

USING YOUR HP-41 ADVANTAGE:

STATICS FOR STUDENTS

by Ted Wadman and Chris Coffin
Illustrated by Robert L. Bloch
Produced by Gregg Kleiner, Carol Sweet, and Soraya Simons

Grapevine Publications, Inc.
P.O. Box 118
Corvallis, Oregon 97339-0118 USA

For the sake of brevity, the terms "Advantage," "Advantage Module," or "HP-4l Advantage" have been used herein to denote "The HP-4l Advantage Advanced Solutions Pac," which is the proper and reserved name for Hewlett-Packard's plug-in module and its instruction manual for the HP-4l handheld computer system. We extend our thanks to Hewlett-Packard Company for producing such top-quality products and documentation.

ACKNOWLEDGEMENTS

Equations and formulas used in this book and its program may be found in "Engineering Mechanics Volume 1:STATICS," by J. L. Meriam © 1978 John Wiley \& Sons, Inc.; New York.

Special thanks and salutes are due to Chris Bunsen, who conceived and developed the HP-41 Advantage, and who encouraged the development of this book.

Cover photo by Tom Brennan.

[^0]

Using the "Free Body" Program

LOADING THE PROGRAM

In order to use this program, you'll need (at least):
-an HP-4lCV or HP-4lCX

- the HP-4l Advantage module
- this book
- just a little time to read through this, load the program, and practice with it.
(You probably knew all of that, but we needed to warm up here a little bit.)

Now, assuming that you have everything on this checklist, the first step is to load the program.

Starting on page 52, you'll find two program listings and two sets of bar code. The first program listing is for the HP-41CV without an X -functions module. The second listing is for the HP-41CX (or CV with X-functions).

The first set of bar code is marked "CV" because (strangely enough) it's written for the HP-41CV, while the other one is marked "CX" because it's written to take "Advantage" of Extended Functions and Extended Memory. You'll need to load the program appropriate for your equipment.

But before you do that... .

A word from our sponsor:

ARE YOU RUSTY ?

In this book, you'll need to be able to follow keystroke procedures, load, pack and execute a program, etc. We really don't have the room here to remind you, so we're going to assume you know these things. For example, do you know:

- How to read keystroke notation? (e.g. [XEQ] [ALPHA] SIZE [ALPHA] 228)
- How USER mode works?
- How to select FIX, ENG or SCI notation?
- How the Stack works, including $[+],[-],[\times],[\div],[\mathrm{X}<\mathrm{Y}],[\mathrm{R} \mathbf{~}]$, [STO] and [RCL]?
- How to SIZE and PACK your calculator's memory?
- How to read and key in program steps such as:

ISE IHT 2	F:AB [Tr
GRC 19	FGT 03
罗〉 61	

- How to move around in-and edit-a program (in case you mis-key some step)?

If these things are new to you (or have faded into the last module of your brain's Extended Memory), you'll have a LOT of difficulty in continuing here until you take a slight detour for a refresher course. We recommend one of the following:

- Look up in your Owner's handbook whatever is on this checklist that you don't remember;
- Read "An Easy Course in Programming the HP-41," by Chris Coffin and Ted Wadman (see page 79 for details).
(Our favorite suggestion is the second one.)

... OK, if you're all refreshed and reminded, it's time to load the "Free Body" program.

PREPARING YOUR CALCULATOR‘S MEMORY

The "CV" version uses 178 program registers; the "CX" version uses 167 registers;

To run the "CV" version, you need to have a certain number of data registers available that depends on the problem. A SIZE of 60 will handle all of the problems in this book. (To set the SIZE to 60 registers, press [XEQ] [ALPHA] SIZE [ALPHA] 060.) If you need to know exactly what the SIZE needs to be for a particular problem, turn to page 35 .

The HP-41CX version uses only register 00. But it requires you to have a little bit of empty extended memory. To work all the problems in this book, you'll need to have about 41 empty registers of extended memory. If you need to know exactly how many registers you need in extended memory to solve a particular problem, turn to page 35 .

You may have to clear other programs from your calculator in order to fit this one in. Once you have made sufficient space for the program:

IF you have an HP-41 Wand, you can connect that now, turn to the appropriate set of barcode, and read it in.

Once you have loaded the program by Wand, go to page 9 .

If you don't have a Wand...we have some good news and some bad news.

The good news is that very shortly, you will have totally mastered all aspects of keying in an HP-4l program. The bad news is: this is because you have about 600 lines of code to key in.

Now, before you hit the ceiling, consider this:
If you have a card reader or another such storage device, the first thing you'll be doing-once the program is correctly loaded, packed, and run a couple times-is to make yourself a copy (and a back-up copy, preferably). For heavens sake, do so!

If you don't have a card reader or storage device, but you have enough Extended Memory, you can store the program there when you're not using it (but when you are, you'll need to copy it into RAM, that is:main memory). Admittedly, this isn't strictly convenient, but it beats the heck out of the alternative.

In either case, right before you start keying it in, you'll see "00 REG nnn" in the display. Make a note of that number nnn (it needs to be greater than or equal to 178 for the CV-version, 167 for the CX-version, write down that number). Then... start poking them keys!

When you get the appropriate program keyed in, press [SHIFT] [GTO] [.] [.]. This will pack the program and put an END on it. Now, in program mode, you will see "00 REG nnn". This time, non should be exactly 178 (167 for the CX-version) less than when you started keying in the program. If it is, you most likely keyed it in correctly (whew!). If it isn't, you screwed up somewhere and you'll need to go back and check each line to make sure it's keyed in correctly.

If you have a printer, get a listing of the program to make the comparision.

Chances are, you have either skipped or duplicated some step. Another common error is neglecting to use the [XEQ] key propertly. That is, instead of pressing [XEQ] [ALPHA] function [ALPHA], you press [ALPHA] function [ALPHA]. If you're guilty of this heinous crime, the evidence will be unmistakable: A program line that appears in our listing without quotation marks (" ") appears in your listing with quotation marks (or in the display with the little superscript T). This is a no-no! The written quotes and that T in the display should exactly correspond and this is the only difference between the printed listing and the way things should look in your display. Everything else should look Exactly the same. Please-don't go on from this point until you can arrive at the correct " 00 REG mn" reading.

A GENERAL DESCRIPTION

If you're just getting started in your statics class, and you'd like to see our perspective of what statics is all about before you start working with the program, then read the next chapter first (starting on page 36). If you're anxious to crunch some numbers and you're comfortable with the basics of statics, continue reading.

The "Free Body" program gives you a way to draw a picture of a two dimensional, static, free body for your calculator, including known forces and the orientation of three unknown forces. Once you've drawn the picture for your calculator, you can choose between summing up the known forces (including the moments about one point), solving for three unknowns, changing the picture, or starting over.

If you choose the option of solving for three unknowns, then the solution gets stored as three additional knowns. This allows you to solve multiple-step structures problems easily, as you will see.

If you've just input the program, there will be a few pauses in execution the first time you run it. Be patient, the HP-4l is compiling GTO and XEQ statements.

Because the "Free Body" program was designed primarily to use in a classroom or in a "homework" situation, it was not designed for use with the printer. It will work fine if a printer is attached, but it won't print anything meaningful.

SUMMING FORCE VECTORS

As a start on using the "Free Body" program, let's take a look at this simple problem.

Find the distance down from the top of the post at which a force S must act in order to completely balance the effects of the other two forces. What is the magnitude and direction of S ?

In order to solve this problem, you need to calculate the sum of all the known forces and the sum of the moments about some point.

The first thing you need to do is to establish a coordinate system and number the points of interest.

Set up an X, Y axis that you can refer to when you're working the problem. Points of interest are places on the structure where a known force is acting or where you wish to calculate an acting force (more on this subject later). In the problem at hand, we just wish to sum forces and moments, so the only points of interest are those points with known forces acting on them. Since our points of interest lie on the Y-axis, we will input them in rectangular coordinates. In the coordinate system we have set up, point 1 is at $(0,-1)$ and point 2 is $(0,-4)$.

First, execute the program: [XEQ] [ALPHA] FB [ALPHA]. The program uses the top row of keys (shifted and unshifted) and the second row (except the [I] key) in USER mode. If you have anything assigned to these keys, that function in the program won't work. You can clear global key assignments by pressing [SHIFT] [ASN] [ALPHA] [ALPHA] and the key you wish to clear; or, if you have an HP-4lCX, you can clear all key assignments with [XEQ] [ALPHA] CLKEYS [ALPHA].

When you execute the program, the display flashes "INPUT POINTS" and then "P POINTS R." This display signifies that you are in what's called the "point editor." This is where you input the points of interest.

In this "point editor" the top two rows of keys take on the following meanings.

In the menu "P POINTS R" the P and R tell you which side means "this input is in Polar coordinates" and "this input is in Rectangular coordinates," respectively.

For the problem at hand, the two points of interest are $(0,-1)$ and $(0,-4)$ in rectangular coordinates. Input point 1 by pressing 1 [CHS] [ENTER] 0 [E]. The calculator will stop with 0.0000 in the display. Press $[\mathrm{X} \leftrightarrow \mathrm{Y}]$ to see the Y coordinate. Press [C] to ask what point this is (this is optional). Or press [SHIFT] [C] to ask how many total points have been input (also optional). To add point 2, press 4 [CHS] [ENTER] 0 [E].

The program has functions that allow you to review the points you've input, change them if they're incorrect, or delete them. But, since you just input two points, you've probably got them right, press [J] to go on to the main menu.

For this problem, all we have is knowns, so we need to press [A] to get to the "known editor." When you press [A], the display shows "P KNOWNS R." This is the "known editor." It is similar to the "point editor" in function.

