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CHAPTER 1 - INTRODUCTION

1A. UTILITY MODULES

Many of the sections in this book make reference to the ZENROM, the

CCD Module, or the PPC ROM. These devices are modules that have

been fabricated by Hewlett-Packard to the specifications of a third

party. They are available from EduCALC (See Appendix B).

The ZENROM is a 4K byte module written in machine code (M-code), the

natural language of the processor within the HP-41. Like the Extended

Functions, ten of the ZENROM functions can be used within programs.

There are two "operating modes" in the ZENROM: RAMED and

MCED. RAMED allows you to edit bytes within the user memory (data,

programs, buffers, Extended Memory, etc.) of the HP-41. With it, you

can review or replace bytes, which are shown in hexadecimal (base 16).

You can also insert bytes within program memory with RAMED.

MCED (Machine Code EDitor) is "A full machine language programming and

editing environment including facilities for disassembly of M-Code

routines and creation of new routines using the M-Code hex-loader

(when used with ’Quasi-ROM’ (Q-ROM) in a machine language storage

device)." Even if you don’t have a Q-ROM device like the MLDL (See

Appendix B), MCED will allow you to view or print the contents of any

plug-in ROM module.

The nicest feature of the ZENROM for synthetic programmers is the

ability to key in instructions like RCL M directly. Another helpful

modification that extends the capabilities of the HP-41 operating

system is called "SYNTEXT entry". This allows entry of any character

by pressing SHIFT, ALPHA followed by two hexadecimal digits. Also for

entering special Alpha characters (both in and out of PRGM mode), the



ZENROM adds two USER mode keyboards.

The CCD Module was developed by the Computer Club of Germany. It is

an 8K byte M-Code module with many powerful utilities. Operating

system enhancements include directly keyed synthetic instructions,

just like the ZENROM, plus the ability to directly execute or assign

any two-byte function by specifying its decimal byte codes. Of course

enhanced Alpha modes allow easy entry of synthetic alpha characters,

and a lower-case mode that allows you to enter lower-case characters

without pressing the shift key for each one.

The CCD Module provides an enhanced CATalog function, similar to the

one on the HP-41CX. Catalog 2 allows you to press XEQ while an entry

is displayed to enter the function in a program (PRGM mode) or execute

it (run mode). Catalogs 8 through F allow you to start Catalog 2 at a

particular port. The number 8 though F refers to the starting ROM

address (see page 22 of this book).

Matrix functions allow you to create and operate on matrices either in

main memory or extended memory. The matrix functions of the CCD

Module are also available in HP’s 12K byte Advantage Module. Logical

functions provide some of the capabilities of the HP-16C calculator,

including rotation, Boolean operations, and viewing the hexadecimal

equivalent of X. Each bit of a number can be individually tested,

set, or cleared, making it easy to use a number as a set of flags.

Other utilities help you to efficiently prompt for various types of

keyboard input in your programs, automatically rejecting incorrect

entries. Other added functions involve printer and alpha register

output and input. The FIX/ENG display mode (see pages 139-143 of this

book) can be set directly. Data registers or extended memory files

can be sorted. I/0O Buffers and Catalog 2 function Key Assignments can

be saved in and retrieved from Extended Memory, and Key Assignments

can be merged.
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The ZENROM and CCD Module both have utilities which support advanced

synthetic programming. These are the familiar register conversion to

and from hexadecimal (coding and decoding), and register storage and

non-normalized recalling. The CCD Module has additional byte-oriented

storage and recall functions, functions to locate programs in main

memory, and functions to manipulate program pointers.

Having either a ZENROM or a CCD Module will allow you to experiment

with the ideas in this book more fully, especially where synthetic

programming is involved. Extended Functions (built into the HP-41CX)

are also highly recommended to the serious HP-41 programmer.

The PPC ROM is an 8K byte ROM module written in user code (the

programming language described in the Owner’s Manual, augmented by

synthetic programming). The PPC ROM contains many powerful routines,

half of which make use of synthetic programming. The 122 routines are

divided into fifteen categories: Alpha Register, Block Operations,

Curtain, Display, Key Assignments, Load Bytes, Mathematics, Matrix,

Memory, Miscellaneous, Non-normalized Numbers, Peripherals, Program

Pointer, Return Stack, and Sorts. Some of the functions within the

PPC ROM have been superseded by faster Extended Functions, ZENROM,or

CCD Module functions. The PPC ROM is several years old, but it

remains a milestone both in programming and documentation. Study of

the documentation should be a must for synthetic programmers wishing

to learn more.

I1B. GENERAL TERMS AND CONCEPTS

In order to understand the concepts used in this book, you should know

a few basic facts about the HP-41 and how it works. The material

presented in this section is intended to summarize the necessary terms

and concepts. References to other chapters and books are included for

further reading on these subjects.



If you are already familiar with hexadecimal (base 16) notation, the

byte table, the HP-41’s internal status registers, and key assignment

registers, all of which come under the general heading of Synthetic

Programming, you may want to skim this section quickly and move on to

Chapter 2. There is enough information overlap that you can read the

various sections in this book in whatever order you like. But you

should only skip this section if you have a good working knowledge of

synthetic programming on the HP-41. If this material is new to you,

it would be a good idea to read it more than once.

Key terms

To get the most out of this book, you need to be familiar with certain

key terms and abbreviations. Many of these terms relate to the memory

of the HP-41 and to the number systems used to represent the

information it contains.

The byte is the basic unit of memory on the HP-41. All data, whether

numbers, characters or program lines, can be expressed as a byte or a

series of bytes. The internal organization of the HP-41’s user memory

is based on registers, each of which contains seven bytes. In

addition, bytes can be subdivided and represented in several ways, as

we shall see later in this section.

Number Bases

We are all familiar with decimal, or base ten. Single digits range

from 0 to 9, and 10 means ten. This familiar number system has little

relationship to the internal workings of a computer. Other number

systems are better suited than decimal to express number values in a

computer.

Binary, or base two, uses only the two digits 1 and 0 to represent

numbers. Usually binary digits (bits) are grouped in sets of four.

As you shall see, this grouping makes the conversion between binary
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and hex simple. Each bit represents digital logic high (1) or low (0)

voltage state. Like base ten, the rightmost digit is the "ones

place". The next digit to the left is base two to the first power, or

2l = 2. Two to the second power, or 4, is next, followed by two to

the third power, or 8. As an example, the decimal number eleven is

written as 1011 in binary. If you align each digit with the value it

represents, you’ll see the correspondence more clearly:

8421

1011

To convert this number to decimal, add the decimal values for each

position multiplied by the binary digit in that position. In this

case, 1x8 + 0x4 + 1x2 + 1x1 = 11. Thus we just add the decimal values

for each positon whose bit is one.

The HP-41 uses 8-bit bytes in user memory. The maximum value of a

byte is 1111 1111 base two, or 255 decimal. The leftmost bit

represents 128, the next 64, then 32, 16, followed by 8, 4, 2 and 1.

The sum is 255.

Even though the machine works in binary, this notation 1is too

cumbersome for general use. Hexadecimal, also called hex or base

sixteen, is a convenient compromise between the decimal system we all

know, and binary, which computers use internally. Each group of four

binary digits can be represented by a single hex digit, which is also

known as a nybble. Thus, any 8-bit byte can be conveniently expressed

as two 4-bit nybbles.

Each hex digit symbolizes a decimal value from 0 to 15. Digits above

9 use the letters of the alphabet A through F. The binary equivalents

of the 16 different hexadecimal digits are shown below:



Binary Hex Binary Hex

0000 0 1000 8

0001 1 1001 9

0010 2 1010 A

0011 3 1011 B

0100 4 1100 C

0101 5 1101 D

0110 6 1110 E

0111 7 1111 F

These equivalences are also shown at the bottom of the byte table

(discussed later in this chapter).

Hexadecimal is used throughout this book to express addresses in

memory, contents of registers, and values of bytes in memory. The

word hex will generally accompany any value that is given in

hexadecimal. The nybbles will generally be separated into groups of

two or three for easier reading. When you see a number which does not

have any digits from A to F, whose digits are not grouped, and which

is not referred to as a hex number, you may assume that it is a

decimal number.

Hex is a natural choice for ZENROM owners since special Alpha

characters can be keyed in using hex values, and the CODE, DECODE,

MCED and RAMED functions use hex. Decimal equivalents are provided in

almost all cases. This will be helpful if you are using XTOA, ATOX,

or some of the PPC ROM functions like LB and MK to construct synthetic

instructions. However the hex values more clearly indicate the

underlying binary structure. This structure is important in many of

the examples, so you should be sure to look at the hex values even if

you are not using them.

Register addresses are three hex digits long. To convert these three

nybbles to decimal requires a little math. If you aren’t familiar

with these conversions, you should read the following example
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carefully. You may want to check your results by using the PPC ROM

routines "TB" and "BD" (the PPC ROM manual has some helpful material

in the writeups for these programs). Or you could use an HP-16C,

switching between HEX and DEC modes with the number you wish to

convert in the display. The HP-16C manual can also help you

understand number bases and conversions.

To convert address 1AB from hex to decimal, you first need to figure

out the decimal quantity each digit represents. The ’B’ is in the

ones place (16 to the 0 power). ’A’ represents the number of sixteens

(16 to the first power). Finally we have ’l’ in the two-hundred-

fixty-sixes place (16 to the second power). Now multiply each nybble

by the appropriate value and sum them:

B: 11*1= ll

A = 10 ¥ 16 = 160

1 = 1 *¥256 = 256

427 decimal

Try several examples if you find this difficult to understand. You

will need a working knowledge of base conversions to get the most out

of some sections of this book.

The Byte Table

The Byte Table (see Figure 1.1 on page 8) collects a variety of useful

reference information on byte structure for advanced HP-41 users. A

durable plastic version of the byte table is available (see Appendix

B). This plastic card, which fits inside the HP-41’s carrying case,

is called the QRC (Quick Reference Card for Synthetic Programming).

In addition to the QRC, serious synthetic programmers should purchase

Jeremy Smith’s "SYNTHETIC Quick Reference Guide". It has a

wealth of additional information on the internal workings of the HP-

41, most of which you will understand after reading this book.
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Figure 1.1a The HP-41 Byte Table, Rows 0 to 7
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Figure 1.1b The HP-41 Byte Table, Rows 8 to F

 

  
  

   
   

 
   

   3
3

d
J

g
v

6
8

L
9

S
v

€
l

L
0  
 

XI1IHINAS
‘2861

©
O
N
I
W
W
V
Y
O
0
¥
d

DILIHINAS
¥O4

Q
Y
Y
D

IDNFA3IHIY
MOIND

D
L¥-dH



Each of the 256 squares in the byte table represents one of the 256

possible byte values. The QRC is printed on both sides, each with

eight rows and sixteen columns of squares. Each square contains four

to five pieces of data about that particular byte value. The color-

shaded areas designate prefixes for multi-byte instructions, examples

of which are given on the back of the card. The QRC also has a list

of flag functions on the front.

The byte table and QRC allow conversion between hex, decimal, binary,

user code instruction prefixes, instruction suffixes, display

characters, and printed characters. The hex value of a byte is in the

row/column format. For instance, to find the byte corresponding to

hexadecimal 49, look at row 4, column 9. At the bottom of this box is

the decimal equivalent 73. Thus 73 equals hex 49. This can be

checked as follows: 73 = (4*16) + 9.

The top of each square gives the identity of the byte when it is

treated as an instruction. If the byte can be used as the first byte

of a multi-byte function, this prefix is listed as it would be shown

in PRGM mode (FIX, GTO, etc.) or described briefly (GLOBAL, TEXT 7,

etc.). By the time you finish this book, you will be fully informed

on these latter, less recognizable prefixes.

The front side of the QRC is mostly white, with only one group of

three squares shaded in blue (indicating text-related prefixes). The

middle row of each square on the front side shows two facts about each

byte. On the left is the way the byte would be shown as the second

byte (called the suffix or postfix) of a two-byte instruction. To the

right is an actual reproduction of the byte as it appears in the Alpha

register as a character. Because all of the characters in the second

half of the byte table and QRC are displayed as a starburst or "boxed

star" (all 14 display segments lit), this is not printed on the

reverse. See decimal byte 16, the first byte in row 1, if you aren’t

sure what a starburst looks like. The postfixes listed on the back

are IND 00 through IND e, which shows you that the postfix byte values
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from rows 8 through F are used for indirect addressing.

The bottom left of each box has the decimal equivalent listed, with

byte values 0 to 127 on the front, and 128 to 255 on the back of the

QRC.

The bottom right of each box shows how the byte is printed as a

character by the HP-82143 printer (the one that plugs directly into

the HP-41). The HP-IL printer treats a few of these characters as

control characters, but most of the characters are printed the same as

on the HP-82143. Characters on the reverse of the QRC disappear from

text lines in program listings, and characters that have a shaded

background cause additional strange printer behavior when they are

listed as part of a text line in a program.

Other terms

Backarrow refers to the key with an arrow on its face, pointing to the

left. It is located on the rightmost key in the third row of the

keyboard. The backarrow key serves several functions including

correcting errors while entering numbers and characters or while

filling in prompts. In PRGM mode it is used to delete lines.

A NOP (No OPeration) function mainly serves as a place holder. NOPs

are often used after ISG or DSE instructions when you want the same

instructions to be executed regardless of whether a skip occurs. Many

functions can be used as NOPs, including unused labels (LBL 01, etc.),

STO X, or CLD. Each of these has restrictions or disadvantages. The

best choice is the synthetic instruction TEXT 0 (F0, decimal byte

240). ZENROM owners can execute "NOP" to insert a Text 0 byte in PRGM

mode. CCD Module owners can press XEQ ENTER 240 240 to get two NOPs.

The only effect of this NOP instruction is clearing the stack Ilift

disable. (The ALPHA register is not disturbed.)

NOMAS is an acronym meaning NOt MAnufacturer Supported. Synthetic
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functions were not intentionally designed into the instruction set of

the HP-41. Some have quirky, unpredictable or undesirable effects.

For these and other reasons, Hewlett-Packard has decided not to fully

support and guarantee these functions. Therefore, if you have

problems with the material in this book, please do not contact HP.

They have kindly provided an unusual amount of inside information to

the synthetic programming community with the agreement that they have

no obligation to provide the same level of support that they give to

(nonsynthetic) functions discussed in their manuals.

Abbreviations

Because of the fact that many references are made throughout this book

to other books, three abbreviations are used to keep from repeating

the same information many times over. See Appendix B for sources of

these books and other materials.

SPME -- "HP-41 Synthetic Programming Made Easy" by Keith Jarett

XFME -- "HP-41 Extended Functions Made Easy" by Keith Jarett

EYHP -- "Extend Your HP-41" by W.A.C. Mier-Jedrzejowicz

SQRG -- "HP-41 SYNTHETIC Quick Reference Guide" by Jeremy Smith

Memory Structure

Within the HP-41, there are two types of memory: RAM and ROM. RAM

(Random Access Memory) is also known as user memory because it can be

altered by the user. Refer to Figure 1.2, RAM Memory Structure on the

next page (or the similar figure on page 4 of SQRG), which shows the

various areas which make up user memory. ROM is Read Only Memory, the

kind of memory which is contained in application modules. This memory

cannot be altered.

-12-



Address

3FF

300

2FF

200

IFF

0Co

OBF

040

00F

000

RAM

 

Extended Memory

#2

 

 

Extended Memory

#1

 

 

Top of Main Memory

-data register 0-------------

top of User programs

b531\0—

I/O Buffer area

Key Assignments
 

  Top of X-funct. X-Mem.

Bottom of X-Funct. X-Mem   
Nonexistent Registers

(VOID)
 

 
Status Registers

  

Figure 1.2 RAM Memory Structure
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The topmost registers are reserved for data. The number of data

registers is set by the SIZE (or PSIZE) function. The SIZE can be set

as low as zero, in which case there are no data registers. After

MEMORY LOST, the number of data registers is 100 for an HP-41CX, or

273 for an HP-41CV (or HP-41C with Quad memory module). This area

contains the numbered data registers, in which data from operations

such as STO 00 are held. The address of data register 00 is also

known as the ’curtain’.

Data registers up to 99 can be addressed directly by normal functions.

Plugging in the ZENROM will extend this capability up to register 111

by making postfixes 100 to 111 keyable (but don’t go beyond 111 unless

you realize that you are accessing other, and dangerous, areas of

memory!). Synthetic instructions with postfixes up to 111 can be

created with the Byte Grabber, as will be explained in Section 4B.

The structure of data in a register is important to understand. This

subject is covered in SPME at an introductory level, and in EYHP in

slightly more detail. In the next few paragraphs we will briefly

review this subject.

Within a register, the bytes are numbered 6, 5, 4, 3, 2, 1, and O,

from left to right. Nybbles are numbered 13 to 0, also from left to

right. For example, the number -2.349817 E-98 is stored in a register

as follows:

Byte 6 5 4 3 2 1 0

Nybble 1312 1110 9 8 76 54 32 10

Contents 9 2 3 4 9 8 1 7 00 09 0 2

Meaning - 2. 34 9 8 17 00 O0E- 98

Negative signs are represented by the nybble 9, positive signs by the

nybble 0. Nybbles 12 through 3 of a register contains the mantissa in

Binary Coded Decimal (BCD) form. The mantissa of a number is simply

the 10 numeric digits without sign, exponent, or decimal point. Each

nybble (4 bits) represents one of the ten decimal digits that make up
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the number. These nybbles range in value from 0 to 9 unless the

register contains Alpha data or a Non-Normalized Number (NNN). These

will be discussed near the end of this section.

The next nybble to the right, nybble 2, is used for the sign of the

exponent. Like the sign of the entire number, its value will be 0 for

positive exponents and 9 for negative exponents. 9 is used for

numbers with absolute values between zero and one. The exponent is

represented in a special way, by adding 1000 and then taking only the

last three digits. This speeds internal arithmetic. In the above

example, 1000 + (-98) = 902.

Alpha data is stored in a register as hex 1x, followed by 6 character

bytes. The value of the x nybble is normally 0, but anything will do.

If there are fewer than 6 characters in the string, nulls (hex 00) are

added after the leading 1x byte to pad the result to a full 7 bytes.

For example, the string "ABCD" is stored in a register as hexadecimal

10 00 00 41 42 43 44,

Below the data registers are your user (Catalog 1) programs. The

number of registers this area takes up will vary, depending on the

total byte count of the programs. Program instructions are stored in

sequence working from higher-numbered registers to lower-numbered

registers, and from byte 6 to byte 0 (left to right) within a

register. The last instruction in program memory is the permanent

.END. (refer to Section 4G), which occupies bytes 2, 1, and 0 of its

register.

The free registers are below the .END. . These are unused registers,

containing only nulls (hexadecimal 00 bytes). The number of free

registers can be seen by pressing RTN in run (non-PRGM) mode and

pressing PRGM. You will see 00 REG 46 (or something similar), in this

case indicating that 46 registers (322 bytes) are unused. One full

free register is needed to insert program lines in an existing program

unless lines have been deleted at that position in the program. The
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only other exception is when an addition is being made after the last

line of the last program on Catalog 1 (just before the permanent

.END.).

Below the free registers are the buffers. The order of the buffers,

from hex address 0CO (decimal 192) upwards is as follows: Key

assignments, followed by alarms and other I/O buffers. One exception

is that the temporary buffers used by the Solve and Integrate

functions of the Advantage Module are placed below the key

assignments. Unless you own an HP-41CX, all buffers except those for

the key assignments are used by plug-in devices.

FO (240 decimal) is placed in byte six of each key assignment

register. Each key assignment register can hold two assignments.

Bytes 2 and 1 (for the first assignment) contain the function code.

Two-byte functions (XROMs and synthetic assignments) are stored just

as they would be as instructions within a program. One-byte functions

are preceded by an 04 filler byte. Byte 0 contains a keycode for the

assigned key (see SQRG p. 36, ZENROM p. 44, or EYHP p. 213). An

identical scheme is used for the second assignment, with the function

code in bytes 5 and 4, and the keycode in byte 3.

The HP-41 always fills the key assignment registers from right to

lef't. When the HP-41 deletes an assignment, it clears only the

keycode from the assignment registers. The appropriate bit from the

assigned key indicators in status registers - or e is also cleared

(see SQRG pg. 6). The two remaining bytes are not cleared, but they

will be overwritten by a new assignment. New assignments are placed

in absolute address 0CO (192 decimal) unless a keycode of zero

(indicating an unused half-register or a cleared assignment) is found

within the key assignment registers. The old key assignments (and

buffers) are moved up one register and 0CO is used for the new

assignment.

ZENROM or CCD Module users may want to alter each FO in byte six of
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the key assignment registers to F6, using RAMED or POKEB. This

technique prevents the contents of these registers from being altered

by packing or from being executed as program steps. Execution of the

key assignment registers is possible using STO b, the Byte Grabber,

when status register ¢ does not point to the .END. (see Section 4F),

or the conditions which may arise while using the methods in Sections

4G and 41. The HP-41 will not alter this leading byte of the key

assignment register unless both assignments are deleted from the

register and you PACK, in which case the contents will be discarded.

All of the previous segments of RAM have variable lengths and

adresses, except for the upper and lower limits. RAM from 1FF to 0CO

(511 to 192 decimal) contains 320 registers. However, three bytes of

this are used for the permanent .END., which is not included in the

maximum byte count of 2,237. And because the .END. cannot be removed,

one register will always be allocated to program memory, making 319

the maximum SIZE. The remaining RAM addresses contain the Extended

Memory of the Extended Functions module (which is internal to the HP-

41CX) and the status registers. These addresses are fixed.

Status registers

The status registers occupy the 16 RAM addresses at the bottom of

memory from 0 0 0 to 0 O F (0 to 15 decimal). Their names are T, Z,

Y, X, L, M, N, O, P, Q ', a, b, c, d and e, respectively. Refer to

Figure 1.3 on the next page (also SQRG p. 6, SPME p. 110).
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Nybble 13 12 11 10 9 8 7 6 5 4 3 2 1 O

 

e Shifted Key Assign. Bit Map PTEMP2 Line #

|S6UserFlags

¢ |REGstartunusedColdstartReg.0addr.END.

b |RewrnswexPrempointer

|Returnstack

- |onshirteaeyAssien.BitMapScratch

0| semten

p |scrateh AlphaCharacters22to24

o|AlphaCharacters15t021

NAlphaCharacters§to14

M|AlphsChamctersitor
|LastXRegister

x|XRegister

v| YrRegiser

2|zRregiser

r|TResiser  
 

Figure 1.3 The Status Registers

-18-



The status registers are also known as the ’system scratch’ or simply

’scratch’ registers. This is because the HP-41 uses these registers

for temporary information storage and various housekeeping functions.

They are used to keep track of which keys have been assigned,

data/program partitioning, the modes and flags of the 41, pending

subroutine returns, your location in program memory, and so on. Both

internal functions and plug-in devices use various areas within the

status registers for temporary data storage during operations. This

section describes the information contained in the status registers.

For tips on using some of these registers within your programs, see

Section 4A of this book (also SQRG p. 7, SPME p. 111-118).

The five registers from address 000 to 004 make up the stack. You

should be familiar with T, Z, Y, X, and L from using the HP-41 as a

calculator, though the absolute addresses of these registers may be

new to you.

The internal structure of the numbers and Alpha data in a stack

register is the same as described above for numbered data registers.

The value of the leftmost nybble is 0 for positive numbers, 9 for

negative numbers, and 1 for Alpha data. Of course, other values are

possible, such as after recalling the contents of status registers

other than the stack. These values are known as Non-Normalized

Numbers (NNNs). Such numbers can be safely held within the stack and

are not subject to alteration.

However, an NNN will be altered by functions that recall it after it

is stored in a numbered data register. This alteration process is

called normalization, and is part of the test the HP-41 performs to

ensure the register actually exists. The normalizing functions are

RCL, X<>, VIEW, and ARCL. Because the status registers are always

present, this test is skipped when a status register is recalled or

viewed. As a consequence, operations involving the status registers

are a little faster than those which use numbered data registers (see

Appendix A of SPME, or SQRG p. 11). Also see page 35 in the SQRG for
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more details on normalization.

Status registers M, N, O, and part of P make up the Alpha register.

The HP-41 makes them appear as one continuous register, holding up to

24 characters. The P register only contributes bytes 2, 1, and 0 to

the Alpha display. The leftmost four bytes are used during number

entry or display, and by the CATalog and WSTS functions. The other 21

of the 24 characters are contained within registers O, N, and M.

When characters are keyed into Alpha or recalled using ARCL, they fill

the Alpha register from right to left. The first character entered

will occupy byte 0 (the rightmost byte) of register M. As more

characters are added, existing bytes are pushed to the left. Register

M holds the first seven Alpha characters. When more than seven

characters are brought into Alpha, they will push the leading

characters into register N. This continues into registers O and P in

a similar way. When the 24th position (in Alpha register P) is

filled, a warning tone sounds (provided that flag 26 1is set),

indicating that addition of further characters will cause loss of

data. However, the entire count of 28 characters in these four 7-byte

registers can be safely used if you remain in ALPHA mode (See SPME pg.

112).

Register Q (address 009) is used by the HP-41, the Extended Functions

and the Printer for Alpha scratch. This is the reason normal LBL,

GTO, and XEQ functions are limited to seven characters. When

synthetic GTO and XEQ functions are created with more than 7

characters, the HP-41 will search for a label that matches the last

seven characters of the Alpha GTO or XEQ instruction.

Register - (append), also known as register 'R’ to ZENROM users,

contains a bit map of the unshifted key assignments. Its hex address

is 00A (decimal 10). ZENROM owners should refer to page 44 of their

manual, or see SQRG, p. 6 and 36. Each unshifted key corresponds to

one of the bits in this register. The HP-41 uses this register like
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an index in a book; it checks this register whenever an unshifted key

is depressed. The HP-41 then searches for an assignment only if the

corresponding bit is set, indicating that an assignment is present.

All unshifted key assignments can be temporarily suspended by storing

zero in this register. See Section 6A (pages 231-235 of this book),

pages 119-124 of SPME and pages 193-198 of XFME for suspend/restore

key assignment ("SK"/"RK") programs. Also see Section 4A.

The append register also contains an area used as scratch by the HP-

41. Nybbles 4, 3 and 2 contain the last function executed, while

nybbles 1 and 0 hold the keycode during PASN.

Register a (address 00B, decimal 11) contains part of the subroutine

return stack. Since each pending return is represented by two bytes,

this seven-byte register contains three and a half return addresses.

Each two-byte return can be written as four hexadecimal digits or

sixteen binary bits. The RAM return address format in binary is:

0000,bbbr,rrrr,rrrr.

This format, minus the leading zeroes, is the same as that used within

three-byte GTOs, three-byte XEQs, and global functions. The nine r’s

above represent the absolute register address. (For the other

functions listed above, this would be relative to the instruction

itself rather than the bottom of memory.) The digits bbb identify the

byte within that register. RAM return addresses point to the last

byte of the XEQ or XROM instruction that caused this address to be

pushed into the subroutine return stack. Since there are nine bits

representing the number of registers, up to hex 1FF = decimal 511 (two

to the ninth power minus one) registers can be encoded. Since 1FF is

the highest possible register address in main memory, any address or

jump distance can be stored using 9 bits.

ROM return addresses have a different represenatation:

pppp,bbbb, bbbb,bbbhb.

ROM return addresses consist of the page number (p p p p) followed by

a twelve-bit byte (or word) number within the 4096 (4K) bytes of that
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"page" of ROM. The page addresses are not the same as the physical

port number. See Figure 1.4 for a list of the sixteen page addresses

(SPME p. 115, SQRG p. 38).

Most ROMs to date use the Lower 4K of their respective ports.

Exceptionsare the Auto-Start/Duplication (AUTOST 1A) module, ZENROM,

and all 8K ROMs (which use both Upper and Lower 4K). See the

material later in this section for more details on ROMs.

Register b contains two and a half pending return addresses plus the

program pointer. The hex address of register b is 00C (decimal 12).

As you can see in Figure 1.3, the first, second, and half of the third

return address are contained within status register b.

Page Address Device or physical port

Internal ROM 0

Internal ROM 1

Internal ROM 2

Internal ROM 3 (HP-41 CX X functions)

Diagnostic ROM

Time Module (internal for CX, page switchedw
A

W
B
N
=

O

with extra CX Time and X functions)

Printer (either 82143 or HP-IL)

HP-IL Module Mass Storage

Port 1, Lower 4K

Port 1, Upper 4K

Port 2, Lower 4K

Port 2, Upper 4K

Port 3, Lower 4K

Port 3, Upper 4K

Port 4, Lower 4K

Port 4, Upper 4KM
M
Y
g
Q
W
»

O
o

3
o

Figure 1.4 ROM page numbers
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Register b also contains the program pointer in the two rightmost

bytes. If you are in a ROM program, the program pointer has the same

format as for a ROM return address. In a RAM program, the program

pointer has a slightly different format than the RAM return addresses

format. The bbb field is positioned differently:

Obbb,000r,rrrr,rrrr.

In ROM, programs are stored from byte 000 of a page up to byte FFF.

Therefore when executing a ROM program, the program pointer is

incremented at each non-branching instruction. In RAM, this situation

is reversed. Programs progress from higher to lower addresses, and

the program pointer is normally decremented as instructions are

executed.

The program pointer always indicates the last byte of the previous

instruction in memory rather than the address of the function

currently shown in PRGM mode. This becomes especially apparent when

you RCL b in run mode while positioned to the .END.. Several nulls

may exist between the last instruction and the .END., despite packing.

Register b never points to nulls in PRGM mode; it always points to the

last byte of the instruction that precedes the group of nulls.

ZENROM users can find evidence of this behavior by using the RAMED

function in PRGM mode. The left-hand "window", showing one of three

bytes visible in hexadecimal form, is the byte indicated by register b

when RAMED is first executed. RAMED always returns to the line where

you started because the contents of register b are maintained.

If you are still doubtful, set the SIZE to 000. Now CAT 1 and R/S

immediately. RCL b in run mode. Decode this address using "PD" (PPC

ROM), DECODE (ZENROM), DCD (CCD Module) or STO M,

ATOX, ATOX. The result will be 3584 (=7*512), 02 00, or 2, 0. All

these symbolize an address of byte 0, register 512:

0000,0010,0000,0000,

the byte preceding the first instruction in program memory. This is

the only case in which a register address of 512 (hex 200) is used.
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When an XEQ or XROM (execute ROM program) instruction is encountered,

the address of the last byte of the XEQ or XROM instruction is pushed

onto the return stack in the appropriate return address format (ROM or

RAM). The program pointer is then moved to the program that was

specified by the XEQ or XROM instruction.

When executing a RTN or END, the HP-41 halts if the return address is

zero, indicating that no return is pending. If there is a nonzero

return address, the subroutine return stack is dropped, and the first

return address becomes the new program pointer. (In the case of a

return to a RAM address, the bbb bits are moved to the left to

transform the return address format into normal program pointer

format.) This results in the pointer indicating the byte prior to the

instruction which is to be executed next.

Status register ¢, at address 00D (13 decimal), contains vital

information relating to memory allocation. This includes the address

of the summation registers, register 00, and the permanent .END.. The

absolute address of the summation registers indicates the location of

the lowest of the six registers in the summation block. If the number

of data registers was decreased after the ZXREG function allocated

these registers, the first three nybbles (13, 12, and 11) of register

¢ may specify NONEXISTENT registers. Addresses above hex 1FA (with

full memory) result in this error message when a function that refers

to the summation registers is executed.

Nybbles 5, 4, and 3 of register ¢ contain the address of the first

data register. This data/program memory separation, named the

"curtain" by its discoveror, William C. Wickes, will be hex 200 when

the SIZE is zero with full memory. The curtain can be synthetically

set to any value desired. However, if the register immediately below

this address does not exist, MEMORY LOST will take place the moment

the HP-41 enters standby mode (not running the program).
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Nybbles 2, 1, and 0 contain the address of the .END.. Don’t mess with

this.  Altering this address will result in an inability to access

Catalog 1. Global branching instructions will be unable to find RAM

programs, and packing may cause MEMORY LOST. See Section 4F for a

discussion of the ways you can circumvent this. Setting this pointer

to a nonexistent address will also cause MEMORY LOST.

The surest way to cause MEMORY LOST is to disturb the "cold start

constant" in nybbles 8, 7, and 6. Anytime the HP-41 finds something

other than hex 169 here, the result is swift and final. Nybbles 10

and 9 of register ¢ are claimed in some references to be used by the

printer for scratch, but in fact they are not disturbed by the HP-41.

The CCD module does make use of some of these otherwise unused bits.

An expert synthetic programmer can alter register ¢ in a running

program, perform some operations, and restore it to its former value.

Until such time as you have the necessary skills, it’s best to leave

register ¢ alone. Programs which use register ¢ are both powerful and

dangerous. Register ¢ should never be used for a scratch pad. 

Register d (address 00E) contains the 56 flags of the HP-41 system.

Flags 00 to 29 are called user flags, while flags 30 to 55 are termed

system flags. The system flags cannot be altered directly by SF and

CF instructions. Flag 00 is at the extreme left of register d; flag

55 is at the far right. Each flag occupies one bit of the register.

The correspondence between bit positions and flags can be seen at the

bottom of the upper half of the QRC. Figure 1.5 briefly describes the

use of each flag.

Many of the powerful PPC ROM routines use register d in order to

manipulate individual bits. Before the capabilities of the Extended

Functions AROT, ATOX, XTOA, and others were available, this was the

primary way used to edit NNNs. Flags 00 to 29 can be set, cleared, or

tested directly. This allows the first thirty bits to be modified

after swapping the bytes to be altered into d.
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Flag

00 -

P
t

l
—
l
b
—
l
o
o
m

19 -

10

11

12

13

14

16

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Function See Note No.

General purpose

Auto execute

Double-wide print

Lower case print

Overwrite card (CARD RDR)

HP-IL printer modes:

MANual

NORmal

TRACE

TRACE with STACK

Record incomplete (HP-IL)

Interrupt enable (IL Development)

General purpose

Printer enable

Numeric entry

Alpha entry

Range error ignore

Error ignore

Audio enable

USER mode

Decimal point/comma

Digit grouping

CATalog mode

DMY / MDY (Time Module)

HP-IL manual I/O

HP-IL lock

HP-IL ADRON / ADROFF

Disable autostart (AUTOST ROM)

Figure 1.5 HP-41 Flags (register d)
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Flag

36- 39
40 - 41

H o
—

=
—
_
—
e

O
O

44

45

46

47

48

49

50

51

52

53

54

55

Note number:

Function See Note No.

# of digits displayed (BCD) 1

Display modes: 1

SClIentific notation

ENGineering notation

FIX

FIX / ENG (see Section 4E)

Trigonometry modes: 1

DEGrees

RADians

GRADians

RADians

Continuous ON

System data entry

Partial key sequence

SHIFT

ALPHA mode

Low BATtery

Message

SST

PRGM mode

I / O request

PSE enable

Printer existence N
N

L
N
N

N
N
K
D
D

D
D
D
D

Maintained by continuous memory

Cleared at turn-on

1

2

3 Set at turn-on

4 Clear to disable printer

5 Device-dependent, tested at turn-on

Figure 1.5 (continued) HP-41 Flags (register d)
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The PPC ROM routine "IF" and the ZENROM function TOGF allow any

individual flag to be inverted (set if clear, clear if set). Extended

Functions RCLFLAG and STOFLAG also allow groups of flags or

individual flags to be set or cleared, using a control number in X.

The Extended Function X<>F permits control of the first eight flags,

00 to 07. A decimal number similar to ATOX/XTOA is used, but the bit

correspondence you would normally expect is reversed. Rather than the

leftmost bit being the most significant digit (128), the rightmost bit

(flag 07) is. This opens up some interesting possibilities for

reversing flag patterns. Section 4H has more information on ATOX and

XTOA, and the relationship between bits and decimal values.

The e register (address 00F) contains a bit map for the shifted keys

which is identical to that used in register + (R for ZENROM users).

The last part of Section 5A shows how to alter an existing key

assignment to any one- or two-byte function using RAMED. ZENROM

owners who do not have a CCD Module or PPC ROM don’t really need to

know the hex keycodes or have synthetic key assignment programs to

make synthetic assignments. By altering an existing assignment, the

appropriate bit is set for you in the bit map. Another way to

reconstruct the proper bit maps is to read in any program from mass

storage, extended memory, wand, or magnetic card. See XFME pages 193-

198 for more details. A detailed knowledge of the internal bit map

structure is not necessary to use this method.

The three rightmost nybbles (2, 1, and 0) of register e are used to

keep track of the PRGM mode line number. After pressing RTN in run

mode or when stopping by encountering an END with no pending returns,

the value is set to 000. While a program is running or whenever the

line number needs to be updated, the value will be FFF. Since the HP-

41 is a 2.2K byte (main memory) machine, the processor knows this

number (4095 decimal) cannot be a legitimate line number. Even a full

4K page of ROM cannot contain a program of more than about 4080 lines.

Unlike BASIC programs, line numbers in the HP-41 are not a part of the
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program. This is fortunate, because it would probably double the byte

count of your programs. Line numbers are internally generated solely

for user convenience.

Extended Memory

The memory of the Extended Functions Module (XFM) is built into the

HP-41CX, and is available in a separate module for the other HP-41

models. Look between hex addresses OBF and 040 (191 to 64 decimal) in

Figure 1.2. Not all of the 128 registers contained within this memory

space are available for data, programs or text (ASCII) files. A

certain amount of overhead is required to keep things in order, such

as maintaining the illusion that this memory is one continuous block

that includes any existing Extended Memory modules.

After Extended Memory (XM) is cleared, executing EMDIR shows 124

registers available. The bottom register in the memory of the

Extended Functions module (hex address 040) contains a "header" which

links XM to any existing Extended Memory modules. Another register is

filled with seven FF (decimal 255) bytes to mark off the end of

occupied XM. This leaves 126 registers available. However, two is

subtracted from this count because any file created requires one

register for the file name and another to hold the file type and the

number of bytes and number of registers the file takes up. So the

count returned by EMDIR is exactly the number of registers available

for CRFLD or CRFLAS (CReate FiLe -- Data, or AScii).

However, for program files there is a minor exception which makes this

count inaccurate. One byte is added after the END instruction in a

program file for a checksum. This byte is the sum of all of the bytes

within the program, including the END, modulo 256. Since this extra

byte is added, don’t be surprised when your 112 byte program uses 17

registers of XM (113/7) instead of 16.

Program files within the Extended Memory of the XFM may be executed
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synthetically by constructing the proper pointer and storing it in

register b with STO or ASTO. However, you need to know what you’re

doing, or you can make the program file unreadable by GETP or

GETSUB. Running the program after it is saved in XM is OK if all of

the GTO and XEQ instructions were executed (or SST’ed) before it was

saved. This is known as compiling the branching instructions. (See

SPME pgs. 59-60). If they are not compiled, running the program in XM

will compile them. This will change the byte values of the branching

instructions, making the checksum incorrect. Trying to read the

program into main memory after that will show CHKSUM ERR, and the

program will not be read in.

Depending on the number of Extended Memory modules (0, 1, or 2), XM

may contain a total of 128, 367, or 606 total registers. Due to the

fact that the bottom register of each XM device is used to link it to

the next, and one register containing FF bytes is needed, this

translates into 126, 364, or 602 registers available. When the

directory is empty, the count returned by EMDIR will always be two

less than these numbers. For further information on XM, see Keith

Jarett’s "HP-41 Extended Functions Made Easy."

RO

ROM is an abbreviation for Read Only Memory. All HP-41s contain

internal ROMs which have instructions that tell the processor what to

do. These instructions are not the same as those used by RAM in PRGM

mode in three fundamental ways.

First, ROM uses ten-bit bytes which are also called words. Since they

are ten bits long, they cannot be expressed by just two hex nybbles.

Serious programmers can study the documentation HP made while

developing the internal (and other HP) ROMs. This material, called

the "source code", or VASM, is NOt MAnufacturer Supported (NOMADS).

The individual instructions are in octal (base 8) notation in the

early VASM listings, but they are in hex if you get a more recent
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version. The VASM listings are available from PPC (see Appendix B).

Second, these instructions are written in machine-code (M-Code). This

applies to the internal ROMs, Extended Functions, Time, HP-IL, and

others. Not all ROMs are in M-Code; many contain the user code that

you are familiar with. As an example, all of the Wand functions are

in M-Code except "WNDTST". For a good introduction to M-Code, see Ken

Emery’s book "HP-41 M-Code for Beginners".

The third major difference between ROM and RAM is the direction of

program execution. Whereas RAM decrements the address (with execution

moving from higher to lower addresses), ROM increments the address as

the program runs. This lower-to-higher scheme has little effect on

you unless you start programming in M-Code, but you should be aware of

it. Compiled GTO’s and XEQ’s in ROM are also different since there

are no register boundaries. The jump distance is recorded simply as a

number of bytes (up to +127).

The HP-41 has four ports for external ROMs and devices which contain

ROM. These ROMs can have a mixture of M-Code programs, data, and user

code programs. There are 31 possible XROM numbers to identify the

ROM: 01 through 31. No XROM may have ID number 00 (which identifies

an empty port), and two ROMs may not be plugged in simultaneously if

they have the same ID number. See SQRG p. 15-19 and 22-30. Each 4K

block of ROM must have its own ID number, and it may contain up to 64

functions.

Whenever you key in an Alpha XEQ instruction, the HP-41 quickly checks

Catalog 2 (and then Catalog 3). If a matching label is found in CAT 2,

the instruction placed in memory is a two-byte XROM function.

Removing the peripheral (ROM) from its port will cause this line to be

shown as XROM xx,yy , where xx is the ROM ID number and yy is the

function number within the ROM. Many synthetic two-byte key

assignments will preview as an XROM until the key is released. See

SQRG p. 14, ZENROM manual p. 31, and SPME p. 58-59 and 81-83.
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CHAPTER TWO - STRUCTURED PROGRAMMING

2A. OUTLINING THE PROBLEM

The most crucial step in writing a program is to define what the

program is supposed to do, and the method it will use to perform the

function. Often there are several ways of doing the same job. The

approach you take will usually have the most noticeable effect on the

length and speed of the program. "Byte shaving" techniques are not

nearly as effective as good algorithm design.

As a first step, make a list of the inputs your program will need. If

there are only two or three numeric inputs, you may want to assume

they are in the stack when program execution begins. For user

convenience, or if there are many inputs, you may want to use Alpha

prompts. Then decide what kinds of outputs the program will give. A

few special programs won’t have any direct outputs at all, but this

isn’t often the case. List the outputs, where they go, and the format

they need to be in.

Next, determine what modules and peripherals the program needs. If a

printer will be used, you need to keep this in mind as you write the

program. Your program documentation should mention all of the devices

that the program requires, or has optional provisions for, above and

beyond a "bare" HP-41C. (These days it’s probably OK to assume a CV

or quad memory if you need to.)

If the program is divided up into short sections or if it isn’t very

long, you should try to preserve all or part of the stack if that’s

practical. This is especially valuable if the program may be used by

another program as a subroutine. It’s strictly a matter of your

judgement as to whether this is important. It generally takes a few
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extra bytes to save part of the stack. Nevertheless, it’s considered

good programming practice to do so.

List the different pieces of information used by the program, what

they are, and exactly where they belong. This includes the use of

data registers, status registers (see Section 3A), Extended Memory

files, etc. The more complicated the program, the easier it is to

lose track of data. This won’t be necessary for a simple program

which only uses the stack. Try to avoid using any data registers if

the program will be executed as a subroutine. If data registers are

used, make a note of the minimum SIZE and what each register is used

for (in case you want to change the program later). Some of these

details might seem trivial now, but you probably won’t remember them

in six months, so write it down.

Before you begin to write a complex program, you need to write down

the steps needed to accomplish the work. An example of this would be

to write down the process you would go through to do the task by hand.

It’s helpful to break the job down into small, manageable chunks. It

makes the job of translating the process from words into program steps

a lot easier. If there is a formula that applies to your problem,

write it down as one of the steps. You may end up breaking it down

into smaller sections and rearranging parts of it when you translate

it into program steps. This will depend on the formula and how

complex it is.

With all of the preliminary work done, you should have a clear idea of

what you need to do. In addition, you may want to use subroutines or

a technique known as modular programming. See the Sections 2B and 2C,

which follow this section.

Since you already have the program broken down into a number of small

tasks, begin by looking at the first step. You may need to add a

section prior to this first part to set up the stack or data

registers, to test for the existence of the highest numbered data
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register needed, or to trap other errors. Once the program performs

the needed initialization, add the program steps needed to carry out

the first task. You’ll want to single-step through the program at

this point to make sure everything works as planned. Then continue to

add to the program one section at a time.

If you have trouble translating one of the tasks you wrote down into

program steps, there are several techniques you can try. First, try

breaking it down into smaller steps. You may also find your work can

be simplified by rearranging the order of the steps or combining two

of them. If you’re still stuck, try to think of completely different

ways of doing this same job. At some point, you may have to revise

the constraints you put on the program in order to get the job done.

As the program increases in length, it’s a good idea to add a STOP

instruction to the end of the program before adding new lines. This

lets you run the program through the section that already works. From

there, you can single-step the new section to check its performance.

Remove the STOP function after the new section works properly. Repeat

this technique for each of the tasks you listed.

After you complete the program, you should add a table showing how the

stack is used. Once again, this is especially valuable if the program

might be used by another program as a subroutine. Be sure to make a

note of any status registers that are altered, including Alpha. You

can look at the programs in the PPC ROM User’s Manual or the forms

used by the Hewlett-Packard Users’ Library for good ideas on areas to

cover in your program documentation.

2B. SUBROUTINES USING XEQ

The three types of XEQ instructions are known as local, indirect (IND)

and Alpha. Nonsynthetic Alpha XEQ functions range from three to nine

bytes in length. They are composed of an ordinary text line preceded

by a byte with decimal value 30 (1E in hex). Because of this simple
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structure, the jump distance from the XEQ instruction to the label

cannot be compiled within the bytes of the XEQ function. This makes

Alpha XEQs slower than local XEQs, which do compile this information.

When a local XEQ function is encountered in a program for the first

time, the direction and distance to the matching label are recorded

within the XEQ. Twelve bits are used to record the the relative jump

distance, and one bit indicates the direction. See SQRG page 39 and

EYHP page 66.

The Alpha XEQ will vary in execution speed according to the position

of the label searched for. Alpha labels are a part of the Catalog 1

chain of global labels and ENDs. The search for the correct label

begins at the bottom of Catalog 1 and proceeds upward. If the label

being executed is near the bottom of Catalog 1, the search won’t take

long. But when the label is near the top of the catalog, it can take

anywhere from one-fourth of a second to well over a second to find the

matching label. For this reason, you should use a local label if the

label being executed is within the same program. You can accomplish

this in an existing program either by replacing the Alpha LBL and XEQ

with local functions or by adding a local label next to the existing

Alpha label and using a local XEQ. The advantage of this is that the

local XEQs within the program will be speedy, and access by other

programs is not lost in the process. Refer to Section 3E for more

information on labels.

An XEQ IND or GTO IND instruction also cannot be compiled. All

indirect XEQ and GTO functions are two bytes long. The first byte has

a decimal value of 174, or AE in hexadecimal. This first byte is the

same for indirect GTOs and XEQs. The difference between the two types

of instructions lies in the fact that indirect XEQs have postfix

values from the second half of the byte table. Because of the many

similarities between these two functions, XEQ IND will not be covered

in detail here. Refer to Section 2D for information and examples of

indirect branching using GETKEY followed by GTO IND.
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Local XEQ instructions are always three bytes long. The first byte of

a local XEQ function has a decimal value from 224 to 239 (EO to EF),

depending on the value of the compiled jump distance. The second byte

is only used for this compiled information. The third byte contains

two pieces of data. The leftmost bit indicates whether the direction

of the compiled jump is up (0) or down (1) from the location of the

XEQ instruction. The remaining seven bits represent the number of the

local label that the HP-41 will search for. This number can range

from 0 to 127, with 102 to 111 showing as A to J and 112 to 127

displaying as T to e. As a consequence of this postfix structure,

which is identical to that of a three-byte GTO, a program cannot

branch to synthetic indirect labels such as LBL IND e (207, 255). Any

two-byte label whose postfix is less than 128 or any one-byte label

can be used with XEQ.

The advantage of this structure for three-byte XEQ (and GTO)

instructions lies in the fact that twelve bits are used to represent

the magnitude of the compiled jump. This allows a compiled jump of up

to 511 registers and 6 bytes. Since this number exceeds the maximum

allowable main memory size (320 registers), you never need to worry

about the branching XEQ being too far from its matching label. The

jump distance will be compiled within the instruction when it is first

executed, and this makes subsequent executions very quick. The

equivalent of GTO and XEQ instructions in ROM use a sixteen-bit field

to store the jump address. This allows branching anywhere within the

HP-41’s 64K ROM address space.

If compiled jump information is not present (for example, the first

time the GTO or XEQ instruction is encountered), the HP-41 must search

for the corresponding label. The search for a matching local label

begins at the branching function (GTO or XEQ), and continues downward

through the program until the label is found, or an .END. or END is

encountered. If this happens, the search continues from the first

line of the program until the matching label is found, or the original

address of the branching instruction is reached. If no matching label

-37-



is found, the NONEXISTENT error message is displayed and program

execution halts. Otherwise, the distance is compiled (stored within

the GTO or XEQ instruction itself) and program execution continues

from the label.

Any time a change is made to a program, the HP-41 resets all of the

jump distance bits to zero within branching instructions. This

process is known as decompiling. This is discussed in detail in

Section 4G, where techniques are presented to avoid losing the

compiled information contained within a program read in from a mass

storage device. Avoiding decompiling will save the time needed to

recompute the jump distances as well as the effort it takes to run or

SST each local branching instruction.

XEQ instructions which branch to local labels compile jump distance

information, while other types of XEQs do not. For this reason, they

are always faster than indirect or global XEQs. Not only are they

faster, but they can be up to four bytes shorter than a global XEQ

instruction. Local XEQ functions are generally better than these

other types when branching within the confines of a single program.

There is a synthetic key assignment which is very useful for local XEQ

functions. Its "MK" inputs are 0, 229 (hex 00, E5 for ZENROM users).

With this key assignment, you can create XEQ instructions with byte

values 229, 0, nnn, with nnn being equal to the decimal number you key

in. The number keyed in can range from 000 to 255. Numbers in excess

of this amount are interpreted by the HP-41 modulo 256. That is, only

the remainder after division by 256 is used. In PRGM mode, the

function created is utilized normally. However, in run mode,

postfixes from the second half of the byte table correspond to the

synthetic two-byte indirect labels mentioned before. As an example,

filling in the prompt with 255 will branch to LBL IND e, which can’t

be reached by any instruction executing in PRGM mode.
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When a key assigned with 0, 229 is pressed, the distinctive prompt

"$T+N IA __" appears. Fill in the prompt with the decimal value of

the desired postfix. Using values 100 and 101 will give instructions

that display as XEQ 00 and XEQ 01, respectively. Don’t let their

appearance deceive you. These functions will execute synthetic labels

100 and 101 (which also display only the last two digits!). The

decimal values 102 to 127 create XEQ instructions for labels A through

e. See the left side of the middle row in each appropriate box of the

byte table for the suffix that will be shown for these values.

The XEQ functions are very useful because they allow you to make use

of a subroutine without disturbing the flow of your program. Program

execution continues (after the subroutine has finished) at the line

following the XEQ instruction. Any series of repeated program steps

can be made into a subroutine.

Using XEQ in this way may not always be desirable. If speed is of the

utmost importance, you may want to leave repeating sequences of

instructions as they are. If you’re interested in saving bytes, the

subroutine should contain nine or more bytes if it is to be executed

twice, six or more bytes when executed three times, and at least five

bytes when executed four to six times. This byte count does not

include the LBL or RTN instructions which are the first and last lines

of the subroutine. See page 31 of Jeremy Smith’s Synthetic Quick

Reference Guide for a complete table of byte savings by creating a

subroutine.

To modify an existing program that contains a series of instructions

that are repeated, begin by writing down the instructions. Choose a

numeric label that is not used by the program. If you can, use one of

the one-byte labels, LBL 00 to 14. Replace each occurence of the

repeating program lines with a local XEQ instruction which matches the

label you selected. Now decide where you want to put the subroutine.

The usual place is at the end of the program. Be sure to add a RTN

function between the last line of the program and the subroutine. The
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RTN prevents program execution from dropping into the subroutine.

Then key in the subroutine’s numeric label followed by the same series

of program steps that you wrote down earlier. The END or .END. will

function as a RTN for the subroutine.

Another place a subroutine can be added is after an unconditional GTO.

This is a GTO which is not preceded by a conditional function which

may cause the GTO to be skipped. In this case a RTN is not needed

ahead of the subroutine’s starting label.

The only advantage in placing the subroutine as near to the XEQ

function as possible is that that time for the initial search is

reduced if the subroutine is below the XEQ instruction and nearby.

Subsequent executions do not need searches because the distance

information is compiled.

2C. DEVELOPING THE MODULES

Modular programming is a helpful approach for you to use whenever you

are constructing a large program. The job that the program does first

needs to be divided into more than one section. Using this approach

goes beyond just saving bytes by replacing program lines with an XEQ

instruction and a subroutine. The idea behind modular programing is

to develop subroutines which can be used as building blocks for other

programs. This approach also speeds debugging; it is simpler to debug

two 100-line programs than one 200-line program.

The utility programs contained within the PPC ROM are fine examples of

modular programming. The programs are structured so that they can be

used as subroutines. In fact, many of these programs are used

extensively as subroutines by other programs in the PPC ROM. If you

have a copy of the "PPC ROM USER’S MANUAL", you can find ample

evidence of this by looking on page 6 under the "CALLS" heading or in

the individual routines’ documentation in the "TECHNICAL DETAILS"

section.
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For example, the "PD" routine (page 358 of the PPC ROM Manual) calls

both "2D" and "QR". The "QR" routine in particular is used by many of

the programs in the PPC ROM, as you can see by checking page 6 of the

manual. As a more subtle example, consider line 58 of "PD", which is

LBL 14. This is an alternate entry point for "PD", which allows the

routine above it, "RT", to use the last 8 lines of "PD".

Though your subroutines need not be written up as thoroughly as the

routines in the PPC ROM, you should write down the inputs required,

the task performed, the outputs provided and any and all status

registers affected. If your routine uses just the stack registers,

you can show this easily with a small chart listing the contents of T,

Z,Y, X, and L before and after execution.

As an example, let’s say you are writing a program within which, at

two different places, the rightmost character in Alpha needs to be

converted to a decimal number. You have the Extended Functions module

or an HP-41CX, which has Extended Functions built in. In the first

version of the program, you used the sequence E, CHS, AROT, RDN,

ATOX in the two places where this operation was needed. But during

testing, you found out that nulls were not being handled correctly.

If the rightmost character was a null, the result of this sequence of

instructions was not zero as it should be. Instead, the null

disappeared when rotated to the left end of Alpha, and the leftmost

character was converted to decimal.

It is clear that making this function into a subroutine will save

bytes, because the necessary changes to the sequence (which is 7 bytes

already) is going to push the byte count over the nine byte minimum.

As you may recall from the previous section, a subroutine executed

twice should contain nine or more bytes. So you replace E, CHS, AROT,

RDN, ATOX with XEQ 10 in both places, go to the last line of the

program and key in RTN, LBL 10.
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The revised subroutine needs to meet several requirements. The

contents of ALPHA must remain unchanged, except for the decoded

character, which is removed. The original contents of X and Y (when

the subroutine begins) must be preserved, and end up in Y and Z. The

decimal character value needs to be in X. Here is one solution:

ALENG Check the length before rotation

DSE X Decrease X by one and skip rotation if X was 1

AROT Rotate the righmost character to the left end

ALENG Get the new length of Alpha

- and subtract for comparison.

X=0? If X is zero, a null was dropped during the

rotation and zero is the result.

RTN Return with former X and Y in Y and Z.

RDN Otherwise get rid of the negative one,

ATOX and convert the character to decimal

RTN The result is now in X; former X, Yin Y, Z

There are always several ways to accomplish the same result in a short

routine like this. Often there are two different approaches that

achieve the minimum byte count. The important thing is to check that

your routine does in fact perform correctly, even if the inputs are

unusual. In the case above, the original routine failed to correctly

translate a null character. One of the hardest parts of developing a

program is to make sure that you have considered all these special

cases. This is the source of the worst kind of "bug"; one that lurks

in the background, ready to surprise you long after you think the

program is working.

Here are a few special cases that your programs should be able to

handle, unless you choose to exclude some of them by explicitly

stating the restrictions in the program’s documentation:

Insufficient SIZE

Use a RCL nn instruction at the start of the sequence, or

something fancier, like XROM "VS" from the PPC ROM.
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Inputs outside allowed range or of the wrong type

Generating the appropriate error message is normally not a

problem unless your program sets flag 25 (for example, to

check the SIZE) before it checks for input errors.

Nonexistent files

It is best to check for these before you get too far into

the program.

Flag 25 set

Should not disrupt the program. This 1is perhaps the

toughest case to handle. You can take the easy way out by

putting a CF 25 instruction near the top of the routine. In

the routine above, however, the status of flag 25 is

preserved because none of the instructions can clear flag 25

when performed in the given sequence.

When you are writing a particular module that will only be used as

part of a larger program, it is fair to make assumptions about the

SIZE, input characteristics, and flag settings, if you make sure that

these assumptions will be checked earlier in the larger program.

Naturally, these assumptions should be documented if you hope to avoid

lurking bugs the next time you use the module for another purpose.

2D. PUTTING THE MODULES TOGETHER

After you have a set of program modules, you can put them together in

a few different ways. The most obvious way is to string the modules

together end to end. This works fine as long as the flow of your

program is linear, or "straight through". It also allows one or more

modules to be repeated several times. Just enclose them in a loop,

with a label at the top and a test instruction and GTO at the bottom.

However, this method needs to be modified if a module is used in more

than one place in the program. One way you can handle this situation

is to put the module at the end of the program, and put an XEQ
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instruction at each place in the program where you need to use the

module.

But what if you don’t know ahead of time which modules will be needed,

or in what order they will be used? Then you need to use another

trick. First, give each module a different numeric local label. At

each step when a new module is needed, you need to specify the label

number to identify which module is to be used next.

There are two ways to get the label number of the module to be used.

If the module selection depends on the output of the previous part of

the program, your program can compute the label number of the needed

module, or it can look up the number from a stored table by using a

RCL IND instruction. If the module selection depends on the user of

the program, he can be prompted to press a key (more about this later)

which will make the selection.

Once you have the label number that identifies the module to be

executed, a simple XEQ IND instruction will execute the module that

you want. Assuming you have the label number in the X register, you

could use an XEQ IND X instruction to call the module. But your

module may expect one of its inputs in the X register. A better

solution is the sequence RDN, XEQ IND T. Another approach is to store

the label number in a data register (say register 00), then load the

required data in the stack, then XEQ IND 00. The XEQ IND instruction

is one of the most powerful programming tools that the HP-41 has to

offer. All advanced HP-41 programmers should become fully familiar

with the capabilities of this function.

Sometimes you can use GTO IND in place of XEQ IND. For example, if

all the modules conclude with a GTO 00 instruction (including all

possible input conditions!), then all modules will end up at LBL 00.

If, in addition to this, there is only one point from which the

modules are called, then this point can be put after the LBL 00

instruction. In this case the GTO IND instruction is preferred. It
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conserves the subroutine return stack. The GTO 00 instructions at the

end of each module take the place of the more typical RTN

instructions.

Now back to a point raised on the last page. That is, how can you

conveniently get the label number for a module by prompting the user

of the program? The user certainly is not going to remember which

module has which label! But the user of the program can identify a

particular key with a particular module. To bridge the gap from key

to label number we use the GETKEY function (provided in the Extended

Functions module and in the HP-41CX). When you put a message in the

display and execute GETKEY, the calculator waits for the user to press

a key, then it puts the row/column keycode in the X register. (The

row/column keycode is two digits. The tens digit is the row number,

with row 0 being the ON/USER/PRGM/ALPHA switches, and row 8§

being the bottom row. The ones digit is the column number, column 1

being the leftmost.)

The numeric labels for the modules can be selected to match the

row/column keycodes obtained by the GETKEY instruction. This method

is used in some of the programs in "HP-41 Extended Functions Made

Easy".

Incidentally, the GETKEY function has a cousin, GETKEYX, which is

found only on the HP-41CX. If you have an HP-41CX, you should check

your manual for a description of GETKEYX. The additional features

provided are a variable wait (compared to the fixed 10-second wait

provided by GETKEY), XTOA-compatible character codes for keys

pressed in ALPHA mode, and an option to process the key on the

downstroke rather than on the upstroke. Of these, the character codes

are the most useful. They can, however be calulated from the normal

GETKEY keycodes.
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2E. A MODULAR PROGRAMMING EXAMPLE

In this section we will develop a program to automatically solve

triangles. You will be able to input any known parts of a triangle,

and the program will complete the triangle if possible, finding the

values of all the missing parts.

Creating this program is clearly a tall order. But let’s do it step-

by-step:

1) decide how you want the program to appear to the user,

2) outline the logic flow that will be required,

3) identify the modules of the program,

4) program the modules,

5) assemble, test, and debug the program.

Program appearance

First, let’s consider the data management aspects of the program, and

establish preliminary register usage and input/output characteristics.

This application is probably best suited to use of the top-row keys

both to enter data and to recall the calculated values. A reasonable

choice for top-row key functions is:

Angle A, Angle A,  Angle Aj Initialize

Side S Side S, Side S5 Area Solve

Angle 1 is opposite Side 1, Angle 2 is opposite Side 2, and Angle 3 is

opposite Side 3. The sides of the triangle are stored in data

registers 01, 02, and 03, and the angles are stored in registers 04,

05, and 06. This allows the sides to be recalled using the natural

keystroke sequences RCL A (which gives RCL 01), RCL B (02), and

RCL C (03). To start the program, press SHIFT e. This clears all

angle and side information. Then key in a triangle element and press

the corresponding key. Continue until all known elements are entered.

