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CHAPTER 1 - INTRODUCTION

1A. UTILITY MODULES

Many of the sections in this book make reference to the ZENROM, the
CCD Module, or the PPC ROM. These devices are modules that have
been fabricated by Hewlett-Packard to the specifications of a third
party. They are available from EduCALC (See Appendix B).

The ZENROM is a 4K byte module written in machine code (M-code), the
natural language of the processor within the HP-41. Like the Extended
Functions, ten of the ZENROM functions can be used within programs.
There are two "operating modes" in the ZENROM: RAMED and
MCED. RAMED allows you to edit bytes within the user memory (data,
programs, buffers, Extended Memory, etc.) of the HP-41. With it, you
can review or replace bytes, which are shown in hexadecimal (base 16).
You can also insert bytes within program memory with RAMED.

MCED (Machine Code EDitor) is "A full machine language programming and
editing environment including facilities for disassembly of M-Code
routines and creation of new routines using the M-Code hex-loader
(when used with ’Quasi-ROM’ (Q-ROM) in a machine language storage
device)." Even if you don’t have a Q-ROM device like the MLDL (See
Appendix B), MCED will allow you to view or print the contents of any
plug-in ROM module.

The nicest feature of the ZENROM for synthetic programmers is the
ability to key in instructions like RCL M directly. Another helpful
modification that extends the capabilities of the HP-41 operating
system is called "SYNTEXT entry". This allows entry of any character
by pressing SHIFT, ALPHA followed by two hexadecimal digits. Also for
entering special Alpha characters (both in and out of PRGM mode), the



ZENROM adds two USER mode keyboards.

The CCD Module was developed by the Computer Club of Germany. It is
an 8K byte M-Code module with many powerful utilities. Operating
system enhancements include directly keyed synthetic instructions,
just like the ZENROM, plus the ability to directly execute or assign
any two-byte function by specifying its decimal byte codes. Of course
enhanced Alpha modes allow easy entry of synthetic alpha characters,
and a lower-case mode that allows you to enter lower-case characters
without pressing the shift key for each one.

The CCD Module provides an enhanced CATalog function, similar to the
one on the HP-41CX. Catalog 2 allows you to press XEQ while an entry
is displayed to enter the function in a program (PRGM mode) or execute
it (run mode). Catalogs 8 through F allow you to start Catalog 2 at a
particular port. The number 8 though F refers to the starting ROM
address (see page 22 of this book).

Matrix functions allow you to create and operate on matrices either in
main memory or extended memory. The matrix functions of the CCD
Module are also available in HP’s 12K byte Advantage Module. Logical
functions provide some of the capabilities of the HP-16C calculator,
including rotation, Boolean operations, and viewing the hexadecimal
equivalent of X. Each bit of a number can be individually tested,
set, or cleared, making it easy to use a number as a set of flags.

Other utilities help you to efficiently prompt for various types of
keyboard input in your programs, automatically rejecting incorrect
entries. Other added functions involve printer and alpha register
output and input. The FIX/ENG display mode (see pages 139-143 of this
book) can be set directly. Data registers or extended memory files
can be sorted. I/O Buffers and Catalog 2 function Key Assignments can
be saved in and retrieved from Extended Memory, and Key Assignments
can be merged.
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The ZENROM and CCD Module both have utilities which support advanced
synthetic programming. These are the familiar register conversion to
and from hexadecimal (coding and decoding), and register storage and
non-normalized recalling. The CCD Module has additional byte-oriented
storage and recall functions, functions to locate programs in main
memory, and functions to manipulate program pointers.

Having either a ZENROM or a CCD Module will allow you to experiment
with the ideas in this book more fully, especially where synthetic
programming is involved. Extended Functions (built into the HP-41CX)
are also highly recommended to the serious HP-41 programmer.

The PPC ROM is an 8K byte ROM module written in user code (the
programming language described in the Owner’s Manual, augmented by
synthetic programming). The PPC ROM contains many powerful routines,
half of which make use of synthetic programming. The 122 routines are
divided into fifteen categories: Alpha Register, Block Operations,
Curtain, Display, Key Assignments, Load Bytes, Mathematics, Matrix,
Memory, Miscellaneous, Non-normalized Numbers, Peripherals, Program
Pointer, Return Stack, and Sorts. Some of the functions within the
PPC ROM have been superseded by faster Extended Functions, ZENROM, or
CCD Module functions. The PPC ROM is several years old, but it
remains a milestone both in programming and documentation. Study of
the documentation should be a must for synthetic programmers wishing
to learn more.

1B. GENERAL TERMS AND CONCEPTS

In order to understand the concepts used in this book, you should know
a few basic facts about the HP-41 and how it works. The material
presented in this section is intended to summarize the necessary terms
and concepts. References to other chapters and books are included for
further reading on these subjects.



If you are already familiar with hexadecimal (base 16) notation, the
byte table, the HP-41’s internal status registers, and key assignment
registers, all of which come under the general heading of Synthetic
Programming, you may want to skim this section quickly and move on to
Chapter 2. There is enough information overlap that you can read the
various sections in this book in whatever order you like. But you
should only skip this section if you have a good working knowledge of
synthetic programming on the HP-41. If this material is new to you,
it would be a good idea to read it more than once.

Key terms

To get the most out of this book, you need to be familiar with certain
key terms and abbreviations. Many of these terms relate to the memory
of the HP-41 and to the number systems used to represent the
information it contains.

The byte is the basic unit of memory on the HP-41. All data, whether
numbers, characters or program lines, can be expressed as a byte or a
series of bytes. The internal organization of the HP-41’s user memory
is based on registers, each of which contains seven bytes. In
addition, bytes can be subdivided and represented in several ways, as
we shall see later in this section.

Number Bases

We are all familiar with decimal, or base ten. Single digits range
from 0 to 9, and 10 means ten. This familiar number system has little
relationship to the internal workings of a computer. Other number
systems are better suited than decimal to express number values in a

computer.
Binary, or base two, uses only the two digits 1 and 0 to represent

numbers. Usually binary digits (bits) are grouped in sets of four.
As you shall see, this grouping makes the conversion between binary

-4-



and hex simple. Each bit represents digital logic high (1) or low (0)
voltage state. Like base ten, the rightmost digit is the "ones
place". The next digit to the left is base two to the first power, or
2l = 2. Two to the second power, or 4, is next, followed by two to
the third power, or 8. As an example, the decimal number eleven is
written as 1011 in binary. If you align each digit with the value it
represents, you’ll see the correspondence more clearly:

8421

1011
To convert this number to decimal, add the decimal values for each
position multiplied by the binary digit in that position. In this
case, 1x8 + 0x4 + 1x2 + 1x1 = 11. Thus we just add the decimal values
for each positon whose bit is one.

The HP-41 uses 8-bit bytes in user memory. The maximum value of a
byte is 1111 1111 base two, or 255 decimal. The leftmost bit
represents 128, the next 64, then 32, 16, followed by 8, 4, 2 and 1.
The sum is 255.

Even though the machine works in binary, this notation is too
cumbersome for general use. Hexadecimal, also called hex or base
sixteen, is a convenient compromise between the decimal system we all
know, and binary, which computers use internally. Each group of four
binary digits can be represented by a single hex digit, which is also
known as a nybble. Thus, any 8-bit byte can be conveniently expressed
as two 4-bit nybbles.

Each hex digit symbolizes a decimal value from 0 to 15. Digits above
9 use the letters of the alphabet A through F. The binary equivalents
of the 16 different hexadecimal digits are shown below:



Binary Hex Binary Hex

0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

These equivalences are also shown at the bottom of the byte table
(discussed later in this chapter).

Hexadecimal is used throughout this book to express addresses in
memory, contents of registers, and values of bytes in memory. The
word hex will generally accompany any value that is given in
hexadecimal. The nybbles will generally be separated into groups of
two or three for easier reading. When you see a number which does not
have any digits from A to F, whose digits are not grouped, and which
is not referred to as a hex number, you may assume that it is a
decimal number.

Hex is a natural choice for ZENROM owners since special Alpha
characters can be keyed in using hex values, and the CODE, DECODE,
MCED and RAMED functions use hex. Decimal equivalents are provided in
almost all cases. This will be helpful if you are using XTOA, ATOX,
or some of the PPC ROM functions like LB and MK to construct synthetic
instructions. However the hex values more clearly indicate the
underlying binary structure. This structure is important in many of
the examples, so you should be sure to look at the hex values even if
you are not using them.

Register addresses are three hex digits long. To convert these three

nybbles to decimal requires a little math. If you aren’t familiar
with these conversions, you should read the following example
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carefully. You may want to check your results by using the PPC ROM
routines "TB" and "BD" (the PPC ROM manual has some helpful material
in the writeups for these programs). Or you could use an HP-16C,
switching between HEX and DEC modes with the number you wish to
convert in the display. The HP-16C manual can also help you
understand number bases and conversions.

To convert address 1AB from hex to decimal, you first need to figure
out the decimal quantity each digit represents. The ’B’ is in the
ones place (16 to the 0 power). ’A’ represents the number of sixteens
(16 to the first power). Finally we have ’l’ in the two-hundred-
fixty-sixes place (16 to the second power). Now multiply each nybble
by the appropriate value and sum them:

B = 11* 1= 11
A= 10 * 16 = 160
1= 1 * 256 = 256

427 decimal
Try several examples if you find this difficult to understand. You
will need a working knowledge of base conversions to get the most out
of some sections of this book.

The Byte Table

The Byte Table (see Figure 1.1 on page 8) collects a variety of useful
reference information on byte structure for advanced HP-41 users. A
durable plastic version of the byte table is available (see Appendix
B). This plastic card, which fits inside the HP-41’s carrying case,
is called the QRC (Quick Reference Card for Synthetic Programming).
In addition to the QRC, serious synthetic programmers should purchase
Jeremy Smith’s "SYNTHETIC Quick Reference Guide". It has a
wealth of additional information on the internal workings of the HP-
41, most of which you will understand after reading this book.
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Figure 1.1a The HP-41 Byte Table, Rows 0 to 7



LLLL | oLLL | totL [ ooLL | LioL | oLOL | LooL [ ooOL | LLLO | OLLO [ LOLO [ OOLO | LLOO | OLOO | LOOO | 0000

) 3 a J | v 6 8 L 9 S 14 € 4 L 0
+ SSZ| = vST| € €ST| 1 TST| M LSZ| Z 0ST| < 6¥Z| % 8YT| ™ L¥T| » 9VZ| 1 SVT| 3 YYI] S EVT| 4 TYT| ® LYT| o OV
4] @QNI| PANI| 20aNI| 9aNI|j © QNIf .~ aNI|~DAQNI|d NI] COANI[\ N NI|JWANI| T ANIf X GNI| A QNI| Z ONIf L1 QNI
SLIXAL v LLXIL|ELLXIL{Z LXIL] LLIXIL|OLLX3L| 6 LXIL] 8 1X3L| £ LX3L| 9 AX3L| S LX3L| ¥ AXIL) € 1X3L) € IX3L) L 1X3L[ 0 1X3L
O 6EZ| Y BET| W LET| T 9EZ[ A SET| r VET| T E€EZ|M TET| & LET| ¥ OEZ| @ 6ZT| P 8ZL] 2 LTT| A 9LL| © STL| & VTT
J|LLLANI|OLLANI|60LANI{80LANIJZOLANI|90LANI{SOLANI|¥0LANIJE0LANI{ZOLANI|LOLANIJOOLANI] 66 GNI| 86 ANI| L6 ANI| 96 QNI
-- BIX| -- 0IX|-- DIX|-- VIX]-- DIX|-- DIX|-- IX|-- BIX|-- BIX| -~ BIX| -~ BIX| -~ BIX] -~ OIX| -~ DIX| -~ VIX|~ DIX
~ €ZZ| 4 TTT| L LTZ| ~ 0ZZ] 1 61| Z°8LT| A LIZ[ X LT | MSIZ| A VIZ|RELL[ LTI S LIZ| M 0LT]| B 60Z| o 80
a]sé6 aNi| v6 ONI| €6 GNI| 26 GNI] L6 GNIf 06 GNI| 68 GNI| 88 ANI| £8 GNI| 98 GNI[ S8 ANI| ¥8 GNIJ €8 ANI| 28 ANIf L8 ONI| 08 NI
-- 019|-- 019|-- 019[-- 019]-- 019]|-- 019|-- 0L9|-- 019|-~ O19[-~ 0L9|-~ 0L19[-~ 019]-~ 019|-~ 019|-~ 019|~- 019
O £0Z| N 90Z| W SOZ| 71 ¥0OZ] > €0Z| ™ ZOZ| I LOZ| H 00Z] D 66L( 4 861 3 L6L| A 961] D S61| A ¥6l| B €61| @ T61
J]64 QNI| 8L GNI|ZL QNI| 9L GNIJ SZ ANI| ¥£ ONI| €£ GNI| ZZ NI| LZ ONI| 0Z GNI{ 69 GNI[ 89 GNIJ £9 ANIf 99 GNIf S9 ANIf ¥9 ONI
—- 181 ——<>X[1v8019[1v8019]1v80191v8019]1v8019[1vE019[1¥8019|1v8019|1¥8019 1v8019{1v8019{1v8019]/1v80191v4019
& L6l € 06l =681 > 88L] £ (8L : 981| & S8L( B v8L| £ €81| D Z8L| % (8L | ¥ O8L| &£ 6LL(2 8LL| ¥ LLLf @ 9LL
g ]€9 aNI| Z9 QNI L9 QNI| 09 ANI] 6S NI| 8S GNI| £S ANI| 9S ANI|SS GNI| ¥S ANI| €5 GNI| ZS ANIJ LS ONIJ 0S ONI| 6% ONI| 8% ONI
| VL O19[€1 019)2L 019]LL 019]0L 019{60 019{80 0L9{£0 019]90 0L19|S0 019|¥0 0L9[€0 OL9§Z0 019 L0 01900 OLI| 3F¥VdS
ZSLU[* VLU= €LL| £ TLLL# LLL % OLL{ € 69L) > 89L) . L9L[ % 991| % SOL| & v9L] % €91  T9L| i (91 091
v | Ly QNI[ 9 ONI1 Sy GNI| ¥¥ ONIJ €¥ ONI| Z GNI| LY ONI| O¥ ANI| 6€ ONI| 8€ ANI| LE ANI| 9€ ONIJ SE ONI| ¥€ ANI| €€ ONI| ZE ONI
34vdS| aNI 53 [ [AF] BRI NE] e IAY 1 35| L€-8TX | LZ-¥TX|ET-0TX|6L-9LX]|SL-TLX]LL-8IX] L-¥ ¥X| -0 ¥X
# 6SL[F 8SL|= LSL| > 9SL] B SSL| 2 vSL| O €SL{ @ TSL| Q LSL| 2 OSL{ Q6L O 8YL| Y LVl| @ 9¥L| D S¥L| B v¥l
6] LE ONI| OE ANI|6Z ANI| 8Z ANI} £Z ANI| 9T ANI| ST GNI| ¥Z GNI| €Z ANI| ZZ ANI| LZ ANI| 0T ONIJ 61 GNI{ 8L ONI| ZL ANI{ 9L ONI
INOL|  9N3 128 Xl D¥V| O01SV] 9I| MIA EN¢ sl /1S| *1S} —1S| +1S 01S i}
B EVL[ & ZvL|F Lyl T OovL] ~ 6EL| & 8EL| o LEL| ¥ 9EL| T SEL| J VEL| S EEL| = TEL] > LEL[ 2 OEL| = 6CL| & 8L
8|SLANI|¥L ONI|{EL ANI{ZL GNIJ LL NI|OL ANI| 60 ONI| 80 ANI| £O GNI 90 GNI| SO ANI{¥0 GNIJ €0 ANI| ZO ANI{ LO ANIJ 00 ONI
AQV[1dWO¥d| 440 NOV] dd0V[ 931D 3Sd] dHSV V1)| d338] NL¥| dJOLS|I¥IIN3[ aQvd9] avi] 93d

3 3 a ) | v 6 8 L 9 S 4 € 4 L 0

XILIHINAS ‘2861 O

ONIWWVYI0Ud JILIHINAS 304 Q3VD IINFYI4I XOIND JLy-dH

Figure 1.1b The HP-41 Byte Table, Rows 8 to F



Each of the 256 squares in the byte table represents one of the 256
possible byte values. The QRC is printed on both sides, each with
eight rows and sixteen columns of squares. Each square contains four
to five pieces of data about that particular byte value. The color-
shaded areas designate prefixes for multi-byte instructions, examples
of which are given on the back of the card. The QRC also has a list
of flag functions on the front.

The byte table and QRC allow conversion between hex, decimal, binary,
user code instruction prefixes, instruction suffixes, display
characters, and printed characters. The hex value of a byte is in the
row/column format. For instance, to find the byte corresponding to
hexadecimal 49, look at row 4, column 9. At the bottom of this box is
the decimal equivalent 73. Thus 73 equals hex 49. This can be
checked as follows: 73 = (4*16) + 9.

The top of each square gives the identity of the byte when it is
treated as an instruction. If the byte can be used as the first byte
of a multi-byte function, this prefix is listed as it would be shown
in PRGM mode (FIX, GTO, etc.) or described briefly (GLOBAL, TEXT 7,
etc.). By the time you finish this book, you will be fully informed
on these latter, less recognizable prefixes.

The front side of the QRC is mostly white, with only one group of
three squares shaded in blue (indicating text-related prefixes). The
middle row of each square on the front side shows two facts about each
byte. On the left is the way the byte would be shown as the second
byte (called the suffix or postfix) of a two-byte instruction. To the
right is an actual reproduction of the byte as it appears in the Alpha
register as a character. Because all of the characters in the second
half of the byte table and QRC are displayed as a starburst or "boxed
star" (all 14 display segments lit), this is not printed on the
reverse. See decimal byte 16, the first byte in row 1, if you aren’t
sure what a starburst looks like. The postfixes listed on the back
are IND 00 through IND e, which shows you that the postfix byte values
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from rows 8 through F are used for indirect addressing.

The bottom left of each box has the decimal equivalent listed, with
byte values 0 to 127 on the front, and 128 to 255 on the back of the
QRC.

The bottom right of each box shows how the byte is printed as a
character by the HP-82143 printer (the one that plugs directly into
the HP-41). The HP-IL printer treats a few of these characters as
control characters, but most of the characters are printed the same as
on the HP-82143. Characters on the reverse of the QRC disappear from
text lines in program listings, and characters that have a shaded
background cause additional strange printer behavior when they are
listed as part of a text line in a program.

Other terms

Backarrow refers to the key with an arrow on its face, pointing to the
left. It is located on the rightmost key in the third row of the
keyboard. The backarrow key serves several functions including
correcting errors while entering numbers and characters or while

filling in prompts. In PRGM mode it is used to delete lines.

A NOP (No OPeration) function mainly serves as a place holder. NOPs
are often used after ISG or DSE instructions when you want the same
instructions to be executed regardless of whether a skip occurs. Many
functions can be used as NOPs, including unused labels (LBL 01, etc.),
STO X, or CLD. Each of these has restrictions or disadvantages. The
best choice is the synthetic instruction TEXT 0 (FO, decimal byte
240). ZENROM owners can execute "NOP" to insert a Text 0 byte in PRGM
mode. CCD Module owners can press XEQ ENTER 240 240 to get two NOPs.
The only effect of this NOP instruction is clearing the stack lift
disable. (The ALPHA register is not disturbed.)

NOMAS is an acronym meaning NOt MAnufacturer Supported. Synthetic
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functions were not intentionally designed into the instruction set of
the HP-41. Some have quirky, unpredictable or undesirable effects.
For these and other reasons, Hewlett-Packard has decided not to fully
support and guarantee these functions. Therefore, if you have
problems with the material in this book, please do not contact HP.
They have kindly provided an unusual amount of inside information to
the synthetic programming community with the agreement that they have
no obligation to provide the same level of support that they give to
(nonsynthetic) functions discussed in their manuals.

Abbreviations

Because of the fact that many references are made throughout this book
to other books, three abbreviations are used to keep from repeating
the same information many times over. See Appendix B for sources of
these books and other materials.

SPME -- "HP-41 Synthetic Programming Made Easy" by Keith Jarett

XFME -- "HP-41 Extended Functions Made Easy" by Keith Jarett

EYHP -- "Extend Your HP-41" by W.A.C. Mier-Jedrzejowicz

SQRG -- "HP-41 SYNTHETIC Quick Reference Guide" by Jeremy Smith

Memory Structure

Within the HP-41, there are two types of memory: RAM and ROM. RAM
(Random Access Memory) is also known as user memory because it can be
altered by the user. Refer to Figure 1.2, RAM Memory Structure on the
next page (or the similar figure on page 4 of SQRG), which shows the
various areas which make up user memory. ROM is Read Only Memory, the
kind of memory which is contained in application modules. This memory
cannot be altered.
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Address

RAM

3FF

300

Extended Memory
#2

2FF

200

Extended Memory
#1

1FF

0co

Top of Main Memory

I/0 Buffer area

Key Assignments

0BF

040

Top of X-funct. X-Mem.

Bottom of X-Funct. X-Mem

Nonexistent Registers
(VOID)

00F

000

Status Registers

Figure 1.2 RAM Memory Structure
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The topmost registers are reserved for data. The number of data
registers is set by the SIZE (or PSIZE) function. The SIZE can be set
as low as zero, in which case there are no data registers. After
MEMORY LOST, the number of data registers is 100 for an HP-41CX, or
273 for an HP-41CV (or HP-41C with Quad memory module). This area
contains the numbered data registers, in which data from operations
such as STO 00 are held. The address of data register 00 is also
known as the ’curtain’.

Data registers up to 99 can be addressed directly by normal functions.
Plugging in the ZENROM will extend this capability up to register 111
by making postfixes 100 to 111 keyable (but don’t go beyond 111 unless
you realize that you are accessing other, and dangerous, areas of
memory!). Synthetic instructions with postfixes up to 111 can be
created with the Byte Grabber, as will be explained in Section 4B.

The structure of data in a register is important to understand. This
subject is covered in SPME at an introductory level, and in EYHP in
slightly more detail. In the next few paragraphs we will briefly
review this subject.

Within a register, the bytes are numbered 6, 5, 4, 3, 2, 1, and O,
from left to right. Nybbles are numbered 13 to 0, also from left to
right. For example, the number -2.349817 E-98 is stored in a register

as follows:
Byte 6 5 4 3 2 1 0
Nybble 1312 1110 98 76 5 4 2 10
Contents 9 2 3 4 9 8 17 00 09 02
Meaning -2 3 4 9 8 17 00 0 E- 9 8

Negative signs are represented by the nybble 9, positive signs by the
nybble 0. Nybbles 12 through 3 of a register contains the mantissa in
Binary Coded Decimal (BCD) form. The mantissa of a number is simply
the 10 numeric digits without sign, exponent, or decimal point. Each
nybble (4 bits) represents one of the ten decimal digits that make up

-14-



the number. These nybbles range in value from 0 to 9 unless the
register contains Alpha data or a Non-Normalized Number (NNN). These
will be discussed near the end of this section.

The next nybble to the right, nybble 2, is used for the sign of the
exponent. Like the sign of the entire number, its value will be 0 for
positive exponents and 9 for negative exponents. 9 is used for
numbers with absolute values between zero and one. The exponent is
represented in a special way, by adding 1000 and then taking only the
last three digits. This speeds internal arithmetic. In the above
example, 1000 + (-98) = 902.

Alpha data is stored in a register as hex 1x, followed by 6 character
bytes. The value of the x nybble is normally 0, but anything will do.
If there are fewer than 6 characters in the string, nulls (hex 00) are
added after the leading 1x byte to pad the result to a full 7 bytes.
For example, the string "ABCD" is stored in a register as hexadecimal
10 00 00 41 42 43 44,

Below the data registers are your user (Catalog 1) programs. The
number of registers this area takes up will vary, depending on the
total byte count of the programs. Program instructions are stored in
sequence working from higher-numbered registers to lower-numbered
registers, and from byte 6 to byte 0 (left to right) within a
register. The last instruction in program memory is the permanent
.END. (refer to Section 4G), which occupies bytes 2, 1, and 0 of its

register.

The free registers are below the .END. . These are unused registers,
containing only nulls (hexadecimal 00 bytes). The number of free
registers can be seen by pressing RTN in run (non-PRGM) mode and
pressing PRGM. You will see 00 REG 46 (or something similar), in this
case indicating that 46 registers (322 bytes) are unused. One full
free register is needed to insert program lines in an existing program
unless lines have been deleted at that position in the program. The
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only other exception is when an addition is being made after the last
line of the last program on Catalog 1 (just before the permanent
.END.).

Below the free registers are the buffers. The order of the buffers,
from hex address 0CO (decimal 192) upwards is as follows: Key
assignments, followed by alarms and other I/O buffers. One exception
is that the temporary buffers used by the Solve and Integrate
functions of the Advantage Module are placed below the key
assignments. Unless you own an HP-41CX, all buffers except those for
the key assignments are used by plug-in devices.

FO (240 decimal) is placed in byte six of each key assignment
register. Each key assignment register can hold two assignments.
Bytes 2 and 1 (for the first assignment) contain the function code.
Two-byte functions (XROMs and synthetic assignments) are stored just
as they would be as instructions within a program. One-byte functions
are preceded by an 04 filler byte. Byte 0 contains a keycode for the
assigned key (see SQRG p. 36, ZENROM p. 44, or EYHP p. 213). An
identical scheme is used for the second assignment, with the function
code in bytes 5 and 4, and the keycode in byte 3.

The HP-41 always fills the key assignment registers from right to
lef't. When the HP-41 deletes an assignment, it clears only the
keycode from the assignment registers. The appropriate bit from the
assigned key indicators in status registers - or e is also cleared
(see SQRG pg. 6). The two remaining bytes are not cleared, but they
will be overwritten by a new assignment. New assignments are placed
in absolute address 0CO (192 decimal) unless a keycode of zero
(indicating an unused half-register or a cleared assignment) is found
within the key assignment registers. The old key assignments (and
buffers) are moved up one register and 0CO is used for the new
assignment.

ZENROM or CCD Module users may want to alter each FO in byte six of
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the key assignment registers to F6, using RAMED or POKEB. This
technique prevents the contents of these registers from being altered
by packing or from being executed as program steps. Execution of the
key assignment registers is possible using STO b, the Byte Grabber,
when status register ¢ does not point to the .END. (see Section 4F),
or the conditions which may arise while using the methods in Sections
4G and 41. The HP-41 will not alter this leading byte of the key
assignment register unless both assignments are deleted from the
register and you PACK, in which case the contents will be discarded.

All of the previous segments of RAM have variable lengths and
adresses, except for the upper and lower limits. RAM from 1FF to 0CO
(511 to 192 decimal) contains 320 registers. However, three bytes of
this are used for the permanent .END., which is not included in the
maximum byte count of 2,237. And because the .END. cannot be removed,
one register will always be allocated to program memory, making 319
the maximum SIZE. The remaining RAM addresses contain the Extended
Memory of the Extended Functions module (which is internal to the HP-
41CX) and the status registers. These addresses are fixed.

Status registers

The status registers occupy the 16 RAM addresses at the bottom of
memory from 0 0 0 to 0 0 F (0 to 15 decimal). Their names are T, Z,
Y, X, L, M, N, O, P, Q +, a, b, c, d and e, respectively. Refer to
Figure 1.3 on the next page (also SQRG p. 6, SPME p. 110).
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Nybble 13 12 11 10 9 8 7 6 5 4 3 2 1 O

e Shifted Key Assign. Bit Map PTEMP2 Line #
T 6 User Flags
N
c REG start unused Cold start Reg. 0 addr. .END.
b | Rewmsmex Prgm pointer
S Rewrn stack
o |unshitied Key Assign. mitsap Scrateh
ol  semts
p | sorateh  Alpha Characters 2 1024
o| Alpha Characters 15 1021
o Alpha Characters 8 to 14
M| AphaCharsctersiter
N Last X Register
x| X Regiser
v|  Yresser
2| Zregiser
o

Figure 1.3 The Status Registers
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The status registers are also known as the ’system scratch’ or simply
scratch’ registers. This is because the HP-41 uses these registers
for temporary information storage and various housekeeping functions.
They are used to keep track of which keys have been assigned,
data/program partitioning, the modes and flags of the 41, pending
subroutine returns, your location in program memory, and so on. Both
internal functions and plug-in devices use various areas within the
status registers for temporary data storage during operations. This
section describes the information contained in the status registers.
For tips on using some of these registers within your programs, see
Section 4A of this book (also SQRG p. 7, SPME p. 111-118).

The five registers from address 000 to 004 make up the stack. You
should be familiar with T, Z, Y, X, and L from using the HP-41 as a
calculator, though the absolute addresses of these registers may be
new to you.

The internal structure of the numbers and Alpha data in a stack
register is the same as described above for numbered data registers.
The value of the leftmost nybble is 0 for positive numbers, 9 for
negative numbers, and 1 for Alpha data. Of course, other values are
possible, such as after recalling the contents of status registers
other than the stack. These values are known as Non-Normalized
Numbers (NNNs). Such numbers can be safely held within the stack and
are not subject to alteration.

However, an NNN will be altered by functions that recall it after it
is stored in a numbered data register. This alteration process is
called normalization, and is part of the test the HP-41 performs to
ensure the register actually exists. The normalizing functions are
RCL, X<>, VIEW, and ARCL. Because the status registers are always
present, this test is skipped when a status register is recalled or
viewed. As a consequence, operations involving the status registers
are a little faster than those which use numbered data registers (see
Appendix A of SPME, or SQRG p. 11). Also see page 35 in the SQRG for
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more details on normalization.

Status registers M, N, O, and part of P make up the Alpha register.
The HP-41 makes them appear as one continuous register, holding up to
24 characters. The P register only contributes bytes 2, 1, and 0 to
the Alpha display. The leftmost four bytes are used during number
entry or display, and by the CATalog and WSTS functions. The other 21
of the 24 characters are contained within registers O, N, and M.

When characters are keyed into Alpha or recalled using ARCL, they fill
the Alpha register from right to left. The first character entered
will occupy byte 0 (the rightmost byte) of register M. As more
characters are added, existing bytes are pushed to the left. Register
M holds the first seven Alpha characters. When more than seven
characters are brought into Alpha, they will push the leading
characters into register N. This continues into registers O and P in
a similar way. When the 24th position (in Alpha register P) is
filled, a warning tone sounds (provided that flag 26 is set),
indicating that addition of further characters will cause loss of
data. However, the entire count of 28 characters in these four 7-byte
registers can be safely used if you remain in ALPHA mode (See SPME pg.
112).

Register Q (address 009) is used by the HP-41, the Extended Functions
and the Printer for Alpha scratch. This is the reason normal LBL,
GTO, and XEQ functions are limited to seven characters. When
synthetic GTO and XEQ functions are created with more than 7
characters, the HP-41 will search for a label that matches the last
seven characters of the Alpha GTO or XEQ instruction.

Register |- (append), also known as register 'R’ to ZENROM users,
contains a bit map of the unshifted key assignments. Its hex address
is 00A (decimal 10). ZENROM owners should refer to page 44 of their
manual, or see SQRG, p. 6 and 36. Each unshifted key corresponds to
one of the bits in this register. The HP-41 uses this register like
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an index in a book; it checks this register whenever an unshifted key
is depressed. The HP-41 then searches for an assignment only if the
corresponding bit is set, indicating that an assignment is present.
All unshifted key assignments can be temporarily suspended by storing
zero in this register. See Section 6A (pages 231-235 of this book),
pages 119-124 of SPME and pages 193-198 of XFME for suspend/restore
key assignment ("SK"/"RK") programs. Also see Section 4A.

The append register also contains an area used as scratch by the HP-
41. Nybbles 4, 3 and 2 contain the last function executed, while
nybbles 1 and 0 hold the keycode during PASN.

Register a (address 00B, decimal 11) contains part of the subroutine
return stack. Since each pending return is represented by two bytes,
this seven-byte register contains three and a half return addresses.
Each two-byte return can be written as four hexadecimal digits or
sixteen binary bits. The RAM return address format in binary is:
0000,bbbr,rrrr,rrrr.

This format, minus the leading zeroes, is the same as that used within
three-byte GTOs, three-byte XEQs, and global functions. The nine r’s
above represent the absolute register address. (For the other
functions listed above, this would be relative to the instruction
itself rather than the bottom of memory.) The digits bbb identify the
byte within that register. RAM return addresses point to the last
byte of the XEQ or XROM instruction that caused this address to be
pushed into the subroutine return stack. Since there are nine bits
representing the number of registers, up to hex 1FF = decimal 511 (two
to the ninth power minus one) registers can be encoded. Since IFF is
the highest possible register address in main memory, any address or
jump distance can be stored using 9 bits.

ROM return addresses have a different represenatation:
pppp,bbbb,bbbb,bbbb.

ROM return addresses consist of the page number (p p p p) followed by

a twelve-bit byte (or word) number within the 4096 (4K) bytes of that
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"page" of ROM. The page addresses are not the same as the physical
port number. See Figure 1.4 for a list of the sixteen page addresses
(SPME p. 115, SQRG p. 38).

