

USING YOUR HP-41 ADVANTAGE: ELECTRICAL CIRCUITS FOR STUDENTS

by Chris Coffin and Ted Wadman Illustrated by Robert L. Bloch Produced by Gregg Kleiner, Carol Sweet, and Soraya Simons

Grapevine Publications, Inc.

P.O. Box 118 Corvallis, Oregon 97339-0118 USA For the sake of brevity, the terms "Advantage," "Advantage Module," or "HP-41 Advantage" have been used herein to denote "The HP-41 Advantage Advanced Solutions Pac," which is the proper and reserved name for Hewlett-Packard's plug-in module and its instruction manual for the HP-41 handheld computer system. We extend our thanks to Hewlett-Packard Company for producing such top-quality products and documentation.

ACKNOWLEDGEMENTS

Equations and formulas used in this book and its program may be found in "Schaum's Outline of Theory and Problems of Electric Circuits," by Joseph A. Edminister, M.S.E. © 1965 McGraw-Hill, Inc., New York.

Special thanks and salutes are due to Chris Bunsen, who conceived and developed the HP-41 Advantage, and who encouraged the development of this book.

Cover photo by Tom Brennan.

© 1985, Grapevine Publications, Inc. All rights reserved. No portion of this book or its contents, nor any portion of the programs contained herein, may be reproduced in any form, printed, electronic or mechanical, without written permission from Grapevine Publications, Inc.

Printed in the United States of America ISBN 0-931011-03-5

NOTICE: Grapevine Publications, Inc., makes no express or implied warranty with regard to the keystroke procedures and program material herein offered, nor to their merchantability nor fitness for any particular purpose. These keystroke procedures and program material are made available solely on an "as is" basis, and the entire risk as to their quality and performance is with the user. Should the keystroke procedures or program material prove defective, the user (and not Grapevine Publications, Inc., nor any other party) shall bear the entire cost of all necessary correction and all incidental or consequential damages. Grapevine Publications, Inc., shall not be liable for any incidental or consequential damages in connection with, or arising out of, the furnishing, use, or performance of these keystroke procedures or program material.

LOADING THE PROGRAM

YOUR CALCULATOR'S CONFIGURATION

In order to use this program, you'll need (at least):

- -an HP-41CV or HP-41CX;
- the HP-41 Advantage module;
- this book;
- just a little time to read through this, load the program, and practice with it.

(You probably knew all of that, but we needed to warm up here a little bit.)

Also, if you have an Extended Functions module (and/or one or two Extended Memory modules), you'll find those useful, so keep them plugged into your calculator.

Now, assuming that you have everything on this checklist, the first step is to load the program.

Starting on page 8, you'll find a program listing and a set of barcode.

But before you get to that...

A word from our sponsor:

ARE YOU RUSTY?

In this book, you'll need to be able to follow keystroke procedures, load, pack and execute a program, etc. But we really don't want to take the room here to go over all of that (besides, you didn't want this book to weigh over 3 pounds, did you?). So we're going to assume you know these things. For example, do you know:

- How to read keystroke notation? (e.g. [XEQ] [ALPHA] SIZE [ALPHA] 228)
- How USER mode works?
- How to select FIX, ENG or SCI notation?
- How the Stack works, including $[+],[-],[\times],[\div],[X$ ✓►Y],[R, [STO] and [RCL]?
- How to SIZE and PACK your calculator's memory?
- How to read and key in program steps such as:

- How to move around in--and edit--a program (in case you mis-key some step)? If these things are new to you (or have faded into the last module of your brain's Extended Memory), you'll have a LOT of difficulty in continuing here until you take a slight detour for a refresher course. We recommend one of the following:

- Look up in your Owner's handbook whatever is on this checklist that you don't remember;
- Read "An Easy Course in Programming the HP-41," by Chris Coffin and Ted Wadman (see page 73 for details).

(Our favorite suggestion is the second one.)

... OK, if you're all refreshed and reminded, it's time to load the program.

PREPARING YOUR CALCULATOR'S MEMORY

The "CV" version uses exactly 190 program registers; the "CX" version uses exactly 188 registers;

On top of that, you will need anywhere from 37 to 129 data registers to analyze a circuit.

So... make room for the program in your calculator! (Do that now)

Once you have made sufficient space:

IF you have an HP-41 Wand, you can connect that now, turn to the barcode, and read it in.

If you DON'T have a wand... we have some good news and some bad news...

The good news is: Very shortly, you will have totally mastered all aspects of keying in an HP-41 program.

The bad news is: This is because you have about 780 lines of

code to key in (yes, Virginia-by hand.)

Now... before you hit the ceiling, consider this:

If you have an HP-41 Card Reader or another such storage device, the first thing you'll be doing (and we're pretty sure about this)—is to make yourself a copy (and a back-up copy, preferably) of the correctly loaded program. For heavens sake, do so, but run it a few times first, so that you're sure it's correct and compiled (i.e. up to maximum speed).

If you don't have a Card Reader, but you do have some Extended Memory, you can store the program there when you're not using it (but when you ARE using it, you'll need to copy it into the calculator and-depending on the size of the circuit you want to crunch-clear it from Extended Memory to make room for your circuit data).

Admittedly, this isn't strictly convenient, but if you don't want to keep the program loaded into main memory all the time, this beats the heck out of the only other alternative.

In either case, when you prepare program memory, right before you start keying it in, you'll see

"00 REG nnn"

in the display. MAKE A NOTE of that number nnn. Then...start poking them keys!

01+LBL "Z"	45 RCL 09	89 X<>Y
9 2 1	46 XEQ 24	90 1 E2
03 STO 07	47 RCL 09	91 STO 00
04 STO 08	48 X>Y?	92 RDN
0 5 2	49 CLX	93 4
06 STO 09	50 STO 04	94 X>Y?
07 XEQ 25	51 RDN	95 X<>Y
08+LBL "R"	52 STO 0 9	96 RDN
09+LBL 00	53 XEQ 25	97-6
10 DEG	54 RCL 04	98 X<=Y?
11 SF 00	55 1	99 X<>Y
12 CF 01	56 +	100 RDN
13 CF 0 2	57 FS?C 0 3	101 X<>Y
14 CF 03	58 CLX	102 RCL 01
15 CF 04	59+LBL 13	103 RCL 02
16 CF 0 5	6 6 SF 25	104 X<> Z
17 CF 06	61 MSIJ	105 XEQ IND T
18 SF 16	62 FC?C 25	106 "H?"
19 CF 21	63 GTO 00	107 SF 02
20 FS? 55	64 ISG 20	108 CF 22
21 SF 21	65 RCL 07	109 AVIEW
22 SF 27	66 2	110 PSE
23 CF 29	67 PI	111+LBL 01
24 .9	68 *	112+LBL 16
25 STO 20	69 STO 00	113 VIEW X
26 "Aa b C"	70 /_	114 STOP
27 PROMPT	71 "F"	115 FC? 22
28 + LBL J	72 XEQ 24	116 GTO 14
29 GTO 00	73 RCL 00	117 "Z I V"
30+LBL A	74 *	118 PROMPT
31 22	75 STO 0 7	119 GTO 01
32 XEQ 28	76◆LBL 15	120+LBL A 121+LBL 04
33 GTO 13	77 FIX 2	121 *LDL 04 122 *Z *
34+LBL C	78 SF 06	123 4
35 ISG 20	79 MRR+ 80 STO 00	123 4 124 GTO 13
36 GTO 26	00 310 00 81 MRR+	125+LBL B
37+LBL b		126+LBL 05
38 SF 03	82 MRR- 83 X<>Y	120 * Lot 63
39 + LBL a	84 XEQ 19	128 5
40 "N"	85 STO 01	129 GTO 13
41 RCL 08 42 XEQ 24	86 RDN	130+LBL C
42 XEW 24 43 STO 08	87 STO 0 2	131+LBL 06
43 310 00 44 "E"	88 XEQ 35	132 *V*
74 E	00 VER 33	IUL T

