

USER FLAGS

- Flag 00 clear Full output, with intermediate results set Shortened format to save time
- Flag 01 clear COGO programs use North, East
- set COGO programs use X, Y
- Flag 02 clear BEEP and TONE warnings disabled set BEEP and TONEs enabled (in subroutine S)
- Flag 03 clear Geometry programs use angles in decimal degrees (dd) set Geometry programs use angles in Degrees-Minutes-Seconds (DMS)
- Flag 04 clear Structural programs follow AASHTO set Structural programs use ACI/AISC/NDS

DOCUMENTATION

Documentation for most programs follows this pattern:

- 1) OVERVIEW Details softkey and flag use, SIZE requirements, input explanation, and other quick reference information. For use once the user has become familiar with the program.
- 2) EXPLANATION In-depth documentation of how the program works. Explains the program's features, methods, assumptions, and limitations.
- 3) EXAMPLES Hand-worked examples to show how the program works and how it is used.
- 4) LISTING A program listing with the stack configuration traced through every step, for a deeper look at the program.

SECTIONS OF THIS MANUAL

- Part A (yellow) Contents; Introductory Material
- Part B (white) Geometry Programs
- Part C (yellow) Utility Programs and Routines
- Part D (white) Structural Programs

NOTICE

These programs and their documentation are computational aids only. They are not intended as a substitute for professional judgement and cannot be used as such. It must be emphasized that engineering calculations involve assumptions allowing the engineer to treat real situations as mathematical problems. These programs do not "solve" real situations; they solve mathematical problems. The correlation between the assumptions made and the real situation must be judged by a competent qualified professional, and the results accorded only as much value as the initial assumptions merit.

As much as possible, these programs follow accepted practice in the profession; and every effort has been made to verify their correctness. However, the seller makes no express or implied warranty of any kind concerning these programs or their documentation, including the sample calculations included. Anyone making use of these programs or the material in this documentation does so at his or her own risk and assumes any and all liability resulting from such use.

TABLE of CONTENTS

Section A: Introduction

- A1 Notice/disclaimer
- Table of Contents A2
- List of Labels A3
- **A8** Foreword
- A11 Flags
- Synthetic Programming & Other Loose Ends A13

Section B: Geometry

B1	VC Vertical curve solutions for elevation
B8	STA Vertical curve solutions for station
B25	SSD Stopping sight distance on vertical curve
B31	HC Horizontal curve solutions
B41	Coordinate geometry programs

- Coordinate geometry programs POB Station/offset of coordinate points B77
- B81 Triangle solutions
- B93 Feet-inches-sixteenths routines; Trigonometry

Section C: Utilities

C1	Utility	routines

- C15 FI Financial analysis
- C37 CV Curve fitting program

sv C49 Iterative solutions to equations

Section D: Structural Programs

D1 D5 D31 D45 D73 D83 D93 D101	Reinforced Concrete Programs and Subroutines WSBM/LFBM Reinforced concrete beam design LFAN Load factor concrete beam analysis Ic Working stress concrete beam analysis VST Shear reinforcing design CORBL Concrete corbel design BWT Reinforcing bar weight summation CCOL Rectangular concrete column analysis
D109	Steel design programs
D110	BM I-beam section properties
D113	SCOL Steel column analysis
D123	SBCOL Steel beam-column analysis
D133	COMP Composite beam analysis
D163	PLG Built-up plate girder analysis
D205	WBM Wood beam analysis
D213	WCOL Wood column and beam-column analysis
D229	Truck moments on simple spans
D243	RW Concrete cantilever retaining wall analysis
D255	NEO Elastomeric bearing pad analysis
	PIER AASHTO T-pier loads
D289	FTG Footing analysis with biaxial bending
D299	SHFTG Short footing analysis program

LIST OF LABELS

This is a list of all the global alpha labels in the module, in the order of a CAT 2 listing, with the number of bytes necessary to copy the program to main memory (RAM). The labels with the byte counts following them are the first label of that program; i.e. line number 01. <u>Parentheses</u> indicate subroutines which are probably not useful as stand-alone programs.

LABEL	BYTES	DESCRIPTION
<u>PAGE 1</u> CHC	515	Horizontal curve routine for coor dinate geometry (COGO)
HC STOR INV	1186	Horizontal curve program Stores coordinate points (COGO) Finds the distance and azimuth
DUP		between two points Duplicates points (copies to other point numbers)
ANGL		Finds the angle subtended by two points about a third
LLI		Sets a point a given distance along a line defined by two other points
PART		Sets a point part way along a line defined by two other points
(XY)		Returns the difference in X and Y of two pts.
(FS) (FT)		Appends SQ' (square feet) to alpha Appends ' (feet) to alpha
DUMP		Dumps (lists) coordinates of desired points
OFPT		Finds the offset of a point from a line defined by two other points
OFAZ/OFBR		Finds the offset of a point from a line defined by a point and an azimuth/bearing
IAZ/IBR		Intersect two lines, each defined by a point and an azimuth/bearing
(SP) IPT		An internal routine to store points Intersect two lines, each defined
PRL		by two points Set two points defining a line parallel to a line defined by two other points
LAN		Set a point by backsight angle and distance
LAZ/LBR		Set a point by azimuth/bearing and distance
(BA)		Convert bearing (angle,quadrant) to azimuth
ADJ (P)		Adjust a traverse by compass rule Returns the coordinates of a point

ARCS	838	Intersect two arcs (distance distance)
APT		Intersect an arc with a line defined by two points
AAZ/ABR		Intersect an arc with a line defined by a point and an
(PM)		azimuth/bearing An internal routine used to choose between two possible solutions for arc routines
EXTAN/I	NTAN	Finds point of external/internal tangency for two circles
PTAN		Finds point of tangency of a line through a point to a circle
C3P		Circle through three points
ATRV		Traverse along an arc by arc
		distance
ATVA		Traverse along an arc by angle subtended
AFRC		Traverse along an arc, a fraction of its subtended angle
FREE		List of free (unused) point numbers
AREA	209	Finds the area bounded by
		coordinate points
(VC*)	868	"Port of entry" to v. c. routines
VC		Elevations along a vertical curve across a skewed,crowned or
		superelevated bridge deck
STA		Stations along a vertical curve at a given elevation
SCOL	385	Steel column analysis (axial only)
(SFa)	505	Steel column allowable stress
(Sra)		subroutine
POB		Coordinate geometry stationing
		along a line
		-

PAGE 2		
BWT	184	Reinforcing bar weight
DNI	104	calculation/summation
(S)	722	Set-up routine: SIZE check, title
(8)	/ 2 2	block, etc.
(AX)		Appends the integer part of the X
(AA)		register to ALPHA without disturb-
		ing the stack
())		Prompts for reinforcing stress
(N)		and concrete strength
(FC)		Prompts for concrete strength
(MC)		Figures concrete cracking moment
		and reinforcing
(U)		Calculates reinforcing by ultimate
		strength methods
(AS)		Displays area of steel
(IS)		Appends _SQ" (square inches) to
		contents of ALPHA register
(IN)		Appends " (inches) to ALPHA
(R)		Calculates minimum reinforcing
(K)		Appends "STRS=KSI" to ALPHA
(KS)		Appends "=KSI" to ALPHA
(M=)		Moment display
(FK)		Appends "_'K" (foot-kips) to ALPHA
(M)		Moment prompt routine
QUAD		Quadratic equation solution-prompts
		A, B, C
(Q)		Quadratic equation solution with C,
(B, A in stack
(L)		Short underline
(LL)		Long underline
(NO)		Appends "number" sign (#) to alpha
(L*)		Line of asterisks
(CL)		Long line of any user-input charac-
		ter or string
(BD)		Prompts for B" and D" (dimensions
		in inches)
(W)		WSD/LFD prompt and set-up routine
(AA)		AASHTO/ACI (AISC, NDS) display and
(AA)		set-up
(OV)		-
(OK)	600	Displays OK or NG (no good)
NEO	683	Elastomeric (neoprene) bearing pad
		analysis
WBM	663	Wood beam analysis
WCOL		Wood column and beam-column
(·		analysis
(WFC)		Wood compressive stress routine
PLG	1700	Plate girder analysis
(V)		Viewing subroutine
(PV)		Print-or-view subroutine
(SFb)		Unbraced-length bending stress
		subroutine

PAGE 3		
LFAN	1159	Ultimate strength (load factor) concrete beam analysis
Ic		Working stress concrete beam analysis
WSBM LFBM	713	Working stress concrete beam design Load factor concrete beam design
CORBL		WSD or LFD concrete corbel design
VST	260	Concrete shear design
(VS)		Concrete shear design subroutine
COMP	1449	Composite steel-concrete beam analysis
BM		I-beam section properties
(SBM)		I-beam section properties subroutine
(AY)		I-beam section properties subroutine
(FY)		Prompts steel yield stress
FIS	158	Decimal feet to Feet-Inches Sixteenths
FIS+		Feet-inches-sixteenths addition
FIS-		Feet-inches-sixteenths subtraction
FTd		Feet-inches-sixteenths to decimal feet
IP	185	Interpolation
ST		Storage register review
(RH)		Reinforcing ratio check
(/		Mornioloting rulio oncor

PAGE 4		
FTG	714	Footing analysis under biaxial
		loads
SHFTG		Short footing analysis program
YZ		Stack manipulation: Y<>Z
YT		Stack manipulation: Y<>T
ZT		Stack manipulation: Z<>T
RP		Rectangular-to-polar for flag 03
PR		Polar-to-rectangular for flag 03
FI	324	PPC ROM financial analysis program
SSS	463	Triangle gelution, side side side
	403	Triangle solution: side-side-
ASA		Triangle solution: angle-side-angle
SAA		Triangle solution: side-angle-angle
SAS		Triangle solution: side-angle-side
SSA		Triangle solution: side-side-angle
(Dd)		Display degrees according to flag
		03 convention
(Pd)		Prompt degrees by flag 03
PIER	789	AASHTO pier loads
352	459	Type 3S2 truck moment
353		Type 3S3 truck moment
Т4		Type T4 truck moment
Т3		Type T3 truck moment
251		Type 2S1 (HS20) truck moment
T2		Type T2 truck moment
co		Cosine function for flag 03
SI		Sine function for flag 03
TA		
ACO		Tangent function for flag 03
ASI		Arc-cosine for flag 03
		Arc-sine for flag 03
ATA		Arc-tan for flag 03
CV	364	PPC ROM curve-fitting program
BC		PPC ROM block register-clearing
		routine
SV		PPC ROM "solve" program for $F(x)=0$
SŚD	748	Stopping-sight-distance vert. curve
RW		Retaining wall loads
KJ	88	Reinf. concrete WSD constants K, J
\mathbf{LPT}		COGO: Locate by bearing thru points
PYR		Avg. area for truncated pyramid vol
P1	62	Append "(" to Alpha
P2		Append ")" to Alpha
PP		Append " -" to Alpha
MU		Append Greek letter mu (u) to Alpha
AT		Append "@" (at) to Alpha
AM		Append "&" (ampersand) to Alpha
		(amperbuik) to Arpita

FOREWORD

A few notes on the use of this module and its documentation:

Starting with the basics, most programs are accessed by keying XEQ, (alpha), "Program Title," (alpha); then just answer the prompts. Exceptions to this are noted in the individual program's documentation, and are usually one of two types: some programs require input with softkeys (e.g. HC, the horizontal curve program); and some are written to be used as functions or subroutines, requiring input in the stack or specified registers. Again, see the program's documentation. Do NOT use the ENTER key unless directed to by an upward arrow (\mathcal{A}) , which occur in prompts for multiple items of input (used mostly by the coordinate geometry routines); just key in the number and hit R/S. Although it was avoided as much as possible, some prompt sequences require values in the stack above the input value; hitting ENTER/ changes the necessary stack organization. Consult the program listings for more information.

SOFTKEYS

People who have used HP software on the HP-41, and especially on the HP-97, will notice a difference in the way softkeys are used in this module's programs. (Softkeys are the top two rows of keys, A-J, and the shifted top row, a-e, which in USER mode access local alpha labels (A-J and a-e) in the program the user is On the HP-97, input was accomplished by keying in in.) a number, pushing a softkey, keying in the next input, pushing another softkey, and so on. In most of these programs, instead, pressing a softkey brings the program to a given point in the input sequence; it brings up a prompt for the input rather than processing the (already keyed-in) input directly. This method was chosen because of the uncertainty of blindly pushing The tradeoff is that the softkeys are softkeys. slightly faster once gotten used to. Exceptions to this idea are programs HC, the PPC ROM routines FI and CV, and the "function" routines (CO, SI, FIS, etc.) Α few programs (SSD and the triangle solution routines) can be used either way.

<u>FLAGS</u>

The use and understanding of flags, especially flags 00 through 04 (hereinafter called "user flags") is essential to the operation of these programs. Please take the time to read the short section following on flags. If you don't know what flags are or how to use them, please consult your HP-41 Owner's Manual.

DISCLAIMER

Please read and understand the disclaimer on a preceding page. Using these programs and their documentation as a learning aid is fine; using them as a sole source of knowledge is not fine at all. And using them to replace engineering knowledge and judgement is criminal.

DOCUMENTATION

Documentation for most programs starts with an "overview" sheet detailing softkey and flag usage, SIZE requirements, and a brief explanation of input. This is intended as a review and reference sheet <u>once the</u> <u>user is familiar with the program</u>. To get familiar with the program, read the full documentation and worked examples which follow. For a really thorough knowledge of the program, consult the listing and stack trace. Documentation for programs which are intended for use as functions or subroutines may deviate from this standard.

SYNTHETIC PROGRAMMING

The user may notice a few unfamiliar symbols and commands in the program listings, prompts, and output. An understanding of these is not necessary to use the program, but for the curious, see the section "Synthetic Programming and Loose Ends."

THE PROBLEM with COMPUTERS

Finally, a plug. Studies of people using computers have noted four major problems. First, many people panic when first using new programs or machines. Second, many people, even experienced users, feel a loss of control. The computer often seems to be running things; the user can see no flow of progress in a task, cannot change his or her mind, and is shown no mercy for input mistakes. Third, there is often com-placency on the part of the user over the quality of the work being done because of boredom and the feeling that the computer is doing the work while the user only tends the machine. And fourth, there is a loss of ability to do the work "the old-fashioned way", by hand, due to simple loss of practice. These problems have had an influence on the writing of this module; the programs have been written to help engineers solve problems, not to do it for them. An attempt was made to keep the user informed of the flow of the solution through the display of intermediate results as in hand calculations, and by the use of units on most prompts and output. The user has control of the programs through the simple power of the R/S key to stop an errant run, and softkey-accessible prompt sequences to

correct and restart it. Hopefully the combination of units on prompts and output, the documentation, worked example calculations, and stack-traced program listings will work to eliminate most of the confusion and keep the user abreast of the method of solution. And almost any program (with the exception of AX, AY, and the neutral axis iteration portion of WSBM) can be traced by single-stepping through it.

<u>Flags</u>

Of the fifty-six flags in the HP-41 operating system, only the first thirty or so are accessible to the user. Of these, flags 11 through 17 and 21 through 29 have specific meanings or functions in certain situations or with certain peripherals, and flags 18 through 20 may have on future peripherals. Flags 00 through 10 are reserved for use in users' programs; flags 18 through 20 can usually also be used.

"USER" FLAGS

The status of flags 00 through 04 is always shown in the display; for this reason these flags are used by this module as mode-control or "User" flags. Typically the user will set these as desired and then pretty much leave them alone, just verifying their status at the beginning of each run. The programs in this module refer to flags 00 through 04 constantly but <u>they never</u> <u>change these flags.</u> However, other programs (either plug-in modules or the user's programs) may alter them, so they should be checked at each use. The modes controlled by these flags are:

Flag 00	clear	Full output, with intermediate results
	set	Shortened format to save time
Flag 01	clear	Coord. geometry programs use North, East
	set	Coordinate geometry programs use X, Y
Flag 02	clear	BEEP and TONEs (e.g. warnings) disabled in subroutine "S"
	set	BEEP and TONEs enabled
Flag 03	clear	Geometry programs use angles in decimal degrees (dd)
	set	Geometry programs use Degrees-Minutes-Seconds (DMS)
Flag 04	clear	Structural programs follow AASHTO
	set	Structural programs follow ACI/AISC/NDS

Flags 05 through 10, 14, 18 through 22, 25 through 27, and 29 are used by many of the programs. These flags are set and cleared as needed by the programs; the user does not need to worry about their status (with the exception of flags 21 and 25--see below) as the programs control it. Flag 14 is used for just one

thing by this module, and flags 06 and 07 are usually used for only one purpose. Flags 21 through 27 and 29 are used for their stated purpose as given in the HP-41 Owner's Handbook. For the convenience of users trying to trace a program, their functions are:

Flag 06	clear set	WSD (Working Stress Design) LFD (Load Factor or Ultimate Strength Design methods)
Flag 07	clear set	"OK" in routine OK "NG" (no good) in routine OK
Flag 14	clear set	Functions L and LL print a line () L and LL print a line of asterisks (***)

Note that flag 14 also has the function of controlling card-reader over-write. As used by these programs it is cleared almost immediately after being set. However, if a card reader is being used there is a risk if the user single-steps through the SF 14 command but stops before the FS?C 14 command which clears it a few steps later.

Flag 21	Set in subroutine S to control the display (stops at AVIEW). If calculator is turned off and then back on again, flag 21 must be set manually to resume without XEQ'ing the program from the beginning. If there is a printer con- nected and on, this can be
	nected and on, this can be neglected.

- Flag 22 clear There has been no numeric input since cleared set There has been numeric input
 - Flag 25 Normal operation clear Error ignore-clear as soon as set not needed Flag 26 BEEP and TONEs disabled clear BEEP and TONEs enabled set Flag 27 clear Normal mode USER mode-softkeys and key set assignments active Flag 29 clear Commas and decimal points not displayed Commas and decimal points are set

displayed

SYNTHETIC PROGRAMMING AND OTHER LOOSE ENDS

This section will try to explain some of the mysteries of the programming in this package, and pull a few odds and ends of the module together. It probably should have been called "Loose Ends and Synthetic Programming", because the loose ends will be attempted first.

"BYPASSING" A PROMPT

First, a word used often in the documentation: "bypass." To bypass a prompt means to press the R/S (run/stop) key and thus continue without keying in a number or answering a prompt. Many prompts have default values which are used if the prompt is bypassed; consult the "Input Summary" section of each program's documentation. To check the default, backarrow the prompt. R/S may still be pressed to continue.

YES/NO PROMPTS

Most prompts in these programs ask for numerical input; some, however, require a "yes" or "no" answer to a question. This is explained in each program's Input Summary section. These programs use a simple convention: key in 1 for "yes", 0 (zero) for "no".

NUMERIC INPUT

When keying in a number in response to a prompt, simply key it in and press R/S (or the appropriate softkey for a few programs, e.g. HC and SSD). Do <u>not</u> use the Enter/ key unless directed to by an upward arrow (\checkmark) in the prompt. Although it was avoided as much as possible, some input sequences require values in the stack above the input; hitting Enter \checkmark alters this stack organization. The coordinate geometry programs typically require multiple input; a tradeoff was made for increased speed and convenience at the cost of increased concentration needed to avoid errors.

SOFTKEYS

Softkeys are the top two rows of keys, and the top row shifted, <u>when USER mode is on</u>. These are labelled A through J and a through e; When pressed (in USER mode), they try to find and execute a label of the same letter within the program that the calculator is currently set to. In order to use these keys, it is useful to understand the hierarchy the calculator follows when a softkey is pressed. First, it checks to see if a function or program has been assigned to the key. If not, the calculator looks for the corresponding local alpha label within the current program. If it finds the label it starts running the program there; if not it executes the function that the key would have executed right away if not in USER mode. If the key wasn't a softkey, the second step is skipped. To summarize:

- 1) Key assignment
- 2) Local alpha label
- 3) Native function

There are a couple of things to be learned from this long-winded discussion. One, it's not a good idea to assign functions or programs to the top two rows of keys because they can't function as softkeys; and two, if trying to execute a native function in USER mode, the search process is maddeningly slow. Turn off USER or assign the function to its own key (yes, contradictions).

LABELS

Having explained everything there is to know about softkey hierarchy, on to labels. Labels too have a hierarchy, easy to remember: CAT 1, CAT 2, CAT 3. When the user executes a label from the keyboard (i.e. by spelling it out), the calculator looks for it first in Catalog 1 (user-written programs), then Catalog 2 (programs in ROM, such as this module), then Catalog 3 (native HP-41 functions). This is useful because a program can be copied down into Main Memory (RAM) from ROM and tailored to the user's wishes (needless to say, at some risk of introducing bugs). Then when executed, the calculator finds and runs the altered version in RAM rather than its predecessor in ROM. It also means that a program in either RAM or ROM can have the same label as a native function, and still be found and executed.

INITIALIZATION SUBROUTINE "S"

Most of the programs use subroutine "S" to initialize the calculator. Among other things, it sets flag 21 for display control, checks the SIZE required, sets flag 26 according to the status of flag 02 to silence or enable BEEPs, and sets the trig mode to DEG. If a printer is attached, "S" also prints a header with the time and date (if a Time Module is present) and gives the opportunity to print a title, which is limited to 24 characters. The time/date line works best with the display set to FIX 4 or less. For keying the title, "S" turns Alpha mode on and then off again; simply key in the title and press R/S. The title may, of course, be bypassed.

XROM vs. XEQ

There may be some confusion about the appearance of XROM instead of XEQ in program listings. XROM means "execute from ROM" (Read Only Memory, i.e. plug-in modules). Many of the programs in this module may be used as subroutines in users' programs. They are entered into a program using the XEQ key, just as for a native HP-41 function or a user-written subroutine. The label type can be told by how it looks in a program listing:

23	COS	Execute native HP-41 Cosine function
24	XEQ "COS"	Execute user program COS from Main Memory
25	XROM "COS"	Execute program COS from ROM

Some program listings in this documentation contain both XEQ and XROM statements. This is due to the revision process; XEQ statements have been revised since the first version of this software was published. However, all these (printed) global XEQ statements were changed during the module manufacturing process and should now (hopefully) list as XROM.

LOGIC SEQUENCES

Another confusing thing which pops up frequently in these programs is the use of double and triple logic sequences. These are used for the conditionals "if A <u>or B then...</u>" or "if A <u>and B then...</u>" For example, to jump to label 14 if either flag 06 or 08 is set, the sequence is:

26	FC?	06	Oppos	site	of	test	Α	(Not	A)
27	FS?	08	Test	В					-
28	GTO	14							

To do an "and" test requires a third conditional which <u>must never be true.</u> FS? 53 is often used since it always tests clear; if it is certain that the number in X is positive, for example, the conditional X<0? can be used, saving a byte of memory. For example, to jump to label 14 only if flags 06 and 08 are both set:

29	FS? 06	Test A
30	FC? 08	Opposite of test B (Not B)
31	FS? 53	Always false
32	GTO 14	

"SIGN" FUNCTION

Many of these programs use the HP-41 function SIGN, a relatively little-known function. Its main usefulness lies in the fact that it stores the previous contents of X in LastX. It does this faster than most other functions, and uses only one byte.

"PRGM" ANNUNCIATOR

During long program runs with a printer attached, the message or output last displayed will remain in the display instead of being replaced by the "flying goose." However, the PRGM annunciator stays on to verify that the program is running. If this does not happen, the message is a prompt and the program is expecting input.

SYNTHETIC PROGRAMMING

The rest of this article deals with a subject that has come to be called "synthetic programming." Synthetic programming is a collection of techniques that allow the user to synthesize non-standard commands and display characters, and to access and manipulate storage registers normally not available to the user.

SHORT-FORM EXPONENTS

First, short-form exponents. A number such as 1000 may be keyed into a program as 1 E3, saving one byte of memory. However, the leading "1" is not needed. Removing it with synthetic programming methods results in the program line E3, which still means 1000 but now takes only two bytes and also executes faster. Similarly, 100 can be programmed as E2, 10 as E1, and 0.001 as E-1. Also, 1 can be represented by E0 or just The replacements for 1 and 10 don't save any bytes; Ε. however, they do execute faster. Zero can also be represented by a lone decimal point. Again, this (nonsynthetic) representation saves no program space but is faster. To demonstrate any of these, just single-step through them.

<u>NOP's</u>

The conditionals DSE and ISG are often useful as simple decrement/increment functions. To achieve this, these commands are followed with a command which does nothing, or at least nothing harmful. These nooperation (NOP) commands are often short-form local labels or a STO X command. However, the only true NOP which has no effect and also takes only one byte (STO X takes two) is a synthetic command called Text-0. Text strings all have headers which tell the length of the string to follow. A Text-0 command is a header for an alpha string of length zero (it even sounds useless). It prints as " "; it displays as a superscript T (text symbol) with nothing after it.

NON-STANDARD SYMBOLS

The prompts and output descriptors use a few symbols not available on a standard HP-41. These include foot and inch tics (',"), the "number" hash-mark symbol (#), and parenthesis. Some of these have been made available to the non-synthetic programmer through labels FT, IN, NO, and others; these labels simply append the symbol to whatever is in the alpha register. Using these labels actually takes one less byte than the actual synthetic append they execute, although it is a little slower. The HP-41 also has available to its display several other symbols which were not thusly made available but which can be used by anyone willing to learn synthetic programming: brackets [], the Greek symbol lambda (sort of), and an exclamation point. If you don't mind a messy display, there are many symbols which display as a starburst but which print as themselves: nearly the entire Greek alphabet, our lower-case alphabet, as well as many other characters.

SYNTHETIC STORAGE REGISTERS

One of the most useful things available through Synthetic Programming is the ability to access a number of the calculator's internal storage registers for use (within certain strict limitations) as regular storage registers, or to control certain aspects of the machine's behavior. These registers are located at the bottom end (i.e. they have the lowest-numbered addresses) of the calculator's memory. These first registers have been given the name "Status Registers" because their contents are recorded by the card-reader function WSTS. Starting from the bottom, the Status Registers and their functions are as follows:

T Z Y X L		Stack and Last X
M or [N or \ O or] P or /		Alpha register
Q F		Printer use,internal "scratch" Unshifted key assignments
a b]	Subroutine RTN chain and current line number
C d e		Cold start constant, "curtain" Flag register Shifted key assignments

The first five are the stack and LastX registers, and are accessible through normal means. Synthetic programming is not needed to use these.

Next comes the Alpha "register", actually four registers of seven bytes each. Under usual conditions the Alpha register is 24 bytes long; the last four bytes of P are used for other things by the calculator. Because of this, register P has some very confining limitations on it and finds only infrequent use; see the next paragraph. However, registers M, N, and O have no such limitations; the only caution regarding their use is that any text introduced into Alpha, by the program or the user, wipes out the data stored in these registers. They are therefore well suited to carrying intermediate constants needed only in calculations leading up to a given item of output.

Data stored in register P is altered by, among other things, number entry (but <u>not</u> RCL), any operation that causes a number to be displayed, and SST'ing (singlestepping) through a program. Thus, the few programs which use register P (AX, the Trig functions, AY, and the neutral-axis iteration portion of WSBM) cannot be single-stepped through. If you want to trace through any of these, either put a STOP after the area and R/Sto get through it, or copy the program down into main memory and change command using register P to one using a numbered storage register.

The next two registers, Q and \vdash , are used too frequently by the calculator to be of much outside use. Register Q is used occasionally by some advanced synthetic programmers, but it does not appear in these programs.

Registers a and b are the line number and subroutine RTN chain registers. Register b contains the current line number and the first two and a half return addresses pending; register a contains the next three and a half return addresses. Each address, as may be guessed, is two bytes long. Every time a program comes to a RTN, these two registers shift two bytes, and the first RTN address pending becomes the current line number. Register a may thus be used if no XEQ's or RTN's are met and if the subroutine return depth does not exceed two. If an XEQ or RTN occurs, the data in registers a and b is shifted two bytes left or right, trashing the data. Even if it is shifted back by the opposite function, the data is altered. If the program has more than two RTN's pending, there is a worse problem: part of your data gets used for a return address, sending the calculator off into another dimension. The program pointer usually ends up somewhere in the key assignment registers and tries to interpret your key assignments as program steps. (If this happens, press CAT 1 to get back home, then fix the

problem before it happens again.)

Register c contains two important pieces of information: the location of the "curtain", the divider between data and program storage; and a number called the "cold-start constant." When the calculator is turned on, and at certain other times, this number is checked by the processor. If it is anything other than the expected constant, the processor thinks something terrible has happened and panics. MEMORY LOST results. Register c is not used by any of these programs.

Register d contains all the system and user flags, 00-55. An HP-41 register is 7 bytes of 8 bits each; each flag is one bit. A number of things are controlled by different flags: the display setting (FIX, SCI, or ENG, and the number of places displayed), the trigonometric mode (DEG, RAD or GRAD), many print and display functions, and other things. Register d is used in these programs mostly in subroutine AX ("Append X"), which recalls d, changes display setting to FIX 0, clears flag 29 (thus getting rid of the decimal point), appends a number to Alpha using this display configuration, and then returns the display to its former status by re-storing to register d the value previously recalled.

The last Status Register is register e, which contains the shifted key assignments. Like register \vdash , e is not used by any of the programs in this package.

REFERENCES

There are several reference books available on the HP-41 in general and Synthetic Programming in particular. The two best are:

EXTEND YOUR HP-41 by W. Meir-Jedrzejowicz, and HP-41 SYNTHETIC PROGRAMMING MADE EASY by Keith Jarett

Both are available from EduCALC Mail Store, 27953 Cabot Road Laguna Niguel, CA 92677

GEOMETRY PROGRAMS

BRIDGE DECK VERTICAL CURVE ELEVATIONS

SOFTKEYS (USER mode ON)

- c Input new crown information; same as C for profile grade calculations (# OFSTS = 0)
- d Input new offsets; same as C for profile grade calc's
- e Change base (P.I.) elevation (e.g. for beam seat elev.)
- C New INTERV or STA prompt; access VC from STA
- E Access STA from VC once curve parameters are input

USER FLAGS

Flag 00	clear set	Full output Output of M and HI/LO point skipped; STA display skipped if using INTERV
Flag 02	clear set	Warning BEEP disabled Warning BEEP enabled (used if STA finds OFF CURVE error)
Flag 03	clear set	VC prompts SKEW in decimal degrees VC prompts SKEW in D.MS (for # OFSTS not zero)

INPUT SUMMARY

<u>Prompt</u> # OFSTS	<u>Input</u> Number of offsets from center- line, for figuring SIZE needed	<u>Default</u> Zero(P.G.)
STA PI	Station of the PVI, in feet	No default
EL PI	Elevation of the PVI, in feet	No default
VC L'	Vertical curve length, in feet	No default

Prompt SL1%	<u>Input</u> Slope or grade of the back (left) tangent, in percent	<u>Default</u> No default
SL2% (only if VC L' is not 0)	Slope or grade of the forward (right) tangent, in percent	SL1%
<u>Note:</u> prompts in (number of offsets)	parenthesis do not appear if t prompt was answered zero or bypass	he # OFSTS ed.
(SKEW)	Skew of the line across a bridge deck (a "square" bridge has 0 ⁰ ske	No default w)
(CRN1'/')	Slope of the crown from the centerline to a "break" point, in feet per foot. Bypass to enter crown drops (CRN DROP) directly for each offset.	Zero
(TO:)	Distance of the break point from centerline, in feet	12
(CRN2'/')	Slope of the crown from the break point out, in feet per foot	0.020
(OFFSET#1', etc.)	Offset of a desired line from CL in feet (e.g. a beam line)	Zero
(CRN DROP 1, etc.)	Crown drop to the desired line from profile grade; a rise is negative. Only used if CRN1 was input as zero	No default
INTERV	Station interval at which to calculate elevations, in feet	Previous INTERV
STA or POB STA	Station at which to calculate or begin calculating elevations (in feet: 28+50.00 is input 2850)	No default
EL CH (from softkey e)	Change in baseline elevation; up is positive, down is negative	No default
	ems in parenthesis are displayed onl s clear)	y if flag
(M)	The middle ordinate, in feet	
(HI/LO @)	The station of the high or low poi exists	nt, if one
(EL)	The elevation of the high or low p	ooint

2

(B2)

L1, L2, etc.	The elevation at offset #1, etc., on the left side of centerline
CL EL	The elevation at centerline
R1, R2, etc.	The elevation at offset #1 on the right side of centerline

PROGRAM FLAGS

Flag 05	clear set	On or tangent to a vertical curve VC L' = 0 (tangentno vertical curve)
Flag 06	clear set	High or low point exists; two stations for a given elevation No high or low point; one station for a given elevation
Flag 07	clear set	Left-ahead skew (positive value) Right-ahead skew (negative value)
Flag 08	clear set	Profile grade only Full bridge deck with offsets
Flag 09	clear set	VC STA
Flag 10	clear set	Have crown slope information Have individual crown drop points
Flag 11	clear set	Normal use Portions used as subroutines
Flag 18	clear set	Skewedfigure both sides of crown Crowned with O ^O skew, so only figure one side of crown
Flag 19	clear set	Station is on a vertical curve Station is on a tangent

STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> Sta. PI	
01	SL1%	
02	SL2%	
03	Sta. BVC	
04	r/200	$(r=g_2-g_1/L)$
05	Sta. EVC	

63

<u>Register</u> 06	<u>Value</u> Interval
07	El. BVC
08	Input station
09	El. PI

Note: the following registers are not used if only profile grade calculations are being done (i.e. # OFSTS was answered zero).

10	Crown drop			
11	tan (skew)			
12	Crown break point			
13	Crown2 - Crown1			
14	Crownl			
15	Counter			
16	Offset at centerline (zero)			
17	Offset #1			
18	Offset #2			
19	Offset #3			
20	Offset #4			
21	Offset #5			
22	Offset #6			
23	Offset #7/Crown drop #1			
24	Offset #8/Crown drop #2			
	etc.			

VERTICAL CURVE SOLUTIONS for ELEVATION

Programs VC and STA solve parabolic, symmetrical (equal-tangent) vertical curves. Both programs work on a single vertical curve and the tangent on either end (assumed to extend indefinitely). They both require input of the PI (point of vertical intersection) station and elevation, the back and forward grades, and the vertical curve length. <u>Stations are expressed in feet, without the "+"; grades are in percent.</u> See the examples for clarification.

VC calculates either the elevation of a given station on the profile grade; or, elevations at specified offsets on a crowned section along a line at a given skew to centerline. It prompts first for an interval, INTERV, on which to figure elevations (typically 50 or 100 feet). If this prompt is answered, the program prompts POB STA (beginning station) and then figures elevations at every interval, displaying the station and its elevation. If the INTERV prompt is bypassed, VC prompts repeatedly for stations (STA) at which to find the elevation. Softkey C accesses these prompts.

Typical applications of VC might be elevations of beam lines on a bridge deck, or gutter and curb lines along a street. For multiple elevations along a line at a given station, in addition to the basic vertical curve data mentioned above, VC requires the number of offsets to be calculated, the skew, crown configuration (see page 3), and the offsets desired. It then calculates the elevations at all the offsets on the left side of centerline, the centerline elevation, and then the elevations on the right side. For a crowned deck with a zero-degree skew, only one side is calculated since the crown is assumed symmetrical.

INPUT DETAILS

"Stations" are input and output in feet. For example, if the PI is at station 28+50.00, answer the STA PI prompt with 2850. Length of vertical curve (VC L') is also in feet.

Tangent grades are input in percent, as mentioned, while crown cross-slopes are input in feet per foot. Don't waste a lot of time looking for a good reason for this discrepancy; there isn't one.

Once the required data is input, VC will either prompt for a beginning station and an interval, or will prompt repeatedly for the station (STA) at which to calculate the elevation or elevations. If the interval prompt (INTERV) is answered with a non-zero number (let's say, 50) the program will ask for the beginning station (POB STA), and then will figure elevations at fifty-foot intervals from there, displaying first the station and then the elevation or elevations. It will continue doing this until it is stopped; if printing, press R/S to stop it. Then, in USER mode, press softkey C. (If the X key has something assigned to it, key GTO (alpha) C (alpha) instead.) This gets you back to the INTERV prompt.

If the INTERV prompt is bypassed (or answered zero) the programs repeatedly prompt for the station (STA) at which to find an elevation.

ELEVATIONS on TANGENT

If a point is off the vertical curve, VC will append a warning, (T), that the point is on the tangent rather than on the curve. The elevation is figured correctly; the warning is simply a reminder to verify that you're still working on the tangent and not on a preceding or following curve. This is especially important when using VC on sharply skewed bridges; the stations of the offset points are never explicitly displayed, and corners (or ends of long wingwalls) may encroach on a closely preceding or following curve.

If the area you're interested in is entirely on a tangent, input a vertical curve length of zero. The program will only prompt for one grade and the (T) warning will not be displayed, saving annoying display-scrolling time.

ADDITIONAL PARAMETERS CALCULATED

After input of the basic vertical curve parameters (PI station and elevation, grades, and length) the program calculates M (the middle ordinate), and, if there is one (if the grades are of opposite sign), the high or low point station and elevation. If this information is not wanted and you wish to speed execution, set flag 00 and it will not be displayed.

<u>SKEW</u>

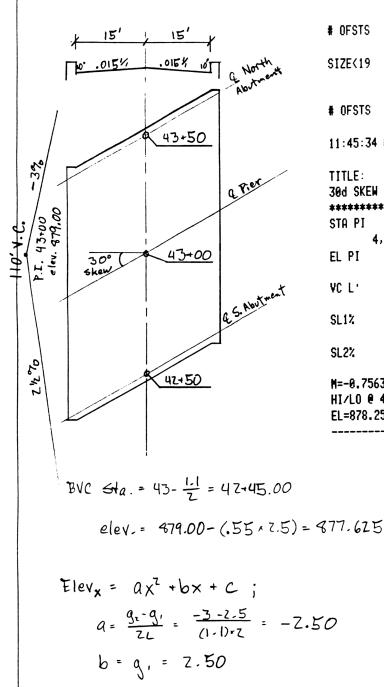
In keeping with the standard flag usage of this package, program VC prompts for skew in either decimal degrees (dd) or degrees-minutes-seconds (DMS) depending on whether flag 03 is clear or set. A right-handforward skew is defined as negative; a LHF skew is defined as positive. Skews are measured from a line <u>normal</u> to CL Roadway; see the examples.

CROWNS

Crowns are defined by the slope from the centerline to a break point at a user-defined offset, and another slope from the break point on out. Unlike the tangent slopes, which are input in percent, the crown slopes are input in feet per foot per standard practice; see the examples for clarification. <u>Crowns are assumed to be symmetrical about centerline</u>. After the crown information is input, VC asks for offsets (any number can be stored) from the centerline (assumed measured normal to the centerline); these are usually input from the centerline on out, but they need not be in any order.

CROWN "DROP"

If a section is not easily described by a sloping crown, the program offers the option of directly inputting the drop from the profile. Answering the CRN1 (crown one, the slope from centerline to the break point) prompt with zero, or bypassing the prompt, directs the program to prompt for a crown drop in feet after each offset prompt. If the point is above the profile grade (e.g. a curb) the crown drop will be a negative number. When the CRN DROP feature is used, only six offsets can be stored because CRN DROP 1 is stored in the seventh offset's register. Because of this overlap, the size checker at the beginning of the program doesn't work. The minimum SIZE required is (23 + number of offsets), and the user must verify before starting that there are enough storage registers available. Since the maximum number of offsets is six with this feature, a SIZE of at least 029 will always work.


OUTPUT

If the calculator is shut off during a run, and then turned on again and restarted by pressing R/S or a softkey, flags 18 and 19 are cleared. This may affect the (T) warning and the displaying of only one side of a deck for 0° skew, but the numbers are correct. See the "Program Flags" section.

ELEVATION CHANGE

If the user needs to subtract a distance from each elevation, the program can do it directly. Softkey e brings up the prompt EL CH (elevation change). It adds this number to the P.I. elevation (and BVC and EVC elevations) stored at the beginning of the run. Thus, if VC was being used to calculate bridge deck elevations and the user now wants to calculate beam seat elevations (e.g. for a superstructure height of 5.90 feet), press softkey e, answer the prompt with -5.90 (5.90, chs), and press R/S. This feature works with both VC and STA.

VC" - Bridge Deck Elevations

2.0000 RUN SIZE 019 XEQ -VC-RUN 2.0000 11:45:34 AM 12/22/88 RUN 30d SKEW BRIDGE **** 4,300.0000 RUN 879.0000 RUN 110.0000 RUN RUN 2.5000 -3.0000 RUN M=-0.7563 HI/LO @ 4,295.0000 EL=878.2500

XEQ -VC-

L2 EL=876.0348(T)

Find elevations @ Earl Offsets of 7.5' and 15' along & South Abutment; * = off V.C.

				•			
	OFFSET	* Tan (30°)	STATION	ELEV,	CROWN	ELEV.	
	15' Left 7.5' Left	- 4.6603 - 4.3301	42+41.3397* 42+45.6699	477.5335 477,641 6	.225 ' .1125'	877,3085 877,5291	
	Ę	0	42+50	\$77,7 434	0	477. 7 438	
64	7.5' Right 15' Right	4.3301 8.6603	42+54.3301 42+58.6603	477.4365 477.9199	.1125 .225'	4 77.7240 4 77.6949	

Use same vertical curve and bridge deck; find elevations with CRN DROP.
Curb height = 10"
21070 - 3.0 %
Sta. PI = 43=00.00 E1. PI = 879.00 V.C. = 110.0'
Crown drops
7.5'*.015' = .1125' 15'*.015' = .225' 15'*.015'-(10'/12) =6083'
XEQ -VC- # OFSTS 3.0000 RUN
10:29:01 AM 12/27/88
TITLE: BRIDGE DECK RUN ********
STA PI 4,300.0000 RUN
EL PI 879.0000 RUN
VC L' 110.0000 RUN
SL1% 2.5000 RUN
SL2% -3.0000 RUN
M=−0.7563 HI/LO @ 4,295.0000 EL=878.2500
SKEW: L+,R- (dd) -30.0000 RUN
CRN1://
OFFSET#1 7.5000 RUN CRN DROP 1

.1125

RUN

OFF:	SET#2			
			.0000	RUN
CRN	DROP			.
			.2250	RUN
OFFS	SET#3			
			. 0000	RUN
CKN	DROP		7007	RUN
****				KUN ******
INTE			*****	******
1011	- 11	59	. 0000	RUN
POB	STA	00		
		250	. 0000	RUN
	4,250			
	EL=83			
	EL=87)
	EL=87			
	EL=877			
	EL=87			
	EL=87			
R3	EL=87	78.5	282	
		-		
	4,300			
13	EL=87 EL=87	78.8	550	
L2	EL=87	18.02	217	
	EL=878			
	EL=878			
	EL=87			
R2 07	EL=87	78 8	116	
		-	110	
STA	4,356	8.00	90:	
	EL=87			
	EL=87			
L1	EL=87	7.49	956	
CL E	L=877	7.493	38	
	EL=87			
	EL=87			
R3	EL=87	77.84	185 (T)
		•		
	4,400			
	EL=87 EL=87			
	EL=87			
	EL=876			/
	EL=87)
	EL=87			
	EL=87			
			.0011	,
STA	4,458	.000	30 :	

B9

~

_

$\frac{F_{11}d + he \ elevation \ @ \ 64a. \ 72 + 00}{Y_{4}}$ $F_{11}d + he \ elevation \ @ \ 64a. \ 72 + 00}$ $F_{VI} = 2^{0}$	Profile Grade Calculation	
$\frac{1}{2} \frac{1}{2} \frac{1}$	Find the elevation @ Sta. 72+00	*
PVI 2% f_{NI} 73+25.00 Elev. 433.14 BVC $f_{2} = 70 + 25.00$ Elev. = E1.PVI - $\frac{1}{2} \cdot G_1$ = 433.14 - (3)*(-4.5) = 446.64 EVC $f_{2} = 76 + 25.00$ Elev. + E1.PVI + $\frac{1}{2} \cdot G_2 = 439.14$ Elev. = $a \times^2 + b \times + c$: $a = \frac{9x - 9y}{2L} = \frac{2 - (-4\frac{1}{2})}{2 \times 6} = .5417$ b = 9y = -4.50 c = elev.BVC = 446.64 Elev. @ $f_{2} = .5417 (1.75)^2 - 4.50 \cdot 1.75 = .446.64$ Elev. = $.5417 (1.75)^2 - 4.50 \cdot 1.75 = .446.64$ = 440.42.39 $M = \frac{9x - 9y}{2L} \cdot (\frac{1}{2})^2 = \frac{(9x - 9y)L}{2}$ $= \frac{(2 - (-4.5))\cdot 6}{4} = 4.475'$ Low PL $f_{3} = 72 + 92 = 0$	-410 600' V.C.	
Elev. 433.14 Elev. 433.14 Elev. 433.14 Elev. = T0+Z5.00 Elev. = EI.PVI - $\frac{L}{2} \cdot G_1$ = 433.14 - (3)*(-4.5) = 446.64 EVC 6ta. = 76+Z5.00 Elev. + EI.PVI + $\frac{L}{2} \cdot G_2$ = 439.14 Elev. = $a \times^2 + b \times + c$: $a = \frac{g_2 - g_1}{2L} = \frac{2 - (-4k_1)}{2 \cdot 6} = .5417$ $b = g_1 = -4.50$ c = elev.EVC = 446.64 Elev. @ 6ta. 72+00 : $x = 72 - 70.25 = 1.75$ Elev. = $.5417 (1.75)^2 - 4.50 \cdot 1.75 - 446.64$ = 440.4239 $M = \frac{g_2 - g_1}{2L} \cdot (\frac{L}{2})^2 = \frac{(g_1 - g_1)L}{2}$ $= \frac{(2 - (-4.5))(6}{4} = 4.475'$ Low Pi. 6ta. : $Za \times + b = 0$ $\frac{2(g_2 - g_1)}{2L} \times + g_1 = 0$	PVI	E *
First Star. = 10+25.00 Elev. = EI.PVI - $\frac{1}{2} \cdot G_1$ = 433.14 - (3) 1(-4.5) = 446.64 EVC Star. = 76+25.00 Elev. = EI.PVI + $\frac{1}{2} \cdot G_2 = 439.14$ Elev. = $a \times^2 + b \times + c$: $a = \frac{9z - 9_1}{2L} = \frac{2 - (-4k_1)}{2 \cdot 6} = .5417$ $b = 9_1 = -4.50$ c = elev. BVC = 446.64 Elev. @ Star. 72+00 : $x = 72 - 70.75 = 1.75$ Elev. = $.5417 (1.75)^2 - 4.50 \cdot 1.75 - 446.64$ = 440.4239 $M = \frac{9z - 9_1}{2L} \cdot (\frac{1}{2})^2 = \frac{(9z - 9_1)L}{8}$ $= \frac{(2 - (-4.5)) \cdot 6}{4} = 4.475'$ Low PI. Star. : $Za \times + b = 0$ $\frac{2(9z - 9_1)}{2L} \times + 9_1 = 0$		
Elev. = EI.PVI - $\frac{1}{2} \cdot G_1$ = 433.14 - (3)*(-4.5) = 446.64 EVC Sta. = 76+25.00 Elev. = EI.PVI + $\frac{1}{2} \cdot G_2$ = 439.14 Elev. = $a \times^2 + b \times + c$: $a = \frac{g_2 - g_1}{2L} = \frac{2 - (-4\frac{h_2}{2})}{2 \cdot 6} = .5417$ $b = g_1 = -4.50$ c = elev.BVC = 446.64 Elev. @ Sta. 72+00 : $x = 72 - 70.25 = 1.75$ Elev. = $.5417 (1.75)^2 - 4.50 \cdot 1.75 - 446.64$ = 440.4239 $M = \frac{g_2 - g_1}{2L} \cdot (\frac{L}{2})^2 = \frac{(g_1 - g_1)L}{3}$ $= \frac{(2 - (-4.5)) \cdot 6}{4} = 4.475'$ Low PI. Sta. : $Za \times + b = 0$ $\frac{2(g_2 - g_1)}{2L} \times (g_1 = 0$	BVC Sta. = 70+25.00	¥
= 433.14 - (3)*(-4.5) = 446.64 EVC Sta. = 76+25.00 Elev. = EI.PVI + $\frac{1}{2} \times G_2 = 439.14$ Elev. = $a \times^2 + b \times + c$: $a = \frac{g_2 - g_1}{2L} = \frac{2 - (-4\frac{t_2}{2})}{2 \times 6} = .5417$ $b = g_1 = -4.50$ c = elev. BVC = 446.64 Elev. = $.5417 (1.75)^2 - 4.50 \cdot 1.75 + 446.64$ = 440.42.39 $M = \frac{g_2 - g_1}{2L} \times (\frac{t_2}{2})^2 = \frac{(g_2 - g_1)L}{2}$ $= \frac{(2 - (-4.5)) \cdot 6}{4} = 4.475'$ Low PL Sta. : $Za \times + b = 0$ $\frac{Z(g_2 - g_1)}{2L} \times + g_1 = 0$	Eler. = ELPVI - E, G,	
EVEL STAL = $16 + 25.00$ Elev. = EI.PNI + $\frac{1}{2} \times G_2 = 439.14$ Elev. = $a \times^2 + b \times + c$: $a = \frac{g_1 - g_1}{2L} = \frac{2 - (-4\frac{h}{2})}{2 \times 6} = .5417$ $b = g_1 = -4.50$ c = e e v. BNC = 446.64 Elev. @ Sta. 72+00 : $x = 72 - 70.25 = 1.75$ Elev. = $.5417 (1.75)^2 - 4.50 \times 1.75 + 446.64$ = 440.4239 $M = \frac{g_2 - g_1}{2L} \times (\frac{1}{2})^2 = \frac{(g_1 - g_1)L}{2}$ $= \frac{(2 - (-4.5)) \times 6}{4} = 4.475'$ Low PL Sta. : $Za \times + b = 0$ $\frac{2(g_2 - g_1)}{2L} \times + g_1 = 0$	= 433.14 - (3)*(-4.5) = 446.64	H
Elev. = $a x^{2} + bx + c$: $a = \frac{g_{z} - g_{1}}{2L} = \frac{z - (-4k)}{z + 6} = .5417$ $b = g_{1} = -4.50$ c = elev.BVC = 446.64 Elev. @ Sta. 7z + 00 : $x = 72 - 70.25 = 1.75$ Elev. = .5417 (1.75) ² - 4.50 + 1.75 + 446.64 = 440.4239 $M = \frac{g_{z} - g_{1}}{2L} \times (\frac{t}{2})^{2} = \frac{(g_{1} - g_{1})L}{2}$ $= \frac{(z - (-4.5))(6)}{4} = 4.475'$ Low Pl. Sta. : $Za \times b = 0$ $\frac{z(g_{z} - g_{1})}{ZL} \times + g_{1} = 0$		
Elev. = $a x^{2} + bx + c$: $a = \frac{g_{z} - g_{1}}{2L} = \frac{2 - (-4b)}{2 \times 6} = .5417$ $b = g_{1} = -4.50$ c = e e v. B v c = 446.64 Elev. @ Sta. 72+00: $x = 72 - 70.25 = 1.75$ Elev. = $.5417 (1.75)^{2} - 4.50 \cdot 1.75 + 446.64$ = 440.42.39 $M = \frac{g_{z} - g_{1}}{2L} \cdot (\frac{t}{2})^{2} = \frac{(g_{z} - g_{1})L}{4}$ $= \frac{(2 - (-4.5)) \cdot 6}{4} = 4.475'$ Low Pl. Sta. : $Za \times b = 0$ $\frac{Z(g_{z} - g_{1})}{ZL} \times (g_{1} = 0$	$Elev. = El.PVI + \frac{1}{2} * G_2 = 439.14$	
$a = \frac{32^{-} - 91}{2L} = \frac{2 - (-4 + 2)}{2 \times 6} = .5417$ $b = 9_{1} = -4.50$ $c = e e e v. B v c = 446.64$ Elev. @ Sta. 72 + 00 : x = 72 - 70.25 = 1.75 Elev. = .5417 (1.75) ² - 4.50 + 1.75 + 446.64 = 440 .42 39 $M = \frac{9_{2} - 9_{1}}{2L} \times (\frac{1}{2})^{2} = \frac{(9_{1} - 9_{1})L}{4}$ $= \frac{(2 - (-4.5)) \cdot 6}{4} = 4.475'$ Low Pl. Sta. : $Za \times + b = 0$ $= \frac{2(9_{2} - 9_{1})}{2L} \times + 9_{1} = 0$	$Elev. = ax^2 + bx + c$:	
$b = g_{1} = -4.50$ $c = e lev. BVC = 446.64$ Elev. @ Sta. 72+00 : x = 72-70.25 = 1.75 $E lev. = .5417 (1.75)^{2} - 4.50 \cdot 1.75 + 446.64$ $= 440.4239$ $M = \frac{g_{2} - g_{1}}{2L} \cdot (\frac{L}{2})^{2} = \frac{(g_{1} - g_{1})L}{2}$ $= \frac{(2 - (-4.5)) \cdot 6}{4} = 4.475'$ $Low PI \cdot Sta. : Za \times + b = 0$ $\frac{Z(g_{2} - g_{1})}{ZL} \times + g_{1} = 0$	$a = \frac{9z-9}{2L} = \frac{2-(-4\frac{1}{2})}{2\times6} = .5417$	
$C = e lev. BVC = 446.64$ Elev. @ Sta. 72+00 : x = 72-70.25 = 1.75 $F lev. = .5417 (1.75)^{2} - 4.50 \cdot 1.75 - 446.64$ $= 440.42.39$ $M = \frac{9_{2} - 9_{1}}{7L} \cdot (\frac{L}{2})^{2} = \frac{(9_{1} - 9_{1})L}{8}$ $= \frac{(2 - (-4.5)) \cdot 6}{4} = 4.475'$ $Low Pl. Sta. : 7a \times +b = 0$ $\frac{7(9_{2} - 9_{1})}{7L} \times +9_{1} = 0$	$b = g_1 = -4.50$	E
$= 440.4239$ $M = \frac{9_{2} - 9_{1}}{7L} \cdot (\frac{1}{2})^{2} = \frac{(9_{1} - 9_{1})L}{8}$ $= \frac{(7 - (-4.5)) \cdot 6}{4} = 4.475'$ $Low Pl. + 5ta. : 7a \times + b = 0$ $= 0$ $\frac{7(9_{2} - 9_{1})}{7L} \times + 9_{1} = 0$	C = elev. BYC = 446.64	
$= 440.4239$ $M = \frac{9_{2} - 9_{1}}{7L} \cdot (\frac{1}{2})^{2} = \frac{(9_{1} - 9_{1})L}{8}$ $= \frac{(7 - (-4.5)) \cdot 6}{4} = 4.475'$ $Low Pl. + 5ta. : 7a \times + b = 0$ $= 0$ $\frac{7(9_{2} - 9_{1})}{7L} \times + 9_{1} = 0$	Elev. @ Sta. 72+00: x= 72-70.25= 1.75	\$1 E
$= 440.4239$ $M = \frac{9_{2} - 9_{1}}{7L} \cdot (\frac{1}{2})^{2} = \frac{(9_{1} - 9_{1})L}{8}$ $= \frac{(7 - (-4.5)) \cdot 6}{4} = 4.475'$ $Low Pl. + 5ta. : 7a \times + b = 0$ $= 0$ $\frac{7(9_{2} - 9_{1})}{7L} \times + 9_{1} = 0$	Elev. = .5417 (1.75) - 4.50,1.75 - 446.64	S1 E
$M = \frac{g_{z} - g_{1}}{ZL} * (\frac{L}{z})^{z} = \frac{(g_{z} - g_{1})L}{g}$ $= \frac{(z - (-4.5)) \cdot 6}{4} = 4.475'$ $Low PL \cdot Sta. : Za \times + b = 0$ $= 0$ $\frac{Z(g_{z} - g_{1})}{ZL} \times + g_{1} = 0$	= 440.4239	
$= \frac{(2 - (-4.5)) \cdot 6}{4} = 4.475'$ Low Pl. Sta. : Za x + b = 0 $\frac{Z(g_2 - g_1)}{ZL} \times + g_1 = 0$	$M = \frac{g_{2} - g_{1}}{2L} \cdot (\frac{L}{2})^{2} = \frac{(g_{2} - g_{1})L}{2}$	I
Low Pl. Sta. : $Za \times +b = 0$ $\frac{Z(g_2-g_1)}{ZL} \times +g_1 = 0$		1
$\frac{Z(g_2-g_1)}{ZL} \times + g_1 = 0$	= <u> </u>	- S
	Low Pl. Sta. : Zax+b = O	-
		0+25

XEQ # OFSTS	• v c•	Bypas	
11:50:10 AM 12/22/	RUN '88	for 6 P.G. c need o	le -
TITLE: EXAMPLE	RUN	SIZE	

STA PI 7,325 .000 0	RUN		
EL PI 433.1400	RUN		
VC L' 600.0000 SL1%	RUN		
-4.5000 SL2%	RUN		
2.0000 M=4.8750'	RUN		
HI/LO @ 7,440.3846 EL=437.2938			
**************************************	****		
INTERV 50.0000	RUN		
POB STA 7,1 50.00 00	RUN		
STA 7,150.0000: EL=441.8614			
STA 7,200.0000: EL=440.4239			
STA 7,250.0000: EL=439.2572			
STA 7,300.0000: EL=438.3614			
 STA 7,350.0000: EL=437.7364			
	SQRT Xeq C	Ocps-	USER not on
*****	****		
INTERY	RUN		
STA 7,200.0000	RUN		
EL=440.4239			
STA 7,300.0000 El=438.3614	RUN		
5) + (4+15,38)=	74+4().34	

VERTICAL CURVE STATIONS

xeq STA (SIZE 010) to find the station or stations at which an elevation occurs

SOFTKEYS (USER mode ON)

- c Same as C for STA
- d Same as C for STA
- e Change base (P.I.) elevation (e.g. for beam seat elev.)
- C Jump to program VC; new INTERV or STA prompt
- E Access STA from VC once curve parameters are input

USER FLAGS

Flag 00	clear set	Full output Output of M and HI/LO point skipped
Flag 02	clear set	Warning BEEP disabled Warning BEEP enabled (used if STA finds OFF CURVE error)

INPUT SUMMARY

<u>Prompt</u> STA PI	<u>Input</u> Station of the PVI, in feet	<u>Default</u> No default
EL PI	Elevation of the PVI, in feet	No default
VC L'	Vertical curve length, in feet	No default
SL1%	Slope or grade of the back (left) tangent, in percent	No default
SL2% (only if VC L' is not 0)	Slope or grade of the forward (right) tangent, in percent	SL1%
EL	Elevation at which to calculate the station or stations	No default
EL CH (from softkey e)	Change in baseline elevation; up is positive, down is negative	No default

1

- **<u>OUTPUT SUMMARY</u>** (Items in parenthesis are displayed only if flag 00 is clear)
- (M) The middle ordinate, in feet
- (HI/LO @...) The station of the high or low point, if one exists
- (EL) The elevation of the high or low point
- STA The station at which the given elevation occurs, if there is only one
- STA1 The first station of two at which the given elevation occurs
- STA2 The second station; will be the same as the first if at a HI/LO point
- OFF CURVE A warning that the elevation input does not exist on the curve (i.e. is higher than the high point or lower than the low point)

PROGRAM FLAGS

Flag 05	clear set	On or tangent to a vertical curve VC L' = 0 (tangentno vertical curve)
Flag 06	clear set	High or low point exists; two stations for a given elevation No high or low point; one station for a given elevation
Flag 07	clear set	Elevation is on curve-solution possible Elevation is OFF CURVE
Flag 08	clear set	Profile grade calcs only # OFSTS not zero
Flag 09	clear set	VC STA
Flag 10	clear set	BVC lower than EVC (STA only) EVC lower than BVC (STA only)
Flag 11	clear set	Normal operation Figuring HI/LO elevation

STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> Sta. PI
01	SL1%
02	SL2%
03	Sta. BVC
04	r/200 (r=g ₂ -g ₁ /L)
05	Sta. EVC
06	El. EVC
07	El. BVC
08	Input elevation
09	El. PI

VERTICAL CURVE SOLUTIONS for STATION

Programs VC and STA solve parabolic, symmetrical (equal-tangent) vertical curves. Both programs work on a single vertical curve and the tangent on either end (assumed to extend indefinitely). They both require input of the PI (point of vertical intersection) station and elevation, the back and forward grades, and the vertical curve length. Stations are expressed in feet, without the "+"; grades are in percent. See the examples for clarification.

STA finds the station or stations at which a given elevation occurs. It prompts for an elevation, calculates the station or stations at which it occurs, then returns for another elevation. STA works only along profile grade. If the grades are of opposite sign, STA finds two stations for a given elevation; if not, only one station is found. If no solution is possible, OFF CURVE is displayed. The program correctly solves for points either within the curve or on either tangent. However, unlike VC, no warning (T) is given when a point is on tangent. STA also lacks the INTERV feature that VC has for automatic running.

INPUT DETAILS

As mentioned, "stations" are input and output in feet. For example, if the PI is at station 28+50.00, answer the STA PI prompt with 2850. Length of vertical curve (VC L') is also in feet. Tangent grades are input in percent.

STATIONS on TANGENT

If a point is off the vertical curve, VC will append a warning, (T), that the point is on the tangent rather than on the curve. Program STA does not have this warning feature.

If the area you're interested in is entirely on a tangent, input a vertical curve length of zero. The programs will only prompt for one grade.

ADDITIONAL PARAMETERS CALCULATED

After input of the basic vertical curve parameters (PI station and elevation, grades, and length) the program calculates M (the middle ordinate), and, if there is one (if the grades are of opposite sign), the high or low point station and elevation. If this information is not wanted and you wish to speed execution, set flag 00 and it will not be displayed.

ELEVATION CHANGE

If the user needs to subtract a distance from each elevation, the program can do it directly. Softkey e brings up the prompt EL CH (elevation change). It adds this number to the P.I. elevation (and BVC and EVC elevations) stored at the beginning of the run. Thus, if VC was being used to calculate bridge deck elevations and the user now wants to calculate beam seat elevations (e.g. for a superstructure height of 5.90 feet), press softkey e, answer the prompt with -5.90 (5.90, chs), and press R/S. This feature works with both VC and STA.

"STA" - find stations for an elevation

Find stations at which elev 440.0 occurs. $440.00 = .5417(x)^{2} - 4.50(x) + 446.64$ $.5417(x)^{2} - 4.5(x) + 6.64 = 0$ Root 1 = 6.3690 ; Root Z = 1.9187 One station is (70+25) + (1+91.97) = 72 + 16.87Check other station : (70+25) + (6+38.90) = 76 + 63.90 > EVC = 10:. Second point is off curve, on tang. (440.00 - 433.14)/29 = 3.430 stations (73+25) + (3+43.00) = 76+68.00

4.5% 2.0%

PI 5ta. • 73+25.00 Elev. = 433.14 600' V.C.

BIL

r	an	eleva tion	L	
	STA		XEQ E	From VC, coftley E is same as xeq STA
	el Off ci	437.0000 JRYE	RUN	except uses existing vertical curve data
		438.0000 7,326.2063 7,554.5629	RUN	
		440.0000 7,216.8678 7,668.0000	RUN	
	0	r *49°5TA° XEG :29 AM 12/22	9 -STA- 2/88	
	TITLE EXAMP ***** STA P	LE **********	RUN	
	EL PI	7,325.0000	RUN	
	VC L'	433.1400	RUN	
	SL1%	600.0000 -4.5000	RUN	
	SL2%	2.0000		
		750' @ 7,440.3846 7.2938 		
		438.0000 7,326.2063 7,554.5629	RUN	
	EL OFF C	437.0000 URYE 	RUN	
		440.000 7,216.8678 7,668.0000	RUN	
	EL			

VATIONAL MUSEUUSA

01+LBL "VC+"									マ			
						54 STO 01	91					
	LbI#	×	Y	Z		55 -SL2%-						
03 RDN	×	Ý	1	161*		56 FC? 05						
04 GTO IND T		•		1.01		57 PROMPT						
						58 STO 02	92					
05+LBL -¥C-						59 RCL 01						
06 SF 08						60 *	9. × 92					
07 CF 09						61 X>0?	U J					
98 CF 11						62 SF 06						
09 CLX						63 RCL 02	92					
10 "# OFSTS"						64 LASTX						
11 PROMPT						65 -	9.					
	only PG	7				66 4	g2-9,					
		,				67 /						
13 GTO 02						68 RCL 06	112				ł	
14 16												
	16+off					69 X≠0?	11/2					
16 SF 25						70 /	1.72					
17 STO 15						71 STO 04	ELPI					
18 GTO 00						72 RCL 09						
						73 RCL 01	9.					
19+LBL -STA-						74 RCL 06	l/2					
20 SF 09						75 *						
21 CF 11						76 -						
						77 STO 87	EI. DOC					
22+LBL 02						78 FS?C 11						
23 CF 08						79 RTN						
24 9						80 FC? 05						
						81 FS? 00						
25+LBL 00						82 GTO 00						
26 XROM "S"						83 RCL 02						
	1000					84 RCL 01						
28 FS? 08						85 -	g2-g,					
	conter					86 RCL 06	1/2					
						87 *	-12					
30+LBL 07						88 4						
31 CF 05						89 /						$a \lambda i$
32 CF 06						90 •H=•					M= (g)	2-91)L
33 -STA PI-						91 ARCL X						z
34 PROMPT						92 -+						
	Stati					93 AVIEN						
36 STO 03	T					94 FS? 06						
37 STO 05						95 GTO 00						
38 "EL PI"						96 RCL 03	StaBVC					
39 PROMPT						97 RCL 01	9.					
						98 RCL 04						
						99 50	9. 9./21 50	g1-g./21	a	Sta BVC		
41 "VC L'"						100 /		31 Ju ca	g,	2.4 010		
42 PROMPT						101 /	- (056)					
43 X=0?	.					102 -	1 1	a ne				
44 SF 05	tang.						Hillo Sta	JUNC				
45 2	-					103 "HI/LO 0 "			i			
46 /						104 ARCL X						
	StaBVC					105 AVIEN						
	to EVC					106 SF 11						
49 E						107 X<>Y	Sta DIC	sta :				
50 %	<i>"</i>				0,	108 XEQ 04	El.				6	2
	^e /2				1/2 in Stations	109 "EL="					(BI	1)
52 -SL1%-				1	1/200 in feet	110 ARCL X		}				
53 PROMPT						111 AVIEW						

Program <u>VC, STA</u> For <u>bytes</u> Page<u>2 of 5</u>

		X	Y	Z	T	L		X	Y	र	T	L	
	112+LBL 00						166 XROM "AX"						
	113 FS? 09						167 *+**						
	114 GTO E						168 PROMPT	offset"1,2	ato				
							169 STO IND 15		ec.		:		
	115+LBL c						170 FC? 10						
	116 CF 18												
	117 FC? 0 8						171 GTO 06	counter					
	118 GTO C						172 RCL 15	COUNTER					
	119 XROM "L"						173 6						
							174 +	1					
	120 CLX						175 RCL 08	1,2,3, etc.					
,	121 STO 13	1					176 -CRN DROP -						
	400.101.00						177 XROM -AX-						
	122+LBL 09						178 PROMPT	Crn Dropl;	1,23,4	. 23,24,4	4.		
	123 CF 07						179 STO IND Z					1	
	124 CF 10										1		
	SKEN: L+,R-"						180+LBL 06			1			
	26 XROM "Pd"						181 ISG 15	counter				1	
	127 TAN						182 GTO 06						
	128 STO 11	tan (she					183 FS?C 11						
	129 X=0?						184 RTN						
	130 SF 18												
	131 X(0?						185+LBL C						
	132 SF 07	RHF					186 50						
	133 CLX						187 STO 06	interval.					
1	34 "CRN1"/,"						188 XROM "L*"						
	135 PROMPT												
	136 X=0?						189+LBL 21	1					
	137 SF 10						190 CF 22						
	138 X=0?						191 RCL 06	interv	ļ				
	139 GTO d						192 - INTERV-					ļ	
	140 STO 14	crn1					193 X≠0?						
	141 12						194 PROMPT						
	142 •TO:•						195 FC? 22						
	143 PROMPT						196 CLX						
	144 STO 12	Break					197 STO 06						
	145 .02	or Ear					198 CLA						
	46 CRN2'/,*						199 X≠0?						
	147 PROMPT						200 -POB -						
	148 RCL 14						200 "FOB" 201 "FSTA"					1	
	149 -						201 PSTR 202 PROMPT						
	150 STO 13	Acrn					202 FRONT	q sta.					
	130 310 13	Γ						interv					
	151+LBL d						204 RDN	Inter					
	152 CLX						205 X≠0?						
	153 STO 16	offere	1.0				206 XROH "LL"						
							38741 DI - 74						
	154 RCL 15	canter	I				207+LBL 32						
	155 ABS						208 FC? 08						
	156 FRC						209 GTO 10						
	157 17	1.7 -					210 RCL 11	Han (she	2				
	158 +	17.0					211 ABS				1		
	159 STO 15						212 FS? 07						
							213 CHS						
	160+LBL 06						214 STO 11	ton (skay)		1			
\sim 1	61 "OFFSET#"						215 E3	1000		1			
(B14)	162 RCL 15	counter	ł				216 RCL 15	counter					
	163 16						217 ABS						
	164 -		1				218 FRC	.0		ĺ			
	165 STO 08	1,2,3,etc	1	1	1	1	219 ±	1	1	i		1	

Program <u>VC,STA</u>For <u>bytes</u> Page<u>3</u>of <u>5</u>

	X	ΙΥ	Z	T			X	TV	र	TT	L	
220 LASTX	FRC		+	<u> </u>	+			+		+	+	
						274 X<>Y	540					
221 +	1					275 RCL 01	9.	sta	BVC			
222 CHS	0_	1				276 GTO 02	5					
223 STO 15	counter	1										
004.1 01 - 10				.		277+LBL 03	Sta					
224+LBL 10						278 RCL 02		Sta	EVC			
225 -STA -				1			gz					
226 ARCL 08	540.					279+LBL 02						
227 * F: *						280 RCL 09	EI.PI	1				
228 RCL 06	Interv											
229 X≠0?					1	281 RCL 00		ELTI	9%	Sta		
230 FS? 00	1					282 R†	sta	Stapi				
230 FS? 53		1				283 -	DSta	EI.PI	9%	g%		
		l				284 R†	9	asta			1	
232 AVIEW		ļ				285 *	DEI.				1	
		l				286 E2	100	1		1	1	
233+LBL 22		ļ				287 /	DEI.	EVI				
234 RCL 08	54a.	1		1		288 -	Elev.	1				
235 FC? 08				!)	ł		L 140.	1			er.a	N 174
236 GTO 23		l				289 SF 19		1			SF19=	7 on
237 RCL 15	counter	1				290 GTO 11					tan	ngent"
237 RCE 13		l			l						1	4
238 HBS 239 6		1			l	291+LBL 04	SHADIC	Sta			1	
		1		!	l	292 -	∆sta				1	
240 +				1	l	293 E	1				1	
241 FS? 10		ļ .		1 1	l	294 %	Vi s t, et.					
242 RCL IND X	Crn Drop	ļ		1	l.	295 ENTERT					1	
243 FS? 10	1	1		1	l	296 ENTERT	1 1					
244 GTO 14		1		!	I	297 RCL 04	r/2	" Х"	" X "	1		
245 RCL IND 15	Offset	1		1	l.		rx/z	۱ I			1	
246 RCL 12	Break	1		۱)	١	298 *		rx I			1	
247 -		1		۱)	١	299 RCL 01	9'	¥	X		1	
248 X(0?		I 1		1	١	300 +					1	
		I 1		۱ I	١	301 *	r x7/2:91	ŕ	1	1		
249 .	Distz	l i		1 I	١	302 RCL 07	EI. BYC					
250 RCL 13	Crowne	1		1	I	303 +	Elev		1			
251 *	Drapz	ļ		1	١		FIEV		.			
252 RCL IND 15	Offset	ļ		1	١	304+LBL 11			1		1	
253 RCL 14	Crown.			1	١	305 FS?C 11	1		1			
254 *	Drop,	Drop,		۱ I	١	305 F57C 11 306 RTN	1		1			
255 +	Drop			۱ I	١		1		1			
	1 1			۱ I	١	307 CLA	1		1			
256+LBL 14				۱ I	1	308 FC? 08	1		1			
250 LDL 14	Drop			·	1	309 GTO 11	1.	-	1			
257 STU 10 258 RCL 08	Sta			·	1	310 RCL 10	Crown Dra		1			
	1. 1			۱ I	١	311 -	Elev.		1			
259 RCL 11	ton(sea)			۱ I	1	312 • R•			1			
260 RCL IND 15	offset			۱ I	1	313 RCL 15	counter	1	1			
261 X=0?				·	1	314 X<0?			1			
262 STO 10	(Drop)	1		·	1		1	1	1			
263 *	o sta	esta l	Drop	·	1	315 - L-	1	.	1			
264 +	Nausta	Dres	'		1	316 ABS	Can d					
·		-194			1	317 INT	counter	1 1		1		
265+LBL 23	sta			·	1	318 16	1	1]]	1	1	
					1	319 -	1,2,3, etc	elev.		1		
266 CF 19	StaEVC				1	320 X≠0?	1	1				
267 RCL 05					1	321 XROM -AX-	1 1	()			1	
268 X<>Y	Sta	EVC			1	322 X=0?		1 1			1	
269 X>Y?					1		1	1 :	1			
270 GTO 03					1	323 °CL°	1. 1	1 1		1	-	`
271 RCL 03	StaBVC	sta			1	324 X<>Y	elev.	1 1		1	6	19)
272 X<=Y?	1 1							1)			(13)	ツ
272 AC-19 273 GTO 04					04 > Curve		1			ſ	`	-
210 610 64	1		<u> </u>		VY VCWYC		,	,	1	1	1	

Program <u>VC, STA</u> For <u>bytes</u> Page <u>4</u> of <u>5</u>

	X		Z	T			X	V	そ	T		
	\uparrow	1		<u> </u>			+	_T	ر			
325+LBL 11	1											
326 "⊢ EL="	cley.	1,2.3,ete				375+LBL 15						
327 ARCL X		, si je u				376 XROM "L"						
328 FC? 05	ŀ				FC: 05	377 CF 07						
329 FC? 19	1				and	378 •EL• 379 prompt						
330 FS? 53					F5719	380 STO 08	Elev.					
331 - +(T)-						380 STO 00 381 "STA1="						
332 XEQ -PV-						382 FC? 05						
333 FC? 08						383 GTO 08						
334 GTO 11						384 RCL 01	91					
335 X(>Y	1,2,3,etc.						5					
336 X≠0?						385+LBL 13						
337 GTO 00						386 E						
338 FS? 18						387 %	9					
339 GTO 11 340 Sign	1					388 RCL 08	Inpil H.					
340 SIGN 341 CHS	-1					389 RCL 09	EI. PI					
342 ST+ 11	tanlista					390 -	DEI	.EI				
343 ST* 15	counter					391 X<>Y		sel				
						392 / 707 pci ag	0 Dist	144				
344+LBL 00						393 RCL 00	540 PI	0314				
345 ISG 15						394+LBL 16						
346 GTO 22						395 +	Sta					
						396 ARCL X						
347+LBL 11						397 AVIEW						
348 XROM "L"						398 GTO 15						
349 RCL 06	Interv				1							
350 X=0?						399+LBL 08						
351 GTO 21 352 RCL 08	sta					400 FC? 06	1					
353 +	Newsta					401 GTO 08						
354 STO 08						402 CF 10						
355 GTO 32						403 RCL 06	FI.EVC EI.BVC					
						404 RCL 07	ET. VIC					
356+LBL e						405 X>Y? 406 SF 10						
357 -EL CH-	Ι.					407 X>Y?						
358 PROMPT	Del.					408 X<>Y	lesser	greater				
359 ST+ 07	el.BVC					409 RCL 08	Inpatel.			4		
360 ST+ 09	el. PI					410 X>Y?						
361 FC? 09						411 GTO 05						
362 GTO C						412 RCL 01						
363 ST+ 06	el.EVC					413 FS? 10						
364+LBL E						414 RCL 02	9	JupptEl				
365 RCL 02	g2 %					415 GTO 13						
366 E							- 10					
367 %	az					416+LBL 05	Inpt El greater		grater	'		
368 RCL 05	g L StaEVC					417 RCL Z 418 X>Y?	3. 000					
369 RCL 00	StaPI					419 GTO 08						
370 -	L/2	gr				420 RCL 02						
371 *	AEI					421 FS? 10						
372 RCL 09	el.PI					422 RCL 01	9					
373 +	el.EV	1				423 GTO 13						
(B20) 374 STO 06												
U LU												
								1				
	•			1			I	1	ł	i	I	

Program VC, STA For ______ bytes Page 5 of 5

	X	Y	Z	T				X	V	र	TT	L	
												-	
424+LBL 08							472+LBL 08	L	Distz				
425 RCL 07	EI.BK						473 RCL 08	Jupt El				ŀ	
426 RCL 08							474 RCL 09	EI.PI					
427 -	I.potEl DEI						475 -	SEI					
428 RCL 01	9120						476 RCL 02	gz					
429 RCL 04	r/2	g.	DEI				477 /						
430 SF 25	-	J.					478 E2						
431 XROM "Q"							479 *	Dist					
432 FC?C 25							480 RCL 00	Shepi					
433 GTO 01													
434 E2	100						481+LBL 05	Sta					
435 *	Dist1						482 +	oiu					
436 X<>Y							483 •STA2=•				· ·		
437 LASTX							484 ARCL X						
438 *	DistZ	Dist 1			Fs:06	⇒ a.	485 AVIEW						
439 FC? 06					anda	, ave	486 GTO 15						
440 GTO 08					and a Same	sian-	487+LBL 01						
441 X<=0?	M-L				onlyo	ne	487 VLBL 01 488 SF 07						
442 X<>Y	Dist				stati	m	488 5F 67 489 "OFF"						
443 RCL 03	Sta. BVC						489 UFF 490 BEEP						
444 GTO 16							491 AVIEW						
445+LBL 08							492 GTO 15						
446 X>Y?							493 END						
447 X<>Y	Min	Max			1								
448 X>0?													
449 GTO 05													
450 CLX													
451 RCL 08	B hqnI	Max											
452 RCL 07	EI. DVC												
453 -	DEI.												
454 RCL 01	9,												
455 ∕ 456 E2	(00												
436 E2 457 *	Dist												
+ IUF	UIST												
458+LBL 05													
459 RCL 03	Sta DVC												
460 +	Sta												
461 ARCL X													
462 AVIEW	h												
463 X<>Y	DistZ												
464 RCL 05	Static												
	SL BYC												
466 - 467 X<=Y?	VCL												
467 X1=12 468 GTO 08													
468 GTU 88 469 CLX													
470 LASTX	5to DVC	Diat											
471 GTO 05							-	.					
													_
												B	zI)
												Ľ	シ
	1 1	1	1										

(827)

STOPPING SIGHT DISTANCE

SOFTKEYS	(USER mode ON)
A	Input vertical curve length, solve for SSD
В	Input design speed (mph), solve for VC L
D	Input stopping sight distance, solve for VC L

USER FLAGS

xeq SSD (SIZE 004)

Flag (00	clear	Full output
		set	No title block printed

INPUT SUMMARY

<u>Prompt</u> G1%	<u>Input</u> Foreslope in percent (up to the right is positive)	<u>Default</u> No default			
G2%	Backslope in percent	No default			
L MPH SSD (A) (B) (D)	A "menu" to the softkeys, as shown	No default			

<u>OUTPUT SUMMARY</u>	(Items	in pa	renthesis	are	displayed	only	if	flag
	00 is d	clear)						

SSD	The	available	stopping	sight	distance	in	feet

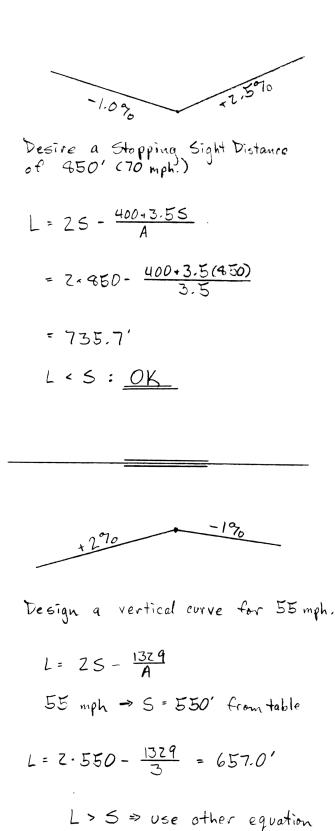
VC L The required vertical curve length in feet

PROGRAM FLAGS

Flag ()5	clear	Sag cr	ve
		set	Crown	curve

STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> A (G2% - G1%)
01	(400 + 3.5S)/A
02	400
03	3.5


STOPPING SIGHT DISTANCE

Program SSD does stopping sight distance calculations according to the standard AASHTO road design equations and tables (with two exceptions for design speed input, given below). Given the grades, it computes the available stopping distance from the vertical curve length; or the allowable vertical curve length, from either the design speed or stopping sight distance. The program will not backsolve to find the design speed.

The grades are input in response to prompts. Then either the SSD, curve length, or design speed is input using softkeys, as indicated by a crude "menu" in the display. Once the grades are input, they need not be re-input; the program returns to the softkey prompt.

As mentioned, the program will solve a vertical curve length given a design speed. It does this by equating the design speed to a stopping sight distance with an equation derived from the tables in the AASHTO Road Design Manual. This equation gives the correct distance, and thus curve length, fro speeds at five mile-per-hour increments, <u>except</u> for 20 and 65 mph (due to a "bump" in the tabular values. Thus, if you have a design speed of either 20 or 65 mph, either input the tabulated SSD values (shown below) or live with a minor error. To compare tabular (AASHTO) values with the program's calculated values:

<u>Design Speed</u>	AASHTO S.S.D.	Program S.S.D.
20	125	100
25	150	150
30	200	200
35	250	250
40	3.25	325
45	400	400
50	475	475
55	550	550
60	650	650
65	725	750
70	850	850

 $L = \frac{5^{2} \cdot A}{1379} = \frac{550^{2} \times 3}{1379} = \frac{692.9^{2}}{1379}$

XEQ "SSD" 1:16:00 PM 03/15/89 TITLE: STOPPING SIGHT DISTANCE RUN ******* G17 -1.0000 RUN G2% 2.5000 RUN L MPH SSD 850.0000 XEQ D VC L=735.7143* _____ L MPH SSD 70.0000 XEQ B VC L=735.7143* L MPH SSD 686.0000 XEQ A SSD=800.2857* _____ L MPH SSD XEQ "SSD" 1:17:13 PM 03/15/89

Г		 1							 				 							-	 		
ł		 			 		 			 	 		 								 		
+					 		 	 	 	 						-					 		
		 	 		 		 	 	 				 			-					 		
┝		 	 		 		 	 	 		 		 								 		
$\left \right $		 			 		 	 		 	 		 						_		 		
-		 	 		 		 	 			 		 								 		
-		 	 	 	 		 	 	 	 	 		 								 		
+		 	 	 	 		 	 	 	 	 		 							_	 _		
┝		 	 	 	 		 	 	 	 	 		 								 		
+		 	 		 		 	 	 		 		 								 		
+		 			 		 	 	 	 	 		 								 		
╞		 	 	 	 		 	 			 		 			-			_		 		
+		 		 	 		 				 		 								 		
┢		 	 	 	 		 	 	 	 	 		 		\rightarrow					+	 		
$\left \right $		 	 	 	 		 	 		 			 					_			 		
$\left \right $		 	 		 		 	 			 										 		
$\left \right $		 	 		 		 	 		 			 						_	+	 		
$\left \right $	-	 		 	 	_	 			 	 		 										
┢		 	 	 	 		 	 	 	 	 									+	 		
$\left \right $		 			 		 	 		 	 		 								 		
$\left \right $		 			 			 		 	 		 		-+						 		
+		 	 	 	 		 	 	 	 	 		 							÷	 		
$\left \right $		 			 		 		 	 	 		 						_		 		
┢		 	 	 	 		 	 	 	 	 		 					+-		+	 	_	
		 	 		 		 	 	 	 	 							-			 		
-		 	 		 					 	 		 								 		
ł		 						 					 								 		
ł		 	 					 			 							+					
F		 			 					 	 		 		-+					+			 -
F		 										_									 -	_	
-		 							 														
																		1		-			
									 											1			
F																		-		+	 		
								 						-									
T	- +																						
																			i				
Γ																							
																	-						
	1																						
-		 	 	 	 		 	 	 	 	 		 								 		

Program <u>SSD</u> For <u>Stopping Sight Distance</u> bytes Page 1 of <u>2</u>

	Х	Y	Z	T	L		X	Y	र	T	L
13 ABS 14 1329 15 FC? 05 16 SIGH 17 / 18 STO 00 19+LBL 06 20 -L MPH SSD- 21 PROMPT 22+LBL B 23 1.7 24 Y†X 25 40 26 / 27 .2 28 + 29 INT 30 25	X G2 G1-G2 Arr 1329 (mph) 1-7 (mph) 1-7 SSD SSD SSD D	У <i>G</i> ,	N	Τ	A if sag A if crown 1329 if crown	51 RDN 52 X+2 53 RCL 01 54 / 55 GTO 08 56+LBL 07 57 RDN 58 RCL 00 59 1/X 60 - 61 X(=Y? 62 GTO 08 63 X(>Y 64 X+2 65 RCL 00 66 * 67 GTO 08 68+LBL A 69 ENTER+ 70 "SSD=" 71 RCL 00 72 FS? 05 73 GTO 09 74 * 75 RCL 02 76 + 77 RCL 00 78 ST+ X 79 RCL 03 80 - 81 / 82 X>Y? 83 GTO 08 84 RDN 95 PCL 00 85 PC	D D ² <u>3.50,400</u> NC L Z D A/1329 Z D - <u>1329</u> A/1329 VC L VC L A A L 4/02 A Z A 3.5 S S D ? L	D D L L AL-400		L	$L = \frac{D^{2}A}{3.5D + 400}$ $if L > D$ $\frac{Crown}{L = 2D - \frac{1329}{A}}$ $if L < D$ $L = \frac{D^{2}A}{1329}$ $if L > D$ $\frac{Sag}{D - \frac{AL + 400}{2A - 3.5}}$
25 40 26 / 27 .2 28 + 29 INT 30 25 31 * 32+LBL D 33 "VC L="	55D SSD D D	р 2 Ф 2 Р	ק ק			75 RCL 02 76 + 77 RCL 00 78 ST+ X 79 RCL 03 80 - 81 / 82 X>Y? 83 GTO 08	400 AL+400 A ZA 3-5 ZA-3.5	AL L AL+400	L		<u>Sqg</u> D. <u>AL. 400</u> TA - 3. 5
40 STO 03 41 * 42 4 E2 43 STO 02	3.5D 400 3.5D -40 A <u>3.5D-40</u>		zD D	ם מ	SAG	88 * 89 RCL 03 90 Rt 91 * 92 Rt 93 CHS 94 XROM -Q- 95 GTO 08	400 L 3.5 L 3.5L A		UEO L	L L A A	
	VCL?				L= 2D-3.5D.400 A if L < D						BZ7

Program <u>SSD</u> For <u>Stopping Sight Distance</u> bytes Page <u>Zof</u> <u>Z</u>	Program	SSD	For	Stopping Sight Distance	bytes	Page <u>2</u> of <u>2</u>
--	---------	-----	-----	-------------------------	-------	---------------------------

HORIZONTAL CURVE SOLUTIONS

xeq HC (SIZE 002)

NOTE: The USER FLAGS, OUTPUT SUMMARY, PROGRAM FLAGS, and STORAGE REGISTER USE portions of this documentation, as well as much of the full write-up which follows, pertains to program CHC as well. CHC is also documented in the Coordinate Geometry section.

SOFTKEYS (USER mode ON)

Α	Arc	Length
---	-----	--------

- B * Radius
- C Chord length
- d * Degree of curve
- D * Delta angle
- E External
- F (x<>y) Exchange menus (no input)
- H (mid) Middle ordinate
- J (tan) Tangent

At least one item must be an asterisked item, and this item must be input first.

If the degree of curve or delta angle are input, it is up to the user to verify that the input agrees with the status of flag 03, i.e. if the angles are in degrees-minutes-seconds, flag 03 must be set. This is <u>not</u> prompted as in most programs.

USER FLAGS

Flag 00	clear set	Full output Sector, segment, and fillet areas not output
Flag 03	clear	Angular input and output in decimal degrees (dd)
	set	Angles in degrees-minutes-seconds (DMS)

INPUT SUMMARY

Program HC does not use prompts for input as do most of the other programs in this package. The two prompts which are used are intended as crude menus to the softkeys, for which see above.

Note that <u>all the softkeys are active even when their menu is not</u> <u>displayed.</u> For example, to input radius and delta, it is not necessary to bring back the first menu. Simply key in the radius, press softkey B, key in the delta angle, and press softkey D.

6329

)

<u>OUTPUT SUMMARY</u>	(Items in parenthesis are displayed only if flag 00 is clear)
RAD	Radius
DEG	Degree of curve
DEL	Delta, the central angle or angle subtended
ARC L	Arc length
т	Tangent length
СН	Chord length
М	Middle ordinate
Ε	External dimension
(SECT)	Area of the sector
(SEGM)	Area of the segment
(FIL)	Area of the fillet

PROGRAM FLAGS

Flag 06	clear set	In second menu In first menu
Flag 07	clear set	Don't have radius Have radiussolve after Delta input
Flag 09	clear set	НС СНС
Flag 10	clear set	Don't have Delta Have Deltasolve after radius input
Flag 21	set	Controls display and print behavior
Flag 27	set	Sets USER mode

STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> Radius			
01	Delta/2	(decimal	degrees	stored)

HORIZONTAL CURVE SOLUTIONS

Programs HC and CHC are used for the solution of horizontal (circular) curves. HC computes all the commonly needed parameters, given any (well, almost any) two of them as input. CHC computes these same parameters from the coordinates of the PC, PT and RP (point of curvature or beginning, point of tangency or end, and radius or center point). CHC also computes the azimuths of the incoming and outgoing tangents (PC to PI and PI to PT, respectively, the PI being the point of intersection).

For input, program HC uses the softkeys A, B, C, D, d (shifted), E, F, H, and J in USER mode. USER mode is automatically turned on by the program to facilitate input. Parameters are input by keying the number in and pushing the appropriate key, as follows:

First Menu	<u>Key</u> A B * C d * D * E	<u>Parameter</u> Arc Length Radius Chord length Degree of curve Delta angle External
Second Menu	F (x<>y) H (mid) J (tan)	Exchange menus (no input) Middle ordinate Tangent

The program requires two of these parameters. At least one item must be an asterisked item, and <u>this</u> <u>item must be input first.</u> Radius and degree of curve are not sufficient since they are derivable one from the other; if both are input, HC will ignore the first one and await further input.

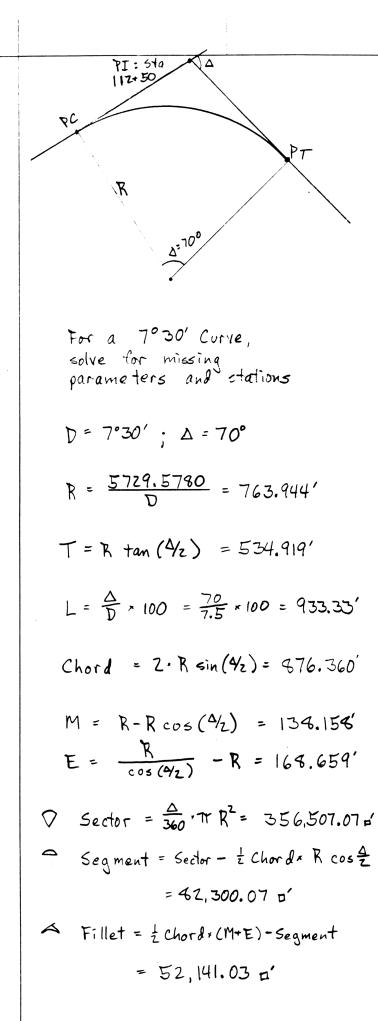
MENUS

HC uses menus to prompt input, displaying the above mnemonics (R, DL, etc.) roughly above each key. The first-row parameters are prompted first, then the second-row menu appears. To return to the first-row menu, press softkey F (x<>y). Pressing it again brings back the second-row menu. These menus are only mnemonic aids; the first-row keys are still active when the second-row menu is on, and vice versa.

ANGLES

As with the other geometry programs in this package, HC and CHC format output and expect input for angles to be in decimal degrees (dd) if flag 03 is clear, and in degrees-minutes-seconds (DMS) if flag 03 is set. This is <u>not</u> reflected in the prompts; the user must consider the status of flag 03 when inputting the degree of curve or the delta angle. The output is labeled.

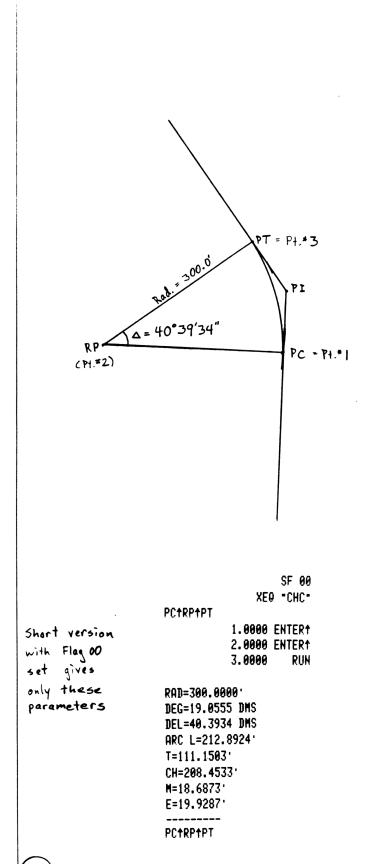
COORDINATE GEOMETRY


Input for CHC is much simpler (assuming your point coordinates are already stored by other coordinate geometry routines). The program prompts for the point numbers of the PC, RP, and PT. As with most other coordinate geometry routines the numbers are keyed into the stack: key in PC point number, enter, key in radius point number, enter, key in PT point number (don't enter), press R/S. CHC checks the radii PC-RP The two are first rounded to the accuracy and PT-RP. of the display setting and then tested for equality. If they aren't equal, a warning is given; the radius used is from PC to RP. (Thus, don't set the display to FIX 4 if the coordinates are only good to two decimal It also calculates the north azimuths of the places.) incoming and outgoing tangent, again in either D.MS or decimal degrees depending on flag 03. It then drops into the HC output routine, displaying all the parameters listed on the first page and the area of the sector, segment, and fillet. All the linear output is labeled with dimensions of feet and square feet. The programs will also, of course, work with inches, meters, or furlongs.

Both programs set the calculator to DEG (degree) mode upon execution (in subroutine S). If for some reason this is changed by the user during use, errors will result.

If USER mode is set when CHC is run, the softkeys are active, and once pressed (accepting whatever is in the X register as input), the menus will come up as though HC had been executed. However, when all the output has been displayed, the program returns to the CHC prompt. When using HC, all the output need not be viewed; the softkeys are active at any time to accept new input and start over (or to bring up a menu, in the case of softkey F).

<u>FLAGS</u>


If flag 00 is set, the areas of sector, segment, and fillet are not displayed by either HC or CHC; in CHC the distances PC-RP and PT-RP, and the tangent azimuths, are not diplayed either.

SF 03 XEQ "HC" 5:34:50 PM 01/05/89 TITLE: RUN CURVE EXAMPLE L R CH d/D E 7.3000 XEQ d <> MID T XEQ F L R CH d/D E 70.0000 XEQ D RAD=763.94371 DEG=7.3000 DMS DEL=70.0000 DMS ARC L=933.3333' T=534.9192' CH=876.3602 M=138.1577 E=168.6594 SECT=356,507.0725 SQ' SEGM=82,300.0591 SQ' FIL=52,141.0612 SQ' L R CH d/D E Sta. PC = 112+50 - 534.919 = 107+15.081 Sta PT = Sta PC + L = 116+48.44 SHORT FORM - SF OD SF 00 XEQ HC-L R CH d/D E 7.3000 XEQ d $\langle \rangle$ MID T 70.0000 XEQ D RAD=763.9437 DEG=7.3000 DMS DEL=70.0000 DMS ARC L=933.3333' T=534.9192* CH=876.3602 M=138.1577' E=168.6594 B33 _____ L R CH d/D E

A2.182 100 SHEETS

CHC Example

XEQ "STOP" ------PTTNTE 1.0000 ENTER* 3,103.6749 ENTER† 9,827.2778 RUN **PT†N†E** 2.0000 ENTER† 3,106.1477 ENTER† RUN 9,527.2890 PTTNTE 3.0000 ENTER1 3,299.7338 ENTER† 9,756.4711 RUN PTTNTE XE0 "CHC" 9:53:34 AM 10/15/87 TITLE: STERLING ST. RUN ****** PCtRPtPT 1.0000 ENTER* 2.0000 ENTER† RUN 3.0000 PC-RP=300.0000' PT-RP=300.0000' PC-PI AZ=0.2820 DMS Flag 03 PI-PT AZ=-40.1114 DMS is set => output RAD=300.0000' in D.MS DEG=19.0555 DMS DEL=40.3934 DMS ARC L=212.8925 T=111.1504* CH=208.4534' M=18.6874' E=19.9288' _____ SECT=31,933.8705 SQ' SEGM=2,613.5850 SQ' FIL=1,411.2467 SQ' PCTRPTPT

42-182 100 SHEETS

Program <u>HC, CHC</u> For <u>Horizointal Curves</u> <u>515</u> bytes Page of <u>3</u>

	X	ΙΥ	2	T	L		X	ΙΥ	र	T	L	
01+LBL "CHC"						56+LBL 10						
02 E						57 FS? 00						
03 XROM -S-						58 RTN						
04 SF 09						59 "H AZ"						
04 SI 07						60 XROM "Dd"						
05+LBL 08						61 AVIEW						
06 FC? 09						62 RTN						
07 GTO 14												
08 SF 07						63+LBL 09	RP	P+				
09 -PC+RP+PT-					1	64 XROM "XY"	∆X d	AY				
10 PROMPT	1 FT	RP	PC			65 R-P		- AZ				
11 STO 01	PT					66 X<>Y	-Az					
12 RDN						67 CHS	AZ					
13 STO 00	RP	Pfre		PT		68 X>0?						
14 XEQ 09	Azic	l				69 RTN						
15 X(> 01	PT	1				70 360						
16 X<>Y	dee	PT				71 +						
17 X<> 00	RP	PT				72 RTN	AZ	d				
18 XEQ 09		dy				7741 01 -110-						
19 X(>Y	AZ PT					73+LBL "HC"						
20 RCL 00	die	der	Az,T			74 CF 09						
21 - PC -			'			75 SF 27	"User"	*				
22 XEQ 11						76 E						
23 X<>Y	der	dee	Azpr			77 XROM "S"	1					
24 - PT-												
25 XEQ 11		1				78+LBL 14						
26 - PC≠PT-						79 CF 07						
27 X≠Y?						80 CF 10						
28 BEEP												
29 X≠Y?						81+LBL 07					Į	
30 AVIEW						82 SF 06	-		· ·			
31 X≠Y?						83 "L R CH d/D E"						
32 XROM -L-						84 PRONPT						
33 Rt							1.					
34 R†	AZPT					85+LBL d	degree	2				
35 RCL 01	Azpe					86 FS? 03						
36 X<=Y?						87 HR	1					
37 GTO 00						88 E	degline					
38 180						89 %	100/200					
39 -						90 1/X		3				
40 X<>Y						91 R-D	rad.					
41 LASTX						92+LBL B						
42 -						93 STO 00	Rad.					
43 X<>Y	Azpe	Atpr				94 SF 07					FS O	7
	1.					95 FS? 10					⇒ha	ve radius
44+LBL 00						96 GTO 00	.					
45 -PC-PI-							-		İ			
46 XEQ 10						97 GTO 06						
47 X(>Y	Azpr	Atpe	-			98+LBL D						
48 -PI-PT-						99 FS? 03	1					
49 XEQ 10						100 HR						
50 -	$ \Delta $					101 2						
51 2						101 2	5/2					
52 /	D/Z					103 STO 01		1			F5 10	
53 ABS						103 STO 01		1			=> has	e delto
54 STO 01	Δl_2					105 FS? 07					6	•)
55 GTO 00	_					106 GTO 00				1	(B35	ノ
	'					100 010 00					- /	

Program <u>HC CHC</u> For <u>Horizontal Curves</u>	bytes	Page <u></u> of <u></u>
--	-------	-------------------------

107+LBL F 108 FC? 06 109 GTO 07 110+LBL 06 111 CF 06 112 -{> MID T- 113 PROMPT 114+LBL A 115 R-D 116 FS? 07 117 GTO 01 118 RCL 01 119 ST+ X 120 GTO 03 121+LBL 01 122 RCL 00 123 ST+ X 124 / 125 STO 01 126 GTO 00 127+LBL C 128 2	X Vic L H H Alz	Y	Z	T		155+LBL 01 156 RCL 00 157 / 158 ATAN 159 STO 01 160 GTO 00	X T Rof T/R Δ12	Y	र			
108 FC? 06 109 GTO 07 110+LBL 06 111 CF 06 112 -<> MID T- 113 PROMPT 114+LBL A 115 R-D 116 FS? 07 117 GTO 01 118 RCL 01 119 ST+ X 120 GTO 03 121+LBL 01 122 RCL 00 123 ST+ X 124 / 125 STO 01 126 GTO 00 127+LBL C 128 2	·#					156 RCL 00 157 / 158 ATAN 159 STO 01	Rod T/R					
109 GTO 07 110+LBL 06 111 CF 06 112 -<> MID T- 113 PROMPT 114+LBL A 115 R-D 116 FS? 07 117 GTO 01 118 RCL 01 119 ST+ X 120 GTO 03 121+LBL 01 122 RCL 00 123 ST+ X 124 / 125 STO 01 126 GTO 00 127+LBL C 128 2	·#					157 / 158 Atan 159 Sto 01	T/R					
110+LBL 06 111 CF 06 112 -{> MID T- 113 PROMPT 114+LBL A 115 R-D 116 FS? 07 117 GTO 01 118 RCL 01 119 ST+ X 120 GTO 03 121+LBL 01 122 RCL 00 123 ST+ X 124 / 125 STO 01 126 GTO 00 127+LBL C 128 2	·#					158 ATAN 159 Sto 01						
111 CF 06 112 -<> MID T- 113 PROMPT 114+LBL A A. 115 R-D L. 116 FS? 07 117 GTO 01 118 RCL 01 119 ST+ X Δ. 120 GTO 03 121+LBL 01 122 RCL 00 F. 123 ST+ X 2. 124 / Δ. 125 STO 01 126 GTO 00 127+LBL C C. 128 2	·#					158 ATAN 159 Sto 01	∆1 <u>2</u>					
111 CF 06 112 -<> MID T- 113 PROMPT 114+LBL A A. 115 R-D L. 116 FS? 07 117 GTO 01 118 RCL 01 119 ST+ X Δ. 120 GTO 03 121+LBL 01 122 RCL 00 F. 123 ST+ X 2. 124 / Δ. 125 STO 01 126 GTO 00 127+LBL C C. 128 2	·#					159 STO 01						
112 - <> MID T- 113 PROMPT 114+LBL A 115 R-D 116 FS? 07 117 GTO 01 118 RCL 01 119 ST+ X 120 GTO 03 121+LBL 01 122 RCL 00 123 ST+ X 124 / 125 STO 01 126 GTO 00 127+LBL C 128 2	·#											
113 PROMPT 114+LBL A A. 115 R-D L. 116 FS? 07 117 GTO 01 118 RCL 01 Δ 119 ST+ X Δ 120 GTO 03 121+LBL 01 122 RCL 00 R. 123 ST+ X 2 124 / Δ 125 STO 01 126 GTO 00 127+LBL C L.	·#								4	1 1	1	
114+LBL A 115 R-D 116 FS? 07 117 GTO 01 118 RCL 01 119 ST+ X 120 GTO 03 121+LBL 01 122 RCL 00 123 ST+ X 124 / 125 STO 01 126 GTO 00 127+LBL C 128 2	·#											
115 R-D L↔ 116 FS? 07 117 GTO 01 118 RCL 01 △ 119 ST+ X △ 120 GTO 03 121+LBL 01 122 RCL 00 F× 123 ST+ X 22 124 / △ 125 STO 01 126 GTO 00 127+LBL C 128 2	·#					161+LBL H	M					
115 R-D L↔ 116 FS? 07 117 GTO 01 118 RCL 01 △ 119 ST+ X △ 120 GTO 03 121+LBL 01 122 RCL 00 F× 123 ST+ X 22 124 / △ 125 STO 01 126 GTO 00 127+LBL C 128 2	·#					162 FS? 07						
116 FS? 07 117 GTO 01 118 RCL 01 △ 119 ST+ X △ 120 GTO 03 121+LBL 01 122 RCL 00 F 123 ST+ X 2 124 / △ 125 STO 01 126 GTO 00 127+LBL C 128 2	2/Z		1			163 GTO 04					1	
117 GTO 01 118 RCL 01 △ 119 ST+ X △ 120 GTO 03 121+LBL 01 122 RCL 00 F 123 ST+ X 2 124 / △ 125 STO 01 126 GTO 00 127+LBL C 128 2						164 E	1				l	
118 RCL 01 119 ST+ X 120 GTO 03 121+LBL 01 122 RCL 00 K 123 ST+ X Z 124 / △ 125 STO 01 126 GTO 00 127+LBL C 128 2						165 RCL 01	A12				1	
119 ST+ X 120 GTO 03 121+LBL 01 122 RCL 00 P 123 ST+ X 124 / 125 STO 01 126 GTO 00 127+LBL C 128 2						166 COS	(+ 5 4/2		m			
120 GTO 03 121+LBL 01 122 RCL 00 P 123 ST+ X 2 124 / 125 STO 01 126 GTO 00 127+LBL C 128 2	△						1-0052	m			1	
121+LBL 01 122 RCL 00 P 123 ST+ X 2 124 / △ 125 STO 01 126 GTO 00 127+LBL C 128 2						167 -	1-052				1	
121+LBL 01 122 RCL 00 P 123 ST+ X 2 124 / △ 125 STO 01 126 GTO 00 127+LBL C 128 2								1			1	
122 RCL 00 P 123 ST+ X 2 124 / 125 STO 01 126 GTO 00 127+LBL C 128 2						168+LBL 03					1	
122 RCL 00 P 123 ST+ X 2 124 / 125 STO 01 126 GTO 00 127+LBL C 128 2						169 /	Rad				1	
123 ST+ X 2 124 / △ 125 STO 01 126 GTO 00 127+LBL C C↓ 128 2	Rad					170 STO 00					1	
124 / 125 STO 01 126 GTO 00 127+LBL C 128 2	ZR		. .			171 GTO 0 0					1	
125 STO 01 126 GTO 00 127+LBL C 128 2											1	
126 GTO 00 127+LBL C C+ 128 2	2/2				1 E	172+LBL 04	m				1	
127 +LB L C C+ 128 2					Ч	173 CHS	-m				1	
128 2					Ch/2						1	
128 2	1				R.	174+LBL 05	En-M				1	
	TOTO			1	A Z	175 RCL 00	Rad					
129 / [Ci				1	N/	176 +	R.E/R-M					
170 500 07	-1/2					177 LASTX	R				l	
130 FS? 07				1		178 X(Y?						
131 GTO 02						179 X<>Y	hypotenese	adjocat		1	1	
132 RCL 01 스/	42					180 /						
133 SIN 571	~~4 ₂	دلم				181 ACOS	Δl_{Z}					
134 GTO 03	-					182 STO 01	16					
						102 310 01						
135+LBL 02	ch/z Rad			1								
136 RCL 00 R	Zad			1 1		183+LBL 00	menu"					
137 /						184 CF 06 185 SF 21	Print"					
138 ASIN	3/2											
139 STO 01						186 E2	100				1	
140 GTO 00						187 FC? 10						
						188 FS? 07						
141+LBL E	Ext.					189 X=0?					1	
142 FS? 07	· ^ / /					190 GTO F			1			
143 GTO 05						191 RCL 00	Ral	100			1	
	2/2					192 ADV			1		1	
145.2			1			193 CF 07					1	
146 /	44					194 CF 10					1	
	an 4/4	E				195 -RAD-				· ·	1	
147 THN 148 / T	T	6				196 XEQ 12					1	
140 /	'					197 /	100/K	1 !				
	Tang					198 R-D	Segree					
149+LBL J	ione					199 -D EG-	1			1		
150 FS? 07						200 XROM "Dd"						
151 GTO 01						201 AVIEW						
152 RCL 01	1/2	_								1		
	<u>, o/</u>		-	1			1	1		1	1	
154 GTO 03	an 42	Т								1		
(B36)	~ 'Z	l										
	·•• ⁻⁷ Ζ	l										

Program <u>HC,CHC</u> For <u>515</u> bytes Page<u>3</u> of <u>3</u>

			_	-		1					
	X	Y_	Z	T			Y	र	T	L	
203 ST+ X 204 "DEL" 205 XROM "Dd" 206 AVIEN 207 RCL 00 208 * 209 D-R 210 "ARC L" 211 XEQ 12 212 RCL 01 213 TAN 214 RCL 00 215 * 216 "T" 217 XEQ 12 218 RCL 01 219 SIN 220 RCL 00 221 * 222 ST+ X 223 "CH" 224 XEQ 12 225 E 226 RCL 01 227 COS 228 - 1 229 RCL 00 230 * 231 "M" 232 XEQ 12 233 R† 234 RCL 01 235 2 236 / 237 TAN 238 *	AL REL ZART ZANOZE IZZINA TU A E	Sin ^a Z I ch	T LA T	F F	244 RCL 00 245 X12 246 RCL 01 247 * 248 D-R 249 •SECT=- 250 XEQ 13 251 ENTER1 252 ENTER1 253 RCL 01 254 RCL 00 255 P-R 256 * 257 - 258 •SEGM=- 259 XEQ 13 260 RCL 01 261 TAN 262 RCL 00 263 X12 264 * 265 R1 266 - 267 •FIL=- 268 XEQ 13 269 XROM •LL- 270 GTO 08 271+LBL 11 273 FS? 00 274 RTN 273 FS? 00 274 RTN 275 •H-RP- 276+LBL 12 277 •H=- 278 ARCL X 279 XROM •FT- 280 AVIEN 281 RTN 282+LBL 13 283 ARCL X 284 XROM •FS- 285 AVIEN 286 END	Rad R ² A/2 S Rad X/Z A read S S Fillet	5 4/2 Y 5 Tan 92	5 5 5 S Segm	ঠ ১ ১	X I I I I I I I I I I I I I I I I I I I	A TRZ
											337)

(B39)

COORDINATE GEOMETRY PROGRAMS

SIZE	(2N+2	2) for "N" points
xeq	DUMP FREE	to initialize points and store point coordinates to list ("dump") points to find free (CLR'd) points
	DUP	to duplicate a block of points
	INV	to find distance and azimuth between two points
		to set (locate) a point by distance and azimuth
	LBR	to set a point by distance and bearing
	LAN	to set a point by backsighting on another point
	LPT	to set a point by distance, on the bearing through two other points
	\mathbf{LLI}	
		points
	ANGL	to find the angle between two points about a third
		to set a point part way between two other points
	OFPT	to find the offset of a point from a line defined
		by two other points
	OFAZ	to find the offset from a line defined by a point and
		an azimuth
	OFBR	to find the offset from a line defined by a point and
		a bearing
	IAZ	to intersect two lines defined by points and azimuths
	TBR	to intersect two lines defined by points and bearings
		to intersect two lines each defined by two points
	PRL	to set two points defining a line parallel to a line defined by two other points
	ATRV	to set a point along an arc by arc length
		to set a point along an arc by angle subtended
		to set a point partway between two points along an arc
		to intersect two arcs
		to intersect an arc with a line defined by two points
•		to intersect an arc with a line defined by a point and
		an azimuth
	ABR	to intersect an arc with a line defined by a point and
		a bearing
		I to find the internal tangency points of two circles
		I to find the external tangency points of two circles
	PTAN	to find the points of tangency of two lines through a point, to a circle
	C3P	
	ADJ	
		to find the area bounded by points
	CHC	
		two points about a third
		-

SOFTKEYS (USER mode ON)

C Correct a point input error in AREA

None of the other COGO routines makes use of softkeys. However, the softkeys of HC are accessible during use of CHC and should be avoided.

USER FLAGS

Flag 00	clear set	Point protect on Point protect off
Flag 01	clear set	North-East mode X-Y mode
Flag 02	clear set	Warning BEEP disabled in point-protect Warning BEEP enabled
Flag 03	clear set	Angles in decimal degrees (dd) Angles in degrees-minutes-seconds (DMS)

INPUT SUMMARY

- A Angle or north azimuth
- Al, A2 Azimuth
- B Bearing, measured from North or South; between 0° and 90° in one of the four quadrants.
- Quad Quadrant of a bearing: 1 = NE 2 = SE 3 = SW4 = NW
- C Center point (radius point)
- D Distance
- I First point in a series
- J Point of beginning: "From point J, ..."
- K Backsight or reference point, or last point in a series
- L, M Points defining a line

M "Proximity" point; choose the point closest to point M

N, N1, Point number to be solved or found; point number under N2 which to store the solved coordinates

R, R1, R2 Radius or radii of arcs

OUTPUT SUMMARY

PT Point number stored and displayed

- N Northing (flag 01 clear)
- E Easting (flag 01 clear)

х	X coordinate (flag 01 set)						
Y	Y coordinate (flag 01 set)						
D	Distance						
AZ	North azimuth						
A	Angle						
OFFSET	Offset from a line						

PROGRAM FLAGS

Flag 08	clear set	Don't calculate offset Calculate offset
	clear set	PART LLI
Flag 09	clear set	Quadrant 2 or 3 (in BA) Quadrant 1 or 4
	clear set	INTAN OF ATVA EXTAN OF ATRV
	clear set	More than two points input in AREA Only one or two points input in AREA
Flag 10	clear set	Softkey C has not been used in AREA Softkey C has been used in AREA
Flag 14	set	Line type control
Flag 21	set	Display control
Flag 26	clear set	BEEP disabled according to flag 02 BEEP enabled according to flag 02
Flag 29	clear	Display of decimal point disabled

STORAGE REGISTER USE

<u>Register</u>	<u>Value</u>
00	Working register
01	Working register
02	Easting (X) coordinate of point #1
03	Northing (Y) coordinate of point #1
04	Easting (X) coordinate of point #2
05	Northing (Y) coordinate of point #2

Etc.

BU

COORDINATE GEOMETRY PROGRAMS

There are thirty-three user programs in the coordinate geometry section of this module (CHC, LPT, and most of those between STOR and AREA, inclusive, in a CAT 2 listing). Each of the routines has its own short description, with a sketch, and input and output information. These individual writeups follow this introduction, which gives an overview of the coordinate geometry group.

All the routines work with points, lines, and curves in two-dimensional (plane) space. The routines will work in an X-Y system if flag 01 is set, and in a North-East system if flag 01 is clear. This may be changed at any time as long as a prompt isn't pending. No matter which orientation is being used, the X (East) coordinate of a point "N" is stored in register (2N); the Y (North) coordinate is stored in register (2N+1). Thus, to store a given number of points "n" requires a SIZE of 2n+2. The available SIZE is checked when initializing points in STOR.

POINT STORAGE

All points are protected by a point storage subroutine which checks to see if a pair of registers already contain coordinates before it stores a point If the user designates a point number which is there. already used, the program BEEPs and displays USED-NEW PT? If another point number is keyed in, the program tries to store the coordinate as that point. If instead the prompt is bypassed, the existing coordinates The program recognizes as unused, are overwritten. those points which have first been initialized (cleared) in program STOR. Thus, the first thing done at the beginning of a project is usually to initialize points and then store the coordinates of one or more points in STOR. It is important to note that pointprotection is <u>disabled</u> if flag 00 is set; and that the BEEP is disabled if flag 02 is clear.

ANGLES

All the COGO (coordinate geometry) routines which use angles recognize the status of flag 03. If flag 03 is clear all angles (input and output) are in decimal degrees. If flag 03 is set, all angles are in degreesminutes-seconds. This is shown clearly in all prompts and output as (dd) or (DMS).

Most of these routines require multiple input. Unlike most programs in this module which prompt for input one item at a time, many of the COGO routines require two, three, or four items to be input into the This is signified in the prompt by an stack at once. upward arrow, f, meaning "Enter f." Thus for the STOR prompt PT / N / E, key in the point number, enter, key in the northing, enter, key in the easting (don't enter), press R/S. The program uses whatever it finds in the stack. This can produce some shortcuts; for instance, if the coordinates of point #10 are (2,2), simply key in 10, enter, 2, enter, R/S. None of the routines use numbers in the stack above the numbers requested in the <u>initial</u> prompt, so if you realize a mistake was made before R/S is pressed, nothing needs to be cleared; just key in the right numbers. However, if a program has a second prompt (usually"N", asking for the point number to store the coordinates under, or "M", the "proximity" point), important data are carried in the stack; if a mistake is caught, use RDN (roll down) to avoid changing the necessary stack configuration. This rather poor explanation will become clearer with a little use, and perhaps an examination of the program listings with the stack usage traced. If at all uncertain, just re-execute the routine.

TEMPORARY POINTS

As mentioned, each point "N" stores its coordinates in registers 2N and 2N+1. Registers 00 and 01 are the only storage registers used by the programs as working registers, the rest of the work being done in the stack and synthetic registers (about which see the section "Synthetic Programming and Other Loose Ends" at the front of the documentation). This means that if you just want the coordinates of a point displayed but not stored, call it point #0, override the point protection, and it will be temporarily stored until another program needs registers 00 and 01, at which time it will be gone.

PROXIMITY POINT

Many of the routines dealing with arcs find two points instead of just one. The routines use a simple method to determine which one to store; they prompt for a "proximity" point (always prompted as point M) and pick the point closest to it. If both points are wanted, bypass the "M" prompt and they will both be stored. It's especially important in this case to keep a running sketch to designate which point is which.

PRINTER USE

Most routines, upon finishing, return to their initial prompt to go again. The first time each routine is executed, a line of asterisks is printed (that is, if a printer is present) across the paper. If a routine is used repeatedly (for example, LAZ to traverse around an area) it's difficult when reviewing the output to tell which routine is being used. The line of asterisks makes this a little clearer; directly above the last line is the function execution. See the examples for clarification. Using a printer is strongly recommended; tracing down mistakes without one is almost impossible.

LIMITATIONS

It's important to keep in mind the scope of this COGO package. The intended uses typically involve layouts of small structural components or minor land surveying tasks. While a completely "empty" HP-41CV or CX (one with no program storage or key assignments) is capable of storing up to 158 points, anything over thirty or forty points starts to get clumsy. Large complicated layouts can be done, but only with very strong concentration and constant cross-checking, because of some of the following disadvantages:

1) There is no graphics capability. Anyone used to onscreen graphics knows how useful a simple picture can be in terms of ease of use, confidence, and error detection. For anything more than about four points, it is almost essential to have a carefully scaled drawing with point numbers, distances, and azimuths shown. It is also a very good idea to write out the intended procedure, with input, before starting. Just using the routines and getting through the input sequences requires a lot of concentration. Don't try to think your way through the problem at the same time. And, as mentioned, a printer is extremely helpful. Don't let this discourage use of the routines, though; all computer coordinate geometry work was originally done on batch machines with exactly these limitations. They simply require a little caution and concentration.

2) Although stored points are protected from alteration by other COGO routines (if flag 00 is clear), the storage registers they reside in are used quite cavalierly by other programs, wiping out coordinates. However, only a few programs in this module (PIER, PLG, and sometimes FTG) use registers above #30. It may be worthwhile to start with point number 15 or so (or 25 if PIER may be used), leaving the lower-numbered registers for use by other (non-COGO) programs. Program DUP may also be used to duplicate a block of points to a safer (higher-numbered) location for storage, to be used as re-numbered points or copied back down later.

3) The HP-41 is limited to ten significant figures. It's not a good idea to waste too many of them in front of the decimal point; use of more than four figures before the decimal point is not recommended. Also, intersections involving two lines with not-very-different bearings is inherently inaccurate, with any COGO package.

4) While angles may be input in bearing/quadrant mode, it is clumsy; and all output is expressed as north azimuths. At best, bearings are handled awkwardly by this package. Those used to working with bearings (i.e. surveyors and others who know more about these things than the author) will probably grit their teeth and use azimuths.

5) As stated, all points are two-dimensional. Elevations are not stored.

6) There is no provision for storing descriptors with points. Those used to large-scale professional coordinate geometry programs (the author included) will miss this greatly; good descriptors are second only to interactive graphics in inspiring confidence and ease of use. Both elevations and short description capabilities (one register, six letters) were considered. However, both complicate (swell) the programming immensely; also, each point would require four registers to store instead of just two, halving the available point storage. A realistic assessment of the uses, intended scope, and inherent limitations of this package made both elevations and descriptors seem an expensive luxury.

As mentioned five disadvantages back, this listing is intended to caution, not discourage. A great deal of useful, accurate work has been done on systems with exactly the limitations stated here. People used to the old batch programs will feel right at home using these programs. They simply require a little more care than their \$12,000 siblings. COMMAND INPUT

STOR I/K CLR; PT/N/E (flag 01 clear) I/K CLR; PT/X/Y (flag 01 set)

Clear (initialize) all points from I to K inclusive, then store the North and East (or X and Y) coordinates of points. The I/K CLR prompt is not repeated; the PT/... prompt is. If enough points have already been initialized, the I/K CLR prompt may be bypassed.

DUMP I/K

Dump (display or list) the coordinates of points I through K. Skips free (initialized) points.

FREE (No input)

Finds free or unused points (points which have been initialized (CLR'd) in STOR).

_

DUP I/K/NEW I

Copies a block of points from I to K, to a new block starting at NEW I. Leaves the original points I through K intact. To just copy one point, key I, A, A, NEW I. Point protection is <u>not</u> active with DUP; it will overwrite points with with no warning. The user must also check for overlap.

—

INV J/K

Finds the distance and azimuth between points J and K. The K point of one INV is the default J of the next. Thus to inverse from point #1 to #2, then #2 to #3, then #3 to #4: Xeq (alpha) INV (alpha); key in 1, Enter/, 2, R/S; 3, R/S; 4, R/S. In addition, the sum of the distances is stored in register 00 for use by program ADJ.

K N

ANGL J/C/K

Find the angle between points J and K, measured about point C. The distances from J to C and K to C need not be the same.

K Angle C

Note: the "/ " symbol means "Enter/." (dd) means "decimal degrees" (flag 03 clear); (DMS) means "Degrees-Minutes-Seconds" (flag 03 set). Clockwise angles are positive.

COMMAND INPUT

LAZ J/D/A (dd or DMS); N

Locate by azimuth. From point J, set point N at distance D and azimuth A.

_

LBR J/D/B (dd or DMS); QUAD; N

Locate by bearing. From point J, set point N at a distance D and bearing B in quadrant QUAD.

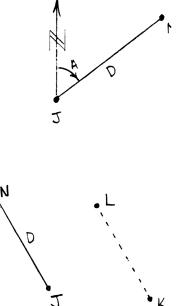
LPT J/D/K/L; N

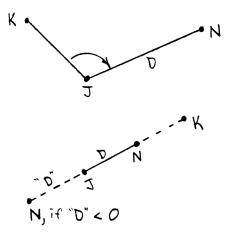
Locate by point bearing. From point J, set point N at a distance D, at the azimuth of the line through K to L.

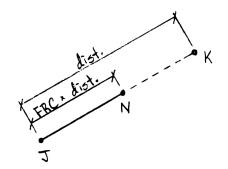
LAN J/K/D/A (dd or DMS); N

Locate by angle. From point J, backsight on point K; turn angle A (clockwise is positive) and set point N at distance D.

_


LLI J/K/D; N


Locate on line. From J, set point N a distance D toward point K. A negative D sets point N in the opposite direction of K.


PART J/K/FRC; N

From point J, set point N a fraction FRC of the distance to point K. If FRC is greater then 1, N will be set beyond K. Like LLI, if FRC is negative, N will be set away from rather than toward K from point J.

Note: the "/ " symbol means "Enter/." A semicolon means the items of input are prompted in separate groups. (dd) means "decimal degrees" (flag 03 clear); (DMS) means "Degrees-Minutes-Seconds" (flag 03 set). Clockwise angles are positive.

COMMAND INPUT

OFPT J/K/P; N

Offset by points. Find the offset of point P from the line through points J and K; set point N on line J-K. The prompt for point N may be bypassed (or answered 0) to avoid setting a point there.

-

OFAZ J/P/AZ (dd or DMS); N

Offset by azimuth. Find the offset of point P from the line through J at azimuth AZ; set point N.

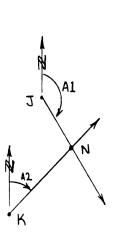
OFBR J/P/B (dd or DMS); QUAD; N

Offset by bearing. Find the offset of point P from the line through J at bearing B; set point N.

-

IAZ J/A1/K/A2; N

Intersect by azimuth. Set point N at the intersection of the line through point J at azimuth A1; with the line through point K at azimuth A2.



IBR J/B; QUAD; K/B; QUAD; N

Intersect by bearing. Set point N at the intersection of the line through point J at bearing B; with the line through point K at bearing B.

-

Note: the "/ " symbol means "Enter/." A semicolon means the items of input are prompted in separate groups. (dd) means "decimal degrees" (flag 03 clear); (DMS) means "Degrees-Minutes-Seconds" (flag 03 set). Clockwise angles are positive.

] •

(N)

P

Offset

COMMAND INPUT

IPT J/K/L/M; N

Intersect by points. Set point N at the intersection of lines J-K and L-M. J and K need not be on opposite sides of line L-M and vice versa.

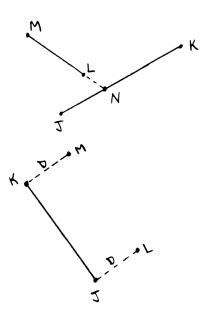
PRL J/K/D; L; M

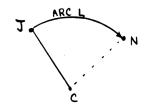
Parallel line. Set points L and M a distance D from points J and K such that line L-M is parallel to line J-K. From J facing K, D is positive to the right.

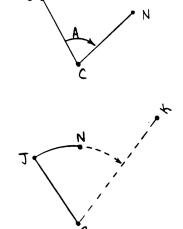
ATRV J/C/ARC L; N

Arc traverse. From point J, about point C, traverse a distance ARC L along the arc to set point N. ARC L is positive measured clockwise.

_


ATVA J/C/A (dd or DMS); N


Arc traverse by angle. From point J, about point C, turn an angle A to set point N on the arc. Angle A is positive measured clockwise. This function is identical to LAN except the distance (here, radius) is set by point J.


AFRC J/C/K/FRC; N

Arc fraction. Set point N a fraction FRC of the way along the arc from J to K about C. If J and K are not the same distance from C, the radius used is from J to C.

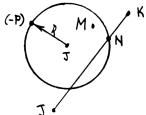
Note: the "/ " symbol means "Enter/." A semicolon means the items of input are prompted in separate groups. (dd) means "decimal degrees" (flag 03 clear); (DMS) means "Degrees-Minutes-Seconds" (flag 03 set).__Clockwise angles are positive.

<u>Note:</u> The following arc commands have two possible solutions; the routines will pick the one closest to point M to store as point N (the solved point). If the prompt for M is bypassed, both solutions will be stored as N1 and N2.

If the prompt for a radius is answered as a negative number (e.g. -12) it is taken as <u>point</u> #12 and the radius to be used is the distance from that point to the center point.

<u>COMMAND</u> <u>INPUT</u>

ARCS J/R1/K/R2; M; N (or N1; N2) J/-P1/K/P2; M; N (or N1; N2)


Intersect arcs. Intersect the arc of radius R1 about point J, with the arc of radius R2 about point K, to set point N.

-

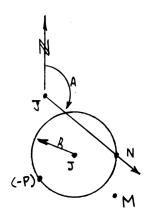
APT J/R/K/L; M; N (or N1; N2) J/-P/K/L; M; N (or N1; N2)

Intersect arc by points. Intersect the arc of radius R about point J with the line through points K and L.

(-P1)

AAZ J/R/K/A; M; N; (or N1; N2) J/-P/K/A; M; N; (or N1; N2)

Intersect arc by azimuth. Intersect the arc of radius R through point J with the line through point K at azimuth A.



ABR J/R/K/B; QUAD; M; N J/-P/K/B; QUAD; M; N

Intersect arc by bearing. Intersect the arc of radius R through point J with the line through K at bearing B in quadrant QUAD.

_

Note: the "/ " symbol means "Enter/." A semicolon means the items of input are prompted in separate groups. (dd) means "decimal degrees" (flag 03 clear); (DMS) means "Degrees-Minutes-Seconds" (flag 03 set).

<u>Note:</u> The following three arc commands have two possible solutions; the routines will pick the one closest to point M to store as point N (the solved point). If the prompt for M is bypassed, both solutions will be stored as N1 and N2.

If the prompt for a radius is answered as a negative number (e.g. -12) it is taken as <u>point</u> #12 and the radius to be used is the distance from that point to the center point.

COMMAND INPUT

INTAN J/R1/K/R2; M; N J/-P1/K/-P2; M; N

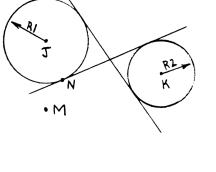
Internal tangent. Finds the two points of internal tangency which are on the circle about point J.

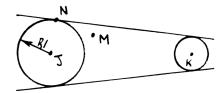
—

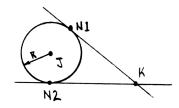
EXTAN J/R1/K/R2; M; N J/-P1/K/-P2; M; N

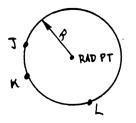
External tangency. Finds the two points of external tangency which are on the circle about point J.

-


PTAN J/R/K; M; N J/-P/K; M; N


Tangents through a point. Finds the points of tangency to the circle about point J of the two lines through point K.


-


C3P J/K/L; RAD PT

Circle from three points. Finds the radius and sets the center point RAD PT of the circle through any three non-colinear points.

-

Note: the "/ " symbol means "Enter/." A semicolon means the items of input are prompted in separate groups. (dd) means "decimal degrees" (flag 03 clear); (DMS) means "Degrees-Minutes-Seconds" (flag 03 set). Clockwise angles are positive.

<u>COMMAND</u> <u>INPUT</u>

CHC PC/RP/PT

Coordinate horizontal curve. Calculates the following horizontal curve data from the three points (point of curvature, radius point, and point of tangency):

Distance PC to RP Distance PT to RP Azimuth of incoming tangent (PC to PI) Azimuth of outgoing tangent (PI to PT)

RAD	Radius, taken as PC to RP
DEG	Degree of curve
DEL	Delta or central angle
ARC L	Arc length
T	Tangent length (PC to PI)
CH	Chord length
M	Middle ordinate (arc to chord)
E	External (arc to PI)
SECT	Sector area

SECT	Sector area
SEGM	Segment area
FIL	Fillet area

If the distances PC to RP and PT to RP aren't equal, the program displays a warning and uses the former as the radius. In this case the PT input is used only to find the angle subtended (Delta).

For more information see the documentation for program HC, of which CHC is a part.

Note: the "/ " symbol means "Enter/." A semicolon means the items of input are prompted in separate groups. (dd) means "decimal degrees" (flag 03 clear); (DMS) means "Degrees-Minutes-Seconds" (flag 03 set). Clockwise angles are positive.

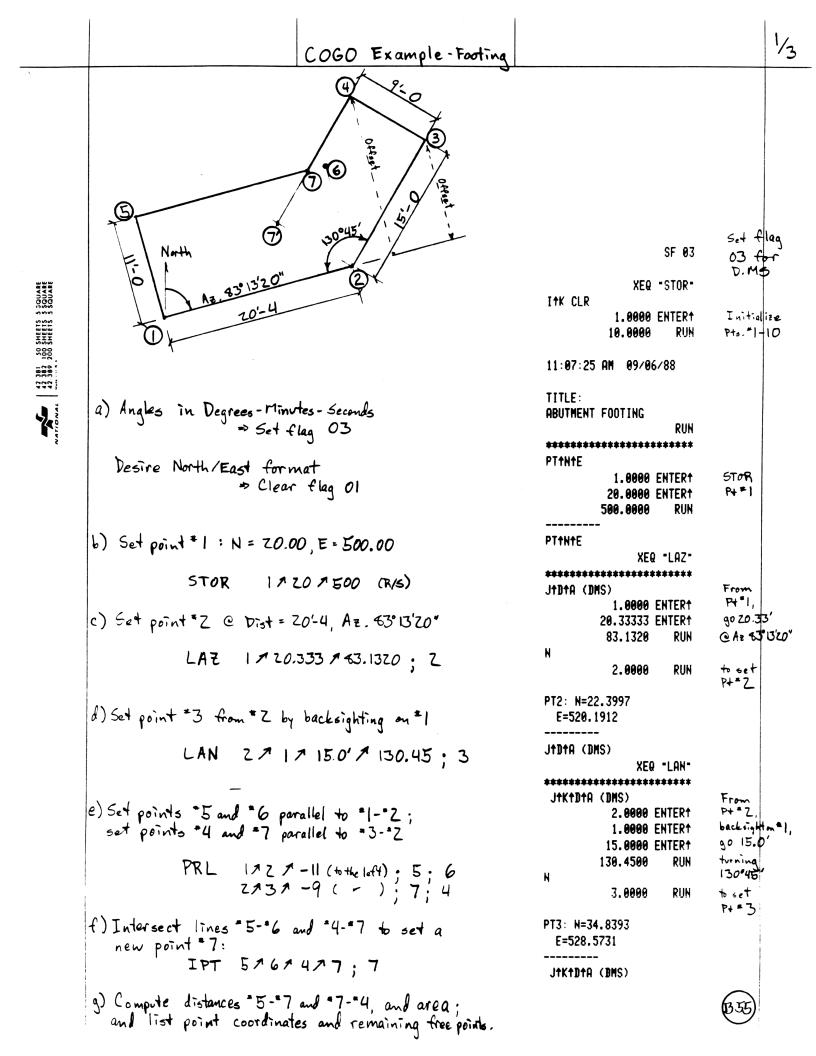
SECT

RP

PC

COMMAND INPUT

ADJ BEG PT; END PT; DIST'; PT#; PT#; PT#; etc.


Traverse adjustment by compass rule. Adjusts all point coordinates of a traverse proportionally to make the END PT close on the BEG PT (i.e. to make the END PT coordinates the same as the BEG PT coordinates).

The £ DIST' prompt asks for the total distance around the traverse, from BEG PT (beginning point, P.O.B.) to END PT. If this distance is known, simply key it in and go on. If not (the usual case), one of three routines may be run before the ADJustment to find the distance. If the points in the traverse are being set by LAZ or LBR from field notes, the distance around the traverse is accumulated (in register 00). If the points are already set, routine INV may be used to inverse around the loop; it also accumulates the distance. If using any of these three, they must run the entire traverse without stopping, since re-executing them zeroes the distance accumulated to start over. Once one of these three routines has been run from the BEG PT to the END PT, xeq ADJ, input the beginning and ending points, then bypass the ∑ DIST' prompt (press R/S without keying anything in). The correct value will be inserted.

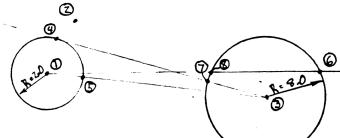
After the **S** DIST' prompt, ADJ begins prompting for points in the The first PT# prompt is the second point in the traverse. traverse, and so on; continue answering the PT# prompts until you've keyed in the END PT. Respond to the next PT# prompt with a 0 (zero), or just XEQ your next command (typically a DUMP to list the adjusted points). See the example. It is important when keying in the PT#'s not to disturb the stack, which carries needed data. Do not use the Enter/ key; and if an incorrect number is keyed in and R/S has not yet been pressed, use RDN (rolldown) or CLX to remove it before keying in the correct num-Unfortunately, ADJ is very unforgiving of mistakes made ber. during PT# entry, and since the points are altered as one goes around the traverse, it's also impossible to start over. Thus it is a very good idea to duplicate the original coordinates in a safe block of registers with routine DUP in order to provide a method of error recovery. DUP does not use register 00, so it does not interfere with the storage of a **E** DIST' value by LBR, LAZ, or INV as long as one of these three routines is run completely around the traverse first.

