANL\ Of‘g-t" nuH b:—)-ti“g m— +é_; 54—rrl\u7 avt C(t‘s,jo[:x:jcé
J .]

os e over bav. IL Hoe NN cee be p&ca Y u;t

e Alpla cfuk,péy o xFuuchoq ATOX caw be

u.sec, T §¢+{iai Cie,f,(%/\ @G ua(-‘/{:] %/./JA t&AamC/Ca:,q‘

Ne . 7A6 ﬁmc C)r;ﬁ{,fwa JA C/Xc,cw)”o\ 7L'}°~¢— ;n

7‘//'16, ra‘/’,/ v‘/: 5‘7’1,7(‘,5 Vs Afumé(/c—cé r /'J7L<{’5 /s /;M'//
Are 7'o Fie)\c/‘mffz—,y R d. A e r‘%»/é/c/
Frem hombired reyites Tic st ils f‘é;;/;?‘dﬂ #he
Coniidered “,’wr& ed cwruf? and b ae 7 hc.f,«-/:‘z“'-co/.
and Cth‘lx‘L I lese Fre

ﬁ SRR

¢ p6lg ounby _ pagn 4) |
- \1@&. - ~ i d\ -
= iz v

?O.J.;__.:S'.ﬂ.x,.. (J}Nq..)
<~ fJn.I M3 +Dw~ S.Mn.ﬁ 1\ 4 .:é%@eihw

W\v = rmﬂdﬁux

.

.ﬁsn\‘;}id.w YA J\:. MUN.,O“JO .VAJ .W/.SQ.U J(id&@g% Au..l\d d.»_.dau (w*oﬂ

-y
rgp ~ormay e S Ty Aeprdeow ST ong yeapon oy Qo L
1OSY 0 | | oudy
|) A/ \
ST TV 74 8~0 VSSILNVW NG| 18qWnN

0 L ¢ ¢ ¥ G 9 Z 8 6 0L LLcZLgl

SYIGNNN dIZINVINYON — NON

05 6A 96 43 21 6C 00 HEXR i
5+76086432-00 X~ “‘8""“ Q £10H 3%

will become: Fi=T 0;51 —

P S

? SNgn dig¥t contains any other wvalue it is
and- the. num ;

r is treated as alpha~data.‘

‘ 6«4 CAK @0 A.S* Ol~ 7‘85 Hf-'“
7~S 65300’& -2 -
e & a % H

T |

N a&& a L0 byte vo the
& dat:as, from thenm om. E&
¢ to- .ohe NNN. ‘Leading:’
pped e

6 AS or 79 REX

£ - E % ALPHA Piogby
— 3

 JARLC

ENX s IB THE HIS“LA!

FTh &isplay ng of an NNN\\QS rather difficult oo
explain. _They on "t always displ thte same. Lets Look
firstc zc:’an ! in the X cegister amé them ao ¥NN im the
Alpha display. e : : \

X RECISTER. R

/sign digic contains a 1l they the svstem trys to
NEN as; alpha data io the X egister. If -the
'is @ then the RNN fs displayad as a positive
the sign digit is amything else then it is
- a negative number. For example the NNN

, . 16 ¢C 01 GO 01 C1I QO
.as am A‘pna string of three little

‘R%X

¥ @;., .

k*“Ihe' munbet ‘of digits displayed and the display
vill also affect che way the NNN displays-. If the NKNN
excugh digirs in the display the digits greater them 9 will
carry a ome ou to the next digir. If there aren’t enough

11

the

o\%ﬁ\c‘xe\ xw* or‘ asc,
as emar{a&c cer;
‘ d‘is‘ol».ax:e& as . cier sit.
oms: mod\w}iefaﬁs» A;TQXsz f;untct?hem camz

- > i
Ire. used tor, de@ﬁevhhe&e.;

12

HP—41C/CV Status Registers

6,5,4,3,2,1,0

Shifted Keys e 00F el
- Flags d 00E [-Ar
Memory C Q0D | Aw e
Subroutine b 00C lé" “
Subroutine a 00B_
Unshift Keys + 7 ° OOA:;_‘“"""“
~ Scratch Q B 009 _
B Alpha P : 008 | ..
Alpha O 7 007 [=pt
Alpha N \ OOGJ
Alpha M [005
Stack L 004{
Stack X OOS[ok o
Stack Y 002, ="~
Stack /7 001
Stack T 000,
-} A ?‘?erif 4 Peirel / |
Lo These gatds are Ay a3 e e

<asc H Lad T ’f"*"l d
e remeey e oy /. Figure 5.4

bedo oo 3
J / J"/U ’7//:.)‘.

“Joy 9 umdnr .
AU.JNAuSoncathu SaTqmNU

JIHWNNN J1AY

G'G a4nbiy

AR TS 9 L 7 ¢ v G 9
(500) A ,,?_.N ﬁn ﬂ¢ | L9y L
(900) zm%m 6 | 0L | bl g 2L | €Ly ¥l
(£00) © GL | 9L | £L 1 8L | 6L | 02 | 1T
(800) d YT HOLVAOS

¢ | £C | ¥Z { SC | 92 | L2 | 8C

sie)sibay oydyy

each associated section of these Trnegisters. The. Eirst
group we e;mcomntae*: is. the S‘tarc-:i.k R'egLs‘tez:s.

STACK REGISTERS

:‘o..::af alen. _}xé.vgfmw&' Reaid & for Wo. ; :
{ ,d’i's:‘p?l’“a:y» = Wi e*‘*'q.in; ,;g'.ff'.f £ ‘the 58?. avat ‘}ﬁ eg;% bqrrt‘es
msed,, ﬁ%r’* t:l‘r& dd_szp; a.g; . &Es&t aff - the. 'eunsct:’.konaxté‘dfti espe*natef on
the &ESQL&} "~ work Jwith g:orupxsi oﬁ 6 charactezs At a, time.
%S’KG‘[&E&L Fandle. cml,)msin c.ha;nactz‘e.,rs‘é becausew thee’ t;mtbryt:e%l_s
used: tai,“ cade the dats aw atlph&. %"I“n this way i ?ﬁa!keasf sense
g¢hew chat the display be anm Ltf&tegﬁal aumber o;f*”' $ix in
length. But do we attually have 28 bytes avai ble for the
display? Pigure 5.5 shows the diisplay z*ega:t‘as';zt‘esx:s'K in greater
detail & - Lets Look and see how charactems ate e;nue:e¢ into
"he,. dfsgz._a}; ‘and - “whag happems. :@ the: c‘rara{dts&n'sfe _are
a,lu,eadpy in ‘the dslsplay when & mew character. ﬁs m&ered.

Figere: 5.5 Mlpha Display

1. The new characters enter the display in ther # byte
o¢f the M regiscer..

2. The othet charactens are shifted one byte to the
left teo make room for the new character.-

Sl

3. g%ﬁ* i character #s shifted ouwt -of byre (b of:-
é&,sten ﬁ\%ﬁs shifited back imto bycte &\eﬁﬂthe

u@gﬁ&:em‘a&qwa ie.

