Computer Science
On Your HP-41

Using the Advantage Module

By Ed Keefe

A GRAPEVINE PUBLICATION

Computer Science On Your HP-41
Using the Advantage Module

By Ed Keefe

Grapevine Publications, Inc.
P.O. Box 118
Corvallis, OR 97339-0118
US.A.

Acknowledgements...

Thanks and congratulations are extended to
Hewlett-Packard Company's calculator division for
continuing its tradition of producing top-quality
products and documentation.

Cover Photo by Tom Brennan

© 1987, Grapevine Publications, Inc. All rights
reserved. No portion of this book or its contents, nor
any portion of the programs contained herein, may be
reproduced in any form, printed, electronic or
mechanical, without written permission from
Grapevine Publications, Inc.

Printed in the United States of America

ISBN 0-931011-10-8

NOTICE: Grapevine Publications, Inc. makes no express or
implied warranty with regard to the keystroke procedures and
program material herein offered, nor to their merchantability nor
fitness for any particular purpose. These keystroke procedures
and program material are made available solely on an "as is"
basis, and the entire risk as to their quality and performance is
with the user. Should the keystroke procedures or porgram
material prove defective, the user (and not Grapevine Publications,
Inc., the author, nor any other party) shall bear the entire cost of
all necessary correction and all incidental or consequential
damages. Grapevine Publications, Inc. shall not be liable for any
incidental or consequential damages in connection with, or
arising out of, the furnishing, use, or performance of these
keystroke procedures or program material.

Dedication and Appreciation

This book is dedicated to the patience of Helen,
my wife, who trusted that I was doing something
worthwhile without ever understanding what that
might be.

I would also like to thank Brian Meeker who
took the time and care to review this book and who
pointed out those parts that might puzzle a beginning
computer science student.

Table of Contents

INTRODUCTION ...cccooiiiiiiiiiiiniiiniiniiiiiiiinieeiaenes 2
A Brief Digression About the HP-16C 2
So Why Use An Emulator Program? 3
How To Use This Manualc.ccocevuennennnee. 5

CHAPTER 1.

Loading The 16-E Program cccocveveiiiinininnnen. 6
Your Calculator's Configuration 6
Preparing Your HP-41 CV's Memory 8
Keystroke Time! ..o, 9
Key Assignments ocovviiiniiiniiiiiniiininin, 31

CHAPTER 2.

Testing & Debugging The 16-E Program 35

Testing The 16-E ccciiiiiiiiiiiiiiinininann, 36

CHAPTER 3.

A Tutorial On The Advantage Module's Computer
Science FUNCHONS cvviiiiiiiiiiiiiiiiiiiieeieeeenneteneeaens

Number Base Conversions cccoceveeennnn..
Breaking Up Output With Commas
Flag 21 Not Accounted For ccccocvviinnnnnn.
Input Functions ...,
No Excessive Input ccciiiiiiiiiiiii.
Boolean Functions ccocvviiiiiiiiiiiiiiniinnn.
AND, OR, XOR .iiiiiiiiiiiiiiiiiniiiiiiiieeeeaene,
The Complement Operator ccoeeeenennn.
Bit Manipulationsc.cccooiiiiiiiiiiiiii,
Rotating BitsS ...ccviiviiiiiiiiiii
SUMMATY ciiiiiiiiiiiiiiiiiiiiiiiiiiiieciecenaaaans
POp QUIZ .iiiiiiiiii
Answers To The Pop Quiz cooiiiiinnn.

CHAPTER 4.

A Step By Step Guide To Using The 16-E Program

Setting The Word Size cocoviiiiiiiiininnn.
Using The [D] Key With A Chosen Word Size

Other Display Formats cccocviviiiiiiiniannn..
Pop Quiz .o
Answers To The Pop Quiz cccoviiinininnn.
The Effect of CHS ...,
CHS and Unsigned Format c.coeeeeeel
POp QUIZ ciiniiiiii e
Answer To The Pop Quiz ...,
REVIEW it

CHAPTER 5.

Use Of The O And 4 Flags By The 16-E Program

The Role of Flag 4 ..coiiiiiiiiiiiiiiiiiiineeennen
A Difference In 1's and 2's Format
Mixed Mode Arithmetic =~coooviiiiiiinann..
Missing Arithmetic Operators
Review i
Pop Quiz ..
Answers To The Pop Quiz =~ccoeviiiininininen,

CHAPTER 6.

Logical Operators In The 16-E Program

Creating Masks ...iccciiiiiiiiiiniiiiiiiiinineninenens
RevIEW i
Pop QuUiz .o
Answers To The Pop Quiz coeviviiiiinininni.

CHAPTER 7.

Shifting, Rotating and Justifying Numbers

Shifting Left Or Right cccccvveeeiieiiieeieennnn.
Justifying ...oooviiiiiiiiiii e
Rotating BitS ccoiiviiiiiiiiiiiiiii
Rotating Through The Carry Bit
Testing, Setting and Clearing Bits
Review i
Pop Quiz ..o
Answers To The Pop Quiz cocevvveinininininann.

CHAPTER 8.

Programming With The 16-E ..coiviiiiiiiiiiiiinnnnes

Supressing Intermediate Output With

Flag 06 ...ceovvvininiiiniiiiniiiiiiiiiincaeens
PROGRAM 1: LBL "SV" .. iiiiiiiiiiiiiinnnnens
PROGRAM 2: Bit Summation
PROGRAM 3: Doing Windows On The 16-E

CHAPTER 9.
Technical Details Of The 16-E coovviviiiiiiiininnnnns

Summary of User Instructions For The 16-E
Programcoiiiiiiiiiiiiiiiiiiii,
Data Registers Usedcccoovviiviiiviiiiiininnnnnn.
Program Errors And Probable Causes
Barcode "WS" (16-E Program)
Barcode "W" (Window Program)
Referencescoceveviiiiiiiiiiiiiiiiiiiiiiiiiin o,
Other Books From Grapevine Publications

Introduction

This book is all about a set of functions in your HP-41
Advantage Module and about a program that will turn
your HP-41 into a real problem solver in computer
science and engineering.

Whether you're a student of computer science or
engineering, a professional already out in the "real
world," or just working on the ultimate "hack" for
your personal computer, you'll find the boolean
functions and number base conversion operators of
the Advantage Module to be indispensable.

And if you're wondering what else you can do with
these Advantage Module functions, I'll show you a
program that will make your 41CV behave like
Hewlett Packard's "Computer Scientist" calculator,
the HP-16C. I call this program the "16-Emulator" or
the "16-E" for short.

A Brief Digression About the HP-16C

Hewlett Packard created the HP-16C calculator, "The
Computer Scientist," in 1982, in response to the
needs of computer scientists and engineers.

These professionals wanted a reliable tool that would
give them fast number-base conversions and bit
manipulating functions. That is exactly what they got
in the HP-16C.

Computer Science on Your HP-41 2

So Why Use An Emulator Program?

If you're an engineer or an engineering student, you
probably already have an HP-41CV. This calculator,
along with the Advantage Module and the 16-E
program will save you the cost of the HP-16C. Surely,
you can put that money to better use. You also won't
have to remember to pack another piece of

equipment every morning as you rush to catch the bus
to work or dash off to your 8 A.M. class.

On the other hand, if you are not concerned about
saving money and you enjoy keeping track of all your
different calculators, the decision becomes more
cloudy. You may decide that it's not a matter of
"either one or the other" but "both." (HP will surely
like that kind of decision.)

So, in case you are having trouble making this
momentous decision, let me list the differences
between the HP-16C calculator and the HP-41CV
running the 16-E program.

ON THE ONE HAND...

1. The HP-16C is a "dedicated" calculator: the
HP-41CV is more of a general purpose
computer. This means, for instance, that the
keys on the HP-16C are appropriately labeled
for their functions. To use the 16-E program
you will have to interpret the current labels on
the HP-41CV's keyboard's or make up a
keyboard overlay.

2. The HP-16C operates as a binary calculator. It
is fast! On the other hand, the 16-E program
uses the HP-41 as a decimal based computer.
In order to emulate something as simple as a

3 Computer Science on Your HP-41

shift of binary digits to the left, the 16-E
program must go through two number-base
conversions and a multiplication by two. The
16-E chugs along while the HP-16C zips along.

3. The HP-16C will handle binary numbers up to
64 bits wide while the 16-E will handle only a
maximum of 32 bits at a time.

ON THE OTHER HAND....

4. The 16-E program will let you use alpha
prompts in your own programs: the HP-16C
doesn't have this capability. This means, for
instance, that writing programs with the 16-E
program is much easier. The HP-16C uses
numeric key codes to show you the steps in a
program.

5. When you have finished writing your program
on the HP-41CV, you can save it on magnetic
cards. This is something you can't do with the
HP-16C.

6. Furthermore, if you have a printer, you can get
a hardcopy of all your work with the 16-E.
This is something else you can't do with the
HP-16C.

7. Finally, if you are a professor of engineering or
computer science and you have access to the
HP-IL and video interfaces for the HP-41CV,
then you can plug the HP-41CV into a
computer projector. This makes a very
dramatic visual aid for classroom
presentations—far superior to writing on a
chalk board.

Computer Science on Your HP-41

8. Above all else, the 16-E program and this
manual will let you take full advantage of the
logic functions of the Advantage Module.

How To Use This Manual

As you read through this manual, realize that you are
learning to use a new tool. The tool may look like
your HP-41, but try to think of it as something new.
Work through all the problems, or as many of them as
you can. You may not understand all the concepts
behind the problems. On the other hand, you may
begin to uncover the concepts through the use of the
16-E program.

If the 16-E program helps you understand just one
obscure idea in computer science, this book will have
paid for itself. Truly you will "have the Advantage" in
computer science.

5 Computer Science on Your HP-41

Chapter 1.

LOADING THE 16-E PROGRAM

Your Calculator's Configuration

In order to use the 16-E program, you will need...

1. an HP-41CV or an HP-41CX,

2. the HP-41 Advantage module,

3. and this book.

Also, if you have an HP-41 Wand (barcode reader),
this will come in very handy, so keep it close by. If
you don't have a Wand, perhaps you can borrow one
from the rich kid down the hall or the president of
your company.

When your HP-41 is configured properly, you are
ready to load the program.

But before you do that... Do You Remember How to
Load A Program?

To use this book you will need to be able to follow
HP-41 keystroke instructions, load, pack and execute
a program.

I assume that you know how to do the following
operations:

Computer Science on Your HP-41

--how to read keystroke notation, (e.g. [XEQ] [ALPHA]
SIZE [ALPHA] 11)

--how the Stack works, including
[+LI-LIXLI/LIX<>Y],[RI], [STO] and [RCL]

--how to SIZE and PACK your HP-41CV's memory
--how to read and key in program steps such as:

SIGN
DSE X
ADV
ARCL X
ISG X
NOT

--how to move around in—and edit—a program (just
in case you mis-key some step)?

If all of the above is familiar to you already, you should
have no trouble in following the procedures for

loading and running the 16-E program. On the other
hand...if the above requirements are new to you or
very old and long-forgotten by you, please take some
time, now, to come "up to speed"” on what you don't
know or remember. Here are a couple of options:

--Look in your Owner's Handbook for whatever is on
the above list that you don't remember.

--Read a good book: for some reason, the publishers
recommend An Easy Course in Programming the
HP-41, by Chris Coffin and Ted Wadman, available at
many Hewlett-Packard dealers or directly from the
publisher, by calling Grapevine Publications, Inc.
(1-800-338-4331).

7 Computer Science on Your HP-41

Preparing Your HP-41 CV's Memory

The 16-E program will need 184 registers of
program memory in your calculator.

On top of that you will need 15 data registers to run
the 16-E program and its "spin-off' programs.

So...make room for the program in your calculator.

Once you have made sufficient space for the 16-E
program, you can begin.

If you have an HP-41 Wand, plug it in to your
HP-41CV, turn to the part of this book that contains
the barcode for the 16-E program and read it into
your calculator.

If you don't have a Wand, limber up your fingers; you
have a lot of keystroking to do. I count 781 separate
program instructions. There are also about 37 key
assignments to make.

Once you have keyed all the instructions into the
HP-41CV, I highly recommend that you use an HP-41
Card Reader (yours, your room-mate's, or a friend's)
to make a copy of the program. You will need six (6}
magnetic cards to save the 16-E program.

Alternatively, if you don't have access to a Card
Reader, but you do have some Extended Memory, you
can store the 16-E program there when you are not
using it.

Computer Science on Your HP-41

Keystroke Time!

As you begin to key in the program, you may notice
that many of the instructions in the 16-E program are
duplicates of other instructions. For those of you who
are adept at writing HP-41 programs, resist the
temptation to combine these duplicate steps into
subroutines. The duplication is needed to make the
16-E program respond more quickly to your bidding,
even though it does make the program longer than is
absolutely necessary.

KEYCODE COMMENTS

01 >LBL "WS" Initialize flags.

02 FIXO Integer format

03 CF 06

04 SF 27

05 CF 29

06 CLA Clear alpha register.
07 >LBL 13 Prompt for Word Size.
08 CF 05

09 CF 22

10 "I-WSIZ="

11 ARCL 00

12 PROMPT

13 CLA

14 FC?C 22

15 GTO 13 If no input, prompt again.
16 STO 00 Word size

17 2

18 X<>Y

19 YAX

20 STO 01 2~word size

21 1

22 -

23 STO 02 2/word size -1

24 RCL 01

9 Computer Science on Your HP-41

25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48

57
58
59

STO 04
1

STO 03
RDN
GTO 13
>LBL "SB"
STO 10
R/\

STO 09
STO 08
RA

STO 07
RA

RA
RCL 00

X>Y?
GTO 00
"ERR: "
RDN
GTO 13
>LBL 00

RDN
BIT?
GTO 00
2

X<>Y
YAX

+

R/\
>LBL 00
RDN
GTO 15

maximum positive number for this
word size

Set a bit if and only if it is clear.
Save stack.

Check to see if bit-to-be-set is in
bounds of current word size.

If out of bounds: error message
Branch to WS routine.

Set the bit by adding 2/bit to
contents of Y register.

Rearrange stack before exiting.
Exit.

Computer Science on Your HP-41 10

60 >LBL "CB"
61 STO 10
62 RA

63 STO 09
64 STO 08
65 RA

66 STO 07
67 RA

68 RA

69 RCL 00
70 X>Y?
71 GTO 00
72 "ERR: "
73 RDN
74 GTO 13
75 >LBL 00
76 RDN
77 BIT?
78 GTO 00
79 RDN
80 GTO 15
81 >LBL 00
82 2

83 X<>Y
84 YAX
85 -

86 GTO 15
87 >LBL "B?"
88 "NO"
89 BIT?
90 "YES"
91 +

92 LASTX
93 -

94 AVIEW
95 RTN
96 >LBL "RLN"
97 CF 07

11

Clear a bit if and only if it is set.
Save stack.

Check if bit-to-be cleared is in
bounds.

If out of bounds, generate error
message.

Clear bit by subtracting 2/bit from
Y-reg.

Exit.
Test if a bit is set or clear.

Rotate Left by N bits.

Computer Science on Your HP-41

98 X=07?
99 SF 07

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

STO 05
STO 10
RA

STO 09
STO 08
R/\

STO 07
RA
FS?C 07
GTO 15
>LBL 07
CF 00
ST+ X
RCL 02
X>Y?
GTO 00

SF 00
Rl\
>LBL 00
RDN
DSE 05
GTO 07
GTO 15
>LBL "RRN"
CF 07
X=0?
SF 07
STO 05
STO 10
RA

STO 09
STO 08
RA

STO 07

If N =0, set flag 07.

Store N in R-05 as a counter;
duplicate in R-10.

Save stack.

Clear carry flag.
Multiply number by 2.
Is result less than maximum?

Yes

No: reduce number to keep it in
bounds.

Set carry flag.

Decrement counter.

Exit.
Rotate Right by N.

If N = O, then set flag 07.

Store N in R-05 as counter;
duplicate in R-10

Save stack.

Computer Science on Your HP-41 12

135 RA

136 FS?C 07
137 GTO 15
138 >LBL 06
139 RCL X
140 2

141 ST/ Z
142 MOD
143 CF 00
144 X#0?
145 SF 00
146 RDN
147 RND
148 FS? 00
149 DSE X
150 >LBL 00
151 FS? 00
152 RCL 04
153 FC? 00
154 .

155 +

156 DSE 05
157 GTO 06
158 GTO 15
159 >LBL "RLCN"
160 CF 07
161 X=07?
162 SF 07
163 STO 05
164 STO 10
165 RA

166 STO 09
167 STO 08
168 RA

169 STO 07
170 RA

171 FS?C 07
172 GTO 15

13

Rotation emulated:

Divide number by 2.

Use mod 2 to find if number is odd
or even.

If mod 2 is not 0, then set carry
flag.

Round the number.

If carry, then decrement number
by 1.

If carry, then add R-04 to number
to set MSB.

Decrement counter.
Repeat loop.

Rotate Left through Carry Bit by N.

Set up counter.

Save stack.

Exit loop if N = O,

Computer Science on Your HP-41

173
174
175
176
177
178

179
180
181

182
183

184

CF 05
>LBL 11
FS?C 00
SF 05
ST+ X
RCL 01

X<=Y?
SF 00
MOD

FS? 05
1

FC?C 05

185 .

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

207 FC?C 00

+
DSE 05
GTO 11
GTO 15

>LBL "RRCN"

CF 07
X=0?
SF 07
STO 05
STO 10
R/\

STO 09
STO 08
RA

STO 07
RA
FS?C 07
GTO 15
>LBL 10
FS? 00
RCL 01

else set flag 05.

Loop.

If carry bit is 1, then

set flag 05.

Multiply number by 2.

If result is less than maximum
allowed,

then set carry flag.

Used to keep number in bounds of
word size.

If flag O5 is set, add 1 (emulates a
transfer from the carry bit to the
number.)

Decrement counter and

repeat the loop.

Exit when done.

Rotate Right through Carry Bit by
N.

If N =0, then

set flag 07.

Store counter.

Save stack.

If N =0, then

exit routine.

Loop,

If carry bit is already set, add R-01
to number. (Emulates the setting
of the number's MSB.)

Computer Science on Your HP-41 14

208 .

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

15

+

RCL X
2

ST/ Z
MOD
CF 00
X#0?
SF 00
RDN
RND
FS? 00
DSE X
>LBL 00
DSE 05
GTO 10
GTO 15
>LBL "MSKR"
STO 10
RA

STO 09
RA

STO 08
RA

STO 07
R/\

2

X<>Y
YAX

1

RCL 02
AND

GTO 15
>LBL "MSKL"
STO 10

RA

STO 09

Emulate rotation by division by 2.

Used to determine if number is
odd or even.

If carry bit is set, reduce number
by 1 to emulate a rotation into the
carry bit.

Decrement counter and

repeat the loop.

Exit from routine.

Mask on Right of Word Size.

Save stack.

Mask = 2AN-1

Used to keep the mask in bounds
of current word size.

Exit from routine.

Mask on Left.

Save stack.

Computer Science on Your HP-41

246 RA
247 STO 08
248 RA
249 STO 07
250 RA
251 RCL 00
252 X<>Y
253 -

254 2

255 X<>Y
256 YAX
257 1

258 -

259 NOT

260 RCL 02
261 AND
262 GTO 15
263 >LBL "LJY"
264 X=07?
265 GTO15
266 STO 10
267 RA
268 STO 09
269 R~
270 STO 08
271 RA
272 STO 07
273 RN
274 >LBL 02
275 RCL 00
276 DSE X
277 BIT?
278 GTO 01
279 RDN
280 ST+ X
281 GTO 02
282 >LBL 01

Used to find the complement of
the number in the current word

size.
Mask = 2AN-1

Complement of number in word

size of 32 bits.

Keep number in bounds
of current word size.
Exit from routine.

Left Justify a number.
IfN =0,

exit,

else

save stack.

Loop.

Current word size

less 1.

Is MSB of the number set?
If so, branch to...

else

shift left by 1.

Computer Science on Your HP-41

16

283 RDN Rearrange stack and

284 GTO 15 Exit from routine.
285 >LBL "RJY" Right Justify a Number.
286 X=07? If N =0, then

287 GTO15 exit from routine,
288 STO 10 else

289 RA save stack.

290 STO 09

291 RA

292 STO 08

293 RA

294 STO 07

295 RA

296 >LBL 03 Loop.

297 O Is LSB set?

298 BIT?

299 GTO 01 Yes: exit loop.

300 RDN No:

301 1 Rotate right by 1.
302 ROTXY

303 GTO 03 Repeat loop.

304 >LBL 01

305 RDN Rearrange stack and
306 GTO 15 exit from routine.
307 >LBL "SL" Logical Shift Left.
308 STO 10 Save Stack.

309 R~

310 STO 09

311 RA

312 STO 08

313 RA

314 STO 07

315 RA

316 ST+ X Shift emulation: multiply by 2.
317 RCL 00

318 CF 00

319 SF 25 Set error ignore flag.
320 BIT? Is MSB set?

17 Computer Science on Your HP-41

321 SF 00
322 CF 25
323 RDN
324 GTO 15
325 >LBL "SR"
326 RA
327 STO 09
328 RA
329 STO 08
330 R~

331 STO 07
332 R~
333 RCL 02
334 AND
335 STO 10
336 CF 00
337 O

338 BIT?
339 SF 00
340 RDN
341 1

342 ROTXY
343 2

344 ENTERA
345 31

346 Y X
347 -

348 GTO 15
349 >LBL "ASR"
350 RA

351 STO 09
352 RA
353 STO 08
354 R~

355 STO 07
356 RA

357 RCL 02
358 AND

Yes: set carry bit.
Clear error ignore flag.

Exit from routine.
Logical Shift Right.
Save stack.

Clear carry flag.
Is LSB set?

Yes: set carry bit.

Rotate number to right by 1.

Keep number in bounds.
Exit from routine.
Arithmetic Shift Right.
Save stack.

Computer Science on Your HP-41

359 STO 10 New lastx.

360 CF 00 Clear carry flag.

361 O

362 BIT? If LSB is set, then

363 SF 00 set carry flag.

364 RDN

365 CF 05

366 RCL 00 Word size

367 DSE X less one--

368 BIT? Is MSB set?

369 SF 05 Yes: set flag 05.

370 RDN

371 1 Rotate number right by 1.

372 ROTXY

373 2

374 ENTERA

375 31

376 Y X

377 - Reduce number to keep it in
bounds.

378 FC?C 05 If flag 05 is clear,

379 GTO 15 then exit from routine,

380 RCL 04 else add contents of R-04 to

381 + keep the sign bit the same as
before.

382 GTO 15 Exit from routine.

383 >LBL "CHS" Change sign of number.