AREA PT1; PT2; PT3; PT4; etc.

Calculation of area bounded by any number of points (greater than two). Input points bounding the area in a clockwise direction. The same caution applies to the stack and the Enter/ key as for routine ADJ. However, if an error is discovered after pressing R/S but before keying in the next point number, use softkey C (with USER mode on) to correct the error. See the example. To end input and calculate the area, key in 0 (zero).

2/3

×+++++++++++++++++++++++++++++++++++++			*******	******	******	
J†K†D			JtKtLtM			
1,0000 El	NTERT			5.0000	ENTERT	
2.0000 EI					ENTERT	
11.0000	RUN				ENTERT	
L	Kon			7.0000	RUN	
5.0000	RUN		N			
3.0000	KUN		n	7.0000	RUN	Overwrit
DTE . N-0 07/0			HCED-NEU D		KUN	old P+*
PT5: N=9.0769		00ps-went	USED-NEW P	1 ?	DUN	
E=501.2982		the wrong			RUN	with th
		way (should	077. 11-77.			new on
M		have been	PT7: N=33.0			
6.0000	RUN	-11.0')	E=516.50	78		
PT6: N=11.4766			JtKtLtH			
E=521.4894				XE	P -INA-	
			*******	******	******	
J†K†D		Do over	J†K			
1.0000 EI	NTERT			5.0000	ENTERT	From #5
2.0000 EI				7.0000	RUN	⊎ =7
-11.0000	RUN		D=17.9314			
L			AZ=83.1320	DMS		
5.0000	RUN			2		
USED-NEW PT?	KUN	Busses de	J†K			From #70
UJED NEW FIS	RUN	Bypacs to	V1N	4.0000	RUN	to =4
	KUN	overwrite	D=8.2347		NVI	10 4
DTE. N-30 0074			AZ=33.5820	RMC		
PT5: N=30.9231				5 NU		
E=498.7018						
			JtK	VEA	.0501-	
K					OFPT	
6.0000	RUN		*********	F∓∓∓‡\$	F#¥¥¥¥¥	Find of
USED-NEW PT?		Bypass	JtKtP			of pt * k
	RUN				ENTERT	
				2.0000		line "I-"
PT6: N=33.3228				4.0000	RUN	
E=518.8930			OFFSET=17.2	2383 .		
			N			
J†K†D				0.0000	RUN	Set "dum
2.0000 E	ITERT					point Q
3.0000 E			PT0: N=22.7	7506		location
-9.0000	RUN		E=523.143			line = 1-
L -	-					1
7.0000	RUN		JtKtP			obtain coo
				1.0000	ENTERT	
PT7: N=27.4288				2.0000		
				3.0000	RUN	Offset a
E=512.7275			OFFSET=11.3		NVII	point =3
			N			
M	DUN		п	0.0000	DIIN	line =1-
4.0000	RUN			0.0000	, KUN	
NT / 11 30 0/07			DTA. 4-07 F			
PT4: N=39.8685			PT0: N=23.5			
E=521.1093			E=529.914	12		
JtKtD						
that the free	+	(+1, a "raa")				
THUT THE TIPS		(the "xeq") of each	routine			
	i antena	sks to make the				


6356

3/3

J†K†P				XROM FREE	
JINIF	5.0000	ENTER	Offset of	*****	
	6.0000		Pt=4 from	FREE PTS:	h. (1
	4.0000	RUN	line *5- *6	8 9	Have three
OFFSET=6				10	points unused
N					
		RUN	Bypass to avoid setting any point	XEQ DUMP"	
J†K†P			cetting any point	11:17:47 AM 09/06/88	
	XROM	-AREA-			
	*******	*****		TITLE:	
PT1			Find area	ABUTMENT FOOTING RUN	
DT O	1.0000	RUN	a lea	*****	
PT2	2 0000	DIM		ItK	
077	2.0000	RUN		1.0000 ENTER†	
PT3	3.0000	RUN		10.0000 RUN	
PT4	3.0000	KUN			
	4.0000	RUN		PT1: N=20.0000	
PT5		Non		E=500.0000	
	5.0000	RUN		PT2: N=22.3997	
PT6				E=520.1912	
		XEQ C	Oops - the fifth		
PT5			Oops - the fifth point should be # 7	PT3: N=34.8393	
	7.0000	RUN	#7	E=528.5731	
PT6					
	6.0000	RUN		PT4: N=39.8685	
PT7				E=521.1093	
DT (XEQ C	Oops again-use		
PT6	5 0000	DUN	softkey "C" to correct CUSER mode on). End with Pt • O; Points were	PT5: N=30.9231	
PT7	5.0000	RUN	correct CUSER mode on).	E=498.7018	
F 1 (0.0000	RUN	End with Pt= 0;		
OPE071	5.0119 SQ	KUN	roints were	PT6: N=33.3228	
	-		input counter-	E=518.8930	
PT1			clockwise so		
			area displays	PT7: N=33.0394	
			as negative.	E=516.5078	Points 8-10
				LIN	ore not

Points 8-10 are not listed since they are unused

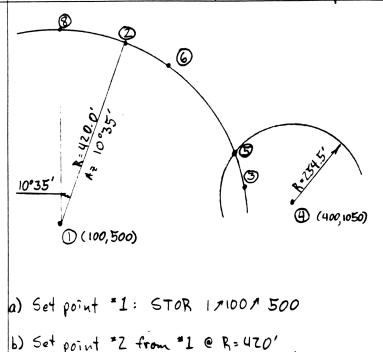
Arc Commands

SF 01 XEQ -STOR-Itk CLR 1.0000 Entert 1.0000 CLX 9.0000 RUN Use (X,Y) rathor than (North, East) Initialize 9 points oops

4:57:51 PM 08/30/88

T I T L E : CURVES ********	*******	RUN ****
PTtXtY		
	1.0000 EN	
	5.0000 EN	
	15.0000	RUN
PTtXtY	-	
FILMIT	2.0000 EN	TEPt
,	6.0000 EN	
	18.0000	RIIN
	-	KOO
PTtXtY		
111011	3.0000 EN	TERt
	12.0000 EN	
	14.0000	RUN
	-	
PTtXtY		
	XEQ -P	TAN-
******	**********	
J†R†K		
U IKIK	1.0000 EH	ITERT
	2.0000 EN	
	3.0000	RUN
M		
	2.0000	RUN
N		
	4.0000	RUN
PT4: X=5 Y=16.8		

Y=16.8191 ------JtRtk


Find the tangent point of the line through Pt #3, to the circle about Pt #1 of radius Z.O; of the two solutions, pick the one closest to Pt #Z.

XEQ -APT-****** **J†R†K†L** 1.0000 ENTER† 2.0000 ENTER† 1.0000 ENTER† RUN 3.0000 H 3.0000 RUN N 5.0000 RUN PT5: X=6.9799 Y=14.7172 _____ JTRTKTL 3.0000 ENTER† 8.0000 ENTER† 3.0000 ENTER† 4.0000 RUN M RUN 4.0000 N RUN 11.0000 NONEXISTENT XEQ -APT-****** **J†R†K†L** 3.0000 ENTER† 8.0000 ENTER† 3.0000 ENTER† 4.0000 RUN M 4.0000 RUN N 7.0000 RUN PT7: X=4.7238 Y=17.3252

JTRTKTL

XEQ -AAZ-****** JtRtKtA (dd) 3.0000 ENTER† 8.0000 ENTER† 1.0000 ENTER† 85.0000 RUN M RUN **H**1 6.0000 RUN PT6: X=19.6673 Y=16.2832 N2 8.0000 RUN PT8: X=4.0527 Y=14.9171 ------JtRtKtA (dd) XEQ "FREE" ****** FREE PTS: 9 P+= 9 still available Intersect the circle about Point = 3, of radius 8.0, with the line through points = 3 and =4 Of the two solutions, pick the one closest to Pt=4. Coll it Pt=11 Oops - must re-execute not enough data registers to store Pt #11 Store as P+ #7

1/1

LAZ 11420110.35'; 2

Az · 10 35':

c) Set point *3 from *2, 300.0' along the arc about *1 (clockwise = +)

ATRV 211/300'; 3

- d) Store coordinates of point #4 (bypass initializing sequence): N=400 E=1050 STOR (byposs CLR) 4740071050
- e) Sed point *5 @ intersection of are about *4@ R = 254.5', with are about *1 @ R + 420.0'(radius of *3) pick the point closest to *2

ARCS 17-3747254.5; Z; 5 (3, c us)

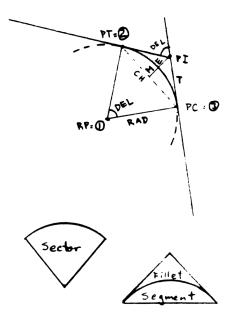
f) Set point *6 ky of the way between *2 and *3 along the arc about *1.

AFRC 211731.25; 6

g) Set point "B, 10°35' counter-clockwise (-) from point "Z about "1

h) Find remaining free points and run out curve data from =3 to =Z ebout =1

	SF 03	Work in D.MS
I†K CLR	XEQ "STOR"	
	.0000 ENTER† .0000 RUN	
5:30:47 PM	08/30/ 88	
TITLE: Arcs		
	RUN	
************* PT†N†E	**********	
1.	.0000 ENTER†	Store P+=1
	0000 ENTER*	
500.	.0000 RUN	
PT†N†E		
	XEQ "LAZ"	
********	********	
J†D†A (DMS)		Set PH * Z
	.0000 ENTER†	
	.0000 ENTER†	
	.3500 RUN	
N 2.	.0000 RUN	
PT2: N=512.85 E=577.1395	553	
J†D†A (DMS)		
	XEQ ATRV-	
******	******	
JTCTARC L		
	0000 ENTERT	Set R = 3
	0000 ENTER† 0000 RUN	
300. N	0000 RUN	
	0000 RUN	
PT3: N=361.40 E=828.7360	51	
J†C†ARC L		
		1


CF 01

Work in (North, East)

XEQ -STOR-ItK CLR RUN PTTNTE 4.0000 ENTER† 400.0000 ENTER† 1,050.0000 RUN _____ PTTNTE XEQ -ARCS-****** JTR1TKTR2 1.0000 ENTER† -3.0000 ENTER† 4.0000 ENTER† 254.5000 RUN H 2.0000 RUN N 5.0000 RUN PT5: N=398.4577 E=795.5047 -----JTR1TKTR2 XEQ "AFRC" ****** J†C†K†FRC 2.0000 ENTER† 1.0000 ENTER† 3.0000 ENTER† .2500 RUN N 6.0000 RUN PT6: N=492.5884 E=649.2458 --------J+C+K+FRC XEQ -ATVA-******* JTCTA (DMS) 2.0000 ENTER† 1.0000 ENTER† -10.3500 RUN N RUN 8.0000 PT8: N=520.0000 E=500.0000 -------JTCTA (DMS) XE0 FREE **************** FREE PTS: 7 9

XROM -CHC-5:45:03 PH 08/30/88 TITLE: 420 FT RAD. RUN ***** PCTRPTPT 3.0000 ENTER† 1.0000 ENTER† 2.0000 RUN PC-RP=420.0000' PT-RP=420.0000' PC-PI AZ=-38.2928 DMS PI-PT AZ=-79.2500 DMS RAD=420.0000' DEG=13.3831 DMS DEL=40.5532 DMS ARC L=300.0000' T=156.7207' CH=293.6630' M=26.5022' E=28.2871' _____ SECT=63,000.0000 SQ' SEGM=5,222.1295 SQ' FIL=2,822.6734 SQ' _____

PCTRPTPT

360

Z/ Z TRAVERSE ADJUSTMENT

adjust po	his circuit and ints by the ule to close. 3
N 00 460	0 7, 00 13 00 14 00 100 100 100 100 100 100 100 100 100
P.O.B. D 6 Az 271°0	$P^{\frac{1}{2}} = 0 = P.0.B.$
Perimeter (ZDI	5T) = <u>440.0'</u>
Traversing from	① (30,530) + ⑥ (29.2+77,529.4765)
Error in No - E	rthing: 30.0-29.2877 = <u>.7123'</u> asting: 530.0-529.4765= <u>.5235'</u>
×eq <u>STOR</u> IAK CLR	1,6
PTANAE	1,30,530
xeq <u>LBR</u> JADAB (U);	QUAD; N
	1,70', 0°; 1; Z
	Z,100',46°;1;3
	3,100,44°; Z; 4
	4, 100',46°;3;5
xeq ADJ	5,70',49°;4;6
BEG PT END PT	1 6
E DIST' PT #	(R15) (default from LBR)
₽ ⊤ *	Z. 3 etc.

	XEQ	-STOR-		
I+K CLR				
		ENTERT	Initialize	
0175/14	6.0000	RUN	points 1-6	
SIZE<14			Oops! Not en	wah
	c1	ZE 014	room - resiz	E
		"STOR"	To out	
I†K CLR	VER	STUR	Try again	
I'R OLR	1.0000	ENTERT	Initialize	
	6.0000		Laitialize	
4:37:43	PH 08/29	/88		
TITLE :				
TRAVERSE	ADJUSTNEN	IT RUN	Title	
******	*******	*****		
PTTNTE			STIR coord-	
	1.0000		instes of P.O.	z
	30.0000			0.
	530.0000	RUN	N - 30.0	
	-		E = 530.0	
PTTNTE				
		"LBR"	Begin traverse	2
J†D†B (d	**************************************	*****	G -	
JIJIO (U	1.0000	ENTED+	From pt. =1,	
	70.0000			
	8.0000	RUN	go 70.0' at	
QUAD	010000	KON	a bearing of	
	1.0000	RUN	aco" in Quad.	1
N			(Northeast)	
	2.0000	RUN	to set point ?	2
PT2: N=1			Coord. of	
E=530.	9999		point =2	
	-		point 2	
J†D†B (de				
	2.0000			
	100.0000			
01107	46.0000	RUN		
QUAD	1.0000	RUN		
N	1.0000	KUN		
	3.0000	RUN		
		Non		
PT3: N=16	59.4658			
E=601.9	9349			
	-			
J†D†B (do				
	3.0000			
	100.0000			
0000	44.0000	RUN		
QUAD	0 0000	יייים		
N	2.0000	RUN		
	4.0000	RUN		
	T. 0000	NUN		
PT4: N=97	.5319		(361)	
E=671.3				

٧/4

2/24

	id) 4 0000				XE6 -		
	4.0000			7:36:38	AM 08/16/	88	
	100.0000						
	46.0000	RUN		TITLE:			
QUAD				ADJUSTED	POINTS	RUN	
	3.0000	RUN			********	*****	
N				ItK			
	5.0000	RUN		116	1.0000 E		
					6.0000	RUN	
PT5: N=2	98 9669				0.0000	KUN	
E=599.				DT () 70			
C-J77.				PT1: N=30			Adjuster
				E=530.0	1000 —		Points-
J†D†B (d					•		*6 = *1
	5.0000			PT2: N=10	0.1133		
	70.0000			E=530.0	833		
	89 .000 0	RUN			•		
QUAD				PT3: N=16	9.7410		
	4.0000	RUN		E=602.1			
N							
	6.0000	RUN		PT4: N=97	0400		
				E=671.7			
PT6: N=2	9 2877		Point *6 didn't quite	E-0(1.(211		
E=529.			close on point 1				
				PT5: N=28			
JtDtB (d				E=599.9	9961		
		-ADJ-			-		
	010 *******			PT6: N=30			
	*********	*****		E=530.0	1000		
BEG PT					-		
	1.0000	RUN		ItK			
END PT				IŧK	YPON -	OPFO-	Findle
	1.0000 6.0000	RUN			XROH -		Find Are
END PT 2 dist:				*****	XROM -		of aline
			Bypess Since ZDIST three		********	****	of aline
		RUN	Bypess Since ZDIST three by LBR run	********* PT1			of aline
Σ DIST'	6.0000	RUN Run	by LBR run	*****	1 .0000	***** Run	of aline
Σ DIST· Pt#		RUN	by LBR run Begin with first point tu	********* PT1 PT2	********	****	of aligue
Σ DIST'	6.0000 2.0000	RUN Run Run	by LBR run Begin with first point tu be adjusteb - proceed	********* PT1	1.0000 2.0000	***** Ruh Ruh	of aligue
Σ DIST· Pt# Pt#	6.0000	RUN Run	by LBR run Begin with first point tu	********** PT1 PT2 PT3	1 .0000	***** Run	of aligue
Σ DIST· Pt#	6.0000 2.0000 3.0000	RUN RUN RUN RUN	by LBR run Begin with first point tu be adjusteb - proceed	********* PT1 PT2	1.0000 2.0000	***** Ruh Ruh	Find Are of algus traverse
Σ DIST ⁺ PT# PT# PT#	6.0000 2.0000	RUN Run Run	by LBR run Begin with first point tu be adjusteb - proceed	********** PT1 PT2 PT3	1.0000 2.0000	***** Ruh Ruh	of aligue
Σ DIST· Pt# Pt#	6.0000 2.0000 3.0000 4.0000	RUN RUN RUN RUN RUN	by LBR run Begin with first point tu be adjusteb - proceed	+++++++++ PT1 PT2 PT3 PT4	1.0000 2.0000 3.0000	***** Run Run Run	of aligue
Σ DIST ⁺ PT# PT# PT# PT#	6.0000 2.0000 3.0000	RUN RUN RUN RUN	by LBR run Begin with first point tu be adjusteb - proceed	********** PT1 PT2 PT3	1.0000 2.0000 3.0000 4.0000	***** RUN RUN RUN RUN	of aligue
Σ DIST ⁺ PT# PT# PT#	6.0000 2.0000 3.0000 4.0000 5.0000	RUN RUN RUN RUN RUN	by LBR run Begin with first point tu be adjusteb - proceed	********* PT1 PT2 PT3 PT4 PT5	1.0000 2.0000 3.0000	***** Run Run Run	of aline
Σ DIST ⁺ PT# PT# PT# PT# PT#	6.0000 2.0000 3.0000 4.0000	RUN RUN RUN RUN RUN	by LBR run Begin with first point tu be adjusteb - proceed	+++++++++ PT1 PT2 PT3 PT4	1.0000 2.0000 3.0000 4.0000 5.0000	***** RUH RUH RUN RUN RUH	of algus traverse
Σ DIST ⁺ PT# PT# PT# PT#	6.0000 2.0000 3.0000 4.0000 5.0000	RUN RUN RUN RUN RUN RUN	by LBR run Begin with first point tu be adjusteb - proceed around traverse	********** PT1 PT2 PT3 PT4 PT5 PT6	1.0000 2.0000 3.0000 4.0000 5.0000 0.0000	***** RUN RUN RUN RUN RUN RUN	cf abjus traverse Signify e
Σ DIST ⁺ PT# PT# PT# PT# PT#	6.0000 2.0000 3.0000 4.0000 5.0000	RUN RUN RUN RUN RUN	by LBR run Begin with first point tu be adjusteb - proceed around traverse Signify end of	********** PT1 PT2 PT3 PT4 PT5 PT6	1.0000 2.0000 3.0000 4.0000 5.0000	***** RUN RUN RUN RUN RUN RUN	cf algus traverse ^{Signify e} traverse
Σ DIST ⁺ PT# PT# PT# PT# PT#	6.0000 2.0000 3.0000 4.0000 5.0000 6.0000	RUN RUN RUN RUN RUN RUN	by LBR run Begin with first point tu be adjusteb - proceed	********** PT1 PT2 PT3 PT4 PT5 PT6	1.0000 2.0000 3.0000 4.0000 5.0000 0.0000	***** RUN RUN RUN RUN RUN RUN	cf abjus traverse Signify e

B62

		TRAVE	RSE	ADJ	USTI	MENT			3/4
		Point	_	2	г	7	ы	9	
	0154, 70' 100' 100' 100' 1440'	<u>Ad: Easting</u>	530,00	530.0433	602.1363	012L.1 L)	299.9060	530.00	
	M 57 4 3 10 - 10 4 4 5 6 6 7 7 10	Accum.	0	.0833	2023.	3212	Zohh	.5235	
ANTIONAL 12 381 50 SHEELS 5 SOURCE	Rule)	Easting Correction East.	ł	530.00 440*.5235=.0433	601,4340 44, •5255'= .1190	01110	0611,	.833	
unitanat.	close @ @. From the coordinates of the or of closure is	Easting	530.00	530.00 H	0426/109	671,3996	599.4158	529.4765	
	close Q Q. coordinates r of closu	Adj. N	30.00	2211.001	0142.7410	97.9690	24.450	30.00	
	1465 235	Accum.	0	5511.	2512.	1754.	.5990	.7123	
	me a sur me a sur and the 530.0 23, 0.0	~		10, × .7123'= .1133'	,6191° = ,221L' × ,001	.1619'	.1619'	. 1133′	
	Traversing from O arou azimuths and distances points are calculated found: P+ O 30.00 P+1 O 29.29	Dist. Northing		100.001	169.4658 4	97.5319	24.0660	29,2477	
	Traversi azimuti points found:	Dist.		.01	.001	.001		0	
		Point	_	2	З	t	ኦባ	و	12/2

(363)

4/4

dy stored, use to accumulate					-DUMP-	
- to accumulate ance:			4:49:00 P	1 0 8/29	/88	
			TITLE:			
			ADJUSTED P		RUN	
			********	******	*****	
	-INA-		ItK	1 0000		
*****	****			1.0000 6.0000	RUN	
Jtk t coop F	UTCOA			0.0000	KUN	
1.0000 E 2.0000	RUN		PT1: N=30.0	1999-		
D=70.0000	KUN		E=530.00			
AZ=0.0000 dd						
			PT2: N=100	1133		
JŧK			E=530.08	33		
3.0000	RUN	from * 2 to * 3				
D=100.0000		(default "J" is	PT3: N=169.			
AZ=46.0000 dd		previous "K")	E=602.13	52		
		,	PT4: N=97.	200		
J†K 4 0000	DUN		E=671.72			
4.000 0 D=100.0000	RUN		C-0(1.(2)			
AZ=136.0000 dd			PT5: N=28.0	650		
M2-130.0000 00			E=599.90			
JtK						
5.0000	RUN		PT6: N=30.1	9999		
D=100.0000			E=530.00	90		
AZ=-134.0000 dd						
			ItK			
JtK		Last leg is			AREA	
6.0000	RUN	Last leg is from #5 to #6	********** PT1	******	*****	
D=70.0000			F11	1.0000	RUN	
AZ=-89.0000 dd			PT2	1.0000	KUN	
Jtk				2.0000	RUN	
	-ADJ-		PT3			
******				3.0000	RUN	
BEG PT			PT4			•
1.0000	RUN			6.0000	RUN	Oop
END PT	_		PT5		VE0 0	Cor
6.0000	RUN		PT4		XEØ C	sof
Σ DIST' -	DUN	Bumer	F 19	4.0000	RUN	
PT#	RUN	Bypass	PT5	1.0000	AVII	
2.0000	RUN	First point to		5.0000	RUN	
PT#	NUIT	be corrected	PT6			
3.0000	RUN			6.0000	RUN	Havi
PT#			PT7			day
4.0000	RUN				XEQ C	wī+1
PT#			PT6			(80
5.0000	RUN			0.0000	RUN	
PT#		1	AREA=12,443	5.9676 SI	A.	74* 74 :
6.0000	RUN	Last point to be	 PT1			it i iden
DTA		adjusted	P11			Por
PT# 0.0000	RUN	Signify and with				. Yalı

864

Program _____ For <u>Coordinate Geometry</u> <u>1282</u> bytes Page of <u>6</u>

									T ==	
	X	Y_	2	T		X	Y_	र	17	
					53 "USED-NEW PT#" 54 CF 22				1	
01+LBL -STOR-					55 FC? 10					
02 TITK CLR					56 FS? 00					
03 CLX		Ŧ			57 FS? 53					
04 PROMPT 05 X=0?	K	I			58 PROMPT	NewPf	Y	X		
06 GTO 10					59 FS? 22					
07 ENTER†					60 GTO 30	×	Y			
08 ST+ X	ZK	κ	I		61 X<>Y 62 STO IND L		1			ZP
09 E	1	ZK	ĸ	I	63 ISG L	X				24
10 +			_		64	"NOP"				
11 ADV	24-1	К	I		65 X<>Y	Y	X			
12 XROM -S-	K	I			66 STO IND L	Ŷ				ZP+1
13 E3					67 LASTX	2P+1				
14 / 15 +	I.00K				68 E		28-1	Y	X	
16 E-5					69 -					
17 +					70 2					
	ZIAONO	z			71 / 72 PTN	P	Y	X	X	
19 E9					72 RTN					
20 CHS	-1-109	counter			73+LBL 16					
					74 FC? 22					
21+LBL 04					75 RTN	Y	Х			
22 STO IND Y 23 ISG Y					76 X>0?					
23 156 1 24 GTO 04					77 XEQ 30					
24 610 84					78 ADY					
25+LBL 10					70ALDI 56					
26 PT+N+E*	E	N	P4"		79+LBL 56 80 "PT"					
27 FS? 01						Class	P+#	Y	X	If PIT O
28 PTtXtY-	Y	x	P+*		82 FIX 0	flags		T	^	If PH= > 0, store the coords.
29 PROMPT					83 CF 29					The coorde,
30 FS? 01	x	Y	P+"		84 ARCL Y					
31 X<>Y 32 X<> Z	P+"	Ŷ	×		85 STO d					
33 XEQ 30		•			86 RDN	P	Y	X		
34 XROM "L"					87 FS? 01					
35 GTO 10					88 GTO 00					
					89 "⊢: N=" 90 Arcl y					
36+LBL 30					91 AVIEN					
37 SF 21					92 • E=•					
38 FC? 02					93 ARCL Z					
39 CF 26 40 ST+ X	ZP	Y	x		94 RVIEW					
40 SIF A 41 SIGN		•			95 XROM "L"					
42 RDN	Y	X			96 RTN	P	Y	X		
43 CF 10						-				
44 RCL IND L										
45 E9	X'					ł				
46 CHS	-1=104	x′	Y	X					1	
47 X=Y?	clear?	^						1		
TO OF 10									ĺ	
49 X≠Y? 50 BEEP										
51 Rt										665
52 R†	Y	×						!)

	X	Y	Z	T	L			X	Ý	र	T	L	
0741.01 00					I		149 RDN						
97+LBL 00		1					150 +	ZI .00 ZK	1				
98 ⁼F: X=⁼	X	-1=109	P+	Y			151 X<> 00	ZN.00 #					
9 9 ARCL Z				1 .			152 STO 01	LN.00 ¥					
100 AVIEW											1		
101 • Y=•							153 E-3	.001			1		
102 ARCL Y							154 +						
103 AVIEW							155 LASTX	.001	ZN .00	ZI			
					1		156 *		1				
104 XROM -L-							157 +	ZI .00ZN	303				
105 RTN							158 SF 25		L.				
					1		159 REGMOVE						REGMOV
106+LBL "INY"					1		160 FS?C 25					if au	ailable
107 SF 14									1				
108 CLX							161 GTO 03						
109 STO 00					·	lize \$.50							
10, 010 00					נידואן	172 4.20	162+LBL 76				1		
110ALDI 07							163 RCL IND 00	Xay		1			
110+LBL 07							164 STO IND 01	Xay	1	1			
111 XROM -L-					N	v	165 ISG 01						
112 - J†K-						٥K	166						
113 PROMPT	K	17			i)	1							
114 STO 01	K					6	167 ISG 00						
115 XROM -XY-	۵X	1.12			7		168 GTO 76						
116 X<>Y		۵Y	X 1	YJ	•		169 GTO 03						
	- 4	۵X			5								
117 R-P	d	Az					170+LBL "ANGL"						
118 ST+ 00					acen	∷• ``d″	171 SF 14						
119 " D="		1					111 51 14						
120 ARCL X							170ALDI 11						
121 AVIEW					i		172+LBL 11						
122 X<>Y	Az	d					173 XROM "L"	1		-			
123 -AZ-	1 4	a					174 "J†C†K"	K	C	12			
							175 PROMPT						
24 XROM "Dd"							176 STO 01	K				5	
125 AVIEW	1						177 RDN					٩	
126 RCL 01	K	Az	d					C	1			$ \rangle$	•
127 GTO 07							178 STO 00	0×2					1
							179 XROH "XY"		0 YJ				\checkmark
28+LBL "DUP"							180 R-P	92	01				С
							181 RDN	$\Theta_{\mathbf{J}}$					
129 SF 14							182 X<> 01	K				$ \Theta_{\mathbf{J}} \rangle$	n R.OI
							183 RCL 00	K	K	1			
130+LBL 03							184 XROM "XY"	۵XK	AY,				
131 XROM -L-							185 R-P	d.	0.				
-ItKTNEW I-								0,					
133 PROMPT	Nav I	K	I		1		186 RDN	05					
134 2	Z	N	K	I			187 RCL 01	00					
135 ST* T	-			-			188 -	0					
							189 - A-						
136 ST* Z	ZN	ZK	ZI				190 XROM "Dd"						
137 *							191 AVIEW						
138 STO 00	ZN						192 GTO 11					N	\backslash
139 X<>Y	ZK		7.1						1			$ \rangle$	/D
140 E	1	ZK	ZN	ZI			4074101 -117-			Ì	!		
141 +							193+LBL -LLI-	ł			Ì	L ا	$\langle \mathbf{N} \rangle$
142 STO Y	2K+1	ZK+1	ZI	ZJ	1		194 XROM "L*"					"	` \
143 Rt	ZI						195 SF 08						7
	*reg.	2K.1	ZI	ZI			196 GTO 09			1	1		2
144 -	1000		24.1	ZI						1		K 🔨	**
145 E3		1.00	chil	1-1			197+LBL -PART-						
	1											N	11
146 ST/ Z		· · ·											• •
146 ST/ Z 147 /	.00 #	24.1	ZI	ZI	(B	66)	198 XROM "L*" 199 CF 08						_ ∕`>

Program _____ For <u>Coordinate Geometry 1222</u> bytes Page<u></u>of <u>6</u>

	X	Y	Z	ΤT	L			X	Ý	र	T	L	
200+LBL 09 201 "J†K†" 202 FC? 08 203 "FFRC" 204 FS? 08 205 "FD" 206 PROMPT	Fr c D	ĸ	1				248+LBL 51 249 ENTER† 250 XROM *P* 251 RCL Z 252 XEQ 56 253 ISG X	P+* Y P+* P4*	P+** X Y Y	¥± X X			
207 STO 00 208 RDN 209 XROM "XY" 210 R-P 211 FC? 08 212 ST* 00 213 X(> 00	Drr FRL K a X d K d K	0 740 1740	X ¹ X ¹	Y _T	mult	1777 1770 - 20 1710 - 70	254 GTO 51 255 GTO 02 256+LBL "OFPT" 257 XROM "L*"	₩*+1					
214 P-R 215 X<>Y 216 -N- 217 XROM -SP- 218 GTO 09	°Xn °YN K	• YN • XH J	X ¹ V1	Y1 Y1			259 SF 08 260 "J†K†P" 261 prompt 262 STO 00 263 X(> Z 264 STO 01	L L A A	ĸ	J		N J	• • •
219+LBL -XY- 220 XROM -P- 221 X(> Z 222 XROM -P- 223 RDN 224 - 225 LASTX 226 X(> Z 227 Rt	~ ¥Т ¥х Х У К	9 X 9 X 7 X 7 X 7 X 7 X 7 X 7 X 7 X 7 X	J Ye Yk Yk Xx	Үк Үт Үт			265 XROM "XY" 266 X<>Y 267 R-P 268 RCL 01 269 RCL 00 270 R† 271 XEQ 66 272 GTO 14	* Y & J P O	•Y •X ₽ ₽	<u>ک</u>	θ		ĸ
228 - 229 X(>Y 230 LASTX 231 RDN 232 RTN 233+LBL -FS-	ο X Λ2 °X γΛ	∘× ∘Y ⊳Y	X ¹ X ¹ X ²	YJ			273+LBL -OFAZ- 274 XROM -L*- 275+LBL 64 276 - JtPtAZ- 277 XROM -Pd- 278 XEQ 66	٨z	P	1		8	A CRISE M
234 -⊢ SQ- 235+LBL -FT- 236 -⊢ 237 RTN							279 GTO 64 280+LBL =0FBR= 281 XROM =L+= 282+LBL 65						2/
238+LBL -DUMP- 239 E 240 XROM -S- 241+LBL 02 242 -I+K-	I K	I					283 "J†P" 284 XROM "BA" 285 XEQ 66 286 GTO 65 287+LBL "IAZ"	Az.	P	2			
243 PROMPT 244 E3 245 / 246 + 247 RDV	1000 I.00K					(B67)	288 XROM "L*" 289+LBL 13 290 CF 08 291 - JtA1tKtA2" 292 XROM "Pd" 293 X<> Z	A _k A _J	. K	A _J	2	AT	N TA,

Program _____ For <u>Coordinate Geometry 1282</u> bytes Page<u>4</u> of <u>6</u>

	1.52	1	-				1				
		ĻΥ_	Z	T			X	Ý	そ	T	
204 502 07						344+LBL 00	d	θ	χ²	YJ	
294 FS? 03						345 X(> 00	A ₂	θ	XŢ	Y 3	d in R.00
295 HR						346 +		i 1	·		
296 X<> Z	Aĸ	K	AJ	1		347 LASTX	A ₂	O+A2	ХJ	Y 5	
297 XEQ 01		V				348 X(> 00	ð	Or A.	5	1.2	Az in K.00
298 GTO 13	N	Y _N	XN	Regid		349 P-R	Ĩ				ויז יי גייטט
						350 X<>Y		m			
299+LBL -IBR-						351 RDN	1	X ¹	V		1. 100
300 XROM "L+"						352 X<> 00		1 12	Y _J		Q in R.00
	1						h ₂				
301+LBL 43						353 RCL 01	A.				
302 CF 08	1					354 -	<i>F.</i> : <i>F.</i>				
303 ·J·						355 CHS	A,- A,				
304 XROM "BA"						356 SIN	±ìn				
305 -K-						357 ST/ 00					lowe Din R.00
306 XROM "BA"						358 RDN	X ²	$Y_{\overline{J}}$			
						359 RCL 01	A,				
307 XEQ 01						360 RCL 00	D	A,			
308 GTO 43						361 P-R	٥Y	٨X	χ²	Y	
		Ð	-			362 GTO 00		[_^		1.7	
309+LBL 66	Az	P	5								
310 SF 08			-	_		363+LBL 06	AZ	D	1		
311 90	90	Az	P	2		364 X<>Y	D	Az	2		
312 X<>Y	Az	90				365 ST+ 00	aceum.	117	5		
313 -	90-Az		1					۵X	J		
314 CHS	Az-90	P	17	J		366 P-R					
315 Rt	5		·			367 X<> Z			۰Y		
316 LASTX	Az	5	A7-90	9		368 XROM -P-	Υ ₁	X ²	۵X	٩	
, 317 Rt				`							
318 Rt	Az-40	P	<u>ه</u> ا	2		369+LBL 00					
310 KI	10		Az			370 - N-					
319+LBL 01	4	1		5							
	Az	K	Α,	3	,	371+LBL -SP-	۵Y	Xa	XJ	YJ	
320 STO 00	Az				print	372 ST+ T	٨Y	۸X	XJ	YN	
321 RDN	K	A,	1		C A	373 RDN	٥X	X Z	YN	AY	
322 X<>Y	A,	K	1		A-A	1 374 +	XN	YN	۸Y	.Y	
323 STO 01	A ,				IA & AK	375 X<>Y	YN	XN	-'	- '	
324 RDN	K	J			250 OrA,	376 CF 22					
325 XROM "XY"	DX	AY	XJ	Y- 1	3	377 PROM PT	N	V	V	1	
326 R-P	d	Ø				378 GTO 16	1 14	YN	XN		
327 FC? 08						910 GIU 10	·			[
328 GTO 00						379+LBL -IPT-					
329 STO [d						1				5
330 RDN	θ	X ₂	45	d		380 XROM "L*"		l			•
331 STO a	θ					704 4 51 45]			$\land \land $
332 RCL 01	A,					381+LBL 18		1			XN
333 +	0 · A					382 CF 08	ŀ				
333 - 334 RCL [ĺ,					383 "JtKtLtH"		1.		_	ĸ
335 P-R	offset	ď	X	Y		384 PROMPT	M	L	K	1	Ľ
335 -0FFSET=-			1.7	11		38 5 STO [m	1			
						386 RDN		1		1	
337 ARCL X						387 STO 01	L				1
338	1					388 RDN	1	-			1
339 AVIEW	1					389 STO 00	K	J	m	L	
340 Rt						390 XROM "XY"	۶X	OY	X ²	YJ	1
341 R†	×₃ ⊖	Y _J				391 X<>Y	٥Y	2X			
342 RCL a						392 R-P	1	AT			
343 LASTX	d	θ	X ²	م ا		392 K-F 393 X(>Y	Aza				
(869)	1					393 X() [M				Azzy in R.M
$\mathbf{\nabla}$	1	i	ļ				1	M			1.1238 in K.1.1
						395 RCL 01	IL.		'	'	

Program _____ For <u>Coordinate Geometry</u>

<u>1242</u> bytes	Page 5
	ruge

_of _6__

	Х	Y	Z	T	L		X	Ý	そ	T	L
396 XROM -XY-	ьX	۵Y				440.1.01 -1.07-					
397 X<>Y	۵Y	٥X				449+LBL "LAZ"	1				
398 R-P	8	A-7				450 XROH "L*"					
399 X<> 00	К	AZLM				451 CLX					
400 RCL [AZJE					452 STO 00					initialize Reg.00
401 RCL 01	L			Ι.							for distance
	AESK	K	Azm	L		453+LBL 08					accum. N
403 XEQ 01		YN				454 "JTDTA" 455 YRON -Rd-	A		-		
404 GTO 18	N	N'	ΧN	5.0		455 XROM "Pd"	Az	D	2		
						456 XEQ 06 457 GTO 08	N	YN	X	P. ""	5/9/
405+LBL "PRL"						TJI UIU UO	'	N	XN	Reg."d"	
406 XROM "L*"						458+LBL -LBR-					3 ×
						459 XROM "L*"					
407+LBL 05				[K M	460 CLX					
408 - J†K†D-	~		-			461 STO 00				1	
409 PROMPT	D	К	2		he D'		1				
	D	+			;	462+LBL 48	1	1			
411 RDN	K	7	v			463 "JTD"					
412 XROM "XY"	dX d X	٥Y	ХŢ	YJ	ז י,	464 XROM "BA"	Az	D	5		N
						465 XEQ 06	1.5				Quel 1
414 X<>Y 415 STO 01	οY	۵X			"D" is pos.	466 GTO 48					Quedrants
415 510 81 416 R-P	d	Az			to the right						
410 K-F 417 X(> [Ď	hz			as looking	467+LBL "BA"	1				V II I)E
	۵X	- A Y			from J to K	468 "H†B"					
419 X(>Y	- , •					469 XRON -Pd-	Bra	a	6	C	
420 CHS	۵Y	۵X	Xτ	YJ		470 STO 01	Brad		-		5
421 "L"						471 RDN	Brg	6	С		
422 XROM -SP-	L	YL.		k.d	prompt must be	472 -QUAD-					Quad I : Az= Brg
423 X<> Z	×,	YL	L		answeved; L= O	473 PROMPT	Q	a	ю.	c	I = Az= 160-bra
424 RCL 00	۵X					474 Rt					III : Az : Brg-160
425 RCL 01	۵Y	٥Χ	ΧL	YL		475 STO [C		;		-
426 -M-						476 RDN	Q			I.	IV : Az = - Brg
	M	YM	Xm	R.0		477 E	['	Q	a	6	
428 GTO 05						478 X≠Y? 479 CHS		0	~	1	H − = Qual I, Dor I
						479 CHS	11		9	Ь	* F5?09= Qual I
429+LBL "LAN"						480 ST¥ 01 481 RDN	Q	a	6		** T5:09 +Q.J.W.]
430 XROM "L*"						482 CF 09	L C		Ð		-
					.1	483 1.6					# -1=QuelI arII
431+LBL 12					1 ^N	484 -	Q-1.6		1_	1	+l->QuelIrI
432 - JtKtDtA-	٨	5	κ	J	к /	485 X(0?	Ju-16	a	b	Ь	
433 XROM "Pd" 434 Sto [A A	D	ĸ	J		486 SF 09 *					
434 STOL 435 RDN	~				\forall	487 LASTX					
436 STO 01	Þ				З	488 -	Q-3.Z				
430 510 81 437 ST+ 00		Í			-	489 X>0?					
438 RDN	ĸ	2	Í			490 SF 0 9 ★★		1			
	۵X	۵Y	XJ	Υ _J		491 180	120	Q-3.2	a	Ь	
440 R-P	d	θ	•	11		492 FS? 09					
441 X() [A	0				493 CLX	ł				
442 -	0-A					494 ST+ 01	190 - 0				
443 PCI 81		0-A				495 RDN	Q-3.Z				
444 P-R	۵X	=Y				496 E				Ι.	
445 X<>Y	ΔY	۵X	XI	Υ _J		497 +	Q-2.2	a	b	6	
446 -N-	.					498 SIGN 499 CHS ++-	11			Ι.	()
	N	Y _N	XN	R.d		499 CHS -++*	Ŧi	a	k	F	(в 69)
448 GTO 12											

Program _____ For <u>Coordinate Geometry 1292</u> bytes Page 6 of 6

	X	Y	Z	T			X	Y	र	T	L
500 FS?C 09 501 ABS 502 RCL 01 503 * 504 RCL [505 RDN 506 RTN 507+LBL -ADJ- 508 SF 14 509+LBL 53 510 XROM -LL-	Az C Az	a	b	ь c	-1 only - In-	532+LBL 41 533 RDN 534 -PT#- 535 PROMPT 536 X=0? 537 GTO 53 538 LASTX 539 STO J 540 RDN 541 XROM -P- 542 X(> L 543 STO [544 X(> L 545 ST- T	X, P1" O P1" Y2 ZP+1 ZP+1 Y2	Y, X ₂ X ₂	X, X,	Y, Y,	E dist. in OJ Y in LastX
511 -BEG PT- 512 PROMPT 513 STO 01 514 -END PT- 515 PROMPT 516 X<> 00 517 -S DIST 518 PROMPT 519 1/X 520 ENTER† 521 X<> 01 522 X<>Y 523 X<> 00 524 XROM -XY- 525 ST* 00 526 X<>Y 527 ST* 01 528 R† 529 R†	BegA VLR F-JA OX OY X,	Beg Pt Beg Pt		×arg	Tud Pt in R.00; default EDIST Word on R.01 VED IN R.01 VED IN R.01 VED IN R.01 AX IN R.00 AX IN R.00 CTICLY IN R.01	546 X<>Y 547 ST- Z 548 Rt 549 Rt 550 R-P 551 ST+ J 552 Rt 553 Rt 554 RCL J 555 ENTERt 556 X<> 01 557 ST+ 01 558 X<> 01 559 ST- IND [560 CLX 561 RCL 00 562 * 563 DSE [564	X Z d X Z d X Z d Z d z d z d z d z d z d z d z d z			Y ₁ Y ₂	Z dist accum. so far mult. Er in R.OI by the distance accumulated so far, leaving DY in R.OI th sultract dy
530 . 531 SIGN	0	×,	۲,			565 ST- IND [566 RCL] 567 SIGN 568 RDN 569 GTO 41 570+LBL -P- 571 SF 21 572 ST+ X 573 SIGN 574 RDN 575 RCL IND L 576 ISG L 577 578 RCL IND L 579 END	* zd:+a X z P z P 1 a X ·	x Yz a b a X	Yz b c b a	c c b	from the Y coord. of the Pt. * subtract a X from the X coord of the Pt. ZP in Lost X ZP+1 in Lost X
(B70)						JI 7 ENV					

Program _____ For <u>Coordinate Geometry 896</u> bytes Page of <u>5</u>

	X	Y	Z	ΓT			X	Y	र	T	L
						53 RDN 54 + 55 XROM "PM"	Δ Y2 Y N·2	Y5 X _{N-2}	× n=2	•×2	
01+LBL "ARCS" 02 XROM "L*"						56 GTO 04					
03+LBL 04 04 -JtR1tKtR2-					$if R_1 < 0, is$	57+LBL "APT" 58 XROM "L*"					L C
05 PROMPT 06 xeq 08	Rz	K	R.:	J	taken as a pt. on the	59+LBL 02					$\left(\begin{array}{c} N_{z} \\ R \end{array} \right)$
07 STO [08 R† 09 R†	R,	1	Rz	K	circle-radius is found in L1108	60 "JTRTKTL" 61 PROMPT	L	ĸ	R?	J	
10 XEQ 08 11 STO \	R,		"z			62 R† 63 R† 64 XEQ 08					N
12 X(> T 13 XROM "XY"	K ⊿X	J	R _z X ₃	R, YJ		65 STO 01 66 X<>Y	R	1	L	ĸ	۰K
14 R† 15 STO 00	۲۶				м	67 STO [68 Rt	5				
16 R† 17 STO 01	×1				N ₁	69 STO 00 70 Rt	K L	K	2	R	
18 R† 19 R† 20 R-P	∆ X d	θ				71 XROM "XY" 72 X<>Y 73 R-P	∆X ∆Y d	∆Y ∧ × Az			
21 STO J 22 RCL N	R				J	74 X<> [75 RCL 01	JR	Az			
23 R−P 24 X<>Y	(d2. K.)	garbeg	θ			76 RCL 00 77 R†	K Az	K	R	7	
25 RDN 26 X+2	d ² •R ² R ₂	θ				78 XEQ 05 79 GTO 02					
27 RCL [28 ENTER† 29 *	R ₂ R [*]	Rz	8".R."	θ	$P^2 p^2 l^2 = A l$	80+LBL "AAZ" 81 xrom "L*"					
30 - 31 2)θ	θ	0	$R_{1}^{2} = R_{1}^{2} + d^{2} - ZR_{1} dcod$ $\cos \phi = \frac{R_{1}^{2} + d^{2} - R_{1}^{2}}{R_{1}^{2} - R_{1}^{2}}$	82+LBL 12					
32 / 33 RCL]	d				$ZR_1 d$	83 - JtRtKtA- 84 XRON -Pd-	A	к	R?	1	
34 / 35 RCL \	R,					85 XEQ 11 86 GTO 12	4	K	R	7	North
36 / 37 ACOS 38 -	Ø 0-0	θ	θ	θ		87+LBL "ABR" 88 XROM "L*"					Az
39 X<>Y 40 LASTX	ø	0-0				89+LBL 07					
41 + 42 X<> \	Ri	θ-Φ Δ Υ,			(0+\$) in R.N	90 -JtRtK- 91 XROM -BA-	A	K	R?	J	
43 P-R 44 X<> 01 45 ST4 01	χ ² γχ'	Δ T,				92 XEQ 11 93 GTO 07	A .	K	R	7	
45 ST+ 01 46 X<>Y 47 X<> 00	۵Y, ۲ т	X ²	θ		\$X,+X3=XN.1 in R.01	94+LBL 11 95 Rt	*	K	RI	7	
48 ST+ 00 49 RCL \	0+¢				44. + 45 = YN.1 in R.00	96 R† 97 XEQ 08	RI.	2	Å	ĸ	
50 LASTX 51 P-R	R ₁ s×z	⊖•∳ ∆Yz	Y3 17	X1 X1		98 R† 99 R†	*	ĸ	R	J	(B71)
52 ST+ T	1			XN. 2						1	

	X	Y	Z	T			X	Ý	र		LT	 _
				T	1	154 XROM "P"	Ym	XM		XN.2		
100+LBL 05	A	X	R	2	1	155 Rt	1	1 1	· N· L		Į.	
101 STO [4	, I		! .		156 STO [XN.Z	()			1	
102 RDN	4	R	2	A		157 R†		()	1		1	
103 X<>Y	R	X	2	A		158 STO a	YNZ	1	1		ļ	
104 STO \	R			1		159 R†	Xm	YNA	XNZ	Yn	1	
105 X<> Z	1	K	R	A	included	160 ST- Z	Xn	Yu,		1 1	ļ	
106 XROM -XY-	•X		1 1		D	161 R†		Xm	XN-XN YN.Z		ļ	
107 R-P	â	AY Ø	OK.	Yĸ	1 VI DETA	162 ST- Z	Ym	Xa ×m	DY2	Δ×7	ļ	
108 Rt		· ·		(₁	Bie I	162 01 L					1	
109 STO 00	YE			(₁	K Y	164 R†	Δ۲.	1×12	Ym	Xm	1	
110 Rt	1	;		(165 R-P	1 1	garbage			1	
111 STO 01	Xĸ			(₎		166 R†	1				ļ.	
112 R†				(₁	1	167 Rt	Ym	Xm	d		١	I
112 R†	d	θ	i	۱.		168 RCL 00	YN-I	1 ··· M	1 ~2		1	I
114 X(>Y	θ	d		()		169 -	ΔΥ.		1		1	I
115 RCL [Ă		1	(j		170 X<>Y	Xm	۵Y,	dz	d.	1	I
115 KCL L 116 +	0+A	d		•	0+A=90-B	171 RCL 01	XN.1	1 ''	~2	1 "2	I	I
117 X<>Y	Ĩ	90-B	1	()		172 -	AN-1 AX1	⊾ Y,			ł	I
118 P-R	Y'	D		()		173 R-P	d,		0		١	I
110 F-K 119 X†2	(r')2		()	1		174 X<>Y		o a peg	dz		١	I
120 RCL N	R		1	1	l	175 X<> [Xn.2	d,	de		•	I
120 RUL N	R	R	(Y')2	a	Į	176 RDN	1,	12	1 .	XNZ		I
121 ENICKI	RZ	Y'2	D	Þ	l.	177 -N-	"	-2	1		i t	I
122 ¥ 123 X<>Y	Y'2	R ²	-	1 1	ł	178 X<=Y?	1		1	I		I
123 X()Y 124 -		1"		1 1	ţ	179 GTO 01						I
124 - 125 SQRT	x'	D	D	D	ł	180 Rt	XNL		1			I
125 5481	D,	l I		t i		181 RCL a	YNZ		1			ļ
126 - 127 RCL [A	D,	D	D	ł	181 KCL a 182 X<>Y	XNZ	1 .				I
127 RUL L 128 Rt	D	[']	1 1	1 1	Į	183 GTO 10	N-2	1 '12	`			I
128 KT 129 LASTX	x'	D	A	\overline{D}_1	l							I
129 LHSTX 130 +	D ₂	A	1. 1	1-1	ŧ	184+LBL 09						I
130 + 131 RCL [l	184 VLBL 87	XNZ	e Yne	0			I
131 KUL L 132 Rt	A D	V2 A	A b	Þ, ▲		185 X(7 2 186 "N1"	194	- 'N2				I
132 RT 133 P-R	D,	A	2	•		186 -NI- 187 XEQ 10						I
133 P-R 134 X(> 00	⊾Y, Yu	⊾X,			1	187 XEW 10 188 "N2"				1		I
134 X() 00 135 ST+ 00	Yĸ		1			- v v Ha		1				I
135 SI+ 00 136 X<>Y	×X،	YK			YN.1 in R.00	189+LBL 01	1	1	1		1	I
136 X() 137 X() 01	X	YK YK	D_2	A		190 RCL 00			1			I
137 X() 61 138 ST+ 01		12			Y	191 RCL 01	XNE	Y			1	I
138 51+ 01 139 Rt	_		1		XNI in R.OI	NVE VI	I ME	YN-1	1			I
139 RT 140 RT	\overline{D}_2	A		1		192+LBL 10			1	1		I
140 KT 141 P-R	NZ NYZ		v	V		193.	0			1	1	I
141 P-R 142 ST+ T	AY2	ΔX _Z		Yr	1	194 ENTERT	0	0	X	Y		I
142 STF T		∆X2 X €	X _k Yn.z	YN.2		195 XROM "SP"			1			I
143 KUM 144 +		V I	14.2	AYZ		196 RTN		1				I
144 + 145 X<>Y	N.Z.	YN.Z	1									I
1/10 671	YNZ	XN.Z		l	1	197+LBL -EXTAN-					1	ļ
146+LBL -PM-	1					198 SF 09						ļ
146*LBL "FH" 147 CF 22	1			1		199 GTO 00						I
147 CF 22	1									1		I
149 PROMPT	M	Y	XN.Z	1		200+LBL "INTAN"			ļ			I
149 FKUNF1	1'	YNZ	1 ^ N-2	1		201 CF 09			Ì			I
(B7Z) 151.	0	!		1		· · · ·			1			I
151 . 152 X=0?	Ĭ	1							1		İ	I
152 X=07 153 GTO 89	1			1	1							I
100 010 07			ļ		1				!		1	ļ
			-				'					

-

Program _____ For <u>Coordinate Geometry 896</u> bytes Page<u>3</u>0

<u>3</u> of	5
-------------	---

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		X	IV	Z	TT			X	V			, T	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		+	<u> </u>	E	+				<u> Y </u>	र			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	203 XROM "L*" 204 "JtR11KtR2" 205 PROMPT 206 XEQ 01 207 GTO 00 208+LBL "PTAN" 209 XROM "L*"	Rz	к	R,	2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	56 X(> 00 57 ST+ 00 58 LASTX 59 Rt 60 X(>Y 61 P-R 62 ST+ T 63 RDN 64 + 5 XROM -PM-	 A¹ A² <li< td=""><td>θ-& ₄Yz ^YJ</td><td>Υŗ</td><td>×r X1</td><td>Y, 7n</td><td>R .<i>OU</i></td></li<>	θ-& ₄Yz ^Y J	Υŗ	×r X1	Y, 7n	R . <i>OU</i>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	212 PROMPT 213 . 214 XEQ 01				2		7+LBL -C3P- 8 xrom -L+- 69+LBL 24					15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	216+LBL 01							,	ĸ	J.		/.\	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						2	72 STO 00		••			07	~J
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				5	K			v	-			$\left(\cdot \right)$	Hal
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			FK							X	1	\mathbf{V}	7 j –
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 -				2	76 STO N	۰X			, ,	×	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		K K						۰۲-	XJ	Y J		V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								۵۲/7	Хт	V-			9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		± R _K	RJ	1	K	2	80 ST+ Z	51/2				Y= 1	小学
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		R										U	С ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 125K	K	ĸ	۵R			2	• ~	X 2	YΦ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	229 X<>Y							Xo					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		۵X	۵Y	X1	۲ ¹			s4/2	×o	Yo			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Y ₊											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	233 Rt						88 R-P	85-11/2	Azzk				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		X ¹											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		۵X	٥Y					۲ <u>ء</u> ۲ <u>۰</u> ۰					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	237 R-P	d	θ			2	92 X<> 00					×σ	in R.00
240ENTERT $a R \\ a R^2$ $a R \\ d^2$ d^2 θ $295 \times (> 01$ K L V_L Y_L 241 * $a R^2$ d^2 θ θ $295 \times (> 01$ K L V_L Y_L Y_L 242 - 243×0 L θ 297×10 $a X$ $a Y$ x_L Y_L Y_L 243 SQRT L θ 298×0 $a Y$ x_L Y_L Y_L Y_L 244 RCL \land $a R$ L θ 299×2 $a Y_L$ x_L Y_L V_L 245 R-P d a θ 300×2 $a Y_L$ x_L Y_L v_L 246 RDN α θ θ $301 \times 10 =$ $a Y_L$ x_L Y_D $a V_Z$ x_L 247 - θ - d θ θ 303×0 x_L Y_D $a V_Z$ x_L v_Z 248 X(>Y θ θ - d θ θ 303×0 x_L Y_D $a V_Z$ x_L 249 LASTX x_L x_L x_L x_L x_L x_L x_L x_L 250 + θ - d θ $a X_L$ x_L $a X_L$ x_L x_L x_L 252 P-R $a X_L$ x_T x_L x_L x_L x_L x_L x_L 253 X(> 01 x_T x_T x_L x_L x_L x_L x_L x_L								L					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 R	OR	1º	θ							Y	T. R.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	241 *	5R ²	di	0	θ	29	6 XROM "XY"					. U) (* * * * *
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0					٨Χ	۰Y	×L	YL		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		AR	1	0			99 2	•					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	245 R-P	4			0			sY/z	×L	YL		.V/ .	$\nabla $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-		Y-		۵۱/ _Z ،	n K,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										6			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	249 LASTX					3	194 RCL [
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0-a										1717
253 X(> 01 × ₃ 308 + X _D Y _D		6×.	۵Υ۱					OXIZ	×۲	1			00
254 ST+ 01 X, in R.01	253 X<> 01					3							
	254 ST+ 01					X, in R.01		-					

YZTL XYZTL	XY		L	T	Z	Y	X	··
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Are L C A C J C Y A	363 XROM *L** 364 CF 09 365*LBL 14 366 *J+C+A* 367 FS? 09 368 *HRC L* 369 FS? 09 370 PROMPT 371 FC? 09 372 XROM *Pd* 373 STO 00 374 RDN 375 X<>Y 376 XROM *X* 377 R-P 378 Rt 379 X<> 00 380 FC? 09 381 GTO 06 382 X<>Y 383 / 384 LASTX 385 X<>Y 386 R-D 387*LBL 06 388 X<>Y 389 RDN 390 - 391 Rt 392 P-R 393 X<>Y 394 RCL 00 395 RDN 396 *N* 397 XROM *SP*			Ğ	• Y 81.2 d1.2 84/2 8xL 8xL 8xL	X X Y Y X X X X X X X X X X X X X X X X	309 RCL 00 310 - 311 X<>Y 312 RCL 01 313 - 314 X<>Y 315 R-P 316 X<>Y 315 R-P 316 X<>Y 317 RCL a 318 RCL [319 CHS 320 R-P 321 RDN 322 STO [323 + 324 X<>Y 325 P-R 326 RCL \ 327 STO Z 323 # 324 X<>Y 325 P-R 326 RCL \ 327 STO Z 328 RCL I 329 - 330 SIN 331 / 332 P-R 336 SIN 331 / 332 P-R 336 SIN 331 / 332 P-R 336 RDN 337 + 338 RCL I 339 XROM *P* 340 RT 341 ST - Z

Program _____ For <u>Coordinate Geometry 896</u> bytes Page<u>5</u>of <u>5</u>

	ΙX	Y	Z	TT			X	V	7	T	L	
399+LBL "AFRC" 400 XROM "L*" 401+LBL 19 402 "JtCtKtFRC" 403 PROMPT 404 STO [404 STO [FRC FRC	K	Z	J	L J a	444 SF 25 445 RCL IND X 446 FC? 25 447 XROM "LL" 448 FC?C 25 × 449 STOP 450 RCL 01 451 X≠Y?	Х Х; -Е9	Y X:	र			
405 RDN 406 STO 01 407 RDN 408 STO 00 409 X<>Y 410 XROM "XY" 411 R-P 412 X<> 00 413 X<>Y 414 X<> 01 415 XROM "XY" 416 R-P 417 RDN 418 RCL 01 419 -	K CJX JCOKX JO JO	C J Y O O C Y O K O K	X. X.	Yc Yc Yc	$\frac{1}{c}$ Rad in R.00 Θ_{3} in R.01	452 GTO 03 453 RCL 00 454 455 XROM -AX- 456 AVIEH 457 GTO 03 458+LBL 08 459 X≠0? 460 X>0? 461 RTN 462 R↑ 463 STO 00 464 R↑	Р+* - Р+* Ь	K	a	م		
420 RCL [421 * 422 RCL 01 423 + 424 RCL 00 425 P-R 426 X<>Y 427 "N" 428 XROM "SP" 429 GTO 19 430+LBL "FREE" 431 XROM "L*" 432 SF 21	Fre Q OT Rad SX SY	θ _Ν ΔΥ ΔΧ	Xe	Ye		465 STO 01 466 Rt 467 STO] 468 Rt 469 CHS 470 XROM "XY" 471 R-P 472 RCL 00 473 RCL 01 474 RCL] 475 Rt 476 END	Q K P+* AX Rad. b Q K Rad	K ₽ K	X.	Yĸ b		
433 -FREE PTS:- 434 AVIEW 435 .4 436 STO 00 437 E9 438 CHS 439 STO 01 440+LBL 03 441 ISG 00 442 RCL 00 443 ST+ X	P+ ª											B75

Program AREA For Area by coordinates 178 bytes Page of 1

	X	Y	Z	T	L			X	V	モ	T	1	
								EArean	, ,		<u> </u>		
							54 RCL 01	ZANCAR	F				
01+LBL "AREA"							55 2 57 (ZArea					
02 SF 14							56 /	L'riea				I	
							57 "AREA="						
03+LBL 08							58 ARCL X						
04 XEQ "L"							59 XEQ -FS-						
05 SF 21							60 AVIEW						
06 SF 09							61 GTO 08						
07 .	1												
0 8 STO 0 1	ZArea						62+LBL C						
09 -PT1-						Still withi	⊾63 FS? 09						
10 PROMPT	P+#1					first two	64 GTO 08						
11 E3						points?	65 LASTX	47P					
12 /	.00P					start over	66 X<>Y						
13 "PT2"							67 FS? 10						
14 PRONPT	Pt 2						68 RDN						
15 +	PH 2.00P						69 FS? 10						
16 ST+ X	ZP2.00P						70 GTO 05						
17 E	1						71 SF 10						
18 +	1+272.00						72 Rt	ΔΧ•Ϋ					
19 STO 00							73 ST- 01	(2 Area)					
20 3							74 RDN	1-2P					
21 STO [counter						75 E	11					
22 RDN	1+ZP2.00	0					76 -	ZPn.1					
	1 -1220	U					77 STO [counte	-				
23+LBL 05							78 R†						
24 SIGN	1				1+7P2	.00lpj	79 GTO 05						
25 RDN						ust.X						l	
26 RCL [conter				in p	ν.γ	80+LBL 09	ZPn	I.ZP				
27 •PT•	coniq						81 X<>Y	1-2Pn-1	- n-			1	
28 XROM "AX"							82 FRC	.002Pn-Z					
29 PROMPT	P+#						83 LASTX	1.2P 1					
30 CF 10	11						84 X<>Y	007P	1-ZP	ZPn			
31 X<>Y	counter						85 E3	1000	1.01 1-1	1 ^{-'n}			
32 ISG X	conter+1						86 *	28	1.2P	7P	ZP.		
	NOP						87 X<> Z	2P2	1.1	C'n	1-'h		
33 							88 RCL IND X	ZPn Xn	1+2P,	ZPn-Z	20		
34 STO [new chine P+ *3	r					89 RCL IND T	Xn-Z	X.	2P	n ZPn-z I+ZP _{#-1}		
35 RDN	2. P+3						90 -	sX					
36 ST+ X	1-272						91 RCL IND Z	1V	L' N	1+7P			
37 LASTX	2. 93	117D					92 *	Yn-1	ZP.	1+2P			
38 X(>Y		1.67					93 ST+ 01	ьх•ў (ZA)	1 CIN	1' - 'n-	1		
39 CF 09							94 SIGN	1				۵χ۰	Yn-1
40 X>0?	1.70						95 RDN	1 ZPn	1+ZP			in	Last X
41 XEQ 09 42 X>0?	l+ZPn						96 X()Y	1+ZP1		1			-, ,,
							97 E-3	.001	Crn	70			
43 GTO 05	1+TR + The						98 ST* Y		1+2Pn-1	Lrn			
44 RDN							99 ST- Y		(1+2P)	1			
45 RCL 00	1+ZP20	par,					100 X(> L	ax. Yn-1	.00 ZP	ZP			
46 FRC	1000						101 RDN						
47 E3		1-2 Prind					102 +	.00 ZP1	1-1 N		6X•Y,		
48 *		· C Ying						1.					
49 XEQ 09	1+ZP,						103 E				•		
50 RCL 00	1+282						104 + 105 CND	HZP.00	PP	•			
51 E	1						105 END					1	
52 -	ZP2	1+2P,			(B)	16)							
53 XEQ 09					Ľ						1		
										1			
								-					

STATIONING of POINTS on a LINE

xeq POB (SIZE 2n + 2 for "n" points)

SOFTKEYS (USER mode ON)

No softkeys are used by POB

USER FLAGS

Flag 00	clear set	Station and offset displayed Only station displayed
Flag 03	clear set	Azimuth input in decimal degrees Azimuth input in degrees-minutes-seconds

INPUT SUMMARY

<u>Prompt</u> POB	<u>Input</u> Point of beginning. <u>Defined</u> <u>as being at station 0+00.</u>	<u>Default</u> No default		
PT ON CL	A second point on the line, used to define the line. Bypass to enter an azimuth from the POB.	No default		
AZ	Azimuth of the line from the POB, in decimal degrees (dd) or degrees-minutes-seconds (DMS)	No default		
РТ	Point for which station and offset are desired	No default		
OUTPUT SUMMARY	(Items in parenthesis are displayed only 00 is clear)	y if flag		
STA	The station of the point input, in standard "sta + feet" notation.			
(OS)	Offset of the point from the centerline, in feet. A negative offset is to the right of the line looking forward on station.			
PROGRAM FLAGS				

Flag 1	.4	set	Line	printing	control
-					

Flag 21 set Printer/aview control

STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> POB	
01	AZ	
02 03	Point #1 Northing (Y) Point #1 Easting (X)	
04 05	Point #2 Northing (Y) Point #2 Easting (X)	

etc.

STATION and OFFSET of POINTS ON A LINE

Program POB finds the station and offset of coordinate points along a (straight) centerline. These points must be defined by other coordinate geometry routines in the ROM, or by user routines. A point of beginning is used, defined as station 0+00. The line is defined by either another point on the line, or the azimuth of the line. The normal procedure is that points are being created in the coordinate geometry routines which have a known relationship to a centerline. If one of these points (which must be on the centerline) has a known station, the POB is set by projecting backward from that point along the line, a distance which is that point's station in feet. Then all other points can be stationed from this POB.

If flag 00 is set, only the station is output; if flag 00 is clear, both station and offset are given. Stationing is in the standard "sta + feet" notation. The offset is in feet, a positive offset being to the left of centerline looking forward on station (i.e. the POB at your back).

SUBROUTINE USE

Parts of POB are useable as subroutines for other programs. The calling program needs to SF 11, xeq POB with either 2 or 3 in the X-register (to access label 02 or 03 in POB; see the listing). The required input (in the Y-register) is the point number for which stationing is desired (Lbl 02) or the station to be appended to Alpha (Lbl 03). The listing for POB is part of program SCOL.

TRIANGLE SOLUTIONS

(SIZE 002)

<u>SOFTKEYS</u> (USER mode ON)

Α	SSS	Three sides known
В	ASA	Two angles and included side known
с	SAA	Two angles and non-included side known
D	SAS	Two sides and included angle known
Е	SSA	Two sides and non-included angle known

USER FLAGS

Flag 00	clear set	Full output Only area displayed
Flag 03	clear set	Angles in decimal degrees (dd) Angles in Degrees-Minutes-Seconds (DMS)

INPUT SUMMARY

<u>Prompt</u> S1/S2/S3	(SSS)	<u>Input</u> Three sides	<u>Default</u> None
A1/S2/A3	(ASA)	Two angles and included side	None
S2/A1/A2	(SAA)	Two angles and non-included side	None
S1/A3/S2	(SAS)	Two sides and included angle	None
S1/S2/A1	(SSA)	Two sides and non-included angle	None

OUTPUT SUMMARY	(Items in parenthesis are displayed only if flag 00 is clear)
(A1, A2, A3)	Angles, in decimal degrees or DMS
(S1, S2, S3)	Length of sides
AREA	Area of the enclosed triangle

PROGRAM FLAGS

K

	Flag 21	set	Display	control
--	---------	-----	---------	---------

STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> Working; Sl
01	Working; S2
02	A3
03	S3
04	A2

TRIANGLE SOLUTIONS

There are five programs concerned with solving triangles. Starting with different information, they all calculate and display the internal angles, lengths of the sides, and the area of the solved triangle. The standard triangle notation is used; e.g. side #1 is opposite angle #1.

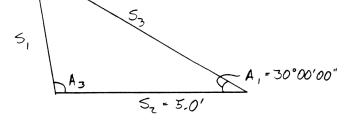
All of the routines are accessible <u>either by softkey</u> or by alpha label (xeq ____). These softkeys operate a little differently than most softkeys in this module. Instead of bringing up a prompt for the required input, they assume the input is already in the stack; pressing the softkey starts execution of the desired routine. The triangle solution routines, and their softkeys, are:

<u>Key</u>	<u>Label</u>	Description
A	SSS	All three sides known
В	ASA	Two angles and included side known
С	SAA	Two angles and non-included side known
D	SAS	Two sides and included angle known
Ε	SSA	Two sides and non-included angle known

Each of the routines requires three items of input, keyed into the stack: Item one, enter \checkmark , Item two, enter \checkmark , Item three, softkey or R/S. If using softkeys, simply key the three items in and press the softkey (making sure USER mode is on). If prompts are desired, execute the desired label from the keyboard, key in the three input items in response to the prompt, and press R/S.

Like any other HP-41 program, in order for the softkeys to be active, the program pointer must be within the program that the local alpha (softkey) labels are in. The easiest way to do this is an alpha GTO; just GTO <u>any</u> of the six global labels listed above. Thereafter, the softkeys will be active.

Routine SSA usually has not one but two possible solutions; both are given. See the examples for clarification.


"SIZE CHECK"

None of the triangle programs use subroutine S. This means that the user must verify that the SIZE is at least 005, and that DEG mode is set.

FLAGS

Like all the geometry programs in this module, the triangle routines recognize the status of flag 03. If it is clear, all angular input and output is in decimal degrees (dd); if set, degrees-minutes-seconds (DMS) is used. The output displays and input prompts are clearly labeled to reflect this. However, if softkeys are used for input, the user must verify that flag 03 matches the desired format.

Flag 00 is used by all of the triangle programs; output of the angles and sides is skipped if flag 00 is set, and only the area of the enclosed triangle is displayed. <u>Use</u> <u>XEQ":</u> A_z=50°15'00"

(Here, flag 03 was set; angles are input and output in Degrees - Minutes-Seconds, as the prompt and results indicate.) XEQ "SAA" S2tA1tA2 (DMS) 5.0000 ENTERt 30.0000 ENTERt 50.1500 RUN A1=30.0000 DMS A2=50.1500 DMS A3=99.4500 DMS

S1=3.2516' S2=5.0000' S3=6.4094'

or, Use Local labels (In User Mode)

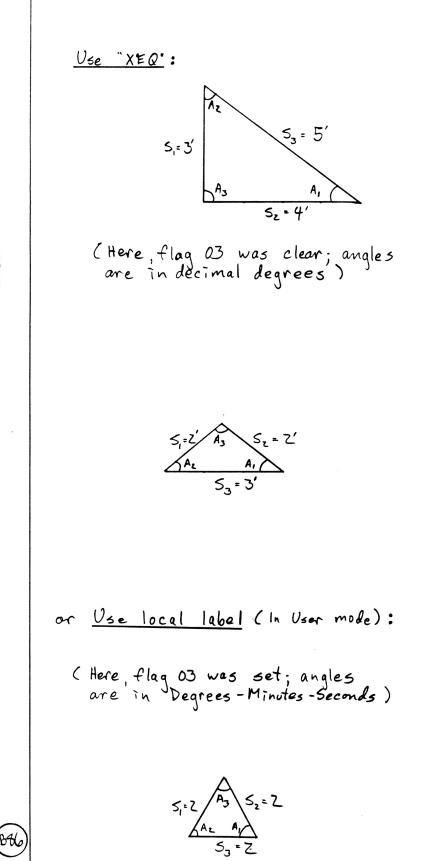
(same triangle-user must check status of flag 03 to match input format)

Note: To use key-accessed local labels, three things are required:

1) Calculator in User mode.

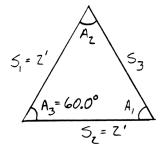
Z) No key assignments on the key in question.

GTO "SSS" 5.0000 ENTER† 30.0000 ENTER† 50.1500 XEQ C A1=30.0000 DMS A2=50.1500 DMS A3=99.4500 DMS

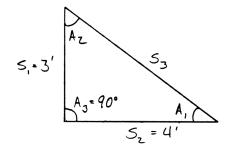

BÆ

S1=3.2516' S2=5.0000' S3=6.4094'

AREA=8.0117 SQ'


3) The calculator is "in" the program; that is, the program pointer is somewhere between the first line of the program and the end. Looking at the program listing, all of the routines (SSS, ASA, etc.) have a common "end" statement. Therefore the easiest way to access a local label is to go to (GTO, not XEQ) any of the global labels within the program (here, "SSS") and then use the local (key-accessed) labels. This only needs to be done once, at first, and then after going to another global label, or PACKing.

42.182 100 SHEETS



XEQ "SSS" S1†S2†S3 3.0000 ENTER* 4.0000 ENTER† RUN 5.0000 A1=36.8699 dd A2=53.1301 dd A3=90.0000 dd S1=3.0000* S2=4.0000 S3=5.0000 · AREA=6.0000 SQ' \$1†\$2†\$3 2.0000 ENTER† 2.0000 ENTER1 3.0000 RUN A1=41.4096 dd A2=41.4096 dd A3=97.1808 dd S1=2.0000 S2=2.0000 S3=3.0000 AREA=1.9843 SQ' _____ S1†S2†S3 2.0000 ENTER† 2.0000 ENTER† 2.0000 XEQ A A1=60.0000 DMS A2=60.0000 DMS A3=60.0000 DMS S1=2.0000 S2=2.0000 S3=2.0000 AREA=1.7321 SQ: _____

A2-182 100 SHEETS

(Here, flag 03 was clear. Angles are input and output in decimal degrees.)

XEQ "SAS" S1tA3tS2 (dd) 2.0000 ENTER1 60.0000 ENTER1 2.0000 RUN A1=60.0000 dd A2=60.0000 dd A3=60.0000 dd S1=2.00001 S2=2.00001 S3=2.0000' AREA=1.7321 SQ: -----S1tR3tS2 (dd) 3.0000 ENTER1 90.0000 ENTER! 4.0000 RUN A1=36.8699 dd A2=53.1301 dd A3=90.0000 dd S1=3.0000' S2=4.0000' \$3=5.0000° AREA=6.0000 SQ: -----S1tA3tS2 (dd)

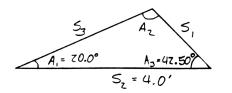
MATIONAL 42.182 100 SHEETS

"Side - Side - Angle" definitions have two possible solutions. Both are given. S1tS2tA1 (DMS) Solution 1: A3 5z= 3' 5,=2 A,=30 53 Solution Z: A3=18.3525 DMS 5,=3' S2=3.0000' A.= 30°

3.0000 ENTER† 30.0000 RUN A1=30.0000 DMS A2=48.3525 DMS A3=101.2435 DMS S1=2.0000' S2=3.0000' \$3=3.9210 AREA=2.9407 SQ' A1=30.0000 DMS A2=131.2435 DMS

XEQ "SSA"

2.0000 ENTER†

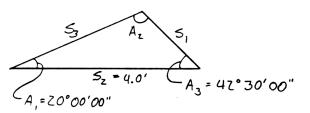

S1=2.0000'

\$3=1.2752

AREA=0.9564 SQ' ____ S1†S2†A1 (DMS)

MATIONAL 42-182 100 SHEETS

42-182 100 SHEETS



(Flag 03 clear -> decimal degrees)

XEQ "ASA" A1+S2+A3 (dd) 20.0000 ENTER+ 4.0000 ENTER+ 42.5000 RUN A1=20.0000 dd A2=117.5000 dd A3=42.5000 dd S1=1.5423' S2=4.0000' S3=3.0466' AREA=2.0840 SQ'

A1†S2†A3 (dd)

(Flag 03 set -> Degrees - Minutes-Seconds)

SF 03 XEQ "ASA" A1†S2†A3 (DMS) 20.0000 ENTER† 4.0000 ENTER† 42.3000 RUN A1=20.0000 DMS A2=117.3000 DMS A3=42.3000 DMS S1=1.5423' S2=4.0000' S3=3.0465' DDC0=2.0040 CO;

AREA=2.0840 SQ' ------A1†S2†A3 (DMS) Program <u>SSS, etc.</u> For <u>Triangle Solutions</u> <u>476</u> bytes Page of <u>3</u>

	X	Y	Z	TT	L		X		र	T	1	
	\uparrow	1		+		54 XEQ 12	\uparrow	<u> </u>				
01+LBL "SSS"						55 GTO 05						
02+LBL 04												
03 "S1tS2tS3"						56+LBL 12						
04 PROMPT	53	52	5			57 STO T	A,	A3	Sz	A,		
						58 XEQ 13	12	5	A,	A		
05+LBL A			1			59 STO 04	Az	-1	` '	11		
06 STO 03	s,					60 SIN	sintz					
07 X<>Y	52	53	5,	1		61 X<>Y	SL					
08 STO 01	1.					62 STO 01	52					
89 +	55	5,	1			63 X<>Y	5-1					
10 X<>Y						64 /	54.4	Α,	A ,	Α,		
11 STO 00	S,					65 RCL 02	A3					
12 +	ZS					66 SIN	sin Ag					
13 2	D L					67 *	5,					
14 /	Pariatz			1		68 STO 03						
15 RCL 01	5,					69 LASTX	5,					
16 RCL 00	5, 53	1	-	D		70 /	5./A.	5.				
17 RCL 03		5,	52	P/2		71 X<>Y	A,	5.1	Α,	Α,		
18 XEQ 14	Az		4			72 SIN	sìn A, S,					
19 STO 04	D,					73 *	5					
20 RDN	P/Z					74 STO 00		e	Α,			
21 RCL 03	53 5,					75 X<>Y	Α,	5,	, ,	Α,		
22 RCL 00		5,	e									
23 RCL 01	5,	1	53	1/2		76+LBL 01	A, Al					
24 XEQ 14	Å.,					77 RCL 04	A ₃	Az	A ,			
25 STO 02	Az					78 RCL 02		Z .				
26 RCL 04	A,		1			70ALDI 11						
27 XEQ 13	171					79+LBL 11 80 SF 21]				
28 XEQ 01						80 SF 21 81 FS? 00					1	
29 GTO 04						82 GTO 00						
7041 01 14						83 "A1"						
30+LBL 14 31 ≠	5,,5,	52	P/2	P/L		84 Rt						
31 ¥ 32 RDN	5.	1/2	PIZ	5,5,		85 Rt	A ,	5,	Δ			
32 KUM 33 -				- 50		86 XROM "Dd"	'	- 1	A ₃	Az		
33 - 34 X<>Y	P/z					87 AVIEW						
34 ////	1/2 (1/2-5	5,5,	535,	5,5		88 "A2"						
36 LASTX	r/z	PhL)	5,5,			89 Rt	Az	Δ,	52	Δ		
37 X(> Z	5,5,	NIZC)	PZ			90 XROM -Dd-	1.2		23	A3		
38 /						91 AVIEW						
39 SQRT						92 -A3-				1		
40 ACOS						93 R†	A3	Az	Α,	53		
41 ST+ X	A ₂	P/L				94 XROM "Dd"						
42 RTN						95 AVIEW						
						96 ADV						
43+LBL "ASA"	1					97 - \$1= -						
44+LBL 05			1			98 ARCL 00						
45 "A1tS2tA3"	1.		.			99 AVIEW						
46 XEQ 02	13	Si	A			1 00 " \$2="						
						101 ARCL 01						
47+LBL B						102 AVIEW						
48 FS? 03						103 •S3=•						
49 HR	A.	1	1			104 ARCL 03			1		l	
50 STO 02	L A	1				105 AVIEN						
(840) 51 RCL Z	A,					106 ADY			1			
52 FS? 03								1		!	1	
53 HR	A.		152	A,						1		

Program _____ For Triangle Solutions ____

 bytes	Page <u>2</u> of	<u>ح</u>

	X	Y	Z	T		X	Y	र	T	L	
					150 42	5,2					
					159 X+2	5,					
107+LBL 00	A ₃	Az	Ą		160 X(>Y					~ ²	~2 ~2
108 SIN					161 ST+ X	25.5.00				- ² 5	S ² +S ²
109 RCL 00	5,	Sin Az	Az		162 -	22				-25	,52 cos Az
110 *	·	. –	"2	A ,	163 R†	52			İ		-2 -3
111 RCL 01	52	Aı	٨		164 +	533					
112 *		۸,	Az		165 SQRT	53					
112 +			Α,		166 STO 03						
	55 S.		^ 2	1	167 RCL 02	Α,					
114 /	5,525	Az	A,	A,	168 SIN	sin A3	5,				
115 ABS					169 X<>Y		•				
116 - AREA=-			1		170 /	<u>eind:</u> 52					
117 ARCL X						22					
118 XEQ "FS"					171 STO Y	s,	sinds 52	<u>sin A.</u> 53			
119 AVIEW					172 RCL 01		21	53			
120 XROM "L"					173 *	sin Az					
121 RTN					174 ASIN	Az					
					175 STO 04						
122+LBL "SAA"					176 X<>Y	5 . A, 5 3	Az				
					177 RCL 00	5	-				
123+LBL 07					178 *						
124 "S2TA1TA2"					179 ASIN	A,					
125 XEQ 02	Az	Α,	52		180 XEQ 01						
126+LBL C					181 GTO 08						
127 FS? 03					10041 81 - 000-						
128 HR					182+LBL -SSA-						
129 STO 04	Az				183+LBL 09						
130 X<>Y	Ĺ		l		184 "S1†S2†A1"						
131 FS? 03			I		185 XEQ 02						
132 HR	A,	Δ	4							1	
	~ 1	Az	Sz		186+LBL E					9	
133 STO 00					187 FS? 03						
134 XEQ 13	Aз				188 HR	Α,	52	15,			
135 STO 02		_									
136 RCL 00	Α,	s,			189 STO T	sin A,	٢٦	s.	A.		
137 XEQ 12		-			190 SIN	1.1.1	52	13.			
138 GTO 07					191 X<>Y	-					
					192 STO 01	52			.		
139+LBL -SAS-					193 *	5, sì.A,	5,	Α,	A ,		
140+LBL 08					194 X<>Y						
					195 STO 00	5,					
141 "S1+R3+S2"	c				196 /	S. si.A.				Gìn	A.
142 XEQ 02	Sz	A ₃	5,		197 ASIN	AZ					
					198 STO 04					= Sir	1,52
143+LBL D						A,	Az				
144 STO 01	52				199 X<>Y		1 . 2				
145 X<>Y	A 3				200 XEQ 13	A ₃					
146 FS? 03					201 STO 02	sin A3					
147 HR					202 SIN		A,				
148 STO 02	A ₃	5,	5,		203 RCL 00	5,					
	c no Ag	-1	"		204 *	S. sinAs					
150 X<>Y	5,				205 X<>Y	A I					
	۰ ۲				206 SIN	sin A,					
151 *		c	4		207 /	51					
152 LASTX	5,	۶٫۰۰۸	5,		208 STO 03						
153 X+2				-		A,					
154 RDN	Szcon A,	5,		S ²	209 RDN	area	A2	Α,	Α,		6-20
155 X<>Y	ļ ,				210 XEQ 01						(C)
156 +					211 CLX	0	Α,				
	5,	5,5,00		5,2	212 XEQ 13	190-A2				1	130°- A2
157 LASTX	J.										
157 LASTX 158 sto 00	5,	7 ,2, 3		~ <u>r</u>	213 STO 04	A.	Α,			٣, -	150 - 12

Prog	ram
------	-----

_____For <u>Triangle Solutions; Promot/Dipply Angles</u> bytes Page<u>3</u>of <u>3</u>

				-		Г					- , - T	
	X	Y_	2	T			X	Y	र	T	L	
218 X(>Y 219 SIN 220 / 221 RCL 00	$\begin{array}{c} A_{1} \\ A_{3} \\ \vdots \\ A_{1} \\ \hline \\ S \\ A_{1} \\ \hline \\ S \\ A_{1} \\ \end{array}$	Ąź A,	A , A ,	A, A,								
227+LBL 13 228 + 229 COS 230 CHS 231 ACOS 232 RTN	A ₁ A _i +A ₅ - cos A _Z	A ₃			c 05 ((140-d)= - cosd						
233+LBL "Dd" 234 "⊢=" 235 FS? 03 236 GTO 03 237 ARCL X 238 "⊢ dd" 239 RTN												
240+LBL 03 241 HMS 242 ARCL X 243 HR 244 -F DMS- 245 RTN												
246+LBL "Pd" 247 XEQ 02 248 FS? 03 249 HR 250 RTN												
251+LBL 02 252 FS? 03 253 -+ (DMS)- 254 FC? 03 255 -+ (dd)- 256 PROMPT 257 END												
(B92)												

DIMENSION and TRIGONOMETRY ROUTINES

This module contains several short dimension "functions" which work with feet-inches-sixteenths addition, subtraction, and conversions to and from decimal feet. It also contains trigonometry "functions" which take or give angles in either degrees-minutes-seconds (DMS) or decimal degrees (dd) depending on whether flag 03 is set or clear; and useful utility routines.

The "functions" mimic native HP-41 functions as closely as possible. They leave the operand in Last X and are thus reversible. They use no numbered storage registers (i.e. they work with SIZE 00). Binary functions like PR and all unary functions leave the rest of the stack completely undisturbed, while the two binary functions FIS+ and FIS- effect stack rolldown. They are most useful from the keyboard when assigned to a key and executed in USER mode; they may also be executed from programs.

Dimensions

These routines work with dimensions in feet-inchessixteenths, and are intended to be used with the display mode set to FIX 4. The form used is very similar to that used by the HP-41 function HMS. For example, 12' 2-7/16" is 12.0207. All fractional inches must be in sixteenths. Thus 6' 5-3/4" is 6.0512. Trailing zeroes need not be keyed in; 3'-10 may be keyed in as 3.1 instead of 3.1000.

- FIS Converts decimal feet to feet-inchessixteenths. Once executed, pressing R/S once resets the display to FIX 6 (for example, to see the next digit in order to round to the nearest eighth of an inch). Pressing R/S (or executing any of the dimension routines) again resets FIX 4 format.
- FTd Converts feet-inches-sixteenths to decimal feet. Does not have the FIX 6/FIX 4 feature like FIS.

The functions FIS+ and FIS- are for adding and subtracting dimensions directly instead of converting them to decimal feet, adding, and then converting back. Their only drawback is that they are rather slow. It is helpful to realize that when adding dimensions, if there is no carryover from sixteenths to inches or inches to feet, the numbers may be added (or subtracted) directly instead of using FIS+ and FIS-. Another way to add dimensions directly is to wait until both sixteenths and inches require a carryover, then add 0.8884 to the sum. This effects a carryover automatically. If all this is confusing, just use these two functions. They work far easier if assigned to a key.

- FIS+ Adds dimensions in feet-inchessixteenths. Key in first dimension, enter, key in second dimension, xeq FIS+ (or assign to a key). Stack is rolled down just as for normal addition. Does not have the FIX 6/FIX 4 feature like FIS.
- FIS- Subtracts dimensions in feet-inchessixteenths.

Trigonometry Functions

These functions accept and output angles in degreesminutes-seconds if flag 03 is set, and in decimal degrees if flag 03 is clear. Thus if flag 03 is clear they are identical to their namesake HP-41 functions (except a little slower). This saves converting angles to decimal degrees to operate on them. All the functions save their operand in Last X and are thus reversible. All of them require the calculator to be set to DEG (degree) mode. Subroutine return depth is limited to two.

СО	Cosine
SI	Sine
ТА	Tangent
ACO	Arc cosine
ASI	Arc sine
ATA	Arc tangent
RP	Rectangular to polar conversion
PR	Polar to rectangular conversion

SHORT UTILITY ROUTINES

These routines find use in daily manual calculations. They all use the full stack.

QUAD Quadratic equation solution. The program prompts for A, B, and C, the constants in the quadratic equation $Ax^2 + Bx + C =$ 0. It then solves (in subroutine Q) for the two possible values of x, where x = $(-B + \sqrt{B^2 - 4AC})/2A$. If $B^2 - 4AC$ is negative, the calculator flashes DATA ERROR and quits. Linear interpolation or extrapolation. IP solves for Y2, where

X1→ Y1

X2- Y2

and $X3 \rightarrow Y3$.

The program prompts for X1, Y1, X3, and Y3, then repeatedly prompts for X2 and solves for Y2. The prompts are X1 / Y1, X3/ Y3, and X2; the upward arrow in the first two means "enter / ." Thus, key in X1, enter, key in Y1, press R/S. Repeat for X3 and Y3. Then key in X2 and press R/S to get Y2 as many times as you want. The program will continue to solve for Y2 until the X2 prompt is bypassed. The routine has a default value of X1 = 0; if X1 is zero, just key in Y1 and press R/S. The user should note that the entire stack is used; any intermediate calculations during input will cause an error.

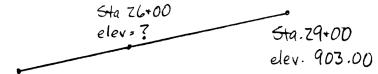
PYR

This is an extremely simple routine that does part of the work in calculating the volume of a truncated pyramid. It uses the approximate formula

$$V = (A_1 + A_2 + \sqrt{A_1 \times A_2}) \times H/3$$

PYR doesn't actually calculate the volume. It takes as input the dimensions of the top and bottom, <u>assumed to</u> <u>be parallel rectangles</u>. The output, multiplied by the height H, is the volume (or a close approximation). See the examples.

Convert to feet:	10.0903
$10' - 9^{-3}/16 = 10' + (9.1875''/12)$	XROM "FTd" 10.7656 ***
= 10.7656'	3.1294
- 10. 1656	XROM -FIS-
	3.0109 *** Run
	3.010884 ***
Convert to feet-inches-sixteenths:	RUN 3.0109 ***
3.1294' - 3'+ .1294 x12"	
= 3'+ 1,55"	9.0703 ENTER† 4.0908
= 3'+1"+ .55*16	XROM "FIS-"
	4.0911 ***
= 3'+1"+ 8,85/16+43	
$= 3' - 19'_{11}$	
	9.0703 ENTER† 4.0908
	4.0908 XROM -FIS+-
Subtract = 9-7% 2 = 8-18 to	7.0610
Subtract = $9' - 7\frac{3}{16} \xrightarrow{2} \frac{8' - 18\frac{19}{16}}{-4' - 9\frac{8}{16}}$ - $4' - 9\frac{12}{12} \xrightarrow{3} \frac{-4' - 9\frac{8}{16}}{4' - 9\frac{8}{16}}$	XROM "FIS+" 21.1105 ***
	9.0703 ENTER†
Add: 9'-73/16	4.0908 +
4' - 9'/2	7.0610 +
7'-6518	20.2221 ***
20-22 21/16	.8884 +
- ZI'-11 5/16	21.1105 ***
Quadratic Equation	
	XROM -QUAD-
$9x^{2} + 2x - 33 = 0$	A
-7 + [72 - 11 - 9 - (-32)]	9.0000 RUN B
$x = -\frac{Z \pm \sqrt{2^2 - 4 \times 9 \times (-33)}}{7 \times 9} = -7.0292$	2.0000 RUN
	C -33 .0000 r un
or = 1.8070	R1=1.8070
\frown	R2=-2.0292 A


A

(696

Fyramid Volume
Find the volume of this
pyramid. Compare
different methods.
Find the volume of this
pyramid. Compare
different methods.
Fragam PYR approximation

$$A_2 = 3.41 = 12.0 \text{ of}$$

 $A_2 = 5.4 = 400 \text{ cf}$
 $A_1 = 5.6 (-12.40 + 21.91)$
 $= 6' \cdot 24.64 \text{ cf}$
 $= 147.42 \text{ cf}$
 $error = 0.12.70$
3.0000 ENTER
 3.0000 ENTER
 4.000 enter
 176.00 error
 195.00 error
 $10 \text{ the val} reso \text{ Hs}$
 $10 \text{ the reso resonce}$

Interpolate/Extrapolate

Sta 24+00 elev 896.00

896.0 + <u>Z600-Z400</u> × (903.0-496.0)

= 498,80

XROM "IP" X1†Y1 2,400.0000 ENTER† 896.0000 RUN X3†Y3 2,900.0000 ENTER† 903.0000 RUN X2 2,600.0000 RUN Y2=898.8000 X2 3,000.0000 RUN Y2=904.4000 X2 RUN X1†Y1

UTILITY PROGRAMS

FUNCTIONS and UTILITY ROUTINES

This module contains several short routines which were written to mimic or emulate HP-41 functions; several others which are short, useful time savers for everyday work; a number of output, display, and print format functions, and several programming routines to simplify writing and using programs.

In the following write-up, one asterisk (*) signifies the use of register "a", meaning a shortened subroutine return chain. Two asterisks (**) mean part or all of the alpha register is used for "scratch-pad" storage. Three asterisks mean both are used. See the section "Synthetic Programming and Other Loose Ends" in the first part of the documentation for an explanation of these and other things that your Owner's Handbook never told you about your HP-41.

FUNCTIONS

The following routines mimic HP-41 functions as closely as possible. They leave the operand in Last X and are thus reversible. They use no numbered storage registers (i.e. they work with SIZE 00). Binary functions like PR and all unary functions leave the rest of the stack completely undisturbed, while the two binary functions FIS+ and FIS- effect stack rolldown. They are most useful from the keyboard when assigned to a key and executed in USER mode; they may also be executed from programs.

Stack Manipulation

Just like X<>Y or X<>Z, these exchange registers in the stack.

YZ	Exchange	the	Y	and	Ζ	registers.
YT	Exchange	the	Y	and	Т	registers.
ZT	Exchange	the	Z	and	Т	registers.

Dimensions (**)

These routines work with dimensions in feet-inchessixteenths, and are intended to be used with the display mode set to FIX 4. The form used is very similar to that used by the HP-41 function HMS. For example, 7' 11-13/16" is 7.1113; 12' 2-7/16" is 12.0207. All fractional inches must be in sixteenths. Thus 6' 5-3/4" is 6.0512.

FIS Converts decimal feet to feet-inchessixteenths. Once executed, pressing R/S once resets the display to FIX 6 (for example, to see the next digit in order to round to the nearest eighth of an inch). Pressing R/S (or executing any of the dimension routines) again resets FIX 4 format.

- FIS+ Adds dimensions in feet-inchessixteenths. Key in first dimension, enter, key in second dimension, xeq FIS+ (or assign to a key). Stack is rolled down just as for normal addition. Does not have the FIX 6/FIX 4 feature like FIS.
- FIS- Subtracts dimensions in feet-inchessixteenths.
- FTd Converts feet-inches-sixteenths to decimal feet. Does not have the FIX 6/FIX 4 feature like FIS.

Trigonometry Functions (*)

These functions accept and output angles in degreesminutes-seconds if flag 03 is set, and in decimal degrees if flag 03 is clear. Thus if flag 03 is clear they are identical to their namesake HP-41 functions (except a little slower). They all save their operand in Last X and are thus reversible. All of them require the calculator to be set to DEG (degree) mode. Subroutine return depth is limited to two.

CO	Cosine
SI	Sine
TA	Tangent
ACO	Arc cosine
ASI	Arc sine
ATA	Arc tangent
RP	Rectangular to polar conversion
PR	Polar to rectangular conversion

SHORT UTILITY ROUTINES

These routines find use in daily manual calculations. All of them use the full stack.

QUAD Quadratic equation solution. The program prompts for A, B, and C, the constants in the quadratic equation $Ax^2 + Bx + C = 0$. It then solves (in subroutine Q) for the two possible values of x, where x = $(-B + \sqrt{B^2 - 4AC})/2A$. If $B^2 - 4AC$ is negative, the calculator flashes DATA ERROR and quits.

Linear interpolation or extrapolation.

- IP solves for Y2, where X1→ Y1 X2→ Y2
 - and $X3 \rightarrow Y3$.

The program prompts for X1, Y1, X3, and Y3, then repeatedly prompts for X2 and solves for Y2. The prompts are X1/ Y1, X3# Y3, and X2; the upward arrow in the first two means "enter / ." Thus, key in X1, enter, key in Y1, press R/S. Repeat for X3 and Y3. Then key in X2 and press R/S to get Y2 as many times as you want. The program will continue to solve for Y2 until the X2 prompt is bypassed. See the example for clarification. The routine has a default value of X1 = 0; if X1 is zero, just key in Y1 and press The user should note that the en-R/S. tire stack is used; any intermediate calculations during input will cause an error.

ST Storage register review. Displays first the stack and Last X, then all the storage registers from 00 on up, until R/S is pressed or the SIZE limit is reached.

PROGRAMMING, OUTPUT, and DISPLAY

ΙP

These are used almost exclusively in programs, having very little use from the keyboard. They are included in a user's program by keying (in PRGM mode) xeq (alpha) "Title", (alpha); they list as XROM "Title", which means "execute from ROM."

AX (*) Append X. Very similar to the ARCL X command. Rounds the contents of the X register and appends the integer portion of that to alpha, but leaves the original X (and the rest of the stack and Last X) undisturbed. AX is very useful, for instance, if the X register contains a counter number. Subroutine returns are limited to two deep when AX AX is one of a few routines in is used. this module that cannot be singlestepped through, because it uses register P (see "Synthetic Programming and Other Loose Ends"). If you want to single-step through it to see how it works, copy it down into RAM and replace every line using the P register with one using a numbered register instead. Since

the P register is used, only 21 characters can be placed in Alpha instead of the 24 usually available.

S

Setup routine. Checks the program's SIZE requirements (the largest numbered storage register used must be in X); sets or clears flag 26 to control the beeper according to flag 02; sets flag 21 to control viewing and printer use; and sets DEG mode. If a printer is present, S prompts for a title; if a time module (or a -41CX) is also present, it prints a time and date header first. Typically, a program using S looks like this:

If your program requires no numbered storage registers, substitute

- 02 1
- 03 CHS (change sign)
- 04 XROM "S"

to indicate SIZE 000 required (since if S sees zero, it thinks register 00 is needed and sets the size to 001.

V

View. Appends "=" and the contents of the X register to what the program has already (hopefully) placed in alpha, and displays it if flag 00 is clear. If flag 00 is set, V returns without doing anything. V starts at line 392 of program PLG, and is used mostly by that program. The only reasons V wasn't used in more of the module programs are that it makes it impossible to append units to the output, and that while the calculator is displaying something from V, all of the calling program's softkeys are dead (since the calling program doesn't share the same END as V). If the user sees an answer which doesn't look right, the instinctive (well, it's acquired) move to correct something by pressing a softkey gets nowhere.

Print or View. If no printer is attached, behaves just like an AVIEW command. However, if a printer is on line, PV prints the contents of Alpha (PRA) without displaying it on the screen. With a long text string, this eliminates the infuriatingly slow scrolling process, speeding up output greatly. Its main disadvantage is the same as V: a program's softkeys are dead while in PV. To use a softkey, SST to return to the calling program first.

PV

OK

Line printing commands. L prints a L, LL, short line of minus signs; LL prints a L*, CL line all the way across the paper (24 places). L* prints a full-length line of asterisks. CL prints a line of any character (or string of characters) the program has placed in alpha; the number of times the character is repeated, and thus the length of the line, is determined by the number in the X register. This number shouldn't be larger than 24 for one character in alpha.

If flag 14 is set, both L and LL clear it and then jump to L*. Thus, a loop such as the following will print a list of asterisks the first time and a short line (----) thereafter:

42 SF 14 43 LBL 01 44 XEQ "L" 45 . 49 GTO 01

L* and CL change the stack if actually executed full length (i.e. if a printer is plugged in). LL and L also alter the stack if flag 14 is set, sending them to L*. Thus, necessary data in the stack should be stored and then recalled if these are to be used.

- Appends "OK" to alpha if flag 07 is clear. If flag 07 is set, appends "NG" (no good) and BEEPs.
- Pd Prompts for degrees. Appends " (dd) " to Alpha and then prompts if flag 03 is clear. Appends " (DMS)", prompts, and then <u>converts</u> the input to

decimal degrees if flag 03 is set.

Dd

Display degrees. If flag 03 is clear, appends an "=", the contents of the X register, and " (dd)". If flag 03 is set, appends "=", the contents of the X register converted to degrees-minutesseconds, and " DMS". If flag 03 is set, the contents of X are converted to degrees-minutes-seconds and then back to decimal degrees; X is thus unaffected, but Last X contains the angle in degrees-minutes-seconds.

- Appends " (inches) to the alpha register IN Appends SQ" (square inches) to alpha. IS Appends (feet) to alpha. FT Appends SQ' (square feet) to alpha. FS Appends the number symbol (#) to alpha. NO Appends "(" to alpha **P1** Appends ")" to alpha P2 Appends " ⊢" (the perpendicular sign) PP Appends the Greek "µ" (mu) to alpha MU Appends "@" (the "at" symbol) to alpha AT Appends "&" (ampersand) to alpha AM
- M= Appends M=, divides the moment (in the X register) by 12 and appends it and 'K FK Appends 'K (foot-kips) to alpha. Appends STRS=, the contents of the X Κ register, and KSI to alpha. KS
 - Appends KSI to alpha.
- AS Appends A-S=, the contents of the X
 - register, and SQ" Prompts for M, TK Μ
- FY Prompts for F-Y KSI
- Prompts for F-Y or F-S, and Fc', solving N for B_1 , .75P_b and M_{cr} , and leaves "N" in Alpha for the calling program to prompt BD Prompts for B" and D" W XEQ's "S" and asks WSD?, setting flag 06 XEQ's "S" and then displays the contents AA of the alpha register if flag 04 is set, "AASHTO" if flag 04 is clear

6

ADDITIONAL PROGRAMMING ROUTINES

The following routines are used by programs in the ROM, and are briefly described here in case they may be of some use.

Mc	Displays 1.2 M _{cr} and calculates reinf.
SBM	Displays 1.2 M _{cr} and calculates reinf. "Port of entry" to program COMP
R	Displays max/min reinforcing
RH	Displays .75P _b
U	Calculates ultimate strength reinf.
VC*	"Port of entry" to programs VC and STA

IP, ST

Interpolate :

<u>2400-2335.0</u> 2502.5-2335.0 (879.537-471.65)

+ 471.65 = 874.7106

Interpolate Sta 24.00 5ta 25+02,50 elev ? elev, 879,5370 Extrapolate

Sta 23+35.00 elev. 971.65

ATTONAL 42-182 100 SHEETS

XEQ "IP" X14Y1 2,335.0000 ENTER* 871.6500 RUN X3†Y3 2,502.5000 ENTER† 879.5370 RUN Χ2 RUN 2,400.0000 Y2=874.7106 -----Χ2 2,500.0000 RUN Y2=879.4193 _____ Χ2 2,600.0000 RUN Y2=884.1279 -----Χ2 3,000.0000 RUN Y2=902.9626 ăΖ RUN

XITYI

X=3.0000

start Over

Storage and Stack Review (hore size 013)

Y=17,591,0646 Z=311.5196

XEQ "ST"

T=1,646.9885 L=165.2249 R.0=3.5000 R.1=0.6667 R.2=0.0000 R.3=23,250.0000 R.4=-0.1111 R.5=23,550.0000 R.6=0.0000 R.7=896.0000 R.8=23,341.3100 R.9=897.0000 R.10=17,591.0646 R.11=37,380.5362 R.12=17,591.0646

<u> </u>		 			 		 					 			 	 		 		
														-						
<u> </u>		 	 				 		 	 	 	 	 		 	 	 	 		
							 		 	 	 	 	 		 					-
		 	 		 	 	 		 	 	 	 	 		 	 	 	 	+	
ļ					 	 	 		 	 	 	 	 		 	 	 	 		
			-		 		 		 	 	 	 	 		 	 	 			
															 				+	
		 	 			 	 	-	 	 	 	 	 		 	 		 		
							 													\neg

Program <u>S, etc.</u> For <u>Utility Routines</u> <u>810</u> bytes Page of <u>4</u>

	X	Y_	Z	T				Ý	そ	T	L	
			_			55 SF 25					SFZ	5 in case
01+LBL "S"	MaxReg	Y	7	T		56 RND	X'	Y	Z	IT	X-rea	g. contains data - for
02 SF 21					for aview	57 X(> †	L				Alpha	data - for
03 SF 26					for BEEP	58 X(> L	×	Y	Z	T	RND	function
04 CF 14						59 X<> a	à	Ý			1	
05 FC? 02							a	١	5	T		R.q
06 CF 26						60 ARCL †					Aici	sounded X
						61 STO d		Y	2	1		
07 DEG						62 CLX	0	I	₹	1		D D
08 SF 25						63 STO 🕇					ciean	Reg. P
09 STO IND X					SIZE check	64 X(> a	X	Y	Z	T	IL I	clear Reg.a
10 FC?C 25						65 RTN					-	1
11 X<0?	1											
12 GTO 03						66+LBL -N-						
13 E												
14 +						67 -ACI-					Cale	Dicalay
						68 XEQ 11					Coor	Display
15 *SIZE<*						69 FS? 06						
16 XROM "AX"						70 GTO 04						
17 PROMPT						71 "F-S 20,24"						
						72 24						
18+LBL 03			-			73 XEQ 05						
19 RDN	Y	7	T				7/1					
20 FS? 00						74 X<>Y		2Fs				
21 RTN						75 -	24 or 16					
22 FC? 55						76.4						
						77 /	60+40					P ol
23 RTN						78 X(> 01	Fs				F y "	R.01
24 SF 25						79 STO 13						
25 CLA	5		-	-		80 GTO 07						
26 TIME	Time	Y	7	T								
27 FC?C 25			I			81+LBL 05					1	
28 GTO 10							0.0 14	0.0.11				
29 ATIME						82 ENTERT	detailt Fs	yera fr			1	
30 • -						83 PROMPT	F.					
31 RDN	Y	₹	T			84 X>Y?				[
	Date			-		85 BEEP				1		
32 DATE	vale	Y	3	T		86 STO 01						
33 ADATE			1			87 ST+ X	ZFS	delat				
34 SF 25			1			88 X<=Y?	Ĭ	-"				
35 PRA		1_	-			89 BEEP						
36 RDN	Y	7	T			90 RTN				1		
37 FC?C 25			1			70 KIN						
38 RTN						A4 - 1 B1 - A4						
••			1			91+LBL 04						
39+LBL 10	Y	Z	T			92 "F-Y 40,60"						
40 ADY	1'	15	1'			93 60					_	
						94 XEQ 05					Fy i	n R.01
41 *TITLE:*			1				1				`	
42 AON			1			95+LBL 07						
43 PROMPT						96 CLA						
44 ROFF			1		1	JU ULM						
45 GTO 19						97+LBL "Fc"						
46+LBL "RX"	X	Y	Z	T	L	98 4						
47 X() L	L	.			×	99 "HFc'KSI"	101					
	1-			1	Ladx in R.P	100 PROMPT	f.'					
48 STO †			1	1	~~~~ ·~~	101 9	9 6.					
49 CLX			-	-	v v	102 X(Y?						
50 RCL d	d	Y	Z	T	X "d" in R.a	103 BEEP			I			
	a				a	104 RDN	fć		1			
51 X<> a					1 .	107 KUN	1 . 6	1	1	1	1	
51 X<> a	X	Y	1 Ż	T	a							
51 X<> a 52 X<> L		Y	Ż		a	105 FS?C 10						(Cq)
51 X<> a		Y	Ż		a							<u>(C9)</u>

Program <u>Sete.</u> For Utility Routines <u>210</u> bytes Page Zof <u>4</u>

	Х	Y	Z	Т	L		X	Y	र	T	L	
107 ENTERT						158+LBL -U-						
108 ENTERT						159 STO a	M					
109 SQRT	If.	f.'	fé			160 SIGN 161 Lastx	M					
	253	2	fć	f_'		161 LHSTX 162 2	2					
111 /				-		163 RCL 00	fy	2	M			
112 STO 06 113 RDN	fé		1	ļ		164 /		.	.			
113 KUM 114 4	4 4	f.'	f.'	f'		165 *	Ŋ¢¥		1	1		
115 -	-	'e	τε	`c		166 RCL 01	. St. Ky					
116 X<0?						167 / 169 PCL 85	qudz					
117 CLX						168 RCL 05 169 /	Y-W					
118 CHS	1.05					179 -						
119 20 120 /	1.05					171 SQRT	Į İ					
120 /						172 -						
122 +	β,					173 RCL 00	fy As		1			
	.65	B.3	fe	fe'		174 *	As M	1				
124 X>Y?						175 RCL a 176 X<>Y		M				
125 X<>Y		β.				176 X() 177 RTN	As	'				
126 RDN 127 STO [β,	f,'	<u>^</u>				I İ				l	
127 STO [128 LASTX	Р. .95	τc	fe			178+LBL 02	1					
120 LHSTA	وه. +ز	.45	β,	f_{c}'		179 • •	1		1			
130 *			-	•		10041 01 -00-	T I					
131 RCL 01	fy .			I		180+LBL "AS" 181 "HA-S="	I İ					
132 /		a	fe'	f _c '		181 "FH-5="	1		ļ			
133 STO 00	. 45°. Ky	β,	٦٢	۲c					1		l	
134 * 135 87						183+LBL -IS-		1	I .		l	
135 87						184 "⊢ SQ"					ł	
137 RCL 01	Fy								•			
138 LASTX	87 •1•Fy					185+LBL "IN" 186 "F""						
						187 RTN	I Ì	1	1			
140 / 141 75	Phal											
141 .75 142 *	.75 p.					188+LBL "R"	d	p.b				
143 STO 02						189 *	AS-1.2N	er				
144 RCL [β,					190 LASTX	d					
145 R†	fé	β,	.75pm	f _c '		191 RCL 03 192 *	b Ac	1				
146 "N"	•	rı	~~~~~	·c	prepared for	192 +	200					
147 RTH					prepared for "N" prompt in calling program	194 RCL 01	Fy					
1404101 - 4	bdz				calling program	195 /	200/Fy	1				
148+LBL "Mc" 149 RCL 06	R'he					196 *	As zaviy					
150 *					6 * 1.2 (7.5 Jugo JE) 12,000	171 10: 04	I 1					
151 "1.2Hc="					12,000	198 X<>Y 199 FS? 00	A _{5 min}					
152 ARCL X					= bd2 + JF: 1253	200 RTN	I I					
153 XROM "FK"						201 XEQ 02	I I					
154 FC? 00 155 XEQ -PY-						202 FC? 04	I İ					
155 XEQ -PY-						203 AVIEN	1			I		
157 +	1.2M.r					294 *299/FY=*						
						205 ARCL L 206 AVIEW	l I		1			
\sim						200 HYTEN 207 XEQ 02			ł			
(C10)						208 FS? 94	I I					
\smile						209 AVIEW						
						210 .75Pb=-	Asmin		l	ł		
							17 549 M					

Program $\leq e^{4e}$ For ______ ≤ 10 bytes Page 3 of 4

	X	Y	Z	T	L		X	Ý	र	T	L	
212+LBL -K-												
213 *+ STRS*												
					1	263+LBL "L"						
214+LBL "KS"						264 E						
215 -+=-						265 GTO 01						
216 ARCL X												
217 - KSI-						266+LBL "LL"						
218 RTN						267 4						
219+LBL "M="	M"-k					268+LBL 01						
220 12						269 RDN						
221 /	Mik				1	270 FS?C 14						
222 * H=*					1	271 GTO 19						
223 ARCL X						272 ••						
223 HKGL A						273 GTO 06						
224+LBL "FK"												
225 • K•						274+LBL "NO"						
226 RTN						275 -+=-						
LLU KIN						276 RTN						
227+LBL -M-						LIV KIN						
228 12						277+LBL "L+"						
228 12 229 CF 22						278+LBL 19						
230 THM, K						279 ******						
230 PH, K						280 4						
231 KIN						200 7			1			
						281+LBL -CL-	counter	x	Y	7		
232+LBL =QUAD=						282 RDN			1'	1		
233+LBL 08 234 "A"					1	202 KUN						
						283+LBL 06	X	Y	Ŧ	leand -		
235 PROMPT				}		283+LBL 06 284 FC? 55			τ	conter		
236 B						284 FL? 55 285 RTN						
237 PRONPT	C	B	A		4x7+Br=2=3	285 KIN 286 ASTO L						
238 °C*		0	^			200 HOIU L		,				
239 PRONPT	A	B	C									
240 X(> Z	1 1		1			287+LBL 00						
241 XROM "Q"	R1	R2				288 ARCL L						
242 SF 21						289 DSE T						
243 -R1-						290 GTO 00						
244 XROM "V"	60	DI				291 SF 25						
245 X<>Y	RZ	RI				292 PRA						
246 -R2-						293 CF 25			.7	1		
247 XROM "Y"						294 RTN	X	Y	7	0		
248 GTO 08												
		5	C			295+LBL "BD"	Prev.B					
249+LBL -Q-	A	B				296 RCL 03						
250 ST/ Z	7.		C.			297 -B	в					
251 ST+ X	ZA	D	€⁄ _A			298 PROMPT						
252 /	ъ.					299 STO 03	P -					
253 CHS	- ^B / _Z A	¢⁄_A				300 RCL 04	Prev. D					
254 ENTERT	1.7		B,	C/A		301 "D""						
255 ENTER†	-4A-	-Bha	- ^B / ₂ A	′ A		302 PROMPT	D					
256 Xt2	e,				C 4AC	303 STO 04						
257 R†	A R ² -UAC				$\frac{C}{A} = \frac{4AC}{4A^2}$	304 RTN						
258 -	442	в.	_ B.						1			
259 SQRT	C/A <u>B².4AC</u> 4A ² VD ² .4AC ZA	- 724	- B/2A						İ			
260 ST- Z			Rz									-
261 +	R,	R ₂										
262 RTN												ビリ
	1			1	1		ľ		1		1	-

 				1 .	—							,	
 Х	Y	2	T	L				X	Ý	そ	T	L	
							305+LBL "H" 306 XROM "S" 307 CF 06 308 "HSD?" 309 E 310 PROMPT 311 X=0? 312 SF 06 313 RTN	1					
							314+LBL -AA- 315 ASTO Y 316 XROM -S- 317 CLA 318 ARCL X	Max.Reg "AISC"	"Afc" Z	Z T	Т		
							319+LBL 11 320 FC? 04 321 -AASHTO- 322 FC? 00 323 AVIEN 324 RTN	'AISC"	Z	т			
							325+LBL -OK- 326 FS? 07 327NG- 328 FC? 07 329OK- 330 FS? 07 331 BEEP 332 END						
									Ì				

					1 1 1							
		Y	Z	T			X	Y_	र	T	L	
01+LBL "FIS"												
02 XEQ 01	F4	Y	Z	T		48+LBL -FT-		J	7	-		
	F.15	Y			F+	49 XEQ 01	FIS	Y	£	Т		
03 AEQ 04	Y	Z	Т	F.15		50 XEQ 03	F4.				FIE	
05 Rt	F.15	Y	7	Т	F1.	51 XEQ 07	Ft.	2	Т	F4.	F.15	
06 RTN			-			52 XEQ 02	Y	Z		r1.		
07 FIX 6						53 R† 54 RTN	FI.Ju	Y	Z	T	F.IS	
08 STOP						J" KIN		-				
09 FIX 4						55+LBL 05	FIS	F15,				
10 STOP						56 XEQ 01	FIS	F152		T		
	[57 XEQ 03	Fi.dec,	-				
11+LBL -FIS	_ .					58 X<>Y	F.15 2	Ft. dec				
		F4,										
	FH,	Ftz				59+LBL 03	F.15	Y				
	ΔF_{+}					60 INT	FI.					
15 GTO 06						61 LASTX						
1/ DI						62 FRC	.15	Ŧ+	Y			
16+LBL "FIS+"		Fi				63 E2	100	.15	F+,	Y		
	Ftz	Ft				64 *	I.Six					
18 +	F+					65 FRC	.514					
						66.16	.16	.Six		Y		
19+LBL 06 20 XEQ 04	FIS					67 ST/ Y	.16	. dec	Ft-	Y	l	
20 AEQ 04 21 RCL \	T	F.15				68 RDN						
	'	C				69 LASTX	In.	.dec	11	Y		
22+LBL 02	x	Y				70 INT	Jn.		· ·	1'		
23 RCL N	T					71 +	In.lec					
24 RCL]	Z	Т	x	Y		72 12	.dec	Fł.	Y	Y		
25 Rt					1	73 /	1		1			
26 RTN	Y	7	T	X		74 + 75 RTN	Ft,dec	Y	Y	Y]	
27+LBL 04	F+								_	-		
28 INT	F4.					76+LBL 01	X	Y	2	T		
29 LASTX						77 FIX 4	v					
30 FRC	. F+					78 STO [×					
31 12		Fre	Ft.	Y		79 Rt	$ _{T}$					
32 *	In.					80 STO \	'					
33 FRC	FRC					81 R† 82 STO J	F					
34.16	.16	FRC"	F4.	Y		82 510 J 83 Rt						
35 ST* Y		Sinteenthe		Ý		83 RT 84 Rt	x	Y	-	-		
36 RDN						85 END	^		7	T		
37 LASTX	In.					44 EII4						
	In.	Sixteat	F1.	Y								
3 7 ·	In. 16*4											
40 E2	100		v	V								
41 /	. In 164	F1.	Y	Y								
42 +	F.IS											
43+LBL 07												
44 RCL [Ft											
45 SIGN	1		\checkmark		Ft in Last X							
14 (12)	F.15	Y	Y	1								
47 RTH												
											6	2
											(CI	9
								1				-
							l l					

RH				check			Γv		17	$\overline{1}$
		ĻΥ_	Z	+	レー 50 •Z=•	X_	¥_	र	+	
					51 ARCL Z					
					52 AVIEN					
					53 •T=•					
01+LBL "IP" 02 SF 21					54 ARCL T					
02 SF 21					55 AVIEW					
03+LBL 02					56 "L="			-		
04 .					57 ARCL L					
05 -X1+Y1-					58 AVIEW					
06 PROMPT	Υ,	X,			59 ADY					
07 X()Y	×.	Y.			60 CLX					
08 "X3†Y3"										
09 PROMPT	Y3	X3	×,	Y.	61+LBL 11	counter				
10 R†					62 - R					
11 STO]	Υ,	Y3	X ₃	X,	63 XROM -AX-					
12 -	۵Y	X ₃	X,	XI	64 SF 25					
13 X(> Z	× ,	×3	۵Y	X,	65 * += *		1			
14 -	۵×	٥Y	×,	X,	66 ARCL IND X					1
15 /	∆Y∕ _▲ X	¥,	×1	×,	67 FC?C 25					
16 RCL]	YI				68 STOP 69 AVIEW					
17 X<>Y	DY/OX	Y	X.		70 ISG X	counter				
18 R†	X,	^¥&X	Y,	×,	71	NOP-				
19+LBL 10					72 GTO 11					
20 RDH										
21 STO a	Vx	Y,	X,	X,	73+LBL "RH"	ρ				
22 CF 22					74 SF 21					1
23 •X2•					75 ENTER†	P	P			
24 PROMPT	Xz				76 -RHO-					
25 FC? 22					77 XEQ -Y-					Į –
26 GTO 0 2					78 RCL 02	.7IP.				
27 R†	×,	Xe	٧ _×	Y,	79 /					
28 STO]					80.75					
29 -	۵X	Y/x	Υ,	Y,	81 *	P/P	ρ			
30 *	¥. Yı				82 LASTX 83 X<>Y	1.5				.
31 X<>Y	Y'				84 X(Y?					X <y< td=""></y<>
32 + 77 PCL 1	Yz				85 FC? 00					and FS:0
33 RCL] 34 Lastx	×, Y,				$Y_{z} = (Y_{3} - Y_{1}) \left(\frac{x_{z} - X_{1}}{X_{3} - X_{1}} \right) $ 86 X=0?			1		
34 LHSTA 35 RCL a	DY/AX									
36 Rt	Yz	ay ax	Y,	X,	+ Y, 88 •P/Pb=•				1	
37 * Y2= *	1.2	× 4 1	' '		89 ARCL X	P/Po	.75	ΙP	1	
38 ARCL X					90 CF 07			1		
39 AVIEW					91 X>Y?				1	
40 XEQ "L"					92 SF 07					
41 GTO 10				1	93 XEQ -OK				1	
				ľ	94 XEQ "PV"					
42+LBL -ST-					95 END					
43 SF 21				1						
44 "X="									ł	
45 ARCL X										
46 AVIEW 47 "Y="										
47 - Y=-								1		
49 AVIEW										
		1	1	1				1		

PPC ROM PROGRAMS

This package contains, by permission, four programs from the PPC ROM. By way of explanation, PPC is a large user's group dedicated to personal programmable calculators and computers; thus the name. Several years ago they undertook to write a group of math and general utilities programs to fill what they saw as gaps in the HP-41 function set, and to expand its usefulness. These programs were assembled into an 8K ROM module which has become something of a legend, both for its usefulness, and general excellence of programming and documentation.

The programs from the PPC ROM which have been included in this module are:

- FI Financial analysis
- CV Curve fitting (linear, exponential, log, power)
- BC Block clearing of registers
- SV Solution of a function f(x)=0 on an interval

Documentation from the original manual has been included. However, three minor changes must be noted.

First, the line numbers of the routine listings in the original documentation do not correspond to the line numbers in this module for BC and SV, due to rearrangement of the routines. Local labels have also been changed in these two routines for the same reason.

Second, BC has been modified to use the Extended Function CLRGX if it is available. This function does the same thing as the original BC but is much faster. However, the stack is affected differently by CLRGX than by BC, so carry data in the stack with caution if using this function.

Third, SV has been modified to follow this package's use of flag 00. To view successive iterations, clear flag 00 instead of setting flag 10 as the original documentation indicates.

FINANCIAL ANALYSIS

Gto (<u>not</u> xeq) FI (SIZE 010)

SOFTKEYS/INPUT SUMMARY (USER mode ON)

- <u>Softkey</u> <u>Input/Function</u> a Multiplies contents of X by 12 and stores result as "n"
 - b Divides contents and stores result as "%i"
 - c Toggles between <u>Continuous</u> and <u>Discrete</u> compounding
 - d Toggles between <u>Beginning</u> or <u>End</u> of period payment
 - e Clears financial registers n, %i, PV, PMT, and FV. Sets the compounding frequency and the payment to the default value of unity. Displays a two-character mnemonic indicator of softkeys c and d (<u>C</u> or <u>D</u>, <u>B</u> or <u>E</u>)
 - A Enters or solves for number of periods, n (the total number of payments or compounding periods).
 - B Enters or solves for the interest rate. %i is the nominal rate for the period implied by the compounding and payment frequency values (usually the nominal annual rate).
 - C Enters or solves for the present value.
 - D Enters or solves for the periodic payment.
 - E Enters or solves for the future value.
 - H Enters the compounding frequency if different than the default, 1. CF is the number of times the interest rate is compounded during the period implied by %i. CF is ignored when continuous compounding is specified.
 - I Enters the payment frequency when different than the default, 1. PF is the number of payment periods occuring during the period implied by %i. When no payments are involved, PF must be set equal to CF.
 - J Displays a two-character mnemonic indicator of softkeys c and d (\underline{C} or \underline{D} , \underline{B} or \underline{E})

USER FLAGS

Flag 00 clear View succeeding approximations of %i set View only final solution when solving for %i

OUTPUT SUMMARY

Output consists of the correct value in the X-register. No output description or units are given. See the examples in the original PPC documentation which follows.

PROGRAM FLAGS

Flag 08	clear set	Discrete compounding Continuous compounding
Flag 09	clear set	End of period payments Beginning of period payments

STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> not used
01	n
02	%i
03	PV
04	PMT
05	FV
06	function call number (indirect label)
07	%i as decimal
08	CF
09	PF

a the companyed los (company) CE to not identical		
a. the compounding frequency CF is not identical to the payment frequency PF, and/or,	Routine Listi	ng For:
	01+LBL "FI"	74 ABS
b. interest is compounded in either discrete intervals or is continuously compounded.	82 GTO IND 86 83+LBL e	75 RCL 05 76 ABS
	04+LBL 00	77 +
When flag F08 is cleared, the discrete case is selected. When flag F08 is set, the continuous case	05 E 06 sto 08	78 RCL 04 79 X=0?
is selected. F08 is toggled by LBL c.	07 STO 09	80 GTO 89
Solving For n, PV, PMT, or FV.	08 CLX 09 STO 01	81 / 82 ABS
Solving for it, fv, fm, of fv.	10 STO 02	83 1/X
When a solution for n, PV, PMT, or FV is required, the	11 STO 03 12 STO 04	84 LASTX 85 RCL 01
nominal annual interest rate i, supplied by the user, must first be converted to the effective interest rate	13 STO 05	86 3
per payment period by LBL 07. This rate, i, is then	14 GTO 10 15+LBL c	87 Y 1 X 88 ⁄
used by LBL 01, 03, 04, or 05 respectively ^e to calculate the selected variable. To convert i to i	16 FC?C 08	89 +
the following expressions are used:	17 SF 08 18 GTO 10	90 STO 07
(19) i_ = (1+i/CF) ^{CF/PF} - 1 (discrete case)	19+LBL d	91+LBL 06 92 XEQ 08
6	20 FC?C 09	93 STO 02 94 RCL 03
(20) i _e = e ^(I/PF) - 1 (continuous case)	21 SF 09 22+LBL J	95 +
where:	23+LBL 10	96 STO Z
i = nominal annual interest rate	24 "D" 25 FS? 08	97 X<>Y 98 ST * 0 2
i = effective interest rate per pmt. period	26 .C.	99 *
e CF = compounding frequency per year	27 FC? 09 28 "HE"	100 RCL 03 191 +
PF = payment frequency per year	29 FS? 09	102 RCL 05
	30 "⊢B" 31 Asto X	103 + 104 X<> Z
Solving for interest	32 RTN	105 *
When a solution for interest is required, LBL 06 (for	33+LBL H 34 sto 08	106 RCL 07 107 FS? 10
PMT#0) or LBL 09 (for PMT=0) produces i as the	35 CF 22	108 VIEW X
calculated interest value. This value of i must	36 RTN 37+LBL I	109 E 110 +
then be converted to i using LBL 11. It is the value	38 STO 09	111 /
of i, not i which is returned as a percentage	39 CF 22 40 RTN	112 RCL 01 113 *
to the X-register and register R02.	41+LBL a	114 RCL 02
To convert i_{e} to i, the following expressions are	42 12 43 *	115 RCL 07 116 /
used:	44+LBL A	117 -
(21) i = CF[(1+i _e) ^{PF/CF} - 1] (discrete case)	45 FS? 22 46 STO 01	118 / 119 ST- 07
·	47 FS?C 22	120 RCL 07
(22) i = LN[(1+i_) ^{PF}] (continuous case)	48 RTN 49+LBL 01	121 / 122 E2
	50 XEQ 97	123 *
	51 STO Z 52 RCL 05	124 RND 125 X≠0?
	53 -	126 GTO 06
The common label, LBL 08	54 R† 55 RCL 03	127 GTO 11 128+LBL 07
Common to all calculations is LBL 08 which is used to	56 +	129 E
calculate the values of A, A+1, B, and C for use in	57 / 58 LN	130 RCL 02 131 %
solving the selected variable. After executing the RTN instruction following LBL 08 the stack and LAST X	59 RCL 07	132 RCL 08
registers contain the following data values:	60 LN1+X 61 /	133 RCL 09 134 FS? 08
	62 STO 01	135 X<>Y
Register: Contents:	63 RTN 64+LBL b	136 RDN 137 /
LAST X B	65 12	138 STO 07
T A+1	66 / 67+LBL B	139 LN1+X 140 RCL 08
Z A+1	68 FS? 22	141 RCL 09
Y A X C	69 STO 02 70 FS?C 22	142 / 143 *
	71 RTN	144 FS? 08
These values are all calculated using i and are	72+LBL 02 73 RCL 03	145 X<> 07 146 EtX-1
then used in equations (8) to (15) as selected.		ting continued on page

PPC ROM USERS MANUAL

Listing continued on page 161.

CA

Routine Listin	ig For: Fl
147 STO 07	196 STO 03
148+LBL 08	197 FS?C 22
149 E	198 RTN
150 RCL 07	199+LBL 03
151 FS? 09	200 XEQ 07
152 ST+ Y	201 *
153 /	202 RCL 05
154 E	203 +
155 RCL 01	204 Rt
156 RCL 07	205 /
157 LN1+X	206 CHS
158 *	207 STO 03
159 EtX-1	208 RTN
160 +	209+LBL D
161 LASTX 162 RCL 04	210 FS? 22
	211 STO 04
163 Rt	212 FS?C 22
164 * 165 RTN	213 RTN
166+LBL 09	214+LBL 04 215 XEQ 07
167 RCL 85	
168 RCL 03	216 X(> L 217 *
169 /	217 • 218 CHS
170 CHS	219 RCL 03
170 CH3	219 RCL 03
172 RCL 01	221 *
173 /	222 RCL 05
174 EtX-1	223 +
175 STO 07	224 X(>Y
176+LBL 11	225 /
177 CLD	226 STO 04
178 RCL 07	227 RTN
179 LN1+X	228+LBL E
180 RCL 09	229 FS? 22
181 *	230 STO 05
182 RCL X	231 FS?C 22
183 RCL 08	232 RTN
184 /	233+LBL 05
185 EtX-1	234 XEQ 07
186 RCL 08	235 RCL 03
187 *	236 +
188 FS? 08	237 *
189 X(>Y	238 RCL 03
190 E2	239 +
191 +	240 CHS
192 STO 02	241 STO 85
193 RTN	242+LBL 12
194+LBL C	243 END
195 FS? 22	

Accuracy Enhancement:

The accuracy has been improved by the use of a new instruction sequence to calculate the A term:

 $(1+i)^{n} - 1$

Assuming that n is stored in RO1 and i (decimal) is stored in RO7, the A term can be calculated in two different sequences, as follows:

Old Sequ	ence:	New Seq	uence:
RCL 07 1 + RCL 01 y [×] 1	i 1+i n (1+i) ⁿ (1+i) ⁿ - 1	RCL 07 LN1+X RCL 01 * E ¹ X-1	I LN(1+i) n*LN(1+i) (1+i) ⁿ - 1

Mathematically, the two sequences produce identical results. However, over the range of numbers typically encountered, the LN1+X and $E^{\dagger}X-1$ instructions prevent the severe loss of significant digits which occurs in the old sequence at the +1 and -1 steps. Reference 1 provides two examples for accuracy checking, as follows.

Examples for Accuracy Checking

These examples may be used to compare the accuracy of **FO** with other financial programs or calculators.

A.
1. Execute LBL e to clear all data registers
2. Select DISCRETE and END status (DE)
3. Key in the following variables
n = 111.1111111

\$ i = 2.222222222 PV = 333.3333333 (\$) PMT = 4.444444444 (\$) 4. Solve for FV The displayed FV = -5931.822943 The true FV = -5931.822944 B. 1. Execute LBL e to clear data registers 2. Select DISCRETE and END status (DE) 3. Key in the following variables n = 63

\$i = 0.000001610
PV = 0
PMT = -1,000,000.00 (\$)

- 4. Solve for FV The displayed FV = 63,000,031.43 (\$) The true FV = 63,000,031.44 (\$)
- 5. Now set FV = 0
- 6. Solve for PV The displayed PV = 62,999,967.55 (\$) The true PV = 62,999,967.54 (\$)

The above examples are taken from Reference 3 and are • copyright 1977, Hewlett-Packard Company. Reproduced with permission.

Simplified Solution Sequence

- 1. Solving for n:
 - a. Calculate 1, using equations (19) or (20), and LBL 07.
 - b. Calculate A, A+1, B, and C using equations (5), (6), and (7), and LBL 08.
 - c. Calculate n, using equation (8) and LBL 01.
 - d. Store n in RO1 and halt.
- 2. Solving for i:

A. PMT=0

- a. Calculate is using equation (9) and LBL 09
- b. Calculate i using equations (21) or (22) and
- LBL 11. c. Store i and halt.

FI - FINANCIAL CALCULATIONS

This is a complete financial program that uses the top two rows of keys to either input or solve for the five standard financial values; n, \$i, PV, PMT, FV.

This highly accurate program extends the capabilities of previous HP financial calculators and programs by adding two new parameters.

- "CF" The Compounding Frequency can be specified (including continuous compounding) and may be different than the payment frequency.
- "PF" The Payment Frequency can be specified and may be different from the compounding frequency.

This added facility simplifies the solution of some complex financial problems that are difficult to solve via the standard financial calculator or program. Canadian and European style mortgage problems can now be handled in a simple straightforward manner.

A Beginning/End of period switch is provided and a status display function allows the user to determine the current state of toggle controlled functions. The "CLEAR" financial register function incorporates default parameters that permit the user to operate the program in the same manner as typical financial calculators or programs that do not include the facility to specify different compounding and payment periods. Standard financial sign conventions are used (money paid out is negative, money received is positive).

The LN1+X and E[†]X-1 functions are used in compounding routines instead of Y[†]X, resulting in more precise answers than are produced by most financial programs and calculators.

BACKGROUND FOR

Time Value of Money:

If you borrow money you can expect to pay rent or interest for its use; conversely you expect to receive interest on money you loan or invest. When you rent property, equipment, etc., rental payments are normal; this is also true when renting or borrowing money. Therefore, money is considered to have a "time value". Money available now, has a greater value than money available at some future date, because of its rental value or the interest that it can produce during the intervening period.

Simple Interest:

If you loaned \$800 to a friend with an agreement that at the end of one year he would repay you \$896, the "time value" you placed on your \$800 (principal) was \$96 (interest) for the one year period (term) of the loan. This relationship of principal, interest and time (term) is most frequently expressed as an Annual Percentage Rate (APR). In this case the APR was 12.0\$ [(96/800)100]. This example illustrates the four basic factors involved in a simple interest case. The time period (one year), rate (12.0\$ APR), present value of the principal (\$800) and the future value of the principal including interest (\$896). Compound Interest:

In many cases the interest charge is computed periodically during the term of the agreement. For example, money left in a savings account earns interest that is periodically added to the principal and in turn earns additional interest during succeeding interest periods. The accumulation of interest during the investment period represents compound interest. If the loan agreement you made with your friend had specified a "compound interest rate" of 12.0% (compounded monthly) the \$800 principal would have earned \$101.46 interest for the one year period. The value of the original \$800.00 would be increased by 1\$ the first month to \$808.00 which in turn would be increased by 1% to \$816.08 the second month, reaching a future value of \$901.46 after the twelfth iteration. The monthly compounding of the nominal annual rate (NAR) of 12% produces an effective Annual Percentage Rate (APR) of 12.683\$ [(101.46/800)100]. Interest may be compounded at any regular interval; annually, semiannually, monthly, weekly, daily, even continuously (a specification in some financial models).

Periodic Payments:

When money is loaned for longer periods of time it is customary for the agreement to require the borrower to make periodic payments to the lender during the term of the loan. The payments may be only large enough to repay the interest, with the principal due at the end of the loan period (an interest only loan), or large enough to fully repay both the interest and principal during the term of the loan (a fully amortized loan). Many loans fall somewhere between, with payments that do not fully cover repayment of both the principal and interest. These loans require a larger final payment (balloon) to complete their amortization. Payments may occur at the beginning or end of a payment period. If you and your friend had agreed on monthly repayment of the \$800 loan at 12.0% NAR compounded monthly, twelve payments of \$71.08 for a total of \$852.96 would be required to amortize the loan. The \$101.46 interest from the annual plan is more than the \$52.96 under the monthly plan because under the monthly plan your friend would not have had the use of \$800 for a full year.

Financial Transactions:

The above paragraphs introduce the basic factors that govern most financial transactions; the time period, interest rate, present value, payments, and the future value. In addition, certain conventions must be adhered to; the interest rate must be relative to the coumpounding frequency and payment periods, and the term must be expressed as the total number of payments (or compounding periods if there are no payments). Loans, leases, mortgages, annuities, savings plans, appreciation, and compound growth are among the many financial problems that can be defined in these terms. Some transactions do not involve payments, but all of the other factors play a part in "time value of money" transactions. When any one of the five (four- if no payments are involved) factors is unknown, it can be derived from formulas using the known factors. This is the function of the 🖪 financial program.

Problem Solving Preliminaries:

Diagram or visualize the positive and negative cash flows and their timing. (See cash flow diagrams)

CZ

Clear the financial registers by pressing e, unless the problem is a continuation or minor change from the preceding problem. Note that clearing also sets the compounding and payment frequency values to 1.

