
HFP—A4a 1 ASSEMBLER

AND BARCODE GENERATOR

AR
FOR THE IBM—FCtm

(C) 1986 by Tony Malburg

(C) Copyright Tony Malburg 1986

All rights reserved. No part of this publication may be

reproduced without the prior written consent of the author.

The author makes no representations or warranties with

respect to the contents hereof and specifically disclaims

any implied warrantiesof merchantibility or fitness for any

particular purpose.

Comments and suggestions concerning this package may be sent

to:

Tony Malburg
1201 N. Alvernon #26

Tucson, AZ 85712

Program license agreement: The programs contained in this

package are licensed for use on a single machine. The

programs may be copied, but solely for archival purposes.

TABLE OF CONTENTS

INTRDDUCTIDN e 8 &8 &8 8 » &8 ® 5 5 & » & 5 5 5 & 5 & 5 & s

ilB A8M41 e 6 8 8 ¢ 8 8 8 & 8 C T QR T ECCE O TS TS

1.1 Command Format .c.cccecncecsos

2.0 BCODE ® ® & ® & ® ® & 0 & 5 & o 0 0 ® 8 " 8 0 @ 00

2.1 Command Format ..cccececoseas

3.

H
U
N

=

W
U
W
N
N

WU
WH

WG
ES

N
=
X
N
N
N
®
=

W m
l

G
N
N

=
=
J
g
O
N
C
U
P
U
U
W
W

-
8

W
W

Global XEQ@ or GTO

Register Access Instructions

Flag Instructions ...cscccee

Display Format Instructions

XROM Instructionscccces

TONES ceeevccescscscscscssssnas

Other Instructions

Data ccceeccccncncnccncasnces

Alpha Strings .ccccececescccas

J.11.1 Text Alpha Strings

3.11.2 Synthetic Alpha Strings

3.12 END. ..cceeccccscaccncssscsssas

H
U
W
U
H
W
W
U
W
U
H
W
H
W

Error MessageS .c.ccescccccccesscs

Program Examples ..cccecceocces

EPSON printErS ® ® ® »# ¢ &8 o » &5 0 © &1

2 OLYMPIA printers c.cccccescecee

3 STAR MICRONICS printers ceane

o

2

6.0 Printer TypeS cccccccsccsccasas

6

6

)

7.@ Re{erences @ ® ® &8 5 @ & © ® o ® ® » © & & » v

NOTES ON BARCODE GQUALITY

APPENDI X

Barcode samples for DI and DC

NOTES

Instruction Format ..cccecceccacs

Comment Lines and use of white

LabelsS cececececccssccccacscsnas

Local Labels .c.cccencccses

Global Labels ccvcececccncns

.1 Global Text Labels

. 2 Global Synthetic Labels

and BTO ceeeccecccscccscancasnsoncsss

Local XEQ or BTO ..ccceecccncaccse

space in source file

[
N
O
o
O
D
N
N
O
C
U

H
U
W

N
N

23

25
25
25
26

28

INTRODUCTION

The HP-41 Assembler and Barcode generator were written
for the wusers of Hewlett Packard Series 41 programmable

handheld calculators who own the HP B82153A optical wand and

would like to translate their own programs into barcode.

The routines run on an IBM—PCtm or compatible personal

computer using MS-DOSM, Also, access to a dot matrix

printer is necessary to print the barcode. At the current

time, three types of dot matrix printers are supported.

They are EPSON, OLYMPIA, and STAR MICRONICS. Here it should

be noted that any EPSON compatible should work fine. Refer

to notes on printer types in chapter &6 for more information.

This manual contains a summary of command line entries

needed to process the barcode on the PC and a description of

the syntax required by the assembler. This manual is NOT

intended as a tutorial <for using the HP-41 or the 1BM-pCtm

and if questions arise, the proper reference should be

consulted. Some HP-41 references are given in chapter 7 and

should questions arise about the IBM—PCtm or compatible, the

appropriate DOS manual should be consul ted.

IBM-PC is a trademark of International Business Machines.

MS-DOS is a trademark of Microsoft Inc.

1.0 ASM41

ASM41 is the HP-41 Assembler. It reads the source file

and generates the data file containing the hex machine

codes.

1.1 COMMAND FORMAT

ASM41 <filename>

<filename>

The file named should contain the source file to be

read. The source file must have the extension of .HPB but

entry of this extension is optional at the command line. 1+

it is not entered it is assumed to be .HPB. If the file

could not be found an error message will be displayed.

The following 1is an example of a command line entry to

process a program called DI. This program was taken from a

book by W.C. Wickes (see reference section) and will be

referred to throughout this manual. When run the program

will activate every segment in the HP-41 display.

In addition to the command 1line entry, the banner

information is shown along with the completion message.

(Note the filename extension is omitted but is assumed to be

.HPB and the default drive is A.)

Example:

A> ASM41 DI
HP-41 Assembler Version 1.00 (c)Tony Malburg, 1986

No errors found. Output file is in: DI.DAT

The completion message tells there were no errors found

and the output data file was written to DI.DAT. The next

step is to process the data file and print the barcode using

BCODE.

2.0 BCODE

BCODE is the barcode printer routine. It reads the

data file generated by ASM41 and converts the hex machine

codes to rows of barcode.

2.1 COMMAND FORMAT

BCODE <Kfilename> L[options]]

NOTE: Minimum of one space is required between

command line entries.

<filename>

The file named should contain the data file to be con-

verted and printed. The data file will have the extension

of .DAT as the default since that is the extension name

ASM41 used when the output file was generated. As with

ASM41, the extension is optional and is assumed to be .DAT.