384 STO 10 Save stack.

385 R~

386 STO 09

387 R~

388 STO 08

389 RA

390 STO 07

391 R~

392 CF 04 Clear out of range flag.

393 >LBL 17 Enter routine here if stack has

394 X=07? been saved.

19 Computer Science on Your HP-41

395 GTO 00
396 FS? 01
397 GTO 19
398 FC? 02
399 GTO 01
400 RCL 04
401 X=Y?
402 SF 04
403 RDN
404 >LBL 01
405 DSE X
406 STO X
407 FS? 03
408 SF 04

409 GTO 19
410 >LBL 00
411 FC? 01
412 GTO 15

413 >LBL "NOT"

414 STO 10
415 R
416 STO 09
417 RA
418 STO 08
419 RA
420 STO 07
421 RA
422 >LBL 19
423 NOT

424 RCL 02
425 AND

426 GTO 15
427 >LBL "+"
428 STO 10
429 RA

Computer Science on Your HP-41

If 1's complement,
then branch to LBL 19.
If not 2's complement,
then...

If same as R-04, then
set out of range flag.

Reduce number by 1.

NOP

Unsigned format?

Set flag 04: CHS has no meaning in
UNS format.

Branch to LBL 19.

Not 1's complement?
then exit from routine.

Save stack.

Entry point for other routines.
Complement the number in word
size 32.

A mask that is used with

AND to bring complement in
bounds.

Exit from routine.

Add two numbers.

Save stack.

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

21

STO 09
STO 08
RA

STO 07
RI\

RI\
RCLY
RCLY
+

STO 05
RCL 01
CF 04
CF 00
X<=Y?
SF 00
RDN
FC? 03
GTO 00
FS? 00
SF 04
GTO 15
>LBL 00
RDN
RCL 03
X<Y?
GTO 01
RCL Z
X>Y?
GTO 00
RDN
RCL 05
X>Y?
SF 04
GTO 00
>LBL 01
RCL Z
X<=Y"?
GTO 00

Duplicate Xand Yin Z and T.

Add numbers.

Set aside in R-05.

e.g. 256 for wsiz=8.

Clear out of range flag.

Clear carry flag.

If number is greater than 256,
then set carry flag.

Not UNS format?

Yes

Carry flag set?

Yes

Exit from routine.

1's and 2's complement format...

Used to determine if second

add end is greater than or equal to
maximum positive value for
current word size.

If first addend is less than R-03,
then...

else

Get sum: is this greater than R-03?

Yes: set out of range flag.

Computer Science on Your HP-41

468 RDN
469 RCL 02
470 +

471 RCL 05
472 X<=Y?

473 SF 04
474 >LBL 00
475 RCL 05
476 FC? 01
477 GTO 00
478 FS? 00
479 ISG X
480 >LBL 00
481 GTO 15
482 >LBL "-"
483 STO 10
484 RA

485 STO 09
486 STO 08
487 RA

488 STO 07
489 RA

490 RA

491 CF 04
492 CF 00
493 X>Y?

494 SF 00
495 RCLY
496 RCLY
497 -

498 FS? 00
499 RCL 01
500 FC? 00
501 .

502 +

503 FC? 03

Max. number in current word size.

If greater than or equal to sum of
numbers,
then set flag 04.

Not 1's complement?

Yes

Carry bit set?

Yes: increment number by 1.

Exit from routine.
Difference of two numbers.
Save stack.

Clear out of range flag.

Clear carry flag.

If first number is less than second
number,

then set carry flag.

Duplicate numbers in stack.

Take difference.
If carry is set, then

add R-01 to difference, else add O.
Not UNS format?

Computer Science on Your HP-41 2

504 GTO 00
505 FS? 00
506 SF 04
507 GTO 15
508 >LBL 00
509 STO 05
510 RDN
511 RCL 03
512 X<Y?
513 GTO 01
514 R~

515 X<=Y?

516 GTO 00
517 RDN
518 RCL 05
519 X<=Y?
520 SF 04
521 GTO 00
522 >LBL 01
523 RA

524 X>Y?
525 GTO 00
526 RDN
527 1

528 +

529 RCL 05
530 X>Y?
531 SF 04
532 >LBL 00
533 RCL 05
534 FC? 01
535 GTO 00
536 FS? 00
537 DSE X
538 >LBL 00
539 GTO 15

Yes.

Carry bit set?

Yes: set out of range flag,
and exit from routine.
Otherwise...

Store difference in R-05.

If the second number is less than
or equal to contents of R-03, then

else
If difference is less than or equal
to R-03,

set out of range flag.

If the first number is greater than
R-03,

then...
else
increase difference by 1.

If difference is less than R-05,
then set out of range flag.

Not 1's complement?
Yes

Carry flag set?

Decrease difference by 1.

Exit from routine. (Whew!)

Computer Science on Your HP-41

540 >LBL "*"
541 STO 10
542 RA
543 STO 09
544 STO 08
545 R~
546 STO 07
547 RA
548 R~
549 FC? 03

550 XEQ 09
551 *

552 FC? 03
553 RCL 03
554 FS? 03
555 RCL 02
556 CF 04
557 X<Y?
558 SF 04
559 AND

560 FC?C 05
561 GTO 15
562 GTO 17
563 >LBL 09
564 RCL 00
565 DSE X
566 CF 05

567 BIT?
568 SF 05
569 FC? 05
570 GTO 00
571 X<>Y
572 RCL 02
573 -

Multiply two numbers.
Save stack.

Not UNS format? (ie. 1's or 2's
complement)

Yes...

Multiply.

Not UNS format?

UNS format?

R-02

Clear out of range flag.

If R-02 is less than R-02 or R-03,
then set out of range flag.

Use mask with AND to keep
product in bounds.

If flag 05 is clear,

then exit routine,

else

This routine is used by both "*"
and "/" to determine if numbers
are positive or negative and
determines sign of result.

R-01 less one is used to find if
MSB is set.

If MSB is set then...

set flag 05.

If flag 05 clear, then

branch...

else swap numbers,

and

take the complement of the

Computer Science on Your HP-41 b2}

574 ABS
575 FS? 02
576 ISG X
577 STO X
578 X<>Y
579 >LBL 00
580 RCL Z
581 X<>Y
582 CF 04
583 BIT?
584 SF 04
585 FC? 04
586 GTO 00
587 X<>Y
588 RCL 02
589 -

590 ABS
591 FS? 02
592 ISG X
593 STO X
594 X<>Y
595 >LBL 00
596 RDN
597 X<>Y
598 FS?C 04

599 FS?C 05
600 FS?C 05
601 SF 05
602 RTN
603 >LBL "/"
604 STO 10
605 RA

606 STO 09
607 STO 08
608 RA

609 STO 07
610 RA

number.

In 2's complement format,
increase number by 1.

NOP

Swap numbers.

Do similarly for other number...

Exclusive OR the two flags 04 and
05

If either flag 04 or 05 is set BUT
not both, then...

set flag 05.

Return to calling program.

Divide two numbers...

Save stack.

Computer Science on Your HP-41

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625

626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646

647 >LBL "RMD"

Computer Science on Your HP-41

RA

FC? 02
GTO 00
X<>Y
STO 05
X<>Y

/

RCL 04
RCL 02
/

X=07?
SF 04
X=07?
GTO 01

RCL 05
RCL 10
>LBL 00
FC? 03
XEQ 09
/

INT
LASTX
FRC
X#0?
SF 00
RDN
FC? 03
RCL 03
FS? 03
RCL 02
AND
>LBL 01
FC?C 05
GTO 15
GTO 17

Not 2's complement?
Yes:

No:

Set aside dividend.

Divide.

R-04

R-02

Divide.

Subtract.

This is a special case in 2's
compliment where the maximum
number in current word size is
divided by -1. In this case, set out
of range flag.

Recall dividend.

Divisor.

Either 1's or 2's complement.
Check on signs of numbers.
Divide.

Take only integer part.

If there is a remainder, then
set carry flag.

If 1's or 2's complement format,
then use R-03.

If UNS format, then

use R-02

as a mask to keep quotient in
bounds.

If flag O5 is clear, then

exit from routine,

else change sign of answer.
Find remainder two numbers.

648 STO 10 Save stack.
649 RA

650 STO 09

651 STO 08

652 RA

653 STO 07

654 RA

655 RA

656 FC? 02 Rest of routine is similar to LBL"/"
657 GTO 00 except that MOD is used in place
658 X<>Y of /.
659 STO 05

660 X<>Y

661 MOD

662 RCL 04

663 RCL 02

664 MOD

665 -

666 X=07?

667 SF 04

668 X=07?

669 GTO 01

670 RCL 05

671 RCL 10

672 >LBL 00

673 FC? 03

674 XEQ 09

675 MOD

676 INT

677 LASTX

678 FRC

679 X#0?

680 SF 00

681 RDN

682 FC? 03

683 RCL 03

684 FS? 03

685 RCL 02

27 Computer Science on Your HP-41

686 AND

687 >LBL 01
688 FC?C 05
689 GTO 15
690 GTO 17
691 >LBL "UNS"
692 SF 03
693 CF 01
694 CF 02
695 GTO 16
696 >LBL "2c"
697 SF 02
698 CF 01
699 CF 03
700 GTO 16
701 >LBL "1c¢"
702 SF 01
703 CF 02
704 CF 03
705 LBL 16
706 >LBL "DECV"

707 X<>L
708 STO 10
709 RA
710 STO 09
711 RA
712 STO 08
713 RA
714 STO 07
715 LASTX
716 >LBL 15

717 X=07?
718 GTO 00
719 X>07?
720 GTO 00
721 NOT

Computer Science on Your HP-41

Set UNSigned display format.

Set 2's complement format.

Set 1's complement format.

Display decimal number in
complement format within the
bounds of current word size.
Save stack.

Entry point for other routines
which have already saved the stack.
If the number is O or positive, then

Branch.
Complement the number...

722 RCL 02
723 AND
724 FS? 02
725 ISG X
726 >LBL 00
727 RCL 01
728 MOD

729 RCL 00
730 DSE X
731 BIT?
732 GTO 00
733 RDN
734 GTO 01
735 >LBL 00
736 RDN
737 FC? O3
738 GTO 00
739 >LBL 01
740 " "

741 ARCL X
742 STO 06
743 RCL 10
744 SIGN
745 RCL 09
746 RCL 08
747 RCL O7
748 RCL 06
749 FC? 06
750 AVIEW
751 ADV
752 RTN
753 >LBL 00
754 ENTERA?
755 NOT
756 RCL 02
757 AND
758 FS? 02

Use R-02 as a mask

with AND.

If 2's complement format, then
increment number by 1.

Use R-01 and

Mod function to keep number in
bounds.

R-01

less one.

Is the MSB set?

Yes:

No:

Routine uses the alpha register to
display a positive number.

Restore stack.
Store in LastX.

If flag 06 is clear, show result.

Routine is used to show negative
number in alpha register.

Computer Science on Your HP-41

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774

ISG X
STO X
ARCL X
RDN
STO 06
RCL 10
SIGN
RCL 09
RCL 08
RCL 07
RCL 06
FC? 06
AVIEW
ADV
RTN

775 >LBL "BVU"

776
777
778
779
780
781

782

SF 25

SF 15
BINVIEW
CF 15
CF 25
ADV

END

Restore stack.

If flag 06 is clear, then
show number.

Routine needed to correct bug in
Advantage ROM.

This routine will allow for viewing
the binary numbers on a TV using
HP-IL interface.

Flag 25 is used to get around the
normal Out of Range error
message. Numbers greater than
1023 are shown as unsigned
decimal numbers.

You made it!

Computer Science on Your HP-41 30

Key Assignments

While you still have your fingers limbered up, you should
key in the following assignments of functions to the various
keys. Notice that even though these key assignments are
optional, life with the 16-E will be much more cordial if you
use the suggested key assignments.

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

31

[shift] [XEQ] [ALPHA] MSKR [ALPHA] [A]
(Assign "MSKR" to key 11.)

[shift] [XEQ] [ALPHA] MSKL [ALPHA] [shift] [A]
(Assign "MSKL" to key -11.)

[shift] [XEQ] BVU [ALPHA] [ALPHA] [B]
(Assign "BVU" to key 12.)

[shift] [XEQ] [ALPHA] BININ [ALPHA] [shift] [B]
(Assign "BININ" to key -12.)

[shift] [XEQ] [ALPHA] OCTVIEW [ALPHA] [C]
(Assign "OCTVIEW" to key 13.)

[shift] [XEQ] [ALPHA] OCTIN [ALPHA] [shift] [C]
(Assign "OCTIN" to key -13.)

[shift] [XEQ] [ALPHA] DECV [ALPHA] [D]
(Assign "DECV" to key 14.)

[shift] [XEQ] [ALPHA] WS [ALPHA] [shift] [D]
(Assign "WS" to key -14.)

[shift] [XEQ] [ALPHA] HEXVIEW [ALPHA] [E]
(Assign "HEXVIEW" to key 15.)

[shift] [XEQ] [ALPHA] HEXIN [ALPHA] [shift] [E]
(Assign "HEXIN" to key -15.)

Computer Science on Your HP-41

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

Computer Science on Your HP-41

[shift] [XEQ] [ALPHA] X [shift] [I] [shift] [J] Y [ALPHA] [F]
(assign X<>Y to its own key, 21, for speedier
response.)

[shift] [XEQ] [ALPHA] LJY [ALPHA] [shift] [F]
(Assign LJY to key —21.)

[shift] [XEQ] [ALPHA] RDN [ALPHA] [G] (assign R#¢ to its
own key, 22, for speedier response.)

[shift] [XEQ] [ALPHA] RJY [ALPHA] [shift] [G]
(Assign "RJY" to key -22.)

[shift] [XEQ] [ALPHA] SR [ALPHA] [H]
(Assign "SR" to key 23.)

[shift] [XEQ] [ALPHA] SL [ALPHA] [shift] [H]
(Assign "SL" to key -23.)

[shift] [XEQ] [ALPHA] RLN [ALPHA] (1]
(Assign "RLN" to key 24.)

[shift] [XEQ] [ALPHA] RLCN [ALPHA] [shift] [I]
(Assign "RLCN" to key -24.)

[shift] [XEQ] [ALPHA] RRN [ALPHA] [J]
(Assign "RRN" to key 25.)

[shift] [XEQ] [ALPHA] RRCN [ALPHA] [shift] [J]
(Assign "RRCN" to key -25.)

[shift] [XEQ] [ALPHA] ASR [ALPHA] [shift] [K]
(Assign "ASR" to key -32.)

[shift] [XEQ] [ALPHA] CHS [ALPHA] [O]
(Assign "CHS" to key 42.)

23)

24)

25)

26)

27)

28)

29)

30)

31)

32)

33)

34)

[shift] [XEQ] [ALPHA] [shift] [-] [ALPHA] [Q]
(Assign "-" to key 51.)

[shift] [XEQ] [ALPHA] N [shift] O T [ALPHA] [shift] [Q]
(Assign "NOT" to key -51.) NOTE: THE MIDDLE
CHARACTER IS ZERO RATHER THAN THE

LETTER "O.”

[shift] [XEQ] [ALPHA] [shift] [+] [ALPHA] [U]
(Assign "+" to key 61.)

[shift] [XEQ] [ALPHA] OR [ALPHA] [shift] [U]
(Assign "OR" to key -61.)

[shift] [XEQ] [ALPHA] [shift] [*] [ALPHA] [Y]
(Assign "X" (MULT) to key 71.)

[shift] [XEQ] [ALPHA] AND [ALPHA] [shift] [Y]
(Assign "AND" to key -71.)

[shift] [XEQ] [ALPHA] [shift] [/] [ALPHA] [:]
(Assign "/" (DIVIDE) to key 81.)

[shift] [XEQ] [ALPHA] XOR [ALPHA] [shift] [:]
(Assign "XOR" to key -81.)

[shift] [XEQ] [ALPHA] SB [ALPHA] [shift] [V]
(Assign "SB" to key -62.)

[shift] [XEQ] [ALPHA] CB [ALPHA] [shift] [W]
(Assign "CB" to key -63.)

[shift] [XEQ] [ALPHA] B? [ALPHA] [shift] [X]
(Assign "B?" to key -64.)

[shift] [XEQ] [ALPHA] [shift] 1 [shift] C [ALPHA] [shift]
[Z] (Assign "1c" to key -72.)

Computer Science on Your HP-41

35) [shift] [XEQ] [ALPHA] [shift] 2 [shift] C [ALPHA] [shift]
[=] (Assign "2c¢" to key -73.)

36) [shift] [XEQ] [ALPHA] UNS [ALPHA] [shift] [?]
(Assign "UNS" to key -74.)

37) [shift] [XEQ] [ALPHA] RMD [ALPHA] [shift] [space]
(Assign "RMD" to key -82.)

Now, that was a lot of keystroking, but it will pay off in
easier use of the 16-E program. (How are your fingers?)

Computer Science on Your HP-41 34

Chapter 2.

TESTING AND DEBUGGING
THE 16-E PROGRAM

After you have loaded the program, press the
[shift][GTOI][.][.] keys to pack the program and make
sure there is an END to it. The 16-E program is a
lengthy program, so it will take a long time to
pack—almost 30 seconds. I thought you should know
that just in case you should wonder if your HP-41 was
"stuck".

Here is a quick procedure that will let you discover if
your keystroking is 100% accurate. Read the next
TWO paragraphs before pressing any keys.
(Otherwise, You will be watching the LCD display and
won't have time to read the second paragraph.)

Press [shift][ENTER] 1 (CAT 1). The HP-41 will
display 27 separate labels used in the 16-E program
(preceded by the labels for any other programs that
you have in your calculator.)

Stop the CATALOG run ([R/S]) when you see LBL
DECV in the display and then press the [SST] key
until you see:

END 1283

35 Computer Science on Your HP-41

If the number in the display is 1283, you win! If it is
not 1283, then you probably dropped a keystroke or
two.

Now is the time to go to the beginning of the program
and check it step by step against the listing in this
book. The only differences that you should note are
the use of (" ") the double quote marks in the
printed listing and the super-script T in LBL's and
alpha prompts.

Testing the 16-E

Once you have debugged the program, run the
following example to convince yourself that it is
indeed operating correctly.

If you PACK the program by pressing the [GTO][.][.]
keys, expect that the program will respond slowly at
first. The speed will pick up after you have performed
the following test example.

Note that throughout this book I will represent the
gold [shift] key with the "#" symbol, and the [ALPHA]
switch by the double quote mark ().

Here is the extended test example. The left column
contains the keystrokes. (I am assuming that you have
made the suggested key assignments. If you have not
done so, then use the long version of the keystrokes

as given in the right hand column.)

The center column shows what you may expect to see

in the display of your 41CV as a result of the
keystrokes.

Computer Science on Your HP-41 36

The last column will give a brief explanation of what

has happened.

If you want to race ahead, you may skip this upcoming
trial run of the 16-E program. However, I heartily
recommend it as a way to get used to the various key
assignments. The test run will also serve to "limber
up" the program.

KEYSTROKE

[#1[D]

16 [R/S]
[R/S]
[R/S]

[#1(3]

[#][E]

ABCDE

[Enter]

DISPLAY

WSIZ = 32

WSIZ = 16
WSIZ = 16
WSIZ = 16

65535

H

ABCDE_H

703710

FUNCTION AND
COMMENT

XEQ"WS" to set
appropriate number of
bits for the word size.
The number you see
may be other than 32.

R/S will not let you
accidentally execute
another part of the
program.

XEQ "UNS" to establish
"unsigned" display
format. Flag 3 should be
visible in the display.

XEQ "HEXIN" to prepare
for hexadecimal input.

The decimal equivalent
of ABCDE hex for a 32
bit word.

Computer Science on Your HP-41

(D]

[E]

[#1[2]

[CIx]

[C]

[B]

48350

BCDE_H

-17186

48350

136336 O

48350

Computer Science on Your HP-41

XEQ "DECV" show the
decimal representation
of the number in its 16
bit, truncated version.

XEQ "HEXVIEW" which
shows that the original
number has been
truncated to include
only the least significant
16 bits of the original
number.

XEQ "2c¢" to establish
the "two's complement"
display format. Flag 2
should be visible in the
display. Flag 3 should
be extinguished.

Clear the display to
show the internal
representation of the
number in the
X-register.

XEQ "OCTVIEW" to
show the octal
representation of the
number.

XEQ "BVU" Modified
BINVIEW function.
When the number is
greater than 1023, the
BVU operator defaults to
the internal rep-
resentation of the

[STOIL]IL]

[#][E]
BC

[Enter]
[B]

[#][E]
DE

[Enter]
[B]

[LastX]

[H]

BC_H

188
10111100 B

_H
DE_H

222
11011110 B

48350

24175

number rather than give
an out of range error.

To see the full binary
representation of this
16 bit number, do the
following:

Store the number in the
LastX register.

XEQ "HEXIN"

Key in the leading 8 bits
of the number. (Each
hex character equals
four binary digits.)

Key in the last 8 bits of
the original number.

Thus the total 16 bits
would be:
1011 11001101 1110

Restore the original 16
bit number.

XEQ "SR" to shift the
number one bit to the
right. NOTE: this is
equivalent to dividing
the number by two. The
binary equivalent would
be 0101 1110 0110
1111 or SEGF Hex.

Computer Science on Your HP-41

[#][H] -17186

[CHS] 17186
[CHS] -17186
[#1[K] -8593
2 [J] -2149
2 1] -8593
CF 00 56943

Computer Science on Your HP-41

XEQ "SL" to shift the
number to the left. The
number is automatically
displayed in 2's
complement format.

XEQ "CHS" Note this is
both the visible and
internal representation
of the number. You may
press [Clx] once and
apparently nothing will
happen. Actually it has.
You have cleared the
display register and
you are now looking at
the X-register.

Change the sign again.

XEQ "ASR" (Arithmetic
Shift Right). This shift
preserves the sign of
the original number.

XEQ "RRN" Rotate Right
by N (in this case, by 2).

XEQ "RLN" Rotate Left
by N. The reciprocal of
the previous operation.
Flag O will appear in the
display, indicating that
the "carry bit" is set.

Clear the carry flag and
see the internal re-
presentation of -8593.

3 [#]J]

3 [#]M1]

[#1[-]

[E]

8 [A]

[B]

[#1[*]

[E]

41

-9267

-8593

8592

2190 H

255

11111111 B

144

90 H

XEQ "RRCN" Rotate
Right Through the
Carry bit by N. Again,
the carry flag (0) will be
visible.

XEQ "RLCN" Rotate Left
Through the Carry bit by
N (in this case, by 3).
The carry flag should be
extinguished.

XEQ "NOT" : take the
complement of the
number.

HEXVIEW the number.

XEQ "MSKR" : Create an
8 bit "mask" on the

right side of the 16 bit
field.

This is what the right
side of the mask looks
like. The other half (on
the left) is 8 "invisible"
Zeroes.

XEQ "AND" This will
"and" all of the "bits" in
the Y-register with
those in the X-register.

Those bits that have

been "anded" with O are
eliminated.

Computer Science on Your HP-41

8 [#][A]

[E]

[#1[+]

[D]

[E]

[#1[1]

2 [CHS]

[*]

[#1[G]

[#][X<>Y]

-256

FFOO H

65424

-112

FFOO H

-111

222

111

-8703

Computer Science on Your HP-41

XEQ "MSKL" to create a
mask of 1's on the left
side of the 16 bit word.