Then press the [E] key to solve for the remaining elements. The
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program will fill in the missing values or indicate that the data

supplied is not sufficient for a solution.

Program Logic Flow

Now let’s look at the logic flow of the solution portion of the

program. This portion, which is the heart of the program, starts by

finding out how many sides have been supplied. (A zero value

indicates to the program that a result needs to be calculated. A

nonzero value indicates that an input has been supplied.)

While checking the data elements, the program neceds to rotate the

triangle. This could be done by interchanging data register contents,

but then we would have to keep track of the rotations so that the

original configuration could be restored.

A cleaner approach is to use the indirect addressing capability of the

HP-41. Register 00 holds a pointer to select one of the three sides

or angles for recall or storage. To rotate the triangle, we need only

increment the pointer in the sequence 1, 2, 3, 1, 2, 3, etc.

Because of the program’s complexity, a special notation will be used.

For each of the three sides, an S indicates that a nonzero value is

present, a 0 indicates that a zero value is present, and x indicates

the value has not been checked. For example, the notation SOx means

that one nonzero side is followed by a zero side, with the third side

untested as yet. The pointer is set to the third side. A similar

notation is used for the three angles of the triangle.

The cases that the program can solve are:

SSSxxx (three sides and any, all, or no angles)

SSO0xxA  (two sides and the included angle)

SSOAAO (compute the included angle and solve as SSOAAA)

SSO0A00 (two sides and a non-included angle; may

have two solutions)
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SSO00AO0 (same as above)

S00 with at least two angles

(compute the third angle; use law of sines to solve)

The above cases include any triangle that can be rotated to match

these conditions.

Insufficient data cases are:

000xxx (need at least one side)

SS0000

S00 with less than two nonzero angles

Setting up a decision strategy is the most important part of writing

this triangle solution program. Here is the program’s decision tree:

Find a nonzero side

All 3 sides zero... give the message "MORE DATA" and halt.

Nonzero side found... continue with Sxx case.

Rotate and check the next side

If zero... continue the S0x case. Check the next side.

If nonzero... continue the SOS case.

Rotate the triangle into the SSO position.

Continue as the SSO case (below).

If zero... begin the SO0 case. Find two angles

and calculate the third, using:

COS A3 =-COS (A, + As).

If two angles are not found, halt with

the message "MORE DATA". Otherwise continue with

the SO0 case after all angles are present.

Use the law of sines:

Sj = SIN Aj * S;/SIN A,

to find the second and third sides.

If nonzero... continue the SSx case. Check the next side.

If zero.. continue the SSO case. Start checking angles.
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If the third angle is nonzero... SSO xxA case.

Use the law of cosines:

S3 = SQRT(S,2 + S,2 - 25,5, COS Ay)
= SQRT((S| - S, COS A3)? + (S, SIN A3)?)

to find the third side. Finish the solution

by using the side-side-side (SSS) subroutine

to fill in any missing angles.

Otherwise if the first angle is nonzero... Ax0 case.

If the second angle is nonzero, use Al and A2 to

compute A3. Then use the law of cosines to find

S3 as above.

If the second angle is zero, use the side-side-

angle (SSA) subroutine to compute the third angle.

Two solutions are possible. (The two solutions

may be very close to each other in the case of a

near-right triangle. Exact equality of the two

solutions is virtually impossible, given the 10-

digit accuracy of the HP-41)) The second

solution, called Solution 1 in this program, is a

smaller triangle that fits within the Solution 0

triangle. The Solution 1 triangle is always more

obtuse than the Solution 0 triangle, although the

Solution 0 triangle may also be obtuse.

In this case, the program must ask the user to

select a solution. The prompt OBTUSE? 1/0 asks

whether Solution 1 or 0 is desired. Then use the

law of sines to find the third side. Finish the

solution by using the SSS subroutine to fill in

the missing angles.

Otherwise if the second angle is nonzero... 0AO case.

Rearrange inputs to the SSA subroutine, and use it

to compute the third angle. Then use the law of

sines to find the third side. Finish the solution

by using the SSS subroutine to fill in the missing

angles.
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The SSS subroutine computes each angle in turn, using the law of

cosines formula:

COS Ay = (512 +5,%)-539)/(28; Sy
= [1 - (352/8,% + S,2)1/128S5/(5 2+8,2)]
= [1-(S3/SQRT(S,2+5,2)?]/[SIN 2ATAN §,/5,]

The triangle is rotated after each computation, so that the same

formula can be used for the next computation. After three

rotations, an ISG counter halts the loop.

The SSA subroutine starts with Sl’ S, and A,.

The first task in this subroutine is to use A, to find Aj.

The angle A2 can have two possible values, each of which is

a solution to:

SIN Ay = Ay *SIN A/ A

If we let

A ,=ASIN (A, *SIN A, /A)),
then A, can either be A , or 180 - A ».

Since A3 = 180 - A| - Ay, this yields two possible values

for A3:

Ay3=180-A 5-A; or A,-A,
The second value is often negative, and thus not valid. However,

if it is positive, it represents an obtuse angle solution. In

that case, the first value represents an acute angle solution.

If A 5 - Ay is positive, the user must be prompted to determine

whether an obtuse or acute solution is desired. Once A3 is

found, S3 is computed, using the law of sines formula:

S3 = SIN A, *S,/ SIN A,

As you can see from the last few pages of discussion, the first step

in modular programming is the most important and often the most time-

consuming. Proper attention to structuring the solution to the

problem will save much time in programming.
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Program Modules

The first module needed in this program is the data entry module.

Here is a listing of that module, with comments:

01 LBL "TRI¥"

02 LBL A ; Store or view Side 1

031 ; Data is held in register 01

04 GTO 00 ; LBL 00 is used for forward branching

05 LBL B ; Store or view Side 2

06 2 ; Data is held in register 02

07 GTO 00 ; LBL 00 is used for forward branching

08 LBL C ; Store or view Side 3

09 3 ; Data is held in register 03

10 GTO 00 ; LBL 00 is used for forward branching

11 LBL a ; Store or view Angle 1

12 4 ; Data is held in register 04

13 GTO 00 ; LBL 00 is used for forward branching

14 LBL b ; Store or view Angle 2

155 ; Data is held in register 05

16 GTO 00 ; LBL 00 is used for forward branching

17 LBL ¢ ; Store or view Angle 3

18 6 ; Data is held in register 06

19 LBL 00 ; LBL 00 is used for forward branching

20 RDN ; Put the data register number in T

21 FS?2C 22 ; If a number was entered,

22 STOIND T ; Put that number in the proper register

23 RCLIND T ; Recall the value in any case

24 GTO 99 End ; moves to end of program, for faster

; response to the next top-row key

The next module computes the area after the triangle has been solved:

25 LBL D ; Compute Area of the solved triangle

26 RCL 01 ; Sl
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27 RCL 02 ;52

28 * ; S1*S2

29 RCL 06 ;A3

30 SIN ; SIN(A3)

31 * :

322 ;

33 / ; AREA = SI1*S2*SIN(A3)/2

34 GTO 99 End ; moves to end of program, for faster

; response to the next top-row key

The last of the "easy" modules clears the data registers to initialize

the calculator in preparation for a new triangle:

35 LBL ¢ ; Initialize for a new triangle

36 CF 22 ; Clear number entry flag, so that

; LBLs A-C and a-c will work properly

37 CLX ;

38 STO 01 ; Clear registers 01 to 06

39 STO 02 ;

40 STO 03 ;

41 STO 04 ;

42 STO 05 ;

43 STO 06 ;

44 GTO 99 End ; moves to end of program, for faster

; response to the next top-row key

In developing the major portion of the program, the decision tree that

determines which solution to apply, mnemonic words will be used in

place of the labels. Numeric values will be attached in the listings,

but these values, and the line numbers, are normally only filled in

after you have completed developing the program on paper.

45 LBL E ; Begin solving the triangle!

46 1.003 ; Set up an ISG pointer for the count

47 STO 00 ; 1,2,3, 1,2,3 in register 00
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48 LBL 01 Findside

49 RCL IND 00

50 X#0?

51 GTO 00 Skip

52 ISG 00

53 GTO 01 Findside

54 LBL 02 Insufficient

55 "MORE DATA"

56 AVIEW

57 GTO 99 End

58 LBL 00 Skip

59 XEQ 12 +Si

60 X+#0?

61 GTO 04 SSx

62 RDN

[
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e
-

.
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.
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[

“
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“
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“
.

-
.
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-
e

-
e

“
.

-
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-
.

-
.

-
e

Note: in retrospect it seems that a

DSE pointer for a count of 3,2,1 3,2,1

would save bytes, at line 46 and in

the incrementing subroutine,

at some expense in clarity of the

program logic. This change, if

desired, is left as an exercise.

This loop finds the first nonzero side

of the triangle

Recall the current side

If it is not zero,

Skip forward

Increment the counter to the next side

Try the next side

Termination point if not enough data

Display "MORE DATA" message

Terminate, ready for more data entry

First nonzero side found

Without loss of generality, this will

be assumed to be Side 1 from here on.

The +Si subroutine increments the side

counter i in register 00, then recalls

Side i (now the current side).

Here we are checking the next side,

to see if it is nonzero.

If the second side is nonzero,

go to entry point that solves the

SSx case, in which sides 1 and 2

are nonzero, with side 2 being the

current side.

Remove the zero value for the second

side. Put the first side value in X.
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63 XEQ 12 +Si
64 X#0?
65 GTO 05 S0S

66 XEQ 15 +Ai

67 X#0?

68 GTO 00 Skip

69 XEQ 15 +Ai1

70 X=0?

71 GTO 02 Insufficient

72 XEQ 15 +Ai

73 X=0?

74 GTO 02 Insufficient

75 XEQ 13 LastAngle

; Recall the next side.

; Otherwise, if third side is nonzero,

; g0 to entry point that solves the

; SOS case, in which sides 1 and 3

; are nonzero, with side 2 being zero,

; and side 3 the current side.

Otherwise, we have the SO0 case,-
e

in which at least two nonzero angles-
e

are needed..

The +A1i subroutine increments the-
e

counter i in register 00, then recalls-
e

Angle i from register i+3.e

Here we are recalling angle 1,[

to see if it is nonzero.-
e

If the first angle is nonzero,-
e

skip to the entry point for the-
e

Axx case, in which angle 1 is-
e

; nonzero, and is the current angle.

Otherwise, we have 0xx case,-
e

; in which the next two angles

must be nonzero.-
e

Recall angle 2[

; If angle 2 is zero,

give the message MORE DATA

Recall angle 3

-
e

-
e

If angle 3 is zero,

; give the message MORE DATA

e

Otherwise, we have the 0AA case.-

At this point, angle 3 is in X,[

; and angle 2 is in Y.

Use the LastAngle subroutine to find-
e

; the missing angle. The LastAngle
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76 XEQ 10 -i

77 X<>Y

78 GTO 03 S00

79 LBL 00 Skip

80 XEQ 15 +Ai

81 X=0?

82 GTO 00 Skip

83 X<>Y

[
.

-
e
[

-
e

.
.

-
e

-
e
-

e
-

e
.

[
e

[
e

-
e

[
-

9

3

9

9

routine will conclude with the pointer

set to the formerly missing angle:

AAA.

Now, angle 1 is in X, angle 3 in Y.

These next three lines allow a later

part of the program to finish this

case. Don’t bother trying to

understand them at first reading.

They are typical of the parts of

the program that you must fill in

after the initial draf't.

Decrement the side/angle counter.

The case is now S00, with all

angle values filled in.

Put angle 3 in X, angle 1 in Y.

Solve the SO0 case, with

angle 3 in X, and angle 1 in Y.

Resume the Axx case, in which

angle 1 is nonzero, and is the

current angle. (Sides are S00.)

Recall the second angle. After

this step, angle 2 is in X, and

angle 1 is in Y.

If the second angle is zero,

skip to the entry point for the

AQx case, in which angle 1 is

nonzero, angle 2 i1s zero, and is

the current angle.

; Otherwise, we have AAX case,

; in which the next angle can be

; computed from the first two.

Put angle 1 in X.
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84 XEQ 13 LastAngle

85 GTO 03 S00

86 LBL 00 Skip

87 RDN

88 XEQ 15 +Ai

89 X=0?

90 GTO 02 Insufficient

91 XEQ 11 +i1

92 XEQ 13 LastAngle

93 RDN

94 XEQ 11 +i

95 LBL 03 S00

9

“
.

-
e

“
.

[
-

.
e

-
.

-
e

-
e

-
.

-
e

-
e

-
e

-
e

-
.

-
.

-
e

9

.
2

9

.
9

2

.
9

k]

.
9

9

bl

bl

9

; Use the LastAngle subroutine to find

the missing angle. The LastAngle

routine will conclude with the pointer

register set to the formerly missing

angle: AAA.

Now, angle 3 is in X, angle 1 in Y,

the same conditions we set up at

line 76 above. As there, we continue

by branching to the SO0 case.

Continue the AQOx case.

Put angle 1 back in X for later use.

Recall angle 3 to X.

If angle 3 is zero,

the data is not sufficient.

Otherwise, the case is AOA.

Increment i to get AOA.

Use the LastAngle subroutine to find

the missing angle. The LastAngle

routine will conclude with the pointer

register set to the formerly missing

angle: AAA.

; Now, angle 2 isin X, 3in Y, 1 in Z.

To transform these conditions to

the same conditions we set up at

line 76 above, we need to set the

pointer to side/angle 3, and put

angle 3 in X, angle 1 in Y.

Angle 3 now in X, angle 1 in Y.

Increment the counter. SO0 case.

Entry point for the SO0 case.

Angle 3 is in X, angle 1 in Y.

Use the law of sines:

Sj = SIN Aj *S;/SIN A;
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96 SIN ; SIN Ag

97 XEQ 12 +Si ; Recall Side 1.

; At this point the stack (XYZT) is:

;o S1 sinA3 Al

98 RCL Z ; Al S1 sinA3 Al

99 SIN ; sinAl S1 sinA3 Al

100 / ; S1/sinAl sinA3 Al Al

101 * ; sinA3*(S1/sinAl) Al Al Al

;0 = A3 Al Al Al

102 LASTX ; S1/sinAl A3 Al Al

103 XEQ 15 +Ai ;o A2 S1/sinAl1 A3 XX

104 SIN ; SInA2 S1/sinAl1 A3 Al

105 * ; sinA2*(S1/sinAl) A3 Al Al

;. = A2 A3 Al Al

106 STO IND 00 ; Store as Angle 2

107 RDN : A3 Al Al A2

108 XEQ 11 +i ; Increment angle counter, from 2 to 3

; A3 Al Al XX

109 STO IND 00 ; Store as Angle 3

110 RTN

The stack management instructions ( X<>Y, RDN, and R%1 ) within the

above decision portion of the program would normally be inserted at

the last stage of program development, after all the modules are in

place and their input/output characteristics are fully known. Stack

management needs to be carefully documented along with the program

steps, and even then it normally needs some fixing when you start

testing the program.

The missing modules are now:

LBL 04 SSx ; Solves the SSx case.

LBL 05 SOS ; Solves the SOS case.

LBL 10 -i ; Decrement the side/angle counter.

; Preserve the values in X, Y, and Z.
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LBL 11 +i ; Increment the side/angle counter.

LBL 12 +Si ; Increment counter; recall current side.

LBL 13 LastAngle ; Compute third angle from the other two.

LBL 15 +Ai ; Increment counter; recall current angle.

LBL 99 End ; Terminate; prepare for new top-row

; key input.

Let’s work on the simpler subroutines now, labels 10 through 15.

We’ll throw in two more that will be needed later:

LBL 14 StoreAi ; Store current Angle without

; incrementing the counter.

LBL 16 Ai ; Recall current Angle without

; incrementing the counter first.

Again, the line numbers would not normally be part of your program

development, which starts with pencil and paper.

Insert LBL 10-99 commented listings here

222 LBL 10 -i ; Decrement the side/angle counter.

; Preserve the values in X, Y, and Z.

;: In the 1, 2, 3 sequence, decrementing

; can be done by incrementing twice.

223 XEQ 11 +i ; Increment the side/angle counter.

224 LBL 11 +i ; Increment the side/angle counter.

; Preserve the values in X, Y, and Z.

225 X<> 00 ; Stack is: 1.003 y z t

226 3

227 MOD ; i MOD 3 +.003 y z z

228 LASTX

229 SIGN

230 + ; i MOD 3 +1.003 y z z

; MOD 3 leaves i=1 and 2 unchanged,

; but reduces 3 to 0.

231 X<> 00 ; X y z z

232 RTN
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233 LBL 12 +Si

234 XEQ 11 +i

235 RCL IND 00
236 RTN

237 LBL 13 LastAngle

238 XEQ 11 +i

239 RCL Y

240 RCL Y

241 +

242 COS

243 CHS

244 ACOS

245 LBL 14
246 XEQ 00 Skip

247 STOIND T

248 RTN

249 LBL 15 +Ai
250 XEQ 11 +i
251 LBL 16 Ai

252 XEQ 00 Skip

253 RCLIND T

254 RTN

255 LBL 00 Skip

.
9

.
9

.
9’

2

.
9

.
9

2

9

b

9

9

9

2

9

bl

.
bl

.

9

.
b

9

9

2

9

.
2

.
9

.
3

Increment counter; recall current side.

Increment counter register.

Recall current side.

Compute third angle from the other two.

Stack starts as Al A2 z t

Pointer starts at S2.

: Increment counter to S3.

; A2 Al A2 z

; Al A2 Al A2

; AI+A2 Al A2 A2

; ACOS(-COS(A1+A2))

A3 Al z z

: Put counter+3 in T for use as an

: indirect address to recall the

; current angle.

A3 Al z i+3

: Store A3.

Increment counter; recall current angle.

Increment counter

Recall the current Angle without

; incrementing the counter.

: Put counter+3 in T for use as an

: indirect address to recall the

; current angle.

Recall the current angle.

Put counter+3 in T.

Stack begins: x y z t
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256 3

257 X<> 00

258 ST+ 00

259 X<> 00

260 RDN

261 LBL 99 End

262 END

9

9

3

3 X A

1 X z

i+3 X y z

: Restore stack:

X y z i+3

; Reset to line 00; prepare for new

; top-row key input.

Now, let’s fill in the modules that handle cases for which more than

one nonzero side is present. We must start with LBL 04, the SSx

case, and LBL 05, the SOS case, although more modules will be needed.

For example, LBL 07 will handle the SSS case.

111 LBL 04 SSx

112 XEQ 12 +Si

113 X#0?

114 GTO 07 SSS

115 RDN

116 GTO 00 Skip

117 LBL 05 SO0S

118 XEQ 10 -1

119 X<>Y

9

s

2

bl

.
s

2

.
’

9

.
bl

.

2

.
b

9

9

k]

S

9

3

2

9

9

Solves the SSx case.

Side 2 is in X, Side 1 in Y.

Recall side 3.

If side 3 is nonzero,

Solve SSS case.

Otherwise, solve the SS0O case.

Put Side 2 in X, Side 1 in Y.

Continue below.

Continue the SOS case.

Side 3 in X, Side 1 in Y.

Next we transform this into an SSQ

; case, so we can solve this and line

; 115 using the same module.

; This transformation is simple. We

; just make an SOS case, which is

; indistinguishable from the SSO case.

; The old side 3 becomes side 1. The

; old side 1 becomes side 2.

Decrement the side counter.

Put the old side 1 (now side 2) in X,
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120 LBL 00 Skip

121 XEQ 16 Ai

122 X+#0?

123 GTO 06 SSOxxA

124 RDN

125 XEQ 15 +Ai

126 X=0?

127 GTO 00 Skip

128 XEQ 15 +Ai

129 X=0?

130 GTO 03 Skip2

131 +

132 COS

133 CHS

134 ACOS

135 XEQ 11

136 XEQ 14 StoreAi

137 GTO 06 SSOxxA

138 LBL 03 Skip2

139 RDN

140 XEQ 09 FindSide

; the old side 3 (now side 1) in Y.

; Continue the SSQ case, with

; Side 2 in X, Side 1 in Y.

; Recall angle without incrementing

; first. Recalls Angle 3.

; If Angle 3 (the included angle

; between sides 1 and 2) is not zero,

; Solve side-angle-side case

; Stack contains A3, S2, S1.

; Otherwise, restore Side 2 to X,

;Side 1 to Y.

; Recall Angle 1. Stack has Al, S2, SI.

; If Angle 1 is zero,

; Case 1s SS00x0.

; Otherwise recall Angle 2.

; The stack is then: A2, Al, S2, SI.

; If Angle 2 is zero,

; case is SSOAQO.

; Otherwise, case is SSOAAOQ.

; Compute Angle 3. Stack starts as

; A2, Al, S2, S1

; Stores Angle 3. Stack is A3, S2, S1.

; Continue to solve, using the

; side-angle-side case (SSOxxA).

; Status is SSOAQ0.

; Stack is now: Al, S2, S1, 0

; The FindSide subroutine uses the data

; in the stack: Al S2 SI

; to compute S3.
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141 XEQ 11 +i

142 STO IND 00

143 GTO 07 SSS

144 LBL 00 Skip

145 RDN

146 X<>Y

147 XEQ 15 +Ai

148 X=0?

149 GTO 02 Insufficient

150 XEQ 09 FindSide

151 XEQ 11 +i

152 STO IND 00

153 GTO 07 SSS

.
9

.

9

.

9

.

9

.

9

9

.

9

.

9

.

9

.
9

.

3

9

.

9

.
9

.

9

.

9

Increment the side/angle counter.

Status is now SSO.

Store Side 3.

Use the side-side-side solution to finish.

SS00x0 case.

Put Side 2 in X, Side 1 in Y.

Put Side 1 in X, Side 2 in Y.

Recall Angle 2.

If Angle 2 is zero,

Data is not sufficient.

Otherwise, the case is SS0O0A0

Use data in the stack: A2 S1 S2

to compute S3.

Increment the side/angle counter.

Status is now SSQ.

Store Side 3.

Use the side-side-side solution to finish.

Now we need several more modules:

LBL 06 SSOxxA

LBL 07 SSS

LBL 09 FindSide

LBL 14 StoreAi

LBL 16 Ai

154 LBL 06 SSOxxA

155 X<>Y

156 P-R

157 RCL Z

.
9

.

9

.

9

.

°

.
bl

.

S

.

9

.
9

9’

9

9

3

9

Solve the side-angle-side case

Solve the side-side-side case.

FindSide subroutine uses the Law of

Cosines to compute S3.

Store current Angle without

incrementing the counter.

Recall current Angle without

incrementing the counter first.

Solve the side-angle-side case

: Stack contains: A3 S2 SlI

; or the mirror-image equivalent

. S2 A3 S1

: S2cosA3 S2sinA3 S1

S1 S2cosA3 S2sinA3
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158 -

159 R-P

160 STO IND 00

161 LBL 07 SSS

162 RCL 00

163 FRC

164 STO 00

165 ISG 00

166 LBL 08

167 XEQ 16 Ai

168 X#0?

169 GTO 00 Skip

170 XEQ 12 +Si

171 XEQ 12 +Si

172 R-P

173 XEQ 12 +Si

174 X<>Y

175 /

176 X12

177 1

178 X<>Y

179 -

180 X<>Y

181 ENTER"?

182 +

183 SIN

184 /

185 ACOS

186 XEQ 14 StoreAi

; S2cosA3-S1  S2sinA3

- SQRT((S1-S2c0sA3)2+(S2sinA3)?)
. = SQRT(S12+522-25152c0sA3)
;=83

; Store S3. Continue as SSS.

; Solve the side-side-side case.

; Initial stack contents arbitrary.

; x.003

; 0.003

; Reset side counter

; to side 1.

; Top of loop that computes the angle

; opposite each side.

; Check the current angle, which we

; shall refer to as Al

; If the angle is already known (nonzero),

; then skip the computation.

; Recall S2

; and S3.

- Stack is SQRT(S22+532), ATAN(S2/S3)
; Recall S1.

- Stack is: SQRT(S22+832), S1, ATAN(S2/S3)
: S1/SQRT(S22+532), ATAN(S2/S3)
- S12/(522+832%), ATAN(S2/S3)

- 1 - S12/(522+832), ATAN(S2/S3)

: 2*ATAN(S2/S3), 1 - S12/(522+832)
- SIN(2*ATAN(S2/S3)), 1 - S12/(S22+832)
; COS Al

; Al (result)

; Store the current Angle without

-63-



187 LBL 00 Skip

188 ISG 00

189 GTO 08

190 RTN

191 LBL 09 FindSide

192 ENTER?

193 SIN

194 R%

195 /

196 ENTER?

197 R%

198 *

199 ASIN

200 ST+ T

201 R%t

202 COS

203 CHS

204 ACOS

205 X<>Y

206 Rt

207 -

208 X<=0?

209 GTO 00 Skip

210 "OBTUSE? 1/0"

; incrementing the counter.

; Entry point if calculation is skipped.

; Increment the counter, to compute

; next angle. Skip when all 3 are done.

; Finished!

; FindSide subroutine. Use the Law of

; Cosines to compute S3.

; Stack starts as: Al, S2, Sl

; sinAl Al S2 S1

; Sl sinAl Al S2

; sinAl/S1 Al S2 S2

; sinA1/S1 sinA1/S1 Al S2

; S2 sinA1/S1 sinAl1/S1 Al

; S2*sinA1/S1 sinA1/S1 Al Al

) sinAl/S1 Al Al

© A2 sinAl/S1 Al A 2+Al
- A 2+Al A2 sinAl/S1 Al

: 180-A 2-A1 A 2 sinA1/S1 Al

) 180-A 2-Al1 sinAl/S1 Al
© Al A2  180-A 2-Al sinAl/Sl

: A 2-A1  180-A 2-Al sinAl/Sl
; If A 2-Al is not positive,

; then there is only one solution.

:;Datain Y and Z is 180-A 2-Al sinAl/SI
; Otherwise, ask user to select a solution.

; The message asking the user to enter

;a 1 if the triangle is to be more

; obtuse, or a 0 if the larger, more acute

triangle is desired. Note that the 1e

is closer to the shape of the smaller,-
e

; more obtuse triangle, while the 0 is
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; closer to the shape of the large, more

; acute triangle.

211 PROMPT ; Display the message and halt.

212 CF 22 ; Avoids confusing the LBL A-C and a-c

; routines.

213 * 0 or A2-Al 180-A2-Al sinAl/SI
214 X#0? ; If a 1 was entered (more obtuse),

215 X<>Y . 180-A2-Al A2-Al sinAl/Sl
216 LBL 00 Skip ; Data for the solution is in Y and Z

217 RDN : A2-Al sinA1/S1  or
; 180-A2-A1 sinA1/S1

218 SIN ; SinA3 sinA1/S1

219 X<>Y ; sinAl/S1 sinA3

220 / ; S1*sinA3/sinAl = S3

221 RTN ; Return the value of the missing side.

This completes the program. It is not, in fact, the shortest possible

triangle solution program, but most shorter programs require the user

to enter all the data each time the program is run. With this

program, you can adjust the value of a side or an angle, clear the

values from other sides and angles, and try another solution.

Now it’s time to test and debug the program. As I mentioned earlier,

this is the time when you would normally find any errors in your stack

management instructions. I hope you don’t find any in this case,

because I didn’t put in any intentional errors! There are, however

at least two improvements possible: If you first add a LBL 03 after

line 149, you can replace lines 140-143 by GTO 03. Also, lines 202-

204 can be deleted, since sin(A2+A1)=sin(180-A2-A1) at line 218.

To test the program scientifically, you need to identify a complete

set of test cases. This is much easier said than done. In fact, an

earlier version of this program that I developed in 1979 and which was

published in the April 1980 PPC Journal (pages 13 and 14) managed to

retain some hard-to find errors.
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The test cases should include at least one of each type that the

program can solve:

1) SSSxxx (three sides and any, all, or no angles)

2) SSOxxA (two sides and the included angle)

3) SSOAAO0 (compute the included angle and solve as SSOAAA)

4) SS0A00 (two sides and a non-included angle; may have two

solutions)

5) SS00A0 (same)

6) SO0 with at least two angles (compute the third angle, then use

the law of sines to solve)

Once you have tested the program’s capability to rotate a nonzero side

to the S1 position, it should be sufficient to test only cases in the

above standard forms. For the side-side-angle cases (numbers 4 and

5), you will need to test obtuse, acute, and right triangle solutions.

You should also test the insufficient data cases:

7) 000xxx (need at least one side)

8) SS0000

9) SO0 with less than two angles

Let’s test the insufficient data cases first.

Press [e] to clear the triangle data registers.

Case 7: Put in three angles, such as

30 [a], 60 [b], 90 [c]

and press [E] to solve. The result should be

MORE DATA

Case 8: Press

[e], 3 [A], 4 [B], [E]
Again the result should be a display of MORE DATA.

Case 9: Press

[e], 3 [A], 30 [a], [E]
Again the result is MORE DATA.
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Now for the sufficient data cases. Set the display mode to FIX 2.

For all but cases 4 and 5, a single triangle ought to be sufficient.

We will use the 3-4-5 right triangle: S1=3, S2=4, S3=5, A1=36.87,

A2=53.13, A3=90.00.

Case 1: Press

Case

[e], 3 [A], 4 [B], 5 [C], [E]
When the program halts, check the results.

[a] gives 36.87, [b] gives 53.13, and [c] gives 90.00

There is one feature that of this program’s SSS solution that you

should note. If you have supplied angle values in addition to

the three sides, the program will assume that these angles are

correct and will not recalculate them. If you want to be sure

that the angle results are correct and consistent with the sides,

you can modify the program to recalculate all three angles when

doing the SSS solution. Just delete lines 167-169 and 187, which

test for a nonzero angle value and skip the calculation if

possible. Naturally this change will increase the excution time.

So make your own decision according to your preference.

2: Press

[e], 3 [A], 4 [B], 90 [c], [E]
When the program halts, check the results.

[a] gives 36.87, [b] gives 53.13, and [C] gives 5.00

We can use Case 2 to check the program’s rotation capability.

Let’s give it the same problem, rotated by 1 side:

[e], 3 [B], 4 [C], 90 [a], [E]
The results are:

[b] gives 36.87, [c] gives 53.13, and [A] gives 5.00

Now let’s rotate it by another side:

[e], 3 [C], 4 [A], 90 [b], [E]
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The results are:

[a] gives 53.13, [c] gives 36.87, and [B] gives 5.00

Case 3: Press

[el, 3 [A], 4 [B], 36.87 [a], 53.13 [b], [E]

When the program halts, check the results.

[c] gives 90.00, and [C] gives 5.00

Case 6: Press

[e], 3 [A], 36.87 [a], 53.13 [b], [E]

The results are:

[c] gives 90.00, [B] gives 4.00, and [C] gives 5.00

[e], 3 [A], 53.13 [Db], 90 [c], [E]

The results are:

[a] gives 36.87, [B] gives 4.00, and [C] gives 5.00

[e], 3 [A], 36.87 [a], 90 [c], [E]
The results are:

[b] gives 53.13, [B] gives 4.00, and [C] gives 5.00

Cases 4 and 5: First a near-right triangle,

[el, 3 [A], 5 [B], 36.87 [a], [E]

This one is a little tricky. You will get

DATA ERROR

because the triangle cannot be closed. The problem is that Angle

1 is just a little too large. Adjust it like this:

36.86 [a], [E]

The results for Solution 0 are:

[b] gives 88.77, [c] gives 54.37, and [C] 4.06

If you selected Solution 1:

[b] gives 91.23, [c] gives 51.91, and [C] 3.94
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As you can see, the results are sometimes quite sensitive to the

inputs. A variation of 0.01 degree in one angle resulted in a

change of over 1 degree in the two angle outputs.

Now, an acute triangle case

[el, 3 [A], 4 [B], 53.13 [b], [E]

The results are:

[a] gives 36.87, [c] gives 90.00, and [C] 5.00

Finally, a true dual-solution case.

[e], 4 [A], 3 [B], 36.87 [b], [E]

The results for Solution 0 are:

[a] gives 53.13, [c] gives 90.00, and [C] 5.00

If you selected Solution 1:

[a] gives 126.87, [c] gives 16.26, and [C] 1.40

You can see from this example how comprehensive the testing must be

for a complex program. Without this testing, the user of the program

may encounter errors. Worse, the user may not even notice the errors,

and rely on the incorrect results. This is especially embarassing

when the user and the programmer are the same person! So be sure to

fully test your programs. It is time well spent.
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CHAPTER THREE - OPTIMIZING PROGRAMS

The aim of this chapter is to offer some guidelines and ideas on ways

to improve your programs. The kinds of improvements that will be

discussed fall under two basic categories: those that reduce a

program’s byte count, and those that reduce its execution time. Often

you have to choose whether speed or byte count is more important.

Happily, many of the improvements in the material that follows will

make your programs both shorter and faster.

Optimizing a program involves a number of tradeoffs in addition to

considering the byte count versus speed. Therefore, there aren’t any

rules written in stone. Since the object here is to improve your

programs and programming skills, you’ll get the most benefit if you

take the time to try techniques that are new to you.

The best way to try out new techniques is to use a program you wrote

yourself. This way you will be familiar with the program’s use of the

stack and Alpha registers. If you haven’t used the program for a

while, it would be a good idea to "walk through" (SST) the entire

program for a simple example to check stack usage before making any

changes. It’s also good to restrict your changes to a small section

of the program at first. After you have tested the effect of these

changes and determined that the program still works correctly, you can

modify another section.

It’s also a good idea to have two copies of your program in main

memory when you start. The first version is left unaltered, in case

you need to refer to it to figure out some forgotten detail of program

operation. The second copy of the program is the one to be modified.

Before you make any other changes to the second program, make a small

change in the spelling of its main Global label (usually line O01).
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This identifies the two different versions and eliminates having to

use CAT 1 to move between the two. Be aware, though, that any Alpha

GTO or Alpha XEQ instructions in these programs will branch to the

matching Alpha label lowest in memory (the one closest to the .END.). 

So if the program has more than a single Global label, the version you

are testing should be closer to the .END. (farther down Catalog 1).

There are several easy ways to alter the main Global label of program

you are modifying. One way is to change a letter from capital to

lower case, if one of the letters from A to E. Another good idea is

to change the last letter to a number, or add a "2" after the last

letter. This is used to keep track of the number of times the program

is revised. Each time a major change is made, increase the number by

one. Be sure to write down all of the changes you make, and don’t be

in a hurry to throw out the old documentation. It can be useful when

it turns out that a case you didn’t test on the new version fails to

work.

An easy way to test the changes you make in your program is to insert

a STOP (press R/S) instruction a line or two before the new program

lines. Then run the program and SST through the lines that were

changed, R/S and run to completion. If the STOP instruction is added

within a loop, you may have to press R/S more than once to finish the

program. Press and hold R/S to check the line number before releasing

it.

After you’re satisfied that the changes you made are a suitable

substitute for the original, remove the STOP function you added, make

a note of all the changes you made, and move on to the next change, if

any. Be sure to PACK and run the program to compile the GTOs and XEQs

before you save it on cards, cassette, or in Extended Memory.

Of course, all of this isn’t absolutely necessary for simple changes.

However, it’s good to establish habits that are both systematic and

-72-



convenient. The time you spend working on a program is practically

wasted if you don’t document how it works.

The different program optimization categories in this chapter are

arranged in an order that is designed to give you good results in

reducing byte count and improving speed. The beginning sections yield

gains fairly quickly, while those later in the chapter take a bit more

work. Whether you just need to trim off a few bytes to make your

progam fit neatly onto one card or you want to completely optimize a

program for speed, you’ll make best use of your time by proceeding in

this order.

3A. ALPHA TEXT LINES

A quick way to trim a few bytes from a program is to shorten Alpha

prompts, messages oOr warnings. The easiest approach is to use

abbreviations, contractions, or the initials of some of the words in

your Alpha text lines. You can often omit the period after an

abbreviation. (The period does use a full byte of program memory even

though it does not usually occupy a separate character position in the

display.) Replace words in the text lines of your programs as long as

there will be no loss of meaning.

Sometimes the normally keyable characters just aren’t enough. Rows

zero and two of the byte table contain many useful synthetic

characters. Messages containing the apostrophe ("DON’T R/S"), the

ampersand ("YOU & I") and # ("INPUT #17?") are just a few examples.

Although these characters are not normally keyable, they can be used

in alpha messages. Nonkeyable characters can be appended to the Alpha

register using the Extended Function XTOA, the Printer instruction

ACX, or the PPC ROM’s "DC" (Decimal to Character) program. Many

bytes and considerable execution time can be saved over using XTOA,

"DC", or ACX by instead constructing synthetic text instructions with

the special characters "built in". The byte-building functions XTOA,

"DC", and ACX are better suited to cases in which the character to be
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appended may depend on the outcome of an earlier computation or user

selection.

You can construct synthetic text lines using a byte loading program

(such as the PPC ROM’s "LB"), the CCD Module, the ZENROM, or a

synthetic key assignment. More information on this subject appears in

Section 4B. Both hexadecimal and decimal inputs are listed in the

examples that follow, for use with either the ZENROM or a byte loading

program.

Of course, these two techniques aren’t the only ways to create text

lines containing non-keyable characters. You can use the Byte Jumper

(described in Section 4I) to get inside an existing text line. You

could also use a Text 0 prefix assignment to reclease one of the Text

bytes from row F of the byte table, which would absorb instructions to

make a text line. However, the Byte Grabber and the byte loader are

more straightforward to use. They also illustrate the underlying

principles more clearly.

CCD Module or ZENROM users can create synthetic text lines as easily

as normal text lines, because the USER key acts as a second shift key

in ALPHA mode. (Note that these two modules do operate differently

from each other in ALPHA mode, however.)

ZENROM users can create synthetic text lines in two additional ways:

by inserting bytes with RAMED’s "I" mode, or by editing existing text

lines with RAMED. Pages 56 through 61 of the ZENROM manual explain

this in detail.

If you’re intending to use a byte loading program, make sure you have

a copy of "LB", "LBX", or a similar program in RAM or ROM. If you’re

using the byte grabber (a synthetic key assignment with prefix 247 =

hex F7), be sure that the postfix value is from 15 to 28, 32 to 191,

or 206 to 244. For our purposes here, it would be best if you assign

the commonly used byte grabber 247, 63 to a convenient key using
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either the CCD Module’s enhanced ASN function, "MK", "MKX", or another

synthetic key assignment program. The postfix value of 63 appears as

a question mark in the distinctive text line that is created by the

byte grabber.

If you are completely unfamiliar with the byte grabber, you should

work through the examples in Section 4B before coming back to finish

this section. Even better, you could read Chapters 1 and 2 of Keith

Jarett’s "HP-41 Synthetic Programming Made Easy", which will show you

how to use the byte grabber to create many synthetic instructions.

 Using the byte grabber to create synthetic text lines

The approach to putting a nonkeyable character into a text line by

using the byte grabber can be summarized as follows. First you key in

a normal text line of the length that you want the final result to

have. Then you use the byte grabber to absorb the prefix byte of the

text line. This is the byte (hexadecimal Fn; see row F of the byte

table) which specifies that the next n bytes are to form a TEXT

instruction of n characters, where n is up to 15. The characters from

the text string are then exposed and appear as instructions on their

own. Next you replace some or all of the characters with the

instructions corresponding to the non-keyable characters that you want

to put in the text line. Finally, you use the byte grabber again to

release the previously grabbed prefix byte and re-establish the

modified text line. An example will illustrate this procedure:

Start by using GTO .. to get to the bottom of Catalog 1 and pack

memory. Enter PRGM mode. Make sure at least five registers

are free (00 REG 05 or more). Decrease the SIZE if

necessary to achieve this.

Key in LBL"AT", ALPHA ABCDEFG ALPHA,followed by seven +

instructions.

SST twice to return to line 01 or press GTO .001.

Press the byte grabber. You should have the following:
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01 LBL "AT" (Alpha Text)

02 "7R"

03 -

04 * "LB" inputs:

05 /

06 X<Y? 247, 65, 66, 35,

07 X>Y? 68, 69, 70, 0

08 X<=Y?

092+

10 + Hex inputs:

11 + F7, 41, 46, 23

12 + 44, 45, 46, 00

13 +

14 +

15 +

16 +

Now position yourself to line 05 (the divide instruction that

corresponds to the character "C") and backarrow. Key in RCL 03.

Go to line 09 and backarrow. Press GTO .001. Byte grab again,

SST, and then backarrow twice. XEQ "PACK" (do not GTO ..).

Looking at line 02 should show "AB#DEF™. We replaced character "C"

in the original text line with "#" (RCL 03, decimal value 35 = hex 23

in the byte table). "G" was deleted and not replaced at all. That

position now shows the "overbar" character, representing a null. Had

PACKing taken place before using the byte grabber the second time,

this null would have been filled in by the first of the following +

instructions. Within the text line, the + instruction (decimal value

64) would appear as "@".

The purpose of the extra + instructions is to prevent any possibility

of part of the .END. being absorbed into the text line. This would

cause you to lose access to Catalog 1, and that would probably lead to

MEMORY LOST. You should NEVER byte grab within 5 bytes in
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front of an Alpha label or the .END. . To avoid the chance of this

happening, always add a buffer of instructions between where you are

working and any nearby global instruction at a lower address in

memory. You might not think you need a protective buffer, but

accidents will happen . ..

We can extend the idea of replacing characters to include replacing

the entire contents of the text line. This is especially attractive

when most of the characters are either lowercase or special characters

for use with a printer. Text lines in which most of the characters

are nonkeyable are easiest to construct with "LB". And when any of

the decimal byte values are from 192 to 205 or from 208 to 239, using

"LB" (or the ZENROM) is the only reasonable way to proceed.

Let’s use the "AT" program to illustrate replacing the entire set of

characters in a text line. You’ll need at least one free register in

addition to having "AT" in memory. Begin by back-arrowing the text

line 02 and keying in the original "ABCDEFG". BST to LBL "AT" and

press the byte grabber. Now key in LBL 00, RCL 06, LBL 11,

RCL 08, CLST (press XEQ ALPHA C L S T ALPHA), STO 06, and

RCL 09. Each of these instructions will become a character in the new

text line. Check the byte table for the character correspondence.

GTO .001 and byte grab again. SST, then backarrow twice. SST to take

a look at the line you created. You should see 02 "% &~(86)".

To create this line using "LB", use inputs of 247, 1, 38, 12, 40, 115,

54, and 41. The "full man", ampersand, mu (or "micro"), left

parenthesis, starburst, and right parenthesis are all nonkeyable. The

two parentheses are especially useful.

If you used the byte grabber, SST’ing the next seven lines will show

functions which correspond to characters A through G. The buffer of

seven + instructions is just beyond them.
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More byte savings

A completely different approach to saving bytes in constructing

program messages is to use the system error messages in place of your

own warnings. In most cases where this method can be used, you will

only need two or three bytes to generate the system error message.

The longest needs seven bytes. Of course, flag 25 must be clear in

order for these errors to cause the listed error message to be

displayed. In addition, flag 24 must be clear for OUT OF RANGE. See

the table below for ten different ways to generate various error

messages:

Instruction Sequence Error Message

With any HP-41

CLX, LOG DATA ERROR

ASTO X, OCT ALPHA DATA

E2, FACT OUT OF RANGE

SF 99 NONEXISTENT

With Extended Functions or 41CX

CLA, CLFL NAME ERR

CLA, SEEKPTA FL TYPE ERR

CLX, PASN KEYCODE ERR

With Time or 41CX

CLX, DDAYS DATA ERROR X

.. DATE, DDAYS DATA ERROR Y

E4, ., TIME, XYZALM DATA ERROR Z

The instruction sequences listed are suggestions only. You may want

to make changes in them to suit your particular needs. As an example,

you might want to change CLX to the lone decimal point ( . ) so the

contents of X aren’t lost. This method is used in the last two

sequences above to bring zero into the stack without clearing X. You
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might want to use a different function than the one listed in the

first three examples if that function appears somewhere in the

program. This will avoid confusion.

If you need to test particular conditions in your program, you can

change these sequences further. For example, if a program is intended

to accept non-negative inputs only you can use X<0? LOG at the top of

the program. The LOG instruction will give a DATA ERROR right away

if a negative input is supplied. Otherwise it is skipped.

3B. NUMERIC ENTRY

The suggestions in this section mainly improve the execution time of

your programs. In some cases they will save a byte or two as well.

Instead of using O for zero, you should consider some alternatives. A

lone decimal point ( . ) is a little faster, though a little harder to

read in a program listing. CLX or ENTER followed by CLX is faster

still, as long as leaving the stack lift disabled won’t cause problems

with subsequent instructions. You can also use RCL a (recalling

status register a) for a zero as long as the subroutine stack has less

than three pending returns. You can even use RCL a for zero when

three returns are pending if the "zero" will be stored in a numbered

data register and recalled (hence normalized) and set to a true zero

before it is tested. Otherwise a test X=0? will give the result NO.

A slightly faster alternative to using 1 for the number one is a

solitary E (Enter EXponent), decimal value 27 (hex 1B) from the byte

table. This technique has become fairly common, though there are

other nonsynthetic options available. As long as X contains ordinary

non-negative numeric data, you can substitute the function SIGN. This

is nearly four times faster than the digit entry 1. If the contents

of X are not known, you can use the sequence CLX, SIGN. In either of

these two cases, if you need to preserve X, add an ENTER instruction

beforehand to push the value of X into register Y.
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When your program makes use of a numeric entry line with just a "1"

before the exponent, for instance 1 E3, you can save one byte and

reduce execution time by removing the 1. As an example, E2 is about

one-third faster than 1 E2, although both perform the same function.

These are known as short form exponents. An example using the byte

grabber to remove the leading 1 from a similar power of ten is given

in the first part of Section 4B. The "LB" inputs for E2 are 27, 18.

Removal of a leading "1" before an exponent instruction is automatic

if you have a ZENROM.

The instruction listed as NEG (negative), decimal value 28 in the byte

table, is relatively slow. It takes about the same time as entering a

numeric digit. In most cases, you can avoid numeric entry lines

containing this byte value quite easily. If the NEG byte is used to

make a number negative, use CHS instead. This only requires a small

change in the way you key in the number. For example, to key in

negative eight, instead of pressing 8, CHS, resulting in a line

showing -8, key in 8, ALPHA, ALPHA, CHS. This produces two program

lines, one showing 8 and the other CHS. Both versions use two bytes,

but the second is 65% faster! Note that L (LASTX) is unaffected by

either NEG or CHS.

Another way to avoid the NEG function is to divide instead of

multiplying, or vice versa, so that a positive exponent is used. Use

E3, / in the place of E-3, *. This is over 40% faster, and is one

byte shorter. This technique can also be used on some numbers which

are not exact powers of ten. As an example, 5 E3, / substitutes for 2

E-4, *.

In a similar fashion, you can avoid using NEG in negative exponents

with a reciprocal (1/X) instruction. This technique can be used for

powers of ten, as well as other numbers. E6, 1/X is faster than E-6.

However, it does change the L (LASTX) register.
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A slightly less obvious example is to use 8 E8, 1/X in place of 1.25

E9. There is a shortcut to help you determine whether a particular

number can be entered this way. Key in the number or single-step the

program line containing the number, then press 1/X. If the resulting

number has the same number of significant digits, this technique will

only save a little time. But if the result has fewer significant

digits, you’ll conserve both bytes and execution time using this

method.

In the same manner, the sequence 3, 1/X is much faster than using

.333. It also uses half as many bytes and equals one-third exactly.

This can be applied to other numbers as well. Again, taking the

reciprocal of the desired result will show if this will be helpful

with a particular number. Many fractional numbers are best expressed

as a division of two numbers, expecially if accuracy is needed. A

series of instructions such as 2, ENTER, 3, / instead of .6666, or 5,

ENTER, 6, / in place of .8333 is an example of superior programming

practice. The ENTER instructions aren’t actually needed after the

numbers are keyed in, and they can and should be removed. This will

save a few milliseconds and avoid the problem that the stack lift is

re-enabled if you stop the program after the ENTER, then restart it.

However, even without the ENTER, the HP-41 will leave an invisible

null between the two numbers as a separator, so the byte count is the

same whether you remove the ENTER instruction or not.

Using 1/X or division isn’t just for fractions whose digits repeat.

The last example can be changed to 5 E4, (null), 6, / when the number

desired is 8,333.33. This holds a slight speed and byte count

advantage over a numeric entry line of 8333.33. Use the function

execution times from Appendix A of SPME and your best judgement to

decide which one is better to use in your program. A simple example

of this would be using 2, 1/X in place of .5 for one-half. The 30%

speed advantage of 2, 1/X has to be weighed against the fact that .5

is easier to understand and does not change the LASTX register.
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In the case above where the quantity 2 was needed, yet another

substitution could have been made. The sequence SIGN, ST+ X is 31%

faster than using 2. However, this time savings at the cost of two

more bytes strictly limits this to applications in which time is the

most important factor. Be forewarned that needing to add CLX because

X may contain alpha data or NNNs, or having to use LASTX to recover

the old value of X will almost completely cancel out the time savings.

When using either very large or very small numbers, you can speed up

operation slightly by eliminating the decimal point. As an example,

instead of using 1.23 E12, substitute 123 E10. This saves one byte

and a little time. For numbers with positive exponents, this will

sometimes result in the saving of another byte and a little more time

when this change results in the exponent being reduced from two digits

to just one. An example using a negative exponent would be to change

7.36 E-21 to 736 E-23, eliminating the decimal point.

Quite often when program execution is bogged down by numeric entry

lines, it’s because the program requires a large number of constants

to be stored in the data registers during program initialization.

This 1is especially true when the numbers have many digits, an

exponent, the number and/or exponent is negative, and so on. This

kind of numeric entry is very time consuming because the program bytes

have to be translated into an actual number which has very different

byte values than the representation in program memory.

Synthetic programming offers a solution to this problem that is

practical if the numbers average more than nine bytes apiece, or if

saving execution time is more important than saving bytes. The number

is brought into Alpha in the form of a text line, and recalled into

the stack using RCL M. This avoids the time-consuming formatting that

is normally required. Former Alpha contents are lost, but this will

usually not matter during initialization.
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In order to figure out the correct byte values for the text line that

will generate the desired number, there are several approaches you can

take. If you have a ZENROM, simply XEQ "DECODE" with the number

in X. Write down the fourteen hexadecimal digits of the result.

Enter PRGM mode where you want the instruction inserted. Then XEQ

"RAMED" and press I for the insert mode. Key in F 7 followed by the

fourteen hex digits you wrote down earlier. Press ON to exit the RAM-

Editor. Add a RCL M inswruction after the text line and you have

everything you need.

With a CCD Module, put the number in X and XEQ "DCD". Write down the

fourteen hexadecimal digits of the result. Enter PRGM mode where you

want the instruction inserted. Then use the alpha hex entry feature

(ALPHA SHIFT ENTER H digitl digit2) to enter each of the seven

synthetic characters by their two-digit hexadecimal equivalents.

Again, add a RCL M instruction.

If you have a PPC ROM, you can use a slightly longer procedure.

Clear Alpha, put the number in X, and STO M using a key assignment or

by single-stepping a STO M instruction. Then XEQ "CD" seven times

to give the decimal values needed in reverse order (right-to-left).

Or you can use the Extended Function ATOX as described below. Add

decimal byte 247 as the first of eight bytes that make up the proper

text line. When you have the values for all of the numbers you need,

use "LB" to create the text lines and follow each text line with

RCL M (144,117).

Another approach is the PPC ROM’s "NH" routine. XEQ "NH" with the

number in X. The result is a list of fourteen hexadecimal digits.

Divide them up in seven pairs of numbers to use with "LB". When using

this byte loading program, turn ALPHA mode on and use F7 as the first

of eight pairs of hexadecimal digits. Repeat the same procedure for

each number, adding hex 90 and 75 after each complete number (text

line) for the required RCL M instruction.
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If you don’t have the ZENROM, CCD Module, or the PPC ROM,

you can figure out the proper byte values with the Extended Function

ATOX if you have STO M or X<> M assigned to a key or contained within

a program (such as "LB"). Clear Alpha and then transfer the bytes of

your number from X to M. Either press a key assigned with STO M or

single-step it as an instruction (Section 4B shows how to use the byte

grabber to create this particular function). Enter ALPHA mode and

make a note of the position of any nulls ("overbar" characters),

because ATOX will not decode these. Exit ALPHA mode and use

ATOX repeatedly to get the remaining non-zero byte values, from left

to right. You can make the needed text line using a byte loading

program or the byte grabber, as described in Section 4B.

Putting the needed byte values together manually isn’t that difficult,

because the numeric representation is Binary Coded Decimal (BCD). The

details of the structure were given in Section 1B. The first of the

14 hex digits is the sign nybble. Use 0 for positive numbers and 9

for negative numbers. The next ten nybbles are the mantissa digits

(the number without any decimal point or exponent). The three nybbles

that remain represent the exponent and its sign (again, 0 for a

positive sign, 9 for a negative sign). A negative exponent -mn is

stored as 1000-mn, which equals 9xy, where xy = 100-mn. For example,

for E3 use hex 003 for the sign and exponent nybbles. For E-6, 1000-6

= 994, so use hex 994 hex for these three nybbles. The number totals

14 hexadecimal digits (nybbles) which can be used with a byte loading

program in pairs. Add a Text 7 byte (F7 hex) before the number, and

hex 90 and 75 bytes afterward (to make RCL M).

Let’s work through a complete example. Suppose the number you want is

the speed of light in miles per hour (186,282 * 60 * 60 = 6.70615200

E08). This is a positive number, so the first nybble is 0. The next

ten nybbles are 6 7 0 6 1 5 2 0 0 0. The exponent sign is also

positive, so the next nybble is 0. Simply keying in the number and

pressing SCI 1 or counting the number of digits between the decimal

point and the first digit gives a result for the exponent of 0 8. So
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the bytes needed (in hex) for 670,615,200.0 are as follows:

06 70 61 52 00 00 038

You can use these values with a byte loading program or convert them

to instructions and use the byte grabber in Section 4B to replace

existing characters in a text line. Note that the easiest way to

incorporate nulls in a text line using the procedure in 4B involves

using a one-byte function such as ENTER as a place holder. After the

other bytes are in place, the one-byte function is deleted, leaving a

null. Then the text prefix can be released to re-absorb the edited

character bytes.

Using a text line followed by RCL M is three times faster than the

numeric entry line 670615200. Slightly more speed can be gained in

this example by using the non-normalized numeric representation

00 0067 06 152011

which is 0.006706152 E11. This needs only a 5-character text line

rather a 7-character one. The two leading nulls can be omitted, and a

Text 5 (hex F5) byte takes the place of Text 7.

If you are using several numbers, you may want to pair them up and

create two at a time, using a l4-character text line. This saves half

a byte per number. Both numbers are loaded into Alpha at the same

time, then the two numbers are brought into the stack with RCL N and

RCL M instructions. This is nearly five times faster than normal

entry of a negative ten digit number with a decimal point and negative

two-digit exponent.

3C. CLEARING REGISTERS

The normal function CLST clears stack registers X, Y, Z, and T. If

you also want L (LASTX) cleared, use CLST, +.

As long as X contains a legitimate number, you can use STO nn, ST- nn

to clear a single data register. The advantage of this technique is

that none of the stack registers are disturbed. If the contents of
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register T are unimportant, or if X contains alpha data or Non-

Normalized Numbers, there is a faster alternative which is one byte

longer. The sequence ENTER, CLX, STO nn, RDN stores zero in

register nn and restores the stack (except T, which is cleared). Note

that both of these methods can be applied to register 00 through 99

using normally keyable instructions. Synthetic functions can extend

direct addressing capacity up to register 111. STO 111, which

displays as STO J has byte values 145, 111. Refer to the byte table

and Section 4B for more information.

A block of six registers from nn to nn+5 can be cleared very quickly

using 2XREG nn, CLY . If maintaining the original location of the

summation registers is important, the sequence can be slightly

modified. RCL ¢, ZREG nn, CLY , STO ¢, RDN will preserve the

summation register location. This second series of instructions can

be stopped and restarted with no ill effects. However, if the

register ¢ contents are removed from X between RCL ¢ and STO c,

MEMORY LOST will occur when the program stops.

The contents of Extended Memory can be cleared in several ways. If

you have an HP-41C or CV (without an internally installed Extended

Functions/Memory module), you can turn the calculator off and remove

the Extended Functions module for about a minute. When you plug it

back into a port and then turn the HP-41 on, all of Extended Memory

will be clear. This includes additional Extended Memory modules, as

far as the HP-41 is concerned.

This technique works by erasing the contents of the register at hex

address 040. This register is called the link register (each

additional Extended Memory module has a similar link register at its

lowest address). It contains the pointers to the working file, the

top of the next Extended Memory module (if any), plus the address of

the top of this module, which is always OBF. Any time the HP-41 finds

this register at hex 040 clear, it will presume Extended Memory is

empty.
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If you have the PPC ROM, you can clear this link register very

quickly. The sequence 64, XEQ "RX" will normalize hex address 040,

effectively clearing Extended Memory for subsequent operations.

Recovering from accidentally performing this sequence is possible,

though difficult. Recovery is made more complex due to the fact that

operations such as EMDIR will result in the top register of Extended

Memory (hex address OBF, decimal 191) being filled with FF bytes.

These bytes serve to mark the end of the portion of Xmemory that is in

use. For more details on this subject, refer to Chapter 10, Section C

of "HP-41 Extended Functions Made Easy" by Keith Jarett.

If you have a CCD Module, you can clear register 040 hex (64 decimal)

with the sequence 64, ENTER, CLX, XEQ "POKER".

If you have a ZENROM, you can clear register 040 hex with the sequence

ALPHA, CLA (shift backarrow), shift ALPHA 4 0, ALPHA, CLX

(backarrow), NSTOM. However, it’s much easier to just use the CLXM

function to actually overwrite all of X Memory with nulls. CLXM is

also programmable, though the "XM LOST" message will be suppressed in

a running program. This function is very fast, and there is no way to

recover Extended Memory contents afterward.

The Extended Function PCLPS (programmable clear programs) function can

be used to clear program registers in main memory in two ways. When

executed, PCLPS will clear main memory from the program named in Alpha

all the way to the bottom of Catalog 1. In this way, you can

selectively clear enough room in main memory to read in a program

from mass storage when you run out of free registers. PCLPS is rather

quick, and in addition there is no need to PACK afterward. The

registers which have been cleared will be added to the free registers

available, which are shown as .END. REG nnn as the last entry in

Catalog 1.

-87-



With Alpha clear, the PCLPS function will clear program registers from

the first line of the program you are positioned to, down to the

bottom of Catalog 1. This may not be what you had intended, so be

sure to check the contents of the Alpha register before you execute

PCLPS. Be careful not to use PCLPS while positioned to ROM programs

if you have revision 1B Extended Functions; in this case you will get

MEMORY LOST (unless the Alpha register happens to be empty). If you

have revision 1B Extended Functions, use CAT 1 to ensure you are in

RAM before executing PCLPS. The sequence CAT 1, R/S immediately,

XEQ "PCLPS" will clear all of program memory. Since this clears only

program memory, you may prefer this over the ZENROM’s CLMM

(Clear Main Memory) function.

All of main memory is cleared by the CLMM function. The only

difference between this ZENROM function and executing a Master Clear

is that Extended Memory is left undisturbed by CLMM. All key

assignments, Time module alarms, I/O buffers, data, stack, and program

registers are overwritten with nulls. CLMM resets all status

registers and flags to their default state. The number of free

program registers will be reset to 46 if you have an HP-41C or CV. If

you have a CX, the number of free registers will be 219 (SIZE = 100).

3D. LOOPING

A program loop on the HP-41 usually consists of a label function, some

number of instructions to be repeated, and a GTO which returns

execution back to the original label. The two sections following this

one will discuss labels and GTOs in depth. This section focuses on

the fact that the time it takes to complete the loop once has to be

multiplied by the number of times the loop is executed in order to

figure the total execution time. Therefore, any time saved within the

loop is multiplied by the number of times through the loop. Even

small reductions will add up to significant time savings. Because of

this, it is worthwhile to make an effort to reduce the execution time

of a loop, even if it takes a few more bytes to do so.
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First, reduce execution time by doing whatever tasks you can outside

the loop. Avoid numeric entry lines within the loop. Store such

numbers in stack, status (such as Alpha registers M, N and O), or

numbered data registers before the loop begins. Notice that stack and

status registers have a slight speed advantage over the data

registers. Also, data registers 00 to 15 have a slight edge over

higher numbered data registers in speed. This is related to the fact

that the STO and RCL functions for registers 00 to 15 are one-byte

functions.

Rather than using PSE to display a number, make use of VIEW in a loop.

As long as the loop takes enough time to allow you to look at the

number, VIEW X is superior to PSE because program execution continues.

However, an AVIEW, CLD, or PROMPT instruction subsequent to the

VIEW instruction will naturally change the display. VIEW can

also be used to show a number or six characters of an Alpha text

stored in a register without having to recall the information to Alpha

or X. You’ll probably want to clear the display with CLD following

the loop that uses VIEW or AVIEW.

It is common for a result to be accumulated in a status or data

register while the loop is being repeated. After exiting the loop,

when you need to recall that value, you can simultaneously recall the

value and reset the register to zero using CLX, X<> nn or ENTER,

CLX, X<> nn.

If your program contains a single large loop consisting of a label,

some instructions, and a GTO, you may want to replace this with

something a little faster. The label gets replaced by a RCL b

instruction. The GTO is replaced by STO b. In order for this

technique to work, you have to keep the recalled contents of register

b in the stack and have them in X when the program later encounters

the STO b. If you use too many stack manipulation instructions to get

the register b contents out of the way and then back into X, your time
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savings will be negated. Check the function execution times in

Appendix A of SPME if you have to add a RDN, R%, or other stack

manipulation to make the RCL b, STO b looping technique work.

