
Advanced Software Development Tools

For the HP-41

Version 2.0

PROGRAMMER’S MANUAL

Advanced Software Development Tools

For the HP-41

Version 2.0

PROGRAMMER’S MANUAL

Copyright (c) 1989 Warren Furlow

SOFTWARE LICENSE AGREEMENT

WARNING: ACCEPTANCE OF THIS SOFTWARE CONSTITUTES A FORMAL
AGREEMENT SUBJECT TO THE FOLLOWING TERMS:

INDIVIDUAL LICENSING

SITE

This software and documentation shall in no way be modified, or distributed except where designated
"Public Domain" and except that copies may be made for backup purposes. At no time should it be
possible for this software to be executed by more than one user. Any software contained within that
is designated "Public Domain" may be freely distributed and copied except that if it is modified, it
should be clearly noted so.

LICENSING

Inquire to address below.

LIABILITIES
The purchaser assumes complete liability for any damages arising from the use or misuse of this product.

WARRANTY

SEND

This software will be replaced free of charge if the medium is found to be defective when returned
within a period of 60 days from purchase with proof of purchase. No warranty is made for the fitness
of the software itself.

REGISTRATION CARDS AND QUESTIONS TO:

Warren Furlow

5595 Coronation Court
Atlanta, Georgia 30338
(404) 396-1862

ACKNOWLEDGEMENTS

The ASDT project started about a year and a half ago with an early Pascal HP-41 MCODE cross assembler. After
switching to /C’, I proceeded to write the other utilities. I also discovered that writing documentation can
be harder than writing programs. I would like to thank those who have provided me with assistance, advice and
sources of information over the course of the development of ASDT: Brian Walsh, Jeff Brown, Eleanor Furlow,
Mike Katz and Ross Cooling. I would also like to thank in advance anyone that has any suggestions or comments
that can improve this software.

REFERENCES

The following sources and organizations are very useful for the HP-41 enthusiast:

HP VASM Listings
These are the annotated listings of the operating system of the HP-41 and are available from HPX, send
SASE.

Zenrom Programmer’s Manual
This book is sold with or without the ZENRON module by EduCalc and is a very good reference to HP-41
MCODE.

HP-41 MCODE for Beginners
This book by Ken Emery is a good tutorial for HP-41 MCODE and is available from Educalc or Synthetix
publishers (who also publish a number of other useful books on the HP-41)

Synthetix
P.0. Box 1080

Berkeley, CA 94701-1080.

HPX

HPY is a user’s group publishing a periodical journal providing the HP hand-held user with a forum for
many areas of common interest, analysis of new products and interesting programs. VYearly dues are $25
in the continental U.S. and $35 elsewhere.

HPX

Brian Walsh
P.0. Box 4160,
Des Plaines I11, 60016
(312) 884-0099

EduCalc
EduCalc carries the most complete line of HP hardware, software, accessories and books at competitive
prices.

EduCalc Mail Store

27953 Cabot Road

Laguna Niquel, CA 92677

ii

CONTENTS

Lo IMEEOBUCE0N v v etteneeneneueneeneureeeneuseeeuenuensonesessossnnesonensssononssnsssonenssnsnsnssssnons 1
2. FRALULES 1 iiiintiiiiinntienneteeeneseeennnnseosssnacossaseosenanssoesssnsseeennnscossnnsososnnnnsosonss 2

3y DBIMIIOMS et eneteannreneneueueueuenenensasesenenensnosonsassnssassnsssnssosonsssnssonsnsnsnsnsnons 3

4. Utilities
AL ASSBIDT vttt it iitiettereeeeeeeeraeearensonsonnctnsenteensoenotasenrcenronacnracnaonnaenne 4

15158
DAL DISASSEIMDLOY « v veverrenenenesneneeeeesuenenonsnsssosonoesosenssssnenssssssnososasnssonnonans 10
M4l EMULAEOtutierneeintennueeneneeneeeenneenesoonsoesssosassosoasosossosnssssasosnnsosnnssosnns 12

Tl TrANSLaEOr ¢ i vtteitiniteeiereenueeeeneenneesasesnseosasossasoeonsssnnessnsosnnssesnnsconnoos 17

41C0M Communications Utility vouuvuneeniinneeuiernnerneiunrenetnseunrosecneessseneensssnesnosnnss 18

5. LinKing and DiSASSEMDLY . .oeuueureeuneunerusenneensenneesnssusssnssnsssssssssnsssnsssssssssnsossssnses 19

6. File Formats
SOUXCE FI1€ FOIMAL vvvvrenerenenneneneeuoneneeeesssnesenesscncessacncsssssssssncsasssncnasnnes 22
Backup File POYMAt ..ovuvuriiniieeuneeneinerunsenesenssensonssnsessssnssosssnsossssnssssssnonns 24
20B00=3)o1P25
Object File FOXMAL tuuvureureuineneenoenennossoesssnssssussncossssssssnssssssssssssssssnsssones 26
LINK FI11€ FOTMAt vvvvrvrevneineneeneeueeneeeeneenenosaessenscssenssncenconsnsssssasnssnsonsoncnos 27
Configuration File FOXMAt ...u.vvuniuuniiunieineriueeiuiernnernnsoiueesnsseesssssnssnsossnsenns 28
LOAA FI18 FOIMAL & vvvuvvneneneneeneneeeenenoneneonsnsnsncessasscssssencsssssssnssesssnssonasnenos 29
LADEL FI1e FOIMAL v uvvvueneneneeneneneeeeneneneonesssesesossencnassoncsssssssncsssasssncnssncnes 30
Register File FOIMAt ...vuvuiuiineunererneiusonerusseesussnsessnssnssserssossassssssesssssonsons 31

7. Reference Instructions
SHOTE JUBPS ¢ v tvveveneneuenososnsnssessensnssssasnsssussssasassssnssssasasssnososasnsnssssnsnsnos 32
LONG JUIBIPS + e v eeuunensennnossonssesssnsossssnssssssssesssssssssssssssessasssssassssessssssnnns 33
Other Reference MINStIUCEIONS +uuvrrieeeeueneeeoeeeseoeesnssencoassossssssoncsssssnenssssscncnos 34

Appendix
A, COMMON ROM IDS tvvvvveeeeeeeeeoonesoonoeessoosssosossososssosnsnsssssssssssscsssssnnnsnnsnnes 35

B, HP-41 ROM MEMOTY HaD «ouvvrvinrnnrneeneineneeeiaoiesnessesncsacesesssnssnsnossosnssssnsoncns 36
C. Format FOr RON With FAT L.uvvinuiieenueeneeeneeroseoessconscensssnsosnssnsonssnsssnsssssonaes 37
D. Character TransSlation Table «.uuueeeeeeereeeeereneeoeseorsonsensessoscnssnsescsscnsenssasnans 38
E. Keycode Table .uvveveneneieeneneieieeeeienesesueueneeesaencosonssconsnsncsssssnsnssssnsnsones 39
F. RAM Confiquration Dataevevenseusruneinneruiernernssenernsennennsensesnsenssnnsenesnncens 40
G. Instruction Set CrosS ReferenCe TaDLle vuuueveeereeeereneeeseneesosencnsssssensssoscnsnsonoas 41

iii

SECTION 1. INTRODUCTION

The Advanced Software Development Tools (ASDT) package contains all the software needed to develop custom HP-41
ROM images on MS-DOS machines. This ability makes the development of NCODE programs faster and easier than ever
for the noncommercial programmer and provides professional quality tools for commercial development. The
following basic setup is recommended:

BASIC SETUP
HP-41CV/CX

IBM PC compatible computer; hard disk recommended

MLDL (Machine Lanquage Development Lab) with at least 8K

HP82160 HP-IL module for HP-41

Either HP8297A HP-IL interface card (for IBM compatible) or HP-IL <=> RS232 converter

SECTION 2. FEATURES

ASSEMBLER

0 Assembles MCODE instructions from any one of the three instruction sets: HP, Iencode or
Jacobs/De Arras

0 Contains built-in symbol table of the HP-41’s mainframe labels which allows easy referencing
to operating system entry points

0 Allows generation of internal and external symbolic labels

0 Assembles FAT pseudo-instructions for easy RON image building

0 Produces symbol cross reference table, if desired

LINKER

0 Resolves external label references and creates a ROM image file suitable for loading into an
EPROM or an MLDL

0 Can link more than one ROM image at a time

0 Produces symbol cross reference table, if desired

DISASSEMBLER

0 Disassembles MCODE instructions into any one of the three instruction sets

0 Contains built-in symbol table to the HP-41’s mainframe labels

0 Disassembles FAT pseudo-instructions for easy ROM image decoding

0 The source file generated by the disassembler can be immediately re-assembled by the assembler

EMULATOR

0 Reads ROM images and allows single stepping and debugging of the instructions which may be in
any one of the three instruction sets

0 Executes the HP-41 operating system (the HP-41 operating system ROMs are not included and must
be loaded by the user with the communications utility)

0 Provides Full screen display of the HP-41’s internal reqisters, display and RAM and allows the
user to set and clear breakpoints, jump to any address and preload registers

0 Incorporates mainframe labels into pages 0-2 and can read and incorporate labels from
user-specified label files

INSTRUCTION SET TRANSLATOR
0 Translates the instructions in source files from any of the three sets to any other set

COMMUNICATIONS
0 Upload and download RON image files from an HP-41 through HP-IL to a PC (requires basic setup)

SECTION 3. DEFINITIONS

Note: The mnemonics in this manual use the Jencode instruction set.

<address>

Any value in the range 0000-FFFF (hex)

<value>

Any value in the range 0000-FFFF (hex). This is the same as an <address> but is used in a more
generalized sense.

<page>
Any value in the range 0 to F (hex). A page is also 4096 words.

<bank>

Any value in the range 1 to 2 (dec). The HP-41 supports bankswitching with special ROM devices.

<+disp>

Any value in the range +0 to +63 (dec).

<~-disp>
Any value in the range -1 to -64 (dec).

<local label>

A label that is delimited with parenthesis. Example: (FOOBAR). Local labels are local to the file
that they are defined in and are not "visible" outside that file. Any characters except spaces may
be contained in the label definition but for convention labels should be limited to uppercase characters
and the underscore. If a global label is the same as a local, there will be no conflict, but this
should not be done to avoid confusion. Local machine code labels should not be confused with local
User Code labels as they are completely different.

<global label>

A label that is delimited with brackets. Example: [FOOBAR]. Global labels are "visible" to all files
that are linked together. Any characters except spaces may be contained in the label definition but
for convention labels should be limited to uppercase characters and the underscore. Global machine
code labels should not be confused with global User Code labels as they are completely different.