To input the first known force in this problem, just press 0 [ENTER] 120 [E] and the calculator will prompt you with "AT POINT?" Press $1[\mathrm{R} / \mathrm{S}]$.

To input the second known, press 0 [ENTER] 25 [CHS] [E] and when the calculator prompts you with "AT POINT?" press 2 $[R / S]$. Do you understand what you've done so far? If not you may want to press [J] then [C] to start completely over and go back to the start of this problem. Pay attention to the meanings of the top two rows of keys as you enter and exit the "point editor" and "known editor."

If you're satisfied with your understanding so far, press [J] to go back to the main menu.

$K \quad U \quad 0 \quad \Sigma K \quad 3 U$

What we are shooting for in this problem is the sum of the moments around the top of the post (the origin of our coordinate system) and the sum of the forces. Press the [D] key to calculate these. The calculator will display:

$$
\begin{aligned}
& \sum M=-20 \quad(\text { Press }[\mathrm{R} /(\boldsymbol{s}) \\
& \Sigma F Y=0.0000 \quad([R / S]) \\
& \sum F X=95.0000
\end{aligned}
$$

At this point you can press [$4-$] and do further calculations with the sum of the Fx (in the X-register), the sum of the Fy (in the Y-register), and the sum of the moments (in the Z-register).

To finish the problem, we need to divide the sum of the moments by the sum of the forces in the X-direction.
Press $[\mathrm{X} \rightarrow \mathrm{Y}][\mathrm{R} \downarrow][\div]$ to get the distance from the top of the post that the resultant force must act.

To summarize this problem:

1. You established a coordinate system and input the points on the post that had known forces on them.
2. You input those known forces.
3. You summed the knowns (moments and forces).
4. You used these results to get the answer to the problem.

Now, press $[\mathrm{R} / \mathrm{S}]$ to go back to the main menu.

CALCULATING REACTIONS

Compute the supporting reactions at points A and B .

First, if the main menu (K U 0 SK 3U) is still in your display, press [C] to start a new problem. Or press [XEQ] [ALPHA] FB [ALPHA].

As we pointed out earlier, the first thing you need to do is establish a coordinate system and number your points of interest.

This setup appeared best to us:

Notice that every angle in the structure is 60° and every member is 3 meters long (with the exception of $3-1$).

Point 1 is at $(0,0)$. Press 0 [ENTER] [E].
Point 2 is easiest to express in polar coordinates: 3 at an angle of -120°. Press 120 [CHS] [ENTER] 3 [A].

Point 3 is at $(-1.5,0)$. Press $0[E N T E R] 1.5[C H S][E]$.
Point 4 is a distance 3 at an angle of -60°. Press 60 [CHS] [ENTER] 3 [A].

Point 5 is 0 [ENTER] 3 [E] (rectangular coordinates).

Point 6 is 4.5 in the X -direction and has the same Y -coordinate as point 4 (this is a little trick). Press $[B]$ to backspace to point 4 and view it in rectangular coordinates. Press [C] to ensure yourself that you're at point 4 . Press $[\mathrm{X} \rightarrow \mathrm{Y}]$ to look at the $\mathrm{Y}-$ coordinate of point 4 . Now key in the X -coordinate of point 6 (that is 4.5) and press $[\mathrm{E}]$. This places point $6(4.5,-2.60)$ at the end of the list of points.

Now, you've input 6 points of interest. Each of these points has either a known load or an unknown load associated with it. Take a little time here and review the points. Don't press the $[A],[E]$, or $[H]$ keys as these will alter the set of points you have input. Play with the functions that allow you to move around in your set of points. Use [B], [SHIFT] [B], [C], [SHIFT] [C], [D], and [SHIFT] [D] to review the set of points.

Notice that when you're viewing point 6 and you press [D] to forward space, it will show you point 1 . The "point editor" (as well as the "known editor") wraps around on both forward space and back space.

If you lose track of which point currently resides in the X and Y registers, press [C] and the calculator will tell you.

If you're viewing a point in rectangular coordinates and you'd like to see it in polar coordinates, press [B] [SHIFT] [D].

If you notice that you input an extra point, you can forward space or backspace to that point and use $[\mathrm{H}]$ to delete it. Bear in mind, however, that by deleting a point in the middle of a list of points, you are decreasing the point numbers of all the points below it in the list.

When you're satisfied with the set of points, press [J] to go to the main menu. You cannot go back to change, add or delete points once you have reached the main menu, except by starting over.

$$
\begin{array}{lllll}
K & U & \varnothing & \Sigma K & 3 U
\end{array}
$$

Now add the knowns to the picture. There are four knowns: one each at points $1,5,4$, and 6 . Press [A] to go to the "known editor."

Two of these knowns (the ones at points 1 and 5) are downward loads (i.e., in the negative Y-direction). The program has the $[G]$ key dedicated to downward loads. All you have to do is key in the magnitude of the load and press [G] (the downarrow on this key reminds you what it's used for). Key in 4 [G]. The calculator prompts you with "AT POINT?" Key in $1[\mathrm{R} / \mathrm{S}]$.
$3[\mathrm{G}] 5[\mathrm{R} / \mathrm{S}]$ (input known at point 5)
60 [CHS] [ENTER] 5 [A] 4 [R/S] (input known at point 4)
0 [ENTER] $2[\mathrm{~A}] 6[\mathrm{R} / \mathrm{S}]$ (input known at point 6)

That's all you need to do to input the knowns for this problem. You can review them just like you reviewed the points.

Press [D] to view the first known that you input in rectangular coordinates. The calculator will display 0.0000 ; press $[\mathrm{X} \rightarrow \mathrm{Y}]$ to see -4.0000 ; press $[\mathrm{C}]$ to see "AT POINT 1." There's a known load, with a Y-value of -4 at point 1 . That's what you want, right?

Press [SHIFT] [D] to view the second known that you input in polar coordinates. The calculator displays 3.0000; press [$\mathrm{X}<\mathrm{Y}$] to see -90.0000 ; press [C] to see "AT POINT 5." There's a known load, with a magnitude of 3 and a direction of -90° at point 5 . That's what you input, right?

Continue reviewing the knowns in the above manner, if you want. Whenever you're satisfied that everything's OK, press [J] to return to the main menu.

Once you're back to the main menu, the last thing you need to do is input the orientation of the unknown reactions and you can solve the problem.

You always need to input three unknowns. In this problem, there are three components to the reactions at points 3 and 2 . Point 3 has only one component (an X-component), and at point 2, there can be an X-component and a Y-component reaction.

So there you have them (the three unknowns). They amount to the components of the supporting reactions. Press [B] from the main menu to input the orientation of these unknowns.

You will see the menu for the "unknown editor." This is where you input the unknowns. The top row of keys takes on the following meanings.

You can input the angle of orientation by pressing [A] or, if you have a slope (X and Y value), you can use the [E$]$ key. In this problem, the angles of orientation are easiest to input:
$180[\mathrm{~A}] 3[\mathrm{R} / \mathrm{S}]\left(\right.$ The component at point 3 is acting at 180°)
$0[\mathrm{~A}] 2[\mathrm{R} / \mathrm{S}]$ (There's one component at point 2 acting at 0°
$90[\mathrm{~A}] 2[\mathrm{R} / \mathrm{S}] \quad$ and one acting at 90°)
After you have input three unknowns (and you must input three or you'll get screwy numbers for an answer), you will find yourself back at the main menu.

Now press the [E] (3U) key to solve for the magnitudes of the three unknowns. Once the calculator solves for these unknown forces, they become knowns on the free body and are stored right along with the other knowns that you input. The advantage to this feature will soon become apparent.

You'll notice that the program takes you right to the "known editor" and you can view the results like you view any known. When you see the menu "P KNOWNS R" come up, press [SHIFT] [C] and you'll see that there are a total of 7 known force vectors (you input only 4).

Press [SHIFT] [D] to view your first result. The display shows 12.5056; press [$\mathrm{X} \rightarrow \mathrm{Y}$] to see the angle (180° just as you input); press [C] to see the point at which this new known is acting. (These results are stored in the order that you input them as unknowns if you forward space through them.) So the reaction at point 3 is 12.5056 in the negative X-direction. (Had you input 0° instead of 180° when you input this reaction as an unknown, the calculator would have corrected you in the result.)

Press [SHIFT] [D] to view the second result; 8.0056 at 0° at point 2 (this is the X-component of the total reaction at point 2). Press [STO] 01 to store the magnitude here.

Press [SHIFT] [D] to view the third and final result: 11.3301 at 90° at point 2 (this is the Y-component of the total reaction at point 2).

To calculate the total reaction at point 2 press [RCL] 01 [SHIFT] $[\mathrm{R}-\mathrm{P}]$. The calculator displays the magnitude. Press $[\mathrm{X} \leftrightarrow \mathrm{Y}]$ to see the angle.

$$
\begin{array}{r}
\text { Reactions:12.5@180 at point } 3 \\
13.9 @ 54.76^{\circ} \text { at point } 2
\end{array}
$$

Are you getting the hang of how this thing works? You should be getting comfortable with moving around in the "point editor." Let's look a little more at this problem for practice....

SOLVING STRUCTURES

Staying with the structure in the last problem, what are the forces in members $1-5,1-4$, and 2-4?

Answer:
1-5: 1.73 kN Tension
1-4: 8.46 kN Tension
2-4: 1.46 kN Compression
Don't start over! The points of the structure have already been input. You don't have to put them in again. Plus, you can use some of the knowns that you've already input.

The solution to this problem involves the "method of sections." You need to draw a line through the three members in which you're interested.

Then, you choose the section to one side or the other of that line to isolate as a "free body." At the risk of revealing our political bias, we chose the left side.

We replace the right side of the line with the unknown forces in the broken members. So we have a two-dimensional free body with a bunch of known forces acting on it and exactly three unknown forces (for which we know the angle that each acts). And, this is something the FB program can solve.