I+ the +file 1is not found, an error message will be

displayed.

Following are the explanations of the options available to

BCODE. Note that if no options are entered, the default
parameters will be a non-private encoding using bit image

graphics (EPSON method) to produce the barcode. The maximum
number of options allowed is two, on any command line entry,

with one of the two being the private option. If two

printer options are entered by accident, only the last one

will be recognized by BCODE.

Loptions] parameters (enter in any order)

-p or -P private encoding of barcode (can‘'t view the

steps once the program is loaded into HP-41)

-0 or -0 print barcode on an OLYMPIA NP printer

-s or -S print barcode on a STAR MICRONICS printer

Following is an example of the command line entry to

complete the processing on the program DI. The optional

switches are included for a private encoding of the barcode

using the OLYMPIA NP format to show the proper syntax for

the switch entry. (Note the filename extension is omitted

but is assumed to be .DAT and the default drive is A.)

A> BCODE DI -p -o

HP—-41 Barcode Printer Ver 1.10 (c)Tony Malburg, 1986

Enter Program Name: DI (display tester - private)

After the banner is displayed the program prompts for

the program name. This provides the user a chance to enter

the name and very brief description of the program which

will be printed at the top of each page of barcode. The

above entry is about as long as any entry should be but

experimentation and personal taste will dictate the length
used. No completion message will be displayed, however ,

since the completion will be evident when the printer stops

printing the barcode and a form feed is generated.

S.@ INSTRUCTION FORMAT

The following 1s a general description of the syntax

that ASM41 needs to decode the program instructions prop-

erly. Care was taken in laying out the format to allow any

standard text editor to generate the source code. Before

forging ahead 1into the instruction set, some definitions,

explanations, and basic guidelines are provided.

Generally speaking, instructions fall 1into two cate-

gories: (1) direct entry, and (2) synthetic. Direct entry

instructions are ones that can be keyed in directly from the

HP-41 keyboard. They are by far the most commonly used in-

structions. Synthetic instructions, on the other hand, can

not be entered directly and have to be ‘'"created" by some

"synthetic" means. Hence the term synthetic programming.

This assembler not only permits the use of direct entry

instructions but the full range of synthetic instructions as

well. Although this 1is not meant to be a course in syn-

thetic programming, many references to this type of program-

ming are made. An excellent book on synthetic programming

is listed 1in the reference section of this manual. It is

suggested that this book be read for a broader understanding

of synthetic programming.

Another subject worth discussing is memory. Anyone who

has used the HP-41 extensively will know that memory is one

resource that is somewhat scarce even with the now available

Extended Memory modules. Since each machine register can

only hold seven bytes of program machine code, it is

important to make wuse of short forms of instructions

whenever possible to optimize memory use. This assembler is

optimizing and will use the smallest possible number of

bytes to generate the machine code for instructions that are

variable in their byte requirements. I¥f optimizing is

critical, pay close attention to the notes and comments made

throughout this section. Byte counts are given for various

instructions to provide the user a method of determining

what type of instructions to use or avoid when optimizing.

Throughout this section of the manual, discussion of

the various 1instructions leads to the wuse of a specific

range of valid numeric or character entries. Whenever the

brackets are used with more thanmn one character between them,

the characters enclosed in the brackets make up the desired

range. For example [(A-Z] means 1include all upper case

letters A through Z (inclusive). If a single character is

used between the brackets, it is merely to offset the char-

acter from the rest of the text.

Two final comments before starting the instruction set.

First of all, the ASSEMBLER 1S CASE DEPENDENT and requires

all instructions to be entered in UPPER CASE LETTERS. There

are a few exceptions to this 1limitation, namely 1in alpha

labels and alpha text where the lower case letters [a-el] are

valid. Secondly, when entering the instructions in the

source (text) file, there must be at least one white space

between the mnemonic and the argument. When in doubt about

a specific instruction, follow the examples given for the

correct form.

3.1 COMMENT LINES AND USE OF WHITE SPACE IN SOURCE FILE

The use of comments can be very helpful in under -

standing how a program is suppose to work. While over com-

menting is not recommended, a few choice comments scattered

throughout the program will allow a programmer to review the

code at a later date and be able to understand it. While

some say that "uncommented code means job security"”, most

programmers will agree that writing the code once was hard

enough and would rather not have to rewrite it to understand

what was written the first time. Putting comments in the

code can help eliminate such problems.

The format for comments in this implementation is simi-

lar to many other assemblers and that is all comments must

be preceded by a semicolon (3 1]. They can appear on separate

lines or follow a properly terminated instruction. (Pro-

perly terminated instructions will be discussed in section

3.11.)

Examples:

sThis is a comment line! (note the semicolon)

sThis is also a comment (note the space in front)

RCL 02 sRecall register 2

"THIS IS TEXT" sThis is an alpha string

The second example above 1leads into the discussion of

white space. Basically, white space 1is defined as those

spaces found between items on a line. The two most commonly

used white spaces are the tab and the space (from the space

bar). The method used in parsing each line in the source

file nulls out any white space before any decoding begins.
Since this is the case, tabs and spaces may appear anywhere

in the code, except in global text labels, with no adverse

effects. If tabs are used in text strings they will appear

as the starburst character in the HP-41 display since the

tab produces the hex byte 09 and there 1is no equivalent

character for this code on the HP-41.

Also it should be noted that, while it 1s not often

utilized, blank 1lines are permitted in the source file. A

blank line 1is defined as a 1line with nothing more than a

carriage return entered.

