
HP-41 BARCODE GENERATORS:

TYPES 4.,6,7 & 8

PLUS CUSTOM BARCODE

J

FOR THE IBM=-PC'™™

(C) 1986 by Tony Malburg

(C) Copyright Tony Malburg 1986

All rights reserved. No part of this publication may be

reproduced without the prior written consent of the author.

The author makes no representations or warranties with

respect to the contents hereof and specifically disclaims

any implied warranties of merchantibility or fitness for any

particular purpose.

Comments and suggestions concerning this package may be sent

to:

Tony Malburg
1231 NN Alvermon Hat 2315 S. Gerd Ave ¥)

AZ85712 Saw Pedro CA 073)

Program license agreement: The programs contained in this

package are licensed for use on a single machine. The

programs may be copied, but solely for archival purposes.

TABLE OF CONTENTS

INTRODUCTION tiv ceeceeccosscansssassssasssass css esses sass anes aasans 1

1. Barcode TYpeS .ctceecsscssacasesns cs ces sss essssass cesses asense «es 2

2. TYPE4 ...ccececennscns ces es esses eeasas Ss sess esneannansan 3

2.1 Command Formatccccsee cesses ascenas Sarna sesassnsns =

2.2 Instructions and Syntax ..cecceccceccesSE

2.2.1 SIZE «ccc eeennees ces ess assess ase an ss sass ass sass ansI

2.2.2 ASN cece vanccncns sssssnsssnns ss ses essseanses ces aa S

2.2.3 XEQ and GTO ..cceenccsncoas cscs ce cssnnese cesses ssenas 8

2.2.3.1 Local XEQ or GTO ...tcceeesccsscascnssnsscs cr.. 8B

2.2.3.2 Global XEQ@ or GTO cesses esses as seeseas 9

2.2.3.2.1 Global Text XEQ@ or GTO ces cae ens cases asses 9

2.2.3.2.2 Global Synthetic XEQ or GTO .ceccecceccaas 10

2.2.4 Register Access Instructionscceeeeeccsccccasce 10

2.2.5 Flag Instructions ..ccccceeccecnces cae ees essence nss 11

2.2.6 Display Format Instructions cesses nsJ

2.2.7 XROM Instructionseceacsescanssnscsnse ce ena csees 12

2.2.8 TONES ieee aecescasncsessasescscasnsacaesI

2.2.9 Other Instructionsccceeececcasccossnscnanasass 14

3. TYPES ©. ceeenee ss ses esas cases ase sse senses se ses eassesans 16

3.1 Command Formatccececcecaca cesses csesassassnas ceene 16

3.2 Type 6 SyntaX sce eesescosscccasssnsse cree sees es cesses 16

4, TYPE7 & TYPEB ctv ceceecetosssascssocsasscsassascsasnssasasnsass 18

4,1 Command Formatcccccees sssanununans ss amanssss cee0.. 18

4,2 Type 7 & 8 Syntax .c.ceceeeccscsscssseanaa cece ce ces nan 19

4,2.1 Text Alpha Strings “sss ss ss ssmsssnsaran PE4

4.2.2 Synthetic Alpha Stringscc... tess ens ese eae 20

3S. CUSTOM ..cececee cscs sscssesns cesses eassssena cesses ees esssnas 22

S.1 Command Formatcccceeececases seas ss sess aT assess ARS 22

5.2 Type 1 & 2 Barcode Format ce cecnasans cesses nee creeeess 23

9.2.1 Directional Bars ..ccceceeccsccssssssnscssscessasssanssss 23

9.2.2 Headerccceacseccesssce even as ces ens ceases ess sans . 24

5.2.2.1 Running Checksum ...cceeesceses cscs sess sense en 24

9.2.2.2 Type Numbercceceees sees assesses cesses. 24

9.2.2.3 Local Sequence Number:ccccecceasescsscess 25

5.2.2.4 Number of Leading Bytescccc0ee.e ceca scene 25

9.2.2.5 Number of Trailing Bytescceececacss ceeeee 29

5.2.3 Program Instructionscccsceccecscsesccncssccccescs 25

5.2.4 Program Exampleccceececesescssasasonssscscssse 26

9.2.4.1 Global Label Constructionccececeeesssecs 26

5.2.4.2 Text String Constructioncccceccccccansncs 26

9.2.4.3 .END. Construction ce secs asses sass ac es 27

9.2.9 Program Example (cont'd)ccecs.0 sssssssassnenye 27

5.2.6 Final Comments about Type 1 & 2 Barcode:e20.. 29

5.3 Type 4 Barcode Formatcceceecccccanance ces es ences 29

59.3.1 Example 1: ASN BARS 31 ce cess esas cease 30

0.3.2 Example 2: SIZE B50¢cc00cecevacsssescscsses cree 31

TABLE OF CONTENTS (cont'd)

5.4 Type 5 Barcode Format ...

9.5 Type 6 Barcode Format ...

2.6 Type 7 & 8 Barcode Format

9.7 Final Comments on CUSTOM

6. CHECKSUM ® ® ® © 8 © © ® © » ® 0 © © 5 © 5 OP &@a® O° > PP ® S ® a soe

6.1 Command Formatceeescess Snes snnsmes

7. Printer Types ...cccecccaccascscs sess anun

7.1 EPSON printers ...cceecececeses cs ecsscsaces

7.2 OLYMPIA printers ..cceece. sees esse seans

7.3 STAR MICRONICS printers ...cceeceees cee

8. References ..casceccesccscsscscccnccas ce ena

NOTES ON BARCODE QUALITY

APPENDIX

Sources of Information on HP-41 Instruction Set

HEX Keycodes for Key Assignments in Global Labels

Barcode Samples

NOTES

33
33
35
37

38
38

40
40
40
41

43

INTRODUCTION

The routines contained in this package were written as

a supplement to the HP-41 Assembler and Barcode Generator to

permit full utlilization of the HP82153A optical wand. The

routines run on an IBM-PCY™ or compatible personal computer

using mMs-postm, In addition to this, access to a dot matrix

printer is necessary to print the barcode. At the current

time, three types of dot matrix printers are supported.

They are EPSON, OLYMPIA, and STAR MICRONICS. Here it should

be noted that any EPSON compatible should work fine. Refer

to notes on printer types in chapter 7 for more information.

This manual contains a summary of the command line

entries needed to process each type of barcode on the PC and

a description of the syntax required by each. In addition

to this, the formats of each type of barcode are given to

permit experimentation using a CUSTOM barcode routine, along

with an automated checksum computer. This manual is NOT

intended as a tutorial for using the HP-41 or the 1BM—-pPCt™

and if questions arise, the proper reference should be

consulted. Some HP-41 references are given in chapter 8 and

should questions arise about the 1BM-pC tM or compatible, the

appropriate DOS manual should be consulted.

IBM-PC is a trademark of International Business Machines.

MS-DOS is a trademark of Microsoft Inc.

1. Barcode Types

Before a meaningful discussion of the specific types of

barcode available for use with the HPB821533A optical wand, an

overview of the different types and their functions is in

order.

As it turns out, there are seven different types of

barcode that can be read by the HP82153A. These are listed

below in Table 1.1 along with a short description of each.

Table 1.1

Type No. Description

1 Program — Non Private

2 Program — Private

4 Direct Execution

S Wand Paper Keyboard

6 Numeric Data

7 Alpha Replace Data

8 Alpha Append Data

The first two types, type 1 & 2, are rather involved in

their construction and syntax since they incorporate most

all available HP-41 instructions and usually consist of

several rows. For this reason, I've written a separate

software package to accomplish their printing and, with the

exception of a discussion of their format in the chapter on

CUSTOM barcode, no further comments will be made about them.

Since type 5S barcode is available on the wand paper

keyboard that came with the wand, there is no need to

generate this type. As with types 1 & 2, the only

discussion on this type will be found in the chapter on

CUSTOM barcode.

Out of the seven in the list, this leaves types 4, 6,

7, and 8. In the following chapters, the routines required

to generate these types, using an IBM-PC or compatible and

an EPSON or compatible dot matrix printer, and the

necessary syntax for each will be discussed. Also it should

be noted that, with the exception of chapter 5, each chapter

was written to stand on its own. That is to say, all of the

information needed to use a given routine, except the custom

barcode routine, can be found its respective chapter. The

chapter on custom barcode generation, chapter 35, however,

makes references to entries in the appendix.

2. TYPEA4

TYPE4 is the type 4 barcode generator routine. From

Table 1.1 in chapter 1, type 4 barcode is defined as direct

executing barcode. That 1s to say that when a type 4

barcode is scanned, a function 1s carried out or executed.

Due to the number of instructions that can be produced and

executed with this type of barcode, this is by far the most

complex of the routines included with this package.

2.1 Command Format

TYPE4 [printer option]

NOTE: A minimum of one space is required between

command line entries.

Following is a list of the available printer options. If no

option is entered, the printing parameters will default to

the EPSON mode of bit image graphics. It should be noted

that only one option is allowed and should two or more be

entered, only the first one will be recognized by TYPES4.

[printer options]

-s or -S print the barcode on a STAR MICRONICS printer

-0o or -0 print the barcode on an OLYMPIA NP printer

An example of a typical command line entry and the initial

banner display is shown below. The default drive is A and

the printer option used is -s for the STAR MICRONICS

printers.