Gmh; eh&n ag&hagactaw'ﬁmaamtara&

A

q_gig&rﬁ%;,@gﬁgga tios mq:t.er._

Least

character Qut‘@& tFa.ﬁiSFLay and inEo gbslfiuu 75'aausesm’7
to be ﬁo&:*zs ﬁkr as~thfe system is comcerned. But it | is;
scillk ﬁa:ani,wd’L‘mot Fe lost aweil. ¥t is shlfteduout of

thenP'regiscgr.' So we'really do have 28 characters: that can
be accessed synthetically. Thete Ls.hcvever ome catch. The
system use the Last four bytes of E as system scratch. This
isi most ewifident during dara, ewtry, data display, .or status
card w&itzmg* Z. So amythmng sto:ed in ~B§ syntheticly .caa
should be cewsidered volatile.

Thifs i &tzgulacion however doesn”t apply to the other
three AgBFL. registers M, ¥, 8. These may be used
synthe_icaLﬁy for many things.

@ REGISTER

'Tbe*-ﬁ&xtfuegistgr is the Q“register at address: 00%«
This register is used so frequently by the CPU that it is
not ‘very dséful 2as aumother "data register like the ALPHA
regiscets »nﬂnest of the time Q contains. the characters of
the Iast Eﬁnccian executed, by name in.reverse orwder. | We
will - see: awwse for ghis when we talk about the Q.- Loader -
Another useful “feature of the ¢ register is that - when ‘an
BOM iuncgﬁan s assigpmed to-a key the Q register5feoqtains
the - ¥ROM gumber in its Znd amd 3rd bytes and the microcode
eatry point address in #ts $th amd Ist bytes. We can make
some use of the Q register synchetically, although not - EQ
the extent we will with the ALPEA registers.

i Agdar Ay e 40

.f%i

] Od 29 q SQ.Jn MO .Ju«.u
9'G ainbi 4
™ Arpe

18 7O Z8 1%t
.@;iwﬁ L. 2% CL €%

C8 kv W8 h§¥
CL €%/ G¢

12 19 22 29 €Z €9 +Z %9 GT
LL 1G ZL 2GS €L €5 +I ¥S Gl
HO1VYOS
o ' 1 'z ¢ ¥ G 9
o ¢ QILIIHSNN
A LTS) zg sy €8 Wy #58 nGY
??mm%?ﬁu L. 2¢ TL §£€ §L %L S¢
12 19 22 29 €Z €9 ¥Z +9 Gz
L 1S ZL 25 €L €6 ¥1 +S Gl
3009
laquIinN aul
d A3N
o "L 'z ¢ % G g
a314IHS

s19)s1bay juswubissy Aoy

KEY ASSTGNHMENT ETLAG' REGISTERS

The nexg x;egist;er up is the 'f'” fegistat, O‘@A. This
register . a\nd 3 the
Ass1,gnme.nt Thev 'bouh., map their ﬁirst

'\t‘he gnanht of the calcuLator. -
; ES&ER mede the s‘)ust:em ﬁLrst chec.ks

/) ecuit et e
* egis:teens» ard sﬁfgm‘.,ﬁ : Eﬁgﬁﬁé,, Seobis

Figure 5.6 - Key Asaigoment Fllag Registers

wWith ouly 3\6; -bics wsed outsof each: register cthat
leaves 5 nibbles fo’ ‘dmch to* account ﬁ'm:.‘- . .Im~ the k= reglstar
they are ~uged’ as s»ysteu sc¢ratch.. © In the e- regls:te'c che
irst B‘hﬁ&“ miEbIas of e are the line number in the current
pregram. Wé will see: an interesting application . of this
later on. ‘The next twe aibbles {3 and 4) are the key code
of thHe last key pressed.

gener&]i imte?'est is “haf ia the z:ey assa.g\mnent

flags tl _
bidden key mmd&r tzhe BK RT buc:an-- This mea,ns that
syachetially m&,nay _make key assignments tec these keys,
a:lt!:oug:h' ehe; shvi £t key wouwld thenm be of little use in USER
mode and there is moicontact for the hidden key, wunless we
put cme ~ine,

d00

200

doo

L'G einb|4

O L _ Vé ¢ 1% Q g
l |
NYN1L3IM NN LIS NHNL3M NaNL13Y
Dm_I.r H14NO0A4 I.E_l._ HLXIS
H4FLNIOd NoNLIY NNl NaN13y
ss3yaay RE aNO0O3S QYIHL
‘aNF | Oy LVLS | porwos| 9343
| 4100

Aiowlapy jo uonoinbiyuon

MEMORY MAP REGISTERS

The next -three registers eontain a lot of -~very
interesting and wseful information. They are also very
damgerous to use. The wrong code- stored in here could do
anything from locking up your keyboard to. "MBEMORY TLOST".
The ' a and b registers contain the address podnter and the
six. level subroutine return stack. © The. c regidister comtains
Eour” pcinters ta. dliﬁerent parts of RAM. Figune 5.7 .shows
howhnhe‘teglstera are divided.-

Figure 5.7 - Configuration of Memory

Lets look first at a and b registers. The first two
bytes (0,1} 0of bt contadin the Address Pointer described - in
cthe . last secgtieon. By placing the proper code intes- this:

pointer we may wonder chrough all of RAM and ROM. The rest
qf b and all of a counra¥as the subroutine retura stack. The
ceturnr addresses are “not always copies of cthe Address:

Bointer at - the time the subroutine was called. If the
retura is £o ROM then the return address is a copy of the
Address Poioter. Ef the return is to RAM then the return
address 1is a coded versdon of the Address Pointer. Since

the Dyte pointer ino RAM nmever is greater then &6 it uses only
three bits aef the last nibble of €the Address Pointer.
Likewise the register pointer never 1is greater the 3 ia the
last woibble and so doesu’t use the last three bits of the
third aibble. So for RAM returns the Address Poiater is
compressed by placimg ‘the three bits wused by the. byte
peinter * into - the last three bits of the register pointer..
This is. il¥istrated by rhe following. - Suppose: .a subroucine
is called wheun the Address Pointer is at 3160. . The Address

Pointer is compressed to 0C68 and added to the return stack.

The ¢ ‘rTegister (system register) contaims a let of
zseful Dbut dangerous informactionm. A wrong number im this
register cam cause a lot of fustraticn. The £first taree

n;..ﬁd

g8'G eunbiy

ZS *8Y vy 0¥ 9¢ Z¢ 8¢ ¥C 0T 9L CL 80 Y0 00
€S 6% SY<lb LS €€ 6Z ST LTz Ll €L 60 GO 1O
vS 0G *Ydicy 8¢ ¥€ 0 92 2T 8L ¥l 0L 90 20
GS LS LY HEY 68 SC L€ LZ €2 6L GL LI L0 €0
O P 4 ¢ 14 9

19)sibay bp|4

nibbles are a register pointer that contains the present
location of the permenent .END.. This number is refered to
@ ervtime a glagbal label search or a GAT | is executed. The
next three wibbles contafn another register pointer that
contains the ©present location of the curtain between 'the
data registers and the program registers. Manipulation of
this numher svathetieclly cam be of use when we want to hide
data registers.. - The next Ehree m;bbles”centain a '"COLD
START™ .eonstamc ;m‘,l‘“ wumbrer evier changes the
unrelentﬂng :p'n f ? “, ' ;@”: ‘:7H§bbles k0 and 11 are
wsed By o 1§st” cnree-“&ibbles
gonra;n’ ragﬁstery‘
ove the‘curtaim mp

=

%ﬁmg techn1¢ue- ﬁ,k&

E&ree regLstarsg ‘but
“qa v"kmng, w;iat‘m. . them

greaﬁ -
gynfh&éi@&lv.