3.2 LABELS

Labels provide a method of program control or a means

of executing a program or part of a program directly from

the keyboard. There are two types of labels used on the

HP-41: (1) local labels, and (2) global labels. At the end

of this section, it should be obvious when and where to use

each and the proper syntax required by ASM41.

3.2.1 LOCAL LABELS

Local labels are those that are only accessible while

the instruction pointer is inside the program containing

them. In other words they can not be accessed by another

program. They can be numeric with a valid range of [00-99])

or they can be single letter alpha with valid letters being

[A-J] and [a-e]. Local alpha labels are very useful in sim-

ulating menu driven programs. While the instruction pointer

is inside the program containing these local alphas and the

machine is in the user mode, the top two rows of keys exe-

cute the 1labels [(A-J] and the shift of the top row of keys

execute the labels [a-e]l.

Examples:

LBL 001 sthis is a local label

LBL J sand so is this but this is alpha

LBL d

Note the absence of any quotes on the local alpha la-

bels. As will be seen 1in the section on global labels, a

quote in front of the letter signifies that the label is

global and will be stored as such occupying S bytes of pro-

gram memory instead of only 2. If the desired result is a

local alpha label (i.e. - a menu driven program), DO NOT put

a quote in front of the letter. Also note that any numeric

label less than 18 must have the leading @ present. This

will be true for all instructions that can have an argument

less than 10 (an argument being the second part of the

instruction). I1f the leading @ is not present, an assembly

error will be generated.

Byte Counts:

LBL 00 thru 14 sone byte each

LBL 13 thru 99 s two bytes each

LBL A thru J and a thru e ; two bytes each

3.2.2 GLOBAL LABELS

Global labels are those that can be executed by any

program at any time by using the appropriate XEQ@ or GTO in-

struction, hence the term global. All user global labels

appear in the user program catalog CAT 1 whereas local la-

bels do not.

This assembler allows two methods of generating global

labels: (1) straight text and (2) synthetics. Regardless

of the method used, there are some common guidelines to fol-

low if ASM41 is to function properly.

1. Maximum of 7 characters allowed in a label

(quotes are not included in this count)

2. The first character must be a double quote ("]

(the ending quote is optional)

3. No white spaces are allowed in the name itself

(if a space character is desired - use synthetics)

4, The label itself can not contain a quotation mark

(1¥f quotes are desired - use synthetics)

Byte Counts:

All global labels require 4 bytes of overhead plus one

byte for each character in the label. To optimize, use

single letter alphas outside the range of the 1local

alphas or double letter alpha labels.

3.2.2.1 GLOBAL TEXT LABELS

Global text 1labels are the ones most commonly used by

programmers as most of them contain letters and symbols that

can be entered right on the HP-41 keyboard.

Examples:

LBL "LABEL soptional second quote omitted

LBL "KRdec" snote the lower case letters allowed

;are between [a-e]

LBL "abcdel2" s numbers are allowed

LBL "@H$L"L" $so0 are various punctuation

LBL "TSTLBL

In the above example using punctuation, the [@] charac-

ter and the [#] character were used. These two characters

can not be generated directly on the HP-41 alpha keyboard

but since they are in the standard ASCII character set, the

HP-41 can display them. Rather than force the use of syn-

thetics to generate characters like these, all of the stan-

dard ASCII printable characters have been included in this

assembler. The only exception to this is limiting the lower

case alphas to the range of [a-el. The sigma character used
by the HP-41 is the tilde [™~] character in the standard

ASCII character set. It, too, is included in the list of

valid label characters.

One character that can be generated on the HP-41 that

can not be generated on a personal computer is the ‘not

equal to’ sign. As will be seen in the section on other in-

structions, section 3.9, the two characters [!] and [=] are

used together to represent ‘not equal to’. I+ this

character is desired in a global label, use synthetics.

3.2.2.2 GLOBAL SYNTHETIC LABELS

On occasion, a character in a label may be desired that

does not have a printable ASCII equivalent. An example

might be the full man character generated by the byte @01 or

the ‘not equal to’ sign described above. Although these la-

bels can not be executed directly from the keyboard without

going through CAT 1, they can be paired with an XE@ or GTO

of the same label within a program or in another program.

That’'s not to say this is all that useful in day to day pro-

gramming since most needs are filled with global text la-

bels. It is interesting, however, and this capability was

included for completeness.

The syntax for a synthetic string of any kind (a pre-

view of synthetic text strings) is a double quote ["] fol-

lowed by a single quote [°1]. As with the global text la-

bels, the ending quote is optional. The synthetic string is

entered as hex bytes and each character requires two digits.

As a reminder, hex numbers range from [0-9,A-F]. As men-

tioned earlier this assembler is CASE dependent and this is

one instance where this 1is very true. All hex digits

greater than 92 must be upper case.

Examples:

LBL " '5453544C424C" " sequivalent to LBL "TSTLBL"

LBL "' '01050406 snote omission of second quote

LBL " '574859204D453F sgenerates LBL "WHY ME?
s including the space (20H)

LBL "‘'@CeD"" snote upper case C and D

LtBL ""1D°" sgenerates ‘not equal to’ sign

Note that 1in first synthetic label above, there are

more than 7 characters. The reason being that each label

character requires 2 hex digits to represent it. With this

in mind it is permissible to have up to 14 hex digits in a

string to make up a global label. The only restriction is

that the count must be even or an assembly error will occur.

The quotes are not included in this count.

3.3 XEO AND GTO

Due to the similarities in the way the XEG@ and GTO in-

structions are generated, this discussion will incorporate

both. There is a difference in the way they are executed

but that is beyond the scope of this manual.

