ESPECIALLY FOR THE HP-41C/41CV

EDITED BY JOHN DEARING

NEW HP-4

6

VIEW

Or of

6

Photograph Courtesy Hewlett-Packard Company

CORVALLIS SOFTWARE, INC.

ESPECIALLY FOR THE HP-41C/41CV

ерітер ву John Dearing

CORVALLIS SOFTWARE, INC. P.O. BOX 1412 CORVALLIS, OREGON 97330

© Copyright 1981, Corvallis Software, Inc. All rights reserved. This book, or portions thereof, may be reproduced only with written permission, except that routines listed in this book may be stored and retrieved electronically for personal use, and may be used in published programs if their source is acknowledged. Permission is hereby granted to reproduce short portions for purposes of review.

Printed in the United States of America.

PREFACE

<u>What is this book?</u> It is a collection of 'tips' and 'routines' for calculators, especially those that use RPN logic, and particularly the HP-41C and HP-41CV. It is a technical reference work to be consulted when needed, rather than a book to be read in detail from cover to cover in one sitting. It is assumed the reader has already studied the operating manuals for his calculator and peripherals. This isn't a 'how-to-program' text, although careful study of these routines may greatly improve your programming ability. A 'tip' is a suggestion or technique for using your calculator more efficiently. Both 'programs' and 'routines' are sets of instructions to a calculator or computer as to what operations are to be performed; a routine cannot be precisely distinguished from a program, but routines are generally short, often-used sets of instructions, frequently called as 'subroutines' by programs. A routine can be thought of as a 'function' that supplements the computing machine's instruction set. It is recommended that the new user of this book read the contents, then leaf through the book to become familiar with what it contains. Later, he should review it more carefully, noting interesting entries.

<u>How was this book made possible?</u> This book is an independent effort, not sponsored by Hewlett-Packard Company or by PPC, the calculator/personal computer users club. However, it would not exist without their help and support. Some of the material in this volume has been used courtesy of H-P; most of it has been contributed by members of PPC. It has been written as a service to all calculator users, to bring together in one volume as many tips and routines as possible, and thus to bridge the gap between operating manuals and books of programs. The numbers after contributors' names are their membership numbers in PPC.

<u>Conventions used</u>: Routine listings are shown as listed by the 82143A Printer, with two exceptions: labels are underlined, not preceded by a diamond; and certain synthetic status registers are shown as they display--see page 108. The first word of the title of every routine using synthetic instructions is 'synthetic'. For more about this topic, read the Foreword, then Chapter XXV. Many readers may wish not to use synthetics, but these instructions and routines using them are too useful to leave out.

How to order copies of this book: Please place all orders in English. The price is \$15 postage-paid to North American addresses, US\$20 airmail-postage-paid elsewhere. Foreign orders must include a check or money order drawn on a U.S. bank--see your bank or post office. Inquiries by dealers and overseas distributors are invited. Please send all orders and inquiries to: CORVALLIS SOFTWARE, INC., P.O. BOX 1412, CORVALLIS OR 97330, USA.

<u>Contributions are solicited</u>: Submittals of tips and routines for future volumes are requested. Also, should Hewlett-Packard produce a hand-held or portable personal computer, tips and routines for it or them will be wanted. With each contribution, please include a title, an explanation, an example, an instruction listing, your name/address/telephone number, and a signed release statement (on the same sheet, if possible). The release should read: "I, (your name), hereby give permission to Corvallis Software, Inc., to include my tip or routine, (title here), in any book it may publish. They may modify it as they deem necessary. They are under no obligation to use or return this material. If they publish it, they must credit me with my work (unless I desire otherwise), and they must mail me a free copy of the book(s), when published. They are under no further obligation to me." Signed, (your name, both signed and printed or typed).

<u>Pocket Byte (Hex) Table</u>: A miniature Byte Table (see page 112) is available; it is 62 mm by 109 mm (about $2\frac{1}{2}$ by $4\frac{1}{4}$ in), double-sided, with a heavy plastic surface. It fits easily alongside the HP-41 in its case, so that one can always have it with the calculator. The price is \$3 for 1, \$4 for 2, or \$5 for 3. Deduct one dollar from each order if you enclose a self-addressed, stamped envelope. (International orders: pay with a check or money order drawn on a U.S. bank.) Send orders to: KEITH JARETT, DEPARTMENT T&R, 1540 MATHEWS AVENUE, MANHATTAN BEACH, CA 90266 USA.

<u>Disclaimer</u>: The material in this book is supplied without representation or warranty of any kind. Corvallis Software, Inc., assumes no responsibility and shall have no liability, consequential or otherwise, arising from the use of any material in this book.

DEDICATION

I dedicate this book to the memory of my dear brother,

DONALD ALAN DEARING

November 23, 1953 — August 16, 1978

For some we loved, the loveliest and the best That from his Vintage rolling Time hath prest, Have drunk their Cup a Round or two before, And one by one crept silently to rest.

(The Rubaiyat of Omar Khayyam—the 5th edition of the translation by Edward FitzGerald)

He shall return no more to his house; Neither shall his place know him anymore.

(Job 7:10)

ACKNOWLEDGMENTS

I wish to thank the Corvallis Division of the Hewlett-Packard Company for their permission to reproduce material from HP KEY NOTES and other sources. I thank the members of PPC, the independent personal computing users group for enthusiasts and programmers, for the enormous amount of material, ideas and support they have offered. Particular mention must be made of Richard Nelson, who founded PPC (then known as the HP-65 Users Club) in June 1974. Without him, this book would never have been written. Too many members have contributed to this volume to name them all, but the following deserve special mention: Valentin Albillo, Roger Hill, Keith Jarett, John Kennedy, Bill Kolb, Jake Schwartz, Richard Schwartz, and William Wickes. I particularly thank Dr. Wickes for permission to reproduce material from his book, "Synthetic Programming on the HP-41C". Finally, I want to express publicly my appreciation of the love and support of my wife, Peggy, but words fail me: how do you thank someone for having an enduring faith in you?

If you would like to receive a free sample issue of the PPC CALCULATOR JOURNAL, plus membership information, send a self-addressed 9 x 12 inch envelope (it may be folded to fit inside a business envelope) to

PPC CALCULATOR JOURNAL Department T&R 2545 West Camden Place Santa Ana CA 92704 USA

For addresses inside the United States, place first class postage for 2 oz on the envelope; for all other addresses, enclose an International Reply Coupon for 2 oz (57 g) of airmail postage. Please do <u>not</u> include a note or letter.

FOREWORD

SYNTHETIC PROGRAMMING

New users of the HP-41C/V, and indeed many experienced users, will be surprised upon reading the program listings in this book to encounter a number of 41C program lines that they do not recognize. "STO M" and "RCL b", for example, can not be found in the HP-41C/V owner's manuals; yet they are well defined, quite executable and useful functions. They can be assigned to keys, recorded on cards, etc.-in short, they possess all of the properties of "normal" functions. These new functions are called "synthetic functions", because they are created in the calculator memory by synthesizing together combinations of program bytes that can't be obtained with ordinary keystrokes. A "RCL b" is the result of combining the "RCL" prefix with the "b" postfix (as found normally in "LBL b").

"Synthetic programming" simply refers to any use of synthetic functions in HP-41C/V programming. Stated most concisely, the synthetic program lines constitute an extension of the normal HP-41 function set. Their usefulness depends on the particular application, and on the programmer's creativity--just like any other function. If a programmer doesn't have a use for the "LN" function, he doesn't really care whether it's available. But if he needs it, there's no substitute for it. The same applies to synthetic functions. They perform certain operations--if you can use them, they're great; if you can't, you can forget about them.

The applications of synthetic functions fall into two general categories: program enhancement, and user-machine interaction. For program enhancement, synthetic functions perform certain tasks faster than normal functions, and other tasks that normal functions can't do at all. An example of the latter is the function "RCL d", which recalls a number representing the status of all 56 user and system flags into the X-register. This number can be restored back to its origin at any time via a "STO d" line--thus the user can control the configuration of all HP-41 flags with a single program line or keystroke. The second class of application is in usermachine interaction. An example is synthetic key assignments, where multi-keystroke operations such as GTO IND X (5 keystrokes) can be assigned to a key for single keystroke execution or program entry. The list of examples of applications for synthetic programming is too long for description here--the routines elsewhere in this book serve as prime examples.

The techniques of creating synthetic instructions, which execute on all HP-41C's and 41CV's, have gone through a considerable evolution, primarily through the efforts of members of the PPC. The state-of-the-art at present is represented by the "LB" program (pages 105-113), where synthetic line generation is highly automated, the user having only to enter a series of decimal numbers to identify the byte combinations he desires. Thus the routines in this book can be entered without the user having to understand the principles underlying synthetic programming.

A user wishing to learn the theory of synthetic programming, including details of the purpose and applications of the synthetic functions, is referred to the current and back issues of the <u>PPC Calculator Journal</u> as described in the Acknowledgments and Introduction of this book. A unified description of synthetic programming, including a detailed description of the operating system of the HP-41C/V, is presented in <u>Synthetic Programming on the HP-41C</u>, by William C. Wickes. The book is available from LARKEN PUBLICATIONS, DEPARTMENT T&R, 4517 NW QUEENS AVENUE, CORVALLIS OR 97330, for \$10.00 postpaid. (For airmail delivery, include \$1.00 additional for the USA, Canada and Mexico, \$2.00 for Europe and South America, \$3.00 elsewhere.)

INTRODUCTION

The forerunner of the "personal computer" was the HP-65 fully programmable pocket calculator announced in January 1974 by Hewlett-Packard. The HP-65 was the first of a class of machines often described as personal programmable calculators, or PPC's. The HP-65 moved programming from the company computer center into everyones shirt pocket. Today, many "personal computers" that are purchased with the end users funds are designed to be used on a table top connected to the AC power line. All these "personal computers" are inherently limited in speed and memory capacity because of the financial limits of their intended users. An individual can not afford the type of machine used by business and industry. These limits, and the large numbers of users programming these machines, has created the romantic attitude that is accurately described by the user who said, "If I am clever enough I can devise a program to solve almost any problem". The total man hours spent programming personal computers exceeds all man hours spent in programming all computers prior to 1974. With many hundreds of thousands of users writing programs, it is not surprising that a large number of tips and routines have been developed.

The problem with so many programmers developing thousands of tips, techniques, and routines is that there is no practical method of compiling and publishing this material. It almost seems that the more skilled a programmer becomes, the more he or she realizes that there is never enough time to develop all the ideas that come to mind. Because of this, most experienced users of PPC's are eager to add programs and routines to their personal library. Todays hardware is so powerful and physically small that the machine fits into a pocket or small corner of a brief case, but the software fills a filing cabinet.

In the past, the rapid developement of improved models of PPC's discouraged the publishing of books on the subject, because the machine would be out of production shortly after the book reached the market. Most publishers do not want to publish a book dedicated to one machine. If a typical PPC has a life of less than $2\frac{1}{2}$ years, it is almost impossible to produce a book and market it with financial success. It takes a minimum of one year for the user community to master a new machine. Add to that a year to produce the book and you have the two year minimum time required to produce a quality product.

The quality product in this case is a collection of practical tips and routines compiled from all available resources. By not limiting his work to ideas from one individual, John Dearing has been able to draw from the whole user community. This work must be a labor of love and produced using fast and simple production methods, rather than slick paper and colorful graphics.

Many of the tips and routines included in this book have come from PPC members, with permission. This group of users is from the oldest world-wide computer club and they are famous for their super efficient applications of PPC's. One activity of PPC is the discovery and publishing of unsupported features, which has lead to an HP-41C/CV activity known as Synthetic Programming. Thousands of users have tested the routines published in PPC's monthly Journal, the *PPC Calculator Journal*, and there hasn't been a single machine harmed in any way using these unique routines. I am happy to see that John Dearing has succeeded in making this material available to the whole user community.

> Richard J. Nelson Founder of PPC and Editor of PPC Calculator Journal

CONTENTS

	PREFACE	•
I. III. IV. V. VI. VII. VII. VII. VII. VII. XI. XI. XI. XI. XV. XV. XV. XV. XV. XV. XV. XV	BASIC FUNCTIONS & OPERATIONS1PROGRAMMING TIPS6INITIALIZATION & PROMPTING11DISPLAY15ALPHA MANIPULATIONS19FLAGS & TONES22STACK OPERATIONS226MEMORY & CURTAIN29DATA REGISTERS32BLOCK OPERATIONS25MATRICES & DATA PROCESSING41SORTING52RANDOM NUMBERS50FRACTIONS & ROUNDING52ARITHMETIC & ALGEBRA55GEOMETRY, TRIG & CALCULUS62BASE CONVERSIONS67UNIT CONVERSIONS & SHORTCUTS69STATISTICS & PROBABILITY72TIME & DATE76CARD READER & WAND78PRINTER82BANNERS97INTERCHANGEABLE SOLUTIONS101SYNTHETIC LOAD BYTES105REFERENCE116	
	INDEX	;

NOTICE: "EX" & "MT" (routine 15-19, page 58) appear courtesy David R. Kaplan, 5806 Wood Laurel Court, Burke VA 22015.

CHAPTER I

BASIC FUNCTIONS & OPERATIONS

1-1 <u>TO PUT ANY STANDARD CHARACTER INTO THE X REGISTER</u>: Make sure there are no Alpha characters in the Y Register, and have the "ACCHR" character number (1-127) in X, then XEQ "BLDSPEC". The character will be placed in X, and may be stored in any numeric or stack register, or put into the Alpha Register with "ARCL X". For example, key '40', XEQ "BLDSPEC"; see '(' (left parenthesis) in X. Similarly, '41' gives ')' and '38' gives '&'. See the Byte Table in Reference for others. Many of the characters will display only as a boxed star.

1-2 <u>POSITIONING</u>: In Normal or PRGM mode, 'shift GTO .' followed by a global label positions the 41C/V to that label in program memory (the '.' is not necessary in Normal mode). 'Shift GTO .' followed by a <u>3-digit number</u> sets the pointer to that <u>line number</u> in the program to which the calculator is currently set (use EEX, then the last 3 digits of the line number, for line numbers 1000-1999). When NOT in PRGM mode, 'shift GTO nn' (where 'nn' is a 2-digit number) sets the pointer to that <u>numeric label</u> in the current program (the next occurance of that numeric label, if it occurs more than once in the current program). Also when not in PRGM mode, 'shift RTN' resets the program pointer to line 00 of the current program.

LOSS OF PENDING RTNs: If any subroutine is executed manually from the keyboard, if 'shift RTN' is pressed, or if SIZE is executed, all pending RTN and END instructions are lost.

DECIMAL POINT & EXPONENTS: In Normal or PRGM mode, if a number consisting of 9 or 10 digits plus an exponent of 10 is to be keyed or entered into a program line, a decimal point must be keyed in before the ninth digit.

<u>R/S VS. STOP</u>: If a program is running, R/S stops the program. Although the STOP function can be assigned to other keys for execution in USER mode, pressing those redefined keys (in Normal or USER mode) will not stop a running program. Furthermore, pressing R/S will stop a running program, even if another function has been assigned to the R/S key location. If a program is not running, pressing R/S starts it running at the current line in the program, unless the R/S key has been reassigned and USER mode is set.

Source: 'HP-41C Operating Manual', C Copyright (June 1980) Hewlett-Packard Company. Reproduced with permission.

1–3	SYMBOL NAMES: 'Goose': \rightarrow -; 'Backward Goose: - \Leftarrow ; text or super tee: \intercal ; append or lazy tee: \vdash ; boxed star or starburst: \blacksquare .
1-4.	SLOWING CATALOG REVIEW: Holding any key except R/S slows a catalog review by a factor of seven. Source: Richard Nelson (1) (PPC J, V6N5P32).
1-5 period	INDIRECT USE OF ALPHA LABELS: Although program labels that are Alpha charac- ters can consist of any of up to seven Alpha characters (except the comma, the , and the colon), Alpha labels must be held to no more than six characters if
they a it mig	re to be used for indirect addressing. Shorter Alpha labels also save bytes; Tht be a good idea to keep them short (six characters at most).

2

I. BASIC FUNCTIONS & OPERATIONS

1–6	MISSING CONDITIONALS: For 'X>=0?', use $X \neq 0$?, X>0?; for 'X>=Y?', use $X \neq Y$?, X>Y?.								
1-7 now vi N9P15)	1-7 <u>TO SEE LAST TWO DIGITS IN SCIENTIFIC NOTATION</u> : Key 'EEX nn', where 'nn' is the displayed exponent, including sign, then key '/, FIX 9'. All ten digits are now visible. To recover, key 'LASTX, *'. Source: James Pittman (1002) (65 NOTES, V3 N9P15).								
1 –8	TO FIT 'TIGHT' HP-67/97 PROGRAMS INTO A BASIC 41C: Try a lower size, then re- size after loading and packing. Source: Richard Nelson (1) (PPC J, V6N5P32).								
1-9 key: t If you leasir	MASTER CLEAR: To clear the entire calculator memory, hold down the backarrow (correction) key while you turn the calculator ON. Then release the backarrow key: the "MEMORY LOST" message appears. Clear this message with the backarrow key. If you change your mind at the last instant, release the backarrow key before re- leasing "ON". Source: Bill Kolb (265).								
1-10 the per- labels bytes times bytes routir	 BYTES: The basic HP-41C has 63 & 4/7 registers available for program memory. It actually has 64 full registers (448 bytes), but the last 3 bytes contain the permanent .END. statement, leaving 445 bytes for program use. The local Alpha labels A-J and a-e require only 2 bytes, while other Alpha labels need at least 5 bytes (4 + 1 for each Alpha character). If there are <u>k</u> identical bytes repeated <u>N</u> times throughout the program, the number of bytes saved by a subroutine for the <u>k</u> bytes is (N-1)(k-3) - 5, assuming the use of a short-form (00-14) label for the sub- routine. Source: HP KEY NOTES, V4N2P11. 								
1-11 which "SHIFT ial of Schwar	1-11 USER KEY AS A PREFIX KEY: The USER key can be used as a true prefix (or shift) key if a keyboard reassignment contains a short routine which ends in 'CF 27', which undoes the USER mode. Example: LBL "SHIFT", FACT, CF 27, RTN. Now assign "SHIFT" to the EEX key. Key an integer from 1 to 69, press 'USER, EEX'. The factor- ial of the integer will be displayed, and USER mode will be cancelled. Source: Jake Schwartz (1820) (PPC J, V6N7P4).								
1-12 Mode c key th 41C/V other not sa 1-13	1-12 <u>ENTERING WITHOUT ENTER</u> : Numbers can be entered into the stack in a program without using the ENTER instruction. After keying one number, switch ALPHA Mode on and off to terminate digit entry (or press ENTER, then BACKARROW keys), then key the next number. This will save paper when listing the program; <u>however</u> , the 41C/V places a nonpackable 'null' after each line of numeric entry followed by another line of numeric entry. This null takes one byte; therefore this technique will not save bytes. Source: Richard Nelson (1) (PPC CJ, V7N2P56).								
with i down t key wh	BEEP sounds and the 41C/V immediately turns off, preventing those unfamiliar with its operation from tampering with it. This routine also helps avoid running down the batteries when carrying the calculator. To override "LO", hold down the R/S key while pressing the ON key. Source: HP KEY NOTES, V4N1P4; Bill Kolb (265).								
1-14	SIZE FINDER ("SZE"): This routine will find the current SIZE (the number of data registers assigned). Source: Richard Nelson (1) (PPC CJ, V7N1P0).								
01 LBI 02 0 03 SF 04 ARC 05 FC 06 GTC 07 .32	. "SZE" 08 ENTER 15 FRC 22 X<>Y 29 GTO 01 36 ARCL X 09 .32064 16 X=Y? 23 4 30 LBL 09 37 AVIEW 25 10 LBL 01 17 GTO 09 24 / 31 LASTX 38 FIX 2 21 IND X 11 ISG X 18 LASTX 25 .24 32 INT 39 END 25 12 ARCL IND X 19 DSE X 26 + 33 LBL 10 37 AVIEW 25 12 ARCL IND X 19 DSE X 26 + 33 LBL 10 39 END 2010 13 FS? 25 20 ABS 27 + 34 FIX 0 36 BVIES 2011 14 GTO 01 21 INT 28 SF 25 35 "SIZE= " (80 bytes)								

1-15 FAST SIZ	E FINDER ("SZ	"): Source: Ron	Knapp (618) (PF	C CJ, V7N2P38)	•			
01 LBL "SZ" 02 9 03 ENTER 04 -1 05 ENTER	06 512 07 <u>LBL 01</u> 08 2 09 / 10 SF 25	11 ST+ Y 12 ABS 13 ARCL IND Y 14 FC?C 25 15 CHS	16 DSE Z 2 17 GTO 01 2 18 X<0?	1 FIX 0 2 "SIZE= " 3 ARCL X 4 AVIEW 5 FIX 2	26 END (51 bytes)			
1-16 <u>SYNTHETIC</u> Register Alpha. WARNING wrong final and and 9 (because ately restarted will be set). 1 01 LBL "?S" 02 RCL c	C SIZE FINDER The old val As with man swer will be Flag 51 will between tho Line 04 is ap 06 X<> d 07 CF 02	("?S"): This rouse in X is saved y programs that obtained if the be set), or even se lines while the pend 4 nulls. So 11 INT 16 - 12 HMS 17	outine returns t in Y, Z & T, w use the results routine is sing en if the routin the printer is c ource: Roger Hil -10 21 SF 25 * 22 LBL 0	he current SIZ hile 'garbage' from the flag le-stepped bet e is stopped a onnected (beca 1 (4940) (PPC 26 X<> 0 27 +	E to the X is left in register, a ween lines 6 nd immedi- use Flag 55 CJ, V7N5P57). L			
03 STO M 04 " ⊢ ♦♦♦♦" 05 X<> M	08 CF 03 09 X<> d 10 ENTER	13 7 18 1 14 * 19 6 15 + 20 M	INT 23 RCL II 54 24 FC? 2 40D 25 RTN	ND X 28 GTO 5 29 END	00 (56 bytes)			
1-17 <u>SYNTHETIC SIGMA, SIZE & CURTAIN FINDER ("Σ?", "S?" & "C?")</u> : XEQ "Σ?" to find the number of the first register of the statistics block. XEQ "S?" to find the SIZE. XEQ "C?" to find the curtain location (the absolute address of data register 00). Line 26 is decimal 244, 127, 0, 0, 1. Source: Keith Jarett (4360) & Roger Hill (4940) (PPC CJ, V7N10P15; PPC ROM).								
01 LBL "∑?" 02 CLA 03 XEQ "C?" 04 RCL N 05 XEQ 14 06 X<>Y 07 - 08 RTN 09 LBL "S?"	10 XEQ "C?" 11 CHS 12 64 13 MOD 14 SF 25 15 LBL 02 16 RCL IND X 17 FC? 25 18 RTN	19 X $<>$ L 20 + 21 GTO 02 22 LBL "C?" 23 RCL c 24 LBL 14 25 STO M 26 " $\vdash \spadesuit \bigstar$ "" 27 X $<>$ M	<pre>28 X<> d 29 CF 01 30 CF 02 31 CF 04 32 CF 07 33 FS?C 10 34 SF 07 35 FS?C 11 36 SF 09</pre>	 37 FS?C 12 38 SF 10 39 FS?C 13 40 SF 11 41 FS?C 14 42 SF 13 43 FS?C 15 44 SF 14 45 FS?C 16 	46 SF 15 47 X <> d 48 E2 49 * 50 INT 51 DEC 52 END (112 bytes)			
1-18 <u>SYNTHETIC SUSPEND & REACTIVATE KEY ASSIGNMENTS ("SK" & "RK")</u> : To suspend all system and program key assignments, key in a register pointer, 'n', then XEQ "SK"; key assignments will be stored in R'n' and R'n+1'. To reactivate these key assignments, key 'n', XEQ "RK". Minimum SIZE is n+2. Values in X, Y & Z before keying 'n' are restored. Step 24 is nonstandard; it is decimal 243, 127, 15, 255. Source: Keith Jarett (4360) (PPC ROM).								
01 LBL "SK" 02 SIGN 03 CLX 04 X<> 05 XEQ 14 06 ISG L	07 "" 08 . 09 X<> e 10 LBL 14 11 "*" 12 X<> M	13 STO N 14 ASTO IND L 15 RDN 16 RTN 17 LBL "RK" 18 SIGN	19 ARCL IND L 20 "⊢ ◆ " 21 ISG L 22 "" 23 ARCL IND L *24 "⊢ § "	25 X<> N 26 STO ⊢ 27 X<> M 28 STO e 29 RDN 30 CLA	31 END (64 bytes)			
1-19 <u>MARKING</u> bels for once they are a	OVERLAYS: Pre marking keyb applied.	ss-on letters an oard overlays; u	re a viable alte use a clear matt	rnative to HP e spray to pro	adhesive la- tect letters			
1-20 <u>KEYING E</u> has just	-20 <u>KEYING EXPONENTS</u> : It is not necessary to enter two digits in an exponent that has just one. Source: Bill Kolb (265).							

I. BASIC FUNCTIONS & OPERATIONS

1-21 <u>SYNTHETIC VIEW KEY ASSIGNMENTS ("VK")</u>: This routine determines which keys are reassigned (to either system functions or user programs). CASE I: NO PRINTER PLUGGED IN: routine pauses to display assignments by keycode, then goes to the next key in numeric order (11 to 84). CASE II: PRINTER PLUGGED IN: (A) Printer ON: "PRKEYS" executed. (B) Printer OFF: "PRINTER OFF" displayed -- do any of the following: (1) turn printer ON, reexecute "VK"; or (2) unplug printer, reexecute "VK"; or (3) switch to PRGM Mode, then do either (a) or (b): (a) SST 3 times, switch out of PRGM Mode, R/S. Behaves as if no printer is in system (Case I); clears Flag 21. (b) SST 4 times, switch out of PRGM Mode, R/S; routine stops to display assignment(s) to a given key; R/S for next key. NOTE: Lines 11 and 16 are nonstandard. Line 11 is decimal 243, 127, 16, 240; line 16 is decimal 243, 127, 32, 240. Source: Roger Hill (4940) & Tom Cadwallader (3502) (PPC ROM).

01	LBL "VK"	21	RCL M	41	STO d	61	*	81	FS? 50	101	TONE 0
02	SF 21	22	-	42	CLST	62	INT	82	X <> d	102	RÎ
03	FS? 55	23	STO N	43	CLA	63	STO a	83	Х<>Ү	103	STO N
04	PRKEYS	24	RDN	44	PSE	64	43	84	FC? 50	104	R1
05	FS? 55	25	LBL 02	45	CLD	65	-	85	GTO 04	105	STO M
06	RTN	26	FC? IND N	46	RTN	66	ABS	86	X <> d	106	RÎ
07	CF 21	27	FC? 50	47	LBL 05	67	1	87	X <> Q	107	RÎ
08	8	28	GTO 05	48	X<> d	68	X < Y?	88	CLX	108	X <> d
09	RCL 🛏	29	X <> d	49	35	69	ST+ a	89	RCL d	109	X<>Y
10	XEQ 07	30	FC? IND N	50	RCL N	70	FS? 42	90	FIX O	110	FS? 42
*11	" ⊢ ⊖"	31	FC? 50	51	INT	71	FC? IND N	91	CF 29	111	X <> d
12	X<> M	32	GTO 05	52	+	72	CHS	92	ARCL a	112	GTO 03
13	X <> d	33	X <> d	53	OCT	73	ABS	93	ISG L	113	LBL 07
14	RCL e	34	LBL 03	54	1	74	X<> M	94	GTO 06	114	CLA
15	XEQ 07	35	ISG N	55	ST+ Y	75	RDN	95	"⊢ −"	115	Х<> М
*16	"⊢ "	36	GTO 02	56	%	76	X<> N	96	ARCL a	116	" - ****"
17	X <> Z	37	DSE M	57	+	77	RDN	97	LBL 06	117	X<> N
18	X <> M	38	GTO 01	58	10	78		98	STO d	118	X<> M
19	LBL 01	39	X <> Y	59	MOD	79	FC? 42	99	x <> Q	119	END
20	-27.00008	40	LBL 04	60	LASTX	80	" –"	100	AVIEW	(2	223 bytes)

1-22 <u>TYPING TOP ROW KEY ASSIGNMENTS</u>: Frequently, only the keys in the top two rows are assigned (often with the local labels A-J and a-e). If the documentation of a program is being typed, here is a way to represent these assignments. Type the dots, then join them later with pen and ruler:

2	•		1				,
A	1	1 ¹ 2		"?"	"SK"	"SZE"	е
	1	1 ¹ 2		"RAND"	"ANGLE"	"CIRCLE"	Е
2 A	1	1 ¹ 2		"RAND"	"ANGLE"	"CIRCLE"	E

To center a \downarrow typed label in a given 'box', set typewriter to first space in box, then space once for each character in the label. Next, space to the dot at the right of the box, counting the spaces. Divide this number by 2, then backspace to the first space in the box and space in this number of spaces; type the label. To indicate key assignments anywhere on the keyboard, draw an outline of a keyboard overlay, then type or write in the assignments -- shifted assignments on the keys, unshifted above. Source: John Dearing (2791).

1-23 <u>CRASH</u>: A non-responsive display state during which some or all of the keys are locked out (won't function). Causes of crashes include shock to the calculator and misuse of some synthetic functions. Usually, removing and then immediately reinserting the battery pack will cause recovery without loss of memory. In extreme cases, it may be necessary to leave the batteries out over night or for as long as 48 hours. Another extreme case solution is suggested by Jim DeArras: start a card through the reader and remove the batteries with the card half through. Leave the reader in the calculator 2 minutes, then replace the batteries. A "MEMORY LOST"

5

should result. Source: Bill Kolb (265).

1-24 FUNCTION PRIORITY OF THE TOP ROW KEYS: When the 41C/V is in USER mode and you

press A-J (any key in the top two rows) or a-e (SHIFT, then any key in the top row), the calculator does the following:

- 1. If the key has been reassigned, it performs the reassigned function.
- 2. Else, it searches for the corresponding local Alpha label (A-J, a-e) in the current program only, and executes it if found.
- 3. Else, it executes the printed Normal Mode function.

Because of this, execution of a Normal Mode function on a key in the upper two rows can be rather slow, when in USER Mode. To shorten this time, press 'SHIFT GTO ..', turn USER off, or assign the Normal Mode function to its own key.

1-25 <u>SIGN</u>: The "SIGN" function is not a true unary function. The unary function should return zero rather than 1.00 when the argument is zero. To obtain the unary, substitute the following lines, as suggested by Leland Van Allen: 'STO L, $X \neq 0$?, SIGN'. Source: Bill Kolb (265).

1-26 SYNTHETIC KEY ASSIGNMENTS CLEAR ("KC"): XEQ "KC" to clear all key assignments,

both system and user. Line 04 is nonstandard; it is decimal 246, 127, 1, 105, 11, 240, 0. Source: Paul Lind (6157). See 21-8.

01	LBL "KC"	07	15.006	13	FS?	IND Z	19	192	25	X<>Y	31	STO T
02	RCL c	80	ENTER	14	ST+	Y	20	-	26	LBL 02	32	X<>Y
03	STO M	09	•	15	ST+	Х	21	•	27	STO IND Z	33	STO c
*04	" ⊢ ×iλ ♦ "	10	ENTER	16	DSE	Z	22	R↑	28	DSE Z	34	CLST
05	RCL M	11	Е	17	GTO	01	23	X<> d	29	GTO 02	35	END
06	X<> d	12	LBL 01	18	RDN		24	X<> c	30	STO e		(72 bytes)

1-27 SYNTHETIC BYTES SAVED WITH A SUBROUTINE ("BS"): This routine calculates the

bytes saved (or used) by using a subroutine for repeated keystrokes. Load the following in the stack before executing "BS":

- Z: R--# of repeated bytes, not including the LBL or RTN of the proposed subroutine. Make the number negative if indirect calls are being made.
- Y: C--# of calls made to the subroutine. Make negative if a short-form local label (labels 00-14) is being called.
- X: A--# of Alpha characters in the GLOBAL label. Use <u>zero</u> if the label is a local label (LBL 01, LBL 25, LBL A, LBL e, etc).

To use, key R, ENTER, C, ENTER, A, XEQ "BS". The output is the number of bytes saved. If the number is negative, the proposed subroutine takes more bytes than if the sequence is repeated in the program. For indirect calls, the routine counts the 7 bytes required for the indirect register also; if using a register that is available anyway, add 7 to the output. Source: Charles Close (3878) (PPC CJ, V8N1P14).

BYTES:	01 LBL "BS"	14 X<0?	27 1	40 RCL M	53 FS? 01
XEO and a 2	02 0	15 SF 01	28 FS? 02	41 –	54 7
XEQ numeric: 3	03 X<> d	16 ABS	29 +	42 RCL O	55 FS? 01
XEQ indirect: 2	04 RDN	17 STO O	30 X<>Y	43 -	56 +
XEQ Alpha: 2+1	05 X≠0?	18 *	31 *	44 2	57 –
per char.	06 SF 03	19 FC? 01	32 LASTX	45 FS? 04	58 RCL N
LBL 00-14: 1	07 STO M	20 SF 02	33 RCL M	46 GTO 01	59 STO d
LBL 15-99: 2	08 RDN	21 FS? 03	34 *	47 FC? 03	60 RDN
Local a labels: 2	09 X<0?	22 CF 02	35 FC? 01	48 1	61 CLA
Global a labels:	10 SF 04	23 X<>Y	36 +	49 FS? 03	62 END
4+1 per	11 ABS	24 X<> N	37 FS? 01	50 3	
character	12 STO N	25 2	38 RDN	51 +	
RTN: 1	13 X<>Y	26 FS? 02	39 –	52 <u>LBL 01</u>	(96 bytes)

CHAPTER II

PROGRAMMING TIPS

2-1 TO GO TO/DELETE TO THE END OF A PROGRAM, FROM ANY LINE THEREIN: (a) to go to the END: for programs of up to 999 lines, press 'SHIFT GTO .999'. For programs of up to 1999 lines, press 'SHIFT GTO . EEX 999'. (b) to delete the rest of a program, beginning at the current line: execute 'DEL 999'; this works for up to 999 lines remaining; the END statement will not be deleted. Note that you do not recover the deleted lines (bytes) until after packing. Source: Bill Kolb (265). 2-2 PROGRAMMING CHANGES: When you must make program changes using existing program line numbers as references, you should change the last line (or group of lines, using "DEL") first. In this way you move 'up' (to lower line numbers) through the program as you make changes, and steps remaining to be changed retain their original line numbers. To change a step, delete first, then insert. Source: Richard Nelson (1) (PPC J, V5N2P9). 2-3 "BST" AND EDITING: For editing convenience, assign "BST" to another unshifted key, such as "TAN". Source: Richard Nelson (1), (PPC J, V6N5P32). _____ 2-4 EFFECT ON X- AND Y-REGISTERS OF SOME FUNCTIONS: With these equations in mind, these functions can often be used as a shortcut in a program. For example, to calculate the square root of the sum of the squares of the values in the X- and Y-Registers, just press "R-P". Postscript 1 indicates the contents of the given register before execution of the function, and postscript 2 indicates the contents of the given register after execution. L = LastX Register. Source: 'HP-41C Owner's Handbook and Programming Guide', @ Copyright (January 1979) Hewlett-Packard Company. Reproduced with permission. P - R (Y1 lost) R - P (Y1 lost) D – R R – D Y2 = Y1 $Y2 = \arctan(Y1/X1)$ $Y2 = X1 \sin Y1$ Y2 = Y1 $X2 = \frac{X1 \quad 180}{21}$ $X2 = \frac{X1 \text{ pi}}{180}$ $X2 = X1 \cos Y1$ $X2 = \sqrt{X1^2 + Y1^2}$ _____pi L2 = X1L2 = X1L2 = X1L2 = X1% %CH SIGN Y2 = Y1Y2 = Y1Y2 = Y1X2 = X1 Y1X2 = [(X1 - Y1) 100]/Y1X2 = -1, 0 or 1 ** 100 L2 = X1L2 = X1L2 = X1** SIGN returns -1 if X was negative, 0 if X contained Alpha characters, and 1 if X was zero or positive. See 1-25. _____ 2-5 REEXECUTING THE CURRENT PROGRAM: You can press 'XEQ, ALPHA, (name of program), ALPHA'; you can also assign the program to a key, then press that key in USER Mode. Here's another way: if you know the program stops execution at the END (last line) of the program, just press R/S. If execution stops at an internal STOP or RTN, press 'SHIFT RTN R/S'.

2-6 VARIABLE LENGTH "PAUSE" WITHOUT BLINKS ("VP"): Not a real "PSE" -- the program is still running. The number you put in Line 02 determines the length of the

pause (n=10 gives about a 1 second pause; 100, 10 seconds). The original contents of the T Register is replaced by zero. Execute as a subroutine, or insert steps 02-08 into a program. For more flexibility, change step 02 to RCL 00, and store 'n' in R00 before execution. Source: Tom Cadwallader (3502) (PPC J, V6N6P21).

01 1	LBL "VP"	03	RDN	05	LBL 14	07	GTO 14	09	END
02	(n here)	04	VIEW X	06	DSE T	08	CLD		

After a program executes an AVIEW or VIEW, the flying goose will not appear, but the program annunciator will be displayed; any time a program places an Alpha string into the display, that string replaces the goose program execution symbol. When the program clears the display, or the program is interrupted, the symbol returns to the display. Source: 'HP-41C Owner's Handbook and Programming Guide', © (Jan 1979) H-P.

2-7 TEST DETERMINES FUNCTION: 'X(?)Y' stands for any conditional test, such as

"X=Y?". (1) Add or subtract, depending on test: 'X(?)Y, CHS, +'. Subtracts if conditional is true, adds if false. (2) <u>Multiply or divide, depending on test</u>: 'X(?)Y, 1/X, *'. Divides if conditional is true, multiplies if false. (3) <u>Power or</u> root, depending on test: 'X(?)Y, 1/X, Y1X'. Takes root if conditional is true, takes power if false. Source: Bill Kolb (265).

2-8 DO TWO STEPS IF CONDITIONAL IS TRUE; SKIP IF FALSE: Use the same conditional twice, following each with a step to be executed if test is true. For example, 'X=Y?, PSE, X=Y?, GTO 08' will pause and then go to LBL 08 only if X=Y; if X≠Y, execution will branch around both of these instructions.

2-9 LAST "RTN" OR "END" NOT NEEDED: A program loaded at the end of program memory

(i.e., a program keyed in after 'SHIFT GTO ...' is pressed) need not be terminated with an END or RTN -- the permanent .END. will serve. Source; 'HP-41C Operating Manual', © Copyright (June 1980) Hewlett-Packard Company. Reproduced with permission.

2-10 EXECUTING A NUMERIC-LABELED ROUTINE IN ANOTHER PROGRAM: Many independent subroutines in a program can be headed by a single global label, such as "MIS" (miscellaneous), and each subroutine can be headed by a numeric label. The user can call any of the subroutines by keying in its numeric label (manually or under program control), followed by XEQ "MIS". Rolling the index 'down' to the T Register gets it out of the way of useful data. Source: William Cheeseman (4381) (PPC CJ, V7 N5P9).

LBL "MIS", RDN, GTO IND T, LBL 00, ..., RTN, LBL 01, ..., RTN, ..., END. 2-11 INDIRECT XEQ OR GTO WON'T WORK FOR LOCAL ALPHA LABELS (A-J, a-e): Example: a

large letter banner-printing program that uses a printing routine for each letter. If an 'A' is to be printed, it is most convenient to store the 'A' in the X Register and XEQIND X. But LBL A (through LBL J) won't execute indirectly. LBL "AA" (and all other such 'double-character' labels) will, however, as they are Global Labels. It is an easy matter to make all labels double labels and double the letters as they come up. The Alpha register is used for this process. The program instructions would be:

> ASTO X Stores "A" in the X Register. ARCL X Adds "A" to Alpha, giving "AA". ASTO X Stores "AA" in the X Register. XEQ IND X Executes Global Label "AA".

The use of indirect addressing saves so much program memory that the added byte for each label to make a double letter label is still memory efficient. Source: HP KEY NOTES, V4N1P11. Note: synthetic Global Labels A-J can also be used.

2-12 <u>DUPLICATING FUNCTION AND PROGRAM NAMES</u>: A function and a program both having the same name can be executed from the keyboard if the function is assigned to a key before the program label by the same name is keyed into memory. The program can then be assigned to another key or executed manually. The same thing can be done with two or more programs having duplicate names, by simply assigning the labels to separate keys as each label is keyed into memory. The 41C/V keeps the assignment straight. Source: HP KEY NOTES, V4N2P11.

2-13 <u>RTN TO END</u>: A program can be divided into two programs by changing an internal "RTN" to an "END". Go to the RTN statement in PRGM mode, delete the step, and then press 'XEQ, ALPHA, E, N, D, ALPHA' ('GTO ..' won't work). Be sure you have a global label after the RTN first, if you want the program following the RTN to start with a global label. Now you can record a portion of a program, using the card reader, after isolating it with ENDs. This program segment can be placed elsewhere, and then the preceeding END deleted to combine the new segment. Source: John Dearing (2791) (PPC CJ, V8N1P14).

2-14 EXECUTING A SERIES OF STEPS WITHIN THE MAIN BODY OF A PROGRAM MORE THAN ONCE: (Rather than as a subroutine). Both examples execute the routine twice: Case I: Using a loop control: Use ISG or DSE to control the number of loops. Ex.:

..., 2, STO 00, LBL 01, ... (routine here) ..., DSE 00, GTO 01, Case II: At the end of the program: (Two XEQs would run the routine 3 times). Ex.: ..., XEQ 02, LBL 02, ... (routine here) ..., END. Source: John Dearing (2791).

2-15 NO OPERATION ("NOP"): A NOP is a step that does nothing (or nothing harmful);

used after "ISG", it effectively changes the ISG to a simple increment instruction (no skipping); similarly, placed after a "DSE", a NOP changes it to a decrement instruction (again, no skipping). Depending on the situation, you can use DEG, RAD, GRAD, FIX, SCI, ENG, CF any, SF any, or LBL any. A LBL instruction is the fastest nonsynthetic instruction, and has the advantage of being a one-byte NOP if numbered less than 15. Two instructions that can be used at any time are <u>STO X</u> and X<>X. For synthetic programmers, the best NOP is "" (<u>Text 0</u> -- byte 240).

2-16 ITERATION OR LOOP COUNTER: To count the number of times a loop is executed, include an "ISG nn" instruction in the loop (where 'nn' specifies a register that contains zero initially), and follow the ISG step with any NOP such as STO X. When execution stops, the loop count is obtained by recalling Register 'nn'. Source: Richard Nelson (1) (65 NOTES, V1N2P3).

2-17 LOCAL LABELS: When a global label is accessed within a program with GTO or XEQ, execution speed can be increased by placing a numeric label after the global label (or replacing the global label with a numeric label), and changing the GTO or XEQ instruction(s) so they refer to the numeric label. Numeric label search is much faster than global label search. Short-form labels (LBLs 00-14) should be within 112 bytes of a GTO instruction so the calculator can remember the label's location. If the LBL is more than 112 bytes from its GTO instruction, use LBLs 15-99. Since local Alpha labels (A-J, a-e) cannot be used indirectly with GTO or XEQ, put a numeric label after them (example: LBL A, LBL 01) if they need to be executed indirectly, and use the numeric label for the indirect reference. "XEQ" instructions do not need to be within 112 bytes of LBLs 00-14.

2-18 USE 'RDN, RCL' RATHER THAN 'CLX, RCL': This avoids the problem of stack lift enable when you manually stop execution immediately before the RCL instruction. Source: Keith Jarett (4360) (PPC CJ, V7N8P9).

2-19 POWER FAILURE PROTECTION DURING LONG PROGRAM RUNS: The sequence 'FS? 49, OFF' may be used to protect against power failure. Source: Richard Nelson (1).

CALCULATOR TIPS & ROUTINES _____ 2-20 R1 OR RDN?: If possible, use R1 to save time: RDN takes 17.4 ms; R1 takes 12.8 ms. Thus two Rts are better than two RDNs. Often stack manipulations can be rewritten to favor use of R[†] over RDN. Source: Richard Nelson (1) (PPC CJ, V7N8P8). TO BE ABLE TO RERUN A PROGRAM WITH "R/S": If execution stops at the last step, 2-21 just press R/S to rerun the program. To be able to rerun a program with R/S when execution stops at an internal RTN or STOP, follow the RTN or STOP with a GTO instruction that points to the first step of the program. _____ 2-22 TO MAKE AN INTERNAL STOP 'FINAL': When execution stops inside a program, and you want to prevent R/S from inadvertantly executing the following portion of the program, then, instead of just stopping with "STOP" (or "RTN"), use LBL 14, STOP (or RTN), GTO 14. 2-23 ADD (OR SUBTRACT) A GIVEN VALUE ONLY IF CONDITIONAL IS FALSE: Follow given value with any conditional ['X(?)Y'], then with "CLX", then "+" (or "-"). For example, to add 5 to the value in X only if Flaq 00 is clear, use '5, FS? 00, CLX, +'. 2-24 TURNING OFF WHILE IN PRGM MODE: If you turn off the 41C/V (or if it turns off automatically) while it is in PRGM mode, you should toggle into and back out of PRGM mode when you resume operations. This ensures that changes made to programs in previous editing sessions will be compiled by the calculator. Source: HP KEY NOTES, V4N1P3. 2-25 ROUTINE MESSAGE: For a long-running routine, put a message in Alpha (12 characters or fewer -- like "SORTING"), followed by AVIEW; at the end of the routine, put CLD. This will tell you what the program is doing. _____ 2-26 FIVE SECOND PAUSE: When the card reader is plugged in but the printer is not, use "7PRTX" for a long pause. Source: PPC Melbourne Chapter. TO INSERT PROGRAM LINES AHEAD OF STEP 01: Press 'GTO . 000', then enter the 2-27 desired steps. If in Run (Normal or USER) Mode, use 'SHIFT RTN', then switch to PRGM Mode and enter desired steps. Source: Bill Kolb (265). ______ 2-28 ALPHA STRING AS INDIRECT ADDRESS: An indirect address can be an Alpha string as well as a number. This feature can be used to create a directory or can be used in word games. Source: Bill Kolb (265). _____ 2-29 UNLABELED PROGRAMS: If you accidentally delete a program label or if you have an unlabeled program in memory, you can find it again using 'CAT 1'. XEQ CAT 1, press R/S as soon as the first program name appears, then use SST and BST to find the second of two consecutive END statements (no label in between). Switch to PRGM mode and delete the program, or press 'SHIFT GTO . 000', then key a global label for the program. It's a good idea to check for unlabeled programs when you are running low on memory. Source: Bill Kolb (265). 2-30 NO END: Don't put an END on a program until you wish to add another, autonomous program. Programming an END puts the program pointer into a new region, making return to the initial program unnecessarily complicated. Don't use 'GTO ...' to find out how many registers are left: use 'GTO . 000' or 'GTO . nnn', where 'nnn' is larger than the number of lines in the program. Source: Bill Wickes (3735). 2-31 PRINT ALPHA IF POSSIBLE, BUT AVOID SCROLLING: Instead of using AVIEW to print the contents of the Alpha Register, use SF 25, PRA, CF 25 to avoid scrolling a long Alpha string across the display, when the Alpha message doesn't need to be seen when printing can't occur. Source: John Herzfeld (5428). See 3-12, 4-1, 6-14, 22-23.

SYNTHETIC SHORT-FORM GTO WITH FULL DISTANCE MEMORY: Conventional wisdom is 2-32 that you use short-form LBLs and GTOs if all the GTOs are within 112 bytes of the LBL: otherwise you use the 15 and up variety (see routine 2-17). Paul Lind (6157) has noticed that one can create GTOs 00-14 with three bytes and full-distance memory. Even just one short-form LBL and a 3-byte GTO will save a byte over a longform LBL and GTO. The savings is greatly increased if a LBL is called by several GTOs, some within 112 bytes, some beyond. Only the GTOs beyond 112 bytes need to be of the 3-byte variety. A 3-byte GTO nn is easy to make with the Synthetic Load Bytes program "LB" (Chapter 25); the input is decimal 208, 0, 0-14 (for example, a 3-byte GTO 00 is 208, 0, 0; a 3-byte GTO 13 is 208, 0, 13). The second byte can be anything. Source: John Herzfeld (5428).

_____ 2-33

SYNTHETIC LENGTHEN & SHORTEN RETURN STACK ("LR" & "SR"): Six return pointers are stored in Rx and R(x+1) when "LR" is executed; when you are five levels deep in subroutines and need to lengthen the return stack, enter register number, XEQ "LR". When you are returning from more than six levels of subroutines and have used "LR", then key in the register number and XEQ "SR" to place the next 6 levels of return addresses in the status registers. Mark subroutine levels in groups of 5. If execution is to go more than 1 subroutine level beyond any of these dividing lines, the last subroutine level of the previous group must execute "LR" & "SR". See example below. In this example, if a RTN were placed after LBL 06 (Line 30), then Lines 23-4 & 26-7 (executing "LR" & "SR") were deleted, execution would still stop after the first RTN (Line 05). If the RTN were placed just after LBL 07 (Line 34) instead, however (still with Lines 23-4 & 26-7 deleted), execution of "X" would stop after the second RTN (Line 09). If Lines 23-4 & 26-7 are restored at this point, all RTNS would again be executed. As written, the example will pause to view "LBL 16" (to demonstrate that execution did go 16 subroutine levels deep) (R/S if printer is plugged in but off); then execution resumes until the '1' of Line 04 is displayed (demonstrating that execution returned all the way back to Line 05 [RTN]). Source: PPC ROM. Harry Bertuccelli (3994).

Example Listing:

						OJ KIN
01	LBL "X"	13 RTN	27 XEQ "SR"	39 XEQ 09	53 RTN	66 LBL 14
02	CLX	14 LBL 03	28 6	40 9		67 XEQ 15
03	XEQ 01	15 XEQ 04	29 RTN	41 RTN		68 15
04	1	16 4		42 LBL 09	54 LBL 11	69 RTN
05	RTN	17 RTN		43 XEQ 10	55 XEQ 12	70 LBL 15
		18 LBL 04	30 LBL 06	44 10	56 12	71 XEQ 16
		19 XEQ 05	31 XEQ 07	45 RTN	57 RTN	72 16
06	LBL 01	20 5	32 7	46 LBL 10	58 LBL 12	73 RTN
07	XEQ 02	21 RTN	33 RTN	47 2	59 XEQ 13	74 LBL 16
80	2	22 LBL 05	34 LBL 07	48 XEQ "LR"	60 13	75 "LBL 16"
09	RTN	23 0	35 XEQ 08	49 XEQ 11	61 RTN	76 AVIEW
10	LBL 02	24 XEQ "LR"	36 8	50 2	62 LBL 13	77 PSE
11	XEQ 03	25 XEQ 06	37 RTN	51 XEQ "SR"	63 XEQ 14	78 CLD
12	3	26 0	38 LBL 08	52 11	64 14	79 END
Roi	utine Listir	ng:				
01	LBL "SR"	09 RTN	17 X<> IND L	25 LBL "LR"	33 X<> M	41 RDN
02	SIGN	10 " ***"	18 STO O	26 SIGN	34 STO O	42 CLA
03	SF 10	11 RCL IND L	19 " + **"	27 RDN	35 ASTO IND L	43 END
04	RDN	12 ISG L	20 X<> O	28 "+"	36 ISG L	
05	RCL b	13 ""	21 STO a	29 RCL a	37 ""	
06	STO M	14 X<> IND L	22 X<> N	30 STO N	38 "⊢**** *"	
07	RDN	15 STO N	23 CLA	31 RDN	39 STO O	
80	FC?C 10	16 "⊢** "	24 STO b	32 RCL b	40 ASTO IND L	(95 bytes)

CHAPTER III

INITIALIZATION & PROMPTING

3-1 SIZE & PROGRAM TITLE SUBROUTINES ("TITLE", "SIZE?" & "T+S"):

Program Title Subroutine: A nice touch in many applications is a title on the printed output. This subroutine prints the title, double wide, and spaces appropriately; key in the title, then execute the routine:

LBL "TITLE", ADV, SF 12, FS? 55, PRA, CF 12, ADV, RTN. (20 bytes)

SIZE Check Subroutine: It can be very annoying to be on the last input of a long input sequence and get a "NONEXISTENT" error. This is usually the result of an incorrect SIZE. By executing this subroutine at the beginning of a program, this problem is eliminated:

LBL "SIZE?", "SIZE>=", ARCL X, 1, -, SF 25, RCL IND X, RTN. (25 bytes)

Flag 25 is the Error Ignore Flag. To call this routine, you must place the necessary SIZE in X prior to the call. The calling sequence must not be in a subroutine. Follow the call with 'FC?C 25, PROMPT'. Example: if a minimum SIZE of 054 is required by a program, the sequence of steps in the initialization used to call "SIZE?" is: '54, XEQ "SIZE?", FC?C 25, PROMPT'.

Title and SIZE Combined: Since both routines may be needed, they can be combined:

01 LBL "T+S"	04 FC? 55	07 ADV	10 1	13 RCL IND X
02 ADV	05 PRA	08 "SIZE>="	11 -	14 RTN
03 SF 12	06 CF 12	09 ARCL X	12 SF 25	(33 bytes)

Example: The calling sequence for a Title of "F=MA" and a SIZE of 6 would be: '6, "F=MA", XEQ "T+S", FC?C 25, PROMPT'.

Source: Corvallis Division Column, PPC J, V6N7P19.

3-2 <u>RESIZE? ("RS")</u>: This routine tests to see if the current SIZE is great enough; if not, it prompts for the minimum SIZE needed. Have the minimum SIZE needed by the program in X before execution.

	01 LBL "RS" 02 ENTER	04 STO X 05 SF 25	07 FS3 08 RT1	25 N	10 ARCL Y 11 PROMPT	
	03 DSE X	06 VIEW IND X	09 "RE	ESIZE: "	12 END	(33 bytes)
3-3	TEST SIZE: Tests in X before execu	if SIZE is g ution. Source	reat enough; : John Deari	have number .ng (2791).	of data regis	ters needed
	01 LBL "?S" 02 "RESIZE: "	03 ARCL X 04 DSE X	05 STO X 06 SF 25	07 RCL IND 08 FC?C 25	X 09 PROMP 5 10 END	T (31 bytes)
3-4	SYNTHETIC TEST Sidecimal) mode, bu (2791).	IZE ("?S"): D ut restores t	isplays the he original	SIZE to be se display mode.	et in FIX 0, C . Source: John	F 29 (no Dearing
	01 LBL "?S" 02 "RESIZE: " 03 RCL d	04 FIX 0 05 CF 29 06 ARCL Y	07 STO d 08 DSE Y 09 ""	10 SF 25 11 RCL IND Y 12 FC?C 25	13 PROMPT 14 END	(38 bytes)

III. INITIALIZATION & PROMPTING

3-5 <u>SYNTHETIC VERIFY SIZE</u>: To find if the current SIZE is great enough, key in the required SIZE, XEQ "VS"; routine prompts for a resize only if it is necessary. (If prompted, reSIZE as directed, then R/S). Contents of X, Y & Z registers (before required size number was keyed in) are returned; T is lost. To change to a version that returns execution to the main program, whatever the SIZE, without prompting, change step 09 (FS?C 25) to "FS? 25", and delete step 20 (PROMPT). Then execution of the routine in a program would be of this form: '..., XEQ "VS", FC?C 25, PROMPT,'. Source: Roger Hill (4940) (PPC ROM).

01	LBL "VS"	05	DSE T	09	FS?C 25	13	RÎ	17	ARCL L	21	END
02	SF 25	06		10	RTN	14	RCL d	18	STO d		
03	INT	07	RCL IND T	11	"RESIZE = "	15	FIX O	19	RDN		
04	RDN	80	RDN	12	TONE 3	16	CF 29	20	PROMPT	(47 b	ytes)

3-6 INPUT ROUTINE ("IN"): This routine is used to prompt for, store, format and

print input values. It uses R00 as a storage pointer. "IN" expects a 5-character (or less) input variable name in the Alpha Register when it is called [because appending an equal sign in step 06 creates an Alpha string of 6 characters, which is as long an Alpha string as the Y Register can hold (step 07)]. The format for calling this routine is shown by this example, which stores values in R06, R07 & R08: '..., 5, STO 00, "LEN.", XEQ "IN", "HT.", XEQ "IN", "WIDTH", XEQ "IN",'. Note that the number keyed in ('5' in this example) is one less than the number of the first register that will have a value stored in it (R06 in this example). Use '0' to start the loading in R01. "IN" is convenient for the user of your programs. Once a problem has been run, the user can rework the problem, keying only the values he or she wishes to change. (Pressing R/S without keying in a value when prompted leaves the value unchanged). This allows rapid sensitivity analysis of chosen variables. Flag 22 is set upon return from "IN" if the user made an input; it is clear if the user did not make an input. You may be able to make use of this fact. Note that this version of "IN" doesn't work if the printer is plugged in but is turned OFF. Source: Corvallis Division Column, PPC J, V6N7P18.

01 LBL "IN"	05 RCL IND 00	09 CF 21	13 ARCL Y	17 FC? 55	21 END
02 CF 22	06 "⊢="	10 AVIEW	14 STOP	18 RTN	
03 1	07 ASTO Y	11 SF 21	15 STO IND 00	19 ARCL X	
04 ST+ 00	08 " ⊢ ?"	12 CLA	16 FS? 22	20 PRA	(44 bytes)

The version below replaces steps 07-14 above with "PROMPT". The question mark won't appear in the prompt, but input variable names need not be limited to 5 or fewer characters. Also, it can be used when the printer is plugged in but is OFF, if you CF 21 first.

01 LBL "IN"	04 ST+ 00	07 PROMPT	10 FC? 55	13 PRA
02 CF 22	05 RCL IND 00	08 STO IND 00	11 RTN	14 END
03 1	06 "⊢="	09 FS? 22	12 ARCL X	(31 bytes)

This last version will print old values (retained by skipping the prompt with R/S), as well as new values. If no printer is plugged in, it will pause to display the labeled value (new or old), then prompt for the next value. If the printer is plugged in but is OFF, CF 21 before execution and the routine will behave as in the version above. Source: John Dearing (2791).

01 LBL "IN"	04 ST+ 00	07 PROMPT	10 FS? 55	13 RTN	16 END
02 CF 22	05 RCL IND 00	08 STO IND 00	11 PRA	14 AVIEW	
03 1	06 "⊢= "	09 ARCL X	12 FS? 55	15 PSE	(33 bytes)

3-7 <u>OUTPUT ROUTINE ("OUT")</u>: This routine formats and either prints or displays the value in the X Register. Put the values to be output in X and the name of the value in the Alpha Register before executing "OUT". Routine sets Flag 21. Here is an example of the use of "OUT": '..., RCL 06, "LENGTH", XEQ "OUT", RCL 07, "HEIGHT", XEQ "OUT", RCL 08, "WIDTH", XEQ "OUT",'. Source: Corvallis Division Column,

PPC J, V6N7P18.

LBL "OUT", SF 21, "+=", ARCL X, AVIEW, RTN.

(16 bytes)

3-8 YES OR NO QUESTION SUBROUTINE ("YN"): It is frequently desirable to ask the user a question with two possible answers. It is almost always possible to pose the question in a 'yes' or 'no' context. It is usually desirable to remember the user's answer in the form of a set (yes) or clear (no) flag. The routine "YN" aids in asking such questions. (1) It adds the characters "? Y/N" to the prompt put in the Alpha Register prior to call. Note that the prompt must contain six or fewer characters. (2) The routine prints the results of the question if a printer is plugged in and is ON. (3) If a printer is not plugged in, the routine pauses to display the results of the question; if a printer is plugged in but is OFF, CF 21 first. (4) The routine sets or clears the flag specified by the contents of the X Register on call (if X=5, Flag 05 is set or cleared). (5) The routine retains the current status of the flag if the user fails to answer the question. (6) The routine sets and clears Alpha Mode as needed. Example: a program might ask a user if units to be used are metric (SI) or English: '..., 0, "METRIC", XEQ "YN", ...'; if the units to be used are metric, the user keys "Y", and the routine sets Flag 00; if he presses "N", Flag 00 will be cleared. This flag can be tested later in the program as needed. NOTE: This routine could be modified to accept answers other than Yes or No; for example, Left/Right (tails of a normal curve), or Upper/Lower, or even a pair of numbers (1 or 2). Source: Corvallis Division Column, PPC J, V6N7P19.

01	LBL "YN"	07	AOFF	13	"Y"	19	"⊢: "	25	AVIEW	31	END
02	CF 23	80	FC? 23	14	ASTO Y	20	FS? IND T	26	FC? 21		
03	ASTO L	09	RTN	15	X=Y?	21	"HYES"	27	PSE		
04	" ⊢ ? Y∕N"	10	CF IND X	16	SF IND T	22	FC? IND T	28	FC? 21		
05	AON	11	RDN	17	CLA	23	" ⊢ NO"	29	RTN		
06	PROMPT	12	ASTO X	18	ARCL L	24	FC? 21	30	PRA	(69	bytes)

3-9 <u>SHORT YES/NO QUESTION</u>: '..., "(question)?", CF 23, AON, PROMPT, AOFF, ..., F? 23 (any test),'. If the answer is 'yes', press "Y", R/S; if the answer is 'no', just press R/S (any Alpha characters will do in place of "Y"). The status of Flag 23 (the Alpha entry flag) records the answer; if 'yes', Flag 23 is set; if 'no', Flag 23 is clear (until another Alpha entry is made); test Flag 23 to decide what to do. The question could be "PRINT?" or "ANY CHANGES?" for example, and need not be six or fewer characters. Source: Valentin Albillo (4747).

3-10 <u>A PROMPT AFTER INITIALIZATION</u>: Terminate long initializations with "READY" and/or a tone or BEEP. A better prompt than "READY" might be one that tells the user what to do: for example, if you are to enter X, Y and f (frequency) in the stack, then press <u>A</u>, your prompt might be: "X, \uparrow , Y, \uparrow , F: A".

3-11 <u>FLAG DETERMINES PROMPT</u>: ..., CF 00, ..., "MSG1", FS? 00, "MSG2", PROMPT, If Flag 00 is clear, "MSG1" will be the prompt; if Flag 00 is set, "MSG2" will appear. An example (where Flag 00 is cleared in the initialization): LBL C, SF 00, LBL B, "SLOPE?", FS? 00, "ANGLE?", PROMPT, FS?C 00, TAN, If you press <u>B</u>, the prompt is "SLOPE?"; if you press <u>C</u>, the prompt is "ANGLE?"; Flag 00 is then cleared.

3-12 "PROMPT X": To avoid printing (printer plugged in and ON) and to avoid stop-

ping (printer plugged in and OFF) when a stack or numeric register must be viewed, use the Alpha Register and PROMPT. For example, instead of VIEW X, use 'CLA, ARCL X, PROMPT'. The display mode can be reset before the program stops for the PROMPT by inserting, for example, a FIX 2 just before the PROMPT. Source: John Dearing (2791) (PPC CJ, V7N9P28). See 2-31, 4-1, 4-18, 6-4, 6-6, 6-14, 22-23.

3-13 HAS A NEW NUMBER BEEN KEYED IN? IF NOT, USE OLD ONE: ..., FS?C 22, STO 01, RCL 01, Flag 22 must be cleared before possible input.

III. INITIALIZATION & PROMPTING

3-14 TO DETECT NUMERIC INPUT: The usual method is ..., CF 22, "(question)?", PROMPT, F? 22 (any test), If a number is keyed in, Flag 22 is set; if you only pressed R/S, Flag 22 is clear. You then test Flag 22 to decide what to do. If your data cannot include 0 as an input, there is a <u>better method</u> that saves two bytes: ..., 0, "(question)?", PROMPT, X=0? (or other test), If you input some data, the test against zero gives a different result than if you just press R/S without an entry. Source: Valentin Albillo (4747).

3-15 <u>REVIEW OLD ENTRY BEFORE KEYING NEW ONE</u>: Insert 'RCL nn' prior to PROMPT when prompting for an input to be subsequently stored in that same register. Example: ..., "HEIGHT?", RCL 01, PROMPT, STO 01, This way the previous value stored in that register can be reviewed just by pressing backarrow (the correction key) after the prompt appears. If the old value is to be used again, just press R/S; if a new value is to be stored, key it, then press R/S. Source: Robert McDonald (5460).

3-16 INPUTTING IN ONE FORM, USING IN ANOTHER: Using an input routine (as "IN", 3-6)

where the old value is to be used if a new value is not input, but where values input are in one form (say 'feet'), but are to be used in another form (say 'meters'): use register arithmetic to convert old value to units of input, then prompt with input routine, then use register arithmetic to convert back to units used by program. For example:

..., "L, FEET", .3048, ST/ 04, XEQ "IN", .3048, ST* 04,

This converts the contents of R04 to feet, then prompts for an input in feet; if you want to use the previous value input, just press R/S; otherwise, key new value, then R/S. After returning from "IN", contents of R04 (new or old value) is converted to meters.

3-17 <u>CALLING DIFFERENT FUNCTIONS</u>: For programs that need to call different functions at different times, you can have it ask for the name of the function; it will then store the name and execute it indirectly as needed. The function needed can be keyed in just before running the program, or it can have been programmed earlier. To key it in just before running the main program, press 'SHIFT GTO .. PRGM', then enter the function; next, switch out of PRGM Mode and execute the main program. Your function(s) must have a global label of six or fewer Alpha characters.

..., "FUNCT. NAME?", AON, PROMPT, AOFF, ASTO 03, ..., XEQ IND 03,

tines can be used for requesting input without stopping the running program. The calling program provides a prompting message in the Alpha Register, and the subroutine provides a steady display while waiting for a response. After the response, control is returned to the calling program. Load the prompting message into the Alpha Register; for numeric input, XEQ "NUM?"; for Alpha input, XEQ "WRD?". Control is returned to the calling program with the numeric response in the X Register or the Alpha response in the Alpha Register. Source: HP KEY NOTES, V4N1P6.