ELAG REGISTER

Tnis is. cher & register (00E).. Since a - register
contaims 56 bics ¢ shouldn”t be te surprising to find that
all 56 flags are concained in oneof the status registers.
Figure 5.8 shews the correspondance between the register and
the flags.

Figure 5.8 - Flag Register

3y storing the proper code imto this reglster we can
set or clezr blocks of single flags.all at the same time.
We <can use STO d- to set wp our display, angular mode and
oumber of digits fer ac program alkl at the same time. There
are alsc some interasting things yowm tan do such as setting
flag 30 the CAT flag and Iist the entire 4096 entries. Akso
Bug 18 caxo Be used to. imcrement the £lags as a loop counter.

SYNTHETIC FUNCTIONS

Part of the definition of a synthetic function was thHat
it was not kevable by normal means. If this is true, -“then
how do we get to them? The origins of synthetics came from
the bugs in the microcode that allowed wusers access ¢to
registers and £&ncfimns tlhtat they were mot supposed to be
able to get at. _But as stated before, these bugs were
exterminated by P 1n‘due course., Fortumately for us, - ghe
first peopke :g uge’ 9yntnetLes developed programs- and ether
means to geﬂerata synsmsgias om»m0n~bugge&‘mach1nes. Let,. s
A‘fm&t makei: af"g&netaLﬂﬁis ‘of the moss- common: svmthatic
functions awd them at ﬁﬁa@'ofxﬁow‘co‘getﬁac them.

Thte ~mumber’ Of sywtlesilel Fumctions I almost finfindite.,
&ma@- the m&st Qmmmamﬁ§,use&Amnes.ane :bdwﬂ: fn, the Eable
below:

mene tion; E&scsz&fot

STO Store "daca: %o anyiof the stacus*:eg*stersm
Does not.cause norwalization.

RCL Racal¥ ddta from the status registerse
~Dees« matr unormalize data.

X<> X exchange with any of the starus
registers. Does not normalize data.

DSE Decrement and skip if egqual in any of the
starus ctegisters (usuvally ¥, ¥, and o).
BDoes not normalize data.

ISG ‘Bncrememt and skip i#f greater, im any of-
the status registers (usually M, ¥, and
Q@).-.; Poes nmot mormalize data.

Text Iines of text that contaim characters. not
available on the keyboard. Save bytes
in creating special characters.

Keys Syathetic key assignments of all functions
‘both synthetic and normal.

T, XEQ Ppecompiled GTO’s and ¥EQ”s that are
a:eated‘syﬁth&tically.

Short form ' Sﬁcnt fc’u of the EKX does not kave the 1

eXpoaentiaE in frouwt of it (BS instead of ! E5).

The application of these functions makes for a very wide
variety of synthetic programs. Now let us explore how to
get these functionms into our programs.

There are seweral ways to load synthetics 1into the 41C:
the card read, wand, Bug 2,. PPC ROM, Bug 9, pulling modules,
and a few othaxs. We will talk about the card reader, wand,
PPC ROM aund Bug 9. Eet us. sstart with Bug 9 and see how 1t
works and them: symt3331ze our first synthetic function.

BUG 9

W&éﬁ' ceglsaem5 aAwasféisumssad”‘ wer saw that the fipst
Jomta i “@u:nant LlWe mgmbet Ln zhe ERGH
fSuppos=

l1ae; R &
80L. = BE
around : - any- programs wich Gbam
many- Iine mumkegs5im the cmhculatcr' ﬂh&ﬁ has: nappened ifs
that we have ¢e¢eted and jumped intm the wap aof the -key
assigonments o ~stabus registers if wo keys: are assigned.

Well, eof what aqg.ﬁs‘t&ﬁs ‘o us? Let us do ‘the LOLlOWng.
&M wve \:Lspk ol Video uler |

expeatn“

Iygrructiion / S bR R e e AT
l< ASN OPF 3+ ASN OFF Il

Z« ASN QFF - ASN QFF =1L}

3« GTO = . PACKING

4« PRGM 00 REG ____

S. €AT 1/STOP LBL or .END. REG ___
5- DEL 0GlL ‘DEL 0Q1

7:OSSE (2 HOTENS T
op-¥e&% LBL 03

. 0;&546 OFF
8. Backarrow (Z) oL T
$. ALPHA A ALPHA 02 Ta
I&* RRGH run mode:

Bxiample #V

¥hat have we'just accomplished? We have just created in
the: hex’assign&te ragiste:s a synthetie function known ast a
"Byre Jh-per - - This function ‘in turnm can now be used to
create oCher svnchet*c functions.. We will discuss this
Functiage ‘moTe “im the next. section. This technique of
ass¥going z2zy fumction to ag key and then using Bug ¢ to . go
in amd We&*"" the key assignment is one way €o generate
synthetic kev ass1gnnents. The most important thing is that

13

» The Lnner
numuer *ﬁb sa;aﬁqé&u&raacamse ah@ system;&oas ndt Krow wirat
‘Now: Swppgae we 'dlelete ome line with. DEL
~y6u ahmm&d.see a«ve@v L&Ege Line: mumber‘

elarac T

all HBB-41C/CV’s have this Bug. ¥Tou de not need amy
pecipherals: t@ do It.e But Lt.is limdced #n what it can do.

CARD' READER

ﬁ'eb have seen’ tHat Bug 9.
key: ass L&men .;fsh.,,é b;ut how d ve g,;
gragransr'“ . Onjer way &
thes ealc ‘
prcgr&n 3

an b.ge. us:.‘d,ﬁ te,e eireaue symaﬁtet;e;

t. s;ynhtheﬁti‘c; code 1n to-’ o

PLit b efwee
*fims«lowszw)

p;.efi.x] () Ihe

and: the bytbe deQigm:a*tiang the wi.:.l be ssp It be*aee_n t::he
tracks. Row ge backi tor t:h& program and: - r&placer the STG with
ENTERT, and.the with. the- “proper postfix bytes aund record
and”™ secomd ~set GfF cards. Now to get the synthetic code,
read im the first' track from che first recordimg and the
second track from the second recording. You should now see
the synthetic STO function as a program lime. Clean up the
tempcorary £iller bytes and you have your program. This:
technique iis fam:ly versatile and can create most of the
synthetic program codes: biy using the apprepriate prefix and
Ap'OStGlI: hytes- 3Tt Fe ._,a,iriy Long and: the card reader will
drain j»om- b'atfe:t:‘ies, but i.t car be: d"one when all else
fails.

WAND

Ameother fast way to emter symthetic code into programs
is. with:. the wand... Bar code can be .made for most of the
synthetic funcroiewms and characters, fFiez by simply scaaning
the, bar code if is entered into the program. The omnly really
blg hitch is:that differemt wand .revisions will anct read the.
ssymthetics the same. In sewe, the neull hy,tes cannpnot be read
withome lockfngs ufp'uke keyboard or.Iosizg memory. This is
most usfortunate. - ‘But it will get: most of the synthetics
ixte the caleulator=

T4

PPC ROM

By far the most versatile and &asiest to use are che
routines imx the PPC ROM. . These routimes were writen by the
people who started synthetics om the 41 andi were tested
ghoroughly before being accepted for the ROM as a program.
The omes that are most used are the Lead Bytes and Make Key

assignoment programs. »;Ehese two. vill a@low;you to create any
&rbltzary set: mﬁ'byteé I any functimn to
d key tib prqgrams

-sate the, enemte

*prci&l ch&récte&&

i3 ureaﬁed,gymur
svntuetigm : E%*u&am éhe >qasiest cand nosm
versatile vay‘fot’c:eatkng Qrognam G&d&u~f'Y0u can emter any
combination of bytes at any:.Bocation in your pr@gram. - ‘Bhieze
are also supperting routines, that heLp*”ramte NNN“s for the
purpcosa of sterimg them kn the status registers while a
program s remning, or to create speczal characters Emr the
printer without usiag &LDSPECg

Lets create & short program to. swap the M, N, amnd ©
‘regiscters around In che Alpha display. Wer will use "LB" to
create the svnthecrc tan&aicns E&qui:e&.