A> TYPE4 -s

HP-41 Type 4 Barcode Generator (C) Tony Malburg, 1986

Enter INSTRUCTION (CR to end):

After the banner is displayed, the program prompts for

an instruction to be converted to type 4 barcode. When the

last instruction has been entered, simply hit the carriage

return (CR) and the printer will produce a form feed for the

current sheet of paper. If no form feed is desired, a

control-C (°C) will exit the program without one.

The following section will discuss the set of

instructions that are available and provide examples to show

the syntax for proper entry.

2.2 Instructions and Syntax

The following is a description of the syntax that TYPE4

needs to decode the instruction properly. Care was taken in

laying out the format to allow the full range of

instructions to be entered from the keyboard of any PC.

Before getting started a few comments, definitions, and

guidelines will be provided.

The first point of interest is the use of synthetic

instructions in type 4 barcode. Due to the way in which the

wand firmware handles this type of barcode, synthetic

instructions, in general, are NOT allowed. There are some

instances, such as synthetic global label XE or GTO’'s,

where the use of some synthetic characters are permitted.

If such synthetic characters are allowed, examples of their

use will be given.

Throughout this section of the manual, discussion of

the various instructions leads to the use of a specific

range of valid numeric or character entries. Whenever the

brackets are used with more than one character between them,

the characters enclosed in the brackets make up the desired

range. For example [A-Z] means include all upper case

letters from A to Z. If a single character is used between

the brackets, it is merely to offset the character from the

rest of the text.

Two final comments before starting the set of valid

type 4 instructions. First of all, the TYPE4 routine is

CASE DEPENDENT and requires all instructions to be entered

in UPPER CASE LETTERS. There are a few exceptions to this

limitation, namely in local and global XEG@ and GTO

instructions where the lower case letters [a—-e] are valid.

Secondly, when entering the instructions at the prompt,

there must be at least one white space, either a tab or

space character from the space bar, between the mnemonic and

the argument. When in doubt about a specific instruction,

follow the examples given for the correct form.

2.2.1 SIZE

The SIZE instruction provides a means to set the number

of data registers with a single pass of the wand. The most

obvious use would be to inciude it with the program barcode

to set the size to the required value before running the

program.

The syntax for the SIZE instruction is the same as it

is on the HP-41 and that is:

SIZE nnn

where nnn is a three digit number corresponding to the

number of data registers desired. The range of valid sizes

is [000-3201]. A few examples will follow. (The comments

that follow the instruction examples should not be entered

at the prompt unless 1t is desired that they be printed

also. They are merely added here as an explanation of the

syntax.)

Examples:

SIZE 010 ;set size to 10 data registers - note that 3

s digits are required by TYPE4

SIZE 050 ;set size to S0@ data register

SIZE 320 ;set size to 320 data registers - note that with

3s this setting there are no program registers left

2.2.2 ASN

The ASN instruction provides a means of assigning a

resident function, an existing user program, or an

application pac program to a key with one pass of the wand.

When in the user mode, this key will execute the assigned

function or program.

The syntax for the ASN instruction is the same as it is

on the HP-41 and that is:

ASN [program/functionl] [keycode]

When an ASN instruction is entered on the HP-41, all the

user has to do is enter the [program/functionl] and the

[keycodel is found by pressing the desired key. With TYPES4,

the keycode must be known to encode it in the barcode. To

find the keycode, follow these steps:

1. Enter [SHIFTICASNILALPHAILALPHAI

2. Hit the desired key and watch the display for the

corresponding keycode. (If you hold the key down

for about a second, ‘NULL will appear and the

key will not be reassigned to itself.)

As an example of this, complete the above steps using the

TAN key. The keycode that is displayed is 25. This

corresponds to row 2 and column 5S of the keyboard. If a

shifted key is to be assigned, a negative sign must be

entered before the keycode. The proper keycode for the

shifted TAN key would be -25 for example.

There are no limitations when using the ASN function

with TYPEA4. All keys, including the SHIFT key, can be

reassigned. Before reassigning the SHIFT key, careful

consideration should be given to the specific application

program being run. That is, if the program requires data to

be entered or manipulated, the reassignment of the SHIFT key

could be very awkward while in the user mode.

Figure 2.1 below shows the value and locations of the

valid keycodes. Notice there are two values within each key

on the keyboard template, one being the negative of the

other. The value on top, the negative value, is the keycode

for the shifted key and the one on the bottom is the keycode

for the unshifted key.

-11 -12 -13 -14 -15
11 12 13 14 15

-21 -22 -23 -24 -25
21 22 23 24 25

-31 -32 -33 -34 35

31 32 33 34 35

-41 -42 -43 -44

41 42 43 44

-91 -52 -53 -54
S1 92 S93 °4

-61 -62 -63 -64
61 62 63 64

-71 -72 -73 -74
71 72 73 74

-B81 -82 -83 -84
81 82 83 84

Figure 2.1 Valid HP-41 Keycode Values

Following are some examples of ASN instructions. Note

that there must be at least one space separating the fields

for TYPE4 to work properly. It should be mentioned here

that if an attempt to assign a function or program that

doesn’t exist in memory somewhere, the word NONEXISTENT will

be displayed and the assignment attempt will be aborted.

(The comments that follow the instruction examples do not

have to be entered at the prompt. They are merely added as

an explanation of the syntax.)

Examples:

ASN MATRIX 15 Assigns MATH PAC routine MATRIX to

3; the LN key on the HP-41

ASN 15 s Reassigns LN key to itself

ASN 10 -54 sAssigns global LBL "1@" to shift 9 key

Note that this is GLOBAL 1@ not LOCAL 10

Assigns global LBL "a" to SHIFT key

Note that this is GLOBAL a, not LOCAL a

Reassigns Y™X to itself

Assigns factorial to SIN key

ASN a 31

ASN -12
ASN FACT 23

The above examples give rise to the discussion of

global versus local labels. The ASN function is reserved

for use with globals only and not locals. The reason is

simple. The HP—-41 already provides for automatic local

alpha assignments to the top two rows of keys provided

nothing else is assigned to the key already. Since this is

the case, it would be redundant to assign these labels to a

key. It should be pointed out here that for a local alpha

key assignment to be active, the instruction pointer must be

within the program containing the local alpha label and the

calculator set to USER mode. Also note that this feature is

limited to use with local alpha labels and NOT local numeric

labels.

Since it is possible to have programs with synthetic

labels in them, the ability to assign these labels to a key

should be available to the user. With TYPE4, this ability

exists and is accomplished by entering the ASCII

representation of the label (in HEX) between single quotes.

The only requirement is the synthetic string must contain an

even count of no more than 14 HEX digits. The reason for

this is each pair of HEX digits corresponds to one character

in the program or function name and since a maximum of 7

characters per name is allowed, only 14 HEX digits are

permitted. Note that the count must be even and for all HEX

digits greater than 9, UPPER CASE letters must be used. A

few examples of this follow.

Examples:

ASN '0@81° -25 sAssigns the "full man’ label to shift TAN

ASN 222326° 81 sAssigns LBL "#& to the division key

ASN '5BSD°" -71 sAssigns LBL [J] to X>Y? key

Through the use of synthetics, virtually any ASN can be

generated. If TYPE4 will not generate the proper ASN for

the application, the CUSTOM barcode generator described in

chapter 5S should be used to complete the job.

2.2.3 XEG AND GTO

Due to the similarities in the way the XEG and GTO

instructions are generated, this section of the manual will

incorporate the discussion of both. There is a difference

in the way the HP—-41 executes them but that topic is beyond

the scope of this manual.

XEQ@ and GTO instructions can either be local or global

in nature. Local XEQ@ and GTO instructions only function if

the instruction pointer is inside the program containing the

local label that is to be XEO@'Ad or GTO'd. Global XEQ and

GTO instructions, on the other hand, perform a jump to the

label found in CAT 1 or CAT 2 and begin execution there.

Following will be a discussion of each type.

2.2.3.1 LOCAL XEO@ OR GTO

Local XE@ or GTO instructions can either be direct or

indirect. The valid range for direct XEQ or GTO is [0@0-991]

for numeric and [A-J,a-el] for alpha. The proper syntax for

direct local XEQ or GTO’'s is as follows:

1. For all local numeric XEQ@ or GTO instructions,

a two digit number must follow the XEQ@ or GTO.

If the number is less than 10, a leading @ must

be present or TYPE4 will generate an error.

2. For all local alpha XEQ@ or GTO instructions,

a single alpha letter with no quotes must follow

the XEOG or GTO. (Quotes indicate global label.)

Some examples are show below for clarity.

Examples:

XEQ@ @1 s XEQ local numeric label @1 - note the leading ©

GTO a s6TO local alpha label a - note absence of quotes

XEQ J s XEG local alpha label J

XEQ@ 99 s XEO local numeric label 99

GTO 45 s6GTO local numeric label 45

For indirect local XEQ@ or GTO's, only numeric and stack

registers are allowed. As mentioned at the outset,

synthetic instructions are generally not allowed and this is

one of many cases that this is true. Since this is the

case, the valid numeric range for indirect XEG@ or GTO

instructions is [00-99], provided enough memory has been

allocated for data registers using the SIZE function, and

the stack registers X, Y, Z, T, and L. A few examples

follow.

