
CALCULATOR TIPS & ROUTINES

ESPECIALLY FOR THE HP-41C/41CV

EDITED BY JOHN DEARING

e
4

e
]

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
O
C
V
O
C
G
V
F
O
G
I
O
G
I
O
G
I
O
G
E
L
I
L
N

Photograph Courtesy Hewlett-Packard Company

CORVALLIS SOFTWARE,INC.

CALCULATOR TIPS & ROUTINES

ESPECIALLY FOR THE HP-41C/41CV

EDITED BY

John Dearing

CORVALLIS SOFTWARE, INC.
P.0. BOX 412

CORVALLIS, OREGON 97330

© Copyright 1981, Corvallis Software, Inc. All rights reserved. This book, or por-
tions thereof, may be reproduced only with written permission, except that routines
listed in this book may be stored and retrieved electronically for personal use,
and may be used in published programs if their source is acknowledged. Permission
is hereby granted to reproduce short portions for purposes of review.

Printed in the United States of America.

ii

PREFACE

What is this book? It is a collection of 'tips' and 'routines' for calculators, espe-
cially those that use RPN logic, and particularly the HP-41C and HP-41CV. It is a tech-
nical reference work to be consulted when needed, rather than a book to be read in de-

tail from cover to cover in one sitting. It is assumed the reader has already studied
the operating manuals for his calculator and peripherals. This isn't a 'how-to-program’
text, although careful study of these routines may greatly improve your programming

ability. A 'tip' is a suggestion or technique for using your calculator more effieient-
ly. Both 'programs' and 'routines' are sets of instructions to a calculator or computer
as to what operations are to be performed; a routine cannot be precisely distinguished
from a program, but routines are generally short, often-used sets of instructions, fre-
quently called as 'subroutines' by programs. A routine can be thought of as a 'function'
that supplements the computing machine's instruction set. It is recommended that the new
user of this book read the contents, then leaf through the book to become familiar with
what it contains. Later, he should review it more carefully, noting interesting entries.

How was this book made possible? This book is an independent effort, not sponsored by
Hewlett-Packard Company or by PPC, the calculator/personal computer users club. However,

it would not exist without their help and support. Some of the material in this volume
has been used courtesy of H-P; most of it has been contributed by members of PPC. It
has been written as a service to all calculator users, to bring together in one volume

as many tips and routines as possible, and thus to bridge the gap between operating man-

uals and books of programs. The numbers after contributors' names are their membership

numbers in PPC.

Conventions used: Routine listings are shown as listed by the 82143A Printer, with two

exceptions: labels are underlined, not preceded by a diamond; and certain synthetic
status registers are shown as they display--see page 108. The first word of the title
of every routine using synthetic instructions is 'synthetic'. For more about this topic,

read the Foreword, then Chapter XXV. Many readers may wish not to use synthetics, but
these instructions and routines using them are too useful to leave out.

How to order copies of this book: Please place all orders in English. The price is $15
postage-paid to North American addresses, US$20 airmail-postage-paid elsewhere. Foreign
orders must include a check or money order drawn on a U.S. bank--see your bank or post
office. Inquiries by dealers and overseas distributors are invited. Please send all or-

ders and inquiries tos: CORVALLIS SOFTWARE, INC., P.O0. BOX I4td2, CORVALLIS OR 97330, USA.

Contributions are solicited: Submittals of tips and routines for future volumes are re-
quested. Also, should Hewlett-Packard produce a hand-held or portable personal computer,
tips and routines for it or them will be wanted. With each contribution, please include
a title, an explanation, an example, an instruction listing, your name/address/telephone
number, and a signed release statement (on the same sheet, if possible). The release
should read: "I, (your name), hereby give permission to Corvallis Software, Inc., to

include my tip or routine, (title here), in any book it may publish. They may modify it

as they deem necessary. They are under no obligation to use or return this material. If

they publish it, they must credit me with my work (unless I desire otherwise), and they

must mail me a free copy of the book(s), when published. They are under no further ob-
ligation to me.” Signed, (your name, both signed and printed or typed).

Pocket Byte (Hex) Table: A miniature Byte Table (see page 112) is available; it is 62
mm by 109 mm (about 23 by 4% in), double-sided, with a heavy plastic surface. It fits
easily alongside the HP-41 in its case, so that one can always have it with the calcu-

lator. The price is $3 for 1, $4 for 2, or $5 for 3. Deduct one dollar from each order

if you enclose a self-addressed, stamped envelope. (International orders: pay with a
check or money order drawn on a U.S. bank.) Send orders to: KEITH JARETT, DEPARTMENT
T&R, 1540 MATHEWS AVENUE, MANHATTAN BEACH, CA 90266 USA.

Disclaimer: The material in this book is supplied without representation or warranty of
any kind. Corvallis Software, Inc., assumes no responsibility and shall have no liabil-

ity, consequential or otherwise, arising from the use of any material in this book.

iii

DEDICATTION

I dedicate this book to the memory of my dear brother,

DONALD ALAN DEARING

November 23, 1953 — August 16, 1978

For some we loved, the loveliest and the best

That from his Vintage rolling Time hath prest,
Have drunk their Cup a Round or two before,

And one by one crept silently to rest.

(The Rubaiyat of Omar Khayyam—the 5th edition
of the translation by Edward FitzGerald)

He shall return no more to his house;

Neither shall his place know him anymore.

(Job 7:10)

ACKNOWLEDGMENTS

I wish to thank the Corvallis Division of the Hewlett-Packard Company for their
permission to reproduce material from HP KEY NOTES and other sources. I thank the
members of PPC, the independent personal computing users group for enthusiasts and
programmers, for the enormous amount of material, ideas and support they have
offered. Particular mention must be made of Richard Nelson, who founded PPC (then

known as the HP-65 Users Club) in June 1974, Without him, this book would never

have been written. Too many members have contributed to this volume to name them
all, but the following deserve special mention: Valentin Albillo, Roger Hill, Keith
Jarett, John Kennedy, Bill Kolb, Jake Schwartz, Richard Schwartz, and William Wickes.

I particularly thank Dr. Wickes for permission to reproduce material from his book,
"Synthetic Programming on the HP-41C'". Finally, I want to express publicly my
appreciation of the love and support of my wife, Peggy, but words fail me: how do
you thank someone for having an enduring faith in you?

If you would like to receive a free sample issue of the PPC CALCULATOR JOURNAL,

plus membership information, send a self-addressed 9 x 12 inch envelope (it may be
folded to fit inside a business envelope) to PPC CALCULATOR JOURNAL

Department T&R
2545 West Camden Place

Santa Ana CA 92704

USA

For addresses inside the United States, place first class postage for 2 oz on the
envelope; for all other addresses, enclose an International Reply Coupon for 2 oz
(57 g) of airmail postage. Please do not include a note or letter.

iv

FOREWORD

SYNTHETIC PROGRAMMING

New users of the HP-41C/V, and indeed many experienced users, will be surprised
upon reading the program listings in this book to encounter a number of 41C pro-
gram lines that they do not recognize. 'STO M'" and "RCL b", for example, can not

be found in the HP=41C/V owner's manuals; yet they are well defined, quite execut-
able and useful functions. They can be assigned to keys, recorded on cards, etc.--
in short, they possess all of the properties of '"normal" functions. These new func-
tions are called "synthetic functions', because they are created in the calculator
memory by synthesizing together combinations of program bytes that can't be obtained
with ordinary keystrokes. A "RCL b" is the result of combining the "RCL" prefix with

the "b" postfix (as found normally in "LBL b").

"Synthetic programming" simply refers to any use of synthetic functions in HP-41C/V
programming. Stated most concisely, the synthetic program lines constitute an ex-
tension of the normal HP-41 function set. Their usefulness depends on the particu-
lar application, and on the programmer's creativity--just like any other function.
If a programmer doesn't have a use for the "LN'" function, he doesn't really care
whether it's available. But if he needs it, there's no substitute for it. The same

applies to synthetic functions. They perform certain operations--if you can use
them, they're great; if you can't, you can forget about them.

The applications of synthetic functions fall into two general categories: program
enhancement, and user-machine interaction. For program enhancement, synthetic func-

tions perform certain tasks faster than normal functions, and other tasks that nor-
mal functions can't do at all. An example of the latter is the function "RCL d",
which recalls a number representing the status of all 56 user and system flags into
the X-register. This number can be restored back to its origin at any time via a
"STO d" line-=thus the user can control the configuration of all HP-41 flags with a
single program line or keystroke. The second class of application is in user-
machine interaction. An example is synthetic key assignments, where multi-keystroke
operations such as GTO IND X (5 keystrokes) can be assigned to a key for single
keystroke execution or program entry. The list of examples of applications for syn-
thetic programming is too long for description here--the routines elsewhere in this
book serve as prime examples.

The techniques of creating synthetic instructions, which execute on all HP-41C's
and 41CV's, have gone through a considerable evolution, primarily through the
efforts of members of the PPC. The state-of-the-art at present is represented by
the "LB" program (pages 105-113), where synthetic line generation is highly auto-
mated, the user having only to enter a series of decimal numbers to identify the
byte combinations he desires. Thus the routines in this book can be entered without
the user having to understand the principles underlying synthetic programming.

A user wishing to learn the theory of synthetic programming, including details of
the purpose and applications of the synthetic functions, is referred to the current
and back issues of the PPC Calculator Journal as described in the Acknowledgments
and Introduction of this book. A unified description of synthetic programming, in-
cluding a detailed description of the operating system of the HP-41C/V, is presented
in Synthetic Programming on the HP-41C, by William C. Wickes. The book is available
from LARKEN PUBLICATIONS, DEPARTMENT T&R, 4517 NW QUEENS AVENUE, CORVALLIS OR 97330,
for $10.00 postpaid. (For airmail delivery, include $1.00 additional for the USA,
Canada and Mexico, $2.00 for Europe and South America, $3.00 elsewhere.)

William C. Wickes

Vv

INTRODUCTTIGON

The forerunner of the "personal computer" was the HP-65 fully programmable pocket
calculator announced in January 1974 by Hewlett-Packard. The HP-65 was the first of
a class of machines often described as personal programmable calculators, or PPC's.
The HP-65 moved programming from the company computer center into everyones shirt
pocket. Today, many "personal computers" that are purchased with the end users
funds are designed to be used on a table top connected to the AC power line. A1l
these "personal computers" are inherently limited in speed and memory capacity
because of the financial Timits of their intended users. An individual can not
afford the type of machine used by business and industry. These limits, and the
large numbers of users programming these machines, has created the romantic
attitude that is accurately described by the user who said, "If I am clever
enough I can devise a program to solve almost any problem". The total man hours
spent programming personal computers exceeds all man hours spent in programming
all computers prior to 1974. With many hundreds of thousands of users writing
programs, it is not surprising that a Targe number of tips and routines have been
developed.

The problem with so many programmers developing thousands of tips, techniques,
and routines is that there is no practical method of compiling and publishing
this material. It almost seems that the more skilled a programmer becomes, the
more he or she realizes that there is never enough time to develop all the ideas
that come to mind. Because of this, most experienced users of PPC's are eager
to add programs and routines to their personal library. Todays hardware is so
powerful and physically small that the machine fits into a pocket or small corner
of a brief case, but the software fills a filing cabinet.

In the past, the rapid developement of improved models of PPC's discouraged the
publishing of books on the subject, because the machine would be out of production
shortly after the book reached the market. Most publishers do not want to publish
a book dedicated to one machine. If a typical PPC has a life of less than 2% years,
it is almost impossible to produce a book and market it with financial success. It
takes a minimum of one year for the user community to master a new machine. Add
to that a year to produce the book and you have the two year minimum time required
to produce a quality product.

The quality product in this case is a collection of practical tips and routines
compiled from all available resources. By not 1imiting his work to ideas from one
individual, John Dearing has been able to draw from the whole user community. This
work must be a labor of love and produced using fast and simple production methods,
rather than slick paper and colorful graphics.

Many of the tips and routines included in this book have come from PPC members,
with permission. This group of users is from the oldest world-wide computer club
and they are famous for their super efficient applications of PPC's. One activity
of PPC is the discovery and publishing of unsupported features, which has lead to
an HP-41C/CV activity known as Synthetic Programming. Thousands of users have
tested the routines published in PPC's monthly Journal, the PPC Calculator Journal,
and there hasn't been a single machine harmed in any way using these unique routines.
I am happy to see that John Dearing has succeeded in making this material available
to the whole user community.

Richard J. Nelson

Founder of PPC and

Editor of PPC Calculator Journal

vi

CONTENTS

———S=Y=DNGDGHD GE GDGGDDTGG GED SGDGGHDGGTDDGDSGG--—---G--———G-——————

IT.
ITT.

VI.
VII.

VIII.
IX.

XTI.
XIT.

XITI.
XIV.
XV.

XVI.
XVII.

XVIII.
XIX.
XX.

XXT.
XXIT.

XXIIT.
XXIV.
XXV,

XXVI.

PREFACE . .
ACKNONLEDGMENTS
DEDICATION
FOREWORD . .
INTRODUCTION
CONTENTS

BASIC FUNCTIONS & OPERATIONS .
PROGRAMMING TIPS . .
INITIALIZATION & PROMPTING
DISPLAY
ALPHA MANIPULATIONS .
FLAGS & TONES . .
STACK OPERATIONS .
MEMORY & CURTAIN
DATA REGISTERS . . .
BLOCK OPERATIONS . . .
MATRICES & DATA PROCESSING .
SORTING . . e e e .
RANDOM NUMBERS . .
FRACTIONS & ROUNDING
ARITHMETIC & ALGEBRA . .
GEOMETRY, TRIG & CALCULUS
BASE CONVERSIONS . .
UNIT CONVERSIONS & SHORTCUTS
STATISTICS & PROBABILITY
TIME & DATE
CARD READER & WAND
PRINTER .
BANNERS . .
INTERCHANGEABLE "SOLUTIONS
SYNTHETIC LOAD BYTES
REFERENCE .

INDEX .

ii

iii

iii

iv

Vi

123

NOTICE: "EX" & "MT" (routine 15-19, page 58) appear courtesy
David Re Kaplan, 5806 Wood Laurel Court, Burke VA 22015.

CHAPTER 1

BASIC FUNCTIONS & OPERATIONS

1-1 TO PUT ANY STANDARD CHARACTER INTO THE X REGISTER: Make sure there are no

Alpha characters in the Y Register, and have the "ACCHR" character number (1-

127) in X, then XEQ "BLDSPEC". The character will be placed in X, and may be stored

in any numeric or stack register, or put into the Alpha Register with "ARCL X". For

example, key '40', XEQ "BLDSPEC"; see '(' (left parenthesis) in X. Similarly, '41°

gives ')' and '38' gives '&'. See the Byte Table in Reference for others. Many of

the characters will display only as a boxed star.

1-2 POSITIONING: In Normal or PRGM mode, 'shift GTO .' followed by a global label

positions the 41C/V to that label in program memory (the '.' is not necessary

in Normal mode). 'Shift GTO .' followed by a 3-digit number sets the pointer to that

line number in the program to which the calculator is currently set (use EEX, then

the last 3 digits of the line number, for line numbers 1000-1999). When NOT in PRGM

mode, 'shift GTO nn' (where 'nn' is a 2-digit number) sets the pointer to that nu-

meric label in the current program (the next occurance of that numeric label, ifit

occurs more than once in the current program). Also when not in PRGM mode, 'shift

RTN' resets the program pointer to line 00 of the current program.

LOSS OF PENDING RTNs: If any subroutine is executed manually from the keyboard, if

'shift RTN' is pressed, or if SIZE is executed, all pending RTN and END instructions

are lost.

DECIMAL POINT & EXPONENTS: In Normal or PRGM mode, if a number consisting of 9 or 10

digits plus an exponent of 10 is to be keyed or entered into a program line, a deci-

mal point must be keyed in before the ninth digit.

R/S VS. STOP: If a program is running, R/S stops the program. Although the STOP

function can be assigned to other keys for execution in USER mode, pressing those

redefined keys (in Normal or USER mode) will not stop a running program. Further-

more, pressing R/S will stop a running program, even if another function has been

assigned to the R/S key location. If a program is not running, pressing R/S starts

it running at the current line in the program, unless the R/S key has been reassign-

ed and USER mode is set.

Source: 'HP-41C Operating Manual', © Copyright (June 1980) Hewlett-Packard Company .

Reproduced with permission.

1-3 SYMBOL NAMES: 'Goose': 3-; 'Backward Goose: -%£; text or super tee: T; append

or lazy tee: |; boxed star or starburst: [§.

1-4. SLOWING CATALOG REVIEW: Holding any key except R/S slows a catalog review by a

factor of seven. Sources Richard Nelson (1) (PPC J, V6N5P32).

1-5 INDIRECT USE OF ALPHA LABELS: Although program labels that are Alpha charac-

ters can consist of any of up to seven Alpha characters (except the comma, the

period, and the colon), Alpha labels must be held to no more than six characters if

they are to be used for indirect addressing. Shorter Alpha labels also save bytes;

it might be a good idea to keep them short (six characters at most).

CALCULATOR TIPS & ROUTINES 2 I. BASIC FUNCTIONS & OPERATIONS

1=7 TO SEE LAST TWO DIGITS IN SCIENTIFIC NOTATION: Key 'EEX nn', where 'nn' is the

displayed exponent, including sign, then key '/, FIX 9'. All ten digits are

now visible. To recover, key 'LASTX, *'. Source: James Pittman (1002) (65 NOTES, V3

NOP15).

1-8 TO FIT 'TIGHT' HP-67/97 PROGRAMS INTO A BASIC 41C: Try a lower size, then re-

size after loading and packing. Source: Richard Nelson (1) (PPC J, V6N5P32).

1-9 MASTER CLEAR: To clear the entire calculator memory, hold down the backarrow

(correction) key while you turn the calculator ON. Then release the backarrow

key: the "MEMORY LOST" message appears. Clear this message with the backarrow key.

If you change your mind at the last instant, release the backarrow key before re-

leasing "ON". Source: Bill Kolb (265).

1-10 BYTES: The basic HP-41C has 63 & 4/7 registers available for program memory.

It actually has 64 full registers (448 bytes), but the last 3 bytes contain

the permanent .END. statement, leaving 445 bytes for program use. The local Alpha

labels A-J and a-e require only 2 bytes, while other Alpha labels need at least 5

bytes (4 + 1 for each Alpha character). If there are k identical bytes repeated N

times throughout the program, the number of bytes saved by a subroutine for the k

bytes is (N-1)(k-3) -5, assuming the use of a short-form (00-14) label for the sub-

routine. Source: HP KEY NOTES, V4N2P11.

1-11 USER KEY AS A PREFIX KEY: The USER key can be used as a true prefix (or shift)

key if a keyboard reassignment contains a short routine which ends in 'CF 27°',

which undoes the USER mode. Example: LBL "SHIFT", FACT, CF 27, RTN. Now assign

"SHIFT" to the EEX key. Key an integer from 1 to 69, press 'USER, EEX'. The factor-

ial of the integer will be displayed, and USER mode will be cancelled. Source: Jake

Schwartz (1820) (PPC J, V6N7P4).

1-12 ENTERING WITHOUT ENTER: Numbers can be entered into the stack in a program

without using the ENTER instruction. After keying one number, switch ALPHA

Mode on and off to terminate digit entry (or press ENTER, then BACKARROW keys), then

key the next number. This will save paper when listing the program; however, the

41C/V places a nonpackable 'null' after each line of numeric entry followed by an-

other line of numeric entry. This null takes one byte; therefore this technique will

not save bytes. Source: Richard Nelson (1) (PPC CJ, V7N2P56).

1-13 LOCK OFF ("LO"): LBL "LO", LBL 00, SF 11, OFF, GTO 00, END. When ON is pressed,

BEEP sounds and the 41C/V immediately turns off, preventing those unfamiliar

with its operation from tampering with it. This routine also helps avoid running

down the batteries when carrying the calculator. To override "LO", hold down the R/S

key while pressing the ON key. Source: HP KEY NOTES, V4N1P4; Bill Kolb (265).

1-14 SIZE FINDER ("SZE"): This routine will find the current SIZE (the number of
data registers assigned). Source: Richard Nelson (1) (PPC CJ, VIN1PO).

01 LBL "SZE" 08 ENTER 15 FRC 22 X<>Y 29 GTO 01 36 ARCL X

02 0 09 .32064 16 X=Y? 23 4 30 LBL 09 37 AVIEW

03 SF 25 10 LBL 01 17 GTO 09 24 / 31 LASTX 38 FIX 2

04 ARCL IND X 11 ISG X 18 LASTX 25 .24 32 INT 39 END

05 FC? 25 12 ARCL IND X 19 DSE X 26 + 33 LBL 10

06 GTO 10 13 FS? 25 20 ABS 27 + 34 FIX 0

07 .32001 14 GTO 01 21 INT 28 SF 25 35 "SIZE= " (80 bytes)

CALCULATOR TIPS & ROUTINES 3 I. BASIC FUNCTIONS & OPERATIONS

1-15 FAST SIZE FINDER ("SZ"): Source: Ron Knapp (618) (PPC CJ, V7N2P38).

01 LBL "SzZ" 06 512 11 ST+ Y 16 DSE Z 21 FIX 0O 26 END

02 9 07 LBL 01 12 ABS 17 GTO 01 22 "SIZE= "

03 ENTER 08 2 13 ARCLINDY 18 X<07? 23 ARCL X

04 -1 09 / 14 FC?C 25 19 CLX 24 AVIEW

05 ENTER 10 SF 25 15 CHS 20 + 25 FIX 2 (51 bytes)

1-16 SYNTHETIC SIZE FINDER ("?S"): This routine returns the current SIZE to the X

Register. The old value in X is saved in Y, Z & T, while 'garbage' is left in

Alpha. WARNING: As with many programs that use the results from the flag register, a

wrong final answer will be obtained if the routine is single-stepped between lines 6

and 9 (because Flag 51 will be set), or even if the routine is stopped and immedi-

ately restarted between those lines while the printer is connected (because Flag 55

will be set). Line 04 is append 4 nulls. Source: Roger Hill (4940) (PPC CJ, V7N5P57).

01 LBL "?8" 06 X<> d 11 INT 16 =10 21 SF 25 26 X<> L
02 RCL c 07 Cr 02 12 HMS 17 * 22 LBL 00 27 +

03 STO M 08 Cr 03 13 7 18 INT 23 RCL IND X 28 GTO 00

04 "-O000O" 09 X<> 4 14 * 19 64 24 FC? 25 29 END
05 X<> M 10 ENTER 15 + 20 MOD 25 RTN (56 bytes)

1-17 SYNTHETIC SIGMA, SIZE & CURTAIN FINDER ("E?", "S?" & "C?"): XEQ "2?" to find

the number of the first register of the statistics block. XEQ "S?" to find the

SIZE. XEQ "C?" to find the curtain location (the absolute address of data register

00). Line 26 is decimal 244, 127, 0, 0, 1. Source: Keith Jarett (4360) & Roger Hill

(4940) (PPC CJ, VIN10P15; PPC ROM).

01 LBL "x?" 10 XEQ "C?" 19 X<> L 28 X<> d 37 FS?C 12 46 SF 15

02 CLA 11 CHS 20 + 29 CF 01 38 SF 10 47 X<> d

03 XEQ "C?" 12 64 21 GTO 02 30 CF 02 39 FS?C 13 48 E2

04 RCL N 13 MOD 22 LBL "C?" 31 CF 04 40 SF 11 49 *

05 XEQ 14 14 SF 25 23 RCL c 32 CF 07 41 FS?C 14 50 INT

06 X<>Y 15 LBL 02 24 LBL 14 33 FS?C 10 42 SF 13 51 DEC

07 - 16 RCL IND X 25 STO M 34 SF 07 43 FS?C 15 52 END

08 RTN 17 FC? 25 26 " 0@ x" 35 Fs?C 11 44 SF 14

09 LBL "S?" 18 RTN 27 X<> M 36 SF 09 45 FS?C 16 (112 bytes)

1-18 SYNTHETIC SUSPEND & REACTIVATE KEY ASSIGNMENTS ("SK" & "RK"): To suspend all

system and program key assignments, key in a register pointer, 'n', then XEQ

"SK"; key assignments will be stored in R'n' and R'n+l1'. To reactivate these key as-

signments, key 'n', XEQ "RK". Minimum SIZE is n+2. Values in X, Y & Z before keying

'n' are restored. Step 24 is nonstandard; it is decimal 243, 127, 15, 255. Source:

Keith Jarett (4360) (PPC ROM).

01 LBL "SK" 07 m» 13 STO N 19 ARCL IND L 25 X<> N 31 END
02 SIGN 08 . 14 ASTOIND L 20 "o " 26 STO
03 CLX 09 X<> e 15 RDN 21 ISG L 27 X<> M
04 X<> | 10 LBL 14 16 RTN 22 "n 28 STO e
05 XEQ 14 11 wxn 17 LBL "RK" 23 ARCL IND L 29 RDN
06 ISG L 12 X<> M 18 SIGN *24 "L 30 CLA (64 bytes)

1-19 MARKING OVERLAYS: Press-on letters are a viable alternative to HP adhesive la-

bels for marking keyboard overlays; use a clear matte spray to protect letters

once they are applied.

1-20 KEYING EXPONENTS: It is not necessary to enter two digits in an exponent that

has just one. Source: Bill Kolb (265).

CALCULATOR TIPS & ROUTINES 4 I. BASIC FUNCTIONS & OPERATIONS

1-21 SYNTHETIC VIEW KEY ASSIGNMENTS ("VK"): This routine determines which keys are

reassigned (to either system functions or user programs). CASE I: NO PRINTER

PLUGGED IN: routine pauses to display assignments by keycode, then goes to the next

key in numeric order (11 to 84). CASE II: PRINTER PLUGGED IN: (A) Printer ON:

"PRKEYS" executed. (B) Printer OFF: "PRINTER OFF" displayed -- do any of the follow-
ing: (1) turn printer ON, reexecute "VK"; or (2) unplug printer, reexecute "VK"; or
(3) switch to PRGM Mode, then do either (a) or (b): (a) SST 3 times, switch out of

PRGM Mode, R/S. Behaves as if no printer is in system (Case I); clears Flag 21. (b)
SST 4 times, switch out of PRGM Mode, R/S; routine stops to display assignment(s) to

a given key; R/S for next key. NOTE: Lines 11 and 16 are nonstandard. Line 11 is

decimal 243, 127, 16, 240; line 16 is decimal 243, 127, 32, 240. Source: Roger Hill

(4940) & Tom Cadwallader (3502) (PPC ROM).

01 LBL "VK" 21 RCL M 41 STO d 61 =* 81 FsS? 50 101 TONE O

02 SF 21 22 - 42 CLST 62 INT 82 X<>d 102 RT

03 Fs? 55 23 STO N 43 CLA 63 STO a 83 X<>Y 103 STO N

04 PRKEYS 24 RDN 44 PSE 64 43 84 FC? 50 104 RT

05 Fs? 55 25 LBL 02 45 CLD 65 - 85 GTO 04 105 STO M

06 RTN 26 FC? IND N 46 RTN 66 ABS 86 X<> d 106 RT

07 CF 21 27 FC? 50 47 LBL 05 67 1 87 X<> Q 107 RT

08 8 28 GTO 05 48 X<> d 68 X<Y? 88 CLX 108 X<> d

09 RCL 29 X<> d 49 35 69 ST+ a 89 RCL d 109 X<>Y

10 XEQ 07 30 FC? IND N 50 RCL N 70 FS? 42 90 FIX O 110 FS? 42

*11 "e" 31 FC? 50 51 INT 71 FC? INDN 91 CF 29 111 X<> 4

12 X<> M 32 GTO 05 52 + 72 CHS 92 ARCL a 112 GTO 03

13 X<> d 33 X<> d 53 OCT 73 ABS 93 ISG L 113 LBL 07

14 RCL e 34 LBL 03 54 1 74 X<> M 94 GTO 06 114 CLA

15 XEQ 07 35 ISG N 55 ST+ Y 75 RDN 95 "p -" 115 X<> M

*16 " " 36 GTO 02 56 % 76 X<> N 96 ARCL a 116 "pxxkkkn

17 X<> 2 37 DSE M 57 + 77 RDN 97 LBL 06 117 X<> N

18 X<> M 38 GTO 01 58 10 78 " 98 STO d 118 X<> M

19 LBL 01 39 X<>Y 59 MOD 79 FC? 42 99 X<> Q 119 END

20 -27.00008 40 LBL 04 60 LASTX 80 " -" 100 AVIEW (223 bytes)

1-22 TYPING TOP ROW KEY ASSIGNMENTS: Frequently, only the keys in the top two rows

are assigned (often with the local labels A-J and a-e). If the documentation

of a program is being typed, here is a way to represent these assignments. Type the

dots, then join them later with pen and ruler:

1 e ° e

— 2 1 1;5 non ngg" n"gZR" e

% A 1] "

 "RAND" "ANGLE" "CIRCLE" E

P
e

@

)
—
—

o

2

To center altyped label in a given 'box', set typewriter to first space in box, then

space once for each character in the label. Next, space to the dot at the right of

the box, counting the spaces. Divide this number by 2, then backspace to the first

space in the box and space in this number of spaces; type the label. To indicate key

assignments anywhere on the keyboard, draw an outline of a keyboard overlay, then

type or write in the assignments -- shifted assignments on the keys, unshifted above.

Source: John Dearing (2791).

1-23 CRASH: A non-responsive display state during which some or all of the keys are

locked out (won't function). Causes of crashes include shock to the calculator

and misuse of some synthetic functions. Usually, removing and then immediately rein-

serting the battery pack will cause recovery without loss of memory. In extreme

cases, it may be necessary to leave the batteries out over night or for as long as

48 hours. Another extreme case solution is suggested by Jim DeArras: start a card

through the reader and remove the batteries with the card half through. Leave the

reader in the calculator 2 minutes, then replace the batteries. A "MEMORY LOST"

CALCULATOR TIPS & ROUTINES 5 I. BASIC FUNCTIONS & OPERATIONS

should result. Source: Bill Kolb (265).

1-24 FUNCTION PRIORITY OF THE TOP ROW KEYS: When the 41C/V is in USER mode and you

press A-J (any key in the top two rows) or a-e (SHIFT, then any key in the top

row), the calculator does the following:

1. If the key has been reassigned, it performs the reassigned function.

2. Else, it searches for the corresponding local Alpha label (A-J, a-e) in
the current program only, and executes it if found.

3. Else, it executes the printed Normal Mode function.

Because of this, execution of a Normal Mode function on a key in the upper two rows

can be rather slow, when in USER Mode. To shorten this time, press 'SHIFT GTO ..',

turn USER off, or assign the Normal Mode function to its own key.

1-25 SIGN: The "SIGN" function is not a true unary function. The unary function

should return zero rather than 1.00 when the argument is zero. To obtain the

unary, substitute the following lines, as suggested by Leland Van Allen: 'STO L,

X#0?, SIGN'. Source: Bill Kolb (265).

1-26 SYNTHETIC KEY ASSIGNMENTS CLEAR ("KC"): XEQ "KC" to clear all key assignments,

both system and user. Line 04 is nonstandard; it is decimal 246, 127, 1, 105,

11, 240, 0. Source: Paul Lind (6157). See 21-8.

01 LBL "KC" 07 15.006 13 FS? IND Z 19 192 25 X<>Y 31 STO T
02 RCL c 08 ENTER 14 ST+ Y 20 - 26 LBL 02 32 XY

03 STO M 09 . 15 ST+ X 21 . 27 STOIND Z 33 STO c
*04 "pxiA@" 10 ENTER 16 DSE Z 22 Rt 28 DSE Z 34 CLST
05 RCL M 11 E 17 GTO 01 23 X<>d 29 GTO 02 35 END

06 X<>d 12 LBL 01 18 RDN 24 X<> c 30 STO e (72 bytes)

1-27 SYNTHETIC BYTES SAVED WITH A SUBROUTINE ("BS"): This routine calculates the

bytes saved (or used) by using a subroutine for repeated keystrokes. Load the

following in the stack before executing "BS":

Z: R--# of repeated bytes, not including the LBL or RTN of the proposed subroutine.

Make the number negative if indirect calls are being made.

Y: C--# of calls made to the subroutine. Make negative if a short-form local label

(labels 00-14) is being called.
X: A--# of Alpha characters in the GLOBAL label. Use zero if the label is a local

label (LBL 01, LBL 25, LBL A, LBL e, etc).

To use, key R, ENTER, C, ENTER, A, XEQ "BS". The output is the number of bytes

saved. If the number is negative, the proposed subroutine takes more bytes than if

the sequence is repeated in the program. For indirect calls, the routine counts the

7 bytes required for the indirect register also; if using a register that is avail-

able anyway, add 7 to the output. Source: Charles Close (3878) (PPC CJ, V8N1P14).

BYTES: 01 LBL "BS" 14 X<0? 27 1 40 RCL M 53 FS? 01
, 02015 SF 01 28 FS? 02 41 - 54 7

XEQ numeric: 3 03 Xx<>d 16 ABS 29 + 42 RCL O 55 FS? 01
XEQ indirect: 2 04 RDN 17 STO O 30 X<>Y 43 - 56 +
XEQ Alpha: 2 +1 05 X#£07? 18 * 31 * 44 2 57

per char. 06 SF 03 19 FC? 01 32 LASTX 45 FS? 04 58 RCL N
LBL 00-14: 1 07 STO M 20 SF 02 33 RCL M 46 GTO 01 59 STO 4

LBL 15-99: 2 08 RDN 21 FS? 03 34 * 47 FC? 03 60 RDN
Local & labels: 2 09 X<07? 22 CF 02 35 FC? 01 48 1 61 CLA
Global o labels: 10 SF 04 23 X<>y 36 + 49 Fs? 03 62 END

4 +1 per 11 ABS 24 X<> N 37 Fs? 01 50 3

character 12 STO N 25 2 38 RDN 51 +

RTN: 1 13 X<>Y 26 Fs? 02 39 - 52 LBL 01 (96 bytes)

CHAPTER 11

PROGRAMMING TIPS

2-1 TO GO TO/DELETE TO THE END OF A PROGRAM, FROM ANY LINE THEREIN: (a) to go to

the END: for programs of up to 999 lines, press 'SHIFT GTO .999'. For programs

of up to 1999 lines, press 'SHIFT GTO . EEX 999'. (b) to delete the rest of a pro-

gram, beginning at the current line: execute 'DEL 999'; this works for up to 999

lines remaining; the END statement will not be deleted. Note that you do not recover

the deleted lines (bytes) until after packing. Source: Bill Kolb (265).

2-2 PROGRAMMING CHANGES: When you must make program changes using existing program

line numbers as references, you should change the last line (or group of lines,

using "DEL") first. In this way you move 'up' (to lower line numbers) through the

program as you make changes, and steps remaining to be changed retain their original

line numbers. To change a step, delete first, then insert. Source: Richard Nelson

(1) (PPC J, V5N2P9).

2-3 "BST" AND EDITING: For editing convenience, assign "BST" to another unshifted

key, such as "TAN". Sources Richard Nelson (1), (PPC J, V6N5P32).

2-4 EFFECT ON X- AND Y-REGISTERS OF SOME FUNCTIONS: With these equations in mind,

these functions can often be used as a shortcut in a program. For example, to

calculate the square root of the sum of the squares of the values in the X- and Y-

Registers, just press "R-P". Postscript 1 indicates the contents of the given regis-

ter before execution of the function, and postscript 2 indicates the contents of the

given register after execution. L = LastX Register. Source: 'HP-41C Owner's Handbook

and Programming Guide', © Copyright (January 1979) Hewlett-Packard Company. Repro-

duced with permission.

P - R (Y1 lost) R - P (Y1 lost) D - R R -1D

Y2 = X1 sin Y1 Y2 = arctan (Y1/X1) Y2 = Y1 Y2 = Y1

X2 = X1 cos Yl X2 = %12 + y12 X2 = X1 pi X2 = X1 180

L2 = X1 L2 - X1 180 pi

- L2 = X1 L2 = X1

% %CH SIGN

Y2 = Y1 Y2 = Y1 Y2 = Y1

X2 = X1 Y1 X2 = [(X1-Y1) 100]1/¥Y1 X2 = =1, 0 or 1 *=*

100 L2 = X1 L2 = X1

L2 = X1

*% SIGN returns -1 if X was negative, 0 if X contained Alpha characters, and 1 if X

was zero or positive. See 1-25.

2=-5 REEXECUTING THE CURRENT PROGRAM: You can press 'XEQ, ALPHA, (name of program),

ALPHA'; you can also assign the program to a key, then press that key in USER

Mode. Here's another way: if you know the program stops execution at the END (last

line) of the program, just press R/S. If execution stops at an internal STOP or RTN,

press 'SHIFT RTN R/S'.

CALCULATOR TIPS & ROUTINES 7 IT. PROGRAMMING TIPS

2-6 VARIABLE LENGTH "PAUSE" WITHOUT BLINKS ("VP"): Not a real "PSE" -- the program

is still running. The number you put in Line 02 determines the length of the

pause (n=10 gives about a 1 second pause; 100, 10 seconds). The original contents of

the T Register is replaced by zero. Execute as a subroutine, or insert steps 02~08

into a program. For more flexibility, change step 02 to RCL 00, and store 'n' in ROO

before execution. Source: Tom Cadwallader (3502) (PPC J, V6N6P21).

01 LBL "vpP" 03 RDN 05 LBL 14 07 GTO 14 09 END

02 (n here) 04 VIEW X 06 DSE T 08 CLD

After a program executes an AVIEW or VIEW, the flying goose will not appear, but the

program annunciator will be displayed; any time a program places an Alpha string in-

to the display, that string replaces the goose program execution symbol. When the

program clears the display, or the program is interrupted, the symbol returns to the

display. Source: 'HP-41C Owner's Handbook and Programming Guide', © (Jan 1979) H-P.

2=7 TEST DETERMINES FUNCTION: 'X(?)Y' stands for any conditional test, such as

"X=Y?". (1) Add or subtract, depending on test: 'X(?)Y, CHS, +'. Subtracts if
conditional is true, adds if false. (2) Multiply or divide, depending on test:

'X(?)Y, 1/X, *'. Divides if conditional is true, multiplies if false. (3) Power or

root, depending on test: 'X(?)Y, 1/X, YTX'. Takes root if conditional is true, takes

power if false. Source: Bill Kolb (265).

2-8 DO TWO STEPS IF CONDITIONAL IS TRUE; SKIP IF FALSE: Use the same conditional

twice, following each with a step to be executed if test is true. For example,

'X=Y?, PSE, X=Y?, GTO 08' will pause and then go to LBL 08 only if X=Y; if X#Y, exe-

cution will branch around both of these instructions.

2-9 LAST "RTN" OR "END" NOT NEEDED: A program loaded at the end of program memory

(i.e., a program keyed in after 'SHIFT GTO ..' is pressed) need not be termi-

nated with an END or RTN -- the permanent .END. will serve. Source; 'HP-41C Operat-

ing Manual', © Copyright (June 1980) Hewlett-Packard Company. Reproduced with per-

mission.

2-10 EXECUTING A NUMERIC-LABELED ROUTINE IN ANOTHER PROGRAM: Many independent sub-

routines in a program can be headed by a single global label, such as "MIS"

(miscellaneous), and each subroutine can be headed by a numeric label. The user can

call any of the subroutines by keying in its numeric label (manually or under pro-

gram control), followed by XEQ "MIS". Rolling the index 'down' to the T Register

gets it out of the way of useful data. Source: William Cheeseman (4381) (PPC CJ, V7

N5P9).

LBL "MIS", RDN, GTOINDT, LBL 00, ..., RTN, LBL 01, ..., RTN, ..., END.

2-11 INDIRECT XEQ OR GTO WON'T WORK FOR LOCAL ALPHA LABELS (A-J, a-e): Example: a

large letter banner-printing program that uses a printing routine for each

letter. If an 'A' is to be printed, it is most convenient to store the 'A' in the X

Register and XEQ IND X. But LBL A (through LBL J) won't execute indirectly. LBL "AA"

(and all other such 'double-character' labels) will, however, as they are Global La-

bels. It is an easy matter to make all labels double labels and double the letters

as they come up. The Alpha register is used for this process. The program instruc-

tions would be:

ASTO X Stores "A" in the X Register.

ARCL X Adds "A" to Alpha, giving "AA".
ASTO X Stores "AA" in the X Register.

XEQ IND X Executes Global Label "AA".

The use of indirect addressing saves so much program memory that the added byte for

each label to make a double letter label is still memory efficient. Source: HP KEY

NOTES, V4N1P11. Note: synthetic Global Labels A- J can also be used.

CALCULATOR TIPS & ROUTINES 8 IT. PROGRAMMING TIPS

2-12 DUPLICATING FUNCTION AND PROGRAM NAMES: A function and a program both having

the same name can be executed from the keyboard if the function is assigned to

a key before the program label by the same name is keyed into memory. The program

can then be assigned to another key or executed manually. The same thing can be done

with two or more programs having duplicate names, by simply assigning the labels to

separate keys as each label is keyed into memory. The 41C/V keeps the assignment

straight. Source: HP KEY NOTES, V4N2P11.

2-13 RTN TO END: A program can be divided into two programs by changing an internal

"RTN" to an "END". Go to the RTN statement in PRGM mode, delete the step, and

then press 'XEQ, ALPHA, E, N, D, ALPHA' ('GTO ..' won't work). Be sure you have a

global label after the RTN first, if you want the program following the RTN to start

with a global label. Now you can record a portion of a program, using the card read-

er, after isolating it with ENDs. This program segment can be placed elsewhere, and

then the preceeding END deleted to combine the new segment. Source: John Dearing

(2791) (PPC CJ, VBN1P14).

2-14 EXECUTING A SERIES OF STEPS WITHIN THE MAIN BODY OF A PROGRAM MORE THAN ONCE:

(Rather than as a subroutine). Both examples execute the routine twice:

Case I: Using a loop control: Use ISG or DSE to control the number of loops. Ex.:

eeey 2, STO 00, LBL 01, ... (routine here) ..., DSE 00, GTO 01,

Case II: At the end of the program: (Two XEQs would run the routine 3 times). Ex.:

...y XEQ 02, LBL 02, ... (routine here) ..., END. Source: John Dearing (2791).

2-15 NO OPERATION ("NOP"): A NOP is a step that does nothing (or nothing harmful);

used after "ISG", it effectively changes the ISG to a simple increment in-

struction (no skipping); similarly, placed after a "DSE", a NOP changes it to a dec-

rement instruction (again, no skipping). Depending on the situation, you can use

DEG, RAD, GRAD, FIX, SCI, ENG, CF any, SF any, or LBL any. A LBL instruction is the

fastest nonsynthetic instruction, and has the advantage of being a one-byte NOP if

numbered less than 15. Two instructions that can be used at any time are STO X and

X<>X. For synthetic programmers, the best NOP is "" (Text 0 -- byte 240).

2-16 ITERATION OR LOOP COUNTER: To count the number of times a loop is executed,

include an "ISG nn" instruction in the loop (where 'nn' specifies a register

that contains zero initially), and follow the ISG step with any NOP such as STO X.

When execution stops, the loop count is obtained by recalling Register 'nn'. Source:

Richard Nelson (1) (65 NOTES, V1IN2P3).

2-17 LOCAL LABELS: When a global label is accessed within a program with GTO or XEQ,

execution speed can be increased by placing a numeric label after the global

label (or replacing the global label with a numeric label), and changing the GTO or

XEQ instruction(s) so they refer to the numeric label. Numeric label search is much

faster than global label search. Short-form labels (LBLs 00-14) should be within 112

bytes of a GTO instruction so the calculator can remember the label's location. If

the LBL is more than 112 bytes from its GTO instruction, use LBLs 15-99. Since local

Alpha labels (A-J, a-e) cannot be used indirectly with GTO or XEQ, put a numeric la-

bel after them (example: LBL A, LBL 01) if they need to be executed indirectly, and

use the numeric label for the indirect reference. "XEQ" instructions do not need to

be within 112 bytes of LBLs 00-14.

2-18 USE 'RDN, RCL' RATHER THAN 'CLX, RCL': This avoids the problem of stack 1lift

enable when you manually stop execution immediately before the RCL instruc-

tion. Source: Keith Jarett (4360) (PPC CJ, V7N8P9).

2-19 POWER FAILURE PROTECTION DURING LONG PROGRAM RUNS: The sequence 'FS? 49, OFF'

may be used to protect against power failure. Source: Richard Nelson (1).

CALCULATOR TIPS & ROUTINES 9 IT. PROGRAMMING TIPS

2-20 RT OR RDN?: If possible, use RT to save time: RDN takes 17.4 ms; RT takes 12.8

ms. Thus two Rfs are better than two RDNs. Often stack manipulations can be

rewritten to favor use of RT over RDN. Source: Richard Nelson (1) (PPC CJ, VIN8S8P8).

2-21 TO BE ABLE TO RERUN A PROGRAM WITH "R/S": If execution stops at the last step,

just press R/S to rerun the program. To be able to rerun a program with R/S

when execution stops at an internal RTN or STOP, follow the RTN or STOP with a GTO

instruction that points to the first step of the program.

2-22 TO MAKE AN INTERNAL STOP 'FINAL': When execution stops inside a program, and

you want to prevent R/S from inadvertantly executing the following portion of

the program, then, instead of just stopping with "STOP" (or "RTN"), use LBL 14, STOP

(or RTN), GTO 14.

2-23 ADD (OR SUBTRACT) A GIVEN VALUE ONLY IF CONDITIONAL IS FALSE: Follow given

value with any conditional ['X(?)Y'], then with "CLX", then "+" (or "-"). For

example, to add 5 to the value in X only if Flag 00 is clear, use '5, FS? 00, CLX,

+'.

2-24 TURNING OFF WHILE IN PRGM MODE: If you turn off the 41C/V (or if it turns off

automatically) while it is in PRGM mode, you should toggle into and back out

of PRGM mode when you resume operations. This ensures that changes made to programs

in previous editing sessions will be compiled by the calculator. Source: HP KEY

NOTES, V4N1P3.

2-25 ROUTINE MESSAGE: For a long-running routine, put a message in Alpha (12 char-

acters or fewer -- like "SORTING"), followed by AVIEW; at the end of the rou-

tine, put CLD. This will tell you what the program is doing.

2-26 FIVE SECOND PAUSE: When the card reader is plugged in but the printer is not,

use "7PRTX" for a long pause. Source: PPC Melbourne Chapter.

2-27 TO INSERT PROGRAM LINES AHEAD OF STEP 01: Press 'GTO . 000', then enter the

desired steps. If in Run (Normal or USER) Mode, use 'SHIFT RTN', then switch

to PRGM Mode and enter desired steps. Source: Bill Kolb (265).

2-28 ALPHA STRING AS INDIRECT ADDRESS: An indirect address can be an Alpha string

as well as a number. This feature can be used to create a directory or can be

used in word games. Source: Bill Kolb (265).

2-29 UNLABELED PROGRAMS: If you accidentally delete a program label or if you have

an unlabeled program in memory, you can find it again using 'CAT 1'. XEQ CAT

1, press R/S as soon as the first program name appears, then use SST and BST to find

the second of two consecutive END statements (no label in between). Switch to PRGM

mode and delete the program, or press 'SHIFT GTO . 000', then key a global label for

the program. It's a good idea to check for unlabeled programs when you are running

low on memory. Source: Bill Kolb (265).

2-30 NO END: Don't put an END on a program until you wish to add another, autono-

mous program. Programming an END puts the program pointer into a new region,

making return to the initial program unnecessarily complicated. Don't use 'GTO ..'

to find out how many registers are left: use 'GTO . 000' or 'GTO . nnn', where 'nnn'

is larger than the number of lines in the program. Source: Bill Wickes (3735).

2-31 PRINT ALPHA IF POSSIBLE, BUT AVOID SCROLLING: Instead of using AVIEW to print

the contents of the Alpha Register, use SF 25, PRA, CF 25 to avoid scrolling a

long Alpha string across the display, when the Alpha message doesn't need to be seen

when printing can't occur. Source: John Herzfeld (5428). See 3-12, 4-1, 6-14, 22-23.

CALCULATOR TIPS & ROUTINES 10 IT. PROGRAMMING TIPS

2-32 SYNTHETIC SHORT-FORM GTO WITH FULL DISTANCE MEMORY: Conventional wisdom is

that you use short-form LBLs and GTOs if all the GTOs are within 112 bytes of

the LBL: otherwise you use the 15 and up variety (see routine 2-17). Paul Lind

(6157) has noticed that one can create GTOs 00-14 with three bytes and full-distance

memory. Even just one short-form LBL and a 3-byte GTO will save a byte over a long-

form LBL and GTO. The savings is greatly increased if a LBL is called by several

GTOs, some within 112 bytes, some beyond. Only the GTOs beyond 112 bytes need to be

of the 3-byte variety. A 3-byte GTO nn is easy to make with the Synthetic Load Bytes

program "LB" (Chapter 25); the input is decimal 208, 0, 0-14 (for example, a 3-byte

GTO 00 is 208, 0, 0; a 3-byte GTO 13 is 208, 0, 13). The second byte can be anything.

Source: John Herzfeld (5428).

2-33 SYNTHETIC LENGTHEN & SHORTEN RETURN STACK ("LR" & "SR"): Six return pointers

are stored in Rx and R(x+1) when "LR" is executed; when you are five levels

deep in subroutines and need to lengthen the return stack, enter register number,

XEQ "LR". When you are returning from more than six levels of subroutines and have

used "LR", then key in the register number and XEQ "SR" to place the next 6 levels

of return addresses in the status registers. Mark subroutine levels in groups of 5.

If execution is to go more than 1 subroutine level beyond any of these dividing

lines, the last subroutine level of the previous group must execute "LR" & "SR". See

example below. In this example, if a RTN were placed after LBL 06 (Line 30), then
Lines 23-4 & 26-7 (executing "LR" & "SR") were deleted, execution would still stop

after the first RTN (Line 05). If the RTN were placed just after LBL 07 (Line 34)

instead, however (still with Lines 23-4 & 26-7 deleted), execution of "X" would stop

after the second RTN (Line 09). If Lines 23-4 & 26-7 are restored at this point, all

RTNS would again be executed. As written, the example will pause to view "LBL 16"

(to demonstrate that execution did go 16 subroutine levels deep) (R/S if printer is

plugged in but off); then execution resumes until the '1' of Line 04 is displayed

(demonstrating that execution returned all the way back to Line 05 [RTN]). Source:
PPC ROM. Harry Bertuccelli (3994).

Example Listing:

65 RTN
01 LBL "X" 13 RTN 27 XEQ "SR" 39 XEQ 09 53 RTN 66 LBL 14
02 CLX 14 LBL 03 28 6 40 9 67 XEQ 15
03 XEQ 01 15 XEQ 04 29 RTN 41 RTN 0077 68 15
04 1 16 4 42 LBL 09 54 LBL 11 69 RTN
05 RTN 17 RIN 7T 43 XEQ 10 55 XEQ 12 70 LBL 15

18 LBL 04 30 LBL 06 44 10 56 12 71 XEQ 16
""""""" 19 XEQ 05 31 XEQ 07 45 RTN 57 RTN 72 16
06 LBL 01 20 5 32 7 46 LBL 10 58 LBL 12 73 RTN
07 XEQ 02 21 RTN 33 RTN 47 2 59 XEQ 13 74 LBL 16
08 2 22 LBL 05 34 LBL 07 48 XEQ "LR" 60 13 75 "LBL 16"
09 RTN 23 0 35 XEQ 08 49 XEQ 11 61 RTN 76 AVIEW
10 LBL 02 24 XEQ "LR" 36 8 50 2 62 LBL 13 77 PSE
11 XEQ 03 25 XEQ 06 37 RTN 51 XEQ "SR" 63 XEQ 14 78 CLD
12 3 26 0 38 LBL 08 52 11 64 14 79 END

Routine Listing:

01 LBL "SR" 09 RTN 17 X<>INDL 25 LBL "LR" 33 X<> M 41 RDN
02 SIGN 10 "px*xn 18 STO O 26 SIGN 34 STO O 42 CLA

03 SF 10 11 RCLINDL 19 " 27 RDN 35 ASTOINDL 43 END
04 RDN 12 ISG L 20 X<> O 28 "4 36 ISG L

05 RCL b 13 nn 21 STO a 29 RCL a 37 nw
06 STO M 14 X<>INDL 22 X<> N 30 STO N 38 Mpxxxkkn

07 RDN 15 STO N 23 CLA 31 RDN 39 STO O

08 FC?C 10 16 "px*xu 24 STO b 32 RCL b 40 ASTOINDL (95 bytes)

11

CHAPTER TIT1I1

INITIALIZATION & PROMPTING

3-1 SIZE & PROGRAM TITLE SUBROUTINES ("TITLE", "SIZE?" & "T+S"):

Program Title Subroutine: A nice touch in many applications is a title on the

printed output. This subroutine prints the title, double wide, and spaces appropri-

ately; key in the title, then execute the routine:

LBL "TITLE", ADV, SF 12, FS? 55, PRA, CF 12, ADV, RTN. (20 bytes)

SIZE Check Subroutine: It can be very annoying to be on the last input of a long in-

put sequence and get a "NONEXISTENT" error. This is usually the result of an incor-

rect SIZE. By executing this subroutine at the beginning of a program, this problem

is eliminated:

LBL "SIZE?" , "SIZE>=", ARCL X, 1, -, SF 25, RCLIND X, RTN. (25 bytes)

Flag 25 is the Error Ignore Flag. To call this routine, you must place the necessary

SIZE in X prior to the call. The calling sequence must not be in a subroutine. Fol-

low the call with 'FC?C 25, PROMPT'. Example: if a minimum SIZE of 054 is required

by a program, the sequence of steps in the initialization used to call "SIZE?" is:

'54, XEQ "SIZE?", FC?C 25, PROMPT'.

Title and SIZE Combined: Since both routines may be needed, they can be combined:

01 LBL "T+S" 04 FC? 55 07 ADV 10 1 13 RCL IND X

02 ADV 05 PRA 08 "SIZE>=" 11 - 14 RTN

03 SF 12 06 CF 12 09 ARCL X 12 SF 25 (33 bytes)

Example: The calling sequence for a Title of "F=MA" and a SIZE of 6 would be: '6,

"F=MA", XEQ "T+S", FC?C 25, PROMPT'.

Source: Corvallis Division Column, PPC J, V6N7P19.

3=-2 RESIZE? ("RS"): This routine tests to see if the current SIZE is great enough;

if not, it prompts for the minimum SIZE needed. Have the minimum SIZE needed

by the program in X before execution.

01 LBL "RS" 04 STO X 07 FS?C 25 10 ARCL Y

02 ENTER 05 SF 25 08 RTN 11 PROMPT

03 DSE X 06 VIEWIND X 09 "RESIZE: " 12 END (33 bytes)

3-3 TEST SIZE: Tests if SIZE is great enough; have number of data registers needed

in X before execution. Source: John Dearing (2791).

01 LBL "?S" 03 ARCL X 05 STO X 07 RCL IND X 09 PROMPT
02 "RESIZE: " 04 DSE X 06 SF 25 08 FC?C 25 10 END (31 bytes)

3-4 SYNTHETIC TEST SIZE ("?S"): Displays the SIZE to be set in FIX 0, CF 29 (no

decimal) mode, but restores the original display mode. Source: John Dearing

(2791).

01 LBL "?S" 04 FIX O 07 sTO d 10 SF 25 13 PROMPT

02 "RESIZE: " 05 CF 29 08 DSE Y 11 RCLINDY 14 END

03 RCL d 06 ARCL Y 09 nn 12 FC?C 25 (38 bytes)

CALCULATOR TIPS & ROUTINES 12 III. INITIALIZATION & PROMPTING

3=5 SYNTHETIC VERIFY SIZE: To find if the current SIZE is great enough, key in the

required SIZE, XEQ "VS"; routine prompts for a resize only if it is necessary.

(If prompted, reSIZE as directed, then R/S). Contents of X, Y & Z registers (before

required size number was keyed in) are returned; T is lost. To change to a version

that returns execution to the main program, whatever the SIZE, without prompting,

change step 09 (FS?C 25) to "FS? 25", and delete step 20 (PROMPT). Then execution of

the routine in a program would be of this form: '..., XEQ "VS", FC?C 25, PROMPT,

«...'. Source: Roger Hill (4940) (PPC ROM).

01 LBL "vsS" 05 DSE T 09 FSs?C 25 13 RT 17 ARCL L 21 END
02 SF 25 06 "" 10 RTN 14 RCL 4 18 STO d
03 INT 07 RCLINDT 11 "RESIZE = " 15 FIX 0 19 RDN
04 RDN 08 RDN 12 TONE 3 16 CF 29 20 PROMPT (47 bytes)

3-6 INPUT ROUTINE ("IN"): This routine is used to prompt for, store, format and

print input values. It uses R00 as a storage pointer. "IN" expects a 5-charac-

ter (or less) input variable name in the Alpha Register when it is called [because

appending an equal sign in step 06 creates an Alpha string of 6 characters, which is

as long an Alpha string as the Y Register can hold (step 07)]. The format for call-

ing this routine is shown by this example, which stores values in R06, R0O7 & R08:

'«ee, 5, STO 00, "LEN.", XEQ "IN", "HT.", XEQ "IN", "WIDTH", XEQ "IN",'. Note

that the number keyed in ('5' in this example) is one less than the number of the

first register that will have a value stored in it (R06 in this example). Use '0' to

start the loading in RO1. "IN" is convenient for the user of your programs. Once a

problem has been run, the user can rework the problem, keying only the values he or

she wishes to change. (Pressing R/S without keying in a value when prompted leaves

the value unchanged). This allows rapid sensitivity analysis of chosen variables.

Flag 22 is set upon return from "IN" if the user made an input; it is clear if the

user did not make an input. You may be able to make use of this fact. Note that this

version of "IN" doesn't work if the printer is plugged in but is turned OFF. Source:

Corvallis Division Column, PPC J, V6N7P18.

01 LBL "IN" 05 RCL IND 0O 09 CF 21 13 ARCL Y 17 FC? 55 21 END

02 CF 22 06 "p=" 10 AVIEW 14 STOP 18 RTN

03 1 07 ASTO Y 11 SF 21 15 STO IND 00 19 ARCL X

04 sT+ 00 08 "p2" 12 CLA 16 FS? 22 20 PRA (44 bytes)

The version below replaces steps 07-14 above with "PROMPT". The question mark won't

appear in the prompt, but input variable names need not be limited to 5 or fewer

characters. Also, it can be used when the printer is plugged in but is OFF, if you

CF 21 first.

01 LBL "IN" 04 ST+ 00 07 PROMPT 10 FC? 55 13 PRA
02 CF 22 05 RCL IND 00 08 STO IND 00 11 RTN 14 END
03 1 06 "p=" 09 FS? 22 12 ARCL X (31 bytes)

This last version will print old values (retained by skipping the prompt with R/S),

as well as new values. If no printer is plugged in, it will pause to display the la-

beled value (new or old), then prompt for the next value. If the printer is plugged

in but is OFF, CF 21 before execution and the routine will behave as in the version

above. Source: John Dearing (2791).