Most ROMs to date use the Lower 4K of their respective ports.
Exceptionsare the Auto-Start/Duplication (AUTOST 1A) module,ZENROM,
and all 8K ROMs (which use both Upper and Lower 4K). See the
material later in this section for more details on ROM:s.

Register b contains two and a half pending return addresses plus the
program pointer. The hex address of register b is 00C (decimal 12).
As you can see in Figure 1.3, the first, second, and half of the third
return address are contained within status register b.

Page Address Device or physical port

Internal ROM 0

Internal ROM 1

Internal ROM 2

Internal ROM 3 (HP-41 CX X functions)
Diagnostic ROM

Time Module (internal for CX, page switched

v AW NN —= O

with extra CX Time and X functions)

Printer (either 82143 or HP-IL)
HP-IL Module Mass Storage
Port 1, Lower 4K

Port 1, Upper 4K

Port 2, Lower 4K

Port 2, Upper 4K

Port 3, Lower 4K

Port 3, Upper 4K

Port 4, Lower 4K

Port 4, Upper 4K

mmg QW » 0 0 95

Figure 1.4 ROM page numbers
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Register b also contains the program pointer in the two rightmost
bytes. If you are in a ROM program, the program pointer has the same
format as for a ROM return address. In a RAM program, the program
pointer has a slightly different format than the RAM return addresses
format. The bbb field is positioned differently:
Obbb,000r, rrrr,rrrr.

In ROM, programs are stored from byte 000 of a page up to byte FFF.
Therefore when executing a ROM program, the program pointer is
incremented at each non-branching instruction. In RAM, this situation
is reversed. Programs progress from higher to lower addresses, and
the program pointer is normally decremented as instructions are
executed.

The program pointer always indicates the last byte of the previous
instruction in memory rather than the address of the function
currently shown in PRGM mode. This becomes especially apparent when
you RCL b in run mode while positioned to the .END.. Several nulls
may exist between the last instruction and the .END., despite packing.
Register b never points to nulls in PRGM mode; it always points to the
last byte of the instruction that precedes the group of nulls.

ZENROM users can find evidence of this behavior by using the RAMED
function in PRGM mode. The left-hand "window", showing one of three
bytes visible in hexadecimal form, is the byte indicated by register b
when RAMED is first executed. RAMED always returns to the line where
you started because the contents of register b are maintained.

If you are still doubtful, set the SIZE to 000. Now CAT 1 and R/S
immediately. RCL b in run mode. Decode this address using "PD" (PPC
ROM), DECODE (ZENROM), DCD (CCD Module) or STO M,
ATOX, ATOX. The result will be 3584 (=7*512), 02 00, or 2, 0. All
these symbolize an address of byte 0, register 512:
0000,0010,0000,0000,

the byte preceding the first instruction in program memory. This is
the only case in which a register address of 512 (hex 200) is used.
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When an XEQ or XROM (execute ROM program) instruction is encountered,
the address of the last byte of the XEQ or XROM instruction is pushed
onto the return stack in the appropriate return address format (ROM or
RAM). The program pointer is then moved to the program that was
specified by the XEQ or XROM instruction.

When executing a RTN or END, the HP-41 halts if the return address is
zero, indicating that no return is pending. If there is a nonzero
return address, the subroutine return stack is dropped, and the first
return address becomes the new program pointer. (In the case of a
return to a RAM address, the bbb bits are moved to the left to
transform the return address format into normal program pointer
format.) This results in the pointer indicating the byte prior to the
instruction which is to be executed next.

Status register ¢, at address 00D (13 decimal), contains vital
information relating to memory allocation. This includes the address
of the summation registers, register 00, and the permanent .END.. The
absolute address of the summation registers indicates the location of
the lowest of the six registers in the summation block. If the number
of data registers was decreased after the ZXREG function allocated
these registers, the first three nybbles (13, 12, and 11) of register
¢ may specify NONEXISTENT registers. Addresses above hex 1FA (with
full memory) result in this error message when a function that refers
to the summation registers is executed.

Nybbles 5, 4, and 3 of register ¢ contain the address of the first
data register. This data/program memory separation, named the
"curtain" by its discoveror, William C. Wickes, will be hex 200 when
the SIZE is zero with full memory. The curtain can be synthetically
set to any value desired. However, if the register immediately below
this address does not exist, MEMORY LOST will take place the moment
the HP-41 enters standby mode (not running the program).
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Nybbles 2, 1, and 0 contain the address of the .END.. Don’t mess with
this.  Altering this address will result in an inability to access
Catalog 1. Global branching instructions will be unable to find RAM
programs, and packing may cause MEMORY LOST. See Section 4F for a
discussion of the ways you can circumvent this. Setting this pointer
to a nonexistent address will also cause MEMORY LOST.

The surest way to cause MEMORY LOST is to disturb the "cold start
constant" in nybbles 8, 7, and 6. Anytime the HP-41 finds something
other than hex 169 here, the result is swift and final. Nybbles 10
and 9 of register ¢ are claimed in some references to be used by the
printer for scratch, but in fact they are not disturbed by the HP-41.
The CCD module does make use of some of these otherwise unused bits.

An expert synthetic programmer can alter register ¢ in a running
program, perform some operations, and restore it to its former value.
Until such time as you have the necessary skills, it’s best to leave
register ¢ alone. Programs which use register ¢ are both powerful and
dangerous. Register ¢ should never be used for a scratch pad.

Register d (address O0E) contains the 56 flags of the HP-41 system.
Flags 00 to 29 are called user flags, while flags 30 to 55 are termed
system flags. The system flags cannot be altered directly by SF and
CF instructions. Flag 00 is at the extreme left of register d; flag
55 is at the far right. [Each flag occupies one bit of the register.
The correspondence between bit positions and flags can be seen at the
bottom of the upper half of the QRC. Figure 1.5 briefly describes the
use of each flag.

Many of the powerful PPC ROM routines use register d in order to
manipulate individual bits. Before the capabilities of the Extended
Functions AROT, ATOX, XTOA, and others were available, this was the
primary way used to edit NNNs. Flags 00 to 29 can be set, cleared, or
tested directly. This allows the first thirty bits to be modified
after swapping the bytes to be altered into d.
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Flag

00 -

—

—_—— O O Wun

19 -

10
11
12
13
14
16

17
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Function See Note No.

General purpose

Auto execute

Double-wide print

Lower case print

Overwrite card (CARD RDR)
HP-IL printer modes:

MANual

NORmal

TRACE

TRACE with STACK

Record incomplete (HP-IL)
Interrupt enable (IL Development)
General purpose

Printer enable

Numeric entry

Alpha entry

Range error ignore

Error ignore

Audio enable

USER mode

Decimal point/comma

Digit grouping

CATalog mode

DMY / MDY (Time Module)
HP-IL manual I/O

HP-IL lock

HP-IL ADRON / ADROFF
Disable autostart (AUTOST ROM)

Figure 1.5 HP-41 Flags (register d)
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Flag Function See Note No.

36 - 39 # of digits displayed (BCD) 1
40 - 41 Display modes: 1
0 0  SClentific notation

0 1  ENGineering notation

1 0 FIX

1 FIX / ENG (see Section 4E)

42 - 43 Trigonometry modes: 1
0 0 DEGrees

0 1 RADians

1 0 GRADians

1 RADians

52 PRGM mode

53 1/ O request

54 PSE enable

55 Printer existence

44 Continuous ON 2
45 System data entry 2
46 Partial key sequence 2
47 SHIFT 2
48 ALPHA mode 2
49 Low BATtery 5
50 Message 2
51 SST 2
2
5
2
5

Note number: Maintained by continuous memory

Cleared at turn-on

1
2
3 Set at turn-on
4 Clear to disable printer
5

Device-dependent, tested at turn-on

Figure 1.5 (continued) HP-41 Flags (register d)
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The PPC ROM routine "IF" and the ZENROM function TOGF allow any
individual flag to be inverted (set if clear, clear if set). Extended
Functions RCLFLAG and STOFLAG also allow groups of flags or
individual flags to be set or cleared, using a control number in X.
The Extended Function X<>F permits control of the first eight flags,
00 to 07. A decimal number similar to ATOX/XTOA is used, but the bit
correspondence you would normally expect is reversed. Rather than the
leftmost bit being the most significant digit (128), the rightmost bit
(flag 07) is. This opens up some interesting possibilities for
reversing flag patterns. Section 4H has more information on ATOX and
XTOA, and the relationship between bits and decimal values.

The ¢ register (address O0F) contains a bit map for the shifted keys
which is identical to that used in register + (R for ZENROM users).
The last part of Section 5A shows how to alter an existing key
assignment to any one- or two-byte function using RAMED. ZENROM
owners who do not have a CCD Module or PPC ROM don’t really need to
know the hex keycodes or have synthetic key assignment programs to
make synthetic assignments. By altering an existing assignment, the
appropriate bit is set for you in the bit map. Another way to
reconstruct the proper bit maps is to read in any program from mass
storage, extended memory, wand, or magnetic card. See XFME pages 193-
198 for more details. A detailed knowledge of the internal bit map
structure is not necessary to use this method.

The three rightmost nybbles (2, 1, and 0) of register ¢ are used to
keep track of the PRGM mode line number. After pressing RTN in run
mode or when stopping by encountering an END with no pending returns,
the value is set to 000. While a program is running or whenever the
line number needs to be updated, the value will be FFF. Since the HP-
41 is a 2.2K byte (main memory) machine, the processor knows this
number (4095 decimal) cannot be a legitimate line number. Even a full
4K page of ROM cannot contain a program of more than about 4080 lines.

Unlike BASIC programs, line numbers in the HP-41 are not a part of the
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program. This is fortunate, because it would probably double the byte
count of your programs. Line numbers are internally generated solely

for user convenience.

Extended Memory

The memory of the Extended Functions Module (XFM) is built into the
HP-41CX, and is available in a separate module for the other HP-41
models. Look between hex addresses OBF and 040 (191 to 64 decimal) in
Figure 1.2. Not all of the 128 registers contained within this memory
space are available for data, programs or text (ASCII) files. A
certain amount of overhead is required to keep things in order, such
as maintaining the illusion that this memory is one continuous block
that includes any existing Extended Memory modules.

After Extended Memory (XM) is cleared, executing EMDIR shows 124
registers available. The bottom register in the memory of the
Extended Functions module (hex address 040) contains a "header" which
links XM to any existing Extended Memory modules. Another register is
filled with seven FF (decimal 255) bytes to mark off the end of
occupied XM. This leaves 126 registers available. However, two is
subtracted from this count because any file created requires one
register for the file name and another to hold the file type and the
number of bytes and number of registers the file takes up. So the
count returned by EMDIR is exactly the number of registers available
for CRFLD or CRFLAS (CReate FiLe -- Data, or AScii).

However, for program files there is a minor exception which makes this
count inaccurate. One byte is added after the END instruction in a
program file for a checksum. This byte is the sum of all of the bytes
within the program, including the END, modulo 256. Since this extra
byte is added, don’t be surprised when your 112 byte program uses 17
registers of XM (113/7) instead of 16.

Program files within the Extended Memory of the XFM may be executed
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synthetically by constructing the proper pointer and storing it in
register b with STO or ASTO. However, you need to know what you’re
doing, or you can make the program file unreadable by GETP or
GETSUB. Running the program after it is saved in XM is OK if all of
the GTO and XEQ instructions were executed (or SST’ed) before it was
saved. This is known as compiling the branching instructions. (See
SPME pgs. 59-60). If they are not compiled, running the program in XM
will compile them. This will change the byte values of the branching
instructions, making the checksum incorrect. Trying to read the
program into main memory after that will show CHKSUM ERR, and the
program will not be read in.

Depending on the number of Extended Memory modules (0, 1, or 2), XM
may contain a total of 128, 367, or 606 total registers. Due to the
fact that the bottom register of each XM device is used to link it to
the next, and one register containing FF bytes is needed, this
translates into 126, 364, or 602 registers available. When the
directory is empty, the count returned by EMDIR will always be two
less than these numbers. For further information on XM, see Keith
Jarett’s "HP-41 Extended Functions Made Easy."

RO

ROM is an abbreviation for Read Only Memory. All HP-41s contain
internal ROMs which have instructions that tell the processor what to
do. These instructions are not the same as those used by RAM in PRGM
mode in three fundamental ways.

First, ROM uses ten-bit bytes which are also called words. Since they
are ten bits long, they cannot be expressed by just two hex nybbles.
Serious programmers can study the documentation HP made while
developing the internal (and other HP) ROMs. This material, called
the "source code", or VASM, is NOt MAnufacturer Supported (NOMAS).
The individual instructions are in octal (base 8) notation in the
early VASM listings, but they are in hex if you get a more recent

-30-



version. The VASM listings are available from PPC (see Appendix B).

Second, these instructions are written in machine-code (M-Code). This
applies to the internal ROMs, Extended Functions, Time, HP-IL, and
others. Not all ROMs are in M-Code; many contain the user code that
you are familiar with. As an example, all of the Wand functions are
in M-Code except "WNDTST". For a good introduction to M-Code, see Ken
Emery’s book "HP-41 M-Code for Beginners".

The third major difference between ROM and RAM is the direction of
program execution. Whereas RAM decrements the address (with execution
moving from higher to lower addresses), ROM increments the address as
the program runs. This lower-to-higher scheme has little effect on
you unless you start programming in M-Code, but you should be aware of
it. Compiled GTO’s and XEQ’s in ROM are also different since there
are no register boundaries. The jump distance is recorded simply as a
number of bytes (up to +127).

The HP-41 has four ports for external ROMs and devices which contain
ROM. These ROMs can have a mixture of M-Code programs, data, and user
code programs. There are 31 possible XROM numbers to identify the
ROM: 01 through 31. No XROM may have ID number 00 (which identifies
an empty port), and two ROMs may not be plugged in simultaneously if
they have the same ID number. See SQRG p. 15-19 and 22-30. Each 4K
block of ROM must have its own ID number, and it may contain up to 64

functions.

Whenever you key in an Alpha XEQ instruction, the HP-41 quickly checks
Catalog 2 (and then Catalog 3). If a matching label is found in CAT 2,
the instruction placed in memory is a two-byte XROM function.
Removing the peripheral (ROM) from its port will cause this line to be
shown as XROM xx,yy , where xx is the ROM ID number and yy is the
function number within the ROM. Many synthetic two-byte key
assignments will preview as an XROM until the key is released. See
SQRG p. 14, ZENROM manual p. 31, and SPME p. 58-59 and 81-83.
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CHAPTER TWO - STRUCTURED PROGRAMMING

2A. OUTLINING THE PROBLEM

The most crucial step in writing a program is to define what the
program is supposed to do, and the method it will use to perform the
function. Often there are several ways of doing the same job. The
approach you take will usually have the most noticeable effect on the
length and speed of the program. "Byte shaving" techniques are not
nearly as effective as good algorithm design.

As a first step, make a list of the inputs your program will need. If
there are only two or three numeric inputs, you may want to assume
they are in the stack when program execution begins. For user
convenience, or if there are many inputs, you may want to use Alpha
prompts. Then decide what kinds of outputs the program will give. A
few special programs won’t have any direct outputs at all, but this
isn’t often the case. List the outputs, where they go, and the format
they need to be in.

Next, determine what modules and peripherals the program needs. If a
printer will be used, you need to keep this in mind as you write the
program. Your program documentation should mention all of the devices
that the program requires, or has optional provisions for, above and
beyond a "bare" HP-41C. (These days it’s probably OK to assume a CV
or quad memory if you need to.)

If the program is divided up into short sections or if it isn’t very
long, you should try to preserve all or part of the stack if that’s
practical. This is especially valuable if the program may be used by
another program as a subroutine. It’s strictly a matter of your
judgement as to whether this is important. It generally takes a few
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extra bytes to save part of the stack. Nevertheless, it’s considered
good programming practice to do so.

List the different pieces of information used by the program, what
they are, and exactly where they belong. This includes the use of
data registers, status registers (see Section 3A), Extended Memory
files, etc. The more complicated the program, the easier it is to
lose track of data. This won’t be necessary for a simple program
which only uses the stack. Try to avoid using any data registers if
the program will be executed as a subroutine. If data registers are
used, make a note of the minimum SIZE and what each register is used
for (in case you want to change the program later). Some of these
details might seem trivial now, but you probably won’t remember them

in six months, so write it down.

Before you begin to write a complex program, you need to write down
the steps needed to accomplish the work. An example of this would be
to write down the process you would go through to do the task by hand.
It’s helpful to break the job down into small, manageable chunks. It
makes the job of translating the process from words into program steps
a lot easier. If there is a formula that applies to your problem,
write it down as one of the steps. You may end up breaking it down
into smaller sections and rearranging parts of it when you translate
it into program steps. This will depend on the formula and how
complex it is.

With all of the preliminary work done, you should have a clear idea of
what you need to do. In addition, you may want to use subroutines or
a technique known as modular programming. See the Sections 2B and 2C,
which follow this section.

Since you already have the program broken down into a number of small
tasks, begin by looking at the first step. You may need to add a
section prior to this first part to set up the stack or data
registers, to test for the existence of the highest numbered data
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register needed, or to trap other errors. Once the program performs
the needed initialization, add the program steps needed to carry out
the first task. You’ll want to single-step through the program at
this point to make sure everything works as planned. Then continue to
add to the program one section at a time.

If you have trouble translating one of the tasks you wrote down into
program steps, there are several techniques you can try. First, try
breaking it down into smaller steps. You may also find your work can
be simplified by rearranging the order of the steps or combining two
of them. If you’re still stuck, try to think of completely different
ways of doing this same job. At some point, you may have to revise
the constraints you put on the program in order to get the job done.

As the program increases in length, it’s a good idea to add a STOP
instruction to the end of the program before adding new lines. This
lets you run the program through the section that already works. From
there, you can single-step the new section to check its performance.
Remove the STOP function after the new section works properly. Repeat
this technique for each of the tasks you listed.

After you complete the program, you should add a table showing how the
stack is used. Once again, this is especially valuable if the program
might be used by another program as a subroutine. Be sure to make a
note of any status registers that are altered, including Alpha. You
can look at the programs in the PPC ROM User’s Manual or the forms
used by the Hewlett-Packard Users’ Library for good ideas on areas to
cover in your program documentation.

2B. SUBROUTINES USING XEQ
The three types of XEQ instructions are known as local, indirect (IND)
and Alpha. Nonsynthetic Alpha XEQ functions range from three to nine

bytes in length. They are composed of an ordinary text line preceded
by a byte with decimal value 30 (1E in hex). Because of this simple
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structure, the jump distance from the XEQ instruction to the label
cannot be compiled within the bytes of the XEQ function. This makes
Alpha XEQs slower than local XEQs, which do compile this information.
When a local XEQ function is encountered in a program for the first
time, the direction and distance to the matching label are recorded
within the XEQ. Twelve bits are used to record the the relative jump
distance, and one bit indicates the direction. See SQRG page 39 and
EYHP page 66.

The Alpha XEQ will vary in execution speed according to the position
of the label searched for. Alpha labels are a part of the Catalog 1
chain of global labels and ENDs. The search for the correct label
begins at the bottom of Catalog 1 and proceeds upward. If the label
being executed is near the bottom of Catalog 1, the search won’t take
long. But when the label is near the top of the catalog, it can take
anywhere from one-fourth of a second to well over a second to find the
matching label. For this reason, you should use a local label if the
label being executed is within the same program. You can accomplish
this in an existing program either by replacing the Alpha LBL and XEQ
with local functions or by adding a local label next to the existing
Alpha label and using a local XEQ. The advantage of this is that the
local XEQs within the program will be speedy, and access by other
programs is not lost in the process. Refer to Section 3E for more
information on labels.

An XEQ IND or GTO IND instruction also cannot be compiled. All
indirect XEQ and GTO functions are two bytes long. The first byte has
a decimal value of 174, or AE in hexadecimal. This first byte is the
same for indirect GTOs and XEQs. The difference between the two types
of instructions lies in the fact that indirect XEQs have postfix
values from the second half of the byte table. Because of the many
similarities between these two functions, XEQ IND will not be covered
in detail here. Refer to Section 2D for information and examples of
indirect branching using GETKEY followed by GTO IND.
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Local XEQ instructions are always three bytes long. The first byte of
a local XEQ function has a decimal value from 224 to 239 (EO to EF),
depending on the value of the compiled jump distance. The second byte
is only used for this compiled information. The third byte contains
two pieces of data. The leftmost bit indicates whether the direction
of the compiled jump is up (0) or down (1) from the location of the
XEQ instruction. The remaining seven bits represent the number of the
local label that the HP-41 will search for. This number can range
from 0 to 127, with 102 to 111 showing as A to J and 112 to 127
displaying as T to e. As a consequence of this postfix structure,
which is identical to that of a three-byte GTO, a program cannot
branch to synthetic indirect labels such as LBL IND e (207, 255). Any
two-byte label whose postfix is less than 128 or any one-byte label
can be used with XEQ.

The advantage of this structure for three-byte XEQ (and GTO)
instructions lies in the fact that twelve bits are used to represent
the magnitude of the compiled jump. This allows a compiled jump of up
to 511 registers and 6 bytes. Since this number exceeds the maximum
allowable main memory size (320 registers), you never need to worry
about the branching XEQ being too far from its matching label. The
jump distance will be compiled within the instruction when it is first
executed, and this makes subsequent executions very quick. The
equivalent of GTO and XEQ instructions in ROM use a sixteen-bit field
to store the jump address. This allows branching anywhere within the
HP-41’s 64K ROM address space.

If compiled jump information is not present (for example, the first
time the GTO or XEQ instruction is encountered), the HP-41 must search
for the corresponding label. The search for a matching local label
begins at the branching function (GTO or XEQ), and continues downward
through the program until the label is found, or an .END. or END is
encountered. If this happens, the search continues from the first
line of the program until the matching label is found, or the original
address of the branching instruction is reached. If no matching label

-37-



is found, the NONEXISTENT error message is displayed and program
execution halts. Otherwise, the distance is compiled (stored within
the GTO or XEQ instruction itself) and program execution continues
from the label.

Any time a change is made to a program, the HP-41 resets all of the
jump distance bits to zero within branching instructions. This
process is known as decompiling. This is discussed in detail in
Section 4G, where techniques are presented to avoid losing the
compiled information contained within a program read in from a mass
storage device. Avoiding decompiling will save the time needed to
recompute the jump distances as well as the effort it takes to run or
SST each local branching instruction.

XEQ instructions which branch to local labels compile jump distance
information, while other types of XEQs do not. For this reason, they
are always faster than indirect or global XEQs. Not only are they
faster, but they can be up to four bytes shorter than a global XEQ
instruction. Local XEQ functions are generally better than these
other types when branching within the confines of a single program.

There is a synthetic key assignment which is very useful for local XEQ
functions. Its "MK" inputs are 0, 229 (hex 00, E5 for ZENROM users).
With this key assignment, you can create XEQ instructions with byte
values 229, 0, nnn, with nnn being equal to the decimal number you key
in. The number keyed in can range from 000 to 255. Numbers in excess
of this amount are interpreted by the HP-41 modulo 256. That is, only
the remainder after division by 256 is used. In PRGM mode, the
function created is wutilized normally. However, in run mode,
postfixes from the second half of the byte table correspond to the
synthetic two-byte indirect labels mentioned before. As an example,
filling in the prompt with 255 will branch to LBL IND e, which can’t
be reached by any instruction executing in PRGM mode.
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When a key assigned with 0, 229 is pressed, the distinctive prompt
"$T+N IA _" appears. Fill in the prompt with the decimal value of
the desired postfix. Using values 100 and 101 will give instructions
that display as XEQ 00 and XEQ 01, respectively. Don’t let their
appearance deceive you. These functions will execute synthetic labels
100 and 101 (which also display only the last two digits!). The
decimal values 102 to 127 create XEQ instructions for labels A through
e. See the left side of the middle row in each appropriate box of the
byte table for the suffix that will be shown for these values.

The XEQ functions are very useful because they allow you to make use
of a subroutine without disturbing the flow of your program. Program
execution continues (after the subroutine has finished) at the line
following the XEQ instruction. Any series of repeated program steps
can be made into a subroutine.

Using XEQ in this way may not always be desirable. If speed is of the
utmost importance, you may want to leave repeating sequences of
instructions as they are. If you’re interested in saving bytes, the
subroutine should contain nine or more bytes if it is to be executed
twice, six or more bytes when executed three times, and at least five
bytes when executed four to six times. This byte count does not
include the LBL or RTN instructions which are the first and last lines
of the subroutine. See page 31 of Jeremy Smith’s Synthetic Quick
Reference Guide for a complete table of byte savings by creating a

subroutine.

To modify an existing program that contains a series of instructions
that are repeated, begin by writing down the instructions. Choose a
numeric label that is not used by the program. If you can, use one of
the one-byte labels, LBL 00 to 14. Replace each occurence of the
repeating program lines with a local XEQ instruction which matches the
label you selected. Now decide where you want to put the subroutine.
The usual place is at the end of the program. Be sure to add a RTN
function between the last line of the program and the subroutine. The
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RTN prevents program execution from dropping into the subroutine.
Then key in the subroutine’s numeric label followed by the same series
of program steps that you wrote down earlier. The END or .END. will
function as a RTN for the subroutine.

Another place a subroutine can be added is after an unconditional GTO.
This is a GTO which is not preceded by a conditional function which
may cause the GTO to be skipped. In this case a RTN is not needed
ahead of the subroutine’s starting label.

The only advantage in placing the subroutine as near to the XEQ
function as possible is that that time for the initial search is
reduced if the subroutine is below the XEQ instruction and nearby.
Subsequent executions do not need searches because the distance

information is compiled.

2C. DEVELOPING THE MODULES

Modular programming is a helpful approach for you to use whenever you
are constructing a large program. The job that the program does first
needs to be divided into more than one section. Using this approach
goes beyond just saving bytes by replacing program lines with an XEQ
instruction and a subroutine. The idea behind modular programing is
to develop subroutines which can be used as building blocks for other
programs. This approach also speeds debugging; it is simpler to debug
two 100-line programs than one 200-line program.

The utility programs contained within the PPC ROM are fine examples of
modular programming. The programs are structured so that they can be
used as subroutines. In fact, many of these programs are used
extensively as subroutines by other programs in the PPC ROM. If you
have a copy of the "PPC ROM USER’S MANUAL", you can find ample
evidence of this by looking on page 6 under the "CALLS" heading or in
the individual routines’ documentation in the "TECHNICAL DETAILS"
section.
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For example, the "PD" routine (page 358 of the PPC ROM Manual) calls
both "2D" and "QR". The "QR" routine in particular is used by many of
the programs in the PPC ROM, as you can see by checking page 6 of the
manual. As a more subtle example, consider line 58 of "PD", which is
LBL 14. This is an alternate entry point for "PD", which allows the
routine above it, "RT", to use the last 8 lines of "PD".

Though your subroutines need not be written up as thoroughly as the
routines in the PPC ROM, you should write down the inputs required,
the task performed, the outputs provided and any and all status
registers affected. If your routine wuses just the stack registers,
you can show this easily with a small chart listing the contents of T,
Z,Y, X, and L before and after execution.

As an example, let’s say you are writing a program within which, at
two different places, the rightmost character in Alpha needs to be
converted to a decimal number. You have the Extended Functions module
or an HP-41CX, which has Extended Functions built in. In the first
version of the program, you used the sequence E, CHS, AROT, RDN,
ATOX in the two places where this operation was needed. But during
testing, you found out that nulls were not being handled correctly.
If the rightmost character was a null, the result of this sequence of
instructions was not zero as it should be. Instead, the null
disappeared when rotated to the left end of Alpha, and the leftmost

character was converted to decimal.

It is clear that making this function into a subroutine will save
bytes, because the necessary changes to the sequence (which is 7 bytes
already) is going to push the byte count over the nine byte minimum.
As you may recall from the previous section, a subroutine executed
twice should contain nine or more bytes. So you replace E, CHS, AROT,
RDN, ATOX with XEQ 10 in both places, go to the last line of the
program and key in RTN, LBL 10.
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The revised subroutine needs to meet several requirements. The
contents of ALPHA must remain unchanged, except for the decoded
character, which is removed. The original contents of X and Y (when
the subroutine begins) must be preserved, and end up in Y and Z. The
decimal character value needs to be in X. Here is one solution:

ALENG Check the length before rotation

DSE X Decrease X by one and skip rotation if X was 1

AROT Rotate the righmost character to the left end

ALENG Get the new length of Alpha

- and subtract for comparison.

X=0? If X is zero, a null was dropped during the
rotation and zero is the result.

RTN Return with former X and Y in Y and Z.

RDN Otherwise get rid of the negative one,

ATOX and convert the character to decimal

RTN The result is now in X; former X, Yin Y, Z

There are always several ways to accomplish the same result in a short
routine like this. Often there are two different approaches that
achieve the minimum byte count. The important thing is to check that
your routine does in fact perform correctly, even if the inputs are
unusual. In the case above, the original routine failed to correctly
translate a null character. One of the hardest parts of developing a
program is to make sure that you have considered all these special
cases. This is the source of the worst kind of "bug", one that lurks
in the background, ready to surprise you long after you think the

program is working.

Here are a few special cases that your programs should be able to
handle, unless you choose to exclude some of them by explicitly
stating the restrictions in the program’s documentation:
Insufficient SIZE
Use a RCL nn instruction at the start of the sequence, or
something fancier, like XROM "VS" from the PPC ROM.
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Inputs outside allowed range or of the wrong type
Generating the appropriate error message is normally not a
problem unless your program sets flag 25 (for example, to
check the SIZE) before it checks for input errors.

Nonexistent files
It is best to check for these before you get too far into
the program.

Flag 25 set
Should not disrupt the program. This is perhaps the
toughest case to handle. You can take the easy way out by
putting a CF 25 instruction near the top of the routine. In
the routine above, however, the status of flag 25 is
preserved because none of the instructions can clear flag 25

when performed in the given sequence.

When you are writing a particular module that will only be used as
part of a larger program, it is fair to make assumptions about the
SIZE, input characteristics, and flag settings, if you make sure that
these assumptions will be checked earlier in the larger program.
Naturally, these assumptions should be documented if you hope to avoid
lurking bugs the next time you use the module for another purpose.

2D. PUTTING THE MODULES TOGETHER

After you have a set of program modules, you can put them together in
a few different ways. The most obvious way is to string the modules
together end to end. This works fine as long as the flow of your
program is linear, or "straight through". It also allows one or more
modules to be repeated several times. Just enclose them in a loop,
with a label at the top and a test instruction and GTO at the bottom.

However, this method needs to be modified if a module is used in more

than one place in the program. One way you can handle this situation
is to put the module at the end of the program, and put an XEQ
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instruction at each place in the program where you need to use the
module.

But what if you don’t know ahead of time which modules will be needed,
or in what order they will be used? Then you need to use another
trick. First, give each module a different numeric local label. At
each step when a new module is needed, you need to specify the label
number to identify which module is to be used next.

There are two ways to get the label number of the module to be used.
If the module selection depends on the output of the previous part of
the program, your program can compute the label number of the needed
module, or it can look up the number from a stored table by using a
RCL IND instruction. If the module selection depends on the user of
the program, he can be prompted to press a key (more about this later)
which will make the selection.

Once you have the label number that identifies the module to be
executed, a simple XEQ IND instruction will execute the module that
you want. Assuming you have the label number in the X register, you
could use an XEQ IND X instruction to call the module. But your
module may expect one of its inputs in the X register. A better
solution is the sequence RDN, XEQ IND T. Another approach is to store
the label number in a data register (say register 00), then load the
required data in the stack, then XEQ IND 00. The XEQ IND instruction
is one of the most powerful programming tools that the HP-41 has to
offer. All advanced HP-41 programmers should become fully familiar
with the capabilities of this function.

Sometimes you can use GTO IND in place of XEQ IND. For example, if
all the modules conclude with a GTO 00 instruction (including all
possible input conditions!), then all modules will end up at LBL 00.
If, in addition to this, there is only one point from which the
modules are called, then this point can be put after the LBL 00
instruction. In this case the GTO IND instruction is preferred. It
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conserves the subroutine return stack. The GTO 00 instructions at the
end of each module take the place of the more typical RTN
instructions.

Now back to a point raised on the last page. That is, how can you
conveniently get the label number for a module by prompting the user
of the program? The user certainly is not going to remember which
module has which label! But the user of the program can identify a
particular key with a particular module. To bridge the gap from key
to label number we use the GETKEY function (provided in the Extended
Functions module and in the HP-41CX). When you put a message in the
display and execute GETKEY, the calculator waits for the user to press
a key, then it puts the row/column keycode in the X register. (The
row/column keycode is two digits. The tens digit is the row number,
with row 0 being the ON/USER/PRGM/ALPHA switches, and row 8
being the bottom row. The ones digit is the column number, column 1
being the leftmost.)

The numeric labels for the modules can be selected to match the
row/column keycodes obtained by the GETKEY instruction. This method
is used in some of the programs in "HP-41 Extended Functions Made
Easy".