133 6 134+LBL 13 135 RDN 136 FS?C 06 137 RTN 138+LBL 14 139 R† 140 ST* 00 141 RDN 142 SIGN 143 ST* 00 144 CLX 145 LASTX 146 ST+ 00 147 J- 148 RDN 149 XEQ 18 150 RCL 00 151 MSR+ 152 RDN 153 MSR+ 154 RDN 155 MSR+ 154 RDN 155 MSR+ 156 FC? 10 157 GTO 15 158 GTO J 159+LBL E 160 ISG 20 161+LBL 03 162+LBL 17 163 VIEW X 164 FS?C 07 165 STOP 166 "PS,DY CX */" 167 SF 04 168 CF 02 169 SF 07 170 PROMPT 171 GTO 03	177 SF 0 3	221 4 I RI II
1744 RI 17	178 X<>Y	221 VEDE B
175 PNN	179+LBL G	222 5, 66 227 Eror Bi
176 F920 M6	180 SF 07	224 SE MI
177 DTN	181 FC2C 02	224 3! 01 22541 DI W
1704 DI 14	182 SF 02	223*LDL 0
170 D#	183 FC2C 03	220 UF 01
137 K! 140 CT+ 00	184 RDN	221 FU:U 00
1/1 DNU	185 GTO 07	220 OF 00
141 KD0	186+I BI	227 F3: 00
142 316M 147 CT+ 00	187 DSF 20	230 UF 01 2714101 07
143 314 00 444 CIV	188 DOFF	231*LBL 0/
144 ULA 146 LOCTU	189 CF 04	232 157 104
143 LH31A	199 CTO INTO 20	233 610 17
146 517 88	1914 Ri e	234 GIU 16
197 J-	192 CE 87	233+FRF H
148 KUN	1974 DE	236 51 03
149 XEW 18	173*LDL L 104 VEN 10	237 "H"
150 KCL 00	105 CCOC 07	238+LBL 1
131 M3K+	173 F3:6 83	239 SF 07
152 KUN	170 AKUN CINT	240 FU? 03
153 #SR+	17/ AKUN 6+	241 "1"
154 KUN	170 AEW 17	242 "F:A B C D"
155 MSK+	177 GIU 03	243 ABS
156 FU? 10	200*LDL U	244 RDN
157 GIU 15	201 AEW 20	245 17
158 GTO J	202 610 03	246 STO 21
159+LBL E	283*LBL C	247 CLX
160 ISG 20	204 XEW 21	248 2
161+LBL 03	203 GIU 03	249 PROMPT
162 + LBL 17	589+FRF H	250 CF 03
163 VIEW X	207 XEU 18	251 GTO 0 7
164 FS?C 0 7	208 XKUM "C+"	252+LBL A
165 STOP	209 XEU 19	253 ST- 21
166 *PS,DY CX */*	210 GIU 03	254+LBL B
167 SF 04	211♦LBL a	255 ST- 21
168 CF 0 2	212 XEW 18	256+LBL C
169 SF 07	213 XROM "CINV"	257 ST- 21
170 PROMPT	214 RDN	258+LBL D
171 GTO 0 3	215 RDN	259 RDN
172◆LBL B	216 XROM "CINV"	260 LASTX
173 SF 0 3	217 XROM "C+"	261 FC?C 03
174+LBL b	218 XROM "CINV"	262 GTO 13
175 GTO 23	219 XEQ 19	263 X<>Y
176+LBL F	220 GTO 03	264 STO IND 21

265 DSE 21 266 X<>Y 267 STO IND 21 268 GTO 07 269+LBL 13 270 RCL IND 21 271 DSE 21 272 RCL IND 21 273 GTO 07 274+LBL 18 275 FC? 00 276 GTO 13 277 P-R 278 RDN 279 RDN 280 P-R 281 RDN 282 RDN 283 XEQ 21 284+LBL 13 285 FS? 01 286 XEQ 21 287 FS? 04 288 XEQ 20 289 RTN 290+LBL 19 291 FS? 04 292 XEQ 21 293 FS? 01 294 XEQ 20 295 FC? 00 296 RTN 297 XEQ 20 298 R-P 299 RDN		
265 BSF 21	309 * 310 X(0? 311 1/X 312 R† 313 RCL 07 314 * 315 X(0? 316 1/X 317 GTO 13	353 STO 12
266 X(>Y	310 X<0?	354 RDN
267 STO IND 21	311 1/X	355 STO 13
268 GTO 07	312 Rt	356 RDN
269+LBL 13	313 RCL 07	357 FC?C 03
270 RCL IND 21	314 *	358 GTO 13
271 DSE 21	315 X<0?	359 XROM "C+"
272 RCL IND 21	316 1/X	360 RCL 15
273 GTO 07	317 GTO 13	361 RCL 14
274+LBL 18	318+LBL 21 319 STO 21 320 RDN 321 XEQ 22	362 XROM "C+"
275 FC? 00	319 STO 21	363 XROM -CINA.
276 GTO 13	320 RDN	364 RCL 13
277 P-R	321 XEQ 22	365 RCL 12
278 RDN	322 R†	366 XROM "C*"
279 RDN	323 XEQ 22	367 RCL 17
280 P-R	324+LBL 13	368 RCL 16
281 RDN	325 STO T	369 XROM "C*"
282 RDN	326 CLX	370 GTO 14
283 XEW 21	327 KUL 21	371+LBL 13
284+LBL 13	328 KIN	372 XROM "C*" 373 RCL 15
285 FS? V 1	329 * LBL 22	373 RCL 13 374 RCL 14
286 XEW 21	330 A(0/ 774 470	374 KCL 14 375 XROM "C/"
28/ 15/ 04	321 XEQ 22 322 R† 323 XEQ 22 324+LBL 13 325 STO T 326 CLX 327 RCL 21 328 RTN 329+LBL 22 330 X<0? 331 1/X 332 RCL 07 333 X=0? 334 X<>Y 335 / 336 RTN 337+LBL 23 338 RCL 15	375 AKUN C7 376 RCL 17
288 XEW 20	332 KUL 0: 777 V-02	376 RCL 17
207 KIN 2004 DI 10	333 A-8: 774 V/\V	378 XROM "C+"
270*LDL 17 201 EC2 04	334 A\/(775 /	379 RCL 13
271 FO: 04 202 VEO 21	336 PTN	380 RCL 12
297 FC2 M1	7774IRI 27	381 XROM "C+"
294 YFD 20	338 RCL 15	382+LBL 14
295 FC2 00	339 RCL 14	383 STO 10
296 RTN	340 XEQ 18	384 X<>Y
297 XEQ 20	341 STO 14	385 STO 11
298 R-P	342 RDN	386 X<>Y
299 RDN	343 STO 15	387 RCL 13
300 RDN	344 RCL 13	388 RCL 12
301 R-P	345 RCL 12	389 XROM "C/"
302 RDN	346 RCL 11	390 RCL 15
303 RDN	347 RCL 10	391 RCL 14
304 RTN	348 XEQ 18	392 XROM "C*"
305+LBL 20	349 STO 16	393 XEQ 19
306 STO 21	350 RDN	394 STO 12
307 RDN	351 STO 17	395 RDN
308 RCL 07	352 RDN	396 STO 13

797 PCI 15	441 +	485 5
397 RCL 15 398 RCL 14	441 + 442 "R"	486 X<=Y?
		487 GTO 13
499 PCI 19	444 MATDIM	488 RDN
399 RCL 11 400 RCL 10 401 XROM "C*"	445 INT	489 2
402 RCL 17 403 RCL 16 404 XROM "C/"	446 "R"	490 GTO 09
403 RCI 16	447 ARCL 19	491+LBL 13
494 XROM "C/"	448 MATDIM	492 X=Y?
405 RCL 11	449 "R22"	493 GTO 14
406 RCL 10	450 RCL 09	494 RDN
407 XEQ 19	451 3 E-3	495 4
408 STO 10	452 +	496 GTO 09
409 RDN	453 NATDIM	497+LBL 14
410 STO 11	454 RTN	498 RDN
411 RDN	443 ARCL 18 444 MATDIM 445 INT 446 "R" 447 ARCL 19 448 MATDIM 449 "R22" 450 RCL 09 451 3 E-3 452 + 453 MATDIM 454 RTN 455+LBL 26 456 SF 05	499 6
412 STO 14	456 SF 05 457 ISG 20	500+LBL 09
413 RDN	457 ISG 20	501 RDN
414 STO 15	458 RCL 19 459 XEQ 34	502 RDN
415 GTO 17	459 XEQ 34	503 X<>Y
416+LBL 24	460 RCL 18	504 ST+ IND Z
417 "H="	461 XEQ 34	505 DSE Z
407 XEQ 19 408 STO 10 409 RDN 410 STO 11 411 RDN 412 STO 14 413 RDN 414 STO 15 415 GTO 17 416+LBL 24 417 "+=" 418 ARCL X 419 "+?"	461 XEQ 34 462+LBL 27	506 X<>Y
419 "H?"	463 ZZ	507 ST+ IND Z
420 PROMPT	464 XEQ 28	508 FS?C 03
121 1100	465 STO 01	509 GTO 08
422 RTN	466 STO 02	510 RCL 02
TEO.EDE EO	467 STO 93	511 RCL 01
424 FIX 0	468 STO 04	512 SF 04
TEO ROL 07	469 STO 05	513 RCL 06
426 3	470 STO 06	514 RCL 05
427 *	471 FS?C 05	515 +
428 23	472 MSIJ	516 X≠0?
429 +	4/3+LBL 08	517 CLST
430 STO 19	4/4 MKK+	518 RDN
430 STO 19 431 1 432 +	473+LBL 08 474 MRR+ 475 X(0? 476 SF 03	519 SF 25
	4/5 5F 03	520 XROM "CINY"
	4// HD3	521 CF 25
434 2	478 STO 00	522 STO 01
435 *	479 MRR+	523 X()Y
436 +	480 MRR+ 481 X<>Y	524 STO 02
437 STO 18	482 XEQ 20	525 X<>Y
438 LASTX		526 FS?C 02
439 .1	483 XEQ 35 484 RDN	527 RTN
448 %	חעא דפר	528 RCL 04