As with the labels, XEQ and GTO can be either local or

global in nature. Local XE@ and GTO instructions only func-

tion if the program that they are in has a LBL with the ap-

propriate numeric or alpha value. Global XE@ and GTO in-

structions perform a jump of sorts to the label found in CAT

1 or CAT 2 1if the GTO or XEGQ was not generated for the

specific XROM routine. (XROM codes are discussed in section

J.7.)

3.3.1 LOCAL XEQ@ OR GTO

Local XE@'s or GTO’'s can either be direct or indirect.

As with 1local labels, the valid range for direct XEQ@ or GTO

instructions is [@B0-99] for numeric and [A-J,a-el] for alpha.

Therefore, rather than repeat the syntax rules for local la-

bels, if there is a question about a particular direct XEO

or 6GTO instruction, refer to section 3.2.1.

Indirect XE@'s or GTO's are a bit different. It is

still valid to go indirectly through [(00-99] provided enough

memory has been allocated for data registers. Any attempt

to XE@ or GTO indirectly through [A-J] will result in an er-

ror. This is because these registers do not exist. Regis-

ters [a-el]l] do exist even though Hewlett Packard does not

provide information into their existence. They are called

status registers and are used by the machine to monitor the

system (i.e. - flags, return addresses for subroutines, key

assignment, etc.). The only way these registers can be

accessed is through synthetic programming techniques or if

an assembler, such as this one, allows for their decoding.

In addition to [a-el, registers [M-R] also exist and can be

XE@'d or GTO'd as can the normal stack registers X, Y, Z, T,

and L. (Actually register R is not displayed on the HP-41

as register R but as the alpha append character. The letter

R was chosen because personal computers can not generate the

append character and because R follows O in the alphabet and

register @ is an actual register.)

Examples:

XE@ a sexecute local label a

XEG IND a sexecute indirectly through register a

XE@ 03 s;execute local label 3

GTO 34 sgo to local label 34

GTO J sgo to local label J

GTO IND R sgo indirectly through register R

GTO IND 0@ sgo indirectly through register 00

GTO IND O sgo indirectly through register O

10

Note that as with any instruction that can have an argument

less than 10, the leading @ must be included. As an example

of this, look at the above instruction XEG @3. I1f the lead-

ing @ is not included, an assembly error will be generated.

Byte Counts:

GTO 00 thru 14 ; two bytes each

All other direct GTO's and XE@'s j;three bytes each

All indirect GTO's and XEQ@'s ;s two bytes each

3.3.2 GLOBAL XEQ OR GTO

Since global XE@'s and GTO's work in conjunction with a

global label somewhere else in the machine, they follow the

same syntax rules as global labels, both text and synthet-

ics. Without further explanation some examples follow.

Examples:

XE@ "TSTLBL sNo second quote needed

GTO " °'3574859204D45S3F " 3go to LBL "WHY ME?"
XEQ "12245" sexecute LBL "12245

Byte Counts:

All global XE@ and GTO instructions are

two bytes plus one byte per character in

the label name.

3.4 REGISTER ACCESS INSTRUCTIONS

The register access instructions supported by the HP-41

are listed below. These instructions, with the exception of

SIGREG, can all access numeric as well as stack/status reg-
isters in both direct and indirect formats.

RCL STO ST+ ST- ST+ ST/ X< >

ISG DSE VIEW SIGREG ASTO ARCL

Note that SIGREG is the sigma register. This instruction is

used to determine the starting register for the six statis-

tical registers. As such it can not be used in direct

stack/status format. However, it can be used in both direct

and indirect numeric and in indirect stack/status formats.

11

The set of valid reqgisters are the same as those used

in indirect XEO® or GTO instructions, namely [00-991, [M-R],

Ca-EJ, x’ Y’ z’ T’ and L-

Examples:

RCL 35 srecall register 35
ST* X sstore times register X
ARCL 02 salpha recall register 2

SIGREG 25 sset first statistical register to
s be in register 25

DSE M sdecrement and skip if equal to M

ISG IND M sincrement and skip if greater

s indirectly through register M

X<> d sexchange register X with register d

ST/ IND P sstore indirectly through register P

Note that as with any instruction that can have an argument

less than 10,the leading O must be included. As an illus-

tration of this, look at the ARCL @2 instruction above. I1¢

the leading O is left off, an assembly error will be gener-

ated.

Byte Counts:

RCL 00 thru 15 sone byte each

STO 00 thru 15 s;one byte each

All other register access instructions both,

direct and indirect, are two bytes each.

3.5 FLAG INSTRUCTIONS

Flag instructions fall into two categories: (1) flag

setting, and (2) flag testing. The instruction syntax for

each type 1is listed below. Both types can be indirect and

operate through the usual [00-99), [M-R], [a-e], X, Y, Z, T,

and L registers. The assembler will generate the correct

machine code for these instructions but the user must insure

the data contained in these indirect locations is within the

range of the number of flags available for setting and/or

testing. These ranges are [00-29] for setting and [00-55]

for testing.

In the direct mode, only numeric instructions are per-

mitted. For direct +flag instructions, the ranges are the

same as those listed above, namely [00-29], for flag setting

instructions and [B0-55] for flag testing instructions. As

with other instructions that can have an argument less than

10, the 1leading @ must be included or an error will be

generated by the assembler.

12

Flag setting instruction syntax:

SF CF FS?C FC?C

Flag testing instruction syntax:

FS~? FC?

Examples:

SF 09 s this one sets flag 9
CF 29 sthis one clears flag 29
FS? 35 sthis one only tests

FC?C 29 snote this instruction tests AND clears

FC?C IND 99 ; same as above only indirectly thru 99

FS?C 13 sthis one also tests AND clears

SF IND 10 ;sets flag indirectly thru 10

Byte Counts:

All flag instructions, both

direct and indirect, are two bytes.