01	LBL "NUM?"	05	PSE			:	01	LBL "WRD?"	05	LBL	02	09	AOFF
02	AVIEW	06	FC?C 22				02	CF 23	06	PSE		10	RTN
03	CF 22	07	GTO 01				03	AON	07	FC?C	23		
04	LBL 01	08	RTN	(20	bytes)		04	AVIEW	80	GTO	02	(21	bytes)

14

³⁻¹⁸ PROMPT FOR INPUT WITHOUT STOPPING PROGRAM ("NUM?" & "WRD?"): These two subrou-

CHAPTER IV

DISPLAY

$\begin{array}{c} 4-1 & \underline{V}\\ \underline{s}^{\dagger}\\ flags) \end{array}$	IEW ALPHA top. "VA" "VA" prin	("VA"): This may be follo ts Alpha if	s routine, unl owed with a ST the printer is	ike AVIEW, no OP or PAUSE s ON and Flac	ever causes the p (which may be con g 21 is set.	rogram to troled by
01 LBL 02 SF 25	<u>"VA"</u> 0 500	3 PRA (4 SF 25 ()5 FS?C 21)6 CF 25	07 AVIEW 08 FC?C 25	09 SF 21 10 RTN	(24 bytes)
Source:	Roger Hil	. 1 (4940) (P)	PC ROM). See 2	-31, 3-12, 4	-18, 6-4, 6-6, 6-	14, 22-23.
4-2 G(at	OOSE VS. (fter a pro	A)VIEW: The gram execute	flying goose es VIEW or AVI	character wi EW, and the	ll disappear from contents of the re	the display egister being
ted. CLI Manual'	D and STOP , © Copyri	will return ght (June 19	980) Hewlett-Pa	the display ackard Company	. Source: 'HP-41C ny. Reproduced wi	Operating th permission.
4-3 <u>D</u> d: ed by '8 this pro use Flag plays a	ISPLAY MOD igits disp 8'. The co eviously s gs 05 & 06 number in	DE SAVE AND played and the intents of the aved display and Register a certain the	RECALL ("DSPS" ne display mode ne X, Y & Z Ree 7 setting with er 00. "DSPS" Format, and you	& "DSPR"): e. The number gisters are out affecting & "DSPR" are u want to re	"DSPS" will save r in the T Registe unchanged. "DSPR" g the stack. These useful when a su turn to the forma	the number of er is replac- will recall e routines proutine dis- t used when
the substrain 01 LBL 02 0 03 STO (04 RDN 05 1 06 FS? 07 ST+ (routine wa " <u>DSPS"</u> 00 39 0 0	s called. So 08 RDN 09 2 10 FS? 38 11 ST+ 00 12 RDN 13 4 14 FS? 37	Durce: Scott M 15 ST+ 00 16 RDN 17 8 18 FS? 36 19 ST+ 00 20 CF 05 21 CF 06	orrison (436 22 FS? 40 23 SF 05 24 FS? 41 25 SF 06 26 RDN 27 RTN	0) (PPC J, V6N5P3 28 LBL "DSPR" 29 FS? 05 30 FIX IND 00 31 FS? 06 32 ENG IND 00 33 FC?C 05	1). 34 FS?C 06 35 FS? 05 36 SCI IND 00 37 END (75 bytes)
4-4 <u>Si</u> di display store th in. Sour	YNTHETIC S isplay mod mode prev he values rce: Keith	TORE & RECA to in the requirements of the two	LL DISPLAY MOD gister pointed ed in the regin the X, Y & Z 50) (PPC ROM).	E ("SD" & "R to by the in ster pointed Registers b "SD" saves	D"): "SD" stores nteger in X; "RD" to by X. Both ro efore the pointer Flags 16-55.	the current recalls the utines re- was keyed
01 LBL 02 SIGN 03 RDN 04 RCL 0 05 STO 1	<u>"SD"</u> 06 07 08 d 09 M 10	" ⊢ ♦ ♥" X<> M "*" X<> M	1 ASTO IND L 2 RDN 13 RTN 14 LBL "RD" 15 SIGN	16 ARCL IND 17 RDN 18 RCL d 19 STO N 20 "⊢**"	L 21 X<> O 22 STO N 23 "+****" 24 X<> N 25 STO d	26 RDN 27 CLA 28 END (66 bytes)
4-5 <u>S</u> possible into the , RC	YNTHETIC S ecall it j e. For exa e Alpha Re L d, FIX O	AVE DISPLAY ust before a mple, to put gister, then , CF 29, AR	TEMPORARILY: a temporary di t the contents n recover the CL Y, STO d, .	Use Status R splay change of the X Re previous dis Leaves	egister d, the fl , store it back a gister in 'FIX 0, play mode, use th 'garbage' in X.	ag register: s soon as CF 29' mode e following:

16

4-6 <u>LENGTH OF ALPHA STRINGS</u>: Analyze Alpha strings, including PROMPTs, using graph paper, keeping in mind these lengths:

6: As many characters as can be stored in a numeric or stack register.

9: As many as will show in a 2-digit line number (01-99) when in PRGM mode without scrolling; as many as can be appended to a full 15-character string without losing characters on the left.

12: As many characters as will show with a PROMPT without scrolling (not counting nonadjacent periods, commas or colons).

15: As many characters as will fit in one line of a program.

24: As many characters as will fit into the Alpha Register.

4-7 DISPLAY ONE TEXT OR ANOTHER DEPENDING ON A TEST OR FLAG: "TEXT1", TEST,

"TEXT2". For example: "RIGHT", X=Y?, "WRONG" places "WRONG" in the Alpha Register if X=Y, but "RIGHT" if X \neq Y. This technique may be used similarly to display long messages more economically: for example, 'CLA, X \neq Y?, "IN", "+CORRECT"' places "CORRECT" in the Alpha Register if X=Y, and "INCORRECT" if X \neq Y. Source: Valentin Albillo (4747).

4-8 <u>SYNTHETIC DISPLAY SET ("DS")</u>: This routine gives the HP-41C/V a "DSP" function; when "DS" is executed, the calculator stays in the "FIX", "SCI" or "ENG" half of the display mode, but "DS" uses the absolute value of the integer portion of the number in X (if the result is between 0 and 9, inclusive) to determine the number of significant digits after the first one to be displayed. "DATA ERROR" results with an input outside of this range. Example: in FIX 2 Mode, key '6', XEQ "DS"; calculator is now in FIX 6 Mode. Routine destroys the contents of the T & L Registers. Source: Keith Jarett (4360) (PPC ROM).

01	LBL "DS"	04	RCL d	07	X <> d	10	X <> 0	13	X<> N	16	CLA	
02	SIGN	05	STO O	80	STO M	11	STO M	14	STO d	17	END	
03	RDN	06	SCI IND L	09	" - ****"	12	" **"	15	RDN		(42	bytes)

4-9 SYNTHETIC CHANGE FIX-, SCI-, OR ENG- HALF OF DISPLAY MODE ("7FIX", "7SCI" &

"7ENG"): This routine simulates the HP-67/97 versions of "FIX", "SCI" & "ENG": the number of displayed digits doesn't change. To use, XEQ "7FIX" to change to a FIX mode with the same number of digits displayed as before; XEQ "7SCI" or "7ENG" to change to a SCI or ENG mode with the number of digits displayed unchanged. This routine uses no numeric data registers and doesn't disturb the stack (including L). It does not change the status of any flag other than Flags 40 & 41 (which select FIX, SCI or ENG). The Alpha Register is used, then cleared. Executes in 1 second. Source: Valentin Albillo (4747).

01	LBL "7FIX"	07	STO N	13 \$	STO d	19	GTO 01	25	STO M	31	END
02	XEQ 02	80	CLX	14 (CF 00	20	LBL "7ENG"	26	"⊢**"		
03	SF 00	09	RCL d	15 (CF 01	21	XEQ 02	27	X<> N		
04	GTO 01	10	STO M	16 I	RTN	22	SF 01	28	STO d		
05	LBL 02	11	"-****"	17 I	LBL "7SCI"	23	LBL 01	29	X <> 0		
06	CLA	12	X <> M	18 2	XEQ 02	24	x<> d	30	CLA	(85	bytes)

4-10 SYNTHETIC 'FIX/ENG' DISPLAY MODE: Setting Flags 40 and 41 simultaneously puts

the 41C/V in 'FIX/ENG' display mode. In ordinary 'FIX' format (Flag 40 set, Flag 41 clear), numbers which are too large or too small to display properly cause the display to default to the 'SCI' format; in 'FIX/ENG' format, however, the default is to the 'ENG' mode. Source: William Wickes (3735) ('Synthetic Programming on the HP-41C').

17

4-11 <u>APPROXIMATING CONTINUOUS SCROLLING</u>: Continuous scrolling to the left can be approximated by overlapping register recalls. Example: ..., ARCL 01, ARCL 02, ARCL 03, ARCL 04, AVIEW; ARCL 03, ARCL 04, ARCL 05, ARCL 06, AVIEW; etc. Source: Richard J. Nelson (1) (PPC J, V6N5P32).
 4-12 SCROLLING READABILITY: Leave a blank space or two at the beginning of 13 or 14

character displays for better readability of the scrolled message. Source: Richard J. Nelson (1) (PPC J, V6N5P32).

4-13 SCROLL LEFT ("SCE"): Especially for strings greater than 24 characters in

length. (1) Write out the message in full, then mark it off into groups of 13 characters (nonadjacent periods, commas and colons don't count; spaces do). Use leading blanks if you wish. (2) In PRGM Mode, key a label if appropriate, then turn Alpha Mode ON. (3) Enter the first 13 characters. (4) Rapidly press 'ALPHA, ALPHA, ALPHA' to terminate the program line and prepare for the next line. (5) Press 'SHIFT APPEND' and then enter the next 11 characters (13 + 11 = 24). (6) Press "AVIEW". (7) Beginning with the first character used in step 5, go to step 3. (8) Repeat steps 3-7 until the message is complete. Example: the following routine displays "**HP-41C/V **" repeatedly scrolling across the display from right to left. Step 02 is 12 blanks followed by one "*"; step 05 is "*HP-41C/V**" followed by 2 blanks; step 06 is append 11 blanks. Source: David Walker (1840) (PPC J, V6N7P3).

01	LBL	"SCE"		03	" + *HP-41C/V**	*'' 0	5	"*HP-41	C/V**		07 AV	IEW
02	"		*"	04	AVIEW	0	6	"⊢		"	08 G1	ro "SCL"
4-1	4 5	SCROLL	RIGHT	(GOOSE	REPLACEMENT)	("SCR"	&	"SO"):	This	routine	takes	advantage

of a minor, good bug in the 41C/V involving the error flag. Put the desired replacement character(s) in the Alpha Register, set Flag 25, AVIEW, and set any nonexistent flag. For example, put these steps into a program (say before a loop, where Alpha won't be disturbed) to replace the goose with a hyphen: "-", SF 25, AVIEW, SF 99. Here's a demonstration routine which will prompt you for the Alpha string to use (try "GOOSE"):

01	LBL "SCR"	04	STOP	07	AVIEW	10	1.2	13 END	
02	"SCROLL CHAR.?"	05	AOFF	08	SF 99	11	SIN		
03	AON	06	SF 25	09	LBL 01	12	GTO 01		(39 bytes)

It appears that the Alpha Register is scrolled. Now try "AAAAAAAAAAAATESTTEST" (12 'A's + 3 'TEST's). You will hear a tone when the 24th character is keyed in. The display first scrolls to the left, then to the right. The A's disappear and only "TESTTEST" scrolls. Also observe that the scroll wraps around and all 12 display characters are always in the display. Conclusion: this routine scrolls the last 12 characters after a normal 'read scroll' to the left, if the Alpha string is more than 12 characters. For fun, try six pairs of any of the following for visual effect: "XY", "MW", "+-", & ":.".

You can use a subroutine to replace the goose; at the beginning of a series of loop calculations, place the desired display string in the Alpha Register, then XEQ "SO". Have the following routine available: LBL "SO", SF 25, AVIEW, SF 99, RTN. Source: Richard Nelson (1) (PPC J, V6N8P24).

4-15 SYNTHETIC GOOSE REPLACEMENT: With an Alpha string of up to 12 characters in

Alpha, put the instruction sequence 'RCL d, AVIEW, STO d' into a program (say before a loop), and the goose will be replaced by the contents of the Alpha Register, stepping around the display. Source: William Wickes (3735) ('Synthetic Programming on the HP-41C').

4-16 DISPLAY X & Y SIMULTANEOUSLY ("XY" & "X?Y"): This routine is useful when two

numbers are output (complex numbers or coordinates, for example). "XY" uses the current display mode; "X?Y" formats according to 'm.n' stored in R00, setting X

LO FIA III dIIU I LO FIA II. SOURCE: PELER LAURACII (SUOU) (PPC CJ	to	FIX m and	Υt	to FI	X n.	Source:	Peter	Ladrach	(5060)	(PPC CJ	, V7N4P6).
--	----	-----------	----	-------	------	---------	-------	---------	--------	---------	------------

01	LBL "XY"	05 ARCL Y	: 0	1 LBL "X?Y"	05 " - "	09 *	13 AVIEW
02	CLA	06 AVIEW	0	2 CLA	06 RCL 00	10 FIX IND X	14 RTN
03	ARCL X	07 RTN	0	3 FIX IND 00	07 FRC	11 RDN	
04	"⊢ "	(16 bytes)	: 0	4 ARCL X	08 10	12 ARCL Y	(27 bytes)

4-17 SYNTHETIC DISPLAY TEST ("DT"): To test all display annunciators, XEQ "DT"; the

routine will pause to display 12 commas, then stop to display 12 boxed stars and 12 colons, plus all the lower annunciators (BAT, USER, etc). To clear the display and restore the display mode, press PRGM to get out of PRGM Mode, then R/S. The routine uses the T & L Registers. Lines 02 and 10 are nonstandard; Line 02 is decimal 247, 248, 0, 0, 16, 0, 33, 232; Line 10 is decimal 246, 128, 58, 128, 58, 128, 58. Source: William Wickes (3735) & Valentin Albillo (4747) (PPC ROM).

01 LBL "DT"		05 ASTO L	*10 ":::"	15 X <> d	20 CLD
*	02 "♠♠⊖♠!	06 ARCL L	11 ASTO L	16 AVIEW	21 END
		07 AON	12 ARCL L	17 STOP	
03 RCL M		08 PSE	13 ARCL L	18 X <> d	
04 ",,,,,,"		09 AOFF	14 ARCL L	19 RDN	(56 bytes)

4-18 "AVIEW" REPLACEMENT ROUTINES ("AV" & "AVN"): These routines can be used in place of "AVIEW" in a program. "AV" (Alpha View, stop only if printer is off)

has the following characteristics: a. No printer--simply AVIEW without stopping. b. Printer is off, and "PRINTER OFF" is displayed--merely turn on the printer and press R/S to print and display the Alpha Register. c. Printer is on--it prints and displays the Alpha Register without stopping. d. Flag 21--Flag 21 does not control the printer and retains its set or clear status. "AV" was written to aid users who normally operate their HP-41 system with the philosophy that if their printer is connected it should print, and they should be reminded to turn it on if it is off. "AV" illustrates another use of flags. Lines 02 and 03 use Flag 14 (the flag that allows you to record on a clipped corner card) to store the status of Flag 21. Lines 11 and 12 restore both flags to their original status. There is little danger in using Flag 14 in this way because it is very unlikely that you will stop the routine to record on a clipped-corner card.

"AVN" (Alpha View, never stop): this routine never causes a STOP. It is similar to "VA" (4-1), but this routine will print if the printer is on, even if Flag 21 is clear, while "VA" won't print if Flag 21 is clear.

Source: HP KEY NOTES, V5N1P7. See 2-31, 3-12, 4-1, 6-4, 6-6, 6-14, 22-23.

01	LBL "AV"	08 LBL 14	01 LBL "AVN"	08 CF 21
02	FS? 21	09 CF 21	02 FS? 21	09 AVIEW
03	SF 14	10 AVIEW	03 SF 14	10 FS?C 14
04	FC? 55	11 FS?C 14	04 SF 21	11 SF 21
05	GTO 14	12 SF 21	05 SF 25	12 END
06	SF 21	13 END	06 PRA	
07	PRA	(29 bytes)	07 CF 25	(29 bytes)

CHAPTER V

ALPHA MANIPULATIONS

5-1 <u>ALPHA TO MEMORY & MEMORY TO ALPHA ("AM" & "MA")</u>: With a control number <u>bbb.eee</u> in X, XEQ "AM" to store the contents of the Alpha Register in data registers, or XEQ "MA" to recall data registers into the Alpha Register. "AM" clears the Alpha Register--restore with the same control number and "MA". The end register (eee) should be no more than 3 higher than the beginning register (bbb) (unless using the full form of the control number, bbb.eeeii). For example, key '17.020', XEQ "AM" to store all 24 characters of the Alpha Register in R17-R20; using '17.018' as the control number instead will store the first 12 characters of the Alpha Register only. Remember to have a control number in X before executing either routine. Source: Keith Jarett (4360) (PPC ROM).

01	LBL "AM"	04	ASHF	07	RTN	10	LBL 02	13	GTO 02	
02	LBL 01	05	ISG X	08	LBL "MA"	11	ARCL IND X	14	END	
03	ASTO IND X	06	GTO 01	09	CLA	12	ISG X		(32	bytes)

5-2 ALPHA STRING TESTING RESTRICTIONS ON EARLY MACHINES: If you are testing two

Alpha strings that were originally longer than six characters (when created in the Alpha Register), then you must perform the following procedure to ensure proper string truncation and test results. Strings can only be tested with X=Y? or X \neq Y?. (1) Store the first string into a register using ASTO nn. If the string is not longer than six characters, skip this step and go to step 04. (2) Clear the Alpha Register with CLA. (3) Recall the string into the Alpha Register using ARCL nn. (4) Store the string into the X Register using ASTO X. (5) Repeat the steps above for the second Alpha string, but store it in the Y Register using ASTO Y. (6) Execute "X=Y?" or "X \neq Y?". Source: HP KEY NOTES, V4N1P3.

5-3 CAUTION WHEN EDITING ALPHA BLANKS IN COMBINATION WITH PUNCTUATION (. : ,): Ap-

parently the backarrow (correction) key causes the underscore prompting mark to move back <u>two</u> characters in the display while only <u>one</u> character is actually removed from the Alpha Register. Try these steps in ALPHA Mode: 'CLA, "Z", SPACE, COMMA, BACKARROW, BACKARROW, AVIEW'. You will see the "Z" disappear from the display but an Alpha Register call (or ALPHA, ALPHA) shows that it is still in the Alpha Register. For a more spectacular display of this effect, see what happens with more and more erasures of 'SPACE, COMMA' pairs following the "Z". Eventually, repeated backarrow erasures cause the underscore mark to disappear from the left of the display, reappear on the right of the display two strokes later, then apparently recover the remaining Alpha contents, and continue as before. Source: Charles Harris (1959) (PPC CJ, V7N3P28).

5-4SYNTHETIC DELETE LAST ALPHA CHARACTER ("AD"): This routine deletes the last
character of the Alpha string in the Alpha Register. Uses the stack. Source:
Gerard Westen (4780) (PPC ROM).01LBL "AD"05 X<> N09 STO M13 RDN17 .121 END

02 03	RCL P RCL O	06 07	"+*****" RCL N	10 11	ASTO X RDN	14 15	STO RDN	N	18 19	STO P ASHF	(47	、
04	•	80	CLA	12	STO M	16	STO	0	20	ARCL Z	(47	bytes)

5-5 <u>SYNTHETIC ISOLATE & SUBSTITUTE CHARACTERS ("NC" & "SU")</u>: "NC" (Nth Character) isolates the nth character from the <u>right</u> of the string in Alpha. It assumes a positive number in X whose integer portion, n, is from 1 to 10. It replaces an arbitrarily long string in Alpha with its nth character from the right; it also places that character into X. The values in X & Y before keying in the number are returned to Y & Z. <u>"SU" (Substitute Character)</u> provides a string-editing capability; with a positive number in X whose integer portion, n, is from 1 to 10, this routine replaces the nth character from the right in Alpha with the character in Y (with the rightmost character in Y, if more than one). Values in X & Y before keying in the number are returned to X & Y. An integer 1 greater than the number of characters in Alpha adds the character in Y onto the left of the Alpha string. Source: William Wickes (3735) (PPC ROM).

01	LBL "NC"	11	RCL d	21	GTO 14	31	DSE L	41	CLX	51	LBL 14
02	CF 25	12	SCI IND Y	22	X <> Z	32	CLX	42	ISG L	52	X<> 0
03	GTO 14	13	ARCL Y	23	STO O	33	X <> L	43	CLX	53	CLA
04	LBL "SU"	14	STO d	24	"+*****"	34	10 † X	44	X <> P	54	STO M
05	SF 25	15	RDN	25	X<> Z	35	RCL d	45	STO N	55	ASTO X
06	LBL 14	16	X <> 0	26	STO P	36	FIX O	46	CLX	56	END
07	INT	17	FS? 25	27	RDN	37	CF 29	47	X <> 0		
08	E1	18	RCL P	28	X <> 0	38	ARCL Y	48	STO M		
09	X<>Y	19	"⊢*"	29	X<> N	39	STO d	49	RDN		
10	-	20	FC?C 25	30	STO M	40	RDN	50	RTN		(112 bytes)

5-6 SYNTHETIC CHARACTER-DECIMAL CONVERSIONS ("CD" & "DC"): "CD" (Character to Dec-

imal): With a single Alpha character in the Alpha Register, this routine will return the corresponding decimal number to X (0-255), according to the Byte Table. With more than one Alpha character in Alpha, the decimal equivalent of the rightmost character is returned. With Flag 10 clear, the Alpha character will be deleted from the Alpha Register; with Flag 10 set, it will be left in Alpha. Values in X, Y & Z Registers before execution will be returned to Y, Z & T. "DC" (Decimal to Character): With a positive number in X whose integer portion is 0-255, this routine will add the corresponding Alpha character to the Alpha string in the Alpha Register. The values in X & Y before keying the decimal will be returned to X & Y; Z & T values are lost. Source: William Wickes (3735) & Roger Hill (4940) (PPC ROM).

01	LBL "CD"	12	"⊢***"	23	ST*	L	34	+	45	FS? 06	56	STO P	
02	"⊢◆↓****"	13	X<> M	24	X <>	L	35	OCT	46	SF 08	57	RDN	
03	RCL M	14	X<> L	25	ST+	0	36	X <> d	47	X <> d	58	x <> 0	
04	FS? 10	15	X<> N	26	CLX		37	FS?C 11	48	X<> M	59	X<> N	
05	"⊢*"	16	INT	27	X <>	0	38	SF 12	49	RCL N	60	STO M	
06	STO M	17	ST+ O	28	RTN		39	FS?C 10	50	"⊢*"	61	RDN	
07	CLX	18	RDN	29	LBL	"DC"	40	SF 11	51	X <> 0	62	END	
80	X <> 0	19	6	30	INT		41	FS?C 09	52	X <> Y			
09	SIGN	20	ST* O	31	256		42	SF 10	53	STO N			
10	CLX	21	RDN	32	MOD		43	FS? 07	54	X <> P			
11	X<> N	22	E1	33	LASI	rx	44	SF 09	55	" ⊢ *"		(129	bytes)

5-7 SYNTHETIC HEX-NNN CONVERSIONS ("NH" & "HN"): An 'NNN' is a nonnormalized num-

ber--one whose sign nybble is other than 0 (a positive number), 1 (an Alpha string), or 9 (a negative number), or one whose sign nybble is 0 or 9, but which contains any digits of value A-F. <u>"HN" (Hex to NNN)</u>: Changes a hex number in Alpha (up to 7 hex digits long) to a NNN in X, and to its corresponding Alpha string in Alpha. Values in X, Y & Z before execution are returned to Y, Z & T; zero is returned to L. Attempting an arithmetic operation on an NNN gives "ALPHA DATA" error message. <u>"NH" (NNN to Hex)</u>: Converts an NNN in X to Hex in Alpha (and sets ALPHA Mode). The NNN remains in X. "NH" will also convert an Alpha string of up to 6 characters in X to hex in Alpha. The Alpha string remains in X. Source: Roger Hill (4940), William Wickes (3735) & John McGechie (3324).

01		21	cmo d	11	CF 07	61		01		101	т пт	1 /
$\frac{01}{02}$		21		41		$\frac{01}{62}$		01	$\frac{LDL}{ES2} 07$	101		74
02		22		42	FS:C 00	62		02	FS: 07	102	X C /	a
03	STO M	23	FS? 10	43	GTO 14	63	SIGN	83	SF 11	103	X<>	0
04	SIGN	24	GTO 12	44	SF 06	64	LBL 02	84	FS? 06	104	"⊢*'	•
05	X <> d	25	RDN	45	CF 05	65	RDN	85	SF 10	105	STO	Р
06	"⊢♦♦*"	26	14	46	LBL 14	66	RCL N	86	FS? 05	106	"⊢*'	1
07	•	27	LBL 01	47	X <> d	67	X <> d	87	SF 09	107	X<>	Р
80	X<> M	28	RCL O	48	STO M	68	CF 11	88	FS? 04	108	STO	0
09	"⊢♦♦"	29	X <> d	49	"⊢*"	69	CF 10	89	SF 08	109	DSE	L
10	X<> M	30	FC? 06	50	RDN	70	FC?C 09	90	FC? 01	110	GTO	02
11	FIX 9	31	FS? 05	51	DSE X	71	GTO 14	91	GTO 14	111	CLA	
12	ARCL N	32	FC? 04	52	GTO 01	72	SF 12	92	SF 08	112	STO	М
13	"+**"	33	GTO 14	53	LBL 12	73	FC?C 15	93	FC?C 11	113	AOFE	י
14	ARCL O	34	LBL 13	54	STO P	74	SF 15	94	SF 11	114	END	
15	X <> 0	35	SF 01	55	X <> 0	75	FS? 15	95	FS? 11			
16	FIX 3	36	CF 02	56	X<> N	76	GTO 14	96	GTO 14			
17	ARCL O	37	CF 03	57	STO M	77	FC?C 14	97	FC?C 10			
18	STO O	38	CF 04	58	X <> L	78	SF 14	98	SF 10			
19	"L * "	39	FS?C 07	59	AON	79	FC? 14	99	FC? 10			
20	RDN	40	GTO 14	60	RTN	80	SF 13	100	SF 09	(2	227 k	oytes)
 5-8	TO CONVE	 RT 2	A NUMBER IN	х Х	(6 OR FEWER	DIC	GITS) INTO	ITS	ALPHA FORM	IN 2	 x ("N	 N-A"):
	LBL "N-A	", 1	ARCL X, ASTO	ΣХ	, CLA, RTN.	Soi	irce: Jake	Sch	vartz (1820) (P	PC J	, V6
N8P	26).	_'										
5- 9	LOSING C	HAR lei	ACTERS WITH	ARG	CL: If "ARC	 ة "L" ة ت را	adds charac with no ton	ters	s to a full arning. Sour	Alpl	na Re Will	egis- iam
Wic	kes (3735).											

CHAPTER VI

FLAGS & TONES

6-1 <u>FLAG</u> flag loop. The <u>LBL "FT"</u> , Schwartz (TOGGLING ("FT"): The if clear or clear a following routine, "F FC?CIND X, SFIND X, F 1820) (PPC J, V6N8P26	instruction set flag if set (to T", will toggle TN. Source: Ror	equence 'FC?C n oggle the flag) e the flag whose n Knapp (618) (1	n, SF nn' wil . It may be u e number (0-2 PPC J, V6N5P6	ll set a used in a 29) is in X: 5) & Jake
6-2 <u>SET</u> Kolb	OR CLEAR A FLAG WITH (265) (BP 67/97).	0 OR 1: LBL A,	SF 01, X=0?, C	F 01, S	Source: Bill
6-3 <u>CLEA</u> term to clear F Flags 0-25 Registers.	R MULTIPLE FLAGS ("CF ined by the (bbb.eee) lags 5-10, key '5.01' . These routines use Source: William Chee	X" & "CFA"): "(control number , XEQ "CFX". "(no numeric data eseman (4381) (B	CFX" clears a ' r in X before e CFA" supplies 0 a registers and PPC CJ, V7N5P7)	block' of fla xecution. For .025 to "CFX preserve X,	ags, as de- r example, " to clear Y, Z & L
<u>LBL "CFA"</u> ,	.025, <u>LBL "CFX"</u> , CF	IND X, ISG X, G	TO "CFX", RDN,	RTN.	(29 bytes)
controls S (press bac XEQ "IF" a ends with ber) are r printer is always tes	e number is in X. It HIFT Mode, Flag 48 cc karrow [correction] k nd PRGM Mode will be RTN, RTN or with RTN, estored; Z & T are 1c NOT plugged in, but ts set if the printer	works for flags ontrols ALPHA Mo set at the last END). The value ost. Note on Fla it won't work is sis plugged in the	5 00-29, 31-44, ode, Flag 50 sto Flag 52 controls t line of the ro les in X and Y ag 55: "IF" will if the printer). Source: Roge	47-50, 52 & ops and views s PRGM Mode. outine (if th (before keyin l toggle Flag IS plugged in r Hill (4940	55. Flag 47 s the goose Key '52', he routine ng flag num- g 55 if the h (Flag 55) (PPC ROM).
01 LBL "IF 02 ABS 03 24 04 + 05 STO M 06 8	<u>"</u> 07 ST/ M 13 08 MOD 14 09 RCL d 15 10 X <> M 16 11 INT 17 12 SCI IND X 18	ARCL X 19 X<>Y 20 X<> O 21 X<> N 22 X<> A 23 FC?C IND O 24	9 SF IND 0 25 0 X<> d 26 1 STO M 27 2 RDN 28 3 12 29 4 - 30	SCIINDX 3 ARCLX 3 X<> O STO d RDN CLA	1 RTN 2 END (58 bytes)
6-5 <u>SYNT</u> ted 245, 4, 16	HETIC VIEW FLAGS ("VF in line 04, is routin 8, 0, 128, 1. Source:	"): XEQ "VF" to e 6-4 above. Li Keith Jarett	o see which flac ine 08 is nonst (4360) & Roger	gs are set. andard; it is Hill (4940)	"IF", execu- s decimal (PPC ROM).
01 LBL "VF 02 50 03 FC? 50 04 XEQ "IF 05 "βP ← ← 06 RCL M 07 SIGN *08 "α 09 X<> M 10 4	<pre>" 11 RDN 12 "FLAGS SET:' 13 X<> d " 14 XEQ "VA" ◆ " 15 X<> d 16 CLA 17 LBL 01 ◆ *" 18 FS? IND L 19 XEQ 02 20 ISG L</pre>	21 GTO 01 22 X<> d 23 FC?C 24 24 XEQ "VA" 25 ADV 26 BEEP 27 X<> d 28 RDN 29 RTN 30 LBL 02	31 "⊢ " 32 X<> d 33 ARCL L 34 CF 24 35 DSE T 36 GTO 03 37 XEQ "VA" 38 TONE 6 39 CLA 40 4	41 RDN 42 SF 24 43 LBL 03 44 X<> d 45 RTN 46 LBL "VA 47 SF 25 48 PRA 49 FS?C 21 50 CF 25	51 AVIEW 52 FC?C 25 53 SF 21 54 END

VI. FLAGS & TONES

6-6 <u>SYNTHETIC FLAG 55 TOGGLE ("55")</u>: This routine will toggle Flag 55 (the Printer Existence Flag) if the printer is not plugged in. If Flag 55 is set, VIEW and AVIEW will not stop program execution, thus allowing the ROM routines to be executed as subroutines of a main program. The stack is left unchanged; it does not change the status of any flag except Flag 55. "55" uses no data registers; the Alpha Register is used, then cleared. Execution time is less than 1 second. To use, simply XEQ "55"; if Flag 55 was clear, it will be set; if it was set, it will be cleared. Source: Valentin Albillo (4747). See 2-31, 3-12, 4-1, 4-18, 6-4, 6-14, 22-23.

01	LBL	"55"	04	CLX		07	" - ****"	10	FC?C 15	13	STO M	16	STO d	19	RTN
02	CLA		05	RCL	d	08	X <> M	11	SF 15	14	"⊢**"	17	X <> 0		
03	STO	Ν	06	STO	М	09	STO d	12	X <> d	15	X<> N	18	CLA	(41	bytes)

6-7 <u>SYNTHETIC RESET FLAGS ("RF")</u>: This routine resets flags to "MASTER CLEAR" status, except that the display mode is set to FIX 2, not FIX 4. Note that USER Mode is turned off (CF 27) and Flag 55 is unaltered. Alpha Register is cleared. Flags set by this routine: 26, 28, 29, 38, 40. Line 02 is nonstandard; it is decimal 244, 44, 2, 128, 0. Source: Valentin Albillo (4747) (PPC ROM).

LBL "RF", ",x♦", ASTO d, CF 03, CLA, RTN

(17 bytes)

6-8 SYNTHETIC MASS FLAG CONTROL: A synthetic text line of up to seven characters,

followed by a 'RCL M', will place an NNN (Non Normalized Number) into the X Register. An important use of NNNs so created is for 'mass flag control' through storage of the NNN into Register d, the Flag Register, allowing the setting or clearing of all 56 flags in one operation. The basic sequence is "XXXXXXX", RCL M, STO d, where "XXXXXXX" represents the synthetic text line used to generate the NNN. This routine uses 12 bytes, the same as would be required for six 'SF nn' or 'CF nn' program lines; hence, use of this routine will save bytes whenever more than six flags are to be set or cleared.

To determine the synthetic text line required to generate the desired flag status, write out the states of all of the flags as a 56-bit binary number, with 1's for set flags and 0's for clear flags, then group the bits into eight-bit hexadecimal bytes. The example below sets Flags 1, 2, 3, 26 (audio enable), 28 (radix), 29 (separator); for 'FIX/ENG 3' display format, it sets Flags 38, 39, 40 & 41; for RAD Mode, it sets Flag 43; for continuous ON, it sets Flag 44; all other flags are clear. Flag 00 is on the left; Flag 55 is on the right.

0111 0000 0000 0000 0000 0010 1100 0000 0011 1101 1000 0000 0000 7 0 0 0 0 0 2 С 0 3 D 8 0 0 The required text line, preceded by a TEXT 7 byte, is 'F7 70 00 00 2C 03 D8 00'; the decimal equivalent is 247, 112, 0, 0, 44, 3, 216, 0.

Source: William Wickes (3735) ('Synthetic Programming on the HP-41C'). See 25-6.

6-9 ASSIGNING "TONE" TO THE TOP TWO ROWS OF KEYS: If you assign "TONE" to each of

the keys in the top two rows, a double press of each key in USER mode will execute tones 1-5 (top row) and tones 6-0 (second row). Source: George Donaldson (3825) (PPC J, V6N5P19). This same idea applies to other functions; assign FIX to the 1/X key to easily set FIX 2, for example. Synthetics can be used to reduce these useful assignments to a single keystroke. (See the Key Assignments Program ["KA"] in 'Synthetic Programming on the HP-41C', pp 45-47, by William Wickes (3735).

6-10 SYNTHETIC TONE ROUTINES ("T1" - "T5"): "T1" Phasers; "T2" BEEP 2 (no synthe-

tics), "T3" Bach Toccata; "T4" Shave & a Haircut 2 Bits; "T5" Alarm; "T6" Close Encounters. Numbers in parentheses below are the synthetic tone numbers. Source: "T1", Cary Reinstein (2046); "T3", Nicholas Peros (2392); others, Gary Tenzer (1816) (PPC CJ, V7N2P49). Key synthetic tones using the Load Bytes Program; each syn. tone is 2 bytes; the 1st is always 159; the 2nd is any number from 0 to 127.

23

24

01 LBL "T1"	17 TONE 1	33 TONE 5 (15)	49 TONE b (124)	65 TONE 2 (72)
02 TONE 7 (57)	18 TONE 5	34 TONE 4 (94)	50 TONE 3 (83)	66 TONE 7 (57)
03 TONE 7 (57)	19 TONE 3	35 TONE H (109)	51 RTN	67 TONE 2 (72)
04 TONE 7 (57)	20 TONE 6	36 TONE b (124)	52 LBL "T5"	68 RTN
05 TONE 9 (89)	21 TONE 4	37 TONE 3 (13)	53 XEQ 02	69 TONE "T6"
06 TONE 9 (89)	22 TONE 8	38 RTN	54 XEQ 02	70 TONE 0
07 TONE 9 (89)	23 TONE 9	39 LBL 01	55 X <> Y	71 TONE 1
08 TONE 7 (57)	24 RTN	40 X<> X	56 X <> Y	72 TONE 5 (15)
09 TONE 9 (89)	25 LBL "T3"	41 X <> X	57 X <> Y	73 TONE b (124)
10 TONE 9 (89)	26 TONE 1	42 RTN	58 X <> Y	74 TONE 4 (94)
11 TONE 7 (57)	27 TONE 0	43 LBL "T4"	59 LBL 02	75 END
12 TONE 9 (89)	28 TONE 3 (33)	44 TONE X (115)	60 TONE 7 (57)	
13 TONE 9 (89)	29 XEQ 01	45 TONE 1	61 TONE 2 (72)	
14 TONE 9 (89)	30 XEQ 01	46 TONE 1	62 TONE 7 (57)	
15 RTN	31 XEQ 01	47 TONE 8 (98)	63 TONE 2 (72)	
16 LBL "T2"	32 TONE 0	48 TONE Z (113)	64 TONE 7 (57)	(168 bytes)

6-11 <u>SYNTHETIC MOZART ("MOZ" & "MO")</u>: "MOZ" plays a phrase from "Eine Kleine Nachtmusik", accompanied by an entertaining display; the stack is used. "MO" is a variation with no display that does not change the stack; it can be used as a BEEP alternative. Source: Robert Swanson (5993).

01	LBL "MOZ"	22	LBL 01	01	LBL "MO"	22	LBL 01		
02	CLST	23	TONE 0 (0)	02	TONE 6 (96)	23	TONE 6	(66	5)
03	CF 21	24	LBL 01	03	LBL 01	24	LBL 01		
04	"><>MOZART<><"	25	TONE 2 (2)	04	LBL 01	25	TONE 0	(80))
05	SF 25	26	LBL 01	05	TONE H (109)	26	TONE 0	(80))
06	AVIEW	27	TONE 3 (3)	06	LBL 01	27	LBL 01		
07	SF 99	28	+	07	TONE 6 (96)	28	TONE 6	(66	5)
80	LBL 01	29	LBL 01	08	LBL 01	29	TONE 3	(83	3)
09	TONE 6 (96)	30	TONE 6 (66)	09	LBL 01	30	END		
10	+	31	LBL 01	10	TONE H (109)				
11	LBL 01	32	TONE 0 (80)	11	LBL 01				
12	TONE H (109)	33	TONE 0 (80)	12	TONE 0 (0)				
13	LBL 01	34	LBL 01	13	LBL 01				
14	TONE 6 (96)	35	TONE 6 (66)	14	TONE H (109)				
15	+	36	TONE 3 (83)	15	LBL 01				
16	LBL 01	37	"***MOZART***"	16	TONE 0 (0)				
17	TONE H (109)	38	PROMPT	17	LBL 01				
18	LBL 01	39	GTO "MOZ"	18	TONE 2 (2)				
19	TONE 0 (0)	40	END	19	LBL 01				
20	LBL 01			20	TONE 3 (3)				
21	TONE H (109)		(93 bytes)	21	LBL 01			(51	bytes)

6-12 <u>MARY HAD A LITTLE LAMB</u>: This is an amusement routine; it requires SIZE 012. XEQ "MARY"; when the initialization is complete, press R/S as often as desired. If printer is plugged in, CF 21 before executing Mary. Source: Bill Kolb (265) (PPC CJ, V7N1P13 & V7N4P13).

01	LBL "MARY"	11	ASTO 03	21	ASTO 08	31	XEQ 01	41 TONE 3
02	"HOLD ON"	12	" LAMB"	22	" AS"	32	XEQ 02	42 VIEW 04
03	AVIEW	13	ASTO 04	23	ASTO 09	33	VIEW 03	43 TONE 3
04	" MARY"	14	" ITS"	24	" SNOW"	34	TONE 1	44 XEQ 02
05	ASTO 00	15	ASTO 05	25	ASTO 10	35	TONE 1	45 XEQ 01
06	" HAD"	16	"FLEECE"	26	н н	36	VIEW 04	46 X <> Y
07	ASTO 01	17	ASTO 06	27	ASTO 11	37	TONE 1	47 VIEW 05
80	" A"	18	" WAS"	28	"OK-PRESS R/S"	38	XEQ 02	48 TONE 2
09	ASTO 02	19	ASTO 07	29	PROMPT	39	VIEW 03	
10	"LITTLE"	20	"WHITE"	30	LBL 00	40	TONE 2	[continued]

49	VIEW	06	55	VIEW	09	61	GTO	00	67	TONE	0	73	VIEW 04	79	X <> Y	
50	TONE	1	56	TONE	1	62	LBL	01	68	VIEW	02	74	TONE 2	80	X <> Y	
51	VIEW	07	57	VIEW	10	63	VIEW	<u>7 0</u> 0	69	TONE	1	75	RTN	81	X <> Y	
52	TONE	1	58	TONE	0	64	TONE	2	70	VIEW	03	76	LBL 02	82	X <> Y	
53	VIEW	08	59	VIEW	11	65	TONE	C 1	71	TONE	2	77	X<>Y	83	END	
54	TONE	2	60	STOP		66	VIEW	101	72	TONE	2	78	X<>Y		(224	bytes)

6-13 <u>RESET FLAG 12 WHEN NEEDED</u>: Flag 12, if set, instructs the HP 82143A Printer to print double wide. This flag is cleared when the 41C/V is turned off. For this

reason, it is a good practice to set Flag 12 whenever double-wide printing is desired, rather than only once at the beginning of the program. If a program is stopped and the calculator turned off, or the machine 'times out' and turns off, the output may not be as expected when the calculator is turned on and program execution is resumed. Source: HP KEY NOTES, V5N1P7.

6-14 <u>FLAG 21</u>: Flag 21 gives the user control of the printer and its automatic response to VIEW and AVIEW instructions. Flag 21 is automatically set when Flag 55 is set (except when Flag 55 is set synthetically--see 6-4 & 6-6). Flag 55 is set whenever the printer is plugged in. If the printer is not plugged in when the HP-41 is turned on, Flags 55 and 21 are cleared. You do not have any control over Flag 55 (except synthetically), but you may set and clear Flag 21 as desired.

FLAG 21 & VIEW/AVIEW

FLAG 21 SET: Execution stops on (A)VIEW unless printing can occur (printer plugged in & on). Execution stops on (A)VIEW both when printer is not plugged in and when it is plugged in, but is off.

FLAG 21 CLEAR: (A)VIEW never prints and never halts execution.

Perhaps the most confusing situation arises when AVIEW is used in a program and the printer is connected but not turned on. When this occurs, program execution stops at the AVIEW instruction. A solution is to turn on the printer and press R/S. Other solutions: (1) CF 21, R/S; or (2) turn HP-41 OFF, unplug printer, turn HP-41 ON and R/S. The use of Flags 21 and 55 must be carefully planned and tested if the desired combinations of display, printed outputs, or both are to be obtained. Source: HP KEY NOTES, V5N1P7. See 4-1, 4-18, 6-4, 6-6, 2-31, 3-12, 22-23.

6-15 <u>SYNTHETIC SET OR CLEAR ANY FLAG ("SET" & "CLR")</u>: These routines call on the Synthetic Invert Flag Routine, "IF" (6-4).

LBL "SET", FC? IND X, XEQ "IF", RTN LBL "CLR", FS? IND X, XEQ "IF", RTN

CHAPTER VII

STACK OPERATIONS

7–1	OPERATIONS OF X ON X: Source: Valentin Albillo (4747). $\overline{ST+ X}$: Doubles X. Faster than '2, *'; doesn't disturb Y, Z, T, or L. $\overline{ST- X}$: Similar to CLX; doesn't disable stack lift. 2 bytes rather than 1. $\overline{ST* X}$: Similar to X ¹ 2, but 2 bytes. Doesn't disturb LASTX (L) Register. $\overline{ST/ X}$: Replaces value in X Register with '1'. Doesn't disturb Y, Z, T, or L.
7-2	MULTIPLY (OR DIVIDE) VALUE IN X BY A CONSTANT ONLY IF FLAG CLEAR: Examples:Good:, FS? 00, GTO 14, 5 * (or /), LBL 14,Better:, 5, FC? 00, * (or /), FS? 00, RDN,Best:, 5, FS? 00, SIGN, * (or /), (Non-negative constants only)
7 - 3	$(X,Y) \rightarrow (X-Y, Y)$: Put x-y in the X Register, while leaving y in the Y Register. Source: Joseph Horn (1537) (PPC CJ, V7N4P13).
All ca HP-410	alculators with "%CH": %CH, %. Rounding errors possible. C/V alternative: RCL Y, T is lost.
7 - 4	RCL X, Y, Z OR T: All four are 2-byte instructions.
RCL X	\rightarrow XXYZ Similar to ENTER, but the stack lift is not disabled.
RCL Y RCL Z RCL T	ENTER: XYZT → XXYZ. : XYZT → YXYZ Similar to X<>Y, but T is lost and a copy of Y is left in Z. X<>Y: XYZT → YXZT. 'RCL Y, +' would change XYZT to X+Y, Y, Z, Z. : XYZT → ZXYZ. T is lost. : XYZT → TXYZ. Same as the 1-byte instruction R1.
7-5 bytes, operat	TO CHANGE THE VALUE IN X TO 1 WITHOUT RAISING THE STACK: ST/X works for any number except zero. SIGN, ABS changes any number to 1 in the same number of , but replaces the value in L (LASTX Register) with the value in X prior to the tion. Source: PPC Melbourne Chapter.
7-6	<u>DIVIDE X & Y BY 10</u> : <u>Old</u> : 10, /, X<>Y, LASTX, /, X<>Y. <u>New</u> : 10, ST/ Z, /.
7-7 routir which LBL "S	STACK ANALYSIS ("SA"): This routine can be used to test another routine's ef- fect on the stack. XEQ "SA" first, then key values as required and execute the ne to be tested. When execution stops, review stack and L Registers to see original stack values remain, and where. (29 bytes) SA", "L", ASTO L, "T", ASTO T, "Z", ASTO Z, "Y", ASTO Y, "X", ASTO X, END.
7 9	
the st Clark	but is turned off, CF 21 first. XEQ "ST" at any time to review the contents of tack, including L (LASTX Register). Uses the Alpha Register. Source: Bruce (5795).
01 LBI 02 "L= 03 ARC	L "ST" 04 AVIEW 07 ARCL X 10 "Y= " 13 PSE 16 AVIEW 19 ARCL T 22 CLD = " 05 PSE 08 AVIEW 11 ARCL Y 14 "Z= " 17 PSE 20 AVIEW 23 END CL L 06 "X= " 09 PSE 12 AVIEW 15 ARCL Z 18 "T= " 21 PSE (50 bytes)

VII. STACK OPERATIONS

7-9 STACK EX	KCHANGE, SAVE &	RECALL ("STX"	, "STS", & "STI	<u>R")</u> : <u>"STX" (Sta</u>	ck Exchange)				
exchanges the contents of the L, X, Y, Z & T Registers with the contents of Registers 00, 01, 02, 03 & 04, respectively. <u>"STS" (Stack Save)</u> places a copy of the stack into Registers 00-04. <u>"STR" (Stack Recall)</u> places a copy of the contents of Registers 00-04 into L, X, Y, Z & T respectively. Source: Bill Carter (2998) (PPC CJ V7N7P15).									
01 LBL "STX" 02 X<> L 03 X<> 00 04 X<> L 05 X<> 01	07 x<> 02 08 RDN 09 x<> 03 10 RDN 11 x<> 04	13 RTN 14 LBL "STS" 15 X<> L 16 STO 00 17 X<> L	 RDN STO 02 RDN STO 03 RDN 	25 RDN 26 RTN 27 LBL "STR" 28 RCL 00 29 STO L	 31 RCL 03 32 RCL 02 33 RCL 01 34 END 				
06 RDN	12 RDN	18 STO 01	24 STO 04	30 RCL 04	(64 bytes)				
7-10 INDIRECT STACK SAVE & RECALL ("SM" & "MS"): "SM" (Stack to Memory) stores the stack (X, Y, Z, T & L) in the 5-register block pointed to by the value in R00. Execution of "SM" saves L, but the rest of the stack is lost (recover it with "MS", following). "MS" (Memory to Stack) recalls the contents of the 5-register block pointed to by the value in R00 into the stack (in X, Y, Z, T & L order). It can be used to recall a previously-saved stack. Source: PPC CJ, V7N10P7 (PPC ROM).									
01 LBL "SM" 02 XEQ c 03 XEQ c 04 XEQ c 05 XEQ c 06 LASTX	07 STO IND 00 08 4 09 ST- 00 10 RTN 11 LBL c 12 STO IND 00	13 RDN 14 1 15 ST+ 00 16 RDN 17 RTN 18 LBL "MS"	19 4 20 ST+ 00 21 RCL IND 00 22 SIGN 23 DSE 00 24 RCL IND 00	 25 DSE 00 26 RCL IND 00 27 DSE 00 28 RCL IND 00 29 DSE 00 30 STO X 	31 RCL IND 00 32 END (68 bytes)				

7-11 STACK MANIPULATIONS ("STACK"): This routine can be used to determine the ef-

fect on the stack (X, Y, Z & T Registers) of various combinations of stackmanipulating functions, such as X<>Y, RCL T, STO Z, and RDN. XEQ "STACK" to display "X-Y-Z-T" and to put "X" in the X Register, "Y" in the Y Register, and so on. Then perform the stack-manipulating function(s); next, press R/S. The resulting stack arrangement will be shown ("YXTZ" for example, after an X<>Y). For a new case, press R/S. CF 21 before execution if a printer is plugged in. It may be helpful to assign X<> and R[↑] to convenient keys. You can even speed execution of X<>Y and RDN by assigning them to their own keys. Source: John Dearing (2791).

01	LBL "STACK"	05	ASTO Y	09	ASTO T	13	ARCL X	17	AVIEW
02	"X"	06	"Z"	10	"X-Y-Z-T"	14	ARCL Y	18	END
03	ASTO X	07	ASTO Z	11	PROMPT	15	ARCL Z		
04	"Y"	80	"T"	12	CLA	16	ARCL T		(47 bytes)

Variation 1: To have routine pause to display the result of stack rearrangements, then turn the calculator OFF, then continue execution when calculator is turned ON again, insert the following steps after step 17 (AVIEW) above: PSE, PSE, SF 11, OFF, GTO "STACK". The routine will now be 59 bytes.

<u>Variation 2</u>: To be able to see the effect on the stack of each of two or more operations, replace step 17 (AVIEW) in the original version above with PROMPT, GTO 00; insert LBL 00 after step 11 (PROMPT); and either assign "STACK" to E (LN) or insert LBL E after step 01. Set USER mode, then (1) XEQ "STACK" [press E]; (2) perform operation(s) on stack; (3) R/S to see stack; and (4) go to step 2 for another operation on the stack as it now exists, or go to step 1 to reset stack to XYZT.

Use the keystroke sequences below in a program to rearrange the stack as desired. For a more complete Stack Manipulation Table, see Reference. The functions that can be used to manipulate the stack include R^{\uparrow} , RDN, ENTER, X<>Y, X<> Z, X<> T, X<> L, STO Y, STO Z, STO T, STO L, RCL X, RCL Y, RCL Z, RCL T, and RCL L. There are several ways to get most stack arrangements; the best is usually the one that takes the fewest bytes. R^{\uparrow} , for example, is 1 byte, while RCL T is 2 bytes.

The	symbol "-" below	stands	for	'exchange	'(X-Y for	exan	nple m	neans	X → Y (or X<>Y).
XYZI	C (orig. order)	YXZT	X-Y		ZXYT	Χ-Υ,	X–Z		TXYZ	RŤ
XYTZ	X-Z, RDN, X-Y	YXTZ	Χ-Ζ,	RDN	ZXTY	Χ-Υ,	RDN,	X-Y	TXZY	Х-Ү, Х-Т
XZYI	RDN, X-Y, RÎ	YZXT	Χ-Ζ,	X-Y	ZYXT	X–Z			TYXZ	X-Y, R1
XZTY	X-Y, RDN	YZTX	RDN		ZYTX	RDN,	X-Y		TYZX	X-T
XTY2	Z R †, X - Y	YTXZ	RDN,	X-Y, RDN	J ZTXY	RDN,	RDN		TZXY	RDN, RDN, X-Y
XTZY	RDN, RDN, X-Z	YTZX	Х-Т,	X-Y	ZTYX	Х-Υ,	RDN,	RDN	TZYX	RDN, X-Z
CHAPTER VIII

MEMORY & CURTAIN

8-1 <u>SYNTHETIC CURTAIN UP ("CU")</u>: This routine takes an integer 'n' in X and adds it to the absolute address of R00 in Status Register c; if 'n' is positive, data registers R00 - R(n-1) will be 'transformed' into program registers, by raising the imaginary 'curtain' separating data and program memory from the original position below R00 to a new position below R(n); R(n) becomes the new R00. If 'n' is negative, the curtain is lowered, so that 'n' registers of program memory are transformed into data registers. All of this occurs without alteration or moving of the contents of the registers involved. It is desirable for programs to use data registers R00 - R15 to save bytes, so it is common to have several programs in memory which use the same block of data registers, and so execution of one program may destroy data used or produced by another. "CU" solves this problem.

To use, key 'n', XEQ "CU". If 'n' is positive, R(n) will become the new R00 (curtain up). If 'n' is negative, R(-n) will become the new R00 (curtain down). All other data registers shift accordingly.

Example: Suppose 'Program 1' is executed, leaving data in R00 - R50 that is required for future use, but in the meantime 'Program 2', using R00 - R25, needs to be run. Key '51', XEQ "CU" (with SIZE 077 or greater), then run 'Program 2'. To restore the curtain to its original position and prepare for a second run of 'Program 1', key '-51', XEQ "CU". <u>**WARNING**</u>: Raising the curtain above the top of memory (i.e., executing "CU" for 'n' greater than the current SIZE), or lowering it below the bottom of memory (below hex '0C0') will cause "MEMORY LOST".

The 41C/V will operate quite normally while the curtain is raised or lowered from the position last established by a SIZE operation. However, if the curtain is raised, changing data into program memory, the memory should not be PACKed, since that will most likely change the data stored below the curtain irreversibly by removing all the null bytes in the data. This difficulty can be avoided if an "END" is placed at the top of program memory, followed by execution of a "PACK". If the curtain is subsequently lowered, the data registers transformed to program memory will be unaffected by the "PACK": they are protected by the "END", which was coded to indicate a packed file. Source: William Wickes (3735) ('Synthetic Programming on the HP-41C') (PPC ROM).

01	LBL	"CU"	09	X <> d	17	2	25	FC?C IND Y	33	DSE	Y	41	STO M
02	ABS		10	STO O	18	1	26	SF IND Y	34	GTO	01	42	"⊢ABC"
03	RDN		11	LBL 00	19	RCL M	27	FC? IND Y	35	LBL	13	43	X<> N
04	RCL	с	12	RDN	20	Х<>Ү	28	CHS	36	DSE	M	44	Х<> с
05	STO	М	13	X<> L	21	FRC	29	X>0?	37	GTO	00	45	RDN
06	"⊢♦	* * * "	14	INT	22	X=0?	30	GTO 13	38	LBL	14	46	CLA
07	11		15	X=0?	23	GTO 13	31	FC? IND Y	39	X<>	0	47	END
80	X <>	М	16	GTO 14	24	LBL 01	32	CHS	40	X <>	d		(87 bytes)

8-2 PROGRAM CLEARING RESTRICTIONS: When you wish to clear a very long program (longer than 233 lines), you must set the printer (if present) to MAN (Manual) Mode while executing the "CLP" function. Programs longer than 1089 lines must be cleared using the "DEL" function. For example, to clear a 1980-line program, execute "DEL", then press 'EEX 980'. The END will remain. Source: HP KEY NOTES, V4N1P3. CALCULATOR TIPS & ROUTINES

8-3 by pre regist pressi abling progra SHIFT regist ating missic	REGISTER of progra essing "Si cers. Pres ing BST in g you to d am, you ca GTO . 000 cers (and Manual', on.	S REMAINING WH am memory, you ST". The displa ssing SST again nstead will set continue adding an determine ho 0. The display the pointer wi © Copyright (LLE PROGRAMMIN can determine ay will show . h will set the the pointer g instructions ow many regist will then be ill be at step June 1980) Hew	NG: After add how many m END. REG fo back to the s. After inst cers remain 00 REG foll 00 of the vlett-Packar	ding an instr emory registe llowed by the Line 01 of t last line of erting an ins completely un owed by the n program). Sou d Company. Re	uction at the end rs remain unused number of unused he current program; the program, en- truction in any used by pressing umber of unused rce: 'HP-41C Oper- produced with per-
addres the la is one in the pointe Mode t ('Synt	SYNTHETIC the last ast file: ast file: ast file: calcula ar will be co see Sta chetic Pro	C GETTING TO TH program file f r is moved to s use "GTO" and e "CAT 1", runn tor). This rout e set to the to ep 01, or BST to ogramming on th	HE .END. ("EN' in memory; i.e some other fil spell out a c ning to the er tine provides op of the proc to resume proc ne HP-41C').	<u>')</u> : Usually, , the file te, there ar global label id of the ca a third met gram file co gramming). S	a program un containing t e only two wa within the p talog (slow w hod: XEQ "EN" ntaining the ource: Willia	der development is he ".END.". If the bys to return it to brogram (if there with many programs ; the program .END. (SST in PRGM m Wickes (3735)
01 LBI 02 RCI 03 STC	- "EN" - C - M	04 "⊢◆◆◆◆◆" 05 x<> M 06 x<> d	07 CF 00 08 CF 01 09 SF 02	10 SF 03 11 X <> d 12 CLA	13 STO M 14 "⊢♦♦" 15 X<> N	16 STO b 17 END (45 bytes)
8-5 Jarett	SYNTHETIC absolute (4360)	C CURTAIN FIND address of RO(& Roger Hill (4 07 CF 01	ER ("C?"): XE()). Line 26 is 4940) (PPC CJ 13 FS?C 11	2 "C?" to fi s decimal 24 , V7N10P15; 19 FS?C	nd the curtai 4, 127, 0, 0, PPC ROM). See 14 25 X<	n location (the 65. Source: Keith 1-7.

8-6	5	SYNTHETIC	HI	DE &	UNCOVER	DA	ra i	REGISTERS;	ΣF	REG-CURTAIN	EXCH	IANGE	("HD",	"UD"	&
06	x<>	• d	12	SF	07	18	SF	11	24	SF 15	30	END	(6	6 byt	ces)
05	X<>	M	11	FS?	C 10	17	FS	?C 13	23	FS?C 16	29	DEC			
04	"⊢∢	♦ A"	10	CF	07	16	SF	10	22	SF 14	28	INT			
03	STC	M	09	CF	04	15	FS	?C 12	21	FS?C 15	27	/			
02	RCL	C	80	CF	02	14	SF	09	20	SF 13	26	E38			
• •			•••	01			10			10.0 11	23		•		

" Σ C"): Minimum SIZE = k+6. Key k, XEQ "HD" to raise the curtain k registers. An alpha constant is put in the former Register k (now R00). To restore the former curtain location, XEQ "UD". This is an automatic return (using R00) to where you were when "HD" was executed. After "UD" is executed, the old R00 (now Register k) still contains the alpha constant. ["HD" uses the Σ REG-Curtain Exchange Routine (" Σ C"); an example of " Σ C" is: SIZE 010, Σ REG 03, XEQ " Σ C", XEQ "S?" (see 7), XEQ " Σ ?" (see -3); XEQ " Σ C", XEQ "S?" (see 10), XEQ " Σ ?" (see 3) (see routine 1-17)]. The example below left shows the effect of executing "HD" with k = 5 and initial SIZE = S = 08. After the curtain has been raised, R05 becomes R00 (and its value is replaced with the alpha constant), R06 becomes R01, etc., and the values in old R00-R04 are 'hidden'. Executing "UD" restores the curtain to its former location, but the alpha constant remains in R05 and Σ REG 01 is set. Source: PPC ROM. Jarett (4360).