	573 XEQ 28 574 RDN 575 CF 04 576 DIM? 577 X)Y? 578 GTO 27 579 RCL 18 580 XEQ 28 581 "H.R" 582 ARCL 19 583 MSYS 584 "R22" 585 MSIJA 586*LBL 02 587 SF 04 588 "P I VG" 589 PROMPT 590 GTO 02 591*LBL 28 592 "R" 593 FIX 0 594 ARCL X 595 MRIJA 596 0 597 RTN 598*LBL c 599 STO 00 600 XEQ 11 601 RDN 602 RDN 603 XROM "C/" 604 GTO 13 605*LBL B 606 XEQ 29 607 GTO 13 608*LBL A 609 XEQ 29 610 RCL 04	
529 RCL 93	573 XE9 28	617+LBL 13
530 XROM "C*"	574 RDN	618 FIX 2
531 ST+ 0 5	575 CF 04	619 XEQ 19
532 X<>Y	576 DIM?	620 SF 07
533 ST+ 06	577 X>Y?	621 GTO E
534 RCL 19	578 GTO 27	622+LBL 11
535 XEQ 28	579 RCL 18	623 STO 00
536 SF 03	580 XEQ 28	624 RCL 19
537+LBL 10	581 "H,R"	625 XEQ 28
538 RCL 06	582 ARCL 19	626 XEQ 32
539 CHS	583 MSYS	627 X=0?
540 STO 06	584 "R22"	628 GTO 13
541 RCL 05	585 MSIJA	629 MRR-
542 CHS	586+LBL 02	630 MR
543 STO 0 5	587 SF 04	631 + LBL 13
544 XEQ 32	588 -P I VG-	632 XEQ 33
545 X=0?	589 PROMPT	633 RDN
546 GTO 13	590 GTO 02	634 XEQ 32
547 RDN	591+LBL 28	635 X= 0 ?
548 MRR-	592 -R-	636 ENTER†
549 MR	593 FIX 0	637 X=0?
550 XROM "C+"	594 ARCL X	638 RTN
551 MSR+	595 MRIJA	639 RDN
552 X()Y	596 0	640 MRR-
553 MS	597 RTN	641 MR
554+LBL 13	598+LBL c	642 RTH
555 XEQ 33	599 STO 00	643+LBL 29
556 FS?C 03	600 XEU 11	644 STO 21
557 GIU 10	601 KUN	645 22
558 KUL 18	602 KDW +6 (*	646 XEQ 28
559 XEW 28	603 XKUM "U/"	647 SF 02
360 XEW 30	504 GIU 13	648 MR
361 XEW 33	0034FRF R	649 ABS
362 AEW 30	000 AEW 27	650 STO 00
303 -1 544 CT+ 01	ON GIU IS	651 XEQ 35
565 ST* 02	609 XEQ 29	652 RCL 21
566 FS?C 0 2	610 RCL 04	653 X=Y? 654 XEQ 27
567 GTO 13	611 RCL 03	655 Ø
568 XEQ 31	612 XROM "C+"	656 FS? 10
569 XEQ 33	613 GTO 13	657 MSIJ
570 XEQ 31	614+LBL C	658 FC?C 02
571+LBL 13	615 STO 00	659 GTO 14
572 22	616 XEQ 12	660 I+
		200 1.

661 FS? 09	705 RCL 00	749 STO 00
662 MSIJ	706 FRC	750 RTN
663 RCL 21	707 .2	751+LBL 34
664 GTO 29	798 *	752 •R•
665+LBL 14	709 +	753 FIX 0
666 XEQ 12	710 MSIJ	754 ARCL X
667 RCL 04	711 RCL 01	755 DIM?
668 RCL 03	712 MR	756 0
669 XROM "C+"	713 +	757 MSIJ
670 STO 03	714 MS	758 MS
671 X()Y	715 J-	759 MATDIM
672 STO 04	716 RCL 02	760 X<>Y
673 X<>Y	717 MR	761 MATDIM
674 RCL 02	718 +	762 RTN
675 RCL 01	719 MS	763+LBL 35
676 XROM "C*"	720 I-	764 RCL 00
	721 RCL 01	765 1 E2
	722 MR	766 /
	723 +	767 STO 00
	724 MSR+	768 LASTX
	725 RCL 02	769 X<>Y
682 RCL 00	726 CHS	770 FRC
683 XEQ 11	727 MR	771 *
684 XROM "C-"	728 +	772 RCL 00
685 RTN	729 MS	773 INT
686+LBL 30	730 RTN	774 ABS
687 RCL 00	731+LBL 32	775 X<>Y
688 STO 21	732 RCL 00	776 STO 00
689 INT	733 INT	777 END
690 X=0?	734 2	TIT LIIE
691 SF 0 2	735 *	
692 X=0?	736 M SIJ	
693 SF 0 3	737 RTN	
694 1	738+LBL 33	
695 %	739 RCL 00	
696 +	740 FRC	
697 STO 90	741 1 E2	
698 FC?C 03	742 *	
699 XEQ 31		
700 RCL 21	743 X() 00 744 INT	
701 STO 00	745 1 E2	
702 RTN		
703+LBL 31	746 /	
	747 RCL 00	
704 XEQ 32	748 +	

LINES 187-194 ROW 27: 194-199 **INES** 200-205 218-223 230-236 236-242 LINES 254-261

40: LINES 269-275 48: 336-345 363-370

ROW 53: LINES 379-389

ROW 54: LINES 390-399

ROW 55: LINES 400-407

ROW 56: LINES 407-416

ROW 58: LINES 424-433

HOW 59. LINES 434-445

HOW BO: LINES 443-449

ROW 61: LINES 449-456

ROW 63: LINES 462-470

ROW 64: LINES 471-479

HUW 65: LINES 479-486

LINES 487-496 ROW 66: 508-515 535-543 569-573

80: 590-595 81: INES 597-604 605-609 ROW 82: 84: LINES 619-624 631-638 640-646 88: ROW 89: 654-659 90: 661-666 LINES

79:

ROW

LINES

586-588

695-702

1 TNFS

677-684

PROOFREADING YOUR PROGRAM

With the program now keyed into your calculator, press [SHIFT] [GTO[[.] [.] to pack the program and make sure there's an END to it.

While in PRGM mode, you should now see:

"00 REG nnn,"

where nnn is a number that differs from what you noted there before you started. The difference should be 190. If this checks, it doesn't necessarily mean that the program is correctly loaded, but it's a good omen, and you should proceed.

If that difference is NOT correct, you have miskeyed some step, in which case you should go to the beginning of the program and check it, step by step, against the listing here in the book (better yet, if you have a printer, get a printout of the program as you now have it, and compare THAT against the book).

Chances are, you have either skipped or duplicated some step. Another common error is neglecting to use the [XEQ] key properly. If you're guilty of this heinous crime, the evidence will be unmistakable: A program line which appears here WITHOUT quotation marks ("") will nonetheless appear WITH the little superscript T in the display (OR vice versa). This is a no-no! The written quotes and that T in the display should EXACTLY correspond.

Also, program labels (LBL's) will appear in the printed listing with ◀►'s in front of them, but no such ◀►'s will appear in the display.

But these are the only differences between the printed listing and the way things should look in your display. Everything else should match EXACTLY. Please-don't go on from this point until you can arrive at the correct reading for

"00 REG nnn"

If you are working with a plain HP-41CV, you may now skip ahead.

But if you have any Extended Memory capability with your calculator, you may want to make the following editing adjustments to your program. These adjustments will allow you to "crunch" much larger circuits.

Be sure to follow these keystrokes exactly (and be patient with your keystrokes: with a program of this size, it takes awhile for the calculator to do each editing task!):

```
[SHIFT] [GTO] [.] [.]
[SHIFT] [GTO] [ALPHA] Z [ALPHA]
```

Next, go into PRGM mode: [PRGM] (if you are not already there). Then:

```
[SHIFT] [GTO] [.] 443

[◀-] [◀-]

[ALPHA] RY [ALPHA] (this is now step 442)

[SHIFT] [GTO] [.] 438

[◀-] [◀-] [◀-]

[SHIFT] [GTO] [.] 432

[◀-] [◀-]

[ALPHA] Y

[SHIFT] [ASTO] 18 [ALPHA] (this is now step 432)

[SHIFT] [GTO] [.] 017

[◀-] [◀-] [◀-] [◀-] [◀-] [◀-] (seven of 'em)

1

[XEQ] [ALPHA] [X◀▶F] [ALPHA] (this is now step 12)

[PRGM]

[SHIFT] [GTO] [.] [.]
```

You now have the "CX" version of the program!