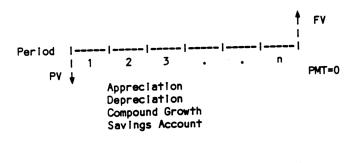
Check the mnemonic status code for applicability to the current problem and change it by pressing c and/or d if necessary. The mnemonic status codes are:

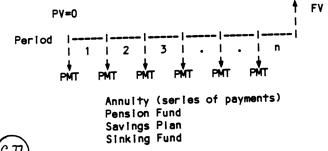
- CB = Continuous compounding and Beginning of period payments.
- CE = Continuous compounding and End of period payments.
- DB = Discrete compounding and Beginning of period payments.
- DE = Discrete compounding and End of period
 payments.

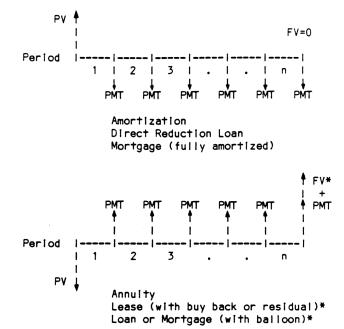
Specify the compounding and payment frequencies by entering appropriate values and pressing H and/or 1.

Generalized Cash Flow Diagrams:

Selection of the proper parameters and signs of the factors in a specific financial transaction can often be aided by constructing a cash flow diagram similar to the examples below:

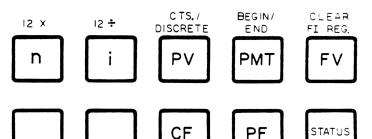

Standard Financial Conventions are:


Money RECEIVED is a POSITIVE value and is represented by an arrow above the line.


Money PAID OUT is a NEGATIVE value and is represented by an arrow below the line.

If payments are a part of the transaction the number of payments must equal the number of periods (n).

Payments may be represented as occuring at the end or beginning of the periods.



COMPLETE INSTRUCTIONS FOR

By manually keying GTO " [1]" the program pointer is in the ROM and the following functions become available on the top two rows of the keyboard. A minimum size required for [1] is SIZE 010.

The functions provided are summarized below.

KE	f FUNCTION	(FLAG/REG)
a	Multiplies contents of X by 12 and stores result as n. n=12X	R01
b	Divides contents of X by 12 and stores result as \$1. \$1=X/12	R02

- c Toggles flag 08 to specify Continuous F08 (F08 set) or Discrete (F08 clear) compounding. Status display shows C or D.
- d Toggles flag 09 to specify Beginning of F09 period payments (F09 set) or End of period payments (F09 clear). Status display shows B or E.
- e Clears financial registers n, \$i, PV, R01-R05 PMT, FV, and sets the compounding R08 frequency (R08) and the payment frequency R09 (R09) both to the default value of 1. CF= PF=1. Also displays a two character mnemonic indicator of the status of F08 and F09.

PPC ROM USERS MANUAL

A	Enters or Solves for number of periods.	R01
	n is the total number of payments	n
	during the full term of the transaction,	
	or if no payments are made n is the	
	total number of compounding periods.	

- B Enters or Solves for the interest rate.** R02 \$i is the nominal rate for the period \$i implied by the compounding and payment frequency values in R08 and R09 (usually the nominal annual rate).
- C Enters or Solves for the present value. R03 Use standard financial sign conventions. PV
- D Enters or Solves for periodic payment. R04 Use standard financial sign conventions. PMT
- E Enters or Solves for future value. R05 Use standard financial sign conventions. FV
- H Enters the compounding frequency. R08 CF is the number of times the interest CF rate is compounded during the period implied by the interest rate \$i. When continuous compounding is specified the value in R08 is ignored.
- I Enters the payment frequency. R09
 PF is the number of payment periods PF
 occuring during the period implied by the
 interest rate \$i. When no payments are
 involved PF must be set equal to CF.
 For continuous compounding cases where
 PMT = 0, set PF = 1.
- J Displays a two character mnemonic indicator of the status of flags F08 and F09. C = Continuous D = Discrete E = End of period B = Beginning of period
- ** When solving for \$i the first guess and F10 succeeding approximations of i (decimal) may be VIEWed during each iteration by setting flag 10.

WARNING: Solutions using or resulting in a zero rate of interest (\$i) will cause a "DATA ERROR".

MORE EXAMPLES OF

In the keystroke solutions shown for each example, the lower case letters a through e represent shifted key functions of keys A through E. Key in the indicated quantities and press the user defined keys as indicated in the "Do" column. Contents of the display at significant points in the solution are shown in the "See" column and are followed by identification in the "Result" column. Before running these examples, perform "MEMORY LOST" and set FIX 2 display mode. A suggestion is to go through all 15 examples, one after the other. Key GTO " TT " and set USER mode.

Example 1: Simple Interest. Find the annual simple Interest rate (\$) for an \$800 loan to be repayed at the end of one year with a single payment of \$896.

Do:	See:	Result:
e	"DE"	Clear, Discrete/End status
1 A	1.00	n=1
800 CHS C	-800.00	PV=\$800.00
896 E	896.00	FV=\$896.00
B	12.00	APR=≸i=12≸

Example 2: Compound Interest. Find the future value of \$800 after one year at a nominal rate of 12% compounded monthly. No payments are specified, so the payment frequency is set equal to the compounding frequency.

Do:	See:	Result:
e	"DE"	Clear, Discrete/End status
12 A	12.00	n=12
ні	12.00	CF=PF=12
12 B	12.00	keyboard input required to store NAR=12 %=% i
800 CHS C	-800.00	PV=\$800.00
Ε	901.46	FV=\$901.46

Example 3: Periodic Payment. Find the monthly end-of-period payment required to fully amortize the loan in Example 2. A fully amortized loan has a future value of zero. Use data retained from Example 2.

Do:	See:	Result:
0 E	0.00	Set FV=\$0.00
D	71.08	PMT=\$71.08

Example 4: Conventional Mortgage. Find the number of monthly payments necessary to fully amortize a loan of \$100,000 at a nominal rate of 13.25% compounded monthly, if end-of-period payments of \$1,125.75 are made.

Do:	See:	<u>Result:</u>
e 12 H I 13.25 B 100000 C 1125.75 CHS	"DE" 12.00 13.25 100,000.00 D -1,125.75 360,10	Clear, Discrete/End status CF=PF=12 NAR=13.25≸=≸i PV=\$100,000.00 PMT=\$1,125.75 ≸pmts=n=360.10
A	200.10	

Example 5: Final Payment. Using the same data as in the preceding example, find the amount of the final payment if n is changed to 360. The final payment will be equal to the regular payment plus any balance (FV) remaining at the end of period number 360.

Do:	See:	Result:
360 A	360.00	Set n=360 exactly
E	-108.87	FV=\$108.87
RCL 04	-1,125.75	Recall PMT
+	-1,234.62	Final PMT=\$1,234.62

Example 6: Balloon Payment. On long term loans, small changes in the periodic payments can generate large changes in the future value. If the monthly payment in the preceding example is rounded down to \$1,125.00 how much additional (balloon) payment will be due with the final regular payment?

Do:	See:	Result:
1125 CHS D E	-1,125.00 -3,580.00	Set PMT=\$1,125.00 even Additional balloon payment = \$3,580.00

Example 7: Canadian Mortgage. Find the monthly end-of-period payment necessary to fully amortize a 25 year \$85,000 loan at 11% compounded semiannually.

Do:	See:	Result:
e	"DE"	Clear, Discrete/End status
2 H	2.00	CF=2
12 I	12.00	PF=12
25 a	300.00	n=300
11 B	11.00	NAR=11≸=1≸
85000 C	85,000.00	PV=\$85,000.00
D	-818.15	PMT=\$818.15

Example 8: European Mortgage. The "effective annual rate (EAR) is used in some countries (especially in Europe) in lieu of the nominal annual rate commonly used in the United States and Canada. For a 30 year \$90,000 mortgage at 14\$ (EAR) compute the monthly end-of-period payments. When using an EAR, the compounding frequency (CF) is set to 1.

Do:	See:	Result:
e	"DE"	Clear, Discrete/End status (CF=1 after clearing)
12 30 a 14 B 90000 C D	12.00 360.00 14.00 90,000.00 -1,007.88	PF=12 n=360 EAR=14≸=≸I PV=\$90,000.00 PMT=\$1,007.88

Example 9: Bi-Weekly Savings. Compute the future value of bi-weekly savings of \$100 for 3 years at a nominal annual rate of 5.5\$ compounded daily. Note: Set status to "DB".

. .

Do:	See:	Result:
e	"DE"	Clear, Discrete/End status
d	"DB"	Discrete/Begin Status
365 H	365.00	CF=365
26 I	26.00	PF=26
3 X A	78.00	n=3x26=78
5.5 B	5.50	NAR=5.5≸=≸i
100 CHS D	-100.00	PMT=\$100.00
E	8,489.32	FV=\$8,489.32

Example 10: Present Value - Annuity Due. What is the present value of \$500 to be received at the beginning of each quarter over a 10 year period if money is being discounted at 10% NAR compounded monthly?

Do:	See:	Result:
e	"DB"	Clear, Discrete/Begin status
12 H	12.00	CF=12
4 1	4.00	PF=4
40 A	40.00	n=40
10 B	10.00	NAR=10 %=% i
500 D	500.00	PMT=\$500.00
C	-12,822.64	PV=\$12,822.64
	•	

Example 11: Balloon Payment @ n+1. Compute the monthly end-of-period payment on a 3 year \$20,000 loan at 15% NAR compounded monthly, with a \$10,000 balloon payment due at the end of the 37th period. The balloon payment must be discounted one period to make it coincide with the last regular payment. Note: Set status to "DE".

Do:	See:	Result:
e	"DB"	Clear Financial
d	"DE"	Set Discrete/End status
12 H I	12.00	CF=PF=12
3 a	36.00	n=36
15 B	15.00	NAR=15%=%1
20000 C	20,000.00	PV=\$20,000.00
XEQ 07	0.00	Calculate i as a decimal and leave in R07
10000	10,000.00	<pre>Start calculation of 10,000/(1+i) = FV</pre>
RCL 07 1 +	1.01	1+1
/ CHS E	-9876.54	FV=\$9,876.54 (discounted)
D	-474.39	PMT=\$474.39

The balloon payment was discounted by executing LBL 07 (XEQ 07) to develop the effective interest rate in R07. The 10,000 was then divided by (1+i) and entered in E as the discounted future value of the balloon payment.

Example 12: Effective Rate - 365/360 Basis. Compute the effective annual rate (\$APR) for a nominal annual rate of 12\$ compounded on a 365/360 basis used by some Savings & Loan Associations.

Do:	See:	Result:
FIX 3 e 365 A	"DE" 365.000	Set up display & status n=365
H 360 I 12 B	365.000 360.000	CF=365 PF=360 NAD=124=41
12 B 100 CHS C E	12.000 -100.000 112.935	NAR=12%=%i PV=\$100.00 FV=\$112.94
RCL 03 + FIX 2	12.935	\$APR=12.935\$ Return to normal display

Example 13: Mortgage with "points". What is the true APR of a 30 year, \$75,000 loan at a nominal rate of 13.25% compounded monthly, with monthly end-of-period payments of \$844.33 if 3 "points" are charged? The PV must be reduced by the dollar value of the points and/or any lenders fees to establish an effective PV. Because the payments remain the same the true APR will be higher than the nominal rate.

Do:	See:	Result:
e 12 H I 30 a 75000 ENTER ¹	"DE" 12.00 360.00	Clear, Discrete/End status CF=PF=12 n=360
3 XEQ "≸" - C 844.33 CHS D B	72,750.00 -844.33 13.69	PV=\$72,750.00 PMT=\$844.33 True APR=13.69\$

Example 14: Equivalent Payments. Find the equivalent monthly payment required to amortize a 20 year \$40,000 loan at 10.5% NAR compounded monthly, with 10 annual payments of \$5,029.71 remaining. Compute PV of the remaining annual payments, then change n and PF to a

PPC ROM USERS MANUAL

monthly basis and compute the equivalent monthly PMT.

Do:	See:	Result:
e	"DE"	Ciear, Discrete/End status (PF=1 after clearing)
12 H	12.00	CF=12
10 A	10.00	n=10
10.5 B	10.50	NAR=10.5%=%1
5029.71 C	HS D -5,029.71	PMT=\$5,029.71
С	29,595.88	PV=\$29,595.88
12	12.00	PF=12, set monthly basis
10 a	120.00	n=120 (monthly)
D	-399.35	PMT=\$399.35 (monthly)

Example 15: Perpetuity - Continuous Compounding If you can purchase a single payment annuity with an initial investment of \$60,000 that will be invested at 15% NAR compounded continuously, what is the maximum monthly return you can receive without reducing the \$60,000 principal? If the interest rate is constant and the principal is not disturbed the payments can go on indefinitely (a perpetuity). Note that the term "n" of a perpetuity is immaterial. It can be any non-zero value. Set status to "CE".

Do:	See:	Result:
e	"DE"	Clear, Discrete/End status (CF=1 after clearing)
с	"CE"	Continuous/End status
12 A	12.00	n=12
I I	12.00	PF=12
15 B	15.00	NAR=1 5 %=% i
60000 E	60,000.00	FV=\$60,000.00
CHS 1 X C	-60,000.00	Data entry flag is set so PV is stored as \$60,000.00
D	754.71	PMT=\$754.71

SUPPORTIVE PROGRAMS FOR

There are two optional routines provided below to extend the capability of the ROM routine II. These routines are not located in the ROM, and must be loaded into RAM memory for their execution. They are named LPAS and FAST.

1. LBL LPAS

LBL LPAS "Loan Payments and Amortization Schedule" is really a full program in its own right, although it does use ROM routines **ED**, **CU**, and **CG2**. LPAS extends the capabilities of **FD** to accommodate "shifted" payment situations, when the first periodic payment does not fall at the beginning (BEGIN) or the end (END) of the first period, but at any date after the effective date. LPAS also provides an amortization schedule as an option.

2. LBL FAST - Reducing Interest Solution Time

LBL FAST is an optional routine used when solving for interest. Its purpose is to provide an initial starting guess for the interest-solving loop which is closer to the exact solution than that provided by LBL FD initial guess. The result is that interest solving execution time is usually shorter.

Don Dewey (5148) produced both supporting programs.

APPLICATION PROGRAM 1 FOR FI

LPAS - Loan Payments and Amortization Schedule

The 🚺 program, like most financial programs and calculators, assumes that the first periodic payment occurs on either the first or last day of the payment period as specified by the beginning of period/end of period switch or toggie. Many financial agreements do not follow this convention. An agreement may call for the regular periodic payments to start earlier or later in order to provide a better match to other cash flow considerations of the borrower or lender. These agreements with "shifted" initial payment dates can be handled by conventional financial programs by computing an effective present value (PV) that compensates for the difference in interest accrued during the irregular first payment period. This computation becomes more complex when the compounding and payment frequencies (CF and PF) are unequal.

Shifting the initial payment date forces a change in the number or amount of the periodic payments or in the amount of the final or balloon payment. However, the participants to an agreement may want to specify the number and/or amount of the regular payments, and adjust the final payment to complete the amortization. Even without a shifted initial payment date or other restrictions the regular periodic payments seldom precisely complete the amortization and the final payment must be adjusted to accomplish this.

For the uninitiated or infrequent user of financial programs, the accomodation of a shifted first payment date and/or the computation of the correct final payment amount can cause problems. The following program easily handles these cases and also takes the drudgery out of computing an amortization schedule.

The LPAS program uses the 💷 program and the 🖸 and CP routines in the PPC ROM to expand the capabilities of the **ED** program to accomodate "shifted" initial payment dates and to compute the number and amount of periodic payments, and the final payment required to amortize a loan or to accumulate a specific future value. The information needed to prepare a loan amortization schedule may also be computed on an optional basis. The extensive capabilities of the 💷 program are used in their normal manner to define the parameters of a specific problem and to develop the initial solution. Two additional input parameters are provided; the effective date (ED) and the initial payment date (IP). These two dates define the length of the first payment period which need not be equal to the normal payment period implied by the payment frequency value (PF). The initial payment date (IP) also establishes the number of payments that will occur in the first year. The program computes the regular periodic payment and the final payment required to amortize a loan or to accumulate a specified future value over a specified term (n), or the number of payments and the final payment necessary to amortize a loan or to accumulate a specified future value with a specified periodic payment amount.

Conventional loans, mortgages with or without balloon payments, and Canadian or European mortgages are all acceptable to the LPAS program. Cases with payment frequencies of semi-monthly (PF=24) or less, use a 30 day month convention for determining the number of days of shift in the first payment date and the number of payments occurring in the first year. For payment frequencies greater than semi- monthly (i.e., daily, weekly, or bi-weekly) the acutal number of calendar days is used.

LPAS Program - Operation

The LPAS program computes the regular periodic payment and the final payment for both present value (PV*) and future value (FV*) cases. PV* cases involve periodic payments that reduce or amortize a present value. FV* cases involve appreciation or accumulation to a future value. The amortization schedule portion of the program supports PV* cases only. The LPAS program can be used with or without a printer (CF21).

The **FI** program is accessed and used to set the status (CB, CE, DB, DE), the compounding frequency (CF), the payment frequency (PF), the standard financial values (n, \$I, PV, PMT, FV) and to solve for any missing financial value. Note: The **FI** program can be accessed by pressing "J" when the LPAS program has control. After entering the normal financial program data, the effective date of the financial agreement (ED) and the date of the initial payment (IP) are entered into the X and Y registers in the form MM.DDYYYY (Y=ED, X=IP). The IP date must not be earlier than the ED date.

The LPAS program is then executed. For easy access the LPAS program should be assigned to a key. The LPAS program was assigned to the X<>Y (F) key in the keystroke solutions in the example programs below. The program computes the regular periodic payment required to maintain the specified interest rate. The computation compensates for any fractional portion of the term and for any deviation from the normal initial payment date. When the program first stops, the computed payment (rounded to two decimal places) is in the PMT register (RO4) and is displayed in the X register.

First Stop - The computed payment may be accepted, or a modified payment may be entered and substituted by pressing key "D". To continue the computation, select one of the following two options:

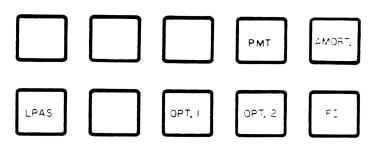
1. By pressing "H" the amortization period is limited to the integer portion of the term (n) and the final or balloon payment is adjusted to complete the amortization.

2. By pressing "J" the term (n) is recomputed to accomplish the amortization with the specified periodic payment with a minimum adjustment to the final or balloon payment.

The amortization choice restarts the program and the number of periodic payments and the amount of the final payment are computed. At the second stop the stack contains:

- T = number of payments occuring in first year
- Z = number of regular periodic payments
- Y = amount of the regular periodic payment
- X = amount of the combined final and balloon payments

Second Stop - An amortization schedule may be computed by pressing "E" (for PV* cases only) or control may be returned to the ET program by pressing "J".


If an amortization schedule is computed and a printer is not available (FC?21) the program will stop after computing the values for each year. At each stop the stack will contain: T = cumulative interest paid

- Z = balance outstanding after last PMT for year
- Y = interest paid during the year
- X = year (YY)

To compute the amortization data for each succeeding year press R/S. Completion of the amortization is indicated by ** in the display. The total interest paid is in the Y register at this final stop.

After completion of the amortization, control may be returned to the **FT** program by pressing "J".

Keyboard Functions: (LPAS Program)

Key Function

(Flag/Reg)

- D Enter revised periodic payment "PMT" (R04)
- E Compute amortization data (PV* case only) (R00-R13)
- F Enter ED and IP dates and compute periodic PMT
- H Select Option 1 and compute final PMT (F07)
- I Select Option 2 and compute term n and final PMT
- J Transfer to 🗊 program and display status
- R/S Compute amortization data for next year

Program requirements and limitations. CJ, GP, F1 are the PPC ROM required routines. LPAS is 655 bytes SIZE=014 Flags 06-10,21,28,29

Acceptable Payment Frequencies (PF) are:

1 = annual	12 = monthly
2 = semi-annual	24 = semi-monthly
3 = tri-annual	26 = bi-weekly
4 = quarterly	52 = weekly
6 = bi - monthly	365 = daily

WARNING: Solutions using or resulting in a zero rate of interest (\$i) will cause a "DATA ERROR".

The output of LPAS is printed in three sections separated by horizontal lines. The first section records the original parameters of the case. The second section records the amount and number of regular payments and the final payment necessary to satisfy the options selected. The third section displays the optional amortization schedule.

Examples:

in the keystroke solution for each example, the lower case letters a through e represent shifted functions of keys A through E. Key in the indicated quantities

and press the user defined keys as indicated in the "Do" column. Contents of the display or the printed output at significant points in the solution are shown in the "See" column and are followed by identification in the "Result" column. Use FIX 2 display mode, and assign LPAS to key F (X<>Y).

Example A: Conventional Mortgage. Develop the data for an amortization schedule for a fully amortized 30-year, \$100,000 mortgage at 14.75% NAR compounded monthly with end of period payments of \$1,244.48 with the first payment due on November 1, 1981. Effective date of the loan is September 25, 1981. Use option 1 (H) to limit the amortization period to 360 payments.

Do:	See:	Result:
CLX STO 06 XEQ " F " 12 H I 30 a 14.75 B 100000 CHS C 1244.48 D E 9.251981 ENTER	0.00 "DE" 12.00 360.00 14.75 -100,000.00 1,244.48 -27.98	Store [1] function call Discrete/End status CF=PF=12 n=360 NAR=14.75%=%1 PV=\$100,000.00 PMT=\$1,244.48 FV=\$27.98
11.011981 F H E	1,247.52 1,248.31 **	PMT, shifted IP \$1,247.52 Final PMT=\$1.248.31 Compute amortization data, see print out below.

EXAMPLE A CF=12 PF=12	91 14,21	-
*****	92 14,89	
PV+DE PV -100.000.00	93 13,95	
360 PMTS 1,244.48	94 13,79	-
14.750% FY -27.98	95 13,612	
ED 9-25-81 IP 11- 1-81*	96 13,39	7. 89,9
	97 13,14	9. 88,1
359 PMTS 1,247.52	98 12,86	1. 86,6
+FINAL PHT 1,248.31	99 12,52	3. 83,5
	00 2,14	3. 80,7
YR INTEREST ENDING BAL	01 11,69	6. 77,0
81 2,464. 199,214.	92 11,17	9. 73,0
82 14,768. 100,012.	03 10,58	1. 69,
83 14,736. 99,778.	84 9,88	8. 64,
34 14,699. 99,507.	9,98	5. 58,3
85 14,657. 99,193.	96 8,15	6. 51,5
	07 7,08	8. 43,0
	98 5,83	5. 34,
87 14,550. 98,410.	89 4,39	
88 14,483. 97,923.	10 2,72	
39 14,407. 97,359 .	11 80	
90 14,318. 96,707.	** 348,86	

Note: 2 payments in 1981. The negative amortization during the first two years is due to the delayed first payment date. The asterisk following the IP date indicates a shifted initial payment date.

If a printer is not used when working Example A, after execution the stack will contain the following:

after F	after H	after E*
T= -	T= 2.00	T = 2,464. Σint.
Z= -	Z= 359.00	Z = 100,214. E.Bal.
Y= -	Y= 1,247.52	Y= 2,464. Yr.Int.
X= 1,247.52	X= 1,248.31	X= 81. Year

*Press R/S to advance amortization to next year. the end of the amortization is indicated by ** in display. Example B: Sinking Fund / Savings Plan Starting with an initial deposit of \$3,000 compute the number of bi-weekly deposits of \$200 and the amount of the final deposit needed to accumulate a balance of \$20,000 in an account paying 8\$ compounded continuously, if the initial deposit (PV) is made on December 1, 1981 and the first bi-weekly deposit (PMT) is made on December 11, 1981. Set the status to CB.

<u>Do:</u> J c	<u>See:</u> "DE" "CE"	<u>Result:</u> Return to F1 Set Continuous compounding
d	"CB"	Set Beginning of period payments
e	"CB"	Clear Financial Status=Continuous/Beginning CF=1 after clearing
26	26.00	PF=26
8 B	8.00	NAR=8 \$=\$ 1
3000 CHS C	-3.000.00	PV=\$3.000.00
200 CHS D	•	PMT=\$200.00
20000 E		FV=\$20,000,00
A	72.43	n=72.43
12.011981 ENTER		
12.111981 F	-197.29	PMT, shifted IP \$197.29
200 CHS D	-200.00	Enter revised PMT \$200.00
1	-91.67	Final PMT=\$91.67
Ē	"FV* ?"	indicates attempted
		amortization of FV* case

EXAMPLE B CF	

	-3,000.00
	-200.00
8.009% FV	
ED 12- 1-81 I	P 12-11-81*

71 PHTS	-200.00
+FINAL PNT	-91.67

FV*CB = Future Value case with Continuous compounding and Beginning of period payments/deposits. The plus (+) sign following the number of payments indicates that the term includes a fractional payment period as developed from the original specifications.

Example C: Loan with Balloon Payment. Develop the amortization data for a \$500,000 loan at 15% NAR with monthly compounding, to be repaid with 30 monthly end of period payments of \$20,000 and a balloon payment of \$3,225.30 coincident with the final payment. The loan effective date is September 14, 1981 and the first payment is scheduled for October 14, 1981.

Do:	See:	Result:
J	"CB"	Return to
		Status from previous example
С	"DB"	Set Discrete compounding
d	"DE"	Set End of period payments
e	"DE"	Clear Financial, final status=
•		Discrete/End
12 H I	12.00	CF=PF=12
30 A	30.00	n=30
15 B	15.00	NAR=15%=%i
500000 C	HS C	
	-500,000.00	PV=\$500,000.00
20000 D	20.000.00	PMT=\$20,000.00
E	3,225.30	Balloon=\$3,225.30
9.141981	•	
ENTER		(777

10.14198	1 F 20,000	.00 PMT=\$20,000.00
Н	23,225.30	Final + Balloon = \$23,225.30
E	**	Compute amortization data, see
		print out below.

EXA	MPLE C		2 PF=	
	*******	****		****
P¥≉	DE PV	-5	500,00	9.00
	30 PHTS		20,00	9.00
15.	000% FV		3,22	5.30
ED	9-14-8	1 IP	10-14	-81
111	******			* * * *
	29 PHTS		20,00	9.00
+FI	NAL PHT		23,22	5.30
YR	INTERE	ST E	ENDING	BAL
81	18,2	32.	458,	232.
82	56,4	56.	274,	688.
83	26,9	50.	61,	638.
84	1,5	87.		0.
**	103,2	25.		

Because the initial payment occurs exactly one month after the loan effective date there is no change in the re-computed PMT.

Example D: Delayed First Payment This example will illustrate the effect of a different repayment plan for the loan defined in Example C. Develop the data for amortizing a \$500,000 loan at 15% NAR with monthly compounding, to be repaid with 60 semi-monthly end of period payments of \$10,000 and a balloon payment coincident with the final payment. The loan effective date is September 14, 1981 and the first payment is scheduled for November 1, 1981.

Do:	See:	Result:
L	"DE"	Return to ED Status left from Example C
12 H	12.00	CF=12
24	24.00	PF=24
60 A	60.00	n=60
15 B	15.00	NAR=15 %=% 1
500000 CHS C	-500,000.00	
10000 D	10,000.00	PMT=\$10,000
E	974.25	FV=\$974.25
9.141981 ENTER		
11.011981 F	10,268.92	PMT=\$10,268.92
10000 D	10,000.00	Set PMT=\$10,000.00 exactly
H E	30,466.27 **	Final+Balloon=\$30,466.27 Compute amortization data See print out below

EXA		=12 PF=24
		-500,000.00
	60 PMTS	10,000.00
	808% FV	974.25
ED	9-14-81	IP 11- 1-81*
	59 PHTS	10,000.00
+FI	NAL PHT	30,466.27
1 1 1 1		
YR		ENDING BAL
81	12,541.	485,968.
82	60,113.	. 306,081.
83	31,195.	. 97,277.
84	3,189.	. 0.
**	107,038.	•

The total interest on this repayment plan is \$3,813 more than in Example C due to the delayed first payment date and the smaller payments. The borrower has the use of more money for a longer time.

LPAS Program - Equations

All equations assume the use of standard financial transaction sign conventions of money received as positive (+) and money paid out as negative (-).

Notation used:

d	= number of days in payment period
i e	= effective interest rate per payment period
m	= integer portion of term n
n	= number of payment periods in term
s	= number of days first payment is shifted
CF	= compounding frequency per year
ED#	
FV	= future value after n periods
FVm	= future value after m periods
' m	
FV1	= future value after m-1 periods
FV*	= future value case
INT	
IP #	
NP	
PF	= payment frequency per year
PMT	= periodic payment
PMT	= final payment
PV .	= present value
	= effective present value
PVe	
PV*	= present value case
f F	V <= PV , then PV* case V > PV , then FV* case
lf F	V/>/PV/, then FV* case
,	

The initial payment date is "shifted" when: $s \neq 0$

where: s = IP# - ED# for beginning of period payments

For financial calculations involving a "shifted" first payment date, the present value (PV) must be converted to an effective present value (PV $_{\rm e})$ that

is adjusted to compensate for the difference in interest accrued during the irregular first payment period.

$$PV_e = PV(1+i_e)^{(sPF/dCF)}$$

To precisely complete the amortization of a present value or the accrual of a future value, the final payment must be calculated separately from the regular periodic payment. The LPAS program incorporates eight variations of final payment calculations.

$PMT_{f} = FV_{m-1}$	PV* case, annuity due, Option 1
= FV m	PV* case, annuity due, Option 2
= FV + PMT m	PV* case, ordinary annuity, Option 1

PPC ROM USERS MANUAL

PMT _f = FV _m (1+i _e) PV* case, ordinary annuity Option 2	216 Calculate FV and modify to - LBL 10 - develop final payment ^{(PMT})
= FV - FV/(1+i) FV* case, annuity due, m-1 - Option 1	LBL 11 Store final PMT _f Print separator line 263 Format data. Print line 5 (n-1)(PMT) 269 Format data. Print line 6 (PMT _f)
= FV - FV/(1+i) FV* case, annuity due Option 2	278SECOND STOP At this stop the amortization schedule calculation may
= FV + PMT - FV FV* case, ordinary annuity Option 1	be selected by pressing key E (for PV* cases only), or control may be returned to the FI program via key j
= FV _m (1+i _e) - FV FV* case, ordinary annuity Option 2	
N.B. Values m and n are different for Options 1 and 2	Subroutine LBL 12 Format control subroutine
The interest paid during each year of amortization is determined by the difference between the ending and beginning balances plus the sum of the payments for the year. INT = (NP*PMT) + PV + FV	LBL E - Mainline - Third Section - Amortization 284 If FV* case stop and display "FV*?" (invalid) 288 Print separator line. Print heading line 294 Reduce payment count by number 1st yr payments LBL 13 Develop interest for year - 14 - and calculate ending balance LBL 15 ΣINT and format data. Print amortization line 346 Load stack for review and stop if FC?21 351AMORTIZATION YEAR STOP
LPAS Program - Line by Line Analysis	351 AMORTIZATION YEAR STOP
LBL LPAS - Mainline - First Section	
001store ED and IP dates. Print separator line007set flag F06 (FV* case) if: FV > PV 014calculate term (n). Print line 1026Format data.038Format date.038Format date.	If flag F21 is cleared this stop will occur after the amortization calculations have been made for each year. Amortization data is available in the stack.
044 If PF>24 set Flag 07 (calendar year basis) 050 Calculate day number of effective date (ED#) 053 Calculate day number of first PMT date (IP#) 056 Develop number of days from ED thru IP date (s) 058 Develop number of day from IP thru year end 069 Develop number of days in normal PMT period (d)	352 If not final year, update year & payment count LBL 16 End routine Print total (**)(ΣINT) 384 END Other LPAS program technical details:
079 Adjust s for end of period payments (s) 081 Develop number of payments in first year	Global Label: LPAS
086	Local Labels: D,E,H,I,J, and 01-16 Byte Count: 655 (requires one memory module) Size Required: SIZE=014
107 Save IP year (YY) and calculate payment (PMT) 113FIRST STOP	ROM Routines called: [C], [P], FI Subroutine Levels: 3
At this stop the calculated periodic payment may be accepted or the original or a modified payment can be entered and stored by pressing key D before selecting an amortization option (H or 1).	Flags Used: LPAS - 06,07,21,28,29 FI - 08, 09, & 10 CJ - 10 CP - 29 & 40
Subroutines LBL 01 Reformat date for CJ and load print buffer	Data Registers Used:
LBL 02 Calculate day number using 30/360 convention LBL 03 Calculate day number using condition (calendar basis)	R00: multi use store R07: i as decimal R01: n term R08: CF compounding freq. R02: \$i as percentage R09: PF payment frequency
LBL 04 Format month (MM) and day (DD) for printing LBL 05 Display control – 06 – and column format subroutine	R03: PV present value R10: multi use store R04: PMT periodic pmt R11: multi use store
LBL 07 Execute specified FD routine LBL 08 Fill buffer with specified character -	R05: FV future value R12: multi use store R06: IND addr. R13: multi use store
09 - and printer separator line LBL D Store PMT in R04 LBL J Transfer control to [1] and display status	
- Mainline - Second Section LBL H Option 1 - If PMT≠0, set flag F07 (set=opt. 1) LBL I Option 2	Status Registers: none used Alpha Registers: all used Σ REG: not used Peripherals: printer recommended but not required
205 Calculate new (n). If n=0 use original n (n) 213 Select (n): option 1=original option 2=new	Stack Usage: 1/0 see program description Execution Time: variable

PPC ROM USERS MANUAL

(230)

480	APPLICATION PRO	GRAM FOR:	APPLICATION PRO	GRAM FOR:
	01+LBL "LPAS"	74 +	147+LBL 03	220 FC? 09
AGE	02 STO 10	75 RCL 09	148 RCL 11	221 CLX
Ð	03 X<>Y	76 /	149 RCL 12	222 -
NO	04 STO 00	77 INT	150 RCL 13	223 STO 01
	05 0 ac yra ag	78 STO 13	151 XROM "CJ" 152 RTN	224 RCL 07
CODE	06 XEQ 08 07 CF 06	79 FC? 09 80 ST+ 10	153+LBL 04	225 1 226 +
ິມ	08 RCL 03	81 +	154 10	227 STO 13
BAR	09 ABS	82 LASTX	155 X>Y?	228 RCL 05
B	10 RCL 05	33 /	156	229 STO 00
	11 ABS	84 INT	157 ARCL Y	230 5
	12 X>Y?	85 STO 12 86 RCL 10	158 RDN 159 Lastx	231 XEQ 07
	13 SF 06 14 1	87 RCL 04	160 -	232 RCL 00 233 STO 05
	15 XEQ 07	88 X≠0?	161 *	234 FC? 06
	16 ASTO X	89 X<>Y	162	235 CLX
	17 •P•	90 CHS	163 RTN	236 STO 00
	18 FS? 06	91 X≠0?	164+LBL 05 165 FIX 2	237 X()Y
	19 "F" 20 "FV#"	92 "H#" 93 FS? 21	166 9	238 RCL 13 239 FS? 09
	21 ARCL X	94 PRA	167+LBL 06	240 ST/ 00
	22 * PV*	95 CLA	168 STO 06	241 X()Y
	23 RCL 03	96 RCL 08	169 X<>Y	242 FC? 09
	24 XEQ 05	97 RCL 13	170 SF 28 171 SF 29	243 GTO 10
	25 ADV 26 XEQ 12	98 * 99 /	171 SF 25 172 FC? 21	244 RCL 00 245 -
	27 RCL 01	100 RCL 09	173 RTN	246 GTO 11
	28 ENTERT	101 *	174 ACA	247+LBL 10
	29 INT	102 RCL 07	175 XROM *CP*	248 FC? 07
	30 ARCL X	103 LN1+X	176 CLA 177 RTN	249 *
	31 - 32 X≠0?	104 * 105 EtX	178+LBL 07	250 RCL 00 251 FC? 06
	33 "++"	105 ET# 03	179 STO 06	252 CLX
	34 "H PHTS"	107 RCL 06	180 XROM "FI"	253 -
	35 RCL 04	108 STO 11	181 RTN	254 RCL 04
	36 XEQ 05	109 4	182+LBL 08 183 FC? 21	255 FC? 07
	37 ADV 38 FIX 3	110 XEQ 07 111 RND	184 RTN	256 CLX 257 +
	39 ARCL 02	112 STO 04	185 24	258+LBL 11
	40 "H% FV"	113 RTN	186 X<>Y	259 RND
	41 RCL 05	114+LBL 01	187+LBL 09	260 STO 13
	42 XEQ 05	115 INT	188 ACCHR 189 DSE Y	261 1 262 XEQ 08
	43 ADV 44 XEQ 12	116 -100 117 STO 11	190 GTO 09	263 XEQ 12
	45 CF 07	118 STO Z	191 PRBUF	264 ARCL 10
	46 24	119 X(>Y	192 RTN	265 "H PNTS"
	47 RCL 09	120 STO 12	193+LBL D	266 RCL 04
	48 X>Y?	121 XEQ 04	194 STO 84 195 RTN	267 XEQ 05 268 ADV
	49 SF 07 50 °ED °	122 INT 123 STO 13	196+LBL J	269 *+FINAL PMT*
	51 RCL 00	124 XEQ 64	197 10	270 RCL 13
	52 XEQ 01	125 CHS	198 STO 06	271 XEQ 05
	53 X(> 10	126 ST# 11	199 GTO "FI"	272 ADV
	54 °F IP °	127 FRC	200+LBL H 201 RCL 04	273 RCL 12 274 RCL 10
	55 XEQ 01 56 ST- 10	128 * 129 STO 86	202 X#0?	275 RCL 84
	57 STO 00	130 10	203 SF 07	276 RCL 13
	58 FIX 2	131 X>Y?	284+LBL I	277 FIX 2
	59 SF 28	132 •H0•	205 RCL 01 206 INT	278 RTN
	60 SF 29	133 ARCL Y	200 INT 207 STO 10	279+LBL 12 280 FIX 0
	61 1 62 ST+ 11	134+LBL 02 135 FS? 07	288 1	281 CF 28
	63 STO 12	136 GTO 03	209 XEQ 07	282 CF 29
	64 CLX	137 RCL 11	210 INT	283 RTN
	65 STO 13	138 360	211 X=0? 212 RCL 10	284+LBL E
	66 XEQ 02	139 * 149 PC1 12	212 KUL 10 213 FC? 07	285 "FV+ ?" 286 FS? 06
	67 RCL 80 68 -	140 RCL 12 141 30	214 STO 10	287 PROMPT
	69 360	142 +	215 RCL 10	288 1
	70 ENTERT	143 +	216 1	289 XEQ 08
	71 6	144 RCL 13	217 FS? 07 218 ST- 10	290 "YR INTEREST "
	72 FC?C 07	145 + 146 PTH	218 ST- 10 219 FS? 67	291 "HENDING BAL" 292 FS? 21
))	73 CLX	146 RTH		

Listing continued on page 158.

```
Listing continued from 157.
```

	Listing continued	TFO	n 15/	•	
480	APPLICATION	P RO	GRAM	FOR:	FI
	293 PRA			340 XEQ 06	
PAGE	294 CF 07			341 RCL 05	
PA	295 CLA			342 RND	
	296 CLX			343 8	
ØN	297 X<> 12			344 XEQ 06	
ш	298 RCL 10			345 ADV	1
CODE	299 X<=Y?			346 RCL 12	
	300 SF 07			347 RCL 05	
BAR	301 X<>Y			348 RCL 00	
BA	302 STO 01			349 RCL 11	
	303 -			350 FC? 21	
	304 STO 10			351 STOP	
	305+LBL 13			352 FS?C 07	7
	306 XEQ 12			353 GTO 16	
	307 RCL 11			354 1 E2	
	308 10			355 RCL 11	
	309 X>Y?			356 1	
	310 * F0*			357 +	
	311 ARCL Y			358 X=Y?	
	312 RCL 03			359 -	
	313 RCL 04			360 STO 11	
	314 RCL 01 315 *			361 RCL 10	
				362 STO 01	
	316 + 317 Sto 00			363 RCL 09	
	318 CLX			364 ST- 10	
	319 STO 0 5			365 X<=Y?	
	320 FC? 07			366 STO 01	
	321 GTO 14			367 -	
	322 RCL 13			368 X(=0? 369 SF 07	
	323 ST+ 00			370 GTO 13	
	324 GTO 15			371+LBL 16	
	325+LBL 14			372 "##"	,
	326 5			373 RCL 12	2
	327 XEQ 07			374 8	
	328 FIX 2			375 XEQ 0	6
	329 RND			376 11	
	330 ST+ 00			377 FS? 2	1
	331 STO 05			378 SKPCH	
	332 CHS			379 ADV	
	333 STO 03			380 ****	
	334+LBL 15			381 ASTO	X
	335 FIX 0			382 FIX 2	
	336 RCL 99			383 .END.	
	337 RND				
	338 ST+ 12				
	339 8				

APPLICATION PROGRAM 2 FOR FI

FAST - Reducing Interest Solution Time

When the solution for interest is required for PMT#0, LBL 02 of ED produces an initial guess for the interest which is supplied to the iterative loop starting at LBL 06. In most cases the LBL 02 guess is usually "close" (in the mathematical sense) to the actual solution insuring that the interest solution is found in a reasonably short time.

Unfortunately, there will always exist a problem which will cause the LBL 02 guess to be far enough away from the actual solution to cause the execution time to be long. The optional routine presented below will provide an initial guess which tends to be "closer" to the actual solution than that provided by LBL 02, allowing a shorter execution time for most problems.

in use, the optional routine is executed in RAM memory and produces an initial guess for the interest. The guess is stored in register R07, and control of the calculator is transferred from the FAST routine to LBL 06 of the ROM program **II**. For the condition when PMT=0, the routine transfers t_0 LBL 09 of the ROM program for an explicit solution. When solving for n, PV, PMT, or FV, the ROM is used in the usual manner. Don Dewey (5148) produced the mathematical expressions and wrote the program.

LBL FAST INSTRUCTIONS

1. Load the routine below into the calculator memory.

2. Go to LBL II in the ROM.

3. Select desired status and enter known variables in the usual manner.

- 4. Either a) or b):
 - a) solve for n, i, PV, PMT, or FV in the usual manner.
 - b) Execute FAST to solve for interest using the optional routine. Do not use LBL B. The interest value is returned in the usual manner.
- 5. Repeat as needed from step 2.

APPLICATION PRO	DGRAM FOR:
01+LBL "FAST"	27 RCL 01
82 9	28 1
03 STO 06	29 -
84 RCL 84	30 X†2
05 X=0?	31 RCL 04
06 GTO "FI"	32 *
87 6	33 RCL 05
08 STO 06	34 -
89 RCL 85	35 RCL 03
10 RCL 04	36 +
11 RCL 01	37 3
12 *	38 *
13 -	39 /
14 LASTX	40 ABS
15 RCL 05	41 RCL 05
16 +	42 X=0?
17 RCL 03	43 GTO •FI•
18 +	44 RCL 94
19 RCL 01	45 *
20 RCL 03	46 X>0?
21 *	47 GTO "FI"
22 X#8?	48 RDN
23 /	49 STO 07
24 ABS	50 GTO "FI"
25 STO 87	51 .END.
26 X<>Y	

EQUATIONS USED IN FAST ROUTINE

If PMT*FV < 0 then FV case. If PMT*FV >= 0 then PV case.

1. PV CASE:

$$i_0 = \frac{n*PMT + PV + FV}{n*PV}$$

Problem valid only if PV*PMT < 0.

a) For PV\$0:
$$I_0 = \frac{FV - n*PMT}{3*[(n-1)^2*PMT + PV - FV]}$$

b) For PV=0:

$$I_0 = \frac{FV + n*PMT}{3*[(n-1)^2*PMT + PV - FV]}$$

FORMULAS USED IN

The basic financial equation used in this program was first reported in the Hewlett-Packard Journal of October 1977 (Ref. 3) where the description of its implementation in the HP-92 Financial Calculator was given. In this unique equation, all five financial variables (n, i, PV, PMT, FV) are accounted for, using the simple rule that money paid out is considered negative in sign, while money received is considered positive in sign.

The equation from page 23 of Ref. 3, is:

(1) $PV*(1+i)^n + PMT*[(1+i)^n - 1]/i + FV = 0$

Ordinary Annuity and Annuity Due Selection

In its present form, equation (1) is suitable for the ordinary annuity condition, when payments are made at the end of each period. To enable (1) to solve the annuity due condition when payments are made at the beginning of each period, a small modification is required. When this modification is added, equation (1) becomes:

(2) $PV*(1+i)^{n} + PMT*(1+iX)*[(1+i)^{n} - 1]/i + FV = 0$

where X=0 for ordinary annuity condition X=1 for annuity due condition

When flag F09 is cleared, the ordinary annuity condition is selected. When flag F09 is set, the annuity due condition is selected. Flag F09 is toggled by LBL d.

With a simple algebraic rearrangement, (2) becomes:

(3)
$$[PV+PMT(1+iX)/i][(1+i)^n-1] + PV + FV = 0$$

or

(4) (PV + C)A + PV + FV = 0

where

- (5) $A = (1+i)^n 1$
- (6) B = (1+iX)/i
- (7) C = PMT*B

The form of equation (4) simplifies the calculation procedure for all five variables, which are readily solved as follows:

(8) n = LN[(C-FV)/(C+PV)]/LN(1+i)

(9) $I = [FV/PV]^{1/n} - 1$

For PMT=0, i is solved using LBL 09

For PMT≠0, i must be solved by iteration

(10) PV = -[FV + (A*C)]/(A+1)

PV is solved using LBL 03

(11) PMT = -[FV + PV(A+1)]/(A*B)

PMT is solved using LBL 04

- (12) FV = -[PV + A(PV + C)]
 - FV is solved using LBL 05

Solution of Interest When PMT#0

To solve for interest i when PMT#0, an iterative technique must be employed, as equation (1) cannot be explicitly solved for i. This program uses Newton's Method, using exact expressions for the function of i and its derivative. The expressions are:

(13)
$$I_{k+1} = I_k - f(I_k)/f'(I_k)$$

where

(14) f(1) = A(PV+C) + PV + FV

(15) f'(i) = n*D*(PV+C) - (A*C)/i

where

(16)
$$D = (1+i)^{n-1}$$

(17) = (A+1)/(1+i) as calculated by LBL 06

The iterative interest solving loop using equations (13), (14), and (15) starts at LBL 06.

Starting Guess For Interest

To solve for interest using Newton's Method, an initial starting guess must be provided. The program uses the following expression to provide the initial guess, i_0 :

(18)
$$I_0 = \frac{PMT}{|PV| + |FV|} + \frac{|PV| + |FV|}{n^3 * PMT}$$

The closer the initial guess i_0 is to the actual

solution i, the greater is the probability that the required solution will be obtained, and the shorter is the execution time.

Further Program Refinements

As well as being able to select either an ordinary annuity or annuity due situation, the program also enables solutions to be obtained when

- a. Calculate i_0 using equation (18) and
 - LBL 02.
- b. Calculate A, A+1, B, and C using equations (5), (6), (7), and LBL 08.
- c. Calculate iterative solution, using
- equations (13), (14), and (15) and LBL 06.
- d. Exit test (i) If error is too large, back to b above (ii) If error acceptable, continue
- e. Calculate i, using equations (21) or (22) and LBL 11.
- f. Store i in R02 and halt.
- 3. Solving for PV
 - a. Calculate i using equations (19) or (20) and LBL 07.
 - b. Calculate A, A+1, B, and C using equations (5), (6), and (7) and LBL 08.
 - c. Calculate PV using equation (10) and LBL 03
 - d. Store PV in RO3 and hait
- 4. Solving for PMT
 - a. Calculate i using equations (19) or (20) and LBL 07.
 - b. Calculate A, A+1, B, and C using equations (5), (6), and (7) and LBL 08.
 - c. Calculate PMT using equation (11) and LBL 04 d. Store PMT in R04 and halt.
- 5. Solving for FV
 - a. Calculate i using equations (19) or (20) and LBL 07.
 - b. Calculate A, A+1, B, and C using equations (5), (6), and (7) and LBL 08.
 - c. Calculate FV using equation (12) and LBL 05d. Store FV in R05 and halt.

LINE BY LINE ANALYSIS OF

Lines 01-02 provide access to any **FD** subroutine that begins with a numeric label.

Lines 03-14 clear the financial registers R01-R05 and set CF=PF=1 in R08 and R09. Line 14 is a jump to the status display.

Lines 15-18 toggle flag F08 which controls Continuous/Discrete compounding. Line 018 is a jump to the status display.

Lines 19-21 toggle flag F09 which controls the Begin/End switch.

Lines 22-32 are the status display which shows one of the codes CE, CB, DE, DB.

Lines 33-36 store the number of compounding periods in R08 = CF = compounding frequency.

Lines 37-40 store the number of payment periods in R09 = PF = payment frequency.

Lines 41-43 multiply the X-register by 12 before entering the LBL A routine.

Lines 44-48 either store n in RO1 and stop, or drop through to line 049.

Lines 49-63 solve for n via formula (8) and store n $_{\mbox{in}}$ R01.

Lines 64-66 divide the X-register by 12 before entering the LBL B routine.

Lines 67-71 either store \$1 in RO2 and stop, or drop through to line 072.

Lines 72-127 are the major part of the program which solves for \$i. Line 79 tests whether \$i can be calculated directly if PMT=0. Otherwise lines 73-90 compute the initial guess for \$i via formula (18). Lines 91-126 are the recurrence loop for formulas (13)-(17). Formula (14) is complete at line 103 and formula (15) is complete at line 117. Line 127 is a branch to complete the calculation of \$i.

Lines 128-165 are a special subroutine. Line 148 provides access to a second entry point within the subroutine. Lines 129-147 calculate formula (19) or (20). Lines 148-165 calculate formulas (5), (6), and (7) which are constants used by other parts of the program.

Lines 166-175 calculate formula (9) for \$i when PMT=0.

Lines 176-193 finish the calculation of \$i and restore the rate by calculating formula (21) or (22).

Lines 194-198 either store PV in RO3 and stop, or drop through to line 199.

Lines 199-208 calculate PV via formula (10) and store PV in R03.

Lines 209-213 either store PMT in RO4 and stop, or drop through to line 214.

Lines 214-227 calculate PMT via formula (11) and store PMT in R04.

Lines 228-232 either store FV in R05 and stop, or drop through to line 233.

Lines 233-241 calculate FV via formula (12) and store FV in R05.

Line 242 is provided to allow a running program to stop so the program pointer is in ROM.

NUMERIC LABELS/FUNCTIONS IN THE TT PROGRAM

Although III is a complete self-contained program, some users may wish to use some of III's subroutines in their own programs. The following list gives a correspondence between numeric labels and subroutines to be called as part of III programs. To call a subroutine from one of your own programs, first store the number corresponding to the desired function in data register R06. Then use the instruction XEQ "III" as part of your program. The execution times in seconds for the various subroutines are in parentheses in the following list.

Numeric Label Number in R06	Keyboard Label	Subroutine Function	
00	e	Clear R01-R05 and store 1 in R08 and R09 (<1 sec.)	
01	Α	Solve for n (3.5 sec.)	
02	В	Solve for \$1 (variable)	
03	С	Solve for PV (2.5 sec.)	
04	D	Solve for PMT (3.3 sec.)	
05	E	Solve for FV (3.2 sec.)	
12	None	Serves only to restore keyboard functions to top rows of keys	

The following special comments apply to FI subroutines that would be called from other programs.

First note that labels 01-05 only solve for the indicated variables, whereas the keys A-E perform the double functions of either solving or storing values. If you need to store the value of a financial variable in one of R01-R05 then your program should do that directly. Subroutines for storing are neither necessary nor provided.

The purpose of label 12 at the end of the program is to allow a running program to stop so the program pointer is in ROM and the automatic local label key assignments of the 🔳 functions on the top row of keys will be restored to those keys. Otherwise, a running program would normally stop and leave the program pointer in RAM which would make the top row key assignments "disappear".

Numeric labels 07,08,09 & 11 are intended to be internal subroutines within 💷 which would seem to perform no useful purpose outside of **EE**. However, the truly curious PPC member may be able to jump into the middle of **ED** by calling these routines as "hidden functions". See the line by line analysis for the purpose of these functions. Example 11 in the documentation uses label 07 in this manner.

REFERENCES FOR

- 1. W.L. Crowley and F. Rode, "A Pocket-Sized Answer Machine For Business and Finance," Hewlett-Packard Journal, May 1973.
- 2. R.B.Neff and L. Tillman, "Three New Pocket Calculators: Smaller, Less Costly, More Powerful," Hewlett-Packard Journal, November 1975.
- 3. Roy E. Martin, "Printing Financial Calculator Sets New Standards For Accuracy and Capability," Hewlett-Packard Journal, October 1977.
- 4. Greynolds, Aronofsky, Frame, "Financial Analysis Using Calculators," McGraw-Hill, 1980.

For anyone wishing to further his/her knowledge on the subject of financial analysis, and as it applies to calculators, Reference 4 is probably the most definitive book available to date. The 470-page volume assumes the reader has no previous knowledge of financial analysis, and commences at an elementary level, taking the reader through the theory and practice. The main subjects covered are:

- a. Basic Concepts in Compound Interest
- b. Simple Annuities c. General Annuities
- d. Continuous Compounding and/or Payments
- e. Variable Cash Flows and Internal Rate of Return
- f. Balloon Annuities Using Present Values
- q. Special Applications

CONTRIBUTORS HISTORY FOR

Graeme Dennes (1757) is responsible for programming the accuracy enhancements in **11** and for writing the first substantial version of **11**, after analyzing the problems associated with the various formulas involved.

The addition of the general annuity capability and an improvement to the initial guess routine were produced by Don Dewey (5148). Don also tested and further debugged the program using literally thousands of test examples. There were more changes made until the program evolved to its final form. Cliff Carrie (834) suggested changes in the use and placement of the local numeric labels. Graeme Dennes and Don Dewey are to be credited with the lion's share of the work on **ED**, both in programming and in the documentation.

FINAL REMARKS FOR

The first dedicated hand-held financial calculator was the HP-80 (Reference 1). This was later followed by the HP-22 (Reference 2) and HP-27, although they never replaced the HP-80.

As users accepted the new calculators, it wasn't long before they began to demand more in facilities, capabilities and accuracy. These needs were readily satisfied by the HP-92 printing financial calculator (Reference 3).

The HP-92 article provided the inspiration and the starting point for the **FR** program by setting challenges for accuracy and execution times. It also made available for the first time a single unique financial equation which accounts for all five basic financial variables.

Commencing with this single equation, the 🖽 program was conceived as a new, original approach to providing a highly accurate and fast financial program for the HP-41C calculator. Both the facilities and mathematical approaches of 💷 have not been used together in any previous HP calculator program. Financial programs are in other HP-41C ROM's but the capability and accuracy justify including the program as part of the PPC ROM

By applying a reformulation and simplification to the mathematics of the new HP financial equation, the execution times and accuracy have been improved over all previous programs. The execution times when solving for interest rate have been reduced by the use of a simplified, although accurate, Newton's Method for fast convergence, coupled with a routine which produces an initial starting guess "close" to the exact solution.

Previous financial programs used standard instruction sequences to calculate terms of the form

 $(1+i)^{n} - 1$

as described elsewhere. Often, several different

terms of this type were used in one program. The calculation of this term created most of the error in those programs. The high accuracy of the was achieved by calculating this term using the LN1+X and $E^{\dagger}X-1$ instructions, and calculating it only once per solution.

Thanks to the Hewlett-Packard Company for allowing the reproduction of numerical examples from Reference 3.

FURTHER ASSISTANCE ON

NOTES

TECHNICAI	L DETAILS			
XROM: 10, 63	SIZE: 010			
Stack Usage:	Flag Usage:			
• T: used	04: not used			
¹ Z: used	05: not used			
² Y: used	06: not used			
3 X: used	07: not used			
4 L: used	08: set=continuous			
Alpha Register Usage:	09: set= BEGIN			
5 M: 2 char. status	clear=END			
6 N: not used	10: set=view iterations			
7 0: not used	clear=no display			
[®] P: not used	25: not used			
Other Status Registers:	Display Mode:			
9 Q: not used	FIX 2 recommended			
10 ⊢: not used				
11 a: not used	<u>Angular Mode:</u>			
12 b: not used	not used			
13 C: not used				
14 d: not used	Unused Subroutine Levels:			
15 e: not used	4			
ΣREG: not used	Global Labels Called:			
Data Registers:	Direct Secondary			
R00: not used	none none			
R01: n				
R02: \$1				
R03: PV				
R04: PMT				
R05: FV				
R06: function call #				
R07: \$i as decimal	Local Labels In This			
R08: CF	<u>Routine:</u>			
R09: PF	A, B, C, D, E, H, I, J			
N.B. RO2 used as tempor-	a, b, c, d, e			
ary store when solving for interest.	00, 01, 02, 03, 04, 05,			
	06, 07, 08, 09, 10, 11,			
	12			
Execution Time: See NUMERIC LABELS section in the documentation				
Peripherals Required: none				
Interruptible? yes	Other Comments:			
Execute Anytime? no				
Program File: 🖪				
Bytes In RAM: 324				
Registers To Copy: 47				

CURVE FITTING

Gto (<u>not</u> xeq) CV (SIZE 027)

SOFTKEYS/INPUT SUMMARY (USER mode ON)

<u>Softkey</u>	Input	/Function		
	Σ -	(subtract	from	summation)

- e Initialize
- A \sum + (add to summation)
- B Solve equation type J, leaving:

<u>Register</u>	<u>Value</u>
X	b
Y	a
Z	r

- C Solve for Y value given X (using the equation type and coefficients last solved)
- D Solve for X value given Y (using the equation type and coefficients last solved)
- E Solve for best equation type, leaving:

<u>Register</u>	<u>Value</u>
Х	J (best curve type)
Y	b
Z	a
Т	r

OUTPUT SUMMARY

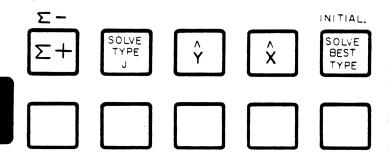
<u>J (Eq. type)</u>	<u>Equation</u>	<u>Description</u>
1	y = bx + a $y = a e^{bx}$	linear
2	y = a e ^{DX}	exponential (a > 0)
3	y = b Ln(x) + a $y = a x^{b}$	logarithmic
4	$y = a x^{D}$	power $(a > 0)$

PROGRAM FLAGS

Flag 08	curve type
Flag 09	curve type
Flag 10	Σ - function

STORAGE REGISTER USE--See original PPC documentation, following

C36


CV - CURVE FIT

This program will determine a curve of best fit to a set of data points. The four standard curve types the program handles are:

- 1. Linear $y = b^*x + a$
- 2. Exponential y = a*e^{bx} (a>0)
- 3. Logarithmic y = b*Ln(x) + a
- 4. Power $y = a^*x^D$ (a>0)

The program will compute the coefficients a and b in the equation of one of the above four curve types

as well as compute a value r^2 called the coefficient of determination which is a measure of the goodness of fit. Once a set of data has been fit to a given curve type, a prediction may be made for the y-value given a new x-value, or a prediction may be made for the x-value given a new y-value. The functions available on the top row of keys on the keyboard are indicated in the following diagram.

These same functions are referenced in the examples and instructions by enclosing the name of the function on the key in square brackets [].

Example 1: Find the straight line which best fits the following data: (1.1, 5.2), (4.5, 12.6), (8.0, 20.0), (10.0, 23.0), (15.6, 34.0) Then predict y when x=20 and predict x when y=25.

Plug the **PPC ROM** into the 41C and SIZE 027. GTO "CV" and go into USER mode. This puts the program counter in ROM and makes the curve fit functions available on the top row of keys. Pressing [INITIALIZE] will initialize the program. This clears registers R11 thru R24 so that a new set of data may be entered. In this example the 5 data points will be entered using the [Σ +] key. Key in each pair as x ENTERT y and push [Σ +].

Do:	See:	
[INITIALIZE]		1.0000
1.1 ENTER 5.2	[Σ+]	2.0000
4.5 ENTER 12.6	[Σ+]	3.0000
8.0 ENTER 20.0	[Σ+]	4.0000
10.0 ENTER 23.0	[Σ+]	5.0000
15.6 ENTER 34.0	[Σ+]	6.0000

All the data has now been entered and the parameters for the curve will be computed next. Since in this example we are interested in a straight line we key 1 (j=1) and push [SOLVE TYPE j]. When execution stops the values a, b, and r are available in the stack as:

Ζ:	r	and	are	also	stored	as	R08:	b
Y:	а						R09:	а
X:	b						R10:	r

For this example:

Z: r=0.999035140. Y: a=3.499147270 X: b=1.972047542

The value r ranges between -1 and +1 and is a measure of how well the data fits the given curve type. The sign of r indicates whether the data is positively or negatively skewed. The closer r is to one of the extremes ± 1 the better the fit. For this example the line has positive slope and the fit is extremely good (all sample problems seem to work well).

Having computed the values b and a (these remain stored in R08 & R09 until new data is input) we can determine new points along the line. Key in 20 and push [\hat{y}] for the predicted y-value. y=42.94009811 when x=20. Key in 25 and push [\hat{x}] for the predicted x-value. x=10.90280649 when y=25.

COMPLETE INSTRUCTIONS FOR CV

(Keyboard Operation)

1) Key GTO " GV ", SIZE 027 and go into USER mode. The keyboard functions should now be now available on the top row of keys.

2) Press [INITIALIZE] to initialize the program. This step clears data registers R11 thru R24 inclusive. These registers will be used to accumulate the data for all four curve types. The display will show 1.

3) Key in the next data pair (x,y) as x ENTERT yand push $[\Sigma +]$. Repeat this step for all data pairs. The display will stop with a count of the number of the next data pair to be entered. This feature makes it possible to enter only the y-values when the x-values are consecutive integers which start counting from 1. In this case the display provides the x-values which need not be entered. If an improper data pair has just been input with the $[\Sigma +]$ key, then immediately pressing R/S will delete the pair. Otherwise an improper or undesired data pair can be deleted by re-entering both x and y and pressing $[\Sigma -]$.

4) As data pairs are entered it is possible that some x or y value is negative or zero. In these cases only one or two of the four curve types may be applied to the data. The four curve types and their respective equations are as follows:

Туре ј	Name	Equation
1	Linear	y = b*x + a
2	Exponential	y = a*e ^{bx} (a>0)
3	Logarithmic	y = b*Ln(x) + a
4	Power	$y = a^* x^b \qquad (a>0)$

If any x-values are negative or zero then only types 1 & 2 are feasible curves. If any y-values are negative or zero then only types 1 & 3 are feasible curves. If in any data pair both x and y are negative or zero then type 1 is the only feasible curve. The a coefficient must be positive for curve types 2 and 4.

5) After all data pairs have been input the next step is to select the desired curve type. This step can be accomplished in one of two ways. Under either option, the 41C should not be interrupted or else there is a rossibility that the data registers will not be urned with their normal contents.

a) To fit a particular curve type, key in the number 1-4 for that type and press [SOLVE TYPE j]. The stack returns with:

Z: r	and these parameters	R07:	j=curve type
Y: a	remain stored in	R08:	b
X: b		R09:	a
/·• -		R10:	r

Step a) may be repeated at any time for any of the four curve types.

b) If all data input is positive then pressing [SOLVE BEST] will automatically choose the curve of best fit according to the curve type with largest absolute value of r. In this case the stack returns with:

T:	r and these parameters	R07: j=curve type
Z:	a remain stored in	R08: b
Υ:	b	R09: a
Χ:	j=best curve type	R10: r

6) Predictions for new x or y values may be made only after step 5) has been completed. Predictions for new values are based on the settings of flags F08 and F09 which are automatically set during the fit process in step 5). The status of flags 8 and 9 for the four curve types are as follows.

		Flag 8	Flag 9
1	Linear	clear	clear
2	Exponential	set	clear
3	Logarithmic	clear	set
4	Power	set	set

In general the user need not be concerned with these flag settings, and F08 and F09 are not available for other use and must not be disturbed. To predict y given x, key in x and press [\hat{y}]. To predict x given y, key in y and press [\hat{x}]. In both cases the predicted value is left in the X-register.

7) New data may be added or deleted at any time via the $[\Sigma+]$ or $[\Sigma-]$ keys. However, step 5) must be performed after updating the data before any new predictions can be made using step 6). The parameters a and b are automatically destroyed after input of new data.

MORE EXAMPLES OF CV

Example 2: Determine whether the following data points are better suited for a logarithmic curve or a power curve. Then re-input the same x values and see how close the program predicts the y values. (8, 2), (27, 3), (40, 3.2), (50, 3.5), (100, 4.1)

Do:	See:
[INITIALIZE]	1.0000
8 ENTER 2 [Σ+]	2.0000
27 ENTER 3 [Σ+]	3.0000
40 ENTER 3.2 [Σ+]	4.0000
50 ENTER 3.5 [Σ+]	5.0000
100 ENTER [¶] 4.1 [Σ+]	6.0000

We will now try to fit a logarithmic curve type 3. Key 3 [SOLVE TYPE j]. The program returns with:

Ζ:	0.997148866	=	r
Υ:	0.267411352	=	а
X:	0.822629796	=	ь

We next try to fit a power curve which is type 4. Key 4 [SOLVE TYPE j]. The program returns with:

> Z: 0.995179948 = r Y: 1.127479133 = a X: 0.285458085 = b

Choosing the best r we would assume a type 3 logarithmic curve with the equation:

y = (0.822629796)*Ln(x) + 0.267411352

Since we just finished the power curve fit, the power curve parameters are still in the machine and hence we must go back and key 3 [SOLVE TYPE j] to return to the logarithmic parameters. Now we can predict the y's using the original x's. The predicted y-values are shown to four decimal places.

Do:	See:
8 [ŷ]	1.9780
27 [ŷ]	2.9787
40 [ŷ]	3.3020
50 [ŷ]	3.4856
100 [ŷ]	4.0558

Example 3: The following data fits either a linear or exponential curve. Determine which is more appropriate. (2, 12), (-1, 2), (3, 17), (5, 23)Then predict y when x = -10. After solving the above problem add the following as additional data points and resolve the same problem.

(-4	, 0	.713)	, (2.5,	10.93),	(6,	47.53),	(10,	254.95)
-----	------------	-------	---------	---------	-----	---------	------	---------

Do:	See:
[INITIALIZE]	1.0000
2 ENTER [†] 12 [Σ+]	2.0000
1 CHS ENTER [†] 2 [Σ+]	3.0000
3 ENTER [†] 17 [Σ+]	4.0000
5 ENTER [†] 23 [Σ+]	5.0000

Note that since one of the data points has a negative x the only possible curves to be fit under this program are linear or exponential. For a linear fit key 1 [SOLVE TYPE j]. The program returns:

Ζ:	0.997577939	=	ŕ
Y:	5.520000000	=	a
Χ:	3,546666667	=	Ь

For an exponential fit key 2 [SOLVE TYPE j]. The program returns:

Ζ:	0.958629344	=	r
Υ:	3.826163699	=	а
Χ:	0.419923419	=	ь

Choosing the best r we find a linear fit is more appropriate. Since we just finished the exponential fit, the exponential parameters are still in the machine and hence we must go back and key 1 [SOLVE TYPE j] to return the linear parameters. Now key 10 CHS [\Diamond] to predict y = -29.94666667 when x = -10.

We next add the additional data points and resolve the problem. (Do not clear the original data). The display should show 6 after entering the first new data pair below.

Do:		See:
2.5 ENTER 6 ENTER	0.713 [Σ+] 10.93 [Σ+] 47.53 [Σ+] 254.95 [Σ+]	6.0000 7.0000 8.0000 9.0000

For a new linear fit key 1 [SOLVE TYPE j]. The data returned is:

Ζ:	0.765698771	=	r
Υ:	0.978958100	=	а
Χ:	15.33154618	=	ь

For a new exponential fit key 2 [SOLVE TYPE j]. The data returned is:

Z: 0.993615263 = r Y: 3.825595338 = a X: 0.419945301 = b

Now choosing the best r we see that the new data reflects a change in the curve type. Since the exponential parameters should still be in the machine we can predict y when x = -10. Key 10 CHS [\hat{y}]. y = 0.057398396.

Example 4: Fit the best curve to the following set of data points.

(1, 2), (2, 2.828), (3, 3.464), (4, 4), (5, 4.472), (6, 4.899), (7, 5.292), (8, 5.657), (9, 6).

In this example the x-coordinates start counting from 1 and are consecutive integers. So we need only input the y-coordinates, but they must be in the proper order. The count in the display will serve as the x-coordinates.

Do:	See:
[INITIALIZE]	1.0000
2 [Σ+]	2.0000
2.828 [Σ+] 3.464 [Σ+]	3.0000
3.404 [2+] 4 [Σ+]	4.0000
4.472 [Σ+]	6.0000
4.899 [Σ+]	7.0000
5.292 [Σ+]	8.0000
5.657 [Σ+]	9.0000
6 [Σ+]	10.0000

Since all the data are positive we may use the best fit function to let the program find the best fit among all 4 curve types. Press [SOLVE BEST]. The contents of the stack when the program stops are:

T:	0.999999994	=	r		
Ζ:	1.999855865	=	a		
Υ:	0.500043886	=	Ь		
Х:	4.00000000	=	best	curve	type

This indicates a power curve (type 4) where the equation is of the form:

 $y = (2.00)*x^{0.50}$ (values rounded to 2 places)

APPLICATION PROGRAM 1 FOR CV

Curve fit solutions are often more meaningful when the points input are also plotted, superimposed on the plot of the "best fit" or selected equation type. The CVPL program will function exactly as GV functions and, after calculating the parameters a, b, r and r^{1}_{2} , the program will stop with the prompt: "TO PLOT: R/S" To plot the equation calculated with the points input superimposed, simply press the R/S key. Nothing else need be done to obtain a plot. When accomplished in this way, the default situation, all numbers will be printed with 2 decimal places and the resulting plot will contain 50 plotted points. The detailed instructions include options to print other than 2 decimal places and to plot a smaller or greater number of points. The same key captions used by GV are used, plus the shifted keys b, c, and d for the optional features indicated.

Note that this program can also be used without the printer and will function essentially the same as but with the display labeling the points entered, showing deletions indentified as such, and labeling the parameters calculated.

The plotting program takes into account all possibilities: duplicate, identical points; almost identical points that would plot as identical; points with identical x-values but with significantly different y-values; individual single points. Any quantity of duplicate points can be handled. The points are plotted with 4 plotting characters as follows:

a. The equation of type J is plotted using a small square dot (box). One equation point is normally plotted before the first input point and after the last point. If the first input point is close to zero, it will be plotted first.

b. Individual single points are plotted with a large \boldsymbol{X}_{\bullet}

c. Two (or more) essentially identical points are plotted with a double X, two small x's, one above the other.

d. Two (or more) points having essentially the same x-value but having different y-values are plotted with an asterisk located where the largest of the point's (based on x-value) plot should be. If desired the other points not shown for this value of x could be drawn in by hand or more points could be selected for the plot to separate very close x-values.

To simplify the program and reduce the number of registers required to store the data points, both the x- and y-value of a point are stored in one register, using a decimal point to separate them. This limits the magnitude and sign of the numbers to the following: data points must be nonzero, positive numbers and less than 1000 in magnitude. If you need to deal with larger numbers, shift all decimal points before entering them. Note: If the program is used without the printer, or by pressing "NO PLOT" with a printer, none of these restrictions apply and the "data error" message will not be encountered if you try to use negative or large numbers. See the valid use of negative entries in the GV instructions, however.

This program was developed originally as a modification to Gary Tenzer's curve fit program, "CFIT" in the PPC JOURNAL, V7N5P46, and was to be published in the JOURNAL as a stand alone program. The program was 691 steps in length (1414) bytes. With the CV routine (plus others such as the S2 sorting routine) the plotting routine was completely re-written to utilize as many of the ROM routines as possible and the end result is presented below, significantly improved over my earlier version, with 439 steps and using 865 bytes (8 tracks on 4 cards). Most of Gary's displays and labeling are used in this program which partially account for the length of the program. I feel these extras are desirable, specially when using a printer.

Example 1 for CVPL: Use the same problem as Example 1 for CVD. Find the linear equation for the following data: (1.1, 5.2), (4.5, 12.6), (8.0, 20.0), (10.0, 23.0), (15.6, 34.0). Then predict y when x=20 and predict x when y=25.

Plug the PPCROM in and using the card reader, read in all 8 sides of the program CVPL. Put the calculator in USER mode. Connect printer and put in MAN mode. Press initialize (shift E) and the display will tell you to SIZE 038 plus the number of points you plan to input. For this example SIZE 043 (=38 + 5 points). Press R/S to complete initialization of the program. See 1.00 in the display asking for the first point's values. First however, we will select 4 decimal places in the printout so key in 4 and press shift C (for the number of decimal places). See 1.00 again asking for the first point's values. Key in each point exactly as in the CV instructions by keying in X ENTERT Y

 $\left[\Sigma+\right]$. Keyboard functions assigned to keys are shown in square braces [] below.

C

Do:	500:
[initialize] XEQ "SIZE" 043	"SIZE=38+ PTS" 0.00 (size=38+5)
R/S 4 [No.Dec.Places] 1.1 ENTER 5.2 [Σ+]	1.00 TONE 9 1.00 TONE 9 X1=1.0000, Y1=5.2000
.5 ENTER 12.6 [Σ+]	2.0000 TONE 9 X2=4.5000, Y2=12.6000
8.0 ENTER 20.0 [Σ+]	3.0000 TONE 9 X3=8.0000, Y3=20.0000
10.0 ENTER 23.0 [Σ+]	4.0000 TONE 9 X4=10.0000, Y4=23.0000 5.0000 TONE 9
15.6 ENTER 34.0 [Σ+]	X5=15.6000, Y5=34.0000 6.0000 TONE 9

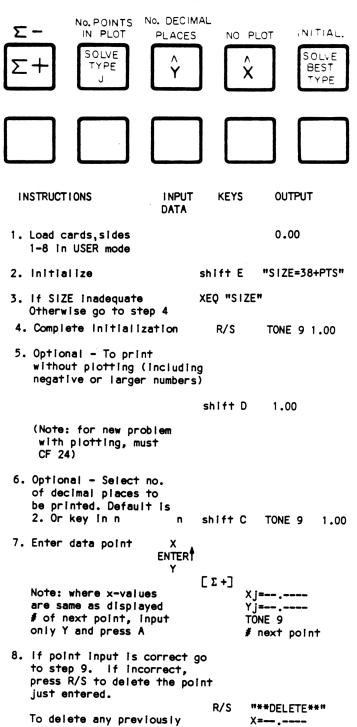
n -

Since we want a linear curve, we key in 1 and push [SOLVE TYPE J]. When execution stops the following will be printed.

1:	LIN	
a=:	3.4991	
b=:	1.9720	
r=(3.9990	
rt:	2=0.998	1

in the calculator display see "TO PLOT: R/S" if we now press R/S the plot will consist of 50 points. To select plot of 25 points, key in 25 and press [No.Pts.In Plot], the shifted B key. The same display will appear in the calculator (nothing is printed). Before plotting, we will first find the predicted y and x values asked for. Key in 20 and push [\hat{y}], the C key. Printed (and displayed) see:

"IF X = 20.0000, Y = 42.9401"


, in 25 and push [\hat{x}], the D key and see:

"IF Y = 25.0000, X = 10.9028"

Now press R/S to plot the data. When the plotting is complete, wait for the BEEP before stopping the calculator.

The total time for this example, except for sizing the calculator was 4 min. and 25 sec. The primary consumer of time is normally the plotting, so the number of points selected greatly effects execution time. Often a short plot of 15 points is adequate.

After the BEEP has sounded the completion of the plot you can find other predicted values of x or y, select a different curve type, add points or delete points and see the effect on the new plot.

Y=---

TONE 9

next point

press

entered point, re-enter

exact X & Y values and

[Σ-] (same)

9. For each new point wait for TONE 9 and repeat (same as 7) step 7.

Note: Program will accept only positive values of X and Y in the range .01-999.99. For numbers outside of range shift decimal before entering. For a zero value use .01. "DATA ERROR" message will be displayed after an invalid entry. This note only applies with printer connected. Any values for X and Y will be accepted without a printer or after pressing "NO PLOT" with a printer. See CV instructions regarding acceptable negative numbers.

10. Calculate a,b,r,r^{2:}

a.For "best fit" based on largest ABS value of r:	E	(typical)
(Note: r.& r ² display correctly only on printer. Final caption not shown if printer not connected)	11 11 11	1:LIN" Pa=" b=" rf2=" rf2=" "TO PLOT: R/S"

- b.For selected type "j" curve Case: 1: Linear 1 B
 - 2: Exponential 2 B (same) 3: Logarithmic 3 B 4: Power 4 B
- NOTE: Step 10 must be accomplished after all data points have been entered before steps 11, 12, or 13 may be attempted.
- Optional: select number of points to be plotted (points input plus equation points).
 a. Default value = 50 points
- no action required.
- b. Enter # of desired points

n shift B "TO PLOT: R/S"

12.	Project	y given	×	×	С	"IF X =" "Y =" "TO PLOT: R/S"
13.	Proj ect	x given	у	ŷ	D	"IF Y =" "X =" "TO PLOT: R/S"

14. To add additional points to same data, go to step 7.

15. Plot curve and data points R/S Curve and

The following symbols are used: points plotted

- points on curve type "j"
- × data points, no duplicate X or Y value
- 2 or more data points with the same X and Y values within the plotting
- tolerance.
 * 2 or more data points with same X-value but different Y-values. Only one of the points is plotted.

BEEP sounds after plot is complete Note: after plotting wait for BEEP. Then you can add more points, delete points, predict new X or Y values, plot with a different number of points, calculate curve parameters with a different number of decimal places displayed or select a different curve type by going back to the above instructions.

Example 2 for CVPL: This example will demonstrate all four plotting characters described above and show how deletions and points can be added. The initial points are the following:

(70.00, 11.10), (10.40, 71.86), (22.30, 38.71), (10.50, 73.12), (40.90, 21.73), (4.20, 85.20) (100.30, 1.34), (41.30, 34.70)

Print with 4 decimal places and solve for the best fitcurve. Then find the predicted value of y for X=35and the predicted value of X for Y=100. Then plot using 30 points in the plot. Size for one additional point to be added. In the following the data in parentheses are not printed.

Do:	9	6e:
[Initialize] XEQ "SIZE" 047		("SIZE=38+PTS") (0.00)
R/S to complete		(1 00 TONE 0)
initialization 4 [# dec. places]		(1.00 TONE 9) (1.00 TONE 9)
70 ENTER 11.1 [2	+]	"X1=70.0000"
		"Y1=11.1000"
10.4 ENTER 71.86	Γ Σ +]	(2.0000 TONE 9) "X2=10.4000"
	[2]	"Y2=71.8600"
	· -	(3.0000 TONE 9)
22.3 ENTER 38.71	[Σ+]	"X3=22.3000" "Y3=38.7100"
		(4.0000 TONE 9)
10.5 ENTER 73.12	[Σ+]	
		"Y4=73.1200" (5.0000 TONE 9)
40.9 ENTER 21.63	Γ Σ +]	
		"Y5=21.6300"
		(6.0000 TONE 9)
Y5 was entered in	ERROR	so to delete:
R/S		"DELETE"
		"X=40.9000"
		"Y=21.6300" (5.0000 TONE 9)
Now continue enter	ing the	e correct values
40.9 ENTER 21.73	[2+]	"Y5=21.7300"
		(6.0000 TONE 9)
4.2 ENTER 85.2	[Σ+]	"X6=4.2000"
		"Y6=85.2000"
100.3 ENTER 1.34		(7.0000 TONE 9)
100.3 ENIERI 1.34	[2+]	"X7=100.3000" "Y7=1.3400"
		(8.0000 TONE 9)
41.3 ENTER 34.7	[Σ+]	"X8=41.3000"
		"Y8=34.7000"
Now push E for [SO		(9.0000 TONE 9)
		"3: LOG"
		"a=132.4456"
		"b=-28.2822"
		"r=-0.9812" "r12=0.9627"
		("TO PLOT: R/S")

Find the predicted values:

35 [ŷ] 100 [Â]

"IF X=35.0000"
"Y=31.8925"
("TO PLOT: R/S")
"IF Y=100.0000"
"X=3.1494"
("TO PLOT: R/S")

Now select a 30 point plot:

30 [# points in plot] ("TO PLOT: R/S") R/S to plot the data

After the BEEP sounds and the plotting is complete, add an additional point (71.1, 11.0), almost the same as point 1, and delete what appears to be the worst fitting point (22.30, 38.71).

71.1 ENTER[†] 11.0 [Σ+] "X9=71.1000" "Y9=11.0000" (10.0000 TONE 9)

22.30 ENTERT 38.71	[Σ-]	** DELETE ** "X=22.3000" "Y=38.7100" (10.0000 TONE 9)
		(10.0000 TONE 9)

Now again solve for the best fit.

[SOLVE BEST]	"3: LOG"
	"a=133.8645"
	"b=-28.5171"
	"r=-0.9858"
	"r\$2=0.9719"
	("TO PLOT: R/S")

We have slightly improved the fit to a log curve and the parameters a and b have of course changed. Now make a new plot by pressing R/S. After replotting the data, again find the predicted values of y if x=35 and x if y=100.

35 [ŷ]	"IF X=35.0000"
	"Y=32.4761"
100 [Â]	"IF Y=100.0000"
	"X=3.2789"

Looking at the plot, note the value of having the first input point be preceded by a point on the LOG curve. Note the double x at x=11 representing 2 almost identical points X2 and X4. The asterisk at x=41 means 2 or more points have essentially the same x-value but very different y-values. They are X5 and X8 and because X8 has a larger x-value than X5, the asterisk is plotted for Y8.

LINE BY LINE ANALYSIS OF CVPL

Lines 02-11 set up default conditions for 50 point plot and 2 decimal place printout. Lines 14-21 display next point to be input. Lines 22-30 are the delete routine using R/S. Lines 31-70 are the delete routine for later deletion of a point which first combines x and y in a single number as YYYYY.XXXX after rounding to 2 decimal places, then searches stored points registers for the same point. When the point is found a copy of the last point stored is made in that register. Flag F05 prevents display of point number for a delete. Input of new points are added to CMT statistical registers (71-118), then x and y values are checked for sign and magnitude and rounded

to 2 decimal places and stored in YYYYY.XXXXX format. Lines 86-186 recall full numbers (not rounded) from cv for printing to number of decimal places selected and printout is formatted for input points, deleted x and y, and calculated parameters a, b, r, and rt2. Lines 187-192 display plotting prompt "TO PLOT: R/S" only if printer connected, so program can be used without printer. Lines 193-200 store the barcoded input plotting symbols. Lines 201-217 exchange registers R07-11 with R33-37 using BE so data needed for **CV** statistical registers will be saved for later use, not lost when "PRPLOT" in printer ROM uses registers R07-11. Lines 218-236 use BX to find maximum and minimum y values of input points, then increase maximum and decrease minimum y by 25% of range to allow for equation points to be plotted outside of range of input points. Lines 237-241 make Ymin=0 if this value would have become negative after the 25% adjustment. These lines also determine the y-plotting increment used to see if 2 points have essentially same y-value. Lines 244-258 store "CRV" as the curve name for PRPLOT. The next function performed is a reverse of the left and right sides of the decimal point. Points are now stored as XXXXX.YYYYY (244) and **S2** is used to sort the stored points to find maximum and minimum x and for faster plotting (246). Also calculated is the x-plotting increment using the range of x-values and number of points wanted in plot. If the x-minimum is smaller than plotting increment, lines 259-266 make the 1st point plotted the smallest x-value of the points; otherwise the x-minimum is set so one equation point will be plotted first. X-max made large enough that PRPLOT will never stop plot so one equation point can be plotted after largest x-values of input points (267-275). Stop routine initiated when one equation point beyond last point has been plotted. Lines 277-292 restore the statistical registers for CV by XEQ III , then reverse stored points to original YYYYY.XXXXX format (284). Lines 293-296 reset the counter and "BEEP", ready for changes to data, etc. Flags 02 and 00 are used to determine if plotting is complete, lines 329-330. Routine to check stored points to see if they should be plotted at this x-value (297-323), checks +50% of plotting increment from this plotting point. If flag F03 is set (324) at least one point to be plotted here, and still checking for others. Plotting symbol to be used selected (340-360) and stored in RO3 for "PRPLOT" to use for plotting. Where 2 input points have essentially the same x-value, checks to see if their y-values are also essentially the same (361-378). Flag FO4 is set when 2 points have the same y-values, F01 is set when they have significantly different y-values (375-377). Plotting routines for the 4 curve types are in steps 379-399. The routine to reverse the left and right sides of the stored points (from the decimal point) is LBL 16, steps 400-419. Storage routines for optional selection of number of points in plot and number of decimal places in printout are in steps 425-435. NOTE: The BLSPEC numbers for the plotting characters, If barcodes are not used, are:

box:	0,	Ο,	28,	28,	28,	Ο,	0
large X:							
double x:	0,	0,	73,	54,	54,	73,	0
asterisk:	0,	20,	8,	62,	8,	20,	0

The ROM routine III can also be used to create the equivalent of these BLDSPEC characters.

PPC ROM USERS MANUAL

	74 RDN	147 2	220 *	293+LBL 11	7// 100 70
01+LBL CYPL	75 XROM "CV"	147 2 148 GTO 11	220 + 221 STO 00	294 FS? 02	366 ISG 30
82+LBL e	76 RCL 08	148 GTO TT 149+LBL E	221 310 00 222 X<>Y	295 GTO 08	367 RCL IND 3
03 4900	77 XEQ 14		223 .01		368 FRC
STO 29	78 1 E3	150 5		296 STO [2974] DI - 06	369 -
2		151+LBL 11	224 * 225 sto 01	297+LBL 06 298 RCL IND 30	370 1 E3
ø6 STO 38	79 / 80 sto ind 30	152 FIX IND 38	225 510 61		371 *
97 .	80 STO IND SO 81 RCL 09	153 SF 12	228 - 227 ABS	299 XEQ 00	372 ABS
08 *SIZE=38+ PTS*		154 STO 06		300 2	373 RCL 32
09 PROMPT	82 XEQ 14	155 RDN	228.25	301 / 302 RCL [374 ISG 30
10 STO 06	83 1 E2	156 XROM -CV-	229 *		375 SF 04
11 XROM -CV-	34 * 05 CT: IND 70	157 *1: LIN*	230 ST+ 01	303 +	376 X(Y?
12 39.999	85 ST+ IND 30	158 ASTO 01	231 ST- 00	304 X>Y?	377 SF 01
13 STO 30	86+LBL 09	159 *2: EXP*	232 RCL 00	305 GTO 09	378 GTO 06
14+LBL 12	87 SF 12	160 ASTO 02	233 X(0?	306 FS? 03	379+LBL 02
15 RCL 18	88 FIX 0	161 "3: LOG"	234 0	307 GTO 10	380 RCL 34
16 1	89 •X•	162 ASTO 03	235 STO 00	308 GTO 08	381 *
17 +	90 FC? 05	163 *4: PWR*	236 STO 84	309+LBL 00	382 E†X
18 CLA	91 ARCL 18	164 ASTO 04	237 RCL 01	310 INT	383 RCL 35
19 ARCL X	92 FIX IND 38	165 CLA	238 -	311 1 E2	384 *
20 TONE 9	93 •⊦=•	166 ARCL IND 07	239 -62	312 /	385 RTN
21 PROMPT	94 ARCL 08	167 AVIEW	240 /	313 RCL 10	386+LBL 03
22 DSE 30	95 AVIEN	168 PSE	241 STO 32	314 RTN	387 LN
23 SIN	96 PSE	169 °a="	242 CRV	315+LBL 09	388+LBL 01
24 SF 10	97 FIX 0	170 ARCL 09	243 ASTO 11	316 X<>Y	389 RCL 34
25 6	98 •Y•	171 AVIEW	244 XEQ 16	317 RCL [390 *
26 STO 86	99 FC? 05	172 PSE	245 RCL 25	318 RCL 10	391 RCL 35
27 RCL 08	100 ARCL 18	173 "b="	246 XROM "S2"	319 2	392 +
28 RCL 09	101 FIX IND 38	174 ARCL 08	247 STO 30	320 /	393 RTN
29 XROM "CV"	102 -+=-	175 AVIEW	248 RCL 24	321 -	394+LBL 04
30 GTO 08	103 ARCL 09	176 PSE	249 1	322 X<=Y?	395 RCL 34
31+LBL a	104 AVIEW	177 "r="	250 -	323 GTO 11	396 Y 1 X
32 SF 10	105 PSE	178 ARCL 10	251 RCL IND X	324 FS? 03	397 RCL 35
33 6	106 ADV	179 AVIEN	252 INT	325 GTO 10	398 *
34 STO 06	107 FC?C 05	180 PSE	253 RCL 39	326+LBL 08	399 RTN
35 RDN	108 ISG 30	181 "rt2="	254 INT	327 RCL 31	400+LBL 16
36 XRON "CV"	109 GTO 12	182 RCL 10	255 -	328 STO 03	401 RCL 25
RCL 08	110+LBL 14	183 X†2	256 RCL 29	329 FS?C 02	402 STO 30
, RND	111 FIX 2	184 ARCL X	257 /	330 SF 00	403+LBL 05
39 1 E3	112 999.99	185 AVIEN	258 STO 10	331 RCL [484 RCL IND 3
48 /	113 X<>Y	186 ADV	259 RCL 39	332 GTO IND 33	405 STO Z
41 STO 00	114 RND	187+LBL 07	268 XEQ 90	333+LBL 11	406 FRC
42 RCL 09	115 X>0?	188 FC? 55	261 X<>Y	334 FS? 03	407 1 E5
43 RHD	116 X>Y?	189 RTN	262 X≠Y?	335 GTO 08	408 *
44 1 E2	117 XEQ 17	190 "TO PLOT: R/S"	263 X>Y?	336 SF 03	409 STO Y
45 *	118 RTN	191 CF 12	264 -	337 ISG 30	
46 ST+ 00	119+LBL C	192 PROMPT	265 ABS	338 GTO 06	410 RCL Z 411 INT
47 RCL 30	120 SF 03	193 -+++-	266 STO 08	339 SF 02	412 1 E5
48 1	121+LBL D	194 ASTO 26	267 RCL 24	340+LBL 10	413 /
49 -	122 FIX IND 38	195 ** e *	268 1	341 1	414 ST+ Y
50 STO 27	123 SF 12	196 ASTO 27	269 -	342 ST- 30	
51 39.999	124 STO 28	197 *=QABQ+*	270 RCL IND X	343 CF 03	415 RDN
52 STO 30	125 3	198 ASTO 28	271 XEQ 00	344 RCL 26	416 STO IND 3
53+LBL 13	126 FC? 03	199 ****	272 3	345 FS?C 01	417 ISG 30
54 RCL IND 30	127 4	200 ASTO 31	273 +	346 GTO 15	418 GTO 05
	128 STO 86	201 7.011	274 +	347 RCL 27	419 RTN
55 RCL 00	129 RCL 28	202 ENTERT	275 STO 09	348 FS?C 04	420+LBL 17
56 X=Y?	130 XRON "CV"	203 33.037	276 XRON PRPLOTP	349 GTO 15	421 FC? 24
57 GTO 11	131 "IF X="	204 XROM "BE"	277+LBL "CRY"	350 RCL 28	422 FC? 55
58 ISG 30	132 FC? 0 3	205 RCL 30	278 FC?C 88	351+LBL 15	423 RTN
59 GTO 13	132 PC? 05		279 GTO 11	352 CF 84	424 0
50+LBL 11	133 - 1P Y=-	206 INT 207 STO Y	280 7.011	353 STO 0 3	425 /
51 RCL IND 27	134 HKUL 28 135 AVIEN	207 STO Y 208 1	281 ENTER†	354 RCL INB 30	426+LBL b
62 STO IND 30			282 33.837	355 FRC	427 1
63 RCL 27	136 PSE	209 -			428 -
64 STO 30	137 "Y="	210 1 E-3	283 XROM "BE"	356 1 E3	429 100
65+LBL 08	138 FC?C 03	211 *	284 XEQ 16	357 *	430 *
66 SF 12	139 "X="	212 +	285 RCL 24	358 ISG 30	431 STO 29
67 *** DELETE ***	148 ARCL X	213 STO 24	286 INT	359 RTN	432 GTO 07
68 AVIEW	141 AVIEN	214 FRC	287 .999	360 RTN	433+LBL c
1 SF 05	142 PSE	215 39	288 +	361+LBL 6 8	434 STO 38
GTO 0 9	143 ADV	216 +	289 STO 30	362 1	435 GTO 12
+++LBL A	144 GTO 07	217 STO 25	290 FIX IND 38	363 ST- 38	436+LBL d
72 1	145+LBL B	218 XROM -BX-	291 BEEP	364 RCL IND 30	437 SF 24
73 STO 06	146 ENTERT	219.01	292 STOP	365 FRC	438 .END.

(СЦ5)

FORMULAS USED IN CV	Routine List	ing For: CV
Linear (Type 1):	01+LBL -CV-	74 STO 10
	02 GTO IND 06	75 RCL 14
(1) $y = b * x + a$	03+LBL A	76 RCL 13
	04+LBL 01	77 Xt2
_) Y = B*X + A where Y=y, X=x, A=a, B=b	05 CF 10	78 RCL 18
(3) $x = (y-a)/b$	06+LBL 06	79 /
$(\mathbf{y} - \mathbf{x}) = (\mathbf{y} - \mathbf{a})/\mathbf{b}$	07 STO 09	80 -
	98 X(>Y	81 STO Z
	09 STO 08 10 SREG 13	82 /
	11 FC? 10	83 STO 88 84 RCL 13
Exponential (Type 2):	12 Σ+	85 +
	13 FS? 10	86 ST- 89
(4) $y = a * e^{b * x}$ (a>0, y>0)	14 Σ-	87 X(>Y
	15 RDN	88 RCL 16
(5) Y = B*X + A where Y=ln(y), X=x, A=ln(a), B=b	16 RCL 08	89 RCL 15
	17 ENTERT	90 Xt2
(6) x = [in(y) - in(a)]/b	18 X>0?	91 RCL 18
	19 LN	92 ST/ 09
	20 ST+ Z	93 /
	21 RCL 09	94 -
Logarithmic (Type 3):	22 X>0? 23 LN	95 *
(7) $y = b + b + b + b + b + b + b + b + b + b$	24 ST* Z	96 SQRT 97 ST/ 10
(7) y = b*ln(x) + a (x>0)	25 X()Y	98 XEQ IND 87
(8) Y = B*X + A where Y=y, X=ln(x), A=a, B=b	26 SREG 19	99.8
(0) I = D*X + X where I=y, X=In(X), A=a, B=D	27 FC? 10	100 ST- 07
(9) $x = e^{[(\ln(y) - \ln(a))/b]}$	28 Σ+	101 RCL 10
(9) $x = e^{x} (11(y)^2 - 11(a)) (y)^2$	29 FS? 10	102 RCL 09
	30 Σ-	103 FS? 08
	31 Rt	104 E†X
	32 FS? 10	105 STO 09
	33 CHS	106 RCL 08
	34 ST+ 12	107 RTN
Power (Type 4):	35 Rt 76 552 10	108+LBL 10
(10) $y = a x^{b}$ (a>0, x>0, y>0)	36 FS? 10 37 CHS	109 RCL 11 110 X<> 17
	38 ST+ 11	111 STO 11
<pre>(11) Y = B*X + A where Y=In(y), X=In(x), A=In(a),</pre>	39 X(> Z	112+LBL 13
B=b	40 SIGH	113 RCL 21
	41 ST+ L	114 X(> 15
$(12)_{x} = \Theta \left[(\ln(y) - \ln(a)) / b \right]$	42 RCL 08	115 STO 21
	43 RCL 09	116 RCL 22
	44 X<> L	117 X(> 16
	45 RTN	118 STO 22
	46 RCL 08	119+LBL 09
The survey fit program determines the least survey fit	47 RCL 09 48+LBL a	120 RTN
The curve fit program determines the least squares fit for the equation $Y = B*X + A$.	49 SF 10	121+LBL 11 122 RCL 12
ior me equation i - D'A + At	50 GTO 06	123 X(> 17
_	51+LBL B	124 STO 12
(13) $B = (\Sigma XY - (\Sigma X)(\Sigma Y)/n)/(\Sigma X^2 - (\Sigma X)^2/n)$	52+LBL 02	125+LBL 14
	53 CF 08	126 RCL 19
(14) $A = (\Sigma Y - (B)(\Sigma X))/n$	54 CF 09	127 X(> 13
	55 STO 07	128 STO 19
	56 2	129 RCL 20
(15) $r^2 = (\Sigma XY - \Sigma X\Sigma Y/n)^2$	57 X(Y?	130 X(> 14
	58 SF 09 59 /	131 STO 20
$((\Sigma X^2 - (\Sigma X)^2/n)(\Sigma Y^2 - (\Sigma Y)^2/n))$	60 FRC	132 RTN 133+LBL 12
((2 X) = (2 X) / N)(2 Y = (2 Y) / N))	61 X=0?	134 RCL 23
	62 SF 88	135 X(> 17
The standard four curve type equations (1), (4), (7),	63 8	136 STO 23
and (10) are all special cases of $Y = B*X + A$ which	64 ST+ 07	137 XEQ 14
is equations (2), (5), (8), and (11). Note the	65 XEQ IND 07	138 GTO 13
distinction between upper and lower case letters. The	66 RCL 17	139+LBL C
user inputs and outputs are always in terms of the	67 RCL 13	140+LBL 03
lower case letters. For example, the data input	68 RCL 15	141 FS? 09
sists of pairs of the form (x,y) and the	69 STO 0 9 70 *	142 LN 143 PCL 88

sists of pairs of the form (x,y) and the fficients the program determines are a and b. In all four cases b=B. The upper case letters are the quantities that the program uses to "conceptually" work with all four curve types simultaneously.

70 * 71 RCL 18

72 / 73 -

Listing continued on page 118.

143 RCL 08

146 FS? 88

144 * 145 RCL 09

Listing continued from page 117.

Routine List	ting For: CV
147 LN	171+LBL E
148 +	172+LBL 05
149 FS? 08	173.
150 EtX	174 STO 25
151 RTN	175 4
152+LBL D	176 STO 07
153+LBL 04	177+LBL 07
154 FS? 08	178 RCL 07
155 LN	179 XEQ B
156 RCL 09	180 RCL 25
157 FS? 08	181 RCL 10
158 LN	182 ABS
159 -	183 X<=Y?
160 RCL 08	184 GTO 15
161 /	185 STO 25
162 FS? 09	186 RCL 07
163 E†X	187 STO 26
164 RTN	188+LBL 15
165+LBL e	189 DSE 07
166+LBL 00	190 GTO 07
167 11.024	191 RCL 26
168 XROM "BC"	192 XEQ 02
169 E	193 RCL 26
170 RTN	194 END

LINE BY LINE ANALYSIS OF CV

Line 02 provides access to all numeric labels within CV.

'nes 03-45 perform the function of inputting the next ta point. This is the "sigma plus" subroutine. All summations are updated when this routine is called. These summations include sums of

x, x^2 , y, y^2 , xy, ln(x), $ln(x)^2$, ln(y),

ln(y)², ln(x)ln(y), xln(y), yln(x).

Lines 48-50 perform the "sigma minus" function for deleting a data pair. Note that flag 10 is set and then a jump is made into the "sigma plus" function.

Lines 51-107 calculate the parameters a, b, and r, for the curve type using formulas (13), (14), and (15). b is stored in R08, a is stored in R09 and r is stored in R10.

Lines 108-138 are a series of intertwined subroutines which are called in the curve fit process. These routines simply perform a series of register exchanges which place the proper sums in the sigma registers for the calculation of the parameters a, b, and r depending on the curve type selected. Since the exchange is performed twice (once in line 65 and once in line 98) all registers are returned to their original state.

Lines 139-151 perform the calculation of the predicted y value using formulas (1), (4), (7), and (10).

Lines 152-164 perform the calculation of the predicted value using formulas (3), (6), (9), and (12).

Lines 165-170 perform the initialization for the program by clearing the data registers used to accumulate the sums the program requires.

Lines 171-194 perform the function of selecting the best curve type among the four curve types that the program handles.

NUMERIC LABELS/FUNCTIONS IN THE CV PROGRAM

The following list gives a correspondence between numeric labels and subroutines to be called as part of **CV** programs. To call a subroutine function from one of your own programs, first store the number corresponding to the desired function in data register R06. Then use the instruction XEQ **CV** as part of your program. The execution times for the more significant subroutines are in seconds and are shown in parentheses.

Numeric Label Number in RO6	Keyboard Label	Subroutine Function
00	e	Initialize/clear
01	A	sigma registers (3.2 sec) Sigma Plus function (2.2 seconds)
02	В	Solve Type j (1: 2.9 seconds) (2: 3.5 seconds) (3: 3.4 seconds) (4: 4.3 seconds)
03	С	Predict y
04	D	Predict x
05	E	Solve Best Curve Type (15.7 seconds)
06	a	Sigma Minus function provided F10 is set
09 r	none	provides simple RTN so no register exchange takes place
10 r	ione	exchange register pairs R11&R17, R15&R21, R16&R22
11 г	one	exchange register pairs R12&R17, R13&R19, R14&R20
12 r	ione	exchange register pairs R23&R17, R13&R19, R14&R20 R15&R21, R16&R22
13 r	one	exchange register pairs R15&R21, R16&R22
14 r	one	exchange register pairs R13&R19, R14&R20

Note that to use the Sigma Minus function you must set flag 10 before calling label 06.

Note that labels 09-14 are not represented by functions on the keyboard. They are only internal subroutines within GV which would seem to perform no useful purpose outside of GV. However, they are documented here only because they may provide the truly curious PPC member with some "hidden" functions that they will no doubt find some application for. Those who never read this will never know what they are missing.

REFERENCES FOR CV

1. Gary M. Tenzer (1816) PPC Journal " Curve Fitting Made Easy": I V5N1P29

 II
 V5N3P9

 III
 V5N6P29

 IV
 V6N3P16

 V
 V7N2P20

VI V7N5P46

2. Cuthbert, Daniel and Wood, Fred, "FITTING EQUATIONS TO DATA," John Wiley, New York, 1971

CONTRIBUTORS HISTORY FOR CV

Curve fitting has long been a topic of great interest among PPC members. Gary M. Tenzer (1816) has written several articles introducing this topic and is responsible among others for the development of curve fit programs for the HP-67 and the HP-41C.

The key equation for this program, Y = B*X + A, was taken from a program written by Keith Jarrett (4360). This one equation unifies the four types of curves fit and greatly simplifies previous programs that accomplish the same functions, but less elegantly. John Kennedy (918) did the final coding of the GV program. Bill Barnett (1514) provided CVPL.

FINAL REMARKS FOR CV

is not the most powerful curve fit program ever written for a programmable calculator. Limited space did not allow a more comprehensive routine which would fit up to 16 different types of curves. Only the

standard 4 types are present in CV. CV can be extended by those wishing to take advantage of its subroutines.

FURTHER ASSISTANCE ON CV

NOTES

TECHNICAL	DETAILS	
XROM: 20,08 C		
Stack Usage: 0 T: used 1 Z: used 2 Y: used 3 X: used 4 L: used Alpha Register Usage: 5 M: not used 6 N: not used	Flaq Usage: 04: not used 05: not used 06: not used 07: not used 08: used CV type 09: used CV type 10: used Σ - function	
<pre>7 0: not used 8 P: not used Other Status Registers: 9 Q: not used 10 F: not used 11 a: not used 12 b: not used</pre>	25: not used <u>Display Mode:</u> not used <u>Angular Mode:</u> not used	
<pre>13 C: not used 14 d: not used 15 e: not used ΣREG: used Data Registers: ROO: not used</pre>	Unused Subroutine Levels: 4 Global Labels Called: Direct Secondary BC none	
R06: function call # R07: CV type R18: n R08: b, x R19: Σln(x) R09: a, y R20: Σln(x) ² R10: r R21: Σln(y) R11: Σxin(y) R22: Σln(y) ² R12: Σyin(x) R23: Σln(x)*in(y) R13: Σx R24: n R14: Σx ² R25: best r R15: Σy R26: best	A, B, C, D, E, a, e, 00, 01, 02, 03, 04, 05, 06, 07, 09, 10, 11, 12,	
R16: Σy² type 13, 14, 15 R17: Σxy Image: See NUMERIC LABELS in the Component of the component of th		
Interruptible? yes Execute Anytime? no Program File: CV Bytes In RAM: 292 Registers To Copy: 42	Other Comments: The subroutine which fits a given curve type should be allowed to run to its full conclusion so that a double register exchange is properly completed	

SV - SOLVE ROUTINE

This routine is a simple root solving program which will approximate a solution to an equation of the form: f(x)=0 using the Secant Method (a simplified form of Newton's Method). SV will find only one "oot at a time. The program requires an initial guess and an initial step size. The output is an x value which most closely makes f(x)=0. A flag may be set to display the successive approximations as they converge to the final answer. Convergence depends on the initial guess. Accuracy depends on the display setting.

Example 1: Use SV to find the two roots of the

quadratic equation $x^2 + 2x - 15 = 0$.

1. Insure a minimum SIZE 010.

2. Select a display setting of SCI 5. The routine will end when two successive approximations are rounded and found to be equal according to the display setting.

3. Set flag F10 to view the successive approximations. 4. The function on the left side of the equation must be programmed as a subroutine. The input to this subroutine, namely x, is assumed to be in the X-register and can be recalled from R07. The output from this subroutine, namely f(x), is also to be left in the X-register. For this example the following routine may be programmed in RAM program memory.

		"FX1"
02	xt2	
03	LAS	TX
04	2	
05	¥	
06	+	
07	15	
08	-	
09	RTN	

5. The name of the global label "FX1" should be stored in R06. Go into alpha mode and key "FX1" ASTO 06. 6. The initial guess (nonzero) is to be entered along with an initial step size which may be zero or may be a small number compared to x. If a 0 step size is entered then the program will calculate the first step as 1% of the initial guess x. The program will also accept a non-zero value as the initial step size. For most applications and for this example use 0 as the initial step size. Choose x=7 as the initial guess for x. Key 0 ENTER[†] 7 7. XEQ "SV". The following consecutive approximations will be displayed.

> 7.00000+00 6.93000+00 3.98682+00 3.30024+00 3.03190+00 3.00115+00 3.00000+00

The final solution is returned after about 8 seconds. The true answer is exactly x=3. Since the above quadratic has two roots we will key in another initial guess to search for the other root. This time we will guess x = -10. Key 0 ENTER 10 CHS and XEQ "SV". The following sequence of numbers will be displayed.

-1.00000+01	I
-9.90000+00)
-6.36872+00)
-5.47003+00)
-5.06539+00)
-5.00360+00)
-5.00003+00)
-5.00000+00)

The true answer this time is exactly x = -5.

COMPLETE INSTRUCTIONS FOR SV

(Keyboard Operations):

To calculate a root of f(x)=0:

1) Select SIZE. The minimum size required by SV is SIZE 010. The storage requirements for constants and coefficients associated with the function f(x) may dictate a larger size.

2) Select display setting. The display setting will generally determine when SV ends. If an exact solution is found then SV will end on the next iteration, otherwise SV rounds the last two approximations and ends if those rounded values are equal. In general, a display setting of SCI n will produce (optimistically) a solution correctly rounded to n+1 significant figures. A display mode of SCI or ENG is generally preferred to a FIX mode.

3) Specify display option. Flag 10 controls a display option. If F10 is set then the successively calculated approximations will be displayed. In this manner the user may view the progress of the iterations. This is especially recommended in the SV routine since SV may fail to converge if the initial guess is too far away from an actual root. Even when the values stabilize they may oscillate and it is a simple matter for the user to manually stop the program. If F10 is clear only the final x-value is returned.

4) Program the function f(x)=0. The function f(x) represented by one side of the equation must be programmed as a subroutine in program memory which starts with a global label name and ends with a RTN or END instruction. The label name should be of six or less characters and should be stored in R06. The input x and the output f(x) are both assumed to be in the X-register. The input x may also be recalled from R07. Since global label search begins from the bottom of program memory, it is advisable to place f(x) near the bottom of program memory. The f(x) program should not use registers R06-R09 and should not disturb flag F10.

5) Store the global label name from step 4) (six or less characters) in R06. The function subroutine call will be made via an XEQ IND 06 instruction.

6) Specify initial step size and initial guess. SV requires two input values. The first input is the step size which the program uses to determine the approximation for the derivative at the initial guess. The second input is the initial guess and is used as the starting x value by the program. The closer the initial guess is to the true solution the quicker the solution is found. Do not use 0 as an initial guess. If zero is entered as the initial step size then the program will automatically calculate 1% of x as the acutal step size. A zero step size should prove adequate for the majority of applications. However, the user may enter a non-zero step size which may be finer or coarser than 1% of the initial x.

These two values are keyed in as:

step size ENTER¹ guess

7. XEQ " **SV**". If F10 is set the program will display the consecutive approximations. If a printer is plugged in and turned on these approximations will be printed. The final solution will be left in the X-register when the program ends.

MORE EXAMPLES OF SV

Example 2: Solve $f(x) = x^3 - x - 1 = 0$.

1) SIZE 010 minimum

2) Set display mode as SCI 6.

3) Set flag F10 to view the approximations.

4) Key the following routine for f(x) into program memory:

LBL*FX2 ENTER X 2 1 -* 1 -RTN

5) Key "FX2" in the alpha register and press ASTO 06.
6) Key in the initial step size as 0 and key in the initial guess as x=4. Key 0 ENTER 4.
7) XEQ " SV".

The following sequence of approximations will be displayed:

4.000000+00 3.960000+00 2.731772+00 2.226515+00 1.780222+00 1.522190+00 1.382556+00 1.333776+00 1.325185+00 1.324722+00 1.324718+00

The final solution is returned after about 13 seconds. The solution is correct to the digits displayed.

Example 3: Solve
$$f(x) = x^2 - 3^2x^2 + 4 = 0$$
.

1) SIZE 010 minimum

2) Set display mode as SCI 4.

- 3) Set flag F10 to view the approximations.
- 4) Key the following routine for f(x) into program

memory:

LBL*FX3 X 12 LAST X 3 -* 4

RTN

5) Key "FX3" in the alpha register and ASTO 06. 6) Key in an initial step size of 0 and an initial guess of -2. Key 0 ENTER 2 CHS 7) XEQ " SV ". The following approximations will be displayed:

-2.0000+00
-1.9800+00
-1.3283+00
-1.1289+00
-1.0229+00
-1.0018+00
-1.0000+00

The final answer is returned after about 8 seconds. The true solution is exactly x = -1.

The following examples contain abbreviated instructions.

Example 4: The following equation is known as Kepler's equation:

x - E*SIN(x) - m = 0

and plays an important role in astronomy and astrodynamics (space travel). It can be programmed as follows:

LBL*FX 4 ENTER† SIN	
RCL 01	(Note: R01=E)
RCL 02	(Note: R02=m)
RTN	

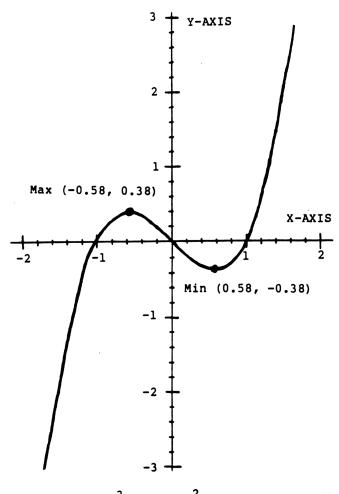
Set RADIANS angle mode. The equation can now be solved for any values of E (R01) and m (R02). When E=0.2 and m=0.8 the function has only one root (9.64334-01) which can be found with any initial guess.

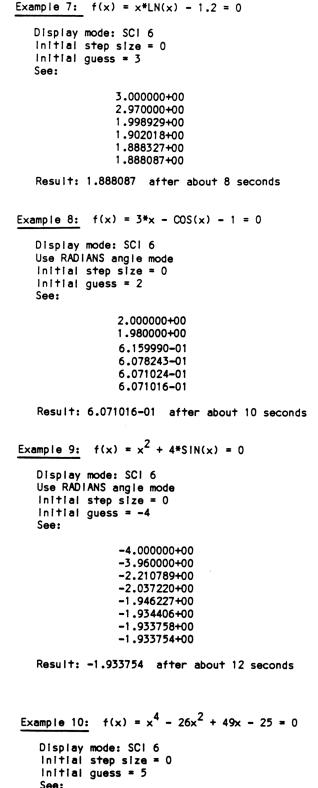
Example 5: SV can be used to find maxima and minima of a function by solving for zeros of its derivative. For example, if f(x) = sin(x)/x then the

derivative $f'(x) = [x*\cos(x) - \sin(x)]/x^2$ Zeros of f' occur where the numerator is 0. Consequently, solutions can be found by applying SV to the following function which represents the numerator $g(x) = x*\cos(x) - \sin(x)$

LBL*GX 5
ENTER
cos
*
RCL 07
SIN
RTN

Assuming SCI 6 display mode and RADIANS angle mode. Store "GX5" in R06. Key in small initial guesses using a step size of 0 and SV will find the first few roots as 0, \pm 4.49341+00, \pm 7.72525+00. (Note that instead of taking the derivative algebraically, the ROM routine FD might be used).


PPC ROM USERS MANUAL


Example 6: Use SV to find all three roots of the cubic equation: $x*(x^2-1) = 0$

The following should be programmed:

LBL*FX6 ENTER1 X12 1 -* RTN

A sketch of the graph of this function will prove useful in understanding how the inital guesses determine which root is found.

GRAPH OF $Y = x^3 - x = x(x^2 - 1) = x(x+1)(x-1)$

The initial step size is 0 for each of the guesses suggested below. An initial guess greater than 0.6 for this example will find the root x=1.0, while a guess between -0.49 and +0.49 will find the root at x=0.0. However, guesses too close to the local peaks of the function at $x=\pm1/\sqrt{3}$, where the slope of the tangent line is zero, lead to oscillations that fail to converge. Try an initial guess of x=0.58 to observe this behavior. This example also illustrates that the root found is not necessarily the one nearest to the initial guess. Try x=0.52 which finds the root x = -1.0.

Result: 3.875775 after about 14 seconds

5.000000+00

4.950000+00

4.310588+00

4.077156+00

3.927333+00

3.883035+00 3.876065+00

3.875777+00

3.875775+00

C21

Continuting this same example for another root: Initial step size = 0 Initial guess = -10 See:

> -1.000000+01 -9.900000+00 -7.959395+00 -7.135530+00 -6.438967+00 -6.086301+00 -5.945260+00 -5.917701+00 -5.915863+00 -5.915842+00

Result: -5.915842+00 after about 14 seconds

FURTHER DISCUSSION OF SV

SV is not a sophisticated root solver and is subject to all the difficulties and error traps that confront all other root solvers. Limited space in the PPC from did not allow protection schemes to detect or rectify possible trouble areas. The method used, strictly speaking, is the Secant Method, however, it can be considered a form of Newton's Method where a numerical approximation is used for the derivative. A secant line is used to approximate the true tangent line. If SV fails to converge then another initial guess must be tried. SV can be effective as a subroutine in a program provided the user has knowledge of the range of appropriate values for the given function.

The display setting will help control the accuracy of the final result. When in SCI n display mode the final answer will (usually) be accurate to n+1 significant digits. However, sometimes this is not the case and the final answer will not be as accurate as the display setting would indicate. Every floating point operation in a computational process can give rise to rounding error which, once generated, may then be increased in subsequent operations.

For example, let $f(x) = x^2 - 6^*x + 9$ and use SV to solve for f(x)=0. In FIX 9 the answer SV returns may be 3.00030072 which is accurate to five digits only. The true solution is a double root at x=3. Thus the display setting has not determined the accuracy in this example. This is basically caused by using only ten digits internally in the calculator, causing each and every calculation to have its solution rounded to ten digits. The root solver itself cannot then be held to ransom when the f(x)routine is affected by rounding errors.

This example highlights the action of \mathbb{SV} when the secant line is horizontal, that is, when f(a)=f(b) where a and b are successive approximations. This situation may occur at multiple roots where the first derivative shares a root with the original function. (When the first derivative is zero the tangent line is horizontal). In general, do not select a display n value any larger than necessary. The use of SCI or ENG display modes are generally preferred to the FIX display mode. And do not blindly accept any solution given by this or any other root-solving program. Any potential real solution can be validated by applying the f(x) subroutine to see how close f(x) really is to 0.

Because the HP-34C calculator's SOLVE routine uses a similar method as SV (with many refinements), users are urged to study Reference 5. In that informative article some of the problems of root solving and a description of the mathematics of the secant method are discussed. Reference 1 provides a broad background to the subject. Further information may be found in most university and college libraries.

THE SELECTION OF A METHOD FOR SV

The oldest know method of root-solving is the Method of False Position, or Regula Falsi. Commencing with two estimates, lying on either side of the actual root, inverse linear interpolation is applied to produce a new estimate. Here, a linear function (a straight line) is used to approximate the true function f(x) over the interval of interest. This can be seen to be "reasonable" approximation so long as the interval is "small". As the two estimates must always straddle or bracket the root, convergence is always guaranteed. Of course, after calculating the new estimate, a decision has to be made as to which previous estimate is to be discarded.

The Method of False Position has a unity order of convergence, making the iteration time reasonably long. However, the solution is always obtained.

A method similar to False Position is the Secant Method. Although the mathematics of the two methods are identical, the difference lies in the fact that the Secant Method uses the approximations in strict sequence. Thus, the bracketing of the root is no longer necessary, and a secant is used to approximate the function f(x) over the interval of interest. Then, inverse linear interpolation is applied to produce the next estimate of the root. The Secant Method's order of convergence is approximately 1.62, which is higher than the Method of False Position, but convergence to the root is no longer guaranteed.

Both the Method of False Position and the Secant Method are in the class of two-point iterative methods, which, while the order of convergence is not high, nevertheless have high stability.

Another popular method derived from calculus using a Taylor Series is commonly known as the Newton-Raphson, or Newton's Method. In this method a tangent line to the function is used to determine the direction and amount of displacement to move from the current estimate to the new estimate. Newton's Method belongs to the class of one-point iterative methods. Newton's Method is the official and familiar name of tangent sliding philosophy, and has an order of convergence of two.

The mercurial properties of Newton's Method arise from its use of derivative information gathered at one point. Both the function and its derivative must be evaluated at each iteration. (This also results in a greater programming effort for two functions are really being evaluated). The time for an iteration is longer than the False Position and Secant Methods, which both require only one function evaluation per iteration. However, the convergence rate of Newton's Method is greater than both.

Comparison of Methods

- A. Method of False Position.
 - Advantages:
 - 1. Convergence is guaranteed.
 - 2. Only one function evaluation is needed at each iteration.

Disadvantages:

- 1. Low (unity) order of convergence.
- 2. A decision is needed as to which estimate to
- discard to insure root-bracketing occurs. 3. The root-bracketing requirement prevents its
- use at multiple, even-order roots.
- B. The Secant Method.
 - Advantages:
 - 1. Medium (approx. 1.62) order of convergence.
 - 2. Estimates are used in strict sequence, so no decision is needed on which estimate to discard.
 - 3. Only one function evaluation is needed at each iteration.
 - 4. Can be very stable.
 - Disadvantages:
 - 1. Convergence is not always guaranteed.
 - 2. May have difficulty at multiple even-order roots.
- C. Newton's Method.

Advantages:

- 1. High (2.0) order of convergence. Disadvantages:
- 1. Convergence is not always guaranteed. 2. Both the function and its derivative must be
- evaluated at each iteration, which increases the time per iteration.
- 3. The derivative must be known explicitly.
- 4. Can be very unstable.
- 5. Has difficulty at multiple, even-order roots, where the function and its first derivative both have the same root.

Summarv

From the above comparison, the Secant Method was considered to be the optimum algorithm, and was selected for SV. It combines a reasonable rate of convergence, a (usually) stable two-point step, uses the calculated approximations in strict sequence, and does not require evaluation of the derivative, dispensing with the need to provide the derivative explicitly.

ROOT SOLVING DIFFICULTIES - A PRIMER

One of the most frequently occuring problems in scientific work is to find the values of x for an expression f(x) which will make f(x)=0. Those values of x are called the roots of the equation f(x)=0. The function may be given explicitly as, for example, a polynomial, or as a transcendental function. In rare caes it may be possible to obtain the exact roots by algebraic manipulations. In general, however, we can hope to obtain only approximations to the roots relying on some iterative computational procedure to produce those approximations.

In the year 1225 Leonardo of Pisa studied the equation:

$$f(x) = x^3 + 2^*x^2 + 10^*x - 20$$

and was able to produce the root of 1.368808107.

Nobody knows by what method Leonardo found this value, but it was a remarkable achievement for his time.

Simply put, all we require are those values of x which will make f(x)=0. It should be easy, so why all the fuss? The basic difficulty stems from the fact that our root solving methods tend only to use the function expression to numerically evaluate f(x) and have no analytical knowledge of the function. It they did, better starting guesses and better exit criteria could be selected. More importantly, the best root solving method to use for a particular function could be selected.

Easy though root solving may seem, and when coupled with one of the popular methods, e.g., Newton's Method, Secant Method, Bisection Method, it may come as a surprise to know that the search for the perfect root solver is no less difficult than the search for the Holy Grail! For every root finding method put forward, a situation can be provided which will cause the method to fail and deny us the solution.

What can be done? A root solver is simply a computational process which uses known facts (data) to calculate a better approximation to the root. The basic difference among root solving methods is the way in which the known facts are used to calculate the improved estimate.

If we know situations that cause our root solver to fail to find the root, we can provide assistance by enhancing the basic method with strategies to detect these problem situations and allow an escape from them. How many difficulties may confront a root solver? How many strategies do we design into it? One, five or one hundred? If we limit our root solver to solve only a specific class of problems we may be able to implement some strategies to overcome the typical problems encountered by that class.

Starting Values

All root solvers require starting values whether they be entered manually as in SV or use some set of values, e.g., 1 and 10. If the starting value is not "close" to the root, our selected method may step away from the root, making the problem worse.

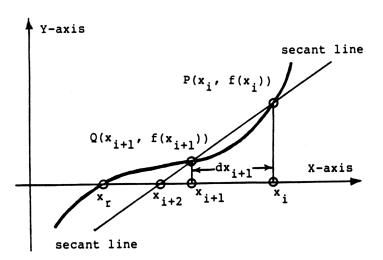
Therefore the accuracy of the starting values (guesses) can be seen to be as important as the selected root solving method and its inbuilt strategies. Do we have strategies for determining an approximation to the root we seek? In some cases the answer is yes.

Exit Criteria.

When the root solver has located a root, it exits the iteration process, gives us the answer and stops. How does the root solver know when it really has found a root? Our inbuilt exit criteria must apply certain tests to the known facts and assess if a root has been found. Again, situations can be provided to fool the exit tests, and cause execution to stop when really no root has been found (i.e., no root exists).

Should we have several exit tests built into the program? Under what conditions should each be invoked? If only the answers were simple!

Numerical instability and round off errors.


Some root solvers can exhibit instability in certain

conditions. Do we know how many of these conditions exist for any one root solver? How do we overcome these problems? As all floating point calculations are rounded to ten digits by the calculator a further difficulty arises due the propogation of these errors.

Because of the enormous difficulties which may confront a root solving process, SV has been written as an elementary routine, with no refinements or strategies included. It is left to the user to provide such strategies, by observing the behavior of the approximations, and taking action should divergence occur. A little experience with particular problems will provide guidance. Readers are urged to consult Reference 5.

FORMULAS USED IN SV

Let f(x) be the function whose root x_r we desire. x_{i+1} and x_i are the two previous approximations.

GRAPH OF GENERAL FUNCTION WITH SECANT LINE SHOWING APPROXIMATION X FOLLOWING X AND X i+1

The slope of the secant line through points P and Q is given by:

$$[f(x_{1+1}) - f(x_1)]/[x_{1+1} - x_1]$$

Letting $dx_{i+1} = x_{i+1} - x_i$ we have as the equation of the secant line through points P and Q:

$$y - f(x_{1+1}) = ([f(x_{1+1}) - f(x_1)]/dx_{1+1})*(x - x_{1+1})$$

Hence,

(1)
$$x_{i+2} = x_{i+1} + dx_{i+2}$$

where

(2)
$$dx_{1+2} = \frac{(dx_{1+1})*f(x_{1+2})}{f(x_{1+2}) - f(x_{1+2})}$$

The initial value x_0 is input by the user and dx_0 is usually taken as a small fractional part of x_0

For example, if we assume $f(x_{-1})=0$ and $dx_0=(.01x_0)$ then $x_1 = (.99)x_0$

Execution halts when x_{i+2} and x_{i+1} are rounded and found to be equal.

Routine Listi	ng For: SV
91+LBL C 92+LBL "SV" 93 STO 07 94 E 95 % 96 RCL Z 97 X=0? 98 X<>Y 99 STO 09 100 CLST 101+LBL 04 102 RCL Z 103 STO 08 104 RCL 07 105 FS? 10 106 VIEW X 107 XEQ IND 06	108 ST* 09 109 ST- 08 110 RCL 09 111 RCL 08 112 X*0? 113 / 114 STO 09 115 X<> 07 116 ST+ 07 117 RND 118 RCL 07 119 RND 120 X*Y? 121 GTO 04 122 RCL 07 123 RTN

LINE BY LINE ANALYSIS OF

Lines 91-101 initialize the program by storing the initial guess X_0 in R07 and store the initial step

size in RO9. Note that if the user has input 0 as the initial step size then lines 94 & 95 and lines 97 & calculate and select the value 0.01*X₀ as the actual step size.

Lines 101-121 are the main loop in the program. At LBL 04 X, Y, and T are assumed to be scratch and $f(X_1)$

is assumed to be in Z. The next approximation is calculated via formula (1) and is stored in R07 (line 116). Next, the two most recent approximations are rounded and tested for equality in line 120. A branch is then made back to LBL 04 unless the rounded values are equal.

Lines 122 & 123 recall the final solution and end the routine.

REFERENCES FOR SV

- 1. Forman S. Action, NUMERICAL METHODS THAT WORK, Harper and Row, New York, 1970
- 2. S. D. Conte and C. de Boor, ELEMENTARY NUMERICAL ANALYSIS, McGraw-HIII, 1972
- John Kennedy (918) PPC JOURNAL "Method of Successive Bisections" V5N8P19. See also V6N5P10
- 4. Chris Stevens, PPC JOURNAL, V5N8P45, Sept.-Oct. 1978
- William M. Kahan, "Personal Calculator Has Key To Solve any Equation f(x)=0", Hewlett-Packard Journal, December 1979.

PPC ROM USERS MANUAL

CONTRIBUTORS HISTORY FOR

John Kennedy (918) wrote the SV program for the HP-41C from a previous HP-25 program. Graeme Dennes (1757) and Richard Schwartz (2289) made suggestions for improvements in the accuracy and overall program operation. Harry Bertucelli (3994) suggested register usage to allow SV to be used with IG. Graeme Dennes(1757) and Iram Weinstein (6051) contributed to the documentation of SV.

FINAL REMARKS FOR SV

SV needs improvement in almost all areas. sv is only a basic routine designed to be used primarily from the keyboard where the user may watch the convergence (or lack thereof) and take action to halt SV and make a new guess. SV lacks all of the sophistication of the SOLVE function on the HP-34C calculator.

FURTHER ASSISTANCE ON

NOTES

XROM: 20, 10	SV SIZE: 010 minimum
Stack Usage:	Flag Usage:
• T: used	04: not used
1 Z: used	05: not used
2 Y: used	06: not used
3 X: used	07: not used
4 L: used	08: not used
Alpha Register Usage:	09: not used
5 M: not used	<pre>10: displays successive</pre>
6 N: not used	approximations when
7 O: not used	F10 is set
8 P: not used	25: not used
Other Status Registers:	<u>Display Mode:</u>
9 Q: not used	SCI n recommended
10 F: not used	controls accuracy
11 a: not used	<u>Angular Mode:</u>
12 b: not used	not used, but may be
13 C: not used	required by function
14 d: not used	<u>Unused Subroutine Levels:</u>
15 e: not used	4
$\sum REG: not used$ $\frac{Data Registers:}{R00: not used}$ R06: function LBL name	<u>Global Labels Called:</u>
R07: point \times_1	<u>Direct Secondary</u>
R08: f(\times_1)	function none
R09: d \times_1	LBL in RO6
R10: not used	<u>Local Labels In This</u>
R11: not used	<u>Routine:</u>
R12: not used	C, 04
display setting, and in Peripherals Required:	none
Interruptible? yes Execute Anytime? no Program File: Bytes In RAM: 51 Registers To Copy: 43	<u>Other Comments:</u>

TECHNICAL DETAILS

(256)

BC - BLOCK CLEAR

This block clear routine may be used to store zeros in a block of registers. But uses the complete form of the general block control word bbb.eeeii and can thus be used to clear blocks of consecutive registers or can be used to skip over registers within a block.

Example 1: Use BC to clear registers R05-R15.

Before clearing these registers we will first use the block increment routine ET to load them with data. (The PPC ROM routines ET and EV are extremely convenient for loading and viewing blocks of registers). Key 5.015 ENTER† 1 ENTER† and XEQ "ET". The consecutive integers from 1-11 should now be loaded in R05-R15 inclusively. To convince yourself, clear flags F09 and F10 and key 5.015 XEQ "EV". The block view routine EV should run through the registers and show the contents as described.

Now to clear these registers, simply key 5.015 and XEQ "EC". If you again use EV to view these registers you won't see anything because they have been cleared.

Example 2: Use BC to clear every 5th register starting with R07 and ending with R102.

Assuming you have the available memory and that the current size is at least 103, simply key in 7.10205 and XEQ "IGG". The registers R07, R12, R17, R22, R27, R32, R37, R42, R47, R52, R57, R62, R67, R72, R77, R82, R87, R92, R97, and finally R102 should all contain zero. These registers may be inspected by keying in 7.10205 and XEQ "IGV". Since IEV skips over registers which are zero, none of the above registers will show up in the display; only a series of short TONES will be heard as IEV runs through the registers.

COMPLETE INSTRUCTIONS FOR BC

1) The only input to BC is the block control word which is of the form bbb.eeeii.

2) EC contains an internal ISG loop that is controlled by bbb.eeeii. EC stores and uses this block control word in the Last X register. The Y, Z, and T registers are all preserved by EC. The X register contains 0 when EC ends. The following shows the stack contents on input/output from EC.

Input to BC :	Output from BC :
т: Т	T: T
Z: Z	Z: Z
Y: Y	Y: Y
X: bbb.eeeii	X: 0
L: L	L: final control word

MORE EXAMPLES OF BC

Example 3: Use BC to clear registers R13-R49 inclusive.

Key 13.049 and XEQ " BC ".

Example 4: Use RC to clear the even numbered registers from R02-R100.

Key 2.10002 and XEQ " BC ".

Example 5: Use EXE to clear the odd numbered registers from R01-R99.

Key 1.09902 and XEQ " BC ".

Routine Listi	ng For:	BC
208+LBL *BC* 209 SIGH 210 CLX 211+LBL 13 212 STO IND L 213 ISG L 214 GTO 13 215 RTN		

LINE BY LINE ANALYSIS OF BC

Its is a very short routine. The SIGN function at line 209 is used to store the block control word in LAST X which is used as an ISG counter in the loop in ISC.

CONTRIBUTORS HISTORY FOR BC

The Burnoutine and documentation were written by John Kennedy (918) based on the suggestion from Richard Schwartz (2289) that where possible, the block routines should make full use of the block control word.

FINAL REMARKS FOR BC

The one area of improvement for a future BC routine would be greater speed.