The purpose of this RCL b/STO b method is to squeeze just a little

more speed from the HP-41. It doesn’t save bytes. Whether this

method is economical for your particular program or a waste of time

depends on how many instructions you have to add to put the recalled

contents of register b in X at the right time.

A far more sophisticated application of a similar idea is used in

Clifford Stern’s high-speed Morse Code progam "MC". Refer to pages

151 to 158 of Keith Jarett’s Synthetic Programming Made Easy.

Appendix B of SPME thoroughly explains how and why "MC" is so fast,

and may spark some ideas that will apply to your programs.

If it is at all possible, write your programs in such a way as to

avoid using functions that are time consuming. Use the function times

listed in Appendix A of SPME or on pg. 11 of SQRG to make comparisons.

In general, logarithmic, statistical, and trigonometric functions

should be avoided within a loop because of their inherent slowness. As

an example, I+ seems like a nice, one-byte way of accumulating X and

Y. If that’s all you need (with the summation register location =

11), why not use ST+ 11, RDN, ST+ 13? Although it’s four bytes

longer, it’s 60% faster.

Another example involves the use of YTX or lO‘rX in a base conversion

(or similar) program. This approach is attractive because the program

is more straightforward and easier to write. But instead of recalling

the base, recalling the counter and raising Y to the X power each time

through the loop, change the nature of the counter. Instead of

counting 0, 1, 2 and so on, and raising the base to the power of the

counter, start with a counter value of one. Then at the end of each

loop, multiply the counter by the base with ST* nn. The overall

effect is the same, but the method and speed of the two approaches are
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much different.

Examining different alternatives will often result in finding ways to

save time. This might include rewriting the equation involved or

using a different method or equation. Comparing different ways of

achieving the same result will often give you new insights, and is

time well spent. You can save time in this way even with

trigonometric functions, which are notoriously slow.

For example, when you have to multiply complex numbers within a loop,

use the rectangular representation directly instead of using the much

slower R-P and P-R conversions. Specifically:

(a+bi)*(c+di) = (ac-bd)+i(bc+ad), and

For division it may be faster to use:

(a+bi)/(c+di) = (a+bi)*(c-di)/(c2+d?)
= [(ac+bd)+i(bc-ad)]/(c2+d?)

In general, it isn’t easy to get around using trig functions when

they’re needed, but sometimes a single R-P can replace two trig

functions. However, don’t be discouraged if you find a case in which

execution times cannot be improved much.

3E. LABELS

An Alpha (global) label is needed to make your program show up in

Catalog 1. But using more characters than are necessary to make the

label unique is a waste of bytes. Two or three characters in the name

will usually be sufficient. It’s also wasteful to use more than one

Alpha label in a program unless it the program contains separate

sections or subroutines that will be executed by other programs. Most

programs require just one Alpha label, which serves as the starting

point.

The two-byte local labels A through J and a through e give easy USER

mode access from the keyboard to as many as fifteen different sections
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of your program. It’s a good idea to make use of A through E and then

a through e before using F through J, because the second row of keys

is often reassigned, and you may not want to disturb the default X<>Y

and RDN functions of the F and G keys. Remember that any key

assignments have priority over local labels. Press and hold a key to

check its function. Using these two-byte local labels instead of

Alpha labels will save many bytes.

The one-byte labels (LBL 00 to LBL 14) are found in row 0 of the byte

table. They should be used in most of the remaining cases when a

label is needed. When the HP-41 searches for numeric labels (because

the jump distance is not compiled), it begins at the line after the

branching instruction. From there it searches downward (toward higher

line numbers) until the label is found or until the END of the program

is encountered. If the END is reached before the label is found, the

search continues from the first line of the program. Because of the

way this search proceeds, it is possible for your programs to use more

than one label with the same number. You just have to make sure that

the correct label is encountered first. Here is a simplified rule for

repeated use of a label: Reuse labels for forward branches only (where

the GTO or XEQ is at a lower line number than the matching LBL), and

make sure that the branches don’t cross each other.

Because labels 00 through 14 can be easily reused for forward

branching, your programs should seldom need to make use of the two-

byte numeric labels 15 to 99. An exception is the need for special

LBLs in conjunction with GTO IND or XEQ IND instructions, as

discussed in Section 2D. In general, your program should have one

Alpha (global) label, and possibly local labels A to E and a to e

marking off major sections that need to be separately accessible. The

remainder should be one-byte labels 00 to 14, unless you are using

labels 15 to 99 as the object of GTO IND or XEQ IND instructions

(as in Section 2E).
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The only other time when labels 15 to 99 are desirable to use is when

you don’t want to use synthetic programming techniques. If this is

the case, when the distance from a GTO to its matching label is

greater than or equal to 112 bytes, use labels 15 to 99 and a GTO with

the same number. Failure to follow this advice will result in a GTO

whose jump distance is too large to compile, and as a consequence,

execution will be slow. More information on this subject is presented

in the next section on GTOs.

Synthetic two-byte labels with any of the 256 possible postfix (second

byte) values can be made using the byte grabber or Text 0 prefix

assignments. Details of these synthetic instruction-building

techniques can be found in Sections 4B and 4C. The "LB" inputs (for

use with a byte loading program) for a two-byte LBL are 207, nn. Look

at the second row in each square within the byte table to see how each

of these postfixes will display with decimal value nn. Labels 100 and

101 are exceptions; they display as LBL 00 and LBL 01 respectively.

Most of these labels can also be created using a synthetic key

assignment of 207, nn, with nn corresponding to the label number.

However, this seems to be limited to postfixes 15 to 254. This

behavior may vary from machine to machine. Postfixes of 128 or

greater will create labels which display as LBL IND nn. These labels

are normally useless because neither XEQ or GTO can branch to them.

As an example, GTO IND 00 does not branch to LBL IND 00. Instead, it

uses the contents of register 00 to determine the value of the numeric

label to search for.

If you are a ZENROM owner, nonsynthetic labels are entered in the same

manner described in the HP-41 Owners’ Manual. However, you can also

key in numeric and global labels which are wusually considered

synthetic. This is done directly from the keyboard. The ZENROM

allows synthetic suffixes for all instructions. In contrast, the CCD

Module only allows synthetic suffixes to be directly keyed for RCL,

STO, and X<> prefixes. Other two-byte synthetic functions must be

-93-



keyed in by decimal equivalent, using XEQ, ENTER, bytel, byte2.

The entry of two-byte numeric labels using the ZENROM can best be

summed up with the chart below. The decimal byte values for all of

these labels have "LB" inputs 207, nnn. The postfix nnn and the

keystrokes needed to create LBL nnn are listed below. These

keystrokes also apply when creating GTO and XEQ instructions. Because

of this, shift LBL is omitted from the listt Remember you need to

press shift LBL, shift GTO, or XEQ to create one of these

functions.

POSTFIX DECIMAL

DISPLAY POSTFIX KEYSTROKES

00 100 EEX, 0, 0
01 101 EEX, 0, 1 or EEX, I+

T 112 EEX, 1,2 or(.) T

e 127 EEX, 2,7 or(.)e

IND 00 128 EEX, 2, 8
IND 71 199 EEX, 9, 9

You can use the features of the ZENROM to make global labels

containing any of the 256 possible byte values without any

restrictions. The USER ALPHA mode can be used for both the lowercase

letters (all but a - e are shown as B ) and all of the displayable

characters which are not normally available. The USER ALPHA keyboard

is shown on one of the two overlays supplied with the ZENROM, and on

page 57 of the ZENROM manual.

In addition, the ZENROM has a character entry feature called

"SYNTEXT". This allows the entry of any character in a label, global

assignment, text, GTO or XEQ function, no matter which Alpha

mode you are in. Simply press shift, ALPHA and fill in the two

prompts with hexadecimal digits (row, column) from the byte table.

The corresponding byte is entered as if it had just been keyed in.
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3F. BRANCHING USING GTO

Avoid Alpha GTO

Don’t use an Alpha GTO in a program except to branch to a different

program in Catalog 1. An Alpha GTO sends the 41 searching for a

matching label, beginning at the bottom of Catalog 1 and continuing

upwards. The time it takes to find a matching label will be fairly

short when the program is at the bottom of Catalog 1, such as when

first developing the program. But the search time gets longer as

programs are added between the bottom of the catalog and the program

searched for. This search time for a matching Alpha label (roughly

.016 seconds per Catalog 1 LBL or END) can exceed a full second in

some cases. If you need to return to the beginning of your program,

rather than using an Alpha GTO, you should add a numeric label

immediately following LBL "xx" and use a matching numeric GTO.

There are two reasons why you shouldn’t use an Alpha GTO or XEQ to

branch to a ROM (plug-in or module) program. The first reason is

speed. All of Catalog 1 is searched before the HP-41 checks Catalog 2

for the program. In Catalog 2 there are often several modules that

have to be checked before the HP-41 even gets to the module that

contains the function you want. This search process is therefore

virtually guaranteed to be slow.

Another reason to avoid the Alpha GTO or XEQ for ROM functions is its

greater byte count. An XROM "xx" instruction uses just two bytes.

Compare this to the four bytes taken by an Alpha GTO or XEQ for a

function that has a two character name. Using an XROM instruction

will save even more bytes for longer program names.

Synthetic three-byte GTOs

Use the normally keyable two-byte GTO 00 to 14 for branching to one-

byte labels 00 to 14 if the jump distance is less than 112 bytes. See

the following section, 3G, for help in counting bytes to determine the
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jump distance. When the jump distance is greater than or equal to 112

bytes, a three-byte GTO is needed to contain the compiled distance.

Three-byte GTOs that branch to the one-byte labels 00 to 14 aren’t

normally keyable. Nevertheless, there are four synthetic methods

available to create these GTOs.

The first technique involves using a byte loading program to make the

needed instruction. Byte loading programs such as "LB" or "LBX" will

create the required function when you use inputs 208, 0, n, where n

equals the label number.

The second procedure used to create this synthetic GTO requires the

byte grabber key assignment. At the location of the needed GTO

instruction, in PRGM mode, key in RCL IND 88, ENTER, LBL 00, BST to

the step above the RCL IND 88 instruction, and byte grab to make a

three-byte GTO 01. The same procedure will create a three-byte GTO 00

if you backarrow the LBL 00 before byte grabbing. For other values,

look in row 0 of the byte table for the correct third instruction.

Byte grab the RCL byte and backarrow to clean up. If this isn’t clear

to you, refer to Section 4B for more complete instructions on using

the byte grabber.

The third approach to synthesizing a three-byte GTO involves the use

of a Text O prefix (240, 208) assignment. The process is too lengthy

to repeat here. Refer to Section 4C for instructions and a full

explanation of Text O prefix assignments.

The fourth approach uses a completely different class of key

assignments than the last two methods. Credit goes to Gregor McCurdy

for publishing an excellent article on these prefix 4 assignments in

the Oct./Nov. 1982 (VIN7P9d-10b) PPC Calculator Journal. Assign 4,

213 to a convenient key with a synthetic key assignment program like

"MK" or "MKX" before you continue.
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Several different GTOs can be created with this assignment, depending

on the keys you press to fill in the numeric prompt. Check that the

assigned key shows d<__ when pressed. Backarrow to cancel it. Now

position yourself to the place where you want to put the synthetic GTO

and enter PRGM mode.

As an example, let’s create a three-byte GTO 01. Press the assigned

key followed by SHIFT 0 1 (or SHIFT T+). You should now see GTO 0l.

You can confirm that this is a three-byte function using the byte

counting methods described in the next section, or with the help of

more advanced techniques presented in Section 41.

To synthesize a three-byte GTO T, press the assigned key followed by

SHIFT . T. This method is limited to the five postfixes 112 to 116,

which correspond to T, Z, Y, X, and L (unless, of course, you have a

ZENROM, which permits synthetic suffixes to be entered from the

keyboard for all instructions). All matching labels for these GTO

instructions with row 7 suffixes are synthetic.

The table below lists all of the various possible inputs, and the GTOs

which are produced by this assignment.

PRGM mode input GTO produced

00 to 14 two-byte GTO 00 to 14

15 to 99 three-byte GTO 15 to 99

IND 00 to IND 99 three-byte GTO 00 to 99

IND(.)T,X,Y,XorL three-byte GTO T, Z, Y, X or L

Feel free to experiment with this. If you own a ZENROM, you will find

that other inputs are possible with this function. Also, there are

three other functions, with different prompts, that act the same as

the 4, 213 assignment. They also have a prefix of 4, and their

postfixes are 209, 219 and 222. 4, 208 is the normal GTO function.

Unexpectedly, assignment 4, 203 can be used for GTO . GTO ..,-——r
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GTO Alpha (including local labels A to J and a to ¢), GTO IND 00 to

99, GTO IND T, Z, Y, X, or L. More in accord with its location in

the byte table, this assignment can also be used to create a normal

END with inputs 00 to 99.

The run mode behavior of the prefix 4 assignments with postfixes 209,

213, 219, and 222 is somewhat unpredictable. Most of the time, they

will act like a regular GTO and branch to the label that corresponds

to the number you key in. You can GTO labels 00 to 99, synthetic

labels IND 00 to IND 99 as well as IND T, Z, Y, X or L. But once in

awhile, the assignment will behave like a compiled GTO, and

unexpectedly jump some number of bytes in either direction.

Note that the COMPILE function of the ERAMCO MLDL Operating

System ROM will automatically change a two-byte GTO into a synthetic

three-byte GTO when a two-byte instruction is not sufficient to hold

the jump distance to the matching label.

Label-less Programs and Avoiding Decompiling

One of the most difficult tasks to perform is putting together a

working version of a program completely without labels, doing the work

of computing the jump distances of the branching instructions by hand.

This tedious job is made easier by the ZENROM’s RAMED function.

At least the business of changing a GTO or XEQ function to be a

compiled instruction is made easy.

This is one of the more esoteric aspects of synthetic programming.

For the few bytes saved, much effort is expended. One wrong move, and

all of the pre-compiled jump distances are lost. The first thing you

need to learn before you can construct a program without labels is how

to avoid decompiling.

The HP-41 clears the jump distance information from branching

instructions after they are invalidated by an operation such as using

DEL, backarrow, inserting instructions (in PRGM mode), and so on.
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This is controlled by nybble 6 of the END (or .END.) instruction

immediately below your location in program memory. Whenever you do

something to invalidate the jump distances, the HP-41 Operating System

(OS) sets nybble 6 of the END or .END. to hex value F (See Table 4.1,

page 150 in Section 4G). Later, while leaving PRGM mode, packing, or

at turn-on, the OS will zero jump distance information within the

domain of any END or .END. functions if the appropriate bit (third)

of nybble six is set. This erasure is known as decompiling. Section

4G discusses ways to avoid decompiling. Only the use of RAMED is

covered here.

Besides preventing the OS from erasing jumps to nonexistent labels,

you can avoid decompiling to preserve the compiled status of a program

brought into main memory from mass storage or Extended Memory. It

sidesteps slowing the program execution down to recompute the jump

distances.

After reading in the program, enter PRGM mode. Be sure NOT to exit

PRGM mode until finished, or decompiling will take place. Now press

BST twice. You should see the last line of the program in the

display. Now press XEQ, ALPHA, E N D, ALPHA. Then execute RAMED,

press USER, and change the hex OF byte to 0 9 or 0 0. Press ON to

exit RAMED mode and press PRGM to return to run mode. That’s all

there is to it.

The "ReNFL" program below is simply a rewritten version of the program

appearing in 5B. A total of 5 bytes are saved by the removal of the

one-byte labels within the program. You will need to create a packed

END as per the above procedure if the program is to be read in from

mass storage or Extended Memory. Failure to do this will result in

NONEXISTENT until the proper values are stored within the nybbles that

hold the jump distances.
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01 LBL "ReNFL" 20 X=Y? 39 X<> M

02 44 21 GTO 04 40 ALENG

03 POSA 22 RDN 41 XEQ 02

04 X<0? 23 X<>Y 42 X<>Y

05"+ BEREBER" 24 CLA 43 X<> M

06 X<0? 25 DSE X 44 NSTOM

07 GTO 01 26 XTOA 45 RTN

08 AROT 27 X<>Y 46 7

09 ATOX 28 NRCLM 47 X<>Y

10 RDN 29 STOM 48 -

11 XEQ 02 30 ASHF 49 DSE X

12 X<> N 31 RDN 50 X#0?

13 STO a 32 X<>Y 51 X<0?

14 X<> M 33 ATOX 52 RTN

15 191 34 - 53" "

16 CLA 35 DSE X 54 GTO 05

17 XTOA 36 GTO 03 55 END

18 X<>Y 37 RTN

19 NRCLM 38 RCL a 107 bytes

Line 07 = hex B2, C2. Line 11 = hex E4, 08, 02.

Line 21 = hex B5, 23. Line 36 = hex B4, B4.

Line 41 = hex E2, 01, 02. Line 54 = hex B6, Bl.

Line 53 appends one space.

As before, line 05 appends a comma and seven FF bytes to Alpha (hex

F9, 7F, 2C, FF, FF, FF, FF, FF, FF, FF), and line 53 appends a single

space (hex F2, 7F, 20). Programs read from barcode by the wand do not

have compiled jump distances, so you will have to do the work of

changing the GTO and XEQ instructions using RAMED. If you are keying

it in by hand, you might as well use GTO . . to attach the END to the

program, The program must be packed (don’t use the previous

procedure, as the nulls before lines 02 and 46 won’t be removed,

throwing off the jump distances), unless you use RAMED to enter lines

02 and 46.
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Like the program in 5B, "ReNFL" can be used in two ways. You can

rename a file whose header register is within the Extended Memory of

the Extended Functions module / HP-41 CX. With "ABC,DEF" in Alpha,

"ReNFL" will change file "ABC" to "DEF". If Alpha contains just a

single filename (no comma), the header register with a matching name

will be replaced with seven hex FF bytes. This is interpreted by the

OS as the end of XM, effectively removing that file and all those that

follow.

There are two basic methods that can be used to compute the values for

the jump distances within the branching instructions. The first would

be to use the byte counting techniques described in 3G to determine

the size of the jump (RCL b method using "CB"). A look at the program

listing tells the direction of the jump (compare with the version that

has the matching labels in 5B). Then a little conversion from decimal

to binary to hex with SQRG page 39 (Function Structure) as a guide

should give you the right values to key in with RAMED.

The second, far easier way is to look at a compiled version of the

program that has the labels in place, and figure out how the relative

jump will be changed by the deletion of the labels. In the case of

the jump at line 41, there is no change! The jump is still 2 bytes,

direction = 0, 1 register from the first byte of the XEQ instruction

to the instruction where execution should resume (7 in this case).

The structure of the GTO at line 07 needs only a small change to make

it jump upward one byte less. The original compiled value of B2, D2

needs to have 1 subtracted from the third nybble (D), giving hex B2,

C2. The new line 11 jumps two bytes less because of the deletion of

labels 03 and 04. Hex E8, 08, 02 becomes E4, 08, 02. The GTO 04

instruction at line 21 does not change, since there are no labels

deleted to change the jump distance. However, the GTO 03 instruction

at line 36 needs to account for the deleted label because of the

direction of the jump. Hex B4, C4 becomes B4, B4. The GTO at line 54
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also jumps one byte less, changing from B6, Cl1 with label 05 in place,

to B6, B1 without the label.

There are other interesting possibilities for branching functions with

pre-compiled jump distances. Since the HP-41 OS does not check for a

matching label when the jump distance (or direction) bits are nonzero,

you can go wherever you like. And because the program subroutine

return stack stores absolute addresses, you could even have an XEQ

instruction jump into the middle of another program and return

properly! There is no problem jumping over ENDs with pre-compiled

jumps. This behavior is similar to that in 4I. Short form (two-byte)

GTO instructions are limited to jumping 112 bytes when pre-compiled.

The long-form GTO and XEQ instructions have a 12-bit field for the

relative jump distance, making 512 register jumps possible. Direct

jumps into Extended Memory are possible, though it requires a fixed

absolute address for the program that makes the jump. Because of

these severe restrictions, no example will be given here to

demonstrate this. We leave it to those interested to explore.

GTO .000

An interesting synthetic assignment can be used to move to line 000 of

a program, just like executing RTN in run mode. This saves

keystrokes if you are in PRGM mode. The technique was discovered by

Roger Hill.

In order to use one of these assignments, you must have a non-

prompting, non-programmable function present. The Card Readers’ VER

function and the MCED function of the ZENROM are good examples.

Letting Aa bc represent the hexadecimal bytes of the selected non-

programmable, non-prompting function, the synthetic assignment Ca bc

will execute a non-programmable RTN.

For example, MCED is XROM 05,06, which is hex Al 46. If you have a

ZENROM present and you assign Cl 46 to a key, the assignment will

preview as MCED. Similarly, VER is XROM 30,05, or hex A7 85. If a
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Card Reader is present and you assign C7 85 to a key, the assignment

will preview as VER. Both assignments clear all pending returns and

move you to line 000 of the current program, just as if you had

executed RTN or END in run mode. To get to line 01 in PRGM mode,

press the assigned key followed by SST.

3G. BYTE COUNTING TECHNIQUES

There are several different methods which can be used to count program

bytes. The most obvious method is to count the bytes by hand, looking

up the byte count for each instruction and tallying the total. This

is fine for short programs. A copy of Jeremy Smith’s HP-41 Synthetic

Quick Reference Guide (SQRG page 39) or a copy of Keith Jarett’s "HP-

41 Synthetic Programming Made Easy" (pages 57 to 63) will help with

this. When you need the byte count of long instruction sequences or

whole programs, other methods are faster and easier. Also, synthetic

GTO instructions can be three bytes rather than the normal count of

two, and you cannot tell the difference by just looking at the display

or a printed listing.

Byte Counting with the Printer or with the HP-CX

If you have ecither a printer or an HP-41CX, you can find out very

easily how many bytes an entire program uses in main memory. First,

be sure to PACK to eliminate any leftover nulls, and set flag 21 to

enable the printer. Select TRACE mode on the printer and list CATalog

1. If you have an HP-41CX, just list CATalog 1 (you don’t need a

printer). All of the labels and ENDs in main memory will be listed,

with a byte count accompanying each END. If you want to count the

bytes within a program, you can insert END instructions to partition

that section of the program off from the restt In PRGM mode, XEQ

"END" where needed, PACK, and CATalog 1 as before. The byte count

returned includes the bytes from the line after the previous END in

Catalog 1 (if any; otherwise from the first line of program memory)

down to and including the END that accompanies the listed number of

bytes. When you are done counting bytes, backarrow any extra END
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lines you inserted and PACK again. This method is a little clumsy,

and it decompiles your program, but it gets the job done.

Byte Counting with the CCD Module

The CCD Module’s functions PLNG (Program Length) and PPLNG

(Programmable PLNG) will give you an immediate byte count of the

program area that contains a particular Alpha label that you specify.

If you don’t specify a global label name, you’ll get the length in

bytes of the current program.

Byte Counting With Extended Memory Files

If you have Extended Functions or an HP-41CX, you can get the byte

count of a program after a copy of it is saved in Extended Memory. If

a copy already exists, key the program file name into Alpha and XEQ

"RCLPTA". If there isn’t a copy in XMemory, key the name into Alpha

and execute the sequence SAVEP, RCLPT. A short program which

automates this procedure appears in "HP-41 Extended Functions Made

Easy" (XFME). Refer to the index on page 264 of XFME under "CBX".

One very useful feature of SAVEP is that you are allowed to save

programs in Extended Memory under names other than the ones used

within the program. You simply key into Alpha the same letters that

appear in a Global label within the program, add a comma, and then key

in the name you want it saved under. When you execute SAVEP, only a

program with an identical file name will be overwritten. This is

useful when you make changes to a program after saving it with SAVEP,

and you want to compare byte counts.

Let’s use a program named "EM" as an example. Assuming a label "EM"

exists, press SHIFT CAT 1 (to make sure you are not in a ROM module;

this avoids a potential MEMORY LOST with the buggy Revision 1B

Extended Functions), then ALPHA EM ALPHA and XEQ "SAVEP". This

saves a copy of the unmodified program in case you don’t like the

results of your changes. Make the modifications and PACK after

testing the program. Now key in "EM,EMI1" and XEQ "SAVEP". Do not put
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a space after the comma! Now retrieve the byte count of "EMI" (the

"working file") with RCLPT. Compare this to the count for the

original "EM" by using RCLPTA. RCLPTA will ignore the comma and

following characters, and use the letters before the comma as the file

name.

This method is efficient because you avoid ever needing to go back and

undo changes you made. This cuts down the number of times you have to

PACK, and saves time. It also helps in case you forgot something

along the way or deleted a line too many in the process. It gives you

something to fall back on. If you don’t like the changes, get rid of

the modified version in main memory with CLP or PCLPS and read in the

original from X Memory. If you like the changes, you don’t need to do

anything to the program in main memory.

Whether you like the changes or not, you still have an X Memory file

that may not be needed. If you don’t want this file, put the name in

Alpha and execute PURFL. If a revision 1B Extended Functions module

is in your machine, follow this with EMDIR as demonstrated in the "PK"

program in Section 5B. Otherwise you may lose your entire Extended

Memory directory.

Byte Counting Using RCL b in RAM or ROM

The RCL b function recalls the current program pointer to X. The two

rightmost bytes contain the current address within program memory.

The other five bytes may contain pending returns if RCL b is used in a

running or prematurely halted program, but this does not concern us

here. We need to decode the pointer information in the rightmost 2

bytes. Using this capability you can find the distance between two

pointers in bytes by subtracting their decimal equivalents.

In order for this technique to work, you need to be able to execute a

RCL b key assignment, or you need a ZENROM or CCD module. These last

two are custom modules which allow you to execute synthetic functions

(in particular, RCL b) from the keyboard in the same way normal
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instructions are entered. These modules also perform other special

functions.

To make the synthetic RCL b key assignment (not necessary if you have

a CCD Module or ZENROM), you need a synthetic key assignment

program like the PPC ROM’s "MK", Tapani Tarvainen’s "MKX" from

SPME, "ASG" from XFME. Use inputs of 144, 124 and the keycode

of the key to which you want RCL b assigned. You will need to execute

RCL b from the keyboard to try the examples in this section.

Next you need to know how to convert the recalled program pointer to a

decimal value. If you have the PPC ROM, you can use the "PD" (Pointer

to Decimal) routine to convert a RAM pointer to a decimal address.

(This pointer decoding program does not work properly with ROM

addresses because the ROM pointer format is different.)

If you don’t have the PPC ROM, you can use the following program

instead. You’ll need an HP-41CX or the Extended Functions module. If

you don’t have either of these, you can use the set of programs on

page 86 of SPME to decode RAM and ROM pointers and count bytes.

01 LBL "CB" 15 CHS 29 MOD

02 X<>Y 16 ALENG 30 LASTX

03 XEQ 10 17 E 31 X12

04 X<>Y 18 - 32 *

05 XEQ 10 19 X#0? 33 +

06 - 20 ATOX 34 7

07 RTN 21 ABS 35 *

08 LBL "PD" 22 ATOX 36 +

09 LBL 10 23 R? 37 INT

10 "*" 24 STOM 38 RCL M

11 X<> M 25 RDN 39 X<>Y

12 STO N 26 LASTX 40 CLA

13 RDN 27 16 41 END

14 ENTER® 28 ST/ T
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Line 02 of "CB" swaps the two pointers to decode the one in Y first.

Line 03 executes label 10 which is "PD". This converts the pointer to

a decimal number. Line 04 swaps this decimal pointer number with Y,

putting the pointer that hasn’t been decoded back into X. Line 05

converts it to decimal. Line 06 subtracts the two decimal values,

yielding a byte count.

Label "PD" and label 10 are one and the same, but Alpha XEQ

instructions use more bytes and are slower than numeric executes.

Lines 10 through 12 and 15 have the effect of putting the contents of

X in Alpha register M and removing all but the two rightmost bytes.

Lines 13 and 14 get rid of the pointer that was in X, replacing it

with a copy of Y. Line 15 follows the ENTER? instruction to disable

the stack lift, otherwise a RCL X function would have to be used here.

Line 16 returns the length of Alpha to X, which will be zero or one

after lines 17 and 18 decrease it by one. If there is only one

character in Alpha, line 19 will skip the first Alpha,K TO X

instruction. Line 21 functions only to copy X into L. Line 22

decodes the rightmost character in Alpha, leaving Alpha empty and the

decimal character code in X.

Lines 23 and 24 push the other pointer into X and save it in Alpha

register M, so it isn’t lost. Lines 25 and 26 replace it with the

decimal character code of the left-had pointer byte. After line 27,

this number is also in T. Line 28 divides this by 16, extracting the

left nybble. Line 29 separates the right nybble from the decimal

value, discarding the rest. Lines 30 and 31 recover the number 16

from L and square it, giving 256. 256 is multiplied by the right-hand

nybble of the left byte and added to the right byte value by lines 32

and 33. The result is multiplied by 7 by lines 34 and 35. Line 36

adds this to the value of the leftmost nybble which was isolated by

line 28. Line 37 removes any fractional artifact of that division.

Lines 38 to 40 recall the other pointer from Alpha register M, place
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it in Y, and clear Alpha.

The "CB" (count bytes) and "PD" (pointer to decimal) routines listed

above total 67 bytes. If you don’t need the byte counting part of the

program, you can delete lines 01 to 07 and line 09. The byte count

for "PD" alone is 51 bytes.

When you use either the PPC ROM version of "PD" or the version above,

you may want to press ENTER after you RCL b. Do this when you’re

decoding one address. Both programs preserve the contents of Y, so

after you’re done decoding this address, you can use the contents of Y

to return to the address you decoded. If you used the PPC ROM version

of "PD", press CATalog 1 and stop it anywhere. This returns you to

RAM. Then for either version, press X<>Y, STO b. You avoid going all

the way through Catalog 1 to find your program, or using an Alpha GTO.

This saves time.

Both the PPC ROM'’s "CB" routine and the "CB" program here execute

their respective versions of "PD" twice, and subtract the decoded

decimal addresses to give the byte count between these two addresses.

For a correct count, position yourself in program memory to the first

line you want counted, and RCL b. Then move to the line after the

last line you want to be counted and RCL b again. Now XEQ "CB". The

result is the number of bytes from the line at address Y up to and

including the line before address X.

If you can’t position yourself to the line after the last one you want

to be counted, manually add the number of bytes in that line to the

number returned by "CB" after using the last line’s address for the

second entry. This will ordinarily be necessary only when the last

instruction is the .END. or an END. If the last instruction is an

END, just add three bytes to the total. If you use the address of the

.END. for the second entry, the byte count for the program will be

correct. However, you still need to add three bytes for a correct

total, because a three-byte END will have to be added to this program
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before more programs can be added to main memory.

As an example of using "CB", position yourself in main memory by

executing CATalog 1 or an Alpha GTO to a program whose first line is

an Alpha label. Press RCL b. Now use CATalog 1, stopping at the

Alpha label following the END of the first program. RCL b again. Now

XEQ ALPHA C B ALPHA. The byte count will be returned for the first

program. This value will be correct, including the END, as long as

the second Alpha label was also at line Ol. It may be easier for you

to start at the first line of the program whose bytes you want to

count, press RCL b, BST (to the END), RCL b, XEQ "CB", and then add

three to the total returned.

When you count bytes within a program, the easiest method is to RCL b

in run mode at the first line you want to count, go to the last line

you want to count, SST (watch that this doesn’t cause a jump beyond

the next line) and RCL b again. Then execute "CB" to count the bytes.

Remember that the byte count returned includes all of the bytes

starting from and including the first address, extending through the

line before the second address.

Both versions of "PD" are made to decode RAM addresses. Trying to use

"PD" to decode a ROM address will yield an incorrect number. The

reason for this is that RAM and ROM pointers have different formats.

In RAM the first of the four nybbles in the program pointer indicates

the byte number within the register specified by the remaining three

nybbles. However, in return addresses and ROM addresses, this first

nybble indicates the port or internal ROM number. For more

information on this, refer to pages 22-23 of this book, or page 115 of

SPME or page 38 of SQRG. The details of this arrangement aren’t

important here. What is important is that you know that even though

ROM addresses are not correctly decoded by "PD", you can still use the

"PD" output to compute the correct result.

Because ROM programs execute opposite the direction of RAM programs,
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from lower to higher addresses, the sign of the difference in bytes

will be incorrect. Also, "PD" interprets the difference in ROM bytes

as a difference in RAM registers of 7 bytes each. So when you use

RCL b and "CB" to count bytes in ROM, divide the result by -7.

Let’s use an example of counting bytes that does not require the PPC

ROM, but uses a ROM you probably have available. Turn your HP-41 off

and plug the Optical Wand into one of the ports. Press ON and GTO

"WNDTST". RCL b, GTO .999 and RCL b again. XEQ "CB". Now press 7,

CHS, / to divide by negative seven. The resulting byte count of 55

includes lines 01 to 29 of "WNDTST", and does not include the END.

You can confirm this is correct by using the COPY function to make a

duplicate of this program, GTO .., and follow the same procedure as

before. This can be applied to any ROM containing user-code programs.

Just don’t cross over END instructions in the ROM, and the byte counts

will be correct.

Counting bytes with RCL b has an advantage over other methods in that

any portion of a program can be counted, not just the whole program.

And no extra copies of these programs or instruction sequences have to

be made. Unless you have a CCD Module with its built-in PLENG and

PC>X functions, I'm sure you’ll find it worthwhile to use a little

RAM space for a copy of "CB" and "PD".

Figuring Tracks and Records

If you have any sort of mass storage device, counting bytes can be

very valuable. The number of bytes a program takes up on the storage

medium can have several effects. The controlling factor is the way

the program bytes are grouped on the recording medium.

If you own the Card Reader, you need to keep in mind that 112 bytes

fit onto one track (one side) of a magnetic card. Up to 224 program

bytes fit on a single card. If you mainly use the card reader to

store your programs, you may want to try to tailor your programs with

this fact in mind. As an example, if you have a program whose length

-110-



is 230 bytes, it’s easy to see that trimming off six bytes would

enable you to fit the program onto a single card, completely filling

both tracks. This eliminates the need for a second card. It also

gets rid of a half-used card, which is a nuisance.

Another approach would be to trim off just three bytes from the

program. Then when your record the card or read it back in, simply

press backarrow when you’re prompted for the third track. This leaves

off the three-byte END, and has no important effect besides avoiding

the need for another card. You should mark the card or cards to

remind you of this for when you later read them in, so you don’t go

looking for the "missing" card. A backarrow symbol next to "#3" can

serve as a reminder on the card.

Of course, if you make any changes to the program that add bytes, you

will once again need another card. But for programs that don’t often

change, the time it takes to shorten a program enough to fit on one

less card is well spent when the byte count is just over a multiple of

224,

If you save programs on the Digital Cassette Drive, you should be

aware that all of the recorded information on the tape is grouped into

chunks, called records, of 256 bytes. When you execute NEWM, what is

actually happening is the tape is being marked off electronically into

these records. The tape is unuseable by the Drive without the record

markings.

You should know that one mini data cassette holds 131,072 (128K)

bytes. This is composed of 512 records, each containing 256 bytes.

The first two records are used for housekeeping, leaving 510 records

for the directory and files. One record in the directory will hold up

to 8 filenames. For this reason, the number used to fill in the NEWM

prompt should be a multiple of eight. Since the microprocessor within

the Cassette Drive keeps track of one entire record, access to another

file within the same block of eight files will usually be swift after
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an initial operation (such as DIR or READP), because the directory

registers at the beginning of the tape will not have to be read for

the starting address of the file.

The last byte of the last record of a program on cassette tape is used

for a checksum. Therefore, the longest program that can be stored in

a single record is 255 bytes long. The next increments are 511, 767,

and 1023 bytes. This fact may seem trivial when you first record the

program, but it may make a difference later. The other thing you

should know is that that Cassette Drive will not re-use vacated

records unless the vacated records were once a part of the original

program file or it is the last file on the cassette tape. Each file

must begin with a new record.

Let’s use an example to illustrate a point. Suppose you have a fairly

large program that you use often. You usually read it in, use it for

a little while, and clear it from memory. You recorded it at the

beginning of a cassette to make access quick. You use it for some

time, and it seems to work well. In the meantime, you add more

programs and write-all sets after the program on the tape. One day

you find an error that went unnoticed. The fix for the problem pushes

the byte count up from 750 to 771 bytes, and you record the new

version on the same tape. It seems to take a long time for the WRTP

to finish. Now every time you need the program it takes a lot longer

to read it in.

You can avoid this kind of problem by "padding" a program with a small

section at the end of the program that does nothing before you first

record the program. A series of nulls will serve this purpose as long

as you are careful not to remove them by PACKing. Add enough nulls

(or NOPs) between the last line and the END to tip a borderline byte

count over the next multiple of 256. You can figure out the bare

minimum number of bytes you need to add by taking the present byte

count and press 256, MOD, LASTX, X<>Y, -. This way, if you later make

some changes to the program which require more bytes, the position of
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the program on the tape can stay as it is.

An easy way to add nulls to a program is to position yourself to the

END while in PRGM mode and key in any function. Backarrow the

function and there are seven nulls, assuming the program was initially

packed. You can SST to the END again, key in a function, backarrow

it, and another seven nulls will be added. Just be careful not to

backarrow the END. To find out how many registers you need to open

(which is the number of times you need to repeat the above procedure)

divide the number of bytes that you computed above by seven, and round

up to the next higher number.

If you have the ZENROM, use RAMED to change the third byte of the

END to hex 09 (from OF) while still in PRGM mode. SST to the END

(or .END.) of the program, and (still in PRGM mode) XEQ "RAMED".

Press PRGM until you see 00 Cx xx in the display, then press PRGM

twice more. The third byte of the END (or .END. is now in the center

of the display. Replace it by keying in X9 where X is the same nybble

that currently appears at the left side of the center portion of the

display. This change keeps the HP-41 from erasing the compiled jump

distance information as it exits PRGM mode. Otherwise, you will need

to recompile all branching functions before you WRTP by running the

program or SSTing each local GTO or XEQ instruction. See Section 4G

(pages 160 to 161) for more information on avoiding decompiling.

Press ON and PRGM to return to run mode.

GTO Instructions

Section 3F mentioned that a two-byte GTO can store a jump distance

from -111 to +111 bytes. When a larger jump distance is needed, you

should either create a synthetic three-byte GTO 00 to 14, or use a

higher numbered numeric label with a non-synthetic three-byte GTO

instruction. To count bytes for GTO jumps, RCL b at the GTO first,

SST, RCL b at the label, and XEQ "CB". This procedure is convenient

and easy for you to execute. For a successful two-byte GTO, the

acceptable "CB" count is from -109 to +113 bytes, inclusive.
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There are more direct methods to test if the two-byte GTO will work

well, or if a three-byte GTO is needed. They don’t really involve

byte counting at all, but they deserve to be mentioned here. Section

41 covers a synthetic assignment called the Byte Jumper which allows

you to copy program bytes into Alpha without altering program memory.

After you PACK and SST the GTO to compile the jump distance (if it can

be compiled), Byte Jump over the GTO, check the bytes in Alpha. If

the second byte of the GTO appears as a null, indicating no stored

jump distance information, then the jump distance was not compiled.

Note that you should look at Alpha to do this, as the null will

disappear when you use ATOX.

If you have the ZENROM, you can directly look at the second byte of

the GTO using the RAMED function in PRGM mode. If the two hex digits

of the second byte are 00 after packing and trying to compile as

described above, the jump is too long to compile.

3H. MISCELLANEOUS TIPS

This section contains some tips for your programs which do not fit

neatly into the previous categories of Chapter 3. An example would be

to figure out the best way to double X. Problems like this are best

approached by listing all of the different ways you can think of doing

the job. Tally the byte counts and execution times on paper using

Appendix A or SQRG page 11. Then decide which method has the most

desirable characteristics for that particular program.

For an example, let’s look at a simple problem, doubling the number in

X. Some of the possible ways to double X are:

2 63 ms ENTER1? 11 ms

* 37 ms + 30 ms ST+ X 35 ms

 

2 bytes, 100 ms 2 bytes, 43 ms 2 bytes, 35 ms
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Since they all use two bytes, the byte count won’t be a factor in your

decision. Execution time (speed) is the other important quantity to

weigh.  The first, and most obvious way to double X (2, *), is not

very fast. The sequence ENTER?, + is more than twice as swift.

However, ST+ X beats them all. At 35 milliseconds (ms), it’s nearly

three times faster than the first way of doubling X.

Though this is a simple example, there is another characteristic which

has been overlooked: stack usage. Each of the three approaches has a

different effect on the stack. The first example will leave 2 in

LASTX (L). If the use of 2, * allows you to replace a later number

entry line containing 2 with a LASTX instruction, you may want to use

this. Speed, including any possible beneficial effects "downstream",

should be taken into account for each case.

The second sequence, ENTERY, +, leaves the original value of X in L.

If this is of any value, it will clearly outweigh the 8 ms speed

advantage of ST+ X.

ST+ X is unique among these three in that it is the only one that has

no effect on L. Since it’s the fastest, you’ll most likely choose

this one anyway. But the fact that L is left unchanged may be helpful

in your application. Always consider stack usage.

As was pointed out in Section 3B, numeric entry lines are rather slow.

Avoiding them will almost always save time. That is the primary

reason the first approach of the three in the previous example was so

slow compared to the others.

Another example of this is to use ENTER?, SIGN, % to divide by 100.

This is more than two times faster than either 100, * or E2, *. If X

may contain negative numbers, change this series of instructions to

ENTER%, CLX, SIGN, %. Otherwise, all results will have a positive

sign, as though ABS were performed. The percent function will leave
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the original value of X in Y, X/100 in X, and unity (1) in L when used

this way.

This method of using the % function can be extended to include several

other cases. When dividing by a number which is evenly divisible by

100, you may want to replace the sequence n, / with the quantity

(n/100), followed by %. As an example, replace 50, / with 2, %. This

doesn’t apply to very many cases, but it can be another possible way

of shortening the number of digits needed in a numeric entry line.

A similar situation arises when you need to raise the number in X to

an integer power. The HP-41 has a dedicated function to square X

(X12), which avoids the need to use 2, Y1X. This will save bytes as

well as time. You can also use this function to raise to the third,

fourth, fifth, sixth, eighth, or other integer powers, alone or

combined with multiplication. Some examples are listed below, which

you will find are all time savers. None save bytes, though.

Powcr Instruction sequence L contents

3 X172, LASTX, * X

3 ENTER?, X712, * X12

4 X712, X12 X12

5 ENTER?, X12, X12 X12

6 X712, ENTER?, X712, * X714

8 X12, X712, X12 X174

When writing programs, there is often a need for powers of 2.

Remember that you can often save time, if not also bytes, by

recovering a number from L. You can also turn one power of 2 into

another. The techniques previously listed apply, and, in addition,

ST+ X can be used (only for 2) to increase any power of 2 by one

power. I recently rewrote a program to make good use of the methods

described here. A portion is listed below:
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Before After

8 8

AROT AROT

RDN ST+ X

256 X412

MOD MOD

16 LASTX

/ SQRT

XTOA /

XTOA

Notice that 8 becomes 256 by first being doubled (ST+ X) to equal 16.

Sixteen is then squared. LASTX recovers 256 after MOD, and SQRT turns

it back into 16. In this way, a byte is saved (in spite of the fact

that the program is one line longer), and two numeric entry lines are

eliminated. This may give you some ideas which apply to your

programs.

STO L should rarely be used in your programs. This wastes a byte. To

store the contents of X in L, substitute the SIGN function. (This

will, of course, alter X.) ABS can also be used if X does not contain

NNNs or Alpha data. Otherwise, it may give OUT OF RANGE or

ALPHA DATA errors.

The HP-41 inherited many characteristics from previous HP calculators,

including "stack lift disable". One of the unfortunate effects of

this feature can be that the stack contents are other than what your

program expects. This is because the running program has no way to

keep track of the stack lift status in a program which is halted by

the user (or by alarms) and restarted. As an example, the sequence

CLX, RCL 01 in a program should put the contents of register 01 in X

without disturbing Y. But if the program is stopped and restarted

between the CLX and RCL 01 functions, Y will have zero in it! The

stack lift is re-enabled when you use R/S (but not SST). For this

reason, it is a good idea to use RDN instead of CLX before a RCL
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instruction if your intent is not to disturb Y. This HP-41 "bug" and

its solution were discovered by Steve Wandzura.
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CHAPTER FOUR - ADVANCED SYNTHETIC PROGRAMMING

4A. USING THE STATUS REGISTERS IN A PROGRAM

Many of the status registers can be used within a program in the same

manner you would a normal data register. There are a number of

reasons to use status registers for temporary storage in a program: to

avoid destroying needed data in the storage registers, to preserve

stack contents, to be able to use SIZE = 000, for a slight speed

advantage, or to avoid the normalization of non-normalized numbers

(NNNs).

You need not be a master of synthetic progamming to make good use of

the status registers. You just need to be able to create synthetic

two-byte instructions, and follow some simple guidelines. The two

sections following this one will help you to create the synthetic

functions needed to access these internal registers. And this section

will acquaint you with wusing the status registers for scratch

(temporary storage) and similar purposes.

The 16 status registers reside at the very bottom of the HP-41 memory,

at decimal addresses 0 through 15. The register names are T, Z, Y, X,

L, M, N, O, P, Q +, a, b, ¢, d and e, respectively. The first five

(T through L) are the stack registers. They are discussed in your

Owner’s Manual, and will not be covered here.

Stack register operations are keyable on any HP-41. If you own the

CCD Module or ZENROM, functions using the eleven status registers in

addition to T, Z, Y, X and L can also be keyed in directly. This

"prompt-expansion" feature works on all HP-41s except very early HP-

41Cs with serial numbers prior to 2035xxxxxx (unless internal ROM 0

was replaced during servicing with revision G or later). But if you

-119-



make frequent use of status registers operations, having a ZENROM or

CCD Module will speed up keying in a program tremendously. Frequently

used key assignments for the Byte Grabber, RCL M, STO b, etc. can be

eliminated forever.

With the ZENROM, STO, RCL, X<>, ISG, VIEW and other functions

which access any of the sixteen internal status registers can be keyed

in the same way you key in STO Z: press STO, . , Z. The one

exception, append (}-), is keyed in as R. You can also use decimal

postfixes: press RCL, EEX, 24 (124) for RCL b. Indirect status

register operations are keyed in by pressing shift after the function;

for VIEW IND M, press shift, VIEW, shift, ., M.

With the CCD Module, only the STO, RCL, and X<> functions allow

synthetic suffixes. The append suffix is keyed as . shift XEQ.

Decimal input for synthetic suffixes is not supported.

ALPHA REGISTER

The Alpha register is composed of status registers M, N, O, and P.

The first three can be used virtually without restriction for scratch

purposes. If you are going to be using these registers in a program,

it is usually a good idea to use CLA first. This is especially true

if your program uses ST+ or ST- to operate on these registers.

Register P can be used if your program does not have digit entry lines

(including the lone decimal point or E) or cause a number to be

displayed (PSE or STOP without Alpha ON, VIEWing numbers, etc.).

These conditions, if they occur, will alter the first two bytes of P.

Of course, if you use any of these four registers for holding data,

you give up the ability to use the Alpha display for messages,

PROMPTs, and similar uses until the Alpha register is no longer needed

by the program for scratch.
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REGISTER Q

Status register Q is frequently used by the HP-41 system. Both the

HP-41 itself and plug-in devices use Q for temporary storage of Alpha

arguments. For this reason, Q is of very limited usefulness as a

scratch register in a program.

The HP-41 uses Q for Alpha arguments with Alpha labels, Alpha GTO’s,

Alpha XEQ’s, Alpha W’s (byte 31), and INDirect GTOs and XEQs when

the register addressed contains Alpha data. Q is also used by AVIEW

and PROMPT, or just being in ALPHA mode (AON).

A numeric entry line alters Q, as the number is constructed in Q

before it is brought into the stack (X). Interestingly, the function

PI does not alter Q. Several trigonometric functions make use of Q:

ACOS, ASIN, COS, P-R, and SIN. In addition, SDEV and Y1X also

use Q. The TAN and ATAN functions do not use Q.

The Time Module (or HP-41CX) functions ALMCAT, CORRECT,

SETDATE, SETIME, T+X, and XYZALM make use of Q. And

Extended Functions (or HP-41CX functions) ANUM, CRFLAS, CRFLD,

GETAS, GETP, GETSUB, PASN, PCLPS, PSIZE, PURFL,

SAVEAS, and SAVEP all wipe out the contents of Q.

The HP-82143 printer also makes frequent use of Q even if no printer

functions are used. For this reason, Q shouldn’t be used as a scratch

pad register in a program if it is likely that this printer will be

connected and active.

REGISTERS + AND e

Registers + and e contain bit maps of the assignments for unshifted

and shifted keys. If these maps are erased, the HP-41 will not know

to search for your key assignments, and the normal (non-USER mode)

functions will be executed instead. If the bit corresponding to a
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certain key is set while no real assignment exists, the key will

usually preview XROM 04, 02 and function as ABS.

If the data in these registers is accidentally altered, there is an

easier way to restore it than reconstruction of the proper byte values

by hand. Simply GTO .. and (if necessary) read in a program from any

source. Programs recorded in Extended Memory, on magnetic cards, or

on a cassette will all restore - and e to their proper values. This

simple technique was discovered by Clifford Stern.

If you use one or both of these registers in your program, you should

devise a scheme to restore their original contents within the program.

If there were no unshifted (register ' , or no shifted (register e¢)

key assignments, that register could be used by your program as long

as you clear it after you’re done. Another way to restore |- and e is

to use (Extended Functions) GETSUB followed by PCLPS, with a program

named in Alpha that specifies a program file in Extended Memory. The

only side effects of this are an END added at the bottom of CATalog 1,

and the clearing of any assignments made to keys that have Global

label assignments in the program. These side effects can both be

avoided if you use a special synthetic zero-byte program file invented

by Clifford Stern. See pages 194-195 of "HP-41 Extended Functions

Made Easy" and the "IN" program on page 198.

REGISTER ¢

Status register ¢ contains the absolute address of the .END., the

location of Rpp and the summation registers. It also contains the

"cold start constant". If this number does not equal 169 hexadecimal

when the HP-41 checks it (such as when returning from a running

program), MEMORY LOST will occur immediately. If the address of

the .END. is altered, you will lose access to CATalog 1, and most

likely eventually wind up with MEMORY LOST.
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Don’t get the idea that you can’t alter register ¢ and get away with

it.  On the contrary, you can even clear this register in a running

program as long as you restore it before the program halts. The

processor makes certain routine checks, including testing the values

in register ¢, whenever returning from a running program, turning on,

and so on. Many synthetic programs alter register ¢ temporarily and

later restore it. Most are interruptible while others aren’t. The

PPC ROM routine "OM" changes the curtain address to hex 010 (16

decimal). This makes it possible for key assignment programs to

address the bottom key assignment register (hex 0CO, decimal 192) as

data register 176. So altering register ¢ is both wuseful and

dangerous. Never experiment with it haphazardly: know what you’re

doing.

REGISTER b

It isn’t practical to use register b for scratch because the two

rightmost bytes contain the program pointer. If you alter them,

you’ll change your location in program memory. However, in Section

4H, we make use of this fact to execute bytes in the Alpha register as

though they were program steps. Register b also contains the first

two and a half addresses in the subroutine return stack.

REGISTER a

The a register normally contains pending returns 3 through 6, but it

can be wused for scratch under the right conditions. First, the

program using register a must not be called as a subroutine by another

program if the subroutine stack exceeds two pending returns. If this

were to happen, the HP-41 could return to an address almost anywhere

in RAM. The exponent (rightmost byte) in register a would be

interpreted as the left half of the third pending return.

Second, the program may branch using GTO, but XEQ or RTN must

not be used. Otherwise the contents of register a will be shifted two
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bytes. Lastly, register a should not be used as a scratch register in

a program using the Extended Funtion (or Data Logger) PSIZE.

PSIZE will alter the data in register a as though it contained

legitimate return addresses in need of updating because of the shift

in location of Roo (the curtain) and all of CATalog 1.

REGISTER d

Register d contains information about the status of the flags that is

best left undisturbed. But while it isn’t practical to use register d

for scratch, limited information can be easily stored there for later

use. An efficient way to influence decisions made later in a program

is to set a flag in register d. As an example, suppose you want to

terminate a program if a variable exceeds a certain limit, but the

variable is not in the stack when you want to test it.

The solution is to test the value earlier in the program and set a

flag if the limit is exceeded. Then, at a good place to terminate,

test the flag using FS?C and terminate if the flag is set. Flags 0 to

10 are "general purpose" flags, but don’t forget flags 18 to 20.

Since flags 11-20 are cleared at turn-on, you can sometimes use them

without having to use a CF instruction first.

You can store an integer from O to 255 in flags 0 to 7 using the

Extended Function X<>F. The number in X need not be a positive

integer when you use X<>F. However, it should be less than 256. When

you use X<>F to recover that number, it will be as though ABS and INT

have been performed (with no change to the LastX register).

Armed with this information, you should be able to make good use of

the status registers. Registers M, N, and O can be used freely.

Registers P and a require a little more care. Registers -, ¢ and Q

have serious difficulties associated with them, and registers d, b,

and ¢ should be left until you have considerable experience using the

other status registers.
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You may want to explore the possibility of saving the contents of the

status registers in an Extended Memory data file using SAVEX and later

restoring them with GETX. This requires lowering the curtain

temporarily to 000. A similar technique can be used on data registers

with the functions SAVER, SAVERX, and GETR. None of these

instructions normalizes your data.

4B. SYNTHETIC INSTRUCTIONS USING THE BYTE GRABBER

The synthetic key assignment known as the byte grabber has been widely

used by synthetic programmers to manipulate bytes in program memory.

The most common byte grabber has prefix and postfix values of 247 and

63, respectively. You should be familiar with this assignment before

reading either this section or Section 4I. See pages 6 to 9 of SPME

or pages 231 to 244 of "Extend Your HP-41" by Mier-Jedrzejowicz if you

need to refresh your memory. The conventional practice of using the

byte grabber to absorb the prefix from a multi-byte instruction in

program memory will not be described in detail here.

You will need to have a byte grabber assigned to a key in order to

experiment with the 1ideas in this section. Making synthetic

assignments to a key is an easy process if you have either the CCD

Module, a synthetic key assignment program ("MK", "MKX", "ASG", etc.),

or the ZENROM. Refer to pages 69 and 70 of SPME for a description of

the use of the synthetic assignment program which appears in barcode

form on pages 174 and 175. The CCD Module’s enhanced ASN function

is equivalent to a built-in synthetic key assignment program.

If you use the ZENROM rather than a synthetic key assignment program

or the CCD Module, creating the byte grabber is relatively easy. With

the ZENROM plugged in, start by assigning the TAN function to the key

where you want the byte grabber assigned. Then press ALPHA, SHIFT,

ALPHA, C 1, ALPHA and execute RAMED. Press PRGM twice, and

if F0,04,5B is displayed, key in the two bytes of the assignment in
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hex. Otherwise, press PRGM three more times (00,04,5B should be

shown) and key in the two hex bytes of the assignment. Use F7, 3F for

the common (decimal 247, 63) byte grabber. Now press ON to exit

RAMED, and you’re done. This technique will work as described above

so long as the TAN assignment was not placed in a vacant key

assignment register above location 0CO. If this is the case, you can

still locate the TAN assignment (hex 04 5B) by pressing USER several

times, but it may take a little searching.

The byte grabber is most commonly used to remove a prefix byte from a

two-byte function. This frees the second byte to attach itself to the

byte or bytes that follow. An example of this is the creation of a

synthetic RCL instruction using STO IND 16. When the STO prefix is

grabbed, the IND 16 suffix becomes a RCL prefix. If the STO IND 16

was followed by RDN (hex 75, decimal 117), the new RCL instruction

will access status register M (decimal postfix 117).

Using the byte grabber this way, you can make instructions which are

not normally keyable. Examples include direct operations on the data

registers from 100 to 111 and status registers above L. This approach

will work well as long as the instructions were just keyed in, or if

the program is PACKed before pressing the key assigned with the byte

grabber. The byte grabber is pressed while in PRGM (and USER) mode,

and while positioned to the line before the byte (or bytes) you wish

to grab. The byte or bytes are absorbed into a text line, which is

deleted if not needed.

The byte grabber can also be used to release bytes. One way this can

be done is to grab the Text prefix byte from a line of text. As an

example, the text line "aBK1$C" has decimal byte values 246, 97, 66,

75, 49, 36, 67. After you byte grab the Text 6 (see byte 246 in the

table on page 9), the six characters within the line in program memory

are free to stand alone. This results in the instruction sequence

ABS, *, MOD, STO 01, RCL 04, /, which could save you quite

a few keystrokes if you wanted this sequence in your program. Of
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course, this technique is rather limited because you are confined to

the characters that are keyable. But if you have the byte grabber

assigned, you may prefer using keystroke sequences like ALPHA, I,

ALPHA, BST, byte grab, backarrow, SST in place of the usual

XEQ, ALPHA, H M S (shift) +, ALPHA.

There is another way to use the byte-releasing capability of the byte

grabber. Using a synthetic key assignment program, the CCD Module, or

the ZENROM, assign the 247, 142 (hex F7, 8E) byte grabber to a key.

Make sure that the key previews XROM 30, 14 when pressed and held

before continuing. (Note: If you have the Card Reader plugged in,

this will preview as 7DSP2))

We are going to use this key assignment to make PROMPT lines.

Press GTO . . and enter PRGM mode. Press ENTER1? twice to

serve as a buffer (to protect the .END.), BST, byte grab, BST,

byte grab and backarrow. SST and there is our PROMPT instruction.

Repeat it again, if you like. Just byte grab, BST, byte grab, and

backarrow. So, in addition to grabbing and releasing bytes, we can

use the byte grabber to create an instruction corresponding to the

value of the suffix (postfix) of the assignment. After you’re done

experimenting, delete all of the lines in the program.

More than one byte can be absorbed by the byte grabber. In a packed

program, the byte grabber normally absorbs only one byte. You can

absorb two bytes if you key in any one-byte function before pressing

the byte grabber. This technique of inserting bytes before pressing

the byte grabber can extend its range to absorb up to 5 bytes.

We can combine the technique of keying in bytes before pressing the

byte grabber with byte grabber assignments whose postfixes are from

rows 9 through F in the byte table. The resulting combination allows

us to synthesize two- or three-byte functions. It is necessary to key

in 4 bytes before using the byte grabber to properly align the prefix

(supplied by the byte grabber) and the one- or two-byte postfix (which
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already exists within program memory). This is a very powerful

synthetic technique. The fact that you can see the bytes as Alpha

characters after you byte grab means you can make a visual check to

insure that there are no stray nulls before backstepping and byte

grabbing again to release the byte.

Clear the byte grabber key assignment and replace it with the 247, 206

(hex F7, CE) byte grabber. (ZENROM owners can simply modify the

postfix byte of the existing assignment.) The key assignment should

preview as XROM 31,16 when you hold it down. We will use this

assignment to create several synthetic two-byte X<> instructions.

Begin with GTO . ., and enter PRGM mode. Make sure at least 8

registers are free. Then key in ENTERf, CLX, LASTX, RDN, and a

buffer of at least four ENTER? or 1/X instructions. Then SST twice

or GTO .001.

Press EEX and CHS to put the four bytes hex 00, 11, 1B, 1C. ZENROM

owners use EEX, 8, CHS, because the ZENROM removes the hex 11

byte. Keying in these four bytes will cause the byte grabber to

absorb the maximum of five bytes. Now byte grab, BST, byte grab, and

press backarrow twice. SST to see the new line 02 X<> O. Repeat the

process by pressing EEX, CHS, byte grab, BST, byte grab, backarrow

twice, and SST. You should see X<> N. Repeat once more, and we’re

through byte grabbing. EEX, CHS, byte grab, BST, byte grab, backarrow

twice, and SST. Line 04 is now X<> M. Get rid of the buffer of

instructions protecting the .END. using DELete after you SST again.

Then SST twice (to line 01), backarrow the ENTER?Y, key in

LBL "SHR", add CLX, and PACK. You should have:

01 LBL "SHR"

02 CLX

03 X<> O

04 X<> N

05 X<> M
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This little program performs an Alpha register shift to the right

("SHR") seven characters. The number of characters that you start

with in the Alpha register should not exceed 21. The program clears

the original value in X, and leaves the former contents of Alpha

register M in its place.

To generate the three synthetic lines for "SHR" we keyed in the second

bytes (postfixes) of the functions we wanted, and used a byte grabber

with an assignment of 247, 206, because 206 was the first byte

(prefix) of the desired X<> function. The technique demonstrated here

is a variation of a procedure that you will use heavily in the next

section, where you will learn about Text 0 prefix assignments. As you

will see, the Text 7 prefix (byte grabber) and the Text 0 Prefix

assignments are similar in many ways. Each has its strengths, and

working in concert they are an extremely powerful combination.

4C. USING TEXT 0 PREFIX ASSIGNMENTS

One, two, three, or multi-byte synthetic instructions can be made

quickly and easily using a key assigned with decimal values 240, XXX,

where XXX is the decimal value of the first byte (or prefix) of the

function you wish to create. You will need to have a CCD Module, a

ZENROM, or a synthetic key assignment program such as the PPC

ROM’s "MK" or Tapani Tarvainen’s "MKX" (barcode on pages 174 and

176 of "HP-41 Synthetic Programming Made Easy") to make use of this

powerful class of synthetic key assignments.