Incidentally, the GETKEY function has a cousin, GETKEYX, which is
found only on the HP-41CX. If you have an HP-41CX, you should check
your manual for a description of GETKEYX. The additional features
provided are a variable wait (compared to the fixed 10-second wait
provided by GETKEY), XTOA-compatible character codes for keys
pressed in ALPHA mode, and an option to process the key on the
downstroke rather than on the upstroke. Of these, the character codes
are the most useful. They can, however be calulated from the normal
GETKEY keycodes.
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2E. A MODULAR PROGRAMMING EXAMPLE

In this section we will develop a program to automatically solve
triangles. You will be able to input any known parts of a triangle,
and the program will complete the triangle if possible, finding the
values of all the missing parts.

Creating this program is clearly a tall order. But let’s do it step-
by-step:

1) decide how you want the program to appear to the user,

2) outline the logic flow that will be required,

3) identify the modules of the program,

4) program the modules,

5) assemble, test, and debug the program.

Program appearance

First, let’s consider the data management aspects of the program, and
establish preliminary register usage and input/output characteristics.
This application is probably best suited to use of the top-row keys
both to enter data and to recall the calculated values. A reasonable
choice for top-row key functions is:
Angle Ay Angle A2 Angle A3 Initialize
Side S Side S, Side S4 Area Solve

Angle 1 is opposite Side 1, Angle 2 is opposite Side 2, and Angle 3 is
opposite Side 3. The sides of the triangle are stored in data
registers 01, 02, and 03, and the angles are stored in registers 04,
05, and 06. This allows the sides to be recalled using the natural
keystroke sequences RCL A (which gives RCL 01), RCL B (02), and
RCL C (03). To start the program, press SHIFT e. This clears all
angle and side information. Then key in a triangle element and press
the corresponding key. Continue until all known elements are entered.
Then press the [E] key to solve for the remaining elements. The
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program will fill in the missing values or indicate that the data
supplied is not sufficient for a solution.

Program Logic Flow

Now let’s look at the logic flow of the solution portion of the
program. This portion, which is the heart of the program, starts by
finding out how many sides have been supplied. (A zero value
indicates to the program that a result needs to be calculated. A
nonzero value indicates that an input has been supplied.)

While checking the data elements, the program needs to rotate the
triangle. This could be done by interchanging data register contents,
but then we would have to keep track of the rotations so that the
original configuration could be restored.

A cleaner approach is to use the indirect addressing capability of the
HP-41. Register 00 holds a pointer to select one of the three sides
or angles for recall or storage. To rotate the triangle, we need only
increment the pointer in the sequence 1, 2, 3, 1, 2, 3, etc.

Because of the program’s complexity, a special notation will be used.
For each of the three sides, an S indicates that a nonzero value is
present, a 0 indicates that a zero value is present, and x indicates
the value has not been checked. For example, the notation SOx means
that one nonzero side is followed by a zero side, with the third side
untested as yet. The pointer is set to the third side. A similar
notation is used for the three angles of the triangle.

The cases that the program can solve are:
SSSxxx (three sides and any, all, or no angles)
SSO0xxA  (two sides and the included angle)
SSOAAO0 (compute the included angle and solve as SSOAAA)
SSOA00 (two sides and a non-included angle; may
have two solutions)
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SS00AO0  (same as above)
SO0 with at least two angles
(compute the third angle; use law of sines to solve)
The above cases include any triangle that can be rotated to match
these conditions.

Insufficient data cases are:
000xxx (need at least one side)
SS0000
S00 with less than two nonzero angles

Setting up a decision strategy is the most important part of writing
this triangle solution program. Here is the program’s decision tree:

Find a nonzero side
All 3 sides zero... give the message "MORE DATA" and halt.
Nonzero side found... continue with Sxx case.
Rotate and check the next side
If zero... continue the SOx case. Check the next side.
If nonzero... continue the SOS case.
Rotate the triangle into the SSO position.
Continue as the SSO case (below).
If zero... begin the SOQ case. Find two angles
and calculate the third, using:
COS A3 =-COS (A} + A,).
If two angles are not found, halt with
the message "MORE DATA". Otherwise continue with
the SO0 case after all angles are present.
Use the law of sines:
Sj = SIN Aj * S,/SIN A
to find the second and third sides.

If nonzero... continue the SSx case. Check the next side.
If zero.. continue the SSQ case. Start checking angles.
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If the third angle is nonzero... SSO xxA case.
Use the law of cosines:
S3 = SQRT(S;2 + S,2 - 25;S, COS Aj3)
= SQRT((S; - S, COS A3)* + (S, SIN A3)?)
to find the third side. Finish the solution
by using the side-side-side (SSS) subroutine
to fill in any missing angles.
Otherwise if the first angle is nonzero... Ax0 case.
If the second angle is nonzero, use Al and A2 to
compute A3. Then use the law of cosines to find
S3 as above.
If the second angle is zero, use the side-side-
angle (SSA) subroutine to compute the third angle.
Two solutions are possible. (The two solutions
may be very close to each other in the case of a
near-right triangle. Exact equality of the two
solutions is virtually impossible, given the 10-
digit accuracy of the HP-41) The second
solution, called Solution 1 in this program, is a
smaller triangle that fits within the Solution 0
triangle. The Solution 1 triangle is always more
obtuse than the Solution 0 triangle, although the
Solution O triangle may also be obtuse.
In this case, the program must ask the user to
select a solution. The prompt OBTUSE? 1/0 asks
whether Solution 1 or 0 is desired. Then use the
law of sines to find the third side. Finish the
solution by wusing the SSS subroutine to fill in
the missing angles.
Otherwise if the second angle is nonzero... 0AO case.
Rearrange inputs to the SSA subroutine, and use it
to compute the third angle. Then use the law of
sines to find the third side. Finish the solution
by using the SSS subroutine to fill in the missing
angles.
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The SSS subroutine computes each angle in turn, using the law of
cosines formula:
COS Ay =((S;2 +5,2) -552)/(25, 5y

= [1 - (352/(3,% + $,2)1/128,5,/(5,%+8,2)]

= [1-(S3/SQRT(S 2+5,2))2)/[SIN 2ATAN §,/5,]
The triangle is rotated after each computation, so that the same
formula can be used for the next computation. After three
rotations, an ISG counter halts the loop.

The SSA subroutine starts with Sis Sy, and A.
The first task in this subroutine is to use A, to find Aj.
The angle A2 can have two possible values, each of which is
a solution to:

SIN Ay = Ay *SIN A, /A,
If we let

A y=ASIN (A *SINA|/A)),
then A, can either be A 5 or 180 - A 5.
Since Az = 180 - Ay - Ay, this yields two possible values
for A3:

Ay=180-A ,- A  or A,-A,
The second value is often negative, and thus not valid. However,
if it is positive, it represents an obtuse angle solution. In
that case, the first value represents an acute angle solution.
If A 5" A1 is positive, the user must be prompted to determine
whether an obtuse or acute solution is desired. Once Aj is
found, S3 is computed, using the law of sines formula:

S3 =SIN Ay *8,/SIN A,.

As you can see from the last few pages of discussion, the first step
in modular programming is the most important and often the most time-
consuming. Proper attention to structuring the solution to the
problem will save much time in programming.
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Program Modules

The first module needed in this program is the data entry module.
Here is a listing of that module, with comments:

01 LBL "TRI}"

02 LBL A ; Store or view Side 1

031 ; Data is held in register 01

04 GTO 00 ; LBL 00 is used for forward branching
05 LBL B ; Store or view Side 2

06 2 ; Data is held in register 02

07 GTO 00 ; LBL 00 is used for forward branching
08 LBL C ; Store or view Side 3

093 ; Data is held in register 03

10 GTO 00 ; LBL 00 is used for forward branching
11 LBL a ; Store or view Angle 1

12 4 ; Data is held in register 04

13 GTO 00 ; LBL 00 is used for forward branching
14 LBL b ; Store or view Angle 2

155 ; Data is held in register 05

16 GTO 00 ; LBL 00 is used for forward branching
17 LBL ¢ ; Store or view Angle 3

18 6 ; Data is held in register 06

19 LBL 00 ; LBL 00 is used for forward branching
20 RDN ; Put the data register number in T

21 FS?C 22 ; If a number was entered,

22 STOIND T ; Put that number in the proper register
23 RCLIND T ; Recall the value in any case

24 GTO 99 End ; moves to end of program, for faster

; response to the next top-row key

The next module computes the area after the triangle has been solved:

25 LBL D ; Compute Area of the solved triangle
26 RCL 01 ; S1
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27 RCL 02 ; S2

28 * ; S1*S2

29 RCL 06 3 A3

30 SIN ; SIN(A3)

31 * ;

322 ;

33/ ; AREA = SI1*S2*SIN(A3)/2

34 GTO 99 End ; moves to end of program, for faster

; response to the next top-row key

The last of the "easy" modules clears the data registers to initialize
the calculator in preparation for a new triangle:

35 LBL e ; Initialize for a new triangle
36 CF 22 ; Clear number entry flag, so that
; LBLs A-C and a-c will work properly
37 CLX R
38 STO 01 ; Clear registers 01 to 06
39 STO 02 ;
40 STO 03 ;
41 STO 04 ;
42 STO 05 ;
43 STO 06 ;

44 GTO 99 End ; moves to end of program, for faster

; response to the next top-row key

In developing the major portion of the program, the decision tree that
determines which solution to apply, mnemonic words will be used in
place of the labels. Numeric values will be attached in the listings,
but these values, and the line numbers, are normally only filled in
after you have completed developing the program on paper.

45 LBL E ; Begin solving the triangle!
46 1.003 ; Set up an ISG pointer for the count
47 STO 00 ; 1,2,3, 1,2,3 in register 00
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48 LBL 01 Findside

49 RCL IND 00

50 X#0?

51 GTO 00 Skip

52 ISG 00

53 GTO 01 Findside

54 LBL 02 Insufficient
55 "MORE DATA"

56 AVIEW

57 GTO 99 End

58 LBL 00 Skip

59 XEQ 12 +Si

60 X#0?
61 GTO 04 SSx

62 RDN

)

[}

[}

)

)

[}

[}

[}

e we we we we

..

.

e

.

e we we we

e we we we we we

..

)

; program logic.

; Note: in retrospect it seems that a
; DSE pointer for a count of 3,2,1 3,2,1
; would save bytes, at line 46 and in
; the incrementing subroutine,

; at some expense in clarity of the

This change, if

: desired, is left as an exercise.

: This loop finds the first nonzero side

of the triangle

Recall the current side

If it is not zero,

Skip forward

Increment the counter to the next side

Try the next side

Termination point if not enough data

Display "MORE DATA" message
Terminate, ready for more data entry

First nonzero side found

Without loss of generality, this will
be assumed to be Side 1 from here on.
The +Si subroutine increments the side
counter i in register 00, then recalls
Side i (now the current side).

Here we are checking the next side,
to see if it is nonzero.

If the second side is nonzero,

go to entry point that solves the

SSx case, in which sides 1 and 2

are nonzero, with side 2 being the
current side.

Remove the zero value for the second

; side. Put the first side value in X.
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63 XEQ 12 +Si
64 X#0?
65 GTO 05 SOS

66 XEQ 15 +Ai

67 X#0?
68 GTO 00 Skip

69 XEQ 15 +Ai

70 X=0?

71 GTO 02 Insufficient
72 XEQ 15 +Ai

73 X=0?

74 GTO 02 Insufficient

75 XEQ 13 LastAngle

[}
[}
1)
)
)

)

e we we we we we

..

.o

e

-

e

e

.

.o

.

.

.o

Recall the next side.

Otherwise, if third side is nonzero,
go to entry point that solves the
SOS case, in which sides 1 and 3

; are nonzero, with side 2 being zero,
; and side 3 the current side.

Otherwise, we have the SO0 case,

in which at least two nonzero angles
are needed.

The +Ai subroutine increments the
counter i in register 00, then recalls
Angle i from register i+3.

Here we are recalling angle 1,

to see if it is nonzero.

If the first angle is nonzero,

skip to the entry point for the

Axx case, in which angle 1 is
nonzero, and is the current angle.

Otherwise, we have 0xx case,
in which the next two angles
must be nonzero.

Recall angle 2

If angle 2 is zero,

give the message MORE DATA
Recall angle 3

If angle 3 is zero,

give the message MORE DATA

Otherwise, we have the 0AA case.
At this point, angle 3 is in X,
and angle 2 is in Y.

Use the LastAngle subroutine to find
the missing angle. The LastAngle
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76 XEQ 10 -i

77 X<>Y

78 GTO 03 S00

79 LBL 00 Skip

80 XEQ 15 +Ai

81 X=0?
82 GTO 00 Skip

83 X<>Y

..

.o

e we we ws we we we we we we we we ws we

e

e

.

)
)
s

]

routine will conclude with the pointer
set to the formerly missing angle:
AAA.

Now, angle 1 is in X, angle 3 in Y.

These next three lines allow a later
part of the program to finish this
case. Don’t bother trying to
understand them at first reading.
They are typical of the parts of
the program that you must fill in
after the initial draft.

Decrement the side/angle counter.
The case is now S00, with all
angle values filled in.

Put angle 3 in X, angle 1 in Y.
Solve the SO0 case, with

angle 3 in X, and angle 1 in Y.
Resume the Axx case, in which
angle 1 is nonzero, and is the
current angle. (Sides are S00.)
Recall the second angle. After
this step, angle 2 is in X, and
angle 1 is in Y.

If the second angle is zero,

skip to the entry point for the
AQx case, in which angle 1 is
nonzero, angle 2 is zero, and is

the current angle.

; Otherwise, we have AAX case,
; in which the next angle can be
; computed from the first two.

Put angle 1 in X.
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84 XEQ 13 LastAngle

85 GTO 03 S00

86 LBL 00 Skip

87 RDN

88 XEQ 15 +Ai

89 X=0?

90 GTO 02 Insufficient

91 XEQ 11 +i
92 XEQ 13 LastAngle

93 RDN
94 XEQ 11 +i
95 LBL 03 S00

; Use the LastAngle subroutine to find
; the missing angle. The LastAngle
routine will conclude with the pointer

register set to the formerly missing
; angle: AAA.
Now, angle 3 is in X, angle 1 in Y,

e

the same conditions we set up at

e

line 76 above. As there, we continue

.o

; by branching to the S0Q case.

Continue the AQx case.

..

; Put angle 1 back in X for later use.
Recall angle 3 to X.

If angle 3 is zero,

.o

; the data is not sufficient.
Otherwise, the case is AOA.

.o

Increment i to get AOA.

Use the LastAngle subroutine to find

.

the missing angle. The LastAngle

routine will conclude with the pointer

register set to the formerly missing
angle: AAA.
Now, angle 2isin X, 3 in Y, 1 in Z.

e we

To transform these conditions to

the same conditions we set up at

e

line 76 above, we need to set the

.o

pointer to side/angle 3, and put

.o

angle 3 in X, angle 1 in Y.

.

; Angle 3 now in X, angle 1 in Y.
; Increment the counter. S0Q case.
; Entry point for the SO0 case.

; Angle 3 is in X, angle 1 in Y.

; Use the law of sines:

; Sj = SIN Aj * S,/SIN A
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96 SIN ; SIN Ag

97 XEQ 12 +Si ; Recall Side 1.

; At this point the stack (XYZT) is:

; Sl sinA3 Al
98 RCL Z Al S1 sinA3 Al
99 SIN ; sinAl S1 sinA3 Al
100 / ; S1/sinAl sinA3 Al Al
101 * ; sinA3*(S1/sinAl) Al Al Al

;. =A3 Al Al Al
102 LASTX ; S1/sinAl A3 Al Al
103 XEQ 15 +Ai ;o A2 S1/sinAl A3 XX
104 SIN ; sinA2 S1/sinAl A3 Al
105 * ; sinA2*(S1/sinAl) A3 Al Al

: o= A2 A3 Al Al
106 STO IND 00 ; Store as Angle 2
107 RDN . A3 Al Al A2
108 XEQ 11 +i ; Increment angle counter, from 2 to 3

; A3 Al Al XX
109 STO IND 00 ; Store as Angle 3
110 RTN

The stack management instructions ( X<>Y, RDN, and Rt ) within the
above decision portion of the program would normally be inserted at
the last stage of program development, after all the modules are in
place and their input/output characteristics are fully known. Stack
management needs to be carefully documented along with the program
steps, and even then it normally needs some fixing when you start
testing the program.

The missing modules are now:

LBL 04 SSx ; Solves the SSx case.
LBL 05 S0S ; Solves the SOS case.
LBL 10 -i ; Decrement the side/angle counter.

; Preserve the values in X, Y, and Z.
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LBL 11 +i ; Increment the side/angle counter.

LBL 12 +Si ; Increment counter; recall current side.
LBL 13 LastAngle ; Compute third angle from the other two.
LBL 15 +Ai ; Increment counter; recall current angle.
LBL 99 End ; Terminate; prepare for new top-row

; key input.

Let’s work on the simpler subroutines now, labels 10 through 15.
We’ll throw in two more that will be needed later:
LBL 14 StoreAi ; Store current Angle without

; incrementing the counter.
LBL 16 Ai ; Recall current Angle without

; incrementing the counter first.
Again, the line numbers would not normally be part of your program
development, which starts with pencil and paper.

Insert LBL 10-99 commented listings here

222 LBL 10 -i ; Decrement the side/angle counter.

; Preserve the values in X, Y, and Z.

; In the 1, 2, 3 sequence, decrementing

; can be done by incrementing twice.
223 XEQ 11 +i ; Increment the side/angle counter.
224 LBL 11 +i ; Increment the side/angle counter.

; Preserve the values in X, Y, and Z.

225 X<> 00 ; Stack is: 1.003 y z t
226 3

227 MOD ; i MOD 3 +.003 y z z
228 LASTX

229 SIGN

230 + ; i MOD 3 +1.003 y z z

; MOD 3 leaves i=1 and 2 unchanged,

; but reduces 3 to 0.
231 X<> 00 ; X y z z
232 RTN
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233 LBL 12 +Si
234 XEQ 11 +i
235 RCL IND 00
236 RTN

237 LBL 13 LastAngle

238 XEQ 11 +i
239 RCL Y
240 RCL Y
241 +

242 COS

243 CHS

244 ACOS

245 LBL 14
246 XEQ 00 Skip

247 STOIND T
248 RTN

249 LBL 15 +Ai
250 XEQ 11 +i
251 LBL 16 Ai

252 XEQ 00 Skip

253 RCLIND T

254 RTN
255 LBL 00 Skip

; Increment counter; recall current side.
; Increment counter register.
; Recall current side.

; Compute third angle from the other two.
; Stack starts as Al A2 z t
; Pointer starts at S2.

; Increment counter to S3.

; A2 Al A2 z
; Al A2 Al A2
; Al+A2 Al A2 A2

; ACOS(-COS(A1+A2))

; A3 Al z z
; Put counter+3 in T for use as an
; indirect address to recall the

; current angle.

; A3 Al z i+3

; Store A3.

; Increment counter; recall current angle.
; Increment counter

; Recall the current Angle without

; incrementing the counter.

; Put counter+3 in T for use as an
; indirect address to recall the
; current angle.

; Recall the current angle.

; Put counter+3 in T.
; Stack begins: x y z t
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256 3 ;3 X y z

257 X<> 00 ;o X y VA
258 ST+ 00
259 X<> 00 ;143 X y z
260 RDN ; Restore stack:
;X y z i+3
261 LBL 99 End ; Reset to line 00; prepare for new
262 END ; top-row key input.

Now, let’s fill in the modules that handle cases for which more than
one nonzero side is present. We must start with LBL 04, the SSx
case, and LBL 05, the SOS case, although more modules will be needed.
For example, LBL 07 will handle the SSS case.

111 LBL 04 SSx ; Solves the SSx case.

; Side 2 is in X, Side 1 in Y.
112 XEQ 12 +Si ; Recall side 3.
113 X#0? ; If side 3 is nonzero,
114 GTO 07 SSS ; Solve SSS case.

; Otherwise, solve the SSQ case.
115 RDN ; Put Side 2 in X, Side 1 in Y.
116 GTO 00 Skip ; Continue below.
117 LBL 05 S0S ; Continue the SOS case.

; Side 3 in X, Side 1 in Y.
; Next we transform this into an SSQ
; case, so we can solve this and line
; 115 using the same module.
; This transformation is simple. We
; just make an SQOS case, which is
; indistinguishable from the SSQ case.
; The old side 3 becomes side 1. The
; old side 1 becomes side 2.

118 XEQ 10 -i ; Decrement the side counter.

119 X<>Y ; Put the old side 1 (now side 2) in X,
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120 LBL 00 Skip

121 XEQ 16 Ai

122 X#0?

123 GTO 06 SSOxxA

124 RDN

125 XEQ 15 +Ai
126 X=0?

127 GTO 00 Skip
128 XEQ 15 +Ai

129 X=0?
130 GTO 03 Skip2

131 +

132 COS
133 CHS
134 ACOS
135 XEQ 11

136 XEQ 14 StoreAi

137 GTO 06 SSOxxA

138 LBL 03 Skip2
139 RDN

140 XEQ 09 FindSide

; the old side 3 (now side 1) in Y.

; Continue the SSQ case, with

; Side 2 in X, Side 1 in Y.

; Recall angle without incrementing
; first. Recalls Angle 3.

; If Angle 3 (the included angle

; between sides 1 and 2) is not zero,
; Solve side-angle-side case

; Stack contains A3, S2, S1.

; Otherwise, restore Side 2 to X,

; Side 1 to Y.

; Recall Angle 1. Stack has Al, S2, SI.
; If Angle 1 is zero,

; Case is SS00x0.

; Otherwise recall Angle 2.

; The stack is then: A2, Al, S2, S1.
; If Angle 2 is zero,

; case is SSOAQ0.

; Otherwise, case is SSOAAOQ.

; Compute Angle 3. Stack starts as
; A2, Al, S2, S1

; Stores Angle 3. Stack is A3, S2, SI.

; Continue to solve, using the

; side-angle-side case (SSOxxA).

; Status is SSOAQ0.

; Stack is now: Al, S2, S1, 0

; The FindSide subroutine uses the data
; in the stack: Al S2 SI

; to compute S3.
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141 XEQ 11 +i

142 STO IND 00

143 GTO 07 SSS

144 LBL 00 Skip

145 RDN

146 X<>Y

147 XEQ 15 +Ai

148 X=0?

149 GTO 02 Insufficient

150 XEQ 09 FindSide

151 XEQ 11 +i

152 STO IND 00
153 GTO 07 SSS

; Increment the side/angle counter.

; Status is now SSO.

; Store Side 3.

; Use the side-side-side solution to finish.
; SS00x0 case.

; Put Side 2 in X, Side 1 in Y.

; Put Side 1 in X, Side 2 in Y.

; Recall Angle 2.

; If Angle 2 is zero,

; Data is not sufficient.

; Otherwise, the case is SS00A0

; Use data in the stack: A2 S1 S2

; to compute S3.

; Increment the side/angle counter.

; Status is now SS0.

; Store Side 3.

; Use the side-side-side solution to finish.

Now we need several more modules:

LBL 06 SSOxxA
LBL 07 SSS
LBL 09 FindSide
LBL 14 StoreAi

LBL 16 Ai

154 LBL 06 SSOxxA

155 X<>Y
156 P-R
157 RCL Z

; Solve the side-angle-side case

; Solve the side-side-side case.

; FindSide subroutine uses the Law of
; Cosines to compute S3.

; Store current Angle without

; incrementing the counter.

; Recall current Angle without

; incrementing the counter first.

; Solve the side-angle-side case
; Stack contains: A3 S2 Sl
; or the mirror-image equivalent

; S2 A3 S1
; S2cosA3 S2sinA3 S1
; Sl S2cosA3 S2sinA3
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158 - ; S2cosA3-S1  S2sinA3

159 R-P ; SQRT((S1-S2c0sA3)2+(S2sinA3)?)
; = SQRT(S12+822-25182c0sA3)
;=83

160 STO IND 00 ; Store S3. Continue as SSS.

161 LBL 07 SSS ; Solve the side-side-side case.
; Initial stack contents arbitrary.

162 RCL 00 ; x.003

163 FRC ; 0.003

164 STO 00 ; Reset side counter

165 ISG 00 ; to side 1.

166 LBL 08 ; Top of loop that computes the angle

; opposite each side.
167 XEQ 16 Ai ; Check the current angle, which we
; shall refer to as Al

168 X#0? ; If the angle is already known (nonzero),
169 GTO 00 Skip ; then skip the computation.

170 XEQ 12 +Si ; Recall S2

171 XEQ 12 +Si ; and S3.

172 R-P : Stack is SQRT(S22+532), ATAN(S2/S3)
173 XEQ 12 +Si ; Recall S1.

174 X<>Y : Stack is: SQRT(S22+532), S1, ATAN(S2/S3)
175 / : S1/SQRT(S22+532), ATAN(S2/S3)

176 X412 : S12/(522+832), ATAN(S2/S3)

177 1

178 X<>Y

179 - .1 - S12/(S22+532), ATAN(S2/S3)

180 X<>Y

181 ENTER}

182 + ; 2*ATAN(S2/S3), 1 - S12/(S22+532)

183 SIN : SIN(2*ATAN(S2/S3)), 1 - S12/(S22+832)
184 / ; COS Al

185 ACOS ; Al (result)

186 XEQ 14 StoreAi ; Store the current Angle without
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187 LBL 00 Skip
188 ISG 00

189 GTO 08

190 RTN

191 LBL 09 FindSide

192 ENTER?
193 SIN

194 R

195 /

196 ENTER?
197 R?

198 *

199 ASIN
200 ST+ T
201 R?

202 COS

203 CHS

204 ACOS
205 X<>Y
206 Rt

207 -

208 X<=0?
209 GTO 00 Skip

210 "OBTUSE? 1/0"

.o

.o

.o

incrementing the counter.

Entry point if calculation is skipped.
Increment the counter, to compute
next angle. Skip when all 3 are done.
Finished!

FindSide subroutine. Use the Law of
Cosines to compute S3.

Stack starts as: Al, S2, Sl

sinAl Al S2 S1
S1 sinAl Al S2
sinA1/S1 Al S2 S2
sinA1/S1 sinA1/S1 Al S2
S2 sinAl/S1  sinAl/S1 Al
S2*sinA1/S1 sinAl/S1 Al Al
A2 sinAl/S1 Al Al
A2 sinAl/S1 Al A 2+Al
A 2+Al A2 sinAl/S1 Al
180-A 2-A1 A 2 sinAl1/SI Al
A2 180-A 2-A1 sinAl/S1 Al
Al A2 180-A 2-Al sinAl/Sl
A 2-Al  180-A 2-Al sinAl/SI

If A 2-Al is not positive,

then there is only one solution.

Data in Y and Z is 180-A 2-Al sinA1/S1
Otherwise, ask user to select a solution.
The message asking the user to enter

a 1 if the triangle is to be more

obtuse, or a 0 if the larger, more acute
triangle is desired. Note that the 1

is closer to the shape of the smaller,

more obtuse triangle, while the 0 is
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; closer to the shape of the large, more
; acute triangle.

211 PROMPT ; Display the message and halt.
212 CF 22 ; Avoids confusing the LBL A-C and a-c
; routines.
213 * : 0or A2-Al1 180-A2-Al sinAl/Sl
214 X#0? ; If a 1 was entered (more obtuse),
215 X<>Y : 180-A2-Al A2-Al sinAl/SI
216 LBL 00 Skip ; Data for the solution is in Y and Z
217 RDN ;. K2-Al sinA1/S1  or
; 180-A2-Al sinA1/S1
218 SIN ; sinA3 sinA1/S1
219 X<>Y ; sinA1/S1 sinA3
220 / ; S1*sinA3/sinAl = S3
221 RTN ; Return the value of the missing side.

This completes the program. It is not, in fact, the shortest possible
triangle solution program, but most shorter programs require the user
to enter all the data each time the program is run. With this
program, you can adjust the value of a side or an angle, clear the
values from other sides and angles, and try another solution.

Now it’s time to test and debug the program. As I mentioned earlier,
this is the time when you would normally find any errors in your stack
management instructions. I hope you don’t find any in this case,
because I didn’t put in any intentional errors! There are, however
at least two improvements possible: If you first add a LBL 03 after
line 149, you can replace lines 140-143 by GTO 03. Also, lines 202-
204 can be deleted, since sin(A2+A1)=sin(180-A2-A1) at line 218.

To test the program scientifically, you need to identify a complete
set of test cases. This is much easier said than done. In fact, an
earlier version of this program that I developed in 1979 and which was
published in the April 1980 PPC Journal (pages 13 and 14) managed to
retain some hard-to find errors.
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The test cases should include at least one of each type that the
program can solve:
1) SSSxxx (three sides and any, all, or no angles)
2) SSO0xxA (two sides and the included angle)
3) SSOAAO0 (compute the included angle and solve as SSOAAA)
4) SS0A00 (two sides and a non-included angle; may have two
solutions)
5) SS00A0 (same)
6) SO0 with at least two angles (compute the third angle, then use
the law of sines to solve)
Once you have tested the program’s capability to rotate a nonzero side
to the S1 position, it should be sufficient to test only cases in the
above standard forms. For the side-side-angle cases (numbers 4 and
5), you will need to test obtuse, acute, and right triangle solutions.

You should also test the insufficient data cases:
7) 000xxx (need at least one side)
8) SS0000
9) SO0 with less than two angles

Let’s test the insufficient data cases first.

Press [e] to clear the triangle data registers.
Case 7: Put in three angles, such as
30 [a], 60 [b], 90 [c]
and press [E] to solve. The result should be
MORE DATA
Case 8: Press
[e], 3 [A], 4 [B], [E]
Again the result should be a display of MORE DATA.
Case 9: Press
[e], 3 [A], 30 [a], [E]
Again the result is MORE DATA.
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Now for the sufficient data cases. Set the display mode to FIX 2.

For all but cases 4 and 5, a single triangle ought to be sufficient.
We will use the 3-4-5 right triangle: S1=3, S2=4, S3=5, A1=36.87,
A2=53.13, A3=90.00.

Case 1: Press

Case

[e], 3 [A], 4 [B], 5 [C], [E]
When the program halts, check the results.
[a] gives 36.87, [b] gives 53.13, and [c] gives 90.00

There is one feature that of this program’s SSS solution that you
should note. If you have supplied angle values in addition to
the three sides, the program will assume that these angles are
correct and will not recalculate them. If you want to be sure
that the angle results are correct and consistent with the sides,
you can modify the program to recalculate all three angles when
doing the SSS solution. Just delete lines 167-169 and 187, which
test for a nonzero angle value and skip the calculation if
possible. Naturally this change will increase the excution time.
So make your own decision according to your preference.

2: Press
[e], 3 [A], 4 [B], 90 [c], [E]
When the program halts, check the results.
[a] gives 36.87, [b] gives 53.13, and [C] gives 5.00

We can use Case 2 to check the program’s rotation capability.
Let’s give it the same problem, rotated by 1 side:

[el, 3 [B], 4 [C], 90 [a], [E]
The results are:

[b] gives 36.87, [c] gives 53.13, and [A] gives 5.00

Now let’s rotate it by another side:
[e], 3 [C], 4 [A], 90 [b], [E]
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The results are:
[a] gives 53.13, [c] gives 36.87, and [B] gives 5.00

Case 3: Press
[e]l, 3 [A], 4 [B], 36.87 [a], 53.13 [b], [E]
When the program halts, check the results.
[c] gives 90.00, and [C] gives 5.00

Case 6: Press
[el, 3 [A], 36.87 [a], 53.13 [D], [E]
The results are:
[c] gives 90.00, [B] gives 4.00, and [C] gives 5.00

[el, 3 [A], 53.13 [b], 90 [c], [E]
The results are:
[a] gives 36.87, [B] gives 4.00, and [C] gives 5.00

[e], 3 [A], 36.87 [a], 90 [c], [E]
The results are:
[b] gives 53.13, [B] gives 4.00, and [C] gives 5.00

Cases 4 and 5: First a near-right triangle,
[e]l, 3 [A], 5 [B], 36.87 [a], [E]
This one is a little tricky. You will get
DATA ERROR
because the triangle cannot be closed. The problem is that Angle
1 is just a little too large. Adjust it like this:
36.86 [a], [E]
The results for Solution 0 are:
[b] gives 88.77, [c] gives 54.37, and [C] 4.06
If you selected Solution I:
[b] gives 91.23, [c] gives 51.91, and [C] 3.94
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As you can see, the results are sometimes quite sensitive to the
inputs. A variation of 0.01 degree in one angle resulted in a
change of over 1 degree in the two angle outputs.

Now, an acute triangle case
[e]l, 3 [A], 4 [B], 53.13 [b], [E]
The results are:
[a] gives 36.87, [c] gives 90.00, and [C] 5.00

Finally, a true dual-solution case.
[e], 4 [A], 3 [B], 36.87 [b], [E]
The results for Solution 0 are:
[a] gives 53.13, [c] gives 90.00, and [C] 5.00
If you selected Solution 1:
[a] gives 126.87, [c] gives 16.26, and [C] 1.40

You can see from this example how comprehensive the testing must be
for a complex program. Without this testing, the user of the program
may encounter errors. Worse, the user may not even notice the errors,
and rely on the incorrect results. This is especially embarassing
when the user and the programmer are the same person! So be sure to
fully test your programs. It is time well spent.
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CHAPTER THREE - OPTIMIZING PROGRAMS

The aim of this chapter is to offer some guidelines and ideas on ways
to improve your programs. The kinds of improvements that will be
discussed fall under two basic categories: those that reduce a
program’s byte count, and those that reduce its execution time. Often
you have to choose whether speed or byte count is more important.
Happily, many of the improvements in the material that follows will
make your programs both shorter and faster.