But don't press [XEQ] FB!
If you've just come from the previous problem (and the solution assumes you have, so if you haven't, go to page 15 and work forward), most of the data you need to arrive at the solution is already in the calculator.

Press $[J]$, then $[\mathrm{A}](\mathrm{K})$ to get to the "known editor."
What we need to do is reserve only those knowns acting at points 1,2 , and 3 . We need to delete the knowns acting at points 4,5 , and 6 . (Leave only those knowns that are acting on the free body that we've defined above.)

Press [D] [C] repeatedly until you see "AT POINT 5." Delete this known by pressing [H]. The display will show "ZAPPED" meaning that the known at point 5 is gone.

Press [D] [C] repeatedly until you see "AT POINT 4." Press [H] and, again you see "ZAPPED."

Now press [B] [C] repeatedly until you see "AT POINT 6." Press [H].

Now, by pressing [B] [C] or [D] [C] repeatedly, you'll see that you only have knowns left at points 1, 2, and 3. If you press [SHIFT] [C], you'll see there are a total of 4 knowns (one at point 1 , one at point 3 , and two components at point 2).

Press [J], this will take you back to the main menu.

K U © \quad KK $\quad 34$

The orientation of the unknowns is different here than in the last problem, so press [B]. The "unknown editor" is at hand.

We've drawn the unknowns in the diagram, guessing at tension and compression. The calculator will correct any errors we make along these lines.

Starting at the top, these unknowns are easy to input:

$$
\begin{aligned}
0[\mathrm{~A}] 1[\mathrm{R} / \mathrm{S}] & \left(0^{\circ} \text { acting at point } 1\right) \\
120[\mathrm{~A}] 1[\mathrm{R} / \mathrm{S}] & \left(120^{\circ} \text { acting at point } 1\right) \\
0[\mathrm{~A}] 2[\mathrm{R} / \mathrm{S}] & \left(0^{\circ} \text { acting at point } 2\right)
\end{aligned}
$$

You're back at the main menu. Press 3 U ([E]). When "P KNOWNS R" comes up, press [SHIFT] [D] to view the top unknown: 1.7321 . Press $[\mathrm{X} \rightarrow \mathrm{Y}]$ to see that it is acting at 0°, as we guessed. You can press [C] to see that this new known resides at point 1 , as we know.

Continue in the above manner to view the other two results:
$8.4641 @-60^{\circ}$ (point 1) We guessed compression here but the calculator shows us that it's actually tension.
$1.4641 @ 180^{\circ}$ (point 2) We guessed tension when it was compression.

After solving the last problem, you see that if you can isolate a two-dimensional, static, free body with any number of known forces acting on it and three unknown forces, you can solve for those unknown forces quite easily.

Also, as you saw when you calculated the supporting reactions of that structure (the first part of the last problem), a single unknown force acting at an unknown angle can be broken into an unknown X-component and an unknown Y-component and then entered as two of the three unknowns.

Now, let's try another problem to get more of a feel for the way things work. In hoping that you're getting more comfortable with the way the "FB" program works, we're going to get a little lazy here and reduce the amount of explanation. Eventually, the roadmap on the inside of the back cover should be all you need to work with the program (if you even need that).

Calculate the forces in the members marked with an X .

Answer:
$31.7 \mathrm{kN} \mathrm{C} \quad\left(26.6^{\circ}\right.$ at point 3)
$18.3 \mathrm{kN} \mathrm{T} \quad\left(-90.0^{\circ}\right.$ at point 3$)$
$14.1 \mathrm{kN} \mathrm{C} \quad\left(45^{\circ}\right.$ at point 4$)$
$16.7 \mathrm{kN} \mathrm{T} \quad\left(180^{\circ}\right.$ at point 5)

We set up an (X,Y) coordinate system with the origin at point 1 in the diagram. In this coordinate system, the points on the diagram that will be of interest sometime during the solution are:

Point 1:	$(0,0)$
Point 2:	$(6,0)$
Point 3:	$(9,4.5)$
Point 4:	$(12,3)$
Point 5:	$(12,0)$
Point 6:	$(15,1.5)$
Point 7:	$(18,0)$

Input these points:

[XEQ]	Q] FB (or	(or [C] if at main menu)		P POINTS R
[[ENTER]	[E]	(point 1)	0.0000
[[ENTER] 6	[E]	(point 2)	6.0000
4.5	[ENTER] 9	[E]	(point 3)	9.0000
3 [[ENTER] 12	[E]	(point 4)	12.0000
[[ENTER] 12	[E]	(point 5)	12.0000
1.5	[ENTER] 15	[E]	(point 6)	15.0000
0 [[ENTER] 18	[E]	(point 7)	18.0000
	[SHIFT		(check total points)	TOTAL:7
		[]	(to main menu)	K U 0 SK 3U

Now input the knowns:

KEYSTROKES
DISPLAY

	[A] (to "known editor")	P KNOWNS R
30	[CHS][ENTER] 25 [A] (known at: point 2)	AT POINT?
2	[R/S]	P NEXT K R
10	[G] (downward load)	AT POINT?
3	[R/S] (at point 3)	P NEXT K R
	[G] (another of the same)	AT POINT?
4	[R/S] (at point 4)	P NEXT K R
	[G] (another of the same)	AT POINT?
6	$[\mathrm{R} / \mathrm{S}]$ (at point 6)	P NEXT K R

Now, you've input the four knowns. Review them as you feel necessary and when you're satisfied with the picture, press [J] to go back to the main menu.

Next, input the orientation of the reactions:

| | $[\mathrm{B}] \quad$ (to "unknown editor") |
| :--- | :--- | :--- |
| 90 | $[\mathrm{~A}] \quad$ (orientation of unknown) |
| 1 | $[\mathrm{R} / \mathrm{S}]$ (at point 1) |
| | |
| 7 | $[\mathrm{~A}] \quad$ (another of the same) |
| 7 | $[\mathrm{R} / \mathrm{S}]$ (at point 7) |
| 180 | $[\mathrm{~A}] \quad$ (orientation of component) |
| 7 | $[\mathrm{R} / \mathrm{S}]$ (at point 7) |

UNKNWN Y. X
90 [A] (orientation of unknown)
AT POINT?
1 [R/S] (at point 1) 90.0000

AT POINT? 90.0000
[E] (solve for these unknowns)

AT POINT?
K U 0 SK 3U

P KNOWNS R

Now, you've solved the supporting reactions. Next you need to isolate a free body with just three unknowns. (The problem asks you to solve for four members; we have to do this in two steps.)

We cut the structure vertically between points 3 and 4 and replace the broken members with their unknown forces.

Then, we need to delete all the knowns that aren't on this body, that is, we need to delete the knowns at points 1,2 , and 3 , right?

With P KNOWNS R in the display, continue:

KEYSTROKES
[SHIFT] [D]
[X《Y] (18.3333@90ㅇ)
[C]
[H]
[D] [C]
[H]
[D] [C]
[D] [C]
[H]
[D] [C] (forward space)
[SHIFT] [C] (number of remaining knowns)
[J] (go back to main menu)

DISPLAY
18.3333
90.0000

AT POINT: 1
ZAPPED
AT POINT: 2
ZAPPED
AT POINT: 7
AT POINT: 3
ZAPPED

AT POINT: 7
AT POINT: 7
AT POINT: 4
AT POINT: 6
AT POINT: 7
TOTAL:4
K U 0 SK 3U

Now, input the orientation of the unknowns on the free body:

$4.5[C H S][E N T E R] 9[E]$	(slope of top unknown)	AT POINT?
$4[\mathrm{R} / \mathrm{S}]$	(at point 4)	-26.5651

45 [A]
(angle of 2nd unknown)
AT POINT?
(at point 4)
45.0000

0	$[A]$
5	$[R / S]$

(angle of 3rd unknown)
AT POINT?
(at point 5) K U 0 SK 3U
[E]
(solve for 3 unknowns) P KNOWNS R

Finally, you need to isolate another free body cutting through the four members that you wish to solve:

Unfortunately, there are only two unknown values on this diagram. The magnitudes of two of the vectors at point 3 we don't know, but everything else we do know. Is it that we know too much?

No, we can pretend we know less. All you need to do is represent one of the known vectors somewhere else on the body as an unknown. This way you can solve for it twice to reassure yourself you got it right the first time.

Here are the keystrokes:

KEYSTROKES
[SHIFT] [D]
$[\mathrm{X} \triangleleft \mathrm{Y}]$
[C]
[H] (delete this known)
[SHIFT] [B]
[C]
[SHIFT] [D]
$[\mathrm{X} \leadsto \mathrm{Y}$]
[C]
[H] (delete this known)
10 [G]
$3[\mathrm{R} / \mathrm{S}]$ (Add known at point 3)
[SHIFT] [C]
[J]
14.1421

DISPLAY
31.6776
-26.5651
AT POINT:4
ZAPPED
16.6827

AT POINT:5
45°
AT POINT:4
ZAPPED
AT POINT?
P NEXT K R

TOTAL: 6
K U 0 SK 3U

That's it for the knowns. Now just input the unknowns and solve the problem. Press $[B]$ to go to the "unknown editor."