01 LBL "IN" 04 ST+ 00 07 PROMPT 10 FS? 55 13 RIN 16 END
02 CF 22 05 RCL IND 0O 08 STOIND 00 11 PRA 14 AVIEW
03 1 06 "p=" 09 ARCL X 12 FS? 55 15 PSE (33 bytes)

3-7 OUTPUT ROUTINE ("OUT"): This routine formats and either prints or displays the

value in the X Register. Put the values to be output in X and the name of the

value in the Alpha Register before executing "OUT". Routine sets Flag 21. Here is an

example of the use of "ouT": '..., RCL 06, "LENGTH", XEQ "OUT", RCL 07, "HEIGHT",

XEQ "ouT", RCL 08, "WIDTH", XEQ "OUT",'. Source: Corvallis Division Column,

CALCULATOR TIPS & ROUTINES 13 ITI. INITIALIZATION & PROMPTING

PPC J, V6N7P18.

LBL "ouT", SF 21, "pe=", ARCL X, AVIEW, RTN. (16 bytes)

3-8 YES OR NO QUESTION SUBROUTINE ("YN"): It is frequently desirable to ask the

user a question with two possible answers. It is almost always possible to

pose the question in a 'yes' or 'no' context. It is usually desirable to remember

the user's answer in the form of a set (yes) or clear (no) flag. The routine "YN"

aids in asking such questions. (1) It adds the characters "? Y/N" to the prompt put

in the Alpha Register prior to call. Note that the prompt must contain six or fewer

characters. (2) The routine prints the results of the question if a priHEg} is

plugged in and is ON. (3) If a printer is not plugged in, the routine pauses tc dis-

play the results of the question; if a printer is plugged in but is OFF, CF 21 first.

(4) The routine sets or clears the flag specified by the contents of the X Register

on call (if X=5, Flag 05 is set or cleared). (5) The routine retains the current

status of the flag if the user fails to answer the question. (6) The routine sets

and clears Alpha Mode as needed. Example: a program might ask a user if units to be

used are metric (SI) or English: '..., 0, "METRIC", XEQ "YN", ...'; if the units to

be used are metric, the user keys "Y", and the routine sets Flag 00; if he presses

"N", Flag 00 will be cleared. This flag can be tested later in the program as need-

ed. NOTE: This routine could be modified to accept answers other than Yes or No; for

example, Left/Right (tails of a normal curve), or Upper/Lower, or even a pair of

numbers (1 or 2). Source: Corvallis Division Column, PPC J, V6N7P19.

01 LBL "YN" 07 AOFF 13 "y" 19 "p: v 25 AVIEW 31 END

02 CF 23 08 FC? 23 14 ASTO Y 20 FS? IND T 26 FC? 21

03 ASTO L 09 RTN 15 X=Y7? 21 "pRYES" 27 PSE

04 "|? Y/N" 10 CF IND X 16 SFIND T 22 FC?INDT 28 FC? 21

05 AON 11 RDN 17 CLA 23 "ENO" 29 RTN

06 PROMPT 12 ASTO X 18 ARCL L 24 FC? 21 30 PRA (69 bytes)

3-9 SHORT YES/NO QUESTION: '..., "(question)?", CF 23, AON, PROMPT, AOFF, ...,

F? 23 (any test),'. If the answer is 'yes', press "Y", R/S; if the answer

is 'no', just press R/S (any Alpha characters will do in place of "Y"). The status

of Flag 23 (the Alpha entry flag) records the answer; if 'yes', Flag 23 is set; if

'no', Flag 23 is clear (until another Alpha entry is made); test Flag 23 to decide

what to do. The question could be "PRINT?" or "ANY CHANGES?" for example, and need

not be six or fewer characters. Source: Valentin Albillo (4747).

3-10 A PROMPT AFTER INITIALIZATION: Terminate long initializations with "READY"

and/or a tone or BEEP. A better prompt than "READY" might be one that tells

the user what to do: for example, if you are to enter X, Y and f (frequency) in the

stack, then press A, your prompt might be: "X,T,Y,T,F: A".

3-11 FLAG DETERMINES PROMPT: ..., CF 00, ..., "MSG1", FS? 00, "MSG2", PROMPT,

If Flag 00 is clear, "MSG1" will be the prompt; if Flag 00 is set, "MSG2" will

appear. An example (where Flag 00 is cleared in the initialization): LBL C, SF 00,

LBL B, "SLOPE?", FS? 00, "ANGLE?", PROMPT, FS?C 00, TAN, If you press E) the

prompt is "SLOPE?"; if you press C, the prompt is "ANGLE?"; Flag 00 is then cleared.

3-12 "PROMPT X": To avoid printing (printer plugged in and ON) and to avoid stop-

ping (printer plugged in and OFF) when a stack or numeric register must be

viewed, use the Alpha Register and PROMPT. For example, instead of VIEW X, use 'CLA,

ARCL X, PROMPT'. The display mode can be reset before the program stops for the

PROMPT by inserting, for example, a FIX 2 just before the PROMPT. Source: John Dear-

ing (2791) (PPC CJ, V7NOP28). See 2-31, 4-1, 4-18, 6-4, 6-6, 6-14, 22-23.

3-13 HAS A NEW NUMBER BEEN KEYED IN? IF NOT, USE OLD ONE: ..., FS?C 22, STO 01, RCL

01, Flag 22 must be cleared before possible input.

CALCULATOR TIPS & ROUTINES 14 III. INITIALIZATION & PROMPTING

3-14 TO DETECT NUMERIC INPUT: The usual method is ..., CF 22, "(question)?",

PROMPT, F? 22 (any test), If a number is keyed in, Flag 22 is set; if

you only pressed R/S, Flag 22 is clear. You then test Flag 22 to decide what to do.

If your data cannot include 0 as an input, there is a better method that saves two

bytes: ..., 0, "(question)?", PROMPT, X=0? (or other test), If you input some

data, the test against zero gives a different result than if you just press R/S

without an entry. Source: Valentin Albillo (4747).

3-15 REVIEW OLD ENTRY BEFORE KEYING NEW ONE: Insert 'RCL nn' prior to PROMPT when

prompting for an input to be subsequently stored in that same register. Exam-

ple: ..., "HEIGHT?", RCL 01, PROMPT, STO 01, This way the previous value

stored in that register can be reviewed just by pressing backarrow (the correction

key) after the prompt appears. If the old value is to be used again, just press R/S;

if a new value is to be stored, key it, then press R/S. Source: Robert McDonald

(5460).

3-16 INPUTTING IN ONE FORM, USING IN ANOTHER: Using an input routine (as "IN", 3-6)

where the old value is to be used if a new value is not input, but where val-

ues input are in one form (say 'feet'), but are to be used in another form (say 'me-

ters'): use register arithmetic to convert old value to units of input, then prompt

with input routine, then use register arithmetic to convert back to units used by

program. For example:

<., "L, FEET", .3048, ST/ 04, XEQ "IN", .3048, ST* 04,

This converts the contents of R04 to feet, then prompts for an input in feet; if you

want to use the previous value input, just press R/S; otherwise, key new value, then

R/S. After returning from "IN", contents of R04 (new or old value) is converted to

meters.

3-17 CALLING DIFFERENT FUNCTIONS: For programs that need to call different func-

tions at different times, you can have it ask for the name of the function; it

will then store the name and execute it indirectly as needed. The function needed

can be keyed in just before running the program, or it can have been programmed ear-

lier. To key it in just before running the main program, press 'SHIFT GTO .. PRGM',

then enter the function; next, switch out of PRGM Mode and execute the main program.

Your function(s) must have a global label of six or fewer Alpha characters.

««., "FUNCT. NAME?", AON, PROMPT, AOFF, ASTO 03, ..., XEQINDO3,

3-18 PROMPT FOR INPUT WITHOUT STOPPING PROGRAM ("NUM?" & "WRD?"): These two subrou-

tines can be used for requesting input without stopping the running program.

The calling program provides a prompting message in the Alpha Register, and the sub-

routine provides a steady display while waiting for a response. After the response,

control is returned to the calling program. Load the prompting message into the Al-

pha Register; for numeric input, XEQ "NUM?"; for Alpha input, XEQ "WRD?". Control is

returned to the calling program with the numeric response in the X Register or the

Alpha response in the Alpha Register. Source: HP KEY NOTES, V4N1P6.

01 LBL "NUM?" 05 PSE : 01 LBL "WRD?" 05 LBL 02 09 ACFF

02 AVIEW 06 FC?C 22 : 02 CF 23 06 PSE 10 RTN

03 CF 22 07 GTO 01 : 03 AON 07 FC?C 23

04 LBL 01 08 RIN (20 bytes) i 04 AVIEW 08 GTO 02 (21 bytes)

15

CHAPTER TV

DISPLAY

4-1 VIEW ALPHA ("VA"): This routine, unlike AVIEW, never causes the program to

stop. "VA" may be followed with a STOP or PAUSE (which may be controled by

flags). "VA" prints Alpha if the printer is ON and Flag 21 is set.

01 LBL "VA" 03 PRA 05 FS?C 21 07 AVIEW 09 SF 21

02 Sr 25 04 SF 25 06 CF 25 08 FC?C 25 10 RTN (24 bytes)

Source: Roger Hill (4940) (PPC ROM). See 2-31, 3-12, 4-18, 6-4, 6-6, 6-14, 22-23.

4-2 GOOSE VS. (A)VIEW: The flying goose character will disappear from the display

after a program executes VIEW or AVIEW, and the contents of the register being

viewed will remain in the display until the next CLD, VIEW, AVIEW or STOP is execu-

ted. CLD and STOP will return the goose to the display. Source: 'HP-41C Operating

Manual', © Copyright (June 1980) Hewlett-Packard Company. Reproduced with permission.

4-3 DISPLAY MODE SAVE AND RECALL ("DSPS" & "DSPR"): "DSPS" will save the number of

digits displayed and the display mode. The number in the T Register is replac-

ed by '8'. The contents of the X, Y & Z Registers are unchanged. "DSPR" will recall

this previously saved display setting without affecting the stack. These routines

use Flags 05 & 06 and Register 00. "DSPS" & "DSPR" are useful when a subroutine dis-

plays a number in a certain format, and you want to return to the format used when

the subroutine was called. Source: Scott Morrison (4360) (PPC J, V6N5P31).

01 LBL "DSPS" 08 RDN 15 ST+ 00 22 FS? 40 28 LBL "DSPR" 34 FS?C 06

02 0 09 2 16 RDN 23 SF 05 29 Fs? 05 35 Fs? 05

03 sSTO 00 10 FsS? 38 17 8 24 FS? 41 30 FIXINDOO 36 SCIINDOO

04 RDN 11 ST+ 00 18 FS? 36 25 SF 06 31 Fs? 06 37 END

05 1 12 RDN 19 sT+ 00 26 RDN 32 ENG IND 00

06 Fs? 39 13 4 20 CF 05 27 RTN 33 FC2C 05 (75 bytes)

07 ST+ 00 14 FS? 37 21 CF 06

4-4 SYNTHETIC STORE & RECALL DISPLAY MODE ("SD" & "RD"): "SD" stores the current

display mode in the register pointed to by the integer in X; "RD" recalls the

display mode previously stored in the register pointed to by X. Both routines re-

store the values that were in the X, Y & Z Registers before the pointer was keyed

in. Source: Keith Jarett (4360) (PPC ROM). "SD" saves Flags 16-55.

01 LBL "SD" 06 "oe@" 11 ASTOIND L 16 ARCL INDL 21 X<> O 26 RDN

02 SIGN 07 X<> M 12 RDN 17 RDN 22 STO N 27 CLA

03 RDN 08 mwxn 13 RTN 18 RCL 4 23 "Mprkkkkn 28 END

04 RCL 4 09 X<> M 14 LBL "RD" 19 STO N 24 X<> N

05 STO M 10 STO N 15 SIGN 20 Mpkkr 25 STO 4 (66 bytes)

4-5 SYNTHETIC SAVE DISPLAY TEMPORARILY: Use Status Register d, the flag register:

recall it just before a temporary display change, store it back as soon as

possible. For example, to put the contents of the X Register in 'FIX 0, CF 29' mode

into the Alpha Register, then recover the previous display mode, use the following:

..., RCL4d, FIX 0, CF 29, ARCL Y, STOd, Leaves 'garbage' in X.

CALCULATOR TIPS & ROUTINES 16 IV. DISPLAY

4-6 LENGTH OF ALPHA STRINGS: Analyze Alpha strings, including PROMPTs, using graph

paper, keeping in mind these lengths:

6: As many characters as can be stored in a numeric or stack register.

9: As many as will show in a 2-digit line number (01-99) when in PRGM mode

without scrolling; as many as can be appended to a full 15-character

string without losing characters on the left.

12: As many characters as will show with a PROMPT without scrolling (not

counting nonadjacent periods, commas or colons).

15: As many characters as will fit in one line of a program.

24: As many characters as will fit into the Alpha Register.

4-7 DISPLAY ONE TEXT OR ANOTHER DEPENDING ON A TEST OR FLAG: "TEXT1", TEST,

"TEXT2". For example: "RIGHT", X=Y?, "WRONG" places "WRONG" in the Alpha Reg-
ister if X=Y, but "RIGHT" if X#Y. This technique may be used similarly to display

long messages more economically: for example, 'CLA, X#Y?, "IN", "LCORRECT"' places

"CORRECT" in the Alpha Register if X=Y, and "INCORRECT" if X#Y. Source: Valentin

Albillo (4747).

4-8 SYNTHETIC DISPLAY SET ("DS"): This routine gives the HP-41C/V a "DSP" function;

when "DS" is executed, the calculator stays in the "FIX", "SCI" or "ENG" half

of the display mode, but "DS" uses the absolute value of the integer portion of the

number in X (if the result is between 0 and 9, inclusive) to determine the number of

significant digits after the first one to be displayed. "DATA ERROR" results with an

input outside of this range. Example: in FIX 2 Mode, key '6', XEQ "DS"; calculator

is now in FIX 6 Mode. Routine destroys the contents of the T & L Registers. Source:

Keith Jarett (4360) (PPC ROM).

01 LBL "DS" 04 RCL 4 07 X<> d 10 X<> O 13 X<> N 16 CLA

02 SIGN 05 STO O 08 STO M 11 STO M 14 STO 4 17 END

03 RDN 06 SCIINDL 09 "pxExxxl 12 "p**xn 15 RDN (42 bytes)

4-9 SYNTHETIC CHANGE FIX-, SCI-, OR ENG- HALF OF DISPLAY MODE ("7FIX", "7SCI" &

"JENG"): This routine simulates the HP-67/97 versions of "FIX", "SCI" & "ENG":

the number of displayed digits doesn't change. To use, XEQ "7FIX" to change to a FIX

mode with the same number of digits displayed as before; XEQ "7SCI" or "7ENG" to

change to a SCI or ENG mode with the number of digits displayed unchanged. This rou-

tine uses no numeric data registers and doesn't disturb the stack (including L). It

does not change the status of any flag other than Flags 40 & 41 (which select FIX,

SCI or ENG). The Alpha Register is used, then cleared. Executes in 1 second. Source:

Valentin Albillo (4747).

01 LBL "7FIX"™ 07 STO N 13 STO 4 19 GTO 01 25 STO M 31 END
02 XEQ 02 08 CLX 14 CF 00 20 LBL "7ENG" 26 "p*x*"
03 SF 00 09 RCL 4 15 CF 01 21 XEQ 02 27 X<> N
04 GTO 01 10 STO M 16 RTN 22 SF 01 28 STO d
05 LBL 02 11 "p***%x%" 17 LBL "7SCI" 23 LBL 01 29 X<> O
06 CLA 12 X<> M 18 XEQ 02 24 X<> 4 30 CLA (85 bytes)

4-10 SYNTHETIC 'FIX/ENG' DISPLAY MODE: Setting Flags 40 and 41 simultaneously puts

the 41C/V in 'FIX/ENG' display mode. In ordinary 'FIX' format (Flag 40 set,

Flag 41 clear), numbers which are too large or too small to display properly cause

the display to default to the 'SCI' format; in 'FIX/ENG' format, however, the de-

fault is to the 'ENG' mode. Source: William Wickes (3735) ('Synthetic Programming on

the HP-41C').

CALCULATOR TIPS & ROUTINES 17 IV. DISPLAY

4-11 APPROXIMATING CONTINUOUS SCROLLING: Continuous scrolling to the left can be

approximated by overlapping register recalls. Example: ..., ARCL 01, ARCL 02,

ARCL 03, ARCL 04, AVIEW; ARCL 03, ARCL 04, ARCL 05, ARCL 06, AVIEW; etc. Source:

Richard J. Nelson (1) (PPC J, V6N5P32).

4-12 SCROLLING READABILITY: Leave a blank space or two at the beginning of 13 or 14

character displays for better readability of the scrolled message. Source:

Richard J. Nelson (1) (PPC J, V6N5P32).

4-13 SCROLL LEFT ("SCE"): Especially for strings greater than 24 characters in

length. (1) Write out the message in full, then mark it off into groups of 13
characters (nonadjacent periods, commas and colons don't count; spaces do). Use T

leading blanks if you wish. (2) In PRGM Mode, key a label if appropriate, then turn

Alpha Mode ON. (3) Enter the first 13 characters. (4) Rapidly press 'ALPHA, ALPHA,
ALPHA' to terminate the program line and prepare for the next line. (5) Press 'SHIFT

APPEND' and then enter the next 11 characters (13 +11=24). (6) Press "AVIEW". (7)
Beginning with the first character used in step 5, go to step 3. (8) Repeat steps 3-

7 until the message is complete. Example: the following routine displays "**HP-41C/V

**" repeatedly scrolling across the display from right to left. Step 02 is 12 blanks

followed by one "*"; step 05 is "*HP-41C/V**" followed by 2 blanks; step 06 is ap-

pend 11 blanks. Source: David Walker (1840) (PPC J, V6N7P3).

01 LBL "SCE" 03 "p*HP=-41C/V**" 05 "*HP-41C/V**x " 07 AVIEW

02 v * 1 04 AVIEW 06 " " 08 GTO "scCL"

4-14 SCROLL RIGHT (GOOSE REPLACEMENT) ("SCR" & "SO"): This routine takes advantage
of a minor, good bug in the 41C/V involving the error flag. Put the desired

replacement character(s) in the Alpha Register, set Flag 25, AVIEW, and set any non-
existent flag. For example, put these steps into a program (say before a loop, where

Alpha won't be disturbed) to replace the goose with a hyphen: "-", SF 25, AVIEW, SF

99. Here's a demonstration routine which will prompt you for the Alpha string to use

(try "GOOSE"):

01 LBL "SCR" 04 STOP 07 AVIEW 10 1.2 13 END
02 "SCROLL CHAR.?" 05 AOFF 08 SF 99 11 SIN
03 AON 06 SF 25 09 LBL 01 12 GTO 01 (39 bytes)

It appears that the Alpha Register is scrolled. Now try "AAAAAAAAAAAATESTTESTTEST"

(12 'A's + 3 'TEST's). You will hear a tone when the 24th character is keyed in. The

display first scrolls to the left, then to the right. The A's disappear and only

"TESTTESTTEST" scrolls. Also observe that the scroll wraps around and all 12 display

characters are always in the display. Conclusion: this routine scrolls the last 12

characters after a normal 'read scroll' to the left, if the Alpha string is more

than 12 characters. For fun, try six pairs of any of the following for visual effect:
nyymn , "MW , nyn , & "M,

You can use a subroutine to replace the goose; at the beginning of a series of loop

calculations, place the desired display string in the Alpha Register, then XEQ "SO".

Have the following routine available: LBL "SO", SF 25, AVIEW, SF 99, RTN. Source:

Richard Nelson (1) (PPC J, V6N8P24).

4-15 SYNTHETIC GOOSE REPLACEMENT: With an Alpha string of up to 12 characters in

Alpha, put the instruction sequence 'RCL d, AVIEW, STO d' into a program (say

before a loop), and the goose will be replaced by the contents of the Alpha Regis-

ter, stepping around the display. Source: William Wickes (3735) ('Synthetic Program-

ming on the HP-41C').

4-16 DISPLAY X & Y SIMULTANEOUSLY ("XY" & "X?Y"): This routine is useful when two

numbers are output (complex numbers or coordinates, for example). "XY" uses

the current display mode; "X?Y" formats according to 'm.n' stored in R00, setting X

CALCULATOR TIPS & ROUTINES 18 IV. DISPLAY

to FIXm and Y to FIX n. Source: Peter Ladrach (5060) (PPC CJ, VIN4P6).

01 LBL "XYy" 05 ARCL Y : 01 LBL "X?Yy" 05 "p " 09 * 13 AVIEW
02 CLA 06 AVIEW 02 CLA 06 RCL 00 10 FIXINDX 14 RTN
03 ARCL X 07 RTN 03 FIXIND OO 07 FRC 11 RDN
04 "} " (16 bytes) : 04 ARCL X 08 10 12 ARCL Y (27 bytes)

4-17 SYNTHETIC DISPLAY TEST ("DT"): To test all display annunciators, XEQ "DT"; the

routine will pause to display 12 commas, then stop to display 12 boxed stars

and 12 colons, plus all the lower annunciators (BAT, USER, etc). To clear the dis-

play and restore the display mode, press PRGM to get out of PRGM Mode, then R/S. The

routine uses the T & L Registers. Lines 02 and 10 are nonstandard; Line 02 is deci-

mal 247, 248, 0, 0, 16, 0, 33, 232; Line 10 is decimal 246, 128, 58, 128, 58, 128,

58. Source: William Wickes (3735) & Valentin Albillo (4747) (PPC ROM).

01 LBL "DT" 05 ASTO L *10 "o:i:ot 15 X<> d 20 CLD
* 02 "00ce! 06 ARCL L 11 ASTO L 16 AVIEW 21 END
" 07 AON 12 ARCL L 17 STOP
03 RCL M 08 PSE 13 ARCL L 18 X<> 4
04 ",,,,,," 09 AOFF 14 ARCL L 19 RDN (56 bytes)

4-18 "AVIEW" REPLACEMENT ROUTINES ("AV" & "AVN"): These routines can be used in

place of "AVIEW" in a program. "AV" (Alpha View, stop only if printer is off)

has the following characteristics: a. No printer--simply AVIEW without stopping. b.

Printer is off, and "PRINTER OFF" is displayed--merely turn on the printer and press

R/S to print and display the Alpha Register. c. Printer is on--it prints and dis-

plays the Alpha Register without stopping. d.—flag 21--Flag 21 does not control the

printer and retains its set or clear status. "AV" was written to aid users who nor-

mally operate their HP-41 system with the philosophy that if their printer is con-

nected it should print, and they should be reminded to turn it on if it is off. "AV"

illustrates another use of flags. Lines 02 and 03 use Flag 14 (the flag that allows

you to record on a clipped corner card) to store the status of Flag 21. Lines 11 and

12 restore both flags to their original status. There is little danger in using Flag

14 in this way because it is very unlikely that you will stop the routine to record

on a clipped-corner card.

"AVN" (Alpha View, never stop): this routine never causes a STOP. It is similar to

"VA" (4-1), but this routine will print if the printer is on, even if Flag 21 is

clear, while "VA" won't print if Flag 21 is clear.

Source: HP KEY NOTES, V5N1P7. See 2-31, 3-12, 4-1, 6-4, 6-6, 6-14, 22-23.

01 LBL "AV" 08 LBL 14 01 LBL "AVN" 08 CF 21

02 Fs? 21 09 CF 21 02 FS? 21 09 AVIEW

03 SF 14 10 AVIEW 03 SF 14 10 FS?C 14

04 FC? 55 11 FS?C 14 04 SF 21 11 SF 21

05 GTO 14 12 SF 21 05 SF 25 12 END

06 SF 21 13 END 06 PRA

07 PRA (29 bytes) 07 CF 25 (29 bytes)

19

CHAPTER V

ALPHA MANIPULATIONS

5-1 ALPHA TO MEMORY & MEMORY TO ALPHA ("AM" & "MA"): With a control number bbb.eee

in X, XEQ "AM" to store the contents of the Alpha Register in data registers,

or XEQ "MA" to recall data registers into the Alpha Register. "AM" clears the Alpha

Register--restore with the same control number and "MA". The end register (eee)

should be no more than 3 higher than the beginning register (bbb) (unless using the

full form of the control number, bbb.eeeii). For example, key '17.020', XEQ "AM" to

store all 24 characters of the Alpha Register in R17 - R20; using '17.018' as the

control number instead will store the first 12 characters of the Alpha Register on-

ly. Remember to have a control number in X before executing either routine. Source:

Keith Jarett (4360) (PPC ROM).

01 LBL "AM" 04 ASHF 07 RTN 10 LBL 02 13 GTO 02

02 LBL 01 05 ISG X 08 LBL "MA" 11 ARCL IND X 14 END

03 ASTOIND X 06 GTO 01 09 CLA 12 ISG X (32 bytes)

5=2 ALPHA STRING TESTING RESTRICTIONS ON EARLY MACHINES: If you are testing two

Alpha strings that were originally longer than six characters (when created in

the Alpha Register), then you must perform the following procedure to ensure proper

string truncation and test results. Strings can only be tested with X=Y? or X#Y?.

(1) Store the first string into a register using ASTO nn. If the string is not long-

er than six characters, skip this step and go to step 04. (2) Clear the Alpha Regis-
ter with CLA. (3) Recall the string into the Alpha Register using ARCL nn. (4) Store
the string into the X Register using ASTO X. (5) Repeat the steps above for the sec-

ond Alpha string, but store it in the Y Register using ASTO Y. (6) Execute "X=Y?" or

"X#£Y?". Source: HP KEY NOTES, V4N1P3.

5=-3 CAUTION WHEN EDITING ALPHA BLANKS IN COMBINATION WITH PUNCTUATION (. : ,): Ap-

parently the backarrow (correction) key causes the underscore prompting mark

to move back two characters in the display while only one character is actually re-

moved from thg_Kipha Register. Try these steps in ALPHA Mode: 'CLA, "Z", SPACE,

COMMA, BACKARROW, BACKARROW, AVIEW'. You will see the "Z" disappear from the display

but an Alpha Register call (or ALPHA, ALPHA) shows that it is still in the Alpha

Register. For a more spectacular display of this effect, see what happens with more

and more erasures of 'SPACE, COMMA' pairs following the "Z". Eventually, repeated

backarrow erasures cause the underscore mark to disappear from the left of the dis-

play, reappear on the right of the display two strokes later, then apparently recov-

er the remaining Alpha contents, and continue as before. Source: Charles Harris

(1959) (PPC CJ, VIN3P28).

5-4 SYNTHETIC DELETE LAST ALPHA CHARACTER ("AD"): This routine deletes the last

character of the Alpha string in the Alpha Register. Uses the stack. Source:

Gerard Westen (4780) (PPC ROM).

01 LBL "AD" 05 X<> N 09 sSTO M 13 RDN 17 A 21 END

02 RCL P 06 "MpxxkkkxM 10 ASTO X 14 STO N 18 STO P

03 RCL O 07 RCL N 11 RDN 15 RDN 19 ASHF

04 . 08 CLA 12 STO M 16 STO O 20 ARCL 2Z (47 bytes)

CALCULATOR TIPS & ROUTINES 20 V. ALPHA MANIPULATIONS

5=-5 SYNTHETIC ISOLATE & SUBSTITUTE CHARACTERS ("NC" & "SU"): "NC" (Nth Character)

isolates the nth character from the right of the string in Alpha. It assumes a

positive number in X whose integer portion, n, is from 1 to 10. It replaces an arbi-

trarily long string in Alpha with its nth character from the right; it also places

that character into X. The values in X & Y before keying in the number are returned

to Y & Z. "SU" (Substitute Character) provides a string-editing capability; with a

positive number in X whose integer portion, n, is from 1 to 10, this routine repla-

ces the nth character from the right in Alpha with the character in Y (with the

rightmost character in Y, if more than one). Values in X & Y before keying in the

number are returned to X & Y. An integer 1 greater than the number of characters in

Alpha adds the character in Y onto the left of the Alpha string. Source: William

Wickes (3735) (PPC ROM).

01 LBL "NC" 11 RCL 4 21 GTO 14 31 DSE L 41 CLX 51 LBL 14

02 CF 25 12 SCIINDY 22 XX> Z 32 CLX 42 ISG L 52 X<> O

03 GTO 14 13 ARCL Y 23 STO O 33 XX> L 43 CLX 53 CLA

04 LBL "SU" 14 STO 4 24 MpFEkkkkE 34 101X 44 X<> P 54 STO M

05 SF 25 15 RDN 25 X<> Z 35 RCL 4 45 STO N 55 ASTO X

06 LBL 14 16 X<> O 26 STO P 36 FIX 0 46 CLX 56 END

07 INT 17 FS? 25 27 RDN 37 CF 29 47 X<> O

08 EI1 18 RCL P 28 X<> O 38 ARCL Y 48 STO M

09 X<>Y 19 "p*n 29 X<> N 39 STO d 49 RDN

10 - 20 FC?2C 25 30 STO M 40 RDN 50 RTN (112 bytes)

5-6 SYNTHETIC CHARACTER-DECIMAL CONVERSIONS ("CD" & "DC"): "CD" (Character to Dec-

imal): With a single Alpha character in the Alpha Register, this routine will

return the corresponding decimal number to X (0-255), according to the Byte Table.

With more than one Alpha character in Alpha, the decimal equivalent of the rightmost

character is returned. With Flag 10 clear, the Alpha character will be deleted from

the Alpha Register; with Flag 10 set, it will be left in Alpha. Values in X, Y & 2Z

Registers before execution will be returned to Y, Z & T. "DC" (Decimal to Character):

With a positive number in X whose integer portion is 0-255, this routine will add

the corresponding Alpha character to the Alpha string in the Alpha Register. The

values in X & Y before keying the decimal will be returned to X & Y; Z & T values

are lost. Source: William Wickes (3735) & Roger Hill (4940) (PPC ROM).

01 LBL "CD" 12 Mpkkkn 23 ST* L 34 + 45 FS? 06 56 STO P
02 "p@¥*x**x*x" 13 X<> M 24 X<> L 35 OCT 46 SF 08 57 RDN
03 RCL M 14 X<> L 25 ST+ O 36 X<> d 47 X<> d 58 X<> O
04 FS? 10 15 X<> N 26 CLX 37 Fs?2C 11 48 X<> M 59 X<> N
05 "px 16 INT 27 X<> O 38 SF 12 49 RCL N 60 STO M
06 STO M 17 ST+ O 28 RTN 39 FsS?C 10 50 "p* 61 RDN
07 CLX 18 RDN 29 LBL "DC" 40 SF 11 51 X<> O 62 END
08 X<> O 19 6 30 INT 41 FS?C 09 52 X<>Y
09 SIGN 20 ST* O 31 256 42 SF 10 53 STO N
10 CLX 21 RDN 32 MOD 43 FS? 07 54 X<> P
11 X<> N 22 E1 33 LASTX 44 SF 09 55 " (129 bytes)

5=-7 SYNTHETIC HEX-NNN CONVERSIONS ("NH" & "HN"): An 'NNN' is a nonnormalized num-

ber--one whose sign nybble is other than 0 (a positive number), 1 (an Alpha
string), or 9 (a negative number), or one whose sign nybble is 0 or 9, but which

contains any digits of value A- F. "HN" (Hex to NNN): Changes a hex number in Alpha

(up to 7 hex digits long) to a NNN in X, and to its corresponding Alpha string in

Alpha. Values in X, Y & Z before execution are returned to Y, Z & T; zero is return-

ed to L. Attempting an arithmetic operation on an NNN gives "ALPHA DATA" error mes-

sage. "NH" (NNN to Hex): Converts an NNN in X to Hex in Alpha (and sets ALPHA Mode).

The NNN remains in X. "NH" will also convert an Alpha string of up to 6 characters

in X to hex in Alpha. The Alpha string remains in X. Source: Roger Hill (4940),

William Wickes (3735) & John McGechie (3324).

CALCULATOR TIPS & ROUTINES 21 V. ALPHA MANIPULATIONS

01 LBL "NH" 21 STO d 41 SF 07 61 LBL HN" 81 LBL 14 101 LBL 14

02 CLA 22 CLX 42 FS?C 06 62 7 82 FS? 07 102 X<> 4

03 STO M 23 FS? 10 43 GTO 14 63 SIGN 83 SF 11 103 X<> O

04 SIGN 24 GTO 12 44 SF 06 64 LBL 02 84 Fs? 06 104 "p*"

05 X<> d 25 RDN 45 CF 05 65 RDN 85 SF 10 105 STO P

06 "FoOe*" 26 14 46 LBL 14 66 RCL N 86 Fs? 05 106 "p*"

07 . 27 LBL 01 47 X<> 4 67 X<> d 87 SF 09 107 X<> P

08 X<> M 28 RCL O 48 STO M 68 CF 11 88 FS? 04 108 STO O

09 "Lee" 29 X<> d 49 "p*" 69 CF 10 89 SF 08 109 DSE L

10 X<> M 30 FC? 06 50 RDN 70 FC?C 09 90 FC? 01 110 GTO 02

11 FIX 9 31 Fs? 05 51 DSE X 71 GTO 14 91 GTO 14 111 CLA

12 ARCL N 32 FC? 04 52 GTO 01 72 SF 12 92 SF 08 112 STO M

13 "p**n 33 GTO 14 53 LBL 12 73 FC?C 15 93 FC?2C 11 113 AOFF

14 ARCL O 34 LBL 13 54 STO P 74 SF 15 94 SF 11 114 END

15 X<> O 35 SF 01 55 X<> O 75 Fs? 15 95 FS? 11

16 FIX 3 36 CF 02 56 X<> N 76 GTO 14 96 GTO 14

17 ARCL O 37 CF 03 57 STO M 77 FC?2C 14 97 FC?2C 10

18 STO O 38 CF 04 58 X<> L, 78 SF 14 98 SF 10

19 "pxn 39 Fs?C 07 59 AON 79 FC? 14 99 FC? 10

20 RDN 40 GTO 14 60 RTN 80 SF 13 100 SF 09 (227 bytes)

5-8 TO CONVERT A NUMBER IN X (6 OR FEWER DIGITS) INTO ITS ALPHA FORM IN X ("N-A"):

LBL "N-A", ARCL X, ASTO X, CLA, RTN. Source: Jake Schwartz (1820) (PPC J, V6

N8P26).

5-9 LOSING CHARACTERS WITH ARCL: If "ARCL" adds characters to a full Alpha Regis-

ter, the leftmost characters are lost, with no tone warning. Source: William

Wickes (3735).

22

CHAPTER VI

FLAGS & TONES

6-1 FLAG TOGGLING ("FT"): The instruction sequence 'FC?C nn, SF nn' will set a

flag if clear or clear a flag if set (toggle the flag). It may be used in a

loop. The following routine, "FT", will toggle the flag whose number (0-29) is in X:

LBL "FT", FC?CIND X, SFIND X, RTN. Source: Ron Knapp (618) (PPC J, V6N5P6) & Jake

Schwartz (1820) (PPC J, V6N8P26).

6-2 SET OR CLEAR A FLAG WITH O OR 1: LBL A, SF 01, X=0?, CF 01, Source: Bill

Kolb (265) (BP 67/97).

6-3 CLEAR MULTIPLE FLAGS ("CFX" & "CFA"): "CFX" clears a 'block' of flags, as de-

termined by the (bbb.eee) control number in X before execution. For example,

to clear Flags 5-10, key '5.01', XEQ "CFX". "CFA" supplies 0.025 to "CFX" to clear

Flags 0-25. These routines use no numeric data registers and preserve X, Y, Z2 & L

Registers. Source: William Cheeseman (4381) (PPC CJ, VIN5P7).

LBL "CFA", .025, LBL "CFX", CFIND X, ISG X, GTO "CFX", RDN, RTN. (29 bytes)

6-4 SYNTHETIC INVERT FLAG ("IF"): This routine changes the setting of the flag

whose number is in X. It works for flags 00-29, 31-44, 47-50, 52 & 55. Flag 47

controls SHIFT Mode, Flag 48 controls ALPHA Mode, Flag 50 stops and views the goose

(press backarrow [correction] key to clear), Flag 52 controls PRGM Mode. Key '52!',
XEQ "IF" and PRGM Mode will be set at the last line of the routine (if the routine

ends with RTN, RTN or with RTN, END). The values in X and Y (before keying flag num-

ber) are restored; Z & T are lost. Note on Flag 55: "IF" will toggle Flag 55 if the

printer is NOT plugged in, but it won't work if the printer IS plugged in (Flag 55

always tests set if the printer is plugged in). Source: Roger Hill (4940) (PPC ROM).

01 LBL "IF" 07 sT/ M 13 ARCL X 19 SFINDO 25 SCI IND X 31 RTN

02 ABS 08 MOD 14 X<>Y 20 X<> 4 26 ARCL X 32 END

03 24 09 RCL 4 15 X<> O 21 STO M 27 X<> O

04 + 10 X<> M 16 X<> N 22 RDN 28 STO d

05 STO M 11 INT 17 X<> 4 23 12 29 RDN

06 8 12 SCI IND X 18 FC?CINDO 24 - 30 CLA (58 bytes)

6-5 SYNTHETIC VIEW FLAGS ("VF"): XEQ "VF" to see which flags are set. "IF", execu-

ted in line 04, is routine 6-4 above. Line 08 is nonstandard; it is decimal

245, 4, 168, 0, 128, 1. Source: Keith Jarett (4360) & Roger Hill (4940) (PPC ROM).

01 LBL "VF" 11 RDN 21 GTO 01 31 " 41 RDN 51 AVIEW

02 50 12 "FLAGS SET:" 22 X<> d 32 X<> d 42 SF 24 52 FC?C25

03 FC? 50 13 X<> d 23 FC?C 24 33 ARCL L 43 LBL 03 53 SF 21

04 XEQ "IF" 14 XEQ "VA" 24 XEQ "VA" 34 CF 24 44 X<> d 54 END

05 "sPOG&&" 15 X<> d 25 ADV 35 DSE T 45 RTN

06 RCL M 16 CLA 26 BEEP 36 GTO 03 46 LBL "VA"

07 SIGN 17 LBL 01 27 X<> d 37 XEQ "VA" 47 SF 25

*08 "o &x" 18 FS?INDL 28 RDN 38 TONE 6 48 PRA

09 X<> M 19 XEQ 02 29 RTN 39 CLA 49 FsS?C 21

10 4 20 ISG L 30 LBL 02 40 4 50 CF 25 (129 bytes)

CALCULATOR TIPS & ROUTINES 23 VI. FLAGS & TONES

6-6 SYNTHETIC FLAG 55 TOGGLE ("55"): This routine will toggle Flag 55 (the Printer

Existence Flag) if the printer is not plugged in. If Flag 55 is set, VIEW and

AVIEW will not stop program execution, thus allowing the ROM routines to be executed

as subroutines of a main program. The stack is left unchanged; it does not change

the status of any flag except Flag 55. "55" uses no data registers; the Alpha Regis-

ter is used, then cleared. Execution time is less than 1 second. To use, simply XEQ

"55"; if Flag 55 was clear, it will be set; if it was set, it will be cleared.

Source: Valentin Albillo (4747). See 2-31, 3-12, 4-1, 4-18, 6-4, 6-14, 22-23.

01 LBL "55" 04 CLX 07 "prkxxxn 10 FC?C 15 13 STO M 16 STO d 19 RTN

02 CLA 05 RCL 4 08 X<> M 11 SF 15 14 "p**x" 17 X<> O

03 STO N 06 sTO M 09 sTO 4 12 X<> d 15 X<> N 18 CLA (41 bytes)

6-7 SYNTHETIC RESET FLAGS ("RF"): This routine resets flags to "MASTER CLEAR" sta-

tus, except that the display mode is set to FIX 2, not FIX 4. Note that USER

Mode is turned off (CF 27) and Flag 55 is unaltered. Alpha Register is cleared.

Flags set by this routine: 26, 28, 29, 38, 40. Line 02 is nonstandard; it is decimal

244, 44, 2, 128, 0. Source: Valentin Albillo (4747) (PPC ROM).

LBL "RF", ",Xe@", ASTO d, CF 03, CLA, RTN (17 bytes)

6-8 SYNTHETIC MASS FLAG CONTROL: A synthetic text line of up to seven characters,

followed by a 'RCL M', will place an NNN (Non Normalized Number) into the X

Register. An important use of NNNs so created is for 'mass flag control' through

storage of the NNN into Register d, the Flag Register, allowing the setting or

clearing of all 56 flags in one operation. The basic sequence is "XXXXXXX", RCL M,

STO d, where "XXXXXXX" represents the synthetic text line used to generate the NNN.

This routine uses 12 bytes, the same as would be required for six 'SF nn' or 'CF nn'

program lines; hence, use of this routine will save bytes whenever more than six

flags are to be set or cleared.

To determine the synthetic text line required to generate the desired flag status,

write out the states of all of the flags as a 56-bit binary number, with 1's for set

flags and 0's for clear flags, then group the bits into eight-bit hexadecimal bytes.

The example below sets Flags 1, 2, 3, 26 (audio enable), 28 (radix), 29 (separator);

for 'FIX/ENG 3' display format, it sets Flags 38, 39, 40 & 41; for RAD Mode, it sets

Flag 43; for continuous ON, it sets Flag 44; all other flags are clear. Flag 00 is

on the left; Flag 55 is on the right.

0111 0000 0000 0000 0OOO 0OOOO 00170 71100 0O0OO 0OO11 1101 1000 0000 0000

7 0 0 0 0 0 2 C 0 3 D 8 0 0

The required text line, preceded by a TEXT 7 byte, is 'F7 70 00 00 2C 03 D8 00°';

the decimal equivalent is 247, 112, 0, 0, 44, 3, 216, O.

Source: William Wickes (3735) ('Synthetic Programming on the HP-41C'). See 25-6.

6-9 ASSIGNING "TONE" TO THE TOP TWO ROWS OF KEYS: If you assign "TONE"” to each of

the keys in the top two rows, a double press of each key in USER mode will ex-

ecute tones 1-5 (top row) and tones 6-0 (second row). Source: George Donaldson (3825)
(PPC J, V6N5P19). This same idea applies to other functions; assign FIX to the 1/X

key to easily set FIX 2, for example. Synthetics can be used to reduce these useful

assignments to a single keystroke. (See the Key Assignments Program ["KA"] in 'Syn-
thetic Programming on the HP-41C', pp 45-47, by William Wickes (3735).

6-10 SYNTHETIC TONE ROUTINES ("T1" - "T5"): "T1" Phasers; "T2" BEEP 2 (no synthe-

tics), "T3" Bach Toccata; "T4" Shave & a Haircut 2 Bits; "T5" Alarm; "T6"

Close Encounters. Numbers in parentheses below are the synthetic tone numbers.

Source: "T1", Cary Reinstein (2046); "T3", Nicholas Peros (2392); others, Gary Ten-

zer (1816) (PPC CJ, VIN2P49). Key synthetic tones using the Load Bytes Program; each

syn. tone is 2 bytes; the 1st is always 159; the 2nd is any number from 0 to 127.

CALCULATOR TIPS & ROUTINES 24 VI. FLAGS & TONES

01 LBL "T1*" 17 TONE 1 33 TONE 5 (15) 49 TONE b (124) 65 TONE 2 (72)

02 TONE 7 (57) 18 TONE 5 34 TONE 4 (94) 50 TONE 3 (83) 66 TONE 7 (57)

03 TONE 7 (57) 19 TONE 3 35 TONE H (109) 51 RTN 67 TONE 2 (72)

04 TONE 7 (57) 20 TONE 6 36 TONE b (124) 52 LBL "T5" 68 RTN

05 TONE 9 (89) 21 TONE 4 37 TONE 3 (13) 53 XEQ 02 69 TONE "T6"

06 TONE 9 (89) 22 TONE 8 38 RTN 54 XEQ 02 70 TONE 0

07 TONE 9 (89) 23 TONE 9 39 LBL 01 55 X<>Y 71 TONE 1

08 TONE 7 (57) 24 RTN 40 X<> X 56 X<>Y 72 TONE 5 (15)

09 TONE 9 (89) 25 LBL "T3" 41 X<> X 57 X<>Y 73 TONE b (124)

10 TONE 9 (89) 26 TONE 1 42 RTN 58 X<>Y 74 TONE 4 (94)

11 TONE 7 (57) 27 TONE 0 43 LBL "T4" 59 LBL 02 75 END

12 TONE 9 (89) 28 TONE 3 (33) 44 TONE X (115) 60 TONE 7 (57)

13 TONE 9 (89) 29 XEQ 01 45 TONE 1 61 TONE 2 (72)

14 TONE 9 (89) 30 XEQ 01 46 TONE 1 62 TONE 7 (57)

15 RTN 31 XEQ 01 47 TONE 8 (98) 63 TONE 2 (72)

16 LBL "T2" 32 TONE 0 48 TONE Z (113) 64 TONE 7 (57) (168 bytes)

6-11 SYNTHETIC MOZART ("MOZ" & "MO"): "MOZ" plays a phrase from "Eine Kleine Nacht-

musik", accompanied by an entertaining display; the stack is used. "MO" is a

variation with no display that does not change the stack; it can be used as a BEEP

alternative. Source: Robert Swanson (5993).

01 LBL "MOZ" 22 LBL 01 01 LBL "MO" 22 LBL 01

02 CLST 23 TONE 0 (0) 02 TONE 6 (96) 23 TONE 6 (66)

03 CF 21 24 LBL 01 03 LBL 01 24 LBL 01

04 "><>MOZART<><" 25 TONE 2 (2) 04 LBL 01 25 TONE 0 (80)

05 SF 25 26 LBL 01 05 TONE H (109) 26 TONE 0 (80)

06 AVIEW 27 TONE 3 (3) 06 LBL 01 27 LBL 01

07 SF 99 28 + 07 TONE 6 (96) 28 TONE 6 (66)

08 LBL 01 29 LBL 01 08 LBL 01 29 TONE 3 (83)

09 TONE 6 (96) 30 TONE 6 (66) 09 LBL 01 30 END

10 + 31 LBL 01 10 TONE H (109)

11 LBL 01 32 TONE 0 (80) 11 LBL 01

12 TONE H (109) 33 TONE 0 (80) 12 TONE 0 (0)

13 LBL 01 34 LBL 01 13 LBL 01

14 TONE 6 (96) 35 TONE 6 (66) 14 TONE H (109)
15 + 36 TONE 3 (83) 15 LBL 01

16 LBL 01 37 "***MOZART***" 16 TONE 0 (0)

17 TONE H (109) 38 PROMPT 17 LBL 01

18 LBL 01 39 GTO "MOZ" 18 TONE 2 (2)

19 TONE 0 (0) 40 END 19 LBL 01

20 LBL 01 20 TONE 3 (3)

21 TONE H (109) (93 bytes) 21 LBL 01 (51 bytes)

01

02

MARY HAD A LITTLE LAMB: This is an amusement routine; it requires SIZE 012.

XEQ "MARY"; when the initialization is complete, press R/S as often as desired.

If printer is plugged in, CF 21 before executing Mary. Source: Bill Kolb (265) (PPC
CJ, VINIP13 & VIN4P13).

LBL "MARY"

"HOLD ON..."

03

04

05

06

07

08

09

10

AVIEW
" MARY n

ASTO 00
" HAD "

ASTO 01
n A "

ASTO 02

"LITTLE"

11

12

13

14

15 AS

16

17
18

19

20

AS

AS

AS

TO 03

" LAMB"
ASTO 04

ITsS"

TO 05

"FLEECE"

TO 06
" WAS n

TO 07

"WHITE"

21

22

23

24

25

26

27

28

29

30

ASTO 08 31 XEQ 01
" AS™ 32 XEQ 02
ASTO 09 33 VIEW 03
" SNOW" 34 TONE 1
ASTO 10 35 TONE 1
non 36 VIEW 04
ASTO 11 37 TONE 1
"OK-PRESS R/S" 38 XEQ 02
PROMPT 39 VIEW 03
LBL 00 40 TONE 2

41

42

43

44

45

46

47

48

TONE 3
VIEW 04
TONE 3
XEQ 02
XEQ 01
X<>Y
VIEW 05
TONE 2

[continued]

CALCULATOR TIPS & ROUTINES 25 VI. FLAGS & TONES

49 VIEW 06 55 VIEW 09 61 GTO 00 67 TONE 0 73 VIEW 04 79 X<>Y

50 TONE 1 56 TONE 1 62 LBL 01 68 VIEW 02 74 TONE 2 80 X<>Y

51 VIEW 07 57 VIEW 10 63 VIEW 00 69 TONE 1 75 RTN 81 X<>Y

52 TONE 1 58 TONE 0 64 TONE 2 70 VIEW 03 76 LBL 02 82 X<>Y

53 VIEW 08 59 VIEW 11 65 TONE 1 71 TONE 2 77 X<>Y 83 END

54 TONE 2 60 STOP 66 VIEW 01 72 TONE 2 78 X<>Y (224 bytes)

6-13 RESET FLAG 12 WHEN NEEDED: Flag 12, if set, instructs the HP 82143A Printer to

print double wide. This flag is cleared when the 41C/V is turned off. For this

reason, it is a good practice to set Flag 12 whenever double-wide printing is de-

sired, rather than only once at the beginning of the program. If a program is stop-

ped and the calculator turned off, or the machine 'times out' and turns off, the out-

put may not be as expected when the calculator is turned on and program execution is

resumed. Source: HP KEY NOTES, V5N1P7.

6-14 FLAG 21: Flag 21 gives the user control of the printer and its automatic re-

sponse to VIEW and AVIEW instructions. Flag 21 is automatically set when Flag

55 is set (except when Flag 55 is set synthetically--see 6-4 & 6-6). Flag 55 is set

whenever the printer is plugged in. If the printer is not plugged in when the HP-41

is turned on, Flags 55 and 21 are cleared. You do not have any control over Flag 55

(except synthetically), but you may set and clear Flag 21 as desired.

FLAG 21 & VIEW/AVIEW

FLAG 21 SET: Execution stops on (A)VIEW unless printing can

occur (printer plugged in & on). Execution stops on

(A)VIEW both when printer is not plugged in and when

it is plugged in, but is off.

FLAG 21 CLEAR: (A)VIEW never prints and never halts execution.

Perhaps the most confusing situation arises when AVIEW is used in a program and the

printer is connected but not turned on. When this occurs, program execution stops at

the AVIEW instruction. A solution is to turn on the printer and press R/S. Other

solutions: (1) CF 21, R/S; or (2) turn HP-41 OFF, unplug printer, turn HP-41 ON and

R/S. The use of Flags 21 and 55 must be carefully planned and tested if the desired

combinations of display, printed outputs, or both are to be obtained. Source: HP KEY

NOTES, V5N1P7. See 4-1, 4-18, 6-4, 6-6, 2-31, 3-12, 22-23.

6-15 SYNTHETIC SET OR CLEAR ANY FLAG ("SET" & "CLR"): These routines call on the

Synthetic Invert Flag Routine, "IF" (6-4).

LBL "SET", FC? IND X, XEQ "IF", RTN

LBL "CLR", FS? IND X, XEQ "IF", RTN

26

CHAPTER VII

STACK OPERATIONS

7-1 OPERATIONS OF X ON X: Source: Valentin Albillo (4747).

ST+ X: Doubles X. Faster than '2, *'; doesn't disturb Y, Z, T, or L.

ST- X: Similar to CLX; doesn't disable stack 1lift. 2 bytes rather than 1.

ST* X: Similar to X%2, but 2 bytes. Doesn't disturb LASTX (L) Register.
ST/ X: Replaces value in X Register with '1'. Doesn'tdisturb Y, Z, T, or L.

----—.SSNANSDGNDSGDGHTGGG6TDGSG——=——— -—- -—.— -=

7-2 MULTIPLY (OR DIVIDE) VALUE IN X BY A CONSTANT ONLY IF FLAG CLEAR: Examples:

Good : ..., FS? 00, GTO 14, 5 * (or /), LBL 14,

Better: ..., 5, FC? 00, * (or /), FS? 00, RDN,

Best: ey 5, FS? 00, SIGN, * (or /), (Non-negative constants only)

7-3 (X,Y) = (X-Y, Y): Put x-y in the X Register, while leaving y in the Y Regis-

ter. Source: Joseph Horn (1537) (PPC CJ, VIN4P13).

All calculators with "%CH": %CH, %. Rounding errors possible.

HP-41C/V alternative: RCL Y, -. T is lost.

7-4 RCL X, Y, Z OR T: All four are 2-byte instructions.

RCL X: XYZT — XXYZ Similar to ENTER, but the stack lift is not disabled.

ENTER: XYZT — XXYZ.

RCL Y: XYZT —» YXYZ Similar to X<>Y, but T is lost and a copy of Y is left in Z.

X<>Y: XYZT —YXZT.

'RCL Y, +' would change XYZT to X+Y, Y, Z2, Z.

RCL Z: XYZT — ZXYZ. T is lost.

RCL T: XYZT —» TXYZ. Same as the 1-byte instruction R1.

7-5 TO CHANGE THE VALUE IN X TO 1 WITHOUT RAISING THE STACK: ST/ X works for any

number except zero. SIGN, ABS changes ggz_number to 1 in the same number of

bytes, but replaces the value in L (LASTX Register) with the value in X prior to the

operation. Source: PPC Melbourne Chapter.

7-17 STACK ANALYSIS ("SA"): This routine can be used to test another routine's ef-

fect on the stack. XEQ "SA" first, then key values as required and execute the

routine to be tested. When execution stops, review stack and L Registers to see

which original stack values remain, and where. (29 bytes)

LB, "sa", "L.", asto L., "'rv", AsrorT, "“2", ASTO Zz, "Yy", ASTO Y, "X", ASTO X, END.

7-8 AUTOMATIC STACK REVIEW WITHOUT PRINTER ("ST"): If the printer is plugged in

but is turned off, CF 21 first. XEQ "ST" at any time to review the contents of

the stack, including L (LASTX Register). Uses the Alpha Register. Source: Bruce

Clark (5795).

01 LBL "ST" 04 AVIEW 07 ARCL X 10 "y= " 13 PSE 16 AVIEW 19 ARCL T 22 CLD

02 "L= " 05 PSE 08 AVIEW 11 ARCL ¥ 14 "Z= " 17 PSE 20 AVIEW 23 END

03 ARCL L 06 "X= " 09 PSE 12 AVIEW 15 ARCL Z 18 "T= " 21 PSE (50 bytes)

CALCULATOR TIPS & ROUTINES 27 VII. STACK OPERATIONS

7-9 STACK EXCHANGE, SAVE & RECALL ("STX", "STS", & "STR"): "STX" (Stack Exchange)

exchanges the contents of the L, X, Y, Z & T Registers with the contents of

Registers 00, 01, 02, 03 & 04, respectively. "STS" (Stack Save) places a copy of the

stack into Registers 00-04. "STR" (Stack Recall) places a copy of the contents of

Registers 00-04 into L, X, Y, Z & T respectively. Source: Bill Carter (2998) (PPC CJ

VIN7P15).

01 LBL "STX" 07 X<> 02 13 RTN 19 RDN 25 RDN 31 RCL 03

02 X<> L 08 RDN 14 LBL "STS" 20 STO 02 26 RTN 32 RCL 02

03 X<> 00 09 X<> 03 15 X<> L 21 RDN 27 LBL "STR" 33 RCL 01

04 XX> L 10 RDN 16 STO 00 22 STO 03 28 RCL 00 34 END

05 X<> 01 11 X<> 04 17 X<> L 23 RDN 29 STO L

06 RDN 12 RDN 18 STO 01 24 STO 04 30 RCL 04 (64 bytes)

7-10 INDIRECT STACK SAVE & RECALL ("SM" & "MS"): "SM" (Stack to Memory) stores the

stack (X, Y, Z, T & L) in the 5-register block pointed to by the value in R0O.

Execution of "SM" saves L, but the rest of the stack is lost (recover it with

"MS", following). "MS" (Memory to Stack) recalls the contents of the S5-register

block pointed to by the value in RO0 into the stack (in X, Y, Z, T & L order). It

can be used to recall a previously-saved stack. Source: PPC CJ, V7/N10P7 (PPC ROM).

01 LBL "SM" 07 STO IND 00 13 RDN 19 4 25 DSE 00 31 RCL IND 00

02 XEQ c 08 4 14 1 20 sT+ 00 26 RCLIND OO 32 END

03 XEQ c 09 sT- 00 15 sT+ 00 21 RCL IND OO 27 DSE 00

04 XEQ c 10 RTN 16 RDN 22 SIGN 28 RCL IND 00

05 XEQ c 11 LBL ¢ 17 RTN 23 DSE 00 29 DSE 00

06 LASTX 12 STOINDO0O 18 LBL "MS" 24 RCL IND 00 30 STO X (68 bytes)

7-11 STACK MANIPULATIONS ("STACK"): This routine can be used to determine the ef-

fect on the stack (X, Y, Z & T Registers) of various combinations of stack-

manipulating functions, such as X<>Y, RCL T, STO Z, and RDN. XEQ "STACK" to display

"X-Y-Z-T" and to put "X" in the X Register, "Y" in the Y Register, and so on. Then

perform the stack-manipulating function(s); next, press R/S. The resulting stack ar-

rangement will be shown ("YXTZ" for example, after an X<>Y). For a new case, press

R/S. CF 21 before execution if a printer is plugged in. It may be helpful to assign

X<> and Bl_to convenient keys. You can even speed execution of X<>Y and RDN by as-

signing them to their own keys. Source: John Dearing (2791).

01 LBL "STACK" 05 ASTO Y 09 ASTO T 13 ARCL X 17 AVIEW
02 "x" 06 "z" 10 "X=Y-Z-T" 14 ARCL Y 18 END
03 ASTO X 07 ASTO Z 11 PROMPT 15 ARCL Z
04 "y" 08 n"T» 12 CLA 16 ARCL T (47 bytes)

Variation 1: To have routine pause to display the result of stack rearrangements,

then turn the calculator OFF, then continue execution when calculator is turned ON

again, insert the following steps after step 17 (AVIEW) above: PSE, PSE, SF 11, OFF,

GTO "STACK". The routine will now be 59 bytes.

Variation 2: To be able to see the effect on the stack of each of two or more opera-

tions, replace step 17 (AVIEW) in the original version above with PROMPT, GTO 00;

insert LBL 00 after step 11 (PROMPT); and either assign "STACK" to E (LN) or insert
LBL E after step 01. Set USER mode, then (1) XEQ "STACK" [press El; (2) perform op-

eration(s) on stack; (3) R/S to see stack; and (4) go to step 2 for another opera-
tion on the stack as it now exists, or go to step 1 to reset stack to XYZT.

Use the keystroke sequences below in a program to rearrange the stack as desired.

For a more complete Stack Manipulation Table, see Reference. The functions that can

be used to manipulate the stack include R?, RDN, ENTER, X<>Y, X<> Z, X<> T, X<> L,

sTO ¥, STO Z, STO T, STO L, RCL X, RCL Y, RCL Z, RCL T, and RCL L. There are several

ways to get most stack arrangements; the best is usually the one that takes the few-

est bytes. Rt, for example, is 1 byte, while RCL T is 2 bytes.

CALCULATOR TIPS & ROUTINES VII. STACK OPERATIONS

The symbol

XYZT

XYTZ

XZYT

XZTY

XTYZ

XTZY

(orig. order)
X-Z, RDN, X-Y
RDN, X-Y, R?T

X-Y, RDN

R?, X-Y

RDN, RDN, X-Z

"_" below stands

YXZT

YXTZ

YZXT

YZTX

YTXZ

YTZX

for 'exchange'(X-Y for example means X& Y or X<>Y).