<label>

Either a <local label> or a <global label>. This is similar to a <symbol> but is used in the more
restrictive sense that labels are not defined with the .EQU directive.

<symbol>
Same as a <label> but used in a more generalized sense to include all symbols including those defined
with the .EQU directive.

<operand>
The arqument that is given after the instruction. Example: XS is the operand for A=B XS.

SECTION 4. UTILITIES

A41 ASSEMBLER

SYNTAX

A4l [options] <file>

DESCRIPTION

A41 assembles HP-41 MCODE mnemonics from one of three instruction sets and produces an object file that
is linkable into a ROM image. A41 expects to find <file.src> that contains the code to assemble and
produces <file.obj>. A4l also has the ability to reformat the source file and insert error messages
and object data into it.

FILES

<file.src> source file (read from and written to)
<file.bak> backup file (written to)
<file.obj> object file (written to)
<file.1bl> label file (written to)

OPTIONS

/8 If this option is not specified, the source file is read and not modified. Otherwise, the
source file is read and formatted and various useful information such as error messages, object
data and cross references are optionally inserted into it. A backup file is created that
contains the original source code.

/R Does the same as /S and also produces a complete symbol cross reference table at the end of
the source file.

/0 This option causes the generation of the <address> and <data> fields into the source file when
the /S or /R option is specified. These fields are for the user’s benefit and are ignored by
the assembler upon subsequent assemblies. This option does nothing if /S or /R is not
specified.

/L Generates <file.1lbl> that contains all local labels in the source file, but no global labels.
See Section 6 for label file format.

/B Erases internal mainframe label table. The internal mainframe label table is a data table in
the assembler that holds all of the HP-41’s operating system entry points as specified by the
VASM listings. This option supports custom HP-41 operating systems.

ASSEMBLER DIRECTIVES

JTITLE "title"
Gives a title to the object code. It this title is longer than 80 characters it will be
truncated.

HP

Specifies the HP instruction set and must be given before the code starts. One source file
may contain several instruction set directives and they may be different.

. JENCODE

Specifies the Jencode instruction set and must be given before the code starts.

.JDA

Specifies the Jacobs/De Arras set and must be given before the code starts.

JFILLTO <address>

Fills from current address to the specified address with zeros. If the .ORG directive is
specified, this directive will fill from the current address to the specified address PLUS the
origin address. The addresses are considered occupied and are not open for linking any other
object code into.

.BSS <number>
Fills the next <number> words with zeros, where <number> is a positive decimal number. The
addresses are considered occupied and are not open for linking any other object code into.

.NAME "name"
Macro for defining function names. This is used for construction of the FAT. It converts each
character to its LCD equivalent and adds 80 hex to the last character. The order of the
characters is automatically reversed as required by the HP-41.

.MESSL "string"
Similar to the NAME directive, the MESSL directive puts the string into the format required
for output via the [MESSL] entry point. Each character is converted to its LCD equivalent and
the 20 hex is added to the last character.

.ORG <address>
Specifies an absolute address in the range 0000-FFFF (hex) to originate the code at. All
symbols defined in a file that contains this directive are absolute and cannot be relocated
by the linker. This directive can be specified only once in each source file.

.EQU <global symbol> <value>

.EQU <local symbol> <value>
Equates a symbol with a value in the range 0000-FFFF (hex). This symbol functions just like
any label, but is NOT relocatable since it represents an absolute constant.

$000-#3FF
This is not a directive but allows any literal to be entered directly into ROM. This is
similar to the CON pseudo-instruction except that only literal values in the range 000-3FF
(hex) can be entered and not symbols.

ERROR MESSAGES

xxx FATAL ERROR (AO1): Code runs past FFF (hex)
The assembler cannot assemble more than FFF (hex) words into one object module since that is
the maximum length of a ROM image.

x% FATAL ERROR (A02): Source File Is Empty! Check backup file
The assembler found the source file to be empty which could have been caused by interruption
of the assembler when it was running previously. The backup file will contain the original
source file.

xxx FATAL ERROR (A03): Failure to rename <file x> to <file y>
This error will result if for some reason the operating system prevents the assembler from
renaming <file x> to <file y>. Check the file access on the files.

k k%

kkk

k%

kkk

*k%

k%

k%

k%

k%%

%% %

%%k

%% %k

FATAL ERROR (A04): Out of memory!
This error occurs when the system’s dynamic memory has been all used up. If this occurs,
shorten source file.

ERROR (A05): Jump address not in same 4K page
The address specified for the quad relative jump is not in the same page as the instruction
itself. The instruction is assembled anyway.

ERROR (AO6): Illegal label definition: <label>
The label is greater than 13 characters or is not delimited by brackets or parenthesis.

ERROR (A07): Operand not recognized: <operand>
The operand is not valid for the instruction given. The assembler will still generate code.

ERROR (A08): Illegal .EQU definition
The symbol specified is not a legal symbol since it is greater than 13 characters or is not
delimited by brackets or parenthesis or the value is not in the range 0000-FFFF (hex).

ERROR (A09): FAT names cannot be greater than 11 Characters
The HP-41 does not support FAT names greater than 11 characters long. No data will be
generated.

ERROR (A10): Illegal address: <address>
The specified address is not in the range 0000-FFFF (hex).

ERROR (Al1): Illegal number: <number>
The specified number is not a valid positive number.

ERROR (A12): .ORG must be specified before code starts
The .ORG directive was specified after the code started and was ignored.

ERROR (A13): Illegal .ORG definition
The address specified for the .ORG directive is not in the range 0000-FFFF (hex).

ERROR (Al4): .ORG specified more than once
The .ORG directive cannot be specified more than once in each source file.

ERROR (A15): Unknown directive: <directive>
The directive is not valid.

ERROR (A16): Reference to external local not permitted: <local symbol>

A reference to a local symbol (delimited by parenthesis) was made and that symbol is not in
the current source file.

ERROR (A17): Illegal instruction: "INSTRUCTION"
The instruction given is not in the current instruction set.

ERROR (A18): Missing Operand
An operand is required.

%k ERROR (A19): Illegal characters in NAME string
There were characters found in the FAT function name that are not allowed by the HP-41. The
assembler supports all possible characters for NAME strings.

xx% ERROR (A20): Illegal characters in MESSL string
There were characters found in the MESSL string that are not mapped to the HP-41. There are
characters that can be displayed on the HP-41 that the assembler does not support. These are
any characters with punctuation bits set or the extra characters that only the halfnut LCD can
display. The MESSL directive cannot be used to encode these; they must be entered manually
as literal data using the # token.

xx* ERROR (A21): Illegal displacement: <displacement> (dec)
A displacement was specified that was out of the range -64 to +63 (dec).

xxx FRROR (A22): Literal Address in relocatable object module
This occurs when a source file does not have the .ORG directive in it and short jump
instructions have operands that are literal address. (Such as JNC).

*k%x WARNING (A50): Operand greater than FFF (hex)
The LC3 macro instruction expected an operand in the range 000-FFF (hex). The operand was
truncated to 12 bits.

xkx WARNING (AS1): Operand greater than 3FF (hex)
The CON pseudo-instruction expected an operand in the range 000-3FF (hex). The operand was
truncated to 10 bits.

xx% WARNING (A52): Duplicate symbol: <symbol> Address not used <address>
A symbol was defined more than once in the same source file. Only the first occurrence is
used, and the others are ignored. The address of all later occurrences are listed in the
warning message.

L41 LINKER

SYNTAX

L41 [options] <file>

DESCRIPTION

The linker links the object files together to create one or more ROM files that contain one RON image
each. The commands that direct the linker are contained in <file.lnk>. See Section 6 for more
information on the link file. L41 can link SDS format .410 files. (Any use of SDS object files
requires the linking of the SDS file MFENTRY.410 since the SDS assembler does not resolve mainframe
entry points)

FILES

<file.lnk> link file (read from)
<??72?2.0bj> object file(s) (read from)
<file.cfg> config file (written to)
file.1bl> label file (written to)

Where 22?7 is a file name specified in the link file
<file.rom> ROM file (written to)
<filef.rom> ROM file(s) (written to)

Where # is a decimal number from 0 to the maximum number of RON images that are linked
NINUS one.

OPTIONS

/L Creates label file containing all global labels in all object modules.

/R Creates symbol cross reference table for the global labels and places it in the config file.

/A Assembles object modules that are out of date. This option causes A4l to be called if source
file is newer than object file. Any letters that follow the /A are passed to A4l as optionms.
Example: /ARO calls A41 with the /R and /O options. A4l is also called if /AL is specified
and the source file is newer than the LABEL file.

ERROR MESSAGES
*%x FATAL ERROR (LO2): Object code runs past end of page

Attempted link for code that runs past the end of the current RON image.

xxx FATAL ERROR (LO03): <object file> is corrupt
The object file is corrupt and cannot be read by the linker because it contains unexpected
data.

*x% FATAL ERROR (LO4): Out of memory!

This error occurs when the system’s dynamic memory has been all used up.

%%% FATAL ERROR (L05): Cannot create the same page twice
The link file has more then one page command with the same parameters.

xx% FATAL ERROR (L06): Illegal Parameter in $PAGE command
The parameters specified for the page command are not valid.

%% FATAL ERROR (LO7): $PAGE Command not given before first object file name
A page command must be specified before the first object file name is given.

8

*kx ERROR (L08): Jump address not in same 4K page
The address specified for the quad relative jump was not in the same page as the instruction
itself.

xxx ERROR (L09): Illegal displacement: <displacement> (dec)

The short jump instruction is referenced to a symbol that is out of its range of -64 to +63
(dec).

xx% ERROR (L10): Symbol not defined: <symbol>
A reference to a non-existent symbol was made. The address used to link is 0000.

x%k ERROR (L11): <object file> written to space occupied by <object file>
If the current object file maps to the space that another object file has already been linked
to this error results and the new object file will be loaded over the old object file.

%% ERROR (L12): <number> Error(s) in assembly of <source file>
The assembler returned errors from the assembly of a source file. This message appears just
before the linker terminates so if there are errors in the assembly they will be more obvious.

*xx WARNING (L50): Reference from bank <bank x> to bank <bank y> at address <address>

This warning results when a reference from one bank to another is made. The reference is
resolved as if the banks were the same which means unpredictable results are possible at run
time.

x%% WARNING (L51): Object file <object> originates at <origin page> but has been forced into page
<current page>

This results when the address specified for the ORG directive when the file is assembled is
not in the same page as the current page. The linker forces the object file into the current
page and continues linking.

xxk WARNING (L52): Duplicate symbol: <symbol> Address not used <address> from object file
<object file>

A symbol was defined more than once. Only the first occurrence is used, and the others are
ignored. The address and object file of all later occurrences is listed in the warning
message.

x%x WARNING (L53): $LOC value <value> has been forced into page <page>
The page specified for the $LOC command is not the same as the current page. The linker forces
the <value> into the current page.