BEFORE	AFTER	: 01	LBL "HD"	10	ASTO IND L	19	STO N	28	" - E"
P07 - 7 000	_ D02	02	SIGN	11	$\Sigma REG IND L$	20	"⊢ B"	29	X<> d
R07 = 7.000	= R02	: 03	RDN	12	LBL "ZC"	21	STO M	30	SCI IND N
R00 = 0.000	= R01	04	RCL C	13	CLA	22	"HCD"	31	x<> d
R0J = CONCIO	I = R00	: 05	"0"	14	RCL c	23	X<> 0	32	STO O
R04 = 4.000		: 06	5 X<> M	15	STO O	24	X<> d	33	RDN
R03 = 3.000		: 07	′″⊢**″	16	STO M	25	SF 08	34	RCL c
R02 = 2.000		: 08	STO N	17	" ⊢ A"	26	X<> d	35	ΣREG 00
R01 = 1.000 R00 = 0.000		09	RDN	18	CLX	27	X<> N		[continued]

CA	LCULATOR	TIP	5 & ROUTI	NES		******	31		7	/III.	MEMORY	2 & 0	CURTAIN
36 37	X<> c STO M	41 42	"FGHI" STO L	46 47	X<> O "⊢J"	51 52	STO М " - L"	56 57	CLA RTN	61 62	ASTO ΣREG	с 01	
38	" F"	43	RDN	48	STO M	53	X<> N	58	LBL "UD"	63	END		
39 40	RDN RCL N	44 45	STO M	49 50	" ⊢ K" X<> L	54 55	X<> C RDN	59 60	ARCL 00		((141	bytes)

CHAPTER IX

DATA REGISTERS

 DATA REGISTER LOAD & REVIEW ("LD" & "RV"): To store data, XEQ "LD"; you will be prompted for each register from R01 on up. (Both routines use R00). To review data in registers 01 on up, XEQ "RV". Output will print if possible: press R/S to stop execution (or execution will stop with "NONEXISTENT" when routine attempts to recall a nonexistent register). Source: John Dearing (2791) (PFC CJ, V7N4P7). D1 LEL "LD" 07 "R" 13 GTO 01 19 LEL 02 25 FIX 2 31 END 02 14 FIX 0 10 PROMPT 15 LEL "RV" 21 CF 29 27 ARCLIND 00 04 FIX 0 10 PROMPT 15 STO 12 22 "R" 28 AVIEW 05 CF 29 11 STO IND 00 17 1.4 23 ARCL 00 29 ISG 00 04 FIX 0 10 PROMPT 16 SF 21 22 "R" 28 AVIEW 05 CF 29 11 STO IND 00 17 1.4 23 ARCL 00 29 ISG 00 06 LEL 01 12 ISG 00 18 STO 00 24 "⊨=" 30 GTO 02 (69 bytes) 35T 01. To reset to 1, use RCL 01, ST/ 01 (doesn't work if register contents is 0). Source: Bill Kolb (265) (PB 67/97). Another way to reset to 0 is 0, X<> 01; similarly, to reset to 1, use 1, X<> 01 (works for any value). Source: PPC Mel-bourne chapter. 37ERO-ONE TOGGLE: Use '1, -, ABS'. Example: to toggle the contents of Register 00, use, RCL 00, 1, -, ABS, STO 00, RDN, Source: Joseph Holmes (3673) (PPC CJ, V7N5P7). ADTIRECT USE OF XEQ FOR DATA RETRIEVAL ("PHONE"): This example recalls a telephone number when given a name of up to six characters. XEQ "PHONE", input name when prompted, R/s, and see phone number. Source: HK KEY NOTES, V4N1P11. LEL "PHONE" 05 AOFF 09 STOP 13 LEL "BOB" 17 "222-2791" 02 'NAME?" 06 ASTOX 10 LEL "JANET" 14 "753-555-6767" 18 END 03 AON 07 TAEQ IND X 10 LEL "JANET" 14 "753-555-6767" 18 END 04 PROMPT 08 AVIEW 12 RTN 16 LEL "NANCY" (89 bytes) 190. 9-5 "STO" FOLLOMED BY STORAGE REGISTER ARITHMETIC: STO nn, ST+ nn: Stores 2X (twice the contents of the X Register) in another register, without altering the stack, in only 2 steps. STO nn, ST+ nn: Stores the square of the value in the X Register in another register without altering		
01 LBL "LD" 07 "R" 13 GTO 01 19 LBL 02 FIX 0 25 FIX 2 31 END 02 1.4 08 ARCL 00 14 RTN 20 FIX 0 26 SF 29 31 END 03 STO 00 09 "H=?" 15 LBL "RV" 21 CF 29 27 ARCL IND 00 04 FIX 0 10 PROMPT 16 SF 21 22 "R" 28 AVIEW 05 CF 29 11 STO IND 00 17 1.4 23 ARCL 00 29 ISG 00 06 BLD 01 12 ISG 00 18 STO 00 CR 1: TO reset to 0, use (for example) RCL 01, ST-01. TO reset to 1, use RCL 01, ST/01 (doesn't work if register contents is 0). Source: BIL Kolb (265) (PB 67/97). Another way to reset to 0 is 0, X<>01; similarly, to reset to 1, use 1, X<> 01 (works for any value). Source: PPC Melbourne chapter. 9-3 ZERO-ONE TOGGLE: Use '1, -, ABS'. Example: to toggle the contents of Register 00, use, RCL 00, 1, -, ABS, STO 00, RDN, Source: Joseph Holmes (3673) (PPC CJ, V7N5P7).	9-1 <u>DATA REGISTER LOAD & REVIEW ("LD" & "RV")</u> : To store data, XEQ "LD"; you wi be prompted for each register from R01 on up. (Both routines use R00). To view data in registers 01 on up, XEQ "RV". Output will print if possible: press to stop execution (or execution will stop with "NONEXISTENT" when routine attemp to recall a nonexistent register). Source: John Dearing (2791) (PPC CJ, V7N4P7).	ll re- R/S ts
 9-2 RECALL A REGISTER AND RESET TO 0 OR 1: To reset to 0, use (for example) RCL 01, ST- 01. To reset to 1, use RCL 01, ST/ 01 (doesn't work if register contents is 0). Source: Bill Kolb (265) (PB 67/97). Another way to reset to 0 is 0, X<> 01; similarly, to reset to 1, use 1, X<> 01 (works for any value). Source: PPC Mel- bourne chapter. 9-3 ZERO-ONE TOGGLE: Use '1, -, ABS'. Example: to toggle the contents of Register 00, use, RCL 00, 1, -, ABS, STO 00, RDN, Source: Joseph Holmes (3673) (PPC CJ, V7N5P7). 9-4 INDIRECT USE OF XEQ FOR DATA RETRIEVAL ("PHONE"): This example recalls a tele- phone number when given a name of up to six characters. XEQ "PHONE", input name when prompted, R/S, and see phone number. Source: HP KEY NOTES, V4NIP11. 01 LBL "PHONE" 05 AOFF 09 STOP 13 LBL "BOB" 17 "222-2791" 02 "NAME?" 06 ASTO X 10 LBL "JANET" 14 "753-555-6767" 18 END 03 AON 07 XEQ IND X 11 "533-555-1212" 15 RTN 04 PROMPT 08 AVIEW 12 RTN 16 LBL "NANCY" (89 bytes) 9-5 "STO" FOLLOWED BY STORAGE REGISTER ARITHMETIC: STO nn, ST+ nn: Stores 2X (twice the contents of the X Register) in another regis- ter, without altering the stack, in only 2 steps. 970 nn, ST+ nn: Stores the square of the value in the X Register in another regis- ter without altering the stack. STO nn, ST+ nn: Resets the contents of a register to 1 without altering the stack. Won't work if the value in X is zero. 9-6 CLEARING HIGHER-NUMBERED DATA REGISTERS: When an application requires using 	01 LBL "LD" 07 "R" 13 GTO 01 19 LBL 02 25 FIX 2 31 EN 02 1.4 08 ARCL 00 14 RTN 20 FIX 0 26 SF 29 03 STO 00 09 "H=?" 15 LBL "RV" 21 CF 29 27 ARCL IND 00 04 FIX 0 10 PROMPT 16 SF 21 22 "R" 28 AVIEW 05 CF 29 11 STO IND 00 17 1.4 23 ARCL 00 29 ISG 00 06 LBL 01 12 ISG 00 18 STO 00 24 "H=" 30 GTO 02 (69 by	D tes)
 9-3 <u>ZERO-ONE TOGGLE</u>: Use '1, -, ABS'. Example: to toggle the contents of Register 00, use, RCL 00, 1, -, ABS, STO 00, RDN, Source: Joseph Holmes (3673) (PPC CJ, V7N5P7). 9-4 <u>INDIRECT USE OF XEQ FOR DATA RETRIEVAL ("PHONE")</u>: This example recalls a telephone number when given a name of up to six characters. XEQ "PHONE", input name when prompted, R/S, and see phone number. Source: HP KEY NOTES, V4N1P11. 01 LBL "PHONE" 05 AOFF 09 STOP 13 LBL "BOB" 17 "222-2791" 02 "NAME?" 06 ASTO X 10 LBL "JANET" 14 "753-555-6767" 18 END 03 AON 07 XEQ IND X 11 "533-555-1212" 15 RTN 04 PROMPT 08 AVIEW 12 RTN 16 LBL "NANCY" (89 bytes) 9-5 <u>"STO" FOLLOWED BY STORAGE REGISTER ARITHMETIC</u>: STO nn, ST+ nn: Stores 2X (twice the contents of the X Register) in another register, without altering the stack, in only 2 steps. STO nn, ST+ nn: Stores the square of the value in the X Register in another register without altering the stack. STO nn, ST/ nn: Resets the contents of a register to 1 without altering the stack. STO nn, ST/ nn: Resets the contents of a register to 1 without altering the stack. Won't work if the value in X is zero. 9-6 <u>CLEARING HIGHER-NUMBERED DATA REGISTERS</u>: When an application requires using 	9-2 RECALL A REGISTER AND RESET TO 0 OR 1: To reset to 0, use (for example) RC ST- 01. To reset to 1, use RCL 01, ST/ 01 (doesn't work if register conten is 0). Source: Bill Kolb (265) (PB 67/97). Another way to reset to 0 is 0, X<> 0 similarly, to reset to 1, use 1, X<> 01 (works for any value). Source: PPC Mel- bourne chapter.	L 01, ts 1;
9-4 INDIRECT USE OF XEQ FOR DATA RETRIEVAL ("PHONE"): This example recalls a telephone number when given a name of up to six characters. XEQ "PHONE", input name when prompted, R/S, and see phone number. Source: HP KEY NOTES, V4N1P11. 01 LBL "PHONE" 05 AOFF 09 STOP 13 LBL "BOB" 17 "222-2791" 02 "NAME?" 06 ASTO X 10 LBL "JANET" 14 "753-555-6767" 18 END 03 AON 07 XEQ IND X 11 "533-555-1212" 15 RTN 16 LBL "NANCY" (89 bytes) 9-5 "STO" FOLLOWED BY STORAGE REGISTER ARITHMETIC: STO nn, ST+ nn: Stores 2X (twice the contents of the X Register) in another register, without altering the stack, in only 2 steps. STO nn, ST- nn: Clears a register without altering the stack. STO nn, ST/ nn: Resets the contents of a register to 1 without altering the stack. STO nn, ST/ nn: Resets the contents of a register to 1 without altering the stack. STO nn, ST/ nn: Resets the contents of a register to 1 without altering the stack. 9-6 CLEARING HIGHER-NUMBERED DATA REGISTERS: When an application requires using	9-3 <u>ZERO-ONE TOGGLE</u> : Use '1, -, ABS'. Example: to toggle the contents of Regis 00, use, RCL 00, 1, -, ABS, STO 00, RDN, Source: Joseph Holmes (3673) (PPC CJ, V7N5P7).	ter
01LBL "PHONE"05AOFF09STOP13LBL "BOB"17"222-2791"02"NAME?"06ASTO X10LBL "JANET"14"753-555-6767"18END03AON07XEQ IND X11"533-555-1212"15RTN16LBL "NANCY"(89bytes)9-5"STO" FOLLOWED BY STORAGE REGISTER ARITHMETIC:STO nn, ST+ nn:Stores 2X (twice the contents of the X Register) in another register, without altering the stack, in only 2 steps.STO nn, ST- nn:Clears a register without altering the stack.STO nn, ST+ nn:Stores the square of the value in the X Register in another register without altering the stack.STO nn, ST/ nn:Resets the contents of a register to 1 without altering the stack.Won't work if the value in X is zero.9-6CLEARING HIGHER-NUMBERED DATA REGISTERS: When an application requires using	9-4 INDIRECT USE OF XEQ FOR DATA RETRIEVAL ("PHONE"): This example recalls a t phone number when given a name of up to six characters. XEQ "PHONE", input name when prompted, R/S, and see phone number. Source: HP KEY NOTES, V4N1P11.	ele-
 9-5 "STO" FOLLOWED BY STORAGE REGISTER ARITHMETIC: STO nn, ST+ nn: Stores 2X (twice the contents of the X Register) in another register, without altering the stack, in only 2 steps. STO nn, ST- nn: Clears a register without altering the stack. STO nn, ST* nn: Stores the square of the value in the X Register in another register without altering the stack. STO nn, ST/ nn: Resets the contents of a register to 1 without altering the stack. Won't work if the value in X is zero. 9-6 CLEARING HIGHER-NUMBERED DATA REGISTERS: When an application requires using 	01 LBL "PHONE" 05 AOFF 09 STOP 13 LBL "BOB" 17 "222-2" 02 "NAME?" 06 ASTO X 10 LBL "JANET" 14 "753-555-6767" 18 END 03 AON 07 XEQ IND X 11 "533-555-1212" 15 RTN 04 PROMPT 08 AVIEW 12 RTN 16 LBL "NANCY" (89 by	791 " tes)
STO nn, ST+ nn: Stores 2X (twice the contents of the X Register) in another register, without altering the stack, in only 2 steps. STO nn, ST- nn: Clears a register without altering the stack. STO nn, ST* nn: Stores the square of the value in the X Register in another register without altering the stack. STO nn, ST/ nn: Resets the contents of a register to 1 without altering the stack. STO nn, ST/ nn: Resets the contents of a register to 1 without altering the stack. 9-6 CLEARING HIGHER-NUMBERED DATA REGISTERS: When an application requires using	9-5 "STO" FOLLOWED BY STORAGE REGISTER ARITHMETIC:	
9-6 CLEARING HIGHER-NUMBERED DATA REGISTERS: When an application requires using	STO nn, ST+ nn: Stores 2X (twice the contents of the X Register) in another regiter, without altering the stack, in only 2 steps. STO nn, ST- nn: Clears a register without altering the stack. STO nn, ST* nn: Stores the square of the value in the X Register in another regiter without altering the stack. STO nn, ST/ nn: Resets the contents of a register to 1 without altering the stack Won't work if the value in X is zero.	s- s- k.
data registers, the most vital information should be kept in the lowest-num- bered data registers. The highest-numbered data registers may be used for scratch. The technique of sizing down and then sizing up may be used to clear the highest- numbered registers. Source: Richard Nelson (1).	9-6 <u>CLEARING HIGHER-NUMBERED DATA REGISTERS</u> : When an application requires usin data registers, the most vital information should be kept in the lowest-nu bered data registers. The highest-numbered data registers may be used for scrate The technique of sizing down and then sizing up may be used to clear the highest numbered registers. Source: Richard Nelson (1).	g m_ h.

9-7 PACK & UNPACK REGISTER ("PR" & "UR"): Pack Register ("PR") can be used to

store data in packed form in a data register; Unpack Register ("UR") can be used to recall packed data from a data register. The packing scheme is to simply encode data, using a base b representation. Using this technique, it is possible to store several numbers in one register. Both routines assume that Register 10 holds the base b and that Register 11 is pointing to the register that will store the data to be packed or that contains a number to be decoded.

R10: base b R11: register pointer

To store the number 'n' in position 'k' of the register pointed to by R11, key n, ENTER, k, XEQ "PR"; the number 'n' must be in the range 0 - (b-1). "PR" calls "UR" and does not return any useful values in the stack. To recall the number stored in position 'k' of the register pointed to be R11, key k, XEQ "UR". "UR" will return in the X Register a number in the range 0 - (b-1).

Data Range	Base b	Pos. No.	Data Range	Base b	Pos. No.
0-1	2	1-30	0-20	21	1-7
0-2	3	1-19	0-36	37	1 – 6
0-3	4	1 - 15	0-99	100	1– 5
0-4	5	1-13	0-214	215	1-4
0-6	7	1-11	0-1413	1414	1– 3
0-9	10	1-10	0-99999	100000	1 –2
0-13	14	1-8			

TABLE OF POSSIBLE BASES & POSITION NUMBERS

The most efficient use may be made of data registers by storing the largest values in the lowest-numbered positions and storing the smallest values in the highest-numbered positions. If your priority is the range of data, start with the Data Range column; if your priority is the number of artificial memories available, start with the Position Number column. In many cases, it will be possible to extend the values in this table.

Example: From the above table it can be seen that when the base b = 21, we may store as many as 7 numbers in one register, provided the numbers are in the range 0-20. Use "PR" to pack the numbers 13, 19, 14, 15, 8, 18, and 16 all in R12. Then use "UR" to recall the numbers. Solution: First store the base '21' in R10 and store the register pointer '12' in R11. Then, to store 13 in position 1, key 13, ENTER, 1, XEQ "PR"; to store 19 in position 2, key 19, ENTER, 2, XEQ "PR". Similarly, key 14, EN-TER, 3, XEQ "PR", and so on through 16, ENTER, 7, XEQ "PR".

Now recall R12 and see the number 1,447, 473, 103. The base 21 representation of this number shows the seven numbers as coefficients of powers of 21:

 $16*21^{6} + 18*21^{5} + 8*21^{4} + 15*21^{3} + 14*21^{2} + 19*21^{1} + 13$.

To use "UR" to recall the numbers in positions 1-7 (from right to left), key 1, XEQ "UR", see '13'; key 2, XEQ "UR", see '19', and so on. Execution time: "PR", 2 seconds; "UR", 1 second. Source: John Kennedy (918) (PPC ROM).

01	LBL "UR"	05 X <> Y	09 ST/ Y	13 MOD	17 X <> Y	21 X <> Y
02	1	06 Y † X	10 X <> Y	14 RTN	18 ST* Z	22 ST+IND11
03	-	07 RCL IND 11	11 INT	15 LBL "PR"	19 *	23 END
04	RCL 10	08 X <> Y	12 RCL 10	16 XEQ "UR"	20 ST- IND 11	(43 bytes)

9-8 <u>DOUBLE STORAGE</u>: If you have two numbers, preferably one greater than one and the other less than one, if registers are at a premium, and if program space is available, then both numbers can be stored in one register. For example, '127' and '0.35' can be stored in ROO as 127.35: then, to recover the 127, use 'RCL 00, INT'; to recover the 0.35, use 'RCL 00, FRC'. If both numbers are greater (or less) than one, modify after recalling. Source: John Martellaro (1896) (PPC J, V5N1P16).

9-9 FULL DATA REGISTER EXCHANGE & ARITHMETIC: Applies to both numeric and stack registers. Source: John Dearing (2791).										
Exchange any 2 registers (<>):										
Rule: X<> 1st register, X<> 2nd register, X<> 1st register. Example 1: Exchange Y & R15: X<>Y, X<> 15, X<>Y. Example 2: Exchange R13 & R17: X<> 13, X<> 17, X<> 13.										
<pre>First register STO (or ST+, -, * or /) into second register: Rule: X<> 1st reg, STO (or ST+, -, * or /) 2nd reg, X<> 1st reg. Example 3: Add Z into R11: X<> Z, ST+ 11, X<> Z. Example 4: Subtract R05 from R10: X<> 05, ST- 10, X<> 05.</pre>										
Any other register ST+ (or ST-, ST*, or ST/) into X: Rule: X<> other reg, ST+ (or ST-, ST*, or ST/) other reg, X<> other reg. Example 5: Multiply X by R20: X<> 20, ST* 20, X<> 20. Example 6: Divide Z into X (divide X by Z): X<> Z, ST/ Z, X<> Z.										
9-10 <u>COPY ONE REGISTER INTO ANOTHER, WHOSE ADDRESS IS IN X: One solution</u> is to use RCL 1st register, STO IND Y, RDN. Contents of the T Register is replaced by the contents of the 1st register. <u>Another solution</u> is to X<> 1st reg, STO IND 1st reg, X<> 1st reg. This method doesn't raise the stack. Example: Copy the contents of R04 (which is 7) into R03, whose address is in X: Use either 'RCL 04, STO IND Y, RDN' or 'X <> 04, STO IND 04, X <> 04'. COPY ONE REGISTER INTO ANOTHER, WHOSE ADDRESS IS IN X: One solution is to use $\frac{X : 3 : 7 : 3}{R04 : 7 : 3 : 7}$										
9-11 <u>STORE AND RECALL INDIRECT ("SI" & "RI")</u> : These routines are similar to "STO" and "RCL", but work for all data registers, including R100 and above. For "SI", key in the number to be stored and press ENTER (if necessary), then key in the reg- ister number and XEQ "SI". T and L Registers are used. For "RI", key in register number to be recalled, then XEQ "RI". L Register is used.										
LBL "SI", SIGN, RDN, STO IND L, RTN, LBL "RI", SIGN, RDN, RCL IND L, END (24 bytes)										

CHAPTER X

BLOCK OPERATIONS

10-1 LOAD A BLOCK OF REGISTERS WITH THE SAME VALUE: Put the bbb.eee counter in Y and the value in X. For example, to load R01-R13 with '8', use '1.013, ENTER, 8, LBL 14, STO IND Y, ISG Y, GTO 14',
<pre>10-2 <u>SELF-LOAD ("SLD")</u>: This routine loads every numeric data register with its own address. It will continue execution until R/S is pressed, or until it runs out of registers (at which time it will stop and display "NONEXISTENT"). "SLD" is useful for testing the operation of many block operations. Source: John Dearing (2791) (PPC CJ, V7N5P7). <u>LBL "SLD"</u>, 0, LBL 00, STO IND X, 1, +, GTO 00, RTN</pre>
10-3 <u>INPUT BLOCK ("INBL")</u> : This routine prompts for inputs to all data registers in a block. Have the block defined with a bbb.eee control number in X before exe- cution. Source: John Dearing (2791). See 9-1.
01 LBL "INBL" 05 INT 09 LBL 14 13 "F=?" 17 ISG Y 21 RTN 02 FIX 0 06 "R0" 10 "R" 14 PROMPT 18 GTO 14 03 CF 29 07 X=0? 11 ARCL Y 15 STO IND Z 19 FIX 2 04 ENTER 08 GTO 13 12 LBL 13 16 RDN 20 SF 29 (45 bytes)
10-4SYNTHETIC INPUT BLOCK ("INB"): Prompts for inputs to all data registers in the block defined by the bbb.eee control number in X; saves the display mode. For numeric entries only. Source: John Dearing (2791).01LBL "INB"05 X=0?09 RCL d13 STO d17 PROMPT21 GTO 1402ENTER06 GTO 1310 FIX 014 RDN18 STO IND Z22 CLX03INT07LBL 1411 CF 2915LBL 1319 RDN23 END04 "R0"08"R"12 ARCL Z16" μ =?"20 ISG Y(46 bytes)
10-5 <u>IMPROVED SYNTHETIC INPUT BLOCK ("IB")</u> : Have the control number (bbb.eee) de- fining the block in X before execution; it is returned to X after execution. The display mode is saved. At will, ALPHA Mode may be turned on (before keying Alpha characters) or off (before keying numbers). The routine will stay in the mode selec- ted until it is changed by the user. Source: John Dearing (2791).
01 LBL "IB" 07 LBL 14 13 STO d 19 CF 23 25 RDN 31 AOFF 02 ENTER 08 "R" 14 RDN 20 PROMPT 26 FS? 23 32 END 03 INT 09 RCL d 15 LBL 13 21 FC? 23 27 ASTO IND Y 04 "R0" 10 FIX 0 16 "H=?" 22 STO IND T 28 ISG Y 05 X=0? 11 CF 29 17 ENTER 23 FC? 23 29 GTO 14 06 GTO 13 12 ARCL Z 18 ASTO X 24 RDN 30 LASTX (60 bytes)
10-6 <u>BLOCK INCREMENT ("BI")</u> : Have control number bbb.eee defining the block in Z, the initial value to be stored in the first register of the block in Y, and the increment value (pos. or neg.) in X; then XEQ "BI". Example: '5.00902, ENTER, 50, ENTER, 10, XEQ "BI"' puts 50 in R05, 60 in R07 & 70 in R09. Source: PPC ROM.
01 LBL "BI" 03 LBL 10 05 + 07 ISG Y 09 END 02 - 04 LASTX 06 STO IND Y 08 GTO 10 (19 bytes)

CALCULATOR TIPS & ROUTINES

10-7 <u>VIEW BLOCK ("VB")</u> : This routine views/prints the contents of all <u>nonzero</u> registers in a block. Have the block defined with a bbb.eee control number in X, then XEQ "VB". Uses '0, X=Y?' rather than 'X=0?' to avoid the "ALPHA DATA" message if a register contains an Alpha string. Uses more steps than would otherwise be necessary to allow for viewing of R00. Change steps 28 &/or 35 (FIX 2) to suit. To clear any register while executing "VB" without printer, store 0 in the displayed register, then R/S to continue routine execution. Source: John Dearing (2791). See 9-1. 01 LBL "VB" 08 GTO 10 15 0 22 10 29 ARCLIND L 36 SF 29	:-							
D2 SF 21 09 RCL L 16 RCL IND L 23 X>Y? 30 AVIEW 37 CLST 03 CF 29 10 INT 17 X=Y? 24 "H0" 31 CLD 38 END 04 STO L 11 "R00" 18 GTO 10 25 ARCL L 32 LBL 10 38 END 05 0 12 X=0? 19 FIX 0 26 LBL 11 33 ISG L 34 GTO 12 06 RCL IND L 13 GTO 11 20 "R" 27 "H=" 34 GTO 12								
07 X=Y? 14 LBL 12 21 LASTX 28 FIX 2 35 FIX 2 (72 bytes	;)							
10-8 <u>SYNTHETIC VIEW BLOCK ("VB")</u> : To change the View Block routine (10-7) above to a synthetic version in which the display mode before execution determines the display of the registers, and in which the original display mode is retained, make the following modifications: Delete steps 36 (SF 29), 35 (FIX 2), 28 (FIX 2), and 2 (ARCL L); after step 24 ("+0"), insert 'RCL d, CF 29, FIX 0, ARCL L, STO d'; delete steps 19 (FIX 0) and 03 (CF 29).	> ≩ ?5							
10-9 <u>SYNTHETIC BLOCK VIEW ("BV")</u> : Key control number bbb.eee defining the block, then XEQ "BV": the contents of all registers in the block that are <u>nonzero</u> will be AVIEWed (and printed if printer is on and Flag 21 is set). For a longer viewing, SF 09 before execution (pauses after each AVIEW); or SF 10 instead to have the routine stop after each AVIEW. Step 29 is synthetic Tone 38. The original dis- play mode is restored. Source: Richard Schwartz (2289) (PPC ROM).	ž							
01 LBL "BV" 09 X<> Z 17 "\F: " 25 LASTX 33 RTN 41 FC?C 2 02 10 INT 18 R1 26 . 34 LBL "VA" 42 SF 21 03 ENTER 11 CLA 19 ARCL X 27 ENTER 35 SF 25 43 END 04 LBL 00 12 RCL d 20 XEQ "VA" 28 LBL 01 36 PRA 05 CLX 13 CF 29 21 FS? 10 29 TONE 8 (38) 37 SF 25 43 END 06 RCL IND Z 14 FIX 0 22 STOP 30 ISG Z 38 FS?C 21 07 X=Y? 15 ARCL Y 23 FS? 09 31 GTO 00 39 CF 25	25							
08 GTO 01 16 STO d 24 PSE 32 TONE 6 40 AVIEW (83 bytes	;) 							
10-10 <u>REVERSE BLOCK ("RB")</u> : This routine reverses (inverts) any block of numeric data registers as specified by a 'bbb.eee' control number in X. For instance, with '4.008 in X, execution of "RB" moves the contents of R08 to R04, R07 to R05, R06 is unchanged, R05 to R07, and R04 to R08. Especially useful to change an ascendent sort to descendent, or vice versa. The routine itself uses no numeric data registers, and it is fast: it inverts 100 registers in about 13 seconds. Source: Valen tin Albillo (4747).	, J_ 1_							
01 LBL "RB" 05 1 E3 09 2 13 / 17 X<> IND Y 21 DSE Y 02 ENTER 06 * 10 / 14 + 18 X<> IND Z 22 GTO 00 03 ENTER 07 ST+ Y 11 INT 15 X<>Y 19 X<> IND Y 23 END 04 FRC 08 X<>Y 12 1 E3 16 LBL 00 20 ISG Z (41 bytes	5)							
10-11 DUPLICATE BLOCK ("DUP"): This routine copies the data in one block of data								
data to higher-numbered registers. To use, key control number defining block to be saved (bbb.eee), ENTER, first register of destination block (BBB), XEQ "DUP".								

36

Source: Bill Kolb (265) (PPC CJ, V7N4P17).

LBL "DUP", LBL 00, RCL IND Y, STO IND Y, RDN, 1, +, ISG Y, GTO 00, RTN. (20 bytes)

37

10-12 BLOCK MOVE	("BM"): This rou	tine moves a blo	ck of data register	s to a new loca-
tion without change tination block are overlap. "BM" uses moved, ENTER, 1st 01 LBL "BM" 09 02 SIGN 10 03 RDN 11 04 X <y? 12<="" td=""><td>ging the values e lost. The orig s no numeric dat reg. of destina -1 17 ST+ Z 18 ST+ Y 19 RDN 20</td><td>in the block tha yinal or sending a registers of i tion block, ENTE STO IND Z RDN ST+ Z ST+ Y</td><td>t is copied. Old value of the block and the destingts own. To use, key of the second s</td><td>lues in the des- nation block <u>may</u> 1st reg. to be lock, XEQ "BM". (918) (PPC ROM). ORE EXECUTION:</td></y?>	ging the values e lost. The orig s no numeric dat reg. of destina -1 17 ST+ Z 18 ST+ Y 19 RDN 20	in the block tha yinal or sending a registers of i tion block, ENTE STO IND Z RDN ST+ Z ST+ Y	t is copied. Old value of the block and the destingts own. To use, key of the second s	lues in the des- nation block <u>may</u> 1st reg. to be lock, XEQ "BM". (918) (PPC ROM). ORE EXECUTION:
05 GTO 04 13 06 LASTX 14 07 ST+ Z 15 08 + 16	LBL 04 21 R† 22 LBL 05 23 RCL IND 7	DSE L GTO 05 END	<pre>Z: 1st register to Y: 1st reg. in dest X: no. of consecut:</pre>	be moved tination block ive reg. to move
				(41 bytes)
10-13 EXCHANGE BLC length block use, key the first the other block, H 0, ENTER, 10, ENTE exchange function (2289) (PPC CJ, V7	OCK ("XB"): This as of consecutive register numbe ENTER, the numbe ER, 10, this rou of the HP-67/97 7N10P7).	routine will ex e data registers er of one block, er of registers t tine will simula . Source: John K (26 bytes)	change the contents . The blocks must no ENTER, the first red o exchange, XEQ "XB te the primary-secon ennedy (918) & Richa DECULTED STACK PEN	of two equal- ot overlap. To gister number of ". With input of ndary register ard Schwartz
01 LBL "XB" 0 02 SIGN 0 03 LBL 02 0 04 RCL IND Z 0)5 X<>IND Z)6 STO IND T)7 RDN)8 ST+ Z	09 ST+ Y 10 DSE L 11 GTO 02 12 END	T: - Z: 1st address of Y: 1st address of X: no. of reg. in	one block other block either block
10-14 BLOCK EXCHAN of a second block, ENTER, begi secondary register LBL "BE" with 'LBI P17; PPC ROM).	MGE ("BE"): Exch block of equal nning register r exchange funct L "P<>S", .009,	anges the conten length. Key begi (BBB) of second tion (simulating ENTER, 10'. Sour	ts of one block with n.end registers (bbb block, XEQ "BE". To the HP-67/97 P≹S fun ce: Bill Kolb (265)	h the contents b.eee) of one add a primary- nction), precede (PPC CJ, V7N4
01 LBL "BE" 03 02 LBL 01 04	RCL IND Y 05 X<> IND Y 06	STO IND Z 07 I RDN 08 S	SG X 09 ISG Y TO X 10 GTO 01	11 END (25 bytes)
10-15 <u>SYNTHETIC PF</u> function of tents of R10-19. 7 Execution time, 3.	MARY-SECONDARY the HP-67/97 by the stack is sav 5 seconds. Sour	EXCHANGE ("P-S" exchanging the red; the Alpha Re rce: David Bartho): This routine dup contents of R00-09 g gister is used; min: lomew (3666) (PPC C	licates the P≹S with the con- imum SIZE is 20. J, V7N8P8).
01 LBL "P-S" 06 02 STO M 07 03 RDN 08 04 STO N 09 05 RDN 10	5 STO O 11 LE 7 RDN 12 RC 3 19 13 X 9 ENTER 14 ST 9 9 15 RE	BL 01 16 DSE CL IND X 17 DSE C> IND Z 18 GTO YO IND Y 19 RCL ON 20 X	Y 21 STO 00 X 22 R [†] 01 23 RCL 0 00 24 RCL N 10 25 RCL M	26 END (48 bytes)
10-16 BLOCK ROTATE of data regi you input 2.004, t of R03 is moved to before the control John Kennedy (918)	E ("BLR"): This sters, defined then XEQ "BLR", o R04, and the c number is keye (PPC CJ, V7N10	routine rotates by a control num the contents of contents of R04 i d in are returne PP9).	or shifts the contender (bbb.eee) in X. R02 is moved to R03 s moved to R02. The d to Z & T, respect:	nts of a block For example, if , the contents values in X & Y ively. Source:
01 LBL "BLR" 02 ENTER 03 ABS	04 RDN 05 RCL IND L 06 <u>LBL 07</u>	07 ISG L 08 GTO 08 09 STO IND Y	10 RTN 11 LBL 08 12 X<>IND L	13 GTO 07 14 END (28 bytes)

10-17 BLOCK ROTATE IN EITHER DIRECTION ("BR"): The input to this routine is the num-
ber of the first register of the block in Y and $\pm n$ (where 'n' is the number of
registers within the block) in X; the sign of n determines the direction of the ro-
tation. If n is positive, values are moved to the next higher-numbered register (and
the contents of the highest-numbered register in the block is moved to the lowest);
conversely, if n is negative, values are moved to the next lower-numbered register
(and the contents of the lowest-numbered register in the block is moved to the high-
est). Source: John Kennedy (918) & Richard Schwartz (2289) (PPC ROM).

01	LBL "BR"	06	X <> Y	11	LBL 06	16	ST+	Z	21	LBL 07	26	STO	Y	3	0 E	END
02	CHS	07	1	12	RCL IND Z	17	ST+	Y	22	CHS	27	-1				
03	X < 0?	80	ST+ Z	13	X<> IND Z	18	DSE	L	23	1	28	ST+	Z			
04	GTO 07	09	-	14	STO IND T	19	GTO	06	24	-	29	GTO	06			
05	RCL Y	10	SIGN	15	RDN	20	RTN		25	+			(51	byt	es)

10-18 SYNTHETIC BLOCK EXTREMES ("BX"): Have the block defined with a bbb.eee control

number in X, then XEQ "BX". The smallest value in the block is returned to X and the largest value is returned to Y. If Flag 10 is set, absolute values are used. The original control number is returned to Synthetic Register O, the register number of the smallest value to Register N, and the register number of the largest value to Register M. Contents of the block are undisturbed. Numeric registers can be used in place of the synthetic registers, or steps 37, 32, 04, 03 & 02 can be deleted. This routine may also be considered to be a matrix routine, since it can be used to determine pivoting operations. Source: Richard Schwartz (2289) (PPC ROM).

01	LBL "BX"	08	ENTER	15	ABS	22	LBL 09	29	X<>Y	36	RCL T
02	STO M	09	ENTER	16	X>Y?	23	ISG Z	30	CLX	37	STO N
03	STO N	10	RDN	17	GTO 10	24	GTO 08	31	RCL Z	38	X<>Y
04	STO O	11	LBL 08	18	R 1	25	X <> Y	32	STO M	39	RDN
05	RCL IND X	12	CLX	19	X>Y?	26	RŤ	33	GTO 09	40	GTO 09
06	FS? 10	13	RCL IND Z	20	GTO 11	27	RTN	34	LBL 11	41	END
07	ABS	14	FS? 10	21	RDN	28	LBL 10	35	CLX		(65 bytes)

10-19 MULTI-REGISTER CLEAR ("CLRGX"): With 'nn' in X, this routine will clear Registers 00 - nn. The values that were in X, Y & Z before 'nn' was keyed in are returned to Y, Z & T. Source: John Dearing (2791) (PPC CJ, V7N5P7).

LBL "CLRGX", STO 00, CLX, LBL 14, STO IND 00, DSE 00, GTO 14, RTN (19 bytes)

10-20 ERASE BLOCK ("EB"): To clear any block of data storage registers, put the control number (bbb.eee) defining the block in X, then XEQ "EB". To clear Registers 05-09, for example, key '5.009', XEQ "EB". You may wish to add two RDNs at the end to restore X and Y. Source: John Dearing (2791) (PPC CJ, V7N4P22).

LBL	"EB",	Ο,	LBL 13,	STO IND Y,	ISG	Υ,	GTO	13,	RTN	
date of the second seco	and the second se									

10-21 MULTIPLE-REGISTER CLEAR USING CLS: "CLS" clears six adjacent data storage registers, beginning with the register specified by the "EREG" function. To clear Registers 10 – 18, for example, use ' Σ REG 10, CL Σ , Σ REG 13, CL Σ '. 6 bytes. Σ REG may need to be reset. Source: HP KEY NOTES, V4N1P5.

10-22 CLEAR REGISTERS WITH NO NUMERIC LABELS ("CR"): To clear any contiguous set of

data storage registers, put the bbb.eee (begin.end) control number in X, then XEQ "CR". Source: John Burkhart (4382).

LBL "CR", 0, STOINDY, RDN, ISG X, GTO "CR", RTN

(17 bytes)

(15 bytes)

10-23 BLOCK CLEAR ("BC"): With the block defined by the bbb.eee control number in X,

XEQ "BC" to clear all registers in the block. To clear every other register in a block (to clear alternate registers), use the full control number of the form

CALCULATOR TIPS & ROUTINES

39

'bbb.eeeii', with 'ii' = 02. For example, '10.02002, XEQ "BC"' clears Registers 10, 12, 14, 16, 18 & 20. Y, Z & T Registers are not used. SIGN is used in step 02 rather than STO L in order to save one byte. Source: John Kennedy (918) (PPC ROM).

LBL "BC", SIGN, CLX, LBL 13, STO IND L, ISG L, GTO 13, RTN (16 bytes)

10-24 SELECTION WITHOUT REPLACEMENT ("SE"): This routine can be used to select at

random an element from any block of consecutive registers. Subsequent items selected from the block will not repeat. It can also be considered to be a random shuffler which will scramble the contents of a block of registers. "SE" calls the random number generating routine "RN". To initialize, store the number of the first register of the block to be selected from in R06; put the number of registers in the block in R07. Store a fractional seed in any convenient register; call this register 'k'. Once initialized, the normal input to "SE" is simply the number 'k' which points to the random decimal register; key 'k' and XEQ "SE". The output from "SE" is the register content chosen at random and is left in the X Register. Each time "SE" is called, the counter in R07 is decreased by one.

If many calls are being made to "SE", then R07 should be tested for zero before "SE" is called. When R07 is zero, all the available items will have been selected; the items remain stored in the original block but will be rearranged. After a complete shuffling, the items are in the reverse order of selection (the last selected is in the lowest-numbered register). To repeat the selection process, reinitialize the number in R07. This routine uses the stack; it uses no flags. It executes in about $1\frac{1}{2}$ seconds. [Steps 16 (RCL IND X) and 22 (STO IND Y) (part of "RN") could be changed to direct operations (say RCL 05 & STO 05)--then the fractional seed must be stored in that register, but 'k' (5 in this case) need not be keyed in before each execution of "SE"].

Example: (1) Load data as shown below left; to let 'k' = 5, store 0.141592654 in R05. Store '10' in R06 (first register of the block) and store '5' in R07 (the number of registers in the block). (2) Key in '5' (k), XEQ "SE"; see "SUSAN"; the block is now as shown below middle. (3) Repeat step 2 four more times for a complete reshuffling; the block is now as shown below right. (4) To repeat selection from this block, reinitialize R07 to 5, then go to step 2. This routine will, of course, work just as well when the block contains numbers.

R11: JANE R12: JOE R13: SUSAN R14: GEORGE) R07) = 5)	R11: JANE R12: JOE R13: GEOR R14: SUSA) R07) = 4 GE) = 4	R11: GEORGE R12: JANE R13: ROBERT R14: SUSAN) R07) = 0)
Source: Bill Kolb R'k': Fractional	(265) & Jo Seed	hn Kennedy (91 R06: 1st reg.	8) (PPC ROM). of block	R07: No. of reg	. in block
01 LBL "SE" 05	RCL 06	09 RCL 07	13 STO IND Y	17 9821 2	21 FRC
02 XEQ "RN" 06	ST+ Y	10 +	14 RTN	18 * 2	22 STO IND Y
03 RCL 07 07	DSE 07	11 RCL IND X	15 LBL "RN"	19.211327 2	23 END
04 * 08	STO X	12 X<> IND Z	16 RCL IND X	20 +	(54 bytes)

10-25 ODD-EVEN REGISTER EXCHANGE ("OE"): This routine exchanges the contents of ad-

jacent registers, as directed by a control number (bbb.eee) in X defining the block. To avoid confusion, note the following: if the beginning register pointed to is odd-numbered and the ending register pointed to is even-numbered (or vice versa), then 'bbb' is the first register whose contents will be changed, and 'eee' is the last register whose contents will be changed. For example, 1.004, XEQ "OE" will exchange R01 with R02 and R03 with R04; 2.005, XEQ "OE" will exchange R02 with R03 and R04 with R05. The values in X and Y before keying the control number are returned to X and Y. Source: John Herzfeld (5428). [continued]

CALCULATOR T	IPS & ROUTIN	ES	40	Σ	. BLOCK OPERATIONS
01 LBL "OE" 02 2 E-5 03 +	04 1.4 05 X<>Y 06 +	07 <u>LBL 00</u> 08 RCL IND L 09 X<>IND Y	10 STOINDL 11 RDN 12 ISG X	13 ISG L 14 GTO 00 15 RDN	16 END (34 bytes)

10-26 <u>BLOCK REVIEW & EDIT ("B?"</u>): This routine can be used to enter, edit or review data in a block of data registers. Specify a block-defining control number in the form bbb.eee, as in an ISG instruction, where bbb is the first register and eee is the last. (You may also specify an increment size, as in an ISG instruction.) As the routine executes, it will display the register number and the current contents of the register. If you simply hit R/S, the contents are unaltered. If you enter a new number and hit R/S, the new number replaces the old contents of the data register. OPTION: After step 17 (RDN), insert 'FC? 22'; this change will result in a review of the newly-changed register before going to the next one. Y (the value in X before keying in the control number) is returned to X. Source: Larry Trammell (6824).

01	LBL "B?"	05 FIX 0	09 CF 22	13 FS? 22	17 RDN	21 FIX 2
02	LBL 14	06 "R"	10 " - "	14 STO IND Y	18 ISG X	22 END
03	ENTER	07 ARCL X	11 ARCL IND X	15 FS? 22	19 GTO 14	
04	INT	08 SCI 5	12 PROMPT	16 RDN	20 RDN	(43 bytes)

CHAPTER XI

MATRICES & DATA PROCESSING

11-1 MATRIX ROUTINES ("M1" - "M5"): Each of the five matrix routines requires two stored values, one of which is the starting register of the matrix and the other of which is the number of columns in the matrix. Matrices are assumed to be stored with each row occupying a consecutive block of registers. Thus the number of columns is the block size and the entire matrix is stored row by row as one string of consecutive registers. R07 holds the starting register of the matrix, and R08 holds the number of columns. Both row and column numbers start counting from one.

"M1" will interchange two rows in a matrix; input is the numbers of the two rows to be interchanged. ["M1" may also be considered part of the data base management routines INPUT & DELETE RECORD ("IR" & "DR"), as it can be used to interchange two records; input in this case is the two record numbers.]

"M2" will multiply a row in a matrix by a constant; input is the constant and the row number. As part of a data base management system, "M2" can be used to multiply a numerical record by a constant, including 0 (so input is the constant and the record number).

"M3" will add a multiple of one row in a matrix to another row. The row that is added to changes; the row that is multiplied by the constant does not change. "M3" may be considered part of the data base system routines "IR" & "DR": when records consist of numerical entries (such as columns of prices), "M3" may be used to add a multiple of one record to another.

"M4" will determine the (i,j) element in a matrix (row i, column j), given the number of the data register which contains that element. Input to "M4" is the register number. As part of the data base management system, "M4" can be used to determine a particular field element in a record.

"M5" is the inverse of "M4", and will determine the register number of the (i,j) element in a matrix. Input to "M5" is the row number 'i' and the column number 'j'. As part of the "IR"/"DR" data base management system, "M5" can be used to locate a particular field element in a record, given the record number and the number of the desired item within the record.

Sample Matrix: This 6x5 matrix (below left) is assumed to be stored in R15-R44. The element in the upper left corner ('21') is row 1, column 1 (1,1). The registers involved are shown below left.

21	35	55	74	83	:	R15: 21	R21: 93	R27: 32	R33: 62	R39: 82
11	93	56	36	29		R16: 35	R22: 56	R28: 27	R34: 97	R40: 23
65	78	32	27	75		R17: 55	R23: 36	R29: 75	R35: 54	R41: 45
53	94	46	62	97	1	R18: 74	R24: 29	R30: 53	R36: 39	R42: 77
54	39	61	67	82	:	R19: 83	R25: 65	R31: 94	R37: 61	R43: 15
23	45	77	15	25	:	R20: 11	R26: 78	R32: 46	R38: 67	R44: 25

This matrix starts in R15 and the number of columns in the matrix is 5, so the following must be stored:

> R07: 15 = starting register; R08 = # of columns.

Any number of matrix operations may be performed on the above matrix without chang-

ing the numbers in R07 and R08. With the matrix stored as above, and the starting register and number of columns stored in R07 and R08 respectively, as above, the following operations may be performed:

(1) "M1": To interchange any two rows in the matrix, key the two row numbers into Y & X (order unimportant) and XEQ "M1". A block exchange of the two rows occurs. Example: key 2, ENTER, 4, XEQ "M1" to exchange rows two and four in the example above.

(2) "M2": To multiply row 'i' by the constant 'k', key k, ENTER, i, XEQ "M2". Example: to multiply the last row in the example above by 2, key 2, ENTER, 6, XEQ "M2".

(3) "M3": To add k times row i to row j, key j, ENTER, i, ENTER, k, XEQ "M3". Example: to add -2 times row 3 to row 4 in the sample matrix above, key 4, ENTER, 3, ENTER, 2, CHS, XEQ "M3"; row 4 will now be -77, -62, -18, 8, -53.

(4) "M4": To determine the (i,j) address of the matrix element stored in Register 'r', key 'r', XEQ "M4"; the matrix will be left unchanged. The column number (j) will be returned to X, and the row number (i) will be returned to Y. Example: find the row and column numbers of the element stored in R38 in the sample matrix above: key 38, XEQ "M4"; 4 is returned to X and 5 to Y, so the element in R38 is the (5,4) element (in column 4, row 5).

(5) "M5": To determine the register number of the (i,j)element in a matrix, key 'i' (row), ENTER, 'j' (column), XEQ "M5". The register number will be returned to X. Example: to find the register number of the (2,3) element in the sample matrix above, key 2, ENTER, 3, XEQ "M5"; 22 is returned to X [the (2,3) element is in R22]. To check, key RCL IND X and see '56', which is the (2,3) element.

Source: John Kennedy (918) (PPC ROM).

01	LBL "M2"	16	SIGN	31	XEQ 00	46	+	61	ISG Y	Y	76	+	
02	XEQ 00	17	LBL 02	32	LBL "BE"	47	RCL X	62			77	RTN	
03	X <> Y	18	RDN	33	RCL IND Y	48	RCL 08	63	ISG X	х	78	LBL	"QR"
04	LBL 01	19	RCL IND Y	34	X<> IND Y	49	ST- Z	64			79	X<>Y	,
05	ST* IND Y	20	LASTX	35	STO IND Z	50	SIGN	65	RTN		80	STO	0
06	ISG Y	21	*	36	RDN	51	-	66	LBL '	"M5 "	81	X <> Y	
07	GTO 01	22	ST+ IND Y	37	ISG X	52	E3	67	X<> (08	82	MOD	
80	RTN	23	ISG Y	38		53	1	68	ST- (80	83	ST-	0
09	LBL "M3"	24		39	ISG Y	54	+	69	*		84	LAST	X
10	STO M	25	ISG Z	40	GTO "BE"	55	RTN	70	ST+ (80	85	ST/	0
11	RDN	26	GTO 02	41	RTN	56	LBL "M4"	71	X<> I	L	86	CLX	
12	XEQ 00	27	RTN	42	LBL 00	57	RCL 07	72	X<> (08	87	X<>	0
13	X<>Y	28	LBL "M1"	43	RCL 08	58	-	73	1		88	X < > Y	,
14	XEQ 00	29	XEQ 00	44	*	59	RCL 08	74	-		89	END	
15	RCL M	30	X <> Y	45	RCL 07	60	XEQ "QR"	75	RCL (07		(171	bytes)

For a nonsynthetic version, make the following changes: Change references to synthetic Register M (steps 10 & 15) to a convenient numeric register, say R00. Likewise, change references to Register O (steps 80, 83, 85 & 87) to a numeric register such as R01. Change the Text 0 NOPs (steps 24, 38, 62 & 64) to any nonsynthetic NOP, such as STO X. Finally, change the short-form exponent 'E3' (step 52) to its nonsynthetic equivalent, '1 E3'.

11-2 <u>INSERT & DELETE RECORD ("IR" & "DR")</u>: These routines can be considered to be part of a data base management system; they apply to files consisting of fixed length records where each record is a block of consecutive data registers. The entire file consists of one large block of consecutive registers. "IR" is a special block move routine which makes room between two file records for insertion of a new record; "DR" deletes a given record from the file and moves the remaining files into the vacated space so that the data area is as compact as possible. Before executing "IR" or "DR", have the file in data memory, and have the following three registers

loaded as specified for use by either routine:

R07: s = starting register of the entire file

- R08: c = number of consecutive registers per record (# of columns)
- R09: n = total number of records in the file (# of rows)

To make room to insert a new kth record, key 'k', then XEQ "IR". "IR" will move the records following and including the kth record into higher-numbered registers to make room to insert new data for a new kth record, and will also add 1 to R09 to update the new number of records. Note that this will cause a change in the numbering of the records following and including the old kth record. Note also that new data is not actually inserted; "IR" simply makes room so that the new record can be inserted between previously existing records.

To delete the kth record from the file, key 'k', XEQ "DR". The records following the kth record will be moved into registers occupied by the old kth record and 1 will be subtracted from R09 to update the new number of records. Note that this will cause a change in the numbering of the records following the kth record.

Example: Assume the records of the original file are as follows, and we are to insert a new record #3:

#1:	Joe Robinson	#2: Mike Johnson	#3: Jane Hamilton	#4: Paul Jones
	354-1662	363-5648	261-2347	745 - 3254
	Gary, IN	Boston, MA	Fresno, CA	Denver, CO

This sample file is stored in R10-R33, where each record consists of six consecutive registers:

R10:	JOE	R16:	MIKE	R22:	JANE	R28:	PAUL
R11:	ROBINS	R17:	JOHNSO	R23:	HAMILT	R29:	JONES
R12:	ON	R18:	Ν	R24:	ON	R30:	
R13:	354.1662	R19:	363.5648	R25:	261.2347	R31:	745.3254
R14:	GARY	R20:	BOSTON	R26:	FRESNO	R32:	DENVER
R15:	IN	R21:	MA	R27:	CA	R33:	CO

Put the following information into R07 - R09:

R07: 10 = starting register of file R08: 6 = no. of registers/record R09: 4 = total number of records

Next, key '3', XEQ "IR". Now the third and fourth records are moved into higher-numbered registers (R28-R33 & R34-R39), making room in R22-R27 for a new record to be inserted. Also, the record count in R09 is incremented by one to 5.

To delete this newly-entered record in R22-R27 (the new record #3), key '3', XEQ "DR"; the file is restored to its original form and R09 is decremented by one to 4. Source: John Kennedy (918) (PPC ROM).

01	LBL	"IR"	11	RCL	Z	21	XEQ	03	31	LAST	X	41	RCL	IND Z	
02	ISG	09	12	*		22	ST-	Z	32	ST+	Z	42	STO	IND Z	
03			13	+		23	*		33	+		43	RDN		
04	XEQ	03	14	STO	Y	24	DSE	09	34	-1		44	ST+	Z	
05	ST-	т	15	RCL	09	25			35	ST+	Z	45	ST+	Y	
06	*		16	RŤ		26	LBL	"BM"	36	ST+	Y	46	DSE	L	
07	GTO	"BM"	17	-		27	SIG	J	37	RDN		47	GTO	05	
80	LBL	03	18	RCL	08	28	RDN		38	LBL	04	48	END		
09	RCL	07	19	RTN		29	X < Y?	?	39	RŤ					
10	RCL	08	20	LBL	"DR"	30	GTO	04	40	LBL	05			(89	bytes)
C	. * * ~ *	ria NODa al		» (at		551	~ ~ ~ ~	he menled							

Synthetic NOPs above (steps 03 & 25) can be replaced with "STO X".

11-3 MATRIX INPUT/OUTPUT ("MIO"): This routine prompts
for the input to a matrix (numeric input only),
using a (row, column) prompt; it is consistent with the
<pre>matrix routines "M1" - "M5" (11-1). Matrices are stored</pre>
row by row with each row occupying a block of consecu-
tive registers; the entire matrix is stored as one large
block of consecutive registers. To achieve maximum size,
store the matrix in R10 on up. This routine calls on
routines "M1"- "M5", which in turn call on routine "QR"
(all in 11-1); these routines must also be in memory. To
get into the "MIO" routine so that keys 'A', 'B' and 'C'

FLAGS: 09: used 29: cleared REGISTERS: R03: counter R04: pointer R05: # digits displayed R07: start register R08: # columns R09: # rows

are active, press its assigned key if any, or else XEQ "MIO", GTO "MIO", or do a CAT 1 and stop at LBL "MIO"; once in the program, the following functions are available, in USER Mode:

A. INDUC NEW MACHIX B. REVIEW MACHIX C. RECALL (9, X)

Example 1: Input the required matrix, preparatory to solving the following system of equations (see "RRM" [11-4]).

- 5x	+	10y	+	15z	=	5		1	-5	10	15	:	5	
2x	+	У	+	z	=	6	=		2	1	1		6	
х	+	Зy	-	2 z	=	13		L	1	3	-2	÷	13	

Solution: Get into "MIO", press 'A' for inputting a new matrix; as prompted, input '10', R/S for starting register (if printer is plugged in but OFF, CF 21 first), then '3', ENTER, '4' for (row, column) matrix dimensions. Next, enter one by one the coefficients (left to right, top to bottom), following each with R/S; the routine will sound a tone and prompt for each coefficient: for example, see "(1,1)=?", key '5', CHS, R/S. Do the same for '10', '15', '5', '2', and so on. After keying the last coefficient ['13' here--element (3,4)], "BEEP" will sound. To verify the data input, store a number (say '4') in R05 for the number of decimal places to display, then press 'B' to run through the entire matrix; if printer is ON, the matrix will print. If scientific notation is preferred, change line 44 from FIX IND 05 to SCI IND 05. (To have routine stop with each display: if no printer is plugged in, SF 21 1st; if printer is plugged in but is OFF, SF 21 if necessary first.) The first display is typical: "(1,1) = -5.0000". Routine BEEPs after last element is displayed/printed.

Key 'C' may be used to find out which register a particular element is in. Key the row and column numbers of the matrix element you wish to view, then press 'C'. For example, to verify that the (3,2) element is '3', key 3, ENTER, 2, press 'C'; see 'R19.0000", then "(3,2) = 3.0000". Thus, the (3,2) element is stored in R19, and is '3'. Note: if an incorrect entry is made during the automatic input phase (using key 'A'), simply continue entering elements as directed by the display; after all entries have been made, use 'C' to determine which register to manually store the correct element in.

Example 2: Input the required matrix for the following systems of equations, preparatory to solving the equations, finding the inverse of the coefficient matrix, and finding the determinant (see 11-4):

14x ·	+	2y	-	6z	=	9		14	2	-6	:	1	0	0	:	9	
-4x -	+	у	+	9z	=	3	=	-4	1	9		0	1	0		3	
6x •	-	4y	+	3z	=	-4		6	-4	3	:	0	0	1	:	-4	

The matrix to be entered will consist of the original coefficient matrix augmented by the identity matrix and augmented by the final column of constants; this is a 3x7 matrix, as shown above right.

Solution: In the "MIO" routine, with USER Mode on, press 'A'; input '10' for starting register and 3, ENTER, 7 for dimensions; then as prompted enter all elements of the above matrix $[(1,1) = '14', (1,2) = '2', \ldots, (3,7) = '-4']$. Review with 'B'; if necessary, determine which registers to correct with 'C'.

Source: John Kennedy (918).

01	LBL "MIO"	12	X <> Y	23	RCL	09	34	"⊢)="	45	ARCL IND 04	56	" R"
02	STOP	13	STO 09	24	*		35	FC? 09	46	AVIEW	57	ARCL X
03	LBL A	14	SF 09	25	STO	03	36	GTO 03	47	LBL 04	58	AVIEW
04	"START REG?"	15	GTO 01	26	LBL	02	37	"⊢?"	48	ISG 04	59	STO 04
05	AVIEW	16	LBL B	27	RCL	04	38	AVIEW	49	STO X	60	1
06	STOP	17	CF 09	28	XEQ	"M4 "	39	TONE 0	50	DSE 03	61	STO 03
07	STO 07	18	LBL 01	29	FIX	0	40	STOP	51	GTO 02	62	CF 09
80	"DIM: R? [†] C?"	19	CF 29	30	" ('	ı	41	STO IND 04	52	BEEP	63	GTO 02
09	AVIEW	20	RCL 07	31	ARCI	Y	42	GTO 04	53	RTN	64	END
10	STOP	21	STO 04	32	" ,'	ı	43	LBL 03	54	LBL C		
11	STO 08	22	RCL 08	33	ARCI	ГХ	44	FIX IND 05	55	XEQ "M5"	(133	bytes)

11-4 FINDING DETERMINANTS & INVERSES; SOLVING SYSTEMS OF EQUATIONS ("RRM"): This

routine will transform a matrix into row reduced eschelon form; this means it will calculate determinants and inverses and will solve systems of equations. It will handle these three matrix problems, either individually or simultaneously, and uses the technique known as partial pivoting which helps reduce round off error. The only limitation on the size of the matrix is the number of available data registers. "RRM" can even be applied to more than one matrix in data memory. "RRM" calls on the following routines, which must also be in program memory: "M1" - "M5" (11-1), "BE" (10-14 or 11-1), "BX" (10-18) and "QR" (or 11-1). The Matrix Input/Output Routine (11-3) is useful for loading, reviewing and

10: used REGISTERS:

FLAGS:

R01: determinant R02: used R03: used R04: used R07: starting register R08: # of columns R09: # of rows ALPHA: used

correcting matrices, and is used in the examples below. Before executing "RRM", the number of the starting register of the matrix (10 or greater) must be stored in R07, the number of columns must be stored in R08, and the number of rows must be stored in R09. "MIO" will have stored these values, if executed just prior to this routine.

Example 1: First work example 1 of "MIO"; when the matrix is loaded, XEQ "RRM"; execution time will be about 40 seconds; when it ends, get into "MIO", then press 'B' in USER Mode to display the final matrix, which is:

Γ	1	0	0	:	2	The solution is $x = 2$, $y = 3$, $z = -1$.
	0	1	0	:	3	The determinant of the square coefficient
L	0	0	1	:	-1_	is stored in R01: det. = 150.0000 .

Example 2: Work example 2 of "MIO". When the matrix is loaded, XEQ "RRM"; when execution ends, get into "MIO" and press 'B' in USER Mode to display the matrix:

The last column contains the solutions of the system of equations and would be interpreted as x = 1/2, y = 2, z = 1/3. The determinant of the coefficient of the matrix can be recalled from R01: det. = 618. The inverse of the original matrix is the 3x3 matrix in the middle. "DF" (14-1) can be used to convert the full value of these decimals (note they're in Registers 13-15, 20-22 & 27-29) to fractions:

```
        13/206
        3/103
        4/103

        11/103
        13/103
        -17/103

        5/309
        34/309
        11/309
```

If only the determinant of a matrix is desired, a square matrix is all that "RRM"

CALCULATOR TIPS & ROUTINES

XI. MATRICES & DATA PROCESSING

requires. If only the inverse of a matrix is desired, input as in Example 2 of "MIO" but leave out the final (right hand) column of constants. "RRM" is just as useful for systems of equations which do not have unique solutions. If the determinant in RO1 is zero, then the system of equations may have no solutions or an infinite number of solutions. Since "RRM" returns the row reduced echelon form, the final matrix will always be row equivalent to the original. The final matrix may then be used to tell immediately where parameters should be inserted and any and all solutions may then be immediately determined. The coefficient matrix need not be square for "RRM" to operate on it.

Source: John Kennedy (918).

01	LBL "RRM"	13	RCL 08	25	1 E3	37	1/X	49	XEQ "M	1" 61	X=Y	?
02	•	14	RCL 04	26	/	38	RCL M	50	RCL 01	62	GTO	07
03	STO 03	15	X>Y?	27	+	39	INT	51	CHS	63	RCL	02
04	STO 04	16	RTN	28	RCL 08	40	XEQ "M4"	52	STO 01	64	RCL	04
05	SIGN	17	RCL 09	29	1 E5	41	RDN	53	LBL 07	65	XEQ	"M5 "
06	STO 01	18	RCL 03	30	/	42	STO 02	54	ISG 02	66	RDN	
07	SF 10	19	X>Y?	31	+	43	XEQ "M2"	55	STO X	67	RCL	IND T
08	LBL 05	20	RTN	32	XEQ "BX"	44	RCL 02	56	RCL 09	68	CHS	
09	ISG 03	21	RCL 04	33	RCL IND M	45	ST- 02	57	RCL 02	69	XEQ	"M3 "
10	LBL 06	22	XEQ "M5"	34	ST* 01	46	RCL 03	58	X>Y?	70	GTO	07
11	ISG 04	23	X<> Z	35	X=0?	47	X=Y?	59	GTO 05	71	END	
12	STO X	24	XEQ "M5"	36	GTO 06	48	GTO 07	60	RCL 03		(124	bytes)

CHAPTER XII

SORTING

12-1 <u>QUICKSORT ("QS")</u>: This routine sorts data in R01 - Rnn. Have 'nn' in X before executing "QS". It clears Flag 21, sets FIX 3, uses Flag 04. It doesn't work as well for data already sorted. The block currently being sorted is displayed while the routine is running. "QS" uses a few registers above Register 'nn' for scratch; to sort 'N' numbers, up to N+1+log2 N registers are needed. For example, to sort data in R01 - R32, key '32', XEQ "QS". When BEEP sounds and "DONE" appears, a review of the data registers will show a 'used' control number in R00, the data in R01-32 sorted in ascending order, 'garbage' in R33-36, and the contents of R37 and above unchanged. A sort of 32 numbers ordered randomly takes about 1 minute; a 'resort' of this sorted data will take about $2\frac{1}{2}$ minutes. Source: Mike Hale (4457) (PPC CJ, V7N2 P39).

01	LBL "QS"	30	RÎ	59	DSE Z	88	XEQ 22	117	LBL 26
02	STO 00	31	RCL L	60	CLA	89	RDN	118	X<>Y
03	CF 21	32	X<>Y	61	RDN	90	RDN	119	RCL IND Y
04	FIX 3	33	LBL 16	62	RDN	91	1	120	X<=Y?
05	CF 04	34	RÎ	63	X<=Y?	92	+	121	GTO 27
06	RCL 00	35	CLX	64	GTO 23	93	RCL IND 00	122	ISG Z
07	1 E3	36	RCL IND Z	65	GTO 19	94	FRC	123	BEEP
80	/	37	RÎ	66	LBL 21	95	1 E3	124	STO IND Z
09	1	38	X<=Y?	67	STO IND T	96	*	125	RDN
10	+	39	GTO 18	68	Х<>Ү	97	X>Y?	126	X <> Y
11	ST+ 00	40	LBL 17	69	STO IND Z	98	XEQ 22	127	2
12	STO IND 00	41	ISG T	70	GTO 17	99	LBL 24	128	-
13	LBL 15	42	STOP	71	LBL 22	100	DSE 00	129	X≠0?
14	RCL IND 00	43	RDN	72	1 E3	101	GTO 15	130	GTO 26
15	VIEW X	44	RDN	73	/	102	"DONE"	131	STO Z
16	INT	45	X<=Y?	74	+	103	AVIEW	132	LBL 27
17	LASTX	46	GTO 23	75	X<>IND 00	104	BEEP	133	CLX
18	FRC	47	GTO 16	76	ISG 00	105	RTN	134	1
19	1 E3	48	LBL 18	77	STOP	106	LBL "IST"	135	ST+ Z
20	*	49	STO IND T	78	STO IND 00	107	LBL 99	136	RDN
21	STO Z	50	Х<>Ү	79	ENTER	108	SF 04	137	STO IND Y
22	Х<>Х	51	STO IND Z	80	RTN	109	ISG IND 00	138	ISG IND 00
23	-	52	GTO 20	81	LBL 23	110	LBL 25	139	GTO 25
24	15	53	LBL 19	82	1	111	RCL IND 00	140	END
25	X>Y?	54	RÎ	83	-	112	RCL IND X		
26	XEQ 99	55	RCL IND Y	84	RCL IND 00	113	Х<>Ү		
27	FS?C 04	56	X<=Y?	85	INT	114	1		
28	GTO 24	57	GTO 21	86	X <> Y	115	-		
29	RCL IND Z	58	LBL 20	87	X>Y?	116	INT		(248 bytes)

12-2 STACK SORT ("S1"): This routine sorts data in the X, Y, Z & T Registers; it

won't work if an Alpha string is in any of these registers. Before execution, have Flag 10 clear for a descending sort (largest value returned to X, smallest to T), or have Flag 10 set for an ascending sort. "S1" clears Flag 10. To eliminate this feature, change step 29 (FS?C 10) to FS? 10. Source: PPC ROM.

CALCULATOR TIPS	S & ROUTINES		XII. SORTING	
0.4		4.0		
<u>01 LBL "S1"</u>	07 RT	13 X <> Y	19 X<=Y? 25 GTO 01	31 RDN
02 X>Y?	08 X>Y?	14 RDN	20 GTO 03 26 LBL 02	32 X<> Z
03 X <> Y	09 X <> Y	15 X < =Y?	21 X<>Y 27 R [↑]	33 END
04 RDN	10 R †	16 GTO 02	22 LBL 03 28 LBL 01	
05 X>Y?	11 X<=Y?	17 X <> Y	23 RDN 29 FS?C 10	
06 X <> Y	12 GTO 01	18 RDN	24 RDN 30 RTN	(46 bytes)

12-3 SYNTHETIC QUICKSORT ("S2" & "S3"): These routines work as quickly for presort-

ed data as they do for randomly-ordered data. All registers above the block being sorted are left undisturbed. For both routines, have a 'bbb.eee' control number defining the block to be sorted in X before entering the routine; the control number is returned to X after execution. The stack and the Alpha Register are used, as well as Flag 10. <u>"S2" (Small Array Sort)</u> is faster for 32 or fewer registers; it uses no numeric registers, and so will sort any block of data registers. It is executed as a subroutine by "S3". <u>"S3" (Large Array Sort)</u> is faster for more than 32 registers; it uses Registers 01 & 02, so the block to be sorted must begin with Register 03 or a higher-numbered register. A comparison of some execution times for "S2" and "S3", respectively: for 5 registers: 5 sec. vs. 12 sec.; for 32 registers: 44 sec. each; for 96 registers: 4 min. 47 sec. vs. 2 min. 48 sec. Source: Ray Evans (4928) (PPC ROM).

01	LBL "S3"	38	LBL 11	75	INT	111	LBL "S2"	148	RDN
02	STO O	39	X < Y?	76	RCL O	112	CF 10	149	ISG N
03	SF 10	40	GTO 12	77	INT	113	STO M	150	GTO 00
04	LBL 09	41	DSE N	78	X=Y?	114	INT	151	GTO 02
05	STO 02	42		79	GTO 08	115	E99	152	LBL 01
06	LBL 05	43	DSE M	80	RDN	116	STO P	153	Х<> Т
07	STO 01	44	GTO 13	81	RCL 01	117	ENTER	154	X < Y?
08	FRC	45	GTO 06	82	INT	118	ENTER	155	Х<>Ү
09	E3	46	LBL 12	83	X <> Y	119	ENTER	156	R †
10	*	47	X<>IND T	84	X>Y?	120	LBL 04	157	X <> P
11	STO N	48	ISG T	85	GTO 07	121	X<> M	158	Х<> Т
12	RCL 01	49		86	RCL 02	122	STO N	159	ISG N
13	INT	50	DSE M	87	INT	123	X<> M	160	GTO 00
14	-	51	GTO 11	88	X<>Y	124	LBL 00	161	LBL 02
15	Е	52	LBL 06	89	X>Y?	125	X<>IND N	162	RŤ
16	+	53	X<>IND Z	90	GTO 07	126	X < Y?	163	X<>IND M
17	STO M	54	FRC	91	E	127	GTO 01	164	X <> P
18	RCL 01	55	RŤ	92	-	128	ISG N	165	ISG M
19	E - 4	56	INT	93	E3	129	GTO 00	166	X<> IND M
20	+	57	+	94	/	130	SF 10	167	RÎ
21	•	58	LBL 10	95	RCL O	131	GTO 02	168	ISG M
22	RCL X	59	ENTER	96	INT	132	LBL 01	169	X<> IND M
23	LBL 14	60	FRC	97	+	133	RÎ	170	RÎ
24	RCL IND Z	61	E3	98	SF 10	134	X < Y?	171	ISG M
25	+	62	*	99	GTO 09	135	GTO 01	172	X<>IND M
26	ISG Y	63	Х<>Ү	100	LBL 07	136	X <> P	173	FS?C 10
27		64	-	101	Е	137	R î	174	GTO 03
28	ISG Z	65	31	102	-	138	RÎ	175	RÎ
29	GTO 14	66	X>Y?	103	E3	139	ISG N	176	ISG M
30	X <> Y	67	GTO 01	104	/	140	GTO 00	177	X<>IND M
31	1	68	LASTX	105	+	141	GTO 02	178	LBL 03
32	RCL N	69	FS?C 10	106	GTO 10	142	LBL 01	179	ISG M
33	X <> Y	70	GTO 09	107	LBL 08	143	X<> P	180	GTO 04
34	RCL 01	71	GTO 05	108	LASTX	144	X < Y?	181	LASTX
35	STO T	72	LBL 01	109	BEEP	145	GTO 01	182	END
36	LBL 13	73	LASTX	110	RTN	146	RDN		
37	X<> IND N	74	XEQ "S2"			147	X <> P		(282 bytes)

49

XII. SORTING

12-4 substi sets c 67/97	FINDING SMALLEST (OR LARGEST) OF THREE OR MORE NUMBERS ("SORT"): This ro finds the smallest of three numbers; to find the largest of three number itute "X <y?" "x="" for="">Y?" (steps 04 & 07). To extend to four or more number of steps like 04-06 for each additional number. Source: Bill Kolb (265) (</y?">	rs, rs, add (BP
LBL "S	SORT", RCL 01, RCL 02, X>Y?, X<>Y, RCL 03, X>Y?, X<>Y, RTN (16)	bytes)
12_5	OWNEDERTO ALDERTER Y & Y (HALH), This working algebraic states algebra	
12-5	SYNTHETIC ALPHABETIZE X & Y ("AL"): This routine alphabetizes Alpha stri	.ngs in
12-5	the X and Y Registers (in ACCHR order). This routine alphabetizes Alpha stri	.ngs in are
lost.	the X and Y Registers (in ACCHR order). This routine alphabetizes Alpha stri Indirect use: With the first register number in Y and the second in X, t	.ngs in are :he
lost.	the X and Y Registers (in ACCHR order). This routine alphabetizes Alpha stri Indirect use: With the first register number in Y and the second in X, t ints of the registers pointed to by the numbers in X & Y will be switched	.ngs in are :he in
lost. conter	the X and Y Registers (in ACCHR order). This routine alphabetizes Alpha stri Indirect use: With the first register number in Y and the second in X, t nts of the registers pointed to by the numbers in X & Y will be switched sary to put them in alphabetical order (the string first in alphabetical	ngs in are he in order

01 02	LBL "AL" CLA	10 11	X < =Y? CF 10	19 20	RTN LBL 12	28 29	RTN LBL 13	37 38	FC? 25 ARCL Y	45 46	GTO 14 STO N
03	CF 10	12	FC?C 25	21	$\overline{X \le Y?}$	30	RÎ	39	"⊢♦♦♦♦♦"	47	"⊢♦♦"
04	XEQ 14	13	GTO 12	22	GTO 12	31	R1	40	ASTO L	48	LBL 14
05	XEQ 14	14	X<=Y?	23	RÎ	32	SF 10	41	ARCL L	49	STO M
06	X=Y?	15	RTN	24	X<> Z	33	XEQ 14	42	"⊢♦♦♦♦♦"	50	"⊢♦♦"
07	XEQ 13	16	X<>IND T	25	LBL 12	34	LBL 14	43	•	51	X<> N
08	CLA	17	X<> IND Z	26	RÎ	35	SF 25	44	FC? 10	52	END
09	SF 10	18	X<> IND T	27	R†	36	ARCL IND Y			(10)7 bytes)

that were in X & Y. Source: Wickes (3735), Jarett (4360) & Cheeseman (4381) (PPC ROM).