There they are: each F is
1111, and each O Hex is
0000 Binary.

XEQ "OR" to "or" this
mask with the number
in the Y-register. This is
the internal
representation. To see
the 2's complement
version...

The hex version of the
same number.

XEQ "1c" to see the
one's complement
format of this same
number.

A negative two

XEQ "*" to multiply the
two negative numbers.

XEQ "RJY" to right
justify the binary digits
in a 16 bit field. This
effectively strips off
trailing zeroes.

XEQ "LJY" to left justify
bits in a field of 16 bits.

[RCL] 04
(-]

[LastX]

[+]

15 [#][6]

[LastX]

[#1[5]

[LastX]
[#](4]

20 [#][4]

32768
24064

32768

-8703

15

24064

15
-8703

ERR: WSIZ= 16

Just a number to use.

XEQ "-" to subtract this
number from -8703.

Recall the value in
Last-X

XEQ "+" to add the
number to the value in
the Y-register.

XEQ "B?" to test if bit
number 15 is set. It
should be since bit #15
is the sign bit in one's
complement.

Recall the bit number.

XEQ "CB" to clear the bit
and show the resulting
value in one's comp-
lement format.

XEQ "SB" to reset the
sign bit and restore the

number to its previous
value.

Trying to set bit #20 in
a number with only 16
bits will generate this
reminder.

Computer Science on Your HP-41

[Clx]

[RDN] 56832
5[/] -1740
8703[CHS] -8703
5 [#][0] -3

Clear the display and
roll the stack down to
regain the number.

XEQ "/" to divide the
number by 5. This is
integer division, but, in
this case the O flag is
used to show that there
is a remainder.

Reset the original
number.

XEQ"RMD", that is press
[shift] [zero], to discover
the remainder when the
number is divided by 5.

If you have performed all of the above keystrokes and
obtained results identical to those above, then your
16-E program is working "as advertised."

In the ensuing chapters I will explain more of the
operation of the 16-E program. I will also describe
the significance of all of the different display formats.

Computer Science on Your HP-41

Chapter 3.

A TUTORIAL ON THE ADVANTAGE MODULE'S
COMPUTER SCIENCE FUNCTIONS

I know you are eager to start using the 16-E program,
but before showing you all the in's and out's of the
program, let me show you some tips and techniques
for the Advantage Module's computer science
functions. These functions are the backbone of the
16-E program. They are also usable apart from the
16-E program. Discussing them now will save us time
and prevent unnecessary confusion when we delve
into the depths of the 16-E program.

If you are thoroughly familiar with the number-base
conversion functions in the Advantage Module, you
may jump to the next part of this book.

However, here is what you will miss:

1. How to do number-base conversions.

2. How to put commas in the output displays.
3. How to avoid the BININ bug.

Number Base Conversion Functions

The Advantage Module will let you convert numbers
between base 10 (decimal), 2 (binary), 8 (octal) or 16
(hexadecimal) quickly. This should help you make
some sense of those hex or octal dumps from your
computer.

45 Computer Science on Your HP-41

Here are some decimal numbers that you can convert
to other display formats. You will be using the
Advantage Module's "VIEW" functions which you have
assigned to the keys in the top row of your HP-41.

1. Input 123 dec and convert this number to hex,
octal and binary format.

KEYSTROKES DISPLAY COMMENTS

[USER] Turn on the User
Mode.

123 123 Decimal input

[E] 7B H

[C] 173 O

[B] 1111011 B

2. Now convert the decimal number, 4567, to the
other three display formats.

KEYSTROKES DISPLAY COMMENTS

4567 4567

[E] 11D7 H

[C] 10727 O

[B] 4567 Say what?
(Read on...)

Computer Science on Your HP-41 46

Notice that there are some built-in limitations to
these "VIEW" functions. First of all, the BINVIEW
function, will translate only those numbers less than
1024. Executing BINVIEW with a number greater
than 1023 in the X-Register will result in an OUT OF
RANGE error message. I have modified the BINVIEW
function so that you will not get this message.
Instead, when you press the [B] key, you are activating
this modified BINVIEW function. The new function,
labelled "BVU" will check to see if the decimal
number is greater than 1023. If it is, the BVU
function won't even try to convert it to binary. It will
just leave it as it is. That's why, apparently, nothing
happened when you pressed [B] in the above example.

Similarly, the largest octal number that the display
can show is ten 7's (7777777777 O) or 1073741823
decimal.

The only format that can display all 32 bits of the
internal word is the hexadecimal format.

Eight F's (FFFFFFFF H) are equivalent to 32 1's
(binary) or 4294967295 (decimal). This is the largest
integer number that any of the Advantage Module's
functions can handle. (See Note 1)

I trust that these functions operate fast enough to
whet your appetite for more. If you have ever had to
do such number conversions by hand, you can really
appreciate the speed of the Advantage Module's
number base conversions.

47 Computer Science on Your HP-41

Breaking Up Output With Commas

The "VIEW" functions of the Advantage Module will
even let you intersperse commas in the binary,
hexadecimal or octal display.

To see how this feature works, set flags 28 and 29
from the keyboard. Then switch out of USER mode;
set FIX 2 display format, key in 16777215, and press
the [USER] key to turn on the USER annunciator in
the display.

Now press the [E] key, and you will see FF,FF,FF H.
The 2 in the FIX 2 command determines the spacing
of the commas!

Try the same operation using FIX 4 and you will
observe the commas interspersed every four digits.
(See Note 2)

Flag 21 Not Accounted For

Normally if you set flag 21 on your HP-41 and you
have a functioning printer attached, the calculator
will print out a number or string of characters each
time you execute a VIEW or AVIEW function in a
running program. On the other hand, if you do not
have a printer, or if the attached printer is turned off,
then the HP-41 will halt whatever it is doing and
display the contents of the alpha register or
X-register any time that an AVIEW or VIEW function
occurs.

You might, rightfully, suppose that the BINVIEW,
OCTVIEW, and HEXVIEW functions would conform to
this flag 21 protocol. Surprise! These functions
totally ignore flag 21.

Computer Science on Your HP-41 48

So, if you plan to use any of these VIEW functions in a
program, you will have to place a STOP command
after each VIEW function to get the program to halt.
Furthermore, the only way to print the contents of

the display is to operate the printer in NORM mode.
(See Note 3)

Input Functions

The BININ, OCTIN, and HEXIN functions in the
Advantage Module present some interesting features.
And, yes, even an undocumented feature or two of
which you should be aware.

A First Approximation to Keyboard Lockout

Before reading any further, take a second to prepare
the 41C to do some potentially irritating operations.

Switch off USER mode and reset the calculator to
FIX O display format. Then press [GTO][.][.] and let
the calculator PACK itself. The calculator will now be
outside the boundaries of the 16-E program (and any
other programs that you may have in memory.)

Now turn the USER mode on and press [#][B]. Try
keying in the following number (even though it is not
a binary number.)

11230045.11
Actually all you will be able to key in is 110011_B .
How about that? Keyboard Lockout! Surprise! This

isn't mentioned in the HP Manual. So, let's try some
other things.

49 Computer Science on Your HP-41

Again, press [#][B]. This time press and HOLD the [D]
key in the upper row of keys. You should see 01 LOG
and then NULL. If this were truly keyboard lockout,
then this key should exhibit no response. Try this
same strategy but press the other top row keys and
notice the odd behavior of the display. When you are
doing this, be sure you hold down the key until you
see NULL in the display. Only then should you release
the key.

Now [#][B] again. This time, press the [D] key and
release it before you see the NULL prompt. Press the
[PRGM] switch to go into program mode and there
you will see:

01 BININ

I honestly don't understand how this happens (and it
happens with the OCTIN function as well). Here is a
way to insert the BININ function in a program, while
NOT being in PRGM mode.

It's an undesirable feature, especially if you unwarily
insert the instruction into the 16-E program. If this
happens, you'll have to delete the unwanted function
from the program and then pack it. (What a nuisance!)

Note that the HEXIN function has more of the
capabilities of "keyboard lockout," but it is not perfect
either.

In short, where the Advantage Module Manual says
"The binary input for BININ must be O's and 1's..."
(p.127), highlight the word "must" as a warning to
yourself that you should not trust undocumented
features no matter how alluring they might be.
Observe the same precaution with the OCTIN and
HEXIN functions as well.

Computer Science on Your HP-41 50

No Excessive Input

There is one working instance of keyboard lockout in
the Advantage Module. The Advantage Module's input
functions will not let you key in more than ten binary
or octal digits. It will also not allow for more than
eight hexadecimal digits even though, theoretically,

the display and the calculator should be able to handle
such a number as 123 456 789 Hex =

4,886,718,345 Dec.

Problems With Solutions...
Here are several number base conversion problems.

Try solving these problems on the 16-E as a way to
become familiar with the assigned keys.

1. Input ABCDE Hex and display the number in octal
and decimal format.

Here are the keystrokes that will let you solve this
problem:

KEYSTROKES DISPLAY COMMENTS

[USER] Turn on USER
Mode.

[#][E] _H

ABCDE ABCDE_H

[Enter] 70310 Decimal number

[C] 2536336 O Octal number

You may be wondering why you need to press the
[ENTER] key at the end of the string of hex digits,

51 Computer Science on Your HP-41

ABCDE. The reason for pressing the [ENTER] key is
to terminate the digit entry before you press another
key. In the above problem, if you did NOT press the
[ENTER] key, and then pressed the [C] key, you would
see ABCDEC_ H in the LCD.

There are other ways to terminate hex number entry.
For example, you could press the [ALPHA] key twice.
Or you could press and hold the [TAN] key, for
instance, until you saw the NULL message in the LCD.
When you release the key, the hex number entry will
terminate and you will see the decimal equivalent in
the X-register. I like to use the [ENTER] key: it

makes life simpler.

2. Input 4771 Octal and convert this number to hex
and decimal format.

KEYSTROKES DISPLAY COMMENTS

[#][C] _0 Octin

4771 4771_0

[E] 9F9 H You do not need
to press [ENTER]
here, since
pressing the [E]
key will

terminate octal
number entry.

[CLX] 2553 CLx really only
clears the display
register and
shows you the
naked decimal
number in the
X-register.

Computer Science on Your HP-41 52

3. Input 11011001 binary and convert this to
decimal, octal and hexadecimal format.

KEYSTROKES DISPLAY COMMENTS

[#]1[B] B

11011001 11011001 _B

[Enter] 217 This [ENTER]
terminates the
binary input and
shows the
equivalent

base-10 number
in the X-register.
[C] 331 O

[E] D9 H

Boolean Functions

Having said enough, for now, about the number
conversion functions, let's move on to the "Boolean
Functions" in the Advantage Module. These functions
include AND, inclusive OR, XOR (eXclusive OR), NOT,
BIT? (a bit-tester), and ROTXY (a fast bit rotating
function).

Again, if you are a past master of the AND, OR, and
XOR functions in the Advantage Module, you may omit
this part of the chapter. There are only two sections
that you should look at. The first section will answer
the perplexing question: "How does NOT differ from
NOT?" See page 60 for the answer. The second
section will show you how to overcome the BIT?-bug

in the Advantage Module. This section is on page 62.

53 Computer Science on Your HP-41

AND, OR, XOR

Some desktop computers will give you an 8-bit AND,
OR and XOR function. The Advantage Module goes
several steps beyond this. In this case, "smaller
means bigger!" The AND, OR, and XOR functions in
the Advantage Module are "true" 32-bit functions.
And they are fast: each takes about 0.25 seconds to
operate on any two numbers. They always operate on
all 32 bits.

What this means is that if you key in the following two
32 bit hexadecimal numbers and press the [#][*] key,
you will AND these two numbers together and the
result will be a 32 bit number.

KEYSTROKES DISPLAY COMMENTS
[#][E] _H
FEDCBA98 FEDCBA98 H This is a full 32

bit number since
each hex digit is
the same as 4
binary digits
(bits).

[ENTER] 4275878552 This is the
decimal
equivalent of this
hex number.

[#][E] _H

89ABCDEF 89ABCDEF H Another 32 bit
hex number.

[#11*] 2290649224 The decimal
result of ANDing
the two hex
numbers.

Computer Science on Your HP-41 54

[E] 88888888 H This is the hex
representation of
the result.

To get a better idea of what is going on in this
example, here is a table of the first 16 hexadecimal
numbers and their binary equivalents.

HEX BINARY

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

HEHOOW» OO0 TN WN~O

Each time you key in a separate hex digit you are, in
effect, keying in 4 binary digits. So, one way of
looking at the result of your entering the two hex
numbers above would be to imagine that there are
really two binary numbers in the X and Y registers of
the stack.

In the Y-register: 1111 1110 1101 1100 1011 1010
1001 1000

55 Computer Science on Your HP-41

In the X-register: 1000 1001 1010 1011 1100 1101
11101111

I have inserted blank spaces between the groups of
bits just to make it easier to read and interpret.

Now, pressing the AND keys ([#][*]) amounts to 32
separate applications of the standard truth table
definition of AND, namely:

In the X-register: 1000 1000 1000 1000 1000 1000
1000 1000

which is equivalent to 88888888 hex.

In case you have forgotten, here is what the standard
truth table definition of AND looks like.

p_g AND
00 O
01 O
100
111

AND is sometimes called "logical multiplication"
because, if you multiply the binary digits in the "p"
column by those in the "q" column, you get the results
shown in the AND column. (That is a good enough
reason for assigning the AND operator to the [#][*]

key on the HP-41.)

Logicians like to call AND by its fancy name
"conjunction.” The English equivalent of the truth
table is usually given as: "The only time that a
statement is TRUE (1) is when all the separate
conjuncts are true."

Computer Science on Your HP-41 56

Computer scientists and engineers are more likely to
work with the AND operator in terms of O and 1 and
forget about the English meaning of the AND
operator.

For those of you who may have forgotten the truth
table definitions of the OR operators, here they are:

pg OR p_gq XOR

——O O
—QO O
bt - O
——0 0
—QO O

OO

The OR on the left is sometimes called the "inclusive
OR" to keep its meaning separate from the Exclusive
OR on the right.

Logicians refer to Inclusive OR by its formal title,
"disjunction."”

Sometimes Inclusive OR is called "logical addition"
and that almost works. The sum of the bits in the "p
column with those in the "q" column gives the results
in the OR column—almost. (The last row is "off" by 1.)
But three out of four isn't bad.... Anyway the idea of
"logical addition" makes it seem logical to assign this

function to the [#][+] key.

Inclusive OR is like the English phrase "One or the
other OR both," while Exclusive OR is more like the
phrase "either one or the other but NOT both." The
XOR function is assigned to the [#][/] key. There is no
logical reason for this key assignment: it's just
convenient.

57 Computer Science on Your HP-41

An Example:

Let's use the same hexadecimal numbers as before,
and see what happens when we OR them together.

KEYSTROKES

[#][E]

FEDCBA98

[ENTER]

[#][E]

89ABCDEF

[#1+]

[E]

DISPLAY

H

FEDCBA98 H

4275878552

H

89ABCDEF H

4294967295

FFFFFFFF H

COMMENTS

This is a full 32
bit number, since
each hex digit is
the same as 4
binary digits
(bits).

This is the
decimal
equivalent of this
hex number.

Another 32 bit
hex number.

The decimal
result of ORing
the two hex
numbers.

This is the hex
representation
of the result.

What happens if we use XOR on these same two

numbers?
KEYSTROKES
[#][E]

DISPLAY

Computer Science on Your HP-41

COMMENTS

FEDCBA98 FEDCBA98 H This is a full 32
bit number, since
each hex digit is
the same as 4
binary digits
(bits).

[ENTER] 4275878552 This is the
decimal
equivalent of this
hex number.

[#][E] _H

89ABCDEF 89ABCDEF H Another 32 bit
hex number.

[#11/] 2004318071 The decimal
result of XORing
the two hex
numbers.

[E] 77777777 H This is the hex
representation
of the result.

The Complement Operator

The NOT function is based on the truth table
definition
p_NOT-p

01
1 O

That is an easy definition to work with. It is also a
very easy procedure for a computer to do. All
computers have built into them an "inverter circuit”

59 Computer Science on Your HP-41

which will change the state of a signal from OFF to ON
or ON to OFF.

The Advantage Module has the advantage of
performing 32 of these inversions every time you use
the NOT operator.

For example, try this..

KEYSTROKES DISPLAY COMMENTS

[#][E] _H

0O0000O0ODE OO00OO00ODE H

[ENTER] 222 The decimal
equivalent of the
number.

[XEQI[ALPHA]

NOT [ALPHA] 4294967073

[E] FFFFFF21 H The hex
equivalent of the
complemented

(NOTed) number.

To get a clearer picture of what is going on here,
imagine the binary version of the same keystrokes.

222 = 0000 0000 0000 0000 0000 0000 1101 1110
NOT=1111111111111111111111110010 0001
=4294967073(dec)

All the 1's have been changed to O's and all O's to 1's.

Please note that I had you key in the NOT function
letter by letter, [XEQ] "NOT." I did not have you use
the NOT function contained in the 16-E program. The
two functions are slightly different. The Advantage
Module's NOT function is spelled N-Oh-T, while the

Computer Science on Your HP-41 60

16-E's NOT function is spelled N-zero-T. This may be
confusing, but it will become clear later on. The
Advantage Module's NOT function operates on all 32
bits of a number. The 16-E's NOT function operates
on any number of bits from 1 to 32. It's slower, but
more flexible.

Here are some problems that will let you check out
your understanding of the Advantage Module's logic
functions.

Problems With Solutions...

1. What is the result of 712 dec AND 444 dec ?

KEYSTROKES DISPLAY COMMENTS
712 712
[Enter] 712
444 444
[#1*] 136

2. What is the result of 712 Octal OR 444 Octal?

KEYSTROKES DISPLAY COMMENTS
[#][C] 712 712_0

[#][C] 444 444 O

[#]1[+] 494

[C] 756 O

3. What is the result of 712 Hex XOR 444 Hex ?

61 Computer Science on Your HP-41

KEYSTROKES DISPLAY COMMENTS

[#][E] 712 712_H
[#][E] 444 444 H
[#1[/] 854

[E] 356 H
Bit Manipulations

The BIT? function in the Advantage Module allows
you to test the status of any of the bits in a 32 bit
word.

The BIT? operator is something of a hybrid. It
requires two numbers. The first number is the
decimal equivalent of a binary number and the second
number is the position of the bit you want to test. The
first number is in the Y-register. The bit-position
number is in the X-register. When you execute the
BIT? function (XEQ "BIT?"), the display will show only
the response YES or NO to let you know if the bit is a
1 or a O, respectively. At that point, when you press
the [CIx] key to clear the display, you will find that
nothing has changed, of course. Clearing the display
([CLx]) shows that the stack has not dropped.

This operation of the BIT? function is different from
the implementation of the "B?" function on the
HP-16C. In the HP-16C the "B?" function operates in
a typical RPN fashion, dropping the stack and
preserving LastX. In the 16-E program, the BIT?
function has been imbedded in some other code to
make it behave more like a true RPN two-number
function. (See Note 4.)

Computer Science on Your HP-41 62

Finally, when you use the BIT? function in a program,
you will not see any YES or NO response in the
display. This is normal. In a program the BIT?
function operates just like one of the other HP-41
conditional functions (X=Y?, X=0?, etc.). In this case,
if the bit in question is "1", then the program
executes the next statement in the sequence. If the
bit in question is "0", the program will skip the next
program step.

As an example of how you would test the bits in a
number, try the following example...

KEYSTROKES DISPLAY COMMENTS
[#][E] _H
FOFOFOFO1 FOFOFOF1 H This is the

number whose
bits we want to

test.
[ENTER] 4042322161
31 31_
[XEQI"BIT?" YES The 32nd bit is
set.
[CLx] 31
[RDN] 4042322161
15 15_
[XEQ]"BIT?" YES The 16th bit is
also set.
[RDN] 4042322161
1 1
XEQI"BIT?" NO The 2nd bit is not
set.
63 Computer Science on Your HP-41

Rotating Bits

The ROTXY function is a very fast bit rotating
function. It operates on all 32 bits in a word.

To see how this function operates, do the following
exercise.

Press [#][E] and key in ABCDEF , a six-digit,
hexadecimal number. Realize, however, that,
internally, the calculator is working with an 8-digit
hexadecimal number (= 32 bits). So, close your eyes
and imagine the internal representation as
OOABCDEF.

Now, to rotate the 32 bit number 8 bits to the right,
imagine that you have printed the 8 hex digits on a
strip of paper and that you have wrapped the strip of
paper around a coffee mug. The two ends of the strip
of paper touch each other. Finally, imagine that you
rotate the coffee cup counter-clockwise to the right
by 2 hex digits. What you would see, as a result,
would be the sequence EFOOABCD.

To get the HP-41 to do something similar, press the
[Enter] key (and see 11259375) . Next, key in 8 and
then XEQ "ROTXY" and see 4009798605. Finally,
XEQ "HEXVIEW" and you will get EFOOABCD H in the
display.

Suppose you want to rotate a number to the left
instead of the right. Will using a negative number do
the trick? The answer is "no" (well, sometimes "yes"
and sometimes "no"). What will work for left
rotations is to use a right rotation of (32-number of
left rotations). Thus, if you want to rotate a number
left by 8 bits, use (32-8 =24) ROTXY to get the job
done.

Computer Science on Your HP-41 &4

This ability to rotate numbers will allow us to emulate
such features as shifting or justifying numbers in the
16-E program.

Summary

You have covered quite a bit of material in this
chapter. So far, you have learned about the number
base conversion functions in the Advantage Module.
You had a chance to learn how to use these functions
to covert numbers in base 10 (decimal) to and from
bases 2 (binary), 8 (octal), and 16 (hexadecimal). You
also learned about some of the peculiar features of
these functions in the Advantage Module. For
example, the BINVIEW, OCTVIEW, and HEXVIEW
functions all ignore the printer existence flag (flag

21) in the HP-41. AND, OR, XOR, and NOT.

Then you took a look at the Boolean (logic) functions:
AND, OR, XOR, NOT. We reviewed the truth table
meanings of these functions and saw a couple of
instances of their use.

Finally we looked at the functions that would let you
test the ON or OFF status of any bit in a binary number
(BIT?) and rotate all 32 bits of a number to the right.

That's a lot of material to cover, especially if it's all
new to you. Much of the material will be covered again
in the next chapter when we look at similar functions
in the context of the 16-E program.

For now, try to do the following problems using your
HP-41 with the Advantage Module. Convince yourself
that you are beginning to learn at least some of this
material.