X=Y

X_Z,

X_Z,

RDN

X=-Y

X-Y, RDN
X-Y

ZXYT

ZXTY

ZYXT

ZYTX

ZTXY

ZTYX

X-Y,
X-Y,
X-Z
RDN,
RDN,
X-Y,

X=Z
RDN, X-Y

X-Y

RDN

RDN, RDN

TXYZ

TXZY

TYXZ

TYZX

TZXY

TZYX

Rt

X-Y, X-T

X-Y, Rt

X-T

RDN, RDN, X-Y

RDN, X-2Z

29

CHAPTER VIII

MEMORY & CURTAIN

8-1 SYNTHETIC CURTAIN UP ("CU"): This routine takes an integer 'n' in X and adds

it to the absolute address of RO0 in Status Register c; if 'n' is positive,

data registers RO0 - R(n-1) will be 'transformed' into program registers, by raising

the imaginary ‘'curtain' separating data and program memory from the original posi-

tion below RO0 to a new position below R(n); R(n) becomes the new R00. If 'n' is
negative, the curtain is lowered, so that 'n' registers of program memory are trans-

formed into data registers. All of this occurs without alteration or moving of the

contents of the registers involved. It is desirable for programs to use data regis-

ters RO0O - R15 to save bytes, so it is common to have several programs in memory

which use the same block of data registers, and so execution of one program may des-

troy data used or produced by another. "CU" solves this problem.

To use, key 'n', XEQ "CU". If 'n' is positive, R(n) will become the new RO0 (curtain

up). If 'n' is negative, R(-n) will become the new RO0 (curtain down). All other

data registers shift accordingly.

Example: Suppose 'Program 1' is executed, leaving data in R00 - R50 that is required

for future use, but in the meantime 'Program 2', using R0O0 - R25, needs to be run.

Key '51', XEQ "CU" (with SIZE 077 or greater), then run 'Program 2'. To restore the

curtain to its original position and prepare for a second run of 'Program 1', key

'-51', XEQ "CU". **WARNING**: Raising the curtain above the top of memory (i.e.,

executing "CU" for 'n' greater than the current SIZE), or lowering it below the bot-

tom of memory (below hex '0C0') will cause "MEMORY LOST".

The 41C/V will operate quite normally while the curtain is raised or lowered from

the position last established by a SIZE operation. However, if the curtain is raised,

changing data into program memory, the memory should not be PACKed, since that will

most likely change the data stored below the curtain irreversibly by removing all

the null bytes in the data. This difficulty can be avoided if an "END" is placed at

the top of program memory, followed by execution of a "PACK". If the curtain is sub-

sequently lowered, the data registers transformed to program memory will be unaf-

fected by the "PACK": they are protected by the "END", which was coded to indicate a

packed file. Source: William Wickes (3735) ('Synthetic Programming on the HP-41C')
(PPC ROM).

01 LBL "CU" 09 xX<> d 17 2 25 FC?CINDY 33 DSE Y 41 STO M
02 ABS 10 STO O 18 / 26 SFINDY 34 GTO 01 42 "pRABC"
03 RDN 11 LBL 00 19 RCL M 27 FC? INDY 35 LBL 13 43 X<> N
04 RCL c 12 RDN 20 X<>Y 28 CHS 36 DSE M 44 X<> c
05 STO M 13 X<> L 21 FRC 29 xX>0°? 37 GTO 00 45 RDN
06 "-006®" 14 INT 22 X=07? 30 GTO 13 38 LBL 14 46 CLA
07 11 15 X=07? 23 GTO 13 31 FC?INDY 39 X<> O 47 END

08 X<> M 16 GTO 14 24 LBL 01 32 CHS 40 X<> 4 (87 bytes)

8-2 PROGRAM CLEARING RESTRICTIONS: When you wish to clear a very long program

(longer than 233 lines), you must set the printer (if present) to MAN (Manual)

Mode while executing the "CLP" function. Programs longer than 1089 lines must be

cleared using the "DEL" function. For example, to clear a 1980-line program, execute

"DEL", then press 'EEX 980'. The END will remain. Source: HP KEY NOTES, V4N1P3.

CALCULATOR TIPS & ROUTINES 30 VIII. MEMORY & CURTAIN

8-3 REGISTERS REMAINING WHILE PROGRAMMING: After adding an instruction at the end

of program memory, you can determine how many memory registers remain unused

by pressing "SST". The display will show .END. REG followed by the number of unused

registers. Pressing SST again will set the pointer to Line 01 of the current program;

pressing BST instead will set the pointer back to the last line of the program, en-

abling you to continue adding instructions. After inserting an instruction in any

program, you can determine how many registers remain completely unused by pressing

SHIFT GTO . 000. The display will then be 00 REG followed by the number of unused

registers (and the pointer will be at step 00 of the program). Source: 'HP-41C Oper-

ating Manual', © Copyright (June 1980) Hewlett-Packard Company. Reproduced with per-

mission.

8-4 SYNTHETIC GETTING TO THE .END. ("EN"): Usually, a program under development is

the last program file in memory; i.e., the file containing the ".END.". If the

address pointer is moved to some other file, there are only two ways to return it to

the last file: use "GTO" and spell out a global label within the program (if there

is one), or use "CAT 1", running to the end of the catalog (slow with many programs

in the calculator). This routine provides a third method: XEQ "EN"; the program

pointer will be set to the top of the program file containing the .END. (SST in PRGM

Mode to see Step 01, or BST to resume programming). Source: William Wickes (3735)

(*Synthetic Programming on the HP-41C').

01 LBL "EN" 04 "O00ee" 07 CF 00 10 SF 03 13 STO M 16 STO b

02 RCL c 05 X<> M 08 CF 01 11 X<> d 14 "o&" 17 END

03 STO M 06 xX<> 4 09 SF 02 12 CLA 15 X<> N (45 bytes)

8-5 SYNTHETIC CURTAIN FINDER ("C?"): XEQ "C?" to find the curtain location (the

absolute address of R00). Line 26 is decimal 244, 127, 0, 0, 65. Source: Keith

Jarett (4360) & Roger Hill (4940) (PPC CJ, VIN10P15; PPC ROM). See 1-7.

01 LBL "C?" 07 CF 01 13 FS?C 11 19 FS?C 14 25 X<>d

02 RCL c 08 CF 02 14 SF 09 20 SF 13 26 E38

03 STO M 09 CF 04 15 FS?C 12 21 FS?C 15 27 /
04 "LeeA" 10 CF 07 16 SF 10 22 SF 14 28 INT

05 X<> M 11 FS2C 10 17 FS?2C 13 23 FS?C 16 29 DEC
06 X<> d 12 SF 07 18 SF 11 24 SF 15 30 END (66 bytes)

8-6 SYNTHETIC HIDE & UNCOVER DATA REGISTERS; ZREG-CURTAIN EXCHANGE ("HD", "UD" &

"IZC"): Minimum SIZE = k+6. Key k, XEQ "HD" to raise the curtain kregisters.

An alpha constant is put in the former Register k (now R0O0). To restore the former

curtain location, XEQ "UD". This is an automatic return (using R00) to where you

were when "HD" was executed. After "UD" is executed, the old RO0 (now Register k)

still contains the alpha constant. ["HD" uses the ZIREG-Curtain Exchange Routine

("ZC"); an example of "ZIC" is: SIZE 010, ZIREG 03, XEQ "IC", XEQ "S?" (see 7), XEQ

"y2" (see -3); XEQ "IC", XEQ "S?" (see 10), XEQ "XI?" (see 3) (see routine 1-17)].

The example below left shows the effect of executing "HD" with k = 5 and initial

SIZE= S = 08. After the curtain has been raised, R05 becomes R00 (and its value is

replaced with the alpha constant), R06 becomes R01, etc., and the values in old RO00-

R04 are 'hidden'. Executing "UD" restores the curtain to its former location, but

the alpha constant remains in R05 and IREG 01 is set. Source: PPC ROM. Jarett (4360).

BEFORE AFTER : 01 LBL "HD" 10 ASTOINDL 19 STO N 28 “LE"
: 02 SIGN 11 IREGINDL 20 "}-B" 29 X<> d

igg - g:ggg] ng 03 RDN 12 LBL "EC" 21 STO M 30 SCI IND N
R05 - control — ROO 04 RCL c 13 CLA 22 "|CD" 31 X<> 4
04 - 4.000 05 "o" 14 RCL c 23 X<> 0 32 STO O
03 - 3000 06 X<> M 15 STO O 24 X<> d 33 RDN
0 = 2000 07 “px*n 16 STO M 25 SF 08 34 RCL c
o1 = 1000 08 STO N 17 "}-A" 26 X<> d 35 IREG 00

ROO = 0.000 : 05 RDN 18 CLX 27 X<> N [continued]

CALCULATOR TIPS & ROUTINES 31 VIII. MEMORY & CURTAIN

36 X<> ¢ 41 "“pGHI" 46 X<> O 51 STO M 56 CLA 61 ASTO c

37 STO M 42 STO L 47 "pJ" 52 "pL" 57 RTN 62 ZIREG 01

38 "|F" 43 RDN 48 STO M 53 X<> N 58 LBL "UD" 63 END

39 RDN 44 RCL c 49 "}K" 54 X<> ¢ 59 CLA

40 RCL N 45 STO M 50 X<> L 55 RDN 60 ARCL 00 (141 bytes)
———————— -- ..=WT.STED S T SIS SGGGSGGEP S SNGSGUG SS =SG SS —SSSSS.WGTeUGGGSGSGGGG e-oS—— T———T————S—=e———

32

CHAPTER 1IX

DATA REGISTERS

9-1 DATA REGISTER LOAD & REVIEW ("LD" & "RV"): To store data, XEQ "LD"; you will

be prompted for each register from RO1 on up. (Both routines use R00). To re-

view data in registers 01 on up, XEQ "RV". Output will print if possible: press R/S

to stop execution (or execution will stop with "NONEXISTENT" when routine attempts

to recall a nonexistent register). Source: John Dearing (2791) (PPC CJ, V7N4P7).

01 LBL "LD" 07 "R" 13 GTO 01 19 LBL 02 25 FIX 2 31 END
02 1.4 08 ARCL 00 14 RTN 20 FIX O 26 SF 29
03 STO 00 09 "p=2" 15 LBL "RV" 21 CF 29 27 ARCL IND 00
04 FIX 0 10 PROMPT 16 SF 21 22 "R" 28 AVIEW
05 CF 29 11 STOINDOO 17 1.4 23 ARCL 00 29 1sG 00

06 LBL 01 12 1IsSG 00 18 STO 00 24 "p=" 30 GTO 02 (69 bytes)

9-2 RECALL A REGISTER AND RESET TO 0 OR 1: To reset to 0, use (for example) RCL 01,

ST- 01. To reset to 1, use RCL 01, ST/ 01 (doesn't work if register contents

is 0). Source: Bill Kolb (265) (PB 67/97). Another way to reset to 0 is 0, X<> 01;

similarly, to reset to 1, use 1, X<> 01 (works for any value). Source: PPC Mel-

bourne chapter.

9-3 ZERO-ONE TOGGLE: Use '1, -, ABS'. Example: to toggle the contents of Register

00, use ..., RCL 00, 1, -, ABS, STO 00, RDN, Source: Joseph Holmes

(3673) (PPC CJ, VIN5P7).

9-4 INDIRECT USE OF XEQ FOR DATA RETRIEVAL ("PHONE"): This example recalls a tele-

phone number when given a name of up to six characters. XEQ "PHONE", input

name when prompted, R/S, and see phone number. Source: HP KEY NOTES, V4N1P11.

01 LBL "PHONE" 05 ACFF 09 STOP 13 LBL "BOB" 17 "222-2791"

02 "NAME?" 06 ASTO X 10 LBL "JANET" 14 "753-555-6767" 18 END

03 AON 07 XEQ IND X 11 "533-555-1212" 15 RTN

04 PROMPT 08 AVIEW 12 RTN 16 LBL "NANCY" (89 bytes)

9-5 "STO" FOLLOWED BY STORAGE REGISTER ARITHMETIC:

STO nn, ST+ nn: Stores 2X (twice the contents of the X Register) in another regis-

ter, without altering the stack, in only 2 steps.

STO nn, ST- nn: Clears a register without altering the stack.

STO nn, ST* nn: Stores the square of the value in the X Register in another regis-

ter without altering the stack.

STO nn, ST/ nn: Resets the contents of a register to 1 without altering the stack.

Won't work if the value in X is zero.

9-6 CLEARING HIGHER-NUMBERED DATA REGISTERS: When an application requires using

data registers, the most vital information should be kept in the lowest-num-

bered data registers. The highest-numbered data registers may be used for scratch.

The technique of sizing down and then sizing up may be used to clear the highest-

numbered registers. Source: Richard Nelson (1).

CALCULATOR TIPS & ROUTINES 33 IX. DATA REGISTERS

9-7 PACK & UNPACK REGISTER ("PR" & "UR"): Pack Register ("PR") can be used to

store data in packed form in a data register; Unpack Register ("UR") can be

used to recall packed data from a data register. The packing scheme is to simply en-

code data, using a base b representation. Using this technique, it is possible to

store several numbers in one register. Both routines assume that Register 10 holds

the base b and that Register 11 is pointing to the register that will store the data

to be packed or that contains a number to be decoded.

R10: base b R11: register pointer

To store the number 'n' in position 'k' of the register pointed to by R11, key n,

ENTER, k, XEQ "PR"; the number 'n' must be in the range 0 - (b-1). "PR" calls "UR"

and does not return any useful values in the stack. To recall the number stored in

position 'k' of the register pointed to be R11, key k, XEQ "UR". "UR" will return in

the X Register a number in the range 0 - (b-1).

TABLE OF POSSIBLE BASES & POSITION NUMBERS

Data Range Base b Pos. No. Data Range Base b Pos. No.

0-1 2 1-30 0-20 21 1-7

0-2 3 1-19 0-36 37 1-6

0-3 4 1-15 0-99 100)

0-4 5 1-13 0-214 215 1-4

0-6 7 1-11 0-1413 1414 1-3

0-9 10 1-10 0-99999 100000 1=-2

0-13 14 1-8

The most efficient use may be made of data registers by storing the largest values

in the lowest-numbered positions and storing the smallest values in the highest-num-

bered positions. If your priority is the range of data, start with the Data Range

column; if your priority is the number of artificial memories available, start with

the Position Number column. In many cases, it will be possible to extend the values

in this table.

Example: From the above table it can be seen that when the base b = 21, we may store

as many as 7 numbers in one register, provided the numbers are in the range 0-20.

Use "PR" to pack the numbers 13, 19, 14, 15, 8, 18, and 16 all in R12. Then use "UR"

to recall the numbers. Solution: First store the base '21' in R10 and store the reg-

ister pointer '12' in R11. Then, to store 13 in position 1, key 13, ENTER, 1, XEQ

"PR"; to store 19 in position 2, key 19, ENTER, 2, XEQ "PR". Similarly, key 14, EN-

TER, 3, XEQ "PR", and so on through 16, ENTER, 7, XEQ "PR".

Now recall R12 and see the number 1,447, 473, 103. The base 21 representation of

this number shows the seven numbers as coefficients of powers of 21:

16*216 + 18*215 + 8*214 + 15*213 + 14*212 + 19*211 + 13 .

To use "UR" to recall the numbers in positions 1-7 (from right to left), key 1, XEQ

"UR", see '13'; key 2, XEQ "UR", see '19', and so on. Execution time: "PR", 2 sec-

onds; "UR", 1 second. Source: John Kennedy (918) (PPC ROM).

01 LBL "UR" 05 X<>Y 09 ST/ Y 13 MOD 17 X<>Y 21 X<>Y
02 1 06 Ytx 10 X<>Y 14 RTN 18 ST* Z 22 ST+ IND 11
03 - 07 RCL IND 11 11 INT 15 LBL "PR" 19 * 23 END
04 RCL 10 08 X<>Y 12 RCL 10 16 XEQ "UR" 20 ST- IND 11 (43 bytes)

9-8 DOUBLE STORAGE: If you have two numbers, preferably one greater than one and

the other less than one, if registers are at a premium, and if program space

is available, then both numbers can be stored in one register. For example, '127'

and '0.35' can be stored in R00 as 127.35: then, to recover the 127, use 'RCL 00,

INT'; to recover the 0.35, use 'RCL 00, FRC'. If both numbers are greater (or less)

than one, modify after recalling. Source: John Martellaro (1896) (PPC J, V5N1P16).

CALCULATOR TIPS & ROUTINES 34 IX. DATA REGISTERS

9-9 FULL DATA REGISTER EXCHANGE & ARITHMETIC: Applies to both numeric and stack

registers. Source: John Dearing (2791).

Exchange any 2 registers (--<>--):
Rule: X<> 1st register, X<> 2nd register, X<> 1st register.

Example 1: Exchange Y & R15: X<>Y, X<> 15, X<>Y.

Example 2: Exchange R13 & R17: X<> 13, X<> 17, X<> 13.

First register STO (or ST+, -, * or /) into second register:

Rule: X<> 1st reg, STO (or ST+, -, * or /) 2nd reg, X<> 1st reqg.

Example 3: Add Z into R11: X<> Z, ST+ 11, X<> Z.

Example 4: Subtract R0O5 from R10: X<> 05, ST- 10, X<> 05.

Any other register ST+ (or ST-, ST*, or ST/) into X:

Rule: X<> other reg, ST+ (or ST-, ST*, or ST/) other reg, X<> other reqg.

Example 5: Multiply X by R20: X<> 20, ST* 20, X<> 20.

Example 6: Divide Z into X (divide X by Z): X<> Z, ST/ Z, X<> Z.

9-10 COPY ONE REGISTER INTO ANOTHER, WHOSE ADDRESS IS IN X: One solution is to use

RCL 1st register, STO IND Y, RDN. Contents of the T Register is replaced by

the contents of the 1st register. Another solution is to X<> 1st reg, STO IND 1st

reg, X<> 1st reg. This method doesn't raise the stack. Example: X :3 :7:3
Copy the contents of R04 (which is 7) into R03, whose address =04 % 7 : 3 : 5
is in X: Use either 'RCL 04, STOIND Y, RDN' or 'X<>04, STOIND 3S
04, X<>04"'. T :

9-11 STORE AND RECALL INDIRECT ("SI" & "RI"): These routines are similar to "STO"

and "RCL", but work for all data registers, including R100 and above. For "SIY

key in the number to be stored and press ENTER (if necessary), then key in the reg-

ister number and XEQ "SI". T and L Registers are used. For "RI", key in register

number to be recalled, then XEQ "RI". L Register is used.

LBL "SI", SIGN, RDN, STO INDL, RTN, LBL "RI", SIGN, RDN, RCL IND L, END (24 bytes)

35

CHAPTER X

BLOCK OPERATIONS

10-1 LOAD A BLOCK OF REGISTERS WITH THE SAME VALUE: Put the bbb.eee counter in Y

and the value in X. For example, to load RO1-R13 with '8', use '1.013, ENTER,

8, LBL 14, STOINDY, ISG Y, GTO 14',

10-2 SELF-LOAD ("SLD"): This routine loads every numeric data register with its own

address. It will continue execution until R/S is pressed, or until it runs out

of registers (at which time it will stop and display "NONEXISTENT"). "SLD" is useful

for testing the operation of many block operations. Source: John Dearing (2791) (PPC

CJ, VIN5P7).

LBL "sLp", 0, LBL 00, STOINDX, 1, 4+, GTO 00, RTN

10-3 INPUT BLOCK ("INBL"): This routine prompts for inputs to all data registers in

a block. Have the block defined with a bbb.eee control number in X before exe-

cution. Source: John Dearing (2791). See 9-1.

01 LBL "INBL" 05 INT 09 LBL 14 13 "p=2" 17 ISG Y 21 RTN
02 FIX 0 06 "RO" 10 "R" 14 PROMPT 18 GTO 14
03 CF 29 07 X=07? 11 ARCL Y 15 STOINDZ 19 FIX 2
04 ENTER 08 GTO 13 12 LBL 13 16 RDN 20 SF 29 (45 bytes)

10-4 SYNTHETIC INPUT BLOCK ("INB"): Prompts for inputs to all data registers in the

block defined by the bbb.eee control number in X; saves the display mode. For

numeric entries only. Source: John Dearing (2791).

01 LBL "INB" 05 X=07? 09 RCL 4 13 STO 4 17 PROMPT 21 GTO 14
02 ENTER 06 GTO 13 10 FIX 0 14 RDN 18 STO IND Z 22 CLX
03 INT 07 LBL 14 11 CF 29 15 LBL 13 19 RDN 23 END
04 "RO" 08 "R" 12 ARCL Z 16 "p=2" 20 ISG Y (46 bytes)

10-5 IMPROVED SYNTHETIC INPUT BLOCK ("IB"): Have the control number (bbb.eee) de-

fining the block in X before execution; it is returned to X after execution.

The display mode is saved. At will, ALPHA Mode may be turned on (before keying Alpha

characters) or off (before keying numbers). The routine will stay in the mode selec-

ted until it is changed by the user. Source: John Dearing (2791).

01 LBL "IB" 07 LBL 14 13 sSTO 4 19 CF 23 25 RDN 31 AOFF
02 ENTER 08 "R" 14 RDN 20 PROMPT 26 FS? 23 32 END
03 INT 09 RCL 4 15 LBL 13 21 FC? 23 27 ASTOINDY
04 "RO" 10 FIX 0 16 "p=2" 22 STOIND T 28 ISG Y
05 X=0? 11 CF 29 17 ENTER 23 FC? 23 29 GTO 14
06 GTO 13 12 ARCL Z 18 ASTO X 24 RDN 30 LASTX (60 bytes)

10-6 BLOCK INCREMENT ("BI"): Have control number bbb.eee defining the block in Z,

the initial value to be stored in the first register of the block in Y, and

the increment value (pos. or neg.) in X; then XEQ "BI". Example: '5.00902, ENTER,

50, ENTER, 10, XEQ "BI"' puts 50 in R05, 60 in RO7 & 70 in R09. Source: PPC ROM.

01 LBL "BI" 03 LBL 10 05 + 07 ISG Y 09 END
02 - 04 LASTX 06 STOINDY 08 GTO 10 (19 bytes)

CALCULATOR TIPS & ROUTINES 36 X. BLOCK OPERATIONS

10-7 VIEW BLOCK ("VB"): This routine views/prints the contents of all nonzero reg-

isters in a block. Have the block defined with a bbb.eee control number in X,

then XEQ "VB". Uses '0, X=Y?' rather than 'X=0?' to avoid the "ALPHA DATA" message

if a register contains an Alpha string. Uses more steps than would otherwise be nec-

essary to allow for viewing of R00. Change steps 28 &/or 35 (FIX 2) to suit. To

clear any register while executing "VB" without printer, store 0 in the displayed

register, then R/S to continue routine execution. Source: John Dearing (2791). See

9-1.

01 LBL "vB" 08 GTO 10 15 0 22 10 29 ARCL IND L 36 SF 29

02 SF 21 09 RCL L 16 RCLINDL 23 X>Y? 30 AVIEW 37 CLST
03 CF 29 10 INT 17 X=Y? 24 "pO" 31 CLD 38 END
04 STO L 11 "ROO" 18 GTO 10 25 ARCL L 32 LBL 10
05 0 12 X=0? 19 FIX 0 26 LBL 11 33 ISG L
06 RCLINDL 13 GTO 11 20 "R" 27 "p= " 34 GTO 12
07 X=Y? 14 LBL 12 21 LASTX 28 FIX 2 35 FIX 2 (72 bytes)

10-8 SYNTHETIC VIEW BLOCK ("VB"): To change the View Block routine (10-7) above to

a synthetic version in which the display mode before execution determines the

display of the registers, and in which the original display mode is retained, make

the following modifications: Delete steps 36 (SF 29), 35 (FIX 2), 28 (FIX 2), and 25

(ARCL L); after step 24 ("}0"), insert 'RCL d, CF 29, FIX 0, ARCL L, STO d'; delete

steps 19 (FIX 0) and 03 (CF 29).

10-9 SYNTHETIC BLOCK VIEW ("BV"): Key control number bbb.eee defining the block,
then XEQ "BV": the contents of all registers in the block that are nonzero

will be AVIEWed (and printed if printer is on and Flag 21 is set). For a longer

viewing, SF 09 before execution (pauses after each AVIEW); or SF 10 instead to have

the routine stop after each AVIEW. Step 29 is synthetic Tone 38. The original dis-

play mode is restored. Source: Richard Schwartz (2289) (PPC ROM).

01 LBL "BV" 09 X<> Z 17 "p: " 25 LASTX 33 RTN 41 FC2C 25
02 . 10 INT 18 R? 26 . 34 LBL "VA" 42 SF 21
03 ENTER 11 CLA 19 ARCL X 27 ENTER 35 SF 25 43 END
04 LBL 00 12 RCL d 20 XEQ "VA" 28 LBL 01 36 PRA
05 CLX 13 CF 29 21 FS? 10 29 TONE 8 (38) 37 SF 25
06 RCLINDZ 14 FIX 0 22 STOP 30 ISG Z 38 Fs?C 21
07 X=Y? 15 ARCL Y 23 Fs? 09 31 GTO 00 39 CF 25
08 GTO 01 16 STO 4 24 PSE 32 TONE 6 40 AVIEW (83 bytes)

10-10 REVERSE BLOCK ("RB"): This routine reverses (inverts) any block of numeric
data registers as specified by a 'bbb.eee' control number in X. For instance,

with '4.008 in X, execution of "RB" moves the contents of R08 to R04, RO7 to RO5,

RO6 is unchanged, R05 to RO7, and R04 to RO8. Especially useful to change an ascen-

dent sort to descendent, or vice versa. The routine itself uses no numeric data reg-

isters, and it is fast: it inverts 100 registers in about 13 seconds. Source: Valen-

tin Albillo (4747).

01 LBL "RB" 05 1 E3 09 2 13 / 17 X<> IND Y 21 DSE Y
02 ENTER 06 * 10 / 14 + 18 X<> IND Z 22 GTO 00
03 ENTER 07 ST+ Y 11 INT 15 X<>Y 19 X<> IND Y 23 END
04 FRC 08 X<>Y 12 1 E3 16 LBL 00 20 ISG Z (41 bytes)

10-11 DUPLICATE BLOCK ("DUP"): This routine copies the data in one block of data
registers into a second block. Overlapping of blocks not permitted if moving

data to higher-numbered registers. To use, key control number defining block to be

saved (bbb.eee), ENTER, first register of destination block (BBB), XEQ "DUP".

Source: Bill Kolb (265) (PPC CJ, V7N4P17).

LBL "DUP", LBL 00, RCLINDY, STOINDY, RDN, 1, +, ISG Y, GTO 00, RTN. (20 bytes)

CALCULATOR TIPS & ROUTINES 37 X. BLOCK OPERATIONS

10-12 BLOCK MOVE ("BM"): This routine moves a block of data registers to a new loca-

tion. In other words, it duplicates, copys or saves the block in a new loca-

tion without changing the values in the block that is copied. 0ld values in the des-

tination block are lost. The original or sending block and the destination block may

overlap. "BM" uses no numeric data registers of its own. To use, key 1st reg. to be

moved, ENTER, 1st reg. of destination block, ENTER, no. of reg. in block, XEQ "BM".

Source: John Kennedy (918) (PPC ROM).

01 LBL "BM" 09 -1 17 STO IND Z
02 SIGN 10 ST+ Z 18 RDN REQUIRED STACK BEFORE EXECUTION:
03 RDN 11 ST+ Y 19 ST+ Z .

04 X<Y? 12 RDN 20 ST+ Y ;: | .
05 GTO 04 13 LBL 04 21 DSE L P 1st register to be moved
06 LASTX 142’/ 29 GTO 05 Y: 1st reg. in desFlnatlon block

07 ST+ Z 15 LBL 05 23 END X: no. of consecutive reg. to move

08 + 16 RCL IND Z (41 bytes)

10-13 EXCHANGE BLOCK ("XB"): This routine will exchange the contents of two equal-

length blocks of consecutive data registers. The blocks must not overlap. To

use, key the first register number of one block, ENTER, the first register number of

the other block, ENTER, the number of registers to exchange, XEQ "XB". With input of

0, ENTER, 10, ENTER, 10, this routine will simulate the primary-secondary register

exchange function of the HP-67/97. Source: John Kennedy (918) & Richard Schwartz

(2289) (pPPC CJ, VIN10P7). (26 bytes) REQUIRED STACK BEFORE EXECUTION:

01 LBL "XB" 05 X<>IND Z 09 ST+ Y T: -

02 SIGN 06 STOIND T 10 DSE L Z: 1st address of one block

03 LBL 02 07 RDN 11 GTO 02 Y: 1st address of other block

04 RCL IND Z 08 ST+ Z 12 END X: no. of reg. in either block

10-14 BLOCK EXCHANGE ("BE"): Exchanges the contents of one block with the contents

of a second block of equal length. Key begin.end registers (bbb.eee) of one

block, ENTER, beginning register (BBB) of second block, XEQ "BE". To add a primary-

secondary register exchange function (simulating the HP-67/97 PgS function), precede

LBL "BE" with 'LBL "P<>S", .009, ENTER, 10'. Source: Bill Kolb (265) (PPC CJ, V7N4

P17; PPC ROM).

01 LBL "BE" 03 RCLINDY 05 STOIND Z 07 ISG X 09 ISG Y 11 END
02 LBL 01 04 X<>INDY 06 RDN 08 STO X 10 GTO 01 (25 bytes)

10-15 SYNTHETIC PRIMARY-SECONDARY EXCHANGE ("P-S"): This routine duplicates the P3sS

function of the HP-67/97 by exchanging the contents of R00-09 with the con-

tents of R10-19. The stack is saved; the Alpha Register is used; minimum SIZE is 20.

Execution time, 3.5 seconds. Source: David Bartholomew (3666) (PPC CJ, V7N8P8).

01 LBL "P-S" 06 STO O 11 LBL 01 16 DSE Y 21 STO 00 26 END

02 STO M 07 RDN 12 RCL IND X 17 DSE X 22 Rt
03 RDN 08 19 13 X<>IND Z 18 GTO 01 23 RCL O

04 STO N 09 ENTER 14 STOINDY 19 RCL 00 24 RCL N
05 RDN 10 9 15 RDN 20 X<> 10 25 RCL M (48 bytes)

10-16 BLOCK ROTATE ("BLR"): This routine rotates or shifts the contents of a block

of data registers, defined by a control number (bbb.eee) in X. For example, if

you input 2.004, then XEQ "BLR", the contents of RO2 is moved to R03, the contents

of RO3 is moved to R04, and the contents of R04 is moved to R02. The values in X & Y

before the control number is keyed in are returned to Z & T, respectively. Source:

John Kennedy (918) (PPC CJ, VIN10P9).

01 LBL "BLR" 04 RDN 07 ISG L 10 RTN 13 GTO 07

02 ENTER 05 RCL IND L 08 GTO 08 11 LBL 08 14 END

03 ABS 06 LBL 07 09 STOIND Y 12 X<>IND L (28 bytes)

CALCULATOR TIPS & ROUTINES 38 X. BLOCK OPERATIONS

10-17 BLOCK ROTATE IN EITHER DIRECTION ("BR"): The input to this routine is the num-

ber of the first register of the block in Y and #n (where 'n' is the number of

registers within the block) in X; the sign of n determines the direction of the ro-

tation. If n is positive, values are moved to the next higher-numbered register (and

the contents of the highest-numbered register in the block is moved to the lowest);

conversely, if n is negative, values are moved to the next lower-numbered register

(and the contents of the lowest-numbered register in the block is moved to the high-

est). Source: John Kennedy (918) & Richard Schwartz (2289) (PPC ROM).

01 LBL "BR" 06 X<>Y 11 LBL 06 16 ST+ Z 21 LBL 07 26 STO Y 30 END
02 CHS 07 1 12 RCLINDZ 17 ST+ Y 22 CHS 27 -1
03 X<0? 08 ST+ Z 13 XX>INDZ 18 DSE L 23 1 28 ST+ Z
04 GTO 07 09 - 14 STOINDT 19 GTO 06 24 - 29 GTO 06
05 RCL Y 10 SIGN 15 RDN 20 RTN 25 + (51 bytes)

10-18 SYNTHETIC BLOCK EXTREMES ("BX"): Have the block defined with a bbb.eee control

number in X, then XEQ "BX". The smallest value in the block is returned to X

and the largest value is returned to Y. If Flag 10 is set, absolute values are used.

The original control number is returned to Synthetic Register O, the register number

of the smallest value to Register N, and the register number of the largest value to

Register M. Contents of the block are undisturbed. Numeric registers can be used in

place of the synthetic registers, or steps 37, 32, 04, 03 & 02 can be deleted. This

routine may also be considered to be a matrix routine, since it can be used to de-

termine pivoting operations. Source: Richard Schwartz (2289) (PPC ROM).

01 LBL "BX" 08 ENTER 15 ABS 22 LBL 09 29 X<>Y 36 RCL T
02 STO M 09 ENTER 16 X>Y? 23 ISG Z 30 CLX 37 STO N
03 STO N 10 RDN 17 GTO 10 24 GTO 08 31 RCL Z 38 X<>Y
04 STO O 11 LBL 08 18 Rt 25 X<>Y 32 STO M 39 RDN
05 RCL IND X 12 CLX 19 X>Y? 26 R?T 33 GTO 09 40 GTO 09

06 FsS? 10 13 RCL IND Z 20 GTO 11 27 RTN 34 LBL 11 41 END
07 ABS 14 FS? 10 21 RDN 28 LBL 10 35 CLX (65 bytes)

10-19 MULTI-REGISTER CLEAR ("CLRGX"): With 'nn' in X, this routine will clear Regis-

ters 00 - nn. The values that were in X, Y & Z before 'nn' was keyed in are re-

turned to Y, Z & T. Source: John Dearing (2791) (PPC CJ, V7N5P7).

LBL "CLRGX", SsTO 00, CLX, LBL 14, STOIND 00, DSE 00, GTO 14, RTN (19 bytes)

10-20 ERASE BLOCK ("EB"): To clear any block of data storage registers, put the con-

trol number (bbb.eee) defining the block in X, then XEQ "EB". To clear Regis-

ters 05 - 09, for example, key '5.009', XEQ "EB". You may wish to add two RDNs at the

end to restore X and Y. Source: John Dearing (2791) (PPC CJ, V7N4P22).

LBL "EB", 0, LBL 13, STOINDY, ISG Y, GTO 13, RTN (15 bytes)

10-21 MULTIPLE-REGISTER CLEAR USING CLZ: "CLE" clears six adjacent data storage reg-

isters, beginning with the register specified by the "EREG" function. To clear

Registers 10 - 18, for example, use 'EREG 10, CLX, 2REG 13, CLE'. 6 bytes. EREG may

need to be reset. Source: HP KEY NOTES, V4N1P5.

10-22 CLEAR REGISTERS WITH NO NUMERIC LABELS ("CR"): To clear any contiguous set of

data storage registers, put the bbb.eee (begin.end) control number in X, then

XEQ "CR". Source: John Burkhart (4382).

LBL "CR", 0, STOIND Y, RDN, ISG X, GTO "CR", RTN (17 bytes)

10-23 BLOCK CLEAR ("BC"): With the block defined by the bbb.eee control number in X,

XEQ "BC" to clear all registers in-the block. To clear every other register in

a block (to clear alternate registers), use the full control number of the form

CALCULATOR TIPS & ROUTINES 39 X. BLOCK OPERATIONS

'bbb.eeeii', with 'ii' = 02. For example, '10.02002, XEQ "BC"' clears Registers 10,

12, 14, 16, 18 & 20. Y, Z & T Registers are not used. SIGN is used in step 02 rather

than STO L in order to save one byte. Source: John Kennedy (918) (PPC ROM).

LBL "BC", SIGN, CLX, LBL 13, STOINDL, ISG L, GTO 13, RTN (16 bytes)

10-24 SELECTION WITHOUT REPLACEMENT ("SE"): This routine can be used to select at

random an element from any block of consecutive registers. Subsequent items

selected from the block will not repeat. It can also be considered to be a random

shuffler which will scramble the contents of a block of registers. "SE" calls the

random number generating routine "RN". To initialize, store the number of the first

register of the block to be selected from in R06; put the number of registers in the

block in R07. Store a fractional seed in any convenient register; call this register

'k'. Once initialized, the normal input to "SE" is simply the number 'k' which points

to the random decimal register; key 'k' and XEQ "SE". The output from "SE" is the

register content chosen at random and is left in the X Register. Each time "SE" is

called, the counter in RO7 is decreased by one.

If many calls are being made to "SE", then R07 should be tested for zero before "SE"

is called. When RO7 is zero, all the available items will have been selected; the

items remain stored in the original block but will be rearranged. After a complete

shuffling, the items are in the reverse order of selection (the last selected is in

the lowest-numbered register). To repeat the selection process, reinitialize the

number in R07. This routine uses the stack; it uses no flags. It executes in about

1% seconds. [Steps 16 (RCLIND X) and 22 (STOINDY) (part of "RN") could be changed
to direct operations (say RCL 05 & STO 05)--then the fractional seed must be stored

in that register, but 'k' (5 in this case) need not be keyed in before each execu-

tion of "SE"].

Example: (1) Load data as shown below left; to let 'k' =5, store 0.141592654 in

RO5. Store '10' in R06 (first register of the block) and store '5' in RO7 (the num-

ber of registers in the block). (2) Key in '5' (k), XEQ "SE"; see "SUSAN"; the block

is now as shown below middle. (3) Repeat step 2 four more times for a complete re-

shuffling; the block is now as shown below right. (4) To repeat selection from this

block, reinitialize R07 to 5, then go to step 2. This routine will, of course, work

just as well when the block contains numbers.

R10: ROBERT) R10: ROBERT) R10: JOE)
R11: JANE) R11: JANE) R11: GEORGE)
R12: JOE) fog R12: JOE) foz R12: JANE) fiog
R13: SUSAN) R13: GEORGE) R13: ROBERT)
R14: GEORGE) R14: SUSAN) R14: SUSAN)

Source: Bill Kolb (265) & John Kennedy (918) (PPC ROM).

R'k': Fractional Seed R0O6: 1st reg. of block RO7: No. of reg. in block

01 LBL "SE" 05 RCL 06 09 RCL 07 13 STOIND Y 17 9821 21 FRC
02 XEQ "RN" 06 ST+ Y 10 + 14 RTN 18 * 22 STOINDY
03 RCL 07 07 DSE 07 11 RCL IND X 15 LBL "RN" 19 .211327 23 END
04 * 08 STO X 12 X<>IND Z 16 RCL IND X 20 + (54 bytes)

10-25 ODD-EVEN REGISTER EXCHANGE ("OE"): This routine exchanges the contents of ad-

jacent registers, as directed by a control number (bbb.eee) in X defining the

block. To avoid confusion, note the following: if the beginning register pointed to

is odd-numbered and the ending register pointed to is even-numbered (or vice versa),

then 'bbb' is the first register whose contents will be changed, and 'eee' is the

last register whose contents will be changed. For example, 1.004, XEQ "OE" will ex-

change RO1 with R02 and R03 with R04; 2.005, XEQ "OE" will exchange R02 with RO3 and

R04 with RO5. The values in X and Y before keying the control number are returned to

X and Y. Source: John Herzfeld (5428). [continued]

CALCULATOR TIPS & ROUTINES 40 X. BLOCK OPERATIONS

01 LBL "OE" 04 1.4 07 LBL 00 10 STOIND L 13 ISG L 16 END
02 2 E-5 05 X<>Y 08 RCL IND L 11 RDN 14 GTO 00
03 + 06 + 09 X<>INDY 12 ISG X 15 RDN (34 bytes)

10-26 BLOCK REVIEW & EDIT ("B?"): This routine can be used to enter, edit or review

data in a block of data registers. Specify a block-defining control number in

the form bbb.eee, as in an ISG instruction, where bbb is the first register and eee

is the last. (You may also specify an increment size, as in an ISG instruction.) As

the routine executes, it will display the register number and the current contents

of the register. If you simply hit R/S, the contents are unaltered. If you enter a

new number and hit R/S, the new number replaces the old contents of the data regis-

ter. OPTION: After step 17 (RDN), insert 'FC? 22'; this change will result in a re-

view of the newly-changed register before going to the next one. Y (the value in X

before keying in the control number) is returned to X. Source: Larry Trammell (6824).

01 LBL "B?" 05 FIX O 09 CF 22 13 FS? 22 17 RDN 21 FIX 2

02 LBL 14 06 "R" 10 "} " 14 STOIND Y 18 ISG X 22 END

03 ENTER 07 ARCL X 11 ARCL IND X 15 FS? 22 19 GTO 14

04 INT 08 SCI 5 12 PROMPT 16 RDN 20 RDN (43 bytes)

41

CHAPTER XI

MATRICES & DATA PROCESSING

11-1 MATRIX ROUTINES ("M1" - "M5"): Each of the five matrix routines requires two

stored values, one of which is the starting register of the matrix and the

other of which is the number of columns in the matrix. Matrices are assumed to be

stored with each row occupying a consecutive block of registers. Thus the number of

columns is the block size and the entire matrix is stored row by row as one string

of consecutive registers. RO7 holds the starting register of the matrix, and RO8

holds the number of columns. Both row and column numbers start counting from one.

"M1" will interchange two rows in a matrix; input is the numbers of the two rows to

be interchanged. ["M1" may also be considered part of the data base management rou-

tines INPUT & DELETE RECORD ("IR" & "DR"), as it can be used to interchange two rec-

ords; input in this case is the two record numbers.]

"M2" will multiply a row in a matrix by a constant; input is the constant and the

row number. As part of a data base management system, "M2" can be used to multiply a

numerical record by a constant, including 0 (so input is the constant and the record

number) .

"M3" will add a multiple of one row in a matrix to another row. The row that is add-

ed to changes; the row that is multiplied by the constant does not change. "M3" may

be considered part of the data base system routines "IR" & "DR": when records con-

sist of numerical entries (such as columns of prices), "M3" may be used to add a

multiple of one record to another.

"M4" will determine the (i, j) element in a matrix (row i, column j), given the num-

ber of the data register which contains that element. Input to "M4" is the register

number. As part of the data base management system, "M4" can be used to determine a

particular field element in a record.

"M5" is the inverse of "M4", and will determine the register number of the (i, j)

element in a matrix. Input to "M5" is the row number 'i' and the column number 'j'.

As part of the "IR"/"DR" data base management system, "M5" can be used to locate a

particular field element in a record, given the record number and the number of the

desired item within the record.

Sample Matrix: This 6x5 matrix (below left) is assumed to be stored in R15-R44. The

element in the upper left corner ('21') is row 1, column 1 (1,1). The registers in-

volved are shown below left.

21 35 55 74 83 : R15: 21 R21: 93 R27: 32 R33: 62 R39: 82

11 93 56 36 29 : R16: 35 R22: 56 R28: 27 R34: 97 R40: 23

65 78 32 27 75 : R17: 55 R23: 36 R29: 75 R35: 54 R41: 45

53 94 46 62 97 : R18: 74 R24: 29 R30: 53 R36: 39 R42: 77

54 39 61 67 82 : R19: 83 R25: 65 R31: 94 R37: 61 R43: 15

23 45 77 15 25 : R20: 11 R26: 78 R32: 46 R38: 67 R44: 25

This matrix starts in R15 and the number of columns in the matrix is 5, so the fol-

lowing must be stored:

RO7: 15 = starting register; R0O8 = # of columns.

Any number of matrix operations may be performed on the above matrix without chang-

CALCULATOR TIPS & ROUTINES 4?2 XI. MATRICES & DATA PROCESSING

ing the numbers in R07 and R08. With the matrix stored as above, and the starting

register and number of columns stored in RO7 and RO8 respectively, as above, the

following operations may be performed:

(1) "M1": To interchange any two rows in the matrix, key the two row numbers into Y

& X (order unimportant) and XEQ "M1". A block exchange of the two rows occurs. Exam-

ple: key 2, ENTER, 4, XEQ "M1" to exchange rows two and four in the example above.

(2) "M2": To multiply row 'i' by the constant 'k', key k, ENTER, i, XEQ "M2". Exam-

ple: to multiply the last row in the example above by 2, key 2, ENTER, 6, XEQ "M2".

(3) "M3": To add k times row i to row j, key j, ENTER, i, ENTER, k, XEQ "M3". Exam-

ple: to add -2 times row 3 to row 4 in the sample matrix above, key 4, ENTER, 3, EN-

TER, 2, CHS, XEQ "M3"; row 4 will now be -77, -62, =18, 8, =53.

(4) "M4": To determine the (i, j) address of the matrix element stored in Register

'r', key 'r', XEQ "M4"; the matrix will be left unchanged. The column number (j)
will be returned to X, and the row number (i) will be returned to Y. Example: find

the row and column numbers of the element stored in R38 in the sample matrix above:

key 38, XEQ "M4"; 4 is returned to X and 5 to Y, so the element in R38 is the (5,4)

element (in column 4, row 5).

(5) "M5": To determine the register number of the (i, j)element in a matrix, key 'i'

(row), ENTER, 'j' (column), XEQ "M5". The register number will be returned to X. Ex-

ample: to find the register number of the (2,3) element in the sample matrix above,

key 2, ENTER, 3, XEQ "M5"; 22 is returned to X [the (2,3) element is in R22]. To

check, key RCL IND X and see '56', which is the (2,3) element.

Source: John Kennedy (918) (PPC ROM).

01 LBL "M2" 16 SIGN 31 XEQ 00 46 + 61 ISG Y 76 +

02 XEQ 00 17 LBL 02 32 LBL "BE" 47 RCL X 62 "" 77 RTN

03 X<>Y 18 RDN 33 RCLINDY 48 RCL 08 63 ISG X 78 LBL "QR"

04 LBL 01 19 RCLINDY 34 X<>INDY 49 ST- Z 64 "" 79 X<>Y

05 ST*IND Y 20 LASTX 35 STOIND Z 50 SIGN 65 RTN 80 STO O

06 ISG Y 21 * 36 RDN 51 - 66 LBL "M5" 81 X<>Y

07 GTO 01 22 ST+ INDY 37 ISG X 52 E3 67 X<> 08 82 MOD

08 RTN 23 ISG Y 38 nn 53 / 68 ST- 08 83 ST- O

09 LBL "M3" 24 "¢ 39 ISG Y 54 + 69 * 84 LASTX

10 STO M 25 ISG Z 40 GTO "BE" 55 RTN 70 ST+ 08 85 ST/ O

11 RDN 26 GTO 02 41 RTN 56 LBL "M4" 71 X<> L 86 CLX

12 XEQ 00 27 RTN 42 LBL 00 57 RCL 07 72 X<> 08 87 X<> O

13 X<>Y 28 LBL "M1" 43 RCL 08 58 - 73 1 88 X<>Y

14 XEQ 00 29 XEQ 00 44 * 59 RCL 08 74 - 89 END

15 RCL M 30 X<>Y 45 RCL 07 60 XEQ "QR" 75 RCL 07 (171 bytes)

For a nonsynthetic version, make the following changes: Change references to syn-

thetic Register M (steps 10 & 15) to a convenient numeric register, say R00. Like-

wise, change references to Register O (steps 80, 83, 85 & 87) to a numeric register

such as R0O1. Change the Text 0 NOPs (steps 24, 38, 62 & 64) to any nonsynthetic NOP,

such as STO X. Finally, change the short-form exponent 'E3' (step 52) to its nonsyn-

thetic equivalent, '1 E3'.

11-2 INSERT & DELETE RECORD ("IR" & "DR"): These routines can be considered to be

part of a data base management system; they apply to files consisting of fixed

length records where each record is a block of consecutive data registers. The en-

tire file consists of one large block of consecutive registers. "IR" is a special

block move routine which makes room between two file records for insertion of a new

record; "DR" deletes a given record from the file and moves the remaining files into

the vacated space so that the data area is as compact as possible. Before executing

"IR" or "DR", have the file in data memory, and have the following three registers

CALCULATOR TIPS & ROUTINES 43 XI. MATRICES & DATA PROCESSING

loaded as specified for use by either routine:

RO7: s starting register of the entire file

RO8: c number of consecutive registers per record (# of columns)

R0O9: n = total number of records in the file (# of rows)

i

To make room to insert a new kth record, key 'k', then XEQ "IR". "IR" will move the

records following and including the kth record into higher-numbered registers to

make room to insert new data for a new kth record, and will also add 1 to R09 to up-

date the new number of records. Note that this will cause a change in the numbering

of the records following and including the old kth record. Note also that new data

is not actually inserted; "IR" simply makes room so that the new record can be in-

serted between previously existing records.

To delete the kth record from the file, key 'k', XEQ "DR". The records following the

kth record will be moved into registers occupied by the old kth record and 1 will be

subtracted from R09 to update the new number of records. Note that this will cause a

change in the numbering of the records following the kth record.

Example: Assume the records of the original file are as follows, and we are to in-

sert a new record #3:

#1: Joe Robinson #2: Mike Johnson #3: Jane Hamilton #4 : Paul Jones

354-1662 363-5648 261-2347 745-3254

Gary, IN Boston, MA Fresno, CA Denver, CO

This sample file is stored in R10-R33, where each record consists of six consecutive

registers:

R10: JOE R16: MIKE R22: JANE R28: PAUL

R11: ROBINS R17: JOHNSO R23: HAMILT R29: JONES

R12: ON R18: N R24: ON R30:

R13: 354.1662 R19: 363.5648 R25: 261.2347 R31: 745.3254

R14: GARY R20: BOSTON R26: FRESNO R32: DENVER

R15: IN R21: MA R27: CA R33: CO

Put the following information into R07 - R09:

RO7: 10 starting register of file

R08: 6 no. of registers/record

R0O9: 4 = total number of records

Next, key '3', XEQ "IR". Now the third and fourth records are moved into higher-num-

bered registers (R28-R33 & R34-R39), making room in R22-R27 for a new record to be

inserted. Also, the record count in R09 is incremented by one to 5.

To delete this newly-entered record in R22-R27 (the new record #3), key '3', XEQ

"DR"; the file is restored to its original form and R09 is decremented by one to 4.

Source: John Kennedy (918) (PPC ROM).

01 LBL "IR" 11 RCL Z 21 XEQ 03 31 LASTX 41 RCL IND Z
02 1ISG 09 12 * 22 ST- Z 32 ST+ Z 42 STOIND Z
03 n» 13 + 23 * 33 + 43 RDN

04 XEQ 03 14 STO Y 24 DSE 09 34 -1 44 ST+ Z
05 ST- T 15 RCL 09 25 nn 35 ST+ Z 45 ST+ Y
06 * 16 Rt 26 LBL "BM" 36 ST+ Y 46 DSE L
07 GTO "BM" 17 - 27 SIGN 37 RDN 47 GTO 05
08 LBL 03 18 RCL 08 28 RDN 38 LBL 04 48 END

09 RCL 07 19 RTN 29 X<Y? 39 R?
10 RCL 08 20 LBL "DR" 30 GTO 04 40 LBL 05 (89 bytes)

Synthetic NOPs above (steps 03 & 25) can be replaced with "STO X".

CALCULATOR TIPS & ROUTINES 44 XI. MATRICES & DATA PROCESSING

11-3 MATRIX INPUT/OUTPUT ("MIO"): This routine prompts FLAGS:

for the input to a matrix (numeric input only), 09: used

using a (row, column) prompt; it is consistent with the 29: cleared

matrix routines "M1" - "M5" (11-1). Matrices are stored
REGISTERS:

R03: counter

R04: pointer

RO5: # digits displayed

RO7: start register

R0O8: # columns

R0O9: # rows

row by row with each row occupying a block of consecu-

tive registers; the entire matrix is stored as one large

block of consecutive registers. To achieve maximum size,

store the matrix in R10 on up. This routine calls on

routines "M1" - "M5", which in turn call on routine "QR"

(all in 11-1); these routines must also be in memory. To

get into the "MIO" routine so that keys 'A', 'B' and 'C'

are active, press its assigned key if any, or else XEQ "MIO", GTO "MIO", or do a CAT

1 and stop at LBL "MIO"; once in the program, the following functions are available,

in USER Mode:

A: Input New Matrix B: Review Matrix C: Recall (y,x)

Example 1: Input the required matrix, preparatory to solving the following system of

equations (see "RRM" [11-4]).

-5x + 10y + 15z =5 =5 10 15 : 5

2x + y + z =6 = 2 1 1 6

X + 3y = 2z =13 1 3 =2 : 13

Solution: Get into "MIO", press 'A' for inputting a new matrix; as prompted, input

'10', R/S for starting register (if printer is plugged in but OFF, CF 21 first),

then '3', ENTER, '4' for (row, column) matrix dimensions. Next, enter one by one the

coeffieients (left to right, top to bottom), following each with R/S; the routine

will sound a tone and prompt for each coefficient: for example, see "(1,1)=2", key

'5*, CHS, R/S. Do the same for '10', '15', '5', '2', and so on. After keying the

last coeffieient ['13' here--element (3,4)], "BEEP" will sound. To verify the data

input, store a number (say '4') in RO5 for the number of decimal places to display,

then press 'B' to run through the entire matrix; if printer is ON, the matrix will

print. If scientific notation is preferred, change line 44 from FIXIND 05 to SCI IND

05. (To have routine stop with each display: if no printer is plugged in, SF 21 1st;

if printer is plugged in but is OFF, SF 21 if necessary first.) The first display is

typical: "(1,1) = =5.0000". Routine BEEPs after last element is displayed/printed.

Key 'C' may be used to find out which register a particular element is in. Key the

row and column numbers of the matrix element you wish to view, then press 'C'. For

example, to verify that the (3,2) element is '3', key 3, ENTER, 2, press 'C'; see

'R19.0000", then "(3,2) = 3.0000". Thus, the (3,2) element is stored in R19, and is

'3'. Note: if an incorrect entry is made during the automatic input phase (using key

'A'), simply continue entering elements as directed by the display; after all en-

tries have been made, use 'C' to determine which register to manually store the cor-

rect element in.

Example 2: Input the required matrix for the following systems of equations, prepar-

atory to solving the equations, finding the inverse of the coeffieient matrix, and

finding the determinant (see 11-4):

14x + 2y - 6z = 9 14 2 -6 : 1 0 O 9
-4x + y + 9z = 3 = -4 1 9 ¢ 0 1 0 3
6x - 4y + 3z = -4 6 -4 3 : 0 0 1 -4

The matrix to be entered will consist of the original coefficient matrix augmented

by the identity matrix and augmented by the final column of constants; this is a 3x7

matrix, as shown above right.

Solution: In the "MIO" routine, with USER Mode on, press 'A'; input '10' for start-

ing register and 3, ENTER, 7 for dimensions; then as prompted enter all elements of

CALCULATOR TIPS & ROUTINES 45 XI. MATRICES & DATA PROCESSING

the above matrix [(1,1) = '14', (1,2) = '2', ..., (3,7) = '-4']. Reviewwith 'B'; if

necessary, determine which registers to correct with 'C'.

Source: John Kennedy (918).

01 LBL "MIO" 12 X<>Y 23 RCL 09 34 "p)=" 45 ARCL IND 04 56 " R"

02 STOP 13 STO 09 24 * 35 FC? 09 46 AVIEW 57 ARCL X

03 LBL A 14 SF 09 25 STO 03 36 GTO 03 47 LBL 04 58 AVIEW

04 "START REG?" 15 GTO 01 26 LBL 02 37 "p2" 48 ISG 04 59 STO 04

05 AVIEW 16 LBL B 27 RCL 04 38 AVIEW 49 STO X 60 1

06 STOP 17 CF 09 28 XEQ "M4™" 39 TONE 0 50 DSE 03 61 STO 03

07 sTO 07 18 LBL 01 29 FIX O 40 STOP 51 GTO 02 62 CF 09

08 "DIM: R?tC?" 19 CF 29 30 * (" 41 STO IND 04 52 BEEP 63 GTO 02

09 AVIEW 20 RCL 07 31 ARCL Y 42 GTO 04 53 RTN 64 END

10 STOP 21 STO 04 32 ", 43 LBL 03 54 LBL C

11 STO 08 22 RCL 08 33 ARCL X 44 FIXINDO5 55 XEQ "M5™" (133 bytes)

11-4 FINDING DETERMINANTS & INVERSES; SOLVING SYSTEMS OF EQUATIONS ("RRM"): This

routine will transform a matrix into row reduced

eschelon form; this means it will calculate determinants FLAGS:
. . . 10: used

and inverses and will solve systems of equations. It

will handle these three matrix problems, either individ- REGISTERS:

ually or simultaneously, and uses the technique known as RO1: determinant

partial pivoting which helps reduce round off error. The RO2: used

only limitation on the size of the matrix is the number RO3: used

of available data registers. "RRM" can even be applied R04: used

to more than one matrix in data memory. "RRM" calls on RO7: starting register

the following routines, which must also be in program R0O8: # of columns

memory: '"M1"- "M5" (11-1), "BE" (10-14 or 11-1), "BX" RO9: # of rows

(10-18) and "QR" (or 11-1). The Matrix Input/Out- ALPHA: used

put Routine (11-3) is useful for loading, reviewing and

correcting matrices, and is used in the examples below. Before executing "RRM", the

number of the starting register of the matrix (10 or greater) must be stored in RO07,

the number of columns must be stored in R08, and the number of rows must be stored

in R0O9. "MIO" will have stored these values, if executed just prior to this routine.

Example 1: First work example 1 of "MIO"; when the matrix is loaded, XEQ "RRM"; exe-

cution time will be about 40 seconds; when it ends, get into "MIO", then press 'B'

in USER Mode to display the final matrix, which is:

1 0 0 2 The solution is x =2, yv =3, z = =1.

o 1 0 : 3 The determinant of the square coefficient
o 0 1 : -1 is stored in RO1: det. = 150.0000 .

Example 2: Work example 2 of "MIO". When the matrix is loaded, XEQ "RRM"; when exe-

cution ends, get into "MIO" and press 'B' in USER Mode to display the matrix:

1 0 0 : 0.0631 0.0291 0.0388 : 0.5000
0 1 0 : 0.1068 0.1262 -0.1650 : 2.0000
0 0 1 : 0.0162 0.1100 0.0356 : 0.3333

The last column contains the solutions of the system of equations and would be in-

terpreted as x = 1/2, y = 2, z = 1/3. The determinant of the coefficient of the ma-

trix can be recalled from RO1: det. = 618. The inverse of the original matrix is the

3x3 matrix in the middle. "DF" (14-1) can be used to convert the full value of

these decimals (note they're in Registers 13-15, 20-22 & 27-29) to fractions:

13/206 3/103 4/103

11/103 13/103 -=17/103

5/309 34/309 11/309

If only the determinant of a matrix is desired, a square matrix is all that "RRM"

CALCULATOR TIPS & ROUTINES 46 XI. MATRICES & DATA PROCESSING

requires. If only the inverse of a matrix is desired, input as in Example 2 of "MIO"

but leave out the final (right hand) column of constants. "RRM" is just as useful

for systems of equations which do not have unique solutions. If the determinant in

R01 is zero, then the system of equations may have no solutions or an infinite num-

ber of solutions. Since "RRM" returns the row reduced echelon form, the final matrix

will always be row equivalent to the original. The final matrix may then be used to

tell immediately where parameters should be inserted and any and all solutions may

then be immediately determined. The coeffieient matrix need not be square for "RRM"

to operate on it.

Source: John Kennedy (918).