D41 DISASSEMBLER

SYNTAX

D41 [options] <file>

DESCRIPTION

The D41 disassembler is capable of disassembling RON image files into one of the three instruction sets.
It expects to find <file.rom> and it produces <file.src>. If the ROM file contains User Code, the User
Code instructions are represented as literal data in the range #000 to #3FF.

FILES

<file.rom> ROM file (read from)
<file.1bl> label file (read from)
<file.src> source file (written to)

OPTIONS

/R Disassembles into the HP set (default). This option may not be given in conjunction with /2
or /J

/1 Disassembles into the Zencode set. This option may not be given in conjunction with /H or /J.

/J Disassembles into Jacobs/De Arras set. This option may not be given in conjunction with /H
or /1.

/Pn Maps the ROM into page n, where n is 0 to F (hex). This is used for producing a listing for
a ROM that is hard-confiqured such as one of the operating system pages. See Section 5 for
more information on the use of this option. This option does not actually change any code.
If this option is not specified, the default is page 8.

/F Causes the RON image to be disassembled with a FAT. If this is not specified, the RON is
assumed to have no FAT.

/E Erases the internal mainframe label table so that the disassembly does not place the HP-41
operating system entry labels into the source file. This option is only useful if the ROM
image maps into pages 0-2 but is not part of the HP-41’s operating system. This option
supports nonstandard operating systems.

/L:<label file>
Specifies a label file containing labels which are incorporated into the source listing just
as the mainframe labels are. See Section 6 for label file format. This option may be used
multiple times to specify all label files desired.

DEFAULTS

HP instruction set
Page 8

Does not disassemble with a FAT
Mainframe labels active
No external label files

ERROR MESSAGES
*x% FATAL ERROR (DO4): Out of memory!

This error occurs when the system’s dynamic memory has been all used up.

10

*kx ERROR (D05): Illegal label definition: <label> in: <label file>

The label is greater than 13 characters or is not delimited by brackets or parenthesis.

xkx ERROR (D06): Illeqal character found in NAME string
The NAME string contains a character that is not allowed by the HP-41. The disassemble
supports all possible characters for NAME strings. A tilde (~) character is displayed instead.

*kx ERROR (D07): Illegal character found in MESSL string
The MESSL string contains a character that is not supported by the disassembler. The
disassembler will produce an error for all characters that have punctuation bits set or the
extra characters that only the halfnut LCD can display. A tilde character is displayed
instead.

xxx ERROR (D08): Illegal $LOC command in label file: <label file>
The address specified for to the LOC command is not in the range 0000-FFFF (hex).

*%x ERROR (D09): FAT entry not recognized
The data in the FAT entry differs from the standard HP-41 FAT pseudo-instructions.

*xx ERROR (D10): FAT not followed by two NOP instructions
The HP-41 requires that the FAT be followed by two NOP instructions.

xxx ERROR (D11): Data at ROM address 1 (number of FAT entries) is incorrect
The data in address 1 of the RON differs from the actual number of FAT entries disassembled.

11

M41 EMULATOR

SYNTAX
M4l [options] [<file>]

DESCRIPTION
H41 is a powerful and useful tool for testing and developing custom MCODE programs. It allows single
stepping of MCODE programs and also supports a continuous run mode that executes the HP-41 operating
system ROMs when they have been loaded with 41COM. (The ROMs are not provided with ASDT since they
are owned by HP.)

OPERATION

FILES

After loading the operating system ROMs, the ‘U’ command may be executed and the emulator will mimic
an HP-41. There are several things to know when the emulator is in this mode. If a ?KEY instruction
is encountered, the emulator will check the PC’s keyboard to see if a key is being pressed. If one
is not, it will go on without interrupting the execution. If a key is pressed, it will be translated
and loaded into the KEY register. Also, the registers and instructions will not be updated on the
screen but the display will be. If the 'R’ command is executed, the emulator will also run at full
speed, but will stop for trap conditions and breakpoints.

The screen is divided into three areas; the instructions, the registers and the display. The pointer
at the right hand side of the instructions indicates which instruction will be executed next. After
every instruction is executed, it is rewritten to the display. This sometimes causes the instruction
to change. An example of this is when a REG=C 3 instruction changes to a WRAB6L instruction. This
occurs because no peripheral was selected when the entire screen was disassembled, but a PERSLCT FD
was executed after this and that changed the active peripheral.

The display and register parts of the screen are mostly self-explanatory with the following notes.
BK stands for BANK and is either 1 or 2. KEY is the KEY register which contains the keycode, while
?KEY is the keydown register and is either 1 or 0. PERPH is the selected peripheral. HEX is 1 if the
CPU is in hex mode and 0 if in decimal mode. There are three registers that have different names
depending on the active instruction set. SB is also ST, XSB is XST and F is T (This is shown in
Appendix G). The block of RAM registers at the bottom left of the screen is the active chip and RAM
is the RAM address selected. If the chip is non-existent, dashes are displayed. If an Extended
Functions RON is loaded into page 3 the emulator automatically makes all extended memory available.
CODE is the code of the instruction just executed.

<?7?.rom> ROM file(s) (read from)
Where 22?7 is a file name specified in the load file

<file.lod> load file (read from)
If <file> is not given on the command line, DEFAULT.LOD is used instead

<file.1bl> 1label file (read from)
<file.reg> reqgister file (read from and written to)

OPTIONS

/R Displays instructions using the HP set (default). This option may not be given in
conjunction with /Z or /J

/1 Displays instructions using the Zencode set. This option may not be given in conjunction with
JH or /J.

12

/J Displays instructions using Jacobs/De Arras set. This option may not be given in conjunction
with /H or /I.

/E Erases the internal mainframe label table so that the disassembly does not place the HP-41
operating system entry labels into the source file. This option is only useful for ROM images
that map into pages 0-2 but are not part of the HP-41’s operating system. This option supports
nonstandard operating systenms.

/EGA43
/EGA
/CGA
/HONO

If one of the above video options is given, the emulator will be forced into the specified
mode. Otherwise, the emulator will set itself to the highest mode available.

COMMANDS

A Display alpha register.

BC <address>
Clear the breakpoint at <address> if there is one.

BC

Clear the breakpoint at the current address if there is one.

BC <label>

Clear the breakpoint at <label> if there is one.

BS <address>
Set breakpoint at <address>.

BS

Set breakpoint at the current address.

BS <label>
Set a breakpoint at <label> if it exists.

BL List all breakpoints.

C <chip>
Display the specified RAM chip where <chip> is 000 to 3FF (hex) with exceptions as noted in
Appendix F.

D DOS shell (Type EXIT to return).

E <code>
Executes a SINGLE byte instruction (Do not execute a multi-byte instruction).

FS <req file>
Saves all registers to a register file.

FL <req file>
Loads all register from a register file.

13

G <address>

Goto the address specified.

G <label>

Goto the label specified, if it exists.

H Change to the HP instruction set.

J Change to the Jacobs/De Arras instruction set.

K <key>

Enter a key to the KEY register and set the keydown register. This maps the PC keyboard to
the HP-41 keyboard, just like for the ‘U’ run mode.

L <register> <value>

Load <register> with <value>, where <register> is the name of the CPU register for the current
instruction set as described below:

HP Zencode Jacobs/De Arras Value

C C C 14 hex digits
A A A 14 hex digits
B B B 14 hex digits
N N N 14 hex digits
N N N 14 hex digits

LR <RAM register> <value>

Load <RAM register> with <value> where a RAM register may be any existing register from 000
to 3FF (hex) and the value is 14 hex digits long.

N Display this menu of commands.

QY Exit from the emulator.

R Run at full speed until a breakpoint, keyboard or POWOFF trap occurs.

U Execute the operating system ROMs (that you loaded) and check the keyboard when a ?KEY
instruction is detected (see KEYBOARD MAPPING below). The ESC key will cause a break out of
run mode, but it may take several seconds for it to be processed.

I Change to the Zencode instruction set.

SPACE BAR

Single step the emulator.

KEYBOARD MAPPING

To simulate the HP-41 in USERCODE mode (execute the ‘U’ command) the PC’s keyboard has been mapped to
the following specifications. This is not a key for keycode mapping in all cases. For instance, the
letters A-I may only be entered if the emulator sees that ALPHA mode is set. Also, certain keys on
the HP-41 keyboard are shifted, but may be entered directly on the PC keyboard WITHOUT first entering
a SHIFT on the emulator because the emulator will set shift mode first. An example of this is the %
function. The shift key on the PC keyboard does not map to the shift key on the HP-41.

14

PC Key HP-41 meaning MCODE keycode value

F1 ON 18 (hex)

F2 USER Cé

F3 PRGN C5

F4 ALPHA C5

F5 SHIFT C4

Fé SST C2

F7 <- (BACKARROW) €3
F8 R/S 87
F9 FUNCTION (described below)
F10 KEYCODE (described below)
SHIFT F1 XEQ 32

SHIFT F2 ENTER? 13

SHIFT F3 CHS 73

SHIFT F4 EEX 83

If the emulator is in ALPHA mode:
Atol Atol

abcde abcde 10, 30, 70, 80, CO
S Sigma 11
n Not equal 71
X Append 32
g Angle symbol 73
§<>"$ <> S 31, 81, C1, 83
-4k -4k 14, 15, 16, 17
Space , . Space , . 37, 77, 77

0to9 0to9

If the emulator is not in ALPHA mode:
. . 77

0to9 0to9

FUNCTIONS

All HP-41 keys that are marked with something other than a single digit symbol may be entered with the
FUNCTION key (F9). The emulator will prompt for the name of the command to enter. The commands are
not case sensitive. The table below lists valid commands for ALPHA mode:

ON USER PRGM ALPHA
APPEND ASTO ARCL BST SST AVIEW R/S

The following are valid commands when not in ALPHA mode:

ON USER PRGN ALPHA
s- st 1/X Y*X SQRT X*2 [L[0OG 10X LN EXX
CLs XoY RN % SIN ASIN COS ACOS TAN ATAN
SHIFT XEQ ASN STO [IBL RCL GIO SST BST
ENTER® CAT CATALOG CHS ISG EEX RIN CLX
X=Y? SF CF FS? X<=Y? BEEP P-R -P
»Y? FIX SCI ENG X=0? PI LASTX VIEW R/S

15

KEYCODES

It is also possible to enter hex keycodes directly by using the F10 key. This will enter any hex value
from 00 to FF into the KEY register. If in ‘U’ mode, F10 toggles keycode entry. See Appendix E for
the keycode table.