65 Computer Science on Your HP-41

POP QUIZ
(Number Base Conversions)

1. Input EC98 Hex and convert to Octal.

2. Input 1011000000 Bin; convert to Hex and
decimal.

3. Input 17776 Octal and convert to hex and
decimal.

4. Input 763 Dec and convert to hex, octal and
decimal.
(Some Problems Using Logic Functions)

5. What is the result of NOT(FFFFECDB hex) AND
NOT(1101 bin)?

6. What is the result of NOT(317 Oct XOR 45 Oct)
AND 3072 dec?

7. What is the result of FFFF Hex AND 1111 Bin?
8. What is the result of EA72 Hex XOR EA73 Hex?

9. What is the result of 7613 Oct AND 313 Dec XOR
547 Hex?

ANSWERS TO THE POP QUIZ

1. [#][E] EC98 H [ENTER] (see 60568) and the
press [C] to see 166230 O.

Computer Science on Your HP-41 66

. Press [#][B] 1011000000 [ENTER] (see 704)—the
decimal equivalent. Press [#][E] to see 2CO H (the
hex equivalent.)

. Press [#][C] 17776 [ENTER] (see 8190)—the
decimal equivalent. Press [#][E] to see 1FFE H
(the hex equivalent).

. Key in 763 and press either press [#][B] or
[XEQ]I"'BINVIEW" to see 1011111011 B. Press [C]
to see 1373 O and then press

[E] to see 2FB H.

. Press [#][E] and key in FFFFECDB. The [XEQ]|'NOT"
and see 4900 (the complement in decimal form).
Press [#][B] 1101 [XEQ]"NOT" to see 4294967282.
Press [#][*] to AND the two numbers and see 4896.
Finally press [E] to see 1320 H.

. Press [#][C] 317 [#][C] 45 [#][/] and see 234 (the
decimal representation of the XOR of the two octal
numbers). Then press [XEQ]"'NOT" and see
4294967061. Press 3072 [#][*] and see 3072. To
view the hex equivalent (COO H), just press [E].

. Press [#][E] FFFF [#][B] 1111 [#][*] to see 15 (F H
if you then press [E]).

. Press [#][E] EA72 [#][E] EA73 [#][/] to see 1 which
is 1 in any other base as well.

. Press [#][C] 7613 [ENTER] (see 3979) and then

313 [#][*] (see 265). Press [#][E] 547 [#][/] and see
1102 (dec).

Computer Science on Your HP-41

NOTES...

NOTE 1: Actually the DISPLAY could handle nine or
ten F's, but the 41CV can't handle this large a number
in integer format. To see what would happen if you
tried to convert FFFFFFFFF hex to decimal, just use
the 41C to compute 2236 - 1.

To perform this computation, turn off the USER
switch. Then press 2 [Enter] 36 [y”x] 1 [-] and you
will see 6.8719476 10 in FIX 9 display format. The
41C has exceeded the limits of its FIX display format
and has defaulted to SCI format with the loss of some
accuracy.

NOTE 2: You may find this helpful. Personally, I find
it confusing. The commas are interspersed every
three digits in decimal format and then every two
spaces in binary, octal, and hex format. Because of
this potential confusion, I have arbitrarily set the
display format to FIX O and cleared flag 29 at the
beginning of the 16-E program. Later, you may wish
to change this in the 16-E program to suit your own
taste.

NOTE 3: As a matter of fact, no amount of coaxing or
swearing will get the BINVIEW function to print. The
OCTVIEW and HEXVIEW functions will trigger the
printer, but not BINVIEW. In the 16-E program, the
BINVIEW function is surrounded with flag settings
and clearings. All this flag-waving is necessary just to
get the BINVIEW function to display something on a
video monitor.

Computer Science on Your HP-41 68

This anomalous behavior of the Advantage Module's
VIEW functions may or may not be a bug.
Nevertheless, this total ignoring of the status of flag
21 is definitely inconsistent with the normal
operation of the 41C.

Does all this mean that you should send the Module
back to HP? I wouldn't. What the programmers at HP
have managed to accomplish is so good, in my
estimation, that I am willing to overlook a few minor
flaws. This is a human tool, made by real humans. It's
a work of art. And so far, I have not found any perfect
work of art.

NOTE 4: There are certain anomalies with the BIT?
function. On occasion, there is no response shown in
the display. I leave it to the interested reader to
discover the pattern of responses and null-responses.
I have documented this anomaly and sent the "bug"
report to Hewlett-Packard Technical Support.

69 Computer Science on Your HP-41

Chapter 4.

A STEP BY STEP GUIDE
TO USING THE 16-E PROGRAM

It's time to take a close look at the 16-E program to
see how it can expedite your work in computer
science and/or engineering.

In this chapter of the book we will be learning about...

1. Word sizes and how to set them using the 16-E
program.

2. Three new base-10 display formats: unsigned,
one's complements and two's complements.

3. How the CHS function operates in the 16-E
program.

Setting the Word Size

"Word size" means the number of bits (binary digits)
that the 16-E will use to represent a binary number.

Here is the procedure to set the word size in the
16-E program:

Press the [#][D] key (shifted D). The computer will
show you the current word size with the prompt:

WSIZ = 16

The 16-E program uses the contents of register 00 to
save the current word size. So, if you have been using

Computer Science on Your HP-41 70

the computer for other purposes, the current word
size may be whatever remains in register 00.

Let's set the word size to 8 and work in that
environment for the time being. Simply press 8 and
[R/S]. The computer will display:

WSIZ = 8

If you press [R/S] again, the program will only
re-display the above prompt. The 16-E will prevent
you from leaving this part of the program and
accidentally jumping into another part of the
program.

By the way, one of the users of the 16-E program
asked me to alert other other users to a potential
problem. He had been running another program in
the HP-41C. This program used registers 01 through
04 to store data. When he started to use the 16-E
program, he executed the WS function and
discovered that the word size was 16 bits, just as he
had left it. So he started to work some digital circuit
problems. He got some very bizarre results, and was
ready to call me with a "bug report". Then he
remembered that he had inadvertently changed the
contents of registers 01 through 04. He re-ran the
WS function again and, this time, he keyed in 16 for
the desired word size and then pressed the [R/S] key.
The 16-E program worked correctly once again. The
moral of the story is this: if you seem to be getting
some obviously incorrect results to your
computations, try resetting the word size and see if
that doesn't clear up the problem.

This is really all you need to know about the Word

Size function in the 16-E program. If you want to, you
may skip ahead to the next topic.

71 Computer Science on Your HP-41

If, however, you want to get on more intimate terms
with the word size operation, read on.

The Advantage Module's logic functions work only on
32 bit numbers. On the other hand, most computer
scientists work with either a four, eight or sixteen bit
environment. So one of the first capabilities of a
computer science calculator should be the ability to
set the word size.

The 16-E has this capability, and then some. It won't
limit you to just the standard word sizes. You can
specify any word size from O to 32 bits. (Granted, you
may never need a word size of 11, but it's reassuring
to know that you can work problems in an 11 bit
environment.)

For example, suppose you wanted to represent the
decimal number 6 in binary.

The decimal number 6 is 110 binary (you should read
this as one-one-zero and not one hundred ten). 110 is
three binary digits long. Another way of saying this is
"110 has a word size of 3 bits." So, if you wanted to,
you could set the word size to 3 (don't do this,
however.) In that 3-bit word size, you could work with
the range of number O to 7. Rather limiting, wouldn't

you say?!

Now, with a word size of 8, the binary representation
of 6 would be 00000110. There is still the "110" on
the right of the number which gives the value of 6 in
base 10.

The added zeroes in the binary representation of a
this 8 bit number are shown to give you a picture of
how wide the number is. The 16-E does not display

Computer Science on Your HP-41 72

these leading zeros. You will have to supply the
leading zeros in your imagination. (I have tried in
vain to find a simple way to get the 16-E program to
display these leading zeros. There does not appear to
be a simple way to get the job done other than
redesigning the Advantage Module itself. If you can
find a good way of doing this, be sure and let me
know.)

Using the [D] Key With A Chosen Word Size

You can use the [D] key to make the computer trim a
number down so that it will fit into the current word
size.

Now that you are working in an 8 bit environment,
let's try a simple experiment.

You undoubtedly know that the maximum positive
number of 8 bits is 11111111 Binary or 255 Dec (FF
Hex). But suppose you didn't know this. The 16-E
program can show you the maximum number in any
given word size. Here's how...

For now, we want to work with positive (unsigned)
numbers only. (Later we will look at how a computer
can show negative numbers.) So to make sure that we
are working with positive numbers only, press the
[#]1[3] keys. This will set the UNSIGNED display
format. The goose will fly across the LCD, and the 3
annunciator will appear in the display. Now we're
ready.

So, press the [#][B] key to activate the BININ function
and key in ten 1's. Granted this is more than the
computer can handle with a word size of 8 bits, but
let's see if the 16-E can deal with that.

73 Computer Science on Your HP-41

Press [Enter] and you will see 1023. This is, indeed,
the decimal equivalent of 11111111(bin), but it is too
large a number for one having only 8 bits.

Now press the [D] key. The goose will fly and the
number 255 will appear in the display. Press the [B]
key and you will see that the 16-E has truncated the
number to use only the least significant 8 bits of your
input: 1111 1111 B.

Try the above sequence of instructions again. This
time key in 1110000000 B and see what you get. You
should, of course, see 128 and then 10000000 B. Do
you see what happened? It seems that the 16-E
program has kept the 8 bits on the right of the
number and has thrown away any other binary digits
(bits) on the left of the number.

You can try this procedure with any decimal (or hex
or octal B number) that is greater than 255(d). The
16-E will trim the number so that only the first 8 bits
of the number (those numbered O to 7 from the right)
will be used in computations.

Other Display Formats

So far you have been working in UNSIGNED format.
In the real world of computing, numbers are both
positive and negative. Internally, computers do not
use a minus sign to save a negative number. The
typical way to do this is to have the "most significant
bit" (the one furthest to the left) represent the sign of
the number. This strategy leads to two different
display formats on the 16-E calculator: "two's
complement” and "one's complement" formats.

Computer Science on Your HP-41 74

TO ESTABLISH THE 1'S COMPLEMENT FORMAT,
PRESS THE [#][1] KEYS.

USE [#][2] TO SET THE HP-41 IN 2'S COMPLEMENT
FORMAT.

You can check which display format you are in by
looking at the numeric flag-annunciator in the display.
The 1 and 2 flag-annunciators stand for 1's and 2's
complement, respectively and 3 stands for unsigned
format.

If you are already a whiz at working with base 10
numbers in these two different formats, you may
jump over the next discussion and move on to page
86.

Let's take a good look at these different, and
sometimes confusing, display formats.

To do so, let's get the calculator to work with only a
limited range of numbers: O to 7. You will
remember, from above, that we can do this with a
word size of 3. So press [#][D] and key in 3 followed
by [R/S] when you see the WSIZ=8 prompt. This will
give you the message WSIZ=3 in the LCD.

Next, press the [#][3] keys to make sure that you are
in UNSigned display format. You should see the
decimal number 7 in the LCD. By the way, 7 is the
largest positive number for a word size of 3 bits. To
see the binary equivalent of the number 7, you may
press the [B] key and see 111 B in the LCD.

Suppose we wanted to represent both negative and

positive numbers in this limited word size. We could
do this by setting aside the Most Significant Bit (MSB)

75 Computer Science on Your HP-41

to stand for the sign of the number. For this reason
the MSB is often called the SIGN BIT.

According to the convention, in computing circles, if
the MSB of a binary number is 1, then the equivalent
base-10 number is said to be negative. If the Sign Bit
is 0 then the base-10 equivalent number is
understood to be positive.

Now, if the most significant bit represents the sign of
the number, then only two bits remain to express the
quantity of the number. So now it would appear that
the largest number would be +3 and the smallest
number would be -3. That sounds reasonable, but, in
this case, reason is not the sole arbiter.

Lest you think that putting a 1 or O in the sign bit is
all there is to creating a negative or positive number,
think again.

Here is a table of values that we will refer to in the
discussion that follows.

BINARY DECIMAL
NUMBER UNS lc 2c
000 0 0] 0
001 1 1 1
010 2 2 2
011 3 3 3
100 4 -3 —4
101 5 -2 -3
110 6 -1 -2
111 7 -0 -1

On the left is the binary version of the numbers from
0 to 7, and in the second column is the Unsigned
Decimal equivalent of these binary numbers.

Computer Science on Your HP-41 76

Then comes the "1¢" column. The positive numbers
in this column correspond to those in the UNS
column. Next, look at the bottom half of the chart.
To generate a "negative decimal number," start with
the binary equivalent of the positive value of the
number and change all the O's to 1's and all the 1's to
O's. This process is called "complementing" or
inverting. The 1 in the sign bit says that the number
is negative. The other two bits gives the magnitude of
the number.

Thus to generate -3(dec), in 1's complement format,
you would take the binary equivalent of 3, 011(b), and
invert all the 1's and O's to get 100(b). Similarly, to
generate -1(d), you would take 1(d) = 001(b) and
complement the binary number to get 110(b). What
happens if you complement 0(d) = 000(b)? Well, you
get 111(b), which is, indeed, a negative number. It is
a most unusual negative number: -0(d).

Perhaps because of trying to explain to people the
meaning of "negative zero," computer scientists have
devised another way to represent negative numbers:
the "two's complement" format. It is simply the "one's
complement" format with one (1) added to the
negative numbers. This eliminates having to deal with
-0, but now you have to deal with the smallest integer
value for a three bit word being "—4". Take your pick
of which display format you like. Two's complement
is more widely used in computer science.

You can get the 16-E to show you which numbers are
which in this scheme of things.

For example, to see the one's complement

representation of 7, just key in 7 and press the [#][1]
keys. You should see -0 in the display. You can then

77 Computer Science on Your HP-41

press the [#][2] key to see the two's complement
representation, -1.

Here is an alternative keystroke sequence to do the
same thing:

TO EXAMINE A NUMBER IN ANY GIVEN DISPLAY
FORMAT, SET THE DISPLAY FORMAT FROM THE
KEYBOARD OF THE CALCULATOR. NEXT, KEY IN
THE POSITIVE DECIMAL NUMBER. FINALLY, PRESS
THE [D] KEY (XEQ "DECV").

Thus, for example, in two's complement, if you key in
5 and press [D], you will see the value -3 in the
display.

If you are clear on all this, you may hop over the next
section and try your hand at some problems. On the
other hand, if you are still a bit confused, perhaps this
next section will help you understand the use of
signed numbers in computers.

Another way to view the relationship between
unsigned and signed numbers is to view them as
numbers on the face of a clock. Below is a diagram of
this for a word size of 3 bits.

Computer Science on Your HP-41 78

In case you are wondering: "why do you need to
complement a number in order to get a negative
number?" The answer lies in the way in which
computers do arithmetic.

When computers add, they do so in binary. And, when
the computer adds 45 and +45 in binary, it had
better get a result of O, right?

Now, if all that happened in a change of sign was to
change the MSB, then the ADDITION of

+45 = 00101101
45 = 10101101 (wrong way to create a negative
number)
O ? 11111011 =251 in 8 bits.

This is obviously not O as it should be.

On the other hand, when the binary number is
complemented along with the change of the Most
Significant Bit, then the two numbers do, indeed, add
together to become O.

To see this, take the 2's complement of 45:
+45(d) = 00101101(b) and the 1's complement is
—45(d) = 11010010(b) and the 2's comp. is this no.

+ 1(b)
11010101(b) (= -45(d) in 2's complement).

Now, adding 00101101(b)
+11010011(b)
gives 100000000(b)

If you have never done binary addition before, it's just

79 Computer Science on Your HP-41

like decimal addition, except, when you add 1(b) +
1(b) you get 10(b). You would keep the O and carry
the 1 into the next column and add that to the other
numbers in the column.

In this case, we get a number that is too large for an
8-bit word size, so the computer ignores any bit
beyond the MSB which leaves us with 00000000(b) =
0(d). This is the right answer.

All of this inverting and working in binary numbers is
necessary because our stone age computers only work
with two numbers: O and 1. It's truly amazing what
you can coax out of a machine that only can reckon
with O's and 1's. Now, suppose on a different planet,
in a galaxy far, far away, the electronic wizards had
invented a transistor that would show more than just
two electrical states. Suppose the transistors could
register 10 discrete electrical states. This would

make the design of their computers far simpler,
smaller, cheaper and faster. Of course, computer
science students on this planet would have to adapt to
using truth tables that contained 10 truth values
rather than just the two (True and False) that

we have to deal with. Isn't that something to boggle
your mind? I'll bet you didn't know that some
logicians on earth have already been working logic
problems in 10-valued logic. We all can do arithmetic
in a 10-valued number system. All we're waiting for is
for you to invent the 10-state transistor. Now there's
a challenge for you computer engineers!

Coming back to the real world, here are some

problems that you can try on the HP-41 to help you
learn the keystrokes to use.

Computer Science on Your HP-41 8

Problems With Solutions...

1. What is the "two's complement" representation
of the following hexadecimal number? Use a 32
bit word size.

D014 =°?

KEYSTROKES DISPLAY COMMENTS

[#]1ID] 32 [R/S] WSIZ = 32 Set word size to
32 bits.

[#][E] 0000D014 0000D014_H XEQ "HEXIN" and
key in hex
number.

[#112] 53268 XEQ "2c"and see
the answer.

2. What is the octal representation of 53268(d) ?
KEYSTROKES DISPLAY COMMENTS
[C] 150024 O XEQ "OCTVIEW"

3. What is the binary representation of this number ?

KEYSTROKES DISPLAY COMMENTS
[B] 53268 XEQ "BVU" (The
16-E is pro-

grammed to
default to unfor-

81 Computer Science on Your HP-41

matted decimal
output when the
binary repre-
sentation is

out of range.)

4. 2655F314(h) =? in decimal format

KEYSTROKES DISPLAY COMMENTS
[#][E] _H XEQ "HEXIN"
2655F314 2655F314_H Key in hex
number
[Enter] 643166996 Equivalent

decimal number.

5. What is the octal representation of the above
number, 643166996(d)?

KEYSTROKES DISPLAY COMMENTS
[C] 4625371424 O XEQ "OCTVIEW"

6. What is D9AAOCEC(h) in decimal 2's complement
format?

KEYSTROKES DISPLAY COMMENTS
[#][E] H XEQ "HEXIN"
D9AAOCEC D9AAOCEC H

Computer Science on Your HP-41 82

[Enter] 3651800300 Unsigned number

[D] -643166996 XEQ "DECV" (2's
complement)
[Clx] 3651800300 Clx to see the

unsigned number
in the X-register.

OK! Are you ready? Here it comes, another...

POP QUIZ!

Here are some hex numbers. Perform the indicated
conversions.

1. AB643106(h): convert to decimal both 1's and 2's
complement format.

2. 106EOFAB(h): convert to unsigned, 1's
complement, 2's complement and octal formats.

3. FEDCBA98(h): convert to unsigned, 1's
complement and 2's complement decimal format.

4. FFFFFFFF(h): convert to unsigned, 1's
complement and 2's complement decimal format.

5. What is the largest positive number that can be
accomodated with a word size of 32 and 2's compl.
format?

6. Similarly, what is the largest positive number in
2's compl. format with a word size of 16 bits?

83 Computer Science on Your HP-41

ANSWERS TO THE POP QUIZ

Isn't this book neat? You get the answers to ALL the
problems and you don't even have to look in the back
of the book. Try not to peek before you get some

answers, however.

1.
KEYSTROKES

[#][D] 32 [R/S]
[#][E]
AB643106
[#12]

[#1[1]

[CLx]

[C]

2.
KEYSTROKES

[#][E]
106EOFAB
[ENTER]
[#1[2]

[#1[1]

[C]

Computer Science on Your HP-41

DISPLAY COMMENTS
WSIZ = 32
_H
AB643016 H
-1419497210 2's complement
dec. number.
-1419497209 1's complement
dec. number.
2875470086 Unsigned dec.

equivalent of
original hex
number.

OUT OF RANGE Number is
greater than
1073741823(d)

DISPLAY COMMENTS

_H
106EOFAB H
275648427 Unsigned format
275648427 2's complement
275648427 1's complement

2033407653 O

3.
KEYSTROKES

[#][E]
FEDCBA98
[ENTER]
[#1[2]

[#][1]

4.
KEYSTROKES

[#][E]
FFFFFFFF
[ENTER]
[#1[2]
[#][1]

DISPLAY

H
FEDCBA98 H
4275878552
-19088744
-19088743

DISPLAY

_H
FFFFFFFF H
4294967295
-1
-0

COMMENTS

Unsigned format
2's complement
1's complement

COMMENTS

2's complement
1's complement

Remember that eight F's hex = thirty two 1's and, in
1's compl., when the MSB is 1, then the number is
considered negative and all 31 remaining bits are
complemented to become O's. This gives the
representation of -O.

5. One way to let the calculator answer this question
is to reason that if you use the MSB as a sign bit
you are left with only 31 bits. So press [#][E]
FFFFFFFF and then press [#][D] 31 [R/S] and see
WSIZ = 31. Then press [E] to see 7FFFFFFF H and
press [CLx] to see 2147483647 (d).

6. For this question you can use the [#][D] 15 [R/S]
and [E] keys to see 7FFF H and then [CLx] to see

32767 dec.

Computer Science on Your HP-41

The Effect of CHS

Changing the sign of number only has meaning in
those display formats that accomodate negative signs,
namely 1's and 2's complement formats.

To see the effect of the CHS (Change Sign) operator
in the 16-E calculator, first set the word size to 8 bits
and establish 2's complement format. ([#][D] 8 [R/S]
and [#][2]).

Press [#][B] (XEQ "BININ") and key in 11010011.
Now press the [D] key to view the decimal equivalent
in 2's complement. You should see -45. The MSB is
1, so the number is negative. Now press the [CHS]
key (XEQ "CHS") and see 45 in the display. Press the
[B] key (XEQ "BVU") and you will see 101101 B.
Realize that the leading zero (0) has been suppressed
and 1 has been added.

Note that the CHS operator in the 16-E does not
simply change the sign of a decimal number as it does
on a standard 41C. It does a lot more: it
complements all the bits in the number.

Later, we will take a look at the logical NOT operator.
This is the true complementing operator.
Nevertheless, when the display format is 1's
complement, the CHS and NOT operators are
identical. This correspondence between the CHS and
NOT operators does not hold in 2's complement
format, however.

If this much about the CHS function is enough for you,

feel free to move ahead to page 88. Otherwise, read
on...

Computer Science on Your HP-41 &

To take another look at the CHS operator, set
WSIZ=16, and establish 1's complement. ([#][D] 16
[R/S] and [#][1]) Press [#][E] and key in FEDC Hex
and press the [Enter] key to see 65244. Now press
the [D] key (XEQ "DECV") to see the 1's complement
representation, -291 dec.

Now press [CHS] and see 291. It appears as if the
only thing that has changed is the sign. Then press
the [E] key (XEQ "HEXVIEW") to see 123 H. This
should convince you that something definitely has
happened to change FEDC Hex to 123 Hex.

You can reverse the sign by pressing either the [CHS]
key or the [#][-] keys (XEQ "NOT") BUT ONLY IF YOU
ARE IN 1's complement format. Try pressing the
[#][-] keys this time to see -291.

Here is another example for those who are amused
with the lore of numbers. To do this example, set the
word size to 32 bits and 1's complement format.