01 LBL "RRM" 13 RCL 08 25 1 E3 37 1/X 49 XEQ "M1" 61 X=Y?

02 . 14 RCL 04 26 / 38 RCL M 50 RCL 01 62 GTO 07

03 STO 03 15 X>Y? 27 + 39 INT 51 CHS 63 RCL 02

04 SsTO 04 16 RTN 28 RCL 08 40 XEQ "M4" 52 STO 01 64 RCL 04

05 SIGN 17 RCL 09 29 1 E5 41 RDN 53 LBL 07 65 XEQ "M5"

06 STO 01 18 RCL 03 30 / 42 STO 02 54 IsSG 02 66 RDN

07 SF 10 19 X>Y? 31 + 43 XEQ "M2" 55 STO X 67 RCLINDT

08 LBL 05 20 RTN 32 XEQ "BX" 44 RCL 02 56 RCL 09 68 CHS

09 IsG 03 21 RCL 04 33 RCLINDM 45 ST- 02 57 RCL 02 69 XEQ "M3"

10 LBL 06 22 XEQ "M5™" 34 sT* 01 46 RCL 03 58 X>Y? 70 GTO 07

11 ISG 04 23 X<> Z 35 X=07 47 X=Y? 59 GTO 05 71 END

12 STO X 24 XEQ "M5" 36 GTO 06 48 GTO 07 60 RCL 03 (124 bytes)

47

CHAPTER XII

SORTING

12-1 QUICKSORT ("QS"): This routine sorts data in R01 - Rnn. Have 'nn' in X before

executing "QS". It clears Flag 21, sets FIX 3, uses Flag 04. It doesn't work

as well for data already sorted. The block currently being sorted is displayed while

the routine is running. "QS" uses a few registers above Register 'nn' for scratch;

to sort 'N' numbers, up to N+ 1+ log2 N registers are needed. For example, to sort

data in RO1 - R32, key '32', XEQ "QS". When BEEP sounds and "DONE" appears, a review

of the data registers will show a 'used' control number in R00, the data in R01-32

sorted in ascending order, ‘'garbage' in R33-36, and the contents of R37 and above

unchanged. A sort of 32 numbers ordered randomly takes about 1 minute; a 'resort' of

this sorted data will take about 2% minutes. Source: Mike Hale (4457) (PPC CJ, V7N2

P39).

01 LBL "QS" 30 Rt 59 DSE Z 88 XEQ 22 117 LBL 26

02 STO 00 31 RCL L 60 CLA 89 RDN 118 X<>Y

03 CF 21 32 X<>Y 61 RDN 90 RDN 119 RCLIND Y

04 FIX 3 33 LBL 16 62 RDN 91 1 120 X<=Y?

05 CF 04 34 R? 63 X<=Y? 92 + 121 GTO 27

06 RCL 00 35 CLX 64 GTO 23 93 RCL IND 00 122 ISG Z

07 1 E3 36 RCLIND Z 65 GTO 19 94 FRC 123 BEEP

08 / 37 Rt 66 LBL 21 95 1 E3 124 STOIND Z

09 1 38 X<=Y? 67 STOIND T 96 * 125 RDN

10 + 39 GTO 18 68 X<>Y 97 X>Y? 126 X<>Y

11 ST+ 00 40 LBL 17 69 STOIND Z 98 XEQ 22 127 2

12 STO IND 00 41 ISG T 70 GTO 17 99 LBL 24 128 -

13 LBL 15 42 STOP 71 LBL 22 100 DSE 00 129 X#£07?

14 RCL IND 00 43 RDN 72 1 E3 101 GTO 15 130 GTO 26

15 VIEW X 44 RDN 73 / 102 "DONE" 131 STO Z

16 INT 45 X<=Y? 74 + 103 AVIEW 132 LBL 27

17 LASTX 46 GTO 23 75 X<>IND 00 104 BEEP 133 CLX

18 FRC 47 GTO 16 76 ISG 00 105 RTN 134 1

19 1 E3 48 LBL 18 77 STOP 106 LBL "IST" 135 ST+ Z

20 =* 49 STOINDT 78 STO IND 00 107 LBL 99 136 RDN

21 STO Z 50 X<>Y 79 ENTER 108 SF 04 137 STOIND Y

22 X<>Y 51 STOIND Z 80 RTN 109 ISGIND 00 138 ISGIND OO

23 - 52 GTO 20 81 LBL 23 110 LBL 25 139 GTO 25

24 15 53 LBL 19 82 1 111 RCL IND 00 140 END

25 X>Y? 54 R?% 83 - 112 RCL IND X

26 XEQ 99 55 RCL INDY 84 RCL IND 00 113 X<>Y

27 FS?C 04 56 X<=Y? 85 INT 114 1

28 GTO 24 57 GTO 21 86 X<>Y 115 -

29 RCL IND Z 58 LBL 20 87 X>Y? 116 INT (248 bytes)

12-2 STACK SORT ("S1"): This routine sorts data in the X, Y, Z & T Registers; it

won't work if an Alpha string is in any of these registers. Before execution,

have Flag 10 clear for a descending sort (largest value returned to X, smallest to

T), or have Flag 10 set for an ascending sort. "S1" clears Flag 10. To eliminate

this feature, change step 29 (FS?C 10) to FS? 10. Source: PPC ROM.

CALCULATOR TIPS & ROUTINES 48 XII. SORTING

01 LBL "s1" 07 R? 13 X<>Y 19 Xk=Y? 25 GTO 01 31 RDN

02 X>Y? 08 X>Y? 14 RDN 20 GTO 03 26 LBL 02 32 X<> Z

03 X<>Y 09 X<>Y 15 X<=Y? 21 X<>Y 27 RT 33 END

04 RDN 10 Rt 16 GTO 02 22 LBL 03 28 LBL 01
05 X>Y? 11 X<=Y? 17 X<>Y 23 RDN 29 FS2C 10

06 X<>Y 12 GTO 01 18 RDN 24 RDN 30 RTN (46 bytes)

12-3 SYNTHETIC QUICKSORT ("S2" & "S3"): These routines work as quickly for presort-

as well as Flag 10.

ed data as they do for randomly-ordered data. All registers above the block

being sorted are left undisturbed. For both routines, have a 'bbb.eee' control num-

ber defining the block to be sorted in X before entering the routine; the control

number is returned to X after execution. The stack and the Alpha Register are used,

"S2" (Small Array Sort) is faster for 32 or fewer registers; it

uses no numeric registers, and so will sort any block of data registers. It is exe-

cuted as a subroutine by "S3". "S3" (Large Array Sort) is faster for more than 32

registers; it uses Registers 01 & 02, so the block to be sorted must begin with Reg-

ister 03 or a higher-numbered register. A comparison of some execution times for

"S2" and "S3", respectively: for 5 registers: 5 sec. vs. 12 sec.; for 32 registers:

44 sec. each; for 96 registers: 4 min. 47 sec. vs. 2 min. 48 sec. Source:

(4928) (PPC ROM).

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

LBL "S3"

STO O

SF 10

LBL 09

STO 02

LBL 05

STO 01

FRC

E3
*

STO N

RCL

INT

STO M
RCL 01

E-4
+

RCL X

LBL 14
RCL IND Z

+

ISG Y
nn

ISG Z

GTO 14

X<>Y

/
RCL N

X<>Y

RCL 01

STO T

LBL 13

X<>IND N

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 R?

56 INT

57 +

58 LBL 10

59 ENTER

60 FRC

61 E3

62 *

63 X<>Y

64 -

65 31

66 X>Y?

67 GTO 01

68 LASTX

69 FS?2C 10

70 GTO 09

71 GTO 05

72 LBL 01

73 LASTX

74 XEQ "S2"

LBL 11
X<Y?
GTO 12
DSE N
nn

DSE M
GTO 13
GTO 06
LBL 12
X<>IND T
ISG T
nn

DSE M
GTO 11
LBL 06
X<>INDZ
FRC

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

INT

RCL O

INT

X=Y?

GTO 08

RDN

RCL 01

INT

X<>Y

X>Y?

GTO 07

RCL 02

INT

X<>Y

X>Y?
GTO 07
E

E3
/
RCL O
INT

SF 10

GTO 09

GTO 10

LASTX

BEEP

RTN

LBL 07

LBL 08

111
112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

LBL "s2"
CF 10
STO M
INT
E99

STO P
ENTER
ENTER
ENTER
LBL 04
X<> M
STO N
X<> M
LBL 00
X<>IND N
X<Y?
GTO 01
ISG N
GTO 00
SF 10
GTO 02
LBL 01

R
X<Y?
GTO 01
X<> P
R?

rR?

ISG N
GTO 00
GTO 02
LBL 01
X<> P
X<Y?
GTO 01
RDN
X<> P

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

Ray Evans

RDN
ISG N
GTO 00
GTO 02
LBL 01
X<> T
X<Y?
X<>Y
Rt
X<> P
XX> T

ISG N
GTO 00
LBL 02
Rt
X<>INDM
X<> P
ISG M
X<> IND M
R?
ISG M
X<>IND M
RT

ISG M
X<>IND M
FS?C 10
GTO 03
Rt

ISG M
X<>IND M
LBL 03
ISG M
GTO 04
LASTX
END

(282 bytes)

CALCULATOR TIPS & ROUTINES 49 XII. SORTING

12-4 FINDING SMALLEST (OR LARGEST) OF THREE OR MORE NUMBERS ("SORT"): This routine

finds the smallest of three numbers; to find the largest of three numbers,

substitute "X<Y?" for "X>Y?" (steps 04 & 07). To extend to four or more numbers, add

sets of steps like 04-06 for each additional number. Source: Bill Kolb (265) (BP

67/97).

LBL "SORT", RCL 01, RCL 02, X>Y?, X<>Y, RCL 03, X>Y?, X<>Y, RTN (16 bytes)

12-5 SYNTHETIC ALPHABETIZE X & Y ("AL"): This routine alphabetizes Alpha strings in

the X and Y Registers (in ACCHR order). The contents of registers Z & T are

lost. Indirect use: With the first register number in Y and the second in X, the

contents of the registers pointed to by the numbers in X & Y will be switched in

necessary to put them in alphabetical order (the string first in alphabetical order

will be returned to the register pointed to by X). RDN twice to recover the values

that were in X & Y. Source: Wickes (3735), Jarett (4360) & Cheeseman (4381) (PPC ROM).

01 LBL "AL" 10 X<=Y? 19 RTN 28 RTN 37 FC? 25 45 GTO 14

02 CLA 11 CF 10 20 LBL 12 29 LBL 13 38 ARCL Y 46 STO N

03 CF 10 12 FC?C 25 21 X<=Y? 30 RT 39 "00000 47 "OO

04 XEQ 14 13 GTO 12 22 GTO 12 31 RT 40 ASTO L 48 LBL 14

05 XEQ 14 14 X<=Y? 23 RT 32 SF 10 41 ARCL L 49 STO M

06 X=Y7 15 RTN 24 X<> Z 33 XEQ 14 42 "0000O" 50 "oe"

07 XEQ 13 16 X<>INDT 25 LBL 12 34 LBL 14 43 . 51 X<> N

08 CLA 17 X<>IND Z 26 RT 35 SF 25 44 FC? 10 52 END

09 SF 10 18 X<>IND T 27 RT 36 ARCL IND Y (107 bytes)

50

CHAPTER XITII

RANDOM NUMBERS

13-1 (PI + SEED)3 RANDOM NUMBER GENERATOR ("RAN"): Store a fractional seed in R10

before executing "RAN". Example: key '.05101975, STO 10, XEQ "RAN"'; in FIX 4

Mode, '0.5416' is returned to X; to repeat, press R/S; '0.9649' results. Source: Jim

Butterfield (1076) (65 NOTES, V4N8P4).

LBL "RAN", RCL 10, PI, +, ENTER, x%2, *, FRC, STO 10, RTN. (16 bytes)

13-2 SHORTEST, FASTEST RANDOM NUMBER GENERATOR: Use 'LBL any, RCL any, R-D, FRC,

STO any, RTN'. If desired, another "R-D" could be added. The previous seed must

be stored in the selected register; it can be any integer or decimal, except 0 or pi

(or its multiples). It generates numbers between 0 and 1 uniformly. Source: Valentin

Albillo (4747) (PPC CJ, VIN6P35).

13-3 RANDOM NUMBER GENERATOR ("RN"): "RN" is a random number generator and can be

used to generate uniformly-distributed pseudorandom numbers in the range 0<r<i.

Input required is a register pointer in X; this is the number of the register which

holds the seeds. This register should be initialized with a random decimal between 0

and 1 before the first time this routine is called. The output leaves the new seed

in X as well as in the data register. Source: Don Malm (1362) (65 NOTES, VAN8P4).

01 LBL "RN" 06 + Inputs: Outputs:

02 RCL IND X 07 FRC T: T T: Y

03 9821 08 STOIND Y Z: Z Z: Y

04 * 09 RTN Y: Y Y: Reg. Pointer

05 .211327 (25 bytes) X: Reg. Pointer X: Next Seed

13-4 GAUSSIAN RANDOM NUMBER GENERATOR ("GN"): This routine yields a Gaussian (bell-

shaped) distribution where the mean and the standard deviation are specified

by the user. "GN" calls "RN" (13-3), and hence requires a register pointer in X when

called. An initial seed must also be stored in the register pointed to by the number

in X. "GN" leaves two Gaussian random numbers in the stack: one in X, one in Y. This

routine must be used in Degree Mode. Source: Kiyoshi Akima (3456) & John Kennedy

(918) (PPC CJ, VIN8P11; PPC ROM).

01 LBL "GN" 10 * Inputs: Outputs :

02 XEQ "RN" 11 RT T: T T: Reg. Pointer

03 LN 12 RCL 07 Z: 2 Z: Reg. Pointer

04 ST+ X 13 * Y: Y Y: Random No. #2

05 CHS 14 P-R X: Reg. Pointer X: Random No. #1

06 SQRT 15 RCL 06 L: L L: Mean

8; i;;Y"RN" 13 fT+ : RO6: Mean RO7: Standard Deviation

09 360 18 RTN (33 bytes)

To eliminate the restriction of being in Degree Mode, replace line 09 (360) with '1,

ASIN, 4, *'. This change will cost only one additional byte. (In any trig mode, the

value calculated will represent a full circle, and the P-R function will receive its

data in the correct format.) Source: Larry Trammell (6824).

CALCULATOR TIPS & ROUTINES

and so on. A sample random number generator,

XITI. RANDOM NUMBERS

USING INDIRECT ADDRESSING TO TEST A RANDOM NUMBER GENERATOR ("TR"™ & "RNG"):

The "ISGIND X" function can be used to provide data for testing a random num-

ber generating routine that returns a decimal fraction to X. The value returned is

multiplied by 10 to put the first decimal digit in the integer portion of the num-

ber, then "ISGIND X" increments the register (R00-09) corresponding to that digit.

These registers must be cleared first. An example is "TR" below. It clears R00-12,

then prompts for the number of times the random number generator, labeled "RNG", is

to be executed. It also prompts for a fractional seed, then stores it in R10. The

number of times "RNG" has been executed is displayed as execution continues. When

execution is complete, BEEP sounds and the calculator turns OFF. To see the results,

turn the calculator ON and view R00-09. The number in R0O0 is the number of times a

zero was generated, the number in RO1 is the number of times a one was generated,
IIRNG " » is also listed. The results for

testing "RNG", first for 100 trials, then for 1000 trials, are shown below right;

in both cases,

ing (2791). See PPC CJ, V7N4P16.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

LBL "TR"

CF 21

FIX 0

12

STO 00

CLX

LBL 14

STO IND 00

DSE 00

GTO 14

"NO. TRIALS ?"

PROMPT

STO 11

"FRAC. SEED ?"

PROMPT

STO 10

17

18

19

20

21

22

23

24

25

26

27

28

29

30

40

LBL 13

XEQ "RNG"

10
*

ISG IND X

BEEP

1

ST+ 12

VIEW 12

DSE 11

GTO 13

BEEP

PSE

OFF

END

(78 bytes)

a seed of .2579846319 was used. Source:

01

02

03

04

05

06

07

LBL "RNG"

RCL 10

997

*

FRC

STO 10

END

(17 bytes)

seed

loop counter

Bill Kolb (265) & John Dear-

REG TRIALS

100 1000

ROO 13 103

RO1 6 94

RO2 14 118

RO3 13 99

RO4 8 105

RO5 9 92

RO6 9 88

RO7 8 107

RO8 9 104

RO9 11 90

no .-of—executions-completed counter

52

CHAPTER XTIV

FRACTIONS & ROUNDING

14-1 DECIMAL TO FRACTION ("DF"): The input accepted by this routine is any decimal

value in X (it may include an integer portion); the output is a fraction, Y/X,

whose approximation to the decimal input will agree to at least 'n' places, where n

is stored in R07 before execution. The numerator will be in Y and the denominator in

X. Source: John Kennedy (918) (PPC CJ, V7N8P11; PPC ROM).

01 LBL "DF" 09 rt 17 INT 25 STO 10 33 RCL 08 41 RCL 10
02 sTO 08 10 X=Y? 18 - 26 RCL 08 34 - 42 SIGN

03 INT 11 GTO 08 19 RCL 09 27 * 35 FIXINDO7 43 ST* 10

04 0 12 ST- Y 20 RCL 10 28 FIX 0 36 RND 44 *

05 sTO 09 13 LBL 07 21 STO 09 29 RND 37 X#£0? 45 RCL 10
06 1 14 RDN 22 LASTX 30 STO Z 38 GTO 07 46 END
07 STO 10 15 1/X 23 * 31 RCL 10 39 RCL Z
08 RCL 08 16 ENTER 24 + 32 / 40 LBL 08 (61 bytes)

14-2 DECIMAL-TO-FRACTION DRIVER ("DFD"): This routine 'drives' the decimal to frac-

tion routine ("DF") above (14-1). It is fully printer compatible: it operates

the same with no printer, with a printer plugged in and on, and with a printer plug-

ged in but off. When "DFD" is executed, it prompts for 'n' and for the decimal, exe-

cutes "DF", and then formats and displays the results. Press R/S to see the actual

value of the fraction; press backarrow to return to a FIX 2 display, or press R/S

again to rerun the routine. If 'n' or the decimal are to be the same as before, skip

the prompt for the unchanged value with R/S. Example: for n=5 and decimal = pi

(3.141592654), the fraction = 355/133 = 3.141592920 . Source: John Dearing (2791).

01 LBL "DFD" 06 RCL 08 11 CF 29 16 FIX 9 21 ARCL X

02 RCL 07 07 "DECIMAL?" 12 CLA 17 SF 29 22 FIX 2

03 "N 2" 08 PROMPT 13 ARCL Y 18 PROMPT 23 PROMPT

04 PROMPT 09 XEQ "DF" 14 "p/" 19 / 24 GTO "DFD"

05 sTO 07 10 FIX O 15 ARCL X 20 CLA 25 END
(61 bytes)

14-3 REDUCE FRACTIONS ("RED"): To use, key in numerator, ENTER, denominator, XEQ

"RED". The routine pauses to show the greatest common divisor (delete steps

16-19 to eliminate this feature), then stops to display the fraction in reduced

form. Source: John Dearing (2791) (PPC CJ, V7N4P32).

01 LBL "RED" 06 LBL 01 11 + 16 "GCD=" 21 ARCL 00 26 SF 29

02 sTO 01 07 STO Z 12 ST/ 00 17 ARCL X 22 "/ 27 CLX

03 X<>Y 08 MOD 13 sT/ 01 18 AVIEW 23 ARCL 01 28 END

04 STO 00 09 X#07? 14 FIX O 19 PSE 24 AVIEW

05 X<>Y 10 GTO 01 15 CF 29 20 CLA 25 FIX 2 (53 bytes)

14-4 ROUND TO NEAREST FRACTION ("NF"): Have the number to be rounded in Y and the

decimal fraction in X, then execute "NF". If the number to be rounded is nega-

tive, the decimal fraction must also be negative. Examples: to round '24.56' to the

nearest whole number, key 24.56, ENTER, 1, XEQ "NF"; see '25.00'. To round '2.29' to

the nearest half, key 2.29, ENTER, .5, XEQ "NF"; see '2.50'. To round '=12.79' to

the nearest third, key 12.79, CHS, ENTER, 3, 1/X, CHS, XEQ "NF"; see '=12.67'.

CALCULATOR TIPS & ROUTINES 53 XIV. FRACTIONS & ROUNDING

LBL "NF", /, LASTX, X<>Y, .5, +, INT, *, RTN. (15 bytes)

14-5 NEAREST FRACTION ROUND: Multiply by reciprocal of fraction, add .5 if positive

or subtract .5 if negative, take the integer, then divide by reciprocal of the

fraction. Examples:

Pos. # round to nearest integer: ..., .5, +, INT,

Pos. # round to nearest half: ..., 2, *, .5, +, INT, 2, /), ec..

Neg. # round to nearest third: ..., 3, *, .5, -, INT, 3, /), «...

Pos. or Neg. # round to nearest fourth: ..., CF 14, X<0?, SF 14, 4, *, .5, FC? 14,

+, FS?C 14, -, INT, 4, /,

14-6 STEP-FUNCTION ROUND:

Pos. # round up to the next integer if there's a fractional part (FIX 2 Mode) (so
13.00 —» 13, but 13.01 > 14): ..., .99, +, INT, For FIX 3 Mode, use

'.999'; for FIX 4, use '.9999', and so on.

Another pos. # round up to the next integer if there's a fractional part (any dis-
play mode): use ..., ENTER, FRC, X#07?, SIGN, +, INT, Rounds negative

numbers down if there's a fractional part.

14-7 FRACTIONAL ARITHMETIC ("F+", "F=", "F*©", "F/", "RE" & "MX"): This program is a

set of routines for addition, subtraction, multiplication, division and reduc-

tion of fractions, plus the conversion of an improper fraction to a mixed number. SF

10 before execution to display/print fraction. Synthetic steps 96, 99, 101 & 103 can

be replaced with similar functions using any convenient numeric register, such as

RO0. If the Improper Fraction to Mixed Number routine ("MX") isn't wanted, steps 55-

104 may be eliminated.

"F+", F=", "F*", "F/": Addition, subtraction, multiplication and division of frac-

tions: input is the fractions in T,Z & Y,X; output is the fraction in Y,X (& the

fraction [Y/X] in the display if Flag 10 is set). Example: solve 2/5 = -3/4. Solu-
tion: key 2, ENTER, 5, ENTER, 3, CHS, ENTER, 4, XEQ "F/": output is 15 in X and -8

in Y (and "-8/15" in the display if Flag 10 is set).

"RE": Reduce fraction. Input is the fraction in Y,X; output is the reduced fraction

in Y,X (and the fraction [Y/X] in the display if Flag 10 is set). Example: reduce
45/925. Solution: key 45, ENTER, 925, XEQ "RE"; output is 185 in X and 9 in Y (and

"9/185" in the display if Flag 10 is set).

"MX": Change an improper fraction (numerator >= denominator) to a mixed number (int-

eger + fraction). Works for positive or negative fractions. Input is the improper

fraction in Y,X; output is the integer in X and the fraction in Z,Y (and the mixed

number [X Z/Y] in the display if Flag 10 is set). Example: change -747/126 to a mix-
ed number. Solution: key 747, CHS, ENTER, 126, XEQ "MX"; output is -5 in X, 14 in Y,

and 13 in Z (and "-5 13/14" in the display if Flag 10 is set).

"GD": Greatest Common Divisor. See routine 15-13.

"OR": Quotient & Remainder. See routine 15-12.

"VA": View Alpha. See routine 4-1.

Suggested key assignments (A-E, H-J):

A IIF+ " IIF_ n IIF* " IIF/ n IIRE n

 IIQRII IIGDII IIMX u J

Source: John Kennedy (918) (Adapted from PPC CJ, V7N8P8-11 & PPC ROM).

01 LBL "F-" 04 ST* T 07 ST+ 2 10 GTO 12 13 LBL "F*" 16 *

02 CHS 05 X<> 2 08 X<> L 11 LBL "F/" 14 ST* Z 17 X<>Y

03 LBL "F+" 06 =* 09 * 12 X<>Y 15 XX> T [continued]

CALCULATOR TIPS & ROUTINES 54 XIV. FRACTIONS & ROUNDING

18 LBL "RE" 33 FIX 2 48 PRA 63 X<07? 78 CF 29 93 RTN

19 LBL 12 34 SF 29 49 SF 25 64 SF 14 79 CLA 94 LBL "QR"

20 RCL Y 35 XEQ "VA" 50 FsS?C 21 65 ABS 80 ARCL X 95 X<>Y

21 RCL Y 36 RTN 51 CF 25 66 X<>Y 81 X<> 2 96 STO O

22 XEQ 13 37 LBL "GD" 52 AVIEW 67 XEQ "QR" 82 X=07 97 X<>Y

23 ST/ Z 38 LBL 13 53 FC?C 25 68 X<>Y 83 GTO 14 98 MOD

24 / 39 MOD 54 SF 21 69 FS?C 14 84 "p " 99 ST- O

25 FC? 10 40 LASTX 55 RTN 70 CHS 85 ARCL X 100 LASTX

26 RTN 41 X<>Y 56 LBL "MX" 71 LASTX 86 "p/" 101 ST/ O

27 FIX 0O 42 X#£07 57 CF 11 72 X<>Y 87 ARCL Y 102 CLX

28 CF 29 43 GTO 13 58 FsS?C 10 73 FsS2C 11 88 LBL 14 103 X<> O

29 CLA 44 + 59 SF 11 74 SF 10 89 X<> Z 104 X<>Y

30 ARCL Y 45 RTN 60 XEQ 12 75 FC? 10 90 FIX 2 105 END

31 "/" 46 LBL "VA" 61 X<>Y 76 RTN 91 SF 29

32 ARCL X 47 SF 25 62 CF 14 77 FIX 0 92 XEQ "VA" (219 bytes)

14-8 DECIMAL TO 'RULER FRACTION' CONVERSION ("F-D" & "D-F"): This routine converts

between decimal fractions and 'ruler' fractions--fractions having denominators

that are integral powers of 2, like the markings on English (inches) rulers (1/8,

3/32, etc). No numeric data registers or flags are used. This routine is useful when

you need to do arithmetic on a fraction: just convert to a decimal, perform the de-

sired arithmetic operations, then convert back to a fraction. To convert a fraction

to a decimal: key in the integer portion (even if zero), ENTER, numerator, ENTER,

denominator; XEQ "F-D". See the decimal in X. To convert a decimal to a fraction:

key in decimal, XEQ "D-F". See fraction in display. In X,Y,Z,T order, the stack will

contain the denominator, numerator, integer, and original decimal.

As written, "D-F" will approximate the fraction (decimal) to the nearest 32nd. Change

line 10 (32) to '16' for the nearest 16th, etc. Assignment suggestion: ASN "F-D" to

-73 (SCI) & "D-F" to =74 (ENG). Then think of pressing SCI to convert to a 'scien-

tific' (decimal) form, or pressing ENG to convert to an 'English' (fractional) form.

Example: to the nearest 32nd of an inch, what is 60% of 5% inches? Solution: key 5,

ENTER, 1, ENTER, 2, XEQ "F-D" (see 5.50); key 60, % (see 3.30); XEQ "D-F", see the

answer, "3 5/16". Source: Richard Kimmel (6003) (PPC CJ, VIN10P24).

01 LBL "F-D" 11 ENTER 21 CLX 31 ST* Z 41 RDN 51 SF 29

02 / 12 X<> Z 22 2 32 * 42 X=07? 52 PROMPT

03 + 13 * 23 ST/ Z 33 LBL 02 43 GTO 03 53 RTN

04 RTN 14 RND 24 / 34 CLA 44 ARCL X 54 LBL 04

05 LBL "D-F" 15 X=07? 25 ENTER 35 Rt 45 "R/ 55 CLX

06 ENTER 16 GTO 02 26 FRC 36 INT 46 ARCL Y 56 1
07 FRC 17 X=Y? 27 X=07? 37 X=07? 47 LBL 03 57 ST+ T

08 FIX O 18 GTO 04 28 GTO 01 38 X=Y? 48 X<> Z 58 CLX

09 CF 29 19 ENTER 29 CLX 39 ARCL X 49 RDN 59 GTO 02
10 32 20 LBL 01 30 2 40 " " 50 FIX 2 60 END (96 bytes)

14-9 EVEN ROUND ("ER"): The mainframe function "RND" always # ER RND
rounds up when the digit to be rounded is exactly 'S5’ .545 .54 .55

(followed by zeros). This routine will leave the last digit .555 .56 .56

retained even, rounding up or down as appropriate. See the -.545 -.54 -.55

example at right, showing the results of using "ER" and "RND" -.555 =.56 -.56

on various numbers in FIX 2 Mode.

LBL "ER", 2, /, RND, 2, *, RTN (12 bytes)

CHAPTER XV

ARITHMETIC & ALGEBRA

15-1 SUM OF INTEGERS ("ZI"): This routine finds x where x = 1+2+3+ ...4+n, by
solving the equation x = [n(n+1)]1 /2 = [n* +n] / 2. Example: the rule of 78's

used in financial interest problems comes about by considering 12 months per year:

78 = 14+2+...4+12. Source: Richard Nelson (1) (65 NOTES, V1N4P3).

LBL "XI", Xt2, LASTX, +, 2, /, RTN (12 bytes)

15-2 SUM OF SQUARES ("2S"): This routine finds x, where x = 12 +22 + ... +n?® (the
sum of the squares of integers from 1 to n) without looping, by solving the

equation x = [n(n+1)(2n+1)]/ 6. Example: for n = 10, x = 385. Source: Dom Tocci
(189) (65 NOTES, V2N8P3).

LBL "IsS", Xt2, LASTX, +, LASTX, 2, *, 1, +, *, 6, /, RTN (18 bytes)

Another version using register arithmetic with the L Register: Source: Bill Kolb

(265) :

LBL "§S", X12, ST+ X, LASTX, +, ST* L, LASTX, +, 6, /, RTN (18 bytes)

15-3 SUM OF CUBES ("¥3"): This routine finds x, where x = 1® +2® + ... +n® by solv-
ing the equation x = {[n(n+1)]/ 2} . Example: for n = 5, x = 225. Source:

Bill Kolb (265) (BP 67/97).

LBL "Z3", Xt2, LASTX, +, 2, /, Xt2, RTN (13 bytes)

15-4 SUM OF THE DIGITS OF AN INTEGER ("ZD"): This routine finds the sum of the dig-

its of the integer in the X Register. Example: the sum of the digits of the

integer 1234556789 (note the 2 fives) is 50. Source: John Kennedy (918) (PPC J, V5N7

P4).

01 LBL "XD" 04 LBL 01 07 sT+ 01 10 X#07?2 13 ST* 01

02 STO 01 05 10 08 INT 11 GTO 01 14 RCL 01

03 sT- 01 06 / 09 sT- 01 12 10 15 RTN (27 bytes)

15-5 CONVERT A REAL NUMBER TO A DECIMAL OR AN INTEGER ("-DEC" & "-INT"): To convert

the number in X to a decimal with the same digits, XEQ "-DEC"; to convert the

number in X to an integer with the same digits, XEQ "-INT". Example: Key '123.45',

XEQ "-DEC", see 0.12345 in FIX 5 Mode; XEQ "-INT", see 12345.00000. Source: James

Davidson (547)

01 LBL "-DEC" 05 X=Y? 09 GTO 01 13 LASTX 17 *

02 LBL 01 06 RTN 10 LBL "-INT" 14 X=Y? 18 GTO 02 (65v§3$§§;
03 FRC 07 10 11 LBL 02 15 RTN 19 RTN
04 LASTX 08 / 12 INT 16 10 (39 bytes)

15-6 REVERSE INTEGER ("IV"): This routine reverses the order of the digits of the

integer in the X Register. Source: James Davidson (547) (65 NOTES, V2N10P10).

01 LBL "IV" 04 LBL 01 07 LASTX 10 sST* 01 13 GTO 01

02 sTO 01 05 FRC 08 INT 1/ 14 RCL 01

03 sT- 01 06 sT+ 01 09 10 12 X#07? 15 RTN (25 bytes)
——G.-=——————SST=——————-—GG———-———————————.--—————— W————————G———————-——————————————

CALCULATOR TIPS & ROUTINES 56 XV. ARITHMETIC & ALGEBRA

15-7 FIBONACHI SERIES ("FB"): When "FB" is executed, the calculator will display

the Fibonachi Series, in which each number is the sum of the previous two num-

bers. The series starts: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, Source: James David-

son (547) (65 NOTES, V3N9P14).

LBL "FB", FIX 0, 1, ENTER, 0, LBL 01, PSE, X<>Y, +, LASTX, GTO 01, RTN (19 bytes)

15-8 TO INTRODUCE A SMALL ERROR INTO X: Method 1: EEX, 8, CHS, +or-. Method 2: SQRT,

X12. Method 2 doesn't work for many numbers, including perfect squares.

Source: Bill Kolb (265) (BP 67/97). See 22-24.

15-9 CHAIN ARITHMETIC: Source: HP KEY NOTES, V4N3P11.

Chain Subtraction: To repeatedly subtract a constant value, 'k', from the base num-

ber, 'n', in X, key 'k', CHS, ENTER, ENTER, ENTER, 'n'; then press '+' the desired

number of times. Example: key 5, CHS, ENTER, ENTER, ENTER, 1000; press + repeatedly

and see 995, 990, etc.

Chain Addition: Delete the CHS instruction above. Example: to repeatedly add 5 to

1000, key 5, ENTER, ENTER, ENTER, 1000; press + repeatedly to see 1005, 1010, etc.

Chain Division: To repeatedly divide a constant, 'k', into a base number, 'n', in X,

key 'k', 1/X, ENTER, ENTER, ENTER, 'n'; then press * the desired number of times.

Example: key 5, 1/X, ENTER, ENTER, ENTER, 1000; press * repeatedly and see 200, 40,

8, etc.

Chain Multiplication: Delete the '1/X' instruction above. Example: key 5, ENTER,

ENTER, ENTER, 1000; press '*' repeatedly and see 5000, 25000, 125000, etc.

15-10 REPEATED MULTIPLICATION OR DIVISION BY 10: To repeatedly multiply the value in

X by 10, use EEX, 3, X<>¥Y, %, %, %, Each repeated '%' multiplies the

value by 10. Similarly, to repeatedly divide the value in X by 10, use EEX, 1, X<>Y,

%y %) %, 1f the value to be repeatedly multiplied (or divided) is in a numeric

data register, replace the 'X<>Y' instruction with 'RCL nn', where 'nn' is the num-

ber of the data register. Source: Curt Rostenback (382) (PPC J, V5N3P15).

15-11 INTEGER DIVIDE ("I/"): This routine returns the integer quotient of y/x to X
and the remainder of dividing y by x to Y. 2 is preserved and X is in LASTX.

Source: David Motto (2339) (PPC CJ, V7N7P14). Positive values of x & y only.

LBL "I/", RCL Y, X<>»Y, MOD, ST- Y, X<>Y, LASTX, /, RTN (16 bytes)

15-12 QUOTIENT & REMAINDER ("QR"): This routine replaces Y with the integer quotient

of y/x, and replaces X with the remainder of dividing y by x. Y & Z are pre-

served; X is in LASTX. Part of the Alpha Register, the O Register, is used as a

scratch register and cleared afterward. This will not affect any text already in Al-

pha as long as it contains no more than 14 characters. For a nonsynthetic version,

replace the steps using the O Register (steps 03, 06, 08 & 10) with the same opera-

tions using any numeric register, such as R00. Source: Roger Hill (4940) (PPC ROM).

01 LBL "QR" 03 sTO O 05 MOD 07 LASTX 09 CLX 11 X3y

02 X<>y 04 X<>Y 06 sT- O 08 sT/ O 10 X<> 0 12 RTN (21 bytes)

15-13 GREATEST COMMON DIVISOR ("GCD" & "GD"): These routines will compute the great-

est common divisor of the values in X and Y. Source: John Kennedy (918) (PPC
J, V6N5P31; PPC CJ, VIN8P8). "GCD" preserves T; "GD" preserves Z & T.

LBL "GCD", LBL 01, STO Z, MOD, X#0?, GTO 01, +, RTN (16 bytes)

LBL "GD", LBL 01, MOD, LASTX, X<>Y, X#0?, GTO 01, +, RTN (15 bytes)

CALCULATOR TIPS & ROUTINES 57 XV. ARITHMETIC & ALGEBRA

15-14 PRIME DIVISOR, TEST IF PRIME, GENERATE PRIMES, PRIME FACTORS ("PD", "TP", "GT"

& "PF"): "PD" (Prime Divisor) gives the next prime divisor of an integer

greater than or equal to a specified trial divisor which may be 2 or any odd number.

Input an integer 'n' greater than or equal to 2 in Y and a possible trial divisor

'd' in X, where 'd' is any prime number including 2, or any odd number greater than

1. The output from the routine is 'n' in Y and either 'd' or the next odd integer

larger than 'd', whichever divides evenly into 'n', in X. Pressing R/S after execu-

tion of the routine will give the next prime factor of the integer. "TP" (Test if

Prime) tests if the integer in X is prime; it returns the number to X so you can im-

mediately execute "PF" if "NOT PRIME" appears. "GT" (Generate a Table of Primes)

generates a list of prime numbers beginning with 1. "PF" (Prime Factors) gives the

prime factors of an integer. Source: John Kennedy (918) (PPC CJ, V7N3P6; V7NOP11).

01 LBL "PD" 12 2 23 ST/ Y 34 RTN 45 ST+ Y 56 PSE

02 LBL 01 13 X=Y? 24 GTO 01 35 LBL "GT" 46 XEQ 01 57 X=Y?

03 RCL Y 14 DSE X 25 LBL "TP" 36 1 47 X=Y? 58 RTN

04 RCL Y 15 ABS 26 VIEW X 37 VIEW X 48 VIEWX 59 ST/ Y

05 / 16 + 27 2 38 PSE 49 RDN 60 GTO 05

06 X<Y? 17 GTO 01 28 XEQ 01 39 2 50 GTO 04 61 END

07 GTO 02 18 LBL 02 29 " NOT PRIME" 40 VIEW X 51 LBL "PF"

08 FRC 19 RDN 30 X=Y? 41 PSE 52 2

09 X=07 20 LBL 03 31 ASHF 42 1 53 LBL 05

10 GTO 03 21 RDN 32 AVIEW 43 LBL 04 54 XEQ 01

11 CLX 22 RTN 33 X<>Y 44 2 55 VIEW X (117 bytes)

15-15 NEXT PRIME ("NP"): This routine gives the next prime divisor of an integer

greater than or equal to a specified trial divisor which may be 2 or any odd

number. Pressing R/S automatically gives the next prime divisor. Key integer, ENTER,

trial divisor; XEQ "NP". "NP" is valid for 10-digit positive integers. The divisor

the routine returns will be prime provided 'n' has no prime factors strictly smaller

than 'd'. If "NP" is executed from the keyboard, when the next divisor is returned,

immediately pressing R/S will cause "NP" to continue searching for the next factor.

This may be repeated, but when the routine returns '1', there are no more factors of

'n'. All computations are carried out in the stack; no numeric data registers are

used. Tests 3.5 divisors/second. To use "NP" from the keyboard to see if an integer

is prime, use '2' as the starting trial divisor; if the original number is returned,

then that number is prime. To use "NP" from the keyboard to find all the prime fac-

tors of an integer, key in the integer, ENTER, 2, XEQ "NP"; repeatedly press R/S to

see the prime factors, until '1' is returned.

Example: the number 40,013,933 is known to have only two prime factors, one of which

is greater than 5000; find them. Solution: we may start with any odd number greater

than 5000, so key 40,013,933, ENTER, 5001, XEQ "NP". After about 45 seconds, execu-

tion stops with '5309' in the display. Pressing R/S twice more gives '7537' and '1'.

Hence 40,013,933 = 5309 * 7537. Source: Phi Trinh (6171) (PPC ROM).

01 LBL "NP" 06 X<> Z 11 XY 16 2 21 LBL 10 26 RTN

02 LBL 11 07 LBL 09 12 MOD 17 X=Y? 22 Rt 27 ST/ Y

03 RCL Y 08 X>Y? 13 X=07? 18 SIGN 23 LASTX 28 GTO 11

04 SQRT 09 Rt 14 GTO 10 19 + 24 X>Y? 29 END

05 LASTX 10 Rt 15 X<> L 20 GTO 09 25 ENTER (43 bytes)

15-16 REPLACE X WITH ITS EXPONENT OR MANTISSA ("XPN" & "MAN"): To replace the value
in X with its exponent, XEQ "XPN"; the range for X is 107%°% - 9.999999884 x 10°°%

To replace the value in X with its mantissa (X must be positive), XEQ "MAN". Source:

Rob Jung (2455) (PPC J, V5N7P6) & John Martellaro (1896) (PPC J, V5N8P9).

01 LBL "XPN" 04 ENTER 07 X=Y? 10 RTN 13 1 16 LBL "MAN"

02 LOG 05 FRC 08 RTN 11 X=07? 14 - 17 ENTER

03 ENTER 06 - 09 xX>07 12 RTN 15 RTN [continued]

CALCULATOR TIPS & ROUTINES 58 XV. ARITHMETIC & ALGEBRA

18 LOG 20 101X 22 GTO 01 24 / 26 /

19 INT 21 X<=Y? 23 10 25 LBL 01 27 END (43 bytes)

15-17 VIEW MANTISSA ("VMAN"): XEQ "VMAN" to see all the digits of the mantissa of

the number in X, in SCI 9 or FIX 9 Modes. If assigned to the shifted ENTER key

(-41), it will match the location of the similar function on the HP-34C. Uses the

Alpha Register; press backarrow (correction) key to restore the X-Register display.

Source: HP KEY NOTES, V4N3P12.

LBL "VMAN", CLA, ARCL X, AVIEW, RTN (13 bytes)

15-18 SYNTHETIC MANTISSA & EXPONENT ("MANT" & "EXP"): "MANT" replaces X by its man-

tissa, and saves Y, Z, T & L. "EXP" replaces X by its exponent, and saves Y,

Z & T. Only the Alpha Register is used. "The trick used in the routine is to replace

the last byte of the number by Hex 50 (the letter P), and then to divide or multiply

by E50 depending on the sign of the exponent." Source: Roger Hill (4940) (PPC CJ, V7

N8P2).

01 LBL "MANT" 05 ASTO M 09 ES50 13 ST/ M 17 XEQ "MANT" 21 END

02 CLA 06 "pP" 10 SF 25 14 X<> M 18 ST/ N

03 CF 24 07 STO N 11 ST* M 15 RTN 19 X<> N

04 STO M 08 CLX 12 FC?C 25 16 LBL "EXP" 20 LOG (56 bytes)

15-19 SYNTHETIC VIEW MANTISSA, MANTISSA & EXPONENT ("VM", "EX" & "MT"): "VM" views

the full mantissa of the number in X; the stack is undisturbed. "EX" and "MT"

replace the number in X with its exponent or mantissa, respectively, leaving the

rest of the stack undisturbed. Line 37 ("}") is nonstandard; it is decimal 242, 127,

160. Source: PPC ROM. "VM" clears Flag 21. Roger Hill (4940) & Dave Kaplan ().

01 LBL "VM" 08 FIX 9 15 CLA 22 LASTX 29 LBL "MT" 36 X=07

02 CF 21 09 VIEW M 16 X#£07? 23 X<> M 30 CLA *37 "B

03 XEQ "MT" 10 STO 4 17 "eqQ" 24 ASHF 31 STO M 38 CLX

04 X<> M 11 RDN 18 INT 25 " @ A" 32 ASTO M 39 ST+ M

05 RDN 12 LASTX 19 X#£07? 26 ST- M 33 INT 40 X<> M

06 VIEW O 13 RTN 20 CLA 27 X<> M 34 X#£0? 41 END

07 RCL d 14 LBL "EX" 21 RDN 28 RTN 35 "e" (84 bytes)

15-20 RAPID RATIO SOLUTIONS ("R1", "R2" & "R3"): These routines solve the ratio

equation A/B = C/D for any term. "R1" is a stack solution; "R2" is a register

solution; "R3" works either way (press A in USER Mode for a register solution, or

press B for a stack solution). Enter or store each term in the order A, B, C & D

(storing in Registers 01, 02, 03 & 04 respectively); enter the unknown term as zero.

Source: Chris Stevens (3005) (PPC J, V5N7P4).

01 LBL "R1" 10 / 01 LBL "R2" 10 X#07? 01 LBL "R3" 10 RDN
02 X<>Y 1 / 02 RCL 01 11 RDN 02 LBL A 11 X#0?
03 X#0? 12 END 03 RCL 02 12 RDN 03 RCL 01 12 RDN
04 RDN 04 RCL 04 13 / 04 RCL 02 13 X#07?
05 X#0? 05 RCL 03 14 / 05 RCL 03 14 RDN
06 RDN 06 X#07? 15 END 06 RCL 04 15 RDN
07 X#0? 07 RDN 07 LBL B 16 /
08 RDN 08 X#07 08 X<>Y 17 /

09 RDN (19 bytes) 09 RDN (22 bytes) 09 X#07? 18 END (27 bytes)

15-21 CUBE ROOT OF ANY NUMBER, POSITIVE OR NEGATIVE ("CURT"): This method saves

bytes over a version that uses a flag test to decide whether to change the

sign of the final result. Change the 3 to any other odd integer to get any nth root

(n odd). Source: Valentin Albillo (4747).

LBL "CURT", SIGN, LASTX, ABS, 3, 1/X, YtX, *, RTN (16 bytes)

CALCULATOR TIPS & ROUTINES 59 XV. ARITHMETIC & ALGEBRA

15-22 SQUARE ROOT OF THE SUMS OF VARIOUS SQUARES: Source: Bill Kolb (265) (BP67/97).

To find vX*> + Y2, use R-P (where X is the value in the X Register, and Y is the val-

ue in the Y Register).

To find W2 + 2Xz, use R-P, LASTX, R-P. For NT 2Y2, X<>Y first.

To find VA2 + B®* + C* + D* + ... , use RCL A, RCL B, R-P, RCL C, R-P, RCL D, R-P, ...

15-23 FAST FACTORIAL FACTOR FINDER ("FFFF"): Key 'n' (an integer from 3 to 9999),

XEQ "FFFF" to find the factors of n!. See the first two factors; if no print-

er, R/S for each succeeding pair until BEEP sounds. Example: 12! = 2110 ¢ 315 ¢ 512

e 711 + 1111. Source: Joel Lichtenwalner (2957) (PPC J, V5N8P46).

01 LBL "FFFF" 15 XEQ 02 29 SQRT 43 X=07 57 INT 71 SF 00

02 Cr 00 16 LBL 01 30 LBL 00 44 RTN 58 sT+ 03 72 RTN

03 SF 21 17 RCL 02 31 ENTER 45 - 59 X#07? 73 LBL 05

04 FIX O 18 RCL 01 32 FRC 46 1 60 GTO 04 74 FS?C 00

05 CF 29 19 2 33 X=07? 47 + 61 FC? 00 75 AVIEW

06 ADV 20 + 34 RTN 48 / 62 CLA 76 SF 29

07 "FACTORS OF " 21 X>Y? 35 - 49 GTO 00 63 FS? 00 77 FIX 2

08 ARCL X 22 GTO 05 36 1 50 LBL 03 64 "} , " 78 RDN

09 "} FACT.:" 23 XEQ 02 37 X=Y? 51 CLX 65 ARCL 01 79 CLD

10 AVIEW 24 GTO 01 38 GTO 03 52 STO 03 66 "p1t" 80 BEEP

11 STO 02 25 LBL 02 39 * 53 RCL 02 67 ARCL 03 81 END

12 2 26 STO 01 40 / 54 LBL 04 68 Fs? 00

13 XEQ 02 277 ENTER 41 ENTER 55 RCL 01 69 AVIEW

14 3 28 ENTER 42 FRC 56 / 70 FC2?C 00 (142 bytes)

15-24 TO MULTIPLY TWO COMPLEX NUMBERS IN THE STACK ("MC"): This routine accepts two

complex numbers (z, = a, + b;i and z, = a, + b,i) stored in the stack as fol-

lows: X: a,; Y: by ; Z: a,; T: b,. After the routine is executed, the result is: X:

real part, Y: imaginary part. This routine uses no numeric data registers; it does

not use trigonometric functions; and it does not use P-R or R-P, so is much faster

than routines that do. Executes in 0.4 seconds. Source: Valentin Albillo (4747).

01 LBL "MC" 04 ST* Y 07 Rt 10 X<> L 13 RDN 16 END

02 STO L 05 X<> 2 08 ST* Y 11 Rt 14 +

03 Rt 06 ST* Z 09 sT* L 12 - 15 R? (30 bytes)

15-25 QUADRATIC EQUATION, REAL ROOTS, STACK SOLUTION ("QEQ"): This routine finds the
real roots of a quadratic equation of the form ax?* + bx + ¢ = 0, by solving

the equation x = {-b *+ vb? - 4ac}/ 2a. Complex roots give "DATA ERROR". No numeric
data registers or flags are used. To use, key a, ENTER, b, ENTER, c, XEQ "QEQ"; the

roots will be returned to the X & Y Registers (X<>Y to see the second root). Source:

Robert Groom (5127).

01 LBL "QEQ" 04 ST+ X 07 ENTER 10 R? 13 ST~ Z

02 X<> Z 05 / 08 ENTER 11 - 14 +

03 st/ Z 06 CHS 09 X12 12 SQRT 15 END (26 bytes)

15-26 COMPLEX QUADRATIC EQUATION PLUS DISPLAY ("QE" & "PRQE"): "QE" finds the roots

of a quadratic equation, whether real or complex (of the form u * iv). To use,

key a, ENTER, b, ENTER, c, XEQ "QE". If there are two real roots, they will be re-

turned to X & Y (and Flag 04 will be cleared); if the roots are complex, the real

part, 'u', will be returned to X, and the imaginary part, 'iv', will be returned to

Y (and Flag 04 will be set [its annunciator will be onl]). "QE" is usable as a sub-

routine. SIZE 000. Source: Robert Groom (5127).

After executing "QE", R/S to execute "PRQE"; this routine formats and displays/

prints the results of "QE". It sets Flag 21 and clears Flag 04. Source: adapted from

a routine by John Herzfeld (5428).

CALCULATOR TIPS & ROUTINES 60 XV. ARITHMETIC & ALGEBRA

01 LBL "QE" 08 ENTER 15 ABS 22 LBL "PRQE" 29 "ROOT 2= " 36 " +- "
02 CF 04 09 ENTER 16 SQRT 23 SF 21 30 ARCL Y 37 ARCL Y
03 X<> Z 10 X12 17 ST- Z 24 Fs2C 04 31 AVIEW 38 "p I"
04 ST/ Z 11 R? 18 X<>Y 25 GTO 14 32 RTN 39 AVIEW
05 ST+ X 12 - 19 FC? 04 26 "ROOT 1= " 33 LBL 14 40 END
06 / 13 X<07? 20 + 27 ARCL X 34 CLA
07 CHS 14 SF 04 21 RTN 28 AVIEW 35 ARCL X (92 bytes)

For automatic display/print without pressing R/S, delete steps 21 & 22.

15-27 BIG FACTORIALS ("BF"): This routine approximates n! for large values of n by

using the first three terms of a Stirling series approximation. The number of

significant digits in the calculated result is at least 10 minus the number of dig-

its in the power of ten. No numeric data registers are used and there is no looping,

so execution is fast. The input is 'n' in the X Register; the output is the mantissa

in X and the power of 10 ("decapower") in Y. Source: Larry Trammell (6824).

01 LBL "BF" 07 * 13 LN 19 ENTER 25 - 31 LASTX
02 ENTER 08 LASTX 14 + 20 Rt 26 + 32 FRC
03 LN 09 ST+ X 15 R? 21 X12 27 10 33 10X
04 1 10 PI 16 12 22 / 28 LN 34 END
05 - 11 * 17 * 23 30 29 /
06 RCL Y 12 SQRT 18 1/X 24 / 30 INT (46 bytes)

15-28 Y1tX FOR LARGE VALUES OF X & Y ("BYX"): Enter X and Y normally (key Y, ENTER,

X), then XEQ "BYX". The mantissa of the result is returned to X; the power of

ten ("decapower") is returned to Y. Accuracy is limited by the use of logarithms.

Example: find 25 to the 75th power. Solution: key 25, ENTER, 75, XEQ "BYX"; see

7.006493122 (in FIX 9 Mode) in X; X<>Y to see 104.0000000. Hence, 257° = 7.006493122

x 101%%_ Source: Bill Derrick (1393) (PPC J, V5N7P4).

LBL "BYX", X<>Y, LOG, *, INT, LASTX, FRC, 101X, RTN (15 bytes)

15-29 POLYNOMIALS ("POLY"): This routine solves the equation y = ax®> tbx® tcx+d.
Put a '+' or a '-' in the routine for each '*' above, as appropriate. To ex-

pand the polynomial, add series of steps like steps 08-10 (RCL nn, *, *). Source:

Bill Kolb (265) (BP 67/97).
ROO: x

01 LBL "POLY" 05 ENTER 09 + or - 13 * RO1: a

02 RCL 00 06 RCL 01 10 * 14 RCL 04 R02: b

03 ENTER 07 * 11 RCL 03 15 + or - R03: c

04 ENTER 08 RCL 02 12 + or - 16 END (25 bytes) RO4: 4

15-30 POLYNOMIAL EVALUATION ("PE"): This routine evaluates a polynomial of arbitrary

order. (y = ... + ax?® + bx? + ¢cx + d). To use, key control number, ENTER, ar-
gument (x), XEQ "PE". The control number (bbb.eee) defines the block of registers

containing the coefficients (a,b, etc); the coefficient of the highest order term is

in R'bbb', and the constant coefficient is in R'eee'. The value of the polynomial

(y) is returned to X, and the value of the argument is returned to Y.

Example: for y = 3x% - 2x? - 5x%2 + 6x + 12, find y if x = 7. Solution: store the co-

efficients in any block, say R01-05: 3, sTO 01, 2, CHS, sTO 02, 5, CHS, STO 03, 6,

sTO 04, 12, STO 05. Next, key 1.005, ENTER, 7, XEQ "PE"; see '6,326.00'. Source:

Larry Trammell (6824).

01 LBL "PE" 03 CLX 05 Rt 07 RCLIND Y 09 1ISG Y 11 Rt 13 END

02 STO Z 04 LBL 01 06 =* 08 + 10 GTO 01 12 X<>Y (24 bytes)

15-31 POLYNOMIAL MULTIPLY ("P*"): This routine will return to a block beginning with

a specified register the coefficients of the resulting polynomial when two

given polynomials are multiplied. The control or index number defining this output

block is returned to X and also to R03. The resulting polynomial can be evaluated

CALCULATOR TIPS & ROUTINES 61 XV. ARITHMETIC & ALGEBRA

for a specific argument using the routine "PE" (15-30). The coefficients of each of

the polynomials to be multiplied must first be stored as a block of data registers,

with the coefficient of the highest-numbered term in the lowest-numbered (bbb) reg-

ister of the block. Registers 01-03 must also be loaded as follows before execution:

RO1: Index to the coefficients of the 1st polynomial (bbb.eee).

R02: Index to the coefficients of the 2nd polynomial (BBB.EEE).

RO3: Pointer to the 1st register of the output block.

This routine changes the value in R0O1; it uses RO0 and Flag 10. Registers 04 and

above are available for the two input- and one output-blocks. The number of regis-

ters needed for output is one more than the degree of the resulting polynomial.

Example: find (3x?® + 2x2 - 5)(4x? + 6). Solution: for the 1st polynomial, the coef-
fients are: a, =3, b, =2, ¢, =0, d, = -5; for the 2nd, a, =4, b, =0, ¢, = 6.

Four registers are needed to store the coefficients of the 1st polynomial (use R04-

R0O7), and three for the 2nd (use R08-R10). Load data registers as

shown at right. The first register of the output block is to be Rl11 ROT: 4.007
. . . : : R02: 8.010

(so '11' is stored in R03). The degree of the resulting polynomial is RO3: 11

5 (3x? « 4x%? = 12x°), so 6 registers are needed for the output (R11- RO4: 3
R16); hence a minimum SIZE 017 is needed. ROS; >

Now execute "P*". When execution stops, see '11.016' in X (the index R06: 0

to the output block). Review R11-16 (use "PRREGX" with a printer) to RO7: =5

see RO8: 4

R11= 12, R12= 8, R13= 18, R14= -8, R15= 0, R16= -30. R09: O

R10: 6
Therefore the resulting polynomial is

12x5% + 8x* + 18x3 - 8x2% - 30.

If "PE" is in memory, you can evaluate this expression for a specific value of x:

for x=2, 'RCL 03, 2, XEQ "PE"'; see '594'; for x=3, 'RCL 03, 3, XEQ "PE"; see

13948'.

Source: Larry Trammell (6824).

01 LBL "P*" 09 RCL 03 17 DSE X 25 CLX 33 STOIND Y 41 CF 10

02 RCL 03 10 RCL IND 01 18 1 E3 26 STOIND Y 34 FC? 10 42 END

03 INT 11 XEQ 12 19 / 27 GTO 01 35 ST+IND Y

04 sTO 00 12 ISG 03 20 RCL 00 28 LBL 12 36 X<> L

05 STO 03 13 LBL 00 21 + 29 RCL IND Z 37 ISG Y

06 SF 10 14 ISG 01 22 STO 03 30 X<>Y 38 LBL 00

07 LBL 01 15 GTO 02 23 RTN 31 * 39 IsSG Z

08 RCL 02 16 RDN 24 LBL 02 32 FS? 10 40 GTO 12 (71 bytes)

15-32 DECIBEL ADDITION & SUBTRACTION ("dB+" & "dB-"): Uses no data registers or

flags. To use, key in sound pressure levels in decibels (dB,, ENTER, dB,);

then, to add, XEQ "dB+", or to subtract, XEQ "dB-". Source: HP-41C Users' Library

Solutions Heating, Ventilating & Air Conditioning, pp 65-68.

01 LBL "dB+" 06 XEQ 00 11 10 16 AVIEW 21 / 26 END
02 XEQ 00 07 - 12 * 17 RTN 22 X<>Y
03 + 08 ABS 13 CLA 18 LBL 00 23 101X
04 GTO 01 09 LBL 01 14 ARCL X 19 10 24 X<>Y
05 LBL "dB-" 10 LOG 15 "} 4aB" 20 ST/ 2 25 101X (53 bytes)

62

CHAPTER XVI

GEOMETRY, TRIG & CALCULUS

16-1 TO KEEP A VECTOR POSITIVE: To keep a vector, 'r', positive, use 'RCL 6, RCL r,

P-R, R-P'. Source: Dave Wilder (452) (BP 67/97).

16-2 TAN +90 DEGREES: Prevents overflow at multiples of +90 degrees: 'SQRT, X12,

TAN'. Source: Dave Wilder (452). Use 'RAD, D-R, TAN, DEG' for *90 degrees.

16-3 KEEPING ANGLES LESS THAN 90° OR 180°: To keep an angle less than 90°, use

'SIN, ASIN'; to keep an angle less than 180°, use 'COS, ACOS'. Source: Dave

Wilder (452) (BP 67/97).

16-4 SUPPLEMENT OF AN ANGLE, KEPT WITHIN *180° ("SUP"): Supplement 6 = 180° - 6.

With 6 in X, XEQ "SUP" to convert it to its supplement. Source: Bill Kolb

(265) (BP 67/97).

LBL "sup", -1, P-R, R-P, X<>Y, CHS, RTN (14 bytes)

16=-5 ELIMINATING DISPLAY OF 60 MIN OR SEC: Use J;R, HMS'. Source: John Martellaro

(1896) (65 NOTES, ¥?N9P1). Assons Fix & fifl/fi, oMLY . Lodses
_________________________Yeee
16-6 COS & SIN OF X SIMULTANEOUSLY: Use '1, P-R'. These two steps put cos x in X

and sin x in Y. Source: Joachim Bolz (401) (65 NOTES, V2N9P25).