CHAPTER XIII

RANDOM NUMBERS

13-1 (PI + SEED)³ RANDOM NUMBER GENERATOR ("RAN"): Store a fractional seed in R10 before executing "RAN". Example: key '.05101975, STO 10, XEQ "RAN"'; in FIX 4 Mode, '0.5416' is returned to X; to repeat, press R/S; '0.9649' results. Source: Jim Butterfield (1076) (65 NOTES, V4N8P4). LBL "RAN", RCL 10, PI, +, ENTER, X¹2, *, FRC, STO 10, RTN. (16 bytes) _____ 13-2 SHORTEST, FASTEST RANDOM NUMBER GENERATOR: Use 'LBL any, RCL any, R-D, FRC, STO any, RTN! If desired, another "R-D" could be added. The previous seed must be stored in the selected register; it can be any integer or decimal, except 0 or pi (or its multiples). It generates numbers between 0 and 1 uniformly. Source: Valentin Albillo (4747) (PPC CJ, V7N6P35). 13-3 RANDOM NUMBER GENERATOR ("RN"): "RN" is a random number generator and can be used to generate uniformly-distributed pseudorandom numbers in the range 0<r<1. Input required is a register pointer in X; this is the number of the register which holds the seeds. This register should be initialized with a random decimal between 0 and 1 before the first time this routine is called. The output leaves the new seed in X as well as in the data register. Source: Don Malm (1362) (65 NOTES, V4N8P4). 01 LBL "RN" 06 + Inputs: Outputs: 02 RCL IND X Т: Т 07 FRC Т: Ү 02 KCL 03 9821 Z: Z Y: Y 08 STO IND Y Z: Y 09 RTN Y: Reg. Pointer (25 bytes) X: Reg. Pointer X: Next Seed 05 .211327 13-4 GAUSSIAN RANDOM NUMBER GENERATOR ("GN"): This routine yields a Gaussian (bellshaped) distribution where the mean and the standard deviation are specified by the user. "GN" calls "RN" (13-3), and hence requires a register pointer in X when called. An initial seed must also be stored in the register pointed to by the number in X. "GN" leaves two Gaussian random numbers in the stack: one in X, one in Y. This routine must be used in Degree Mode. Source: Kiyoshi Akima (3456) & John Kennedy (918) (PPC CJ, V7N8P11; PPC ROM). 01 I.BL. "GN" 10 * Inputs: Outpute.

	10	inpucs.	oucputs.						
02 XEQ "RN"	11 R î	Т: Т	T: Reg. Pointer						
03 LN	12 RCL 07	Z: Z	Z: Reg. Pointer						
04 ST+ X	13 *	Y: Y	Y: Random No. #2						
05 CHS	14 P - R	X: Reg. Pointer	X: Random No. #1						
06 SQRT	15 RCL 06	L: L	L: Mean						
07 X<>Y	16 ST+ Z		· Chandand Davistian						
08 XEQ "RN"	17 +	RUG: Mean RU/	: Standard Deviation						
09 360	18 RTN		(33 bytes)						
			-						

To eliminate the restriction of being in Degree Mode, replace line 09 (360) with '1, ASIN, 4, *'. This change will cost only one additional byte. (In any trig mode, the value calculated will represent a full circle, and the P-R function will receive its data in the correct format.) Source: Larry Trammell (6824).

13-5	USING IN	DIRECT AD	DRESSING	G TO TEST A	RANDOM	NUMBER	GENERATOR	("TR" &	"RNG"):
	The "ISG	IND X" fu	nction c	can be used	to prov	ide dat	a for tes	ting a ra	ndom	num-
ber ge	enerating	routine	that ret	urns a deci	imal fra	ction t	o X. The	value ret	urned	is
multi	olied by	10 to put	the fir	st decimal	digit i	n the i	nteger por	rtion of	the n	um-
ber, t	then "ISG	IND X" in	crements	the regis	ter (R00	- 09) co	rrespondi	ng to tha	t dig	it.
These	register	s must be	cleared	l first. An	example	is "TR	" below.	It clears	R00-	12,
then j	prompts f	or the nu	mber of	times the :	random n	umber g	enerator,	labeled	"RNG"	, is
to be	executed	. It also	prompts	s for a fra	ctional	seed, t	hen stores	s it in R	10. т	he
number	r of time	s "RNG" h	as been	executed is	s displa	yed as	execution	continue	s. Wh	en
execut	tion is c	omplete,	BEEP sou	unds and the	e calcul	ator tu	rns OFF.	To see th	e res	ults,
turn	the calcu	lator ON	and view	x R00-09. T	he numbe	r in RO	0 is the m	number of	time	s a
zero v	was gener	ated, the	number	in R01 is	the numb	er of t	imes a one	e was gen	erate	d,
and s	oon.As	ample ran	lom numb	per generat	or, "RNG	", is a	lso liste	d. The re	sults	for
testi	ng "RNG",	first fo	r 100 tr	rials, then	for 100	0 trial	s, are sho	own below	' righ	t;
in bot	th cases,	a seed o	£.25798	846319 was v	used. So	urce: E	Bill Kolb	(265) & J	ohn D	ear-
ing (2791). Se	e PPC CJ,	V7N4P16	5.				DEC	ΠŪ	TATS
01 T P	ייסיייי		17 TRT 1	3	01	LBL "P	NC	REG	100	1000
	21		$10 \overline{VEO}$		$\frac{01}{02}$			POO	13	103
	21		10 ALQ	RNG	02	007		P01	6	94
03 F1	ΛŪ		19 IU 20 +		0.3				14	11.8
04 12			20 *		04			RUZ	1-1	110

04	12	20	*	04	*	RUZ	14	118
05	STO 00	21	ISG IND X	05	FRC	R03	13	99
06	CLX	22	BEEP	06	STO 10	R04	8	105
07	LBL 14	23	1	07	END	R05	9	92
80	STO IND 00	24	ST+ 12		(17 britse)	R06	9	88
09	DSE 00	25	VIEW 12		(17 bytes)	R07	8	107
10	GTO 14	26	DSE 11			R08	9	104
11	"NO. TRIALS ?"	27	GTO 13			R09	11	90
12	PROMPT	28	BEEP					
13	STO 11	29	PSE					
14	"FRAC. SEED ?"	30	OFF	R10 = s	seed			
15	PROMPT	40	END	R11 =]	loop counter			
16	STO 10		(78 bytes)	R12 = r	noof-executions-cor	nplet	ed cou	nter

CHAPTER XIV

FRACTIONS & ROUNDING

14-1]	DECIM	AL I	TO F	RACT	ION (("DF	"): '	The i	nput	: a	cce	pted	l by	r ti	his routi	ne i	s a	iny ċ	lecimal
		value	in	Х (it m	ay ir	nclu	de a	n int	egei	r p	ort	ion)	; t	he	output i	s a	fra	ctic	on, Y/X,
whos	se a	appro	xima	tio	n to	the	dec:	imal	inpu	twi	.11	ag	ree	to	at	least 'n	' pl	ace	es, v	where n
is s	stoi	red in	n RO)7 b	efor	e exe	ecut	ion.	The	nume	era	tor	wil	.1 k	be	in Y and	the	der	omir	nator in
x. s	Soui	rce:	John	. Ke	nned	y (91	8)	(PPC	CJ,	V7N8	3P1	1;	PPC	RON	1).					
01 1	LBL	"DF"		09	RŤ		17	INT		25	5 S	то	10	3	33	RCL 08		41	RCL	10
02 \$	STO	08		10	X=Y?		18	-		26	5 R	CL	80	3	34	-		42	SIG	N
03 3	INT			11	GTO	08	19	RCL	09	27	7 *			3	35	FIX IND 07		43	ST*	10
04 ()			12	ST-	Y	20	RCL	10	28	3 F	ΊX	0	3	86	RND		44	*	
05 \$	бто	09		13	LBL	07	21	STO	09	29	R	ND		3	37	X≠0?		45	RCL	10
06 1				14	RDN		22	LAS	ТХ	30) S	TO	Z	3	88	GTO 07		46	END	
07 \$	STO	10		15	1/X		23	*		31	R	CL	10		39	RCL Z				
08 1	RCL	08		16	ENTE	R	24	+		32	2 /	,		4	10	LBL 08			(61	bytes)
14_	2 1		 ΔT7						 ייתדתיי	· ·			outi		<u></u> -	rives! th			 nal t	to frac-
	-	tion	rout	ine	("D	F") 2	abov	<u>a (1</u>	$\frac{D1D}{4-1}$	<u>-</u>	is	fu	11v	nri	int	er compat	ible	i: i	tor	perates
the	sar	ne wi	th r		rint	er. v	vith	an	rinte	rn	110	red	in	and	3 0	n. and wi	th a	יי ימי	inte	er plug-
ded	in	but	off	. Wh	en "	יסדסי ייסדסי	is	exect	uted.	тр. it	nr	omn	ts f	or	'n	' and for	the	de de	cima	al. exe-
cute	25	"DF".	and	1 th	en f	ormat	-s a	nd d	isnla		P⊥ 'he	re	sult	S.	Pr	ess R/S t		e t	he a	actual
val	1e (of the	e fr	act	ion:	nres	ss b	acka	rrow	to 1	-et	urn	to	a I	דד אדק	2 displa		or r	ness	s R/S
aga	in t	to re	run	the	rou	tine	. Tf	'n'	or t	he d	lec	ima	lar	ne t	-0	be the sa	me a	is h	pefoi	re, skin
the	pro	ompt.	for	the	unc	hange	ad v	alue	with	R/9	5.	Exa	mple	•: f	For	n = 5 and	l dec	ima	n = r	ni
(3.	141	59265	4).	the	fra	ction		355/	133 =	. 3.1	41	592	920		5011	rce: John	Dea	rir	na ()	2791)
01	, .	""	- /)	0110	06 5		• - ·	,	100 -	OD	20	552	520	•••		v 0	. Deu		ng (2	27317.
$\frac{01}{02}$		07			00 8				11		_ Z 9 _	,		10	F L	x 9 20	21	ARC		
02 1		07 20			07 "	DECT	MAL:		12		4 77	v		10	5r DD	29	22	F12		
03					00 P				10		-L- /	I		10	PR	OMPT	23	PR		
		07			10 E	LU UL	JE		14			v		19		7	24	GIU	ום ייכ	e D
05 6	510	07			IU F	IX U			10	AR	بار	л		20	СГ	А	25	ENI	(61	1 bytes)
14-	3	REDUC	E FF	RACT	TONS		 	 : То		key	 / i	n n	umer	ato		ENTER. d	enor	ine	tor	
		"RED"	<u> </u>	ne r	outi	ne pa	ause.	s to	show	r + he	n é	rea	test	- 00		on diviso	or (d	le le	ate a	stens
16-	19	to el	imir	nate	thi	s fea	atur	e).	then	sto	ຼ່ອ ນຮ	to	disr	lav	, t	he fracti	oni	n r	reduc	red
for	n. :	Sourc	e: :	John	Dea	ring	(27	91)	(PPC	CJ,	v7	N4 F	32).	•					cuu	
01]	LBL	"RED		06	LBL	. 01	1	1 +			6	"GC	D="		21	ARCL 00	2	26 8	SF 29	9
02	STO	01		07	STC	Z	1	2 ST	/ 00		17	ARC	ЪX		22	"⊢∕"	2	27 (CLX	
03 2	X<>	Y		08	MOD)	1	3 ST	/ 01		8	AVI	EW		23	ARCL 01	2	28 E	END	
04 :	STO	00		09	X≠0	?	1	4 FI	X 0		9	PSE	3		24	AVIEW				
05 2	X<>	Y		10	GTC	01	1	5 CF	29	2	20	CLA	1		25	FIX 2			(53	B bytes)
14_	4			NEA	REST		 ?TTO			 Har	- - -	the			 ~ +	o he rour	ded	 in	V 97	nd the
1-1-0-1		lecim	$\frac{10}{al}$	rac	tion	in '	X. +	hen			'NF		Tf +	.nei .nei	כ ייות	mber to h	a = rc	TII Munc	in i Fol	is noge-
tiv	. ·	the d	ecin	nal	frac	tion	mile	t	so he	ne ne	ter ter	• ive	C	/am	יייי סור	$\mathbf{s} \cdot \mathbf{t} \mathbf{c} \mathbf{r} \mathbf{c}$	ind '	24	561	to the
near	rpe	t who	le r	umb	er.	kev '	24 5	саі 6. г	NTER	1	yau XF)TG	25 00 100	TO r	240 7110		2 29! + 2
the	ne:	arect	hal	f	kev	2.29	J	UEP	.5.	XEO	"N	יצי וד יו זו		, DC	20	$0! - \pi_0 r_0$		·_1	12 7	91 to
the	ne	arest	th	ird,	key	12.	, <u>5</u> , 79,	CHS,	ENTE	ER,	3 , 1	1/2	CF	ιs,	XE	Q "NF"; s	see '	-12	2.67	·.

53 CALCULATOR TIPS & ROUTINES XIV. FRACTIONS & ROUNDING LBL "NF", /, LASTX, X<>Y, .5, +, INT, *, RTN. (15 bytes) 14-5 NEAREST FRACTION ROUND: Multiply by reciprocal of fraction, add .5 if positive or subtract .5 if negative, take the integer, then divide by reciprocal of the fraction. Examples: Pos. # round to nearest integer: ..., .5, +, INT, Pos. # round to nearest half: ..., 2, *, .5, +, INT, 2, /, Neg. # round to nearest third: ..., 3, *, .5, -, INT, 3, /, Pos. or Neg. # round to nearest fourth: ..., CF 14, X<0?, SF 14, 4, *, .5, FC? 14, +, FS?C 14, -, INT, 4, /, 14-6 STEP-FUNCTION ROUND: Pos. # round up to the next integer if there's a fractional part (FIX 2 Mode) (so $13.00 \rightarrow 13$, but $13.01 \rightarrow 14$): ..., .99, +, INT, For FIX 3 Mode, use '.999'; for FIX 4, use '.9999', and so on. Another pos. # round up to the next integer if there's a fractional part (any display mode): use ..., ENTER, FRC, $X \neq 0$?, SIGN, +, INT, Rounds negative numbers down if there's a fractional part. 14-7 FRACTIONAL ARITHMETIC ("F+", "F-", "F*", "F/", "RE" & "MX"): This program is a set of routines for addition, subtraction, multiplication, division and reduction of fractions, plus the conversion of an improper fraction to a mixed number. SF 10 before execution to display/print fraction. Synthetic steps 96, 99, 101 & 103 can be replaced with similar functions using any convenient numeric register, such as R00. If the Improper Fraction to Mixed Number routine ("MX") isn't wanted, steps 55-104 may be eliminated. "F+", F-", "F*", "F/": Addition, subtraction, multiplication and division of fractions: input is the fractions in T,Z & Y,X; output is the fraction in Y,X (& the fraction [Y/X] in the display if Flag 10 is set). Example: solve $2/5 \div -3/4$. Solution: key 2, ENTER, 5, ENTER, 3, CHS, ENTER, 4, XEQ "F/": output is 15 in X and -8 in Y (and "-8/15" in the display if Flag 10 is set). "RE": Reduce fraction. Input is the fraction in Y,X; output is the reduced fraction in Y,X (and the fraction [Y/X] in the display if Flag 10 is set). Example: reduce 45/925. Solution: key 45, ENTER, 925, XEQ "RE"; output is 185 in X and 9 in Y (and "9/185" in the display if Flag 10 is set). "MX": Change an improper fraction (numerator >= denominator) to a mixed number (integer + fraction). Works for positive or negative fractions. Input is the improper fraction in Y,X; output is the integer in X and the fraction in Z,Y (and the mixed number [X Z/Y] in the display if Flag 10 is set). Example: change -747/126 to a mixed number. Solution: key 747, CHS, ENTER, 126, XEQ "MX"; output is -5 in X, 14 in Y, and 13 in Z (and "-5 13/14" in the display if Flag 10 is set). "GD": Greatest Common Divisor. See routine 15-13. "QR": Quotient & Remainder. See routine 15-12. "VA": View Alpha. See routine 4-1. Suggested key assignments (A-E, H-J): "F+" "F-" "F*" "F/" Α "RE" Ε "QR" "MX " F "GD" J

Source: John Kennedy (918) (Adapted from PPC CJ, V7N8P8-11 & PPC ROM).

01 LBL "F-"	04 ST* T	07 ST+ Z	10 GTO 12	13 LBL "F*"	16 *
02 CHS	05 X <> Z	08 X <> L	11 LBL "F/"	14 ST* Z	17 X <> Y
03 LBL "F+"	06 *	09 *	12 X <> Y	15 X <> т	[continued]

18	LBL "RE"	33	FIX 2	48	PRA	63	X<0?	78	CF 29	93	RTN
19	LBL 12	34	SF 29	49	SF 25	64	SF 14	79	CLA	94	LBL "QR"
20	RCL Y	35	XEQ "VA"	50	FS?C 21	65	ABS	80	ARCL X	95	X<>Y
21	RCL Y	36	RTN	51	CF 25	66	X <> Y	81	X<> Z	96	STO O
22	XEQ 13	37	LBL "GD"	52	AVIEW	67	XEQ "QR"	82	X=0?	97	X < > Y
23	ST/ Z	38	LBL 13	53	FC?C 25	68	X <> Y	83	GTO 14	98	MOD
24	1	39	MOD	54	SF 21	69	FS?C 14	84	"⊢ "	99	ST- O
25	FC? 10	40	LASTX	55	RTN	70	CHS	85	ARCL X	100	LASTX
26	RTN	41	Х<>Ү	56	LBL "MX"	71	LASTX	86	"⊢∕"	101	ST/ O
27	FIX O	42	X≠0?	57	CF 11	72	X <> Y	87	ARCL Y	102	CLX
28	CF 29	43	GTO 13	58	FS?C 10	73	FS?C 11	88	LBL 14	103	X <> O
29	CLA	44	+	59	SF 11	74	SF 10	89	X<> Z	104	X<>Y
30	ARCL Y	45	RTN	60	XEQ 12	75	FC? 10	90	FIX 2	105	END
31	"⊢∕"	46	LBL "VA"	61	X <> Y	76	RTN	91	SF 29		
32	ARCL X	47	SF 25	62	CF 14	77	FIX O	92	XEQ "VA"	(2	219 bytes)

14-8 DECIMAL TO 'RULER FRACTION' CONVERSION ("F-D" & "D-F"): This routine converts

between decimal fractions and 'ruler' fractions--fractions having denominators that are integral powers of 2, like the markings on English (inches) rulers (1/8, 3/32, etc). No numeric data registers or flags are used. This routine is useful when you need to do arithmetic on a fraction: just convert to a decimal, perform the desired arithmetic operations, then convert back to a fraction. To convert a fraction to a decimal: key in the integer portion (even if zero), ENTER, numerator, ENTER, denominator; XEQ "F-D". See the decimal in X. To convert a decimal to a fraction: key in decimal, XEQ "D-F". See fraction in display. In X,Y,Z,T order, the stack will contain the denominator, numerator, integer, and original decimal.

As written, "D-F" will approximate the fraction (decimal) to the nearest 32nd. Change line 10 (32) to '16' for the nearest 16th, etc. Assignment suggestion: ASN "F-D" to -73 (SCI) & "D-F" to -74 (ENG). Then think of pressing SCI to convert to a 'scientific' (decimal) form, or pressing ENG to convert to an 'English' (fractional) form. Example: to the nearest 32nd of an inch, what is 60% of 5½ inches? Solution: key 5, ENTER, 1, ENTER, 2, XEQ "F-D" (see 5.50); key 60, % (see 3.30); XEQ "D-F", see the answer, "3 5/16". Source: Richard Kimmel (6003) (PPC CJ, V7N10P24).

01	LBL "F-D"	11	ENTER	21	CLX	31	ST* Z	41	RDN	51	SF 2	9	
02	/	12	X<> Z	22	2	32	*	42	X=0?	52	PROM	PT	
03	+	13	*	23	ST/Z	33	LBL 02	43	GTO 03	53	RTN		
04	RTN	14	RND	24	1	34	CLA	44	ARCL X	54	LBL	04	
05	LBL "D-F"	15	X=0?	25	ENTER	35	RÎ	45	"⊢∕"	55	CLX		
06	ENTER	16	GTO 02	26	FRC	36	INT	46	ARCL Y	56	1		
07	FRC	17	X=Y?	27	X=0?	37	X=0?	47	LBL 03	57	ST+	т	
80	FIX O	18	GTO 04	28	GTO 01	38	X=Y?	48	X<> Z	58	CLX		
09	CF 29	19	ENTER	29	CLX	39	ARCL X	49	RDN	59	GTO	02	
10	32	20	LBL 01	30	2	40	"⊢"	50	FIX 2	60	END	(96	bytes)

EVEN ROUND ("ER"): The mainframe function "RND" always 14-9 ER RND # rounds up when the digit to be rounded is exactly '5' .54 .545 .55 (followed by zeros). This routine will leave the last digit .555 .56 .56 retained even, rounding up or down as appropriate. See the -.54 -.545 -.55 -.555 example at right, showing the results of using "ER" and "RND" -.56 -.56 on various numbers in FIX 2 Mode.

LBL "ER", 2, /, RND, 2, *, RTN

(12 bytes)

CHAPTER XV

ARITHMETIC & ALGEBRA

15-1 <u>SUM OF INTEGERS ("ΣI")</u> : This routine finds x where x = 1 + 2 + 3 + solving the equation x = $[n(n+1)]/2 = [n^2 + n]/2$. Example: the rule used in financial interest problems comes about by considering 12 months p 78 = 1 + 2 + + 12. Source: Richard Nelson (1) (65 NOTES, V1N4P3).	+n, by e of 78's per year:
LBL " Σ I", X†2, LASTX, +, 2, /, RTN	(12 bytes)
15-2 <u>SUM OF SQUARES ("ΣS")</u> : This routine finds x, where $x = 1^2 + 2^2 + + sum of the squares of integers from 1 to n) without looping, by solvequation x = [n(n+1)(2n+1)]/6. Example: for n = 10, x = 385. Source: Dom (189) (65 NOTES, V2N8P3).$	n ² (the ving the Tocci
LBL " Σ S", X†2, LASTX, +, LASTX, 2, *, 1, +, *, 6, /, RTN	(18 bytes)
Another version using register arithmetic with the L Register: Source: Bil (265):	ll Kolb
LBL " Σ S", X†2, ST+ X, LASTX, +, ST* L, LASTX, +, 6, /, RTN	(18 bytes)
15-3 <u>SUM OF CUBES ("Σ3")</u> : This routine finds x, where x = 1 ³ + 2 ³ + + n ³ ing the equation x = {[n(n+1)]/2} ² . Example: for n = 5, x = 225. S Bill Kolb (265) (BP 67/97).	by solv- Source:
LBL " Σ 3", X†2, LASTX, +, 2, /, X†2, RTN	(13 bytes)
15-4 <u>SUM OF THE DIGITS OF AN INTEGER ("ΣD")</u> : This routine finds the sum of its of the integer in the X Register. Example: the sum of the digits integer 1234556789 (note the 2 fives) is 50. Source: John Kennedy (918) (H P4).	of the dig- s of the PPC J, V5N7
01LBL "ΣD"04LBL 0107ST+ 0110X≠0?13ST* 0102STO 01051008INT11GTO 0114RCL 0103ST- 0106/09ST- 01121015RTN	(27 bytes)
15-5CONVERT A REAL NUMBER TO A DECIMAL OR AN INTEGER ("-DEC" & "-INT"): the number in X to a decimal with the same digits, XEQ "-DEC"; to consider the number in X to an integer with the same digits, XEQ "-INT". Example: Key XEQ "-DEC", see 0.12345 in FIX 5 Mode; XEQ "-INT", see 12345.00000. Source OULBL "-DEC" 05 X=Y? 09 GTO 01 13 LASTX 17 *David David David David David David David David David David DATE: DAVID DAVID DATE: DAVID DAVIDDavid DAVID DAVID DAVID DAVID01LBL "-DEC" 05 X=Y?09 GTO 0113 LASTX17 *David DAVID DAVID02LBL 01 06 RTN 07 1006 RTN 11 LBL 0214 X=Y?18 GTO 0203FRC07 1011 LBL 0215 RTN 19 RTN19 RTN04LASTX08 /12 INT16 10	To convert povert the 123.45', e: James idson (547) (65 NOTES, V3N1P2) (39 bytes)
15-6 <u>REVERSE INTEGER ("IV")</u> : This routine reverses the order of the digit integer in the X Register. Source: James Davidson (547) (65 NOTES, V	ts of the V2N10P10).
01 LBL "IV" 04 LBL 01 07 LASTX 10 ST* 01 13 GTO 01 02 STO 01 05 FRC 08 INT 11 / 14 RCL 01 03 ST- 01 06 ST+ 01 09 10 12 X $\neq 0$? 15 RTN	(25 bytes)

CALCULATOR TIPS & ROUTINES

15-7 <u>FIBONACHI SERIES ("FB")</u> : When "FB" is executed, the calculator will display the Fibonachi Series, in which each number is the sum of the previous two num- bers. The series starts: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, Source: James David- son (547) (65 NOTES, V3N9P14).
<u>LBL "FB"</u> , FIX 0, 1, ENTER, 0, <u>LBL 01</u> , PSE, X<>Y, +, LASTX, GTO 01, RTN (19 bytes)
15-8 TO INTRODUCE A SMALL ERROR INTO X: Method 1: EEX, 8, CHS, +or Method 2: SQRT X12. Method 2 doesn't work for many numbers, including perfect squares. Source: Bill Kolb (265) (BP 67/97). See 22-24.
15-9 CHAIN ARITHMETIC: Source: HP KEY NOTES, V4N3P11.
Chain Subtraction: To repeatedly subtract a constant value, 'k', from the base num- ber, 'n', in X, key 'k', CHS, ENTER, ENTER, ENTER, 'n'; then press '+' the desired number of times. Example: key 5, CHS, ENTER, ENTER, ENTER, 1000; press + repeatedly and see 995, 990, etc.
Chain Addition: Delete the CHS instruction above. Example: to repeatedly add 5 to 1000, key 5, ENTER, ENTER, ENTER, 1000; press + repeatedly to see 1005, 1010, etc.
Chain Division: To repeatedly divide a constant, 'k', into a base number, 'n', in X, key 'k', 1/X, ENTER, ENTER, ENTER, 'n'; then press * the desired number of times. Example: key 5, 1/X, ENTER, ENTER, ENTER, 1000; press * repeatedly and see 200, 40, 8, etc.
Chain Multiplication: Delete the '1/X' instruction above. Example: key 5, ENTER, ENTER, 1000; press '*' repeatedly and see 5000, 25000, 125000, etc.
15-10 <u>REPEATED MULTIPLICATION OR DIVISION BY 10</u> : To repeatedly multiply the value in X by 10, use EEX, 3, X<>Y, %, %, %, Each repeated '%' multiplies the value by 10. Similarly, to repeatedly divide the value in X by 10, use EEX, 1, X<>Y, %, %, %, If the value to be repeatedly multiplied (or divided) is in a numeric data register, replace the 'X<>Y' instruction with 'RCL nn', where 'nn' is the number of the data register. Source: Curt Rostenback (382) (PPC J, V5N3P15).
15-11 <u>INTEGER DIVIDE ("I/")</u> : This routine returns the integer quotient of y/x to X and the remainder of dividing y by x to Y. Z is preserved and X is in LASTX. Source: David Motto (2339) (PPC CJ, V7N7P14). Positive values of x & y only.
<u>LBL "I/"</u> , RCL Y, X<>Y, MOD, ST- Y, X<>Y, LASTX, /, RTN (16 bytes)
15-12 <u>QUOTIENT & REMAINDER ("QR")</u> : This routine replaces Y with the integer quotient of y/x, and replaces X with the remainder of dividing y by x. Y & Z are pre- served; X is in LASTX. Part of the Alpha Register, the O Register, is used as a scratch register and cleared afterward. This will not affect any text already in Al- pha as long as it contains no more than 14 characters. For a nonsynthetic version, replace the steps using the O Register (steps 03, 06, 08 & 10) with the same opera- tions using any numeric register, such as R00. Source: Roger Hill (4940) (PPC ROM).
01 LBL "QR" 03 STO O 05 MOD 07 LASTX 09 CLX 11 X <>Y 02 X <>Y 04 X <>Y 06 ST- O 08 ST/ O 10 X <> O 12 RTN (21 bytes)
15-13 <u>GREATEST COMMON DIVISOR ("GCD" & "GD")</u> : These routines will compute the great- est common divisor of the values in X and Y. Source: John Kennedy (918) (PPC J, V6N5P31; PPC CJ, V7N8P8). "GCD" preserves T; "GD" preserves Z & T.
LBL "GCD", LBL 01, STO Z, MOD, $X \neq 0$?, GTO 01, +, RTN (16 bytes)
<u>LBL "GD"</u> , <u>LBL 01</u> , MOD, LASTX, X<>Y, X \neq 0?, GTO 01, +, RTN (15 bytes)

22 RTN

33 X<>Y

11 CLX

15-14 PRIME DI	IVISOR, TEST	IF PRIME, GENERATI	E PRIMES, PRIME	FACTORS ("PD"	, "TP", "GT"							
& "PF")	: "PD" (Prime	e Divisor) gives th	ne next prime d	ivisor of an ir	nteger							
greater than o	or equal to a	a specified trial of	divisor which m	av be 2 or anv	odd number.							
Input an inter	yer 'n' great	ter than or equal f	to 2 in Y and a	possible trial	divisor							
'd' in X. when	re 'd' is any	v prime number inc	luding 2. or an	v odd number ar	reater than							
1. The output from the routine is 'n' in Y and either 'd' or the next odd integer												
argor than 1d, which wor divides evenly into 1n, in X. Pressing D(S after evenue												
tion of the m	, will chever	divides evening in	for the second states of the s	ressing k/s al	. ter execu-							
tion of the ro	outine will o	give the next prime	e factor of the	integer. "TP"	(Test if							
Prime) tests i	if the intege	er in X is prime; :	it returns the i	number to X so	you can im-							
mediately exec	cute "PF" if	"NOT PRIME" appear	rs. <u>"GT" (Genera</u>	ate a Table of	Primes)							
generates a li	ist of prime	numbers beginning	with 1. "PF" (1	Prime Factors)	gives the							
prime factors	of an intege	er. Source: John Ke	ennedy (918) (P	PC CJ, V7N3P6;	V7N9P11).							
01 LBL "PD"	12 2	23 ST/ Y	34 RTN	45 ST+ Y	56 PSE							
02 LBL 01	13 X=Y?	24 GTO 01	35 LBL "GT"	46 XEQ 01	57 X=Y?							
03 RCL Y	14 DSE X	25 LBL "TP"	36 1	47 $X = Y?$	58 RTN							
04 RCL Y	15 ABS	26 VIEW X	37 VIEW X	48 VIEWX	59 ST/ Y							
05 /	16 +	27 2	38 PSE	49 RDN	60 GTO 05							
06 X <y?< td=""><td>17 GTO 01</td><td>28 XEQ 01</td><td>39 2</td><td>50 GTO 04</td><td>61 END</td></y?<>	17 GTO 01	28 XEQ 01	39 2	50 GTO 04	61 END							
07 GTO 02	18 LBL 02	29 " NOT PRIME"	40 VIEW X	51 LBL "PF"								
08 FRC	19 RDN	30 X=Y?	41 PSE	52 2								
09 X=0?	20 LBL 03	31 ASHF	42 1	53 LBL 05								
10 GTO 03	21 RDN	32 AVIEW	43 LBL 04	54 XEQ 01								

15-15 <u>NEXT PRIME ("NP")</u>: This routine gives the next prime divisor of an integer greater than or equal to a specified trial divisor which may be 2 or any odd number. Pressing R/S automatically gives the next prime divisor. Key integer, ENTER, trial divisor; XEQ "NP". "NP" is valid for 10-digit positive integers. The divisor the routine returns will be prime provided 'n' has no prime factors strictly smaller than 'd'. If "NP" is executed from the keyboard, when the next divisor is returned, immediately pressing R/S will cause "NP" to continue searching for the next factor. This may be repeated, but when the routine returns '1', there are no more factors of 'n'. All computations are carried out in the stack; no numeric data registers are used. Tests 3.5 divisors/second. To use "NP" from the keyboard to see if an integer is prime, use '2' as the starting trial divisor; if the original number is returned, then that number is prime. To use "NP" from the keyboard to find all the prime factors of an integer, key in the integer, ENTER, 2, XEQ "NP"; repeatedly press R/S to see the prime factors, until '1' is returned.

44 2

55 VIEW X

(117 bytes)

Example: the number 40,013,933 is known to have only two prime factors, one of which is greater than 5000; find them. Solution: we may start with any odd number greater than 5000, so key 40,013,933, ENTER, 5001, XEQ "NP". After about 45 seconds, execution stops with '5309' in the display. Pressing R/S twice more gives '7537' and '1'. Hence 40,013,933 = 5309 * 7537. Source: Phi Trinh (6171) (PPC ROM).

01	LBL "NP"	06	X<> Z	11	X<>Y	16	2	21	LBL 10	26	RTN		
02	LBL 11	07	LBL 09	12	MOD	17	X=Y?	22	R↑	27	ST/	Y	
03	RCL Y	08	$\overline{X>Y?}$	13	X=0?	18	SIGN	23	LASTX	28	GTO	11	
04	SQRT	09	R†	14	GTO 10	19	+	24	X>Y?	29	END		
05	LASTX	10	R†	15	X<> L	20	GTO 09	25	ENTER			(43	bytes)

15-16 <u>REPLACE X WITH ITS EXPONENT OR MANTISSA ("XPN" & "MAN")</u>: To replace the value in X with its exponent, XEQ "XPN"; the range for X is 10⁻⁹⁹ - 9.999999884 x 10⁹? To replace the value in X with its mantissa (X must be positive), XEQ "MAN". Source: Rob Jung (2455) (PPC J, V5N7P6) & John Martellaro (1896) (PPC J, V5N8P9).

01	LBL "XPN"	04	ENTER	07	X=Y?	10	RTN	13	1	16	LBL	"MAN"	
02	LOG	05	FRC	80	RTN	11	X=0?	14	-	17	ENT	ER	
03	ENTER	06	-	09	X>0?	12	RTN	15	RTN				[continued]

CALCULATOR TIPS & ROUTINES	58	XV. 2	ARITHMETIC & ALGEBRA
18 LOG 20 10 tX 2 19 INT 21 X<=Y?	2 GTO 01 24 / 3 10 25 LB	26 / L 01 27 END	(43 bytes)
15-17 <u>VIEW MANTISSA ("VMAN")</u> the number in X, in SC (-41), it will match the loc Alpha Register; press backar Source: HP KEY NOTES, V4N3P1	: XEQ "VMAN" to see I 9 or FIX 9 Modes. ation of the similar row (correction) key 2.	all the digits of If assigned to th r function on the y to restore the 2	f the mantissa of ne shifted ENTER key HP-34C. Uses the X-Register display.
LBL "VMAN", CLA, ARCL X, AVI	EW, RTN		(13 bytes)
15-18 <u>SYNTHETIC MANTISSA & E</u> tissa, and saves Y, Z, Z & T. Only the Alpha Regist the last byte of the number by E50 depending on the sign N8P2).	XPONENT ("MANT" & " T & L. "EXP" replacer is used. "The tr by Hex 50 (the lett of the exponent."	EXP"): "MANT" rep ces X by its expon ick used in the ro er P), and then to Source: Roger Hill	laces X by its man- nent, and saves Y, putine is to replace o divide or multiply 1 (4940) (PPC CJ, V7
01 LBL "MANT" 05 ASTO M 02 CLA 06 "HP" 03 CF 24 07 STO N 04 STO M 08 CLX	09 E50 13 10 SF 25 14 11 ST* M 15 12 FC?C 25 16	ST/ M 17 XE X<> M 18 ST, RTN 19 X< LBL "EXP" 20 LO	Q "MANT" 21 END / N > N G (56 bytes)
15-19 <u>SYNTHETIC VIEW MANTISS</u> the full mantissa of t replace the number in X with rest of the stack undisturbe 160. Source: PPC ROM. "VM" c <u>01 LBL "VM"</u> 08 FIX 9 02 CF 21 09 VIEW M 03 XEO "MT" 10 STO d	A, MANTISSA & EXPON he number in X; the its exponent or man d. Line 37 ("⊢") is lears Flag 21. Roge 15 CLA 22 LASTX 16 X≠0? 23 X<> M 17 "0Ω" 24 ASHF	ENT ("VM", "EX" & stack is undistum ntissa, respective nonstandard; it r Hill (4940) & D <u>29 LBL "MT"</u> <u>30 CLA</u> 31 STO M	<pre>"MT"): "VM" views rbed. "EX" and "MT" ely, leaving the is decimal 242, 127, ave Kaplan ().</pre>
04 X<> M 11 RDN 05 RDN 12 LASTX 06 VIEW 0 13 RTN 07 RCL d 14 LBL "EX" 15-20 RAPID RATIO SOLUTIONS	18 INT 25 " $\vdash \spadesuit \Delta$ 19 X≠0? 26 ST- M 20 CLA 27 X<> M 21 RDN 28 RTN ("R1", "R2" & "R3")	" 32 ASTO M 33 INT 34 X≠0? 35 "⊢◆"	39 ST+ M 40 X<> M 41 END (84 bytes)
equation A/B = C/D for solution; "R3" works either press B for a stack solution (storing in Registers 01, 02 Source: Chris Stevens (3005)	any term. "R1" is way (press A in USE). Enter or store e , 03 & 04 respective (PPC J, V5N7P4).	a stack solution; R Mode for a regis ach term in the ou ely); enter the <u>u</u>	"R2" is a register ster solution, or rder A, B, C & D nknown term as <u>zero</u> .
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L "R2" 10 X≠0? L 01 11 RDN L 02 12 RDN L 04 13 / L 03 14 / 0? 15 END N 0? N (22 bytes)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DN ≠0? DN ≠0? DN DN ND (27 bytes)
15-21 <u>CUBE ROOT OF ANY NUMBE</u> bytes over a version t sign of the final result. Ch (n odd). Source: Valentin Al LBL "CURT", SIGN, LASTX. ABS	R, POSITIVE OR NEGA hat uses a flag tes ange the 3 to any o billo (4747). 5, 3, 1/X, Y†X, *, R	TIVE ("CURT"): Th t to decide wheth ther odd integer	is method saves er to change the to get any nth root (16 bytes)

15-22 SQUARE ROO	OT OF THE SUM	S OF VARIOUS	SQUARES: SOU	urce: Bill Kolk	o(265)(BP67/97).
To find $\sqrt{X^2 + Y^2}$, use R-P (w ue in the	here X is th Y Register).	e value in th	ne X Register,	and Y is the val-
To find $\sqrt{Y^2 + 2Y}$	K ² , use R-P,	LASTX, R-P.	For $\sqrt{X^2 + 2Y^2}$, X<>Y first.	
To find $\sqrt{A^2 + B^2}$	$+ C^2 + D^2 +$	• , use R	CL A, RCL B,	R-P, RCL C, R-	-P, RCL D, R-P,
15-23 FAST FACTO	ORIAL FACTOR	FINDER ("FFF	'F"): Kev 'n'	(an integer fr	com 3 to 9999),
XEQ "FFFF'	" to find the	factors of	n!. See the f	first two facto	ors; if no print-
er, R/S for each	n succeeding	pair until B	EEP sounds. E	Example: 12! =	2110 • 315 • 512
• 7†1 • 11†1. So	ource: Joel L	ichtenwalner	(2957) (PPC	J, V5N8P46).	
01 I.BI. "FFFF"	15 XEO 02	29 SORT	43 X=02	57 TNT	71 SF 00
$\frac{07}{02}$ CF 00	16 LBL 01	30 LBL 00	44 RTN	57 mm 58 ST+ 03	77 BT 00
03 SF 21	$17 \frac{1}{\text{RCL}} 02$	$31 \overline{\text{ENTER}}$	45 -	59 X≠0?	73 LBL 05
04 FIX 0	18 RCL 01	32 FRC	46 1	60 GTO 04	74 FS?C 00
05 CF 29	19 2	33 X=0?	47 +	61 FC? 00	75 AVIEW
06 ADV	20 +	34 RTN	48 /	62 CLA	76 SF 29
07 "FACTORS OF	" 21 X>Y?	35 -	49 GTO 00	63 FS? 00	77 FIX 2
08 ARCL X	22 GTO 05	36 1	50 LBL 03	64 " ⊢ , "	78 RDN
09 " FACT.:"	23 XEQ 02	37 X=Y?	51 CLX	65 ARCL 01	79 CLD
10 AVIEW	24 GTO 01	38 GTO 03	52 STO 03	66 " ⊢ ↑"	80 BEEP
11 STO 02	25 LBL 02	39 *	53 RCL 02	67 ARCL 03	81 END
12 2	26 STO 01	40 /	54 LBL 04	68 FS? 00	
13 XEQ 02	27 ENTER	41 ENTER	55 RCL 01	69 AVIEW	
14 3	28 ENTER	42 FRC	56 /	70 FC?C 00	(142 bytes)
15-24 <u>TO MULTIPH</u> complex nu lows: X: a ₁ ; Y: real part, Y: in not use trigonom than routines th	LY TWO COMPLE imbers $(z_1 = b_1; Z: a_2; T)$ maginary part metric function hat do. Execu	X NUMBERS IN $a_1 + b_1 i$ and b_2 . After . This routi ons; and it tes in 0.4 s	THE STACK ($z_2 = a_2 + b_2$ the routine is ne uses no nu does not use seconds. Source	"MC"): This rou i) stored in t is executed, th meric data req P-R or R-P, so ce: Valentin Al	atine accepts two the stack as fol- ne result is: X: gisters; it does b is much faster lbillo (4747).
01 I.BI. "MC"	04 ST* V	07 Rt	10 X<> I.	13 RDN (16 END
$\frac{01}{02}$ STO L	05 X<> Z	08 ST* Y	11 R†	14 +	
03 R†	06 ST* Z	09 ST* L	12 -	15 R†	(30 bytes)
15-25 QUADRATIC	EQUATION, RE	AL ROOTS, ST	ACK SOLUTION	("QEQ"): This	routine finds the
real roots the equation x = data registers of roots will be re Robert Groom (51	s of a quadra = $\{-b \pm \sqrt{b^2} - br$ flags are sturned to th 127).	tic equation 4ac}/2a.C used. To use e X & Y Regi	of the form Complex roots , key a, ENTE sters (X<>Y t	ax ² + bx + c = give "DATA ER ER, b, ENTER, c to see the seco	= 0, by solving ROR". No numeric c, XEQ "QEQ"; the ond root). Source:
01 LBL "OEO"	04 ST+ X	07 ENTER	10 R†	13 ST - Z	
$\frac{1}{02 X <> Z}$	05 /	08 ENTER	11 -	14 +	
03 ST/ Z	06 CHS	09 X†2	12 SQRT	15 END	(26 bytes)
15-26 <u>COMPLEX QU</u> of a guad	UADRATIC EQUA	TION PLUS DI	SPLAY ("QE" a	& "PRQE"): "QE ex (of the form	" finds the roots n u ± iv). To use,
key a. ENTER b	ENTER C X	TEO "OE" TE	there are two	n real roots	they will be re-

key a, ENTER, b, ENTER, c, XEQ "QE". If there are two real roots, they will be returned to X & Y (and Flag 04 will be cleared); if the roots are complex, the real part, 'u', will be returned to X, and the imaginary part, 'iv', will be returned to Y (and Flag 04 will be set [its annunciator will be on]). "QE" is usable as a subroutine. SIZE 000. Source: Robert Groom (5127).

After executing "QE", R/S to execute "PRQE"; this routine formats and displays/ prints the results of "QE". It sets Flag 21 and clears Flag 04. Source: adapted from a routine by John Herzfeld (5428). 60

(15 bytes)

01 02 03 04 05 06	LBL "QE" CF 04 X<> Z ST/ Z ST+ X /	08 ENTER 09 ENTER 10 X†2 11 R† 12 – 13 X<0?	15 ABS 16 SQRT 17 ST- Z 18 X<>Y 19 FC? 04 20 +	22 LBL "PRQE" 23 SF 21 24 FS?C 04 25 GTO 14 26 "ROOT 1= " 27 ARCL X	29 "ROOT 2= " 30 ARCL Y 31 AVIEW 32 RTN 33 LBL 14 34 CLA	36 " ⊢ +- " 37 ARCL Y 38 " ⊢ I" 39 AVIEW 40 END
07	CHS	14 SF 04	21 RTN	28 AVIEW	35 ARCL X	(92 bytes)

For automatic display/print without pressing R/S, delete steps 21 & 22.

15-27 <u>BIG FACTORIALS ("BF")</u>: This routine approximates n! for large values of n by using the first three terms of a Stirling series approximation. The number of significant digits in the calculated result is at least 10 minus the number of digits in the power of ten. No numeric data registers are used and there is no looping, so execution is fast. The input is 'n' in the X Register; the output is the mantissa in X and the power of 10 ("decapower") in Y. Source: Larry Trammell (6824).

01	LBL "BF"	07	*	13	LN	19	ENTER	25	-	31	LASTX	
02	ENTER	80	LASTX	14	+	20	R↑	26	+	32	FRC	
03	LN	09	ST+ X	15	R↑	21	X †2	27	10	33	10 †X	
04	1	10	PI	16	12	22	1	28	LN	34	END	
05	-	11	*	17	*	23	30	29	1			
06	RCL Y	12	SQRT	18	1/X	24	/	30	INT			(46 bytes)

15-28 Y tX FOR LARGE VALUES OF X & Y ("BYX"): Enter X and Y normally (key Y, ENTER, X), then XEQ "BYX". The mantissa of the result is returned to X; the power of ten ("decapower") is returned to Y. Accuracy is limited by the use of logarithms. Example: find 25 to the 75th power. Solution: key 25, ENTER, 75, XEQ "BYX"; see 7.006493122 (in FIX 9 Mode) in X; X<>Y to see 104.0000000. Hence, 25⁷⁵ = 7.006493122 x 10¹⁰⁴. Source: Bill Derrick (1393) (PPC J, V5N7P4).

'BL	"BYX",	X<>Y,	LOG,	*,	INT,	LASTX,	FRC,	10†X,	RTN	
-----	--------	-------	------	----	------	--------	------	-------	-----	--

15-29 <u>POLYNOMIALS ("POLY")</u>: This routine solves the equation $y = ax^3 \pm bx^2 \pm cx \pm d$. Put a '+' or a '-' in the routine for each '±' above, as appropriate. To ex-

pand the polynomial, add series of steps like steps 08-10 (RCL nn, ±, *). Source: Bill Kolb (265) (BP 67/97).

01	LBL "POLY"	05	ENTER	09	+ or -	13	*			R01:	а
02	RCL 00	06	RCL 01	10	*	14	RCL 04			R02:	b
03	ENTER	07	*	11	RCL 03	15	+ or -			R03:	с
04	ENTER	08	RCL 02	12	+ or -	16	END	(25	bytes)	R04:	d

15-30 <u>POLYNOMIAL EVALUATION ("PE")</u>: This routine evaluates a polynomial of arbitrary order. ($y = \dots + ax^3 + bx^2 + cx + d$). To use, key control number, ENTER, ar-

gument (x), XEQ "PE". The control number (bbb.eee) defines the block of registers containing the coefficients (a,b, etc); the coefficient of the highest order term is in R'bbb', and the constant coefficient is in R'eee'. The value of the polynomial (y) is returned to X, and the value of the argument is returned to Y.

Example: for $y = 3x^4 - 2x^3 - 5x^2 + 6x + 12$, find y if x = 7. Solution: store the coefficients in any block, say R01-05: 3, STO 01, 2, CHS, STO 02, 5, CHS, STO 03, 6, STO 04, 12, STO 05. Next, key 1.005, ENTER, 7, XEQ "PE"; see '6,326.00'. Source: Larry Trammell (6824).

01	LBL	"PE"	03	CLX		05	RÎ	07	RCL IND Y	09	ISG	Y	11	RÎ	13	END
02	STO	Z	04	LBL	01	06	*	80	+	10	GTO	01	12	X<>Y	((24 bytes)

15-31 POLYNOMIAL MULTIPLY ("P*"): This routine will return to a block beginning with a specified register the coefficients of the resulting polynomial when two given polynomials are multiplied. The control or index number defining this output block is returned to X and also to R03. The resulting polynomial can be evaluated R01: Index to the coefficients of the 1st polynomial (bbb.eee). R02: Index to the coefficients of the 2nd polynomial (BBB.EEE). R03: Pointer to the 1st register of the output block.

This routine changes the value in R01; it uses R00 and Flag 10. Registers 04 and above are available for the two input- and one output-blocks. The number of registers needed for output is one more than the degree of the resulting polynomial.

Example: find $(3x^3 + 2x^2 - 5)(4x^2 + 6)$. Solution: for the 1st polynomial, the coefficients are: $a_1 = 3$, $b_1 = 2$, $c_1 = 0$, $d_1 = -5$; for the 2nd, $a_2 = 4$, $b_2 = 0$, $c_2 = 6$. Four registers are needed to store the coefficients of the 1st polynomial (use R04-R07), and three for the 2nd (use R08-R10). Load data registers as shown at right. The first register of the output block is to be R11 (so '11' is stored in R03). The degree of the resulting polynomial is 5 $(3x^3 \cdot 4x^2 = 12x^5)$, so 6 registers are needed for the output (R11-R04: 3 R16); hence a minimum SIZE 017 is needed. R01

Now execute "P*". When execution stops, see '11.016' in X (the index R06: 0 to the output block). Review R11-16 (use "PRREGX" with a printer) to R07: -5 see R08: 4

R11 = 12, R12 = 8, R13 = 18, R14 = -8, R15 = 0, R16 = -30.

Therefore the resulting polynomial is

 $12x^5 + 8x^4 + 18x^3 - 8x^2 - 30$.

If "PE" is in memory, you can evaluate this expression for a specific value of x: for x = 2, 'RCL 03, 2, XEQ "PE"'; see '594'; for x = 3, 'RCL 03, 3, XEQ "PE"; see '3948'.

Source: Larry Trammell (6824).

01	LBL	"P*"	09	RCL 03	17	DSE X	25	CLX	33	STO IND Y	41	CF 1	0
02	RCL	03	10	RCL IND 01	18	1 E3	26	STO IND Y	34	FC? 10	42	END	
03	INT		11	XEQ 12	19	1	27	GTO 01	35	ST+IND Y			
04	STO	00	12	ISG 03	20	RCL 00	28	LBL 12	36	X<> L			
05	STO	03	13	LBL 00	21	+	29	RCL IND Z	37	ISG Y			
06	SF 1	0	14	ISG 01	22	STO 03	30	X<>Y	38	LBL 00			
07	LBL	01	15	GTO 02	23	RTN	31	*	39	ISG Z			
08	RCL	02	16	RDN	24	LBL 02	32	FS? 10	40	GTO 12		(71	bytes)

15-32 DECIBEL ADDITION & SUBTRACTION ("dB+" & "dB-"): Uses no data registers or

flags. To use, key in sound pressure levels in decibels $(dB_1, ENTER, dB_2)$; then, to add, XEQ "dB+", or to subtract, XEQ "dB-". Source: HP-41C Users' Library Solutions Heating, Ventilating & Air Conditioning, pp 65-68.

$\frac{01}{02}$ LBL	<u>"dB+"</u>	06 07	XEQ 00	11 12	10 *	16 17	AVIEW RTN	21	/ X<>Y	26	END		
03 +		08	ABS	13	CLA	18	LBL 00	23	10 tx				
04 GTO	01	09	LBL 01	14	ARCL X	19	10	24	X<>Y				
05 LBL	"dB-"	10	LOG	15	" ⊢ ₫₿"	20	ST/ Z	25	10†X		(5	53	bytes)

R09: 0 R10: 6

CHAPTER XVI

GEOMETRY, TRIG & CALCULUS

16–1	TO KEEP A VECTOR POSITIVE: To keep a vector, 'r', positive, use 'RCL θ , RCL r, P-R, R-P'. Source: Dave Wilder (452) (BP 67/97).
16–2	TAN +90 DEGREES: Prevents overflow at multiples of +90 degrees: 'SQRT, X†2, TAN'. Source: Dave Wilder (452). Use 'RAD, D-R, TAN, DEG' for ±90 degrees.
16-3 Wilde:	KEEPING ANGLES LESS THAN 90° OR 180°: To keep an angle less than 90°, use 'SIN, ASIN'; to keep an angle less than 180°, use 'COS, ACOS'. Source: Dave (452) (BP 67/97).
16-4 (265)	SUPPLEMENT OF AN ANGLE, KEPT WITHIN $\pm 180^{\circ}$ ("SUP"): Supplement $\theta = 180^{\circ} - \theta$. With θ in X, XEQ "SUP" to convert it to its supplement. Source: Bill Kolb (BP 67/97).
LBL "	SUP", -1, P-R, R-P, X<>Y, CHS, RTN (14 bytes)
16–5	ELIMINATING DISPLAY OF 60 MIN OR SEC: Use 'HR, HMS'. Source: John Martellaro (1896) (65 NOTES, V7N9P1). Assurs Fix 4. Display only. Lasses
16–6	COS & SIN OF X SIMULTANEOUSLY: Use '1, P-R'. These two steps put cos x in X and sin x in Y. Source: Joachim Bolz (401) (65 NOTES, V2N9P25).
16–7	<u>ARCTAN Y/X</u> : Instead of '/, ATAN', use 'R-P, RDN'. This avoids division by zero and distinguishes between $-y/x$ and $y/-x$. Source: Dave Wilder (452) (BP 67/97).
16–8	BOUNDING ANGLES: Routine A keeps angles between 0° and 360°; routine B keeps angles between plus and minus 180°. Source: HP KEY NOTES, V3N4P9.
<u>0° <=</u>	$\theta < 360^{\circ}$: LBL A, 360, P-R, R-P, X<>Y, X<0?, +, RTN (11 bytes)
<u>-180°</u>	$< \theta <= 180^{\circ}$: LBL B, 1, P-R, R-P, X<>Y, RTN (7 bytes)
16-9 distan for D the sa new e (2791	ELEVATION OF A POINT ON A PARABOLA, STACK SOLUTION ("PN"): To find the elevation 'Y' of a point 'P' on a parabola, at nce 'X' from the center axis, XEQ "PN"; the routine prompts , H & X, then finds the elevation 'Y'. For another point on ame parabola, key the new value of 'X', then press R/S; the levation will be found. May repeat. Source: John Dearing). Equation: $Y = H[1-(X/D)^2]$.
01 LB 02 "D 03 PR 04 "H	L "PN" 05 PROMPT 09 LBL 14 13 RDN 17 * 21 R t 25 GTO 14 2" 06 1 10 R t 14 X t2 18 "Y= " 22 LASTX 26 END OMPT 07 "X?" 11 / 15 - 19 ARCL X 23 1 2" 08 PROMPT 12 LASTX 16 X<>Y 20 PROMPT 24 R t (44 bytes)
16-10	<u>LAW OF COSINES</u> : $c = \sqrt{a^2 + b^2} - 2ab \cdot cos \theta$. Use: RCL θ , RCL a, P-R, RCL b, -, R-P. Source: Bill Kolb (265).

16-11 AREA & L					
Input 'D	ENGTH OF A R ', ENTER, 'H	RIGHT PARABO	DLIC SEGMENT (' for area or	<u>"AP" & "SP")</u> : "SP" for leng	th. S
01 LBL "AP" 02 * 03 4 04 * 05 3 06 /	07 RTN 08 LBL "SP" 09 STO 01 10 X<>Y 11 STO 02 12 X†2	13 X<>Y 14 X†2 15 4 16 * 17 + 18 SQRT	 19 ENTER 20 ENTER 21 RCL 01 22 ST+ X 23 + 24 RCL 02 	25 / 26 LN 27 RCL 02 28 X†2 29 RCL 01 30 ST+ X	31 / 32 * 33 + 34 END (48 bytes)
16-12 <u>AREA OF</u> side; and "N [†] S": Input N must be in DEG	A REGULAR PC d 'R' is the , ENTER, S; Mode. Sourc	DLYGON: 'N' radius of XEQ "N†S". se: Hugh Ker	is the number the circumscr "N†R": Input uner (103) (PP	of sides; 'S ibed circle (N, ENTER, R; C CJ, V7N5P7)	' is the length of a center-to-vertex). XEQ "N†R". Calculator
01 LBL "N†S" 02 X†2 03 X<>Y 04 * 05 180	06 LASTX 07 / 08 TAN 09 / 10 4	11 / 12 "A=" 13 ARCL X 14 AVIEW 15 RTN	<u>16 LBL "N†R"</u> 17 X†2 18 X<>Y 19 * 20 360	21 LASTX 22 / 23 SIN 24 * 25 2	26 / 27 "A=" 28 ARCL X 29 AVIEW 30 END (54 bytes)
16-13 AREA OF A rad: 'R' (rad: mode. Equation because it work	A REGULAR PC ius of circu : K = ½NR ² S ks in RAD an	DLYGON, ANY mscribed ci SIN(360°/N) d GRAD Mode	TRIG MODE: Ke ircle), XEQ "A The sequence es as well.	y in 'N' (num R". Works in '1, ASIN, 4,	<pre>ber of sides), ENTER, any trigonometric *' replaces the 360°</pre>
01 LBL "AR" 02 1	04 4 05 *	07 / 08 SIN	10 X†2 13	2	
03 ASIN	06 RCL Z	09 X<>Y	12 * 15	/ END	(23 bytes)
03 ASIN 16-14 <u>SPHERICAL</u> <u>"S-R", &</u> let between spl y, ENTER, x; if ENTER, r; it re Register undist	06 RCL Z <u>L/RECTANGULA</u> <u>"ET"): Here</u> herical and t returns r, eturns the r turbed.	09 X <> Y $R COORDINAT rectangular \theta, \phi in Re-rectangular$	TE CONVERSION; of routines for coordinates. egisters X-Y-Z coordinates t	EULER TRANSF or transformi "R-S" is ini . "S-R" requi o X-Y-Z. Both	(23 bytes) CORMATIONS ("R-S", ng a coordinate trip- tialized by z, ENTER, res φ , ENTER, θ , routines leave the T
03 ASIN 16-14 <u>SPHERICAL</u> <u>"S-R", &</u> let between spl y, ENTER, x; it ENTER, r; it re Register undist <u>01 LBL "R-S"</u> 02 R-P	06 RCL Z <u>L/RECTANGULA</u> <u>"ET"): Here</u> herical and t returns r, eturns the r turbed. 03 R† 04 X<> T	09 X <>Y AR COORDINAT rectangular θ, ϕ in Re- rectangular 05 R-P (06 RTN	TE CONVERSION; of routines for coordinates. egisters X-Y-Z coordinates t 07 LBL "S-R" 08 P-R	/ END EULER TRANSF or transformi <u>"R-S"</u> is ini . <u>"S-R"</u> requi o X-Y-Z. Both 09 X<> T 1 10 RDN 1	<pre>(23 bytes) CORMATIONS ("R-S", ng a coordinate trip- tialized by z, ENTER, res φ, ENTER, θ, routines leave the T 1 P-R 2 END (28 bytes)</pre>

01	LBL	"ET"	05	-	09	R-P	13	X<>Y	17	R Î	21	RDN		
02	P-R		06	X<>Y	10	X<>Y	14	P-R	18	R-P	22	END		
03	X<>	Z	07	P - R	11	RCL 02	15	RDN	19	RCL 03				
04	RCL	01	08	R↑	12	-	16	R-P	20	ST- T			(32	bytes)
_														

16-15 <u>SOLVING INTEGER-SIDED RIGHT TRIANGLES ("IT")</u>: This routine will successively solve for all the integer-sided right triangles having a given integer as one side. If Flag 00 was cleared before execution, Tone 0 sounds and execution stops here ('One-Integer Mode'). If Flag 00 was set before execution, the integer is incremented and execution continues ('Continuous Mode'). If the printer is off or is not plugged in, R/S after the sides of a triangle are displayed. If printer is on, press R/S to stop execution. The display will show an asterisk after the number when it is the hypotenuse of the triangle. Since oblique triangles may be viewed as two right triangles having a common altitude, the routine is also useful in solving integer-sided oblique triangle problems.

Instructions: 1. CF 00 for 'One-Integer Mode', or SF 00 for 'Continuous Mode'. 2. XEQ "IT". 3. Key in integer, R/S. All integer-sided right triangles with the given integer as one side will be displayed/printed; if no printer, R/S after each. 4. In 'One-Integer Mode', Tone 0 sounds and 0.00 is displayed; R/S for a new case. In 'Continuous Mode', the integer is incremented by 1 and execution continues. To terminate Continuous Mode, press R/S if the routine is running, then CF 00 and XEQ 14 from the keyboard. Example: Key '5', XEQ "IT", see "5 12 13", "5* 3 4".

Source: Richard Smith (4856) (PPC CJ, V7N4P30).

01 LBL "IT"	30 ENTER	59 LBL 10	88 /	117 " - "	146 RCL 00
02 SF 21	31 STO 01	60 X t 2	89 STO 04	118 ARCL 03	147 2
03 FIX 0	32 2	61 STO 00	90 RCL 05	119 AVIEW	148 /
04 CF 29	33 /	62 FS? 01	91 X<>Y	120 RTN	149 RCL 03
05 "NO.?"	34 FRC	63 GTO 08	92 X<=Y?	121 LBL 06	150 X <y?< td=""></y?<>
06 PROMPT	35.5	64 LBL 09	93 GTO 05	122 2	151 GTO 04
07 1	36 X=Y?	65 RCL 00	94 RCL 04	123 ST/ 02	152 GTO 14
08 -	37 GTO 12	66 RCL 05	95 FRC	124 ST/ 03	153 LBL 03
09 STO 06	38 RDN	67 RCL 01	96 X=0?	125 RTN	154 2
10 GTO 00	39 X=0?	68 X=Y?	97 XEQ 07	126 LBL 05	155 ST/ 00
11 LBL 14	40 GTO 11	69 GTO 05	98 4	127 RCL 01	156 RCL 00
12 FS? 00	41 LBL 13	70 RDN	99 ST+ 05	128 2	157 RCL 03
13 GTO 00	42 "NONE"	71 /	100 GTO 08	129 *	158 -
14 CLX	43 AVIEW	72 STO 04	101 LBL 07	130 STO 00	159 STO 02
15 CLD	44 GTO 14	73 2	102 RCL 04	131 0	160 RCL 01
16 CF 01	45 LBL 12	74 /	103 RCL 05	132 STO 03	161 X>Y?
17 SF 29	46 3	75 1	104 -	133 LBL 04	162 GTO 14
18 FIX 2	47 RCL 01	76 X=Y?	105 2	134 1	163 CLA
19 TONE 0	48 X <y?< td=""><td>77 GTO 24</td><td>106 /</td><td>135 ST+ 03</td><td>164 ARCL 00</td></y?<>	77 GTO 24	106 /	135 ST+ 03	164 ARCL 00
20 RTN	49 GTO 13	78 RDN	107 STO 02	136 RCL 00	165 " ⊢ * "
21 GTO "IT"	50 2	79 FRC	108 RCL 05	137 RCL 03	166 ARCL 01
22 LBL 00	51 *	80 X=0?	109 +	138 -	167 " ⊢ "
23 CF 01	52 SF 01	81 XEQ 07	110 STO 03	139 LASTX	168 ARCL 02
24 2	53 GTO 10	82 2	111 FS? 01	140 *	169 AVIEW
25 STO 05	54 LBL 11	83 ST+ 05	112 XEQ 06	141 SQRT	170 2
26 ADV	55 4	84 GTO 09	113 CLA	142 STO 01	171 ST* 00
27 1	56 RCL 01	85 LBL 08	114 ARCL 01	143 FRC	172 GTO 04
28 ST+ 06	57 X <y?< td=""><td>86 RCL 00</td><td>115 "⊢ "</td><td>144 X=0?</td><td>173 END</td></y?<>	86 RCL 00	115 " ⊢ "	144 X=0?	173 END
29 RCL 06	58 GTO 13	87 RCL 05	116 ARCL 02	145 GTO 03	(253 bytes)
16-16 FUNCTIONS	G OF X AND	$\sqrt{1 \pm X^2}$: The	range of x is	-1 < x < 1.	
For: $\sqrt{1-x^2}$		$x / \sqrt{1-x^2}$	$\sqrt{1-x^2} / x$	$1 / \sqrt{1 + x^2}$	$x / \sqrt{1 + x^2}$
Use: ACOS,	SIN	ASIN, TAN	ACOS, TAN	ATAN, COS	ATAN, SIN
Source: Bill Kolb (265) (BP 67/97).					
CALCULATOR TIPS & ROUTINES

65

16-17 HYPERBOLIC FUNCTIONS ("SINH", "COSH", "TANH", "ASINH", "ACOSH" & "ATANH"):

Key in argument, execute appropriate function. For example, to compute the inverse hyperbolic tangent of x, XEQ "ATANH". No data registers are used; no local labels are used and there are no internal subroutines. The value in Y is returned to Y in each case; with "SINH" & "COSH", Z is returned to Z. Source: John Kennedy (918) (PPC CJ, V7N8P11).