3,6 DISPLAY FORMAT INSTRUCTIONS

There are three display format instructions available

on the HP-41,. They are FIX, SCI, and ENG. They control how

many digits follow the decimal point and how exponents are

to be displayed. They can be entered in direct or indirect

format. In the indirect format they follow the same syntax

rules given for flag instructions. That is to say they can

access [(00-991, [M-R]), (a-el, X, Y, Z, T, and L indirectly.

In the direct format the valid range is [0@-09] and as

stated several times before the leading @ must be present or

an assembly error will be generated.

Examples:

FIX 02
ENG 09
FIX IND 75
SCI1 04
SCI IND a

Byte Counts:

All display format instructions, both

direct and indirect, are two bytes.

13

3.7 XREOM INSTRUCTIONS

The XROM 1instructions incorporate all those functions

that are present in ROM application modules. Each module

has a specific number assigned to it and each routine within

the module is numbered, starting with the number one being

assigned to the first routine. As an example, the MATH PAC

is numbered module 01. The program MATRIX is the first

routine contained in this module as reflected by a

CAT 2 listing of the MATH PAC routines. This means the cor-—

rect XROM code would be XROM 01,01.

There are a few simple steps 1in finding out what the

correct XROM code will be for any routine in any application

pac that is available to be plugged in. (If the pac is not

available, a 1listing from the users manual may provide this

information.)

1. With HP-41 OFF, plug the module into an open port.

2. Turn HP-41 ON and switch to program mode.

Get to the .END. by entering [SHIFTIIGTO . .1

3. Enter [XERILALPHA] ‘program name’' [ALPHAJ.

If the program name was a valid application pac

program name, one of the following will appear

01 XROM ‘program name’ or 01 ‘program name’

4, Turn HP-41 OFF and pull module out of the port.

S. Turn HP-41 ON and switch to program mode.

The display will now contain the correct

XROM code. As in the example above

21 XROM 01,01

For the curious, this equates to hex A@ 41 in

machine code as follows:

21 ' 21

0 0001010 2100

-
w
e

o
o

o
o

=
e

@ 00 1.;

v
e

o
o
e

A o 4 1

With this XROM code, a program can be encoded to run

the routine 1in the application pac without using a long XEQ

or GTO instruction. The correct syntax is shown below.

Note the comma shown in the HP-41 display is not entered.

Entering the comma will result in an assembly error.

14

Examples:

XROM 01 01 snote space between numbers and no comma

XROM 26 28 s;code for TIME in time module

The maximum number allowed for the module number is 31

and the maximum number allowed for the routine number is 63.

Byte Counts:

All XROM instruction require two bytes.

3.8 TONES

The tone capabilities on the HP-41 are somewhat limited

by direct entry programming. A user is limited to 10 dif-

ferent tones, all of the same duration. Through synthetic

programming, however, 128 different tones can be generated.

Actually only 6 new tone frequencies are generated but each

frequency can have a variety of tone durations ranging from

0.023 seconds to 5.00 seconds. To allow for all 128 differ-

ent tones with two digit entry, the correct entry syntax

will be in hex. The direct range of TONE's will be

(BBH-7FH] and the 1indirect range of TONE's will be

[BOH-FFH]. One word of caution concerning the indirect

tones. If the 1indirect location does not contain a number

in the range from [@-9], the HP-41 will display ‘'DATA ERROR’

when an attempt is made to execute the instruction.

Examples:

a duration of 5.00 seconds at a

frequency of 394 Hz

TONE 25 sgenerates a display of TONE 7 with

s a duration of 0.023 seconds at a

s frequency of 105 Hz

TONE 1A sgenerates a display of TONE 6 with

;

;

Refer to W.C. Wickes for a complete listing of the tones and

their durations.

Byte Counts:

All TONE instructions, both

direct and indirect, require two bytes.

15

3.9 O0OTHER INSTRUCTIONS

The category of other instructions encompasses all of

the single byte functions listed below, shown in their cor-

rect syntactical form.

+ - * / X<Y?
X>Y? X<=Y7? SIG+ SIG- HMS+

HMS- MOD % %CH P-R
R-P LN X~2 SORT Y~ X
CHS E~X LOG 107X E~X-1
SIN COS TAN ASIN ACOS
ATAN DEC 1/X ABS FACT
X!=07 X>@? LN1+X X<a7? X=@7?
INT FRC D-R R-D HMS
HR RND ocT CLSIG X<>Y
PI CLST R~ RDN LASTX

cLX X=Y? Xl=Y? SIGN X<=@7
MEAN SDev AVIEW CLD DEG
RAD GRAD ENTER” STOP RTN
BEEP CLA ASHF PSE CLRG
AOFF AON OFF PROMPT ADV

As mentioned earlier, the ‘'not equal to’ sign can not be

generated on personal computers using most standard text ed-

itors. As a way around this problem the two characters (!]

and [=] used together are taken to mean the same thing.

Therefore in the above 1list, the I!= means 'not equal to’.

The carat [~] is wused to represent the up arrow on the

HP-41. This means, for example, that X2 represents "X

squared’ and R”™ represents ‘Roll the stack up’ on the HP-41.

Another anmomaly is in the sigma register notation. As seen

in the section on register accesses, the correct syntax for

the sigma register is SIGREG. In a similar fashion, sigma

plus and sigma minus are SIG+ and SIG- respectively.

Examples are not necessary because these are all stand alone

instructions and have only one format.