THIS PROGRAM WILL:

- -- Solve for complex voltage, current, power and gain, anywhere in a sinusoidal AC circuit (see page 34 for a table showing the size limits of the circuit).
- -- Allow easy storage and recall of these and other complex calculations, including parallel-to-series and Y-to-Delta conversions, complex arithmetic, and polar-rectangular equivalents.
- -- Allow you to save, expand or alter the circuit you analyze, including the frequency.
- -- Accept circuit elements V and I (complex sources) and impedances R, L, C, either in units of ohms, henrys and farads, or combined as complex ohms (either in polar or rectangular form).

THIS PROGRAM WILL NOT:

- -- Solve for any impedence value in the circuit, nor solve any type of circuit other than sinusoidal AC;
- -- Detect resonance or do multiple-frequency sweeps;
- -- Detect bad input, mixed units, mixed notation, or otherwise do your common-sense thinking for you. A calculator is a great number-cruncher, but it's a lousy engineer, and it certainly won't take the place of your studying and understanding the principles of circuit analysis.

(If this is all the information you need to get started, skip ahead to page 29, If not, keep reading here.)

SOLVING CIRCUITS

Set your machine aside for a few minutes and review a few basics:

What's a circuit?

An electrical circuit is just that—a closed loop of conductive material, around which current will flow, from higher potential (i.e. voltage) to lower.

In many respects, electrical flow is like a cyclical flow of water-like a pump that sends water up a hill to flow down, encountering rocks or water wheels which dissipate--or utilize--the energy of the flow.

You can think of the impedances placed in an electrical circuit as those rocks or water wheels; and you can think of the voltage or current sources to be like the pumps that send the water up the hill to complete the cycle.

The analogy is even more basic than that: Electrical current is the collective motion of many charges, just as the flowing stream is the collective motion of many water droplets. And voltage is like the height from which the water flows down: the longer the total fall, the more potential energy each particle of the falling material has.

This means that a voltage source is like a water pump whose flow rate may vary, but which always pumps water up to the same height on the hill; a current source would then be a pump that always pumps the same volume of water per minute, but it may not always deliver it to the same height on the hill. Get the picture?

WHAT KINDS OF CIRCUITS CAN THE PROGRAM "CRUNCH?"

Of course, our analogy falls apart when we start talking about Alternating Current (AC), where the direction of the "hill" and the "waterflow" is periodically (and quite rapidly) reversing itself. The rate of this periodic reversal is called the frequency (F).

There are many different possible patterns to this flip-flopping of direction. It might look like this:

Or this:

But by far the most common is the following pattern, called SINUSOIDAL AC, because it is a simple sine or cosine pattern.

This is what this program is all about. It will NOT handle any kind of Alternating Current except this:

Notice that as the frequency gets smaller, the whole pattern would flatten out and begin to look more and more like our simple, steady waterfall analogy. In the limit, if the frequency approached zero, we would indeed have our waterfall--called Direct Current, since it wouldn't reverse directions at all.

WHAT CIRCUIT ELEMENTS CAN YOU USE?

Sources:

$$V = V_{real} + j(V_{imag.}), in volts;$$

$$I = Ireal + j(Iimag.)$$
, in amperes;

Impedances:

R = resistance, in ohms;

L = inductance, in henrys;

C =capacitance, in farads;

general reactive impedance, X = wL-1/wC, in ohms;

general complex impedance, Z = R+jX, in ohms.

All complex numbers may be represented in any of three forms:

$$X + jY$$
 (rectangular form)

$$Z \angle a^{\circ}$$
 (polar or "phasor" form)

R and (either) L or C (physical form)

(If this is all clear and straightforward to you, go on ahead to page 34)

Need some more details? Another quick review...

Circuit elements are simply the sources and impedances you place in the closed loop of wire we call a circuit. The sources you'll use in this program are Voltage (V) and Current (I) sources. They are the "pumps" in the cycle.

There are three types of impedances to electrical flow (like rocks in the stream bed) that you can use in this program: Resistance (R), Capacitance (C), and Inductance (L).

We're all familiar with resistance, measured in units of ohms. It's what happens when your electric toaster heats up: Current (I) flows from high voltage (V) to ground voltage (0)–just like water coming down the hill to sea level. But strategically placed wires—with a high resistance (R)–present an electrical barrier to this flowing current. This barrier forces the circuit to expend some energy in overcoming it. This energy comes out in the form of heat, and thus browneth your Roman Meal.

The rate at which this energy comes out is called the power (P). The equations which relate all this are:

$$V = IR$$

$$P = IV = V^2/R = RI^2$$

Simple enough.

But resistance is not the whole story. There are other kinds of impedance which rear their (not always ugly) heads, but only when current is changing-either in magnitude or (as with AC) in direction. These forms of impedance are called reactive impedances, because they arise as "reactions" to the changing current.

Remember how that works? When a current is changing, the flowing charges are either changing direction or stopping–in either case, accelerating. And we all recall, of course, that an accelerating charge produces a magnetic field. But a magnetic field, in turn, exerts a force on ANY charge that happens to be MOVING within that field.

It turns out, therefore, that the net effect of a changing current is that it produces a magnetic field which in turn exerts its OWN force on that current, setting up a kind of counter-current. And the directions work out so that this counter-current tends to oppose (i.e. impede) the current that was changing in the first place!

Well, L and C accomplish this impeding in different ways, and so they have characteristically different effects on the current they are impeding. For the purpose of this program, which is only for sinusoidal voltages and currents, the magnitude of the REACTIVE impedance, X, from an inductor, L, is:

$$X = wL$$

where $w = 2 \pi F$ (remember, F is the frequency with which the current is alternating its direction).

By comparison, the REACTIVE impedance, X, from a capacitor, C, is:

$$X = -1/wC$$

Notice that this impedance is a negative number. Just what does that mean? Do you get negative heat from it when you put a capacitor in your toaster (frozen muffins?...)

Not really. The Resistance portion and the Reactance portion of an impedance are combined numerically as a complex numberwith a real portion (the Resistance) and an imaginary portion (Reactance).

The resistance is always the tangible heat or work-producing portion of the impedance. But that word "imaginary" doesn't mean that the reactance is just something we've dreamed up out of thin air. It really does exist. When we use an imaginary number to describe something physical, we are merely referring to the way it behaves: it may or may not be tangible, depending upon how it combines with other complex quantities. After all, the basis for an imaginary number,

$$j = \sqrt{-1}$$

becomes a real number when you multiply it by itself (or some multiple of itself), right?

So there you have it: An impedance (Z) is a complex quantity:

$$Z = R + jX$$

You can forget about your toaster equations. The more generally correct forms are:

$$V = IZ$$

$$P = IV = V^{2}/Z = ZI^{2}$$

And ALL these numbers are complex–not just the Z: When you have sinusoidally alternating currents and voltages, they too can be represented by complex numbers that are rotating about the complex number plane–at a frequency of F Hertz:

How do we know this? Well, when you measure voltage, current or power with meters, you are measuring only the real portions of those quantities; if you trace the behavior of ONLY the real portion (i.e. the x-component) of a complex number as it rotates around the axis, it WILL describe a sinusoidal pattern (Aha)!

Notice that this rotating complex number can be described in rectangular coordinates as R (resistance) and X (reactance); or in polar coordinates as Z (magnitude) and \propto (phase angle).

Either of these forms is acceptable to this program. And in the case of an impedance, there is a third possibility: just knowing the frequency, F, and the R and (L or C) values in a complex impedance, it's easy to convert to the picture above—and the program does that for you, if you prefer to use that physical language rather than the ohms the machine has to use for its mathematics.

Now go back to page 29 and see if that summary doesn't make more sense to you.

CIRCUIT SIZE LIMITS

If this is all you need to know to get started, go right on ahead to page 36.

Not so fast? One more review...

CIRCUIT DIAGRAM NOTATION

You already know what elements we're talking about here: V, I, R, L, C, and Z. Here's how we represent them as being connected into a circuit:

Keep in mind that you can always combine an R and either an L or C into a Z. This saves time and represents just one element in the circuit, rather than two (and this saves memory for the calculator).

But what's a node, anyway?

Here is a typical circuit that you might be analyzing:

Here you see a sinusoidal voltage source and three impedances. The point labelled "1" in the circuit is called a node, because it is the junction of three (3) or more elements. In this program, you can name other points as nodes also, but you HAVE to name all points that connect three or more elements.

Notice that the ground point (i.e. point of zero voltage) is also a node, but by convention, it is always labelled point "0" and not counted when you're counting the number of nodes in the circuit. The program recognizes this convention, so when you say "Node O," it understands that you mean the ground point.

As far as the program is concerned, then, the above circuit has one (1) node.

USING THE PROGRAM

COLD-STARTING THE PROGRAM

No matter what you're doing with your calculator, as long as this program is loaded into main memory, you can start with

[XEQ] "Z" ([XEQ] [ALPHA] Z [ALPHA])

This "Zeros out" your circuit data-a clean slate.

Try it right now.

NOTE: You'll get a NONEXISTENT message if you don't have the SIZE set to at least 037 (or 032 for the CX version). If this happens, just adjust your SIZE and start the program again.