Optimizing a program involves a number of tradeoffs in addition to
considering the byte count versus speed. Therefore, there aren’t any
rules written in stone. Since the object here is to improve your
programs and programming skills, you’ll get the most benefit if you
take the time to try techniques that are new to you.

The best way to try out new techniques is to use a program you wrote
yourself. This way you will be familiar with the program’s use of the
stack and Alpha registers. If you haven’t used the program for a
while, it would be a good idea to "walk through" (SST) the entire
program for a simple example to check stack usage before making any
changes. It’s also good to restrict your changes to a small section
of the program at first. After you have tested the effect of these
changes and determined that the program still works correctly, you can
modify another section.

It’s also a good idea to have two copies of your program in main
memory when you start. The first version is left unaltered, in case
you need to refer to it to figure out some forgotten detail of program
operation. The second copy of the program is the one to be modified.
Before you make any other changes to the second program, make a small
change in the spelling of its main Global label (usually line O01).
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This identifies the two different versions and eliminates having to
use CAT 1 to move between the two. Be aware, though, that any Alpha
GTO or Alpha XEQ instructions in these programs will branch to the
matching Alpha label lowest in memory (the one closest to the .END.).

So if the program has more than a single Global label, the version you
are testing should be closer to the .END. (farther down Catalog 1).

There are several easy ways to alter the main Global label of program
you are modifying. One way is to change a letter from capital to
lower case, if one of the letters from A to E. Another good idea is
to change the last letter to a number, or add a "2" after the last
letter. This is used to keep track of the number of times the program
is revised. Each time a major change is made, increase the number by
one. Be sure to write down all of the changes you make, and don’t be
in a hurry to throw out the old documentation. It can be useful when
it turns out that a case you didn’t test on the new version fails to

work.

An ecasy way to test the changes you make in your program is to insert
a STOP (press R/S) instruction a line or two before the new program
lines. Then run the program and SST through the lines that were
changed, R/S and run to completion. If the STOP instruction is added
within a loop, you may have to press R/S more than once to finish the
program. Press and hold R/S to check the line number before releasing
it.

After you’re satisfied that the changes you made are a suitable
substitute for the original, remove the STOP function you added, make
a note of all the changes you made, and move on to the next change, if
any. Be sure to PACK and run the program to compile the GTOs and XEQs
before you save it on cards, cassette, or in Extended Memory.

Of course, all of this isn’t absolutely necessary for simple changes.
However, it’s good to establish habits that are both systematic and
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convenient. The time you spend working on a program is practically
wasted if you don’t document how it works.

The different program optimization categories in this chapter are
arranged in an order that is designed to give you good results in
reducing byte count and improving speed. The beginning sections yield
gains fairly quickly, while those later in the chapter take a bit more
work. Whether you just need to trim off a few bytes to make your
progam fit neatly onto one card or you want to completely optimize a
program for speed, you’ll make best use of your time by proceeding in
this order.

3A. ALPHA TEXT LINES

A quick way to trim a few bytes from a program is to shorten Alpha
prompts, messages oOr warnings. The easiest approach is to use
abbreviations, contractions, or the initials of some of the words in
your Alpha text lines. You can often omit the period after an
abbreviation. (The period does use a full byte of program memory even
though it does not usually occupy a separate character position in the
display.) Replace words in the text lines of your programs as long as
there will be no loss of meaning.

Sometimes the normally keyable characters just aren’t enough. Rows
zero and two of the byte table contain many useful synthetic
characters. Messages containing the apostrophe ("DON’T R/S"), the
ampersand ("YOU & I") and # ("INPUT #1?") are just a few examples.
Although these characters are not normally keyable, they can be used
in alpha messages. Nonkeyable characters can be appended to the Alpha
register using the Extended Function XTOA, the Printer instruction
ACX, or the PPC ROM’s "DC" (Decimal to Character) program. Many
bytes and considerable execution time can be saved over using XTOA,
"DC", or ACX by instead constructing synthetic text instructions with
the special characters "built in". The byte-building functions XTOA,
"DC", and ACX are better suited to cases in which the character to be
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appended may depend on the outcome of an earlier computation or user
selection.

You can construct synthetic text lines using a byte loading program
(such as the PPC ROM’s "LB"), the CCD Module, the ZENROM, or a
synthetic key assignment. More information on this subject appears in
Section 4B. Both hexadecimal and decimal inputs are listed in the
examples that follow, for use with either the ZENROM or a byte loading

program.

Of course, these two techniques aren’t the only ways to create text
lines containing non-keyable characters. You can use the Byte Jumper
(described in Section 4I) to get inside an existing text line. You
could also use a Text 0 prefix assignment to release one of the Text
bytes from row F of the byte table, which would absorb instructions to
make a text line. However, the Byte Grabber and the byte loader are
more straightforward to use. They also illustrate the underlying
principles more clearly.

CCD Module or ZENROM users can create synthetic text lines as easily
as normal text lines, because the USER key acts as a second shift key
in ALPHA mode. (Note that these two modules do operate differently
from each other in ALPHA mode, however.)

ZENROM users can create synthetic text lines in two additional ways:
by inserting bytes with RAMED’s "I" mode, or by editing existing text
lines with RAMED. Pages 56 through 61 of the ZENROM manual explain
this in detail.

If you’re intending to use a byte loading program, make sure you have
a copy of "LB", "LBX", or a similar program in RAM or ROM. If you’re
using the byte grabber (a synthetic key assignment with prefix 247 =
hex F7), be sure that the postfix value is from 15 to 28, 32 to 191,
or 206 to 244. For our purposes here, it would be best if you assign
the commonly used byte grabber 247, 63 to a convenient key using
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either the CCD Module’s enhanced ASN function, "MK", "MK X", or another
synthetic key assignment program. The postfix value of 63 appears as
a question mark in the distinctive text line that is created by the
byte grabber.

If you are completely unfamiliar with the byte grabber, you should
work through the examples in Section 4B before coming back to finish
this section. Even better, you could read Chapters 1 and 2 of Keith
Jarett’s "HP-41 Synthetic Programming Made Easy", which will show you
how to use the byte grabber to create many synthetic instructions.

Using the byte grabber to create synthetic text lines

The approach to putting a nonkeyable character into a text line by
using the byte grabber can be summarized as follows. First you key in
a normal text line of the length that you want the final result to
have. Then you use the byte grabber to absorb the prefix byte of the
text line. This is the byte (hexadecimal Fn; see row F of the byte
table) which specifies that the next n bytes are to form a TEXT
instruction of n characters, where n is up to 15. The characters from
the text string are then exposed and appear as instructions on their
own. Next you replace some or all of the characters with the
instructions corresponding to the non-keyable characters that you want
to put in the text line. Finally, you use the byte grabber again to
release the previously grabbed prefix byte and re-establish the
modified text line. An example will illustrate this procedure:

Start by using GTO .. to get to the bottom of Catalog 1 and pack
memory. Enter PRGM mode. Make sure at least five registers
are free (00 REG 05 or more). Decrease the SIZE if
necessary to achieve this.

Key in LBL"AT", ALPHA ABCDEFG ALPHA, followed by seven +
instructions.

SST twice to return to line 01 or press GTO .001.

Press the byte grabber. You should have the following:

-75-



01 LBL "AT" (Alpha Text)

02 "R

03 -

04 * "LB" inputs:
05 /

06 X<Y? 247, 65, 66, 35,
07 X>Y? 68, 69, 70, 0
08 X<=Y?

09z+

10 + Hex inputs:
11 + F7, 41, 46, 23
12 + 44, 45, 46, 00
13 +

14 +

15 +

16 +

Now position yourself to line 05 (the divide instruction that
corresponds to the character "C") and backarrow. Key in RCL 03.
Go to line 09 and backarrow. Press GTO .001. Byte grab again,
SST, and then backarrow twice. XEQ "PACK" (do not GTO ..).

Looking at line 02 should show "AB#DEF™. We replaced character "C"
in the original text line with "#" (RCL 03, decimal value 35 = hex 23
in the byte table). "G" was deleted and not replaced at all. That
position now shows the "overbar" character, representing a null. Had
PACKing taken place before using the byte grabber the second time,
this null would have been filled in by the first of the following +
instructions. Within the text line, the + instruction (decimal value
64) would appear as "@".

The purpose of the extra + instructions is to prevent any possibility
of part of the .END. being absorbed into the text line. This would
cause you to lose access to Catalog 1, and that would probably lead to
MEMORY LOST. You should NEVER byte grab within 5 bytes in
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front of an Alpha label or the .END. . To avoid the chance of this
happening, always add a buffer of instructions between where you are
working and any nearby global instruction at a lower address in
memory. You might not think you need a protective buffer, but
accidents will happen . ..

We can extend the idea of replacing characters to include replacing
the entire contents of the text line. This is especially attractive
when most of the characters are either lowercase or special characters
for use with a printer. Text lines in which most of the characters
are nonkeyable are easiest to construct with "LB". And when any of
the decimal byte values are from 192 to 205 or from 208 to 239, using
"LB" (or the ZENROM) is the only reasonable way to proceed.

Let’s use the "AT" program to illustrate replacing the entire set of
characters in a text line. You’ll need at least one free register in
addition to having "AT" in memory. Begin by back-arrowing the text
line 02 and keying in the original "ABCDEFG". BST to LBL "AT" and
press the byte grabber. Now key in LBL 00, RCL 06, LBL 11,
RCL 08, CLST (press XEQ ALPHA C L S T ALPHA), STO 06, and
RCL 09. Each of these instructions will become a character in the new
text line. Check the byte table for the character correspondence.
GTO .001 and byte grab again. SST, then backarrow twice. SST to take
a look at the line you created. You should see 02 "% & ~(86)".

To create this line using "LB", use inputs of 247, 1, 38, 12, 40, 115,
54, and 41. The "full man", ampersand, mu (or "micro"), left
parenthesis, starburst, and right parenthesis are all nonkeyable. The
two parentheses are especially useful.

If you used the byte grabber, SST’ing the next seven lines will show

functions which correspond to characters A through G. The buffer of
seven + instructions is just beyond them.
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More byte savings

A completely different approach to saving bytes in constructing
program messages is to use the system error messages in place of your
own warnings. In most cases where this method can be used, you will
only need two or three bytes to generate the system error message.
The longest needs seven bytes. Of course, flag 25 must be clear in
order for these errors to cause the listed error message to be
displayed. In addition, flag 24 must be clear for OUT OF RANGE. Sece
the table below for ten different ways to generate various error
messages:

Instruction Sequence Error Message
With any HP-41

CLX, LOG DATA ERROR

ASTO X, OCT ALPHA DATA

E2, FACT OUT OF RANGE

SF 99 NONEXISTENT

With Extended Functions or 41CX

CLA, CLFL NAME ERR

CLA, SEEKPTA FL TYPE ERR

CLX, PASN KEYCODE ERR
With Time or 41CX

CLX, DDAYS DATA ERROR X

., DATE, DDAYS DATA ERROR Y

E4, ., TIME, XYZALM DATA ERROR Z

The instruction sequences listed are suggestions only. You may want
to make changes in them to suit your particular needs. As an example,
you might want to change CLX to the lone decimal point ( . ) so the
contents of X aren’t lost. This method is used in the last two
sequences above to bring zero into the stack without clearing X. You
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might want to use a different function than the one listed in the
first three examples if that function appears somewhere in the
program. This will avoid confusion.

If you need to test particular conditions in your program, you can
change these sequences further. For example, if a program is intended
to accept non-negative inputs only you can use X<0? LOG at the top of
the program. The LOG instruction will give a DATA ERROR right away
if a negative input is supplied. Otherwise it is skipped.

3B. NUMERIC ENTRY

The suggestions in this section mainly improve the execution time of
your programs. In some cases they will save a byte or two as well.

Instead of using O for zero, you should consider some alternatives. A
lone decimal point ( . ) is a little faster, though a little harder to
read in a program listing. CLX or ENTER followed by CLX is faster
still, as long as leaving the stack lift disabled won’t cause problems
with subsequent instructions. You can also use RCL a (recalling
status register a) for a zero as long as the subroutine stack has less
than three pending returns. You can even use RCL a for zero when
three returns are pending if the "zero" will be stored in a numbered
data register and recalled (hence normalized) and set to a true zero
before it is tested. Otherwise a test X=0? will give the result NO.

A slightly faster alternative to using 1 for the number one is a
solitary E (Enter EXponent), decimal value 27 (hex 1B) from the byte
table. This technique has become fairly common, though there are
other nonsynthetic options available. As long as X contains ordinary
non-negative numeric data, you can substitute the function SIGN. This
is nearly four times faster than the digit entry 1. If the contents
of X are not known, you can use the sequence CLX, SIGN. In either of
these two cases, if you need to preserve X, add an ENTER instruction
beforehand to push the value of X into register Y.
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When your program makes use of a numeric entry line with just a "I"
before the exponent, for instance 1 E3, you can save one byte and
reduce execution time by removing the 1. As an example, E2 is about
one-third faster than 1 E2, although both perform the same function.
These are known as short form exponents. An example using the byte
grabber to remove the leading 1 from a similar power of ten is given
in the first part of Section 4B. The "LB" inputs for E2 are 27, 18.
Removal of a leading "1" before an exponent instruction is automatic
if you have a ZENROM.

The instruction listed as NEG (negative), decimal value 28 in the byte
table, is relatively slow. It takes about the same time as entering a
numeric digit. In most cases, you can avoid numeric entry lines
containing this byte value quite easily. If the NEG byte is used to
make a number negative, use CHS instead. This only requires a small
change in the way you key in the number. For example, to key in
negative eight, instead of pressing 8, CHS, resulting in a line
showing -8, key in 8, ALPHA, ALPHA, CHS. This produces two program
lines, one showing 8 and the other CHS. Both versions use two bytes,
but the second is 65% faster! Note that L (LASTX) is unaffected by
either NEG or CHS.

Another way to avoid the NEG function is to divide instead of
multiplying, or vice versa, so that a positive exponent is used. Use
E3, / in the place of E-3, *. This is over 40% faster, and is one
byte shorter. This technique can also be used on some numbers which
are not exact powers of ten. As an example, 5 E3, / substitutes for 2
E-4, *.

In a similar fashion, you can avoid using NEG in negative exponents
with a reciprocal (1/X) instruction. This technique can be used for
powers of ten, as well as other numbers. E6, 1/X is faster than E-6.
However, it does change the L (LASTX) register.
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A slightly less obvious example is to use 8 E8, 1/X in place of 1.25
E9. There is a shortcut to help you determine whether a particular
number can be entered this way. Key in the number or single-step the
program line containing the number, then press 1/X. If the resulting
number has the same number of significant digits, this technique will
only save a little time. But if the result has fewer significant
digits, you’ll conserve both bytes and execution time wusing this
method.

In the same manner, the sequence 3, 1/X is much faster than using
.333. It also uses half as many bytes and equals one-third exactly.
This can be applied to other numbers as well. Again, taking the
reciprocal of the desired result will show if this will be helpful
with a particular number. Many fractional numbers are best expressed
as a division of two numbers, expecially if accuracy is needed. A
series of instructions such as 2, ENTER, 3, / instead of .6666, or 5,
ENTER, 6, / in place of .8333 is an example of superior programming
practice. The ENTER instructions aren’t actually needed after the
numbers are keyed in, and they can and should be removed. This will
save a few milliseconds and avoid the problem that the stack lift is
re-enabled if you stop the program after the ENTER, then restart it.
However, even without the ENTER, the HP-41 will leave an invisible
null between the two numbers as a separator, so the byte count is the
same whether you remove the ENTER instruction or not.

Using 1/X or division isn’t just for fractions whose digits repeat.
The last example can be changed to 5 E4, (null), 6, / when the number
desired is 8,333.33. This holds a slight speed and byte count
advantage over a numeric entry line of 8333.33. Use the function
execution times from Appendix A of SPME and your best judgement to
decide which one is better to use in your program. A simple example
of this would be using 2, 1/X in place of .5 for one-half. The 30%
speed advantage of 2, 1/X has to be weighed against the fact that .5
is easier to understand and does not change the LASTX register.
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In the case above where the quantity 2 was needed, yet another
substitution could have been made. The sequence SIGN, ST+ X is 31%
faster than using 2. However, this time savings at the cost of two
more bytes strictly limits this to applications in which time is the
most important factor. Be forewarned that needing to add CLX because
X may contain alpha data or NNNs, or having to use LASTX to recover
the old value of X will almost completely cancel out the time savings.

When using either very large or very small numbers, you can speed up
operation slightly by eliminating the decimal point. As an example,
instead of wusing 1.23 E12, substitute 123 E10. This saves one byte
and a little time. For numbers with positive exponents, this will
sometimes result in the saving of another byte and a little more time
when this change results in the exponent being reduced from two digits
to just one. An example using a negative exponent would be to change
7.36 E-21 to 736 E-23, eliminating the decimal point.

Quite often when program execution is bogged down by numeric entry
lines, it’s because the program requires a large number of constants
to be stored in the data registers during program initialization.
This is especially true when the numbers have many digits, an
exponent, the number and/or exponent is negative, and so on. This
kind of numeric entry is very time consuming because the program bytes
have to be translated into an actual number which has very different
byte values than the representation in program memory.

Synthetic programming offers a solution to this problem that is
practical if the numbers average more than nine bytes apiece, or if
saving execution time is more important than saving bytes. The number
is brought into Alpha in the form of a text line, and recalled into
the stack using RCL M. This avoids the time-consuming formatting that
is normally required. Former Alpha contents are lost, but this will
usually not matter during initialization.
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In order to figure out the correct byte values for the text line that
will generate the desired number, there are several approaches you can
take. If you have a ZENROM, simply XEQ "DECODE" with the number
in X. Write down the fourteen hexadecimal digits of the result.
Enter PRGM mode where you want the instruction inserted. Then XEQ
"RAMED" and press I for the insert mode. Key in F 7 followed by the
fourteen hex digits you wrote down earlier. Press ON to exit the RAM-
Editor. Add a RCL M instruction after the text line and you have
everything you need.

With a CCD Module, put the number in X and XEQ "DCD". Write down the
fourteen hexadecimal digits of the result. Enter PRGM mode where you
want the instruction inserted. Then use the alpha hex entry feature
(ALPHA SHIFT ENTER H digitl digit2) to enter each of the seven
synthetic characters by their two-digit hexadecimal equivalents.
Again, add a RCL M instruction.

If you have a PPC ROM, you can use a slightly longer procedure.
Clear Alpha, put the number in X, and STO M using a key assignment or
by single-stepping a STO M instruction. Then XEQ "CD" seven times
to give the decimal values needed in reverse order (right-to-left).
Or you can use the Extended Function ATOX as described below. Add
decimal byte 247 as the first of eight bytes that make up the proper
text line. When you have the values for all of the numbers you need,
use "LB" to create the text lines and follow each text line with
RCL M (144,117).

Another approach is the PPC ROM’s "NH" routine. XEQ "NH" with the
number in X. The result is a list of fourteen hexadecimal digits.
Divide them up in seven pairs of numbers to use with "LB". When using
this byte loading program, turn ALPHA mode on and use F7 as the first
of eight pairs of hexadecimal digits. Repeat the same procedure for
each number, adding hex 90 and 75 after each complete number (text
line) for the required RCL M instruction.
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If you don’t have the ZENROM, CCD Module, or the PPC ROM,
you can figure out the proper byte values with the Extended Function
ATOX if you have STO M or X<> M assigned to a key or contained within
a program (such as "LB"). Clear Alpha and then transfer the bytes of
your number from X to M. Either press a key assigned with STO M or
single-step it as an instruction (Section 4B shows how to use the byte
grabber to create this particular function). Enter ALPHA mode and
make a note of the position of any nulls ("overbar" characters),
because ATOX will not decode these. Exit ALPHA mode and use
ATOX repeatedly to get the remaining non-zero byte values, from left
to right. You can make the needed text line using a byte loading
program or the byte grabber, as described in Section 4B.

Putting the needed byte values together manually isn’t that difficult,
because the numeric representation is Binary Coded Decimal (BCD). The
details of the structure were given in Section 1B. The first of the
14 hex digits is the sign nybble. Use 0 for positive numbers and 9
for negative numbers. The next ten nybbles are the mantissa digits
(the number without any decimal point or exponent). The three nybbles
that remain represent the exponent and its sign (again, 0 for a
positive sign, 9 for a negative sign). A negative exponent -mn is
stored as 1000-mn, which equals 9xy, where xy = 100-mn. For example,
for E3 use hex 003 for the sign and exponent nybbles. For E-6, 1000-6
= 994, so use hex 994 hex for these three nybbles. The number totals
14 hexadecimal digits (nybbles) which can be used with a byte loading
program in pairs. Add a Text 7 byte (F7 hex) before the number, and
hex 90 and 75 bytes afterward (to make RCL M).

Let’s work through a complete example. Suppose the number you want is
the speed of light in miles per hour (186,282 * 60 * 60 = 6.70615200
EOS). This is a positive number, so the first nybble is 0. The next
ten nybbles are 6 7 0 6 1 5 2 0 0 0. The exponent sign is also
positive, so the next nybble is 0. Simply keying in the number and
pressing SCI 1 or counting the number of digits between the decimal
point and the first digit gives a result for the exponent of 0 8. So
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the bytes needed (in hex) for 670,615,200.0 are as follows:
06 70 61 52 00 00 08

You can use these values with a byte loading program or convert them
to instructions and use the byte grabber in Section 4B to replace
existing characters in a text line. Note that the easiest way to
incorporate nulls in a text line using the procedure in 4B involves
using a one-byte function such as ENTER as a place holder. After the
other bytes are in place, the one-byte function is deleted, leaving a
null. Then the text prefix can be released to re-absorb the edited
character bytes.

Using a text line followed by RCL M is three times faster than the
numeric entry line 670615200. Slightly more speed can be gained in
this example by using the non-normalized numeric representation

00 0067 06 152011
which is 0.006706152 Ell. This needs only a 5-character text line
rather a 7-character one. The two leading nulls can be omitted, and a
Text 5 (hex F5) byte takes the place of Text 7.

If you are using several numbers, you may want to pair them up and
create two at a time, using a l4-character text line. This saves half
a byte per number. Both numbers are loaded into Alpha at the same
time, then the two numbers are brought into the stack with RCL N and
RCL M instructions. This is nearly five times faster than normal
entry of a negative ten digit number with a decimal point and negative
two-digit exponent.

3C. CLEARING REGISTERS

The normal function CLST clears stack registers X, Y, Z, and T. If
you also want L (LASTX) cleared, use CLST, +.

As long as X contains a legitimate number, you can use STO nn, ST- nn

to clear a single data register. The advantage of this technique is
that none of the stack registers are disturbed. If the contents of
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register T are unimportant, or if X contains alpha data or Non-
Normalized Numbers, there is a faster alternative which is one byte
longer. The sequence ENTER, CLX, STO nn, RDN stores zero in
register nn and restores the stack (except T, which is cleared). Note
that both of these methods can be applied to register 00 through 99
using normally keyable instructions. Synthetic functions can extend
direct addressing capacity up to register 111. STO 111, which
displays as STO J has byte values 145, 111. Refer to the byte table
and Section 4B for more information.

A block of six registers from nn to nn+5 can be cleared very quickly
using ZXREG nn, CLZ . If maintaining the original location of the
summation registers is important, the sequence can be slightly
modified. RCL ¢, ZREG nn, CLY , STO ¢, RDN will preserve the
summation register location. This second series of instructions can
be stopped and restarted with no ill effects. However, if the
register ¢ contents are removed from X between RCL ¢ and STO c,
MEMORY LOST will occur when the program stops.

The contents of Extended Memory can be cleared in several ways. If
you have an HP-41C or CV (without an internally installed Extended
Functions/Memory module), you can turn the calculator off and remove
the Extended Functions module for about a minute. When you plug it
back into a port and then turn the HP-41 on, all of Extended Memory
will be clear. This includes additional Extended Memory modules, as
far as the HP-41 is concerned.

This technique works by erasing the contents of the register at hex
address 040. This register is called the link register (each
additional Extended Memory module has a similar link register at its
lowest address). It contains the pointers to the working file, the
top of the next Extended Memory module (if any), plus the address of
the top of this module, which is always OBF. Any time the HP-41 finds
this register at hex 040 clear, it will presume Extended Memory is
empty.
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If you have the PPC ROM, you can clear this link register very
quickly. The sequence 64, XEQ "RX" will normalize hex address 040,
effectively clearing Extended Memory for subsequent operations.
Recovering from accidentally performing this sequence is possible,
though difficult. Recovery is made more complex due to the fact that
operations such as EMDIR will result in the top register of Extended
Memory (hex address OBF, decimal 191) being filled with FF bytes.
These bytes serve to mark the end of the portion of Xmemory that is in
use. For more details on this subject, refer to Chapter 10, Section C
of "HP-41 Extended Functions Made Easy" by Keith Jarett.

If you have a CCD Module, you can clear register 040 hex (64 decimal)
with the sequence 64, ENTER, CLX, XEQ "POKER".

If you have a ZENROM, you can clear register 040 hex with the sequence
ALPHA, CLA (shift backarrow), shift ALPHA 4 0, ALPHA, CLX
(backarrow), NSTOM. However, it’s much easier to just use the CLXM
function to actually overwrite all of X Memory with nulls. CLXM is
also programmable, though the "XM LOST" message will be suppressed in
a running program. This function is very fast, and there is no way to
recover Extended Memory contents afterward.

The Extended Function PCLPS (programmable clear programs) function can
be used to clear program registers in main memory in two ways. When
executed, PCLPS will clear main memory from the program named in Alpha
all the way to the bottom of Catalog 1. In this way, you can
selectively clear enough room in main memory to read in a program
from mass storage when you run out of free registers. PCLPS is rather
quick, and in addition there is no need to PACK afterward. The
registers which have been cleared will be added to the free registers
available, which are shown as .END. REG nnn as the last entry in
Catalog 1.
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With Alpha clear, the PCLPS function will clear program registers from
the first line of the program you are positioned to, down to the
bottom of Catalog 1. This may not be what you had intended, so be
sure to check the contents of the Alpha register before you execute
PCLPS. Be careful not to use PCLPS while positioned to ROM programs
if you have revision 1B Extended Functions; in this case you will get
MEMORY LOST (unless the Alpha register happens to be empty). If you
have revision 1B Extended Functions, use CAT 1 to ensure you are in
RAM before executing PCLPS. The sequence CAT 1, R/S immediately,
XEQ "PCLPS" will clear all of program memory. Since this clears only
program memory, you may prefer this over the ZENROM’s CLMM
(Clear Main Memory) function.

All of main memory is cleared by the CLMM function. The only
difference between this ZENROM function and executing a Master Clear
is that Extended Memory is left undisturbed by CLMM. All key
assignments, Time module alarms, I/O buffers, data, stack, and program
registers are overwritten with nulls. CLMM resets all status
registers and flags to their default state. The number of free
program registers will be reset to 46 if you have an HP-41C or CV. If
you have a CX, the number of free registers will be 219 (SIZE = 100).

3D. LOOPING

A program loop on the HP-41 usually consists of a label function, some
number of instructions to be repeated, and a GTO which returns
execution back to the original label. The two sections following this
one will discuss labels and GTOs in depth. This section focuses on
the fact that the time it takes to complete the loop once has to be
multiplied by the number of times the loop is executed in order to
figure the total execution time. Therefore, any time saved within the
loop is multiplied by the number of times through the loop. Even
small reductions will add up to significant time savings. Because of
this, it is worthwhile to make an effort to reduce the execution time
of a loop, even if it takes a few more bytes to do so.
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First, reduce execution time by doing whatever tasks you can outside
the loop. Avoid numeric entry lines within the loop. Store such
numbers in stack, status (such as Alpha registers M, N and O), or
numbered data registers before the loop begins. Notice that stack and
status registers have a slight speed advantage over the data
registers. Also, data registers 00 to 15 have a slight edge over
higher numbered data registers in speed. This is related to the fact
that the STO and RCL functions for registers 00 to 15 are one-byte
functions.

Rather than using PSE to display a number, make use of VIEW in a loop.
As long as the loop takes enough time to allow you to look at the
number, VIEW X is superior to PSE because program execution continues.
However, an AVIEW, CLD, or PROMPT instruction subsequent to the
VIEW instruction will naturally change the display. VIEW can
also be used to show a number or six characters of an Alpha text
stored in a register without having to recall the information to Alpha
or X. You’ll probably want to clear the display with CLD following
the loop that uses VIEW or AVIEW.

It is common for a result to be accumulated in a status or data
register while the loop is being repeated. After exiting the loop,
when you need to recall that value, you can simultaneously recall the
value and reset the register to zero using CLX, X<> nn or ENTER,
CLX, X<> nn.

If your program contains a single large loop consisting of a label,
some instructions, and a GTO, you may want to replace this with
something a little faster. The label gets replaced by a RCL b
instruction. The GTO is replaced by STO b. In order for this
technique to work, you have to keep the recalled contents of register
b in the stack and have them in X when the program later encounters
the STO b. If you use too many stack manipulation instructions to get
the register b contents out of the way and then back into X, your time
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savings will be negated. Check the function execution times in
Appendix A of SPME if you have to add a RDN, R#, or other stack
manipulation to make the RCL b, STO b looping technique work.

The purpose of this RCL b/STO b method is to squeeze just a little
more speed from the HP-41. It doesn’t save bytes. Whether this
method is economical for your particular program or a waste of time
depends on how many instructions you have to add to put the recalled
contents of register b in X at the right time.

A far more sophisticated application of a similar idea is used in
Clifford Stern’s high-speed Morse Code progam "MC". Refer to pages
151 to 158 of Keith Jarett’s Synthetic Programming Made Easy.
Appendix B of SPME thoroughly explains how and why "MC" is so fast,
and may spark some ideas that will apply to your programs.

If it is at all possible, write your programs in such a way as to
avoid using functions that are time consuming. Use the function times
listed in Appendix A of SPME or on pg. 11 of SQRG to make comparisons.
In general, logarithmic, statistical, and trigonometric functions
should be avoided within a loop because of their inherent slowness. As
an example, T+ seems like a nice, one-byte way of accumulating X and
Y. If that’s all you need (with the summation register location =
11), why not use ST+ 11, RDN, ST+ 13? Although it’s four bytes
longer, it’s 60% faster.

Another example involves the use of YTX or IOTX in a base conversion
(or similar) program. This approach is attractive because the program
is more straightforward and easier to write. But instead of recalling
the base, recalling the counter and raising Y to the X power each time
through the loop, change the nature of the counter. Instead of
counting 0, 1, 2 and so on, and raising the base to the power of the
counter, start with a counter value of one. Then at the end of each
loop, multiply the counter by the base with ST* nn. The overall
effect is the same, but the method and speed of the two approaches are
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much different.

Examining different alternatives will often result in finding ways to
save time. This might include rewriting the equation involved or
using a different method or equation. Comparing different ways of
achieving the same result will often give you new insights, and is
time well spent. You can save time in this way even with
trigonometric functions, which are notoriously slow.

For example, when you have to multiply complex numbers within a loop,
use the rectangular representation directly instead of using the much
slower R-P and P-R conversions. Specifically:
(a+bi)*(c+di) = (ac-bd)+i(bc+ad), and
For division it may be faster to use:
(a+bi)/(c+di) = (a+bi)*(c-di)/(c2+d?)
= [(ac+bd)+i(bc-ad)]/(c2+d?)

In general, it isn’t easy to get around using trig functions when
they’re needed, but sometimes a single R-P can replace two trig
functions. However, don’t be discouraged if you find a case in which

execution times cannot be improved much.
3E. LABELS

An Alpha (global) label is needed to make your program show up in
Catalog 1. But using more characters than are necessary to make the
label unique is a waste of bytes. Two or three characters in the name
will usually be sufficient. It’s also wasteful to use more than one
Alpha label in a program unless it the program contains separate
sections or subroutines that will be executed by other programs. Most
programs require just one Alpha label, which serves as the starting
point.

The two-byte local labels A through J and a through e give easy USER
mode access from the keyboard to as many as fifteen different sections
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of your program. It’s a good idea to make use of A through E and then
a through e before using F through J, because the second row of keys
is often reassigned, and you may not want to disturb the default X<>Y
and RDN functions of the F and G keys. Remember that any key
assignments have priority over local labels. Press and hold a key to
check its function. Using these two-byte local labels instead of
Alpha labels will save many bytes.

The one-byte labels (LBL 00 to LBL 14) are found in row 0 of the byte
table. They should be used in most of the remaining cases when a
label is needed. When the HP-41 searches for numeric labels (because
the jump distance is not compiled), it begins at the line after the
branching instruction. From there it searches downward (toward higher
line numbers) until the label is found or until the END of the program
is encountered. If the END is reached before the label is found, the
search continues from the first line of the program. Because of the
way this search proceeds, it is possible for your programs to use more
than one label with the same number. You just have to make sure that
the correct label is encountered first. Here is a simplified rule for
repeated use of a label: Reuse labels for forward branches only (where
the GTO or XEQ is at a lower line number than the matching LBL), and
make sure that the branches don’t cross each other.