16-7 ARCTAN Y/X: Instead of '/, ATAN', use 'R-P, RDN'. This avoids division by zero

and distinguishes between -y/x and y/-x. Source: Dave Wilder (452) (BP 67/97).

16-8 BOUNDING ANGLES: Routine A keeps angles between 0° and 360°; routine B keeps

angles between plus and minus 180°. Source: HP KEY NOTES, V3N4P9S.

0° <= 6 < 360°: LBL A, 360, P-R, R-P, X<>Y, X<0?, +, RTN (11 bytes)

-180° < 6 <= 180°: LBL B, 1, P-R, R-P, X<>Y, RTN (7 bytes)

16-9 ELEVATION OF A POINT ON A PARABOLA, STACK SOLUTION ("PN"):

To find the elevation 'Y' of a point 'P' on a parabola, at

distance 'X' from the center axis, XEQ "PN"; the routine prompts

for D, H & X, then finds the elevation 'Y'. For another point on

the same parabola, key the new value of 'X', then press R/S; the

new elevation will be found. May repeat. Source: John Dearing

(2791). Equation: Y = H[1-(X/D) 2].

01 LBL "PN" 05 PROMPT 09 LBL 14 13 RDN 17 * 21 Rt 25 GTO 14

02 "p2" 06 1 10 R? 14 X12 18 "y= " 22 LASTX 26 END

03 PROMPT 07 n"Xxz" 1 / 15 - 19 ARCL X 23 1

04 "H?" 08 PROMPT 12 LASTX 16 X<>Y 20 PROMPT 24 Rt (44 bytes)

16-10 LAW OF COSINES: ¢ = v a2 + b2 - 2ab * cos 6 .

Use: RCL 6, RCL a, P-R, RCL b, -, R-P. Source: Bill Kolb (265).

CALCULATOR TIPS & ROUTINES 63 XVI. GEOMETRY, TRIG & CALCULUS

16-11 AREA & LENGTH OF A RIGHT PARABOLIC SEGMENT ("AP" & "SP"): S

Input 'D', ENTER, 'H', XEQ "AP" for area or "SP" for length. zf:::::Ez::::>

01 LBL "AP" 07 RTN 13 XY 19 ENTER 25 / 31 / P P

02 =x 08 LBL "sp" 14 X12 20 ENTER 26 LN 32 *

03 4 09 sTO 01 15 4 21 RCL 01 27 RCL 02 33 +

04 =* 10 X<>Y 16 * 22 ST+ X 28 X12 34 END

05 3 11 STO 02 17 + 23 + 29 RCL 01

06 / 12 X12 18 SQRT 24 RCL 02 30 ST+ X (48 bytes)

16-12 AREA OF A REGULAR POLYGON: 'N' is the number of sides; 'S' is the length of a

side; and 'R' is the radius of the circumscribed circle (center-to-vertex).

"NtS": Input N, ENTER, S; XEQ "NfS". "NtR": Input N, ENTER, R; XEQ "NtR". Calculator

must be in DEG Mode. Source: Hugh Kenner (103) (PPC CJ, V7N5P7).

01 LBL "NtS" 06 LASTX 1/ 16 LBL "NftR" 21 LASTX 26 /

02 xXt2 07 / 12 "A=" 17 X12 22 / 27 "A="

03 X<>Y 08 TAN 13 ARCL X 18 XY 23 SIN 28 ARCL X

04 * 09 / 14 AVIEW 19 * 24 * 29 AVIEW

05 180 10 4 15 RTN 20 360 25 2 30 END (54 bytes)

16-13 AREA OF A REGULAR POLYGON, ANY TRIG MODE: Key in 'N' (number of sides), ENTER,

'R' (radius of circumscribed circle), XEQ "AR". Works in any trigonometric

mode. Equation: K = %NR? SIN(360°/N). The sequence '1, ASIN, 4, *' replaces the 360°

because it works in RAD and GRAD Modes as well.

01 LBL "AR" 04 4 07 / 10 X12 13 2

02 1 05 =* 08 SIN 11 * 14 /

03 ASIN 06 RCL Z 09 X<>Y 12 * 15 END (23 bytes)

16-14 SPHERICAL/RECTANGULAR COORDINATE CONVERSION; EULER TRANSFORMATIONS ("R-S",

"S-R", & "ET"): Here is a pair of routines for transforming a coordinate trip-

let between spherical and rectangular coordinates. "R-S" is initialized by z, ENTER,

y, ENTER, x; it returns r, 6, ¢ in Registers X-Y-Z. "S-R" requires ¢, ENTER, 0O,

ENTER, r; it returns the rectangular coordinates to X-Y-Z. Both routines leave the T

Register undisturbed.

01 LBL "R-S" 03 Rt 05 R-P 07 LBL "S-R" 09 X<> T 11 P-R

02 R-P 04 X<> T 06 RTN 08 P-R 10 RDN 12 END (28 bytes)

The result of an arbitrary set of reference-axis rotations on the coordinates of a

point in 2-dimensional space can be effected simply by adding a single angle a to

the ¢@-coordinate of the point. In three dimensions, three such angles, often called

"Euler Angles", are required to describe the result of an arbitrary set of rotations.

Euler angle transformations by one convention or another are used, for example, in

programs for perspective plotting, for predicting the position of astronomical ob-

jects in the night sky, and for orienting crystal lattices for diffraction studies.

Hewlett-Packard PPC command architecture is particularly suited to this manually

formidable calculation, as shown by the 41C/V routine below. Here, Euler angles a,

B, and A (by convention a z-axis, a y'-axis and a z"-axis rotation, respectively)

are stored in R0O1, RO2 & R03. Spherical coordinates of a point ¢, ENTER, O, ENTER, r

are then changed by "ET" into the transformed r, 6, ¢, making use of stack registers

only. Since the value of coordinate r doesn't change under rotation, an arbitrary

non-zero constant can be used instead of r. Source: Phil Fraundorf (1025) (PPC CJ,

VIN8P26).

01 LBL "ET" 05 - 09 R-P 13 X<>Y 17 R? 21 RDN

02 P-R 06 X<>Y 10 X<y 14 P-R 18 R-P 22 END

03 X<> 2 07 P-R 11 RCL 02 15 RDN 19 RCL 03

04 RCL 01 08 Rt 12 - 16 R-P 20 ST- T (32 bytes)

CALCULATOR TIPS & ROUTINES 64 XVI. GEOMETRY, TRIG & CALCULUS

16-15 SOLVING INTEGER-SIDED RIGHT TRIANGLES ("IT"): This routine will successively

solve for all the integer-sided right triangles having a given integer as one

side. If Flag 00 was cleared before execution, Tone 0 sounds and execution stops

here ('One-Integer Mode'). If Flag 00 was set before execution, the integer is in-

cremented and execution continues ('Continuous Mode'). If the printer is off or is

not plugged in, R/S after the sides of a triangle are displayed. If printer is on,

press R/S to stop execution. The display will show an asterisk after the number when

it is the hypotenuse of the triangle. Since oblique triangles may be viewed as two

right triangles having a common altitude, the routine is also useful in solving in-

teger-sided oblique triangle problems.

Instructions: 1. CF 00 for 'One-Integer Mode', or SF 00 for 'Continuous Mode'. 2.

XEQ "IT". 3. Key in integer, R/S. All integer-sided right triangles with the given

integer as one side will be displayed/printed; if no printer, R/S after each. 4. In

'One-Integer Mode', Tone 0 sounds and 0.00 is displayed; R/S for a new case. In

'Continuous Mode', the integer is incremented by 1 and execution continues. To ter-

minate Continuous Mode, press R/S if the routine is running, then CF 00 and XEQ 14

from the keyboard. Example: Key '5', XEQ "IT", see "5 12 13", "5% 3 4",

Source: Richard Smith (4856) (PPC CJ, V7N4P30).

01 LBL "IT" 30 ENTER 59 LBL 10 88 / 117 " " 146 RCL 00

02 SF 21 31 STO 01 60 X12 89 STO 04 118 ARCL 03 147 2

03 FIX O 32 2 61 STO 00 90 RCL 05 119 AVIEW 148 /

04 CF 29 33 / 62 Fs? 01 91 XY 120 RTN 149 RCL 03

05 "NO.?2" 34 FRC 63 GTO 08 92 X<=Y? 121 LBL 06 150 X<Y?

06 PROMPT 35 .5 64 LBL 09 93 GTO 05 122 2 151 GTO 04

07 1 36 X=Y? 65 RCL 00 94 RCL 04 123 ST/ 02 152 GTO 14

08 - 37 GTO 12 66 RCL 05 95 FRC 124 sT/ 03 153 LBL 03

09 STO 06 38 RDN 67 RCL 01 96 X=07 125 RTN 154 2

10 GTO 00 39 X=07 68 X=Y? 97 XEQ 07 126 LBL 05 155 sT/ 00

11 LBL 14 40 GTO 11 69 GTO 05 98 4 127 RCL 01 156 RCL 00

12 Fs? 00 41 LBL 13 70 RDN 99 ST+ 05 128 2 157 RCL 03

13 GTO 00 42 "NONE" 71/ 100 GTO 08 129 * 158 -

14 CLX 43 AVIEW 72 STO 04 101 LBL 07 130 sTO 00 159 STO 02

15 CLD 44 GTO 14 73 2 102 RCL 04 131 0 160 RCL 01

16 CF 01 45 LBL 12 74 / 103 RCL 05 132 STO 03 161 X>Y?

17 SF 29 46 3 75 1 104 - 133 LBL 04 162 GTO 14

18 FIX 2 47 RCL 01 76 X=Y? 105 2 134 1 163 CLA

19 TONE 0 48 X<Y? 77 GTO 24 106 / 135 ST+ 03 164 ARCL 00

20 RTN 49 GTO 13 78 RDN 107 STO 02 136 RCL 00 165 "p*x v

21 GTO "I1IT" 50 2 79 FRC 108 RCL 05 137 RCL 03 166 ARCL 01

22 LBL 00 51 * 80 X=07? 109 + 138 - 167 " "

23 CF 01 52 SF 01 81 XEQ 07 110 sTO 03 139 LASTX 168 ARCL 02

24 2 53 GTO 10 82 2 111 FS? 01 140 * 169 AVIEW

25 STO 05 54 LBL 11 83 ST+ 05 112 XEQ 06 141 SQRT 170 2

26 ADV 55 4 84 GTO 09 113 CLA 142 STO 01 171 sT* 00

27 1 56 RCL 01 85 LBL 08 114 ARCL 01 143 FRC 172 GTO 04

28 ST+ 06 57 X<Y? 86 RCL 00 115 "p " 144 X=07? 173 END

29 RCL 06 58 GTO 13 87 RCL 05 116 ARCL 02 145 GTO 03 (253 bytes)

16-16 FUNCTIONS OF X AND v 1 * X2 : The range of x is -1 < x < 1.

For: 1=-x x/ 1=-x2 =2 / x 1/ T+ x / Y1+x2

Use: ACOS, SIN ASIN, TAN ACOS, TAN ATAN, COS ATAN, SIN

Source: Bill Kolb (265) (BP 67/97).

CALCULATOR TIPS & ROUTINES 65 XVI. GEOMETRY, TRIG & CALCULUS

16-17 HYPERBOLIC FUNCTIONS ("SINH", "COSH", "TANH", "ASINH", "ACOSH" & "ATANH"):

Key in argument, execute appropriate function. For example, to compute the in-

verse hyperbolic tangent of x, XEQ "ATANH". No data registers are used; no local la-

bels are used and there are no internal subroutines. The value in Y is returned to Y

in each case; with "SINH" & "COSH", Z is returned to Z. Source: John Kennedy (918)

(PPC CJ, VIN8P11).

01 LBL "SINH" 12 1/X 23 + 34 RTN 45 1
02 EtX 13 + 24 / 35 LBL "ACOSH" 46 X<>Y
03 ENTER 14 2 25 RTN 36 ENTER 47 +
04 1/X 15 / 26 LBL "ASINH" 37 X12 48 1
05 - 16 RTN 27 ENTER 38 1 49 LASTX
06 2 17 LBL "TANH" 28 X 12 39 - 50 -
07 / 18 EtX 29 1 40 SQRT 51 /
08 RTN 19 ENTER 30 + 41 + 52 SQORT
09 LBL "COSH" 20 ENTER 31 SOQRT 42 LN 53 LN
10 EtX 21 1/X 32 + 43 RTN 54 END
11 ENTER 22 ST- Z 33 LN 44 LBL "ATANH" (66 bytes)

16-18 SOLVE ("SV"): This routine approximates a solution to an equation of the form

f(x) = 0, using a Newton's (secant) method. Have the function name in R06 and
the initial guess in X; then XEQ "SV". The output in X is the x-value which most

closely makes f(x) = 0. Set Flag 10 to display successive approximations. Uses Reg-

isters 06-09. Source: Kennedy (918), Schwartz (2289) & Dennes (1757) (PPC ROM). Set
display mode

01 LBL "SvV" 07 LBL 04 13 XEQIND 06 19 / 25 RND to desired
02 sTO 07 08 RCL 2 14 ST* 09 20 sTO 09 26 X#Y? accuracy.

03 1 09 sSTO 08 15 ST- 08 21 X<> 07 27 GTO 04
04 % 10 RCL 07 16 RCL 09 22 ST+ 07 28 RCL 07
05 STO 09 11 FS? 10 17 RCL 08 23 RND 29 END
06 CLST 12 VIEW X 18 X#0°? 24 RCL 07 (45 bytes)

16-19 INTEGRATE ("IG"): This routine duplicates the HP-34C Integrate function. Have

the function name in R10, the lower limit of integration in Y and the upper

limit in X. Accuracy depends on the display setting. Very slow! SF 10 to display

successive approximations. Uses Registers 10-18. Source: Read Predmore (5184) (PPC

ROM) .

01 LBL "IG" 17 ENTER 33 RCL 12 49 RCL 11 65 * 81 STOIND 12

02 STO 17 18 2 34 * 50 STO 13 66 ENTER 82 Fs? 10

03 XY 19 STO 14 35 RCL 16 51 18 67 DSE Y 83 VIEW X

04 - 20 RCL 11 36 * 52 STO 12 68 X<> Z 84 FS?C 09

05 4 21 CHS 37 RCL 17 53 1 69 ENTER 85 GTO 01

06 / 22 Y1X 38 + 54 ST+ 11 70 X<>IND 12 86 RND

07 STO 16 23 ST* 14 39 XEQ IND 10 55 RCL 15 71 ST- Y 87 X#£Y?

08 ST- 17 24 1 40 RCL 13 56 RCL 16 72 RND 88 GTO 01

09 sT- 17 25 - 41 * 57 1.5 73 X<> Z 89 LASTX

10 0 26 LBL 02 42 ST+ 15 58 =* 74 / 90 END

11 STO 15 27 STO 12 43 1 59 =* 75 RCL IND 12

12 STO 11 28 X12 44 RCL 12 60 RCL 14 76 +

13 STO 18 29 - 45 RCL 14 61 * 77 ISG 12

14 SF 09 30 STO 13 46 + 62 LBL 03 78 STOP

15 LBL 01 31 2 47 X<Y? 63 Rt 79 DSE 13

16 1 32 + 48 GTO 02 64 4 80 GTO 03 (129 bytes)

16-20 FIRST DERIVATIVE ("FD"): This routine approximates the first derivative of a

function at a point. Have the function loaded in memory as a program, with a

global label of 6 or fewer characters. Have the function name in R11, the step size

in R13 (0.01 is typical), and the x-value in X; then XEQ "FD". Source: Richard

Schwartz (2289) (PPC CJ, V7N9P11-13, V7N10P10). [continued]

CALCULATOR TIPS & ROUTINES 66 XVI. GEOMETRY, TRIG & CALCULUS

01 LBL "FD" 07 STO 14 13 ST- 14 19 * 25 + 31 6

02 STO 12 08 RCL 12 14 9 20 sT- 14 26 XEQ IND 11 32 *

03 RCL 13 09 RCL 13 15 ST* 14 21 RCL 12 27 ST+ X 33 /

04 + 10 ST+ X 16 RCL 12 22 RCL 13 28 RCL 14 34 END

05 XEQ IND 11 1 + 17 XEQ IND 11 23 3 29 +

06 ST+ X 12 XEQIND 11 18 11 24 * 30 RCL 13 (52 bytes)

67

CHAPTER XVII

BASE CONVERSTIONS

17-1 SYNTHETIC BASE CONVERSION ("BD" & "TB"): For positive integers, and 1 <b< 20,

these routines convert between numbers in base b and base 10. Store b in R06

before executing either routine. Source: George Eldridge (5575) (PPC CJ, V7NOP12;

PPC ROM).

"BD" (Base b to base 10): Have the "TB" (Base 10 to base b): Have the
base b number in Alpha Register base 10 number in X Register when

when routine is called. routine is called.

Inputs: Outputs: Inputs: Outputs:

Alpha: n, X: N, X: n Alpha: n,

R06: b Alpha: (cleared) R06: b X: 0

01 LBL "BD" 23 X<07? 35 LBL "TB" 57 STO M

02 CLST 24 GTO 02 36 "' " 58 RDN

03 LBL 01 25 X<y 37 RCL M 59 RCL 06

04 "p " 26 RCL 06 38 X<>Y 60 /

05 X<> 0O 27 * 39 LBL 03 61 INT

06 X=07? 28 + 40 ENTER 62 X#£07?

07 GTO 01 29 . 41 INT 63 GTO 03

08 X<> M 30 GTO 01 42 RCL 06 64 LBL 05

09 Rt 31 LBL 02 43 MOD 65 " "

10 X<> N 32 RDN 44 9 66 CLX

11 "LeA" 33 CLA 45 - 67 RCL M

12 X<> N 34 RTN 46 X>07? 68 X#£Y?

13 RDN 47 ISG X 69 GTO 05

14 X<> M 48 LBL 04 70 CLX

15 E 49 39 71 X<> O

16 * 50 + 72 X<> N

17 39 51 101X 73 STO M

18 - 52 STO O 74 CLST

19 X>07? 53 "k " 75 AVIEW

20 DSE X 54 CLX 76 END

21 9 55 X<> O

22 + 56 X<> N (139 bytes)

NOTE: Line 11 is decimal 243, 127, 0, 8; line 36 is decimal 254, 39, and then thir-

teen 32's; line 53 is append 6 spaces.

17-2 STACK USED TO CONVERT TO BASE 10: To convert a positive integer in any base to

base 10, load the stack with the number of the original base. It is not re-

quired that the original base be integral or even positive. Working from left to

right, key the first digit of the integer and follow with "*" (multiply). Key in the

next digit and follow with "+, *" (add, multiply). Continue keying in the digits,

following each with "+, *" until the rightmost digit is keyed; follow it with "+"

only. The resulting number in base 10 is now in the display. Example: convert 72305

in base 8 to base 10: key 8, ENTER, ENTER, ENTER; 7, *; 2, +, *; 3, +, *; 0, +, *;

5, +: see '29893' in the display. Source: Paul Fields (3114) (PPC J, V6N7P23).

CALCULATOR TIPS & ROUTINES 68 XVII. BASE CONVERSIONS

17-3 OCTAL-DECIMAL CONVERSIONS FOR REAL NUMBERS: There may be some error in the re-

sult if the number is irrational in octal, or if the precision of the calcula-

tor is exceeded during calculation. The stack is destroyed, but no numeric data reg-

isters are used. Source: HP KEY NOTES, V4N1P7.

01 LBL "ROCT" 06 FRC 11 1 E10 16 ENTER 21 1 E10 26 /

02 ENTER 07 1073741824 12 / 17 INT 22 * 27 +

03 INT 08 = 13 + 18 DEC 23 INT 28 END

04 ocCT 09 INT 14 RTN 19 RCL Y 24 DEC
(70 bytes)

05 RCL Y 10 OCT 15 LBL "RDEC" 20 FRC 25 1073741824

17-4 FAST DECIMAL-HEX ("DX"): Limited to integers in base 10 in the range 0 -

65,535. Meant to be used to compute addresses in a computer with up to 64K of

memory. To use: 1. XEQ "DX". 2. Input 'D' (integer in base 10), R/S. 3. For a new

case, go to step 2. Source: John Kennedy (918) (PPC CJ, V7N4P22).

01 LBL "DX" 15 ASTO 06 29 ASTO 13 43 " 57 =*

02 "O" 16 7" 30 "E" 44 ARCL X 58 ARCL IND X

03 ASTO 00 17 ASTO 07 31 ASTO 14 45 "} DEC" 59 FRC

04 "M~ 18 "8" 32 "F" 46 AVIEW 60 16

05 ASTO 01 19 ASTO 08 33 ASTO 15 47 4096 61 *

06 "2n 20 "9n 34 LBL 00 48 / 62 RND

07 ASTO 02 21 ASTO 09 35 "INPUT D, R/S" 49 CLA 63 ARCL IND X

08 "3« 22 "A" 36 PROMPT 50 ARCL IND X 64 "} HEX"

09 ASTO 03 23 ASTO 10 37 LBL 01 51 FRC 65 AVIEW

10 "4 24 "B" 38 65535 52 16 66 STOP

11 ASTO 04 25 ASTO 11 39 XY 53 * 67 GTO 01

12 "5" 26 “c" 40 X>Y? 54 ARCL IND X 68 END

13 ASTO 05 27 ASTO 12 41 GTO 00 55 FRC

14 "6" 28 "D" 42 FIX 0 56 16 (148 bytes)

17-5 SYNTHETIC HEX TO DECIMAL ("XD"): This routine works only for a 2-digit input

in Alpha, and returns the decimal equivalent to X. For converting hex byte

numbers to decimal in the Byte Table. No checking for invalid input. Source: Roger

Hill (4940) (PPC ROM).

01 LBL "XD" 06 29 11 * 16 * 21 STO O 26 ST/ O

02 "IeA" 07 ST- Z 12 INT 17 + 22 X<>Y 27 CLX

03 RCL M 08 - 13 XY 18 RTN 23 MOD 28 X<> O

04 E2 09 .9 14 INT 19 LBL "QR" 24 ST- O 29 X<>Y

05 XEQ "QR" 10 ST* Z 15 16 20 X<>Y 25 LASTX 30 END (59 bytes)
--G=SG=—"—_—-—————————————G-—.-GG-G--———--——-TGS————-.-G-DT—-—-———————--———

69

CHAPTER XVITII

UNIT CONVERSIONS & SHORTCUTS

18-1 CONVERT GRADS TO AND FROM DEGREES & RADIANS: pi rad = 180° = 200 grads.

G—D: .9, *o D"‘G: .9, /. G-R: 200, PI, /, /. R—G: 200, PI, /, *.

18-2 CONVERT FEET & INCHES TO FEET (OR YARDS): Input feet &/or inches in the form

ff.ii (12 feet, 9 inches, for example, would be input as 12.09), then execute

"FIN". The two steps before the RTN ('3, /') convert feet to yards--may delete.

LBL "FIN", ENTER, FRC, .12, /, X<>Y, INT, +, (3, /,), RTN (19 bytes)

18-3 APPROXIMATE MILES TO KILOMETERS CONVERSION FACTOR: To save bytes, use '5, LN'.

This is about 0.0058% high (LN 5 = 1.609437912; the actual Mi-Km conversion

factor is 1.609344000). Multiply miles (or MPH) by this factor to get kilometers (or

KPH). Source: Neil Murphy (6) (65 NOTES, V1N2P3).

18-4 ENTERING ENGLISH OR METRIC UNITS, STORING AS METRIC: For use when values input

are all positive (weight and height, for example). Enter data that is in Eng-

lish units as negative values, and enter data that is in metric units as positive

values. In the program, have the English-to-metric conversion factor just before the

prompting, and 'X>0?, 1, *' just afterwards. The example below prompts for weight

(in pounds or kilograms), converts to kilograms if necessary, then stores the weight;

similarly, it prompts for height (in inches or centimeters), converts to centimeters

if necessary, then stores the height. Remember to follow English units with CHS.

Source: Henry Casson (5047). The conversion factor must be negative.

eeey =.4536, "WT.?", PROMPT, X>07?, 1, *, STO 01,

-2.54, "HT.?", PROMPT, X>07?, 1, *, STO 02,

18-5 FASTER ZERO: Use the decimal (.) rather than the zero (0) when a line in a pro-
gram is to be zero; its faster. This is only to enter a zero, not to clear X.

It must not be followed by another digit. Source: Bill Kolb (265) (BP 67/97).

18-6 SYNTHETIC FASTER ONE: Use E (decimal byte 27) rather than 1 when a line in a
program is to be one; it's faster.

18-7 MULTIPLY BY A SMALL NUMBER: Example: Usual--EEX, 6, CHS, *; better--EEX, 6, /.

Saves a keystroke in keyboard execution, saves a byte in a program. Source:

Bill Kolb (265) (BP 67/97).

18-8 DIVIDE BY 100: Instead of '100, /', use '1, %'. The number that is divided re-

mains in the Y Register. Source: John Martellaro (1896) (PPC J, V5N1P16).

18-9 MULTIPLY BY v2: Instead of 2, SQRT, *, use ENTER, R-P. To replace X with V2ox

without raising the stack, use X12, ST+ X, SQRT. Source: Bill Kolb (265) (BP).

18-11 n/180: Instead of PI, 180, /, use 1, D-R; saves 3 bytes. Source: John Martel-

laro (1896) (PPC J, V5N1P16).

CALCULATOR TIPS & ROUTINES 70 XVIII. UNIT CONVERSIONS & SHORTCUTS

18-14 CONVERSION BETWEEN DEGREES AND DECIMAL MINUTES & DECIMAL DEGREES ("DM-D" &

"D-DM"): The Nautical Almanac uses degrees and decimal minutes. This routine

prompts for input and labels output, so you won't be confused as to whether a deci-

mal number is a decimal degree display, a degree-minute-second display, a degree-

decimal minute display, or something else entirely. To convert from degrees and dec-

imal minutes to decimal degrees, XEQ "DM-D" (input in DDDMM.MM format); to convert

decimal degrees to degrees and decimal minutes, XEQ "D-DM". If routine is run as an

independent program rather than as a subroutine in another program, just press R/S

twice to convert back. Example: 123°45.67' = 123.7612°. Source: Hugh Kenner (103)

(PPC CJ, VIN5P7, V7N6P35). See 18-16.

01 LBL "DM-D" 10 / 19 RTN 28 ARCL X 37 ARCL X

02 CF 29 11 X3y 20 LBL "D-DM" 29 "+ D, " 38 " M"

03 "DDDMM.MM 2" 12 INT 21 CF 29 30 1 E2 39 AVIEW

04 PROMPT 13 + 22 "DEC DEG ?" 31 * 40 +

05 1 E2 14 FIX 4 23 PROMPT 32 X<>Y 41 END

06 / 15 CLA 24 ENTER 33 FRC

07 ENTER 16 ARCL X 25 INT 34 60

08 FRC 17 "+ DEG" 26 FIX 0 35 *

09 .6 18 AVIEW 27 CLA 36 FIX 2 (109 bytes)

18-15 TO CONVERT NUMBERS TO ZERO OR ONE, DEPENDING UPON THEIR SIZE: This can save

steps by avoiding conditional tests, branching and redundant operations. The

same operation of addition or subtraction (ST+ 09, for example) can be used, and

those numbers that become 1 will increment R09, while those that become 0 will not.

To subtract 12 when the number becomes 1, but not when it becomes 0, multiply the 1

or 0 by 12 first. For larger entries to become 1, smaller entries to become 0: Di-

vide the entry by the smallest number that is to yield 1; it and larger numbers will

give a number greater than or equal to 1.0; then take INT. Smaller numbers give 0

after INT. If the range of possible inputs is too great, reduce it first by some

method, such as taking the square root, or else test the result with 'X 0?2, 1°'. For

small entries to become 1, large entries to become 0: Take the reciprocal, add an

appropriate constant, then take INT. For example, if the range of possible inputs to

a particular prompt is 1-100, and it is desired to convert entries of 10 or less to

1, but entries of greater than 10 to 0, use the following: '1/X, .9, +, INT'.

18-16 DDD.MM,M & DDD.DDD: Routine 01 converts degrees & minutes/tenths of minutes

in DDD.MM,M format to decimal degrees; routine 02 converts the other way. Flag

02 must be clear before routine 01 is executed. Example: convert 123°45.67' to deci-

mal degrees: 123.4567, XEQ 01; see 123.7612. Source: Bill Boulton (700) (PPC CJ, V8

N1P22). See 18-14.

LBL 02, Sr 02, LBL 01, INT, LASTX, FRC, .6, FS?C 02, 1/X, /, +, RTN (15 bytes)

18-17 CELSIUS-FAHRENHEIT TEMPERATURE CONVERSIONS ("TEMP"): With Flag 00 SET, this

routine converts °C to °F; with Flag 00 CLEAR, it converts °F to °C. For exam-

ple, 'SF 00, 50, XEQ "TEMP"' returns '122' (°F); 'CF 00, 50, XEQ "TEMP"' returns

'10' (°C). Source: James Davidson (547) (65 NOTES, V3N9P14).

01 LBL "TEMP" 04 sTO 01 07 / 10 - 13 RTN

02 40 05 1.8 08 40 11 Fs? 00

03 + 06 sT* 01 09 sT- 01 12 RCL 01 (27 bytes)

18-18 CELSIUS-FAHRENHEIT CONVERSION, STACK SOLUTION ("TMP"): With Flag 00 SET, this

routine converts the Celsius temperature in X to Fahrenheit; with Flag 00

Clear, it converts Fahrenheit to Celsius. No data registers are used. [continued]

CALCULATOR TIPS & ROUTINES 71 XVIII. UNIT CONVERSIONS & SHORTCUTS

Source: Ron Ryen (205) (65 NOTES, V2N5P9).

LBL "T™MP", 40, +, 1.8, FC? 00, 1/X, *, 40, -, RTN (21 bytes)

18-19 CELSIUS-FAHRENHEIT CONVERSION, BOTH RESULTS ("TEM"): This routine converts an

entry simultaneously to °C and °F; the Celsius value is returned to X, the

Fahrenheit value is returned to Y. Uses no flags; uses no data registers. Source:

Bill Derrick (1393) (PPC J, VS5N7P4).

LBL "TEM", ENTER, ENTER, 32, ST- Z, X<>Y, 1.8, ST/ T, *, 4+, X<>Y, RTN (23 bytes)

18-20 INPUTTING A TEMPERATURE IN EITHER C° OR F° (SPECIAL CASE):

For photographic or clinical medical use, temper-

atures above 50°C are not met, so a value above that mag-

nitude is bound to be Fahrenheit. The number could be

varied for other uses. Assume any value keyed in that is

less than or equal to 50 is a Celsius temperature, while

any value keyed in that is greater than 50 is a Fahrenheit temperature.

CASE I: CONVERT TO CELSIUS: ..., 50, "TEMP?", PROMPT, X<=Y?, GTO 00, 32, -,

1.8, /, LBL 00,

CASE II: CONVERT TO FAHRENHEIT: ..., 50, "TEMP?", PROMPT, X>Y?, GTO 00, 1.8,

*, 32, +, LBL 00,

10°C = 50°F

10.56°C = 51°F

37°C = 98.6°F

50°C = 122°F

Source: Cary Reinstein (2046) & Henry Casson (5047).

18-21 TEMPERATURE CONVERSIONS ("TC"): Uses no data registers, flags or numeric la-

bels. Converts between any two of the following temperature scales: Celsius,

Kelvin, Fahrenheit, and Rankine ('C', 'K', 'F' & 'R', respectively). To use: Input

value to be converted; XEQ "TC" (ASN to E); press key (A-D) corresponding to value

input; press key corresponding to desired output. See answer. For new case, key in

new value, then press R/S or XEQ "TC"; repeat proceedure. Source: adapted from

HP-41C Users' Library Solutions 'Heating, Ventilating & Air Conditioning', pp 69-72.

A F C R K "TC" E

01 LBL "TC" 07 + 13 + 19 PROMPT 25 GTO D 31 1.8

02 SF 27 08 1.8 14 GTO D 20 LBL A 26 LBL B 32 *

03 "' C R K" 09 / 15 LBL C 21 1.8 27 273.15 33 LBL D

04 PROMPT 10 GTO D 16 1.8 22 * 28 - 34 END

05 LBL A 11 LBL B 17 / 23 459.67 29 GTO D

06 459.67 12 273.15 18 LBL D 24 - 30 LBL C (96 bytes)

18-22 EFFECTIVE INTEREST: If you pay an income tax, this routine will calculate the

approximate net cost of borrowing, taking into account the amount of interest

you can deduct from your income tax:

LBL A, %, -, PSE, %, RTN

For example, you want to borrow $950 at 14.35% interest for one year, and your tax

bracket is 38%. Key in 950, ENTER, 14.35, ENTER, 38; then press A. The display will

pause to show '8.9' (your 'effective' interest), then stop to show '84.52' (your net

cost of borrowing the $950). Remember, this is just a quick, handy way to determine

approximate costs. It does not accurately calculate for direct reduction loans, com-

pound interest, etc. But it is far better than nothing, it makes you more aware of

net costs, and it is a short routine you can include in financial programs. Source:

HP KEY NOTES, V4N2P11.

18-23 TWO NUMBERS WITHIN A CERTAIN PERCENT OF EACH OTHER: To find if the % differ-

ence between two numbers is less than a given number 'n' (perhaps in a loop),

use the "%CH" function. Follow with "ABS", then 'n', then a conditional test.

72

CHAPTER XIX

STATISTICS & PROBABILITY

19-1 SUMMATIONS WITH FREQUENCY ("XF"): This routine allows for summations (Z+ & Z-)

with frequency, so multiple sets of the same x,y pairs of values need only be

entered once. "IF" sets ZREG 04; it uses Flags 00, 21 & 27; minimum SIZE 010. In-

structions: 1. XEQ "XF". 2. For i =1, 2, ..., n, repeat the following: input xi,

ENTER, Yi’ ENTER, fi; press A. (f = frequency.) 3. Correct a mistake by reentering

X:» Yo fi’ then pressing C. 4. Press E for intermediate or final results. If a

printer is not on line, press R/S between outputs. 5. To add more data, go to step

2. 6. For a new case, go to step 1.

Example: x 1 2 4 6 Results: ZX= 33.00 ZY1t2=132.00

y 1 3 5 7 ZX12=91.00 ZXY=109.00

f 15 2 2 1 2Y=38.00 N=20.00
Note: After LBL E, other calculations and output instructions can be inserted. For

example, to find the means of x and y, insert these steps: 'MEAN, "XBAR", XEQ 02,

X<>Y, "YBAR", XEQ 02.

Source: adapted from 'Basic Statistics for Two Variables', HP-41C Stat Pac, pp 10-13.

A INPUT CORRECT RESULTS E

01 LBL "3F" 24 CHS 47 * 70 XEQ 02 REGISTERS:
02 ADV 25 ST+ 09 48 FS? 00 71 RCL 05
03 9 26 RDN 49 CHS 72 "X t2" RO0: Pointer

04 STO 00 27 STO 02 50 ST+ 06 73 XEQ 02
05 CLX 28 RDN 51 RCL 01 74 RCL 06 RO1: x,
06 LBL 01 29 STO 01 52 X12 75 mzy" *
07 STO IND 00 30 Rt 53 RCL 03 76 XEQ 02 RO2: vy,
08 DSE 00 31 Rt 54 * 77 RCL 07 t
09 GTO 01 32 ABS 55 FS? 00 78 "Iy t2m RO3: f,
10 CF 00 33 * 56 CHS 79 XEQ 02 *
11 SF 21 34 * 57 ST+ 05 80 RCL 08 RO4: Ix
12 SF 27 35 Fs? 00 58 RCL 01 81 "IXy"
13 ZIREG 04 36 CHS 59 RCL 03 82 XEQ 02 RO5: Ix?

14 "X, 1,Y,t,F: A" 37 ST+ 08 60 * 83 RCL 09
15 PROMPT 38 RCL 02 61 FS?C 00 84 "N® RO6: Iy
16 LBL 00 39 X12 62 CHS 85 LBL 02
17 "PRESS A OR C" 40 RCL 03 63 ST+ 04 86 "p=" RO7: Zy?
18 PROMPT 41 * 64 RCL 09 87 ARCL X
19 LBL C 42 FS? 00 65 STOP 88 AVIEW RO8: ZIxy
20 SF 00 43 CHS 66 GTO 00 89 END
21 LBL A 44 ST+ 07 67 LBL E RO9: n
22 STO 03 45 RCL 02 68 RCL 04
23 FS? 00 46 RCL 03 69 "IX"

(173 bytes)

CALCULATOR TIPS & ROUTINES 73 XIX. STATISTICS & PROBABILITY

19-2 RECIPROCAL OF SUMS OF RECIPROCALS ("ZIRECIP"): Data can be entered in any order

and the intermediate answer can be seen at any time. Example:

1

R = 1 U Vv
IS + Zf + ZE + XW

This routine must be rewritten for different equations; the listing below is for

this equation. No numeric data registers are used (stack solution).

Instructions: 1. XEQ "IRECIP" (ASN to E). Note the top row of keys are now defined

in the display. 2. To add an 'S', input S, press A; to add a '1/T', input T, press

B; to add a 'U/2', input U, press C; to add a 'V/W', input V, ENTER, W, press D.

3. Repeat step 2 until ready for an answer. 4. R/S for intermediate or final re-

sults. 5. R/S again (if no printing) to add more data to the intermediate sum; go

to step 2. 6. For a new case, go to step 1. 7. After keying a new value, if you

forget which key to press, briefly switch to Alpha Mode to see the prompt again,

then switch back and press appropriate key.

A S T U v, t,W "FRECIP" E

01 LBL "ZRECIP" 10 " R=" 19 wpn 28 GTO 02 37 LBL 02 46 ARCL X
02 LBL E 11 ARCL X 20 XEQ 00 29 LBL D 38 X<>Y 47 SF 25
03 ADV 12 AVIEW 21 1/X 30 X<>Y 39 X#£07? 48 PRA
04 SF 21 13 GTO 01 22 GTO 02 31 my 40 1/X 49 CF 25
05 SF 27 14 LBL A 23 LBL C 32 XEQ 00 41 + 50 END
06 0 15 ng" 24 Wg" 33 X<OY 42 1/X
07 LBL 01 16 XEQ 00 25 XEQ 00 34 "W 43 GTO 01
08 " S T UVIW' 17 GTO 02 26 2 35 XEQ 00 44 LBL 00
09 PROMPT 18 LBL B 27 / 36 / 45 =" (109 bytes)

19-3 LAST X MAY NOT BE SAVED WITH SUMMATIONS: Early HP-41C's (up to about serial

number 1938A2000) had a LASTX 'bug': LAST X wasn't saved using "I+" or "ZI-".

If your machine has this bug, follow the ZI+ or XZ- instruction with "STO L". The bug

is eliminated with routine ROM updating when serviced. Source: Bill Kolb (265).

19-4 SYNTHETIC SIGMA FINDER ("Z?"): XEQ "Z?" to find the number of the first regis-

ter of the statistics block. See routine 1-17. Source: Keith Jarett (4360) &

Roger Hill (4940) (PPC ROM).

01 LBL "Z?" 08 - 15 X<> M 22 SF 07 29 FS?C 14 36 E38

02 CLA 09 RTN 16 X<> 4 23 FS?C 11 30 SF 13 37 /

03 XEQ "C?" 10 LBL "C?" 17 CF 01 24 SF 09 31 FS?C 15 38 INT

04 RCL N 11 RCL c 18 CF 02 25 FS?C 12 32 SF 14 39 DEC

05 XEQ 14 12 LBL 14 19 CF 04 26 SF 10 33 FS?C 16 40 END

06 CLA 13 STO M 20 CF 07 27 FsS?C 13 34 SF 15

07 X<3>Y 14 "I OSA" 21 Fs?C 10 28 SF 11 35 X<>d (87 bytes)

19-5 SYNTHETIC RECALL SIGMA ("RZ"): This routine duplicates the HP-67/97 RCLI func-

tion by returning Ix to X and Zy to Y. Useful for resolution of forces.It

uses the Synthetic SigmaFinder Routine ("Z?") above (19-4). Source: John Dearing

(2791).

LBL "RZI", XEQ "Z?", 2, X<>Y, +, RCLIND X, RCLINDL, RTN (18 bytes)

19-6 SIGMA RECALL ("XIR"): This routine replaces the values in Y and X with ZY and

IX, respectively, from the summation registers; this simulates the RCLZ func-

tion of other calculators. The values in Z and T are left unchanged; 'n' is returned

to L (the LASTX Register). The values in the summation registers are left unchanged,

and this routine works for any location of the summation registers; 'n' must not be

CALCULATOR TIPS & ROUTINES 74 XIX. STATISTICS & PROBABILITY

zero. This routine doesn't need a sigma-find subroutine, so it executes in just over

a second. Source: Jurgen K. Cappel (6015) (PPC CJ, V8N2P16).

01 LBL "ZR" 03 STO Y 05 0 07 MEAN 09 ST* L 11 X<3> L

02 CLX 04 Z+ 06 I~ 08 X<> L 10 ST* Y 12 END (24 bytes)

19-7 MANUAL SUM OF X- AND Y-VALUES ("XYX"): To manually find the sum of x- and y-

values using the stack, this routine will help. To use: 1. XEQ "XYZI" to ini-

tialize (to clear the stack). 2. Key in y, ENTER, x; R/S. 3. Repeat step 2 as de-

sired. 4. See Ix in X; X<>Y to see Xy. 5. To add more data pairs, X<>Y to return

Zx to X and Zy to Y, then go to step 2. Source: John Dearing (2791).

LBL "Xy, CLST, LBL 14, ST+ Z, RDN, ST+ Z, RDN, STOP, GTO 14 (18 bytes)

19-8 BLOCK PLUS ("BP"): This routine will calculate the sum of the values in the

block of registers defined by a control number (bbb.eee) in R00. Set or clear

Flag 10 as desired, then XEQ "BP". IF FLAG 10 IS SET, the sum of the values in the

block of registers (Ix) is returned to the first register of the statistics block,

defined by the IREG function (default: R11). Also, the sum of the squares of the

values (Ix?®) is returned to the next higher register (default: R12), and the number

of registers in the block (n) is returned to the register that is 5 greater than the

first register of the statistics block (default: R16). X will be cleared. IF FLAG 10

IS CLEAR, the sum of the values in the block is returned to X, and also to R'eee+1'.

In both cases, the contents of Registers bbb - eee are unchanged. Source: PPC CJ, V7

N10P7; Richard Nelson (1).

01 LBL "BP" 04 RCL IND 00 07 FS? 10 10 + 13 FC? 10

02 0 05 Fs? 10 08 CLX 11 ISG 00 14 STO IND 00

03 LBL 06 06 + 09 FC? 10 12 GTO 06 15 END (30 bytes)

19-9 LITTLE BLOCK PLUS ("B+"): To return the sum of the values in a block of regis-

ters to X, key in the bbb.eee control number defining the block, then XEQ "B+".

No flags are used, no data registers are altered.

LBL "B+", 0, LBL 06, RCLINDY, +, ISG Y, GTO 06, RTN (16 bytes)

19-10 SYNTHETIC STATISTICS BLOCK ("ZB"): INPUT: bbb.eee control number in X, defin-

ing the block. OUTPUT: Ix in X, Zx* in Y, n in Z, & X in T. Uses Alpha Regis-
ter. Source: John Dearing (2791).

01 LBL "ZIB" 05 nn 09 ST+ O 13 RCL M 17 RCL O
02 cCLA 06 RCL IND X 10 RDN 14 RCL N 18 RCL M
03 LBL 08 07 ST+ M 11 ISG X 15 / 19 END
04 ISG N 08 X12 12 GTO 08 16 LASTX (36 bytes)

19-11 BLOCK STATISTICS ("BI"): With a bbb.eee control number defining a block of y-

values in Y, and the number of the first register of a block of x-values in X,

XEQ "BI" to return the usual Ix, Ix?®, Zy, Zy?, Zxy, and n to the statistics register

block defined by the ZIREG function. With carefully-selected control numbers, the x-

and y-values can be in adjacent registers; for example, input 2.00802, ENTER, 1.00002,

XEQ "BZI"; the routine will treat as y-values the contents of R02, R04, RO6 & R08; it

will treat as x-values the contents of R01, R03, RO5 & RO7. This routine may be con-

sidered to be a matrix routine since it can be used to compute vector dot products.

Given the appropriate input parameters, this routine can be used to compute matrix

products (to multiply a row in one matrix by a column in another matrix). Source:

John Kennedy (918) & Richard Schwartz (2289) (PPC ROM).

01 LBL "BZ" 04 RCLINDY 07 Rt 10 STO X 13 RTN

02 CLZ 05 RCLINDY 08 Rt 11 ISG Y

03 LBL 12 06 Z+ 09 IsSG X 12 GTO 12 (23 bytes)

CALCULATOR TIPS & ROUTINES /5 XIX. STATISTICS & PROBABILITY

19-12 PERMUTATIONS & COMBINATIONS ("PERM" & "COMB"): "PERM" will compute the number

of permutations of 'n' objects taken 'k' at a time: P(n,k) =n!/ [(n-k)!]. In-

put n, ENTER, k, XEQ "PERM". Example: P(73,4) = 26,122,320. "COMB" will compute the

number of combinations of 'n' objects taken 'k' at a time: C(n,k) =n!/ [k!(n=k)!].

Input n, ENTER, k, XEQ "COMB". Example: C(73,4) = 1,088,430. Source: Jim Davidson

(547) & Bill Derrick (1393) (PPC J, V5N7P3).

01 LBL "PERM" 06 LBL 14 11 DSE 00 16 XY 21 RCL 00 26 *

02 STO 00 07 RCL 01 12 GTO 14 17 STO 01 22 / 27 DSE 00

03 X<>Y 08 RCL 00 13 RTN 18 1 23 * 28 GTO 13

04 sTO 01 09 - 14 LBL "COMB" 19 LBL 13 24 1 29 END

05 DSE 00 10 * 15 STO 00 20 RCL 01 25 ST- 01 (51 bytes)

19-13 COMPACT PERMUTATIONS & COMBINATIONS ("PRM", "COM" & "P+C"): These routines are

compact, fast, and use no data registers, but they will not work if either 'n’

or 'k' is greater than 69. For each routine, input n, ENTER, k, then execute the

routine. "PRM" returns the permutation to X, "COM" returns the combination to X, and

"P+C" returns both--the permutation to X, the combination to Y. Examples: P(9,4) =

3024; C(9,4) = 126. Source: Chris Stevens (3005) (PPC CJ, V7N5P44).

01 LBL "PRM" 07 - 13 XY 01 LBL "P+C" 07 FACT 13 ST* Y

02 LBL 12 08 FACT 14 FACT 02 X<>Y 08 / 14 END

03 XY 09 / 15 / 03 FACT 09 RCL Y

04 FACT 10 RTN 16 END 04 RCL Y 10 FACT

05 LASTX 11 LBL "COM" 05 ST- L 11 1/X

06 RCL Z 12 XEQ 12 (33 bytes) 06 X<> L 12 XY (27 bytes)

19-14 STACK PERMUTATIONS & COMBINATIONS ("PM" & "CM"): P(n,k) is the number of per-

mutations of 'n' objects taken 'k' at a time and is the number of arrangements

or orderings of all subsets of size k selected from a set of n objects. C(n,k) is
the number of combinations of 'n' objects taken 'k' at a time and is simply the num-

ber of subsets (order doesn't matter) of size k selected from a set of n objects.
Input for both is n, ENTER, k. "PM" saves Z & T in Y & Z; "CM" saves Y in Y. No data

registers are used. Source: John Kennedy (918) & Keith Jarett (4360) (PPC ROM).

01 LBL "PM" 08 X=Y7? 15 X<> L 22 X>Y? 29 LASTX 36 END

02 CHsS 09 GTO 07 16 RTN 23 XY 30 ST- Y

03 X<y 10 ST* L 17 LBL "CM" 24 ST+ T 31 /

04 SIGN 11 DSE X 18 RCL Y 25 SIGN 32 ST* Y

05 X<> L 12 GTO 06 19 RCL Y 26 X>Y 33 DSE L

06 ST+ Y 13 LBL 07 20 X#£Y? 27 LBL 08 34 GTO 08

07 LBL 06 14 RDN 21 - 28 X<> T 35 RDN (63 bytes)
-—.—G--G—.GTT"IT.SGHD THS G SGSGWG——— ———————————————— —— ——————————————————————————————————

19-15 EASY POPULATION STANDARD DEVIATION (o): After accumulations, execute 'MEAN,

2+, SDEV'. 0 1is returned to X and oy is returned to Y. To restore the statis-
X

tics registers, use 'MEAN, ZI-'. Source: Joseph Horn (1537) (PPC CJ, V7N4P13).

76

CHAPTER XX

TIME & DATE

20-1 JULIAN DAY NUMBER ("JD"): This is a calendar routine which computes the Julian

Day Number of a given date. The valid range is from September 14, 1752. Only

the stack is used. Key in the date in X in mm.ddyyyy format before executing; the

Julian Day Number is returned to X. Source: Fred Wheeler (1150) (PPC CJ, V7N8P11).

01 LBL "JD" 09 GTO 07 17 30.6 25 ST+ Z 33 * 41 +

02 FRC 10 + 18 * 26 - 34 ST+ 2 42 +

03 3 11 1 E-6 19 INT 27 1 E2 35 X<> L 43 INT

04 LASTX 12 ST- T 20 1 E2 28 * 36 4 44 END

05 INT 13 RDN 21 Rt 29 INT 37 /

06 1 14 9 22 * 30 CHS 38 INT

07 + 15 + 23 ENTER 31 36525 39 1720997

08 X>Y? 16 LBL 07 24 INT 32 LASTX 40 + (76 bytes)

20-2 CALENDAR DATE / JULIAN DATE CONVERSIONS ("CJ" & "JC"): "CJ" (Calendar Date to

Julian Day Number): This routine computes the Julian Day Number of a given day

with a valid range from March 1, year 0. With Flag 10 clear, input Gregorian calen-

dar dates; with Flag 10 set, input Julian calendar dates. The input is of the form

with the year in Z, the month in Y and the day in X. "JC" (Julian Day number to Cal-

endar Date): This routine is the inverse of "CJ"--it computes a calendar date, given

the Julian Day Number of the date. Input: Julian Day Number in X; output: the year

in Z, the month in Y, and the day of the month in X. With Flag 10 clear, the output

date is for the Gregorian calendar; with Flag 10 set, the output date is for the

Julian calendar. These routines use no numeric data registers. Source: Kennedy

(918), Wheeler (1150) & Hill (4940) (PPC ROM).

01 LBL "CJ" 16 ST- Z 31 - 46 FS? 10 61 ST/ Y 76 ST- Y

02 INT 17 XY 32 INT 47 GTO 09 62 X<>Y 77 ISG Y

03 X<>Y 18 367 33 Rt 48 36524.25 63 INT 78 X<> L

04 INT 19 * 34 - 49 / 64 ST* Y 79 -3

05 2.85 20 INT 35 INT 50 INT 75 RDN 80 X1t2

06 - 21 ST+ 2 36 1721115 51 ST+ Y 66 INT 81 X<Y?

07 12 22 SIGN 37 + 52 4 67 - 82 ISG T

08 / 23 Fs? 10 38 RTN 53 / 68 .3 83 X<> L

09 Rt 24 1ISG X 39 LBL "Jc" 54 INT 69 - 84 -

10 INT 25 % 40 INT 55 LBL 09 70 STO Y 85 X<>Y

1M1 + 26 INT 41 1721119.2 56 - 71 30.6 86 INT

12 X<07? 27 .75 42 - 57 X<07 72 ST/ Y 87 END

13 SQRT 28 ST* Z 43 ENTER 58 SQRT 73 X<>Y

14 ENTER 29 * 44 Fs? 10 59 STO Y 74 INT

15 INT 30 RDN 45 -2 60 365.25 75 * (158 bytes)

20-3 STOPWATCH ("TM"): As prompted, key in the current time in HH.MMSS format and

press R/S. If too fast, slightly decrease the number in Line 06; if too slow,
increase the number. NOTE: The 41C/V times with an oscillator, not a crystal; this
routine can be fine-tuned for a given calculator under given conditions, but accu-

racy cannot be guaranteed. Stop the timer with R/S; the time will be in the X or the

CALCULATOR TIPS & ROUTINES /7

Y Register. Source: HP KEY NOTES, V4N3P11.

01

02 "TIME, HH.MMSS?"

20-4 PRINT CALENDAR ("PC"):

prompt is skipped and the entire year is printed. Valid for any year. Source:

LBL "TM" 03 PROMPT 05

04 FIX 4 06

To use:

CF 21

LBL 00

.000057 09 VIEW X

10 GTO 00

2.

XX. TIME & DATE

11 RTN

(42 bytes)

1. Set SIZE 004 or greater. XEQ "PC". 3.

as prompted, input starting year, starting month, and number of months to

print. For starting month, if 0 is entered, or if no entry is made, then the next

Hill (4940) (PPC CJ, VIN6P14).

01

02

LBL "PC"

"START YEAR?"

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

PROMPT

INT

X<=07?

LN

STO 01

.23

STO 00

CLX

"MONTH? (0=12)"

PROMPT

ABS

INT

ENTER

X=07?

SIGN

STO 02

12

STO 03

X<Y??

ASIN

/
ST+ 00

X>Y?

GTO 10

SIGN

"NO. MONTHS?"

PROMPT

INT

STO 03

LBL 10

PRBUF

FIX O

CF 29

.012

ST+ 02

31

RCL 00
*

INT

RCL 00

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

06

67

68

69

70

M

72

73

74

75

76

17

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

INT

.75

ST* 00

*

+

INT

RCL 00

INT

3

+

7 E-5

+

STO 00

LBL 20

SF 12

CLX
ADV
XEQ IND 02
GTO 13
LBL 01
IIJAN n

RTN

LBL 03
IIMARII

RTN

LBL 05
IIMAY n

RTN

LBL 07
n JUL "

RTN

LBL 08
IIAUG "

RTN

LBL 10
IIOCTII

RTN

LBL 12
IIDEC n

RTN

LBL 04
lIAPRll

SIGN

95

96

97

"JUN"

SIGN

RTN

LBL 09
"SEP"

SIGN

RTN

LBL 11
"NOV"

SIGN

RTN

LBL 02
llFEB n

SIGN

RCL 01

%

ENTER

INT

X#Y?

RCL 01

4

MOD

X#£07?

SIGN

2

+

RTN

LBL 13

ACA

RCL 01

ACX

2

SKPCHR

ADV

CF 12

24

Rt

RCL 00

7

MOD

+

STO 00

" SU MO TU WE"

" TH FR SA"

PRA

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

LASTX

*

SKPCHR
" "

ACA

9 E-3

SF 10

GTO IND L

LBL 14

GTO IND Z

LBL 00

ISG X

ACA

ACX

LBL 01

ISG X

ACA

ACX

LBL 02

ISG X

ACA

ACX

LBL 03

ISG X

ACA

ACX

LBL 04

ISG X

ACA

ACX

LBL 05

ISG X

ACA

ACX

06
ISG X

ACA

ACX

PRBUF

ACA

DSE Z

GTO 00

FS?C 10

GTO 14

ISG 02

GTO 10

12

Roger

189 ST- 02

190 ISG 01

191 LBL 10

192 DSE 03

193 GTO 20

194 END

(367 bytes)

JUH
SU MO TU

os
et
e

r
a

M
o
e

=
D

a
d
O

F
D

M
o
e

(
=
~

M
o

1
D
e

O
L
N
O

Co
ud
I
e

JuL
Su Mo TU

n

~
u
d
R

L
e
d
P
y

w
n

M
Y
e
s

o
D
e
2

L
N

O
O
-
P

:
‘
D

'
Y

e
t
e

m
-
:
-
.
l
:
:
r
s
-
.
.
a
r
u
c
:
n
t
—

Y
y
D
P

-
—
—
'
I
m

™
Y
Y
e

—
e
e
D

G
l

T
S

M

x
I
P
e

r
.
n
m
-
—
-
h
m
.
_
,
,

M
o
M
o

a
d
P
e

C
a
d

P
r
g
e
t

pe
e

JAHN
SU M0 TU

C
n
d
M
0
e

f
e
d
W
D

P
O

C
a
d
o
)

e
t
e

-
R

(
e
l

M
g

L
N

O
O
e
e

o r
—

0
-
0

-
:
.
n
c
o
-
-
a
.
n
.
:
c
r
.
l
_
-
,

x e
F
e
d
o
t

o
o
t

o
=
I
e

T
S

I
e
e

o
2

W
L

P
O

2
N
D

C
'
Q
J
O
\
'
-
O
I
"
-
J
M
H

P
e
e

)
-
[

Y
e
o
Y

h
:
l

[4

™
-~

O
PA
N
D
e

D
e
P

m
M
D
e

-~
0

o
l

P
N
e

"
‘
\
m
e
'
:
l
"
-
m
w

e

P
b
t
e

P
O
b
e

-
W
0
M
X
S

N
)
e

I
P
O
e

C
Q

re
n
0

=
)
T

I
y

P
l
v

78

CHAPTER XXI

CARD READER & WAND

21-1 CARD READER CURRENT DRAIN AND WEAR: Keep plugging and unplugging the 82104A

Card Reader to a minimum. Keep the card reader in the machine when not in use.

Cycle on/of after plugging in. When first plugged in, the card reader may draw ex-

cessive current. Turn on, then off, to reduce to normal. Leaving the card reader

plugged in as much as possible helps prevent electrostatic charge crashes, contact

wear on port block metalized plastic contact surfaces, and helps keep dust and for-

eign objects out of ports. Source: Philip Karras (3480) (PPC CJ, VIN2P56).

21-2 COMPLETING CARD READS: Preserve batteries by immediately completing pending

card reads instead of having a cup of coffee and leaving the HP-41 with "RDY

NN OF NN" in the display. Source: Richard Nelson (1) (PPC J, V6N7P4).

21-3 CARD STUCK BECAUSE OF VERY LOW BATTERIES: Normally, when the N cells are get-

ting weak and one tries to read/write a card, the 82104A Card Reader will warn

you and then pass the card on through without a read/write. But, if you forget that

your batteries are very weak (though still able to run the calculator) and you try

to use the card reader, the following may happen: warning is given, and the card

starts through, but slows down to a grinding halt. The card is held quite firmly,

and it might damage the mechanism to force it through or try to pull it back out.

The calculator stays on, displaying "LOW BAT", and cannot be turned off! Suggested

procedure to correct: 1: Unplug the card reader. 2: Turn the calculator OFF. 3: Plug

in a new set of cells. 4: Plug in the card reader--card will complete its pass. 5:

Turn calculator ON and continue with another try at read/write. Source: Fred Wheeler

(1150) (PPC CJ, VIN3P27).

21-4 BEHAVIOR OF "RSUB" & "MRG": The card reader functions "RSUB" and "MRG" work

differently than the manual states: RSUB will replace the last program only if

it does not have an END; otherwise it will be placed after the last END. MRG will

show "MRG ERR" if the calculator is not placed at the last program, but will still

read the card and place it after the last END. Source: Dennis Green (4213) (PPC CJ,

VIN3P27).

21-5 WHAT TO DO IF A CARD WON'T READ: Try breathing on its magnetic (dark) surface

first. Source: John Burkhart (4382). Try rubbing it on your shirt. Source:

Henry Casson (5047). Try cleaning it with a touch of rubbing alcohol and a soft

cloth. Also be aware that if magnetic cards touch or come near anything that is mag-

netized, they will be ruined. Source: Bill Kolb (265).