This key assignment group is most useful when you need to make several

synthetic instructions which share the same value for the first byte

and have a variety of postfix byte values. Under these conditions,

you would either have to make several key assignments or go through a

fairly long procedure using the byte grabber. Text 0 prefix

assignments will save keystrokes compared to the byte grabber because

less setup is required.
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Let’s say for an example that you need to make a number of synthetic

TONEs. Start by assigning 240, 159 to a key (159 is the TONE prefix).

Check that the assigned key previews XROM 02,31. Then GTO . ., enter

PRGM mode, and key in LBL "LL". We are going to create a series of

TONEs with second byte (postfix) values of 19, 4, 69, 118, 69, and 86.

The first thing we have to do is to look up the instructions which

correspond to these postfix bytes, and key them in after label "LL".

Therefore, key in 3, LBL 03, X>Y?, LASTX, X>Y?, and LOG. You

should also add a buffer of several ENTER instructions after LOG, to

protect the .END. from possible alteration or loss.

You should PACK at this point because of the invisible null introduced

before the "3" instruction. This is only necessary when some of the

byte values are from 16 to 27 (decimal). Now SST twice to return back

to label "LL". You should still be in program mode.

Now press EEX (use 9, EEX if you have a ZENROM, to offset the

ZENROM'’s removal of the 1 byte in front of the E), then press CHS, the

assigned (240, 159) key, backarrow twice, and SST. There is your

TONE 19, displayed as TONE 9. The 159 prefix grabbed the 19 suffix to

create this TONE. Let’s examine this process more closely before

creating the other five TONEs. Below is a diagram which shows the

bytes in program memory, represented in hexadecimal notation. "4C 4C"

below indicates the last two bytes of LBL "LL" (which is in the

display when EEX is pressed). The effect of each of the six steps,

which are shown on the left, can be clearly seen. The underline

indicates the bytes displayed.

4C 4C 13 04 45 76 45 56 83

EEX 4C 4C 00 11 1B 00 00 00 00 13 04 45 76 45 56 83

CHS 4C 4C 00 11 1B 1C 00 00 00 13 04 45 76 45 56 83

240, 159 4C 4C 00 11 1B IC EQO 00 9F 13 04 45 76 45 56 83

backarrow 4C 4C 00 11 1B 1C 00 00 9F 13 04 45 76 45 56 83
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backarrow 4C 4C 00 00 00 00 00 00 9F 13 04 45 76 45 56 83

SST 4C 4C 00 00 00 00 00 00 9F 13 04 45 76 45 56 83

Whenever an instruction is inserted in a packed program, the HP-41

quickly shifts all of program memory below the insertion down one

register to make room. This will be repeated, if necessary, when more

than seven bytes are needed. Any four bytes could be used ahead of

the (240, 159) assignment to align the hex 13 (decimal 19) byte as a

suffix for the 159 byte. The bytes in the above diagram are shown in

groups of seven to help you visualize how this works. To complete the

other five TONEs, simply repeat those six steps listed at the left

side of the diagram five more times. Don’t worry if you lose track,

the buffer of ENTER instructions will alert you if you go too far,

because you will see TONE IND 03 (the result of the 159 prefix

grabbing the ENTER suffix) when you SST. When you’re finished, delete

all of the ENTER (and TONE IND 03) instructions. Now PACK the

program, return to run mode, and run the program. You may recognize

this series of TONEs. Charge!

There is a generalized procedure which can be applied to all 256

possible postfix values in a Text 0 prefix key assignment. The only

exceptions in this generalized procedure are that the three-byte

functions 192 to 205 and 208 to 239 (GLOBAL, GTO, and XEQ) are

treated as two-byte functions because they only need to absorb one,

rather than two, of the bytes that follow. The second (middle) byte

of the resulting three-byte instruction will then be a null.

The general procedure, after making the needed key assignment, is as

follows:

1. Position yourself in program memory, in PRGM mode, where the

instruction is to be created.

2. Key in the last byte of the function in the form of an

instruction.

3. BST.

Press EEX, CHS (ZENROM users press 8, EEX, CHS) for any
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instruction except three-byte functions. For them, press only

EEX. (ZENROM users press 8, EEX).

5. Press the key with the Text 0 Prefix assignment.

Backarrow twice.

SST and inspect the results. If it is an END, you must PACK or

GTO .. immediately.

The two lines deleted by step 6 are Text 0 and 1 E-. There is also an

invisible null between the two deleted instructions. The Text 0

instruction is a useful NOP (No OPeration) function created as a

consequence of the Text O Prefix assignment. This is the same NOP

created by the ZENROM’s NOP function. EEX, CHS (or 8, EEX, CHS

with a ZENROM) is a convenient, two (or three) keystroke way of

inserting four bytes. The number of bytes absorbed, if any, depends

upon the number of bytes keyed in at step 4 and the number of postfix

bytes normally required by the instruction prefix.

Let’s go through another example, this time creating a packed,

compiled END (192, 0, 9). This is useful in avoiding decompiling, the

loss of the compiled jump distances contained in the GTO and XEQ

instructions of a program with no END. More details on this will be

given in Section 4G.

Assign 240, 192 to a key, and check that the preview is XROM 03, 00.

Then go to a convenient place in memory to create a new END, such as

the "LL" program. If you wish to test that this procedure preserves

compiled information, add a LBL 01 after LBL "LL", and GTO 01 after

the series of TONEs. PACK the program, execute it once, and position

yourself to the last program line (step 1 of the above procedure).

Since LBL 08 corresponds to the decimal byte value of 9 that we want,

key in that instruction (step 2). Then BST (step 3). Press EEX (step

4). Now press the key assigned with 240, 192 (step 5). Backarrow

twice to clean up the two excess lines (step 6), SST, and you should

see an END. PACK or GTO .. (step 7) and return to the "LL" program.
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If you added the LBL 01 and GTO 01, you can confirm that the jump

distance information was not lost upon PACKing through the use of

another feature of the Text 0 prefix assignments. Position yourself

to the GTO 01, which should be line 07. In run mode, press any key 

assigned with a Text 0 Prefix. The Alpha register should now contain

six bytes, the first two of which are the GTO 01 instruction. The

next three are the END we created, followed by a null. Visual

inspection of Alpha is enough to confirm that the compiled information

was not lost, as the second byte would be a null (overbar character),

not a starburst, had the jump distance been cleared. If you like, you

can decode these bytes using the extended function ATOX or the PPC

ROM’s "CD" routine. More information on the nature and use of this

"byte jumping" feature of all Text prefix key assignments is given in

Section 4I.

In the example above, we could have used a two-byce instruction such

as ISG 09 or TONE 9 in the place of LBL 08. The only other change

necessary would have been to press EEX and CHS at step 4, to cause two

bytes rather than one to be grabbed. The fact that the middle byte of

the END would not be a null in that case makes no difference. PACKing

changes the middle byte to the proper value. More information on this

subject is in Section 4G.

If you should forget which Text 0 Prefix assignment was assigned to a

particular key, there is an easy solution. Take the first value of

the two numbers in the XROM preview, multiply it by 64, and add the

second value to that quantity. For example, if the XROM preview shows

XROM 02, 24, you would multiply 2 by 64 and add 25. The result of 152

tells you that the assignment is 240, 152. This will work for any

Text 0 Prefix assignment.

There are many uses for the Text 0 Prefix assignments. The 240, 245

assignment works much like the byte grabber key assignment (247, xxx).

When pressed in program mode, one byte is absorbed by a Text 5
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instruction. This assignment inserts a Text 0, a null, and a Text 5

byte when pressed in the program mode. Normally these three bytes are

followed by 4 nulls to complete the register that is opened for the

inserted instruction. The text line includes these 4 nulls and a

single absorbed byte.

Both this byte grabber and the Text 7 prefix byte grabber can be made

to absorb more than one byte by inserting instructions prior to

pressing them. Up to four bytes of instructions can be keyed in

before pressing either byte grabber, resulting in a maximum of five

bytes being absorbed. Because of the Text O function created by the

Text 0 Prefix byte grabber (240, 245), a little more cleanup is

necessary than with the usual Text 7 prefix byte grabber.

If you decide to create one-byte instructions using the Text 0 prefix

assignments, you may omit step 4 in the general procedure. It really

isn’t necessary to press EEX and CHS. However, it is possible to

combine bytes 16 to 28 in rather unusual ways, with unexpected

results. If you want to experiment with adding one of these byte

values as a prefix on an existing numeric entry instruction, use EEX,

CHS, 7 at step 4. The 7 1is necessary if a null exists before the

numeric entry line. This will be the case while building an

instruction using the Text 0 prefix assignments. However, if the

program containing the numeric entry line has been PACKed, and the HP-

41 removed the null because it wasn’t needed to separate two adjacent

numeric entry instructions, then the 7 is unnecessary. If you aren’t

sure, try it with just EEX, CHS at step 4 in the procedure. If that

doesn’t work, use EEX, CHS, 7.

One way that the Text 0 Prefix assignments are an improvement over the

byte grabber lies in the fact that bytes 228 to 239 can be

synthesized. This is impossible with just the byte grabber. The

reason for this is that the usual procedure for bytes above 143 is to

byte grab the first byte from an instruction such as RCL IND 16. This

releases the second byte, which will then link up with whatever
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follows. The problem is that without a ZENROM, bytes 228 through 239

(and 245 to 255) are not keyable as postfixes, since the HP-41 does

not allow the entry of three digit numbers as postfixes (no STO IND

100).

The 240, 228 assignment could be used to create a text line such as

247, 127, 40, 228, 120, 144, 104, 41. However, this is a very complex

undertaking (using the byte-loading program "LB" or the ZENROM’s

RAMED would be far easier). Not only is a byte grabber needed (or

the 240, 247 assignment), the task is complicated by the need to

PACK at least once. Because of the nature of PACKing, it is

difficult to avoid the alteration of the sequence 228, 120, 144 (XEQ

16) after it is synthesized. The best approach is to also create a

synthetic END (192, 0, 9) as the last program line. Do this after

setting up all of the bytes except 228, and then PACK (only once!)

after inserting the 228 byte and doing the cleanup. This tricky

procedure is a good test of your ability to use FO prefix assignments.

You may want to postpone this exercise until the end of this chapter.

There is a lot more information to be learned, and you should be

proficient before you try. When you can make this text line with only

Text 0 prefix assignments 192, 228, and 247, you have truly mastered

the use of the Text 0 prefix assignment.

4D. THE Q LOADERS

A Q-loader is one of a class of synthetic key assignments used to

create program instructions which contain up to seven Alpha

characters. This includes all of the various functions containing

Alpha characters, from Alpha text lines and Alpha labels to Alpha GTO,

XEQ, and W instructions. (The W instruction uses the synthetic prefix

1F.)

When a Q loader key assignment is pressed, the contents of status

register Q are used, in byte-reversed order, to form the Alpha portion
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of the instruction. Because of the fact that the characters are used

in reverse order, trailing nulls are suppressed. (This contrasts with

the display of characters in the Alpha register, where leading nulls

are suppressed.) This, and the seven character limitation, are the

only significant constraints that the Q loaders have.

An important advantage that the Q loaders have over the byte grabber

is that there is no difficulty making Alpha functions containing bytes

from the last four rows (C to F) of the byte table. Bytes from 192 to

205 and 209 to 255 can be quite difficult to handle using the byte

grabber: the Globals, GTOs, and XEQs swallow the two bytes following

them, and often change their value upon PACKing. Furthermore, bytes

228 through 239 are unkeyable as postfixes. Bytes above 250 or so are

tricky to manipulate too. A Text 15 prefix can swallow your .END. and

lead to MEMORY LOST after PACKing, before you realize what’s

happening. The Q loader (or a byte loading program) is a good way to

get around these difficulties.

Generally, a Q loader is used by building the needed bytes in Alpha in

reverse order, moving these bytes to status register Q, entering PRGM

mode, and pressing the key assigned with the Q loader that corresponds

to the type of instruction desired.

The synthetic key assignments RCL M and STO Q are handy to move the

accumulated bytes from Alpha register M to register Q. To learn how

to use the Q loaders to make the various Alpha instructions, use the

CCD Module or a key assignment program ("MK", "MKX", etc.) to

make the following key assignments:

INPUTS PREVIEW FUNCTION

144, 117, 15 XROM 01, 53 RCL M

145, 121, 14 XROM 05, 57 STO Q

27, 4, -11 XROM 44, 04 E, "Q load"

205, 4, -12 XROM 52, 04 LBL "Q load"
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4,29, -13 @AHHH GTO "Q load"
4, 30, -14 @NQ XEQ "Q load"
4, 31, -15 2 W "Q load"

(fill in the prompt with any number)

Now use the normal ASN function to assign the Extended Function (or

Data Logger function) XTOA to key 11 (X+). If you do not have a Data

Logger or Extended Functions module, or an HP-41CX, you can substitute

the PPC ROM’s "DC" routine, or the program on page 77 of "HP-41

Synthetic Programming Made Easy". Be sure to assign one of these to

key 11 (Z+).

Now GTO .., enter program mode, and key in LBL "QL". Return to run

mode and clear Alpha. Use the assigned key (11) to build the

following bytes in the Alpha register:

41 XTOA (Z+)

70 XTOA (Z+)

12 XTOA (Z+)

32 XTOA (Z+)

49 XTOA (Z+)

52 XTOA (Z+)

40 XTOA (Z+)

Inspection of Alpha should show ")F »~14(". If you used "DC", you need

to return to the program "QL" by using either GTO or CAT 1. After you

are properly positioned, press RCL M (15) and STO Q (14). Then enter

program mode and press shift A (-11). The first line created by this

key assignment is line 02 E. The lone E, which is a slightly faster

way of producing 1 than using the instruction "1", is a result of the

prefix of the assignment used (see decimal value 27 in the byte

table). Any value in row 1 may be used in place of 27 when making a

Q-loader assignment, with a resulting instruction corresponding to

that byte.

Now SST to see the second result of this Q loader. Line 03 "(41 * F)"
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is composed of a Text 7 byte followed by the reverse of the bytes that

were stored in register Q. This particular text example was selected

to demonstrate some of the non-keyable characters that can be used for

text, labels, and the other Alpha instructions.

With line 03 still in the display, press shift A (-11) again. Once

more we have a solitary E line. SST to the next line. This is a

Text O instruction, also known as FO or decimal byte value 240. It is

similar to the No OPeration instruction available on some machines, in

that it does nothing (except re-enable the stack lift if it was

disabled). However, such a place-holder function can be useful after

an ISG or DSE instruction where the decision capability is not needed.

Whenever a Q loader is used, register Q is cleared. So if you used

the wrong Q loader, or you want to create another instruction with the

same bytes, you need to load Q again. If the stack hasn’t been

disturbed, just STO Q. If it has, check Alpha to see that the bytes

are still there and use RCL M, STO Q.

There are two other methods for using the Q loaders. They have two

advantages in that it is unnecessary to reverse the order of the

characters in Alpha, and no synthetic assignments are needed to load

Q. The disadvantage is slight; you can only use up to six characters

in the first case, and nulls can’t be used.

For the first method, begin by assembling the characters you want in

Alpha. Use up to 6 characters, in normal (non-reversed) order. In

ALPHA mode, ASTO X to transfer these characters to X. As Alpha data,

the first of the seven bytes in the register is the Alpha identifier,

leaving six bytes for the text. Return to run mode and key in GTO IND

X. This should show NONEXISTENT, but it has the vital side effect of

putting the label name in Q. If there happens to be a matching label,

the GTO IND X will have caused the calculator to branch to the label.

In that case, you must return to the place you want to put the

instruction. You should only use CAT 1, GTO .nnn (GTO line number),
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SST or BST to do this. Do not use GTO Alpha, any functions with

Alpha inputs, or any other function that might alter Q. Then press

one of the Q loaders in program mode.

The second alternative method to use the Q-loader is simply to key in

LBL ALPHA, spell out the characters needed, press ALPHA again, and

continue as you would with any Q loader. You can key in the LBL in

run mode, then switch to PRGM mode to press the Q loader. Because of

the requirement that all of the characters are keyable within a normal

Alpha label, the usefulness of this technique is somewhat limited.

Following these methods, you should be able to use the Q loaders to

produce non-keyable text, labels, GTOs, XEQs, or W instructions. Be

cautioned about the W function, though. The effect it has is

dependent upon what is plugged into Port 2, and to a lesser extent

Port 1. Status registers T, X, N, or d may be cleared, altered, or

contain garbage. The calculator may lock up for a couple of seconds,

or until you remove the batteries for a second or two. Still, you

should feel free to experiment, since none of the instructions or

techniques described here should get you into serious trouble.

4E. FIX/ENG DISPLAY FORMAT

The FIX/ENG display format can be obtained by either normal or

synthetic means. The advantage of this display setting is that the

display appears the same as in the normal FIX mode until the display

overflows or underflows (that is, until an exponent is required to

display the number). Then instead of over- or underflowing to

SClentific notation, the calculator uses ENGineering notation, with

exponents that are multiples of three.

The normal ENGineering mode can be very annoying as the exponent is

always used, making familiar numbers more difficult to recognize. Yet

when an exponent is necessary, displaying it as a multiple of three

works very well with the metric system. The FIX mode offers numbers
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which are readily recognizable. The FIX/ENG format offers the best of

both modes. Not only is this display mode handy, but it takes no more

bytes to set in a program than the normal FIX or ENG mode.

All that is required to achieve the FIX/ENG display setting is to

simultaneously set both flags 40 and 41. This can be done several

ways. First, and without synthetic programming, you can use the

Extended functions RCLFLAG and STOFLAG. RCLFLAG saves the

flag 41 status as set, FIX mode is selected (setting flag 40), then

STOFLAG selectively re-sets flag 41. See "HP-41 Extended

Functions Made Easy", pages 69-70. The second way is to use the CCD

Module’s F/E function. You can also use the PPC

ROM’s "IF" routine to set flag 41 after a normal FIX instruction.

FIX/ENG can also be set using a synthetic key assignment, or with a

synthetic FIX instruction (both of which are directly keyable with a

ZENROM). The prefix, or first byte, of the assignment or instruction

is decimal 156. This is the same as the normal FIX instruction. The

postfix, or second byte, is taken from row 4 of the byte table.

Postfix 64 corresponds to FIX/ENG 0, but it displays as FIX 4.

Only the second decimal digit of the postfix is displayed. As an

instruction or key assignment, FIX/ENG 0 is 156, 64. For

FIX/ENG n, use 156, 64+n. This will display as FIX m, where m =

(n+4) MOD 10.

The workings of this synthetic instruction deserve an explanation.

Randy Cooper, in the January 1982 PPC Calculator Journal, analyzed

what happens when the HP-41 executes a display setting instruction.

The number of digits (flags 36-39) is set to match the last nybble of

the postfix byte. Flags 40 and 41 (which set the mode type) are set

to match the correct mode, then flags 40-43 are ORed with the first

nybble of the postfix.

For FIX/ENG n, the postfix (in hexadecimal) is 4n. The second nybble

sets n digits (flags 36-39), while the first nybble sets flag 41. The
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FIX prefix (decimal 156) sets flag 40.

Several methods can be used to create the synthetic FIX instruction

needed to change your display to FIX/ENG format. If you have a CCD

Module, you can use the enhanced XEQ function to key in the two bytes

directly. Or you can use a byte loading program like "LB" or "LBX"

(from "HP-41 Synthetic Programming Made Easy" or the PPC ROM) to

create the needed synthetic instruction. You can use a Text 0 prefix

assignment (240, 156), or you can use the byte grabber key assignment

(247, xxx). An example using the byte grabber is given below.

Position vyourself to the place in memory where you want the

instruction. In this case, we will create a FIX 70 (FIX/ENG 6)

instruction. If there are no other program lines in memory there, key

in ENTER? (in PRGM mode) for a filler. Now key in STO IND 28,

X<Y?, BST, BST, and press the key assigned with the byte grabber.

Backarrow once and SST to your new synthetic line. It displays as

FIX 0, though this is really FIX 70. Single-step this line after

returning to run mode (press PRGM, SST). The description of the

effects of FIX 70 follow the next paragraph, which describes how you

can use a synthetic key assignment to set FIX/ENG 6 from the keyboard.

Using a synthetic key assignment program like "MK", assign a key with

prefix and postfix values 156 and 70, respectively. Holding that key

should preview XROM 49,06 if the assignment was made properly. If it

shows other numbers, clear the assignment using ASN ALPHA ALPHA,

and try again. Once the assignment is made, you can use it in run

mode to change the display setting to FIX/ENG 6 by pressing the key,

or you can use it in PRGM mode to create the synthetic FIX 70

instruction.

To demonstrate how the FIX/ENG 6 display format behaves, begin by

filling the stack with ten. Key in 10, then press ENTER? three times.

Now press * repeatedly until the display overflows to engineering

notation. You should see 10.00000 09. Further pressing of * will
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show how the decimal point progresses from 1. to 10. to 100., and then

reverts back to 1, when the exponent increases by three. This

demonstrates the overflow from FIX to ENG format.

To demonstrate the underflow to ENGineering notation, fill the stack

with one-tenth by pressing .1, then ENTER? three times. Now press *

repeatedly. After the sixth multiplication, the calculator underflows

to ENG format. Subsequent pressings of * show the number decreasing

from 100. to 10. to 1., and back to 100. at the time that the exponent

decreases (becomes a larger negative number) by three.

If you have the PPC ROM or the ZENROM, you can use one of the

programs listed below to set FIX/ENG mode. Of course, ZENROM

owners can simply press SHIFT, FIX, and fill in the two digit prompt

with a decimal value from 64 to 73. But the program below is useful

because it alters

purposes.

FOR ZENROM:

only flags 40 and 41, and for demonstration

FOR PPC ROM:

01 LBL "FE" 01 LBL "FE"

02 40 02 40

03 FC? IND X 03 ENTER

04 TOGF 04 FC? IND X

05 ISG X 05 XROM "IF"

06 " (FO NOP) 06 ISG X

07 FC? IND X 07 " (FO NOP)

08 TOGF 08 FC? IND X

09 CLX 09 XROM "IF"

10 RDN 10 END

11 END

24 bytes 23 bytes

In the ZENROM program, lines 02 to 04 set flag 40 if it is clear.

Lines 05 and 06 increase X from 40 to 41. Lines 07 and 08 will set
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flag 41 when it is clear. FIX/ENG display mode is now set. Lines 09

and 10 clear X and push it into T, leaving the original X, Y, and Z

where they were.

In the PPC ROM version, lines 02 and 03 put 40 in X and Y. Lines 04

and 05 set flag 40 if it isn’t set already. "IF" will drop the stack,

which is the reason for line 03. Whether "IF" was executed or not, 40

will still be in X, where line 06 and 07 change it to 41. Lines 08

and 09 will invert the status of flag 41 when it is clear. The

contents of the stack are somewhat variable, depending on the status

of the two flags. However, Alpha will be clear and Z will contain a

copy of the original contents of X in all cases at the termination of

the program.

4F. CATALOG 1 RECOVERY

Sometimes in the course of synthetic programming, the continuity of

Catalog 1 is disrupted. The first hint that something is amiss is

often a subtle change in the usual "feel" of the HP-41. You may

notice the calculator is a bit slow to leave or enter PRGM mode, or

some similar deviation. (If the calculator locks up, see Appendix A

for crash recovery techniques.)

Pressing CAT 1 will confirm whether the linked list of global

instructions has been interrupted. Often, the catalog will list a

single instruction, which isn’t even a global function. But don’t

despair. Chances are good that all of your programs are intact, even

though you cannot yet access them normally.

There are several things you should avoid doing before the continuity

of Catalog is re-established. These include turning the HP-41 OFF and

ON, executing GTO . . (or any operation which causes packing), or

executing COPY, GETP, GETSUB, or PCLPS. Any of these can

lead to MEMORY LOST.
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The continuity of Catalog 1 may be lost if either the .END. itself is

lost or modified, or if status register ¢ no longer contains the

correct pointer to the .END. . (The last three nybbles of register c

contain the absolute address of the .END., which occupies bytes 2, 1,

and 0 of that register.) If the .END. is missing, or nybbles 2, 3,

and 4 of the .END. do not point correctly to the next global function

upward in memory, access to Catalog 1 is lost.

In order to recover from this condition, we need to make status

register ¢ point to a legitimate .END. . Section 4G gives more

information on the different END types. But all you really need to

know right now is that any .END.s found above our new .END. will be

converted to ENDs during packing. The best approach to take is to

create a new .END. just above the key assignments, alarms, and any I/O

buffers. Then you must modify register ¢ to match this address, and

PACK to recompute the global linkages.

Here is a Catalog 1 recovery procedure that you can use with the CCD

Module:

1. Key in 12 and execute WSIZE. Then key in the number 204 (equals

hex OCC) for use as a starting address.

Execute PEEKR to recall register 204 to X without normalization.

Press shift : (divide) to execute the X=0? function. If the

result is YES, you have found a suitable empty register.

Otherwise use CLX, 1, + to increase the address by land repeat

steps 2 and 3 until you do find an empty register.

4. Now turn off USER mode and press ALPHA shift ENTER 192 shift

ENTER 000 shift ENTER 045. This creates the 3-byte alpha string

CO0 00 2D.

5. Press X<> M to bring the bytes for the new .END. to X. Y should

still contain the address of the empty register that you found.

6. Execute POKER to store the new .END..

Press 13.1 and execute PEEKB to see byte 1 of register c¢

(absolute address 13). If this number is not already a multiple

of 16, press 16, /, INT, 16, * then execute POKEB. This removes
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the high bit of the .END. pointer, and this assumes that you

found an empty register at an address below 256. Otherwise add 1

and POKEB again.

Press RDN three times to get the register address back in X, and

press 256, MOD if it exceeds 256. Then press 13, X<>Y, and

execute POKEB to store this number as byte 0 of register c.

GTO . . or PACK. This will probably take about ten or fifteen

seconds to finish.

Now here is a Catalog 1 recovery procedure which makes use of the

ZENROM’s RAMED function:

1. Press ALPHA, space, SHIFT, ALPHA, C C, ALPHA. This places

20CC hex (byte 2 of address OCC) in Alpha for use as a starting

address.

Execute RAMED.

If the three visible bytes at register OCC are all 00, key in CO

00 2D. Otherwise, press SHIFT, USER repeatedly until unused

registers are found. Then key in CO 00 2D. The new .END. must

start at byte 2 of the register. In particular, by pressing PRGM

and/or USER, you should be able to align the .END. in the display

and see 1l:xxx CO0,yy,2D, indicating that the yy 1is at byte

position 1 in register xxx. Make a note of the address xxx of

the new .END. you created.

Press ON to exit RAMED.

Press ALPHA, SHIFT, ALPHA, 0 D, ALPHA. This will select

byte 0 of register ¢, address 00D.

Execute RAMED and press USER once.

We don’t want to alter the first 3 nybbles visible, only the last

three. Therefore, key in the same hex digit which appears in the

left side of the middle byte. Then key in the three nybbles xxx

of the address of our new .END. from step 3 (such as 0CC).

Press ON to exit RAMED.

GTO .. or PACK.

Catalog 1 should now be as it was before you lost access to it. If

-145-



you believe that the first program in Catalog 1 is missing, perhaps

because the data/program partition was moved downward, there is an

easy way to recover that as well. You should know that normal

register operations will normalize a program stored within the data

registers, effectively destroying all or part of the program. So

avoid using X<>, STO, RCL, VIEW, etc. Instead, you should check

the position of the program/data partition (by looking at the contents

of register ¢ or using the PPC ROM program C?) and move it to the top

of memory (normally 200 hex = 512 decimal) if you suspect alteration.

To check for program bytes within the data registers, use NRCLX

followed by DECODE. Start with zero in X, and check more than one

register. Look especially for Cx bytes, that are LBL and END prefixes

and which are not likely to appear in data. Once you are satisfied

that program bytes exist within the data registers, you can edit

register ¢ to move the program/data partition above the program bytes.

To accomplish this alteration of the program/data partition, begin by

repeating steps 5 and 6 of the previous Catalog 1 recovery procedure.

Press USER again. The left-hand byte should be hex 69. Altering the

hex 169 "cold start constant" will cause MEMORY LOST when you exit

RAMED, so be cautious. Make a mental note of the rightmost nybble

shown in the display; it will be either 0 or 1. (This is the first

digit of the 3-nybble .END. pointer.) Then key in the three-digit

hexadecimal address listed below (according to the number of 64-

register memory modules installed -- use 4 for a CX, CV or 41C with

Quad):

Modules Address

4 200

3 1CO

2 180

1 140

0 100
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Complete the entry of byte 1 in register ¢ by keying in the same value

which existed before (0 or 1). Press ON to exit RAMED and check

CATalog 1 immediately. PACKing may be needed to recompute global

linkages, though this is not usually required. A side effect of this

procedure is that any data will beome program steps before the first

legitimate line of the first program. All data will be lost. In

addition, you will need to reSIZE, since this procedure sets the SIZE

to zero.

The Catalog 1 recovery procedures using the CCD Module or ZENROM to

construct a new .END. and its pointer, then PACK, have a very high

rate of success. However, if you are more concerned about the chance

of losing Extended Memory than the loss of main memory, you can use

the ZENROM’s CLMM function. To quote the ZENROM manual:

"CLMM restores the HP-41 Main Memory to Master Clear state by

storing nulls into every register. In addition, all status registers

and flags are restored to default states; all key assignments, timer

alarms, and input/output buffers are eliminated; and the stack, LASTX

and ALPHA are cleared. The size of the program memory will be set to

46 registers on the HP-41C and HP-41CV or 219 registers on an

HP-41CX." The contents of Extended Memory will be unaffected. Using

CLMM will spare Extended Memory in a situation when you are sure

MEMORY LOST is inevitable. When you have to interrupt a protracted

PACKING operation by pulling out the batteries, you have one such

case.

If you understand the principles behind the CCD Module and ZENROM

procedures just described, you can substitute routines in the PPC ROM.

The method developed by Clifford Stern constructs an .END. at the

address pointed to by register c:

ALPHA CO0002D ALPHA

XEQ "HN"

XEQ "E?" (Stop here if the result is not from 192 to 511)

XEQ "SX"

GTO .. or PACK immediately
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This sequence creates a synthetic .END. at the location specified by

the last three nybbles of status register c. In some cases, this

procedure will not work. If the result of executing "E?" is outside

the range of 192 to 511, you must not execute "SX". Instead, you

should use one of the alternate procedures described later in this

section.

If the number of free registers available (in run mode, press RTN and

PRGM) does not match the number returned by the PPC ROM function XEQ

"F?" within one-half, there are only two possible causes. Either

there are time module alarms or an I/O buffer present (in which case

the execution of "F?" has just made these unusable), or some of the

free registers are not empty as they should be.

In the case of non-empty registers in the free register block, or if

the result of "E?" is not between 192 and 511 inclusive, an alternate

procedure can be used. Again, the PPC ROM is required:

Make sure the SIZE is at least 001.

XEQ "A?"

Add 193 to this number and take the INTeger part.

You now need to convert this decimal result to a three-digit

hexadecimal number. The conversion is most easily performed in two

steps. If the decimal number is greater than or equal to 256,

subtract 256 and write down a 1 as the first digit of the hex

equivalent. Otherwise, write down a 0 as the first digit. Now take

the remainder (0 to 255) and use the QRC (byte table) to convert it to

hex. This gives the last two digits of the hex equivalent (the row

number is the first digit; the column number is the second digit).

Now continue:

GTO "C?" and SST. Press SST again, holding it long enough to see

47 RCL c.

XEQ "NH"

Press append, then backarrow three times. This deletes the last

three nybbles from the hexadecimal representation of status

-148-



register ¢ that we have in Alpha. Replace these three

digits with the three hex digits that you calculated before.

Just key them into the Alpha register, since you are already

in the append mode. Press ALPHA twice and make sure there

are 14 hex digits, with 1 6 9 in positions 6, 7, and 8.

Press ALPHA again to exit ALPHA mode.

XEQ "HN" (X now contains the modified ¢ register contents.)

GTO "PA" and BST twice.

Press SST, holding it long enough to see 150 X<> c.

Decrease the SIZE. It doesn’t matter how much, as long as

you make it smaller.

GTO .. (Do not XEQ "PACK")

The missing registers should reappear. Make a note of the number of

free registers you have (hold SST and see .END. REG nn), and compare

this to the number returned by XEQ "F?".

4G. MAKING PRIVATE PROGRAMS WITHOUT A CARD READER

Private status is established in a program by information contained

with the END (or .END.). Nonsynthetic methods of making a program

PRIVATE require the Card Reader or an HP-IL mass storage device such

as the Digital Cassette Drive. The END recorded by WPRYV and WRTPYV on

the magnetic medium is altered to private status. Thus, the program

needs to be read back in to the calculator to establish a PRIVATE

program in main memory.

There are advantages to making valuable programs PRIVATE. When you

use synthetic programming techniques, there are times you can find

yourself almost anywhere in program memory. Before realizing it, you

can alter or delete part of your program, decompiling jump distances

and generally messing things up. Private status provides protection

against most cases of inadvertent alteration, and also a degree of

security for your programs. (Methods of removing private status have

never been published, but they are widely known by synthetic
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programmers.)

Using a mass storage device to make a PRIVATE copy of the program is

time consuming. And because the program has to be read in again, it

ends up at the bottom of Catalog 1. Several synthetic methods are

possible to overcome these disadvantages, altering the END type to

PRIVATE without moving the program. Not only are these methods fast,

but they can also be used to avoid decompiling jump distances stored

within GTO and XEQ instructions in the program. You can also use

these techniques to create some rather strange .END.s and ENDs.

Before we continue, you need to know the placement of ENDs and the

.END. in program memory, and their structure. An END may exist within

any block of three bytes in program memory. However, the one and only

permanent .END., which defines the border between the last program and

the free registers, must occupy bytes 2, 1, and 0 (the rightmost three

bytes) of the register it resides in. To better understand the

structure of ENDs, it is necessary to break up the three bytes they

are composed of, and consider them as six nybbles, or hexadecimal

digits. The seven ENDs and .END.s listed below in Table 4.1 are a

complete inventory of the types you will normally encounter.

TYPE OF END NYBBLES (hex) Decimal

12 34 56 "LB" inputs

END, packed Ca bc 09 192, 0, 9

END, unpacked Ca bc 0D 192, 0, 13

.END., right after GTO.. Ca bc 20 192, 0, 32

.END., packed Ca bc 29 192, 0, 41

.END., unpacked Ca bc 2D 192, 0, 45

END, PRIVATE, packed, Ca bc 49 192, 0, 73

END, PRIVATE, unpacked Ca bc 4D 192, 0, 77

Table 4.1 -- Normal END types
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Refer to the table while reading this. The first nybble of an END is,

by definition, C. The second nybble (a) may be any value from 0 to D.

This nybble, along with the next two nybbles (b and c¢), indicate the

distance to the next global instruction (END or Alpha label) upwards

in memory. Any number is acceptable, as PACKing will adjust these

nybbles to their proper values. Refer to the end of this section for

more on these three nybbles.

The third byte, composed of nybbles five and six, contains the most

useful and interesting information in the END. Nybble five defines

the type of END. For an ordinary END, the hex value is 0. The

permanent .END. has a value of 2, and a PRIVATE END is 4. Other

values are possible, but they are not normally used by the system.

More on this later. Nybble six tells the HP-41 if the program needs

to be packed, and whether to erase the compiled jump distance

information when leaving the program mode.

Nybble six is best understood if you convert the hexadecimal digit to

binary form. This can be done by using the byte table. The binary

equivalents are along the bottom (hex at the top) of the table.

Nybble 6 (hex) Binary Type

9 1001 packed, compiled

D 1101 unpacked, compiled

F 1111 unpacked, needs decompiling

The first and last bits are not actively used, and are generally

ignored by the HP-41. You can set them to zero if it is more

convenient. The second bit, when set to 1, indicates that the program

needs to be packed. If the third bit is set to 1, the calculator will

erase all of the compiled jump distance information (within GTO and

XEQ instructions) in the program when leaving the program mode,

packing, or turning off and on. These two bits are reset to zero when

their respective functions are performed (packing and decompiling).
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When an instruction is deleted from a program (or inserted where there

is no room, so that all Catalog 1 programs are shifted down one

register to make room), nybble six is changed to F. This indicates

that both packing and decompiling are needed. If you don’t have a

ZENROM, you’ll probably never see this nybble value in an END. When

you exit PRGM mode, the HP-41 will decompile the branching

instructions within the program and change nybble six from F to D.

It should be obvious why a nybble six value of 9 is the best to use

when modifying an existing END where you do not want the HP-41 to

rePACK or decompile your program. You must use 9 (or one of its

equivalents: 0, 1, or 8) when creating a synthetic END to avoid

decompiling. PACKing is still necessary to get the calculator to

recognize the new END, but then, with the new END incorporated into

 

Catalog 1, the decompiling procedure that follows packing is avoided

if the nybble six value indicates that decompiling is not necessary.

Altering ENDs with the ZENROM is very easy if you use the RAMED

function. It is much less risky to modify an existing END with RAMED

than it is to create a new END with "LB", the Byte Grabber, Text 0

prefix, or other synthetic key assignments. (These other methods are

more likely to cause disruption of Catalog 1 or MEMORY LOST.) With

RAMED, the first two bytes, which properly link the END in the global

chain of Catalog 1, can be left undisturbed, making changes to only

the last byte. You can use the Byte Grabber to make a PRIVATE END or

avoid decompiling without much worry. Just confine yourself to nybble

five values 0 and 4, with nybble six values 9 or D. In any case, be

sure to save vital data and programs outside the HP-41.

If you have a CCD Module, you can use the PHD (program head) function

to find the absolute address of the first byte in the program

following the END. Add one byte to get the address of the third byte

of the END. Then you can use POKEB to modify that byte.

-152-



Whether you have a ZENROM, CCD Module, or just the Byte

Grabber key assignment, work though the following example of creating

a PRIVATE program. Begin by pressing GTO .., PRGM, LBL "PRV"

and GTO .. again.

If you are using the CCD Module, switch out of PRGM mode, execute PHD,

and execute A+ to add one byte to this address. Then key in 73

(equals hex 49) and execute POKEB to replace the last byte of the END

in the LBL "PRV" program. GTO "PRV" and switch into PRGM mode.

You should see PRIVATE.

If you are using the ZENROM, return to the END following

LBL "PRV" using CAT 1. Then execute RAMED and press PRGM

twice. The right side of the display should show 01,09,00. Press 4

9 and the ON key. You should see PRIVATE immediately. It’s that

simple with the ZENROM!

If you are using the Byte Grabber, first return to the END following

LBL "PRV" using CAT 1. Backarrow the END. Now key in STO IND 66,

RCL 73, BST, BST and Byte Grab. Backarrow once and SST. You should

see END. As soon as you PACK, you will see PRIVATE. The IND 66

postfix (hex C2) became the prefix for the END, and the decimal 73

postfix took its place as byte 3 of the END. PACKing adjusted the

second nybble of byte 1 and all of byte 2 to point to the next higher

global function in Catalog 1, incorporating the synthetically created

END into Catalog 1.

Note that because we used RCL 73 (hex postfix 49) instead of RCL 77

(hex postfix 4D), any compiled jump information within the program

would have been preserved. This procedure can be used to make any

program PRIVATE while also avoiding decompiling.

To get rid of this PRIVATE program, use either CLP "PRV" or the

Extended Function PCLPS. If you do not know how to clear Private

status, you shouldn’t ever make a program PRIVATE unless you have a
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backup (non-PRIVATE) copy as well.

You probably noticed that HP used only three of the sixteen possible

values for nybble five (0, 2, and 4) for ENDs. In addition, a nybble

five value of F is reserved for Alpha labels. These four values

comprise all of the global functions normally found on the HP-41. But

what of the twelve remaining values?

The other END types do indeed work, and can be useful if you are

cautious. We recommend that only ZENROM and CCD Module users

experiment with these non-standard ENDs. You should also note that

there is no guarantee that every HP-41 ever made will act exactly the

same in reaction to conditions that the designers of the operating

system did not plan for. If your HP-41 does not perform in every

respect as you think it should with ENDs other than type 0, 2, or 4,

please do not contact Hewlett-Packard about these features. They are

NOt MAnufacturer Supported (NOMAS).

Some explanation is needed before proceeding further. Just as nybble

six is used by the HP-41 on a bit level, so is nybble five. The first

bit of nybble five is not generally used, and most often set to zero.

Changing this bit to a one usually has no effect, except that if

nybble five is an F, the instruction becomes a Catalog 1 Alpha LBL.

The second bit of nybble five determines whether or not the program is

PRIVATE. When this bit is a one, the program area immediately above

this END or .END. (up to the next END) is PRIVATE. The third bit

determines whether the END displays as an END or an .END. in Catalog 1

and in program mode. Bit four (which is normally 0) somehow alters

the way that the END instruction functions when set to 1. See Table

4.2 below.
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NYBBLE 5 FUNCTIONS DISPLAYS END

BITS AS AS TYPE

34

00 END END END

01 .END. END Pseudo-END

10 .END. .END. .END.

11 END or .END. .END. Pseudo-.END.

Table 4.2 -- More END Types

The exact reason for the odd behavior of bits three and four is buried

within the HP-41’s microcode (machine-level instructions), and beyond

the scope of this book. But the external effects of these four bits

in nybble five will be thoroughly described. To expand this table of

four END types, we need to add the other two bits of nybble five.

Since bit two determines PRIVATE status and bit one has no effect,

this will double the number of distinctly different END types. These

are listed below.

Type Nybble 5 Decimal value END .END.

END Oor8 9 or 137 X X

PRIVATE END 4 or C 73 or 201 X X

Pseudo-.END. 3orB 57 or 185 X X

PRIVATE Pseudo-.END. 7 121 X X

.END. 2or A 41 or 169 No! X

PRIVATE .END. 6 or E 1 05 or 233 No! X

Pseudo-END lor9 25 or 153 No! X

PRIVATE Pseudo-END 5 or D 89 or 217 No! X

LBL F Do not use X

Table 4.3 -- Synthetic END’s
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The values underlined in the table are not mnecessarily stable.

Without the correct values in nybbles 2 to 4 to link this END to the

next higher global function, packing is likely to alter this END

unless nybble six is 0 or 9. Often the END type will change to O.

The information in the last two columns will aid anyone willing to

risk exploring these synthetic ENDs using the Byte Grabber. Detailed

instructions describing how to create ENDs in Catalog 1 with the

correct linkage values would take up too much space here. If you

decide to try, use the Byte Jumper from Section 41 to decode the bytes

of an existing END, backarrow it, and synthesize a new END of a

different type with 9 or D for nybble six. Be prepared for several

MEMORY LOSTs before you find a technique that works.

Nybble five values 0, 3, 4, 7, 8, B, and C give ENDs; these are listed

in the top half of the table. The decimal value shown for each table

entry is for a byte composed of nybble five as listed,combined with

nybble six having a value of 9. ENDs should generally not be used in

the place of the permanent .END., but if you want to experiment you

can alter the .END. to one of these seven END types using RAMED,

POKEB or the PPC ROM’s "SX" routine. RAMED or POKEB are best

since you can easily leave the first two bytes as they are. You

should also use a value such as 0 or 9 for nybble six, so that the

"packing needed" bit is clear (bit two). Otherwise, the END type may

change during packing, often causing MEMORY LOST. With some END

types, it is also possible to backarrow the .END.. This disrupts

Catalog 1, leading to MEMORY LOST during packing.

Backarrow must be used with caution if you are using END types other

than 0 and 4. Unless PRIVATE is displayed in PRGM mode, the use of

backarrow will always change nybble six of the END or .END. to F.

This is true even when used on an .END., and no changes are actually

made! Whether nybble six is set to F by backarrow or by other changes

in PRGM mode, using PACK will result in MEMORY LOST for .END.

types 0, 1, 3, 4, 7, 8, B, and C.
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The eight possible .END. types 2, A, 6, E, 1, 9, 5, and D are listed

next in the table. The decimal values in Table 4.3 again correspond

to nybble five combined with nybble six having value 9. Note that

nybble six of an .END. will equal either 9 or 0 after using GTO . . or

PACK.

Changing an existing END to one of these .END. types is easily done

with the ZENROM’s RAMED or the CCD Module’s POKEB. There

will be no ill effects of this change as long as the program remains

undisturbed. However, if the END is moved within Catalog 1 (other

than by SIZE changes or the deletion of programs in Catalog 1 above or

below this program), several things may occur. After packing, you may

discover that this END has become the .END., resulting in the loss of

all programs below it (sometimes including your key assignments, 1/O

buffers, and alarms). MEMORY LOST is also possible. Experiment at

your own risk.

The last listing in Table 4.3 is the Alpha label, in which nybble five

has the value F. You can make labels with RAMED, POKEB, or

"LB". But you should avoid using the Byte Grabber with labels, since

this can disrupt Catalog 1 or cause instant MEMORY LOST. Labels

are mentioned here for the sake of completeness.

Now that you are aware of the dangers involved, you are probably

wondering what possible good these oddball ENDs can do. Some examples

of the wusefulness of synthetic END types follow, along with an

explanation of the behavior associated with these ENDs.

If you use the ZENROM to change the .END. from type 2 to type 6, as

long as the next global function upward in memory is an END, no one

will be able to key in a program by hand at the end of memory. If the

other ENDs are also PRIVATE, access to Catalog 1 will be restricted to

someone expert enough to break Private status.

To change the .END. to type 6 with the ZENROM, use GTO . . to ensure

-157-



there is an END above the .END., and to position to the .END. . Press

PRGM and execute RAMED. You may find as many as six nulls before the

.END. (which will appear as CC,01,20 or similar). Repeatedly press

PRGM until byte 20 or 29 is shown in the middle of the display, and

key in 6 0. Press ON to exit RAMED, and PRIVATE is shown

immediately.

With a CCD Module, you first need to find the decimal address of the

register that contains the .END. . This is easiest with the PPC ROM’s

"E?" routine. Otherwise you could RCL . ¢, DCD, and manually convert

the last three hex digits in ALPHA to a decimal address. Once you

have the address of the .END., you can use POKEB to replace its last

byte with decimal 96 (hex 60).

Another way to achieve this result is to do GTO . . and WPRYV or

WRTPYV to save the empty program as private on a magnetic card or mass

storage file. Then read the empty private program back into the

HP-41, and the .END. will be PRIVATE (type 6).

To resume normal operation, it is best to position yourself to the

PRIVATE .END. by letting CAT 1 run to completion, then

executing "CLP" ALPHA ALPHA. You may also use GETP (but

not GETSUB) to load a program from Extended Memory to replace this

PRIVATE .END.. Reading a program card will work the same way.

Using a type 5 .END. as an END is the ultimate protection for your

programs. Since this type is also PRIVATE, access to your program is

denied to anyone but those who can break PRIVATE. If someone makes a

copy of your program on cards, cassette, or in Extended Memory (and

swaps the module into another machine), they will have a copy which is

very hazardous to use.

Type 5 is a PRIVATE Pseudo-END (literally a false END). While its

usual function is as an .END., it displays as an END. It can function

correctly as an END as long as nybble six remains 9 or 0 (no
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alterations should be made to this program) and nybbles 2 through 4

link it properly in Catalog 1.

If a program with hex 59 in nybbles five and six of the END is read

into memory (from cards, IL devices or Extended Memory), using

GTO . . will change this END into the .END. (type 7, still PRIVATE).

Later breaking Private status and using the Byte Grabber to get rid of

the troublesome END which is restricting access to the program will

result in MEMORY LOST at the next packing. And if PACKing is done

right after reading the program in, MEMORY LOST is immediate. Using

type 5 for an END enhances the protection of Private status by

creating pitfalls to trap all but the most knowledgeable programmers.

Intentionally using type 5 for the .END. is also dangerous since this

.END. appears as END in Catalog 1 or in PRGM mode after breaking

Private status. Using backarrow to remove this innocent looking "END"

has consequences you know well by now.

Another disadvantage of using a Pseudo-END (types 1, 9, 5, or D) for

the .END. is that it leaves you with no ".END. REG nnn" as the last

entry in Catalog 1 to tell you the number of free registers. Of

course, you can always CAT 1 to a non-PRIVATE program, press RTN in

run mode and press PRGM to see "00 REG nnn". But this is bothersome.

There is an easy alternative, which you might also like to use if your

Catalog 1 is rather long. Take advantage of the fact that a type 3

Pseudo-.END. displays as ".END. REG nnn", though it functions as an

END. Try the following example with the ZENROM: CAT 1 in run

mode and R/S immediately. Press SHIFT, RTN, PRGM, XEQ "END",

XEQ"RAMED",USER,30,0N,(BST,RAMED,PRGM,PRGM,09,0N toavoid

decompiling the first program in Catalog 1) and press PRGM. Now start

Catalog 1. You should see ""END. REG nnn" as the first entry in the

catalog.

The advantage of having this pseudo-.END. at the top of Catalog 1 is

that you don’t have to execute the PPC ROM’s "F?" routine or enter
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PRGM mode to find out if you have enough free registers to read in a

program without changing your SIZE. It’s right there at the start of

CAT 1. Unfortunately, END types 3, B, and 7 all have a nasty habit of

changing into the .END. when read in from mass storage. After that,

they usually become type 1 Pseudo-ENDs. You will avoid problems if

you don’t record programs containing these END types.

Changing the ENDs of your programs to Private status will protect your

programs from all but an expert HP-41 programmer. Similarly, changing

your .END. to type 4, 5, 6, 7, C, D, or E will prevent a non-expert

from keying in a program. The use of both (along with removing

your ZENROM, PPC ROM, and CCD Module) should protect program

memory well enough so you can loan your HP-41 to an inexperienced user

without fear that you will find program memory altered.

AVOIDING DECOMPILING

Whenever you read in a program from the Card Reader, Digital Cassette

Drive, or Extended Memory, any information contained within the GTO or

XEQ instructions of the program when it was recorded will be brought

into memory. However, this jump distance information will be lost as

soon as you GTO .. because the program lacks an END with the proper

byte values (indicating that decompiling is not necessary) to prevent

this.

If you have a ZENROM, it is extrememly easy to avoid decompiling.

After reading in the program, BST or GTO .999 to position to the

.END. . Enter PRGM mode, and be sure not to exit PRGM mode or PACK

until you have finished modifying the END to prevent decompiling.

Execute RAMED. At this point, there are at least two different

courses you can take. The first method is the fastest.

In RAMED mode, press I for Insert mode. Flag 1 will be set and show

in the display. Now press C 0. If the display shows C0,00,00 at this

point, press ON and PACK, because you’re done. Otherwise, press 0
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four times (or 0 0 0 9) ON and PACK. PACK will compute the correct

values for nybbles two to four without decompiling as long as nybble

six is 0 or 9. Incidentally, you can also use hex 49 instead of 00 or

09 to make a PRIVATE END, or you can use any of the other END types

you like.

Two other methods for avoiding decompiling have been devised by

Clifford Stern. The first requires the ZENROM, while the second

requires the Byte Grabber key assignment.

After reading in the program from a mass storage device, BST twice to

position to the last program line. Enter PRGM mode, XEQ "END",

execute RAMED, press USER 0 9 (or 0 0) and ON. Again, it’s that

simple.

For those using the Byte Grabber, here 1is Clifford Stern’s other

method, which also appeared in "HP-41 Synthetic Programming Made

Easy". After reading the program into memory, switch to PRGM mode and

BST. This puts you at the .END., which is the last line of the

program. Make sure that there are at least 2 free registers ((END.

REG 02 or greater). Press ENTER, STO IND 66, FIX 9, BST, BST,

Byte Grab, backarrow twice, and PACK (not GTO . .. The IND 66

suffix becomes the first byte of a packed END, which prevents the

processor from clearing the compiled branch information. No bytes are

wasted because the PACK operation removes all packable nulls from the

program. The presence of the new END eliminates the decompiling

which would ordinarily follow.

To make a PRIVATE END with the Byte Grabber, use ENTER,

STO IND 77, ENTER, +, and the same steps outlined above.

Byte Counting with ENDs

You can count the number of bytes and registers contained in a packed

program by decoding the END itself. A typical END has the structure
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Ca bc 09 in hex (refer to Table 4.1, page 150). The three

nybbles a b ¢ point to the next global instruction upwards in memory.

Alpha labels share the same structure C a b ¢ followed by a Text byte

from row F of the byte table. See SQRG p. 39. Together, these global

labels form a linked list from the .END. up to the top global label in

Catalog 1 (which has zero in nybbles a, b, and c¢).

For all practical purposes, nybbles b and c¢ represent the number of

registers in the distance to the next global function. These two

nybbles can symbolize from 0 to 255 registers. Since main memory

contains 319 registers plus 4 bytes, you could possibly have a program

with a single Alpha label which contains more than 255 registers.

Hewlett-Packard had to allow for this, so the first (rightmost) bit of

nybble a was set aside for this possibility.

The remaining three bits of nybble a contain the number of bytes in

excess of the register count. Since the first bit is seldom used,

this nybble will usually be even, and will range from 0 to C for zero

to six bytes.

The formula to compute the number of bytes (from the byte before the

global being decoded back to and including the previous global) is

given by:

(@/2)+(7*(16b + ¢))

If a program has a single Alpha label at its first line, the

information within nybbles a, b and ¢ of the END equals the byte count

of the entire program. This does not include the END itself. ZENROM

users can decode this information from global instructions very

quickly using RAMED and the byte table. CCD Module users can execute

PHD, A+, A+, to locate the middle byte of an END, then PEEKB,

A+, PEEKB, to get the decimal values of the bc and Ca bytes. If

you don’t have a ZENROM or CCD Module, use the Byte Jumper

presented in Section 4I.
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4H. EXECUTING BYTES IN ALPHA

Often you need to execute a synthetic two-byte instruction from the

keyboard. This can occur during your day-to-day use of the HP-41, or

during development of a program. It’s tedious to constantly create

instructions with the byte grabber or to make synthetic key

assignments and to have to clear them after one or two uses. If you

don’t need to put the instructions in a program, why should you have

to bother with assigning a key or creating an instruction in PRGM

mode?

Of course, if you have a CCD Module, you can use XEQ ENTER? to

execute any two-byte function simply by specifying its decimal byte

values. If you don’t have a CCD Module, read the rest of this section

to see how you can get a similar capability.

You can make a program that loads the bytes you want to execute in

Alpha. It jumps into the Alpha register, executes the desired bytes,

and then restores the program pointer (status register b) to jump back

out of the Alpha register. The "2B" program below uses register M to

hold your function, as well as several other instructions needed to

manage the stack. The Extended Functions module or an HP-41CX is

required.

01 LBL "2B" 08 E6

02 "B" (241,116) 09 X<> b

03 X<>Y 10 CLX

04 XTOA 11 RDN

05 X<>Y 12 CLA

06 XTOA 13 END 30 bytes

07 "-BREBR" Line 07 is 245, 127, 240, 117, 145, 124

Lines 02 and 07 can be created using either RAMED, the byte grabber,

Q loader, or one of the byte-loading programs ("LB", "LBX", etc.).
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To use the program, enter the following into the stack: the operand,

ENTER?, the prefix (first byte), ENTER?Y, and the postfix (second

byte). The operand is the number you want in X at the time the

instruction is performed, and is optional in many cases. Once the

stack is loaded with the proper inputs, just XEQ "2B". Note that the

stack is preserved, which allows you to repeat the same function by

pressing R/S.

As an example, suppose you are trying to find a TONE that sounds right

for a program on your machine. Key in:

159, ENTER1?, 30, XEQ "2B".

To try another TONE, simply press RDN (or CLX), key in the new

postfix, and R/S. You can do this because the stack is preserved.

Also, you can simply R/S to repeat the same TONE. For example, to now

try TONEs 70, 114, and 106, just press RDN (see 159 in the display),

70, R/S, RDN, 114, R/S, RDN, 106, and R/S. These TONEs vary in

duration between machines. Finishing with TONE 106 is a good idea,

because it does not leave the HP-41CX in the "buzz" mode, which many

synthetic TONEs do.

You may use "2B" to perform almost any two-byte instruction, except

any RCL (prefix 144), or any other instruction that alters the stack

(ENTER?®, RDN, ARCL, ectc.; use X<> or VIEW instead). If the stack

is altered, the STO b that is the last instruction to be executed in

the Alpha register can fail to return the program pointer to line 10,

or the result of the function may not be left in the X register.

Other restrictions on "2B" relate to the fact that the byte sequence

in the Alpha register must not be altered by the execution of the

specified function. You may not use "2B" to execute two-byte

functions that specify M or IND M (postfixes 117 or 245), or to

execute any of the ALPHA functions (ASHF, ATOX,etc.).

In general, if you stick with prefixes from 145 to 169 and 206, and

avoid postfixes from rows 7 and F, you will dodge most potential
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sources of trouble. If the program stops with an error (NONEXISTENT)

before execution is complete, just SF 25 and R/S. If the keyboard is

locked up, press ON twice and GTO . .(not PACK). Resist the

temptation to enter PRGM mode, as insertion of an instruction in the

status registers can lead very quickly to MEMORY LOST.

The best way to get a clear understanding of how "2B" works is to

temporarily insert a STOP instruction after line 08. Load the stack

with the original 159, 30 (TONE 30) inputs and XEQ "2B". Now decode

the contents of the Alpha register (M) using ATOX. Again load the

stack with 159, 30 and XEQ "2B". This time, use SST to "walk through"

from line 09 to the END instruction. The bytes you decoded from Alpha

match the functions performed between the X<> b and CLX instructions

listed in the program.

Line 02 of "2B" overwrites Alpha with a character corresponding to R}

(decimal value 116). Lines 03 to 06 add two more characters to Alpha

according to the decimal values of Y and X (prefix and postfix). Line

07 appends characters corresponding to Text 0, RDN, and STO b. The

Text 0 serves as a NOP to allow the use of ISG and DSE functions

without skipping the RDN instruction that follows. The RDN brings the

pointer back into the stack and STO b replaces it.

Line 08 is the synthetic program pointer for Alpha register M. When

line 09 puts E6 in register b, execution continues in byte 6 of M.

(The four rightmost nybbles of register b actually point to byte 0 of

register N at that point, but the HP-41 always displays and executes

the instruction that follows the program pointer.) If you single-step

the program, you’ll see 10 Rf, 11 your function, 12 " (Text 0 NOP),

13 RDN, 14 STO b, etc. as the bytes in Alpha are executed.

After the original pointer is restored, CLX, RDN, and CLA will clear

the pointer (E6) in X and restore the stack. Alpha will also be

empty. The line numbers you see as you SST will not match the program

listing after line 09. But you can be sure nothing has actually
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changed in the program by single-stepping it in PRGM mode from line

Ol.

This program may be run in main memory and the memory of the Extended

Functions (decimal address 192 to 64) only. It will not work in the

ROM memory areas.

After you understand "2B", you may want to modify or completely

rewrite it for another purpose. As an example, you may wish to modify

the program to preserve the first 17 characters of Alpha. Or you

could completely rewrite it to execute all of the possible TONEs (0 to

127), and, using the Time module, output the function times. To do

this, you will need more than the seven bytes within Alpha register M.

Therefore, the pointer at line 08 will have to be changed.

The direction of flow when using the status registers as program bytes

proceeds from register e¢ to T, that is, from higher to lower

addresses. Therefore, changing the pointer line from E6 to E7 will

allow you to use register N in addition to M. Fourteen bytes are then

available for wuse instead of seven. Execution starts at byte 6 of

register N and continues on into register M. Register M should

contain a STO b instruction to restore the pointer and return to the

original program. If not, execution will continue on into L and the

other registers of the stack, until an error occurs, program execution

halts, or the calculator locks up.

You can also use E8 or E9 for pointers to status register O and P,

respectively. This will give you a maximum of 21 or 28 bytes. It’s

best to avoid using more registers than you need. Unused bytes in

these registers will be nulls, except the four leftmost bytes in P.

When using register P, follow the guidelines in Section 4A.

Non-Alpha status registers may also be used to execute program bytes.

The bytes to be executed are assembled in Alpha, recalled using RCL M,

and stored in or exchanged with the appropriate status register.
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As an example, you might want to do this to perform an alpha function

under program control. It’s possible to assemble the bytes in

register M and move them to another status register, such as register

T, while preserving up to 17 of the original characters in Alpha.

This approach allows you a maximum of 7 program bytes. Some variation

of the sequence CLX, X<> M, STO status, CLX, 7, CHS, AROT

should work well. See the chart below for the status registers you

can use, along with a list of the pointers needed to access them.

Decimal

Decimal Character

Address Register Exponent Value

015 e E10 16

011 a 12

010 append (R) 11

009 Q 10

008 P ES 9

007 O E8 8

006 N E7 7

005 M E6 6

004 L ES5 5

000 T El 1

To construct the proper pointer for status registers a through Q, it

is necessary to use Alpha. Using Q as an example, you could use the

sequence CLA, 10, XTOA, CLX, X<> M to make the pointer. Due to

the nature of register Q, this would have to be done before Q is

loaded with bytes. This pointer could remain in the stack (or another

status register), or it could be ASTOred as a single character and

brought back to X when needed.
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41. HOPPING THROUGH RAM AND ROM

Synthetic programming provides the fun, and often useful, capability

to make hops (or jumps) in RAM and ROM. This is somewhat similar to

the jump that occurs when a GTO or XEQ instruction is encountered in a

running program. Two methods can be used. The first method can only

be used to move forward (downward) in program memory, either RAM or

ROM, a distance of 0 to 15 bytes. The second method can be used to

move in either direction, up to 110 bytes in RAM. In ROM, the maximum

jump is 99 bytes (127 if you have a ZENROM).

Both methods make use of synthetic key assignments, and in both cases

the assigned key must be pressed in RUN (non-PRGM) mode and USER

mode.

The first method uses a class of key assignments called Byte Jumpers.

Their usefulness was discovered by Bill Wickes, who made most of the

important early discoveries in synthetic programming. Both the Byte

Grabber and any Text 0 prefix assignment will byte jump in RUN mode.