NOTES

NOTES

1s e: not used 5 ZREG: not used Data Registers: R00: R06: the data registers used R07: are those R08: defined by R09: the block R10: R11: R12: I1: R12: I2: I1: Execution Time: depends on block size, clears approximately 7.8 registers per second Peripherals Required: Interruptible? yes Execute Anytime? no Program File: INTERPORTED Bytes In RAM: 18 Other Comments: none		DETAILS
Stack Usage: Flag Usage: 0 T: not used 04: not used 1 Z: not used 05: not used 2 Y: not used 06: not used 3 X: 0 07: not used * L: ISG counter 08: not used Alpha Register Usage: 09: not used * N: not used 09: not used * N: not used 25: not used * N: not used 25: not used * N: not used 25: not used * 0: not used 25: not used * 1 a: not used not used * 1 b: not used not used * 1 a: not used 10: not used * 1 a: not used 11 a: not used * 1 a: not used 11 a: not used * 1 a: not used 12 b: not used * 1 a: not used 13 c: not used * 1 b: not used 13 c: not used * 1 b: not used 13 c: not used * 1 b: not used 13 c: not used * 1 b: not used 13 c: not used * 12 b: not used 14 c: not used * 13 c: not used 13 c: not used * 14 c: not used 13 c: not used		
0 T: not used04: not used0 T: not used05: not used2 Y: not used06: not used3 X: 007: not used4 L: ISG counter08: not usedAlpha Register Usage:09: not used5 M: not used10: not used6 N: not used25: not used9 Q: not used25: not used10 +: not used25: not used11 a: not used11 a: not used12 b: not used11 a: not used13 c: not used11 a: not used14 d: not used11 a: not used15 e: not used52REG: not usedGlobal Labels Called:Data Registers:Direct SecondaryR00:noneR11:Routine:R12:13I12:13I13I13Execution Time: depends on block size, clearsapproximately 7.8 registers per secondPeripherals Required:No special SIZEregisters ron9Program File:18Bytes In RAM: 1818	XROM: 20, 43	SIZE: depends on block used
1 Z: not used 05: not used 1 Z: not used 05: not used 2 Y: not used 06: not used 3 X: 0 07: not used 4 L: ISG counter 08: not used Alpha Register Usage: 09: not used 5 M: not used 09: not used 7 0: not used 10: not used 9 P: not used 25: not used 9 P: not used 25: not used 10 F: not used 25: not used 11 a: not used Angular Mode: not used 12 b: not used not used 13 c: not used Intervet 14 d: not used Unused Subroutine Levels 15 e: not used 5 ZREG: not used Giobal Labels Called: Direct Data Registers: R00: Direct R06: the data R07: are those Execution Time: depends on block size, clears R08: defined by R09: the block R11: Local Labels In This R12: 13 Local Labels In This Routine: 13 Interruptible? yes Other Comments: Execute Anytime? no No special SiZE	<u>Stack Usage:</u>	
2 Y: not used06:not used3 X: 007:not used4 L: ISG counter08:not usedAlpha Register Usage:09:not used5 M: not used10:not used6 N: not used25:not used7 0: not used25:not used8 P: not used25:not used9 Q: not used10:not used10 F: not used10 F: not usednot used11 a: not usedAngular Mode:not used12 b: not used10 H: not usedIndex13 c: not usedUnused Subroutine Levels15 e: not usedGlobal Labels Called:Data Registers:DirectSecondaryR00:are thosenoneR01:registers usedR02:R11:R12:Local Labels In ThisR12:Time:13Execution Time:depends on block size, clearsapproximately 7.8 registers per secondPeripherals Required:nonenoneIndexInterruptible? yesOther Comments:Execute Anytime? noNo special SiZEProgram File:DNo special SiZErequirement isnecesary providedthe data blockalready exists	• T: not used	04.
3 X: 0 07: not used 4 L: ISG counter 08: not used Alpha Register Usage: 09: not used 5 M: not used 10: not used 6 N: not used 25: not used 7 0: not used 25: not used 9 0: not used 25: not used 10: not used 25: not used 10: not used 25: not used 10: not used 25: not used 11 a: not used 10: not used 12 b: not used 10: not used 13 c: not used 10: unused Subroutine Levels 15 e: not used 5 ZREG: not used Global Labels Called: Data Registers: 0: R00: are those R08: defined by none R10: 13 R11: Local Labels In This R09: the block none R10: 13 R11: Local Labels In This Routine: 13 Iterruptible? yes Other Comments: Execute Anytime? no No special SIZE Program File: No spreaty provided	1 Z: not used	
* L: ISG counter 08: not used Alpha Register Usage: 09: not used s M: not used 10: not used a N: not used 10: not used a P: not used 25: not used other Status Registers: Display Mode: a Q: not used not used 1a: not used Angular Mode: 12 b: not used not used 13 c: not used Unused Subroutine Levels 14 d: not used Direct SEG: not used Global Labels Called: Data Registers: Rof: R00: registers used R01: registers used R02: the block R03: defined by R04: the block size, clears approximately 7.8 registers per second Peripherals Required: none Interruptible? yes Other Comments: Execute Anytime? no No special SiZE Program File: No Bytes In RAM: 18 aireedy exists	2 Y: not used	
Alpha Register Usage: 09: not used S M: not used 09: not used 6 N: not used 10: not used 9 P: not used 25: not used 9 P: not used 25: not used 9 P: not used 25: not used 10 F: not used Display Mode: not used 11 a: not used Angular Mode: not used 12 b: not used Not used 13 c: not used Unused Subroutine Levels 14 d: not used 5 2REG: not used Global Labels Called: Direct Data Registers: R00: Direct R06: the data registers used are those R08: defined by the block Interruptible R11: R12: Local Labels In This Routine: R12: 13 13 13 Execution Time: depends on block size, clears approximately 7.8 registers per second Peripherals Required: none No special SizE requirement is necessary provided the data block aireedy exists	3 X: O	
s M: not used 10: not used s M: not used 10: not used s N: not used 25: not used g P: not used 25: not used 9 Q: not used Display Mode: not used 9 Q: not used Angular Mode: not used 11 a: not used Angular Mode: not used 12 b: not used Internet Status Registers: not used 13 c: not used Unused Subroutine Levels is e: not used 14 d: not used Unused Subroutine Levels 15 e: not used Direct Secondary none R00: Mode: none R00: Internet to second R01: Local Labels In This Routine: R11: Local Labels In This Routine: R12: Internuptible? yes Interruptible? yes Other Comments: none Interruptible? yes Other Comments: necessary provided the data block alreedy exists		00.
6 N: not used 25: not used 9 P: not used 25: not used 9 Q: not used Display Mode: not used 9 Q: not used not used 10 F: not used Angular Mode: not used 12 b: not used not used 13 c: not used Unused Subroutine Levels 14 d: not used 5 22REG: not used Global Labels Called: Direct Secondary Data Registers: Direct Secondary R00: none R06: the data R07: are those R08: defined by R09: the block Local Labels In This Routine: R11: R12: Local Labels In This Routine: R12: 13 Execution Time: depends on block size, clears approximately 7.8 registers per second Peripherals Required: none No special SiZE requirement is necessary provided the data block aireedy exists		
7 0: not used 25: not used 9 0: not used Display Mode: 9 0: not used not used 10 F: not used Angular Mode: 11 a: not used not used 12 b: not used Angular Mode: 13 c: not used not used 14 d: not used Unused Subroutine Levels 15 e: not used Global Labels Called: Data Registers: Direct R00: Rome R06: the data R07: are those R08: defined by R09: the block R11: R12: R12: 13 I3 Istable in This Routine: 13 I3 Istable in This Routine: 13 I13 Istable in This Routine: 13 Interruptible? yes Other Comments: Interruptible? yes Other Comments: Program File: No special SIZE Program File: Istable in the data block Bytes In RAM: 18		
a P: not used 25: not used Other Status Registers: Display Mode: not used a Q: not used not used in F: not used Angular Mode: not used in a: not used Angular Mode: not used in a: not used Intervention in in a: not used Intervention in interventible? yes Intervention in a: not Intervention in ready exists Intervention		
Other Status Registers: 9 Q: not usedDisplay Mode: not used10 F: not usednot used11 a: not usedAngular Mode: not used12 b: not usednot used13 c: not usedUnused Subroutine Levels14 d: not usedUnused Subroutine Levels15 e: not used5ZREG: not usedGlobal Labels Called: DirectData Registers: R00:DirectR06: the data registers used are thoseDirectR08: defined by R09: the blockLocal Labels In This Routine:R11: R12:Local Labels In This Routine:R12:13Execution Time: depends on block size, clears approximately 7.8 registers per secondPeripherals Required: noneNo special SiZE requirement is necessary provided the data block already exists	01	25. not used
9 Q: not used not used 10 F: not used Angular Mode: 11 a: not used not used 12 b: not used not used 13 c: not used Unused Subroutine Levels 14 d: not used Unused Subroutine Levels 15 e: not used Global Labels Called: Data Registers: Direct Secondary R00: none none R06: the data Direct Secondary R08: defined by R09: the block R10: Local Labels In This Routine: R11: Local Labels In This Routine: R12: 13 13 Execution Time: depends on block size, clears approximately 7.8 registers per second Peripherals Required: none Interruptible? yes Other Comments: Interruptible? yes Other Comments: No special SiZE requirement is Program File: mone No special SiZE requirement is Ne data block already exists already exists		
10 F: not used Angular Mode: not used 11 a: not used not used 12 b: not used not used 13 c: not used Unused Subroutine Levels 14 d: not used Unused Subroutine Levels 15 e: not used Global Labels Called: Direct Data Registers: R00: Direct R06: the data registers used R07: are those R08: defined by the block R11: R12: Local Labels In This Routine: R12: 13 Issee 13 Execution Time: depends on block size, clears approximately 7.8 registers per second Peripherals Required: none Other Comments: Program File: No special SiZE requirement is necessary provided the data block already exists		
11 a: not used Angular Mode: not used 12 b: not used not used 13 c: not used Unused Subroutine Levels 14 d: not used Unused Subroutine Levels 15 e: not used 5 ZREG: not used Global Labels Called: Direct Data Registers: R00: Direct R06: the data R07: are those R08: defined by the block Direct R10: R11: R12: Local Labels In This Routine: R12: 13 Execution Time: depends on block size, clears approximately 7.8 registers per second Peripherals Required: none Other Comments: Porgram File: No special SiZE requirement is necessary provided the data block already exists	-	
12 b: not usednot used13 c: not usedUnused Subroutine Levels14 d: not usedUnused Subroutine Levels15 e: not usedGlobal Labels Called:Data Registers:Direct SecondaryR00:noneR06: the data registers used are thoseDirect SecondaryR06: the data registers used are thoseLocal Labels In This Routine:R07: are those R08: defined by the blockLocal Labels In This Routine:R10:Local Labels In This Routine:R11:Local Labels In This Routine:R12:13Execution Time: depends on block size, clears approximately 7.8 registers per secondPeripherals Required: noneNo special SiZE requirement is necessary provided the data block already exists		Angular Mode:
13 C: not used Unused Subroutine Levels 14 d: not used 5 15 e: not used Global Labels Called: Data Registers: Direct Secondary R00: none none R06: the data Image: Secondary R07: are those none R08: defined by Image: Secondary R09: the block Image: Secondary R11: Image: Secondary Image: Secondary R12: Image: Secondary Image: Secondary Interruptible? Image: Secondary Image: Secondary Interruptible? yes Other Comments: Program File: Image: Secondary Image: Secondary Bytes In RAM: 18 Image: Secondary	12 b: not used	
1* d: not used Unused Subroutine Levels 15 e: not used 5 ZREG: not used Global Labels Called: Direct Secondary none none R00: none none R06: the data registers used R07: are those R08: defined by the block Image: Content of the secondary none R10: R11: R12: Local Labels In This Routine: R12: Image: Content of the secondary none Image: Content of the secondary registers used Image: Content of the secondary none R11: R12: Local Labels In This Routine: R12: Image: Content of the secondary none Image: Content of the secondary registers per second Image: Content of the secondary none Execution Time: depends on block size, clears approximately 7.8 registers per second Peripherals Required: none Image: Content of the secondary none Interruptible? yes Other Comments: necessary provided the data block already exists	13 C: not used	
1s e: not used 5 ZREG: not used Global Labels Called: Direct Secondary none none R00: none R06: the data registers used R07: are those R08: defined by the block none R10: R11: R12: Local Labels In This Routine: R11: R12: Local Labels In This Routine: I Local Labels In This Routine: I I Execution Time: depends on block size, clears approximately 7.8 registers per second Peripherals Required: Interruptible? yes Other Comments: requirement is necessary provided the data block already exists	14 d: not used	Unused Subroutine Levels:
Data Registers: Direct Secondary R00: none none none R06: the data none none R07: are those none none R08: defined by the block none R10: Image: Constant of the block Image: Constant of the block none R11: Image: Constant of the block Image: Constant of the block none R11: Image: Constant of the block Image: Constant of the block none R11: Image: Constant of the block Image: Constant of the block none R11: Image: Constant of the block Image: Constant of the block none R11: Image: Constant of the block Image: Constant of the block none R11: Image: Constant of the block Image: Constant of the block none R12: Image: Constant of the block Image: Constant of the block none R12: Image: Constant of the block Image: Constant of the block none Interruptible? yes Image: Constant of the block none Inteady exists Image: Constant o		5
Data Registers: Direct Secondary R00: none none R06: the data none registers used registers used none R07: are those none R08: defined by the block R09: the block none R10: Image: Contract of the block none R11: Local Labels In This Routine: R12: 13 13 Execution Time: depends on block size, clears approximately 7.8 registers per second Peripherals Required: none none Interruptible? yes Other Comments: Execute Anytime? no No special SiZE Program File: no Bytes In RAM: 18	ΣREG: not used	Global Labels Called:
R00: the data registers used R07: are those R08: defined by the block R09: the block R10: Local Labels In This Routine: R11: Local Labels In This Routine: R12: 13 Execution Time: depends on block size, clears approximately 7.8 registers per second Peripherals Required: none none Interruptible? yes Other Comments: requirement is necessary provided the data block already exists		Direct Secondary
R00: registers used R07: are those R08: defined by R09: the block R10: Local Labels In This R11: Local Labels In This R12: 13 Execution Time: depends on block size, clears approximately 7.8 registers per second Peripherals Required: none Interruptible? yes Other Comments: Execute Anytime? no No special SIZE Program File: No Bytes In RAM: 18 already exists		none none
approximately 7.8 registers per secondPeripherals Required: noneInterruptible? yesOther Comments: Program File: IMPProgram File: IMPNo special SIZE requirement is necessary provided the data block already exists	R07: are those R08: defined by R09: R10: R11:	<u>Routine:</u>
Execute Anytime?NoProgram File:MPBytes In RAM:18	approximately 7.8 regis Peripherals Required: no	ters per second ne
Program File: MP requirement is necessary provided the data block already exists		
Bytes In RAM: 18 the data block already exists		requirement is
		the data block
	Registers To Copy: 61	

•

Program <u>CV, BC, SV</u> For <u>PPC ROM Programs</u> <u>366</u> bytes Page <u>1</u> of <u>3</u>

	Х	V	Z	TI	L	Γ	X	ΙΥ	र	71	1	
	\wedge		6	-		L	\uparrow	Υ.	τ		LI	
						51+LBL B						
01+LBL -CY-						52+LBL 02						
02 GTO IND 06						53 CF 08						
						54 CF 09						
03+LBL A						55 STO 07						
04+LBL 01						56 2						
05 CF 10						57 X(Y?						
						58 SF 09						
06+LBL 06						59 /						
07 STO 09						60 FRC						
08 X<>Y						61 X=0?						
09 STO 08						62 SF 08						
10 SREG 13						63 8						
11 FC? 10						64 ST+ 07						
12 Σ+						65 XEQ IND 07						
13 FS? 10						66 RCL 17						
14 Σ-						67 RCL 13						
15 RDN						68 RCL 15						
16 RCL 08						69 STO 89 70 +						
17 ENTER ⁺						71 RCL 18						
18 X>0?						72 /						
19 LN						73 -						
20 ST* Z						74 STO 10						
21 RCL 09						75 RCL 14						
22 X>0?						76 RCL 13						
23 LN						77 X+2						
24 ST* Z						78 RCL 18						
25 X(>Y						79 /						
26 SREG 19						80 -						
27 FC? 10						81 STO Z						
28 E+	.					82 /						
29 FS? 10 30 Σ-						83 STO 08						
30 2- 31 Rt						84 RCL 13						
32 FS? 10						85 *						
33 CHS						86 ST- 09						
34 ST+ 12						87 X<>Y						
35 Rt						88 RCL 16						
36 FS? 10						89 RCL 15						
37 CHS						90 Xt2						
38 ST+ 11						91 RCL 18						
39 X<> Z						92 ST/ 09						
40 SIGN						93 /						
41 ST+ L						94 - 05 -						
42 RCL 08						95 *						
43 RCL 09						96 SQRT						
44 X<> L						97 ST/ 10						
45 RTN						98 XEQ IND 07 99 8						
46 RCL 98						100 ST- 07	1					
47 RCL 09						100 ST- 57						
						101 RCL 10						
48+LBL a						102 KCL 07						
49 SF 10						104 EfX			i			
50 GTO 06						105 STO 09						2
						106 RCL 08					C	भ)
						107 RTN			1			
							l					
							-					

Program <u>CV, BC, SV</u> For <u>366</u> bytes Page <u>2</u> of <u>3</u>

-		X	Y_	Z	T		X	Y_	र	T	
	108+LBL 10					152+LBL D			1		
						153+LBL 04					
	109 RCL 11					154 FS? 08					
	110 X(> 17										
	111 STO 11					155 LN					
						156 RCL 09					
	112+LBL 13					157 FS? 08					
						158 LN					
	113 RCL 21					159 -	1				
	114 X<> 15										
	115 STO 21					160 RCL 08					
	116 RCL 22					161 /					
						162 FS? 09					
	117 X(> 16										
	118 STO 22					163 EtX					
						164 RTN					
	119+LBL 09										
						165 +LBL e					
	120 RTN										
						166+LBL 00					
	121+LBL 11					167 11.024					
	122 RCL 12					168 XEQ -BC-					
						169 E					
	123 X(> 17					170 RTN					
	124 STO 12					LIO KIN					
	125+LBL 14					171+LBL E					
						172+LBL 05					
	126 RCL 19										
	127 X<> 13					173 .					
	128 STO 19					174 STO 25					
						175 4					
	129 RCL 20					176 STO 07					
	130 X<> 14										
	131 STO 20										
	132 RTN					177+LBL 07					
						178 RCL 07					
						179 XEQ B					
	133+LBL 12					180 RCL 25					
	134 RCL 23										
	135 X<> 17					181 RCL 10			1		
	136 STO 23					182 ABS					
						183 X<=Y?					
	137 XEQ 14					184 GTO 15					
	138 GTO 13										
						185 STO 25					
	139+LBL C					186 RCL 07					
						187 STO 26					
	140+LBL 03										
	141 FS? 09										
	142 LN -					188+LBL 15					
	143 RCL 08					189 DSE 07					
						190 GTO 07					
	144 *					191 RCL 26					
	145 RCL 09										
	146 FS? 08					192 XEQ 02					
	147 LN					193 RCL 26					
						194 RTN					
	148 +										
	149 FS? 08								.		
	150 EtX										
	151 RTN										
	IJI KIN										
(CW)											
Ú											
							1				

Program <u>CV, BC, SV</u> For _____

<u>366</u> bytes Page<u>3</u> of <u>3</u>

	X	Y	Z	T	L		X	Γγ	そ	T	L	
						4						
195+LBL -BC-												
196 SF 25												
197 CLRGX												
198 FS?C 25												
199 RTH 200 SIGN												
201 CLX												
202+LBL 16												
203 STO IND L 204 ISG L												
205 GTO 16												
206 RTN												
007.4 84 - 5045												
207+LBL "SV" 208 STO 07												
209 E												
210 %												
211 RCL Z												
212 X=0? 213 X<>Y												
214 STO 89												
215 CLST												
21(4) 01 00												
216+LBL 08 217 RCL Z												
218 STO 08												
219 RCL 97												
220 FC? 00												
221 VIEW X 222 XEQ IND 06												
223 ST* 09												
224 ST- 08												
225 RCL 09												
226 RCL 08 227 X≠0?												
228 /												
229 STO 09												
230 X<> 07												
231 ST+ 07 232 RND												
233 RCL 07												
234 RND												
235 X≠Y?												
236 GTO 08												
237 RCL 07 238 END												
											((6)
											```	
•									'	i		

# STRUCTURAL PROGRAMS

**Structural Engineer's Creed** 

Hope is stronger than truth. Truth is stronger than steel. I hope this thing stands up.

#### **REINFORCED CONCRETE DESIGN/ANALYSIS**

"In the field of structural design the effort to get intelligence through standardization has been carried pretty far. In reinforced concrete, for example, it has been necessary to set up elaborate standards. Out of this work came a narrowly circumscribed standardization of procedures, which is called "the theory of reinforced concrete" and to which unfortunate students are exposed. Few will question that the standardized theory of reinforced concrete is perhaps as complicated a bit of nonsense as has been conceived by the human mind. It does, however, work pretty well as a check on undiscriminating unintelligence."

Hardy Cross, Engineers And Ivory Towers

There are six programs and several subroutines in this module concerned with reinforced concrete. The programs are:

WSBM	Working stress rectangular beam design
LFBM	Load factor (ultimate strength) rectangular
	beam design
Ic	Working stress cracked-section beam analysis
LFAN	Load factor beam analysis with cracking and
	fatigue check
VST	Shear reinforcing design (WSD or LFD)
CORBL	Concrete corbel design (WSD or LFD)

The subroutines are listed on the next page. In addition, a listing for a rectangular concrete column analysis program is included for use in RAM. Shortage of space and a re-evaluation of needs prevented it from being included in this version of BRIDGEROM.

#### <u>FLAGS</u>

These programs follow AASHTO if flag 04 is clear, and ACI if it is set. There isn't a lot of difference between the two (there isn't any difference for the LFD versions of VST and CORBL); what differences there are are outlined in the individual program documentation.

All the programs follow the conventions for the "user flags" 00 and 02. Shortened output results if flag 00 is set. Flag 02 is also active in these programs. Warning BEEPs are enabled if flag 02 is set; they are silenced if it is clear. The programs all access the input subroutines N/Fc, which have warnings if the concrete and steel strengths are outside a certain range. Individual programs also have other warnings written in. Flags 01 and 03 have no effect on these programs.

#### CONCRETE COLUMN ANALYSIS

As noted, listings for CCOL and its subroutine CC are provided for the user to key into RAM. Space constraints made it impossible to include program CC in this version of BRIDGEROM or to provide a full concrete column analysis program.

#### CONSTANTS and STRESSES

The constant B is calculated (in subroutine N) as 0.85 for Fc' of 4000 psi or less, decreasing by 0.05 for each 1000 psi gain in concret strength, with a minimum value of 0.65 for Fc' of 8000 psi or more.

An idiosyncracy resulting from the use of both working stress and ultimate strength methods is that the reinforcing strength is prompted differently for working stress (F-S 20,24) than for ultimate strength (F-Y 40,60); but the concrete prompt (Fc' KSI) always intends the ultimate concrete strength to be input. For working stress designs it is then factored down according to the status of flag 04.

#### **SUBROUTINES**

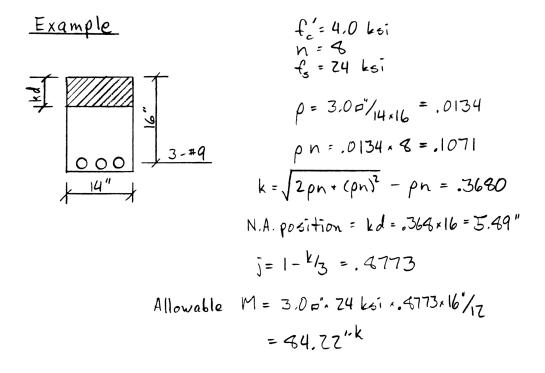
All of the following subroutines (except KJ) are accessed by the reinforced concrete programs and may find some use in user-written programs. KJ is a standalone program which may be useful for hand calculations and as a subroutine in other programs. For storage register and input requirements, see the individual program listings with stack trace.

- Mc Calculates and displays 1.2 times the concrete cracking moment based on gross section and concrete modulus of rupture, 7.5 /f_c'. Falls into subroutine "U."
- U Calculates the area of reinforcing needed for a given moment by ultimate strength methods, leaving the moment in the Y register. The moment should include the load factor but not the undercapacity factor phi. Falls into display routine AS.
- AS Displays the area of steel in square inches.
- N Prompts for reinforcing steel F-S (for WSD, FC 06) or F-Y (for LFD, FS 06). If by WSD, calculates

F-Y. Falls into routine Fc.

- Fc Prompts for concrete strength  $f_c$ '. If flag 10 is set, it returns; if clear, calculates  $B_1$ , 1/m (.85  $f_c$ '/F_y), and .75 Rho_{bal}; and leaves "N" in the alpha register for prompting by the calling program.
- R Calculates and displays minimum reinforcing areas.

RH Calculates and displays maximum reinforcing areas.


#### VS "Port of entry" into shear reinforcing program VST

KJ Given (rho x N), calculates the working stress constants K and J for a singly reinforced rectangular section, using the formulae

 $K = \sqrt{(pn)^2 + 2pn} - pn$  and J = 1 - K/3

For these simple sections, it's often simpler to use KJ than the more comprehensive program Ic, solving for the missing variable:

 $M = A_{s} f_{s} J d/12$  $A_{s} = (M \times 12)/(f_{s} J d)$  $f_{c} = (2M \times 12)/(K J b d^{2})$ 



Program KJ, LPT, PYR For ________ 155 bytes Page of _____

		<del></del>								
	X	Y_	2	Ť	L	Х	Y_	र	T	
01+LBL "KJ" 02 ENTER† 03 ENTER† 04 ENTER† 05 * 06 + 07 + 08 SQRT 09 X<>Y 10 -	p×n pn (pn) ² pn K		pn	ρn	42 RDH 43 * 44 ST* Z 45 Rt 46 + 47 Rt 48 SQRT 49 + K= $\sqrt{(\rho n)^{2}+2\rho n} -\rho n$ 50 3 51 (	a, az A az A, Az A, Az A, Az Z/3	b, q ₁ b ₂ A ₂	Qz bz A, A,•Az	bz A, A, A,	$V_{01.} \doteq \frac{h_{1}}{3} \times (A_{1} + A_{2} + \sqrt{A_{1}}A_{2})$
11 ENTER† 12 SIGN 13 LASTX 14 3 15 / 16 - 17 X<>Y 18 RTN 19+LBL -LPT- 20 XEQ -L+-	KIKJ JK	K K J	pn I K K	рп К К К	J=  - k/3 52 RTN 53+LBL "P1" 54 "F(" 55 RTN 56+LBL "P2" 57 "F)" 58 RTN					
21+LBL 01 22 -JtDtKtL- 23 prompt 24 Rt 25 STO 01 26 Rt 27 STO [ 28 ST+ 00	L J D	ĸ	D	1	59+LBL -PP- 60 -H- 61 RTN 62+LBL -MU- 63 -Fµ- 64 RTN 65+LBL -AT- 66 -F@-					
29 R↑ 30 R↑ 31 XEQ -XY- 32 R-P 33 X<> [ 34 P-R 35 RCL 01 36 XEQ -P- 37 -N- 38 XEQ -SP- 39 GTO 01		K A H A Y X T	D AX	⊽Å 2	67 RTN 68+LBL -AM- 69 -F&- 70 END					
<b>1</b>						·				

#### REINFORCED CONCRETE BEAM DESIGN

xeq WSBM (SIZE 015) for working stress beam design xeq LFBM (SIZE 011) for load factor beam design

**SOFTKEYS** (USER mode ON)

D New beam dimensions.

#### USER FLAGS

Flag 00	clear set	Full output Only area of steel and warnings viewed
Flag 02	clear set	Warning BEEP disabled Warning BEEP enabled
Flag 04	clear set	AASHTO ACI

#### INPUT SUMMARY

<u>Prompt</u> F-S 20,24 or F-Y 40,60	<u>Input</u> Reinforcing or yield stress for WSBM or LFBM, respectively, in ksi	<u>Default</u> 24 or 60		
Fc'KSI	Ultimate concrete strength, ksi	4.0 ksi		
N (WSBM only)	Modular ratio E _{st} /E _c	No default		
В"	Beam width, inches	Previous B		
D"	Depth to reinforcing, inches.	Previous D		
Н"	Full beam depth (height), inches	Previous H		
М,'К	Design moment in foot-kips. By- pass (or enter zero) to access shear design subroutine.	Zero		

**<u>OUTPUT SUMMARY</u>** (Items in parenthesis are displayed only if flag 00 is clear) States which code is being followed. If not (AASHTO or ACI) using a printer, press R/S to continue. (1.2Mc)1.2 times the concrete cracking moment, for AASHTO's minimum reinforcing calculation (200/FY)ACI's minimum reinforcing ratio The minimum area of steel based on one of the (A-S) above two criteria The maximum reinforcing ratio, 75% of rho-(.75Pb) balanced The moment over  $bd^2$ , for checking hand (M/BD2)calculations. Is actually  $M/Obd^2$  for LFBM. The depth to the neutral axis (WSBM) or the (Y or a) depth of the compression block (LFBM), inches (OVER) (WSBM only) The design is over-reinforced by working stress rules (general practice discourages but does not prohibit this) (RHO) The required reinforcing ratio The required reinforcing ratio divided by the P/Pb balanced reinforcing ratio. Design may still be acceptable if compr. steel is present. A-S The required area of steel 4/3 A-S 4/3 times the area of steel required for strength, if A-S is less than the minimum

Note: shear input and output are detailed in documentation for program VST.

PROGRAM FLAGS		
Flag 06	clear set	WSBM LFBM
Flag 07	clear set	Design is physically possible Design requires a neutral axis depth greater than the depth of the member
Flag 09	clear set	WSBM or LFBM CORBL
Flag 10	clear	Subroutine N runs full length

#### STORAGE REGISTER USE

<u>Register</u> 00	<u>WSBM</u> .85 Fc'/Fy	<u>LFBM</u> .85 Fc'/Fy
01	Fy	Fy
02	.75Pb	.75Pb
03	B (width)	В
04	D (depth)	D
05	øbd ²	øbd ²
06	√FC ¹ /253	$\sqrt{Fc'}/253$ (for 1.2Mcr calc.)
07	H (member height)	Н
08	Min. A _{st}	Min. A _{st}
09	N ( $E_{st}/E_{c}$ )	Not used
10	D/3 (trial Y); temporary .75Pb	
11	Trial Y	
12	(.40 or .45) Fc'	
13	F _{st} (20 or 24 ksi)	
14	Rideal	

.

דס

# (PG

#### REINFORCED CONCRETE BEAM DESIGN

Programs WSBM and LFBM calculate the amount of tension reinforcing necessary to resist a given moment (service or factored, respectively). They specify the amount of reinforcing steel needed for singly reinforced rectangular beams. The programs assume the design reinforcing to be in a single layer, and they do not recognize compression reinforcing. T-beams can be accommodated only if the neutral axis falls within the flange. For the purpose of checking this, the programs display the neutral axis depth, Y, in inches (WSBM), or the depth of the compression block, "a" (LFBM), if flag 00 is clear.

#### AASHTO/ACI MINIMUM A

Both programs design by AASHTO if flag 04 is clear, and by ACI if flag 04 is set. The main differences are in the allowable concrete compression stress for WSBM, and the minimum amount of reinforcing required. The programs calculate a maximum reinforcing ratio of .75pb; 1.2Mcr, AASHTO's cracking moment criterion for minimum reinforcing;  $200/F_y$ , ACI's minimum reinforcing ratio; and the minimum reinforcing based on one of these, depending on the status of flag 04. These are all displayed if flag 00 is clear. The reinforcing designed is checked against these minimum and maximum values and warnings are displayed if they are violated. Neither ACI nor AASHTO requires the maximum of .75pb for working stress designs. However, it is checked for WSBM as well as LFBM as a matter of good design practice. The AASHTO minimum reinforcing is calculated (with phi = 0.9) for  $1.2M_{CT}$  based on ultimate strength concepts for both WSBM and LFBM; although the present AASHTO is rather vague on this, the Commentary to the 1982 Interim Specifications, where it was introduced, indicates this more clearly. Logically, all designs should have the same minimum and maximum steel requirements.

The programs are written to accept beam dimensions and material properties, calculate the above-mentioned (ad infinitum) requirements, then enter a flexural design loop. A design moment is prompted; the programs calculate M/bd², the neutral-axis or compression block depth, the required reinforcing ratio, and the corresponding amount of steel. If flag 00 is clear, all these are displayed (useful for checking hand calculations); if flag 00 is set, only the area of steel is displayed. The maximum and minimum requirements are checked next. If the design is above the maximum, the programs display "P/Pb=..."; 0.75 is the maximum allowed. If the design is less than minimum, the program calculates and displays 4/3 the design area

of steel. If either program finds that a reinforcing ratio over 0.1 is required, the program displays NG (no good) and returns to the M,'K prompt.

#### OVER-REINFORCED BEAMS

If flag 00 is clear, WSBM displays a notice, "OVER," if its design yields an "over-reinforced" beam by working stress concepts, i.e. a design governed by the allowable concrete stress. This is acceptable by general practice but may produce deflection problems. It is possible to have an over-reinforced beam which has less than .75p_b, especially when designing by AASHTO. With its lower allowable concrete stress (.40Fc'), AASHTO will sometimes force an over-reinforced design that would have been under-reinforced by ACI.

#### STRESSES

WSBM has a couple of idiosyncracies concerning the allowable stresses input. First, although the input steel stress is a working stress (usually 20 or 24 ksi), the concrete stress to be input at the Fc'KSI prompt is the <u>ultimate</u> strength of the concrete, usually 3 or 4 ksi. The factor of .40 (AASHTO) or .45 (ACI) is applied by the program. Second, the input subroutine N calculates the reinforcing yield stress from the working stress input:  $F_y = 5 \times (F_{st} - 12 \text{ ksi})$ , giving 40 and 60 ksi from 20 and 24, respectively. If the designer is using a different allowable stress (e.g. some tank wall designs are done at 14 or 16 ksi to hold down cracking), the calculated maximum and minimum reinforcing ratios (which are based on ultimate strength concepts and yield stresses) will be invalid.

#### LOAD and UNDER-CAPACITY FACTORS

The designer must be careful to input the correct moment to LFBM. The moment must have the load factor(s) already applied; however, it must <u>not</u> include the undercapacity factor phi, which is applied by the program (0 = 0.90). See the examples.

#### SHEAR DESIGN

Both LFBM and WSBM access a shear reinforcing design subroutine by bypassing the M,'K prompt (or keying in zero). This subroutine uses the beam dimensions and material properties input into the flexural design programs; the only new input required is the area of the stirrups and the shear. See the documentation for program VST. While in this subroutine, softkeys from the calling program are useless. VST has softkeys A and D; if either of these is accidentally used while in the shear subroutine, it will not be able to return to the calling program.

# Reinforced Concrete Beam Design

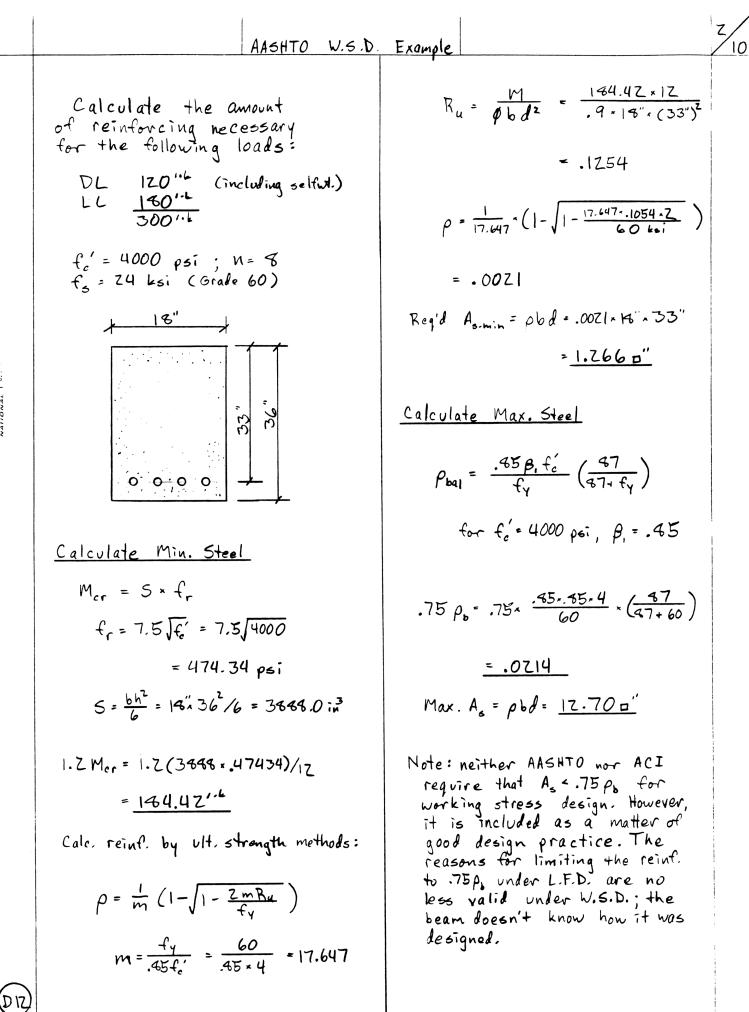
Design a beam for the following conditions :

Span = 20-0, simple DL = 2400 #1, (heavy industrial) LL = 3600 #1,

$$f'_{e} = 4000 \text{ psi}$$
  
 $f_{y} = 60 \text{ ksi}$   
 $n = 8$ 

Shear

@Reaction = DL = 240 × 20'/2 = 24.0 k LL = 3.60 × 20/2 = 36.0 k


Q 4 Pt. : 
$$DL = 2.40 \times 5' = 12.0 \text{ k}$$
  
 $LL = \frac{7.5'}{20} \times (15', 3.60) = 20.25 \text{ k}$ 

00000

- Design by:
  - I) AASHTO W.S.D.
  - 2) ACI W.S.D. ("Alternate")

L

- 3) AASHTO L.F.D.
- 4) ACI L.F.D. ("Strength")
- 1) and Z) use "WSBM"
- 3) and 4) use "LFBM"



Calculate Ideal R
$R_{ideal} = \frac{1}{2} (.40 f_{e}') \cdot j \cdot k$
$k = \frac{.40 f'_{c}}{(f_{s+}/n + .40 f'_{c})}$
$= \frac{1.6}{(24 \text{ ksi}/8 + 1.6)} = .3478$
j=1- k3 = . 8841
Rideal = = = (1.60 hs;) x.3478 x.8841
= <u>.2460 ksi</u>
Calculate Regid Reinforcing
Actual R = $\frac{M}{bd^2} = \frac{300''k_x 1Z}{18 - 33^2}$
= .1837 koi
Ract - Rideal => under-reinforced
Reinf.@24 ksi ; Concrete stress unknown
$M = C * (d - \frac{x}{3})$ Max. concrete stress $f_c = \frac{(f_s/n) * x}{d - x}$
for /n

$$C = \frac{1}{2} \cdot \frac{1}{6} \cdot x \cdot b$$
  

$$\therefore 300^{nk} \cdot |2 = \frac{1}{2} \left( \frac{(24/2) \times}{33^{2} - x} \right) \cdot |4 \times \cdot (33^{-} \frac{x}{3})$$
  

$$3600^{nk} \cdot (33 - x) = \frac{1}{2} (3 \times) (14 \times) (33 - \frac{x}{3})$$
  

$$9x^{3} - 89|x^{2} - 3600 \times \cdot 114, 400 = 0$$
  
solving the cubic by iteration,  

$$x = 10.1435^{"} (Nectual Axis)$$
  

$$C = \frac{1}{2} \left( \frac{3 \cdot 10.1435^{"}}{33 - 10.1435^{"}} \right) \cdot 10.1435^{"} \cdot 18^{"}$$
  

$$= 121.54 \text{ k}$$
  
Regid A₅ = 121.54 k/24 ksi  

$$= \frac{5.0643 \text{ p}^{"}}{10.27} (Mim)$$
  

$$\underline{OK}$$
  

$$\underline{U5E 4 - \frac{10}{2}}$$
  
Check spacing  

$$18^{"} - 2(2^{"} + 34^{"}) - 112^{"} = 11^{"}$$
  

$$\frac{11^{"}}{359} - 12^{"} = 2.17^{"} \text{ clear}$$
  

$$\underline{OK}$$
  
Note : WS BM does not check spacing  
or bar placement.  
(DB)

3

4 10

AASHTO W.S.D. Ex	ample
Calculate Reinforcina needed for 450 ¹¹ on same section. $R = \frac{450 \times 12}{18 \times 33^2} = .2755 \text{ koi}$ $R_{act} > R_{ideal} \Rightarrow \underline{Over \cdot reinf.}$ $\therefore Conc. stress = .40 f_e'; f_{st} < 24 \text{ ksi}$ $M = C \times (d - \frac{x}{3})$	<u>Check Spacing:</u> $16^{\circ} - 2(2^{\circ} + \frac{3}{4}^{\circ}) - 1\frac{1}{2}^{\circ} = 11^{\circ}$ $\frac{11^{\circ}}{69^{\circ}} - 1\frac{1}{2}^{\circ} = .33^{\circ}$ clear <u>No Good</u> Will need Z layers of reinforcing. Results of calculation (9.690°) no longer valid. Can use program Ic
$450 \cdot 12 = \frac{1}{2}(1.60 \text{ ksi}) \cdot 18 \times (33 - \frac{1}{3})$ $5400'' \cdot k = 475.20 \times - 4.40 \times^{2}$ solving the guadratic directly, $\underline{X = 13.0960''}$ $C = \frac{1}{2} \times 1.60 \text{ ksi} \times 16'' \times 13.0960''$	to check capacity of two- layer estimate. Note: WSBM does not check spacing or bar placement. As in this case, the area of steel calculated by WSBM may be physically impossible to place.
$= 188.58 \text{ k}$ $f_{s} = n f_{c} \left(\frac{d-x}{x}\right)$ $= 8 \cdot (.4 \cdot 4 \text{ koi}) \cdot \left(\frac{33'-13.0960''}{13.0960''}\right)$ $= 19.454 \text{ koi}$ $Reg'd A_{s} = \frac{188.58 \text{ k}}{19.454} = \frac{9.6937 \text{ m}}{19.454}$ $Check : 9.69 \text{ m}' < 17.70 \text{ m}' (.75p_{o})$ $9.69 > 1.27 \text{ (min)}$ $\frac{OK - USE 7 - *11}{12} (A_{s} = 10.72 < 12.70)$	

AASHTO W.S.D. Shear Design

From the preceding:  

$$f'_{1} = 4000 \text{ point}$$
  
 $f'_{2} = 4000 \text{ point}$   
 $f'_{3} = 60 \text{ koint}$   
 $f'_{3} = 24 \text{ koint}$   
 $f'_{3} = 24 \text{ koint}$   
 $f'_{3} = 24 \text{ koint}$   
 $f'_{3} = 24 \text{ koint}$   
 $f'_{3} = 24 \text{ koint}$   
 $f'_{3} = 24 \text{ koint}$   
 $f'_{3} = 24 \text{ koint}$   
 $f'_{3} = 24 \text{ koint}$   
 $f'_{3} = 24 \text{ koint}$   
 $f'_{3} = 17.84 \text{ koint}$   
 $f'_{3} = 32.25 \text{ sources}$   
 $f'_{3} = 372 \text{ sources}$   
 $f'_{3} = 372 \text{ sources}$   
 $f'_{3} = 372 \text{ sources}$   
 $f'_{3} = 372 \text{ sources}$   
 $f'_{3} = 372 \text{ sources}$   
 $f'_{3} = 372 \text{ sources}$   
 $f'_{3} = 372 \text{ sources}$   
 $f'_{4} = 36.0 \text{ k}$   
 $f'_{4} = 36.0 \text{ k}$   
 $f'_{4} = 36.0 \text{ k}$   
 $f'_{4} = 32.25 \text{ k}$   
 $f'_{4} = 32.25 \text{ k}$   
 $f'_{5} = 32.25 \text{ k}$   
 $f'_{5} = 32.25 \text{ k}$   
 $f'_{5} = 32.25 \text{ k}$   
 $f'_{5} = 32.25 \text{ k}$   
 $f'_{5} = 32.25 \text{ k}$   
 $f'_{5} = 32.25 \text{ k}$   
 $f'_{5} = 32.25 \text{ k}$   
 $f'_{5} = 32.25 \text{ k}$   
 $f'_{5} = 32.25 \text{ k}$   
 $f'_{5} = 32.25 \text{ k}$   
 $f'_{5} = 32.25 \text{ k}$   
 $f'_{5} = 32.25 \text{ k}$   
 $f'_{5} = 32.25 \text{ k}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.49 \text{ source}$   
 $f'_{5} = 32.69 \text{ source}$   
 $f'_{5} = 32.600 \text{ source}$   
 $f'_{5} = 32.600 \text{ s$ 

5/10

EID

AASHTO W.S.D. Beam Design

XEQ "WSBM" 6:33:12 PM 12/09/88 TITLE: RUN TEST 1 ****** AASHTO Design by F-S 20,24 AASHTO 24.0000 RUN M, K Fc'KSI 4.0000 RUN N SHEAR 8.0000 RUN 8* RUN 18.0000 A-A D-RUN 33.0000 H-**V**, K RUN 36.0000 1.Z Merack 1.2Mc=184.4111 'K A-S=1.2656 SQ* Min. Reint. 200/FY=0.0033 ¥, K .75Pb=0.0214 ****** M, K 300.0000 RUN ¥, K M/BD2=183.6547 Y=10.1435* RH0=0.0085 P/Pb=0.2991-0K ¥7 K A-S=5.0643 SQ* M, K RUN 450.0000 V, K M/BD2=275.4821 OVER Over reinforced Y=13.0960* A-A RH0=0.0163 P/Pb=0.5725-0K 8-A-S=9.6937 SQ* M. K 100.0000 RUN M/BD2=61.2182 Y=6.2049* RH0=0.0027 P/Pb=0.0955-OK A-S=1.6165 SQ=

M, K 60.0000 RUN H/BD2=36.7309 Y=4.8884* RH0=0.0016 P/Pb=0.0565-0K As < Min. As A-S=0.9563 SQ* so display 4/3 As 4/3 A-S=1.2751 SQ* Bypres to RUN access shear ******* fesign Vc=35.6895 K ****** .4000 RUN _____ 60.0000 RUN SPA=13.0314* _____ RUN 32.2500 SPA=16.5000*(MAX) _____ RUN 120.0000 SPA=3.7575* _____ RUN 15.0000 .5¥c>¥ Bypass RUN ******* Bypass to RUN return to WSBM - new beam dimensions

6

10

Short Format Example

	CF 04 SF 00	Clear flag 04 → AMSHTO Set flag 00 → Short Format
	"WSBM"	No title block
F-S 20,24 24.0000	RUN	
Fc'KSI 4.0000	RUN	
N 8.0000	RUN	
B-		
18.0000 D-	RUN	
33.0000 H-	RUN	
36.0000	RUN	No minimums or maximums
**************************************	*****	
300.0000 A-S=5.0643 SQ"	RUN	Only As output
 M,'K		
450.0000 A-S=9.6937 SQ	RUN	
 N, 'K		
600.0000	RUN	Unand along the t
P∕Pb=1.6172-NG A-S=27.3837 SQ™		Warnings still output
 M,'K		
60.0000	RUN	
A-S=0.9563 SQ" 4/3 A-S=1.2751 SQ"	I	Minimums still output

7

Calculate the reinforcing required by ACI for moments of 300th and 450th on the same section.  $f_c' = 4000 \text{ psi}; n = 8$  $f_{st} = 24 \text{ ksi}$  (Grade 60) b = 18''d = 33''

$$\frac{Calculate Min. Steel}{p_{min} = \frac{200}{f_Y} = \frac{200}{60,000} = .0033$$

Calculate Ideal R

014

$$R_{ideal} = \frac{1}{2} (.45f_{c}') \times j \times k$$

$$k = \frac{.45 \times 4.0}{(24k \cdot i/n = 8 + .45 \times 4.0)} = .3750$$

$$j = 1 - \frac{k}{3} = .8750$$

$$R_{ideal} = \frac{1}{2} (1.8 \text{ ksi}) \times .375 \times .475$$

$$= \underline{.2953 \text{ ksi}}$$

ample [10]  
Calculate Regil Reinf. for M: 300"4  
Actual R = 
$$\frac{300 \times 17}{14 \times 33^2}$$
 = .1437 kgi  
.1437 < .2953 => under reif  
Calculations are as before:  
X = 10.1435"  
C = 121.54 k  
Regil A₃ = 5.0643 n"  
check : 5.06 < 12.70 (.75pb)  
5.06 > 1.98 n" (min)  
OK- USE 4-+10  
Calculate Regil Reinf. for M=450'4  
R =  $\frac{450 \times 12}{16" \times 33^2}$  = .2755 ksi  
.2755 < .2953 = under reinforced  
Cuas over reinforced by AASHTD)  
C =  $\frac{1}{2} f_c \times b$ ;  $f_c = (\frac{(f_c/h) \cdot x}{d \cdot x})$   
 $f_c = \frac{24 \tan 4 \cdot x}{33^2 - x}$   
M = C · (d - x/3)  
 $450 \times 12 = \frac{1}{2} (\frac{246}{33 - x}) \cdot 18 \times (33 - \frac{x}{3})$   
 $q_x^3 - gql x^2 - 5400 x + 176,200 =$   
solving by iteration, X = 12.0283"

9/10

(D19

$$C = \frac{1}{2} \left( \frac{3 \cdot 12.0283'}{33 - 12.0243'} \right) \cdot 12.0243'' \cdot 18''$$

$$= 186.27 \text{ L}$$
Reg'd A₅ =  $\frac{186.27}{24 \text{ Losi}} = 7.7611 \text{ p''}$ 
Check: 7.76 < 12.70 (.75pb)  
7.76 > 1.98 (Min)  
OK-USE 5-*11  
Check spacing  
18'' -  $2(2'' + 34') - 1\frac{1}{2}'' = 11''$   
 $\frac{11''}{4 \text{ spa}} - 1\frac{1}{2}'' = 1.25'' \text{ clear}$   
OK  
OK  
OK  
OK  
V_c = 1.1 \quad 4000 \cdot 18' \cdot 33'' = 41.32 \k  
Check spacet  
V_s = 60.0 - 41.32 = 18.68 \k  
for A₄ = 2-*4 = .40 \teta''.  
Spa. =  $\frac{.40.2446233'}{18.64 \text{ k}} = 16.96''$   
USE *4 @ 16'' ENTIRE DEAM

UNITIONAL 42 381 VO SHEETS 5 SQUARE

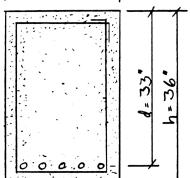
ACI W.S.D. Beam Design

10/10

SF 04 XEQ "WSBM" 6:40:21 PM 12/09/88	Set flag 04 for ACT
TITLE: TEST 2 RUN ************************************	Design by ACI
24.0000 RUN Fc'KSI	
4.0000 RUN	
N 8.0000 RUN 8-	
18.0000 RUN D-	
33.0000 RUN	
H-	
36.0000 RUN	
1.2Mc=184.4111 'K	
200/FY=0.0033	Man & france
A-S=1.9800 SQ" .75Pb=0.0214	Min. As figured
./JPD-0.0214 ********	for 200/Fy
н, к	
300.0000 RUN	
M/BD2=183.6547	
Y=10.1435*	
RH0=0.0085	
P/Pb=0.2991-0K	
A-S=5.0643 SQ"	
 M,'K	
450.0000 RUN	
M/BD2=275.4821	
Y=12.0283*	Not over-
RH0=0.0131	reinforced by
P/Pb=0.4583-0K	ACI due to
A-S=7.7611 SQ=	higher allowable
	fc
	C

MJ 'K			
M/BD2=61. Y=6.2049 RH0=0.002	27	RUN	
P/Pb=0.09			As = Min. As for
A-S=1.616			
4/3 A-S=2	2.1553 SQ-		ACI so Stisplay
			4/3 A,
M, K		RUN	Bypass to access
*******	********	****	shear Lesian
SHEAR			Shew Lesigh
Vc=41.324	16 K		
*******	********	****	
A-A			
	60.0000	RUN	Oops - error
 V, K			Bypass to retur
		RUN	to Av prompt
*******	********	****	
A-A			
	. 4000	RUN	
	-		
V, K	(0.0000	<b>0</b> 111	
000-46 54	60.0000	RUN	
SPH=16.5	000"(MAX)		
	-		
V, K			

# Reinforced Concrete Beam Design


Design a beam for the following conditions:

Span = 20-0, simple DL = 2400 #/, (heavy industrial) LL = 3600 #/,

$$f_{e} = 4000 \text{ psi}$$
  
 $f_{y} = 60 \text{ ksi}$   
 $n = 8$ 

Shear

@ Reaction : DL = 240 × 20'/2 = 24.0 k LL = 3.60 × 20/2 = 36.0 k
(Note : take @ reaction since beam depth for "d/2" is unknown)
@ 4 Pt. : DL = 2.40 × 5' = 12.0 k LL = 7.5' × (15'+3.60) = 20.25 k
Try this configuration :
b = 16"



- Design by: 1) AASHTO W.S.D.
  - 2) ACI W.S.D. ("Alternate")
  - 3) AASHTO L.F.D.
  - 4) ACI L.F.D. ("Strength")

DZI

- 1) and Z) use "WSBM"
- 3) and 4) use "LFBM"

Calculate the amount of reinforcing necessary for the same loads by AASHTO:

DL 
$$120^{12}$$
  $120^{12}$   $120^{12}$   
LL  $180^{12}$ ,  $5/3 = 300^{12}$   
 $420^{12} \times 1.3 = 546^{1.6}$ 

Note: undercapacity factor  $\phi = .9$ not applied.  $\phi$  is applied by LFBM.

$$f_{c} = 4000 \text{ psi}$$
  $b = 18^{\circ}$   
 $f_{y} = 60 \text{ ksi}$   $d = 33^{\circ}$ 

Calculate Min. and Max. Steel

- Note: L.F.D. Min. and Max. steel are identical to W.S.D. limits. See preceding W.S.D. calculations.
  - $1.2 M_{cr} = 184.42'^{\prime}$   $M_{1n}. A_{s} = 1.266 = "$  $.75 \rho_{b} = .0214$

Max. As = 17.70 "

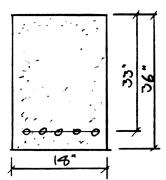
Calculate Req'd Reinforcing  

$$p = \frac{1}{m} \left(1 - \sqrt{1 - \frac{2mR_{m}}{f_{Y}}}\right)$$

$$m = \frac{f_{Y}}{.45f_{c}} = \frac{60}{.45\pi4} = 17.647$$

$$R_{u} = \frac{M}{0.647} = \frac{546^{1.6} \times 17}{.9 \times 16^{10} \times (33^{\circ})^{2}}$$

$$= .3714 \text{ ksi}$$


$$\rho = \frac{1}{17.647} \left(1 - \sqrt{1 - \frac{2 \cdot (7.647 \cdot .37)}{60}}\right)$$

$$= .0066$$
Reg'd A₅ = .0066 × 14° × 33"  

$$= 3.9031 \text{ m}^{"}$$
Check: 3.90 < 12.70 ° (.75p.)  
3.90 > 1.266 a" (M...)  
OK - USE 4-*9  
Check spacing  
18" - 2(2" + 34") - 1³⁴ = 11.25"  
clear shirty box  
11.25" - 1¹/4" = 2.50" clear  
OK  
Note: LFBM does not check  
bar placement or clearance;  
fatigue; Z-cracking; or  
deflection. Program LFAN  
is somewhat more complete.

AASHTO L.F.D. Shear Design

Design shear reinforcing for this beam:



$$f_c' = 4000 \text{ psi}$$
  
 $f_y = 60 \text{ ksi}$   
 $V_c = 2\sqrt{4000} \times 16' \times 33' \times 75.14 \text{ k}$ 

$$\frac{Max. Spacing}{A_{v-min}} = \frac{50 \text{ b} \cdot \text{Spa}}{F_{v}} \quad (\text{MSATO 8.19.1.2})$$
  
$$\therefore Max \quad \text{Spa.} = \frac{.40 \times 60,000}{50 \times 18''}$$

or 
$$f = \frac{33}{2} = 16.5$$
 " «Gaverns  
or Max = 24"

3/5

$$\frac{4}{5}$$
Calculate the amount of reinforcing necessary for the following loads:  

$$DL = \frac{5}{120^{14} \times 1.4} = \frac{1660}{120^{14}} (\text{indifeseon})$$

$$DL = \frac{5}{120^{14} \times 1.4} = \frac{1660}{120^{14}} (\text{indifeseon})$$

$$DL = \frac{5}{120^{14} \times 1.4} = \frac{1660}{120^{14}} (\text{indifeseon})$$

$$DL = \frac{5}{120^{14} \times 1.7} = \frac{3060}{2060} (\text{indifeseon})$$

$$H = \frac{4}{40^{14}} (1 - \sqrt{1 - \frac{2}{12}} \frac{4}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{4}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{4}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{4}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{4}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{4}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{4}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{4}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{4}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{4}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{1}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{1}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{1}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{1}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{1}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{1}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{1}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{1}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{1}{12})$$

$$m = \frac{5}{45} (1 - \sqrt{1 - \frac{2}{12}} \frac{1}{12})$$

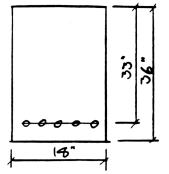
$$m = \frac{5}{3} \frac{35}{6} (1 - \sqrt{1 - \frac{2}{12}} \frac{1}{12})$$

$$m = \frac{5}{3} \frac{35}{6} (1 - \sqrt{1 - \frac{2}{12}} \frac{1}{12})$$

$$m = \frac{5}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12}$$

$$m = \frac{5}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12}$$

$$m = \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12}$$


$$\frac{1}{125} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12}$$

$$\frac{1}{125} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12}$$

$$\frac{1}{125} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}$$

(D24

Design shear reinforcing for this beam:



$$\frac{Max. Spacing}{A_{v-min} = \frac{50 \ b \cdot Spa}{f_{y}}}$$
(ACI 11.5.5.3)  

$$\therefore Max \ Space = \frac{.40 \cdot 60,000}{50 \times 15''}$$

or 
$$\frac{1}{2} = \frac{33}{2} = \frac{16.67}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{33}{6.5} = \frac{$$

	SF 04	
XEQ -	LFBM-	
6:47:04 PM 12/09/	88	
TITLE: TEST 4	RUN	
*****	****	
ACI		
F-Y 40,60 60.0000	RUN	
Fc'KSI <b>4.0000</b>	RUN	
8- 8-	KUN	
18.0000	RUN	1
D" 33.0000	RUN	
H <b>-</b> 36.0000	RUN	
1.2Mc=184.4111 'K	KUN	
200/FY=0.0033		
A-S=1.9800 SQ .75Pb=0.0214		
*****	****	
NJ K		
474.0000 M/BD2=322.4161	KUN	
a=3.2937*		
RH0=0.0057		
P/Pb=0.1984-OK		
A-S=3.3596 SQ		
N, K		
150.0000	RUN	
M/BD2=102.0304 a=1.0056=		
RH0=0.0017		
P/Pb=0.0606-0K		
A-S=1.0257 SQ		
4/3 A-S=1.3676 SQ		
M, 'K	RUN	1
*****		:
SHEAR		
¥c=75.1357 K		
**************************************	*****	
.4008	RUN	
V, K 94.8000	RUN	
SPA=16.5000 (MAX)		
V, K		
30.0000	RUN	_
.5Vc>V 		DZE
V, K		Ü

5/5

					1		
	XYZ	TLL			<u>Y</u>	र	TLL
01+LBL "WSBM"			53 XROM "BD"	D	B		
02 CF 06			54 X=0? 55 GTO D				
03 14			56 RCL 07				
04 GTO 03			57 <b>-H</b>				
			58 PROMPT				
05+LBL "LFBM"			59 STO 07	н			
06 SF 06			60 RCL 04	d d ²			
07 10				12			
			61 X†2	Ь			
08+LBL 03			62 RCL 03				
09 CF 09			63 <b>*</b> 64 STO 10	b d2			
10 XROM "S"			65 ST* 05				$\phi b d^2 \text{ in R.05}$
11 GTO 03							
			66 FS? 06				
12+LBL -CORBL-			67 GTO 00	1mg/			
13 SF 09			68 RCL 12	-451,		1	
14 17			69 RCL 13	for			all. fe
15 XROM -W-			70 RCL 09	N	f st	•45f	Ideal k= all fe
			71 /	E/n			7N° 4= 1C
16+LBL 03			72 RCL 12	.456			
17 CF 10			73 +				
18 XEQ -N-			74 /	K	Ι.		
19 STO 09	f		75 ENTERT	k	k		
20 FS? 06	<u>۲</u> ۲		76 CHS	1-	-k	k	
21 GTO 03			77 3	3	- «	K	
22 FC? <b>0</b> 4			78 /	1/3			
23.4			79 E		Ι,		j=1-4/3
24 FS? 04			80 +	15	k		1.1.13
25.45			81 *			1	
26 *			82 2	坒			
27 STO 12	45£		83 /				
28 8	10 Te		84 RCL 12	.45f.		r	
29 PROMPT			85 *				
	N fc		86 STO 14	Rideal			I deal Rozall. R. ja
<b>30 X</b> (> <b>0</b> 9	fe						
71 AL DI 07			87+LBL 00				
31+LBL 03			88 RCL 07	h			
32 FC? 89			89 RCL 04				
33 GTO D			90 -	k-d'			
34 5	7.0'		91 FS? 89				
35 /	Zte		92 GTO 16				
36.8	Ahi		93 RCL 07	h h ²			
37 X>Y?			94 Xt2	h			
38 X<>Y	lever		95 RCL 03	Ь			
39 STO 08			96 <b>*</b>	bhz			
40.55			97 XROH "Hc"	Pain			
41 FC? 04			98 RCL 03	b			
42.45	uso tecors		99 <b>*</b>				
43 FC? 86			100 RCL 04	P.j.b	Print		
44 ST <b>+ 0</b> 8			101 XROM -R-	1	1		
45 -MU 1,1.4-			102 ARCL 02	Asmin			
46 PRONPT			103 FC? 00	. Selvin			
47 STO 16	M thirtin tector)		104 AVIEN				
			105 STO 08	Asmin			
48+LBL D			106 SF 14	1.244.14			-
49.9							6-77
50 FS? 09							(DZ7)
<b>51 .8</b> 5					1		
52 STO 05	$ \phi $	1 1		1	1	1 1	1

	X	Y	Z	T				Y	マ	T	L	
403.101.5						162 R†	A	Ъ				
107+LBL E						163 *	1					
108 CF 07						164 RCL 04	d					
109 XROM "LL	•											
110 CLA						165 *	As					
111 CLX						166 CLA						
112 XROM =M	•					167 XROM "AS"						
113 PROMPT	m'k	12	1			168 XEQ "PY"						
114 *	M F					169 RCL 08	MinAs	AGree	L			
115 X=0?						170 X()Y	A3	Min.				
						171 X>Y?						
116 GTO 37						172 GTO E						
	1					173 BEEP						
117+LBL 07	M					174 4						
118 <b>"M/BD</b> 2=						175 -4/3 -						
119 RCL 03	8					176 3						
120.9	Ø											
121 FC? 06						177 /						
122 SIGN	1					178 *	413A3					
123 RCL 04	d					179 XROM "AS"						
124 Xt2	d d ²	ø	Ь	m		180 XEQ -PY-						
125 *		1				181 GTO E						
126 *	11-12 1602	M	m	m/		182+LBL 12						
127 /		1.1		M		183 "NG"						
128 E3	1000											
129 *	1 10 00 00 00 00 00 00 00 00 00 00 00 00					184 BEEP						
130 ARCL X	pbd		1			185 AVIEW						
131 FC? 00		1				186 GTO E						
132 FS? 09												
133 X=0?						187+LBL 05						
134 AVIEW						188 RCL 14	Rideal	Rat	M.""			
	1000					189 X>Y?		1.461				
135 LASTX	~/4L @	d mark	Mark	Mark		198 GTO 18						
136 /	1968	1.,				191 RCL Z	M		1			
137 FC? 06						192 RCL 04			1			
138 GTO 85							dz		1			
139 X<>Y	M	1				193 2	1.					
140 XROM "U		1				194 /	d/2					
141 STO a	Ash	<b>i</b>				195 CHS	-d/2					
142 RCL 04	d	4				196 RCL 12	.45f					
143 *	1				f	197 RCL 03	Ь	~45f.	-d/2	M		
143 + 144 RCL 00	. 556				a- Az- fy	198 *						
		1			bot b	199 *	-45 <u>6'</u> 68 Z					
145 /	a	1				200 LASTX	2					
146 X<> a	ρ					201 6						
147 °a="		1		1		202 /	<u>.956'b</u> 6	15f. 6	mªL			
						203 XROM "Q"		1	1			
148+LBL 19		1					ĪΥ					
149 FS? 09						204 X(>Y	1'					
150 RTN						205 STO a	Y 1	V				
151 ARCL a						206 ENTERT		Y				
152 -+						207 Xt2	YL					
153 FC? 00			1			208 RCL 03	Ь	١.	2			
154 AVIEW						209 RCL 09	h	b	Y	Y		
	.1	9				210 /	<b>.</b> .			, i		
155 .1	•'	۱٢				211 *	v %	Y	l y	Y		
156 X>Y?						212 -OVER-			1			
157 FS? 07						213 RCL 04	1					
158 GTO 12						213 KCL 04 214 Rt	N N	d	Y2 %	Y		
(DZS) 159 RDN	P					214 KT 215 -	А Ч d- у			1	İ	
160 XEQ -RH		1.75	9				r 1		1	•		
161 RCL 03	b	1	1	ρ	1	216 X <b>\=0</b> ? 217 SF 07			i			

	X		Z	T	L			X	V	र	T	L	
218 /	<u>y²b/n</u> d-y	<b>·</b>	-			L	274 ST+ 10	+	<u>├</u>				
219 2	d-4 2	y² b/n					275 RND						
220 FC? 09		<u>y² b/n</u> d-y	У	Y			276 RCL 10						
221 FS? 00							277 RND						
222 X=0?							278 X≠Y?						
223 AVIEW							279 GTO 11			1			
224 GTO 08							280 ENTERT	Y	ΙY				
							281 X<> a	Mark	Ý				
225+LBL 10	Rife	Ract	M".F				282 RCL 04	d	m	Y			
226 6							283 RCL Z	Y	d	m			
227 Rt	M	6					284 3	Ċ.	•				
228 STO a	1						285 /	Y13	d	M	M		м
229 *	64						286 -	jd	M			A5=	Enjd
230 RCL 09	N						287 /	m/jd					יוסי ש
	Knm						288 RCL 13	for					
232 RCL 13	Fer									ł			
233 /							289+LBL 08						
234 RCL 03	ю						290 /	As					
235 /							291 RCL 03	Ь					
236 STO \	6 n M b For						292 /	0					
237 KUL 04	d						293 RCL 04	8					
238 *							294 /	ρ					
239 STO 1							295 •Y=•						
240 LASTX	d						296 GTO 19						
241 3		1					667.1 Bt 44						
	3 <i>d</i>						297+LBL 16	h'-d'					
243 STO [	l						298 STO 02						
244 9	d/3		1				299 RCL 01	Fy					
245 / 246 STD 18							<b>300 .8</b> 5	.55Ty					
246 STO 10							301 <b>*</b>	1. mil					
247 E 248 %		1					302 FC? 06	F.		1			
248 4 249 STO †	\$/300	AL-	GMAN				303 RCL 13						
259 STO T	-1300	-3	6M&n 6 Fer				304 STO 17 305 <b>"Arm""</b>	Fst		1			
							<b>305 PROMPT</b>						
251+LBL 11							307 STO 15	Arm					
251 CL Z							308 RCL 04	d					
253 STO 11							309 X>Y?	۳ ا					
254 RCL 10	Y?						310 SF 14						
255 ENTERT	_						311 X>Y?						
256 ENTERT							312 GTO 34						
257 ENTERT							313 "ARM > D"						
258 RCL [	A						314 BEEP						
259 -							315 PROMPT						
260 *							316 GTO D	1					
261 RCL \	В												
262 -	I						317+LBL 34						
263 *					3	120	318 XROM -L-						
264 RCL ]	C				x	$-Ax^2-Bx+C=0$							
265 +							320 -V, K-						
266 ST* †							321 PROMPT						
267 ST- 11							322 X=0?						
268 RCL †							323 GTO D	V		1			
269 RCL 11							324 STO 06	aller. fr		1			
270 X≠0? 271 (							325 RCL 08	1. •					
271 / 272 STO †	I						326 RCL 03	6			1		(DZY)
272 STU T 273 X(> 10							327 <b>*</b>		1				$\smile$
213 AV/ 10	1	1	1		1		328 RCL 04	I	1	1			

Program <u>WSBM etc.</u> For <u>Concrete Dreign</u> <u>752</u> bytes Page<u>4 of 4</u>

				-		1							
	X	Y_	Z	T	L			<u> </u>	Y	र	T	L	
329 *	$\vee_c$	$\vee$											
330 -Y>Yc-							387 X<=Y?						
331 X<=Y?							388 X<>Y	Greeter	Laur				
332 BEEP							389 LASTX	An					
333 X<=Y?							390 X<>Y	Greater	An				
334 AVIEW							391 RCL 00	.45f./	, . n				
335 X<=Y?							392 21.25	21.25	.5f.'s	Greater	Δ		
336 GTO D							393 /	mer't		4			
337 CLX							394 "RHO-MIN="	046e/try	CIERN	^A n	A.		
338 "TENS NC, K"					1		395 ARCL X						
339 PROMPT	1						396 FC? 00						
340 STO 07	Ne						397 AVIEW						
341 "Nc>Y"	1.40						398 RCL 03	6					
342 RCL 06	V	Ne					399 *	ľ					
343 X<=Y?	<b>`</b>	1.00					400 RCL 04	6					
344 BEEP							401 *	Asmin	Aء	A,			
345 X(=Y?							402 X>Y?			•			
346 AVIEW							403 X<>Y	lever	grader				
347 X<=Y?							404 RDN	grecher	•				
348 GTO 34							405 ADV						
349 5	1						406 "PRIM "						
350 /	V/5	Nc			M	. N Vig	407 XROM "AS"						
351 X>Y?						5	408 XEQ -PV-						
352 STO 07							409 -	AA.					
353 RCL 06	$ \vee $						410 CHS	A A.					
354 RCL 17	f#						411 2						
355 /							412 /	ta-A					
356 RCL 16	4		ł				413 -SEC -						
357 /				İ			414 XROM "AS"						
358 <b>-</b> A-V=-							415 XEQ -PY-						
359 XEQ 01							416 GTO 34						
360 2													
361 *							417+LBL 37						
362 3					1		418 RCL 82	.750					
363 /	2/3Av	'					419 STO 10						
<b>364 X&lt;&gt; 0</b> 6	V				30	v in R.16	420 RCL 03						
365 RCL 15	Arm				131	V S MICO	421 XEQ "VS"						
366 *	Mum	4					422 RCL 10						
367 RCL 07	Ne						423 STO 82						
368 RCL 02	h-8						424 GTO D						
369 *	Marie												
370 +	M						425+LBL 01						
371 XEQ 07	Pm				1		426 ARCL X						
372 RCL 03	6				1		427 XROM -IS-						
373 *	1		1	1			428 FC? 00						
374 RCL 04	Ae				1		429 XEQ -PV-						
375 *	** <b>f</b>		1				430 END						
376 "A-F="					1								
377 XEQ 01 378 RCL 07	Nc		1					ł					
379 RCL 17	Fs		1										
380 /		A	1	1									
381 "A-N="	A .	Af	1										
382 XEQ 01													
(D30) 383 +	A.+A,												
384 RCL 06	SA.												
385 LASTX	A.				-					, i	ı	I •	
386 +	Vs Are	A'n			ł								

# LOAD FACTOR (ULTIMATE STRENGTH) CONCRETE BEAM ANALYSIS

xeq LFAN (SIZE 029)

**<u>SOFTKEYS</u>** (USER mode ON)

A	ווא	new	reinforcing	input
A	<b>NTT</b>	11Ew	reiniorcing	Tubac

C Correct previous layer of reinforcing input

- D New beam dimensions
- E New acting moment

# USER FLAGS

Flag 00	clear set	Full output Only moment capacity and reinforcing limitation warnings
Flag 02	clear set	Warning BEEP disabled Warning BEEP enabled
Flag 04	clear set	AASHTO ACI

# INPUT SUMMARY

<u>Prompt</u> AASHTO or ACI	<u>Input</u> A reminder, not a prompt. Press R/S to continue if correct.	<u>Default</u>
F-Y 40,60	Steel yield stress in ksi	60 ksi
Fc' KSI	Concrete <u>ultimate</u> strength	4.0 ksi
FL W"	Top flange width in inches	No default
WEB W"	Web width in inches. Bypass for a rectangular beam. WEB W" is greater than FL W" for an invert-T beam.	FL W"
FL TH"	Top flange thickness in inches. Only prompted if WEB W" is different than FL W".	No default
Н"	Total depth of the member (full concrete depth, not depth to reinforcing), in inches	No default

<u>Prompt</u> Z 130,170 (AASHTO) Z 145,175 (ACI)	<u>Input</u> Allowable Z-cracking constant in kips per inch	<u>Default</u> 130
LF M,'K	Factored moment in foot-kips, <u>always positive</u> . Note: the program applies the under-capacity factor phi = 0.90.	No default
SERV M,'K	Service moment in foot-kips, <u>always positive</u>	No default
MIN FATG M,'K (AASHTO only)	Minimum moment for fatigue considerations ( <u>Service DL + LL</u> ). If reversal takes place, this is negative. Bypass or input zero to skip fatigue calculations.	Zero
A-S1	Area of first layer of tension reinforcing in square inches. Bypass to access shear design.	Shear design
D"	Depth to reinforcing, in inches	No default
A-S2, A-S3, etc.	Area of second (third, etc.) layer of tension reinforcing. Bypass (or enter zero) to end reinforcing input. Layers need be in no particular order.	Zero
MAX BAR #	Size of the largest tension bar; e.g. #8 for a 1" diameter bar	No default
A-S'	Area of compression reinforcing.	Zero
D-TOP"	Depth to compression steel	No default
	ems in parenthesis are displayed onl s clear)	y if flag
(LF: EST A-S)	Estimated reinforcing necessary fo factor moment (LF M) input	or the load
(WS: EST A-S)	Estimated reinforcing needed for t moment (SERV M) input	he service
(RHO)	The reinforcing ratio	
P/Pb	Compares the actual reinforcing ra "balanced" ratio.	tio to the
AS <min< td=""><td>Warns that the area of steel is le calculated minimum. Design is sti the area of steel is greater than</td><td>ll OK if</td></min<>	Warns that the area of steel is le calculated minimum. Design is sti the area of steel is greater than	ll OK if

(Ie)	The "effective" moment of inertia based on service moment acting
(C)	The neutral axis location, measured from the top down
LF M	The "nominal" ultimate strength of the member, O M _u , in foot-kips.
SERV M	The allowable service moment on the member based on Z-cracking considerations, in ft-kips
(Z STRS)	The allowable service reinforcing stress in ksi, used to figure SERV M
(ACT STRS)	The acting service reinforcing stress in ksi
(Z)	The acting Z value
(ALL FAT STRS)	The allowable fatigue stress on the reinfor- cing, in ksi
(ACT FAT STRS)	The actual fatigue stress on the reinforcing
(OK or NG)	Approval or disapproval of the design, based on ultimate and service strength and fatigue. Does not look at maximum or minimum steel areas or constructibility of the design.

# PROGRAM FLAGS

Flag 05	clear set	True T-beam, based on neutral axis depth Rectangular, or neutral axis in flange
Flag 06	clear set	IC (WSD) LFAN (LFD)
Flag 07	clear set	OK NG
Flag 08	clear set	T-beam, based on configuration Rectangular beam
Flag 09	clear set	do Z-cracking calculation don't do Z-cracking calculation
Flag 10	clear	All concrete properties in Fc

# STORAGE REGISTER USE

<u>Register</u>	<u>Value</u>
00	.85 Fc'/Fy
01	F _y , ksi

<u>Register</u> 02	<u>Value</u> .75 P _{bal} for T-beam
03	Web width, inches
04	Maximum reinforcing depth
05	ø bd ²
06	$\sqrt{Fc'}/253$ for 1.2 M _{cr} calculation
07	Flange width
08	Present A _{st} ; D' for compr. steel
09	N
10	Flange thickness
11	H (full beam depth)
12	Y (neutral axis position) from "Ic"
13	Ζ
14	H - 3" for reinforcing estimates; $\sum A_{st}$
15	"c" for .75P _{bal}
16	S _{st} (reinforcing section modulus)
17	I _{cr}
18	B ₁ (beta ₁ )
19	Min A _{st}
20	counter; A _s '
21	$\sum A_{st} \times D$
22	M _{cr} , inch-kips
23	I _g (gross moment of inertia of the concrete alone)
24	.75 P _{bal} for rectangular beams
25	SERV M (inch-kips stored)
26	LF M (inch-kips stored)
27	MAX BAR #
28	M _{min} for fatigue

(034

### LOAD FACTOR (ULTIMATE STRENGTH) CONCRETE BEAM ANALYSIS

Program LFAN analyzes reinforced beams by ultimate strength methods, calculating the cracked-section moment capacity of a given beam configuration for different reinforcing options. It accepts rectangular, T, or invert-T beams, with or without compression steel (one layer only), and multiple layers of tension steel. It is <u>not</u> able to distinguish bars input as tension steel which are above the neutral axis, so don't include too many "side bars" as tension reinforcing. The program also calculates the gross moment of inertia ( $I_g$ ) of the concrete section, and the "effective" moment of inertia ( $I_e$ ) as defined by AASHTO 8.13.3 and ACI 9.5.2.3, using the service moment input.

### AASHTO/ACI MINIMUM A

Like most of the structural programs, LFAN follows AASHTO if flag 04 is clear and ACI if it is set. The governing code is displayed at the beginning of each run. If it is the desired code, press R/S to continue. (If using a printer, you won't need to press R/S--it continues automatically.) If designing by the other code, change the status of flag 04 and start over. AASHTO calculates the minimum area of steel by means of a cracking-moment concept rather than with 200/Fy as ACI does. If designing by ACI, the  $200/F_v$ , ratio is based on average depth to reinforcing for multiple layers of reinforcing, and on the web width for T-If working with AASHTO, on the other hand, the beams. minimum reinforcing is that necessary for a "cracking moment" based on the concrete gross moment of inertia, assuming a homogenous material with a strength of 7.5  $\sqrt{f_{c}}$  (the "modulus of rupture" of concrete per AASHTO This reinforcing is calculated by ultimate 8.15.2.1). strength methods, using an effective depth to reinforcing 3" less than the full concrete depth of the member, and is the same for both concrete flexural analysis programs, Ic and LFAN. AASHTO is not very clear in its present form that ultimate strength methods are to be used for all designs, WSD as well as LFD; however, the 1982 Interim Specifications, where it was introduced, spell it out a little better. Besides, it doesn't make sense to have a different minimum for WSD than for LFD. If the actual reinforcing is less than the minimum, the program displays AS<MIN; if the area of steel is greater than 4/3 of what is needed, it still meets code requirements.

### MAXIMUM REINFORCING

LFAN also checks the reinforcing against a maximum of  $0.75P_{\rm b}$  (75% of the "balanced" reinforcing ratio based on ultimate-strength concepts) as required by both AASHTO and ACI. This check does take compression reinforcing into account, as well as the effect of T-beam flanges.

# MOMENT CAPACITY

The moment capacity is found by calculating the moment causing full allowable stress in the tension steel only, as opposed to program Ic, which checks concrete stresses as well as tension and compression steel stresses. This is because, in ultimate strength design, concrete stresses will not exceed the allowable if the reinforcing ratio is held below  $.75P_b$ . If the reinforcing ratio goes above this maximum, the program displays a warning.

# The output moment capacity (LF M=...) includes the undercapacity factor Phi = 0.90.

At the end of a run, the program displays OK or NG (no good) in reference to the beam configuration just run. This reflects ultimate and fatigue capacity and service load (Z-cracking) capacity. It does not refer to maximum or minimum steel checks or deflection. In other words, a beam with too much reinforcing will effect a warning AS>MAX during the run but may well display OK at the end. This means it has adequate ultimate, cracking, and fatigue strengths; however, the beam is not acceptable.

### **REINFORCING ESTIMATES**

After displaying the maximum and minimum steel calculations, LFAN prompts for the acting load factor and service moments, as well as minimum moment for fatigue. Based on the load factor and service moments, it estimates the amount of reinforcing required for each; these two quantities usually bracket the actual rein-If fatigue is a consideration, or forcing required. if the Z-cracking requirement is strict (Z = 130 or 145), the actual steel required will be closer to the WSD estimate. If the Z required is higher (170 for AASHTO or 175 for ACI for "moderate" exposure), the area of steel required will be closer to the ultimate requirement. Using multiple layers of steel, of course, raises the required area since the reinforcing is being used less efficiently. The program bases these estimates on the following three assumptions:

1) One layer of reinforcing

2) Effective depth D = H - 3"

3) For a T-beam, the neutral axis is within the flange.

The LFD estimate is a true design, given these assumptions. The WSD estimate uses these rules of thumb (from the ACI Working Stress Handbook) where M is in footkips and D is in inches:

> $A_s = M/(1.76 D)$  for  $f_s = 24 ksi$  (Grade 60)  $A_s = M/(1.24 D)$  for  $f_s = 20 ksi$  (Grade 40)

These two areas of reinforcing are, of course, only estimates, but are often useful as a place to start or to check if a given beam configuration is reasonable for the load.

### FATIGUE AND CRACKING

LFAN calculates the elastic (cracked) section properties of the given beam configuration in order to evaluate service (Z-cracking) and, under AASHTO (flag 04 clear), fatigue properties. These calculations are done by the working portion of program Ic. The section properties are not displayed by LFAN; however, they are stored and may be recalled by the user. The program checks reinforcing fatigue only; concrete fatigue  $(0.5 f_{\rm C}')$  is not checked. According to ACI 343, no failures have ever been attributed to fatigue of concrete; and it never seems to govern. However, if felt necessary, this should be checked by the designer.

Fatigue calculations involving stress reversal are complicated in concrete analysis, since it is not correct to simply use the same cracked-section properties with signs reversed. Any stress calculations on tension steel under stress reversal usually involve assumptions concerning the opposite layer of reinforcing (formerly compression steel, now in tension). LFAN cavalierly makes a number of such assumptions, all based on concrete bridge slab design:

1) There is only a single layer of steel on each side.

2) Whether or not compression steel was input, the "top" steel (normally in compression, now in tension) is assumed to be twice the area of the steel being investigated for fatigue. This is predicated on the assumption of equal top and bottom mats (which is approximately true for continuous slab design) where the mat under investigation has had half its bars cut off (since most moment reversal problems happen at bar cutoffs). 3) Under moment reversal, the new "cracked" properties are not calculated precisely. The program assumes that k' = 0.3 and j' = 0.9 (where j' = 1 - k'/3).

Since the compressive force due to moment reversal is usually very low (on the order of 2 ksi or less) these assumptions are close enough. However, they really have no merit except in continuous slab design, so use negative MIN FATG M's with caution in other designs.

The program also assumes the reinforcing deformation ratio r/h is 0.8, meaning the maximum allowable fatigue stress is calculated as  $21.0 + 3(r/h) - (f_{min})/3$ , or  $23.4 \text{ ksi} - (f_{min})/3$ . Under moment reversal,  $f_{min}$  is negative, thus raising the allowable fatigue stress.

#### USER FLAGS

The program displays full output (including limit checks, the neutral axis position,  $I_g$ ,  $I_e$ , and fatigue and Z-cracking calculations) if flag 00 is clear. If flag 00 is set, the program displays only the ultimate and service moment capacity. The limit checks (minimum and maximum areas of steel) and their warnings are not disabled by setting flag 00; only the display of the actual minimums and maximums is suppressed. When flag 00 is set, some quantities (the moments) are not prompted to be input. Thus it works to set flag 00 in the middle of a run, but clearing it will cause problems.

All the programs have warning BEEPS for material property limits and some errors, which sound if flag 02 is set; however, LFAN does <u>not</u> have BEEPs for infractions concerning minimum steel areas, only displayed warnings. The program is unaffected by flag 01 or 03. As mentioned, flag 04 determines whether AASHTO (clear) or ACI (set) is followed.

#### SOFTKEYS

Softkeys are used extensively by LFAN for modification or correction of input. To access the beam <u>dimension</u> prompts, press softkey D (in USER mode); to input new moments, use softkey E (<u>external loads</u>, maybe?). Softkey C (<u>correct</u>) returns the program to the previous reinforcing prompt (for multiple layers of tension steel) while still in the tension steel input <u>section</u>. Softkey A, on the other hand, starts the reinforcing input from the beginning (<u>A</u>-S1, etc.) and may be used any time the program pointer is actually within LFAN; i.e., any time except while in the shear design subroutine (see next paragraph) or the initialization or material prompting subroutines at the beginning of the program.

## SHEAR DESIGN

All four of the flexural programs access a shear reinforcing design subroutine, VS. This is a true LFAN is design program, not an analysis program. diverted to shear design by bypassing the A-S1 prompt. Unlike most other "defaults", the prompt must be bypassed; it doesn't work to input zero; and it must be the AS-1 prompt. Control returns to the flexural program by bypassing the A-V prompt in the shear design To use the shear design subroutine, the subroutine. designer must go through the flexural program at least once, since VS uses the beam width and reinforcing depth from the calling program. VS also uses the Flag 06 setting from the calling program to determine whether to design in WSD or LFD. In program LFAN, softkey A can be used to get to the A-S1 prompt, and thence to shear design, as long as at least one flexural analysis has been done; VS will use the beam configuration last run. Note that shear design is by the simplified equations of both codes and does not include the effect of moment or external tension or compression; this was done both to save programming space and because most designers usually use only the simplified methods anyway. For more information on this subroutine, see the documentation for VST, of which VS is a part.

#### T-BEAMS

The analysis of T-beams has a few peculiarities worth mentioning. First of all, the derivation of  $.75P_{bal}$  is based on the actual beam configuration. The neutral axis position is calculated for  $.75P_b$ , and if it is found to be below the flange then everything is recalculated. This is shown in the T-beam example, to which reference should be made.

Second, rather than use the distance "c" to calculate the position of the neutral axis, LFAN uses the dimension "a", where "a", the compression block depth, is  $B_1 \times c$ . On most sections, this makes no difference. However, on those sections where "c" is slightly greater than the flange thickness and "a" is slightly less, the usual analysis has the flanges participating their full depth while the web is only effective to depth "a." In this situation, the program will have a different "a" somewhere between the two, and a slightly greater neutral-axis position "c." The difference is minimal practically but philosophically makes more The "true" neutral axis position (i.e. that sense. calculated by normal means) is still used to check compression steel yield and the value for  $.75P_{\rm b}$ .

Invert T-beams are easily handled. In this case the FL W" (flange width) is less than the web thickness;

the flange is defined as always being in compression. The lesser of the two dimensions (flange or web width) is always used as the width for shear design.

# ALLOWABLE STRESSES

Program LFAN also has an idiosyncracy related to the value of N, the modular ratio, which is needed by the working-stress portion of the program but which is not input. LFAN calculates the modular ratio as N =  $12-f_{C}'$  (in ksi), which is correct for the normal range of concrete strengths used. Note that using a concrete strength, for instance, of 3500 psi, results in an N value of 8.5; normal hand calculations would use 9. This may result in some discrepancies when checking hand calculations.

#### REINFORCING STRESSES under ULTIMATE LOAD

Tension steel yield is never checked directly since, as mentioned, yield must occur if the reinforcing ratio is less than P_b. However, this indirect check applies at the average depth to reinforcing; in beams with more than one layer of reinforcing, bars above this which may not be yielding are not checked. Practically, the limitation of 75% of P_b ensures yielding in most reasonable designs. However, bars placed as "side bars" in deeper beams may not yield. If deemed desirable to include these bars in an analysis, the designer must check that they reach yield strain; the neutral-axis depth is displayed for this purpose. If found not to yield, they should be left out, or their area factored down by the ratio of their actual stress to the yield stress.

Compression steel yield, on the other hand, is checked. If this steel is found not to yield, the program recalculates using a factored-down area as described in the preceding paragraph. This, of course, is an approximation, but the error is typically less than 1% and is conservative. Concrete displaced by compression steel <u>is</u> accounted for. By way of comparison, neglecting to do this is non-conservative, by about 10%.

$$AASHTO W.S.D. - T-Beam  $\frac{1}{3}$ 
Check the T-beam for the loads given by AASHTO W.S.D. - T-Beam  $\frac{1}{3}$ 
Check the T-beam for the loads given by AASHTO W.S.D. - rheria.
$$= .00077$$

$$A_{3.min} \cdot .0077 \cdot \underline{60}^{1.4} + \frac{1}{2.007} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \frac{1}{2.000} \cdot \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1.4} + \underline{60}^{1$$$$

(n=&) (5.0% =" 36" + 6.24 = 38.5")
= 3385 in > 1060
⇒ N.A. in web @ service
∴ (60-14)=6" * (X- ½) + 18X·Ž
= (n-8)(5.06 × (42-x) + 6.24 (44.5-x)
252.0 X - 756 + 9X ² = (213.36+277.66-11.32X)+8
X = 10.6795" (Quadratic)
$fl. (60-18)=6 = \frac{4req}{252.0} = \frac{d}{7.66"} = \frac{Ad^2}{1934.98} = \frac{10}{756.0}$ web 16"= 1066 = 192.21 5.34" 5479.59 1826.83
As.1 5.06x 8 = 40.64 31.32" 39,869.22 - As.2 6.24 · 8 = 49.92 33.82 57,103.06 - 117,309.77 2582.53
$I_{cr} = 119,892.30 \text{ in}^4$
Concrete: $S_e = \frac{T}{X} = 11, 227.41 \text{ in}^3$ $M_c = \frac{(.40.4 \text{ bsi}) \cdot 11, 227.41}{12} = 1497.0 \text{ obs}$
Sheel = $5_{st} = \frac{119,492.30}{(44.5-x)(n=8)} = 443.11 \text{ in}^3$
M ₆₄ = <u>24 koi = 443.11</u> = 986.21 ¹¹ <u>- Governs</u> 12
446.21 < 1000.0 ⇒ <u>NG</u>
Section is inadequate by W.S.D.
(042)

Section Properties

 $60^{\circ} \times 6^{\circ} \cdot (6/2) = 1080 \text{ in}^3$ 

	XF	Q "Ic"
8: <b>30</b> :24	AM 02/17	
TITLE:		
T-BEAM		RUN
	*******	*****
F-S 20,2	4	
	24.0000	RUN
Fc'KSI	4.0000	RUN
N	8.0000	RUN
FL W"		
	60.0000	RUN
WEB N.	18.0000	RUN
FL TH-	101000	
H-	6.0000	RUN
.,	48.0000	RUN
	681.6777	
1.2Mc=41 A-S=2.0	6.9831 'K	
H-5=2.0 200/FY=0		
.75Pb=0.		
	-	
SERV M, 1	K ,000.0000	RUN
MIN FATG	W) K	
MIN FATG	M) 'K	RUN
	M, K A-S=12.554	
NS: EST		
NS: EST	A-S=12.554  5.0800	9 SQ-
NS: EST 	A-S=12.554	9 SQ-
WS: EST A-S1 D• A-S2	A-S=12.554  5.0800	9 SQ-  RUN
WS: EST A-S1 D* A-S2 D*	A-S=12.554  5.0800 42.0000	9 SQ- RUN RUN
WS: EST A-S1 D• A-S2 D• A-S3	A-S=12.554 5.0800 42.0000 6.2400	9 SQ- RUN RUN RUN RUN
WS: EST A-S1 D A-S2 D A-S3 A-S'	A-S=12.554 5.0800 42.0000 6.2400 44.5000	9 SQ- RUN RUN RUN RUN RUN
WS: EST A-S1 D• A-S2 D• A-S3	A-S=12.554 5.0800 42.0000 6.2400 44.5000	9 SQ- RUN RUN RUN RUN RUN
WS: EST A-S1 D- A-S2 D- A-S3 A-S ¹ RH0=0.00 Ic=119,8	A-S=12.554 5.0800 42.0000 6.2400 44.5000 43 92.2980	9 SQ- RUN RUN RUN RUN RUN
MS: EST A-S1 D A-S2 D A-S3 A-S RH0=0.00 Ic=119,8 Y=10.678	A-S=12.554 5.0800 42.0000 6.2400 44.5000 43 92.2980 5-	9 SQ- RUN RUN RUN RUN RUN
WS: EST A-S1 D- A-S2 D- A-S3 A-S ¹ RH0=0.00 Ic=119,8	A-S=12.554 5.0800 42.0000 6.2400 44.5000 43 92.2980 5- 7.4086	9 SQ- RUN RUN RUN RUN RUN
MS: EST A-S1 D- A-S2 D- A-S3 A-S' RH0=0.00 Ic=119,8 Y=10.678 Sc=11,22 S-ST=443	A-S=12.554 5.0800 42.0000 6.2400 44.5000 43 92.2980 5- 7.4086 .1073	9 SQ- RUN RUN RUN RUN RUN
MS: EST A-S1 D- A-S2 D- A-S3 A-S' RH0=0.00 Ic=119,8 Y=10.678 Sc=11,22 S-ST=443	A-S=12.554 5.0800 42.0000 6.2400 44.5000 44.5000 43 92.2980 5- 7.4086 .1073 .2146 'K	9 SQ- RUN RUN RUN RUN RUN
MS: EST A-S1 D A-S2 D A-S3 A-S RH0=0.00 Ic=119,8 Y=10.678 Sc=11,22 S-ST=443 ST M=886	A-S=12.554 5.0800 42.0000 6.2400 44.5000 44.5000 43 92.2980 5- 7.4086 .1073 .2146 'K	9 SQ- RUN RUN RUN RUN RUN
WS: EST A-S1 D- A-S2 D- A-S3 A-S RH0=0.00 Ic=119,8 Y=10.678 Sc=11,22 S-ST=443 ST M=886 Ie=125,4	A-S=12.554 5.0800 42.0000 6.2400 44.5000 44.5000 43 92.2980 5- 7.4086 .1073 .2146 'K	9 SQ- RUN RUN RUN RUN RUN

	AASHTO L.F.D. : T-Beom	XEQ "LFAN" 8:34:40 AM 02/17/89	
	Check the same design for adequacy by 44SHTO L.F.D criteria.	 TITLE: T-BEAM RUN ************************************	
	$f_{y}^{\prime} = 4.0 \text{ ksi}$ $F_{y} = 60 \text{ ksi}$ $Z = 130 \frac{\text{k}}{\text{m}}$ , (severe exposure)	F-Y 40,60 60.0000 RUN Fc'KSI 4.0000 RUN FL W" 60.0000 RUN WEB W"	
12 382 100 SHEETS 5 SQUARE 12 382 100 SHEETS 5 SQUARE 12 389 200 SHEETS 5 SQUARE	DL: 700 $LL = \frac{5}{3} \times \frac{300^{-4}}{1200} \times 1.3 = \frac{1560^{-L}}{1560^{-L}}$ Strength	18.0000 RUN FL TH" 6.0000 RUN H" 48.0000 RUN I-G=252,681.6777 1.2Mc=416.9831 'K A-S=2.0732 SQ" 200/FY=0.0033	
Mariana.	$(5.06 + 6.24) - 60 \text{ lsi} \stackrel{?}{=} 60" + (.85 + 4.0 \text{ lsi}) + a$ a = 3.33" $c = \frac{a}{\beta_{1} = .45} = 3.92" < 6" => N.A. in flange$	.75Pb=0.0104  Z 130,170 130.0000 RUN LF M,'K 1,560.0000 RUN  SERV M,'K 1,000.0000 RUN	
	$M = (\phi = .9)(5.04 \times (42 - \frac{3.33}{2}))$ $+ 6.24a'' \times (44.5 - \frac{3.33}{2})) \times \frac{60 \text{ bsi}}{12}$	MIN FATG M, K RUN LF: EST A-S=7.9081 SQ MS: EST A-S=12.5549 SQ 	
	$= \frac{2124.88''^{k}}{Cracking} > 1560'^{k} \frac{OK}{OK}$ $\frac{Cracking}{t} = \frac{5.06 \times 42'' \cdot 624 \times 44.5''}{11.32 \pi'} = 43.36''$	A-S1 5.0800 RUN D• 42.0000 RUN A-S2 6.2400 RUN D• 44.5000 RUN	
	equiv. number of $= 11 = \frac{11.32}{1.56} = 7.256 - = 11$ bars $A_{c} = 2 \times (48 - 43.36") \times 18"/_{7.256} = 22.93 e"$	A-S3 RUN MAX BAR <b>#</b> 11.0000 RUN A-S' RUN	
	$d_{c} = 44^{\circ} - 44.5^{\circ} = 3.5^{\circ}$ Allow. $f_{S} = \frac{Z = 130}{\sqrt{3.5^{\circ} - 22.93}} = 30.14 \text{ ksi}$ Act. $f_{S} = \frac{1000.0^{-4} \times 12}{5 \times 443.11} = 27.04 \text{ ksi} = 30.14 \text{ OK}$	RH0=0.0043 Ie=125,463.8348 C=3.9170 LF M=2,124.8799 'K SERV M=1,112.8783 'K	
	Allow. Serv. $M = \frac{30.14}{27.06} \times 1000'^{k} = \frac{1112.66'^{k}}{1100}$ Act. $Z = \frac{27.06}{30.14} \times 130 = 116.61  \frac{1}{10}$	Z STRS=30.1384 KSI ACT STRS=27.0815 KSI Z=116.8142 OK	P43

OK

3/3



# WORKING STRESS CONCRETE BEAM ANALYSIS

xeq IC (SIZE 029)

**SOFTKEYS** (USER mode ON)

- A All new reinforcing input
- C Correct previous layer of reinforcing input
- D New beam dimensions
- E New acting moment

# USER FLAGS

Flag 00	clear set	Full output Only moment capacity and reinforcing limitation warnings
Flag 02	clear set	Warning BEEP disabled Warning BEEP enabled
Flag 04	clear set	AASHTO ACI

# INPUT SUMMARY

<u>Prompt</u> AASHTO or ACI	<u>Input</u> A reminder, not a prompt. Press R/S to continue if not using a prim	<u>Default</u> nter.
F-S 20,24	Steel working stress in ksi	24 ksi
Fc' KSI	Concrete <u>ultimate</u> strength	4.0 ksi
N	Modular ratio, E _{st} /E _{conc}	8
FL W"	Top flange width in inches	No default
WEB W"	Web width in inches. Bypass for a rectangular beam. WEB W" is greater than FL W" for an invert-T beam.	FL W"
FL TH"	Top flange thickness in inches. Only prompted if WEB W" is different than FL W".	No default
Н"	Total depth of the member (full concrete depth, not depth to reinforcing), in inches	No default

1

<u>Prompt</u> SERV M, 'K	<u>Input</u> Service moment in foot-kips, <u>always positive</u>	<u>Default</u> No default
MIN FATG M,'K (AASHTO only)	Minimum moment for fatigue considerations ( <u>Service DL + LL</u> ). If reversal takes place, this is negative. Bypass or input zero to skip fatigue calculations.	Zero
A-S1	Area of first layer of tension reinforcing in square inches. Bypass to access shear design.	Shear design
D"	Depth to A-S1, in inches	No default
A-S2, A-S3, etc.	Area of second (third, etc.) layer of tension reinforcing. Bypass (or enter zero) to end reinforcing input. Layers need be in no particular order.	Zero
D"	Depth to A-S2, etc.	No default
A-S'	Area of compression reinforcing. Bypass for no compression reinf.	Zero
D-TOP"	Depth to compression steel	No default
	ems in parenthesis are displayed on is clear)	ly if flag
(WS: EST A-S)	Estimated reinforcing necesary for moment (SERV M) input	the design
(RHO)	The reinforcing ratio	
(Ic)	Cracked-section moment of inertia	
(Y)	Neutral axis position measured fro compression side	om the
(Sc)	Section modulus of the concrete	
(S-ST)	Section modulus of the deepest lay tension steel	yer of
ST M or CONC M	The service moment capacity, gover steel or concrete, respectively	rned by
(Ie)	The "effective" moment of inertia	
(ALL FAT STRS)	The allowable fatigue stress on the	ne reinfor-
(ACT FAT STRS)	cing, in ksi The actual fatigue stress on the r	reinforcing

(OK or NG) Approval or disapproval of the design, based on ultimate and service strength and fatigue. Does not look at maximum or minimum steel areas or constructibility of the design.

# PROGRAM FLAGS

Flag 05	clear set	True T-beam Rectangular, or neutral axis in flange
Flag 06	clear set	IC (WSD) LFAN (LFD)
Flag 07	clear set	OK NG
Flag 08	clear set	T-beam Rectangular beam
Flag 09	clear set	do Z-cracking calculation don't do Z-cracking calculation
Flag 10	clear	All concrete properties in Fc

# STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> .85 Fc'/F _y
01	F _y , ksi
02	.75 P _{bal} for T-beam
03	Web width, inches
04	Maximum reinforcing depth
05	$\phi$ bd ²
06	$\sqrt{Fc'/253}$ for 1.2 M _{cr} calculation
07	Flange width
08	Present A _{st} ; D' for compr. steel
09	N
10	Flange thickness
11	H (full beam depth)

<u>Register</u> 12	<u>Value</u> Y (neutral axis position) from Ic
13	Steel working str <b>ess,</b> f _{st}
14	H - 3" for reinforcing estimates; $\sum A_{st}$
15	"c" for .75P _{bal}
16	S _{st} (reinforcing section modulus)
17	I _{cr}
18	$B_1$ (beta ₁ )
19	Min A _{st}
20	counter; A _s '
21	$\Sigma$ A _{st} x D
22	M _{cr} , inch-kips
23	I _g (gross moment of inertia of the concrete alone)
24	.75 P _{bal} for rect. beams
25	SERV M (inch-kips stored)
26	not used
27	MAX BAR #
28	M _{min} for fatigue

### WORKING STRESS CONCRETE BEAM ANALYSIS

Program Ic analyzes reinforced beams by workingstress methods, calculating the cracked-section properties and moment capacity of a given beam configuration for different reinforcing options. It accepts rectangular, T, or invert-T beams, with or without compression steel (one layer only), and multiple layers of tension steel. It is <u>not</u> able to handle bars input as tension steel which are above the neutral axis, so don't get greedy and include too many "side bars" as tension reinforcing. The program also calculates the gross moment of inertia ( $I_g$ ) of the concrete section, and the "effective" moment of inertia ( $I_e$ ) as defined by AASHTO 8.13.3 and ACI 9.5.2.3, using the service moment input.

# AASHTO/ACI MINIMUM As

Like most of the structural programs, Ic follows AASHTO if flag 04 is clear and ACI if it is set. The governing code is displayed at the beginning of each run. If it is the desired code, press R/S to continue. (If using a printer, you won't need to press R/S--it continues automatically.) If designing by the other code, change the status of flag 04 and start over. AASHTO calculates the minimum area of steel by means of a cracking-moment concept rather than with 200/Fy as ACI does. If designing by ACI, the 200/F, ratio is based on average depth to reinforcing for multiple layers of reinforcing, and on the web width for T-beams. If working with AASHTO, on the other hand, the minimum reinforcing is that necessary for a "cracking moment" based on the concrete gross moment of inertia, assuming a homogenous material with a strength of 7.5  $\sqrt{f_{c}}$  (the "modulus of rupture" of concrete per AASHTO 8.15.2.1). This reinforcing is calculated by ultimate strength methods, using an effective depth to reinforcing 3" less than the full concrete depth of the member. AASHTO is not very clear in its present form that ultimate strength methods are to be used for all designs, WSD as well as LFD; however, the 1982 Interim Specifications, where it was introduced, spell it out a little better. Besides, it doesn't make sense to have a different minimum for WSD than for LFD. If the actual reinforcing is less than the minimum, the program displays AS<MIN; if the area of steel is greater than 4/3 of what is needed, it still meets code requirements.

#### MAXIMUM REINFORCING

Ic also checks the reinforcing against a maximum of 0.75P_b (75% of the "balanced" reinforcing ratio based

on ultimate-strength concepts) as a matter of good practice, although neither AASHTO nor ACI requires it. This check does take compression reinforcing into account, as well as the effect of T-beam flanges.

## MOMENT CAPACITY

The moment capacity is found by calculating the moment causing full allowable stress in the concrete, tension steel, and compression steel, if any. The least of these is the output capacity. The governing capacity is displayed by the program as either CONC M=... or ST M=... for concrete or steel, respectively. If concrete governs, it's usually best to increase the size of the beam or add compression reinforcing. Note that the concrete section modulus  $S_c$  already has been adjusted by N, the modular ratio. See the examples.

At the end of a run, the program displays OK or NG (no good) in reference to the beam configuration just run. This reflects fatigue capacity and service load capacity. It does not refer to maximum or minimum steel checks or deflection. In other words, a beam with too much reinforcing will effect a warning AS>MAX during the run but may well display OK at the end. This means it has adequate service and fatigue strengths; however, the beam is not acceptable.

## REINFORCING ESTIMATE

After displaying the maximum and minimum steel calculations, Ic prompts for the acting service moment. Based on this, it estimates the amount of reinforcing required. Using multiple layers of steel, of course, raises the required area since the reinforcing is being used less efficiently. The program bases this estimate on the following assumptions:

- 1) One layer of reinforcing
- 2) Effective depth D = H 3"
- 3) For a T-beam, the neutral axis is within the flange.

The WSD estimate uses these rules of thumb (from the ACI Working Stress Handbook) where M is in foot-kips and D is in inches:

 $A_{s} = M/(1.76 D)$  for  $f_{s} = 24 ksi$  $A_{s} = M/(1.24 D)$  for  $f_{s} = 20 ksi$ 

This area of steel is, of course, only an estimate, but is often useful as a place to start or to check if a given beam configuration is reasonable for the load.

### FATIGUE AND CRACKING

Ic calculates the elastic (cracked) section properties of the given beam configuration and, under AASHTO (flag 04 clear), fatigue properties. The program checks reinforcing fatigue only; concrete fatigue (0.5  $f_c$ ') is not checked. According to ACI 343, no failures have ever been attributed to fatigue of concrete; and it never seems to govern, even in heavily reinforced members. However, if felt necessary, this should be checked by the designer.

Fatigue calculations involving stress reversal are complicated in concrete analysis, since it is not correct to simply use the same cracked-section properties with signs reversed. Any stress calculations on tension steel under stress reversal usually involve assumptions concerning the opposite layer of reinforcing (formerly compression steel, now in tension). Ic cavalierly makes a number of such assumptions, all based on concrete bridge slab design:

1) There is only a single layer of steel on each side.

2) Whether or not compression steel was input, the "top" steel (normally in compression, now in tension) is assumed to be twice the area of the steel being investigated for fatigue. This is predicated on the assumption of equal top and bottom mats (which is approximately true for continuous slab design) where the mat under investigation has had half its bars cut off (since most moment reversal problems happen at bar cutoffs).

3) Under moment reversal, the new "cracked" properties are not calculated precisely. The program assumes that k' = 0.3 and j' = 0.9 (where j' = 1 - k'/3).

Since the compressive force due to moment reversal is usually very low (on the order of 2 ksi or less) these assumptions are close enough. However, they really have no merit except in continuous slab design, so use negative MIN FATG M's with caution in other designs.

The program also assumes the reinforcing deformation ratio r/h is 0.8, meaning the maximum allowable fatigue stress is calculated as  $21.0 + 3(r/h) - (f_{min})/3$ , or  $23.4 \text{ ksi} - (f_{min})/3$ . Under moment reversal,  $f_{min}$  is negative, thus raising the allowable fatigue stress.

3

The program displays full output (including limit checks, cracked section properties,  $I_{a}$ , and  $I_{e}$ ) if flag If flag 00 is set, the program displays 00 is clear. The limit checks (minimum only the moment capacity. and maximum areas of steel) and their warnings are not disabled by setting flag 00; only the display of the actual minimums and maximums is suppressed. All the programs have warning BEEPS for material property limits and some errors, which sound if flag 02 is set; however, Ic does not have BEEPs for infractions concerning minimum steel areas, only displayed warnings. The program is not affected by flags 01 and 03. As mentioned, flag 04 determines whether AASHTO (clear) or ACI (set) is followed.

## SOFTKEYS

Softkeys are used extensively by Ic for modification or correction of input. To access the beam <u>dimen-</u> sion prompts, press softkey D (in USER mode); to input new moments, use softkey E (<u>external loads</u>, maybe?). Softkey C (<u>correct</u>) returns the program to the previous reinforcing prompt (for multiple layers of tension steel) <u>while still in the tension steel input section</u>. Softkey A, on the other hand, starts the reinforcing input from the beginning (<u>A</u>-S1, etc.).

# SHEAR DESIGN

All four of the flexural programs access a shear reinforcing design subroutine, VS. This is a true design program, not an analysis program. Ic is diverted to shear design by bypassing the A-S1 prompt. Unlike most other "defaults", the prompt <u>must</u> be bypassed; it doesn't work to input zero. And, it must be the A-S1 prompt. Control returns to the flexural program by bypassing the A-V prompt in the shear design subroutine. To use the shear design subroutine, the designer must go through the flexural program at least once, since VS uses the beam width and depth to reinforcing from the calling program. VS also uses the Flag 06 setting from the calling program to determine whether to design in WSD or LFD. In program Ic, softkey A can be used to get to the A-S1 prompt as long as at least one flexural analysis has been done; VS will use the beam configuration last run. Note that shear design is by the simplified equations of both codes and does not include the effect of moment or external tension or compression; this was done both to save programming space and because most designers usually use only the simplified methods anyway. For more information on this subroutine, see the documentation for VST, of which VS is a part.

# T-BEAMS

The analysis of T-beams has a few peculiarities worth mentioning. First of all, the derivation of  $.75P_{bal}$  is based on the actual beam configuration. The neutral axis position is calculated for  $.75P_b$ , and if it is found to be below the flange then everything is recalculated. This is shown in the T-beam example, to which reference should be made.

Second, rather than use the distance "c" to calculate the position of the neutral axis, LFAN uses the dimension "a", where "a", the compression block depth, is  $B_1 \times c$ . On most sections, this makes no difference. However, on those sections where "c" is slightly greater than the flange thickness and "a" is slightly less, the usual analysis has the flanges participating their full depth while the web is only effective to depth "a." In this situation, the program will have a different "a" somewhere between the two, and a slightly greater neutral-axis position "c." The difference is minimal practically but philosophically makes more sense. The "true" neutral axis position (i.e. that calculated by normal means) is still used to check compression steel yield and the value for  $.75P_b$ .

Invert T-beams are easily handled. In this case the FL W" (flange width) is less than the web thickness; the flange is defined as always being in compression. The lesser of the two dimensions (flange or web width) is always used as the width for shear design.

#### **STRESSES**

Program Ic (and the other working stress concrete programs, WSBM and VST) have a couple of idiosyncracies related to input of the allowable steel and concrete stresses. First, although the steel stress is a working stress (usually 20 or 24 ksi), the concrete stress to be input at the Fc'KSI prompt is the ultimate strength of the concrete, usually 3 to 4 ksi. The factor of .40 (AASHTO) or .45 (ACI) is applied by the program. Second, these programs (in subroutine N) calculate the reinforcing yield stress as  $Fy = 5 \times (Fs-12)$ ksi), giving 40 and 60 ksi from 20 and 24 ksi respectively. If the designer is using a different allowable stress (for example, some tank wall designs are done at 14 or 16 ksi to hold down cracking), the calculated yield stress will be incorrect, invalidating the maximum and minimum reinforcing checks (all of which involve ultimate strength concepts and yield stresses).

(054

$$I = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} =$$

Working	Stress	Slab
---------	--------	------

Check against min: 2.54 > .4660 -% OK Check against max :  $\rho_{bai} = \frac{.45 \, \beta_1 f_2'}{f_2} \left( \frac{.47}{.47 + f_Y} \right)$ for f'= 4000, B = : 45 :. .75 pool = .75x : 15x . 45x. 45x. 4 . (47) = .0214 Max A = .0214.12 × 15.9" = 4.080" 2.54 =" = 4.08 =" OK <u>Calculate Section Properties</u> (elastic) Use n= & for f'= 4000  $\overline{\gamma} = \frac{n \cdot A_s}{b} \left( \sqrt{1 + \frac{2bd}{nA_s}} - 1 \right)$  $=\frac{4 \times 7.54}{17} \left( \sqrt{1 + \frac{2 \times 15.9}{4 \times 7.54}} -1 \right)$  $= \frac{5.4376''}{1}$   $I_{cr} = 12'' \cdot \frac{(5.4376)^{3}}{3} + (h=4) \times 7.54 \times (15.9 - 5.6376)^{3}$ = 2853.16 in⁴ Scone : 2883.16/5.8376" = 488.76 in  $S_{st} = \frac{2853.16}{(n=4)*(15.9-5.4376')} = 35.443 \text{ in}^3$ Either concrete or steel may govern : M3+ = 24 ksi = 35.443/12 = 70.89"

check: Mc = (.40 . 4) = 488.76/12 = 65.17" > 62.55"

XEQ "Ic" 1:46:50 PM 02/07/88 TITLE: RUN BRIDGE SLAB AASHTO N RUN 8.0000 F-S 20,24 24.0000 RUN Fc'KSI 4.0000 RUN FL W" 12.0000 RUN WEB N. RUN H-RUN 18.0000 I-G=5,832.0000 1.2Mc=30.7352 'K A-S=0.4660 SQ* 200/FY=0.0033 .75Pb=0.0214 A-S1 2.5400 RUN D-RUN 15.9000 A-S2 RUN A-S' RUN RH0=0.0133 Ic=2,853.1635 Y=5.8376* Sc=488.7539 S-ST=35.4435 CONC M=65.1672 'K A-S1 .4000 RUN D-RUH 16.0000 A-S2 RUN A-S' RUN RH0=0.0021 ASKMIN Ic=644.7407 Y=2.6667* Sc=241.7778 S-ST=6.0444 ST M=12.0889 'K

A-S1

OK

Z/6

42.182 100 SHEETS

(056)

<u>Check fatique</u> (AASHTO) Since this is a simple span, M_{min} = M_{DL} and moment range = M_{LL}. fmin = (30.94' * 12)/35.443 m = 10.475 ksi Allowable  $f_s = 21 - \frac{f_{min}}{5} + \mathcal{E}(r/h)$ Use (1/h)= 0.3 (deformation height)  $f_c = 21 - \frac{10.475}{3} + 4 \cdot 0.3 = \frac{19.9062}{3}$  ksi Actual stress range = (31.61 × 12) = 10.7023 Loi Calculate I est = (Mer )3- Ig + (1- Mer)- Icr = Ig  $I_{e} = \left(\frac{30.73734.73}{62.55}\right) \times 5432.0 + (1 - (3) \times 2453.16 = 3057.72$ Check design for same loads by <u>ACI</u> Minimum  $p = \frac{200}{F_v} = .0033$ :0033 × 12" × 15" = .60 2" < 2.54 5" OK Section properties are the same Mor = 24 koi x 35.443 in = 70.49 " Mcone = (.45 × 4 ksi) × 448.76 = 73.311.4 Steel governs @ 70.89" + 762.55 OK

7:42:48		
TITLE: ACI WSD	EXAMPLE	RU
ACI N		
F-S 20,2	8.0000 4	RUH
Fc'KSI	24.0000	RUN
FL Nº	4.0000	RUN
	12.0000	RUN
WEB W"		RUN
H- I-G=5,832 1.2Mc=30 200/FY=0 A-S=0.60 .75Pb=0.0	.7352 'K .0033 000 SQ"	RUM
	1011	
SERV M, 1	-	
	- (	RUN
SERV M, 1	- (	
SERV M, 1	62.5500 62.3559	SQ.
SERV M, ') WS: EST (	62.5500 A-S=2.3559 2.5400	
SERV M, ') NS: EST ( A-S1	62.5500 62.3559	SQ- Run Run
SERV M, ') MS: EST A A-S1 D-	62.5500 A-S=2.3559 2.5400	SQ- RUN RUN RUN
SERV M, ') MS: EST A A-S1 D- A-S2	62.5500 A-S=2.3559 2.5400 15.9000	SQ- Run Run
SERV M, ') WS: EST A A-S1 D A-S2 A-S' RH0=0.013 Ic=2,853. Y=5.8376 Sc=488.75	62.5500 A-S=2.3559 2.5400 15.9000 33 1635 39	SQ- RUN RUN RUN
SERV M, ') MS: EST A A-S1 D A-S2 A-S' RH0=0.013	62.5500 0-S=2.3559 2.5400 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.9000 15.90000 15.90000 15.90000 15.90000 15.90000 15.90000 15.90000 15.900000 15.900000 15.900000 15.900000 15.90000000 15.9000000000000000000000000000000000000	SQ- RUN RUN RUN

3/6

<u>Re-design bridge by LFD.</u> AASHTO: DL= 30.94 LL= 53+31.61:52.66 43.62 ×1.3 109 71 Steel regid for ultimate strength:  $p = \frac{1}{m} (1 - 1 - 2mR_{u}/f_{y})$  $M = \frac{f_{V}}{45f}, = \frac{60}{45r4} \cdot 17.6471$  $R_{u} = \frac{M}{0 b d^{2}} = \frac{104.71 \times 12}{.9 \times 15.9^{2}}$ = .4776  $: \rho = \frac{1}{17.65} (1 - \sqrt{1 - 2 \times 17.65 \times .4778/60})$ = .0086 As = .0086× 12-15.9 = 1.6440" Positive moment reinf. - bottom of slab ⇒ <u>Use Z = 170</u> : Expect As to be closer to LFD than WSD value (2.375") Try * 10@ 9"; As= 1.69 "/" Calculate elastic properties:  $\overline{y} = \frac{n \cdot A_{s}}{b} \left( 1 + \frac{z \cdot b \cdot d}{n \cdot A_{s}} - 1 \right) = 4.9641^{\circ}$  $I_{-} = |Z'' + \frac{4.9641^{2}}{2} + (n=4)^{2} |.69 + (15.9 - 4.9641)^{2}$ = 2106.22 in4  $5_{st} = \frac{2106.22}{1159-4914124} = 24.0746 in^{3}$ 

Fatique  $f_{\min} = \frac{M_{\min}}{S_{47}} = \frac{30.94^{"L_{4}}1Z}{Z4.0746}$ = 15.42 ksi allow.  $f = 21.0 - \frac{f_{min}}{3} + 4(r/4)$ Use (1/2)= 0.3 . allow. f = 18.26 ksi Act. Fatq. stress = Mom Range = 31.61" × 12 = 15.756 koi 01K Ultimate strength  $12" = (85 \times 4.0 \text{ ksi}) \cdot 9 = 1.69 \text{ m}^{\circ} \cdot 60 \text{ ksi}$ a = 2.4853" $C = \frac{Q}{B} = \frac{2.4453}{0.45} = 2.9239''$ UH.  $M = p * (A_s f_y) * (d - \frac{9}{2})$ = .9.(1.69.60).(15.9- 2.445)/1Z = 111.47 1.k > 106.71" OK Z-Cracking Ae = Z × (14"- 15.9) × 12"/(12 bars por foot = 37.80 P/bar d. = 14-159" = 2.10" Allow,  $f_{g} = \frac{\overline{z} = 170}{3\sqrt{37.60 \times 2.10}} = 39.556$  ks => Use for = 36.0 ksi Act.  $f_{s} = \frac{62.55^{14} \times 12}{24.0746} = 31.1761 OK$ Act. Z - 31.1761 +170 = 147.23

12-182 100 SHEETS

D54

4/6

Serv	ice M	oment_	<b>-</b> .				
Allowo	uble -{s	= 36.00	) kai				
: Allow	vable <del>s</del> e	rv. M=	- <b>f</b> - S	۶r			
= 36	<b>.0</b> •Z4,	0746/12	72.2	2 "*			
OK	- <u>Use</u>	≠10@	<u>9"</u>		A-82		
							RUN
		ſ	CF 04 -		MAX	BAR #	
		XEQ: •L		Size checked	A-S'	10.0000	RUN
ę	SIZE<28				H-0		RUN
			<b>0</b> 28	by program	RHO=	0.0089	Non
		XEQ. •L		try again		,362.0159	
	3:13:18 F	PM 02/08/8	38		C=2.	9239-	
1	TITLE:					=111.4692 'K	
1	BRIDGE SLA	98LFD 	RUN			H=72.2237 K	
1	AASHTO				7 ст	RS=36.0000 KSI	
1	F-Y 40,60					STRS=31.1781 KSI	
		60.0000	RUN			7.2301	•
1	Fc'KSI	4 0000	DUN				
	FL W.	4.0000	RUN			FAT STRS=18.2593	
'		12.0000	RUN		ACT	FAT STRS=15.7561	KSI
I	WEB W"		RUN		ÛK		
I	H-		<b>6</b> 000		A-S1		
	I-G=5,832.	18.0000	RUN			4.2000	RUN
	1-G=5,832. 1.2Hc=30.7				D-		
	A-S=0.460					15.9000	RUN
	200/FY=0.0				A-S2		<b>5</b> 1111
	.75Pb=0.02				MOY	BAR #	RUN
					1140	11.0000	RUN
	Z 130,170		<b>_</b>		A-S'		
		170.0000	RUN				RUN
l	LF M, K	108.7100	RUN			0.0220	
		100.(100	KUN			=0.7722 	
:	SERV NJ K					,156.7368	
		62.5500	RUN			2664	
l	MIN FATG I	n, 'K 30.9400	RUN				
1	RANGE, 'K	30.7400	KUN			=242.1424 ·K	
	KANGE / K	31.6100	RUN		SERV	M=170.7604 'K	
		0-1 7(00	co.	7	Z ST	RS=36.0000 KSI	
		-S=1.7629 -S=2.3559		estimates		STRS=13.1869 KS1	Ι
	M9. E91 H.	J-2.JJJ7			Z=62	.2715	
	A-S1				01.1	FAT STRS=21.2257	7
		1.6900	RUN			FAT STRS=6.6641	
	D-	15 0000	01111		nut		
		15.9000	RUN		NG		

42-182 100 SHEETS

Too much steel

(D59

(	heck design for same loads by ACI	
		10:13:
	DL: $30.94 \times 1.4 = 43.32$ LL: $31.61 \times 1.7 = 53.74$ 97.06''	TITLE: Aci lf
	<u>Ultimate strength</u>	ACI F-y 40
	Same: Meap = 111.47 = 97.06 - OK	Fc'KSI
		FL ₩•
	Fatique	NEB N.
	ACI has no fatique requirements	H-
		I-G=5. 1.2Mc=
	Z-Cracking	200/F
	- CVacking	A-S=0 .75Pb=
	$A_c = 37.80  p''/bar; d_e = 2.10''$	Z 145
	Ext. exposure = Use Z= 145	
		LF M,
,	Allow. $f_{s} = \frac{145}{\sqrt{37.80 \cdot 240}} = \frac{33.74 \text{ ks}}{337.40 \cdot 240}$	SERV
	Act. f = 62.55.12 = 31.18 ksi OK	LF: ES NS: ES
	$A_{ct}, Z = \frac{31.18}{33.74} + 145 = 133.99$	A-S1
		D-
	Allow, Serv. M = 33.74 × 62.55 = 67.69 12	A-82
		MAX BI
	Area of steel could probably be reduced for ACI design	A-S'
	be reduced for ACI design	RHO=0 Ie=2, C=2.9
		LF M= Serv
		Z STR Act s Z=134
	(060)	OK

SF 04 XEQ "LFAN" 3:58 AM 02/09/88 . RUN FD EXAMPLE ---10,60 60.0000 RUN ST 4.0000 RUN 12.0000 RUN -RUN RUN 18.0000 5.832.0000 =30.7352 'K Y=0.0033 -0.6000 SQb=0.0214 ----5,175 145.0000 RUN ١K RUN 97.0600 ----MJ 'K 62.5500 RUN ST A-S=1.5567 SQ" EST A-S=2.3559 SQ" 1.6900 RUN 15.9000 RUN RUN BAR # 10.0000 RUN RUN 0.0089 ,362.0159 9239-=111.4692 'K M=67.6430 'K RS=33.7168 KSI STRS=31.1781 KSI 4.0826 UK ---

A-S1

42.182 100 SHEETS

# 6/6

Check adequacy of this beam by Strength Design. Span = 32'-0 fc' = 3.5 ksi Fy = 60 ksi n = 8.5 for elastic prop. Design for interior exposure by ACI -> Z · 175 0 0 0 0 4-*6 A's=1.760 24" בו" 00000 d = 24 - 2'' - 2'' - 2'' = 21''d'= 23/4" Loads Beam  $\frac{15^{*} \times 24^{*}}{144} \times .15 \times \frac{32^{2}}{4} = 44.00^{1.4}$ Partitions, Floor, etc.: .704, x 322 = 89.60 DL = 137.60" Live Load 0.75 4/1 x 32 /2 = 96.00 114 <u>Service</u> <u>Ultimate</u> 137.60 × 1.4 = 192.64 Load DL  $\frac{96.00}{233.60^{\prime +}} = 1.7 = \frac{163.20}{355.44^{\prime +}}$ <u>LL</u> Z

Section Properties  
Area = 
$$15 \times 21^{\circ} = 315.00 \text{ min}^{\circ}$$
  
 $\rho_{\text{min}} = \frac{200}{F_{y}} = .0033$   
 $\therefore A_{s.\text{min}} = .0033 \times 315.0 = 1.05 \text{ m}^{\circ}$ 

Compare with AASHTO minimum:  

$$I_g = \frac{15 \times 24^3}{12} = 17,280 \text{ in}^4$$
  
 $S = \frac{17280}{12''} = 1440.0 \text{ in}^3$   
 $M_{er} = f_r \times S/_{12}$   
 $f_r = 7.5\sqrt{f_e'} = 7.5\sqrt{3500}$   
 $= 443.71 \text{ psi}$ 

$$\therefore 1.2 M_{er} = 1.2 \times .44371 \times 1440/12$$
$$= 63.89''^{L}$$

Neglect effect of compression steel:  $\rho = \frac{1}{m} (1 - \sqrt{1 - Z_m R_u / F_y})$   $m = \frac{f_v}{.95f_c}, = 20.17$ 

$$R_{u} = \frac{M}{66d^{2}} = \frac{63.89 \times 12}{.9 \times 15 \times 21^{2}}$$
  
= .1288 ksi

$$\rho = \frac{1}{20.17} * (1 - \sqrt{1 - 2 \cdot 20.17 \cdot .1244/60})$$
$$= .002Z$$
  
AASHTO Min. A.= .002Z * 315.0

A,

$$\frac{\text{Check Max. } A_{s} = \frac{.45 \, \beta_{1} \, f_{c}'}{F_{1}} + \frac{.47}{47 + F_{y}}$$
for  $f_{c}' = 3500 \, \text{psi}$ ,  $\beta_{1} = .45$ 

$$\rho_{\text{bal}} = \frac{.45^{2} \times 3.5}{60} + \frac{.47}{.47 + 60} = .0249$$
Act.  $\rho = (5.0 - 1.76) / 15 \times 21 = .0103$ 

$$\frac{\rho}{P_{\text{bal}}} = \frac{.0123}{.0249} = .41 + .75 \, \underline{OK}$$

Calculate Elastic Section Properties  
Neutral axis position, Y:  

$$15^{".} Y \cdot Y_2 + [2 \cdot (n \cdot q.5) - 1] = 1.76^{".} \cdot (Y \cdot 2.75")$$
  
 $= (n - q.5) \cdot 5.0^{".} \cdot (21^{"-}Y)$   
 $7.5Y^2 + 28.16Y - 77.44 = 892.50 - 42.5Y$   
 $7.5Y^2 + 70.66Y - 969.94 = 0$   
 $Y = 7.5985"$ 

$$\frac{Areq}{(2000::15"-7.60" = 113.98} = \frac{d}{3.90"} = \frac{Ad^2}{1645.19}$$

$$A'_{s} : (2.4.5-1)*1.76 = 24.16 = 4.45' = 661.98$$

$$A_{s} : (n=4.5)*5.0 = 42.50 = 13.40" = \frac{7635.01}{9940.18}$$

$$Conc. I_{o} = 15*7.5945^{3}/12 = \frac{5446.40}{10,444.57}$$

$$S_{st} = \frac{10,446.57}{21"-7} = \frac{92.076 \text{ in}^{3}}{21"-7}$$

$$(D62)$$

$$\frac{Calculate \ Ultimate \ Section Properties}{I^{2} \ iteration - assume \ compr. f_{s} = 60 \ kei:(.45.3.5 \ kei) \times 15" \times a= (5.0-60) - (1.76 * (60 - (.45.3.5)))a = 4.47"Then compr. f_{s} = 87 \times \frac{4.47 - 2.75 \cdot (\beta \cdot .45)}{4.47}= 41.54 \ ksi(47 = conc.strain, .003, \times E_{gr} = 29,000)
$$\frac{2^{-2} \ iteration}{1.76 \times (41.54 \ ksi};(.45.3.5) \cdot 15 \cdot a = (5.0 \cdot 60)- 1.76 \times (41.54 - .45.5);a = 5.20"M= ($=.9] \cdot [(5.20" \ 15' \cdot .45 \times 3.5) \cdot (21' \ \frac{5.20}{2})+ 1.76 \cdot (41.54 - .45.5) \cdot (21' \ \frac{5.20}{2})+ 1.76 \cdot (41.54 - .45.5) \cdot (21' \ \frac{5.20}{2})+ 1.76 \cdot (41.54 - .45.5) \cdot (21' \ \frac{5.20}{2})$$$$

ACI Doubly Reinforced Beam

<u>Calculate allowable service ma</u>	ment		
Alloweble Z = 175			
Ae= Z*(24"-Z1")*1575 bars = de= 24"-Z1" = 3"	14.0 ⁰ //60	۲	
Allow, $f_{s} = \frac{7 = 175}{3^{\circ} \times 18.00^{\circ}} = 46.3$	Oksi >	36.0	
⇒ use allnw. fs = 36.0 l	261		
Elastic 5, = 92.671 in3; au	H. M = 233	.60 ^{1.k}	
$A_{c1}, f_{s1} = \frac{233.60 \times 12}{92.076} = 30$	),44 ksi	~360 <u>0</u>	<u>K_</u>
		XFD ·	SF 00 "LFAN"
Acting $Z = \frac{30.44}{36.0} \times 175$	F-Y <b>40</b> ,60	60.0000	RUN
= 144.0	Fc'KSI	3.5000	RUN
	FL W"	15.0000	RUN
Allow, Serv. M:	WEB W-		RUN
36.0 kg x 92.076 = 276.23"	H-	24.0000	RUN
Design is <u>OK</u>	Z 145,175	175.0000	RUN
	A-S1	5.0000	RUN
	D-	21.0000	RUN
	A-S2		RUN
Set flag 00 for Short	MAX BAR #	9.0000	RUN
Form run	A-S'	1.7600	RUN
	D-TOP-	2.7500	RUN
	LF M=413. SERV M=27		

9:39:09	XEQ "L Am 02/15/8	
********* ACI	INF. BEAM **********	
F-Y 40,60	60.0000	RUN
Fc'KSI	3.5000	RUN
FL W"	15.0000	RUN
WEB W"		RUN
H- I-G=17,28 1.2Nc=63. 200/FY=8. A-S=1.05 .75Pb=0.0	8892 'K 0033 00 SQ= )187	RUN
	; 175 <b>.000</b> 0	RUN
LF M, K	355.8400	RUN
SERV M. 1		RUN
LF: EST ( NS: EST (	A-S=4.3795 A-S=6.2846	50- 50-
LF: EST ( NS: EST (  A-S1	A-S=6.2846 	SQ-
WS: EST (	A-S=6.2846  5.0000	SQ SQ RUN RUN
WS: EST 1  A-S1	A-S=6.2846 	SQ"  Run
WS: EST (  A-S1 D-	A-S=6.2846  5.0000 21.0000	SQ- Run Run
NS: EST ( 	R-S=6.2846 5.0000 21.0000	SQ- RUN RUN RUN
NS: EST ( A-S1 D- A-S2 Max Bar	A-S=6.2846 5.0000 21.0000 \$ 9.0000	SQ- RUN RUN RUN RUN RUN
NS: EST ( A-S1 D- A-S2 Max Bar A-S'	A-S=6.2846 5.0000 21.0000 9.0000 1.7600 2.7500 03 124 OK 8.9777	SQ- RUN RUN RUN RUN RUN RUN
HS: EST ( 	A-S=6.2846 5.0000 21.0000 9.0000 1.7600 2.7500 03 124 OK 8.9777	SQ- RUN RUN RUN RUN RUN RUN
HS: EST 1 	A-S=6.2846 5.0000 21.0000 9.0000 1.7600 2.7500 03 124 0K 8.9777 3.2223 K 276.2266 K 36.0000 KSI 5=30.4446 K	SQ- RUN RUN RUN RUN RUN
HS: EST ( 	A-S=6.2846 5.0000 21.0000 9.0000 1.7600 2.7500 03 124 0K 8.9777 3.2223 K 276.2266 K 36.0000 KSI 5=30.4446 K	SQ- RUN RUN RUN RUN RUN SI

_____

--

A-S1

3/4

# ACI Doubly Reinforced Beam - Working Stress

4/4

Calculate Working Strees Capacity	XEQ "Ic" 11:28:41 AM 02/15/89
$S_{st} = 97.076 \text{ in}^3$ $M_{st} = 97.076 \times 74 \text{ koi}/12 = 184.15^{1/4}$	TITLE: Doubly-Reinf. Beam Run ************************************
	F-S 20,24 24.0000 RUN
$S_{c} = \frac{10,444.57}{7.5945} = 1340.35$ in ³	Fc'KSI 3.5000 RUN
Mcm = 1380,35 × (.45 · 3.5 Loi)/12	N 8.5000 RUN
= 181.17"	FL N" 15.0000 RUN
101.11	WEB N- Run
$S_{ef} = \frac{10,488.57/8.5}{7.5945 - 2.75''} = 254.50 \text{ in}^3$	H" 24.0000 RUN I-G=17,280.0000 1.2Mc=63.8892 'K 200/FY=0.0033
$M'_{st} = 254.50 \times 24 \text{ hsi} / 12 = 509.00^{11} \text{ hs}$	A-S=1.0500 SQ ⁻ .75Pb=0.0187 
C to once M. 19117'	SERV M, K 233.6000 RUN
Concrete gaverns: M= 181.17"	WS: EST A-S=6.2846 SQ
	A-S1 5.0000 RUN
: Section is <u>No Good</u> by W.S.D.	D- 21.0000 RUN
	A-S2 RUN
	A-S' 1.7600 RUN
	D-TOP- 2.7500 RUN
	RHO=0.0103 P/Pb=0.4124 OK
	Ic=10,488.5732 Y=7.5985-
	Sc=1,380.3469 S-ST=92.0755
	CONC M=181.1705 'K Ie=10,568.9777
	NG

	X	Y	Z	T		X	ΙΥ	र	T	L	
01+LBL "LFAN"					55 CLA						
02 SF 06					56 RCL 11	H					
					57 RCL 10	FLTh					
03 CF 09					58 -	We L					
04 GTO 00					59 RCL 03	Ve6 V					
					60 RCL 07	FI.W					
05+LBL -Ic-					61 LASTX	FI.T	FI.W	Wabd	WebW		
06 CF 06					62 XROM "AY"	A	Ϋ́	S	I		
07 SF 09					63 R†		1	1.	-		
					64 STO 23	II					
08+LBL 00					65 "I-G="						
09 28	1				66 ARCL X						
10 XROM "S"					67 FC? 00						
11 CF 10					68 AVIEW						
12 XEQ -N-	f.'	β,			69 Rt	5					
13 X<>Y		l'			70 6	1.					
14 STO 18	ß,				71 *	65.					
15 12	12	p,	f.'		72 XROH "Hc"	P					
16 RCL Z	fé				73 X<>Y	Mer					
17 -	Ē				74 1.2	1.164					
18 FC? 06					75 /				1		
19 PROMPT	.				76 STO 22	Mer					
20 STO 09	N				77 X<>Y						
21 RCL 01	Fy					P					
22 41	1'				78 RCL 07	F1.W.					
23 X>Y?					79 *	,					
24 SF 09					80 RCL 14	d					
25 RCL 02	750				81 XROM -R-	M- 4					
26 STO 24	1		1		82 STO 19	MinAs					
					83 RCL 24	.75pu	1				
27+LBL D					84 RCL 14	ed.d					
28 CF 08					85 RCL 18	B ₁					
29 •FL W••					86 RCL 00	1.45€ /K	β,	d	.75p	4	
30 PROMPT					87 *					•	
31 STO 07					88 /	]					
32 "WEB W""					89 *	CAR					
33 PROMPT					90 STO 15	.75pm					
34 STO 03					91 FS? 08		7.	770			
35 RCL 07	FI.W	VLU			92 GTO 10	C		.75A	.75p		
36 X=Y?					93 RCL 10	FI.Th	C				
30 N-11 37 SF 08					94 X>Y?						
37 57 68 38 CLX					95 GTO 10	.					ļ
30 CEA 39 FL TH					96 RCL 00	. ## (K	Fl.Th.				
40 FC? 08					97 *	1					ļ
41 PROMPT					98 RCL 87	FLW					ļ
42 STO 10	FI.Th				99 RCL 03	Wahn	FI.W		C		
43 -H					100 -	width					
44 PRONPT					101 *	Equindo					
45 STO 11	H				102 RCL 14	est.d					
46 3					103 /	+1.1/1					
47 -					104 .75		L				ļ
48 STO 14	FAI				105 *	. 76 As. CI	μ				ļ
	Estad d ²				106 RCL 24	-75 Pul-					ļ
49 Xt2	ŦI.W				107 RCL 03	Web W	[			1 0.	
50 RCL 07	1				108 *	p. b.				As. #1 + d = p	×ю
51 +	ø				109 +	P=b					ļ
52.9					110 RCL 07	FI. width	l			-	<b>`</b>
53 *	øbde				111 /	Pequin				(D6	5)
54 STO 05	19 50	1			112 RDN	1			ρ		ノ
							-	·	'	_	

		V	Z	T				V	र	T	<b>1</b>
	<u> </u>	¥	E	<u> </u>			X Est. As	¥			
113+LBL 10						169 /	F .T. /16				As = Mile 1.76 d
114 R†	.75p	١				170 •WS•					
115 STO 02						171 XEQ 03					$m = \frac{M^{1/L}}{1.43d''}$
116 ARCL X						17041 01 07					1.430
117 FC? 00						172+LBL 23 173+LBL A					
118 AVIEN						174 E	11				
						175 STO 20	counter				
119+LBL E						176 CLX					
120 CLX						177 STO 14	1				
121 STO 25 122 STO 26	Sory,M					178 STO 21					
122 510 28 123 FS? 09	LFM					179 STO 17					
123 F37 07 124 GTO 13						189 X<> 04	Maxd				
125 XRON "L"						181 XROM -LL-					
126 130						182 CF 22					
127 -Z 130,170-									1		
128 FS? 04						183+LBL 01					
129 -7 145,175-						184 -A-S-					
130 PROMPT						185 RCL 20	conner				
131 STO 13	7					186 XROM "AX"					
132 FS? 00	_					187 CLX					
133 GTO 23						188 PROMPT	As				
134 -LF-						189 FC? 22	Zshew				
135 XEQ 10						190 GTO 04	7 end of				
136 STO 26	L.F. M					191 X=0?	Singet				
137 XROM -U-						192 GTO 02	- inpor				
138 STO 14	Est. P					193 ST+ 14					
						194 STO 08	As				
139+LBL 13						195 CF 07 196 ISG 20					
140 FS? 00						196 156 20					
141 GTO 23						198 -D					
142 XROM "L"						199 PROMPT	V				
143 "SERY" 144 XEQ 10					1						
145 STO 25	Sen M					200+LBL 12					
146 "MIN FATG"						201 *	Asd				
147 FC? 04						282 ST+ 21	E A.L				
148 XEQ 10	Fotg M					203 LASTX	d				
149 STO 28						204 *	Asd				
150 ADY						2 <b>9</b> 5 ST+ 17	2A.d2				
151 RCL 14	Est.P					206 SF 07					
152 RCL 07	641					207 RCL 04	Mand				
153 +						208 LASTX	d				
154 RCL 11	H 31					209 X>Y?					
155 3						210 STO 04	Moxe				
156 -	Ed d					211 GTO 01					
157 *	EstA										
158 °LF°						212+LBL 04	dmax				
159 FS? 06			1			213 RDN 214 STO 84	(1 may	"]			
160 XEQ 03	K					214 STO 04 215 RCL 03	bar			1	
161 RCL 25	d,					215 RCL 85 216 RCL 87	be				
162 LASTX 163 /	m/d					217 XXY?					
163 / 164 RCL 01	fy					218 X<>Y	b		1		
	1.7					219 XED -VS-		`			
() (do) 165 5 166 /						220 GTO E					
167 9.24					* 1.	76 + 12 for fy = 60 229 GTO E			1		
168 +	*				[.4	13 × 12 for fy=40	l l				
								•			•

Program <u>LFAN/IC</u> For _____ bytes Page<u>3 of 7</u>

	X	Y	Z	T	L			X	Y	र	T	L	
221+LBL C							278 LASTX	N					
222 DSE 20							279 ST* 17	(21, d2)n					
223							289 ST+ X	Zn					
224 RCL 08	A ₃						281 E	1					
225 ST- 14							282 -	Zn-1					
226 CHS	-As						283 RCL 20	Ać					
227 FC? 07							284 *						
228 .	O ar - As						285 STO 1	(2n-1)A	n As				
229 LASTX	d	-As					286 +	Ends					
230 GTO 12							287 STO [						
							288 RCL 21	Zhed					
231+LBL 02							289 RCL 09	n					
232 -MAX BAR #*							-298 +						
233 FC? 09	Mox #						<del>-291 RCL 00-</del> 298 *	nAd					
234 PROMPT 235 STO 27	1 102						291 RCL 08	ď					
235 510 27 236 CF 07							292 RCL ]	(2n-1)A					
238 CF 87							293 *	5					
238 -A-S							294 +	EnAd					
230 H 3 239 PROMPT							295 STO \						
240 STO 20	A's						296 FS? 08						
241 ENTERT							297 GTO <b>04</b>	1.					
242 <b>"D-TOP"</b>							298 RCL 07	be					
243 X>0?							299 RCL 10	FLTh					
244 PROMPT	ď						300 Xt2	the					
245 STO 08						-	301 *	Aď					
246 RCL 15	" C"				C 4	.75 pml	302 2	Ad 1/2					
247 -	d-c						303 / 704 DCL 10	FI.Th.					
248 LASTX	C						304 RCL 10 305 RCL 08	D'					
249 /							306 -						
250 87 251 *							307 RCL ]	En-UA	1				
251 + 252 RCL 01	£,						308 *	AL	1				
253 /	fy 57(1-c) C-44						309 +	EAd					
254 E	C-44						310 RCL 21	EAS					
255 CHS	-1						311 RCL 14	EAs					
256 X>Y?							312 RCL 10	FUTH					
257 X<>Y							313 *						
258 RDN	Max	A,					314 -	A_(F)-1	1				
259 *	-eff. A's						315 RCL 09	n					
260 RCL 14	E A . 1						316 *					YZVI	-
261 +							317 X(=Y?					×-42	ł⇒ Aunge
262 LASTX	AA.						318 GTO 04 319 CF 05			1		N.4. 14	( + lange
263 <b>*</b>	AA. A. Zhod						320 RCL 07	<b>n.</b> v					
264 RCL 21 265 /	Elad						321 RCL 03	Lebu					
265 7 266 RCL 07	(ts-45)						322 -	FI. V					
267 /	eff. p						323 RCL 10	FLTh					
268 XEQ "RH"							324 *	Ae					
269 RCL 19	Min As						325 ST+ [	(2 A)	1				
270 RCL 14	ZAS						326 LASTX	Th					
271 "AS(MIN"							327 *	Ad					
272 X<=Y?								A.A.I.		l			
273 AVIEN	1						329 /	Ad/z	1	Ì			
274 X<=Y?							330 ST+ \ 771 PCL 93	(211)	1			/	
275 XROM -L-	1						331 RCL 03 332 gto 05	Welw					⁶⁷⁾
276 RCL 09	N						JJ2 UIU 0J						
277 *	nAs							۱.					
										'			

### Program LFAN/Ic For ______ bytes Page4 of 7

				_	-					_		
		X	Y_	Z				X	Y	र	T	
	333+LBL 04						387 RCL 09 388 *	n				
	334 RCL 07	fl.w.					389 RCL 12	Ý				
	335 SF 05						390 Xt2	y2	n As			
		Ь					391 *	YZ AyZ H				
	336+LBL 05	2					392 +	Ľ.				
	337 2 338 /	6/2					393 RCL 21	ZASA				
	339 RCL [	ZA					394 RCL 09	n				
	340 RCL \	ZAd					395 *	nAsd				
	341 CHS	-IAd					396 RCL 12	Y				
	342 X<> Z	6/Z	ΣA	ZAd			397 <b>*</b>	ZnAJY	-			
	343 XROM "Q"					THAT HI	398 ST+ X 399 -	I.m.				
	344 STO 12	Ŷ				Elastic N.A. position	400 ST+ 17					
	345 FS? 08					Fostion	401 RCL 17	Icr				
	346 GTO 08						402 RCL 09	n				
	347 RCL 10 348 2	Fl.Th					403 /					
	349 /	Th/Z	Y				484 RCL 84	Max 8				
	350 X)Y?						405 RCL 12	¥ # 50+	I/n			
	351 GTO 08						406 -	a	th			
	352 -	Ϋ-Ϋ					487 /	264				
	353 Xt2	d²					408 STO 16 409 FS? 06					
	354 RCL 10	Th					410 GTO 06					
	355 Xt2	The					411 .4	ſ				
	356 12	Th7/12					412 FS? 84					
	357 /	1.472					413.45					
	358 + 359 RCL 10			ł			414 RCL 00	.45fc/4				
	360 <b>*</b>	Fl, +h.					415 *		1			
	361 RCL 07	FI.W					416 .85	.45				
	362 *	I. Ad					417 /					
	363 RCL 03	Webw					418 RCL 01 419 *	fy .45fé				
	364 RCL 12	V					428 RCL 17	Tre				
	365 RCL 10	Fl.+h.		- 117	,		421 RCL 12	Ier				
	366 -	V-Th.	Wold	10-14			422 /	Sc	.45fc			
	367 GTO <b>0</b> 9						423 *	Mc				
	368+LBL 08						424 FS? 00					
	369 .	0					425 GTO 11					
	370 RCL 97	FI.W					426 ABY					
	371 RCL 12	T					427 "Ic="					
		Y		I.M	4		428 ARCL 17 429 AVIEN					
	372+LBL 09	r	6	Towner			438 "Y="					
	373 3	Y3					431 ARCL 12					
	374 YfX						432					
	375 LASTX 376 /	NB	6	I.Ad	4		433 AVIEN					
	377 *	Iv					434 "Sc="					
	378 +	Icone	]				435 ARCL L					
	379 RCL 08	ď					436 AVIEN 437 "S-ST="			1		
	380 RCL 12	ĮΫ					437 - 5-51=- 438 ARCL 16				1	
	381 -	dz					439 AVIEN					
	382 Xt2		1							1		
$\frown$	383 RCL ]	(1 - 1) h $A_{s}' d^{2}$					440+LBL 11	Me				
(06G)	384 <b>*</b> 385 +	n _s a I					441 ADV					
$\smile$	385 F 386 RCL 14						442 RCL 13	fst				
	VVV NVL 17	ZAS					443 RCL 16	SSI	fs	Mc		
				-				• •		1	1	

# Program <u>LFAN/Ic</u>For _____ bytes Page <u>5 of 7</u>

	X	Y	Z	Т	L				X	Y	र	T	L	
444 *	Msr	Mc					500	LASTX	- C C-d C			•		
445 -CONC-		-					501	/	C-C	9	•			
446 X<=Y?							502				•	•		
447 -ST-							503		fs	01				
448 X>Y?	Minin							RCL 01	fy	fś	a			
449 X<>Y 450 RCL 25								X<=Y? X<>Y	Max	Min	a	F1.Th		
450 KUL 25 451 XEQ 04	Gorv M							RDN	Min	a	~	· · · • •		
TJ1 NEW UT	Mmin							STO a						
452+LBL 06								RDN	a	FI.Th				
453 FS? 00							510	X<=Y?	1					
454 GTO 06								CLX						
	I gross							X<=Y?	1					
	Mar							GTO 07	FITh					
457 RCL 25 458 X=0?	SorvM							RCL 10 RCL 03	Velu					
459 670 84		_				Ultimate		STO N						
460 /	(My)	Igr				N.A. In		RCL 07	FLW					
461 3						Web	518		FILV					
462 YtX	$()^{2}$					·····	519		-FI.4+					
463 *	Igr()							RCL 00	,45f./R					
464 E 465 LASTX	63						521	<b>*</b> сто г	FLAG					
466 -	1-(33						_ <b>3</b> 22	STO [	PLACE.	fy				
467 RCL 17	Ier						523	HBL 07						
	Ier(1-()	JIG						RCL 14	e As					
469 X(8?	1	9 -					525		٤A					
470 CLX	-							RCL 00						
471 +	Ie						527		Afyfe					
472 RCL 23	Ig							RCL 20	As					
473 XXY? 474 X<>Y	Ie							RCL 00 RCL 01	fy					
475 "le="	-e						531		150					
476 ARCL X								ST- a	(E 854	b				
477 RVIEN							533		A. 16'					
								RCL a	fs Ksts/te					
478+LBL 06							535		hists/fe	2444	ſ			
479 CLA 480 FC? 06							536		mty/fe					
480 FC? 80 481 GTO 25							537 538	RCLN	6 'a					
482 RCL 10	FI.Th							RCL 21	ZAd					
	ZAs	•						RCL 14	ZAS Z					
484 RCL 20	A's		•				541	/	ð					
485 -	A A.	•						STO 1	L					
486 RCL 00 487 /	.856: Ky		•					RCL 10	FI.Th Z	FI.M	đ	a		
487 / 488 RCL 20	* st 1/4; A's	•	.				544 545		12		~			
489 +	. 5						546		\$-F1/2	a	a	a		
490 RCL 07	bę		.					RCL [	FI. A. Py					
491 STO N		21					548	*	Ad fele		a	9		
492 /	a	FIT						CHS	· ·					
493 ENTER†	-a	a	FLTH				550		a					
494 CHS 495 RCL 18	-α β,	4	11/1				551 552		a/2					
495 KUL 18 496 /	C							RCL J	đ	a12	- Ade	a		$\frown$
497 RCL 08	Ĝ'						554		a/z-đ	1'2	-Ay	, ",	6	569)
498 X<>Y	-a/₿,	ď	a				555		a					
	1-c						556		a.d					
									•					

# Program <u>LFAN/Ic</u> For _____ bytes Page<u>6</u> of <u>7</u>

	X	Y	Z	Т			X	Y	र	T	L	
557 RCL \	6					614 *	d Bar	そ				
558 *	A . d.					615 RCL 94	Mard					
559 RCL 00	. 85. C. M.					616 RCL 11	Hac					
560 *	-220-2					617 -	ac					
561 - 562 RCL 01						618 <b>*</b> 619 RCL 03	bw					
563 <b>*</b>	F 2 405.					620 ×	d. A.2	ĮZ				
564 RCL ]	đ					621 RCL 14	EAS	<b>P</b>				
565 RCL 08	d					622 /	de A					
566 -						623 3						
567 RCL 20	As					624 1/X						
568 *	A. 0.1	) 548				625 YtX	Vd.A	z				
569 RCL a 570 *	fś					626 / 627 RCL 01	А1). <del>5115</del> Ру					
571 +						628 .6	.6fy					
572.9	$ \phi $					629 *						
573 *	PM M					630 X>Y?						
574 X(>Y	9					631 X<>Y	An, Strs					
575 RCL 18	β					632 ENTERT	AIL.	AIL.				
576 /	C	M				633 -SERV-						
577 °C=" 578 ARCL X						634 RCL 16 635 <b>*</b>	557 An M					
579 "H""						636 RCL 25	Ser M					
580 FC? 00						637 XEQ 84						
581 AVIEW						638 FS? 00						
582 ADY						639 GTO 23						
583 X<>Y	M					648 ADY						
584 "LF"	1 - 44					641 CLX 642 RCL 13	Z	All Strs				
585 RCL 26 586 XEQ 04	LF M					643 X(>Y	All Stars					
587 FS? 09						644 "Z"						
588 GTO 25						645 XEQ 11						
589 RCL 13	Z					646 RCL 25	Serry					
590 RCL d	d	Z				647 RCL 16	Sst Act strs	111 54	2			
591 FIX 2						648 /	110' 5773	A	τ			
592 RCL 27 593 Xt2	Max = *2					649 "ACT"						
594 81	81	۳۲	d	7		650 XEQ 11 651 /	All/Act	2				
595 X≠Y?		_	Š			652 /	Actz					
596 X>Y?						653 "Z="						
597 GTO 07						654 ARCL X						
598 CLX						655 AVIEW						
599 1.1												
600 Y†X 601 125						656+LBL 25 657 FS? 00						
						658 GTO 23						
602+LBL 07						659 23.4	Z 3.4					
603 /	Areq				Area of one	660 RCL 28	Muin					
604 RND	d	4	2		bar	661 FC? <b>84</b>						
605 X(>Y	a	Area				662 X=0?						
6 <del>0</del> 6 STO d 607 CLX						663 GTO <b>0</b> 7 664 RCL 16	Sa					
608 RCL 21	ZAsd			1		665 /		23.4				
609 RCL 14	243	A.A	Area	Z		666 X>0?			I			
(DTD) 610 /	l t	Areq				667 GTO 06						
611 RCL 11	H											
612 - (17 CT) X	t-+ d	Area										
613 ST+ X	1 4	Integ	1		1		I			I		

### Program <u>LFAN/Ic</u> For ______ bytes Page<u>7</u> of <u>7</u>

				Z	Т				Ιγ	-			
r	668 RCL 11	H H	Y_	E					⊢¥_	र	T	L	
		Max d					700.101.04	M:	Mede		i		
	669 RCL 04	H-d					708+LBL 04	1 input	1 'Cale				
	670 -						709 X>Y?						
	671 LASTX	a	0				710 SF 07						
Stress	672 /	-1	thin	23,4			711 RDN	Meale					
Reversal	673.3		1				712 XROM "H="						
	674 -						713 XEQ -PY-						
	675 *						714 RTN						
							rit Kin						
	676 1.4						745.151.40						
	677 /	fmin					715+LBL 10						
	678 CHS	Tmin					716 <b>-</b> H -						
-							717 CLX						
	679 <b>+LBL 0</b> 6						718 XROM -M-	Ι.					
	680 STO 04	fmin					719 PROMPT	M'-4	12				
	681 3						728 *	M".k					
	682 /	f 1-3	23,4					1.1					
		All.f					721 RTN	1					
	683 -	1,00.4							1				
	684 ADV						722+LBL 03						
	685 <b>•</b> ALL•						723 •H: EST •						
	686 XEQ 00						724 XROM "AS"						
	687 RCL 25	Serv M					725 X≠0?						
	688 RCL 16	557					726 XEQ -PV-						
	689 /	Actor					727 END						
	690 RCL 04												
		fmin		1									
	691 -												
	692 "ACT"	Ad.f	AILE										
	693 XEQ <b>90</b>			1									
	694 X>Y?			1							}		
	695 SF 07			1									
	••••								•				
	696+LBL 07							1					
								1					
	697 ADV							1					
	698 CLA												
	699 XROM "OK"												
	700 AVIEN			1									
	701 GTO 23												
	702+LBL 00												
	703 "+ FAT"												
	70441 01 44		1										
	704+LBL 11												
	705 XROM -K-												
	706 XEQ "PY"												
	707 RTN												
				l									
											1		
											1		
										1	}		$\sim$
									1			1) (1	)71)
													Ś
									1				
		'	,	'		'		1	1	1	ł	1	



#### CONCRETE SHEAR REINFORCING DESIGN

- xeq VST (SIZE 015)
- **SOFTKEYS** (USER mode ON)
  - A New area of shear reinforcing
  - D New dimensions

### USER FLAGS

Flag 00	clear set	Full output Title block not printed (output is not affected by flag 00)
Flag 02	clear set	Warning BEEP disabled Warning BEEP enabled
Flag 04	clear set	AASHTO ACI

#### INPUT SUMMARY

<u>Prompt</u> WSD?	<u>Input</u> Asking if by working stress design. Answer 1 (yes) for WSD, 0 (no) for LFD.	<u>Default</u> 1 (WSD)
F-S 20,24 or F-Y 40,60	Reinforcing working or yield stress for WSD or LFD, respec- tively, in ksi.	24; 60
Fc'KSI	Concrete ultimate strength (for either WSD or LFD)	4.0 ksi
B"	Beam width (or web thickness), in inches	Previous B
D"	Beam depth to outermost layer of tension reinforcing, in inches	Previous D
A-V	Area of shear reinforcing, sq. inches; e.g. for one #5 stirrup input 0.62. Bypass (or input zero to get new dimension prompts in VS or return to flexural program.	
ν, к	Design shear, in kips. For LFD, this must have the load factor included; however, <u>the program</u> <u>applies the undercapacity factor</u> <u>phi = 0.85.</u>	Zero

- **<u>OUTPUT SUMMARY</u>** (Items in parenthesis are displayed only if flag 00 is clear)
- Vc The portion of the total shear taken by the concrete, in kips.
- SPA The required stirrup spacing, in inches. Appends (MAX) if the spacing is governed by maximum spacing rules rather than shear requirements.
- .5Vc>V States that the design shear is less than half the allowable concrete shear; no shear reinforcing is necessary.
- V-Vc NG Design shear is too large for the given section. Increase section (or concrete strength).