Because labels 00 through 14 can be easily reused for forward
branching, your programs should seldom need to make use of the two-
byte numeric labels 15 to 99. An exception is the need for special
LBLs in conjunction with GTO IND or XEQ IND instructions, as
discussed in Section 2D. In general, your program should have one
Alpha (global) label, and possibly local labels A to E and a to e
marking off major sections that need to be separately accessible. The
remainder should be one-byte labels 00 to 14, unless you are using
labels 15 to 99 as the object of GTO IND or XEQ IND instructions
(as in Section 2E).
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The only other time when labels 15 to 99 are desirable to use is when
you don’t want to use synthetic programming techniques. If this is
the case, when the distance from a GTO to its matching label is
greater than or equal to 112 bytes, use labels 15 to 99 and a GTO with
the same number. Failure to follow this advice will result in a GTO
whose jump distance is too large to compile, and as a consequence,
execution will be slow. More information on this subject is presented
in the next section on GTOs.

Synthetic two-byte labels with any of the 256 possible postfix (second
byte) values can be made using the byte grabber or Text 0 prefix
assignments. Details of these synthetic instruction-building
techniques can be found in Sections 4B and 4C. The "LB" inputs (for
use with a byte loading program) for a two-byte LBL are 207, nn. Look
at the second row in each square within the byte table to see how each
of these postfixes will display with decimal value nn. Labels 100 and
101 are exceptions; they display as LBL 00 and LBL 01 respectively.

Most of these labels can also be created using a synthetic key
assignment of 207, nn, with nn corresponding to the label number.
However, this seems to be limited to postfixes 15 to 254. This
behavior may vary from machine to machine. Postfixes of 128 or
greater will create labels which display as LBL IND nn. These labels
are normally useless because neither XEQ or GTO can branch to them.
As an example, GTO IND 00 does not branch to LBL IND 00. Instead, it
uses the contents of register 00 to determine the value of the numeric
label to search for.

If you are a ZENROM owner, nonsynthetic labels are entered in the same
manner described in the HP-41 Owners’ Manual. However, you can also
key in numeric and global labels which are wusually considered
synthetic. This is done directly from the keyboard. The ZENROM
allows synthetic suffixes for all instructions. In contrast, the CCD
Module only allows synthetic suffixes to be directly keyed for RCL,
STO, and X<> prefixes. Other two-byte synthetic functions must be
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keyed in by decimal equivalent, using XEQ, ENTER, bytel, byte2.

The entry of two-byte numeric labels using the ZENROM can best be
summed up with the chart below. The decimal byte values for all of
these labels have "LB" inputs 207, nnn. The postfix nnn and the
keystrokes needed to create LBL nnn are listed below. These
keystrokes also apply when creating GTO and XEQ instructions. Because
of this, shift LBL is omitted from the list. Remember you need to
press shift LBL, shift GTO, or XEQ to create one of these
functions.

POSTFIX DECIMAL

DISPLAY POSTFIX KEYSTROKES

00 100 EEX, 0,0

01 101 EEX, 0, 1 or EEX, Z+
T 112 EEX, 1,2 or(.)T

e 127 EEX, 2,7 or(.)e
IND 00 128 EEX, 2, 8

IND 71 199 EEX, 9,9

You can use the features of the ZENROM to make global labels
containing any of the 256 possible byte values without any
restrictions. The USER ALPHA mode can be used for both the lowercase
letters (all but a - e are shown as ® ) and all of the displayable
characters which are not normally available. The USER ALPHA keyboard
is shown on one of the two overlays supplied with the ZENROM, and on
page 57 of the ZENROM manual.

In addition, the ZENROM has a character entry feature called
"SYNTEXT". This allows the entry of any character in a label, global
assignment, text, GTO or XEQ function, no matter which Alpha
mode you are in. Simply press shift, ALPHA and fill in the two
prompts with hexadecimal digits (row, column) from the byte table.
The corresponding byte is entered as if it had just been keyed in.
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3F. BRANCHING USING GTO

Avoid Alpha GTO
Don’t use an Alpha GTO in a program except to branch to a different

program in Catalog 1. An Alpha GTO sends the 41 searching for a
matching label, beginning at the bottom of Catalog 1 and continuing
upwards. The time it takes to find a matching label will be fairly
short when the program is at the bottom of Catalog 1, such as when
first developing the program. But the search time gets longer as
programs are added between the bottom of the catalog and the program
searched for. This search time for a matching Alpha label (roughly
.016 seconds per Catalog 1 LBL or END) can exceed a full second in
some cases. If you need to return to the beginning of your program,
rather than using an Alpha GTO, you should add a numeric label
immediately following LBL "xx" and use a matching numeric GTO.

There are two reasons why you shouldn’t use an Alpha GTO or XEQ to
branch to a ROM (plug-in or module) program. The first reason is
speed. All of Catalog 1 is searched before the HP-41 checks Catalog 2
for the program. In Catalog 2 there are often several modules that
have to be checked before the HP-41 even gets to the module that
contains the function you want. This search process is therefore
virtually guaranteed to be slow.

Another reason to avoid the Alpha GTO or XEQ for ROM functions is its
greater byte count. An XROM "xx" instruction uses just two bytes.
Compare this to the four bytes taken by an Alpha GTO or XEQ for a
function that has a two character name. Using an XROM instruction
will save even more bytes for longer program names.

Synthetic three-byte GTOs

Use the normally keyable two-byte GTO 00 to 14 for branching to one-
byte labels 00 to 14 if the jump distance is less than 112 bytes. See
the following section, 3G, for help in counting bytes to determine the
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jump distance. When the jump distance is greater than or equal to 112
bytes, a three-byte GTO is needed to contain the compiled distance.
Three-byte GTOs that branch to the one-byte labels 00 to 14 aren’t
normally keyable. Nevertheless, there are four synthetic methods
available to create these GTOs.

The first technique involves using a byte loading program to make the
needed instruction. Byte loading programs such as "LB" or "LBX" will
create the required function when you use inputs 208, 0, n, where n
equals the label number.

The second procedure used to create this synthetic GTO requires the
byte grabber key assignment. At the location of the needed GTO
instruction, in PRGM mode, key in RCL IND 88, ENTER, LBL 00, BST to
the step above the RCL IND 88 instruction, and byte grab to make a
three-byte GTO 01. The same procedure will create a three-byte GTO 00
if you backarrow the LBL 00 before byte grabbing. For other values,
look in row 0 of the byte table for the correct third instruction.
Byte grab the RCL byte and backarrow to clean up. If this isn’t clear
to you, refer to Section 4B for more complete instructions on using
the byte grabber.

The third approach to synthesizing a three-byte GTO involves the use
of a Text 0 prefix (240, 208) assignment. The process is too lengthy
to repeat here. Refer to Section 4C for instructions and a full
explanation of Text 0 prefix assignments.

The fourth approach uses a completely different class of key
assignments than the last two methods. Credit goes to Gregor McCurdy
for publishing an excellent article on these prefix 4 assignments in
the Oct./Nov. 1982 (VIN7P9d-10b) PPC Calculator Journal. Assign 4,
213 to a convenient key with a synthetic key assignment program like
"MK" or "MK X" before you continue.
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Several different GTOs can be created with this assignment, depending
on the keys you press to fill in the numeric prompt. Check that the
assigned key shows d<__ when pressed. Backarrow to cancel it. Now
position yourself to the place where you want to put the synthetic GTO
and enter PRGM mode.

As an example, let’s create a three-byte GTO 01. Press the assigned
key followed by SHIFT 0 1 (or SHIFT £+). You should now see GTO 01.
You can confirm that this is a three-byte function using the byte
counting methods described in the next section, or with the help of
more advanced techniques presented in Section 4I.

To synthesize a three-byte GTO T, press the assigned key followed by
SHIFT . T. This method is limited to the five postfixes 112 to 116,
which correspond to T, Z, Y, X, and L (unless, of course, you have a
ZENROM, which permits synthetic suffixes to be entered from the
keyboard for all instructions). All matching labels for these GTO

instructions with row 7 suffixes are synthetic.

The table below lists all of the various possible inputs, and the GTOs
which are produced by this assignment.

PRGM mode input GTO produced

00 to 14 two-byte GTO 00 to 14

15 to 99 three-byte GTO 15 to 99

IND 00 to IND 99 three-byte GTO 00 to 99
IND(.)T,X,Y,XorL three-byte GTO T, Z, Y, X or L

Feel free to experiment with this. If you own a ZENROM, you will find
that other inputs are possible with this function. Also, there are
three other functions, with different prompts, that act the same as
the 4, 213 assignment. They also have a prefix of 4, and their
postfixes are 209, 219 and 222. 4, 208 is the normal GTO function.
Unexpectedly, assignment 4, 203 can be used for GTO GTO ..,

R }
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GTO Alpha (including local labels A to J and a to ¢), GTO IND 00 to
99, GTOIND T, Z, Y, X, or L. More in accord with its location in
the byte table, this assignment can also be used to create a normal
END with inputs 00 to 99.

The run mode behavior of the prefix 4 assignments with postfixes 209,
213, 219, and 222 is somewhat unpredictable. Most of the time, they
will act like a regular GTO and branch to the label that corresponds
to the number you key in. You can GTO labels 00 to 99, synthetic
labels IND 00 to IND 99 as well as IND T, Z, Y, X or L. But once in
awhile, the assignment will behave like a compiled GTO, and
unexpectedly jump some number of bytes in either direction.

Note that the COMPILE function of the ERAMCO MLDL Operating
System ROM will automatically change a two-byte GTO into a synthetic
three-byte GTO when a two-byte instruction is not sufficient to hold
the jump distance to the matching label.

Label-less Programs and Avoiding Decompiling

One of the most difficult tasks to perform is putting together a
working version of a program completely without labels, doing the work
of computing the jump distances of the branching instructions by hand.
This tedious job is made easier by the ZENROM’s RAMED function.
At least the business of changing a GTO or XEQ function to be a
compiled instruction is made easy.

This is one of the more esoteric aspects of synthetic programming.
For the few bytes saved, much effort is expended. One wrong move, and
all of the pre-compiled jump distances are lost. The first thing you
need to learn before you can construct a program without labels is how
to avoid decompiling.

The HP-41 clears the jump distance information from branching

instructions after they are invalidated by an operation such as using
DEL, backarrow, inserting instructions (in PRGM mode), and so on.
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This is controlled by nybble 6 of the END (or .END.) instruction
immediately below your location in program memory. Whenever you do
something to invalidate the jump distances, the HP-41 Operating System
(OS) sets nybble 6 of the END or .END. to hex value F (See Table 4.1,
page 150 in Section 4G). Later, while leaving PRGM mode, packing, or
at turn-on, the OS will zero jump distance information within the
domain of any END or .END. functions if the appropriate bit (third)
of nybble six is set. This erasure is known as decompiling. Section
4G discusses ways to avoid decompiling. Only the use of RAMED is
covered here.

Besides preventing the OS from erasing jumps to nonexistent labels,
you can avoid decompiling to preserve the compiled status of a program
brought into main memory from mass storage or Extended Memory. It
sidesteps slowing the program execution down to recompute the jump
distances.

After reading in the program, enter PRGM mode. Be sure NOT to exit
PRGM mode until finished, or decompiling will take place. Now press
BST twice. You should see the last line of the program in the
display. Now press XEQ, ALPHA, E N D, ALPHA. Then execute RAMED,
press USER, and change the hex OF byte to 0 9 or 0 0. Press ON to
exit RAMED mode and press PRGM to return to run mode. That’s all
there is to it.

The "ReNFL" program below is simply a rewritten version of the program
appearing in 5B. A total of 5 bytes are saved by the removal of the
one-byte labels within the program. You will need to create a packed
END as per the above procedure if the program is to be read in from
mass storage or Extended Memory. Failure to do this will result in
NONEXISTENT until the proper values are stored within the nybbles that
hold the jump distances.
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01 LBL "ReNFL" 20 X=Y? 39 X<> M
02 44 21 GTO 04 40 ALENG
03 POSA 22 RDN 41 XEQ 02
04 X<0? 23 X<>Y 42 X<>Y
05"+, REEEBRE" 24 CLA 43 X<> M
06 X<0? 25 DSE X 44 NSTOM
07 GTO 01 26 XTOA 45 RTN
08 AROT 27 X<>Y 46 7

09 ATOX 28 NRCLM 47 X<>Y
10 RDN 29 STOM 48 -

11 XEQ 02 30 ASHF 49 DSE X
12 X<> N 31 RDN 50 X#0?

13 STO a 32 X<>Y 51 X<0?

14 X<> M 33 ATOX 52 RTN

15 191 34 - 53" "
16 CLA 35 DSE X 54 GTO 05
17 XTOA 36 GTO 03 55 END

18 X<>Y 37 RTN

19 NRCLM 38 RCL a 107 bytes
Line 07 = hex B2, C2. Line 11 = hex E4, 08, 02.

Line 21 = hex BS, 23. Line 36 = hex B4, B4,
Line 41 = hex E2, 01, 02. Line 54 = hex B6, Bl.
Line 53 appends one space.

As before, line 05 appends a comma and seven FF bytes to Alpha (hex
F9, 7F, 2C, FF, FF, FF, FF, FF, FF, FF), and line 53 appends a single
space (hex F2, 7F, 20). Programs read from barcode by the wand do not
have compiled jump distances, so you will have to do the work of
changing the GTO and XEQ instructions using RAMED. If you are keying
it in by hand, you might as well use GTO . . to attach the END to the
program. The program must be packed (don’t use the previous
procedure, as the nulls before lines 02 and 46 won’t be removed,
throwing off the jump distances), unless you use RAMED to enter lines
02 and 46.
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Like the program in 5B, "ReNFL" can be used in two ways. You can
rename a file whose header register is within the Extended Memory of
the Extended Functions module / HP-41 CX. With "ABC,DEF" in Alpha,
"ReNFL" will change file "ABC" to "DEF". If Alpha contains just a
single filename (no comma), the header register with a matching name
will be replaced with seven hex FF bytes. This is interpreted by the
OS as the end of XM, effectively removing that file and all those that
follow.

There are two basic methods that can be used to compute the values for
the jump distances within the branching instructions. The first would
be to use the byte counting techniques described in 3G to determine
the size of the jump (RCL b method using "CB"). A look at the program
listing tells the direction of the jump (compare with the version that
has the matching labels in 5B). Then a little conversion from decimal
to binary to hex with SQRG page 39 (Function Structure) as a guide
should give you the right values to key in with RAMED.

The second, far easier way is to look at a compiled version of the
program that has the labels in place, and figure out how the relative
jump will be changed by the deletion of the labels. In the case of
the jump at line 41, there is no change! The jump is still 2 bytes,
direction = 0, 1 register from the first byte of the XEQ instruction
to the instruction where execution should resume (7 in this case).

The structure of the GTO at line 07 needs only a small change to make
it jump upward one byte less. The original compiled value of B2, D2
needs to have 1 subtracted from the third nybble (D), giving hex B2,
C2. The new line 11 jumps two bytes less because of the deletion of
labels 03 and 04. Hex E8, 08, 02 becomes E4, 08, 02. The GTO 04
instruction at line 21 does not change, since there are no labels
deleted to change the jump distance. However, the GTO 03 instruction
at line 36 needs to account for the deleted label because of the
direction of the jump. Hex B4, C4 becomes B4, B4. The GTO at line 54
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also jumps one byte less, changing from B6, C1 with label 05 in place,
to B6, Bl without the label.

There are other interesting possibilities for branching functions with
pre-compiled jump distances. Since the HP-41 OS does not check for a
matching label when the jump distance (or direction) bits are nonzero,
you can go wherever you like. And because the program subroutine
return stack stores absolute addresses, you could even have an XEQ
instruction jump into the middle of another program and return
properly! There is no problem jumping over ENDs with pre-compiled
jumps. This behavior is similar to that in 4I. Short form (two-byte)
GTO instructions are limited to jumping 112 bytes when pre-compiled.
The long-form GTO and XEQ instructions have a 12-bit field for the
relative jump distance, making 512 register jumps possible. Direct
jumps into Extended Memory are possible, though it requires a fixed
absolute address for the program that makes the jump. Because of
these severe restrictions, no example will be given here to
demonstrate this. We leave it to those interested to explore.

GTO .000

An interesting synthetic assignment can be used to move to line 000 of
a program, just like executing RTN in run mode. This saves
keystrokes if you are in PRGM mode. The technique was discovered by
Roger Hill.

In order to use one of these assignments, you must have a non-
prompting, non-programmable function present. The Card Readers’ VER
function and the MCED function of the ZENROM are good examples.
Letting Aa bc represent the hexadecimal bytes of the selected non-
programmable, non-prompting function, the synthetic assignment Ca bc
will execute a non-programmable RTN.

For example, MCED is XROM 05,06, which is hex Al 46. If you have a

ZENROM present and you assign Cl1 46 to a key, the assignment will
preview as MCED. Similarly, VER is XROM 30,05, or hex A7 85. If a
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Card Reader is present and you assign C7 85 to a key, the assignment
will preview as VER. Both assignments clear all pending returns and
move you to line 000 of the current program, just as if you had
executed RTN or END in run mode. To get to line 01 in PRGM mode,
press the assigned key followed by SST.

3G. BYTE COUNTING TECHNIQUES

There are several different methods which can be used to count program
bytes. The most obvious method is to count the bytes by hand, looking
up the byte count for each instruction and tallying the total. This
is fine for short programs. A copy of Jeremy Smith’s HP-41 Synthetic
Quick Reference Guide (SQRG page 39) or a copy of Keith Jarett’s "HP-
41 Synthetic Programming Made Easy" (pages 57 to 63) will help with
this. When you need the byte count of long instruction sequences or
whole programs, other methods are faster and easier. Also, synthetic
GTO instructions can be three bytes rather than the normal count of
two, and you cannot tell the difference by just looking at the display
or a printed listing.

Byvte Counting with the Printer or with the HP-CX

If you have either a printer or an HP-41CX, you can find out very
easily how many bytes an entire program uses in main memory. First,
be sure to PACK to eliminate any leftover nulls, and set flag 21 to
enable the printer. Select TRACE mode on the printer and list CATalog
1. If you have an HP-41CX, just list CATalog 1 (you don’t need a
printer). All of the labels and ENDs in main memory will be listed,
with a byte count accompanying each END. If you want to count the
bytes within a program, you can insert END instructions to partition
that section of the program off from the rest. In PRGM mode, XEQ
"END" where needed, PACK, and CATalog 1 as before. The byte count
returned includes the bytes from the line after the previous END in
Catalog 1 (if any; otherwise from the first line of program memory)
down to and including the END that accompanies the listed number of
bytes. When you are done counting bytes, backarrow any extra END
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lines you inserted and PACK again. This method is a little clumsy,
and it decompiles your program, but it gets the job done.

Byte Counting with the CCD Module
The CCD Module’s functions PLNG (Program Length) and PPLNG
(Programmable PLNG) will give you an immediate byte count of the

program area that contains a particular Alpha label that you specify.
If you don’t specify a global label name, you’ll get the length in
bytes of the current program.

Byte Counting With Extended Memory Files
If you have Extended Functions or an HP-41CX, you can get the byte

count of a program after a copy of it is saved in Extended Memory. If
a copy already exists, key the program file name into Alpha and XEQ
"RCLPTA". If there isn’t a copy in XMemory, key the name into Alpha
and execute the sequence SAVEP, RCLPT. A short program which
automates this procedure appears in "HP-41 Extended Functions Made
Easy" (XFME). Refer to the index on page 264 of XFME under "CBX".

One very useful feature of SAVEP is that you are allowed to save
programs in Extended Memory under names other than the ones used
within the program. You simply key into Alpha the same letters that
appear in a Global label within the program, add a comma, and then key
in the name you want it saved under. When you execute SAVEP, only a
program with an identical file name will be overwritten. This is
useful when you make changes to a program after saving it with SAVEP,
and you want to compare byte counts.

Let’s use a program named "EM" as an example. Assuming a label "EM"
exists, press SHIFT CAT 1 (to make sure you are not in a ROM module;
this avoids a potential MEMORY LOST with the buggy Revision 1B
Extended Functions), then ALPHA E M ALPHA and XEQ "SAVEP". This
saves a copy of the unmodified program in case you don’t like the
results of your changes. Make the modifications and PACK after
testing the program. Now key in "EM,EMI" and XEQ "SAVEP". Do not put
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a space after the comma! Now retrieve the byte count of "EMI" (the
"working file") with RCLPT. Compare this to the count for the
original "EM" by using RCLPTA. RCLPTA will ignore the comma and
following characters, and use the letters before the comma as the file
name.

This method is efficient because you avoid ever needing to go back and
undo changes you made. This cuts down the number of times you have to
PACK, and saves time. It also helps in case you forgot something
along the way or deleted a line too many in the process. It gives you
something to fall back on. If you don’t like the changes, get rid of
the modified version in main memory with CLP or PCLPS and read in the
original from X Memory. If you like the changes, you don’t need to do
anything to the program in main memory.

Whether you like the changes or not, you still have an X Memory file
that may not be needed. If you don’t want this file, put the name in
Alpha and execute PURFL. If a revision 1B Extended Functions module
is in your machine, follow this with EMDIR as demonstrated in the "PK"
program in Section 5B. Otherwise you may lose your entire Extended
Memory directory.

Byte Counting Using RCL b in RAM or ROM
The RCL b function recalls the current program pointer to X. The two

rightmost bytes contain the current address within program memory.
The other five bytes may contain pending returns if RCL b is used in a
running or prematurely halted program, but this does not concern us
here. We need to decode the pointer information in the rightmost 2
bytes. Using this capability you can find the distance between two
pointers in bytes by subtracting their decimal equivalents.

In order for this technique to work, you need to be able to execute a
RCL b key assignment, or you need a ZENROM or CCD module. These last
two are custom modules which allow you to execute synthetic functions
(in particular, RCL b) from the keyboard in the same way normal
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instructions are entered. These modules also perform other special

functions.

To make the synthetic RCL b key assignment (not necessary if you have
a CCD Module or ZENROM), you need a synthetic key assignment
program like the PPC ROM’s "MK", Tapani Tarvainen’s "MKX" from
SPME, "ASG" from XFME. Use inputs of 144, 124 and the keycode
of the key to which you want RCL b assigned. You will need to execute
RCL b from the keyboard to try the examples in this section.

Next you need to know how to convert the recalled program pointer to a
decimal value. If you have the PPC ROM, you can use the "PD" (Pointer
to Decimal) routine to convert a RAM pointer to a decimal address.
(This pointer decoding program does not work properly with ROM
addresses because the ROM pointer format is different.)

If you don’t have the PPC ROM, you can use the following program
instead. You’ll need an HP-41CX or the Extended Functions module. If
you don’t have either of these, you can use the set of programs on
page 86 of SPME to decode RAM and ROM pointers and count bytes.

01 LBL "CB" 15 CHS 29 MOD
02 X<>Y 16 ALENG 30 LASTX
03 XEQ 10 17 E 31 X12

04 X<>Y 18 - 32 %

05 XEQ 10 19 X+#£0? 33 +

06 - 20 ATOX 347

07 RTN 21 ABS 35 *

08 LBL "PD" 22 ATOX 36 +

09 LBL 10 23 R? 37 INT

10 "*" 24 STOM 38 RCL M
11 X<>M 25 RDN 39 X<>Y
12 STO N 26 LASTX 40 CLA

13 RDN 27 16 41 END
14 ENTER® 28ST/ T
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Line 02 of "CB" swaps the two pointers to decode the one in Y first.
Line 03 executes label 10 which is "PD". This converts the pointer to
a decimal number. Line 04 swaps this decimal pointer number with Y,
putting the pointer that hasn’t been decoded back into X. Line 05
converts it to decimal. Line 06 subtracts the two decimal values,
yielding a byte count.

Label "PD" and label 10 are one and the same, but Alpha XEQ
instructions use more bytes and are slower than numeric executes.
Lines 10 through 12 and 15 have the effect of putting the contents of
X in Alpha register M and removing all but the two rightmost bytes.
Lines 13 and 14 get rid of the pointer that was in X, replacing it
with a copy of Y. Line 15 follows the ENTER? instruction to disable
the stack lift, otherwise a RCL X function would have to be used here.

Line 16 returns the length of Alpha to X, which will be zero or one
after lines 17 and 18 decrease it by one. If there is only one
character in Alpha, line 19 will skip the first Alpha TO X
instruction. Line 21 functions only to copy X into L. Line 22
decodes the rightmost character in Alpha, leaving Alpha empty and the
decimal character code in X.

Lines 23 and 24 push the other pointer into X and save it in Alpha
register M, so it isn’t lost. Lines 25 and 26 replace it with the
decimal character code of the left-had pointer byte. After line 27,
this number is also in T. Line 28 divides this by 16, extracting the
left nybble. Line 29 separates the right nybble from the decimal
value, discarding the rest. Lines 30 and 31 recover the number 16
from L and square it, giving 256. 256 is multiplied by the right-hand
nybble of the left byte and added to the right byte value by lines 32
and 33. The result is multiplied by 7 by lines 34 and 35. Line 36
adds this to the value of the leftmost nybble which was isolated by
line 28. Line 37 removes any fractional artifact of that division.
Lines 38 to 40 recall the other pointer from Alpha register M, place
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it in Y, and clear Alpha.

The "CB" (count bytes) and "PD" (pointer to decimal) routines listed
above total 67 bytes. If you don’t need the byte counting part of the
program, you can delete lines 01 to 07 and line 09. The byte count
for "PD" alone is 51 bytes.

When you use either the PPC ROM version of "PD" or the version above,
you may want to press ENTER after you RCL b. Do this when you’re
decoding one address. Both programs preserve the contents of Y, so
after you’re done decoding this address, you can use the contents of Y
to return to the address you decoded. If you used the PPC ROM version
of "PD", press CATalog 1 and stop it anywhere. This returns you to
RAM. Then for either version, press X<>Y, STO b. You avoid going all
the way through Catalog 1 to find your program, or using an Alpha GTO.
This saves time.

Both the PPC ROM’s "CB" routine and the "CB" program here execute
their respective versions of "PD" twice, and subtract the decoded
decimal addresses to give the byte count between these two addresses.
For a correct count, position yourself in program memory to the first
line you want counted, and RCL b. Then move to the line after the
last line you want to be counted and RCL b again. Now XEQ "CB". The
result is the number of bytes from the line at address Y up to and
including the line before address X.

If you can’t position yourself to the line after the last one you want
to be counted, manually add the number of bytes in that line to the
number returned by "CB" after using the last line’s address for the
second entry. This will ordinarily be necessary only when the last
instruction is the .END. or an END. If the last instruction is an
END, just add three bytes to the total. If you use the address of the
.END. for the second entry, the byte count for the program will be
correct. However, you still need to add three bytes for a correct
total, because a three-byte END will have to be added to this program
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before more programs can be added to main memory.

As an example of using "CB", position yourself in main memory by
executing CATalog 1 or an Alpha GTO to a program whose first line is
an Alpha label. Press RCL b. Now use CATalog 1, stopping at the
Alpha label following the END of the first program. RCL b again. Now
XEQ ALPHA C B ALPHA. The byte count will be returned for the first
program. This value will be correct, including the END, as long as
the second Alpha label was also at line 01. It may be easier for you
to start at the first line of the program whose bytes you want to
count, press RCL b, BST (to the END), RCL b, XEQ "CB", and then add
three to the total returned.

When you count bytes within a program, the easiest method is to RCL b
in run mode at the first line you want to count, go to the last line
you want to count, SST (watch that this doesn’t cause a jump beyond
the next line) and RCL b again. Then execute "CB" to count the bytes.
Remember that the byte count returned includes all of the bytes
starting from and including the first address, extending through the
line before the second address.

Both versions of "PD" are made to decode RAM addresses. Trying to use
"PD" to decode a ROM address will yield an incorrect number. The
reason for this is that RAM and ROM pointers have different formats.
In RAM the first of the four nybbles in the program pointer indicates
the byte number within the register specified by the remaining three
nybbles. However, in return addresses and ROM addresses, this first
nybble indicates the port or internal ROM number. For more
information on this, refer to pages 22-23 of this book, or page 115 of
SPME or page 38 of SQRG. The details of this arrangement aren’t
important here. What is important is that you know that even though
ROM addresses are not correctly decoded by "PD", you can still use the
"PD" output to compute the correct result.

Because ROM programs execute opposite the direction of RAM programs,
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from lower to higher addresses, the sign of the difference in bytes
will be incorrect. Also, "PD" interprets the difference in ROM bytes
as a difference in RAM registers of 7 bytes each. So when you use
RCL b and "CB" to count bytes in ROM, divide the result by -7.

Let’s use an example of counting bytes that does not require the PPC
ROM, but uses a ROM you probably have available. Turn your HP-41 off
and plug the Optical Wand into one of the ports. Press ON and GTO
"WNDTST". RCL b, GTO .999 and RCL b again. XEQ "CB". Now press 7,
CHS, / to divide by negative seven. The resulting byte count of 55
includes lines 01 to 29 of "WNDTST", and does not include the END.
You can confirm this is correct by using the COPY function to make a
duplicate of this program, GTO .., and follow the same procedure as
before. This can be applied to any ROM containing user-code programs.
Just don’t cross over END instructions in the ROM, and the byte counts
will be correct.

Counting bytes with RCL b has an advantage over other methods in that
any portion of a program can be counted, not just the whole program.
And no extra copies of these programs or instruction sequences have to
be made. Unless you have a CCD Module with its built-in PLENG and
PC>X functions, I'm sure you’ll find it worthwhile to use a little
RAM space for a copy of "CB" and "PD".

Figuring Tracks and Records

If you have any sort of mass storage device, counting bytes can be
very valuable. The number of bytes a program takes up on the storage
medium can have several effects. The controlling factor is the way
the program bytes are grouped on the recording medium.

If you own the Card Reader, you need to keep in mind that 112 bytes
fit onto one track (one side) of a magnetic card. Up to 224 program
bytes fit on a single card. If you mainly use the card reader to
store your programs, you may want to try to tailor your programs with
this fact in mind. As an example, if you have a program whose length
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is 230 bytes, it’s easy to see that trimming off six bytes would
enable you to fit the program onto a single card, completely filling
both tracks. This eliminates the need for a second card. It also
gets rid of a half-used card, which is a nuisance.

Another approach would be to trim off just three bytes from the
program. Then when your record the card or read it back in, simply
press backarrow when you’re prompted for the third track. This leaves
off the three-byte END, and has no important effect besides avoiding
the need for another card. You should mark the card or cards to
remind you of this for when you later read them in, so you don’t go
looking for the "missing" card. A backarrow symbol next to "#3" can
serve as a reminder on the card.

Of course, if you make any changes to the program that add bytes, you
will once again need another card. But for programs that don’t often
change, the time it takes to shorten a program enough to fit on one
less card is well spent when the byte count is just over a multiple of
224,

If you save programs on the Digital Cassette Drive, you should be
aware that all of the recorded information on the tape is grouped into
chunks, called records, of 256 bytes. When you execute NEWM, what is
actually happening is the tape is being marked off electronically into
these records. The tape is unuseable by the Drive without the record
markings.

You should know that one mini data cassette holds 131,072 (128K)
bytes. This is composed of 512 records, each containing 256 bytes.
The first two records are used for housekeeping, leaving 510 records
for the directory and files. One record in the directory will hold up
to 8 filenames. For this reason, the number used to fill in the NEWM
prompt should be a multiple of eight. Since the microprocessor within
the Cassette Drive keeps track of one entire record, access to another
file within the same block of eight files will usually be swift after
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an initial operation (such as DIR or READP), because the directory
registers at the beginning of the tape will not have to be read for
the starting address of the file.

The last byte of the last record of a program on cassette tape is used
for a checksum. Therefore, the longest program that can be stored in
a single record is 255 bytes long. The next increments are 511, 767,
and 1023 bytes. This fact may seem trivial when you first record the
program, but it may make a difference later. The other thing you
should know is that that Cassette Drive will not re-use vacated
records unless the vacated records were once a part of the original
program file or it is the last file on the cassette tape. Each file
must begin with a new record.

Let’s use an example to illustrate a point. Suppose you have a fairly
large program that you use often. You usually read it in, use it for
a little while, and clear it from memory. You recorded it at the
beginning of a cassette to make access quick. You use it for some
time, and it seems to work well. In the meantime, you add more
programs and write-all sets after the program on the tape. One day
you find an error that went unnoticed. The fix for the problem pushes
the byte count up from 750 to 771 bytes, and you record the new
version on the same tape. It seems to take a long time for the WRTP
to finish. Now every time you need the program it takes a lot longer
to read it in.

You can avoid this kind of problem by "padding" a program with a small
section at the end of the program that does nothing before you first
record the program. A series of nulls will serve this purpose as long
as you are careful not to remove them by PACKing. Add enough nulls
(or NOPs) between the last line and the END to tip a borderline byte
count over the next multiple of 256. You can figure out the bare
minimum number of bytes you need to add by taking the present byte
count and press 256, MOD, LASTX, X<>Y, -. This way, if you later make
some changes to the program which require more bytes, the position of
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the program on the tape can stay as it is.