01	LBL "SINH"	12 1/X	23 +	34 RTN	45 1
02	ETX	13 +	24 /	35 LBL "ACOSH"	46 X<>Y
03	ENTER	14 2	25 RTN	36 ENTER	47 +
04	1/X	15 /	26 LBL "ASINH"	37 X†2	48 1
05	-	16 RTN	27 ENTER	38 1	49 LASTX
06	2	17 LBL "TANH"	28 X t2	39 -	50 –
07	/	18 ETX	29 1	40 SQRT	51 /
80	RTN	19 ENTER	30 +	41 +	52 SQRT
09	LBL "COSH"	20 ENTER	31 SQRT	42 LN	53 LN
10	E†X	21 1/X	32 +	43 RTN	54 END
11	ENTER	22 ST- Z	33 LN	44 LBL "ATANH"	(66 bytes)

16-18 <u>SOLVE ("SV")</u>: This routine approximates a solution to an equation of the form f(x) = 0, using a Newton's (secant) method. Have the <u>function name in R06</u> and the <u>initial guess in X</u>; then XEQ "SV". The output in X is the x-value which most closely makes f(x) = 0. Set Flag 10 to display successive approximations. Uses Registers 06-09. Source: Kennedy (918), Schwartz (2289) & Dennes (1757) (PPC ROM). Set

	25 RND 26 X≠Y? 27 GTO 04 28 RCL 07 29 END (45 bytes)
--	---

16-19 INTEGRATE ("IG"): This routine duplicates the HP-34C Integrate function. Have the function name in R10, the lower limit of integration in Y and the upper

limit in X. Accuracy depends on the display setting. Very slow! SF 10 to display successive approximations. Uses Registers 10-18. Source: Read Predmore (5184) (PPC ROM).

02 STO 1 / 18 2 34 * 50 STO 1 3 66 ENTER 82 $FS ?$ 10 03 $X <> Y$ 19 STO 1 4 35 RCL 1 6 51 18 67 DSE Y 83 VIEW X 04 $ 20$ RCL 1 1 36 * 52 STO 1 2 68 $X <> Z$ 84 $FS ? C$ 09 05 4 21 CHS 37 RCL 1 7 53 1 69 ENTER 85 GTO 01 06 $/$ 22 Y tx 38 $+$ 54 ST+ 11 70 $X <> IND$ 12 86 RND 07 STO 16 23 ST* 14 39 XEQ IND 10 55 RCL 15 71 ST- Y 87 $X \neq Y?$ 08 ST- 17 24 1 40 RCL 13 56 RCL 16 72 RND 88 GTO 01 09 ST- 17 25 $ 41$ $*$ 57 1.5 73 $X <> Z$ 89 LASTX 10 0 26 LBL 02 42 ST+ 15 58 $*$ 74 $/$ 90 END 11 STO 15 27 STO 12 43 1 59 $*$ 75 RCL IND 12 12 STO 11 28 $x^{\dagger}2$ 44 RCL 12 60 RCL 14 76 $+$ 13 STO 18 29 $ 45$ RCL 14 61 $*$ 77 ISG 12 <th>01</th> <th>LBL "IG"</th> <th>17 ENT</th> <th>TER 33</th> <th>RCL 12</th> <th>49</th> <th>RCL 11</th> <th>65 66</th> <th>*</th> <th>81 82</th> <th>STO IND 12</th>	01	LBL "IG"	17 ENT	TER 33	RCL 12	49	RCL 11	65 66	*	81 82	STO IND 12
03 $X <> Y$ 19STO1435RCL16511867DSEY83VIEW X04-20RCL1136*52STO1268 $X <> Z$ 84FS?C0905421CHS37RCL1753169ENTER85GTO0106/22Y 1X38+54ST+1170 $X <> IND$ 1286RND07STO1623ST*1439XEQ IND 1055RCL1571ST-Y87 $X \neq Y?$ 08ST-1724140RCL1356RCL1672RND88GTO0109ST-1725-41*571.573 $X <> Z$ 89LASTX10026LBL0242ST+1558*74/90END11STO1527STO1243159*75RCLIND1212STO1128 X^{12} 44RCL1260RCL1476+13STO1829-45RCL1461*77ISG121214SF0930STO1346+62LBL03 <td>02</td> <td>STO 17</td> <td>18 2</td> <td>34</td> <td>*</td> <td>50</td> <td>STO 13</td> <td>66</td> <td>ENTER</td> <td>82</td> <td>F5: 10</td>	02	STO 17	18 2	34	*	50	STO 13	66	ENTER	82	F5: 10
$04 20$ RCL 11 36 * 52 STO 12 68 $X <> Z$ 84 FS?C 09 05 4 21 CHS 37 RCL 17 53 1 69 ENTER 85 GTO 01 06 22 Y 1X 38 $+$ 54 ST+ 11 70 $X <> IND 12$ 86 RND 07 STO 16 23 ST* 14 39 XEQ IND 10 55 RCL 15 71 ST- Y 87 $X \neq Y?$ 08 ST- 17 24 1 40 RCL 13 56 RCL 16 72 RND 88 GTO 01 09 ST- 17 25 - 41 $*$ 57 1.5 73 $X <> Z$ 89 LASTX 10 0 26 LBL 02 42 ST+ 15 58 $*$ 74 $/$ 90 END 11 STO 15 27 STO 12 43 1 59 $*$ 75 RCL IND 12 12 STO 11 28 $X^{\dagger}2$ 44 RCL 12 60 RCL 14 76 $+$ 13 STO 18 29 - 45 RCL 14 61 $*$ 77 ISG 12 14 SF 09 30 STO 13 46 $+$ 62 LBL 03 78 STOP 15 LBL 01 31 2 47 $X < Y?$ 63 Rt 79 DSE 13 16 1 32 $+$ 48 GTO 02 64 4 80 GTO 03 <t< td=""><td>03</td><td>X <>Y</td><td>19 STC</td><td>0 1 4 35</td><td>RCL 16</td><td>51</td><td>18</td><td>67</td><td>DSE Y</td><td>83</td><td>VIEW X</td></t<>	03	X <>Y	19 STC	0 1 4 35	RCL 16	51	18	67	DSE Y	83	VIEW X
05421CHS37RCL 1753169ENTER85GTO 0106/22Y 1X38+54ST+ 1170X <> IND 1286RND07STO 1623ST* 1439XEQ IND 1055RCL 1571ST- Y87X \neq Y?08ST- 1724140RCL 1356RCL 1672RND88GTO 0109ST- 1725-41*571.573X <> Z89LASTX10026LBL 0242ST+ 1558*7490END11STO 1527STO 1243159*75RCL IND 1212STO 1128X 1244RCL 1260RCL 1476+13STO 1829-45RCL 1461*77ISG 1214SF 0930STO 1346+62LBL 0378STOP15LBL 0131247X <y?< td="">63Rt79DSE 1316132+48GTO 0264480GTO 03(129</y?<>	04	-	20 RCL	L 11 36	*	52	STO 12	68	X<> Z	84	FS?C 09
06 /22 Y $^{\dagger}X$ 38 +54 ST+ 1170 X <> IND 1286 RND07 STO 1623 ST* 1439 XEQ IND 1055 RCL 1571 ST- Y87 X \neq Y?08 ST- 1724 140 RCL 1356 RCL 1672 RND88 GTO 0109 ST- 1725 -41 *57 1.573 X <> Z89 LASTX10 026 LBL 0242 ST+ 1558 *74 /90 END11 STO 1527 STO 1243 159 *75 RCL IND 1212 STO 1128 X $^{\dagger}2$ 44 RCL 1260 RCL 1476 +13 STO 1829 -45 RCL 1461 *77 ISG 1214 SF 0930 STO 1346 +62 LBL 0378 STOP15 LBL 0131 247 X <y?< td="">63 Rt79 DSE 1316 132 +48 GTO 0264 480 GTO 03(129 bytes)</y?<>	05	4	21 CHS	5 37	RCL 17	53	1	69	ENTER	85	GTO 01
07STO 1623ST* 1439XEQ IND 1055RCL 1571ST- Y87X \neq Y?08ST- 1724140RCL 1356RCL 1672RND88GTO 0109ST- 1725-41*571.573X <> Z89LASTX10026LBL 0242ST+ 1558*74/90END11STO 1527STO 1243159*75RCL IND 1212STO 1128X 1244RCL 1260RCL 1476+13STO 1829-45RCL 1461*77ISG 1214SF 0930STO 1346+62LBL 0378STOP15LBL 0131247X <y?< td="">63R†79DSE 1316132+48GTO 0264480GTO 03(129bytes</y?<>	06	1	22 Y†X	K 38	+	54	ST+ 11	70	X<>IND 12	86	RND
08ST-1724140RCL1356RCL1672RND88GTO0109ST-1725-41*571.573X <> Z89LASTX10026LBL0242ST+1558*74/90END11STO1527STO1243159*75RCLIND1212STO1128X 1244RCL1260RCL1476+13STO1829-45RCL1461*77ISG1214SF0930STO1346+62LBL0378STOP15LBL0131247X <y?< td="">63R†79DSE1316132+48GTO0264480GTO03(129bytes</y?<>	07	STO 16	23 ST*	* 14 39	XEQ IND 10	55	RCL 15	71	ST- Y	87	X≠Y?
09ST-1725-41*571.573X<> Z89LASTX10026LBL0242ST+1558*74/90END11STO1527STO1243159*75RCLIND1212STO1128X * 244RCL1260RCL1476+13STO1829-45RCL1461*77ISG1214SF0930STO1346+62LBL0378STOP15LBL0131247X <y?< td="">63R†79DSE1316132+48GTO0264480GTO03(129bytes</y?<>	80	ST - 17	24 1	40	RCL 13	56	RCL 16	72	RND	88	GTO 01
10 0 26 LBL 02 42 ST+ 15 58 * 74 90 END 11 STO 15 27 STO 12 43 1 59 * 75 RCL IND 12 12 STO 11 28 X 12 44 RCL 12 60 RCL 14 76 + 13 STO 18 29 - 45 RCL 14 61 * 77 ISG 12 14 SF 09 30 STO 13 46 + 62 LBL 03 78 STOP 15 LBL 01 31 2 47 X <y?< td=""> 63 R† 79 DSE 13 16 1 32 + 48 GTO 02 64 40 80 GTO 03 (129 bytes</y?<>	09	ST - 17	25 –	41	*	57	1.5	73	X<> Z	89	LASTX
11STO1527STO1243159 *75RCL IND1212STO1128X $^{\dagger}2$ 44RCL1260RCL1476+13STO1829 -45RCL1461*77ISG1214SF0930STO1346+62LBL0378STOP15LBL0131247X <y?< td="">63R †79DSE1316132+48GTO0264480GTO03(129bytes</y?<>	10	0	26 LBL	02 42	ST+ 15	58	*	74	1	90	END
12 STO 11 28 X [†] 2 44 RCL 12 60 RCL 14 76 + 13 STO 18 29 - 45 RCL 14 61 * 77 ISG 12 14 SF 09 30 STO 13 46 + 62 LBL 03 78 STOP 15 LBL 01 31 2 47 X <y?< td=""> 63 R[†] 79 DSE 13 16 1 32 + 48 GTO 02 64 4 80 GTO 03 (129 bytes</y?<>	11	STO 15	27 STC	0 12 43	1	5 9	*	75	RCL IND 12		
13 STO 18 29 - 45 RCL 14 61 * 77 ISG 12 14 SF 09 30 STO 13 46 + 62 LBL 03 78 STOP 15 LBL 01 31 2 47 X <y?< td=""> 63 Rt 79 DSE 13 16 1 32 + 48 GTO 02 64 4 80 GTO 03 (129 bytes)</y?<>	12	STO 11	28 X 12	2 44	RCL 12	60	RCL 14	76	+		
14 SF 09 30 STO 13 46 + 62 LBL 03 78 STOP 15 LBL 01 31 2 47 X <y?< td=""> 63 R† 79 DSE 13 16 1 32 + 48 GTO 02 64 4 80 GTO 03 (129 bytes)</y?<>	13	STO 18	29 -	45	RCL 14	61	*	77	ISG 12		
15 LBL 01 31 2 47 X <y?< td=""> 63 Rt 79 DSE 13 16 1 32 + 48 GTO 02 64 4 80 GTO 03 (129 bytes)</y?<>	14	SF 09	30 STC	0 13 46	+	62	LBL 03	78	STOP		
16 1 32 + 48 GTO 02 64 4 80 GTO 03 (129 bytes	15	LBL 01	31 2	47	X <y?< td=""><td>63</td><td>R↑</td><td>79</td><td>DSE 13</td><td></td><td></td></y?<>	63	R↑	79	DSE 13		
	16	1	32 +	48	GTO 02	64	4	80	GTO 03		(129 bytes)

16-20 FIRST DERIVATIVE ("FD"): This routine approximates the first derivative of a

function at a point. Have the function loaded in memory as a program, with a global label of 6 or fewer characters. Have the function name in R11, the step size in R13 (0.01 is typical), and the x-value in X; then XEQ "FD". Source: Richard Schwartz (2289) (PPC CJ, V7N9P11-13, V7N10P10). [continued]

CA	LCULA	ATOR	TIPS &	ROUTINES			66		_	XV	VI.	GEOME	CTRY,	TRIG &	CALCULUS
01	LBL	יירדיי	07	<u> </u>	13	ST 1/		10	*		2	5,		21	6
$\frac{01}{02}$	STO	12	- 08	RCL 12	14	9		20	ST -	14	2	5 + 6 XEQ) IND	11 32	*
03	RCL	13	09	RCL 13	15	ST* 14		21	RCL	12	2	7 ST4	- X	33	1
04	+		10	ST+ X	16	RCL 12		22	RCL	13	2	8 RCL	14	34	END
05	XEQ	IND 1	1 11	+	17	XEQ IND 1	1	23	3		2	9 +			
06	ST+	X	12	XEQ IND 11	18	11		24	*		3	0 RCI	ـــــــــــــــــــــــــــــــــــــ	(52 bytes)

CHAPTER XVII

BASE CONVERSIONS

17-1 <u>SYNTHETIC BASE CONVERSION ("BD" & "TB")</u>: For positive integers, and 1 < b < 20, these routines convert between numbers in base b and base 10. Store b in R06 before executing either routine. Source: George Eldridge (5575) (PPC CJ, V7N9P12; PPC ROM).

Innute

"BD" (Base b to base 10): Have the base b number in Alpha Register when routine is called.

Inputs:	Outputs:	
Alpha: n	X: n ₁₀	
R06: b	Alpha:	(cleared)
01 LBL "BD"		23 X<0?
02 CLST		24 GTO 02
03 LBL 01		25 X<>Y
04 " ⊢ "		26 RCL 06
05 X<> O		27 *
06 X=0?		28 +
07 GTO 01		29 .
08 X<> M		30 GTO 01
09 R†		31 LBL 02
10 X<> N		32 RDN
11 "⊢♠∆"		33 CLA
12 X<> N		34 RTN
13 RDN		
14 X<> M		
15 E		
16 *		
17 39		
18 -		
19 X>0?		
20 DSE X		

21 9 22 + "TB" (Base 10 to base b): Have the base 10 number in X Register when routine is called.

Outpute

$\frac{11pucs}{0}$	icpues.	
X: n 10	Alpha: n b	
R06: b	X: 0	
35 LBL "TB"		57 STO M
36 "'	11	58 RDN
37 RCL M		59 RCL 06
38 X<>Y		60 /
39 LBL 03		61 INT
40 ENTER		62 X≠0?
41 INT		63 GTO 03
42 RCL 06		64 LBL 05
43 MOD		65 " - "
44 9		66 CLX
45 -		67 RCL M
46 X>0?		68 X≠Y?
47 ISG X		69 GTO 05
48 LBL 04		70 CLX
49 39		71 X<> 0
50 +		72 X<> N
51 10†X		73 STO M
52 STO O		74 CLST
53 " - "		75 AVIEW
54 CLX		76 END
55 X<> O		
56 X<> N		(139 bytes)

NOTE: Line 11 is decimal 243, 127, 0, 8; line 36 is decimal 254, 39, and then thirteen 32's; line 53 is append 6 spaces.

17-2 STACK USED TO CONVERT TO BASE 10: To convert a positive integer in any base to

base 10, load the stack with the number of the original base. It is not required that the original base be integral or even positive. Working from left to right, key the first digit of the integer and follow with "*" (multiply). Key in the next digit and follow with "+, *" (add, multiply). Continue keying in the digits, following each with "+, *" until the rightmost digit is keyed; follow it with "+" only. The resulting number in base 10 is now in the display. Example: convert 72305 in base 8 to base 10: key 8, ENTER, ENTER, ENTER; 7, *; 2, +, *; 3, +, *; 0, +, *; 5, +: see '29893' in the display. Source: Paul Fields (3114) (PPC J, V6N7P23).

17-3 OCTAL-DECIMAL CONVERSIONS FOR REAL NUMBERS: There may be some error in the re- sult if the number is irrational in octal, or if the precision of the calcula- tor is exceeded during calculation. The stack is destroyed, but no numeric data reg- isters are used. Source: HP KEY NOTES, V4N1P7.									
01 LBL ARCCIA 02 ENTER 03 INT 04 OCT 05 RCL Y	07 1073741824 08 * 09 INT 10 OCT	12 / 13 + 14 RTN 15 LBL "RDEC"	17 INT 22 * 18 DEC 23 INT 19 RCL Y 24 DEC 20 FRC 25 1073	20 / 27 + 28 END 3741824 ⁽⁷⁰ bytes)					
17-4 <u>FAST DECIMAL-HEX ("DX")</u> : Limited to integers in base 10 in the range 0 - 65,535. Meant to be used to compute addresses in a computer with up to 64K of memory. To use: 1. XEQ "DX". 2. Input 'D' (integer in base 10), R/S. 3. For a new case, go to step 2. Source: John Kennedy (918) (PPC CJ, V7N4P22).									
01 LBL "DX" 02 "0" 03 ASTO 00 04 "1" 05 ASTO 01 06 "2" 07 ASTO 02 08 "3" 09 ASTO 03 10 "4" 11 ASTO 04 12 "5" 13 ASTO 05 14 "6"	15 ASTO 06 16 "7" 17 ASTO 07 18 "8" 19 ASTO 08 20 "9" 21 ASTO 09 22 "A" 23 ASTO 10 24 "B" 25 ASTO 11 26 "C" 27 ASTO 12 28 "D"	29 ASTO 13 30 "E" 31 ASTO 14 32 "F" 33 ASTO 15 34 LBL 00 35 "INPUT D, R/S 36 PROMPT 37 LBL 01 38 65535 39 X<>Y 40 X>Y? 41 GTO 00 42 FIX 0	43 " " 44 ARCL X 45 "⊢ DEC" 46 AVIEW 47 4096 48 / " 49 CLA 50 ARCL IND X 51 FRC 52 16 53 * 54 ARCL IND X 55 FRC 56 16	57 * 58 ARCL IND X 59 FRC 60 16 61 * 62 RND 63 ARCL IND X 64 "+ HEX" 65 AVIEW 66 STOP 67 GTO 01 68 END (148 bytes)					
17-5 <u>SYNTHETIC HEX TO DECIMAL ("XD")</u> : This routine works only for a 2-digit input in Alpha, and returns the decimal equivalent to X. For converting hex byte numbers to decimal in the Byte Table. No checking for invalid input. Source: Roger Hill (4940) (PPC ROM).									
$\begin{array}{c cccc} 01 & LBL "XD" & 0 \\ 02 & "F \blacklozenge \Delta" & 0 \\ 03 & RCL & M & 0 \\ 04 & E2 & 0 \\ 05 & XEQ "QR" & 1 \end{array}$	6 29 11 * 7 ST- Z 12 IN 8 - 13 X< 9 .9 14 IN 0 ST* Z 15 16	16 * 17 + 24 18 RTN 19 LBL "QR" 20 X<>Y	21 STO 26 ST 22 X<>Y 27 CI 23 MOD 28 X 24 ST- 29 X 25 LASTX 30 E1	r/ 0 LX <> 0 <>Y ND (59 bytes)					

CHAPTER XVIII

UNIT CONVERSIONS & SHORTCUTS

18–1	CONVERT GRADS TO AND FROM DEGREES & RADIANS: pi rad = 180° = 200 grads. G-D: .9, *. D-G: .9, /. G-R: 200, PI, /, /. R-G: 200, PI, /, *.
18-2 "FIN"	CONVERT FEET & INCHES TO FEET (OR YARDS): Input feet &/or inches in the form ff.ii (12 feet, 9 inches, for example, would be input as 12.09), then execute. The two steps before the RTN ('3, /') convert feet to yardsmay delete.
LBL "I	FIN", ENTER, FRC, .12, /, X<>Y, INT, +, (3, /,), RTN (19 bytes)
18-3 factor KPH).	APPROXIMATE MILES TO KILOMETERS CONVERSION FACTOR: To save bytes, use '5, LN'. This is about 0.0058% high (LN 5 = 1.609437912; the actual Mi-Km conversion r is 1.609344000). Multiply miles (or MPH) by this factor to get kilometers (or Source: Neil Murphy (6) (65 NOTES, V1N2P3).
18-4 lish u values prompt (in po simila if neo Source	ENTERING ENGLISH OR METRIC UNITS, STORING AS METRIC: For use when values input are all positive (weight and height, for example). Enter data that is in Eng- units as negative values, and enter data that is in metric units as positive s. In the program, have the English-to-metric conversion factor just before the ting, and 'X>0?, 1, *' just afterwards. The example below prompts for weight bunds or kilograms), converts to kilograms if necessary, then stores the weight; arly, it prompts for height (in inches or centimeters), converts to centimeters cessary, then stores the height. Remember to follow English units with CHS. e: Henry Casson (5047). The conversion factor must be negative. ,4536, "WT.?", PROMPT, X>0?, 1, *, STO 01, 2.54, "HT.?", PROMPT, X>0?, 1, *, STO 02,
 18-5 It mus	<u>FASTER ZERO</u> : Use the decimal (.) rather than the zero (0) when a line in a pro- gram is to be zero; its faster. This is only to enter a zero, not to clear X. at not be followed by another digit. Source: Bill Kolb (265) (BP 67/97).
 18–6	SYNTHETIC FASTER ONE: Use E (decimal byte 27) rather than 1 when a line in a program is to be one; it's faster.
18-7 Bill 1	MULTIPLY BY A SMALL NUMBER: Example: UsualEEX, 6, CHS, *; betterEEX, 6, /. Saves a keystroke in keyboard execution, saves a byte in a program. Source: Kolb (265) (BP 67/97).
18-8	DIVIDE BY 100: Instead of '100, /', use '1, %'. The number that is divided re- mains in the Y Register. Source: John Martellaro (1896) (PPC J, V5N1P16).
18–9	MULTIPLY BY $\sqrt{2}$: Instead of 2, SQRT, *, use ENTER, R-P. To replace x with $\sqrt{2} \cdot x$ without raising the stack, use X12, ST+ X, SQRT. Source: Bill Kolb (265) (BP).
18_10	<u>4/3 PI</u> : Usual: 4, PI, *, 3, /. Better: 240, D-R. Source: Bill Kolb (265) (BP).
18–11	$\pi/180$: Instead of PI, 180, /, use 1, D-R; saves 3 bytes. Source: John Martel- laro (1896) (PPC J, V5N1P16).

CALCULATOR TIPS & ROUTINES	70	XVIII.	UNIT CO	ONVERSIONS	& SHOR	RTCUTS
18-12 <u>1/(Y†X)</u> : Usual: Y†X, 1/X. Faster:	CHS, Y↑X	. Source	e: Bill	Kolb (265) (BP 6	7/97).
18-13 <u>y^{x/2}</u> : Usual: 2, /, Y [†] X. Saves a b	yte: Y↑X,	SQRT. S	Source:	Bill Kolb	(265)	(BP).
18-14 CONVERSION BETWEEN DEGREES AND DE	CIMAL MINU	UTES & D	DECIMAL	DEGREES ("DM-D"	&

"D-DM"): The Nautical Almanac uses degrees and decimal minutes. This routine prompts for input and labels output, so you won't be confused as to whether a decimal number is a decimal degree display, a degree-minute-second display, a degreedecimal minute display, or something else entirely. To convert from degrees and decimal minutes to decimal degrees, XEQ "DM-D" (input in DDDMM.MM format); to convert decimal degrees to degrees and decimal minutes, XEQ "D-DM". If routine is run as an independent program rather than as a subroutine in another program, just press R/S twice to convert back. Example: 123°45.67' = 123.7612°. Source: Hugh Kenner (103) (PPC CJ, V7N5P7, V7N6P35). See 18-16.

01	LBL "DM-D"	10	/	19	RTN	28	ARCL X	37	ARCL X
02	CF 29	11	Х<>Х	20	LBL "D-DM"	29	"⊢ D, "	38	" ⊢ M"
03	"DDDMM.MM ?"	12	INT	21	CF 29	30	1 E2	39	AVIEW
04	PROMPT	13	+	22	"DEC DEG ?"	31	*	40	+
05	1 E2	14	FIX 4	23	PROMPT	32	х<>ү	41	END
06	/	15	CLA	24	ENTER	33	FRC		
07	ENTER	16	ARCL X	25	INT	34	60		
80	FRC	17	"⊢ DEG"	26	FIX O	35	*		
09	.6	18	AVIEW	27	CLA	36	FIX 2		(109 bytes)

18-15 TO CONVERT NUMBERS TO ZERO OR ONE, DEPENDING UPON THEIR SIZE: This can save

steps by avoiding conditional tests, branching and redundant operations. The same operation of addition or subtraction (ST+ 09, for example) can be used, and those numbers that become 1 will increment R09, while those that become 0 will not. To subtract 12 when the number becomes 1, but not when it becomes 0, multiply the 1 or 0 by 12 first. For larger entries to become 1, smaller entries to become 0: Di-vide the entry by the smallest number that is to yield 1; it and larger numbers will give a number greater than or equal to 1.0; then take INT. Smaller numbers give 0 after INT. If the range of possible inputs is too great, reduce it first by some method, such as taking the square root, or else test the result with 'X 0?, 1'. For small entries to become 1, large entries to become 0: Take the reciprocal, add an appropriate constant, then take INT. For example, if the range of 10 or less to 1, but entries of greater than 10 to 0, use the following: '1/X, .9, +, INT'.

18-16 DDD.MM,M DDD.DDD: Routine 01 converts degrees & minutes/tenths of minutes in DDD.MM,M format to decimal degrees; routine 02 converts the other way. Flag 02 must be clear before routine 01 is executed. Example: convert 123°45.67' to decimal degrees: 123.4567, XEQ 01; see 123.7612. Source: Bill Boulton (700) (PPC CJ, V8 N1P22). See 18-14.

LBL	02, SF 02	2, <u>LBL 0</u>	<u>)1</u> , INT,	LASTX, F	RC, .6,	FS?C 02	, 1/X, ,	/, +,	RTN	(15 bytes)
18-1	7 CELSIUS	S-FAHREN	HEIT TE	MPERATURE	CONVER	SIONS ("	remp"):	With	Flag 00	SET, this
	routine	e conver	`ts °C t	o °F; wit	h Flag	00 CLEAR	, it com	nverts	°F to	°C. For exam-
ple,	'SF 00,	50, XEÇ	2 "TEMP"	' returns	'122'	(°F); 'CI	F 00, 50), XEÇ	TEMP"	' returns
10	(°C). Sc	ource: J	James Da	vidson (5	47) (65	NOTES,	/3N9P14).	-	
01 L	BL "TEMP'	" 0	4 STO 0	1 07	/	10	-		13 RTN	
02 4	0	- 0	5 1.8	08	40	11	FS? 00			
03 +		0	6 ST* 0	1 09	ST- 01	12	RCL 01			(27 bytes)

18-18 <u>CELSIUS-FAHRENHEIT CONVERSION, STACK SOLUTION ("TMP")</u>: With Flag 00 SET, this routine converts the Celsius temperature in X to Fahrenheit; with Flag 00 Clear, it converts Fahrenheit to Celsius. No data registers are used. [continued]

CALCULATOR T	IPS & ROUTINE	:S	/1	XVIII. UNIT	CONVERSIONS	& SHORTCUTS				
Source: Ron 1	Ryen (205) (6	5 NOTES, V2N	N5P9).							
LBL "TMP", 40	0, +, 1.8, FC	2? 00, 1/X, *	*, 40, -, RTM	N		(21 bytes)				
18-19 <u>CELSIUS</u> entry s Fahrenheit va Bill Derrick <u>LBL "TEM"</u> , EN	<pre>18-19 <u>CELSIUS-FAHRENHEIT CONVERSION, BOTH RESULTS ("TEM")</u>: This routine converts an entry simultaneously to °C and °F; the Celsius value is returned to X, the Fahrenheit value is returned to Y. Uses no flags; uses no data registers. Source: Bill Derrick (1393) (PPC J, V5N7P4). LBL "TEM", ENTER, ENTER, 32, ST- Z, X<>Y, 1.8, ST/ T, *, +, X<>Y, RTN (23 bytes)</pre>									
18-20 INPUTT For pho atures above nitude is bou varied for of less than or any value key <u>CASE I</u> 1.8, /, LBL (<u>CASE I</u> *, 32, +, LBL	<pre>18-20 INPUTTING A TEMPERATURE IN EITHER C° OR F° (SPECIAL CASE): For photographic or clinical medical use, temper- atures above 50°C are not met, so a value above that mag- nitude is bound to be Fahrenheit. The number could be varied for other uses. Assume any value keyed in that is less than or equal to 50 is a Celsius temperature, while any value keyed in that is greater than 50 is a Fahrenheit temperature. CASE I: CONVERT TO CELSIUS:, 50, "TEMP?", PROMPT, X<=Y?, GTO 00, 32, -, 1.8, /, LBL 00, CASE II: CONVERT TO FAHRENHEIT:, 50, "TEMP?", PROMPT, X>Y?, GTO 00, 1.8, *. 32. +. LBL 00.</pre>									
Source: Cary	Reinstein (2	:046) & Henry	7 Casson (504	17).						
18-21 <u>TEMPERATURE CONVERSIONS ("TC")</u> : Uses no data registers, flags or numeric labels. Converts between any two of the following temperature scales: Celsius, Kelvin, Fahrenheit, and Rankine ('C', 'K', 'F' & 'R', respectively). To use: Input value to be converted; XEQ "TC" (ASN to E); press key (A-D) corresponding to value input; press key corresponding to desired <u>output</u> . See answer. For new case, key in new value, then press R/S or XEQ "TC"; repeat proceedure. Source: adapted from HP-41C Users' Library Solutions 'Heating, Ventilating & Air Conditioning', pp 69-72.										
А	F	C	R	К	"TC"	E				
01 LBL "TC"	07 +	13 -	+ 19	PROMPT	25 GTO D	31 1.8				

01	LBL "TC"	07	+	13 +	19 PROMPT	25 GTO D	31 1.8
02	SF 27	08	1.8	14 GTO D	20 LBL A	26 LBL B	32 *
03	"F C R H	к" 09	1	15 LBL C	21 1.8	27 273.15	33 LBL D
04	PROMPT	10	GTO D	16 1.8	22 *	28 -	34 END
05	LBL A	11	LBL B	17 /	23 459.67	29 GTO D	
06	459.67	12	273.15	18 <u>LBL D</u>	24 -	30 LBL C	(96 bytes)

18-22 EFFECTIVE INTEREST: If you pay an income tax, this routine will calculate the approximate net cost of borrowing, taking into account the amount of interest you can deduct from your income tax:

LBL A, %, -, PSE, %, RTN

For example, you want to borrow \$950 at 14.35% interest for one year, and your tax bracket is 38%. Key in 950, ENTER, 14.35, ENTER, 38; then press <u>A</u>. The display will pause to show '8.9' (your 'effective' interest), then stop to show '84.52' (your net cost of borrowing the \$950). Remember, this is just a quick, handy way to determine approximate costs. It does not accurately calculate for direct reduction loans, compound interest, etc. But it is far better than nothing, it makes you more aware of net costs, and it is a short routine you can include in financial programs. Source: HP KEY NOTES, V4N2P11.

18-23 TWO NUMBERS WITHIN A CERTAIN PERCENT OF EACH OTHER: To find if the % differ-

ence between two numbers is less than a given number 'n' (perhaps in a loop), use the "%CH" function. Follow with "ABS", then 'n', then a conditional test.

CHAPTER XIX

STATISTICS & PROBABILITY

19-1 <u>SUMMATIONS WITH FREQUENCY (" Σ F")</u>: This routine allows for summations (Σ + & Σ -) with frequency, so multiple sets of the same x,y pairs of values need only be entered once. " Σ F" sets Σ REG 04; it uses Flags 00, 21 & 27; minimum SIZE 010. Instructions: 1. XEQ " Σ F". 2. For i = 1, 2, ..., n, repeat the following: input x_i, ENTER, Y_i, ENTER, f_i; press <u>A</u>. (f = frequency.) 3. Correct a mistake by reentering x_i, y_i, f_i, then pressing <u>C</u>. 4. Press <u>E</u> for intermediate or final results. If a printer is not on line, press R/S between outputs. 5. To add more data, go to step 2. 6. For a new case, go to step 1.

Example:	x	1	2	4	6	Results:	ΣX= 33.00	ΣY†2=132.00
	у	1	3	5	7		ΣX12=91.00	ΣXY=109.00
	f	15	2	2	1		ΣY=38.00	N=20.00

Т

r

Note: After LBL E, other calculations and output instructions can be inserted. For example, to find the means of x and y, insert these steps: 'MEAN, "XBAR", XEQ 02, X <> Y, "YBAR", XEQ 02.

Source: adapted from 'Basic Statistics for Two Variables', HP-41C Stat Pac, pp 10-13.

Т

	А	INPU	Г				COI	RECT			RESULTS	E	
												-	
01	LBL "∑F"		24	CHS		47	*		70	XEQ 02	REG	ISTERS:	
02	ADV		25	ST+	09	48	FS?	00	71	RCL 05			
03	9		26	RDN		49	CHS		72	"ΣX †2 "	R00	: Pointe	r
04	STO 00		27	STO	02	50	ST+	06	73	XEQ 02			
05	CLX		28	RDN		51	RCL	01	74	RCL 06	R01	: x.	
06	LBL 01		29	STO	01	52	X †2		75	"ΣΥ"		T	
07	STO IND 00		30	RŤ		53	RCL	03	76	XEQ 02	R02	: y,	
08	DSE 00		31	R†		54	*		77	RCL 07		T	
09	GTO 01		32	ABS		55	FS?	00	78	"ΣY †2 "	R03	: f	
10	CF 00		33	*		56	CHS		79	XEQ 02		Ŧ	
11	SF 21		34	*		57	ST+	05	80	RCL 08	R04	: Σx	
12	SF 27		35	FS?	00	58	RCL	01	81	"ΣΧΥ"			
13	$\Sigma REG 04$		36	CHS		59	RCL	03	82	XEQ 02	R05	: Σx ²	
14	"X,†,Y,†,B	": A"	37	ST+	08	60	*		83	RCL 09			
15	PROMPT		38	RCL	02	61	FS?	00	84	"N"	R06	: Σy	
16	LBL 00		39	X †2		62	CHS		85	LBL 02			
17	"PRESS A C	DR C"	40	RCL	03	63	ST+	04	86	"⊢="	R07	: Σy²	
18	PROMPT		41	*		64	RCL	09	87	ARCL X			
19	LBL C		42	FS?	00	65	STO	Ç	88	AVIEW	R08	: Σxy	
20	SF 00		43	CHS		66	GTO	00	89	END			
21	LBL A		44	ST+	07	67	LBL	E			R09	: n	
22	STO 03		45	RCL	02	68	RCL	04					
23	FS? 00		46	RCL	03	69	"ΣX	•				(173 by	tes)

19-2 <u>RECIPROCAL OF SUMS OF RECIPROCALS ("ΣRECIP")</u>: Data can be entered in any order and the intermediate answer can be seen at any time. Example:

$$R = \frac{1}{\Sigma S + \sum_{T}^{1} + \sum_{Z}^{U} + \sum_{W}^{V}}$$

This routine must be rewritten for different equations; the listing below is for this equation. No numeric data registers are used (stack solution).

Instructions: 1. XEQ "ZRECIP" (ASN to E). Note the top row of keys are now defined in the display. 2. To add an 'S', input S, press A; to add a '1/T', input T, press B; to add a 'U/2', input U, press C; to add a 'V/W', input V, ENTER, W, press D. 3. Repeat step 2 until ready for an answer. 4. R/S for intermediate or final results. 5. R/S again (if no printing) to add more data to the intermediate sum; go to step 2. 6. For a new case, go to step 1. 7. After keying a new value, if you forget which key to press, briefly switch to Alpha Mode to see the prompt again, then switch back and press appropriate key.

	A	S	Т	U	∨,†,₩	"ΣRECIP"	Е
01 02 03 04 05 06 07 08 09	LBL "SREC LBL E ADV SF 21 SF 27 0 LBL 01 "STU" PROMPT	IP" 10 1 11 A 12 A 13 C 14 I 15 V 16 X V fW" 17 C 18 I	' R=" 19 ARCL X 20 AVIEW 21 ATO 01 22 ABL A 23 'S" 24 KEQ 00 25 GTO 02 26 ABL B 27	"T" 28 XEQ 00 29 1/X 30 GTO 02 31 LBL C 32 "U" 33 XEQ 00 34 2 35 / 36	GTO 02 37 LBL D 38 X<>Y 39 "V" 40 XEQ 00 41 X<>Y 42 "W" 43 XEQ 00 44 / 45	LBL 02 46 X<>Y 47 X≠0? 48 1/X 49 + 50 1/X GTO 01 LBL 00 "⊢="	ARCL X SF 25 PRA CF 25 END (109 bytes)
19 If is	-3 <u>LAST X</u> number your mach: eliminated	MAY NOT BE 1938A2000) ine has thi d with rout	E SAVED WITH S had a LASTX is bug, follow tine ROM updat	SUMMATIONS: E 'bug': LAST w the Σ+ or Σ ting when ser	Carly HP-41C's X wasn't save C- instruction viced. Source	s (up to abou ed using "Σ+" n with "STO L e: Bill Kolb	t serial or "Σ-". ". The bug (265).
19 Rog	-4 <u>SYNTHE</u> ter of ger Hill (4	TIC SIGMA F the statis 4940) (PPC	TINDER ("Σ?") stics block. S ROM).	: XEQ "Σ?" to See routine 1	find the nur -17. Source:	nber of the f Keith Jarett	irst regis- (4360) &
01 02 03 04 05 06 07	LBL "Σ?" CLA XEQ "C?" RCL N XEQ 14 CLA X<>Y	08 - 09 RTN 10 LBL ' 11 RCL c 12 LBL 1 13 STO N 14 "⊨ ◆	15 X< 16 X< 17 CF 18 CF 14 19 CF 14 20 CF A" 21 FS	> M 22 s > d 23 F 01 24 s 02 25 F 04 26 s 07 27 F ?C 10 28 s	SF 07 29 rS?C 11 30 SF 09 31 rS?C 12 32 SF 10 33 rS?C 13 34 SF 11 35	FS?C 14 3 SF 13 3 FS?C 15 3 SF 14 3 FS?C 16 4 SF 15 X<> d	6 E38 7 / 8 INT 9 DEC 0 END (87 bytes)
19 19 (2 (2)	-5 <u>SYNTHE</u> tion b es the Syn 791). L "RΣ", XE	TIC RECALL y returning thetic Sigm Q "Σ?", 2,	SIGMA (" $\mathbb{R}\Sigma$ ") g Σx to X and na Finder Rou X<>Y, +, RCL	: This routir Σy to Y. Use tine (" Σ ?") a IND X, RCL IN	ne duplicates eful for reso above (19-4). D L, RTN	the HP-67/97 lution of for Source: John	<u>RCLΣ</u> func- ces. It Dearing (18 bytes)
19 19	$-6 \frac{\text{SIGMA}}{\Sigma X, \text{ res}}$ on of other L (the LA	RECALL ("Σ spectively, r calculato STX Registe	<u>R")</u> : This rou from the supprs. The value er). The value	tine replaces mmation regis es in Z and T es in the sum	the values sters; this s are left un mation regis	in Y and X wi imulates the changed; 'n' ters are left	th ΣY and <u>RCL</u> Σ func- is returned unchanged,

and this routine works for any location of the summation registers; 'n' must not be

74

zero. This routine doesn't need a sigma-find subroutine, so it executes in just over a second. Source: Jurgen K. Cappel (6015) (PPC CJ, V8N2P16). 01 LBL " Σ R" 03 STO Y 05 0 07 MEAN 09 ST* L 11 X<> L

$\frac{1}{02} \frac{1}{212} \frac{1}{210} = 00 \text{ bis if } 1 = 000 \text{ bis if } 1 = 00 \text{ bis if } 1 $
19-7 <u>MANUAL SUM OF X- AND Y-VALUES ("XYΣ")</u> : To manually find the sum of x- and y- values using the stack, this routine will help. To use: 1. XEQ "XYΣ" to ini- tialize (to clear the stack). 2. Key in y, ENTER, x; R/S. 3. Repeat step 2 as de- sired. 4. See Σx in X; X<>Y to see Σy. 5. To add more data pairs, X<>Y to return
Σx to X and Σy to Y, then go to step 2. Source: John Dearing (2791).
LBL "XYΣ", CLST, LBL 14, ST+ Z, RDN, ST+ Z, RDN, STOP, GTO 14 (18 bytes)
19-8 <u>BLOCK PLUS ("BP")</u> : This routine will calculate the sum of the values in the block of registers defined by a control number (bbb.eee) in R00. Set or clear Flag 10 as desired, then XEQ "BP". IF FLAG 10 IS SET, the sum of the values in the block of registers (Σx) is returned to the first register of the statistics block, defined by the Σ REG function (default: R11). Also, the sum of the squares of the values (Σx^2) is returned to the next higher register (default: R12), and the number of registers in the block (n) is returned to the register that is 5 greater than the first register of the statistics block (default: R16). X will be cleared. IF FLAG 10 IS CLEAR, the sum of the values in the block is returned to X, and also to R'eee+1'. In both cases, the contents of Registers bbb - eee are unchanged. Source: PPC CJ, V7 N10P7; Richard Nelson (1).
01 LBL "BP" 04 RCL IND 00 07 FS? 10 10 + 13 FC? 10 02 0 05 FS? 10 08 CLX 11 ISG 00 14 STO IND 00 03 LBL 06 06 + 09 FC? 10 12 GTO 06 15 END (30 bytes)
19-9 LITTLE BLOCK PLUS ("B+"): To return the sum of the values in a block of registers to X, key in the bbb.eee control number defining the block, then XEQ "B+". No flags are used, no data registers are altered.
LBL "B+", 0, LBL 06, RCL IND Y, +, ISG Y, GTO 06, RTN (16 bytes)
19-10 <u>SYNTHETIC STATISTICS BLOCK ("ΣB")</u> : INPUT: bbb.eee control number in X, defin- ing the block. OUTPUT: Σx in X, Σx^2 in Y, n in Z, & \overline{x} in T. Uses Alpha Regis- ter. Source: John Dearing (2791).
01 LBL "ΣB" 05 "" 09 ST+ O 13 RCL M 17 RCL O 02 CLA 06 RCL IND X 10 RDN 14 RCL N 18 RCL M 03 LBL 08 07 ST+ M 11 ISG X 15 / 19 END 04 ISG N 08 X t2 12 GTO 08 16 LASTX (36 bytes)
19-11 <u>BLOCK STATISTICS ("BΣ")</u> : With a bbb.eee control number defining a block of y-values in Y, and the number of the first register of a block of x-values in X, XEQ "BΣ" to return the usual Σx, Σx ² , Σy, Σy ² , Σxy, and n to the statistics register block defined by the ΣREG function. With carefully-selected control numbers, the x-and y-values can be in adjacent registers; for example, input 2.00802, ENTER, 1.00002, XEQ "BΣ"; the routine will treat as y-values the contents of R02, R04, R06 & R08; it will treat as x-values the contents of R01, R03, R05 & R07. This routine may be considered to be a matrix routine since it can be used to compute vector dot products.

Given the appropriate input parameters, this routine can be used to compute matrix products (to multiply a row in one matrix by a column in another matrix). Source: John Kennedy (918) & Richard Schwartz (2289) (PPC ROM).

						_								
03	LBL	12	06	Σ+	09	ISG	Х	12	GTO	12			(23	bytes)
02	CLΣ		05	RCL IND Y	80	R†		11	ISG	Y				
01	LBL	"BΣ"	04	RCL IND Y	07	R 🕇		10	STO	Х	13	RTN		

19-12 PERMUTAT	IONS & COMBIN	ATIONS ("PERM"	& "COMB"): "PH	ERM" will compu	te the number
		objects taken	\mathbf{K} at a time	P(n, K) = n! / (n + K)	/[(n-k)!]. in-
put n, ENTER,	K, XEQ "PERM"	• Example: P(/3	(,4) = 26,122,3	320. "COMB" wil	1 compute the
number of comb	inations of 'i	n' objects take	n 'k' at a tin	ne: C(n,k) = n!	/ [k!(n-k)!].
Input n, ENTER	, k, XEQ "COM	B". Example: C((73, 4) = 1,088	430. Source: J	im Davidson
(547) & Bill D	errick (1393)	(PPC J, V5N7P3	.).		
01 LBL "PERM"	06 LBL 14	11 DSE 00	16 X<>Y	21 RCL 00	26 *
02 STO 00	07 RCL 01	12 GTO 14	17 STO 01	22 /	27 DSE 00
03 X<>Y	08 RCL 00	13 RTN	18 1	23 *	28 GTO 13
04 STO 01	09 -	14 L.BL. "COMF		20	20 CIO 13
05 DSE 00	10 *	15 STO 00	$\frac{10}{20} = \frac{10}{100} = \frac{10}{10}$	25 57 01	(51 bytog)
		15 510 00		25 51- 01	(JI Dytes)
19-13 <u>COMPACT</u>	PERMUTATIONS	& COMBINATIONS	("PRM", "COM"	& "P+C"): Thes	e routines are
compact,	fast, and use	e no data regis	ters, but they	v will not work	if either 'n'
or 'k' is grea	ter than 69.1	For each routin	e, input n, EN	NTER, k, then e	xecute the
routine. "PRM"	returns the	permutation to	X, "COM" retur	rns the combina	tion to X, and
"P+C" returns	boththe peri	mutation to X,	the combinatio	on to Y. Exampl	es: P(9,4) =
3024; C(9,4) =	126. Source:	Chris Stevens	(3005) (PPC C3	J, V7N5P44).	
01 LBL "PRM"	07 -	13 X<>Y	01 LBL "P+C	C" 07 FACT	13 ST* Y
02 LBL 12	08 FACT	14 FACT	02 X<>Y	- 08 /	14 END
03 X<>Y	09 /	15 /	03 FACT	09 RCL Y	
04 FACT	10 RTN	16 END	04 RCL Y	10 FACT	
05 LASTX	11 L.BL. "COM"		05 ST	11 1/x	
06 RCL 7	$\frac{11}{12} \times 12$	(33 bytes)		12×12	(27 bytos)
		(35 byces)			(27 bytes)
19-14 STACK PE	RMUTATIONS & (COMBINATIONS ("	PM" & "CM"): F	(n,k) is the n	umber of per-
mutation	s of 'n' objec	cts taken 'k' a	t a time and i	s the number of	f arrangements
or orderings o	f all subsets	of size k sele	cted from a se	et of n objects	C(n,k) is
the number of	combinations of	of 'n' objects	taken 'k' at a	time and is s	imply the num-
ber of subsets	(order doesn	't matter) of s	ize k selected	l from a set of	n objects.
Input for both	is n. ENTER.	k. "PM" saves	7 & T in Y & 7	: "CM" saves Y	in Y. No data
registers are	used. Source:	John Kennedy (918) & Keith J	Jarett (4360) (PPC ROM).
01 LBL "PM"	08 X=Y?	15 X<> L	22 X>Y?	29 LASTX 3	6 END
02 CHS	09 GTO 07	16 RTN	23 X<>Y	30 ST- Y	
03 X<>Y	10 ST* L	17 LBL "CM"	24 ST+ T	31 /	
04 SIGN	11 DSE X	18 RCL Y	25 SIGN	, 32 ST* Y	
05 X<> I.	12 GTO 06	19 RCL V	26×26	33 DSF L	
06 STT V	13 LBI 07	$20 \times 4 \times 2$		34 CTO 09	
		$20 \Lambda \neq 1$			(62 here)
	14 KDN	ZI -	20 X<> T	35 RDN	(63 Dytes)
$19-15 \xrightarrow{\text{EASY POP}}{\Sigma+, \text{SDEV}}$	ULATION STAND	ARD DEVIATION (rned to X and c	σ): After accuses is returned	mulations, exe to Y. To resto	cute 'MEAN, re the statis-
tics registers	, use 'MEAN,	Σ-'. Source: Jo	seph Horn (153	37) (PPC CJ, V7	N4P13).

CHAPTER XX

TIME & DATE

20-1 JULIAN D Day Number the stack is us Julian Day Numb	AY NUMBER (" er of a given sed. Key in t ber is return	JD"): This is n date. The va the date in X ned to X. Sour	a calendar routir lid range is from in mm.ddyyyy form cce: Fred Wheeler	ne which comp n September 1 nat before ex (1150) (PPC	outes the Julian 4, 1752. Only cecuting; the CJ, V7N8P11).							
01 LBL "JD" 02 FRC 03 3 04 LASTX 05 INT 06 1 07 + 08 X>Y?	09 GTO 07 10 + 11 1 E-6 12 ST- T 13 RDN 14 9 15 + 16 LBL 07	17 30.6 18 * 19 INT 20 1 E2 21 R† 22 * 23 ENTER 24 INT	25 ST+Z 33 * 26 - 34 ST 27 1 E2 35 X 28 * 36 4 29 INT 37 / 30 CHS 38 IN 31 36525 39 17 32 LASTX 40 +	41 F+ Z 42 <> L 43 44	+ + INT END (76 bytes)							
20-2 <u>CALENDAR DATE / JULIAN DATE CONVERSIONS ("CJ" & "JC")</u> : "CJ" (Calendar Date to Julian Day Number): This routine computes the Julian Day Number of a given day with a valid range from March 1, year 0. With Flag 10 clear, input Gregorian calen- dar dates; with Flag 10 set, input Julian calendar dates. The input is of the form with the year in Z, the month in Y and the day in X. "JC" (Julian Day number to Cal- endar Date): This routine is the inverse of "CJ"it computes a calendar date, given the Julian Day Number of the date. Input: Julian Day Number in X; output: the year in Z, the month in Y, and the day of the month in X. With Flag 10 clear, the output date is for the Gregorian calendar; with Flag 10 set, the output date is for the Julian calendar. These routines use no numeric data registers. Source: Kennedy (918), Wheeler (1150) & Hill (4940) (PPC ROM).												
01 LBL "CJ" 02 INT 03 X<>Y 04 INT 05 2.85 06 - 07 12 08 / 09 R† 10 INT 11 + 12 X<0? 13 SQRT 14 ENTER 15 INT	<pre>16 ST- Z 17 X<>Y 18 367 19 * 20 INT 21 ST+ Z 22 SIGN 23 FS? 10 24 ISG X 25 % 26 INT 27 .75 28 ST* Z 29 * 30 RDN</pre>	<pre>31 - 32 INT 33 R† 34 - 35 INT 36 1721115 37 + 38 RTN 39 LBL "JC" 40 INT 41 1721119.2 42 - 43 ENTER 44 FS? 10 45 -2</pre>	<pre>46 FS? 10 47 GTO 09 48 36524.25 49 / 50 INT 51 ST+ Y 52 4 53 / 54 INT 55 LBL 09 56 - 57 X<0? 58 SQRT 59 STO Y 60 365.25</pre>	61 ST/ Y 62 X<>Y 63 INT 64 ST* Y 75 RDN 66 INT 67 - 68 .3 69 - 70 STO Y 71 30.6 72 ST/ Y 73 X<>Y 74 INT 75 *	<pre>76 ST- Y 77 ISG Y 78 X<> L 79 -3 80 X t2 81 X<y? 82="" 83="" isg="" t="" x<=""> L 84 - 85 X<>Y 86 INT 87 END (158 bytes)</y?></pre>							

20-3 <u>STOPWATCH ("TM")</u>: As prompted, key in the current time in HH.MMSS format and press R/S. If too fast, slightly decrease the number in Line 06; if too slow, increase the number. NOTE: The 41C/V times with an oscillator, not a crystal; this routine can be fine-tuned for a given calculator under given conditions, but accuracy cannot be guaranteed. Stop the timer with R/S; the time will be in the X or the

Y	Register. Source	: н	P KEY NOTES	, V41	N3P11.										
<u>01</u> 02	LBL "TM" "TIME, HH.MMSS?"		03 PROMPT 04 FIX 4	05 06	CF 21 LBL 00	07 . 08 F	.000057 HMS+	09 10	VIEW 3 GTO 0	X 0	11	R'I (4	'N 2_}	byt	es)
20		 AR	 ("РС"): То і	use:	 1. Set	STZE	004 or c			2 . 1					 3
	as prompted,	in	out starting	g yea	ar, start	ing m	nonth, ar	nd nu	mber o	of n	non	the	; ta	• ว	•
pr	int. For starting	y ma	onth, if 0	is er	ntered, of	r if	no entry	/ is :	made,	the	en	the	e n€	əxt	
pro	ompt is skipped a	and	the entire	yeaı	r is prin	ted.	Valid fo	or an	y year	r. 8	Sou	rce	:: I	Rog	er
H1.	II (4940) (PPC C	, ر	V/N6P14).												
01	LBL "PC"	48	INT	95	"JUN"		142	LAST	Х	18	39	ST-	- 02	2	
02	"START YEAR?"	49	.75	96	SIGN		143	*		19) 0	ISC	; 01	1	
03	PROMPT	50	ST* 00	97	RTN		144	SKPC	HR	19) 1	LBL	1(0	
04	1NT	51	*	98	LBL 09		145	" " 202		19) 2	DSE	2 03	3	
05		52	+	100	"SEP"		140	ACA	2	10	13 24	GTC) 20	J	
07	STO 01	54	 T	100	BTGN		147	9 L- SF 1	0	13	14	ENL	,		
08	.23	55	RCL 00	102	LBL 11		140	GTO 1	ND I.			(36	371	hvt.	ر مع
09	-	56	-	103	"NOV"		150	LBL	14			(50		Jyc	65)
10	STO 00	57	INT	104	SIGN		151	GTO 1	IND Z						
11	CLX	58	3	105	RTN		152	LBL	00						
12	"MONTH?(0-12)"	59	+	106	LBL 02		153	ISG	x					~~	~
13	PROMPT	60	7 E - 5	107	"FEB"		154	ACA		си.	ມບ	111 TU	1. 1. 700	38. 00 E	∠ n co
14	ABS	61	+	108	SIGN		155	ACX		50	nu	10 1	ME I	7	К ЭН 4 Б
15	INT	62	STO 00	109	RCL 01		156	LBL	01	4	7	1	2	3 1 10 1	4 J 1 12
16	ENTER	63	LBL 20	110	0 /0		157	ISG	x	17	14	0 15	16 1	.0 1. 17 11	1 12
17	X=0?	64	SF 12	111	ENTER		158	ACA		20	21	22	23 2	4 2	5 26
18	SIGN	65	CLX	112	INT		159	ACX		27	28	29	30		
19	STO 02	66	ADV	113	X≠Y?		160	LBL	02						
20	12	67	XEQ IND 02	114	RCL 01		161	ISG	Х	,	JU	L	1 9	98:	2
21	STO 03	68	GTO 13	115	4		162	ACA		SU	MO	TU	WE T	ih Fl	R SA
22	X <y?< td=""><td>69 70</td><td>LBL 01</td><td>116</td><td>MOD</td><td></td><td>163</td><td>ACX</td><td>0.0</td><td></td><td></td><td></td><td></td><td>1 2</td><td>23</td></y?<>	69 70	LBL 01	116	MOD		163	ACX	0.0					1 2	23
23	ASIN /	70		110	X≠U?		164	TRC TRT	$\frac{03}{\sqrt{2}}$	4	5	6	7	8 9	9 10
24	/ Տጥታ በበ	72	KIN IBI 03	110	SIGN 2		100	ISG	X	11	12	13	14 1	5 10	6 17
25	X > V ?	72		120	2		167	ACA		18	19	20	21 2	2 2	3 24
20	GTO 10	74	RTN	120	T RTN		168	LBL	04	25	26	27 ;	28 2	29 30	6 31
28	SIGN	75	LBL 05	122	LBL 13		169	ISG	x	1	<u>.</u>			00	2
29	"NO. MONTHS?"	76	"MAY"	123	ACA		170	ACA		CII	MO		נו דיםע		<u>د</u> ۵ ۵
30	PROMPT	77	RTN	124	RCL 01		171	ACX		- 30	2	7	лс і 	5 (к Ја 67
31	INT	78	LBL 07	125	ACX		172	LBL	05	8	9	10	11 1	2 1	3 14
32	STO 03	79	"JUL"	126	2		173	ISG	x	15	16	17	18 1	9 21	0 21
33	LBL 10	80	RTN	127	SKPCHR		174	ACA		22	23	24	25 2	26 21	7 28
34	PRBUF	81	LBL 08	128	ADV		175	ACX		29	30	31			
35	FIX O	82	"AUG"	129	CF 12		176	LBL	06						
36	CF 29	83	RTN	130	24		177	ISG	Х						
37	.012	84	<u>LBL 10</u>	131	R↑		178	ACA							
38	ST+ 02	85	"OCT"	132	-		179	ACX	_		JA	Н	29	30	0
39	31 DOI: 00	86	RTN	133	RCL 00		180	PRBU	F	SU	MO	TUI	NE T	H F	R SA
40	RCL UU	87		134			181	ACA	•	2	7		E	, .	1
41	^ T እነጥ	80		135	MOD		182	DSE	2 00	2	3 10	4	3 12 1	7 1	(0 A 15
42 43	RCI. 00	90	LBL 04	127	T STO 00		103	ECOC GIO	10	7	17	12	16 1 19 7	.0 1°)Q ⊃'	7 IJ 1 22
44	INT	91	"APR"	138	" SU MO	ተጠ ጉ	704 7E" 185	GTO	14	27	24	25	17 C 26 2	.0 E))7 2(1 22 8 90
45	STO 00	92	SIGN	139	"⊢ TH FR	SA"	186	ISG	02	30	31	20 1		21	
46	1	93	RTN	140	PRA		187	GTO	10	- - -	- •				
47	00	94	LBL 06	141	3		188	12							

CALCULATOR TIPS & ROUTINES 77 XX. TIME & DATE

CHAPTER XXI

CARD READER & WAND

21-1 CARD READER CURRENT DRAIN AND WEAR: Keep plugging and unplugging the 82104A Card Reader to a minimum. Keep the card reader in the machine when not in use. Cycle on/of after plugging in. When first plugged in, the card reader may draw excessive current. Turn on, then off, to reduce to normal. Leaving the card reader plugged in as much as possible helps prevent electrostatic charge crashes, contact wear on port block metalized plastic contact surfaces, and helps keep dust and foreign objects out of ports. Source: Philip Karras (3480) (PPC CJ, V7N2P56). _____ 21-2 COMPLETING CARD READS: Preserve batteries by immediately completing pending card reads instead of having a cup of coffee and leaving the HP-41 with "RDY NN OF NN" in the display. Source: Richard Nelson (1) (PPC J, V6N7P4). _____ 21-3 CARD STUCK BECAUSE OF VERY LOW BATTERIES: Normally, when the N cells are getting weak and one tries to read/write a card, the 82104A Card Reader will warn you and then pass the card on through without a read/write. But, if you forget that your batteries are very weak (though still able to run the calculator) and you try to use the card reader, the following may happen: warning is given, and the card starts through, but slows down to a grinding halt. The card is held quite firmly, and it might damage the mechanism to force it through or try to pull it back out. The calculator stays on, displaying "LOW BAT", and cannot be turned off! Suggested procedure to correct: 1: Unplug the card reader. 2: Turn the calculator OFF. 3: Plug in a new set of cells. 4: Plug in the card reader--card will complete its pass. 5: Turn calculator ON and continue with another try at read/write. Source: Fred Wheeler

(1150) (PPC CJ, V7N3P27).

21-4 <u>BEHAVIOR OF "RSUB" & "MRG"</u>: The card reader functions "RSUB" and "MRG" work differently than the manual states: RSUB will replace the last program only if it does not have an END; otherwise it will be placed after the last END. MRG will show "MRG ERR" if the calculator is not placed at the last program, but will still read the card and place it after the last END. Source: Dennis Green (4213) (PPC CJ, V7N3P27).

21-5 WHAT TO DO IF A CARD WON'T READ: Try breathing on its magnetic (dark) surface

first. Source: John Burkhart (4382). Try rubbing it on your shirt. Source: Henry Casson (5047). Try cleaning it with a touch of rubbing alcohol and a soft cloth. Also be aware that if magnetic cards touch or come near anything that is magnetized, they will be ruined. Source: Bill Kolb (265).

21-6 ENTERING DATA AS PART OF THE PROGRAM: In many program usage situations, it is confusing to have both Program and Data cards. Decreased magnetic card usage and simpler user instructions often result if the 'data' is entered as part of the program. Flag 11 (auto execution) can be set when the program is recorded, and the first part of the program can automatically execute to store the data into the registers. This method of combining data and program greatly simplifies program usage. Source: HP KEY NOTES, V7N2P7.

21-7 STATUS CARD AS FIRST CARD OF A PROGRAM SET: A Status card can be used to automatically set the Size (gives "SZE ERR" message if there's not enough room), status of Flags 00 - 43, ΣREG location, and stack and Alpha Register contents, all on Track 1. [Subsequent track(s) of status card(s) can contain key assignments.] An appropriate alpha message (6 characters or fewer) can be placed in the X Register (as "NEXT"), to be seen when the card is read; a longer (up to 24-character) message could be put in the Alpha Register, and "ALPHA" put in the X Register as a prompt to press the ALPHA key to see the message. Source: HP KEY NOTES, V4N2P7.

21-8 CLEAR ASSIGNMENTS CARD: To make: Master Clear; make, then delete one key as-

signment; then XEQ "WSTS", reading in one track of the card twice to record only track 2 (rerecording track 1 so that only track 2 is retained). To use: Read the track; backarrow (press correction key) to clear the "RDY 01 OF 02" prompt; then turn the calculator OFF, then ON, to regain the cleared status registers. Source: Roger Hill (4940) (PPC CJ, V7N8P22). See 1-26.

21-9 HANG-UP WITH "SIZE", "DEL" OR "GTO.": When a card reader is plugged in, if you

execute SIZE, DEL or GTO., key 2 digits and then try to backarrow twice to remove both digits, the 41C/V may hang up. Pressing any key except the backarrow key will recover, with the loss of the function prompt. This is a bug of the card reader, not the calculator, as can be verified by removing the card reader and trying again. Source: Bill Kolb (265).

21-10 <u>'LAST PROGRAM' IN THE CARD READER CONTEXT</u>: The last program, in the card reader context, consists of whatever follows the last END in memory. If the final program terminates with an END, then it is not the last program in this sense. The 'last program' is then the section containing "00 REG nn, .END. REG nn". Hence, for example, if the final keyed program contains an END, you can't merge a program on to it. Note that the card reader does not record END statements; this is useful in light of the above. Source: Bill Wickes (3735).

21-11 <u>READING PART OF A "WALL" SET OF CARDS</u>: Contrary to the manual, a "WALL" set of cards does not have to be entered in its entirety. You may stop the read process at any time by momentarily removing the batteries, replacing the batteries, and then pressing the backarrow (correction) key. Use this technique to reclaim key assignments, and programs, provided there is ample program space available to overlay the desired program. Source: Bill Kolb (265).

21-12 <u>RESUMING PROGRAM EXECUTION AFTER A "WALL"</u>: "WALL" records program pointer position and RTN addresses, enabling interruption and resumption of running programs. Source: Bill Wickes (3735).

21-13 <u>KEY ASSIGNMENTS CARD REMINDER</u>: When recording a special set of key assignments, give the card a name that will help you remember what is on it. Key this name (or the key assignment mneumonics) into the Alpha Register prior to recording the status. If ALPHA Mode is on when the cards are read, the name will appear in the display. If not, simply switch to ALPHA to read the names. A short name can be ASTO'd into X as a similar reminder. Source: Bill Kolb (265).

21-14 <u>KEYING FUNCTIONS OF MISSING PERIPHERALS</u>: If the printer, wand or card reader isn't connected, the built-in functions can still be called by simply spelling out the function name. For example, to obtain "PRX" in a program when a printer is not plugged in, key in 'XEQ, ALPHA, P, R, X, ALPHA'. When executed in the program, the calculator will search for a user program named "PRX"; if none is found, it will execute PRX on the printer, if the printer is plugged in and is on. Source: Bill Kolb (265).

21-15 TO PUT "VER" OR "WPRV" INTO A PROGRAM: 1. With the card reader in place, ASN VER or WPRV to a key. 2. To insert them into a program, turn the HP-41 OFF, remove the card reader, turn ON, set PRGM Mode, press the assigned key. The line will read "XROM 30,05" or "XROM 30,09", respectively. 3. Turn the HP-41 OFF, reattach the card reader, turn ON, set PRGM Mode. The line will now read VER or WPRV and will execute as such. Synthetic Method: The same result can be reached without removing the card reader, by creating these functions synthetically: "VER" = decimal 167, 133 (hex A7 85); "WPRV" = decimal 167, 137 (hex A7 89).

Follow WDTAX in a program with VER to check whether the writing was successful. The example below loads each register from R00 to R16 with its own address, then executes "WDTAX". As prompted, insert both tracks of a blank card to record this data; when all data is written, the prompt will automatically change to "CARD" (for VER); read the same tracks to verify that WDTAX executed properly. If it did (you see "TYPE D, TR 01", etc), press R/S twice (or backarrow, R/S) to continue program execution. If it did not (the VER test fails, and you see "CARD ERR"), press backarrow to clear the prompt, then 'SHIFT, BST' twice to the WDTAX instruction, and then R/S to try again. Source: Cary Reinstein (2046) and John Herzfeld (5428).

01	LBL "X"	05	LBL 14	09	ISG Y	13	VER			17	CLD
02	.016	06	STO IND Y	10	GTO 14	14	"MORE	STEPS	HERE"	18	END
03	ENTER	07	ISG X	11	LASTX	15	AVIEW				
04	INT	08	LBL 00	12	WDTAX	16	PSE				(48 bytes)

21-16 INTERFERENCE AND THE WAND: If you have problems using your wand and especially if you notice that it seems to work better on some days than on others, you may be experiencing some form of interference from the AC power line. If you hold the wand below the on/off switch, your body may couple AC powerline 60 Hz 'hum' into the wand. This is possible because of the very high gain circuits that must process the very low level optical signal due to the reflected light from the paper. If strong AC signals get coupled into the wand, it will cause a nonread condition and you won't get any response from the machine. This may happen if the 41C/V is close to a transformer, electrical wiring, fluorescent lights, etc. The printer acts as an antenna when it is plugged in and may increase the interference because it and its cable add to the problem. The following tips will help if you suspect the wand is being affected by interference: a. Hold the wand above the bottom of the on/off switch. Most users do this naturally. b. If electrical interference is suspected, operate the wand without other system peripherals connected, especially those that may plug into the AC line, or move the system to another location. NOTES: 1. If there's a question of proper performance, test by using the Paper Keyboard instructions: scan several times. Out of 25 scans, you should get at least 23 'good' responses. Poor quality barcode will increase the sensitivity to interference. 2. Move to another location if interference is suspected. Working on a light table or display case may be an interference situation because of the fluorescent lights. Moving the calculator just two inches may be a big help if you are very close to the source. 3. A quick test for 'good reads' is to scan the "+" instruction, with the Y, Z & T Registers loaded with '1' and '0' in X. Scan 25 times. The display will show the number of good reads. Interference can cause the good reads to drop from 24 or 25 to 12-16. Interference should seldom be a problem if you know how to recognize it and isolate the system from it. Source: Richard Nelson (1) (PPC CJ members letter, June 1980).