Then press [#][E] and key in FEDBCA98 Hex and
press the [Enter] and [D] keys to see -190088743.
Now change the sign ([CHS]) and finally press [E] to
see 1234567 Hex. This is the rest of the

hexadecimal digits but in ascending order. (Those of
you who think in binary will see immediately how this
happens.) Similarly, you can start with 89ABCDEF H
and wind up with 76543210 Hex. (I am confident
that this has got to be the ultimate answer to one of
the most profound questions in the universe.) (See
Note 1.)

87 Computer Science on Your HP-41

CHS and UNSigned Format

While you are working with a word size of 32 bits,
switch the display format to UNSigned by pressing
the [#][3] keys.

Then key in 1 and press the [CHS] key. The display
will show 4294967295. Notice that the flag 4
annunciator appears in the display.

The appearance of the flag 4 annunciator is the 16-E's
way of signalling that [CHS] has no meaning in this
Unsigned format. The program will give you the 2's
complement of the number, but it is also telling you
that the actual number is negative and is outside the
range of the current word size.

Problems With Solutions...

1. What is the largest positive number, in 1's
complement format, for a word size of 12 bits?
(There are some computers that thrive on 12 bit
words.)

One way to find out is...

KESTROKES DISPLAY COMMENTS

[#][D] 12 [R/S] WSIZ = 12 Set word size to
12 bits.

[#][1] Set 1's
complement.

0 [CHS] -0

[CIx] 4095 The largest
unsigned number
in 12 bits.

Computer Science on Your HP-41 88

[USER] Switch out of

USER mode.
21/] 2048 Divide by 2.
[XEQ]'INT" 2047 2047 is the

largest positive
number in 1's
compl. format.

[USER] Switch back into
USER mode.

2. What is the unsigned value for -2047 (1's compl.)
using a 12 bit word size? What is the hex
representation for 2047 and -2047?

KESTROKES DISPLAY COMMENTS
2047 [CHS] -2047

[Clx] 2048

[E] 800 H

[CHS] 2047

[E] 7FF H

8 Computer Science on Your HP-41

POP QUIZ (A Shorty!)

1. What is the result of changing the sign of 3456
dec (2's compl. format) with a word size of 8?

ANSWER TO THE POP QUIZ

1. Press the keys [#][2] and [#][D] 8 [R/S] to see
WSIZ=8. Key in 3456 and press the [D] key. This
will show the result to be -128 (d).

The number 3456 has been truncated to fit in an 8
bit word. Now press the [CHS] and notice that the
sign does not change, rather the 4 flag
annunciator is showing. The 16-E is telling you
that you are at a point in the 2's complement
numbering scheme where [CHS] does nothing
except possibly create an overflow condition. Can
you find another spot in 2's compl. where the
[CHS] operator has no apparent effect?)

REVIEW

In this section of the course you have begun to learn
how to use the 16-E program on your HP-41.

You learned what is the meaning of "word size" and
how to set different word sizes with the [#][D] keys.

You then learned how to use the [D] key to trim
numbers down to size so that they would be within
the bounds of the current word size.

Next, you were shown how the computer represents
negative numbers. We talked at some length about

Computer Science on Your HP-41 Q0

the two decimal formats for representing signed
numbers.

Finally, we discussed the CHS operator in the 16-E
program.

That's quite a bit to learn, especially if you have never
encountered any of these ideas before. Why not take a
break and come back to this point later.

If, however, you are mentally alert and eager to forge
ahead, then, by all means: "avantage, avantage!"

91 Computer Science on Your HP-41

Chapter b.

THE USE OF THE O AND 4 FLAGS
BY THE 16-E PROGRAM

The 16-E program uses the O and 4 flags to alert you
to certain conditions that are taking place in the
16-E.

To get an idea of how these two flags function in the
16-E program, try the following examples.

An Example for Flag O

For the first example, establish a word size of 8 bits
and set the display format to 2's complement. ([#][D]
8 [R/S] and [#][2] will do the trick.)

Press [#][E] and key in FF(h). Press the [Enter] key
and then the [D] key. You will see the decimal
representation of this number in the display, -1.

Now key in 1 and press the [+] key to add -1 and 1.
The goose will fly and the display will show the result
0. The O flag annunciator will also appear in the
display indicating that the "carry bit" is equal to 1.

To visualize the role of a "carry bit," imagine that the
16-E is actually working with a 9 bit word rather than
the 8 bit word that you specified.

8 7 6 5 4 3 2 1 0 BIT#

Computer Science on Your HP-41 2

When you entered FF Hex, you, effectively, set bits O
through 7 equal to 1. Now, when you added 1 to this
number, you would have changed all 8 bits to zeros
and the ninth bit would have become 1.

11111 (1|1 |1 |1 |1] =FF(h)

110100 |O |O]JO}JO]O CARRY FLAG is set (flag 0)

8 76 5 43 2 1 O BIT #

Carry
Bit

The imagined ninth bit is the carry bit.
Next, key in 1 and press [+] again. The O annunciator

will disappear. This is as it should be. One added to
zero is one and the value of the carry bit is zero.

The Role of Flag 4

Flag 4 turns on whenever an arithmetic operation
goes out of bounds for a given word size. When flag 4
is on, you should suspect that the results of your
computations are inaccurate. Check your work and
then clear flag 4, if it is set, before continuing.

(Press [shift][CF][D] to clear the flag. See Note #1.)

As an example of "out of range flag," flag 4, try the
following. Set the word size equal to 8 and use the
2's complement display format. This is the same
configuration as above.

[°5] Computer Science on Your HP-41

Key in 127 and press the [Enter] key. Next, key in 2
and press the [*] key to multiply the numbers. The
result will be 126 and the 4 annunciator will appear
in the display. This indicates that the result is
greater than the maximum positive number in this
display format. The maximum positive number is, of
course, 127. Pressing [#][CF][D] will clear the flag.

Note that, when a result is out of range, the lower bits
in the result (those that fit in the specified word size)
still appear in the display.

oj1 |11 1|1]1 |1]| =127(d)

ojo|ojo|o|o]1]0]| =20

Oj1]1 11 |11 |1 |O |=126(d) Flag 4 (out of range
flag) is set.

7 6 5 4 3 2 1 0 BIT#

Furthermore, if the operation was multiplication or
division, then the sign of the result will be the sign
called for by the operation. That is, if one of the
numbers was negative then the result will be negative.
The display will indicate this even though the
magnitude of the answer is incorrectly shown.

Notice in the diagram above, that bit #7, in the
product, is O even though the unsigned product of
127 * 2 = 254(d) = 11111110(b). In the case of
signed numbers the sign bit is generated from the
sign bits of the two numbers being multiplied. The
product actually has only 7 bits in which to stay in
bounds with signed numbers.

Computer Science on Your HP-41 A

A Difference In 1's and 2's Format

There is a difference in the way that the 16-E handles

the carry (or borrow) bit in 1's and 2's complement
format.

For instance, in 1's complement format, with word
size equal to 8, the following arithmetic operation
would be true.

11111]1]1]0] =-1(dec:1'scomplement)

1f1]1f1]1}|1f|1]0]|=-1(d

Adding the two together gives

The 1 in the carry bit turns on
111|111 |1]|1|0 |O |flago,but thisis notthe correct
answer. In order to come up
with the right answer, the carry
1|1|1]1]1]1]0]|1 |Dbitmustbeadded tothe number
to give the figure on the left. This
8 7 6 5 4 3 2 1 0 is-2(d),therightanswer tothe
problem.

Note that, when you perform this addition on the
16-E calculator, the O annunciator turns on. This
means that the 16-E had to add 1 to the normal
result of adding two binary numbers to come up with
the correct result. Computer people call this method
of addition an "end around carry."

On the other hand, if the carry bit is O, the computer

will add the binary numbers without any such end
around carry.

g5 Computer Science on Your HP-41

For instance, consider the following example.

= -5 (decimal: 1's complement)

= +5 (decimal: 1's complement)

= -0 (decimal: 1's complement)
Carry flag is OFF.

In 1's complement format the procedure for
subtraction is very similar to that for addition. In this
case, if the carry bit (now referred to as the "borrow
bit") is equal to 1 after the subtraction operation, then
the computer will subtract 1 from the result of binary

subtraction.

For example,

BB O|]O]1]0|]0O0]O]O

= 32 (decimal: 1's complement)
BB = Borrow Bit

= 43 (decimal: 1's complement)

Subtracting the second from the first (32d—43d)

1j1]1]1]0]1]0

8 7 6 5 4 3 2 1

Computer Science on Your HP-41

Which is taken from the borrow
bit and subtracted from the
result to give...

0 | =-11 (decimal: 1's complement)
Carry/Borrow bit is set.
O BIT#

On the other hand, in 2's complement (and
unsigned) formats, the results of addition and
subtraction are simply the sum or difference of the
binary numbers.

Thus, in 2's complement format...

1{1]1J1]1]1]1}]1] =-1(decimal:2's complement)

1111 1]1]1]1]1]1] =-1(decimal:2's complement)

Added together... gives

1/1]1]1]1]1]1]1]0]| =-2(decimal: 2's complement)
The carry bit is set, but the
answer is correct simply by

ignoring the carry bit.

0/]0]11]0]0]0]0]| 0] =32(decimal: 2's complement)

1]1]0J1]0]1]0]1 | =-43 (decimal: 2's complement)

= -11 (decimal: 2's complement)

These results are independent of the status of the
carry or borrow bits. Perhaps this independence
from the carry bit is one reason why computer
scientists prefer the 2's complement format to the
1's complement format.

97 Computer Science on Your HP-41

Mixed Mode Arithmetic

You will become more familiar with the significance of
the carry and out of range flags in the 16-E calculator
as you progress through this manual. For now, let's
spend some more time examining how the 16-E
calculator handles arithmetic.

You will find that arithmetic on the 16-E is basically
the same as it is on the 41C. There is, however, the
added feature of saving a few keystrokes over ordinary
RPN.

Let's begin with the following example:

Suppose we want to find the result of

C hex *40 oct + 110 bin

13 dec
all in 2's complement and with word size of 16 bits.

Here is one way to obtain the result of this problem...

KEYSTROKES DISPLAY COMMENTS

[#][D] 16 [R/S] WSIZ = 16
[#1[2] Set 2's comp-
lement format.

[#][E]
C C
[#][C]

40 40

Computer Science on Your HP-41 a8

[*] 384 Multiply to find
decimal
equivalent.

NOTE: You should NOT press [ENTER] before
pressing the [*] key. When you key in 40(0), the
number is in the display and the X-register as well.
Pressing [ENTER] at this point would push 40(0) into
the Y-register. That is not what we want.

[#1[B] _B

110 110 B

[+] 390

13 13

[/1 30 Integer divide,

the O flag is not
set which means
that there is no
remainder.

As an alternative way of doing the same problem,
consider the following....

KEYSTROKE DISPLAY COMMENTS
13 13

[#][B] _B
110 110_B
[#][C] _0
40 40_0O
[#I[E] _H
C C_H
[*] 384

[+] 390

[X<>Y] 13

[/1 30

Notice that this approach requires no use of the

9 Computer Science on Your HP-41

[Enter] key. The Advantage Module input operators
evidently have a "built-in-Enter" with automatic stack
lift!

Missing Arithmetic Operators

The 16-E calculator lacks all of the other
mathematical operators of the 41C. Personally, I
deem this to be no great loss. The operators are still
there. Just shift out of USER mode and use them.
Just realize that the 16-E operates only in integer
mode. Thus, such an operation as "1/x" would have
no meaning to the 16-E calculator.

If you have need of the SQRT function, just shift out of
USER mode, press the [C] key to compute the square
root of a number in the X-Register. Then XEQ "INT"
from the keyboard. Finally shift back to USER mode
and press the [D] key to view the result in the current
display format.

Problems With Solutions...

1. The HP-16C Users Manual gives the following
problem on page 41:

"Find (5A0 H) / (177764 O)"

The answer given in the manual is FF88 H. The
problem assumes a word size of 16 and 2's
complement format.

Is this answer correct?

What would be the answer in UNSigned format?

Computer Science on Your HP-41 100

KEYSTROKE DISPLAY COMMENTS

[#][D] 16 [R/S] WSIZ = 16

[#1[2] Set 2's comp-
lement format

[#][E] H

5A0 5A0_H

[#][C] e

177764 177764 _O

[/] -120 Dec. number in
2's complement.

[E] FF88 H Answer is
correct.
Note that, since
the O flag
annunciator is off,
there is no
remainder.

Now, let's do the same integer division in unsigned
format....

[#][3] Shift to UNS format

Repeat the same keystrokes as shown above. In this
case the answer will be O, and the O annunciator will
appear in the display.

REMEMBER:

IN THE CASE OF DIVISION, IF THE O
ANNUNCIATOR IS ON, THAT MEANS THERE IS A
NON-ZERO REMAINDER TO THE DIVISION.

To find the remainder, you may repeat the same
keystrokes as shown above. In place of the division

101 Computer Science on Your HP-41

operation, perform the RMD operation on the 16-E.
That is press the [#][0] keys. Remember that you are
still in UNS format.

[#] CF 00 Clear flag O

[#][E] _H

5A0 5A0_H

[#][C] e

177764 177764_0

[#][0] 1440 Dec. number in
2's complement.

[E] 5A0 H Answer in hex
format.

WHOA! Are you a little bit confused at this point? Are
you saying, "I see how you get the answer you do in
UNSigned format--that's just what I'd get if I did the
division on paper, using the decimal equivalents of
the numbers...

Thus 1440 (d) = 5A0 (h)
65524(d) = 177764(0)

I get a quotient of O with a remainder of 1440 (d)....
But, how can it be that, in 2's complement format,
the program gives -120 (d) or FF88 (h) with no
remainder. That doesn't LOOK right."

It sure doesn’'t LOOK right, at first, but, once you get
used to working in different word sized numbers and
different complements, it will look right. Realize that
177764 (0) is the same as -12 (d) in 2's complement
and word size 16. Sure enough, looked at in that
light,

14440 (d)

—— = -120(d) = FF88 (h).
-12 (d)

Computer Science on Your HP-41 102

2. What is (45 Hex) + (25 dec) in Hex format:
WSIZ = 16 and 2's complement format?

KEYSTROKE DISPLAY COMMENTS

[#]1[2] Reset 2's comp-
lement format.

[#][E] 45 45 H

[Enter] 69 [ENTER] is
needed here to
terminate hex
number input.

25 [+] 94

[E] 5E H

3. What is the quotient and remainder of
(7 oct) / (5 oct)?

KEYSTROKE DISPLAY COMMENTS

[#][C] 7 7_0O

[#][C] 5 5 O

[/] 1 0 annunciator
shows non-zero
remainder

[#][C] 7 7 0

[#][LastX] 5 Get 5 from the
LastX register.

[#][0] 2 XEQ "RMD"

[C] 2 0O

4. Suppose we have an assembler program in a
computer's memory. We have called for a dump of

103 Computer Science on Your HP-41

the program and we have located, on our printout,
the zeroth line of the program. It is located at the
"absolute address" in computer memory of 3FO(h).

Realizing that both program lines and computer
memory addresses are numbered sequentially, we
wish to find the absolute addresses of lines 15, 25,
and 700. We also want to find the address in
memory of line -20, since that location contains
some useful "header" information that may be
causing the program to "crash and burn."

KEYSTROKE DISPLAY
[#][E] 3FO 3FO0_H
[Enter]

[Enter]

[Enter] 1008

15 [+] 1023

[E] 3FF H
[CIx][CIx] 0]

25 [+] 1033

[E] 409 H
[CIx]ICIx] 0]

700[+] 1708

[E] 6AC H

Computer Science on Your HP-41

COMMENTS

Load the stack.

Address of
instruction #15
[CLx] once to
clear the display.
[CLx] twice to
clear the X-
Register and
disable stack lift,
So we can put a
new number in
the X-Register.

Address of
instruction #25

Address of
instruction #700

104

[CIx][CIx] 0]

20 [] 988

[E] 3DC H Address of
instruction #-20

REVIEW

In this section of the course, you have had the golden
opportunity to see how the 16-E program handles 1's
and 2's complement arithmetic (dealing with signed
numbers).

You also probably learned more than you wanted to
know about the little carry and borrow bits and how
they interact with the O and 4 flags in the LCD. The O
annunciator may show that a result used the carry bit.
Or, in the case of division, the O annunciator will tell
you if there is a remainder to your division.

Then you took a look at how the 16-E can deal with
chained arithmetic operations and even add
hexadecimal numbers to binary numbers at the flick
of a finger. That alone is worth the price of admission,
wouldn't you agree?

Your knowledge of the workings of the 16-E program
is continuing to grow. And, if you have worked most
of the sample problems and tried to understand what
you were doing, then your expertise in computer
math just increased. Do you feel your head getting
any larger?

Now, while all this information is fresh in your mind,
try the following problems...

105 Computer Science on Your HP-41

POP QUIZ

1. How would you set word size to 16 bits and
establish 2's complement, decimal display format
with the 16-E program?

2. Once you have done problem #1, then what is
234(0) + 450(d) + ABC(h) in decimal and in octal?

3. What is
AEF(h) * 256(0)

in hexadecimal? (use a word size
11011(b) - 12(d) of 32)

(If you get the out of range error, flag 4, retry the
problem with WSIZ = 32.)

4. What is

BBBB(h) - 2222(0)

in binary?
1111(b) * 99(d)

(Again, do this problem with word size = 32.)

5. What is the remainder in problem 4?

ANSWERS TO THE POP QUIZ
1. KEYSTROKES DISPLAY COMMENTS

[#][D] 16 [R/S] WSIZ =16
[#]12] 2 flag appears in
LCD

Computer Science on Your HP-41 106

2.

[#][C] 234
[ENTER]
450

[+]

[#][E] ABC
[+]

[C]

[#][D] 32 [R/S]

[#][E] AEF
[#][C] 256
[*]

[#][B] 11011
[ENTER]

12
[-]
[/]
[E]

4.

107

[#][E] BBBB
[#][C] 2222
[-]

[#](B] 1111
[ENTER]
99

[*]

[/]

[B]

[#][E] BBBB
[#][C] 2222

[-]

[#][B] 1111

234_0
156

450
606

ABC_H

3354

6432 O

WSIZ = 32

AEF_H
256_0
487026
11011_B
27 Why? Because
next key would be
another 1 unless
you terminate
entry.
12
15
32468
7ED4 H The O flag is set.

BBBB_ H
22220

46889
1111_B

15

99

1485

31

11111 B With O flag on.

BBBB_H
2222_0
46889
1111_B

Computer Science on Your HP-41

[ENTER] 15

99 99

[*] 1485

[#1[0] 854

[B] 1101010110 B
NOTES...

NOTE 1: Admittedly this method of resetting a flag is
not standard programming procedure on the HP-41C.
It does correspond to the method of clearing the out
of range flag on the HP-16C, however.

Space for your own, personal NOTES:

Computer Science on Your HP-41 108

Chapter 6.

LOGICAL OPERATORS IN
THE 16-E PROGRAM

Earlier, you had a chance to learn something about
the logical operators in the Advantage Module. Now
you will see these same functions in the context of
the 16-E program.

There is only one rule to learn when using the AND,
OR, and XOR functions with the 16-E program.

RULE: Whenever you execute AND, OR, or XOR, you
will also need to press the [D] key as the last key in
the sequence.

Why this rule? Well, the AND, OR, and XOR functions
in the 16-E program are the very same ones in the
Advantage Module.

Because these functions come directly from the
Advantage Module, they work on all 32 bits of the
values in the X and Y registers. In order to limit their
effect to the number of bits in the current word size,
it is necessary to use the [D] key to trim the results of
these functions so that the results will be kept in
bounds. (See NOTE 1.)

On the other hand, the NOT operator does not
require this additional keystroke. When you use NOT
to find the complement of a number, the 16-E
program will automatically trim the result to fit into
the current word size.

109 Computer Science on Your HP-41

You may remember, when we talked about the NOT
function in the Advantage Module, I mentioned that
the NOT function in the 16-E program was slightly
different from the full 32 bit NOT operator in the
Advantage Module.

For one thing, the two functions are spelled
differently. The NOT function in the Advantage
Module is spelled "N-Oh-T", while the NOT function

in the 16-E program is spelled "N-zero-T". The

reason for the difference in spellings is so you will be
able to assign the 16-E's NOT to a key, and still be
able to assign the Advantage Module's NOT function to
a separate key, if you so desire.

The major difference between the two functions is
that the Advantage Module's NOT will invert ALL 32
bits in a number in the X-Register. The 16-E's NOT
function, on the other hand will, in effect, invert only
those bits allowed by the current word size.

If you look at lines 422 through 425 of the 16-E
program, you will see that the NOT routine uses the
Advantage Module's NOT function. It also uses the
AND function to "trim off" the excess bits that go
beyond the bounds of the current word size.

Both the NOT and the NOT functions do the same
thing: they change 1's to O's and O's to 1's. This
operation is called "complementing" or "inverting."

For example, if you are working with a word size of 16
bits and 2's complement format, and you keyed in the
decimal number 64349 and pressed the [#][-] keys,
the display would show the result 1186. Here is what
happens from a binary point of view...

Computer Science on Your HP-41 110

Here is what 64349(d) looks like in binary:

1j1]1j1J1J0]1J1]0}1J0J1fj1]1|0]1

FE DCDBAU Y9 8 76 5 43 2 1 0 BIT#

In 2's complement format, this same unsigned
number would be -1187(d).

Now, when you press the [#][-] keys, the 16-E
program will invert the values of all the bits in the
above number to give a decimal value of 1186(d) or

ojojofojoji1jojo011j0j1j0jojoj1jo

FEDCBAU 9 8 76 5 4 3 21 0 BIT#

On the other hand, if you were to press the [USER]
button to switch off USER mode, and then keyed in
64349(d) and then [XEQ]"NOT", you would see the
number 4294902946(d), which is the full 32 bit
complement of 64349(d) in unsigned format.

Here are some problems that will let you gain
experience in using the 16-E's various logic functions.
Problems With Solutions...

For this first example, set WSIZ = 16 and 2's
complements format.

Suppose we want to verify DeMorgan's theorem for a
couple of arbitrary decimal numbers. (DeMorgan's
theorem, in symbolic logic, states that NOT(p AND q)
is equivalent to (NOT p) OR (NOT q), where p and q

111 Computer Science on Your HP-41

are any two "atomic statements".)

A computer engineer would describe one of
DeMorgan's Theorems by saying something like: " The
output from a two input NAND-GATE would be the
same as if you inverted the same inputs and fed the
two signals into an OR-GATE."

This is a very handy theorem to know about when you
are rummaging through your collection of parts,

trying to find an integrated circuit chip with OR gates
in it. All you can find is a bunch of NAND-GATE
circuits. DeMorgan might just save you a trip to Radio
Shack.

Since we are working with just two variables (p and
g) in this example, we can set up a truth table like
the one below.

g PANDq NOT(pANDq)l NOTp NOTq (NOTp)OR(NOTq)

00 o 1 1 1 1
01 0 1 1 0 1
10 0 1 0o 1 1
11 1 o o 0 0

This gives us the very general proof of one of
DeMorgan's theorems.