An easy way to add nulls to a program is to position yourself to the
END while in PRGM mode and key in any function. Backarrow the
function and there are seven nulls, assuming the program was initially
packed. You can SST to the END again, key in a function, backarrow
it, and another seven nulls will be added. Just be careful not to
backarrow the END. To find out how many registers you need to open
(which is the number of times you need to repeat the above procedure)
divide the number of bytes that you computed above by seven, and round
up to the next higher number.

If you have the ZENROM, use RAMED to change the third byte of the
END to hex 09 (from OF) while still in PRGM mode. SST to the END
(or .END.) of the program, and (still in PRGM mode) XEQ "RAMED".
Press PRGM until you see 00 Cx xx in the display, then press PRGM
twice more. The third byte of the END (or .END. is now in the center
of the display. Replace it by keying in X9 where X is the same nybble
that currently appears at the left side of the center portion of the
display. This change keeps the HP-41 from erasing the compiled jump
distance information as it exits PRGM mode. Otherwise, you will need
to recompile all branching functions before you WRTP by running the
program or SSTing each local GTO or XEQ instruction. See Section 4G
(pages 160 to 161) for more information on avoiding decompiling.
Press ON and PRGM to return to run mode.

GTO Instructions
Section 3F mentioned that a two-byte GTO can store a jump distance

from -111 to +111 bytes. When a larger jump distance is needed, you
should either create a synthetic three-byte GTO 00 to 14, or use a
higher numbered numeric label with a non-synthetic three-byte GTO
instruction. To count bytes for GTO jumps, RCL b at the GTO first,
SST, RCL b at the label, and XEQ "CB". This procedure is convenient
and easy for you to execute. For a successful two-byte GTO, the
acceptable "CB" count is from -109 to +113 bytes, inclusive.
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There are more direct methods to test if the two-byte GTO will work
well, or if a three-byte GTO is needed. They don’t really involve
byte counting at all, but they deserve to be mentioned here. Section
41 covers a synthetic assignment called the Byte Jumper which allows
you to copy program bytes into Alpha without altering program memory.
After you PACK and SST the GTO to compile the jump distance (if it can
be compiled), Byte Jump over the GTO, check the bytes in Alpha. If
the second byte of the GTO appears as a null, indicating no stored
jump distance information, then the jump distance was not compiled.
Note that you should look at Alpha to do this, as the null will
disappear when you use ATOX.

If you have the ZENROM, you can directly look at the second byte of
the GTO using the RAMED function in PRGM mode. If the two hex digits
of the second byte are 00 after packing and trying to compile as
described above, the jump is too long to compile.

3H. MISCELLANEOUS TIPS

This section contains some tips for your programs which do not fit
neatly into the previous categories of Chapter 3. An example would be
to figure out the best way to double X. Problems like this are best
approached by listing all of the different ways you can think of doing
the job. Tally the byte counts and execution times on paper using
Appendix A or SQRG page 11. Then decide which method has the most
desirable characteristics for that particular program.

For an example, let’s look at a simple problem, doubling the number in
X. Some of the possible ways to double X are:

2 63 ms ENTER? 11 ms
* 37 ms + 30 ms ST+ X 35 ms
2 bytes, 100 ms 2 bytes, 43 ms 2 bytes, 35 ms
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Since they all use two bytes, the byte count won’t be a factor in your
decision. Execution time (speed) is the other important quantity to
weigh. The first, and most obvious way to double X (2, *), is not
very fast. The sequence ENTER1Y, + is more than twice as swift.
However, ST+ X beats them all. At 35 milliseconds (ms), it’s nearly
three times faster than the first way of doubling X.

Though this is a simple example, there is another characteristic which
has been overlooked: stack usage. Each of the three approaches has a
different effect on the stack. The first example will leave 2 in
LASTX (L). If the use of 2, * allows you to replace a later number
entry line containing 2 with a LASTX instruction, you may want to use
this. Speed, including any possible beneficial effects "downstream",
should be taken into account for each case.

The second sequence, ENTERY, +, leaves the original value of X in L.
If this is of any value, it will clearly outweigh the 8 ms speed
advantage of ST+ X.

ST+ X is unique among these three in that it is the only one that has
no effect on L. Since it’s the fastest, you’ll most likely choose
this one anyway. But the fact that L is left unchanged may be helpful
in your application. Always consider stack usage.

As was pointed out in Section 3B, numeric entry lines are rather slow.
Avoiding them will almost always save time. That is the primary
reason the first approach of the three in the previous example was so
slow compared to the others.

Another example of this is to use ENTER?, SIGN, % to divide by 100.
This is more than two times faster than either 100, * or E2, *. If X
may contain negative numbers, change this series of instructions to
ENTER?, CLX, SIGN, %. Otherwise, all results will have a positive
sign, as though ABS were performed. The percent function will leave
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the original value of X in Y, X/100 in X, and unity (1) in L when used
this way.

This method of using the % function can be extended to include several
other cases. When dividing by a number which is evenly divisible by
100, you may want to replace the sequence n, / with the quantity
(n/100), followed by %. As an example, replace 50, / with 2, %. This
doesn’t apply to very many cases, but it can be another possible way
of shortening thec number of digits needed in a numeric entry line.

A similar situation arises when you need to raise the number in X to
an integer power. The HP-41 has a dedicated function to square X
(X12), which avoids the need to use 2, Y1X. This will save bytes as
well as time. You can also use this function to raise to the third,
fourth, fifth, sixth, eighth, or other integer powers, alone or
combined with multiplication. Some examples are listed below, which
you will find are all time savers. None save bytes, though.

Powcr Instruction sequence L contents
3 X12, LASTX, * X
3 ENTER?, X12, * X142
4 X172, X12 X172
5 ENTER?, X12, X412 X12
6 X12, ENTERY, X142, * X14
8 X172, X12, X12 X14

When writing programs, there is often a need for powers of 2.
Remember that you can often save time, if not also bytes, by
recovering a number from L. You can also turn one power of 2 into
another.  The techniques previously listed apply, and, in addition,
ST+ X can be used (only for 2) to increase any power of 2 by one
power. I recently rewrote a program to make good use of the methods
described here. A portion is listed below:
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Before After

8 8
AROT AROT
RDN ST+ X
256 X412
MOD MOD
16 LASTX
/ SQRT
XTOA /
XTOA

Notice that 8 becomes 256 by first being doubled (ST+ X) to equal 16.
Sixteen is then squared. LASTX recovers 256 after MOD, and SQRT turns
it back into 16. In this way, a byte is saved (in spite of the fact
that the program is one line longer), and two numeric entry lines are
eliminated. This may give you some ideas which apply to your
programs.

STO L should rarely be used in your programs. This wastes a byte. To
store the contents of X in L, substitute the SIGN function. (This
will, of course, alter X.) ABS can also be used if X does not contain
NNNs or Alpha data. Otherwise, it may give OUT OF RANGE or
ALPHA DATA errors.

The HP-41 inherited many characteristics from previous HP calculators,
including "stack lift disable". One of the unfortunate effects of
this feature can be that the stack contents are other than what your
program expects. This is because the running program has no way to
keep track of the stack lift status in a program which is halted by
the user (or by alarms) and restarted. As an example, the sequence
CLX, RCL 01 in a program should put the contents of register 01 in X
without disturbing Y. But if the program is stopped and restarted
between the CLX and RCL 01 functions, Y will have zero in it! The
stack lift is re-enabled when you use R/S (but not SST). For this
reason, it is a good idea to use RDN instead of CLX before a RCL
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instruction if your intent is not to disturb Y. This HP-41 "bug" and
its solution were discovered by Steve Wandzura.
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CHAPTER FOUR - ADVANCED SYNTHETIC PROGRAMMING

4A. USING THE STATUS REGISTERS IN A PROGRAM

Many of the status registers can be used within a program in the same
manner you would a normal data register. There are a number of
reasons to use status registers for temporary storage in a program: to
avoid destroying needed data in the storage registers, to preserve
stack contents, to be able to use SIZE = 000, for a slight speed
advantage, or to avoid the normalization of non-normalized numbers
(NNNs).

You need not be a master of synthetic progamming to make good use of
the status registers. You just need to be able to create synthetic
two-byte instructions, and follow some simple guidelines. The two
sections following this one will help you to create the synthetic
functions needed to access these internal registers. And this section
will acquaint you with wusing the status registers for scratch
(temporary storage) and similar purposes.

The 16 status registers reside at the very bottom of the HP-41 memory,
at decimal addresses 0 through 15. The register names are T, Z, Y, X,
L, M, N, O, P, Q ', a, b, ¢, d and e, respectively. The first five
(T through L) are the stack registers. They are discussed in your
Owner’s Manual, and will not be covered here.

Stack register operations are keyable on any HP-41. If you own the
CCD Module or ZENROM, functions using the eleven status registers in
addition to T, Z, Y, X and L can also be keyed in directly. This
"prompt-expansion" feature works on all HP-41s except very early HP-
41Cs with serial numbers prior to 2035xxxxxx (unless internal ROM 0
was replaced during servicing with revision G or later). But if you
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make frequent use of status registers operations, having a ZENROM or
CCD Module will speed up keying in a program tremendously. Frequently
used key assignments for the Byte Grabber, RCL M, STO b, etc. can be
eliminated forever.

With the ZENROM, STO, RCL, X<>, ISG, VIEW and other functions
which access any of the sixteen internal status registers can be keyed
in the same way you key in STO Z: press STO, . , Z. The one
exception, append (}-), is keyed in as R. You can also use decimal
postfixes: press RCL, EEX, 24 (124) for RCL b. Indirect status
register operations are keyed in by pressing shift after the function;
for VIEW IND M, press shift, VIEW, shift, ., M.

With the CCD Module, only the STO, RCL, and X<> functions allow
synthetic suffixes. The append suffix is keyed as . shift XEQ.
Decimal input for synthetic suffixes is not supported.

ALPHA REGISTER

The Alpha register is composed of status registers M, N, O, and P.
The first three can be used virtually without restriction for scratch
purposes. If you are going to be using these registers in a program,
it is usually a good idea to use CLA first. This is especially true
if your program uses ST+ or ST- to operate on these registers.
Register P can be used if your program does not have digit entry lines
(including the lone decimal point or E) or cause a number to be
displayed (PSE or STOP without Alpha ON, VIEWing numbers, etc.).
These conditions, if they occur, will alter the first two bytes of P.

Of course, if you use any of these four registers for holding data,
you give up the ability to use the Alpha display for messages,
PROMPTSs, and similar uses until the Alpha register is no longer needed
by the program for scratch.
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REGISTER Q

Status register Q is frequently used by the HP-41 system. Both the
HP-41 itself and plug-in devices use Q for temporary storage of Alpha
arguments. For this reason, Q is of very limited usefulness as a
scratch register in a program.

The HP-41 uses Q for Alpha arguments with Alpha labels, Alpha GTQO’s,
Alpha XEQ’s, Alpha W’s (byte 31), and INDirect GTOs and XEQs when
the register addressed contains Alpha data. Q is also used by AVIEW
and PROMPT, or just being in ALPHA mode (AON).

A numeric entry line alters Q, as the number is constructed in Q
before it is brought into the stack (X). Interestingly, the function
PI does not alter Q. Several trigonometric functions make use of Q:
ACOS, ASIN, COS, P-R, and SIN. In addition, SDEV and Y1X also
use Q. The TAN and ATAN functions do not use Q.

The Time Module (or HP-41CX) functions ALMCAT, CORRECT,
SETDATE, SETIME, T+X, and XYZALM make use of Q. And
Extended Functions (or HP-41CX functions) ANUM, CRFLAS, CRFLD,
GETAS, GETP, GETSUB, PASN, PCLPS, PSIZE, PURFL,
SAVEAS, and SAVEP all wipe out the contents of Q.

The HP-82143 printer also makes frequent use of Q even if no printer
functions are used. For this reason, Q shouldn’t be used as a scratch
pad register in a program if it is likely that this printer will be
connected and active.

REGISTERS - AND e
Registers - and e contain bit maps of the assignments for unshifted
and shifted keys. If these maps are erased, the HP-41 will not know

to search for your key assignments, and the normal (non-USER mode)
functions will be executed instead. If the bit corresponding to a

-121-



certain key is set while no real assignment exists, the key will
usually preview XROM 04, 02 and function as ABS.

If the data in these registers is accidentally altered, there is an
easier way to restore it than reconstruction of the proper byte values
by hand. Simply GTO .. and (if necessary) read in a program from any
source. Programs recorded in Extended Memory, on magnetic cards, or
on a cassette will all restore + and e to their proper values. This
simple technique was discovered by Clifford Stern.

If you use one or both of these registers in your program, you should
devise a scheme to restore their original contents within the program.
If there were no unshifted (register ' , or no shifted (register e)
key assignments, that register could be used by your program as long
as you clear it after you’re done. Another way to restore ' and e is
to use (Extended Functions) GETSUB followed by PCLPS, with a program
named in Alpha that specifies a program file in Extended Memory. The
only side effects of this are an END added at the bottom of CATalog 1,
and the clearing of any assignments made to keys that have Global
label assignments in the program. These side effects can both be
avoided if you use a special synthetic zero-byte program file invented
by Clifford Stern. See pages 194-195 of "HP-41 Extended Functions
Made Easy" and the "IN" program on page 198.

REGISTER ¢

Status register ¢ contains the absolute address of the .END., the
location of Rpo and the summation registers. It also contains the
"cold start constant". If this number does not equal 169 hexadecimal
when the HP-41 checks it (such as when returning from a running
program), MEMORY LOST will occur immediately. If the address of
the .END. is altered, you will lose access to CATalog 1, and most
likely eventually wind up with MEMORY LOST.
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Don’t get the idea that you can’t alter register ¢ and get away with
it.  On the contrary, you can even clear this register in a running
program as long as you restore it before the program halts. The
processor makes certain routine checks, including testing the values
in register ¢, whenever returning from a running program, turning on,
and so on. Many synthetic programs alter register ¢ temporarily and
later restore it. Most are interruptible while others aren’t. The
PPC ROM routine "OM" changes the curtain address to hex 010 (16
decimal). This makes it possible for key assignment programs to
address the bottom key assignment register (hex 0CO, decimal 192) as

data register 176. So altering register ¢ is both wuseful and
dangerous. Never experiment with it haphazardly: know what you’re
doing.

REGISTER b

It isn’t practical to wuse register b for scratch because the two
rightmost bytes contain the program pointer. If you alter them,
you’ll change your location in program memory. However, in Section
4H, we make use of this fact to execute bytes in the Alpha register as
though they were program steps. Register b also contains the first
two and a half addresses in the subroutine return stack.

REGISTER a

The a register normally contains pending returns 3 through 6, but it
can be used for scratch under the right conditions. First, the
program using register a must not be called as a subroutine by another
program if the subroutine stack exceeds two pending returns. If this
were to happen, the HP-41 could return to an address almost anywhere
in RAM. The exponent (rightmost byte) in register a would be
interpreted as the left half of the third pending return.

Second, the program may branch using GTO, but XEQ or RTN must
not be used. Otherwise the contents of register a will be shifted two
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bytes. Lastly, register a should not be used as a scratch register in
a program using the Extended Funtion (or Data Logger) PSIZE.
PSIZE will alter the data in register a as though it contained
legitimate return addresses in need of updating because of the shift
in location of ROO (the curtain) and all of CATalog 1.

REGISTER d

Register d contains information about the status of the flags that is
best left undisturbed. But while it isn’t practical to use register d
for scratch, limited information can be easily stored there for later
use. An efficient way to influence decisions made later in a program
is to set a flag in register d. As an example, suppose you want to
terminate a program if a variable exceeds a certain limit, but the
variable is not in the stack when you want to test it.

The solution is to test the value earlier in the program and set a
flag if the limit is exceeded. Then, at a good place to terminate,
test the flag using FS?C and terminate if the flag is set. Flags 0 to
10 are "general purpose" flags, but don’t forget flags 18 to 20.
Since flags 11-20 are cleared at turn-on, you can sometimes use them
without having to use a CF instruction first.

You can store an integer from O to 255 in flags O to 7 using the
Extended Function X<>F. The number in X need not be a positive
integer when you use X<>F. However, it should be less than 256. When
you use X<>F to recover that number, it will be as though ABS and INT
have been performed (with no change to the LastX register).

Armed with this information, you should be able to make good use of
the status registers. Registers M, N, and O can be used freely.
Registers P and a require a little more care. Registers -, e and Q
have serious difficulties associated with them, and registers d, b,
and c¢ should be left until you have considerable experience using the
other status registers.
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You may want to explore the possibility of saving the contents of the
status registers in an Extended Memory data file using SAVEX and later
restoring them with GETX. This requires lowering the curtain
temporarily to 000. A similar technique can be used on data registers
with the functions SAVER, SAVERX, and GETR. None of these
instructions normalizes your data.

4B. SYNTHETIC INSTRUCTIONS USING THE BYTE GRABBER

The synthetic key assignment known as the byte grabber has been widely
used by synthetic programmers to manipulate bytes in program memory.
The most common byte grabber has prefix and postfix values of 247 and
63, respectively. You should be familiar with this assignment before
reading either this section or Section 4I. See pages 6 to 9 of SPME
or pages 231 to 244 of "Extend Your HP-41" by Mier-Jedrzejowicz if you
need to refresh your memory. The conventional practice of using the
byte grabber to absorb the prefix from a multi-byte instruction in
program memory will not be described in detail here.

You will need to have a byte grabber assigned to a key in order to
experiment with the ideas in this section. Making synthetic
assignments to a key is an easy process if you have either the CCD
Module, a synthetic key assignment program ("MK", "MK X", "ASG", etc.),
or the ZENROM. Refer to pages 69 and 70 of SPME for a description of
the use of the synthetic assignment program which appears in barcode
form on pages 174 and 175. The CCD Module’s enhanced ASN function
is equivalent to a built-in synthetic key assignment program.

If you use the ZENROM rather than a synthetic key assignment program
or the CCD Module, creating the byte grabber is relatively easy. With
the ZENROM plugged in, start by assigning the TAN function to the key
where you want the byte grabber assigned. Then press ALPHA, SHIFT,
ALPHA, C 1, ALPHA and execute RAMED. Press PRGM twice, and
if F0,04,5B is displayed, key in the two bytes of the assignment in
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hex. Otherwise, press PRGM three more times (00,04,5B should be
shown) and key in the two hex bytes of the assignment. Use F7, 3F for
the common (decimal 247, 63) byte grabber. Now press ON to exit
RAMED, and you’re done. This technique will work as described above
so long as the TAN assignment was not placed in a vacant key
assignment register above location 0CO. If this is the case, you can
still locate the TAN assignment (hex 04 5B) by pressing USER several
times, but it may take a little searching.

The byte grabber is most commonly used to remove a prefix byte from a
two-byte function. This frees the second byte to attach itself to the
byte or bytes that follow. An example of this is the creation of a
synthetic RCL instruction using STO IND 16. When the STO prefix is
grabbed, the IND 16 suffix becomes a RCL prefix. If the STO IND 16
was followed by RDN (hex 75, decimal 117), the new RCL instruction
will access status register M (decimal postfix 117).

Using the byte grabber this way, you can make instructions which are
not normally keyable. Examples include direct operations on the data
registers from 100 to 111 and status registers above L. This approach
will work well as long as the instructions were just keyed in, or if
the program is PACKed before pressing the key assigned with the byte
grabber. The byte grabber is pressed while in PRGM (and USER) mode,
and while positioned to the line before the byte (or bytes) you wish
to grab. The byte or bytes are absorbed into a text line, which is
deleted if not needed.

The byte grabber can also be used to release bytes. One way this can
be done is to grab the Text prefix byte from a line of text. As an
example, the text line "aBKI$C" has decimal byte values 246, 97, 66,
75, 49, 36, 67. After you byte grab the Text 6 (see byte 246 in the
table on page 9), the six characters within the line in program memory
are free to stand alone. This results in the instruction sequence
ABS, *, MOD, STO 01, RCL 04, /, which could save you quite
a few keystrokes if you wanted this sequence in your program. Of
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course, this technique is rather limited because you are confined to
the characters that are keyable. But if you have the byte grabber
assigned, you may prefer using keystroke sequences like ALPHA, 1,
ALPHA, BST, byte grab, backarrow, SST in place of the usual
XEQ, ALPHA, H M S (shift) +, ALPHA.

There is another way to use the byte-releasing capability of the byte
grabber. Using a synthetic key assignment program, the CCD Module, or
the ZENROM, assign the 247, 142 (hex F7, 8E) byte grabber to a key.
Make sure that the key previews XROM 30, 14 when pressed and held
before continuing. (Note: If you have the Card Reader plugged in,
this will preview as 7DSP2.)

We are going to use this key assignment to make PROMPT lines.
Press GTO . . and enter PRGM mode. Press ENTER?T twice to
serve as a buffer (to protect the .END.), BST, byte grab, BST,
byte grab and backarrow. SST and there is our PROMPT instruction.
Repeat it again, if you like. Just byte grab, BST, byte grab, and
backarrow. So, in addition to grabbing and releasing bytes, we can
use the byte grabber to create an instruction corresponding to the
value of the suffix (postfix) of the assignment. After you’re done

experimenting, delete all of the lines in the program.

More than one byte can be absorbed by the byte grabber. In a packed
program, the byte grabber normally absorbs only one byte. You can
absorb two bytes if you key in any one-byte function before pressing
the byte grabber. This technique of inserting bytes before pressing
the byte grabber can extend its range to absorb up to 5 bytes.

We can combine the technique of keying in bytes before pressing the
byte grabber with byte grabber assignments whose postfixes are from
rows 9 through F in the byte table. The resulting combination allows
us to synthesize two- or three-byte functions. It is necessary to key
in 4 bytes before using the byte grabber to properly align the prefix
(supplied by the byte grabber) and the one- or two-byte postfix (which
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already exists within program memory). This is a very powerful
synthetic technique. The fact that you can see the bytes as Alpha
characters after you byte grab means you can make a visual check to
insure that there are no stray nulls before backstepping and byte
grabbing again to release the byte.

Clear the byte grabber key assignment and replace it with the 247, 206
(hex F7, CE) byte grabber. (ZENROM owners can simply modify the
postfix byte of the existing assignment.) The key assignment should
preview as XROM 31,16 when you hold it down. We will use this
assignment to create several synthetic two-byte X<> instructions.

Begin with GTO . ., and enter PRGM mode. Make sure at least 8
registers are free. Then key in ENTER%, CLX, LASTX, RDN, and a
buffer of at least four ENTER? or 1/X instructions. Then SST twice
or GTO .001.

Press EEX and CHS to put the four bytes hex 00, 11, 1B, 1C. ZENROM
owners use EEX, 8, CHS, because the ZENROM removes the hex 11
byte. Keying in these four bytes will cause the byte grabber to
absorb the maximum of five bytes. Now byte grab, BST, byte grab, and
press backarrow twice. SST to see the new line 02 X<> O. Repeat the
process by pressing EEX, CHS, byte grab, BST, byte grab, backarrow
twice, and SST. You should see X<> N. Repeat once more, and we’re
through byte grabbing. EEX, CHS, byte grab, BST, byte grab, backarrow
twice, and SST. Line 04 is now X<> M. Get rid of the buffer of
instructions protecting the .END. using DELete after you SST again.
Then SST twice (to line O01), backarrow the ENTERY, key in
LBL "SHR", add CLX, and PACK. You should have:

01 LBL "SHR"
02 CLX

03 X<> O

04 X<> N

05 X<>M
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This little program performs an Alpha register shift to the right
("SHR") seven characters. The number of characters that you start
with in the Alpha register should not exceed 21. The program clears
the original value in X, and leaves the former contents of Alpha
register M in its place.

To generate the three synthetic lines for "SHR" we keyed in the second
bytes (postfixes) of the functions we wanted, and used a byte grabber
with an assignment of 247, 206, because 206 was the first byte
(prefix) of the desired X<> function. The technique demonstrated here
is a variation of a procedure that you will use heavily in the next
section, where you will learn about Text 0 prefix assignments. As you
will see, the Text 7 prefix (byte grabber) and the Text 0 Prefix
assignments are similar in many ways. Each has its strengths, and
working in concert they are an extremely powerful combination.

4C. USING TEXT 0 PREFIX ASSIGNMENTS

One, two, three, or multi-byte synthetic instructions can be made
quickly and easily using a key assigned with decimal values 240, XXX,
where XXX is the decimal value of the first byte (or prefix) of the
function you wish to create. You will need to have a CCD Module, a
ZENROM, or a synthetic key assignment program such as the PPC
ROM’s "MK" or Tapani Tarvainen’s "MK X" (barcode on pages 174 and
176 of "HP-41 Synthetic Programming Made Easy") to make use of this
powerful class of synthetic key assignments.

This key assignment group is most useful when you need to make several
synthetic instructions which share the same value for the first byte
and have a variety of postfix byte values. Under these conditions,
you would either have to make several key assignments or go through a
fairly long procedure using the byte grabber. Text 0 prefix
assignments will save keystrokes compared to the byte grabber because

less setup is required.

-129-



Let’s say for an example that you need to make a number of synthetic
TONESs. Start by assigning 240, 159 to a key (159 is the TONE prefix).
Check that the assigned key previews XROM 02,31. Then GTO .., enter
PRGM mode, and key in LBL "LL". We are going to create a series of
TONEs with second byte (postfix) values of 19, 4, 69, 118, 69, and 86.

The first thing we have to do is to look up the instructions which
correspond to these postfix bytes, and key them in after label "LL".
Therefore, key in 3, LBL 03, X>Y?, LASTX, X>Y?, and LOG. You
should also add a buffer of several ENTER instructions after LOG, to
protect the .END. from possible alteration or loss.

You should PACK at this point because of the invisible null introduced
before the "3" instruction. This is only necessary when some of the
byte values are from 16 to 27 (decimal). Now SST twice to return back
to label "LL". You should still be in program mode.

Now press EEX (use 9, EEX if you have a ZENROM, to offset the
ZENROM’s removal of the 1 byte in front of the E), then press CHS, the
assigned (240, 159) key, backarrow twice, and SST. There is your
TONE 19, displayed as TONE 9. The 159 prefix grabbed the 19 suffix to
create this TONE. Let’s examine this process more closely before
creating the other five TONEs. Below is a diagram which shows the
bytes in program memory, represented in hexadecimal notation. "4C 4C"
below indicates the last two bytes of LBL "LL" (which is in the
display when EEX is pressed). The effect of each of the six steps,
which are shown on the left, can be clearly seen. The underline
indicates the bytes displayed.

4C 4C 13 04 45 76 45 56 83

EEX 4C 4C 00 11 1B 00 00 00 00 13 04 45 76 45 56 83
CHS 4C 4C 00 11 1B 1C 00 00 00 13 04 45 76 45 56 83
240, 159 4C 4C 00 11 1B 1C EQ 00 SF 13 04 45 76 45 56 83

backarrow 4C 4C 00 11 1B 1C 00 00 9F 13 04 45 76 45 56 83
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backarrow 4C 4C 00 00 00 00 00 00 9F 13 04 45 76 45 56 83
SST 4C 4C 00 00 00 00 00 00 9F 13 04 45 76 45 56 83

Whenever an instruction is inserted in a packed program, the HP-41
quickly shifts all of program memory below the insertion down one
register to make room. This will be repeated, if necessary, when more
than seven bytes are needed. Any four bytes could be used ahead of
the (240, 159) assignment to align the hex 13 (decimal 19) byte as a
suffix for the 159 byte. The bytes in the above diagram are shown in
groups of seven to help you visualize how this works. To complete the
other five TONEs, simply repeat those six steps listed at the left
side of the diagram five more times. Don’t worry if you lose track,
the buffer of ENTER instructions will alert you if you go too far,
because you will see TONE IND 03 (the result of the 159 prefix
grabbing the ENTER suffix) when you SST. When you’re finished, delete
all of the ENTER (and TONE IND 03) instructions. Now PACK the
program, return to run mode, and run the program. You may recognize
this series of TONEs. Charge!

There is a generalized procedure which can be applied to all 256
possible postfix values in a Text O prefix key assignment. The only
exceptions in this generalized procedure are that the three-byte
functions 192 to 205 and 208 to 239 (GLOBAL, GTO, and XEQ) are
treated as two-byte functions because they only need to absorb one,
rather than two, of the bytes that follow. The second (middle) byte
of the resulting three-byte instruction will then be a null.

The general procedure, after making the needed key assignment, is as

follows:

1. Position yourself in program memory, in PRGM mode, where the
instruction is to be created.

2. Key in the last byte of the function in the form of an
instruction.

3. BST.
Press EEX, CHS (ZENROM users press 8, EEX, CHS) for any
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instruction except three-byte functions. For them, press only
EEX. (ZENROM users press 8, EEX).

5. Press the key with the Text 0 Prefix assignment.
Backarrow twice.
SST and inspect the results. If it is an END, you must PACK or
GTO . . immediately.

The two lines deleted by step 6 are Text 0 and 1 E-. There is also an
invisible null between the two deleted instructions. The Text 0
instruction is a useful NOP (No OPeration) function created as a
consequence of the Text 0 Prefix assignment. This is the same NOP
created by the ZENROM’s NOP function. EEX, CHS (or 8, EEX, CHS
with a ZENROM) is a convenient, two (or three) keystroke way of
inserting four bytes. The number of bytes absorbed, if any, depends
upon the number of bytes keyed in at step 4 and the number of postfix
bytes normally required by the instruction prefix.

Let’s go through another example, this time creating a packed,
compiled END (192, 0, 9). This is useful in avoiding decompiling, the
loss of the compiled jump distances contained in the GTO and XEQ
instructions of a program with no END. More details on this will be
given in Section 4G.

Assign 240, 192 to a key, and check that the preview is XROM 03, 00.
Then go to a convenient place in memory to create a new END, such as
the "LL" program. If you wish to test that this procedure preserves
compiled information, add a LBL 01 after LBL "LL", and GTO 01 after
the series of TONEs. PACK the program, execute it once, and position
yourself to the last program line (step 1 of the above procedure).

Since LBL 08 corresponds to the decimal byte value of 9 that we want,
key in that instruction (step 2). Then BST (step 3). Press EEX (step
4). Now press the key assigned with 240, 192 (step 5). Backarrow
twice to clean up the two excess lines (step 6), SST, and you should
see an END. PACK or GTO .. (step 7) and return to the "LL" program.
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If you added the LBL 01 and GTO 01, you can confirm that the jump
distance information was not lost upon PACKing through the use of
another feature of the Text 0 prefix assignments. Position yourself
to the GTO 01, which should be line 07. In run mode, press any key

assigned with a Text 0 Prefix. The Alpha register should now contain
six bytes, the first two of which are the GTO 01 instruction. The
next three are the END we created, followed by a null. Visual
inspection of Alpha is enough to confirm that the compiled information
was not lost, as the second byte would be a null (overbar character),
not a starburst, had the jump distance been cleared. If you like, you
can decode these bytes using the extended function ATOX or the PPC
ROM’s "CD" routine. More information on the nature and use of this
"byte jumping" feature of all Text prefix key assignments is given in
Section 4I.

In the example above, we could have used a two-byte instruction such
as ISG 09 or TONE 9 in the place of LBL 08. The only other change
necessary would have been to press EEX and CHS at step 4, to cause two
bytes rather than one to be grabbed. The fact that the middle byte of
the END would not be a null in that case makes no difference. PACKing
changes the middle byte to the proper value. More information on this
subject is in Section 4G.

If you should forget which Text 0O Prefix assignment was assigned to a
particular key, there is an easy solution. Take the first value of
the two numbers in the XROM preview, multiply it by 64, and add the
second value to that quantity. For example, if the XROM preview shows
XROM 02, 24, you would multiply 2 by 64 and add 25. The result of 152
tells you that the assignment is 240, 152. This will work for any
Text 0 Prefix assignment.

There are many uses for the Text 0 Prefix assignments. The 240, 245

assignment works much like the byte grabber key assignment (247, xxx).
When pressed in program mode, one byte is absorbed by a Text 5
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instruction. This assignment inserts a Text 0, a null, and a Text 5
byte when pressed in the program mode. Normally these three bytes are
followed by 4 nulls to complete the register that is opened for the
inserted instruction. The text line includes these 4 nulls and a
single absorbed byte.

Both this byte grabber and the Text 7 prefix byte grabber can be made
to absorb more than one byte by inserting instructions prior to
pressing them. Up to four bytes of instructions can be keyed in
before pressing either byte grabber, resulting in a maximum of five
bytes being absorbed. Because of the Text 0 function created by the
Text 0 Prefix byte grabber (240, 245), a little more cleanup is
necessary than with the usual Text 7 prefix byte grabber.