Prefix 0 assignments having a postfix from the last row of the byte

table (0, 240 through 0, 255) will also byte jump. So do many other

assignments with a prefix or postfix from row F of the byte table.

But there is no need to bother with these other assignments, since one

of the byte grabbers or a Text 0 prefix assignment will byte jump in

RUN mode and serve other useful purposes in PRGM mode. If you do not

already have one of these assignments made to a key, assign 240, 27 or

247, 63 to a key with a key assignment program like "MK" or "MKX", and

then continue reading.

Now GTO .. and key in the following program lines:

01 LBL"bJ"

02 ENTER"®

03 "ABC"

04 LBL 01

05 "OPQRSTUVWXYZ"
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Now return to run mode, GTO .003 and Byte Jump (press the key with the

Text 0 prefix or byte grabber key assignment). Press ALPHA to examine

the bytes in the alpha register. These bytes can be decoded using the

Extended Function XTOA or the PPC ROM'’s "CD" routine.

If you used "CD", return to the program by doing XEQ "GE", GTO .003,

and byte jumping again.

Now enter program mode and you should see

03 /

Note that the line number has not increased. The line number is never

updated during a byte jump. Next press backarrow and SST. Since we

deleted the / byte, which was shown in the text line as the character

C, we now have

03 "AB " "

The C has been removed, with a null in its place.

Now return to run mode, GTO .005, and Byte Jump. Switch into and out

of ALPHA mode to make sure that the alpha register contains two

characters. Enter PRGM mode and you should see

05 LN

This is the byte that you keyed in as the character P in the text

line.

Now key in ALPHA A BC D ALPHA,followed by BST and SST. Notice that

the text line now appears as

"OP ABCD"QRS"

The text instruction "ABCD" opened up seven bytes within the

"OPQRSTUVXWXYZ" text instruction. Including the F4 prefix byte, this

instruction occupies 5 bytes, leaving 2 nulls. Of course, these 7

bytes are now characters rather than instructions, and the seven

characters TUVWXYZ have been pushed outside the text line and are now

separate instructions. This will be explained further in the

paragraphs that follow. Meanwhile, you can restore the line number to
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its proper value by using GTO .005 or XEQ "PACK".

As you have seen, the Byte Jumper can be used to hop right into the

middle of a text line and allow you to modify it. If you press the

byte jumper accidentally or if you are just fooling around with it,

don’t be too surprised if you jump right into the middle of a text

line or other multibyte instruction. Be sure not to alter any ENDs in

main memory, or you may disrupt Catalog 1, leading to a possible

MEMORY LOST.

The process that caused line 05 to change began when you keyed in an

instruction with 05 LN (which was actually the character P) in the

display. The HP-41 shifted all the bytes following LN downward one

register (7 bytes) to make room for the insertion. The Text 4 byte

plus the 4 characters A, B, C, and D use 5 of these 7 bytes. The

remaining 2 bytes are left as nulls. The characters after Q, R, and S

were pushed out of the original text line because of the one-register

shif't. You will find seven instructions corresponding to the

characters T through Z in the form of program lines 06 through 12.

Now enter PRGM mode, GTO .004, backarrow that line, and key in LBL 14.

Leave program mode, SST, and Byte Jump. Press ALPHA and you’ll see

the following 15 characters: a Text 12 byte (which displays as a

starburst), O, P, Text 4 (starburst), A, B, C, D, two nulls, Q, R, S,

T, and U. You can verify the identity of the starbursts by using the

Extended Function ATOX or the PPC ROM routine "CD". These bytes were

copied out of the program by the byte jumper as it performed the jump.

Exit ALPHA mode for a moment and byte-jump again. The alpha register

now contains V, W, X, Y, and Z. These characters are program bytes

following the ones copied on the last jump.

You have probably noticed that the number of program bytes copied into

the ALPHA register (which is the same as the number of bytes in the

forward jump) varies oddly. The length of the jump depends on the
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value of the second hexadecimal digit of the last byte in the line

preceding the current line. So when we changed line 04 from LBL 01l to

LBL 14 and used the Byte Jumper at line 05, fifteen bytes were copied

into Alpha instead of two bytes as before. This is because LBL 14

appears in column F (fifteen) of the byte table, while LBL 01 appears

in column 2.

Now you may clear the "bJ" program from memory as it is no longer

needed.

Since the column number of the preceding byte is what determines the

distance of the jump, you should realize that bytes from column 0 of

the byte table (NULL, 0, RCL 00, STO 00, +, etc.) will not advance the

program pointer or copy any bytes into the Alpha register. If you

find yourself "stuck" when you want to continue to advance, you can

try backing up to see if you can get a longer jump from an earlier

point in the program. PACKing may also help, but not in ROM. If

these tricks do not work, SST to the next line and continue.

The Alpha register will automatically be cleared when you use byte

jumping to copy bytes into it, with one obscure exception. If the

byte you are positioned to displays as CLD (hex 7F), it will behave

like the append symbol ( : ), causing the following bytes to be

appended to the current contents of Alpha. (As you know, any text

instruction that starts with an append symbol causes the rest of the

bytes in the text line to be appended to Alpha.) When byte jumping at

a CLD instruction, no warning tone will be sounded if the Alpha limit

of 24 characters is reached or exceeded.

If you think about this behavior carefully, you can see that the Byte

Jumper behaves precisely like a Text instruction that is executed in a

program. The line number is not updated, as indeed it would not in a

running program. A Text n prefix causes the following n characters to

be copied into Alpha, simultanecously jumping over these bytes to the

next program instruction. The main difference is that when you byte
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jump, you are causing a Text instruction (hex Fn) to be executed, even

though the byte that governs the jump may not be from row F. The

operating system is forming the instruction by taking the first digit

of the prefix (F) from the first digit of the key assignment and the

second digit (n) from the second digit of the preceding byte.

Byte jumpers also work well in ROM. Again, line numbers are not

updated as you jump. The bytes in Alpha after you byte jump are the

same as the bytes you would get using the COPY function. They aren’t

the same as the actual ROM contents, since all ROMs use 10-bit rather

than 8-bit words.

The fact that the line number doesn’t change as you advance through

memory can create some problems. If you BST when the line number is

0l in ROM, the line number will stay 01 and you will BST to the

previous instruction. But in RAM, you will find yourself bounced to

an END. This may be the END of the program you were in, the END of

the preceding program, or the END of the first program in Catalog 1.

This is very quirky and apparently unpredictable.

Another quirk of BST is encountered when you BST after byte jumping

into the middle of a global instruction (Catalog 1 LBL or END) in RAM.

After backstepping, you may find yourself almost anywhere in memory,

from the data registers to the second Extended Memory module (even if

you don’t own one, the program pointer can still wind up there). An

indication that this is happening is that the line number alone stays

in the right side of the display for 5 to 10 seconds as the calculator

searches empty registers for an instruction to display. For this

reason, it is wise to SST once and BST twice, rather than using a

single BST, if you think you might be in the middle of a global

instruction.  Another alternative is to use the register/byte jumper

presented later in this section.

With a little practice, you can use the Byte Jumper to figure out

whether a global label has been assigned (and if so, to which key),
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whether an END has been PACKed, or whether a GTO has been compiled.

The crucial elements of this process are a knowledge of instruction

structure and locating a suitable instruction one or more bytes before

the instruction in which you are interested. The instruction that you

locate must be from a column of the byte table such that the jump

distance encompasses the instruction you want to investigate.

The second method of hopping through memory uses the Register/byte

Jumper. This synthetic key assignment was first reported in the

August 1982 issue (VON5P7a) of the PPC Calculator Journal by Tapani

Tarvainen. There are actually three fully functional Register/byte

Jumpers. The only differences among them are the prompts that are

displayed and the labels that are searched for when 00 is used to fill

in the numeric prompt. Choose one of the three Register/Byte Jumpers

listed below and assign it to a key. The discussion will be easiest

to follow if you assign the first one:

"MK" inputs Display GTO label number

4, 178 y 01

4, 183 = 06

4, 188 2 11

The first Register/byte jumper listed is often called the "goose"

assignment because it looks like the "flying goose" that jumps across

the display as LBLs are encountered in a running program. It is the

most commonly used of the three because of its unmistakable

appearance, and because the prompt reminds you that the function has

something to do with jumping. (What does one do when goosed?)

The second Register/byte Jumper is a bit strange in appearance. The

third may look vaguely familiar, because the prompt it gives 1is the

same as the one given by the 4, 31 (W’) Q loader. It is also the

same prompt as for the non-programmable assignment 0, 13 that locks up

the keyboard temporarily (until you remove and replace the batteries).

That key assignment can cause MEMORY LOST.
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All these Register/byte Jumpers function like GTO instructions that

are encountered in a running program. They do not alter the contents

of the Alpha register. The two digits that you key in to fill the

prompt form a byte that is used to represent the jump distance. The

number of bytes jumped is different in RAM and ROM, precisely as the

structure of compiled jump information in a GTO instruction is

different in RAM and ROM. This will be explained further through

examples. We will assume that you have assigned the "goose" key

assignment, so you should press the Register/byte Jumper when a

reference is made to executing the ) function.

In ROM, the digits you supply in reponse to the ) __ prompt are

interpreted simply as the number of bytes to be jumped. Let’s try an

example. If you have a PPC ROM, GTO "SD". You are going to jump

forward in ROM to LBL "SK". Press the Register/byte Jumper key and

fill in the prompt with IND 20 (press shift 2 0). Enter PRGM mode and

you should see

53 LBL "SK"

Note that the line number is correct. This is always the case when

using a Register/byte Jumper because part of the HP-41’s programming

makes sure that when a GTO is executed, the line number is replaced by

FFF. This special code indicates that the line number is invalid.

Then, when you enter PRGM mode or press the SST key, the operating

system knows that it needs to recompute the correct line number. This

recomputation of the line number also means that you cannot use a

Register/byte jumper to get into the middle of an instruction in PRGM

mode, as will be explained shortly.

Now switch out of PRGM mode and press ) 20. You’re back at LBL "SD"!

Summarizing, to move forward nn bytes in ROM, fill in the prompt with

IND nn, and to move backward use nn.

As another example, switch out of PRGM mode again and press ) 40. This

jumps you backwards 40 bytes to

26 LBL "LR"
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If you want to avoid switching into and out of PRGM mode, you can

check your location in the program by pressing SST and holding it long

enough for the instruction to be replaced by NULL.

Here’s a final ROM example, illustrating that the goose assignment

does not respect the placement of ENDs. In fact, it totally ignores

them. First GTO "CV" and jump backwards 5 bytes (press ) 05). If you

enter PRGM mode you will find yourself at

131 END .

This END belongs to the preceding block of PPC ROM routines, "SR"

through "BV" (XROM 20,00 through 20,07).

ZENROM users can use the register/byte jumper to hop up to 127 bytes

in ROM. This can be done by pressing EEX to extend numeric input

beyond two digits, or using inputs .T through .e for jumps of 112

through 127 bytes.

When you jump in either direction with this assignment, you may

encounter certain cases for which the reverse jump will not bring you

back to exactly where you started. This will occur if you jump into

the middle of any multi-byte instruction and you look at that

instruction by either holding SST or switching into program mode. In

order to let you look at the instruction, the HP-41’s operating system

must compute a new line number (because the goose function caused the

line number to be replaced by FFF, indicating the necessity of

recomputation). The process of line number recomputation involves

counting down from the top of the program to the current position.

The calculator will not let you remain in the middle of a multibyte

instruction at the end of this process. Instead, it will back you up

one or more bytes to the beginning of the instruction you were in.

Also watch out when hopping over ENDs in ROM programs. They are 5

bytes long rather than 3, and you can offset the line number if you

hop three or four bytes instead of five. This only happens in the

forward direction over an END in ROM.
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The use of the Register/byte Jumper in RAM is quite different. To

demonstrate, using the PPC ROM again, make sure that 16 registers are

free, XEQ "COPY" ALPHA A M ALPHA, then GTO "AM". Programs

"NS", "NR", "PO", "Rb", "AM", and "MA" are now copied into RAM

at the bottom of Catalog 1. If you do not have a PPC ROM from which

to copy this program block, you should still be able to read through

and understand the examples quite easily.

In RAM, the input number does not directly represent the number of

bytes that are jumped. In fact, the numbers 01 through 15 will cause

a jump of that many registers (7 to 105 bytes). The input value 16

will cause a jump of one byte, 32 will jump 2 bytes, 48 will jump 3

bytes, etc. From this behavior comes the name Register/byte Jumper.

Let’s start with an example of how to use the Register/byte jumper in

RAM. You should still be positioned to "AM" in run (non-PRGM) mode.

Press

) 18

then press and hold SST to see

44 LBL "MA"

The input value of 18 caused a jump forward in RAM. (In ROM the jump

would have been backwards. This is due to the fact that ROM addresses

increase as line numbers increase, whereas RAM addresses decrease as

line numbers increase.) You fill in the prompt with IND nn to jump

backwards in RAM.

The jump in this case is 15 bytes (two registers plus one byte). The

general formula to compute the corect number to fill in the prompt is

(16*B) + R ,

where R is the number of registers you want to jump (often zero, but

no larger than 15) and B is the number of additional bytes to jump

(zero to 6). Because of this nutty formula, larger numbers do not

necessarily mean larger jumps. An input of 96 causes a jump of 6

bytes, but an input of 95 yields the maximum jump of 110 bytes.
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Also, only 99 of the 111 theoretically possible jump distances are

available for use with this function, unless you have a ZENROM. You

cannot jump exactly 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111,

or 112 bytes in one jump. This is because combinations involving 6

bytes and 4 or more registers require an input in excess of two

digits. See the table below:

Inputs RAM Jump distance

01 to 15 1 to 15 registers (7 to 105 bytes)

16 to 31 1 byte plus 0 to 15 registers

32 to 47 2 bytes plus 0 to 15 registers

48 to 63 3 bytes plus 0 to 15 registers

64 to 79 4 bytes plus 0 to 15 registers

80 to 95 5 bytes plus 0 to 15 registers

96 to 99 6 bytes plus 0 to 3 registers

Additional inputs possible with the ZENROM:

100 to 111 6 bytes plus 4 to 15 registers

112 to 127 1 to 16 registers (7 to 112 bytes)

Ttoe 1 to 16 registers (7 to 112 bytes)

129 to 199 Same as IND 01 to IND 71

128 Same as 0 - - USE WITH CAUTION

You may be wondering why an input of zero is not shown in this table.

When zero is used for the input, a search is initiated for a label

that matches the Register/byte Jumper being used (LBL 01 for the

"goose" assignment, LBL 06 or LBL 11 for the others). It is just as

if you single-stepped a GTO 0l in run mode. If no LBL 01 is found,

NONEXISTENT is displayed. If IND 00 is used for an input, nothing

happens. But if you use 00 for an input and LBL 01 is found, you are

in trouble!
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First, the program pointer is changed to match the location of the

label. No surprise there. Second, if the distance to the label is

less than 112 bytes, the operating system will compute the correct

distance byte and put it in the byte before the current line,

overwriting what was there before.

The value of the distance byte computed by the operating system is in

the same format as the input number in the above table. If the label

follows the GTO (that is, if it is at a higher line number), the

formula for the decimal equivalent of the distance byte is

(16*B) + R

If the label is above the GTO (a backward branch), the formula is

128 + (16*B) + R

Be cautious when experimenting with this aspect of the Register/byte

jumper. Though you can create a synthetic RCL instruction when LBL 01

immediately follows the instruction you are positioned to when you

execute j 00, you shouldn’t alter instructions haphazardly. You might

accidentally create an END, or even alter the PRIVATE status of the

preceding program. Be sure to count the byte that the label occupies

if the jump is backwards. The jump is to the beginning of the label,

so a forward jump does not include the label itself.

The Register/byte jumper can be used to hop over the .END. and into

the assignment registers. The Byte Jumper also has this capability.

From there, you can continue to SST through the Extended Functions

module and into the status registers. But beware! If you press any

instruction other than SST, BST, GTO .nnn, or backarrow in PRGM

mode, you will cause MEMORY LOST. The reason is that this insertion

of an instruction pushes down memory contents by one register, all the

way into the status registers, where status register c¢ is altered to a

value that invariably causes MEMORY LOST. To experiment more safely,

increase the SIZE to the maximum (so that you see .END. REG 00)

before you jump beyond the bounds of program memory.
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Moving in the other direction, the Register/byte Jumper will not cross

the curtain into the data registers. It will stop at the top of the

first program in Catalog 1. Any attempt to use the Register/byte

jumper from a point within the data registers will move the pointer to

the first line of the first program in Catalog 1, unless the jump is

specified to go farther down into program memory.

The true nature of the Register/byte Jumper is revealed in PRGM mode.

If you have the ZENROM or CCD Module, you can easily examine

the GTO instructions created by this function. The first byte is set

by the assignment, while the second byte is determined by the number

keyed in. The short-form (two-byte) GTO created by these assignments

will have the jump distance field cleared by the operating system

while leaving PRGM mode in most cases. With some care to avoid

decompiling, this assignment could be used for the GTO instructions

within a label-less program (such as the one presented at the end of

Section 3F). The Register/byte Jumper is actually a pre-compiled GTO

which can be executed in run mode.
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CHAPTER FIVE -- ZENROM UTILITIES AND M-CODE

5A. USING SELECTED ZENROM FUNCTIONS

The CCD Module’s excellent Owner’s Manual includes many useful utility

routines that illustrate the use of the CCD Module functions. This

section is intended to supplement the ZENROM manual, showing you how

to use ZENROM functions to perform tasks on the HP-41 which have

traditionally been done by programs.

The CCD Module and its Owner’s Manual have equivalents to PPC ROM

routines "GE", "HN", "NH", and "MK". This section is especially for

ZENROM users. It will show you how to use the ZENROM in

place of these and other PPC ROM functions, as well as their

equivalents such as buffer-compatible "LBX" and "MKX" (SPME, pages

65 and 92).

LASTP

The ZENROM's LASTP function replaces the PPC ROM routine

"GE". The one minor difference is that "GE" halts at line 00 of the

the last program, eliminating all subroutine returns, whereas LASTP

positions the user program counter to the first line of the last

program in program memory, without eliminating pending returns. (The

last program in main memory is the program containing the .END.)

Thus, when you use LASTP in a running program the effect is equivalent

to XEQ "last program".

CODE and DECODE

Just as the Extended Functions ATOX and XTOA are faster than their

"CD" and "DC" PPC ROM counterparts, the ZENROM functions CODE
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and DECODE are much faster than the user code programs "HN" and

"NH". Machine-code functions are generally ten to one hundred times

as fast as their user code equivalents. Sometimes it is not even

possible to construct an equivalent function in synthetic user code.

The ZENROM’s DECODE function converts the contents of X into

fourteen characters, each of which represents one nybble. This is

equivalent to the behavior of the CCD Module’s DCD function

and the PPC ROM routine "NH" (with Flag 9 clear).

The "MT" (mantissa) program listed below this paragraph demonstrates

the use of DECODE. This "MT" program is similar to the PPC ROM

routine of the same name. The result of executing this "MT" is a ten

digit number, except when the input was zero, in which case 0 is

displayed. The result for non-zero inputs can range from

1,000,000,000 to 9,999,999,999, and is always positive. All ten

digits are shown if you have selected any FIX display format. This

"MT" program requires Extended Functions or an HP-41CX in addition to

the ZENROM. With the CCD Module, use DCD at line 03.

0l LBL "MT" 06 RDN

02 ABS 07 ANUM

03 DECODE 08 CLA

04 RDN 09 END

05 ATOX 19 bytes

Line 02 copies X into L, while not affecting the mantissa of the

result left in X. Lines 03 and 04 decode this number. Lines 05 and

06 remove the leading zero (decimal character code 48), which

represents a positive sign. Line 07 converts the contents of Alpha

back into a number. Since the HP-41 is limited to ten digits, the

exponent sign and exponent digits in Alpha will have no effect. Line

08 clears Alpha, and line 09 halts execution.

Only the LASTX register is lost from the stack. The original value of
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X overwrites L. The other stack registers remain unchanged and Alpha

is cleared. Non-Normalized Numbers will result in a value in X

containing less than ten digits in most cases, depending on the

effects of lines 02 and 07.

The ZENROM’s CODE function is similar to the "CODE" programs

(including the PPC ROM"S "HN" routine) which have been around for

years, starting with the first "CODE" developed by synthetic

programming pioneer Bill Wickes. The ZENROM’s CODE converts the

rightmost fourteen hexadecimal digits in Alpha into seven bytes.

These seven bytes are brought into stack register X in the same way

the RCL function would bring them in, raising the stack if the stack

lift is not disabled. The fourteen bytes in status registers N and M

are interpreted as the nybbles to be coded and brought into X. Bytes

in Alpha register O and P are ignored. Leading nulls are coded the

same as the character zero ("0"). CCD Module users can use the

"CDE" program from page 7.15 of the Owner’s Manual to do the same job

as CODE.

To see how the ZENROM’s CODE function interprets non-standard

input characters (other than 0-9, A-F, or null), you need to

understand the algorithm that it uses internally. The scheme used by

CODE to convert the bytes (digits) in Alpha to nybbles in X is simple

and elegant, relying on the bit-level structure of the input. CODE

only pays attention to certain parts of each character byte. The

second bit of the first nybble is used like a flag to determine how

the second nybble is to be encoded. Three examples are given below,

with this special bit underlined:

Hex Binary

null 00 0000 0000O

"Q" 30 0011 0000

"F" 4 6 0100 0110

When the underlined bit is zero, the value used for the encoded nybble
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is exactly the same as the rightmost four bits (nybble). This

corresponds to the column that the byte occupies in the byte table.

Nulls and characters "0" to "9" are interpreted in this way.

When the second bit is set, as it is for characters "A" through "F"

from row 4 of the byte table, the second nybble must be encoded in a

different way. Otherwise, "F" would be taken for a value of 6. When

the second bit is set, the CODE function adds nine (binary 1 0 0 1) to

the rightmost nybble. Any carry is disregarded. The resulting four

bits are used for the value of the encoded nybble. For the character

"F" (shown above):

0110

+ 1001

1111

Because of this scheme, CODE will interpret a null, decimal byte 16

(the "alpha identifier" byte added by ASTO), a space, "0", "G" and "W"

as zero. Rows 0 to 3 and 8 to B of the byte table are translated

according to the column number the byte is in. On the other hand,

rows 4 to 7 and C to F are shifted nine places to make "A" through "F"

equal nybble values A through F.

 

Because of the fact that no error message is generated for non-

hexadecimal digits in Alpha, decimal values 0 to 15 can be used to

represent nybbles 0 to F by simply using XTOA. There is no need to

add 48 to values 0 through 9, or add 55 to values 10 to 15 in order to

convert decimal nybble values to characters before using XTOA. CODE

will correctly translate these decimal byte values as they are.

User-code versions of CODE generally use different methods to

interpret the input, so their behavior for non-standard input

characters will be different. For the characters from row 0 of the

byte table, the PPC ROM’s "HN" will work as CODE does, but the "CDE"

program from the CCD Module Owner’s Manual will code all row 0

characters as 0.

-184-



A program which takes advantage of the coding of row 0 characters is

"CX" is a PPC ROM replacement which requires both

Extended Functions and the ZENROM. Like the "CX" routine in the

PPC ROM, this "CX" is to be used with extreme caution. You

probably want to remove this program from Catalog 1 after you are done

listed below.

experimenting, because an accidental execution of "CX" is likely to

result in MEMORY LOST.

This program moves the curtain to the absolute address specified by

the number in X. With Extended Functions and a full complement of

memory, the curtain can be moved to addresses 512 through 65, or 16 to

1. If the register below the one named in X does not exist, MEMORY

LOST will occur when the program halts. If you simply want to

experiment with this program without changing the curtain location,

replace lines 28 and 29 with DECODE, AON.

01 LBL "CX" 12 FRC 23 RDN Stack use

02 RCL ¢ 13 X<>Y 24 3

03 DECODE 14 SQRT 25 AROT T Oldc

04 RDN 15 ST*Y 26 RDN

058 16 X<>Y 27 CODE Z Z

06 AROT 17 XTOA 28 CLA

07 ST+ X 18 FRC 29 X<> ¢ Y Z

08 X12 19 * 30 RDN

09 ST/ Y 20 XTOA 31 END X Y

10 X<>Y 21 CLX

11 XTOA 22 STO O 51 bytes L USED

Lines 02 to 04 decode the

register ¢ to Alpha.

(hex 169) to the right side of Alpha.

number 8 into 256. The first digit of the new curtain address is put

in Alpha by lines 09 to 11.

14 hexadecimal

fractional component in the decimal number in X.)

-185-

digits (nybbles) from

Lines 05 and 06 rotate the cold start constant

Lines 07 and 08 change the

(Remember that XTOA will ignore any



Line 12 retains the fractional portion (which contains the two

remaining digits of the requested curtain value, modulo 256 and

divided by 256) while discarding the integer part that has the first

digit. Lines 13 and 14 turn 256 back into 16, which will be used to

extract the two remaining digits through multiplication (lines 15 and

19). Lines 16 and 17 put the second digit of the address into Alpha.

Line 18 discards the second hex digit, leaving the third nybble in the

fractional remainder. Line 19 multiplies this fraction by 16, turning

it into an integer from O to 15. Line 20 puts the corresponding

character in Alpha.

Lines 21 through 23 eliminate the old curtain address from status

register O before lines 24 to 26 rotate the address of the .END. back

into the proper position. Line 27 translates the contents of Alpha

into a Non-Normalized Number (NNN) in X. Line 29 exchanges this NNN

with the contents of register ¢. It gets pushed down into register T

by line 30. The curtain can be restored to its former location with

the sequence R1, STO c.

Although the "CX" program is not a utility that you will use

frequently, it demonstrates how DECODE and CODE can be used together

in a straightforward program to edit a NNN. The techniques used here

may give you some ideas which can be applied to your programs. Step

through the program using SST, switching in and out of ALPHA mode, to

see how the program does its job.

RAMED and synthetic key assignments

The CCD Module’s enhanced ASN function and the PPC ROM’s "MK"

program both provide convenient ways to create key assignments of

synthetic functions. If you have a ZENROM, you can use RAMED,

but you have to know how to proceed. Also, you will need to know the

hexadecimal byte codes for the function you want to assign, rather

than the decimal codes that you would use with the CCD Module or

PPC ROM.
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As you recall from Section 1B, the first byte of each key assignment

register is hex FO0. When the keycode (byte 3 or 0) of a key

assignment register is zero, this indicates that the assignment was

deleted using SHIFT ASN ALPHA ALPHA. Only when both bytes 3

and 0 of key assignment register are zero (deleted assignments in the

same register), will the HP-41 allow the space to be freed by PACKING.

When you make a new key assignment, the HP-41 will check to see

whether there is a deleted assignment. If so, the new assignment will

overwrite the first available (lowest addressed) deleted assignment.

If no key assignments have been deleted, any new key assignments will

take place in the register at address 0CO0). If that register 1is

already half filled, a new assignment is put in bytes 5,4, and 3.

Otherwise, the other key assignments and buffers are raised one

register and the new assignment is in bytes 2,1, and 0 (the rightmost

bytes) of register 0CO. In either case, the value hex FO occupies

byte 6 (the leftmost byte).

You can avoid having to look up the hex keycode of a key while using

RAMED to make one- or two-byte synthetic assignment. You don’t need

any programs or have to hunt around. Just use the following procedure:

1. Make a temporary "dummy" assignment to an unused key for each

assignment previously deleted (not replaced), or execute the "PK"

program in Section 5B (page 191) to pack the key assignment

registers.

2. Press SHIFT ASN ALPHA C L P ALPHA and press the key you want

to assign with a one or two byte function. (If you have already

assigned CLP to a key, you should modify this procedure to use a

different temporary assignment.)

3. Key in ALPHA SHIFT ALPHA C 1 ALPHA.
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4. Execute RAMED.

5. Press USER twice. Press it three times more if you don’t see

xx,04,04 in the display (xx means any value is OK). The two

bytes 04,04 are the prefix and suffix of the temporary CLP

assignment. If you have assigned a function to the ENTER key

(hex keycode 04), you should check that the address at the left

of the display is 5:xxx or 2:xxx.

6. Key in the two hex bytes for the function (as it would be in a

program instruction). Press PRGM once or key in 04 for the first

byte if it is a one-byte assignment.

7. Press ON to exit the RAM EDitor.

8. Check the assignment by pressing and holding the key until NULL

appears. Go back to step 2 if you wish to make more key

assignments.

9. Clear any dummy assignments you made. You're done.

This procedure avoids the need to look up hex keycodes or fiddle with

the bits in the assigned key bit maps of status registers ¢ and R ().

After you use this technique for a while, you probably won’t go back

to using synthetic key assignment programs. By understanding the

structure of the key assignment register, you can use RAMED to alter

assignments to any desired byte values. All you really need is a QRC

or byte table to look up the hex values for the function you are

assigning. Non-programmable functions (like CLP) are shown in small

print above row 0 of the QRC.

If you have difficulty using the RAMED procedure for making synthetic

key assignments, you may want to use the fully automated program

"MKZ" (Make Key Assignments with the Zenrom) on page 222.
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Another popular tool for synthetic programming is the byte loading

program. Thanks to RAMED, this type of program is now completely

unnecessary. Unless you greatly prefer to work in decimal, you’ll

never want to sit there entering +, +, +, . . . as long as you have a

ZENROM.

To edit existing bytes in a program, begin by executing RAMED in PRGM

mode. Position the middle "window" to the byte you want to alter

using the PRGM and USER keys. Key in the hex value of the byte which

is replacing the one in the middlee. RAMED moves to the next byte in

memory automatically. Repeat this editing process to your heart’s

content, pressing ON to stop. How could it be any easier?

To insert bytes, press the "I" (COS) key after executing RAMED in

PRGM mode. Be sure the "1" annunciator in the display is lit. The

ZENROM uses the operating system of the HP-41 to open up one register

at a time as needed, just as in normal entry of program instructions.

The HP-41 also decrements the address of the .END. in status register

¢ each time a register is opened up (because the .END. 1is

simultaneously shifted downward). In addition, the HP-41 increments

the register portion of the linkage information (nybbles b and ¢ from

Table 4.1) in the Alpha LBL, END, or .END. that most closely follows

the opened register. This maintains the continuity of the global

chain making up Catalog 1. Insert mode is not allowed within the data

registers to avoid pushing garbage into the first program. Insertion

is also not allowed below the .END. to prevent you from shifting the

contents of the status registers. This would cause MEMORY LOST while

exiting RAMED.

Many synthetic programs and techniques are replaced by the ZENROM.

You really don’t need Q loaders, Text 0 prefix assignments, or even

the Byte Grabber! (They are still fun to use and useful as learning

tools, however.) The ZENROM expands the synthetic programming

capabilities of the HP-41 in a natural way. There is little you can’t
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do with a general knowledge of the HP-41, a byte table, and a ZENROM.

5B. USING NRCLM AND NSTOM

The two ZENROM functions you will probably use most often in your own

synthetic programs are NRCLM and NSTOM. Using these two functions,

you can recall and store data within any existing RAM register of the

HP-41, including Extended Memory. See Figure 1.2 on page 13 for the

RAM Memory Map.

The ZENROM manual does not give examples of how you can use NRCLM

and NSTOM. Since NRCLM is the ZENROM’s most powerful

programmable function, you should follow through the examples given

here. Then you can try to implement some of your own ideas.

The first program presented here to demonstrate NRCLM and NSTOM is

"PK" (Pack Key) assignments. "PK" also includes a subprogram, "A?",

which counts the actual number of key assignment registers used.

Unlike the synthetic PPC ROM routines "PK" and "A?", this program does

not destroy alarms or other data in the buffer registers above the key

assignments. (At the time the PPC ROM programs were written, alarms

and I/O buffers could not be foreseen.)

This program uses one flag, number 20. At present, this flag is not

used by any peripherals or modules. Since it is cleared at turn-on,

it should be safe to assume that it is clear at the beginning of the

program. "A?" sets flag 20 at line 02, with execution continuing into

"PK". Lines 28 and 29 will halt the program with the number of

assignment registers currently used in the display (X). This will be

a whole number. If flag 20 was set accidentally, halting "PK" at this

point, or you want to pack the key assignment registers after counting

the number used, just press R/S to restart the program.

CCD Module users note that your Owner’s Manual contains "A?" and

"PK" programs that use CCD Module functions.
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01 LBL "A?"

02 SF 20

03 LBL "PK"

04 191

05 SIGN

06 70

07 LBL 10

08 ISG L

09 LBL 01

10 LASTX

11 CLA

12 XTOA

13 RDN

14 NRCLM

15 DECODE

16 RDN

17 ATOX

18 X=Y?

19 GTO 10

20 LASTX

21 LASTX

22 192

23 -

24 X#0?7

25 FS?C 20

26 RTN

27 ST+ X

28 ISG X

29 LBL 01

30 DECODE

31 CRFLD

32 RDN

33 DSE X

34 LASTX

35 X<>Y

36 E3

37 /

38 +

39 SAVEX

40 LBL 09

41 CLA

42 XTOA

43 NRCLM

44 XEQ 08

45 RDN

46 X<> O

47 XEQ 08

48 Rt

49 Rt

50 ISG X

51 GTO 09

52 RCLPT

53 FRC

54 SEEKPT

55 GETX

56 LBL 07

57 "8" (F1,F6)

58 GETX

59 GETX

60 X<> M

61 STO N

62 RDN

63 "p-kkE

64 STOM

65 RDN

66 """

-191-

67 XTOA "A?"

68 RCL N

69 NSTOM "PK"

70 RDN

71 ISG X 185

72 GTO 07 bytes

73 CLA

74 FLSIZE

75 DECODE

76 PURFL

77 CLA

78 LASTX

79 E

80 -

812

82 /

83 ENTER}

84 EMDIR

85 RDN

86 CLD

87 RTN

88 LBL 08

89 STO M

90 CLX

91 "k"

92 RCL M

93 X=Y?

94 SF 20

95 " Lo kskokkkn

96 CLX

97 X<> N

98 FC?C 20

99 SAVEX

100 END



Lines 04 and 05 of "PK" set up the stack to count the number of

registers used for key assignments. The count starts at absolute

address 0CO (decimal 192). The loop that counts them runs from line

07 to line 19.

Label 10 counts the number of registers that start with hex value F

(decimal character code 70). Lines 08 to 10 increment and recall the

counter. The counter is converted to a character in Alpha by lines 11

to 13. Line 14 recalls the register at that address. Lines 15 to 17

overwrite Alpha with the decoded contents of this register and extract

the decimal character code of the first nybble. Lines 18 and 19 will

repeat this loop until a register is found which does not begin with

F. This could be either a free (unused) register, or one which is

used for a non-key-assignment buffer.

Line 20 recalls the counter for later use at line 33. At this point,

the counter points to the first non-assignment register. Lines 21 to

23 subtracted 192, converting that absolute address into an accurate

count of the number of registers used. If "PK" was executed, lines 24

and 25 will let the program continue. Line 25 halts execution if

there are no key assignments.

Lines 27 to 29 convert this count into a number used to create a data

file to hold both a counter and the assignments. Because each of the

key assignments is held in a separate data register, the number of

registers needed in the temporary file is twice the number of

assignment registers. And because a control number is also stored in

the file, the doubled assignment register count is incremented. Lines

09 and 29 (LBL 01) are NOPs.

The name of the temporary file is created using DECODE at line 30.

For six assignment registers, a file containing thirteen registers is

created. When line 31 opens this file, only the first 7 characters in

Alpha are used for the filename. Thus, for six registers, the name of

the file is "0130000".
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The address of the first non-assignment register from line 20 is

decremented at line 33 to get the address of the topmost key

assignment register. Line 34 is never skipped. Lines 34 to 38 create

a number that controls looping in two different sections of the

program. This number is a control word in the format bbb.ceee

(192.197 for six assignment registers). Line 39 saves this number in

the data file.

The label 09 section uses this number to generate an address in Alpha

for recalling the assignment registers. It controls how many times

the loop (lines 40 to 51) is repeated. Labels 09 and 08 work together

to disassemble and sort through the assignments, saving only those

with a nonzero keycodes. Label 08 (lines 88 to 100) is called twice

by label 09 to do most of the work.

Lines 41 to 43 convert the integer part of the control number in X to

an address in Alpha and recall the contents of this register. Line 44

calls label 08 as a subroutine.

Line 89 overwrites the address in M with the contents of the recalled

register. Line 90 clears X, so the zero value there can later be used

for a comparison. Line 91 appends six nulls, and the next instruction

recalls M. If the keycode of the right hand assignment is zero, the

test at line 93 will be true and flag 20 will be set.

Line 95 appends five characters to Alpha. This shifts the right hand

assignment over so that it occupies the three leftmost bytes of

register N. Lines 96 and 97 recall N while clearing it. Lines 98 and

99 save the assignment if flag 20 is clear, which it will be if the

keycode was not zero.

Execution continues at line 45. Line 45 returns zero to X, and line

46 exchanges this with register O. At this point, Alpha is clear.

Line 48 calls subroutine 08, which will save the second assigment if
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the keycode is nonzero.

Lines 48 and 49 rotate the control number back into register X of the

stack. Lines 50 and 51 repeat label 09 if incrementing X does not

exceed the absolute address of the last key assignment register.

Line 52 recalls the file pointer value at the conclusion of the LBL 09

loop. This will be one greater than the number of legitimate key

assignments. Line 53 puts this number in register L while clearing X.

Line 54 resets the file pointer to zero. Line 55 recalls the original

control number from the file, setting up the stack.

The label 07 section includes lines 56 through 72. This loop

reassembles and stores the key assignments. For six assignment

registers, this loop will repeat twelve times, no matter how many

assignments were valid. This has the effect of storing an F6 byte and

six nulls in the vacated (topmost) assignment registers. This empty

key assignment register will be removed by the HP-41 by PACKing, or

the next time you turn the machine off and on. Line 59 puts F6,

rather than FO, in the key assignment register to help prevent

accidental alterations in PRGM mode.

Lines 58 and 59 recall the two assignments to be assembled in a single

register. This order of operation prevents this version of "PK" from

changing the order of assignment pairs as the PPC ROM routine can.

Line 60 trades the first assignment with the F6 byte in Alpha. Line

61 stores F6 in the rightmost byte of register N. This is adjacent to

the three bytes of the assignment in register M. Line 62 puts the

second assignment in X. Note that SAVEX and GETX do not normalize

data.

Line 63 pushes the first assignment into register N. Line 64 stores

the second assignment in Alpha right next to the first assignment in

N. Line 66 shifts them two more places to the left. Line 67 also

shifts the Alpha contents one place to the left while creating the
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needed storage address in M. Line 68 recalls the assembled key

assignment register, which has been pushed into register N. Line 69

only uses the two rightmost bytes of M for the address where the

reassembled register is to be stored. The other bytes in Alpha have

no effect. Lines 71 and 72 repeat the loop until the control number

is exceeded.

Line 73 is needed to clear Alpha before the file size is recalled.

With Alpha clear, the size of the working file is recalled by line 74.

Since the size of the file is the name, lines 75 and 76 purge this

temporary file.

Lines 78 to 82 recall the file pointer value previously put in L by

lines 52 and 53, subtract one from it, and divide it by two. This

converts the pointer into the number of assignment registers used.

The count is by half-registers (like the PPC ROM’s "A?"), and is

exact.

Lines 83 to 86 preserve the count in X while doing an Extended Memory

directory. These lines are only needed if your Extended Functions

module is revision 1B (Catalog 2 header -EXT FCN 1B). You can use R/S

to interrupt the directory, and there is no need to press R/S to

complete the program. EMDIR is needed after PURFL to re-establish a

working file, or Extended Memory could be accidentally cleared. See

page 19 of "HP-41 Extended Functions Made Easy".

"PK" does not actually purge the system of empty registers. After you

execute "PK", the empty key assignment registers will exist above the

legitimate key assignments, below any other buffer registers. When

you PACK or turn the HP-41 off and on, the operating system will

automatically get rid of these voided registers. In this way, there

is no need for the program to shift buffer registers other than key

assignments. These "empty" registers are quickly removed.
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An F6 byte is used by "PK" instead of the FO byte normally put in byte

6 of a key assignment register by the operating system. The F6 byte

behaves the same as FO in most circumstances. However, under some

conditions, it will protect your Kkey assignments from alteration.

Assignments with byte values from row B through E of the byte table

(some of which correspond to branching instructions) can change if

they are executed as program instructions. This can happen

accidentally after hopping over the .END. with the Byte Jumper, or

while recovering from a crash that results in the pointer to the .END.

in status register ¢ being incorrect. The F6 byte works just like FO

in normal operation, and it is unlikely to be changed (except by the

PPC ROM'’s "PK" routine). Assignments added after using this Pack Key

program will have the FO byte in the left of the register. If you key

in ALPHA, SHIFT, ALPHA, C 1, ALPHA, execute RAMED, and see

"FO" in the rightmost window, you can be sure that assignments have

been added since you packed them.

The "RENFL" program presented next can be used either to rename a file

in Extended Memory or to clear part of the Extended Memory directory.

The only input needed by the program is in Alpha. This REName FiLe

program will alter the Extended Memory register containing the name of

the file.

With an input of "SS,SST" as an example, the program will search for

an existing file named "SS", and replace the filename "SS" with the

new name "SST". And if you input only the name of the file, that

filename is replaced with seven FF bytes. This effectively removes

the named file and all subsequent files from Extended Memory. 
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01 LBL "RENFL" 21 NRCLM 41 RCL a

02 LBL 01 22 X=Y? 42 X<> M

03 44 23 GTO 04 43 ALENG

04 POSA 24 RDN 44 XEQ 02

05 X<0? 25 X<>Y 45 X<>Y

06"BEBEEREE" 26 CLA 46 X<> M

07 X<0? 27 DSE X 47 NSTOM

08 GTO 01 28 XTOA 48 RTN

09 AROT 29 X<>Y 49 LBL 02

10 ATOX 30 NRCLM 50 7

11 RDN 31 STOM 51 X<>Y

12 XEQ 02 32 ASHF 52 -

13 X<> N 33 RDN 53 LBL 05

14 STO a 34 X<>Y 54 DSE X

15 X<> M 35 ATOX 55 X#0?

16 191 36 - 56 X<07?

17 LBL 03 37 DSE X 57 RTN

18 CLA 38 GTO 03 58 "4 "

19 XTOA 39 RTN 59 GTO 05

20 X<>Y 40 LBL 04 60 END

112 bytes

Line 06 = F9, 7F, 2C, FF, FF, FF, FF, FF, FF, FF.

Line 46 = F2, 7F, 20 (a nonsynthetic line to append one space).

Lines 03 and 04 determine the position of the comma in Alpha (if any).

Lines 05 to 08 append a comma and seven FF bytes to Alpha if there is

no comma in Alpha and loop back to line 02. Lines 09 to 11 rotate the

comma to the leftmost position in Alpha and remove it.

Subroutine 02 is called by lines 12 and 44. This section adds the

number of spaces required to fill register M with the filename and

spaces. When the number of spaces are computed by label 02 (lines 49

to 52), label 05 (lines 53 to 59) appends them to the right of Alpha.
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When execution continues at line 13, the new filename is recovered

from register N and stored in status register a by line 14. Line 15

retrieves the old filename (with spaces) from register M to use in the

label 03 loop for comparison. Line 16 is the beginning address used

by the loop.

Label 03 performs two functions. This loop checks the header

registers within Extended Memory (starting with the topmost register

at decimal address 191) for a matching name. When a match is not

found, label 03 decodes the rightmost byte of the second header

register. This is used to compute the address of the next header

register to be checked for a matching filename.

Lines 18 and 19 create the address in Alpha used by line 21 (NRCLM).

Lines 22 and 23 skip to label 04 (line 40) when a match is found.

Lines 24 to 29 throw away the contents of the non-matching header

register and format the address of the next lower header register.

Line 30 recalls it and the next five lines extract the rightmost byte

value in decimal form. Line 36 subtracts the file length from the

absolute address of the second header register, giving the address of

the next header register to test.

Lines 37 and 38 will repeat the loop as long as the decimal address is

a positive number. Zero or a negative address can result when you

specify a nonexistent filename. Line 39 serves as a trap for just

this condition.

Line 41 recovers the new filename from status register a. Line 42

swaps this with the address in Alpha. The number of characters are

counted by line 43. The next line calls label 02, which again adds

enough spaces to Alpha (0 to 7) to fill register M with the filename

and spaces.

-198-



Line 45 brings the address back into X, while line 46 exchanges this

with the filename. Line 47 stores the new filename (or seven FF

bytes). Line 48 halts the program.

The seven FF bytes are interpreted by the operating system as the end

of Extended Memory. If you accidentally execute "RENFL" without a new

filename in Alpha (after a comma), don’t despair. You can recover

quite easily. The address "RENFL" altered is still in Alpha, and the

old filename is in stack register Z. If you used EMDIR, the old

filename may have been pushed into T. To repair the damage, press RDN

twice (three times if EMDIR ran to completion) and manually execute

NSTOM. Check the directory again to make sure it is now correct.

Since Alpha contains the address in the form used by the ZENROM, you

may also use RAMED to replace the seven FF bytes with a filename.

Just be sure to add trailing spaces (hex 2 0) to overwrite all seven

FF bytes.

"RENFL" searches through only the header registers of Extended Memory

for a matching filename. In addition, because of the Ilimited

addressing scheme, only the registers within the Extended Functions

module or HP-41 CX will be tested. If you are using Extended Memory

modules and you specify a filename that resides within an Extended

Memory module, the program will stop at line 30 with NONEXISTENT

displayed. If you specify a nonexistent file and the memory within

the Extended Functions module/ HP-41 CX is not filled, label 03 may

loop infinitely. It is left to ambitious readers to augment this

"RENFL" program to eliminate these two restrictions.

5C. MACHINE-CODE

The use of Machine-Code (M-Code) gives an HP-41 user virtually

unlimited flexibility and control. Functions such as TIME and XTOA

are written in M-Code. It’s even possible to write your own Operating

System (OS) in M-Code. The best way to get started, after you have

the necessary hardware, is to read the book "HP-41 M-Code for
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Beginners" by Ken Emery. Then you should write some simple M-Code

functions which augment existing instructions. This section gives

several M-Code examples, and user-code (HEPFOL) programs to

demonstrate them. The examples here will give you a look at some of

the capabilities of M-Code. Once you get your hands on the required

hardware and read the manuals, you can come back to this section to

pick up some programming practice and tips.

In order to write your own M-Code programs, you need a special device

called a Quasi-ROM (or Q-ROM). This device contains RAM (Random

Access read and write Memory) that is addressed as ROM (Read Only

Memory), and that can store the ten-bit instructions needed for M-Code

programs. Special M-Code software is required to write data to this

memory. The ERAMCO MLDL (Machine Language Development

Lab) Q-ROM plus EPROM box comes with the necessary software,

or the ZENROM’s MCED (Machine Code EDitor) program can

be used with the MLDL, ProtoCODER 2, or 16K RAM storage

unit. Refer to Appendix B under "EduCALC" as a source for these

devices. Also see Appendix A of "HP-41 M-Code for Beginners".

Another useful tool for assembly language programming is an assembler,

such as the DAVID Assembler, which is available from ERAMCO

Systems, W. Van Alcmadestraat 54, 16785 LS Den Helder, The

Netherlands. Their Netherlands telephone number is 02230-34777.

Assemblers translate mnemonic-form instructions into M-Code.

A printer is not an absolute necessity for working with M-Code, but it

certainly is a convenience. You will need a printer to use the

ZENROM'’s disassembler. However, disassembly to HP-mnemonics is

possible without a printer using the DISASM and MNEM functions of the

ERAMCO MLDL (see page 13 of the manual). A block of 4K of ROM

instructions can be saved on or recalled from an HP-IL mass storage

device (Digital Cassette Drive or Disc Drive) with SAVEROM or

GETROM from the ERAMCO software. Both ESMLDL-OS and

ZENROM 3B allow ROM data to be formatted and stored/retrieved in
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main or Extended Memory. This works well for relatively small blocks

of ROM code, but is not sufficient to store an entire 4K page.

Serious M-Coders should have some sort of mass storage device.

To write your own custom functions in M-Code, several items are

required. The Q-ROM hardware and software are first. If you have a

ZENROM and a Q-ROM box or the MLDL (with or without ZENROM),

this is sufficient. Next, you need a working knowledge of synthetic

programming. This book and "Extend Your HP-41" are two good sources

for intermediate-level synthetic programming information. Next, and

most important, you need to know how ROM data is structured. The

brief paragraph which follows is meant for review only. Consult your

hardware manuals for more complete information (ZENROM manual

pages 97 to 101, ProtoCODER2 manual page 36, ERAMCO MLDL

manual pages 23 to 24, and "M-Code for Beginners" pages 20 to 23).

The first 10-bit word within a 4K page of ROM designates the device

number, more commonly known as the XROM number. The second word of

the 4K block tells the HP-41 OS how many functions (up to 040 hex, or

64 decimal) the ROM contains. The next section of the ROM contains

the FAT, or Function Address Table. The FAT contains pairs of words

giving the address of the first executable instruction of the

function. The name of each function is held within the words

immediately above the first instruction for that function. The last

character of the function name is marked by having hex 080 added to

it. At least two nulls must follow the FAT before the first function

(or ROM header) name. Failure to construct the FAT correctly will

result in garbage or lockup during CAT 2.

If you have used the ZENROM functions NRCLM and NSTOM, you are

familiar with the fact that these functions use the three rightmost

nybbles (2, 1, and 0) of status register M for the absolute address of

the register to be acted upon. If you have ever written, or tried to

write, a program to recall or store a block of registers with these

functions, you know how much code is required to increment or
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decrement this address. The following pair of M-Code programs will

increment M (INCRM) or decrement M (DECRM). Unlike ISG or DSE,

these functions will not cause user-code instructions to be skipped.

08D M

012 R

003 C

00E N

009 I

*** 178 C=REG 5/M

226 C=C+1 X

2F0 WDATA

3E0 RTN

08D M

012 R

003 C

005 E

004 D

*** 178 C=REG 5/M

266 C=C-1 X

2F0 WDATA

3E0 RTN

In the functions listed above, the ZENCODE mnemonics are used. The

asterisks indicate the entry points; each is the location of the first

executable instruction after the name. Each entry address should

appear in your FAT.

These two routines are very simple, and make no use of OS subroutines.

Yet they can be used to simplifiy almost every program you write that

operates on a block of memory with ZENROM functions. They can even be

used to increase/decrease the rightmost character in Alpha for

comparison purposes.

The INCRM and DECRM functions are nearly identical in operation. The
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first instruction of INCRM (or DECRM) recalls status register M to the

main register of the processor (C). At the same time, this selects

status register M (similar to setting the working file in Extended

Memory). The processor is normally in the hexadecimal mode for

subsequent math operations. The next instruction adds (C=C+1) or

subtracts (C=C-1) one from field X (the exponent field). This

increases or decreases nybble 0 by one, with nybbles 1 and 2 possibly

affected by a carry. WDATA stores this new value back in status

register M. The M-Code RTN instruction acts like the user-code

instruction of the same name.

These functions are so simple that the instructions doing the work use

fewer ROM words than their names! No stack registers are affected.

Both routines are fast, taking about the same amount of time as RCL 00

(23 milliseconds). In addition to being flexible, M-Code is fast.

M-Code routines like these can be written without detailed knowledge

of HP-written software. However, most M-Code functions will benefit

from the use of subroutines from internal operating system ROMs 0, 1,

and 2. Not only will this shorten your M-Code routines, but it can

save you a lot of tedious work! There are also certain cases when the

last instruction of a function needs to return to the main operating

system (OS) processing loop.

In order to correctly and effectively use the OS subroutines, you need

to know what the subroutines do, their addresses, and what they do

(their inputs and outputs). The VASM listing (which is HP’s annotated

assembly language listing for the operating system) is the most

complete source for this information. In addition to the VASM (see

Appendix B), it’s a good idea to have CHHU Chronicle VIN2P15-18 and

PPC Calculator Journal V12N9P10-16 for reference purposes. If you are

a beginner, see PPC CJ VI2NI10P3-10. Some VASM listings will not

necessarily agree completely with the internal ROMs of the HP-41CX.

This is an example of why M-Code, like synthetic programming, is NOt

MAnufacturer Supported (NOMAS). DO NOT contact HP for assistance
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with M-Code or synthetic programming. Refer to the Users’ Groups in

Appendix B, as they are the best information source for synthetic

programmers and M-Coders.

The next M-Code routine can be used to generate tones in the same way

the TONE function does. This function is similar to a TONE IND M

instruction. However, the internal HP-written XTONE subroutine (hex

address 16DE) can generate 128 previously unavailable tones, over and

above those that you can generate using synthetic TONE instructions.

The TONEM function below uses nybbles 1 and 0 of status register M for

the hex value of the tone, which can range from 00 to FF (0 to 255).

08D

005

00E

00F

014

*¥* 178 C=REG 5/M

358 ST=C

379 * XTONE subroutine does almost

05A NCGO 16DE all of the real work

TONEM name

~
O
z
m
Z

The first instruction executed (C=REG 5/M) recalls status register M.

The rightmost byte (nybbles 1 and 0) are loaded in the status bits

(flags 0 to 7) by ST=C. (These microprocessor status flags have no

relationship with the user flags in status register d.) The last two

instructions branch to the XTONE subroutine, where the contents of the

status bits, or flags, are used to control switching the bender (the

beeper disk) on and off. That is the whole program.

The following short program demonstrates a simple use of the M-Code

functions DECRM and TONEM. It sounds a tone while VIEWing a

decimal number in X corresponding to the tone. The program requires

26 bytes of user code.
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01 LBL "TON" 06 TONEM

02 "®" (F1, FF) 07 DECRM

03 255 08 DSE X

04 LBL 10 09 GTO 10

05 VIEW X 10 END

Lines 02 and 03 put an FF byte in Alpha, and the corresponding decimal

number in X. Line 05 shows the tone number while line 06 sounds the

tone. Lines 08 and 09 cause the loop to be repeated, sounding tones

255, 254, 253 and so on down to 1. The program will stop with zero in

X and Alpha clear (tone zero will not sound).

This example may seem trivial, or perhaps not very useful. Would you

like a programmable PACK function? Or how about functions to convert

a decimal address in X (0 to 4095) to and from the three rightmost

nybbles of status register M (again for use with NRCLM/NSTOM)?

M-Code makes it simple to program these functions.

08B K REMARKS

003 C

001 A PPACK name

010 P

010 P

*** 1A0 ABC=0 Serves to clear carry flag only

001 * PACKN

080 NCXQ 2000 Packs program memory

351 * NWGOOS: entry point for CLD

01E NCGO 07D4 Clears PACKING from the display

That’s the entire Programmable PACK function. The same entry point is

used for the non-programmable function, so all of the normal

housekeeping (such as resuming in the correct location after packing

is complete) is taken care of. NWGOOS clears the PACKING message

from the display and exits through the Normal Function Return

(NFRPU -- see VASM page 7, or "HP-41 MCode for Beginners",
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page 61). The NCGO instruction branches to the operating system

ROMs and does not return here.

returns, so you should not use it in a subroutine.

The next M-Code routine, XTO3N, converts a number in X, ranging from 0

to 4095

appending these nybbles to Alpha.

called only when error conditions are detected.

(fractional part ignored) to three hexadecimal

error traps, only relative jumps are used.

08E

033

O00F

014

018

1A0Q

OF8

0A6

2FE

03B

27E

27E

389

053

0B5

0A2

166

2FC

1A6

346

3EF

05A

23C

0DC

1EA

%3k %k

x
=

O
v

Z

ABC=0

C=REG 3/X

A<>C X

2C#0 S

JNC +07h

C=C-1 S

C=C-1 S

* (ERRAD)

CGO 14E2

* (ERRDE)

NCGO 282D

A=A+l X

RCR 13

A=A-1 X

7A#0 X

JC -03

C=0 M

RCR 2

PT=10

C=C+C WPT

XTO3N name

Clear accumulators.

Recall X.

Separate exponent.

Skip error traps if exponent sign is O.

ALPHA DATA error for sign = 1.

DATA ERROR is generated for other

nonzero sign values.

Add 1 to exponent value in A.

Jump back here.

Shift left until the exponent is zero.

This puts the Least Significant Digit

in nybble 13.

Clear any fractional remainders.

Rotate MSD to nybble 0.

Use the pointer as a counter.

Loop returns here three times.
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10E

IEA

IEA

14A

04A

2FC

20A

3D4

294

3B3

2FA

289

003

O0EE

238

05A

05E

1BC

10E

1F8

1BC

106

228

1B8

1BC

106

0AE

1E8

178

1BC

106

0AE

1A8

0AE

0C6

A=C ALL

C=C+C WPT

C=C+C WPT

A=A+C WPT

C=0 WPT

RCR 13

C=A+C WPT

-PT

PT=7

JNC -0A

7C=0 M

* (ERROF)

CGO 00A2

B<>C ALL

C=REG 8/P

C=0 M

C=0 S

RCR 11

A=C ALL

C=REG 7/0

RCR 11

A=C X

REG=C 8/P

C=REG 6/N

RCR 11

A=C X

A<>C ALL

REG=C 7/0

C=REG 5/M

RCR 11

A=C X

A<>C ALL

REG=C 6/N

A<>C ALL

C=B X

Multiply just the rightmost digits by

ten. Hex mode is correctly assumed.

The pointer also separates the active

digits from those to remain unchanged.

Clear the old digit.

Bring in the new digit.

Add it to the total.

Decrement the pointer.

Has the loop been repeated three times?

If not yet, jump back to the first C=C+C.

Is the result more than 3 nybbles?

(Is X greater than 4095?) Then branch to

OUT OF RANGE error generator.

Save the result in B.

Shift ALPHA left 3 nybbles to end of prgm.

Clear all but the 3 rightmost nybbles of P.

Rotate left 3 places.

Save in A.

Recall O.

Rotate left 3 places.

Shift 3 nybbles from O to P

Store shifted nybbles in P.

Recall N.

Extract 3 nybbles after rotating, and

store in O.

Recall M.

Shift left 3 nybbles

Put the 3 rightmost nybbles in the

copy of N and swap it to C.

Store the result in N.

Swap the shifted M copy back to C.

Put the conversion result in the three
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168 REG=C 5/M rightmost nybbles and store in M.

3E0 RTN DONE. 62 ROM words total.

Like XTOA, this XTO3N function will ignore any fractional component

within the number in X. However,there are also differences worth

noting. Negative numbers will generate a DATA ERROR message. Having

flag 25 set will suppress any of the error messages, clear flag 25

when any error is detected, and the function will not have any effect.

A short program shown below uses XTO3N to create a program pointer.

This "DP" (Decimal to Pointer) program works like the PPC ROM’s

"DP" routine, only much faster.

01 LBL "DP"

02 CLA

03 RCL X

04 7

05 MOD

06 XTO3N The byte number (0 to 6) is converted here to a

07 RDN single nybble in Alpha.

08 LASTX

09 /

10 XTO3N The 3 nybbles representing the absolute register

11 CLX address are added here.

12 X<> M

13 END 24 bytes.

The next M-code function, 3ANTOX, converts the three rightmost nybbles

in Alpha to a floating point (decimal) number in X. The decoded

nybbles are removed from Alpha. The result can range from 0 to 4095.

098 X REMARKS

00F O

014 T

00E N 3NTOX name.
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* %%k

033

1A0

178

05A

2E6

0C3

2DC

110

10E

130

010

270

3A1

014

04E

270

ODE

2FC

O0AE

2FC

25C

04A

33C

1A6

2FC

2FE

3EB

33C

14E

18C

03B

078

028

0B8

068

3

ABC=0

C=REG 5/M

C=0 M

C#0 X

JNC +18

PT=13

LC 4

A=C

LDI

CON 16

RAMSLCT

* (GENNUM)

NCXQ 05E8

C=0 ALL

RAMSLCT

C=B S

RCR 13

A<>C ALL

RCR 13

PT=9

C=0

RCR 1

A=A-1 X

RCR 13

C#0 S

JNC -03

RCR 1

A=A+C ALL

?7FS 11

INC +07

C=REG 1/Z

REG=C 0/T

C=REG 2/Y

REG=C 1/Z

ALL

WPT

First executable instruction.

Recall M.

Clear the mantissa.

If M.X is zero, skip ahead

Prepare for conversion of 4 digits

(3 nybbles may yield up to 4 digits)

To prevent output going to display,

Select a nonexistent register.

Convert hex to decimal. Output is in

A.M, number of digits in B.S.

Enable Chip 0.

Recall the number of digits and

rotate to the exponent field.

Swap this with the result in A.

Clear all but the number itself.

Jump back here. Decrease exponent and

rotate the number until the Most

Significant Digit is in C.S.

Rotate once so the sign is zero (pos.)

Combine exponent and number for result.

Is the stack lift disabled?

If so, skip raising the stack.

Raise the stack.
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OF8

0A8

0AE

OE8

1B8

10E

178

046

0A6

03C

168

1F8

0AE

0A6

03C

1A8

238

17C

29C

04A

13C

0AE

0A6

03C

1E8

0AE

046

03C

228

3E0

C=REG 3/X

REG=C 2/Y

A<>C ALL

REG=C 3/X

C=REG 6/N

A=C ALL

C=REG 5/M

C=0 X

A<>C X

RCR 3

REG=C 5/M

C=REG 7/0

A<>C ALL

A<>C X

RCR 3

REG=C 6/N

C=REG 8/P

RCR 6

PT=7

C=0

RCR 8

A<>C ALL

A<>C X

RCR 3

REG=C 7/0

A<>C ALL

C=0 X

RCR 3

REG=C 8/P

RTN

WPT

Store the result in X.

Here to end of routine shifts Alpha

right three nybbles.

Clear three rightmost nybbles.

Swap in the rightmost nybbles of N.

Rotate.

Store new M.

Put O contents in A, bring N to C.

Swap the rightmost nybbles.

Rotate.