4.5	[ENTER]9[E]	(Slope of first unknown)	AT POINT?
3	[R/S]	(at point 3)	26.5651
90	[A]	(second unknown)	AT POINT?
3	[R/S]	(at point 3)	90.0000
45	[A]	(third unknown)	AT POINT?
4	[R/S]	(at point 4)	K U 0 SK 3U
	[E]	(solve for these unknowns)	P KNOWNS R

(View the results)

$[\mathrm{SHIFT}][\mathrm{D}]$	(magnitude)	31.6776
$[\mathrm{X}<\mathrm{Y}]$	(angle)	26.5651
$[\mathrm{C}]$		AT POINT: 3
$[\mathrm{SHIFT}][\mathrm{D}]$	(magnitude)	18.3333
$[\mathrm{X} \wedge \mathrm{Y}]$	(angle)	-90.0000
$[\mathrm{C}]$		AT POINT: 3

$[\mathrm{SHIFT}][\mathrm{D}]$	(magnitude)	14.1421
$[\mathrm{X}<\mathrm{Y}]$	(angle)	45.0000
$[\mathrm{C}]$		AT POINT: 4

$[\mathrm{D}][\mathrm{C}]$	(move ahead to known at point 5)	AT POINT: 7
$[\mathrm{D}][\mathrm{C}]$		
$[\mathrm{D}][\mathrm{C}]$		AT POINT: 7
$[\mathrm{D}][\mathrm{C}]$		AT POINT: 4
$[\mathrm{D}][\mathrm{C}]$		AT POINT: 6
$[\mathrm{~B}][\mathrm{SHIFT}][\mathrm{D}]$ (view magnitude)	AT POINT: 5	
$[\mathrm{X}<\mathrm{Y}] \quad$ (angle)	16.6827	
$[\mathrm{C}]$		180.0000
		AT POINT: 5

So...that's all there is to it. Solving for the internal forces in a structure is simply a matter of isolating several "free bodies" in sequence. And with this program, the process becomes simple.

Are you getting the feel for how you use the " 3 U " function in the program? Once you get the picture drawn correctly-get the appropriate known loads stored and the proper orientation of the three unknowns -the calculator takes over. As long as everything you put in is correct and complete, you'll get the right answers.

SUMMARY AND IMPORTANT LIMITATIONS

Any time you can isolate a static, two-dimensional free body with any number of known forces acting on it and three unknown forces (or component forces), you can use the 3 U part of the free body program to solve for those three unknowns. In your statics class, you will spend a lot of time doing just that.

The FB program is general enough to help you solve hundreds of statics problems. It won't allow you to get by without learning the concepts, but it will help you with some of the number crunching.

The 3U function of the program solves the system of three equations that follows:

$$
\begin{aligned}
& \boldsymbol{\Sigma} F x=0 \\
& \boldsymbol{\Sigma} \mathrm{Fy}=0 \\
& \boldsymbol{\Sigma} \mathrm{Mz}=0
\end{aligned}
$$

And, because this is what it does, it has some limitations that you must notice.

1. It won't work if the free body is a point or a line. The free body has to be two dimensional.
2. If all the knowns and unknowns are acting at one point on the body, you probably won't get the right answers.
3. It works best for solving internal forces in multi-member structures, and solving for supporting reactions of statically determinate structures. When you start getting too fancy you may start getting bad answers.
4. It doesn't check to see if the data you've input is correct. Garbage in, garbage out.
See"notes," page 51.

The SK (sum the knowns) function in the program is a bit more liberal. Though it still operates under the GIGO principle outlined above, it will accept free bodies that are single points or lines. It is just a quick way to sum vectors (and moments about the origin if there are any).

SIZING FOR A PARTICULAR PROBLEM

Usually, it's easiest to set a SIZE of 75 registers for the CV version (or clear about 60 registers of extended memory for the CX version) and just work your problems. If the program needs more registers, it will inform you. You can make more available and proceed with the problem you were working on (repeating whatever you did before you ran out of registers).

For a particular problem, here's a formula you can use for the SIZE you need to set on the CV version:

$$
35+(\mathrm{P} \times 2)+(\mathrm{K} \times 3)
$$

P is the number of points of interest and K is the number of knowns acting on the body.

If you have Extended Functions, the formula will help you calculate the number of registers of Extended Memory that need to be empty to solve a problem using the CX version:

$$
24+(P \times 2)+(K \times 3)
$$

P and K are described above.

EXITING THE PROGRAM

To leave the program just press [GTO] [.] [.] and exit user mode by pressing [USER]. If you were using the "CX" version, you may want to purge files U, P, and K in extended memory. These files are created by the program.

Statics With An HP-41

If you've just finished the last chapter and you feel like you have a good grip on things, you're done. Good luck in statics. But, if you lost track somewhere in the last chapter and have been blindly pressing keys for the last few pages, try reading this chapter and then, with a newfound enlightenment, go back and start again from page 9 .

WHAT IS STATICS?

Something that's static doesn't move. That's what a course in statics is all about-things that don't move. When you apply a force to something that isn't moving, one of two things will happen:

1. It will move.
2. It won't move.

If it moves, you know that the force you're applying is overcoming any reaction forces that are resisting motion. The thing moves, goes from a static object to a dynamic object, and you study it in another course.

If it doesn't move, you know that the force that you're applying is not overcoming the reactions responsible for resisting motion. It remains static and you study it in a Statics course using this book, your HP-41, and your Advantage Module to help you breeze through.

A LOOK AT THE BASICS

Most of the math encountered in a statics course (and in a lot of engineering courses) has its foundations in trigonometry and requires a good understanding of the "right triangle." Bear with us as we walk through an interesting (though perhaps tedious) look at a right triangle and its implications in statics. This description will help us to "speak" the same language and may remind you of some calculation tricks that you haven't been taking "advantage" of.

If we orient a right triangle on an X, Y axis with one of the acute angle points at the origin and one of the legs lying on the X -axis, it becomes easy to discuss and analyze. First, let's name the right triangle in the above picture Axel B. Crelemy (or Axel for short).

After naming the triangle, one of the first things we might notice is that Axel is a fairly simple individual. In fact, we can completely describe Axel by stating any two of the quantities a, A, b, and c. If we say, for example, $b=8$ feet and $a=6$ feet, we can sit down and draw Axel without hesitation. Once drawn, we can measure Axel's other characteristics.

Two particular descriptions of a right triangle are going to be common in statics courses and converting back and forth between these two descriptions will be a common calculating challenge. (1) When we describe Axel by stating the lengths of the leg in the X-direction (b) and the leg in the Y-direction (a) we are describing Axel using rectangular coordinates. (2) When we describe Axel by stating the value of the angle at the origin (A) and the length of the hypotenuse (c), we are describing Axel using polar coordinates.

Two descriptions: Polar (c at an angle A) Rectangular (X,Y)

Now religious philosophers might argue that the polar description of a right triangle is more "eastern" and the rectangular description is more "western." The polar description kind of implies a circle-no real beginning, no real ending (i.e., $28^{\circ}=$ $388^{\circ}=748^{\circ}=-332^{\circ}$, etc.), while the rectangular description is two intersecting lines implying a definite beginning and ending. Leave it to science to bring the two...uh, well anyway...

However you think about it, it is good to know the relationships between these two descriptions:

Polar to Rectangular
$b=c \cos A$
$a=c \sin A$

Rectangular to Polar

$$
\begin{aligned}
& c=\sqrt{a^{2}+b^{2}} \\
& A=\tan ^{-1} \frac{a}{b}
\end{aligned}
$$

By the time you get to a course in statics, these trigonometric relationships should begin to be part of light conversation over breakfast. And, at mid-morning coffee, you should bring up the fact that if $c=1$, the following relationships are true:

There are lots of memory tricks for remembering trigonometric relationships such as jingles like "SIN equal opposite over hypotenuse," etc. It doesn't matter what you use, just know 'em.

The reason we have brought up the subject of trigonometry in the first place is not so you can become an expert at triangle descriptions (unless that's your lifetime goal), but rather so you can work easily with vectors. Vectors are used throughout statics and engineering, and the program included in this book requires good skills in working with vectors before it can be of much use.

In statics, you will be concerned primarily with two types of vectors: force and distance. Plus, you will combine force and distance vectors to form other vectors called moments. If you're comfortable working with these three types of vectors, you will have little difficulty in statics.

DESCRIBING VECTORS: $[\mathrm{P}-\mathrm{R}][\mathrm{R}-\mathrm{P}]$

Like a triangle, a vector can be described using either rectangular or polar coordinates. Look at the following picture.

This picture shows a 20 lb force at an angle of 30° (Polar description). You can also describe this force using its X - and Y -components (Rectangular description).

Again, from trigonometry we know:
Y -component $=20$ SIN (30) lb
X -component $=20 \operatorname{COS}(30) \mathrm{lb}$
Two functions on your HP-41, [P-R] (Polar to Rectangular) and [$\mathrm{R}-\mathrm{P}$] (Rectangular to Polar), make converting back and forth between these two methods of describing vectors (or right triangles) real easy. To find the X - and Y -components in the previous picture, you would use the keystrokes 30 [ENTER] 20 [SHIFT] [P-R].

So, to convert from polar coordinates to rectangular coordinates, put the angle in the Y-register, the magnitude in the X-register and press [SHIFT] $[\mathrm{P}-\mathrm{R}]$. The X-component will then be in the X -register and the Y -component will be in the Y -register.

To convert from a rectangular description of a vector to a polar description, put the components in their respective registers and press [SHIFT] [R-P].

This notation is consistant throughout the program within this book. Whenever you are dealing with a two dimensional vector (be it force or distance) it will consist of two numbers. To view the entire vector, you'll have to press $[\mathrm{X} \leftrightarrow \mathrm{Y}]$ on the calculator. No big deal, right?

The majority of problems in statics involve "resolving vectors into their components" or using the $[\mathrm{R}-\mathrm{P}]$ function on the HP-4l. Before we get heavily into the program, let's try a few warm-up exercises that use these functions (you wouldn't want to strain any of your button pressing fingers, would you?)