. ; 5
L. BERGX 0T LBE "SWAP™ 28 il ST g
“02 LBL "R+
03-17 = +
18 XROM "LB"
2. PRGM
3. R/ .
&. DEC/BEX INPUT 3¢
£1 0 142 .aLPHA _9¢
#2 0E 147 L 75 R/ Sged AT M
#3.0F 147 . CE R/Séj

#4. OF ~ 142 - R/S.,

#£5 oF - ME OGLR/S
£6 OF 142 SIS.RMS DN
) f"* oF 1&7 _ B/Semer
3. :
Py ggggé’ gﬂkdwﬁ
?’ . "’“
g- 6T8 .. 34 Packiag

LS5

9% 'ALPHA ABC - VWX ALPHA s
0N XEQ "SWAR'" .-#

E¥AMPLE #2

Be | STy u?&ful for creating key
e m_gp@:g; ";ﬁmgctyem&. These key:
S0 “ RO& f&mctxonsﬁvan. mmL@Abgta
2 sy exeﬁ redf. the progmau‘ﬁar s¢
% mangrl’ Jneg_t%&ars rﬁ\are 3’3% Fr‘, 7y g Je g
'3&& %&n“qha pgefir,,ges» i %
aneds o ﬁf oprizte B

e

.G&Eem he groggam gramgh9~5&tﬁ& mevﬁﬁ”

" ke

xsgk

L. XEQ "ME" 13 et ASFL

2« PRE/POST/REL.. __. L339 ENTERT '
‘L%4 ENTERT | Owe b
: Z3 RLS

3. PRE/POST/KEY R/S

‘- ‘%S'IH* w‘_

st -

e EXAMPLE #3
BYTE JEMPING/GRABBING

Qe * ¢f the wmost usefuwl Ffumcrtons sythetics has given us

is the byte Jumper.. :This functiom is the result of a
svxthetic - key assfgnment“of any byte from row F with anv
othher byte. from “the hex table. = The function has some

interestiag and use;nL propercies that we can use to our
dvantage-

The 4L, .when presented with a code, must tIry tc execute

that cede 2& best #t cawm. The byte jumper has the code "F_
» . The “hytes .from the F row of the hex table are the
TEXT line &esignators.j The F tells the system that text is

Feimowing imad ehe\uexh~niﬁble is: hov many characters (0=9.
and A-F).~ i The second byte of che imstruction (pescfix) is.
net: .npa*tant at this time. When this functiom is executed
iz the :nnnnaﬁg} .ET zees the ?‘neanlng ctext and tnen looks
ac.the lzst aibble af che hycte preceding the address pointer
to determinef Aew many characters follow. Figures 5. Lk0z ‘and
3.i0h szow how a byte jumper works. Let us try a short
example o see what happens when we execute the byte jumper..

16

ERTER
1. Type in. program 01 LBL "BJ'

@2 STO 02
. 03 "AB"C"
04 ENTERT
05 ENTERT
06. END
2. 6TQ..0a3 ABIC
3. PaC PACKING
e 0...00-
S &ye:ep jumper IROM G5, OiL
& 93 =*
i os /
&. 05 ENBERT
Example #§ ﬂ%ﬁy$3ﬁ3*
Wiad hs eppened o Ghe text Limer that: 'we wevre 'dispLaying
whemr éﬂe«:& Te Jump i vais'» exe.eg;ee; \? eE: as* Loak at the” code:

for - ther * am& / ﬁtﬁct*ens.« : e ~Che code for ﬁh@r”
is 41 hex amd" Ebrwvhe F -is 42 hex. Ihe hyta jumperr’ used the:
last waibhle of the STO 02 functiom to jump - two -‘bytes imxto
the nzddle af the‘text ABC and then dlsplayed the B and C as

their stamd. alone. Fumctions * .and. /, respectively. The
position of the address pointer can be followed in Figures
5.10a (before jump) amd 5.10b (after jump). - Okay, now lect

us make use of the byte jumper to create am actual function.

Suppose that ' youw wanted tor do’ Xéi&.&s‘line.3? in your
program. Eet us: follow *hrough the mext example and see how
to genenate fr.

L. GTO -003 * ABC .. 22 o ASFL
2. BACK PACKING 3
3. PRGM o 0.00

4. Byce Jump:Gd¥ XROM 85, 0k

S. ERGM 03 x

6. gxq;-xgx_;zz_, 04 X<> 2%

7. GEQ-.003 63. ABE

§. Rm 04 RDN

9. €0 .003 03 ABRY

10. PAGK PACKING -

EL. EREM :6.00

EZ. Eyca J"u,np.:%’;\“?i IROM 0S,.0L

E3. PRGM Q3. %

k4. STO 60 84 STQ 0Q

ES. GTQ -G03 @3 ARO

L6. SST_ 04 X<> M

X

o
‘ Example #5

7

Now let us see what we have done. The first 5 lines
simply repeat what we did earlier. They place the program
pointer into the middle of the text lime at the B. The 6th
Iine places a X<> 22 fumction into the program between what

gaé' the B and the C of the text line. The next step 7
reestablishes the text line, but the C is replaced with the
code for Xx> .- The 22 and the C are left as their stand
alone Eunctiq.nsx of. 6 ;aud /% ‘Step (8) places a RDN

i'ns t suctiop immediatelyafrer Chve teexrt' 1inmesn.” WIhe. séeps‘\(eQ)
chaeughysgh3) ‘wepeat the’ byte jumpiag gro;e&ure”-*'Step*(l&Y
3hi¢nmmg byte betweem'tbe B and _the, X<> and whem - :
\,,E&@§-fs\dom&,b,ehe dummy byte 13 ﬁnporporated i'“

g3 i -sis. "’ug f'he RiD‘T‘ byt:e and we. gxegi; the

hifshe Hs srown: . In Figure 5.10a-a.

R

Easulsxn

2 XG?,HF

Thils tecFaique cam be ‘wsedi Tgolj cmeate, almost any
gnth&téa,caég;&aaifé ﬁa,& pnagram.,gwxhe two program Liness
Fre: o % 33 © Lfwes are callled ther cemtrel and
generason Iines, mwespactlvely. Wﬁth~€me proper cembination-
qf*’these’ two Iimes you can create most of the functiouns.

The Dbyte jnmgex ¢an jump at most 15 cnaract&rs;ﬁ% This - s
Yecause the wibble comntroling the jump distanc e -.can have
values from 0 wo I3 (E). Let us wew Ffocus our attentiem om

another aspect p’» tHe- byte jumper that at first: is not
cbvicus.