Byte Counts:

As mentioned above, all of these

instructions are one byte each.

J.10 DATA

Numer ic data entry falls into one of three categories:

(1) integers, (2) decimal fractions, and (3) exponentials.

There are only a couple of simple rules to follow when en-

tering numeric data.

1. No white space is allowed within a data string

between numbers or exponents.

16

2. Entry length is limited to 1@ numeric digits
plus the associated minus signs, decimal point,

or the E needed for an exponential.

Valid Ranges for each data type:

Integers: +/— 9999999999

Decimals: +/- .0000000001

Exponentials: E-99 to 9.9999999E99

Examples:

E20 sleading 1 can be omitted to save a byte

-E-30 sagain the 1 is omitted

-. 36923E75 snegative decimal exp. (leading @ omitted)

36. 256E-55

1782489564

Byte Counts:

In general, the number of bytes required by numeric

data equals the number of individual characters in the

string. The only bytes that can be saved in numeric

data is in the elimination of the leading 1 in an

exponential expression where the multiplier is 1 as

shown in the first two examples above. In addition to

this, a byte can be saved by not entering the leading

@'s in a decimal fraction entry. (i.e. - 1instead of

entering 0.32, enter .32, etc.)

3.11 ALPHA STRINGS

As with other instructions that incorporated some type

of alpha string, the entry of +full line alpha strings can

either be in direct text or synthetics. Regardless of the

type used, there are a few guidelines that apply.

1. The first character of the string must be a double

qoute ["1].

2. The terminating quote is only necessary if a

comment is to be added to the same line. The

reason for this is, of course, that a semicolon

is a valid text character and unless the text

string is delimited from it in some way, the

assembler assumes it is part of the string.

17

In the case where this comment adds enough

characters to the length to exceed the limit,

an assembly error will be generated.

3. The limit for any alpha string is 15 characters

including the append character if one is present.

Byte Counts:

The byte count for all alpha strings, whether they are

text alpha or synthetic alpha, is as follows. One byte

overhead plus one byte per character in the string up

to a total of 15. Quotes, single or double, are not

included in the count.

These are Jjust a few of the ground rules for alpha

strings. Each entry type has 1its own peculiarities which

are discussed below.

3.11.1 TEXT ALPHA STRINGS

This type of alpha string consists mainly of characters

that can be entered directly into the HP-41 via the alpha

keyboard. As with global text labels, some characters that

can not be entered on the HP-41 are still allowed in this

type of alpha string since these characters are in the ASCII

set of printable characters and as such the HP-41 can dis-

play them. There are, however, several characters that can

not be used in this type of string. The characters which

the last comment was referring to were mainly the lower case

letters [f-z1. These characters may be generated syntheti-

cally but the HP-41 will display them as starbursts since

they do not generate an assigned character code.

The following tables list both the valid and invalid
characters for use in text strings. The 1list for valid

characters is missing two characters, the space character

and the DEL character, neither of which show up when

printed. However, the DEL character produces the alpha

append character on the HP-41 and if the text editor being

used permits this character, it is one way of producing

appending alpha strings. If the text editor being used will

not permit the use of the DEL character, the lower case (ol

has been reserved as the append character. As one last

comment about the valid characters, the tilde [™~] character

is used to produce the sigma character on the HP-41,.

18

Valid Characters

% L & () * + , - fghi jklmnpaqgr

./ @1 23 4567829 : : s tuvwxyz {1)

s <= >7@ABCDEFG |
HI JKLMNOPOGRST |
uvwXxyzt €CN\NII~_ "' a i
bcde™o :

Examples:

"THIS 1S TEXT" snote the closing quote since a

scomment follows the text string

"oTHIS APPENDS" snote the lower case o used as

s the append character

"abcdeABCDE" sonly a-e are permitted in lower case

3.11.2 SYNTHETIC ALPHA STRINGS

Synthetic alpha strings include all possible characters

in the range from [0B0-FF] since they are created from hex

bytes. As with other instructions that contained synthetic

strings, the proper syntax for the synthetic alpha strings

is a double quote ("] followed by a single quote [°]. The

ending quote 1is optional but, as with text alpha strings,

must be present if a comment is to follow the string. The

valid range of characters 1is [0-9,A-F]. Note that all en-

tries greater than 9 must be in upper case. Also note that

as with global synthetic labels, each character requires two

bytes to produce it. Since a valid alpha string can contain

a maximum of 15 characters, this means that a synthetic al-

pha string can contain 30 characters, not counting the sin-

gle or double quotes. The only restriction 1is that the

count must be even or an assembly error will be generated.

Examples: (duplicates of the text alpha string examples)

" 3544849532049532054455854 ‘' " s "THIS IS TEXT"
"7FS5448495320415050454E4453 " 3 "oTHIS APPENDS"
"'61626364654142434445° " ;s 'abcdeABCDE"

3.12 L.END.

Last but certainly not least is the .END. instruction.

As with the permanent .END. in the program memory, this

instruction will put an end onto the last row of barcode so

the HP-41 will know when the 1last row has been scanned.

When this code is scanned by the Wand, the HP-41 will

display 'WORKING ' while it is compiling the scanned data.

19

Since the instruction 1is the .END., it should be

located at the end of the program. The syntax should be

obvious. If not, refer to chapter 5 for program examples.

20

4.0 ERROR MESSAGES

During the assembly process, should ASM41 find any

errors in the instruction syntax, an error message will be

printed on the screen following the instruction that was at

fault. An error does not terminate the assembly process,

however. The assembler continues checking the rest of the

source file to determine if there are any more errors. If

any errors were found during the assembly process, the total

number of errors will be printed along with the message

saying that no output file was generated. The general

format of these messages and a 1listing of the different

error messages available to ASM41 is shown below.