Examples:

XEQ IND 00 s XEQ indirectly through register 00

GTO IND 25 s;6TO0 indirectly through register 25

GTO IND X ;GTO indirectly through stack register X

XEQ@ IND T s XEQ indirectly through stack register T

2.2.3.2 GLOBAL XEB OR GTO

Global XE@ and GTO’'s work in conjunction with a global

label somewhere else in the machine. As such they can

either contain straight text or synthetic characters. This

gives rise to the distinction between global text XEQ or

GTO0's and global synthetic XEO or GTO's. Regardless of the

type used, there are some common guidelines to follow if

TYPE4 is to function properly:

1. Maximum of 7 characters allowed in the XEGQG or GTO

(quotes are not included in this count)

2. The first character must be a double quote ["]

(the ending quote is optional)

3. No white spaces are allowed in the name itself

(if a space character is desired — use synthetics)

4, The name itself cannot contain a quotation mark

(if quotes are desired - use synthetics)

2.2.3.2.1 GLOBAL TEXT XEG OR GTO

Without further explanation, the following examples

will be given to add some clarity to the rules.

Examples:

XEQ@ "LABEL soptional second quote omitted

GTO "TSTLBL" s second quote present

GTO "abcdel2" snote the use of numbers

3; and lower case letters between [a-e]

XEQ "@H$SL"L" s various punctuation are also allowed

In the last example above, the [@] character and the

[#]) character were used. These two characters can not be

generated directly on the HP-41 alpha keyboard but since

they are in the standard ASCII character set, the HP-41 can

display them. Rather than force the use of synthetics to

generate characters like these, all of the standard ASCII

printable characters have been included for use with TYPEA4.

The only exception to this is limiting the lower case alphas

to the range of [a-el. The sigma character used by the

HP-41 is the tilde [™~] character in the ASCII character set.

It, too, is included in the list of valid XEQ@ or GTO

characters.

One character that can be generated on the HP-41 that

can not be generated on a personal computer is the ‘not

equal to’ sign. As will be seen in the section on other

instructions, section 2.2.9, the two characters [!] and [=]

are used together to represent ‘not equal to’. I+ this

character is desired in a global XEQ@ or GTO, use synthetics.

2.2.3.2.2 GLOBAL SYNTHETIC XEG OR GTO

On occasion, a global label may exist that contains a

character that is not in the printable ASCII character set.

An example of this might be the "full man’ character

generated by byte @1 or the ‘not equal to’ sign described

above. When this is the case, an XEOQ or GTO instruction

made up of the same characters is desired to execute the

label. This can be accomplished by using a synthetic XEQ or

6TO instruction.

The syntax for a synthetic string of any kind is a

double quote ["] followed by a single quote [1]. As with

global text XEO or GTO’'s, the ending quote is optional. As

described in the section on the ASN instruction, synthetic

strings are entered as HEX digits with each character in the

desired XEQ@ or GTO requiring 2 digits. Since there is a

maximum of 7 characters allowed in any global label, a

maximum of 14 HEX digits are allowed in any synthetic XEQ or

GTO instruction and the digit count must be even.

As a reminder, HEX numbers range from [0-9,A-FJ]. Since

the routine is CASE dependent, all HEX digits greater than 9

must be entered in UPPER CASE. Some examples follow.

Examples:

XEQ@ " '35S453544C424C"" s;equivalent to XEO@ "TSTLBL"

GTO " ‘01050406 ; second set of quotes omitted

XEQ " '574859204D453F ; generates XEQ@ "WHY ME?"

3s including the space (20H)

XEQ@ "'@Cep"" snote upper case C and D

GTOo "1D" sgenerates ‘not equal to’ sign

2.2.4 REGISTER ACCESS INSTRUCTIONS

The register access instructions supported by the HP-41

are listed on the following page. These instructions, with

the exception of SIGREG, can all access numeric as well as

stack registers in both direct and indirect formats.

10

RCL STO ST+ ST- STH» ST/ X<>

ISG DSE VIEW SIGREG ASTO ARCL

Note that SIGREG is the sigma register. This instruction is

used to determine the starting register for the six statis-

tical registers. As such it can not be used in direct stack

format. However, it can be used in both direct and indirect

numeric and in indirect stack format.

As with other instructions discussed so far, no

synthetic instructions are permitted. This just means that

the use of the status registers is not allowed. The valid

range of registers then will be the same as those used in

indirect XE or GTO instructions, namely [00-991, X, Y, Z,

T, and L. Some examples follow.

Examples:

RCL 35 srecall register 35

ST» L s;store times stack register L

ARCL 02 salpha recall register 2

ISG IND 00 s increment and skip if greater

s indirectly through register 00

SIGREG 25 s;set first statistical register to 25

X<> 10 sexchange register X with register 10

ST/ IND X sstore divide indirectly through stack reg. X

Note that as with any instruction that can have an argument

less than 10, the leading @ must be included. As an
illustration of this, look at the ARCL @2 instruction above.

If the leading @ is left off, TYPE4 will generate an error

message.

2.2.5 FLAG INSTRUCTIONS

Flag instructions fall into two categories: (1) flag

setting, and (2) flag testing. The instruction syntax for

each type is listed below. Both types can be indirect and

operate through the usual [BB-991, X, Y, Z, T, and L. No

synthetics are allowed with flag instructions. In the

indirect format the user must insure the data contained in

the indirect location is within the range of the number of

flags available for setting and/or testing. These ranges

are [BB-29] for setting and [BBO-55] for testing.

In the direct mode, only numeric instructions are

permitted. For direct flag instructions, the ranges are the

same as those listed above, namely [00-29], for flag setting

instructions and [00-55] for flag testing instructions. As

with other instructions that can have an argument less than

10, the leading @ must be included or TYPE4 will generate an

error message.

11

Flag setting instruction syntax:

SF CF FS?C FC?C

Flag testing instruction syntax:

FS? FC?

Examples:

SF 29 ssets flag 9 - note leading @

CF 29 sclears flag 29

FS? S55 ; tests flag S55

FC?C 29 ; tests flag 29 and branches on result

s clears flag 29 if set

FS?C IND 99 s tests flag indirectly through register 99

3; Clears the flag if set

;SF IND 10 sets flag indirectly through register 10

2.2.6 DISPLAY FORMAT INSTRUCTIONS

There are three display format instructions available

on the HP-41. They are FIX, SCI, and ENG. They control how

many digits follow the decimal point and how exponents are

to be displayed. They can be entered in direct or indirect

format. In the indirect format, they follow the same syntax

rules given above for the flag instructions. That is to say

they can access (00-99), X, Y, Z, T, and L indirectly. In

the direct format, the valid range is [00-09] and as stated

many other times in this manual, the leading @ must be

present or TYPE4 will generate an error message.

Without further explanation, some examples will follow.

Examples:

FIX 02 ; fix display to 2 decimal places

ENG 09 sdisplay to 9? decimals in engineering format

FIX IND 75 s fix indirectly through register 75

SC1 04 sscientific notation to 4 decimal places

SCI IND X sscientific notation indirectly through X

2.2.7 XROM INSTRUCTIONS

The XROM instructions incorporate all those functions

that are present in ROM application modules. Each module

has a specific number assigned to it and each routine within

the module is numbered, starting with the number one being

assigned to the first routine. As an example, the MATH PAC

is numbered module 01. The program SIME@ is the second

routine contained in this module as reflected by a CAT 2

12

listing of the MATH PAC routines. This means the

corresponding XROM code would be XROM 01,02.

There are a few simple steps in finding out what the

correct XROM code will be for any routine in any application

pac that is available to be plugged in. (If the pac is not

available, a listing from the users manual may provide this

information.)

1. With the HP-41 OFF, plug the module into an open

port.

2. Turn HP-41 ON and switch to program mode.

Get to the .END. by entering [SHIFTIIGTO..]

3. Enter [XEQILALPHA]l ‘program name’ [ALPHAJ.

If the program name was a valid application pac

program name, one of the following will appear

1 XROM ‘program name’ or @1 ‘program name’

4, Turn HP-41 OFF and pull module out of the port.

SQ. Turn HP-41 ON and switch to program mode.

The display will now contain the correct

XROM code. As in the above example

@1 XROM @01,02

For the curious, this equates to HEX A@ 42 in

machine code as follows:

21 02

1010 0000 0100 2 010

A 0 4 2

With this XROM code, a program can be run in the

application pac without using a long XEQ@ or GTO instruction.

Since type 4 barcode is being used and byte savings are not

critical, it really makes no difference which type is used.

This option is available, however, if the need should arise.

The correct syntax for the XROM instruction is shown on

the next page in a couple of examples. Note the comma shown

in the HP-41 display is not entered. Entering the comma

will cause TYPE4 to generate an error message.

13

Examples:

XROM 01 02 snote space between numbers and no comma

XROM 26 28 scode for TIME in the time module

The maximum number allowed for the module number is 31

and the maximum number allowed for the routine number is 63.

2.2.8 TONES

Due to the fact that synthetics are not allowed in type

4 barcode, the range of tones is limited to those entered at

the keyboard, namely [00-091]. These tones can be accessed

either directly using a range of [00-09] or indirectly

through the same registers used in flag and register access

instructions, namely (00-991, X, Y, Z, T, and L. If the

indirect location does not contain a number in the range

from [B0-091], the HP-41 will display ‘DATA ERROR’ when an

attempt is made to execute the instruction.