If you decide to create one-byte instructions using the Text 0 prefix
assignments, you may omit step 4 in the general procedure. It really
isn’t necessary to press EEX and CHS. However, it is possible to
combine bytes 16 to 28 in rather unusual ways, with unexpected
results. If you want to experiment with adding one of these byte
values as a prefix on an existing numeric entry instruction, use EEX,
CHS, 7 at step 4. The 7 is necessary if a null exists before the
numeric entry line. This will be the case while building an
instruction using the Text 0 prefix assignments. However, if the
program containing the numeric entry line has been PACKed, and the HP-
41 removed the null because it wasn’t needed to separate two adjacent
numeric entry instructions, then the 7 is unnecessary. If you aren’t
sure, try it with just EEX, CHS at step 4 in the procedure. If that
doesn’t work, use EEX, CHS, 7.

One way that the Text 0 Prefix assignments are an improvement over the
byte grabber lies in the fact that bytes 228 to 239 can be
synthesized. This is impossible with just the byte grabber. The
reason for this is that the usual procedure for bytes above 143 is to
byte grab the first byte from an instruction such as RCL IND 16. This
releases the second byte, which will then link up with whatever
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follows. The problem is that without a ZENROM, bytes 228 through 239
(and 245 to 255) are not keyable as postfixes, since the HP-41 does
not allow the entry of three digit numbers as postfixes (no STO IND
100).

The 240, 228 assignment could be used to create a text line such as
247, 127, 40, 228, 120, 144, 104, 41. However, this is a very complex
undertaking (using the byte-loading program "LB" or the ZENROM’s
RAMED would be far easier). Not only is a byte grabber needed (or
the 240, 247 assignment), the task is complicated by the need to
PACK at least once. Because of the nature of PACKing, it is
difficult to avoid the alteration of the sequence 228, 120, 144 (XEQ
16) after it is synthesized. The best approach is to also create a
synthetic END (192, 0, 9) as the last program line. Do this after
setting up all of the bytes except 228, and then PACK (only once!)
after inserting the 228 byte and doing the cleanup. This tricky
procedure is a good test of your ability to use FO prefix assignments.

You may want to postpone this exercise until the end of this chapter.
There is a lot more information to be learned, and you should be
proficient before you try. When you can make this text line with only
Text 0 prefix assignments 192, 228, and 247, you have truly mastered
the use of the Text 0 prefix assignment.

4D. THE Q LOADERS

A Q-loader is one of a class of synthetic key assignments used to
create program instructions which contain up to seven Alpha
characters. This includes all of the various functions containing
Alpha characters, from Alpha text lines and Alpha labels to Alpha GTO,
XEQ, and W instructions. (The W instruction uses the synthetic prefix
1F.)

When a Q loader key assignment is pressed, the contents of status
register Q are used, in byte-reversed order, to form the Alpha portion
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of the instruction. Because of the fact that the characters are used
in reverse order, trailing nulls are suppressed. (This contrasts with
the display of characters in the Alpha register, where leading nulls
are suppressed.) This, and the seven character limitation, are the
only significant constraints that the Q loaders have.

An important advantage that the Q loaders have over the byte grabber
is that there is no difficulty making Alpha functions containing bytes
from the last four rows (C to F) of the byte table. Bytes from 192 to
205 and 209 to 255 can be quite difficult to handle using the byte
grabber: the Globals, GTOs, and XEQs swallow the two bytes following
them, and often change their value upon PACKing. Furthermore, bytes
228 through 239 are unkeyable as postfixes. Bytes above 250 or so are
tricky to manipulate too. A Text 15 prefix can swallow your .END. and
lead to MEMORY LOST after PACKing, before you realize what’s
happening. The Q loader (or a byte loading program) is a good way to
get around these difficulties.

Generally, a Q loader is used by building the needed bytes in Alpha in
reverse order, moving these bytes to status register Q, entering PRGM
mode, and pressing the key assigned with the Q loader that corresponds
to the type of instruction desired.

The synthetic key assignments RCL M and STO Q are handy to move the
accumulated bytes from Alpha register M to register Q. To learn how
to use the Q loaders to make the various Alpha instructions, use the
CCD Module or a key assignment program ("MK", "MKX", etc.) to
make the following key assignments:

INPUTS PREVIEW FUNCTION
144, 117, 15 XROM 01, 53 RCL M

145, 121, 14 XROM 05, 57 STO Q

27, 4, -11 XROM 44, 04 E, "Q load"
205, 4, -12 XROM 52, 04 LBL "Q load"
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4,29, -13 @AHHH GTO "Q load"
4, 30, -14 @NQ XEQ "Q load"
4, 31, -15 2 W "Q load"

(fill in the prompt with any number)

Now use the normal ASN function to assign the Extended Function (or
Data Logger function) XTOA to key 11 (Z+). If you do not have a Data
Logger or Extended Functions module, or an HP-41CX, you can substitute
the PPC ROM’s "DC" routine, or the program on page 77 of "HP-41
Synthetic Programming Made Easy". Be sure to assign one of these to
key 11 (Z+).

Now GTO .., enter program mode, and key in LBL "QL". Return to run
mode and clear Alpha. Use the assigned key (11) to build the
following bytes in the Alpha register:

41 XTOA (Z+)

70 XTOA (Z+)

12 XTOA (Z+)

32 XTOA (z+)

49 XTOA (z+)

52 XTOA (Z+)

40 XTOA (z+)

Inspection of Alpha should show ")F »14(". If you used "DC", you need
to return to the program "QL" by using either GTO or CAT 1. After you
are properly positioned, press RCL M (15) and STO Q (14). Then enter
program mode and press shift A (-11). The first line created by this
key assignment is line 02 E. The lone E, which is a slightly faster
way of producing 1 than using the instruction "1", is a result of the
prefix of the assignment used (see decimal value 27 in the byte
table). Any value in row 1 may be used in place of 27 when making a
Q-loader assignment, with a resulting instruction corresponding to
that byte.

Now SST to see the second result of this Q loader. Line 03 "(41 * F)"
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is composed of a Text 7 byte followed by the reverse of the bytes that
were stored in register Q. This particular text example was selected
to demonstrate some of the non-keyable characters that can be used for
text, labels, and the other Alpha instructions.

With line 03 still in the display, press shift A (-11) again. Once
more we have a solitary E line. SST to the next line. This is a
Text O instruction, also known as FO or decimal byte value 240. It is
similar to the No OPeration instruction available on some machines, in
that it does nothing (except re-enable the stack lift if it was
disabled). However, such a place-holder function can be useful after
an ISG or DSE instruction where the decision capability is not needed.

Whenever a Q loader is used, register Q is cleared. So if you used
the wrong Q loader, or you want to create another instruction with the
same bytes, you need to load Q again. If the stack hasn’t been
disturbed, just STO Q. If it has, check Alpha to see that the bytes
are still there and use RCL M, STO Q.

There are two other methods for using the Q loaders. They have two
advantages in that it is unnecessary to reverse the order of the
characters in Alpha, and no synthetic assignments are needed to load
Q. The disadvantage is slight; you can only use up to six characters
in the first case, and nulls can’t be used.

For the first method, begin by assembling the characters you want in
Alpha. Use up to 6 characters, in normal (non-reversed) order. In
ALPHA mode, ASTO X to transfer these characters to X. As Alpha data,
the first of the seven bytes in the register is the Alpha identifier,
leaving six bytes for the text. Return to run mode and key in GTO IND
X. This should show NONEXISTENT, but it has the vital side effect of
putting the label name in Q. If there happens to be a matching label,
the GTO IND X will have caused the calculator to branch to the label.
In that case, you must return to the place you want to put the
instruction. You should only use CAT 1, GTO .nnn (GTO line number),
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SST or BST to do this. Do not use GTO Alpha, any functions with
Alpha inputs, or any other function that might alter Q. Then press
one of the Q loaders in program mode.

The second alternative method to use the Q-loader is simply to key in
LBL ALPHA, spell out the characters needed, press ALPHA again, and
continue as you would with any Q loader. You can key in the LBL in
run mode, then switch to PRGM mode to press the Q loader. Because of
the requirement that all of the characters are keyable within a normal
Alpha label, the usefulness of this technique is somewhat limited.

Following these methods, you should be able to use the Q loaders to
produce non-keyable text, labels, GTOs, XEQs, or W instructions. Be
cautioned about the W function, though. The effect it has is
dependent upon what is plugged into Port 2, and to a lesser extent
Port 1. Status registers T, X, N, or d may be cleared, altered, or
contain garbage. The calculator may lock up for a couple of seconds,
or until you remove the batteries for a second or two. Still, you
should feel free to experiment, since none of the instructions or
techniques described here should get you into serious trouble.

4E. FIX/ENG DISPLAY FORMAT

The FIX/ENG display format can be obtained by either normal or
synthetic means. The advantage of this display setting is that the
display appears the same as in the normal FIX mode until the display
overflows or underflows (that is, until an exponent is required to
display the number). Then instead of over- or underflowing to
SClentific notation, the calculator uses ENGineering notation, with
exponents that are multiples of three.

The normal ENGineering mode can be very annoying as the exponent is
always used, making familiar numbers more difficult to recognize. Yet
when an exponent is necessary, displaying it as a multiple of three
works very well with the metric system. The FIX mode offers numbers
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which are readily recognizable. The FIX/ENG format offers the best of
both modes. Not only is this display mode handy, but it takes no more
bytes to set in a program than the normal FIX or ENG mode.

All that is required to achieve the FIX/ENG display setting is to
simultaneously set both flags 40 and 41. This can be done several
ways. First, and without synthetic programming, you can use the
Extended functions RCLFLAG and STOFLAG. RCLFLAG saves the
flag 41 status as set, FIX mode is selected (setting flag 40), then

STOFLAG selectively re-sets flag 41. See "HP-41 Extended
Functions Made Easy", pages 69-70. The second way is to use the CCD
Module’s F/E function. You can also use the PPC

ROM’s "IF" routine to set flag 41 after a normal FIX instruction.

FIX/ENG can also be set using a synthetic key assignment, or with a
synthetic FIX instruction (both of which are directly keyable with a
ZENROM). The prefix, or first byte, of the assignment or instruction
is decimal 156. This is the same as the normal FIX instruction. The
postfix, or second byte, is taken from row 4 of the byte table.
Postfix 64 corresponds to FIX/ENG 0, but it displays as FIX 4.
Only the second decimal digit of the postfix is displayed. As an
instruction or key assignment, FIX/ENG 0 is 156, 64. For
FIX/ENG n, use 156, 64+n. This will display as FIX m, where m =
(n+4) MOD 10.

The workings of this synthetic instruction deserve an explanation.
Randy Cooper, in the January 1982 PPC Calculator Journal, analyzed
what happens when the HP-41 executes a display setting instruction.
The number of digits (flags 36-39) is set to match the last nybble of
the postfix byte. Flags 40 and 41 (which set the mode type) are set
to match the correct mode, then flags 40-43 are ORed with the first
nybble of the postfix.

For FIX/ENG n, the postfix (in hexadecimal) is 4n. The second nybble
sets n digits (flags 36-39), while the first nybble sets flag 41. The
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FIX prefix (decimal 156) sets flag 40.

Several methods can be used to create the synthetic FIX instruction
needed to change your display to FIX/ENG format. If you have a CCD
Module, you can use the enhanced XEQ function to key in the two bytes
directly. Or you can use a byte loading program like "LB" or "LBX"
(from "HP-41 Synthetic Programming Made Easy" or the PPC ROM) to
create the needed synthetic instruction. You can use a Text 0 prefix
assignment (240, 156), or you can use the byte grabber key assignment
(247, xxx). An example using the byte grabber is given below.

Position yourself to the place in memory where you want the
instruction. In this case, we will create a FIX 70 (FIX/ENG 6)
instruction. If there are no other program lines in memory there, key
in ENTER? (in PRGM mode) for a filler. Now key in STO IND 28,
X<Y?, BST, BST, and press the key assigned with the byte grabber.
Backarrow once and SST to your new synthetic line. It displays as
FIX 0, though this is really FIX 70. Single-step this line after
returning to run mode (press PRGM, SST). The description of the
effects of FIX 70 follow the next paragraph, which describes how you
can use a synthetic key assignment to set FIX/ENG 6 from the keyboard.

Using a synthetic key assignment program like "MK", assign a key with
prefix and postfix values 156 and 70, respectively. Holding that key
should preview XROM 49,06 if the assignment was made properly. If it
shows other numbers, clear the assignment using ASN ALPHA ALPHA,
and try again. Once the assignment is made, you can use it in run
mode to change the display setting to FIX/ENG 6 by pressing the key,
or you can use it in PRGM mode to create the synthetic FIX 70
instruction.

To demonstrate how the FIX/ENG 6 display format behaves, begin by
filling the stack with ten. Key in 10, then press ENTER? three times.
Now press * repeatedly until the display overflows to engineering
notation. You should see 10.00000 O09. Further pressing of * will
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show how the decimal point progresses from 1. to 10. to 100., and then
reverts back to 1, when the exponent increases by three. This
demonstrates the overflow from FIX to ENG format.

To demonstrate the underflow to ENGineering notation, fill the stack
with one-tenth by pressing .1, then ENTER? three times. Now press *
repeatedly. After the sixth multiplication, the calculator underflows
to ENG format. Subsequent pressings of * show the number decreasing
from 100. to 10. to 1., and back to 100. at the time that the exponent
decreases (becomes a larger negative number) by three.

If you have the PPC ROM or the ZENROM, you can use one of the
programs listed below to set FIX/ENG mode. Of course, ZENROM
owners can simply press SHIFT, FIX, and fill in the two digit prompt
with a decimal value from 64 to 73. But the program below is useful
because it alters only flags 40 and 41, and for demonstration

purposes.
FOR ZENROM: FOR PPC ROM:
01 LBL "FE" 01 LBL "FE"
02 40 02 40
03 FC? IND X 03 ENTER
04 TOGF 04 FC? IND X
05 ISG X 05 XROM "IF"
06 " (F0 NOP) 06 ISG X
07 FC? IND X 07 " (FO0 NOP)
08 TOGF 08 FC? IND X
09 CLX 09 XROM "IF"
10 RDN 10 END
11 END

24 bytes 23 bytes

In the ZENROM program, lines 02 to 04 set flag 40 if it is clear.
Lines 05 and 06 increase X from 40 to 41. Lines 07 and 08 will set
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flag 41 when it is clear. FIX/ENG display mode is now set. Lines 09
and 10 clear X and push it into T, leaving the original X, Y, and Z
where they were.

In the PPC ROM version, lines 02 and 03 put 40 in X and Y. Lines 04
and 05 set flag 40 if it isn’t set already. "IF" will drop the stack,
which is the reason for line 03. Whether "IF" was executed or not, 40
will still be in X, where line 06 and 07 change it to 41. Lines 08
and 09 will invert the status of flag 41 when it is clear. The
contents of the stack are somewhat variable, depending on the status
of the two flags. However, Alpha will be clear and Z will contain a
copy of the original contents of X in all cases at the termination of
the program.

4F. CATALOG 1 RECOVERY

Sometimes in the course of synthetic programming, the continuity of
Catalog 1 is disrupted. The first hint that something is amiss is
often a subtle change in the usual "feel" of the HP-41. You may
notice the calculator is a bit slow to leave or enter PRGM mode, or
some similar deviation. (If the calculator locks up, see Appendix A
for crash recovery techniques.)

Pressing CAT 1 will confirm whether the linked list of global
instructions has been interrupted. Often, the catalog will list a
single instruction, which isn’t even a global function. But don’t
despair. Chances are good that all of your programs are intact, even
though you cannot yet access them normally.

There are several things you should avoid doing before the continuity
of Catalog is re-established. These include turning the HP-41 OFF and
ON, executing GTO . . (or any operation which causes packing), or
executing COPY, GETP, GETSUB, or PCLPS. Any of these can
lead to MEMORY LOST.
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The continuity of Catalog 1 may be lost if either the .END. itself is
lost or modified, or if status register ¢ no longer contains the
correct pointer to the .END. . (The last three nybbles of register ¢
contain the absolute address of the .END., which occupies bytes 2, 1,
and 0 of that register.) If the .END. is missing, or nybbles 2, 3,
and 4 of the .END. do not point correctly to the next global function
upward in memory, access to Catalog 1 is lost.

In order to recover from this condition, we need to make status
register ¢ point to a legitimate .END. . Section 4G gives more
information on the different END types. But all you really need to
know right now is that any .END.s found above our new .END. will be
converted to ENDs during packing. The best approach to take is to
create a new .END. just above the key assignments, alarms, and any I/O
buffers. Then you must modify register ¢ to match this address, and
PACK to recompute the global linkages.

Here is a Catalog 1 recovery procedure that you can use with the CCD
Module:
1. Key in 12 and execute WSIZE. Then key in the number 204 (equals
hex 0CC) for use as a starting address.
Execute PEEKR to recall register 204 to X without normalization.
Press shift : (divide) to execute the X=0? function. If the
result is YES, you have found a suitable empty register.
Otherwise use CLX, 1, + to increase the address by land repeat
steps 2 and 3 until you do find an empty register.
4. Now turn off USER mode and press ALPHA shift ENTER 192 shift
ENTER 000 shift ENTER 045. This creates the 3-byte alpha string
C0 00 2D.
5. Press X<> M to bring the bytes for the new .END. to X. Y should
still contain the address of the empty register that you found.
6. Execute POKER to store the new .END. .
7. Press 13.1 and execute PEEKB to see byte 1 of register c
(absolute address 13). If this number is not already a multiple
of 16, press 16, /, INT, 16, * then execute POKEB. This removes
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the high bit of the .END. pointer, and this assumes that you
found an empty register at an address below 256. Otherwise add 1
and POKEB again.

8. Press RDN three times to get the register address back in X, and
press 256, MOD if it exceeds 256. Then press 13, X<>Y, and
execute POKEB to store this number as byte 0 of register c.

9. GTO .. or PACK. This will probably take about ten or fifteen
seconds to finish.

Now here is a Catalog 1 recovery procedure which makes use of the
ZENROM’s RAMED function:

1. Press ALPHA, space, SHIFT, ALPHA, C C, ALPHA. This places
20CC hex (byte 2 of address OCC) in Alpha for use as a starting
address.

Execute RAMED.

3. If the three visible bytes at register 0CC are all 00, key in CO
00 2D. Otherwise, press SHIFT, USER repeatedly until unused
registers are found. Then key in CO 00 2D. The new .END. must
start at byte 2 of the register. In particular, by pressing PRGM
and/or USER, you should be able to align the .END. in the display
and see l:xxx CO0,yy,2D, indicating that the yy is at byte
position 1 in register xxx. Make a note of the address xxx of
the new .END. you created.

Press ON to exit RAMED.

Press ALPHA, SHIFT, ALPHA, 0 D, ALPHA. This will select
byte 0 of register ¢, address 00D.

Execute RAMED and press USER once.

7. We don’t want to alter the first 3 nybbles visible, only the last
three. Therefore, key in the same hex digit which appears in the
left side of the middle byte. Then key in the three nybbles xxx
of the address of our new .END. from step 3 (such as 0CC).

8. Press ON to exit RAMED.

9. GTO .. or PACK.

Catalog 1 should now be as it was before you lost access to it. If
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you believe that the first program in Catalog 1 is missing, perhaps
because the data/program partition was moved downward, there is an
easy way to recover that as well. You should know that normal
register operations will normalize a program stored within the data
registers, effectively destroying all or part of the program. So
avoid using X<>, STO, RCL, VIEW, etc. Instead, you should check
the position of the program/data partition (by looking at the contents
of register ¢ or using the PPC ROM program C?) and move it to the top
of memory (normally 200 hex = 512 decimal) if you suspect alteration.

To check for program bytes within the data registers, use NRCLX
followed by DECODE. Start with zero in X, and check more than one
register. Look especially for Cx bytes, that are LBL and END prefixes
and which are not likely to appear in data. Once you are satisfied
that program bytes exist within the data registers, you can edit
register ¢ to move the program/data partition above the program bytes.

To accomplish this alteration of the program/data partition, begin by
repeating steps 5 and 6 of the previous Catalog 1 recovery procedure.
Press USER again. The left-hand byte should be hex 69. Altering the
hex 169 "cold start constant" will cause MEMORY LOST when you exit
RAMED, so be cautious. Make a mental note of the rightmost nybble
shown in the display; it will be either 0 or 1. (This is the first
digit of the 3-nybble .END. pointer.) Then key in the three-digit
hexadecimal address listed below (according to the number of 64-
register memory modules installed -- use 4 for a CX, CV or 41C with

Quad):

Modules Address
4 200
3 1CO
2 180
1 140
0 100
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Complete the entry of byte 1 in register ¢ by keying in the same value
which existed before (0 or 1). Press ON to exit RAMED and check
CATalog 1 immediately. PACKing may be needed to recompute global
linkages, though this is not usually required. A side effect of this
procedure is that any data will beome program steps before the first
legitimate line of the first program. All data will be lost. In
addition, you will need to reSIZE, since this procedure sets the SIZE
to zero.

The Catalog 1 recovery procedures using the CCD Module or ZENROM to
construct a new .END. and its pointer, then PACK, have a very high
rate of success. However, if you are more concerned about the chance
of losing Extended Memory than the loss of main memory, you can use
the ZENROM’s CLMM function. To quote the ZENROM manual:
"CLMM restores the HP-41 Main Memory to Master Clear state by
storing nulls into every register. In addition, all status registers
and flags are restored to default states; all key assignments, timer
alarms, and input/output buffers are eliminated; and the stack, LASTX
and ALPHA are cleared. The size of the program memory will be set to
46 registers on the HP-41C and HP-41CV or 219 registers on an
HP-41CX." The contents of Extended Memory will be unaffected. Using
CLMM will spare Extended Memory in a situation when you are sure
MEMORY LOST is inevitable. When you have to interrupt a protracted
PACKING operation by pulling out the batteries, you have one such
case.

If you understand the principles behind the CCD Module and ZENROM
procedures just described, you can substitute routines in the PPC ROM.
The method developed by Clifford Stern constructs an .END. at the
address pointed to by register c:

ALPHA CO0002D ALPHA

XEQ "HN"

XEQ "E?" (Stop here if the result is not from 192 to 511)

XEQ "SX"

GTO .. or PACK immediately
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This sequence creates a synthetic .END. at the location specified by
the last three nybbles of status register c. In some cases, this
procedure will not work. If the result of executing "E?" is outside
the range of 192 to 511, you must not execute "SX". Instead, you
should use one of the alternate procedures described later in this
section.

If the number of free registers available (in run mode, press RTN and
PRGM) does not match the number returned by the PPC ROM function XEQ
"F?" within one-half, there are only two possible causes. Either
there are time module alarms or an I/O buffer present (in which case
the execution of "F?" has just made these unusable), or some of the
free registers are not empty as they should be.

In the case of non-empty registers in the free register block, or if
the result of "E?" is not between 192 and 511 inclusive, an alternate
procedure can be used. Again, the PPC ROM is required:

Make sure the SIZE is at least 001.

XEQ "A?"

Add 193 to this number and take the INTeger part.
You now need to convert this decimal result to a three-digit
hexadecimal number. The conversion is most easily performed in two
steps. If the decimal number is greater than or equal to 256,
subtract 256 and write down a 1 as the first digit of the hex
equivalent. Otherwise, write down a 0 as the first digit. Now take
the remainder (0 to 255) and use the QRC (byte table) to convert it to
hex. This gives the last two digits of the hex equivalent (the row
number is the first digit; the column number is the second digit).
Now continue:

GTO "C?" and SST. Press SST again, holding it long enough to see

47 RCL c.
XEQ "NH"
Press append, then backarrow three times. This deletes the last
three nybbles from the hexadecimal representation of status
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register ¢ that we have in Alpha. Replace these three
digits with the three hex digits that you calculated before.
Just key them into the Alpha register, since you are already
in the append mode. Press ALPHA twice and make sure there
are 14 hex digits, with 1 6 9 in positions 6, 7, and 8.
Press ALPHA again to exit ALPHA mode.

XEQ "HN" (X now contains the modified ¢ register contents.)

GTO "PA" and BST twice.

Press SST, holding it long enough to see 150 X<> c.

Decrease the SIZE. It doesn’t matter how much, as long as

you make it smaller.
GTO .. (Do not XEQ "PACK")

The missing registers should reappear. Make a note of the number of
free registers you have (hold SST and see .END. REG nn), and compare
this to the number returned by XEQ "F?".

4G. MAKING PRIVATE PROGRAMS WITHOUT A CARD READER

Private status is established in a program by information contained
with the END (or .END.). Nonsynthetic methods of making a program
PRIVATE require the Card Reader or an HP-IL mass storage device such
as the Digital Cassette Drive. The END recorded by WPRV and WRTPYV on
the magnetic medium is altered to private status. Thus, the program
needs to be read back in to the calculator to establish a PRIVATE
program in main memory.

There are advantages to making valuable programs PRIVATE. When you

use synthetic programming techniques, there are times you can find
yourself almost anywhere in program memory. Before realizing it, you
can alter or delete part of your program, decompiling jump distances
and generally messing things up. Private status provides protection
against most cases of inadvertent alteration, and also a degree of
security for your programs. (Methods of removing private status have
never been published, but they are widely known by synthetic
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programmers.)

Using a mass storage device to make a PRIVATE copy of the program is
time consuming. And because the program has to be read in again, it
ends up at the bottom of Catalog 1. Several synthetic methods are
possible to overcome these disadvantages, altering the END type to
PRIVATE without moving the program. Not only are these methods fast,
but they can also be used to avoid decompiling jump distances stored
within GTO and XEQ instructions in the program. You can also use
these techniques to create some rather strange .END.s and ENDs.

Before we continue, you need to know the placement of ENDs and the
.END. in program memory, and their structure. An END may exist within
any block of three bytes in program memory. However, the one and only
permanent .END., which defines the border between the last program and
the free registers, must occupy bytes 2, 1, and 0 (the rightmost three
bytes) of the register it resides in. To better understand the
structure of ENDs, it is necessary to break up the three bytes they
are composed of, and consider them as six nybbles, or hexadecimal
digits. The seven ENDs and .END.s listed below in Table 4.1 are a
complete inventory of the types you will normally encounter.

TYPE OF END NYBBLES (hex) Decimal
12 3456 "LB" inputs
END, packed Ca bc 09 192, 0, 9
END, unpacked Ca bc 0D 192, 0, 13
.END,, right after GTO.. Ca bc 20 192, 0, 32
.END., packed Ca bc 29 192, 0, 41
.END., unpacked Ca bc 2D 192, 0, 45
END, PRIVATE, packed, Ca bc 49 192, 0, 73
END, PRIVATE, unpacked Ca bc 4D 192, 0, 77

Table 4.1 -- Normal END types
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Refer to the table while reading this. The first nybble of an END is,
by definition, C. The second nybble (a) may be any value from 0 to D.
This nybble, along with the next two nybbles (b and c¢), indicate the
distance to the next global instruction (END or Alpha label) upwards
in memory. Any number is acceptable, as PACKing will adjust these
nybbles to their proper values. Refer to the end of this section for
more on these three nybbles.

The third byte, composed of nybbles five and six, contains the most
useful and interesting information in the END. Nybble five defines
the type of END. For an ordinary END, the hex value is 0. The
permanent .END. has a value of 2, and a PRIVATE END is 4. Other
values are possible, but they are not normally used by the system.
More on this later. Nybble six tells the HP-41 if the program needs
to be packed, and whether to erase the compiled jump distance

information when leaving the program mode.

Nybble six is best understood if you convert the hexadecimal digit to
binary form. This can be done by using the byte table. The binary
equivalents are along the bottom (hex at the top) of the table.

Nybble 6 (hex) Binary Type
9 1001 packed, compiled
D 1101 unpacked, compiled
F 1111 unpacked, needs decompiling

The first and last bits are not actively used, and are generally
ignored by the HP-41. You can set them to zero if it is more
convenient. The second bit, when set to 1, indicates that the program
needs to be packed. If the third bit is set to 1, the calculator will
erase all of the compiled jump distance information (within GTO and
XEQ instructions) in the program when leaving the program mode,
packing, or turning off and on. These two bits are reset to zero when
their respective functions are performed (packing and decompiling).

-151-



When an instruction is deleted from a program (or inserted where there
is no room, so that all Catalog 1 programs are shifted down one
register to make room), nybble six is changed to F. This indicates
that both packing and decompiling are needed. If you don’t have a
ZENROM, you’ll probably never see this nybble value in an END. When
you exit PRGM mode, the HP-41 will decompile the branching
instructions within the program and change nybble six from F to D.

It should be obvious why a nybble six value of 9 is the best to use
when modifying an existing END where you do not want the HP-41 to
rePACK or decompile your program. You must use 9 (or one of its

equivalents: 0, 1, or 8) when creating a synthetic END to avoid
decompiling. PACKing is still necessary to get the calculator to
recognize the new END, but then, with the new END incorporated into
Catalog 1, the decompiling procedure that follows packing is avoided
if the nybble six value indicates that decompiling is not necessary.

Altering ENDs with the ZENROM is very easy if you use the RAMED
function. It is much less risky to modify an existing END with RAMED
than it is to create a new END with "LB", the Byte Grabber, Text 0
prefix, or other synthetic key assignments. (These other methods are
more likely to cause disruption of Catalog 1 or MEMORY LOST.) With
RAMED, the first two bytes, which properly link the END in the global
chain of Catalog 1, can be left undisturbed, making changes to only
the last byte. You can use the Byte Grabber to make a PRIVATE END or
avoid decompiling without much worry. Just confine yourself to nybble
five values 0 and 4, with nybble six values 9 or D. In any case, be
sure to save vital data and programs outside the HP-41.

If you have a CCD Module, you can use the PHD (program head) function
to find the absolute address of the first byte in the program
following the END. Add one byte to get the address of the third byte
of the END. Then you can use POKEB to modify that byte.
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Whether you have a ZENROM, CCD Module, or just the Byte
Grabber key assignment, work though the following example of creating
a PRIVATE program. Begin by pressing GTO . ., PRGM, LBL "PRV"
and GTO .. again.

If you are using the CCD Module, switch out of PRGM mode, execute PHD,
and execute A+ to add one byte to this address. Then key in 73
(equals hex 49) and execute POKEB to replace the last byte of the END
in the LBL "PRV" program. GTO "PRV" and switch into PRGM mode.
You should see PRIVATE.

If you are using the ZENROM, return to the END following
LBL "PRV" using CAT 1. Then execute RAMED and press PRGM
twice. The right side of the display should show 01,09,00. Press 4
9 and the ON key. You should see PRIVATE immediately. It’s that
simple with the ZENROM!

If you are using the Byte Grabber, first return to the END following
LBL "PRV" using CAT 1. Backarrow the END. Now key in STO IND 66,
RCL 73, BST, BST and Byte Grab. Backarrow once and SST. You should
see END. As soon as you PACK, you will see PRIVATE. The IND 66
postfix (hex C2) became the prefix for the END, and the decimal 73
postfix took its place as byte 3 of the END. PACKing adjusted the
second nybble of byte 1 and all of byte 2 to point to the next higher
global function in Catalog 1, incorporating the synthetically created
END into Catalog 1.

Note that because we used RCL 73 (hex postfix 49) instead of RCL 77
(hex postfix 4D), any compiled jump information within the program
would have been preserved. This procedure can be used to make any
program PRIVATE while also avoiding decompiling.

To get rid of this PRIVATE program, use cither CLP "PRV" or the

Extended Function PCLPS. If you do not know how to clear Private
status, you shouldn’t ever make a program PRIVATE unless you have a
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backup (non-PRIVATE) copy as well.

You probably noticed that HP used only three of the sixteen possible
values for nybble five (0, 2, and 4) for ENDs. In addition, a nybble
five value of F is reserved for Alpha labels. These four values
comprise all of the global functions normally found on the HP-41. But
what of the twelve remaining values?

The other END types do indeed work, and can be useful if you are
cautious. We recommend that only ZENROM and CCD Module users
experiment with these non-standard ENDs. You should also note that
there is no guarantee that every HP-41 ever made will act exactly the
same in reaction to conditions that the designers of the operating
system did not plan for. If your HP-41 does not perform in every
respect as you think it should with ENDs other than type 0, 2, or 4,
please do not contact Hewlett-Packard about these features. They are
NOt MAnufacturer Supported (NOMAS).

Some explanation is needed before proceeding further. Just as nybble
six is used by the HP-41 on a bit level, so is nybble five. The first
bit of nybble five is not generally used, and most often set to zero.
Changing this bit to a one usually has no effect, except that if
nybble five is an F, the instruction becomes a Catalog 1 Alpha LBL.

The second bit of nybble five determines whether or not the program is
PRIVATE. When this bit is a one, the program area immediately above
this END or .END. (up to the next END) is PRIVATE. The third bit
determines whether the END displays as an END or an .END. in Catalog 1
and in program mode. Bit four (which is normally 0) somehow alters
the way that the END instruction functions when set to 1. See Table
4.2 below.
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NYBBLE 5 FUNCTIONS DISPLAYS END

BITS AS AS TYPE

34

00 END END END

01 .END. END Pseudo-END
10 .END. .END. .END.

11 END or .END. .END. Pseudo-.END.

Table 4.2 -- More END Types

The exact reason for the odd behavior of bits three and four is buried
within the HP-41’s microcode (machine-level instructions), and beyond
the scope of this book. But the external effects of these four bits
in nybble five will be thoroughly described. To expand this table of
four END types, we need to add the other two bits of nybble five.
Since bit two determines PRIVATE status and bit one has no effect,
this will double the number of distinctly different END types. These
are listed below.