WARM-STARTING THE PROGRAM

Another way to start the program is to use

[XEQ] "R"

This will bring you to the same place as [XEQ] "Z", but it won't erase any circuit data that may have been in the calculator before you started the program. Remember that circuit data are just numbers in registers, and those values will stay there even when you're not using this program—unless you change them or clear them.

One side note at this point: If you have a printer and would like to see how this program operates with a printer, hook it up to your HP-41, set it to NORMAL mode (if there is such a setting on the printer), and start again with one of the above procedures.

ROAD MAP: You Are Here

OK, where's "here?" Where does this program "go" when you tell it to do something?

The best way to picture how this program "moves" around is to keep your place here but flip over to the inside of the back cover of this book.---

That's the road map.

You are now at the Main Menu. See where that is on the map?

The program is really just four different menus that you choose for your various calculations. So if you're already comfortable with the idea of a menu–and with using the top two rows of keys on your calculator as the selectors for these menus–then skip right now to page 40.

MENUS

As you may know, with USER mode turned on, the top two rows of keys provide up to 15 different one-key program selectors. In the first row, you can select keys A-E or a-e (the shifted versions of each key). In the second row, you have keys F-J.

Now, a program menu is simply a place in the program where the calculator stops to let you select one of these special keys. And to help you remember what each of the keys will do, a few reminder symbols appear in the display, each symbol directly (more or less) above the key it represents. For example, at the Main Menu (now appearing in the display),

this:

means this:

You simply press the key of the selection you want, and off you go. Be sure to remember that whenever there are two characters over a key, the first one stands for the key itself, and the second one stands for the SHIFTED version of that key.

ачч	poold			SHIFTED FIRST ROW OF KEYS
ALTER		CALCU- LATE	(EQUA- TIONS)	FIRST ROW OF KEYS
			(JUMP)	SECOND ROW OF KEYS

Note: If you're ever confused as to which menu you're in or what your options are, you can usually find your way to a menu simply by pressing [R/S]

One more note: In each menu you encounter, there will be some possible selections that NEVER show up in the display. These are the HIDDEN MENU (the keys appearing in parentheses on the Road Map); you'll be learning about these very shortly. But DON'T press a menu key that does not appear at all on the Road Map.

BUILDING A CIRCUIT

Time now to hit the Road. Suppose, just for laughs that you had the following 60-Hz circuit:

And suppose that, for more laughs, you wanted to calculate the voltages at node 1 and node 2, and the currents through the (300 + j20) impedance and the .5-henry inductor.

First of all, how would you use the program to build a picture of the circuit for the calculator to solve?

SOLUTION SUMMARY

The first thing you need to consider is how much memory this circuit will require for storage and crunching:

If N is the number of Nodes, and E is the number of elements, then your minimum SIZE is

 $4N^2 + 2N + 3E + 25$

for the CV version

and 2N + 3E + 24

for the CX version

You will also need at least $4N^2 + 1$ registers of Extended Memory to run your circuit with the CX version.

Thus, for this example circuit, N = 2, and E = 7. So CV SIZE should be at least 066; CX SIZE should be at least 049, with at least 17 available registers of Extended Memory.

Now, how would you draw the picture for the calculator? In 25 words or less, this is how:

YOU	PRESS	YOU SEE
[XEQ] "Z"	,	"Aa b C"
[shift] [b]		" $N = 1$?"
2 [R/S]		"E = 2?"
7 [R/S]		"F = ?"
60 [R/S]		"Z?" (pause) 0.00
0 120	[ENTER] [ENTER]	47
-0.01 [C]	[R/S]	"Z I V" "Z?" (pause) 0.00
0 10 0.01 [A]	[ENTER] [ENTER] [R/S]	"Z I V" "Z?" (pause) 0.00
[shift] .5 200 1 [A]	[d] [ENTER] [ENTER] [R/S]	0.00 "Z I V"
-1 E-5 100 1.02 [A]	[ENTER] [ENTER] [R/S]	"Z?" (pause) 0.00 "Z I V" "Z?" (pause) 0.00

[D] 20 300 2 [A]	[ENTER] [ENTER] [R/S]	0.00 "Z I V" "Z?" (pause) 0.00
0 10 -2 [A]	[ENTER] [ENTER] [R/S]	"Z I V" "Z?" (pause) o.oo
[shift] 45 120 2 [C]	[d] [ENTER] [ENTER] [R/S]	0.00 "Z I V" "Aa b C"

Now, if that seemed trivial and completely self-explanatory, go on ahead to page 50. But keep reading here if you want another look at the reasons for those keystrokes....

First: [XEQ] "Z" (if you haven't already)

When the Main Menu appears, press the [b] key (the [shift][B] key) as the display indicates. As you can see on the road map, this selection will let you "build" a picture of a circuit for the

calculator.

You see: "N=1?"

You're being asked for the number of nodes in your circuit. In this circuit there are two nodes, so you would press

2 [R/S]

If there had been only one node in your circuit, you could have pressed 1 [R/S] OR just [R/S], and the calculator would have kept its current value of 1 node. This is the way the program usually works: when the calculator prompts you for some value(s), it will have something "suggested" already. If you accept its suggestion, just press [R/S]. If not, just key in the correct value(s) and THEN press [R/S].

Next, you see: "E=2?"

Although there are 9 actual physical elements in the circuit, remember that a pure resistance and a pure capacitor or inductor can be combined to form a general complex impedance, Z. Doing this wherever possible will save you and your calculator time and memory.

Therefore, you press 7 [R/S]

Next you see: "F = (something)?" Press: 60 [R/S], because the frequency in this problem is 60 Hz.

ELEMENT VALUES IN THE STACK

Now you see:

"Z?" (pause) 0.00 (or some other number)

This is the start of the element checking/changing routine. Again, the calculator is asking you something, offering suggestions, and then waiting for your response. Here's what it's looking for:

The momentary "Z?" tells you that it "thinks" this element is an impedance (i.e. not a V or I source).

The value that appears next is just one of four values now in the calculator's stack. Here's what the stack looks like at the moment:

$$[X \triangleleft Y]$$
 AND $[R \downarrow]$

Of course, you can't see all this in the display at once, so you do what you would normally do to review the stack—use $[R\downarrow]$.

Go ahead and press $[R\downarrow]$ once. What happens?

The $[R\downarrow]$ key, along with every other key on the second row, is part of the HIDDEN MENU; that is, it never shows on the display's version of the menu, but it will do what it's told, nevertheless.

Press [R] three more times, to get back to where you started.

Now press $[X \multimap Y]$ (twice). It, too, works normally.

But notice that both $[R\downarrow]$ and $[X \multimap Y]$ keep turning on and off the little 2 (flag 2) in the display. This is to tell you something:

Whenever flag 2 is OFF, this means that you're currently viewing the REAL (first) part of a (two-part) complex number. And whenever flag 2 is ON, you're looking at the IMAGINARY (second) part of the number.

Yet when you're back looking at the location value, the 2 IS on. Why? This is so that when you roll-down once to look at the real part of the complex number, the 2 will go off, and you're back "in step." So get used to the idea that when the suggested values appear at this point, you'll be looking at the location value, and this is signified by the 2.

This is all good and fine, but exactly what ARE those numbers in the stack? Look at them one at a time:

THE LOCATION VALUE

The first number (it's in the X-register) is the LOCATION of the element in the circuit. This number is in From.To format. That is, an element from node 1 to node 2 has a location value of 1.02. From node 2 to ground is 2.00 (or just plain 2 is fine). From ground to node 1 is 0.01.

Notice that each part has two digits-always!

One other important thing about the location value: you also use this value to indicate whether the element is one of several elements strung together in a series in this particular branch of the circuit. You should indicate this with a negative sign: Whenever this element is NOT the LAST one in a particular branch, use the negative sign.

So the voltage source in our circuit has a location of -0.01, because there is also a 10-ohm resistor in that branch. And that resistor would have a location of +0.01, because it IS the last element in the branch. Notice that when we say "last," that means we have chosen a "direction" of travel—which, of course, we have: "FROM node 0, TO node 1."

BE CONSISTENT! The mathematics involved will merely produce a minus sign if you guess the wrong direction for a current or something, but you HAVE to remember what your guess was! And if you start building a branch of a circuit with -0.01, then every element in that branch MUST BE -0.01, except the last one, which is 0.01. You would NEVER mix notation by using a 1.00 (either + or -) in that branch! That would mess up the solution quite thoroughly.

Remember, too, that the active source elements V and I have directions associated with them. Be sure to make those directions consistent with the direction of your branch! If your voltage points from node 0 to node 1 and you choose your branch DIRECTION to be 1.00 (1 to 0), this is fine, but you have to change the sign on the voltage value itself (say, -120

volts, instead of 120), to tell the calculator that this source is oriented oppositely from the direction of the branch. Understand?

The rules are simple: Keep your signs straight and you shouldn't have any problems.