Examples:

TONE @9 s tone 9 - note leading @ must be present

TONE IND X ; tone indirectly through register X

TONE 00 ; tone ©

TONE IND B@ ; tone indirectly through register 0

As with other type 4 instructions, synthetic tones are not

permitted. Any attempt to use synthetics will result in an

error message.

2.2.9 OTHER INSTRUCTIONS

The category of other instructions encompasses all of

the functions listed below in Table 2.1, shown in their

correct syntactical form.

Table 2.1

+ - * / X<Y?

X>Y? X<=Y7? SIG+ SIG- HMS+

HMS- MOD 7 7%.CH P-R

R-P LN X~2 SORT YX

CHS E~X LOG 10°X E~X-1

SIN COS TAN ASIN ACOS

ATAN DEC 1/X ABS FACT

X1=27 X>07 LN1+X X<Q? X=07

INT FRC D-R R-D HMS

HR RND oCcT CLSIG X<>Y

PI CLST rR” RDN LASTX

14

Table 2.1 (cont ’'d)

CLX X=Y"? Xi=vy? SIGN X<=07

MEAN SDEV AVIEW CLD DEG

RAD GRAD ENTER" STOP RTN

BEEP CLA ASHF PSE CLRG

AOFF AON OFF PROMPT ADV

As mentioned earlier, the ‘not equal to’ sign can not be

generated on personal computers. As a way around this

problem, the two characters [!] and [=] used together are

taken to mean the same thing. Therefore, in the above list,

the = means ‘not equal to’. The carat [7] is used to

represent the up arrow on the HP-41. This means, for

example, that X72 represents ‘X squared’ and R™ represents

‘Roll the stack up’ on the HP-41. Another interesting item

is the sigma register notation. As seen in the section on

register accesses, the correct syntax for the sigma register

is SIGREG. In a similar fashion, sigma plus, sigma minus,

and clear sigma are SIG+, SIG-, and CLSIG respectively.

It should be noted at this point that the instructions

in the above list also appear as type 5 barcode on the wand

paper keyboard that comes with the wand. The type 4 version

will execute just as well as the type 35 will but the bar is

longer due to the way the two types are constructed. For

more information on barcode construction read chapter 5S.

15

3. TYPE®6

TYPE6 is the type 6 barcode generator routine. From

Table 1.1 in chapter 1, type 6 barcode is defined as numeric

data barcode. In other words, they are used to enter

numer ic data into the calculator.

3.1 Command Format

TYPE6 [printer option]

NOTE: A minimum of one space is required between

command line entries.

Following is a list of the available printer options. If no

option is entered, the printing parameters will default to

the EPSON mode of bit image graphics. It should be noted

that only one option is allowed and should two or more be

entered, only the first one will be recognized by TYPES6.

[printer options]

-s or -S print the barcode on a STAR MICRONICS printer

-o or -0 print the barcode on an OLYMPIA NP printer

An example of a typical command line entry and the initial

banner display is shown below. The default drive is A and

the printer option used is -o for the OLYMPIA NP printer.

A> TYPE&6 -o

HP-41 Type 6 Barcode Generator (C) Tony Malburg, 1986

Enter NUMERIC DATA (CR to end):

After the banner is displayed, the program prompts for

an numeric data to be converted to type 6 barcode. When the

last instruction has been entered, simply hit the carriage

return (CR) and the printer will produce a form feed for the

current sheet of paper. I+ no form feed is desired, a

control-C (°C) will exit the program without one.

The remainder of this chapter will discuss the format

of type 6 barcode and provide examples to show the syntax

for proper entry.

3.2 Type 6 Syntax

Numer ic data entry falls into one of three categories:

(1) integers, (2) decimal fractions, and (3) exponentials.

16

There are only a couple of simple rules to follow when

entering numeric data.

1. No white space is allowed within a data string

between numbers or exponents.

2. Entry length is limited to 10 numeric digits

plus the associated minus signs, decimal point,

or the E needed for an exponential.

Valid ranges for each data type:

Integers: +/= 9999999999

Decimals: +/ . 0000000001

Exponentials: E-99 to 9.9999999E99

Examples:

E20 s the leading 1 can be omitted

-E-30 3s as shown is both of these cases

-.36923E75 snegative decimal exp. (leading @ omitted)

36.256E-55

1782489564

As you can see above, type 6 barcode is quite

simplistic in nature. For information on how type 6 barcode

is constructed, read chapter 5S.

17

4. TYPE7 & TYPES

TYPE7 and TYPEB8 are the type 7 and type 8 barcode

generator routines respectively. From Table 1.1 in chapter

1, type 7 barcode is defined as alpha replace barcode while

type 8 barcode is defined as alpha append barcode. When

they are scanned, type 7 barcode will replace the contents

of the alpha register and type 8 barcode will append the

alpha register with the new alpha data. Since the only

difference in the construction of the barcode is the type

number, they will both be discussed together.

4.1 Command Format

TYPE7 [printer option] or TYPEB [printer option]

NOTE: A minimum of one space is required between

command line entries.

Following is a list of the available printer options. If no

option is entered, the printing parameters will default to

the EPSON mode of bit image graphics. It should be noted

that only one option is allowed and should two or more be

entered, only the first one will be recognized by TYPE7 or

TYPES.

(printer options]

-s or -S print the barcode on a STAR MICRONICS printer

-o or -0 print the barcode on an OLYMPIA NP printer

An example of a typical command line entry and the initial

banner display is shown below for the TYPE7 routine. (To

use TYPEB, simply replace the 7 in the program name with 8.)

The default drive is A and the since no printer option is

used the default parameter will be in effect. That is to

say that the barcode will be printed using EPSON bit image

graphics.

A> TYPE?

HP-41 Type 7 Barcode Generator (C) Tony Malburg, 1986

Enter ALPHA REPLACE STRING (CR to end):

After the banner is displayed, the program prompts for

an alpha replace string to be converted to type 7 barcode.

(Had TYPES been used instead, the prompt would have been for

an alpha append string.) When the last instruction has been

entered, simply hit the carriage return (CR) and the printer

will produce a form feed for the current sheet of paper. If

no form feed is desired, a control-C (°C) will exit the

program without one.

18

The remainder of this chapter will discuss the format

of type 7 and 8 barcode and provide examples to show the

syntax for proper entry.

4,2 Type 7 & B Syntax

Since both type 7 and 8 barcodes are alpha data, the

correct syntax needed by TYPE7 or TYPEB can be straight text

or synthetics. Regardless of the entry method used, there

are a two basic guidelines that apply.

1. The limit for any alpha string in barcode form is

14 characters. This limitation is due to the way

the barcode is constructed with 16 bytes per row

being the limiting factor. The count can consist

of either 14 text characters or 28 synthetic HEX

digits.

2. No comments may be entered after the text. The

added characters will either generate an error

stating the string is too long or that there

are invalid synthetic characters in the string.

The two ‘rules’ above are very general. Since each

method of entry has its own peculiarities, there will be a

separate discussion on each method below.

4.2.1 Text Alpha Strings

This type of alpha string consists mainly of characters

that can be entered directly into the HP-41 via the alpha

keyboard. As with global XE@ and GTO instructions, some

characters that can not be entered on the HP-41 are still

allowed in this type of alpha string since these characters

are in the ASCII set of printable characters and as such the

HP-41 can display them. There are, however , several

characters that can not be used in this type of string.

These characters are mainly the lower case alpha letters

Cf-2z1. These characters may be generated using the proper

HEX digits in a synthetic alpha string but the HP-41 will

display them as starbursts since they do not generate an

assigned character code.

The following table lists both the valid and invalid

characters for use in text strings. With the exception of

the tilde [™~] character, the characters in the list of valid

characters produce its own image. That is to say that [<]

produces the less than sign, ["] produces the double quote,

etc. The tilde character, however, produces the sigma

character on the HP-41.

19

Table 4.1

Valid Characters

To enter a text string, simply type the desired

characters. No double quotes are necessary since this type

of barcode is nothing but text. Some examples follow. Note

that the comments next to the strings are for explanation

only and, recalling ‘rule 2° above, would generate an error

message.

Examples:

THIS 1S TEXT snote that no quotes are needed and spaces

3s are permitted within the text string

GHP&*() spunctuation characters are permitted

abcde12345 3; SO are lower case alpha [a-e]l and digits

When the barcode is printed out, the string will appear

inside double quotes to enable the user to see at a glance

what type of barcode they are scanning. The type 8 barcode

also includes a ‘plus’ in parenthesis (+) at the beginning

to signify that the string is appending and not replacing

existing alpha data.

4.2.2 Synthetic Alpha Strings

Synthetic alpha strings include all possible characters

in the range from [10-EFJ] HEX and are created using HEX

digits instead of text characters. The first and last

sixteen characters in the range from [@BB-FF] are not allowed

as they will cause the calculator to ‘lock’ up. In other

words HEX bytes in the ranges [00-0F] and [F@-FFJ] are not

allowed.

As mentioned in ‘rule 1° above, the maximum number of

HEX digits allowed in a synthetic alpha string is 28. This,

if you recall, corresponds to the maximum of 14 characters

allowed in type 7 or 8 barcode. Note that the count must be

even or an error message will be displayed.