Store new N.

Clear the 7 leftmost nybbles of P.

Rotate them back.

Shift the 3 rightmost nybbles of P

into O, rotate and store it.

Recall modified P contents from A.

Clear the rightmost nybbles, rotate

and store the result.

DONE. 69 ROM words total.
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The demonstration program listed below is similar to the PPC ROM’s

"PD" (Pointer to Decimal) routine, but does not alter Alpha.

01 LBL "PD"

02 X<> M

03 3NTOX

04 3NTOX

05 " }-***"

06 X<> Z

07 X<> M

08 CLX

09 RDN

10 7

11 *

12 X<>Y

13 8

14 MOD

15 +

16 END

(append any three characters)

32 bytes

Here is a program equivalent to the PPC ROM’s "E?" ((END. finder)

program that preserves the contents of the Alpha register.

01 LBL "E?"

02 RCL ¢

03 X<>M

04 3NTOX

05 XTO3N

06 X<>Y

07 X<> M

08 CLX

09 RDN

10 END 22 bytes
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The final illustration for 3NTOX is an equivalent of the PPC ROM’s

"C?" (curtain finder) program. It also leaves Alpha unchanged.

01 LBL "C?"

02 RCL ¢

03 X<> M

04 3NTOX

05 RDN

06 3SNTOX

07 X<>Y

08 "’.-***"

09 X<> M

10 CLX

11 RDN

12 END

Now for another two M-Code functions.

(append any three characters)

28 bytes

First, the XTON function

converts a decimal value in X to a single nybble and appends it to the

right of Alpha.

zero to fifteen,

This shifts Alpha left one nybble.

and values outside this are error-trapped

X may range from

in the

usual fashion with respect to the flags (24 and 25).

08E N

00F O

014 T

018 X

*** (O0F8 C=REG 3/X Recall decimal value from X.

38D * (BCDBIN) Floating point number to binary

008 NCXQ 02E3 conversion subroutine.

10E A=C ALL Save the result in A.

33C RCR 1 Rotate right one nybble,

2E6 ?7C#0 X if the result is more than one nybble,

0B5 * (ERRDE) branch to DATA ERROR.

0A3 CGO 282D

39C PT= 0 Set the pointer for the rightmost
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178

2FC

0A2

2F0

1B8

2FC

0A2

2F0

1F8

2FC

0A2

2F0

238

2FC

0A2

2F0

3E0

C=REG 5/M

RCR 13

A<>C PT

WDATA

C=REG 6/N

RCR 13

A<>C PT

WDATA

C=REG 7/0

RCR 13

A<>C PT

WDATA

C=REG 8/P

RCR 13

A<>C PT

WDATA

RTN

nybble.

Recall M to merge the new nybble into

the Alpha register.

Rotate left.

Swap in the new nybble while saving old

leftmost nybble in A for later use.

Store the new M.

Recall N, rotate it left one place,

swap in the nybble that was once in the

leftmost position of M and store the

result.

Recall O and go through the same steps

as outlined for M and N.

Recall P.

Rotate left one nybble.

Bring to C the nybble that previously

occupied the leftmost position in O.

Store the new value of P.

DONE. 30 total words.

The following NTOX function converts the rightmost nybble of Alpha to

a decimal number. The contents of Alpha are shifted right one nybble.

The normal stack lift scheme is observed, and the output in X will

range from zero to fifteen. NTOX does not use any operating system

subroutines.

098

O0F

014

00E

18C

03B

078

NTOX function name.

Z
34

0O
X

*oxx ?FS 11

INC +07

C=REG 1/Z

Is the stack lift disabled?

If so, don’t raise the stack.
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028

OB8

068

OF8

0A8

1A0

238

15C

042

39C

0A2

33C

2F0

1F8

0A2

33C

2F0

1B8

0A2

33C

2F0

178

0A2

33C

2F0

2A0

0AE

22E

26E

33C

2E2

023

21C

050

33C

REG=C O/T

C=REG 2/Y

REG=C 1/Z

C=REG 3/X

REG=C 2/Y

ABC=0

C=REG 8/P

PT= 6

PT

PT= 0

A<>C PT

RCR 1

WDATA

C=REG 7/0

A<>C PT

RCR 1

WDATA

C=REG 6/N

A<>C PT

RCR 1

WDATA

C=REG 5/M

A<>C PT

RCR 1

WDATA

SETDEC

A<>C ALL

C=C+1 ALL

C=C-1 ALL

RCR 1

C#0 PT

IJNC +04

PT= 2

LC

RCR 1

Complete stack raise.

Recall P. To prevent the left part of

P from shifting right,

clear the scratch area of P.

Set the pointer to the rightmost nybble.

Save the rightmost nybble in A.

Rotate right one nybble.

Store modified P.

Recall O.

Swap the rightmost nybble with the one

saved from P and shift to leftmost

position and store new O.

Recall N.

Perform a swap and shift as before.

Store new N.

Recall M.

Save the rightmost nybble in A while

swapping it with the one from N,

rotate and store.

Decimal mode for math to follow.

Recall the nybble.

Add and subtract one to effectively

convert a single nybble to decimal.

Is the resulting decimal number one

digit? If so, skip.

Load 1 for the exponent digit.
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33C RCR 1 Skip to here if exponent was zero.

0E8 REG=C 3/X Store result in X.

3E0 RTN Done. 45 total words.

These programs demonstrate the power and speed of M-Code quite well.

The functions you can write with M-Code are only limited by your

imagination and your knowledge of the HP-41 operating system. M-Code

applications are being developed rapidly as more (and better) hardware

is now available.

One thing which you may not immediately realize from a casual reading

of the ZENROM manual is that owning a Quasi-ROM device will allow you

to make copies of other ROMs (modules). Whether you have the MLDL or

the 16K RAM Storage Unit, the copy (CPY on the overlay) command of the

MCED mode will enable you to make a copy of all or part of any ROM.

The advantages of doing this may not be obvious, but the examples

which follow will explain.

I had a revision 1B Extended Functions module that I wanted to send

back to Hewlett-Packard to exchange for an upgraded version (free of

the PURFL and PCLPS bugs). But I just couldn’t leave myself without

the extended Alpha capabilities it gave me. After I got an MLDL, I

made a copy of my Extended Functions in one of the two 4K pages of the

MLDL and sent the module off to HP. This allowed me to continue to

use ATOX, XTOA, and other Alpha functions. I couldn’t use the

functions involving Extended Memory files (like SAVEP), but this

wasn’t much of a hindrance for my programs. In less than two weeks, I

received the revision 1C Extended Functions module free of charge. If

you still have one of the 1B Extended Functions modules, you should

check with HP to see if they will do the same for you.

The MLDL unit is quite flexible. In addition to 8K of Q-ROM, it

provides 24K of EPROM (Eraseable Programmable Read Only Memory). In

my machine I have used the second page of RAM to hold a copy of the

ZENROM. This freed the port formarly occupied by the ZENROM module,
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making it easy to plug in the HP-IL module without having to sacrifice

another peripheral.

Now for a brief discussion about copying. As the lawful owner of a

certain piece of software, you have the right to make backup copies

for your own personal use, provided that any copyright notice is

retained. However, neither the author nor the publisher of this book

assume any responsibility or legal liability for this practice. You

should be warned that although recent U.S. court decisions have upheld

the right to make backup copies, this protection does not extend to

"pirates" who sell or give away copies of computer instructions to

persons that have not purchased it from the original source. The

practice of distributing illegal copies of software is both unethical

and unfair to the authors.

The use of the copy command has a few restrictions you need to know

about. If you copy any of the internal ROMs (0, 1 or 2), you will

only succeed in locking up the HP-41 until the copy is cleared or

switched off. Making a copy of the HP-IL or Printer modules is not

very useful because the hardware needed for the instructions to do

their jobs will be missing. Copies of the Extended Functions or Time

modules will only allow some of the functions to be performed, again

because of the missing hardware. For example, the Time module copy

must be addressed to page 5, and it can only be used for the ADATE,

ATIME, DATE+, DDAYS and DOW functions.

Another possible reason to make a copy of a ROM is to eliminate a

conflict with another module. Only one module with a given ID number

(XROM number) can be used by the HP-41 at a time. If you ignore this

restriction, anything from a lockup to MEMORY LOST is possible.

So, to continue the previous discussion, let’s assume that you want to

use both the ZENROM and the Standard (STRD 1C) module. Both have

XROM number 05. Making a copy of the Standard module and changing the

first word (the ID number) would be easy. However, since this ROM is
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in user-code, all of the XROM 05,xx subroutine calls within the module

as subroutines would have to be changed also. This would be tedious.

It might be worthwhile to make these changes if you find the upper 4K

page addressing feature of the ZENROM valuable.

Assuming that this is not the case, let’s make a copy of the ZENROM

and change the ID number to decimal sixteen. If the ZENROM is in port

2, it occupies page B. To make a copy of this module in a 4K bank of

Quasi-ROM addressed to page E, begin by executing MCED. Press CPY

(the * key, B0 OO B FFTFR/S, EO0OO0O0R/S, key in 0 1 0

(sixteen in hex) and R/S. Backarrow and press ON. That’s all there

is to it. You can now remove the ZENROM after turning the HP-41 off.

As long as your Quasi-ROM device is plugged in and set properly, the

ZENROM operating modes and functions will be there for you to use.

The program which follows is designed to simplify the job of

transferring blocks of ROM words to and from mass storage. It does

much of the "footwork" normally associated with the SVE and GET

commands of the ZENROM’s MCED operating mode. The data registers

are used to hold the specially formatted ROM data.

The ZENROM, Extended Functions (or HP-41 CX), HP-IL module (with

Disc or Cassette Drive attached), and Extended I/O are all required.

Of course, you also need a Quasi-ROM device unless you just want to

make a copy of a particular section of the ROM within a module.

Before you use this program, you should refer back to pages 118 and

119 of the ZENROM manual to be sure you are familiar with using the

SVE and GET commands of MCED. The SVE command has the potential

of overwriting global instructions in main memory when supplied with

improper inputs. This can lead to MEMORY LOST.

-217-



01 LBL "ROMTMS" 23 AOFF 45 ASTO X

02 "ROM WORDS?" 24 RTN 46 VIEW X

03 PROMPT 25 LBL "MSTROM" 47 TONE 85

045 26 XEQ 10 48 PSE

05/ 27 AVIEW 49 FS? 20

06 .8 28 FLLENG 50 GTO 08

07 + 29 ASTO L 51 CLA

08 INT 30 ASHF 52 ARCL L

09 SF 20 31 ASTO a 53 ARCL a

10 XEQ 09 32 CF 20 54 AVIEW

11 XEQ 10 33 LBL 09 55 READR

12 AVIEW 34 CF 25 56 LBL 08

13 SF 25 35 PSIZE 57 "XEQ MCED "

14 CREATE 36 CLRG 58 RDN

15 FC?C 25 37 RCL ¢ 59 FS? 20

16 ZERO 38 DECODE 60 "+SVE"

17 WRTR 39 RDN 61 FC?C 20

18 GTO 00 40 8 62 "+GET"

19 LBL 10 41 AROT 63 PROMPT

20 "FILENAME?" 42 " ke 64 LBL 00

21 AON 43 CLX 65 END

22 STOP 44 STO N 159 bytes

Line 14 = hex A7, 01.

Line 17 = hex A7, 15.

Line 55 = hex A7, 08.

Line 16 = hex A7, 18.

Line 28 = hex A5, C3.

Lines 02 and 03 of "ROMMMS" (ROM to Mass Storage) prompt you for

the number of ROM words you want to save in mass storage. Lines 04 to

08 compute the number of registers required to hold the ROM words.

Note that you can specify more ROM words than you need to give

yourself some overhead. Line 09 sets flag 20 before line 10 executes

label 09. This will be used later to skip certain instructions.
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Lines 34 to 36 set the number of data registers to the correct size

and clears them. PACKING, TRY AGAIN will be shown if there are

insufficient free registers to set the size higher. The address of

the first data register (curtain) is decoded and isolated from

register ¢ by lines 37 to 44. Lines 45 to 48 store these three

nybbles of the hexadecimal address in X as characters, and displays

them while continuing to run the program. Since flag 20 was set

earlier, lines 49 and 50 skip to label 08. All of the lines in label

08 except 62 will be executed. Line 63 will prompt with the message

"XEQ MCED SVE" shown. This is instructing you to execute MCED

and press SVE (the STO key).

When you do that, the display shows two 4-digit prompts separated by a

comma. The first four hexadecimal digits are the starting address.

The other four are the ending address. After you press R/S to

continue, three prompts are shown. You need to enter the address that

was displayed during the tone at line 47 here. The three digits of

this address define the lowest register where data will be stored. If

you aren’t sure what the address was, use backarrow followed by ON to

exit MCED mode. Then restart the program again.

After entering the correct start address, press R/S. The ROM data

will be quickly formatted and stored. Press ON to exit MCED when

"COMMAND?" is shown. Then use R/S to continue running the program.

Label 10 will prompt you for the name of the file in Mass Storage.

This can either be a new file, or an old one of equal or greater

capacity. Lines 13 to 17 finish this routine, creating a new file if

one by that name does not exist, clearing it if there is one already,

and storing the contents of the data registers in the file. Line 18

stops execution at the last line of the program to prevent mishaps.

Line 26 of "MStROM" (Mass Storage to ROM) calls subroutine 10 to input

the filename. Line 27 shows this name while line 28 fetches the

length of the file from the directory. Lines 29 to 31 save the

filename in lastx and status register a for later use. Flag 20 is
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cleared by line 32. In most cases, flag 20 will be clear anyway.

Line 34 clears the error ignore flag to be certain that line 35 will

trap any errors generated by an inability to re-SIZE. Line 36 clears

the data registers to ensure no old data remains. Lines 37 to 48

isolate the address of the first data register and display it while

sounding a tone. Line 49 skips to line 51.

Lines 51 to 54 recall the filename and display it while line 55

recalls the data registers from mass storage. Only line 60 will be

skipped within label 08. The resulting message, "XEQ MCED GET"

tells you to execute MCED and press the GET command (RCL key).

Before you do this, if you don’t remember the number of registers in

the file, press backarrow. The decimal number is in X. Then execute

MCED and press GET. Fill in the first hexadecimal prompt with the

three digits of the first data register address (curtain). Then press

the decimal point and key in the number of registers. If the file

contains unfilled registers, you can use less than the full count,

especially if the Quasi-ROM device has data within that page beyond

the area you are working with.

These programs can store/retrieve up to 1595 ROM words (319 data

registers, with 5 words/register). This would require that you have

no key assignments, and the skills needed to run the program in the

Extended Memory of the Extended Functions module/HP-41CX. With

no key assignments and only this program in main memory, up to 1485

ROM words can be used. But having MCED assigned to a key is handy.

If you don’t have the Extended I/O, you can delete lines 27 and 28.

Insert "RGS?", PROMPT between 25 LBL "MS/ROM" and 26 XEQ 10.

Input the number of data registers needed by the file when the "RGS?"

prompt is shown.

This program should be most useful to those who find that saving and

recalling ROM words can only be accomplished with the ZENROM manual

in hand. It should make the job easy, with a little practice.
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CHAPTER SIX -- MORE UTILITY PROGRAMS

6A. ZENROM VERSIONS OF SPME PROGRAMS

The four programs that are presented in this section are functionally

equivalent to those found in "HP-41 Synthetic Programming Made Easy"

(SPME) by Keith Jarett. The ZENROM is required by all but the byte

counting program. Extended Functions (or an HP-41CX) are used by all

four programs. Each program has a smaller byte count than the

original version in SPME. If you have a CCD Module, you have

built-in equivalents to each of the programs in this section.

The "MKZ" program on the next page is equivalent to the "MKX" program

on page 92 of SPME. If you have a CCD Module, you should use

ASN ENTER?Y, followed by two decimal byte values. This does the

same job as "MKX" or "MKZ".

To wuse this program, first load the stack with the prefix, postfix,

and keycode as is usual for key assignment programs. As an example,

to assign TONE 89 to the LOG key, key in 159, ENTER?, 89,

ENTER?T, 14. Then run the program using XEQ "MKZ". When the

program is finished, you can make another assignment by entering the

correct decimal values and pressing R/S.

This program will not work properly if you single-step or stop the

program between lines 03 and 04. Also, if an Alpha label exists

within Catalog 1 that matches the name in line 02, the program will

search unsuccessfully from the bottom of the key assignment registers

upward. Eventually, the program will halt with a DATA ERROR at line

28 with 256 in X (unless it happens to find three bytes that match

those of the search string, which is extremely unlikely).
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Make Key Assignment Using ZENROM

and Extended Functions

01 LBL "MKZ" 19 ARCL Z 37 ASHF

02 "AROT" 20 191 38 CHS

03 PASN 21 RCL M 39 AROT

04 RCL R 22 STO a 40 X<> a

05 DECODE 23 LBL 01 41 STO O

06 ASHF 24 X<>Y 42 ATOX

07 ASHF 25 ISG X 43 6

08 ASTO X 26 LBL 01 44 AROT

09 "A646" 27 CLA 45 R1

10 ARCL X 28 XTOA 46 CODE

11 ASTO L 29 NRCLM 47 X<>Y

12 CLA 30 DECODE 48 CLA

13 Rt 31 RDN 49 XTOA

14 XTOA 32 LASTX 50 X<>Y

15 R1 33 POSA 51 NSTOM

16 XTOA 34 X<0? 52 CLST

17 X<> M 35 GTO 01 53 END

18 DECODE 36 AROT 99 bytes

Line 02 must match a function or program in Catalog 2 or 3 that does

not have an identical label in Catalog 1. Line 03 will execute much

faster if you use the name of a function that appears near the

beginning of Catalog 2. For example, if you have a Time module or CX,

change line 02 to "SW", and change line 10 to "A69A", which is the hex

equivalent of the SW function.

Here is the line-by-line analysis of the "MKZ" program.

Lines 02 and 03 assign the AROT function to the key designated by the

keycode in X. This sets the appropriate bit in the keycode map of

status register R (append) or e. This dummy assignment will later be

modified according to the decimal values in Z (prefix) and Y
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(postfix). Of course, the use of PASN assures that there will not be

any wasted (half used) key assignment registers.

Line 04 recalls register R, which contains the hexadecimal assigned

keycode in byte 0. Lines 05 through 07 decode the contents of R and

discard all but the last two nybbles from Alpha. Lines 08 through 11

perform two functions. They append the keycode extracted from R to

"A646" and store the 6-character result in L. This result will be

used later in the Label 01 loop to find a matching assignment within

the key assignment registers. In addition to this result, line 08

leaves the keycode in the stack for later use in assembling the new

key assignment.

Lines 12 to 16 assemble the prefix and postfix bytes in Alpha using

decimal values originally in Z and Y, respectively. Line 17 brings

the two bytes from Alpha into the stack. Line 18 converts these bytes

to hex, overwriting the contents of Alpha. Line 19 appends the two

hex characters of the keycode (from line 08) to the decoded prefix and

postfix in Alpha. This forms a 6-character hex equivalent of the new

key assignment.

Line 20 provides the starting register address needed for the main LBL

01 loop. Since this address is incremented before anything else is

done, the starting decimal value is one less than the first register

recalled. The next two lines, 21 and 22, store the 6-character hex

code for the new assignment (with a leading 0) in status register a

for later use. An indirect effect of these two lines is to push the

191 starting address into register Y, which is where it needs to be in

at the top of the LBL 01 loop.

The LBL 01 loop, line 23 to line 35, searches the assignment registers

for the dummy AROT (A646xx) assignment. Line 24 brings the decimal

address into X, where line 25 increases it by one. Line 26 is a NOP.

The GTO 01 at line 35 does not branch here because it finds LBL 01

at line 23 first. Lines 27 and 28 convert the decimal address into a
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single byte in Alpha, where it is used by line 29 to recall that

register. Line 31 makes room in the stack for line 32 to bring the

target string (A646xx) into X from L. Line 33 checks for the string

within the decoded register, overwriting X with -1 if it is not found.

Lines 34 and 35 repeat the loop until the target assignment is found.

When the string being searched for is located, the position code in X

will be either 2 or 8, depending on whether the target assignment

occupied the left or right half of the assignment register. (Because

neither its hex A6 prefix nor its hex 46 suffix is a valid keycode,

the choice of AROT as the dummy assignment eliminates the remote

possibility that a match could be found straddling the two halves of

the assignment register.)

Line 36 rotates Alpha such that the target string occupies the

leftmost six bytes. Line 37 removes these six characters from Alpha,

leaving 8 characters. If X is 8, lines 38 and 39 have no effect.

However if X 1is 2, lines 38 and 39 will rotate the header byte

(usually FO) back into its normal position. Since "MKZ" does not

test the value of the header byte, this program is compatible with the

F6 key assignment header bytes that the "PK" (Pack Key assignments)

program in Section 5B uses.

Line 40 recalls the 6 hex characters for the new assignment from

status register a. Line 41 stores them in Alpha, to the left of the

other eight characters. Line 42 removes the extra zero character.

Lines 43 and 44 rotate the assignment characters into position, making

a continuous block of fourteen characters. Line 45 brings the decimal

address from T into X, so it does not get pushed off the top of the

stack. Line 46 converts the characters in Alpha back into a Non-

Normalized Number in X. Lines 47 to 50 manage the stack while

converting the decimal address in Y to a byte in Alpha. Line 51

stores the coded bytes (NNN) in the correct register. The stack is

cleared by line 52.
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When the program ends, Alpha still contains the register where the new

key assignment was stored. The assignment will always be in the three

rightmost bytes of the register, so if you execute RAMED after

"MKZ" finishes, you will immediately see the hex keycode in the middle

window, and the postfix on the left. LASTX will still contain the

target string.

RAM / ROM Byte Counting Programs
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01 LBL "RAMBC" 27 LBL 03 "RAMBC"

02 LBL 02 28 "*"

03 X<>Y 29 X<> M "RAMBYT"

04 XEQ 01 30 STO N

05 X<>Y 31 RDN "ROMBC"

06 XEQ 01 32 ENTER?

07 - 33 ASHF "ROMBYT"

08 RTN 34 ALENG

09 LBL "RAMBYT" 35 E 106 bytes

10 LBL 01 36 -

11 XEQ 03 37 X#0?

12 7 38 ATOX

13 * 39 ABS

14 + 40 ATOX

15 INT 41 R}

16 RCL M 42 STOM

17 X<>Y 43 RDN

18 CLA 44 LASTX

19 RTN 45 16

20 LBL "ROMBC" 46 ST/ T

21 XEQ 02 47 MOD

2217 48 LASTX

23 CHS 49 X12

24 / 50 *

25 RTN 51 +

26 LBL "ROMBYT" 52 END



The programs listed on the preceding page on are based on the byte

counting programs presented on page 86 of "HP-41 Synthetic Programming

Made Easy". Extended Functions or an HP-41 CX are required. You just

RCL b at two spots in program memory, then execute "RAMBC" to find

the distance in bytes between those two spots. If you RCL b at the

first and last lines of a program, you will have to add 3 bytes to get

the total program length (this accounts for the END). "ROMBC" is

the equivalent of "RAMBC" for dealing with ROM addresses.

If you have a CCD Module, you can use its PC>X and A-A functions in

place of "RAMBC" as follows. You might want to assign PC>X to a key.

Then just execute PC>X at each of the two spots in program memory.

Execute A-A to compute the number of bytes between the two addresses.

Unfortunately this method does not allow byte counting in ROM.

Here is the line-by-line analysis for the "RAMC"/"ROMBC" programs.

Line 02 of "RAMBC" gives "ROMBC" an entry point (see line 21),

allowing "ROMBC" to execute this same series of instructions. Line 03

exchanges the two pointers, so that the one in Y will be decoded

first. Line 04 calls label 01, which is the same as "RAMBYT", to

decode the pointer into a decimal byte count from the bottom of

memory. Lines 05 and 06 decode the second pointer. Line 07 subtracts

the two results, stopping at line 08 with the difference in X.

The first thing "RAMBYT" (LBL 01) does is to branch to LBL 03.

Label 03 is used as a subroutine by all four sections of this program.

With the program pointer input in X containing four nybbles -- call

them a, b, ¢ and d -- the LBL 03 subroutine returns the following

results:

To T, Y, and Z: Nybble a, plus a fractional remainder

To X: The decimal quantity ((b*256) + (16*c) + d)

Register M contains whatever was in Y when the LBL 03 subroutine was

called (usually a program pointer).
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Lines 12 and 13 multiply ((b*256) + (16*c) + d), which is the count of

registers in a program pointer, by seven. This converts the register

count to a byte count. Line 14 adds the decimal value of nybble a to

this, giving the total number of bytes. Line 15 removes any

fractional part remaining in the number. Lines 16 through 18 restore

Y to its original position and clear Alpha.

Line 21 of "ROMBC" executes "RAMBC" in its entirety. The remaining

lines, 22 to 24, divide the count by negative seven. Though RAM and

ROM pointers differ in their format, this is all that is required to

change a difference in bytes to correct for their nonuniformity.

(This assumes that both ROM pointers came from the same page number.)

The first lines of the LBL 03 subroutine isolate the four nybbles (2

characters) of the program pointer from X. This is necessary since

RCL b can recall pending returns along with the program pointer.

Lines 28 to 30 and 33 remove any bytes to the left of the pointer.

Lines 31 and 32 discard the pointer in X while making two copies of

the value that was in Y. The ASHF at line 33 follows ENTER"? solely

to cancel the stack lift disable. If the leftmost nybbles of the

pointer are zeros, line 34 will return an Alpha length of 1.

Otherwise, the length will be 2. Lines 35 and 36 decrease this

character count by 1. Lines 37 and 38 will then decode the left

character into a decimal number as long as it was not a null. Line 39

saves the decimal equivalent of the left byte in L for later use at

lines 44 and 47.

Line 40 converts the rightmost byte, nybbles ¢ and d, to a decimal

character code. Lines 41 to 43 save the value that was in Y in M, now

that is has been emptied. Line 44 recovers a copy of the character

code containing nybbles a and b. The quantity 16, line 45, is used

three different ways. First, line 46 divides T (which contains the

decimal value 16*a + b) by sixteen, isolating nybble a and usually

leaving a fractional remainder. Second, it is used to separate nybble
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b and discard nybble a by taking the first decimal character code

(16*a + b) modulo sixteen. Third, it is squared by line 49 after

being recovered from L. Line 50 multiplies sixteen squared (256) by

nybble b. Line 51 sums (256 * b) with (16%¢ + d), completing the

decoding process.

"SA" / "RA" (Save / Recall Alarms)

01 LBL "SA" 26 LBL 09 51 X#Y?

02 191 27 CLA 52 GTO 08

03 SIGN 28 XTOA 53 CLA

04 LBL 10 29 NRCLM 54 FLSIZE

05 CLA 30 SAVEX 55 LASTX

06 ISG L 31 CLX 56 DSE'Y

07 BEEP 32 NSTOM 57 +

08 LASTX 33 RDN 58 LASTX

09 XTOA 34 ISG X 59 X<>Y

10 NRCLM 35 GTO 09 60 E3

11 X<> M 36 RTN 61 /

12 ATOX 37 LBL "RA" 62 +

13 170 38 CLX 63 LBL 07

14 X#£Y? 39 "ALM" 64 CLA

15 GTO 10 40 SEEKPTA 65 XTOA

16 LASTX 41 191 66 GETX

17 LASTX 42 SIGN 67 NSTOM

18 ATOX 43 LBL 08 68 RDN

19 "ALM" 44 ISG L 69 ISG X

20 CRFLD 45 BEEP 70 GTO 07

21 DSE X 46 LASTX 71 "ALM"

22 + 47 CLA 72 PURFL

23 E3 48 XTOA 73 CLST

24 / 49 CLST 74 CLA

25 + 50 NRCLM 75 END 132 byte

Important note for Extended Functions 1B (EXT FCN 1B) users:

Insert an EMDIR instruction between PURFL (line 72) and the END.
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The two programs listed on the preceding page, "SA" and "RA", are used

to Save and Recall Alarms. This is useful in conjunction with two

types of synthetic programs. First, some synthetic programs will

cause MEMORY LOST if they are interrupted by an alarm. Second, some

synthetic programs destroy buffers other than key assignments.

If you have a CCD Module, the SAVEB (save buffer) and GETB (get

buffer) functions can be used to save and recall alarms. This

application is described in the CCD Module Owner’s Manual.

The "SA" program saves the alarms in a data file named "ALM" which

it creates in Extended Memory. At the same time, "SA" clears the

buffer registers containing the alarms. For this reason, buffers

other than alarms should be cleared before using "SA". To do this,

simply remove any modules which create buffers (after turning the HP-

41 off) and cycle power on and off (press ON twice). You may then

replace the modules. If you don’t do this when buffers are present in

memory above the alarms, they will be left to "float" between the key

assignments and the .END.. They will take up free registers and the

module that created them will not be able to use them.

"RA" recalls the alarm information stored in the data file and

restores it to its original position above the key assignments. You

may change your SIZE, add assignments, create buffers, and similar

operations between executing "SA" and "RA". However, there must be

sufficient free registers to restore the alarms. Compare the size of

the data file "ALM" using EMDIR with the free register count seen

after pressing SHIFT, RTN, PRGM while in run mode. If there are

insufficient registers, "RA" will overwrite the .END., possibly

causing MEMORY LOST. If this should occur, see Section 4F for

recovery procedures.

Lines 02 and 03 of "SA" store 191 in L (LASTX), setting up the stack

for LBL 10, which finds the first alarm buffer register. Line 06
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increases the decimal register address in L. Lines 05, 08, and 09

convert the addresses from L into a character in Alpha. The BEEP is

never executed. Line 10 recalls the designated register. Line 11

swaps the recalled NNN in X with the address in M. The first

(leftmost) byte is converted to a decimal number by line 12. If this

byte is hex AA, decimal 170, it will match line 13. When there isn’t

a match, lines 14 and 15 will repeat the LBL 10 sequence until an AA

is found. If there are no alarms, you will get a DATA ERROR message

at line 09 when the decimal address reaches 256.

Lines 16 and 17 bring two copies of the decimal address of the first

alarm register into the stack. Line 18 decodes the second byte of the

alarm register, which contains the number of registers in the buffer.

Lines 19 and 20 create a data file "ALM" to hold the alarms. Lines 21

to 25 (line 22 is never skipped) combine the file size with the

address to make an ISG register counter for the LBL 09 loop.

The LBL 09 portion of the program, lines 26 to 35, recalls the alarm

data, saves it in Extended Memory, and stores zero over the alarms.

Lines 27 and 28 convert the address in X to the format required by

NRCLM (line 29). Line 30 saves the data in XM, and lines 31 and 32

overwrite the alarm register with nulls. Line 33 brings the counter

back into X, where lines 34 and 35 increment the counter and repeat

the loop until the counter exceeds its limit. When line 36 stops the

program, all of the alarms have been saved and the registers have been

cleared.

Lines 38 to 40 of "RA" reset the counter of the data file to zero.

(This provision allows you to use other Extended Memory files between

the execution of "SA" and "RA".) Lines 41 and 42 set up the stack for

the LBL 08 loop, lines 43 to 52.

Lines 44 to 46 increment the register address counter and bring it

into X. Line 45 is never executed. Lines 47 and 48 convert the

address to a character in Alpha. Line 49 clears the entire stack
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except L, giving zero for testing at line 51. Line 50 recalls the

register at the address in M. Lines 51 and 52 repeat the LBL 08 loop

until an empty register is found.

Line 53 clears Alpha to make line 54 return the size of the working

file (established at line 40). Line 55 recalls the address of the

empty register. Line 56 decreases the value of the file size in Y.

An instruction will never be skipped by line 56 (or line 21) because

one-register alarm buffers are not possible. Lines 57 to 62 combine

the address and filesize into an ISG control value for the loop which

follows. This is like the one used for LBL 09 in "SA".

Label 07 restores the alarms in the buffer registers. Lines 64 and 65

convert the address into a character in Alpha. The data is retrieved

from the file by line 66. Note that GETX does not normalize. Line 67

stores the register in X at the address in M. Lines 68 to 70 manage

the stack, repeating the loop as needed. The "ALM" file is erased

from Extended Memory by lines 72 and 73. (Add an EMDIR instruction

here if you have revision 1B Extended Functions.) Lines 73 and 74

clear the stack and Alpha.

The next set of programs, "SK" and "RK", are used to Suspend and

Reactivate Key Assignments. This can be helpful if you want to make

temporary use of the execution of local labels A-J and a-e from the

top two rows of keys in USER mode. "SK" will make sure that your key

assingments do not interfere, until you use "RK" to reactivate them.

Versions of "SK" and "RK" appear in the PPC ROM and in "HP-41

Synthetic Programming Made Easy". To use "SK", you put a register

number in X and execute "SK". The assigned key index, also called the

assigned key bit map, is stored in two successive data registers. To

restore the assigned key index and thus reactivate the key

assignments, just put the same register number in X and execute "RK".

A version of "SK"/"RK" for CCD Module users will also be presented in

this section.
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"SK/RK" Program

01 LBL "SK" 09 X<> e 17 ISG X

02 SIGN 10 STO IND L 18 " (hex FO NOP)

03 CLX 11 RDN 19 NRCLX

04 X<> R 12 RTN 20 STO e

05 STOIND L 13 LBL "RK" 21 X<> L

06 ISG L 14 NRCLX 22 RDN

07 " (hex FO NOP) 15STOR 23 END

08 CLX 16 X<> L 47 bytes

Here is the line-by-line analysis for the "SK/RK" programs.

The first data register used by "SK" (Suspend Key Assignments) is

specified by the number in X at the start of the program. Lines 02

and 03 store this value in L and clear X. Line 04 exchanges zero with

register R (the Append register), effectively suspending all USER mode

assignments to the unshifted keys. The bit map of assigned keys is

saved in the register specified in L (which was in X). Lines 06 and

07 then increase this register number by one. The NNN remaining in X

from register R is cleared by line 08. Line 09 swaps zero with the

shifted key assignment bit map, while line 10 saves it in data

register (x + 1). Line 11 rotates this NNN down to register T,

putting the origihal Y, Z, and T in stack registers X, Y, and Z.

Line 14 of "RK" (Restore Key Assignments) recalls the register

specified in X without normalizing. Be sure you don’t merely use

LASTX from "SK" as an input to "RK", because this value is actually

x+1.

Line 15 of "RK" restores register R to its former value, using the

contents of data register x. Line 16 recovers the data register

number from L (put there by line 14). Lines 17 and 18 increment it.

Line 19 recalls data register (x+1), and line 20 uses it to replace

status register e. Lines 21 and 22 leave the stack with the contents
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originally in Y, Z, and T in X, Y, and Z.

An interesting side effect can be seen by single-stepping (SST) the

entire program in run mode. Line 09 resets the program line counter

within status register ¢ to 000 as a by-product of clearing the key

assignment bit map. After using SST at line 09, the next SST shows

"01 STO IND L".

The operating system of the HP-41 does not recompute the line number

with each SST. If it did, single-stepping a long program would be as

slow as using back-step (BST). A running program sets the line number

to hex FFF, indicating that the line number needs to be recomputed

before it can be displayed again. Then, while a program is running,

the HP-41 operating system saves time by not keeping track of the

current line number.

Continue to SST the program until you get to LBL "RK". Then be sure

to key in the correct value of X, indicating the lower register where

the key assignment bit maps are stored. After you SST line 17,

another interesting thing happens. Since an instruction was skipped,

the line number gets recomputed and thus corrected.

Keep pressing SST until you see the instruction STO e¢. You know from

the program listing that this is line 20. If you used SST throughout

the program and line 18 (NOP) was not skipped, STO e will show as line

11! Otherwise, the line number will be right.

Now SST and hold it. The line displays as "10 X<> L"! As long as you

SST line 09, the line after STO e will be shown as 10. The processor

of the HP-41 always assumes that a line number is correct unless the

three rightmost nybbles are FFF (hex). You can see similar behavior

when using STO b to move around in memory.

Now clear X, press ENTER?, and XEQ "SK". Zero will still be in X when

"SK" finishes, because Y was cleared before executing "SK". Then
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press and hold R/S until NULL is shown. LBL "RK" is not line 01, but

executing "SK" reset the line number to 000. Press R/S and let "RK"

restore the key assignments.

You can use this program to figure out which operations cause

recomputation of the line number, and which ones don’t. A list of the

latter would probably surprise you. It includes inserting

instructions in program memory, turning the HP-41 off and on and

running CATalogs other than 1. It is left as an exercise for the

curious to compile this list.

If you have a CCD Module, your PEEKR function can be used in place of

NRCLX in "RK", but you must account for the fact that NRCLX

uses addresses relative to the curtain (that is, normal data register

addresses), whereas PEEKR uses absolute addresses. There is a place

for each kind of addressing, but here relative addressing is

preferred. What is needed to bridge this gap is an equivalent to the

PPC ROM’s "C?" (curtain finder) routine.

Here is the full CCD Module equivalent program:

01 LBL "SK" 14 13.1 27 +

02 SIGN 15 PEEKB 28 +

03 CLX 16 X<>Y 29 PEEKR

04 X<> 17 A+ 30 STO

05 STO IND L 18 PEEKB 31 RDN

06 ISG L 19 X<>Y 32 ISG X

07 " (hex FO NOP) 20 RDN 33" (hex FO NOP)

08 CLX 21 16 34 PEEKR

09 X<> e 22 * 35 STO ¢

10 STO IND L 23 X<>Y 36 X<> L

11 RDN 24 LASTX 37 RDN

12 RTN 25/ 38 END

13 LBL "RK" 26 INT 68 bytes
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Lines 14 through 27 provide the curtain-finding function for the CCD

Module. You can use these steps as a separate routine if you like.

If you accidentally lose the contents of the key assignment bit map

registers, there is an easy way to restore them. If you have Extended

Functions or a HP-41CX, you can use GTO . . (GTO . . . for

ZENROM users), CLA if it isn’t empty, and XEQ "PCLPS". GETP and

GETSUB also work well, but require some "cleanup" after reading in a

program you don’t want. Card Reader owners can read in a program

card, interrupting after the first track is read. HP-IL (Cassette

Drive or Disc Drive) mass storage users can employ READP.

All of these techniques cause the key assignment bit maps to be

recomputed, using the contents of the key assignment registers and the

assignment byte within each global label in Catalog 1. This approach

is used in the "RK" program on page 197 of "HP-41 Extended Functions

Made Easy". The "IN" program, on page 198 of XFME, creates a one-

register data file and modifies it synthetically to be an empty

program file. Another version of "IN" is given in the next section of

this book.

6B. ZENROM VERSIONS OF XFME PROGRAMS

The five programs which follow are designed to replace programs from

"HP-41 Extended Functions Made Easy", using ZENROM or CCD Module

functions to save bytes. A ZENROM or CCD Module is needed for all but

the last program, which can use either the PPC ROM or ZENROM.

Extended Functions are mandatory for all except "VER" and "PRFL".

The "VER" program below is a fix for the verify function of the Card

Reader, which alters the contents of the top register in Extended

Memory module number 2 (when present). The absolute address of the

affected register is decimal 1007, or 3EF in hexadecimal. Alteration

of this register can disrupt a single extended memory file, or even

destroy part of the extended memory directory.
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VERIFY with Bug Fix

ZENROM version CCD Module version

01 LBL "VER" 01 LBL "VER"

02 "g8" (F2, 03, EF) 02 1007

03 NRCLM 03 PEEKR

04 "PRESS R/S" 04 "PRESS R/S"

05 AON 05 AON

06 VER (A7, 85) 06 VER (167, 133)

07 AOFF 07 AOFF

08 "gg" (F2, 03, EF) 08 POKER

09 NSTOM 09 R?®

10 RDN 10 Rt

11 END 11 END

35 bytes 34 bytes

Note: Because the Card Reader enforces the non-programmability of

its VER function, line 06 must be entered either by a key

assignment of VER with the Card Reader not present, by RAMED,or

by byte grabbing.

Lines 02 and 03 of "VER" recall the contents of the affected register

before line 06 has a chance to alter it. Lines 04 and 05 provide a

reminder to restart the program after verifying the cards. Lines 08

and 09 restore the damaged register to its former value. The program

then returns the original value to X before halting. The whole

routine is only 35 bytes long (34 for the CCD Module version),

illustrating once again the power of the ZENROM’s NRCLM and NSTOM

and the CCD Module’s PEEK and POKE functions.

The next program, "PFF" (Purge File Fix), repairs the damage done by

the PURFL function of the revision 1B Extended Functions module

(-EXT FCN 1B). A bug within this function leaves no working file

after PURFL. Unless a working file is established immediately (for

example, by EMDIR), operations which use the working file (APPCHR,
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FLSIZE, GETX, RCLPT, etc.) will cause seven FF bytes to be

stored in the first Extended Memory register, at location OBF hex.

This program replaces these FF bytes with the filename that you

specify in the Alpha register, restoring your damaged Extended Memory

directory.

"PFF" (Purge File Fix)

ZENROM version CCD Module version

01 LBL "PFF" 01 LBL "PFF"

02 "} " 02 "+ "

03 7 037

04 AROT 04 AROT

05 X<> M 05 RDN

06 "®" (F1, BF hex) 06 191

07 NSTOM 07 RCL M

08 STO M 08 POKER

09 CLX 09 RDN

10 EMDIR 10 CLX

11 CLD 11 EMDIR

12 END 12 CLD

13 END

34 bytes 35 bytes

Line 02 = append six spaces (F7, 7F, 20, 20, 20, 20, 20, 20).

Line 02 appends six spaces to the filename in Alpha. Alpha must not

be empty, or a null and six spaces will be used for the filename of

the first file. If this happens to you, just put the correct filename

in Alpha and execute "PFF" again.

Lines 03 and 04 of "PFF" rotate the filename and spaces so that the

leftmost character of the filename is in byte 6 of status register M.

Any leftover spaces will be in register N. In the ZENROM version,

line 05 swaps the filename and spaces from M into X. Line 06 is

hex address OBF in character form. Line 07 stores the filename in

register OBF (decimal 191), restoring access to the extended memory
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directory. In the CCD Module version, lines 05 to 08 use POKER

to accomplish the replacement of the filename in absolute location

191.

Lines 09 to the end clean up the stack, leaving the original X and Y

in Y and Z. The ZENROM version also preserves the original Z in T.

If the EMDIR at line 10 is allowed to run to completion, X will

contain the amount of room left in X Memory. Otherwise it will

contain zero.

The best way to avoid the PURFL bug in the revision 1B Extended

Functions module is to use the "PRFL" program below in place of the

PURFL function. This program prevents any damage to the contents of

Extended Memory after PURFL by storing a Non-Normalized Number in hex

address 040 (decimal 64) which specifies the first file in Extended

Memory as the working file.

"PRFL" (Purge File -- bug free)

ZENROM version CCD Module version

01 LBL "PRFL" 01 LBL "PRFL"

02 PURFL 02 PURFL

03 RCL M 03 RCL M

04 "B .BR" 04 "B .BR"

05 RCL M 05 64

06 "@" (F1, 40) 06 RCL M

07 NSTOM 07 POKER

08 CLX 08 CLX

09 RDN 09 RDN

10 STO M 10 CLX

11 RDN 11 RDN

12 END 12 STO M

13 RDN

14 END

32 bytes 34 bytes

Line 04 = F5, 10, 00, 2E, FO, BF in hex.
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Line 02 purges the file from Extended Memory. Line 03 brings the

filename into the stack to allow line 10 to restore it later. Line 04

is the NNN to be stored in hex address 040. See page 181 of "HP-41 of

HP-41 Extended Functions Made Easy" or page 8 of the Synthetic Quick

Reference Guide. This NNN contains 3-nybble fields specifying the top

of this module (hex OBF), the top of the next Extended Memory module

(2EF), and the working file number (the first nybble, a 1). If you

don’t have any Extended Memory modules, the 2EF nybbles will have no

effect, and will not be altered. Otherwise they prevent most of

Extended Memory from disappearing. Line 05 to 07 bring this NNN

into the stack and store it in address 040 (line 06).

Lines 08 and 09 clear this NNN and push it down into T. The CCD

Module version has two more lines to clear the POKER address input.

The last 3 lines restore the filename to Alpha, and push it into T.

At the end of the program, X, is in its original state, Y and Z are

clear, and T contains the filename as a NNN. The ZENROM version also

preserves the former Y and L.

The next four programs are for ZENROM users. In conjunction with

Extended Function CLKEYS, give you much more control of your key

assignments. (CCD Module users already have this capability and a bit

more, with the SAVEK, GETK, and MRGK functions.)

You can use the "SAVEK" program presented here to store multiple sets

of key assignments as Extended Memory files, and recover them one at a

time with "GETK". You can temporarily suspend key assignments with

"SK". Both "GETK" and "RK" use a special file created in Extended

Memory by the program "IN" (INitialize). This file is a one-register

program file containing only nulls. Its only effect is to have the

HP-41 recompute the contents of status registers ¢ and R (append) when

you use GETP to retrieve the file.
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"SAVEK", "A?", "GETK", "RK", "SK" programs

01 LBL "SAVEK" 27 191 53 +

02 CLX 28 SIGN 54 LASTX

03 SF 25 29 ASTO a 55 E3

04 SEEKPTA 30 LBL 03 56 /

05 XEQ 01 31 ISG L 57 +

06 CRFLD 32 (FO NOP) 58 SIGN

07 DSE L 33 LASTX 59 CLKEYS

08 LASTX 34 CLA 60 LBL 04

09 + 35 XTOA 61 LASTX

10 LASTX 36 NRCLM 62 CLA

11 E3 37 DECODE 63 XTOA

12 / 38 ATOX 64 GETX

13 + 39 70 65 NSTOM

14 LBL 02 40 X=Y? 66 DSE L

15 CLA 41 GTO 03 67 GTO 04

16 XTOA 42 LASTX 68 CLST

17 NRCLM 43 192 69 LBL "RK"

18 SAVEX 44 - 70" " (F1, 20 hex)

19 RDN 45 CLA 71 GETP

20 DSE X 46 ARCL a 72 RTN

21 GTO 02 47 RTN 73 LBL "SK"

22 CLST 48 LBL "GETK" 74 .

23 CLA 49 CLX 75 STO R

24 RTN 50 SEEKPTA 76 STO e

25 LBL "A?" 51 FLSIZE 77 RDN

26 LBL 01 52 191 78 END 150 bytes

The name of the file where the key assignments are to be stored by

"SAVEK" should be in Alpha when the program is executed. The name

must not exceed six characters. If Alpha is clear, and the working

file is a data file, the assignments will be stored in (or for "GETK",

recalled from) that file.
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Lines 02 to 04 set the file pointer of the working file, or the file

named in Alpha, to zero. If there is not a working file with Alpha

clear, or a file matching the name in Alpha, flag 25 will be cleared.

Line 05 uses the label 01 subroutine to count the key assignment

registers. Up to six characters in Alpha are preserved by label 0l

("A?"). If line 06 is executed with flag 25 clear, it creates a data

file big enough to hold the assignments. When flag 25 is set at this

point, it is because SEEKPTA matched a file in Extended Memory, or

Alpha was clear and a working file was already established. In either

of these two cases the CRFLD at line 06 will fail, clearing flag 25.

Lines 07 to 13 combine the filesize with 191 from LASTX to make a

control word. At label 02, X contains a number in the format bbb.eee,

such as 198.191. Lines 14 to 21 form a loop which is executed for

each key assignment register to be saved. Lines 15 and 16 convert the

number in X to an address useable by NRCLM, line 17. Line 18 saves

the recalled data in the file. Line 19 rotates the control word back

into X, where line 20 decrements it and line 21 repeats label 02 if

the limit is not reached. Lines 23 and 24 clear the stack and Alpha.

Line 26 of "A?" gives "SAVEK" an easy way to access it as a

subroutine. LBL "A?" allows the subprogram to be used manually or by

other programs. Lines 27 and 28 set up the stack for the label 03

loop. Line 29 preserves the first six Alpha characters. Lines 31 and

32 increment the decimal address in L. The address is recalled by

line 33, and lines 34 and 35 convert it to a byte in Alpha. Line 36

recalls the register at this address. Line 37 decodes this register

into fourteen characters in Alpha. Line 38 converts the leftmost

nybble of the recalled register to a decimal character code in X. If

this nybble is F, decimal 70, lines 39 to 41 repeat the loop. The

loop is executed until a register is found which is not a key

assignment register.

Line 42 recalls the decimal address of the first non key-assignment

from LASTX. Lines 43 and 44 subtract 192 from it, changing this
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absolute address into the key assignment register count. Lines 45 and

46 restore the characters held in status register a to Alpha. At the

termination of this subroutine, X contains the register count, and L

contains 192,

The first two lines of "GETK" are similar to the beginning of "SAVEK".

If there is a working file, lines 49 and 50 set the pointer to zero

with no error, even though Alpha is clear. If you did something

involving Extended Memory files between executing "SAVEK" and

"GETK", the data file containing the key assignments needs to be

named in Alpha to avoid an error at line 50. Otherwise, Alpha must be

clear. Line 51 returns the size of the file, where lines 52 to 58

construct a control word as before, storing it in L. Line 59 clears

the assignments prior to reading in new ones. If any buffers (alarms,

etc.) are present, they will be overwritten fully or partially by the

new assignments. Therefore you should not have any Time module alarms

or other buffers present when you use "GETK".

Label 04 recalls the assignments from the file and stores them in the

key assignment registers. Like label 02, it works from top (highest

numbered register) to bottom. Line 61 recalls the decimal address

from L, while lines 62 and 63 convert that address into a character

specifying the address in Alpha. Line 64 recalls the register from

the data file, and line 65 stores it in the proper key assignment

register. Lines 66 and 67 repeat the loop until the limit is reached.

After the key assignments have all been restored, line 68 clears the

stack and execution drops into "RK".

"RK" restores the key assignment bit maps in status registers ¢ and R

(append). Any execution of GETP would accomplish this. However, the

special " " (space) program, invented by Tapani Tarvainen and created

by an "IN" program, recomputes the bit maps without replacing the last

program in memory. Lines 70 and 71 do the whole job.
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"SK" merely stores zero in status registers R (append) and e. This

effectively suspends the USER mode key assignments. This capability

is useful when executing programs which utilize the local labels A to

E, F to J, and a through e. By suspending your assignments, you can

avoid having to clear them, yet still be able to use the local labels.

The "IN" (INitialize) program is needed to create the synthetic zero-

byte program file used by the "RK" program. It is similar to

Clifford Stern’s original synthetic program appearing on page 198 of

"HP-41 Extended Functions Made Easy". However, there are different

restrictions which apply when using this program. Any Extended Memory

modules should be removed before running it. This ensures that the

file created by this program resides within the Extended Functions

module or the built-in portion of extended memory in the HP-41CX (hex

addresses OBF to 041, decimal 191 to 65 inclusive). Two versions are

listed, one for the ZENROM, the other for use with the PPC ROM.

Since both programs are the same up to and including line 16, they

will be described up to that point as one program. Line 02 clears the

error ignore flag, in case it was set. The number of registers

available in Extended Memory is returned after EMDIR, line 03, runs to

completion. Don’t interrupt EMDIR, as this result is used to compute

the address of the header register modified later. EMDIR can be

replaced by EMROOM if you have an HP-41CX.

Lines 04 to 06 create a one-register data file using a single space

for the name. Line 07 decreases the count of available registers by

one using E from line 04. Lines 08 to 11 halt execution of the

program if Extended Memory modules are inadvertently plugged in,

though this check is not foolproof. Lines 12 and 13 convert the

negative number from line 09 to the address in Extended Memory where

the second register of the header for the " " program file should be

(see pages 23 and 180-181 of "HP-41 Extended Functions Made Easy" or

page 8 of the HP-41 Synthetic Quick Reference Guide).
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ZENROM PPC ROM

01 LBL "IN" 01 LBL "IN"

02 CF 25 02 CF 25

03 EMDIR 03 EMDIR

04 E 04 E

os"" os""

06 CRFLD 06 CRFLD

07 - 07 -

08 123 08 123

09 - 09 -

10 X>0? 10 X>0?

11 RTN 11 RTN

12 190 12 190

13 + 13 +

14 "8~%" 14 "8~ X"

15 RCL M 15 RCL M

16 X<>Y 16 X<>Y

17 CLA 17 XROM "SX"

18 XTOA 18 CLST

19 RDN 19 CLD

20 NSTOM 20 END

21 CLX

22 RDN 44 bytes

23 CLA

24 CLD Line 14 = hex F7, 10, 00, 00, 00, 00, 00, 01

25 END (decimal 247, 16, 0, 0, 0, 0, O, 1).

50 bytes

Line 14 forms a synthetic header register that will be used to replace

the header register of the " " data file created at line 06. The

first nybble of line 14 after the text byte is a 1. In a header

register, this specifies a program type file (rather than the existing

2, which indicates a data file). The last nybble is also 1, denoting

a file 1 register long. When this Non-Normalized Number is stored in
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the header register, it converts the data file to a program file.

Other bytes within the second header register are overwritten. Lines

15 and 16 recall this NNN, and place it in Y. X contains the

destination address in decimal form after line 16.

Experienced synthetic programmers will note that lines 14 and 15 could

be replaced by F1 01, ASTO L, LASTX. This uses the ASTO

function to put a 1 in the first nybble of the new header. Although

this method saves bytes, it is not as clear to follow. The purpose of

this chapter is to illustrate how ZENROM functions can be used in a

straightforward manner to accomplish tasks that would be much more

difficult using just synthetic programming.

In the ZENROM program, lines 17 and 18 convert the decimal address in

X to the format used by NSTOM. Line 19 pushes it out of the way,

putting the NNN in X. Line 20 stores the NNN in the second header

register of the data file, converting it to a program file. Lines 21

and 22 clear X and rotate the stack down, restoring the original

contents of X and Y to their respective positions. Line 23 clears the

address in character form from Alpha. Line 24 clears the Extended

Memory directory from the display.

In the PPC ROM version, line 17 uses the "SX" routine to store the NNN

from stack register Y in the decimal address contained in X. Line 18

clears all of the NNNs from the stack and line 19 clears the display.

These programs create an artificial program file within Extended

Memory which is useful in restoring the USER mode key assignments.

They create a program, which when accessed by GETP, does not disturb

the last program in memory. Actually, reading in any program from

Extended Memory will cause the assigned key indexes in status

registers R (append) and e to be recomputed. After being executed

once, this program does not need to be used again so long as the

synthetic program file remains in Extended Memory. EMDIR shows this

file as " POO1".
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To use this program to reactivate the key assignments after they were

suspended (by storing zero in R and e) press ALPHA, space, ALPHA,

XEQ, ALPHA, G E T P, ALPHA. Or use the "RK" routine above,

which does the same thing.

6C. OTHER PROGRAMS

This section presents three utility programs that use ZENROM

functions. "EX" (exponent) was written to demonstrate the DECODE

functions of the ZENROM and CCD Module. The house-keeping routines

complete this section.

The "EX" program gives the exponent of the number in X, from 99 to

-99. Note that this is the exponent displayed in SCI (rather than

ENG) mode. The ZENROM version is given here. With the CCD

Module, use DCD at line 02.

before after

01 LBL "EX" 11 CLX T T

02 DECODE 12 MOD

03 X<> M 13 LASTX Z Z

04 STO P 14 -

05 RDN 15 RCL M Y Y

06 STO N 16 SIGN

07 RDN 17 X<> N X Exponent (X)

08 ANUM 18 X<>Y

09 E2 19 CLA L X

10 X>Y? 20 END

35 bytes
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Here is the line-by-line analysis of "EX".

Line 02 converts the contents of X into fourteen Alpha characters

representing the 14 hexadecimal (Binary Coded Decimal) digits in X.

Line 03 swaps X with the seven rightmost characters in Alpha, while

line 04 stores these characters in P. This seems odd, but this

approach will make sense in a minute. Line 05 moves these characters

to the top of the stack. The remaining originally decoded characters

are overwritten with the original value of Y by line 06, with the next

line moving this out of the way, to give room in the stack for

computation of the exponent.

Line 08, ANUM, works rather ingeniously. Because the first four

bytes of register P are not within the 24 character Alpha limitation,

they are ignored. So, without bothering to remove the last four

nybbles (characters) of the mantissa, they are effectively neutralized

by putting them in register P. Assuming that Y contained a normal

number or alpha string, the first byte of register N will not contain

a digit character. The number returned by ANUM will then range from 0

to 99 for positive exponents, and from 999 to 901 for negative

exponents.

Lines 09 to 14 have no effect on positive exponents (0-99). However,

numbers greated than 100 (E2), indicating a negative exponent, are

taken modulo 100 and then have 100 subtracted from them. As an

example, 998 becomes -2.

Lines 15 and 16 put the original value of X into LASTX (L). Line 17

recovers the original value of Y. The exponent of X is swapped back

into place by line 18. Line 19 clears Alpha.

Next is a set of programs for ZENROM users. These are shorter and

faster versions of some PPC ROM utilities "F?", "E?", " £?" and "C?",

plus a buffer register counter "B?" and a program register counter

"P?ll.
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0l LBL "F?"

02 XEQ 07

03 LASTX

04 +

05 XEQ 09

06 X<>Y

07 -

08 RTN

09 LBL "B?"

10 LBL 07

11 191

12 SIGN

13 LBL 08

14 ISG L

15" (FO NOP)

16 LASTX

17 CLA

18 XTOA

19 . (decimal point)

20 NRCLM

21 X#Y?

22 GTO 08

23 LASTX

24 192

25 -

26 RTN

27 LBL "P?"

28 XEQ 10

29 XEQ 09

30 -

31 RTN

32 LBL "E?"

33 LBL 09

34 RCL ¢

35 "*n

36 X<> M

37 STO N

38 ASHF

39 RDN

40 ALENG

41 DSE X

42 ATOX

43 X#0?

44 *

45 16

46 MOD

47 LASTX

48 X12

49 *

50 ATOX

S1 +

52 RTN

53 LBL "2

54 RCL ¢

55 CLA

56 STOM

57 " ,;.**"

58 CLX

59 STOM

60 ALENG

61 8

62 -

63 X#0?

64 ATOX

65 16

66 *

67 ATOX

68 LASTX

69 /

70 +
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71 INT

72 XEQ 10?"

73 -

74 RTN

75 LBL "C?"

76 LBL 10

77 RCL ¢

78 "hkn

79 X<> M

80 STO N

81 ASHF

82 RDN

83 ALENG

84 2

85 -

86 X<0?

87 CLX

88 X#0?

89 ATOX

90 X#0?

91 *

92 16

93 *

94 ALENG

95 DSE X

96 ATOX

97 X#0?

98 *

99 16

100 /

101 +

102 INT

103 CLA

104 END

185 bytes



"F Returns the number of Free registers.

"B?" Counts the number of Buffer registers used.

"p" Calculates the number of Program registers.

"E?" Decodes the absolute address of the .END..

"z Computes the lowest register in the Summation block.

"C? Gives the absolute address of the Curtain (ROO).

Stack Contents after Execution:

"F?Il "A?Il "P?" llE?" IZ)" llC?"

T 0 0 .END. Y addr. X

Z 0 0 .END. Y addr. X

X 0 0 .END. X addr. X

X Free rgs. Buf. PRGM .END. reg. ROO

regs. addr.

L 1st free 192 .END. Right‘ ROO ROO

register addr. most addr. and

addr. byte frc.

Line-by-line analysis for "F?", "B?", "P?", "E?", "Z/", "C?"

Line 02 of "F?" calls label 07 to count the number of buffer registers

being used. Lines 03 and 04 recall 192 from L and add it to X,

changing the count to an absolute address. Line 05 calls subroutine

09 to give the absolute address of the .END.. Lines 06 and 07 reverse

these two addresses, and take their difference. The number of free

registers is in X at the termination of this routine. L contains the

decimal address of the first free register.

"B?", which is the same as label 08, counts the number of buffer
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registers currently being used. Warning: if there are no free

registers (END. REG 00), this routine will not work as it should.

Lines 11 and 12 set up the stack for the loop between lines 13 and 22

inclusive. Lines 14 and 15 increment the decimal address in L,

recalled by line 16. Lines 17 and 18 convert this number into a

character in Alpha which is used by line 20 as the address to recall.

Line 19 brings zero into the stack. If the register recalled is not

zero, lines 21 and 22 repeat label 08. Otherwise lines 23 to 25

subtract 192 from the decimal address, giving the number of registers

used for buffers. Note that the X#Y? instruction is used rather than

X#0? at line 21. This is necessary because non-numeric values can

give an ALPHA DATA error message with the X#0? instruction.

"P?" computes the number of registers between the first data register

and the permanent .END., which is the area containing your programs

(Catalog 1). Line 28 calls the label 10 subroutine, which computes

the address of the first data register (curtain). Line 29 calls label

09 to calculate the address of the .END., and line 30 takes the

difference between these two results.

"E?", which is the same as label 09, decodes status register ¢ to give

the absolute address of the .END. from the three rightmost nybbles.

Lines 34 to 38 isolate the two rightmost bytes of register ¢ in Alpha,

containing the last four nybbles. Line 40 returns the number of

characters in Alpha. If the two leftmost nybbles are zero, this will

be 1, in which case line 41 will skip the ATOX instruction and make X

zero, so that line 43 skips the multiplication at line 44. If the

leftmost byte is not zero, lines 43 and 44 multiply the 1 in Y by the

decimal equivalent of the character in X. This unusual approach gets

rid of the 1, and allows the routine to both handle nulls properly and

preserve the original X and Y.

Lines 45 and 46 save the right nybble of the left-hand byte while

discarding the other nybble. Lines 47 to 49 multiply the value of the
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right nybble by 256 (computed as 16 squared). Line 50 decodes the

other two nybbles, and line 51 sums all three. When this subroutine

finishes, the original X and Y are in Y and Z.