We begin with the two columns on the right, labelled
"p" and "q". These contain all the possible
combinations of 0 and 1. Then we take a look at the
result of ANDing these binary digits. The result is
shown in the next column. We then NOT the results

to get the binary digits in the next column.
We back up and NOT (take the complement of) all the

p's and q's. The results are shown in the fourth and
fifth columns. Finally, we OR the results of these two

Computer Science on Your HP-41 112

columns to get the results in the last column. Then
we can just "eyeball" the last column and the third
column and, taa-daa, the results are the same!
Indeed, DeMorgan is right!

Now, let's see how easy it is to show this on the 41C.
The only trick to doing this is to take the columns of
values of p and q and lay them on their side....like so:

p 0011
q 0101

We can imagine that we are working with two binary
numbers with a word size of 4. So, here is the
procedure to follow to prove DeMorgan's theorem
using the 16-E program.

KEYSTROKES DISPLAY COMMENTS

[#]1[D] 4 [R/S] WSIZ = 4 Set word size to 4
bits.

[#1[3] Set unsigned
format.

[#1[B] _B

0011 0011 B Key in the value
for p.

[#1(B] B

0101 0101 B Key in the value
for q.

[#11*] 1 The decimal
result of ANDing
0011 (b) and

0101 (b)...and, of
course, you could
imagine that this
is equivalent to
0001 (b).

113 Computer Science on Your HP-41

[#1[-]

[#](B]
0011

[#1[-]
[#1[B]
0101
[#1[-]
[#][+]

[#1/1

14

12

10
14

0011 B

0101 B

NOT(p AND q) in
decimal.

The value for p
again.
NOT p in decimal

The value for q.
NOT q in decimal
OR of the two
values.

Now you COULD
press [X<>Y] and
see that the
contents of

X and Y are the
same. However
you may be more
logical and
reason that, if the
numbers are
identical, then
XOR will be O
(zero).

XEQ "XOR"
Therefore
equivalent. Q.E.D.

2. You are showing your friend, a student of logic,
your newly acquired 16-E. Your friend notes that
the calculator can perform AND, OR, NOT and
XOR operations. He or she wonders if it has a
"material implication" operator. Material
implication is the operator in logic that performs

Computer Science on Your HP-41

114

"IF... THEN..." statements. You respond that it
should not be too difficult to design such an
operator. You reason that, since "If p, then q" is
equivalent to "NOT(p) OR q", you should be able to
emulate material implication with the existing
logic functions of the 16-E. To to test your design,
you have the standard truth-table definition of the
"If...then..." operator

P q If p then q

00 1

0 1 1

1 O 0

1 1 1

KEYSTROKES DISPLAY COMMENTS

[#][D] 4 [R/S] WSIZ =4 Set WSIZ = 4

[#][3] and UNS format.

[#][B] 0101 0101_B This is the "q"
column of the
truth table but in
row format

[#]1[B] 0011 0011_B and the "p"
column of the
truth table but in
row format.

[#1[-] 12 NOT(p)

[#][+] 13 OR q

[B] 1101 B Which is the

expected result.
(Stand this result

115 Computer Science on Your HP-41

upright and
compare it with
the right column
in the truth table
on page 115.)

Question: How large a "truth table" could you work
with on the 16-E. That is, how many variables could
the calculator handle?

Answer: up to 5 variables. How's that? Well, here's
the reasoning behind this conclusion.

You may have noticed that, when we worked
problems involving just two variables, we needed to
use a truth table for two values. The truth table
turned out to be four rows deep. Then we laid the
truth table on its side and we had two numbers that
were 4 bits wide. Four rows of two values became two
rows of four values. For example, the truth table for
AND with two values started out as

X Y AND
0 0O
010
1 0 O
1 1 1

and wound up becoming

0101
0011

Similarly, if we wanted to design a truth table for

three values, we would have to have one that was 8
rows deep...

Computer Science on Your HP-41 116

X Y Z AND

0 0 0O

0 01 O

01 00O

01 10

1 0 0O

1 010

1 1 0O

1 1 1 1

We could flip this truth table on its side and have
01010101
0O 01 10011
O 0001111

That is we would have three numbers, each of which
is 8 bits wide.

Now, for four values, we would wind up with 4
numbers that would be 16 bits wide. For 5 values we
would need 5 numbers that would be 32 bits wide.
That's as wide a number as the HP-41 can handle at
one time.

(Actually, you could use the 16-E program to work
with truth tables of any length, just as long as you
were willing to rework the same logic problem FOR
EACH GROUP OF 32 BITS in the problem. Thus, for
example, if you had a logic problem involving 6
variables, you would have 6 numbers of 64 bits

each. You would have to solve the same logic problem
twice: once for the first 32 rows of the truth table

and again for the second 32 rows.)

117 Computer Science on Your HP-41

As an example of a logic problem involving five
variables, consider the following problem from
symbolic logic.

Premise 1: p AND q
Premise 2: r implies s implies t

Conclusion: q AND s implies t

The question is "is the conjunction of the premises
equivalent to the conclusion?" That is "is the
argument form Valid?"

Ooops, that's the logician in me speaking. What the
problem means in electronic terms is this:

If I had two digital circuits that emulated the behavior
of the two premises above, and I were to feed the
outputs from each of these circuits into an
AND-GATE, would the ouput from this AND-GATE be
identical to the output from a digital circuit that
emulated the conclusion above?

For me the easiest way to set up the problem is to
write a logical equation.

The first term in the equation is easy: p AND q.

The second term is trickier. I have to make use of the
equivalence that we looked at before: "If X then Y is
equivalent to NOT(X) OR Y."

So I can write the second terms as :

"If r then if s then t " as "If r then (NOT(s) OR t)"
which is the same as NOT(r) OR (NOT(s) OR t). This

is the same as NOT(r AND s) OR t, by DeMorgan's
Theorem.

Computer Science on Your HP-41 118

The conclusion can be written as NOT(q AND s)
OR't.

So the logical equation could be written as...

((p AND q) AND (NOT(r AND s) OR t)) XOR (NOT(q
AND s) OR t).

Now, any good RPNer knows that there are no such
things as parentheses, right? So let's rewrite this
logical equation in true RPN style:

p q AND r s AND NOT t OR AND q s AND NOT t OR
XOR

If the results of the XOR operation is O, then you
would know that the "argument is valid" or the two
circuits are identical in behavior.

You continue to solve the problem by generating the
following truth table:

p qr s t Now convert the patterns of 1's
and O's to hexadecimal numbers
so that the patterns

0O 0 00O of 32 bits may be entered into
0O 0 0 01 thel6-E program.
0O 0010
0 0 011 t = 55555555 Hex
s = 33333333 Hex
r = OFOFOFOF Hex
q = OOFFOOFF Hex
0 01 0O p = OOOOFFFF Hex
0 01 01
0 01 10
0 01 11 Then the argument may be

analyzed on thel6-E calculator

119 Computer Science on Your HP-41

QOO0

e e Pt et pd Pt b et oNolole)

bt et

bt bttt

et et cloRoXe) OO0

et ok ok

OO0

eJoNoXe] Q =t QOO0 bttt

[

— - QO

=00 +=HOO +H+HOO +H+HOO

- O

~Or~O el N el _Ne) —~ QOO

—Q O

—Q = O

with the following keystrokes.

Set WSIZ =32 and 2's
complement format.

KEYSTROKES DISPLAY COMMENT

[#][D] 32 [R/S]
[#12]

[#][E] FFFF
[#][E] FFOOFF
[#10*]

[#][E] FOFOFOF
[#][E] 33333333
[#]1[*]
[#](-]
[#][E] 55555555
[#][+]
[#10*]

[#][E] FFOOFF
[#][E] 33333333
[#1[*]

[#][-]

[#][E] 55555555
[#1+]

[#11/1

WSIZ=32

FFFFH p
FFOOFFH ¢
255 AND

FOFOFOFH r
33333333 H s
50529027 AND
-50529028 NOT
55555555 H t
4261281277 OR
253 AND

FFOOFF H
33333333 H
3342387 AND
-3342388 NOT
55555555 H t
4292739037 OR

»n.Q

4292738848 XOR

Since the final result is not zero, the "argument is
invalid," or the two circuits are not behaviorally

identical.

Computer Science on Your HP-41

120

3. Harriet "The Pro" Grammer is working on a code
for her IBM-PC. She wants to input 4 octal
numbers (with a maximum of 16 bits each) and get
out a hexadecimal number. Her scheme is

(p AND q) XOR (r OR s).

She uses the numbers p=67271(0), q=73333(0),
r=44505(0), s=106120(0). The answer that
comes up on the video dislay is BAD1. Is the
computer behaving properly?

KEYSTROKES DISPLAY COMMENTS

[#][D] 16 [R/S] WSIZ = 16 Set WSIZ = 16
and 2's compl.

[#][2]

[#][C] 67271 67271 O

[#][C] 73333 73333 O

[#1*] 26265 AND

[#][C] 44505 44505 O

[#][C] 106120 106120 O

[#]1[+] 52565 OR

[#1[/] 43980 XOR

[E] ABCCH HEXVIEW. The
PC has not been
programmed
correctly.

4. For this problem, set WSIZ = 32

What is D574D09F XOR B4966427 in binary ?

121 Computer Science on Your HP-41

KEYSTROKES

[#][D] 32 [R/S]
[#][E] D574DO9F
[#][E] B4966427

[#1[/1]
[E]

[#][E] 61

[Enter]
[B]
[#][E] E2

[Enter]
[B]

[#][E] B4
[Enter]

(B]

[#][E] B8
[Enter]
[B]

DISPLAY

WSIZ = 32

D574DO0O9F H

B4966427 H
1642247352

61E2B4B8 H

61 H

97
1100001 B
E2 H

226
11100010 B

B4 H
180
10110100 B

B8 H
184
10111000 B

Computer Science on Your HP-41

COMMENTS

XOR
Convert to Hex.

Key in the total
hex number 2
digits at a time
and convert them
to binary.

Needed to
terminate input.

This is one way to
view the binary
equivalents of the
full 32 bit hexa-
decimal number.

It's not very
elegant.

We will develop a
program that
does the job
better.

122

Creating Masks

Masking is a technique for isolating portions of a
binary number. The MASK operators in the 16-E
create a string of ones on the right or left side of a
binary word. You need to place a number in the
X-register to determine the size of this string of ones.

The MSKR operator will justify the ones on the right
of the word while the MSKL function will justify the
pattern of ones on the left of the word.

For example, with a word size of 16 bits, if you
execute the function 8 "MSKL" (8 [#][A]) the
resulting pattern of Os and 1s would look like this:

1{1]1|j1)1J1]1}11]010J0]10J0]0}J0]0O

FEDCBA AU 98 76 5 43 21 0 BIT#

On the other hand, the keystrokes 8 [A] (8 "MSKR")
would generate the following bit-pattern:

ojojojojojojojoj1y1rj1r1yrjrj1y1]1

FEDCIBA AU 98 76 5 43 21 0 BIT#

Once you have created a mask, you may use this string
of ones to "filter through" selected portions of other
binary numbers.

For example, suppose you are using a word size of 16
bits and unsigned format. You have entered the
hexadecimal number EC96 and you want to separate
the hexadecimal number into two 8 bit numbers.

123 Computer Science on Your HP-41

Here is the technique that will start the process.

KEYSTROKES DISPLAY
[#][D] 16 [R/S] WSIZ =16
[#1(3]

[#][E] EC96 EC96_H
[Enter] 60566

STO 12

8 [A] 255

[#1*] 150

[B] 10010110 B
RCL 12 60566

8 [#][A] 65280

[#1*] 60416

[E] EC0O0 H

Computer Science on Your HP-41

COMMENTS

Unsigned format

11101100 1001
0110 Bin

Set this aside for
future use.

0000 0000 1111
1111

Mask on right 8
bits.

AND

0000 0000 1001
0110

The right half is
"filtered" through
the mask.

1110 1100 1001
0110

1111 1111 OO0O0
0000
XEQ "MSKL"

AND

1110 1100 0000
0000

124

The only thing left to do is to shift or rotate the last
binary number generated above 8 bits to the right to
create the binary number 1110 1100. We will learn
how to do this in the next section of the book.

You can, of course create masks of any size you wish
as long as they fit within the bounds of the word size
in effect.

If you specify a mask that is larger than the current
word size, the 16-E will accept this without question.
The effect will be that the computer will create a
mask of all one's. This mask will be of the same size
as the current word size.

Thus for a word size of 16 bits, you could generate
masks of 13 bits on the left, or 5 bits on the right, or
1 bit on the left.

If you want to create a mask that will "let through" the
middle 8 bits of a 16 bit number, there are a couple of
ways that you can do this on the 16-E.

The preferred method for isolating portions of such a
number is to create a mask of 4 bits on the left (FOOO
Hex). Then create a mask of 4 bits on the right (OOOF
Hex). Use the OR operator to combine these two
masks into one (FOOF Hex). Complement this mask
with the NOT operator to create the mask OFFO Hex.
Use this mask with your 16 bit number and the AND
function to filter out the middle 8 bits.

Here is a sketch of what would happen:

125 Computer Science on Your HP-41

4 bit mask

1f1]1|1]o]lo|lo]o|lo]o|lo]o|lo|o|o]|o |onleftof
word.

4 bit mask

olo]lolo|o|lo|lo|lo]olo|o|lo]1]|1]|1 |1 [onrightof
word

Result of
tfr|1]1{ofofofolojofofoft|1]1]1]|ismeor

Result of
0000111111110000usmgN0q‘

FEDCIBA9 8 76 5 43 21 0 BIT#

This final result could then be ANDed with any other
number to "filter through" bits B through 4 of the
other number.

One Extended Example...

Use the masking functions along with the logical
operators to break down a full 32 bit number into a
series of 8 bit numbers.

This will involve a four step process since 32 bits
divided by 8 bits equals 4.

KEYSTROKES DISPLAY COMMENTS

[#][D] 32 [R/S] WSIZ = 32

[#1[3] Set Unsigned
format.

[#][E] FEDCBA98 FEDCBA98 H
STO 12 4275878552 Store the number
for later use.

8 [#][A] 4278190080 Create an 8 bit

Computer Science on Your HP-41 126

(E]
[#1[*]
[E]

RCL 12
8 [#][A]

(E]
16 [A]

[#][+]
[E]
[#1[-]
[E]
[#1[*]
[E]
RCL 12
8 [A]
[E]

16 [#][A]
[#][+]
[E]
[#1[-]
[E]
[#1[*]
[E]

RCL 12

127

FFO00000 H
4261412864
FEOO0O000 H

4275878552
4278190080

FF0O00000 H
65535

4278255615
FFOOFFFF H
16711680
FFO000 H

14417920
DCO000 H
4275878552
255
FFH
4294901760
4294902015
FFFFOOFF H
65280
FFOO H
47616
BAOO H

4275878552

mask on left.

AND
The left 8 bits are
filtered through.

Create an 8 bit

mask on left.

Create a 16 bit
mask on right.
OR

HEXVIEW
NOT

Leading zeroes
suppressed.
AND

Next 8 bits are
filtered out.

Create an 8 bit
mask on right.
Leading zeroes
suppressed.
Create a 16 bit
mask on left.
OR

HEXVIEW
NOT

Leading zeroes
suppressed.
AND

Next 8 bits are
filtered out

Computer Science on Your HP-41

8 [A] 255 Create an 8 bit
mask on right.

[E] FF H
[#11*] 152 AND
[E] 98 H The right 8 bits
are filtered
through.
REVIEW

In this section of the course, you learned how to use
the the logic functions in the 16-E program. You saw
several examples that incorporated the AND, OR, XOR
and NOT functions.

Then you learned one practical application of the use
of these logic functions: masking. Masking is a
strategy you will use again and again in computer
science and engineering.
For now, try the following set of problems to see if
you have mastered the techniques of ANDing, ORing,
NOTing and masking with the 16-E program.

POP QUIZ
Use WSIZ = 16 and 2's complement format.
1. What is 19(h) AND 1A(h) in hexadecimal format?
2. What is 233(0) OR 362(0) in octal format?

3. What is (111(b) XOR 37(h)) AND NOT(10(d)) in
binary?

4. What is (343(o0) OR 371(0)) / NOT(1011(b)) in
hexadecimal?

Computer Science on Your HP-41 128

129

Does NOT(249(d) OR 546(d)) = NOT(249(d))
AND NOT(546(d)) ? This is an alternative version
of DeMorgan's theorem.

Using WSIZ = 32 and UNS format, and the
hexadecimal number FCO98E22, separate out the
Most Significant Bit and then the 15 bits on the
right.

. With the same WSIZ, and the hexadecimal

number, ABCDEF12, filter out the bits numbered
29 through 21.

NOTE: the computer numbers bits starting with

the least significant bit on the right as bit #0. With
a 32 bit word size, the MSB is bit #31.

ANSWERS TO THE POP QUIZ

KEYSTROKES DISPLAY COMMENTS
[#][D] 16 [R/S] WSIZ = 16

[#1[2] 2's compl.
[#][E] 19 19 H

[#]1[E] 1A 1A H

[#1[*] 24

[E] 18 H

KEYSTROKES DISPLAY COMMENTS
[#][C] 233 2330

[#][C] 362 362 O

[#][+] 251

[C] 3730

Computer Science on Your HP-41

3.

4.

5.

KEYSTROKES DISPLAY
[#][B] 111 111 B
[#][E] 37 37 H
[#1[/]1 48

10 10

[#1[- -11

[#]1[*] 48

[B] 110000 B
KEYSTROKES DISPLAY
[#][C] 343 3430
[#][C] 371 3710
[#1[+] 251

[#][B] 1011 1011 B
[#1[- -12

(/1 -20

[E] FFEC H
KEYSTROKES DISPLAY

249 [ENTER] 249

546 546

[#1[+] 763

[#]1[-] -764

249 249

[#1[-] -250

546 546

[#1[-547

[#1[*] 64772

[#1/] 0]

Computer Science on Your HP-41

COMMENTS

COMMENTS

with a remainder.

COMMENTS

Equivalence holds

130

6. KEYSTROKES DISPLAY COMMENTS

[#][D] 32 [R/S] WSIZ = 32
[#1[3] 4294967295 Unsigned format

[#][E] FC998E22 FC998E22 H
[ENTER][ENTER]4237921826 Push onto stack

1 [#][Al] 2147483648 Create mask of 1
on left.

[#1[*] 2147483648

[E] 80000000 H

[RDN] 4237921826

15 [A] 32767 Mask on right

[#1[*] 3618

[E] E22 H

7. KEYSTROKES DISPLAY COMMENTS

[#][E]JABCDEF12 ABCDEF12 H

[ENTER] 2882400018

2 [#][A] 3221225472 Mask of 2 bits on
left.

20 [A] 1048575 Mask of 20 bits
on right.

[#]1[+] 3222274047 Combine two
masks.

[#1[1072693248 Invert

[#]1[*] 734003200 AND

[E] 2BCO0O000 H Hex equivalent.

131 Computer Science on Your HP-41

NOTE 1: The real reason for this rule is to save
additional bytes of code in the 16-E program.
Nevertheless, if you are not too concerned with
adding code to the already code-heavy 16-E program,
you might try adding the following.

Begin at line 413 and insert these lines of code:

413 LBL"ANQ"
414 AND

415 GTO 16
416 LBL"OR"
417 OR

418 GTO 16
419 LBL"XOR"
420 XOR

421 GTO 16

Then assign "ANd" (note the small "d") to key -71;
assign "OR" to key -61 and assign "XOR" to key -81.
(note the use of zero, 0 rather than capital O in the
labels. This is a clever little ruse to help you keep
your functions straight. (I have tried this modification
to the program and found that it has very little use,
other than slowing down the operation of the logic
functions. Most often, when using the calculator, you
will key in numbers that are within bounds to begin
with. And, the logic functions will not cause the
numbers to go out of bounds as might the arithmetic
functions.)

Computer Science on Your HP-41 132

Chapter 7.

SHIFTING, ROTATING, AND
JUSTIFYING NUMBERS

The 16-E calculator contains several functions that
will let you move binary digits to the right or left.
There are still other functions that will let you rotate
bits clockwise or counterclockwise within the bounds
of the current word size.

The Advantage ROM has a similar function: ROTXY.
The ROTXY operator is super fast. It will rotate the
binary digits in a 32 bit word in less time than it
takes to press the ENTER key. There is only one
problem with this ROTXY operator: It only works
with 32 bit words.

The 16-E calculator implements the shifting and
rotating functions in standard RPN code. These
bit-moving functions will work with any word size.
They do sacrifice speed for this flexibility, however.

Shifting Left or Right

The first set of moving functions that we will look at
are those that shift numbers to the right or left.

In the 16-E the functions SR (Shift Right), SL (Shift
Left), and ASR (Arithmetic Shift Right) all serve to

133 Computer Science on Your HP-41

shift a binary number ONE bit to the left or right.
The key assignments for these functions are the [A],
[shift][A] and [shift][F] keys respectively.

As an example of a shift to the right, set up the 16-E
calculator with a word size of 8 bits (2's compl.
format). (Press the keys [#][D] 8 [R/S] and [#][2].)
Then enter the binary number 10011010 (-102 dec).
Use the [#][B] keys to initiate binary input.

Now press the [H] key ("SR") and see 77 in the
display. Then press [B] and see 1001101 B. There
are only seven bits shown. You will have to imagine
that the Most Significant Bit is a zero. The 16-E has
shifted all the binary digits one bit to the left. The
empty MSB takes the default value of O.

1loJo |1]1]0 |1 |0 | =-102

o
p—
o
o
-
—
o
p—
]

77

The reverse operation is XEQ "SL" ([#][H]). This
operation will shift the binary number to the left by
one bit and the calculator will set the vacated Least
Significant Bit to zero.

1lojlo |1 |1]|o]|1]o | =-102

Now try two SR's and notice that, on the second SR,
the O flag annunciator turns on. When the 16-E shifts
a number, and the LSB goes "out of bounds," the 16-E
saves the value, temporarily, in the "carry bit."

Computer Science on Your HP-41 134

The decimal number should now be 38 or 00100110
Bin.

CB

(1) = 38

Press [#][H] twice. Notice that the zero annunciator
disappears from the display. In this case the
calculator shifts a zero into the carry bit. You should
visualize the carry bit as positioned on the left of the
binary number. When the carry bit contains a zero,
the annunciator shuts off.

CB

(0)

The decimal number should now be -104 or
10011000 Bin.

Press [#][H] once more and the decimal number will
be 48 (=0011000 B) and the carry bit annunciator
will be ON.

Most texts refer to the SL and SR operations as
logical shifts. Opposed to this is the ASR (Arithmetic
Shift Right) operator. The difference between a
logical shift right and an arithmetic shift right is that
the latter PRESERVES the sign of the original
number as the number shifts to the right.

135 Computer Science on Your HP-41

To see this sign preservation, key in the decimal
number 102. Then press [CHS] and view the result in
binary, 10011010 B.