The byte jumper is a text instruction zund when It is
executed it &trys: e dio just that...put a text string into
the alpha display. Wren tﬁe byte jumper jumps the two bytes
imto the middle of che text lime it copies what = 1is jumped
into the display. Tafs cam be very useful. We cam now use
the byte jumper to decode preogram lines that contain more
than one byte. For instance: '

I8

Example of Byte Jumper

. e . sm
Our six line program in ynemory

STO @2 Tearl

F3100 |42 [4A |32 F3 |41

ERTEIC | FRITR T

Figure 142 4318383 |C0 (00190
. a

After GTQ 003 our address pointer
is pointing to this position and is
displaying “ABC"

F3100142[4A 32 |F3 |41
[2 / smtn}:m‘m e —FERDF—

Figure
c 1o, |42]|43183|83|C0|00|30

Now after Byte jumping the address
pointer is in this position and
displaying 03 = 42

Example of Byte Jumper

F3|00 |42 |4A |32 |F3 |41

,‘X<> X / Enior | Eiter [

Figure *
5-.100 j% CE pQQwu 4(_3 83 83 CO
00|90

Now GTO . 003 and the text line shows
"ABE .“ Now add the line 04 RDN pack
and GTQ 003

FS310014214A |32 |F3 |41

Figure X<> | RON

5104 |42|CE|75]43185|83|C0O
00|30

F3

00|42 4A |32

Texa X

F3

41

42

35 |CE |75 43

ERITERY

83

ENTCRA

83

ENe >

CO

00|90

LBL "BJ"
STO 02
TABO
X<>M

/

ENTER
ENTER
END

Figure 5.10E

Synthetic Code

GTe . 003 ABO

PACK oS PACKING
Byte Jump-~ " ¥ROM 05,01
ALPHA AT PHA #|A '
ATOX 243

ATOX 65
Bytevuump§yr ZROM Q5,01
ALPHA ALRHA B

&TOX 66"

Byce fmg&f’i” TROM @S, 00
A‘: 0% &8¢

ATOX 206

Byte Jump rrg oM §i5h0%
g

67
L

‘Example #6

what we have jusc &nne is ro decode the entire _program
fros line 03 wuntil the END. The . 192/2/9 is the END
statement for our program. This technique can be used to
decode GTO0’s and XEQ s after they have been compiled.. It
can also be used to a limited extent to explore the ROM's
The byte jumper _is a very useful tool and practice 1is

-

suggested so that you can use it

BYTE GRABBER

It is aot necessary that the byte jumper be execured im
RUN mode omly. ¥hen the biyte jumper 1is: executed im PRGM
mode, it called the "Byte Cmabber” This is because of the
way it behaves.. Suppose we make the fellowing assignment:
247,65 to a kew. This is a text sevem and the - postfix.
What would happen if this was pressed in PRGM mode? _ Let us
follow threoumgh the next example and see.

Suppose we have the following program:

oI ‘LBL ™"

G2 ENTER
03 STO 22
04 ENTER
g5 EXD

Now let ‘ust dio the followimg and see what wey get for o
effort. - 2 s S A
l- GE@ .GOhﬁ

& BST (Zy- .
53 Ky@e G,naﬂJ

i &
chis fssa ai. Hsﬁ‘fs :

P700 ELOOCE0ER92

The E7 byﬁe is: thle’ cex g seven fudﬁq&thﬁfmhlawad by the text
string . The last hyt&~o§*tamt stttng (LN dis - the STO g refix
that was by:e GRABBED when _bq byte gragbet was. executed.

This is caLled prefix masking. U The mext step was to imsert
the RDN function after the text line. ‘Thiis RDN will become
the new gcsc‘tx for the STO prefix. We ‘then went back to

just Dbefore the text lilme and pressed the ©Dbyte grabber
again. Thkis* had: the effeat of maskimg ‘the fipst F7"byaa
that w=s. ‘@xecuted and: cnuawﬁeleased that text scriag Lo its
staand alum%‘ﬁuncttensa) the thas-no&t‘mﬁjﬁbase were, npulls
and" themefere donmt, appear‘in ﬁk&»wrog;a: as,‘”ines.,“ But
mest impont&n:ly ‘the ka&t hyte (thq SIO prefix) is- released
and looks for &-p@stfx& € go with ft. Wiat it finds is the
RDN Dbyte waicing . for “fitkand the- resu‘z‘ s the STO M
fenction .-

21

L 1—G 8unbi4

yuewubissy Aoy 31sd(4

juewubissy A8y puooeg

e¥ig
JOpDOH

04

T

c 'y ' g

Jo9)s1bay juswubissy Aoy

Lets try the following example and see what the “result
is. "Lt will prove very interestimg. Bollow very clesly.

2. Byte Grab

3o0 SULELBEEELEELELLET AL)

"EXAMPLE #8

SYNTHETIC EEY- ASSTGEMENTS:

mod'iﬁw ‘Zhe ree.y? azssifgaxei:ﬁ‘ and ‘m’askee wsler Qé" tham» swm th éﬁlchy -

Thre'- &L 7" dTesy twe 'ehrfings: wifem af fenlqtiom fs- &sslgn‘ e
kiay: ﬁins: o d&ﬁ&aj‘h&!q@aﬁ% ,&h&}‘ :egistqm o1
regtstarr“depem¢;mgk‘cn’ vhether éhe E@y :ﬁs, vashifted

shifred. Tt éhen’sﬂores ar chr&e ‘byce- code into: the: next
availble pwstlan Lm.the Key Assignment registers. Let's lock
cleser aw Gh&sa kaw. ms&lgnnent registers:; and what their
structure 1S« Etgure 5.1! shows what the fields are in a

gtggg&‘iwlf —-Key Assignment Register

key as&ignnenc :eslsterm.f The 6th byte is the header byte
and iy»salw&ys.FG- . ‘Baeh kev assignment regiscer has this
cade as~ﬁts~mosa significant byte. Byzes (-2 correspond to
the first key assigmment placed im that register. The bytes
3-5 correspond to the second key azssignment made im that
register.. S ’

The - indivzduaf” ke¥ assignments are a three byte code
that deflne ,Ehe fanction amd the key irc 1is assigned Cto-.
Figure .5.13 hows the structure ef a three byte key
assignment cade.. /

Key Assignment Code

l
| Function Code

Key Code|

o | 4
Al XROM#l Function #
Synthetf&‘ y two byte code

Mainfra

XROM

Figure 5.12

Bignre S5oI2 ¥ Three Byteu Keyy Assdigonment

‘-‘is;s Sit@t:&d. }n;
. ghanged. ~asi

Bnshiffred =(¥-1)A hex
Shiifred, =(B-IR(A+8) Fex

ThﬁsA«givé§j§§>¢ééﬁd"&féiz‘hetidecinai number that is stored
in the least signdificant byte of the key assiganment.

~ Now lets Took aﬁffhe coding of the function bytés.
Thecze are two biwwtes availble to store the functions hex code

4in. .+ Most main frame functions use omly the first of these.
The othew (more significant byte is £illed wirth a- 04 Dbyrte
(hnv yypte fran.tov zero: will workl. Sc the assignment of

the. LO6 Ffunction to the LOG key wouLd appear as:
04 56 3t

The 04 byre. cérxesvou&s to the £1 ler byte used, the 36 1is
tﬁe Héx’code*E -he EG@ function and the 31 is the key code
for &he La6G kew w Iﬁ &nhy one of tha, two bytes are used for
uxln~fnaxe funcﬁion, ‘then why are there two bytes 2availble
ﬁmv\t&e.‘nnct*on ‘code. ‘One of the main advantages of the 41
ﬁs- its aﬁ<y tu‘addtess XROM ‘s, aod these XROM functions
can"aﬂg be_assﬁgned to keys. '~ These functions do take two
byf& = T‘. ; .;Ed z-key%’? These twoe bytes are its XROM
Zumber ast disc:tﬂred. #n section TI. ~Lets take the time teo
wark anuexaE?I' ani sees if there are any guestions about key
zssmgnaencs co.E mis goint.‘

& L Y
Lets” -snpnose "we " want to wmake the following ~ two
assigoments Im the order showm. o : L

23

Fanction: Key:

ISG Shifted CHS

DSE CHS
Write out the 7 byte HEX code for these two key assignments
appeaning in the sawme ragistesn.