21-17 WAND TIPS: Photocopies of photocopies of barcodes often won't read: try rotat-

ing the first copy 90 or 180° before copying. Always use a sheet protector. non-glare preferred, so that photocopies won't smear, and to keep copies clean. Do not tightly coil the wand cable for handling or storage, in order to prevent 'kinky' cable from getting in the way. Barcodes printed on light-weight paper may 'bleed through' and be seen by the wand, so place a black sheet behind the printed sheet. If the wand is used interactively with the HP-41, it might be a good programming practice to turn the calculator OFF when the program is finished; this will save power, and since the wand will turn the HP-41 ON again, there is little inconvenience. Include <u>data checking</u> in your program if you use WNDSCN to read simple 'positioned' data. This is a good practice because the wand does no checking of the bars it reads using WNDSCN. Even a simple out of range check is better than none. Use two tone 9's to prompt to scan a new set of bars; use two tone 89's if in a hurry. Only WNDTST uses 'HP-41' Code; the other five functions, WNDDTA, WNDDTX, WNDLNK, WNDSUB and WNDSCN, are microcode functions and cannot be listed. Source: Richard Nelson (1) (PPC CJ, V7N5P22).

CHAPTER XXII

PRINTER

22-1 PRINT PROMPT & INPUT: VIEW and AVIEW cause the display to be printed if the printer is plugged in and turned on (Flags 21 & 55 set). Tip--instead of using PROMPT to stop for an input after an alpha message, use AVIEW, STOP: the message will be printed. Follow with VIEW X to print the input right justified, or follow with CLA, ARCL X, AVIEW to print the input left justified. Source: HP KEY NOTES, V3 N4P4. See 4-18, 6-14. _____ 22-2 PAPER OUT ("PO"): When desired after printing, XEQ "PO" to advance paper to the point where it can be torn off. Source: PPC ROM. LBL "PO", ADV, ADV, ADV, ADV, ADV, RTN (12 bytes) _____ 22-3 PRINTER TIPS: Register 06: R06 is the register to use when entering a function using X more than once, when using PRPLOT to print graphs. NORMal Mode: Numbers and alpha strings are printed as keyed in, and function names are printed as executed from keyboard; all print functions print. (Example of use: checkbook balancing). PROMPT: Prints the Alpha Register in NORM and TRACE Modes. BATTERY PACK: CAUTION: the battery pack must be in the printer while the AC adapter/ recharger is connected. The printer may be damaged otherwise. CLASSIFICATION OF PRINTER FUNCTIONS: Plotting: Stack & Alpha: Buffer: Data: Program: Status: Graphics: PRX & VIEW PRREG PRP PRFLAGS "PRPLOT" ACA ACCOL PRA & AVIEW PRREGX LIST PRKEYS "PRPLOTP" ACX SKPCOL PRSTK PRΣ CAT 1+ "PRAXIS" ACCHR SKPCHR ASKCHR REGPLOT BLDSPEC (tin Trace Mode) STKPLOT PRBUF ACSPEC ADV PROGRAMMING & THE PRINTER: In TRACE or NORM, each line of a program is printed as you key it in. Executing a program while in TRACE Mode prints what's going on in the program, but uses a lot of paper. EXECUTING A PROGRAM WITH NO PRINT FUNCTIONS: Turn the printer off to have the program execute slightly faster, as the HP-41 always interacts with the printer during program execution if the printer is on, slowing program execution.

FLAG 55: Always set if the printer is plugged in, whether it's on or off. FLAG 21: If clear, supresses printing, even if the printer is on.

<u>PRINT WIDTH</u>: Maximum print width = 24 characters = 168 columns. ACCOL allows you to print special graphics up to 43 columns wide; SKPCOL skips X columns, up to 167.

PRINT & ADVANCE: Pressing PRINT while the 41C/V is in PRGM Mode inserts a PRX into the program; or, if also in Alpha Mode, it inserts PRA instead. Pressing PAPER AD-VANCE in PRGM Mode inserts an ADV into the program (unless the PAPER ADVANCE key is

held down longer than a second, in which case ADV is not inserted into the program, but rather the paper is immediately advanced).

PRINTING CATALOGS: Set the print mode switch to TRACE before executing CAT to print the specified catalog. If CAT 1 is printed, the number of bytes each program occupies in program memory will also be printed.

CLEARING BUFFER WITHOUT PRINTING: To clear the printer buffer without printing, turn the printer off, then on again.

PROGRAMS CONTAINING ACCUMULATION FUNCTIONS should not be executed in TRACE or NORM, as these modes use the buffer registers, and hence will cause the buffer to print prematurely.

PRINTER PLOTTING: 1. The name of the program prompted for by "NAME?" must be 6 or fewer characters. 2. When prompted by "X INC?", a positive response indicates the X-increment, while a negative response indicates the number of X-increments. 3. When prompted by "AXIS?", any Alpha input yields a graph with no axis printed. 4. If Register 03 contains an output generated by BLDSPEC, that character will be the plot character; otherwise, the small x is used.

PRINT NUMBERS WITHOUT THE TRIPLE ASTERISK: Use VIEW X rather than PRX.

MACHINE STATUS WITH "PRFLAGS": The first five printed lines give the SIZE, the first register of the statistics block, the trigonometric mode, and the display mode. R/S at this point to prevent printing of the flags.

Source: '82143A Printer Owner's Handbook', C Copyright (November 1979) Hewlett-Packard Company. Reproduced with permission.

22-4 PRINT LASTX REGISTER ("PRL"): This routine prints the contents of the L Register. Use in conjunction with the printer function "PRSTK" for stack analysis.

LBL "PRL", "L= ", ARCL L, PRA, RTN

(16 bytes)

22-5 <u>YELLOW FILTER FOR PHOTOCOPYING</u>: Photocopies of printer tape may be improved with the use of a yellow filter. Try a yellow transparent report cover. Source:

Frits Kuyt (236) (PPC CJ, V7N3P5).

22-6 <u>SAVE PAPER WHILE PRINTING BYTES</u>: When finding the number of bytes in a program using the printer and CAT 1, save paper by cataloging in MAN Mode (SST if neccessary) to the step before the END of the program whose byte count is desired, then stop, switch printer to TRACE Mode, and SST to print the bytes in that program.

22-7 <u>PRINT BUFFER</u>: The print buffer is a portion of memory in the printer which holds accumulated <u>characters</u> and <u>columns</u> of dots until the command to print is given. It has a certain number of 'positions' or 'registers', and when they are all filled, the contents are automatically printed (or the first line is automatically printed, if there is more than one line). Each character accumulated into the buffer takes up one position, whether it was generated by ACX, ACA, or ACCHR, and each special dot column takes up one position, whether it was generated by ACCOL or ACSPEC. The SKPCHR command also occupies one position, regardless of the number of characters skipped. SKPCOL uses only one position if the number of columns skipped is a multiple of 7 or is less than 7, and two positions otherwise. The maximum number of characters or columns that can be accumulated under any circumstances is 43, but the buffer often fills up before that number is reached. Why?

Each 'mode change' also takes up one print-buffer position, where a mode is identified by (a) whether the printing is single or double width (determined by Flag 12 at the time the character or column or skip is accumulated), (b) whether a character or a dot column is to be printed, and (c) whether all normally upper-case letters are to be printed as upper or lower case (determined by Flag 13 at the time the charac-

When any operation involving an input to the print buffer is performed, the printer looks to see if the new mode (as defined by the new operation along with the calculator's Flags 12 and 13) agree with the old mode (as defined by the last setting). If the new mode agrees with the old mode, then the characters or columns get accumulated with no additional buffer positions taken to indicate the mode. If the modes do not agree, one buffer position is used for a command to shift to the new mode, and then the characters or columns are accumulated. The operations ACA, ACX, ACCHR, and SKPCHR define <u>character mode</u>, while ACCOL, ACSPEC, and SKPCOL define <u>column</u> <u>mode</u>. Other printing operations such as PRX, PRA, program and flag listings, etc., define character mode in that they leave the printer in that mode afterward (they also cause the buffer to be printed out first, if anything has been accumulated into it since the last time it was printed out by other than an overflow). Setting and clearing Flags 12 and 13 do not have any effect on the print buffer unless and until one of the above operations is executed, at which time the modes are compared as described above.

Note that it only takes one position to go from any mode to any other (e.g., from single-width character upper-case to double-width character lower-case). On the other hand, this position may be used even when the mode change turns out to be irrelevant, such as when executing ACA with nothing in the Alpha Register, or changing to lower case mode when the characters accumulated are all non-alphabetic. Operations which only print out what is already in the buffer, namely PRBUF and ADV, do not make use of Flags 12 or 13, either in the printing or in the setting of the printer mode afterward.

As an example of use of the knowledge of print-buffer mode transitions, suppose you want to insert a space between two special characters created using BLDSPEC. Using 7, SKPCOL takes up only one buffer position, since the printer was already in column mode after the first character was ACSPEC'd. But using either 1, SKPCHR; 32, ACCHR; or ACA with a space in Alpha, takes three positions because of the transitions between column and character mode that occur before and after the space.

As one more example of print-buffer usage, consider the printing of lower case. One can save many bytes of program (not to mention execution time) by entering lowercase characters directly in text lines and printing everything with Flag 13 clear, rather than by using ordinary upper-case characters and accumulating them with Flag 13 set to make them lower case. Not only does the former method save program bytes, but it saves print-buffer positions as well. Each time Flag 13 is changed and more characters are accumulated, an extra buffer position is used to make the transition, while no such transition is needed or made if the characters can be accumulated without any flag changes. Using ACCHR with the ASCII (ACCHR) codes for lower case (97-122) also saves on buffer space, but usually not on program bytes.

Source: Roger Hill (4940) (PPC CJ, V7N6P19-20).

22-8 HIGH-RESOLUTION HISTOGRAM ("HG"): Have YMIN in R06, YMAX-YMIN in R07, and plot

value in X, then XEQ "HG". The example below is for YMIN = 0, YMAX-YMIN = 100, and x-values of 50, 75, 90, 100, 25, 10, 5, and then 1. Source: Ronald Gordon (3449) (PPC CJ, V7N9P17).

	01	LBL "HG"	09	+	17	GTO 06	25	31	33 *
	02	RCL 06	10	INT	18	LBL 05	26	LBL 01	34 .5
	03	-	11	X=0?	19	-	27	ACCHR	35 +
	04	RCL 07	12	RTN	20	7	28	DSE Y	36 7
IIII	05	1	13	7	21	1	29	GTO 01	37 MOD
1	06	167	14	X<=Y?	22	INT	30	LBL 02	38 INT
a	07	*	15	GTO 05	23	X<=0?	31	LASTX	
	08	1	16	CLX	24	GTO 02	32	7	[continued]

CALCULATOR	TIP	5&	ROUTINES			85					XXII.	PRINTER
39 7 40 +	41 42	<u>LBL</u> 127	06	43 44	LBL 03 ACCOL	45 46	DSE GTO	Y 03	47 48	PRBUF END	(71	bytes)

22-9 <u>SYNTHETIC FUNCTION "eGØBEEP" FOR PRINTER FUNCTIONS</u>: "eGØBEEP" is a special synthetic function that can be used to enter printer functions into programs in fewer keystrokes, whether the printer is plugged in or not. It can also be used to execute printer functions in normal or USER Modes.

eGØBEEP #	XROM	FUNCTION	Assign "eGØBEEP" to a key using a Key Assignments
65 66 67 68	29,01 29,02 29,03 29,04	ACA ACCHR ACCOL ACSPEC	Program (such as "KA" in 'Synthetic Programming on the HP-41C', pp 44-47, 86-87, by William Wickes). The input to the program is 0, ENTER, 167, ENTER, 'nn' (where nn is the keycode of the desired key).
69	29,05	ACX	When programming with or without a printer plugged
70	29,06	BLDSPEC	in, when you want a printer function placed into
71	29,07	LIST	the program, just execute "eGØBEEP" by pressing its
72	29,08	PRA	assigned key in USER Mode, then supply it with a 2-
73	29,09	"PRAXIS"	digit number from 65 to 88, corresponding to the
74	29,10	PRBUF	printer functions shown at left. CAUTION!! '89'
75	29,11	PRFLAGS	crashes the HP-41 in Run Mode, and briefly blanks
76	29,12	PRKEYS	the display in PRGM Mode! In PRGM Mode the code
77	29,13	PRP	goes in the line as the normal mnemonic if the
78	29,14	"PRPLOT"	printer is plugged in, but as its XROM equivalent
79	29,15	"PRPLOTP"	if it is not. When a printer is subsequently plug-
80	29,16	PRREG	ged in, the function appears and executes properly.
81	29,17	PRREGX	When eGØBEEP is executed when not in PRGM Mode, and
82	29,18	PRΣ	then one of the valid $eGØBEEP$ numbers (65 - 88) is
83	29,19	PRSTK	supplied the corresponding printer function is ex-
84	29,20	PRX	ecuted There are TWO EXCEPTIONS: 77 (for PRP) does
85	29,21	REGPLOT	not work: and 71 (LIST) works differently than nor-
86	29,22	SKPCHR	mal: rather than prompt for the number of lines to
87	29,23	SKPCOL	list, it simply begins printing program steps at
88	29,24	STKPLOT	the current location of the pointer in memory; fur-

thermore, it will stop printing after 71 lines (or after printing an END). If reexecuted, eGØBEEP will cause the printer to advance one line, then print another 71 lines of program.

Source: Robert Edelen (339) (PPC CJ, V7N3P16).

22-10 STANDARD CHARACTER SET ("CE"): This routine will print the 82143A Printer standard character set in a compact matrix, with characters indexed by their "ACCHR" number. To use, just XEQ "CE". Source: Ronald Gordon (3449) (PPC CJ, V7N1 P23) & HP KEY NOTES, V4N2P11.

								-	-HI - 4107 VA
01	LBL "CE"	15	"0 1 2 3 4 "	29	1	43	ISG Y	ST	ANDARD CHARACTER SET
02	ADV	16	" - 56789"	30	INT	44	GTO 01		
03	FIX O	17	ACA	31	ARCL X	45	GTO 00		0123456789
04	CF 29	18	3	32	ACA	46	LBL 02	0	♦×≅←αβΓ↓∆σ
05	SF 25	19	SKPCOL	33	RDN	47	PRBUF	1	◆λμ∡≁∳θΩδà
06	SF 12	20	.127	34	X<>Y	48	FIX 2	2	áÄäÖöÜÜÆœ≠
07	CF 13	21	LBL 00	35	SF 12	49	SF 29	3	£% !"#\$%&'
08	" *HP-41C/V*"	22	CLA	36		50	CF 12	4	()*+,/01
09	PRA	23	ADV	37	ACA	51	CLX	5	23456789:;
10	CF 12	24	CF 12	38	I.BI. 01	52	END	6	<=>?@ABCDE
11	" STANDARD CH"	25	009	39	ACCHR	52		7	FGHIJKLMNO
12	"LARACTER SET"	26	X<>Y	40	FC? 25			8	PQRSTUVWXY
13	PRA	27	STO Z	41	GTO 02			9	Z[\]↑_'abc
14	ADV	28	10	42	ISG X	(14	49 bytes)	10	defshijklm
								11	noparstuvw
								- 12	メメエルトラント

22-11 DATA NAMES ("DN"): When documenting programs, a listing of the names of data

(like 'pointer') in data registers, rather than specific numbers, which may vary, is often useful. Using the printer to generate this list would be handy, especially as it will print many characters not found on a standard typewriter. The routine below makes this convenient. It turns Alpha Mode on and prompts for data name with the register number: input alpha characters only, then R/S. Source: John Dearing (PPC CJ, V8N2P17).

•								EXAMPLES OF USE:
01	LBL "DN"	11	"LAST REG. NO.?"	21	" ⊢ 0 "	31	$X \le Y?$	
02	FIX O	12	PROMPT	22	RDN	32	GTO 01	PAR- POINTER
03	CF 29	13	X <y?< td=""><td>23</td><td>ARCL X</td><td>33</td><td>FIX 2</td><td>KOO- TOTHIEK</td></y?<>	23	ARCL X	33	FIX 2	KOO- TOTHIEK
04	ADV	14	GTO 00	24	"⊢= "	34	SF 29	PAG= 2 DISCOUNT
05	LBL 00	15	X<>Y	25	ACA	35	AOFF	R10= 1.20945
06	"1 ST REG. NO.?"	16	AON	26	PROMPT	36	END	
07	PROMPT	17	LBL 01	27	ACA			
80	ENTER	18	"R"	28	PRBUF			R 99= a
09	X<0?	19	10	29	1			RIAA= h
10	GTO 00	20	X>Y?	30	+	(89	9 bytes)	R101= c

22-12 TEXT ("TX"): To print text, XEQ "TX". When "TEXT?" appears, key in up to 24

characters. After the 24th character, hear a tone: press backarrow key to clear the last character(s) if in the middle of a syllable, and key in a hyphen, if desired. Then press R/S. To terminate the text write operation, key in a space (" ") and R/S. You can change step 12 (GTO 00) to GTO "TX", and delete step 05 (LBL 00). NOTE: This same text writing can be done without a routine: just turn on Alpha Mode and key in the line of text as above; when the line is ready to be printed, press the PRINT key on the printer (= PRA) to print the line; key in the next line and repeat. Source: HP KEY NOTES, V4N3P10.

01	LBL "TX"	04	AON	07	PROMPT	10	PRBUF	13	AOFF		
02		05	LBL 00	80	ACA	11	X≠Y?	14	CLX		
03	ASTO X	06	"TEXT?"	09	ASTO Y	12	GTO 00	15	END	(33	bytes)

22-13 DIVIDING LINE ("LINE"): This routine uses the hyphen (minus sign) to form a line; with Flag 12 set or clear, it will print a horizontal line. Other sym-

bols can be substituted.

LBL "LINE", "-----", FC? 12, "-----", PRA, RTN (40 bytes)

22-14 PRINTOUT DIVIDERS ("DIV" & "DV"): These routines use no numeric data registers. Execute either; when "ACCHR NO.?" appears, input the ACCHR character number (1-127) (see Printer Handbook, page 37), then R/S. A full line of characters will be printed, whether Flag 12 is set or clear. If R/S is pressed without keying in a number, a full line of dashes (character # 45) will be printed by default. "DIV" uses 1 numeric label and 40 bytes; "DV" uses the Alpha Register but no numeric labels: it is 12 more bytes than "DIV" but much faster. To convert either routine to a subroutinable version with no prompts and no default value, delete "ACCHR NO.?", 45, PROMPT. Have any ACCHR character number in X, then execute the routine. Source: John Dearing (2791) (PPC CJ, V8N2P16).

01	LBL "DIV"	10	ACCHR	04	ENTER	13	ASTO X	*****
02	"ACCHR NO.?"	11	DSE Y	05	PROMPT	14	ARCL X	
03	45	12	GTO 14	06	BLDSPEC	15	FC? 12	
04	PROMPT	13	PRBUF	07	CLA	16	ARCL X	*****
05	12	14	END	80	ARCL X	17	FC? 12	*****
06	FC? 12			09	ARCL X	18	ARCL X	
07	ST+ X	01	LBL "DV"	10	ARCL X	19	PRA	* * * * * * * * * * * * *
80	X<>Y	02	"ACCHR NO.?"	11	ASTO X	20	CLX	XXXXXXXXXXXXXX
09	LBL 14	03	45	12	ARCL X	21	END	*****

22-15 <u>PRINTER COLUMN ALIGNMENT ("AN" & "P2")</u>: This routine prints one or two columns of numbers with aligned decimal points, by determining the number of print positions to skip before printing each number. After keying in the routine, you may wish to assign "AN" to $11(\Sigma_{+})$ and "P2" to 15 (LN). Instructions:

1. Press <u>A</u> to accumulate the number in X into the print buffer, with Flag 29 clear (no digit grouping) and FIX 2 display; use with numbers of up to <u>7</u> digits to the left of the decimal. If the buffer is initially empty, the number (plus spaces for missing leading digits) will be left-justified when the buffer is printed; a single space is also put into the buffer after the number.

2. Optional: to add an Alpha string of up to 12 characters into the buffer, so the number (accumulated in step 1) and the Alpha string will print on the same line, switch to ALPHA Mode, key in string, turn ALPHA off, then press B.

3. Press C to print the buffer. See examples 1 & 2.

4. Repeat steps 1-3 as often as desired; successive numbers printed will be aligned on their decimal points.

5. Press D at any time to clear the Alpha Register.

6. To print two numbers on the same line, key in the first number, ENTER, second number; press \underline{E} to execute "P2". See example 3.

7. To clear the buffer without printing, turn the printer off, then on again.

8. Change steps 04 (FIX 2) and 14 (6) as desired. Example 4 was created with a '3' in step 14. In general, the number in step 14 should be one less than the number of digits needed to the left of the decimal.

Ex.	1:	123.45		Ex.	3:	-9999.99	ABCDEFGHIJKLMNO
		-1234567.12				5.00	SERVICE CHARGES
Ex.	2:	198.00	KILOMETERS			400.00	RENT

			А		В		С		D		E	
		ACC N	UMULATE UMBER	AC	CUMULATE ALPHA		PRINT BUFFER		CLEAR ALPHA	PR: NI	INT TWO JMBERS	
01	LBL "AN"	08	INT	15	-	22	CLX	29	RTN	36	Х<>У	
02	LBL A	09	X=0?	16	SKPCHR	23	RTN	30	LBL D	37	XEQ A	
03	SF 27	10	ISG X	17	X<>Y	24	LBL B	31	CLA	38	RDN	
04	FIX 2	11	ABS	18	ACX	25	ACA	32	RTN	39	RDN	
05	CF 29	12	LOG	19		26	RTN	33	LBL "P2"	40	XEQ A	
06	CLA	13	INT	20	ACA	27	LBL C	34	LBL E	41	PRBUF	
07	ENTER	14	6	21	SF 29	28	PRBUF	35	CF 12	42	END	(76

Source: Richard Nelson (1) (PPC J, V6N5P31).

22-16 PRINT ALPHA LEFT, X RIGHT ("AX"): To print the contents of the Alpha register left-justified and the contents of the X Register right-justified on the same line, key in control number, S, then XEQ "AX", where the control number = S = the number of characters in Alpha + DSP (the number of decimal places displayed in FIX Mode). For instance, with "NO. 01" in Alpha, 256.98 in X, and FIX 2 Mode, key in '8' and XEQ "AX" to get the first line of the example, below left. ("NO. 01" is 6 characters; DSP = 2; hence S = 6+2 = 8.) TIP: to change "NO. 01" to "NO. 02" in the Alpha Register, rather than keying in "NO. 02", you can just press SHIFT, APPEND, BACKARROW, SHIFT, 2.

NO. 01	256.98 (S=	8)	APPLES	99	(S=5)
NO. 02	58,966.01 (")	ORANGES	234	(S=6)
NO. 03	- 5,987,63 (")	PINEAPPLES	5	(X = 9)

From S, you may subtract 1 if the decimal is not to be printed (FIX 0, CF 29). If

you want the right (numeric) column moved to the left, add the number of spaces you want on the right to S. In the example below (in FIX 2, SF 29 Mode), line 1 has a control number of S+10 = 5+10 = 15 [where S = 5 = no. of Alpha char. (5) + DSP (0)]; line 2 has a control no. of 5+5 = 10; and line 3, a control no. of 5+0 = 5.

LARGE	13.			(S	=	15)
SMALL		27.		(S	=	10)
TOTAL			42.	(S	=	5)

If you want to use the same control number where the Alpha strings will be of different length, key in spaces after all Alpha strings but the longest, to make them as long as the longest. For "APPLES", "ORANGES", & "PINEAPPLES", for example, key in 4 spaces after "APPLES" and 3 spaces after "ORANGES" to make them the same length as "PINEAPPLES". NOTE: the LOG function rounds up the logarithms of some large numbers; for these unusual cases, the number will unavoidably be printed displaced one space to the left. Source: William Cheeseman (4381) (PPC CJ, V7N5P8, V7N9P17).

01	LBL "AX"	05	RCL Y	09	INT	13	/	17	ACA	21	PRBUF		
02	21	06	ABS	10	FC? 29	14	INT	18	SKPCHR	22	END		
03	X<>Y	07	X≠0?	11	GTO 00	15	LBL 00	19	RDN				
04	-	80	LOG	12	.75	16	_	20	ACX			(39	bytes)

22-17 PRINT FUNCTION VALUES ("FN"): This routine prints a table of x- and y-values for any function which returns f(x) for x. The function may then be graphed with PRPLOT without change. To use: 1. Key in your function as a program, with an Alpha label of 6 or fewer characters. Upon entry of your function by either this routine or by PRPLOT, the value in the X Register will also be available in R06. 2. XEQ "FN"; input as prompted: NAME (of your function), Xmin, Xmax, and Xinc (x increment--positive values only). 3. A table of x- and y-values will be printed, with aligned decimal points. 4. If you wish, XEQ "PRPLOT"; use the table just generated to help you select maximum and minimum values of x and y for your plot.

This routine allows printing numbers in two equal columns, with up to nine digits in each number. As it is written, two of these digits will be after the decimal (FIX 2) and up to 7 before it. See first example, below right ("TEST"). If a number is negative, the '-' sign will be printed; if positive, no sign will be printed; the numbers will still line up on the decimals. You can change this format: in general, Step 57 (presently a '6') should be one less than the number of digits to the left of the decimal. Change Step 02 (FIX 2) as needed. The second example below right ("TRIAL") was printed after changing Step 57 to '4' and Step 02 to 'FIX 4'. Source: John Dearing (2791).

Sample Run:		Sample Function:		More Examples:					
Values of s	SAMPLE Y	01+LBL "SAMPLE" 02 SF 25 03 X†2		VALUES OF TEST					
-2.00 -1.00 0.00	2.50 1.50 0.00	04 LHSTX 05 X12 06 2 07 /		1234567.12 -1234567.12					
1.00	-0.50	08 -		VALUES OF TRIAL					
2.00	1.50	09 RCL 06		X	Y				
3.00 4.00	4.17 7.75	10 1/X 11 - 12 END		12345.1234	-12345.1234				
01 LBL "FN"	06 AOFF	11 STO 06	16 GTO 14	21	" VALUES OF "				
02 FIX 2	07 ASTO 11	12 "X MAX ?"	17 "X INC	22 ?"	ARCL 11				
03 AON	08 LBL 14	13 PROMPT	18 PROMPT	. 23	CF 12				
04 "NAME ?"	09 "X MIN ?"	14 STO 09	19 STO 10	24	PRA				
05 PROMPT	10 PROMPT	15 X <y?< td=""><td>20 ADV</td><td></td><td>[continued]</td></y?<>	20 ADV		[continued]				

89

25	" X	Y"	34	STO 00	43	RCL 06	52	X=0?	61	ACX	
26	SF 12		35	RCL 06	44	X<=Y?	53	ISG X	62		
27	PRA		36	XEQ 12	45	GTO 13	54	ABS	63	ACA	
28	"	"	37	RCL 00	46	RTN	55	LOG	64	SF 29	
29	PRA		38	XEQ 12	47	LBL 12	56	INT	65	END	
30	CF 12		39	PRBUF	48	CF 29	57	6			
31	LBL 13		40	RCL 10	49	CLA	58	-			
32	RCL 06		41	ST+ 06	50	ENTER	59	SKPCHR			
33	XEQ IND 1	1	42	RCL 09	51	INT	60	X<>Y		(161	bytes)

22-18 SYNTHETIC BLDSPEC: Write out a 56-bit bi-

nary number; the first 7 bits are always 0001000; the remaining 49 bits are from the 7 x7 grid of the special character, using 1's for dark dots and 0's for blanks. Start with the lower left corner of the grid and work up the column; then bottom-to-top of each succeeding column. [If the character is in a 7×5 matrix (first and last columns of a 7x7 matrix blank for spacing), include the bytes for these two columns (all 0's in this case) anyway.]

Group the 56 bits into 4-bit groups, then make a 7-character text line from the hexadecimal equivalents. For the example at right, we have:

0001 0001 1110 0011 0000 0101 0000 1001 0000 0001 1100 0011 0000 0100 1 Ε 3 0 5 0 9 0 С 3 0 4 1 1

So the text line, preceeded by a Text 7 byte, is hex F7 11 E3 05 09 01 C3 04. The decimal equivalent is: 247, 17, 227, 5, 9, 1, 195, 4.

Key the text line into a program, then follow it with 'RCL M, ACSPEC'. Check to be sure Flag 21 is set before executing the program.

Comparison of byte counts: normal method below is 30 bytes, synthetic method is 12:

Normal: 0, ENTER, 120, BLDSPEC, 96, BLDSPEC, 80, BLDSPEC, 72, BLDSPEC, 7, BLDSPEC, 6, BLDSPEC, 4, BLDSPEC, ACSPEC.

Synthetic: "密密天密天密天", RCL M, ACSPEC.

Both methods above build the special character and accumulate it into the buffer; to print it, execute PRBUF or ADV. When the synthetic text string above is printed with PRP or LIST, it appears as " $\Omega\beta\sigma\times\alpha$ "; only five characters show because the printer listing of a text line will only show characters from the top half of the Byte Table; characters corresponding to bytes in the lower half of the table are invisible. Furthermore, the print buffer uses bytes from Rows A, B, D & E for internal purposes related to special character printouts, single and double width instructions, etc. Hence, text lines containing characters from those few rows may print out in very strange ways. For example, if a text line contains the character corresponding to byte 'D5', a program listing containing that line will have all printout following that character printed double-wide and lower-case. Source: William Wickes (3735) ('Synthetic Programming on the HP-41C', p 68-70). See 25-5.

22-19 SYNTHETIC PPC LOGO ("LG"): This routine puts the PPC logo into the printer

buffer; print it with PRBUF or ADV. NOTE: Lines 02 & 03 are nonstandard. Line 02 is decimal 254, 17, 194, 228, 124, 60, 122, 241, 17, 102, 62, 30, 61, 120, 249. Line 03 is decimal 248, 127, 17, 158, 29, 155, 191, 78, 135. Be sure Flag 21 is set before attempting to print. Source: Richard Nelson (1) (PPC ROM). EEQ.

*02 "Ω <zΩf>£=x" *03 "**⊢Ω**≠ N" 01 LBL "LG" 04 X<> 0

[continued]

CALCULATOR '	TIPS & ROUI	TINES		90			XXII.	PRINTER
	07.7	00000	0.0	100000		Dani		
05 ACSPEC	07 A	ACSPEC	09	ACSPEC	11	RIN		
06 X<> N	08 X	K<> M	10	X<> 0			(45	5 bytes)

2 VAR. PLOT

 $Y \langle UNITS = 1. \rangle \rightarrow$

100.

X FROM 0.0 TO 10.0

X-INCREMENT = 0.5

-25.

Й.

Χ.

I i

X I

x i

x ¦

x !

x ¦

x į

xi

x ¦x

¦ x

¦ x

!

!

!

ł

22-20 TWO-VARIABLE PLOTTING ("2V"): In the plotting functions of the printer ROM, only one variable may be plotted. However, an axis character is printed as well, in a column specified by the user. This routine computes and plots this column designation as a point of a separate function, since each REGPLOT or STKPLOT execution may move the axis character to any of the 168 columns. No axis is printed. The routine prompts for "F-1" and "F-2" (the names of the first and second functions), "YMIN" and "YMAX" (minimum and maximum values of Y for both functions), "XMIN" and "XMAX", and also "XINC" (x increment). NOTE: if the value of the second function drops below YMIN, its graph will be distorted-it will be plotted at YMAX until the value rises above YMIN. Upon entering either function, the value of X is also available in Register 06. Zero will be marked on the yaxis only if it is between YMIN and YMAX, inclusive; otherwise, it marks YMIN.

INSTRUCTIONS: Key in the two functions to be plotted as programs, each beginning with a global label of 6 or fewer characters. XEQ "2V"; input as prompted and press R/S. A heading, the y-axis, and the double plot will be printed. Minimum SIZE: 012. EXAMPLE: Key the following functions into program memory: LBL "AA", X¹2, RTN; LBL "BB", SQRT, 10, *, RTN. Next, XEQ "2V" and input as prompted: F-1 = "AA"; F-2 = "BB"; YMIN = '-25'; YMAX = '100'; XMIN = '0'; XMAX = '10'; XINC = '.5'; R/S. The plot shown results.

Source: Jake Schwartz (1820) (PPC CJ, V7N1P24).

01	LBL "2V"	19	STO 11	37	STO 04	55	RCL 11	73	1 E3
02	AON	20	"XMAX?"	38	168	56	STO 06	74	/
03	"F-1?"	21	PROMPT	39	STO 02	57	LBL 01	75	168
04	PROMPT	22	STO 10	40	ADV	58	XEQ IND 08	76	+
05	ASTO 07	23	"XINC?"	41	SF 12	59	RCL 00	77	STO 02
06	"F - 2?"	24	PROMPT	42	"2 VAR. PLOT"	60	-	78	RCL 06
07	PROMPT	25	STO 09	43	PRA	61	RCL 01	79	XEQ IND 07
80	AOFF	26	RCL 00	44	CF 12	62	RCL 00	80	REGPLOT
09	ASTO 08	27	X>0?	45	FIX 1	63	-	81	RCL 09
10	"YMIN?"	28	GTO 00	46	"X FROM "	64	1	82	ST+ 06
11	PROMPT	29	RCL 01	47	ARCL 05	65	168	83	RCL 10
12	STO 00	30	X<0?	48	"Н ТО "	66	*	84	RCL 06
13	"YMAX?"	31	GTO 00	49	ARCL 10	67	R↑	85	X<=Y?
14	PROMPT	32	0	50	PRA	68	CLX	86	GTO 01
15	STO 01	33	GTO 02	51	"X-INCREMENT = "	69	X=Y?	87	END
16	"XMIN?"	34	LBL 00	52	ARCL 09	70	1		
17	PROMPT	35	RCL 00	53	PRA	71	+		
18	STO 05	36	LBL 02	54	XROM "PRAXIS"	72	INT		(192 bytes)

22-21 SIDEWAYS PRINTER CHARACTERS ("PRSW"): Use these BLDSPEC instruction codes to build a character set which will print longwise on the paper. Store these in

the data registers, and recall them and ACSPEC them into the print buffer as needed. Before accumulating them, CF 12 for single-height characters or SF 12 for doubleheight characters. Due to the 44-position buffer restriction, only 5 'rows' can be positioned on the printer paper at once. It is suggested that each row be separated

RCL 01, ACSPEC, 3, SKPCOL (8 buffer positions) D <	by 1	- 7	colum	ns,	usin	ig Sl	KPCOL	. Еу	(amp]	le:								ה) (M)
Output of this example: $y \in 0 \cap C \in W$ Image: Y = 0 \cap C \in W Image: Y = 0 \cap C \in W Here is the routine used to print the full set of 64 characters, both regular height and double height, as shown at the right: Image: Y = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	RCL RCL RCL RCL RCL	01, 02, 03, 04, 05,	ACSPE ACSPE ACSPE ACSPE ACSPE	IC, 3 IC, 3 IC, 3 IC, 3 IC, 1	3, SK 3, SK 3, SK 3, SK 3, SK PRBUF	CPCOI CPCOI CPCOI CPCOI	L (8 L (L (C (7	buf buf	fer	position " " position	s)))) s)							1345678	L A A A A A A A A A A A A A A A A A A A
00<	Outp	out o	f thi	s ex	kampl	.e: p	2 10 10		1							ດ II		<u>v</u> 0 v	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Here acte at t	e is ers, che r	the r both ight:	regu	ine u ılar	sed heig	to p ght a	nd d	the loubl	e full se Le height	t of 64 , as sh	cha own	r-			нн 994 777 ГГ		·• · ·	່ ປ
Source: Remark wersen (r) (rife os) (rinition) Codes for building the characters: Codes for building the characters: Codes for building the characters: R00 space 0 0 0 0 0 0 0 0 N N N A A N N N A A R01 A 65 65 127 65 65 34 28 W W R03 C 62 65 1 1 1 65 62 R04 D 31 34 66 66 66 63 34 31 N05 E 127 1 1 31 1 1 127 R07 G 94 97 113 1 1 65 62 R08 H 65 65 65 127 65 65 65 R08 H 65 65 65 127 65 65 65 R01 1 1 1 1 1 127 R07 G 94 97 113 1 1 65 62 R08 H 65 65 65 73 85 99 65 R11 1 1 1 1 1 1 R12 1 1 1 1 1 1 1 R34 4 16 16 127 18 20 24 R13 A 65 65 65 73 85 99 65 R13 A 65 65 65 73 85 99 65 R13 A 65 65 65 34 28 R13 A 65 65 65 34 28 R13 A 65 65 65 34 28 R14 A 4 4 8 16 33 1 R14 A 4 4 8 16 33 1 R14 A 4 4 8 16 33 1 R17 Q 92 34 81 6	01 I 02 A 03 . 04 I 05 2 06 6 07 S	LBL " ADV 031 LBL 0 KEQ 0 SKPCH	PRSW 0 1 IR Picha	-	08 09 10 11 12 13 14	RCL 32 + XEQ PRBI X<>Y 32	Z O1 UF Y	1 1 1 2 2 2 2	5 - 6 IS 7 GT 8 RT 9 LE 20 RC 21 SE	G X FO 00 FN BL 01 CL IND X F 12	22 A 23 1 24 S 25 R 26 C 27 A 28 E	CSPE KPCH DN F 12 CSPE ND	R R C			MAODODAN Nuclear Nucle			• • • • • • • • • • • • • • • • • • • •
Characters: Characters: Characters: Colspan="6">Colspan="6"Colspan="6">Colspan="6"Colspan="6"Colspan="6">Colspan="6"Colspan	Regi	ster	s. ch	narad	ters	s. ar	nd BL	DSPF	EC cc	odes for	buildin	a th	e		:	<		+ → \ \	f
R00 space 0<	char	acte	rs:									9 011	_			ХX			
R07 G 94 97 113 1 1 65 62 R08 H 65 65 65 127 65 65 65 83 1 <td>R00 R01 R02 R03 R04 R05 R06</td> <td>spac A B C D E F</td> <td>e 0 65 63 62 31 127 1</td> <td>0 65 65 34 1</td> <td>0 127 65 1 66 1 1</td> <td>0 65 63 1 66 31 31</td> <td>0 65 65 1 66 1</td> <td>0 34 65 65 34 1</td> <td>0 28 63 62 31 127 127</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><pre>/Z₩X#@1</pre></td> <td></td> <td>$\begin{array}{c} \mathbf{f} \\$</td> <td>k / / /</td>	R00 R01 R02 R03 R04 R05 R06	spac A B C D E F	e 0 65 63 62 31 127 1	0 65 65 34 1	0 127 65 1 66 1 1	0 65 63 1 66 31 31	0 65 65 1 66 1	0 34 65 65 34 1	0 28 63 62 31 127 127							<pre>/Z₩X#@1</pre>		$\begin{array}{c} \mathbf{f} \\ $	k / / /
R10J1417161616124R32212712606465R11K65331715173365R3336265645616321R12L1271111111R3441616127182024R13M65656573859965R355626564646311R14N65978173696765R3666666656312112112112112111	R07 R08 R09	G H T	94 65 62	97 65 8	113 65 8	1 127 8	1 65 8	65 65 8	62 65 62		R30 R31	0 1	29 62	34 8	69 8	73 8	81 8	34 12	92 8
R12 L 127 1 <td>R1 0 R1 1</td> <td>J K</td> <td>14 65</td> <td>17 33</td> <td>17 17</td> <td>16 15</td> <td>16 17</td> <td>16 33</td> <td>124 65</td> <td></td> <td>R32 R33</td> <td>2 3</td> <td>127 62</td> <td>1 65</td> <td>2 64</td> <td>60 56</td> <td>64 16</td> <td>65 32</td> <td>62 127</td>	R1 0 R1 1	J K	14 65	17 33	17 17	16 15	16 17	16 33	124 65		R32 R33	2 3	127 62	1 65	2 64	60 56	64 16	65 32	62 127
R17 Q 92 34 81 65 65 34 28 R39 9 12 16 32 126 65 65 65 R18 R 65 33 17 63 65 65 63 R19 S 63 64 64 62 1 1 126 R40 28 28 28 0 0 0 R20 T 8 8 8 8 127 R41 4 8 28 28 0 0 0 R21 U 62 65 65 65 65 65 R42 ? 8 0 8 48 64 65 R22 V 8 20 20 34 34 65 65 R43 1 12 0 12	R1 2 R1 3 R1 4 R1 5 R1 6	L M N O P	127 65 65 28 1	1 65 97 34 1	1 65 81 65 1	1 73 73 65 63	1 85 69 65 65	1 99 67 34 65	1 65 65 28 63		R34 R35 R36 R37 R38	4 5 6 7 8	62 60 4 62	65 66 4 65	64 65 4 65	64 63 8 62	20 63 1 16 65	24 1 2 33 65	127 124 127 62
R20 T 8 8 8 8 127 R41 4 8 28 28 0 0 R21 U 62 65 65 65 65 65 65 842 ? 8 0 8 48 64 65 R22 V 8 20 20 34 34 65 65 R43 ! 12 0 12	R1 7 R1 8 R1 9	Q R S	92 65 63	34 33 64	81 17 64	65 63 62	65 65 1	34 65 1	28 63 126		R39 R40	9	12 28	16 28	32 28	126 0	65 0	65 0	62 0
R24 X 65 34 20 8 20 34 65 R45 ; 4 8 12 0 0 12 R24 X 65 34 20 8 20 34 65 R45 ; 4 8 12 0 0 12 R25 Y 8 8 8 20 34 65 R46 ' 0 0 0 12 12 R26 Z 127 2 4 8 16 32 127 R47 _ 127 0	R20 R21 R22	T U V	8 62 8	8 65 20	8 65 20 72	8 65 34 72	8 65 34	8 65 65	127 65 65		R41 R42 R43 R44	, ? !	4 8 12 12	8 0 0 12	28 8 12 0	28 48 12 0	0 64 12 0	0 65 12 12	0 62 12 12
R48 " 0 0 0 54 54	R23 R24 R25 R26	w X Y Z	65 8 127	34 8 2	20 8 4	73 8 8 8	20 20 16	34 34 32	65 65 127		R45 R46 R47	;	4 0 127	8 0 0	12 0 0	0 0 0	0 12 0	12 12 12 0	12 12 12 0
R27 \$ 63 84 84 62 21 21 126 R28 % 97 98 4 8 16 35 67 R29 # 20 20 127 20 20 20 20	R27 R28 R29	\$ % #	63 97 20	84 98 20	84 4 127	62 8 20	21 16 127	21 35 20	126 67 20		R48 R49	" &	0 110	0 17	0 41	0 70	54 6	54 9	54 6

CALCULATOR TIPS	& ROUTINES	92	2			X	XII.	PRIN	TER
CALCULATOR TIPS R50 [62 R51] 62 3 R52 + 8 8 R53 - 0 0 R54 * 8 7 R55 / 1 8 R56 = 0 12	& ROUTINES 2 2 2 2 2 32 32 32 8 8 127 8 0 0 127 0 3 42 29 42 2 4 8 16 7 0 0 127 ACCUMULATION OF buffer a small printing indent 3x5 <matrix, and<="" td=""> be generated by that these chain the</matrix,>	92 2 62 32 62 8 8 0 0 73 8 32 64 0 0 72-DIGIT NUMI 2-digit intended 2-digit intended 2-digit intended 32 64 0 0 52-DIGIT NUMI 2-digit for his 32 64 52-DIGIT NUMI 52-DIGIT STATES 52-DIGIT NUMI 52-DIGIT STATES 52-DIGIT NUMI 52-DIGIT STATES 53-0 54-0	R57 R58 R59 R60 R61 R62 R63 BERS ("V2") eger rotated stogram bars ligits occup g 12. Spacin pe placed r	$\neq 1$ < 96 > 3 t 8 $\Rightarrow 8$ $\Rightarrow 8$ $\Rightarrow 8$ This r 1 90° cl s or plc by only ng on ei iqht up	2 12 24 12 4 8 28 4 16 3 4 coutine octine 5 prin ther s to eit	27 8 6 1 8 64 8 73 2 73 2 127 2 177 2 127 2 127	xII. 127 6 48 42 8 32 2 mulat n non chars s not argin	PRIN 32 24 12 28 8 16 4 tes i cmal. acter . Tal t pro	TER 64 96 3 8 8 8 8 8 1 1 5 1 1 1 1 5 1 1 1 1 1 1 1
print line. Spa data registers; Source: Cliff (it uses the st arrie (834) (P	ovided by the tack. To use,	user with s key in any	SKPCOL. 2-digit	This r integ	coutin ger, X	e us EQ "	es no V2".)
01 LBL "V2" 02 10 03 / 04 ENTER 05 FRC 06 10 07 * 08 XEQ IND Y 09 XEQ IND Y 10 LBL 14 11 10 12 *	13 FRC 14 LASTX 15 INT 16 16 17 * 18 RCL Z 19 10 20 * 21 + 22 ACCOL 23 FRC 24 X<>Y	25 X≠0? 26 GTO 14 27 RTN 28 LBL 00 29 .25552 30 RTN 31 LBL 01 32 .22232 33 RTN 34 LBL 02 35 .72452 36 RTN	37 <u>LBL</u> 38 .3424 39 RTN 40 <u>LBL</u> 41 .4756 42 RTN 43 <u>LBL</u> 44 .343 ² 45 RTN 46 <u>LBL</u> 47 .253 ² 48 RTN	03 43 04 54 05 17 06 16	49 LBI 50 .22 51 RTI 52 LBI 53 .25 54 RTI 55 LBI 56 .34 57 ENI	207 2247 1 208 252 252 1 209 4652	(124	4 byt	es)
22-23 PRINTER C not print on line (plugge	COMPATIBILITY: ' ing, stopping, ed in and on) or	This shows how not stopping no printer :	w to get van , pausing, d is plugged :	rious co etc, whe in.	ombinat en eith	cions her a	of p prin	rinti ter i	.ng, .s
Print 1 OR Stop 2	PRINTERprint NO PRINTERsto PRINTERprint	without stopy op to view without paus:	^{oing} }, s	SF 21, " CF 21, F	'MSG", 'S? 55,	AVIEW	, 1," []]	··· MSG",	
OR Pause 2 Print 3 & Stop 3	NO PRINTERpau PRINTERprint NO PRINTERsto	and stop op to view	} AVIEW }, \$ STOP,	, FC? 55 SF 21, "	MSG",	AVIEW	, FS	? 55,	
Print 4 & Pause	PRINTERprint NO PRINTERpau	and pause ise to view	}, 0	CF 21, F , PSE, .	'S? 55,	SF 2	1, "]	MSG",	
NO Print 5 & Stop 6	PRINTERstop a NO PRINTERsto PRINTERpause	and don't prim op to view and don't pri	nt }, '	"MSG ", F CF 21. "	PROMPT	AVIEW	, PSI	Ξ	
& Pause Print 7 OR NO Stop 7	NO PRINTERpau PRINTERprint NO PRINTERdor	use to view	stop }, (CF 21, F 5, AVIEW	s? 55,	SF 2	1, "1	MSG",	

Example: at the end of an initialization routine, the program is to pause after a first message, then stop after a second message. Both are to print if the printer is on line; subsequent outputs are to print without stopping, or stop if no printer:

..., CF 21, FS? 55, SF 21, "MSG1", AVIEW, PSE, "MSG2", AVIEW, SF 21, STOP,

See routines 2-31, 3-12, 4-1, 4-18, 6-4, 6-6, 6-14.

22-24 AUTOMATIC PRINTING OF MULTIPLE OUTPUTS ON ONE OR MORE LINES: When you don't wish to print output that is generated within a loop, line by line, include the following routine within the loop (here, a loop counter is stored in R00):

..., LBL 01, ..., " ", ARCL X, ACA, ..., DSE 00, GTO 01, PRBUF,

The print buffer will accumulate 24 alpha characters, and then automatically print before accepting additional characters. To reduce ambiguities when a numerical output is split between two lines, the space (" ") may be replaced by "X". Alternatively, if the output consists of integers, the space can be eliminated if FIX 0, SF 29 Mode is used, in which case the radix will serve to separate successive outputs.

Some examples: 1) Printing successive sums of a series.	100	101	102	106	109	110
2) Printing all the prime numbers within a specified	114	118	120	121	126	127
interval. The following routine example shows how the	128	129	130	135	136	
output may be arranged in easy-to-read columns. "=0"						

prints all the numbers in an interval for which the operations "SQRT, X†2" return exactly the same number to X. Before execution, "=0" expects the lowest number to be tested in Y, and the highest number in X. The example above right will print with an input of 100, ENTER, 136. The user may insert a line of one or more alpha spaces, followed by "ACA", after line 10 (ADV) to indent the first line or to compensate for initial outputs of different character length from that of subsequent ones. Source: Robert Swanson (5993). See 15-8.

01	LBL "=0"	05	-	09	ENTER	13	X †2	17	ACA	21	DSE Z	25	SF 29
02	FIX 0	06	ISG X	10	ADV	14		18	SIGN	22	GTO 01	26	BEEP
03	CF 29	07	STO X	11	LBL 01	15	ARCL Y	19	+	23	PRBUF	27	END
04	Х<>Ү	80	LASTX	12	SQRT	16	X=Y?	20	ENTER	24	FIX 2	(4	l6 bytes)

22-25 SYNTHETIC SPECIAL CHARACTERS ("SC", "SCT", "SCL" & "SCX"): This routine allows

the user to bring nonstandard print characters, in groups of three, into consecutive registers of main data memory. They then may be ACSPECed and PRBUFed. A complete list of the characters available is shown in the Special Characters Table and the Special Characters List below. The nineteen groups of characters are indicated in the table.

Instructions: Load Registers 06-08 as shown:

R06= # of first group desired, <u>1</u> R07= # of last group desired, <u>m</u> R08= # of first register to store characters in (R09 or higher), n

Next, XEQ "SC"; the characters in groups $\underline{1}$ through \underline{m} will then be loaded into registers \underline{n} and above. This routine primarily uses Status Registers M, N and O to do its storing and recalling. The actual characters are brought into Alpha by either 7 or 14 character text lines, which contain sprinklings of buffer control characters, causing the program listing to print oddly. The last group of characters is also returned to the stack (Z, Y & T Registers). Be sure Flag 21 is set before using the special characters.

Example 1: Put group 9 (\int , $\sqrt{}$ and \bigcirc) in Registers 9, 10 and 11. Solution: key in 9, STO 06, STO 07, STO 08, XEQ "SC" (minimum SIZE 012); the characters will also be returned to the stack:

R09	=	\mathbf{Z}	=	ſ
R1 0	=	Y	=	
R11	=	Х	=	©

Now, to put $\sqrt{}$ in the print buffer (for example), use RDN (or RCL 10), ACSPEC; print with PRBUF or ADV.

Example 2: Print a table of special characters, as shown below. Key in the "SCT" routine below, then, with SIZE 066 or greater, key in 1, STO 06, 19, STO 07, 9, STO 08, XEQ "SC", XEQ "SCT".

01	LBL "SCT"	16	LBL 14	31	RDN	>>	SPECIAL	. CH	ARAC	TERS <	(
02	ADV	17	$\overline{X < Y?}$	32	PRBUF						
03	CF 12	18	XEQ 13	33	ISG X		1	0	1	2	
04	">> SPECIAL CH"	19	ACX	34	GTO 14		2	Э	4	5	
05	" - ARACTERS <<"	20	XEQ 13	35	FIX 2		3	6	Г	8	
06	PRA	21	XEQ 13	36	SF 29		4	۹	0	1	
07	ADV	22	LBL 12	37	CF 12		5	2	3	4	
80	SF 12	23	RCL IND Z	38	RTN		6	5	6	Г	
09	FIX O	24	ACSPEC	39	LBL 13		7	8	9	α	
10	CF 29	25	XEQ 13	40			8	X	Y	z	
11	9.011	26	RDN	41	ACA		9	5	-Г	®	
12	ENTER	27	ISG Z	42	END		10	dx	dy	dt	
13	1.019	28	GTO 12				11	±	\sim	\approx	
14	10	29	.003				12	₹	≥	∇	
15	X<>Y	30	ST+ T	(1	15 bytes)		13	-	+	Π	
					5		14	e	Ψ	ω	
							15				
							16		\times		
							17	+	•	+	
							18	÷	•	•	
							19	C	S	ዀ	

Example 3: Print a list of special characters, as shown below. Key in the "SCL" routine; then, if not previously done, place the special characters in R09-R65 (SIZE 066, 1, STO 06, 19, STO 07, 9, STO 08, XEQ "SC"); finally, XEQ "SCL".

				000	~						_
01	LBL "SCL"	16	ARCL X	каа=	Ų	R24=	5	R39=	±	R54=	
02	ADV	17	"⊢= "	R10=	1	R25=	6	R40=	\sim	R55=	×
03	SF 12	18	ACA	R11 =	2	R26=	Г	R41=	\approx	R56=	
04	FIX O	19	RCL IND X	R12=	3	R27=	8	R42=	∠	R57=	+
05	CF 29	20	ACSPEC	R13=	4	R28=	9	R43=	7	R58=	•
06	9.065	21	ADV	R14=	5	R29=	۰	R44=	∇	R59=	•
07	"R09= "	22	RDN	R15=	6	R30=	X	R45=	-	R60=	÷
80	ACA	23	ISG X	R16=	Г	R31=	Y	R46=	+	R61=	•
09	RCL IND X	24	GTO 11	R17=	8	R32=	z	R47=	Π	R62=	
10	ACSPEC	25	CF 12	R18=	9	R33=	ſ	R48=	e	R63=	C
11	ADV	26	FIX 2	R19=	0	R34=	-L	R49=	Ψ	R64=	>
12	RDN	27	SF 29	R20=	1	R35=	ø	R50=	ω	R65=	ዀ
13	ISG X	28	END	R21=	5	R36=	d x	R51=			
14	LBL 11			R22=	3	R37=	dy	R52=			
15	<u>"R"</u>	(65	5 bytes)	R23=	4	R38=	dt	R53=			

Example 4: Print the following: $e^{2x+5} \approx 4.3$. With the special characters loaded in R09-R65 as in the examples above, XEQ "SCX".

01	LBL "SCX"	05	ACCHR	09	ACSPEC	13	ACSPEC	17	ACX	21	END	
02	FIX 1	06	RCL 11	10	RCL 46	14	RCL 41	18	PRBUF			
03	SF 12	07	ACSPEC	11	ACSPEC	15	ACSPEC	19	CF 12			
04	101	08	RCL 30	12	RCL 14	16	4.3	20	FIX 2		(4)	8 bytes)

The characters in the last two groups can be used to print the phases of the moon; accumulate the first two characters of group 19, one after the other, for example, to place a full moon in the buffer. See <u>PPC Calculator Journal</u>, V7N10P14, for more examples.

Source: Jake Schwartz (1820) (PPC CJ, V7N10P11-15).

[continued]

Program Listing:

01+LBL -SC-	23 "+8x'***	45+1 Ri 10	71 •F0/77•
92 RCL 97	24 GTO 98	46 -OC\$6HOC886-	72 610 88
A3 E3	25+LBL 85	47 -LOCZ \H-	72 GTO 00 7741 DL 17
R4 /	26 =84 K++8⊽ 0+	48 CTO 99	73*LDL 17
R5 ST+ R6	20 01 RV+0A 0+	4941 DI 11	74 "8 888"
86 9		50 -034V=A0 0-11+	73 FUUTU- 74 CTO 00
97 ST+ 98	20 CTO 90	JU DXAN VU HUAA	76 610 88
80 CTO INT 64	20 dio 00	JI FOUN 53 CTO 00	77*LBL 18
DO GIU IND DO Agai di Q1	274LDL 00 70 =03NAA02NAA=	52 GIU 00 574 DI 10	78 "UPet+" "
19 -0400440444*	30 0XNVV01NVV 71 81.04 0448	JJVLDL 12 54 =05 05+/A=	79 "FU++"
16 0040000000000000000000000000000000000	31 FOT 04	J4 DX	SA CIA NG
	32 GIU 00 774 DI 07	55	81+LBL 19
10 010 00	33*LBL 07	36 GIU WU	82 * 8+ * HU/*\$G++*
12 GIU 00	34 "B+U+++" 75	57+LBL 13	83 "H0a Fµax"
13+LBL 02	30 TF0+8F	58 *8+ 8+ +8+	84+LBL 00
14 °θ♦ S	**	**	85 RCL 1
♦♦₩₩ 80	36 GTO 00	59 * F8x#?	86 STO IND 08
***	37+LBL 08	•	87 ISG 08
15 *H8+S+*	38 * 0+ ×	60 GTO 06	88 RCL N
16 GTO 00	+8++3+"	61+LBL 14	89 STO IND 08
17+LBL 03	39 * +8+× +*	62 =8 +×J+8µa ∄ Г+=	90 ISG 08
18 *8+S++8+ åÅ	40 GTO 00	63 "+8\$ 40"8"	91 RCL [
** ⁻	41+LBL 09	64 GTO 00	92 STO IND 08
19 - H0+S	42 °0⊼α∔€8€ ¥	65+LBL 15	93 ISG 08
** ⁻	e-	66 -0 008'00X4'-	94 ISG 06
20 GTO 00	43 - H84ā	67 "HQyY4" "	95 GTO IND 06
21+LBL 84	Qe-	68 GTO 00	96 END
22 -0+8S	44 GTO 00	69+LBL 16	END 560 BYTES
8×G*"		70 "QXX5"QXY5""	2.1.2 000 01120

Bytes for creating the synthetic lines above, using "LB": Compare this table with the routine listing, above. The "PROMPT" column is the byte number that should be prompted for by "LB" just before keying in the first byte in a given line. NOTE: The "LB" buffer needs to be at least 476 +'s! Read Chapter XXV, including the examples, before attempting to load these bytes to create the "SC" routine.

LINE NO.	1st "LB" PROMPT	BYTES
03	[1]	27, 19
10	[3]	254, 16, 0, 113, 17, 192, 0, 0, 16, 0, 137, 242, 0, 0, 0
11	[18]	248, 127, 16, 0, 233, 82, 224, 0, 0
14	[27]	254, 16, 0, 169, 83, 224, 0, 0, 16, 0, 56, 67, 224, 0, 0
15	[42]	248, 127, 16, 0, 185, 83, 160, 0, 0
18	[51]	254, 16, 0, 249, 83, 160, 0, 0, 16, 0, 8, 19, 224, 0, 0
19	[66]	248, 127, 16, 0, 249, 83, 224, 0, 0
22	[75]	254, 16, 0, 56, 83, 224, 0, 0, 16, 1, 196, 71, 0, 0, 0
23	[90]	248, 127, 16, 2, 39, 200, 0, 0, 0
26 27	[99]	254, 16, 3, 165, 75, 128, 0, 0, 16, 2, 165, 79, 128, 0, 0 248, 127, 16, 0, 225, 15, 128, 0, 0
30 31	[123]	254, 16, 2, 229, 78, 128, 0, 0, 16, 3, 229, 78, 128, 0, 0 248, 127, 16, 0, 32, 79, 128, 0, 0
34	[147]	254, 16, 3, 229, 79, 128, 0, 0, 16, 0, 225, 79, 128, 0, 0
35	[162]	248, 127, 16, 0, 56, 80, 224, 0, 0
38	[171]	254, 16, 0, 1, 176, 134, 192, 0, 16, 0, 0, 51, 128, 192, 0
39	[186]	248, 127, 16, 0, 1, 146, 164, 192, 0

42	[195]	254, 16, 2, 4, 7, 192, 64, 128, 16, 64, 130, 15, 224, 64, 129
43	[210]	248, 127, 16, 113, 21, 218, 181, 81, 28
46	[219]	254, 17, 226, 71, 240, 18, 24, 72, 17, 226, 71, 240, 22, 16, 24
47	[234]	248, 127, 17, 226, 71, 240, 2, 62, 72
50	[243]	254, 16, 2, 36, 75, 241, 34, 0, 16, 32, 32, 65, 4, 8, 8
51	[258]	248, 127, 16, 136, 137, 20, 81, 34, 34
54	[267]	254, 16, 2, 133, 138, 148, 168, 128, 16, 2, 141, 42, 150, 40, 0
55	[282]	248, 127, 16, 12, 107, 24, 44, 70, 131
58	[291]	254, 16, 0, 32, 64, 128, 0, 0, 16, 0, 32, 224, 128, 0, 0
59	[306]	248, 127, 16, 2, 15, 248, 63, 224, 128
62	[315]	254, 16, 0, 1, 197, 74, 128, 0, 16, 12, 97, 15, 228, 6, 3
63	[330]	248, 127, 16, 226, 36, 7, 16, 34, 56
66	[339]	254, 17, 254, 12, 25, 48, 96, 255, 17, 254, 12, 88, 52, 96, 255
67	[354]	248, 127, 17, 254, 12, 89, 62, 96, 255
70	[363]	254, 17, 254, 13, 88, 53, 96, 255, 17, 254, 13, 89, 53, 96, 255
71	[378]	248, 127, 17, 254, 13, 216, 55, 96, 255
74	[387]	254, 16, 32, 227, 239, 239, 142, 8, 16, 56, 251, 239, 143, 143, 142
75	[402]	248, 127, 16, 48, 243, 207, 239, 15, 12
78	[411]	254, 16, 112, 229, 255, 247, 206, 28, 16, 0, 1, 199, 206, 191, 255
79	[426]	248, 127, 17, 255, 251, 231, 199, 0, 0
82	[435]	254, 16, 0, 1, 196, 72, 160, 193, 17, 6, 10, 36, 71, 0, 0
83	[450]	248, 127, 16, 4, 127, 145, 12, 4, 120
85	[459]	144, 119
88	[461]	144, 118
91	[463]	144. 117
	[100]	····

CHAPTER XXIII

BANNERS

23-1 <u>BANNER PRINTER ("BANR", "CHAR" & "CODE")</u>: This routine is used to print banners. 'Compression codes' are included for 95 characters. The routine will fit on one track; 7 tracks are need to store all the characters on magnetic cards. The first ten data registers contain the character building blocks; R10 is used by the routine, and R11-R105 contain the codes, which are used to build the corresponding characters. Note that Flag 12 must be set to get full-height characters, or clear for half-height characters; Flag 12 can be set or cleared between characters to print mixed full- and half-height characters.

<u>Instructions</u>: There are three ways to use this routine: (1) XEQ "BANR"; see "CHAR. NO.?"; input the character number (0 = space, 1 = A, etc), press R/S; the character corresponding to that character number will be printed. The prompt will reappear; repeat. (2) You can also key in the character number and XEQ "CHAR"; this label is primarily for use in any program that automatically executes this routine. (3) Key in any of the 'compression codes', including any of your own (for example, key in .1802020218 for 'A'), then XEQ "CODE"; the corresponding character will be printed. If memory is short, just key in the routine and the character building blocks (R00-R09) with a SIZE 011, and use "CODE".

Building the building blocks: In normal or USER Mode, key in '0', press ENTER (to clear X & Y); key in '31', XEQ "BLDSPEC"; Alpha character 31 is now in X (but displays as a boxed star) (other characters can be used). Now use ARCL X and SPACE in ALPHA Mode to build the building blocks one at a time, storing them in the appropriate registers. For example: For R00: CLA, SPACE 6 times, ASTO 00. For R01: CLA, ARCL X 6 times, ASTO 01. For R02: CLA, ARCL X, SPACE 4 times, ARCL X, ASTO 02.

01	LBL "BANR"	09	RDN	17	10	25	PRA	33	STO	10
02	"CHAR. NO.?"	10	X=0?	18	*	26	ISG 10	34	RDN	
03	PROMPT	11	GTO 00	19	ARCL IND X	27	GTO 00	35	GTO	00
04	XEQ "CHAR"	12	10	20	FRC	28	ADV	36	END	
05	GTO "BANR"	13	+	21	10	29	ADV			
06	LBL "CHAR"	14	RCL IND X	22	*	30	RTN			
07	.004	15	LBL 00	23	ARCL IND X	31	LBL "CODE"			
80	STO 10	16	CLA	24	FRC	32	.004		(96	bytes)

Example: Here is a routine that will print all 95 characters: LBL "X", 1.095, LBL 01, ENTER, XEQ "CHAR", RCL Z, ISG X, GTO 01, RTN.

Source: Dean Lampman (41) (PPC J, V6N6P16).