" Z? returns the number of the lowest data register in the block of

six registers used for statistical functions. This routine decodes

the three leftmost nybbles of status register c. Lines 54 to 56 put

the contents of register ¢ in Alpha. Lines 57 to 59 push these

characters into register N and clear M. Lines 60 to 64 convert the

first character, containing the first two nybbles of the address, into

a decimal character code. This byte may be zero if you have been

using synthetic techniques, so provisions are made here for a zero

value.

Lines 60 to 62 give a result of zero when a null character occupies

the leftmost byte of register c¢. Otherwise, line 64 decodes the

leftmost character which contains the two left nybbles of the

summation register block address. Lines 65 and 66 multiply this value

by sixteen, mathematically shifting their decimal value left one

nybble. Line 67 decodes the remaining character, containing the least

significant digit of the address in the left nybble. Line 68 recovers

16 from LASTX to enable line 69 to isolate just that nybble. Line 70

removes any fractional remainder from this division. Line 71 combines

the three nybbles, in decimal form, to yield the absolute address of

the summation block. Line 72 computes the curtain (first data

register) address. Line 73 completes this routine by taking the

difference between these absolute addresses. The result is the

register number of the lowest register in the summation block.

"C?", which is also label 10, preserves only X while decoding the

curtain address from status register c. Lines 77 to 81 use the Alpha

register to isolate the rightmost three bytes of register c. Lines 82

to 89 decode the leftmost byte which contains the two most significant

digits (nybbles) into a decimal value in X. As before, though nulls

will not normally be found here, they are properly decoded.

-251-



Lines 92 and 93 multiply the decimal equivalent of this first byte by

sixteen, so that it will be counted properly. Lines 94 to 98 return

zero or the decimal character code to X. (If the ALENG at line 94 is

1, the second byte is zero, so the ATOX is skipped. The ALENG cannot

be zero unless you have synthetically changed the .END. pointer to

000).

Lines 99 and 100 save the left nybble in this byte, discarding the

right nybble at line 102. Line 101 sums the values of the three

nybbles and line 103 clears the discarded nybbles from Alpha.

These utility routines allow you to compute the number of registers

used in the various areas within the HP-41 main memory space. Since

Extended Functions are required, there is no routine to give the

number of data registers allocated (just use SIZE?). Most of these

subroutines are available in the PPC ROM. Of course those synthetic

routines do not require Extended Functions or the ZENROM, since the

PPC ROM predates both of those developments. If you don’t have a

ZENROM, you may omit the first 26 lines of the program, leaving "P?",

"E?"," 7", and "C?".

CCD Module users already have in their Owner’s Manual an equivalent to

"E?" (lines 02 to 13 of the "GE" and "CB" programs) and an equivalent

to "B?", called "A?" (as is the similar routine in the PPC ROM).

Lines 14 to 27 of the "RK" program on page 234 of this book provides a

version of "C?". A version of " £7?" listed below, can be obtained

through a simple modification of the "C?" equivalent. As in the

ZENROM version, "P?" is simply the difference between the "C?" and

"E?" results. Similarly, "F?" is just the "E?" result, minus the "B?"

result, minus 192.

Here is the "Z?" program for the CCD Module:
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01 LBL "Z?"

02 13.5 (instead of 13.1)

03 PEEKB

04 X<>Y

05A+

06 PEEKB

07 X<>Y

08 RDN

09 16

10 *

11 X<>Y

12 LASTX

13 /

14INT

15 +

16 END
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APPENDIX A -- CRASH RECOVERY

Whenever you lock up your machine, your objective is to restore normal

operation with a minimum amount of information loss. The techniques

described here should be tried in the order in which they are

described.

There are two main types of crashes on the HP-41. The first (and

usually least serious) type of crash involves the display freezing and

the keyboard being disabled, so that keyboard input has no effect.

There are many things that can cause this type of lockup. Often you

can recover without MEMORY LOST. First try using the R/S key or the

ON switch. If this doesn’t help, use backarrow and R/S together,

taking advantage of the two-key rollover. Press and hold the

backarrow key, press the R/S key, and release the backarrow key. If

this does not work, try the techniques described below.

The next technique is to reset the calculator by interrupting its

power supply. But wait, there are precautions that must be followed

first. There is no danger of harming the HP-41 by removing peripherals

and modules from the ports while power is applied. But be sure not to

plug anything into the HP-41 before normal operation is restored, as

this can damage both the HP-41 and the accesory being plugged in

(exception: you can safely plug in an application pack while the

calculator is crashed if the batteries have already been removed).

First, disconnect the AC adapter from the rechargeable battery pack

(HP-82120A). If you have the HP-82143 Printer connected, it must be

disconnected because it can supply power to the calculator.

If you have a second HP-41, you can transfer an Extended Functions

module and Extended Memory modules into any available port. Be sure

you make the transfer quickly, as most of these modules will lose
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their data in less than a minute with no power applied. By

transferring the modules, you can save the contents if it is not

already lost or damaged. Just be sure not to turn on the second

machine, unless it does not have any of these devices. The modules

can be returned to the original machine after you regain control.

Next, try to reset the calculator by removing the batteries for a few

seconds and reinserting them immediately. This will often clear the

time and date of the Time module or HP-41CX. However, that’s a small

price to pay to keep from losing the entire contents of the HP-41.

Repeat pulling the batteries out for longer intervals if a few seconds

fails to give back keyboard control (press ON repeatedly to check for

the return of keyboard control). All but the most serious crashes

will be cleared by this point.

Sometimes this first type of crash will progress to the second kind of

lockup: failure to turn on. First make sure that you don’t have a

blank display. Press ON, ALPHA, ON, ALPHA. If the ALPHA

annunciator fails to turn on, you hav the second, more serious kind of

lockup. Something 1is preventing the HP-41 from successfully

completing the normal checks it performs whenever it is turned on.

Catalog 1 could have been disrupted, or the first registers above the

buffers may contain garbage. Always check CATalog 1 after recovering

from a lockup. See Section 4F if it is not as it should be.

Because this is the most difficult kind of lockup to recover from

without MEMORY LOST, you may find it easier to perform a Master

Clear. Hopefully, you have an up-to-date Write All set recorded on

magnetic cards or tape. But if losing the contents of the HP-41 right

now will cause a lot of hair pulling, keep on reading. With a little

luck, you may still avoid disaster.

In addition to the techniques described in XFME, there is one more

procedure you can try in order to regain centrol. Start by getting an

AM radio (no, this isn’t a joke). Tune to an empty spot on the dial
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at a fairly low volume. We are going to use the radio to pick up high

frequency noise emitted by the HP-41. By listening to this noise, we

can tell if the machine is on, and also make a pretty good guess as to

its operating state.

Place the HP-41 as near to the radio as you can. Even on top of the

radio is fine. You may already hear noise being picked up. If not,

try pressing ON. If you know where the AM antenna (a small ferrite

bar) is within the radio, move the HP-41 as close to it as you can.

Turning the calculator ninety degrees may also help. You may have to

experiment a little to find the right position.

The sound produced by the radio at this time might remind you of a

motor boat. This is typical of a lockup. The sound made when the

calculator is on but not active (waiting for a key to be depressed,

also known as "light sleep") is similar to the "white noise" hiss

heard between AM stations. This hiss is intensified while executing a

function. When the radio is tuned right, you can also hear squeals or

clicks during the execution of catalogs and programs.

What you want to do now is to somehow get this low "motorboat"

clicking sound back to the normal high frequency hiss. This is a

matter of trial and error. You should remove and replace the

batteries while listening to the radio. At the same time, you should

press and hold various keys. This should include the ON key. You can

tell when you start to make progress, as the pitch of the noise (the

frequency) will increase. In general, you should avoid the backarrow

key, as this may lead to MEMORY LOST.

Persistence will eventually pay off. You may have to remove and

replace the batteries several dozen times, though. Try holding the

square root key down, removing and replacing the batteries, pressing

and releasing the ON key, and continue holding the square root key for

several seconds. Leave the calculator as it is (without pressing

additional keys or releasing those already depressed) for several
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seconds when you hear the pitch rising. Don’t give up until you

regain control or you see MEMORY LOST.

If you want to lock up your HP-41 intentionally to experiment with

this technique, be sure to write out all of your valuable programs, or

save them in mass storage first. To cause a crash, try executing a

program containing an instruction with the following byte values: 1F

80 (decimal 31, 128). If you don’t own a ZENROM, you’ll need to use a

byte loading program or the 4, 31 Q loader.

If that doesn’t lock up your machine, the following program is

virtually guaranteed to work (Extended Functions or HP-41 CX plus the

ZENROM or CCD Module are required). It creates a synthetic zero-

length buffer. Just execute the program, write down the number in X,

then turn the calculator off.

ZENROM version

01 LBL "LOCKUP"

CCD Module version

01 LBL "LOCKUP"

02 "B" (F1, BF) 02 191

03 LBL 14 03 RDN

04 ATOX 04 LBL 14

05 ISG X 05 R?

06 "™ (Text 0 NOP) 06 ISG X

07 XTOA 07 "™ (Text 0 NOP)

08 . 08 RCL X

09 NRCLM 09 PEEKR

10 X#Y? 10 .

11 GTO 14 11 X#Y?

12 RCL M 12 GTO 14

13 "8LOCKU" 13 Rt

14 X<>M 14 "8LOCKU"

15 NSTOM 15 RCL M

16 END 16 POKER

43 bytes 17 END 41 bytes

Line 13 = hex F7, EE, 00, 4C, 4F, 43, 4B, 55.
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After you recover control (which may be very tedious), you will

probably find CATalog 1 messed up. Be sure you don’t turn the HP-41

off again or cause packing. Either will hang you up again. To clear

the garbage bytes, use POKER or NSTOM to clear the register that

"LOCKUP" stored. ZENROM users have the option of executing

RAMED (the correct address may still be in Alpha) and changing byte 5

of the register (the buffer length field) from 00 to 01. If the

address has been lost from Alpha, edit line 13 of the "LOCKUP"

program, making the second byte 1 instead of 0. Then run the program

again to undo the damage.

Here is a line-by-line analysis of the ZENROM version of "LOCKUP".

Line 02 gives the starting address in Alpha where the search for an

empty register begins. Lines 04 to 07 increment this address before

anything else is done, so the starting address is the lowest key

assignment register, 0CO in hex, or 192 decimal. Line 08 brings zero

into the stack for the test at line 10. Line 09 recalls the contents

of the register at the address in Alpha. Lines 10 and 11 will repeat

label 14 until the first empty register above the buffers is found.

This part of the program is similar to buffer or assignment register

counting programs.

Line 12 recalls the address from Alpha to prevent line 13 from

overwriting it. Line 13 is what locks up the HP-41. It is a type "E"

buffer register specifying a length of zero. Before the HP-41 can

check to see if there is such a device supporting this buffer, it

hangs up in an infinite loop because of the length of zero. Of

course, at present, there is no device using type E. It wouldn’t

matter if there were. Line 14 trades the address in X with the lockup

register in M. The register is stored above any other buffers at line

15.

The CCD Module version works much the same way. The main difference

is that the POKER function requires the register number to be in X
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rather than in M. A little bit of stack management ensures that the

R1? instruction at line 05 will bring the current register number into

X.
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APPENDIX B -- REFERENCES

This section is intended to give a partial list of sources for

additional information on the programming and use of the HP-41. A

large base of programs and accessories exist for the HP-41, both from

Hewlett-Packard and other sources. This section does not attempt to

provide a detailed, exhaustive list. However, this general guide

provides a good starting point to find more information on the

programs and accessories that are available now.

USERS’ GROUPS

1. Handheld Programming Exchange (HPX) currently supports the

HP-41, HP-71, and the new HP-28. This group contains many of the

former members of CHHU (Club of HP Handheld Users), which ceased

operation in March 1987. Plans for a member publication are not yet

firm as of Spring 1987. To obtain HPX membership information and an

application, send a 9" by 12" self-addressed stamped envelope with

first-class postage for 2 ounces to:

HPX  Attention: Membership request APT

P.O. Box 566727

Atlanta, GA 30356

U.S.A.

Phone (404) 391-0367, from 6 to 8 PM Eastern time only.

Some back issues of the CHHU Chronicle (October 1984 to March 1987)

are still available. Write for prices and availability to:

CHHU Back Issues

P.O. Box 10758

Santa Ana, CA 92711-0758

U.S.A.

Phone bulletin, updated biweekly: (714) 472-9580
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2. PPC, the Personal Programming Center, also publishes ten times per

year. The PPC Calculator Journal contains a mixture of programs and

applications for the HP-41 and HP-71, with articles contributed by

members. PPC also sells some items, such as the PPC ROM, HP-IL

System Dictionary and VASM listings. To receive a membership

application and a backissue price list, send a stamped self-addressed

9" by 12" envelope with postage for 3 ounces to:

PPC, Dept. APT

P.O. Box 90579

Long Beach, CA 90809-0579

US.A.

3. HP Users’ Library: The programs within the Users’ Library are

catalogued by application and encompass a wide range of uses. HP

maintains high standards for the documentation of submitted programs,

though the quality of individual programs may vary. A number of third

part software packages are sold through their catalog. Members

receive the catalog and several programs free.

The current fee for a one-year membership is $25.00 in the USA or

Canada, and $40.00 elsewhere. Mail your payment in the form of a

check drawn on a U.S. bank to:

HP Users’ Library

1000 N.E. Circle Blvd.

Corvallis, OR 97330

U.S.A.
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BOOKS AND ACCESSORIES

1. EAuCALC Mail Store, 27953 Cabot Road, Laguna Niguel, CA 92677,

US.A. is the most complete mail-order source of HP calculators,

accessories and books. Their prices are competitive and their catalog

is free. They carry a complete line of HP calculators, peripherals

and accessories. Non-HP items such as the MLDL, 16K RAM Storage Unit,

Port Extender, ZENROM and CCD modules are also available.

2. SYNTHETIX, P.O. Box 1080, Berkeley, CA 94701-1080, U.S.A.,

publishes this and several other books on HP calculators.

RECOMMENDED READING

Back issues of the CHHU Chronicle or PPC Calculator Journal are an

excellent source of information for most areas of interest. They

contain a wealth of information. The Users’ Groups, listed earlier,

are a valuable resource for anyone interested in learning more about

the HP-41. Joining one or both of the groups and reading the

backissues are highly recommended.

If you are a synthetic programmer (or would like to become one), there

are several good books available. Suggested books include "HP-41

Synthetic Programming Made Easy", "Extend Your HP-41", and "HP-41

Extended Functions Made Easy". If you want to learn the inner secrets

of using synthetic techniques in programs, get a copy of the PPC ROM

manual and figure out how the synthetic programs work. The "HP-41/

HP-IL System Dictionary" is an excellent reference. Even if you

don’t yet own any HP-IL peripherals, having all of the normal HP-41

functions plus those of the Extended Functions, Time module, Printer,

Card Reader, Wand, PPC ROM, HP-67/97 functions, HP-IL, Video

Interface, plus key terms and error messages in dictionary form is a

real time saver. It also contains much of the information found in
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the SQRG, though it is not as compact. It is available from EduCALC

and PPC.

If you want to get into Machine-Code (M-Code) programming, and you

have the necessary equipment (see Section 5C), you should start by

reading Ken Emery’s "HP-41 M-Code for Beginners." Advanced techniques

are discussed in addition to the basics, making this book of interest

to M-Code programmers at any skill level.
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APPENDIX C -- ANALYSIS OF EARLIER SYNTHETIC PROGRAMS

Analysis of programs from "HP-41 Synthetic Programming Made Easy"

The book "HP-41 Synthetic Programming Made Easy" was written to help a

novice learn how to use synthetic programming. Some of the programs

provided there as tools are themselves excellent examples of advanced

synthetic programming techniques. Line-by-line analysis of these

programs would not be easily understood by a beginner, so it was not

included in "HP-41 Synthetic Programming Made Easy". Now that you are

becoming an expert in synthetic programming, the line-by-line analysis

of these programs can be a powerful learning tool for you. It is good

to learn about synthetic programming techniques in isolation, but next

to writing your own synthetic programs, nothing is as helpful as

understanding how advanced programs work.

"LB" by Clifford Stern (SPME, page 52)

The LBL 01 section halts execution when "LB" finishes. The GTO "++"

instruction 1is provided to allow you to SST to the program area

containing the + instructions for cleanup.

Line 06 is actually encountered twice. The first time is when you

execute "LB" from the keyboard. The second time is after the XEQ "LB"

instruction in your LBL "++" area of program memory is encountered.

Flag 50, the message flag, is set by "LB", so that execution jumps to

LBL 02 the second time through.

Lines 09-16 set up the stack and flags for a count of the +’s. The

stack is loaded with 1’s, flag 21 is cleared so that a turned-off

printer will not halt execution, the AVIEW instruction sets flag 50,
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and the initial count is set to -10. (At least 17 +’s are needed in

the worst case before a register is available for storage of newly

created bytes.) The GTO "++" instruction starts the count.

Lines 17-27 convert the count of +’s into a count of registers. The

count (call it ccc) is displayed momentarily. Now the real action

starts.

Lines 28-50 decode the return address (pushed onto the return stack by

the XEQ "LB" instruction). The return address is fully contained

within nybbles 6, 5, and 4 of register b.

Lines 29-32 put nybbles 4, 5, and 6 of register b into flags 04-15 in

register d. The 02 byte in line 30 provides the correct exponent for

later use at line 49, so that data to the right of these three nybbles

is discarded by the INT instruction.

Lines 33-35 clear the three bits containing the byte number within the

register, so that only the three nybbles carrying the register number

will be decoded. Lines 36-47 shift the 9 bits of the register number

from binary into octal format.

Octal numbers consist of 3-bit digits. The HP-41 represents numbers

as consisting of a series of 4-bit digits. Therefore, to convert from

binary to octal, we distribute three bits at a time from a binary

number into the successive 4-bit fields of an HP-41 register. This

technique is illustrated by the diagram on page 87 of SPME.

Lines 48-50 give the decimal value of the register address. Call it

rrr. This is used in lines 51-56 to form the DSE counter value

rrr+ccc.(rrr+l)

LBL 03 starts the register formation loop. An ISG byte counter

counter is pushed into Y. (The DSE register counter is pushed into

Z)
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The LBL 04 loop is repeated for each byte that is created. The

partially completed register to be stored is held in X at the top of

the LBL 04 loop. Its initial code of 1.007, a duplicate of the

original ISG counter, is actually irrelevant, since these 7 bytes will

be shifted left one by one and lost.

Lines 61-64 form a message " n?", where n is the current byte number

within the register. Lines 65-67 put the partially completed register

in M, prepare the stack by rolling it down, then halt for input.

Line 68 checks whether data was entered and clears flag 22 for its

next use. Note that flag 22 was not cleared at the start of the

program, because it is safe to presume that at least one byte will be

entered. If data was not entered, the LBL 05 routine (described

below) fills out the register with nulls and stores it.

Lines 70-84 convert the decimal value entered into a byte. The

conversion to OCTal starts the process. Adding 10,000 and putting the

result in register d establishes the position of the 8 bits in flags

14, 15, 17, 18, 19, 21, 22, and 23. Lines 74-83 ecliminate the gaps,

putting the 8 bits in flags 16-23.

Lines 85-86 put the new byte at the left end of M. Line 87 puts the

partially completed register next to this in N. Line 88 cleverly

shifts everything left 6 bytes, and line 89 extracts the partially

completed register with its new byte added.

Lines 90-91 increment the byte counter and return to LBL 04 to add

another byte if necessary. Line 92 puts the completed register in

LASTX. Line 93 sets the curtain (Register 00 pointer) to 000. Then

the completed register is recovered from LASTX and stored in the

current register (designated by the DSE register counter). Then the

correct contents of register ¢ are restored. Line 98 puts the DSE

register counter back in X, so that the LBL 03 can be restarted if

necessary.
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When all the available registers have been filled, the LBL 03 loop

cannot be repeated. The GTO 01 instruction causes the program to halt

as explained above.

The LBL 05 section is used when you stop before you run out of

registers. Lines 102-105 fill out the current register with nulls.

Lines 106-108 store the register. Lines 109-110 restore the correct

contents of register c. Then a GTO 01 instruction halts the program.

"LBX" by Clifford Stern (SPME, page 65)

"LBX" works just like "LB", except that both the conversion of the

return address to a register number and the conversion of the entered

decimal value to a byte are performed using extended functions. The

conversion of the entered decimal value to a byte is done quite simply

in "LBX", using just the XTOA instruction (line 64). The conversion

of the return address to a register number is more complicated, but

still shorter than in "LB".

Lines 29-44 decode nybbles 4, 5, and 6 from register b. Lines 29-34

put nybbles 3, 4, 5, and 6 at the right end of M, with a lone 2A byte

at the right end of N. The ASHF instruction removes all data from the

alpha register except nybbles 3, 4, 5, and 6. The purpose of the SIGN

instruction at line 36 is to provide a 1 in the stack for use at line

46 in adding 1 to the limit of the DSE counter.

Lines 37-44 convert these bytes into decimal as follows. Lines 37-39

result in 256 if nybbles 3 and 4 are not both zero (that is, if the

resulting character is not a null, leading to an ALENG of 1 or even

0). For now, let’s assume that nybbles 3 and 4 are not both zero.

Lines 40-41 form 256 times the combined decimal value of nybbles 3 and

4. Lines 42-43 discard all but the last bit of nybble 4, the 9th bit
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of the register address. The effect is the same as if the byte number

portion of the address were cleared (as it was in "LB").

Lines 44-45 convert nybbles 5 and 6 to decimal and add it to the

decimal value (either 256 or 0) for the 9th bit of the register

address.

Now look at what happens if nybbles 3 and 4 are zero. Line 39 gives

1, line 41 gives the decimal value of nybbles of 5 and 6. Lines 42-45

leave this result unchanged. If all 4 nybbles are zero, line 39 gives

zero, and this result is maintained through line 45.

"MK" by Clifford Stern (SPME, page 69)

Lines 01-08 initialize the flags and stack. The value 192, in LASTX,

is used as an absolute register address. Lines 09-10 move the curtain

to 000 and put the former contents of register ¢ in Z. It will be

restored at line 125. The rest of the stack is clear, because of the

CLST at line 02. Line 11 puts an FQO byte in alpha for use in

restoring a key assignment register.

Lines 12-26 are a RCL b/STO b loop that searches for an empty key

assignment register. The RCL b instruction pushes the former register

c to the top of the stack. After the RDN, X and Y are both zero.

Line 14-15 recall the assignment register without raising the stack,

then compare it to the zero value in Y. An X=0? instruction cannot be

used, because that would give an ALPHA DATA error on a nonzero key

assignment register.

When an empty register is found, the program jumps to LBL 02, which is

the bottom of the assignment register storage loop. This restores the

correct value of register ¢ and jumps to LBL 16 for entry of the first

synthetic assignment.
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If the register is not empty, the former contents must be replaced.

Recalling a key assignment register changes the first byte from FO to

10, so this byte must be restored to its correct FO value. An FO byte

is already in M for this purpose.

Lines 17-18 put the recalled register in M and shift it left one byte.

Line 19 attaches the FO byte, as the rightmost character of N. Lines

20-22 shift the repaired register into N, bring it back to X, then

store it where it came from.

Line 23 brings the recalled program pointer back to X. Line 24

increments the register counter, skipping line 25. Line 26 restores

the former program pointer, jumping back to line 13 and repeating the

loop.

When the first empty key assignment register is found, the GTO 02

leads back to LBL 16. At the top of the LBL 16 loop, flag 02 is clear

if this is the first assignment for a register, or set if this is the

second assignment. In the case of the second assignment, X contains

the partially formed key assignment register (FO plus three bytes).

Lines 35-42 sound TONE 8, place the prompt for input in the display,

put cither FO or the partially formed key assignment in the alpha

register, and halt for decimal key assignment inputs. The stack is

cleared so that only one function byte is needed to assign a one-byte

function. LASTX still contains the current register number.

Line 43 brings the register number into the stack for safekeeping.

The LBL 03 subroutine takes the decimal number from T and converts it

into a byte. The procedure is virtually identical to that used in

Clifford Stern’s "LB". The 10,000 is added by a ST+ N rather than +,

to limit stack usage to one register. Lines 148-149 exchange the

result with M and shift it to the leftmost byte. Lines 150-151 append

the new byte to the former contents of M, and lines 152-153 put the

partially formed key assigment register back in M.
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After the prefix and postfix bytes are appended to the contents of M,

it is time to process the row/column keycode. Line 46 brings the

row/column keycode to X. If the keycode is negative, indicating a

shifted key, flag 05 is set. Then lines 49-50 remove the sign of the

keycode and store this value in N. Lines 51-52 put the current

register number in N and bring the unsigned keycode back to X. (The

unsigned keycode is also in Y at this point.)

Lines 53-58 break the keycode into the column number in Y, and the row

number in X. Lines 59-60 put a 4 in X and decrement the column

number. If the column number was 1, line 61 is skipped, and line 62

causes line 63 to be skipped. Line 64 is a NOP.

If the column number was 2 or more, and (line 61) if the row number is

4, the ISG Z at line 63 adds 1 to the column number. Otherwise the

ISG Z is skipped. At line 64, we have 4 in X, the row number in Y,

and the column number minus 1 in Y, corrected to account for the wide

ENTER? key in row 4. Based on these row and column values, call them

R and C, the internal keycode equivalent (for storage in Kkey

assignment registers) is R + 16*C, plus 8 if the key is shifted. The

flag number for the assigned key index is 36 - (R + 8*C).

Line 65 changes the 4 in X to 8. C is in Z, R in Y. Lines 66-68 put

8*C in X. Lines 69-71 put 8*C in Y and 8*C + R in X. Lines 72-73 put

16*C + R in X, 8*C + R in T. Y and Z contain 8. Lines 74-75 add 8 if

a shifted key is being assigned.

After line 78, T contains 16*C + R, plus 8 for a shifted key. Z

contains 8*C + R, Y contains the current register number, and X

contains 8. The register number needs to be held in the stack so that

the LBL 03 routine can be used. Line 79 attaches the keycode byte to

the alpha register. After line 80, X has 8*C + R, Y has 8, and Z has

the current register number.
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Lines 81-82 set flag 06 if 8*C + R is less than 8, indicating that a

one-byte shift will later be required to set the appropriate flag.

(Flags above 29, corresponding to 8*C + R less than 7, are not

directly settable at line 100.)

Lines 83-84 subtract 36 from 8*C + R. The result is negative, but the

sign is ignored at line 100. If flag 06 is set, 8 is added to this

number, which reduces the flag number by 8. Lines 87-88 put the

register number in LASTX, and 1 in X.

Lines 89-93 recall the appropriate assigned key index register and

store it in N. (M still contains the full or partial key assignment

register.) If flag 06 is set, the key index is shifted left one byte.

Then the key index is put in the flag register for testing and setting

of the appropriate flag. Line 98 tests the flag. If the flag is

already set, indicating that this key is taken, Y is decremented from

1 to 0. Line 100 sets the designated flag if it was originally clear.

Lines 102-106 put the key index back in N, shift it left 6 bytes if

flag 06 is set, 7 bytes if flag 06 is clear, clear flag 06, and

extract the new key index from register O. Line 103 contains 3 nulls

so that these bytes can complete a partial assignment register in N.

Lines 107-110 store the key index back in the appropriate register.

At this point a fully or half-composed key assignment register is in

N.

Lines 111-113 check the value of Y. If it is zero, indicating that

the key was taken, execution continues at LBL O0l. Lines 27-29 bring

the leftmost 4 bytes of N, which may contain the previous synthetic

key assignment, into X. The current assignment bytes are discarded.

A "KEY TAKEN" message, TONE 0, and pause precede the normal

input prompt.

If Y is not zero at line 112, meaning that the key was not already

taken, execution continues normally. The fully or half-composed key

assignment register is recalled from N to X. If flag 02 is clear, the
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register has only one assignment, and line 117 shifts the 4 bytes to

the left end of N. Then lines 118-119 store the assignment in the

current register. If flag 02 is set, indicating that there are two

assignments in the register, flag 02 is cleared and the register

counter is incremented. The SF 02 instruction is executed if and only

if flag 02 was clear at line 122. This indicates the next time

through the LBL 16 loop that the second assignment of the register is

being processed.

Lines 123-127 restore the correct value of register ¢, put what may be

a partly composed key assignment register in X, and return to the top

of the LBL 16 loop. This procedure of storing each key assignment as

it is entered, without waiting for the second assignment to fill a

register, allows you to just stop making assignments at any time

without using a special termination procedure.

"SA" and "RA" by Clifford Stern (SPME, page 89)

Line 40 uses the PPC ROM routine "OM" to move the curtain to

absolute location 16 (decimal). The previous value of register c,

which will be restored later, is put in X. Line 40 provides a

starting register number, which with the curtain at 16 will access

absolute address 192, the lowest possible key assignment or alarm

register. Lines 42-44 compute the address of the register immediately

below the .END., relative to the curtain at 16. This is the highest

possible alarm register. If this number is less than 176, the .END.

must be at absolute address 192, and there are no key assignments or

alarms. LBL 03 is used to restore the correct value of c. The program

will halt at line 86 with a DATA ERROR, due to trying to create a

file of zero registers.

If the .END. is not at absolute address 192, execution continues. The

176 and the relative address of the highest available register are

used to form an ISG counter for the alarm search. Line 50 puts this
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counter in LASTX. At this point the old value of c is in Y, Z, and T.

Lines 51-52 put a hex 10 byte at the right end of the X register.

This value will be used repeatedly at line 59 to detect key assignment

registers.

Now the alarm searching loop, LBL 01, begins. Line 54 puts a hex FO0

byte in alpha. Next the current register is recalled and placed in M,

with the FO byte coming into the X register. Line 57 appends a hex AA

byte, which can be used later to replace the first byte of alarm

register, damaged by the RCL operation.

Line 58 extracts the first byte of the recalled register from alpha,

and puts the FO byte in its place. Line 59 checks whether the

recalled register was a key assignment register, with a first byte of

FO that recalls as hex 10. If not, the first alarm register has

presumably been found, and execution skips to LBL 02. Otherwise we

have an alarm register, and alpha already contains the repaired

contents, ready to be shifted, extracted, and restored. Line 61

performs a 6-character shift. (The contents of ¢ are fixed by "OM",

so this is guaranteed to work as intended.) Lines 62-63 extract and

restore the repaired key assignment register. After line 64, X

contains the hex 10 test byte, Y contains the old ¢, and L still

contains the current relative register number. Lines 65-66 repeat the

alarm search loop until a non-key assignment register is found or

until the last register below the .END. is tested. In that case, the

LBL 03 routine is used to clean up, and the program will halt with a

DATA ERROR at line 86. The CLA at line 67 is needed to ensure a

zero file size input for the CRFLD at line 86.

Assuming a non-key assignment register is found, execution picks up at

LBL 02. The old ¢ is in Z, the hex 10 byte is in Y, the leading byte

of the recalled register is in X, and the trailing 6 bytes of the

recalled register are left-justified in M. If the recalled register

was empty, line 71 will test true, and there are no alarms. Alpha is

cleared, and the program will halt with a DATA ERROR at line 86.
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Otherwise the CLA is skipped. Assuming that the register was indeed

the bottom register of an alarm buffer, line 70 will have appended 6

characters, all but the leftmost byte of the register, to alpha.

Since the leading AA byte was already present at the right end of M,

the M register now contains the repaired alarm register. Lines 73-74

extract and store it. Register N contains the alarm register with a

leading FO byte. Lines 75-77 extract and discard this byte, bringing

the old ¢ value to X. Line 78 restores the original value of ¢, and

bring the temporary "OM" value of ¢ into X for later use. This is

necessary to avoid trouble with a DATA ERROR halt at line 86.

Lines 80-82 put the relative address of the first alarm register in Y,

and 1 less than this number, which is the address of the topmost key

assignment register (191 if no key assignments) in X. Line 83, which

is never skipped, decodes the second byte of the alarm register, which

gives the total number of registers in the alarm buffer. This is used

as the file size input for creating of the "ALM" data file. Line 85

makes sure that flag 25 is clear to guarantee a halt if there were no

alarms, or if there is insufficient extended memory. Otherwise the

program could halt at line 94 with the curtain at 16.

Once the data file is created, a SAVERX counter is constructed, using

the relative address of the first alarm register as the starting point

and the relative address of the topmost key assignment register plus

the file size as the last register to be saved. Lines 91-93 lower the

curtain to 16, and line 94 saves the alarm registers in extended

memory. Line 85 clears the block of registers that was just saved.

Lines 96-99 restore the correct value of c, beep to signal completion,

and halt.

Lines 01-06 start the "RA" routine by finding the number of free

registers (destructive of alarms, so you’d better not have any present

when you execute "RA"), then computing the .END. location minus the

number of free registers. This is the absolute address of the first

available register for alarms. After line 11, X contains the current
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SIZE plus the number of free registers, Y contains the SIZE, and Z

contains the absolute address of the first available register for

alarms. After line 13, X contains the maximum SIZE that can remain

after accommodating the stored alarms and leaving no free registers.

Lines 14-15 give the DATA ERROR message at line 15 if the number of

free registers, even accounting for a reduction of the SIZE to zero,

is insufficient. Otherwise (lines 16-17) if the maximum usable size

is less than the current size, PSIZE reduces the SIZE as required.

Lines 18-19 bring the absolute address of the first available register

for alarms to X and position the curtain there. The old ¢ value (to

be restored later) is left in T. Line 20 brings the alarm data file

into the correct position in main memory. Now all that remains is

some repair of the normalization of the top and bottom registers

caused by SAVERX.

Line 21 brings the old ¢ value to X to prevent its loss. The FLSIZE

from line 22 will be decremented (line 31), then used as a relative

address of the top register of the alarm buffer. Lines 24-26 put an

FO byte at the right end of N, and an AA Dbyte at the right end of M.

Line 27 appends the rightmost 6 bytes of the first alarm register to

alpha. M now contains the repaired first alarm register. Lines 28-29

extract and restore the value. N now contains a left-justified FO

byte, which is exactly what is needed for the topmost register of the

buffer. Lines 30-32 extract and restore it. Lines 33-34 bring the

old value fo ¢ to X and restore it. Finally, the "ALM" file is

purged, and a beep signals completion. The OFF instruction is

explained at the top of page 89.

"MKX" by Tapani Tarvainen (SPME, page 92)

Lines 01-04 use PASN to assign the "ANUM" function. "ANUM" was

chosen because it has a short name, and should be close to the top of
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Catalog 1. Line 03 makes sure that flag 25 is clear, because if the

PASN fails the program cannot complete its task. Line 05 loads alpha

with a dual-purpose character string. It will serve as a temporary c

register, to move the curtain to hex 0CO (decimal 192), the first

possible key assignment register. The FO byte will also serve as the

first byte of a key assignment register.

After line 06, X contains the temporary ¢ code, Y contains the keycode

(no longer needed), Z contains the desired postfix byte in decimal,

and T contains the prefix byte input. Lines 07-10 construct and

append to alpha the desired prefix and postfix bytes. Lines 11-13 put

the append (R) register in both O and M, so that the rightmost byte,

which contains the internal keycode for the assigned key, can be

extracted.

Line 13 also extracts the partially completed new assignment (FO,

prefix, postfix) from M. Line 14 shifts everything left 6 bytes,

leaving the last 3 bytes of M as FO A6 42. The "ANUM" key assignment

has prefix and postfix bytes A6 42. This value will be used to help

locate and replace that assignment. Line 14 also has the effect of

moving the keycode byte to the left end of both M and O.

Lines 15-17 put the partially assembled new assignment in O, put the

keycode byte at the left end of M, and store the FO A6 42 bytes next

to it at the right end of N. The left end of N has the keycode byte.

Line 18 appends an FO byte to push the keycode byte into N from M, and

into O from N. At this point the right end of O contains FO plus the

three bytes of the new assignment, and the right end of N contains F0O

plus the three bytes of the "ANUM" assignment which is to be located

and replaced. T contains the temporary ¢ value, and the rest of the

stack is not needed. Line 19 switches the new assignment data into

the stack for safekeeping.

Lines 20-21 move the curtain to decimal absolute address 192, saving
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the old ¢ in X. Line 22 recalls the right-justified bytes FO A6 42 kk

(where kk is the keycode) for use in finding the "ANUM" assignment.

Lines 23-24 establish a register counter (starting at 0) in LASTX.

The T register now contains the right-justified new assignment, and Y

contains the "ANUM" assigment.

The LBL 01 loop locates the "ANUM" assignment. Line 26 recalls the

current key assignment register. Line 27 puts the register in M,

bringing a right-justified FO byte to X. Lines 28-29 use the FO byte

to replace the leading 10 byte of the recalled register. (Given that

the PASN succeeded, we cannot run into an empty register or an alarm

buffer register before finding the "ANUM" assignment.) Lines 30-31

push the first 3 assignment bytes into N and bring them to X. Line 32

pushes the second 3 assignment bytes into N, with an FO prefix

supplied by line 31, for iater use.

Line 33 checks whether the first assignment of the register is "ANUM".

If not, line 34 switches the first assignment with the second. (Both

now have FO prefix bytes attached, so they are fully interchangeable.)

If the "ANUM" assignment is found (line 35), then flag 25 is set as an

indicator for later use. In this case (line 38), the new assignment

is brought into X.

Now the key assignment in X, either the old non-ANUM assignment or the

new replacement assignment, must be combined with the old assignment

in N and restored in the current key assignment register. Line 39

shifts N left 4 bytes, left-justifying the 3 assignment bytes in N.

Line 40 attaches the FO plus 3 assignment bytes from X, and lines 41-

43 shift the full assignment into O, extract it, and restore it. Line

41 also provides an FO byte at the right end of M, which is needed at

the start of the LBL 01 loop.

If flag 25 1is still clear, the ISG L instruction is executed, and

skips to the GTO 01 instruction. If flag 25 was set, indicating

completion of the replacement, the flag is cleared, line 46 tests
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false, and the cleanup procedure at line 48 is begun. The old c is

recovered from T and restored, the stack is cleared, and the program

halts. Actually, you might want to add a CLA for good measure, to

wipe out the remains of some considerable activity there.

"EFT" by Clifford Stern (SPME, page 94)

Lines 01-04 remove all but the rightmost 7 characters from alpha.

Lines 05-07 allow this input to be replaced if you so desire. Then

the real action starts. Lines 08-10 add 64 to the input to get the

decimal equivalent of the correct suffix byte. You may want to change

line 08 to RDN on general principles, to avoid an accidental enabling

of the stack lift if you interrupt the program with R/S right after

CLX. But CLX is faster, and you shouldn’t be interrupting "EFT"

anyway.

Lines 11-12 save the alpha input in the stack and load a string that

will be executed as program instructions. These instructions are STO

T, BO 54 (a fast 2-byte NOP), LBL 11, RDN, and the A6 Extended

Functions/Time Module prefix. Lines 13-14 attach the desired suffix

byte.

Flag 25 is set at line 15 to avoid halting with the program pointer

set to the status registers. Line 16 appends bytes that will be

executed as the instructions CLD, R1, STO b.

Lines 18-19 move the contents of M to a, while putting the desired

alpha register input in M. Lines 20-21 clear N and move its former

contents to b. The program pointer is set to 54 0C. The high-order

bit in the register number (nybble 3) is ignored, so the pointer is

effectively 50 OC, byte 5 of status register b. Setting the register

number to 40C rather than 00C is necessary in case you are using GETP

or PCLPS. With a program pointer of 00C, the calculator would assume

that you are positioned to the last program in Catalog 1. GETP would
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then have the undesired effect of causing the newly retrieved program

to be executed immediately. And PCLPS would execute the .END. as a

return instruction, which cannot be permitted because there is garbage

remaining in the return stack. This is also why the routine is halted

with a STOP instruction at step 24.

After the X<> b at line 21, execution continues at byte 4 of register

b. The instructions are STO T, BO 54 (a NOP), LBL 11 (another NOP),

RDN, the specified Extended Functions/Time Module function, CLD, R1%,

STO b. The STO T and RDN put the previous program pointer in both Z

and T, so that it will be available after Rt even if the specified

function lifted the stack.

The STO b instruction returns execution to line 22, which rolls down

the program pointer. If flag 25 is still set, it is cleared and the

program stops. Otherwise the SF 30 instruction gives a DATA ERROR

message to indicate to the user that some sort of error has occurred.

"SOLVE" by Keith Jarett (SPME, page 127)

The register usage of "SOLVE" is:

Register 00 Function name

Register 01 f(xn-l)

Register 02 X, - Xp-1

Register 03 X,

Lines 01-17 set up these initial conditions, for n=2. Actually,

XGUESSI is X5, and XGUESS2 is X, but this should have no effect

on the program’s result. LBL 14 evaluates f(x) by raising the curtain

to protect registers 00 to 03, then calling the named program (XEQ IND

Y), then lowering the curtain back to its original location. Note

that lines 46-47 4, CHS, are faster than a single -4 line.
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Lines 18-38 perform Newton’s method, also called the secant method.

The next root estimate Xn+1 is computed as

Xpe1 = Xp - X - Xpp) * EX/IE(X) - £(X]n+l

Lines 18-21 compute f(Xn). Next lines 22-25 compute f(Xn)/

[f(Xy) - f(X,.1)] Lines 27-30 compute and store Xpn+1 - X, =

(X, - Xpop) * fX/(X)) - £(X,) Lines 31-33 replace X, Wwith

Xn+l

sufficiently small (here, less than 1 E-6), X, is displayed as the

in register 03. Then if the absolute value of f(Xn) is

solution. Otherwise LBL 10 is repeated.

"CU" by Tapani Tarvainen (SPME, page 127)

"CU" was explained on pages 131-133 of "HP-41 Synthetic Prorgamming

Made Easy". Although that explanation is above a beginner’s level,

you should be able to understand it now and appreciate Tapani

Tarvainen’s outstanding effort.

Instruction Timer Program by Clifford Stern (SPME, page 149)

As mentioned on page 150, the data registers used by this program are:

Register 00: number of instruction groups

Register O1: curtain lowering code (sets curtain at 16)

Register 02: return pointer for the stored byte sequence

Register 03: number of instruction storage registers

The input to "IN" specifies how many registers are to be used for

instruction storage. The instructions are stored in the free

registers below the .END., and PSIZE is used to reduce the SIZE if

necessary to accommodate the requested numeber of registers. The

desired instruction sequence is replicated as many times as possible

within the requested number of registers.
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Execution starts at line 31, LBL "IN". The number of instruction

storage registers requested is saved in data register 03. Then the

number of free registers is computed, then the absolute address of the

first (lowest addressed) free register is found at line 38. This

number is saved temporarily in data register Ol.

Lines 40-41 put the current SIZE in Y. Lines 42-47 compute the SIZE

plus the number of free registers, minus (R+7), where R is the number

of registers of instructions to be stored. In order to run, the

program needs 4 data registers plus R+3 free registers: R registers of

repeated instructions, one register of instructions to start the

timing, one register of instructions to end the timing, and one empty

register to form a protective gap between the stored data and the key

assignments. Thus, between the SIZE and the free registers, a total

of R+7 registers is needed. If the value S+F-R-7 at line 48 is

negative, the total number of registers available is insufficient. In

that case, the SQRT function gives an eror message.

Otherwise the program continues, computing S+F-R-3. If this is less

than S (line 52), then the number of free registers F is less than the

required R+3. The SIZE must be reduced by the amount of the

deficiency. This is done at line 53.

Line 54 lowers the curtain to 16 absolute, and rolls up the old value

of ¢ into Y. This only purpose of this step is to make sure that at

line 58 the curtain lowering code will be in ASTOrable form. Line 55

brings the address of the first free register, computed at line 38,

into X. This first free register must be left empty to form a gap

between the key assignments and the program instructions to be stored.

Therefore the first register address that can be used is one greater

than this value. Lines 56-58 add 1 and set the curtain to the this

address. The value of c set by "OM" is left in T. The old value of ¢

drops from Y to X.

Line 59 restores the correct value of ¢, bringing the "CX" value of ¢
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to X. This allows register 03, the number of instruction storage

registers, to be recalled. Adding 1 gives the relative address of the

register in which will be stored the starting instructions that

precede the repeated instructions being timed. (In relative

addresses, register R+1 has the starting code, registers 1 to R have

the repeated instructions, register 0 has the ending code, and

register -1 is the empty gap register.)

Lines 63-67 store the ending instructions: STOPSW, RCLSW, HR,

NEG, RTN. The NEG instruction is simply a slightly faster way

to enter the value 0 in X. Lines 68-69 store the starting

instructions: FS? 02, STOP, RUNSW. Lines 70-72 restore the

correct value of ¢, and put the "CX" value of ¢ in register 01, where

it will be needed later to store the repeated instructions to be

timed. Normalization will not be a problem, because the use of "OM"

at line 54 ensures that the "CX" value of c is valid alpha data.

Line 72 also extracts the absolute address of the first (lowest

addressed) free register from register 0l1. Y contains R+1. Lines 73-

78 use these two numbers to construct a return address that will be

used later to jump in at byte 4 of the starting register (register R+1

with the curtain in the "CX" position). To start at byte 4, we need

an address of 101x xxxx xxxx xxxXx. The byte portion of this address

is equivalent to a register count of 2560. An extra 1 is added

because there are R+2 total registers of stored instructions.

The pointer is stored in register 02 in alpha data form. (Note that

this alpha data return pointer allows the PPC ROM’s "XE" program

to be used at line 177 in an unconventional manner. Here "XE" is used

to jump into the status registers, rather than into a ROM program.)

Line 80 signals completion of the initialization.

Now the instruction storage section begins. LBL 10 stops the

stopwatch and sets it to zero. Lines 85-89 set the display mode and

clear alpha and X. Lines 90-102, the LBL 11 loop, prompt for the
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decimal equivalents of each byte in the group to be timed. The byte

sequence is built in M, and a count of the number of bytes in the

group is kept in register a.

Line 91 appends the last byte entered to alpha. (The first time

through the LBL 11 loop, X is 0 and alpha is clear, so that alpha

remains empty.) Line 92 increments the group size counter in register

a. Line 93 is always skipped. Line 94 saves the byte group in X, so

that the prompt for input can be formed. After the input prompt is

put in the display, line 99 puts the byte group back in M. 1If a

decimal input was provided, the GTO 11 causes the byte to be appended

and the next prompt to be generated. If no input was provided, lines

103-106 clear alpha, blank the display, put the byte group back in M,

and correct the group size count in register a.

Lines 107-113 calculate and store the number of instruction groups,

and store it in register 00. If this number is not an integer, line

114 will cause a halt with an error message. Line 115 jumps to LBL n,

where n is the number of bytes in the instruction group. The

different values of n are explained separately below.

First, the n=7 case. Lines 117-120 move the 7-byte group from M to O,

clear the X and a registers, and jump to LBL 12. In the LBL 12

section, lines 144-146 make a DSE counter by adding a fractional part,

normally .0000n, but zero in this case. Line 147 copies this DSE

counter into LASTX. Lines 148-151 lower the curtain to the previously

set up "CX" position, recall the 7-byte group from O to X, and jump to

LBL 09.

In the LBL 09 section, the 7-byte group 1is stored in relative

addressed registers R down to 1. After register 1 is stored, the DSE

at line 163 skips to LBL 13. The LBL 13 cleanup section clears the

blank display (so that X will be visible when the program halts),

restores the curtain, and clears the stack. A tone is sounded if Flag

02 is set or Flag 01 is clear. The program halts if Flag 01 is clear.
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Now let’s look at the n=6 case. At line 125, M contains the 6-byte

group and register a contains 6. Line 129 puts M in X as alpha data.

Lines 130-133 compute the integer part of 17/n, 2 in this case. The

short RCL b/STO b loop appends 2 copies of the 6-byte sequence. There

are now 18 characters in alpha. Lines 138-140 shift alpha left 3

characters, left-justifying the string in register O. Lines 141-143

compute .0000n, which is .00006 in this case.

The LBL 12 section works as in the n=7 case. The DSE counter is

computed as R.0000n, so that every nth register from R down to 1, will

be stored in the LBL 09 loop. After this pass, the DSE a instruction

does not skip as it did in the n=7 case. The GTO 00 causes the

program to set up for the next pass. The R.0000n counter in LASTX is

changed to (R-1).0000n and brought into the stack.

Line 156 appends one byte to alpha, so that register O now contains

the seven bytes 2345612, rather than the previous 1234561. The RCL O

at line 158 puts the sequence 2345612 in X where it can be stored in

every 6th register down from (R-1). After line 158, the byte sequence

for the current register is in X, the old value of ¢ is in Y, and the

new DSE counter is in LASTX and Z.

After this pass through the LBL 09 loop, the LBL 00 section bumps

alpha one more byte to the left (by appending the character "1"

without the decimal point). then it changes the DSE counter to (R-

2).0000n, so that the sequence 3456123 can be stored in every 6th

register down from (R-2).

After a total of 6 passes, the DSE a at line 153 skips to the LBL 13

section for cleanup.

The n=3, 2, and 1 cases use the same instructions and work the same as

the n=6 case. The RCL b/STO b loop ends with a total of 18 characters

in alpha. In each of these cases, every nth register is the same, and
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the n-byte group must be shifted one byte to the left between adjacent

registers. This is the same as for the n=6 case because 3, 2, and 1

are all divisors of 6.

The n=4 and n=5 cases have to be handled a bit differently. In both

of these cases, after the STO b/RCL b loop there are 20 characters in

alpha. Therefore only 1 character needs to be appended to left-

justify the string in O. Thus, flag 29 is set at line 124, so that

line 140 can be skipped later, leaving only the single-character shift

at line 138.

Now an explanation of the choice of flag 29. For the n=5 case, the

alpha register must be shifted 2 characters to the left after each

pass. Thus the first set of registers gets the sequence 1234512, the

second set gets 3451234, the third gets 5123451, the fourth gets

2345123, the fifth 4512345. With flag 29 set, line 155 appends two

characters, the 1 and the radix (either decimal point or comma).

For the n=4 case, the alpha register must be shifted 3 characters to

the left after each pass. Line 122 sets FIX 1 rather than FIX 0, so

that line 155 will append 1.0, a 3-character string.

The LBL "T" portion of the program does the timing. PPC ROM routine

"XE" executes as a subroutine the free register address computed at

line 78 and stored in register 02, setting up a return to line 178.

The instructions executed in the free register area are: FS? 02, STOP,

RUNSW, followed by the repeated byte group being timed, then

STOPSW, RCLSW, HR, 0 (actually NEG, which enters a zero in X),

and RTN. Then line 178 resets the stopwatch for the next pass. Lines

179-181 converts the hours to milliseconds. Lines 182-185 compute the

number of milliseconds per instruction group, set FIX 9 to see the

result, sound a tone, and halt.

If you press R/S at this point, you enter the cleanup routine at line

0l1. The flags are reset to default values, the display is blanked,
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and "LF" locates the free registers relative to a curtain value of 16.

Note that the presence of the gap register between the stored

instructions and the key assignments ensures that "LF" will work

properly. The "OM" routine sets the curtain to 16. Line 05 puts the

ISG counter for the free register block (from "LF") in X. Line 06

increments this count because the gap register is already clear. Then

the "BC" routine clears the rest of the registers that were used for

instruction storage. The LBL 13 section restores the curtain and

cleans up.

The LBL "1", "2", and "3" sections are non-prompting entry points.

They all finish by jumping to LBL 16. The conditions needed at LBL 16

are: the number of bytes per group (1, 2, or 3) in register a, the

byte sequence in M, FIX 0 mode, flag 29 clear, and the display

blanked.

At LBL 01 the number of bytes per group is in X and the suffix byte or

bytes are in alpha. Line 21 puts the group size in register a. Lines

22-26 put the suffix bytes in the stack, blank the display, and set

the flags correctly. Lines 27-30 put the first byte in M (with the

rest of alpha clear), append the suffix bytes, and jump to LBL 16,

continuing as if the data had been entered manually.

"MC" by Clifford Stern (SPME, pages 156-157)

Lines 01-05 set flag 26 for later use, then exchange the contents of

the flag register with a code that sets flags 26, 28, 29, 39, 40, 48

(ALPHA mode), and 55. Line 06 recalls the program pointer. Line 07

tests whether this is the first time through (flag 26 set) or whether

this point was reached by the ASTO b at line 16. Flag 26 is cleared,

so that the second time through line 07, execution will jump to LBL

0l.

The first time through, lines 09-16 are executed. Lines 09-10 put
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blank alpha data in Z. Y still has the old flag register, and X has

the program pointer from line 06. Line 11 puts the program pointer in

M and 0 in X. Line 12 puts 0 in LASTX. Line 13 puts the program

pointer back in X in the form of a character string. Lines 14-16 add

a return address of 00 1D to the program pointer and put it back in

register b, jumping back to line 07. Two more return addresses will

be added later, with the effect of pushing the 1D portion into the

most significant byte of register b. Then the resulting values (from

RCL b) can be stored as alpha data. Since flag 26 is now clear, the

GTO 01 instruction at line 08 is executed.

The LBL 01 section starts by prompting for input characters. If flag

23 is set, indicating that characters have been entered, the line 22

is skipped. If flag 23 is clear, indicating that no characters have

been entered, execution continues at LBL 06. That case will be

analyzed below. First, let’s see what happens to the entered text.

The VIEW Z instruction blanks the display. Flag 26 is cleared so that

the TONEs for the message input will not sound during the compilation

process.

Lines 25 and 26 clear X and Y. Then lines 27-28 clear the P register

and check whether it was empty. If so, we skip to LBL 02 with flag 05

clear. Otherwise flag 05 is set and the contents of alpha are

"bumped" 7 bytes to the right. The previous contents of register M,

which will be needed later, are saved in Y. The LBL 02 loop appends a

null to push a single character into P. Line 38 tests whether a

character was present. (Note that with the first six bytes of P being

0, this is one of the few cases where an X=0? instruction can be used

to test a non-normalized number without the risk of an ALPHA DATA

error message.) If the character was a null, the LBL 02 loop

continues until a non-null character is found. The character is put

back in P (line 40) and the stack is rolled down, leaving the previous

contents of M in X if flag 05 was set, 0 otherwise. LASTX still

contains 0, Y contains 0, and Z contains the old flag register.
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The 0 at line 42 has the effect of altering some of the bits in

register P. The significant feature here is that the first nybble is

set to 1. This allows the single character at the right end of

register P to be interpreted as valid alpha data for indirect

execution (lines 55-58). At this point, the old register d is in T,

where it stays for most of the rest of the program.

Line 43 clears flag 29 and tests whether this is at least the second

time through the LBL 05 section. The LBL 05 section is first entered

by means of an XEQ instruction in order to load a return to line 46

onto the return stack for use during playback. Subsequent passes must

use GTOs to preserve the correct return stack arrangement.

The LBL 05 section removes the first character from the P register,

putting O in P. Because of line 42, this register has a first byte of

1x, making this a valid single-character alpha string. Line 58

executes the tone sequence corresponding to the character and loads

another address onto the return stack. This serves the dual purpose

of providing a return to line 59 in both the setup and playback

phases, since each RCL b instruction captures the return address for

use during playback. Since flag 26 is clear during the setup phase,

the TONEs act as NOP instructions, executing quickly and silently.

Line 59 increments the register count in LASTX, initially 0, and skips

line 60. Line 61 checks whether the specified tone sequence was

found. If not, the program assumes that this is because it has run

out of 1input and encountered a null character. If you were

unfortunate enough to enter a character outside the program’s rather

complete Morse Code set, the rest of the current set of input

characters will be lost.

Assuming that the specified tone sequence was found, execution

continues at LBL 03. The RCL b results from just ahead of the tone

sequence are stored in the current register. In the playback mode,
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this value will be stored in register b to jump directly to the tone

sequence. The RDN at line 50 prevents the old flag register contents

from being pushed off the top of the stack. Note that the stored RCL

b value includes a pending return to line 59.

Line 52 places a zero in X and stes the third nybble of register P to

1, so that when step 53 pushes the next character into P, P is again

treated as valid alpha data. The LBL 05 section executes the tone

sequence to pick up the correct RCL b value.

After the last character in alpha is processed, line 58 will clear

flag 25. Since flag 26 is still clear (we are in the compilation

mode, rather than the playback mode), the DSE L at line 65 will

decrement the register counter to restore its correct value. (The

counter was incremented before we learned that the current character

was a null) Line 66, which is never skipped, tests whether we still

have another 7 characters in X (from line 33) waiting to be processed.

If so, we store them in M and go back to LBL 04 to process them. If

not, or after we finish processing them, we go back to LBL 01 to get

more input.

This time, everything works the same up to line 43. Here, since flag

29 is now clear, we will GTO 05 rather than doing the XEQ 05. This

works much the same, except that the return to line 46 is already on

the return stack.

When the input is finished, you press R/S without any alpha input, and

execution jumps to LBL 06. The counter in LASTX has the number hhh of

the highest register used. Lines 70-76 form the ISG counter 1.hhh and

store it in register 00, which was cleverly bypassed by incrementing

the counter at line 59 before using it to store the recalled program

pointer at line 49. Lines 77-79 put the ISG counter in LASTX, then

restore the old flag register. This has the important effect of

setting flag 26 to enable playback.
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Playback begins immediately, starting with register 01. Storing this

value in b takes care of those messy pending returns, and executes the

first tone sequence. The RTN that follows the tone sequence causes a

jump to line 59. LASTX is incremented, and the RTN at line 60 is not

skipped. That RTN causes a jump to line 46, which recalls the next

register and puts it in b, starting the next tone sequence. This

process continues until the ISG L at line 59 reaches a skip condition.

At this point flag 25 is clear and flag 26 set, so we jump to LBL 07.

At LBL 07, the 1.hhh ISG counter is put back in LASTX, so that you can

just press R/S to hear the Morse Code message again.

Analysis of programs from "HP-41 Extended Functions Made Easy"

The book "HP-41 Extended Functions Made Easy" included a chapter of

synthetic utility programs. These are very useful programs, but no

line-by-line analysis could be provided within the scope of "HP-41

Extended Functions Made Easy". These programs represent the fully

mature state of the art in synthetic programming, with the extended

functions. The line-by-line analysis presented here will help you

understand some of the most advanced synthetic programming techniques.

"XF" by Clifford Stern (XFME, page 173)

"XF" has a similar purpose to the "EFT" program presented in "HP-41

Synthetic Programming Made Easy". The method used to achieve this

purpose is quite different, however. "EFT" constructed the byte

sequence to be executed and stored it in register a for execution.

"XF" stores the sequence at the end of the "XF" program itself. This

allows more complex functions to be used, and it allows error

conditions to be indicated by the normal error messages. It also

permits error recovery without requiring a second execution of the

program or function. Simply fix the the incorrect input and press
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R/S, since the program has stopped at the desired function.

Lines 01-03 save the X input in LASTX, freeing a stack register for

temporary use. Lines 04-05 save the register N portion of the alpha

input in register a. Lines 06-08 add 64 to the function number. This

provides the correct decimal input for the suffix byte that

accompanies the A6 prefix. Note that ST+ Y is used instead of + so

that LASTX will be preserved.

Line 09 appends 13 bytes to alpha. The 14th byte is the computed

suffix, appended at line 11. At this point, O contains the register M

portion of the alpha input, and N contains a temporary code for

register ¢ to set the curtain to 00I. M contains 7 Dbytes

corresponding to instructions that will be stored as lines 27 to 30 of

"XF". Actually only the hex 7B suffix byte for line 27 is stored.

The prefix byte is in the register above the modified register.

The register to be modified occupies bytes 64-70, the 10th register,

of the "XF" program. Since "XF" is the top program in Catalog 1, this

register is 10 below data register 00. With the curtain at 001, and

with full memory (quad module, CV, or CX), the relative address of the

register to be modified is 512 - SIZE - 10 - 1 = 501 - SIZE.

Lines 12-16 compute the correct relative address without disturbing

LASTX. After line 16 the relative address is in X, the Y and Z inputs

are in Z, the X input is in LASTX, the N input is in register a, and

the M input is in O. The temporary ¢ code is in N, and the register

to be stored is in M. The T register is available for use.

Lines 17-18 lower the curtain, putting the relative address in N and

the old c register value in X. Line 19 saves the old c register value

in register a, bringing the N input into the stack. Line 20-21

extract the 7 instruction bytes from M and store them in the 10th

register of the "XF" program. Lines 22-25 extract the M input from O

and place it properly in a clear alpha register. The N input is
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rolled down into X. Line 26 puts the N input into alpha and clears X.

Line 27 brings the old c register value back to X and clears register

a. Lines 28-29 restore the correct value of ¢ and bring the X input

back into X. At this point the Y and Z inputs are in Y and Z, and T

is clear.

Line 30 is the specified instruction from the Extended Functions, Time

Module, or Wand. Line 31 clears the display in case you executed

EMDIR with a revision 1B or 1C Extended Functions module. These

modules leave the last directory entry in the display, rather than

clearing it as the HP-41CX does. Clearing the display allows you to

see the number of available extended memory registers in X.

"EFTW" by Clifford Stern (XFME, page 177)

Lines 01-04 remove all but the rightmost 7 characters from alpha.

Lines 05-07 allow this input to be replaced if you so desire. Then

the real action starts. Lines 08-10 add 64 to the input to get the

decimal equivalent of the correct suffix byte. You may want to change

line 08 to RDN on general principles, to avoid an accidental enabling

of the stack lift if you interrupt the program with R/S right after

CLX. But CLX is faster, and you shouldn’t be interrupting "EFTW"

anyway since it is not used as a subroutine.

Lines 11-12 append 14 characters to the alpha register, leaving the

original alpha input in O. The first 7 appended characters form a

temporary c¢ register code for setting the curtain to 001. The last 7

appended characters correspond to instructions that will be stored as

lines 23 to 27 of "EFTW". Only the hex 75 suffix byte for line 23 is

stored.

The register to be modified occupies the 9th register of the "EFTW"

program. Like "XF", "EFTW" must be the top program in Catalog 1.