New: teo; further test our skill lets decode an assignment
register amnd sae what ﬁhe<assigament register cent&insu

B 042D 1L 04 7B 4%

Vrite fhe dssignments inlopdect shae thiy vene made Falowd:

::hekmﬂs,}§§gn&€iq&f hys'
get what a&ra’ ca'_»lvesdi 'p*s‘ue' £
.are Q0. te: 32, -
This - . is. " Wow et ge' ¥ &sSLgnﬁents ;ar «Vmultibyt&
instruc tiocws Lik&»ST@iMﬁfﬁ%”%m.have already ‘seen omne example
of this in the byte: ywmpen that we created with bug %. . It
is - the assignment orfl a - El- and a %l bytes tor a single key.
The 'svnthetic fumction STU M is assigned as 91 75. When
pressed iIm run mode vou see a breif digplay of a PXROM
number. Xow lets ctry writing a key assignment for the
following rwo assigoments.- - ’

_ISe M éo ESG key {(-42)

D“E\K to CHS: kay (42)

Write, che aSSLgum&m: Emn‘tha two fumctions ‘as the HEX code

in the next limne.

Vith che ‘use of‘K&h s*?e can s'c*e the apgrOIat@ code im
to “the bleck of - keg'&ssignmenc registers scarting ‘at 0COC.
This - XXX give any kay 3ssignmeug we wish ta make. The
programs Iike "MK" do yuscqtﬁac for us.,

Q- LOADER

La*"us tewisit ‘the’ @ register aad see If it can’t be
of more use to us«/ TRis negis;er comtains the label of the
Iast “executed (KEQ) funccion or global label spelled ‘in
reverse. = It wvas found that whea a byte from row one of the
table was assigned te a key synthetricallz, the results were

245

unexpected . When executed #n run mode the proper digit was
placed imn the X register. But in- PRGM mode the results were

even more Interesting. - The digit was entered but a text
Iine was: also imserted. Lt was soon flound that whrat ever
wais ig'ghe~Q register at the time was lcaded into the text
line but: Im correect order. . We can make use of this “to

create symnthetic text lines @f special characters of up to
vsemen bytes hn Leugtmh 2 uets gneate tba follow1ngvtext line
in ' J%Aa ymw can see

Sttlng3§iﬂ¢6 gyn‘prqggax

GENERAL TECENIQUES.

Imyﬂtﬁis aectidﬁ% we will review some general uses of
synthetics "hat we ﬁee; are important amd regularly used.
The technigues” discussed will be alpha manipulatioa, curtain
raising, , flag comtrol, synthetic tomes, byte saving,
branching, speed: wp, -amd the use of NNN's in synchetics.
Let us\start aur’ disaussion vlth the use of NNN Ste:

Whews we wishr to® modify &he status: registers otT Qlace a
certain” ‘code in memoTy some place, We need to use NNN's to
dos it. " This means that we must be able to.easily code and
dchde>¥HN"s. There are several programs or versions of the
sase program available to do this. The B2C ROM routine "HN"
(Bet .to . -ENN) takes a seven.byte NN i the. alpha ddsplay
{entered as .normal 0-%9"and A-P) and codes it fmto .a NNN.
TNET CKSK _to Hex) does just the opposite. ~“The programs
"CODE" aud "DECGDB" alse do this. The use of the programs
will onry bie: demonstrared here. More thorough explainations
of these . routines is im Synthetic Programming Made Easy.
Let us see hov-the two-routines, "HN" and "NH" work and then
®mOVe an ;m;nse ENN “s. ta- synthetics. Suppose we want to take
rhe follgwing hex code amd turn it into a NNN.

.¢8 F¥ 00 00 FE A9 FE

We would do the following:

L. ALPEA COFFCQ0QQFFAIFF ALPHA
2. XEQ "HN"
3 4l 65000L6-11

To decode the NNN, ‘place it {n the X regiscer and de .the
follewing* ’

ﬂg?&ﬁﬁkim X tegister
» 2 mQ "NHL'”
X‘WEH&~GGEEQOGQEEAIF?

ﬂ&hew
f"h ea

A«paa- iA 3
#Een4shaﬁ§§

ALPHA REGISTRRSFARD SYNTHETICS:

The alpha gqus:efs s@rve many purposes- im ‘synthetics«
They re used a%x’ aa’ extension to the stack, ' to display
special character&a temporary, stectage of NNN “s.. Lets look
first at using them as dara registers.

ALl of the register operations can be used fmiconjuntion
with the alpha~regiscers. This allows us te use them -for
starage of daﬁa” for Igep comtrol wordsi. Lets wnite a short
program £o° Zoo Erﬁn G te 9 and sound Che tome of the Loop
coatrok vo:d eacﬁ rime. Lets use the M register as our Loap
counter.’ Write your wersion in the space below.

We can a-sa wse the Alpha registers to emter NNN's fnto
the system. Et' is “possible to store aw NN as _a text
stroiag 2msvour’grbgrax;, and when i: #svneeded te, do. a- “RCL
(2ipha). = .Thise encers’'she NNN into the X negiscer‘ wihthout
permalizing it.’ The fsllowving lines of programwing could be

083 20

18 019 96

i X M3LA 68
(X 415 ¥8

16 1471426

- | J8

Y14, 187008
618 WYIL ¥

used to: create. the speeial character X . If we used’ the-
mormals’ method of building the character the programing
becomes prohibativly byte consuming.e

CE&' .
RCL ¥ ”l‘Qf‘LS &
ACSPEC

oot/ oo

SYRTHETIC TONES

A%’ youi.saw eamhier fn ‘section Tl,the tone ﬁuncciom has
the BEX codiey 9F- - ‘Where the second Byte is a- postflx from
00 to 0% 1}W1th svnthe:icstwe cam mow use and byte we. ‘wish
as the postrfx for® thre . " .We find by~ experlmentatlon that
usamg any byte from’ the lower half-of the byte,, ,Fable resul ts.
in 128 different temes. Using any byte from the top half of
the byte table results im TONE IND __ .

Wich Emfthqr:work‘we find that the tone’s frequauncy is
dependant on the. Oth aibble of thke yest fix, and the tone” s
duration : s degpendant. -on the st mibble of the. pestfix.
This: wmeans: that/ there are 16 tones with varing durations.
However they are differemt and have scme uses.

The wvery j&ort tones are good for use with am alpha
pcompt for darta fnput from the keyboard. The prompt ks* slow
feROugh and a-tone eam slow it further to- the point where you
may =misenter a nomber . Ehe shorter tones help here.

Aﬁothérftse,ts to give the kevs a tonale feedback. Each
key ~can . be assigmed a tone that sounds before the function
on ‘it execultes.