Data Registers, Compression Codes, Character Numbers and Symbols:

R00 =		11	R08 = "	R16 = .1102020203 6 = F
R01 =		н	R09 = "	R17 = .9843432353 7 = G
R02 =	"	н	R10 = 0 $0 = space$	ace $R18 = .1104040411 8 = H$
R03 =			R11 = .1802020218 1 =	$= A \qquad R19 = .4343114343 9 = I$
R04 =	"	н	R12 = .1142424295 2 =	$= B \qquad R20 = .5040439103 10 = J$
R05 =		н	R13 = .9843434367 3 =	= C R21 = .1134766743 11 = K
R06 =	"	11	R14 = .1143434398 4 =	= D
R07 =	"	н	R15 = .1142424243 5 =	= E [continued]

** ** ** **	₩ }		INTERNET					
	** i	₩ ₩ ₩ ₩	NNK 184K	m	1 5 1 5	H E	HE MAN MAK MAN MAN	ŧ <u></u>
R49 =	= .	.0502020218	39 = 9	R70 = $R77 =$.7676767676	67 = =	R104 = .5020202050 R105 = .1802184242	, 94 = 2 95 =
R47 =	= .	.0383330209	37 = 7 38 = 8	R75 =	.4060980703	65 = /	R103 = .05020202	93 =
R46 =	= .	.9823232357	36 = 6	R73 = R74 =	.3434223434	$64 = \div$	R102 = .40404040404040404040404040404040404040) 92
R44 = R45 =	= .	.6142424293	34 = 4 35 = 5	к/2 = R73 =	.00/034/0	62 = X	R100 = .111111111111111111111111111111111	3 90 : 3 91
R43 = D44 =	= .	.6743424295	33 = 3	R71 =	.3434343434	61 = -	D100 111111111	
R42 =	= .	.8723424245	32 = 2	R70 =	.3434983434	60 = +	R99 = .3030103004	1 89
R41 =	= ,	.4047114040	31 = 1				R98 = .5020209030) 88
R40 =	= .	.9823224298	30 = 0	R69 =	.3476986722	59 = ←	R97 = .4389892222	2 87 :
			•	R68 =	.2267987634	58 = →	R96 = .3014041406	5 86
R39 =	= .	.3074967430	29 = ♦	R67 =	.7060116070	57 = ↓	R95 = .1060406090) 85:
R38 =	= .	.0003090300	27 - F 28 = T	R66 =	.0607110706	55 = 1	R94 = .982222298	, 05 - 3 84 -
R37 -	=	113434343434	27 – L	R04 = R65 =	.0000966743	54 = (55 -)	R93 = 8028432880	יצס נ אסרי
R36 =	= .	.4383224943	26 = Z	R63 =	.43435534	53 = f	R91 = .1862426295	> 81: > 02
R35 =	= ,	.0934803409	25 = Y	R62 =	.0034554343	$52 = \{$	R90 = .9044449044	1 80 : - 01
R34 =	= .	.8976347689	24 = X	R61 =	.434311	51 =]		
R33 =	= ,	.1160706011	23 = W	R60 =	.0000114343	50 = [R89 = .05020205	79 :
R32 =	= ,	.0190409001	22 = V				R88 = .9843464265	5 78=
R31 =	= ,	.9140404091	21 = U	R59 =	.5522526580	49 = &	R87 = .6711671167	177:
R30 =	= .	.0303110303	20 = T	R58 =	.00070007	48 = "	R86 = .4760980763	3 76 :
R29 =	= .	.0542424293	19 = S	R57 =	.00006	47 = .	R85 = .9843114367	175:
R28 =	= ,	.1132726245	18 = R	R56 =	.000007	46 = '	R84 = .0418424347	74:
R27 =	= ,	.9843436398	17 = Q	R55 =	.4067	45 = ;	R83 = .4542114293	3 73 :
R26 =	= ,	.1102020205	16 = P	R54 =	.67	44 = :	R82 = .8024854743	3 72
R25 =	= .	.9843434398	15 = 0	R53 =	.21	43 = !	R81 = .4367557634	1 71 ·
R24 =	= .	.1105345011	13 = 11 14 = N	R52 =	.0703130205	42 = ?	R80 = .3476556743	3 70
R22 = R23 =		1107060711	12 - 11 13 = M	R50 =	.406	40 = .	R79 = .0606060031	69 =
R22 =	=	1140404040	12 = 1	R50 =	.6	40 = -	R78 = .7676117676	5 68 =

23-2 LETTER BANNER ("LET", "DIG" & "SYM"): This banner-printing routine, with appropriate 'compression codes' loaded in Registers 01-94, will print the letters, the digits, and 45 other characters. Each banner character printed is composed of the characters themselves. With Flag 12 set, the characters are full-height; with Flag 12 clear, they are half-height (the banner letters will be composed of lower-case letters if Flag 12 is clear). NOTE: this routine is very slow: writing a routine to print your banner is suggested. To print "Banner!", for instance, use the following routine:

01	LBL "X"	05	CF 12	09	XEQ "LET"	13	XEQ "LET"	17	33	21	END
02	SF 12	06	1	10	14	14	18	18	XEQ "SYM"		
03	2	07	XEQ "LET"	11	XEQ "LET"	15	XEQ "LET"	19	BEEP		
04	XEQ "LET"	80	14	12	5	16	SF 12	20	OFF	(62	bytes)

Instructions: Load routine and data. Set or clear Flag 12 as desired. To print a letter: enter its character code (1 - 26; see table below), XEQ "LET". To print a digit: enter the digit, XEQ "DIG". To print a symbol: enter its character code, XEQ

"SYM". To 'print' a space, enter '32', XEQ "SYM". The letter banner routine below will fit on 3 tracks; if all the compression codes are stored in data registers, 6 tracks will be needed to save them on magnetic cards. To print letters only, set SIZE 039 before reading the data cards.

CHARACTER CODES & SIMDOL	HARACTER	CODES	&	SYMBOLS	
--------------------------	----------	-------	---	---------	--

	Letters		Digits		Symbols	
1 2 3 4 5 6 7 8 9 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 = U 22 = V 23 = W 24 = X 25 = Y 26 = Z	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$3 = \leftarrow 29 = 3$ $4 = \alpha 30 = 3$ $5 = \beta 31 = 6$ $6 = \Gamma 32 = 7$ $7 = \downarrow 33 = 3$ $8 = \Delta 34 = 9$ $9 = \sigma 35 = 10$ $10 = \blacklozenge 36 = 37 = 38 = 38$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58 = : 93 =] $59 = ; 94 = 1$ $60 = < 95 =$
$\begin{array}{c} 01\\ 02\\ 03\\ 04\\ 05\\ 06\\ 07\\ 09\\ 10\\ 11\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 920\\ 22\\ 23\\ 24\\ 25\\ 27\\ 28\\ 29\end{array}$	LBL "LET" 1 X>Y? GTO 08 CLX 27 X<=Y? GTO 08 X<>Y STO 38 10 + 96 ST+ 38 32 FS? 12 ST- 38 .004 STO 10 RCL IND T GTO 10 LBL "DIG" X<0? GTO 08 10 X<=Y? GTO 08 X<>Y	32 8 33 - 34 .004 35 STO 10 36 RCL IND Y 37 GTO 10 38 LBL "SYM" 39 STO 38 40 3 41 X>Y? 42 GTO 08 43 CLX 44 11 45 X>Y? 46 GTO 04 47 CLX 48 29 49 X>Y? 50 GTO 08 51 CLX 52 48 53 X>Y? 54 GTO 05 55 CLX 56 58 57 X>Y? 58 GTO 08 59 CLX 60 65	63 C 64 9 65 X 66 G 67 C 68 9 70 G 71 C 72 1 73 X 74 G 75 C 76 1 77 X 78 G 80 3 81 - 82 8 83 L 84 6 85 4 86 + 87 G 88 1 90 2 91 +	LX 94 1 95 SY? 96 TO 08 97 SLX 98 7 99 SY? 100 TO 07 101 LX 102 23 103 SY? 104 STO 08 105 CLX 106 28 107 SCA 108 STO 08 109 CLX 110 STO 08 109 CLX 110 STO 08 109 STO 09 113 BL 04 114 CLX 115 STO 09 118 BL 05 119 CLX 120 STO 09 121 STO 09 121 STO 09 121 STO 09 121	CLX 19 + GTO 09 LBL 07 CLX 7 - GTO 09 LBL 08 "BAD CODE" PROMPT RTN LBL 09 .004 STO 10 RCL IND Y LBL 10 10 * RCL IND X XEQ 00 FRC 10 FRC PRBUF	125 ADV 126 ADV 127 RTN 128 LBL 00 129 .005 130 STO 37 131 RDN 132 LBL 03 133 10 134 * 135 ENTER 136 INT 137 X=0? 138 GTO 01 139 RCL 38 140 GTO 02 141 LBL 01 142 32 143 LBL 02 144 ACCHR 145 RDN 146 RDN 147 FRC 148 ISG 37 149 GTO 03 150 RDN 151 END
30 31	+ STO 38	62 GTO 06	92 G 93 L	BL 06 123	GTO 10	(262 bytes)

DATA: Below is the data that must be loaded for this routine. R10 is the main routine loop counter, R37 is the subroutine loop counter, and R38 is used by the routine to store the character code. R39 is not used.

R00 = 0	R03 = 0.000001	R06 = 0.011000	R09= 0.011111
R01= 0.111111	R04 = 0.100000	R07= 0.000110	R10 = (used)
R02= 0.100001	R05= 0.011110	R08= 0.111110	[continued]

	aaaaaaa a a a	aaaaaaa		านนนนนน			66666 6 6 6 6	ພ		
		999		นนนเ			9 9 9 9 9 9 9 9	ມພ		
8886 8886										
										····
Source: Bruce	Murdock	(2916)	(PPC C	J, V7N1	P27).					
R38 = (used)			R66=	4.7609	980763-01	0/0		R94= 1.	.134343434 - 01	F
R37 = (used)			R65=	4.5421	14293-01	\$		R93 = 4.	.389892222-01	Σ
R36= 4.3832249	43-01	Z	R64=	6.7116	571167 - 01	#		R92= 2.	.267987634-01	→
R35= 9.3480340	90-02	Y	R63=	7.0700	007070-02			R91= 1.	100000000-05	1
R34= 8.9763476	89–01	Х	R62=	2.1210	000000-01	!		R90 = 3.	.014041406-01	π
R33 = 1.1607060	11-01	W	R61=	0.0000	000000	-		R89= 3	.090300000-04	Ŧ
R32 = 1.9040900	10-02	V	R60=	1.1111	111111_01			R88 = 4	.040404040-01	•
R31 = 9.1404040	91-01	- U	R59=	4.1842	243470-02	£		R87 = 6	.071107060-02	1
R30 = 3.0311030	30-02	- Т	R58=	7.6761	17676-01	¥		R86 = 4	343110000-01	ì
R29 = 5.4242429	30-02	S	R50=	3.0749	967430-01	ě		R85 = 3	079860400-02	۲ ۱
R28 = 1.1327262	45-01	× R	R56=	5.0202	209030-01	d d		R84 = 1	143430000_05	e I
R27 = 9.8434363	98 _ 01	0	R55-	8.0284	132880_01	Ň		R83 = 9	843464265_01	a
$R_{26} = 1.1020202$	05_01	P	R54-	7.0601	16070_01	1		R82 - 7	031302050_02	2
R25 = 9.8434343	98_01	0	R52-	1 1030	30303-01	ч Л		R81 = 4	367557634_01	-
R24 = 1 1053450	11_01	N	R57=	1 862/	126295_01	ß		$R_{1} = 3$.	676767676_01	_
$R^{2} = 1.1404040$	40-01 11_01	ы М	ROU=	Q 0111	1/90// -01	~		к/о= 4. р79_ 2	A76556742 01	ï
$\pi 2 = 1.134/00/$	43-01	л т	K49=	2 1760	202180-02	9		K//= 0.		:
$R_{20} = 5.0404391$	12 01	J	R48=	9.5424	424295-01	8		K/6 = 4.	.060980/03-01	/
RIY = 4.3431143	43-01	1	R4 /=	3.8333	302090-02	7		R/5 = 6.	.060000000-03	•
RIS = 1.1040404	11-01	H T	R46=	9.8232	232357-01	6		R74 = 3.	434343434-01	-
R1 /= 9.8434323	53-01	G	R45=	6.1424	424293-01	5		R73 = 4.	.060600000-01	>
R16 = 1.1020202	03-01	F	R44=	3.1303	301130-01	4		R72 = 3.	434983434-01	+
R15 = 1.1424242	43-01	E	R43=	6.7434	424295-01	3		R71 = 6.	.776117667-01	*
R14= 1.1434343	98-01	D	R42=	8.7234	424245-01	2		R70 = 4.	.367980000-01)
R13 = 9.8434343	67-01	С	R41=	4.0471	14040-01	1		R69 = 9.	.867430000-05	(
R12 = 1.1424242	95-01	В	R40=	9.8232	224298-01	0		R68 = 7.	.070000000-06	1
R11 = 1.8020202	18-01	А	R39=	(not i	ised)			R67= 5.	.522526580 - 01	&
CHAPTER XXIV

INTERCHANGEABLE SOLUTIONS

24-1 <u>INTERCHANGEABLE SOLUTION ONE ("IS1")</u>: This is a program <u>outline</u>, not a program. You must adapt it to your particular application; as written, it can be used to solve for any term of an equation relating 5 variables—for more terms, use LBLS F-J and Registers 06-10. Use your own output labels and prompts. NO PRINTING. To use: <u>1</u>. XEQ "IS1". <u>2</u>. Input values as prompted, skipping the unknown term with R/S. <u>3</u>. To calculate the unknown term, press its key. <u>4</u>. To change the value of a term, key in the new value, press STO, and then press its key [to change the value of D, for example, key in the new value and press STO D (= STO 04)]. Then go to step 3. Source: John Dearing (2791) (PPC CJ, V7N8P22).

	A	"A"	"B"	"C"	"D"	"E" E
LBL "IS1"		STO 03	(Calc. A)	(Calc. C)	(Calc. E)) : R00: (not used)
SF 27		"D?" PROMPT	STO 01 "A"	STO 03 "C"	STO 05 "Е"	R01: A
PROMPT		STO 04	GTO 88	GTO 88	LBL 88	R02: B
STO 01			$\frac{\text{LBL B}}{(\text{Calc B})}$	$\frac{\text{LBL D}}{(\text{Calc}, \text{D})}$	"H=" ARCL X	R03: C
PROMPT		STO 05	STO 02	STO 04	PROMPT	R04: D
STO 02		CLX	"B" CTC 88	"D" CTO 88	END	R05: E
PROMPT		LBL A	LBL C	LBL E		

24-2 INTERCHANGEABLE SOLUTION TWO ("IS2"): Prints all new inputs, plus all outputs. To use: 1. XEQ "IS2". 2. Input values as prompted, skipping unknown with R/S.
3. To calculate the unknown term, press its key. 4. To change a value, reexecute the program, skipping all unchanged terms with R/S, and keying in the changed value when prompted; then go to step 3. Source: John Dearing (2791) (PPC CJ, V7N8P22).

	A	"A"	"B"	"C"	"D"	"E"	E
LBL "IS2" SF 27 0 STO 00		"E" XEQ 99 CLX STOP	"B" GTO 88 <u>LBL C</u> (Calc. C)	LBL E (Calc. E) STO 05 "E"	STO IND 00 FS? 22 FC? 55 RTN APCL X	R00:) R01: / R02: /	pointer A B
XEQ 99		(Calc. A)	"C"	$\frac{\text{LBL } 99}{\text{CF } 22}$	AVIEW RTN	R03:	C D
XEQ 99 "C"		"A" GTO 88	$\frac{\text{LBL D}}{(\text{Calc. D})}$	1 ST+ 00	LBL 88 " ⊢ ="	R05:	E
XEQ 99 "D"		LBL B (Calc. B)	STO 04 "D"	RCL IND 00	ARCL X AVIEW		
XEU 99		STO UZ	GTU 88	PROMPT	END	•	

To modify this program to be able to store a new value by just keying in its value and then pressing its key, rather than having to reexecute the program, the following sequence for "A" is typical: [continued] CALCULATOR TIPS & ROUTINES

LBL A, STO 01, "A", FS?C 22, GTO 88, (Calculate A), STO 01, GTO 88.

24-3 INTERCHANGEABLE SOLUTION THREE ("IS3"): NO PRINTING. 1. XEQ "IS3". 2. Input values as prompted, skipping the unknown with R/S. 3. The unknown term will be calculated and displayed automatically. All values must be rekeyed in when the program is rerun. Source: John Dearing (2791) (PPC CJ, V7N8P22).

LBL "IS3" 1.1	XEQ 99 "E"	"B" STO 02	STO 04 GTO 88	" ⊢ ?" PROMPT	R00:	storage pointer
STO 00 CF 22	XEQ 99 GTO IND 06	GTO 88 LBL 03	$\frac{\text{LBL 05}}{(\text{Calc. E})}$	STO IND 00 RCL 00	R01:	A
"A"	LBL 01	(Calc. C)	"E"	FC?C 22	R02:	В
XEQ 99 "B"	(Calc. A) "A"	"C" STO 03	STO 05 LBL 88	STO 06 ISG 00	R03:	С
XEQ 99	STO 01	GTO 88	" ⊢ ="	END	R04:	D
"C" XEQ 99	GTO 88 LBL 02	$\frac{\text{LBL 04}}{(\text{Calc. D})}$	ARCL X PROMPT		R05:	Е
"D"	(Calc. B)	"D"	LBL 99		R06:	subroutine pointer

24-4 INTERCHANGEABLE SOLUTION FOUR ("IS4"): All inputs and outputs are printed. NO PROMPTS! 1. XEQ "IS4". 2. For each known term, key in its value, then press its key. 3. To calculate the unknown term, press its key. 4. To change any term, key in its new value, then press its key; go to step 3. 5. To recall any term, press its key (recalculates it), or press "RCL", then its key.

	А	"A"	"B"	"C"	"D"	"E"		Е
LBL "IS4"		(Calc. A)++	GTO 88	STO 04	FS?C 22	: R	00:	(not used)
SF 27		STO 01	LBL C	"D"	GTO 88	R	01:7	4
"READY" PROMPT		GTO 88 LBL B	STO 03	FS?C 22	(Calc. E)) 5	12. I	-
LBL A		STO 02	FS?C 22	(Calc. D)	LBL 88		02.1	- -
STO 01		"B"	GTO 88	STO 04	"+="	R	03: (2
+		FS?C 22	(Calc. C)	GTO 88	ARCL X	R	04: I)
"A"		GTO 88	STO 03	LBL E	AVIEW		ΔΕ. τ	2
FS?C 22		(Calc. B)	GTO 88	STO 05	STOP	R	J2: I	<u>ح</u>
GTO 88		STO 02	LBL D	"E"	END			

The example shown is for an equation of 5 terms. With Labels F-J and Registers 06-10 this method will work for equations of up to 10 terms. Use your own program label and output labels. Source: John Dearing (2791) (PPC CJ, V7N8P22).

+ Functions of the value input, such as A/100, can be calculated and stored here. If you do this, recall the value (for "A", use RCL 01) before going on.

++ Example: if the equation is A = BC/DE, use this sequence of steps to calculate A: RCL 02, RCL 03, *, RCL 04, /, RCL 05, / . Rewrite the equation for each term to be calculated.

24-5 INTERCHANGEABLE SOLUTION FIVE ("IS5"): NO PRINTING. 1. XEQ "IS5". 2. Input as

prompted, skipping the unknown term with R/S. 3. The unknown term will be calculated and displayed automatically. Not practical for sensitivity analysis. Keep output labels 6 characters or fewer. NOTE: This listing is for an equation of the form A = BC/DE, which is equivalent to 1 = BC/ADE. It must be revised for an equation of another form. For terms in the numerator (B & C in this case), use XEQ a; for terms in the denominator (A, D & E here), use XEQ b. Think of a/b. Source: John Dearing (2791) (PPC CJ, V7N8P22).

[continued]

CALCULATOR TIPS & ROUTINES			103	XXIV. INTERCHANGEABLE SOLUTIONS			
LBL "IS5" CF 00 CLX "A" PROMPT X=0? XEQ b STO 01 CLX "B" PROMPT	X=0? XEQ a STO 02 CLX "C" PROMPT X=0? XEQ a STO 03 CLX "D"	PROMPT X=0? XEQ b STO 04 CLX "E" PROMPT X=0? XEQ b STO 05	RCL 02 RCL 03 * RCL 01 / RCL 04 / RCL 05 / FS?C 00 1/X CLA	ARCL 00 "F=" ARCL X PROMPT LBL a SF 00 LBL b ASTO 00 1 END	R00: output label R01: A R02: B R03: C R04: D R05: E		

24-6 INTERCHANGEABLE SOLUTION SIX ("IS6"): NO PRINTING; uses no numeric data regis-

ters. For use when every value can be directly converted to every other value with the proper conversion factor or routine. A can be converted to D, for example, without knowing B or C. For an example, see routine 18-21. Here, the program label is assigned to key 15 (LN). To use: 1. Key in the value to be converted. 2. XEQ "IS6" (E). 3. Press the key corresponding to the the value input. 4. Press the key corresponding to the desired output. See output. 5. For a new case, key in the value to be converted, press R/S, then go to step 3. Source: John Dearing (2791) (PPC CJ, V7N8P22).

А	А	В	С	D	"IS6"	Е
LBL "IS6"	GT	O D	LBL I	<u>)</u>	(Conver	t D to B)
SF 27		L B	PROM	PT	GTO D	
"A B C D"	(C	onvert B to I	D) LBL A	A	LBL C	
PROMPT	GT	O D	(Conv	vert D to A)	(Conver	t D to C)
LBL A	LB	LC	GTO I)	LBL D	
(Convert A to	D) (C	onvert C to I	D) LBL I	3	END	

24-7 INTERCHANGEABLE SOLUTION SEVEN: To solve a system of equations with more than one unknown: for example, 5 variables, any 2 of which are unknown and 3 known, related by 5 equations; each equation relating 4 of the variables. A flag will correspond to each variable—for 5 unknowns, you might use Flags 00-04. A set flag means its corresponding variable is known; clear, it is unknown. A data register will also correspond to each variable.

<u>Initialization</u>: Clear all flags corresponding to variables. Also clear Flag 22, the numeric data entry flag, and set Flag 21, the printer enable flag.

Input: For each variable, have a set of steps like these: "A?", PROMPT, FS?C 22, SF 00, STO 00. The next set will have SF 01, STO 01, etc.

Body of program: Test flags to determine the knowns and/or unknowns—branch as necessary—and use the appropriate equation once you have 3 knowns (in this example). If you know which 2 variables are the unknowns, you automatically know which 3 are knowns (and vice versa). First test for 1 variable—for example, FS? 01 [is the variable corresponding to Flag 01 (B) known?]. If <u>no</u>, follow with 4 sets of steps, the first one of which is:

FS? 02, GTO 00, (Calculate B), STO 01, SF 01, GTO 02, LBL 00;

and the second one of which is:

FS? 03, GTO 00, (Calculate B), STO 01, SF 01, GTO 09, LBL 00,

If <u>yes</u> [Flag 01 is set (B is known)], branch to a label where two more variables are tested—say 'LBL 01, FS? 02, GTO 03, FS? 03, GTO 00....'. Following this, key in the

instructions to calculate either the term corresponding to Flag 02, or the one corresponding to Flag 03. Then branch to instructions calculating the other term. LBLs 03 and 00 will lead to further flag tests, labels, and computations.

Output: Label, recall and display/print all variables. Example:

LBL 01, "A=", ARCL 00, AVIEW, "B=", ARCL 01, AVIEW,

Reference and source: For a good example of the use of this approach, see the "Equations of Motion" program in the HP-41C Users' Library Solutions Book, 'Physics', p. 39.

CHAPTER XXV

SYNTHETIC LOAD BYTES

25-1 <u>SYNTHETIC LOAD BYTES PROGRAM ("LB")</u>: "LB" is a synthetic function assembly routine. It enables the user to key up a program containing synthetic program lines simply be keying in the decimal equivalents of each byte, as determined by use of the Byte Table. Normal functions are keyed in in the ordinary manner (or can be done synthetically as well).

"LB" is included in this chapter in bar code; if the reader doesn't have a Wand, he may be able to borrow one from a friend or a dealer long enough to enter this program into memory. Saving it on magnetic cards is recommended. It can also be created using techniques found in <u>Synthetic Programming on the HP-41C</u>, by William C. Wickes; purchase of that book is recommended to those who wish to gain an understanding of synthetic programming. [Suggestion to dealers: having a copy of "LB" on mag cards for purchasers of this book to copy might be a friendly service.]

INSTRUCTIONS FOR USING LOAD BYTES ("LB"):

1. Load the "LB" program (XEQ SIZE 000 first if space is short), then press 'SHIFT GTO ...'. Switch to PRGM Mode and key in the first global label of your routine.

2. In PRGM Mode, key in the lines LBL "T", XEQ "LB", STOP; follow with 14 or more pluses (+). These +'s form a buffer into which the synthetic codes will be stored; the more synthetic bytes you want to load, the more +'s you'll need. RULE: To key in n synthetic bytes, the buffer should be at least 14 + 7 * INT (n/7) bytes. Extra +'s won't hurt if you have the memory; a shortcut is to key 14 +'s plus 1 '+' for each synthetic byte (in other words, for n synthetic bytes, key in 14 + n pluses).

3. Switch to RUN Mode and XEQ "T".

4. The "LB" program will prompt for a sequence of decimal byte codes (0-255). You may enter as many or as few bytes as you like, pressing R/S after each. After every seventh entry the program automatically stores the bytes.

5. To correct an immediately previous incorrect entry, just press SST to clear the prompt for byte 'n', then R/S; in a second you'll get a prompt for byte 'n-1' [this clever use of Flag 51 was suggested by Roger Hill (4940)].

6. Press R/S without a numeric entry when you don't want to load any more bytes, and the program will automatically finish the register and store it.

7. A "NO MORE" message indicates that further entry would overwrite the final END: you won't get this message if you used enough pluses. If you do get it, go to step 11.

8. Switch to PRGM Mode (you're at the third line below LBL "T") and SST several times to the first synthetic line. BST once to the previous '+', then press back-arrow as many times as necessary to delete these +'s and the STOP, XEQ "LB" and LBL "T" instructions. Now your program consists of your global label, the synthetic (or normal) lines just created with "LB", and an unknown number of +'s following. (You can SST to see these synthetic lines, then BST to get back to the global label.)

9. Begin keying in your normal program lines; when a synthetic line (or lines) is

next, just SST over it (them), then resume keying in normal lines. After the last line of the routine or program, other than the END, is keyed in (or SSTed over), press SST; if you see a '+', execute DEL 999 to clear all remaining pluses; then END your routine with 'SHIFT GTO ..' as usual. Your routine is now keyed in, complete with synthetic lines.

10. "LB" may be used wherever in a program you want the synthetic instructions to go. Perhaps you've keyed in several instructions, then you notice a synthetic line is needed. At this point, simply go to step 2 of these instructions and proceed.

11. A "NO MORE" message received in step 7 means you've run out of buffer and can't key in all your synthetic lines. Just R/S without an entry, then follow steps 8 and 9 as far as possible; when you run out of these synthetic lines, repeat the procedure as in step 10.

FUNCTION BYTE FORMATS: Row and column reference is to the Byte Table in this chapter.

1. <u>One-byte functions</u>: Byte 1 is from Rows 1-8 and special cases. Ex.: MEAN = 124; PROMPT = 142; the Text 0 'ultimate NOP' ("") = 240.

2. <u>Two-byte functions</u>: Byte 1 is from Rows 9-B and bytes 206-207; byte 2 is from the postfix part of any row (top half of the table for direct execution, bottom for indirect). Examples:

144, 11	1 = RCL J (111)	155,	119 =	ARCL O
144, 11	8 = RCL N	159,	96 =	TONE 6 (96)
144, 12	6 = RCL d	159 ,	109 =	TONE H (109)
145, 10	0 = STO 00 (100)	172,	0 =	FS? 00
145, 11	7 = STO M	173,	246 =	FC? IND N
145, 24	5 = STO IND M	174,	112 =	GTO IND T
146, 11	9 = ST + O	174 ,	240 =	XEQ IND T
150, 11	8 = ISG N	206,	118 =	X<> N
151, 11	7 = DSE M	206,	127 =	X<> e
152, 11	7 = VIEW M	206,	245 =	X<> IND M
154, 11	7 = ASTO M	207,	117 =	local LBL M

3. <u>Alpha character strings</u>: Byte 1 is from row F; subsequent bytes from any row (only characters from the top half of the Byte Table print; alpha strings that include any of these lower-half-of-the-table 'invisible' characters are termed non-standard; the routine descriptions list the bytes used to create these lines). Byte 1 from Row F determines the number of following bytes to include as part of the text string. Use 241 (Text 1) for a single character, as "A"; use 242 for a string of 2 characters, as "AB"; use 243 for 3 characters, as "ABC", and so on, up to a string of a maximum of 15 characters (255). For <u>append character strings</u>, byte 1 is again from Row F, and byte 2 is <u>127</u> (the append symbol). The 127 counts as a character-ter—for example, "AB" is 242, 65, 66; "HAB" is 243, 127, 65, 66. Examples from routines in this book:

"⊢◆" = 242, 127, 0 = 245, 127, 1, 105, 11, 0 "⊢×iλ**♦**" = 243, 127, 0, 0"⊢♦♦" "⊢●↓****" = 247, 127, 0, 7, 42, 42, 42, 42"⊢♦♦♦" = 244, 127, 0, 0, 0"⊢♦♦*" = 244, 127, 0, 0, 42 $" \vdash \spadesuit \clubsuit \clubsuit \clubsuit " = 245, 127, 0, 0, 0, 0$ $"\beta P \spadesuit \spadesuit \spadesuit \ref{eq:beta} = 246, 5, 80, 0, 0, 0, 0$ "⊢♦♦♦♦♦" = 246, 127, 0, 0, 0, 0, 0 = 243, 44, 2, 0"**⊢**♦♦A" = 244, 127, 0, 0, 65 "**⊢**♦♦×" = 244, 127, 0, 0, 1"θΩ" = 242, 16, 17 "**⊢**θ" = 242, 127, 16 "⊢◆∆" = 243, 127, 0, 8

4. Short-form exponents: Short-form exponents don't have the superfluous leading '1' thus saving one byte. If the number is negative, the first byte is 28 (NOT 84); the next byte is 27; if the exponent is negative, the next byte is 28; the next byte (the next 2 bytes with a 2-digit exponent) is from Row 1, Columns 0-9 of the Byte Table (bytes 16-25, equivalent to the digits 0-9, respectively) (just add 16 to the

desired digit to get its "LB" byte: if a '5' is wanted, for example, its byte number = 5+16 = 21). "E" is the equivalent of '1', but executes faster. Adjacent numbers input with "LB" must be separated with byte 0 (null) or byte 131 (ENTER).

Е	= 27	E-2 = 27, 28, 18	E38 = 27, 19, 24
– E	= 28, 27	- E2 = 28, 27, 18	- E45 = 28, 27, 20, 21
E1	= 27, 17	- E-2 = 28, 27, 28, 18	E50 = 27, 21, 16
– E1	= 28, 27, 17	E3 = 27, 19	E99 = 27, 25, 25
E2	= 27, 18	E-4 = 27, 28, 20	E-99 = 27, 28, 25, 25

5. <u>Global Labels</u>: Byte 1 is <u>192</u>; byte 2 is <u>0</u>; byte 3 is from <u>Row F</u> (use a text byte 1 unit higher than the desired number of characters); byte 4 is <u>0</u>; subsequent bytes from <u>any</u> row (only the top half of the table prints). Ex.: LBL "A#)" = 192, 0, 244, 0, 65, 35, 41; global LBL "A" = 192, 0, 242, 0, 65.

6. <u>Global GTO or XEQ</u>: Byte 1 is 29 or 30; byte 2 is from Row F; subsequent bytes are from any row (only the top half of the table prints). Ex.: GTO "A#)" = 29, 243, 65, 35, 41.

7. Local GTO or XEQ: For a short-form GTO, byte 1 is from Row B, byte 2 is 0; for XEQ or long-form GTO, byte 1 is from Row E or D, byte 2 is 0, byte 3 is from the postfix part of any row (direct execution only); GTO IND or XEQ IND: byte 1 is 174, byte 2 from postfix part of any row (top half of table for GTO IND, bottom for XEQ IND). Ex.: GTO 01 = 178, 0; GTO 99 = 208, 0, 99; XEQ IND 99 = 174, 227; local GTO M = 208, 0, 117.

8. <u>Number entry</u>: Bytes are from Row 1, Columns 0-C. Successive bytes will extend a single program line (create a multi-digit number). Use byte 0 (null) or 131 (ENTER) to terminate digit entry before starting a new program line consisting of another number. Use 28 (NOT 84) prior to digit bytes for negative numbers. Ex.: - 1.75E-10 = 28, 17, 26, 23, 21, 27, 28, 17, 16.

9. XROMS: See routines 25-3 and 25-4.

EXAMPLE: Key in routine 1-18, 'Synthetic Suspend & Reactivate Key Assignments'.

1-18 SYNTHETIC SUSPEND & REACTIVATE KEY ASSIGNMENTS ("SK" & "RK"): To

suspend all system and program key assignments, key in a register pointer, 'n', then XEQ "SK"; key assignments will be stored in R'n' and R'n+1'. To reactivate these key assignments, key 'n', XEQ "RK". Minimum SIZE is n+2. Values in X, Y & Z before keying 'n' are restored. Step 24 is nonstandard; it is decimal 243, 127, 15, 255. Source: Keith Jarett (4360) (PPC ROM).

01 LBL "SK"	07 ""	13 STO N	19 ARCL IND L	26 STO
02 SIGN	08 .	14 ASTO IND L	20 "⊢♦"	27 X<> M
03 CLX	09 X<> e	15 RDN	21 ISG L	28 STO e
04 X<>⊢	10 LBL 14	16 RTN	22 ""	29 RDN
05 XEQ 14	11 "*"	17 LBL "RK"	23 ARCL IND L	30 CLA
06 ISG L	12 X<> M	18 SIGN	*24 "⊢ Φ"	31 END

1) If necessary, load "LB" and press 'SHIFT GTO ...'.

2) Switch to PRGM Mode.

3) Key in the first three lines of the routine: LBL "SK", SIGN, CLX.

4) Since the next step is synthetic, key in LBL "T", XEQ "LB", STOP.

5) Key in pluses to form the buffer. Examine the routine listing to count synthetic bytes:

Line	Bytes	Byte Numbers	Line	Bytes	Byte Numbers
04 X<>⊢	2	206, 122	22 ""	1	240
07 ""	1	240	*24 " ⊢ Ф"	4	243, 127, 15, 255*
09 X<> e	2	206, 127	25 X<> N	2	206, 118
12 X<> M	2	206, 117	26 STO 	2	145, 122
13 STO N	2	145, 118	27 X<> M	2	206, 117
20 "⊢♦"	3	242, 127, 0	28 STO e	2	145, 127

There are 25 synthetic bytes (n=25); the buffer (number of +'s) needed is 14 + 7[INT(n/7)] = 14 + 7[INT(25/7)] = 35. (More +'s wouldn't hurt; the approximation n + 14 gives 39 pluses.) Thus, key in 35 pluses.

6) Switch out of PRGM Mode to Run Mode, then XEQ "T". See "DEC. BYTE 1.?".

7) Load the bytes, one at a time, following each with R/S. For $X <> \vdash$, key 206, R/S, 122, R/S; for "", key 240, R/S; for X <> e, key 206, R/S, 127, R/S. Do the same for all the remaining bytes shown in the table above (206, 117, 145, 118, etc.).

8) After the last desired instruction has been loaded (STO e = 145, R/S, 127, R/S), then R/S again without an entry. When execution stops, switch to PRGM Mode, see line 07 (+). The routine now exists in memory as:

01 LBL "SK"	05 XEQ "LB"	09 +	13 X<> M	17 " ⊢ Փ"	21 STO e	25 +
02 SIGN	06 STOP	10 X<> 🕇	14 STO N	18 X<> N	22 +	
03 CLX	07 +	11 ""	15 " ⊢ ♦"	19 STO F	23 +	
04 LBL "T"	08 +	12 X<> e	16 ""	20 X<> M	24 +	

and you are looking at step 07. [NOTE: This is the listing as it would print, except that X <> T is shown as it displays (X<> \vdash), and similarly, X<> [is shown as X<> M, STO \ as STO N, X<> \ as X<> N, STO T as STO \vdash , and X<> [as X<> M—see note on how Registers M, N, O, P, Q & \vdash print and view, below.] Line 11 ("") displays as T, line 15 (" $\vdash \Leftrightarrow$ ") displays as T \vdash , and line 17 displays as T \blacksquare \blacksquare .

9) Now delete steps 04-09 by SSTing to the first synthetic line (line 10), then BST once to Line 09 and press backarrow (correction) key once for each line to be deleted (6 times in this case; stop when Line 03, CLX, appears).

10) Now SST over synthetic lines and key in normal lines as you come to them. In this example, SST over the X <> +, key in ISG L, SST over "", key in . (decimal—the equivalent of zero, but it executes faster), SST over X <> e, key in LBL 14 & *, SST over X <> M and STO N, key in ASTO IND L, and so on.

11) Near the end of the routine, after SSTing over line 28 (STO e) and keying in RDN and CLA, SST once more to see a '+'; execute DEL 999 to get rid of this remnant of the buffer; if you like, SST through the routine to check your work; then press 'SHIFT GTO ..'. Switch to RUN (Normal or USER) Mode. The routine is now keyed in and ready for use.

SYMBOLS	FOR	STATUS	REGISTERS:	Display:	Μ	Ν	0	Р	Q	H
				Printer:	[\]	1	_	T

Convention used in this book: Routine listings are shown as listed by the printer, except that the status register symbols above are shown as they are displayed by the HP-41.

Source: The Synthetic Load Bytes Program ("LB") was written by Keith Jarett (4360) & William Cheeseman (4381), and appeared in the <u>PPC Calculator Journal</u>, V7N10P21, December 1980. Reproduced with permission. LOAD BYTES PROGRAM LISTING:

01	LBL "BC"	48	SF 18	95	LBL 04	142	" ⊢ ヌ"	189	STO M	
02	XEQ 01	49	FS?C 20	96	XEQ 03	143	X <> M	190	RDN	
03	X <>Y	50	SF 19	97	X<>Y	144	X <> d	191	TONE 7	
04	XEQ 01	51	X<> d	98	ENTER	145	CF 00	192	STOP	
05	-	52	E3	99	X<>IND L	146	CF 01	193	FS? 51	
06	CHS	53	*	100	RDN	147	CF 02	194	GTO 11	
07	RTN	54	DEC	101	X<>Y	148	CF 03	195	LBL 03	
08	LBL 00	55	7	102	X<> c	149	X<> d	196	FC? 22	
09	STO M	56	*	103	RDN	150	STO N	197	•	
10	"⊢***"	57	+	104	RTN	151	RTN	198	XEQ 02	
11	X<> M	58	Е	105	LBL 03	152	LBL "LB"	199	ISG X	
12	X<> d	59	-	106	16	153	CF 10	200	GTO 10	
13	FS?C 04	60	RTN	107	-	154	CF 21	201	RCL M	
14	SF 01	61	LBL 02	108	ABS	155	RCL b	202	RCL Z	
15	FS?C 05	62	INT	109	RDN	156	XEQ 00	203	XEQ 04	
16	SF 02	63	OCT	110	LBL 05	157	E	204	STO M	
17	FS?C 06	64	X=0?	111	XEQ 03	158	-	205	X<> L	
18	SF 03	65	GTO 03	112	" F ×"	159	7	206	16	
19	X<> d	66	X<> d	113	X<> M	160	/	207	+	
20	X<> M	67	4 E2	114	STO N	161	INT	208	X<>Y	
21	"►**"	68	ST+ d	115	" - AB"	162	XEQ 06	209	FS? 22	
22	X<> N	69	RDN	116	X<> N	163	E3	210	GTO 08	
23	LBL 01	70	FS?C 11	117	X<> c	164	/	211	RTN	
24	"A"	71	SF 12	118	RTN	165	+	212	LBL 11	
25	X<> M	72	FS?C 10	119	LBL 06	166	FIX O	213	RCL M	
26	STO N	73	SF 11	120	XEQ 03	167	Е	214	CLA	
27	ASHF	74	FS?C 09	121	X<> d	168	LBL 08	215	STO M	
28	RDN	75	SF 10	122	FS?C 07	169	7 E-3	216	ASTO M	
29	"⊢♦♦♦×"	76	FS? 07	123	SF 05	170	+	217	RDN	
30	RCL M	77	SF 09	124	FS?C 08	171	SF 22	218	E	
31	INT	78	FS? 06	125	SF 06	172	DSE Y	219	-	
32	LASTX	79	SF 08	126	FS?C 09	173	GTO 10	220	ENTER	
33	X<> d	80	SF 03	127	SF 07	174	"NO MORE"	221	SF 22	
34	CF 09	81	ARCL d	128	FS?C 10	175	AVIEW	222	7	
35	CF 10	82	STO d	129	SF 09	176	TONE 6	223	MOD	
36	CF 11	83	" ⊢ **"	130	FS?C 11	177	RTN	224	INT	
37	FS?C 14	84	CLX	131	SF 10	178	LBL 09	225	X>0?	
38	SF 11	85	X<> P	132	FS?C 12	179	RDN	226	GTO 09	
39	FS?C 15	86	X<> 0	133	SF 11	180	LBL 10	227	RDN	
40	SF 13	87	X<> N	134	X<> d	181	FC?C 22	228	7 E - 3	
41	FS?C 16	88	STO M	135	DEC	182	GTO 03	229	-	
42	SF 14	89	RDN	136	RTN	183	RCL M	230	ISG Y	
43	FS?C 17	90	RTN	137	LBL 03	184	"DEC. BYTE "	231		
44	SF 15	91	LBL 03	138	RCL c	185	ARCL Y	232	GTO 10	
45	FS?C 18	92	"⊢◆"	139	STO M	186	" ⊢ ?"	233	END	
46	SF 17	93	RDN	140	"⊢♦♦♦♦"	187	AVIEW		(441	bytes)
47	FS?C 19	94	RTN	141	X<> N	188	CLA			

SYNTHETIC LOAD BYTES PROGRAM By Keith Jarett (4360) & William Cheeseman (4381), PPC Calculator Journal, V7N10P21, December 1980.

) Э

-	k				1-	-BY	ΥTE	11	IST	RUCI	ric	ONS	5—					*			- 2	2–B	ΥT	Е —			ᡟ	- 3-	BY	TE→	k -	?→	1	
F	F	0	-	-	2	T	۳ _	F	4	5		V	٥		7		8	\neg	(9	F	A	F	В	F	υ	F	D	T	ы	—	۲. ۲	P	
ы	15	LBL 14	31 2	SPARE 31	47 / RCL 15	63	510 15	0 61	79 P	95 _ DEC _	95	0 111	J 111	127 +	L CLD	143 🖷	ADV	15	₩ ₩	rone 31	175 /	SPARE	191 2	GTO 14	207 0	LBL 79	223 _	1 015 04	239 O	хе <u>о</u> J 111	255 H	rEXT 15 e	Ŀ	i.s
ш	4	BL 13	30 E	8 07 01 01	146	52 > 1	10 14 14	78 N	Z	94 † FAN I	R	c	110	56 R	$\sqrt{1EW} \sum_{i=1}^{N}$	12 + 1	ROMPT 1		+	5	74 . 1	ro/xeq	× 06	ro 13,	N 90	<u>د</u>	22 +		2	110	54 E	EXT 14	Е); it
		1 <u>5</u>	1 14	K M 3(3(1.01	=	0 13 13 13 0	Σ	Σ Τ		7	<u>د</u>	и 1 09 I	+	N A	v	- DI	1	+	<u>3 El</u>	-	10 4	=	0 12 G	Σ 	DBAL X	- 2	<u>,</u>	3	1 X Z	₹ 5	(T 13 T) d	D	rs 0-7
	1		8	GT(29	12 RCI	< 61	12 STG 61	L 1	C 77	ACC	93	1 105 un	нк В H 1	125	SDI	u 141	OFI	13	8	SC] 29	, 173	FC 45	180	11 GTC 61	L 205	AL GLO	1221	E C C C C C C C C C C C C C C C C C C C	1 237	XEC H 1	1 253	12 TE) c		г (Row
	12) LBL 12	€ 28	CHS 28	+ 44 - RCL	. 60	STO 60	< 76	< [%] 76	L 92 ASIN	92	K 108	G 10	r 124	MEAN	140	AON	12	t 156	FIX 28	+ 172	FS? 44	188	GTO 60	< 204	GLOB 76	r 220	GTO	k 236	XEQ G 10	252	1 TEXT b		table
В	11	LBL 10	27	EEX 27	43 - RCL 11	59	STO 11	75	MOD 75	91 TAN	91	107	к-U F 107	123	; 0=> X	139 2	AOFF	11	155	ARCL 27	171 -	FC?C	187	GTO 10 59	203	GLOBAI 75	219	GTO 91	235	XEQ F 107	251	a TEXT 1	В	the the
A	10	LBL 09	26 Ü	26	42 * RCL 10	58 :	58 X	74 J	HMS- 74	90 Z	90 Z	106 J	<i>р-</i> к Е 106	122 Z	SIGN	138. ♦	CLRG	10	154 U	ASTO 26	170 *	FS?C 47	186 :	GTO 09 5.8	202 J	GLOBAL 74	218 Z	GTO I	234 J	ХЕ <u>0</u> Е 106	250 z	TEXT 10	A	alf of
6	t 6	BL 08	25 Û	S	41 >	57 9	ол 00 01 0	73 I	³ T	89 Y	و ا	05 1 Dr	אט 105	21 ×	خ⊼≠	37 O	SE	6	53 U	S 5	69 >	<u>ب</u>	85 9	TO 08	01 I	LOBAL	17 4	OLO	33 i	ЕQ 105	49 Y	EXT 9	6	top h
8	♦	L 07	4 0:	<u> </u>		9 8	0 0 0 2 2 2	2 H	<u> </u>	8 X-1 S	×.	4 E	104 D	- X 0	7? X	 9 9	HF P	0	0 7	EW 2	8	D 4	4 8	0 07 6	0 H 2	OBAL G	2 X 9	: : :	2 7 7	Q 104 D	8 X 2	×T 8 ↑	8	the the
	-;	06 LB 08	0 0	8 2 4	07 RC	1	07 ST 56	C 7	Ω 72 72	E 8	Σ 88	6	3 C	w 12	×□	↓ 13	AS	108	0	VI 24	. 16	A SF	7 18	06 GT	G 20	3AL GL	M 21(D 23	C XE	w 24	r 7 P	7	from
	L L	5 LBL 7 07	č . 23	7 23	8 39 6 RCL	6 55	6 STO 55	F 71	L 2+	V 87	V 87	+ 103 v-0	B 10	<u>v 119</u>	CLX	F 135	CLA	07	a 151	DSE 23	8 167	XRON 39	6 183	5 GTO 55	F 199	L GLOI	V 215	GTO 87	f 231	XEQ B 1(U 247	6 TEX		ing is
9	9	LBL 0	22	6 22	RCL 0	54	54	70	= X<=Y?	. LoG	J 86	102 V 202	A 102	118	LASTX	134	BEEP	06	150	15G 22	166	XROM 3.R	182	GTO 0 54	198	GLOBA 70	214	GTO	230	XEQ A 102	246	TEXT N /	9	ollowi
5	2	LBL 04 05	21	5 21	37 37 RCL 05	53	STO 05 53	69 E	х>ү? 69	85 L Etx	85	101 E	D1 1015	117 u	RDN M	133 8	RTN	05	149 8	ST/ 21	165 ×	XROM 3.7	181 5	GTO 04 53	197 E	GLOBAL	213 11	GTO BF	229 e	XEQ 01 101	245 u	TEXT 5 M [2	yte f(
4	4 A	^{LBL} 03 ^C	20 á	100	36 36 ♣ 36 ♣	52 4	5TO 04	68 D	(<y?< td=""><td>84 T</td><td>34</td><td></td><td></td><td>16 t</td><td>4</td><td>32 0</td><td>STOP</td><td>14</td><td>48 0.</td><td>* T *</td><td>64 🔹</td><td>(ROM</td><td>80 4</td><td>5TO 03</td><td>D 96</td><td>SLOBAL</td><td>12 T</td><td>OT?</td><td>28 d</td><td>КЕQ 10 100</td><td>44 t</td><td>CEXT 4</td><td>4</td><td>the b</td></y?<>	84 T	34			16 t	4	32 0	STOP	14	48 0.	* T *	64 🔹	(ROM	80 4	5TO 03	D 96	SLOBAL	12 T	OT?	28 d	КЕQ 10 100	44 t	CEXT 4	4	the b
3	+	3L 02	و ع		F ₃₃ #	M T	е В	57 C		ς α ε ε	Л	0 607		۲ الا	LST	+	ITER S		Œ		#	WO	m 6	0 02	5 C	OBAL	5		7 0	8	vi m	E TX	3	UD if
2	N	, 01 LE	8	3	02 RC	N	02 21 21 22	8	<u>19</u> 日	۳ ۲ ۳	Ľ.	<u> </u>		r 11	CI K	x1 13	D EN	E 0	0		. 16	M XF 35	2 17	01 GT 51	B 19	BAL GL	P 21	5	b 22	XE 99	r 24	T 2 TE	2	TI OTS
-	* 2	M LBL	D 18	2 18	34 01 RCL	1 50	01 \$STO	д 66	90 10 11	Q 82 SQR	V 82	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 98	a 114	Γ	× 130	GRA	02	140	5T+ 18	i 162	XRO 34	1 178	00 GTO 50	R 194	AL GLO	Q 210	GTO B 2	a 226	ХЕQ 98	a 242	1 TEX Y		4 is (
-	-	LBL 0	<u>17</u>	1	33) RCL (r	49 E	ST0	e 5	- 65	P 81 X 12	1 ⁸¹	1.6 ARS	1 97	5 113	X<>Y Z	• 129	RAD	01	145	5T0 17	161	XROM 33	177	GTO (49	193	, GLOBi	209	GTO 81	225	хе <u>р</u> 97	> 241	TEXT Z	-	te 17
0	0	NULL -	16 6	0 16	32 RCL 00	48 6	STO 00	64	+ 64	E 80	80	96 X/1	- ~ /	112 6	CLS	128	DEG	00	144 E	ксь 16	160	XROM 32	176 6	SPARE 48	192 6	GLOBAL 64	208 F	GTO	224 -	ХЕQ 96	240 F	TEXT 0 T	0	* By vev
L	k	0	1	<u> </u>	₽	OS'	m FF I X	X I	▼ DIR	ECT	L	<u> </u>	0		<u> </u>	*	80			ת		_⊲ POS	TE	<u>م</u> XIY	 11	NDI	I RE		I	ш		ы →		

SAMPLE BYTE TABLE BOX: For a detailed description of the Byte Table, see Section 2B, 'The Byte Table' (pp 9-16), in Synthetic Programming on the HP-41C, by William C. Wickes.

FIGURE 2-4. SAMPLE BYTE TABLE "Box" Source: Syn. Prog. on the HP-41C, By William C. Wickes

25-2 KEYING PROGRAMS WITH SEVERAL SYNTHETICS: A good procedure to use when keying up a program containing several synthetic lines is to load them all at once in the order that they occur in the program, and simply SST over them as needed when keying the program into memory ahead of the 'synthetic group' of instructions. Source: Richard Nelson (1) (PPC Calculator Journal Members Newsletter, V7N10). _____ 25-3 COMPUTE XROM "KA" & "LB" INPUTS ("XR"): This routine will figure out the decimal inputs to use for assigning, or creating in program memory, functions contained in the ROM of any HP-41 peripheral or module. The input to the routine is the function's XROM number in the form AA.BB (just as it appears as XROM AA,BB). The output is the two decimal inputs needed in "KA" [any key assignments program, such as the one in Synthetic Programming on the HP-41C (pp 44-47, 86-87)] or "LB", in the form AAA.BBB. The assignment or program step produced is for 'real' XROM, not pseudo XROM such as those produced with synthetic commands like tones. When the proper module or peripheral is connected, these assignments will work as if they had been normally assigned or keyed into program memory with the module or peripheral connected. Without the module or peripheral, pressing its assigned key or executing it in a program gives "NONEXISTENT". Example: for the printer function BLDSPEC (XROM 29,06), key in 29.06, XEQ "XR"; see 167.070; hence the two bytes to use in "KA" or "LB" are 167 and 70. Source: David Bartholomew (3666) (PPC CJ, V7N7P10).

01	LBL "XR"	06	/	11	160	16	256	21	+	26	END
02	FRC	07	INT	12	+	17	*	22	1 E3		
03	LASTX	08	LASTX	13	X<>Y	18	X<>Y	23	1		
04	INT	09	STO T	14	RCL Z	19	1 E2	24	+		
05	4	10	RDN	15	FRC	20	*	25	FIX 3		(44 bytes)

CALCULATOR TIPS & ROUTINES

25-4	YNTHETIC "XROM" INPUTS FOR "LB" (LOAD BYTES PROGRAM) ("XL"): This routine	
	llows the user to create program instructions for any XROM instruction. If	:
the tw	XROM numbers are represented by 'A' and 'B', then A, ENTER, B, XEQ "XL" p	oro-
duces	he first byte in X and the second in Y. For example, to find the bytes to	put
"ACSPE	" (XROM 29,04) into a program using "LB", key 29, ENTER 4, XEQ "XL"; output	ıt
is '16	' in X and '68' in Y; then use bytes 167, 68 with "LB" to put ACSPEC into	a
progra	. Works whether a printer is plugged in or not. Source: Roger Hill (4940)	
(PPC R	M).	

01	LBL "XL"	07 +	: 01	LBL "QR"	07	LASTX		
02	X<>Y	08 256	02	X<>Y	08	ST/ O		
03	640	09 XEQ "QR"	03	STO O	09	CLX		
04	+	10 X<>Y	04	X<>Y	10	X<> 0		
05	64	11 END	05	MOD	11	X<>Y		
06	*	(26 bytes)	. 06	ST- O	12	END	(23	bytes)

25-5 <u>SYNTHETIC "BLDSPEC" INPUTS FOR "LB" ("BL")</u>: This routine processes the seven "BLDSPEC" numbers (column print numbers) to produce the seven "LB" bytes. Remember to preceed these seven text bytes with a Text 7 byte (247). 1. Key the first BLDSPEC number, XEQ "BL"; see the first "LB" byte. 2. Key the second BLDSPEC number, press R/S; see the second "LB" byte. 3. Repeat step 2 for the remaining BLDSPEC numbers. <u>247</u> (the Text 7 byte) followed by the seven bytes just generated are the eight bytes to use with "LB" to create the appropriate text line. In a program, follow this text line with RCL M, ACSPEC (bytes 144, 117; 167, 68) to put the character into the printer buffer. EXAMPLE: Use "BL" to compute the bytes needed for the arrow symbol in routine 22-18, Solution: the BLDSPEC numbers are 120, 96, 80, 72, 7, 6, 4. Key 120, XEQ "BL", see '17'; key 96, R/S, see '227'; likewise, key the remaining numbers, following each with R/S to find the corresponding bytes.

BLDSPEC:	120	96	80	72	7	6	4
"LB" BYTES:	17	227	5	9	1	195	4

Thus, to key the synthetic BLDSPEC text line into a program, use the following bytes with "LB": 247, 17, 227, 5, 9, 1, 195, 4. Follow the text line with RCL M, ACSPEC. Source: Roger Hill (4940) (PPC ROM). See 22-18.

01	LBL "BL"	09	RCL M	17	STOP	:	01	LBL "QR"	09	CLX
02	2	10	ST+ M	18	X<>Y		02	X<>Y	10	X<> 0
03	STO M	11	1	19	RDN		03	STO O	11	X<>Y
04	X †2	12	XEQ "QR"	20	GTO 02		04	X<>Y	12	END
05	X †2	13	RCL M	21	END		05	MOD		
06	X<>Y	14	*				06	ST- O		
07	LBL 02	15	X<> Z				07	LASTX		
80	128	16	+		(39 bytes)		80	ST/ O	(2	23 bytes)
_										

25-6 SYNTHETIC FLAG INPUTS FOR "LB" ("FL"): Given the flags to be set, this routine

will output the bytes to be loaded with "LB" to create the synthetic text line that will set or clear all 56 flags in one operation. See routine 6-8, Synthetic Mass Flag Control. The use of a synthetic text line to control flags is memory efficient only if seven or more flags are to be set or cleared. To determine flag input bytes for "LB", XEQ "FL" (see zero); key the first flag to be set. If a tone sounds, the display shows a byte; press R/S for another output. When the number displayed is negative (the number of the last flag input), key the next flag and R/S. Repeat. When all flags to be set are input, the last input, <u>if</u> Flag 55 was not set, should be '56'. The seven outputs provide the seven decimal inputs to load with "LB". Remember to precede the seven bytes with '247' (the Text 7 byte).

Example: the following flags are to be set during initialization of a program; determine the bytes to input to "LB" to set them with a synthetic text line: Flags 5, 25, 26, 28, 39, 40, 44. Solution:

DO	SEE	RESULT
XEQ "FL"	0.00	(start of program)
5, R/S	-5.00	Negative — key next flag
25, R/S	4.00	Tone: first byte
R/S	0.00	Tone: second byte
R/S R/S 26, R/S 28, R/S 39, R/S	-25.00 -26.00 -28.00 104.00	<u>Tone</u> : third byte Negative — key next flag Negative — key next flag Negative — key next flag <u>Tone</u> : fourth byte
R/S	1.00	Tone: fifth byte
R/S	-39.00	Negative — key next flag
40, R/S	-40.00	Negative — key next flag
44, R/S	-44.00	Negative — all desired flags input
56, R/S	136.00	Tone: sixth byte
R/S	0.00	Tone: seventh byte
R/S	-56.00	(end of program)

Thus, the bytes to be input to "LB", including the Text 7 byte (247), are: 247, 4, 0, 0, 104, 1, 136, 0. Follow this synthetic flag text line with RCL M, STO d (which can also be created with "LB" using the bytes 144, 117; 145, 126). NOTE: All flags not specifically set are cleared. Source: Keith Jarett (4360) (PPC ROM). See 6-8.

01	LBL "FL"	13 X<> M	25 CHS	37 ""	: 01 LBL "QR"
02	CLA	14 7	26 GTO 00	38 TONE 7	02 X<>Y
03	CLST	15 X<>Y	27 LBL 13	39 STOP	03 STO O
04	LBL 00	16 –	28 X<> M	40 END	04 X<>Y
05	STOP	17 2	29 ENTER		05 MOD
06	RCL X	18 X<>Y	30 XEQ 14		06 ST- 0
07	8	19 Y†X	31 RDN		07 LASTX
08	XEQ "QR"	20 ST+ N	32 GTO 01		08 ST/ O
09	LBL 01	21 E	33 LBL 14		09 CLX
10	X<> M	22 X=Y?	34 CLX		10 x<> 0
11	X≠Y?	23 XEQ 14	35 X<> N		11 X<>Y
12	GTO 13	24 R†	36 ISG M	(65 bytes)	12 END

REFERENCE

26-1 HP-41 USER MEMORY PARTIONING: Source: 'Synthetic Programming on the HP-41C', by William C. Wickes.

N A M E 26-3 STACK REARRANGEMENTS: This listing gives all 256 rearrangements of the stack; all but 22 are 3 instructions or fewer. Source: John Dearing (2791) (PPC CJ, V7N2P22). See 7-11.

> Τ

TTTT R†, ENTER, ENTER, ENTER or R[†], ENTER, ENTER, STO T TTTX R†, ENTER, ENTER or Rt, RCL X, RCL X TTTY R[†], ENTER, STO Z TTTZ R†, STO Y, STO Z TTXT R†, ENTER, STO T TTXX STO Y, Rt, ENTER STO Y, R[†], RCL X or TTXY R†, RCL X TTXZ X<>Y, R \dagger , STO Y TTYT Rt, STO Y, STO T TTYX X<>Y, R \uparrow , ENTER or X<>Y, Rt, RCL X TTYY RDN, RCL X, R[†], ENTER or RDN, RCL X, R[†], RCL X TTYZ R†, STO Y TTZT RDN, RCL Z, STO Y TTZX X<> T, STO Y TTZY RDN, X<> Z, ENTER or RDN, X <> Z, RCL X TTZZ X<> T, STO Y, RCL Z, RDN TXTT Rt, STO Z, STO T TXTX R[†], RCL Y, RCL Y TXTY X<>Y, X<> T, STO Z TXTZ Rt, STO Z TXXT STO Y, Rt, STO T TXXX STO Z, STO Y, Rt TXXY R \uparrow , RCL Y, X<>Y TXXZ STO Y, Rt TXYT Rt, STO T TXYX STO Z, R† TXYY Rt, RCL Z, RDN TXYZ R† TXZT X<>Y, RDN, RCL Z TXZX STO Y, X<> T TXZY X <> Y, X <> TTXZZ RDN, RDN, STO T, RDN

TYTTRDN, RCL Z, STO Z TYTX X <> T, STO Z TYTY X<> T, RCL Y, RCL Y TYTZX <> Y, R[†], STO Z X<>Y, Rt, STO T TYXT STO Z, X<> T TYXX TYXY X <> Y, STO Z, R[†] TYXZ X<>Y, R† TYYT RDN, STO Y, RCL Z TYYX RDN, STO Y, X<> Z TYYY R†, RCL Z, STO Z, RDN TYYZ X<>Y, STO Y, R† TYZT RDN, RCL Z TYZX X<> T TYZY RDN, ENTER, X<> T TYZZ RDN, RCL Y, X<> T

RDN, RCL Z, STO Y, RDN TZTTTZTX RDN, RDN, RCL Y TZTY X<> T, RCL Z, RCL Y TZTZRDN, X<> Z, RCL Y, RCL Y X<> T, STO Y, RDN TZXT TZXX STO Y, RDN, X<> Z TZXY RDN, RDN, X<>Y TZXZX<> Z, STO Y, X<> T TZYT RDN, X<>Y, RCL Z TZYX RDN, X<> ZTZYY RDN, STO T, X<> Z TZYZRDN, RCL Y, R† TZZTRDN, RDN, RCL X, RCL Z TZZX X<> Z, STO Y, R^{\dagger} TZZY RDN, X<>Y, RCL X, R† TZZZ X<> T, RCL Z, STO Z, RDN

····· X ·····

XTTT Rt, STO Z, STO T, RDN XTTX R^{\dagger} , RCL X, RCL Z XTTY R†, ENTER, X<> Z XTTZ R^{\uparrow} , STO Z, X<>Y XTXT R[†], STO Z, RCL Y XTXX R†, RCL Y, STO T XTXY R†, RCL Y XTXZ R \uparrow , X<>Y, STO Z XTYT R†, STO T, X<>Y XTYX X<>Y, R[†], RCL Z XTYY R†, RCL Z, X<> Z XTYZ R $^{\uparrow}$, X<>Y XTZT R†, STO Z, RDN XTZX STO Y, X <> T, X <> YXTZY RDN, RDN, X <> ZXTZZ X<> Z, STO Y, RDN, RDN

XXTT R^{\dagger} , STO Z, X<>Y, ENTER or Rt, STO Z, X<>Y, RCL X XXTX STO Y, RDN, STO Y XXTY X<>Y, RDN, STO Y XXTZ STO Y, R^{\dagger} , X<> Z STO Y, STO Z XXXT XXXX ENTER, ENTER, ENTER or ENTER, ENTER, STO T XXXY RCL X, RCL X XXXZ ENTER, STO Z XXYT STO Z, X<>Y, X<> Z XXYX ENTER, STO T XXYY RCL Y, X<>Y, ENTER or RCL Y, X<>Y, RCL X XXYZ RCL X XXZT STO Y XXZX STO Y, STO T XXZY RCL Z, X<>Y, ENTER or RCL Z, X<>Y, RCL X XXZZ RCL Z, RDN, STO Y

XYTT R†, STO T, RDN XYTX STO Z, RDN, X<>Y X<>Y, STO Z, RDN XYTY XYTZ X<> Z, RDN, X<>Y XYXT STO Z XYXX STO T, STO Z XYXY RCL Y, RCL Y XYXZ X<>Y, RCL Y XYYT X<>Y, STO Z, X<>Y XYYX X<>Y, RCL X, RCL Z XYYY RCL Y, STO T, X<>Y XYYZ RCL Y, X<>Y XYZT (original order) XYZX STO T XYZY RCL Y, RDN XYZZ RCL Z, RDN

XZTT X<>Y, RDN, RCL Z, RDN XZTX STO Y, RDN XZTY X<>Y, RDN XZTZ X<>Y, RDN, RCL Y, RDN STO Y, X<> Z, X<>Y XZXT STO Y, RDN, STO Z XZXX XZXY RCL Z, RCL Y XZXZ RCL Z, X<>Y, STO Z XZYT RDN, X <> Y, R[†] XZYX X <> Z, RCL Z XZYY X<>Y, STO T, RDN XZYZ RCL Z, X<>Y XZZT X<> Z, STO Y, X<> Z XZZX RCL Z, RCL X, RCL Z XZZY RCL Z, ENTER, X <> ZXZZZ RCL Z, STO Z, X<>Y

••••• Y •••••

YTTT RDN, RCL Z, STO Z, RDN YTTX R[†], RCL X, R[†] YTTY R†, STO Y, RCL Z YTTZ X <> T, ENTER, X <> ZYTXT R † , ENTER, X<> T YTXX R \uparrow , RCL Y, X<> T YTXY R†, RCL Z YTXZ RDN, X<>Y, RDN X<> T, STO Z, RCL Y YTYT YTYX X<>Y, R^{\dagger} , RCL Y YTYY R†, RCL Z, STO Z YTYZ X<> T, RCL Y YTZT RDN, RCL Z, X<>Y YTZX X<> T, X<>Y YTZY RDN, X<> Z, RCL Z YTZZ X<> T, RCL Z, X<> Z

YXTT R†, STO T, X <> ZYXTX STO Z, RDN YXTY STO Z, RDN, STO T YXTZ X<> Z, RDN YXXT STO Z, X<>Y YXXX RCL X, RCL X, Rt YXXY RCL X, RCL Z YXXZ ENTER, X<> Z YXYT X<>Y, STO Z YXYX STO Z, RCL Y YXYY RCL Y, STO T YXYZ RCL Y YXZTX<>Y YXZX STO T, X<>Y YXZY X<>Y, STO T YXZZ RCL Z, X<> Z

YYTT RDN, STO Y, RCL Z, RDN YYTX RDN, STO Y YYTY RDN, STO Y, STO T YYTZ X<> Z, RDN, STO Y YYXT STO Z, RDN, ENTER or STO Z, RDN, RCL X YYXX STO Z, X<>Y, ENTER or STO Z, X<>Y, RCL X YYXY RCL Y, RCL Z YYXZ X<>Y, RCL X YYYT RDN, ENTER, STO Z YYYX X<>Y, ENTER, ENTER or X<>Y, RCL X, RCL X YYYY RCL Y, ENTER, STO Z YYYZ RCL Y, STO Y YYZT RDN, RCL X YYZX RCL Y, X<>Y, RDN YYZY RDN, ENTER, STO T YYZZ RCL Z, X<> Z, STO Y

YZTT RDN, RCL Z, RDN YZTX RDN YZTY RDN, STO T YZTZ RDN, RCL Y, RDN YZXT X<> Z, X<>Y YZXX STO T, RDN YZXY RCL Z, RCL Z YZXZ X<>Y, RCL Z, X<>Y YZYT RDN, X<>Y, RCL Y YZYX RDN, STO Z YZYY RDN, STO Z, STO T YZYZ RDN, RCL Y, RCL Y YZZT RDN, RCL Y, X<>Y YZZX RCL Z, RCL X, R† YZZY RCL Z, STO Y, RCL Z YZZZ RCL Z, STO Y, X<> Z

••••• Z •••••

ZTTT Rt, STO Y, STO Z, Rt ZTTX X<> T, STO Y, X<> Z ZTTY R†, STO Y, R† ZTTZ X<> T, STO Y, RCL Z ZTXT R†, STO Z, R† ZTXX STO Y, RDN, RDN ZTXY RDN, RDN ZTXZ RDN, RDN, STO T ZTYT R \dagger , STO Y, X<> T ZTYX X<>Y, RDN, RDN ZTYY RDN, STO T, RDN ZTYZ RDN, RCL Z, RCL Z ZTZT RDN, RDN, RCL Y, RCL Y ZTZX X <> Z, STO Y, X <> T, R[†] ZTZY RDN, RDN, STO Z ZTZZ X<> T, RCL Z, STO Z

ZXTT R†, STO Z, X<> T ZXTX STO Y, RDN, X<>Y ZXTY X<>Y, RDN, X<>Y ZXTZ X<> Z, STO Y, RDN ZXXT STO Y, X<> Z ZXXX ENTER, STO Z, Rt ZXXY RCL X, R† ZXXZ STO Y, RCL Z ZXYT X<>Y, X<> Z ZXYX ENTER, X<> T ZXYY RCL Y, X<> T ZXYZ RCL Z ZXZT X<>Y, RDN, RCL Y ZXZX ENTER, X<> T, STO Z ZXZY RCL Z, X<>Y, RCL Y ZXZZ RCL Z, STO Z

ZYTT RDN, RCL Z, X<> Z ZYTX RDN, X<>Y ZYTY RDN, STO T, X<>Y ZYTZ RDN, X<>Y, STO T ZYXT X <> ZZYXX STO T, X<> Z ZYXY RCL Y, R† ZYXZ X<>Y, RCL Z ZYYT RDN, ENTER, X<> Z ZYYX RDN, STO Z, X<>Y ZYYY RCL Y, STO Y, Rt ZYYZ X<>Y, STO Y, RCL Z ZYZT RDN, RCL Y ZYZX RDN, X<>Y, STO Z ZYZY RDN, STO Z, RCL Y ZYZZ X<>Y, RCL Z, STO Z ZZTT R†, STO Y, RCL T, ENTER or Rt, STO Y, RCL T, RCL X

ZZTX RDN, RDN, ENTER or RDN, RDN, RCL X ZZTY X<> T, RCL Z, ENTER or X<> T, RCL Z, RCL X ZZTZ RDN, RDN, STO Z, ENTER or RDN, RDN, STO Z, RCL X ZZXT X <> Z, STO Y ZZXX STO Y, RCL Z, RCL X ZZXY RCL Z, R† ZZXZ X<>Y, RCL Z, STO Y ZZYT RDN, X<>Y, ENTER or RDN, X<>Y, RCL X ZZYX X <> Z, RCL X ZZYY RCL Y, X<> T, STO Y ZZYZ RCL Z, STO Y ZZZT RDN, RCL Y, STO Y ZZZX RCL Z, ENTER, ENTER or RCL Z, RCL X, RCL X ZZZY RCL Z, ENTER, STO Z ZZZZ RCL Z, STO Y, STO Z

CALCULATOR TIPS & ROUTINES

_

122

XXVI. REFERENCE

FLAG NO.	FLAG NAME	IF SET (OR SET BY)	STATUS AT TURN-ON*
	F	ULL-USE FLAGS	
00-10	General Purpose	00-04 annunciators.	Μ,1
11	Automatic Execution	Program execution starts at turn-on.	С
12	Printer Double Wide	Prints all double wide.	С
13	Printer Lowercase	Alphabetics in lowercase letters.	С
14	Card Reader Overwrite	Writes on cards with clipped corners.	С
15]		
16			
17	Dubuur une		
18	Future use		
19			
20	J		
21	Printer Enable	Flag 55 usually set; print if possible.	2
22	Numeric Input	Numeric data entry sets flag.	С
23	Alpha Input	Alpha data entry sets flag.	С
24	Range Error Ignore	Range Error ignored.	С
25	Error Ignore	Operation not performed, flag cleared.	С
26	Audio Enable	Tones audible.	S
27	User Mode	USER Mode.	M, 1
28	Decimal vs Comma	Radix is decimal point.	M,3
29	Digit Grouping	does not show radix in Fix 0 if clear.	; M,3
	Set = YES, Clear = $NO;$	EST-ONLY FLAGS shows "NONEXISTENT" if set or clear is attemp	pted.
30	Catalog	Executing a catalog. Always tests clear.	C
31-35	Peripheral	Peripheral connected.	М
36	No Digits Displayed	$\frac{\text{\# Digits. 0 + 2 + 3 + 6 + 6 + 5}}{C + C + C + 5 + 5 + 5 + 5 + 5 + 5 + 5 + $	м.1
30	" " "		M.3
38		C C S S C C S S C C	M,1
39	11 II II	C S C S C S C S C S	M,1
40	Display Format	FIX display	M,1
41	Display Format	ENG display SCI display if both clear.	M, 1
42	Grads Mode	GRAD Mode DEC Made if both close	M,1
43	Radians Mode	RAD Mode DEG Mode Doch clear.	M,1
44	Continuous ON	XEQ ON to set; won't shut off in 10 min.	С
45	System Data Entry	System data entry. Always tests clear.	С
46	Partial Key Sequence	Partial key sequence. Always tests clear.	C
47	Shift	SHIFT Mode. Always tests clear.	C
48	Alpha Mode	ALPHA Mode.	С
49	Low Battery	Low battery.	M
50	Message	Message in display. Always tests clear.	C
51	SST DECK Made	Single-step. Always tests clear.	C
52	PRGM MODE	Input (output douigo is roady (handshake)	NA
53	1/O DSF	Pause in progress Always tests clear	NA
55	Printer Existence	Printer is plugged in.	2
* NOTES:	C = Cleared.	1 = "Master Clear" clears	flag.
	M = Maintained by Cont	inuous Memory. 2 = Flag 21 is set to match	h Flag 55
	NA = Not applicable.	at turn-on.	
	S = Set.	3 = "Master Clear" sets fl	aq.