#### PROGRAM FLAGS

Flag 06	clear set	WSD LFD	
Flag 10	set	Quick return from subroutine	N

#### STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> Fc', ksi
01	Fy, ksi
02	Vc, kips (concrete shear)
03	B"
04	D"
05-07	Not used
08	√Fc', ksi
09-12	Not used
13	F _{st} , ksi (WSD only)
14	В"



#### CONCRETE SHEAR REINFORCING DESIGN

Program VST designs the shear reinforcing for rectangular concrete beams. It can also be used for Tbeams by simply inputting the web thickness at the B" (width, inches) prompt. VST will design by either working stress (WSD) or load factor (LFD) methods. It uses the ACI code if flag 04 is set; AASHTO is followed if flag 04 is clear. In LFD there is no difference between the two; in WSD, ACI allows a somewhat higher concrete shear than AASHTO. No matter which code is followed, VST uses the simplest shear design formula,

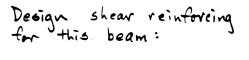
SPA = 
$$(F_{st} \text{ or } F_{y}) \times D'' \times A_{v}/(V - V_{c})$$
.

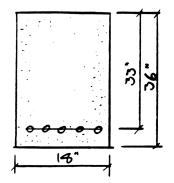
It does not use the more complex moment-interaction formula.

After the dimensions and material properties are input, VST calculates and displays the concrete shear contribution, Vc, in kips. It then prompts for the area of shear reinforcing to be used, and then repeatedly calculates the stirrup spacing required for shear loads input. This allows the designer to quickly find the necessary spacings for varying shears along a beam. To input a new stirrup area (A-V), bypass the V, K (shear, in kips) prompt or press softkey A in USER mode. To input new dimensions, bypass the A-V prompt or press softkey D in USER mode.

#### MAXIMUM SPACING

The program follows all code provisions for maximum stirrup spacing (d/2 or 24") and maximum and minimum shear loads. In the case of small heavily loaded beams with large stirrup areas, the maximum spacing is cut in half (AASHTO 8.15.5.3.8/8.16.6.3.8 and ACI 11.5.4.3) to d/4 or 12". The recommended procedure if this happens is to decrease the stirrup size and run it again. The minimum area of shear reinforcing (per AASHTO 8.19.1.2 or ACI 11.5.5.3) is also checked. This sometimes governs the design of large, lightly loaded beams. See the examples for clarification.


#### FOOTINGS and SLABS


Footing and slab designs are treated differently; they require no shear reinforcing for  $V < V_C$ . For these, any minimum shear reinforcing output (i.e. any SPA with (MAX) appended to it) is incorrect.

#### FLEXURAL SUBROUTINE

The main shear design program VST contains a subroutine, VS, which is called by the four concrete flexural programs (WSBM, LFBM, Ic, and LFAN). This subroutine is identical to VST except it uses the material properties and dimensions of the beam being investigated by the calling program. In the case of the analysis programs LFAN and Ic, which accept Tbeams, the width used is the smaller of the web thickness or the flange width (the latter would be chosen for invert T-beams). The depth used is to the deepest layer of reinforcing (if there is more than one layer of tension reinforcing). To return to the calling program, bypass the V, K prompt and then the A-V prompt. The analysis programs return to the moment input sequence, while the design programs prompt for a new section.

רדס)





$$f_c' = 4000 \text{ psi}$$
  
 $f_y = 60 \text{ ksi}$   
 $V_c = 2\sqrt{4000} \times 16' \times 33' = 75.14 \text{ k}$ 

$$\frac{Max. Spacing}{A_{v-min} = \frac{50 \ b \cdot Spa}{f_{y}}}$$
(ACI 11.5.5.3)  
$$\therefore Max \ Spa. = \frac{.40 \cdot 60,000}{50 \times 15''}$$

or 
$$f = \frac{33}{2} = 16.5$$
" Coverns  
or Max = 24"

Use 16" Spacing Entire Beam

k

		SF 04	ACI
3:54:16	XEQ PM 12/12	•¥ST• ∕88	
TITLE: RECT. BEA ********	******		
ACI F-y 40,60	0.0000	RUN	O→"no"→LFD
Fc'KSI	60.0000	RUN	
B.	4.0000	RUN	
D-	18.0000	RUN	
vc=75.135	33.0000 7 K	RUN	
******** A-V	*******	*****	
	. 4000	RUN	
V, K SPA=16.50	94.8000 00"(MAX)	RUN	
Ψ, K		RUN	Bypass
******** A-V	*******		prompt to
	.2200	RUN	Try #3 hoop
V, K SPA=11.96	94.8000 91-	RUN	
V, K			

(078)

### AASHTO W.S.D. Shear Design

From the preceding:  

$$f'_{c} = 4000 \text{ point}$$
  
 $f'_{a} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 24 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f'_{w} = 26 \text{ koi}$   
 $f''_{w} = 26 \text{ koi}$   
 $f''_{w} = 26 \text{ koi}$   
 $f''_{w} = 26 \text{ koi}$   
 $f'''_{w} = 26 \text$ 

3/4

4

42 JBI 200 SHELIS 2 SQUAR

		CF 04	AASHTO
3:56:10 P		•¥ST• 88	
TITLE: RECT. BEAP WSD? AASHTO F-S 20,24			W.5.D. → 1 =
- Fc'KSI B• D•	4.0000 18.0000 33.0000	RUN Run Run	
Vc=35.689: ********** A-V	5 K		.95JE: . b.d
ч, к SPA=16.50	24.3100 30-(MAX)	RUN	Oops-wrong n
V, K SPA=13.03 	69.0000 14-	RUN	
V, K SPA=16.50  V, K	32.2500 00-(MAX)	RUN	

**1** = "yes"

ig number

Prog	ram	V	5

_of	2

	X	1 2	T			X	ΙΥ	र	T	L
AJ .1 PL					54+LBL 01					
01+LBL "YST"					55 RCL a					
02 14					56 XROM "L"					
03 XROM "W"										
04 SF 10					57 STO a	A.				
05 XEQ -N-					58 CLX					
	01		·		59 TV, KT					
06 STO 00	fé				60 PROMPT					
					61 X=8?					
07+LBL D										
08 XROM "BD"	D.			1	62 GTO A	Z4				
09 RCL 03	B"				63 24					
10 STO 14					64 RCL 94	ð				
	fé				65 2	Z	d	24		
11 RCL 00	7 e				66 /	d/2	24			
12 XEQ 02						14/2	27			
13 GTO D					67 X>Y?					1
					68 X<>Y	Max Spa	u l		1	
	B.				69 STO [			1		
14+LBL "YS"	ם ו				70 R†	V	1		1	
15 STO 14					71 .85	ø			1	
16 XROM "L+"									1	
17 -SHEAR-					72 FC? 06				1	
18 AVIEW					73 SIGN					
19 RCL 00	.tts: He				74 /					
	1 1				75 RCL 02	Ve			1	
20 RCL 01	fy				76 2					
21 *					77 /	N /-	V		1	1
22.85				1		V./2	<b>*</b>		1	1
23 /	fé				78 X>Y?				1	
					79 •.5¥c>¥•				1	no shear
0441.01 00					80 X>Y?				1	reint.
24+LBL 02				1	81 AVIEW				1	needed
25 E3	1000								1	
26 /				1	82 X>Y?		1		1	1
27 SQRT	the wai			1	83 GTO 01			I		1
	Te 10				84 ST+ X	Ne	V			1 .
28 STO 08					85 -	ve v				
29.95					86 RCL 08	Vs ₹€			1	
30 FS? 04						1€2			1	
31 1.1					87 FS? 06				1	
32 FS? 06					88 ST+ X				1	
	factor				89 RCL 14	6				
33 2					90 RCL 04	d	6	Te:		
34 RCL 08							0	Vte	V 54	
35 *	Ne				91 *	bd			· ·	
36 RCL 14	B				92 *	Viinit	VST			1
37 *					93 /	VST /Vie				
	7				94 2	2	T			
38 RCL 04					95 X>Y?	-				
39 *										1
40 STO 02	Vc,k				96 SIGN					
41 "Vc="					97 ST/ [					Max. Spa. in
42 ARCL X					98 CLX					
					99 1.1					11.1.0.
43 -+ K-				F570		1		i		1.1 only for A
44 FC? 00					101 FC? 04					
45 AVIEW				or					1	
				Fc 7.0	4 102 SIGN	1011				
46+LBL A					103 4					
					194 *	<b>4</b> ~4Ц	٧	Vsr	Vet	
47 XEQ "L*"					105 X>Y?		. Vila	1 .21		
48 CLX				1		· ·				
49 <b>-</b> A-V-					106 GTO 00			I		_
50 PROMPT					107 "V-Vc NG"			i		
					108 BEEP					(D3)
51 X=0?					109 AVIEW				1	
52 RTN					110 GTO 01			i.	1	•
	A									

Program VGT For Shear Reinforcing Design 263 bytes Page 2 of 2

			1 V	17	TT								 	
		$\uparrow$	<u> </u>	12	+				$\mathbf{X}$	Y_	र		0,	
	111+LBL 00 112 RCL a 113 R† 114 X<0? 115 CLX 116 X≠0? 117 / 118 FS? 06 119 RCL 01 120 FC? 06 121 RCL 13 122 * 123 RCL 04 124 * 125 X=0? 126 E3 127 RCL a 128 RCL 01 129 RCL 14 130 /	X Av Vor Fy Fs d Sqa Av Fy b	fy fy	Z	5pa		<u>fst</u> d Vet		X	Y	र	T		
	130 / 131 ≠ 132 20 133 ≠ 134 X>Y? 135 X<>Y 135 X<>Y 136 RCL [ 137 X>Y? 138 X<>Y 139 R† 140 X<>Y 141 "SPA=" 142 ARCL X 143 "+-" 144 X≠Y? 145 "+(MAX)" 146 AVIEN 147 GTO 01 148 END	Mar <b>spa</b> Spa Spa.? Spa. Spa.	Max	Max	Spa Tax		P.							
(DF1)														

#### CONCRETE CORBEL DESIGN

xeq CORBL (SIZE 018)

**SOFTKEYS** (USER mode ON)

d	Estimate	required	depth	given	width	and	load

D New corbel dimensions

### USER FLAGS

Flag 00	clear set	Full output Only PRIM A-S and SEC A-S
Flag 02	clear set	Warning BEEP disabled Warning BEEP enabled
Flag 04	clear set	AASHTO ACI

#### INPUT SUMMARY

<u>Prompt</u> WSD?	<u>Input</u> Asking if by working stress design. Key in "1" for yes (WSD), "0" for no (LFD)	<u>Default</u> 1 (WSD)
AASHTO or ACI	A reminder, not a prompt; push R/S	
F-Y 40,60 (LFD only	) Reinforcing yield stress, ksi	60 ksi
N (WSD only)	Modular ratio, E-st/E-conc	8
F-S 20,24 (WSD only	) Reinforcing working stress, ksi	24 ksi
Fc'KSI	Concrete strength in ksi (always ultimate strength)	4 ksi
MU 1,1.4	Friction coefficient. 1.4 for integrally cast concrete, 1.0 for "intentionally roughened" cold joint, 0.6 for cold joint	No default
В"	Corbel width, inches	Previous B
D"	Depth from top reinforcing to bottom of corbel, in inches	Previous D
Н"	Total depth of corbel, in inches	Previous H

<u>Prompt</u> ARM"	<u>Input</u> Distance from face of supporting member to centroid of vertical load, in inches	<u>Default</u> No default
V, K	Vertical load, in kips. If bypassed or zero input, prompts for new dimensions	Zero
TENS NC, K	Horizontal tension force due to temperature, shrinkage, etc.	V/5

**<u>OUTPUT SUMMARY</u>** (Items in parenthesis are displayed only if flag 00 is clear)

(A-V) The area of steel for shear

- (A-F) The area of steel for bending
- (A-N) The area of steel for horizontal tension
- (RHO-MIN) Minimum reinforcing ratio, .04 Fc/Fy, for PRIM A-S
- PRIM A-S Primary (top) layer of reinforcing
- SEC A-S Secondary layers of reinforcing

#### PROGRAM FLAGS

Flag 06	clear set	WSD LFD
Flag 07	clear set	bending moment OK NGtoo much bending moment in moment reinforcing subroutine
Flag 09	clear set	LFBM or WSBM CORBL
Flag 10	clear	subroutine N runs full length

#### STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> .85 Fc'/Fy
01	Fy, ksi
02	(H") - (D"), to calculate moment due to TENS Nc, K
03	B" (width, inches)
04	D" (depth from primary reinf. to bottom of corbel)
05	$\phi$ BD ² ( $\phi$ = .85 for shear and corbel moment)
06	V, K (vertical load, kips); 2/3 Av
07	H"; TENS Nc, K (horizontal tension force, kips)
08	Allowable concrete shear stress, ksi
09	N (modular ratio) (WSD only)
10	D/3 (WSD trial depth for neutral axis iteration)
11	Trial for iterative solution to neutral axis position (WSD only)
12	.45 Fc' (ACI) or .40 Fc' (AASHTO) (WSD only)
13	F-S KSI (allowable steel stress) (WSD only)
14	R _{ideal} (see example for equations) (WSD only)
15	ARM" (distance from center of load to column face)
16	Mu (friction coefficient)
17	$\phi$ Fy (LFD) or Fs (WSD) for horizontal tension

.



#### CONCRETE CORBEL DESIGN

Program CORBL designs the reinforcing for concrete corbels using either load factor (ultimate strength) or working stress (service) design. It follows AASHTO if flag 04 is clear, and ACI if flag 04 is set. AASHTO uses somewhat lower allowable stresses for WSD; for LFD the two codes are identical (except for factoring the loads, which is done by the user).

If flag 00 is set the display of A-F, A-N, A-V (the three component reinforcing areas), and RHO-MIN (the minimum primary reinforcing ratio) is suppressed; the program outputs only the necessary design quantities PRIM A-S and SEC A-S, the primary and secondary areas of steel.

#### WARNINGS

CORBL checks several items and displays the following warnings (with BEEPs if flag 02 is set) if they are violated:

- V > Vc Shear is greater than allowable concrete shear stress; new dimensions are prompted
- Nc > V Horizontal tension is greater than shear; new loads are prompted
- ARM > D The position of the load with respect to the face of the supporting member is greater than the depth of the corbel; new dimensions are prompted

The program also checks that the calculated primary (top) area of reinforcing is greater than the specified minimum.

#### LOAD and UNDER-CAPACITY FACTORS

The designer must be careful to input the correct loads to CORBL. If using LFD (Strength) design methods, the forces must have the load factor applied by the user. However, they must <u>not</u> include the undercapacity factor Phi (0.85), which is applied by the program. If using working stress design, this is not a problem.

#### HORIZONTAL TENSION

Both codes specify a minimum amount of horizontal tension on the corbel (due to thermal effects on the beam, concrete shinkage, wind, etc.) of at least onefifth the vertical load. If a "TENS Nc, K" force less than this is input, the program uses one-fifth V. CORBL also checks that this horizontal force is no greater than the vertical force, as mentioned above.

#### LISTING

CORBL is within the same program as WSBM and LFBM; the program listing has been placed with the documentation for these two programs. Design a corbel on a 14" wide column by LFD for the following loads, by AASHTO: DL 30.3k LL 5× 12.7=21.17 51.47 · 1.3=66.9 k  $f_{c}' = 4.0$  ksi  $f_{y}^{c} = 60 \text{ ksi}$  $\phi = 0.45$ Cast monolithicly  $\Rightarrow \mu = 1.4$ (friction factor) Try as follows : 7 1/7 ( A` Prim. As - 10 -Sec.As "P=Q I V = 66.9 k/(0=.85)= 7-6.71 k

Horizontal Tension  $N_c = 0 \Rightarrow Use min.$   $N_{ue} = \frac{V_u}{5} = 15.74 \text{ k}$  (AASIATO 6.16.6.8.3 d) Width  $B = 14^{"}$  (same as column)

Shear Friction Reinforcement  

$$V_n : .2 f_e' = .2.4000 = 800$$
  
 $400 b_u d = .40 \times 14'' \times 8'' = .49.6 k$   
 $49.6k > 74.71 k OK$   
AASHTO 8.16.6.4:  $A_{ve} = \frac{V}{\phi f_{y}.4t}$   
 $A_{ve} = \frac{74.71 k}{60 km \times 1.4} = \frac{.9370 v''}{.4000}$   
 $\frac{Moment Reinforcement}{K} = .9370 v''$   
 $M = V_u A + N_{uc} (h - d)$   
 $= 74.71 \times 2.5'' + 15.74 \cdot 2''$   
 $= 224.26''.k = 19.02''k$   
 $\frac{M}{\phi b d l} = \frac{.274.26 \times 1000}{.45 \times 14''} = .254.75$   
 $M = \frac{f_y}{.45f_e'} = 17.6471$   
 $\rho = \frac{1}{m} (1 - \sqrt{1 - \frac{2 m (m/6Ld^2)}{f_y}})$   
 $= .0044$   
 $A_e = .0044 \times 6' \times 14'' = .4948 v''$   
 $Tension Reinforcement$   
 $A_n = \frac{N_{uc}}{\sigma f_y} = \frac{15.74 k}{.60 k_{si}} = .2623v''$ 

1/4

Z/4

$$\frac{Primary A_{s}}{A_{e} + A_{n}} = .4948 + .2623 = .7572 p''$$

$$\frac{7}{3} A_{ve} + A_{n} = \frac{2}{3}(.9370) + .2623$$

$$= .4870 p'' \quad \text{Governs}$$
Secondary A.

Prim.  $A_6$ - provide 3 - 5 ( $A_6 - 930^{\circ} - 667$ ) Sec.  $A_6$ - provide 4 - 4 ( $A_5 - 600^{\circ} - 3123$ ) 3 - 5 L weid to 5 Cross Bar

Check Minimum Reinforcing AASHTO 4.16.6.8.5:  $p_{min} = .04 \frac{f_c'}{f_y} = .04 \cdot \frac{4}{60} = .0027$   $A_{s.min} = .0027 \cdot 6 \times 14' - .299 = "$ .4470 > .299 _OK

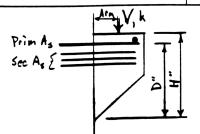
D9(

"CORBL"-Luad Factor Design

Lock Factor

Design

fridien


coeff.

depth inknown

Estimated

Depth

RUN



42.182 100 SHEETS

XEQ CORBL-7:27:07 AM 07/16/87

TITLE: RUN DEPTH EST. ******* HSD? 0.0000 RUN AASHTO F-Y 40,60

60.0000 RUN Fc'KSI RUN 4.0000 MU 1,1.4 1.4000 RUN 8-14.0000 RUN RUN 0.0000 RUN

66.9000 TRY H=9.9732* B-14.0000

D-

۷

D-RUN 8.0000 H-10.0000 RUN ARM-

2.5000 RUN ******** ¥, K

66.9000 RUN TENS No. K 0.0000 RUN A-V=0.9370 SQ-A-F=8.4948 SQ* A-N=0.2624 SQ"

PRIM A-S=0.8870 SQ= SEC A-S=0.3123 SQ* ¥, K

RHO-MIN=0.0027

RUN 90.0000

V)Vc ____ Concrete Overstress for V= 90.0 k

B-14.0000 RUN D-10.0000 RUN H-12.0000 RUN ARM-2.5000 RUN ******* *** ¥, K 90.0000 RUN TENS Nc, K 0.0000 RUN A-V=1.2605 SQ-A-F=0.5294 SQ-A-N=0.3529 SQ-RHO-NIN=0.0027 PRIM A-S=1.1933 SQ= SEC A-S=0.4202 SQ* ¥, K 66.9000 RUN TENS No. K 0.0000 RUN A-Y=0.9370 SQ-A-F=0.3900 SQ. A-N=0.2624 SQ-RHO-MIN=0.0027 PRIM A-S=0.8870 SQ-SEC A-S=0.3123 SQ-¥, K RUN 8-

Try new section

Try new section

"CORBL" - Working Stress Design

4/4

XEQ -C(	DDI -		V, K	(7.0000		
3:55 AM 07/16/8			TENS No.	43 <b>.0000</b> K	KUN	
E:			41- XII	44.0000	RUN	
EL DESIGN-PED RE	MP		Nc>Y 			Tension greaten than alloweble
	RUN		¥, K			Than alloweble
***********	****			43.0000	RUN	
1.0000	RUN	Working Stroke Decign	TENS No.	K 0.0000	RUN	
1.0000	ROM	and a new rough	A-V=1.279		KUN	
TO			A-F=0.532			
	<b>-</b>		A-N=0.358			
8.0000	RUN		RHO-MIN=0	.0027		
20,24 24 <b>.000</b> 0	RUN		PRIM 0-S=	1.2115 SQ-		
SI			SEC A-S=0			
4.0000	RUN					
,1.4			V, K		0111	
1.4909	RUN				RUN	no more load
			B-			new section
14.0000	RUN					
0 5000	RUN					
8.5000	KUN		SHORT FO	RM wit	h flood	$\mathcal{X}$ set:
10.5000	RUN					
					SF 00	
2 <b>.5000</b> *******	RUN			XEQ -C		no title
••••			WSD?			block
43.0000	RUN			1.0000	RUN	
		Corbel too	N			
		omell		8.9999	RUN	
4.0000	CLX	00P6	F-S 20,24		<b>D</b> (1))	
14.0000	RUN		Fc·KSI	24.0000	RUN	
			FU K31	4.0000	RUN	
10.5000	RUN			7.0000	ROU .	
			NU 1,1.4			
12 <b>.5000</b>	RUN			1.4000	RUN	
2 <b>.5000</b>	RUN					
2 <b>.5000</b>	RUN			1.4000 14.0000	RUH RUH	
2 <b>.5000</b>	RUN		д. В.	1 <b>.4000</b>	RUN	
2.5000 **********************************	RUN +++++ Run		 B•	1.4000 14.0000 10.5000	RUH RUH RUN	
2.5000 43.0000 Nc, K 0.0000	RUN +++++		в- D- H-	1.4000 14.0000	RUH RUH	
2.5000 43.0000 Nc, K 0.0000 1.2798 SQ ⁻	RUN +++++ Run		д. В.	1.4000 14.0000 10.5000	RUH RUH RUN	
2.5000 43.0000 Nc, K 0.0000 1.2798 SQ ⁻ 0.5328 SQ ⁻	RUN +++++ Run		B- D- H- ARM-	1.4000 14.0000 10.5000 12.5000	RUN RUN RUN RUN RUN	
2.5000 43.0000 Nc, K 0.0000 1.2798 SQ ⁻	RUN +++++ Run		B- D- H- ARM-	1.4000 14.0000 10.5000 12.5000 2.5000	RUN RUN RUN RUN RUN	
2.5000 43.0000 Nc, K 0.0000 1.2798 SQ 0.5328 SQ 0.5328 SQ 0.3583 SQ MIN=0.0027	RUN +++++ Run		B- D- H- ARM- V, K	1.4000 14.0000 10.5000 12.5000 2.5000 *********	RUN RUN RUN RUN RUN	
2.5000 43.0000 Nc, K 0.0000 1.2798 SQ 0.5328 SQ 0.3583 SQ MIN=0.0027 1.4-S=1.2115 SQ	RUN +++++ Run		B- D- H- ARM-	1.4000 14.0000 10.5000 12.5000 2.5000 *********	RUN RUN RUN RUN RUN	
2.5000 43.0000 Nc, K 0.0000 1.2798 SQ 0.5328 SQ 0.5328 SQ 0.3583 SQ MIN=0.0027	RUN +++++ Run		B- D- H- ARM- Y, K TENS Nc,	1.4000 14.0000 10.5000 12.5000 2.5000 43.0000 K	RUH RUH RUN RUH RUH RUH	no breakdown
2.5000 43.0000 Nc, K 0.0000 1.2798 SQ 0.5328 SQ 0.3583 SQ MIN=0.0027 A-S=1.2115 SQ A-S=0.4266 SQ	RUN +++++ Run		B" D" H" ARM" V, K TENS NC, PRIM A-S=	1.4000 14.0000 10.5000 12.5000 2.5000 43.0000 K	RUH RUH RUN RUH RUH RUH	of reinf. cale
2.5000 43.0000 Nc, K 0.0000 1.2798 SQ 0.5328 SQ 0.3583 SQ MIN=0.0027 A-S=1.2115 SQ A-S=0.4266 SQ	RUN +++++ Run		B" D" H" ARM" V, K TENS NC, PRIM A-S=	1.4000 14.0000 10.5000 12.5000 2.5000 ********* 43.0000 K	RUH RUH RUN RUH RUH RUH	

V, K

ATIONAL 42-182 100 SHEETS

#### REINFORCING BAR WEIGHT SUMMATION

xeq BWT (SIZE 004)

**<u>SOFTKEYS</u>** (USER mode ON)

- A Gives total weight of reinforcing  $(\Sigma)$ , then returns to program. Can be checked at any time.
- B Common BAR size for succeeding bar sets. Bypass the prompt to return the program to the BAR # prompt at each bar set.
- C Correct an error. Subtracts the weight of the last bar set input from the sum of the weights.
- C Clears the sum (and the common BAR size, if any) and starts over. (The total is also zeroed every time BARWT is executed.)

#### USER FLAGS

Flag 00	clear	Full title block if printing.
	set	Title block is skipped if printing;
		output is not affected by flag 00.

#### INPUT SUMMARY

<u>Prompt</u> BAR #	<u>Input</u> Standard CRSI bar sizes 3-11, 14, and 18. Also recognizes 1/4" pencil rod (#2).	<u>Default</u> No default
QUANT	The quantity of bars in a given bar set	No default
L FT.IN	Length of one bar in feet and <u>inches.</u> Thus 12'-7 is input 12.07. For a variable bar length, key in the shortest length, enter/ then the longest length.	No default
BAR	(From softkey B) The bar size common to succeeding bar sets. Bypass to get BAR# prompt back for each bar set.	Zero

OUTPUT SUMMARY (1	Flag 00 has no effect on program BWT)
WT	Weight of a given set of bars.
Σ	(From softkey A) Total weight thus far.
$\sum$ - Weight = New $\sum$	(From softkey C) The corrected total after subtracting an incorrect entry.
PROGRAM FLAGS	

Flag	21	set	Controls display/printing
Flag	27	set	Turns USER mode on

### STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> Bar weight for a given size bar; Weight x Quantity
01	Current bar set weight (for softkey C)
02	Summation of weights
03	Common bar size

#### REINFORCING BAR WEIGHT SUMMATION

Program BWT is used for calculating and summing the weights of reinforcing bars. Upon execution, BWT prompts for the bar size (BAR #), the number of bars of that type (QUANT), and the length of each bar (L FT.IN) in feet and inches. Six feet eleven inches is input as 6.11; 12'-3 is 12.03. See the notes concerning length and variable bar sets on the next page.

#### BAR SIZE

For regular reinforcing bar sizes, answer the BAR # prompt with the bar size (3-11, 14, 18); for 1/4" pencil rod, respond with a 2. Responding with other numbers will give strange results because the program uses a weight calculation algorithm based on the bar number to figure a given bar's weight. For instance, the program calculates the weight of a #12 bar as 6.428 pounds per foot, between that of a #11 and #14 bar.

If the bar list has many bars of the same size (diameter), press softkey B and key in that size in response to the BAR prompt. The BAR# prompt will be skipped for succeeding bar sets, and the program will use the BAR size input for softkey B. This feature saves a lot of repetitive input. To get the BAR# prompt back (e.g. if the bar size changes), press softkey B again and bypass the BAR prompt (press R/S without keying anything in).

#### WEIGHT SUMMATION

As mentioned, the program adds all weights to register 02, which is zeroed at the beginning of the program. This can also be accomplished by pressing softkey c (shift, SQRT). The program gives no evidence that it has cleared anything; the first time through, the user may wish to use softkey A to check it. See the final paragraph, regarding accidental clearing.

BWT actually sums the <u>rounded-off</u> weights, as determined by the display format. Since bar lists usually state the weights to the nearest pound or tenth of a pound, it is suggested to set the calculator to FIX 0 or FIX 1 format, respectively, before starting (or soon thereafter). Then the sum figured by the program will be the same as the total of the weights on the bar list; there is no round-off difference.

In order to get the total of the weights (which is, after all, why we're doing this) press softkey A. This can be done at any time, as many times as desired. After viewing the sum, pressing R/S gets you back into the input sequence, carrying your total. As mentioned above, press softkey c (lowercase; shifted) to clear the total and start over.

#### **LENGTHS**

As mentioned, lengths are input in feet and inches, which is usually how bar lists state them. If a length is mistakenly input in decimal feet (e.g. 6.17 for 6'-2"), the program will catch it and shunt you back to the L FT.IN prompt for another go. It does this by checking that the fractional part of the length is less than .12; the only thing it can't catch is an input of 6'-1", for instance, as 6.08, which it sees as 6'-8".

#### VARIABLE BAR SETS

For a group of variable bars, key in the length of the longest bar, enter/, then key in the length of the shortest bar and press R/S. Again, input must be in feet and inches. The program takes the average of these lengths, times the number of bars (QUANT) input. It's good to try this a few times to get comfortable with it.

#### ERROR CORRECTION

There are several ways to make mistakes with this The first and easiest, of course, is to program. simply key in the wrong number in response to a prompt. This is fixed by pressing softkey C (for "correct") after the incorrect weight has been displayed. The program will remove this weight from the total and return you to the input sequence. This can be done any time between when the incorrect weight is displayed and when the next weight is calculated and displayed (i.e. any time before you key in the next L FT.IN and press R/S). If you realize too late and finish inputting another bar, re-input the incorrect bar (incorrectly, as before) and then press softkey C twice, thus subtracting the incorrect weight twice. All of this, of course, hinges on realizing that a mistake has been made in the first place, which is the really tricky part.

Another mistake that happens when using the softkey B feature is to get used to bypassing the bar size, and then forget to input it when you're supposed to. Then, if you're paying more attention to the bar list than the calculator (the usual case), the BAR # prompt gets the quantity input and the QUANT prompt gets the length input. If the length happened to be an even number of feet, you'll be surprised by a L FT.IN prompt instead of a weight. The easiest way to take care of this is to press softkey B. If you try to input a non-integer number for the QUANT prompt (i.e. the length had inches) the program will realize what happened and do this for you. This mistake happens the other way around just as often--inputting the BAR# at the QUANT prompt, and the QUANT at the Length prompt. Use softkey C to fix this one.

Potentially the worst mistake is to press softkey c (shifted, to clear) instead of C (unshifted, to Correct). The shifted key was chosen for "clear" because it takes more effort to do, but in spite of this innovative protection scheme the mistake still happens. When it does, you'll be surprised by a BAR# prompt instead of the reassuring " $\sum$  - Weight = New  $\sum$ " display. However, before the program zeroes the total weight, it recalls it. To continue working, press RDN (roll down) to bring the total into the X-register, store it in register 02 (STO 02), then press softkey B and take it from there.

#### ( XIR TWB• MORX

12:43 PM 64/10

BILL OF BARS - SLAB				Ī
BAR	NO.	LENGTH	WEIGHT	1
5501	54	2'-7	145.5	
560Z	10	20'-10	312.9	
5503	12	Varies 2'-0 / 7-10	61.5	
\$1004	32	46:-0	6334.0	

501: 54 × 2,543' × 1.043 = 145.5 lbs. 602: 10 × 20.433' × 1.502 = 312.9 503: 12× 2(2.0+7.43') × 1.043=61.5 1004: 32 × 46.0' × 4.303 = 6334.0 6453.9

TITLE:		
SLAR		RUN
********	*******	****
BAP #		
	5.8	RUN
QUANT		
	54,0	RUK
FT.IN		
	145.5	RUN
L FT,IN		
	2,07	<b>F</b> (in
₩7=145.5		
BAR #		<b>.</b>
	6.0	₽U/:
QUANT		<b>5</b>
. ==	10.0	PUN
L FT.IN	20.10	PUN
WT=312.9	20,10	E U P
W)=312.7 RAR #		
BHV f	5.0	RUN
O:IONT	0.E	K Ü IS
₩ <b>0</b> ₩111	12.0	RHN
L FT.IN	12,2	
1. · · · <b>8</b> . I	2.0 E	NTERT
	7.10	RUN
WI=61.5		
BAR #		
	10.0	RUK
QUANT		
	32.0	RUN
L FT.IN		
	46,0	RUN
WT=6.334.0		
8AR #		
		XE0 0
∑=A.853.9		
BAR ‡		

(D94)

Program <u>BWT</u> For <u>Reinfercine</u> Bor Weight <u>Calculation</u> 184 bytes Page of <u>2</u>

	X	ΙΥ	2	T	L		X	Y	र	T	L
« <u>Andrea a substanti de la constanti de la constanti de la constanti de la constanti de la constanti de la con</u>											
01+LBL "BWT"						50 CLX	0				
02 3						51 -QUANT-					
03 XROM -S-						52 PROMPT	Quart.				
04 SF 27	USER	mode				53 ST* 00					Checksif
						54 X=0?					QUANT prompt
05+LBL c						55 GTO 02		,			was bypassed.
06 SF 21						56 FRC	Frc=O	<i>'</i> ,			Check if LFT. 1
07 CLX						57 X≠0?					Check if LFT. 11 accidentally input
08 STO 03	0					58 GTO 02					Quantity mas
09 X<> 02	DUE										be an integer
				1		59+LBL 07					2
10+LBL 02						60.	0				1
11 <b>BAR #</b>						61 "L FT.IN"	L FI.In				
12 RCL 03	Kommon	1		1		62 PROMPT	L,	L27			
13 X=0?						63 XEQ 00	L				
14 PROMPT	Bar#			1		64 ENTERT	L,	L,	L2!	L2?	
15 8	4					65 Rt	L2?	Ľ,	11,	127	
16 X(Y?						66 X>0?		- •	''	1	
17 GTO 01						67 XEQ 00	$L_2$ ?				
18 /	Dia."					68 X=0?					
19 2						69 RDN	LiorLz	LI			
20 /	Ratios					78 +		٠			
21 X†2	r2					71 2					
22 PI	Π	1				72 /	L, or Ang.				
23 *	Area					73 RCL 00	14.Qu				
23 ¥ 24 GTO 00						74 *	Wt				
27 GIU 00						75 RND	Romled				
25+LBL 01						76 ST+ 82	(2)		· ·		
26 X<>Y	Bar≖	8				77 STO 01	Weight			'	]
	13					78 •WT•	2.		1		
27 13	' [_]					79 GTO <b>04</b>					
28 X(Y?						דים טום לו					
29 GTO 01						80+LBL B					
30 SIGN	1	Bar≠	8			81 .					
31 GTO 02											
						82 BAR					
32+LBL 01	13	Bar*	8			83 PRONPT	h				
33 RDN						84 STO 83	(man Be	<b>.</b> ۲			
34 2	Z	Bar*	Р			85 GTO 02					
95.181 84											
35+LBL 02	12.1	a				86+LBL A					
36 -	Bar P	Ъ				87 <b>-∑-</b> 80 DCL 80					
37 X<>Y						88 RCL 82					
38 /	Dim				Dim= Sile of equiv. square bar	89 GTO <b>04</b>					
39 Xt2	Area				square bar						
						90+LBL C	.				
<b>40+</b> LBL <b>0</b> 0	Area				490 pct	91 <b>-</b> Σ					
41 3.4					490 pet 144 0%; = 3.4	92 ARCL 01	e				
42 *	w+.					93 RCL 02	٤				
43 RCL d	flags					94 RCL 01	Last Wt.				
44 X<>Y	flags WH	flags				<b>9</b> 5 -	Prev.E				(Daa)
45 FIX 3						96 STO 82	E				
46 RND	Weight	flags					-	1			
47 STO 00	Wt.	0									
48 RDN	flegs				- 1						
	1 5				Rea.d. the flaar	eaister	1 1				

Program <u>BWT</u> For <u>184</u> bytes Page <u>2</u> of <u>2</u>

		X	Ŷ	Z	T	L	Х	Ý	そ	T	L
	104 LASTX 105 FRC 106 .12 107 X<=Y? 108 GTO 07 109 /	3.07 3 3.07 .07	Y .07 3	Y 3 YY	Y Y Y	L Use example length 3.07 = 3'-7"		Y	7		
(D100)											

#### RECTANGULAR CONCRETE COLUMN ANALYSIS

Program CC is a subroutine which calculates points on the load-moment interaction diagram for a rectangular reinforced concrete column. The points calculated represent levels of force in the tension-side reinforcing, and are ultimate (factored) strengths only. The following points are calculated:

- MAX The maximum usable axial load and the corresponding moment
- OT The eccentricity producing zero force in the tension-side reinforcing
- 25%T The eccentricity producing a stress of 15 ksi in the tension reinforcing
- 50%T The eccentricity producing a stress of 30 ksi in the tension reinforcing
- BAL The eccentricity producing a "balanced" condition, with concrete and steel reaching their ultimate strengths simultaneously

Output consists of axial loads in kips and moments in foot-kips, stored in numbered storage registers. CC has no displayed output; it is solely a computational subroutine requiring its input in the expected storage registers. Lack of space in the ROM prevented CC and its calling program CCOL from being included. However, a listing of both programs is included for use or as an example, to be keyed in and run in main memory (RAM). CCOL is a very simple input/output shell program for subroutine CC; however, its results are useful and the program can be expanded by the user.

Program CC uses modified versions of the CRSI Universal Strength Formulas, and includes all the limitations and assumptions of these formulas.

As mentioned, CC calculates only ultimate strengths; all values have been reduced by a phi-factor of 0.70, appropriate for strength design of tied columns. However, program CCOL is written to analyze by either strength or allowable stress (LFD or WSD) methods. In working stress design, CCOL uses 0 = 1.0 but factors the allowable loads and moments down to 0.35 (AASHTO) or 0.40 (ACI) of their ultimate levels.

1

#### RECTANGULAR CONCRETE COLUMN ANALYSIS

Note: this document serves as the Summary Sheet for both subroutine "CC" and main program "CCOL", which uses CC. Both CCOL and CC must be keyed into memory by the user; space constraints prevented them from being included in the ROM. The only sections which pertain directly to CC are the SIZE requirement and storage register information.

(SIZE 019)

**SOFTKEYS** (USER mode ON)

A New area of steel

D New concrete dimensions

#### USER FLAGS

Flag 00	clear set	Full output Title block skipped
Flag 04	clear set	AASHTO ACI

#### INPUT SUMMARY

<u>Prompt</u> WSD?	<u>Input</u> Asking if working stress or load factor design. Answer 1 (yes) or bypass for working stress design, 0 (no) for load factor (strength).	<u>Default</u> 1 (WSD)
AASHTO or ACI	A reminder, not a prompt. Press to continue if not using a printer	
F-S 20,24 or F-Y 40,60	Reinforcing working or yield stress in ksi	60 ksi
Fc' KSI	<u>Ultimate</u> concrete strength	4.0 ksi
В"	Column width in inches	Previous B
D"	Column depth (full dimension, not depth to reinforcing) in direction of bending.	Previous D
D" TO CL BAR	Distance from concrete surface to center of reinforcing bar (cover + tie + 1/2 bar diam.)	No default



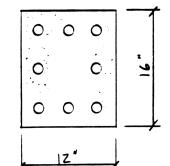
<u>Prompt</u> #BARS	<u>Input</u> Total number of bars in column	<u>Default</u> No default
BAR A SQ"	(all bars must be the same size) The area of one bar in square in.	No default
#SIDE BARS	The number of bars <u>not</u> in either the tension or compression face	No default

**<u>OUTPUT SUMMARY</u>** (Items in parenthesis are displayed only if flag 00 is clear)

Output for CCOL consists of the following five points on the column's load-moment interaction diagram, each having an allowable axial load P in kips, and a corresponding moment M in footkips. The reinforcing ratio is also calculated, displayed, and checked to be between .01 and .08; and the value of 0.1 fc'  $x A_g$ is displayed.

- BAL The point of balanced stress between concrete and tension reinforcing.
- MAX The point of maximum usable axial load  $(0.80 P_0)$
- OT The point producing zero stress in the tension reinforcing
- 25%T The point producing one quarter of the allowable stress in the tension reinforcing
- 50%T The point producing half the allowable stress in the tension reinforcing

#### PROGRAM FLAGS


Flag 06	clear	Working stress design (.35 or .40 times
		the ultimate strength)
	set	Ultimate strength (load factor) design

#### STORAGE REGISTER USE

<u>Register</u> 00	<u>CC Value</u> Fc', ksi	Add'l CCOL Value
01	β ₁	
02	F-Y KSI	
03	В"	
04	D"	
05	# Side Bars	Counter

<u>Register</u> 06	<u>CC Value</u> "g" (bar separation/de	<u>Add'l CCOL Value</u> pth)
07	Non-side-bar A _s /bd	
08	Side-bar A _s /bd	(.35 or .40)/Ø or 1.0
09	#BARS; BAL P	
10	1 bar area; BAL M	
11 12	MAX P (.80 f _c 'A _g + A _s MAX M	${ t F}_{{ extsf{y}}}$ whether by WSD or LFD)
13 14	0T P 0T M	
15 16	25%T P 25%T M	
17 18	50%T P 50%T M	

Analyze this column by "strength" design and compare to tabular values in CRSI Handbook.



g - "g bors	
fy = 60 ksi fc = 5.0 ksi	Ø = .70
Cover 1'z" tie 3/8" "z bar <u>"z"</u> z.3-8"	= d'

<u>CRSI</u> (Major Axis): <u>Point</u> <u>P,k</u> <u>e (in)</u> <u>M''k</u> Balanced ZZ4 k 9.73" 181.6'^k Max (.80P.) 654 k 1.43" 77.9'^k Zero Tansion 516.2 Z.93" 126.0'^k (Interp.)

XE0 -CCOL-5:01:07 PM 01/24/89 TITLE: RUN CRSI TRIAL ********* *** WSD? 0.0000 RUN AASHTO F-Y 40,60 60.0000 RUN Fc'KSI 5.0000 RUN 8-12.0000 RUN D-16.0000 RUN D- TO CL BAR 2.3800 RUN # BARS 8.0000 RUN BAR A SQ-.7900 RUN **#** SIDE BARS 2.0000 RUN RH0=0.0329 OK .1Fc'A=96.0000 K BAL: P=225.9900 K M=181.7334 'K MAX: P=654.2704 K M=69.3719 'K 0T: P=518.1019 K M=127.1233 'K 25%T: P=428.1258 K M=144.7068 'K 50%T: P=352.9934 K M=160.7045 'K ******* # BARS

0105

Note: for reference or use in RAM - not resident in ROM

Program <u>CCOL</u> For <u>Concrete Column Aivalysis</u> <u>246</u> bytes Page of <u>L</u>

	_											
01+LBL -CCOL-	X	Y	Z	T	L	58 RCL 07	X	Y	そ	T	L	
02 18												
03 XROM "W"						60 CF 07						
04 CF 10						61 .01						
05 XROM -N-						62 X>Y?						
06 STO 00						63 SF 07						
07 RDN						64 8						
08 X<> 01						65 <b>*</b>						
09 STO 02						66 X(Y?						
						67 SF 07						
10+LBL D						68 RDN						
11 XROM -BD-						69 ARCL X						
12 "D" TO CL BAR"						70 XROM -OK-						
13 PROMPT						71 AVIEW						
14 ST+ X						72 ".1Fc'A="						
15 RCL 04						73 RCL 00						
16 -						74 RCL 03						
17 LASTX						75 <b>*</b>						
18 /						76 RCL 04						
19 CHS						77 🔹						
20 STO 06						78 10						
						79 /						
21+LBL A						80 ARCL X						
22 XROM "L"						81 "H K"						
23 <b>**</b> BARS*						82 AVIEW						
24 PROMPT						83 -BAL-						
25 STO 09						84 XEQ 01						
26 •BAR A •						85 "NAX"						
27 XROM "IS"						86 XEQ 01						
28 PROMPT						87 -01-						
29 STO 10						88 XEQ 01						
30 <b>*#</b> SIDE BARS*						89 -25-						
						90 XEQ 02						
31 PROMPT												
32 STO 05						91 <b>-50-</b>						
33 STO 08						92 XEQ 02						
34 CHS						93 SF 14						
35 RCL 09						94 GTO A						
36 +												
37 STO 07						95+LBL 02						
38 RCL 10						96 F%T						
39 RCL 03												
40 /						97+LBL 01						
41 RCL 04						98 ADV						
42 /						99 •H: P=•						
43 ST* 07						1 <b>00 RCL IND 0</b> 5						
44 ST* 08						101 RCL 08						
45 XEQ -CC-						102 *						
46 XROM "LL"						103 ARCL X						
47 9.1						104 "⊢ K"						
48 STO 05						105 RVIEW						
49 4						106 ISG 05						
50 -RHO=-						107 CLA						
51 7						108 RCL IND 05						
52 /						109 RCL 08						
(DIOL) 53 FC? 84						110 *						
54 .5						111 XROM "M="						
55 FS? 06						112 AVIEW						
56 SIGN						113 ISG 05						
57 X<> 08						114 END						
	•		l	· · ·		 	• '	· · · ·				

Program <u>CC</u> For <u>Rect. Couc. Column Analysis</u> <u>328</u> bytes Page of <u>Z</u>

	X	I Y	Z	IT	L		X	Ιγ	र	TT	L	
						57 5	$\uparrow$			1		
	LBL "CC"				ł	58 /						
02						59 *						
	RCL 07					60 STO 12						
	RCL 08					61 RCL 06						
<b>95</b>						62.5						
96 97	LASTX					63 +						
	RCL 02			1		64 XEQ 05						
89						65 16						
	X<>Y					66 / 67 6						
	.85					68 *						
12						69 STO 15						
13	RCL 00					70 1.5						
14						71 LASTX						
15						72 7						
	.56					73 /						
17						74 XEQ 09						
	RCL 03 RCL 04					75 ST+ 15						
20						76.22						
	STO C					77 XEQ 07						
22						78 STO 16						
	STO 11					79 4 80 1/X						
	1.8					81 XEQ 08						
	ENTERT					82 3.2						
26	SIGN					83 /						
	XEQ 09					84 ST+ 16						
	STO 13					85 RCL 06						
29						86 1.8						
	1/X					87 +						
	XEQ 07					88 XEQ 05						
	STO 14 .28					89 4						
	XEQ 08					98 /						
35						91 STO 17						
36						92 1.3 93 .75						
	ST+ 14					93 .73 94 XEQ 09						
38	2.7					95 ST+ 17						
	RCL 06					96.19						
48						97 XEQ 07						
41 :						98 STO 18						
42						99.24						
	RCL 96		l			100 XEQ 08						
44 :						101 3						
45	XEQ 05					102 *						
47						103 8	ŀ					
	ST+ 13					104 / 105 CT+ 10						
	RCL 11					105 ST+ 18						
50						106 RCL 06 107 3				1		
51						108 *	1					
	STO Y					109 2					$\square$	N N
	RCL 13					110 -			1		(7019)	)
54 -						111 .						
55 -	/ RCL 14					112 XEQ 06						
		1	1					1				

	X		Z	T			X	V	そ		
114 /						169 1/X	$\uparrow$				 
115 .15						••••					
116 +						170+LBL 00					
117 STO 09						171 RCL \					
118 SIGN						172 *					
119.6						173 RCL 08					
120 XEQ 09						174 *					
121 ST+ 09						175 RCL 07					
122 .15						176 +					
123 XEQ 07						177 RCL 06					
124 STO 10						178 *	1				
125.2						179 RCL 04					
126 XEQ 08						180 <b>*</b>					
127 2						100 +					
128 /						181+LBL 10				· ·	
						182 RCL 02					
129 ST+ 10											
130 RTN						183 *	1				
17141 01 05							1				
131+LBL 05						184+LBL 12					
132 RCL 07						185 RCL [					
						186 *					
133+LBL 06						187.7					
134 X<>Y						188 *	1				
135 RCL 08						189 RTN	1				
136 +											
137 X(0?						190+LBL 09					
138 CLX						191 RCL 06					
139 +						192 E					
140 GTO 10						193 +					
						194 *					
141+LBL 08						195 X<>Y					
142 RCL 06						196 RCL 08					
143 *						197 *					
144 .19						198 -					
145 +						199 RCL 01					
146 .37						200 *					
147 X>Y?						201 RCL 07					
148 X<>Y						202 -					
149 STO N						203 RCL 00					
150 RCL 05						204 *			1		
151 4						205 .425					
152 X>Y?					1	206 *					
153 CLX						207 GTO 12					
154 X=0?			1						1		
155 GTO 00						208+LBL 07					
156 RDN						209 RCL 01					
157 6						210 +			1		
158 X<=Y?						211 RCL 06					
159 SIGN						212 E					
160 E						213 +					
161 X=Y?						214 *				1	
162 GTO 00						215 .5					
163 Rt		1				216 -					
164 Rt						217 CHS					
165 12						218 RCL 04		1			
(0104) 166 /						219 *					
167 1/X						229 *					
167 173						220 +					

#### STEEL DESIGN PROGRAMS

This module contains three programs concerned with the design of steel structures:

COMP Composite steel/concrete beam analysis PLG Slender built-up plate girder analysis SCOL Steel column analysis (axial loads only)

In addition, another program, BM, which calculates elastic section properties of I- and T-shapes, is also frequently useful for steel design problems.

#### **FLAGS**

All the programs recognize flag 00; they are shorter and run faster when it is set. They also recognize flag 04. When flag 04 is set, the AISC Code is followed; when it is clear, AASHTO is used. AASHTO and AISC have much greater differences than do AASHTO and ACI (concrete design) or NDS (timber design). It is therefore very important that the status of flag 04 be checked before using these programs.

Flag 02 is also used by PLG and COMP. These programs have a BEEP at erors and warnings; when flag 02 is clear these BEEPs are disabled. Flags 01 and 03 have no effect on these programs.

#### **STRESSES**

All the programs work with stresses in KSI (kips per square inch); this changes the form of some AASHTO equations, making the program listings a little more difficult to trace through.

#### SUBROUTINES

As mentioned, SCOL deals only with axially loaded columns. However, the working calculation portion of the program has been given a global label, SFa, so that it may be called from a user-written program. In addition, program PLG contains a subroutine dealing with bending stresses, SFb. These are called in a program analyzing steel beam-columns named SBCOL, a listing of which follows. This may be keyed into main memory by the user. Unfortunately, space constraints prevented this from being included in the ROM.

#### **I-BEAM SECTION PROPERTIES**

Program BM is used to calculate elastic section properties for I- and T-shaped homogenous beams. It prompts for web depth and thickness, and the width and thickness of each flange, then calculates the moment of inertia, neutral axis position, section moduli of the top and bottom flanges, and the cross-sectional area. In addition, if flag 06 is set, the plastic modulus Z is calculated. If flag 00 is clear, all of these are displayed; if it is set, none of them are.

BM is intended for use as a subroutine. It may be used as a stand-alone program without any problems; however, it differs from most programs in this package on three points:

1) It does not use subroutine S; there is no SIZE check or title block. The user must verify a SIZE of at least 015.

2) Once finished, the program simply stops. It does not return for another section to be input.


3) If flag 00 is set there isn't just minimal output; there is no output at all.

#### USE as SUBROUTINE

Program BM is used as a subroutine by COMP; all but the web input portion is used by PLG throuh subroutine SBM. Both BM and SBM in turn use subroutine AY (so called because the output is in the stack as A, Y, I,  $S_b$ ) to actually calculate the section properties from the dimensions input. AY is also used by PIER and LFAN/IC. AY is one of the three routines in this module that cannot be single-stepped through, due to its use of synthetic register P. See "Synthetic Programming and Other Loose Ends" for more details.

#### SOFTKEYS

This program uses no softkeys itself. However, it is a part of program COMP and thus will recognize softkeys fron that program. While within COMP (or BM), softkey B will execute BM from the beginning. However, it will then return to COMP. The listing, and storage register use, of program BM are within the documentation for COMP.



	XE0	"8M"
WEB D"	34.0000	RUN
TH" COMP FL W	. 5000	RUN
TH-	12 <b>.000</b> 0	RUN
TENS FL W	1.1000	RUN
TH-	12.0000	RUN
1-0 771 50	1.1000	RUN

I=9,771.5947 Y=18.1000" S-C=539.8671 S-Te=539.8671

AREA=43.4000 SQ"

--------

	Area	d	Ad	đ	A # ²	I.
Top Fl.	13.2	.55	7.26	17.55	4065.633	1.33
Web	17.0	18.10	307.70	0	—	1637.667
Bottom Fl.	13.2	35.65	470.58	17.55	4065.633	1.331
	43.4	18.10	785.54		8131,266	1640.329
					977	.595

S = 9771.595/18.10" = 539.867



#### STEEL COLUMN ANALYSIS

xeq SCOL (SIZE 007)

### <u>Softkeys</u>

D New effective lengths

#### USER FLAGS

Flag 00	clear	Outputs allowable stress and maximum axial load
	set	Outputs only allowable axial load
Flag 02	clear set	Warning BEEP disabled Warning BEEP enabled
Flag 04	clear set	AASHTO AISC

#### INPUT SUMMARY

<u>Prompt</u> WSD?	<u>Input</u> Asking if the analysis is by working stress (ASD) methods. Answer "0" (no) to analyze by AASHTO LFD or AISC LRFD rules.	<u>Default</u> 1 (WSD)
F-Y KSI	Steel yield stress, ksi	36 ksi
KL-X"	Major axis effective length, in.	No default
KL-Y"	Minor axis effective length, in.	KL-X
AREA	Trial member area, sq. inches. Bypass to re-use the previous section (e.g. after softkey D).	
R-X	Major axis rad. of gyration, in.	No default
R-Y	Minor axis radius of gyration	R-X
	ms in parenthesis are displayed onl s clear)	y if flag
(Fa)	Allowable axial stress, ksi	
ALL P	Allowable axial load, kips	
In addition, the Eu	ler stress is held in the Y-registe	er.

#### PROGRAM FLAGS

DIK

Flag 06	clear	WSD	(ASD)
	set	LFD	(LRFD)

### STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> not used
01	KL-X (inches stored)
02	KL-Y (inches stored)
03	R-X
04	AREA, square inches
05	R-Y
06	F-Y KSI

#### STEEL COLUMN ANALYSIS

Program SCOL analyzes steel columns of any shape by the AISC or AASHTO codes for allowable service or ultimate (factored) stresses, using program SFa as a subroutine. SCOL prompts for steel yield stress, axial load, and effective lengths in each direction. It then asks for the area and radii of gyration of a trial section, calculates the allowable compressive stress and corresponding load, and returns for a new trial section.

The program displays a warning and BEEPs if the KL/r value is too high (above 120 per AASHTO 10.7.1; and 200 per AISC ASD B7. (1.8.4) or LRFD B.7). It does still output an allowable stress by the appropriate formulae; it is up to the judgement of the designer if the design is acceptable.

SCOL is not written to analyze beam-columns; however, the allowable-stress subroutine, SFa, was given a global label in order to allow its inclusion in user-written programs for interaction analysis. SFa needs only the effective length Kl/r in the X-register, and F-Y KSI in register 06. It outputs the allowable stress in ksi in the X-register and the Euler stress in the Y-register. The WSD versions of the program for both AASHTO and AISC incorporate the proscribed safety factor (2.12 and 23/12, respectively) into the Euler stress value, while the AASHTO LFD and AISC LRFD versions do not. This follows the way the Euler values are used in the interaction equations. See the examples.

The program is written to analyze prismatic members only; it is unable to account for tapered columns. Built-up members can be analyzed if the separate parts can be considered integrally connected. The user must calculate the radii of gyration. Program BM may be of help for this.

SCOL/SFa assume the flanges and web to be compact, or at least more so than the overall length. The only stress/strength reduction taken is for unbraced length.

(0116)

AISC A.S.D. - W6.ZO

Calculate the allowable load on the column shown below. bracing Spr. 8 5-6 32'-0 KLy = 8-0" = 96"; KLx = 32-0 = 384" WG=ZO: A = 5.87 =" r, = 2.66" ry = 1.50" Fv = 36 ksi Effective Length  $(KQ/r)_{x} = \frac{384}{746} = 144.36$  $(Kl/r)_{y} = \frac{96}{1.50} = 69.0$  $C_c = \sqrt{\frac{2\pi^2 E}{F_y}} = \sqrt{\frac{2\pi^3 \cdot 29.00}{36}} = 126.10$ 144.36 > 126.10 ⇒ "long"  $:: F_a = \frac{12\pi^2 E}{73(10/2)^2} = 7.166 \text{ ksi}$ Alloweble P=7.166 * 5.870" = 42.06 k Add a brace at midlength - kl = 192" (Kl/r) = 72.18 < Cc => "short" :  $F_{a} = (1 - \frac{(L1/r)^{2}}{7}) \times \frac{F_{y}}{F_{z}}$ 

 $F.S. = \frac{5}{3} + \frac{3}{4} \left(\frac{kl/r}{C}\right) - \frac{1}{4} \left(\frac{kl/r}{C}\right)$ - 1.456  $F_{a} = (1 - \frac{1}{2} (\frac{k \ell r}{c})^{2})^{3} (1 + 54)^{3}$ = 16.20 ksi Allowable P = 16.20.5.670" = 95.11 k For interaction equation, Euler stress Fe = 13 (Kerry = 28.66 koi SF 04 Set flag 04 to Use AISC XEQ -SCOL-3:14:49 AM 01/01/00 TITLE: ASD RUN ****** AISC **HSD?** RUN 1="Yes" > A.S.D. 1.0000 F-Y KSI 36.0000 RUN KL-X-32'0. 344" 384.0000 RUN KL-Y-8-0.96 96.0000 RUN AREA W6=20 5.8700 RUN R-X 2.6600 RUN R-Y 1.5000 RUN Fa=7.1655 KSI Pa=42.0613 K AREA Press softkey "D" XEQ D for new length KL-X-(Dimension) prompts 192.0000 RUN KL-Y-96.0000 RUN Bypass to use AREA same section as RUN Fa=16.2025 KSI previous trial Pa=95.1087 K

ARFA

4

Same column - W6x20
A = 5.67 a" rx = 2.66" ry = 1.50"
First Case
Klx = 384"; Kl/r=144.36
Kly = 96"; Kl/r = 64.0
Check flange b/t: <u>6.02"</u> = 8.25
$\lambda_{1}^{*} = \frac{95}{15} = 15.8 \times 8.25 \cdot 0K$
Can use full allowable stresses
<u>Note:</u> The program does <u>not</u> check flange slenderness (2r). The user must check this to determine if SCOL/SFa may be used.
$\lambda_c = \frac{K l}{rr} \sqrt{\frac{F}{E}} = 1.619 > 1.5$
$\Rightarrow F_{cr} = \frac{.877}{\lambda_c^2} \times F_y = 12.04 \text{ ksi}$
$F_a = (\phi = .95) \times F_{er} = 10.24 \text{ ksi}$
Allowable P = 10.24×5.57 = 60.10 k
(Factored Load)
Euler stress $F_e = \frac{F_v}{\lambda_c^2} = 13.734$ ksi for interaction equation

DIA

Second Case - Brace @ Midpoint
$Kl_{x} = 16' = 192''$
$\lambda_e = \frac{kl}{mr} \cdot \int \frac{E}{E} = .8095 < 1.5$
$\Rightarrow F_{cr} = (.658^{(Q_c^2)}) F_{\gamma}$
$= .658^{0.623}$ (Fy
= 27.364 ksi
$F_a = (445) \times 27.364 = 73.26 ksi$
Allow. P= 23.26 × 5.576° = 136.53 k
Eder stress = $F_y/2_c^2 = 54.94$ ksi
SF 04 XEQ =SCOL= 3:16:36 AM 01/01/00 Set flag 04 to use AISC
TITLE: LRFD RUN
AISC MSD?
0.0000 RUN O=``no"→LRFD F-Y KSI 36.0000 RUN
S6.0000 KUN KL-X" 384.0000 RUN
KL-Y" 96.0000 Run
 AREA 5.8700 RUN
R-X 2.6600 RUN
R-Y 1.5000 RUN Fa=10.2380 KSI Pa=60.0973 K
AREA
XEQ D حمد و "D" KL-X-
192.0000 RUN KL-Y" 96.0000 RUN
AREA Bypass to use RUN Same section
Fa=23.2597 KSI Pa=136.5343 K

Z/4

AASHTO W.S.D.

Calculate the allowable load on the same column (WG=ZO) by AAGHTO working stress critenia.

First Case Klx = 384"; Kl/r = 144.36 - Use Kly = 96"; Kl/r = 64.0

$$C_{c} = \sqrt{\frac{2\pi^{2}E}{F_{y}}} = 126.10$$

144.36 > 126.10 ⇒ "Long"

: 
$$F_a = \frac{\pi^2 E}{2.12(K \psi_f)^2} = 6.478$$
 ksi

Allowable P= 5.87.6.48 - 38.03 k

Euler stress F_e = 6.478 ksi (Note: this column violotes AASHTO 10.7.1) <u>Second Case</u> - Brace @ Mid height Kl_x = 192"; Kl/r = 72.18 >64.0

Allowable P = 5.47 × 14.20 =  $\frac{43.35 \text{ k}}{2.12 \text{ (ker)}^2}$  = 25.91 ksi

XEQ -SCOL-3:13:09 AM 01/01/00 TITLE: NSD RUN ********************** AASHTO WSD? 1.0000 RUN 1= "yes" > WSD F-Y KSI 36.0000 RUN KL-X" 384.0000 RUN KL-Y-96.0000 RUN AREA 5.8700 RUN R-X RUN 2.6600 R-Y 1.5000 RUN Warning = 1A511 TO 10.7.1 KL/R>120.0000 Fa=6.4783 KSI Pa=38.0278 K AREA XEQ D Softkay "D" KL-X-192.0000 RUN KL-Y* 96.0000 RUN Bypess for AREA same section RUN Fa=14.1992 KSI Pa=83.3492 K AREA



Calculate the allowable load on the same column (WG=20) by AASHTO load factor criteria.

W6×Z0 = 4 = 5.87 a" rx = Z.66° ry = 1.50"

First Case:

Klx = 364"; Kl/r = 144.36 <del>(Governs)</del> Kly = 96"; Kl/r = 64.0

Note: Kl/r = 144.36 > 120; this column violates AASHTO 10.7.1. It is up to the discretion of the engineer whether the results are acceptable.

 $F_{cr} = \frac{\pi^2 E}{(K l/r)^2} = 13.734$  kei

 $F_a = (\phi = .85) = 13.734 = 11.674$  ksi Allowable P = 11.674 = 5.87 = <u>68.53 k</u>

Second Case - Brace @ Midheight  

$$Kl_x = 19Z''; Kl/r_x = 72.18$$
 Governer  
 $Kl/r_y = 64.0$   
 $72.18 > C_e (= 126.10) \Rightarrow "Short"
 $F_{cr} = (1 - \frac{(Ke/r)^2 F_V}{4\pi^2 E}) * F_V = 30.10$  ksi  
 $F_a = (\phi = .85) * F_{cr} = 25.59$  ksi$ 

Allowable P = 25.59 · 5.87 = <u>150.20 k</u> Euler stress =  $\frac{\pi^2 E}{(kVr)^2}$  = 54.94 ksi

D120

XEQ -SCOL-3:11:30 AM 01/01/00 TITLE: RUN LFD ******************* AASHTO HSD? 0 \$"no" =>(.t.b. 0.0000 RUN F-Y KSI 36.0000 RUN KL-X-RUN 384.0000 KL-Y" 96.0000 RUN AREA RUN 5.8700 R-X 2.6600 RUN R-Y RUN 1.5000 Werning KL/R>120.0000 Fa=11.6739 KSI Pa=68.5260 K AREA XEQ D Softkey "D' KL-X-192.0000 RUN KL-Y" RUN 96.0000 Bypace to use AREA existing section RUN Fa=25.5869 KSI Pa=150.1952 K AREA

ALL DIO SHEELS S SOUVE

4/4

Program <u>SCOL</u> For <u>Steel Column Analysis</u> <u>286</u> bytes Page of <u>2</u>

X       Y       Z       T       L       X       Y       Z       T       L         01+LBL "SCOL"       02       6       55       8       55       8 $k 4/r$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ $\lambda_c = \frac{\pi r}{\pi r}$ <th></th>	
$\theta_2^{2-6}$ $\theta_3^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_5^{3-5}$ $\theta_6^{3-5}$ $\theta_5^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$ $\theta_6^{3-5}$	
$\theta_2^2 \ b$ $\theta_3^3 \ a_{15C}^*$ $\theta_4^2 \ xR(M^* - RA^*)$ $\theta_5^3 \ c_{17}^2 \ s_{17}^2$ $\theta_4^2 \ xR(M^* - RA^*)$ $\theta_5^2 \ c_{17}^2 \ s_{17}^2$ $\theta_6^2 \ c_{17}^2 \ s_{17}^2$ $\theta_{11}^2 \ c_{17}^2 \ s_{17}^2$ $\theta_7^2 \ ms_{17}^2 \ s_{17}^2 \ s_{17}^2$ $\theta_8^2 \ r_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2$ $\theta_8^2 \ r_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ s_{17}^2 \ $	1315
$03^{\circ}$ AISC* $56^{\circ}$ KL/R>* $57^{\circ}$ 9 $04^{\circ}$ XROM *AA* $57^{\circ}$ 9 $58^{\circ}$ / $4/q$ $2/q$ $06^{\circ}$ E       1 $69^{\circ}$ FS? 04 $2/q$ $2/q$ $06^{\circ}$ F NSD?* $66^{\circ}$ FC? 06 $60^{\circ}$ FC? 06 $2.25^{\circ}$ $09^{\circ}$ X=0? $61^{\circ}$ SIGN $1^{\circ}$ C $2.25^{\circ}$ $10^{\circ}$ SF 06 $63^{\circ}$ / $1/2_{-}$ $62^{\circ}$ 2 $1/2_{-}$ $10^{\circ}$ SF 06 $63^{\circ}$ / $1/2_{-}$ $64^{\circ}$ KC/Y $1/2_{-}$ $10^{\circ}$ SF 06 $63^{\circ}$ / $1/2_{-}$ $64^{\circ}$ KC/Y $1/2_{-}$ $10^{\circ}$ SF 06 $63^{\circ}$ / $1/2_{-}$ $64^{\circ}$ KC/Y $1/2_{-}$ $10^{\circ}$ SF 06 $63^{\circ}$ / $1/2_{-}$ $64^{\circ}$ KC/Y $1/2_{-}$ $12^{\circ}$ LBL D $66^{\circ}$ 120 / $10^{\circ}$ $1/2_{-}$ $1/2_{-}$ $12^{\circ}$ LBL D $66^{\circ}$ 120 / $10^{\circ}$ $1/2_{-}$ $1/2_{-}$ $1/2_{-}$ $13^{\circ}$ KL-X** $69^{\circ}$ RCL X $69^{\circ}$ RCL X $1/2_{-}$ $1/2_{-}$ $18^{\circ}$ STO 02       K d_{y} $72^{\circ}$ KY?? $73^{\circ}$ RVIEN $1/2_{-}$ $18^{\circ}$ STO 02       K d_{y} $73^{\circ}$ R	
$04 \ XRUM \ HH^{-}$ $37 \ 9$ $4/9$ $LRFD: C_c = 06$ $05 \ CF \ 06$ $58 \ / \ SP \ FS? \ 04$ $59 \ FS? \ 04$ $2.25 = 08$ $07 \ HSD?^{-}$ $60 \ FC? \ 06$ $1?$ $60 \ FC? \ 06$ $2.25 = 08$ $09 \ X=9?$ $62 \ 2$ $11 \ XROM \ FY^{-}$ $F_Y$ $64 \ X(Y) \ Kd/r$ $1/Z_c$ $10 \ SF \ 06$ $61 \ SIGH$ $1?$ $62 \ 2$ $11 \ XROM \ FY^{-}$ $F_Y$ $11 \ XROM \ FY^{-}$ $F_Y$ $64 \ X(Y) \ Kd/r$ $1/Z_c$ $1/Z_c$ $12 \ VL_c$ $66 \ E20 \ VL/r$ $1/Z_c$ $4/S \ Kd/r$ $1/Z_c$ $12 \ VL_c$ $66 \ E20 \ VL/r$ $1/Z_c$ $4/S \ Kd/r$ $1/Z_c$ $12 \ VL_c$ $66 \ E20 \ VL/r$ $1/Z_c$ $4/S \ Kd/r$ $1/Z_c$ $12 \ VL_c$ $66 \ E20 \ VL/r$ $1/Z_c$ $4/S \ Kd/r$ $4/S \ EP \ B_c$ $16 \ KL-Y^{-r-}$ $70 \ X(Y)$ $72 \ X(Y)$ $72 \ X(Y)$ $72 \ X(Y)$ $72 \ X(Y)$ $18 \ STO \ 02 \ Kd/r)$ $10 \ YL \ YL \ YL \ YL \ YL \ YL \ YL \ Y$	2.25 + 'E
05 CF 06       1       58 /       4./9       LRFD: C_c         06 E       1       59 FS? 04       60 FC? 06       2.25         08 PROMPT       69 X=0?       61 SIGH       1 ?       2.25         10 SF 06       63 /       1/2       1/2       1/2         11 XROM "FY"       Fy       64 X(X)Y       Kd/r       1/2         12 * LBL D       13 * KL-X**       65 FC? 04       61 28       1/2         13 * KL-X***       67 FS? 04       1/2       1/2       1/2         16 * KL-Y***       69 ARCL X       69 ARCL X       70 X(Y?       1/2         16 * KL-Y***       70 X(Y?       71 BEEP       71 BEEP       71 BEEP       1/2       1/2         19 * LBL 10       74 RDN       72 X(Y?       73 AVIEN       72 X(Y?       1/2       1/2         19 * LBL 10       74 RDN       77 X12       77 X12       1/2       1/2         22 * AREA*       77 X12       76 / 2       77 X12       1/2       1/2         22 * RREA*       77 X12       78 29 E3       E       1/2       1/2	
06       E       I $59$ $557$ $04$ $2.25$ $07$ $09$ $x=0?$ $61$ $51$ $61$ $51$ $61$ $51$ $62$ $2$ $2.25$ $61$ $51$ $61$ $51$ $61$ $51$ $61$ $51$ $61$ $51$ $61$ $51$ $61$ $51$ $61$ $51$ $61$ $51$ $61$ $51$ $61$ $51$ $61$ $51$ $61$ $51$ $61$ $51$ $61$ $51$ $61$ $51$ $61$ $51$ $51$ $61$ $51$ $61$ $51$ $51$ $61$ $51$ $51$ $61$ $51$ $61$ $51$ $51$ $61$ $51$ $51$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$ $61$	2.25+2E
87 *MSD?-       60 FC? 06       1       2.25 =         88 PROMPT       61 SIGN       1       1         99 X=0?       62 2       63 /       1/Z         10 SF 06       63 /       1/Z       1/Z         11 XR0M *FY*       Fy       64 X(X)Y       KU/r       1/Z         12•LBL D       65 FC? 04       66 120       1:it       AASHTO II         13 *KL-X**       66 120       1:it       69 RRCL X       AISC 14         14 PROMPT       KU,***       69 RRCL X       AISC 14         15 STO 01       KU,***       69 RRCL X       AISC 14         16 *KL-Y**       70 X(Y?       71 BEEP       73 AVIEN         18 STO 02       KU,*       73 AVIEN       77 RY12       1/Z         20 XR0M *L*       76 /       77 Y12       76 /       77 Y12         21 CF 22       76 /       77 Y12       77 Y12       77 Y12       1/Z         22 *REA*       78 29 E3       F       1/Z       1/Z       1/Z	•
08       PROMPT       61       SIGN       1       ?         09       X=0?       62       1	ま・こ
09 X=0?       62 2       1/Z         10 SF 06       63 /       1/Z         11 XR0M "FY"       Fy       64 X(>Y       Kd/r       1/Z         12+LBL D       65 FC? 04       66 120       11mit       AASHTO II         13 "KL-X""       66 120       11mit       AASHTO II         14 PROMPT       68 200       68 200       11mit       AISC 1.4         15 STO 01       #4,       69 RRCL X       69 RRCL X       AISC 1.4         16 "KL-Y"       70 X(Y?       71 BEEP       73 RVIEN       AISC 1.4         18 STO 02       K4,       72 X(Y?       73 RVIEN       74 RDN       V/Z         19+LBL 10       76 /       75 PI       Tr       76 /       X4/7"       VZ         20 XR0M "L"       76 /       77 Xt2       76 /       YZ       76 /       YZ         21 CF 22       76 /       77 Xt2       77 Xt2       77 Xt2       77 Xt2       77 Xt2       77 Xt2       78 29 E3       E       10 III III IIII IIII IIIIIIIIIIIIIIIIII	
10 SF 06       Fy       Fy       63 /       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17Z       17E       16	
11 XROM "FY"       Fy       64 X( $Y$ )       K $\ell/r$ 1/2         12*LBL D       65 FC? 04       66 120       11mit       AASHTO II         13 "KL-X""       67 FS? 04       68 200       11mit       AISC 1.4         14 PROMPT $K\ell_x$ 69 ARCL X       69 ARCL X       AISC 1.4         15 STO 01 $K\ell_y$ 71 BEEP       78 X(Y?       73 AVIEN         19*LBL 10       74 RDN $K\ell/r$ $V_z$ 73 AVIEN         20 XROM "L"       75 PI       T"       77 Xt2       T"         21 CF 22       76 /       77 Xt2       T"       F"         23 PROMPT       78 29 E3       E       64 X(Y)       F       Vz	
$12 \times LBL D$ $65 FC? \theta4$ $10 \text{ m}^{-1}t$ $AASHTO II$ $13 \times L-X^{-1}$ $4PROMPT$ $66 120$ $10 \text{ m}^{-1}t$ $AISL IA$ $14 PROMPT$ $55 TO \theta1$ $4P_x$ $68 2\theta\theta$ $10 \text{ m}^{-1}t$ $AISC IA$ $15 STO \theta1$ $4P_x$ $69 RCL X$ $69 RCL X$ $70 X(Y?)$ $71 BEEP$ $8.7 V?$ $73 RVIEN$ $19 \times LBL 10$ $74 RDN$ $72 X(Y?)$ $77 RVIEN$ $77 PI$ $77 Y^{-1}$ $20 XR0M \times L^{-1}$ $75 PI$ $77 Y^{-1}$ $77 Y^{-1}$ $77 Y^{-1}$ $77 Y^{-1}$ $21 CF 22$ $76 / PVIPT$ $78 29 E3$ $E$ $10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 +$	
12+LBL D       66 120       11mit       AASHTO II         13 *KL-X**       67 FS? 04       68 200       AISC. 1.4         14 PROMPT       68 200       69 ARCL X       AISC. 1.4         15 STO 01       # 2,       69 ARCL X       FD B.7         16 *KL-Y**       70 X(Y?)       71 BEEP       FD B.7         18 STO 02       K 2,       73 AVIEN       K0/r       1/2         19+LBL 10       74 RDN       Tr       Tr       Tr         20 XROM *L*       76 /       77 X12       Tr       1/2         21 CF 22       76 /       77 X12       Tr       1/2         22 *AREA*       78 29 E3       E       0       0	
13 *KL-X**       67 FS? 04       415C 1.4         14 PROMPT       68 200       69 ARCL X         15 STO 01       #2,       69 ARCL X         16 *KL-Y**       70 X(Y?       71 BEEP         17 PROMPT       71 BEEP       73 AVIEW         18 STO 02       #2,       73 AVIEW         19*LBL 10       74 RDN       77 Yz         20 XROM *L*       76 /       77 Xt2         21 CF 22       76 /       77 Xt2         23 PROMPT       78 29 E3       E	0.7.1
14 PROMPT $\mu \mathcal{L}_{x}$ 68 200       LKFD B.         15 STO 01 $\mu \mathcal{L}_{x}$ 69 ARCL X       69 ARCL X         16 "KL-Y""       70 X(Y?)       71 BEEP       72 X(Y?)         17 PROMPT       71 BEEP       73 AVIEN $\mu \mathcal{L}_{y}$ 19 * LBL 10       74 RDN $\mu \mathcal{L}_{y}$ 73 AVIEN         20 XROM "L"       75 PI       Tr       72         21 CF 22       76 / $\mu \mathcal{L}_{y}$ 78 29 E3       E	
15 STU 01 $r = x_x$ 69 ARCL X         16 *KL-Y***       70 X(Y?         17 PROMPT       71 BEEP         18 STO 02 $k l_y$ 19+LBL 10       74 RDN         20 XROM *L*       75 PI         21 CF 22       76 /         22 *AREA*       77 Xt2         23 PROMPT       78 29 E3	
17 PROMPT $k l_y$ 71 BEEP       72 X(Y?         18 STO 02 $k l_y$ 73 AVIEN       73 AVIEN         19+LBL 10       74 RDN $k l'/r$ 72         20 XROM "L"       75 PI $Tr$ 76 /         21 CF 22       76 / $Ttr$ 78 29 E3         23 PROMPT       78 29 E3       E       1	
18 STO 02 $K P_y$ 72 X(Y?         19+LBL 10       73 AVIEW         20 XROM "L"       75 PI         21 CF 22       76 /         22 "AREA"       77 Xt2         23 PROMPT       78 29 E3	
19+LBL 10     73 AVIEN       20 XROM "L"     74 RDN       21 CF 22     75 PI       22 "AREA"     76 /       23 PROMPT     78 29 E3	
19+LBL 10     73 AVIEN       20 XROM *L*     74 RDN       21 CF 22     75 PI       22 *AREA*     77 Xt2       23 PROMPT     78 29 E3	
20 XROM *L*     75 PI     Tr       21 CF 22     76 /     76 /       22 *AREA*     77 Xt2     Tr       23 PROMPT     78 29 E3     E	
21 CF 22 22 "AREA" 23 PROMPT 76 / 77 Xt2 78 29 E3 E	
22 "AREA" 23 PROMPT 77 X†2 78 29 E3 E	
23 PROMPT 78 29 E3 E	
25 GTO 09 80 RCL 06 Fy	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
27 •R-X- 82 STO Z	
28 PROMPT 83 * $\frac{ke/r^2}{C_2^2}$ $\frac{\pi^2 E/F_y}{\pi^2 E/F_y}$	
30 °R-Y" 85 E 1	
31 PROMPT 86 X(Y?	
32 STO 05 $\Gamma_y$ 88 X(> Z $\frac{1}{2} \frac{1}{2} $	
$\frac{1}{2} \frac{1}{2}	
35 RCL 05 Ty 91 STO [	
36 / 92 FS? 06 37 PCL 01 40	
51 KGE 61 73 GIU 11	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
40 X(1) 41 X()Y K0/r 97 2.12	
42 XEQ "SFa" $F_{a}$ $F_{e}$ 98 / $F_{e-sq}$ $\lambda_{c}^{2}$ · · 43 "Fa" 99 STO [	
44 XROH =KS=	
45 FC? 00 101 GTO 00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
49 "Pa=" 50 ARCL X [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [	
51 =+ K* 3()	
	)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ソ

Program <u>SCOL</u> For <u>385</u> bytes Page <u>2 of 2</u>

	X	Y	Z	T					そ		
110 8	8										
111 /											
112 .6						160 CF 22					
113 1/X	5/3					161 <b>-</b> PT ON CL-	P4	POB			
114 +	A15 F.S.	7 17	7.	$\lambda_c^2$		162 PROMPT					
115 FC? 04	1.2 1.3	642		10		163 FS? 22					
116 X<>Y	F.5.		$\lambda_c^2$	Xe		164 XROM "XY"	٥X	۵Y			
	1.0.		10	10		165 X<>Y	ď	X			
117 1/X	Ker?					166 R-P		Az			
118 R†	TH'E/F	F.5,				167 X<>Y	AZ	8			
110AL DI	* <i></i> / y					168 -AZ-					
119+LBL 01						169 FC? 22					
120 4						170 XROM "Pd"					
121 /	1.					171 STO 01	AZ				
122 SIGN	10002	Ι.									
123 LASTX	(K 0/0)2 47 2 E/Fy		F.5.			172+LBL 04					
124 -	1-05	F.S.				173 XROM "L"					
125 *						174 "PT"					
126 GTO 00	Fa					175 PRONPT	Pt				
		.2				176 XEQ 02		offect			
127+LBL 11	Fe	え					STA	oraci			
128 .877	.877					177 XROH -PY-	offset				
129 FC? 04		_				178 X<>Y	otter				1 47 /
130 SIGN	1 ?	Fe	72			179 RND	00				54/
131 *						180 CHS	offset	]			
132.85	ø					181 -05-					
133 *	Fe	1				182 XROM -V-					
134 FS? 19						183 GTO 04					
135 GTO 00											
136 X<> L	4.A5	$\lambda_c^2$				184+LBL 02					1
137 X()Y	141/07 74E/Fy	.45				185 RCL 00	POB				
138 FC? 04	14E/Fy					186 X<>Y	Pt	POB			F0B
139 GTO 01						187 XROM "XY"	۵X	٥Y			
140.658	.656	Ze	.45			188 X<>Y	Y	X			
141 X<>Y	22	.659	.45			189 R <del>-P</del>	1	A 2			
142 YfX	1	1.050	1.09			190 X<>Y	Az	d			
143 *	\$,158	P				191 RCL 01	EAZ				
143 4	14, 722	T				192 -	0				
	-					193 X<>Y		θ			
144+LBL 00	Fa					194 P-R	sta	Offset			
145 RCL [	Fe	_									
146 X(>Y	Fa	Fe				195+LBL 03					
147 RCL 06	Fy					196 ENTERT	Sta	Sta	Offe	H	
148 ST* Z						197 -STA=-			1		
149 *	Fa	Fe				198 E2	100	Sta	Sta	05	
150 RTN		-				199 /					
					1	200 INT	549	sta	05	os	
151+LBL "POB"			1			201 XROM "AX"	100	5.4			
152 SF 21					1	201 AKUN HA					
153 RDN						203 X() L	540				
154 FS?C 11						203 X\7 L 204 FRC	2.1 Pa	t l			
155 GTO IND T		·					100	1		1	
156 SF 14			1			205 E2	2	لد			
157 <b>POB</b>						206 *	L	T.	1		
158 PROMPT						207 ARCL X	sta	.u.		Н	
159 STO 00	POB	1	1			208 RDN	BTU	offert	OTTSE	4	
107 010 00		1				209 END					
							1	1	1	1	
TRZ											

#### STEEL BEAM-COLUMN ANALYSIS

xeq SBCOL (SIZE 032)

<u>Note:</u> SBCOL is not resident in ROM and must be keyed into main memory by the user. A listing follows. The program requires bytes ( registers) of memory in RAM.

#### SOFTKEYS

D New effective lengths

#### USER FLAGS

Flag 00	clear	Outputs allowable stress and maximum axial load
	set	Outputs only allowable axial load
Flag 02	clear set	Warning BEEP disabled Warning BEEP enabled
Flag 04	clear set	AASHTO AISC

#### INPUT SUMMARY

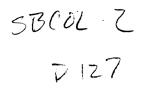
<u>Prompt</u> WSD?	<u>Input</u> Asking if the analysis is by working stress (ASD) methods. Answer "0" (no) to analyze by AASHTO LFD or AISC LRFD rules.	<u>Default</u> 1 (WSD)
F-Y KSI	Steel yield stress, ksi	36 ksi
AX P, K	Axial load on the member in kips	No default
М,'К	Moment on the member in footkips	No default
KL-X"	Major axis effective length, in.	No default
KL-Y"	Minor axis effective length, in.	KL-X
AREA	Trial member area, sq. inches. Bypass to re-use the previous section (e.g. after softkey D).	Previous Section
R-X	Major axis rad. of gyration, in.	No default
R-Y	Minor axis radius of gyration	R-X

- OUTPUT SUMMARY (Items in parenthesis are displayed only if fla 00 is clear)
- INTRX Interaction in the X or Y direction. Should be less than unity.

#### PROGRAM FLAGS

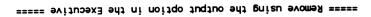
Flag 06	clear set	WSD (ASD) LFD (LRFD)
Flag 18	clear set	WSD (ASD) LFD (LRFD)

#### STORAGE REGISTER USE


<u>Register</u> 00	<u>Value</u> not used
01	KL-X (inches stored)
02	KL-Y (inches stored)
03	R-X
04	AREA, square inches
05	R-Y
06	F-Y KSI
07	
08	
09	
10	
11	
12	
13	
14	
15	
16	
17	

EBCOL FR -3

# D 125


===== Remove using the output option in the Executive =====

Sticl I DIZG



===== Remove using the output option in the Executive =====

SBCOL ex. DICE 3BCEZ ex DIZ9



5BCOL [131] D130

## SBCOL Litz

## D131

===== Semove using the output option in the Executive

SBCOZ List 3 DI32

## COMPOSITE BEAM ANALYSIS

- xeq COMP (SIZE 028)
- **SOFTKEYS** (USER mode ON)

В	New	beam	input	
-			<b>, , , ,</b>	•

- D New slab dimension input
- E New moment input

Note: if designing by AASHTO, <u>do not use these softkeys</u> during "N=3N" calculations; allow the program to return to a new beam prompt first.

## USER FLAGS

Flag 00	clear set	Full output Only live load capacity, or sums of stresses on flanges
Flag 02	clear set	Warning BEEP disabled Warning BEEP enabled
Flag 04	clear set	AASHTO AISC/ACI

## INPUT SUMMARY

<u>Prompt</u> WSD?	<u>Input</u> Asking if designing by working stress or load factor design. Respond 1 (yes) for WSD, 0 (no) for LFD/LRFD.	<u>Default</u> 1 (WSD)
PLAST? (LFD/LRFD only)	Asking if section is compact enough to be analyzed by plastic rather than elastic methods. Respond 1 for "yes", 0 for "no." Elastic section properties will still be computed but capacity will be based on plastic properties	0 (no) s.
N	Modular ratio, E _{st} /E _{conc}	8
Fc'KSI	Ultimate concrete cylinder strength in kips per square inch	4.0 ksi
F-Y KSI	Steel yield stress, for shear and plastic calculations	36 ksi
Fb KSI (Elastic analysis only)	Allowable steel bending stress. If by LFD, will be near or equal to yield stress.	^F у

<u>Prompt</u> (STUD D")	<u>Input</u> Shear stud diameter in inches. Bypass to input capacity directly.	<u>Default</u> CAP prompt
(STUD CAP, K)	Shear capacity of one shear stud from AISC table 1.11.4, or as calculated by the user for special connectors (e.g. channels) or for reduced capacity due to formed met deck ribs	
SL TH"	Slab thickness, inches	No default
BM SPA'	Beam spacing in feet	No default
SL Be="	Displays calculated effective slab width. If OK, press R/S to continue. If not, key in the correct width and press R/S. Does <u>not</u> include slab thickness ( $B_t$ + 16 x Th) for AISC ASD.	Displayed
Н"	Haunch or stool between the <u>top</u> of the top flange and bottom of slab, or the rib dimension for transverse metal deck, in inches	Zero
NCDL M, 'K	Non-composite dead load moment (load applied before slab has achieved its strength), in foot-ki	Zero ps
CDL M,'K	Composite dead load moment (e.g. from guard rail, future wearing surface, sidewalks, etc.)	Zero
LL M,'K	Live load moment in foot-kips. Bypass (or enter zero) to find remaining live load capacity.	Zero
WEB D"	Web depth (inside of flanges) in inches. <u>Bypass for rolled</u> <u>beam input.</u>	Zero
If inputting a buil	t-up plate member:	
WEB TH"	Web thickness in inches.	No default
COM FL W"	Compression flange width, inches. Bypass for rolled beam input.	Zero

TH"Compression flange thickness, in.No defaultTENS FL W"Tension flange width in inchesNo defaultTH"Tension flange thickness, inchesNo default



## If inputting a rolled beam:

BM A SQ"	Beam cross-sectional area in square inches	No default
BM D"	Beam depth in inches (out to out)	No default
Υ"	Neutral axis position, from the top flange. Used only for cover- plated or rivetted beams; bypass for symmetrical (rolled) beams.	(BM D")/2
I	Moment of inertia of the beam, in inches ⁴	No default
All beams:		
#STUDS	Number of shear studs to be	#STUDS REQD

- #STUDS Number of shear study to be #STUDS REQU used between points of inflection. For a simple span, this is the number of study on the entire beam. If input is greater than #STUDS REQD or prompt is bypassed, full composite action is assumed.
- <u>OUTPUT SUMMARY</u> (Items in parenthesis are displayed only if flag 00 is clear)
- (AASHTO or AISC) Displays code being followed. If not right, change flag 04 and start again. If OK, press R/S to continue.
- SL Be Effective slab width in inches. If OK, press R/S to continue. If not, key in the correct width and press R/S.
- (HOR V) Horizontal shear, in kips (H/2 for AISC ASD)
- (#STUDS REQD) The minimum number of shear studs required to resist the HOR V, taken between points of inflection. See softkey note for HOR V.
- If a built-up beam: (if WEB D" prompt was answered)
- (I) Moment of inertia of the steel beam
- (Y) Neutral axis position of the bare beam, in inches, measured from the compression flange
   (COM S) Section modulus of the compression flange, in inches³
- (TEN S)Section modulus of the tension flange(AREA)Area of the bare beam, in square inches(BM Z)The plastic section modulus of the bare<br/>beam (only if by LFD/LRFD)

3

(a)	The effective slab depth used in calculating section properties, as limited by the number of shear studs used.
(Z)	The composite plastic section modulus, in inches ³ , if plastic analysis was chosen
PLAST M	The full plastic moment capacity of the composite beam, multiplied by O = 0.85 if by AISC LRFD (if plastic analysis was chosen)
LL M	The live load moment capacity of the com- posite beam (if plastic analysis was chosen)
(N)	The modular ratio (n) used to calculate the (elastic) section properties which follow
(I-COMP)	Composite moment of inertia, inches ⁴
(Y)	Neutral axis position, measured from the top of the slab, in inches
(Sc)	Section modulus of the concrete. Do <u>not</u> divide by N to use. See the examples.
(TF S)	Section modulus of the top (compression) flange, in inches ³
(BF S)	Section modulus of the bottom (tension) flange
(EFF S) (AISC ASD only)	The effective section modulus of the bottom flange, reduced due to insufficient shear connectors, by AISC ASD equation I2-1.
(Q) (AASHTO only)	Statical moment of the slab about the neutral axis, in cubic inches

Note: if designing by AASHTO, the above elastic section properties are repeated for a modular ratio of 3N per AASHTO 10.38.1.4. The values for Q, HOR V, and MIN # STUDS are not repeated.

# If a live load moment was input:

(B FL)	The stresses which follow are on the bottom
(T FL)	flange (or coverplate, if there is one), top
(SLAB)	flange, or slab, respectively.



(NCDL STRS)Stress due to non-composite dead load, compo-<br/>site dead load, live load, and the summation<br/>of these stresses, respectively, in ksi, on<br/>the part indicated (top or bottom flange or<br/>slab). $\Sigma$  SL STRSStress

# If a live load moment of zero was input:

WS or LF LL M The remaining allowable live load moment, by working stress or load factor design methods, governed by stresses on the bottom flange, top flange, or slab; in foot-kips. For example, WS LL M=107.95 'K means the remaining moment, calculated by working stress design, is 107.95 foot-kips. This will not be displayed if a plastic section is being used under LFD/LRFD.

## PROGRAM FLAGS

Flag 05	clear set	Have a live load moment Solve for live load moment capacity
Flag 06	clear set	WSD/ASD LFD/LRFD
Flag 07	clear set	Modular ratio equals N Modular ratio equals 3N (AASHTO only)
Flag 08	clear set	Elastic analysis only Plastic analysis permitted <u>by user</u> (PLG)
Flag 09	clear set	Composite Non-composite (from PLG)
Flag 10	clear set	AISC LRFD, Or AASHTO AISC ASD
Flag 11	set	Subroutine return
Flag 18	clear set	Elastic analysis only Plastic analysis permitted <u>by code</u> (PLG)

STORAGE REGISTER USE				
<u>Register</u> 00	<u>COMP</u> Beam Depth	<u>BM</u> Beam depth		
01	Beam Area; Allowable LL Moment	Beam area		
02	Beam I (moment of inertia)	Beam I		
03	Compr. Flange Width; Beam S _{bf} ; "TF" or "BF"	Comp. Fl. W.		

and some plastic sections) 09 Tens. Fl. Width; Composite Y Tens. Fl. W (compos. neutral axis position)	<u>Register</u> 04	<u>COMP</u> Compr. Flange Th.; S _{tf} (N = N)	<u>BM</u> Comp. Fl. Th.
y07Web Depth (built-up beams)Web Depth08Web Thickness (built-up beamsWeb Thicknes09Tens. Fl. Width; Composite YTens. Fl. W10Tens. Fl. Th.; Slab Compr. Force; Tens. Fl. Th11(Slab + Haunch + Beam Y); Sbottom flange (N = 3N)Beam Stf12Effective slab thickness (reduced for inadequate number of shear connectors)Beam Sbf13Slab thicknessBeam Sbf14Effective slab area/N (reduced for inadequate number of shear connectors)Beam Sbf15H + S (Haunch or stool + Slab thickness)16Fc' x (.40, .45, or .85)17NCDL Moment (inch-kips stored)18Fb (allowable bending stress) or OFy, ksi19Stop flange (N = 3N)20N (modular ratio, $E_{st}/E_{conc}$ )21CDL Moment (inch-kips stored)22Number of studs required/provided23Sbottom flange (N = N)24.85 Fc'25One half of shear stud capacity, kips26Live load moment (inch-kips stored)	05	Y (neutral axis) of bare beam	Y
08Web Thickness (built-up beams and some plastic sections)Web Thickness and some plastic sections)09Tens. Fl. Width; Composite Y (compos. neutral axis position)Tens. Fl. W (compos. neutral axis position)10Tens. Fl. Th.; Slab Compr. Force; Tens. Fl. Th Scone (N = N)11(Slab + Haunch + Beam Y); Sbottom flange (N = 3N)12Effective slab thickness (reduced for inadequate number of shear connectors)13Slab thickness14Effective slab area/N (reduced for .adequate number of shear connectors)15H + S (Haunch or stool + Slab thickness)16Fc' x (.40, .45, or .85)17NCDL Moment (inch-kips stored)18Fb (allowable bending stress) or OFy, ksi19Stop flange (N = 3N)20N (modular ratio, $E_{st}/E_{conc}$ )21CDL Moment (inch-kips stored)22Number of studs required/provided23Sbottom flange (N = N)24.85 Fc'25One half of shear stud capacity, kips26Live load moment (inch-kips stored)	06	Fy	
and some plastic sections)09Tens. Fl. Width; Composite Y (compos. neutral axis position)10Tens. Fl. Th.; Slab Compr. Force; Tens. Fl. Th $S_{conc}$ (N = N)11(Slab + Haunch + Beam Y); Sbottom flange (N = 3N)12Effective slab thickness (reduced for inadequate number of shear connectors)13Slab thickness H + S (Haunch or stool + Slab thickness)14Effective slab area/N Fc' x (.40, .45, or .85)15H + S (Haunch or stool + Slab thickness)16Fc' x (.40, .45, or .85)17NCDL Moment (inch-kips stored)18Fb (allowable bending stress) or OFy, ksi19Stop flange (N = 3N)20N (modular ratio, $E_{st}/E_{conc}$ )21CDL Moment (inch-kips stored)23Sbottom flange (N = N)24.85 Fc'25One half of shear stud capacity, kips26Live load moment (inch-kips stored)	07	Web Depth (built-up beams)	Web Depth
(compos. neutral axis position)10Tens. Fl. Th.; Slab Compr. Force; Tens. Fl. Th $S_{conc}$ (N = N)11(Slab + Haunch + Beam Y); Beam Stf Sbottom flange (N = 3N)12Effective slab thickness Beam Z (reduced for inadequate number of shear connectors)13Slab thickness14Effective slab area/N Stop flange (N = 3N)15H + S (Haunch or stool + Slab thickness)16Fc' x (.40, .45, or .85)17NCDL Moment (inch-kips stored)18Fb (allowable bending stress) or OFy, ksi19Stop flange (N = 3N)20N (modular ratio, $E_{st}/E_{conc}$ )21CDL Moment (inch-kips stored)22Number of studs required/provided23Sbottom flange (N = N)24.85 Fc'25One half of shear stud capacity, kips26Live load moment (inch-kips stored)	08		Web Thickness
$S_{conc} (N = N)$ 11 (Slab + Haunch + Beam Y); Beam S _{tf} Sbottom flange (N = 3N) 12 Effective slab thickness Beam Z (reduced for inadequate number of shear connectors) 13 Slab thickness 14 Effective slab area/N Beam S _{bf} 15 H + S (Haunch or stool + Slab thickness) 16 Fc' x (.40, .45, or .85) 17 NCDL Moment (inch-kips stored) 18 Fb (allowable bending stress) or OF _y , ksi 19 S _{top} flange (N = 3N) 20 N (modular ratio, $E_{st}/E_{conc}$ ) 21 CDL Moment (inch-kips stored) 22 Number of studs required/provided 23 S _{bottom} flange (N = N) 24 .85 Fc' 25 One half of shear stud capacity, kips 26 Live load moment (inch-kips stored)	09		Tens. Fl. W.
Sbottom flange (N = 3N)If12Effective slab thickness (reduced for inadequate number of shear connectors)Beam Z (reduced for inadequate number of shear connectors)13Slab thickness14Effective slab area/N Beam S _{bf} 15H + S (Haunch or stool + Slab thickness)16Fc' x (.40, .45, or .85)17NCDL Moment (inch-kips stored)18Fb (allowable bending stress) or OF _y , ksi19Stop flange (N = 3N)20N (modular ratio, $E_{st}/E_{conc}$ )21CDL Moment (inch-kips stored)22Number of studs required/provided23Sbottom flange (N = N)24.85 Fc'25One half of shear stud capacity, kips26Live load moment (inch-kips stored)	10	Tens. Fl. Th.; Slab Compr. Force; S _{conc} (N = N)	Tens. Fl. Th.
(reduced for inadequate number of shear connectors)13Slab thickness14Effective slab area/NBeam $S_{bf}$ 15H + S (Haunch or stool + Slab thickness)16Fc' x (.40, .45, or .85)17NCDL Moment (inch-kips stored)18Fb (allowable bending stress) or OF _y , ksi19 $S_{top}$ flange (N = 3N)20N (modular ratio, $E_{st}/E_{conc}$ )21CDL Moment (inch-kips stored)22Number of studs required/provided23 $S_{bottom}$ flange (N = N)24.85 Fc'25One half of shear stud capacity, kips26Live load moment (inch-kips stored)	11		Beam S _{tf}
14Effective slab area/NBeam $S_{bf}$ 15H + S (Haunch or stool + Slab thickness)16Fc' x (.40, .45, or .85)17NCDL Moment (inch-kips stored)18Fb (allowable bending stress) or OFy, ksi19 $S_{top}$ flange (N = 3N)20N (modular ratio, $E_{st}/E_{conc}$ )21CDL Moment (inch-kips stored)22Number of studs required/provided23 $S_{bottom}$ flange (N = N)24.85 Fc'25One half of shear stud capacity, kips26Live load moment (inch-kips stored)	12	(reduced for inadequate number	Beam Z
15 $H + S$ (Haunch or stool + Slab thickness)16 $Fc' x (.40, .45, or .85)$ 17NCDL Moment (inch-kips stored)18 $Fb$ (allowable bending stress) or $OF_y$ , ksi19 $S_{top}$ flange (N = 3N)20N (modular ratio, $E_{st}/E_{conc}$ )21CDL Moment (inch-kips stored)22Number of studs required/provided23 $S_{bottom flange}$ (N = N)24.85 Fc'25One half of shear stud capacity, kips26Live load moment (inch-kips stored)	13	Slab thickness	
16Fc' x (.40, .45, or .85)17NCDL Moment (inch-kips stored)18Fb (allowable bending stress) or $OF_y$ , ksi19Stop flange (N = 3N)20N (modular ratio, $E_{st}/E_{conc}$ )21CDL Moment (inch-kips stored)22Number of studs required/provided23Sbottom flange (N = N)24.85 Fc'25One half of shear stud capacity, kips26Live load moment (inch-kips stored)	14	Effective slab area/N	Beam S _{bf}
<ul> <li>NCDL Moment (inch-kips stored)</li> <li>Fb (allowable bending stress) or OF_y, ksi</li> <li>Stop flange (N = 3N)</li> <li>N (modular ratio, E_{st}/E_{conc})</li> <li>CDL Moment (inch-kips stored)</li> <li>Number of studs required/provided</li> <li>Sbottom flange (N = N)</li> <li>.85 Fc'</li> <li>One half of shear stud capacity, kips</li> <li>Live load moment (inch-kips stored)</li> </ul>			
18Fb (allowable bending stress) or $OF_y$ , ksi19 $S_{top}$ flange (N = 3N)20N (modular ratio, $E_{st}/E_{conc}$ )21CDL Moment (inch-kips stored)22Number of studs required/provided23 $S_{bottom}$ flange (N = N)24.85 Fc'25One half of shear stud capacity, kips26Live load moment (inch-kips stored)	15	H + S (Haunch or stool + Slab thi	ckness)
19 $S_{top flange} (N = 3N)$ 20N (modular ratio, $E_{st}/E_{conc}$ )21CDL Moment (inch-kips stored)22Number of studs required/provided23 $S_{bottom flange} (N = N)$ 24.85 Fc'25One half of shear stud capacity, kips26Live load moment (inch-kips stored)			ckness)
<ul> <li>N (modular ratio, E_{st}/E_{conc})</li> <li>CDL Moment (inch-kips stored)</li> <li>Number of studs required/provided</li> <li>S_{bottom flange} (N = N)</li> <li>.85 Fc'</li> <li>One half of shear stud capacity, kips</li> <li>Live load moment (inch-kips stored)</li> </ul>	16	Fc' x (.40, .45, or .85)	ckness)
21CDL Moment (inch-kips stored)22Number of studs required/provided23Sbottom flange (N = N)24.85 Fc'25One half of shear stud capacity, kips26Live load moment (inch-kips stored)	16 17	Fc' x (.40, .45, or .85) NCDL Moment (inch-kips stored)	
<ul> <li>Number of studs required/provided</li> <li>Sbottom flange (N = N)</li> <li>.85 Fc'</li> <li>One half of shear stud capacity, kips</li> <li>Live load moment (inch-kips stored)</li> </ul>	16 17 18	Fc' x (.40, .45, or .85) NCDL Moment (inch-kips stored) Fb (allowable bending stress) or O	
<ul> <li>Sbottom flange (N = N)</li> <li>.85 Fc'</li> <li>One half of shear stud capacity, kips</li> <li>Live load moment (inch-kips stored)</li> </ul>	16 17 18 19	<pre>Fc' x (.40, .45, or .85) NCDL Moment (inch-kips stored) Fb (allowable bending stress) or O Stop flange (N = 3N)</pre>	
24.85 Fc'25One half of shear stud capacity, kips26Live load moment (inch-kips stored)	16 17 18 19 20	Fc' x (.40, .45, or .85) NCDL Moment (inch-kips stored) Fb (allowable bending stress) or O $S_{top}$ flange (N = 3N) N (modular ratio, $E_{st}/E_{conc}$ )	
<ul> <li>One half of shear stud capacity, kips</li> <li>Live load moment (inch-kips stored)</li> </ul>	16 17 18 19 20 21	Fc' x (.40, .45, or .85) NCDL Moment (inch-kips stored) Fb (allowable bending stress) or O $S_{top}$ flange (N = 3N) N (modular ratio, $E_{st}/E_{conc}$ ) CDL Moment (inch-kips stored)	
26 Live load moment (inch-kips stored)	16 17 18 19 20 21 22	Fc' x (.40, .45, or .85) NCDL Moment (inch-kips stored) Fb (allowable bending stress) or O Stop flange (N = 3N) N (modular ratio, $E_{st}/E_{conc}$ ) CDL Moment (inch-kips stored) Number of studs required/provided	
	16 17 18 19 20 21 22 23	Fc' x (.40, .45, or .85) NCDL Moment (inch-kips stored) Fb (allowable bending stress) or O S _{top} flange (N = 3N) N (modular ratio, $E_{st}/E_{conc}$ ) CDL Moment (inch-kips stored) Number of studs required/provided S _{bottom} flange (N = N)	
27 Slab Area	16 17 18 19 20 21 22 23 24	Fc' x (.40, .45, or .85) NCDL Moment (inch-kips stored) Fb (allowable bending stress) or O Stop flange (N = 3N) N (modular ratio, $E_{st}/E_{conc}$ ) CDL Moment (inch-kips stored) Number of studs required/provided Sbottom flange (N = N) .85 Fc'	PF _y , ksi
	16 17 18 19 20 21 22 23 24 25	Fc' x (.40, .45, or .85) NCDL Moment (inch-kips stored) Fb (allowable bending stress) or O Stop flange (N = 3N) N (modular ratio, $E_{st}/E_{conc}$ ) CDL Moment (inch-kips stored) Number of studs required/provided Sbottom flange (N = N) .85 Fc' One half of shear stud capacity, k	F _y , ksi :ips

(0134)

#### COMPOSITE BEAM ANALYSIS

Program COMP analyzes composite concrete slab/steel beam sections. It will follow AISC (ASD or LRFD) or AASHTO (WSD or LFD) depending on the status of flag 04, and the user's response to the "WSD?" prompt. It will accept rolled beams with known section properties or built-up sections. If a built-up (welded plate) beam is used, COMP calculates and displays the section properties of the steel beam before calculating the composite properties. Only elastic section properties are calculated for WSD designs; however, under LFD/LRFD designs, the program will calculate plastic properties if desired.

COMP does not check compactness, slenderness, or strength (allowable stress) criteria; these must be checked or calculated by hand or by some other means (for instance, program PLG in this package). For plastic design, COMP is thus more useful for rolled beams, which are usually compact, while PLG is usually used for welded beams.

Code references are given throughout this documentation. For portions dealing with AISC ASD, the specification number given is for the Ninth Edition (green book), with the Eighth Edition (red book) specification in parenthesis following. This should help ease the transition to the new format followed in the Ninth Edition.

## BEAM CAPACITY

COMP can output beam strength in two different ways. If the live load moment prompt LL M 'K is bypassed (or answered zero) the program calculates the composite section properties, subtracts the dead load stresses from the allowable stresses (yield stress for compact beams), and then finds the allowable live load moment which can be applied. Method of calculation of dead load stresses is addressed in the following section.

If the actual live load moment is input, on the other hand, the program calculates the stresses due to NCDL (non-composite dead load), CDL (composite dead load) and LL (live load), and checks the sum of these (on the bottom flange, top flange, and slab--see following paragraphs) against the allowable stress input. The former mode is useful for rating of existing structures and preliminary rough-out work; the latter mode is intended for detailed final design of beams.

### Elastic Design: AASHTO/AISC

AASHTO and AISC treat live load capacity somewhat differently under WSD rules. For design by AISC ASD, the program considers the entire composite section under the combination of dead and live loads, and CDL stress is figured on the same section as the LL stress. The output stresses for NCDL are those on the bare beam, but the stresses for combined dead and live load (BF and TF STRS) are calculated with the full composite section acting. Thus, the individual stresses on the beam due to NCDL, CDL, and LL will not add up to the summation given. Although this seems rather awkward at first, it is useful because it gives both the NCDL stress on the bare beam (to help the designer check the beam adequacy under NCDL) and the stress produced by all loads, acting on the composite section, for checking the stresses under full load (or checking the remaining live load capacity). COMP does not check Eighth Edition AISC equation 1.11-2; if the ratio of live to dead load is too high, the results will be incorrect and unconservative. The user must verify that this ratio is within the limits prescribed. The Ninth Edition ASD specification has dropped this rule and requires only that the superimposed stresses be less than .9 F... The user must also check this, by adding up the output stresses.

For design by AASHTO, the procedure is a little more logical, if somewhat more involved. NCDL moment is applied to the bare beam. CDL moment is applied to a composite section figured with a modular ratio of 3N for the top and bottom flanges, and N for the slab (per AASHTO 10.38.1.4, to account for creep). The live load moment is applied to, or figured from, the composite section calculated using a modular ratio of N. The sum of the stresses on any part (top flange, bottom flange, or slab) is calculated directly by adding these. Thus, design by AASHTO involves calculating two sets of composite properties; for AISC, only one set is needed. For an AASHTO design, the further refinement of considering two different <u>slabs</u>, one including a topping thickness (for live load, N = N) and one not including this extra thickness (for CDL, N = 3N), was <u>not</u> instru-This was left out both for simplicity, and bemented. cause it's usually slightly conservative to consider only the final slab dimensions. Since contractors are usually left the option of constructing a slab as a single pour, it would be slightly unconservative to consider two different sets of slab dimensions.

For LFD/LRFD, the program also uses elastic properties if the PLAST? prompt was answered 0 (no) or bypassed (i.e. for non-compact beams). The same methodology is used as described above with one exception: under AISC LRFD rules, the summation of stresses is figured from the superposition of elastic stresses. That is, the dead load (NCDL) is taken on the bare beam instead of being combined with live load and composite dead load on the composite section. An undercapacity (phi) factor of 0.90 is applied to the resulting LL capacity if the LL M input prompt was bypassed. (Actually, the factor of 0.90 is applied by the program only to the allowable <u>steel</u> stress; if the concrete strength governs, the results will be incorrect by this amount. This happens only rarely.)

For AASHTO LFD analysis for non-compact beams, the methodology described above is followed exactly; the strength is taken as the allowable steel stress (usually close to yield) or the concrete strength (0.85  $f_c$ ') times the appropriate elastic section modulus. No reduction (phi) factor is applied.

### Plastic Design: AASHTO/AISC

If the "PLAST?" prompt is answered 1 (yes), COMP figures the strength based on a fully plastic stress distribution over the composite section. All loads are taken on this composite section. AISC LRFD uses an undercapacity (phi) factor of 0.85; AASHTO uses 1.0. As mentioned, COMP leaves it up to the user to determine that the section meets all compactness requirements. (When portions of COMP are called as subroutines by program PLG, the calling program determines this.)

For built-up beams, the program also calculates the plastic section modulus, BM Z, of the bare beam, for possible use by the designer. However, program COMP makes no use of this value (again, PLG does). Also, the program assumes that the plastic neutral axis falls within the web. For very unbalanced beams where one flange contains over half the area, this assumption is invalid, and COMP will not output a BM Z value.

For those following the examples in the AISC LRFD manual, the refinement of using the beam's fillet area (e.g. as shown on page 4-4) is not included in this program. However, for the condition of the plastic neutral axis (P.N.A.) falling within the web or flange of a rolled beam, the program will prompt for the flange and web dimensions in order to calculate the P.N.A. position. For built-up plate beams, this is not done since the program already has these dimensions.

#### INPUT SEQUENCE

The program is written to check several different beams in succession with a given slab configuration. To enter a built-up (welded) beam, answer the web and flange dimension prompts. To enter a rolled beam, bypass the WEB D" prompt (or enter zero) and the program will prompt for the tabulated elastic section properties. COMP is not able to directly figure the properties of riveted beams built up with angle (L) shapes in the flanges, or rolled beams with coverplates; for these beams, the designer must calculate the section properties by hand and enter them as for a rolled beam. (The program's neutral axis prompt, Y", is expressly for this purpose. For symmetric rolled beams, it can be bypassed.)

COMP prompts for slab thickness, span length, and beam spacing. Then it calculates the effective slab width (for an <u>interior</u> beam) from these parameters and displays it, using the minimum of:

> Span/4 Beam spacing 12 x Slab thickness (AASHTO only)

Note that the Eighth Edition AISC ASD criteria (Flange width plus 16 x Slab thickness) is not used, at the recommendation of LRFD Commentary section I3.1 and the Ninth Edition ASD.

If the effective width is correct, press R/S to continue; if not (for instance, for an edge beam) key in the correct value and press R/S. For a given beam, if the calculated neutral axis is below the bottom of the slab, the entire slab is considered effective in compression; if the neutral axis is within the slab, only that portion above the axis is considered. The number of shear studs used also can affect the neutral axis position; see the following paragraphs.

If the neutral axis is above the top flange of the beam (i.e. in the slab or haunch), the composite section modulus of the top flange calculates out as a negative number, and the stress on the top flange due to live load is subtracted from the dead load stress. Slab reinforcing is not taken into account, nor is any concrete in the haunch between the beam and slab considered (although the separation between beam and slab due to the haunch is taken into account). Thus, transverse formed metal deck may be accomodated by entering the height of the ribs for the H" prompt. The slab thickness to be input would then be that amount above the ribs. Formed metal deck with the ribs running <u>along</u> the beam is a little more difficult. The simplest procedure is probably to ignore the concrete in the ribs and treat them as a haunch, the same as for transverse ribs. This is conservative.

If the beam is slightly embedded in the slab (i.e. a negative haunch), the "negative area" of concrete in the haunch is still neglected. That is, the program

considers there to be concrete and a beam flange in the same place. This, of course, is slightly unconservative if the neutral axis falls beneath the top of the top flange. For embedded beams with the N.A. in the beam, the user should reduce the input slab thickness to obtain zero embedment.

#### SHEAR CONNECTORS

COMP also calculates shear connector requirements using ultimate strengths of the slab and beam. If designing by AASHTO or AISC LRFD, the stud diameter is input, and the capacity and required number of studs is calculated by AASHTO equation 10-66 or LRFD equation 15-1. Research has shown that concrete strengths above 4000 psi do not increase connector strength. However, the program does not take this into account. If using concrete stronger than 4000 psi, see the next paragraph.

If designing by AISC ASD, the shear connector capacity is input directly from Table I4.1 (1.11.4) at the STUD CAP (connector capacity) prompt. When designing by LRFD or AASHTO, if using something other than standard shear studs at full strength (e.g. channel connectors, or studs at reduced strength due to formed metal deck ribs); or if the input slab concrete strength is greater than 4000 psi; bypass the STUD D" (diameter) prompt in order to get the STUD CAP prompt and key in a strength value directly. (That is, the program does not calculate a reduction per LRFD I3-1.)

The program does not check AASHTO fatigue requirements; however, the statical inertia Q is displayed if flag 04 is clear. For partial connection, this value of Q is still figured on the full slab area if the slab governs. If flag 00 is set, this shear output is suppressed.

The requirements of AISC ASD equation I4-5 (1.11-7) regarding moments due to concentrated loads are not checked, nor are those of AASHTO 10.38.5.1.3 regarding negative moment regions. The designer must check vertical shear on the steel beam web; COMP does not do this.

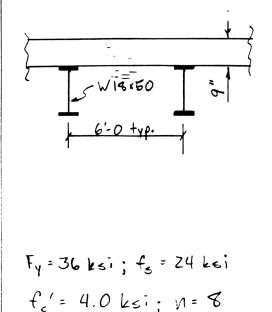
Partial shear connection is handled differently depending on which code is being followed. If designing by AISC LRFD or AASHTO, the program simply reduces the effective slab area by the ratio of actual to required shear connectors. This is done by reducing the effective thickness of the slab rather than the width; the haunch dimension is increased accordingly. The difference between the two methods is small.

If designing by AISC ASD, formula I4-4 (1.11-1) is

used, interpolating the strength between that of the fully composite section and the bare beam. However, the slab used to figure the "fully composite section" is first reduced as explained in the preceding paragraph. This minor error will cause a small discrepancy when checking hand calculations. The error is conservative and typically is very small, on the order of two percent.

#### ALLOWABLE STRESSES

As with the other structural programs in this module, the concrete strength prompted for, Fc'KSI, is the ultimate strength, whether designing by WSD or LFD. The steel stress Fb KSI is the working stress to be used; for load factor designs it will be close to or equal to the yield stress. F-Y KSI (yield) is used only for the shear connector design and plastic design.


#### OTHER CONSIDERATIONS

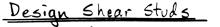
Shored construction can be analyzed by simply considering the dead loads (NCDL and CDL) as part of the live load, and inputting them as zero.

COMP does not check span/depth ratios per AASHTO 10.5; the designer should do this. It also will not handle negative-moment areas (i.e. a beam acting compositely with slab reinforcing).

When using program PLG to analyze a welded composite beam, the flange width to thickness requirement is assumed to be met. The AASHTO requirements for  $b/2t_f$  related to dead load stress (10.34.2.1.5 and 10.50c) are not checked in this situation by either program COMP or PLG and should be reviewed by the designer. AASHTO 10.50(d), related to dead load moment, also must be checked by the designer. Program PLG calculates the constant  $R_b$  for this purpose.

COMP does not check vertical shear on the web. Program PLG may be used for this. Neither program checks AASHTO 10.50(e), concerning tension field action in the web prior to hardening of the slab.




Solve for Live Load capacity by AISC, Span = Z6:-0.