THE COMPLEX VALUE

So much for the location value. Now, as you know, if you roll the stack down once, you will see the REAL part of this element's value (in volts, ohms, or amps, right?). Another [R\$\bigcup\$] will show you the IMAGINARY portion (indicated by flag 2); one more [R\$\bigcup\$] will show a place-holding value which is not of direct interest, but it's another reminder of the TYPE of element:

4 means an impedance (Z);

5 means a current source (I);

6 means a voltage source (V).

(And, if you need a more direct reminder, you can always turn on alpha mode, and there you'll find the prompt that flashed briefly before stopping with all these values "stacked up.")

And of course, a fourth $[R\downarrow]$ will bring you back to the location value, which is how the stack should be set up when you press [R/S] to continue.

But how do you key in the element values themselves? A word now about complex numbers:

As you recall, you always represent complex numbers with two values. For the purposes of this program, you can choose one of three different forms of these values:

Rectangular (X + jY) Polar $(Z \angle a)$ Physical (R, L, or C)

The program will "speak" any of these three languages, and you can tell it which one you want. To do this, you use another set of keys which are active on the HIDDEN MENU at this point in the program:

[D] will alternately set or clear flag 1 in the display.

When flag 1 is SET, the program accepts and produces complex numbers in RECTANGULAR form;

[d] will alternately set or clear flag 0 in the display.

When flag 0 is SET, the program "speaks" in POLAR form.

And when NEITHER flag 0 nor 1- is set, the program "speaks" in PHYSICAL form, taking all input as being combinations of R and L or C.

Notice that you cannot have both flags 0 and 1 set at the same time (unless you cheat and do it manually, thus cruelly abusing the confidence of this poor, hardworking machine).

BEWARE of mixing units! The program is maddeningly consistent: If you're inputting impedances in RLC (physical) form, and you come to a V source somewhere in your program, you'd better change the format to something besides "Physical" notation (which is valid only for impedances).

ALSO, if you try to go back and check your inputs later, and you're not in the same format, your values are going to look very weird, and you'll think they're all wrong. Don't be too hasty until you review the values in the correct format (and you can change this format anytime during the editing process)! YOU HAVE BEEN WARNED.

Now, give it all a try:

In this first example problem, all the values are likely to be zero, or utter nonsense, so you needn't bother checking any more, really. The pattern is this: For every element, just set up the stack's three important values:

The IMAGINARY part of the element;

The REAL part of the element;

The LOCATION of the element;

and press [R/S]

Then a little menu will appear to let you choose the type of element this is:

"Z I V"

Pick the right key, and you've just drawn this element in your circuit, replacing whatever it was that was being "suggested" as an element. (IF the suggested values ARE what you want– IN-CLUDING the type as it appears briefly in the display–you just press [R/S], and the program then goes on to the next element without asking you to choose the element type–a quick shortcut).

That's about all there is to know about editing each element in the circuit. The program will go through each of the 7 elements you have reserved, and then send you back up to the Main Menu.

It's taken a lot of words here to explain all this, but after a few elements, you'll pick up the idea. The whole process becomes quite rapid after you're used to it. Go back to page 41 now, and run through those keystrokes, and see if this doesn't begin to make a lot more sense.

ALTERING YOUR CIRCUIT

That's it-you've "built" the circuit. Is it correct?

To find out, choose the [A] key in the Main Menu, which is the Alter routine.

The only difference between the Alter routine and the build routine is that when you Alter a circuit, you cannot change its size; the program doesn't ask you how many nodes and branches—it just goes straight to the frequency and then lets you examine each element, changing the values in the stack as necessary.

And remember! Anytime you're satisfied that the circuit is correct, you can use the [J] ("Jump") key to return to the previous menu (the Main Menu, in this case). You'll be using this (J) key all over the place. It is another member of the HIDDEN MENU, and it's active in every menu.

Actually, in this first example, you should probably review every single element value—to be sure you're doing things correctly and to be sure the program "ain't misbehavin'."

If, anywhere during your reading here, you're not getting the results you think you should, check:

- Your complex notation (i.e. are you and the machine "speaking" the same language?);
- Your method of filling the stack (sometimes it's easy to input the real portion first and the imaginary portion second, since that's the way we are used to thinking about it. But remember! The imaginary portion goes ABOVE the real portion in the stack, so the imaginary portion must go in FIRST.);
- Your program listing-some program line may be mis-keyed.

ADDING TO YOUR CIRCUIT

If you choose the [a] key (press [SHIFT] [a]) from the Main Menu, this is the "add" routine, which allows you to expand your circuit, changing either the number of nodes or elements.

If you INCREASE the number of elements, the editing process will begin with the NEW elements, not at the first element of your circuit.

If you are REDUCING the number of elements, the process will begin at the first element and thereby behave exactly like the build routine–except that most of the values are likely to be worth keeping.

If you don't change either the elements count or the nodes count, you'll be sent back to the Main Menu immediately.

CRUNCHING YOUR CIRCUIT

You may have noticed that any time the Main Menu appears, flag 0 is turned on, indicating that the program is "speaking" in polar notation. You are about to encounter the main reason for this: The results you get when you "crunch" the circuit.

First, you may be interested to know that the crunching process is one in which the program examines each circuit element and decides how that element contributes to the values in two matrices in this equation:

$$Y \times V = I$$

The Y-matrix is a nodal admittance matrix for the circuit, while the I-matrix is the list of all current sources in the circuit. These are the known matrices whose values are accumulated by the program. The unknown matrix is the list of voltages (the V-matrix)—one voltage at each node.

The point of all this is that the crunching process is necessarily time-consuming. You can expect it to take about 20 seconds of loading per circuit element, plus some time for the Advantage matrix routines to actually solve the simultaneous equations (for that's what a matrix equation-like the one above-really is: a series of simultaneous linear algebraic equations, right?) This second part of the solution time varies roughly as the square of the number of nodes. Thus, a 6-node matrix may take about 4 times as long as a 3-node matrix. And you can tell when this part of the calculation is in progress: the goose "freezes" in the display.

So if you tend to get impatient, then ponder this while you're waiting: How long would it take you manually to look at a circuit diagram, figure out what values to load into each of two matrices, then solve the matrix (and since these are complex numbers, a 3-node circuit is a 6×6 matrix)??!? Aren't there better ways to spend that time?

So, once you've loaded your sample circuit (the one on page 40), press [C] from the Main Menu, and take the next few minutes to stop and smell some roses....

When the crunching is all done, you'll see the Calculations menu:

These stand for Power, Current, Voltage, and Gain, respectively. And notice that the Gain key is the shifted version of the voltage key, since both of these calculations are matters of voltage.

V AND G: VOLTAGE AND GAIN

To put it briefly: Choose your nodes first (in From.To format); then select your key:

$$V = V(From) - V(To);$$
 $G = V(To)/V(From).$

In other words:

In the problem we're working on, (page 40) you're asked for the voltages at nodes 1 and 2. Now, as you recall, a voltage is the measure of a potential energy—and that always means it's relative to some reference voltage, which is node 0 (ground): $V_0 = 0$. So the "voltage" at node 1 is really $(V_1 - V_0)$; and the "voltage" at node 2 is really $(V_2 - V_0)$.

The point is this: To calculate anything from this menu, you need to key in the LOCATION of the nodes you are interested in-using From.To format (same as when you're building your circuit), with the understanding that the answer you get will be a complex number, which, in this case, is:

$$V(From) - V(To)$$

This means that if you press 1 [C], you'll get $V_1 - V_0$, which is just V_1 . (Do this now) But if you press 0.01 (or just .01) and choose [C] (for Voltage), you're asking for the voltage FROM node 0 TO node 1, which is $V_0 - V_1$, or $-(V_1)$.

It's the same idea for Gain [c], except that it's computed as:

$$G = V(T_0)/V(F_{rom}).$$

When a result appears, as usual, the first portion (116.96) will be in the X-register; the second portion (-2.16) will be in the Y-register (and, as flag 0 shows, these portions are in polar notation, which is often the handiest to use when you're working with complex currents and voltages. This explains why the Main Menu sets flag 0 for you). Feel free to use [X \blacktriangleleft Y] and [R \clubsuit] as they usually work in this program.

So your answer is:

"The voltage at node 1 is $116.96 \angle -2.16^{\circ}$ volts."

Good. But where are YOU?

You are now in the Equations Menu (refer to the Road Map if necessary—on the inside of the back cover). The program automatically sends you down here after each calculation. Here is where you can store results, convert to other complex formats, or do other handy calculations. You'll be reading in detail about these later

Right now, just notice that you can return to the Calculations menu simply by using Jump ([J]).

When you see: "P I VG"

solve for V2 by pressing: 2 [C]

"The voltage at node 2 is $111.07 \angle -137.46^{\circ}$ volts."

Did you get this result? Now, Jump back once again, ready to solve for the currents you need to know.

P AND I: POWER AND CURRENT

To put it briefly:

Choose your branch first (by indicating the nodes it connects, in From.To format). Then select your key:

$$I = I(From.To)$$

$$P = I(From.To) \times [V(From)-V (To)]$$

(Note that this power is the power being dissipated by the impedances in a given branch, NOT the power being supplied by a given source).