LIMITATIONS AND WARNINGS

When the Zenrom is loaded, it operate exactly as it should under ‘U’ mode, but there is one known
condition when it will lock up. If the emulator is in ALPHA mode and a SHIFT is entered and then any
key other than ALPHA is entered, the Zenrom will get stuck in a loop.

Some of the TEF instructions have undefined behaviors if the emulator is in decimal mode and there is
a value greater than 9 in the register being added or subtracted.

ERROR MESSAGES

*%x FATAL ERROR (MO4): Out of memory! - Too many ROM files
This error occurs when the system’s dynamic memory has been all used up.

*kx FATAL ERROR (MOS): Cannot load the same page twice
The load file has more then one page command with the same parameters.

xx% FATAL ERROR (MO6): Illeqal Parameter in $PAGE command
The parameters specified for the page command are not valid.

*%% FATAL ERROR (MO7): ROM file name not specified in $PAGE command
The $PAGE command must have a ROM file name specified after it to load.

*%x FATAL ERROR (MO8): No ROM images loaded
There were not RON images loaded.

xxx FATAL ERROR (M09): Label file is empty: <label file>
The label file specified in the load file was empty.

*xx ERROR (M20): Illegal $LOC command in: <label file>
The address specified for to the LOC command is not in the range 0000-FFFF (hex).

xxx ERROR (M21): Illeqal label definition: <label> in: <label file>
The label is greater than 13 characters or is not delimited by brackets or parenthesis.

*%% ERROR (M30): Unknown result
A peripheral I/0 instruction was executed that has an unknown result for the current peripheral
selected.

xx% ERROR (M31): Unknown Peripheral
The peripheral select code is undocumented.

*kk ERROR (M32): Timer not implemented
The timer I/0 instructions are not supported.

xxx ERROR (M33): Card reader not implemented
The card reader I/0 instructions are not supported.

*x% ERROR (M34): Printer not implemented

16

T41 INSTRUCTION SET TRANSLATOR

SYNTAX

T41 <file>

DESCRIPTION

The instruction set translator translates the mnemonics in a source file from one instruction set to
any of the three. (It is possible to translate from Zencode to Zencode, for instance.) The translator
reads the source file until it finds an instruction set directive which specifies the current
instruction set. Then, it prompts for the new set with self-explanatory messages. The old source file
becomes the backup file. Any errors will be flagged and stored in the new source file. If there is
more than one instruction set directive in the file, T41 will prompt for a new instruction set each
time it finds one.

FILES

<file.src> source file (read from and written to)
<file.bak> backup file (written to)

OPTIONS

None

ERROR MESSAGES

x%% FATAL ERROR (T02): Source File Is Empty! Check backup file
The translator found the source file to be empty. The backup file should contain the original
source file.

xxx FATAL ERROR (T03): Failure to rename <file x> to <file y>

This error will result if for some reason the system prevents the translator from renaming
<file x> to <file y>. Check the file access on the files.

*xx FATAL ERROR (TO4): Out of memory!
This error occurs when the system’s dynamic memory has been all used up.

%k ERROR (T05): Instruction not given
An instruction was expected on this line and none was found.

*%x ERROR (T06): Illegal label definition: <label>
The label is greater than 13 characters or is not delimited by brackets or parenthesis.

*xx ERROR (TO7): Unknown directive: <directive>
The specified directive is not valid.

*%% ERROR (T08): Illegal instruction: "<instruction>"
The instruction given is not in the current instruction set.

17

41COM COMMUNICATIONS UTILITY

SYNTAX
41C0K <file>

DESCRIPTION

This utility transmits and receives 4K ROM image files to and from the HP-41 over the HP-IL loop. It
requires two programs on the HP-41 called "ROMIN" and "ROMOUT". For information on loading these
programs, see the file "BOOT.SRC". On-line help is available by typing H after running 41COM. This
utility requires an HP82973A HP-IL interface card for the PC and an HP82160 HP-IL module for the HP-41.

It is also possible to use an HP-IL module in the HP-41 with an HP-IL <=> RS232 convertor and use the
RS232 serial port of the PC to send and receive ROM files. The 41COM utility is not needed in this
case since the PC can simply send and receive the RON file over its serial port using any serial
upload/download program that supports 8-bit ASCII. The software on the HP-41 end is the same either
way.

FILES

<file.rom> ROM file (read from or written to)

OPTIONS

None

ERROR MESSAGES

*kx ERROR: EOT received before all data sent
The HP-41 sent an EOT signal before it sent all 8192 bytes.

*x% ERROR: Time out

The HP-41 prematurely terminated its transmission and the PC timed out or the HP-41 failed to
respond in time to data sent by the PC. The timeout factor is approximately two seconds.

18

SECTION 5. LINKING AND DISASSEMBLY

BACKGROUND INFORMATION

Because the smallest unit of ROM memory in HP-41 is one page, the linker builds pages. Each HP-41 page
is 4096 words long. Each word is 10 bits long. The HP-41 can address a total of 16 pages which are
numbered page O through page F (hex). Some of these pages are already hard-wired to the HP-41
operating system (See Appendix B). Other pages are left open for the user’s plug-in modules and these
map to the four I/0 ports. Each port has two 4K pages associated with it so a plug-in module can use
either one or two pages. The actual hardware of the module determines which page(s) it uses. Most
4K modules use the lower page (although some use the upper) while all 8K modules use both. These
confiqurations are known as port-configured since the actual pages that the module maps into are
dependant on which port it is plugged into. Most of the commercially available ROM equipment is of
this variety.

12K and 16K modules must be bank-switched as described later in this section.

It is possible to have a module that does not occupy the pages associated with the port it is plugged
into. The ROM image(s) in this type of module are hard-confiqured to always map into the same page(s)
reqardless of which port it is plugged into. This is the case for several HP-41 peripherals or special
modules such as the Mass Storage ROM. For instance, regardless of which port the Mass Storage ROM is
plugged into, it will always occupy page 7. (The Mass Storage RON is inside the HP-IL module.) Since
most accessory hardware for the HP-41 on the market today does not support hard-confiqured ROM images,
this is not an alternative to most MCODE programmers. One way to get around this is to pretend that
a piece of hardware is hard-confiqured and always plug it into the same I/O port. This distinction
is important since some jump instructions are not position independent.

The linker can link many possible confiqurations including port- and hard-confiqurations and bank
switching.

LINKING PORT-CONFIGURED ROMS

Nost types of user-created ROMs will be of this type. The best way to link these is to start with a
SPAGE 8 1 command for the lower RON. If there is an upper ROM, it would be linked with a command of
SPAGE 9 1. If the upper page is bank switched, the hidden page would be linked with a command of
$PAGE 9 2. The only reason the linker needs to know a page number is to resolve references that are
relative to each other. It would work just as well to specify $PAGE 5 for the lower ROM and $PAGE 6
for the upper. An example of this type of link is the Advantage ROM. It is a 12K bankswitched
port-confiqured module. It could be linked with $PAGE 8 1, $PAGE 9 1 and $PAGE 9 2. If the link file
were named ADV.LNK, The ROMs would be named ADVO.ROM, ADV1.ROM and ADV2.ROM, respectively.

LINKING HARD-CONFIGURED ROMS

To link a ROM of this type, the $PAGE command would be specified with the page that the ROM is to be
located at. If there is more than one ROM to be linked, simply specify exactly which page and bank
each one is to be located at. The hardware will insure that each ROM is mapped to its proper location.
For example, the operating system of the HP-41 is 12K of hard-configured non bank switched ROMs. It
could be linked with $PAGE 0, $PAGE 1, $PAGE 2. If the link file were named NUT.LNK, the ROMs would
be named NUTO.ROM, NUT1.ROM and NUT2.ROM, respectively.

DISASSEMBLY OF PORT-CONFIGURED ROMS

To disassemble a port-confiqured RON, it is best to start at page 8 for the first ROM image and if
there is a second, disassemble to page 9. For example, to disassemble an 8K port-confiqured ROM, do
not specify the /Pn option (the default is 8) for the first page and specify /P9 for the second.

19

DISASSEMBLY OF HARD-CONFIGURED ROMS

To disassemble a hard-confiqured ROM, the page that the ROM was taken from must be specified with the
/Pn option. For example, to disassemble the operating system of the HP-41, specify /PO for the first
page and /P1 and /P2 for the other two. If the operating system is disassembled into pages 0-2, the
mainframe labels will appear properly at the locations they are defined at.

20

SECTION 6. FILE TYPES

---->| OBJ LOD |---->

SRC |<===>] A4l |---->| LBL ROM |--==>1 M4l |[<--->| REG

--==>| BAK LBL |====>

LNK [----> ---->| ROM

[41 }---->| LBL SRC |<===>} T41 |---->| BAK

0BJ [----> ---=>| CFG

RON |---=> RON |<--->| 41COM

 D41 f---->| SRC

LBL [====>

21

SOURCE FILE FORMAT

FILE EXTENSION

FILE

LINE

USED

.SRC

TYPE

All source files must have a .SRC extension.

Normal MS-DOS text file

FORMATS

.<directive>

Directive lines begin with a period and are followed by the directive which must be in all
caps.

; Comments ...

* Error

* Macro

Comment lines begin with a semicolon and may contain anything after the semicolon.

Error and macro lines begin with an asterisk and are removed by the assembler when they are
found in the source file. This type of line may contain anything after the asterisk. They
are placed in the source file by the utilities to denote errors in code or to denote the code
generated by macro expansions.

Instruction lines

BY
A4l

D41

T4l

Any line that is not one of the above is an instruction line and must follow the syntax diagram
below:

-|-=> <label> --
>

>==|==> <address> --> <data> --> -> INSTRUCTION -

>

=|=> icomments ->|- (R =>
>

-> <operands> -
>

Instruction lines have optional fields that may or may not affect assembly. The address and
data fields are ignored by the assembler but are rewritten if the source file is rewritten.
The user does not place the address and data fields in the source file. The address field is
4 hexadecimal digits long and the data field is 3, 6 or 9 hexadecimal digits long. The label
field is next and is where a local or global label is defined. Labels without instructions
on the same line will cause an error. Depending on which instruction is used, there may be
from zero to three operand fields after the instruction but the assembler uses only the first
and the rest are ignored and placed for the user’s benefit. Any characters after that must
be proceeded by a semicolon and are treated as a comment.

The assembler reads the old source file and writes a listing to the new source file if the /S
or /R option is given; otherwise it does not modify the source file.

The disassembler writes its disassembly listing to a source file. If there is a source file
with the same name as the one the disassembler is about to disassemble into, the original one
is made into a backup file.

The instruction set translator reads the old instructions from the source file and writes the
translated instructions to a new source file of the same name.