W 18 * 50 : d = 17.99" A = 14.70" I = 800 in⁴ Effective slob width :

DL : 
$$6' \times .75' \times .15 = .675 \ k/r$$
  
Beani  
.725  
DL M. .725  $k/r \times \frac{(26')^2}{5} = 61.26''k$ 

Composite Section Properties Slab  $72' \times 9''_{n=6} = \frac{A}{81.00} \frac{d}{4.5''} \frac{Ad}{364.5}$ Beom  $9'' + 17.9'_{2} \frac{14.7}{95.7} \frac{17.995}{6.57'} \frac{264.53}{629.03}$ Trial N.A. = 6.57" - 9" => Cranbed section  $\frac{72}{124} * Y \cdot (\frac{1}{2}Y) = 14.7a^{2} \cdot (\frac{17.4}{2} + 9^{2} - Y)$  $4.5Y^2 = -14.7Y + 264.53$  $Y = \frac{-14.7 + \sqrt{14.7^2 - 4 + 4.5}}{7 + 4.5}$ - 6.2054" Re-Calc. Composite Section Properties At t I, A Slab 55.85 3.10 537,73 179.25 Beam 14.7 11.79" 2043.10 800.0 2580.83 979.75 3560.08 in4  $S_{\text{sleb}} = \frac{3560.08}{6.2058} * (n=8) = 4589.38$  $S_{1.FL} = \frac{3560.08}{6.2058 - 9''} = -12.74.08 \text{ in}^3$ (minus sign indicates top fl. in tension)  $S_{\text{B-FL}} = \frac{3560.06}{17.99" + 9" - 6.2056"} = 171.29 \text{ in}^3$ 

(7146



Slab:  $(.45 \cdot 4 \text{ ksi}) \frac{72''}{4} \cdot 9''/2 = 137.70 \text{ k}$ Beau:  $14.7 \text{ m}'' \times 36 \text{ ksi}/2 = 264.60 \text{ k} < \frac{6 \text{ coverns}}{4}$ Use  $3/4'' \phi$  studs; capacity = 13.3 k/stud (Table 1.11.4) Min. # studs = 19.89 each side of  $\pounds$ <u>USE TWO ROWS OF 20-34''  $\phi$  STUDS</u>

Check diameter : flange H. = .57" .57" x Z = 1.425" < 34" & <u>OK</u>

Check w/2 rows of 15 stude  

$$S_{eff} = 38.94 \text{ in}^3 + \sqrt{\frac{15}{19.89}} (171.29 - 38.94)$$
  
= 160.45 in^3

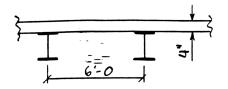
Live Load: 160.45 = 24koi/12 = 320.90 - 61.26 259.64"* XEQ -COMP-

RUN

8:55:58 AM	XEQ -CU 05/16/89
TITLE:	5
*********	*********
0100	

*******	********	KUN
AISC		
WSD?		
		RUN
N	8.0000	RUN
Fc'KSI	0.0000	KUN
	4.0000	RUN
STUD CAP,		<b>.</b>
F-Y KSI	13.3000	RUN
1 1 631	36.0000	RUN
Fb KSI		
	24.0000	RUN
SL TH-	•	
	9.0000	RUN
BM SPA		
SPAN	6.0000	RUN
JI HH	26.0000	RUN
SL Be=72.	0000-	
41-		RUN
H-	0.0000	RUN
		NOI
NCDL MJ K		
CDL N, K	61.2600	RUN
CUL DI K	0.0000	RUN
LL MJ K		
		RUN
**************************************	********	****
		RUN
BM A SQ-		
BM D-	14.7000	RUN
on y	17.9900	RUN
Y-		
		RUN
I	88.8888	RUN
HOR ¥=264.		KUII
<b>#</b> STUDS REQ	D=39.7895	
#STUDS		
#31012		RUN

N=8 I-COMP=3,560.0754 Y=6.2058* Sc=4,589.3792 TF S=-1,274.0782 BF S=171.2873 ____ BFL NCDL STRS=8.2655 KSI -------T FL NCDL STRS=8.2655 KSI -------WS LL M=281.3146 'K -----****** **HEB D*** RUN BM A SQ. 14.7000 RUN BM D-17.9900 RUN Y-RUN Ι 800.0000 RUN HOR V=264.6000 K **#STUDS REQD=39.7895 #**STUDS 30.0000 RUN Use less than full shear N=8 Connection I-COMP=3,560.0754 Y=6.2058* Sc=4,589.3792 TF S=-1,274.0782 BF S=171.2873 Effective S EFF S=160.4430 for reduced B FL number of NCDL STRS=8.2655 KSI studs T FL NCDL STRS=8.2655 KSI ------------WS LL M=259.6261 'K


******

WEB D-

# 22 THE 200 SHITLE SOUND



AISC Composite Design



 $Span = 30.0 \qquad f_{e}^{*} \cdot 3.0 \text{ ksi}$   $BmSpa. = 6.0 \qquad n = 9$   $Slab Th. = 4" \qquad f_{y} = 36 \text{ ksi}$   $f_{sr} = 24 \text{ ksi}$   $Live \ Load = 100 \text{ psf}$   $Fartition + Cell in \ Load$  = -30 psf

Loads: Slab .33×6'×.15= .30 k/. Bm say .04 4/. = NCDL .34 4/. NCDL M= .34 4/.  $= 38.25^{1.6}$ CDL M= (.03 Lof × 6')  $= 38.25^{1.6}$ LL M. (.10 × 6')  $= 30^{2} = 67.50^{1.6}$ 

Shear = (.34⁶/, + (.03+.10)*6')*15' = <u>16.40 k</u>

 $\frac{Effective Slab Width}{Span / 4 = 30' * 12 / 4 = 90''}{Bm Spa. = 6' * 12 = 72''}{t6 t_{ol} * Flange = 16*4'' + 6' = 70'' }$   $b_{eff} = 70''; effective Area = \frac{70''}{n=9} \cdot 4''$   $= \frac{31.11 \text{ m}''}{TRY W 16 \times 31}$   $A = 9.12 \text{ m}'' \qquad t_{v} = .275''$ 

d = 15.46''  $I_x = 375 in^4$   $b_f = 5.53'' \approx 6'' OK$  $S_x = 47.2 in^3$ 

(NUA)

Check Shear 16.40 k = 3.85 koi < .40fy OK Note: COMP fores unt check shear. Check DL on bare beam 38.25" x1Z = 9.72 ksi < 24 ks 12 Calculate Composite Properties Slab 31.11 Z" 62.22 Z.25" Adz I. Beam <u>9.12</u> 11.94" <u>108.89</u> 7.69" <u>538.86</u> 375 40.23 171.11 696.42 416.4 696.42 416.4 1113,30 171.11 4073 = 4.25"⇒N.A. below clab I comp = 1113.30 in4  $S_{emc} = \frac{1113.30}{4.75} \cdot (n-9) = \frac{2355.75}{2355.75}$  $S_{TF} = \frac{1113.30}{477.47} = \frac{4395.16}{10}$  $S_{BF} = \frac{1113.30}{15.44 + 4' - 4.25''} = \frac{71.211}{71.211}$ ZM= 38.25 NCDL 20.25 CDL 67.50 LL 126.00'-L <u>Slab</u> (20.25.67.50),12 .447ki < .45 f OK Bottom F1: 12601 - 21.226; 224 OK Top FI: OK by inspertion Check : Smay = (1.35+.35 (67.50+20.25))+47.2 = 101.62 > 71.74 OK

AISC Composite Design

	SPAN'	
Design Shear Connectors	30.0000 RUN SL Be=72.0000	
Use 3/4" x 3" Studs (2 lines)	70.0000 RUN H-	
$V_{1ax} = 5t \cup \theta = 7.5 \cdot t_{e1} = 7.5 \cdot .440^{\circ}$	0.0000 RUN	Non-composite DL
	NCDL M, 'K 38.2500 Run	
= 11, <u>OK</u>	CDL M, 'K	Composite DL
Horiz. Chose (do not use part. comp. action)	20.2500 RUN LL M, K	L" in coad
	67 <b>.5000</b> RUN *******	
(.25,3.06,;) * 70" × 4"/2=357.06	NEB D" Run	ey pass for
36 ki = 9.120" /2 = 164.16 k←	BM A SQ-	rolled beam
	9.1200 RUN BM D-	
=="+3" studs → 11.5 kips/24_6	15.8800 RUN Y-	
	RUN	can bypass for
$\frac{164.16 k}{11.5} = 14.27 \text{ study par half}$	I 375.0000 Run	symm. beam
11.5 = 14.2 ( studs par half	HOR V=164.1600 K #STUDS REQD=28.5496	
:. Use two rows of & studs	#STUDS	
per half beam sym. dist. Beam E	RUN	
P P	 N=9	
T T     TT       6     7 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	I-COMP=1,113.3023 Y=4.2533 Sc=2,355.7516 TF S=4,395.1765 BF S=71.2436	
TITLE: OFFICE BLDG FLOOR DESIGN	B FL	
RUN	NCDL STRS=9.7186 KSI CDL STRS=3.4108 KSI	bare beem
**************************************	LL STRS=11.3694 KSI	
NSD? 1.0000 RUN	Σ B FL STRS=21.2230 KSI	z on complisite section
N 9.0000 RUN	TFL	
Fc'KSI 3.0000 RUN	NCDL STRS=9.7186 KSI CDL STRS=0.0553 KSI	
STUD CAP, K	LL STRS=0.1843 KSI	
11 <b>.5000 RUN</b> F-Y KSI	Σ T FL STRS=0.3440 KSI	
36.0000 RUN F6 KSI	SLAB	
24.0000 RUN	CDL STRS=0.1032 KSI Ll strs=0.3438 KSI	
SL TH- (DISO) 4.0000 RUN	Σ SLAB STRS=0.4470 KSI	
BM SPA ' 6.0000 RUN	 ********************************	

Calculate plastic section properties of this beam. Find allowable load by AASHTO and AISC LRFD. Fy = 36 ksi fr' = 4.0 ksi 108" THH: E" - P. 48", ±" ~ R 18" + 2" <u>Check Compactness</u> - Tw = 48 = 96.0 If by AASHTO, \$ 19,230 = 101.35 - OK If by AlSC, He - 106.67 - OK Composite section is considered compact by either code. Noncomposite section would require

<u>Note:</u> Program COMP does not check compactness; the user must do this. Program PLG does_check compactness.

additional compression flange

Calculate Z of bare beam:  $14 \times 1.5 = 21.0$   $46 \times 0.5 = 24.0$   $18 \times 2.0 = 36.0$ Area = 81.0 m"  $\frac{81.0}{2} - 21.0$  m" = 19.5 m"  $\frac{19.5}{2} = 39.0$ ", + 1½" = 40.5" to N.A.

Bare Bean (contd) Top half C.G. : 21.0 x .75"= 15.75 <u>19.5 × 21.0" = 409.50</u> 40.5 10.5° 425.25 Bottom half C.G. 36.0 . 1.0" = 36.0 <u>4.5" 6.5" = 29.25</u> 40.5 1.611" 65.25 2 = 40.50", (51.5"-1.611-10.5) = 1595.25 in³ Composite Beam Z: C = 108" + 9" + (.95-4.0 ksi) = 3304.8 k T= 81.00" = 36 koi = 2916.0 k . N.A. is in slab  $a = \frac{2916.0}{3304} = 9'' = \frac{7.9412''}{7.9412''}$ Slab = 2 ~ (7.9412 ) × 106" ~ (75-4) = 321.62 Top Fl. 210" . (1.0588"+1"+ 34") = 58,99 Veb 240" * (1.0586 + 1"-11/2"+24") = 661.41 Bott. FL. 36 " ~ (1.0566+ 50.5"+1") = 1892.12 Z = 2934.13 in 3 AASHTO Capacity = Fy Z = 36.0 , 2934.13/2 - 8802.40'k Capacity by AISC LRFD = ØF, Z - .85 × 8602.40 = 7482.04"4

warrowar

6152

0.12.15	XEQ =( Am 05/16/1	
8:12:15	HU 00/10/0	57
_	ECTION TRI	RUN
	*******	****
AISC WSD?		
	0.0000	RUN
PLAST?		
ы	1.0000	RUN
N	8.0000	RUN
Fc'KSI		
	4.0000	RUN
STUD D-	1.0000	RUN
F-Y KSI	1.0000	KUN
	36.0000	RUN
SL TH-	9.0000	RUN
BN SPA	7.0000	KUII
	9.0000	RUN
SPAN		<b>5</b> (1)
SL Be=108		RUN
5L DE-100		RUN
H-		
	1.0000	RUN
NCDL NJ K	,	
	610.0000	RUN
CDL MJ K		
	800.0000	RUN
LL M'.K		RUN
*******	********	
WEB D-		<b>6</b> 111/
	48.0000	RUN
WEB TH-	. 5000	RUN

SF 04

COM FL N"	14.0000	RUN
TH-	4 5000	DUU
TEN FL W"	1.5000	RUN
TH-	18.0000	RUN
	2.0000	RUN
I=38,202.0		
Y=30.1944		
COM S=1,20 TEN S=1,79		
BM Z=1,59	5.2500	
AREA=81.0	000 SQ-	
HOR ¥=2,9 #Studs re		54
#STUDS		
		RUN
Z=2,934.1	324	
	,482.0375	٠K
	2.0375 'K	
N=8		
	0,943.750	0
Y=18.7778		
Sc=43,005		
TF S=11,4		
BF S=2,36	)2./720 :*******	*****

AASHTO Capacity =  $F_Y Z$ = 36.0 × 5752.59/12 = <u>17.257.8</u> ··· L AISC Capacity =  $\phi F_Y Z$ = .85× 17.257.8 = <u>14.669.1</u> ·· L

	WEB D" 48.0000	RUN
	WEB TH-	KUN
	1.0000	RUN
	COM FL Nº	<b></b>
	14.0000 TH-	RUN
	1.5000	RUN
	TEN FL H	
¤″	20.0000	RUN
	TH-	RUN
,+	<b>4.0000</b> I=59,932.2955	KUN
for	Y=35.9715	
one	COM S=1,666.1061	
ver	TEN S=3,419.1297	
20/	AREA=149.0000 SQ-	
	HKCH-147.0000 JW	
	HOR V=3,304.8000 K	
- 3304.8	<b>#STUDS REQD=140.2108</b>	
	#STUDS	
634.0	#31UU3	RUN
6 - 1-70 / 1		
/2 = 1029.6 k	Z=5,752.5900	
> ZI.O □"	PLAST N=14,669.1045	'K
21.0 8	LL M=12,259.1045 'K	
	N=8	
	I-CONP=175,857.4426	
	Y=27.3438" Sc=51, <b>458.7</b> 545	
	TF S=10,139.4945	
5+1+4.5")= 1340.28	BF S=4,863.8264	
5") = 175.35	****	***
	WEB D"	
) - Z8.46 ) = 816.04 ) - <u>3392.00</u>		
) - <u>3392.00</u>		لحظل
Comp. 7 = 5752.59 in?		
,		

ALCONAL CONTRACT STATES STOLEN

-R 14"x 11/2" R 48"×1 ₽ Z0"×4" Bm Area : 14 ~ 1'z = 21.0 48 = 1 = 48.0 20×4 = <u>40.0</u> 149.0 ±" Note: COMP will not figure a BM Z for this beam since one flange contains over half the beam area.  $C = 104" \times 9" \times (.45 \times 4.0) \times 3304.4$ T = 149.00" = 36 = 5634.0 C'= (5634.0-3304.6) 1/2 = 1029.6 k  $\frac{1079.6}{36} = 24.6 \text{ m} > 21.0 \text{ m}$ ⇒ N.A. in Web  $\frac{26.6-21.0}{1.0}$  = 7.60" Slab (3304.9) (7.6,1.5,1+4.5")= 1340.28 Top FL ZI.O + (7.60"+.75") = 175.35 7.60" ~ 1" × (7.60/z) · 28.86 Web = 816.08 - <u>3392.00</u> Web 40.4 11 + (40 4/2) 80° × (40,4 + Z") B.FI.

Calculate composite plastic section properties of this beam, and capacities by AASHTO and AISC LRFD.

> $F_{y} = 36$  ksi  $f_{c}' = 4.0$  ksi

> > 108"

Plastic Z: N.A. T.	n Flange 4/11	
Calculate composite plastic section properties of this beam, and capacities by AISC LRFD and AASHTO. $F_{c} = 36$ Lsi $f_{c}^{*} = 4.0$ ksi 108" R = 108" R = 108" R = 108" $R = 16^{*} \cdot 2's"$ $C = 9" - 108" \cdot (.85 - 4) = 3304.8$ Bun Area = 16.2 = 32.0 14.74! = 36.0 14.74! = 36.0 14.74! = 36.0 13.0 p" $T = 113.0 \times 36$ ksi = 4068.0 k $T > C \Rightarrow N.A.$ in beam $C' = \frac{4065 \cdot 3304.8}{2} = 381.6$ k $\frac{381.6 l}{364si} = 1.6625" < 2"$ $\therefore N.A.$ is in flange Slab $\frac{3304.8!}{364si} = 91.8p^{\circ} \cdot 6.1625' = 56.5.72$ is $F1625 \cdot 16 = 0.662 \cdot 33312" = 3.51$ $F1625 \cdot 16 = 0.662 \cdot 3332' = 3.51$ $F16375 \cdot 16 = 21.4 = *6645' = 14.31$ Web uf $x^{*}u = 3600'' \cdot 25335 = 912.15$ $B.F1. Ka z^{*}z = 45.0p^{\circ} \cdot 50.5475 \cdot 2216.44$ Composite Z = 3772.13	Thinge $4/4$ By AASHTO, capacity = Fy 7 = $36 \times 3772.13/2$ = $11.316.4'^{-L}$ By AISC LRFD, capacity = $67$ 7 = $.45 - 11.316.4$ = $9616.9'^{-L}$ WEB D ⁻ 48.0000 RUH WEB TH ⁻ .7500 RUH COM FL W ⁻ 16.0000 RUH TH ⁻ 2.0000 RUH TH ⁻ 2.0000 RUH TH ⁻ 2.0000 RUH TH ⁻ 2.0000 RUH TH ⁻ 2.0000 RUH TH ⁻ 2.0000 RUH TH ⁻ 2.5000 RUH I=54.635.8497 Y=28.9757 ⁻ COM S=1.885.5772 TEN S=2.322.5246 BH Z=2.311.9167 AREA=113.0000 SQ ⁻ HOR V=3.304.8000 K #STUDS RUH Z=3.772.1275 PLRST M=9.618.9251 'K LL M=7.208.9251 'K LL M=7.208.9251 'K N=8 I-COMP=125.044.4220 Y=21.1130 ⁻ Sc=47.381.0009 TF S=11.252.0787 BF S=3.021.3459 HOR V=3.304.2359 HOR V=3.304.2359 HOR V=3.304.2359 HOR V=3.304.2359 HOR V=3.304.3359 HOR V=3.304.3359 HOR V=3.304.3359 HOR V=3.304.3359 HOR V=3.304.3359 HOR V=3.304.3359 HOR V=3.304.3559 HOR 54)	

	X		Z	TT	L		X	V	र		1	
· · · · · · · · · · · · · · · · · · ·	$+ \wedge$	<u> </u>	1-6-	+				<u> </u>			L.,	
	ĺ					54 XEQ 13	CDL					
01+LBL "COMP"		i				55 STO 21						
		İ				56 CF 05						
02 CF 09		1				57 •LL •						
03 CF 11						58 XEQ 14						
<b>04</b> 27	~		1			59 X=0?						
05 XEQ 31	Fy					60 SF 05						
06 "Fb KSI"						61 STO 26	LLM					
<b>9</b> 7 FC? 18					1	62 FS? 11						
08 PROMPT	4				;	63 RTN						
<b>0</b> 9.9	$\phi$		•									
10 FS? 04						64+LBL B			1			
11 FC? 06	1.0					65 XRON "L*"						
12 SIGN	1.0					66 CF 07						
13 +						67 XEQ "BM"						
14 STO 18	Fb					68 X≠0?				1		
	1.10					69 GTO 39						
15+LBL D					1	70 "BM A"						
16 XROM -L-						71 XROM TIST						
17 "SL TH""												
18 PROMPT	BI.Th	,				72 PROMPT	BnA					
19 STO 13						73 STO 01	DNA					
20 "BH SPA""						74 "BM D""						
21 PROMPT	spa.					75 PROMPT	d					
22 -SPAN						76 STO 00						
23 PROMPT	epan					77 2	17					
23 FRONT						78 /	Y					
	Span/4	spa.				79 - 4						
25 /						80 PROMPT	Y					
26 X>Y?	min					81 STO <b>0</b> 5	'					
27 X<>Y	1.					82 <b>-</b> I-						
28 ENTER†	min	min				83 PROMPT			l	i i		
29 FC? 04	sith.					84 STO 02	I					
<b>30 RCL 13</b>	pin	1							1			
31 X>Y?	hidth, f	+				85+LBL 39						
32 X<>Y	a minerie					86 RCL 24	.45f					
33 12	Widthi					87 RCL 27	SI. an	4				
34 *	WATE,					88 *						
35 "SL Be="						89 STO 10	s1. forc	e				
36 ARCL X						90 LASTX	area					
37 XEQ "AI"		· ·				91 RCL 20	n					
<b>38 PROMPT</b>						92 /						
<b>39 RCL 13</b>	pl.th.					93 STO 14	a/n					
40 *						94 X(>Y	force					
41 STO 27	el.area					95 RCL 06	r					
42 CLX	1					96 RCL 01	Fy					
43 <b>-</b> H						97 <b>*</b>	Ann					
44 PROMPT	stool					98 X>Y?	Tens.	Compt.	·			
45 RCL 13	sl.th,					99 X(>Y	force					
46 +						100 2	line					
47 STO 15	h+sl.										NCO	
	1					101 FC? 10					AISC	
48+LBL E						102 SIGN	1				uses	
49 XROM -L-						103 / 104 - UOD U	for . She	par			A.Fy/	2
50 -N-						104 "HOR Y="			1		,	• •
51 XEQ 13						105 ARCL X						
52 STO 17	NCDL					106 -+ K-					$\sim$	
53 CLA			1			107 FC? 00					(die	(五)
JJ ULN						108 XEQ -PY-		1			Ľ	ン
	1											

Program <u>CONTP</u> For <u>Composite Beam Frages</u> bytes Page<u>Zof</u>

	XY	Z	T	-		X	Ý	そ	T	L	
109 RCL 25	Stud cap				164+LBL 14				1		
110 X≠0?					165 CLX						
111 / 112 <b>-#</b> Studs reqd-	#Stubs				166 XROM -M-						
113 X≠0?					167 PROMPT						
114 XEQ 02					168 * 169 RTN						
115 ADY					107 KIN						
116 ENTERT	# stuis #9	n fer		N	170+LBL 01	sl.A	BmA			Neutral	nas
117 ASTO 23				"#STUDS"	171 RCL 04	T.FI.Th	?			is in	beam
118 CLA				:	172 X>0?						_
119 ARCL 23					173 GTO 01						re is a
120 X≠0? 121 prompt	H				174 XEQ 11					value .	for op
122 X≠0?	#avail #reg	2			175 STO 03	T.FI.W.				flange	thickness,
123 /	Regianai				176 PROMPT	T.FI.T				1	. Otherwin
124 SIGN	1				177 STO <b>04</b>	1.1.1.1	•			Cie roll	ed beam)
125 LASTX	Repair 1				178+LBL 01	N.F.Th				prompt	for 74.
126 X(Y?				If more studs	179 RCL 03	T.F.W.					
127 SIGN	# reglavin			are furnished	189 *	FI Area					
128 STO 22	*			Than are rega,	181 RCL 01	Bm A					
129 ST/ 10	*			consider only	182 RCL 10	51. A					
130 ST/ 14 131 RCL 13	SI.th.			the number	183 -						
132 X<>Y				regit.	184 2 185 /	$\Delta A/_Z$	F1. A.				
133 /	•			* Refuces slab	10J / 104 ¥/¥2						
134 STO 12	eff st.th.			area mb comp							
135 °a="						$ \Delta $				Neutra	al axis
136 FC? 10				force if less	189 STO Y		$\triangle$			in w	
137 X=Y?				studs are	190 RCL 08	Webth.					
138 X=0? 139 XEQ 23				- michen that		N.A.					
140 XROM "L"				ave required.	192 RCL 05	Bm N.A					
141 FC? 18					193 RCL 04 194 -	T.FITh	Un NJ	1 PI. N.F			
142 GTO 29					195 ST+ X						
143 RCL 15	sl+h				196 +	Ze"					
144 RCL 01	Bm A				197 *	3rd term					
145 RCL 10	sl. compr.				198 CHS						
146 RCL 06	Fy				199 RCL 05	Bm N.A	4				
147 / 148 STO 10	* 8.			* Slab area	200 ST+ X						
149 X(Y?	★ Bn	A			201 RCL 04 202 -	T.F.Th. Ze					
150 GTO 01				transformed	203 RCL 03	F1. W.					
151 /	SIA SI.	h sl+h	Fi+h	to equin. steel	204 LASTX	F. Th.	TI W,	26	3.	A.m.	
152 RCL 12	sl.th.			oren	205 *	A FL	Ze				
153 *	efi sith			Neutral axis	206 *	Zudia	2e'	-m	T		
154 2				is in flanac	207 +	Sted ter					
155 / 156 -	arm			J	208 GTO 03		ľ				
156 - 157 RCL 05	B.Y				300ALDI 01						-
158 +	arm				209+LBL 01 210 STO Y	DA/Z	AA/7			Neutral	
159 RCL 01	BmA				211 RCL 03	FI.V.	1-12	•	1	[in f!	unae
160 *	Moncat				212 /						
161 GTO 09					213 CHS						
4704101 47					214 RCL 05	Bm.N.	Ą	1			
162+LBL 13 163 "HCDL "					215 ST+ X	- 1	, 0/				
IOJ FUL					216 +	Le	A/Z	.!	1	į	
					217 *	e				1	

Program <u>CONP</u> For <u>Concosite</u> Fear Francis _____ bytes Page<u>3 of 4</u>

	XYZT	-	X	Y	र	T	L.
0464.01.07	Steeltern	272 *	A·don				
218+LBL 03		273 CHS	- A.d				
219 RCL 15	sl+h	274 LASTX	Dm A				
220 RCL 12	eff.sl.th.	275 RCL 14	sl.A/n	BmA.	B. A.	<1.46	
221 2	Z th. sloh steel	term 276 Rt				5	
222 /		277 ST+ X	Zeslith	sl.Nn	BmA -	Ban A.I	
223 -	ec	278 /		1	1	a	
224 RCL 05	P	279 XROM -Q-	Efe.W	BnA	- 1-4		
225 +	e	280 STO 09	$\overline{Y}$				
226 RCL 10	sl. force	200 510 67	T				¥
227 *	conc.tem sterlthrm	281+LBL 06	*				Yor sl. thickness
228 +	2	281 ENTER†	*	*			I UT SIMICLINES
			*2	<u>~</u>			Cuncracked
229+LBL 09	2	283 X†2	*				portion
230 - 2-		284 12	*7/2	*			of slab)
231 XEQ 02		285 /		ਸਾ			
	Fy	286 RCL 14	sl.A/n		-2	-	
232 RCL 06	m	287 RCL 12	ol.th.	A/n	7/12	Ÿ	
233 *		288 /	eff.w Y		- Z	-	
234 .85	ø	289 R†		eff	Y /2	Ÿ	
235 FC? 04		290 *	efC.sl.A	Y3/12	¥	*	
236 SIGN		291 R†	¥			7	
237 *	øm	292 2	2	*	ef.:	47/12	
238 PLAST		293 /	<u>*/z</u>				
239 XROM "M="		294 RCL 09	7	1			
240 XEQ "PY"		295 -	V d			-	
241 LASTX	12	296 Xt2	AZ	eff. A	Y1/12	17/1Z	
242 *	pm "k	297 Rt	d2 Y7/12		et f.A		
243 RCL 21	NCOL	298 +	1.112	a	e* *. #		
244 -			Ιτ.				
245 RCL 17	CDL	299 *	Id. V		1		
246 -	LLM	300 RCL 09	I I I I	ł			•
247 CLA		301 RCL 11	ما و Levis		1		
248 XEQ 05		302 -	bm t			İ	
		303 Xt2	đ				
249+LBL 29		<b>304</b> RCL 01	Bm A A 2 ²				
	s.h	305 *		51. I			
250 RCL 15	Y	306 +	ZI				
251 RCL 05	r	<b>307 RCL 02</b>	Bn I				
252 +		308 +	I				
253 STO 11	sl-h.Y	309 ENTERT	I	I			
254 RCL 01	BmA	310 -N=-					
255 *	Adam	311 RCL 20	n	I	I.		
256 RCL 14	51 A/n	312 XROM -AX-					
257 RCL 12	eff sloth	313 FC? 00					
258 2	ds1, As1, A.d.	314 AVIEW					
259 /		315 ADY					
260 *	A.d.si	316 X(>Y	II	In	I		
261 +	ZAS	317 -I-COMP-	1-		1		
262 RCL 01	Bra	318 XEQ 02					
263 RCL 14	SI. A/h	310 ALW 02	ΙŢ	I	n	I	
264 +	ZA		1'	-	1	-	
265 /	trialY	320 •Y=•					
266 STO 09	$\overline{\mathbf{Y}}$	321 XEQ 23	S.	n	I	I	
267 RCL 12	eff elth.	322 /		1	1		
268 X<=Y?	500 M.	323 *	Scon	I	I	I	
269 GTO 06		324 °Sc *			i		
270 RCL 11	Sloh. V	Neutral Axis 325 FC? 07					$\frown$
278 KCL 11 271 RCL 01	E~A	1 326 STO 10					(1157)
ZTI KUL UI		327 XEQ 02		1	1		
		1			1		
	: *						

Program <u>COMP</u> For <u>Compreite</u> Beam Analysie ____ bytes Page

e <u>4</u> of	4
---------------	---

	X	Y	Z	T	L		X	Y	र	T	L
328 RDN 329 RCL 09 330 RCL 15 331 - 332 / 333 STO 19 334 FC? 07 335 STO 04	I 7 51.4h 17.F1.d 17.F1.S	I	I	Se I	FC?07 and FC704 Plastic?	383+LBL 01 384 FC? 07 385 FS? 04 386 X<0? 387 GTO 16 388 FS? 18 389 GTO 16 90 XROM -LL-					
336 -TF- 337 XEQ 22 338 RDN 339 RCL 00 340 LASTX 341 - 342 / 343 STO 11 344 -BF- 245 YEO 22	I Bu d T.F. d B.FI.S (comp)		I	I		391 RCL 17 392 RCL 03 393 *B* 394 RCL 11 395 RCL 23 396 XEQ 20 397 RCL 18 398 XEQ 21 399 -	x $z$ $x$ $z$ $z$ $z$ $z$ $z$ $z$ $z$ $z$ $z$ $z$				Botton Flange # Both are S _{BF} for AISC
345 XEQ 22 346 FS? 07 347 GTO 01 348 STO 23 349 RCL 02 350 RCL 00 351 RCL 05 352 - 353 / 354 STO 03	Bm I Bm d B- Y B.FI. der B.FI.S Charebook					403 RCL 17 404 RCL 02	Sn 41. m NCDL1 Bn 7 Bn 7 Sn Sn Sn		4	מארדי ש	To Thurs
355 FS? 04 356 GTO 06 357 ADV 358 RCL 09 359 RCL 13 360 2 361 / 362 - 363 RCL 14	Compesy Sl.+th.* Skab d Sl.A/n				* Full sleb thickness, regardless of studs	410 XEQ 20 411 RCL 18 412 XEQ 21	Sn fb ad. fb allow Fb act fb STF(0) ± act fb STF Alber U	F۵	Som	ncolm	Top Flange If compos. S _{TF} is negative (i.e. N.A. in slab) then DL stress counteracts LL stress
364 * 365 •Q- 366 XEQ 02 367 GTO 01 368+LBL 06 369 - 370 RCL 22 371 SQRT	Q Som AS *	5 cm			* * <del>Stußs reg'd</del>	419 ABS 420 RCL 01 421 X>Y? 422 X<>Y 423 STO 01 424 RCL 10 425 . 426 RCL 10 427 -SLAB-	BF LLM Min. Allow LLI Scon Scon				Slab * Sefer n= 00 (NCDL)
372 / 373 RCL 03 374 + 375 STO 11 376 X(> 23 377 RCL 11 378 X(Y? 379 ADV 380 •EFF•	Som Seff. Sconfog Seff.				or 1; if 1, then Seff = Seombos	428 RCL 21 429 ASTO 03 430 FS? 00 431 GTO 01 432 FS? 05 433 X≠0? 434 AYIEW	CDL M "YLAB" CDL M	Se.	0	Sc	Sleb stress calculations do not use n:3n modulus
380 -EFF 381 X(Y? 382 XEQ 22	Sett.	Scome	s.			435+LBL 01 436 X<>Y 437 XEQ 08	Sa act.f _h	CDL M	0	Sc	

Program <u>COMP</u> For <u>Composite Promisialysis</u> bytes Page 5 of <u>8</u>

	X	1 Y	Z	TT				X	I Y	र	TT	L	
438 RCL 16	all. fc	• <b>•</b>		1			490 X≠0?		1				
439 XEQ 21	art.fc												
440 FC? 05		C					491 XEQ 15	EDLE					
441 GTO 16							492 +	L'ME 'B					
442 -	$ \Delta f_c $						493 FS? 05						
443 RCL 10	5.						494 RTN	LLM	IN I	Sr			
444 <b>*</b>	р11. Ц Г	1					495 RCL 26		2n to	Un	5.		
445 -WS -	1. L. I						496 Rt	Sr Llf					
							497 /	LTL					
446 FS? 06							498 "LL"						
447 -LF -	1				1		499 XEQ 15						
448 RCL 01	steel LL	η					5 <del>00</del> +	Zf6					
449 X>Y?							501 FC? 00						
450 X<>Y	LL M						502 ADY						
451 XEQ 05							503 RTN					1	
											1		
452+LBL 16							504+LBL 15						
453 FS? 04							505 FS? 00	1	1				
<b>454</b> GTO 12	-						506 RTN						
455 3	3						507 XROM -K-						
456 FS? 07	L.		1		•	-	508 XEQ "PV"						
457 1/X	3-13					n=3n	509 RTN						
458 ST* 20	(N)				calcu	lations	J07 KIN						
459 ST/ 14	Ksl.A/n	)	· ·		CAA	SHTO)	510+LBL 21	aller Fr	adr				
460 FS?C 07	1	1					511 X<>Y	act fo	aller			1	
461 GTO 12	1						512 FS? 05	~ 10	allow				
462 SF 07		1									İ		
463 GTO 29							513 GTO <b>0</b> 8						
							514 °Σ °						
464+LBL 12							515 ARCL 03					1	
465 FS? 11	*				Afro	- PLG	516 XROM -K-						
466 RTN					1		517 GTO 01				Ì	1	
467 GTO B					1					]			
					*<	for AISC	518+LBL 05						
468+LBL 20	Sn	531	C	M	) "On		519 "HLL"						
469 "+ FL"		-3n	Som	MNG	2		520 XROM "M="						
479 ASTO 03	1				"B FI	"	521 RCL 26	1					
471 FC? 00	1				or	-							
472 AVIEN					T FL		522+LBL 01						
473 "NCDL"							523 XEQ "PY"						
						¥5311	524 FC? 11						
474 Rt							525 X=0?						
475 Rt	SBM	M	S.	S3N		X=0?	526 GTO <b>0</b> 8				1		
476 /	fui						527 "NG"						
477 XEQ 15							528 X>Y?	act.f	allmFi				
478 FC? 10							<b>529 BEEP</b>						
479 GTO 04	c						539 X>Y?						
480 LASTX	Sun				ALSC		531 AVIEW						
481 *		Same	Scorp		allous	-full							
482 Rt	Promises					section	532+LBL 08						
483 /	-f b.1					DL M	533 FC? 00						
							534 XROH "L"						
484+LBL 04	-f 61	S.	San				535 RTN						
485 RCL 21	CDLM	-f'b-1	15n	152m									
486 Rt	53.N	COL M	fni	5.			536+LBL -BM-						
							537 CLX						
487+LBL 08							538 STO 04	0				See li	ne
488 -CDL-					ĺ		539 WEB D					171	
489 /	fr.2						540 PROMPT					$\sim$	2
	_				1		VTV I KUIII I					(Dig	9)
								•	,			$\sim$	

Program <u>COMP</u> For <u>Composite</u> Beom Analysis 1475 bytes Page 6 of E

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		XY	ZT			X	V	र		1	
$ \begin{array}{c} \begin{array}{c} 552 \ \mbox{Fit} \\ 553 \ \mbox{Fit} \\ 553 \ \mbox{Fit} \\ 556 \ \mbox{Fit} \\ 556 \ \mbox{Fit} \\ 556 \ \mbox{Fit} \\ 556 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ \mbox{Fit} \\ 557 \ $					592 STO 05		Ţ				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		webd			594 XEQ 23	$\leq$	۸	$\leq$			
545 GT0 85     546-LBL -580H     557 -700H     557 -700H       546-LBL -580H     557 -700H     559 -700H     559 -700H       546 CF 27     569 -700 -100 x     559 -700H     559 -700H       546 CF 27     560 -700 -100 x     559 -700H     559 -700H       559 -700 -700 -700 -700 x     559 -700H     559 -700H     559 -700H       559 -700 -700 -700 x     559 -700H     559 -700H     559 -700H       555 -700 -700 -700 x     560 -700 -700 x     560 -700 -700 x     560 -700 -700 x       555 -700 -700 -700 x     560 -700 -700 x     560 -700 x     560 -700 x       555 -700 -700 -700 x     560 -700 x     560 -700 x     560 -700 x       555 -700 -700 -700 x     560 -700 x     560 -700 x     560 -700 x       555 -700 -700 x     560 -700 x     560 -700 x     560 -700 x       555 -700 -700 x     560 -700 x     560 -700 x     560 -700 x       555 -700 -700 x     560 -700 x     560 -700 x     560 -700 x       555 -700 -700 -700 x     560 -700 x     560 -700 x     560 -700 x       555 -700 -700 -700 x     560 -700 x     560 -700 x     560 -700 x       555 -700 -700 -700 x     570 -700 x     570 -700 x     570 -700 x       555 -700 -700 x     570 -700 x     570 -700 x     570 -700 x       555 -700		Compr H.W Webth				JT	A	56	2		
54448       Start St 11         340 SF 27       Start St 11         340 SF 27       Start St 11         540 SF 27       Start St 11         540 SF 27       Start St 14         550 LEL 01       Start St 14         550 LEL 01       Start St 14         551 ST 03       Start St 14         5524LEL 03       Start St 14         5524LEL 03       Start St 14         5524LEL 04       Start St 14         553 ST 05 D       Start St 14         553 ST 05 D       Start St 14         553 ST 05 D       Start St 14         553 ST 05 D       Start St 14         553 ST 05 D       Start St 14         553 ST 05 D       Start St 14         553 ST 05 D       Start St 14         553 ST 05 D       Start St 14         553 ST 05 D       Start St 14         553 ST 05 D       Start St 14         553 ST 05 D       Start St 14         553 ST 05 D       Start St 14         553 ST 05 D       Start St 14         553 ST 05 D       Start St 14         553 ST 05 D       Start St 14         553 ST 05 D       Start St 14         554 ST 04       Start St 14	545 GTO 05										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						5					
See Cr 27       See Cr 27         S49 CT 0 IM X       Get Rt 4         S59+LB, 61       Get Rt 62         S52+LB, 63       Get Rt 63         S52+LB, 63       Get Rt 63         S52+LB, 64       Get Rt 63         S55 GT 0       Get Rt 63         S55 GT 0       Get Rt 64         S55 GT 0       Get Rt 64         S55 GT 0       Get Rt 63         S55 GT 0       Get Rt 63         S55 GT 0       Get Rt 63         S55 GT 0       Get Rt 63         S55 GT 0       Get Rt 63         S55 GT 0       Get Rt 63         S55 GT 0       Get Rt 74         S56 A Met?       Get Rt 83         S55 ST 012       Get Rt 83         S56 ST 0 G4       Get Rt 74         S56 ST 0 G4       Get Rt 74         S56 ST 0 G4       Get Rt 74         S56 ST 0 G4       Get Rt 74         S65 ST 0 G4       Get Rt 74         S65 ST 0 G4       Get Rt 74         S65 ST 0 G4       Get Rt 74         S65 ST 0 G4       Get Rt 74         S65 ST 0 G4       Get Rt 74         S65 ST 0 G4       Get Rt 74         S65 ST 0 G4       Get Rt 74				from PLG		Cem					
549 CTO IND X       668 STO 14         559 CTO IND X       668 STO 22         551 CTO 39       668 STO 29         552 CTB 83       668 CTO 83         553 CTO 39       668 CTO 83         553 CTO 39       668 CTO 83         553 CTO 30       668 CTO 83         554 LB 83       668 CTO 83         554 LB 84       668 CTO 83         555 CTO 2       668 CTO 83         555 CTO 2       618 CTO 83         555 CTO 2       618 CTO 83         555 CTO 2       618 CTO 83         555 CTO 2       618 CTO 83         555 CTO 2       618 CTO 83         555 CTO 2       618 CTO 83         555 CTO 2       618 CTO 83         555 CTO 2       618 CTO 83         555 CTO 2       617 2         556 TEN       617 2         556 TEN       617 2         556 TEN       Cap TTL         556 TEN       Cap TTL         556 TEN       Cap TTL         557 STO 12       Cap TTL         556 TEN       Cap TTL         557 STO 10       Cap TTL         557 STO 11       Cap TTL         557 STO 12       Cap TTL         557 STO 16						5					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						-1-0					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					602 XEQ 22						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	550+LBL 01										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						Webd					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	553 GTO D										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EE AN DI GA										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						Compil					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	333 GIU E				611 RCL 04		Comph	Tonal	Web &		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	556+LBL 00					[omp'A]					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	558 XEQ 09										
$ \begin{array}{c} \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} \\ \text{Signature} $						· web o					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c} 3.61 \ A^{-0}; \\ 562 \ RTN \\ 562 \ RTN \\ 563 \ STO \ 83 \\ 564 \ REOMPT \\ 565 \ STO \ 84 \\ 566 \ STO \ 99 \\ 566 \ TEM^{-} \\ 567 \ SED \ 99 \\ 566 \ TEM^{-} \\ 567 \ SED \ 99 \\ 566 \ STO \ 99 \\ 566 \ STO \ 99 \\ 566 \ STO \ 99 \\ 566 \ STO \ 99 \\ 566 \ STO \ 99 \\ 566 \ STO \ 99 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 577 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \\ 580 \ STO \ 10 \ 580 \ STO \ 10 \\ 580 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ STO \ 10 \ 10 \ ST$						41. 100	Web d				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				X 74 ⁷							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Cover FIV		or	620 X(0?						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						1					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Comp.Fl.Th.									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				flange?)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Terr he					1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		246. **					Tench	Wal H	1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Tan T			627 RAD						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1005.14.				Ad					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Compth									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		bmd									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Tous,W				· ·					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 1 1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						Some	,				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C-qFI.V				toute 10		Veleir	ya		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			< T								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-6 +								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						ZA					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-				decoupt	`				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						atoms.	1.	1			
(160) 599 Rt $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$ $(12)$											
		SL I	AIY			a/z					
							1	ļ			
				1		ł		1		•	

Program <u>COMP</u> For <u>Composite Beam Analysis</u> bytes Page 7 of <u>4</u>

$ \begin{array}{c} 649 \text{ PCL } 869 \\ 639 \text{ etc} \\ 639 \text{ etc} \\ 631 \text{ etc} \\ 632 \text{ etc} \\ 632 \text{ etc} \\ 632 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 633 \text{ etc} \\ 643 \text{ etc} \\ 643 \text{ etc} \\ 653 \text{ etc} \\ 653 \text{ etc} \\ 653 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 784 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 775 \text{ etc} \\ 774 \text{ etc} \\ 774 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775 \text{ etc} \\ 775$		XY	Z	T			X	1 Y	र	TT	L	
651 BCL 81 $A_{1}$ , $A_{2}$ , $A_{3}$ 652 * $C_{2}$ 7 $C_{2}$ $C_{3}$ $C_{3}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ <												
651 BCL 81 $A_{\rm two}$ 655 Pt       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd       wadd <th< td=""><td></td><td>a</td><td></td><td></td><td></td><td></td><td>1 1</td><td>Comple</td><td>14674</td><td>which</td><td></td><td></td></th<>		a					1 1	Comple	14674	which		
652       7.2       695 $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1, -1)^{-1}$ $(-1$												
$\begin{array}{c} 0.02 \\ 6.32 \\ 6.37 \\ 6.37 \\ 6.37 \\ 6.37 \\ 6.37 \\ 6.37 \\ 6.37 \\ 8.58 \\ 6.37 \\ 8.59 \\ 6.59 \\ 7.57 \\ 8.59 \\ 8.57 \\ 8.59 \\ 8.57 \\ 8.59 \\ 8.57 \\ 8.57 \\ 8.59 \\ 8.57 \\ 8.59 \\ 8.57 \\ 8.59 \\ 8.57 \\ 8.59 \\ 8.57 \\ 8.57 \\ 8.59 \\ 8.57 \\ 8.59 \\ 8.57 \\ 8.57 \\ 8.59 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.57 \\ 8.$							"h"	Komp	Web th	Web th		
$\begin{array}{c} 633 \\ 633 \\ 633 \\ 633 \\ 635 \\ 635 \\ 635 \\ 636 \\ 501 \\ 635 \\ 635 \\ 637 \\ 529 \\ 620 \\ 635 \\ 635 \\ 635 \\ 635 \\ 635 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\ 641 \\$		L* £										
$ \begin{array}{c} \begin{array}{c} 357 \ \ 789 \ 2 \\ 655 \ 781 \ 2 \\ 655 \ 757 \ 220 \ 92 \\ 657 \ 722 \ 92 \\ 657 \ 722 \ 92 \\ 658 \ 757 \ 720 \ 92 \\ 658 \ 757 \ 720 \ 92 \\ 658 \ 757 \ 720 \ 92 \\ 658 \ 757 \ 720 \ 92 \\ 658 \ 757 \ 720 \ 92 \\ 658 \ 757 \ 720 \ 92 \\ 658 \ 710 \ 92 \\ 658 \ 710 \ 92 \\ 658 \ 710 \ 92 \\ 658 \ 710 \ 92 \\ 658 \ 710 \ 92 \\ 658 \ 710 \ 92 \\ 658 \ 710 \ 92 \\ 658 \ 710 \ 92 \\ 710 \ 92 \ 710 \ 91 \ 720 \ 92 \\ 710 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 91 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 720 \ 72$		7			1				1.	1. 1		
655       570       12       AC       AC         657       782       82       AC       782       1       AC         658       178       178       1       AC       782       1       AC         659       178       1       AC       782       1       AC       782       1       AC         668       178       178       1       AC       782       1       AC       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td></td> <td>Z</td> <td></td> <td></td> <td></td> <td>2 1/1</td> <td></td> <td></td> <td></td> <td>1 1</td> <td></td> <td></td>		Z				2 1/1				1 1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						<u> </u>			New M			
GS8+LB, 63 GS9 F57 66 G68 RTN G61 RTW G61 RTW G61 RTW G62 RECRE-*     F     F     F     F       G64 RCM     F     F     Adf     Adf     Adf       G62 RCM     F     F     Adf     Adf     Adf       G63 RCL 61     F     F     F     Adf     Adf       G64 RCM     F     F     F     Adf     Adf       G65 RCM     F     F     F     Adf     Adf       G66 RCM     F     F     F     Adf     Adf       G66 RCM     F     F     F     Adf     Adf       G66 RCM     F     F     F     Adf     Adf       G66 RCM     F     F     F     F     Adf     Adf       G66 RCM     F     F     F     F     F     F       G78 RCM     F     F     F     F     F     F       G79 RCL X     F     F     F     F     F     F       G77 RF     F     F     F     F     F     F       G79 RCL X     F     F     F     F     F       G77 RF     F     F     F     F     F       G78 RCM     F     F     F     F     F					l lª	"  <u>'</u>						
639-BL B 3       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       784 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO       786 STO <td>001 16 02</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	001 16 02											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(EQAL DI A7				<u>}</u>		AD	web th	1 4	6		
366 8 TH       765 LISTX $A_{1}A^{2}$ $A_{1}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}$ $A_{2}A^{2}A^{2}$ $A_{2}A^{2}A^{2}$ $A_{2}A^{2}A^{2}A^{2}A^{2}A^{2}A^{2}A^{2}A^$							1 tot					
662       000       766 + 4, 4, 4, 5, 5, 5, 7         662       0000       15°       767       80       X(Y)       A, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,												
							APZ	web th	h	h		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							web 44					
Get REM 15:- Get RUL 15:- Get RUL 4       789 * $A_{-k}$ Get RUL 4:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L:- Get RUM - L									h	Ad		
665 W/EW       718 Still $(\xi, A)$ $(\xi, A)$ 666 RR0M *L*       711 LBSTX $h$ $AJ^2$ 667 RN       713 Still $(\xi, A)$ $AJ^2$ 667 RN       713 Still $(\xi, A)$ $AJ^2$ 667 RN       718 Still $(\xi, A)$ $AJ^2$ 667 RN       718 Still $(\xi, A)$ $AJ^2$ 667 RN       718 Still $AJ^2$ $AJ^2$ 679 FED       718 Rt $AJ^2$ $AJ^2$ 677 RECL X       719 F $ZAJ^2$ $AJ^2$ 673 FC? 98       721 RCL Z $A$ $h$ $AJ^2$ 674 REC PPY       722 RCL Z $A$ $h$ $h$ $h$ 677 HEB TH**       722 RCL Z $A$ $h$ $h$ $h$ 677 RDMT       722 R       723 RCL T $h$ $h$ $h$ $h$ 674 RED TH***       710 R       722 R $ZAJ^2$ $AJ$ $h$ $h$ $h$ 679 RED TH***       728 RCL T $RCL T$ $RCL T$ $RCL T$ $RCL T$ $RL$ $RL$ $RL$ $RL$ $R$								1		/		
666 XR0H *L*       711 L6X1X       h       h $AJ^2$ 667 RTN       712 *       Ad       h $AJ^2$ 669 *L S*       713 ST+ \cdot (2Ad)       h $AJ^2$ 679 *LBL 82       716 L6STX       h $AJ^2$ 671 **-*       716 L6STX       h $AJ^2$ 671 **-*       718 RT $AJ^2$ h         672 RRCL X       719 *       2AJ^2       h         673 FC? 06       719 *       2AJ^2       h       h         674 LBL 11       724 KE0 *PY*       721 RCL Z       h       h         675 RTN       722 *       Ad       h       h       h         677 *WEB TH**       724 L6STX       h       h       h       h         677 *WEB TH**       722 *       Ad       h       h       h       h         677 *WE TH**       722 *       Ad       h       h       h       h       h         677 *WE TH**       771 WE ST**       Ad       h       h       h       h       h         677 *WE TH**       771 WE ST**       Ad       ZAJ ² h       h       h       h       h       h       <												
667 RTH       712 *       Ad         668+LBL 22       713 ST + \cdots       (ZAd)       h       Ad ² 669 + S*       715 RTH       h       Ad ² Ad ² 679+LBL 82       717 *       Ad ³ h       Ad ² 677 RTH       h       Ad ² h       Ad ² 677 RCL X       717 *       Ad ³ h       Ad ² 673 RCL X       719 +       ZAd ² h       h         673 FC? 08       728 RCL 1       To V ZAd ² h       h         674 KED - PV-       721 RCL 2       h       h       h         677 * KED TH*       724 L9STX       Ad       ZAd ³ h         677 * KED TH*       724 L9STX       Ad       ZAd ³ h         677 * KED TH*       728 KL 1       To V ZAd ⁴ L       L         677 * STO 08       Ub H,       728 KL 1       To V ZAd ⁴ h       h         680 * LB 10       729 STO 08       Vb H,       728 KL 1       h       h       h         683 * FE L H**       FL V       738 RCL 1       To V ZAd ⁴ ZAd ⁴ Kd       Kd         683 * RCL 1       738 STO 1<												
6684 LBL 22       713 ST + \begin{aligned}{l} 713 ST + \begin{aligned}{l} 714 FS? 43       713 ST + \begin{aligned}{l} 714 FS? 43         669 + F S*       715 RTN       N       N       Ad ¹ 679 + LBL 62       715 RTN       N       N       Ad ² 677 + T=*       713 ST + \begin{aligned}{l} 713 FT       N       N       Ad ² 677 + T=*       713 RT       N       N       Ad ² 677 RTN       719 FT       728 RCL 1       N       N         676 + LBL 11       728 RCL 1       Tas V SA ² N       N         677 RTN       728 ST - 1       (LA)       Ad ² Ad ³ 678 PROMPT       728 ST - 1       (LA)       Ad ³ N       N         679 STO 88       Ub HL       728 ST - 1       (LA)       N       N       N         689 ALEL 19       728 ST - 1       728 ST - 1       Tas V SA ³ N       N       N       N         682 ALEL 19       738 RCL 1       Tas V SA ³ N       N       N       N       N         683 * CD*       713 ST + 1       735 ST + 1       735 ST + 1       Ad       Ad       Ad       Ad       Ad         684 PROMPT       735 S												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DOT KIN							h	Ad	Adz		
669 + 5*       715 RTN         679+15*       715 RTN         679+15*       715 RTN         677 $Adz$ 677 $Adz$ 677 $Adz$ 677 $Adz$ 677 $Adz$ 677 $Adz$ 677 $Adz$ 677 $Adz$ 678 $Adz$ 677 $Adz$ 678 $Adz$ 677 $Adz$ 678 $Adz$ 678 $Adz$ 679 $Adz$ 679 $Adz$ 679 $Adz$ 689+LBL $P9$ 681 $CON^2$ 682+LB $P9$ 682+LB $P9$ 681 $CON^2$ 682 $P0PT$ 683 $POPT$ 682 $POPT$ 683 $POPT$ 683 $POPT$ 683 $POPT$ 684 $POPT$ 685 $POPT$ 695 $PC$							(cra.	1				
678+LBL 82       716 LRSTX $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$ $h d_{2}^{T}$												
678+LBL 82       717 * $AJ_{n}^{2}$ $AJ_{n}^{2}$ 671 *+=*       718 Rt $AJ_{n}^{2}$ $AJ_{n}^{2}$ 672 RRCL X       673 RCL 1 $T_{nov} \cup ZA^{d}$ $h$ 673 FC? 69       728 RCL 1 $T_{nov} \cup ZA^{d}$ $h$ 674 KED *PV*       721 RCL 2 $h$ $h_{nv} \cup ZA^{d}$ $h$ 675 RTN       722 * $A$ $h$ $h_{nv} \cup ZA^{d}$ $h$ 677 *RB TH**       678 PR0MPT       726 ST- 1 $CAA$ $h$ $h$ $h$ 677 *RB TH**       678 PR0MPT       726 ST- N $CAA$ $h$ $h$ $h$ 679 STO 88 $U_{b}H_{a}$ 727 LBSTX $A_{d}$ $R$ $h$ $h$ 689 *LBL 69       729 - $ZAd^{2}$ $h$ $h$ $h$ $h$ $h$ 682 *LBL 18       731 RCL I $T_{m}$ $T_{m}$ $V$ $ZAd^{2}$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$ $h$	669 - 5-						h					
671 **-*       718 Rt $AdF_1$ 672 RCL X       719 * $ZAF$ 673 FC? 80       720 RCL t       1         674 KED *PV*       721 RCL Z       1         675 RTN       722 *       A         676 KED *PV*       725 ST- J       (EA)         677 *WEB TH**       725 ST- J       (EA)         678 PROMPT       725 ST- J       (EA)         679 STO 86       Ub H,       727 LRSTX       Ad/L         689+LBL 89       728 RCL T       TomTW       ZAd'L         681 * COM*       738 RCL T       TomTW       ZAd'L         682*LBL 19       681 * COM*       738 RCL T       TomTW         682*LBL 19       732 RT       Ad/L       N/L         684 PROMPT       738 ST + L       Ad/L       N/L         684 RCL X       738 *       Ad/L       N/L         687 KLBL 23       738 *       Ad/L       Ad/L         698 FC2 80       741 *       744 / L       ZAd'L         699 FC2 80       741 *       ZAd'L       ZAd'L         691 RVIEM       742 ST × ZAd'L       ZAd'L       ZAd'L         692 RTM       744 / Z       ZAd'L       ZAd'L       ZAd'L <td></td> <td></td> <td>   </td> <td></td> <td></td> <td></td> <td></td> <td>h</td> <td>Ad2</td> <td>A22</td> <td></td> <td></td>								h	Ad2	A22		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									1.1041			
$\begin{array}{c} 673 \ FC? \ \theta\theta \\ 674 \ XEQ \ PPV- \\ 675 \ RTH \\ 675 \ RTH \\ 676 \ HL \ 11 \\ 677 \ HEB \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 772 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 773 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ KE \ TH \\ 774 \ KE \ KE \ TH \\ 774 \ KE \ KE \ TH \\ 774 \ KE \ KE \ TH \\ 774 \ KE \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \\ 774 \ KE \ TH \ TH \ TH \ TH \ TH \ TH \ TH \ TH \ TH \ TH \ TH \ TH \ TH \ TH \ TH \ TH \ TH \ TH \ TH \ TH \$							AdFI					
$674 \text{ XEP PPY}$ $721 \text{ RCL Z}$ h $i = \omega \cup Z A J^2 h$ $675 \text{ RTN}$ $723 \text{ ST} - 1$ $723 \text{ ST} - 1$ $723 \text{ ST} - 1$ $676 \text{ LBL 11}$ $724 \text{ LRSTX}$ $A$ $A$ $677 \text{ -HEB Th}^{}$ $679 \text{ PROMPT}$ $725 \text{ s}$ $Ad$ $679 \text{ STO 88}$ $V_{b}$ +L $727 \text{ LRSTX}$ $Ad$ $689 \text{ LBL 89}$ $681 \text{ -COM}^ 728 \text{ s}$ $Ad^2 Z A J^2$ $682 \text{ -LBL 10}$ $683 \text{ -FE } W^{}$ $681 \text{ -COM}^ 738 \text{ RCL 1}$ $T \text{ -marco}$ $683 \text{ -FE } W^{}$ $684 \text{ -COM}^ 738 \text{ RCL 1}$ $T \text{ -marco}$ $V = ZAJ^2$ $684 \text{ -COM}^ 731 \text{ RCL II$ $T \text{ -marco}$ $V = ZAJ^2$ $A$ $687 \text{ -FE } W^{}$ $687 \text{ -FE } W^{}$ $733 \text{ -T}$ $W$ $ZAJ^2$ $687 \text{ -FE } W^{}$ $687 \text{ -FE } W^{}$ $733 \text{ -FE}$ $A$ $A$ $A$ $688 \text{ -RCH } W^{}$ $733 \text{ -T}$ $T$ $A$ $A$ $A$ $A$ $689 \text{ -RCH } X$ $687 \text{ -HE } W^{}$ $738 \text{ -T}$ $A$ $A$ $A$ $A$							ZAT	char	1 6			
675 RTN       722 *       A         676+LBL 11       723 ST-1       (CA)         677 * HEB TH**       724 LASTX       Ad         677 * MEB TH**       725 *       Ad         678 PROMPT       726 ST- \lambda       (CA)         679 STO 08       Ub H.       728 ST - 1       (CA)         689*LBL 09       729 -       200 ¹² h       h         681 *COM*       730 RCL t       Twoment       The h       h         682*LBL 10       683 *F FL M**       684 RCL t       The h       h       h         683 *F FL M**       FL.U       733 RCL T       The h       h       h         683 *F FL M**       FL.U       733 RCL T       The h       h       h         684 PROMPT       685 TH**       738 STO L       Ad       W       2Ad         686 RTM       737 LRSTX       A       Ad       FL       FL         689 XED *AI*       738 ST+ \lambda       Ad       FL       FL         699 FC? 00       741 *       749 LASTX       Ad       FL         692 RTM       744       743 3       T       T         744 / C       743 RCL L       ZAd       ZAd       744 / Z												
673 KH       723 ST-1       (£A)         677 HEB TH**       724 LASTX       Ad         677 HEB TH**       725 *       Ad         678 PROMPT       726 ST- \       (£Ad)         679 STO 88       UbH.       728 *       Ad         689 HEB 69       681 *COM*       729 - $ZAd^2$ in in in in in in in in in in in in in								10.0	210	n		
$676+LBL 11$ $724 LRSTX$ $h$ $Ad$ $677 - WEB TH^{}$ $676 + EB + T^{}$ $726 ST - \chi$ $Ad$ $677 - WEB TH^{}$ $676 + EB + T^{}$ $6Ad$ $Ad$ $677 - WEB TH^{}$ $687 + EB + T^{}$ $6Ad$ $Ad$ $676 + EB + B + B + B + B + B + B + B + B + $	673 KIN								1			
677 - WEB TH*-       725 *       Ad         677 - WEB TH*-       726 ST - $\times$ $Ad$ 679 STO 88       Ub+th       727 LRSTX $hd^2$ 689+LBL 89       728 * $Ad^2$ $EAd^2$ $h$ 681 - COM*       738 RCL 1       Twint $h$ $h$ 682+LBL 10       683 - F FL W*-       683 - F FL W*- $732$ Rt $h$ $h$ 683 - F FL W*-       684 PROMPT       733 + $d$ $W$ $ZAd^2$ 684 PROMPT       685 - TH*-       735 * $A$ $W$ $ZAd^2$ 685 REN       737 LRSTX $d$ $W$ $ZAd^2$ 687 NH       737 LRSTX $d$ $M$ $A$ 687 VEB 23       689 RCL X       738 * $Ad$ 698 RCL A       740 RSTX $d$ $A$ 699 FC? 00       741 * $Ad^2$ $ZAd^2$ 692 RTN       743 ST $ZAd^2$ $ZAd^2$ 745 RCL N       ZAd $ZAd^2$ $ZAd^2$ 745 RCL N       ZAd $ZAd^2$ $ZAd^2$ 746 RCL 1 $ZA$ $ZAd^2$ $ZAd^$												
678 PROMPT       775 PROMPT         679 ST0 08 $V_{10}$ + $V_{11}$ 6380+LBL 09       727 LASTX         681 * COM*       728 *         682 * LBL 10       728 RCL 1         682 * LBL 10       728 RCL 1         683 * T- FL M**       731 RCL I         683 * T- FL M**       732 RCL 1         683 * T- FL M**       733 RCL 1         684 PROMPT       733 *         685 * TH**       735 ST+ 1         686 RTN       738 ST+ 1         687 + LBL 23       738 *         688 ARCL X       739 ST+ N         698 FC2 00       741 *         691 RVIEN       742 +         692 RTN       744 /         744 /       T         745 RCL N       ZAd ² 746 RCL 1       ZAd ² 747 ST+ X       T         746 RCL 1       ZAd ²												
679 STD 08 $U_{1b}$ + h.       727 LASTX $h_{ad}^{2}$ $\geq$ Ad $h_{ad}^{2}$ $h_{ad}^{2}$ $h_{ad}^{2}$ 689+LBL 09       729 - $\geq$ Ad $h_{ad}^{2}$ $h_{ad}^{2}$ $h_{ad}^{2}$ $h_{ad}^{2}$ $h_{ad}^{2}$ $h_{ad}^{2}$ 682+LBL 10       738 RCL 1       Townown       731 RCL I       Townown         683 + FL N**       684 PROMPT       733 + $d_{ad}^{2}$ $W$ $2Ad^{2}$ 684 PROMPT       685 TH**       736 ST+ 1       737 LASTX $d_{ad}^{2}$ $W$ $2Ad^{2}$ 687 * LBL 23       688 ARCL X       738 *       Ad $Ad$ $Ad$ $Ad$ 688 ARCL X       689 FC? 00       741 * $Ad^{2}$ $Z Ad^{2}$ $Ad$ $Z Ad^{2}$ 699 FC? 00       741 * $Z Ad^{2}$ $Z Ad^{2}$ $Z Ad^{2}$ $Z Ad^{2}$ 692 RTH       745 RCL N $Z Ad^{2}$ $Z Ad^{2}$ $Z Ad^{2}$ $Z Ad^{2}$ 692 RTH       745 RCL N $Z Ad^{2}$ $Z Ad^{2}$ $Z Ad^{2}$ $Z Ad^{2}$ $Z Ad^{2}$								1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							11.					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	679 510 88	Neb th					Adz	5 AJ	1			
681 $-COH^{-}$ 738 RCL $+$ Twon W         682+LBL 18       731 RCL I       Twon W         683 $+F$ FL H**       684 PROMPT       733 $+$ d         684 PROMPT       733 $+$ d       W       2Ad ² 684 PROMPT       735 $+$ A       d       W       2Ad ² 685 $-TH^{}$ 686 RTN       735 $+$ A       A         686 RTN       735 ST + J       J       A       A         687 + LBL 23       688 ARCL X       739 ST + \lambda       A       A         689 XEQ - RIT-       699 FC? 00       741 $+$ Ad ² ZAd ² 699 FC? 00       742 +       ZAd ² ZAd ² ZAd ² 692 RTN       745 RCL \lambda       ZAd ² ZAd ² ZAd ² 745 RCL \lambda       746 RCL J       ZAd ² ZAd ² ZAd ² 692 RTN       746 RCL J       ZAd ² ZAd ² ZAd ² ZAd ²												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									n	n		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	001 CUN											
683 +F FL N       FI. $\vee$ 733 +       d $\vee$ 684 PROMPT       685 *TH       734 \$TO L       735 *       A         685 *TH       686 RTN       735 *       A       A         687 *LBL 23       738 *       Ad       A         688 ARCL X       739 \$T+ \cdots       A         689 XEQ - AI-       740 LASTX       Ad         699 FC? 00       741 *       ZAd ¹ 692 RTN       743 3       I         745 RCL \cdots       ZAd       T         746 RCL J       ZAd       ZAd         747 ST + X       Y       D	(02A) BL 19							172	W	ZAd	+	
683       PTL W       734       STO I         684       PROMPT       735       *       A         685       TH       735       *       A         686       RTN       735       *       A         687+LBL 23       738       *       Ad         688       ARCL X       739       ST+ N         689       XEQ - AI-       740       LASTX         699       FC?       90       742 +       ZAd ² 691       AVIEN       743       J       J         692       RTN       744       I       ZAd ² 747       ST + X       Y       T       T         747       ST + X       Y       T       T		FLV		1			d			10		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				i								
686       RTN       736       ST+1       737       LASTX $d_{Ad}$ 687+LBL       23       738       738       Ad       Ad         688       ARCL       X       739       ST+ $\times$ Ad         689       XEQ       *AI*       Ad       Ad         699       FC?       08       741       * $Ad^2$ $ZAd^2$ 691       AVIEN       742       * $ZAd^2$ $ZAd^2$ $ZAd^2$ 692       RTN       743       T       T       ZAd $ZAd^2$ 745       RCL $\times$ ZAd       ZAd       ZAd       ZAd       ZAd       ZAd         748       //       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd       ZAd							A					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				i								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OOU KIN						£					
688 ARCL X       739 ST+ $\land$ $\partial_{AB^2}$ 689 XEQ "AI"       740 LASTX $\partial_{AB^2}$ 690 FC? 00       741 * $ZAB^2$ 691 AVIEN       742 + $ZAB^2$ 692 RTN       743 3       I         745 RCL $\land$ ZA         746 RCL J       ZA         747 ST+ X $\overline{Y}$	60741 DI 97						Ad					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							d	.				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							Hdz					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							ZAd	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V/L KIII						II					
$\begin{array}{c c} 746 \text{ RCL } J & \mathbb{Z}^{A} \\ 747 \text{ ST+ } X & \mathbb{Y} \\ 748  \end{array} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$							EAd		ł			
747 ST+ X 7							ΖA		1			$\frown$
												(5161)
749 Xt2 7 ² I							Y_		1			
							172	II				
							۱.		1			

Program <u>COMP</u> For <u>Composite Beam Analysis</u> bytes Page Sof S

••••••••••••••••••••••••••••••••••••••	X		Z	Т		X	ΙV	र	TT		
	Ŷ	Y Y ²	I			$\uparrow$	<u> </u>				
750 LASTX 751 X(> ]	ZA	Y	I		805 FS? 04						
752 *	2 A.YZ	I	-		806 FS? 06						
753 LASTX	A				807 CF 10 808 CF 22						
754 RDN	AYZ	I		A	809 FC? 09						
755 +	I				810 FS? 00						
756 RCL ]	Y	I	-	A	811 GTO <b>0</b> 5						
757 Rt	A	Y	I		812 -STUD -						
758 X⟨> ∖ 759 ≉	ZAR	I			813 FS? 10	01					
760 -	I	1			814 GTO 07	$f_{c}^{\prime}$					
761 ENTERT					815 .75 816 YtX	€;34					
762 ENTER ⁺	Id	I	I		817 7.25						
763 RCL [	d				818 *	1.25()	1				
764 RCL ]	Y Y Y	-	-	-	819 -FD						
765 -	Y 1.to	μI	I	I	820 PROMPT	Stra de	d				
766 / 767 RCL ]	Sb				821 X12	dz					
768 RCL \	A	Y	SL	I	822 *	stud cap	1				
769 RTN			~~		823 .87 824 FC? 84						
					825 SIGN						
770+LBL 31					826 /	oted cap					
771 "AISC"					827 FS? 22	[ ···· u]	1				
772 XROM "AA"				1	828 GTO 85						
773 CF 06 774 .4		•			829 CLA						
775 FS? 04											
776 .45					830+LBL 07						
777 STO 16	.45				831 "HCAP, K" 832 prompt	old Cap					
778 <b>-</b> NSD?-					833 2	pure	'l			Cfor	A15C
779 PROMPT					834 /			1		AS	
788 X=8?											07
781 SF 06					835+LBL 85						
782 CF 08 783 CLX					836 FC? 22						
784 <b>"PLAST?"</b>					837 CLX	Stulla					
785 FS? 96					838 STO 25	Phyla	ŧ.				
786 PROMPT					839+LBL -FY-						
787 X>0?					849 36						
788 SF 08					841 -F-Y KSI-						
789 .85 799 STO 24	.45				842 PROMPT	Fy					
790 STU 24 791 FS? 06	1.2				843 STO 06	'					
792 STO 16	.451				844 66 <del>**</del>	12				* Als	
793 8	.				845 X<>Y 846 X>Y?	Fy				LRT	=D
794 -N-					847 BEEP					A5.	1
795 FC? 09					848 X>Y?						
796 <b>PROMPT</b>	n				849 CF 08						
797 STO 20 798 SF 10	'`				850 CF 18						
799 CLA					851 FS? 08						
800 FC? 09					852 SF 18 853 END	F					
801 XEQ "Fc"	f'				0J3 CNJ	Fy		l			
802 ST* 24	fc' (.45.fc'	k									
003 314 10	K.47.0										
894 SF 10											
	1			l							

#### PLATE GIRDER ANALYSIS

xeq PLG (SIZE 032)

**SOFTKEYS** (USER mode ON)

- a Input intermediate stiffener spacing
- b Input new flanges and find moment capacity
- c Input new moments and lateral bracing spacing
- d Input new web section
- e Input new shear within a panel (e.g. for a new stiffener location)

Note: do not use softkey "b" before having begun flange input once already, since web and stiffener information must be processed before the beam's section and strength properties can be calculated.

## USER FLAGS

Flag 00	clear set	Full output Reduced output-many intermediate calculations not displayed
Flag 02	clear set	Warning BEEP disabled Warning BEEP enabled
Flag 04	clear set	AASHTO AISC

**INPUT SUMMARY** Note: The following summary is for a noncomposite plate girder. If analyzing a composite plate girder, many of the prompts encountered are summarized in the documentation for program COMP and are not repeated here. The user should become familiar with COMP before using PLG on a composite beam.

<u>Prompt</u> AASHTO or AISC	<u>Input</u> A reminder, not a prompt. Push R/S to continue.	<u>Default</u>
WSD?	Asking if by working stress method. Respond 1 for yes (WSD/ ASD), 0 for no (LFD/LRFD).	1 (WSD)
F-Y KSI	Steel yield stress, ksi.	No default
М1,'К	Greatest moment within panel being analyzed, in foot-kips. For composite designs, the sum of the NCDL, CDL, and LL moments input is used for M1 and it is not prompted.	No default

Prompt	Input	Default
M2,'K	Smallest moment within the panel in question. If moment reversal occurs, M2 is negative. <u>For an</u> <u>end panel, input M2 as zero.</u>	М1,'К
V, K	Shear at the location of interest within the panel.	No default
LAT BR SPA'	Spacing of the lateral bracing, or unbraced length of the com- pression flange, in <u>feet</u> . Assumed zero and not prompted for composit beams.	
WEB D"	Depth of the web plate, inches. Bypass (or enter zero) to accept last web configuration entered and begin stiffener calculations (if stiffeners are needed) or flange trials (if stiffeners aren't neede	
TH"	Web thickness, inches.	No default
END or INT PANEL:	A message, not a prompt. Push R/S	•
ST SPA"	Stiffener spacing, inches. By- pass (or enter zero) to accept last spacing and begin flange calculations. Press softkey e (lowercase) to input a new shear value (i.e. to look at another location within the panel).	Zero
COMP FL W"	Compression flange width, inches. If satisfied with previous flange, bypass (or key in zero) to enter new loads and begin analyzing a new panel.	
TH"	Compression flange thickness.	No default
TENS FL W"	Tension flange width, inches.	No default
TH"	Tension flange thickness, inches.	No default
OUTPUT SUMMARY	(Items in parenthesis are displayed flag 00 is clear)	only if

(MAX D/TW) Maximum allowable web slenderness

D/TW Actual web slenderness

2



ACT FV	Acting shear stress on the trial web
STIFF REQD or NO STIFF REQD	Telling whether or not intermediate stiffeners are needed for shear
MAX ST SPA"	Maximum allowable stiffener spacing, deter- mined by either spacing (for interior panels) or shear requirements (for end panels). If an interior panel, shear requirements may dictate a spacing considerably less than this calculated maximum.
TENS FIELD or NO TENS FIELD	Telling whether or not tension field action is being utilized. The program only uses t.f.a. when allowed by code; and for AISC designs, only when needed.
CV	Shear constant.
ALL FV	Allowable shear stress, ksi. If greater than ACT FV, displays OK; otherwise NG (no good).
(I, Y, S-C, S-Te, A)	Elastic section properties of the beam: mo- ment of inertia, neutral axis depth, section moduli of the compression and tension flanges, and area of the section.
(Z)	Plastic section modulus of the beam, in inches cubed (only if by LFD/LRFD)
b/T	Compression flange width to thickness ratio.
СЪ	Bending constant, to account for moment gradient on allowable bending stress.
ALL L/b	Allowable compression flange unbraced length to width ratio. See "FLANGES" section.
L/b OK or NG (AASHTO WSD only)	Checks compression flange L/b.
(L/r _T )	Unbraced length property for AISC designs.
(K _C ) (AISC ASD)	Web/flange slenderness interaction constant
(R _b ) (AASHTO LFD)	Composite dead load factor
TENS and COMP Fb	Allowable bending stresses for tension and compression flanges, in ksi (WSD/ASD only).
М	Allowable moment capacity.

PROGRAM FLAGS		
Flag 05	clear set	Interior web panel End panel-no tension field action
	clear	Have live load moment in COMP
Flag 06	clear set	WSD (working stress design) LFD (load factor design)
Flag 07	clear set	OK NG (no good)
	clear set	No stiffener required Stiffener is required
	clear set	L/b _{fl} is under limit (OK) (AASHTO WSD) L/b _{fl} is over limit (NG)
	clear set	h/t _w is under limit (beam) (AISC LRFD) h/t _w is over limit (plate girder)
Flag 08	clear set	Elastic design only Plastic design permitted <u>by designer</u>
Flag 09	clear set	Composite beam Non-composite beam
Flag 10	clear set	AISC LRFD or AASHTO AISC ASD
Flag 11	set	Within a subroutine
Flag 18	clear set	Elastic design only Plastic design allowed <u>by code</u> (compact)
Flag 19	clear set	Symmetrical beam (identical flanges) Asymmetrical beam
Flag 20	clear set	Tension field action allowed No tension field action allowed

# STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> Total beam depth (in SBM)
01	C or Cv; Beam area (in SBM); Allow. LL Moment
02	Beam I (in SBM);
03	Max. D/tw; Compr. flange width; Beam S _{bf} ; "B FL"
04	$(D/tw)^2$ ; Compression flange thickness; $S_{tf}$ (n=n)
05	$(1 + (D/do)^2)/(D/tw)^2$ Fy; Beam N.A.

<u>Register</u> 06	<u>Value</u> Fy, ksi
07	Web depth
08	Web thickness
09	Allowable Fv; Tension flange width (SBM); $1/r_T$ ; $\int_{-T}$ Composite N.A.
10	Actual D/tw; Tension flange thickness; M _R ; Concrete compr. force; S _c (n=n)
11	D/t _w ; Top flange S; (Slab + Haunch + Beam N.A.); S _{bf} (n=3n)
12	Beam Z; Allowable capacity M _u (in SFb); Effective slab thickness
13	Slab Thickness
14	Beam S _{bf} ; Slab area/N
15	Slab thickness + Haunch
16	.40, .45, or .85 x F _c '
17	NCDL M ("K stored)
18	Allowable tension flange stress
19	$M_p$ (in SFb); $S_{tf}$ (n=3n)
20	N
21	CDL Moment
22	Actual $F_v$ ; Number of studs required/available
23	$r_y; r_y X_1; "#STUDS"; S_{bf} (n=n)$
24	.85 FC'
25	Stud capacity/2
26	Live load moment
27	Slab area
28	M ₁ /M ₂
29	Shear interaction reduction factor
30	Lateral bracing spacing (inches stored)
31	™ ₂

#### PLATE GIRDER ANALYSIS

Program PLG analyzes a plate girder design for compliance with code requirements, and determines allowable stresses. It considers a beam one section at a time, considering shear, intermediate stiffener spacing, moment gradient, and section properties within each bracing bay or section of interest. The program can analyze a girder by one of four codes:

AISC ASD (Ninth Edition) AISC LRFD (First Edition) AASHTO WSD (1989) AASHTO LFD (1989)

AISC is followed if flag 04 is set. If flag 04 is clear, AASHTO is followed. At the beginning of a run, the designer is prompted "WSD?" Answering this with a 1 (yes) sets the program for ASD/ WSD; responding with a 0 (no) results in the use of LFD/LRFD rules.

For each bracing bay or stiffener panel analyzed, the program steps through the following sequence:

- Prompt maximum shear in panel, moments at each end, and spacing of lateral bracing.
- Try web configurations; check D/t_w and acting shear stress; see if intermediate stiffeners are needed.
- 3) Using last web configuration input, calculate minimum stiffener spacing; try different spacings, calculating allowable shear stress for each.
- Using last web and stiffener input, try different flange sizes; calculate section properties; check B/t_f and bracing requirements.
- 5) Calculate allowable stresses (ASD/WSD) or ultimate moments (LFD/LRFD) for each flange trial.
- 6) Start sequence for new panel.

Each step of the sequence repeats itself for new trials until the user bypasses the first prompt of that step, thus accepting the last parameter input. See the examples for clarification.

As mentioned, PLG analyzes a girder one section or bracing bay at a time; each section can be different. It prompts for moments M1 and M2 at the ends of the bay or section, the maximum shear V within the section, and the unbraced length if non-composite (the length of the bracing bay for noncomposite beams). If a uniform section is desired, it's still not a good idea to input the maximum moment and maximum shear as occurring at one point if they don't. For one thing, the lower shear coincident with the maximum moment may give a higher allowable bending stress. Also, the web stiffener analysis will change with the stiffener spacing, which presumably will change.

The value of the shear is a design variable affecting the intermediate stiffener area requirements and spacing and the allowable flange stress calculations, among other things. As such it must be calculated and input carefully. The moment values M1 and M2 are a little less critical. They are used for three things. First, if M2 is input as zero, the program assumes an end panel and the shear and stiffener calculations are done accordingly.

Second, the program uses the moments to figure  $C_b$  (for AISC) or to check for the 20% increase in bending stress allowed by AASHTO LFD. If designing by AISC, and the panel has a higher moment in the middle than at the ends, M1 and M2 must be input the same to force  $C_b=1.0$ .

Third, for AASHTO LFD, the maximum unbraced length for full plastic moment capacity is based on the moment ratio.

The sign convention used by PLG is that moments inducing single curvature are both positive; if they induce reverse curvature, the signs are opposite (either M1 or M2 is negative). Note that this is opposite the convention used by AISC.

Some of the things PLG does not do are:

- Analyze hybrid girders. The web and flanges must be the same yield strength. Program BM may be used to calculate the section properties of a hybrid girder.
- Design or analyze bearing or intermediate stiffeners, <u>unless</u> RAM program "STIF" is keyed into main memory; a listing follows. Space constraints prevented this from being included with PLG in the ROM.
- 3) Consider fatigue. The designer must do this.
- 4) Check stresses (yield on gross section against ultimate on net section) at splices or other bolt holes, or check that bolt hole area is less than 15% of gross area.

- 5) Check deflection or camber (although it does calculate moment of inertia).
- 6) Analyze beam-columns. Direct axial stress P/A is assumed to be negligible. See program SBCOL.

The following information concerning what the program <u>does</u> do, and how it does it, is broken down into seven sections, concerned respectively with: softkeys plastic analysis the web intermediate stiffener spacing the flanges allowable stresses and moment capacity composite design stiffener analysis

#### SOFTKEYS

Softkeys are used in PLG mainly for jumping from one area of analysis (for instance, stiffener spacing), to another (e.g. flanges). Softkey operation is complicated by the fact that PLG uses many subroutines outside the main program. However, most of these are either general-purpose subroutines such as "S", which have no softkeys of their own; or portions of program COMP (for input and composite beam design). All of the softkeys in COMP are uppercase (unshifted); all of PLG's softkeys are lowercase (shifted). Thus, to use a softkey in PLG, hold it down so that you can read its function in the display. If the softkey calls its native function (X/2, Y/X, etc.) instead of XEQ a or XEQ it means that you aren't within PLG and the c, softkey is inaccessible at the moment; continue holding it until it reads NULL. Then continue running the program until you're back in the main body, and try again.

Note that when analyzing composite beams, the program spends a lot of time within program COMP; but when running non-composite beams, most of the external subroutines are simply short output and display routines which can be gotten through quickly with a couple of SST's. As a quick check, USER mode is turned off while within COMP and turned back on upon re-entry into PLG.

#### PLASTIC DESIGN

Another potentially confusing item is the PLAST? prompt near the end of the initial input sequence. For design by LFD/LRFD, this prompt gives the user the option of disallowing plastic section analysis (the prompt does not appear for WSD/ASD designs). In other words, the maximum moment capacity is computed using elastic section properties at first yield. This "veto" ability was initiated for several reasons:

- 1) AASHTO eq. 10-94 involving flange-web slenderness interaction is not checked. For right-tothe-wire designs where this might be a problem, the user must check it and disallow plastic properties if necessary.
- 2) AASHTO 10.48.3 involving web thickness transitions is ignored, i.e. the allowable moment capacity is interpolated between elastic and plastic values. If the user is not comfortable with this, PLAST? can be disallowed for these "in-between" designs.
- 3) PLG automatically disallows plastic design for steel yield strengths above 65 ksi per AISC LRFD A5.1. This is assumed to meet the requirements of AASHTO 10.48.1.2.
- 4) For composite beams, flange b/t ratios are not checked since the flange is assumed restrained from local buckling by the shear connectors. For thin flanges with wide connector spacings (or nervous designers) it may be desireable to override this assumption.
- 5) Inevitably, some agencies will refuse to allow full utilization of plastic strength properties on their structures.

Answering 1 (yes) to the PLAST? prompt does not mandate plastic section analysis; it merely allows it. Applicable code provisions are still checked.

The above discussion is concerned with plastic <u>sec-</u> <u>tion</u> analysis; PLG assumes that loads are derived from an <u>elastic</u> structure analysis. AASHTO 10.44.1 is assumed to be met, with the 9/10 exception allowed by 10.48.13; for AISC LRFD designs, equation F1-4 is checked, not equation F1-1. If the user verifies that a section meets the requirements of F1-1, then PLG may be used for a plastically analyzed structural member by LRFD (i.e. the loads may be from a plastic structural analysis). Doing this generally results in a significant decrease in the design loading and thus in the level of conservatism.

Note that the status initially set by the PLAST? prompt can be changed manually at any time by changing the setting of flag 08. This should be done before the program begins calculating the allowable capacity; before or during input of the flange dimensions is a good time. The effective depth of the web used by PLG is the distance between the flanges rather than the full member depth, both for web slenderness and shear stress calculations. This is in keeping with AASHTO criteria and is in the spirit of AISC ASD rules (assuming web depth is 95% of full depth) for web slenderness; it is contrary to the liberalization allowed by AISC LRFD F2.1.

The value of  $h_c$  is correctly taken as twice the neutral axis depth for asymmetrical non-composite beams; however, for composite beams, the value used is that of the bare beam. This is conservative compared to the codes, and seems prudent given the uncertainty of construction loads prior to hardening of the slab. These limits are concerned primarily with slender web buckling. Putting a composite slab on a beam with its web already undergoing flexural buckling does not reverse the buckling.

AISC rules require calculation of a bending stress reduction factor,  $R_{PG}$ , for slender webs. PLG uses web depth per ASD section G2 rather than  $h_C$  as called for by LRFD A-G2-3.

The shear constant  $C_v$  is the ratio of a panel's buckling strength to its yield strength in shear.  $C_v$  may calculate and be displayed as greater than 1.0; however, for AASHTO and LRFD designs, a maximum of 1.0 is used since the web will yield in shear before it buckles. AISC ASD effectively liberalizes this limit to (0.4 x 2.89) or 1.156; i.e.  $F_v$  is never greater than 0.40  $F_v$ .

The maximum web depth:thickness ratio for <u>AISC</u> is figured assuming stiffeners spaced at 1.5 times the depth; this ratio is only slightly greater than that for an unstiffened girder. However, maximum stiffener spacing/depth is calculated as the greater of  $(260tw/h)^2$  or 3.0, not 1.5. This will very seldom cause conflict, since for the large h/t ratios typically involved, either the  $(260t_w/h)^2$  requirement or the shear stress requirements will dictate spacings less than 1.5h.

Maximum D/tw requirements for <u>AASHTO</u> are based on AASHTO 10.34.3.1 and 10.48.5.1, and similarly assume maximum stiffener spacing of 3.0 D, or 1.5 D for end panels (panels where one of the moments is input as zero). The increase allowed by 10.34.3.1.1 for bending stress less than allowable is not used, since at this point in the program the bending stress is not known. Stiffeners are required for  $D/t_w$  greater than 150, and to meet shear requirements. The web slenderness is checked against the AASHTO value of  $608/\sqrt{F_{\rm y}}$  over the web depth instead of  $640/\sqrt{F_{\rm y}}$  over the full depth, assuming the flanges comprise 5% of the depth ( $608 = .95 \times 640$ ). This is within the spirit of ASD rules and is conservative for LRFD. Another minor adjustment is made to the AISC ASD shear strength constant of 190 used for the calculation of C_v. The program uses  $\sqrt{36000}$ , which is 189.74, to match the AASHTO wording. For the same reason, PLG uses 186.95 instead of 187 in this portion of the LRFD code. These differences are obviously insignificant but may cause very minor differences between computed and hand-calculated versions of the same design.

PLG does not check web crippling; this must be investigated by the designer. Neither does it does check that the web is at least 5/16" thick per AASHTO 10.8.1 if designing by AASHTO. No thickness minimum is required for AISC designs.

#### **INTERMEDIATE STIFFENERS**

Stiffener spacing is checked and a warning displayed if it is greater than 3.0 D. If the limit is violated, the program still continues; however, the user may wish to use softkey "a" to input a new stiffener spacing. If an end panel is being analyzed by AASHTO, the limit used is 1.5 rather than 3.

Thicker webs may not require any intermediate stiffeners. However, if the actual/allowable shear stress is greater than 0.6 they may be desirable to eliminate flange stress reduction. Thus, even if the program finds NO STIFF REQD, the stiffener input sequence will still be entered. Or, press softkey (shift) a (in USER mode) to get to the stiffener input sequence and input a new stiffener spacing from elsewhere in the program. If no stiffeners are desired, simply bypass the STIFF SPA prompt (press R/S with no numeric entry) to get on to the flange design portion.

The portion of the program related to the analysis of the actual stiffeners had to be left out of this version of BRIDGEROM due to severe space constraints (largely due to the addition of AISC LRFD provisions, absent in the previous version). However, a listing of RAM program "STIF" is included. If this is present in main memory, it will be accessed as a subroutine by PLG and will analyze both intermediate and bearing stiffeners. <u>NOTE:</u> if you have any programs presently in main memory with the Label STIF, please change the title if intending to use PLG. For more information, see page D178.

#### FLANGES

For composite designs, PLG assumes an unbraced length of zero and Lb' (lateral bracing spacing) is never prompted.

Compression flange b/t ratios are checked using full flange width. For composite beams before hardening of the slab, the requirements of AASHTO 10.34.2.1.5 or 10.50(c), and AISC LRFD I3.4, regarding width to thickness ratios as a function of dead load stress, are <u>not</u> checked by the program and should be verified by the designer.

AASHTO WSD has upper limits on compression flange L/b, while AASHTO LFD and AISC simply keep reducing the allowable (compressive) bending stress. If an AASHTO WSD run finds "L/B NG", it is a Code violation, and the program returns for a new beam section. For situations where neither the unbraced length nor the flange width can be changed (i.e. rating of existing structures), the user is left with the choice of ignoring the limit and extrapolating the parabolic reduction equation beyond that point (as the other codes do) or pronouncing the structure impossible to rate or possessing no strength. PLG will be of no help in any of these situations, since it does acknowledge the code cutoff point.

For very wide thin flanges, AISC LRFD equation A-B5-3 is identical to the Eighth Edition ASD equation C2-3. This has been changed in the Ninth Edition ASD spec., appearing as ASD equation A-B5-3; the equations are similar except for the introduction of a web slenderness interaction constant  $K_c$ . PLG incorporates  $K_c$  into ASD equation F1-4; however the infrequently used Appendix B equation is the older Eighth Edition ASD C2-3 (LRFD A-B5-3). For designers who like to stretch the bounds of present knowledge concerning very wide thin flanges, the newer Ninth Edition equation should be checked by hand.

The program makes a few minor adjustments to code constants in the interest of efficient use of code. The LRFD constant of 11,200 in the b/2t check is taken as 11,250. Also, for AISC ASD designs, the program assumes b/2t <  $195//F_y$  K_C; it doesn't check equation A-B5-4 in appendix B.

#### ALLOWABLE STRESSES and MOMENT CAPACITY

The AISC LRFD code explicitly considers the strength of a beam as the lowest of three values based on analysis of web slenderness (WLB), flange slenderness (FLB), and overall (unbraced length) buckling (LTB). Program PLG uses this approach for all four of the codes accepted (AASHTO WSD/LFD and AISC ASD/LRFD); the moment capacity of the beam is calculated based on each of the three criteria (WLB is not considered for LRFD "plate girders" (very slender-webbed members) and for AASHTO WSD analysis, which has no such provisions). The final moment capacity output is the least of these two or three values. If by LRFD, this final capacity is multiplied by the undercapacity factor phi (which is why it is not the same as any of the preliminary values).

Except for AASHTO WSD, the codes recognize three levels of "compactness" for each of the three beam criteria: compact

intermediate between compact and non-compact non-compact

"Compact" beams have a moment capacity (allowable stress) equal to the plastic moment of the beam (0.66  $F_y$  for AISC ASD). "Non-compact" beams have a capacity (allowable stress) less than or equal to the elastic strength at first yield (0.60  $F_y$  for ASD). And, "intermediate" beams have a strength (stress) interpolated between these levels.

#### ALLOWABLE STRESSES: WSD/ASD

For WSD/ASD, the program uses the actual value of 0.55, .60, or .66  $F_y$  rather than the rounded-off values often used; i.e. for compact AISC designs it outputs 21.6 ksi instead of the familiar 22 ksi (Grade 36 steel). These values are then reduced for lateral-bracing, flange-slenderness, and shear-interaction requirements; AISC designs also are reduced for web slenderness.

For reduction in the allowable bending stress due to high shear stress in the web (shear interaction), AISC reduces only the allowable tension web stress, while AASHTO simply reduces all stresses. PLG reduces both tension and compression flange stress, which is correct for AASHTO and makes no difference for most AISC designs. In the unlikely event that AISC would allow a higher compression than tension stress, the output allowable compression stress will thus be slightly conservative.

AISC only makes this reduction if tension field action is being utilized; AASHTO considers it for all high shear areas. Thus, when designing by AISC, the REDX=... display only appears if tension field action was necessary to carry a shear load with a given web and stiffener spacing. If the web has sufficient shear capacity without relying on the tension field, no reduction is applied. AASHTO takes a simpler view of things; tension field action is always assumed used and the reduction is always investigated. For simplicity, PLG takes the constants in AASHTO WSD equation 10-29 in 10.34.4.4 as .55 x (1.375 and .625) instead of .754 and .34; the difference is negligible.

This reduction is <u>not</u> additive with reductions in compressive flange stress due to lateral bracing requirements for WSD/ASD designs. However, due to the way the equations are written, the reduction <u>is</u> additive with other reductions for LFD/LRFD. Program PLG takes this shear-interaction reduction as additive in all cases and is thus slightly conservative for ASD/WSD designs. While the AASHTO WSD code is a generally conservative code, AISC ASD often results in members which are lighter than the other codes would allow. Thus this small degree of conservatism is not inappropriate.

#### MOMENT CAPACITY: LFD/LRFD

As mentioned, moment capacities for beams with compactness properties in the "intermediate" range are figured by interpolating between the elastic moment at first yield and the plastic moment. For WLB (slender web) calculations, the elastic moment is figured with the section modulus taken with respect to the compression flange, and when this flange is smaller than or equal to the tension flange this calculation is straightforward. However, when the compression flange is distinctly larger than the tension flange, its section modulus may be greater than the plastic modulus Z of the beam, which, of course, represents a physically impossible situation. In this case, neither AASHTO nor AISC offers much advice. Whether the intent is to use the moment corresponding to first yield of the compression flange with the tension zone partially yielded (a difficult computation) or the much lower moment at tension flange yield, or some other value, is unknown. In this instance, PLG uses the full compression section modulus, but with an upper limit of the plastic In other words, the program may interpolate modulus. between Z and Z. Please note that this applies only to WLB calculations.

For the case of flange slenderness (FLB) calculations, the elastic moment is figured differently for AASHTO LFD and AISC LRFD designs. For thin-webbed "plate girder" design, LRFD appendix G2 is quite straightforward, and the program follows it directly. For stout-webbed "beam" design, LRFD reduces the yield stress by  $F_r$ , the assumed residual stress; PLG uses the compression flange  $S_x$  for this case. AASHTO also specifies the full compression flange  $S_x$ , but with the full yield stress. In this case, as for web slenderness, PLG uses this moment up to a limiting value of the plastic moment.

#### COMPOSITE BEAMS

Note: this section mostly reiterates information concerning composite <u>built-up</u> beams from the preceding material. The documentation for program COMP concerns itself with all composite beams and should be consulted along with this documentation for composite plate girders.

The stability of a composite beam during construction is not checked directly by the program. To do this a separate run must be made with the COMP? prompt answered 0 (no). The designer should input the weight of the wet slab and beam as dead load, and whatever construction live load is likely to be applied. Depending on the degree of restraint afforded by the slab falsework, the unbraced length of the compression flange will probably be the distance between cross bracing. AASHTO 10.50(e), forbidding tension field action in a composite beam before hardening of the slab, is not checked by the program and must be checked by the designer. AASHTO 10.50(d) is not checked, but the constant  $R_h$  is calculated for use by the designer.

Non-composite beams are checked on the basis of three criteria: web slenderness (WLB), flange slenderness (FLB), and unbraced length (LTB). For composite beams, only web slenderness is checked. For plastic design, if the web is compact, a fully plastic composite section is used. However, if the web falls between the compact and non-compact limits, PLG does not interpolate between the plastic and elastic (first yield) levels of strength; the moment capacity output is that of the elastic section at first yield, as directed by both AASHTO 10.50.1.2 and AISC LRFD I3.2.

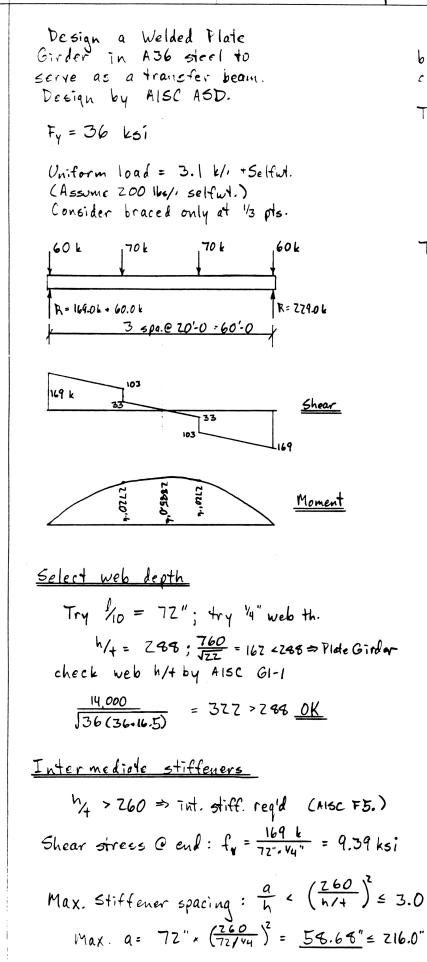
The value of  $h_c$  is correctly taken as twice the neutral axis depth for asymmetrical non-composite beams; however, for composite beams, the value used is that of the bare beam. This is conservative compared to the codes, and seems prudent given the uncertainty of construction loads prior to hardening of the slab.

For composite beams, flange b/t ratios are not checked since the flange is assumed restrained from local buckling by the shear connectors. For thin flanges with wide connector spacings, the designer should check by hand that FLB does not govern the design. For composite beams before hardening of the slab, the requirements of AASHTO 10.34.2.1.5 or 10.50(c), and AISC LRFD I3.4, regarding flange width to thickness ratios as a function of dead load stress, are <u>not</u> checked by the program and should be verified by the designer. The flange is also assumed restrained against LTB by the slab and shear connectors. For composite designs, PLG assumes an unbraced length of zero and Lb' (lateral bracing spacing) is never prompted.

#### STIFFENER ANALYSIS

Program PLG does not analyze stiffeners by itself. However, it will access a subroutine in Main Memory named STIF if such a program exists. (Note: If by chance you have any programs in memory named "STIF", <u>change the name</u> if using program PLG.) A listing of this program follows. It uses the same flag conventions and storage registers as PLG, and requires 393 bytes (57 registers) of memory in RAM.

STIF analyzes both bearing and intermediate stiffeners. Bearing stiffeners are assumed to consist of one plate on each side of the web; intermediate stiffeners may be one or two plates. All applicable provisions of AASHTO or AISC are checked, with these exceptions:


- AASHTO LFD bearing stiffener analysis gives an allowable <u>factored</u> load instead of following WSD criteria as specified.
- 2) AASHTO WSD intermediate stiffener analysis uses the minimum area requirement from the LFD spec.
- 3) Shear transfer (i.e. weld size) is not addressed. Neither is intermediate stiffener length.
- 4) All bearing stiffeners are analyzed as columns with effective length equal to web depth. This is contrary to the 75% criterion of AISC.
- 5) Single intermediate stiffener moment of inertia is calculated from center of web instead of edge of stiffener plate.

	01♦LBL "STIF"	X	Y	Z	T	L		X	Y	र	T	L	-
	02 CF 25 03 XROM "LL"	1					58 RCL 11	a/d	1		<u> </u>		-
							59°X†2	40					
•••	04 CLX						60 2.5						
	05 CLA						61 8						
07	06 XROK "NO" "F INT ST 1,2"					1	62 2						
07	08 PROMPT						• 63 -						
	09 X=0?						64.5						
	10 RTN					·	65 X>Y?						
	10 Kin						66 X<>Y						
	12 X=Y?						67 RDN						
	13 2.4						68 •J•						
	13 2.4 14 STO 00	B					69 XROM -1	/-					
	15 RCL 11						70 RCL 07						
	16 1/X						71 RCL 11						
	17 ENTERT						* - 72 0						
	18 Xt2						(3 +						
	19 ENTERT						74 RCL 08						
	20 SIGN						75 3						
	21 LASTX						76 YtX						
	22 +						77 *						
	23 SQRT												
	23 Jeks						78+LBL 03						
	25 -						79 STO 10						
	26 RCL 07						80 -MIN I						
	27 RCL 08						81 XROM -1						
	28 *		1				82 -MIN A						
	29 RCL 00						<b>8</b> 3 X<>Y						
	30 ×						84 X(0?						
	30 -						<b>85 •</b> ⊢<0 •						
	32 /		1		1		86 STO 12						
	33 1					·	87 XROM -	/-					
	34 RCL 01					1	<b>88 25</b> 6						
	35 -					1	89 RCL 06						
	36 <b>*</b>						98 *						
V	37 RCL 09						91 FS? 06						
	38 /						92 6760						
	39 RCL 22						93 CLA						
	40 *		1	1	1		94 XEQ 14						
	41 FC? 10		· ·	1	1		95 SF 14					1	
	42 GTD 00		1	1							1		
	43 *		1	1	1		96+LBL 07						
	44 RCL 87		1	1	1	1	97 XROM -	.					
	45 58		1	1			98 CF 07						
	46 /		1	1	1	1	99 <b>-</b> INT"						
	47 Xt2	1	1	1	1		100 XEQ 11						
	48 812			1	1	1	101 X=0?						
	49 GTO 03			1			102 GTO 10						
			1	1	1		103 RCL 10						
	50+L8L 00				1		104 Rt						
	51.3			1	1		105 RCL 00						
	52 *			1	1		106 INT						
	53 RCL 08		1	1	1		107 ST/ 02					1	
	54 X*2		1				108 /						
	55 18			1			109 *						
	56 *						110 3						
	57 -						111 /						
	-	1	1	1	1	1	113 STO 05		1	1	1	1	

Program STIF For Plate Girder Stiffeners ____ bytes PageZof 3

	X	Y_	Z	T	L		X	ΙΥ	モ	T	L	
113 RCL 04						168 RCL 04						
114 RCL 07						169 -						
115 30						170 RCL 08						
116 /						171 *						
117 2						172 ST+ 02						
118 +												
119 FS? 04						173 RCL 07						
120 CLX			1			174 RCL 00			1			
120 CEX						175 RCL 82						
						176 /	1					
122 SF 07						177 SQRT						
123 95						178 /						
124 RCL 06						179 XROM "SFa"						
125 SQRT						180 RCL 02						
126 /						181 +						
127 FC? 04						182 "ALL R="						
128 16						183 ARCL X						
129 RCL 04						184 <b>-</b> ⊢ K•						
130 RCL 03						185 AVIEN	1					
131 /						186 GTO 03						
132 X>Y?						166 610 63						
133 SF 07						1074LDI 11						
134 RCL 02						187+LBL 11	1					
135 RCL 12						188 CF 07						
136 X)Y?						189 CLX	1					
137 SF 07				1		190 "H ST W"	[					
	1					191 XROM - IN-						
138 RCL 05						192 PROMPT	1					
139 RCL 10						193 STO 03						
140 X>Y?						194 -TH-						
141 SF 07						195 XROM - IN-						
142 -STIFF-						196 PROMPT				1	{	
143 XROM "OK"						197 STO 04						
144 AVIEW						198 RCL 83						
145 GTO 07						199 ST+ X						
						200 RCL 08						
146+LBL 10						201 +						
147 XROM "L*"						202 *					1	
148 -BS -						202 4 203 STO 02						
149 4752			1					1				
150 XEQ 14	1		1			204 LASTX						
				1		205 Xt2						
151+LBL 03						206 *					1	
152 XROM -L-						207 12	1					
152 SRUT E						268 /	1				1	
155 DRG			1			209 RCL 09					1	
			1					1				
155 X=0?						210+LBL 04						
156 RTN			1			211 RCL 03						
157 Rt						212 RCL 04						
158 STO 00	1	1	1	1		213 /						
159 25		1				214 "b/T="						
160 FC? 04						215 ARCL X			1		1	
161-18						216 X>Y?	1		1	1		
162 TWEB W=*			1			217 SF 07						
163 ARCL X				1		218 XROM *OK*						
164 -F TW2-						219 AVIEW						
165 PROMPT						217 HTTCK 228 RTN						
166 RCL 08	1					225 KIN						
167 ×	1	1	1	1					1		1	

232 END	221+LBL 14 222 SQRT 223 FS? 04 224 95 225 RCL 06 226 SQRT 227 / 228 STO 09 229 "HMAX b/T" 230 XROM "Y" 231 Rt 232 END			
---------	--------------------------------------------------------------------------------------------------------------------------------------------------------	--	--	--



In end panel, spacing will be governed by shear stress considerations. (AISC 1.10.5.2) Try first space @ 24" :  $a_{h} = \frac{24}{7z} = .333$  $9_{h} < 1 \Rightarrow k = 4.0 + \frac{5.34}{64^{1/2}} = 52.06$ Try  $C_{y} = \frac{190}{n/4} \int_{F_{y}}^{k} = \frac{190}{244} \cdot \int_{-\frac{57.06}{36}}^{\frac{57.06}{36}}$ = .7933 Cy < 0.8 => re. calculate  $C_{v} = \frac{45.000 \cdot k}{F_{v} \cdot (h/t)^{2}} = \frac{45.000 \cdot 52.06}{36 \cdot 288^{2}}$ = .7846 Allow,  $F_v = \frac{F_v}{7.59}(C_v) \leq .40 F_y$ 36 * .7446 = 9.7731 ksi 6000 .40 ×36 = 14.40 bis 9.77 ksi = 9.39 actual OK Locate first int. stiff. @ 24" Thereafter, use tension field action (AISC eq G3-1). Spacing probably governed by minimum 58.68". Between first int. stiff. and bearing stiffeners under 70 k loads, have: 20' · 12 = 240"  $1^{sq}$  spa  $\frac{24''}{716''}$ 

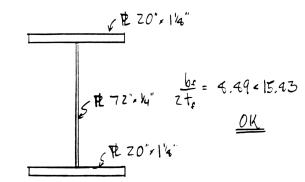
AISC A.S.D.  
INT. Stiff. 
$$((-+1)^{3})$$
  
 $716^{n}/54.64^{n} = 3.66$   
Try 4 6pa.@ 54"  
 $\frac{9}{h} = \frac{54}{72} = .75 \le 1.0$   
 $\Rightarrow k = 4.0 + \frac{5.34}{(a/h)^{3}} = 13.49$   
 $C_{v} = \frac{45.000.k}{36.02463^{2}} = .2034 \le 0.40$  M  
 $F_{v} = \frac{F_{v}}{3.6.02463^{2}} = .2034 \le 0.40$  Fy  
 $.40$  Fy = 14.40 Loi:  
 $\frac{36}{2.49} \times (.2034 + \frac{1 - .2034}{1.15\sqrt{11 - .752}}) = 9.44$  Loi:  
Allow. Fy = 9.444 Loi: > 9.39 Loi: OK  
Center Pauel  
 $\frac{h}{T} = 266 > 260 \Rightarrow stiff. still regid.
However, shear stress unlikely to
givern. Max spa. = 56.68" (see
previous page).
 $(20'-12 - 14")/56.66 = 3.45$   
Space  $e = \frac{226'}{4} = \frac{56.62"}{56.65}$$ 

Intermediate Stiffener Dram Try Single Stiffer an (AISC LID. 74) Min.  $A_{sr} = \frac{1-C_v}{2} \left( \frac{q}{h} - \frac{(q/h)^2}{1-(q/h)^2} \right) h.t.D = \frac{c_v}{F}$ D=Z.4 for eingle plote stiff. 1= strafener: 1-.7446 × (.333 - .3332) =.0245 Center panel would govern du to low shear. Red of end paurl: 1-.2034 (-75 - -752) = 1195 - Garans  $Min A_{st} = .1195 \times (72, 4) \times 2.4 - \frac{9.39}{9.40}$ = 5,13,0" Try 7"x 3/4" stiff. A. - 5.25 0" OK  $I_{sr} = \frac{7^3 \times .75}{3} = 85.8 \text{ in}^4$  $Min I = {\binom{h}{f_0}}^4 = {\binom{72}{f_0}}^4 = {\frac{4,30}{10}}^{\frac{11}{2}} OK$ Slenderness:  $b_T = \frac{7}{.75} = 9.33$ 95 = 15.83>9.33 OK Use single PP 7 = 3/4

Note: PLG requires Main Memory program "STIF" to analyze intermediate and bearing stiffeners.

AISC A.S.D.

End Bearing Stiffounds TITTT effective web (AISC KI.S) Reaction = ZZ9.0 K Estimate 20" flanges = Use 8" plates Size for ~ ZO ksi allowable.  $\frac{779.01}{70.4.5} = 11.45 to"$ 11.45 - 3" * 14" = 10.70 0 10.70/2.8" = .67" => Width shald it govern  $(AISC B5.1) \stackrel{b}{+} < \frac{95}{VF_v} = \frac{95}{V36} = 15.83$ :. Use Z R 8" + 34" 6/+ = 10.7 · 15.93 OK I = 16.25 × .75/17 = 268.19 in4 Areq = Zx 8"x. 75"+ 3"x 14" = 12.750" r = [F/4 = 4.546" Use eff. length = d = 72" (AISC KI.8 allows 54") Allow, P= 20.45 kois 12.750" = 265.9 k265,96 > 229.06 OK


Since third A. stiffeners have greater effective web width and smaller load, and since a thinner stiffener will impinge on width the limit,

### USE SAME STIFF. @ 1/3 PTS.

### FLANGE DESIGN Check allowable comp. stress (ABC GZ) Web 1/4 = 72 = 288 $Max_{4} = \frac{760}{\sqrt{F_{1}}} = \frac{760}{\sqrt{71.6}} = 163.5$ 249 >> 163.5 => reduce allow. FL Assume F, = 20 kei for triol Flange @ Center, M= 2445.0" $A_{f} \approx \frac{M}{F_{h}} - \frac{A_{w}}{L} = \frac{7845.0.12}{20.72} - \frac{72.14}{6}$ = 71.04 " Long unbroced length => desire wide flanges. (AISC B5.1) 2+ < 95 VFy = 15.43 br = 31.66 tr From AISC App. A, Table 3-36 for #=15.7, Fa=20.95ksi TRY 20" + 1/2" FLANGES

5 SOUARE 5 SOUARE 5 SOUARE S0 SHEETS 100 SHEETS 200 SHEETS 42 381 

AISC A.S.D.



$$W_{eb}: 72^{3} \times \frac{1}{4} / 12 = 7776.0$$
F1.  $Z \cdot 1.175^{3} \cdot 70 / 12 = 4.75$   
 $Z \cdot (36.5625)^{3} \cdot 20 \cdot 1.175 = 60.156.74$   
 $67.937.49$  in "  
 $S = \frac{67.937.49}{37.125} = 1629.97$ 

$$\frac{\text{Flange 541ess reduction in center pane}}{|I_{el} = \frac{20^3 \times |.125}{12} = 750.0}$$

$$A_{e} + \frac{A_{w}}{6} = 20 \cdot 1.125 + \frac{1}{6} \times 72' \cdot \frac{1}{4}'' = 25.50_{P}$$

$$r_{T} = \sqrt{\frac{1}{4}} = 5.4233''$$

Center Paniel: 
$$M_1 = M_2 \Rightarrow C_b = 1.0$$
  

$$\int \frac{102 \times 10^3 \cdot C_b}{F_Y} = 53.23 \quad (A15C \ 1.5.1.4.5(2))$$

$$\frac{1}{F_T} = \frac{20' \times 12}{5.42''} = 44.25$$

$$\frac{1}{F_T} < 53.23 \Rightarrow F_b = .60 \ F_Y = \frac{21.6 \ bei}{F_T}$$
Reduction due to web stenderness

$$F_{b}' = F_{b} \left[ 1 - .0005 \frac{A_{w}}{A_{e}} \left( \frac{h}{T} - \frac{760}{\sqrt{F_{b}}} \right) \right]$$
 (AISC GZ.)

$$F_{k}' = 21.4(1 - 0.005 \frac{14.0}{2.2.5} (224 - \frac{760}{\sqrt{22}}))$$

$$= \frac{7.0.511 \text{ kci}}{2.2.5} (2000, Flave)$$
Max. Tene. Flavac  $F_{k} = \frac{21.6 \text{ kci}}{2.1.6 \text{ kci}}$ 
Max.  $M = 20.511 \text{ kci} + 1.429.97 \text{ is}^{3}/12$ 

$$= 3127.90^{1.4} > 24435 \frac{0.4}{0.4}$$

$$\frac{Flavac Streec in End Panels}{M_{1}} = 0$$

$$C_{k} = 1.75 \cdot 1.05 \frac{M_{1}}{M_{2}} + 0.3 \left(\frac{M_{1}}{M_{2}}\right)^{2} = 1.75$$

$$\int \frac{102 \cdot (0^{2} \cdot 1.75)}{36} = 70.472$$

$$\frac{Reduce flavaes to 20^{''} \cdot \frac{3}{4}''}{12}$$
at approx. 10' from supports
$$\frac{1}{24} = 13.33 < 15.43 \frac{0K}{11}$$
I: web  $7776.0$ 
fl  $2x \cdot 75^{3} \cdot 20.75 = 3.9644.72$ 

$$S = \frac{1}{36.75} = 1291.74 \text{ in}^{3}$$
Consider small fl. entire 20'
for  $1/r_{T}$ 

$$I_{e_{1}} = \frac{20^{2} \cdot .75}{12} = 5.00 \text{ in}^{4}$$

$$A_{f} \cdot \frac{A_{t}}{6} = 20.76 + 3.0 = 14.0$$

$$f_{T} = \sqrt{\frac{1}{4}} = 5.2705''$$

Reduced Flamos  $\int_{V} = \frac{20' \times 12}{5.27} = 45.54$ 45.54 < 70.42 OK Tens. F = . 60 Fy = ZZ ksi Comp. Fn = ZI.6 (1-.0005 15.0 (Z44-760)) = 19.967 ksi Max. Me flarge reduction = 19.967, 1291.74 in3/12 - 2149.37 14 Appoximately,  $\frac{2149}{7720} = \frac{X}{20}$ x = 15.8' Locate Flamac Reduction 15-0 from & Reaction Check shear interaction @ Conc. Load  $f_v = \frac{103 \, k}{77 \cdot k_0} = 5.722 \, \text{ksi}$ Fy = 9.44 ksi (see sh. 2)  $(.825 - .375 \frac{f_{y}}{F_{y}}), F_{y} = .598, F_{y} \approx .60 F_{y}$ => Use F, as above (AISC 65-1)

Check Web Crippling Under 3.1 4/1 uniform load with flange restrained against rotation  $\frac{3.|k|_{1}}{|7''_{1}''_{1}''_{1}} = \frac{1.03 \text{ ksi}}{10.3 \text{ ksi}}$ Eighth Edition Allowable comp. stress (AISC 1.10-10)  $(5.5 - \frac{4}{(a/b)^2}) \times \frac{10,000}{(b/t)^2} = (5.5 - \frac{4}{(.7447)^2}) \times \frac{10,000}{244^2}$ = 1.45 ksi <u>OK</u> Note : Program PLG Does not check web crippling. This must be done by the chaineer. Ninth Edition ABC is not particularly clear on this requirement. Check Weight Heavy section = 214.2 12/ × 30'= 6426 Light section = 163.2 1/1 . 30'= 4296 11,322  $\frac{11.322}{60'} = 144.7 \frac{16}{10} avo.$ => 200 16% assumed is OK

ASU or. 616

LRFD ex Z/6

LRFD ex. 3/6

## CRFD ex 46

LRFD ex. 516

LRFD et. 6/6

AASHTO Plote Girder WSD

airders for a 90-0 Engle spon bridge Design Lood : HEZO Fy = 50 ksi (A586) f'' = 4.0 kei Vec AASHTO Working Stress Decian 42'-0 `**o** [ 4 spa.@ 9'-6 LOADS <u>NCDL</u>: Beam est. .20 k/, Deck .67'x9.5'r, 15 = <u>.95 k/</u>, 1.15 k/ NCOL M=  $\frac{1.15,90^2}{4} = \frac{1164.34^{11}}{164.34}$ CDL (Composite Deal Load) Rails Z. . 44 k/, / 5 beans = . 18 k/, Rails 21.74" 15 mm FWS 42'.02ker 15 = .174/ 354/  $CDL M = \frac{.35.90^2}{4} = \frac{.354.36''k}{.36''k}$ Live Load From AASHTO App. A for 90' span: M = 1344.4" / lane ; V = 64.5 / lane  $I_{mpac} = \frac{50}{1+175} = \frac{50}{90+175} = .2326$ 

Design the merior

Distribution =  $\frac{Bm Spa}{5.5} = \frac{9.5}{5.5} = 1.72.73 \frac{\text{wheel}}{\text{beam}}$ M. 1344.41/1/lanic - (1.2326 *  $\frac{1}{2} \frac{\text{lane}}{\text{beam}} + 1.7273$ )

LL M = 1344.4 · 1.0645 = 1431.09^{nL}  
LL N = 64.5 · 1.0645 = 66.66 k  
CDL V = .35 4... 417'' = 15.75  
NCDL V = 1.15' · .15'' = E1.75  
136.16 k  
AASHTO 10.5.2 recommends 4/2 30  
for composition problems  
Use 48'' kib; 
$$1/d = 22.5$$
 CK  
Max. DAw = 140 for A542 (10.34.3.1.2)  
AASHTO 10.4.1 limits min. thick = 5/6'  
Try 3/6'' thick web  
fv = 136.16 L  
 $V_{45''} = 7.56 Loi
Use 48'' is 128 < 150 OK
(10.34.4.1)
Fv = 5.625 · 104 = 3.43 ks: < 7.56 NG
(10.34.4.1)
Fv = 5.625 · 104 = 3.43 ks: < 7.56 NG
(10.34.4.1)
Fv = 7.104 Stiffeners Regid
First stiffener Spa. = D/2
Try 24'''
Fv = 7.104 C1 + (D16)2]  $\leq$  Fy  
 $= \frac{7.104 \cdot C1 + (2420)3]}{1282}$  = 21.3665i  
iza2  
M Fy/3 = 16.67 ksi  
N6.67 > 7.56 ksi  $\Rightarrow$  24'' OK$ 

$$\frac{L \text{ ocate } \text{ remaining statements}}{\text{Max. spa.: } 1.5D = 72 " (10.34.4.2)}$$
Try spa. @ max : 72"
$$C = \frac{2.7 \cdot 10^5 [1 + (M_{4/72})^2]}{F_{Y} (D/A_{3})^2} = 1$$

$$C = \frac{7.2 \cdot 10^5 [1 + (M_{4/72})^2]}{500(126)^2} = .3679$$
Allow.  $F_{V} = \frac{F_{V}}{3} \left[ C + \frac{87(1-C)}{11 \cdot (d_{1}/D_{y})^{2}} \right] = 11.36 \text{ Loi}$ 

$$11.36 > 7.56 \text{ Loi} OK$$
Check 10.34.4.4 :  $\frac{7.56}{11.36} = .66 > .60$ 

$$\Rightarrow reduce bending stress. (10.34.4.4)$$
Max.  $F_{b} = (.754 - .34 \cdot \frac{7.56}{11.36}), 50 = \underline{26.42 \text{ Loi}}$ 

$$\frac{\text{Design Int. Stiffenents}}{11.36}$$
Use 1-side (single) stiffeners  
Min. I =  $d_{0} + \frac{3}{3}$  J  
 $J = 2.5 (\frac{10}{7} + \frac{3}{5} - 2 = 0.5$   
Fired stiff.: J =  $2.5 \times (\frac{48}{24})^{2} - 2 = 4.0$   
Min. I =  $24^{\circ} \cdot (.375)^{\circ} \cdot 6.0 = 10.125 \text{ in}^{\circ}$   
Read of Sinff.: J  $\cdot 2.5 \cdot (\frac{48}{24})^{2} - 2 = -.69$   
 $\Rightarrow J = .5$   
Min. I =  $72^{\circ} \times (.375)^{\circ} \cdot .5 = 1.696 \text{ in}^{\circ}$   
 $\therefore$  Min. I = 10.125 in4 (10.34.4.7)

Min. Stift. Whilt : 2" + 
$$\frac{D}{30}$$
  
= Z" +  $\frac{UG}{30}$  = 3.6" (10.34,4.10)  
Try 5" *  $\frac{5}{16}$ " Stiffeners  
I =  $\frac{5^3 \cdot 5}{3}$  = 13.02 in" OK  
 $\frac{1}{8} = \frac{5}{516}$  = 16 OK  
USE 5" *  $\frac{5}{16}$ " SINGLE STIFF.  
BEARING STIFFENERS  
Design for reaction = 136.16  
Assume 14" Wide Top Tlanoc  
 $\Rightarrow try 6'z$ " stiffeners  
(Use A588 for brg stiff.)  
Min. th. =  $\frac{6}{12}$ ,  $\frac{50}{33}$  = .67"  
Try  $\frac{3}{12}$ " *  $\frac{6'z}{2}$ " Stiff.  
(10.34.6.1) Avel: (16.3%) × 3%  
 $a_{stiff} = 2.65 \cdot 34 \cdot \frac{9}{12} = 149.54$  int  
 $r = \sqrt{74}$  = 3.49"  
Use L • 46"; assume K • 1  
 $\frac{KN}{T} = 13.755$ 

2/

$$C_{c} = \sqrt{\frac{2\pi^{2}E}{F_{y}}} = 107.0$$

$$\frac{K\theta}{F} = C_{c} \Rightarrow F_{a} = 23.59 - .00103 \left(\frac{V\theta}{T}\right)^{2}$$

$$= 23.325 \text{ kei}$$

$$h_{ci} = \frac{136.16 \text{ k}}{12.78 \text{ p}^{n}} = 11.09 \text{ ksi} \frac{OK}{OK}$$
Note: FLG does not check beaving stiff.  

$$\frac{FLANGFS}{f}$$
Desire  $\approx 14^{n} \text{ min. width}$ 
of top flange, for shear  
stud placement, erection  
stability.  
Min. th. =  $\frac{b}{20} = \frac{14^{2}}{20} = .70^{n}$   
 $(10.34.2.1.4)$ 

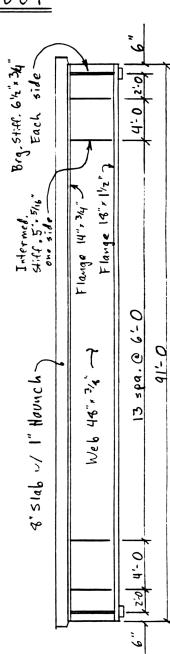
$$\frac{Try}{14^{n}} \times \frac{34^{n}}{24^{n}} \frac{top}{tange}$$

$$Approximately, bottom flange
has moment arms of:
 $50^{n} \pm for CDL + LL + I$ 

$$Assume f_{b} \approx 26 \text{ ksi}$$
 $\therefore A_{bf} = \frac{12}{26} \text{ ksi} \left(\frac{1164.38^{n}}{50^{n}} + \frac{354.36.10316}{57^{n}}\right)$$$

Beom Properties: 23,176.13  $\overline{\gamma} = \frac{1785.94}{55.5} = 32.14''$  $S_{100} = \frac{23,176.13}{37.14} = 720.22$  in³  $S_{B,H} = \frac{23.176.13}{50.25^{-32.14}} = 1282.51 \text{ in}^3$ Check erection stresses Bracing @ 1/4 pts. = ZZ.5' Lb 25' OK (10. Top flange governs by inspection Teble 10.32.1 A: Fa = 27,000 - 14.4 (1) = 27,000 - 14.4 (22.5 × 12)2 = 21,644 psi (*Nole: PLG solves as below) Check NCDL on bare beam; increase by 10% for constr. loads  $f_{b} = \frac{(1.10 \times 1164.34 \times 12)}{720.27} = 21.34 k_{f_{1}}$ <u>09'4</u>) OK_ Note: decrease in Fb duc to web slenderness (sheet Z) does not apply here due to lower shear. * PLG solves for Foos follows :  $F_{b} = 27,000 \cdot \left[ 1 - \frac{12(\frac{1}{b})^{2} \cdot F_{y}}{4\pi^{2}F_{y}} \right]$ = 21,737.04 psi

3/


Colculate composite properties n=24: Effective slab width:  $S_{\text{slot}} = \frac{\Xi 1.403.24}{77.54''} \times (N=24) = 441727 \text{ i}^{3}$ Bm Spa. = 9.5' Span 14 = 90/4 = 22.5 12 + th = 12 + 6" = 9.0' 2 Goyerm  $S_{TF} = \frac{E1,403.74}{27.54-9"} = 2766.27$ : For  $v = \infty$  off. width =  $\frac{|Z \times B'|}{n=\pi} = |Z''|$  $S_{\text{FF}} = \frac{51,403.24}{(59.25-27.54)} = 1623.20$  in³ Assume 1" stool 8-0 cff. Actual Stresses: 8 " hc <u>Slab</u> Use Ss, for n=6 (concerv.) (354.34+ 1431.09)×12 4 8 " = .65 ksi (Note: PLG does not calculate composite section properties or stresses there or Program COMP can be used for this. ) For N=8 Slab 12", 6" = 96.0 4" 344.0 17,804.60 512.0 <u>55.5</u> <u>41.1791' 2795.44</u> <u>30,404.05</u> <u>23.176.13</u> 151.50' 17.6201' 2669.44 <u>40,612.65</u> <u>23,644.13</u> Beam 72,300.74 y= 17.62" > q" → entire slab effortive  $S_{\text{steb}} = \frac{77,300.76}{17.67''} \times (n=4) = 32,826.57$  in  $S_{\rm TF} = \frac{72.300.74}{(17.47'-9'')} = 4347.50 \text{ in}^3$  $S_{BF} = \frac{77.300.74}{(59.25-17.67')} = 1736.75 in^3$ For n= 24 (Per 10.38.1.4) Slab 4" *4"  $\frac{A}{37.0}$   $\frac{A}{4"}$   $\frac{A}{174.0}$   $\frac{A}{17,795.40}$   $\frac{1}{170.67}$ <u>55.5</u> <u>7.5422"</u> <u>7.5422"</u> <u>7.5422"</u> <u>7.5422"</u> <u>7.5422"</u> <u>7.5422</u>" <u>7.5422</u>" <u>7.5422</u>" <u>7.5422</u>" Bn

51,403.24

Stresses on comp. series	Note: Ordinacily the both flouge would be reduced
Top Flower Since the neutral axis is below the top flower to both n= a ath n= 14, stresses are additive.	for the end idea sc. This example does not consider this reduction This example also exclude
NCDL 1164.39,17/720.22 = 19.40 bei CDL 354.36,12/2766.27 = 1.54 LL+I 1431.09,12/2327.50 = $2.05$ ZZ.99 bei	design of Elicar conners, consideration of field splices; and deflection an comper calculations.
Bottom Flange NCDL 1164.32×12/1242.51 = 10.89 bei CDL 354.34×12/1623.20 = 2.62 LL+I 1431.09×12/1736.75= <u>9.89</u> Z3.40 ksi	Brg. Stift. 64" " 34" Each side
Allowable stresses on Comp. sertion From Table 10.32.1.A, Frens = 27 ksi	Intermed. Brg. St Stift.55:516" Er one side 14", 34" J
and for $\frac{1}{6} \approx 0$ (due to slok), $F_{emp} \approx 27$ ks (assuming no splice) : Max $F_{t} = \underline{26.42}$ ksi (see sh. 2) <u>OK</u> (Actually, this reduction is only true at high thear areas, i.e. the ends.	- 0 - 1 - 0 - 1 - 0 - 1 - 1 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Fb= 27.0 ksi where shear drops below .6 ty: .6 · 11.36 = 6.43 ksi or 6.63 · 44. 4 = 122.90 k.	8. slab ~/ 1" Hounch "s" = Web 48" × 34" 9 = 599
However, erection stresses govern this design so advantage cannot be taken of the full allowable.	8 

. USE SECTION AS DESIGNED

This example does not consider this reductions. This example also excludes design of shoor counchars; consideration of field splices; and deflection and camper calculations. 5/



A SULTAVAL

XEQ "PLG" 9:12:59 AM 03/19/88 TITLE: 90 FT SIMPLE SPAN BRIDGE RUN ***** AASHTO **WSD**? RUN 1.0000 F-Y KSI RUN 50.0000 M1, K 2,000.0000 RUN M2, 'K 0.0000 RUH ¥, K 136.1699 RUN LAT BR SPA. 0.0000 RUN MAX D/TW=140.0000 WEB D. RUN 48.0000 TH-RUN .3750 D/TH=128.0000 OK ACT FV=7.5644 KSI STIFF REQD WEB D. RUN ******* END PANEL: MAX ST SPR=24.0000* ST SPA-24.0000 RUH NO TENS FIELD ALL FY=16.6667 KSI OK ST SPA-RUN _____ **#**STIFF 1.0000 RUN J=8.0000 MIN I=10.1250 ****** INT PANEL:

MAX ST SPA=72.0000"

_____

Working streas M1 is arbitrary lue to composite 0 => check end panel fully braced by steb New web trial? Bypass First stiffener space New spacing trial? Bypass single stiffener

ST SPA-72.0000 RUN CV=0.3879 TENS FIELD ALL FY=11.3883 KSI OK -------ST SPA-RUN _____ #STIFF 1.0000 RUN J=0.5000 MIN I=1.8984 ******* STIFF W* 4.0000 RUN TH-RUN .2500 I ~ Min STIFF NG STIFF H. RUN 6.0000 TH-RUN .3125 STIFF NG _____ STIFF W* 5.0000 RUN TH-RUN .3125 STIFF OK OK STIFF W* Go on RUN ******** COMP FL H" 14.0000 RUH TH-RUN .7500 TENS FL H-18.0000 RUN TH-1.5000 RUN I=23,176.1267 Y=32.1791* S-C=720.2240 S-Te=1,282.5077 A=55.5000 Check fluge # b/T=18.6667 OK ALL L/b=30.0000 and stendprness L/b OK

ANDER 100 SHEETS 3 SQUARE

TENS Fb=26.3961 KSI	
COMP Fb=26.3961 KSI	
COMP FL W	
	RUN
*****	****
M1, 'K	DUN
1,280.8200 M2,'K	RUN
	RUN
<b>V,</b> K	
56.9300	RUN
LAT BR SPA 22.5000	RUN
MAX D/TW=140.0000	KVII
WEB D"	
۸	EQ B
COMP FL Nº	
14.0000	RUN
TH- 7500	DUN
.7500 TENS FL W"	RUN
18.0000	RUH
TH-	
1.5000	RUN
I=23,176.1267 Y=32.1791	
S-C=720.2240	
S-Te=1,282.5077	
A=55.5000	
b/T=18.6667 OK	
ALL L/b=30.0000	
L/b OK	
TENS Fb=27.0000 KSI	
COMP Fb=21.7370 KSI	
COMP FL W"	

Allowables for fully supported flange - governed by shear reduction

Bypass flange input for new load and support conditionscheck erection stresses

Web dimensions and shear properties stay the same - check new flange allowebles

New alloweble stresses for unbraced Length of ZZ.E

Re-avolyze this design Using LOAD FACTOR DESIGN 4'-0 effective 8 1" 5tool · 化3/4" × 14"  $F_y = EO$  ksi  $f_c^{\prime} = 4.0$  ksi 5 R 3/4" × 49" n = 8 E 12" . 18" Span = 90'-0 Braced @ 1/4 Pts, => Lb = ZZ'-6 LOADS <u>Moments: Serv.</u> NCDL 1164.38 x 1.3 = 1513.69"L Moments: Serv. 354.36 * 1.3 = 460.69"* 1431.09 + 1.3 · 5/3 = 3100.70"* CDL LL + I <u>Serv.</u> 51.75 + 1.3 = 67.28 k Shear NCDL 15.75 1.3 = 20.48 CDL 69.66 ,1.3.5/2 = 148.76 LL+I Z36.52 k For construction, consider 10% increase in NCDL. LF M = 1.1 × 1513.69 = 1665.06" LF Y = 1.1 × 67.28 = 74.01 k

Check compactness regiments (10.48.2.1) a)  $\frac{b'}{f} = \frac{7''}{75} = 9.33$ <u>ZZ00</u> = 9.24 > 6 OK b)  $\frac{D}{4_{11}} = \frac{44''}{3/4''} = 124 < 150$ <u>OK</u> c)  $\frac{Z0,000\cdot(14^{\circ},.75^{\circ})}{50^{\circ}+...+50.25^{\circ}} = 43.6^{\circ}$ L, = ZZ.5', 1Z = Z70" > 43.6" NG during erection L = O' = 43.6' OK for service d) Max.axiclcomp.= O <u>OK</u> e) 1.015 · 105 + = 1.015 · 105 · (3/4) = 111.5 k Shear = 236.52 6 >111.5 NG >tronsverse stiff. req'd

$$\frac{Check \ stiffene \beta \ web \ (10.44.5.1)}{P_{W}} = \frac{4.4!}{24!} = :24 \ 2.165 \ OK$$

$$\frac{Space \ first \ stiffener \ (10.44.5.5)}{Max \ space \ first \ stiffener \ (10.44.5.5)}$$

$$Max \ space \ first \ stiffener \ (10.44.5.5)$$

$$Max \ space \ first \ stiffener \ (10.44.5.5)$$

$$Max \ space \ first \ stiffener \ (10.44.5.5)$$

$$Max \ space \ first \ stiffener \ (10.44.5.5)$$

$$Max \ space \ first \ stiffener \ (10.44.5.5)$$

$$Max \ space \ first \ stiffener \ (10.44.5.5)$$

$$Max \ space \ first \ stiffener \ (10.44.5.5)$$

$$Max \ space \ first \ stiffener \ space \ stiffener \ (10.44.5.5)$$

$$Max \ space \ first \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ stiffener \ s$$

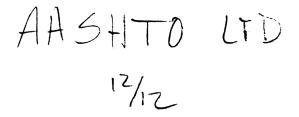
Check shear interation (10.49. \$.4)  $\frac{V}{V_{u}} = \frac{13.14}{20.43} = .63 > .60$ . limit bending stress Note : AISC limits only the tension bending stress, while AASHTO dere not make the dictinction. As a simplification, PLG applies this reduction to both teneile and comp. stresses no mother which code is being followed.  $\frac{F_{b}}{F_{v}} = 1.375 - .625 \frac{V}{V_{u}}$  $F_{h} = EO(1.375 - .625 \cdot \frac{13.14}{70.43})$ = 49.04 ksi Check bending stresses Bettom Flange: NCOL 1513-69 × 12/1242.51 = 14 163 Lai 460.69"4,12/1623.20 = 3.406 CDL 3100.70 ·12/1736.75 = 21.424 LL+I 39.093 Loi 34.99 - 49.04 OK Top Flange: NCDL 1513.69×12/720.22 = 25.22 CDL 460.69.12/2766.77 = 2.00LL+I 3100,70+2/4387.50 = 4.44 31,66 ksi 31,66 - 49,04 OK

10/12

:

51ak :

CDL LL+I


= 50

could

would

# AASHTO LFD

11/12



Program PLG For Plate Girder Analysis ____ bytes Page of 9

	X	Y	Z	T			X	V	र	TI	L	
<u> </u>	$\uparrow$			<u> </u>					ر		<u> </u>	
01+LBL -PLG-						54 INT	ZOOCNEY					
02 SF 09						55 STO 03						
03 E	1				default	56 "NAX D/TH"						
04 -COMP?-					response	57 XROM -Y-						
05 PROMPT						58 SF 14						
06 X>0?						59+LBL 06						
07 CF 09						60 XROM "L"						
08 31	12				Input	61 CLX						
09 XEQ -SBM-	Fy				Eukroutine	62 WEB D						
10 3					CORTOVINE	63 PROMPT						
11 GTO 00						64 X=0?						
						65 GTO a						
12+LBL c						66 STO 07	N.6 d					
13 XROH "L*" 14 4						67 <b>-</b> TH						
14 4						68 PROMPT						
15+LBL 00						69 STO <b>0</b> 8	heb th					
16 FC? 09						70 RCL 03	max 1/4					
17 XEQ -SBM-					Slak dimension	71 RCL 07	d					
18 CF 05					and LL input	72 RCL 08	+ d/+_					
19 RCL 17					subroutine	73 /	0/1.	max				
20 RCL 21						74 STO 10						
21 +						75 <b>D</b> /TH= <b>-</b>						
22 RCL 26						76 ARCL X						
23 +		1				77 CF 07						
24 <b>-M</b> 1, K-						78 FC? 00						
25 FS? 09						79 XEQ 05 80 X>Y?						
26 PROMPT						80 A712 81 GTO 06						
27 ENTER [†]	М,	m,			ady -	82 XEQ 12	L-C					
28 -N2, K-					-	83 14 E3	14.000					
29 PROMPT	M	m,				84 RCL 06	Fy					
<b>30</b> STO 31	M2					85 16.5	16.5	Fy	14.000	f√		
31 X≠0?	m./m					86 +						
32 /	M	4				87 RCL 06	Fy					
33 X=0?						88 *	1 '					
34 SF 05	11					89 SQRT	14 80					
35 SIGN 36 E	1		1			98 /	14,00 VTy . (Fy)	f, f,				
37 LASTX			1			91 <b>260</b>	h, i, G ¹	T				
38 ABS	m.	11	±			92 X>Y?	limit					
39 X<=Y?		1				93 X<>Y	1					
40 X(>Y	lesser					94 FC? 04	1. 1	e)				
41 /	lesser ereno	*				95 1 <b>50</b>	limit		1			
42 *						96 RCL 10	&l+.	/	1			
43 STO 28	m./m					97 X>Y? 98 SF <b>07</b>						
						99 XEQ 01	Κ,	Kz				
44+LBL d			1			100 FS? 10		1				
45 CF 07						100 -5? 10						
46 990						102 FS? 10						
47 FS? 06			1			103 83149	Κ,	Kz				
48 1157						104 RCL 10	8/40	,				
49 FS? 04	2000				×474	105 Xt2			1			
50 2 E3 51 RCL 06					x274 rc1 06	106 /	K./G.		1			
52 SQRT	Fy				* x7y7	107 XEQ 08		1				
52 Seki	1/14				x74:	108 CLA						
J3 /					XCZY			1				
	•		•				I	I	1	1	1	