Calculate the X - and Y -components of the 30 kN force acting on the structural member.

```
Answer: }\quad\textrm{Px}=24.57\textrm{kN
    Py = 17.21 kN
```

This is an easy one on your HP-4l. Just put the angle in the Yregister, the magnitude of the force in the X-register and press [SHIFT] [P-R]. The value of the X-component is then in the X register and the Y-component is in the Y-register (press $[\mathrm{X} \triangleleft \mathrm{Y}]$ to view the Y -component).

Stack diagrams

If an anchor is subjected to the two forces shown, what is the magnitude and angle of the resultant force?

Answer: 560.71 lb @ 62.63°
This is a problem where you need to sum vectors (no big deal):

1. The X -component of the resultant vector is equal to the sum of all the X -components.
2. The Y-component of the resultant vector is equal to the sum of all the Y-components.

Since the 160 lb vector in the problem above has only an Xcomponent (in the negative direction) the keystrokes on the HP-4l could be:

50 [ENTER] 650 [P-R] 160 [-] [R-P]
(displays 560.71)
[$\mathrm{X} \boldsymbol{-}>\mathrm{Y}$]
(displays angle)
$[P-R]$ is used to resolve a vector (with a known angle and magnitude) into its X and Y components.

Here's another problem that involves summing vectors:

What is the resultant force vector?
Answer: $\quad 3.16 \mathrm{i}-3.43 \mathrm{jkN}$
or 4.67 kN @ -47.31°
The i , j notation above is a common one for expressing vectors in rectangular coordinates. The letter i represents a unit vector in the X -direction and j is a unit vector in the Y-direction. The X -coordinate is 3.17 and the Y-coordinate is -3.43 . Right?

The little triangles are shown next to the forces to indicate the angle at which the forces are acting. You could use the old "TAN-1 (Y/X)" formula to get the angle, or you can use [$\mathrm{R}-\mathrm{P}$].

The advantage to using $[\mathrm{R}-\mathrm{P}]$, in this case, is that the calculated angle reflects the proper orientation of the vector, whereas that orientation can be lost using [TAN-1] (ATAN). For example, you can calculate the angle at which the 2.3 kN force is acting by keying 1 [CHS] [ENTER] [R-P] [X $\rightarrow \mathrm{Y}]$ to get an angle of -135°. But, if you use 1 [CHS] [ENTER] [\div] [TAN-1], you get an answer of 45°, so you have to keep closer track of what's going on.

So, using the little triangles, you can calculate the necessary angles. Remember, summing vectors is just a matter of resolving each vector into it's X and Y components and summing all the X -components into one resultant X -component and the same with the Y's.

You can sum the vectors in this problem using only the stack in your HP-41. Let's take a look at the keystrokes:

1 [CHS] [ENTER] [SHIFT] [R-P] [\triangle-] 2.3 [SHIFT] [P-R] (resolves the 2.3 kN force into its components)

1 [ENTER] 2 [SHIFT] [R-P] [$\mathbb{-}$-] 1.6 [SHIFT] [P-R] (resolves the 1.6 kN force into its components)
[STO] [+] [.] Z
$[\mathrm{R} \downarrow]$
[STO] [+] [.] Z
$[\mathrm{R} \downarrow]$
(sums the components of above vectors)
3 [CHS] [ENTER] 4 [SHIFT] [R-P] [$4-$] 4.2 [SHIFT] [P-R] (breaks 4.2 kN force into its components)
[STO] [+] [.] Z
[\downarrow
[STO] [+] [.] Z
$[\mathrm{R} \downarrow]$
(displays result: 3.16)
[$\mathrm{X} \boldsymbol{>} \mathrm{Y}$]
(displays result: -3.43)

THE ADVANTAGE OF THE HP-41

The last set of keystrokes represents one method of manually summing vectors. It's an "OK" method as long as you aren't solving this type of problem every day. However, when you're taking a class in statics, you are going to be summing vectors every day.

There's a vector calculator program in the HP-4l Advantage Module that you may find useful. Also, summing two dimensional vectors is a function of the "Free Body" program included with this book. The method of summing vectors on a free body is detailed in the previous chapter. To solve the previous problem using the vector calculator in the Advantage Module, you would use the following keystrokes:
[XEQ] [ALPHA] VC [ALPHA]
[SF] 04
0 [ENTER] 135 [CHS] [ENTER] 2.3 [P-R] [R/S]
0 [ENTER] 1 [ENTER] 2 [R-P] [CLX] 1.6 [P-R] [shift] [A]
[CF] 04
0 [ENTER] 3 [CHS] [ENTER] 4 [R-P] [CLX] 4.2 [P-R]
[shift] [A]
[R/S]
[R/S]

This vector calculator is especially useful when you're working in three dimensions. Trying to keep things straight without a program like this can be harrowing in three dimensions. But, in two dimensions (a lot of problems in statics involve only two dimensions), controlling flag 04 and worrying about the zero Zcomponent can be kind of a pain.

That's where the "Free Body" program comes in: It works in just two dimensions and has the capability of summing all the known vectors on any body in one quick step. You may find it more tailored to the problems you will be challenged with in statics.

Now, let's take a look at some of the principles that make statics what it is...

THE BIG ZERO

Something that isn't moving has no net force acting on it. That is, when you sum up all the forces acting on a static object, the resultant is zero. Also, when you sum up all the moments acting on a static object (moments are Force X Distance vectors) the result is zero.

So statics is made up of a bunch of zeroes (no offense).

$$
\begin{aligned}
& \Sigma \vec{F}=0 \\
& \Sigma \vec{M}=0
\end{aligned}
$$

(And, as long as you can keep zero on your mind as you work your problems in statics....)

The following problem exemplifies the whole of statics principles. Beyond here, the problems look more complicated, but the principles are just as easy.

Calculate the distance y down from the top of the post at which a single horizontal force S must be applied in order to duplicate the external effects of the two known forces. What is the magnitude of S ?

Answer: $\mathrm{S}=95 \mathrm{lb}, \mathrm{y}=.21 \mathrm{ft}$

In this problem, all the forces act at different points of one line (the post). To solve it you fall back on the big zero.

1. Since all the forces act in the X-direction (as we've defined it), the equation for the sum of the forces follows:

$$
\begin{aligned}
& \boldsymbol{\Sigma} \mathrm{F}=0 \\
& 120-25-\mathrm{S}=0 \\
& \mathrm{~S}=95 \mathrm{lb} .
\end{aligned}
$$

2. The sum of the moments is zero. You can choose any point about which to sum the moments, as long as you don't change that point midway through the problem. If you choose to sum moments about the top of the flagpole, you get the equation:

$$
\begin{aligned}
& 120(1)+(-25)(4)-S(y)=0 \\
& \text { and since } S=951 \mathrm{~b} \text {, }
\end{aligned}
$$

$$
y=\frac{120-25(4)}{95}=0.21 \mathrm{ft}
$$

There are your answers. Once you know how to sum forces and moments for any situation while keeping track of all the details, then statics will seem like nothing. It is, afterall, zero you're concerned about.

Notes

1. Don't press $[R / S]$ while the FB program is busy working. This may cause an END OF ARRAY error. Purge files " A " and " V " if this error occurs, or CLRG if the CV is being used.
2.

Program Listings and Barcode

U14LEL＂FE＂	45 MVY	89 FCTC 25
924LEL 17	464LEL A	90.90022
Q3＂InPIT POINTS	47 SF 00	91 FS ？ 82
84 OF 21	$48 \mathrm{P}-\mathrm{F}$	92 I
85 HUIEL	494LEL E	93 FCT 82
46 SF 27	50 Yed be	94 It
07 CF 29	51 FCO	95 FC？ 89
日6 CF 61	52 GTO	$96 \mathrm{cT0} 00$
098	53 FOC 25	97 FS ？ 02
10925	54.003	98 INT
1195017	554 LEL 明	99 FC 82
12 FST 25	56 FS ？ HI_{1}	1660
136006	576070	101 ms
14 ＂EIGGER SIZE＊	58 FCTC 25	1024LBL 00
15 PROMPT	59.062	183 MFE＋
169LEL 6 伯		164 HRR－
$17{ }^{\text {＂}} 11^{\prime \prime}$	611	185 MPY
183.662	$62+$	186 FST 日月
19 MmTIIH	63 \％ed 12	$107 \mathrm{R}-\mathrm{F}$
20 ＂R17＂	64 FCT 25	10867021
21 月9T0 00	65 G 9021	1094LEL a
224 LEL 22	66 INT	$110 \mathrm{P}-\mathrm{R}$
23 CF 60	67 HSI	111580
24 OF 21	68 RDH	1124LEL E
25 FS 95	69 H5N＋	113 XEE 62
265721	70 KOY	114 FC 91
$27^{\circ} \mathrm{F}$ POINTS R	71 FS 日1	115690
28 FS ？ 11	72 9ee 01	116 FCOC 25
	73 FC？ 61	117 GTO 23
30 HUIEH	74 MS	1184LEL 60
$31+$ LEL 21	$75.1-$	119 FS ？ Ul^{1}
32 FIX 4	76 MHY	12067080
33 CF 82	77 FsTC 日0	121 FCOC 25
34 STOP	$78 \mathrm{R}-\mathrm{F}$	1226102
3501022	796021	123＋LEL W9
364LEL F	$864 L$ EL b	124 RII
37 KOY	815 F 82	125 月5R＋
38 cTO 21	824 LEL d	126 XYY
$39+[$ EL $]$	83976	127 FS ？ 41
46 FS 91	84 GTO II	128 Yee al
416023	854 LBL E	129 FC प1
42 GTO 16	$86 \mathrm{SF} \mathrm{V}_{2}$	136 H5
434LEL G	874 LEL I	131 j
44－90	88 YEU 82	132 XYY