22

FILE SAFETY

If the assembler or translator are interrupted, it is possible to lose the source file, but it is not
possible to lose both the backup and source files.

COMPATIBILITY WITH SDS

There are significant differences in SDS .41A source files and ASDT .SRC files.

EXAMPLE

See any of the .SRC files on the ASDT disk.

23

BACKUP FILE FORMAT

FILE EXTENSION
.BAK

All backup files must have a .BAK extension.

FILE TYPE

Normal MS-DOS text file

PURPOSE

Backup files are maintained automatically by the utilities as a measure of file safety. It is not
possible to interrupt one of the utilities and loose both the source and backup files.

LINE FORMATS

Same as for source files.

USED BY

A4l The assembler will make the old source file into the backup file if /S or /R is given. If a
backup file already exists, it is overwritten. If /S is not given the backup file will not
be modified.

D41 When the disassembler first executes, it checks for a source file with the same name as the
one it is about to disassemble into. If it finds one that already exists, it makes it into
a backup file. If a backup file by that same name also exists, it is overwritten. If it does
not find a source file it does not do anything to the backup file.

T41 The old source file becomes the backup file every time that the translator is executed. Any
preexisting backup file of the same name is overwritten.

24

ROM FILE FORMAT

FILE EXTENSION

.ROM

All ROM files must have a .ROM extension.

FILE TYPE

Binary data file

DATA FORMAT

HIGH 2, LOW 8
Each 10-bit HP-41 word is stored in two 8-bit bytes in a ROM file. The high 2 bits of the
10-bit word are stored in the low 2 bits of the first byte and the low 8 bits are stored in
the second byte. Since there are 4096 10-bit bytes in each ROM image, all ROM files must be
exactly 8192 bytes long.

USED BY

L41 The linker writes the final, linked code to one or more ROM files.

D41 The disassembler reads the code from the ROM file and disassembles it.

N4l The emulator can read and execute the RON image files.

41COM

The HP-41 communications utility reads or writes ROM files over the HP-IL loop.

COMPATIBILITY WITH SDS

ROM files are in the same format as .41R files.

25

OBJECT FILE FORMAT

FILE EXTENSION

.0BJ

All object files must have a .0BJ extension.

FILE TYPE

Binary data file

USED BY

A4l The assembler writes internal global label definitions (entry points), unresolved external
references, relocation fixups, and the object code into each object file along with some other
information used by the linker.

L41 The linker reads the object files, locates the code in the ROM image, resolves external
references and fixes up all references.

COMPATIBILITY WITH SDS

ASDT .0BJ files may be renamed .410 and used with the SDS LINK41 utility. SDS .410 files may be
renamed .0OBJ and used with the ASDT L41 utility but the SDS file MFENTRY.410 must be renamed
NFENTRY.OBJ and linked in also.

26

LINK FILE FORMAT

FILE EXTENSION
.LNK

FILE TYPE

All link files must have a .LNK extension.

Normal MS-DOS text file

PURPOSE
Link files are used to direct the linker in the creation of the ROM files.

LINE FORMATS

<object file name>

This is the file name of the object file to load given without the .0BJ extension. The object
data is loaded at the current load address in the current RON image. The load address is then
modified so the next object file will load immediately following the previous.

$PAGE <page>
$PAGE <page> <bank>
S$PAGE <page> <ROM name>
SPAGE <page> <bank> <ROM name>

Where <page> is 0 to F (hex) and <bank> is 1 or 2. If <bank> is not given, the default is 1.
This command opens a new ROM image at the specified page and bank. All object files specified
after this are linked into this ROM image until another $PAGE command is given or the link file
ends. When there is only one ROM image it will be named the name of the link file (with a .ROM
extension). If there is more than one ROM image, a number from O to the number of ROM images
NINUS one is appended to this name. If <ROM name> is specified, that name will be used to name
the RON image instead.

SLOC <address>

$CH

;comment

USED BY
L41

EXAMPLE

Where <address> is a value 0000 to FFFF (hex). This command changes the load address so the
object files following it are loaded consecutively starting at this address. If <address> is
not in the same page as the page given with the current $PAGE command, a warning message will
result and the linker will force <address> into the current page. If this command is not
given, the initial load address is p000 where p is the current page.

Compute checksum and place in location FFF (hex) for the current ROM image. This command must
be given for each page where a checksum is desired. If location FFF is occupied by any object
code, an error message is generated and the checksum is written anyway.

Any line that begins with a semicolon is ignored.

Link files are used to direct the linking of object files.

See PCCOM.LNK on the ASDT disk for an example of a link file.

27

CONFIGURATION FILE FORMAT

FILE EXTENSION

.CFG

All config files must have a .CFG extension.

FILE TYPE

Normal MS-DOS text file

PURPOSE

This type of file is only written by the linker and is used to show which ROM is mapped to which page
as specified by the link file. The config file may optionally have the symbol cross reference table
written to it.

LINE FORMATS

S$PAGE <page> <bank> <rom file>
Where <page> is 0 to F (hex) and <bank> is 1 or 2. This documents the mapping of <rom file>

to the specified page and bank.

; anything
* anything
blank line

These three line formats contain information that is for the user’s benefit only. The * lines
contain the symbol cross reference table if there is one.

USED BY
L41 Config files are written by the linker. The linker will write the ROM image mapping and

optionally a symbol cross reference table.

EXAMPLE
After executing the demo on the ASDT disk, a configuration file with the name PCCOM.CFG will be

created.

28

FILE

FILE

LOAD FILE FORMAT

EXTENSION

.LOD

All load files must have a .LOD extension.

TYPE
Normal MS-DOS text file

PURPOSE

LINE

USED

This file is very similar to the config file format. It is only used by the emulator to load the ROM
images and label files.

FORMATS

SPAGE <page> <bank> <rom file>
Where <page> is 0 to F (hex) and <bank> is 1 or 2. The ROM file will be loaded into the
specified page and bank.

; anything
* anything
blank line

These three line formats contain information that is for the user’s benefit only and is not
read by the emulator.

SLABELS <label file>
The labels in the <label file> will be read and incorporated into the disassembly listing of
the emulator.

BY

N4l Load files are read by the emulator and specify the ROM images to read in. The file
DEFAULT.LOD is special since the emulator will read it if it exists and a load file name is
not specified on the command line.

EXAMPLE
A load file with the name DEFAULT.LOD is included on the ASDT disk although it specifies fictitious
ROM images.

29

LABEL FILE FORMAT

FILE EXTENSION
.LBL

FILE TYPE

All label files must have a .LBL extension.

Normal MS-DOS text file

LINE FORMATS

<label> <address>

Where <label> is any global or local label and <address> is a value 0000 to FFFF (hex). Labels
do not have to be in any particular order. If the label file has more than about fifty labels
in it, they should NOT be placed in alphabetical or reverse alphabetical order.

SLOC <address>

Where <address> is a value 0000 to FFFF (hex). This address is simply added to each of the
addresses of the labels affected. The labels affected are those that appear after each $LOC
command and before the next $LOC command or the end of file. This command may be given more
than once in the same file and if not given at all the default is 0000.

; comment

USED BY
Adl

L41

D41

N4l

EXAMPLE

Any line that begins with a semicolon is ignored.

When the /L option is given, the assembler writes all local labels to a label file that has
the same name as the source file. It does not write global labels.

When the /L option is given, the linker writes all global labels read from all object files
to one label file that has the same name as the link file. It does not write local labels
since they do not appear in the object files.

For each /L:<label file> option specified on the command line of the disassembler, all local
and global labels are read from the specified file and incorporated into the source listing
just as for the mainframe labels. The addresses specified by each label are used exactly as
they appear unless they are offset by the $LOC command.

The emulator reads the label files just like the disassembler and incorporates the labels into
its listings.

[FOOBAR_A] 0023

(FOOBAR_D) 32C2

SLOC B00O

[FOOBAR_B] 04A3
SLOC 0200

(FOOBAR_C) 032B
;this is a comment

[FOOBAR_A] is interpreted as 0023, (FOOBARD) is 32C2, [FOOBAR_B] is B4A3, (FOOBAR_C) is 052B.

30

REGISTER FILE FORMAT

FILE EXTENSION

.REG

All REG files must have a .REG extension.

FILE TYPE

Binary data file

USED BY

N4l The emulator can read and write the CPU and RAM registers into a register file.

31

SECTION 7. REFERENCE INSTRUCTION FORMATS

SHORT JUMPS

INSTRUCTIONS

JNC <operand> Jump on no carry, otherwise do nothing
JC <operand> Jump on carry, otherwise do nothing

DESCRIPTION

The short jump instruction jumps -64 to +63 words from where the instruction is. This type of
instruction encodes only a relative displacement in its bits.

FORMATS

JNC <+disp>
JNC <~-disp>

Where <+disp> is +0 to +63 and <-disp> is -1 to -64 (dec). The actual address that is jumped
to is relative to where the short jump imstruction is located after it is assembled and linked
and the RON is plugged into the HP-41. Regardless of where the instruction ends up, it always
jumps the same number of words forward or backward.

JNC <address>
Where <address> is 0000 to FFFF (hex). The assembler resolves this type by taking the
specified address and subtracting the jump instruction’s ASSEMBLE TIME ADDRESS to get a
positive or neqative displacement. This should only be used if the object module is assembled
with the .ORG directive so that the assemble time address will be the SAME as the run time
address. This is a literal specification and the linker does not relocate amything. It is
possible to specify an address that is too far from the jump, causing A4l to report an error.

JNC <label>
Where <label> is any local or global label. The address that will be jumped to is whatever
the value of the label is, assuming it is within range. If the label is external, the linker
must resolve the reference, otherwise it is completely resolved during assembly.

32

LONG JUMPS

INSTRUCTIONS
NCGO <operand> Goto on no carry, otherwise do nothing
CGO <operand> Goto on carry, otherwise do nothing
NCXQ <operand> Execute on no carry, otherwise do nothing
CXQ <operand> Execute on carry, otherwise do nothing

DESCRIPTION
These instructions occupy two words each and can jump to anywhere in the HP-41 address space. The
address that they jump to is encoded in the instruction’s bits and regardless of where the instruction
is located, it always jumps to the same location. The goto types of long jumps simply cause an
immediate jump depending on the carry flag. The execute types do the same but also push a return
address onto the HP-41’s return stack. The value that is pushed is the address of the word that
follows the long jump.

FORMATS

NCXQ <address>

Where <address> is 0000 to FFFF (hex). The assembler resolves this type of reference literally
and the linker does not change it.