With the curtain at 001, and with full memory (quad module, CV, or
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CX), the relative address of the register to be modified is 512 - SIZE

-9 -1 = 502 - SIZE. Lines 13-16 compute the correct relative

address. Again, you may want to change line 13 from CLX to RDN.

After line 16 the relative address is in X, and the X and Y inputs are

in Y and Z. The M input is in O, the temporary ¢ code is in N, and

the register to be stored is in M. The T register is available for

use.

Lines 17-18 lower the curtain to 001, putting the relative address in

N and the old c¢ register value in X. Lines 19-20 extract the 7

instruction bytes from M and store them in the 9th register of the

"EFTW" program. Lines 21-23 extract the M input from O and place it

properly in a clear alpha register. X is cleared. This zero value

will end up in Z.

Lines 24-25 brings the old c¢ register value back to X and restore it.

Lines 28-29 restore the correct value of ¢ and bring the X input back

into X. Line 24 brings the X and Y inputs into X and Y. After line

26, Z is clear.

Line 27 is the specified instruction from the Extended Functions, Time

Module, or Wand. Line 28 clears the display to let you see the number

of available extended memory registers in case you executed EMDIR with

a revision 1B or 1C Extended Functions module.

"VER" by Clifford Stern (XFME, page 185)

Lines 01-03 make sure that an Extended Functions/Memory module (or

HP-41CX) is present. If this were not confirmed, line 10 could cause

a halt with the curtain lowered.

Line 04 puts a temporary register ¢ code in N and the number

189.003003 (hex 01 89 00 30 03 00 02) in M. Lines 05-07 put the
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temporary register ¢ code into both the stack and register ¢, where it

sets the curtain to 001. The old register ¢ is brought into the

stack. Line 08 recalls the value 189.003003 to X.

Lines 09-10 put the hex code 10 00 10 00 2E FO BF in absolute address

64, the pointer register at the bottom of the Extended

Functions/Memory module. As explained on page 181 of XFME, the

format of this register is 000 WW 000 NNN TTT. Therefore, lines 09-10

set the working file WW to the first file in the extended memory

directory, the address NNN of the top register of the next extended

memory block to 2EF, and the address TTT of the top register of this

block to OBF. Of these three effects, the important one is selecting

the first extended memory file as the working file.

With the curtain set at 001, line 11 moves absolute registers 190,

191, and 192 to LASTX, M, and N (register 3, 4, and 5 relative to

001). As explained on page 182 of XFME, this normalizes register 192.

The "VER" program will replace the leading byte of the recalled

register with FO to repair the damage.

Line 12 shifts alpha to the left 1 byte. This moves the normalized 10

byte from the recalled register 192 into O. Lines 13-14 put 191 in

register a. This value will later be used as an indirect address for

the repair of register 192.

Lines 15-16 bring the temporary c register code (from line 06) to X

and store it in O. The trailing FO byte of this code replaces the

normalized 10 byte of the register 192 contents. Line 17 shifts alpha

to the left 6 bytes, pushing the repaired register 192 contents into

O, and the register 191 contents into N. The value in M becomes hex

2A 00 00 00 16 BF FF. This value will be used temporarily as the

second header register of the first file in extended memory.

The structure of this register, 2AAA 0000 RRR SSS, was explained on

page 181 of XFME. The header address nybbles AAA are optional,
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normally supplied by the HP-41 but not needed by it. The SSS nybbles

here specify a file size of 4095!

This particular file size is required to circumvent an internal memory

check that the HP-41 will make when you try to use the file. Before a

file is accepted as valid by the extended memory operating system, the

system checks whether any part of the file is contained in a module

whose contents have been lost due to its temporary or permanent

removal. If this is found to be the case when the user attempts to

access such a file, the partition code is written into its name header

register and a FL NOT FOUND message is displayed.

The main test to establish the validity of a file is to check the

location one register past the end of that file. This would contain

either the first header register of the next file or the partition

code. Its location is computed by attempting to jump forward from the

second register of the named file a distance of one plus its FLSIZE.

If the resulting register is found to be in a properly connected

module, as judged by the various pointer registers of the XM modules,

the named file is accepted as valid. When one is added to a file size

of FFF, the sum is 000 in the three-digit register field used by

extended memory. This provides a jump of zero from the second header

of the named file. Since its register has been previously verified,

the file passes the test.

The RRR nybbles set the record pointer to 16B, which is 363 in

decimal. This is 124 to get to the last register in the Extended

Functions/Memory module, 238 to get to the last register in the first

Extended Memory module, 1 to get to the first register in the second

Extended Memory module.

Lines 18-19 repair register 192, Line 20-21 store the code from M in

register 190 (relative address 189). This changes the working file

into a 4095-register data file as explained above. Lines 22-23 store

the same code in register 191 as the name of the first extended memory
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file. Actually any code other than all F’s would do the job; the idea

is just to make sure that the first extended memory file has a name.

This is necessary in case extended memory was empty when "VER" was

executed.

Line 24 brings the old register ¢ value to X, so that it is not lost

from the top of the stack. Line 25 brings the former register 191

contents into the stack, so that alpha can be used. Line 26 brings

the record pointer (363) to X for later use at line 35. Line 27 puts

the contents of location 1007 in the stack, without normalization.

Lines 28-29 construct the restart prompt and turn on ALPHA mode so

that the prompt will be seen after the magnetic card operations are

completed.

Lines 32-35 reset the record pointer to 363 and restore the value in

location 1007. Lines 36-37 restore the value in location 191. Lines

38-39 check whether the former contents of register 190 matches the

the former contents of register 191. If so, normally because both

registers were zero, the program assumes that extended memory was

empty, and line 40 clears the pointer register to correspond with the

empty extended memory.

Lines 42-43 restore the contents of register 190. Lines 44-45 restore

the old value of c.

"PFF" by Clifford Stern (XFME, page 188)

Lines 01-04 add trailing spaces if needed, then rotate the first 7

characters of alpha into M. After the current value of ¢ and the new

file name from M are saved in the stack, a temporary code is stored in

c to put the curtain at hex OBF = 191.

Line 09 stores the file name in the correct format in location 191.

Lines 10-11 restore the correct value of c. Lines 12-13 clear out the
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stack, and finish with EMDIR to set a working tile in case you have

revision 1B extended functions. Line 14 clears the display to let you

see the number of available extended memory registers in case you

executed EMDIR with a revision 1B or 1C Extended Functions module.

"EXM" (XFME, page 191)

Lines 01-05 put the byte 190 = hex BE in alpha. Line 06 sets the

program pointer to byte 0 of register 0BE. Byte 6, the leftmost byte,

of register OBD is the first byte executed. This is where the program

starts, provided that the first file in extended memory is a program

file.

"SAVEK"/"GETK"/"RK"/"SK" by Tapani Tarvainen (XFME, page 197)

Line 01 terminates execution if you execute "RK" when this is the last

program in Catalog 1, as explained on page 196 of XFME.

The LBL 04 section of the program translates the .END. pointer in the

rightmost 3 nybbles of register ¢ into a decimal number. The routine

starts by recalling register c¢. Lines 48-51 isolate the last 2 bytes

of ¢ in M. Lines 53-61 are identical to lines 37-45 of "LBX" from

SPME. See the analysis of that program if you have any trouble

following the logic.

The LBL 10 section of the program brings the old value of ¢ into X and

lowers the curtain to hex 0CO = decimal 192. The .END. pointer is set

to hex 200 to avoid clearing the global label assignments at line 78,

and to make sure that even if the program is interrupted the Catalog 1

chain will not be altered before it is restored later.

Line 03 of "SAVEK" recalls the file name from M to X. Then the LBL 04

subroutine decodes the .END. pointer. If the .END. is below location
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193, there are no key assignments and the RTN at line 07 halts

execution. Otherwise flag 10 is set to indicate that counting of the

key assignment registers is in progress. The second time through LBLs

01, 02, and 03, the registers are saved (line 30).

The LBL 01 section forms an ISG counter for the key assignment area,

relative to a curtain of 192. Lines 13-14 put a hex 10 byte in X for

the comparison at line 24, which looks for a hex 10 byte in the

recalled key assignment register. Lines 15-16 set the curtain to

decimal 192 and save the old ¢ register value in LASTX.

The LBL 02 section starts by rolling down the stack, putting the hex

10 byte in X and the ISG counter in Y. Line 19 recalls the current

register. Lines 20-23 replace the first byte with hex FO0, bringing

the recalled first byte to X. If that byte was not hex 10, meaning

that the register does not contain key assignments, the GTO 03

instruction is executed. (Note that if the register was an alarm

register, its first byte will change from AA to 1A. This will be

fixed later by the HP-41 itself.) If the byte was hex 10, indicating

a key assignment register, line 26 appends 6 characters, shifting the

repaired key assignment register into N.

Lines 27-28 restore the key assignment register. Line 30 is skipped.

Lines 31-32 continue searching for the first empty or alarm register

in the key assignment area, skipping to LBL 03 if the register

immediately below .END. has just been checked.

The LBL 03 section begins by restoring the old contents of register c.

Then lines 36-38 put the file name in an empty alpha register. Lines

39-40 recover the relative address of the first free register. This

is also the number of key assignment registers. Line 41 clears flag

10 and skips line 42,

Line 43 makes a data file with the proper name and size. Note that an

error stop at this point is not hazardous. Line 44 is necessary so
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that the right ISG pointer will be formed at line 12 for the next pass

through the key assignment registers.

The next pass saves each repaired key assignment register in the new

data file. The LBL 03 section finishes as before, except that the RTN

at line 42 halts the program.

Lines 68-74 of "GETK" increase the SIZE by 1, then decrease it to the

original size. This procedure ensures that there is at least one free

register. Line 75 puts the SIZE+1 to X, and the SIZE in Y. Line 76

recalls the size of the specified file. Line 77 sets the curtain to

decimal 192, bringing the old ¢ value to X. Line 78 clears the key

assignments, except for the global label assignments. Lines 79-80

then restore the original value of ¢, and put the temporary ¢ value in

T for later use. Lines 81-84 set the SIZE to SIZE+1+FLSIZE,

then restore the original SIZE. This ensures that there are at least

FLSIZE+1 free registers present after clearing of the key assignments.

After line 84, Y contains the old ¢ value.

Line 85 recovers the file size from LASTX. Line 86 gives the absolute

address of the .END. . Lines 87-90 subtract 192 and the file size to

get the current number of free registers minus the key assignment file

size. This is one greater than the number of registers that could be

occupied by Time Module alarms. This number of registers will be

moved upward in memory to make room for the key assignments. The

extra register is specified because the REGMOVE at line 99 will

normalize the top register moved, and we can be sure that this extra

register will be empty.

Lines 91-99 move all alarms upward by F registers, where F is the file

size. The old value of ¢ is left in Y. Line 100 moves the key

assignment data from the key assignment data file to the key

assignment registers, without normalization. Lines 101-102 restore

the old value of c.
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Lines 103-106 use GETP on a special empty program file to reconstruct

the assigned key indexes in registers R (append) and e. The program

then halts. This reconstruction is also performed as the sole

function of "RK", which reactivates suspended key assignments. The

use of the synthetic zero-byte program file for this purpose was

invented by Tapani Tarvainen. The advantage of the empty program file

is that GETP does not disturb the last program in memory.

Lines 107-111, the "SK" routine, suspend all key assignments by

clearing the assigned key indexes in registers R (append) and e.

"IN" by Clifford Stern (XFME, page 198)

Line 02 uses EMDIR to find the number of usable extended memory

registers. This number will be used later to find and alter the

second header register of a new data file, making it into a synthetic

zero-byte program file. If you have an HP-41CX, you can replace both

EMDIR’s in this program by EMROOM.

Lines 03-05 create a the 1-register data file that will be converted

into the zero-byte program file. The file name is a blank character

(note the comma in the line 04 text). Actually the file name is 7

blank characters after trailing blanks are added.

After line 04, register N contains hex 20 2C 01 69 00 13 FO, which

will be used as a temporary register ¢ code to put the curtain at 001.

M contains 01 89 00 30 03 00 02, which is the number 189.003003 to be

used as a REGMOVE input. Line 06 adds 1 to the number of usable

extended memory registers.

Lines 09-10 lower the curtain to 001, leaving the old value of

register ¢ in X. Lines 09-10 move registers registers 190, 191, and

192 to LASTX, M, and N (register 3, 4, and 5 relative to 001). As

explained on page 182 of XFME, this normalizes register 192. The "IN"

-301-



program will replace the leading byte of the recalled register with FO

to repair the damage.

Line 11 shifts alpha to the left 1 byte. This moves the normalized 10

byte of the recalled register 192 from N into O. Lines 12-14 recall

the temporary code from ¢ (changing the first nybble from 2 to 1) and

put it in O. The trailing FO byte of this code replaces the

normalized 10 byte of the register 192 contents. Line 15 shifts alpha

to the left 6 bytes, pushing the repaired register 192 contents into

O, and the register 191 contents into N.

Lines 16-17 recall the hex code 2A 00 01 69 OB DF FF from M and store

it in ¢. This puts the curtain at hex O0BD = decimal 189. Lines 18-19

store the hex code 20 2C 01 69 00 13 FO from line 14 in location 190.

This code fools the calculator into thinking that the first file in

extended memory is a data file of length 3F0 = decimal 1008. This is

an illegal (too large) file size.

Lines 20-21 restore the repaired contents of register 192. Note that

if this register was empty, the lone FO byte will be eliminated by the

HP-41 the next time it is turned on. The EMDIR instruction at line 23

causcs the HP-41 to rccognize that the size of the first file is

illegal. The calculator puts the partition code (all F’s) in register

191, effectively clearing the extended memory directory. The number

returned to X is the number of available registers in all of extended

mcmory.

It is at this point that a bug of "IN" surfaces. If you have the full

complement of cxtended memory, and if the third block of extended

memory (the second Extended Memory module) has not been used since the

last MEMORY LOST, line 23 of "IN" will cause the HP-41 to clear the

middle block of extended memory (by disrupting the pointer register at

the bottom of the first Extended Memory module). This is not a

problem if there are no files which extend into the middle block of

extended memory.
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There are two ways to prevent this bug from destroying part of your

extended memory. The first is to use the alternate, bug-free version

of "IN" on page 305. The second is to check whether the above

conditions apply, then create a dummy data or text file of the maximum

possible file size, EMROOM. (EMROOM is the number of available

extended memory registers shown after execution of EMDIR or

EMROOM.) Purge the dummy file immediately, then execute "IN".

A third option is also available for the adventurous ZENROM, PPC

ROM, or CCD Module owners. You can repair the damage after the fact.

Just put the right value, hex 00 00 00 40 3E F2 EF, back in register

513 (hex 201).

Let r denote the original number of available extended memory

registers (from line 02), and let t denote the total number of usable

extended memory registers (from line 23). At line 24, the T register

contains r+1 (from line 06), and X contains t. Line 25 computes r+1-t

for use after line 32.

Lines 26-27 put the hex code 2A 00 01 69 0B DF FF in 190, transforming

the first file in extended memory into a synthetic 4095-register data

file. As explained in the analysis of the "VER" program, this file

size is accepted as valid by the HP-41 and allows access to all of

extended memory.

Lines 27-28 restore the original value to register 191. This is the

name of the first file in extended memory. (If extended memory was

originally empty, this will be the 1-register "blank" named file.)

Lines 30-31 put the first file name in an otherwise clear alpha

register. This will be used at line 35. Lines 32-34 test the value

of r+l-t. If it is 1 (the only possible positive value, signifying

empty extended memory at the start of "IN"), line 34 converts the

integer part to 2. This avoids destruction of the partition register
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at line 40, as will be explained shortly.

At line 35, X contains r+l-t, normally a negative value. Since

SEEPKTA ignores both the sign and the fractional part of the number in

X, the number in X is effectively t-r-1. Line 35 selects the register

number, within the 4095-register data file, of the second header

register of the file created at line 05.

There is an exception if extended memory was empty at the start of

"IN". In that case, the second record in the 4095-register data file,

register 188, is selected. This avoids selecting register 189, which

contains the partition code, so that line 40 does not have to be

skipped.

Line 36 puts a code in M for the trailing bytes of the synthetic zero-

byte program file. The byte count is zero and the file size is 1.

(Normal program files have at least 3 bytes, for the END instruction.)

Lines 37-38 test whether extended memory was empty at the start of

"IN". In this case, register 190 must not be restored to its original

(zero) value. Instead, register 190 must be left with the header for

the synthetic zero-byte program file. Line 38 accomplishes this by

replacing the former contents of register 190, which are currently

held in LASTX, with the required header information, so that the

restoration of this register at line 42 does not need to be skipped.

Lines 39-40 construct the second header register, hex code is 10 00 00

00 000 001, for the synthetic program file, then write it into

extended memory at the correct position. If extended memory was empty

at the start of "IN", location 188 (register 2) is written, which is

harmless because it lies beyond the new file and its partition code.

Lines 41-42 restore the contents of location 190, which has now

changed 3 times. Lines 43-44 restore the former contents of ¢. The

X<> ¢ instruction is used instead of STO c¢ so that valid alpha data is
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left in X at the conclusion of the program. This avoids the remote

possibility of a crash due to execution of an arithmetic function on a

non-normalized number with leading zero nybbles.

Now here is the bug-free version of "IN". The original "IN" used an

illegal file size to cause the HP-41 to store the partition code in

register 191 and return the number of usable extended memory registers

at line 23. This version takes a more straightforward and less

hazardous approach. It stores the partition code in register 191

rather than setting up an illegal file size. Then EMDIR returns the

number of usable extended memory registers without any unpleasant side

effects.

01 LBL "IN"

02 EMDIR or EMROOM

03 E

04 hex FE 20 2C 01 69 00 13 FO 01 89 00 30 03 00 02

05 CRFLD

06 +

07 RCL N

08 X<> ¢

09 RCL 04

10 REGMOVE

11 hex F2 7F 2A (append one asterisk)

12 RDN

13 RCL 12

14 STO 06

15 hex F7 7F 00 01 69 OB DF FF

16 X<> M

17 STO 12

18 STO 01

19 X<> O

20 STO 03

21 X<> N

22 ENTER?®
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23 hex F7 FF FF FF FF FF FF FF

24 X<> M

25 STO 02

26 RDN

27 EMDIR or EMROOM

28 CLD

29 ST-T

30 X<>Y

31 STO 02

32 R%}

33 X>0?

34 E1X

35 SEEKPTA

36 hex F1 01

37 X>0?

38 ASTO L

39 ASTO X

40 SAVEX

41 X<> L

42 STO 01

43 Rt

44 X<> ¢

45 END

100 bytes

Lines 01-15 of this version of "IN" are the same as the original.

Lines 16-18 recall the hex code 2A 00 01 69 0B DF FF from M and store

it in both register ¢ and location 190. This puts the curtain at hex

OBD = decimal 189 and transforms the first file in extended memory

into a synthetic 4095-register data file. The hex code 10 2C 01 69 00

13 FO is left in M.

Lines 19-20 restore the repaired contents of register 192. Again, if

this register was empty, the lone FO byte will be eliminated by the
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HP-41 the next time it is turned on. Lines 21-22 move the name of the

first file (from register 191) onto X and Y.

Lines 23-25 store the partition code, FF FF FF FF FF FF FF, in

register 191. This is to fool the calculator into thinking that

extended memory is empty. Lines 26-29 of this version of "IN" work

the same as lines 22-25 of the original, storing r+1-t in T.

Lines 26-27 put the hex code 2A 00 01 69 0B DF FF in 190, transforming

the first file in extended memory into a synthetic 4095-register data

file. As explained in the analysis of the "VER" program, this file

size is accepted as valid by the HP-41 and allows access to all of

extended memory.

Lines 30-31 restore the original value to register 191. This is the

name of the first file in extended memory. (If extended memory was

empty, this will be the I1-register "blank" named file.) Lines 32-45

are identical to the first version of "IN".

"WFL"/"RFL"/"RPF" by Clifford Stern (XFME, page 205)

Lines 01-12 set up the flags to indicate which program is being

executed. The flag settings for each program are:

Flag 01 Flag 05 Flag 06

"WFL" either clear clear

"RFL" either clear set

"RPF" clear set don’t care

For "WFL" and "RFL", Flag 01 is set for compact ASCII file storage

mode, clear for normal (complete file: ASCII, program, or data)

storage mode.

The LBL 02 section first checks that there is a file name in alpha.
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Lines 13-15 generate an error message if alpha is empty, and lines 16-

19 generate an error message if alpha contains a comma. Then line 20

gets the file size.

Lines 21-23 left-justify the file name, with trailing blanks as

needed, in M. After line 25, the file name is in Y (in non-normalized

form) and the file size is in X.

Lines 26-27 branch to LBL 04 if the normal mode (Flag 01 clear) was

selected, indicating that the entire file is to be transferred. This

also includes "RPF", which transfers the entire program file to main

program memory.

If the compact mode of "WFL" or "RFL" was seclected (ASCII files only),

flag 25 is sct. It will be used to detect the end of file. For

"RFL", lines 29-30 branch to LBL 04 with flag 25 set, bypassing the

LBL 03 section. For "WFL", X and the file pointer are zeroed and the

LBL 03 section is executed.

The LBL 03 scction counts the characters in the text file, keeping a

running total in X. The loop is repeated (lines 38-39) until the end

of file is reached. Lincs 40-41 account for the start-of-record bytes

(one for each record), except for record zero. The record 0 start

bytec and the end of file byte (FF) are still not counted.

So why do lines 42-43 add 8 rather than 2? Simple. The extra 6

ensures that after division by 7, the integer part of the result is

the same as if we had rounded up the fractional part of the actual

byte count. Thus the line 45 result is the minimum number of

registers necded to hold the entire contents of the text file, at 7

bytes pcr register.

In thc LBL 04 section, line 47 sets the SIZE to the file size, except

in the case of "WFL" with flag 01 set for compact storage. In that

casc, the SIZE is set to the computed number of registers needed to
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store the text file contents. At this point, flag 25 is clear unless

the compact mode of "RFL" was selected.

Line 48 loads hex 00 00 01 69 00 13 FO in N, and 01 89 00 30 03 00 02

(the number 189.003003) in M. Lines 49-51 lower the curtain to 001

and save the former register ¢ contents in status register a. This is

the reason why you can’t call these programs from a subroutine. Lines

52-53 move absolute registers 190, 191, and 192 to LASTX, M, and N,

respectively. Register 192 is normalized.

Lines 54-56 shift the first byte of register 192 into O and replace it

with FO. Line 57 shifts alpha left 6 bytes, leaving the repaired

register 192 in O, register 191 in N, and the hex code 2A 00 01 69 0B

DF FF in M.

Lines 58-60 clear the P register, recall the former register 191

contents to the stack. Line 61 brings the 7-byte file name (from line

24) into X. Lines 62-64 compare the specified file name with the

contents of register 191, then set flag 07 if the named file is the

first file in extended memory, and clear flag 07 otherwise.

Lines 65-67 first store the hex code 2A 00 01 69 OB DF FF in c,

setting the curtain to 0BD = decimal 189, then store the same code in

register 190, temporarily transforming the first file in extended

memory into a 4095-register data file so that all of extended memory

can be accessed.

Lines 68-69 restore the repaired contents of register 192. At this

point the stack contents are entirely disposable. The old value of

register ¢ is kept in register a, the SIZE is set to match the number

of registers required to store the file, M contains the name of the

desired file, and flag 07 specifies whether that file is the first

file in extended memory. Register N contains a copy of register 191,

the name of the first file in extended memory, and LASTX contains a

copy of register 190.
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The LBL 05 section moves through the chain of file headers in extended

memory, to locate the desired file name. Lines 70-72 put -2 in Y and

the former contents of register 190 (from line 53) in X. Lines 73-74

skip to LBL 06 if the desired file is the first file in extended

memory.

Otherwise line 75 puts 0 in X. The -2 in Z is the initial value for

the record number of the name register within the 4095-register data

file. To this value will be added the sizes of the intervening files

until the desired file is found. Now the LBL 05 loop is started.

Line 77 stores the current file name in register O. (Note that this

is the first 7 characters of alpha, since line 59 cleared P.) The

first time through the LBL 05 loop, O is cleared and the name of the

first file of extended memory is used from N,

Lines 78-79 take the correct value of register 190 from LASTX and re-

store it in register 190. This allows the FLSIZE instruction at line

81 to find the current file named in alpha. The R71 instruction at

line 80 brings the current record number count (initially -2) to X.

Line 82 adds the current file size without disturbing LASTX. Lines

83-84 add 2 to account for the header registers of the file. Z now

designates the register number, within the 4095-register data file, of

the first header register (the name register) of the next file in

extended memory.

Lines 85-86 clear the current file name from O, exposing the name of

the first file in extended memory in register N as the leading

characters in alpha. Lines 87-88 store the hex code 2A 00 01 69 0B DF

FF in register 190, again temporarily transforming the first file in

extended memory into a 4095-register data file so that all of extended

memory can be accessed.

Line 89 brings the current register number back to X. Lines 90-94
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select this register, recall the first header register without

normalization, and compare it with the name of the desired file. If

the names do not match, the desired file has not been found and the

LBL 05 loop is repeated. Note that the register number is in Z again,

and the current file name is in X at this point.

The LBL 05 loop moves down the extended memory directory, file by

file, accumulating a record count until the name register for the

desired file is found. When a match is found at line 93, X and Y

contain the name of the desired file, lines 95-96 put the desired file

name in N and the name of the first file in extended memory in M.

Lines 97-98 bring a copy of the second header register of the desired

file into X and put the current register number (corresponding to that

second header register) in Y. The 4095-register data file is still

the working file.

Note that if flag 07 was set, M and N are the same (the first file is

the desired file), the second header register of that file is in X,

and the register number -2 is in Y. The 4095-register data file is

still the working file. Thus, the register contents are consistent

whether or not the desired file is the first file in extended memory.

Line 100 stores the second header register of the desired file in O.

Lines 101-103 shift this value one byte to the left and replace the

leading byte (containing the file type code) with hex 20. This

change, when stored, will effectively transform the designated file

into a data file. Lines 104-106 rotate the altered second header

register back into O. Lines 107-108 re-select the register within the

4095-register data file corresponding to the second header register of

the desired file.

Line 109 brings the second header register of the desired file into X.

This value is kept in the stack so that it can be restored later. The

restoration is done for "RFL" and "WFL" only. "RPF" leaves the file

-311-



type as Data.

Lines 110-111 clear register O and bring the modified (data type)

second header register of the desired file into X. If flag 07 is

clear, indicating that the desired file was not the first file in

extended memory, the SAVEX at line 113 replaces its second header

register with the modified header register. If flag 07 is set,

indicating that the desired file was the first file in extended

memory, the SIGN at line 115 replaces the copy of register 190 in

LASTX with the modified second header register.

Lines 116-118 restore the contents of register 190 from LASTX,

replacing the 4095-register data file header with the correct final

value. Lines 119-120 restore the correct value of c. Line 121 sets

flag 25 for two reasons. First, if "WFL" or "RFL" is used only for

the purpose of transferring the file to or from main memory, a card

reader is not needed. Setting flag 25 prevents an error stop at line

132 or 126 when no card reader is present. Second, flag 25 prevents

an error stop in case the value for the SEEKPT at line 201 is not

allowable.

Lines 122-123 skip to LBL 07 if flag 05 is set, indicating that "RPF"

is being used. Otherwise TONE 8 sounds. For "RFL", flag 06 is set

and lines 125-128 read the data from magnetic cards into the data

registers, then save the data registers into the designated file. For

"WFL", flag 06 is clear and lines 129-132 transfer the data from the

extended memory file into the data registers, then write the data

registers onto magnetic cards (if a card reader is plugged in).

Line 133 clears flag 25 in case it remains set after steps 126 or 132.

(As good programming practice, we would have to clear flag 25 at the

end of the program anyway, so we might as well do it at the earliest

possible opportunity.)

Line 135 again sets the curtain to decimal 189, and also stores the
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hex code 2A 00 01 69 OB DF FF in location 190, changing the first file

in extended memory to a 4095-register data file. Lines 136-137 clear

register N, exposing the name of the first file in extended memory in

M as the leading characters in alpha. Lines 138-139 select the

register number corresponding to the second header register of the

desired file. This pointer value was last used at line 108. Just as

at line 109, line 140 brings the original second header register of

the desired file into X.

If flag 07 is clear, indicating that the desired file is not the first

file in extended memory, the SAVEX at line 142 restores its original

second header register, and the LASTX at line 144 puts a copy of the

contents of register 190 in X. (Note that lines 117-118 copied LASTX

into register 190.)

Line 145 restores the original value to register 190, regardless of

whether flag 07 is set or clear. Lines 146-149 restore the original

value of register ¢, put the current SIZE in X, and halt.

The LBL 07 section is used by "RPF". At this point the program file

has been converted to a data file, so that its registers can be easily

retrieved. Register ¢ contains its original value, flag 25 is set,

and the desired file name is in N as the leading 7 characters of

alpha.

Lines 151-152 get the program byte count and store it in data register

00. Lines 153-157 isolate the last 2 bytes of register ¢ in M. Lines

158-166 convert the .END. pointer (the rightmost 9 bits in M) to a

decimal value. These lines are the same as lines 37-45 of "LBX" from

"HP-41 Synthetic Programming Made Easy".

Line 167 copies the decoded .END. location eece into Y. Line 168 loads

hex 10 69 into M. To this will be attached a usable curtain pointer

and .END. pointer, so that the final value can be put in register ¢

for temporary use.
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The curtain will be set to the .END. location. Because of step 2 of

the "RPF" instructions, the .END. is alone in bytes 2, 1, and 0 (the

rightmost three bytes) of its register.

Lines 169-172 compute 16*ecee for use as a temporary curtain pointer,

and add 2 for use as the most significant digit of the temporary .END.

pointer. Lines 173-174 convert the computed decimal value into two

bytes, which are appended to the hex 01 69 code in alpha. The LBL 10

subroutine does most of this work, in a simple and straightforward

manner.

Now that the needed computations are finished, lines 175-176 move the

program’s byte count from data register 00 to LASTX for later use.

Lines 177-179 append a null to alpha and zero the record pointer in

what is now a data file. Line 180 changes the SIZE to 000. Since the

SIZE was set at line 47 to the file size, which is the number of

registers needed to hold the program, the new .END. location is

exactly this number of registers above the old .END. location. These

registers below the new .END., which is also alone in its register,

will be used to store the retrieved program. The retrieved program

will start in the register containing the new .END., and a replacement

.END. will be stored at the old location.

Lines 181-182 store the hex code 00 00 01 69 ee e2 00 in register c,

setting the curtain to the old .END. location. Line 183 gets the file

size in registers. This number is the relative register address of

the new .END. location, and the register number in which the first

retrieved program bytes will be stored.

Line 184 puts the hex code CO 00 2D in M. Thus M contains the bytes

for a permanent .END. (right-justified in its register). The status

of this .END. is non-private, compiled, but not packed. Line 185

copies the initial relative register number into O.
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Lines 186-188 store the intermediate value of c¢ (after resizing to 000

at line 180) in the stack and in register N, for later changing of its

.END. pointer to match the original value. The original .END.

location eece is brought into X. Lines 189-190 store the new .END. at

the old .END. location, and leave the old .END. location ece in M.

The LBL 08 section uses the relative register number in O as a DSE

counter, retrieving each program register and storing it in program

memory, until the end of file and the location of the newly stored

.END. are simultaneously reached.

At the conclusion of this loop the entire program file has been stored

in program memory. One detail remains to be taken care of. The

program file includes a trailing checksum byte plus additional

possibly non-zero bytes following the stored END instruction, that are

not part of the program. These bytes need to be zeroed.

The last program register has already been stored, but a copy is still

in X. The byte count of the program can be used to identify the

location of the checksum byte so that it can be cleared, along with

any remaining bytes in the register. Then the corrected register can

be stored in relative address 01 as the last register of the program.

Lines 196-199 put a copy of the program register from the file in M,

the old .END. location in T, the intermediate (SIZE 000) c register

contents in Z, the program’s byte count in Y, and 7 in X. Lines 200-

202 set the data file pointer to the byte count modulo 7, so that

"RPF" can be used again on the file, which is now a data file. ("RPF"

only needs the modulo 7 remainder of the byte count to locate the

trailing checksum byte.) Flag 25 is still set at line 201, in case

you had a very short program for which the byte count modulo 7 equals

or exceeds the file size. In that case the SEEKPT fails, which would

cause the program to halt prematurely if flag 25 were not set. After

this step, flag 25 is no longer needed and it is cleared.
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Lines 203-205 subtract 7, specifying a rightward rotation by 7 - (byte

count modulo 7) bytes. Since the byte count does not include the

checksum byte, this rotation shifts the checksum byte and any trailing

bytes of the register off the right end of M. Lines 206-210 append

nulls to replace the bytes that were shifted off the end of M.

Lines 211-213 bring the intermediate ¢ register contents into X, swap

it into M and put the corrected final program register in the proper

location (relative address 01). Now all that remains is correction of

the .END. pointer value in the intermediate ¢ register contents.

Lines 214-216 remove the 2 rightmost bytes of the intermediate c¢

register value. This includes the least significant nybble of the

curtain pointer, which must be 0 because the SIZE is 000. Line 217

brings the old .END. location into X. Lines 218-219 convert this

value into two bytes and appends those bytes to alpha.

The final c¢ register value is then extracted from M and stored. The

program concludes with a BEEP.

"ASG"/"PASG"/"MKX" by Tapani Tarvainen and Gerard Westen

(XFME, page 212)

Lines 01-43 of "ASG" prompt for the function name, then the key to

which the function is to be assigned. This procedure is designed to

appear much like the built-in ASG function. After line 43, the

function (prefix and postfix, separated by a space) are in alpha, and

the row/column keycode is in X.

Lines 44-154 of "PASG" decodes the alpha representation of the

function to be assigned into decimal prefix and postfix byte values.

This is done by using PASN to assign the prefix function, then taking

the hex code for the function out of the R (append) register. The

suffix is decoded directly by the program.
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Once the prefix and postfix bytes are in decimal form, the "MKX"

portion of the program makes the assignment, using essentially the

same approach as the "MKX" program in "HP-41 Synthetic Programming

Made Easy". PASN makes a dummy assignment, then the program locates

this assignment in the key assignment registers and replaces it.

Since PASN cannot assign the shifted shift key, neither can these

programs.

Lines 01-05 save the current flag settings in LASTX, and use a

synthetic text instruction to set flags 3, 40, 45, and 48, clearing

all others. This sets FIX 0, ALPHA mode, and the system data entry

flag (45). Setting flag 45 allows input to be directly appended to

the alpha register when the program halts at line 07. (Unfortunately,

no underscore prompt is provided.)

When the program is restarted after line 07, the alpha register

contains "ASN prefix postfix". Line 08 1is necessary because if a

printer is present, flags 55 and 21 will be set when the program

halts. Line 09 appends another space, to separate the prefix and the

postfix from the keycode that will follow (just as for the normal ASN

display).

The LBL 01 loop displays the assignment information and waits for the

user to press a key to which the function will be assigned. If X=0 at

line 14, no key was pressed and the loop is repeated. If X=Y at line

16, the shift key was pressed. In that case a hyphen is appended to

alpha, flag 03 is cleared to indicate a shifted key, and the LBL 0l

loop is repeated to identify the shifted key to which the function

will be assigned.

If the shift key is pressed a second time, the two hyphens must be

removed from alpha. Lines 21-25 accomplish this. Then flag 03 is set

to indicate an unshifted key.
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When the key for the assignment is pressed, the GTO 02 at line 17 is

executed. Lines 29-30 append the keycode to alpha and display the

assignment information. Lines 31-32 make the keycode in X negative if

a shifted key was specified.

If an unshifted key is being assigned, lines 33-34 append a byte to

alpha. This makes the keycode portion of the assignment information

in alpha 4 characters long, regardless of whether a shifted or

unshifted key was assigned.

Lines 35-36 restore the original flags. Lines 37-38 remove the two

leading characters "AS" from alpha, leaving 83 in X. Lines 39-41

rotate alpha to the right 4 bytes, putting a space and the keycode

portion of the assignment information at the front of alpha. Line 42

removes these 4 bytes, the "N" of ASN, and the space that follows the

N. Alpha now contains just the prefix, a space, and the postfix.

Line 43 brings the keycode back into X.

Lines 44-47 locate the first space (the one that follows the prefix).

If a space is found, the program skips to LBL 03. If no space is

present, then only a prefix was specified, and the normal PASN

function suffices to make the assignment.

The LBL 03 section appends a null as a separator, then line 56 rotates

the prefix to the right end of alpha. Line 57 appends two characters

to alpha. First, the character @ is used as another separator. As a

character that is not normally permitted in labels or funtion names,

it marks the end of the prefix name. The character 0 is added to

provide a numeric value for the ANUM at line 84, in case both the

postfix and prefix are non-numeric.

Line 58 removes the space at the front of alpha. Lines 59-60 check

whether another space is present. A second space is taken to mean

that an INDirect function has been specified. In that case, a flag

must be set or cleared as an indicator and the "IND " characters must

-318-



be removed.

If a second space is present (POSA >0) the AON step at line 61 is

skipped. Thus, flag 48 (ALPHA mode) clear indicates an INDirect

function, and flag 48 set indicates a normal direct function.

Line 62 has no effect if a second space is not present, because X was

incremented from -1 to 0 at line 60. If a second space is present,

line 62 rotates the characters "IND " to the right end of alpha. For

example, if we are assigning STO IND N, alpha will now contain

"N"STO@OIND ".

Lines 63-64 attempt to locate a comma in alpha. If a comma is

present, the program assumes that the function was of the form "XROM

xx,yy". Lines 67-80 then extract xx and yy, converting these values

to the decimal byte equivalents for the XROM xx,yy function.

Line 67 rotates xx to the right end of alpha. Line 68 brings the

keycode back into X. Lines 69-70 put the value of yy in X and remove

it from alpha. Line 71 puts the value of xx in X, pushing yy into Y.

Lines 72-76 compute 64*(640+xx)+yy, which is the decimal equivalent

for the 2-byte function XROM xx,yy. Lines 77-81 break this value into

decimal equivalents for the prefix and postfix bytes, then skip to LBL

06. As a side effect, the keycode is duplicated into T.

The LBL 04 section handles two-byte functions other than XROM

functions. Line 83 brings the keycode back into X. If a numeric

postfix is present, line 84 puts the postfix value in X. Note that a

numeric prefix with a non-numeric postfix is not allowed. So after

line 84 we have either the postfix value or 0 (from line 57) in X.

Line 85 decodes the first character from alpha. In case the postfix

was non-numeric, this decoded postfix character will be converted into

the correct decimal byte value.
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Lines 86-87 subtract an offset of 84, so that T corresponds to 0. If

the result in X is less than or equal to zero, the postfix is numeric,

L, M, N, O, P, Q R, or T. In this case, we skip to LBL 04. If X is

negative (all postfixes but T), lines 100-103 add 9. If the result,

at line 104, is greater than zero, the postfix is L, M, N, O, P, Q, or

R. The + at line 107 adds the ANUM result from Y, which we now know

to be zero.

If the result at line 104 is not greater than zero, the postfix 1is

either numeric (negative number in X) or T (zero in X). Lines 109-110

add another offset of 17, so that for a numeric potfix X will still be

negative. For a postfix of T, X will be 17. If the postfix is T,

lines 111-114 add 95, obtaining the correct decimal equivalent of the

T potfix byte, 112. Lines 115-116 put the decimal equivalent for the

postfix in Y. If the postfix is numeric, lines 115-116 leave the

correct decimal postfix equivalent (the ANUM result from line 84) in

Y.

Now let’s go back and consider the case in which the number in X at

line 88 is greater than zero. In this case, the postfix is X, Y, Z,

a, b, ¢, d, or e, or append. The number in X ranges from 4 (X) to 43

(append). Lines 90-92 subtract this number from 7, giving a result

ranging from -36 (append) to 3 (X). The current values for postfixes

Z, Y, and X are 1, 2, and 3, repectively, adjacent to the 0 value for

the postfix T at this point. Lines 93-94 skip to LBL 05 for postfixes

X, Y, and Z, handling these the same as T and getting the decimal

postfix equivalents 113, 114, and 115.

For postfixes a, b, ¢, d, or e, or append, lines 95-97 give results 5,

6, 7, 8, 9, or 10 for append, a, b, ¢, d, e. The append code is

correctly adjacent to the postfix a code. Lines 98-107 add 2, then 3,

to get 10 for append and 15 for e. Lines 108-114 add 17 and 95, to

get 122 for append and 127 for e. These are the correct decimal

postfix equivalents. Lines 115-116 leave the postfix equivalent in Y.
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The section from line 84 to line 116 is probably the trickiest in this

program, and it’s totally nonsynthetic! To write such compact,

multipurpose sets of instructions requires practice and persistence.

Often you need to solve the problem several times from different

approaches, then see which solution is the shortest.

After line 117, X is zero, the decimal postfix equivalent is in Y, and

the keycode is in Z. Lines 117-120 locate the null that separates the

remains of the postfix in alpha from the prefix, then rotate the

prefix to the front of alpha. (Actually the null is rotated to the

front of alpha, but then in that position it disappears.)

Lines 121-122 clear all flags, copying the old flag register into the

stack for later restoration. Line 123 brings the keycode to X, then

lines 124-125 attempt to assign the prefix to the designated Kkey.

This will succeed if the prefix was a valid function name, and not a

numeric input.

If the PASN succeeded, byte 2 of Q (the fourth byte from the left)

will be the assigned function prefix. Line 127 stores this value in

P, so that the function byte becomes the first character in alpha.

Lines 128-130 put the keycode in Y and restore the old flag register.

The most recent flag register value is brought into X. If this value

is zero, the PASN at line 125 must have failed, clearing flag 25. If

not, the PASN worked and line 132 gets the correct decimal prefix code

for the function from alpha.

The ASHF at line 133 removes the P register portion of alpha, leaving

the prefix followed by "@" as the leading characters in alpha. If the

PASN failed, line 135 brings the numeric prefix vaule into X.

After line 135, X contains the decimal prefix code, Z contains the

keycode, and T contains the decimal postfix code. Line 136 rotates

the postfix code into X. If flag 48 is set, indicating a normal
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direct function, the program jumps to LBL 06.

If flag 48 is clear, indicating an indirect function, more work is

needed. For most indirect functions, 128 needs to be added to the

postfix code. However, if the user specified GTO IND or XEQ IND,

things are more complicated. For GTO IND, the prefix GTO was

assigned, with a decimal code of 208. In that case the prefix needs

to be changed to 174 and the direct postfix can be left unchanged.

For XEQ IND, the prefix XEQ was assigned, with a decimal code of 224.

(Note that 224 is the only possible PASN-derived prefix code greater

than 208.) In this case the prefix is 174 and 128 must be added to

the postfix.

Line 139 swaps the postfix code with flags 0-7. Line 140 brings the

keycode into X, and lines 141-142 put 208 in Y and the prefix code in

X. If these do not match, that is for all indirect functions except

GTO, the high bit (flag 07) of the postfix must be set. For GTO IND,

the postfix is left unchanged. All this happens without disturbing

the stack. This is quite a creative use of the capabilities of X<>F.

Lines 145-146 test whether X (the prefix) is greater than or equal to

Y (208). If so, we have the XEQ IND case. Then lines 147-149 replace

the prefix in X with 174. Lines 150-151 bring flags 0-7 back to X and

restore them. The postfix value is brought into X.

The LBL 06 section clears flag 48 and brings the keycode into X,

pushing the prefix and postfix values into Z and Y, respectively.

The "MKX" section works much like the "MKX" program in "HP-41

Synthetic Programming Made Easy". First the function "ANUM" is

assigned to the key. This assignment will replace the assignment that

may have been made at line 125. Lines 158-160 get the keycode from

the rightmost byte of R (append) and store it in P. Line 161 appends

A6 42, which are the two bytes of the ANUM function. After this step,

the keycode byte kk is the leftmost character of alpha.
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Line 162 stores hex 10 kk 00 00 00 00 00 in N, and line 163 appends

hex kk 00 00 00 00 00 to alpha. Lines 164-167 append the prefix byte

and the postfix byte to alpha, pushing hex A6 42 kk into N. These

three bytes are the same as those in the temporary ANUM assignment,

and they will be used to locate that assignment. When the assignment

is located, the A6 and 42 bytes will be replaced by the just-formed

prefix and postfix bytes.

After line 167, register P is empty and register O contains hex 10 kk

00 00 00 00 00. Line 169 recalls hex 00 00 00 00 A6 42 kk from N.

Line 169 removes the hex 10 from O. Lines 170-171 rotate the keycode

to the right end of alpha, appending it to the prefix and postfix

bytes in M. The number 16 is put in LASTX. Line 172 puts the

assembled 3 bytes for the new assignment in X. The three bytes for

the ANUM assignment are in Z.

Lines 173-175 bring the old value of c¢ into the stack, and store hex

00 40 01 69 0B 02 00 in M and c. This puts the curtain at hex 0B0 =

decimal 176. Line 176 brings the three bytes for the ANUM assignment

into X.

The LBL 07 loop searches for the ANUM assignment. Line 178 recalls

the current register (starting with decimal 192, the first key

assignment register). Lines 179-182 put hex 2A 2A at the right end of

O, and the current register in both N and M. Line 183 puts hex 10 2A

2A F0 aa bb cc in M, where aa bb cc are the three assignment bytes in

the left half of the key assignment register. Lines 184-185 bring hex

00 00 00 00 dd ee ff, the second set of assignment bytes from the

current register, into X. Hex 2A 2A is placed in N, right-justified.

Line 186 leaves just aa bb cc in alpha.

If dd ee ff does not match the ANUM assignment, it is switched with aa

bb cc from M. If there is a match at line 189, line 190 brings the

new assignment to X, replacing the ANUM assignment bytes.
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Line 191 left-justifies the non-matching assignment in M, and line 192

stores the assignment from X next to it. Line 193 appends hex 84 84

84 FO, left-justifying the 6 assignment bytes in N. Lines 194-196 put

the FO byte in O next to the 6 assignment bytes. Then lines 196-198

shift the reconstructed assignment register left 6 bytes into O, and

store it in the current register. If the ANUM assignment was not

found in this register, lines 199-203 increment the register number

(relative to 182) in LASTX, then go back to LBL 07. Otherwise lines

204-209 restore the original value of c¢, clear the stack, alpha, and

the display, and halt.

If you have followed through the line-by-line analysis of all these

synthetic programs, you are well equipped to write your own programs

using these powerful techniques. Good luck!
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APPENDIX D -- BARCODE FOR PROGRAMS

This barcode was created on an HP Laserjettm printer using Ken Emery’s

Barcode Generating ROM, available mid-June 1987 from SYNTHETIX. If

you have access to either a Laserjet!™ or a Thinkjet'™ printer, you

can now instantly and economically produce beautiful barcode for your

programs in any size you want. With barcode, you can swap programs by

mail with anyone that has an optical wand. You can even use barcode

as the ultimate backup memory system! Check the store where you

bought this book, or write to SYNTHETIX, P.O. Box 1080, Berkeley,

CA 94701-1080, U.S.A. for price information on the new Barcode

Generating ROM.

PROGRAM:ReNFL 16 REGISTERS PROGRAM USES 9 ROWS

o
T
R
S
o
T
T
T
T
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PROGRAM:CB 10 REGISTERS PROGRAM USES 6 ROWS

I
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PROGRAMFE 4 REGISTERS PROGRAM USES 2 ROWS
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PROGRAM:2B 5 REGISTERS PROGRAM USES 3 ROWS

A
T——————,
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PROGRAM:CX 8 REGISTERS PROGRAM USES 4 ROWS

A
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PROGRAM: RENFL 16 REGISTERS PROGRAM USES 9 ROWS
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PROGRAM:TON 4 REGISTERS PROGRAM USES 2 ROWS
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L
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PROGRAM: PK 27 REGISTERS PROGRAM USES 15 ROWS
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PROGRAM:MT 3 REGISTERS PROGRAM USES 2 ROWS
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PROGRAM:ROM™MS 23 REGISTERS PROGRAM USES 13 ROWS
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PROGRAM:MKZ 15 REGISTERS PROGRAM USES 8 ROWS
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PROGRAM:RAMBC 16 REGISTERS PROGRAM USES 9 ROWS
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PROGRAM:SA 19 REGISTERS PROGRAM USES 11 ROWS
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PROGRAM:SK 7 REGISTERS PROGRAM USES 4 ROWS

A
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PROGRAM:VER 5 REGISTERS PROGRAM USES 3 ROWS

o
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i
PROGRAM:PFF 5 REGISTERS PROGRAM USES 3 ROWS
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PROGRAM:SAVEK 22 REGISTERS PROGRAM USES 12 ROWS
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PROGRAM:F? 27 REGISTERS PROGRAM USES 15 ROWS
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PROGRAM:PRFL 5 REGISTERS PROGRAM USES 3 ROWS
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PROGRAM:IN 8 REGISTERS PROGRAM USES 4 ROWS
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PROGRAMEX 5 REGISTERS PROGRAM USES 3 ROWS
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PROGRAM:TRIX 65 REGISTERS PROGRAM USES 35 ROWS
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PROGRAM:TRI&

ROW 18 LINES (121-128

i
ROW 19 LINES (128-136

o
ROW 20 LINES (136-142

T
ROW 21 LINES (142-149

o
ROW 22 LINES (150-156

T
ROW 23 LINES (157-166

A
ROW 24 LINES (167-172

T
ROW 25 LINES (173-183

o
ROW 26 LINES (184-192

s
ROW 27 LINES (193-204

o
ROW fiS LINES (205-210

T
ROW 29 LINES (210-217

T,
ROW 30 LINES (218-=227

0e
ROW 31 LINES (228-236

W
ROW 32 LINES (237-245

T
ROW 33 LINES (246-251

s
ROW 34 LINES (252-259

0
ROW 35 LINES (259-262

i
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REGISTER

R (append)

M

Alpha

(M,N,O,P)

L

Stack

(X,Y,Z,T)

STATUS REGISTER INDEX

REFERENCES

16-18,28,119,121,122,188,231,232

17,18,25-28,119,124,139-142,190-196

16,18,24,25,119,122,123,143-149,248,251,252

17,18,22,30,89,90,108,109,119,123,163,164

17-21,79,119,123,124,222,239-242

16-21,28,119-121,188,222,240,243

17,18,21,119,121,135-139

17-21,119,120,246,247

17-21,89,119,120,190-195

17-21,89,119,120,183,225,246-248

17-21,82-84,89,119,120,163,183

17-21,119,163-168,168-171

17-20,106-110,115-117,119,numerous programs

17-20,119,all programs and program descriptions
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Abbreviations, 12

Absolute address 185

Addresses, indirect 50

Addresses, RAM 12

Addresses, ROM 12

Alpha character 73

Alpha data 15,19

ALPHA DATA error 78,117

Alpha GTO 72,95,121,135

Alpha LBL 91,95,135,154

ALPHA register 15,120,163-

167,169-171

Alpha text lines 73-79,135,

136,168

Alpha XEQ 31,35,36,72,136

AROT 40,41,167

ASCII 29

Assignment registers 16,17,

190-199,240-246

Assignment suspension 231-234

Assignments using RAMED 100

Avoiding decompiling 98-102,

132,149,160,161

Backarrow 11,156

Base conversions 4-7

Bases 4,5

BCD 14,84

BG (Byte Grab) 125-129

Binary 4,151,183

Binary Coded Decimal 14,84

INDEX

Bit 4,151,154,183

Bit map 20,28

Boxed star 10

Branching 95-103

BST 172

Buffers 16-29

Byte 4

Byte counting 103-118,149-162

Byte Grabber 17,80,84,96,125-

129,152,156,168

Byte Jumper 168-173

Byte saving 71-118

Byte Table (Figure 1.1) 7,8

Card reader 110,149,158

Cassette drive 111,112,149

158,200

Catalog 1 (CAT 1) 16,87,95,

103,137,143-162,172,179

Catalog 1 recovery 143-149,

256

Catalog 2 2,31,201

CCD Module 2,3,16,83,104,

105,110,127,129,136,144,

147,152-162,179,190

Character, Alpha 73

Checksum 30

CHHU 261

CHHU Chronicle 203,261

CHS 80

Clearing registers 85-88
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CLMM 88, 147

CLST 85

CLX 78,79

CLXM 87,147

CLZ 86

CODE 183-186

Cold start constant 25,146,

185

Compiled instructions 30,31,

36,72,92,93,98

Complex numbers 91

Control number 192,196

Control word 193-196

Cooper, Randy 140

Counter 192-196

Crash recovery 255-260

Curtain (R 00) 24,185,186

Curtain moving 185

CV (HP-41) 14,146,147

CX (HP-41) 14,45,103,104,

146,147,163,190

DATA ERROR 78

Data format 15

Data registers 15

Decimal 4-6,156,157

Decimal point 79,120,182

DECODE 6,146,181,182,185

Decompiling 98,99,104,149,

150,160,161

DECRM 202,203

Disassembly 200

Display format 2,139-143

Division 80,81

Documentation 32-35,43,72

Double X 114

EduCALC 263

EEX 130,131

EMDIR 29,105,195

Emery, Ken 31

END 92,99,103,108,132,133,

149-162,172

.END . 15-17,72,99,

108,130,144,149-162,181

Entry, numeric 79-85

ERAMCO 200,263

Error messages 78

Execute- (XEQ) 20,24,35-40,43,

92,102,107,150

Execute ALPHA 31,36,72,95

Executing Alpha bytes 163-167

Exponent 80-82

Extended Functions module 3,

17,45,86,105,146,163,195

Extended Memory 29,30,103

104,147,235-246

EYHP 12,125

FAT 201

File, working 235-255

Filename 196

FIX/ENG 143-149

Flag register (d) 26,27

Flags 25,26,139-143

Free registers 15,16,147-149,

247-249

Function Address Table 201

Further reading 263,264
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General tips 114-118

GETKEY 36,45

GETX 125

Global instruction 91,92,

136,151,172

Global label 91,92,136,172

Goose assignment 173-175

GTO 43,88,92,93,95-103,109

GTO (3 byte) 95

GTO IND 35,44,46-70,138

GTO .. 75,143

Hardware 199,200,261-264

Header registers (XM) 29,86,

235

HEPFOL 200

Hex (hexadecimal) 5,6,183

Hex Table 7,8

Hill, Roger 102

Hops 168-179

HP-IL 11,149,200

HP-41 CV 14,146,147

HP-41 CX 14,45,103,104,146,

147,163,190

INCRM 202,203

Indirect addressing 50

Indirect GTO 35,92

Indirect XEQ 36,44,47-69,92

Initialization 82

Internal ROMs 203

I/O buffers 16-29

Jarett, Keith 12,30,87

Jump distance 30,31,36,72,

92,93,98

Jumps 168-179

Key assignment registers 16,

17,190-199,240-242

Keycode 45

KEYCODE ERR 78

Key terms 3

Label-less program 98-102

Labels, Alpha 91,92

Labels, local 91,92

Label search 36

LASTP 181

Line number 28,168-173

Link register 86

Loaders, Q 135-139

Local GTO 95-103

Local LBL 91,92

Long form GTO 102,103

Looping 88-91

McCornack, Alan Author of all

programs in this book

McCurdy, Gregor 96

Machine-Code 1,2,182,199-219

Main memory (RAM) 12,13

Mantissa 14,84,182

Mass storage 110-113,200,201

Master clear 86-88

MCED 1,6,200

M-Code 31,199-219

MEMORY LOST 14,24,76,136,143-

147,152,156-159,165,170,
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173,178,185

Memory structure 12-17

Mier-Jedrzejowicz, Wlodek 12

MLDL 200,261-263

Modular programming 40-73

Multiplication 80

NAME error 78

NEG instruction 80

NNN 19,119,183,186

NOMAS 11,154,203

NONEXISTENT error 43,78,99,

138,177,199

NOP 11,132,138,192

Normalization 19

NRCLM 190-199

NRCLX 146,231-235

NSTOM 190-199

Null 76,81,130-132,169-171

Nulls in Alpha 41

Number bases 4-7

Numeric entry 79-85

Nybble 5

Operating system 99,175,195,

199

Optimizing programs 71-118

OUT OF RANGE error 78,117

Overbar (null) 76

PACK 17,75,130,143-145,151-

153,171,194

Packing, programmable 205-206

Padding 112

PCLPS 87,143

Percent (%) 115,116

Pointer, Extended Memory 105,

Pointer, program 22,23,105,17

Port 22,31

Postfix 127,129,164

Powers of X 114,115

PPC 263-264

PPC Calculator Journal 96,

140,173,262

PPC ROM 3,6,28,40-42,73,74,

83,87,106,129,137,142-149,

156-159,169,174-176,181,

186,190,195

Pre-compiled GTO 179

Prefix 10,125,129,164

Printer 11,103

PRIVATE 149-163

PRGM mode 28,30,143,163,168

Program pointer 22,23,105,172

Programmable clear 87

PURFL 105,195

PURFL bug 105,195

Q-loaders 135-139

QRC 7-9

Quasi-ROM 200,201

RAM 168,200

RAM addresses 21,109

RAM memory 12-14

RAMED 6,28,83,145

RCL b 23,89,90,105-109,152-

160,199

RCLPT 104,105

Reciprocal (1/X) 80-82

Record 111,112
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References 261-264

Register 14

Register/byte Jumper 173-17

Register clearing 85-88

Register, data 14,15 7

Register, key assignment 16

Registers, free 16,148,247-

250

Registers, status 17-22

ROM 21-23,30-32,95,105-110,

168,171,172,200,201

ROM ID 22,131,201

ROM page 22

ROM pointers 22,23,106

ROM word 30,31,172

R 00 (curtain) 181

SAVEP 104

SAVEX 125

Scratch registers 19

Shaded characters 10

Short form exponent 80

Short form GTO 102

Sign 80

SIGN 79

SIZE 14,42-43,119,147

Smith, Jeremy 7, see SQRG

Software 261-264

SPME 12,75,103,129

SQRG 17,12

SST 71,109,113,165,170,172

Stack 19

Stack lift disable 117

Starburst 10,170

Status registers 17-22,119-

125

Stern, Clifford 90,147,161

STO b 17,89,90,105,106,166

STOL 117

STOP 35,72,165

Structure, RAM memory 12-14

ST+ 82,114,115

ST* 90

Subroutines 35-40

Subroutine return stack 21,

24,45

Suffix (postfix) 127,129,164

Suspend key assignments 231,

232,243-246

SYNTEXT 1,94

Synthetic key assignments 16,

125-139,140,168

Synthetic programming 1,4,73,

74,82,83,119,125,143,149,

168

Synthetic text lines 73-79,

82,83,135-139

System error messages 78

System scratch registers 19

Tarvainen, Tapani 106,129,173

Test cases 66

Text instructions (lines) 73-

75,82-85,126,127,167-170

Text Q loaders 135-139

Text zero (0) 11,138,168

Text O prefix assignments 129

-135

Three-byte functions 95-98,

127
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TONE 130,131,164 147,152-162,175,177,179,

TONEM 204,205 181-254

Triangle solutions 46-70 Zero 79

User code (HEPFOL) 30,200

User groups 261-264

User library 261-264

VASM 30,203

Wandzura, Steve 118

Wickes, William C. 24,168

Word (ROM) 30,31

Working file 195,246-248

WPRYV 149

WRTPV 149

XEQ 20,24,35-40,43,92,102,

107,150

XEQ ALPHA 31,36,72,95

XEQ IND 36,44,47-69,92

XFME 12,45,87,103,104,140

XM (Extended Memory) 29,30,

103,104,147,235-246

XROM 21,24,31,95

XROM preview 127,130

XTOA 73,137,167,169,181

XTOM 212

ZENCODE 202

ZENROM 1,3,6,16,20,28,31,38,

74,80,93,97,102,105,119,

125,127,129,139-143,145-
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PROGRAM INDEX

NAME BYTES SECTION PAGE BARCODE

TRI& 448 2E 51-65 337

ReNFL 107 3F 100 325

CB 67 3G 106 326

SHR 14 4B 128 ----

FE 24 4E 142 326

2B 30 4H 163 326

MT 19 SA 182 328

CX 51 5A 185 327

PK 185 5B 191 328

RENFL 112 5B 197 327

TON 26 5C 205 327

DP 24 5C 208 ----

PD 32 5C 211 ----

E? 22 5C 211 s

C? 28 5C 212 ----

ROMMMS 159 5C 218 329

MKZ 99 6A 222 330

RAMBC 106 6A 225 331

SA 132 6A 228 332

SK 47 6A 232 333

VER 35 6B 236 333

PFF 33 6B 237 333

PRFL 32 6B 238 336

SAVEK 150 6B 240 334

IN 50 6B 244 336

EX 35 6C 246 336

F? 185 6C 248 335
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CAN'T STOP PROGRAMMING?

This book introduces you to the tools available for advanced programming

and gives you a detailed tutorial on programming technique. Next are

some important Synthetic Programming techniques, several of which are

not described in other books. These include TEXT 0 prefix key

assignments, Catalog 1 crash recovery techniques, and making programs

PRIVATE without a magnetic card reader or HP-IL.

Users of the ZENROM or CCD utility modules will especially enjoy

the application programs for these powerful modules. In addition to

being useful programs in themselves, these examples also illustrate how

to harness some of the most powerful programming features of both the

ZENROM and the CCD Module. The book includes an overview of

HP-41 Machine code (M-code), so you can get an idea of whether this

exciting area is for you.

Those of you who have read Keith Jarett’s earlier books "HP-41 Synthetic

Programming Made Easy" and "HP-41 Extended Functions Made Easy" will

find a special treat in the appendix: Complete line-by-line analysis of

all the synthetic programs from both books! Now you can see how

Clifford Stern and the other synthetic programming masters do it.

If you like to push your HP-41 to the limit, or perhaps a little beyond,

this is the book for you.

ISBN 0-9612174-6-4
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