Ear §&r&vare bufs tiree tonmes can be used to turm devices:
mq.m&d off, ii‘zarent duratisns setting .different conditons.

CBGRTAIN MOVING

Lets g@ back amd: look again at register c. We fqumﬂ
that #t contained four three mibble pointers. The firse
always gave the present register of the permantent «END.,,
the second pointed to' the absolute address of the RC0O data
register (curtain between program registers ~and data
registers)v thez ghind was aw cold start constant, amd the
fouwr'th was the aDSOLuﬁe ad&ress of" the rirst ‘REG. At times
e weu.d be. banﬂ“ical go hlde a g nouwp: af &ata registers wne&
mere - -then aua,g:og;am or. the sanargrogam mas to" access ghe
same: hLu&h qn.maqa regiatevs and;wourd stroy the; " datg
&éana& - o fnto thm ,&

&kw&lﬁgavemSEI unaawwﬁ
shniiss works.

Y. RGE ¢ A
3 72%&0 LSQLCEiGBP 2 &&”@uws.
§ Kd&a ten (A) to the LER i

5. IB3%001l&69LDIICH

5% L STO .00 Il STO LY

7« Bllace HEX code im ALPEA

g. KEQ TEN \

Q. STC <
10. RCL 06277777

”nggiggfﬁaégxﬁa}gﬁha

EXAMPLE #¥¢

What happened to the 61 that we stored into the RQ0? We
raised the curtain lﬂ“registers and’ what was RI1! is now ROO.
Now lets put the guregin “back and see if the 0l we stored in

RC0 1s scill there. °~ Type in the BEX code for the orginal
curtain aod XBEG "HN",. them STO c¢. Recall GO0 and theres the
@1. Now “clear ¥, ‘and STO c. This is the result of a

mistake et of late nilght editing.

FLAG CONTROL

The Elag ragistet’ (d) can also be used for a 1lot of
things- Eets ~do © dbcanple»oﬁ examples. Lets- load the
fmlléwing program from tape and rum it then see what is
happening.

28

1. ALPHA FLAG ALPHA

2. READP
3. RON
4. REN

What are allk those stramge displays. that are appearing?
We used a speeaﬁa‘l, ELX e to Increment the flags until flag 30
the CAT"_flag“ was. se;r. we cﬂhen STOP and when we pressed RUN:
the next" ti’meg\ f{fte Cﬂ&& stanued up” heca:u-se flag. 3@ was. sets

=

sxzamxz‘f‘ X107
with rhez &m}& sar tha emecution fis somewhar slower. Thdfist
#s most sigsz:v’*an * when a long program 's7 uu.xming and
outputs *is»t senE Sto the gtinter only at rthe end of the
program‘-v e agn &bso use NNX”s to -setup the f}.ags as we
want fer a given program by leccing the first few lLinmes be-as
NNK with 2" ST@ 4 f:olloving’ them.

29

SECTION ¥

- QUIZ

If vou wanted to assign the synthetic furnction X<> d

to the shifted STO key,

the assignment?

EC E7
71 7E
CE 7E
04 CE

B2
33
2B
01

none of the. above

what would the hex code be for

ce 728
&

If flags I; 7, lZ, 27, and 407are to be set with a
STO d instrucrcion. What is thes hex code that should be

LO

a1

oc
0o

into the d register?

00- 80. Q1
00 80 14
0L 00 Gl
00 08 10
above

¢ register may be used as a synthetic register

only in program mode

there

the 169 constant

only on Sundays

following address pdqz
executable instruction in your
register and what byte is that

byte E register 51C
register EC1
register 51C
register ICE
none of the zbove

that has not beemn operated on Dy the system

is defined as:

is saved

ICE

program.
iastruction in?

that has anomolous dig:-.ts
fields

stored

@2 &1 08 00

b. 13 68 00

c. AQ 00 00

d. g1 80 10

e. none of the

The

a.

hB. only when
only 1if

d. never

2.

The

a.

b. Dbyte 5

c. byte 6

{é} byte 5

e.

A NNXN

3. a number
a number
or other

¢c. a number

that has been changed bv the RCL instruction

ino

are no subroutines pending

er is poianting at the next
what is the

its sign digit

SECTIOR V - QUIZ (continued)

6. The byte grabber should not be used in PRGM mcde 1if
you are:

close to the .END.

in the middle of a program
ce 1in the middle of a ROM
d. none of the above

7. The Q lcader can be used to create a syathetic text line

of up tox . ~characters?
a . 2
be. 9

€1
- 1

e. none of rhe above

8. The byte jumper uses the ﬁth nibble of the byte
preceeding the address pointer to determine how many
bytes it should jump. What is the mwaximum number it
can jump?

a. 16
b. 8
C . 7

15

e . none of the above

5

ich of the status registers are used by the system
for scratch?
o u g o P‘P‘“ bL\.D !3“6
a. s A1y k ‘L
5. Q, a, c, d &»3“\”2}
c

P, Q #, =) Hibble 4-%
¥. a, b, c, b (‘,55 hi bblea lo:c\ pr»wﬁf

2. none of the abave

16. The address pointer may point to any place in RAM or
ROM. If it is pointing to ROM it does not have a

é} byte pointer
B. register pointer
c not part part of the status registers

- -

d. can’t be domne

FINAL EXAMINATION

The following codes describe what functions...
g1 75
CF 77
82 75
a. RCL M STC © X<> M
b. RCL M X<> 0 STO M
STO © X<> M RCL O
@ sSTM Lol O Sitm
€. 5roo 1bL 0 3T¥O
The key assignment registers contain assignments
in each?
a. 3
o 2
c. 7
d. 1
e. mnone of the above
Write out the kev assignments for the following
functions:
l. byte jumper
2. g=-loader
The following nibble pattern was obtained by what

F=d
tvpe of ocperation?

1 FF0O0OO0COO0QCO0O0O0 80D

3. & nusmeric entry line

b. a RCLFLAG operation

. an ASTO operation oa a BUG 7 machine
d b and ¢

e. mnone of the above

Write the program lines necessary to create an
ASCITI f£ile mamed "QWERTY" with an exteat of 16,
enter two records of your choice and position
the file pointer to the second character of the
second record.

(2]
-

FINAL EXAMINATION -

If the ALPHA register contains
and the X register contains 67,

resulting value in the X register

instruction?

a. -1
b. 3
Cle 4
de. 5,
2. 6

An ENG IXND 99 ;nstruction would
axecute?

a. 16.7 mS
b. 16.6 mS
c. 32.0 mS
d. 30.0 mS

e. none of the above

The fastest executing numeric
the number -1.2345 E-5 would be:
a. =-1.2345 E=5

be. 1.2345 E-5, CEHS

c. =12345 E-9

d. 12345 E-§, CHS

e. mnone of the above

The local alpha label:

a. 2 bytes

5. 1 byte

Ce. 3 bytes

d. 5 bytes

e. none of the above

The BP-41C is which of the

a. a persomal computer
b. a tool

c. a toy

d. none cf the above
e. a, b, and c

(3]

entry line to

(continued)

"ADVANCED COURSE"
what would be the

from a POSA

take how long to

generate

LBL A occupies:

following:

SECTION VI

APPENDICES

© Copyright 1883
INNOVATIVE TRAINING CONCEPTS

References and Recommended Reading

Owner “s Handbook and Programming Guide, HP-41C/CV,
Hewlett-Packard Company.