21-6 ENTERING DATA AS PART OF THE PROGRAM: In many program usage situations, it is

confusing to have both Program and Data cards. Decreased magnetic card usage

and simpler user instructions often result if the 'data' is entered as part of the

program. Flag 11 (auto execution) can be set when the program is recorded, and the

first part of the program can automatically execute to store the data into the reg-

isters. This method of combining data and program greatly simplifies program usage.

Source: HP KEY NOTES, V7N2P7.

CALCULATOR TIPS & ROUTINES 79 XXI. CARD READER & WAND

21-7 STATUS CARD AS FIRST CARD OF A PROGRAM SET: A Status card can be used to auto-

matically set the Size (gives "SZE ERR" message if there's not enough room),

status of Flags 00 - 43, ZREG location, and stack and Alpha Register contents, all on

Track 1. [Subsequent track(s) of status card(s) can contain key assignments.] An ap-
propriate alpha message (6 characters or fewer) can be placed in the X Register (as

"NEXT"), to be seen when the card is read; a longer (up to 24-character) message

could be put in the Alpha Register, and "ALPHA" put in the X Register as a prompt to

press the ALPHA key to see the message. Source: HP KEY NOTES, V4N2P7.

21-8 CLEAR ASSIGNMENTS CARD: To make: Master Clear; make, then delete one key as-

signment; then XEQ "WSTS", reading in one track of the card twice to record

only track 2 (rerecording track 1 so that only track 2 is retained). To use: Read

the track; backarrow (press correction key) to clear the "RDY 01 OF 02" prompt; then

turn the calculator OFF, then ON, to regain the cleared status registers. Source:

Roger Hill (4940) (PPC CJ, VIN8P22). See 1-26.

21-9 HANG-UP WITH "SIZE", "DEL" OR "GTO.': When a card reader is plugged in, if you

execute SIZE, DEL or GTO., key 2 digits and then try to backarrow twice to re-

move both digits, the 41C/V may hang up. Pressing any key except the backarrow key

will recover, with the loss of the function prompt. This is a bug of the card read-

er, not the calculator, as can be verified by removing the card reader and trying

again. Source: Bill Kolb (265).

21-10 'LAST PROGRAM' IN THE CARD READER CONTEXT: The last program, in the card read-

er context, consists of whatever follows the last END in memory. If the final

program terminates with an END, then it is not the last program in this sense. The

'last program' is then the section containing "00 REG nn, .END. REG nn". Hence, for

example, if the final keyed program contains an END, you can't merge a program on to

it. Note that the card reader does not record END statements; this is useful in

light of the above. Source: Bill Wickes (3735).

21-11 READING PART OF A "WALL" SET OF CARDS: Contrary to the manual, a "WALL" set of

cards does not have to be entered in its entirety. You may stop the read pro-

cess at any time by momentarily removing the batteries, replacing the batteries, and

then pressing the backarrow (correction) key. Use this technique to reclaim key as-

signments, and programs, provided there is ample program space available to overlay

the desired program. Source: Bill Kolb (265).

21-12 RESUMING PROGRAM EXECUTION AFTER A "WALL": "WALL" records program pointer po-

sition and RTN addresses, enabling interruption and resumption of running pro-

grams. Source: Bill Wickes (3735).

21-13 KEY ASSIGNMENTS CARD REMINDER: When recording a special set of key assignments

give the card a name that will help you remember what is on it. Key this name

(or the key assignment mneumonics) into the Alpha Register prior to recording the

status. If ALPHA Mode is on when the cards are read, the name will appear in the

display. If not, simply switch to ALPHA to read the names. A short name canbe ASTO'd

into X as a similar reminder. Source: Bill Kolb (265).

21-14 KEYING FUNCTIONS OF MISSING PERIPHERALS: If the printer, wand or card reader

isn't connected, the built-in functions can still be called by simply spelling

out the function name. For example, to obtain "PRX" in a program when a printer is

not plugged in, key in 'XEQ, ALPHA, P, R, X, ALPHA'. When executed in the program,

the calculator will search for a user program named "PRX"; if none is found, it will

execute PRX on the printer, if the printer is plugged in and is on. Source: Bill

Kolb (265).

CALCULATOR TIPS & ROUTINES 80 XXI. CARD READER & WAND

21-15 TO PUT "VER" OR "WPRV" INTO A PROGRAM: 1. With the card reader in place, ASN

VER or WPRV to a key. 2. To insert theminto a program, turn the HP-41 OFF,

remove the card reader, turnON, set PRGM Mode, press the assigned key. The line

will read "XROM 30,05" or "XROM 30,09", respectively. 3. Turn the HP-41 OFF, reat-

tach the card reader, turn ON, set PRGM Mode. The line will now read VER or WPRV and

will execute as such. Synthetic Method: The same result can be reached without re-

moving the card reader, by creating these functions synthetically: "VER" = decimal

167, 133 (hex A7 85); "WPRV" = decimal 167, 137 (hex A7 89).

Follow WDTAX in a program with VER to check whether the writing was successful. The

example below loads each register from RO0 to R16 with its own address, then exe-

cutes "WDTAX". As prompted, insert both tracks of a blank card to record this data;

when all data is written, the prompt will automatically change to "CARD" (for VER);

read the same tracks to verify that WDTAX executed properly. If it did (you see

"TYPE D, TR 01", etc), press R/S twice (or backarrow, R/S) to continue program exe-

cution. If it did not (the VER test fails, and you see "CARD ERR"), press backarrow

to clear the prompt, then 'SHIFT, BST' twice to the WDTAX instruction, and then R/S

to try again. Source: Cary Reinstein (2046) and John Herzfeld (5428).

01 LBL "X" 05 LBL 14 09 ISG Y 13 VER 17 CLD
02 .016 06 STOINDY 10 GTO 14 14 "MORE STEPS HERE" 18 END
03 ENTER 07 ISG X 11 LASTX 15 AVIEW

04 INT 08 LBL 00 12 WDTAX 16 PSE (48 bytes)

21-16 INTERFERENCE AND THE WAND: If you have problems using your wand and especially

if you notice that it seems to work better on some days than on others, you

may be experiencing some form of interference from the AC power line. If you hold

the wand below the on/off switch, your body may couple AC powerline 60 Hz 'hum' into

the wand. This is possible because of the very high gain circuits that must process

the very low level optical signal due to the reflected light from the paper. If

strong AC signals get coupled into the wand, it will cause a nonread condition and

you won't get any response from the machine. This may happen if the 41C/V is close

to a transformer, electrical wiring, fluorescent lights, etc. The printer acts as an

antenna when it is plugged in and may increase the interference because it and its

cable add to the problem. The following tips will help if you suspect the wand is

being affected by interference: a. Hold the wand above the bottom of the on/off

switch. Most users do this naturally. b. If electrical interference is suspected,

operate the wand without other system peripherals connected, especially those that

may plug into the AC line, or move the system to another location. NOTES: 1. If

there's a question of proper performance, test by using the Paper Keyboardginstruc-

tions: scan several times. Out of 25 scans, you should get at least 23 'good' re-

sponses. Poor quality barcode will increase the sensitivity to interference. 2. Move

to another location if interference is suspected. Working on a light table or dis-

play case may be an interference situation because of the fluorescent lights. Moving

the calculator just two inches may be a big help if you are very close to the source.

3. A quick test for 'good reads' is to scan the "+" instruction, with the Y, Z & T

Registers loaded with '1' and '0' in X. Scan 25 times. The display will show the

number of good reads. Interference can cause the good reads to drop from 24 or 25 to

12 = 16. Interference should seldom be a problem if you know how to recognize it and

isolate the system from it. Source: Richard Nelson (1) (PPC CJ members letter, June

1980).

21-17 WAND TIPS: Photocopies of photocopies of barcodes often won't read: try rotat-

ing the first copy 90 or 180° before copying. Always use a sheet protector.

non-glare preferred, so that photocopies won't smear, and to keep copies clean. Do

not tightly coil the wand cable for handling or storage, in order to prevent 'kinky'

cable from getting in the way. Barcodes printed on light-weight paper may 'bleed

through' and be seen by the wand, so place a black sheet behind the printed sheet.

If the wand is used interactively with the HP-41, it might be a good programming

CALCULATOR TIPS & ROUTINES 81 XXI. CARD READER & WAND

practice to turn the calculator OFF when the program is finished; this will save

power, and since the wand will turn the HP-41 ON again, there is little inconveni-

ence. Include data checking in your program if you use WNDSCN to read simple 'posi-

tioned' data. This is a good practice because the wand does no checking of the bars

it reads using WNDSCN. Even a simple out of range check is better than none. Use two

tone 9's to prompt to scan a new set of bars; use two tone 89's if in a hurry. Only

WNDTST uses 'HP-41' Code; the other five functions, WNDDTA, WNDDTX, WNDLNK, WNDSUB

and WNDSCN, are microcode functions and cannot be listed. Source: Richard Nelson (1)

(PPC CJ, VIN5P22).

82

CHAPTER XXTII

PRINTER

22-1 PRINT PROMPT & INPUT: VIEW and AVIEW cause the display to be printed if the

printer is plugged in and turned on (Flags 21 & 55 set). Tip--instead of using

PROMPT to stop for an input after an alpha message, use AVIEW, STOP: the message

will be printed. Follow with VIEW X to print the input right justified, or follow

with CLA, ARCL X, AVIEW to print the input left justified. Source: HP KEY NOTES, V3

N4P4. See 4-18, 6-14.

22-2 PAPER OUT ("PO"): When desired after printing, XEQ "PO" to advance paper to

the point where it can be torn off. Source: PPC ROM.

LBL "PO", ADV, ADV, ADV, ADV, ADV, RTN (12 bytes)

22-3 PRINTER TIPS:

Register 06: R06 is the register to use when entering a function using X more than

once, when using PRPLOT to print graphs.

NORMal Mode: Numbers and alpha strings are printed as keyed in, and function names

are printed as executed from keyboard; all print functions print. (Example of use:

checkbook balancing).

PROMPT: Prints the Alpha Register in NORM and TRACE Modes.

BATTERY PACK: CAUTION: the battery pack must be in the printer while the AC adapter/

recharger is connected. The printer may be damaged otherwise.

CLASSIFICATION OF PRINTER FUNCTIONS:

Stack & Alpha: Data: Program: Status: Plotting: Buffer: Graphics:

PRX & VIEW PRREG PRP PRFLAGS "PRPLOT" ACA ACCOL

PRA & AVIEW PRREGX LIST PRKEYS "PRPLOTP" ACX SKPCOL

PRSTK PRX CAT 1+ "PRAXIS" ACCHR SKPCHR

REGPLOT ASKCHR BLDSPEC

(+in Trace Mode) STKPLOT PRBUF ACSPEC

ADV

PROGRAMMING & THE PRINTER: In TRACE or NORM, each line of a program is printed as

you key it in. Executing a program while in TRACE Mode prints what's going on in the

program, but uses a lot of paper.

EXECUTING A PROGRAM WITH NO PRINT FUNCTIONS: Turn the printer off to have the pro-

gram execute slightly faster, as the HP-41 always interacts with the printer during

program execution if the printer is on, slowing program execution.

FLAG 55: Always set if the printer is plugged in, whether it's on or off.

FLAG 21: If clear, supresses printing, even if the printer is on.

PRINT WIDTH: Maximum print width = 24 characters = 168 columns. ACCOL allows you to

print special graphics up to 43 columns wide; SKPCOL skips X columns, up to 167.

PRINT & ADVANCE: Pressing PRINT while the 41C/V is in PRGM Mode inserts a PRX into

the program; or, if also in Alpha Mode, it inserts PRA instead. Pressing PAPER AD-
VANCE in PRGM Mode inserts an ADV into the program (unless the PAPER ADVANCE key is

CALCULATOR TIPS & ROUTINES 83 XXII. PRINTER

held down longer than a second, in which case ADV is not inserted into the program,

but rather the paper is immediately advanced).

PRINTING CATALOGS: Set the print mode switch to TRACE before executing CAT to print

the specified catalog. If CAT 1 is printed, the number of bytes each program occu-

pies in program memory will also be printed.

CLEARING BUFFER WITHOUT PRINTING: To clear the printer buffer without printing, turn

the printer off, then on again.

PROGRAMS CONTAINING ACCUMULATION FUNCTIONS should not be executed in TRACE or NORM,

as these modes use the buffer registers, and hence will cause the buffer to print

prematurely.

PRINTER PLOTTING: 1. The name of the program prompted for by "NAME?" must be 6 or

fewer characters. 2. When prompted by "X INC?", a positive response indicates the X-

increment, while a negative response indicates the number of X-increments. 3. When

prompted by "AXIS?", any Alpha input yields a graph with no axis printed. 4. 1If Reg-

ister 03 contains an output generated by BLDSPEC, that character will be the plot

character; otherwise, the small x is used.

PRINT NUMBERS WITHOUT THE TRIPLE ASTERISK: Use VIEW X rather than PRX.

MACHINE STATUS WITH "PRFLAGS": The first five printed lines give the SIZE, the first

register of the statistics block, the trigonometric mode, and the display mode. R/S

at this point to prevent printing of the flags.

Source: '82143A Printer Owner's Handbook', © Copyright (November 1979) Hewlett-Pack-
ard Company. Reproduced with permission.

22-4 PRINT LASTX REGISTER ("PRL"): This routine prints the contents of the L Regis-

ter. Use in conjunction with the printer function "PRSTK" for stack analysis.

LBL "PRL", "L= ", ARCL L, PRA, RTN (16 bytes)

22-5 YELLOW FILTER FOR PHOTOCOPYING: Photocopies of printer tape may be improved

with the use of a yellow filter. Try a yellow transparent report cover. Source:

Frits Kuyt (236) (PPC CJ, V7N3P5).

22-6 SAVE PAPER WHILE PRINTING BYTES: When finding the number of bytes in a program

using the printer and CAT 1, save paper by cataloging in MAN Mode (SST if nec-

cessary) to the step before the END of the program whose byte count is desired, then

stop, switch printer to TRACE Mode, and SST to print the bytes in that program.

22-7 PRINT BUFFER: The print buffer is a portion of memory in the printer which

holds accumulated characters and columns of dots until the command to print is

given. It has a certain number of 'positions' or 'registers', and when they are all

filled, the contents are automatically printed (or the first line is automatically

printed, if there is more than one line). Each character accumulated into the buffer

takes up one position, whether it was generated by ACX, ACA, or ACCHR, and each spe-

cial dot column takes up one position, whether it was generated by ACCOL or ACSPEC.

The SKPCHR command also occupies one position, regardless of the number of charac-

ters skipped. SKPCOL uses only one position if the number of columns skipped is a

multiple of 7 or is less than 7, and two positions otherwise. The maximum number of

characters or columns that can be accumulated under any circumstances is 43, but the

buffer often fills up before that number is reached. Why?

Each 'mode change' also takes up one print-buffer position, where a mode is identi-

fied by (a) whether the printing is single or double width (determined by Flag 12 at

the time the character or column or skip is accumulated), (b) whether a character or

a dot column is to be printed, and (c) whether all normally upper-case letters are

to be printed as upper or lower case (determined by Flag 13 at the time the charac-

CALCULATOR TIPS & ROUTINES 84 XXII. PRINTER

ter is accumulated). Thus there are 2 cubed or eight of these buffer 'modes' in all

(nothing to do with the MAN/TRACE/NORM modes).

When any operation involving an input to the print buffer is performed, the printer

looks to see if the new mode (as defined by the new operation along with the calcu-

lator's Flags 12 and 13) agree with the old mode (as defined by the last setting).

If the new mode agrees with the old mode, then the characters or columns get accumu-

lated with no additional buffer positions taken to indicate the mode. If the modes

do not agree, one buffer position is used for a command to shift to the new mode,

and then the characters or columns are accumulated. The operations ACA, ACX, ACCHR,

and SKPCHR define character mode, while ACCOL, ACSPEC, and SKPCOL define column

mode. Other printing operations such as PRX, PRA, program and flag listings, etc.,

define character mode in that they leave the printer in that mode afterward (they

also cause the buffer to be printed out first, if anything has been accumulated into

it since the last time it was printed out by other than an overflow). Setting and

clearing Flags 12 and 13 do not have any effect on the print buffer unless and until

one of the above operations is executed, at which time the modes are compared as

described above.

Note that it only takes one position to go from any mode to any other (e.g., from

single-width character upper-case to double-width character lower-case). On the

other hand, this position may be used even when the mode change turns out to be ir-

relevant, such as when executing ACA with nothing in the Alpha Register, or changing

to lower case mode when the characters accumulated are all non-alphabetic. Opera-

tions which only print out what is already in the buffer, namely PRBUF and ADV, do

not make use of Flags 12 or 13, either in the printing or in the setting of the

printer mode afterward.

As an example of use of the knowledge of print-buffer mode transitions, suppose you

want to insert a space between two special characters created using BLDSPEC. Using

7, SKPCOL takes up only one buffer position, since the printer was already in column

mode after the first character was ACSPEC'd. But using either 1, SKPCHR; 32, ACCHR;

or ACA with a space in Alpha, takes three positions because of the transitions be-

tween column and character mode that occur before and after the space.

As one more example of print-buffer usage, consider the printing of lower case. One

can save many bytes of program (not to mention execution time) by entering lower-

case characters directly in text lines and printing everything with Flag 13 clear,

rather than by using ordinary upper-case characters and accumulating them with Flag

13 set to make them lower case. Not only does the former method save program bytes,

but it saves print-buffer positions as well. Each time Flag 13 is changed and more

characters are accumulated, an extra buffer position is used to make the transition,

while no such transition is needed or made if the characters can be accumulated with-

out any flag changes. Using ACCHR with the ASCII (ACCHR) codes for lower case (97-

122) also saves on buffer space, but usually not on program bytes,

Source: Roger Hill (4940) (PPC CJ, V7N6P19-20).

22-8 HIGH-RESOLUTION HISTOGRAM ("HG"): Have YMIN in R06, YMAX-YMIN in R07, and plot

value in X, then XEQ "HG". The example below is for YMIN=0, YMAX-YMIN= 100,

and x-values of 50, 75, 90, 100, 25, 10, 5, and then 1. Source: Ronald Gordon (3449)

(PPC CJ, VINO9P17).

HINHIIG 01 LBL "HG" 09 + 17 GTO 06 25 31 33 *

IEENI 02 RCL 06 10 INT 18 LBL 05 26 LBL 01 34 .5

HIFTHIIIHIIIE 03 - 11 X=07? 19 - 27 ACCHR 35 +
351333333333333338333833 04 RCL 07 12 RTN 20 7 28 DSE Y 36 7

HiId 05 / 13 7 21 / 29 GTO 01 37 MOD

B 06 167 14 X<=Y7? 22 INT 30 LLBL 02 38 INT

B 07 =* 15 GTO 05 23 X<=07? 31 LASTX

! 08 1 16 CLX 24 GTO 02 32 7 [continued]

CALCULATOR TIPS & ROUTINES

39 7

40 +

41 LBL 06

42 127

43 LBL 03

44 ACCOL

85 XXII. PRINTER

45 DSE Y

46 GTO 03

47 PRBUF

48 END (71 bytes)

22-9 SYNTHETIC FUNCTION "eG@BEEP" FOR PRINTER FUNCTIONS: "eG@BEEP" is a special

synthetic function that can be used to enter printer functions into programs

in fewer keystrokes, whether the printer is plugged in or not. It can also be used

to execute printer functions in normal or USER Modes.

eG@PBEEP # XROM FUNCTION

65 29,01 ACA

66 29,02 ACCHR

67 29,03 ACCOL

68 29,04 ACSPEC

69 29,05 ACX

70 29,06 BLDSPEC

M 29,07 LIST

72 29,08 PRA

73 29,09 "PRAXIS"

74 29,10 PRBUF

75 29,11 PRFLAGS

76 29,12 PRKEYS

77 29,13 PRP

78 29,14 "PRPLOT"

79 29,15 "PRPLOTP"

80 29,16 PRREG

81 29,17 PRREGX

82 29,18 PRI

83 29,19 PRSTK

84 29,20 PRX

85 29,21 REGPLOT

86 29,22 SKPCHR

87 29,23 SKPCOL

88 29,24 STKPLOT

Assign "eG@BEEP" to a key using a Key Assignments

Program (such as "KA" in 'Synthetic Programming on

the HP-41C', pp 44-47, 86-87, by William Wickes).

The input to the program is 0, ENTER, 167, ENTER,

'nn' (where nn is the keycode of the desired key).

When programming with or without a printer plugged

in, when you want a printer function placed into

the program, just execute "eG@BEEP" by pressing its

assigned key in USER Mode, then supply it with a 2-

digit number from 65 to 88, corresponding to the

printer functions shown at left. CAUTION!! '89'

crashes the HP-41 in Run Mode, and briefly blanks

the display in PRGM Mode! In PRGM Mode the code

goes in the line as the normal mnemonic if the

printer is plugged in, but as its XROM equivalent

if it is not. When a printer is subsequently plug-

ged in, the function appears and executes properly.

When eG@BEEP is executed when not in PRGM Mode, and

then one of the valid eG@BEEP numbers (65 -88) is

supplied, the corresponding printer function is ex-

ecuted. There are TWO EXCEPTIONS: 77 (for PRP) does

not work; and 71 (LIST) works differently than nor-

mal: rather than prompt for the number of lines to

list, it simply begins printing program steps at

the current location of the pointer in memory; fur-

thermore, it will stop printing after 71 lines (or after printing an END). If reexe-

cuted, eG@BEEP will cause the printer to advance one line, then print another 71

lines of program.

Source: Robert Edelen (339) (PPC CJ, V7N3P16).

22-10 STANDARD CHARACTER SET ("CE"): This routine will print the 82143A Printer

standard character set in a compact matrix, with characters indexed by their

"ACCHR" number. To use, just XEQ "CE". Source: Ronald Gordon (3449) (PPC CJ, V7N1

P23) & HP KEY NOTES, VAN2P11. *HP—41C.Y#

01 LBL "CE" 15 "0 1 234" 29/ 43 ISG Y STANDARD CHARRCTER SET
02 ADV 16 "F5 6 7 8 9" 30 INT 44 GTO 01
03 FIX 0 17 ACA 31 ARCL X 45 GTO 00 81224567873
04 CF 29 18 3 32 ACA 46 LBL 02 8 exxXeaBllac
05 SF 25 19 SKPCOL 33 RDN 47 PRBUF 1 ¢xuvgr¥BR5A
06 SF 12 20 .127 34 X<>Y 48 FIX 2 2 aRAOOC0OUER=
07 CF 13 21 LBL 00 35 SF 12 49 SF 29 I £E I-#$FKL
08 " *HP-41C/V*" 22 CLA 36 v m 50 CF 12 4 (%4, —.-01
09 PRA 23 ADV 37 ACA 51 CLX 3 23456789 :;
10 CF 12 24 CF 12 38 LBL 01 52 END 6 <=>7@ABCLDE
11 " STANDARD CH" 25 .009 39 ACCHR 7 FGHIJEKLMHND
12 "pARACTER SET" 26 X<>Y 40 FC? 25 § PRRSTUVHXY
13 PRA 27 STO Z 41 GTO 02 § 2L~1T_Tabc
14 ADV 28 10 42 ISG X (149 bytes) 18 defahidklm

[e
t
n

noparst uvw

»yzZzuw |l >ZFPr
ot

n

a

CALCULATOR TIPS & ROUTINES 86 XXII. PRINTER

22-11 DATA NAMES ("DN"): When documenting programs, a listing of the names of data

(like 'pointer') in data registers, rather than specific numbers, which may

vary, is often useful. Using the printer to generate this list would be handy, espe-

cially as it will print many characters not found on a standard typewriter. The rou-

tine below makes this convenient. It turns Alpha Mode on and prompts for data name

with the register number: input alpha characters only, then R/S. Source: John Dear-

ing (PPC CJ, V8N2P17).

EXRNPLESUSE:01 LBL "DN" 11 "LAST REG. NO.?" 21 "pO" 31 X<=Y?
02 FIX 0 12 PROMPT 22 RDN 32 GTO 01
03 CF 29 13 X<Y? 23 ARCL X 33 FIX 2 R@@= POINTEK
04 ADV 14 GTO 00 24 "p= o 34 SF 29 R89= % DISCOUNT
05 LBL 00 15 X<>Y 25 ACA 35 AOFF RIB= 1.20945
06 "1 ST REG. NO.?" 16 AON 26 PROMPT 36 END RUL= <USED>
07 PROMPT 17 LBL 01 27 ACA
08 ENTER 18 "R" 28 PRBUF R99= 3
09 X<07 19 10 29 1 R168= b
10 GTO 00 20 X>Y? 30 + (89 bytes) R161= ¢

22-12 TEXT ("TX"): To print text, XEQ "TX". When "TEXT?" appears, key in up to 24

characters. After the 24th character, hear a tone: press backarrow key to

clear the last character(s) if in the middle of a syllable, and key in a hyphen, if

desired. Then press R/S. To terminate the text write operation, key in a space (" ")

and R/S. You can change step 12 (GTO 00) to GTO "TX", and delete step 05 (LBL 00).

NOTE: This same text writing can be done without a routine: just turn on Alpha Mode

and key in the line of text as above; when the line is ready to be printed, press

the PRINT key on the printer (= PRA) to print the line; key in the next line and re-

peat. Source: HP KEY NOTES, V4N3P10.

01 LBL "TX" 04 AON 07 PROMPT 10 PRBUF 13 AOFF

02 = » 05 LBL 00 08 ACA 11 X#Y? 14 CLX

03 ASTO X 06 "TEXT?" 09 ASTO Y 12 GTO 00 15 END (33 bytes)

22-13 DIVIDING LINE ("LINE"): This routine uses the hyphen (minus sign) to form a

line; with Flag 12 set or clear, it will print a horizontal line. Other sym-

bols can be substituted.

LBL "LINE", "e——e——em—e——ee ", FC? 12, "p———m—mm————e ", PRA, RTN (40 bytes)

22-14 PRINTOUT DIVIDERS ("DIV" & "DV"): These routines use no numeric data regis-

ters. Execute either; when "ACCHR NO.?" appears, input the ACCHR character

number (1-127) (see Printer Handbook, page 37), then R/S. A full line of characters

will be printed, whether Flag 12 is set or clear. If R/S is pressed without keying

in a number, a full line of dashes (character # 45) will be printed by default.

"DIV" uses 1 numeric label and 40 bytes; "DV" uses the Alpha Register but no numeric

labels: it is 12 more bytes than "DIV" but much faster. To convert either routine to

a subroutinable version with no prompts and no default value, delete "ACCHR NO.?",

45, PROMPT. Have any ACCHR character number in X, then execute the routine. Source:

John Dearing (2791) (PPC CJ, VB8N2P16). -—

01 LBL "DIV" 10 ACCHR 04 ENTER 13 ASTO X CH34000000000080000040000

03 45 12 GTO 14 06 BLDSPEC 15 FC? 12 ===ss =
04 PROMPT 13 PRBUF 07 CLA 16 ARCL X ARRXXRRAZEXRREXERRRRARRY
05 12 14 END 08 ARCL X 17 FC? 12 XXXAAXAEAXAXAXXX

06 FC? 12 09 ARCL X 18 ARCL X IZXXIXIIYXXIXIXIIXYXIXIXXYIXIIZ

07 ST+ X 01 _LBL "DV" 10 ARCL X 19 PRA rEEmEEAEEEEE
08 X<>Y 02 "ACCHR NO.?" 11 ASTO X 20 CLX ;;§;§;;i;ii;
09 LBL 14 03 45 12 ARCL X 21 END PR eRER

CALCULATOR TIPS & ROUTINES 87 XXII. PRINTER

22-15 PRINTER COLUMN ALIGNMENT ("AN" & "P2"): This routine prints one or two columns

of numbers with aligned decimal points, by determining the number of print

positions to skip before printing each number. After keying in the routine, you may

wish to assign "AN" to 11(Z+) and "P2" to 15 (LN). Instructions:

1. Press A to accumulate the number in X into the print buffer, with Flag 29 clear

(no digit grouping) and FIX 2 display; use with numbers of up to 7 digits to the

left of the decimal. If the buffer is initially empty, the number_kplus spaces for

missing leading digits) will be left-justified when the buffer is printed; a single

space is also put into the buffer after the number.

2. Optional: to add an Alpha string of up to 12 characters into the buffer, so the

number (accumulated in step 1) and the Alpha string will print on the same line,

switch to ALPHA Mode, key in string, turn ALPHA off, then press B.

3. Press C to print the buffer. See examples 1 & 2.

4. Repeat steps 1 -3 as often as desired; successive numbers printed will be aligned

on their decimal points.

5. Press D at any time to clear the Alpha Register.

6. To print two numbers on the same line, key in the first number, ENTER, second

number; press E to execute "P2". See example 3.

7. To clear the buffer without printing, turn the printer off, then on again.

8. Change steps 04 (FIX 2) and 14 (6) as desired. Example 4 was created with a '3’
in step 14. In general, the number in step 14 should be one less than the number of

digits needed to the left of the decimal.

Ex. 1: 123.45 Ex. 3: =9999.99 ABCDEFGHIJKLMNO
-1234567.12 5.00 SERVICE CHARGES

Ex. 2: 198.00 KILOMETERS 400.00 RENT

A B C D E

ACCUMULATE ACCUMULATE PRINT CLEAR PRINT TWO
NUMBER ALPHA BUFFER ALPHA NUMBERS

01 LBL "AN" 08 INT 15 - 22 CLX 29 RTN 36 X<>Y
02 LBL A 09 x=07? 16 SKPCHR 23 RTN 30 LBL D 37 XEQ A
03 SF 27 10 ISG X 17 X<>Y 24 LBL B 31 CLA 38 RDN
04 FIX 2 11 ABS 18 ACX 25 ACA 32 RTN 39 RDN
05 CF 29 12 LOG 19 n v 26 RTN 33 LBL "P2" 40 XEQ A
06 CLA 13 INT 20 ACA 27 LBL C 34 LBL E 41 PRBUF
07 ENTER 14 6 21 SF 29 28 PRBUF 35 CF 12 42 END (76 bytes)

Source: Richard Nelson (1) (PPC J, V6N5P31).

22-16 PRINT ALPHA LEFT, X RIGHT ("AX"): To print the contents of the Alpha register

left-justified and the contents of the X Register right-justified on the same

line, key in control number, S, then XEQ "AX", where the control number = S = the

number of characters in Alpha + DSP (the number of decimal places displayed in FIX

Mode). For instance, with "NO. 01" in Alpha, 256.98 in X, and FIX 2 Mode, key in '8'

and XEQ "AX" to get the first line of the example, below left. ("NO. 01" is 6 char-

acters; DSP = 2; hence S = 6+ 2 = 8.) TIP: to change "NO. 01" to "NO. 02" in the Al-

pha Register, rather than keying in "NO. 02", you can just press SHIFT, APPEND,

BACKARROW, SHIFT, 2.

NO. 01 256.98 (S=8) APPLES 99 (s=5)

NO. 02 58,966.01 (") ORANGES 234 (S=6)

NO. 03 -5,987,63 (") PINEAPPLES 5 (X=9)

From S, you may subtract 1 if the decimal is not to be printed (FIX 0, CF 29). If

CALCULATOR TIPS & ROUTINES 88 XXII. PRINTER

you want the right (numeric) column moved to the left, add the number of spaces you

want on the right to S. In the example below (in FIX 2, SF 29 Mode), line 1 has a

control number of S+10 = 5410 = 15 [where S = 5 = no. of Alpha char. (5) + DSP (0)];

line 2 has a control no. of 5+5 = 10; and line 3, a control no. of 5+0 = 5.

LARGE 13. (S = 15)

SMALL 27. (s = 10)
TOTAL 42 . (S = 5)

If you want to

ferent length,

as long as the

use the same control number where the Alpha strings will be of dif-

key in spaces after all Alpha strings but the longest, to make them

longest. For "APPLES", "ORANGES", & "PINEAPPLES", for example, key in

4 spaces after "APPLES" and 3 spaces after "ORANGES" to make them the same length as

"PINEAPPLES". NOTE: the LOG function rounds up the logarithms of some large num-

bers; for these unusual cases, the number will unavoidably be printed displaced one

space to the left. Source: William Cheeseman (4381) (PPC CJ, V7N5P8, V7NOP17).

01 LBL "AX" 05 RCL Y 09 INT 13 / 17 ACA 21 PRBUF
02 21 06 ABS 10 FC? 29 14 INT 18 SKPCHR 22 END
03 X<y 07 X#07? 11 GTO 00 15 LBL 00 19 RDN

04 - 08 LOG 12 .75 16 - 20 ACX (39 bytes)

22-17 PRINT FUNCTION VALUES ("FN"): This routine prints a table of x- and y-values

for any function which returns f(x) for x. The function may then be graphed

with PRPLOT without change. To use: 1. Key in your function as a program, with an

Alpha label of 6 or fewer characters. Upon entry of your function by either this

routine or by PRPLOT, the value in the X Register will also be available in R06..g.

XEQ "FN"; input as prompted: NAME (of your function), Xmin, Xmax, and Xinc (x incre-

ment--positive values only). 3. A table of x- and y-values will be printed, with

aligned decimal points. 4. If you wish, XEQ "PRPLOT"; use the table just generated

to help you select maximum and minimum values of x and y for your plot.

This routine allows printing numbers in two equal columns, with up to nine digits in

each number. As it is written, two of these digits will be after the decimal (FIX 2)

and up to 7 before it. See first example, below right ("TEST"). If a number is nega-

tive, the '-' sign will be printed; if positive, no sign will be printed; the num-

bers will still line up on the decimals. You can change this format: in general,

Step 57 (presently a '6') should be one less than the number of digits to the left

of the decimal. Change Step 02 (FIX 2) as needed. The second example below right

("TRIAL") was printed after changing Step 57 to '4' and Step 02 to 'FIX 4'. Source:

John Dearing (2791).

Sample Run:

YALUES OF SAMPLE

Sample Function: More Examples:

@1eLBL ~SAMPLE"

B2 SF 25 VALUES OF TEST
R Y 83 X12 » Y

———————————— 84 LASTX TT
-2.98 25@ 85 %17 1234567.12 -1234567.12

-1.88 1.58 86 2
.68 8.8 67 /
.00 -9.58 a3 - VALUES OF TRIAL
2.08 1.5 @9 RCL 86 > Y

3.88 4,17 R

4.00 7.75 i - 12345. 1234 -12345.1234
12 END

01 LBL "FN" 06 AOFF 11 STO 06 16 GTO 14 21 v VALUES OF "
02 FIX 2 07 ASTO 11 12 "X MAX 2" 17 "X INC 2" 22 ARCL 11
03 AON 08 LBL 14 13 PROMPT 18 PROMPT 23 CF 12
04 "NAME 2" 09 "X MIN ?" 14 STO 09 19 STO 10 24 PRA
05 PROMPT 10 PROMPT 15 X<Y? 20 ADV [continued]

CALCULATOR TIPS & ROUTINES 89 XXII. PRINTER

25 X y" 34 sSTO 00 43 RCL 06 52 X=07? 61 ACX

26 SF 12 35 RCL 06 44 X<=Y? 53 ISG X 62 " "

27 PRA 36 XEQ 12 45 GTO 13 54 ABS 63 ACA

28"" 37 RCL 00 46 RTN 55 LOG 64 SF 29

29 PRA 38 XEQ 12 47 LBL 12 56 INT 65 END

30 CF 12 39 PRBUF 48 CF 29 57 6

31 LBL 13 40 RCL 10 49 CLA 58 -

32 RCL 06 41 ST+ 06 50 ENTER 59 SKPCHR

33 XEQ IND 11 42 RCL 09 51 INT 60 X<>Y (161 bytes)

22-18 SYNTHETIC BLDSPEC: Write out a 56-bit bi- COLUMN NUMBERS

nary number; the first 7 bits are always 1 2 3 4 5 6 7

0001900; the remalljn.ng 49 bits are from the 7 x 1 O O O O . O O

7 grid of the special character, using 1's for

dark dots and 0's for blanks. Start with the 2 O O O O . . O

lower left corner of the grid and work up the v 3 O O O O . . ‘

column; then bottom-to-top of each succeeding A

column. [If the character is in a 7x 5 matrix b 4 . O O ‘ OO O

(first and last columns of a 7x 7 matrix blank E s @OO@O0O00O0
for spacing), include the bytes for these two] . ’ O O O O O

columns (all 0's in this case) anyway.]

Group the 56 bits into 4-bit groups, then make ¢

a 7-character text line from the hexadecimal - 120 96 80 72 7 6 4

equivalents. For the example at right, we have: COLUMN PRINT NUMBERS

0001 0001 1110 0011 0000 0101 0000 1001 0000 0001 1100 0011 0000 0100

1 1 E 3 0 5 0 9 0 1 C 3 0 4

So the text line, preceeded by a Text 7 byte, is hex F7 11 E3 05 09 01 C3 04. The

decimal equivalent is: 247, 17, 227, 5, 9, 1, 195, 4.

Key the text line into a program, then follow it with 'RCL M, ACSPEC'. Check to be

sure Flag 21 is set before executing the program.

Comparison of byte counts: normal method below is 30 bytes, synthetic method is 12:

Normal: 0, ENTER, 120, BLDSPEC, 96, BLDSPEC, 80, BLDSPEC, 72, BLDSPEC, 7,

BLDSPEC, 6, BLDSPEC, 4, BLDSPEC, ACSPEC.

Synthetic: "BRABAMA ", RCL M, ACSPEC.

Both methods above build the special character and accumulate it into the buffer; to

print it, execute PRBUF or ADV. When the synthetic text string above is printed with

PRP or LIST, it appears as "QBoxa"; only five characters show because the printer

listing of a text line will only show characters from the top half of the Byte Ta-

ble; characters corresponding to bytes in the lower half of the table are invisible.

Furthermore, the print buffer uses bytes from Rows A, B, D & E for internal purposes

related to special character printouts, single and double width instructions, etc.

Hence, text lines containing characters from those few rows may print out in very

strange ways. For example, if a text line contains the character corresponding to

byte 'D5', a program listing containing that line will have all printout following

that character printed double-wide and lower-case. Source: William Wickes (3735)

('Synthetic Programming on the HP-41C', p 68-70). See 25-5.

22-19 SYNTHETIC PPC LOGO ("LG"): This routine puts the PPC logo into the printer

buffer; print it with PRBUF or ADV. NOTE: Lines 02 & 03 are nonstandard. Line

02 is decimal 254, 17, 194, 228, 124, 60, 122, 241, 17, 102, 62, 30, 61, 120, 2409.

Line 03 is decimal 248, 127, 17, 158, 29, 155, 191, 78, 135. Be sure Flag 21 is set

before attempting to print. Source: Richard Nelson (1) (PPC ROM).

T
01 LBL "LG" *02 "Q|<zQf >E=x" *03 "|Q# N© 04 X<> O [continued]

CALCULATOR TIPS & ROUTINES 90 XXII. PRINTER

05 ACSPEC 07 ACSPEC 09 ACSPEC 11 RTN

06 X<> N 08 X<> M 10 X<> O (45 bytes)

22-20 TWO-VARIABLE PLOTTING ("2V"): In the plotting func- 2 vAR PLOT

tions of the printer ROM, only one variable may be g}WOHB.é}Glfi.B

plotted. However, an axis character is printed as well, in %~INCRENENT = R.5
a column specified by the user. This routine computes and Y (UNITS= 1.3 +

plots this column designation as a point of a separate _o5. 108

function, since each REGPLOT or STKPLOT execution may move . '

the axis character to any of the 168 columns. No axis is mmmmfrmmmmmme4

printed. The routine prompts for "F-1" and "F-2" (the names .

of the first and second functions), "YMIN" and "YMAX" (mini- '
mum and maximum values of Y for both functions), "XMIN" and .

"XMAX", and also "XINC" (x increment). NOTE: if the value of x:

the second function drops below YMIN, its graph will be dis- x:

torted—it will be plotted at YMAX until the value rises ,}

above YMIN. Upon entering either function, the value of X is r !

also available in Register 06. Zero will be marked on the y- <!

axis only if it is between YMIN and YMAX, inclusive; other- *

wise, it marks YMIN. .

INSTRUCTIONS: Key in the two functions to be plotted as pro- },

grams, each beginning with a global label of 6 or fewer toy

characters. XEQ "2V"; input as prompted and press R/S. A P

heading, the y-axis, and the double plot will be printed. ! c

Minimum SIZE: 012. EXAMPLE: Key the following functions into ; :

program memory: LBL "AA", X112, RTN; LBL "BB", SQRT, 10, *, ! x

RTN. Next, XEQ "2V" and input as prompted: F-1 = "AA"; F-2 = !

"BB"; YMIN = '-25'; YMAX = '100'; XMIN = '0'; XMAX = '10'; ! x

XINC = '.5'; R/S. The plot shown results. t 1

Source: Jake Schwartz (1820) (PPC CJ, VIN1P24).

01 LBL "2V" 19 STO 11 37 STO 04 55 RCL 11 73 1 E3

02 AON 20 "XMAX?" 38 168 56 STO 06 74 /

03 "F-172" 21 PROMPT 39 STO 02 57 LBL 01 75 168

04 PROMPT 22 STO 10 40 ADV 58 XEQ IND 08 76 +

05 ASTO 07 23 "XINC?" 41 SF 12 59 RCL 00 77 STO 02

06 "F-272" 24 PROMPT 42 "2 VAR. PLOT" 60 - 78 RCL 06

07 PROMPT 25 SsTO 09 43 PRA 61 RCL 01 79 XEQ IND 07

08 AOFF 26 RCL 00 44 CF 12 62 RCL 00 80 REGPLOT

09 ASTO 08 27 X>07? 45 FIX 1 63 - 81 RCL 09

10 "YMIN?" 28 GTO 00 46 "X FROM " 64 / 82 ST+ 06

11 PROMPT 29 RCL 01 47 ARCL 05 65 168 83 RCL 10

12 STO 00 30 X<0? 48 "L TO " 66 * 84 RCL 06

13 "YMAX?" 31 GTO 00 49 ARCL 10 67 R1? 85 X<=Y?

14 PROMPT 32 0 50 PRA 68 CLX 86 GTO 01

15 STO 01 33 GTO 02 51 "X-INCREMENT = " 69 X=Y? 87 END

16 "XMIN?" 34 LBL 00 52 ARCL 09 70 1

17 PROMPT 35 RCL 00 53 PRA 71 +

18 STO 05 36 LBL 02 54 XROM "PRAXIS" 72 INT (192 bytes)

22-21 SIDEWAYS PRINTER CHARACTERS ("PRSW"): Use these

build a character set which will print longwise

BLDSPEC instruction codes to

on the paper. Store these in

the data registers, and recall them and ACSPEC them into the print buffer as needed.

Before accumulating them, CF 12 for single-height characters or SF 12 for double-

height characters. Due to the 44-position buffer restriction, only 5 ‘'rows' can be

positioned on the printer paper at once. It is suggested that each row be separated

CALCULATOR TIPS & ROUTINES 91 XXII. PRINTER

by 1 -7 columns, using SKPCOL. Example: m K
oy

RCL 01, ACSPEC, 3, SKPCOL (8 buffer positions) L I L4 W
RCL 02, ACSPEC, 3, SKPCOL (") o g b
RCL 03, ACSPEC, 3, SKPCOL (") :‘__: t; g l‘:

RCL 04, ACSPEC, 3, SKPCOL (") - _i

RCL 05, ACSPEC, PRBUF (7 buffer positions) fl g: E'_j !Is

Output of this example: »n w o v m 2 g :fl f‘g

= H - L

Here is the routine used to print the full set of 64 char- oG A1 A

acters, both regular height and double height, as shown - T .

at the right: }j } .

01 LBL "PRSW" 08 RCL Z 15 - 22 ACSPEC = I e

02 ADV 09 32 16 ISG X 23 1 = Z - -
03 .031 10 + 17 GTO 00 24 SKPCHR o ¢ P
04 LBL 00 11 XEQ 01 18 RTN 25 RDN m T =
05 XEQ 01 12 PRBUF 19 LBL 01 26 CF 12 L g
06 6 13 X<>y 20 RCL IND X 27 ACSPEC A X mn n

07 SKPCHR 14 32 21 SF 12 28 END wi i L ou
— 4 + ¢+

Source: Richard Nelson (1) (PPC CJ, V7N1P23). EE ; ;L é

Registers, characters, and BLDSPEC codes for building the £ L NN

characters: =X i

- =< < H I
RO0 space O 0 0 0 0 0 0 MON AA

RO1 A 65 65 127 65 65 34 28 b v oV

RO2 B 63 65 65 63 65 65 63 N = 3

RO3 C 62 65 1 1 1 65 62 # $ &« &

R04 D 31 34 66 66 66 34 31 = 8 4 ¥

RO5 E 127 1 1 31 1 1 127 — T %

RO6 F 1 1 1 31 1 1127

RO7 G 94 97 113 1 1 65 62

RO8 H 65 65 65 127 65 65 65 R30 0 29 34 69 73 81 34 92

RO9 I 62 8 8 8 8 8 62 R31 1 62 8 8 8 8 12 8

R10 J 14 17 17 16 16 16 124 R32 2 127 1 2 60 64 65 62

R11 K 65 33 17 15 17 33 65 R33 3 62 65 64 56 16 32 127

R12 L 127 1 1 1 1 1 1 R34 4 16 16 127 18 20 24 16

R13 M 65 65 65 73 85 99 65 R35 5 62 65 64 64 63 1127

R14 N 65 97 81 73 69 67 65 R36 6 60 66 65 63 1 2 124

R15 0 28 34 65 65 65 34 28 R37 7 4 4 4 8 16 33 127

R16 P 1 1 1 63 65 65 63 R38 8 62 65 65 62 65 65 62

R17 Q 92 34 81 65 65 34 28 R39 9 12 16 32 126 65 65 62

R18 R 65 33 17 63 65 65 63
R19 S 63 64 64 62 1 1 126 R40 . 28 28 28 0 0 0 0

R20 T 8 8 8 8 8 8 127 R41 ’ 4 8 28 28 0 0 0

R21 U 62 65 65 65 65 65 65 R42 ? 8 0 8 48 64 65 62

R22 v 8 20 20 34 34 65 65 R43 ! 12 0o 12 12 12 12 12

R23 W 3 8 73 73 65 65 65 R44 : 12 12 0 0 0 12 12

R24 X 65 34 20 8 20 34 65 R45 ; 4 8 12 0 0 12 12

R25 Y 8 8 8 8 20 34 65 R46 ' 0 0 0 0 12 12 12

R26 zZ 127 2 4 8 16 32 127 R47 _ 127 0 0 0 0 0 0

R48 " 0 0 0 0 54 54 54
R27 S 63 84 84 62 21 21 126 RAO & 110 17 41 70 6 9 6

R28 % 97 98 4 8 16 35 67

R29 # 20 20 127 20 127 20 20
[continued]

CALCULATOR TIPS & ROUTINES 92 XXII. PRINTER

R50 [62 2 2 2 2 2 62 R57 # 1 2 127 8 127 32 64

R51] 62 32 32 32 32 32 62 R58 < 96 24 6 1 6 24 96

R52 + 8 8 8 127 8 8 8 R59 > 3 12 48 64 48 12 3

R53 - 0 0 0 127 0 0 0 R60 t 8 8 8 73 42 28 8

R54 * 8 73 42 29 42 73 8 R61 { 8 28 42 73 8 8 8

R55 / 1 2 4 8 16 32 64 R62 - 8 16 32 127 32 16 8

R56 . 0 127 0 0 127 0 0 R63 - 8 4 2 127 2 4 8

22-22 VERTICAL ACCUMULATION OF 2-DIGIT NUMBERS ("V2"): This routine accumulates into

the print buffer a small 2-digit integer rotated 90° clockwise from normal. It

is useful when printing indentifier for histogram bars or plotting. The characters

are build on a 3x5 matrix, and thus the 2 digits occupy only 5 print columns. Taller

characters can be generated by setting Flag 12. Spacing on either side is not pro-

vided, in order that these characters can be placed right up to either margin of the

print line. Spacing can be provided by the user with SKPCOL. This routine uses no

data registers; it uses the stack. To use, key in any 2-digit integer, XEQ "V2".

Source: Cliff Carrie (834) (PPC CJ, V8N1P15).

01 LBL "V2" 13 FRC 25 X#£07? 37 LBL 03 49 LBL 07 2
02 10 14 LASTX 26 GTO 14 38 .34243 50 .22247 .
03 / 15 INT 27 RTN 39 RTN 51 RTN "
04 ENTER 16 16 28 LBL 00 40 LBL 04 52 LBL 08 3
05 FRC 17 * 29 25552 41 47564 53 25252 j
06 10 18 RCL Z 30 RTN 42 RTN 54 RTN =
07 * 19 10 31 LBL 01 43 LBL 05 55 LBL 09 w
08 XEQ IND Y 20 * 32 .22232 44 34317 56 .34652 w
09 XEQIND Y 21 + 33 RTN 45 RTN 57 END E

10 LBL 14 22 ACCOL 34 LBL 02 46 LBL 06 @
11 10 23 FRC 35 .72452 47 .25316
12 * 24 X<>Y 36 RTN 48 RTN (124 bytes)

22-23 PRINTER COMPATIBILITY: This shows how to get various combinations of printing,

not printing, stopping, not stopping, pausing, etc, when either a printer is

on line (plugged in and on) or no printer is plugged in.

Print PRINTER--print without stopping " "
OR Stop 1 NO PRINTER--stop to view } ..., SF 21, "MSG", AVIEW,

Print 2 PRINTER--print without pausing } ...y CF 21, FS? 55, SF 21, "MSG",

OR Pause NO PRINTER--pause to view AVIEW, FC? 55, PSE,

Print 3 PRINTER--print and stop } «.., SF 21, "MSG", AVIEW, FS? 55,

& Stop NO PRINTER--stop to view STOP,

Print Iy PRINTER--print and pause } ee.y, CF 21, FS? 55, SF 21, "MSG",

& Pause NO PRINTER--pause to view AVIEW, PSE,

NO Print 5 PRINTER--stop and don't print } WMSG" PROMPT

& Stop NO PRINTER--stop to view T ’ ot

NO Print 6 PRINTER--pause and don't print } CF 21. "MSG". AVIEW. DPSE

& Pause NO PRINTER--pause to view e ’ ’ ’ Yoo

Print 7 PRINTER--print } ...y, CF 21, FS? 55, SF 21, "MSG",

OR NO Stop NO PRINTER--don't pause or stop’! FS? 55, AVIEW,

Example: at the end of an initialization routine, the program is to pause after a

first message, then stop after a second message. Both are to print if the printer is

on line; subsequent outputs are to print without stopping, or stop if no printer:

..., CF 21, Fs? 55, SF 21, "MSG1", AVIEW, PSE, "MSG2", AVIEW, SF 21, STOP, e e o o

CALCULATOR TIPS & ROUTINES 93 XXII. PRINTER

22-24 AUTOMATIC PRINTING OF MULTIPLE OUTPUTS ON ONE OR MORE LINES: When you don't

wish to print output that is generated within a loop, line by line, include

the following routine within the loop (here, a loop counter is stored in R00):

«ee, LBL 01, ..., " ", ARCL X, ACA, ..., DSE 00, GTO 01, PRBUF,

The print buffer will accumulate 24 alpha characters, and then automatically print

before accepting additional characters. To reduce ambiguities when a numerical out-

put is split between two lines, the space (" ") may be replaced by "X". Alternative-

ly, if the output consists of integers, the space can be eliminated if FIX 0, SF 29

Mode is used, in which case the radix will serve to separate successive outputs.

Some examples: 1) Printing successive sums of a series. 100 101 102 106 109 110

2) Printing all the prime numbers within a specified 114 118 120 121 126 127

interval. The following routine example shows how the 128 129 130 135 136

output may be arranged in easy-to-read columns. "=0"

prints all the numbers in an interval for which the operations "SQRT, Xt2" return

exactly the same number to X. Before execution, "=0" expects the lowest number to be

tested in Y, and the highest number in X. The example above right will print with an

input of 100, ENTER, 136. The user may insert a line of one or more alpha spaces,

followed by "ACA", after line 10 (ADV) to indent the first line or to compensate for

initial outputs of different character length from that of subsequent ones. Source:

Robert Swanson (5993). See 15-8.

01 LBL "=0" 05 - 09 ENTER 13 X12 17 ACA 21 DSE Z 25 SF 29
02 FIX 0 06 ISG X 10 ADV 14 " " 18 SIGN 22 GTO 01 26 BEEP
03 CF 29 07 STO X 11 LBL 01 15 ARCL Y 19 + 23 PRBUF 27 END

04 X<>Y 08 LASTX 12 SQRT 16 X=Y? 20 ENTER 24 FIX 2 (46 bytes)

22-25 SYNTHETIC SPECIAL CHARACTERS ("scC", "SCT", "SCL" & "SCX"): This routine allows

the user to bring nonstandard print characters, in groups of three, into con-

secutive registers of main data memory. They then may be ACSPECed and PRBUFed. A

complete list of the characters available is shown in the Special Characters Table

and the Special Characters List below. The nineteen groups of characters are indica-

ted in the table.

Instructions: Load Registers 06-08 as shown:

R0O6= # of first group desired, 1
RO7= # of last group desired, m

R0O8= # of first register to store characters in (R09 or higher), n

Next, XEQ "SC"; the characters in groups 1 through m will then be loaded into regis-

ters n and above. This routine primarily uses Status Registers M, N and O to do its

storifié and recalling. The actual characters are brought into Alpha by either 7 or

14 character text lines, which contain sprinklings of buffer control characters,

causing the program listing to print oddly. The last group of characters is also re-

turned to the stack (Z, Y & T Registers). Be sure Flag 21 is set before using the

special characters.

Example 1: Put group 9 (S, v and ©) in Registers 9, 10 and 11. Solution: key in 9,
STO 06, STO 07, STO 08, XEQ "SC" (minimum SIZE 012); the characters will also be re-

turned to the stack:

RO9 = 2 = S

R10 =Y = v
R11 = X =@

Now, to put Y in the print buffer (for example), use RDN (or RCL 10), ACSPEC; print

with PRBUF or ADV.

Example 2: Print a table of special characters, as shown below. Key in the "SCT"

routine below, then, with SIZE 066 or greater, key in 1, STO 06, 19, sTO 07, 9, STO

08, XEQ "sSC", XEQ "SCT".

CALCULATOR TIPS & ROUTINES

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

LBL "SCT"

ADV

CF 12

">> SPECIAL CH"

"FARACTERS <<"

PRA

ADV

SF 12

FIX 0

CF 29

9.011

ENTER

1.019

10

X<>Y

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

LBL 14

X<Y?
XEQ 13

ACX
XEQ 13
XEQ 13
LBL 12
RCL IND Z

ACSPEC
XEQ 13
RDN
I1SG Z
GTO 12
.003
ST+ T

94

31

32

33

34

35

36

37

38

39

40

41

42

(11

RDN

PRBUF

ISG X

GTO 14

FIX 2

SF 29

CF 12

RTN

LBL 13

ACA

END

5 bytes)

XXII. PRINTER

»> SPECIAL CHARACTERS (<

V
O
R
I
D
A
L
W
A
-

A
P
O
E
L
N
®
"
I
N
+
x
m
N

a
0

W
e

V
a
d
B
E
L
D
E
v
T
s

W
a
r
H

F
T
Y
4
E
R
A
E
H
N
S
T
E
R
H

v
8
L
2
N
B
N

Example 3: Print a list of special characters, as shown below. Key in the "SCL" rou-

tine; then, if not previously done, place the special characters in R09-R65 (SIZE

066, 1, sto 06, 19, sTO 07, 9, STO 08, XEQ "SC"); finally, XEQ "SCL".

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Example 4: Print the following: e

LBL "SCL"

ADV

SF 12

FIX 0

CF 29

9.065

"RO9= "

ACA

RCL IND X

ACSPEC

ADV

RDN

ISG X

LBL 11
"R"

16 ARCL X Rag= ¢
17 "p= " Rig= 1

18 ACA Ri11= ¢
19 RCL IND X R1Z2= 3

20 ACSPEC R13= 4
21 ADV Rid= 5

22 RDN R15= B
23 ISG X Rio= 1
24 GTO 11 R17/= 8
25 CF 12 E18= 9
26 FIX 2 R19= o«
27 SF 29 R260= 1
28 END R21= =&

R22= 1

(65 bytes) R=Z3= 4

2x+5z 4.3 .

R09-R65 as in the examples above, XEQ "SCX".

01

02

03

LBL "SCX" 05 ACCHR

FIX 1 06 RCL 11

SF 12 07 ACSPEC

101 08 RCL 3004

09 ACSPEC

10 RCL 46

11 ACSPEC

12 RCL 14

13

14

15

16

The characters in the last two groups can be

accumulate the first two characters of group

to place a full moon in the buffer. See PPC Calculator Journal, V/N10P14, for more

examples.

R24=
R25=
RZ26=
R27=
RZ28=
R29=
RIa=
R3Il=
R3I2=
R3I3=
R34=
RZ5=
R36=
R37=
RZI8=

|
@
.
H
l
fi

M
=2

32
B
A

@™
M
m
N

RZI9=
R4B8=
R41=
R4Z2=
R43Z=
R44=
R45S=
R46=
R47=
R4&=
R4Q=
RSAa=

dx RS51=
dv RS2=

dt RS3=

&l

R54=
R35=
R56=
RS7=
R58=
R59=

R6O=
Rel=
R62=
R&63=
Re4=
R&5= T

Y
n
Y
a
d
r
¢
C
O
E
E
M
E

With the special characters loaded in

e2 X+52x 4.3

ACSPEC

RCL 41

ACSPEC

4.3

17 ACX

18 PRBUF

19 CF 12

20 FIX 2

21 END

(48 bytes)

used to print the phases of the moon;

19, one after the other, for example,

Source: Jake Schwartz (1820) (PPC CJ, V7IN10P11-15).

[continued]

CALCULATOR TIPS & ROUTINES 95 XXII. PRINTER

Program Listing:

@lelBL -5C- 23 “1BX' eee" 45¢LBL 18 71 =HOs7""
82 RCL @7 24 GTO 66 46 -0GSOHOGaBG" 72 GT0 B8
83 E3 29¢LBL 85 47 ~HOGXOH" 73¢LBL 17
84 /7 26 =8¢ Kool 0¢ 48 GT0 o8 74 =0 agg-
85 ST+ 86 *- 49¢1BL 11 75 “F88%r-
66 .9 27 “HOedee 20 -0x$K-+0 Aqas- 76 GTO 8a
87 ST+ @8 28 GT0 ae 2 “+Bal="- 77¢LBL 18
88 GTO IND 86 29¢LBL 85 32 GT0 o8 78 “Opefi¢z -

@9¢LBL @1 38 "BxNesGeNeo" 23eLBL 12 79 “FQee"
18 =Beqleefeeess 31 =8¢ Qee- 94 =8x Bx*x(¢" 88 GT0 w&
11 =P 32 GTO a8 33 "HBwko.F" 21eLBL 19
" J3¢LBL 87 96 GT0 @8 82 =BexHOTe$Gee-
12 GT0 @8 34 =BeQeegefes" 97¢LBL 13 83 “tBakrax-
{3¢LBL 82 35 “Hoe8P 98 “0¢ Beefe 84¢LBL 08
14 =8¢ S - A 85 RCL 1

+40¢80 36 GTO 98 29 "Hox¥? 86 STO IND @%

- J7¢LBL 08 - 87 ISG 88
15 "FGeSee- 38 =Qe: 66 GT0 B8 88 RCL »
16 GTO 98 ¢geee 6leLBL 14 89 STO IND @8
{7¢LBL 83 39 "¢ 4" 62 "BexJeBpadle- 98 ISC 88

18 =Be5SeeBer 48 GT0 98 63 “HB$i6-g- 9 RCL [

- 41¢LBL 89 64 GT0 68 92 STO IND 88
19 ~HB+S 42 -OxaiBOE{ 63¢LBL 15 93 ISGC a8

""" g- 66 "QwDB™(uX4™" 94 ISG 6c
26 GTO 88 43 “Bqn 67 “FivY4™" 95 GTO IND 66

21eLBL B4 Qe- 65 GT0 98 96 END
22 "Be8c 44 GT0 @8 69¢LBL 16 END 968 BYTES
LR 78 ~04X5704YS"™"

Bytes for creating the synthetic lines above, using "LB": Compare this table with

the routine listing, above. The "PROMPT" column is the byte number that should be

prompted for by "LB" just before keying in the first byte in a given line. NOTE: The

"LB" buffer needs to be at least 476 +'s! Read Chapter XXV, including the examples,

before attempting to load these bytes to create the "SC" routine.