To enter a synthetic alpha string, begin the string

with a single quote [°°] and follow it with the desired

combination of HEX digits. The single quote at the end of

the string is optional.

20

The following examples are the synthetic string

counterparts of the above text string examples. As with

those examples, the comments are added for explanatory

purposes only.

Examples:

‘'S544849532049532054455854 s;same as THIS IS TEXT - note

3; use of single quotes

‘'21402324255E262A28292227 ;same as !@H$L"&*()" -— note

3; last single quote omitted

'6162636465303132333435° ; same as abcde@12345

When the barcode is printed out, the synthetic string

will appear inside single quotes and the whole thing will be

inside double quotes to enable the user to see at a glance

what type of barcode they are scanning. The type 8 barcode

also includes a ‘plus’ in parenthesis (+) at the beginning

to signify that the string is appending and not replacing

existing alpha data. For information on how these two types

are constructed, read chapter 5S.

21

9. CUSTOM

CUSTOM is a custom barcode generator routine. This

routine is unique in that any type of barcode can be

generated. There is no automatic checksum or type number

added to the barcode, only the directional bars and the hex

bytes that were entered.

9.1 Command Format

CUSTOM [printer option]

NOTE: A minimum of one space is required between

command line entries.

Following is a list of the available printer options. If no

option is entered, the printing parameters will default to

the EPSON mode of bit image graphics. It should be noted

that only one option is allowed and should two or more be

entered, only the first one will be recognized by CUSTOM.

[printer options]

-s or -S print the barcode on a STAR MICRONICS printer

-o or -=-0 print the barcode on an OLYMPIA NP printer

An example of a typical command line entry and the initial

banner display is shown below. The default drive is A and

the printer option used is -o for the OLYMPIA NP printer.

A> CUSTOM -o

HP—-41 Custom Barcode Generator (C) Tony Malburg, 1986

Enter HEX BYTES (CR to end):

After the banner is displayed, the program prompts for

an entry of hex bytes. These hex bytes will be converted

into barcode bytes and printed according to the printer

option entered. When the last instruction has been entered,

simply hit the carriage return (CR) and the printer will

produce a form feed for the current sheet of paper. I1f no

form feed is desired, a control-C (“C) will exit the program

without one.

The remainder of this chapter will discuss the format

of the different types of barcode and how to generate each

using CUSTOM.

22

5.2 Type 1 & 2 Barcode Format

As pointed out in chapter 1, type 1 & 2 barcodes are

not covered in this manual. For completeness of this

package, however, the format of the bars will be discussed

so anyone with knowledge of the HP-41 instruction set could

conceivably generate their own program barcode - that is, if

they are willing to do a lot of tedious work. For those who

are not familiar with the HP-41 instruction set but would

like to be, see the appendix for a list of the best sources

of information. One word of caution before proceeding. At

the very minimum, it is assumed the reader knows basic

computer terminology. Bytes, nybbles, bits, binary, and hex

are just a few of the terms that will be used.

The best way to explain type 1 & 2 barcode is to start

with a sample bar. The bar found in figure S.1 below was

generated from the example program found in section 5.2.4.

| {
Header Program Instructions

Directional Directional

Bars Bars

Figure 5.1 Type 1 Barcode Sample

In looking at the bar, note that it is made up entirely

of skinny and fat vertical bars. The wand reads these

images as binary data bits as follows: a skinny bar is read

as a @ bit and the fat bar is read as a 1 bit. With that

information squared away, we are now ready to discuss the

construction of the barcode in some detail.

From figure 5.1, we can see that each row of type 1 & 2

barcode is made up of three basic sections. They are the

directional bars, the header, and the program instructions.

Each one of these sections is described below.

9.2.1 Directional Bars

The first point of interest is the directional bars on

the ends of the barcode. They simply tell the wand which

way you are scanning the row so it can load its buffers

appropriately. When using CUSTOM to generate any type of

barcode, the directional bars are automatically added to the

beginning and end of every row so unless you try to draw

barcode by hand, these bars are of no concern.

23

9.2.2 Header

In addition to the directional bars, each row of type 1

& 2 barcode has a three byte header. These three bytes tell

the wand five critical pieces of information. It is these

bytes that make type 1 & 2 barcode so tedious to construct.

A description of the header bytes can be found in Table 5.1

below and a detailed explanation of each will follow.

Table 5.1

Header Byte #1 Running Checksum 8 bits

Header Byte #2 Type Number: 1 (non private) 4 bits

2 (private)

- Local Sequence Number 4 bits

Mod 16 of Row number

Header Byte #3 Number of leading bytes 4 bits

of function split between

two rows of barcode

= Number of trailing bytes 4 bits

of function split between

two rows of barcode

TOTAL 3S bytes

9.2.2.1 Running Checksum

The running checksum can best be described as the wrap

around carry sum of all the bytes in the row of barcode plus

the existing checksum. As such it must be determined last,

after all of the other bytes in the row are known. If this

checksum does not match the running checksum computed by the

wand firmware, a checksum error will result. To add to the

complexity, the checksum byte of row 4, for example, is the

running checksum of rows 1, 2, and 3 plus the total of the

bytes in row 4. The way this works will be explained in an

example after the rest of the sections of the sample bar in

figure 5.1 are explained.

9.2.2.2 Type Number

The type number for type 1 & 2 barcode is represented

in 4 bits as follows:

1 - 0001,
2 - 0010,

This number must be encoded in the barcode so the wand knows

whether or not the barcode is private or non private.

24

Private barcode simply means that after the program has been

loaded, the instruction steps can not be viewed. Instead,

the HP-41 will display ‘PRIVATE when switched to program

mode.

9.2.2.3 Local Sequence Number

The local sequence number is modulo 16 of the row

number starting with 0ooo, for the +first row of barcode.

This number is used by the wand as a method of keeping you

honest in scanning the rows in order. The number ranges

from 0000, for row 1 to 11115, for row 16 and then back to

000, for row 17, etc.

9.2.2.4 Number of Leading Bytes

The number of leading bytes is the count of the bytes

that have overflowed from the previous row into the current

row. The wand needs to know this information when it

compiles the scanned data so it combines the bytes

correctly. If it was to simply combine the bytes without

knowing this, the result would be nothing but garbage in

program memory. This will be clarified later with an

example.

9.2.2.5 Number of Trailing Bytes

The number of trailing bytes is the count of the bytes

left on the current row that must be combined with the

leading bytes on the beginning of the next row. As with the

number of leading bytes, the wand needs to know this

information if it is to combine the program bytes properly.

This will also be clarified later with an example.

9.2.3 Program Instructions

The last section of the row consists of program

instructions. This section can be up to 13 bytes long since

the maximum length of any barcode row is 16 bytes.

To begin this section, the HP—-41 instruction set must

be known. Access to the HP-41 combined hex/decimal table at

this point is almost essential. If the table is not

available, another way to learn how different instructions

are put together is to dissect other barcodes for which the

program instructions are known.

25

9.2.4 Program Example

Following will be an example program that will be

transformed into barcode bytes to illustrate the process

involved. The program is very simplistic in nature and only

functions to display some alpha text on the HP-41.

Hopefully it will also serve as an introduction to

generating this type of barcode.

Program Instruction Number of Bytes in Barcode

@1 LBL "BARS" 8

2 "HP41 BARCODE" 13

03 AVIEW 1

24 .END. 3

TOTAL 25

Recalling the above discussion, since the byte count totals

25, we can immediately determine that two rows of barcode

will be needed (i.e. — 25 divided by 13 is 1 with 12 bytes

left over, thereby requiring 2 rows of barcode.) Before

continuing, something needs to be said about where the byte

counts came from and how global labels, text strings and the

END. instructions are constructed.

5.2.4.1 Global Label Construction

Each global label requires 4 bytes of overhead plus one

byte per character in the name. The breakdown of the

overhead is as follows:

Byte #1: CO ‘C’ designates ALPHA LABEL or END.

Byte #2: 00 Used by HP-41 for label search address.

Byte #3: Fn Where n is the number of characters

in the global label name plus 1.

Byte #4: XX Key assignment of label. XX is a two

nybble keycode corresponding to key

being assigned. (See appendix for list.)

This byte is usually 00 meaning no

assignment is being made.

5.2.4.2 Text String Construction

The format for text strings is as straight forward as

that for the global label. The format is one byte of

overhead plus one byte per character in the string. The

overhead byte is similar to byte #3 in the global label

except n is the number of characters instead of the number

of characters + 1. The maximum number of characters in the

string is 15, which is represented in HEX as the letter F.

26

9.2.4.3 .END. Construction

The .END. instruction is simply a means for the wand to

determine that it has scanned the last row and for it to

compile the scanned data. As such, it is found at the end

of the last row of barcode. The following three bytes are

most often used for this but other combinations will also

work: Co 00 2F.