133 Fg 9 C 0	177 INT	221 ＂EAI POINT＂
$134 \mathrm{R}-\mathrm{F}$	179 LASTH	222 ELH
135 GTO 21	179 FRC	223 CF 22
136＋LEL C	184153	224 PROMPT
137 CLA	181＊	225 FC 22
138 ARCL 明	182＊	226 Rt
139 9F 25	18318	22761016
140 MEIJA	$184+$	2284LEL 12
141 Fl 6 61	185＂${ }^{\text {\％}}$	2295725
142 GTO	186 AlP	236 HATIIL
147 IHT	187 FC？ 00	231 FS 25
144 ． 086	188 ETH	232 FTH
145＋	1891	233 ＂GREATEP SIZE＊
1469525	$190+$	234 AUIEH
147 HSL	191 IIH？	235 ETH
1485825	192 IHT	236 LEE 92
149 胙	193153	237 CLA
150 ＂AT POINT：＝	1945 T	238 ARCL
151 MIP	195 CL	2395725
1.58 RDH	196 LASTX	248 IIH
153 INT	197 FRC	241 ETH
154 MSI	198＊	2424LEL 61
1554LEL 08	$199+$	243 MSE
156 Fe ？ 01	206 \％${ }^{\text {¢ }}$	244 ＂RT POINT？
157 GTO 00	201 AIP	245 CF 27
158 PPOINT：＊	202 CF 00	246 PROMPT
159 MIP	283 RTH	247 碞 10
160 GT0 ${ }^{\text {b }}$	2644 LEL 10	2489527
1614EL－	20^{5} IHT	249 HS
162 碞 16	$206 \mathrm{~K}=6$	259 J
163 T0TAL：	287 GTO 0	2518 mb
164 AIP	298 CLA	252 F NEYT K R＊
1654LEL 06	269 MNGHE？	253 AUIEH
$166 \mathrm{FC} \mathrm{\% C} 25$	210 RST0 L	254 RTH
167 ＂N0 POINTS：	$211{ }^{217}{ }^{\text {2 }}$	2594LEL H
168 AUIEH	212 9F 25	256 XE0 62
169 RDH	213 HSIJH	257 FC ？ 61
176 GTO 21	214 CLA	$258 \mathrm{GT0}$ 日6
1714LEL 68	215 ARCL L	259 FG？ 25
172＂R17＂	216 IIM？	260 GT0 23
17358	217 kmH	2614LEL 90
174 IIm？	218 FS？ 25	262 FS ？ 01
175 FCTC 25	219 PTH	263 GTO 明
176 GTO 17	2204 LEL 00	264 FTG 25

26567017
$266+$ LEL 00
267 INT
268 MRIJH
2691 E3
274%
$271+$
272 RCO
273 IIM？
2741
275 －
276 MATDIM
277 ＂ZAPPEI＂
278 AYIEH
279 INT
$280 \mathrm{X} \neq \mathrm{Q}$ ？
28167021
282 FC ？ 61
283 STO 17
284 ＋LEL 16
285 XED 88
286 AST0 0日
287 STO IHI $:$
2884 LEL 23
289 CF 81
$290=\mathrm{KU}$ प EK 30
291 PROHPT
$2926 T 023$
2934 LRL F
294 XPY
2954 LBL b
2964LEL c
2974LBL d
2984 LEL e
2994 LEL J
30967023
$301+L$ EL 83
$302+$ LEL C
363 GT0 17
3044 LEL E
365 GTO 06
3064 LEL II
30761067
3084 LBL a

309 XEE 08
310 STO IND
$311+L$ EL A
312 SF 91
313 GT0 22
3144LEL 8
$315{ }^{\text {R R }} 10$－
316 日
317 MSIJH
318 MR
319 ＂\angle UNKNHN YTY：
329 AVIEH
$321+$ LEL 24
322 FIX 4
323 STOF
$324+$ LBL J
$3256 T 023$
3264 LBL F
3274LEL 6
$328+$ LBL H
3294 LEL a
$339+L E L b$
$331+$ LEL ©
3324 LEL d
3334LBL E
334 GT0 23
3354LEL E
336 R－P
337 KY
3384 LBL H
339 MSR +
340 CF 27
341 ＂AT POINT？＂
342 PROMPT
343 XEE 10
344 SF 27
345 MSR +
346 RIM
347 FC 10
348 GTO 24
349 GTO 23
3504LEL I
351 I＋
352 FC？ 09

353670 日可
354
355 MSI
356 GTO 0 0
3574LEL B
358 I－
359 FC？ 89
360 GTO 日
3613
362 MSI
363 LEL 06
364 MR
365 GTO 24
3664 LEL C
367 ＂AT POINT：－
$368 \mathrm{~J}+$
369 MR
376 ．
371 AIF
372 RYIEH
373 GT0 24
$374+$ LEL 07
375 SF 61
$376+$ LEL 96
377 XEQ 82
378 FCOC 25
37967023
380
381 MSIJA
382 LEL 05
383 MRR＋
384 MRR +
385 MRR＋
386 FS？ 16
387 SF 96
388 ＂R17＊
389 MSIJA
390 RDH
391 MRF +
392 ＊
393 X XY
394 MR
395 ＊
396 －
$397+$
398 CLH
399 ARCL 日и
4 U6 MRIJA
401 X우
402 FC ？ 0 B
$4836 T 085$
404 XEE 08
445.003

406 KEE 12
407 FCOC 25
408 GTO 23
469 ASTO L
410 CLA
411 ARCL 9 日
412 ＂
413 ARCL L
414 CSUM
415 CL
416 LASTX
417－1
418 ＂ H ＂
$419 \mathrm{ARCL} Y$
424 ＂F：＂
$421 \mathrm{ARCL} Y$
422 MAT＊
423 CLA
$424 \mathrm{ARCL} Y$
425 CL
426.063

427 MSIJA
428 kt
429 HS
430 FOC प1
431 GTO 64
432 MRR－
433 CHS

435 FIX 4
436 ARCL
437 CF 27
438 PROHFT
$439-\mathrm{FF} Y=$
44 MRE－

441 CHS
442 ARCL X
443 PROMFT
444 － $\mathrm{EF} \mathrm{X}=$
445 MRR－
446 CHS
447 ARCL
448 PROMPT
449 CLA
458 ARCL 06
451 CL
452 MSIJA
453 SF 27
45467023
$455+$ LEL
456 Rt
4574
458 ＋
$459{ }^{\circ} \mathrm{R}=$
469 AIP
4613.063

462 XEG 12
463 FCOC 25
464 GTO 23
465 ASTO
466 ＂${ }^{810}{ }^{-}$
467
468 MSI．J．
469 CLH
476 RDH
471 L BL ． 4
472 MRE +
4731
474 P－R
475 ARCL 2
476 MRI．IA
477 RIN
$478 \mathrm{MSC}+$
479 XYY
486 MSC
481 ＂ 810
482 MRIJA
483 RIL
484 MRE +
$485{ }^{-R 17}{ }^{*}$
486 MSIJA
487 RIW
$488 \mathrm{MRF}+$
489 ＊
490 CHS
491 XPY
492 压
493 ＊
494 ＋
495 CLA
496 ARCL T
497 MRIJH
498 XPY
$499 \mathrm{MSC}+$
$509{ }^{-210}=$
5 Sil MEIJH
502 Rt
50.3 CLA

504 FC？ 10
505 GTO 64
506 SF 06
507 XED 08
508 TRNPS
509 AsTO x
510 CLA
$511 \mathrm{ARCL} Y$
512 ＂F，
513 ARCL O
514 MSTS
515 CLA
516 ARCL AG
517 DIM？
5183
519 KPH
$520+$
521 CLA
$522 \mathrm{ARCL} Y$
523
524 MSIJH
525 KYY
5261
$527 \mathrm{ST}+\mathrm{L}$
528 KYY

529 HRC+	573 ARCL 09
$539 \mathrm{HRC+}$	574 IIH?
531 HR	5753
532 Rt	576 -
533 CLA	577 INT
534 ARCL 明	578 MSIJH
535 MATIIM	579 GTO 22
$536 \mathrm{x}>\mathrm{L}$	589 END
537 INT	
538 HSIJ	
539 Rt	
$549 \mathrm{HSC}+$	
541 Rt	
542 MSC	
543 Rt	
544 MS	
545 Et	
546 MSIJ	
$547{ }^{\text {R }} 16{ }^{\text {a }}$	
548.802	
549 MSIJA	
556+LEL 69	
551 MRR-	
552 MR	
$553 \mathrm{I}+$	
554 j	
555 CLA	
556 ARCL 日0	
557 HRIJH	
558 RDH	
559 MR	
$560 \mathrm{P-R}$	
561 MSR +	
562 RDH	
563 MSE+	
564 Rin	
565 HPR+	
566 RIH	
567 "R109*	
568 MRI.JH	
569 FC 10	
57681069	
571 CLA	
572 SF 81	

ROW 2: LINES 3-6

ROW 3: LINES 7-13

ROW 4: LINES 14-15

ROW 5: LINES 16-20

ROW 6: LINES 20-25

ROW 7: LINES 26-27

ROW 8: LINES 27-29

ROW 9: LINES 29-35

ROW 10: LINES 35-41

ROW 11: LINES 41-46

ROW 12: LINES 47-53

ROW 13: LINES 53-59


```
Barcode FB: "CV" version (continued)
ROW 14: LINES 59-65
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ROW 15: LINES 65-72
|m||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ROW 16: LINES 73-79
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ROW 17: LINES 80-85
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ROW 18: LINES 86-91
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ROW 19: LINES 91-97
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ROW 20: LINES 98-106
```



```
ROW 21: LINES 106-113
```



```
ROW 22: LINES 113-119
```



```
ROW 23: LINES 119-126
```



```
ROW 24: LINES 127-133
```



```
ROW 25: LINES 133-140
```



```
ROW 26: LINES 140-146
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
```