LINE 1st "LB" BYTES
NO. PROMPT

03 [1] 27, 19

10 [3] 254, 16, 0, 113, 17, 192, 0, 0, 16, 0, 137, 242, 0, 0, 0
11 [18] 248, 127, 16, 0, 233, 82, 224, 0, O
14 [27] 254, 16, 0, 169, 83, 224, 0, 0, 16, 0, 56, 67, 224, 0, 0
15 [42] 248, 127, 16, 0, 185, 83, 160, 0, O
18 [51] 254, 16, 0, 249, 83, 160, 0, 0, 16, 0, 8, 19, 224, 0, O
19 [66] 248, 127, 16, 0, 249, 83, 224, 0, O
22 [751 254, 16, 0, 56, 83, 224, 0, 0, 16, 1, 196, 71, 0, 0, O
23 [90] 248, 127, 16, 2, 39, 200, 0, 0, O
26 [99] 254, 16, 3, 165, 75, 128, 0, 0, 16, 2, 165, 79, 128, 0, O
27 [114] 248, 127, 16, 0, 225, 15, 128, 0, O
30 [123] 254, 16, 2, 229, 78, 128, 0, 0, 16, 3, 229, 78, 128, 0, O
31 [138] 248, 127, 16, 0, 32, 79, 128, 0, O
34 [147] 254, 16, 3, 229, 79, 128, 0, 0, 16, 0, 225, 79, 128, 0, O
35 [162] 248, 127, 16, 0, 56, 80, 224, 0, 0
38 [171] 254, 16, 0, 1, 176, 134, 192, 0, 16, 0, 0, 51, 128, 192, 0
39 [186] 248, 127, 16, 0, 1, 146, 164, 192, 0

CALCULATOR TIPS & ROUTINES 96 XXII. PRINTER

42 [195] 254, 16, 2, 4, 7, 192, 64, 128, 16, 64, 130, 15, 224, 64, 129

43 [210] 248, 127, 16, 113, 21, 218, 181, 81, 28

46 [219] 254, 17, 226, 71, 240, 18, 24, 72, 17, 226, 71, 240, 22, 16, 24

47 [234] 248, 127, 17, 226, 71, 240, 2, 62, 72

50 [243] 254, 16, 2, 36, 75, 241, 34, 0, 16, 32, 32, 65, 4, 8, 8

51 [258] 248, 127, 16, 136, 137, 20, 81, 34, 34

54 [267] 254, 16, 2, 133, 138, 148, 168, 128, 16, 2, 141, 42, 150, 40, O

55 [282] 248, 127, 16, 12, 107, 24, 44, 70, 131

58 [291] 254, 16, 0, 32, 64, 128, 0, 0, 16, 0, 32, 224, 128, 0, O

59 [306] 248, 127, 16, 2, 15, 248, 63, 224, 128

62 [315] 254, 16, 0, 1, 197, 74, 128, 0, 16, 12, 97, 15, 228, 6, 3

63 [330] 248, 127, 16, 226, 36, 7, 16, 34, 56

66 [339] 254, 17, 254, 12, 25, 48, 96, 255, 17, 254, 12, 88, 52, 96, 255

67 [354] 248, 127, 17, 254, 12, 89, 62, 96, 255

70 [363] 254, 17, 254, 13, 88, 53, 96, 255, 17, 254, 13, 89, 53, 96, 255

n [378] 248, 127, 17, 254, 13, 216, 55, 96, 255

74 [387] 254, 16, 32, 227, 239, 239, 142, 8, 16, 56, 251, 239, 143, 143, 142

75 [402] 248, 127, 16, 48, 243, 207, 239, 15, 12

78 [411] 254, 16, 112, 229, 255, 247, 206, 28, 16, 0, 1, 199, 206, 191, 255

79 [426] 248, 127, 17, 255, 251, 231, 199, 0, O

82 [435] 254, 16, 0, 1, 196, 72, 160, 193, 17, 6, 10, 36, 71, 0, O

83 [450] 248, 127, 16, 4, 127, 145, 12, 4, 120

85 [459] 144, 119

88 [461] 144, 118

91 [463] 144, 117

97

CHAPTER XXITI

BANNERS

23-1 BANNER PRINTER ("BANR", "CHAR" & "CODE"): This routine is used to print ban-

ners. 'Compression codes' are included for 95 characters. The routine will fit

on one track; 7 tracks are need to store all the characters on magnetic cards. The

first ten data registers contain the character building blocks; R10 is used by the

routine, and R11-R105 contain the codes, which are used to build the corresponding

characters. Note that Flag 12 must be set to get full-height characters, or clear

for half-height characters; Flag 12 can be set or cleared between characters to

print mixed full- and half-height characters.

Instructions: There are three ways to use this routine: (1) XEQ "BANR"; see "CHAR.

NO.?"; input the character number (0 = space, 1 = A, etc), press R/S; the character

corresponding to that character number will be printed. The prompt will reappear;

repeat. (2) You can also key in the character number and XEQ "CHAR"; this label is

primarily for use in any program that automatically executes this routine. (3) Key

in any of the 'compression codes', including any of your own (for example, key in

.1802020218 for 'A'), then XEQ "CODE"; the corresponding character will be printed.

If memory is short, just key in the routine and the character building blocks (R00-

R0O9) with a SIZE 011, and use "CODE".

Building the building blocks: In normal or USER Mode, key in '0', press ENTER (to

clear X & Y); key in '31', XEQ "BLDSPEC"; Alpha character 31 is now in X (but dis-

plays as a boxed star) (other characters can be used). Now use ARCL X and SPACE in

ALPHA Mode to build the building blocks one at a time, storing them in the approp-

riate registers. For example: For RO0: CLA, SPACE 6 times, ASTO 00. For RO1: CLA,

ARCL X 6 times, ASTO 01. For R02: CLA, ARCL X, SPACE 4 times, ARCL X, ASTO 02.

01 LBL "BANR" 09 RDN 17 10 25 PRA 33 STO 10
02 "CHAR. NO.?" 10 X=07? 18 * 26 ISG 10 34 RDN

03 PROMPT 11 GTO 00 19 ARCL IND X 27 GTO 00 35 GTO 00
04 XEQ "CHAR" 12 10 20 FRC 28 ADV 36 END
05 GTO "BANR" 13 + 21 10 29 ADV
06 LBL "CHAR" 14 RCL IND X 22 * 30 RTN
07 .004 15 LBL 00 23 ARCL IND X 31 LBL "CODE"
08 sTO 10 16 CLA 24 FRC 32 .004 (96 bytes)

Example: Here is a routine that will print all 95 characters: LBL "X", 1.095, LBL 01,

ENTER, XEQ "CHAR", RCL Z, ISG X, GTO 01, RTN.

Source: Dean Lampman (41) (PPC J, V6N6P16).

Data Registers, Compression Codes, Character Numbers and Symbols:

ROO = " " RO8 = "HERER " R16 = .1102020203 6 = F
RO1 = "HEEEER " RO9 = " REBER" R17 = .9843432353 7 = G
RO2 = "B i R10 = 0 0 = space R18 = .1104040411 8 = H
RO3 = ™ 1" R11 = .1802020218 1 = A R19 = .4343114343 9 =1

RO4 = "1 " R12 = .1142424295 2 =B R20 = .5040439103 10=J

RO5 = " BEBE " R13 = .9843434367 3 = C R21 = .1134766743 11=K

RO6 = " 11 " R14 = .1143434398 4 =D
RO7 = " i R15 = .1142424243 5 = E [continued]

CALCULATOR TIPS & ROUTINES 98 XXIII. BANNERS

R22 = .1140404040 12=1L R50 = .6 40 =. R78 = .7676117676 68=+
R23 = .1107060711 13 =M R51 = .406 41 =, R79 = .0606060031 69="1
R24 = .1105345011 14=N R52 = .0703130205 42=7? R80 = .3476556743 70=<
R25 = .9843434398 15=0 R53 = .21 43 = ! R81 = .4367557634 71 =>

R26 = .1102020205 16="P R54 = .67 44 = : R82 = .8024854743 72=4
R27 = .9843436398 17=0Q R55 = .4067 45 = ; R83 = .4542114293 73 =S

R28 = .1132726245 18=R R56 = .000007 46 = R84 = .0418424347 74=%
R29 = .0542424293 19=S R57 = .00006 47 = . R85 = .9843114367 75= ¢
R30 = .0303110303 20=T R58 = .00070007 48 = v R86 = .4760980763 76 =%
R31 = .9140404091 21 =U R59 = .5522526580 49=& R87 = .6711671167 77 =#

R32 = .0190409001 22=V R88 = .9843464265 78= @
R33 = .1160706011 23 =W R60 = .0000114343 50 = [R89 = .05020205 79=°
R34 = .8976347689 24 =X R61 = .434311 51 =]

R35 = .0934803409 25=Y R62 = .0034554343 52 = { RO0 = .9044449044 80 = o
R36 = .4383224943 26=12 R63 = .43435534 53 =} R91 = .1862426295 81 =8

R64 = .0000986743 54 = (R92 = .1103030303 82=T
R37 = .1134343434 27::} R65 = .436798 55 =) R93 = .8028432880 83 =A

R38 = .0003090300 28=T R66 = .0607110706 56 = 1 RO4 = .9822222298 84=0
R39 = .3074967430 29=@ R67 = .7060116070 57= ¢ RO5 = .1060406090 85=p

R68 = .2267987634 58=-— R96 = .3014041406 86=1

R40 = .9823224298 30=0 R69 = .3476986722 59= « RO7 = .4389892222 87=7%
R41 = .4047114040 31 =1 R98 = .5020209030 88= ¢
R42 = .8723424245 32=2 R70 = .3434983434 60 =+ R99 = .3030103004 89=1

R43 = .6743424295 33 =3 R71 = .3434343434 61 = -

R44 = .3130301130 34=4 R72 = .00763476 62 =x R100=.1111111111 90 =18

R45 = .6142424293 35=5 R73 = .6776117667 63 = * R101 = .0303030303 91 =

R46 = .9823232357 36=6 R74 = .3434223434 64 =+ R102 = .4040404040 92 =_

R47 = .0383330209 37=7 R75 = .4060980703 65= / R103 = .05020202 93=C
RA8 = .9542424295 38=8 R76 = .0307986040 66 =\ R104 = .5020202050 94 = o
R49 = .0502020218 39=9 R77 = .7676767676 67 == R105 = .1802184242 095=&

BM %2 % P
% g% %
4 %
% %
R 2

- =OEE OB 0EE 0B 00OE = =
8 :umuz :“u : =~m fi zumm :mmm“

B e e Te e e ™ o e o -i W= = = EBEE 0B BB 0= B
B oA B oW - s . - - ll-~+ Mot btb -~ " - B

23-2 LETTER BANNER ("LET", "DIG" & "SYM"): This banner-printing routine, with ap-

propriate 'compression codes' loaded in Registers 01-94, will print the let-

ters, the digits, and 45 other characters. Each banner character printed is composed

of the characters themselves. With Flag 12 set, the characters are full-height; with

Flag 12 clear, they are half-height (the banner letters will be composed of lower-

case letters if Flag 12 is clear). NOTE: this routine is very slow: writing a rou-

tine to print your banner is suggested. To print "Banner!", for instance, use the

following routine:

01 LBL "X" 05 CF 12 09 XEQ "LET" 13 XEQ "LET" 17 33 21 END

02 SF 12 06 1 10 14 14 18 18 XEQ "SyM"

03 2 07 XEQ "LET" 11 XEQ "LET" 15 XEQ "LET" 19 BEEP

04 XEQ "LET" 08 14 12 5 16 SF 12 20 OFF (62 bytes)

Instructions: Load routine and data. Set or clear Flag 12 as desired. To print a

letter: enter its character code (1 -26; see table below), XEQ "LET". To print a

digit: enter the digit, XEQ "DIG". To print a symbol: enter its character code, XEQ

CALCULATOR TIPS & ROUTINES 99 XXTIII. BANNERS

"SYM". To 'print' a space, enter '32', XEQ "SYM". The letter banner routine below

will fit on 3 tracks; if all the compression codes are stored in data registers, 6

tracks will be needed to save them on magnetic cards. To print letters only, set

SIZE 039 before reading the data cards.

CHARACTER CODES & SYMBOLS:

Letters Digits

1 =A MM =K 21 =0 0 =0

2 =B 12 = L 22 =V 1 =1

3=C 13 =M 23 =W 2 =2

4 =D 14 =N 24 = X 3 =3

5 =E 15 =0 25 =Y 4 =4

6 =F 16 = P 26 = Z 5 =25

7 =G 17 = Q 6 =6

8 =H 18 =R 7 =17

9 =1I 19 = S 8 =8

10 =J 20=T 9 =9

01 LBL "LET" 32 8 63

02 1 33 - 64

03 X>Y? 34 .004 65

04 GTO 08 35 STO 10 66

05 CLX 36 RCLINDY 67

06 27 37 GTO 10 68

07 X<=Y? 38 LBL "SYyM" 69

08 GTO 08 39 STO 38 70

09 XY 40 3 71

10 STO 38 41 X>Y? 72

11 10 42 GTO 08 73

12 + 43 CLX 74

13 96 44 11 75

14 ST+ 38 45 X>Y? 76

15 32 46 GTO 04 77

16 FS? 12 47 CLX 78

17 ST- 38 48 29 79

18 .004 49 X>Y? 80

19 sTO 10 50 GTO 08 81

20 RCLIND T 51 CLX 82

21 GTO 10 52 48 83

22 LBL "DIG" 53 X>Y? 84

23 X<07? 54 GTO 05 85

24 GTO 08 55 CLX 86

25 10 56 58 87

26 X<=Y? 57 X>Y? 88

27 GTO 08 58 GTO 08 89

28 XY 59 CLX 90

29 48 60 65 N

30 + 61 X>Y? 92

31 STO 38 62 GTO 06 93

Symbols

3=« 29 =# 39 =" 58 = : 93 =]
4 =0a 30=%f 40 = (59 = ; 94 = 1t
5=8 31 =0 41 =) 60 =< 95 = _
6 =T 32 = 42 = * 61 = = 9% =T
7 =4 33 =1 43 =4+ 62 = >
8 =A 34 =" 44 =, 63 =2 123 =1
9=0 35=# 45=- 64 =@ 124 = |

10 =® 36 =S 46 = . 125 = -
37 =% 47 =/ 91 =1[126 =2
38 = & 92 =\ 127 =}

CLX 94 CLX 125 ADV
91 95 19 126 ADV
X>Y? 96 + 127 RTN
GTO 08 97 GTO 09 128 LBL 00
CLX 98 LBL 07 129 .005
97 99 CLX 130 STO 37
X>Y? 100 7 131 RDN
GTO 07 101 - 132 LBL 03
CLX 102 GTO 09 133 10
123 103 LBL 08 134 *
X>Y? 104 "BAD CODE" 135 ENTER
GTO 08 105 PROMPT 136 INT
CLX 106 RTN 137 X=07?
128 107 LBL 09 138 GTO 01
X<=Y? 108 .004 139 RCL 38
GTO 08 109 STO 10 140 GTO 02
CLX 110 RCL INDY 141 LBL 01
33 111 LBL 10 142 32
- 112 10 143 LBL 02
GTO 09 113 * 144 ACCHR
LBL 04 114 RCL IND X 145 RDN
CLX 115 XEQ 00 146 RDN
47 116 FRC 147 FRC
+ 117 10 148 ISG 37
GTO 09 118 =* 149 GTO 03
LBL 05 119 RCL IND X 150 RDN
CLX 120 XEQ 00 151 END
29 121 FRC
+ 122 PRBUF
GTO 09 123 ISG 10
LBL 06 124 GTO 10 (262 bytes)

DATA: Below is the data that must be loaded for this routine. R10 is the main rou-

tine loop counter, R37 is the subroutine loop counter, and R38 is used by the rou-

R39 is not used.tine to store the character

ROO= 0

RO1= 0.111111
R02= 0.100001

code.

R0O3= 0.000001

RO04= 0.100000

RO5= 0.011110

RO6= 0.011000

RO7= 0.000110

R0O8= 0.111110

R0O9= 0.011111
R10= (used)

[continued]

CALCULATOR TIPS & ROUTINES 100 XXIII. BANNERS

R11= 1.802020218-01 A R39= (not used) R67= 5.522526580-01 &

R12= 1.142424295-01 B R40= 9.823224298-01 O R68= 7.070000000-06

R13= 9.843434367-01 C R41= 4.047114040-01 1 R69= 9.867430000-05 (

R14= 1.143434398-01 D R42= 8.723424245-01 2 R70= 4.367980000-01)

R15= 1.142424243-01 E R43= 6.743424295-01 3 R71= 6.776117667-01 =*

R16= 1.102020203-01 F R44= 3.130301130-01 4 R72= 3.434983434-01 +

R17= 9.843432353-01 G R45= 6.142424293-01 5 R73= 4.060600000-01 ,

R18= 1.104040411-01 H R46= 9.823232357-01 6 R74= 3.434343434-01 -

R19= 4.343114343-01 I R47= 3.833302090-02 7 R75= 6.060000000-03 .

R20= 5.040439103-01 J R48= 9.542424295-01 8 R76= 4.060980703-01 /

R21= 1.134766743-01 K R49= 5.020202180-02 9 R77= 6.767000000-01 :

R22= 1.140404040-01 L R50= 3.476986722-01 <« R78= 4.067670000-01 ;

R23= 1.107060711-01 M R51= 9.044449044-01 « R79= 3.476556743-01 <

R24= 1.105345011-01 N R52= 1.862426295-01 B R80= 7.676767676-01 =

R25= 9.843434398-01 O R53= 1.103030303-01 T R81= 4.367557634-01 >

R26= 1.102020205-01 P R54= 7.060116070-01 ! R82= 7.031302050-02 2

R27= 9.843436398-01 Q R55= 8.028432880-01 A R83= 9.843464265-01 @

R28= 1.132726245-01 R R56= 5.020209030-01 o© R84= 1.143430000-05 [

R29= 5.424242930-02 S R57= 3.074967430-01 @ R85= 3.079860400-02 \

R30= 3.031103030-02 T R58= 7.676117676-01 # R86= 4.343110000-01]

R31= 9.140404091-01 U R59= 4.184243470-02 & R87= 6.071107060-02

R32= 1.904090010-02 V R60= 1.111111111-01 @& R88= 4.040404040-01 _

R33= 1.160706011-01 W R61= 0.000000000 R89= 3.090300000-04 T

R34= 8.976347689-01 X R62= 2.121000000-01 ! R90= 3.014041406-01 =

R35= 9.348034090-02 Y R63= 7.070007070-02 " R91= 1.100000000-05 I

R36= 4.383224943-01 Z R64= 6.711671167-01 # R92= 2.267987634-01 -

R37= (used) R65= 4.542114293-01 $ RO3= 4.389892222-01 X

R38= (used) R66= 4.760980763-01 % R94= 1.134343434-01 |

Source: Bruce Murdock (2916) (PPC CJ, V7N1P27).

W -
@ W -
u3] o -
a0 0 -
W1 @ -
WM -
M o) m ™ ™ = = = = @ W oW oW W e & & & -

n m E o = S c = w “ e
foe) o] m 0 c = s < = @ “ o

m m e o = c C = @ e =
o o m m c o = c < = @ i e

M mmmmwm m = = = = = = @ W oW oW e b B &
fon) o n m = c = c s = @ e A

o m & c = = s = @ e e
m m m m < e = c c c @ I “

3 = &£ EE E§ E§ ¢ £
Qoo " m = = = = B A oar Qo “ . =

101

CHAPTER XXIV

INTERCHANGEABLE SOLUTIONS

24-1

INTERCHANGEABLE SOLUTION ONE ("IS1"): This is a program outline, not a pro-

gram. You must adapt it to your particular application; as written, it can be

used to solve for any term of an equation relating 5 variables—for more terms, use

LBLs F-J and Registers 06-10. Use your own output labels and prompts. NO PRINTING.

To use: 1. XEQ "IS1". 2. Input values as prompted, skipping the unknown term with

R/S. 3. To calculate the unknown term, press its key. 4. To change the value of a

term, key in the new value, press STO, and then press its key [to change the value

of D, for example, key in the new value and press STO D (= STO 04)]. Then go to step

3. Source: John Dearing (2791) (PPC CJ, V7N8P22).

A

LBL "ISt1"

SF 27
IIA? "

PROMPT

STO 01
IIB? "

PROMPT

STO 02
"C? "

PROMPT

(not used)

llAll |IBII IIC'I IIDII IIEII

STO 03 (Calc. A) (Calc. C) (Calc. E) ROO:

np2n STO 01 STO 03 STO 05
PROMPT IIAII IICII IIEII R01 © A

STO 04 GTO 88 GTO 88 LBL 88 R02: B

ngon LBL B LBL D =" RO3: C

PROMPT (Calc. B) (Calc. D) ARCL X :

STO 05 STO 02 STO 04 PROMPT R04: D
CLX ”" BII IID n END

STOP GTO 88 GTO 88 ROS: E

LBL A LBL C LBL E

24-2

INTERCHANGEABLE SOLUTION TWO ("IS2"): Prints all new inputs, plus all outputs.

To use: 1. XEQ "IS2". 2. Input values as prompted, skipping unknown with R/S.

3. To calculate the unknown Eérm, press its key. 4. To change a value, reexecute the

Efogram, skipping all unchanged terms with R/S, and keying in the changed value when

prompted; then go to step 3. Source: John Dearing (2791) (PPC CJ, VIN8P22).

A

LBL "IS2"
SF 27
0
STO 00
"All

XEQ 99
llBll

XEQ 99
IICII

XEQ 99
IIDII

XEQ 99

IIAII IIBII IICII IIDII IIEII E

ol "B" LBL E STO IND 00 RO0: pointer

XEQ 99 GTO 88 (Calec. E) FS? 22 ROT: A

CLX LBL C STO 05 FC? 55 ’

STOP (Calc. C) "g" RTN RO2: B

LBL A STO 03 GTO 88 ARCL X RO3: C

(Calc. A) ncH LBL 99 AVIEW

STO 01 GTO 88 CF 22 RTN RO4: D

"A" LBL D 1 LBL 88

GTO 88 (Calc. D) ST+ 00 o ROS: E
LBL B STO 04 RCL IND 00 ARCL X

(Calc. B) n"p" "p=" AVIEW

STO 02 GTO 88 PROMPT END

To modify this program to be able to store a new value by just keying in its value

and then pressing its key, rather than having to reexecute the program, the follow-

ing sequence for "A" is typical: [continued]

CALCULATOR TIPS & ROUTINES 102 XXIV. INTERCHANGEABLE SOLUTIONS

LBL A, SsTO 01, "A", FS?C 22, GTO 88, (Calculate A), STO 01, GTO 88.

24-3 INTERCHANGEABLE SOLUTION THREE ("IS3"): NO PRINTING.'l. XEQ “IS3"..%. Input

values as prompted, skipping the unknown with R/S. 3. The unknown term will be

calculated and displayed automatically. All values must be rekeyed in when the pro-

gram is rerun. Source: John Dearing (2791) (PPC CJ, V7N8P22).

LBL "IS3™" XEQ 99 np" STO 04 " 2" : R00: storage

1.1 "E" STO 02 GTO 88 PROMPT : pointer
STO 00 XEQ 99 GTO 88 LBL 05 STO IND 00 RO1: A

CF 22 GTO IND 06 LBL 03 (Calc. E) RCL 00 :

"An LBL 01 (Calc. C) "E" FC?2C 22 § RO2: B

XEQ 99 (Calc. A) neH STO 05 STO 06 RO3: C

npw "A" STO 03 LBL 88 ISG 00 : ’

XEQ 99 STO 01 GTO 88 "=" END § R04: D

nee GTO 88 LBL 04 ARCL X : ROS: E

XEQ 99 LBL 02 (Calc. D) PROMPT :

"p" (Calc. B) "p" LBL 99 : RO06: subroutine

: pointer

24-4 INTERCHANGEABLE SOLUTION FOUR ("IS4"): All inputs and outputs are printed. NO

PROMPTS! 1. XEQ "IS4". 2. For each known term, key in its value, then press

its key. 3. To calculate the unknown term, press its key. 4. To change any term, key

in its new value, then press its key; go to step 3. 5. To recall any term, press its

key (recalculates it), or press "RCL", then its key.

A mAM "B nC "D" "E" E

LBL "IS4" (Calc. A)++ GTO 88 STO 04 FS?C 22 : R00: (not used)
SF 27 STO 01 LBL C "D GTO 88 : ROT: A
"READY" GTO 88 STO 03 FS?C 22 (Calc. E) : |
PROMPT LBL B nC GTO 88 STO 05 : RO2: B
LBL A STO 02 FS?C 22 (Calc. D) LBL 88 RO3: C
STO 01 "B GTO 88 STO 04 "p=" : ’

+ FS?C 22 (Calc. C) GTO 88 ARCL X : RO4: D
"AM GTO 88 STO 03 LBL E AVIEW : ROS: E
FS?C 22 (Calc. B) GTO 88 STO 05 STOP ’
GTO 88 STO 02 LBL D "E" END

The example shown is for an equation of 5 terms. With Labels F-J and Registers 06-10

this method will work for equations of up to 10 terms. Use your own program label

and output labels. Source: John Dearing (2791) (PPC CJ, V7N8P22).

+ Functions of the value input, such as A/100, can be calculated and stored here. If

you do this, recall the value (for "A", use RCL 01) before going on.

++ Example: if the equation is A = BC/DE, use this sequence of steps to calculate A:
RCL 02, RCL 03, *, RCL 04, /, RCL 05, / . Rewrite the equation for each term to be

calculated.

24-5 INTERCHANGEABLE SOLUTION FIVE ("IS5"): NO PRINTING. 1. XEQ "ISS".‘E. Input as

prompted, skipping the unknown term with R/S. 3. Theunknown term will be cal-

culated and displayed automatically. Not practical for sensitivity analysis. Keep
output labels 6 characters or fewer. NOTE: This listing is for an equation of the
form A = BC/DE, which is equivalent to 1 = BC/ADE. It must be revised for an equa-
tion of another form. For terms in the numerator (B & C in this case), use XEQ a;
for terms in the denominator (A, D & E here), use XEQ b. Think of a/b. Source: John

Dearing (2791) (PPC CJ, V7N8P22).

[continued]

CALCULATOR TIPS & ROUTINES 103 XXIV. INTERCHANGEABLE SOLUTIONS

LBL "IS5" X=07? PROMPT RCL 02 ARCL 00 : ROO: output label

CF 00 XEQ a X=07? RCL 03 M=t : 201 -
CLX STO 02 XEQ b * ARCL X : F B
wn oLX STO 04 §CL 01 PROMPT : RO2: B

PROMPT "c" CLX : RO03: C

X=07? PROMPT nE" ?CL 04 EELOS L no4
XEQ b X=0? PROMPT RCL 05 LBL b : PP
STO 01 XEQ a X=07? —_— : RO5: E

STO 03 XEQ b / ASTO 00 :
CLX STO 05 Fs?C 00 1
ngn CLX 1 /X END

PROMPT "D" CLA

24-6 INTERCHANGEABLE SOLUTION SIX ("IS6"): NO PRINTING; uses no numeric data regis-

ters. For use when every value can be directly converted to every other value

with the proper conversion factor or routine. A can be converted to D, for example,

without knowing B or C. For an example, see routine 18-21. Here, the program label

is assigned to key 15(LN). To use: 1. Key in the value to be converted. 2. XEQ

"Is6" (E). 3. Press the key corresponding to the the value input. 4. Press the key

correspondlng to the desired output. See output. 5. For a new case, key in the value

to be converted, press R/S, then go to step 3. Source: John Dearing (2791) (PPC CJ,

VIN8P22).

A A B C D "ISe6" E

LBL "IS6" GTO D LBL D (Convert D to B)

SF 27 LBL B PROMPT GTO D

"A B C D" (Convert B to D) LBL A LBL C

PROMPT GTO D (Convert D to A) (Convert D to C)

LBL A LBL C GTO D LBL D

(Convert A to D) (Convert C to D) LBL B END

24-7 INTERCHANGEABLE SOLUTION SEVEN: To solve a system of equations with more than

one unknown: for example, 5 variables, any 2 of which are unknown and 3 known,

related by 5 equations; each equation relating 4 of the variables. A flag will cor-

respond to each variable—for 5 unknowns, you might use Flags 00-04. A set flag

means its corresponding variable is known; clear, it is unknown. A data register

will also correspond to each variable.

Initialization: Clear all flags corresponding to variables. Also clear Flag 22, the

numeric data entry flag, and set Flag 21, the printer enable flag.

Input: For each variable, have a set of steps like these: "A?", PROMPT, FS?C 22,

SF 00, STO 00. The next set will have SF 01, STO 01, etc.

Body of program: Test flags to determine the knowns and/or unknowns—branch as nec-

essary—and use the appropriate equation once you have 3 knowns (in this example).

If you know which 2 variables are the unknowns, you automatically know which 3 are

knowns (and vice versa). First test for 1 variable—for example, FS? 01 [is the var-

iable corresponding to Flag 01 (B) known?]. If no, follow with 4 sets of steps, the

first one of which is:

Fs? 02, GTO 00, (Calculate B), STO 01, SF 01, GTO 02, LBL 00;

and the second one of which is:

Fs? 03, GTO0 00, (Calculate B), STO 01, SF 01, GTO 09, LBL 00,

If yes [Flag 01 is set (B is known)], branch to a label where two more variables are
tested—say 'LBL 01, FS? 02, GTO 03, FS? 03, GTO 00....'. Following this, key in the

CALCULATOR TIPS & ROUTINES 104 XXIV. INTERCHANGEABLE SOLUTIONS

instructions to calculate either the term corresponding to Flag 02, or the one cor-

responding to Flag 03. Then branch to instructions calculating the other term. LBLs

03 and 00 will lead to further flag tests, labels, and computations.

Output: Label, recall and display/print all variables. Example:

LBL 01, "A=", ARCL 00, AVIEW, "B=", ARCL 01, AVIEW,

Reference and source: For a good example of the use of this approach, see the "Equa-

tions of Motion" program in the HP-41C Users' Library Solutions Book, 'Physics', p.

39.

105

CHAPTER XXV

SYNTHETIC LOAD BYTES

25-1 SYNTHETIC LOAD BYTES PROGRAM ("LB"): "LB" is a synthetic function assembly
routine. It enables the user to key up a program containing synthetic program

lines simply be keying in the decimal equivalents of each byte, as determined by

use of the Byte Table. Normal functions are keyed in in the ordinary manner (or can

be done synthetically as well).

"LB" is included in this chapter in bar code; if the reader doesn't have a Wand, he

may be able to borrow one from a friend or a dealer long enough to enter this pro-

gram into memory. Saving it on magnetic cards is recommended. It can also be created

using techniques found in Synthetic Programming on the HP-41C, by William C. Wickes;

purchase of that book is recommended to those who wish to gain an understanding of

synthetic programming. [Suggestion to dealers: having a copy of "LB" on mag cards

for purchasers of this book to copy might be a friendly service.]

INSTRUCTIONS FOR USING LOAD BYTES ("LB"):

1. Load the "LB" program (XEQ SIZE 000 first if space is short), then press 'SHIFT

GTO ..'. Switch to PRGM Mode and key in the first global label of your routine.

2. In PRGM Mode, key in the lines LBL "T", XEQ "LB", STOP; follow with 14 or more

pluses (+). These +'s form a buffer into which the synthetic codes will be stored;

the more synthetic bytes you want to load, the more +'s you'll need. RULE: To key in

E_synthetic bytes, the buffer should be at least 14 + 7 * INT (n/7) bytes. Extra +'s

won't hurt if you have the memory; a shortcut is to key 14 +'s plus 1 '+' for each

synthetic byte (in other words, for n synthetic bytes, key in 14 +n pluses).

3. Switch to RUN Mode and XEQ "T".

4. The "LB" program will prompt for a sequence of decimal byte codes (0-255). You

may enter as many or as few bytes as you like, pressing R/S after each. After every

seventh entry the program automatically stores the bytes.

5. To correct an immediately previous incorrect entry, just press SST to clear the

prompt for byte 'n', then R/S; in a second you'll get a prompt for byte 'n-1' [this

clever use of Flag 51 was suggested by Roger Hill (4940)].

6. Press R/S without a numeric entry when you don't want to load any more bytes, and

the program will automatically finish the register and store it.

7. A "NO MORE" message indicates that further entry would overwrite the final END:

you won't get this message if you used enough pluses. If you do get it, go to step

1.

8. Switch to PRGM Mode (you're at the third line below LBL "T") and SST several

times to the first synthetic line. BST once to the previous '+', then press back-

arrow as many times as necessary to delete these +'s and the STOP, XEQ "LB" and LBL

"T" instructions. Now your program consists of your global label, the synthetic (or

normal) lines just created with "LB", and an unknown number of +'s following. (You

can SST to see these synthetic lines, then BST to get back to the global label.)

9. Begin keying in your normal program lines; when a synthetic line (or lines) is

CALCULATOR TIPS & ROUTINES 106 XXV. SYNTHETIC LOAD BYTES

next, just SST over it (them), then resume keying in normal lines. After the last

line of the routine or program, other than the END, is keyed in (or SSTed over),

press SST; if you see a '+', execute DEL 999 to clear all remaining pluses; then END

your routine with 'SHIFT GTO ..' as usual. Your routine is now keyed in, complete

with synthetic lines.

10. "LB" may be used wherever in a program you want the synthetic instructions to

go. Perhaps you've keyed in several instructions, then you notice a synthetic line

is needed. At this point, simply go to step 2 of these instructions and proceed.

11. A "NO MORE" message received in step 7 means you've run out of buffer and can't

key in all your synthetic lines. Just R/S without an entry, then follow steps 8 and

9 as far as possible; when you run out of these synthetic lines, repeat the proce-

dure as in step 10.

FUNCTION BYTE FORMATS: Row and column reference is to the Byte Table in this chapter.

1. One-byte functions: Byte 1 is from Rows 1-8 and special cases. Ex.: MEAN = 124;

PROMPT = 142; the Text 0 'ultimate NOP' ("") = 240.

2. Two-byte functions: Byte 1 is from Rows 9-B and bytes 206-207; byte 2 is from the

postfix part of any row (top half of the table for direct execution, bottom for in-

direct). Examples:

144, 111 = RCL J (111) 155, 119 = ARCL O
144, 118 = RCL N 159, 96 = TONE 6 (96)
144, 126 = RCL 4 159, 109 = TONE H (109)

145, 100 = STO 00 (100) 172, 0 = FS? 00
145, 117 = STO M 173, 246 = FC? IND N

145, 245 = STO IND M 174, 112 = GTO IND T
146, 119 = ST+ O 174, 240 = XEQ IND T
150, 118 = ISG N 206, 118 = X<> N
151, 117 = DSE M 206, 127 = X<> e
152, 117 = VIEW M 206, 245 = X<> IND M

154, 117 = ASTO M 207, 117 = local LBL M

3. Alpha character strings: Byte 1 is from row F; subsequent bytes from any row

(only characters from the top half of the Byte Table print; alpha strings that in-

clude any of these lower-half-of-the-table 'invisible' characters are termed non-

standard; the routine descriptions list the bytes used to create these lines).

Byte 1 from Row F determines the number of following bytes to include as part of the

text string. Use 241 (Text 1) for a single character, as "A"; use 242 for a string

of 2 characters, as "AB"; use 243 for 3 characters, as "ABC", and so on, up to a

string of a maximum of 15 characters (255). For append character strings, byte 1 is

again from Row F, and byte 2 is 127 (the append symbol). The 127 counts as a charac-

ter—for example, "AB" is 242, 657_66; "FAB" is 243, 127, 65, 66. Examples from rou-

tines in this book:

" = 242, 127, 0 "Lxi@®" = 245, 127, 1, 105, 11, O
"Oe" - 243, 127, 0, 0 M@lkkkxkn = 247, 127, 0, 7, 42, 42, 42, 42
"-oe®" = 244, 127, 0, 0, 0 "@@ = 244, 127, 0, 0, 42
"-o0®®" = 245, 127, 0, 0, 0, O "BPGOe®" = 246, 5, 80, 0, 0, 0, O
"OO®®" = 246, 127, 0, 0, 0, 0, 0 "R = 243, 44, 2, 0

"GGA" - 244, 127, 0, 0, 65
"Oex" = 244, 127, 0, 0, 1 noQn = 242, 16, 17
"o = 242, 127, 16 "A" = 243, 127, 0, 8

4. Short-form exponents: Short-form exponents don't have the superfluous leading '1°

thus saving one byte. If the number is negative, the first byte is 28 (NOT 84); the

next byte is 27; if the exponent is negative, the next byte is 28; the next byte

(the next 2 bytes with a 2-digit exponent) is from Row 1, Columns 0-9 of the Byte

Table (bytes 16-25, equivalent to the digits 0-9, respectively) (just add 16 to the

CALCULATOR TIPS & ROUTINES 107 XXV. SYNTHETIC LOAD BYTES

desired digit to get its "LB" byte: if a '5' is wanted, for example, its byte number

= 5416 = 21). "E" is the equivalent of '1', but executes faster. Adjacent numbers

input with "LB" must be separated with byte 0 (null) or byte 131 (ENTER).

E = 27 E-2 =27, 28, 18 E38 = 27, 19, 24

- E =28, 27 - E2 =28, 27, 18 - E45 = 28, 27, 20, 21

E1 =27, 17 - E-2 = 28, 27, 28, 18 E50 = 27, 21, 16

- E1 =28, 27, 17 E3 = 27, 19 E99 = 27, 25, 25

E2 =27, 18 E-4 = 27, 28, 20 E-99 = 27, 28, 25, 25

5. Global Labels: Byte 1 is 192; byte 2 is 0; byte 3 is from Row F (use a text byte

1 unit higher than the desired number of characters); byte 4 is 0; subsequent bytes

from any row (only the top half of the table prints). Ex.: LBL "A#)" = 192, 0, 244,
0, 65, 35, 41; global LBL "A" = 192, 0, 242, 0, 65.

6. Global GTO or XEQ: Byte 1 is 29 or 30; byte 2 is from Row F; subsequent bytes are

from any row (only the top half of the table prints). Ex.: GTO "A#)" = 29, 243, 65,

35, 41.

7. Local GTO or XEQ: For a short-form GTO, byte 1 is from Row B, byte 2 is 0; for

XEQ or long-form GTO, byte 1 is from Row E or D, byte 2 is 0, byte 3 is from the

postfix part of any row (direct execution only); GTO IND or—XEQ IND: byte 1 is 174,

byte 2 from postfix part of any row (top half of table for GTO IND, bottom for §E§

IND). Ex.: GTO 01 = 178, 0; GTO 99 = 208, 0, 99; XEQ IND 99 = 174, 227; local GTO

M = 208, 0, 117.

8. Number entry: Bytes are from Row 1, Columns 0-C. Successive bytes will extend a

single program line (create a multi-digit number). Use byte 0 (null) or 131 (ENTER)
to terminate digit entry before starting a new program line consisting of another

number. Use 28 (NOT 84) prior to digit bytes for negative numbers. Ex.: - 1.75E-10 =

28, 17, 26, 23, 21, 27, 28, 17, 16.

9. XROMS: See routines 25-3 and 25-4.

EXAMPLE: Key in routine 1-18, 'Synthetic Suspend & Reactivate Key Assignments'.

1-18 SYNTHETIC SUSPEND & REACTIVATE KEY ASSIGNMENTS ("SK" & "RK"): To

suspend all system and program key assignments, key in a register

pointer, 'n', then XEQ "SK"; key assignments will be stored in R'n' and

R'n+1'. To reactivate these key assignments, key 'n', XEQ "RK". Minimum

SIZE is n+2. Values in X, Y & Z before keying 'n' are restored. Step 24

is nonstandard; it is decimal 243, 127, 15, 255. Source: Keith Jarett

(4360) (PPC ROM).

25 X<> N

01 LBL "SK" o7 nrn 13 STO N 19 ARCL IND L 26 STO

02 SIGN 08 . 14 ASTOIND L 20 "Leo" 27 X<> M

03 CLX 09 X<> e 15 RDN 21 ISG L 28 STO e

04 X<> | 10 LBL 14 16 RTN 22 mw 29 RDN
05 XEQ 14 11 xn 17 LBL "RK" 23 ARCL IND L 30 CLA

06 ISG L 12 X<> M 18 SIGN *24 "|-O" 31 END
——G-———DDG-—G——————W--——=————————

1) If necessary, load "LB" and press 'SHIFT GTO ..'.

2) Switch to PRGM Mode.

3) Key in the first three lines of the routine: LBL "SK", SIGN, CLX.

4) Since the next step is synthetic, key in LBL "T", XEQ "LB", STOP.

5) Key in pluses to form the buffer. Examine the routine listing to count synthetic

bytes:

[continued]

CALCULATOR TIPS & ROUTINES 108 XXV. SYNTHETIC LOAD BYTES

Line Bytes Byte Numbers Line Bytes Byte Numbers

04 X<> 2 206, 122 22 v 1 240

07 v 1 240 *24 "o 4 243, 127, 15, 255%*

09 X<> e 2 206, 127 25 X<> N 2 206, 118

12 X<> M 2 206, 117 26 STO | 2 145, 122

13 STO N 2 145, 118 27 X<> M 2 206, 117

20 "o 3 242, 127, 0 28 STO e 2 145, 127

There are 25 synthetic bytes (n=25); the buffer (number of +'s) needed is 14 +
7[INT(n/7)] = 14+ 7[INT(25/7)] = 35. (More +'s wouldn't hurt; the approximation

n+ 14 gives 39 pluses.) Thus, key in 35 pluses.

6) Switch out of PRGM Mode to Run Mode, then XEQ "T". See "DEC. BYTE 1.72".

7) Load the bytes, one at a time, following each with R/S. For X<> |, key 206, R/S,

122, R/S; for "", key 240, R/S; for X<> e, key 206, R/S, 127, R/S. Do the same for

all the remaining bytes shown in the table above (206, 117, 145, 118, etc.).

8) After the last desired instruction has been loaded (STO e = 145, R/S, 127, R/S),

then R/S again without an entry. When execution stops, switch to PRGM Mode, see line

07 (+). The routine now exists in memory as:

01 LBL "SK" 05 XEQ "LB" 09 + 13 X<> M 17 "o 21 STO e 25 +

02 SIGN 06 STOP 10 X<3> 14 STO N 18 X<> N 22 +

03 CLX 07 + 11 v 15 "|&" 19 STO | 23 +

04 LBL "T" 08 + 12 X<> e 16 " 20 X<> M 24 +

and you are looking at step 07. [NOTE: This is the listing as it would print, except

that X<> T is shown as it displays (X<> f), and similarly, X<> [is shown as X<> M,

STO \ as STO N, X<> \ as X<> N, STO T as STO }, and X<> [as X<> M—see note on how

Registers M, N, O, P, Q & | print and view, below.] Line 11 ("") displays as T,

line 15 ("} ®") displays as T}, and line 17 displays as H&.

9) Now delete steps 04-09 by SSTing to the first synthetic line (line 10), then BST

once to Line 09 and press backarrow (correction) key once for each line to be delet-

ed (6 times in this case; stop when Line 03, CLX, appears).

10) Now SST over synthetic lines and key in normal lines as you come to them. In

this example, SST over the X<> |, key in ISG L, SST over "", key in . (decimal—the

equivalent of zero, but it executes faster), SST over X<> e, key in LBL 14 & *, SST

over X<> M and STO N, key in ASTOIND L, and so on. -

11) Near the end of the routine, after SSTing over line 28 (STO e) and keying in RDN

and CLA, SST once more to see a '+'; execute DEL 999 to get rid of this remnant of

the buffer; if you like, SST through the routine to check your work; then press

'SHIFT GTO ..'. Switch to RUN (Normal or USER) Mode. The routine is now keyed in and

ready for use.

SYMBOLS FOR STATUS REGISTERS: DiSplay: M N o P Q F

Printer: [\] t T

Convention used in this book: Routine listings are shown as listed by the printer,

except that the status register symbols above are shown as they are displayed by the

HP-41.

Source: The Synthetic Load Bytes Program ("LB") was written by Keith Jarett (4360) &

William Cheeseman (4381), and appeared in the PPC Calculator Journal, V7N10P21, Dec-

ember 1980. Reproduced with permission.

CALCULATOR TIPS & ROUTINES

LOAD BYTES PROGRAM LISTING:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

LBL "BC"

XEQ 01
X <>Y
XEQ 01

CHS
RTN
LBL 00

STO M

Mp Kok ok

X<> M

X<>d

FS?C 04

SF 01

FS?C 05

SF 02

FS?C 06

SF 03

X<> d

X<> M
n'_**u

X<> N

LBL 01
IIA"

X<> M

STO N

ASHF

RDN

"+O0Ox"
RCL M

INT

LASTX

X<> d

CF 09

CF 10

CF 11

FS?C 14

SF 11

FS?C 15

SF 13

FS?C 16

SF 14

FS?2C 17

SF 15

FS?C 18

SF 17

FS?C 19

48

49

50

51

52

53

54

55

56

SF 18

FS?C 20

SF 19

X<>d

E3

*

DEC
7

*

57 +

58

59

60

61

62

63

64

65

66

67

68

69

70

"

72

13

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90
91

92

93

94

E

RTN

LBL 02

INT

OCT

X=07?

GTO 03

X<> d

4 E2

ST+ d

RDN

FS?C 11

SF 12

FS?C 10

SF 11

Fs?C 09

SF 10

Fs? 07

SF 09

FS? 06

SF 08

SF 03

ARCL d

STO d
ll'_** "

CLX

X<>

X<>

X<>

STO

RDN

RTN

=
z
2
0
m
w

LBL 03
ll'_.ll

RDN

RTN

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

109

LBL 04

XEQ 03

XY

ENTER

X<>IND L

RDN

XY

X<> ¢

RDN

RTN

LBL 03

16

ABS

RDN

LBL 05

XEQ 03
Il'_ ><ll

X<> M

STO N
Il'_ABII

X<> N

X<> ¢

RTN

LBL 06

XEQ 03
X<>d

Fs?C 07

SF 05

FS?C 08

SF 06

FS?C 09

SF 07

FS?C 10

SF 09

Fs?C 11

SF 10

FS?C 12

SF 11

X<>d

DEC

RTN

LBL 03

RCL c¢

STO M

"OOOS"
X<> N

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

XXV. SYNTHETIC LOAD BYTES

n"_gu

X<> M

X<>d

CF 00

CF 01

CF 02

CF 03

X<>d

STO N

RTN

LBL "LB"

CF 10

CF 21

RCL b

XEQ 00

FIX 0

E

LBL 08

7 E-3
+

SF 22

DSE Y

GTO 10

"NO MORE"

AVIEW

TONE 6

RTN

LBL 09

RDN

LBL 10

FC?C 22

GTO 03

RCL M

"DPEC. BYTE "

ARCL Y
ll'_? n

AVIEW

CLA

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

STO M

RDN

TONE 7

STOP

FS? 51

GTO 11

LBL 03

FC? 22

XEQ 02

ISG X

GTO 10

RCL M

RCL Z

XEQ 04

STO M

X<> L

16

X<>Y

FS? 22

GTO 08

RTN

LBL 11

RCL M

CLA

STO M

ASTO M

RDN

E

ENTER

SF 22

7

MOD

INT

X>07?

GTO 09

RDN

7 E-3

ISG Y

GTO 10
END

(441 bytes)

CALCULATOR TIPS & ROUTINES 110 XXV. SYNTHETIC LOAD BYTES

SYNTHETIC LOAD BYTES PROGRAM By Keith Jarett (4360) & William Cheeseman (4381),

PPC Calculator Journal, V7IN10P21, December 1980.

ROW 1 (1:4)

O
ROW 2 (5: 11)

I
ROW 3 (12: 18)

A
ROW 4 (18: 24)

O
ROW 5 (24 : 29)

00O
O
O
I
A

|
|

ROW 11 (69 : 75)

ROW 12 (76 : 82)

ROW 13 (82 : 88)

|
ROW 6 (30 : 37)

I
ROW 7 (37 : 43)

AN
ROW 8 (44 : 50)

JUHMH
ROW 9 (50 : 60)

JINHIINTI
ROW 10 (61 68)

RAAR
AACAA
AR
ARR
(L
JAAA
IOCAAR
i
O

ROW 14 (88 : 96)

ROW 15 (97 : 106)

ROW 16 (107 : 114)

ROW 17 (114 : 120)

ROW 18 (120 : 126)

CALCULATOR TIPS & ROUTINES 11 XXV. SYNTHETIC LOAD BYTES

ROW 19 (127 : 133)

ROW 20 (133 : 140)

14

R 0

~

L
ROW 21 (140 : 145)

i
ROW 22 (145 : 152)

i
OW 23 (152

L
ROW 24 (156 : 165

I
ROW 25 (166 : 172)

O
ROW 26 (173 : 176)

i
ROW 27 (177 : 184)

L
ROW 28 (184 : 186)

IOA
ROW 29 (187 : 195)

A
ROW 30 (196 : 202)

IOT
ROW 31 (202 : 209)

O
ROW 32 (209 : 217)

IeVR
ROW 33 (218 : 228)

i
ROW 34 (228 : 233)

QLi

POSTFIX DIRECT POSTFIX INDIRECT

-
4
1

B
Y

T
E

T
A

B
L

E
(
H
E

X
T
A
B
L
E
)

0
4

6
5

C

0
e

N
U
L
L

0
0

L
B
L

0
0

01

L
B
L

0
2

IX —

3
€

L
B
L

0
2

0
3

4
«

L
B
L

0
3

0
4

5
B

L
B
L

0
4

6
r

LB
L

05
o
6

7
3

LB
L

06
07

8
A

L
B
L

0
7

0
8

9
o

L
B
L

0
8

0
9

1
0

o

L
B
L

0
9

1
0

11

L
B
L

11

N

1
0

1
2

L
B
L

1

1
2

1
3

&£

L
B
L

1
2

1
3

15
&

LB
L

14
15

1
6

g

0 1
6

1
7

1
7

1
8

2 1
8

1
9

A

1
9

2
0

4 2
0

‘o

2
2

4

6 2
2

2
3

7 2
3

2
4

2
4

&
|2

5
0

9 2
5

2
6

2
6

2
7

E
E
X

2
7

2
8

C
H
S

2
8

p 1 /
U

0
2
9

=2

G
T
O

o

2
9

3
1

¥

S
P
A
R
E

3
1

3
2

R
C
L

00
32

SP
AC
E

3
3

R
C
L

0
1

3
3

3
4

R
C
L

3
4

0
2 [

3
5

R
C
L

O

3
5

#$ o

3
6

R
C
L

O

3
6

®tH

3
8

&

R
C
L

0
6

3
8

39
-

RC
L

07
39

!

4
0

R
C
L

4
0

0

~

41
>

R
C
L

0
9

41
)

4
2

*

R
C
L

1
0

42
X

4
3

R
C
L

4
3

4
4

R
C
L

1
2

44
€

45
-

RC
L

45

4
7

-

R
C
L

1
5

4
7

4
8

@

S
T
O

0
0

4
8

4
9

-

S
T
O

01

4
9

5
0

S
T
O

5
0

N«

0

5
1

S
T
O

0

5
2

S
T
O

0

5
2

53
S

S
T
O

0
5

5
3

54
6

ST
O

06
sa

B

5
5

¢
S
T
O

0
7

55
|

5
6

S
T
O

5
6

0

0o

5
7

9

S
T
O

0
9

s7
3

5
8

S
T
O

1
0

sg
B

¢

5
9

S
T
O

5
9

6
0

<

S
T
O

1
2

60
L

61

61

6
3

S
T
O

1

6
3

6
4

+ 6
4

6
5

6
5

6
6

* 6
6

6
8

X
<
Y
?

6
8

6
9

E
X
>
Y
?

E
6
9

70
F

X
<
=
Y
?
F
:

7
0

M
G

T
+

G
71

7
2

- 7
2

73
1

H
M
S
+

I
7
3

4
4

H
M
S
-

-
7
4

7
5

M
O
D

7
5

7
6

L

%
L

7
6

7
7

%
C
H

7
7

8
N

P
-
R

7
8

7
9

R
-
P

7
9

8
0

L
N

8
0

81

X
12

81

82
SQ
RT

82

8
4

C
H
S

8
4

fi'v:r'Q - —

8
5

U
E
t
X

U
8
5

8
6

V¥
L
O
G

Vv
8
6

87
W

1
0
t
X

W
8
7

8
8

E
t
X
-

8
8

1

8
9

Y

S
I
N

Y
8
9

9
0

Z

C
O
S

Z
9
0

9
1

T
A
N

9
1

9
2

A
S
I
N

N\
9
2

93
3

AC
OS

93
_J

9
4

%

AT
AN
9
9

\\ O-mEL o E] |

9
5

D
E
C

9
5

Nie Blla @O}

9
6

1
/
X

9
6

9
7

A
B
S

9
7

“la Cle Ao

9
8

F
A
C
T

9
8

meMo e Ul

9
9

X
#
0
7
?

9
9

[

10
0

d
X
>
0
7
?

0
0
1
0
0
9

1
0
1

e

L
N
1
+
X

0
1
1
0
1
2

1
0
2

¥

X
<
0
?

A
1
0
2

1
0
3

9

X=
07
?

B
1
0
3

1
0
4

I
N
T

c
1
0
4

Mz Lix X<

1
0
5

1
F
R
C

D
1
0
5

1
0
6

4

D
-
R

E
1
0
6

1
0
7

R
-
D

+4+ --Nx Y- L«

F
1
0
7

1
0
8

1
H
M
S

G
1
0
8

1
0
9

m

H
R

H
1
0
9

1
1
0

n

R
N
D

I
1
1
0

o

1
1
1

O
C
T

J
1
1
1

Fle

1
1
2

C
L
Z

T

1
1
3

X
<
>
Y

Z

d| =

1
1
4

P
I

Y

Mo M« Ko O

1
1
5

s

C
L
S
T

X

1
1
6

¢

R
t

L

1
1
7

wu

R
D
N

M
[

1
1
8

o

L
A
S
T
X

N
\

1
5
w

C
L
X

1
2
0

X
=
Y
"
?

p
1

X
(
1
2
1

X
#
Y
?

O

1
2
2

=z

S
I
G
N

L
T

1
2

w

X
<
=
0
7
?

a

12
4

|
ME
AN

b

1
2
5

o>

S
D
E
V

C

1
2
6

¢©

A
V
I
E
W

a
2

1
2

-

C
L
D

e
’
.

1
2
8

o

D
E
G

0
0

1
2
9

R
A
D

01

X

1
3
0

G
R
A
D

0
2

IX

1
3
1

€

E
N
T
E
R

0
3

1
3
2

o

S
T
O
P

0
4

1
3
3

B

R
T
N

0
5

1
3
4

I
B
E
E
P

0
6

0
]

1
3
5

4
C
L
A

0
7

1
3
6

&

A
S
H
F

0
8

1
3
7

o

P
S
E

0
9

1
3
8
.

»

C
L
R
G

1
0

1
3
9

A
O
F
F

11

™
1
4
0

»

A
O
N

1
2

1
4
1

4«

O
F
F

1
3

1
4
2

P
R
O
M
P
T

1
4

1
4
3

3

A
D
V

1
5

14
4

g
RC
L

16

1
4
5

S
T
O

1
7

1
4
6

S
T
+

1
8

1
4
7

@A

S
T
-

1
9

1
4
8

o

S
T
*

2
0

1
4
9

A

S
T
/

21

1
5
0

a
I
S
G

2
2

O

1
5
1

D
S
E

2
3

1
5
2

V
I
E
W

2
4

o
(1
53

0O

Z
R
E
G

2
5

1
5
4

O
A
S
T
O

2
6

1
5
5

A
R
C
L

2
1

fE
1
5
6

@

F
I
X

2
8

1
5
7

#

S
C
I

2
9

1
5
8

£

E
N
G

3
0

1
5
9

¥
T
O
N
E

31

1
6
0

X
R
O
M

3
2

1
6
1

X
R
O
M

3
3

1
6
2

X
R
O
M

3
4

1
6
3

#

X
R
O
M

35

1
6
4

%

X
R
O
M

3
6

1
6
5

*
X
R
O
M

3
7

1
6
6

&

X
R
O
M

3
8

1
6
7

X
R
O
M

3
9

1
6
8

S
F

4
0

¢
6
9

C
F

4
1

1
7
0

*

F
S
?
C

4
2

1
M

F
C
?
C

4
3

+
1
7
2
,

F
S
?

4
4

1
7
3

—

F
C
?

4
5

1
7
4

.