NCXQ <label>

Where <label> is any local or global label. If the label is internal, it is resolved but will
be fixed up (resolved again) at link time. If the label is a mainframe label, the assembler
resolves it immediately without any relocation possible. If it is not a mainframe label or
an internal, then the label is external and the linker must resolve the reference after it
relocates all of the object files. If the /E option is specified, the mainframe label table
is erased and all references to mainframe labels are treated as references to externals.

33

OTHER REFERENCE "INSTRUCTIONS"

The rest of the jump and reference instructions use a general format described below:

INSTRUCTION <value>

Where "INSTRUCTION" is one of the other reference "instructions" described below and <value> is some
number usually from 0000 to FFFF (hex). This value is used exactly as it appears and is not relocated.

INSTRUCTION <symbol>
Where <symbol> is any local or global symbol. The symbol is relocated by the linker if it is a
relative label but is not relocated if it is an absolute symbol.

CON
DEFP4K
DEFR4K
DEFR8K
U4KDEF
USKDEF
LC3
NCGOREL
NCXQREL

Enter constant into RON
(Not useful - kept for compatibility with SDS)
Define 4K NCODE FAT entry
Define 8K MCODE FAT entry
Define 4K User Code FAT entry
Define 8K User Code FAT entry
LC three times
Goto on no carry relative to current quad
Execute on no carry relative to current quad

For the descriptions below assume [FOOBAR] resolves to the value 06D2 (hex).

CON This is not an instruction at all but is used to directly enter a 10 bit value into the RON
image. This value could represent data, or even an instruction. CON 123 would make the object
data contain the value 123 while CON [FOOBAR] will be 6D2. If the high 6 bits are not all
zero a warning message will be displayed and the assembler will only use the low 10 bits.

DEFP4K, DEFRAK, DEFRSK, UKDEF, USKDEF

LC3

These FAT entry pseudo-instructions are used to define the FAT and should only appear in the
first part of the ROM image.

This is a macro instruction that expands into three LC instructions containing the low three
nybbles of the address or symbol. LC3 E2A4 expands to LC 2, LC A, LC 4 and LC3 [FOOBAR]
expands to LC 6, LC D, LC 2. If the high 4 bits are not all zero a warning message will be
displayed and the assembler will only use the low 12 bits.

NCGOREL, NCXQREL
The quad relative goto and execute pseudo-instructions are used to jump from one address to
another within a port-confiqured RON image. They call special mainframe routines that do the
actual jump so they are slower and use 1 or 2 return stack levels. (See Section 5 for
port-confiqured ROM images)

34

O
O

~
J
O
O
&
W

B
N
=

W
O
W
D
D
N

D
N
N
N
N
N
R
R

e
2
2
=
=
=
O

—
O
W

0
0
I
O

U
l
&
W
M

O
W
O
o
o

~
J
O
W
O
o
i

-
O

APPENDIX A

COMMON ROM ID’S

Math
Statistics
Surveying
Finance, ES-41
Standard
Circuit Analysis, ES-41
Structures
Stress Analysis
Home Management, CCD
Games, Auto/Dup, PPC RON
Real Estate, Eramco, CCD, Paname

Machine Design
Thermal
Navigation
Petroleum, Mountain Computer
Petroleunm
Plotter, NFCROM
Plotter
Securities, Structures, Clinical Lab, Aviation
PPC RON
Data logger, Assembler 3
HP-IL Development, Advantage
Extended I/0
HP-IL Development, Advantage
Extended Functions
Time
Wand
Mass Storage
Printer
Card Reader
Data logger

35

APPENDIX B

HP-41 ROM MEMORY MAP

36

Page BANK 1 BANK 2

F Port 4 upper page
P E Port 4 lower page
0 D Port 3 upper page
R C Port 3 lower page
T B Port 2 upper page
S A Port 2 lower page

9 Port 1 upper page
8 Port 1 lower page

7 HP-IL Mass Storage ROM --Not used
S 6 Printer ROM --Not used
Y 5 Timer RON X-Functions ROM (CX only)
S 4 Reserved by HP --Not used
T 3 X-Functions ROM (CX only) --Not used
E 2 Operating system RON 2 --Not used
N 1 Operating system RON 1 --Not used

0 Operating system ROM 0 --Not used

APPENDIX C

FORMAT FOR ROM WITH FAT

p000 ROM ID Number
p001 Number of Functions (n)

FAT

p002 Address of First Function
p003 n "

p(2n) Address of Last Function

p(2n+l) " "
p(2n+2) FAT Terminator (must be loaded with 000)
p(2n+3) ")
------------------ CODE
p(n2+4)

pFF3
------------------ POLLING VECTORS =--========--

pFF4 Pause Loop

pFF5 Main Running Loop
pFF6 Deep Sleep Wake Up With No Key Down
pFF7 Power Off
pFF8 I/0 Service
pFF9 Deep Sleep Wake Up
pFFA Cold Start
------------------ ROM TERMINATOR ---=======-=--

pFFB Revision Level Characters (optional)
pFFC n "

pFFD " n

pFFE " n

pFFF Checksum (optional)

Where p is the number of the page that the ROM maps to. This format is used for ROMs at pages 3 and
5 to F.

37

APPENDIX D

CHARACTER TRANSLATION TABLE

The HP-41 display characters with values from 00 to 1F (hex) translate directly to the IBM/PC characters with
values from 40 to 5F (hex). These are the following PC characters:

@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~_

The HP-41 display characters with values from 20 to 3F (hex) translate directly to the IBM/PC characters with
values from 20 to 3F (hex) with the exception of the { }~; characters. These are the following IBM/PC
characters:

SPACE !"#$%&’()*{-)/0123456789~;<=>?

The HP-41 display characters with values from 100 to 10F (hex) translate to a number of non-intuitive IBM/PC
characters. These are the following PC characters:

xabcdeotuvwmnsg

The extra HP-41 display characters supported by the halfnut display (the one with rounded edges) are not
supported by ASDT.

The following table further explains the mapping of certain characters:

HP-41 Display Characters PC Representation

Left goose
Right goose
Boxed star
Comma character
Append
Overbar
Single quote
One leq hangman
Two leg hangman
One arm hangman
Full hangman
Nicro
Not equal to
Sigma
Angle symbol

e
QO

X
S
e
o
~

Q
n
o
s
8
E
C
E
C

38

KEYCODE TABLE

APPENDIX E

18 Cé C5 C4

10 30 70 80 Co

11 31 71 81 1

12 32 72 82 C2

13 73 83 C3

14 34 74 84

15 35 75 85

16 36 76 86

17 37 77 87

39

APPENDIX F

RAM CONFIGURATION DATA

N4l emulates extended memory to support the HP-41CX. If ROM is loaded into page 3 when M4l is run, it assumes
all possible RAM registers are available.

The following registers are available when emulating any HP-41:

000-00F
0CO-1FF

The following registers are available when the emulator detects a ROM in page 3. This is equivalent to two
Extended Memory modules installed in either an HP-41 with one Extended Function module or an HP-41CX.

000-00F
040-1FF
201-2EF
301-3EF

40

APPENDIX G

INSTRUCTION SET CROSS REFERENCE TABLE

INTRODUCTION

This document contains all of the instructions supported by ASDT and is intended as a reference quide
to programming the HP-41.

Note: When the Jacobs/De Arras set failed to contain instructions (such as the display instructions)
HP mnemonics were substituted. The mnemonics NCXQREL and NCGOREL were created for ASDT.

REFERENCES
HP-41 MCODE for Beginners, Ken Emory, Synthetix, 1985
The ZENROM Programmer’s Manual, Zengrange Ltd., 1984
The HP-41 VASH listings, Hewlett Packard, 1985
Software Development System II Manual, Hewlett Packard, 1986

CPU REGISTERS

HP ZENCODE JACOBS/ Bits Description

De ARRAS

C C C 5 Primary accumulator
A A A 5 Secondary storage and accumulator
B B B 5 Secondary storage and accumulator
X X X 56 Alternate storage
N N N 5 Alternate storage
P P P 4 Nybble Pointer
0 Q Q 4 Nybble Pointer
PT PT R 4 EBither P or Q, whichever is the active pointer
SB ST ST 8 Lower CPU flags 7-0
G G G § Alternate storage (often flags)
F F T 8§ Beeper register
STK STK ADR 16 The first address on the return stack
Upper Flags 6 Upper CPU flags 13-8
Carry Flag 1 Set by some instructions; cleared after all others
Keydown Flag 1 Set when key register has data ready
Key Register § Contains the keycode entered by pressing a key
Return Stack 16x4 Contains 4 16-bit words that hold return addresses
Program Counter 16 Points to next instruction to execute

56 BIT REGISTER FORMAT

Nybble: 13 : 12 : 11 :10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0
Nybble 13 is the most significant; 0 is the least
Notation: A[x:y] means all nybbles in A REG from x to y; A[x] is just nybble x

41

GENERAL PURPOSE INSTRUCTIONS

CODE HP ZENCODE JACOBS/ OPERAND

De ARRAS

FLAG INSTRUCTIONS
004 S0 CF
008 Sl SF
00C ST=1? %S
34 CLRST S™=0
358)
198 C=ST C=ST
308 CSTEX C<ST

LOAD CONSTANTS
010 K I
010,010,010 1¢3 LC3
130,000 DI DI
000 CON CON
000 FONS FONS
000 RN YROM

POINTER
014 M= B
01 = P
0A0 SEP PI=P
0E0 SELQ DI
120 B B
34 DECPT -PT
30 INCPT 4T

RAM ACCESSING
270 DADD=C RAMSLCT
280 DATAC WDATA
038 C=DATA RDATA
028 REGN=C REG=C
038 C<REGN C=REG

ROM ACCESSING
330 CXISA RDROM
040 WIDL WMLDL
100 ENRONL ENBANKI
180 ENRON2 ENBANK2

KEYBOARD
220 C=REYS C=KEY
230 GOREYS GTOKEY
38 RSTRB CLRKEY
3 CHRKB ?KEY

CIRF 0 to 13 (dec)
SETF 0 to 13 (dec)
JFSET 0 to 13 (dec)
ST=0
S1=C
C=ST
COST

IDER 0 toF (hex)
IDGR3 000 to FFF (hex)
IDIS&X 000 to 3FF (hex)

CON 000 to 3FF (hex)
FCNS 0 to 64 (dec)
YROM 1 to 31 (dec)

R= 0 to 13 (dec)
= 0 to 13 (dec)
SLCTP

SICTY
=)
R=R-1
R=R+1

RAMSLCT
WRITDATA
READDATA
WRIT 0 toF (hex)

READ 0 toF (hex)