Barcode FB: "CV" version (continued)
ROW 27: LINES 147-150
|||
ROW 28: LINES 150-156

ROW 29: LINES 157-160

ROW 30: LINES 160-163

ROW 31: LINES 163-167

ROW 32: LINES 167-172

ROW 33: LINES 173-180

ROW 34: LINES 180-187

ROW 35: LINES 188-196

ROW 36: LINES 197-206

ROW 37: LINES 207-212

ROW 38: LINES 213-221

ROW 39: LINES 221-224

Barcode FB: "CV" version (continued)
ROW 40: LINES 225-232
||I|||
ROW 41: LINES 233-233

ROW 42: LINES 234-243

ROW 43: LINES 243-245
|
ROW 44: LINES 246-252

ROW 45: LINES 252-254

ROW 46: LINES 255-260

ROW 47: LINES 260-267

ROW 48: LINES 268-275

ROW 49: LINES 276-281

ROW 50: LINES 281-286

ROW 51: LINES 287-290

ROW 52: LINES 290-294

Barcode FB: "CV" version (continued)
ROW 66: LINES 367-371

ROW 67: LINES 371-378

ROW 68: LINES 378-385

ROW 69: LINES 385-391

ROW 70: LINES 391-400

ROW 71: LINES 401-406

ROW 74: LINES 419-425

ROW 75: LINES 426-431

ROW 76: LINES 432-437

ROW 77: LINES 438-444

ROW 78: LINES 444-450

ROW 80: LINES 459-463

ROW 81: LINES 464-469

ROW 82: LINES 470-478

ROW 83: LINES 479-485

ROW 84: LINES 485-492

ROW 85: LINES 494-500

ROW 86: LINES 501-507

ROW 87: LINES 508-513

ROW 88: LINES 515-522

ROW 89: LINES 524-531

ROW 90: LINES 532-539

ROW 91: LINES 541-547

Barcode FB: "CV" version (continued)

ROW 92: LINES 548-552

ROW 93: LINES 554-560

ROW 94: LINES 562-567

ROW 95: LINES 569-574

ROW 96: LINES 576-580

日itlel＂FE＂	$46+$ LEL A	915962
62tLEL 17	475 F	92 I
（1）${ }^{\text {F }}$	$48 \mathrm{P-R}$	93 FC 82
64 SF 25	494LPL E	94 It
65．PIRFL	50 XEE 02	95 FC 89
661	5 FCO 01	9660068
675725	52 GTO 80	97 FS ？ 02
60 STO 60	53 FCTC 25	98 INT
09 FCOC 25	54.663	$99 \mathrm{FCl} \mathrm{G2}$
14 PGIzE	$55+L$ LEL 60	106
11 ＂InPUT POINTS＂	56 Fs？ 01	101 HCL
12 CF 21	5767060	1024LEL
13 日urem	58 FCTC 25	183 HRF＋
145727	59.402	104 MRR－
15 OF 29	60＋LEL ${ }^{\text {an }}$	105 XVY
16 CF 01	611	166 F9C 09
17 ：${ }^{1 / 8}$	$62+$	$107 \mathrm{E}-\mathrm{F}$
183.802	63 YED 12	108 GTO 21
19 YEE 12	64 FCO 25	109＋LEL a
$29 \mathrm{mF}=$	6561021	$116 \mathrm{P}-\mathrm{F}$
21 AST0 96	66 IHT	1119500
$22+1 \mathrm{EL} 22$	67 H51	1124LEL E
23 CF 60	68 EIF	113 Xed 92
24 OF 21	69 MSE +	114 FC 01
25 FS 95	70 MYY	11567060
26 SF 21	71 FS 日1	116 FCO 25
27 ＂P POINTS ${ }^{\text {P }}$	$72 \mathrm{XE日G1}$	1176023
28 FS И11	73 FC 61	1184LEL 日6 $^{\text {a }}$
	74 Hs	119 FS 01
36 Quelm	75 j	120600 明
$31+L E L 21$	76 KYH	121 FCOC 25
32 FIV 4	${ }_{7} 7 \mathrm{FSTC} 0$	1226022
33 OF 62	$76 \mathrm{E}-\mathrm{F}$	1234LEL 0 明
34 STOP	7967021	1248 mm
356102	884 LEL b	125 HS ${ }^{\text {＋}}$
36＋LEL F	81590	
37 KMO	$82+1$ EL d	127 Fs 日1
$38 \mathrm{GT0} 21$	835768	128 碞 41
394 LEL J	84 GT0 I	129 FC 61
46 FS －11	854LEL E	130 HS
4167023	86976	131 j
420016	874 LEL II	13 XCY
434 LEL ig		133 FST 明
44－96	89 FCOC 25	$134 \mathrm{R}-\mathrm{F}$
45 YYY	946020	13501021

1364LEL C	18161017	$226 \times 8 \mathrm{E} 10$
137 CLA	182 RTH	227 9f 27
138 ARCL 90	1834LBL 10	228 HS
139 FF 25	184 INT	$229 \mathrm{j}-$
146 MRIJH	$185 \mathrm{X}=$ ¢ ${ }^{\text {？}}$	238 RDH
141 FC － 1	186 GTO ช0	231 ＂F NEXT K
142 GTO 日6	187 CLH	232 日YIEM
143 INT	188 MNAME？	233 RTW
144.003	189 ASTOL	2344LBL H
145 ＋	190 ＂F＂	235 CLI
146 SF 25	191 SF 25	2368 CE 明
147 MSI	192 HSIJH	237 FC 01
1489525	193 CLH	238 GTO 00
149 \％r	194 ARCL L	239 FCOC 25
150 ＂AT POINT：	195 IIH？	246 GTO 23
151 AIP	196 RDH	241 LEL 60
152 RmH	197 FSTC 25	242 FS ？ 61
153 INT	198 RTW	243 GTO 06
154 MSJ	199＋LEL 㫙	244 FCOC 25
155＋LEL 日月 $^{\text {a }}$	2 QU EEAL POINT	24561017
156 FS ？ 61	241 RIH	$246+$ ERL 明
157 GTO 日6	202 CF 22	247 INT
158 ＂POINT：	203 FROHPT	248 MRIJ
159 HIP	204 FC 22	2491 E3
169670 日可	285 Rt	250 ；
161＋LEL e	266 GTO 10	$251+$
162 \％ 8 明	$297+$ LEL 12	252 ROR
163 ＇TOTAL：	2885 F 25	253117
164 MIP	209 MATIIL	2541
$165+$ LEL 60	210 FS ？ 25	255－
166 FCOC 25	211 RTH	256 月ITIII
167 ＂W0 POINTS＊	212 ＂HEEI MORE EXMEM＂	257 ＂ZAPPEI＂
169 RYIEM	213 PYIEH	258 ค\％IEH
169 RDH	214 RTH	259 INT
17067021	2154 LBL 92	264 MSJ
1714LEL 68	216 CLA	2618×4 ？
172 ＂	217 ARCL 明	262 GTO 21
173 9F 25	218 SF 25	$263^{\circ} \mathrm{F}$
174 IIM？	219 IIH？	264 FC 81
175 FSTC 25	220 RTH	265 PIIRFL
176 RTH	$221+L$ EL 01	266601017
$177^{\text {mF }}$	$222 \mathrm{msk}+$	2674 LEL 16
178 SF 25	223 ＂AT POINT？	268 ＂E
179 IIN？	224 CF 27	2695725
188 FCOC 25	225 FROAFT	276 PIJFL

271 CF 25
272 ASTO 90
273 LEL 23
274 XEE 80
275 CF 61
276 ＂KU6 EK 30＂
277 PROMPT
27861023
2794 LEL F
284 XYY
2814 LEL b
282tLEL 6
2834LEL d
$284+$ LEL E
2854LBL J
286 GTO 23
2874LEL 83
$288+$ LEL C
2896017
294＊LEL E
291 GT0 66
2924 LEL I
293 GTO 07
2944 LEL a
295 ＂
296 SF 25
297 FIURL
298 CF 25
2994 LEL H
3045 F 1
30167022
3024LEL B
303 ＂ $1=$
344
305 HSIJ．
306 月1
307 ＂ 4 UNEHMN YTY＂
3 38 AUIE
$309+L E L 24$
310 FIX 4
311 STOP
$312+\mathrm{LDL}$ ］
313 GTO 23
$314+$ LEL F
$315+$ LEL

3166LEL H
3174LEL a
3184 LEL b
3194 LEL c
$329+$ LBL d
$321+$ LEL e
322 GTO 23
3234LEL E
324 R－P
325 KPY
3264 LEL A
$327 \mathrm{MSR}+$
328 CF 27
329 ＂AT POINT？＂
336 PROMPT
331 號 10
332 SF 27
333 MRR +
334 Rm
335 FC 10
336 GTO 24
337 GT0 23
338 LEL I
$339 \mathrm{I}+$
340 FC 99
341 GTO 80
3420
343 MSI
344 GTO 日明
3454LEL E
346 I－
347 FC？ 89
348 GTO 日可
3493
354 MSL
$351+$ LEL 日G
352 服
353 GTO 24
354 LEL C
355 ＂AT POINT：＊
356 Jt
357 筬
358 ．
359 AIP
360 日VIEH

36167024
3624LEL 07
363 SF 61
364＋LBL 66
365 XED 82
366 FCTC 25
367 GTO 23
3680
369 MSIJA
$374+$ LEL 05
371 MRR +
372 MRE +
373 MRE +
$374 \mathrm{FS}^{16}$
375 FF 66
376 ＂ PB
377 HSIJA
378 RDN
379 RER +
386 ＊
381 XYY
382 M
383＊
384 －
$385+$
386 ＂
367 服IJ
388 KYY
389 FC 80
$3946 T 085$
391 ＂
392.403