When an error occurs, the following will be printed:

<{instruction>

Syntax Error in line <line number> - <error type>

The instruction is the 1line of code that could not be

assembled for one reason or another. The line number is a

count of the number of carriage returns that have been

encountered at the time the error occurred. This count

includes blank lines and comment lines since each of these

lines is terminated with a carriage return. The count

starts at 1 with the first 1line in the source file. The
error type will be listed if the assembler started to decode

the instruction and found discrepancies in the syntax.

Error Messages (error type):

invalid local label

invalid indirect XEQ

invalid local alpha XEQ

invalid local XEO

invalid indirect GTO

invalid local GTO

invalid local alpha GTO

label too long!

invalid synthetic label!

invalid global label!

invalid GTO label!

21

invalid XEQ@ label!

invalid synthetic characters in string!

invalid characters in alpha string!

text string too long!

synthetic string too long!

synthetic string has odd count!

exponent not valid!

exponent too big!

number is not valid!

too many digits in number!

need more that just a ', !

need more than just a "'-."!

invalid XROM instruction!

invalid stack/status access!

invalid indirect stack/status access!

There are two error messages that act as a catch all for

general instiructions. These messages will have the

following form:

invalid <instruction>

invalid indirect <instruction>

If the assembler has no idea where to start decoding the

instruction, the error type will be:

can’'t decode instruction!

The error messages listed above are pretty much self

explanatory or should be by now. 1+, for some reason, an

instruction does not function as you feel it should, let me

know. I1've tried to debug this program +for all possible

cases but after reading this manual, I'm sure you'll agree

that with the number of instructions and the variations of

each, it would be a monumental task to check everything.

22

9.0 PROGRAM EXAMPLES

Following will be two sample programs. The first will

be the program mentioned at the outset of this manual, DI,

and the second will be another program from W.C. Wickes

book, DC. Comments are added for clarity.

PROGRAM #1

sProgram DI (display tester)

tests HP-41 display segments while

demonstrating mass flag control via

register d.

to execute this program simply enter

{XEQILALPHAJ] DI C[ALPHA]

S
N
6

W
M

W
e

B
0

W
e

w
W
e

LBL "DI

"'FBOOVO10VO21EB’'" ;mass flag control number

RCL M

"' 803ABD3IABO3A"" s three sets of starburst/colons

ASTO Y sstore this alpha string in Y

ARCL Y srecall Y three times to fill

ARCL Y s the alpha display with the

ARCL Y s starburst characters

AVIEW s;view the alpha register

X<> d sperform the mass flag control

. END. send of program

PROGRAM #2

Program DC (Decimal to Character Conversion)

takes a decimal integer from the X register

and converts it into the equivalent HP-41

display character

To use:

enter number in X register

enter [XEQGIJLALPHA] DC [ALPHA]

the character will be displayed in the X register

LBL "DC

ocT sconvert entry to octal from decimal

E3 ;s to be used to set flags

/ s in register d

10
+

X<> d sset the flags according to entry

FS?C 19 sdo a series of flag checks

SF 20 sand sets

23

FS?C 18

SF 19

FS?C 17

SF 18

FS?C 15

SF 17

FS?C 14

SF 16

X<> d srestore original flags

STO M sstore character information in M

""7FQ000 " " s append two nulls

cLX sclear register X
STO N sstore register X in register N
"oA" s append the letter A

X<> N ;swap register X and register N

CLA sclear alpha register

X<> M sswap register X and register M

AVIEW sview the alpha register

. END. send of program

24

6.0 PRINTER TYPES

This section will discuss the printer types permitted

for use with the program BCODE 1in generating the barcode.

Information regarding the method used in producing the

barcode on each type of printer will be included to permit

the user to determine if their printer will work properly.

6.1 EPSON PRINTERS

As was seen in the options section of BCODE, the

default parameters used include the EPSON double density bit

image graphics mode to print the barcode. In terms of

escape sequences, this means:

ESC ‘L nl n2

I+ the printer you are using supports this print mode

continue reading this section for other codes used to insure

compatibility. I¥f not, chances are vyour printer will not

work with this program.

Other codes used from the EPSON family of printers

include:

ESC ‘1’ n ssets left margin to column n

ESC ‘'J’' n sone time line feed of Nn/216 inches

ESC ‘@’ smaster reset

ESC ‘G’ sselect double strike mode

Of course the carriage return <CR>, line feed <LF>, and

horizontal tab <HT> codes of 13, 10, and ? respectively are

also used but are generally standard on all printers.

6.2 OLYMPIA PRINTERS

The program BCODE was originally developed for use with

an OLYMPIA model NP printer. The method used to generate

the barcode includes the use of download characters and the

high density proportional print mode. I1f the OLYMPIA option

is selected at the command line, it is <critical that DIP

SWITCH 1-4 (i.e.- switch bank one, switch number 4) is

turned OFF to allow the buffer area to be used as the area

for the download characters. If this switch is turned ON

and the OLYMPIA option 1is selected, the barcode will, with

the exception of the row identifier strings and page

heading, consist of only 8's, 1's, 2's, and 3's.

25

The control codes used by the OLYMPIA NP printer in

this mode include:

ESC ‘" @ n m a pl...pll j3define download chars.