The program will search through your circuit elements IN THE ORDER THEY WERE BUILT, until it finds the first occurance of a branch connecting nodes From.To.

If there is more than one such branch, and you want to analyze any of the other parallel branches, just return to the Calculations Menu and ask for the same branch From. To again. The program's search will begin from where it found the previous branch (and, if necessary, even loop around to the beginning of the circuit element list to continue the search).

This means you have to keep in mind the order in which you built the circuit, AND where the program will next begin to search for the branch you specify. This wasn't necessary for node calculations (Voltage and Gain), but it is for Power and Current.

One more caution: ALWAYS analyze a branch in the same direction as that in which it was built. If you built it as 1.02 (From node 1, To node 2), you cannot ask for 2.01 and expect to get a correct answer. The program does NOT recognize 1.02 and 2.01 as being interchangeable names for the same branch! A different name is a different branch!

Even if you know that the current runs counter to the direction of the branch, ask for the current (or power) according to this branch direction. The result will have a minus sign or an angle difference of 180° to indicate the current's opposition to this direction.

So, here are your final solutions and answers. From the Calculations Menu, press:

1 [B]

Result:

"The current in the (only) branch from Node 1 to Node 0 is

[J] (To Jump back once more to the Calculations Menu)

2 [B]

Result:

"The current in the (FIRST) branch from Node 2 to node 0 is

$$0.37 \ \angle{-141.27^{\circ}} \ \text{amps.}$$
"

You're finished with the problem! No muss, no fuss, no dirty dishes....

Of course, now that you're in the Equations Menu, it's a good time to (finally) look at this feature, and also the HIDDEN MENU in its entirety.

THE HIDDEN MENU

[D] and [d] (Adjust flags 1 and 0)

		(FLAGA)		SHIFTED FIRST ROW
		(FLAGI)	(EQUA- TIONS)	FIRST ROW OF KEYS
(X<>Y)	(R)			

You've already seen these keys. They adjust flags 0 and 1, which control the complex number format. See page 48 if you don't remember how these work. Keep in mind that they are meant to be used only from the Editing or Equations Menus.

[E] (Equations Menu "Side Trip")

			(FLAG Ø)		SHIFTED FIRST ROW
			(FLAG1)	(EQVA-	FIRST ROW OF KEYS
(x <> Y)	(R1)	(CPLX 510)	(CPLX RCL)	(JUMP)	SECOND ROW OF KEYS

From any menu (except the Equations Menu itself), if you press [E], you will detour to the Equations Menu, as shown on the Roap Map.

[F] and [G] ([R \downarrow] and [X \blacktriangleleft >Y])

			(FLAGE)		SHIFTED FIRST ROW
			(FLAG1)	(EQUA-	FIRST ROW OF KEYS
(x<>Y)	(R1)	(CPLX STO)	(CPLX RCL)	(JUMP)	SECOND DOW OF KEYS

You've already seen these keys. They do just what they normally do, except that they also alternately set and clear Flag 2, to indicate to you whether you are looking at the first or the second portion of a complex number. Keep in mind that they are meant to be used only from the Editing or Equations Menus.

[H] and [I] ([STO] and RCL] for complex numbers)

			(FLAGØ)		SHIFTED FIRST ROW
			(FLAG1)	(EQUA- TIONS)	FIRST ROW OF KEYS
(X 43 Y)	(R↓)	(Ο Ρ'ΓΧ S.10)	(CPLX)	(TIIMD)	SECOND ROW KEYS

Again, these are meant to be used from the Editing or Equations Menus, where you will find them very handy for storing or recalling (to the stack) any complex numbers to be used in building circuits or analyzing your results.

With either [H] or [I], you are using four complex storage registers: A, B, C, and D. When you press [H], a little sub-menu appears, offering you

H: A B C D

Just press the appropriate register's key (A-D), and there you have stored a copy of the complex number that is currently sitting in the X- and Y- registers of the Stack–exactly analogous to the way a normal [STO] works.

[I] works similarly, but it recalls a complex value to the X- and Y- registers, bumping what was previously there up into the Z- and T- registers–just as you would expect.

[J] (Jump to the previous menu)

You've already seen this key several times. It merely sends you from one menu to whatever menu you were working in previously. Of course, using [J] from the Main Menu gets you nowhere at all.

THE EQUATIONS MENU

Looking at the Road Map, you can see that this menu is accessible by way of ANY of the other menus, and naturally, [J] will Jump you back to wherever you were before you took a "side trip" down to this Equations Menu.

After each time you use one of the keys on the Equations Menu, you will be returned back to that menu again. Depending upon what you just did, you may see the result stay in the display or merely flash briefly before the Menu reappears. Either way, you only need to press [R/S] to alternate between the result and the menu.

Here's a brief description of what each of the keys in the equations Menu will do:

[A] and [a] (Combine series or parallel impedances)

Just as in the editing routine, these keys speak whatever language you are currently working in–Polar, Rectangular or Physical. You load up the stack with four numbers; the top two represent one complex impedance; the bottom two, another. The [A] key will combine these impedances in series (recall that impedances add linearly when in series), while the [a] key will assume they are in parallel (and therefore add them inversely).

BE SURE YOUR TWO IMPEDANCES ARE IN THE SAME COMPLEX FORMAT. The result you get will ALSO be in this format.

[E] and [e] (Complex multiply and divide)

These are very simple to understand: Put in two complex numbers—in the same format—and multiply or divide them in the same manner you normally use for real numbers. Again, the result will be returned to you in the same complex format you used for input.

[b] and [B] (Y-to-Delta and Delta-to-Y conversion)

These are common calculations, often necessary to set up simpler circuit configurations. You load three impedances into the Complex Storage Registers A, B, and C, (because three complex numbers won't fit in the stack). Then select [b] to convert a Y configuration to a Delta, or [B] to convert a Delta to a Y.

BE SURE YOUR THREE IMPEDANCES ARE IN THE SAME COMPLEX FORMAT. The resulting three equivalent impedances will ALSO be in this format, and they will be found in those same storage registers A, B, and C (Z1 goes in A, Z2 in B, Z3 in C).

[C] and [c] (Convert C or L values to reactive impedances, and vice versa)

These are the only functions on the Equations Menu that don't try to interpret the format of the complex numbers you load into the stack (you load two complex numbers—four values). It takes you at your word: These are impedances either in Physical (R + L or C) or in Rectangular (R + X) form. It converts the (reactive portions of) the impedances back and forth:

[C] performs
$$C,L-\triangleright X$$

[c] performs
$$X-\triangleright C,L$$

SOLVING TYPICAL PROBLEMS

SOURCE POWER

The power supplied by a source in a circuit is NOT what you are calculating when you press the P key in the Calculations Menu. That key calculates the power being dissipated in the IM-PEDANCES of a given branch. The question here is: What amount of power does a given SOURCE supply to a circuit? The answer is:

$$Ps = (Vs \times Is),$$

where Vs and Is are the complex voltage across the source and the complex current through the source (only), respectively.

Take an example:

To find the power supplied by the source:

- (A) Build the circuit as shown;
- (B) Calculate the current through the source's branch;
- (C) Multiply your result by the source voltage.

NOTE: The real power is the real portion of the answer, so if you're computing in Polar notation, use the $P - \triangleright R$ function to convert your final answer to Rectangular form.

ANOTHER NOTE: If you have an I source, you have to compute the voltage across this source. Since the program will compute voltages only at nodes, it would seem that you would have to build a branch with only this I source (i.e. a node on each end of the source). But the program won't let you do this (it gives 0's for all the answers). Just cheat by including in that branch a negligible resistance. Then you can accurately compute a node which is, for all practical purposes, the voltage across your source.

INPUT (DRIVING POINT) IMPEDANCE

The input, or driving point, impedance at any given pair of points in a circuit is defined as the ratio of a voltage source connected across those two points to the resulting current, WITH ALL OTHER SOURCES IN THE CIRCUIT SET TO ZERO, BUT ALL IMPEDANCES RETAINED.

So if you have a circuit such as the one above, and you want to find the input impedance at nodes 1 and 2, do the following:

- (A) Build the circuit as shown, but either "zero out" or omit the two true sources;
- (B)Add a test voltage source across nodes 1 and 2, plus a negligible resistance (1 E-20) in series with this source. You do this because the program will NOT accept as a branch just a single source without an accompanying impedance (a stipulation which reflects physical reality).
- (C)Solve the circuit for the current through this test branch; divide the result into your test voltage to get the input impedance.

THEVENIN'S EQUIVALENTS

Somebody named Thevenin once figured out that it would make life a lot simpler if, instead of having to work with this:

you could work with this:

You can make this substitution PROVIDED that the V' is equal to the open circuit voltage difference across these same two nodes in the original circuit, AND that the Z' is equal to the input impedance at those two nodes.