## Program <u>PLG</u> For ______ bytes PageZof <u>9</u>

	Х	Y	Z	T			X	Y	そ	T	L	
109 FC? 07				T		162 X(0?						
110 -NO -						163 CLX	and the					
111 "HSTIFF REQD"						164 SQRT	min-spe				}	
112 AVIEN						165 X=0?						
						166 3						
113 GTO 06							min.	min.				
						167 ENTERT					1	
114+LBL 12						168 FC? 04						
115 CF 07						169 1.5	1.5 3	min				
						••••				1		
116 -V, K-	$\vee$				İ	170+LBL <del>0</del> 3						
117 PROMPT						171 X>Y?						
118 RCL 07	d						min.					
119 /						172 X<>Y						
120 RCL 08	tw					173 RCL 07	d				1	
	1					174 *	min spa			1		
121 /	f.											
122 "ACT FY"						175 "H ST SPA="	mation					
123 STO 22						176 STO 00	mīn.		1			
						177 ARCL X						
124 XROM "KS"						178						
125 XEQ_PV-	1			1				1				
126 RTN 2						179 FC? 00						
126 RTH LAD						180 XEQ -PV-			1			
						181 CF 22		1				
127 <b>+</b> LBL e						182 E	1					
128 XRON -LL-					1		1 .					
129 XEQ 12						183 STO 29	redux					
				1		184+LBL 21			1			
1 <b>30+LB</b> L a												
131 XEQ 01		1				185 CF 07						
132 X<>Y						186 XROM -L-						
			1			187 CLX						
133 1/X		1	1			188 -STIFF SPA						
134 FS? 10			1		1				1	1	1	
135 2.89			1			189 PROMPT			1	1	1	
136 STO 04	all. Wf					190 FS? 22			1	1		
130 510 04	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1				191 X=0?			1			
137 XROM "L*"	1 1	1	1						1			
138 <b>-Max Int-</b>						192 GTO 17	+CC		1			
139 FS? 05						193 STO 11	stiff.sp	7				
						194 CF 20						
140 "NAX END"						195 FS? 85						
141 260					1							
142 RCL 07	d					196 SF 20						
	Hw.					197 RCL 00						
143 RCL 08	1			1		198 X<>Y	spa.	min			1	
144 /	10			1	1	199 X>Y?	1'	1	1	1	1	
145 STO 10	\$140			1				1	1	1	1	
146 /	1			1		200 XEQ 05	n	1	1		1	
147 049	17601 Z			1		201 RCL 07	d	1	1		1	
147 Xt2	(269/12)	2				202 ST/ 11	1	1	1		1	
148 3	3	63		1		203 5	1	1				
149 FC? 05							56	1	1		1	
150 GTO 03	1					204 ENTERT	15	1	1		1	
	1			1		205 FS? 10	1	1	1			
151 /	UT m					206 5.34	5.34	1	1		1	
152 ST+ X	45000							1			1	
153 5						207 FS? 10	1		.		1	
154 RCL 04	2.89			1	1	208 4	4	5.34	1		1	
		- 10		45.000		209 RCL 11	a/1	1	1			
	ud f _v	2.61	5	45,000	1	210 E	1	a/d	4	5.34	4	
156 Rt	1		-		1		1-	1.0	1.	1	1	
157 /	1					211 X>Y?						
	1				1	212 XEQ -ZT-	1	a/ 8	5.34	4	1	
158 +	1					213 RDH		_	1	1 '	1	
159 5	1			1		214 Xt2	(ª/d)	15.34	4		1	
	1						[ 'u		1'			
160 -		1	1	1	1	215 /	1	1	1	1	1	
160 -								1	1		1	
160 - 161 /	spá.					216 +	K	1				

# Program <u>PLG</u> For ______ bytes Page<u>3 of 9</u>

	X	ΙΥ	Z	T	L	X	Y	そ	T	L	
218 XROM -Y-					276 X(0?	+					
219.8		1			277 SF 20						
220 X<>Y	1.4	K			278 RDN						
221-RCL 06	51	V			279 FC? 20						
222 /	.4/Fy	K			280 +						
223 36 E3					281 CLA						
224 *					282 FS? 20						
225 1.03					283 -NO -						
226 FS? <b>0</b> 4					284 -HTENS FIELD-						
227 FC? 06					285 FC? 00						
228 SIGN					286 AVIEW						
229 /					287 XEQ 08						
230 SQRT					288 GTO 21						
231 RCL 10											
232 /					LIST 122						
233 X>Y?											
234 ENTER†					289+LBL 91						
235 Xt2					290 3						
236 X<>Y 237 /					291 1/X						
237 7 238 SIGN		1			292 733 E2						
230 STGR					293 FS? 06 294 .58						
240 X>Y?					294 .58 295 FS? 06						
241 SF 20					295 FS? 00 296 127 E3						
242 -CY-					296 127 ES						
243 XEQ -Y-					298.54						
244 SIGH					299 FS? 04						
245 FS? 10					<b>300</b> 1188 E2						
246 1.156					301 RTN						
247 LASTX							1				
248 X>Y?					302+LBL 08						
249 X<>Y					303 STO 09	all. fy					
250 STO 01					304 "ALL FY"						
251 ENTERT					305 XROM -KS-						
252 SIGN					306 RCL 22	art f					
253 LASTX					307 XEQ 05						
254 -					308 X>Y?						
255.87					309 RTN						
256 *		1			F5:04 310 FS? 04						
257 RCL 11					and 311 FC? 20						
258 Xt2					F5320 312 X(8?	1.					
259 E		1	1		313 RTN	a-+ +	1 2	4			
260 +		1			314 11	11					
261 SQRT		1			315 -REDX-						
262 /					316 5	どう F F F F att	K	art	all F		
263 X(0?					317 Rt	Fv					
264 CLX					318 /	E/Fv	Ц	act	act		
265 X=0?					* 1.375625 FX 320 +	2:4 f	11				
266 SF 20 267 X<>Y					* 1.375625 = 320 +	<b>__`''</b>	1 "				
268 RCL 96				1	321 -						
269 RCL 06			1	1	322 8	*					
270 /					323 / 324 E						
271 ST* Z				1	324 E 325 X)Y?	1					
272 *				1	325 X/12 326 X()Y	reducti					
273 RCL 22					326 X()1 327 STO 29		7				
274 X(Y?					321 310 23						
275 FC? 04							1				
						•		•			

Program <u>PLG</u> For ______ bytes Page<u>4 of 9</u>

	X	Y_	Z	T	L		X	Ι Υ_	र	T	L	
328+LBL -Y-					1	381 +						
		ĺ				382 12						
329 FS? 00					•							
330 RTN					i	383 /						
331 •+=•					i.	384 RCL 01						
332 ARCL X			1		ļ	385 /						
						386 SQRT						
333+LBL -PV-						387 STO 23						
334 SF 25					÷	388 -RY-						
335 PRA					1	389 XEQ -Y-						
336 FC?C 25			1		i	390 FC? 04	1					
					i	391 GTO 13						
337 AVIEN						392 RCL 08						
338 RTH												
						393 RCL 07						
339+LBL 05						394 *					ł	
340 X>Y?						395 RCL 03						
341 SF 07						396 /		1			1	
342 XROM -0K-			1			397 RCL 04						
1						398 /						
343 XEQ -PV-												
344 RTH						399 6	1					
						408 +	1					
345+LBL 17						401 ST+ X				1		
346 FS?C 05						402 SQRT						
347 GTO a						403 RCL 03					1	
348 SF 25						484 /			1			
349 FS? 22						405 1/X	1				1	
1		{						1				
350 XEQ STIF						406 STO 09		1				
351 CF 25						407 <b>-</b> RT-						
						408 XROM -V-						
352+LBL b												
353 XROM "L*"						409+LBL 13				ł	Į	
354 CLX						410 ADV						
355 •Lb·•						411 XEQ 11					1	
						412 RCL 07				1		
356 FS? 09						413 2 E3						
357 PROMPT				1		414 RCL 12						
358 12												
359 *						415 FS? 06						
360 STO 30						416 GTO 02						
361 CLX					!	417 760						
362 XEQ -SBM-					ı	418 XEQ 00						
1						419 FS? 04						
363 X=0?						420 RVIEW						
364 GTO c		1	1	1			1			1		
365 RCL 00		1				421 FS? 04						
366 CF 19				1		422 SIGN						
367 RCL 85				1		423 *						
368 ST+ X						424 *	1					
369 X≠Y?						425 -COHP-						
						426 XEQ 09						
370 SF 19			1			427 "TENS"					1	
371 RCL 03		1					1	1	1			
372 3		1		1		428 RCL 18						
373 YtX		1		1		429 RCL 29			1			
374 RCL 04				1		430 *						
375 *		1		1		431 XEQ 09						
1		1		1		432 CF 18					1	
376 RCL 10		1		1		433 FC? 09						
377 RCL 09				1					1	1		
378 3		1	1	1		434 GTO 13						
		1	1	1	1	435 RCL 14	1			1	1	
379 YtX 380 *			1			436 *					1	

Program PLG For Plate Gilder Analysia ____ bytes Page 5 of 9

	Х	ΙΥ	Z	T	L		X	Γv	र	T	L	· · · · · · · · · · · · · · · · · · ·
437 X()Y												
438 RCL 11						489+LBL 00						
439 .					1	<b>490 X</b> {>Y						
440 XXY?						491 SQRT						
441 X(>Y						492 /						
442 GTO 07						493 RCL 08						
472 GIU 07						494 *						
443+LBL 02						495 R†						
444 RCL 11						496 -						
						497 LASTX						
445 /				1		498 *						
446 970						499 RCL 03						
447 XEQ 00						500 /						
448 FS? 04					1	501 RCL 04						
449 AVIEN				1		502 /	1					
450 *						503 X>0?						
451 *						504 CLX			1			
452.9						505 X(>Y		1				
453 FC? 04						506 /		1				
454 SIGN						507 E						
455 FC? 09						508 +						
456 GTO 02						500 •R-PG=•						
457 *						510 ARCL X						
						511 FC? 04						
458+LBL 07						512 SIGN	1					
459 CLA						513 RCL 12						
460 XROM "H="		1				514 RCL 29						
461 AVIEN						514 KUL 25 515 RTN						
462 GTO b						JIJ KIN				]		
						516+LBL 11				1		
463+LBL 02											ļ	
464 RCL 06						517 CLX						
465 *				1		518 SF 18						
466 STO 12						519 FS? 04						
467 RCL 05						520 FS? 20						
468 RCL 04						521 X>0?						
469 -						522 CF 18						
470 5 E2	1					523 CF 07						
471 RCL 06						524 FC? 04						
472 395						525 FS? 06						
473 XEQ 00						526 X>8?						
474 LASTX						527 GTO 10						
475 -Rb-						528.66						
476 FC? 04						529 FC? 10						
477 XEQ -Y-						530 RCL 12	Z Fy					
478 *			1			531 RCL 06	Ty					
479 *	1					532 *						
480 -ALL-	1					533 STO 12	mp			1		
481 FC? 18						534 STO 18						
482 XEQ 09						535 STO 19						
				1		536 -PL-						
<b>483+LBL</b> 13	1					537 XROH "H="				1		
484 CF 85	1					538 FS? 06						
485 XROM "L"	1					539 FC? 18						
485 E	1					540 X=0?			I			
485 E 487 XEQ "SBM"						541 AVIEW			1			
487 XEW "SBH" 488 GTO b					1	542 ADV						
700 GIU U	1					543 RCL 11	5		!			
	ł		l		1		-T	1				
									1	;	1	

# Program <u>PLG</u> For ______ bytes Page<u>6 of 9</u>

	X	Y_	2	T	L				Y	そ	T		
544 FS? 10							601 /						
545 .6	F						602 RCL 06				1		
546 RCL 86	Fy						603 SQRT						
547 *	MR						604 *						
548 RCL 12							605 X>Y?						
549 X>Y?							606 CF 18				Ì		
550 X(>Y													
551 STO 10	MR						607 FC? 07						
552 FC? 20	1 "				- ^	1	608 X>Y?						
553 STO 12						teve fiel					1		
554 608	.95~640		1		art	ion, no	610 GTO 02						
555 RCL 05	Ŷ				ola	stic mome	+ DII KUL DI						
556 RCL 04	T FIT				1		DIZ KUL DO						
557 -							613 /		1				
	1			1			614 70						
558 ST+ X	he						615 X>Y?						
559 RCL 08	tw						616 GTO 11			1			
560 /	14/4						617 RDN						
561 RCL 06							618.46						
562 SQRT							619 CHS		1	1			
563 *							620 YtX						
564 X>Y?							621 4.05						
565 CF 18							622 *						
566 150													
567 LASTX							623 "Kc"						
568 *							624 FS? 10						
569 970							625 XEQ -Y-				1		
570 FS? 04							626 FC? 10						
571 X()Y							627 SIGN						
							628 SQRT						
572 RDN							629 *						
573 FS? 04							630 Rt			1		4	
574 X>Y?							631 R†						
575 X=0?													
576 SF 07							632+LBL 11						
577 FC? 06					1		633 R†						
578 CF 07							634 Rt						
579 XEQ 07							635 FC? 06						
580 RCL 10							<b>636 95</b>						
581 X<=Y?													
582 X<>Y							637 FS? 06						
583 FC? 88							638 70 (70 500 80						
584 FC? 06							639 FS? 06						
585 X(0?					i		648 FC? 84						
586 CF 18							641 GTO 03					1	
587 FC? 18							642 RDH					1	
588 STO 12							643 FC? 07						
589 FC? 69							644 GTO 04					1	
590 RTN		1					645 RCL 10						
							646 STO 19				1		
591 -D/TW-							647 2		1				
592 RCL 12							648 /						
593 FC? 87							649 STO 10						
594 XEQ 14		1					650 RDN				1		
595 SF 18							651 150						
<b>59</b> 6 65				1			652 GTO 03					1	
597 RCL 03													
598 RCL 04							653+LBL 04						
599 /													
600 2							654 RCL 06 655 16.5			1	1		
		1	1		1			1	-		-		

# Program <u>PLG</u> For ______ bytes Page <u>7 of </u>9

	X	I Y	Z	T							T	<u>, , , , , , , , , , , , , , , , , , , </u>	
	+	<u> </u>	1-				709 FS? 10		Ι <u>Υ</u>	र			
656 -							710 GTO 02						
657 RCL 11							711 FC? 04						
658 X<>Y							712 GTO 03						
659 *						-							
660 STO 10		1				1 ]	713 RCL 09	1r					
661 RDN						_ i ~ )	714 FC? 07	LC.					
662 RCL 06							715 RCL 23	ſy					
663 LASTX				1			716 3 E2	300					
664 /	1						717 RCL 06	IF.	Joc	חיז'			
665 SQRT							718 SQRT	1.1		1 14			
<b>66</b> 6 <b>10</b> 6							719 /						
667 *					İ		720 *						
							721 STO a	1, "					
668+LBL 03	1						722 RCL 30	Lb					
669 X(=Y?							723 X(=Y?					]	
670 GTO 03							724 GTO 05						
671 XEQ 07							725 CF 18						
672 GTO 02							726 ***						
							727 FC? 87						
673+LBL 03							728 PROMPT					1	
674 FC? 06							729 RCL 23						
675 GTO 11							730 *						
676 X<>Y							731 STO 23						
677 /							732 •X2•	1					
678 X†2							733 FC? 07						
679 RCL 10							734 PRONPT						
680 *							735 STO \						
681 GTO 02							736 RCL 06	Fy					
					1		737 16.5						
682+LBL 11							738 -	T. m	-				
683 1.415							739 ST/ Z	1.1.0	1			{	
684 Rt													
685 229							740 Xt2 741 *						
686 /													
687 -							742 E						
688 *							743 +						
680 +							744 SQRT						
689+LBL 02							745 E						
							746 +						
690 °b/2T°							747 SQRT						
691 XEQ 14							748 *						
(00.1 D)		1		1			749 756						
692+LBL -SFb-							750 RCL 06						
693 SF 18	MR	1			I		751 SQRT						
694 RCL 10							752 /						
695 RCL 14	Sbp						753 RCL 09						
696 RCL 06	Fy						754 /						
697 *		1					755 FC? 07	_					
698 X<=Y?							756 X<>Y	128	1				
699 STO 10							757 RCL 30	L					
700 2 E4	00.12						758 X>Y?						
701 RCL 03							759 GTO 04				{		
702 *							760 RCL a	λ _P		12.		1	
703 RCL 04					1		761 X(> Z	12.	12	2r Zr			
704 +							762 XEQ 07			1.1			
705 RCL 00	1				1		763 XEQ 08			i			
<b>70</b> 6 /							764 X>Y?						
707 RCL 06				1			765 X()Y						
708 /	TF.	4			1		766 GTO 05		!	i			
	1 1 F	1			1			1					
								•	1				

### Program <u>PLG</u> For ______ bytes Page<u>B</u> of <u>9</u>

-		X	I Y	Z	T				I Y	そ	T	L	
	767+LBL 04						823 /						
			1				824 2						
	768 RCL 23						825 -						
11	769 X<>Y						826 CHS						
	770 /												
•	771 ENTERT						02741 01 02						
	772 X <del>1</del> 2						827+LBL 02						
	773 RCL \						828 RCL 06						
							829 *						
	774 *						830 3						
	775 2			1			831 /	ťť.					
	776 +					1	832 RCL 10	+6 F ;					
	777 SQRT							10 1					
	778 🔹	Mz				PP tore	833 X>Y?	1					
	779 286 E3			1		(F. ).	834 X<>Y	÷,					
	780 RCL 30	Lie				·	835 GTO 05						
			1		1								
	781 RCL 89	14					836+LBL 03	11.	¥.				
	782 /			1	1		837 FC? 06	· · ·					
	783 X <del>1</del> 2						838 GTO 10		1				
	784 /		1						.		1		
	785 FC? 07		1				839 36	14-1	1				
	786 X()Y				1		840 RCL 31	Miz		·			
	787 RCL 23		1				841 RCL 19	P			1.		
							842 -						
	788 *						843 22				•		
	789 XEQ 08				1		844 *		1	.			
	790 GTO 05				1								
							845 -	inc		1.			
	791+LBL 02	2000 A					846 E2						
	792 RCL 03	1730					847 *		· ·				
		64					848 RCL 06		1				
AG	793 76			1			849 /		1.				
$\Gamma : \mathcal{A}$	794 *	1-					850 RCL 23			1.	1	1	
	795 RCL 06	F.				1		7.6				Į	
	796 SQRT						851 *						
	797 /		1				852 RCL 30	Ĺ					
	798 X>Y?						853 X<=Y?						
		1 24					854 GTO 05						
	799 X()Y						855 CF 18						
	800 RCL 30						856 Rt	dF.	1 L				
	801 X<=Y?												
	802 GTO 05		1				857 X>Y?	72	2				
	803 CF 18			1			858 GTO 84		1	1×			
	804 RCL 10	.6Fy					859 XEQ 07						
	805 RCL 12	.665					860 GTO 05						
			1							1			
	806 X>Y?						861+LBL 07	Ar	λ	124			
	807 X<>Y						862 RCL 19	N.		12			
	898 STO 18	H's 4	greater	dL	$\lambda_i$			r- P Zif	$\lambda_i$		1 prop	1	
	809 RCL 09	1 b-1eu	1		1		863 X(> T	14	n r	1	1 . 14		
	810 Rt		۲T		1		864 ST- Z			1	•		
	811 /	-	1.1	. 7:	r.		<b>86</b> 5 -	1. 1. 716	1. V.	Mp	Mp		
				1	1		866 /						
	812 51 E4						867 X<>Y	28 g	<u></u>				
	813 XEQ 08						868 RCL 10	hir.			1.		
	814 RCL 06						869 -	· r	l'ŕ		P		
	815 /												
	816 X<>Y						870 *				1	1	
	817 Xt2						871 -						
					1		872 RTN	m,					
	818 *									1	1		
	819 SIGN						873+LBL <del>0</del> 4						
	820 LASTX												
	821 X<=Y?						874 XEQ 03						
	822 GTO 82				1		875 *						
							876 RCL 28						

Program <u>PLG</u>	For	932+LBL 09 933 -⊦ Fb	bу	tes	Page <u>9</u> of <u>9</u>
877.7		934 XROM -KS			
878 X>Y?	XYZTI		XY	र	TIL
879 1.2			$ \rightarrow \gamma$	17	
		936 RTN			
880 X<=Y?					
881 E		937+LBL 10			
882 XEQ "YT"		938 CLX			
883 XEQ 02		939 STO 12			
884 RCL 06		948 STO 18			
885 X>Y?		941 139			
886 X<>Y					
		942 RCL 06			
887 CLA		943 SQRT			
888 XEQ 09		944 /			
889 RCL 14		945 RCL 03			
890 *		946 RCL 04			
		947 /			
891+LBL 05		948 °b/T=*			
892 "Lb"		949 ARCL X			
672 LU					
		950 XEQ 05			
893+LBL 14		951 X>Y?			
894 FS? 18		952 RTN			
895 RCL 19		953 219			
896 FC? 06		954 RCL 06			
897 XEQ 89		955 SQRT			
898 FC? 06		956 /			
899 GTO 14		957 INT			
900 XROM "M="		958 -ALL L/b-			
901 LASTX		959 XEQ -V-			
902 *					
903 FC? 00		960+LBL 03			
984 XEQ -PV-		961 RCL 30			
		962 RCL 03			
005ALDI 14		963 /			
905+LBL 14					
906 RCL 12		964 .9			
907 X>Y?		965 FS? 06			
908 X<>Y		966 FC? 19			
909 STO 12	Mmax	967 SIGN			
910 RTN		968 /			
		969 FS? 06			
911+LBL <b>0</b> 8		970 ENTERT		1	
912 3.5		971 •L/b=•			
913 RCL 28					
		972 ARCL X			
914 +		973 AVIEW			
915 CHS		974 X)Y?			
916 LASTX		975 RTN			
917 Xt2		976 Xt2			
918 +		977 95406			
919.3		978 /			
920 *		979 RCL 06			
921 1.75		988 *			
922 +					
		981 SIGN			
923 2.3		982 LASTX			
924 X<=Y?		983 -			
925 X<>Y		984 RCL 06			
926 RDN	Cb	985 FS? 06			
		986 RTN		1	
927+LBL 02		987.55		!	
928 "Cb"		988 *			
				1	
929 XEQ -V-		989 STO 18			
930 *		990 *		1	
971 PTN		991 STO 12	•	I	I

#### TIMBER BEAM DESIGN

xeq WBM for wood beam analysis (SIZE 012)

### **<u>BOFTKEYS</u>** (USER mode ON)

- D New dimensions
- E New LDF
- F New material properties (skips dimension and load/LDF prompts to re-evaluate same trial with new allowable stresses)

### USER FLAGS

Flag 00	clear set	full output short format
Flag 04	clear set	AASHTO NDS/UBC

#### INPUT SUMMARY

<u>Prompt</u> F-V PSI	<u>Input</u> Allowable horizontal shear stress	<u>Default</u> No default
Fb PSI	Allowable bending stress	No default
E PSI	Modulus of elasticity	No default
LDF	Load Duration Factor	1.0
Le-b"	Effective unbraced length in the "B" direction, in inches	Previous Le-b
B"	B dimension, inches. Enter zero for round.	Previous B
D"	D dimension, inches. Enter zero for round members.	Previous D
DIA" (round only)	Diameter, inches	No default

- <u>OUTPUT SUMMARY</u> (Items in parenthesis are displayed only if flag 00 is clear)
- (C-K) Slenderness limit, dependent on E and F_b values
- (S) Section modulus in inches cubed
- (C-S) Effective length (slenderness) constant,  $L_e d/b^2$
- (Fb') Allowable bending stress in psi
- ALL M Allowable moment on the section
- ALL V Allowable shear on the section

#### PROGRAM FLAGS

Flag 06	clear set	check slenderness no slenderness check necessary
Flag 07	clear set	rectangular round
Flag 08	clear set	new material properties input via softkey "E"; use same loads and dim. normal input sequence
Flag 09	clear set	column analysis (WCOL) beam analysis (WBM)

#### STORAGE REGISTER USE

<u>Register</u> 00	<u>WBM</u> S (in3)
01	Fb
02	Le (inches stored)
03	B or Diameter, in.
04	D, inches
05	LDF
06	Area
07	E, psi
08	C-F (form)
09	F-V, psi
10	C-K
11	not used (column effective length)
000	2

#### TIMBER BEAM ANALYSIS

Program WBM analyzes the strength of timber beams. It calculates and displays the section properties and allowable stresses, as well as all factors and coefficients used to figure these properties.

#### MEMBER SECTION

The program is intended for use with solid or gluelaminated (glulam) members only; the analysis of builtup members (e.g. nail-laminated or spaced members) or any solid shape other than rectangular or round, is not covered.

The program is <u>not</u> able to make allowance for bolt holes or notches; a uniform section is assumed. However, in many cases (e.g. slender members with bolt holes at the ends) the allowable stress may still be used. This is a matter requiring engineering judgement. Deflection is not calculated or checked.

#### <u>FLAGS</u>

WBM will analyze by AASHTO (1988) if flag 04 is clear, and by NDS (National Design Specification for Wood Construction, 1986, upon which AITC and UBC base their specs) if flag 04 is set. As with other structural programs, the code being followed is displayed at the beginning of each run. The differences between the two codes are minor;  $C_k$  and the slender beam stress formula for bending are slightly different between the codes. Also, of course, some of the allowable stresses are different for different species and grades of timber. Actually, since AASHTO bases its recommendations on the NDS, any differences merely reflect AASHTO's slowness in changing.

As with other programs in this package, setting flag 00 disables the output of intermediate calculations and constants (as well as the title block for printed output), shortening the output.

#### DIMENSIONS

The dimension prompts for B" and D" (B and D, in inches) assume D is the dimension in the direction of applied side load (or eccentricity for column design). Thus if a member is being used in weak-axis bending, B will be greater than D. For columns under pure axial load, B and D are interchangeable as long as the effective unbraced length and the member dimension correlate with each other in each direction. After being input once, the prompts for Le(b), Le(d), B, and D all default to their previous values. See the "Input Summary" section on the front sheet of this documentation.

#### ALLOWABLE STRESSES

Engineers using the NDS should note that tabulated allowable stresses have decreased in recent editions; an attempt should be made to keep up to date. The higher equation constants allowed for machine-stressrated (MSR or E-rated) timber are not implemented in these programs.

Factors affecting allowable stresses are input and used in different ways. The following factors are the most common.

CUF	Condition-of-use or wet-use factor
C-FR	0.9 for fire-retardant treated wood
C-FU	Flat-use factor

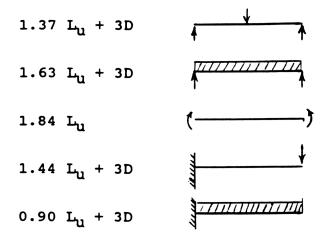
The above three factors must be chosen by the designer and applied to the tabulated allowable bending stress (Fb) values <u>before</u> input; CUF and C-FR must be applied to the tabulated Fv and E values as well. (CUF for these is 1.0 for sawn timber but not for glulam.)

C-F	Form factor (1.0 for rect. and 1.18
	for round members)
C-f	Size factor for deep beams

C-F and C-f are calculated by the program and applied to the allowable bending stress input. C-f is calculated by the basic exponential formula; no adjustment is made for different span/depth or loading conditions. A note of caution: tabulated stresses for poles or piles (NDS 6.2, UBC ch. 25) already have the form factor (1.18) included. If these values are used they must be reduced by 1.18 before input.

LDF Load duration factor

The LDF is input by the user. It is applied where appropriate by the program (e.g. beams or columns which have a "short" or "intermediate" effective length) and must not be included in the allowable stresses input.


C-S Slenderness factor

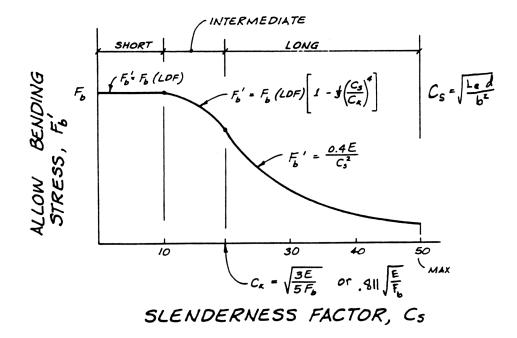
The slenderness factor is calculated and applied by the program. It is used in conjunction with the CUF, C-FR, and C-FU factors (obviously, since the allowable stresses are multiplied by them before input); C-F and C-f are also used in conjunction with these factors. However, C-S is not used with C-F and C-f. The allowable bending stress is calculated based on both slenderness (C-S) and size (C-F x C-f). The lesser of these, multiplied by the LDF, is the allowable stress which is output. This will hopefully be made more clear in the examples:  $Fb_0$  is the (user-modified) tabulated allowable stress to be input.  $Fb_1$  is the calculated allowable stress involving size and form.  $Fb_2$  is the calculated allowable stress involving size stress involving slenderness. And finally, Fb is the least of these two, multiplied by the LDF, which is output.

WBM is applicable to round, sawn, or (rectangular) glulam beams. However, for heavily cambered or curved glulam beams the user must modify the allowable stress by the curvature factor.

#### EFFECTIVE LENGTH

For rectangular beams which are as wide or wider than they are deep, and for round members used as beams, no reduction for slenderness is made; i.e. C-S = 1.0. For deep rectangular beams which are not fully braced, C-S depends on the effective length, which in turn is a multiple of the unbraced length depending on the loading condition. For those cases where the unbraced length is not zero, the following multipliers apply:




For C-S greater than 50 the program calculates an allowable stress of zero. See the next page for a graph showing the effect of unbraced length on allowable bending stresses.

#### <u>SHEAR</u>

Shear analysis is a little simpler: the only factors which pertain are the CUF and C-FR, which the user must factor into the allowable stress input; and the LDF, which the user inputs directly. The actual shear stress compared is VQ/Ib, which amounts to the average shear stress times 3/2 for rectangular members and 4/3 for round beams.

#### ALLOWABLE BENDING STRESS considering EFFECTIVE LENGTH

The effect of unbraced length is shown graphically by the following illustration, taken by permission from <u>Design of Wood Structures</u> by Donald E. Breyer (McGraw-Hill, 1980)





$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$

$$\frac{1}{2}$$
Sourn Beam Design
$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

42-182 100 SHEETS

Moment Car.	12 74	
	= <u>1221.7pcix 22</u> 12,000	20.229
	= <u>ZZ.4Z'*</u> >	21.94"" OK
<u>Shear Capac</u> Shear stre		13 k ", 15,5" = .0727 ksi
Allowable e	stress = .063 l	LDF 1.33
	=.0	938 ká - <u>OK</u>
Allowable 5	hear = <u>.0438</u> .0777	413 = <u>4.76 k</u>
Sho	rt Form - Set	Flag OO
no title	XROM	SF 00 -WBM-
block	F-V PSI 63.0000	RUN
	Fb PSI 945.0000 F PSI	RUN
	1,170,000.000	RUN
	LDF 1.3300	RUN
	Le-b" 386 <b>.400</b> 0	RUN
	B- 5.5000	RUN
	D- 15.5000	RUN
no inter-	ALL M=22.4196 'K ALL V=4.7621 K	

Le-b"

_____

mediate calculations

Long Form - NUS SF 04 XEQ "WBM" SIZE<12 SIZE 012 XEQ WBM* 6:11:14 PM 11/02/88 TITLE: CRANE RAIL RUN ***** NDS F-V PSI 63.0000 RUN Fb PSI Voc Aljudel value 3 945.0000 RUN E PSI RUN 1,178,000.000 LDF 1.3300 RUN C-K=28.5363 -------Le-b* 386.4000 RUN B-5.5000 RUN D-15.5000 RUN S=220.2292 C-S=14.0709 Fb'=1,221.6123 PSI ALL M=22.4196 'K ALL ¥=4.7621 K Le-b*

#### TIMBER COLUMN and BEAM-COLUMN DESIGN

xeq WCOL for wood column and beam-column analysis (SIZE 019)

**<u>BOFTKEYS</u>** (USER mode ON)

- D New dimensions
- E New loads and LDF
- F New material properties (skips dimension and load/LDF prompts to re-evaluate same trial with new allowable stresses)

#### USER FLAGS

Flag 00	clear set	full output short format
Flag 02	clear set	BEEP disabled BEEP enabled
Flag 04	clear set	AASHTO NDS

#### INPUT SUMMARY

<u>Prompt</u> Fc PSI	<u>Input</u> Allowable compres- sive stress	<u>Default</u> No default
Fb PSI	Allow. bending stress	No default
E PSI	Modulus of elasticity	No default
Р, К	Axial load, kips	No default
ECCd"	Eccentricity of axial load in the "D" direc- tion, in inches	0
LATD M, 'K	Moment due to lateral load, in the "D" direction, in foot-kips	No default
LDF	Load Duration Factor	1.0
Le-b"	Effective unbraced length in the "B" direction, in inches	Previous Le-b

<u>Prompt</u> Le-d"	<u>Input</u> Effective unbraced length in the "D" direction, in inches	<u>Default</u> Previous Le-d
В"	B dimension, inches. Zero for round members.	Previous B
D"	D dimension, inches. Zero for round members.	Previous D
DIA" (round only)	Diameter, inches	No default

**<u>OUTPUT SUMMARY</u>** (Items in parenthesis are displayed only if flag 00 is clear. Asterisked items are displayed only if the member is in bending.)

(NDS or AASHTO) A reminder of the code used. Press R/S to continue.

(C-K) * Bending slenderness limit, based on E and F_b

- (K) Slenderness limit, based on E,  $F_{c}$ , and LDF
- (S) * Section modulus
- (C-S) * Effective length (slenderness) constant

(Fb') * Allowable bending stress in psi

- (LONG, INTRM, The length category of the column in each direction
- (Fc'd and Fc'b) Allowable axial compressive stresses in the D and B axes, respectively, in psi
- ALL P The allowable axial load in kips, if no bending stress is present

(J) * Interaction (P-delta) constant

INTRXN-b or -d (*) The governing interaction value. Must be less than unity to be acceptable.

#### PROGRAM FLAGS

Flag 06	clear set	check slenderness no slenderness check necessary
Flag 07	clear set	rectangular round

2

#### PROGRAM FLAGS

Flag 08	clear set	new material properties input via softkey "E"; use same loads and dim. normal input sequence
Flag 09	clear set	column analysis (WCOL) beam analysis (WBM)
Flag 10	clear set	beam-column pure axial load

#### STORAGE REGISTER USE

<u>Register</u> 00	<u>WCOL</u> S (in3)	WFC
01	Fb	
02	Lb (inches stored)	
03	B or Diameter, in.	
04	D, inches	
05	LDF	LDF
06	Area	
07	E, psi	E, psi
08	C-F (form)	
09	Fc, psi	Fc, psi
10	C-K	
11	Ld (inches stored);	
12	P, kips	
13	M (inch-kips stored)	
14	ECC(d), inches	
15	Axial stress due to P	Length Category (SHORT, INTRM, LONG)
16	Fc'(b), psi	
17	Fb', psi	
18	K	K



#### TIMBER COLUMN ANALYSIS

Program WCOL analyzes the properties and strength of timber columns and beam-columns. It calculates and displays the section properties and allowable stresses, as well as all factors and coefficients calculated to arrive at these properties.

#### MEMBER SECTION

The program is intended for use with solid or gluelaminated (glulam) members only; the analysis of builtup members (e.g. nail-laminated or spaced members) or any solid shape other than rectangular or round, is not covered.

The program is <u>not</u> able to make allowance for bolt holes or notches; a uniform section is assumed. However, in many cases (e.g. slender members with bolt holes at the ends) the allowable stress may still be used. This is a matter requiring engineering judgement.

#### <u>FLAGS</u>

The program will analyze by AASHTO (1988) if flag 04 is clear, and by NDS (National Design Specification for Wood Construction, 1986, upon which AITC and UBC base their specs) if flag 04 is set. As with other structural programs, the code being followed is displayed at the beginning of each run. The differences between the two codes are minor. Also, of course, some of the allowable stresses are different for different species and grades of timber. Actually, since AASHTO bases its recommendations on the NDS, any differences merely reflect AASHTO's slowness in changing.

Beam-column interaction analysis is based entirely on the NDS no matter what the status of flag 04. However, the allowable stresses in bending and compression are figured using the appropriate code.

As with other programs in this package, setting flag 00 disables the output of intermediate calculations and constants (as well as the title block for printed output), shortening the output.

#### DIMENSIONS

The dimension prompts for B" and D" (B and D, in inches) assume D is the dimension in the direction of applied side load or eccentricity for beam-column design. Thus if a member is being used in weak-axis bending, B will be greater than D. For columns under pure axial load, B and D are interchangeable as long as the effective unbraced length and the member dimension correlate with each other in each direction. After being input once, the prompts for Le(b), Le(d), B, and D all default to their previous values. See the "Input Summary" section on the front sheet of this documentation.

#### MATERIAL PROPERTIES

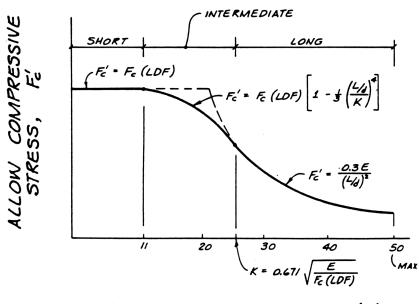
The program prompts for material properties Fc, Fb, and E. Fb is not needed for axial column analysis; E is not needed for "short" columns. Thus if the design fits one of these situations, the unnecessary input prompt can be bypassed (hit R/S without answering the prompt). Constants calculated using these values (e.g. C-K and K) will be displayed, but if the estimate of length category was correct or the column is axially loaded, these incorrect constants will not enter into the calculation. If the lenght category estimate was <u>not</u> correct, however, garbage results. It's usually best to key in the correct values.

See the WBM documentation for information on factors affecting allowable stress input for beam-columns.

#### ALLOWABLE STRESSES

Engineers using the NDS should note that tabulated allowable stresses have decreased in recent editions; an attempt should be made to keep up to date. The higher equation constants allowed for machine-stressrated (MSR or E-rated) timber are not implemented in these programs.

The program only checks column buckling on the gross section. It is left to the user to check crushing at the net section (i.e. at bolt holes). Shear is not checked in beam-columns. For truss chords the user must calculate C₊ and apply it to E before input.


WCOL calculates and displays the allowable compressive stress about each axis, as well as the length category. For axially loaded columns it then picks the governing (least) of these and calculates the allowable axial load. For beam-columns the program calculates and displays the allowable compressive and bending stress, and the P-delta constant J. Then it calculates the interaction formula for each axis (which for the B axis is simply the actual/allowable compressive stress) and displays the governing (largest) one. If this is less than one the design is OK.

#### EFFECTIVE LENGTH

The effective length for columns depends on the end fixity and the presence or absence of sidesway; such conditions are a matter of engineering judgement, but for conditions where sidesway is prevented, Le < Lu. For unbraced beams, on the other hand, Le > Lu. For the design of beam-columns, then, the choice of effective length probably should be based on whether the member is more beam or column. If doing the calculations by hand, both lengths could be used; the program, however, accepts only one effective length in each direction. Most members which carry side loading are braced laterally by the member delivering the load so this isn't a problem. For those infrequent cases where beam slenderness is a factor, it is up to the judgement of the user whether the program's results are acceptable.

If Le/D is greater than 50, the allowable stress output is zero.

All this is shown grapically by the following illustration, taken by permission from <u>Design of Wood</u> <u>Structures</u> by Donald E. Breyer (McGraw-Hill, 1980)



SLENDERNESS RATIO, L/J

#### SUBROUTINE "WFc"

As mentioned, spaced column analysis is not covered. However, the allowable column stress subroutine of the program has been given a global label, "WFc," so that it may be called from user-written programs. The user's program must store the values of K, E, Fc, and LDF in the proper registers and D and Le must be in the stack. See the program listing for WFc (within WBM/WCOL, line 345) and the portion of WCOL which calls WFc (lines 238-243) for clarification.

#### **BIAXIAL BENDING**

WCOL does not analyze columns under biaxial bending; only uni-axial bending is considered. The moment prompted for is only that due to side loading, not axial eccentricity. The moments due to side loading and eccentricity are assumed to be additive. If they are of opposite sign, tending to cancel each other, the interaction is evaluated in a mathematically correct way; however, the intent of the Specification is rather vague on this point. Normally it's not a problem since the axial load and any side load are usually from different sources (i.e. side loads are usually from wind) so one of them would simply be neglected.

	Timber Column Design		1/4
 P=30 k		XEQ * 6:17:39 PM 11/02/8	
Desi load	gn column for axial = 30 k (including snow) sway prevented 7 (1.2) -	TITLE: ROOF SUPPORT ************************************	RUN ****
	sway prevented ZUse Le= ("simple") Ends ZUse Le=	Fc PSI 841.7500 Fb PSI	RUN Fo not
	$J Load \Rightarrow LDF = 1.15$ for wet conditions:	E PSI 1,600,000.000	RUN needed- can by pass RUN
6	UF = .91 for Fc	 P, K <b>30.000</b>	RUN
	$= 1.0 \text{ for } E$ $= 1.0 \text{ for } F_{b}$	ECCd" 0.0000 Lata M, 'K	RUN
Use #1 Doug Fir, full cu	$A : F_c = 925 \text{ psi}$ E = 1,600,000  psi	LDF 1.1500	RUN
(Assume "B+S" category due to bracing)		K=27.2799	
$F_{c.0} = .91.925 = -41.925$	11.75 psi	Le-b" 96.0000 Le-d"	RUN
$\frac{T_{ry} 5'' * 8''}{f_c} : f_c = \frac{3}{2}$	0,000 5×6 = 750 psi	192.0000 B" 5.0000	RUN RUN
K=.671) E/F2.LDF =.67	11. Julio - 1.15 = 27.28	D- 8.0000 INTRM Fc'b=888.8360 PSI	RUN
$\frac{L_{b}}{P} = \frac{8' \times 12}{5} = 19.2;$	$\frac{L_d}{D} = \frac{16' \cdot 17}{8} = \frac{24.0}{10}$	INTRM Fc'd=774.7104 PSI	
11 < 24.0 < 27.24	6 ⇒ Intermediate	ALL P=30.9884 K-OK  Le-b-	
$\therefore F_c' = F_{co} \cdot \left[1 - \frac{1}{3} \left(\frac{L/d}{K}\right)^4\right]$	]×1.15 = 774.7 psi	Le-d-	RUH <b>input</b> Same RUN as
774.7 >75		8- 10.0000 D-	RUN can bypass
Allowable $P = 774.7 = 3$		5.0000 SHORT Fc'b=968.0125 PSI	RUN
As an example, try 10"x $\frac{L_{b}}{B} = \frac{8' \times 12}{10^{2}} = 9.6 \times 10^{2}$	•	LONG Fc'd=325.5208 PSI	
$\frac{L_{a}}{D} = \frac{16' \times 17}{5'} = 376.4 > 27.2$	8 => Long	ALL P=16.2760 K-NG	
	-1,600,000 = 325.52 psi - Govern	nsLe-b*	
Allow. P = 325,52 * 5"	$\times 10'' = 16.776 \text{ k} \text{ NG}$		(DZZI)

Matternat | 42.182 100 SHEFTS

Redesion for round column. Remove brace  $L_{h} = L_{d} = 16.0'$ Same material : F. = 841.75 ps: E = 1.600.000Use "equiv. D" from rad. of gyration: D= r x JIZ  $\Gamma = \frac{Diam}{4} \Rightarrow D = .466 \cdot Diam$ Try 8" & member  $\frac{L_{4}}{D} = \frac{16.0' \times 12}{466 \times 4''} = 27.71 > 27.28$ ⇒ Long :  $F_{c}' = \frac{0.30 E}{(L/d)^2} = \frac{.30.1,600,000}{(27.71)^2} = 624.96 \text{ psi}$ Area = I (9") = 50.26 " Allowable P= 50.26, 624.96 = 31.414 k 31.414 > 30 OK Or, analyze as "equiv. squage" member:  $D = \sqrt{50.76} = 7.09"$  $\frac{L}{N} = \frac{16.12}{7.09} = 27.09 < 27.29$ = Intermodiate (borely)  $\mathbf{F}_{c} = \mathbf{F}_{c} \cdot \mathbf{L} \mathbf{D} \mathbf{F} \cdot \left[ 1 - \frac{1}{2} \left( \frac{L/D}{K} \right)^{2} \right]$ = 841.75 · 1.15 · 11 - = ( -7.04 ) ] = 654.65 ps Allowable P = 50.26× 654.65 = 32.906 k Results are about the same (111)

XE0 "WCOL" 6:21:25 PM 11/02/88 TITLE: RE-DESIGN: ROUND COLUMN RUN NDS Fc PSI RUN 841.7500 Fb PSI RUN E PSI 1,600,000.000 RUH P, K 30.0000 RUN ECCd-RUH LATO M. K RUN LDF 1.1500 RUN K=27.2799 **** Le-b" 192.0000 RUN Le-d-192.0000 RUN 8-0.0000 RUN D-RUN 0.0000 DIA-8.0000 RUN LONG Fc'b=624.9633 PSI LONG Fc'd=624.9633 PSI ALL P=31.4141 K-OK

Le-b*

2/4

$$\begin{array}{c} \mbox{Vall Column} & \mbox{Vall beam-column for the barne of victors. Assume to the barne of victors. Assume to the barne of victors. Assume to the barne of victors. Assume to the barne of victors. Assume to the barne of victors. Assume to the barne of victors. Assume to the barne of victors. Assume to the barne of victors. Assume to the barne of victors. Assume to the barne of victors. Assume the victors of the barne of victors. Assume to the barne of victors. Assume to the barne of victors. Assume to the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne of the barne$$

42-182 100 SHEETS

RUN

RUN

RUN

RUN

$$\frac{T_{FY} (b'' \cdot 14''}{t_c} = \frac{30,000}{6 \times 14} = 357,143pci$$

$$f_c = \frac{30,000}{6 \times 14} = 357,143pci$$

$$f_c = \frac{14^2 \cdot 6''}{6} = 196.0 \text{ tr}^3$$

$$f_c = 51$$

$$f_b = \frac{14^2 \cdot 6''}{196.0} = 196.0 \text{ tr}^3$$

$$f_b = \frac{12.40^{14} \text{ tr}}{196.0} = 763.473pi$$

$$f_b = \frac{12.40^{14} \text{ tr}}{196.0} = 763.473pi$$

$$Fb = Fs1$$

$$1.300.0000 \text{ RUN}$$

$$K = 25.367 ; C_K = 26.45 (previous page)$$

$$C_5 = \int \frac{16.4 \times D}{B^4} = \int \frac{4^2 \cdot (7 - 14^2)}{62} = 6.11$$

$$6.11 < 10.0 \Rightarrow \text{ thort* for bending}$$

$$f_b = 1300 \times 1.33 = 1729.0 \text{ psi}$$

$$C_F = 1.0 (rect.); C_F = (\frac{12}{14})^{\frac{14}{7}} = .9830$$

$$\therefore F_{b1} = 1300 \times 1.33 \times .9430 = 1699.64$$

$$\frac{F_{b1}}{D} = \frac{16 \cdot 17}{14} = 13.714$$

$$H < 13.714 < K = \text{ Intermediate"}$$

$$\therefore F_c = 441.75 \times 1.33 \cdot [1 - \frac{1}{3}(\frac{13.714}{25.257})^{\frac{1}{3}}]$$

$$= \frac{1047.647}{5.2}pi = .1849$$

$$I \text{ rection} = \frac{f_c}{F_c} + \frac{f_c + f_c(6(-1.55))(e/d)}{F_{b1} - 3f_c}$$

$$= 1.0049 \approx 1.0$$

$$= 1.0049 \approx 1.0$$

$$= 1.0049 \approx 1.0$$

P, K	30.0000	RUN
ECCd-	2.0000	RUN
LATO M, K		
LDF	12.8000	RUN
C-K=28.45 K=25.3668	1.3300 18	RUN
	********	****
Le-b•		
Le-d-	96.0000	RUN
B-	192.0000 6.0000	RUN Run
D-		
S=100.000 C-S=5.164 Fb'=1,729	9	RUN
INTRM Fc'b=1,06	8.4621 PSI	
INTRM Fc'd=997.0	8495 PSI	
J=0.5708 INTRXN-d=:	2 <b>.040</b> 4-NG	
Le-b-		RUN
Le-d-		RUN
B-	6.0000	RUN
D-		RUN
S=196.000 C-S=6.110 Fb'=1,699	1	KUN
INTRM Fc'b=1,06	0.4621 PSI	
INTRM Fc'd=1,08	7.6455 PSI	
J=0.1889 INTRXN-d=	1.0049-NG	

Say OK

Program <u>VBM WCOL</u> For <u>Timber Design</u> <u>681</u> bytes Page of <u>4</u>

		<b>.</b>								•			
	X	Y	Z	T	L	****			Y_	7	T	L	
01+LBL -WBM- 02 SF 09 03 11 04 GTO 00 05+LBL -WCOL- 06 CF 09 07 18 08+LBL 00 09 SF 08 10 -NDS- 11 XROM -AA- 12+LBL F 13 -Fc- 14 FS? 09 15 -F-V- 16 -+ PSI- 17 PROMPT 18 STO 09 19 -Fb PSI- 20 PROMPT 21 STO 01 22 -E PSI- 23 PROMPT 24 STO 07 25 FC? 08 26 GTO 10 27+LBL E 28 CF 10 29 XROM -L- 30 FS? 09 31 GTO 00 32 -P, K- 33 PROMPT 34 STO 12 35 CLX 36 -ECCd 37 PROMPT 38 STO 14 39 -LATd - 40 XROM -M- 41 PROMPT 42 * 43 STO 13 44 RCL 12 45 RCL 14 46 *	X Ferty Fb E Ma E		M			51 F1 52 F1 53 P1 54 S 55 56 S0 57 F5 58 R0 61 / 62 S0 63 F1 64 S1 65 F0 66 F0 67 R0 71 R0 72 / 73 R0 71 R0 72 R0 73 R0 74 S1 76 .6 81 SF 82 81 81 SF 82 81 81 SF 82 81 83 XR0 84 SF 85 F1 80 XE 81 SF 82 81 81 SF 82 81 81 SF 82 81 81 SF 82 81 81 SF 82 81 81 SF 82 81 81 SF 82 81 81 SF 82 81 81 SF 82 81 81 SF 82 81 81 SF 82 81 81 SF 82 81 81 SF 82 81 81 SF 82 81 81 SF 81 81 81 SF 82 81 81 SF 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81	LDF- ROMPT TO 05 6 QRT S? 04 811 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL 07 CL	X J.G F. C.K E.F. LDF K Ler Ler D D	EB	2		C _K =	- SII JEF. 671 JEF. 671 JEF. Fevious Le
47 + 48 X=0? 49 SF 10	εM												0725

Program WBM, WOL For Timber Design _____ bytes Page 2 of 4

Program WBM, WCOL For Timber Design _____ bytes Page 3 of 4

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										•			
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2$		Х	Y	Z	T			X	Y	र	T	L	
		207 AVIEW 208 3 209 FS? 07 210 4 211 / 212 E3 213 / 214 RCL 09 215 * 216 RCL 05 217 * 218 -RLL V=- 219 XE0 07 220 AVIEW 221 GTO J 222+LBL 12 223 STO 17 224 RCL 02 225 RCL 03 226 -Fc·b- 227 XEQ -WFc- 228 STO 16 229 RCL 11 230 RCL 04 231 -Fc·d- 233 FC? 10 234 GTO 00 235 RCL 16 236 X>Y? 237 X<>Y 238 -H P=- 239 XEQ 07 240 RCL 12 241 GTO 11 242+LBL 07 243 RCL 06 244 * 245 ARCL X 246 -H K- 247 RTH 248+LBL 00 249 RCL 11 250 RCL 04 251 / 252 CLX	1977 0 is F V Fold For be For For the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of the sea of	Lo La allor,P		T	Note: if from line 155, R.I does not conte $F_b$ . In this co (no moment), $F_b$	258       LASTX         259       -         260       /         261       ABS         262       SIGN         263       LASTX         264       X<=Y?	KILKJJ1J avJ J J (edd Part MSf. mJf.f. dez f. f. f. f. f. f. f. f. f. f. f. f. f.	l lasseer Fc-d Fc-d	4-11 Fe-d	•	Intera fc f	+f_(6+15J)%

Program WBM, WCOL For Timber Design	bytes	Page <u>4</u> of <u>4</u>
-------------------------------------	-------	---------------------------

	X	Y	Z	T		1		Y		र	1		
	~				+	I			Γ¥_	<u>ح</u>	+		
310+LBL 11 311 CF 07 312 X>Y? 313 SF 07 314 XROM -OK- 315 AVIEN 316 GTO D 317+LBL 04 318 /	K H	L or O	1)	F			361+LBL 09 362 RCL 07 363 .3 364 * 365 Rt 366 Xt2 367 /	KE 336 Fe	L/6 E	ĸ	46	"LONG" Allow.Fe' =	
319 Xt2 320 Xt2 321 3 322 / 323 SIGH 324 LASTX	( ) ⁴ 1 1-( ) ⁴	11	<b>م</b> ـل	Fo	F5=F	\$*LDF*(1-( <u>Cs</u> ) 2*LDF*(1-( <u>Cb</u> )	368+LBL       08         369       FC?       00         370       AVIEN         371       CLA         372       ARCL       15         373+LBL       06         374       -+=""""""""""""""""""""""""""""""""""""	Fe-b				"Fс'b"	
327+LBL 05 328 ++=" 329 ARCL X 330 FC? 00 331 AVIEN 332 RTN 333+LBL "WFc"	Ь	L.			11-1		375 ARCL X 376 E3 377 / 378 "+ PSI" 379 FC? 00 380 AVIEN 381 ADV 382 "ALL" 383 END	1000 Fe' ksi					
334 RSTO 15 335 "LONG" 336 / 337 50 338 X<=Y? 339 CLX 340 X<=Y? 341 GTO 08 342 CLX	40	L/b				b° stored · 50 ⇒ Allow		1'C 441					
343 11 344 X<>Y 345 X<=Y? 346 . 347 RCL 18 348 X<=Y? 349 GT0 89	1-()		forll				·0 ⇒ don't GTO 09 ;fK<46,GTO 09						
352 E 353 X<>Y 354 X=Y? 355 •SHORT• 356 RCL 09 357 * 358 RCL 05 359 * 360 GTO 08	1 1-()4 F _C LDF Allow, F _c												
0774													

#### SIMPLE SPAN TRUCK MOMENTS

xeq T2 for Type 2 (H15 or H20) truck* (SIZE 013) T3 for Type 3 straight truck T4 for Type 4 straight truck (triple axle) 2S1 for HS20 configuration* 3S2 for Type 3S2 semi-trailer truck 3S3 for Type 3S3 semi-trailer truck (triple axle)

"Generic trucks only--lane loading not calculated by these routines. RAM program "TRUCK" contains a routine which calculates and compares lane loadings.

**SOFTKEYS** (USER mode ON)

No softkeys are used by the truck routines

#### USER FLAGS

No user flags are used by the truck routines

#### INPUT/OUTPUT SUMMARY

These routines have no prompts or output explanation. All the required data must be stored in the following registers by a calling program, and the results displayed by that program. The truck routines are simple numerical calculation routines; output consists of the governing moment for that truck in the Xregister and register 12. An example calling program which generates the moments for Minnesota trucks is included in the main documentation for use or reference.

<u>Register</u> 00	<u>Input</u> Span in feet
01	P1 (front wheel load), kips
02	P2 (second wheel load), kips
03	P3 (third wheel load), kips
04	L2 (distance between the second and third wheel of a type 2S1 truck) in feet
05	L1 (distance between the front two wheels), feet
06	L2 (distance between the middle and rear sets of wheels), feet

#### PROGRAM FLAGS

No program flags are used by the truck routines

#### STORAGE REGISTER USE

(0230

<u>Register</u> 00	<u>Value</u> Span in feet
01	P1 (front wheel load), kips
02	P2 (second wheel load), kips
03	P3 (third wheel load), kips
04	L2 (distance between the second and third wheel of a type 2S1 truck) in feet
05	L1 (distance between the front two wheels), feet
06	L2 (distance between the middle and rear sets of wheels), feet
07	P x L
08	Minimum P
09	-(Σ P x L) / ΣP
10	Maximum P
11	ΣP
12	Governing Moment

## <u>Storage Register Use - Input</u>

Each truck type, and corresponding program label, is named for the number of axles. Semitrailer truck designations have the number of axles in both the tractor and trailer.

Storage register use is as shown below. The userwritten calling program must fill these registers with the appropriate values. Where a dimension is assumed by the programs, it is enclosed in porcuthesis.

Truck	R.02	Assumptions made
Τ2	R.OF	None.
ТЗ	R.07 R.07 R.07 R.01 R.01 R.01 R.01 R.01 R.01 R.01 R.01	Rear wheels identical, 4' apart. (But, see 251)
251	₹	None.
⊤4	$\begin{array}{c} \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	Rear whecls identical 4'apait. R.06 length assumed long enough that last 3 axles govern over first 3.
352	10. H     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N <td< td=""><td>Wheels which are 4'opart are identical.</td></td<>	Wheels which are 4'opart are identical.
35 <b>3</b>	$ \begin{array}{c} R \cdot 02 \end{array} \left( \left( 1 \right) \right) \\ R \cdot 02 \end{array} \left( \left( 1 \right) \right) \\ R \cdot 06 \end{array} \left( \left( 1 \right) \right) \left( \left( 1 \right) \right) \\ R \cdot 06 \end{array} \left( \left( 1 \right) \right) \\ R \cdot 06 \end{array} \left( \left( 1 \right) \right) \\ R \cdot 06 \end{array} \right) \\ R \cdot 06 \end{array} \left( \left( 1 \right) \right) \\ R \cdot 06 \end{array} \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right) \\ \left( 1 \right$	Wheels which are 4' apart are identical.

The span in feet must be stored in R.00 for all routines.

Program TRUCK For Minnesota Truck Moments 198 bytes Pagel of 1

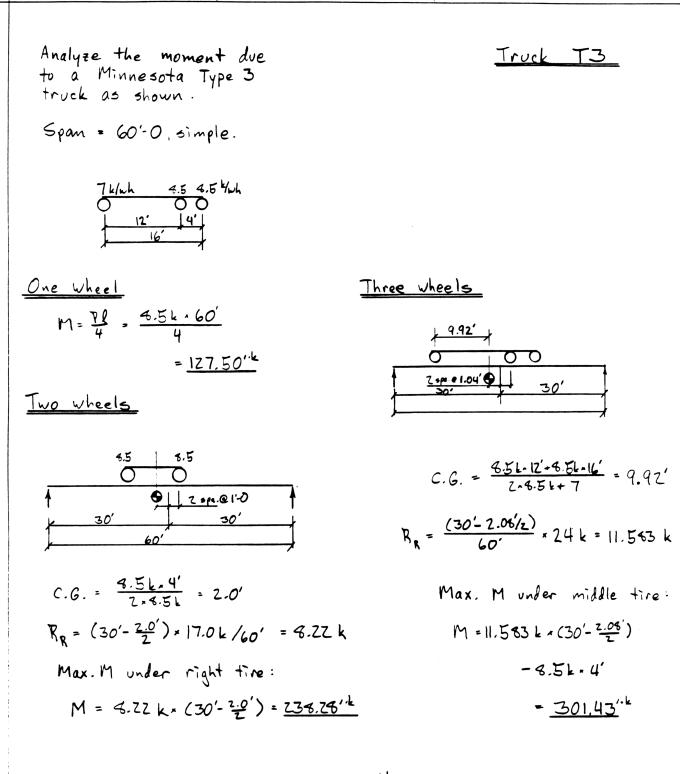
	Х	I Y	2	T					ΙV	そ	T		
		<u>                                     </u>		<u>                                     </u>			56 14	l,	+				
01+LBL TRUCK							57 STO 04	E.					
02 CF 07							58 STO 05	lz					
03 12							59 XEQ -T2-						
04 XROM "S"							60 "H 20"	1 2					
							61 XEQ 03						
05+LBL 00									1				
06 "SPAN""							62 XEQ -251-	MZSI					
87 PROMPT							63 "HS20"						
08 STO 00	spen						64 XEQ 03						
09 •I=•							65 XROM "LL"						
10 50							66 GTO 00						
11 X<>Y													
	125	span	50				67+LBL 03		1				
17 +							68 CF 07						
14 /	125.5	ł					69 RCL 00	Span					
15.3	-2073						78 4			1			
16 X>Y?							71 🔹	45	1			Lane	Load
	Impact						72 225						•
	- 1-41	1					73 +					M= +	· (.64×52/
18 ARCL X							74 E2			1			
19 FC? 00		1					75 /					-	+ 184.5%
20 AVIEW		1					76 RCL 00	span					-/[
21 ADV							77 <b>*</b>	Lane M					
22 7	~												
23 STO 01	۲,		1				78 RCL 12	Trucht	"				
24 8.5	5	1					79 X>Y?						
25 STO 02	PZ						80 GTO 01						
26 12							81 X<>Y						
27 STO <b>85</b>	l						82 STO 12	lane M					
28 XEQ •T3•	M ₃						83 SF 07		1				
29 •T3•	-				I							4	
30 XEQ 01							84+LBL 01						
31 4.65	P,						85 •⊢: M=•						
32 STO 01	•						86 ARCL X						
							87 XROM "FK"						
33 8 34 sto 02	Pi						88 FS? 07						
							89 "H(L)"					(1)+	Lane
35 STO 03	P3						90 FC? 00					loadi	
36 10	l,						91 AVIEN					gre	rns
37 STO 05	- '	1					92 END						-
38 25	l _z							I	I	I	I	1	
39 STO 06									X	EQ •TR	UCK		
40 XEQ -3S2-	M¥Z		1					9:03:25					
41 <b>-</b> 3S2U-													
42 XEQ 01		1	1					TITLE:					
43 4.5	Ρ,							MINNESOT		KS	RUN		
44 STO 01	1				P.= 8	- still store	1	******					
45 6.5	P3	1	1		-	-		SPAN					
46 STO 03	1							<b>VI 101</b>	60.0	888	RUN		
47 XEQ "3\$3"	M353							I=0.2703	00.0	~~~	6 <b>9</b> 0		
48 -353-				1				1-0.2103					
49 XEQ 01			1	1				T7. H-70		<b>ч</b>			
				1				T3: M=30					
51 4	P,			1				3S2U: M=					
52 STO 01								3\$3: <b>H=</b> 2	92.809	4 'K			
023Z) 53 16	PL												
	12	1	1		1			H 20: H=			L)		
	1												
54 STO 02 55 STO 03	Ps							HS20: M=	403.26	67 'K			

Analyze the moment due to an H2O truck Configuration 60-0" span. 14' 16 k 146 Ŧ • 30-0 60'-0"

$$\frac{0 \text{ ne wheel}}{4} = \frac{16 \text{ k} + 60'}{4} = \frac{240.0''}{4}$$

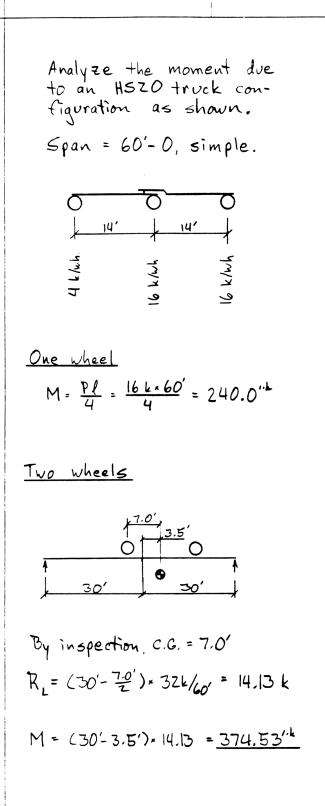
on a

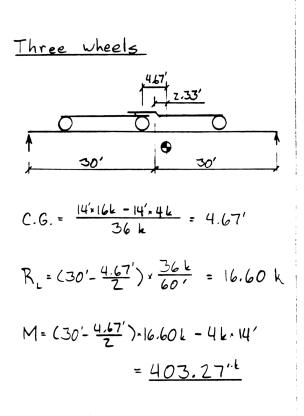
201.40' 30-0


$$\frac{[w_0 \ Wheels}{C.G.} = \frac{4 \ k \times 14'}{4 \ k - 16 \ k} = 2.80' \text{ from 16 \ wheel}$$

$$R_{\text{Right}} = \left(\frac{60'}{2} - \frac{2.80'}{2}\right) \times \frac{20 \ k}{60'} = 9.53 \ k$$

$$M = \left(\frac{60'}{2} - \frac{2.40'}{2}\right) \times 9.53 \ k = \frac{272.65''^{\text{k}}}{2} = \frac{60}{2} \text{ Governs}$$


Truck T2


Note: Routine TZ does not figure lane loads. However, user program TRUCK does.



Max. = 301.43 " / wheel line


N73





Truck 251

DZJ



Analyze the moment due to a Minnesota Type 352 truck as shown. Span = 60'-0, simple. 0 2.0 k/wheel 0 4.65 k 8.0k 25' 43' In the interest of brevity, calculations similar to those of previous pages will be omitted or shortened. One wheel M= 120.0" <u>Two wheels</u> M = 224.27'* Three wheels (tractor)  $C.G. = \frac{8.0 \cdot (10^{4})}{70.15} = 9.30'$  from front wh.  $M = (30' - \frac{.70}{2})^2 \times \frac{2065 \, k}{60'} - 4 \, k \, 4'$ = 270.54" Three vheels (trailer) 2@3.50 70°  $C.G. = \frac{4.0 \times (25'-29')}{7.4.0 \text{ k}} = 14.0'$ 

 $R_{g} = (30' - \frac{7.0'}{2}) \times \frac{24.0 k}{60'} = 10.60 k$ 

# Five wheels Max. M under 3rd wheel. 30' 30' $C_{1}G_{1} = \frac{9.0 \times (25' + 29') - 8.4 - 4.65 \times 14}{36.65}$ = 9.14' $R_{L} = (30' - \frac{9.10'}{2}) * \frac{36.65}{60'} = 15.53 \text{ k}$

Four wheels (rear)  
By inspection, C.G. = 16.5' from front  

$$R_{min} = (30' - \frac{12.5'}{2}) \times \frac{32.0k}{60'} = 12.67 k$$
  
 $M = (30' - \frac{12.5}{2}) \times 17.67k - 4.4' = 7.68.45''$ 

42 BU TO SHEED STUDIES STUDIES

 $M = (30' - 35') = 10.60 - 4 k \cdot 4' = 248.90''$ 

Truck 352

Truck 353
Rear five wheels
<u>15.03'</u> <u>17.51'</u> <u>30'</u> <u>30'</u> <u>30'</u> <u>30'</u>
<u>Under 2nd wheel</u> : C.G. = $\frac{3 \cdot 6.5 \cdot 29' - 81 \cdot 4'}{35.5 k} = 15.03'$
$R_{L} = (30' - \frac{15.03'}{2}) \times 35.51/60' = 13.30 \text{ k}$
M= (30'-751')-13.30k-8k.4'= <u>267.16''</u> k
<u>Under 3rd wheel</u> = C.G.= 25'-15.03'=9.97'
$M = (30' - \frac{9.97'}{2})^2 * \frac{35.51}{60'} - 6.51 - (4' + 6')$
= <u>292.21"</u>
Six wheels - Max. under 3rd wheel
<u>3+65+29'-8+4-4.5+14</u>
$C.G. = \frac{3 - 6.5 - 29' - 8 - 4 - 4.5 - 14}{40.0 k} = 11.76'$
$R_{L} = (30' - 5.88') \cdot \frac{40 L}{60'} = 16.08 k$
M=(30'-5,88')=16.08-(8-4'-4.5-14') = <u>Z9Z.81''^L</u>
Max. $M = 292.61''$

	X	V	2	TT	L			X		र	T	
	$\uparrow$			+ '-		I		EPernit				
01+LBL "3S2"							57 RCL 07					
02 XEQ 13	M;				IM A	<i>с</i> .	58 -	ME				
03 XEQ 03	M3					r front	59 GTO 22					
04 RCL 03	P3					eels	(0.1 0)					
05 RCL 02	PZ				(trae	tor)	60+LBL -353-					
06 X>Y?							61 XEQ 13	M,				
07 X<>Y	Prin						62 XEQ 03	M3				
08 STO 08							63 XEQ 04	My				My for read
09 X<>Y							64 RCL 03	P3				Juheels
10 STO 10	Pmax	Pmin					65 6	κω·-z')				(trailer)
11 XEQ 12	Mz						66 *	F, l,				
12 RCL 10	Pmax						67 RCL 06	lz				
13 RCL 10	-						68 2					
14 RCL 08	Pmin						69 +	D				
15 RCL 06	li	Pain	Pmax	Pmax			70 RCL 02	P ₂				
16 XEQ 14	Má				M3 (	for rear	71 *					
17 RCL 10					3~	heels	72 -	2P.d5				
18 ST+ X	ZPmox						73 ST+ X					
19 RCL 06	li						74 RCL 11	EPrear 4 Pz				
20 2							75 RCL 02	Pz				
21 +	l.2						76 +	Prears	ZPdz			
22 RCL 08	Phin						77 XEQ 10	M's				
23 *							78 RCL 03	Ps				
24 -	ZPd						79 12	(8'+4')				
25 RCL 10	- · •						80 *					
26 RCL 08							81 -	M ₅₄				Msa under
27 +	ZP	-2P.1					82 XEQ 22	1.				1st axle of
28 XEQ 10	Míz						83 RCL 06	le	1			triple
29 ST+ X	M						84 RCL 09	- d 5A				41:0-
30 RCL 10	Print				I		85 +					4
31 4	4'						86 CHS	d'58				
32 *	4' .P						87 XEQ 05	M				
33 -					MC		88 RCL 02	Pz				
34 XEQ 22	M ₄				1 14 20	r rear	89 4	12				
34 AEW 22 35 RCL 02	P2				4 "	/heels	<del>98</del> *	4'-P2				
35 KCL 02 36 4	1.2						91 STO 07					
37 *	UP.						92 -	MSB				M50 under
38 RCL 05	l.						93 XEQ 22					2ª axle
38 KCC 85 39 LASTX	<u> </u>						94 RCL 05	Q,				of tractor
40 +	2,+4						95 4					tual
40 4 41 RCL 01	P.						96 +					
41 KUL 01 42 *	1''						97 RCL 01	P,				
43 +	1,11-4)-4						98 *	P.U4)				
44 STO 07	EP L.	R.					99 ST+ 07					ZPd front in R.O
45 RCL 06		1					100 RCL 09	- d5A				[Jeen +
45 KCL 86 46 ST+ X	12						101 RCL 06	12				
47 4							102 +	. BED				
48 +							103 RCL 11	ZP3				
40 4 49 RCL 03	P.						104 *					
49 KCL 83 50 *	P3	45					105 -	-IRI				
50 +	z P.d						106 RCL 11	EP5				
	12 PM						107 RCL 01	P."				
52 RCL 11 53 ST+ X	ZP4						108 +	ZP,				
				1			109 XEQ 10	P. ZP. M'.				
54 RCL 01 55 +	r. ZPs						110 RCL 07					(DZ39)
							111 -	1				
56 XEQ 10	Mŕ						112 GTO 22	M ₆	1	ł	1	

Program <u>Trucks</u> For _____ bytes Page <u>Zof</u> <u>3</u>

			Y_	Z	T	L			X	Y	र	T	
	113+LBL -T4-	_											
	114 RCL 03	Pr.						168+LBL 14	l,	P,	P2	Pzwz	
	115 XEQ 11	M,						169 X<>Y	P.	l,		2~3	
									''		ZP		
	116+LBL 04							170 ST+ Z	P. 9,	٤P		P2-3	
	117 RCL 03	Pz						171 *	1, 1,	۷ (	2.43	12-3	
								172 STO 07					
	118 XEQ 12	M ₂						173 RCL 04	lz				
	119 RCL 03	Pz						174 R†	Pzors	lz-	P.C.	5 P 2	
	120 RCL 00	Span				1		175 ST+ T		_		ZP	
	121 3	1						176 *	P. P.	F0,			
	122 *							177 -		zP			
	123 4			1					-211 2P	2 r - 2 P A			
	124 /	35/4	Pz			1		178 X<>Y	M	~218			
		10-74	12					179 XEQ 10	M',				
	125 LASTX	4 35-4						180 RCL 07	P, 1,				
	126 -	4-4				M	= (3P).P _ 4'.P	181 -	M ₃			1	
	127 *					Triple	ч	182 GTO 22	' '3				
	128 XEQ 22	Mrigh											
	129 RCL 02	P,						183+LBL -251-					
	130 RCL 06	l							M,				
	131 4	1				1		184 XEQ 13	<b>''</b>				
		1-4				1		185 RCL 03					
	132 +		1					186 RCL 02					
	133 *	P. ( 2.4	1					187 RCL 01		_			
	134 CHS	-P.d				1		188 RCL 05	L	P,	Pz	P3	
	135 RCL 03	P2			1			189 XEQ 14	M3				
	136 3					1		190 RCL 03					
	137 *	EPwint	]					191 RCL 02					
	138 RCL 02	P,								P	5		
	130 KCL 02 139 +		-2P.d	ł		1		192 RCL 04	12	Pz	Pz		
		SP	1-21.9	1		1		193 XEQ 02	Mziren	ł			
	140 XEQ 10					1		194 RCL 01			1		
	141 RCL 03	Pz	1					195 RCL 02				1	
	142 4		1		1			196 RCL 05	l e ,	12	P,		
	143 *	48						197 GTO 02	1-1	1'2	1.1		
	144 -	MyA				Mui	under				1		
	145 XEQ 22	<b>"</b>	1			32	wheel	100ALDI 10	P				
	146 RCL 09	-l_	1		1			198+LBL 12	T		1		
								199 ENTERT	<b>F</b>	-			
	147 4							200 ENTERT	P	P	P		
	148 +	-1 ₈						201 4	4	P	P		
	149 CHS							2 <b>8</b> 2 gto 82					
	150 XEQ 05	n'		1									
	151 RCL 02	· 7,		1				203+LBL -T2-					
	152 RCL 06	Q,		1	1				P	1			
	153 *	P.1.	1					204 RCL 01	1 ''				
	154 -					м		205 XEQ 11	P,	1			
		Mub		1			under	206 RCL 01		1			
	155 GTO 22			1	1	12-	wheel	207 RCL 02	Pz				
			1	1				2 <b>08 RCL 05</b>	l				
	156+LBL •T3•		1	1									
	157 RCL 01		1	1				209+LBL 02		1			
	158 XEQ 11	M,	1		1	1		210 RDN	Pz	P,		Q	
				1		1		211 X>Y?		1 '			
	159+LBL 03		1	1					Pmin	Pmax		l	
				1	1	1		212 X()Y		1 .			
	160 4		1		1			213 ST+ Y	Prin	ZP			
	161 STO 04	1/L	1		1	1		214 Rt		1			
	162 RCL 02	Pz			1			215 *	Pinel	ZP	1		
$\frown$	163 XEQ 12	M ₂			1			216 CHS			1		
(6240)	164 RCL 02				1			217 X<>Y	ZP	-7.1			
	165 RCL 02					1		218 XEQ 10		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	166 RCL 01					1		CIO VER ID	M ₂		1		

Program Trucks For _____ bytes Page 3 of 3

2194.BL 22       Max       Max         228 6CL 12       Max       Z56 5T0 1         228 70 7       Z23 5T0 12       Max         223 70 12       Max       Z26 5T0 1         224 8K17       Z27 5T0 1       Z77 5T0 1         225 85 70 88       Z77 5T0 1         227 450 88       Z77 5T0 1         228 8CL 88       Z27 5T0 1         229 8CL 88       Span         229 8CL 88       Span         229 8CL 88       Span         229 8CL 81       Y         229 8CL 81       Y         229 8CL 81       Y         229 8CL 81       Y         229 8CL 81       Y         229 8CL 81       Y         229 8CL 81       Y         229 8CL 81       Y         224 8K17       Z89 8C1 89         224 4K17       Z89 8C1 89         224 4K17       Z89 8C1 89         224 4K17       Y         225 707 7       Y         226 707 7       Y         226 707 7       Y         227 7       Y         228 7       Y         229 7       Y         229 7       Y		X	Y	Z	T			X	ΙΥ	र	T	L	
228       CL 12 228       Final 228       M       269       STO 1 27       CTO 88         223       STO 12 225       STO 12 225       STO 12 225       STO 12 225       STO 14 225       274       BL       851' 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 15 275       STO 14 275       STO 15 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 12 275       STO 12 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 14 275       STO 15 275       STO 15 275       STO 15 275       <													
221 X(x)??       228 X(x)?       227 6005         223 X(x)?       227 (10 86)       227 (10 86)         224 RTH       273 ST0 4       273 ST0 4         224 RTH       273 ST0 4       273 ST0 4         225 ST0 11       2 P       27         228 ST0 99       27       275 ST0 4         229 J       228 ST0 99       275 ST0 4         229 ARL 50       275 ST0 4       275 ST0 4         228 ST0 99       275 ST0 4       275 ST0 4         229 J       228 ST0 99       275 ST0 4         229 J       228 ST0 99       276 HLL 507         228 ST0 99       275 ST0 7       276 ST0 4         231 +       Sp-4       278 ST0 4         232 2       237 / 3 - 5       28 ST0 3         233 Z       3 - 5       28 ST0 3         234 X09       24 ST0 4       28 ST0 4         237 F       28 ST0 1       277 ST0 4         238 SC 88       29 ST0 7       28 ST0 1         237 F       28 ST0 1       277 ST0 7         238 SC 98       Sp-4       28 ST0 7         239 F       24 ST0 7       26 ST0 7         249 ST7       74 ST0 7       28 ST0 7         249 ST7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
222 X07       Max       221 CT0 88         223 ST0 12       224 FTM       225 ST0 12         225 ST0 11       -2       275 ST0 87         225 ST0 11       -2       275 ST0 87         225 ST0 11       -2       275 ST0 87         225 ST0 12       -2       275 ST0 88         227 ST0 97       275 ST0 87       275 ST0 87         2294 EU 69       277 ST0 77 ST0 7       275 ST0 88         231 7       59-1       276 ST0 87         232 7       27-4       288 ST0 87         233 70       2-4       288 ST0 1         233 FCL 69       59-4       288 ST0 1         233 FCL 69       59-4       288 ST0 1         233 FCL 69       59-4       288 ST0 1         233 FCL 69       59-4       288 ST0 1         233 FCL 69       59-4       288 ST0 1         234 ST0 12       7       289 ST0 1       -4         244 ST1       7       -2       289 ST0 1       -4         244 ST1 82       7       289 ST0 4       299 ST0 43       -4         244 ST1 82       7       289 ST0 4       -4       -4         245 ST0 12       7       29       29       100 5		Musi	Μ				269 STO †					1	
222 X07       Max       221 CT0 88         223 ST0 12       224 FTM       225 ST0 12         225 ST0 11       -2       275 ST0 87         225 ST0 11       -2       275 ST0 87         225 ST0 11       -2       275 ST0 87         225 ST0 12       -2       275 ST0 88         227 ST0 97       275 ST0 87       275 ST0 87         2294 EU 69       277 ST0 77 ST0 7       275 ST0 88         231 7       59-1       276 ST0 87         232 7       27-4       288 ST0 87         233 70       2-4       288 ST0 1         233 FCL 69       59-4       288 ST0 1         233 FCL 69       59-4       288 ST0 1         233 FCL 69       59-4       288 ST0 1         233 FCL 69       59-4       288 ST0 1         233 FCL 69       59-4       288 ST0 1         234 ST0 12       7       289 ST0 1       -4         244 ST1       7       -2       289 ST0 1       -4         244 ST1 82       7       289 ST0 4       299 ST0 43       -4         244 ST1 82       7       289 ST0 4       -4       -4         245 ST0 12       7       29       29       100 5	221 X<=Y?						270 ACOS						
223 570 12       Max         224 FTN       279-181         225 18 11       2.P         225 18 11       2.P         225 18 11       2.P         225 18 12       2.P         225 18 12       2.P         225 18 12       2.P         225 18 12       2.P         225 18 12       2.P         225 18 12       2.P         226 17 11       2.P         228 570 89       2.76 11.86         238 501 12       2.P         238 501 12       2.P         238 501 12       2.P         238 501 12       2.P         238 501 12       2.P         238 501 14       2.P         238 501 15       2.P         238 501 16       2.P         238 501 18       2.P         238 501 19       2.P         238 501 10       P         238 501 10       P         238 501 10       P         238 501 10       P         238 501 10       P         244 502 10 1       P         245 501 10 7       P         258 701 80       P         258 701 80       P													
224 ETM     272+LE -RSI- 225 ST0 1     272+LE -RSI- 273 ST0 + 274 SSIM       225 ST0 89     -FE     275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 275 ST0 + 2		M											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- max											
2254.86.16       274.85.11       275.57.08         226.57.01       -2       227.57.87.87         228.50.09       277.57.87.77         229.60.09       277.57.87.77         221.1       5.9.7.1         223.60.09       277.57.87.77         223.60.09       279.18.09         223.7       2.9.7.1         223.7       2.7.7.1         223.7       2.7.7.1         223.7       2.7.7.1         223.7       2.7.7.1         223.7       2.7.7.1         235.7       2.7.7.1         236.7.1       2.7.7         237.4       2.7.7.1         238.7.1       2.7.7         238.7.1       2.7.7         238.7.1       2.7.7         239.7       1.7.7         241.6.80       59.6.7         238.7.1       2.7.7         244.7.77       2.9.17         244.7.77       2.9.17         244.7.77       2.9.17         244.7.77       2.9.18         254.7.1       7.7.8.97         254.7.1       7.7.8.97         254.7.12       7.7.97         254.7.12       7.7.97         255.7.77	224 KIN												
226 ST0 11       2.P       -P       -P         227 /       228 ST0 89       276 ST0 88       276 ST0 11         228 ST0 89       276 ST0 11       277 St0 1       277 St0 1         229 LBL 85       228 ST0 11       200 LT       200 St0 11       200 St0 11         221 / 2       2       2       288 ST0 11       279 LBL 88       279 LBL 88         223 / 2       2       2       288 ST0 11       279 LBL 88       288 HKS         233 / 2       2       2       288 ST0 11       279 LBL 88       288 HKS       281 HKS         233 / 2       2       2       288 ST0 11       279 LBL 88       281 HKS       114 Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Stor							273 STO †						
226 ST0 11       2.P       -P       -P         227 /       228 ST0 89       276 ST0 88       276 ST0 11         228 ST0 89       276 ST0 11       277 St0 1       277 St0 1         229 LBL 85       228 ST0 11       200 LT       200 St0 11       200 St0 11         221 / 2       2       2       288 ST0 11       279 LBL 88       279 LBL 88         223 / 2       2       2       288 ST0 11       279 LBL 88       288 HKS         233 / 2       2       2       288 ST0 11       279 LBL 88       288 HKS       281 HKS         233 / 2       2       2       288 ST0 11       279 LBL 88       281 HKS       114 Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Store Stor	225+LBL 10						274 ASIN						
227 / 228 ST0 89       27418L 170°         229 IEL 85       229 IEL 86         221 +       5/6 - £         222 2       223 / E - £         223 K12       5/6 - £         223 K12       5/7 - £         223 K12       5/7 - £         223 K12       5/7 - £         238 K12       5/7 - £         238 K12       5/7 - £         238 K12       5/7 - £         238 K12       5/7 - £         238 K12       5/7 - £         238 K12       8/7 - 2         244 K17       28/7 K1         244 K17       28/7 K1         244 K17       28/7 K1         244 K17       28/7 K1         244 K17       28/7 K1         244 K17       28/7 K1         244 K17       28/7 K1         244 K17       28/7 K1         244 K17       28/7 K1         255 K18       7         256 K10 E1       1         251 *       29         254 ST0 12       M1         255 K18       29         256 K10 E7       29         256 K10 E7       1         258 ST0 12       M1         258 ST0 12<		ΣP	-Pl										
228 STO 09       226 LBL 05         229+LBL 05       277 STO T         238 RCL 09       279+LBL 06         231 +       5µ-L         232 2       200 FS7 03         233 /       1 - £         234 RCL 11       279         235 X2       - 5         236 RCL 11       279         237 XE 11       279         238 RCL 09       59*ac         239 /       284 KLX 1         237 XE 10       728 RCL 11         244 RLB 13       7         248 RCL 80       59*ac         249 RTH       M1         241*LBL 13       7         244 RCL 81       7         244 RCL 81       7         244 RCL 81       7         244 RCL 82       29         244 RCL 83       7         244 RCL 83       7         247 RCL 82       7         247 RCL 82       24         251 #       29         253 RTM       7         254 STO 12       M1         255 RTM       7         256 STD 67       7         264 RLB       11         255 RTM       10		- 2											
2294 ISL 05       277 STD 1         238 RCL 09       231 +         231 +       240 FS7 83         232 2       2.7 STD 1         233 /       1 - £         234 X07       1 - £         235 RCL 11       27         238 RCL 09       57 ac.         238 RCL 11       27         238 RCL 11       27         238 RCL 11       27         238 RCL 11       27         239 /       240 RTH         239 /       240 RTH         240 RTH       M1         241 RLB L3       7         242 RCL 101       7         243 RCL 83       75         244 RCL 11       7         245 RC1 7       289 RCL 89         244 RCL 11       7         245 RC1 7       7         246 RCL 80       59 ac.         246 RCL 80       59 ac.         251 *       7         252 RCL 80       59 ac.         253 RCL 80       59 ac.         254 RCL 80       59 ac.         255 RCL 80       59 ac.         255 RCL 80 52 ac.       50 ac.         255 RCL 80 52 ac.       50 ac.         255 R													
2294 LBL 85 238 RCL 89 238 RCL 89 237 * 237 * 238 RCL 11 237 * 238 RCL 11 279 LBL 88 229 LBL 87 238 RCL 11 279 LBL 88 229 LBL 87 238 RCL 11 277 * 238 RCL 80 244 RCL 80 244 RCL 81 244 RCL 81 244 RCL 81 244 RCL 82 245 RCV 7 245 RCV 7 246 RCL 82 244 RCL 82 245 RCV 7 246 RCL 82 247 RCL 82 246 RCL 82 246 RCV 7 246 RCL 82 247 RCL 82 247 RCL 82 247 RCL 82 247 RCL 82 255 RCL 99 266 RCL 11 256 RCL 81 255 RCL 99 256 RCL 81 255 RCL 99 256 RCL 99 266 RCL 81 257 RCL 99 266 RCL 99 266 RCL 81 267 RCL 91 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 267 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 R	228 510 89						276+LBL "ATA"						
2294 LBL 85 238 RCL 89 238 RCL 89 237 * 237 * 238 RCL 11 237 * 238 RCL 11 279 LBL 88 229 LBL 87 238 RCL 11 279 LBL 88 229 LBL 87 238 RCL 11 277 * 238 RCL 80 244 RCL 80 244 RCL 81 244 RCL 81 244 RCL 81 244 RCL 82 245 RCV 7 245 RCV 7 246 RCL 82 244 RCL 82 245 RCV 7 246 RCL 82 247 RCL 82 246 RCL 82 246 RCV 7 246 RCL 82 247 RCL 82 247 RCL 82 247 RCL 82 247 RCL 82 255 RCL 99 266 RCL 11 256 RCL 81 255 RCL 99 256 RCL 81 255 RCL 99 256 RCL 99 266 RCL 81 257 RCL 99 266 RCL 99 266 RCL 81 267 RCL 91 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 267 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 266 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 267 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 RCL 99 277 R							277 STO 🕇						
238 KCL 00       231 +       5x-1       2794LBL 00       200 FS? 03         232 2       237 +       2 - £       280 FS? 03       201 HMS         233 KV2       (j       220 LBL 07       reach       220 LBL 07       reach         233 KV2       (j       220 LBL 07       reach       230 KX L       reach         234 KX0       E       238 KX L       reach       238 KX L       reach         235 KCL 00       Span       225 KX L       reach       238 KX L       reach         239 FX       239 FX       238 KX L       reach       reach       reach         238 KL 00       Span       228 KX L       reach       reach       reach         240 FXN       M'       238 KX L       reach       reach       reach         240 FXN       M'       289 FXN       289 FXN       reach       reach         241 FXY       Pace       290 FS7 83       reach       reach       reach         244 FXY       Pace       291 HR       Pace       Pace       Pace         246 FXN       Pace       291 HR       Pace       Pace       Pace         246 FXN       Pace       291 HR       Pace       Pace	229+LBL 05									1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											1		
232 2 233 / 2- 2 234 X89 235 X2 ( ) 235 X2 ( ) 235 X2 ( ) 235 X2 ( ) 237 * 238 PCL 00 \$Pax. 239 / 240 PTN M' 241 PLI 01 P. 242 PLL 01 P. 242 PLL 01 P. 243 PLI 03 P. 244 PTN P' 244 PLI 03 P. 245 X(Y) P. 245 X(Y) P. 246 PLI 02 P. 246 PLI 02 P. 246 PLI 02 P. 246 PLI 02 P. 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 255 PL 25											1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Dor-1					279+LBL 08			}			
233 / 201       2 * 2       2       2       2       2       1       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       <							280 FS? 03						
235       XH2       C, J         236       RCL       11       E         237       *       282×8LB       ************************************	233 /	2-2											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							201 1115						
235       RCL 11       EP       285       285       1		103					000 1 01 07					anala	
237 *       238 RCL 00       Span.       284 CLX       miganitum references Reg. P         239 / 240 RTH       M1       285 X(X) L       references Reg. P         240 RTH       M1       288 X(X) L       references Reg. P         244 RTH       M1       289 STO F       references         244 RTH       P3       289 STO F       references         244 RTH       P3       289 STO F       references         244 X(Y?       Pase       299 IHR       references         245 X(X)Y       Prace       292 EHD       references         246 RTH       P       290 IHR       Pcr. Ac         247 RCL 00       P       290 IHR       Pcr. Ac         248 X(Y?       P       292 EHD       Pcr. Ac         249 X(X)Y       Prace       292 EHD       Pcr. Ac         258 CD6       Span.       250 RTH       Pcr. Ac         259 GTO 07       Ac. An       255 STH       Ac. An         259 GTO 07       Ac. An       255 STH       Ac. An         252 STH       Ac. An       Ac. An       Ac. An         256 XEP 09       Ac. An       Ac. An       Ac. Ac. Ac. Ac. Ac. Ac. Ac. Ac. Ac. Ac.												maje	
237       *       284 CLX       rivet         239       //       285 KX ) L       real+         239       //       M'       285 KX ) L       real+         249       RTN       M'       285 KX ) L       real+         2419       B1       3       F.       2869       RTN       real+         2419       RL 83       F.       2869       RTN       real+         243       RCL 83       F.       2869       RTN       real+         244       KY?       Fract       299 ST0 f       red+       red+         244       KY?       Fract       299 ST0 f       red+       red+         244       KY?       Fract       299 ST0 f       red+       red+         244       KY?       Fract       291 HR       Der. 40       Der. 40         244       KY?       Fract       292 END       Der. 40       Der. 40         258       RCL 80       S0a.       253 FTN       Pract       255 FTN       Der. 40         255       RTM       Z55 ST M       Z65 ST M       Z64 ST M       Z64 ST M       Z65 ST M       Z65 ST M       Z65 ST M       Z64 ST M       Z64 ST M		27					283 X<> L	ango de				resolt	
238 RCL 66 239 / 248 RCL 61 241 + LBL 13 244 + LBL 13 244 + LRL 61 243 RCL 61 243 RCL 63 244 + LRL 77 245 XCV 7 7max 246 + LBL 11 247 RCL 62 246 + LBL 11 247 RCL 62 248 X(Y? 248 X(Y? 248 X(Y? 248 X(Y? 248 X(Y? 248 X(Y? 248 X(Y? 248 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 249 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 249 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y? 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(Y) 240 X(	237 +						284 CLX	1.					
239 /       246 RTN       M1       286 X() L       realt         2414 LBL 13       P.       289 TRN       289 TRN       realt         242 RCL 01       P.       289 TSP 01       realt       realt         243 RCL 03       P.       290 TSP 03       realt       realt         244 X(Y)       Pres       291 HR       Dec.Ma         245 X(Y)       Pres       291 HR       Dec.Ma         245 X(Y)       Pres       292 EMD       Dec.Ma         245 X(Y)       Pres       292 EMD       Dec.Ma         246 X(Y)       Pres       293 TSP 05       Dec.Ma         247 RCL 09       Span       Span       Dec.Ma         248 X(Y)       Pres       Span       Dec.Ma         258 RCL 09       Span       Span       Dec.Ma         255 RTN       255 RTN       Pres       Dec.Ma       Dec.Ma         256 VIE 07       Z65 SID 12       M1       Dec.Ma       Dec.Ma       Dec.Ma         266 VIE 07       Z65 SID 97       Dec.Ma       Dec.Ma       Dec.Ma       Dec.Ma         266 VIE 07       Z65 SID 97       Dec.Ma       Dec.Ma       Dec.Ma       Dec.Ma       Dec.Ma         266 TRM <td></td> <td>50 000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>oria and</td> <td></td> <td></td> <td></td> <td>note: cle</td> <td>ars Req. P</td>		50 000						oria and				note: cle	ars Req. P
240 RTN       M ⁴ 287 RTN         241+LBL 13       P.       289 STO 1         242 RCL 03       P.       289 STO 1         244 X(Y?)       P.       290 FS? 03         244 X(Y?)       P.       290 FS? 03         245 X(S)Y       P.<									r				<b>.</b>
241+4.BL 13 242 RCL 01 243 RCL 03 244 K(Y?)       P.       289+4.BL 09 299 F57 83 291 HR 299 F57 83 291 HR 292 END								realt				and and	ie
242 RCL 01     P.       243 RCL 03     P3       244 X(Y?       245 X(Y)       246+LB 11     P       247 RCL 02     P-       248 X(Y?       249 X(Y?       248 X(Y?       249 X(Y?       248 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       249 X(Y?       251 *       255 XE0 09       251 XE0 097       264 LBL -T0 ⁻ 264 XE0 -T0 ⁻ 264 XE0 -T0 ⁻ 265 XE0 09       264 XE0 -T0 ⁻ 264 XE0 -T0 ⁻ 265 XE0 09       264 XE0 -T0 ⁻ 265 XE0 09       265 XE0 09       266 XE0 -T0 ⁻ 266 XE0 -T0 ⁻ 267 XE0 09       267 XE0 09       268 XE0 0	240 RIN	IM I					287 RTN						
242 RCL 01     P.       243 RCL 03     P.       244 X(Y?       245 X(Y)       246+LB 11     P.       246+LB 11     P.       247 RCL 02     P.       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       258 RCL 00       Span       251 *       252 4       P4/4       253 7       258 RCL 00       Span       258 RCB       258 RCB       258 RCB       258 RCB       258 RCB       258 RCB       259 GT0 07       264+LBL "S1"       264+LBL "TA"       264+LBL "TA"       265 XED 09       264+LBL "TA"       265 XED 09       266 RH													
242 RCL 01     P.       243 RCL 03     P.       244 X(Y?       245 X(Y)       246+LB 11     P.       246+LB 11     P.       247 RCL 02     P.       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       248 X(Y?       258 RCL 00       Span       251 *       252 4       P4/4       253 7       258 RCL 00       Span       258 RCB       258 RCB       258 RCB       258 RCB       258 RCB       258 RCB       259 GT0 07       264+LBL "S1"       264+LBL "TA"       264+LBL "TA"       265 XED 09       264+LBL "TA"       265 XED 09       266 RH	241+LBL 13						2884i Ri - 89						
243 RCL 83       V3         244 XKY7       296 FS? 83         244 XKY7       291 HR         245 XKYY       Prex         246 +LBL 11       P         247 RCL 82       Pr.         248 XKY7       Prex         249 XKY7       Prex         249 XKY7       Prex         249 XKY7       Prex         249 XKY7       Prex         250 RCL 80       Span         251 +       252 4         252 4       PL/4         253 x 12       Mr         255 xED 89       Acr. Jag         256 xED 12       Mr         256 xED 70 67       Acr. Jag         266 xED *51*       Acr. Jag         266 xED *51*       Acr. Jag         266 xED *51*       Acr. Jag         264 xED *51*       Acr. Jag         264 xED *71*       Acr. Jag         264 xED *71*       Acr. Jag         264 xED *71*       Acr. Jag         265 XED 89       Acr. Jag         264 xED *71*       Acr. Jag         265 XED 89       Acr. Jag         264 xED *71*       Acr. Jag         265 XED 89       Acr. Jag         265 XED 89		P.							1				
244 X(Y?       7								engie	1				
245 X(Y)       Prex.       292 END:       VEX.NG         246+LBL 11       P       Pre.       292 END:       VEX.NG         247 RCL 02       Pre.       290 END:       VEX.NG       100 END:         248 X(Y)       Pre.       290 END:       VEX.NG       100 END:         248 X(Y)       Pre.       Span.       250 END:       VEX.NG         251 *       252 4       F4/4       253 / 255 RTN       VEX.NG         255 RTN       255 RTN       Mr.       255 RTN       VEX.NG         258 COS       259 GTO 07       Ar. Jag       VEX.Ng       VEX.Ng         260+LBL -SI-       Ar. Jag       Ar. Jag       VEX.Ng       VEX.Ng         266+LBL -SI-       261 XED 09       Ar. Jag       VEX.Ng       VEX.Ng         264+LBL -TAT-       265 XED 09       Irr. Jag       VEX.Ng       VEX.Ng         264+LBL -TAT-       265 XED 09       Irr. Jag       VEX.Ng       VEX.Ng         266 TRN       VEX.Ng       Irr. Jag       VEX.Ng       VEX.Ng		נין					290 FS? 03						
245 X(3Y)       Prex       292 END       3         2464LBL 11       P       Prex       292 END       3         247 RCL 02       Prex       248 X(Y?       248 X(Y?       248 X(Y?         248 X(Y?       Prex       250 RCL 00       Span       251 *         252 4       P/L/4       253 /       254 STO 12       Mi         255 RTN       255 RTN       Prev       Annotation         2564LBL *CO*       257 XEQ 09       Are Jan       Annotation         258 COS       259 GTO 07       Are Jan       Are Jan         260+LBL *SI*       263 GTO 07       Are Jan       Are Jan         264+LBL *TA*       Are Jan       Are Jan       Are Jan         2654 KED 09       Jan       Are Jan       Are Jan         2654 KED 09       Jan       Are Jan       Are Jan         264 KED *TA*       Are Jan       Are Jan       Are Jan         2654 KED 09       Jan       Are Jan       Are Jan       Are Jan         2654 KED 09       Jan       Are Jan       Are Jan       Are Jan         2656 TRN       Are Jan       Are Jan       Are Jan       Are Jan	244 X(Y?						291 HR	Decilor					
246+LBL 11       P         247 RCL 02       PL         248 X(Y?         249 X(X)Y       Pmor         250 RCL 00       Span         251 *       252         252 4       PL/4         253 /       PL/4         255 RTH       255 RTH         256+LBL *CO*       257 XE0 09         258 COS       259 GTO 07         266+LBL *SI*       262 SIH         262 SIH       263 GTO 07         264+LBL *TA*       Ma         265 XE0 09       Im Image         264 XE0 07       Im Image         265 XE0 09       Im Image         264 KEL *TA*       Ma         265 XE0 09       Im Image         264 KEL *TA*       Ma         265 XE0 09       Im Image         264 KEL *TA*       Ma         265 TH       Ma         265 TH       Image         265 TH       Ma         265 TH       Ma         265 TH       Ma	2 <b>4</b> 5 X<>Y	Pmex			1	1		Veriver	1				
247 RCL 02 248 X(Y? 249 X(Y) 249 X(Y) 250 RCL 00 50 a. 251 * 252 4 253 / 254 STO 12 255 RTN 255 RTN 256 COS 259 CTO 07 260 LBL "SI" 261 XEQ 09 262 STN 263 CTO 07 264 LBL "TR" 264 LBL "TR" 264 LBL "TR" 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09										1			
247 RCL 02 248 X(Y? 249 X(Y) 249 X(Y) 250 RCL 00 50 a. 251 * 252 4 253 / 254 STO 12 255 RTN 255 RTN 256 COS 259 CTO 07 260 LBL "SI" 261 XEQ 09 262 STN 263 CTO 07 264 LBL "TR" 264 LBL "TR" 264 LBL "TR" 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09 265 XEQ 09	246 AL DL 11	P											
248 X(Y?       Ymder         259 RCL 00       Span         251 *       Span         252 4       F4/4         253 /       F4/4         253 /       F4/4         255 RTM       Mi         256 + LBL * CO*       Z57 XEQ 09         257 XEQ 09       Acr. Jan         258 COS       Z59 GTO 07         260+LBL * SI*       Acr. Jan         261 XEQ 09       Acr. Jan         262 SIN       Acr. Jan         263 GTO 07       Acr. Jan         264+LBL * TA*       Acr. Jan         265 XEQ 09       Acr. Jan         265 XEQ 09       Acr. Jan         265 TAN       Acr. Jan													
249 X(Y)       Ymax         250 RCL 00       Sp0.n.         251 *       252 4         253 /       Fl/u         253 /       Fl/u         254 STO 12       M.         255 RTN       M.         256 + LBL *CO*       Ac. Jay         257 XE0 09       Ac. Jay         258 COS       259 GTO 07         260 + LBL *SI*       Ac. Jay         261 XE0 09       Ac. Jay         262 SIN       Ac. Jay         263 GTO 07       Ac. Jay         264 + LBL *TA*       Ac. Jay         265 XE0 09       Ac. Jay         265 KE0 09       Ac. Jay         265 KE0 09       Ac. Jay         266 TOH       Ac. Jay		12											
258 RCL θθ       Span         251 *       252 4         252 4       P4/4         253 /       P4/4         253 /       P4/4         253 /       P4/4         255 RTN       M1         256+LBL *C0*       P4/4         257 XEQ 09       Jec. Jan         258 COS       P5         259 GTO 07       Jec. Jan         266+LBL *S1*       P4         263 GTO 07       Jec. Jan         264+LBL *TR*       Jec. Jan         264+LBL *TR*       Jec. Jan         265 XED 09       Jec. Jan         266 TRN       Jec. Jan	248 X(Y?												
250 RCL 00       Span         251 *       252 4         252 4       24/4         253 /       F4/4         254 STO 12       M1         256+LBL *CO*       257 XEQ 09         257 XEQ 09       Acr. Jan         258 COS       259 GTO 07         260+LBL *SI*       Acr. Jan         261 XEQ 09       Acr. Jan         262 SIN       Acr. Jan         263 GTO 07       Acr. Jan         264+LBL *TR*       Acr. Jan         265 XEQ 09       Acr. Jan         265 TRN       Acr. Jan	249 X<>Y	Ymer											
251 * 252 4 253 / 254 STD 12 255 STH 255 STH 255 STH 255 STH 255 CD 257 XEQ 09 258 CDS 259 GTO 07 260+LBL "SI" 261 XEQ 09 262 SIH 263 GTO 07 264+LBL "TA" 264+LBL "TA" 264+LBL "TA" 265 XEQ 09 265 XEQ 09 266 TAH		Span								1	ľ		
252 4       PL/4         253 /       PL/4         254 STO 12       Mi         255 RTH       Mi         256+LBL *CO*       Let Jan         257 XEQ 09       Let Jan         258 COS       259 GTO 07         260+LBL *SI*       Let Jan         260+LBL *SI*       Let Jan         260+LBL *SI*       Let Jan         261 XEQ 09       Let Jan         263 GTO 07       Let Jan         264+LBL *TA*       Let Jan         265 XEQ 09       Let Jan         265 XEQ 09       Let Jan         266 TAN       Let Jan													
253 / 254 STO 12 255 RTM M, 256 + LBL - CO- 257 XEQ 89 258 COS 259 GTO 87 268 + LBL - SI- 261 XEQ 89 262 SIN 263 GTO 87 264 + LBL - TR- 265 XEQ 89 266 TRN k, kas											1	1	
254       STO 12       Mi         255       RTN       Mi         256+LBL *CO*       257         257       XEQ 09         258       COS         259       GTO 07         260+LBL *SI*       Jan. Jag         261       XEQ 09         262       SIN         263       GTO 07         264+LBL *TA*         265       XEQ 09         265       XEQ 09         265       XEQ 09         265       XEQ 09         266       TAN		POL.									1		
254 STO 12       Mi         255 RTN       Mi         256+LBL *CO*       Acr. Jan         258 COS       259 GTO 07         259 GTO 07       Acr. Jan         260+LBL *SI*       Acr. Jan         261 XEQ 09       Acr. Jan         262 SIN       Acr. Jan         263 GTO 07       Acr. Jan         264+LBL *TR*       Acr. Jan         265 XEQ 09       Acr. Jan         265 XEQ 09       Acr. Jan         265 TAN       Acr. Jan	253 /												
255 RTN 256+LBL -CO- 257 XEQ 09 258 COS 259 GTO 07 260+LBL -SI- 261 XEQ 09 262 SIN 263 GTO 07 264+LBL -TA- 263 GTO 07 264+LBL -TA- 265 XEQ 09 10. bay 266 TAN		M,				1				1			
256+LBL -CO-       257       XEQ 09       Jec. Jan         258       COS       259       GTO 07         260+LBL -SI-       261       XEQ 09       Jec. Jan         261       XEQ 09       Jec. Jan       Jec. Jan         262       SIN       Jec. Jan       Jec. Jan         263       GTO 07       Jec. Jan       Jec. Jan         263       GTO 07       Jec. Jan       Jec. Jan         264+LBL -TA-       Jec. Jan       Jec. Jan       Jec. Jan         265       XEQ 09       Jec. Jan       Jec. Jan       Jec. Jan         265       XEQ 09       Jec. Jan       Jec. Jan       Jec. Jan         265       TAN       Jec. Jan       Jec. Jan       Jec. Jan						1					1	1	
257 XEQ 09       Jec. Jag         258 COS       259 GTO 07         260+LBL "SI"       Jec. Jag         261 XEQ 09       Jec. Jag         262 SIN       Jec. Jag         263 GTO 07       Jec. Jag         264+LBL "TA"       Jec. Jag         265 XEQ 09       Jec. Jag         265 TAN       Jec. Jag	LUV KIII										1		
257 XEQ 09       Jec. Jag         258 COS       259 GTO 07         260+LBL "SI"       Jec. Jag         261 XEQ 09       Jec. Jag         262 SIN       Jec. Jag         263 GTO 07       Jec. Jag         264+LBL "TA"       Jec. Jag         265 XEQ 09       Jec. Jag         265 TAN       Jec. Jag												1	
258 COS 259 GTO 07 260+LBL -SI- 261 XEQ 09 262 SIN 263 GTO 07 264+LBL -TA- 265 XEQ 09 265 XEQ 09 266 TAN											1	1	
258 COS 259 GTO 07 260+LBL -SI- 261 XEQ 09 262 SIN 263 GTO 07 264+LBL -TA- 265 XEQ 09 265 XEQ 09 266 TAN	257 XEQ 09	lee. lea									1	1	
259 GTO 07 260+LBL -SI- 261 XEQ 09 262 SIN 263 GTO 07 264+LBL -TA- 265 XEQ 09 265 XEQ 09 266 TAN		1 2									1		
260+LBL -SI -       Jee. Jee.         261 XEQ 09       Jee. Jee.         262 SIN       263 GTO 07         263 GTO 07       Jee. Jee.         265 XEQ 09       Jee. Jee.         266 TAN       Jee. Jee.					1								
261 XEQ 09       Int. Int.         262 SIN       263 GTO 07         263 GTO 07       Int. Int.         265 XEQ 09       Int. Int.         266 TAN       Int. Int.	257 810 81												
261 XEQ 09       Int. Int.         262 SIN       263 GTO 07         263 GTO 07       Int. Int.         265 XEQ 09       Int. Int.         266 TAN       Int. Int.						1					1		
262 SIN 263 GTO 07 264+LBL *TA* 265 XEQ 09 266 TAN					1						1	1	
262 SIN 263 GTO 07 264+LBL *TA* 265 XEQ 09 266 TAN	261 XEQ 09	lee. les			1							1	
263 GTO 07 264+LBL "TA" 265 XEQ 09 266 TAN		1.2									1	1	
264+LBL "TA" 265 XEQ 09 266 TAN										1	1	1	
265 XEQ 89 10. beg	203 610 07					1				1			
265 XEQ 89 102. bag 266 TAN													
265 XEQ 89 102. bag 266 TAN	264+LBL "TA"					1				1	1		
266 TAN (DZ41)		der. Jas								1	1	_	-
						1					1	6	)
												l (VZ	.41)
	267 GTO 07					1							
									1		1		



### RETAINING WALL ANALYSIS

xeq RW (SIZE 016)

### **SOFTKEYS** (USER mode ON)

- Jump directly to wall DEPTH prompt New footing dimensions d
- F
- New height and dimensions Η
- Note: softkeys A, B, and D are used by program SSD and are active while RW is being run

### USER FLAGS

Flag 00	clear set	Full output Partial vert. loads and moments skipped
Flag 03	clear set	Slope and Phi angles in decimal degrees Angles in degrees-minutes-seconds

### INPUT SUMMARY

<u>Prompt</u> SLOPE	<u>Input</u> Slope angle from horizontal	<u>Default</u> Zero
PHI	Angle of internal friction	No default
VERT E PCF	Vertical earth weight in pounds per cubic foot	No default
SUR PSF	Vertical surcharge in pounds per square foot	No default
LAT E PCF	Lateral earth load expressed as an equivalent fluid, in pcf	C _a x Vert.
SUR PSF	Lateral surcharge in psf	No default
FRIC Ц	Coeff. of sliding friction, mu	No default
HT'	Height from <u>bottom</u> of footing to top of backfill, in feet	No default
F TH'	Footing thickness in feet	No default
COV'	Soil depth over the toe (front) of the footing, measured from the top of the footing	No default
T/W TH' B/W TH'	Thickness of the cantilever wall at top and bottom of the wall	No default

<u>Prompt</u> P, K	<u>Input</u> Additional vertical load applied to the top of the stem, in kips (e.g. rail DL or part of the wall above top of backfill)	<u>Default</u> No default
P CG'	Location of the load P, measured back from the front face of the <u>stem</u> , in feet	No default
FTG W'	Footing width in feet	No default
TOE '	Distance from the front of the footing to the front face of the stem (wall)	No default
D'	Location along the wall (depth) at which to figure moment and shea measured down from top of backfill	

**<u>OUTPUT SUMMARY</u>** (Items in parenthesis are displayed only if flag 00 is clear)

Note: all moments caused by vertical loads are taken about the toe of the footing.

C_a Coefficient of active pressure

- (CONC: V,M) Vertical load and moment due to the footing and stem, in kips and foot-kips
- (P: V,M) Vertical load and moment due to the load applied to the top of the wall
- (VERT E: V,M) Vertical load and moment due to vertical earth load

(SUR: V,M) Vertical load and moment due to vertical surcharge. Only if prompt was answered.

- $(\Sigma V, M, RES)$  Sum of the vertical loads and the moments due to these loads about the toe of the footing, and the position of the resultant measured in feet from the toe.
- SLIDE FS Sliding factor of safety, neglecting passive resistance and any key present

TOE PPressure under the heel and toe for a spreadHEEL Pfooting

LAT E: H,M Horizontal shear and moment due to lateral SUR: H,M earth pressure and surcharge, and their  $\Sigma$  H,M summations.

### PROGRAM FLAGS

RW uses no program flags.

### STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> Summation of vertical forces
01	Summation of moments
02	Lateral earth equiv. fluid pressure (k/cf stored)
03	HT' (height from bottom of footing)
04	F TH'
05	Footing width
06	TOE' (distance from front of footing to the stem)
07	ST TH' (stem thickness)
08	Lateral surcharge (ksf stored)
09	Coefficient of friction, mu
10	P, K (rail DL)
11	C.G. P (point of application of rail DL from the front face of the wall)
12	COV' (Soil cover over the toe)
13	Vertical earth weight (k/cf stored)
14	Vertical surcharge (ksf stored)
15	Working register

6245

### RETAINING WALL ANALYSIS

Program RW calculates the loads and reactions due to selfweight, soil, and surcharge (if any) on cantilever retaining walls with cohesionless backfill. Input consists of the wall and footing dimensions, soil parameters, and surcharge loadings. RW calculates the resulting moments and horizontal and vertical forces at bottom of footing, bottom of wall, and any desired points along the wall, as well as the heel and toe reactions and sliding factor of safety (assuming a spread footing).

### SOIL PROPERTIES

RW prompts first for the backfill angle from the horizontal (see sketch), the internal friction angle O (phi) of the soil, and the coefficient of friction (mu) between soil and footing concrete. Typical values for mu, from the 1958 AREA specifications, are as follows:

<u>Soil</u>	<u>Mu</u>
Sound rock, rough surface	0.60
Coarse-grained, no silt	0.55
Coarse-grained, with silt	0.45
Silt	0.35

The program solves the Rankine/Coulomb formula for the active pressure coefficient  $C_a$  for lateral loading. This value is not used directly by the program; however, it is multiplied by the soil density (usually about 120 pcf) to calculate the default value for the equivalent fluid density used to calculate lateral pressure (usually about 35 pcf). If the designer agrees with the assumptions involved in this formula (cohesionless soil; essentially vertical pressure surface with a prescribed amount of friction between soil and wall), the default lateral earth pressure may be used. The formula used is:

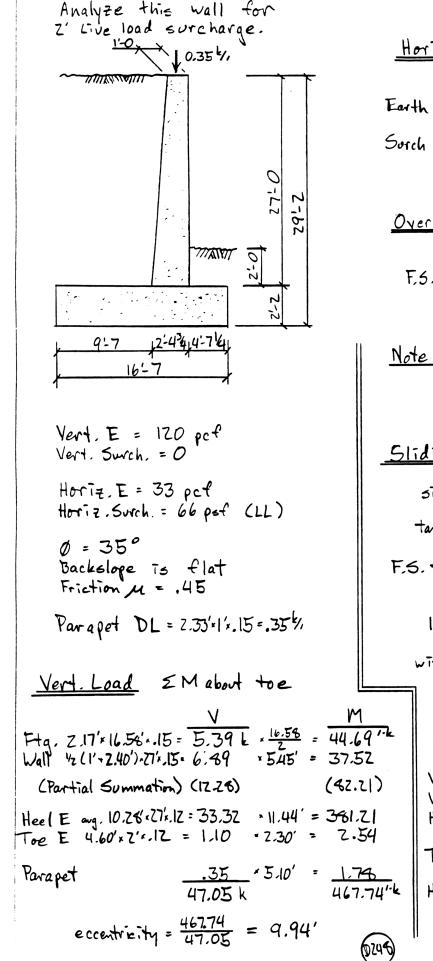
$$C_{a} = \cos(\beta) \times \frac{\cos(\beta) - \sqrt{\cos(\beta) - \cos(\phi)}}{\cos(\beta) + \sqrt{\cos(\beta) - \cos(\phi)}}$$

**B** = backfill angle ( $0^{\circ}$  = horizontal)  $\phi$  = angle of internal fricion cohesion assumed zero

The user inputs the actual soil weight for vertical loading, and the equivalent fluid weight for horizontal loading, using the default if desired. If the user wants to check a range of soil values (e.g. a lighter soil weight for potential heel uplift), separate runs must be made. The user may also input surcharge loading, both vertical and horizontal, if desired. This is input in psf.

### OUTPUT

The program calculates a force (vertical or horizontal) and a moment due to each component of load. These are output separately (in order to allow for either working stress or load factor methods of design) and then summed. If flag 00 is set, only the sums are displayed. An average wall thickness is used in the calculations; this leads to a minor error in the calculation of vertical surcharge loading.


After calculating vertical and horizontal forces and moments about the bottom of footing, the program calculates the sliding factor of safety and the toe and heel bearing stresses. These are valid, of course, only for spread footings. The sliding factor of safety is calculated using the input friction factor "mu" ( $\mu$ ) or the value of tan Ø, whichever is less. The former represents sliding between the footing and the soil; the latter represents shear failure of the soil under the footing. (Thus, the PHI prompt should not be bypassed, since it affects sliding as well as the default lateral load value.) The safety factor does not include passive resistance in front of the toe, or the effect of any key. RW ignores all vertical friction forces.

After outputting resulting forces, moments, and reactions at top and bottom of footing, the program calculates the horizontal force and moment at any point on the wall, e.g. to aid in reinforcing design and cutoff. RW will continue to do this until the DEPTH' prompt is bypassed, at which point a new footing size will be prompted for. (Softkey F will do the same thing.) Thus, many footing trials may be run easily.

### **SOFTKEYS**

For design of sheetpile walls or to check reinforcing in a concrete wall, allow the program to prompt for soil parameters, then use softkey d (lowercase) to jump to the DEPTH' prompt for different points along the wall.

As mentioned, softkey F will bring up prompts for a new footing. Softkey H (for Height) will bring up prompts for a whole new wall configuration. This is the same as re-executing the program except it saves re-inputting soil parameters.



Stem Analysis		
$\frac{STEML - Malgold}{C}$ $\frac{C}{Top of F+g.:}$ $E \frac{1}{2} \cdot .033 \cdot 27^{2} = \frac{H}{12.03 \text{ k}} \cdot \frac{27}{3} = \frac{M}{106.26^{1.4}}$ Suich $.066 \times 27 = \frac{1.76}{13.61 \text{ k}} \cdot \frac{27}{2} = \frac{24.06}{132.32^{1.4}}$ Design stem reinf. for 132.32 ^{1.4} Check for 13.81 k Shear $\frac{C}{10} \frac{10'}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} $	HT · 29.1667 RUN F TH · 2.1667 RUN COV · 2.0000 RUN T/W TH · 1.0000 RUN B/W TH · 2.4000 RUN P, K .3500 RUN P, CG · .5000 RUN FTG W · 16.5833 RUN TOE · 4.6000 RUN	Input Wall paramete
$\frac{1}{5au} = \frac{1}{5au} = \frac{10}{1.65} \times \frac{10}{3} = \frac{10}{5.50}$ Surch, .066 × 10 = .66 × 10 = 3.30 Z.31 k = 3.80 ··k	 ΣV=47.0465 K M=467.7482 'K RES@9.9422' 	Formattin is a bit loose wit Flag OO set
<u>Ron 'RW' with Flag OD set (Short Form)</u> SF 00 XEQ "RH" No title SLOPE (dd) RUN PHI (dd) 35.0000 RUN Ca=0.2710	ΣH=15.9615 K         M=164.5390 'K         SLIDE FS=1.3264         TOE P=4.7326 KSF         HEEL P=0.9414 KSF	No partial sums
VERT E PCF 120.0000 RUN SUR PSF 0.0000 RUN Input LAT E PCF 33.0000 RUN properties SUR PSF 66.0000 RUN FRIC P .4500 RUN	ΣH=13.8105 K M=132.3135 'K D' 10.0000 RUN ΣH=2.3100 K M=8.8000 'K D'	

D249

Ì

Retaining Wall Analysis

	TOE
Full output - Flag 00 clear	4.6000 RUN
	CONC: V=12.2747 K M=82.2124 'K
	Р: <b>V=0.3500</b> К M=1.7850 °К
	TOE E: V=1.1040 K M=2.5392 'K
	HEEL E: V=33.3179 K M=381.2117 'K
XEQ -RW-	
4:45:09 PM 02/02/90	ΣV=47.0465 K M=467.7482 'K
TITLE: LARP. AVE. WALL RUN	RES09.9422
LHKP. HYE. MHLL KUM ******	
SLOPE (dd)	B/FTG: Lat E: H=14.0365 K
0.0000 RUN	M=136.4660 'K
PHI (dd) 35.0000 RUN	
Ca=0.2710	SUR: H=1.9250 K M=28.0730 'K
VERT E PCF	<b>ΣH=15.96</b> 15 K
120.0000 RUN Sur PSF	M=164.5390 'K
0.0000 RUN Lat e PCF	SLIDE FS=1.3264
33 <b>.00</b> 00 RUN	TOF D-4 770/ KCF
SUR PSF	TOE P=4.7326 KSF HEEL P=0.9414 KSF
66.0000 RUN	
FRIC ب .4500 RUN	T/FTG:
	LAT E: H=12.0285 K M=108.2565 'K
HT'	n-100.2303 K
29.1667 RUN F TH'	SUR: H=1.7820 K
2.1667 RUN	M=24.0570 K
C0Y ·	ΣH=13.8105 K
2.0000 RUN	N=132.3135 ·K
T/W TH' 1 <b>.000</b> 0 RUN	
B/W TH'	D' 10.0000 RUN
2.4000 RUN	LAT E: H=1.6500 K
P, K .3500 RUN	M=5.5000 'K
.5000 RUN	SUR: H=0.6600 K M=3.3000 'K
**************************************	
FTG W' 16.5833 RUN	ΣH=2.3100 K M=8.8000 'K

# 

(0250

P	roa	ram	K	l

Program <u>RW</u>	F	or _	Re	tain	ing Wall Anal	ysis	_ bytes	Pag	eof
	X		Z	ΙT	L	X	Y Z	, 17	
01+LBL -SSD-	+			'					
						+LBL H			
114 GTO 06						XROM "L"			
						PROMPT			
115+LBL -RW- 116 15					166	STO 03			
117 XROM -S-						F TH'			
118 CLX						PROMPT			
119 -SLOPE-						STO 04 •COV·•			
120 XROM -Pd-						PROMPT			
121 COS 122 ENTER†	ł					ST0 12			
123 ENTERT						T/W TH.			
124 X†2						PROMPT			
125 -PHI-						STO 07 •B/W TH••			]
126 XROM "Pd"						PROMPT			
127 STO 09						RCL 07			
128 COS 129 Xt2					179	+			
130 -					180				
131 SQRT					181				
132 ST- Z						STO 07 •P, K•			
133 +						PROMPT			
134 / 135 *				1		STO 10			
136 STO <b>0</b> 5		4				-P CG			
137 "Ca="						PROMPT			
138 ARCL X					188	STO 11			
139 AVIEW					1894	LBL F			
140 XROM -L-						KROM "L*"			•
141 -VER- 142 XEQ 04						FTG W'			
143 STO 14						PROMPT			
144 RDH						STO 05 •TOE ••			
145 STO 13						PROMPT			
146 LRSTX						STO 06			
147 * 148 RCL 05					197	XROM -L-			
149 *						RCL 04			
150 -LA-						RCL 05			
151 XEQ 04					200	* STO 00			
152 STO 08						LASTX			
153 RDN 154 cto p2					203				
154 STO 02 155 "FRIC א"					294	RCL 03			
156 PROMPT						RCL 04			
157 RCL 09					206				
158 TAN	1				207 208	RCL 07			
159 X>Y?						ST+ 00			
160 X(>Y						RCL 06			
161 STO 09					211	ST+ X			
						LASTX			
					213				
	1				214 215		1		(

D	
Prog	ram

							-					
	Х	Y	Z	T	L		X	Y	र	T	L	
217 ST* 00												
218 *						272 RCL 05						
219 2						273 2						
220 /						274 /						
221 STO 01						275 -						
222 RCL 00						276 RCL 00						
223 X<>Y						277 *						
223 CONC-						278 STO 01						
						279 XROM -LL-						
225 XEQ 14						280 -B-						
226 ADY						281 RCL 03		1				
227 RCL 10						282 XEQ 05						
228 ST+ 00						283 RCL 00						
229 RCL 06						284 RCL 09						
230 RCL 11						285 *						
231 +						286 X<>Y						
232 RCL 10						287 /			1			
233 *						288 ADY						
234 ST+ 01						289 "SLIDE FS="						
235 <b>-</b> P-						207 SLIDE FS- 290 ARCL X						
236 XEQ 14												
237 ADY						291 AVIEW						
238 RCL 13						292 ADV						
239 RCL 12						293 RCL 00	1					
240 *						294 RCL 05						
241 RCL 06						295 /						
242 *						296 RCL 01						
243 ENTER ⁺						297 6						
244 ST+ 00						298 RCL 05						
245 LASTX						299 Xt2						
246 *						300 /						
247 2						301 *						
248 /						302 ST+ Z						
249 ST+ 01						<b>30</b> 3 -						
250 TOE E						<b>304 -</b> TOE-						
251 XEQ 14						305 XEQ 10						
252 RCL 03						<b>30</b> 6 X<>Y						
253 RCL 04						<b>307 "HEEL"</b>						
254 -						308 XEQ 10						
255 RCL 13						309 XRON -L-						
256 *						310 RCL 03						
257 •HEEL E•						311 RCL 04	1					
258 XEQ 11						312 -						
259 RCL 14						313 -1-						
260 -SUR-						314 XEQ 05	1					
261 XEQ 11												
262 XROM -L-						315+LBL d						
263 <b>•Σ∀=•</b>						316 XROM -LL-						
264 RCL 01						317 <b>-</b> D·-						
265 RCL 00						318 CLX						
266 XEQ 13						319 PROMPT						
267 /						320 X=0?						
268 -RESE-						321 GTO F						
269 ARCL X						322 XEQ 02						
270 XEQ -FT-						323 GTO d						
271 AVIEW												
$\bigcirc$		I										
(0252)			1					i	1			
				!			'		•			

Program R	1
-----------	---

324+LBL 05 325 +-/FTG: - 326 AVIEH 327+LBL 02 328 ENTER1 329 ENTER1 330 X12 331 2 332 / 333 STO 15 334 RCL 02 335 * 336 ST* Y 337 X(>Y 338 3 339 / 340 *LAT E- 341 XEQ 12 342 ADV 343 R1 344 RCL 08 345 * 346 RCL 15 347 ST* L 348 X(> L 349 *SUR- 350 XEQ 12 351 ADV 352 ST+ Z 353 X(> T 354 + 355 X(>Y 356 *EH=- 357 GTO 13 358+LBL 11 359 RCL 05 360 RCL 06 361 - 362 RCL 07 363 - 364 STO T 365 * 366 ST+ 00 367 RCL 05 368 R1 369 2 370 / 371 - 372 * 373 ST+ 01 374 ADV



	X	Y	Z	T	L	X	Y	र	1	L	
01+LBL_"SSD"					166 R(						
					167 -	h+'		1			
114 GTO 06					168 RC	LO7 StenTh		1			
					169 *	Sten A	1				
115+LBL "RW"					170 ST	+ 90					
116 15					171 RC						
117 XROM -S-					172 \$1						
118 -LA-					173 LF		1				
119 XEQ 04					174 +						
	114				175 *	Dist.					
120 STO 08	Kat 5.r					Sten M					
121 RDN					176 +	M					
122 STO 02	Lat E				177 .1		1				
123 FS? 00					178 ST	* 88					
124 GTO 03					179 *						
125 -VER-					180 2						
126 XEQ 04					181 /	M					
127 STO 14	Vert Sor.				182 ST	0 01					
128 RDN					183 RC	L 99 🗸 🗸	M				
129 STO 13	Vert E.				184 <b>-</b> C	ONC-					
					185 XE	Q 14					
130+LBL H					186 RC						
131 XRON -L-					187 ST						
132 •HT •					188 RC						
133 PROMPT					189 RC						
134 STO 03	44.				199 +	C.G.					
135 <b>•</b> F TH·•	,,,,					M					
					191 *						
136 PROMPT	т ц		1		192 ST						
137 STO 04	Fth		1		193 RC		M				
138 -COV					194 <b>-</b> P						
139 PROMPT					195 XE						
140 STO 12	cover				196 RC	L 13 .IZO					
141 -ST TH					197 RC	L12 Cover					
142 PROMPT			1		198 +						
143 STO 07	shen th				199 RC	L 86 Tre					
144 "P, K"					200 *	Toe V					
145 PROMPT					201 ST	0 15					
146 STO 10	P				202 LA		V	{			
147 "P CG'"					203 *		V V				
148 PROMPT					204 ST	n ng Tue M					
149 STO 11	C.G.				204 ST 205 RC						
177 310 11					205 RC 206 RC						
150+LBL 01							1				
151 XROM "L"					207 -	ht.					
	54.11				208 RC						
152 "FTG W'"	Ftgw				209 *	Eavith )	1				
153 PROMPT					210 -V						
154 STO 05					211 XE						
155 •TOE ••					212 CL						
156 PROMPT					213 ST						
157 STO 06	Toe				214 ST						
158 XROM "LL"					215 RC						
159 RCL 04	Ftgth				216 -5	UR-					
160 RCL 05	FtgW				217 XE						
161 *	.7				218 XR						
162 STO 00	Ft: A				219 <b>-</b> Σ						
163 LASTX	Fill				220 RC						
164 *	M				220 RC 221 RC						
165 RCL 03					221 KC 222 XE						
103 KUL 03	44						1				
			1		223 /	Res.		1			

Program	K	' W

ram <u>RW</u> For <u>Retaining Wall Analysis</u> bytes Page <u>2</u> of <u>2</u>

224 - 6529- 225 ROLL X     227 4 ELL 65     77 4 VL       225 ROLL X     227 4 ELL 65     77 4 VL       226 - 72     227 4 ELL 65     77 4 VL       227 ROM 82     87     277 5 CL       228 ROL 83     44     279 5 TO       231 ROL 83     44     279 5 TO       233 - 2     524 - 523 7 T     288 - V       233 - 2     524 - 523 7 T     288 - V       233 - 2     524 - 523 7 T     288 - V       233 - 2     528 - 2     288 - V       233 - 2     528 - 2     288 - V       233 - 2     528 7 T     288 - V       233 - 2     528 7 T     288 - V       233 - 2     7 + V-1     288 ROL 69       234 57 0 81     298 ROL 89       244 58 14     293 511 64       245 507 81     298 ROL 89       246 70 81     298 ROL 89       246 70 81     298 ROL 89       246 70 81     298 ROL 89       246 80 82     293 S11 84       255 80 15     298 ROL 80       255 80 15     298 ROL 81       255 80 15     388 ROL 81       258 80 15     388 ROL 81       258 80 15     388 ROL 81       258 80 15     388 ROL 81       259 80 7     398 ROL 81       258 80 15		X	Y	Z	ΙT		X		र	T	L	
225 Rect. X       227 HER. 11 $V'$ 226 AUTEN       227 KCH. 65 $V_{1+1}$ 228 KCL 63       W+1.       277 KCL. 65 $V_{1+1}$ 228 KCL 63       W+1.       277 KCL. 65 $V_{1+1}$ 228 KCL 63       W+1.       277 KCL. 65 $V_{1+1}$ 238 KCL 63       W+1.       279 STO T $W_{01}$ $V_{01}$ 238 KCL 63       W+1.       289 KCL 65 $V_{1+1}$ $V_{01}$ 237 TO T       Store       288 KCL 65 $V_{1+1}$ $V_{01}$ 238 KCL 63       Store       288 KCL 65 $V_{1+1}$ $V_{01}$ 238 KCL 63       Store       288 KCL 69 $V_{1+1}$ $V_{01}$ 238 KCL 63       Store       288 KCL 69 $V_{1+1}$ $V_{01}$ 239 FORMET $V_{1+1}$ 298 KCL 69 $V_{1+1}$ $V_{01}$ 246 KCL 62       Store       298 KCL 69 $V_{1+1}$ $V_{01}$ 246 KCL 63       Store       298 KCL 69 $V_{1+1}$ $V_{1+1}$ 246 KCL 65       Store       298 KCL 69 $V_{1+1}$ $V_{1+1}$ 246 KCL 65       Store       298 KCL 69	224 "RESP"				<u> </u>	 						-
226       AVIEN       274       CL 85 $r_1 = v$ 228       PE       275       PCL 85 $r_1 = v$ 228       PE       276       CL 85 $r_1 = v$ 239       YED 83       H+       277       PCL 87       Aucl         239       YED 83       H+       278       PCL 87       Aucl       V         231       YED 83       H+       288       PCL 87       Yet       V         232       PCL 87       Yet       PCL 87       Yet       V       V         233       T       Sec.H       288       PCL 85       Yet       V       V         233       T       Sec.H       288       PCL 85       Yet       V       V         233       T       Sec.H       285       PCL 85       Yet       V       V       V       V         234       Yet       PC       PC       PL       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V <td< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							FtgW					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							7.2					
12.27 $278 - 1$ $278 - 1$ $444$ 238       238 $279 - 1$ $444$ $444$ 233 $226 + 11$ $444$ $226 + 11$ $444$ 233 $-1$ $646 + 11$ $226 + 11$ $444$ 233 $-1$ $646 + 11$ $226 + 11$ $444$ 234 $-1$ $226 + 11$ $1444$ $1444$ 235 $417 + 126$ $226 + 116$ $1444$ $1444$ 236 $237 + 126$ $226 + 1164$ $226 + 1164$ $1444$ 237 $710^{-1}$ $228 + 1164$ $228 + 1164$ $1444 + 1164$ 237 $710^{-1}$ $228 + 1164$ $229 + 1164$ $1442 + 1164$ 248 $-1164 + 1164$ $229 + 1164 + 1164$ $229 + 1164 + 1164$ $1442 + 1164 + 1164 + 1164$ 246 + 1164 + 126 + 144 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 + 126 +	228 B											
238       No. 80 - 3       u+.       229       229       50 T       U, 1       U       h-r/t         232       RCL 63	229 RCL 03	Ht.										
233       -       South       280       V       V         233       -       South       281       St 151       (V)         234       -       South       282       SCL 65       Total         234       -       283       St 151       SCL 65       Total         235       KE0       83       285       283       St 169         237       10**       286       285       St 169       Work         238       RCL 83       286       Month       286       Work         238       RCL 83       286       Month       286       Work       V         244       Xe9       289       RCL 89       Work       Work       V       V         244       Xe9       299       +       CH1       299       +       CH1         244       Xe9       299       -       CH1       293       St 61       293       St 61         244       Xe9       297       187       6       297       187       189       199       199       199       199       199       199       199       199       199       199       199       199	230 XEQ 05											
233	231 RCL 03	44.						w		heel		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	232 RCL 04	Fta+h										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	233 -											
2364 BL 83       2367 B)       285 ST/ 89 $wat/z$ $F_{12} \cup V$ 237 D)       238 CLX       287 - $wat/z$ $F_{12} \cup V$ $V$ 238 CLX       287 - $wat/z$ $F_{12} \cup V$ $V$ 239 PROMPT $V_{p+1}$ 288 * $M$ $V$ 244 Step 2       297 - $M$ 298 * $M$ 244 Step 2       297 -       298 * $CT$ $V$ $V$ 244 Step 2       293 ST + $298$ * $V$ $V$ $V$ 244 Step 2       293 ST + $01$ 293 ST + $01$ $293$ ST + $01$ 244 Step 2       293 ST + $01$ 293 ST + $01$ $293$ ST + $01$ 244 Step 2       297 NPV       296 RTN       296 RTN       298 PVEH       299 PVET         248 RVIEN       298 PVEN       298 RVIEN       298 RVIEN       298 RVIEN       298 RVIEN         253 ST 0 IS 3       134 RVIEN       334 RVN       336 FWEN       336 FWEN       336 FWEN         253 ST 0 IS 3 $V'Y_{2}$ $V_{3}$ $N + K$ 336 FWEN       336 FWEN       336 FWEN       336 F	234 <b>-</b> T-											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	235 XEQ 05						nee!					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							heel/7	Ftaw	V			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								•				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								l •				
246       249 $114$ 20 $114$ 21         241       SF       14       21       SF $114$ 21         242       X=0?       21       SF $01$ $21$ SF $01$ 243       SF       08       23       SF $00$ $21$ $21$ $114$ $21$ 244       XE       082       23       SF $00$ $21$ $21$ $114$ $21$ 245       GTO       083       23 $215$ $016$ $233$ $216$ $114$ $233$ $216$ $114$ $233$ $216$ $114$ $239$ $216$ $114$ $215$ $216$ $114$ $235$ $216$ $114$ $295$ $296$ $114$ $296$ $296$ $114$ $295$ $216$ $114$ $296$ $216$ $114$ $216$ $114$ $216$ $114$ $216$ $116$ $116$ $116$ $116$ $116$ $116$ $116$ $116$ $116$ $116$ $116$ $116$ $116$ $116$		Vepth					)	1				
241 xep?       291 ST+ 61         242 xep?       243 GTO 61         244 XE0 62       293 ST+ 60         245 GTO 83       294-LB.14         246+LBL 65       295 X=87         247 **/FTC:*       296 RTN         248 RVTEW       299 *V=*         250 ENTER*       h         251 ENTER*       h         252 XT2       h ⁻¹ 253 Z $Z^{-1}$ 254 /       114         255 ST0 15       380 *LBL 12         255 ST0 15       380 X=80?         255 ST0 15       386 RTN         255 ST0 15       11/2         255 ST0 15       11/2         256 RCL 82       Laf.E         257 * $V^{+}V_{-}$ 258 ST+ Y $V^{+}V_{-}$ 258 ST+ Y $V^{+}V_{-}$ 260 3       261 /         261 / $V^{+}V_{-}$ 263 XE0 12       12 ARCL         264 RT       316 *LBL 13         265 RCL 15 $V^{+}V_{-}$ 266 RCL 80       Laf Ser         267 ST+ Z       ST+ Z         268 * $V^{+}V_{-}$ 268 * $V^{+}V_{-}$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
243 SC 00 61       293 ST+ 66         244 SC 00 63       293 ST+ 66         245 GT 0 63       294 LBL 14         246 LBL 05       295 ST= 67         247 T+/FTG:-       296 RFN         248 AVIEM       299 FV=-         248 AVIEM       299 FV=-         250 ENTERT       h         h       h         251 ENTERT       h         h       h         253 ST 0 15       255 ST 0 15         255 ST 0 15       364 RTH         256 RCL 02       Lat E         257 Y $h^2$ $h^2$ h         258 ST Y $h^2$ 258 ST Y $h^2$ 258 ST Y $h^2$ 259 XC YY $h^2$ 258 ST Y $h^2$ 258 ST Y $h^2$ 258 ST Y $h^2$ 258 ST Y $h^2$ 266 7 $h^2$ 263 XE0 12 $h^2$ 264 RT $h$ 265 RCL 15 $h^2$ 264 RT $h$ 265 RCL 15 $h^2$ 266 RCL 08       Laté         267 ST							s V					
245 GT0 03       294+LBL 14         246+LBL 05       295 X=0?         247 "+>FTG:"       296 RTN         249+LBL 02       h         250 ENTER1       h         251 ENTER1       h         252 ENTER1       h         253 Z       Z         254 / $\sqrt{7}_{L}$ 255 ST0 15       15         256 RCL 02       Lat.E         257 * $\sqrt{7}_{L}$ $\sqrt{7}_{L}$ h         258 ST8 Y $\sqrt{7}_{L}$ 259 X+0?       X+N         258 ST8 Y $\sqrt{7}_{L}$ 258 ST8 Y $\sqrt{7}_{L}$ 258 ST8 Y $\sqrt{7}_{L}$ 258 ST8 Y $\sqrt{7}_{L}$ 260 3 $\sqrt{7}_{L}$ 261 / $\sqrt{7}_{L}$ 263 XE0 12 $\sqrt{7}_{L}$ 264 RT       h         265 RCL 15 $\sqrt{7}_{L}$ $\sqrt{7}_{L}$ h         268 * $\sqrt{7}_{L}$ 268 * $\sqrt{7}_{L}$ 268 * $\sqrt{7}_{L}$ 268 * $\sqrt{7}_{L}$ 268 * $\sqrt{7}_{L}$ 270 XE0 12       316 NON +FCF </td <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>							-					
246+LBL 05       294-LBL 05         247 *F/FTG:*       295 ×=9?         248 RVIEH       297 RDV         259 ENTERT       h         h       h         252 ENTERT       h         252 ENTERT       h         253 ENTERT       h         254 / $k^{\gamma}_{L}$ 255 ST0 15       389 ENTEN         256 ENTERT       h ² 257 * $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$ $k^{\gamma}_{L}$		1				275 511 66						
246+LBL 05       247 "+-/FTG:"       295 X=0?       296 RTH         249+LBL 02       h       299 "Y="       298 RVIEH         250 ENTER1       h       h       300 GTO 13         251 ENTER1       h       h       h         253 2 $\frac{1}{2}$ h       h         253 2 $\frac{1}{2}$ h       h         254 /       h ² / ₂ h       h         255 STO 15       13       304 RTN         256 RCL 02       Lat.E       h ³ / ₂ 257 * $\sqrt{12}$ h         258 ST+Y $\sqrt{12}$ h         260 3 $\sqrt{12}$ h         261 / $\sqrt{12}$ h         263 XC0 12 $\sqrt{12}$ h         264 Rt $\sqrt{12}$ h         265 RCL 15 $\sqrt{12}$ h         264 Rt       h       310 RVIEN         313 XROM "FK"       314 AVIEN         268 * $\sqrt{12}$ $\sqrt{14}$ 268 * $\sqrt{12}$ $\sqrt{14}$ 268 * $\sqrt{12}$ $\sqrt{14}$ 268 * $\sqrt{12}$ $\sqrt{14}$ 268 * $\sqrt{12}$	245 GTU 03	1				294+i Ri 14	1					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							
248       AVIEN       297       ADV         249+LBL 02       h       298       AVIEN         250       ENTERT       h       h         251       ENTERT       h       h         253       2       2       h ⁻¹ 254 $N^{-1}$ h       h         255       X12       h ⁻¹ h       h         255       X12       h ⁻¹ h       h         255       X10       303       X-9?         255       X10       303       X-9?         255       X10       304       RTN         255       X10       304       RTN         256       X10       X-1/2       h         257       X11       N/2       h       N         258       X17       N/2       h       N         259       XX17       N       N       M         260       3       Un ² /2       L       N       N         264       R1       N       N       N       N         265       X15       V/2       N       N       N       N         266												
249+LBL 02       h       298 AVIEN         250 ENTERT       h       h         251 ENTERT       h       h         252 X12       h ⁻¹ h         253 Z       Z       h ⁻¹ 254 /       h ⁻¹ h         255 ST0 15       380 × 181         256 KCL 02       Lat.E       h ¹ /z         257 * $\sqrt{17}z$ h         258 ST* Y $\sqrt{17}z$ h         259 X(Y) $\sqrt{17}z$ h         260 3 $\sqrt{17}z$ h         261 / $\sqrt{17}z$ h         263 XE0 12 $\sqrt{17}z$ h         264 Rt       310 AVIEN         265 SCL 15 $\sqrt{17}z$ h         266 Rt       h       313 XR0M *FK*         266 SCL 15 $\sqrt{17}z$ h         268 * $\sqrt{17}z$ h         268 * $\sqrt{17}z$ h         268 * $\sqrt{17}z$ h         268 * $\sqrt{17}z$ h         268 * $\sqrt{17}z$ h         268 * $\sqrt{17}z$ h         268 * $\sqrt{17}z$ h												
249+LBL 02       h       h       h       300 CTO 13         250 ENTER1       h       h       h       h         252 X12       h ⁻¹ h       h       h         253 Z       Z       h ⁻¹ h       h         255 ST0 15       Lat.E       h ² /z       h       385 X=0?         255 ST0 15       Lat.E       h ² /z       h       386 FH=*         258 ST* Y       uk ³ /z       h       h       h         259 X(Y)       uk ³ /z       h       h       h         260 3       uk ³ /z       h       h       h         260 3       uk ³ /z       h       h       h         266 7       LAT E       h       h       380 AP(EN)         266 7       LAT E       380 AP(EN)       380 AP(EN)         266 8       uk ³ /z       h       h       312 ARCL Y         266 8       uk ³ /z       uk       313 STRN       313 AROM FK*         268 *       uk ⁴ /z       uk       316+LBL 04       317 *FT E PCF*         270 XE0 12       uk       316 PROMPT       318 PROMPT       14         271 XROM *L*       Uk ⁴ /z       Uk ⁴ /z <t< td=""><th>248 HVIEN</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	248 HVIEN											
256 $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$ $h^{2}$												
251 ENTERt       h       h       h       h       h       h       h       H       301+LBL 12       M       H       H         253 2 $\lambda^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ $h^2_L$ <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
252       X12       h ² h ² h ³ h ² M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ M ⁴		1 1	10	1.								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V(	M		301+LBL 12	m	H				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			12	١	1							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		147,	n	n								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	255 BCI 82	Lat.E	h/2	h					1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		/ 2	wh3/	<b>L</b>	4							
260 3 $uh^3/L$ $uh^2/L$ $h$ $h$ 309 + K*         261 / $uh^2/L$ $h$ $h$ $309 + K^*$ 262 *LAT E* $310$ AVIEN $310$ AVIEN         263 XEQ 12 $h$ $h$ $311 + M^{-1}$ 264 Rt $h$ $312$ ARCL Y         265 RCL 15 $h^{1/2}/L$ $h$ $313$ XROM -FK*         266 RCL 08 $Lot \leq ur$ $h$ $315$ RTN         268 * $uh^{1/2}/L$ $uh$ $uh$ 269 *SUR* $uh^{1/2}/L$ $uh$ $316 + LBL$ 270 XEQ 12 $271$ XROM *L* $318$ PROMPT $318$ PROMPT			~~~/L	n,	1 1	307+LBL 13	Nor H	M				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	260 3					308 ARCL X						
262 *LAT E* $310 \text{ AVIEW}$ 263 XEQ 12 $h$ 264 Rt $h$ 265 RCL 15 $h^{1}/2$ 266 RCL 08       Lot Sur         267 ST* Z $h^{1}/2$ 268 * $h^{1}/2$ 268 * $h^{1}/2$ 269 *SUR* $316 + LBL 04$ 270 XEQ 12 $h^{1}/2$ 271 XROM *L* $h$		wh3/6	wh 72	h	h	309 -+ K-						
263 XEQ 12 $h$ $311 - H = -$ 264 Rt $h$ $312 \text{ ARCL Y}$ 265 RCL 15 $h^3/2_L$ $h^3/2_L$ 266 RCL 08       Lot Sur $h^3/2_L$ 267 ST * Z $uh$ $314 \text{ AVIEW}$ 268 * $uh^3/2_L$ $uh$ 269 "SUR" $316 \text{+LBL 04}$ 270 XEQ 12 $uh$ $318 \text{ PROMPT}$ 271 XROM "L" $B$ $B$						310 AVIEW						
264 Rt       h $312 \text{ ARCL Y}$ 265 RCL 15 $h^{3}/2$ $h^{3}/2$ 266 RCL 08       Lot Sor $h^{3}/2$ 267 ST* Z       Lot Sor $h^{3}/2$ 268 * $h^{3}/2$ $h^{1}/2$ 269 *SUR* $316 + LBL 04$ 270 XEQ 12 $318 \text{ PROMPT}$ 271 XROM *L* $318 \text{ PROMPT}$												
265 RCL 15 $h^{3}/2$ $h^{3}/2$ $h^{3}/2$ $h^{3}/2$ 266 RCL 08       Lot Sur $h^{3}/2$ $h$ 313 XROM "FK"         267 ST * Z       Lot Sur $h^{3}/2$ $h$ $mh$ 268 * $wh^{3}/2$ $wh$ $316 + LBL 04$ 269 "SUR"       316 + LBL 04 $317 + FT E PCF^{-1}$ 270 XEQ 12 $318 PROMPT$ $718 PROMPT$		h										
266       RCL       08       Lot $\leq \omega r$ $k^{1}/2$ h       314       HYTEN         267       ST * Z $\omega h$ 315       RTN         268 * $\omega h^{1}/2$ $\omega h$ 316+LBL       04         269       *SUR*       317       *HT E PCF*         270       XEQ       12       318       PROMPT         271       XROM *L*       710       PDEF       1												
267 ST* Z     wh     315 RTN       268 *     wh²/2     wh       269 *SUR*     316+LBL 04       270 XEQ 12     317 *FT E PCF*       271 XROM *L*     318 PROMPT		Lot Sur	h²/-z	h								
268 * wh ¹ / ₂ wh 269 "SUR" 270 XEQ 12 271 XROM "L" 316+LBL 04 317 "FT E PCF" 318 PROMPT 710 POPT						315 RTN						
269 SUR 270 XEQ 12 271 XROM -L- 318 PROMPT		why,	wh									
270 XEQ 12 271 XROM -L- 318 PROMPT		·-										
	270 XEQ 12								}			
	272 RTN					319 SUR PSF	Surch	Facil				
328 PROMPT							1000					
321 E3 1000							1000					
322 ST/ Z												
323 / Surch Farth		'					Surch	Earth				
324 END					1	324 END			1	1	1	
							'	·	•			

### ELASTOMERIC BEARING PAD ANALYSIS

xeq NEO (SIZE 017)

**<u>SOFTKEYS</u>** (USER mode ON)

D Input new shim thickness and pad dimensions

### USER FLAGS

Flag 00	clear set	Full output Skips output of shape factor, dead load stress, and reduced pier forces
Flag 02	clear set	Warning BEEP disabled Warning BEEP enabled
Flag 03	clear set	Pier SKEW in decimal degrees SKEW in degrees-minutes-seconds
Flag 04	clear set	AASHTO AASHTO (ignores flag 04)

### INPUT SUMMARY

<u>Prompt</u> HARD	<u>Input</u> Neoprene durometer hardness	<u>Default</u> No default
LOW G PSI HI G PSI	Low- and high-end values of shear modulus. Default per AASHTO table 14.2.2A.	AASHTO
DEL-T"	Movement due to temperature (one way), in inches (zero for a fixed pad)	No default
DL K/PAD	Dead load, kips per pad (reduced by live load uplift, if any)	No default
D+L K/PAD	Maximum dead and live load	No default
# PADS	Number of bearing pads on one pier. If bypassed (or one is entered), pier properties are not prompted and pier flexibility is neglected.	One
PIER HT'	Pier height from point of fixity to beam seat, in feet. If zero is entered, pier properties are ignor	

<u>Prompt</u> SKEW (dd or DMS)	<u>Input</u> Skew of the pier	<u>Default</u>		
# COLS	Number of pier columns. Zero (or bypass) for a T-pier.	0 (T-pier)		
DIA' (If #COLS is not zero)	Column diameter in feet	No default		
SH TH' (T-piers)	Shaft thickness in feet	No default		
W' (T-piers only)	Shaft width, feet	No default		
SHIM TH 16'S	Metal shim thickness in six- teenths of an inch. May bypass for unreinforced pads. Answer 2 for 1/8"shims, 3 for 3/16".	Two (1/8")		
PAD L"	Pad length in inches	No default		
W"	Pad width in inches. Inter- changeable with length.	No default		
#SHIMS	Number of shims. Bypass for unreinforced pads.	No shims		
LAM TH"	Lamination thickness in inches (for the lams between the shims). Program assumes 1/4" thick cover layers outside the shims.	No default		
TH"	Thickness of the (unreinforced) pad in inches, if #SHIMS prompt was answered zero or bypassed	No default		
<u>OUTPUT SUMMARY</u> (Items in parenthesis are displayed only if flag 00 is clear)				
ТН	Thickness of the (reinforced) pad in inches if SHIM TH was not answered zero (assumes 1/4" cover layers)			
TH>MAX ***	Warns that bearing is too thick per AASHTO 14.2.7 (TH > W/3 or W/5)			
(SH F)	Shape factor (Area/Perimeter# +h.)			
ALL STRS	Allowable compressive stress in kips per square inch. Fixed bearings are allowed a 10% increase (DEL-T" input as zero).			
(DL STRS)	Dead load stress acting.			
D+L STRS	Combined dead and live load stress acting.			
	2			



DL>MAX ***	Warns that dead load stress is more than 500 psi (guideline carried over from <u>1978</u> AASHTO)
DL<.2 ***	Warns that dead load is less than 200 psi (guideline carried over from 1978 AASHTO concerning anchorage of pads)
D+L>MAX ***	Warns that compressive stress is greater than calculated allowable
STRN	Compressive strain in percent. DuPont recommends strain be kept under 7%.
STR>7% ***	Warns against high strain. Reduce stress or increase shape factor.
TH<2T ***	Warns pad is too thin for shear deformation needed, per AASHTO 14.2.6
BOND ***	Warns pad needs to be secured against hori- zontal movement per AASHTO 14.2.9. No account is taken of pier flexibility for this warning.
F	Shear force in kips developed by the thermal deflection (DEL-T") input, considering the pier rigid
(Fe-11 and Fe-⊢)	Effective shear force developed parallel and perpendicular to the long axis of the pier, respectively, <u>taking into account the flexi-</u> <u>bility of the pier</u>
OK or NG	Trial pad design is OK or no good with respect to the above-mentioned checks

### PROGRAM FLAGS

Flag 05	clear set	Thermal movement Fixed pad (DEL-T" = 0)
Flag 06	clear set	No pier properties Consider pier flexibility
Flag 07	clear set	OK NG
Flag 09	clear set	Multiple shims One shim (used rarely)

### STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> DL K/PAD (Minimum load combination)
01	D+L K/PAD (Maximum load combination)
02	Lesser of pad length or width; pad area
03	Low-end shear modulus G (ksi stored)
04	Number of shims; 3 or 5 x Total thickness
05	Lamination thickness
06	Durometer hardness
07	Combined DL + LL stress
08	DEL-T (Thermal movement, one way)
09	Total elastomer thickness
10	High-end shear modulus x 1.9 (cold) x 5
11	Greater of pad length and width; shape factor
12	Skew (decimal degrees stored)
13	Pier height; $L^3/3EI$ of pier shaft or columns (C _p )
14	Number of pads per pier
15	Allowable compressive stress
16	Shim thickness (inches stored)



### ELASTOMERIC BEARING PAD ANALYSIS

Program NEO calculates properties and allowable stresses for elastomeric (neoprene) bearing pads by AASHTO Specifications, 1985 Revision. It uses AASHTO's compressive stress:strain curves. Default shear moduli are the high- and low-end values from AASHTO Table 14.2.2A; a cold-weather constant of 1.9 (recommended by DuPont for cold regions with temperatures down to  $-20^{\circ}$ F) is included in the shear-force calculations (high-end values) but not the allowable stress calculations (low-end values). The program allows elastomer durometer hardness values between 50 and 70; any other values may be assigned incorrect shear moduli.