9.2.5 Program Example (cont'd)

Continuing with the program analysis, then, the program

bytes would be as follows (the instruction numbers

correspond to the instructions above):

21 CO 00 FS 00 42 41 52 53
@2 FC 48 S50 34 31 20 42 41 S52 43 4F 44 45
@3 7E
24 CO 00 2F

From the above breakdown, we can determine the splits

between row 1 and 2. Counting 13 bytes from the start of

instruction 1 continuing into the second instruction we find

the split occurs between 31 and 20 of the second

instruction. From this we can count how many bytes of the

second instruction will remain in row 1 and how many will

‘spill’ over into row 2. This will give the leading and

trailing byte information needed for overhead byte #3 of

this type of barcode. The count shows 5 trailing bytes in

row 1 and 8 leading bytes in row 2. Of course, it should be

obvious that the leading bytes in row 1 is @ and likewise

with the trailing bytes in row 2.

At this point, with the exception of the checksum, we

are ready to put together the rows of barcode. The contents

of the two rows are shown below. CS is used to hold a place

in the barcode for the running ckecksum that has yet to be

computed.

Row #1

CS 10 05 CO 00 FS 0@ 42 41 52 53 FD 48 50 34 31

Row #2

CS 11 B80 20 42 41 S52 43 4F 44 45 7 Co 00 2F

To compute the running checksum, it is best to view the

bytes as binary 1's and 0's. The checksum for any row, as

you recall, is the wrap around carry sum of the bytes in the

row plus the existing checksum. Since the starting checksum

is 00, the checksum for the first row is just the wrap

27

around carry sum of the last 15 bytes in the row. It is

computed below to see exactly what is meant by ‘wrap around

carry’.

001: 000 2, Byte #2 - 10

+ 0000: 010 15 Byte #3 —- @5

0061: 0610 15

11 00: 000 25 Byte #4 - CO

1101: 0610 15

+ 0000: 0600 2-5 Byte #5 - 00

1101 0610 15

+1111, 010 15 Byte #6 —- FS

1 1100: 101 25

————————————— > 1 Wrap around carry

11 00: 101 15

+ 00006: 000 25 Byte #7 - 00

11 060: 101 15

+ 01 00: 0601 05 Byte #8 - 42

1 0000: 110 15

—————————————— > 1 Wrap around carry

000: 111 25

+ 01 00: 000 15 Byte #9 - 41

10060: 111 15

+ 0101: 0601 25 Byte #10 - 52

1010: 000 15

+0101: 001 1, Byte #11 - 53

11111010 0,

+1111 1110 0, Byte #12 - FC

1 1111, 000 2-5

—_————————————— > 1 Wrap around carry

11111 00801,

+0100: 100 0, Byte #13 — 48

1 206111: 1080 1,

—————————————— > 1 Wrap around carry

211 1:{101 0,

+0101 i 06060 0, Byte #14 - 50

28

@ i
+0011: 010 05 Byte #135 - 34

2
200 1, Byte #16 — 31

11101111 15 Byte #1 - EF (Row 1 CS)

The checksum for the second row is determined the same

way except the starting checksum is not 00 but is EF. To

convince you that this is very tedious, it is suggested that

you try to compute it using the above method. If you are

already convinced, then use the CHECKSUM routine described

in the next chapter to verify that the checksum for the

second row is 02.

Now that all the pertinent information is known, CUSTOM

can be used to generate the barcode for this program. There

will not be any fancy headers stating how many registers are

needed for the program or row numbers, just HEX bytes. The

correct entries for CUSTOM are shown below with spaces added

for separation purposes only. These spaces should not be

entered in the actual CUSTOM prompt or an error message,

stating that there are invalid hex digits in the string,

will be displayed.

EF 18 ©5 CO BO FS 00 42 41 32 53 FC 48 50 34 31

02 11 80 20 42 41 52 43 4F 44 45 7E CO 0G 2F

9.2.6 Final Comments about Type 1 & 2 Barcode

Hopefully, the above example provided enough background

information to get started with type 1 & 2 program barcode

generation. A lot can be done with these types of barcode

including the full range of synthetic instructions. If you

would like a quicker way of generating type 1 & 2 barcode,

it is suggested that you purchase the HP—-41 ASSEMBLER AND

BARCODE GENERATOR. This package was written specifically to

generate these two types of barcode and is as simple to use

as an assembler.

9.3 Type 4 Barcode Format

Since the type 4 barcode generator routine is included

with this package, only a couple of simple examples and a

description of the basic format will be discussed. The

first example will be an ASN instruction that assigns the

example program above to the SHIFT key and the second will

be a SIZE instruction to set the size to 50 data registers.

If information on other instructions is desired, simply

print the barcode for that instruction and dissect it to

29

determine its makeup. If the type 4 routine won't print the

instruction you want to test, consult the HP-41 combined

hex/decimal byte table for the proper bytes.

The basic format of type 4 barcode consists of a two

byte header followed by a maximum of twelve instruction

bytes. The header bytes are shown below in Table 5.2 and a

brief description of each will follow.

Table 5.2

Header Byte #1 - Running Checksum 8 bits

Header Byte #2 —- Type Number: 4 (0100-5) 4 bits

— Unused (0000,) 4 bits

TOTAL 2bytes

As seen in the section on type 1 & 2 barcode, the

checksum is a wrap around carry sum of the bytes in the row.

Since there is only one row, the checksum computation is

very straight forward. Even so, the easiest way to find

this checksum is to use the CHECKSUM routine described in

chapter 6.

The type number of header byte #2 simply informs the

wand that type 4 barcode is being scanned. Without this

information, the wand would probably generate an error

message. I say probably because, depending on the bytes

used, the wand may or may not be able to interpret a valid

instruction from the bars. If not, it will produce an

error.

Having covered the basic format of type 4 barcode, the

two examples, described above, will now be discussed and the

bytes needed by CUSTOM to produce the barcode for each will

be shown.

9.3.1 Example 1: ASN BARS 31

In addition to the two byte header described above, the

ASN instruction may contain up to nine instruction bytes.

These bytes, starting with the third byte in the barcode,

are described below in Table 5.3.

30

Table 5.3

Instruction Byte #3 —- ASN byte (OF) 1 Byte

Instruction Byte #4 - Keycode (Row,Col) 1 Byte

Instruction Bytes #5-12 - Alpha String 7 Bytes max

TOTAL 9Bytesmax

As you can see, the format for the ASN instruction is

slightly rearranged from the way it is entered on the

keyboard. That is to say that the keycode actually appears

between the ASN instruction byte and the text string. Since

our goal is to construct the barcode for ASN BARS 31, we

will need to break the instruction down into its parts to

find the bytes needed before the checksum can be computed.

This is done below.

81 CS (checksum)

22 40 Type number

23 OF ASN byte

24 31 Keycode for SHIFT key

8S 42 ASCII B

06 41 " A
07 52 " R
8 353 " S

Having found the instruction bytes, the checksum needs

to be computed. Using the CHECKSUM routine of chapter 6 for

this yields a checksum of A9. With this information we are

ready to enter the bytes at the CUSTOM prompt to produce the

barcode. These bytes are shown below with spaces entered

between the bytes for separation purposes only. These

spaces should not be entered in the actual CUSTOM prompt or

an error message, stating that there are invalid hex digits

in the string, will be displayed.

A? 4@ BF 31 42 41 32 353

5.3.2 Example 2: SIZE 050

In addition to the header bytes described in Table 5.2,

the SIZE instruction requires three bytes. This makes the

barcode for this instruction a constant 5S bytes long

regardless of the number of data registers desired. These

three bytes, starting with the third byte in the row, are

described below in Table 5.4.

31

Table 5.4

Instruction Byte #3 —- SIZE byte (@5,,) 1 Byte

Instruction Bytes #4 & 5 — Number of desired

data registers

expressed in Hex 2 Bytes

TOTAL 3 Bytes

Before the checksum can be computed, we will need to

convert the number 5@ to hex so bytes 4 & S will be known.

This can be accomplished by the following method if no other

method or routine is available for the conversion. Before

beginning the conversion process, though, it should be noted

that there are only 320 registers to allocate in the HP-41

so the first nybble of byte 4 will always be @ since 16° is

4,096. This means the maximum number of iterations needed

to arrive at the correct hex number will be three.

The conversion process involves division by the

weighted value of each digit to determine the integer that

belongs in that nybble. This should be clear after the

conversion, using standard HP-41 functions and notation, is

completed.

Find second nybble of byte 4:

O08 [ENTER] 256 [/1LINT] -—=> 0 Byte 4, Nybble 2

Find first nybble of byte 5:

S98 [ENTER] 256 [MOD] -——=> 50 --> to arrows ——>

—_————— > S00 [ENTER] 16 [/1LINT] -—> 3 Byte 5S, Nybble 1

Find second nybble of byte 5:

—> S@ [ENTER] 16 [MODJ ---> 2 Byte 5, Nybble 2

With bytes 4 & 5 known, we are ready to find the

checksum to complete the instruction. Before doing this,

let's summarize the bytes determined so far.

81 CS (checksum)

22 40 Type number

23 B6 SIZE byte

24 00

2S 32 90 in hex

32

With the CHECKSUM routine, or by simple inspection in

this case, the checksum byte is determined to be 78. Having

determined all of the bytes needed for this instruction, we

are now ready to enter them at the CUSTOM prompt to produce

the barcode. These bytes are shown below with spaces

inserted for separation purposes only. These spaces should

not be entered in the actual CUSTOM prompt or an error

message, stating that there are invalid hex digits in the

string, will be displayed.