INDEX

ROUTINE OR CHAPTER	NO.	PAGE	ROUTINE OR CHAPTER	NO.	PAGE
x	2-4	6	Block input, improved ("IB")	10-5	35
» ксн	2-4	6	Block move ("BM")	10-12	37
%CH, a use for	7-3	26	Block Operations	х	35
"-DEC" (real number to decimal)	15-5	55	Block plus ("BP")	19-8	74
"-INT" (real number to integer)	15-5	55	Block plus, little ("B+")	19-9	74
"2V" (two-variable plotting)	22-10	90	Block review and edit ("B?")	10-26	40
"55" (flag 55 toggle)	6-6	23	Block rotate ("BLR")	10-16	37
"7ENG"	4-9	16	Block rotate in either direction ("BR")	10-17	38
"7FIX"	4-9	16	Block statistics (" $B\Sigma$ ")	19-11	74
"7SCI"	4-9	16	Block, statistics (" ΣB ")	19-10	74
"=Ø" (multiple output on one or more lines)	22-24	93	Block View ("BV")	10-9	26
"?S" (synthetic size finder)	1-16	3	Block, view ("VB")	10-7	26
"?S" (synthetic test size)	3-4	11	BLOCK VIEw, Synchectic (VB)	10-16	37
"?S" (test size)	3-3		"BLR" (block roug)	10-12	37
	5 /	10	Bounding angles	16-8	62
"AD" (alpha delete last character)	12_5	49	"BP" (block plus)	19-8	74
"AL" (alphabetize X and I)	12=J XV	55	"BR" (block rotate, either direction)	10-17	38
Algebra, & Arithmetic	5-4	19	"BS" (bytes saved with a subroutine)	1-27	5
Alpha delete last character (AD)	1-5	1	BST and editing	2-3	e
Alpha Manipulations	v	19	Buffer, clearing	22-3	83
Alpha print, no scrolling	2-31	9	Buffer, nature of	22-7	83
Alpha string as indirect address	2-28	9	"BV" (block view)	10-9	36
Alpha string length	4-6	16	"BX" (block extremes)	10-18	38
Alpha string testing restrictions	5-2	19	Byte count printing	22 - 6	83
Alpha to memory ("AM")	5-1	19	Bytes	1-10	2
Alpha, view ("VA")	4-1	15	Bytes, load ("LB")	25-1	105
Alphabetize X and Y ("AL")	12-5	49	Bytes saved with a subroutine ("BS")	1-27	5
"AM" (alpha to memory)	5-1	19	Bytes, Synthetic Load	XXV	105
"AN" (column alignment)	22-15	87	"BYX" (Y†X for large values)	15-28	60
Angles, bounding	16-8	62	"B Σ " (block statistics)	19-11	74
Angles kept less than 90° or 180°	16-3	62			
"AP" (area of a parabolic segment)	16-11	63	"C?" (synthetic curtain finder)	1-17	
"AR" (area of a regular polygon)	16-13	63	"C?" (synthetic curtain finder)	8-5	30
ARCL loss of characters	5-9	21	Calculus; Geometry, Trig &	XVI	62
ARCTAN Y/X	16-7	62	Calendar-Julian date conversions ("CJ" & "JC")	20-2	70
Arithmetic & Algebra	XV	55	Calendar, print ("PC")	20-4	1
Arithmetic, chain	15-9	20	Calling different functions	3-17 VVT	75
Arithmetic, data register	9-9	54	Card Reader & Wand	21_1	79
"ASINH", "ACOSH" & "ATANH" (inverse hyperbolics)	21 9	70	Card reader current drain and wear	21_2	78
assignments clear card	4_18	18	Card stuck	21-3	78
NUTEN menta company ("AVIEW replacements)	4-18	18	Card won't read	21-5	78
AVIEW replacements (AV & AVW)	22-16	87	Catalog review, slowing	1-4	
AX (print aipha iere, x right)			Catalogs, printing	22-3	83
"B+" (little block plus)	19-9	74	"CD" (character to decimal)	5-6	20
"B?" (block review and edit)	10-26	40	"CE" (standard character set)	22-10	85
Banner, letter ("LET", "DIG" and "SYM")	23-2	98	Celsius-Fahrenheit conversions ("TEMP")	18-17	70
Banner printer ("BANR", "CHAR" and "CODE")	23-1	97	Celsius-Fahrenheit conv., both sol'ns ("TEM")	18-19	7
Banners	XXIII	97	Celsius-Fahrenheit conv., stack ("TMP")	18-18	70
"BANR" (banner printer)	23-1	97	Chain arithmetic	19-9	50
Base conversion, synthetic ("BD" and "TB")	17-1	67	Changes in programs	2-2	
Base Conversions	XVII	67	"CHAR" (banner printer)	23-1	9
Base ten, conversion to in the stack	17-2	67	Character-decimal conversions ("CD" & "DC")	5-0	2
Basic Functions & Operations	I	1	Character loss with ARCL	22 10	2
Batteries, card stuck because of low	21-3	78	Character set, standard ("CL")	1_1	0
"BC" (block clear)	10-23	38	Character, Standard, Into A	22-25	9
"BD" (base b to base 10)	10 14	27	"CI" (calendar date to Julian day number)	20-2	7
"BE" (block exchange)	15_27	60	Cleaning cards	21-5	7
"BF" (big factorials)	10-6	35	Clear assignments card	21-8	7
"BI" (block increment)	15-27	60	Clear key assignments ("KC")	1-26	
Big factorials ("Dr")	25-5	114	Clear, master	1-9	
"BL" (Synthetic BLDSFEC inputs for BD)	25-5	114	Clear multiple flags ("CFX" & "CFA")	6-3	2
DEDGEC Synthetic	22-18	89	Clear, multi-register ("CLRGX")	10-19	3
Block clear ("BC")	10-23	38	Clear registers with $CL\Sigma$	10-21	3
Block duplicate ("DUP")	10-11	36	Clear registers with no numeric labels ("CR")	10-22	3
Block, erase ("EB")	10-20	38	Clearing higher-numbered registers	9-6	3
Block exchange ("BE")	10-14	37	"CLR" (clear any flag)	6-15	2
Block, exchange ("XB")	10-13	37	"CLRGX" (multi-register clear)	10-19	3
Block extremes ("BX")	10-18	38	CLX, use RDN instead	2-18	-
Block increment ("BI")	10-6	35	$CL\Sigma$ used for multi-register clear	10-21	3
Block, input ("INBL")	10-3	35	"CM" (stack combinations)	19-14	

ROUTINE OR CHAPTER	NO.	PAGE
Block input, improved ("IB")	10-5	35
Block move ("BM")	10-12	37
Block Operations	10 N	35
Block plus ("BP") Block plus little ("B+")	19-0	74
Block review and edit ("B?")	10-26	40
Block rotate ("BLR")	10-16	37
Block rotate in either direction ("BR")	10-17	38
Block statistics ("BZ")	19-11	74
Block, statistics (" ΣB ")	19-10	74 36
Block view ("VB")	10-7	36
Block view, synthetic ("VB")	10-8	36
"BLR" (block rotate)	10-16	37
"BM" (block move)	10-12	37
Bounding angles	16-8	62
"BP" (block plus) "BP" (block rotate either direction)	10_17	74
"BS" (bytes saved with a subroutine)	1-27	5
BST and editing	2-3	6
Buffer, clearing	22-3	83
Buffer, nature of	22-7	83
"BV" (block view)	10-9	36
"BX" (DIOCK extremes)	22-6	83
Bytes	1-10	2
Bytes, load ("LB")	25-1	105
Bytes saved with a subroutine ("BS")	1-27	5
Bytes, Synthetic Load	XXV	105
"BYX" (YfX for large values)	15-28	60 74
"BZ" (DIOCK Statistics)		
"C?" (synthetic curtain finder)	1-17	3
"C?" (synthetic curtain finder)	8-5	30
Calculus; Geometry, Trig &	XVI	62
Calendar-Julian date conversions ("CJ" & "JC")	20-2	76
Calling different functions	3-17	14
Card Reader & Wand	XXI	78
Card reader current drain and wear	21-1	78
Card reads, completing	21-2	78
Card stuck	21-3	78
Card won't read	21-5	/8
Catalog review, slowing	22-3	83
"CD" (character to decimal)	5-6	20
"CE" (standard character set)	22-10	85
Celsius-Fahrenheit conversions ("TEMP")	18-17	70
Celsius-Fahrenheit conv., both sol'ns ("TEM")	18-19	71
Chain arithmetic	19-9	56
Changes in programs	2-2	6
"CHAR" (banner printer)	23-1	97
Character-decimal conversions ("CD" & "DC")	5-6	20
Character loss with ARCL	5-9	21
Character set, standard ("CE")	1_1	1
Characters, special ("SC")	22-25	93
"CJ" (calendar date to Julian day number)	20-2	76
Cleaning cards	21-5	78
Clear assignments card	21-8	79
Clear key assignments ("KC")	1_20	2
Clear multiple flags ("CFX" & "CFA")	6-3	22
Clear, multi-register ("CLRGX")	10-19	38
Clear registers with $CL\Sigma$	10-21	38
Clear registers with no numeric labels ("CR")	10-22	38
Clearing higher-numbered registers	9-6 6 15	32
"CLR" (Clear any Ilag) "CLRGY" (multi-register clear)	10-19	20
CLX, use RDN instead	2-18	6
$CL\Sigma$ used for multi-register clear	10-21	38
"CM" (stack combinations)	19-14	75

CALCULATOR TIPS & ROUTINES

ROUTINE OR CHAPTER	NO.	PAGE
"CODE" (banner printer)	22 1	07
Column alignment ("AN" & "P2")	22-15	87
"COM" (combinations, compact)	19-13	75
"COMB" (combinations)	19-12	75
Combinations ("COMB")	19-12	75
Combinations, stack ("CM")	19-13	75 75
Complex number multiplication in stack ("MC")	15-24	59
Complex quadratic equation ("QE" & "PRQE")	15-26	59
Conditional, do two steps if true	2-8	7
Conditional false, add or subtract if	2-23	9
Conversions & Shortcuts, Unit	VTTT	69
Conversions, Base	XVII	67
Copy register into another, address in X	9-10	34
Cos and sin simultaneously	16-6	62
"COSH" (hyperbolic cosine)	16-17	65
"CR" (clear registers with no numeric labels)	10-22	62 38
Crash	1-23	4
"CU" (curtain up)	8-1	29
Cube root of any number ("CURT")	15-21	58
Cubes, sum of $("\Sigma3")$	15-3	55
"CURT" (cube root of any number)	15-21	58
Ourtain, & Memory	VIII 8-5	29
Curtain finder, synthetic (C?")	1-17	3
Curtain up ("CU")	8-1	29
"D-F" (decimal degree to degree & decimal min.)	14-8	70 54
D-R	2-4	6
"DM-D" (degree & decimal min. to decimal degree)	18-14	70
Data entered in program	21-6	78
Data names ("DN")	22-11	86
Data processing, & Matrices	XI	41
Data register load and review ("LD" & "RV")	9-9 9-1	34
Data Registers	IX	32
Date, Time &	XX	76
"dB+" & "dB-" (decibel add and subtract)	5-32	61
"DC" (decimal to character)	5-6	20
DDD.MM,M—DDD.DDD Decibel add and subtract ("dB(" & "dB ")	18-16	70
Decimal-character conversions ("CD" & "DC")	5-6	20
Decimal-hex donversions, fast ("DX")	17-4	68
Decimal point and exponents	1-2	1
Decimal to fraction ("DF")	14-1	52
Decimal to fraction driver ("DFD")	14-2	52
Degrees-degrees and dec min ("DM_D" & "D_DM")	14-6	54 70
Degree-min-tenths and decimal degree conversions	18-16	70
DEL hangup	21-9	79
Delete last alpha character ("AD")	5-4	19
Delete to end of program	2-1	6
Derivative, first ("FD")	16-20	65
Determinants and inverses ("RRM")	3-14	14
"DF" (decimal to fraction)	14-1	5 2
"DFD" (decimal-to-fraction driver)	14-2	52
"DIG" (letter banner)	23-2	98
Digits, last two in SCI	1-7	2
Digits, sum of integer ("YD")	15-4	55
Display Display one text or another	4_7	16
Display mode change ("7FIX", "7SCI" & "7ENG")	4-9	16
Display mode recall ("DSPR")	4-3	15
Display mode recall ("RD")	4-4	15
Display mode save ("DSPS")	4-3	15
Display mode store ("SD") Display save temporarily	4-4	15
Display set ("DS")	4-8	16
Display test ("DT")	4-17	18
Display X & Y simultaneously ("XY" & "X?Y")	4-16	17
"DIV" (printout dividers)	22-4	86
Dividing a program into two programs	18-8	69
Dividing line ("LINE")	22-13	86
"DN" (data names)	22-11	86
Do two steps if conditional true	2-8	7
Double storage	9-8	33
"DK" (delete record)	11-2	42
"DSPR" (display mode recall)	4-8 4-3	15
"DSPS" (display mode save)	4-3	15
"DT" (display test)	4-17	18

ROUTINE OR CHAPTER	NO.	PAGE
"DUP" (block duplicate)	10-11	26
Duplicate block ("DUP")	10-11	36
Duplicating function and program names	2-12	8
"DV" (printout dividers)	22-14	86
"DX" (fast decimal-hex conversion)	17-4	68
Editing and RET	10-20	38
Editing blanks and nunctuation	2-3	6
Effect on X and Y of some functions	2-4	19
Effective interest	18_22	71
eGØBEEP printer function	22-9	85
"EN" (getting to the .END.)	8-4	30
.END., getting to the ("EN")	8-4	30
END, no	2-30	9
English units stored as metric	18-4	69
Entering without ENTER	1-12	2
Equations, solving systems of ("RRM")	11-4	45
"ER" (even round)	14-9	54
Erase block ("EB")	10-20	38
Error, to introduce into X	15-8	56
"ET" (Euler transformations)	16-14	63
Euler transformations ("ET")	16-14	63
"Even round ("ER")	14-9	54
Exchange block ("XB")	10-13	30
Exchange data register	9_9	34
Executing a numeric-labeled routine	2_10	34
Executing a series of steps more than once	2-10	, 8
"EXP" (exponent, synthetic)	15-18	58
Exponent or mantissa replace X ("XPN" & "MAN")	15-16	57
Exponent, synthetic ("EX")	15-19	58
Exponent, synthetic ("EXP")	15-18	58
Exponent, keying	1-20	3
"F+", "F-", "F*" & "F/" (fractional arithmetic)	14-7	53
"F-D" ('ruler' fraction to decimal)	14-8	54
Factorials, big ("BF")	15-27	60
Fahrenheit conversions—see Celsius		
Fast factorial factor finder ("FFFF")	15-23	59
Fast size finder ("SZ")	1-15	3
"FB" (Fibonachi series)	15-/	56
Foot and inches to foot ("FIN")	10-20	65
"FFFF" (fast factorial factor finder)	15 22	69
Fibonachi series ("FB")	15-25	59
"FIN" (feet and inches to feet)	18-2	69
First derivative ("FD")	16-20	65
Fitting 'tight' 67/97 programs	1-8	2
Five second 'pause'	2-26	9
'FIX/ENG' display mode	4-10	16
"FL" (synthetic flag inputs for "LB")	25-6	114
Flag 12 reset	6-13	25
Flag 21 use	6-14	25
Flag 55 toggle ("55")	6-6	23
Flag control, mass	6-8	23
Flag determines prompt	3-11	13
Flag inputs for "LB" ("FL")	25-6	114
Flag invert ("IF")	6-4	22
Flag set on alean with 0 on 1	6-3	22
Flag table	26 4	122
Flag toggling ("FT")	20-4	22
Flags & Tones	VT	22
Flags, reset ("RF")	6-7	23
Flags, view ("VF")	6-5	22
"FN" (print function values)	22-17	88
Fraction round, nearest	14-5	53
Fraction, round to nearest ("NF")	14-4	52
Fraction, 'ruler', to decimal ("F-D" & "D-F")	14-8	54
<pre>Fractional arithmetic ("F+", "F-", "F*", "F/",</pre>		
"RE" & "MX")	14-7	53
Fractions & Rounding	XIV	52
Fractions, reduce ("RED")	14-3	52
rrequency, summations with ("ΣF")	19-1	72
Fi (iiidy toggling) Function priority of ton may know	1 24	22
Function, test determines	2-7	כ ד
Function values, print ("FN")	22-17	, 88
Functions, calling different	3-17	14
Functions, effect of some on X and Y	2-4	6
Gaussian random number generator ("GN")	13-4	50
"GCD" (greatest common divisor)	15-13	56
"GD" (greatest common divisor)	15-13	56
Geometry, Trig & Calculus	XVI	62

CALCULATOR TIPS & ROUTINES

ROUTINE OR CHAPTER	NO.	PAGE
Cathing to the END (HENH)	0 1	20
"GN" (Gaussian random number generator)	13-4	50
Go to the end of program	2-1	6
Goose	1-3	1
Goose replacement ("SCR" & "SO")	4-14	17
Goose replacement, synthetic	4-15	17
Goose vs. (A)VIEW	4-2	15
GRAD COnversions Greatest common divisor ("GCD" & "GD")	15-13	56
Gregorian calendar conversions ("CJ" & "JC")	20-2	76
"GT" (generate a table of primes)	15-14	57
GTO, short-form with full memory	2-32	10
GTO. hangup	21-9	79
Hangup with Size, DEL or GTO.	21-9	30
Hey_decimal, synthetic ("XD")	17-5	68
Hex-NNN conversions ("NH" & "HN")	5-7	20
"HG" (high-resolution histogram)	22-8	84
Hide and uncover data registers ("HD" & "UD")	8-6	30
High-resolution histogram ("HG")	22-8	84
Histogram, high resolution ("HG")	22-8	84
"HN" (nex-NNN conversion) Hyperbolic functions ("SINH" "COSH" "TANH"	5-7	20
"ASINH", "ACOSH" & "ATANH")	16-17	65
"I/" (integer divide)	15-11	56
"IB" (improved input block)	10-5	35
"IF" (invert flag)	6-4	22
"IG" (integrate)	16-19	12
"INPL" (input foutine)	10-4	35
Indirect use of alpha labels	1-5	1
Indirect XEQ or GTO won't work for local α label	s 2-11	7
Initialization, prompt after	3-10	13
Initialization & Prompting	III	11
Input block ("INBL")	10-3	35
Input block, improved synthetic ("IB")	10-5	35
Input prompting, no stop ("NUM?" & "WRD?")	3-18	14
Input routine ("IN") Inputting in one form, using in another	3-16	14
Insert and delete record ("IR" & "DR")	11-2	42
Inserting lines before step 01	2-27	9
Integer divide ("I/")	15-11	56
Integer reverse ("IV")	15-6	55
Integers, sum of $("\SigmaI)$	15-1	55
Integrate ("IG")	16-19 VVTV	65 101
Interchangeable Solutions	18-22	71
Interference and the wand	21-16	80
Internal STOP 'final'	2-22	9
Invert flag ("IF")	6-4	22
"IR" (insert record)	11-2	42
"IS1" (interchangeable solution one)	24-1	101
"IS2" (interchangeable solution two)	24-2	107
"ISA" (interchangeable solution four)	24-5	102
"IS5" (interchangeable solution five)	24-5	102
"IS6" (interchangeable solution six)	24-6	103
Isolate Nth character ("NC")	5-5	20
"IT" (integer-sided right triangles)	16-15	64
Iteration or loop counter	2-16	8
"IV" (reverse integer digits)	15-0	
"IC" (Julian day number to calendar date)	20-2	76
"JD" (Julian day number)	20-1	76
Julian day number ("JD")	20-1	76
Julian date-calendar date conver. ("CJ" & "JC")	20-2	76
	1 26	
"KC" (synthetic key assignments clear)	1-26	5
Key assignments card reminder	1-26	5
Key assignments, suspend & reactivate ("SK"/"RK	") 1–18	3
Key assignments, typing top row	1-22	4
Key assignments, view ("VK")	1-21	4
Keying functions of missing peripherals	21-14	79
Last two digis in SCI mode	21-10	79
Last RTN or END not needed	2-9	7
LASTX not saved	19-3	73
Law of cosines	16-10	62
"LB" (synthetic load bytes)	25-1	105
"LB" XROM inputs ("XL")	25-4	112
"LB" XKOM INDUTS ("XK") "LD" (data register load)	25-3 9_1	32
(uata register road)	5-1	52

ROUTINE OR CHAPTER	NO.	PAGE
Length of alpha strings	4-6	16
Lengthen return stack ("LR")	2-33	10
Letter banner ("LET", "DIG" & "SYM")	23-2	98 98
"LG" (PPC logo)	22-19	89
"LINE" (dividing line)	22-13	86
"LO" (lock off)	1-13	2
Load and review data registers ("LD" & "RV")	9-1	32
Load Bytes ("LB") Load Bytes, Synthetic	25-1 XXV	105
Load registers with same value	10-1	35
Lock off ("LO")	1-13	2
Local alpha labels, indirect won't work	2-11	7
Local labels	2-17	8
Logo, PPC ("LG")	22-19	89
"LR" (lengthen return stack)	2-33	10
	11-1	 41
"MA" (memory to alpha)	5-1	19
"MAN" (mantissa replace X)	15-16	57
"MANT" (mantissa, synthetic)	15-18	58
Mantissa or exponent replace x ("XPN" & "MAN") Mantissa, synthetic ("MANT")	15-18	57
Mantissa, synthetic ("MT")	15-19	58
Mantissa view ("VMAN")	15-17	58
Marking overlays	1-19	3
"MARY" (Mary had a little lamb)	6-12	24
Mary had a little lamb ("MARY") Mass flag control	6-8	24
Master clear	1-9	23
Matrices & Data Processing	XI	41
Matrix input and output ("MIO")	11-3	44
Matrix routines ("M1"-"M5")	11-1	41
"MC" (multiply two complex numbers in the stack)	15-24	59
Memory partitioning	26-1	116
Memory to alpha ("MA")	5-1	19
Message, routine	2-25	9
Metric units stored	18-4	69
Miles-kilometers conversion factor, approximate	18-3	69
"MIO" (matrix input/output)	11-3	44
"MOZ" & "MO" (Mozart tunes)	6-11	24
Mozart ("MOZ" & "MO")	6-11	24
MRG behavior	21-4	78
"MS" (memory to stack)	7-10	27
"MT" (mantissa, synthetic)	15-19	58
Multiple outputs on one or more lines $("=0")$	22-24	93
Multiply by a small number	18-7	69
Multiply by the square root of two	18-9	69
Multiply, polynomial ("P*")	15-31	60
"MX" (improper fraction to mixed number)	14-7	53
"N-A" (number to its alpha form)	5-8	21
Names, duplicating	2-12	8
Names, symbol	1-3	1
Nearest fraction round	14-5	53
New number keyed in?	3-13	13
Next prime ("NP")	15-15	57
"NF" (round to the nearest fraction)	14-4	52
"NH" (NNN-hex)	5-7	20
NNN-hex conversions ("NH" & "HN")	2_30	20
No operation (NOP)	2-15	8
NOP (no operation)	2-15	8
"NP" (next prime)	15-15	57
"NUM?" (prompt for numeric input, no stop)	3-18	14
Number in X to its aloba form ("N A")	3-14 5-8	14
Numbers convert to zero or one	18-15	70
Numbers, Random	XIII	50
"NtR" & "NtS" (area of a regular polygon)	16 - 12	63
Octal-decimal real number conversions ("ROCT" & "RDEC")	17-3	68
Odd-even register exchange ("OE")	10-25	29
"OE" (odd-even register exchange)	10-25	39
OFF for power failure protection	2-19	8
One, faster	18-6	69
"OUT" (output routine)	3-7	12
Overlays, marking	1-19	3

ROUTINE OR CHAPTER	NO.	PAGE
"P*" (polynomial multiply)	15-31	60
"P+C" (compact permutations and combinations)	19-13	75
P-R "P-S" (primary-secondary register exchange)	2-4	37
"P2" (print two numbers)	22-15	87
Pack and unpack register ("PR" & "UR")	9-7	33
Paper out ("PO")	22-2	82
Paper, save while printing bytes	22-0	83 62
Parabolic segment ("AP" & "SP")	16-11	63
Partitioning of memory in the HP-41	26-1	116
'Pause', five second	2-26	9
"Pause', variable length ("VP") "PC" (print calendar)	2-0	77
"PD" (prime divisor)	15-14	57
"PE" (polynomial evaluation)	15-30	60
Percent	2-4	6
Percent change Percent difference	2-4 18-23	71
Peripherals, keying functions of missing	21-14	79
"PERM" (permutations)	19-12	75
Permutations ("PERM")	19-12	75
Permutations and combinations 19-12 to	19-14	75 75
Permutations, stack ("PM")	19-14	75
"PF" (prime factors)	15-14	57
"PHONE" (indirect use of XEQ)	9-4	32
Photocopying, yellow filter for	22-5	83 69
Pi, 4/3 of	18-10	69
PI random number generator ("RAN")	13-1	50
"PM" (stack permutations)	19-14	75
"PN" (point on a parabola)	16-9	62 82
"POLY" (polynomials)	15-29	60
Polygon, area of a regular ("AR")	16-13	63
Polygon, regular, area of ("N†S" & "N†R")	16-12	63
Polynomial evaluation ("PE")	15-30	60 60
Polynomial multiply ("PA") Polynomials ("POLY")	15-29	60
Population standard deviation	19-15	75
Positioning	1-2	1
Power failure protection	2-19	8
"PR" (pack register)	22=13 9-7	33
Prefix key, USER key as	1-11	2
Primary-secondary register exchange ("P-S")	10-15	37
Prime divisor, test, generate, and factors	15-14	57
Prime, next ("NP")	15-15	57
Print alpha if possible, but no scrolling	2-31	9
Print alpha left, X right ("AX")	22-16	87
Print calendar ("PC")	20-4	77
Print function values ("FN") Print LastX ("PRL")	22-17	83
Print multiple outputs ("=Ø)	22-24	93
Print prompt and input	22-1	82
Print sideways ("PRSW")	22-21	90
Printer Printer buffer, nature of	22-7	83
Printer column alignment ("AN" & "P2")	22-15	87
Printer compatibility	22-23	92
Printer functions, classification of	22-3	82 85
Printer functions with eGUBLER	22-3	82
Printout dividers ("DIV" & "DV")	22-14	86
Priority, function, of top row keys	1-24	5
"PRL" (print LastX Register)	22-4	83
Probability, Statistics &	XIX	72
Program clearing restrictions	8-2	29
Program ize & title ("TITLE", "SIZE?" & "T+S")	3-1	11
Program used to enter data	21-6	78 6
Programming Tips	11	6
Prompt after initialization	3-10	13
Prompt determined by a flag	3-11	13
Prompt for input, no stopping ("NUM?" & "WRD?") Prompt print	3-18 22-1	14 82
'Prompt X'	3-12	13
Prompting, and Initialization	III	11
"PRSW" (sideways printer characters)	22-21	90
"PRQE" (quadratic equation display) Punctuation and editing blanks	15-26	59 19

ROUTINE OR CHAPTER	NO.	PAGE
"QE" (complex quadratic equation)	15-26	59
"QEQ" (quadratic equation, real roots)	15-25	59
"QR" (quotient and remainder)	15-12	56
Quadratic equation, complex ("OE" & "PROE")	15-26	59
Quadratic equation, real roots ("QEQ")	15-25	59
Question subroutine ("YN")	3-8	13
Question routine, short	3-9 12-1	13
Quicksort, synthetic ("S2" & "S3")	12-3	48
Quotient and remainder ("QR")	15-12	56
R-D	2_4	6
R-P	2-4	6
"R-S" (rectangular-spherical conversion)	16-14	63
R/S to rerun a program	2-21	9
"R1". "R2" & "R3" (rapid ratio solutions)	15-20	58
"RAN" (pi random number generator)	13-1	50
Random number generator ("RN")	13-3	50
Random number generator, shortest Random number generator tester ("TR" & "RNG")	13-2	50
Random Numbers	XIII	50
Ratio solutions ("R1", "R2" & "R3")	15-20	58
"RB" (reverse block)	10-10	36
"RD" (recall display mode)	4-4	15
"RDEC" (octal-decimal conversion for real nos.)	17-3	68
RDN or R†?	2-20	9
RDN, RCL rather than CLX, RCL	2-18	- 8
Reading part of a WALL set of cards	21-11	79
Real number to decimal or integer ("-DEC"/"-INT") 15-5	55
Rearrangements, stack	26-3	118
Recall and reset to 0 or 1 Recall and store indirect ("SI" & "RI")	9-2 9-11	32
Recall display mode ("RD")	4-4	15
Recall sigma (" $R\Sigma$ ")	19-5	73
Recall, sigma (" Σ R") Reciprocel of sume of regiprocels (" Σ RECIP")	19-6	73
Reciprocal of YTX	18-12	70
Record, insert and delete ("IR" & "DR")	11-2	42
"RED" (reduce fractions)	14-3	52
Reduce fractions ("RED") Reevecuting current program	14-3	52
Reference	XXVI	116
Register d	4-5	15
Registers remaining while programming	8-3	30
Repeated multiplication or division by ten	15-10	56
Rerunning a program with R/S	2-21	9
Reset a register to zero or one	9-2	32
Resize? ("RS")	3-2	11
Return stack, lengthen & shorten ("LR" & "SR")	2-33	10
Reverse integer ("IV")	15-6	55
Review old entry before keying new one	3_15	36 14
"RF" (reset flags)	6-7	23
"RI" (recall indirect)	9-11	34
"RK" (reactivate key assignments) "RN" (random number generator)	1-18	50
"RNG" (random number generator)	13-5	51
"ROCT" (decimal to octal conversion for real no.) 17-3	68
Round, even ("ER") Round, step function	14-9	54 53
Round to nearest fraction ("NF")	14-0	52
Rounding, & Fractions	XIV	52
Routine message	2-25	9
"RS" (resize?"	3-2	45
RSUB behavior	21-4	78
RTN not needed at END	2-9	7
RIN to END RINS, loss of pending	1-2	1
"RV" (data register review)	9-1	32
Rt or RDN?	2-20	9
"RΣ" (recall sigma)	19-5	73
"S-R" (spherical-rectangular conversions)	16-14	63
"S1" (stacksort)	12-2	47
"52" & "53" (synthetic quicksort) "52" (synthetic size finder)	12-3	48 3
"SA" (stack analysis)	7-7	26
Same-value load	10-1	35
Save display temporarily "SC" (special characters)	4-5 22-25	15 95

ROUTINE OR CHAPTER

"SCE" (scroll left)	4-13	17
SCI, last two digits in	1-7	2
"SCL" (special character list)	22-15	94
Scroll left ("SCE")	4-13	17
Scrolling approximating continuous	4-14	17
Scrolling, avoid, but print alpha	2-31	9
Scrolling readability	4-12	17
"SCT" (special characters table)	22-25	93
"SCX" (special characters example)	22-15	94
"SD" (store display mode)	4-4	15
"SE" (selection without replacement)	10-24	39
Selection without replacement ("SE")	10-24	39
Self-load ("SLD")	6 15	35
"SET" (set any ring) Set or clear any flag ("SET" or "CLR")	6-15	25
Shortcuts. Unit Conversions &	XVIII	69
Short-form labels	2-17	8
Short yes/no question	3-9	13
Shorten return stack ("SR")	2 - 33	10
"SI" (store indirect)	9-11	34
Sideways print characters ("PRSW")	22-21	90
Sigma finder, synthetic (" Σ ?")	1-17	3
Sigma finder, synthetic ("Σ?")	19-4	73
Sigma recall ("RL")	19-5	73
Sigma recall (2R)	1_25	5
SIGN	2-4	6
"SINH" (hyperbolic sine)	16-17	65
Sixty minute or second display eliminated	16-5	62
Size finder, fast ("SZ")	1-15	3
Size finder ("SZE")	1-14	2
Size finder, synthetic ("?S")	1-16	3
Size finder, synthetic ("S?")	1-17	3
SIZE hangup	21-9	79
Size subroutine ("SIZE?")	3-1	11
Size test, synthetic ("?S")	3-4	12
Size, Verily, Synchetic (VS)	3-1	11
"SK" (suspend key assignments)	1-18	3
"SLD" (self-load)	10-2	35
Slowing catalog review	1-4	1
"SM" (stack to memory)	7-10	27
Small number multiply	18-7	69
Smallest of three or more numbers ("SORT")	12-4	49
"SO" & "SCR" (scroll right)	4-14	17
Solutions, Interchangeable	XX1V	101
Solve ("SV")	12_4	49
"SORT" (smallest or largest of three numbers)	XTT	47
"SP" (length of a parabolic segment)	16-11	63
Special characters ("SC", "SCT", "SCL" & "SCX")	22-25	93
Spherical-rectangular conv. ("R-S", "S-R", "ET")	16-14	63
Square root of sums of squares	15-22	59
Squares, sum of ("ΣS")	15-2	55
"SR" (shorten return stack)	2-33	10
"ST" (stack review)	7-8	26
"STACK" (stack manipulations)	7-11	27
Stack analysis ("SA") Stack evenesses are & recall ("STX", "STS"	7 = 7	20
& "STR")	7-9	27
Stack manipulations ("STACK")	7-11	27
Stack Manipulations (Sinck /	VII	26
Stack rearrangements	26-3	118
Stack review, no printer ("ST")	7-8	26
Stack save & recall, indirect ("SM" & "MS")	7-10	27
Stack sort ("S1")	12-2	47
Standard character into X	1-1	1
Standard character set ("CE")	22-10	85
Statistics & Probability	19_11	72
Statistics, block ("52")	19-10	74
Status card as first card of a set	21-7	79
Status registers, illustration	26-2	117
Step-function round	14-6	53
STO followed by register arithmetic	9-5	32
STOP made final	2-22	9
STOP vs. R/S	1-2	1
Stopwatch ("TM")	20-3	0 7/1
Store and recall indirect ("SI" & "KI")	4-4	54 15
Store display mode ("SU") "STATE STATE (stack eych , save & recal	1) 7-9	27
"SU" (substitute characters)	5-5	20
Subroutine, bytes saved with a ("BS")	1-27	5

Substitute character ("SU")

Sum of cubes (" Σ 3")

Sum of X & Y values ("XY Σ ")	19-7	74
Summation routines 19-1 to	19-11	72
Summations with frequency ("ZF")	19-1	72
"SUP" (supplement of an angle)	16-4	62
Supprement of an angle within 180° ("SUP") Support and reactivate key assignments ("SK"/"PK	10-4	3
"SV" (solve)	16-18	65
"SYM" (letter banner)	23-2	98
Symbol names	1-3	1
Synthetic Load Bytes	XXV	105
Synthetic load bytes program ("LB")	25-1	105
Synthetic (status) registers	26-2	117
"SZ" (fast size finder)	25-2 1_15	3
"SZE" (size finder)	1-14	2
"T+S"	3-1	11
"T1" - "T5" (tone routines)	6-10	23
$TAN + 90^{\circ}$	16-2	62
"TANH" (hyperbolic tangent) "TB" (base ten te base b)	17.1	67
"TC" (temperature conversions, all)	18-21	71
"TEM" (C° - F° conversions, both solutions)	18-19	71
"TEMP" (C° - F° conversion)	18-17	70
Temperature conversions 18-17 to	18-21	70
Temperature conversions, all ("TC")	18-21	71
Temperature input as C° or F° (special case)	18-20	71
Test determines function	2_7	50
Test display ("DT")	4-17	18
Test size ("?S")	3-3	11
Test size, synthetic ("?S")	3-4	11
Text ("TX")	22-12	86
Tight 67/97 programs, fitting	1-8	2
Time & Date	XX	76
Timer ("TM")	20-3	/6
Title subroutine ("TITLE")	3-1	11
"TM" (stopwatch)	20-3	76
"TMP" (C° - F° conversions, stack solution)	18-18	70
TONE assigned to top row keys	6-9	23
Tone routines ("T1" - "T5")	6-10	23
Tones, & Flags	VI	22
"TP" (test if prime) "TP" (test random number generators)	13-14	57
Triangles, solving integer-sided right ("IT")	16-15	64
Triq & Calculus, Geometry	XVI	62
Trigonometry	XVI	62
Turning OFF in PRGM Mode	2-24	9
Two-digit numbers, vertical accumulation ("V2")	22-22	92
Two numbers within a certain % of each other	18-23	90
"TX" (text)	22-12	86
Typing top row key assignments	1-22	4
"UD" (uncover data registers)	8-6	30
Unary function	1-25	5
Unit Conversions & Shortcuts	2_29	9
"UR" (unpack register)	2-25 9-7	33
Use RDN, RCL rather than CLX, RCL	2-18	8
USER key as a prefix key	1-11	2
"V2" (vertical accumulation of 2-digit numbers)	22-22	92
"VA" (alpha view) Variable length 'nause' ("VP")	4-1 2-6	15
"VB" (view block)	10-7	36
Vector kept positive	16-1	62
VER put into a program	21-15	80
Verify size, synthetic ("VS")	3-5	12
Vertical accumulation of 2-digit numbers ("V2")	22-22	92
"Vr" (View flags) View alpha ("VA")	0-5 4_1	15
View block ("VB")	10-7	36
View flags ("VF")	6-5	22
View key assignments ("VK")	1-21	4
View mantissa ("VMAN")	15-17	58
View mantissa, synthetic ("VM")	15-19	58
"VA" (View mentises, synthetic)	15-19	4 58
"VMAN" (view mantissa)	15-17	58
"VP" (variable length 'pause')	2-6	7
"VS" (synthetic verify size)	3-5	12

PAGE

55

55 55

NO.

15-4

15-1

15-2

NO. PAGE

5-5

15-3

20

55

ROUTINE OR CHAPTER

Sum of integers (" Σ I") Sum of squares (" Σ S")

Sum of integer digits ("DD")

ROUTTINE	OR	CHAPTER

WALL, resuming execution after	21-12	79
WALL, set of cards, reading part of	21-11	79
Wand, Card Reader &	XXI	78
Wand interference	21-16	80
Wand tips	21-17	80
WPRV put into a program	21-15	80
"WRD?" (prompt for alpha input, no stopping)	3-18	14
X and $\sqrt{1 + X^2}$, functions of	16-16	
X and Y alphabetize ("AL")	12-5	49
X and Y divided by ten	7-6	26
X changed to 1	7-5	26
X multiplied by a value if flag is clear	7-2	26
X operations on X	7-1	26
"XB" (exchange block)	10-13	37
"XD" (hex to decimal, synthetic)	17-5	68
XEQ, indirect use for data recall ("PHONE")	9-4	32
"XL" (XROM inputs for "LB")	25-4	114
"XPN" (exponent replace X)	15-16	57
"XR" (compute XROM "LB" inputs)	25-3	113
XROM "KA" & "LB" inputs ("XR")	25-3	113
XROM "LB" inputs ("XL")	25-4	114
"XY" & "X?Y" (display X and Y)	4-16	17
$(X,Y) \rightarrow (X-Y,Y)$	7-3	26
"XY Σ " (manual sum of X and Y values)	19-7	74

ROUTINE OR CHAPTER	NO.	PAGE
Yellow filter for photocopying	22-5	83
Yes/no question, short	3-9	13
Yes or no question subroutine ("YN")	3-8	13
"YN" (yes or no question subroutine)	3-8	13
$Y \uparrow (X/2)$	18-3	70
Y†X for large values ("BYX")	15-28	60
Zero, faster	 18-5	69
Zero-one toggle	9-3	32
Zero or one, convert to	18-15	70
"Σ3" (sum of cubes)	15-3	55
" Σ ?" (synthetic sigma finder)	1-17	3
"Σ?" (sigma finder)	19-4	73
" Σ B" (statistics block)	19-10	74
" Σ C" (Σ REG-curtain exchange)	8-6	30
"ΣD" (sum of integer digits)	15-4	55
"ΣF" (summations with frequency)	19-1	72
"SI" (sume of integers)	15-1	55

AUTHOR INDEX:

AKIMA, KIYOSHI (3456): 13-4 ALBILLO, VALENTIN (4747): 3-9, 3-14, 4-7, 4-9, 4-17, 6-6, 6-7, 7-1, 10-10, **1**3-2, **1**5-21, **1**5-24 BARTHOLOMEW, DAVID (3666): 10-15, 25-3 BERTUCCELLI, HARRY (3994): 2-33 BOLZ, JOACHIM (401): 16-6 BOULTON, BILL (700): 18-16 BURKHART, JOHN (4382): 10-22 BUTTERFIELD, JIM (1076): 13-1 CADWALLADER, TOM (3502): 1-21, 2-6 CAPPEL, JURGEN (6015): 19-6 CARRIE, CLIFF (834): 22-22 CARTER, BILL (2998): 7-9 CASSON, HENRY (5047): 18-4, 18-20 CHEESEMAN, WILLIAM (4381): 2-10, 6-3, 12-5, 22-16, 25-1 CLARK, BRUCE (5795): 7-8 CLOSE, CHARLES (3878): 1-27 DAVIDSON, JAMES (547): 15-5, 15-6, **15-7, 18-17, 19-1**2 DEARING, JOHN (2791): 1-22, 2-13, 2-14, 3-3, 3-4, 3-12, 7-11, 9-1, 9-9, 10-2, 10-3, 10-4, 10-5, 10-7, 10-19, 10-20, 13-5, 14-2, 14-3, 16-9, 19-5, 19-7,

19-10, 22-11, 22-14, 22-17, 24-1,

24-2, 24-3, 24-4, 24-5, 24-6, 26-3

"SRECIP" (reciprocal of sums of reciprocals)

- DENNES, GRAEME (1757): 16-18
- DERRICK, BILL (1393): 15-28, 18-19, 19-12
- EDELEN, ROBERT (339): 22-9
- ELDRIDGE, GEORGE (5575): 17-1
- EVANS, RAY (4928): 12-3
- FIELDS, PAUL (3114): 17-2
- FRAUNDORF, PHIL (1025): 16-14
- GORDON, RONALD (3449): 22-8, 22-10
- GREEN, DENNIS (4213): 21-4
- GROOM, ROBERT (5127): 15-25, 15-26
- HALE, MIKE (4457): 12-1
- HARRIS, CHARLES (1959): 5-3
- HERZFELD, JOHN (5428): 2-31, 2-32, 10-25, **15-26, 21-1**5
- HEWLETT-PACKARD: 1-2, 1-9, 1-10, 1-13, 1-24, 2-4, 2-6, 2-9, 2-11, 2-12, 2-17, 2-24, 3-1, 3-6, 3-7, 3-8, 3-18, 4-2, 4-18, 5-2, 6-13, 6-14, 8-2, 8-3, 9-4, 10-21, 15-7, 15-9, 15-17, 15-32, 16-8, 17-3, 18-21, 18-22, 19-1, 20-3, 21-6, 21-7, 22-1, 22-3, 22-10, 22-12, 24-7, 26-4
- HILL, ROGER (4940): 1-16, 1-17, 1-21, 3-5, 4-1, 5-6, 5-7, 6-4, 6-5, 8-5, 15-12, 15-18, 15-19, 17-5, 19-4, 20-2, 20-4, 21-8, 22-7, 25-4, 25-5

19 - 6

19-2

8-6

15-2

73

73

30

55

" ΣR " (sigma recall)

" ΣS " (sum of squares)

 Σ REG-curtain exchange (" Σ C")

NO. PAGE

HOLMES, JOSEPH (3673): 9-3 HORN, JOSEPH (1537): 7-3, 19-15 JARETT, KEITH (4360): 1-17, 1-18, 2-18, 4-4, 4-8, 5-1, 6-5, 8-5, 8-6, 12-5, 19-4, 19-14, 25-1, 25-6 JUNG, ROB (2455): 15-16 KARRAS, PHILIP (3480): 21-1 KENNEDY, JOHN (918): 9-7, 10-6, 10-12, 10-13, 10-16, 10-17, 10-23, 10-24, 11-1, 11-2, 11-3, 11-4, 13-4, 14-1, 14-7, 15-4, 15-13, 15-14, 16-17, 16-18, 17-4, 19-11, 19-14, 20-2 KENNER, HUGH (103): 16-12, 18-14 KIMMEL, RICHARD (6003): 14-8 KNAPP, RON (618): 1-15, 6-1 KOLB, BILL (265): 1-6, 1-9, 1-13, 1-20, 1-23, 1-24, 1-25, 2-1, 2-7, 2-27, 2-28, 2-29, 6-2, 6-12, 10-11, 10-14, 10-24, 12-4, 13-5, 15-2, 15-3, 15-8, 15-22, 15-29, 16-4, 16-10, 16-16, 18-5, 18-7, 18-9, 18-10, 18-12, 18-13, 19-3, 21-5, 21-9, 21-11, 21-13, 21-14 KUYT, FRITS (236): 22-5 LADRACH, PETER (5060): 4-16 LAMPMAN, DEAN (41): 23-1 LICHTENWALNER, JOEL (2957): 15-23 LIND, PAUL (6157): 1-26, 2-32 McDONALD, ROBERT (5460): 3-15 McGECHIE, JOHN (3324): 5-7 MALM, DON (1362): 13-3 MARTELLARO, JOHN (1816): 9-8, 15-16, 16-5, 18-8, 18-11 MELBOURNE CHAPTER: 2-26, 7-5, 9-2 MORRISON, SCOTT (4360): 4-3 MOTTO, DAVID (2339): 15-11

MURDOCK, BRUCE (2916): 23-2 MURPHY, NEIL (6): 18-3 NELSON, RICHARD (1): 1-4, 1-8, 1-12, 1-14, 2-2, 2-3, 2-16, 2-19, 2-20, 4-11, 4-12, 4-14, 7-10, 9-6, 15-1, 19-8, 21-2, 21-16, 21-17, 22-15, 22-19, 22-21, 25-2, 26-4 PEROS, NICHOLAS (2392): 6-10 PITTMAN, JAMES (1002): 1-7 PREDMORE, READ (5184): 16-19 REINSTEIN, CARY (2046): 6-10, 18-20, 21-15 ROSTENBACH, CURT (382): 15-10 RYEN, RON (205): 18-18 SCHWARTZ, JAKE (1820): 1-11, 5-8, 6-1, 22-20, 22-25 SCHWARTZ, RICHARD (2289): 10-9, 10-13, 10-17, 10-18, 16-18, 16-20, 19-11 SMITH, RICHARD (4856): 16-15 STEVENS, CHRIS (3005): 15-20, 19-13 SWANSON, ROBERT (5993): 6-11, 22-24 TENZER, GARY (1816): 6-10 TOCCI, DOM (189): 15-2 TRAMMELL, LARRY (6824): 10-26, 13-4, 15-27, 15-30, 15-31 TRINH, PHI (6171): 15-15 VAN ALLEN, LELAND (1319): 1-25 WALKER, DAVID (1840): 4-13 WESTEN, GERARD (4780): 5-4 WHEELER, FRED (1150): 20-1, 20-2, 21-3 WICKES, WILLIAM (3735): 2-30, 4-10, 4-15, 4-17, 5-5, 5-6, 5-9, 6-8, 6-9, 8-1, 8-4, 12-5, 12-10, 21-12, 22-18, 26-1, 26-2 WILDER, DAVE (452): 16-1, 16-2, 16-3, 16-7

- 4	2	\sim
- 1	3	U

GLOBAL LABELS USED IN THIS BOOK: ACCHR character order.

-DEC	BL	D-DM	FB	IT	N-A	PRSW	S2	SUP	VK
-INT	BLR	D-F	BD	IV	NC	QE	S3	SV	VP
2V	BI	DC	FFFF	JC	NF	QEQ	SA	SYM	VM
55	BM	DF	FIN	JD	NH	QR	SC	SZ	VMAN
7ENG	BP	DFD	FL	KC	NP	QS	SCE	SZE	VS
7FIX	BR	DIG	FN	LB	NUM?	R-S	SCL	T+S	WRD?
7SCI	BS	DIV	\mathbf{FT}	LD	N †R	R1	SCR	т1	X?Y
=Ø	BV	DN	GCD	LET	N ts	R2	SCT	т2	XB
?S	BX	DM-D	GD	LG	OUT	R3	SCX	т3	XD
ACOSH	BYX	DR	GN	LINE	OE	RAN	SD	т4	XL
AD	ВΣ	DS	GT	LO	P*	RB	SE	т5	XPN
AL	C?	DSPR	HD	LR	P+C	RD	SET	TANH	XR
AM	CD	DSPS	HG	M1	P-S	RDEC	SI	TB	XY
AN	CE	DT	HN	M2	P2	RE	SINH	TC	ΧΥΣ
AP	CFA	DUP	I/	МЗ	PC	RED	SIZE?	TEM	YN
AR	CFX	DV	IB	M4	PD	RF	SK	TEMP	dB+
ASINH	CHAR	DX	IF	M5	PE	RI	SLD	TITLE	dB-
ATANH	CJ	EB	IG	MA	PERM	RK	SM	TM	Σ3
AV	CLR	EN	IN	MAN	\mathbf{PF}	RN	SO	TMP	Σ?
AVN	CLRGX	ER	INB	MANT	PHONE	RNG	SORT	TP	ΣB
AX	CM	\mathbf{ET}	INBL	MARY	PM	ROCT	SP	TR	ΣC
B+	CODE	EX	IR	MC	PN	RRM	SR	ТX	ΣD
B?	COM	EXP	IS1	MIO	POLY	RS	ST	UD	ΣF
BANR	COMB	F*	IS2	MO	PO	RV	STACK	UR	ΣΙ
BC	COSH	F+	IS3	MOZ	PR	RΣ	STR	V2	ΣR
BD	CR	F–	IS4	MS	PRL	S-R	STS	VA	ΣRECIP
BE	CU	F-D	IS5	MT	PRM	S?	STX	VB	ΣS
BF	CURT	F/	IS6	MX	PRQE	S1	SU	VF	

TWO-CHARACTER GLOBAL LABELS USED BY H-P: These are the 2-character global labels in the HP-41, its peripherals, and all modules as of August 15, 1981.

*Ø	*9	*L	*b	С*	CO	DL	GC	LS	PV	RŤ	UO	W6	Х3
*1	*/	*M	*c	C+	CP	DR	GY	MI	Pb	Re	UV	W7	X4
*2	*?	*N	*e	С-	CS	EO	HR	NA	R2	SF	UW	W8	X5
*3	*A	*P	10	C/	СТ	EQ	HT	NE	R=	SH	WØ	W9	X6
*4	*B	*R	AO	C=	CW	E↑	IN	ON	RC	SL	W1	WA	X7
*5	*C	*S	AZ	CF	CZ	FA	JD	PH	RL	ST	W2	WB	X8
*6	*H	*W	BG	CG	DB	FF	L=	ΡI	RM	\mathbf{TF}	W3	ХØ	X9
*7	*I	*X	GO	CH	DH	FM	LN	PL	RP	TS	W4	X1	Σ+
*8	*J	*a	BT	CL	DI	FV	$^{ m LP}$	PP	RS	UG	W5	X2	Σ-

PPC ROM GLOBAL LABELS NOT IN ABOVE LISTS: PPC is a private users club that supports Hewlett-Packard personal programmable calculators and computers. One of the priceless benefits available only to members is the opportunity to help design, and then purchase, 'limited edition' calculator-related products. One of these has been the PPC ROM—a programmers 8K application module. Many of its routines are in this book; many are not. If you have the extraordinarily good fortune to come into possession of one of these ROMs, you will want to avoid labeling your own programs with the following PPC ROM labels:

+K	2D	BA	СК	CX	EP	FR	HP	L-	ML	NS	PK	RX	Sb
– B	A?	CA	CP	DP	F?	GE	HS	LF	MP	OM	PS	Rb	TN
1 K	Ab	CB	CV	E?	FI	HA	IP	MK	NR	PA	RT	SX	XE

ы	I
Ч	l
ш	l
A	I
E۲	I
\times	İ
ы	I
Η	ļ
\smile	
Ы	I
Ц	
Ш	I
Ø	
E⊣	
ы	I
EH	I
Х	I
Ш	
4	
١	
Ճ	
Н	

 \sim

_	k				1	-B	SYTE	IN	ISTI	RU	CTI	ON	s –				÷	>	<		-2	2-BYTE				>	*	3 - E	BYI	YTE + -?→			1	
F		0	-	-	5	-	Π	-	4	-	л Л	-	9	-	2		œ	2		6	F	A	_	Д		υ	-	D	-	ы		ы С	П	
ы	15 🛧	LBL 14 15	31 2	SPARE 31	47 / RCL 15	1	. 15 (13) 15 (13)	0 61	R-Р 79	95 _	DEC 95	111 0	ост J 111	127 -	CLD L	143		15	159 🌋	rone 31	175 /	SPARE	ė 161	GTO 14	207 D	LBL - 79	223 -	3ТО 95	239 o	хЕQ J 111	255 H	TEXT 19 e	Ŀ	is
ы	14 1	BL 13 4	30 E	ъ Б О С О	46 CL_14	•	4 \	78 N	Z ^۳ ®	94 1	TAN 4 7	1 0	110 110	26 E	VIEW	1 k	ROMPT	4	28 F	UZ C	74	TO/XEQ	^ 06	TO 13	N 90	\$ œ	22 +	4 D	2 38	EQ 110	54 E	EXT 14	ш); it
D	4	K ¹²	*	<u>т</u> И	1 m	4	- 13 - 1 - 13 - 1	W	Σ T	–		- ع	R 109	+	EV A	v V	- <u>p</u>	1	+ 1	и И И		04	= 6	0 12	M 2	DBAL X	1	<u>0</u> 6	7 3 2	X X 100	× 12	XT 13 T d	<u>م</u>	1s 0-7
	1	11 LB	8	GT 29	12 RCI	4 945	√ ² √		L 21	6	93 93	1 103	В HR	121	SDI	ر م	L OF	13	8 15.	SC	.17	FC 45	< 18	11 GTG	20	AL GL	22	6 10 03	1 23	H XE	253	12 TE		(Rov
	12) LBL 12	€ 28	CHS 28	+ 44 RCL	+ 44	5 60 STO	< 76	< 8 76	E 92	ASIN 92	< 108	HMS G 10	r 124	MEAN	d 140	AON	12	E 156	FIX 2 A	+ 172	FS? 44	188	GTO 60	< 204	GLOB	E 220	GT0 92	k 236	KEQ G 10	r 252	1 TEXT b		table
В	11	LBL 10	27	EEX 27	43 - RCL 11	43	59 STO 11 59	75	MOD 75	16	TAN 91	107	R-D F 107	123	: 0=> X	a 139	AOFF	11	155	ARCL	171 -	FC?C	187	GTO 10	203	GLOBAI 75	219	GTO 91	235	XEQ F 107	251	TEXT 1 a	B	the
A	10	LBL 09 10	26 Ü	26	42 * RCL 10	42 ¥	58 : STO 10 58 XX :	74 J	НМS- 74 U	Z 06	cos 90 Z	i 06	D-R E 106	122 Z	SIGN	138	CLRG	10	154 Ü	ASTO 26	170 *	FS?C 42	186 :	GTO 09 5.8	202 J	GLOBAL 74	218 Z	GТО 90	234 j	ХЕQ Е 106	250 z	TEXT 10	A	alf of
6	р	BL 08	25 O	<u>ں</u>	41 > CL 09		ر 27 10 م 10 م	73 I	³ T	89 Y	NII 9	05 i	RC 105	21 ×	żλ≠:	27	S.F.	9	53 U	REG 5	69 >	Б. с	85 g	TO 08	01 I	iLOBAL 3	17 Y	0L.	33 i	105 EQ	49 Y	ЕХТ 9 2 <u>—</u>	6	top hé
8	8 8	3L 07 L	4 6	9.0	10 <	4	<u>ນ ເ</u> ມີສ ສ	¹ 2 H	I I	× 82	X^{-1}	14 h 1	TT F	× 0	× × ×	- 10 2 2 1 2	HF C		:2 ö 1	EW 2	8	04	4 8 1	10 07 G	0 H 2	OBAL G	6 X 2	0 8	12 h 2	50 X 104 D	8 × 2	T 8 1	8	n the
6	+	, 06 LI	0	8	07 RC	- 4	07 v	0		M N	Σ 38 38 4	9 10		w 12	X=		AS	06	0 15		. 16	M SF	7 18	06 G1	G 20	BAL GL	W 21	61 88	a 23	2 XI 03 C	w 24	TT 7 TE	L	s fron
-	L	7 LBI 7 07	ä 23	7 23	8 35)6 RCL	A 39	<u>الم م</u>	F 71	<u>کے ۲</u>	V 87	Z 87	f 103	X=0 B 1	119	X CLX	135	, n	07	ä 151	DSE 23	8 167	XRC 39	6 183	05 GTC	F 199	AL GLC	V 215	GTC 87	f 231	Z XEC	U 247	6 TEX		ing i
9	9		a 22	6 22	RCL (R 38	54 54 54	102	<u></u> <u>X<=Y</u> 70	J 86	ل 1 86 86	÷ 102	Z A 103	118	LAST	N 1 34	BEED	06	i 150	1SG	166	XROM 3.8	5 182	GTO (198	, GLOB	1 214	GT0 86	₹ 230	XEQ A 102	1 246	N /	9	ollow
5	ц С	LBL 04	21 5	5 21	37 5 RCL 05	37	53 STO 05 53	69 E	X>Y? 69	85	E tX 45	101 €	LN1 +X	117 6	RDN	M L 133	RTN	05	149 i č	ST/ 21	165 2	XROM 37	181	GTO 04 53	197 E	GLOBAL 69	213 L	GTO 85	229 €	XEQ 01 101	245 L	TEXT 5 M [5	vte f
4	4 0	^{LBL 03} 04 Å	20 di	4 20	36 \$	36 19	52 52 52 55 52 52 52 52 52 52 52 52 52 5	68 D	X <y? d<="" td=""><td>84 T</td><td>CHS T 34 T</td><td>100 d</td><td>x >0 ? 00 1 00</td><td>116 t</td><td>R1</td><td>L 132 a</td><td>STOP</td><td>)4</td><td>148 où</td><td>ST*</td><td>164</td><td>XROM 36</td><td>180 4</td><td>GTO 03</td><td>196 D</td><td>GLOBAL 58</td><td>212 T</td><td>GTO 34</td><td>228 d</td><td>ХЕQ)0 100</td><td>244 t</td><td>TEXT 4 L</td><td>4</td><td>the b</td></y?>	84 T	CHS T 34 T	100 d	x >0 ? 00 1 00	116 t	R1	L 132 a	STOP)4	148 où	ST*	164	XROM 36	180 4	GTO 03	196 D	GLOBAL 58	212 T	GTO 34	228 d	ХЕQ)0 100	244 t	TEXT 4 L	4	the b
	+ ~	BL 02	19 F	0	35 # CL 03	Ħ	л _о м П _о м	57 C		33 S	<u>ب</u> س ۲	<u>э</u> 66	<u>ر</u> هي هي	15 \$	LST	+	UTER 5	3 101	17 A	L c	#	E MON	E 61	TO 02	35 C	LOBAL	11 0	01 ~	27 C	с С С С	1 3 ⊧	EXT 3	3	ND if
2	IX	L 01	8	<u>. 1</u>	4 :	m I	<u>ນ ແ</u> 	B	<u>°</u> ₽	a a	۲۳ ۲۳ ۲۳	9	<u>х б</u> П		Ū	X F	ND ×	10	5 & 14	+	:	W XI	2	0 01 G	B	DBAL GI	R 2	<u>ບໍ່ພິ</u>	5 b 22	<u>7 56</u>	2 r 24	KT 2 TI X	2	GTO II
	×	00 LBI A 02	α	2 18	i 3, 01 RCI	34	1 51 01 ST(50	В (б	99 10 11	Q 8,	sQ1 82 82	96 19	FA(98	a 114	Γ	× 130	GR2	02	Ω 146	ST.	- 162	I XR(1 175	00 GTC	B 194	AL GL(Q 210	GT(82	a 226	ХЕ <u>(</u> 98	a 242	TE) TE)		4 is
-	 •	- LBL 01	B 17	1 17	33 0 RCL	ACE 33	0 STO 49	e 65	- 9 9 9 9	P 81	<u>в x</u> 12 10	1 97	T ABS	D 113	X<>Y	129	RAD	01	B 145	STO 17	161	XROM 33	177	GTO 49	a 193	L GLOB	P 209	GTO 81	• 225	ХЕQ 97	n 241	0 TEXT Z		te 17
0	0	00 NULL	16	1 0 16	32 2 RCL 0	32 SP	3 STO 0	64	4 + 64 [80	E LN	96	5 1/X . 96	112	7 CL2	1 128	3 DEG	00	144	9 RCL	160	A XROM	176	3 SPARE	192	c GLOBAI 64	208	0 GTO 80	224	3 XEQ 96	240	T T	0	* By
	k	. <u></u>	.		F	205	STFI	X	DIR	EC	ст —	L	<u> </u>	J		*	<u>.</u>	, 		01		POS	TF	'IX	I	NDI	RE	CT ·	1	<u>н</u>	L		┥	1

XEQ IND if the byte following is from the bottom half of the table (Rows 8-F).