To compute the equivalents for the above circuit:

- (A)Build the circuit as is, and solve for V4.05. This is the open circuit voltage across the two nodes you're analyzing-the Thevenin's equivalent voltage source;
- (B) Solve for the input impedance at nodes 4 and 5 (see page 64 if you don't remember how to do this). This is the Thevenin's equivalent impedance, Z'.

NORTON'S EQUIVALENTS

Norton's equivalents are similar to Thevenin's, except that instead of an equivalent VOLTAGE source with a value equal to the OPEN-CIRCUIT voltage between the nodes in question, you're looking to find an equivalent CURRENT source with a value equal to the SHORT-CIRCUIT current between those two nodes in the original circuit. That is, you're looking to replace this:

with this:

To do that:

- (A) Build the circuit as is, except put a negligibly tiny resistor on a branch of its own between nodes 4 and 5. This is the program's equivalent of a short-circuit. Then solve for the current in this branch. This is your Norton's equivalent current source, I'.
- (B) Compute the input impedance at nodes 4 and 5 (see page 64 if you've forgotten how to do this). This is the Norton's equivalent impedance, Z' (yes, it's the same as the Thevenin's equivalent Z'.)

THREE-PHASE POWER

In the course of your studies (or in the study of your courses), you will undoubtedly encounter a lot of problems in three-phase power, which is the common method of wiring for a wide variety of applications. When you use this program to analyze circuits such as the following:

you might want to rebuild the circuit like this, to make it easier to visualize, and to allow you to analyze line currents more easily:

You will have to add negligible resistors between points A and B, C and D, and E and F, then use points B, C, and E as nodes.

Remember, too, that you can compute Y-to-Delta conversions with the Equations Menu. This comes in handy with such three-phase systems.

TWO-PORT NETWORKS

Two-port networks are circuits that have a characteristic input "port" (a pair of nodes) and an output port:

In between may be a jumble of elements-usually all passive, but

Typically, though, you're only interested in the voltages and currents at the two ports, so use what you know about input impedances and Thevenin's and Norton's impedances to give you whatever quantity you want.

MUTUAL INDUCTION

Mutual induction is a phenomenon where two or more inductors in a circuit have an extra effect on one another. The reasons for this effect are similar to the reasons for an inductor's primary effect on a circuit: Changing currents cause magnetic fields, which in turn, may further change the current (albeit in another direction).

Normally, a coiled inductor works because of its own magnetic field—the field lines of force set up by the changing current—within its coils. With mutual induction, another coil is near enough so that some of its magnetic field ALSO sets up lines of force within the coils of the first inductor. Naturally, the first inductor returns the favor

In circuit notation, the common way to denote the directions of these added effects is with a dot at one end of each inductor; there are rules of thumb to determine how these dots signify the effect of the mutual induction, M.

In a series circuit:

In parallel circuits:

DC CIRCUITS

Direct Current (DC) circuits are easy to build and crunch with this program.

Of course, a DC circuit is simply an AC circuit with a Frequency (F) of zero. But this program won't let you use an F of exactly 0, and in general, you really want to vary F to analyze circuits that do have reactances—not try to model non-reactive (i.e. DC) circuits.

How, then should you crunch DC circuits? Simple: No matter what your frequency is, if all your elements are just plain resistors, then you can use as many IN-PHASE sources (i.e. 0°) as you want. So just build the circuit as you see it, except leave out (i.e. set to zero) any reactive elements and any source phase angles.

The editing routine is tailor-made for you to do this, since each impedance has two parts to it.

That about wraps things up. For quick reference, we have put the Road Map, the Table of Contents, and a troubleshooting page (page 74) in the very back of this book, so if you are lost or you sometimes forget what certain keys will do, try those pages first.

If you are crashing the program, and after reading page 74 you can't find anything you're doing wrong, it may POSSIBLY be an unforeseen feature in the program (also known as a bug). We are, after all, card-carrying members of the species Homo Sapiens, and these things can happen. If you can, try to reproduce the error consistently (so we can diagnose it and let you know the correction(s) to it). Then drop us a line at the address on the title page, describing the entire situation—data and keystrokes—and we'll fix it up, good as new (right after we severely flog the programmer responsible).

But don't let that be your only reason for writing. Even if you never crash the program for any reason, we would like to hear your comments on the program—what you like and dislike about its design, things you would rather we had included or left out, suggestions for other programs—either in circuits or other areas of student engineering, etc. We like to hear from our readers, and we always read our mail. Good Luck in your studies!

If you liked how we wrote the program (and this book), you might also be interested in other applications we have for the Advantage Module (OR in learning how to write HP-41 programs of your own)! Here is a complete list of

OTHER BOOKS FROM THE PRESS AT GRAPEVINE PUBLICATIONS, INC.

Please use the nifty order blank on the reverse side of this page. We'll send you (or your friend in need) a catalog describing each of our books in greater detail, and it's free!

OR, if you are so inclined, dial us direct at (503) 754-0583

GRAPEVINE PUBLICATIONS

-Using your HP-41 Advantage: Electrical Circuits for Students

-Using Your HP-41 Advantage: Statics for Students
-An Easy Course in Programming the HP-41
-An Easy Course in Programming the HP-11C and 15C
-An Easy Course in Using the HP-12C
-Custom Programming Services
"I would very much like you to send me information on all of your books, services, etc."
NAME: (please print)
ADDRESS:
CITY, STATE, & ZIP:

Mail this to: GRAPEVINE PUBLICATIONS, INC.

Corvallis, OR 97339-0118

P.O. Box 118

U.S.A.

PROGRAM ERRORS AND PROBABLE CAUSES

WHAT'S THE PROGRAM DOING?

WHY IS IT DOING THIS?

"NONEXISTENT"

You don't have your SIZE set high enough for the circuit you're trying to build (see page 43).

"NO ROOM"

You don't have enough room in Extended Memory for the circuit you're trying to build (see page 43).

"DATA ERROR" or "OUT OF RANGE" You're using a frequency of zero; or you're trying to divide by zero in some calculation; or you have a resonant circuit or sub-circuit.

"END OF ARRAY"

If you're crunching or editing you probably gave the machine some bad data for building a circuit. Check your circuit with the "add" routine (so you can also check the nodes and branches count).

An endless loop - the goose just keeps on flying.

You're in the Calculations menu, and you probably asked to analyze a branch that does not exist: pay attention to "direction" in each branch in the circuit AS YOU BUILD IT. You must ALWAYS refer to a branch in the same direction as that in which it was built

NEVER panic. You can't hurt the program or the machine. If using [J] after some error message doesn't return you to some familiar point, then use [XEQ] "R" to "Recover" to the Main Menu (without losing your circuit data)!

WHERE TO FIND IT Page	ge
LOADING THE PROGRAM	. 2
Your Calculator's Configuration	3
Are You Rusty?	. 4
Preparing Your Calculator's Memory	6
The Listing	
The Barcode	
Proofreading Your Loaded Program	
WHAT THIS PROGRAM WILL (AND WON'T) DO	24
Summary	25
Solving Circuits: What's a Circuit?	
What Kinds of Circuits Can the Program "Crunch?"	
What Circuit Elements Can you Use?	20
Circuit Size Limits	34
Circuit Notation	
	<i>J</i> ,
USING THE PROGRAM	36
Cold-Starting (and Warm-Starting) the Program	37
Road Map: You Are Here	38
Building Your Circuit (What SIZE?)	40
Altering Your Circuit	
Adding to Your Circuit	
Crunching Your Circuit	
V and G: Voltage and Gain	
P and I: Power and Current	
The Hidden Menu and (E) the Equations Menu	57
The frieden Mena and (E) the Equations Mena	51
SOLVING TYPICAL PROBLEMS	62
Source Power	63
Input (Driving Point) Impedance	
Thevenin's Equivalents	
Norton's Equivalents	
Three-Phase Power	
Two-Port Networks	
Mutual Induction	
DC Circuits	70
OTHER BOOKS FROM GRAPEVINE PUBLICATIONS	72
PROGRAM FRRORS AND PROPARIE CAUSES	74

"If it's not shown on these menus, don't press the key!"

USING YOUR HP-41 ADVANTAGE: Electrical Circuits for Students

Here is THE program (designed by engineering graduates who wish THEY had had this when they were in school!) to help the engineering student sail through his/her electrical fundamentals courses.

This program (and your HP-41CV or CX, with the HP-41 Advantage Module) is all you may ever need to calculate voltages, currents and powers in typical AC circuits!

The program allows for sinusoidal current or voltage sources (V or I), variable frequency (f or w), and passive impedance elements of resistance (R), inductance (L), and capacitance (C).

With a plain HP-41CV, you can "crunch" a circuit with up to 4 nodes; with maximum Extended Memory added, you can tackle up to 12 nodes.

PLUS, you can model mutual inductance, solve for input impedances and Thevenin's and Norton's equivalents, perform parallel-series conversions, Y-Delta conversions, and much more!

ALL THIS, with program listings, bar code, and quick-and-easy instructions for getting started.