FETCHS&X
WROM
ENROM1
ENRON2

=KEY
GTOREY
CLRREY
KEY

rclear flag
iset flag
iset carry if flag set
sclear lower CPU flags (7-0)

rcopy C[1:0] into ST
rcopy ST into C[1:0]
rexchange C[1:0] and ST

11oad constant to C[PT), then decrement pointer
:Do three IC instructions
11oad next word in ROM into C[2:0]
renter hex constant into ROM
;decimal constant same as CON
1decinal constant same as CON

rset carry if active pointer equal
iset active pointer
/make P the active pointer
/make Q the active pointer
iset carry if P=Q
1decrement the active pointer
rincrement the active pointer

;select the RAM chip addressed in C[2:0]
nrites C[13:0] to selected RAM register
nrites selected RAM register to C[13:0]
sirite to RAM register in selected chip
;read from RAM register in selected chip

;copies the ROM data addressed in C[6:3] into C[2:0]
write C[2:0] to address C[6:3)
renable ROM bank 1 for current ROM device
renable ROM bank 2 for current ROM device

rcopy key register to C[4:3]
rcopy the key register into the low byte of the PC
iclear keydown flag if no key pressed and clear key register
iset carry if keydown flag is set

42

MODE SETTING
060,000 POWOFF
260 SETHEX
240 SETDEC
280 DISOFF
320 DISTOG

M, N, G, F
070 N=C
0BO C=N
0F0 ONEX
158 M=C
198 C=N
108 ONEX
058 6=C
098 06
008 CGEX
258 P=SB
298 SB=F
D8 FEXSB

OTHER
000 NOP
160 211D
03¢ RCR
370 C=CORA
380 C=CEA
10 CLRABC

POWOFF DOWOFF
SETHEX SETHEX
SPTDEC SETDEC
DISOFF DSPOFF
DISTOG DSPTOG

REGISTERS
NC N
N =N
CON CON

N MC
o
CoM CoN
6C G
¢ (6
CO6 COG

F=ST =57
SIF 1T
SIOP STOT

NP NOP
PBAT ?LOWBAT
RR RR 0tol3 (dec)
C=CORA C=CORA
C=CANDA C=CANDA
ABC=0 A<B=C=0

shalt the CPU
rset hexadecimal mode
rset decimal mode
rturn display off
1togqle state of display

;copy C[13:0] into N
rcopy N into C[13:0)
rexchange C[13:0] and N
rcopy C[13:0] into M
rcopy M[13:0] into C
rexchange C[13:0] and M
scopy C[PT+1:PT] into G (if PT= 13, high byte is undefined)
;copy G into C[PT+1:PT) (if PT= 13, high byte is undefined)
rexchange C[PT+1:PT] and G (if PT= 13, high byte is undefined)
scopy ST into beeper register
jcopy beeper register into ST
rexchange ST and beeper register

/o operation
rset carry if battery is low
;rotate C reg right by the nybble
1C[13:0) = C bitwise or A
1C[13:0] = C bitwise and A
sclear all nybbles of A,B,C registers

43

TIME ENABLE FIELD INSTRUCTIONS

HP LENCODE JACOBS/ Nybble(s) Time Enable Fields

De ARRAS

PT PT iR [PT) Nybble pointed to by active pointer
X X S&X [2:0] Sign and exponent
WPT WPT R [PT:0] Nybbles pointed to by active pointer through nybble 0
W ALL ALL [13:0] Entire register
PQ PQ P-Q [0:P) Nybbles from pointer Q to pointer P subject to:

if P<=) then [Q:P]; if P>Q then [13:P]
XS XS XS (2] Exponent sign
N X N [12:3) Mantissa
S S NS [13] Mantissa sign

Nybble: 13 : 12 :11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0
S ¥ ¥ ¥ ¥ K KN ¥ KN ¥ K X X X

All of the instructions in the following group work on the above
Time Enable Fields (TEF). C[TEF] is the C register with whatever field
is selected from above. Ex: A[PT], A[XS] etc.

Any of the arithmetic TEF instructions set the carry flag if either an
overflow or underflow occurs.

TEF

002 =0 =0 =0 TEF :clear A[TEF)
022 B=0 B=0 B=0 TEF sclear B[TEF)

042 =0 =0 C=0 TEF sclear C[TEF]

062 ABEX AOB AOB TEF rexchange A[TEF) and B[TEF)
082 B= B=A B=A TEF rcopy A[TEF) into B[TEF)

0A2 ACEX AGC AOC TEF rexchange A[TEF] and C[TEF]

0C2 B CB (B TEF ;copy B[TEF] into C[TEF]
0E2 BCEX BoC BOC TEF rexchange B[TEF] and C[TEF)
102 A=C A=C A=C TEF scopy C[TEF] into A[TEF]
122 AMB AMB AMB TEF yadd B[TEF] to A[TEF)

142 A=AC A=AHC A=MC TEF radd C[TEF) to A[TEF)

162 MMl A=M1 Al TEF ;add one to A[TEF)
182 A=A-B A=A-B A=A-B TEF rsubtract B[TEF] from A[TEF)

1A2 A=A-1 A=A-1 A=A-1 TEF ssubtract one from A[TEF)

102 MA-C AAC ASA-C TEF isubtract C[TEF] from A[TEF]
1E2 C=CH C=C+ C=C+C TEF rdouble C[TEF]

202 C=MC C=MC C=CtA TEF ;add A[TEF] to C[TEF)
222 C=C+1 C=C+l C=C+l TEF ;add one to C[TEF]
242 (sA-C C=A-C C=A-C TEF ;subtract C[TEF) from A[TEF] store in C[TEF)
262 C¢-1 (-1 (-1 TEF rsubtract one from C[TEF]

282 ==C C==C (=0-C TEF 116's complement of C if in hex mode; 10's complement if in dec mode
2A2 C==C-1 (C==C-1 C(==C-1 TEF 115's complement if hex mode; 9's complement if dec mode
202 40 B0 B0 TEF iset carry if B[TEF) is not equal to 0
2E2 40 0 ch0 TEF iset carry if C[TEF) is not equal to 0
302 WC MC WC TR iset carry if A[TEF) is less than C[TEF)

44

A<B

[0{i

AIC

ASR

BSR

CSR

ASL

A=B
B=C

322 <8
342 M0
362 ?MC
382 ASR
W2 BSR
32 CSR
32 ASL

TEF TWO BYTE
062,082 AR
0E2,000 B=C
0A2,102 C=A C=A

2A<B

%40
[i

RSHFA

RSHFB

RSHFC

LSHFA

A=

TEF
TEF
TEF
TEF
TEF
TEF
TEF

TEF
TEF
TEF

rset carry if A[TEF] is less than B[TEF)
iset carry if A[TEF] is not equal to 0

iset carry if A[TEF] is not equal to C[TEF]
;shift A right by one nybble (leftmost byte set to 0)
;shift B right by one nybble (leftmost byte set to 0)
rshift C right by one nybble (leftmost byte set to 0)
;shift A left by one nybble (rightmost byte set to 0)

scopy B[TEF) into A[TEF)
rcopy C[TEF] into B[TEF]
rcopy A[TEF) into C[TEF)

45

JUMPING INSTRUCTIONS

There are duplicate mnemonics for three of the HP jump instructions. GONC is the same as GOTO, GSUBNC is the
same as GOSUB, and GOLNC is the same as GOLONG. HP’s assemblers will check the instruction proceeding a GOTO,
GOSUB or GOLONG to be sure that it camnot set the carry. This insures that these mnemonics cause an
unconditional jump and not a just a jump on no carry. ASDT does not do this and assembles the duplicates
exactly the same.

SHORT JUMPS
007 GOC JC JC -64 to +63 (dec) ;short relative jump on carry
003 GONC JNC INC -64 to 463 (dec) ;short relative jump on no carry

LONG JUMPS
001,000 GSUBNC NCXQ INCXQ ADDRESS rexecute on no carry

001,001 GSUBC CXQ 2CX0 ADDRESS rexecute on carry

001,002 GOLNC NCGO 7?NCGO ADDRESS 1qoto on no carry
001,003 GOLC (G0 2660 ADDRESS rqoto on carry

QUAD RELATIVE JUMPS
349,08C,000 GSB41C NCXQREL ?NCXQREL ADDRESS rexecute relative to current quad
341,08C,000 GOL41C NCGOREL ?NCGOREL ADDRESS 1qoto relative to current quad

The HP instructions GSBSAN and GOLSAN are three byte jumps just like GSB41C and GOL41C, but they are limited
to jumping into the current 1K quad. ASDT does not implement GSBSAM and GOLSAN since GSB41C and GOL41C are
assembled intelligently by ASDT to use the same-quad mainframe routines if they can or else use the
quad-specific mainframe routines.

The following tables show which addresses are used to decide which quad relative routines to assemble to.

Quad Relative Branch Instruction Bytes
Quad 0 Quad 1 Quad 2 Quad 3 Same Quad

0-3FF 400-7FF 800-BFF COO-FFF

NCXQREL 349 08C 36D 08C 391 08C 3B5 08C 379 03C

NCGOREL 341 08C 365 08C 389 08C 3AD 08C 369 03C

* These are followed by the third byte containing the low 10 bits of the address to jump to.

Actual Instruction for Quad Relative Branches

Quad 0 Quad 1 Quad 2 Quad 3 Same Quad

NCXQ [GOSUBO] [GOSUBL] [GOSUB2] [GOSUB3] [GOSUB]
(Address) 23D2 23DB 23E4 23ED OFDE
NCXQ [GOLO] [GOL1] [GOL2] [GOL3] [GOLONG]
(Address) 230 23D9 23E2 23EB OFDA

Actual Instruction in HP mnemonics
Quad 0 Quad 1 Quad 2 Quad 3 Same Quad

GOSUB [GOSUBO] [GOSUBL] [GOSUB2] [GOSUB3] [GOSUB]
GOSUB [GOLO] [GOL1] [GOL2] [GOL3] [GOLONG]

Note that the actual instruction is always NCXQ to the appropriate label and the mainframe routine at the label
determines if a return will be pushed or not making either a NCXQREL or a NCGOREL. You can’t use a NCGO or a
CGO to jump to one of these routines because these instructions do not push the return address, which is needed
to know which page the jump was in.

46

It is possible to make a three byte jump that jumps on carry using CXQ [FOOBAR]. These are not really useful
since the carry must always be set or the program will execute the third byte of the jump instruction after
skipping the first two. Likewise, never set the carry before a NCGOREL or NCXQREL. The address that is pushed
on the return stack for a three byte jump is the address to the THIRD word, so if the jump crosses a quad
boundary, it will jump into the quad that contains the third word.