82104A Card Reader Owner s Handbook, Hewlett-Packard
Company .-

82143A Printer Owner’s Handbook, HewlettFPackard Companyi«

Extended Punctions/Memorv Module Owner’s Manual,
Hewlett-Packard Company. '

Jaretr, Keith, HP-41 Synthetic Programming Made Easy,
Syanthetdixs, Manhattan Beach, GA, L982.

Vickes, W.. C., Synthetic Programming on the HP-4IC,
Larken Publieations, College Park, MD, 1680.

Dearing, Jobn, Calculator Tips & Routines, Especially for
the HP-41C/41CV, Corvallis Software, Inc., Corvallis,,
OR, 1981.

PPC ROM USER‘S MANTAL, PPC, Santa Ana, CA, 1981l.

Hewlett-Packard Jourmnal, March 1980, Bewlett-Packard Co.
Wong and Conklin, "Powerful Persomal Calculator System
Sets New Standards”.
Steiger, "Packaging the HP-41C".
Johmson and Marathe, "Bulk CMOS Technology for the
BEP-41C".

Santa Ana, CA.
mmended for programmers and
f expertise. It contains programs

PPC Calculator Jouramal, PPC
This publicatiom is rec
users of all levels o

v (D
QO -

and data spanning a wide variety of applicatiorms. It is

also a forum for HEC programmers tc share their

discoveries, tips, and opinions. The following articles

are some of the more important articles that deal with
the topics of this course. The references will be of
the form Volume, Number, and Page.

For a price schedule of reprints, send a SASE (9" x 12')
to:

g

PC, Reprints
3435 West Camden Place
anta Ana, CA 92704

N

S

PPC Calculator Jourmal

Rennedy, "HP-41C Combined Bex Table" V6
Nelson, "Bugs inm the Box?" "

McClellan, "Inside the HP-41C - Photos, Schematics"

V6

HBooper, "Editing Speed" "
"Bugs Four & Five" "
Wickes:,. "HP-41C Status Register Access" Ve
Nelson, "Bug Update - Bugs 6, 7 & 8" vé
Wickes, "Through the HP-41C with Gun and Camera" "
Nelson, "HP-41C Tomes™ v7
Wickes, "Breedom From Bugs" v7
"Synthetic Key Assignments' "

Istok, "Pseudo XROM’“s on the HP-41C" v
Folb, "Two Byte Assignments"” "
Cullings, "Shift Key Reassignments"” "
Close, "Bug 2 - A Practical Applicaticn v7
Edelen, "eGOBEEP" "
tadwallader, "Flag 30 Catalogs" v7
Wickes, "Byte Jumping” "
Wickes, "Direct Addressing of ROM Routines” v7
Albillo, "Universal Byte Jumper” v7

Jarett, "A Byte-Jumper Coockbook"
Story, "™Caveats for the Novice Byte-Jumper"”

McGechie, "Key-Assigned Numbers & Q Register Uses”

V7
Close, "Using Register P" v7
McGecnie, "Register Q Uses, Alpha GTO" "
Dearinmg, "41C ¥ N & O Register Operations” "
Ruble, "HF-41C Saving Bytes” V7
MacLean, "Catalog Bus (PPC BUG 9) "

Stern, "Synthetic Programming Tips" v7
y g

N5

"

N6

11}

NT-

N8

14

N1

NZ

A1

14

N3

"

N4

"

N6

"

A1)

N9

1A

K10

P22
P27

P 4
P30
P30
B3L

223
R27

PL7

P40
P43
P46

P21
P27

P27
P29

PPC Calculator Jourmnal

Close, "Romping Thru ROM" V8
Massman, "Installing Modules Inside the HP=41C" "
Stern, "Program Mode “Byte Jumpers’" "

Close, "Erasable ROM for the HP-41C" V8
Cadwallader, "Merging HP-41C Key Assignments" "

Cadwallader, "HP-41C/V Reassigned Keys" "

Nelson, "4l Assembly Language Programming" V.8

Gibbs, "4l Funcrion Timing" V38
Mc Gechie, "Namerical Entry Times'™

Colklett, ™Ewerythiag About Rey Assignments”
Baldrige, "Seme Useful Byte-Jumpers"

close, "FIX 9 - A DECODE Alternmative' e

Close, "BUG 9 Cemments'™

Altman, "The HP-41 at 2X Speed" V8
Wickes, "Symthetic Programming - A Perspective" "
Klous, "BUG & Synthetics" "
Lvlose, "Mocre BUG 9" "
MacLean, "SST Bugs"™ . "

"Error Ignoring Errtors"
Brockman, "An Enhanced “Byte-Jumper’"”
Baldrige, "F¥3 Byte Jumper" "
Cheeseman, "Long (Synthetic) Labels" "
Gosteli, "Generalized Fn Byte Maskers" "
Stern, "The P Register” "
Jensen, "Decoding Register P

Cadwallader, "The 41°s 4096 CAT 3 Functions" n
Kendall, "Bare Bones Prefix Masker" V8
Hill, "Pseudo Names - Synthetic Assignments"” *

McCurdy, "HP-41 Lonmg Form Branching to Short
. Form Labels™

Schmill, "=2 =2 = 227" ”

Massman, "More EP-41 Speedup” "

Jensen, "The 41 “SCRATCH’ Registers" "

Berzfeld, "More GTC Branching" V9
Cocper, "FIX e on the HP-41" "
tlose, "HP-41 Crash Recovery Tips" Ve

HBormn, "Q-Register-Sharing Functions'

ERSEEUERE S

W 'Yl oo by
N S

il =2 SRL= = A

N1

N2
"

"

=
w

&
N

Pl4
P20
P31

P4S
R4E
P47,

P L6

@t

[SS I oS]
[IS

PPC Calculator Journal

Lipschultz, "Extended Memory Topics' V3 N3 P21
Bailey, "Exploring Extended Memory" """ P2L
Wright, "EFM/EM Structure" "oom p22
Wagner, "A Program File Can Run?" """ P24
acrwoed, "EFM Observations" " P24
Cardinale, "EFM Comments” "™ P25
Karras, "How to Use ASTO b to Jump in Memory'" oo p2s
Borrebach, "Lonngg GTO0 s and XEQ's" V3 N4 P18
Szablowski, "Strnuctures of Complex HP-4l
smstructions” LN -
Maloga, "Upside-Down: RAM" A
Katz, "All Prefix Zewo Keyv Assignments’ L 37
White, "Addressing the HP-41C" V9 N5 PI'8
McCurdy, "3-Byte GTO RAS aad Key te- IND Labels" V9 N7 P 9
Bailey, "Time Module Alarms & I/0C Buffer" "M PIL
Smich, "XS XEQ in the Stack" "™ Pl3
Lambert, "Synthetic Programming Using the 41
Card Reader"” " " Pl4
Mathewson, "EFM Verify Bug" S 4
Cadwallader, "256 Assignments on one HBP-41 Key" "o" p20

Erickson, "The Care and Feeding of the HP-41
at 2X™ V9 N8 P19

Bernstein, "EFM - Tutorial feor Runniang Programs
Stored Imn" V10 N1 Ba44
Cilose, "HP-41C/CV Normalized RCL" """ P64

	Cover
	Index
	Section 1: Machine Architecture
	Section 2: Calculator Instruction Set
	Section 3: Instruction Timing
	Section 4: Extended Functions
	Section 5: Synthetic Programming
	Section 6: Appendices