397 畊 12
394 FCTC 25
3956023
396 等
397 CSO
398－1
399 － 8.
460 HIT：
461 ＂y
462 CL
463.463

4 4． 4 HITH
405 Rt

466 Rt	451 MRILA	496 － 6
407 的	452 RDH	497 INT
408 FCTC 01	453 HRR +	498 MSIJH
489 GTO 06	$454 \mathrm{p}=$	499 Rt
410 MRR－	455 MSIJA	504 mSC
411 CH	456 RDH	501 Rt
412 ＂랙＝＊	$457 \mathrm{MRR}+$	$502 \mathrm{HSC+}$
413 FIL 4	458 ＊	503 Rt
414 ARCL ${ }^{\text {P }}$	459 CHS	504 H5
415 CF 27	466 XPY	505 Ef
416 PROAPT	461 服	566 MSL
417 －${ }^{\text {SFPY }}=$	462 ＊	507 ＂1］
418 MRP－	$463+$	508.002
419 CHS	$464{ }^{\circ} \mathrm{A}$＂	509 MSIJ
429 ARCL \％	465 MRI．J．${ }^{\text {a }}$	5164 LEL 09
421 PROMPT	466 XCY	511 MRR－
422 －8F\％$=$	467 H9C＋	512 成
$423 \mathrm{MRE}{ }^{-}$	468 ＂1］	$513 \mathrm{I}+$
424 CHS	469 MRIM	514 j
425 ARCL	476 FC 16	515 ＂${ }^{\text {／}}$
426 PROMFT	471670 प4	
427 ny：	472 9F 0^{4}	517 RLW
426 PURFL	473 － $\mathrm{Y}^{\text {a }}$	518 WR
429 SF 27	474 TRNPS	$519 \mathrm{P}-\mathrm{R}$
436 GTO 23	475 c ¢， $\mathrm{y}=$	$520 \mathrm{HER}+$
$431+L$ EL 0 明	476 M19	521 RIH
$432{ }^{\text {＂}}{ }^{\text {c }}$	$477{ }^{\circ} \mathrm{A} \mathrm{A}^{\text {a }}$	522 MSE＋
4333.663	478 PIPFL	523 RIH
434 SED 12	479 ＂$=$	524 H5E＋
435 FCOC 25	488 ILH	525 RIW
436 GTO 23	4813	526 ［1］
$437{ }^{\text {c }}$－	482 YYY	527 MRIJA
4368	$483+$	528 FC 16
439 MSIJ	484 MATIII	52967069
$4454 \mathrm{LEL} \mathrm{G4}$	4851	536 CLA
441 MRE ${ }^{\text {＋}}$	$486 \mathrm{ST}+\mathrm{L}$	5315801
4421	487 －${ }^{\text {a }}$	532 ARCL 何
443 P－R	480	533 IIM
$444{ }^{\text {m }}{ }^{\text {a }}$	489 MSI．J．	534.3
445 MRIM	$490 \mathrm{HRC}+$	$535-$
446 EDH	491 MRC＋	536 INT
447 HSC	492 成	537 MSIJA
448 KCH	493 ＝${ }^{\text {a }}$	53805022
449 MSC＋	494 PURFL	539 ENI
456	495 LASTY	

ROW 2: LINES 5-11

ROW 3: LINES 11-14

ROW 4: LINES 14-19

ROW 5: LINES 19-25

ROW 6: LINES 25-27

ROW 7: LINES 27-29

ROW 8: LINES 29-34

ROW 9: LINES 35-40

ROW 10: LINES 41-46

ROW 11: LINES 46-52

ROW 12: LINES 53-58

ROW 13: LINES 59-65


```
ROW 14: LINES 65-72
```


ROW 15: LINES 72-79

ROW 16: LINES 79-85

ROW 17: LINES 85-90

ROW 18: LINES 91-97

ROW 19: LINES 97-105

ROW 20: LINES 106-112

ROW 21: LINES 113-118

ROW 22: LINES 119-125

ROW 23: LINES 126-132

ROW 24: LINES 133-139

ROW 25: LINES 140-146

ROW 26: LINES 146-150


```
ROW 27: LINES 150-156
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
```

```
ROW 28: LINES 156-159
```


ROW 30: LINES 163-167

ROW 32: LINES 173-180

ROW 33: LINES 180-188

ROW 34: LINES 189-195

ROW 35: LINES 196-200

ROW 36: LINES 200-208

ROW 37: LINES 208-212

ROW 38: LINES 212-216

ROW 39: LINES 217-223

Barcode FB: "CX" version (continued)

ROW 42: LINES 231-236

ROW 44: LINES 242-249

ROW 45: LINES 249-257

ROW 46: LINES 257-262

ROW 47: LINES 262-268

ROW 48: LINES 268-274

ROW 49: LINES 274-276

ROW 50: LINES 276-282

ROW 51: LINES 282-288

ROW 52: LINES 289-294

Barcode FB: "CX" version (continued)

ROW 66: LINES 367-374
 ||

ROW 67: LINES 374-382
||
ROW 68: LINES 382-390

ROW 69: LINES 391-395

ROW 71: LINES 399-404
|||
ROW 72: LINES 405-412
$|||\mid ~$
ROW 73: LINES 412-417

ROW 74: LINES 417-423

ROW 75: LINES 423-430
||
ROW 76: LINES 430-435

ROW 77: LINES 435-442

ROW 78: LINES 443-450

Barcode FB: "CX" version (continued)
ROW 79: LINES 451-458
||
ROW 80: LINES 459-467
||
ROW 81: LINES 468-474

ROW 82: LINES 474-479

ROW 83: LINES 480-488

ROW 84: LINES 489-495
|m|||
ROW 85: LINES 497-504
|||
ROW 86: LINES 505-510

ROW 87: LINES 512-517

ROW B8: LINES 519-526

ROW 89: LINES 527-533

ROW 90: LINES 534-539

TABLE of CONTENTS Page
USING THE "FREE BODY" PROGRAM 2
Loading the Program 3
Are You Rusty? 4
Preparing Your Calculator's Memory 6
A General Description 9
Summing Force Vectors 10
Calculating Reactions 15
Solving Structures 21
Summary and Important Limitations 33
SIZING For A Particular Problem 35
Exiting The Program 35
STATICS WITH AN HP-41 36
What is Statics? 37
A Look At The Basics 38
Describing Vectors: [P-R] [R-P] 41
The Advantage Of The HP-4l 47
The Big Zero 49
PROGRAM LISTINGS AND BARCODE 52
CV Version 53
CX Version 66

If you liked how we wrote the program (and this book), you might also be interested in other applications we have for the Advantage Module (OR in learning how to write HP-4l programs of your own)! Here is a complete list of

OTHER BOOKS FROM THE PRESS AT GRAPEVINE PUBLICATIONS, INC.

Please use the nifty order blank on the reverse side of this page. We'll send you (or your friend in need) a catalog describing each of our books in greater detail, and it's free!

OR, if you are so inclined, dial us direct at (503) 754-0583

GRAPEVINE PUBLICATIONS

-Using your HP-41 Advantage: Electrical Circuits for Students
-Using Your HP-41 Advantage: Statics for Students
-An Easy Course in Programming the HP-41
-An Easy Course in Programming the HP-11C and 15C
-An Easy Course in Using the HP-12C
-Custom Programming Services
"I would very much like you to send me information on all of your books, services, etc."

NAME: (please print)
ADDRESS: \qquad
CITY, STATE, \& ZIP:

Mail this to: GRAPEVINE PUBLICATIONS, INC. P.O. Box 118 Corvallis, OR 97339-0118 U.S.A. OR CALL: 503-754-0583

Point/Known Editor: top rows of keys

Unknown Editor: top row

Input angle	A
of orientation	
of unknown lood	

At which	C
point does this	
unknown act?	

Input
slope of unkndwr
Y EENTER] X
rise $=Y$ run $=X$

USING YOUR HP-41 ADVANTAGE Statics for Students

Here is a unique program designed for the student of college statics. With an HP-4lCV or CX, an HP-41 Advantage Module and this book, you will breeze through the hundreds of homework and test problems you encounter in a typical statics class.

The program is general enough to be useful in almost every problem. You draw a picture for your calculator, inputting the coordinates of points that you are interested in and the known loads on the structure. And then you choose to either sum the known forces and moments about the origin or input the orientation of three unknown reactions and solve for the magnitudes. Simple!

The program is powerful enough to help you solve the internal forces of a structure by the "method of sections" with just a few clicks of the keyboard. Yet it is convenient enough to use efficiently for calculating simple things like supporting reactions of a statically determinate or cantilever beam.

ALL THIS, with program listings, bar code, quick and easy instructions, even a quick review of the basic principles and mathematics of statics to help you get the best advantage from your HP-41.

[^0]: © 1985, Grapevine Publications, Inc. All rights reserved. No portion of this book or its contents, nor any portion of the programs contained herein, may be reproduced in any form, printed, electronic or mechanical, without written permission from Grapevine Publications, Inc.

 Printed in the United States of America
 ISBN 0-931011-04-3
 NOTICE: Grapevine Publications, Inc., makes no express or implied warranty with regard to the keystroke procedures and program material herein offered, nor to their merchantability nor fitness for any particular purpose. These keystroke procedures and program material are made available solely on an "as is" basis, and the entire risk as to their quality and performance is with the user. Should the keystroke procedures or program material prove defective, the user (and not Grapevine Publications, Inc., nor any other party) shall bear the entire cost of all necessary correction and all incidental or consequential damages. Grapevine Publications, Inc., shall not be liable for any incidental or consequential damages in connection with, or arising out of, the furnishing, use, or performance of these keystroke procedures or program material.