ESC AT @0 0 sselect internal character set

ESC ‘21 O s;select download character set

ESC ‘J’' n sone time line feed of nNn/216 inches

ESC ‘1’ n s;set left margin to column n

ESC 'n°’ sselect high density proportional print

ESC '@° smaster reset

A rather unique situation exists with the OLYMPIA NP

printer and that is it is EPSON compatible as well. If

desired, the EPSON mode can be used with fair results. If

the EPSON mode is used, DIP SWITCH 1-4 can be turned ON to

facilitate a speedier printing since the inline buffer will

then be utilized. However, for a higher resolution barcode,

the OLYMPIA option should be used. It is unknown if other

OLYMPIA printers will work as the NP, using download

characters, but they are most likely EPSON compatible.

6.3 STAR MICRONICS PRINTERS

The two STAR MICRONICS printers that should work

properly with the -S option are the RADIX and GEMINI series.

Like the EPSON, these printers support the double density

bit image graphics mode but other codes make these printers

different enough to warrant the use of a separate option.

The control codes used by these printers include the

following:

ESC ‘L° nl1 n2 j;select double density bit image

ESC "M n s;set left margin to column n

ESC ‘T N s;one time line feed of n/144 inches

ESC ‘@’ smaster reset

ESC ‘G’ s;select double strike mode

Others models will most 1likely work provided they use

the same escape sequences shown above.

26

If the printer you are using does not correspond to one

of the above descriptions and you would like to see your

printer included in futureupdates, please let me know. In

order to 1include it 1 will need, at the very least, a

listing of the available escape sequences that the printer

uses. I would 1like to eventually include a laser printer

among those supported in order to produce the best possible

barcode. Unfor tunately, at the present time, the cost of a

laser printer 1is somewhat prohibitive to the average PC

owner.

27

7.8 REFERENCES

Wickes, W.C. SYNTHETIC PROGRAMMING ON THE HP-41C

Corvallis, OR.: Larken Publications, 1982.

OWNER 'S HANDBOOK AND PROGRAMMING GUIDE HP-41C/41CV

Hewlett Packard Company, 1980.

Journal staff. "HP BARCODES - HOW ARE THEY CODED?"

PPC Calculator Journal, VOL. 7, NO. S, ppg 27-33,

JUNE 1980.

Journal staff. "KEYING HP-41 SYNTHETIC INSTRUCTIONS"
PPC Calculator Journal, VOL. 8, NO. 6, ppg 79-80

AUG - DEC 1981.

28

NOTES ON BARCODE GQUALITY

The quality of the barcode will depend on the type of

printer used and the age of the ribbon. The sharpness of

the barcode will depend on the pins on the dot matrix print

head. The flatter the pin head, the sharper the barcode.

It should be noted that on newly printed barcode, the paper

will exhibit a slightly rippled effect due to the pressure

applied by these pins. This rippled effect decreases with

time and has no effect on the quality of copies that may be

made.

Al though the sharpness is beyond user control, short of

buying a new printer, the darkness of the barcode isn’'t. It

depends only on the age of the ribbon. While a newer ribbon

produces a darker barcode, it also has a greater tendency

for smearing since the total area of ribbon ink per page is

so great. A ribbon that is slightly used seems to give the

best results.

It is suggested that the original barcode be xeroxed

before being scanned. The reason for this is because the

printer ribbon image is sometimes difficult for the wand to

pick up due to its reflectivity. Today ‘s dry toner copiers

make this image much more readable. Also, the life of a

ribbon used to print barcode can be extended since a xerox

copy of a weak original can be made darker and thus produce

a good quality barcode. As always, to protect the barcode

from excessive wear, use the clear protective sheeting

provided with the wand.

APPENDIX

On the next two pages are samples of barcode generated

from the two program examples in chapter S. Again, these

routines can be found in W.C. Wickes book listed in the

reference section of this manual. Note the second 1line

tells how many registers are needed to load the program into

the HP-41. This figure is not exact as it is computed from

the number of rows of barcode and not the actual total byte

count. The number listed will always be greater than or

equal to the actual number of registers needed.

PROGRAM NAME: DI (Display Tester) PAGE 1 OF 1

PROGRAM REGISTERS NEEDED: 6

ROW 1 (1 - 2)

ROW 2 (2 = &)

AA
ROW 3 (6 — 1D

PROGRAM NAME: DC (Decimal to Character) PAGE 1 OF 1

PROGRAM REGISTERS NEEDED: 1@

ROW 1 (1 -)

L
ROW 2 (5 - 12)

e
ROW 3 (12 - 18)

A
ROW 4 (19 - 24)

Dfishiae |
ROW 35 (24 - 28)

NOTES

	Cover
	Table of Contents
	Introduction
	1.0 ASM41
	1.1 Command Format

	2.0 BCODE
	2.1 Command Format

	3.0 Instruction Format
	3.1 Comment Lines and use of white space in source file
	3.2 Labels
	3.2.1 Local Labels
	3.2.2 Global Labels
	3.2.2.1 Global Text Labels
	3.2.2.2 Global Synthetic Labels

	3.3 XEQ and GTO
	3.3.1 Local XEQ or GTO
	3.3.2 Global XEQ or GTO

	3.4 Register Access Instructions
	3.5 Flag Instructions
	3.6 Display Format Instructions
	3.7 XROM Instructions
	3.8 Tones
	3.9 Other Instructions
	3.10 Data
	3.11 Alpha Strings
	3.11.1 Text Alpha Strings
	3.11.2 Synthetic Alpha Strings

	3.12 .END.

	4.0 Error Messages
	5.0 Program Examples
	6.0 Printer Types
	6.1 EPSON printers
	6.2 OLYMPIA printers
	6.3 STAR MICRONICS printers

	7.0 References
	Notes On Barcode Quality
	Appendix: Barcode samples for DI and DC
	Notes