78 40 06 QB 32

5.4 Type 5S Barcode Format

Since all of the type 5S barcodes are available on the

paper keyboard and the labels that come with the wand, it

would be a waste of time to cover them in much detail here.

They are all made up of one or two bytes and have no type

number associated with them. The format of each size, one

or two bytes, is listed in Table 5.5 below.

Table 5.5

ONE BYTE

Mirror image of function 4 bits

Function 4 bits

TOTAL 1 byte

TWO BYTES

Wrap around carry checksum 4 bits

Function 12 bits

TOTAL 2 bytes

If more information about a specific instruction is

desired, dissect the barcode given on the paper keyboard or

on the label for its byte makeup. To duplicate the barcode,

enter these bytes at the CUSTOM barcode prompt.

9.5 Type 6 Barcode Format

As mentioned in chapter 3, type 6 barcode is rather

simplistic in nature. As with the other barcode types, with

the exception of type 5S, type 6 barcode has a header that

consists of a checksum byte and the type number. The format

of type 6 barcode is shown below in Table 95.6.

33

Table 5.6

Header

Running Checksum 1 byte

Type Number: 6 (01105) .0 bytes

Digits 7.5 bytes

TOTAL 9? bytes

The checksum is just as it is in the other types of

barcode, (i.e. — a wrap around carry sum of the other bytes

in the row). Notice that the type number only occupies half

a byte and there is no unused nybble as there is in type 4

barcode. This nybble is used by the digits in the number

which are entered in BCD. The valid BCD digits are shown

below in Table 5.7 along with their representation in type 6

barcode.

Table 5.7

BCD : Barcode

Representation : Representation
——————————————————$t—_————ee———

@ ' 0

1 ' 1

2 : 2

3 : 3

4 : 4

S : o

6 : 6

7 : 7

8 ' 8

9 : 9

A } NULL

B : .

Cc : +

D : -

E i EEX

The above list is pretty straight forward with the exception

of the NULL digit. This digit is used as a filler when the

count of digits is even. The following example should

clarify how this is used. Suppose we wanted to encode the

number :

—-6.256E-53

Counting the characters in the number gives 10. Since each

character is entered as a BCD digit, each byte in the

barcode requires two characters. Since the count is even,

34

producing 5 barcode bytes, and the header only uses one and

a half barcode bytes, we will need to use the NULL digit to

‘fill’ the row out to an integer number of bytes. This NULL

can be at the beginning or the end of the row. With this in

mind, let's summarize the bytes needed for this encoding.

21 CS (checksum)

82 6D Type 6 : -—

03 6B 6: .
84 25 2: 5S
BS 6E 6 : EEX
@6 DS - 3: 3S
@7 SA S : NULL

All that is left to do is compute the checksum for byte 1

and print the barcode using CUSTOM. Using the CHECKSUM

routine of chapter 6, the checksum was found to be 9C. With

that, the hex bytes to enter at the CUSTOM prompt are shown

below with spaces entered between the bytes for separation

purposes only. These spaces should not be entered in the

actual CUSTOM prompt or an error message, stating that there

are invalid hex digits in the string, will be displayed.

9C 6D 6B 25 6E DS 5A

With the above information, any type 6 barcode can be

constructed. As with other barcode types, dissection of

barcodes of known functions, or in this case data, can prove

to be quite useful in obtaining further knowledge of barcode

construction.

9.6 Type 7 & 8 Barcode Format

Chapter 4 mentioned that the only difference between

type 7 and type 8 barcode is the type number. By now, if

this chapter has been read in order, this statement should

have significant meaning. The format for type 7 and 8

barcode is shown below in Table 5.8.

Table 5.8

Header

Running Checksum 8 bits

Type Number: 7 (01115) or 8 (10005) 4 bits

Character Count 4 bits

Characters 14 bytes

TOTAL 16 bytes

33

In looking at the header bytes, the checksum is just as

it is in the other types of barcode, (i.e. — a wrap around

carry sum of the other bytes in the row). The type number

used, as mentioned in chapter 4, determines whether the

desired alpha barcode is to append or replace the contents

of the alpha register. Recall that type 7 replaces the

contents of the alpha register and type B appends the alpha

register. The character count is a hex representation of

the number of ASCII characters that will be in the row. The

valid range for this is [1-9,A-E].

With the header squared away, let's look at an example

to illustrate how the string is constructed. Suppose we

want to construct the type 7 string "HP-41 BARCODE".

Counting the characters in the string yields 13 (the quotes

are not counted). Knowing this and the ASCII codes for the

characters in the string, we can summarize the bytes needed

for the string. This is done below.

1 CS (checksum)

2 7D Type 7 : 13 characters (hex D)

23 48 ASCII H

24 S50 " P

25 2D " -

26 34 " 4

87 31 " 1

28 20 " (space)

09 42 " B

10 41 " A

11 52 " R

12 43 " Cc

13 4F " 0

14 44 " D

15 45 " E

Having determined the bytes needed for the string, the

only thing left to determine is the checksum. Using the

CHECKSUM routine of chapter 6, the checksum was found to be

BA. To summarize, the bytes that should be entered at the

CUSTOM prompt are shown below with spaces between them for

separation purposes only. These spaces should not be

entered in the actual CUSTOM prompt or an error message,

stating that there are invalid hex digits in the string,

will be displayed.

BA 7D 48 S50 2D 34 31 20 42 41 S52 43 4F 44 45

Obviously, the same string could have been done in type 8B

format by changing the 7 in byte 7D to 8 and refiguring the

checksum.

36

As a final comment about type 7 and 8 custom barcode,

it should be noted that, as stated in chapter 4, certain

synthetic characters are not valid. For those who wish to

experiment with these characters, like the "full man’

characters and other characters from row 1 of the byte

table, be warned that these characters will cause the

calculator to "lock up when scanned. To ‘unlock’ the

calculator, simply remove and replace the battery pack.

S5.7 Final Comments on CUSTOM

As should be obvious by now, CUSTOM can be used to

create any type of barcode. With the given formats, any

limitations posed by the specific barcode type routine can

be overcome with CUSTOM since it has no syntax requirement

other than straight hex digits. With this routine

available, anyone owning the HP82153A optical wand will be

able to fully utilize all of its capabilities.

37

6. CHECKSUM

CHECKSUM is a utility program that was written

specifically to compute the wrap around carry checksum

required by HP-41 barcodes. It is included with the package

as an ‘extra’ to make using CUSTOM less tedious and more

enjoyable.

6.1 Command Format

CHECKSUM

When the program is run, a screen resembling that shown

in figure 6.1 below will appear.

HP-41 Barcode Checksum Computer

Version 1.10

(C) 1986 Tony Malburg

e
r

w
e

e
e

e
e

c
o
e

e
o

o
e

—
w
e

w
e

w
e

w
e

w
e

=
=

aa+

B@O1: —- B@9: -—-

BB2: -- B10: -—-

B@3: -—- B11: --

B@4: —- B12: -—-

BOS: -- B13: -—-

B@6: -—- B14: —-

B@7: -- B15: —-

B@8: -—- Bl6: —-

Figure 6.1 CHECKSUM Program Screen

As seen above, the display will show locations for 16

different hex bytes to be entered, B@1 - B16. The cursor

will be located beside B@O1 waiting for an entry. Since byte

1 is the checksum byte, you have two options at this point.

Either enter 00 as the initial checksum or if you are

working on type 1 or 2 barcode and have an existing checksum

from the previous row, enter that number instead. From

there, after pressing RETURN or ENTER, the cursor moves to

B@2, BO3, etc., updating the checksum with each valid byte,

until the last byte is entered.

If the row of barcode is to contain less than 16 bytes,

simply press RETURN twice after the last entry. At that

38

time, a prompt will display at the bottom of the table

asking if you are sure you want to quit. If the response is

ves, hit [Y] or RETURN and the program will exit leaving the

data on the screen. If the response if no, hit [NJ] and the

cursor will return to the table for the next byte of data.

Like other routines in this package, this routine is

CASE dependent and requires that all hex digits greater than

9 be entered in UPPER CASE. If a lower case letter is

entered accidentally, if the letter is out of the range of

valid hex digits, or if more than two digits are entered, an

error tone will sound and a message will display at the

bottom of the screen reminding you of your mistake. It

should be noted that when a mistake is made, the checksum is

NOT updated. Only when valid hex bytes are entered will the

checksum be computed and updated.

39

7. PRINTER TYPES

This section will discuss the printer types permitted

for use with the programs included with this package.

Information regarding the method used in producing the

barcode on each type of printer will be included to permit

the user to determine if their printer will work properly.

7.1 EPSON PRINTERS

As was seen in the options section of each type of

barcode generator, the default parameters used include the

EPSON double density bit image graphics mode to print the

barcode. In terms of escape sequences, this means:

ESC 'L’ nl n2

If the printer you are using supports this print mode

continue reading this section for other codes used to insure

compatibility. If not, chances are your printer will not

work with these programs.

Other codes used from the EPSON family of printers

include:

ESC ‘1° n ssets left margin to column n

ESC ‘Jn sone time line feed of n/216 inches

ESC ‘@’ master reset

ESC 'G° ;select double strike mode

Of course the carriage return <CR> and line feed <LF> codes

of 13 and 10 respectively are also used but are generally

standard on all printers.