### PIER INTERACTION

NEO will analyze a bearing pad alone, or it will analyze a system of bearing pads and pier. If a thermal movement DEL-T" (delta_{temp}, inches) of zero is input, the bearing is assumed fixed and its allowable compressive stress is increased by 10%. If DEL-T" greater than zero is input, the program prompts for pier dimensions in order to calculate the effective shear force considering pier flexibility. The following assumptions are made:

1) Superstructure movement is purely longitudinal; deck does not rotate or deflect laterally on skewed piers.

2) Deck and beams are rigid in all directions.

3) Pier deflects only perpendicular to its long axis; it is assumed rigid along its long axis (parallel direction).

4) Pier is fixed at bottom. Definition of "bottom" depends on PIER HT' (pier height in feet) input by user, but is usually taken from top of footing.

5) The elastomeric material is at a temperature of  $-20^{\circ}$ F and its stiffness has increased 90% over tabulated values. This may be somewhat over-conservative for warmer climates.

6) The pier concrete has a proportionality constant of N=8, and the gross moment of inertia of the pier shaft or columns is used.

7) The program assumes that a single pier shaft is rectangular, and that multiple columns are round. It considers the shaft or columns to be of uniform

stiffness all the way to the bearings, ignoring the effect of the pier cap perpendicular to the long axis of the pier. (See the INPUT SUMMARY section.)

All but the last of these is conservative. If the bridge design involves a short T-pier, the designer may wish to input a PIER HT less than actual in recognition of the greater stiffness of the cap. For pier concrete of somewhat greater stiffness than indicated by N=8, assumption 6) is probably still conservative since the columns usually suffer at least minor cracking, The assumption of rectandecreasing their stiffness. gular shape is pretty good for round-nosed T-pier shafts; just input a shaft length less than the actual by about one-half the shaft width. For rectangular column bents the user will have to calculate the DIA' (diameter in feet) of a round column of equal stiffness. For a single round column, answer the #COL prompt with 1; for a rectangular or roundnosed shaft respond with a zero.

### DEFAULT SHEAR MODULI

The default values of G in psi are from AASHTO table 14.2.2A (except for 70 duro) and are as follows:

<u>Duro</u>	<u>Low G</u>	<u>High G</u>
50	85	110
55	102.5	132.5
60	120	155
70	155	200
(AASHTO 70)	(160)	(260)

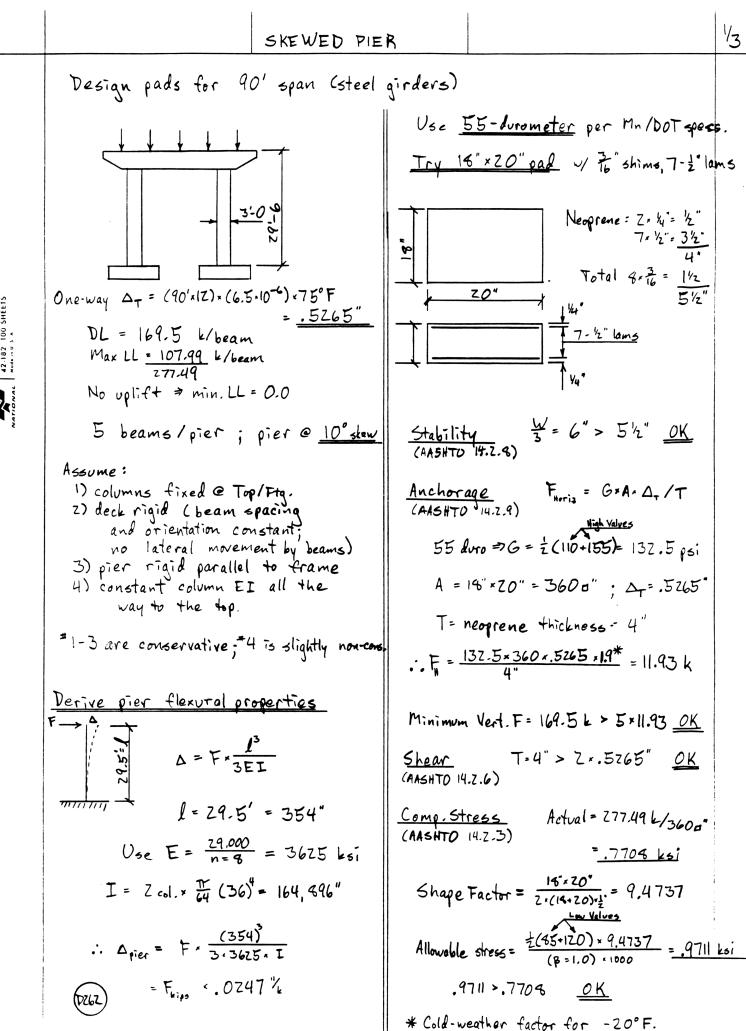
### SHEAR FORCE

For a non-fixed pier (one whose bearings absorb movement), NEO first calculates the shear force assuming the pads take all the thermal movement, i.e. the substructure is assumed rigid. If the #PADS prompt is bypassed (R/S is hit without keying in a number) or the PIER HT' prompt is answered zero, the program leaves its shear-force calculations at that. This, for instance, is appropriate for abutment bearings and very conservative pier designers. If these prompts are answered, however, NEO goes on to calculate the effective force developed considering the piers flexible using the above-noted assumptions.

Pad anchorage and shear checks are made for nonfixed piers using the full rigid-pier shear force (i.e. pier flexibility is not taken into account) whether or not pier information has been input. These checks are not made for fixed piers since the anchor bolts or other "fixing" mechanism are assumed to absorb the entire shear force.

The program assumes that elastomeric material harder than 60 durometer is used only in fixed, unreinforced pads, in accordance with AASHTO 14.2.2. If an expansion bearing (assumed reinforced) of 70 durometer material is analyzed using the default high-end shear modulus, the shear-force calculations will be about 25% low due to an error in the shear modulus calculation algorithm. If the user chooses to ignore 14.2.2, the default high-end modulus should not be used. The preceding section lists the defaults.

### PAD GEOMETRY


The program works only with rectangular bearing pads, not round ones. It is not able to accommodate holes in pads. Pad length and width are interchangeable.

### EXCEPTIONS

All AASHTO specifications are checked except 14.2.5, dealing with rotation, and 14.2.2, which forbids laminated pads of greater than 60 durometer hardness. If a pad fails to meet a given criterion, a message is displayed. At the end of the run, if a design has met all the checks, the program displays OK. If it has failed one or more of the checks, the program displays NG (no good) and, if flag 02 is set, a BEEP sounds.

### OBSOLETE CHECKS

NEO checks against dead load stress of over 500 psi or under 200 psi; and total compressive strain of over 7%. The former are carried over as a guide from the 1978 AASHTO Specifications, while the latter comes from DuPont's 1959 guide to elastomeric bearing pad design. The program will label a design "NG" if it violates either of these; however, the design may still be valid by present (1989) AASHTO Specifications.



A2.182 100 SHEETS

Comp. Strain From tables 4.2.4, (AA6HTO 14.2.4) for stress of 770 psi : 50 luro - 3.70% 60 duro - 3.25% avg. ~ 3.48% As a guide, old AASHTD allowed max. 7% 3.4870 2770 OK Also as a guide, check DL stress against 500 psi: DL = 169.56 = . 47 kir . 5 OK all OK -:<u>USE 18"+20"+5½" PAD</u> <u>Calculate actual pier force</u> Ansing AN An casa - 2 PC - 0 - Skew = 10°= B ERW △_{Neo}= F × ( 1000.4" 132.5:360.1.9×5pale ) = F . 0066 %  $\Delta_{\text{Pier}} = F \cdot .0247$  $\Delta_N \sin \alpha = \Delta_T \sin (skew) = .5265 = \sin 10^\circ$ = .0914' Fer = .0914"/.0046"/4 = 10.357 k

AN COS & = AT COSB - AP and  $\Delta_n \frac{CDS}{C_n} = \frac{\Delta P}{C_p}$ or  $\Delta p = \frac{C_{p} \cdot \Delta_{N} \cos \alpha}{C_{N}}$  $\therefore \Delta_T Coop = \Delta N cood (1 + \frac{C_P}{C_n})$  $C_{N} \Delta_{T} \cos \beta = \Delta_{N} \cos d (C_{N} + C_{p})$  $F_{e-\mu} = \frac{\Delta_{N} \cos d}{C_{N}} = \frac{\Delta_{T} \cos \beta}{C_{N} + C_{P}}$ = .5265 * cos 10° .0247+.0048Y = <u>15.447 k</u> Design pier for these effective thermal forces DZ6

A2.182 100 SHEETS

2/3

SKEWED PIER

XEQ "NEO" 5:36:25 PM 02.03.89		PAD L- 18.0000 RUN N- 20.0000 RUN	Try anoth <b>or</b> design
TITLE:		#3/16"SHIMS 2.0000 RUN	
I 394 PAD E-5 RUN		LAM TH-	
*****		.5000 RUN	
HARD		TH=1.3750"	
55.0000 RUN		IH-1.37J0	
DEL-T.			
.5265 RUN		SH F=9.4737	
DL K/PAD		ALL STRS=0.9711 KSI	
169.5000 RUN			
		DL STRS=0.4708 KSI	
MAX LL K/PAD 107.9900 RUN		D+L STRS=0.7708 KSI	
••••		STRAIN=3.4549%	
MIN LL K/PAD			
RUN		TH<2T ***	too thin
# PADS			
5.0000 RUN		BOND ***	
PIER HT'			
29 <b>.5000</b> RUN		F=47.7262 K/PAD	
SKEW (dd)		=238.6309 K/PIER	
10.0000 RUN		Fe-11=41.4378 K/PIER	
# COLS		Fe-H=19.1960 K/PIER	
2 <b>.000</b> 0 RUN		FE-F-17.1700 K/TTEK	
DIA.		NG	<b>a</b> · · ·
3.0000 RUN		NU	i design is vo geo
SHIM TH 16'S			i. design is no goo Try a third design
3.0000 RUN		PAD L ⁻	iry a third
		18.0000 RUN	Lesign
PAD L.		W-	
18.0000 RUN		20.0000 RUN	
N*		#3/16"SHIMS	
20.0000 RUN		4.0000 RUN	
#3/16"SHINS		LAN TH-	
*3710 SHTH3 8.0000 RUN		.7500 RUN	
		TH=3.5000"	
LAM TH" .5000 Run			
		SH F=6.3158	
TH=5.5000"	total thickness	ALL STRS=0.6474 KSI	
	shape factor		
SH F=9.4737	allowable	DL STRS <b>=0.470</b> 8 KSI	
ALL STRS=0.9711 KSI		D+L STRS=0.7708 KSI	
		D+L>MAX ***	Load too high
DL STRS=0.4708 KSI			1.
D+L STRS=0.7708 KSI		STRAIN=3.9629%	
	est. strain		
STRAIN=3.4549%	Corr orrain		
STRAIN=3.4549%		F=17.3550 K/PAD	
		F=17.3550 K/PAD =86.7749 K/PIFR	
		=86.7749 K/PIER	
F=11.9315 K/PAD =59.6577 K/PIER		=86.7749 K/PIER Fe-11=15.0683 K/PIER	
F=11.9315 K/PAD =59.6577 K/PIER	} or uivalent forces taking figr flor.	=86.7749 K/PIER	
F=11.9315 K/PAD =59.6577 K/PIER Fe-11=10.3595 K/PIER		=86.7749 K/PIER Fe-11=15.0683 K/PIER Fe-H=16.7952 K/PIER	
Fe-11=10.3595 K/PIER	} or uivalent forces taking figr flor.	=86.7749 K/PIER Fe-11=15.0683 K/PIER	

ATTOWAL 42.182 100 SHEETS

0264

3/3

Program NEO For Elastomeric Bearing Pad Design 712 bytes Page 1 of 4

	X	Y	Z	T	L	X	V	र	T	
		Y I	L		53 SF		<u> </u>			
01+LBL -NEO-					54 22					
02 CF 05					55 /					
<b>0</b> 3 16					56 3					En a
04 XROM -S-					57 Y1		]			$\Delta = \frac{Pl^3}{3EI}$
05 "HARD"	duro				58 S1					JEI
06 PROMPT					59 -9					$P \longrightarrow  $
07 STO 06					60 XRC	DM -Pd-				
<b>08 .28</b> 6					61 ST					
<b>8</b> 9 /					62 CL					TITTIA
10 89.8						COLS"				
11 -					64 PF					
	Low G				65 X=					
13 XEQ 07 14 STO 03	Low G				66 G1					
					67 •1					
16 <b>4.</b> 5	tur0				68 PF			1		
17 *					69 X1		1 1	1		
18 115					70 X1		" col.	1		
19 -					71 *	-		1		
20 -HI-					72 .6 73 G1		PierI	1		
21 XEQ 07	High G					10 13				
	1.9,5				1.9=coll stiffening constant 74+LE					
23 *						G PSI-				
24 STO 10										
25 "DEL-T""					coefficient: 14,2,9 76 Pl 77 E					
26 PROMPT					79 /					
27 STO 08	$ \Delta_1 $				Che-Way Thermal 79 DI					
28 X=0?					movement					
<b>29 SF 0</b> 5					80+LE	BL <b>0</b> 0				
<b>30 CF 0</b> 6						SH TH				
31 <b>-D</b> L-					82 PI					
32 XEQ 03					83 3					this a
33 PROMPT					84 Y					3
	Min.log	)			85 -1	N				
35 <b>•D+L</b> •					86 PI	ROMPT W	+h3			
36 XEQ 03										
37 PROMPT 70 STO A1	Mar. Load					BL 13				
38 STO 01 39 FS? 05					fixed ? 88 *					1 3EI TA R.13
39 F52 85 40 GTO D					Gto D 89 5	T/ 13				2FT TA K.13
48 GIUD 41 E							1			5
41 E 42 ENTER†	1	1			90+LI					
43 <b>-# PADS</b> -	·				91 2 00 - 501111 T					
44 PROMPT					92 "SHIN TI					
45 STO 14	*Pals	1			93 Pl 94 1	ROMPT Ki.th.				
46 X<=Y?					95 /					
47 GTO D						TO 16 Hh., in	her			
48 -PIER HT					70 3		[			
49 PROMPT	I., .				<b>97</b> 41	BL 22				
50 STO 13	Height					OH "LL"			1	
51 X=0?					99 C			1		
52 GTO D					1 <b>00</b> C					
						PAD L				
					102 P				1	(0265)
					103 S				1	
	•		•	•	1	I	1	I	I	1

Program <u>NEO</u> For <u>712</u> bytes Page<u>Zof 4</u>

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			14.2.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			17.6.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			400 psi max
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			our por max
111       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       STO       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       <			Arid
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			β=1.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
114 PROMPT       # f dime       166 RCL 11       W       L $\beta$ 115 X=0?       # f dime       167       area       168 RCL 02       U       L $\alpha$ 116 GT0 18       1       167       168 RCL 02       U       L $\alpha$ $\alpha$ 118 E       1       1       167 K       168 RCL 02       U       L $\alpha$ $\alpha$ 118 E       1       1       175 RCL 02       U       L $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ <			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-   f	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	β	- ar	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		tea   F	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		β	
124 ENTERt       netbil       -etbil       176 RCL 82 $\bigvee$ $\bigcup$ $\square$ 125 -LAN TH       126 FC? 89       177 RCL 64       177 RCL 64 $mar.H_{\bullet}$ 128 STO 65       Lau-th       -etbil       178 TH-       179 XY?         128 STO 65       Lau-th       -etbil       188 XEQ 65 $\square$ $\square$ 130 E       I       -       -       188 XEQ 65 $\square$ $\square$ 131 -       t lans       ian. H       -       -       183 STO 62 $\square$ ea $\square$ 132 *       L lan.       -       -       -       183 STO 62 $\square$ ea $\square$ 133 .5       2: $\sqrt{4}$ -       -       -       -       183 STO 62 $\square$ ea $\square$ 134 +       clain-K       -       -       -       -       184 RDH $\square$ $\square$ 135 STO 69       elain-K       -       -       -       -       -       - $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$			Shape Factor in R.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		'	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
128 STO 65       Lam+ththd       180 XEQ 65       W       L $\beta$ 129 RCL 04       8 dii-s       1       181 RBH       W $\alpha$ can $\beta$ 130 E       1       1       182 * $\alpha$ can $\beta$ 131 -       *       1 and $\alpha$ 182 * $\alpha$ can $\beta$ 132 *       K lam       .       183 STO 62 $\alpha$ can $\beta$ 133 .5       2: $V_4^{-1}$ .       185 FS? 69 $\beta$ 134 +       cteol.+L       .       186 1.4 $\beta$ 135 STO 69       cteol.+L       .       187 RCL 11 $\beta$ 136 +       tob(th)       .       189 RRCL X $\beta$ 138 RCL X       .       .       199 FC? 60 $\beta$ 139 3       .       .       .       .       199 RCL 3         140 *       .       .       .       .       .       .         144 *       .       .       .       .       .       .         144 *       .       .       .       .       .       .         144 *       .       .       . </td <td></td> <td></td> <td></td>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			14.2.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_   ß	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		βΪ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
134 +       closh.+k.       -       186 1.4 $\beta$ 135 STO 09       closh.+k.       -       186 1.4 $\beta$ 136 +       biol +k.       -       188 °SH F="       188 °SH F="         137 °TH="       189 ARCL X       199 FC? 00       191 AVIEN         139 3       3+k.       191 AVIEN $\beta$ 140 *       3+k.       192 X       Y $\beta$ 141 STO 04       1.4.       193 /       193 / $\beta$ 142 °+       194 RCL 03       Low C       195 *       65/ $\beta$ 143 AVIEN       144 XROM °L-       195 *       65/ $\beta$ nux.allow         145 4       114       198 X       191 AVIEN       197 X>??         145 5       114       198 X       114       198 X         145 7       114       198 X       114       198 X         145 8       114       198 X       114       199 1.1         148 STO 05       1 $\beta = 1$ 200 FC? 05       144         149 E       1       144       144       144			β= 1.0 for lam.
135       STO 09 $e^{bot.K. modelft.}$ 187       RCL 11       Sh.F         136 $b^{bol.K. modelft.}$ 188       SH F="       189       RRCL X         137       TH="       189       RRCL X       190       FC? 00         139       3       3*th.       191       RVIEN $\beta \leq$ 140       *       3*th.       191       RVIEN $\beta \leq$ 142       -1*-       194       RCL 03       Low C         143       RVIEN       195 $6^{5}/\beta$ max.allow         145       4       1/4       198       K:YY       allow,         145       4       1/4       198       K:YY       allow,         145       1/4       1/4       198       K:YY       allow,         145       1/4       1/4       198       K:YY       allow,         145       1/4       1/4       198       K:YY       allow,         147       FS?       09       1.1       199       1.1         148       STO 05       Cong bays       200       FC? 05       1         149       E       1 $\beta^{2} = 1$ 2			p-110 tot iam.
136 + $136 + 160 + 160$ 137 - TH=-       188 "SH F=-         138 MRCL X       199 RRCL X         139 3 $3 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 160 - 16$			= 1.4 for cover
137 "TH="       189 RRCL X         138 RRCL X       190 FC? 00         139 3       3"+h.         140 *       191 RVIEN         141 STO 04       193 /         142 "+-"       194 RCL 03         143 RVIEN       195 *         144 XRON "L"       195 *         145 4       1/4         145 4       1/4         145 4       1/4         145 7       198 RCL 15         145 8       1/4         145 9       1/4         145 1       1/4         145 2       1/4         145 4       1/4         145 5       1/4         145 6       1/4         145 7       1/4         146 1/X       1/4         147 FS? 09       200 FC? 05         148 STO 05       Concloye         149 E       1         149 E       1			
138       ARCL X       190       FC? 00         139       3       191       AVIEN         140       *       191       AVIEN         141       STO 04       193       /         142       *+-*       194       RCL 03       /ow C         143       AVIEN       195       *       G       G         144       XRON *L*       195       *       G       G       B         144       XRON *L*       194       RCL 03       /ow C       G       G       B         145       4       1/4       195       *       G       G       B       I         145       1/4       1/4       198       K(XY       plow,       199       1.1       I       199       1.1       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I </td <td></td> <td></td> <td>= 1.8 for plain</td>			= 1.8 for plain
139 3 $3 \cdot + h \cdot$ 191 AVIEN $\beta = 1$ 148 * $3 \cdot + h \cdot$ 191 AVIEN $\beta = 1$ 141 STO 04       193 /       193 /       193 /         142 * + * *       194 RCL 03       Low C         143 AVIEN       195 *       G5/B         144 XROM * L*       196 RCL 15       max.allow         145 4       1/4       198 X(XY)       pllow,         146 1/X       1/4       198 X(XY)       pllow,         147 FS? 09       200 FC? 05       199 1.1         148 STO 05       cover layer       200 FC? 05       149 E			
139 3 $3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $			
140 *       3.4h.       14.2.7       192 X(Y) $\beta$ $z$ 141 STO 04       193 /       193 /       193 /       194 RCL 03       Low C         143 AVIEN       195 *       65/ $\beta$ 195 *       65/ $\beta$ 144 XROM *L*       196 RCL 15       198 X(Y)       199 1.1         145 4       114       198 X(Y)       199 1.1         146 1/X       114       199 1.1       200 FC? 05         148 STO 05       Cover layer       200 FC? 05       14         149 E       1 $\beta = 1$ 201 SIGN       44			
141 STO 04       193 /         142 "+"       194 RCL 03         143 AVIEN       195 *         143 AVIEN       195 *         144 XROM "L"       196 RCL 15         145 4       197 XY?         146 1/X       1/4         147 FS? 09       199 1.1         148 STO 05       Cover layer         149 E       1 $\beta = 1$ 201 SIGN		>	
$142 \text{ +}$ $194 \text{ RCL } 03$ $low G$ $143 \text{ AVIEH}$ $195 \text{ *}$ $G \leq /\beta$ $144 \text{ XRON -L-}$ $196 \text{ RCL } 15$ $max.allow$ $145 4$ $197 \text{ XY?}$ $196 \text{ RCL } 15$ $max.allow$ $146 1/X$ $1/4$ $198 \text{ X(Y)}$ $2100 \text{ FC? } 65$ $148 \text{ STO } 05$ $Cover layer$ $200 \text{ FC? } 65$ $149 \text{ E}$ $149 \text{ E}$ $1 \text{ Proves } 1$ $\beta = 1$ $201 \text{ SIGN}$			
143 AVIEH       195 * $G \leq / \beta$ 144 XROM *L*       196 RCL 15       max.allow         145 4       1/4       197 X>Y?         146 1/X       1/4       198 X(>Y         147 FS? 09       199 1.1       200 FC? 05         148 STO 05       1 $\beta = 1$ 201 SIGN			
144 XRON "L"       196 RCL 15       max.allow         145 4       197 XY?       197 XY?         146 1/X       198 X(Y)       pllow,         147 FS? 09       199 1.1       200 FC? 05         148 STO 05 $100^{-1}$ $201$ SIGN         149 E       1 $\beta = 1$ 201 SIGN			Allow. compr. stress
145       4       197 $x$ >Y?         146       1/X       198 $x$ $y$ ?         146       1/X       198 $x$ $y$ ?         147       FS?       09       199 $1.1$ 148       STO       05       200       FC?       05         149       E       1 $\beta = 1$ 201       SIGN			
146 $1/X$ 1/4       198 $X/Y$ $allow$ 147       FS?       09       199       1.1         148       STO       05       200       FC?       05         149       E       1 $\beta = 1$ 201       SIGN       11			= G5/B
147 FS? 09       199 1.1         148 STO 05       200 FC? 05         149 E       1 $\beta = 1$ 201 SIGN			14.2.3
148     STO     05     count by an       149     E     1 $\beta = 1$ 200     FC?     05       149     E     1 $\beta = 1$ 201     SIGN			
149 E 1 $\beta = 1$ 201 SIGN			10% increase for fi
י עראיין דער אריין דער אריין דער אריין דער אריין דער אריין דער אריין דער אריין דער אריין דער אריין דער אריין ד			
151 GTO 11 203 STO 15			
204 "ALL"	1		
152+LBL 10 Unreint, pad 205 XROM -K-	1		
153 -TH Th. 206 XEQ -PY-			
154 PROMPT 207 RDV			
155 STO 85 Law th. 288 .5 500 pri			
156 STO 89 eludit			
210 RCL 62 [24ca			
(DLLdrs) 211 / DL drs			

# Program <u>NEO</u> For ______ bytes Page<u>3</u> of <u>4</u>

		,											
		X	Y	Z	Т				X	Y	र	T	L
	12 <b>-DL-</b>							268+LBL 12					
	13 XROM "K"							269 "STRN="					
	14 FC? 00							270 ARCL X					
	15 XEQ -PV-							271					
	16 <b>-DL-</b>							272 AVIEW					Dupont rule
	[7 X)Y?					OID AAS		273 7	7%	Hearn			limits strain
	18 XEQ 05					rules	110	274 •STR>7%•					+ 700
	19 - 14.2-							275 X<=Y?					
	20.2	200 psi	DL					276 XEQ 06					
	21 X>Y?							277 FS? 05					
	22 XEQ 06	A. D 11						278 GTO 08					
		Mar Phollo area						279 ADV					
		Max. stry						280 RCL 08	$\Delta_{T}$				
	25 /							281 ST+ X	ZOT				
	26 STO 07							282 RCL 09	elast.th				
	27 <b>"D+L</b> "							283 -TH<2T-					14.2.6
	28 XROM -K-							284 X<=Y?					
	29 XEQ "PY" 30 "D+L"							285 XEQ 06					
								286 RCL 00	DL				
		allow.	Actor					287 RCL 10	5, G.,				
	32 X(=Y? 33 XEQ 05							288 RCL 02	prea				
	34 6	6						289 *					- ALG
		Sh.F.				strain	Curve	290 RCL 08	Δτ				$F = \frac{\Delta_T A G}{e \log t - t h}.$
	36 X(Y?						@ Sh.F=6	291 *					
	37 GTO <b>0</b> 9					Je	C Jh.F = 6	292 RCL 09	elast.th				
	38 LN							<b>29</b> 3 /	Temp. Fal	DL			
		luro	1.14					294 "BOND"					14.2.9
	40 27.3		an Chr					<b>29</b> 5 X>Y?					
	41 /							296 XEQ 06					
	42 3.64							297 5					<b>_</b>
	43 -							298 /	Temp, F				Force for
	44 *							299 •F=•					one pad
		loro						300 ARCL X					
	46 7.16							301 XEQ 03					
	47 /							302 XEQ -PY-					FC3.06
	48 -							303 FS? 06					or
24	49 14.56							384 FS? 88					F53.00
	50 +							385 GTO 88	# Pads				
2	51 RCL 07	att. sho	5					386 RCL 14	2 F				<b>T</b> . ( 0 )
25	52 *							397 <b>*</b>	۴ſ	1	1		Total force
	53.97							<b>398 " ="</b>	EForce				on pier if rigid
	54 +							309 XEQ 14 310 RCL 08	DT OTCO	1	1		
25	55 GTO 12	Strain 7	1					310 KLL 08 311 ENTERT	ΔΤ	DT	F		
		1						312 "Fe-11="		1	ľ		see example:
	56+LBL 09	sh. for	1					313 RCL 12	shew		1		
	57 18							314 SIN	sin	AT	ΔΤ	F	
	58 *							315 Rt	F	1			
	59 214							316 *	Feill	DT		ΔŦ	
	60 X<>Y							317 XEQ 14				1 - 1	
	61 -	duro.						318 X<> L	F	0-			
	62 RCL 06							319 /	Cneo				
	63 -	1						320 RCL 13	Cpier	·			
	64 .1							321 +	2C	Ar			6267)
	65 <b>*</b> 66 pri 87	stress	1										
	66 RCL 07	1								1			
2	67 *	Strain 2	4	1	1	1							

Program <u>NEO</u> For ______ bytes Page<u>4</u> of <u>4</u>

											_
	X	Y_	Z	Τ		X	Ý	र	T	L	_
324 COS 325 * 326 *Fe-+=* 327 XEQ 14	ATC Skew Cos Fe. F										
328+LBL 08 329 ADV 330 CLA 331 XROM -OK- 332 Ayien 333 GTO 22 334+LBL 03 335 -F K/PAD-											
336 RTN 337+LBL 14 338 ARCL X 339 -⊢ K∕PIER- 340 XEQ -PV- 341 RTN 342+LBL 05	Force										
344+LBL 06 345 "+ >NAX" 346 AVIEN 347 XRON "L" 348 SF 07 349 END					SF 07 for any warning						
026											

# AASHTO T-PIER ANALYSIS

xeq PIER (SIZE 043)

**SOFTKEYS** (USER mode ON)

PIER uses no softkeys

## USER FLAGS

PIER recognizes no user flags

## INPUT SUMMARY

<u>Prompt</u> T/C EL	<u>Input</u> Top of cap elevation	<u>Default</u> No default
CAP HT'	Cap height in feet	No default
FTG HT'	Footing height (thickness), feet	No default
B/F EL	Bottom of footing elevation	No default
DLW	Design low water elevation. Bypass (or enter zero) to signify dry-land construction.	Zero
DHW (if DLW prompt was answered)	Design high water elevation. Used to calculate ice elevation.	No default
GR EL (if DLW was bypassed)	Ground elevation, for landlocked piers	No default
SH TH'	Shaft thickness in feet	No default
SH L'	Shaft length measured along centerline of pier, in feet	No default
CAP TH'	Cap thickness in feet	No default
CAP L'	Cap length in feet	No default
WEDGE	Length of the triangular chamfer cut from the underside of the cap cantilever, in feet	No default
WEDGE HT'	Height of the cantilever chamfer which when subtracted from the CAP HT' leaves the height of the cap at the end of the cantilever	No default

<u>Prompt</u> SPAN'	<u>Input</u> Span length in feet. For different spans about a pier, use the average of their lengths.	<u>Default</u> No default
DW 0-0'	Deck width, out to out, in feet	No default
RW W'	Roadway width between curbs, for figuring live load lane eccen- tricities	No default
SKEW	Skew of the pier. A "square" bridge is defined to have 0 ⁰ skew.	No default
DECK EL	Elevation of the bridge deck	No default
BM+R HT'	Height from low beam to top of rail, for wind calculation, in fee	
BRG HT'	Bearing height; the difference in elevation between low beam and top of cap.	No default
ICE FC PSI (if DLW prompt answere	Ice crushing strength in psi d)	No default
<u>OUTPUT SUMMARY</u> (Fla	g 00 has no effect on PIER)	
MIN A-S	Minimum area of vertical reinforci pier shaft (1/2 %) in square inche	
SH DL	Shaft dead load in kips (assuming :	round ends)
CAP DL	Cap dead load in kips (assuming sq	uare ends)
SU DL EST	An estimate of the superstructure	dead load
1L LL EST	An estimate of one lane of live lo impact. Assumes continuous constr	
1L ARM 2L ARM	Eccentricity of one and two lanes load with respect to centerline of (or CL pier) <u>measured along the pi</u> feet. Will not display 2-lane val is less than 22'-0.	roadway <u>er cap</u> , in

DLW Values which follow are for Design Low Water ICE (or Ice) elevation. Press R/S to continue. If DLW prompt was bypassed (i.e. landlocked pier), no such identifier is displayed.

WOS Wind on substructure. See next page for explanation of postscripts.



SH ARM	Position of center of action of load with respect to top of footing, for shaft design
FTG ARM	Position of center of action of load with respect to bottom of footing, for footing design; in feet.
ICE	Ice force along centerline of pier
WOF	Wind overturning force (uplift), in kips
WOF-11	Wind overturning moment, in foot-kips
W	Wind on superstructure
WL	Wind on live load
<u>Postscripts</u> (see be <del> </del>	low) Perpendicular to the long axis of the pier
11	Parallel to the long axis of the pier
Т	Transverse to centerline of roadway
L	Longitudinal to (along) centerline of roadway



# PROGRAM FLAGS

Flag 07	clear set	Transverse force Longitudinal force
Flag 08	clear set	Landlocked pier (DLW prompt bypassed) Pier in water
Flag 09	clear set	WOS for DLW stage WOS for ICE stage, or if landlocked
Flag 10	clear set	WOS-F (perpendicular) WOS-11 (parallel)



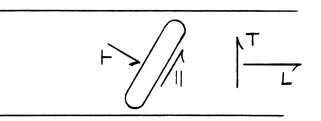
# STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> Height of shaft
01	Top of cap elevation
02	DLW elevation or zero
03	ICE elevation or Ground elevation
04	Top of footing elevation
05	Footing thickness
06	Skew (degrees)
07	Shaft length
08	Cap height
09	Wedge height
10	Wedge length
11	Cap width (thickness)
12	Shaft thickness
13	Span
14	Deck width out to out
15	Cap length
16	Beam + rail (+ slab) height
17 18 19 20	WOS-11 WOS-11 Arm WOS WOS Arm
21 22 23 24	WOS-11 WOS-11 Arm WOS-H WOS-H Arm
25	Bearing height
26	Pier dead load (shaft + cap)
27 28	WOF, K WOF-11, 'K
29 30	ICE force (11) ICE arm

(027)

<u>Register</u>	<u>Value</u>
31	Estimated Live load (one lane, no impact)
32	Estimated superstructure dead load
33	Height from top of cap to 6'-0 above top of deck (WL-T Arm)
34	W-T (11)
35	W-T (⊢)
36	W-T Arm
37	W-L (11)
38	W-L (⊢)
39	WL-T (11)
40	WL-T ( <b>F</b> )
41	WL-L (11)
42	WL-L (F)




#### T-PIER ANALYSIS

Program PIER is a fast, simple way to calculate or check the AASHTO loads on a bridge pier. The program is written to analyze T-piers, but most of the output can also be used for column-bent piers by considering the columns as one shaft of equivalent width for purposes of wind load. In order to shorten the program, a few simplifying conditions were set:

- 1) The superstructure, pier, and footing are assumed to be symmetric with respect to the centerline of roadway.
- 2) The program does not recognize the presence of a sidewalk when calculating live load lane eccentricity, nor does it calculate sidewalk live load.
- 3) PIER does not calculate earth loads, loads due to earthquake or streamflow, or longitudinal forces due to live load.
- 4) Elastomeric bearing pads are assumed used. That is, the force due to temperature change is not the limit of the longitudinal force able to reach the pier; it is merely another additive force.

#### **CONVENTION of DIRECTION of FORCES**

This program, along with programs FTG and SHFTG (footing analysis programs) use a simple convention to differentiate directions of applied forces. Directions with respect to the superstructure or centerline of roadway are designated with a "T" for transverse forces and an "L" for longitudinal forces (forces acting along the centerline of roadway). Directions with respect to the centerline of the pier are designated with a "+" for perpendicular forces and a "11" for parallel forces (forces acting along the long axis of the pier). For bridges with no skew ("square" bridges), of course,  $F_{+} = F_{L}$  and  $F_{11} = F_{T}$ . For skewed bridges, the following diagram will provide the simplest description.



See the example for further clarification of the translation process between the two axes. Program PIER calculates the magnitude and point of action of the following forces, according to AASHTO Chapter 3:

W Wind on superstructureWOF Wind overturning forceWOS Wind on substructureWL Wind on live loadICE Ice force

The point of application of each component of these forces is given as a distance, or moment arm, both from bottom of footing (FTG ARM) for footing design; and from top of footing (SH ARM) for shaft design.

Wind on superstructure (W) is calculated by the simplified method of AASHTO 3.15.2.1.3; PIER does not check the requirement that the span be less than 125 W and WL (wind on LL) are calculated as feet. transverse and longitudinal forces with respect to centerline of roadway. Since a transverse force effectively is felt at its point of application while alongitudinal force can act only through friction at the beam seat (due to the restraint of rotation by the beams longitudinally), different moment arms are given for each component. Then each of these forces is normalized (split) into components parallel (11) and perpendicular (  $\vdash$ ) to the long axis of the pier. See the example for clarification.

WOF (wind overturning force) is calculated and displayed as an uplifting force in kips and an overturning moment parallel to the long axis of the pier (WOF-11). There is no component perpendicular to the pier.

WOS (wind on substructure) is calculated as a force of 40 psf on each face of the pier. Those who would argue that the wind can't blow four directions at once will have to reduce these values with their sines and cosines. This program uses the simple reasoning that it's already blowing from two different directions on the superstructure; two more directions isn't that many more. WOS is actually calculated twice: once on the portion of the pier above DLW (design low water elevation), and once on the portion of the pier above the Ice elevation. PIER assumes that the bottom of the pier cap is above both these elevations; if this is not the case, the WOS values will be in error (they will be calculated with the full cap and a negative length of shaft exposed to the wind).

The ICE elevation is not input directly; it is assumed to be midway between DLW and DHW (design high water). Since the DHW elevation is not used for anything else, the ICE elevation can be set to any desired value by changing the DHW elevation. Although this may seem like a backward way of doing things, most hydrology information is presented in terms of DLW and DHW; only rarely is an ICE elevation given directly. The ice force is calculated as twelve inches of ice, of the crushing strength input, times the thickness of the pier shaft.

#### LANDLOCKED PIERS

For landlocked piers, bypass the DLW prompt and you will be prompted for GR EL, the ground elevation. WOS is calculated only once for this case, on the portion of the pier above ground. Again, the ground elevation must be lower than the top of the cap.

#### DEAD LOADS and ESTIMATES

Besides the AASHTO wind and ice loads, PIER also calculates the following quantities:

- The pier dead load (shaft and cap separately), as suming a round-ended shaft, square-ended cap, and concrete at 150 pounds per cubic foot.
- 2) The minimum reinforcing required in the shaft (1/2% by AASHTO 4.4.9.4).
- 3) An estimate of the superstructure dead load, as suming a 7" thick deck, jersey rails, steel beams spaced at about 7'-0, and continuous construction. Naturally, all these assumptions place limits on the accuracy of such an estimate; still, experience with a given type of construction will lead to an expected deviation from this estimate, so it still can be useful as a check.
- 4) An estimate of reaction due to one lane of live load, assuming AASHTO lane loading, continuous construction, and no impact.
- 5) The effective moment arm (eccentricity) of one and two lanes of live load, measured along the pier cap from centerline of roadway. See the example for assumptions.

#### USE as SUBROUTINE

Although written as a stand-alone program, features are incorporated that allow PIER to be called as part of a user-written program; all of its output is stored for use by such a program. For example, a program to calculate and display AASHTO load groups could be written:

- 01 LBL GROUP
- 02 XROM "PIER" (called with XEQ)
- 03 "1 LANE LL"
- 04 PROMPT
  - etc.

Such a program was not included in this module for two reasons: differing interpretations of several AASHTO



provisions (for example, the application of WOS to a skewed pier was alluded to); and lack of memory space in the module (a working version took up about 750 bytes). Also important is the fact that output from PIER is essentially an intermediate step in the pier design procedure; an engineer has to digest it to get useful results, i.e. AASHTO load groups. If these results were calculated and output by a program written by a third party (this author), the results would be susceptible to use without checking or even understanding how they came about. As mentioned, many details of pier design by AASHTO are open to debate, and most design offices settle on certain methods; these would doubtless be different than the reasoning this author would employ. AASHTO T. Pier Loads

Calculate loads for a T-Pier. Span = 60'-0 Upotation and 40'-O Downstation /E1.842.00 33'-2 Layout and Skew=20 subscript conventions Cap length: 4.7.5'/cos20" = 31.93' USE 36-0 CAP Superst. DL: Beaus 5 . 45 L/1 x 70' = 157.50 k Diaph 29' + 3.75' + 25' + 15= 40.40 Int. Diash 29' x .63' x .15 = 10.40 Deck .625-33.17' 70:15 = 217.70 = 42.0 FWS .02 + 30' + 70' Rails Zx 374, *70' = 51.8 520.6 k Est. Suparst, LL (.64 k/, x70' x 1.25)+26 L = 82.0 k/Iane Estimate cap depth by WSD: € (520.6) + 1/2 (42.0) + 4'+3.33'+12'+.15

Allow. Ve = 150 psi w/ stirrops Use CAP TH = 3'-4 :. Need d = 273.24 L .1541-3.33+12 46" <u>USE CAP HT. = 5-0</u> - 437.00 11-6 DHW V \$26.00 12:0 ัก DLW V 5. Streambed 818.00 \$19.00 6 B/Ftg. 813.00 35 Elevations 3.75' Beam .67 Deck Haunch 17' PG Elev. 842.00 4.56' .4Z′ Brg 837.00 T/Cap El. Streambed elev. = 818.00 > Set B/Ftg Elev. = 813.00 TICap 437.00 Cap' 5-0 Ftg.: est. 3.5' B/Ftg <u>813.00</u> 15.5' = Shaft Shaft Cap = 36'-0 ⇒ USE 12'-0 SHAFT Try 2'-10 12'-0 DZ74

ATIONAL 42.182 100 SHEETS

1/6

<u>Cap DL</u> (36'= 5'- 11.5'= 1.67')=3.33'=.15= <u>=60.42 k</u>
$\frac{5haft DL}{(12' - 2.43'), 2.43' = 25.97 n'} (2.43')^2 = 7/4 = 6.30 - 32.27$
32.27 s' × 15.5' ×. 15 = <u>75.04 k</u>
Wind on Substructure
$WOS_{1}: Area d Ad cap 140.0 Z.5' 450 \sim -19.17 4.44' - 45.19160.43 z' 364.41$
@ Design Low Water (DLW):
160,43 364.81 Shaft 156.00 11.5' 1794.00 316,430' 2158.81
C.G. = 6.81' From T/Cap = 13.69' From T/Ftg. (DLW)
$WO5_{1} @ DLW = 316.83 e'x.040 = 12.67 k$
$\underline{OICE Elev.} (= \frac{DLW.DHW}{Z} = 822.50)$
Cap 160.83 364.81 Shaft <u>114.00</u> 9.75' <u>1111.50</u> Z74.83 1476.31
C.G.@ 5.37' From T/Cap = 15.13' From T/Fto (Ice)
W05, @ Ice = 274,83 = 10.99 k

<u>WOS</u> , @ DLW Cap 16.67 b' Z.5' <u>41.67</u> Shaft <u>36.43</u> 11.5' <u>423.53</u> 53.50 b' <u>465.20</u>	
C.G. = 8.70' from T/Cap = <u>11.40' from T/Ftg</u>	<u></u>
$Wos_{\rm II} @ DLW = 53.50 = 1.040 = 2.14 {\rm k}$	
$\frac{105}{260} @ lce Elev (= 627.50)$ $\frac{Area}{260} = \frac{100}{41.67}$ $\frac{Area}{41.67} = \frac{100}{41.67}$ $\frac{100}{26.92} = 9.75' = \frac{262.44}{304.11}$	
C.G.@ 6.98' from T/Cap = 13.52' from T/F	tg
$W05_{11}$ @ lce = 43.592' = .04 = $1.74 \text{ k}$	
Wind on Superstructure	
Beam 3.75' Haunch .17' Deck .67' Rail <u>2.67'</u> 7.25'	
Beam 3.75' Haunch .17' Deck .67' Rail Z.67'	
Beam 3.75' Haunch .17' Deck .67' Rail <u>2.67'</u> 7.25'	
Beam $3.75'$ Haunch $.17'$ Deck $.67'$ Rail $\frac{2.67'}{7.25'}$ Areq = $7.25' \times \frac{60'+40'}{2} - 507.5'$	
Beam $3.75'$ Haunch $.17'$ Deck $.67'$ Rail $\frac{7.67'}{7.25'}$ Area = $7.25' \times \frac{60'+80'}{2} = 507.5'$ $W_T = 507.5c' \times .050 Lof = 25.38 k$	

2/6

42-182 100 SHEETS

(0290)

$$W_{L} = 507.5 \text{ c}' \cdot .012 \text{ kef} = 6.09 \text{ k}.$$

$$W_{L.11} = 6.09 \cdot \sin 20^{\circ} = \underline{2.04 \text{ k}}.$$

$$W_{L.1} = 6.09 \cdot \cos 20^{\circ} = \underline{5.72 \text{ k}}.$$

$$Arm = 5.0' + 15.5' = \underline{20.5' + T/Ftg}.$$

$$Wind \text{ on Live Load}.$$

$$WLL_{L} = 70' \cdot .04 \text{ k/4} = \underline{2.40 \text{ k}}.$$

$$WLL_{L.1} = 2.40 \cdot \cos 20^{\circ} = \underline{2.63 \text{ k}}.$$

$$WLL_{L.11} = 2.40 \cdot \cos 20^{\circ} = \underline{.96 \text{ k}}.$$

$$WLL_{L.11} = 2.40 \cdot \sin 20^{\circ} = \underline{.96 \text{ k}}.$$

$$WLL_{T.11} = 7.0^{\circ} \sin 20^{\circ} = \underline{2.39 \text{ k}}.$$

$$WLL_{T.12} = 7.0^{\circ} \sin 20^{\circ} = \underline{2.39 \text{ k}}.$$

$$WLL_{T.11} = 7.0^{\circ} \sin 20^{\circ} = \underline{2.39 \text{ k}}.$$

$$WLL_{T.11} = 7.0^{\circ} \cos 20^{\circ} = \underline{6.54 \text{ k}}.$$

$$Arm = 842.00 - 816.50 + 6.0'$$

$$= \underline{31.50' \text{ t} T/Ftg}.$$

$$WoF_{II} = 46.43 \text{ k} \cdot \frac{33.47'}{4} / \cos 20^{\circ}.$$

$$= \underline{409.72'^{\circ}}.$$

$$WOF_{II} = 0.0$$

Wind on Super. (cont'd)

 $2 - Lane Arm = \frac{10.0 - 5.0'}{2} \cos 20^{\circ} = \frac{2.66'}{2}$ 

5Z4

The program's method is the more conservative.

ATTOWAL 42.182 100 SHEETS

3/6

# AASHTO T-Pier Loads

4/6

XEQ PIER-7:43:17 AM 09/27/88 DLW Wind on Sub-TITLE: WOS-H=12.6733 K structure PIERS 1 AND 3 RUN SH ARM=13.6863' @ Design Low Water ****** *** FTG ARM=17.1863 Top of Cap T/C EL 837.0000 RUN WOS-11=2.1400 K CAP HT' SH ARM=11.8037' 5.0000 RUH FTG ARM=15.3037' FTG HT' Footing Thickness RUN 3.5000 WOS @ Ice ICE B/F EL Bottom of Footing WOS-F=10.9933 K 813.0000 RUN SH ARM=15.1283' DLW Design Low Water El. FTG ARM=18.6283 RUN 819.0000 DHM Design High Water El. WOS-11=1.7433 K 826.0000 RUN SH ARM=13.5225 FTG ARM=17.0225 Shaft Thickness SH TH' 2.8333 RUN lee Force ICE=122.3986 K Shaft Length SH L' SH ARM=6.0000 12.0000 RUN FTG ARM=9.5000 CAP TH' Cap Thickness _____ RUN Vind Overturning 3.3333 HOF=46.4334 K Cap Longth CAP L' 11 M=409.7196 'K 36.0000 RUN Triangular Welge **WEDGE** Wind on ₩-T=25.3750 K RUH 11.5000 Length Superstructure F-11=23.8447 K WEDGE HT' F-+=8.6788 K 1.6667 RUN SH ARM=24.5417' FTG ARM=28.0417' SPAN' hug. span on pier RUN 70.0000 W-L=6.0900 K leck with out-art DM . 0-0 F-11=2.0829 K RUN 33.1667 F-+=5.7227 K Roedway width RH H. SH ARM=20.5000' RUN 30.0000 FTG ARM=24.0000 SKEW RUN Wind on LL 20.0000 WL-T=7.0000 K DECK EL F-11=6.5778 K 842.0000 RUN F-+=2.3941 K BM+R HT' Height of beam, rail, SH ARM=31.5000 and deck 7.2500 RUN FTG ARM=35.0000 BRG HT' bearing Height RUN .4167 WL-L=2.8000 K ICE Fc PSI F-11=0.9577 K 300.0000 RUN F-+=2.6311 K SH ARM=20.5000' Min. shaft reint. MIN A-S=23.2394 SQ* FTG ARM=24.0000 sheft DL SH DL=75.0439 K **************** cap DL CAP DL=80.4157 K SU DL EST=513.0727 K } estimates 1L LL EST=82.0000 K 1L ARM=10.6418' 1 Lane } LL eccentricity 2L ARM=4.2567'

624

E	bearing Pad Design		5/6
Design Bearings for Pier	513	L	
Design Bearings for Pier $E = F = F$ $= \frac{60'c}{260'-0} = \frac{50'-0}{260'-0} = \frac{50'-0}{260'-0}$ $= \frac{520'-0}{56} = \frac{52.06}{10} = \frac{52.06}{10} = \frac{52.06}{10} = \frac{52.06}{10} = \frac{52.06}{10} = \frac{52.06}{10} = \frac{52.06}{5.5} = 1.3$	<u>-/pat</u>	XROM "NEO" 5:45:52 PM 09/18/88 TITLE: PIERS 1 AND 3 RUN ************************************	
82.0 ^k /une · ¹ / ₂ wh · 1.3636	the identical = 27.95 kind	20.0000 RUN # COLS RUN SH TH'	
Uplift (from computer out 4.70 ^k /iane × ± × 1.3631	•	2.8333 RUN N' 11.0000 RUN Shim th 16's	
<u>Temperature</u> - One-we (40' + 12) + (6.5+10 ⁻⁶ )	1 DT * 45°F (concrete beaus)	2.0000 RUN  PAD L" 16.5000 RUN µ" 10.0000 RUN	
= .24	sı"	\$1/8"SHINS 5.0000 RUN	
Pier height = (837.0-813 Prestr. bms = 10 brg.	.0)-3.5'= 20.5'	LAM TH" .5000 RUN TH=3.1250"  Sh F=6.2264 RLL STRS=0.6382 KSI	
Desire Length = <u>1-412</u> . Use <u>55 durometer</u> neo	for prestr. beams	DL STRS=0.3155 KSI B+L STRS=0.4849 KSI STRAIN=2.8641%	
Try 10" x 16 1/2" Pads	•	F=4.6736 K/PAD =46.7359 K/PIER Fe-11=15.9846 K/PIER Fe-+=28.5575 K/PIER	
		OK  PAD L•	

(0242

T-Pier Footing

6/6

71  $|_{\tau}$ 

Calculations For <u>FOOTING DESIGN</u>

Skew = ZO° RHF

					•				
	GROUP	P (k)	M11 "L	M+ "*	GROUP	P (k)	M11 /- k	M+ ""	l
5 SQUARE 5 SQUARE 5 SQUARE	<u>IA</u> Superst. DL Pier DL 75.04.80.42	520.60 155.46		_	II A Group IA Thermal (from NEO)ed		698.60 383.63		
50 SHEETS 55 100 SHEETS 55 200 SHEETS 55	PierSh. Bury 32.272.50624	- 5.03	—	—	Group IVA @ 125%	435.03	1082.23	645.36	6
42 381 50	ZLanes LL 2,82.042	;164.00	698.6		IIB Gr IB	782 02	472.50		
	Group IA@ 100%	435.03	69 <b>8.6</b>	—	Thormal @24'		34363		
Annual 2	IB DL	671.03			Group II BC 125%	753.03	1256.13	645. <del>38</del>	7
	One Lane LLebu	42.0	872.5	_	I Group II	624.60		598.51	
	Group IB @ 100%	753.03	47z.5		T Group I @ 140%		3 <b>63.63</b>		4
3						629.40		1603.61	,
	DL Wos @ DLW Wof	671.03 — - 46.43		- Z17.80 	Gr. 3A T	&z1.10	1724.17 3 <b>63</b> .63		
	W Longit. @ 24.0' W Transy. @ 2 <b>4.04</b> '		-50.00 668.64		Group VI A@ 140%	&ZI.10	1607.40	1011.87	9
		624.60			TB Gr. IIB	739.10	1398,07		
4	A III				Group VI B @ 140%	739.10	343.63 1781.70		N
	Gr. IA .3CW+W0F+W05)	435. <i>0</i> 3 - 13.93	69 <b>3.60</b> 31 <b>6.33</b>		VIII A Gr. IA	<del>\$</del> 35 <i>0</i> 3	698.60		
	WLL Longit. @ 240 WLL Transv. @ 35.0		-Z Z.98 Z30.ZZ	63.15	Ice 122.40 = 9.5' Group VIII A @ 140%	 435.03	1162.80 1461.40	174,4 <u>7</u> 174,42	11
	Group III A @ 125%				VIII B Gr. I B	753 12	472.50		
_		821.10		520,41			1162.90		
5	<u>IIB</u> Gr. IB	753.03			Group VIII B@ 140% IX Gr. II	753.03 624.60	2035.30	598.51	
(2264)	Group II Be 125%	- 13.93 739.10			12 1 ce Group IX @ 150 %	624.60	1162. <b>90</b> 2223.91		1

Program <u>PIER</u> For <u>AASHTO</u> <u>T-Pier Loads</u> <u>407</u> bytes Page of <u>4</u>

	X	Y	Z	T	L		X	Y	र	T	L	
						54 "WEDGE"						
01+LBL "PIER"						55 PROMPT						
02 42						56 STO 10	Wedge L					
03 XROM -S-						57 XEQ 08						
04 CF 09						58 STO 09	Velge #					
05 CF 10						59 XROM "L"						
06 "T/C EL"						60 "SPAN""						
07 PROMPT						61 PROMPT						
08 STO 01	TICE					62 STO 13	opan					
09 "CAP"	40 -					63 "DW'0-0"						
10 XEQ 08						64 PROMPT						
11 STO 08	¢φ HH.					65 STO 14	Ded W					
12 "FTG"	- <b>T</b> / "					66 "RW W'"						
13 XEQ 08	Ftg Th.					67 PROMPT						
14 STO 05	1					68 STO 17	Kalay					
15 "B/F EL"						69 "SKEN"						
16 PROMPT						70 PROMPT						
17 RCL 05	F. 7					71 STO 06	Skew					
18 +	Ftg Th.					72 DECK EL						
19 STO 04	TTE D					73 PROMPT						
	T/FyEL					74 RCL 04	Deck El					
20 CLX						75 -	T/AgEl					
21 "DLW"						76 6	6					
22 PROMPT						77 +						
23 STO 02	DUJ EI.						HOLL					
24 X=0?						78 STO 33	1 6 4					
25 GTO 00						79 <b>"BH+R"</b>						
26 CF 08			I			80 XEQ 08	BRail M					
27 "DHW"					1	81 STO 16	De-TRA P					
28 PROMPT	DHW					82 "BRG"						
29 RCL 02	DLW					83 XEQ 08						
30 +						84 STO 25	Brg Ht					
31 2						85 ICE Fc PSI						
32 /	IceEl					86 FC? 08						
33 GTO <b>0</b> 3						87 PRONPT						
						88 STO 29	Ice Fc					
34+LBL 00						89 XROH -LL-						
35 "GR EL"						90 RCL 07	SA, L					
36 PROMPT	Gr El,					91 RCL 12	SI.Th					
37 SF 08						92 4.66					Tomas .	
38 SF 09						93 /				-		Y
						94 -						
39+LBL 03						95 RCL 12			1	1		
40 STO 03	Tre or Gr.			1		96 *	Sh. An					
41 XROM "L"				1		97.72					1.	05).144=.72
42 "SH TH'"				1		98 *	Min As			1	( (p	·•·/
43 PROMPT						99 -MIN -						
44 STO 12	Sh. Th					100 XROM "AS"						
45 "SH L'"						101 AVIEW						
46 PROMPT						102 4.8					15 k/	<u>d</u> = 1/4,8
47 STO 07	SL.L					103 /	BL 14. 4			1	.72	ס,די
48 - CAP TH'-				1		104 RCL 01	T/C EL					
49 PROMPT	1					105 RCL 04	T/FtgEl					
50 STO 11	Capth					106 -			1			
51 -CAP L'-				1		107 STO 00	Shaft An		1	1		
52 PRONPT			1			108 RCL 08	Cap HI.				6	242
53 STO 15	Capl					109 -					1 6	

Program <u>PIER</u> For <u>407</u> bytes Page<u>2</u> of <u>4</u>

111       4b.L       136 RCL 06       54b.         112       55 RCL 06       54b.       139 RCL 06       54b.         114       510 D26       Cb.       177 F.       177 St.D.       177 St.D.         115 RCL 08       Cb.       177 St.D.       177 St.D.       177 St.D.       177 St.D.         115 RCL 08       Cb.       177 St.D.       177 St.D.       177 St.D.       177 St.D.         116 RCL 08       Cb.       177 St.D.       177 St.D.       177 St.D.       177 St.D.         128 St. 25       Cb.       Cb.       177 St.D.       177 St.D.       177 St.D.         128 St. 25       Cb.       Tb.       178 X087       178 X087       179 X087         128 St. 25       Cb.       Tb.       178 X087       179 X087       179 X087         128 St. 25       Cb.       Tb.       178 X087       179 X087       179 X087         129 St. 15       St.S.       St.S.       179 X087       179 X087       179 X087         129 St. 15       St.S.       St.S.       St.S.       188 RCL 83       Ref.E       189 RCL 83       Ref.E       189 RCL 83       Ref.E       189 RCL 83       Ref.E       199 RCL 5       Ref.E<		X	Y	Z	T	L			X	Y	र	TT	L	
$ \begin{array}{c} 112 & \text{St} \text{U} & \text{U} \\ 113 & \text{St} \text{U} & \text{U} \\ 113 & \text{St} \text{U} & \text{U} \\ 113 & \text{St} \text{U} & \text{U} \\ 115 & \text{St} \text{U} & \text{U} \\ 115 & \text{St} \text{U} & \text{U} \\ 116 & \text{St} \text{U} & \text{U} \\ 116 & \text{CL} & \text{U} \\ 117 & \text{L} \\ 118 & \text{CL} & \text{U} \\ 118 & \text{CL} & \text{U} \\ 119 & \text{CL} & \text{U} \\ 119 & \text{CL} & \text{U} \\ 121 & \text{L} \\ 122 & \text{L} \\ 119 & \text{CL} & \text{U} \\ 121 & \text{L} \\ 122 & \text{L} \\ 121 & \text{L} \\ 122 & \text{L} \\ 122 & \text{L} \\ 122 & \text{L} \\ 123 & \text{L} \\ 123 & \text{L} \\ 124 & \text{L} \\ 124 & \text{L} \\ 124 & \text{L} \\ 125 & \text{L} \\ 125 & \text{S} \\ 125 & \text{S} \\ 125 & \text{S} \\ 125 & \text{S} \\ 125 & \text{S} \\ 125 & \text{S} \\ 125 & \text{S} \\ 125 & \text{S} \\ 126 & \text{S} \\ 127 & \text{CUP II} \\ 123 & \text{K} \\ 128 & \text{K} \\ 128 & \text{K} \\ 128 & \text{K} \\ 128 & \text{K} \\ 127 & \text{CUP II} \\ 128 & \text{K} \\ 128 & \text{K} \\ 128 & \text{K} \\ 127 & \text{CUP II} \\ 128 & \text{K} \\ 128 & \text{K} \\ 127 & \text{CUP II} \\ 128 & \text{K} \\ 128 & \text{K} \\ 127 & \text{CUP II} \\ 128 & \text{K} \\ 128 & \text{K} \\ 127 & \text{CUP II} \\ 128 & \text{K} \\ 128 & \text{K} \\ 127 & \text{CUP II} \\ 128 & \text{K} \\ 128 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 137 & \text{T} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 138 & \text{K} \\ 144 & \text{H} \\ 148 & \text{K} \\ 144 & \text{H} \\ 148 & \text{K} \\ 144 & \text{H} \\ 148 & \text{K} \\ 148 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 158 & \text{K} \\ 148 & \text{K} \\ 148 & \text{K} \\ 148 & \text{K} \\ 148 & \text{K} \\ 148 & \text{K} \\ 148 & \text{K} \\ 148 & \text{K} \\ 148 & \text{K} \\ 148 &$	111 +	SL DI						168 RCL 06	shew					
113       113       114       110       117       111         114       115       111       112       112       112       113         116       116       116       117       116       117       116       117       117       117       111       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117       117		1.00												
$ \begin{array}{c} 114 \text{ stro 26} \\ 115 \text{ RCL 16} \\ 115 \text{ RCL 16} \\ 117 \text{ c} \\ 118 \text{ RCL 16} \\ 118 \text{ RCL 16} \\ 119 \text{ c} \\ 119 \text{ c} \\ 119 \text{ c} \\ 121 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 121 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 122 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 123 \text{ c} \\ 124 \text{ c} \\ 123 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124 \text{ c} \\ 124  c$														
115 DCL 13 115 DCL 13 116 DCL 14 116 DCL 14 116 DCL 14 117 DCL 14 117 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 118 DCL 14 11														
$ \begin{array}{c} 173 \ 6 \ 173 \ 6 \ 173 \ 6 \ 173 \ 6 \ 173 \ 6 \ 173 \ 6 \ 173 \ 6 \ 173 \ 6 \ 173 \ 6 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 7 \ 175 \ 175 \ 7 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ 175 \ $		Cal							Am 61	I an LI			1	
$177 * 1.4 Los TX = -174 Los TX = -174 Los TX = -174 Los TX = -177 Z_{-} -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-} = -173 X_{-$											1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		<b>~~~~</b>							(m(the)					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Webe Bi												
$128 = 177 \cdot 21^{-} + 4 + 4 2   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 6 + 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4   2 - 4 + 4$														
$121 - 178 \times 398^{\circ}$ $122 \text{ RCL 11 } C_{q} \text{ M}_{1}$ $122 \text{ RCL 11 } C_{q} \text{ M}_{1}$ $124 \cdot 15  C_{q} \text{ M}_{1}$ $124 \cdot 15  C_{q} \text{ M}_{1}$ $127 \cdot CP \text{ Bu}_{1}$ $122 \times CP \text{ Bu}_{1}$ $122 \times CP \text{ Bu}_{1}$ $122 \times CP \text{ Bu}_{1}$ $122 \times CP \text{ Bu}_{1}$ $122 \times CP \text{ Bu}_{1}$ $122 \times CP \text{ Bu}_{1}$ $122 \times CP \text{ Bu}_{1}$ $122 \times CP \text{ Bu}_{1}$ $122 \times CP \text{ Bu}_{1}$ $122 \times CP \text{ Bu}_{1}$ $122 \times CP \text{ Bu}_{1}$ $122 \times CP \text{ Bu}_{1}$ $122 \times CP \text{ Bu}_{1}$ $122 \times CP \text{ Bu}_{1}$ $122 \times CP \text{ Bu}_{1}$ $123 \times CP \text{ Bu}_{1}$ $123 \times CP \text{ Bu}_{1}$ $123 \times CP \text{ Bu}_{1}$ $123 \times CP \text{ Bu}_{1}$ $123 \times CP \text{ Bu}_{1}$ $133 \times CP \text{ Bu}_{1}$ $133 \times CP \text{ Bu}_{1}$ $133 \times CP \text{ Bu}_{1}$ $133 \times CP \text{ Bu}_{1}$ $133 \times CP \text{ Bu}_{1}$ $133 \times CP \text{ Bu}_{1}$ $133 \times CP \text{ Bu}_{1}$ $133 \times CP \text{ Bu}_{1}$ $133 \times CP \text{ Bu}_{1}$ $133 \times CP \text{ Bu}_{1}$ $133 \times CP \text{ Bu}_{1}$ $133 \times CP \text{ Bu}_{1}$ $133 \times CP \text{ Bu}_{1}$ $134 \times CP \text{ Bu}_{1}$ $135 \times CP \text{ Bu}_{1}$ $137 \times CP \text{ Bu}_{1}$ $137 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $138 \times CP \text{ Bu}_{1}$ $144 \times P \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times CP \text{ Bu}_{1}$ $240 \times$		14							A- +02	Lanco 1				
$122 \text{ KC} 111 \qquad C_{4} T, \\ 123 \text{ K} \\ 124 \text{ L} \\ 124 \text{ L} \\ 125 \text{ K} \\ 125 \text{ K} \\ 125 \text{ K} \\ 125 \text{ K} \\ 125 \text{ K} \\ 125 \text{ K} \\ 125 \text{ K} \\ 125 \text{ K} \\ 125 \text{ K} \\ 128 \text{ K} \\ 128 \text{ K} \\ 128 \text{ K} \\ 128 \text{ K} \\ 128 \text{ K} \\ 128 \text{ K} \\ 128 \text{ K} \\ 128 \text{ K} \\ 128 \text{ K} \\ 128 \text{ K} \\ 128 \text{ K} \\ 128 \text{ K} \\ 128 \text{ K} \\ 128 \text{ K} \\ 129 \text{ AW} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 133 \text{ K} \\ 134 \text{ K} \\ 136 \text{ K} \\ 136 \text{ K} \\ 137 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 138 \text{ K} \\ 148 \text{ K} \\ 148 \text{ K} \\ 148 \text{ K} \\ 148 \text{ K} \\ 158 \text{ K} \\ 144 \text{ K} \\ 148 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 159 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\ 158 \text{ K} \\$		C. A.						178 X>0?			T			
123 * 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1								179 XEQ 13						
$124 . 15  125 * C_{Q} U_{L}  126 ST + 26  127 CMP IL + R_26  128 XE 10  128 XE 10  129 RW  138 RCL 13 Span  131 75  132 /  133 .42  133 .42  133 .42  134 -  135 RCL 14  136 FS 10  137 7  138 .42  138 .42  138 RCL 14  138 .4  139 -  139 RCL 68 C_{Q} W.  139 RCL 62 C_{Q} W.  139 RCL 68 C_{Q} W.  139 RCL 68 C_{Q} W.  139 RCL 68 C_{Q} W.  139 RCL 69 C_{Q} W.  139 RCL 69 C_{Q} W.  140 +  141 RCL 14  144 +  143 RCL 13  144 +  144 RCL 13  155 RCL 14  159 RCL 14  169 RCL 15  164 +  165 RCL 17 C_{Q} B C_{Q} W. C_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q} U_{Q$		<b>-T</b>						180 XROM "LL"						
$125 * C_{q} VL = 122 FC? 80 = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 123 PVLE = 1$		1											ł	
$126 ST + 26 \\ 127 - CQP DL - 1 28 XED 10 \\ 129 RDV \\ 129 RDV \\ 130 RCL L13 \\ 131 75 \\ 132 /  133 .42 \\ 133 .42 \\ 134 - 1 135 RCL 14 \\ 135 RCL 14 \\ 136 + 1 122 - 1 199 CL 82 \\ 199 CL 81 \\ 199 CL 81 \\ 199 CL 12 \\ 199 RCL 82 \\ 199 CL 12 \\ 199 FS7 10 \\ 199 FS7 10 \\ 199 FS7 10 \\ 199 FS7 10 \\ 199 FS7 10 \\ 199 FS7 10 \\ 144 + 1 199 FS7 10 \\ 144 + 1 199 FS7 10 \\ 144 + 1 199 FS7 10 \\ 144 + 1 199 FS7 10 \\ 144 + 1 199 FS7 10 \\ 144 + 1 199 FS7 10 \\ 144 + 1 199 FS7 10 \\ 144 + 1 199 FS7 10 \\ 144 + 1 199 FS7 10 \\ 144 + 1 199 FS7 10 \\ 144 + 1 199 FS7 10 \\ 144 + 1 199 FS7 10 \\ 144 + 1 199 FS7 10 \\ 144 + 1 199 FS7 10 \\ 144 + 1 199 FS7 10 \\ 144 + 200 RCL 11 \\ 200 RCL 11 \\ 200 RCL 10 \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 200 V \\ 20$	125 *	Cap DL										1		
$127 - CQP B U^{-} \\ 128 × E0 18 \\ 129 RPV \\ 139 RPL 13 \\ 139 RPL 13 \\ 131 75 \\ 131 75 \\ 132 / \\ 133 .42 \\ 133 .42 \\ 133 .42 \\ 134 - \\ 135 RCL 14 \\ 135 RCL 14 \\ 136 + \\ 137 7 \\ 138 / \\ 148 + \\ 147 RCL 14 \\ 148 RCL 12 \\ 148 + \\ 148 RCL 13 \\ 144 + \\ 145 RCL 13 \\ 144 + \\ 145 RCL 13 \\ 151 STO 32 \\ 152 + SU D^{-} \\ 158 + \\ 157 76 \\ 158 + \\ 158 + \\ 157 76 \\ 158 + \\ 158 + \\ 157 76 \\ 158 + \\ 158 + \\ 157 76 \\ 158 + \\ 158 + \\ 157 76 \\ 158 + \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 157 76 \\ 158 + \\ 158 RCL 17 \\ 164 218 - \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 19 \\ 218 RCL 10 \\ 218 RCL 10 \\ 218 RCL 10 \\ 218 RCL 10 \\ 228 / \\ 228 RCL 10 \\ 228 / \\ 228 RCL 10 \\ 228 / \\ 228 RCL 10 \\ 228 / \\ 228 RCL 10 \\ 228 / \\ 228 RCL 10 \\ 228 / \\ 228 RCL 10 \\ 228 / \\ 228 RCL 10 \\ 228 / \\ 228 / \\ 228 RCL 10 \\ 228 RCL 10 \\ 228 / \\ 228 RCL 10 \\ 228 / \\ 228 RCL 10 \\ 228 / \\ 228 RCL 10 \\ 228 / \\ 228 RCL 10 \\ 228 / \\ 228 / \\ 228 / \\ 228 / \\ 228 / \\ 228 / \\ 228 / \\ 228 / \\ 228 / $		1				P. DI	1. R76	183 AVIEW						
$128 \text{ VED 16} \\ 129 \text{ GeV} \\ 139 \text{ RCL 13} \\ 139 \text{ RCL 13} \\ 137 \text{ Figure Restance} \\ 132 / \\ 133 \text{ A2} \\ 133 \text{ A2} \\ 133 \text{ A2} \\ 133 \text{ A2} \\ 133 \text{ A2} \\ 133 \text{ A2} \\ 133 \text{ A2} \\ 133 \text{ A2} \\ 133 \text{ A2} \\ 133 \text{ A3} \\ 134 \text{ -} \\ 135 \text{ RCL 14} \\ 136 \text{ e} \\ 136 \text{ e} \\ 137 \text{ 7} \\ 138 \text{ A} \\ 138 \text{ A} \\ 139 \text{ A7} \\ 139 \text{ A8} \\ 139 \text{ A8} \\ 148 \text{ +} \\ 148 \text{ e} \\ 148 \text{ +} \\ 144 \text{ +} \\ 144 \text{ e} \\ 144 \text{ +} \\ 144 \text{ RCL 14} \\ 144 \text{ H} \\ 144 \text{ RCL 13} \\ 146 \text{ +} \\ 156 \text{ FCL 13} \\ 156 \text{ +} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 158 \text{ H} \\ 158 \text{ H} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 158 \text{ RCL 13} \\ 156 \text{ H} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 158 \text{ H} \\ 158 \text{ H} \\ 158 \text{ H} \\ 158 \text{ H} \\ 158 \text{ H} \\ 158 \text{ H} \\ 158 \text{ H} \\ 158 \text{ H} \\ 158 \text{ RCL 13} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 158 \text{ RCL 13} \\ 158 \text{ H} \\ 158 \text{ H} \\ 158 \text{ RCL 13} \\ 158 \text{ H} \\ 158 \text{ RCL 13} \\ 157 \text{ 26} \\ 158 \text{ RCL 13} \\ 158 \text{ H} \\ 158 \text{ RCL 13} \\ 158 \text{ H} \\ 158 \text{ RCL 13} \\ 158 \text{ H} \\ 158 \text{ RCL 13} \\ 158 \text{ H} \\ 158 \text{ RCL 13} \\ 158 \text{ RCL 13} \\ 158 \text{ RCL 14} \\ 164 \text{ RCL 16} \\ 2218 \text{ RCL 169} \\ 2218 \text{ RCL 169} \\ 2218 \text{ RCL 169} \\ 2218 \text{ RCL 169} \\ 2218 \text{ RCL 169} \\ 2218 \text{ RCL 169} \\ 2218 \text{ RCL 169} \\ 2218 \text{ RCL 169} \\ 2218 \text{ RCL 169} \\ 2218 \text{ RCL 169} \\ 2218 \text{ RCL 169} \\ 2218 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 17} \\ 164 \text{ RCL 18} \\ 165 \text{ RCL 17} \\ 164 \text{ RCL 18} \\ 165 \text{ RCL 18} \\ 165 \text{ RCL 18} \\ 165 \text{ RCL 18} \\ 165 \text{ RCL 18} \\ 165 \text{ RCL 18} \\ 165  RC$														
$129 \text{ RCL } 13 \text{ Span} \\ 131 \text{ RCL } 13 \text{ Span} \\ 132 \text{ /} \\ 132 \text{ /} \\ 132 \text{ /} \\ 133 \text{ /} \\ 134 \text{ -} \\ 134 \text{ -} \\ 134 \text{ -} \\ 135 \text{ RCL } 14 \\ 136 \text{ e} \\ 137 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 138 \text{ /} \\ 144 \text{ /} \\ 144 \text{ /} \\ 144 \text{ /} \\ 144 \text{ /} \\ 144 \text{ /} \\ 145 \text{ RCL } 13 \\ 166 \text{ +} \\ 147 \text{ RCL } 14 \\ 148 \text{ /} \\ 148 \text{ /} \\ 158 \text{ /} \\ 158 \text{ /} \\ 158 \text{ /} \\ 157 \text{ /} \\ 158 \text{ /} \\ 157 \text{ /} \\ 158 \text{ /} \\ 157 \text{ /} \\ 158 \text{ /} \\ 158 \text{ /} \\ 158 \text{ /} \\ 156 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 \text{ /} \\ 164 $									L					
131 75 $132 / 133 .42$ $133 .42$ $134 - 134 + 192$ $136 + 192 - 199 CHS + 199 CHS + 191 CL 68 + 192 - 199 FS? 18 + 192 - 199 FS? 18 + 192 - 199 FS? 18 + 192 FC? 18 + 192 FC? 18 + 192 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 197 FC? 18 + 286 FCL 68 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +$	129 ADV								proven					
132 / 2 = 188 RCL 61 req EL  133 .42 = 199 CHS rquest  134 - 199 CHS rquest  135 RCL 14 = 191 RCL 68 C4 H - 192 - 192 F5? 18 = 192 - 194 RCL 12 = 193 F5? 18 = 194 RCL 12 = 194 RCL 12 = 194 RCL 12 = 194 RCL 13 = 195 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 197 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 = 107 FC? 18 FC? 18 = 107 FC? 18 = 107 FC? 18 = 100 FC? 18 = 100 FC? 18 = 100	1 <b>30 RCL</b> 13	Span	1											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									They El.					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									L					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c} 137 \\ 138 \\ 138 \\ 138 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 139 \\ 144 \\ 141 \\ 141 \\ 141 \\ 141 \\ 141 \\ 142 \\ 160 \\ 143 \\ 144 \\ 144 \\ 145 \\ 144 \\ 144 \\ 145 \\ 165 \\ 151 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 \\ 152 $										I.				
$ \begin{array}{c} 138 \ / \\ 139 \ , 87 \\ 149 \ + \\ 147 \ 161 \ RCL \ 14 \\ 142 \ 18 \\ 144 \ + \\ 147 \ RCL \ 14 \\ 144 \ + \\ 145 \ RCL \ 13 \\ 144 \ + \\ 145 \ RCL \ 13 \\ 146 \ * \\ 147 \ RCL \ 14 \\ 148 \ 1.5 \\ 149 \ * \\ 151 \ 570 \ 32 \\ 152 \ - 5U \ D^{-} \\ 152 \ - 5U \ D^{-} \\ 153 \ RCD \ 13 \\ 155 \ . 8 \\ 156 \ + \\ 155 \ . 8 \\ 156 \ + \\ 157 \ 26 \\ 157 \ 26 \\ 158 \ + \\ 159 \ S70 \ 31 \\ 166 \ - \\ 159 \ S70 \ 31 \\ 166 \ - \\ 167 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \\ 166 \ RCL \ 17 \ 166 \ RCL \ 17 \ 166 \ RCL \ 17 \ 166 \ RCL \ 17 \ 166 \ RCL \ 17 \ 166 \ RCL \ 17 \ 166 \ RCL \ 17 \ 166 \ RCL \ 17 \ 166 \ RCL \ 17 \ 166 \ RCL \ 17 \ 166 \ RCL \ 17 \ 166 \ RCL \ 17 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166 \ 166$									upo s	H.				
$ \begin{array}{c} 139 \ .87 \\ 148 \ .148 \ .141 \ RCL \ 14 \\ 142 \ 16 \\ 143 \ / \\ 144 \ + \\ 145 \ RCL \ 13 \\ 144 \ + \\ 145 \ RCL \ 13 \\ 146 \ + \\ 146 \ .161 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ .168 \ $														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									Sh. Let				l	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										T				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
145  RCL  13 $146  *$ $146  *$ $147  RCL  14$ $148  1.5$ $149  *$ $150  +$ $150  +$ $151  STO  32$ $152$									Cap Lanth					
145  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16  for  16											SLAT			
$\frac{147}{148} \text{ RCL } 14 \\ 148 \text{ 1.5} \\ 149 \text{ *} \\ 150 \text{ +} \\ 151 \text{ STO } 32 \\ 152 \text{ -SU D}^{-} \\ 152 \text{ -SU D}^{-} \\ 153 \text{ XEQ } 04 \\ 154 \text{ RCL } 13 \\ 155 \text{ .8} \\ 155 \text{ .8} \\ 157 \text{ 26} \\ 157 \text{ 26} \\ 158 \text{ +} \\ 159 \text{ STO } 31 \\ 160 \text{ -1L L}^{-} \\ 161 \text{ XEQ } 04 \\ 154 \text{ RCL } 17 \\ 163 \text{ RCL } 17 \\ 163 \text{ RCL } 17 \\ 163 \text{ RCL } 17 \\ 163 \text{ RCL } 17 \\ 164 \text{ 2} \\ 165 \text{ /} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ 5} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166 \text{ Cl Matrix} \\ 166  Cl Ma$		1							1	· ·				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									Area	C.G.G	-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									AY					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1						Cep 14.					
152 "SU D" \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Spept	Estimolo						C.Ø. pa	1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						.644,,	1.25=.8			4				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	156 *								Wilge L					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	157 26	Lane Lood	Ý											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									U. A. A					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									1	l				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		I							LLE. A.=	AT	1	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		LL cot.								14				
(D286) 165 / 166 5 / 222 25 Z A		h							ZA					
(D286) 165 / 166 5 / 222 25 Z A		Kondung	ſ						V		!			
									ZA					
	103 /													
									.01. 4	70			LINK -	UD ME
	167 -	I	1	I	I	I			1	Y -	7	i	••••3	- v ye :

# Program PIER For_____

<u>407</u> bytes Page<u>3 of 4</u>

		X	Y	Z	T	L			X	LY_	そ	T	L	
	004 DCI 00	КШ					276 -							
	224 RCL 00	51. H. Y	SL. H.	1005	Y		278 - 277 ST(	70	Ice Arm					
		US An			T				TCS MAR					
	226 -						278 XEG							
	227 WOS-						279 XR0	M -L-						
	228 FS? 10						000-1 01	0/						
	2 <b>29</b> GTO <b>0</b> 2						280+LBL							
	2 <b>30 •</b> ++•						281 RCL	. 14	Deck W					
	231 STO 24	Am +					282 3							
	232 X<>Y	1					283 *							
	233 STO 23	WOS,					284 RCL	13	Span					
	234 GTO 07						285 RCL	14	Dachu					
							286 *		Area					
	235+LBL 02						287 50						WOF	= 20 p <del>st</del>
	236 -+11-						288 /							
		A					289 STO	27	WOFA	1.4.7				
		Armn					290 W			~~~>			1	
	238 X<>Y													
	2 <b>39</b> STO 21	WOSN					291 XEQ	10						
							292 *	0/						
	2 <b>40+LBL 0</b> 7						293 RCL		SL <b>a</b>					
:	241 XEQ 10	VOS					294 COS							
:	242 X<>Y						295 /							
:	243 XEQ 11	Am					2 <b>% *</b> 1							
	244 FS?C 10						297 XRON							
	245 GTO 14						2 <b>98</b> STO	28					["M="	tivides by 1
	246 SF 10						299 AVI	EN						
	247 ABV						300 XROM	·LL·						
	248 GTO 18						301 CF							
•							302 RCL		5 paul					
							303 RCL		Br Ht.					
	249+LBL 14						384 ×		trea					
	250 XRON "L"						305 20		"Eq				Wind	l = 50 pef
	251 FS? 08													OU Pat
	252 GTO 06						306 /	<b>T</b> .						
	253 • ICE•	1					307 W-							
	254 FS?C 09						308 XEQ		WITH					
:	255 GTO <b>0</b> 5						309 STO		1W-1 F					
:	256 STO 18	Arma					310 X()							
	257 X<>Y						311 STO		W-T,I					
	258 STO 17	VOS.					312 RCL	88	SION W					
	259 RCL 23						313 RCL	16	B_ 1H.					
	260 STO 19	NOS -					314 2							
	261 RCL 24						315 /		Im C.B,					
	262 STO 20	Armt					316 +							
	263 SF 09	l .			1		317 RCL	25	Bry Ht.					
	263 SP 89 264 AVIEN						318 +		NTM					
	265 GTO 18						319 STO	36		1				
	203 610 10						319 STO							
	A / / I B: AF						320 AE							
	266+LBL 85	- 01												
		Ice f'			1		322 RCL							
	268 .144	44/1000					323 RCL	10						
	269 *	L			1		324 *	_	Area					
	270 RCL 12	Kh. Th.			1		325 .01	2					Wink	·L = 12 pef
	271 *						326 *							
	272 STO 29	Ice face, 1			1		327 ADV				ļ			
	273 XEQ 10	<u>ن</u> ا			1		328 ⁼₩-				İ			
	274 RCL 03	lee El,			1		329 XEG	89					67	<b>(1</b> )
	275 RCL 94	TIFtg	1	1	1	1			W-L+	ł				ノ
	ZIJ KUL OT	11/PTa	1				330 STO	- <b>JO</b>		1				-

Program <u>PIER</u> For _____

 $\underline{-407}$  bytes Page <u>4</u> of <u>4</u>

	X	Y	Z	T	L		X	Y	र	T	LT	
						380+LBL 09	force					
331 X<>Y						381 XEQ 10	tree					
332 STO 37	W-L					382 RCL 06	Shew					
	54-44,					383 X<>Y	force	shew				
334 XEQ 11						384 P-R	f	f⊥				
335 CF 07						385 FS? 07		_				
336 RCL 13 337 .1	<b>Span</b>					386 X<>Y						
338 *					WL = 100 "/H.	387 • F-11•						
339 XROM "L"						388 XEQ 10						
340 "WL-T"						389 X<>Y	∫ €_	ť"				
341 XEQ 09						390 • F-+•						
	WLT					391+LBL 10						
343 X<>Y						392 •+=•						
344 STO 39	VLT.					393 ARCL X						
345 RCL 33						394 "H K"						
	hrm					395 AVIEN						
347 SF 07						396 END	1					
	spen						1					
349 25							1					
350 ∕ 351 A <b>dv</b>					WL-L= 40 p/H.		1					
352 •WL-L•												
353 XEQ 09							}					
354 STO 42	wl-L+											
355 X<>Y	p											
356 STO 41	VL·L.											
357 RCL 00	si, H.										1	
358 XEQ 11												
359 XROH "L+"												
360 RTN												
7/1/1 81 - 00												
361+LBL 08												
362 "⊢ HT'" 363 prompt												
363 PRONE 1												
504 KIN												
365+LBL <b>04</b>							1					
366 "HL EST"												
367 GTO 10												
368+LBL 11	L .						1					
	Sh. Mm											
370 XEQ 13	EL.TI											
371 RCL 05 372 +	Ftg.Th.	1		· •			1					
373 • FTG•	Ttg Arm	I										
	1.2 mm	1					1					
374+LBL 13							1					
375 "+ ARM="												
376 ARCL X							1					
377 XEQ -FT-												
378 AVIEN							1					
(0246) 379 RTN												
$\bigcirc$	1											
			ļ									
	'	'	'	1	I.		1	1				

# FOOTING ANALYSIS PROGRAMS

xeq FTG for iterative footing analysis (SIZE 4N+17 for N groups)								
<b><u>SOFTKEYS</u></b> (USER mode ON)								
C Correct a	C Correct a load group input incorrectly							
F New footi	ng configuration							
USER FLAGS								
Flag 00 clea set	r Full output, including MAX ₁₁ a Skips the MAX for each side	and MAX _H						
INPUT SUMMARY								
<u>Prompt</u> #GRPS	<u>Input</u> Number of load groups to be input and stored	<u>Default</u> One						
P-DL	Vertical force due to dead load. Bypass to input Group 1 directly and skip the load breakdown.	No default						
M-11	Moment parallel to the long axis of the pier	Zero						
M- <del> -</del>	Moment perpendicular to the long axis of the pier	Zero						
P-LL	Vertical force due to live load	No default						
P-2, etc.	Vertical force (parallel moment, perpendicular moment) in Group 2	No default						
DIV 1.25,1.4	The load group divisor (from column 14 of AASHTO Table 3.22.1A)	1.0						
LIMIT	Allowable pile load or bearing pressure above which the resulting pressure calculated should be dis- played. If bypassed (or zero is input), all results are displayed. If a value greater than zero is inp only displays MAX's greater than Li and MIN values less than zero.							
# PILES	Number of piles. Bypass for a spread footing.	Zero						

<u>Prompt</u> S-11 (piles)		<u>Default</u> No default					
S-⊢ (piles)	Section modulus of a pile footing perpendicular to the long axis of the pier, in feet	No default					
L' (11) (sprea	ad) Length of the footing in the direction parallel to the long axis of the pier, in feet	No default					
W'(F) (sprea	ad) Width of the footing in the direction perpendicular to the long axis of the pier	No default					
FTG DL, K	Footing deadload in kips. Should include the weight of earth on the footing and the effect of buoyancy on the footing, if any.	No default					
OUTPUT SUMMARY	(Items in brackets { } are displayed onl; 00 is clear)	y if flag					
1 MAX	The maximum pressure or pile load due to in kips per square foot or kips respection						
{(11)MAX}	The average maximum pressure on the long of the footing	side					
{ ( <b> </b> ) MAX }	The average maximum pressure on the short the footing	t side of					
1 MIN	The minimum pressure or pile load due to If less than zero, appends UPL to denote						
GR _ GOV:	Displays the group producing the largest	MAX					
DL LL ΟΤ Σ	The dead load, live load, and overturning components and total load of the governing in <u>tons</u> per square foot or tons. This i full unDIVided load.	nents and total load of the governing group, ns per square foot or tons. This is the					

# PROGRAM FLAGS

Flag 05	clear set	LIMIT of zero (all groups displayed) Only display MAX's greater than LIMIT and MIN's less than zero
Flag 06	clear set	Inputting DL and LL DL and LL have been input

Flag 08	clear set	FTG SHFTG
Flag 09	clear set	Spread footing Pile footing
Flag 10	clear set	Have DL and LLdo breakdown No DL or LLno breakdown

# STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> LIMIT
01	# PILES or area
02	s _⊢
03	s ₁₁
04	FTG DL, K
05	Counter
06	Governing MAX
07	Governing Group
08 09	(11) MAX (⊢) MAX
10	Governing MAX, unDIVided
11 12 13	DL P DL M-11 DL M-+
14 15 16	LL P LL M-11 LL M-+
17 18 19 20	Group 1 P Group 1 M-11 Group 1 M-⊢ Group 1 L.F. (1.0)
21 22 23 24	Group 2 P Group 2 M-11 Group 2 M-+ Group 2 L.F.
25	Group 3 P etc.

#### FOOTING ANALYSIS PROGRAM

Program FTG is a general-purpose pier and column footing analysis program, an extended version of SHFTG. It analyzes both spread footings on rock and pile footings. It accepts any number of load groups, then prompts for and analyzes different footing configurations until a satisfactory solution is found. This is the biggest difference between FTG and SHFTG, which accepts one footing configuration and then analyzes different load groups on that footing.

FTG first asks for the number of load groups to be input, in order to check the SIZE (storage register) requirement. It then begins prompting for load groups. A load group consists of a vertical load, moments in two planes, and a "load factor" by which these are divided. See the example. The vertical load should not include the weight of the footing itself (FTG DL), since this is input with each trial footing's properties. This way, if the footing size changes from the original estimate the results are still correct.

#### LOAD GROUPS

FTG assumes that Load Group 1 consists of only dead load and live load. The vertical load and moments due to each of these are input separately and combined by the program to comprise its Group 1; it then prompts for Group 2 and so on. Group 1 is thus not input directly. The DL and LL are also stored separately so that a breakdown may be made of the governing load group into DL, LL, and the remainder, OT (overturning, i.e. wind and other lateral forces). After the program has analyzed a given footing configuration for all the load groups, it displays the governing group and calculates this breakdown for that group; these loads have not been divided by the DIV factor input. This is made clear in the example. If this breakdown is not wanted, bypass the dead load prompt (P-DL). The program will then prompt for Group 1 in its entirety, then Group 2 and so on as before. All this is also made more clear Note that the program assumes the in the examples. governing group includes the Live Load (axial and moments) input at the beginning of the run. If this is not true, the load breakdown at the end will be incorrect.

If there is only one load group to be analyzed, the P-DL prompt may be bypassed and the group entered directly, or (if it consists of just DL and LL) the component loads can be input, and the program will give the breakdown at the end.

#### CORRECTING INPUT ERRORS

If a mistake is made when inputting load groups, press softkey C to correct it. This must be done before finishing inputting the next group. If C is pressed during the moment or DIV input, the program returns to the beginning prompt (P, K) for that load group; if before or during input of the vertical load, Softkey C it returns to the previous group's prompt. may be pressed more than once to get back to a previous load group. However, any load information input after that group will have to be re-input. Softkey C will not return to the P-DL or P-LL prompt from the P-2 prompt sequence; it will prompt for P-1, etc., not correcting the DL or LL values input.

If a mistake is made inputting footing properties, press softkey F. Softkey F can be used at any time; it will interrupt an analysis and jump immediately to the footing input section.

#### "LIMIT:" LONG and SHORT OUTPUT

FTG has two basic modes of operation, controlled by the user's input to the LIMIT prompt. If a "limit" of zero is input (the default value), the program calculates and displays the results of all the load groups upon the given footing, as explained in the next several paragraphs. If, on the other hand, the designer wants to check out several different footing configurations quickly, this full output becomes rather time-consuming. If, for instance, the maximum allowable pile load is 80 kips, input a LIMIT of, say, 75. Then the program will only display the load groups which cause a maximum pile load over 75 kips or a minimum pile load of less than zero (uplift). Thus, a number of footing trials can be run quickly. This also works, of course, for spread footings; the LIMIT is then in kips per square foot.

Assuming the LIMIT prompt is bypassed (or zero input), FTG calculates and displays the maximum and minimum corner or pile load for each load group; if the minimum is less than zero (i.e. an uplift exists) this is noted by UPL displayed after the pressure value. The program assumes that the footing is effective in uplift. That is, its calculations are based on the full footing properties whether or not uplift exists. In reality, of course, if a spread footing undergoes uplift, a neutral axis shift occurs and the maximum corner pressure increases. FTG does not calculate this increase.

If flag 00 is clear, the program also displays the average maximum load along each side as defined by



AASHTO 4.4.6.1 and ACI 15.4.1 for reinforcing design. See the examples. As mentioned, it then displays the governing load group, and, if the dead load and live load forces and moments were input separately, the breakdown of forces for that group.

#### FLAG 00

If flag 00 is set, display of the side maximums (11)MAX and  $(\vdash)MAX$  is skipped. This is the only function of flag 00; most of the output control is handled by the LIMIT feature. FTG is thus one of the few programs in this package whose normal mode of operation will probably be with flag 00 set.

#### SPREAD and PILE FOOTINGS

Spread footings and pile footings are handled differently in the input sequence. For a pile footing, the designer must calculate the section (moment) properties in each direction, and then input the number of piles (# PILES) and these properties. For a footing, the # PILES prompt is bypassed spread (press R/S without keying anything in). The program then prompts for the footing length and width, and figures the section properties itself. For either of these, the designer needs to calculate and input the FTG DL, the selfweight of the footing being analyzed (unless it was included in all the load groups--this takes a lot of confidence). An extra calculator is handy for this, as well as pile property calculations. However, these calculations can all be done on the HP-41 after the prompt if a few extra numbers on the printout aren't objectionable. For instance, for a 9'x12' footing 3'-0 thick, after the FTG DL prompt, key in:

> 12 Enter/ 9 * 3 * .15 * R/S

If not using a printer, of course, this is no problem at all.

The calculations for pile group properties  $(S-11 \text{ and } S-\vdash)$  can also be done during a run, as no information is being carried in the stack. However, it is often more convenient to use another calculator or work out a few trials beforehand. Although this sounds awkward, in practice it works quite well.

Calculations For <u>FOOTING DESIGN</u>

Skew = 20° RHF

						<b>.</b>			
	GROUP	P(k)	M11 "L	M+ '.k	GROUP	P (k)	M11 '*k	M+ ""	
	<u>IA</u> Superst. DL Pier DL 75.04.80.42	520.60 155.46		_	IVI A Group IA Thermal (From NEO)@24	435.03 • —	69 <i>8.60</i> 383.63		
	Pier Sh. Bung 32.27 - 25 - 0624	- 5.03	_		Group IVA @ 125%	435.03	1082.23	645.36	6
	ZLanes LL 2×82.042	:164.00	698.6		IV B		477 60		
	Group IA@ 100%	435.03	698.6		Gr IB Thermal @24'		472.50 34363		
2	<u>IB</u> DL	671.03			Group IN B@ 125%	753.03	1256.13	645.38	7
	One Lane LLebu	-	1		I				
	Group IB @ 10070	753.03	<del>4</del> 72.5	—	Group II T	624.60	1061.11 383.63		
3	IL				Group I @ 140%	624.60	1444.74	1783.89	4
2	DL Wos @ DLW Wof	671.03  - 46.43		 Z17.80	Gr. JA T	&z1.10	1724.17 363.63		1
	W Longit. @ 24.0' W Transv. @ 29.04'		-50.00 668.64		Group VI AC 140%	&z1.10	1607.60	1011.87	9
			_		ΣIB Gr. IIB	739.10	139807	326.49 6 <b>45.3</b> 8	
4					Group VI B @ 140%	739.10			
	Gr. IA .3(W·W0F·W05)	435. <i>0</i> 3 - 13.93	69 <b>4.60</b> 31 <b>4.3</b> 3		VIII A Gr. IA	835 <i>.</i> 03	698.60		
	WLL Longit. @ 24.0' WLL Transv. @ 35.0'		-Z Z.98 Z30.ZZ	63.15 43.79	Ice 122.40= 9.5' Group VIII A@ 140%	435.03	1162.80 1861.40		- 1
	Group III A @ 125%		1224.17		VIII B Gr. I B	753.03	472.50		
5	<u>II</u> B Gr. IB	753.03 - 13.93	472.50	326.49	Group VIII B@ 140% IX Gr. II ICe	753.03 624.60	1162.40 2035.30		-   17
	Group II Be 125%					6.24.60	2223.91		

IT L

 $V_4$ 

Design a footing for the T-Pier loads given. (See documentation for program PIER.) Check Groups IA (1)(Z)П ΠA (3) A IV (4) and ΠB (5)Use HP 12 53 piling@ 7.0 ksi: 15.50" . 7 = 104.5, say 110 kips Group I → <u>\$35 k</u> = 7.6 → 8 piles Estimate 12 piles: try minimum footing configuration. Estimete 3.0' thick. <u>Neglect</u> <u>earth</u> on ftg. Consider under full buoyancy. 12'-0 1.5' 35pq. @ 3'-0 1.51 1.5 2 . pa. @3:0 1.51 I Ι Ι I 9-.0 Ι I I Ι Ι I Ι I Footing DL = 12'+9'+3'+ (.15-.0624) = 28.34 k  $S_{\parallel} = (6 \times 1.5^2 + 6 \times 4.5^2)/4.5' = 30.0'$  $S_{\perp} = 8 \times 3' = 24.0'$ DZ9

XEQ "FTG" # GRPS 5.0000 RUN 8:22:40 AM 03/21/89 TITLE: T-PIER 20d SKEW RUN ********* **** P-DL K 671.0300 RUN M-11 'K RUN 0.0000 M-⊢ 'K RUN 0.0000 P-LL K RUN 164.0000 M-11 'K 698.6000 RUN M-⊢ 'K RUN P-2 K 624.6000 RUN M-11 'K 1,061.1100 RUN M-+ 'K 598.5100 RUN DIV 1.25,1.4 1.2500 RUN P-3 K 821.1000 RUN M-11 'K RUN 1,224.1700 M-+ 'K 326.4900 RUN DIV 1.25,1.4 1.2500 RUN P-4 K 821.1000 RUN M-11 'K RUN 1,607.8000 M-F 'K 1,011.8700 RUN DIV 1.25,1.4 RUN 1.4000 P-5 K RUN 739.1000 M-11 'K 1,781.7000 RUN M-H K RUN 1,011.8700 DIV 1.25,1.4 1.4000 RUN ****** LIMIT

# 42 BH SUBSTITUTE SUBSTITUTE SUBSTITUTE

^z/4

Run oreliminary trial with	LIMIT
Ron preliminary trial with LIMIT of 100 k (slightly	0.0000 RUN
below allowable of 110 kips) to	# PILES 12.0000 RUN
check for overload, uplift	S-11 35.0000 RUN
	S-+
******	32 <b>.000</b> 0 RUN
LIMIT 100.0000 RUN	FTG DL, K 45.5300 RUN
# PILES	Kon
12.0000 RUN	1 MAX=93.3400 K
S-11 30.0000 RUN	(11) MAX=93.3400 K (⊨) MAX=73.3800 K
S-+	1 MIN=53.4200 K
24.0000 RUN FTG DL, K	2 MAX=83.8920 K
28.3800 RUN	(11) MAX=68.9293 K
	(F) MAX=59.6381 K
2 MIN=-5.8933 K: UPL 3 MAX=100.1595 K	2 MIN=5.4586 K
4 MAX=118.9604 K	3 MAX=93.9186 K
4 MIN=-17.8318 K: UPL	(11) MAX=85.7564 K
5 MAX=118.2199 K 5 MIN=-26.8533 K: UPL	(H) MAX=65.9376 K 3 MIN=21.6321 K
GR 4 GOV: *****	4 MAX=106.9837 K (11) MAX=84.3974 K
	(F) MAX=74.1715 K
Both maximum downward	4 MIN=-3.8135 K: UPL
load and uplift are too high -	5 MAX=105.6518 K
increase footing size and re-run. Since these were	(11) MAX=83.0654 K
close, expect next trial to	(⊢) MAX=69.2906 K 5 MIN=-12.2434 K: UPL
work => set LIMIT = 0.	
	GR 4 GOV: DL=29.8567 T
<i>x</i> →− [] →	LL=16.8133 T
<u>+</u>  I I I I	OT=28.2186 T
н н н н н н н н н н н н н н н н н н н	Σ=74.8886 Τ
	***************
	_
	Check Group 4:
11-61 3 spa. @ 3-6=10-6 11-6 13-6	$DL^{\frac{1}{2}} = \frac{671.03 + 45.53}{17} = \frac{59.71  \text{k}}{17}$
Greater moment arm => make 3:6 thick	$LL: \frac{164.00}{17} + \frac{698.6^{\prime\prime L}}{35.0^{\prime}} = \frac{33.63 \text{ k}}{35.0^{\prime}}$
	12 03.0
Ftg DL = 13.5' 11' 3.5' (.150624) = 45.53k	$\Sigma: \frac{421.1+45.53}{17} + \frac{1607.40''}{35.0'} + \frac{1011.47''}{32.0'}$
S ₁₁ = 6 × (1.75 ² + 5.25 ² )/5.25 ² = 35.0 ²	= <u>149.78k</u> , ÷ 1.40 = <u>106.98 k</u>
$5_{\perp} = 4 \cdot (4')^2 / 4' = 32.0'$	0T = difference = 149.76-59.71-33.63
	= <u>56.44 k</u>

42 381 10 SHEELS SAUAR 42 389 200 SHEELS S SQUARE 42 389 200 SHEELS S SQUARE 3/4

(2297)

DZ99

Check the same footing as a spread footing. L = 13.5' : W = 11.0'LIMIT Set flag 00 SF 00 to eliminate 0.0000 RUN **#** PILES "side loads RUN L'(11) 13.5000 RUN M.(F) 11.0000 RUN FTG DL, K 45.5300 RUN 1 MAX=8.0205 KSF 1 MIN=3.8389 KSF 2 MAX=7.9095 KSF 2 MIN=-0.6892 KSF: UPL 3 MAX=8.5591 KSF 3 MIN=0.7783 KSF 4 MAX=10.2604 KSF 4 MIN=-1.9234 KSF: UPL 5 MAX=10.2377 KSF 5 MIN=-2.6896 KSF: UPL GR 4 GOV: DL=2.4127 TSF LL=1.5976 TSF OT=3.1720 TSF Σ=7.1823 TSF ****** LIMIT Again check group 4: Area = 13,5'x 11' = 148,50 p' 5 - 13.5 - 11/6 = 334.125 A3  $S_{\mu} = ||^{2} |3.5/6 = 272.25 \text{ ft}^{3}$ 

E: 421.10+45.53 = 5.836 Lof  $\frac{1607.80'^{4}}{334.125} = 4.612$ 1011.87" = 3.717 Max Z = 14.365 654 ÷<u>1.40</u> 10.26 ksf  $Min \Sigma = 5.436 - (4.4)(2.3.7)/1.40$ = -Z.69 ksf/1.40 = -1.92 kof (UPLIFT) (Note that for a spread footing, a corner in uplift renders the above analysis invalid. Most designers would accept only a small amount of uplift. This footing should thus be upsized) Had flag 00 been clear, the average side loads would be: (11) Max - (5.436+4.412)/1.40 = 7,61 ksf (+) Max = (5,436+3.717)/1.40 = 6.82 kot These are used for the methods described in ACI 15.4.1 and ALSHTO 4.4.6.1 if these are used by the designer.

4/4

#### FOOTING ANALYSIS PROGRAMS

xeq SHFTG for simple footing analysis (SIZE 004)

#### SOFTKEYS

SHFTG uses no softkeys. However, the softkeys C and F are active in FTG when SHFTG is in use, and should be avoided.

#### USER FLAGS

Flag 00	clear	Full output
	set	Title block not printed; no other effect

#### INPUT SUMMARY

<u>Prompt</u> # PILES	<u>Input</u> Number of piles. Bypass for a spread footing.	<u>Default</u> Zero
S-11 (piles)	Section modulus of a pile footing parallel to the long axis of the pier, in feet	No default
S- <del> </del> (piles)	Section modulus of a pile footing perpendicular to the long axis of the pier, in feet	No default
L' (11) (spread)	Length of the footing in the direction parallel to the long axis of the pier, in feet	No default
W'(⊢) (spread)	Width of the footing in the direction perpendicular to the long axis of the pier	No default
P	Vertical force in kips	No default
M-11	Moment parallel to the long axis of the pier	Zero
M- <b>H</b>	Moment perpendicular to the long axis of the pier	M-11

# OUTPUT SUMMARY

MAX	The maximum pressure or pile load, in kips per square foot or kips respectively
MIN	The minimum pressure or pile load; if less than zero, appends UPL to denote uplift.

# PROGRAM FLAGS

Flag 08	clear set	FTG SHFTG
Flag 09	clear set	Spread footing Pile footing

### STORAGE REGISTER USE

<u>Register</u> 00	<u>Value</u> not used
01	# PILES or area
02	s _F
03	s ₁₁

# COMPARISON BETWEEN PROGRAMS

<u>Feature</u> FTG DL	<u>SHFTG</u> Must be included in loads	<u>FTG</u> Input separately
Divisor	Must be included in loads	Input separately
Loads	Not stored	Stored
Best use	Checking/analysis	Design
SIZE	004	4N + 17



#### SHORT FOOTING ANALYSIS PROGRAM

Program SHFTG is a simple pier and column footing analysis program, an much-simplified version of FTG. It analyzes both spread footings on rock and pile footings. It prompts for a footing configuration, then analyzes any number of load groups; these load groups, however, are not stored and must be re-input for each footing trial. This is the main difference between SHFTG and FTG, which accepts all the load groups up front, and then analyzes different footing configurations on all the groups input. SHFTG is thus best used for checking a given footing configuration, while program FTG is better suited for iterating to the best configuration. See the preceding page for a comparison.

#### INPUT

SHFTG begins by asking for the footing configuration; the input sequence is the same as for program FTG. It then begins prompting for load groups. A load group consists of a vertical load and moments in two planes. See the example. The vertical load <u>must</u> include the weight of the footing; SHFTG does not allow input of the footing deadload separately as FTG does. It must also have been divided by the "load factor" (1.0, 1.25, 1.40, or 1.50) as SHFTG does not do this itself. The moments should both be positive. If one is negative, pressures or pile loads will be at nonextreme corners of the footing; if both are negative, MAX and MIN will be switched.

#### MAXIMUMS and MINIMUMS

SHFTG calculates and displays the maximum and minimum corner or pile load for each load group; if the minimum is less than zero (i.e. an uplift exists) this is noted by UPL displayed after the pressure value. The program assumes that the footing is effective in uplift. That is, its calculations are based on the full footing properties whether or not uplift exists. In reality, of course, if a spread footing undergoes uplift, a neutral axis shift occurs and the maximum corner pressure increases. SHFTG does not calculate this increase.

#### FOOTING TYPES

Spread footings and pile footings are input differently. For a pile footing, the designer must calculate the section (moment) properties in each direction, and then input the number of piles and these properties; an extra calculator is handy for this. The calculations can be done on the HP-41 during the run; no data is being carried in the stack. See the program listing and stack analysis for clarification.

For a spread footing, on the other hand, the # PILES prompt is bypassed (press R/S without keying anything in). The program then prompts for the footing length and width, and figures the section properties itself.

#### FOOTING SHAPE

A spread footing must be rectangular in order that its section properties will be calculated correctly by the program. A pile footing, on the other hand, has all its properties input by the user. Thus, if a nonrectangular spread footing is to be analyzed, its properties must be calculated by hand and input as for a pile footing. All output will be in Kips and Tons, instead of KSF and TSF as for a normal spread footing. Program FTG For Footing Analysis 724 bytes Page of 4

		V	7				V	र			
	X	¥	2	<u>     </u>	56 4	X	<b>1</b>	5	<u>├</u>		
01+LBL FTG					56 4 57 /		1	l			
02 CF 08		1		1	57 / 50 INT		1				
03 E	1	1		1	58 INT		1				
04 "# GRPS"				1	59 4 68 *	N		-		I	
05 PROMPT	# Group	<b>,</b> ,				New rount	17-5	Fre			
85 FK011 1 86 4		1			61 + 62 INT	New Cant	F20 1				
97 +					62 INT	·····	1.16				
<b>0</b> 8 4				1			۱ ۱				
A9 +	20,74 de	1			63+LBL 07	Conter	1 1			I	
10 ENTER†		Reg.		1	64 t		۱.			I	
11 XROM "S"	Reg			1	65 STO 05		1	ł	j l	l	
12 E3	1000				66 GTO 06		۱,	l			
13 /							۱.		1		
14 11					67+LBL 01		۱,				
15 +	11.00 R				68 SF 10		۱,		1		
	counter		1		69 6 79 ST+ 95	Counter	1				
17 SF 06				1	70 ST+ 05		۱ ۱				
18 "DL"				1	7141 01 04		۱ ۱			1	
19 ASTO X		l			71+LBL 06		۱ ۱				
20 CF 22					72 CF 06	Par.t.	۱ ۱				
21 XEQ 12					73 RCL 05 74 4	conter	۱,		1		
22 XRON "L"			1		74 4 75 /		۱.				
23 •LL•		1			76 3		۱,				
24 ASTO X		1				Groop #	۱.			1	
25 XEQ 12			1		78 XROM -L-	1	۱ I				
26 CF 10		1		1	ro Akun L		۱ I	l	1		
27 RCL 14	μP		1		79+LBL 12	Group#	۱.			1	
	DLP		1	1	80 •P		1			l	
29 +		1			81 XROM -AX-					Į	
<b>30</b> STO 17	G.I P			1	82 *+ K*					ł	
31 RCL 15	U n.				83 PROMPT	P				l	
	OL MM				84 FC? 22					l	
33 +					85 GTO 01					l	
34 STO 18	GrJ M				86 STO IND 05					l	
	LLM				87 ISG <b>8</b> 5		l			l	
	DLMF				88 CLX						
37 +					89 XEQ 05	MI			1	l	
38 STO 19	GrIM _P	ľ			90 STO IND 05				1	1	
39 SIGN	1		1		91 ISG <b>8</b> 5						
	Gr I Div	ነ	1		92 CLX						
41 3 42 STA 85					93 PRONPT	MF				1	
42 ST+ 05			1		94 STO IND 05						
43 ISG 05					95 ISG 05						
44 GTO 06 45 CTO 5			1		96 FS? 86					1	
45 GTO F					97 RTN	1					
47 AL DI - 0					98 SIGN	1					
46+LBL C 47 RCL 05	counter				99 -DIV 1.25,1.4-	Divier					
47 KUL 85 48 FRC	. 00 Res	1		1	100 PROMPT				J		
49 LASTX	counter			1	101 STO IND 05 102 ISG 05						
50 17.5					102 ISG 05						
51 -				1	103 610 80						
52 LASTX	17.5							1			
52 LISTA 53 X<>Y		17.5	Fre	1	104+LBL F 105 XROM "L*"			ł			2
54 X(0?	1			1	105 XKUH -L+-					(030	り
55 GTO 07	1		1		106 CF 05						/
					108 STO 96	M.					
	1	I.	1	I	1 100 310 00	Mex	1	1	1	1	

Program <u>FTG</u> For	Footing Analys	isbytes	Page_2 of _4
------------------------	----------------	---------	--------------

	X	$\overline{\mathbf{v}}$	Z	ΙT			X		र	T	
1AA _1 ****	+	<u> </u>	E	+' -	+	 16441 01 - 07	+	¥			
109 -LINIT-					1	164+LBL 23					
110 PROMPT				I	1	165 FC? 05					
111 STO 00	Linit					166 ADY					
112 X>0?					1						
113 SF 05						167+LBL 02	F				
						168 RCL IND 05	P				
114+LBL 08						169 RCL 04	Ftg DL				
115 CF 09						170 +	ZP				
115 CF 85						171 RCL 01	# Piles	Ar De Da			
	1					171 KCL 01 172 /	THES	UL M CA			
117 *# PILES*							PIA				
118 PROMPT					1	173 STO 08	PIA				
119 X=0?						174 STO 09	117				
120 GTO 09						175 ISG 05					
121 STO 01	* files				1	176 RCL IND 05	M.,				
122 SF 09						177 RCL 03	5.,			1	
123 -5-11-						178 /	M/S.				
124 PROMPT						179 ST+ 08	(Mar 11)				
	511					180 ISG 05	Fund				
125 STO 03	311						Mr				
126 "S-+"						181 RCL IND 05		M	M/5,	P/A	
127 PROMPT				1		182 RCL 02	St MK			·/ M	
128 STO 02	Sr					183 /	M/St		P/A		
129 GTO 02						184 ST+ 09	( Max +)		<b>.</b>		
					1	185 +	2 M/S	P/A	P/A		
130+LBL 09						186 ST- Z			Min		
131 °L'(11)°				1		187 +	Mex	Min			
	10.00			1		188 RCL 05	counter	ł			
132 PROMPT	Length						4	counter	Max	Min	
133 ENTERT	1, 1	,	Ι,			189 4					
134 ENTERT	L	L			1	198 /					
135 W'(F)-				1	1	191 4					
136 PROMPT	$\mathbb{V}$	L	L	1	1	192 -					
137 *	Area			1	1	193 CLA	Group#	Max	Min		
138 STO 01						194 XROM "AX"	"Orsup"				
139 LASTX	W				1	195 RDN	Max	Min			
140 <b>*</b>	N2L					196 ISG 05					
	<b>111</b>				1	197 RCL IND 05	Divisor	Max	min		
141 X<>Y	Area				1						
142 RCL 01					1	198 ST/ 08					
143 *	WLZ				1	199 ST/ 89					
144 6				1	1	200 ST/ Z			Min		
145 🗸	~L76			1	1	201 /	Max	Min			
146 STO 83	511				ł	202 RCL 00	Limit				
147 X<>Y	WL				1	203 X>Y?					x>y? Zato 10
148 LASTX	6					204 FC? 05					and Zymit
149 /				1		205 X(0?					F5:05 )
	SF			1		206 GTO 10					
1 <b>50</b> STO 02	1			1			·/	Max	Min		
					1	207 ASTO X	Group		' " <b>`</b>		
151+LBL 02					1	298 X<>Y	Max	***			
152 FS? 08					1	209 XEQ 14					
153 RTN						218 RCL 06	MAX	Max	"Gr <b>*</b> "	Min	MAX is larges
154 "FTG DL, K"					1	211 X>Y?					of Max's
155 PROMPT				1		212 GTO 82					
156 STO 04	FtgDL			1		213 RDN	Max	"G.""	Min		
157 XROM "L"	Ju					214 STO 66			1 m		Max is new MAX
											De Martel
158 RCL 05	000					215 ST* L	``Gr <b>#</b> ″	min			Div. + (Max/Div)
159 FRC	.00 Reg			1		216 RDN		1 · · · <b>·</b>	i	Max	in LastX
169 17						217 STO 07	Asto d				
(0304) 161 +						218 LASTX	Max (un	(DIV:1.1)	min		
162 STO 05	Canter	ł		1		219 STO 10			h		
163 GTO 02				1	1	228 Rt		1	Gr#	Min	
	•	,	1	1	1			•	,	'	1

Program <u>FTG</u>	Fo	or	Fo	otiv	ng Analysis			_byt	es	Page	<u>3 of 4</u>
	X	VI	7	T			X	V	7	T	L
230 XEQ 14 231+LBL 02 232 CLA 233 ARCL Z 234+LBL 10 235 Rt	Max 11 Max 1 Min		<u>ک</u> ج	Min	L X < 0 ⁷ 7	274 RCL 01 275 / 276 RCL 15 277 RCL 03 278 / 279 + 280 RCL 16 281 RCL 02 282 / 283 + 284 ST- 10 285 *LL* 286 XEQ 13 287 RCL 10 288 RND 289 *0T* 290 XEQ 13 291 XROM *L*	X Areq LL T/A LL MII SII M/S ELL LL MIF SF ELL ELL Remain OT	Max r	T P/A Max ELL Max	Max Max	L Remoinder = Overturning
236 X>0? 237 FC? 05 238 XEQ 03 239+LBL 11 240 ISG 05 241 GTO 23 242 RCL 05 243 FRC 244 17 245 + 246 STO 05 247 XROH "LL" 248 RCL 10	counter counter un DIV ide	ed Max			X = 0? Zxoq 03 FC? 05) All groups done - Ro broakdown of group Group	295 GTO F 296+LBL 05 297 • H-11 'K" 298 PROMPT 299 • H-F 'K" 300 RTN 301+LBL •SHFTG" 302 SF 08 303 3	Max (C M., Reg.	~DN1	(2		
249 RCL 04 250 RCL 11 251 + 252 RCL 01 253 / 254 RCL 12 255 RCL 03 256 / 257 + 258 RCL 13 259 RCL 02 260 / 261 + 262 ST- 10 263 "GR " 264 ARCL 07 265 "+ GOV:" 266 AVIEN 267 FC? 10	Area DL P/A DL MII SII DL MS T DL DL MI	t/A May	DL BA Max E DL	Max Max		304 XROM *S* 305 XEQ 08 306 XROM *L* 307*LBL 04 308 *P, K* 309 PROMPT 310 RCL 01 311 / 312 XEQ 05 313 RCL 03 314 / 315 PROMPT 316 RCL 02 317 / 318 * 319 + 320 CLA 321 XEQ 14 322 LASTX	P Area P/A M. 5, M/S M/S M/S M/S MAX Z N/S	M+ P/A	m/s.,		L6108 prompts Ftg properties
268 FS? 05 269 GTO F 270 -DL- 271 XEQ 13 272 RDN 273 RCL 14	Z DL Max LL P					323 ST+ X 324 - 325 CLA 326 XEQ 03 327 XROM -LL- 328 GTO 04	Min				(1305)

Program <u>FTG</u> For <u>724</u> bytes Page<u>4</u> of <u>4</u>

	1		T	T ==		r			1	1			r
		Y_	2	ΗT_	L		 	$+\times$	ĻΥ_	र	IT.	L	
329+LBL 13 330 2 331 / 332 - ⊢=- 333 ARCL X 334 - ⊢ T- 335 GTO 07 336+LBL 03 337 - ⊢ MIN=- 338 GTO 02 339+LBL 14 340 - ⊢ MAX=- 341+LBL 02 342 ARCL X 343+LBL 00 344 - ⊢ K- 345+LBL 07 346 FC? 09 347 - ⊢SF- 348 X(0? 349 - ⊢: UPL- 350 XEQ - PV- 351 RTN 352+LBL -YZ- 353 RDN 354 X(>Y 355 R† 356 RTN 357+LBL -YT-	X Load, K Load, Tm Load X Y Z X X	YZY Z Y					367+LBL -RP- 368 R-P 369 STO a 370 X(> L 371 X(>Y 372 FS? 03 373 HMS 374 X(>Y 375 X(> L 376 CLX 377 X(> a 378 RTN 379+LBL -PR- 380 X(>Y 381 FS? 03 382 HR 383 X(>Y 384 P-R 385 END	X X d X d X d X d A O A O A A O A A O A A O A A A A A A A A A A A A A	Y Y O'X X O O d d O Y	7		L X d X X	
352+LBL "YZ" 353 RDN 354 X<>Y 355 R† 356 RTN	ץ ז א	г Ү <b>г</b>	T Y	× X T									
362+LBL "ZT" 363 Rt 364 X(> T 365 RDN 366 RTN	× T Z X	Y X Y	₹ Y Y T	τ τ τ τ τ									
130													