1loflo |1 |1]0 |1 |0 | =-102

Now press [#][K] (XEQ "ASR") and the result will be
-51(d) or 11001101(b). Press [#][K] once more and
the result will be -26(d) or 11100110(b) and the
carry bit flag will be ON.

1l1|{1]o0|o]o |1 |0 | =-102

Justifying

Right justifying a number means that the binary
equivalent of a number moves to the right until a 1
winds up in the LSB of the given word. Thus, if you
begin with the binary number, 00101000 and press
[#][G], you will wind up with 00000101 B.

Similarly, if you left justify 0000 0101 B, you will wind
up with 1010 0000 Bin. The keys to press are [#][F].

olololo]o]|1]|o |1 | =54

1loj1lo|Jo]lo|o o | =-96

Both of these operations preserve the original number
in LastX.

Computer Science on Your HP-41 136

These justifying functions may tax your patience a
little. The worst case (right justifying

-2147483648(d) with a word size of 32 bits) takes an
horrendous 17 seconds. Gratefully, I have not had to
use these functions too often. I hope you don't have
to either.

Rotating Bits

The 16-E can perform four different bit-rotating
functions. These functions are, perhaps, more of
interest to computer engineers and digital circuit
designers than they are to programmers.

These four different functions are...

LABEL ASSND KEY NAME

RRN [J]
Rotate Right by N bits.

RLN [1] Rotate Left by N bits.

RRCN [#]1[J] Rotate Right through the
Carry bit by N.

RLCN [#][1] Rotate Left through the Carry
Bit by N.

To visualize what Rotating Right or Left looks like,
imagine that you are using an 8 bit word with the bits
arranged along a line that wraps around. The MSB and
the LSB would be next to each other.

MSB\ LSB\
< <

137 Computer Science on Your HP-41

To emulate this in your calculator, press the [#][D] 8
[R/S] keys, along with [f][3] to set Unsigned format.
Then press [#][B] and 1111. Then press [ENTER] to
see 15 in the LCD.

When you press the 1 [J] keys, the pattern will
become

MSB\ LSB\
Cl —»0—p0—0 —p0—p1 —>1—>1—)
- <

In the picture above, Rotating Right amounts to a
right-hand rotation of the bits along the line, with the
last bit on the line being shifted around and into the
first position. In the LCD you will see 135, and when
you press [B] you will see 10000111 B with the O
annunciator on.

The LSB and MSB in the diagrams stand for "Least
Significant Bit" and "Most Significant Bit," with the
lower line representing the boundary between the
most significant bit and least significant bit. If in the
process of rotating, a 1 crosses this boundary, the O
annunciator will turn on. If a O passes the boundary
on the way from the LSB to the MSB then the O
annunciator is turned off.

Rotating Left is just the reverse process. It amounts

to a counter-clockwise rotation. Key in [#][B] 1111
and press the [ENTER] key. Then key in 1 (the
number of bits to rotate) and press the [I] key. The
number in the LCD will be 30. If you press [B] you will
see 11110 B. And in the diagram the pattern would
be:

Computer Science on Your HP-41 138

MSB\ LSB\
C—o 404041 4141 4_1<—oj
> >

Notice that, in this case, a zero crossed the boundary
between the LSB and MSB. Thus the O annunciator
would be turned off.

Of course the number of bits by which you want to
rotate a number can be more than 1. Let's take a look
at what would happen if we rotated 1111(b) to the

left by 3 bits.

Begin by keying in [#][B] 1111 [ENTER] and then key
in 3 and press the [I] key.

The original arrangement would look like...

MSB\ LSB\
Cf04—04—04—0 <41 41 4—14—11
> >

After you pressed [I] the arrangement would look
like...

MSB\ LSB\
C—O <41 4141 41 40 4—04_01
> >

and the LCD would show 120. The O annunciator
should be off, since the last bit to pass the boundary is

139 Computer Science on Your HP-41

a 0. (If the last bit to pass the boundary is a 1, then
the O annunciator will be turned on.)

Rotating Through The Carry Bit

There is another kind of rotation. This kind is called
"Rotation Through the Carry Bit."

We can use the same diagram as above, BUT WITH
THIS DIFFERENCE: the boundary between the LSB
and MSB becomes a bit-bucket (the carry bit). The bit
bucket actually becomes an extra bit in the rotation
process. Thus, even though we have set the word size
to 8 for this series of examples, there are actually
nine bits as far as rotation goes.

MSB
\

Co—bo—bo—bo—n—»l—n—»l—»@j
<<

To see how this type of rotation works, press the keys
O [+] to insure that the O annunciator is off. Key in
[#][B] 1111. Then press [ENTER] [1] [#][J] (Rotate
Right through the Carry Bit by 1). The LCD will show
the result 7 and the O annunciator will be turned on.
Press the [B] key and you will see 111 B. One of the
"1" digits is missing (we had 4 of them to begin with)
and, although it's not shown in the HP-41 display,
there is an extra O in the binary number. What
happened?

LSB Carry Bit

Computer Science on Your HP-41 140

To answer this question take a look at the diagram
after you pressed the [#][J] keys.

~—

Co—»o-»o—»o—»o—n—»l—»l—»j
<

In the process of rotating THROUGH THE CARRY

BIT, the O that was in the carry bit is moved into the
MSB and the original LSB is moved into the carry bit.
The 1 in the carry bit turns on the O annunciator. The
LCD shows only the 8 bits in the byte. The binary digit
in the carry bit bucket is shown only by the status of
the O annunciator.

MSB LSB Carry Bit

Of course Rotation to the Left through the Carry Bit by
N. ([#][1]) is just the reverse of RRCN. The MSB is
moved into the carry bit bucket, setting or clearing

the 0 annunciator and the contents of the carry bit
are moved into the LSB.

As before, you can rotate numbers through the carry
bit by any number of bits from O up to the number of
bits in the current word size. (If you use a number
larger than this, the HP-41 will just keep on
rotating--going around in circles.)

Please be patient with these functions on the 16-E:
they are slow. For example, the worst case of rotating
a 32 bit word thirty-two bits to the right takes
approximately 23 seconds on the 16-E. Admittedly
this is slow! About the only thing in favor of these
procedures in the 16-E program is that they work
and they do accomodate various word sizes.

141 Computer Science on Your HP-41

If your work demands that you perform dozens of bit
manipulations every day and you need a faster
response time, then you are a prime candidate for the

HP-16C calculator.

Problems With Solutions...

1. What is the octal result of shifting 96 dec to the
left by 6 bits? (Use WSIZ = 16: 2's compl.)

KEYSTROKES DISPLAY
[#]1[D] 16 [R/S] WSIZ = 16
[#1[2]

96 [#][H] 192

[#][H] 384

[#][H] 768

[#][H] 1536
[#][H] 3072
[#][H] 6144

[C] 14000 O

COMMENTS

XEQ "SL"

OCTVIEW

2. What is the decimal result of rotating 219 dec by
15 places to the right, both normally and then
through the carry bit? Use a WSIZ of 16: 2's

compl.
KEYSTROKES DISPLAY
219 [ENTER] 219_
15 [J] 438
219 [ENTER] 219_
15 [#][J] 876

Computer Science on Your HP-41

COMMENTS

XEQ "RRN"
(~10sec.)

XEQ "RRCN

142

3. What is the result of left and right justifying 876
dec in a 16 bit word? Show the results in

hexadecimal.
KEYSTROKES DISPLAY COMMENTS
876 [#][G] 219 XEQ "RJY"
[E] DB H
[#][F] 90472 XEQ "LJY"
[E] DB0O0O H

4. What is the binary representation of 11110000
rotated left by 5 ? (Use WSIZ = 16: 2's compl.)

KEYSTROKES DISPLAY COMMENTS

[#][D] 16 [R/S] WSIZ = 16

[#1(2] 2's complement
format

[#]1[B] 11110000 11110000 B

[ENTER] 240

5 [1] 7680

[B] 7680 Out of range for
BINVIEW.

[E] 1IEOOH Use HEXVIEW.

[#][E] 1E 1EH HEXIN

[ALPHA][ALPHA] 30 Another way to
get out of HEXIN,
without lifting the
stack.

[B] 11110B S0 00011110
0000 0000 is the
full 16 bit binary
number.

143 Computer Science on Your HP-41

5. What is the hex result of rotating 0001 1010 1110
1001 Bin to the left by 1 bit? ANS: 35D2 H

NOTE: You can't key a 16 bit binary number into
the HP-41. It won't handle more than 10 binary
digits as input. What shall we do? What shall we
do?

No problem! Just convert the binary digits to hex
digits, of which there would be 4 in the above
number, and use them as the equivalent of binary
digits.

KEYSTROKES DISPLAY COMMENTS

[#]1[B] 11010 11010 B Convert 8 bits at a
time.

[E] 1A H

[#1[B] 11101001 B

[E] E9 H

[#][E] 1AE9 H Key in full 16 bits

[ENTER] 6889 Unsigned dec.
equiv.

1 1 Rotation factor

(1] 13778

[E] 35D2 H

6. Suppose you only had a calculator with a fixed
word size of 8 bits. How would you go about using
the calculator to rotate the above number to the
left?

ANS:

a. Key in left half of the binary number and XEQ "SL"
[#][D] 8 [R/S] and [#][2] to set word size to 8 bits.
Then press [#][E] 1A [#][H] (see 52(d)).

Computer Science on Your HP-41 144

b. LastX to recover the original number. (See 26)

c. Key in right half of number and then rotate it 1 bit
to the left through the carry bit.
Thus...[#][E] E9 [ENTER] 1 [#][I] (see -46).

d. Swap, X<>Y and rotate this half of the number to
the left by 1 through the carry bit.
OK...[Ix<>y] 1 [#][I] (see 53).

e. The left half of the rotated number is in the X-
register and the right half is in the Y register. To
confirm this, press [E] (see 35 H); press [x<>y]
and [E] (see D2 H) AND THERE YOU ARE!

This same technique can be used to rotate a 64 bit

number on a calculator with a maximum of 32 bit
words.

Testing, Setting and Clearing Bits

On the 16-E calculator you can test any of the 32 bits
available for a given word. The way to do this is to
have the number whose bits you want to test in the
X-register. Then key in the number of the bit you
want to test. This number can be any number from O
to 31. Then XEQ "B?" or simply press [#][6]. If the bit
is set the display will say YES, otherwise it will say
NO.

If you use a bit number greater than 31, you will get
the message DATA ERROR.

To clear or set an individual bit, just have a number in
the X-register and then key in the number of the bit
you want to set or clear and either XEQ "SB" or XEQ
"CB" respectively. The assigned keys for SB and CB

145 Computer Science on Your HP-41

are [#][4] and [#][5].

If you try to set or clear a bit that is greater than the
number of bits in the current word, you will get the
message "ERR: WSIZ = xx" and the program will halt.
(xx will be the current word size.)

An error of this type will destroy the contents of the
stack. If there is a need to recover from this type of
error, then [XEQ] 15 from the keyboard before
continuing with any computations. (That is, just press
the keys [XEQI[1][5].) This will restore the stack to

its pre-error arrangement.

A Problem With Solution...

For example, set WSIZ = 4 and 2's complement
format and key in the number 111 Bin. Then use the
set and clear bit function to change the sign of this
number. That is, convert 7 to -7 in 2's complement
format "the hard way".

KEYSTROKES DISPLAY COMMENTS

[#][D] 4 [R/S] WSIZ = 4

[#1(2]

7 [B] 111 B

3 [#][4] -1 SB #3

2 [#][5] -5 CB #2

1 [#][5] -7 CB #1

[B] 1001 B Remember that
2's compl. is
defined as
complementing
all bits in the

number and then
adding one bit. In

Computer Science on Your HP-41 146

this case we
could have
cleared bit #0
and then added
1, but this is
not necessary.

Here is a bit diagram of the above problem.

ol 1] 1] 1| Initial state of bits for 7(d)

11111 Set bit #3

1lol11l1 Clear bit #2

Clear bit #1 which leaves the
o1 decimal equivalent, -7(d).

REVIEW

In this section of the course you discovered even
more of the ins and outs of the 16-E program. In
particular you discovered how to shift and rotate the
bits in any number.

We noted that there is a difference between a logical
shift and an arithmetic shift. The Arithmetic Shift
preserves the sign of the number during the shifting
process.

147 Computer Science on Your HP-41

You also saw that there are two kinds of rotation
possible in the 16-E program: normal rotation and
rotation through the carry bit.

Finally you found out how easy it is to test, set and
clear the individual bits in a number.

Admittedly, much of this material on shifting and
rotating will be confusing, especially if this is your
first encounter with such strange goings-on. This
confusion will abate after you gain some practical
experience in using these ideas. Pushing buttons on
the calculator can help only so far. You'll begin to
appreciate these ideas after you have to shift bits or
rotate them to change the way your printer works or
to convert ASCII code to "binary coded decimal”, but
that's a story for another book.

For now, let's tackle another wonderful...

POP QUIZ!

1. With WSIZ = 8 and 2's complement format, what
is the effect of setting the sign bit in the number
127(d)?

2. With the same configuration, what is the effect of
pressing [#][K] (XEQ] "ASR") when you start with
-1(d) in the display?

3. How does clearing the sign bit (MSB) in the above
problem effect subsequent executions of ASR?

Computer Science on Your HP-41 148

ANSWERS TO THE POP QUIZ

1. KEYSTROKES DISPLAY COMMENTS

[#][D] 8 [R/S] WSIZ = 8

[#1[2]

127 [ENTER] 127

7 [#][4] -1 Setting the sign
bit 0111 1111(b)
=127(d) to 1111
1111(b) or -1(d)
in 2's compl.

[#]1IK] -1 An arithmetic
shift right does,
indeed, shift all
the bits to the
right. In a logi-
cal shift the MSB
would be O but
the ASR function
overrides this by
resetting the
MSB to 1. Note
that the O flag
is ON since there
was a 1 shifted
into the carry bit.

7 [#]1[5] 127 Equivalent to
01111111(b).

[#][K] 63

[#][K] 31

[#][K] 15

[#][K] 7

[#][K] 3

[#][K] 1

[#][K] 0

149

Computer Science on Your HP-41

Chapter 8.

PROGRAMMING WITH THE 16-E

The 16-E program is useful enough on its own, but it
really shines when you use it as the basis for your own
programs.

You may use almost all of the routines in the 16-E

program in your own programs with the following two
exceptions:

1. Since the WS (Word Size) routine does not contain
a RTN statement, you will not be able to use this
routine in your own programs. If your program
should call the WS routine, then you will find
yourself stuck in the 16-E program with no easy
way to get back to your program. However, for
those who really need this capability, help is just a
few pages away. Turn to the end of this section
and read NOTE 1.

2. The other function that will not work in your
program is the "B?" routine from the 16-E
program. Instead of this "B?" function, use the
BIT? function from the Advantage ROM. BIT? will
do what you want it to in a program: act as a
conditional. Bit will not flash "YES" or "NO" in the
LCD: "B?" will.

Computer Science on Your HP-41 150

Suppressing Intermediate OQutput
With Flag 06

You may have noticed that all of the routines in the
16-E produce visible output. This means that, when
you use these routines in your programs, they will
show or print any and all intermediate results.

If you want to suppress these intermediate results,
start YOUR program with the command SF 06 and
end YOUR program with the command CF 06. Flag
06 tells the 16-E program to suppress the viewing of
results.

HERE ARE THREE SAMPLE PROGRAMS THAT WILL
SHOW YOU WHAT YOU CAN DO WITH THE
FUNCTIONS FROM THE 16-E PROGRAM:

PROGRAM 1: LBL "SV"

On most CP/M computers there is a command,
"SAVE,"that will let you save a program on disk. The
command has the form SAVE n FileName, where n is
the number of 256 byte blocks of data you want to
save. The data or program begins at location 0100
Hex in the computer. To find n, you must also know
the ending location of the program in the computer.
Then, to compute the number of 256 byte blocks, all
you need do is subtract the beginning location from
the ending location of the program or data. Divide
this difference by 256 and add 1 to the number of
blocks of data if there is a remainder from this
division process.

151 Computer Science on Your HP-41

Here is the program that will do this very nicely.

01
02
03
04

05
06
07

08
09
10
11
12

13
14

15
16

LBL "SV"
SF 06

XEQ "UNS"
256

X>Y?
ENTERA
XEQ " _ll

LASTX
fEQ H/H
X<>Y
FS? 00

EQ "+ll
CF 00

CF 06
END

Suppress intermediate results.

Set the display to unsigned format.
The beginning location of the
program or data (100 Hex).

Subtract beginning from ending
location.

Divide by 256.

Check if there is a remainder in the
division.

Add 1 to the quotient if there is a
remainder.

Clear flag 00 in any case.

Reset flag 06.

Running the program:

1.

[XEQ]"HEXIN" and key in the ending location of
the program

[XEQ]"SV" and view the final output, the number of
blocks needed for "n" in the CP/M command
SAVE n FileName.

For example, set WSIZ=16; key in 950(h) and [XEQ)]
"SV" to see 9. (See Note 2 for a faster version of this
program.)

Computer Science on Your HP-41 152

PROGRAM 2: BIT SUMMATION

On the HP-16C calculator there is a function which
finds the number of ones in a given binary number.

Here is a simple program that will do the same thing
on the 41C. The program uses the BIT? function
from the Advantage ROM. The program assumes that
REG 00 contains the current value of word size.

01 LBL "BSUM"

02 .032 Set up an accumulator in Register
12.

03 STO 12

04 RDN

05 RCL 00 Get the current word size and
reduce it by 1.

06 DSE X

07 1E3 Set up a pointer in the X-reg that

08 / will go from O to one less than the
current word size.

09 LBL 0O LOOP

10 BIT? Check if the bit is set.

11 ISG 12 If it is then increment the
accumulator by 1.

12 ISG X Increment the bit pointer.

13 GTO 00 Repeat the loop.

14 VIEW 12 View the result.

15 END

To run the above program, simply key a number into
the X-register and [XEQ] "BSUM". The result will be
the sum of the 1's in the binary representation of the
number. Note that the above program does not
preserve the stack.

For example, with a current word size of 16 bits, key

153 Computer Science on Your HP-41

in the number ABCD Hex and then [XEQ]"'BSUM" and
see the result, 10, in the display. (The X-register will
contain the word size and the Y-register will contain
the original number in its unsigned, decimal format.)

PROGRAM 3: DOING WINDOWS ON THE 16-E

The HP-16C calculator "does windows." This has to
be one of the most interesting features of the
"Computer Scientist" calculator. The HP-16C has a
display that accomodates only 8 digits at a time. Yet,
with a WINDOW key, you can view up to 8 "windows"
or displays of 8 digits. This is an extremely clever
way to let you see up to 64 binary digits of a given
number.

Here is a program for the 41CV that will let you see
all 32 bits of a number. The program uses many of
the functions from the 16-E program and will show
you both the hexadecimal and binary representation
of a decimal number.

When keying this program into the HP-41, be careful
of lines 17 and 31. The function shown is the
Advantage Module's NOT operator: not the 16-E's
"NOT". To key these lines into the program, press
[XEQ] [ALPHA] NOT [ALPHA].

01 LBL "WNDO"

02 HEXIN Prompt for input of hex number.

03 STO 12 Store this in register 12.

04 SF 06 Turn off display of intermediate
results.

05 8

06 XEQ "MSKR" Set up a mask of 8 bits on the far
right of the number and "filter"
07 AND through the 8 low order bits.

Computer Science on Your HP-41 1%4

08
09
10

11
12
13
14
15
16
17

18
19
20

21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

155

HEXVIEW
STOP
XEQ "BVU"

STOP

8

XEQ "MSKR"
16

XEQ "MSKL"
OR

NOT

RCL 12
AND
8

XEQ "RRN"
HEXVIEW
STOP

XEQ "BVU"

STOP

8

XEQ "MSKL"
16

XEQ "MSKR"
OR

NOT

RCL 12
AND

16

XEQ "RRN"
HEXVIEW
STOP

XEQ "BVU"
STOP

RCL 12

8

Show the hexadecimal

and binary representations of these
bits.

Create an 8 bit mask

on the far right.

Create a 16 bit mask on the far left
of the 32 bit word.

Combine these into one mask.
Then change all 1's to O's and vice
versa.

Get the original number.

Filter through the bits 08-15.
Rotate these bits to the right by 8
bits

and view the hex

and binary representations of these
bits.

Create a mask of 8 bits on the far
left

and another mask of 16 bits on the
far right of the 32 bit word.
Combine these masks and

take the complement of the
combination.

Filter through bits 16-23,

and rotate these 8 bits to the right
by 16 bits.

Display the hex

and decimal versions of the bits.

Create a mask of 8 bits on the

Computer Science on Your HP-41

42 XEQ "MSKL" far left.

43 AND Filter through the 8 most
significant bits
44 8 and

45 XEQ "RLN" rotate these 8 bits to the left
46 HEXVIEW and display the hex

47 STOP and
48 XEQ "BVU" decimal versions of these bits.
49 CF 06 Clear flag 06.

To test the program, BE SURE THAT WSIZ = 32.
Then [XEQ] "WNDOQO". At the " _H" prompt, key
in the number ABCDEF98 Hex and press the [R/S]
key. You should see the successive outputs of

98 H Press [R/S] after each output
to proceed
10011000 B
EF H
11101111 B
CD H
11001101 B
AB H
10101011 B

This program is slow and it does not preserve the
stack. It also demands that you previously set the
WSIZ to 32 bits. The program shows the high order
byte first. We want it to show the low order byte first.

Let's see if we can't correct these shortcomings.
Begin by assuming that we will always want to view
the contents of a 32 bit number. This will simplify
the solution to the problem.

Here are some short cuts that we can incorporate.
For instance, rather than use the MSKR and MSKL

Computer Science on Your HP-41 156

routines in our program, let's just use the results of
these masking routines. Instead of using the 16-E's
"RRN" and "RLN" routines, substitute the ROTXY
function from the Advantage ROM.

Thus, in place of

05 8

06

XEQ "MSKR"

we will use the number 255.

Similarly in place of the following sections of code we

will use the final results.

CODE RESULTS

12 8

13 XEQ "MSKR" 255

14 16

15 XEQ "MSKL" 4294901760
16 OR 4294902015
17 NOT 65280

26 8

27 XEQ "MSKL" 4278190080
28 16

29 XEQ "MSKR" 65535

30 OR 4278255615
31 NOT 16711680
41 8

42 XEQ "MSKL" 4278190080

157

Computer Science on Your HP-41

With this much being said, here is the program that
will do the job:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25

26
27
28
29
30
31

LBL "W"
STO 06
RA

STO 09
RA

STO 08
RA

STO 07
RA
LASTX
STO 10
65280
STO 11
16711680
STO 12
4278190080
STO 13
RCL 06
AND

24
ROTXY

HEXVIEW
STOP
BINVIEW
STOP

RCL 12
RCL 06
AND

16
ROTXY
HEXVIEW

Save the current stack.

Store the constants for masking

Filter out the left-most bits

Rotate the bits 24 places to the
right and

view hex

and

binary equivalents.