7.2 OLYMPIA PRINTERS

The programs contained in this package were originally

developed for use with an OLYMPIA model NP printer. The

method used to generate the barcode includes the use of

download characters and the high density proportional print

mode. If the OLYMPIA option is selected at the command

line, it is critical that DIP SWITCH 1-4 (i.e.- switch bank

one, switch number 4) is turned OFF to allow the buffer area

to be used as the area for the download characters. If this

switch is turned ON and the OLYMPIA option is selected, the

barcode will, with the exception of the row identifier

strings and page heading, consist of only 0's, 1's, 2's, and

I's.

40

The control codes used by the OLYMPIA NP printer in

this mode include:

ESC ‘¥" @ n mm a pl...pll sdefine download chars.

ESC ‘20 0 ;select internal character set

ESC “1 @ sselect download character set

ESC ‘Jn sone time line feed of n/216 inches

ESC ‘1° n sset left margin to column n

ESC ‘n’ ;select high density proportional print

ESC ‘@’ smaster reset

A rather unique situation exists with the OLYMPIA NP

printer and that is it is EPSON compatible as well. 1+

desired, the EPSON mode can be used with fair results. I+

the EPSON mode is used, DIP SWITCH 1-4 can be turned ON to

facilitate a speedier printing since the inline buffer will

then be utilized. However, for a higher resolution barcode,

the OLYMPIA option should be used. It is unknown if other

OLYMPIA printers will work as the NP, using download

characters, but they are most likely EPSON compatible.

7.3 STAR MICRONICS PRINTERS

The two STAR MICRONICS printers that should work

properly with the -S option are the RADIX and GEMINI series.

Like the EPSON, these printers support the double density

bit image graphics mode but other codes make these printers

different enough to warrant the use of a separate option.

The control codes used by these printers include the

following:

ESC ‘L” nl n2 j3;select double density bit image

ESC Mn s;set left margin to column n

ESC ‘Jn sone time line feed of n/144 inches

ESC ‘@’ master reset

ESC ‘GG’ sselect double strike mode

Others models will most likely work provided they use

the same escape sequences shown above.

41

If the printer you are using does not correspond to one

of the above descriptions and you would like to see your

printer included in future updates, please let me know. In

order to include it 1 will need, at the very least, a

listing of the available escape sequences that the printer

uses. I would like to eventually include a laser printer

among those supported in order to produce the best possible

barcode. Unfortunately, at the present time, the cost of a

laser printer is somewhat prohibitive to the average PC

owner.

42

8. REFERENCES

Wickes, W.C. SYNTHETIC PROGRAMMING ON THE HP-41C

Corvallis, OR.: Larken Publications, 1982.

OWNER 'S HANDBOOK AND PROGRAMMING GUIDE HP-41C/41CV

Hewlett Packard Company, 1980.

Journal staff. "HP BARCODES - HOW ARE THEY CODED?"

PPC Calculator Journal, VOL. 7, NO. 5S, ppg 27-33,

JUNE 1980.

Journal staf. "KEYING HP-41 SYNTHETIC INSTRUCTIONS"

PPC Calculator Journal, VOL. 8, NO. 6, ppg 79-80

AUG - DEC 1981.

43

NOTES ON BARCODE QUALITY

The quality of the barcode will depend on the type of

printer used and the age of the ribbon. The sharpness of

the barcode will depend on the pins on the dot matrix print

head. The flatter the pin head, the sharper the barcode.

It should be noted that on newly printed barcode, the paper

will exhibit a slightly rippled effect due to the pressure

applied by these pins. This rippled effect decreases with

time and has no effect on the quality of copies that may be

made.

Al though the sharpness is beyond user control, short of

buying a new printer, the darkness of the barcode isn’t. It

depends only on the age of the ribbon. While a newer ribbon

produces a darker barcode, it also has a greater tendency

for smearing since the total area of ribbon ink per page is

so great. A ribbon that is slightly used seems to give the

best results.

It is suggested that the original barcode be xeroxed

before being scanned. The reason for this is because the

printer ribbon image is sometimes difficult for the wand to

pick up due to its reflectivity. Today's dry toner copiers

make this image much more readable. Also, the life of a

ribbon used to print barcode can be extended since a xerox

copy of a weak original can be made darker and thus produce

a good quality barcode. As always, to protect the barcode

from excessive wear, use the clear protective sheeting

provided with the wand.

APPENDIX

Sources of Information on HP-41 Instruction Set

Of the sources I've seen, the best one is a book by

William C. Wickes. The complete instruction set is covered

including synthetics. For the complete reference for this

book, see chapter 7. The book can be purchased from a

California based mail order company who deals in the HP-41,

its peripherals and many informational books. The address

of this company is shown below along their phone number.

EduCALC MAIL STORE

27953 Cabot Road

Laguna Niguel, CA 92677

PH: (714) 382-2637

In addition to this, there are several users groups around

the country that have periodical newsletters that contain a

lot of useful information concerning new developments in the

field. The two groups that I am most familiar with are

listed below with an address to write to for information on

membership.

PPC CHHU

P.O. Box 90579 P.O. Box 10758

Long Beach, CA 90809 Santa Ana, CA 92711-0758

APPENDIX

HEX Keycodes for Key Assignments in Global Labels

The following table provides the keycodes for both the

shifted and unshifted keys on the HP-41 keyboard. The keys

listed under KEY, with the exception of 42, 43, 44, and 4S,

correspond to those found in figure 1.1 on page 6 of this

manual. The reason for the discrepancy is the double width

ENTER key which actually incorporates both 41 and 42. This

shifts the count by one when dealing with this row of keys.

(i.e. — 43 below corresponds to 42 on the HP-41, etc.)

KEY Unshifted Shifted KEY Unshifted Shifted

11 21 09 S51 05 1D

12 11 19 S52 15 2D

13 21 29 23 25 3D

14 31 39 S54 35 4D

15 41 49

61 6 1E

21 02 1A 62 16 2E

22 12 2A 63 26 SE

23 22 3A 64 36 4E

24 32 4A

25 42 oA 71 7 1F

72 17 2F

31 23 1B 73 27 SF

32 13 2B 74 37 4F

33 23 3B

34 33 4B 81 28 16

35 43 oB 82 18 24

83 28 36

41 24 1C 84 38 44

42 14 2C

43 24 3C

44 34 4C

a5 a4 5C

APPENDIX

BARCODE SAMPLES

Type 4 Barcode

XEQ "BARS"

ASN BARS 31

GTO "BARS"

JAAR
ASN 31

SIZE 050

Type & Barcode

653536

-156.2347E-99

E-27

S375

APPENDIX

BARCODE SAMPLES (cont'd)

Type 7 Barcode

"HP-41 BARCODE"

"NONEXISTENT"

" (C) 1986"

MI@HSLBk

Type 8 Barcode

(+) "HP-41 BARCODE"

(+) "NONEXISTENT"

ER
(+) "™(C) 1986"

(+) "I@BBLKH

c
m

NOTES

	Cover
	Table of Contents
	Introduction
	1. Barcode Types
	2. TYPE4
	2.1 Command Format
	2.2 Instructions and Syntax
	2.2.1 SIZE
	2.2.2 ASN
	2.2.3 XEQ and GTO
	2.2.3.1 Local XEQ or GTO
	2.2.3.2 Global XEQ or GTO
	2.2.3.2.1 Global Text XEQ or GTO
	2.2.3.2.2 Global Synthetic XEQ or GTO

	2.2.4 Register Access Instructions
	2.2.5 Flag Instructions
	2.2.6 Display Format Instructions
	2.2.7 XROM Instructions
	2.2.8 TONES
	2.2.9 Other Instructions

	3. TYPE6
	3.1 Command Format
	3.2 Type 6 Syntax

	4. TYPE7 & TYPE8
	4.1 Command Format
	4.2 Type 7 & 8 Syntax
	4.2.1 Text Alpha Strings
	4.2.2 Synthetic Alpha Strings

	5. CUSTOM
	5.1 Command Format
	5.2 Type 1 & 2 Barcode Format
	5.2.1 Directional Bars
	5.2.2 Header
	5.2.2.1 Running Checksum
	5.2.2.2 Type Number
	5.2.2.3 Local Sequence Number
	5.2.2.4 Number of Leading Bytes
	5.2.2.5 Number of Trailing Bytes

	5.2.3 Program Instructions
	5.2.4 Program Example
	5.2.4.1 Global Label Construction
	5.2.4.2 Text String Construction
	5.2.4.3 .END. Construction

	5.2.5 Program Example (cont'd)
	5.2.6 Final Comments about Type 1 & 2 Barcode

	5.3 Type 4 Barcode Format
	5.3.1 Example 1: ASN BARS 31
	5.3.2 Example 2: SIZE 050

	5.4 Type 5 Barcode Format
	5.5 Type 6 Barcode Format
	5.6 Type 7 & 8 Barcode Format
	5.7 Final Comments on CUSTOM

	6. Checksum
	6.1 Command Format

	7. Printer Types
	7.1 Epson printers
	7.2 Olympia printers
	7.3 Star Micronics printers

	8. References
	Notes On Barcode Quality
	Appendix
	Sources of Information on HP-41 Instruction Set
	HEX Keycodes for Key Assignments in Global Labels
	Barcode Samples

	Notes