Type Nybble 5 Decimal value END .END.
END 0or8 9 or 137 X X
PRIVATE END 4orC 73 or 201 X X
Pseudo-.END. 3orB 57 or 185 X X
PRIVATE Pseudo-.END. 7 121 X X
.END. 2or A 41 or 169 No! X
PRIVATE .END. 6or E 1 05 or 233 No! X
Pseudo-END 1or9 25 or 153 No! X
PRIVATE Pseudo-END 5 or D 89 or 217 No! X
LBL F Do not use X

Table 4.3 -- Synthetic END’s
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The values underlined in the table are not necessarily stable.
Without the correct values in nybbles 2 to 4 to link this END to the
next higher global function, packing is likely to alter this END
unless nybble six is 0 or 9. Often the END type will change to O.
The information in the last two columns will aid anyone willing to
risk exploring these synthetic ENDs using the Byte Grabber. Detailed
instructions describing how to create ENDs in Catalog 1 with the
correct linkage values would take up too much space here. If you
decide to try, use the Byte Jumper from Section 41 to decode the bytes
of an existing END, backarrow it, and synthesize a new END of a
different type with 9 or D for nybble six. Be prepared for several
MEMORY LOSTs before you find a technique that works.

Nybble five values 0, 3, 4, 7, 8, B, and C give ENDs; these are listed
in the top half of the table. The decimal value shown for each table
entry is for a byte composed of nybble five as listed,combined with
nybble six having a value of 9. ENDs should generally not be used in
the place of the permanent .END., but if you want to experiment you
can alter the .END. to one of these seven END types using RAMED,
POKEB or the PPC ROM’s "SX" routine. RAMED or POKEB are best
since you can easily leave the first two bytes as they are. You
should also use a value such as 0 or 9 for nybble six, so that the
"packing needed" bit is clear (bit two). Otherwise, the END type may
change during packing, often causing MEMORY LOST. With some END
types, it is also possible to backarrow the .END.. This disrupts
Catalog 1, leading to MEMORY LOST during packing.

Backarrow must be used with caution if you are using END types other
than 0 and 4. Unless PRIVATE is displayed in PRGM mode, the use of
backarrow will always change nybble six of the END or .END. to F.
This is true even when used on an .END., and no changes are actually
made! Whether nybble six is set to F by backarrow or by other changes
in PRGM mode, using PACK will result in MEMORY LOST for .END.
types 0, 1, 3, 4, 7, 8, B, and C.
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The eight possible .END. types 2, A, 6, E, 1, 9, 5, and D are listed
next in the table. The decimal values in Table 4.3 again correspond
to nybble five combined with nybble six having value 9. Note that
nybble six of an .END. will equal either 9 or 0 after using GTO . . or
PACK.

Changing an existing END to one of these .END. types is easily done
with the ZENROM’s RAMED or the CCD Module’s POKEB. There
will be no ill effects of this change as long as the program remains
undisturbed. However, if the END is moved within Catalog 1 (other
than by SIZE changes or the deletion of programs in Catalog 1 above or
below this program), several things may occur. After packing, you may
discover that this END has become the .END., resulting in the loss of
all programs below it (sometimes including your key assignments, I/O
buffers, and alarms). MEMORY LOST is also possible. Experiment at
your own risk.

The last listing in Table 4.3 is the Alpha label, in which nybble five
has the value F. You can make labels with RAMED, POKEB, or
"LB". But you should avoid using the Byte Grabber with labels, since
this can disrupt Catalog 1 or cause instant MEMORY LOST. Labels
are mentioned here for the sake of completeness.

Now that you are aware of the dangers involved, you are probably
wondering what possible good these oddball ENDs can do. Some examples
of the wusefulness of synthetic END types follow, along with an
explanation of the behavior associated with these ENDs.

If you use the ZENROM to change the .END. from type 2 to type 6, as
long as the next global function upward in memory is an END, no one
will be able to key in a program by hand at the end of memory. If the
other ENDs are also PRIVATE, access to Catalog 1 will be restricted to

someone expert enough to break Private status.

To change the .END. to type 6 with the ZENROM, use GTO . . to ensure
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there is an END above the .END., and to position to the .END. . Press
PRGM and execute RAMED. You may find as many as six nulls before the
.END. (which will appear as CC,01,20 or similar). Repeatedly press
PRGM until byte 20 or 29 is shown in the middle of the display, and
key in 6 0. Press ON to exit RAMED, and PRIVATE is shown
immediately.

With a CCD Module, you first need to find the decimal address of the
register that contains the .END. . This is easiest with the PPC ROM’s
"E?" routine. Otherwise you could RCL . ¢, DCD, and manually convert
the last three hex digits in ALPHA to a decimal address. Once you
have the address of the .END., you can use POKEB to replace its last
byte with decimal 96 (hex 60).

Another way to achieve this result is to do GTO . . and WPRYV or
WRTPYV to save the empty program as private on a magnetic card or mass
storage file. Then read the empty private program back into the
HP-41, and the .END. will be PRIVATE (type 6).

To resume normal operation, it is best to position yourself to the
PRIVATE .END. by letting CAT 1 run to completion, then
executing "CLP" ALPHA ALPHA. You may also use GETP (but
not GETSUB) to load a program from Extended Memory to replace this
PRIVATE .END. . Reading a program card will work the same way.

Using a type 5 .END. as an END is the ultimate protection for your
programs. Since this type is also PRIVATE, access to your program is
denied to anyone but those who can break PRIVATE. If someone makes a
copy of your program on cards, cassette, or in Extended Memory (and
swaps the module into another machine), they will have a copy which is
very hazardous to use.

Type 5 is a PRIVATE Pseudo-END (literally a false END). While its

usual function is as an .END., it displays as an END. It can function
correctly as an END as long as nybble six remains 9 or 0 (no
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alterations should be made to this program) and nybbles 2 through 4
link it properly in Catalog 1.

If a program with hex 59 in nybbles five and six of the END is read
into memory (from cards, IL devices or Extended Memory), using
GTO . . will change this END into the .END. (type 7, still PRIVATE).
Later breaking Private status and using the Byte Grabber to get rid of
the troublesome END which is restricting access to the program will
result in MEMORY LOST at the next packing. And if PACKing is done
right after reading the program in, MEMORY LOST is immediate. Using
type 5 for an END enhances the protection of Private status by
creating pitfalls to trap all but the most knowledgeable programmers.
Intentionally using type 5 for the .END. is also dangerous since this
.END. appears as END in Catalog 1 or in PRGM mode after breaking
Private status. Using backarrow to remove this innocent looking "END"
has consequences you know well by now.

Another disadvantage of using a Pseudo-END (types 1, 9, 5, or D) for
the .END. is that it leaves you with no "END. REG nnn" as the last
entry in Catalog 1 to tell you the number of free registers. Of
course, you can always CAT 1 to a non-PRIVATE program, press RTN in
run mode and press PRGM to see "00 REG nnn". But this is bothersome.

There is an easy alternative, which you might also like to use if your
Catalog 1 is rather long. Take advantage of the fact that a type 3
Pseudo-.END. displays as ".END. REG nnn", though it functions as an
END. Try the following example with the ZENROM: CAT 1 in run
mode and R/S immediately. Press SHIFT, RTN, PRGM, XEQ "END",
XEQ"RAMED",USER,30,0N,(BST,RAMED,PRGM,PRGM,09,0N toavoid
decompiling the first program in Catalog 1) and press PRGM. Now start
Catalog 1. You should see "END. REG nnn" as the first entry in the
catalog.

The advantage of having this pseudo-.END. at the top of Catalog 1 is
that you don’t have to execute the PPC ROM’s "F?" routine or enter
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PRGM mode to find out if you have enough free registers to read in a
program without changing your SIZE. It’s right there at the start of
CAT 1. Unfortunately, END types 3, B, and 7 all have a nasty habit of
changing into the .END. when read in from mass storage. After that,
they usually become type 1 Pseudo-ENDs. You will avoid problems if
you don’t record programs containing these END types.

Changing the ENDs of your programs to Private status will protect your
programs from all but an expert HP-41 programmer. Similarly, changing
your .END. to type 4, 5, 6, 7, C, D, or E will prevent a non-expert
from keying in a program. The use of both (along with removing
your ZENROM, PPC ROM, and CCD Module) should protect program
memory well enough so you can loan your HP-41 to an inexperienced user
without fear that you will find program memory altered.

AVOIDING DECOMPILING

Whenever you read in a program from the Card Reader, Digital Cassette
Drive, or Extended Memory, any information contained within the GTO or
XEQ instructions of the program when it was recorded will be brought
into memory. However, this jump distance information will be lost as
soon as you GTO .. because the program lacks an END with the proper
byte values (indicating that decompiling is not necessary) to prevent
this.

If you have a ZENROM, it is extrememly easy to avoid decompiling.
After reading in the program, BST or GTO .999 to position to the
.END. . Enter PRGM mode, and be sure not to exit PRGM mode or PACK
until you have finished modifying the END to prevent decompiling.
Execute RAMED. At this point, there are at least two different
courses you can take. The first method is the fastest.

In RAMED mode, press I for Insert mode. Flag 1 will be set and show

in the display. Now press C 0. If the display shows C0,00,00 at this
point, press ON and PACK, because you’re done. Otherwise, press 0
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four times (or 0 0 0 9) ON and PACK. PACK will compute the correct
values for nybbles two to four without decompiling as long as nybble
six is 0 or 9. Incidentally, you can also use hex 49 instead of 00 or
09 to make a PRIVATE END, or you can use any of the other END types
you like.

Two other methods for avoiding decompiling have been devised by
Clifford Stern. The first requires the ZENROM, while the second
requires the Byte Grabber key assignment.

After reading in the program from a mass storage device, BST twice to
position to the last program line. Enter PRGM mode, XEQ "END",
execute RAMED, press USER 0 9 (or 0 0) and ON. Again, it’s that
simple.

For those using the Byte Grabber, here is Clifford Stern’s other
method, which also appeared in "HP-41 Synthetic Programming Made
Easy". After reading the program into memory, switch to PRGM mode and
BST. This puts you at the .END., which is the last line of the
program. Make sure that there are at least 2 free registers (.END.
REG 02 or greater). Press ENTER, STO IND 66, FIX 9, BST, BST,
Byte Grab, backarrow twice, and PACK (not GTO . .. The IND 66
suffix becomes the first byte of a packed END, which prevents the
processor from clearing the compiled branch information. No bytes are
wasted because the PACK operation removes all packable nulls from the
program. The presence of the new END eliminates the decompiling

which would ordinarily follow.

To make a PRIVATE END with the Byte Grabber, use ENTER,
STO IND 77, ENTER, +, and the same steps outlined above.

Byte Counting with ENDs

You can count the number of bytes and registers contained in a packed
program by decoding the END itself. A typical END has the structure
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Ca bc 09 in hex (refer to Table 4.1, page 150). The three
nybbles a b ¢ point to the next global instruction upwards in memory.
Alpha labels share the same structure C a b ¢ followed by a Text byte
from row F of the byte table. See SQRG p. 39. Together, these global
labels form a linked list from the .END. up to the top global label in
Catalog 1 (which has zero in nybbles a, b, and c).

For all practical purposes, nybbles b and ¢ represent the number of
registers in the distance to the next global function. These two
nybbles can symbolize from 0 to 255 registers. Since main memory
contains 319 registers plus 4 bytes, you could possibly have a program
with a single Alpha label which contains more than 255 registers.
Hewlett-Packard had to allow for this, so the first (rightmost) bit of
nybble a was set aside for this possibility.

The remaining three bits of nybble a contain the number of bytes in
excess of the register count. Since the first bit is seldom used,
this nybble will usually be even, and will range from 0 to C for zero
to six bytes.

The formula to compute the number of bytes (from the byte before the

global being decoded back to and including the previous global) is
given by:
(@/2)+(7*{6b+c)

If a program has a single Alpha label at its first line, the
information within nybbles a, b and ¢ of the END equals the byte count
of the entire program. This does not include the END itself. ZENROM
users can decode this information from global instructions very
quickly using RAMED and the byte table. CCD Module users can execute
PHD, A+, A+, to locate the middle byte of an END, then PEEKB,
A+, PEEKB, to get the decimal values of the bc and Ca bytes. If
you don’t have a ZENROM or CCD Module, use the Byte Jumper
presented in Section 4I.
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4H. EXECUTING BYTES IN ALPHA

Often you need to execute a synthetic two-byte instruction from the
keyboard. This can occur during your day-to-day use of the HP-41, or
during development of a program. It’s tedious to constantly create
instructions with the byte grabber or to make synthetic key
assignments and to have to clear them after one or two uses. If you
don’t need to put the instructions in a program, why should you have
to bother with assigning a key or creating an instruction in PRGM
mode?

Of course, if you have a CCD Module, you can use XEQ ENTER? to
execute any two-byte function simply by specifying its decimal byte
values. If you don’t have a CCD Module, read the rest of this section
to see how you can get a similar capability.

You can make a program that loads the bytes you want to execute in
Alpha. It jumps into the Alpha register, executes the desired bytes,
and then restores the program pointer (status register b) to jump back
out of the Alpha register. The "2B" program below uses register M to
hold your function, as well as several other instructions needed to
manage the stack. The Extended Functions module or an HP-41CX is

required.
0l LBL "2B" 08 E6
02 "8" (241,116) 09 X<> b
03 X<>Y 10 CLX
04 XTOA 11 RDN
05 X<>Y 12 CLA
06 XTOA 13 END 30 bytes
07"+ BBEB" Line 07 is 245, 127, 240, 117, 145, 124

Lines 02 and 07 can be created using either RAMED, the byte grabber,
Q loader, or one of the byte-loading programs ("LB", "LBX", etc.).
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To use the program, enter the following into the stack: the operand,
ENTER?, the prefix (first byte), ENTER?T, and the postfix (second
byte). The operand is the number you want in X at the time the
instruction is performed, and is optional in many cases. Once the
stack is loaded with the proper inputs, just XEQ "2B". Note that the
stack is preserved, which allows you to repeat the same function by
pressing R/S.

As an example, suppose you are trying to find a TONE that sounds right
for a program on your machine. Key in:
159, ENTERY, 30, XEQ "2B".

To try another TONE, simply press RDN (or CLX), key in the new
postfix, and R/S. You can do this because the stack is preserved.
Also, you can simply R/S to repeat the same TONE. For example, to now
try TONEs 70, 114, and 106, just press RDN (see 159 in the display),
70, R/S, RDN, 114, R/S, RDN, 106, and R/S. These TONEs vary in
duration between machines. Finishing with TONE 106 is a good idea,
because it does not leave the HP-41CX in the "buzz" mode, which many
synthetic TONEs do.

You may use "2B" to perform almost any two-byte instruction, except
any RCL (prefix 144), or any other instruction that alters the stack
(ENTER?, RDN, ARCL, etc.; use X<> or VIEW instead). If the stack
is altered, the STO b that is the last instruction to be executed in
the Alpha register can fail to return the program pointer to line 10,
or the result of the function may not be left in the X register.

Other restrictions on "2B" relate to the fact that the byte sequence
in the Alpha register must not be altered by the execution of the
specified function. You may not use "2B" to execute two-byte
functions that specify M or IND M (postfixes 117 or 245), or to
execute any of the ALPHA functions (ASHF, ATOX, etc.).

In general, if you stick with prefixes from 145 to 169 and 206, and
avoid postfixes from rows 7 and F, you will dodge most potential
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sources of trouble. If the program stops with an error (NONEXISTENT)
before execution is complete, just SF 25 and R/S. If the keyboard is
locked up, press ON twice and GTO . .(not PACK). Resist the
temptation to enter PRGM mode, as insertion of an instruction in the
status registers can lead very quickly to MEMORY LOST.

The best way to get a clear understanding of how "2B" works is to
temporarily insert a STOP instruction after line 08. Load the stack
with the original 159, 30 (TONE 30) inputs and XEQ "2B". Now decode
the contents of the Alpha register (M) using ATOX. Again load the
stack with 159, 30 and XEQ "2B". This time, use SST to "walk through"
from line 09 to the END instruction. The bytes you decoded from Alpha
match the functions performed between the X<> b and CLX instructions
listed in the program.

Line 02 of "2B" overwrites Alpha with a character corresponding to R}
(decimal value 116). Lines 03 to 06 add two more characters to Alpha
according to the decimal values of Y and X (prefix and postfix). Line
07 appends characters corresponding to Text 0, RDN, and STO b. The
Text 0 serves as a NOP to allow the use of ISG and DSE functions
without skipping the RDN instruction that follows. The RDN brings the
pointer back into the stack and STO b replaces it.

Line 08 is the synthetic program pointer for Alpha register M. When
line 09 puts E6 in register b, execution continues in byte 6 of M.
(The four rightmost nybbles of register b actually point to byte 0 of
register N at that point, but the HP-41 always displays and executes
the instruction that follows the program pointer.) If you single-step
the program, you’ll see 10 Rf, 11 your function, 12 "™ (Text 0 NOP),
13 RDN, 14 STO b, etc. as the bytes in Alpha are executed.

After the original pointer is restored, CLX, RDN, and CLA will clear
the pointer (E6) in X and restore the stack. Alpha will also be
empty. The line numbers you see as you SST will not match the program
listing after line 09. But you can be sure nothing has actually
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changed in the program by single-stepping it in PRGM mode from line
0l.

This program may be run in main memory and the memory of the Extended
Functions (decimal address 192 to 64) only. It will not work in the
ROM memory areas.

After you understand "2B", you may want to modify or completely
rewrite it for another purpose. As an example, you may wish to modify
the program to preserve the first 17 characters of Alpha. Or you
could completely rewrite it to execute all of the possible TONEs (0 to
127), and, using the Time module, output the function times. To do
this, you will need more than the seven bytes within Alpha register M.
Therefore, the pointer at line 08 will have to be changed.

The direction of flow when using the status registers as program bytes
proceeds from register e to T, that is, from higher to lower
addresses. Therefore, changing the pointer line from E6 to E7 will
allow you to use register N in addition to M. Fourteen bytes are then
available for use instead of seven. Execution starts at byte 6 of
register N and continues on into register M. Register M should
contain a STO b instruction to restore the pointer and return to the
original program. If not, execution will continue on into L and the
other registers of the stack, until an error occurs, program execution
halts, or the calculator locks up.

You can also use E8 or E9 for pointers to status register O and P,
respectively. This will give you a maximum of 21 or 28 bytes. It’s
best to avoid using more registers than you need. Unused bytes in
these registers will be nulls, except the four leftmost bytes in P.
When using register P, follow the guidelines in Section 4A.

Non-Alpha status registers may also be used to execute program bytes.

The bytes to be executed are assembled in Alpha, recalled using RCL M,
and stored in or exchanged with the appropriate status register.
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As an example, you might want to do this to perform an alpha function
under program control. It’s possible to assemble the bytes in
register M and move them to another status register, such as register
T, while preserving up to 17 of the original characters in Alpha.
This approach allows you a maximum of 7 program bytes. Some variation
of the sequence CLX, X<> M, STO status, CLX, 7, CHS, AROT
should work well. See the chart below for the status registers you
can use, along with a list of the pointers needed to access them.

Decimal
Decimal Character
Address Register Exponent Value
015 e E10 16
011 a 12
010 append (R) 11
009 Q 10
008 P E9 9
007 (0] E8 8
006 N E7 7
005 M E6 6
004 L E5 5
000 T El 1

To construct the proper pointer for status registers a through Q, it
is necessary to use Alpha. Using Q as an example, you could use the
sequence CLA, 10, XTOA, CLX, X<> M to make the pointer. Due to
the nature of register Q, this would have to be done before Q is
loaded with bytes. This pointer could remain in the stack (or another
status register), or it could be ASTOred as a single character and
brought back to X when needed.
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41. HOPPING THROUGH RAM AND ROM

Synthetic programming provides the fun, and often useful, capability
to make hops (or jumps) in RAM and ROM. This is somewhat similar to
the jump that occurs when a GTO or XEQ instruction is encountered in a
running program. Two methods can be used. The first method can only
be used to move forward (downward) in program memory, either RAM or
ROM, a distance of 0 to 15 bytes. The second method can be used to
move in either direction, up to 110 bytes in RAM. In ROM, the maximum
jump is 99 bytes (127 if you have a ZENROM).

Both methods make use of synthetic key assignments, and in both cases

the assigned key must be pressed in RUN (non-PRGM) mode and USER
mode.

The first method uses a class of key assignments called Byte Jumpers.
Their usefulness was discovered by Bill Wickes, who made most of the
important early discoveries in synthetic programming. Both the Byte
Grabber and any Text 0 prefix assignment will byte jump in RUN mode.
Prefix 0 assignments having a postfix from the last row of the byte
table (0, 240 through 0, 255) will also byte jump. So do many other
assignments with a prefix or postfix from row F of the byte table.
But there is no need to bother with these other assignments, since one
of the byte grabbers or a Text 0 prefix assignment will byte jump in
RUN mode and serve other useful purposes in PRGM mode. If you do not
already have one of these assignments made to a key, assign 240, 27 or
247, 63 to a key with a key assignment program like "MK" or "MK X", and
then continue reading.

Now GTO .. and key in the following program lines:
01 LBL"bJ"
02 ENTER?
03 "ABC"
04 LBL 01
05 "OPQRSTUVWXYZ"
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Now return to run mode, GTO .003 and Byte Jump (press the key with the
Text 0 prefix or byte grabber key assignment). Press ALPHA to examine
the bytes in the alpha register. These bytes can be decoded using the
Extended Function XTOA or the PPC ROM’s "CD" routine.

If you used "CD", return to the program by doing XEQ "GE", GTO .003,
and byte jumping again.

Now enter program mode and you should see

03/
Note that the line number has not increased. The line number is never
updated during a byte jump. Next press backarrow and SST. Since we
deleted the / byte, which was shown in the text line as the character
C, we now have

03 "AB ™"
The C has been removed, with a null in its place.

Now return to run mode, GTO .005, and Byte Jump. Switch into and out
of ALPHA mode to make sure that the alpha register contains two
characters. Enter PRGM mode and you should see

05 LN
This is the byte that you keyed in as the character P in the text
line.

Now key in ALPHA A BC D ALPHA, followed by BST and SST. Notice that
the text line now appears as

"OP ABCD"QRS"
The text instruction "ABCD" opened up seven bytes within the
"OPQRSTUVXWXYZ" text instruction. Including the F4 prefix byte, this
instruction occupies 5 bytes, leaving 2 nulls. Of course, these 7
bytes are now characters rather than instructions, and the seven
characters TUVWXYZ have been pushed outside the text line and are now
separate instructions. This will be explained further in the
paragraphs that follow. Meanwhile, you can restore the line number to
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its proper value by using GTO .005 or XEQ "PACK".

As you have seen, the Byte Jumper can be used to hop right into the
middle of a text line and allow you to modify it. If you press the
byte jumper accidentally or if you are just fooling around with it,
don’t be too surprised if you jump right into the middle of a text
line or other multibyte instruction. Be sure not to alter any ENDs in
main memory, or you may disrupt Catalog 1, leading to a possible
MEMORY LOST.

The process that caused line 05 to change began when you keyed in an
instruction with 05 LN (which was actually the character P) in the
display. The HP-41 shifted all the bytes following LN downward one
register (7 bytes) to make room for the insertion. The Text 4 byte
plus the 4 characters A, B, C, and D use 5 of these 7 bytes. The
remaining 2 bytes are left as nulls. The characters after Q, R, and S
were pushed out of the original text line because of the one-register
shift. You will find seven instructions corresponding to the
characters T through Z in the form of program lines 06 through 12.

Now enter PRGM mode, GTO .004, backarrow that line, and key in LBL 14.
Leave program mode, SST, and Byte Jump. Press ALPHA and you’ll see
the following 15 characters: a Text 12 byte (which displays as a
starburst), O, P, Text 4 (starburst), A, B, C, D, two nulls, Q, R, S,
T, and U. You can verify the identity of the starbursts by using the
Extended Function ATOX or the PPC ROM routine "CD". These bytes were
copied out of the program by the byte jumper as it performed the jump.

Exit ALPHA mode for a moment and byte-jump again. The alpha register
now contains V, W, X, Y, and Z. These characters are program bytes
following the ones copied on the last jump.

You have probably noticed that the number of program bytes copied into

the ALPHA register (which is the same as the number of bytes in the
forward jump) varies oddly. The length of the jump depends on the
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value of the second hexadecimal digit of the last byte in the line
preceding the current line. So when we changed line 04 from LBL 01 to
LBL 14 and used the Byte Jumper at line 05, fifteen bytes were copied
into Alpha instead of two bytes as before. This is because LBL 14
appears in column F (fifteen) of the byte table, while LBL 01 appears
in column 2.

Now you may clear the "bJ" program from memory as it is no longer
needed.

Since the column number of the preceding byte is what determines the
distance of the jump, you should realize that bytes from column 0 of
the byte table (NULL, 0, RCL 00, STO 00, +, etc.) will not advance the
program pointer or copy any bytes into the Alpha register. If you
find yourself "stuck" when you want to continue to advance, you can
try backing up to see if you can get a longer jump from an earlier
point in the program. PACKing may also help, but not in ROM. If
these tricks do not work, SST to the next line and continue.

The Alpha register will automatically be cleared when you use byte
jumping to copy bytes into it, with one obscure exception. If the
byte you are positioned to displays as CLD (hex 7F), it will behave
like the append symbol ( i ), causing the following bytes to be
appended to the current contents of Alpha. (As you know, any text
instruction that starts with an append symbol causes the rest of the
bytes in the text line to be appended to Alpha.) When byte jumping at
a CLD instruction, no warning tone will be sounded if the Alpha limit
of 24 characters is reached or exceeded.

If you think about this behavior carefully, you can see that the Byte
Jumper behaves precisely like a Text instruction that is executed in a
program. The line number is not updated, as indeed it would not in a
running program. A Text n prefix causes the following n characters to
be copied into Alpha, simultaneously jumping over these bytes to the
next program instruction. The main difference is that when you byte
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jump, you are causing a Text instruction (hex Fn) to be executed, even
though the byte that governs the jump may not be from row F. The
operating system is forming the instruction by taking the first digit
of the prefix (F) from the first digit of the key assignment and the
second digit (n) from the second digit of the preceding byte.

Byte jumpers also work well in ROM. Again, line numbers are not
updated as you jump. The bytes in Alpha after you byte jump are the
same as the bytes you would get using the COPY function. They aren’t
the same as the actual ROM contents, since all ROMs use 10-bit rather
than 8-bit words.

The fact that the line number doesn’t change as you advance through
memory can create some problems. If you BST when the line number is
0l in ROM, the line number will stay 01 and you will BST to the
previous instruction. But in RAM, you will find yourself bounced to
an END. This may be the END of the program you were in, the END of
the preceding program, or the END of the first program in Catalog 1.
This is very quirky and apparently unpredictable.

Another quirk of BST is encountered when you BST after byte jumping
into the middle of a global instruction (Catalog 1 LBL or END) in RAM.
After backstepping, you may find yourself almost anywhere in memory,
from the data registers to the second Extended Memory module (even if
you don’t own one, the program pointer can still wind up there). An
indication that this is happening is that the line number alone stays
in the right side of the display for 5 to 10 seconds as the calculator
searches empty registers for an instruction to display. For this
reason, it is wise to SST once and BST twice, rather than using a
single BST, if you think you might be in the middle of a global
instruction. Another alternative is to use the register/byte jumper
presented later in this section.

With a little practice, you can use the Byte Jumper to figure out
whether a global label has been assigned (and if so, to which key),
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whether an END has been PACKed, or whether a GTO has been compiled.
The crucial elements of this process are a knowledge of instruction
structure and locating a suitable instruction one or more bytes before
the instruction in which you are interested. The instruction that you
locate must be from a column of the byte table such that the jump

distance encompasses the instruction you want to investigate.

The second method of hopping through memory uses the Register/byte
Jumper. This synthetic key assignment was first reported in the
August 1982 issue (VON5P7a) of the PPC Calculator Journal by Tapani
Tarvainen. There are actually three fully functional Register/byte
Jumpers. The only differences among them are the prompts that are
displayed and the labels that are searched for when 00 is used to fill
in the numeric prompt. Choose one of the three Register/Byte Jumpers
listed below and assign it to a key. The discussion will be easiest
to follow if you assign the first one:
"MK" inputs Display GTO label number

4,178 ) 01
4, 183 = 06
4, 188 2 11

The first Register/byte jumper listed is often called the "goose"
assignment because it looks like the "flying goose" that jumps across
the display as LBLs are encountered in a running program. It is the
most commonly wused of the three because of its unmistakable
appearance, and because the prompt reminds you that the function has
something to do with jumping. (What does one do when goosed?)

The second Register/byte Jumper is a bit strange in appearance. The
third may look vaguely familiar, because the prompt it gives is the
same as the one given by the 4, 31 (W’) Q loader. It is also the
same prompt as for the non-programmable assignment 0, 13 that locks up
the keyboard temporarily (until you remove and replace the batteries).
That key assignment can cause MEMORY LOST.
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All these Register/byte Jumpers function like GTO instructions that
are encountered in a running program. They do not alter the contents
of the Alpha register. The two digits that you key in to fill the
prompt form a byte that is used to represent the jump distance. The
number of bytes jumped is different in RAM and ROM, precisely as the
structure of compiled jump information in a GTO instruction is
different in RAM and ROM. This will be explained further through
examples. We will assume that you have assigned the "goose" key
assignment, so you should press the Register/byte Jumper when a
reference is made to executing the ) function.

In ROM, the digits you supply in reponse to the ) __ prompt are
interpreted simply as the number of bytes to be jumped. Let’s try an
example. If you have a PPC ROM, GTO "SD". You are going to jump
forward in ROM to LBL "SK". Press the Register/byte Jumper key and
fill in the prompt with IND 20 (press shift 2 0). Enter PRGM mode and
you should see
53 LBL "SK"

Note that the line number is correct. This is always the case when
using a Register/byte Jumper because part of the HP-41’s programming
makes sure that when a GTO is executed, the line number is replaced by
FFF. This special code indicates that the line number is invalid.
Then, when you enter PRGM mode or press the SST key, the operating
system knows that it needs to recompute the correct line number. This
recomputation of the line number also means that you cannot use a
Register/byte jumper to get into the middle of an instruction in PRGM
mode, as will be explained shortly.

Now switch out of PRGM mode and press ) 20. You’re back at LBL "SD"!
Summarizing, to move forward nn bytes in ROM, fill in the prompt with
IND nn, and to move backward use nn.

As another example, switch out of PRGM mode again and press ) 40. This

jumps you backwards 40 bytes to
26 LBL "LR"
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If you want to avoid switching into and out of PRGM mode, you can
check your location in the program by pressing SST and holding it long
enough for the instruction to be replaced by NULL.

Here’s a final ROM example, illustrating that the goose assignment
does not respect the placement of ENDs. In fact, it totally ignores
them. First GTO "CV" and jump backwards 5 bytes (press ) 05). If you
enter PRGM mode you will find yourself at

131 END .
This END belongs to the preceding block of PPC ROM routines, "SR"
through "BV" (XROM 20,00 through 20,07).

ZENROM users can use the register/byte jumper to hop up to 127 bytes
in ROM. This can be done by pressing EEX to extend numeric input
beyond two digits, or using inputs .T through .e for jumps of 112
through 127 bytes.

When you jump in either direction with this assignment, you may
encounter certain cases for which the reverse jump will not bring you
back to exactly where you started. This will occur if you jump into
the middle of any multi-byte instruction and you look at that
instruction by either holding SST or switching into program mode. In
order to let you look at the instruction, the HP-41’s operating system
must compute a new line number (because the goose function caused the
line number to be replaced by FFF, indicating the necessity of
recomputation). The process of line number recomputation involves
counting down from the top of the program to the current position.
The calculator will not let you remain in the middle of a multibyte
instruction at the end of this process. Instead, it will back you up

one or more bytes to the beginning of the instruction you were in.

Also watch out when hopping over ENDs in ROM programs. They are 5
bytes long rather than 3, and you can offset the line number if you
hop three or four bytes instead of five. This only happens in the
forward direction over an END in ROM.
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The use of the Register/byte Jumper in RAM is quite different. To
demonstrate, using the PPC ROM again, make sure that 16 registers are
free, XEQ "COPY" ALPHA A M ALPHA, then GTO "AM". Programs
"NS", "NR", "PO", "Rb", "AM", and "MA" are now copied into RAM
at the bottom of Catalog 1. If you do not have a PPC ROM from which
to copy this program block, you should still be able to read through
and understand the examples quite easily.

In RAM, the input number does not directly represent the number of
bytes that are jumped. In fact, the numbers 01 through 15 will cause
a jump of that many registers (7 to 105 bytes). The input value 16
will cause a jump of one byte, 32 will jump 2 bytes, 48 will jump 3
bytes, etc. From this behavior comes the name Register/byte Jumper.

Let’s start with an example of how to use the Register/byte jumper in
RAM. You should still be positioned to "AM" in run (non-PRGM) mode.
Press

) 18
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