47

FAT DEFINITION
000,100 DEFP4K DEFP4K DEFPAK ADDRESS
000,000 DEFR4K DEFR4K DEFR4K ADDRESS
000,000 DEFRSK DEFR8K DEFRSK ADDRESS
200,000 URDEF URDEF U4KDEF ADDRESS
200,000 USBKDEF USKDEF UBKDEF ADDRESS

RETURN STACK AND RETURNS
1E0 GOTOC GTOC GOTOADR
170 STR=C STR=C PUSHADR
1B0 C=STk C=STK POPADR
020 SPOPND CLRRIN XQ>GO
360 RINC CRIN ?CRIN
3A0 RTNNC NCRTN ?NCRTN
3E0 RIN RTN RIN

PERIPHERAL INSTRUCTIONS

Peripheral addresses for PERSLCT
00 No peripheral enabled

10 Special display for halfnut versions

FB Timer
FC Card Reader

FD Display
FE Wand

PERIPHERAL
3F0 PFAD=C

024 SELPF

PERIPHERAL

02 FLG=1?

02C 13=1

06C F4=1

0AC F5=1

0EC F10=1

12C F8=1

16C F6=1

1AC Fl1=1

220 F2=1

26C 7F9=1

2AC F7=1

2EC F13=1

32C Fl=1

36C F12=1

JAC F0=1

ACCESSING

PERSICT PRPHSICT
PERICT SELPF 0 to F (hex)

FLAGS

?PF 1= 0 to 13 (dec)
P33 WI=3

P4 WI=¢

DAV I=5

J0RAV 7FI= 10

JFRAV 7FI= 8

PR ?I=6

MRAIL FI= 11

DB 7FI=2

JPRNS ?FI=9

SRR FI=7

SERV FI=13

CRR ¥I=1

AN I= 12

7PBSY 1= 0

10bsolete

1define MCODE function in same 4K ROM
rdefine MCODE function in next 8K ROM
rdefine USER CODE function in same 4K ROM
sdefine USER CODE function in next 8K ROM

;jump to the address in C[6:3]
spush C[6:3] onto the return stack
1pop the return stack into C[6:3]; put 0 in last location of stack
1pop first address off return stack
rreturn if carry set
jreturn if carry not set
sunconditional return

1select the peripheral addressed in C[1:0]
rallow peripheral to take control

rset carry if peripheral flag set
rset carry if peripheral flag 3 set
iset carry if peripheral flag 4 set
iset carry if peripheral flag 5 set
iset carry if HP-IL output register available
;set carry if HP-IL frame available
rset carry if HP-IL interface clear received
iset carry if timer clock access failure
;set carry if wand has data in wand buffer
iset carry if HP-IL frame not received as sent
iset carry if service request received
iset carry if service request
iset carry if card reader flag set
iset carry if alarm due
iset carry if peripheral flag 0 set

48

DISPLAY INSTRUCTIONS

Zencode display instructions:
WR/RD - Write/Read
A/B/C - to/from display registers A/B/C
1/4/6/12 - 1/4/6/12 characters to/from
R/L - Right/Left of display

Writing instructions cause the new characters to be pushed on the specified side which pushes the characters
on the other end off into oblivion.

Reading instructions cause the characters to be taken off the specified side and pushed on the other side.

DISPLAY READING
038 FLLDA RDALI2L FLLDA

078 FLLDB RDBI2L FLLDB

0B8 FLLDC RDCI2L FLLDC

0F8 FLLDAB RDAB6L FLLDAB

138 FLLABC RDABC4L FLLABC

178 READEN READAN READEN ;copy annunciators into C[2:0]
1B8 FLSDC RDCIL FLSDC

1F8 FRSDA RDAIR FRSDA

238 FRSDB RDBIR FRSDB

278 FRSDC RDCIR FRSDC

2B8 FLSDA RDAIL FLSDA

2F8 FLSDB RDBIL FLSDB

338 FRSDAB RDABIR FRSDAB

378 FLSDAB RDABIL FLSDAB

3B8 RABCR RDABCIR RABCR

JF8 RABCL RDABCIL RABCL

DISPLAY WRITING

028 SRIDA WRAI2L SRLDA

068 SRIDB WRB12L SRLDB

0A8 SRIDC WRCI2L SRLDC

0E8 SRIDAB WRAB6L SRLDAB

128 SRIABC WRABCAL SRLABC

168 SLLDAB WRAB6R SLLDAB

1A8 SLLABC WRABCAR SLLABC

1E8 SRSDA WRALL SRSDA

228 SRSDB WRBIL SRSDB

268 SRSDC WRCIL SRSDC

2A8 SLSDA WRAIR SLSDA

2E8 SLSDB WRBIR SLSDB

328 SRSDAB WRABIL SRSDAB

368 SLSDAB WRABIR SLSDAB

JA8 SRSABC WRABCIL SRSABC

JE8 SLSABC WRABCIR SLSABC

2F0 WRTEN WRITAN WRTEN ;copy bits from C[2:0] into annunciators

49

TIME MODULE
028 WRTINE WIIME WRTIME
068 WOTIME WTIME- WDTIME
0A8 WRALM WALM WRAIM
0E8 WRSTS WSTS WRSTS
128 WRSCR WSCR WRSCR
168 WSINT WINTST WSINT
1E8 STPINT STPINT STPINT
228 DSWKUP WKUPOFF DSWKUP
268 ENWKUP WKUPON ENWKUP
208 DSAIM AIMOFF DSALM
2E8 ENALN AIMON ENALX
328 STOPC STOPC STOPC
368 STARTC STARTC STARTC
A8 PT=B TIMER=A PT-B
JE8 PT=A TIMER=B PT=A

TIME MODULE
038 RDTINE RTIME RDTIME
078 RCTIME RTIMEST RCTIME
088 RDAIM RAIM RDALM
0F8 RDSTS RSTS RDSTS
138 RDSCR RSCR RDSCR
178 RDINT RINT RDINT

CARD READER
028 ENWRIT ENDWRIT ENWRIT
068 STWRIT STWRIT STWRIT
0A8 ENREAD ENDREAD ENREAD
0E8 STREAD STREAD STREAD
168 CRDWPF CRDWPF CRDWPF
1E8 CRDOHF CRDOHF CRDOHF
268 CRDINF CRDINF CRDINF
2E8 TSTBUF TSTBUF TSTBUF
328 TRPCRD SETCTF TRPCRD
368 TCLCRD TCICTF TCLCRD
JE8 CRDFLG CRDEXF CRDFLG

INTELLIGENT PERIPHERAL
200 EPILL HPILC HPILC 0 to 7 ;c0py C[1:0] to HP-IL register

50

VARIATIONS
062 BAEX

0A2 CAEX

0E2 CBEX

202 C=C+A

108 NCEX

0F0 NCEX

VARIATIONS

282 cho?

202 B#0?

302 AC?

322 A<B?

342 Af0?

362 AlC?

370 C=C!A

3B0 C=C.A

B8 FRSABC

0EC ORAV?

12C FRAV?

16C IFCR?

26C FRNS?

2AC SRQR?

36C ALARN?

160 LLD?

120 p=Q?

014 PT=?

001,000 GOSUB
001,002 GOLONG

003 GOTO

024 HPL~CH

384 S0=0

304 S1=0

204 S2=0

004 S3=0

044 S4= 0

084 S5=0

144 S6=0

284 S7=0

104 S8=0

244 S9=0

0C4 S10= 0

184 S11=0

344 S12= 0

2C4 S13=10

388 S0=1

308 S1=1

208 S2=1

008 S3=1

048 S4=1

BOA

COA

CoB

C=C+A

NOC

NOC

BOA

COA

COB

C=A+C

NOC

NOC

TEF
TEF
TEF
TEF

AND DUPLICATES
2040

B40

A<C

A<B

%40

AfC

C=CORA

C=CANDA

RDABCIR

P0RAV

PFRAV

TFCR

FRNS

7SROR

AN

7BAT

=g
PT=

NCXQ

NCGO

INC

PERTCT

CF O
CF1
CF 2
CF3
CF 4
CF5
CF 6
CF7
CF 8
CF 9
CF 10
CF 1l
CF 12
CF 13

SF O

SF1

SF 2

SF3

SF 4

2040

?B40

A<C

7A<B

%40

AIC

C=CORA

C=CANDA

FRSABC

FI= 10

FRAV?

=6

FI=9

SROR?

1= 12

7LOWBAT

P

R=

INCXQ

INCGO

INC

SELPF

CLRF 0
CLRF 1
CLRF 2
CLRF 3
CLRF 4
CLRF 5
CLRF 6
CLRF 7
CLRF 8
CLRF 9
CLRF 10
CLRF 11
CLRF 12
CLRF 13

SETF 0
SETF 1
SETF 2
SETF 3
SETF 4

TEF
TEF
TEF
TEF
TEF
TEF

0 to 13 (dec)
ADDRESS
ADDRESS
-64 to +63 (dec)

0 to F (hex)

51

cs

£T1d54¢
{11354¢
1T1354¢
0TddS4¢
6Ld5d¢
813Sd¢
LL354¢
9J3Sd¢
GJASd¢
bL354¢
£1d54¢
¢JaSd¢
TJ354¢
0JaSd¢
¢d13S
{1d1ds
1Td1dS
0T41dS
6415
84145
L4135
94048
§4045

€1Sd¢
{1Sd¢
1TS4¢
0TSd¢
bSd¢
BSd¢
LSd¢
9Sd¢
GSd¢
bSd¢
¢Sd¢
 S&¢
T5d¢
0Sd¢
(T48
{14
T4
0T4§
645
845
La5
948
G45

1=€15¢
1=t15¢
=T15¢
1=0TS¢
1=65¢
1=85¢
1=L5¢
1=95¢
1=65¢
T=5¢
1=€5¢
1=15¢
T=T5¢
1=05¢

T=t18
1=18
T=T1S
T=018
T=65
T=8S
T=LS
1=95
T=65

1
bt
81
200
vt
01
08¢
b1
280
%0
200
207
20¢
08¢
8ot
8ht
881
820
89t
801
88¢
891
880

	Cover
	Contents
	1. Introduction
	2. Features
	3. Definitions
	4. Utilities
	A41 Assembler
	L41 Linker
	D41 Disassembler
	M41 Emulator
	T41 Translator
	41COM Communications Utility

	5. Linking and Disassembly
	6. File Formats
	Source File Format
	Backup File Format
	ROM File Format
	Object File Format
	Link File Format
	Configuration File Format
	Load File Format
	Label File Format
	Register File Format

	7. Reference Instructions
	Short Jumps
	Long Jumps
	Other Reference "Instructions"

	Appendix
	A. Common ROM IDs
	B. HP-41 ROM Memory Map
	C. Format For ROM with FAT
	D. Character Translation Table
	E. Keycode Table
	F. RAM Configuration Data
	G. Instruction Set Cross Reference Table