The use of STOP is necessary since
BINVIEW does not stop program
execution.

Get new mask.

Get original number.

Filter.

Rotate.
View.

Computer Science on Your HP-41 158

32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

STOP

BINVIEW
STOP
RCL 06
RCL 11
AND

8

ROTXY
HEXVIEW
STOP
BINVIEW
STOP
RCL 06
255

AND
HEXVIEW
STOP
BINVIEW
RCL 10
SIGN
RCL 09
RCL 08
RCL 07
RCL 06
RTN

HEXVIEW does not stop program
execution.

Get original number.
Get mask.
Filter.

Rotate.
View.

Get original number.
Mask.
Filter.
View.

Restore the original stack.

To run this program, you need to have a number in
the X-Register whose hex and binary digits you wish
to see. BE SURE AND SET THE SIZE OF THE 41CV's
DATA REGISTERS TO 14. Then simply [XEQ] "W"
and note the results.

This program is certainly much faster than the
previous version. Note that it also is independent of
the current word size and displays the binary digits
from left to right. The program does not have all the
flexibility of the WINDOW operator on the HP-16C,

159

Computer Science on Your HP-41

but it does share some of the speed and utility of that
function.

You may wish to assign this new function to a key. I
like the [#][O] (the ISG key) for this. Don't forget to
press the [USER] key to get out of USER mode before
attempting to use the ASN function. [#][K] means
"ASR" in USER mode, doesn't it?

You may also want to incorporate the new routine into
the 16-E program. It sounds like a good idea, but,
read the next paragraph completely before deciding

to take this route.

You can bring the "W" program INTO the 16-E
program most easily. Just place the "W" program
immediately after the 16-E program in the HP-41's
memory. Then get into the 16-E program and move
the program pointer to the END. Then press
[#][RTN]. This will enter a RTN into the program.
[SST] and [CLx] will wipe out the END and then [SST]
will show you LBL "W". Now for the punch line: even
after you "recompile” the 16-E program, you will find
that the "W" program runs much more slowly than it
does when it is a stand-alone program. For this
reason I always keep the "W" program separate from
the 16-E program.

I have attempted to show you how easy it is to
program the 16-E calculator. I have also showed you
a couple of techniques that you may use to refine and
speed up your programs. I have not mentioned
anything about using loops, subroutines, conditional
branching, and on and on. If you want to know more
about the nifty things you can do with the 16-E
program, pick up the excellent book, An Easy Course
In Programming the HP-41 and enjoy yourself and
your calculator even more than you have to date.

Computer Science on Your HP-41 160

NOTES

NOTE 1: If it is essential that your program have the
ability to set the word size, then you may modify the
16-E routine by inserting a RTN command between
lines 31 and 32. This will let you use the routine as a
subprogram in your own programs. You may also wish
to make the routine automatic by keying lines 13
through 28 from the 16-E program into your own
program. In your program you should precede these
lines with the number of bits that you want to set for a
word size for that particular program. (Why did I
choose to have a "GTO 13" at the end of the "WS"
routine rather than a "RTN"? Well, I somehow got

the nasty habit of pressing the [R/S] key after I had
just changed the word size. This would push me
ahead into the "SB" routine which would always give
me an error message: very messy. GTO 13 solved my
problem. I hope I didn't leave you, the more careful
user of the HP-41, with a bigger problem.)

NOTE 2: In line 07, you may substitute the HP-41C's
minus operator for the minus (LBL "-") routine in the
16-E.

You may also replace lines 09-13 with the faster
commands:

09 / Normal division

10 INT

11 RCLX

12 LASTX

13 MOD Check to see if there is a
remainder.

14 X=0? If there is a remainder, increase

15 ISGY the quotient by 1.

161 Computer Science on Your HP-41

16 LBL 00 --a null operator (NOP)

17 RDN Move the quotient into the
X- register.

18 CF 06

19 END

Space for more of your own NOTES:

Computer Science on Your HP-41 162

Chapter 9.

TECHNICAL DETAILS OF THE 16-E

Summary of User Instructions for the 16-E
Program

STEP 1: SET SIZE

Set the size of the HP-41 to 11 or greater.

STEP 2: LOADING

Load the 16-E program:

a. To capture the global key assignments, turn
ON the USER mode before loading the program
from magnetic media. To avoid key assignments,
turn USER mode OFF prior to loading.

STEP 3: INITIALIZATION

INPUT FUNCTION DISPLAY
XEQ "WS" WSIZ=ww
[#][D]

163 Computer Science on Your HP-41

a. If ww is the correct word size..

INPUT FUNCTION DISPLAY
[R/S] WSIZ=ww

b. ...otherwise to change word size...

INPUT FUNCTION DISPLAY
WW [R/S] WSIZ=ww

This routine will set FIX O and clear flags 6 and
29 and set flag 27, the USER mode. If you wish
to avoid the use of the assigned keys, switch the
USER mode OFF.

STEP 4: DISPLAY FORMATS

Note that all computations are performed in
floating point decimal. The results are shown via
the alpha register. The X-register always contains
the unsigned decimal equivalent of the number in
the display and alpha registers.

To switch to....

a. One's complement format...

INPUT FUNCTION DISPLAY
XEQ "1c" NNN
[#][1] 1 annun on

b. Two's complement format...

INPUT FUNCTION DISPLAY
XEQ "2c" NNN
[#1[2] 2 annun on

Computer Science on Your HP-41 164

c. Unsigned decimal format...

INPUT FUNCTION DISPLAY
XEQ "UNS" NNN
[#1[3] 3 annun on

d. To obtain the result of an operation in the
current decimal format...

INPUT FUNCTION DISPLAY
XEQ"DECV" NNN
[D]

e. To view the binary equivalent...

INPUT FUNCTION DISPLAY
XEQ"BVU" 01010 B
[B]

Note that numbers greater than 1023 cause the
routine to default to current decimal format.

f. To view octal or hexadecimal equivalent...

INPUT FUNCTION DISPLAY
XEQ"OCTVIEW"
[C] 1234567 O

XEQ"HEXVIEW"
[E] 129AEFO H

STEP 5: BYTE MANIPULATIONS
a. Shift Right...

INPUT FUNCTION DISPLAY
XEQ "SR" SRSR
[H]

165 Computer Science on Your HP-41

b. Shift Left...

INPUT FUNCTION DISPLAY
XEQ "SL" SLSL
[#][H]

c. Arithmetic Shift Right...

INPUT FUNCTION DISPLAY
XEQ "ASR" ASAS
[#][K]

d. Rotate Right by n

INPUT FUNCTION DISPLAY
nnn XEQ "RRN" rrmrrn
[J]

e. Rotate Left by n

INPUT FUNCTION DISPLAY
nnn XEQ "RLN" rinrin

(1
f. Rotate Right through the carry bit by n.

INPUT FUNCTION DISPLAY
nnn XEQ "RRCN" rcrcr
[#][J]

g. Rotate Left through the carry bit by n.

INPUT FUNCTION DISPLAY
nnn XEQ "RLCN" rlerle
[#]11]

(For a rotation of 1, use 1 for nnn)
(nnn is the number of bits by which to rotate the
number.)

Computer Science on Your HP-41 166

h. Right Justify a number...

INPUT FUNCTION DISPLAY
XEQ "RJY" IjyLjy
[#1[G]

i. Left Justify a number...

INPUT FUNCTION DISPLAY
XEQ "LJY" ljyljy
[#][F]

j. Mask Right (justified)...

INPUT FUNCTION DISPLAY
nnn XEQ "MSKR" mmmm
[A]

(Key in the number of bits to use as a mask.)

k. Mask Left (justified)...

INPUT FUNCTION DISPLAY
nnn XEQ "MSKL" nnnn
[#][A]

(Key in the number of bits to use as a mask.)

1. Changing the sign of a number

INPUT FUNCTION DISPLAY
XEQ "CHS" -NNN
[CHS]

(Note that, in unsigned format, this operation
has no meaning. Flag 4 is set as a reminder that
the number is negative.)

167 Computer Science on Your HP-41

STEP 6: BIT MANIPULATIONS

a. Test Bit...Key in the number of the bit to be
tested (0-31) Note that there is no error trap for
out of range values.

INPUT FUNCTION DISPLAY
bb XEQ "B?" YES NO
[#1(6]

b. Setting and Clearing Bits: key in the number of
the bit to be set or cleared...

INPUT FUNCTION DISPLAY

bb XEQ "SB" nnnn
[#][4]

bb XEQ "CB" nnnn
[#][5]

Note that out of range numbers will cause the
program to branch to the Word Size routine as a
reminder that there is an error condition.

STEP 7: LOGICAL FUNCTIONS

a. AND, OR, EXOR are all functions taken directly
from the Advantage ROM. Their execution from
the keyboard of the 16-E should be followed by
the command XEQ"DECV" in order to obtain the
correct decimal equivalent in the current word

Size.

INPUT FUNCTION DISPLAY
XEQ "AND"
[#10*]

Computer Science on Your HP-41 168

XEQ "OR"
[#][+]

XEQ "XOR"
[#11/]

b. To find the complement of a number.

INPUT

FUNCTION
XEQ "NOT"

DISPLAY

(Note there is a difference between the NOT
operator inherent to the Advantage ROM and the
NOT operator in the 16-E. The former works

only for 32 bit words. The latter will operate

with any size word up to 32 bits.)

INPUT

FUNCTION
XEQ "NOT"
[#[-]

DISPLAY

STEP 8: ARITHMETIC FUNCTIONS: +, —, *, /

These functions are similar to the two number
functions on the 41C. However, out of range errors
(for the current word size) will turn on the
annunciator for flag 04 without terminating the
program's operation. (Much testing was done for out
of range errors on the + and - routines but only for

WSIZ = 4 and 8.

INPUT

169

FUNCTION
XEQ "+"

[+]

XEQ "_Il

-

XEQ "naxtt

1 XEQ "/"

DISPLAY

Computer Science on Your HP-41

[/]
XEQ "RMD"
[#1[0]

STEP 9: INPUT OTHER THAN DECIMAL

a. To input binary numbers (use only the numbers

Oand 1))

INPUT FUNCTION DISPLAY
XEQ "BININ"
[#][B]

b. To input octal numbers (use only numbers
0,1,2,3,4,5,6,7).

INPUT FUNCTION DISPLAY
XEQ "OCTIN"
[#][C]

c. To input hexadecimal numbers (use only hex
numbers 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F). Any
other keys will terminate entry.

INPUT FUNCTION

XEQ "HEXIN"
[#][E]

DISPLAY

Computer Science on Your HP-41 170

Data Registers Used

REG 00:
REG 0O1:
REG 02:
REG 03:
REG 04:
REG 05:
REG 06:
REG 07:
REG 08:
REG 09:
REG 10:

Word size

2AWSIZ

2AWSIZ-1

Max. Positive Num.
Max. Positive Num.+1
counter/scratch
X-Register
Y-Register
Z-Register
T-Register

LastX

Program Errors and Probable Causes

Program Error: Reasons for this error:

"NONEXISTENT" You did not set the SIZE of

the calculator to 11 or
greater. Or you mis-keyed
the name of a 16-E function.
e.g. You keyed in [XEQ]
"MASKR" instead of [XEQ]
"MSKR".

"DATA ERROR" You tried to find out if bit 32 in a

number was set or not? (Any
number larger than 31 will
cause this error.)

"ERR: WSIZ=8" You tried to set or clear a

171

nonexistent binary digit (one
that is out of bounds for the
current word size.)

Computer Science on Your HP-41

NOTE: Sometimes these error messages will get
stuck in the display. If that happens, wait three
seconds and press the [Clx] key to procede.

The 16-E program is very "rugged.” You should not
be able to "crash" the HP-41 by pressing any of the
keys in the 16-E. If you encounter any "bugs" or
glitches in the program, please check your work and
see if you can get the bug to show its ugly head again.
Let me know. I'll fix the bug or explain why it's not
really a bug at all.

Computer Science on Your HP-41 172

Barcode "WS," 16-E Program, 184 Registers Required

WS

ROW

ROW

ROW

ROW

ROW

ROW

ROW

ROW

ROW

ROW

ROW

ROW

173

1: LINES
2: LINES
3: LINES
4: LINES
5: LINES
B6: LINES
7: LINES
B8: LINES
9: LINES

10: LINES 72-79

11: LINES B80-87

12: LINES 87-80

10-19

20-32

32-39

40-46

47-56

57-62

63-72

Computer Science on Your HP-41

Barcode "WS," 16-E Program, 184 Registers Required (Continued)

WS

ROW 13: LINES 91-97

ROW 14: LINES 97-108

ROW 15: LINES 108-115

ROW 16: LINES 116-123

ROW 17: LINES 124-128

ROW 18: LINES 129-138

ROW 18: LINES 138-147

ROW 20: LINES 148-156

ROW 21: LINES 156-1589

ROW 22: LINES 1538-169

ROW 23: LINES 170-176

ROW 24: LINES 177-185

Computer Science on Your HP-41 174

Barcode "WS," 16-E Program, 184 Registers Required (Continued)

WS

ROW 25: LINES 186-190

T —— —————————m

ROW 26: LINES 1390-198

L m—-——— e o

ROW 27: LINES 1989-207

L —_———.n—_w

ROW 28: LINES 207-216

ITIRTATRTTATRD

ROW 238: LINES 216-224

ROW 30: LINES 224-228

ROW 31: LINES 229-240

ROW 32: LINES 241-244

ROW 33: LINES 245-257

ROW 34: LINES 258-263

ROW 35: LINES 263-271

ROW 36: LINES 272-280

175 Computer Science on Your HP-41

Barcode "WS," 16-E Program, 184 Registers Required (Continued)

WS

ROW 37:

-
H
Z
il
n

281-285

ROW 38: LINES 285-2895

ROW 39: LINES 296-304

ROW 40: LINES 305-310

ROW 41: LINES 311-320

ROW 42: LINES 320-325

ROW 43: LINES 325-335

ROW 44: LINES 336-344

ROW 45: LINES 345-349

ROW 46: LINES 3439-360

ROW 47: LINES 360-368

ROW 48: LINES 368-377

Computer Science on Your HP-41 176

Barcode "WS," 16-E Program, 184 Registers Required (Continued)

ROW 49: LINES 378-383

ROW 50: LINES 383-382

ROW 51: LINES 382-388

ROW 52: LINES 3839-407

ROW 53: LINES 407-413

T ———— ;e

ROW 54: LINES 413-420

T
T
T

ROW 56: LINES 427-436
ROW 57: LINES 437-445

ROW 58: LINES 446-452

ROW 58: LINES 453-462

ROW B60: LINES 462-471

177 Computer Science on Your HP-41

Barcode "WS," 16-E Program, 184 Registers Required (Continued)

WS

ROW 61: LINES 472-478

III IIWIHNI LT

(A e

i
I

LINES 480-486
3

R

T
T

LINES 487-4895
W B4: LINES 497-504

L’

IR,

W B65: LINES 505-512

]

(NI

5
5

ROW 67: LINES 32

ROW 68: LINES 534-539

I

(A

ROW 639: LINES 541-548

ROW 70: LINES 550-556

I

N

ROW 71: LINES 557-562

[

U

ROW 72: LINES 563-569

L

T ———T

Computer Science on Your HP-41 178

Barcode "WS," 16-E Program, 184 Registers Required (Continued)

WS

ROW 73: LINES 571-578

I ———
T
I
| T
I
A
AT T
T
R T —”
T

6

ROW 82: LINES 648-
ROW 83: LINES 657-667

L ——————n

ROW B84: LINES 668-675

179 Computer Science on Your HP-41

Barcode "WS," 16-E Program, 184 Registers Required (Continued)

WS

ROW B85: LINES 677-685

ROW B86: LINES 687-691

ROW B87: LINES 632-685

ROW 88: LINES 6396-699

ROW B89: LINES 701-703

ROW 90: LINES 705-707

ROW 91: LINES 708-718

ROW 92: LINES 718-725

ROW 93: LINES 727-734

ROW 94: LINES 736-743

ROW 95: LINES 745-755

ROW 86: LINES 756-762

Computer Science on Your HP-41 180

Barcode "WS," 16-E Program, 184 Registers Required (Continued)

WS

ROW 97: LINES 763-773
ROW 88: LINES 775-778

ROW 899: LINES 779-782

181 Computer Science on Your HP-41

Barcode "W," Window Program, 15 Registers Req'd.

ROW 1: LINES 1-8S

ROW 2: LINES 10-14

ROW 3: LINES 14-16

ROW 4: LINES 16-24

ROW 5: LINES 24-32

ROW 6: LINES 33-41

ROW 7: LINES 42-48

ROW B8: LINES 48-57

Computer Science on Your HP-41

REFERENCES

Boardman, James H., "The Programmer Plus,"
program 01448C, HP Users Library, Corvallis, OR.

Carlstrom, Randy, "Number Systems for

Microcomputers," COMPUTERS AND ELECTRONICS,
Dec., 1983, pp. 47-55.

Hewlett-Packard, HP-16C USERS MANUAL, 1982,
Hewlett-Packard Co., Corvallis, OR.

Hewlett-Packard, HP-41 ADVANTAGE: ADVANCED
SOLUTIONS PAC, July, 1985, Hewlett-Packard Co.,
Corvallis, OR.

Keefe, Edward M. THE HEWLETT-PACKARD 16C: A
WORKSHOP MANUAL, private publication, 1983.

Pearce, Craig A., "The Micro Scene," PPC JOURNAL,
vOn4p71, vOn5p20, vOn7p57, 1982.

183 Computer Science on Your HP-41

Impress A Friend!

With a book _from the press at

Grapevine Publications, Inc.
P.O. Box 118, Corvallis, OR 97339, Tel. 1-800-338-4331

To save time and shipping costs, first check for our books at your
local Hewlett-Packard Dealer. Or simply use this handy Order
Form. Check the book(s) you would like to order on the list below.

Then fill out the form on the back of this page, and send it to us
along with your check, money order, or VISA or MasterCard
number. OR, call our Toll-Free Order Line at 1-800-338-4331.

Thank you!

Please send me the following books:

__An Easy Course In Programming the HP-41 $19.95
__Using Your HP-41 Advantage ROM: Statics $11.95
__Using Your HP-41 Advantage ROM: Electrical Circuits $11.95
__Computer Science On Your HP-41 $14.95
__The HP-16C Training Guide $24.95
__An Easy Course In Programming the HP-11C & HP-15C $19.95
__An Easy Course In Using the HP-12C $19.95
___The HP-12C Pocket Guide: Just In Case $4.95
___The HP Business Consultant Training Guide $21.95
___The HP Business Consultant Pocket Companion $7.95
__Shipping & Handling: Special 4th Class (2-3 weeks) $2.00

UPS (for faster service) $3.50

Don't forget to fill out your name & address on the other side!

YES! Please send me the book(s) I've marked on
the other side of this page.

Name

Address
City
State & Zip

Telephone

__ My check or money order is enclosed.
__I'll use my MasterCard or VISA.

Bank Card No.

Exp. Date

Signature

SHIPPING & HANDLING (Don't forget to include this!):
Special 4th Class (allow 2-3 weeks) $2.00
For faster UPS service $3.50

TOTAL ENCLOSED (Cost of Books + Shipping): $
SEND TO: GRAPEVINE PUBLICATIONS, INC.
P.O.BOX 118
CORVALLIS, OR 97339-0118, U.S.A.

OR CALL US: TOLL-FREE 1-800-338-4331 Thanks!

Computer Science On Your HP-41
Using the Advantage Module

By Ed Keefe

Computer scientists! Computer students! Here is a
thoroughly useful and enjoyable tool, written by Ed
Keefe, who is both a teacher of computer programming
and an experienced HP-41 user and programmer.

Keefe has written a program for your HP-41 that,
with the help of the powerful HP-41 Advantage Module,
simulates the HP-16C (Hewlett-Packard's "Computer
Scientist" calculator) on your HP-41.

You get all those functions you've always needed,
including number base conversions in binary, octal,
hexadecimal (and decimal, of course), Boolean functions,
AND, OR, XOR, NOT, bit rotation, summation, justifying,
masking, 1's and 2's complement and unsigned word
format, and variable word sizes (up to 32 bits).

You'll soon be doing binary arithmetic and problem-
solving with ease and speed—thanks to this powerful
program and its common-sense key assignments. Then
you'll learn how to use parts of this program to build your
own solutions.

You get all this, including the program listings, barcode,
instructions, examples and documentation. And it's

all written in a friendly, conversational style. All that's
missing is your HP-41, your Advantage Module and you!

1

ISBN 0-931011-10-8&

Grapevine Publications, Inc. ¢ P.O. Box 118 ¢ Corvallis, OR ¢ 97339 ¢ U.S.A.

	Cover
	Table of Contents
	Introduction
	A Brief Digression About the HP-16C
	So Why Use An Emulator Program?
	How To Use This Manual

	Chapter 1. Loading The 16-E Program
	Your Calculator's Configuration
	Preparing Your HP-41 CV's Memory
	Keystroke Time!
	Key Assignments

	Chapter 2. Testing & Debugging The 16-E Program
	Testing The 16-E

	Chapter 3. A Tutorial On The Advantage Module's Computer Science Functions
	Number Base Conversions
	Breaking Up Output With Commas
	Flag 21 Not Accounted For
	Input Functions
	No Excessive Input
	Boolean Functions
	AND, OR, XOR
	The Complement Operator
	Bit Manipulations
	Rotating Bits
	Summary
	Pop Quiz
	Answers To The Pop Quiz

	Chapter 4. A Step Bv Step Guide To Using The 16-E Program
	Setting The Word Size
	Using The [D] Key With A Chosen Word Size
	Other Display Formats
	Pop Quiz
	Answers To The Pop Quiz
	The Effect of CHS
	CHS and Unsigned Format
	Pop Quiz
	Answer To The Pop Quiz
	Review

	Chapter 5. Use Of The 0 And 4 Flags By The 16-E Program
	The Role of Flag 4
	A Difference In 1's and 2's Format
	Mixed Mode Arithmetic
	Missing Arithmetic Operators
	Review
	Pop Quiz
	Answers To The Pop Quiz

	Chapter 6. Logical Operators In The 16-E Program
	Creating Masks
	Review
	Pop Quiz
	Answers To The Pop Quiz

	Chapter 7. Shifting, Rotating and Justifying Numbers
	Shifting Left Or Right
	Justifying
	Rotating Bits
	Rotating Through The Carry Bit
	Testing, Setting and Clearing Bits
	Review
	Pop Quiz
	Answers To The Pop Quiz

	Chapter 8. Programming With The 16-E
	Suppressing Intermediate Output With Flag 06
	Program 1: LBL "SV"
	Program 2: Bit Summation
	Program 3: Doing Windows On The 16-E

	Chapter 9. Technical Details Of The 16-E
	Summary of User Instructions For The 16-E Program
	Data Registers Used
	Program Errors And Probable Causes
	Barcode "WS" (16-E Program)
	Barcode "W" (Window Program)
	References
	Other Books From Grapevine Publications