G
T
O
/
X
E
Q

4
6

I
N
D
*

1
7
5

-~

S
P
A
R
E

4
7

1
7
6

B

S
P
A
R
E

4
8

1
7
7

1
G
T
O

0
0

4
9

1
7
8

2
G
T
O

01

5
0

1
7
9

32

G
T
O

0
2

51

1
8
0

4

G
T
O

0
3

5
2

1
8
1

5

G
T
O

0
4

5
3

1
8
2

6
G
T
O

0
5

5
4

1
8
3

7

G
T
O

0
6

5
5

1
8
4

G
T
O

0
7

5
6

8
1
8
5

9

G
T
O

0
8

5
7

1
8
6

G
T
O

0
9

5
8

1
8
7

G
T
O

5
9

1
0

1
8
8

<

G
T
O

11

6
0

1
8
9

=

G
T
O

1
2

61

19
0

>
GT
O

13
62

1
9
1

2

G
T
O

1
4

6
3

19
2

@
GL
OB
AL

64

1
9
3

A
G
L
O
B
A
L

6
5

1
9
4

B
G
L
O
B
A
L

6
6

1
9
5

C
G
L
O
B
A
L

6
7

1
9
6

D

G
L
O
B
A
L

6
8

1
9
7

E
G
L
O
B
A
L

6
9

1
9
8

F

G
L
O
B
A
L

7
0

1
9
9

G

G
L
O
B
A
L

"

2
0
0

G
L
O
B
A
L

1
2

H
(2
01

I

G
L
O
B
A
L

7
3

2
0
2

J
G
L
O
B
A
L

74

2
0
3

K
G
L
O
B
A
L

7
5

2
0
4

L

G
L
O
B
A
L

7
6

2
0
5

™M

G
L
O
B
A
L

7
7

2
0
6

N
X
<
>

7
8

2
0
7

O

L
B
L

7
9

2
0
8

P
G
T
O

8
0

2
0
9

G
T
O

81

@
2
1
0

G
T
O

8
2

R
2
1
1
§

G
T
O

8
3

2
1
2

T

G
T
O

8
4

2
1
3

U
G
T
O

8
5

2
1
4

¥V

G
T
O

8
6

2
1
5

W

G
T
O

8
7

2
1
6

G
T
O

8
8

»
2
1
7

¥

G
T
O

8
9

2
1
8

Z

G
T
O

9
0

2
1
9

G
T
O

91

C
2
2
0

N~

G
T
O

9
2

22
1

3
G
T
O

93

2
2
2
t

G
T
O

9
4

2
2
3

_

G
T
O

9
5

22
4

7
XE
Q

9
6

22
5

XE
Q

97

22
6

X
E
Q

98

b
22

7
¢

XE
Q

99

22
8

d
XE
Q

00
10
0

2
2
9

e

XE
Q

01
10
1

23
0

€
XE
Q

A
1
0
2

23
1

4
XE
Q

B
10
3

23
2

XE
Q

h
(2
33

1

C
1
0
4

XE
Q

D
10
5

23
4

g
XE
Q

E
10
6

2
3
5

X
E
Q

k

F
1
0
7

2
3
6

1

X
E
Q

G
1
0
8

2
3
7

™

X
E
Q

H
1
0
9

2
3
8

n

X
E
Q

I
1
1
0

23
9

o
XE
Q

J
11
1

2
4
0

p

T
E
X
T

O

T

2
4
1

T
E
X
T

Z

a 1

2
4
2

T
E
X
T

Y

r 2

2
4
3

T
E
X
T

X

Vi

2
4
4

¢

T
E
X
T

4

L

2
4
5

U
T
E
X
T

5
M

[

24
6

U
T
E
X
T

6

N
\

2
4
7

w

T
E
X
T

7

o
]

2
4
8

x

T
E
X
T

8
p

1

2
4
9

T
E
X
T

9

Q
—

2
5
0

=

T
E
X
T

1
0

E
T

2
5
1

w

T
E
X
T

1
1

a

2
5
2

T
E
X
T

1
2

b

2
5

>

T
E
X
T

1
3

C

2
5
4

Z
T
E
X
T

14
d

2
5
5

W

T
E
X
T

1
5

e

 0 1
2 3 4 5 6 5

8 9 A B C DE F

*
B
y
t
e

1
7
4

i
s

G
T
O

I
N
D

i
f

t
h
e

b
y
t
e

f
o
l
l
o
w
i
n
g

i
s

f
r
o
m

t
h
e

t
o
p

h
a
l
f

o
f

t
h
e

t
a
b
l
e

(
R
o
w
s

0
-
7
)
;

i
t

i
s

X
E
Q

I
N
D

i
f

t
h
e

b
y
t
e

f
o
l
l
o
w
i
n
g

i
s

f
r
o
m

t
h
e

b
o
t
t
o
m

h
a
l
f

o
f

t
h
e

t
a
b
l
e

(
R
o
w
s

8
-
F
)
.

f—————— 1-BYTE INSTRUCTIONS sle
"‘

 2-BYTE ———3 3-BYTE%2 3|

 CALCULATOR TIPS & ROUTINES 112 XXV. SYNTHETIC LOAD BYTES

CALCULATOR TIPS & ROUTINES 113 XXV. SYNTHETIC LOAD BYTES

SAMPLE BYTE TABLE BOX: For a detailed description of the Byte Table, see Section 2B,

'The Byte Table' (pp 9-16), in Synthetic Programming on the HP-41C, by William C.

Wickes.

DecimaL PRINTER
VALUE CHARACTER

\ 7
302

FuncTion k{L

OR PREFIX\\\\\\ PRINTER POSTFIX
N OR

PosTFIx RAND —fzzzza"’//’NUMERICAL EQuIVALENT
oF LETTER P(D1SPLAY) 132 ol ER FOSTFIX

\

TSYNTHETICN/ i/
| vJ FuncTion OnLY

/ ,

SPECIAL NUMBER///7 /// INDIcATES Non-KEYABLE

DispLAY CHARACTER DISPLAY DispPLAY CHARACTER

(2C, 2E, 3A) CHARACTER

FiGure 2-4, SampLE ByTeE TABLE “Box”

Source: Syn. Prog. on the HP-41C, By William C. Wickes

25-2 KEYING PROGRAMS WITH SEVERAL SYNTHETICS: A good procedure to use when keying

up a program containing several synthetic lines is to load them all at once in

the order that they occur in the program, and simply SST over them as needed when

keying the program into memory ahead of the 'synthetic group' of instructions.

Source: Richard Nelson (1) (PPC Calculator Journal Members Newsletter, V7N10).

25-3 COMPUTE XROM "KA" & "LB" INPUTS ("XR"): This routine will figure out the deci-

mal inputs to use for assigning, or creating in program memory, functions con-

tained in the ROM of any HP-41 peripheral or module. The input to the routine is the

function's XROM number in the form AA.BB (just as it appears as XROM AA,BB). The

output is the two decimal inputs needed in "KA" [any key assignments program, such

as the one in Synthetic Programming on the HP-41C (pp 44-47, 86-87)] or "LB", in the

form AAA.BBB. The assignment or program step produced is for 'real' XROM, not pseudo

XROM such as those produced with synthetic commands like tones. When the proper mod-

ule or peripheral is connected, these assignments will work as if they had been nor-

mally assigned or keyed into program memory with the module or peripheral connected.

Without the module or peripheral, pressing its assigned key or executing it in a

program gives "NONEXISTENT". Example: for the printer function BLDSPEC (XROM 29,06),

key in 29.06, XEQ "XR"; see 167.070; hence the two bytes to use in "KA" or "LB" are

167 and 70. Source: David Bartholomew (3666) (PPC CJ, VIN7P10).

01 LBL "XR" 06 / 11 160 16 256 21 + 26 END

02 FRC 07 INT 12 + 17 * 22 1 E3

03 LASTX 08 LASTX 13 X<OY 18 X<>Y 23 /
04 INT 09 STO T 14 RCL Z 19 1 E2 24 +
05 4 10 RDN 15 FRC 20 * 25 FIX 3 (44 bytes)

CALCULATOR TIPS & ROUTINES 114 XXV. SYNTHETIC LOAD BYTES

25-4 SYNTHETIC "XROM" INPUTS FOR "LB" (LOAD BYTES PROGRAM) ("XL"): This routine

allows the user to create program instructions for any XROM instruction. If

the two XROM numbers are represented by 'A' and 'B', then A, ENTER, B, XEQ "XL" pro-

duces the first byte in X and the second in Y. For example, to find the bytes to put

"ACSPEC" (XROM 29,04) into a program using "LB", key 29, ENTER 4, XEQ "XL"; output

is '167' in X and '68' in Y; then use bytes 167, 68 with "LB" to put ACSPEC into a

program. Works whether a printer is plugged in or not. Source: Roger Hill (4940)

(PPC ROM).

01 LBL "XL" 07 + : 01 LBL "QR" 07 LASTX

02 X<>Y 08 256 : 02 X<>Y 08 ST/ O
03 640 09 XEQ "QR" : 03 sTO O 09 CLX

04 + 10 X<>Y : 04 X<>Y 10 X<> 0
05 64 11 END : 05 MOD 11 X<>Y
06 =* (26 bytes) : 06 ST- O 12 END (23 bytes)

25-5 SYNTHETIC "BLDSPEC" INPUTS FOR "LB" ("BL"): This routine processes the seven

"BLDSPEC" numbers (column print numbers) to produce the seven "LB" bytes. Re-

member to preceed these seven text bytes with a Text 7 byte (247). 1. Key the first

BLDSPEC number, XEQ "BL"; see the first "LB" byte. 2. Key the second BLDSPEC number,

press R/S; see the second "LB" byte. 3. Repeat step 2 for the remaining BLDSPEC num-

bers. 247 (the Text 7 byte) followed by the seven bytes just generated are the eight

bytes to use with "LB" to create the appropriate text line. In a program, follow

this text line with RCL M, ACSPEC (bytes 144, 117; 167, 68) to put the character in-

to the printer buffer. EXAMPLE: Use "BL" to compute the bytes needed for the arrow

symbol in routine 22-18, Solution: the BLDSPEC numbers are 120, 96, 80, 72, 7, 6, 4.

Key 120, XEQ "BL", see '17'; key 96, R/S, see '227'; likewise, key the remaining

numbers, following each with R/S to find the corresponding bytes.

BLDSPEC: 120 96 80 72 7 6 4

"LB" BYTES: 17 227 5 9 1 195 4

Thus, to key the synthetic BLDSPEC text line into a program, use the following bytes

with "LB": 247, 17, 227, 5, 9, 1, 195, 4. Follow the text line with RCL M, ACSPEC.

Source: Roger Hill (4940) (PPC ROM). See 22-18.

01 LBL "BL" 09 RCL M 17 STOP : 01 LBL "QR" 09 CLX
02 2 10 ST+ M 18 X<>Y : 02 X<>Y 10 X<> 0
03 STO M 11 / 19 RDN : 03 STO O 11 XY
04 X12 12 XEQ "QR" 20 GTO 02 : 04 X<>Y 12 END

05 X1t2 13 RCL M 21 END : 05 MOD
06 X<>Y 14 * : 06 ST- O
07 LBL 02 15 X<> 2 : 07 LASTX
08 128 16 + (39 bytes) : 08 sT/ O (23 bytes)
--DSSSSSGSSGGWGGG-=GIT=G-G-.SDDDGWG-D——-—--———————————————————-WTGW---——GT—G-—..-—.—=

25-6 SYNTHETIC FLAG INPUTS FOR "LB" ("FL"): Given the flags to be set, this routine

will output the bytes to be loaded with "LB" to create the syfizfiétic text line

that will set or clear all 56 flags in one operation. See routine 6-8, Synthetic

Mass Flag Control. The use of a synthetic text line to control flags is memory effi-

cient only if seven or more flags are to be set or cleared. To determine flag input

bytes for "LB", XEQ "FL" (see zero); key the first flag to be set. If a tone sounds,

the display shows a byte; press R/S for another output. When the number displayed is

negative (the number of the last flag input), key the next flag and R/S. Repeat.

When all flags to be set are input, the last input, if Flag 55 was not set, should

be '56'. The seven outputs provide the seven decimal—zhputs to load with "LB". Re-

member to precede the seven bytes with '247' (the Text 7 byte).

Example: the following flags are to be set during initialization of a program; de-

termine the bytes to input to "LB" to set them with a synthetic text line: Flags 5,

25, 26, 28, 39, 40, 44. Solution:

CALCULATOR TIPS & ROUTINES 115 XXV. SYNTHETIC LOAD BYTES

DO SEE RESULT

XEQ "FL" 0.00 (start of program)
5, R/S -5.00 Negative — key next flag

25, R/S 4.00 Tone: first byte

R/S 0.00 Tone: second byte

R/S 0.00 Tone: third byte

R/S -25.00 Negative — key next flag

26, R/S -26.00 Negative — key next flag

28, R/S -28.00 Negative — key next flag

39, R/S 104 .00 Tone: fourth byte

R/S 1.00 Tone: fifth byte

R/S -39.00 Negative — key next flag

40, R/S -40.00 Negative — key next flag

44, R/S -44 .00 Negative — all desired flags input

56, R/S 136.00 Tone: sixth byte

R/S 0.00 Tone: seventh byte

R/S -56.00 (end of program)

Thus, the bytes to be input to "LB", including the Text 7 byte (247), are: 247, 4,

0, 0, 104, 1, 136, 0. Follow this synthetic flag text line with RCL M, STO d (which

can also be created with "LB" using the bytes 144, 117; 145, 126). NOTE: All flags

not specifically set are cleared. Source: Keith Jarett (4360) (PPC ROM).

See 6-8.

01 LBL "FL" 13 X<> M 25 CHS 37 "n : 01 LBL "QR"
02 CLA 14 7 26 GTO 00 38 TONE 7 : 02 XY

03 CLST 15 XY 27 LBL 13 39 STOP : 03 STO O
04 LBL 00 16 - 28 X<> M 40 END : 04 XY
05 STOP 17 2 29 ENTER : 05 MOD
06 RCL X 18 XY 30 XEQ 14 : 06 ST- O
07 8 19 Y1X 31 RDN : 07 LASTX
08 XEQ "QR" 20 ST+ N 32 GTO 01 : 08 sT/ O
09 LBL 01 21 E 33 LBL 14 : 09 CLX

10 X<> M 22 X=Y? 34 CLX : 10 X<> 0
11 X£Y? 23 XEQ 14 35 X<> N : 11 X3y

12 GTO 13 24 Rt 36 ISG M (65 bytes) : 12 END

116

CHAPTER XXVI

REFERENCE

26-1 HP-41 USER MEMORY PARTIONING: Source: 'Synthetic Programming on the HP-41C',

by William C. Wickes.

BYTE NUMBER

6 5 4 3 2 1 0
T 1 T 1 1 T

1FF TOP OF MEMORY

: T

w
-
>
a

DATA £ abc

1C0

M

R 4
mno QQ---________.._-_.. 5

FIRST USER PROGRAM S
z

180

)N

w

5‘ def
a
o

5 =

@ 140
>

= —

i pqr||{LAST_USER_PROGRAM _ _.END, _|I
® a
o [=}

& "AVAILABLE" = i100 ghi

KEY ASSIGNMENTS I k1

0Co 3 i
b
<

e
(NON-EXISTENT ADDRESSES) Z

x
t

0OF

STATUS REGISTERS

000

CALCULATOR TIPS & ROUTINES 117 XXVI. REFERENCE

26-2 THE STATUS REGISTERS: Source: 'Synthetic Programming on the HP-41C', by

William C. Wickes.

BYTE NUMBER

6 5 4 3 2 1 0
' v ' T ' LINEe SHIFTED KEY ASSIGNMENTS SCRATCH| wumeer

|

OOF
t i t — + 1d USER FLAGS : SYSTEM FLAGS 00E

T Teoiron] co Tc IREG SCRATCH| Sooo Roo :END. 00D
1

v3RD ADDRESSb

|

RETURN 2ND RETURN 1ST RETURN POINTER 00C

3RDa| 6TH ?ETURN 5TH ?ETURN 4t ?ETURN ReTurn| OOB
T ' '

- UNSHIFTED KEY ASSIGNMENTS SCRATCH 00A
! ; i : + : A

Q TEMPORARY ALPHA SCRATCH 009 D
N % ' i 'SCRATCH ALPHA DA P (ALPHA REGISTER 25-28) REGISTER 22-24 008 R

l T T t '
M 0 ALPHA REGISTER 15-21 007 E
E 1 ! 4 4 { +T I ! ' ' ' SN ALPHA REGISTER 8-14 006

= % % % t * S
M ALPHA REGISTER 1-7 005

+ 4 } + t t
L STACK L 004

f : } + :]
X STACK X 003

: 4 { } 1 %
Y STACK Y 002

+ 1 t t * *
7 STACK Z 001

+ } : + t 5
T STACK T 000 i 1 i 1 A A

S | GNf<@———————— MANTISSA—————IGN|EXPONENT

CALCULATOR TIPS & ROUTINES 118 XXVI. REFERENCE

26-3 STACK REARRANGEMENTS: This listing gives all 256 rearrangements of the stack;

all but 22 are 3 instructions or fewer. Source: John Dearing (2791) (PPC CJ,

VIN2P22). See 7-11.

TTTT R?t, ENTER, ENTER, ENTER TYTT RDN, RCL Z, STO Z

or Rt, ENTER, ENTER, STO T TYTX X<> T, STO Z

TTTX Rt, ENTER, ENTER TYTY X<> T, RCL Y, RCL Y

or Rt, RCL X, RCL X TYTZ X<>Y, Rt, STO Z

TTTY Rt, ENTER, STO Z TYXT X<>Y, Rt, STO T

TTTZ Rt, STO Y, STO Z TYXX STO Z, X<> T

TTXT R?t, ENTER, STO T TYXY X<>Y, STO Z, Rt

TTXX STO Y, Rt, ENTER TYXZ X<>Y, Rt

or STO Y, Rf, RCL X TYYT RDN, STO Y, RCL 2

TTXY Rt, RCL X \ TYYX RDN, STO Y, X<> Z

TTXZ X<>Y, Rt, STO Y TYYY Rt, RCL Z, STO Z, RDN

TTYT Rt, STO Y, STO T TYYZ X<>Y, STO Y, Rt

TTYX X<>Y, Rt, ENTER TYZT RDN, RCL Z

or X<Y, Rt, RCL X TYZX X<> T

TTYY RDN, RCL X, Rt, ENTER TYZY RDN, ENTER, X<> T

or RDN, RCL X, Rf, RCL X TYZZ RDN, RCL Y, X<> T

TTYZ Rt, STO Y

TTZT RDN, RCL Z, STO Y

TTZX X<> T, STO Y

TTZY RDN, X<> Z, ENTER

or RDN, X<> Z, RCL X

TTZZ X<> T, STO Y, RCL Z, RDN

TXTT Rt, STO Z, STO T TZTT RDN, RCL Z, STO Y, RDN

TXTX Rt, RCL Y, RCL Y TZTX RDN, RDN, RCL Y

TXTY X<3Y, X<> T, STO Z TZTY X<> T, RCL Z, RCL Y

TXTZ Rt, STO Z TZTZ RDN, X<> Z, RCL Y, RCL Y

TXXT STO Y, Rt, STO T TZXT X<> T, STO Y, RDN

TXXX STO Z, STO Y, Rt TZXX STO Y, RDN, X<> Z

TXXY Rt, RCL Y, XI>Y TZXY RDN, RDN, X<>Y

TXXZ STO Y, Rt TZXZ X<> Z, STO Y, X<> T

TXYT Rt, STO T TZYT RDN, X<>Y, RCL Z

TXYX STO Z, Rt TZYX RDN, X<> Z

TXYY Rt, RCL Z, RDN TZYY RDN, STO T, X<> 2

TXYZ Rt TZYZ RDN, RCL Y, Rt

TXZT X<>Y, RDN, RCL Z TZZT RDN, RDN, RCL X, RCL Z

TXZX STO Y, X<3> T TZZX X<> Z, STO Y, R?

TXZY X<3Y, X<3> T TZZY RDN, X<>Y, RCL X, Rt

TXZZ RDN, RDN, STO T, RDN TZ2ZZ X<> T, RCL Z, STO Z, RDN

CALCULATOR TIPS & ROUTINES

XTTT

XTTX

XTTY

XTTZ

XTXT

XTXX

XTXY

XTXZ

XTYT

XTYX

XTYY

XTYZ

XTZT

XTZX

XTZY

XTZZ

XXTT

or

XXTX

XXTY

XXTZ

XXXT

XXXX

or

XXXY

XXX2

XXYT

XXYX

XXYY

or

XXYZ

XXZT

XXZX

XXZY

or

XXZZ

119

ceeees X

Rt, STO Z, STO T, RDN
Rt, RCL X, RCL Z
Rt, ENTER, X<> 2
R?, STO Z, X<>Y
Rt, STO Z, RCL Y
Rt, RCL Y, STO T
Rt, RCL Y
Rt, X<>Y, STO Z
Rt, STO T, X<>Y
X<>Y, Rt, RCL Z
Rt, RCL Z, X<> Z
Rt, X<OY
Rt, STO Z, RDN

STO Y, X<3> T, X<>Y

RDN, RDN, X<> Z

X<> Z, STO Y, RDN, RDN

R?1, STO Z, X<>Y, ENTER
Rt, STO Z, X<>Y, RCL X
STO Y, RDN, STO Y
X<>Y, RDN, STO Y
STO Y, Rt, X<> 7Z
STO Y, STO Z
ENTER, ENTER, ENTER
ENTER, ENTER, STO T
RCL X, RCL X
ENTER, STO Z
STO Z, X<>Y, X<> Z
ENTER, STO T
RCL Y, X<>Y, ENTER
RCL Y, X<>Y, RCL X
RCL X
STO Y
STO Y, STO T
RCL Z, X<>Y, ENTER
RCL Z, X<>Y, RCL X
RCL Z, RDN, STO Y

XYTT

XYTX

XYTY

XYTZ

XYXT

XYXX

XYXY

XYXZ

XYYT

XYYX

XYYY

XYYZ

XYZT

XYZX

XYZY

XYZ7Z

XZTT

XZTX

XZTY

XZTZ

XZXT

XZXX

XZXY

XZX7Z

XZYT

XZYX

XZYY

XZYZ

XZZT

XZ7ZX

XZ27Y

X227

XXVI. REFERENCE

Rt, STO T, RDN

STO Z, RDN, XY

X<>Y, STO Z, RDN

X<> Z, RDN, XI>Y

STO Z

STO T, STO Z

RCL Y, RCL Y

X<>Y, RCL Y

X<>Y, STO Z, X<>Y

X<>Y, RCL X, RCL 2Z

RCL ¥, STO T, X<>Y

RCL Y, X<>Y

(original order)
STO T

RCL Y, RDN

RCL Z, RDN

X<>Y, RDN, RCL Z, RDN

STO Y, RDN

X<>Y, RDN

X<>Y, RDN, RCL Y, RDN

STO Y, X<> Z, X<>Y

STO Y, RDN, STO Z

RCL Z, RCL Y

RCL Z, X<>Y, STO Z

RDN, X<>Y, Rt

X<> Z, RCL Z

X<>Y, STO T, RDN
RCL Z, X<>Y
X<> Z, STO Y, X<> 2
RCL Z, RCL X, RCL Z
RCL Z, ENTER, X<> Z
RCL Z, STO Z, X<>Y

CALCULATOR TIPS & ROUTINES 120 XXVI. REFERENCE

YTTT RDN, RCL Z, STO Z, RDN YYTT RDN, STO Y, RCL Z, RDN
YTTX R?t, RCL X, Rt YYTX RDN, STO Y
YTTY R?t, STO Y, RCL Z YYTY RDN, STO Y, STO T
YTTZ X<> T, ENTER, X<> Z YYTZ X<> Z, RDN, STO Y
YTXT R?t, ENTER, X<> T YYXT STO Z, RDN, ENTER
YTXX Rt, RCL Y, X<> T or STO Z, RDN, RCL X
YTXY Rt, RCL Z YYXX STO Z, X<>Y, ENTER
YTXZ RDN, X<>Y, RDN or STO Z, X<>Y, RCL X
YTYT X<> T, STO Z, RCL Y YYXY RCL Y, RCL Z
YTYX X<>Y, Rt, RCL Y YYXZ X<>Y, RCL X
YTYY Rt, RCL Z, STO Z YYYT RDN, ENTER, STO Z
YTYZ X<> T, RCL Y YYYX X<>Y, ENTER, ENTER
YTZT RDN, RCL Z, X<>Y or X<>Y, RCL X, RCL X
YTZX X<> T, X<>Y YYYY RCL Y, ENTER, STO Z
YTZY RDN, X<> Z, RCL Z YYYZ RCL Y, STO Y
YTZZ X<> T, RCL Z, X<> Z YYZT RDN, RCL X

YYZX RCL Y, X<>Y, RDN
YYZY RDN, ENTER, STO T
YYZZ RCL Z, X<> Z, STO Y

YXTT Rt, STO T, X<> Z YZTT RDN, RCL Z, RDN
YXTX STO Z, RDN YZTX RDN
YXTY STO Z, RDN, STO T YZTY RDN, STO T
YXTZ X<> Z, RDN YZTZ RDN, RCL Y, RDN
YXXT STO Z, X<>Y YZXT X<> Z, X<>Y
YXXX RCL X, RCL X, Rt YZXX STO T, RDN
YXXY RCL X, RCL Z YZXY RCL Z, RCL Z
YXXZ ENTER, X<> Z YZXZ X<>Y, RCL Z, X<OY
YXYT X<>Y, STO Z YZYT RDN, X<>Y, RCL Y
YXYX STO Z, RCL Y YZYX RDN, STO Z
YXYY RCL Y, STO T YZYY RDN, STO Z, STO T
YXYZ RCL Y YZYZ RDN, RCL Y, RCL Y
YXZT X<>Y YZZT RDN, RCL Y, X<>Y
YXZX STO T, X<OY YZZX RCL Z, RCL X, Rt
YXZY X<>Y, STO T YZZY RCL Z, STO Y, RCL Z
YXZZ RCL Z, X<> 2 YZZZ RCL Z, STO Y, X<> Z

CALCULATOR TIPS & ROUTINES 121 XXVI. REFERENCE

ZTTT

ZTTX

ZTTY

ZTTZ

ZTXT

ZTXX

ZTXY

ZTXZ

ZTYT

Z2TYX

ZTYY

ZTYZ

ZTZT

ZTZX

ZTZY

ZTZ2Z

ZXTT

ZXTX

ZXTY

ZXTZ

ZXXT

ZXXX

ZXXY

ZXXZ

ZXYT

ZXYX

ZXYY

ZXYZ

ZXZT

ZXZX

ZXZY

ZX722Z

cereee 7

Rt, STO Y, STO Z, Rt
X<> T, STO Y, X<> Z
Rt, STO Y, Rt
X<> T, STO Y, RCL Z
Rt, STO Z, Rt
STO Y, RDN, RDN
RDN, RDN
RDN, RDN, STO T
Rt, STO Y, X<> T
X<>Y, RDN, RDN
RDN, STO T, RDN
RDN, RCL Z, RCL %
RDN, RDN, RCL Y, RCL Y
X<> Z, STO Y, X<> T, Rt
RDN, RDN, STO Z
X<> T, RCL Z, STO Z

Rt, STO Z, X<> T
STO Y, RDN, X<>Y
X<>Y, RDN, X<>Y
X<> Z, STO Y, RDN
STO Y, X<> Z
ENTER, STO Z, Rt
RCL X, Rt
STO Y, RCL Z
X<>Y, X<> Z
ENTER, X<> T
RCL Y, X<> T
RCL Z
X<>Y, RDN, RCL Y
ENTER, X<> T, STO Z
RCL Z, X<>Y, RCL Y
RCL Z, STO Z

ZYTT

ZYTX

ZYTY

ZYTZ

ZYXT

ZYXX

ZYXY

ZYXZ

ZYYT

ZYYX

ZYYY

ZYYZ

ZYZT

ZYZX

ZYZY

ZYZZ

Z72TT

or

ZZTX

or

Z72TY

or

Z7TZ

or

ZZXT

Z7ZXX

ZZXY

Z7XZ

ZZYT

or

Z27ZYX

Z72YY

Z72Y7Z

2272T

Z72ZX

or

Z272Y

2727

RDN, RCL Z, X<3 Z

RDN, X<3>Y

RDN, STO T, X<>Y

RDN, X<3>Y, STO T

X<> Z

STO T, X<> Z

RCL Y, Rt

X<>Y, RCL 2

RDN, ENTER, X<3> Z

RDN, STO Z, X<>Y

RCL Y, STO Y, Rt

X<>Y, STO Y, RCL Z

RDN, RCL Y

RDN, X<>Y, STO Z
RDN, STO Z, RCL Y
X<>Y, RCL Z, STO Z

Rt, STO Y, RCL T, ENTER
R?, STO Y, RCL T, RCL X
RDN, RDN, ENTER
RDN, RDN, RCL X
X<> T, RCL Z, ENTER
X<> T, RCL Z, RCL X
RDN, RDN, STO Z, ENTER
RDN, RDN, STO Z, RCL X
X<> Z, STO Y
STO Y, RCL Z, RCL X
RCL Z, Rt
X<>Y, RCL Z, STO Y
RDN, X<>Y, ENTER
RDN, X<>Y, RCL X
X<> Z, RCL X
RCL Y, X<> T,
RCL Z, STO Y
RDN, RCL Y, STO Y

STO Y

RCL Z, ENTER, ENTER

RCL Z, RCL X, RCL X

RCL Z, ENTER, STO Z

RCL Z, STO Y, STO Z

CALCULATOR TIPS & ROUTINES 122 XXVI. REFERENCE

———.———————TWW.SGTGWTTG-GTSGSG=WGSGS=TGSMSGSNSSGTGSGWDGGDSGS GHD SDSDWDDGNDDD S5eeeeo=

26-4 HP-41 FLAG TABLE: Source: PPC Journal (V6N5P27) & HP KEY NOTES (V4N3P5).

FLAG FLAG IF SET STATUS AT

NO. NAME (OR SET BY) TURN-ON*

FULL-UGSE FLAGS

00-10 General Purpose 00-04 annunciators. M, 1

11 Automatic Execution Program execution starts at turn-on. C

12 Printer Double Wide Prints all double wide. C

13 Printer Lowercase Alphabetics in lowercase letters. C

14 Card Reader Overwrite Writes on cards with clipped corners. C

15

16

1; Future use

19

20

21 Printer Enable Flag 55 usually set; print if possible. 2

22 Numeric Input Numeric data entry sets flag. C

23 Alpha Input Alpha data entry sets flag. C

24 Range Error Ignore Range Error ignored. C

25 Error Ignore Operation not performed, flag cleared. C

26 Audio Enable Tones audible. S

27 User Mode USER Mode. M, 1

28 Decimal vs Comma Radix is decimal point. M,3

29 Digit Grouping Digit grouping (in groups of three) if set; M,3

does not show radix in Fix 0 if clear.

TEST-ONTLY FLAGS

Set = YES, Clear = NO; shows "NONEXISTENT" if set or clear is attempted.

30 Catalog Executing a catalog. Always tests clear. C

31-35 Peripheral Peripheral connected. M

Digits: 0 1 2 3 4 5 6 7 8 9

36 No. Digits Displayed c ¢ ¢ cC CcC Cc Cc Cc s s M,1

37 " " " c ¢ ¢ ¢ s s s S C C M,3

38 " " " c ¢ s s ¢c € s S C ¢C M,1

39 " " " c s ¢ s C s C s C S M,1

40 Display Format FIX display . . M,1

41 Display Format ENG disglay } SCI display if both clear. M,1

42 Grads Mode GRAD Mode . M,1

43 Radians Mode RAD Mode | PEG Mede if both clear. M, 1
44 Continuous ON XEQ ON to set; won't shut off in 10 min. C

45 System Data Entry System data entry. Always tests clear. C

46 Partial Key Sequence Partial key sequence. Always tests clear. C

47 Shift SHIFT Mode. Always tests clear. C

48 Alpha Mode ALPHA Mode. C

49 Low Battery Low battery. M

50 Message Message in display. Always tests clear. C

51 SST Single-step. Always tests clear. C

52 PRGM Mode Program Mode. Always tests clear. C

53 1/0 Input/output device is ready (handshake). NA
54 PSE Pause in progress. Always tests clear. NA

55 Printer Existence Printer is plugged in. 2

* NOTES: C = Cleared. 1 = "Master Clear" clears flag.

M = Maintained by Continuous Memory. 2 = Flag 21 is set to match Flag 55

NA = Not applicable. at turn-on.

S Set. 3 = "Master Clear" sets flag.

123

INDEX

ROUTINE OR CHAPTER NO. PAGE

% 2-4 6

%CH 2-4 6

%CH, a use for 7-3 26

"_DEC" (real number to decimal) 15-5 55

"_INT" (real number to integer) 15-5 55

"2V" (two-variable plotting) 22-10 90

"55" (flag 55 toggle) 6-6 23

"7TENG" 4-9 16

"IFIX" 4-9 16

"Jsci" 4-9 16

"=@¢" (multiple output on one or more lines) 22-24 93

"?S" (synthetic size finder) 1-16 3

"25" (synthetic test size) 3-4 1

"?S" (test size) 3-3 11

“AD" (alpha delete last character) 5-4 19

“AL" (alphabetize X and Y) 12-5 49

Algebra, & Arithmetic XV 55

Alpha delete last character ("AD") 5-4 19

Alpha labels, indirect use of 1-5 1

Alpha Manipulations v 19

Alpha print, no scrolling 2-31 9

Alpha string as indirect address 2-28 9

Alpha string length 4-6 16

Alpha string testing restrictions 5-2 19

Alpha to memory ("AM") 5-1 19

Alpha, view ("VA") 4-1 15

Alphabetize X and Y ("AL") 12-5 49

“AM" (alpha to memory) 5-1 19

"AN" (column alignment) 22-15 87

Angles, bounding 16-8 62

Angles kept less than 90° or 180° 16-3 62

"AP" (area of a parabolic segment) 16-11 63

"AR" (area of a regular polygon) 16-13 63

ARCL loss of characters 5-9 21

ARCTAN Y/X 16-7 62

Arithmetic & Algebra XV 55

Arithmetic, chain 15-9 56

Arithmetic, data register 9-9 34

“"ASINH", "ACOSH" & "ATANH" (inverse hyperbolics) 16-17 65

assignments clear card 21-8 79

"AV" & "AVN" (AVIEW replacements) 4-18 18

AVIEW replacements ("AV" & "AVN") 4-18 18

"AX" (print alpha left, X right) 22-16 87

"B+" (little block plus) 19-9 74

"B?" (block review and edit) 10-26 40

Banner, letter ("LET", "DIG" and "SYM") 23-2 98

Banner printer ("BANR", "CHAR" and "CODE") 23-1 97

Banners XXIII 97

"BANR" (banner printer) 23-1 97

Base conversion, synthetic ("BD" and "TB") 17-1 67

Base Conversions XVII 67

Base ten, conversion to in the stack 17-2 67

Basic Functions & Operations I 1

Batteries, card stuck because of low 21-3 78

"BC" (block clear) 10-23 38

"BD" (base b to base 10) 17-1 67

"BE" (block exchange) 10-14 37

"BF" (big factorials) 15-27 60

“BI" (block increment) 10-6 35

Big factorials ("BF") 15-27 60

“BL" (synthetic BLDSPEC inputs for “"LB") 25-5 114

BLDSPEC inputs for "LB" ("BL") 25-5 114

BLDSPEC, synthetic 22-18 89

Block clear ("BC") 10-23 38

Block duplicate ("DUP") 10-11 36

Block, erase ("EB") 10-20 38

Block exchange ("BE") 10-14 37

Block, exchange ("XB") 10-13 37

Block extremes ("BX") 10-18 38

Block increment ("BI") 10-6 35

10-3 35Block, input ("INBL")

ROUTINE OR CHAPTER NO. PAGE

Block input, improved ("IB") 10-5 35

Block move ("BM") 10-12 37

Block Operations X 35

Block plus ("BP") 19-8 74

Block plus, little ("B+") 19-9 74

Block review and edit ("B?") 10-26 40

Block rotate ("BLR") 10-16 37

Block rotate in either direction ("BR") 10-17 38

Block statistics ("BI") 19-11 74

Block, statistics ("IB") 19-10 74

Block view ("BV") 10-9 36

Block, view ("VB") 10-7 36

Block view, synthetic ("VB") 10-8 36

"BLR" (block rotate) 10-16 37

"BM" (block move) 10-12 37

Bounding angles 16-8 62

"BP" (block plus) 19-8 74

"BR" (block rotate, either direction) 10-17 38

"BS" (bytes saved with a subroutine) 1-27 5

BST and editing 2-3 6

Buffer, clearing 22-3 83

Buffer, nature of 22-7 83

"BV" (block view) 10-9 36

"BX" (block extremes) 10-18 38

Byte count printing 22-6 83

Bytes 1-10 2

Bytes, load ("LB") 25-1 105

Bytes saved with a subroutine ("BS") 1-27 5

Bytes, Synthetic Load XXV 105

"BYX" (YtX for large values) 15-28 60

"BI" (block statistics) 19-11 74

"C?" (synthetic curtain finder) 1-17 3

"C?" (synthetic curtain finder) 8-5 30

Calculus; Geometry, Trig & XVI 62

Calendar-Julian date conversions ("CJ" & "JC") 20-2 76

Calendar, print ("PC") 20-4 77

Calling different functions 3-17 14

Card Reader & Wand XXI 78

Card reader current drain and wear 21-1 78

Card reads, completing 21-2 78

Card stuck 21-3 78

Card won't read 21-5 78

Catalog review, slowing 1-4 1

Catalogs, printing 22-3 83
"CD" (character to decimal) 5-6 20
"CE" (standard character set) 22-10 85

Celsius-Fahrenheit conversions ("TEMP") 18-17 70

Celsius-Fahrenheit conv., both sol'ns ("TEM") 18-19 71

Celsius-Fahrenheit conv., stack ("TMP") 18-18 70

Chain arithmetic 19-9 56

Changes in programs 2-2 6
"CHAR" (banner printer) 23-1 97

Character-decimal conversions ("CD" & "DC") 5-6 20

Character loss with ARCL 5-9 21

Character set, standard ("CE") 22-10 85

Character, standard, into X 1-1 1

Characters, special ("SC") 22-25 93

"cJ" (calendar date to Julian day number) 20-2 76

Cleaning cards 21-5 78

Clear assignments card 21-8 79
Clear key assignments ("KC") 1-26 5

Clear, master 1-9 2

Clear multiple flags ("CFX" & "CFA") 6-3 22

Clear, multi-register ("CLRGX") 10-19 38

Clear registers with CLZI 10-21 38

Clear registers with no numeric labels ("CR") 10-22 38

Clearing higher-numbered registers 9-6 32

"CLR" (clear any flag) 6-15 25

"CLRGX" (multi-register clear) 10-19 38

CLX, use RDN instead 2-18 8

CLZT used for multi-register clear 10-21 38

"CM" (stack combinations) 19-14 75

CALCULATOR TIPS & ROUTINES 124 INDEX

ROUTINE OR CHAPTER NO. PAGE ROUTINE OR CHAPTER NO. PAGE

"CODE" (banner printer) 23-1 97 "DUP" (block duplicate) 10-11 36
Column alignment ("AN" & "P2") 22-15 87 Duplicate block ("DUP") 10-11 36

"COM" (combinations, compact) 19-13 75 Duplicating function and program names 2-12 8
"COMB" (combinations) 19-12 75 "DV" (printout dividers) 22-14 86
Combinations ("COMB") 19-12 75 "DX" (fast decimal-hex conversion) 17-4 68
Combinations, compact ("COM") 19-13 75 ———

Combinations, stack ("CM") 19-14 75 "EB" (erase block) 10-20 38
Complex number multiplication in stack ("MC") 15-24 59 Editing, and BST 2-3 6

Complex quadratic equation ("QE" & "PRQE") 15-26 59 Editing blanks and punctuation 5-3 19

Conditional, do two steps if true 2-8 7 Effect on X and Y of some functions 2-4 6
Conditional false, add or subtract if 2-23 S Effective interest 18-22 n
Conditionals, missing 1-6 2 eG@BEEP printer function 22-9 85
Conversions & Shortcuts, Unit XVIII 69 "EN" (getting to the .END.) 8-4 30

Conversions, Base XVII 67 .END., getting to the ("EN") 8-4 30
Copy register into another, address in X 9-10 34 END, no 2-30 9

Cos and sin simultaneously 16-6 62 English units stored as metric 18-4 69

"COSH" (hyperbolic cosine) 16-17 65 Entering without ENTER 1-12 2

Cosines, law of 16-10 62 Equations, solving systems of ("RRM") 11-4 45

"CR" (clear registers with no numeric labels) 10-22 38 "ER" (even round) 14-9 54
Crash 1-23 4 Erase block ("EB") 10-20 38
"CU" (curtain up) 8-1 29 Error, to introduce into X 15-8 56
Cube root of any number ("CURT") 15-21 58 "ET" (Euler transformations) 16-14 63
Cubes, sum of ("I3") 15-3 55 Euler transformations ("ET") 16-14 63

"CURT" (cube root of any number) 15-21 58 Even round ("ER") 14-9 54
Curtain, & Memory VIII 29 "EX" (exponent, synthetic) 15-19 58
Curtain finder ("C?2") 8-5 30 Exchange block ("XB") 10-13 37
Curtain finder, synthetic (C?") 1-17 3 Exchange, data register 9-9 34
Curtain up ("CU") 8-1 29 Executing a numeric-labeled routine 2-10 7

Executing a series of steps more than once 2-14 8
"D-DM" (decimal degree to degree & decimal min.) 18-14 70 "EXP" (exponent, synthetic) 15-18 58
"D-F" (decimal to ‘'ruler' fraction) 14-8 54 Exponent or mantissa replace X ("XPN" & "MAN") 15-16 57
D-R 2-4 6 Exponent, synthetic ("EX") 15-19 58
"DM-D" (degree & decimal min. to decimal degree) 18-14 70 Exponent, synthetic ("EXP") 15-18 58
Data entered in program 21-6 78 Exponent, keying 1-20 3

Data names ("DN") 22-11 86

Data processing, & Matrices XI 41 "F+", "F-", "F*" & "F/" (fractional arithmetic) 14-7 53

Data register exchange and arithmetic 9-9 34 "F-D" ('ruler' fraction to decimal) 14-8 54
Data register load and review ("LD" & "RV") 9-1 32 Factorials, big ("BF") 15-27 60
Data Registers IX 32 Fahrenheit conversions—see Celsius
Date, Time & XX 76 Fast factorial factor finder ("FFFF") 15-23 59
"dB+" & "dB-" (decibel add and subtract) 5-32 61 Fast size finder ("SzZ") 1-15 3

"DC" (decimal to character) 5-6 20 "FB" (Fibonachi series) 15=7 56

DDD.MM ,M—DDD. DDD 18-16 70 "FD" (first derivative) 16-20 65
Decibel add and subtract ("dB+" & "dB-") 15-32 61 Feet and inches to feet ("FIN") 18=2 69

Decimal-character conversions ("CD" & "DC") 5-6 20 "FFFF" (fast factorial factor finder) 15-23 59
Decimal-hex donversions, fast ("DX") 17-4 68 Fibonachi series ("FB") 15-7 56

Decimal point and exponents 1-2 1 "FIN" (feet and inches to feet) 18-2 69
Decimal to fraction ("DF") 14-1 52 First derivative ("FD") 16-20 65
Decimal to fraction driver ("DFD") 14-2 52 Fitting 'tight' 67/97 programs 1-8 2

Decimal to 'ruler' fraction ("F-D" & "D-F") 14-8 54 Five second 'pause’ 2-26 9
Degrees—degrees and dec. min. ("DM-D" & "D-DM") 18-14 70 'FIX/ENG' display mode 4-10 16
Degree-min-tenths and decimal degree conversions 18-16 70 "FL" (synthetic flag inputs for "LB") 25-6 114

DEL hangup 21-9 79 Flag 12 reset 6-13 25
Delete last alpha character ("AD") 5-4 19 Flag 21 use 6-14 25
Delete to end of program 2-1 6 Flag 55 toggle ("55") 6-6 23
Derivative, first ("FD") 16-20 65 Flag control, mass 6-8 23
Detect numeric input 3-14 14 Flag determines prompt 3-11 13
Determinants and inverses ("RRM") 11-4 45 Flag inputs for "LB" ("FL") 25-6 114

"DF" (decimal to fraction) 14-1 52 Flag invert ("IF") 6-4 22
"DFD" (decimal-to-fraction driver) 14-2 52 Flag multiple clear ("CFX" & "CFA") 6-3 22
"DIG" (letter banner) 23-2 98 Flag set or clear with 0 or 1 6-2 22
Digits, last two in SCI 1-7 2 Flag table 26-4 122
Digits, sum of integer ("ID") 15-4 55 Flag toggling ("FT") 6-1 22
Display v 15 Flags & Tones VI 22
Display one text or another 4-7 16 Flags, reset ("RF") 6-7 23
Display mode change ("7FIX", "7SCI" & "7ENG") 4-9 16 Flags, view ("VF") 6-5 22
Display mode recall ("DSPR") 4-3 15 "FN" (print function values) 22-17 88
Display mode recall ("RD") 4-4 15 Fraction round, nearest 14-5 53

Display mode save ("DSPS") 4-3 15 Fraction, round to nearest ("NF") 14-4 52
Display mode store ("SD") 4-4 15 Fraction, ‘ruler', to decimal ("F-D" & "D-F") 14-8 54
Display save temporarily 4-5 15 Fractional arithmetic ("F+", "F-", "Fx", “p/",
Display set ("DS") 4-8 16 "RE" & "MX") 14-7 53
Display test ("DT") 4-17 18 Fractions & Rounding XIV 52
Display X & Y simultaneously ("XY" & "X?Y") 4-16 17 Fractions, reduce ("RED") 14-3 52

"DIV" (printout dividers) 22-4 86 Frequency, summations with ("IF") 19-1 72
Divide by 100 18-8 69 "FT* (flag toggling) 6-1 22
Dividing a program into two programs 2-13 8 Function priority of top row keys 1-24 5
Dividing line ("LINE") 22-13 86 Function, test determines 2-7 7
"DN" (data names) 22-11 86 Function values, print ("FN") 22-17 88

Do two steps if conditional true 2-8 7 Functions, calling different 3-17 14

Double storage 9-8 33 Functions, effect of some on X and Y 2-4 6
"DR" (delete record) 11-2 42

"DS" (display set) 4-8 16 Gaussian random number generator ("GN") 13-4 50

"DSPR" (display mode recall) 4-3 15 "GCD" (greatest common divisor) 15-13 56
"DSPS" (display mode save) 4-3 15 "GD" (greatest common divisor) 15-13 56
"DT" (display test) 4-17 18 Geometry, Trig & Calculus XVI 62

CALCULATOR TIPS & ROUTINES INDEX

ROUTINE OR CHAPTER NO. PAGE ROUTINE OR CHAPTER NO. PAGE

Getting to the .END. ("EN") 8-4 30 Length of alpha strings 4-6 16

"GN" (Gaussian random number generator) 13-4 50 Lengthen return stack ("LR") 2-33 10

Go to the end of program 2-1 6 "LET" (letter banner) 23-2 98

Goose 1-3 1 Letter banner ("LET", "DIG" & "SYM") 23-2 98

Goose replacement ("SCR" & "SO") 4-14 17 "LG" (PPC logo) 22-19 89

Goose replacement, synthetic 4-15 17 "LINE" (dividing line) 22-13 86

Goose vs. (A)VIEW 4-2 15 "LO" (lock off) 1-13 2

GRAD conversions 18-1 69 Load and review data registers ("LD" & "RV") 9-1 32

Greatest common divisor ("GCD" & "GD") 15-13 56 Load bytes ("LB") 25-1 105

Gregorian calendar conversions ("CJ" & "JC") 20-2 76 Load Bytes, Synthetic XXV 105

"GT" (generate a table of primes) 15-14 57 Load registers with same value 10-1 35

GTO, short-form with full memory 2-32 10 Lock off ("LO") 1-13 2

GTO. hangup 21-9 79 Local alpha labels, indirect won't work 2-11 7

- Local labels 2-17 8

Hangup with SIZE, DEL or GTO. 21-9 79 Logo, PPC ("LG") 22-19 89
"HD" (hide data registers) 8-6 30 Loop counter 2-16 8
Hex-decimal, synthetic ("XD") 17-5 68 "LR" (lengthen return stack) 2-33 10

Hex-NNN conversions ("NH" & "HN") 5-7 20 -

"HG" (high-resolution histogram) 22-8 84 “M1" - "M5" (matrix routines) 1121 41

Hide and uncover data registers ("HD" & "UD") 8-6 30 “MA" (memory to alpha) 5.1 19

High-resolution histogram ("HG") 22-8 84 "MAN" (mantissa replace X) 15-16 57
Histogram, high resolution ("HG") 22-8 84 "MANT" (mantissa, synthetic) 15-18 58
"HN" (hex-NNN conversion) 5-17 20 Mantissa or exponent replace X ("XPN" & "MAN") 15-16 57
Hyperbolic functions ("SINH", "COSH", "TANH", Mantissa, synthetic ("MANT") 15-18 58

"ASINH", "ACOSH" & "ATANH") i 16-17 65 Mantissa, synthetic ("MT") 15-19 58
Mantissa view ("VMAN") 15-17 58

"I/" (integer divide) 15-11 56 Marking overlays 1-19 3
"IB" (improved input block) 10-5 35 "MARY" (Mary had a little lamb) 6-12 24
"IF" (invert flag) 6-4 22 Mary had a little lamb ("MARY") 6-12 24

"IG" (integrate) 16-19 65 Mass flag control 6-8 23

"IN" (input routine) 3-6 12 Master clear 1-9 2
"INBL" (input block) 10-4 35 Matrices & Data Processing XI 41

Indirect use of alpha labels 1-5 1 Matrix input and output ("MIQ") 1-3 44
Indirect XEQ or GTO won't work for local a labels 2-11 7 Matrix routines ("M1"—"M5") 11-1 41

Initialization, prompt after 3-10 13 "MC" (multiply two complex numbers in the stack) 15-24 59
Initialization & Prompting III 11 Memory & Curtain VIII 29

Input block ("INBL") 10-3 35 Memory partitioning 26-1 116
Input block, improved synthetic ("IB") 10-5 35 Memory to alpha ("MA") 5-1 19
Input prompting, no stop ("NUM?" & "WRD?") 3-18 14 Message, routine 2-25 9

Input routine ("IN") 3-6 12 Metric units stored 18-4 69

Inputting in one form, using in another 3-16 14 Miles-kilometers conversion factor, approximate 18-3 69
Insert and delete record ("IR" & "DR") 11-2 42 "MIO" (matrix input/output) 11-3 44

Inserting lines before step 01 2-27 9 Missing conditionals 1-6 2

Integer divide ("I/") 15-11 56 "MOZ" & "MO" (Mozart tunes) 6-11 24

Integer reverse ("IV") 15-6 55 Mozart ("MOZ" & "MO") 6-11 24
Integers, sum of ("ZI) 15-1 55 MRG behavior 21-4 78
Integrate ("IG") 16-19 65 “MS" (memory to stack) 7-10 27
Interchangeable Solutions XXIV 101 "MT" (mantissa, synthetic) 15-19 58

Interest, effective 18-22 n Multi-register clear ("CLRGX") 10-19 38
Interference and the wand 21-16 80 Multiple outputs on one or more lines ("=g") 22-24 93

Internal STOP 'final' 2-22 9 Multiply by a small number 18-7 69

Invert flag ("IF") 6-4 22 Multiply by the square root of two 18-9 69

"IR" (insert record) 1-2 42 Multiply, polynomial ("P*") 15-31 60

"IS1" (interchangeable solution one) 24-1 101 "MX" (improper fraction to mixed number) 14-7 53
"IS2" (interchangeable solution two) 24-2 101 __ __

"IS3" (interchangeable solution three) 24-3 102 "N-A" (number to its alpha form) 5.8 21

"IS4" (interchangeable solution four) 24-4 102 Names, duplicating 2-12 8

"IS5" (interchangeable solution five) 24-5 102 Names, symbol 1-3 1

"IS6" (interchangeable solution six) 24-6 103 "NC" (isolate the Nth alpha character) 5-5 20
Isolate Nth character ("NC") 5-5 20 Nearest fraction round 14-5 53

"IT" (integer-sided right triangles) 16-15 64 New number keyed in? 3-13 13

Iteration or loop counter 2-16 8 Next prime ("NP") 15-15 57
"IV" (reverse integer digits) 15-6 55 "NF" (round to the nearest fraction) 14-4 52

"NH" (NNN-hex) 5-7 20

»JC" (Julian day number to calendar date) 20-2 76 NNN-hex conversions ("NH" & "HN") 5.7 20

"JD" (Julian day. number) 20-1 76 No END 2-30 9

Julian day number ("JD") 20-1 76 No operation (NOP) 2-15 8
Julian date-calendar date conver. ("CJ" & "JC") 20-2 76 NOP (no operation) 2-15 8

"NP" (next prime) 15-15 57
"KC" (synthetic key assignments clear) 1-26 5 "NUM?" (prompt for numeric input, no stop) 3-18 14

Key assignments card reminder 21-13 79 Numeric input, to detect 3-14 14
Key assignments clear ("KC") 1-26 5 Number in X to its alpha form ("N-A") 5-8 21
Key assignments, suspend & reactivate ("SK"/"RK") 1-18 3 Numbers convert to zero or one 18-15 70

Key assignments, typing top row 1-22 4 Numbers, Random XIII 50

Key assignments, view ("VK") 1-21 4 "NtR" & "NtS" (area of a regular polygon) 16-12 63
Keying functions of missing peripherals 21-14 79

Octal-decimal real number conversions ("ROCT"

Last two digis in SCI Mode 1-7 2 & "RDEC") 17-3 68

'Last program' 21-10 79 odd-even register exchange ("OE") 10-25 39

Last RTN or END not needed 2-9 7 "OE" (odd-even register exchange) 10-25 39

LASTX not saved 19-3 3 OFF for power failure protection 2-19 8

Law of cosines 16-10 62 One, faster 18-6 69
"LB" (synthetic load bytes) 25-1 105 "OUT" (output routine) 3-7 12
"LB" XROM inputs ("XL") 25-4 114 Output routine ("OUT") 3-7 12
"LB" XROM inputs ("XR") 25-3 113 Overlays, marking 1-19 3
"LD" (data register load) 9-1 32

CALCULATOR TIPS & ROUTINES 126 INDEX

ROUTINE OR CHAPTER NO. PAGE ROUTINE OR CHAPTER NO. PAGE

"p*" (polynomial multiply) 15-31 60 "QE" (complex quadratic equation) 15-26 59
"P+C" (compact permutations and combinations) 19-13 75 "OEQ" (quadratic equation, real roots) 15-25 59

P-R 2-4 6 "QR" (quotient and remainder) 15-12 56
"P-S" (primary-secondary register exchange) 10-15 37 "QS" (quicksort) 12-1 47

"P2" (print two numbers) 22-15 87 Quadratic equation, complex ("QE" & "PRQE") 15-26 59
Pack and unpack register ("PR" & "UR") 9-17 33 Quadratic equation, real roots ("QEQ") 15-25 59

Paper out ("PO") 22-2 82 Question subroutine ("YN") 3-8 13
Paper, save while printing bytes 22-6 83 Question routine, short 3-9 13

Parabola, elevation of a point on ("PN") 16-9 62 Quicksort ("Qs") 12-1 47

Parabolic segment ("AP" & “SP") 16-11 63 Quicksort, synthetic ("S2" & "S3") 12-3 48
Partitioning of memory in the HP-41 26-1 116 Quotient and remainder ("QR") 15-12 56

'Pause', five second 2-26 9 _—_ —_—

'Pause', variable length ("VP") 2-6 7 R-D 2-4 6

"PC" (print calendar) 20-4 77 R-P 2-4 6

"PD" (prime divisor) 15-14 57 "R-S" (rectangular-spherical conversion) 16-14 63

"PE" (polynomial evaluation) 15-30 60 R/S to rerun a program 2-21 9
Percent 2-4 6 R/S vs. STOP 1-2 1
Percent change 2-4 6 "R1", "R2" & "R3" (rapid ratio solutions) 15-20 58

Percent difference 18-23 n "RAN" (pi random number generator) 13-1 50
Peripherals, keying functions of missing 21-14 79 Random number generator ("RN") 13=-3 50

"PERM" (permutations) 19-12 75 Random number generator, shortest 13-2 50
Permutations ("PERM") 19-12 75 Random number generator tester ("TR" & "RNG") 13-5 5
Permutations and combinations 19-12 to 19-14 75 Random Numbers XIII 50

Permutations, compact ("PRM") 19-13 75 Ratio solutions ("R1", "R2" & "R3") 15-20 58
Permutations, stack ("PM") 19-14 75 "RB" (reverse block) 10-10 36
"PF" (prime factors) 15-14 57 RCL X, Y, Zor T 7-4 26

"PHONE" (indirect use of XEQ) 9-4 32 "RD" (recall display mode) 4-4 15

Photocopying, yellow filter for 22-5 83 "RDEC" (octal-decimal conversion for real nos.) 17-3 68

Pi/180 18-11 69 RDN or Rt? 2-20 9
Pi, 4/3 of 18-10 69 RDN, RCL rather than CLX, RCL 2-18 8
PI random number generator ("RAN") 13-1 50 "RE" (reduce fraction) 14-7 53
"PM" (stack permutations) 19-14 75 Reading part of a WALL set of cards 21-11 79
"PN" (point on a parabola) 16-9 62 Real number to decimal or integer ("-DEC"/"-INT") 15-5 55

"PO" (paper out) 22-2 82 Rearrangements, stack 26-3 118
"POLY" (polynomials) 15-29 60 Recall and reset to 0 or 1 9-2 32

Polygon, area of a regular ("AR") 16-13 63 Recall and store indirect ("SI" & "RI") 9-11 34
Polygon, regular, area of ("NtS" & "NtR") 16-12 63 Recall display mode ("RD") 4-4 15

Polynomial evaluation ("PE") 15-30 60 Recall sigma ("REI") 19-5 73

Polynomial multiply ("P*") 15-31 60 Recall, sigma ("IR") 19-6 73
Polynomials ("POLY") 15-29 60 Reciprocal of sums of reciprocals ("IRECIP") 19-2 73
Population standard deviation 19-15 75 Reciprocal of YtX 18-12 70

Positioning 1-2 1 Record, insert and delete ("IR" & "DR") 11-2 42

Power failure protection 2-19 8 "RED" (reduce fractions) 14-3 52

PPC logo ("LG") 22-19 89 Reduce fractions ("RED") 14-3 52
"PR" (pack register) 9-7 33 Reexecuting current program 2-5 6
Prefix key, USER key as 1-11 2 Reference XXVI 116

Primary-secondary register exchange ("P-S") 10-15 37 Register d 4-5 15

Prime divisor, test, generate, and factors Registers remaining while programming 8-3 30

("pD", "TP", "GT" & "PF") 15-14 57 Remainder, and quotient ("QR") 15-12 56

Prime, next ("NP") 15-15 57 Repeated multiplication or division by ten 15-10 56
Print alpha if possible, but no scrolling 2-31 9 Rerunning a program with R/S 2-21 9

Print alpha left, X right ("AX") 22-16 87 Reset a register to zero or one 9-2 32

Print calendar ("PC") 20-4 7 Reset flags ("RF") 6-7 23

Print function values ("FN") 22-17 88 Resize? ("RS") 3-2 1

Print LastX ("PRL") 22-4 83 Return stack, lengthen & shorten ("LR" & "SR") 2-33 10

Print multiple outputs ("=@) 22-24 93 Reverse integer ("IV") 15-6 55
Print prompt and input 22-1 82 Reverse block ("RB") 10-10 36

Print sideways ("PRSW") 22-21 90 Review o0ld entry before keying new one 3-15 14
Printer XXII 82 “RF" (reset flags) 6-7 23

Printer buffer, nature of 22-7 83 "RI" (recall indirect) 9-11 34

Printer column alignment ("AN" & "P2") 22-15 87 "RK" (reactivate key assignments) 1-18 3
Printer compatibility 22-23 92 "RN" (random number generator) 13-3 50
Printer functions, classification of 22-3 82 "RNG" (random number generator) 13-5 51

Printer functions with eG@BEEP 22-9 85 "ROCT" (decimal to octal conversion for real no.) 17-3 68

Printer tips 22-3 82 Round, even ("ER") 14-9 54
Printout dividers ("DIV" & "DV") 22-14 86 Round, step function 14-6 53

Priority, function, of top row keys 1-24 5 Round to nearest fraction ("NF") 14-4 52

“PRL" (print LastX Register) 22-4 83 Rounding, & Fractions XIV 52
"PRM" (compact permutations) 19-13 75 Routine message 2-25 9

Probability, Statistics & XIX 12 "RRM" (determinants, inverses, sys. of equ.) 11-4 45
Program clearing restrictions 8-2 29 "RS" (resize?" 3.2 11

Program -ize & title ("TITLE", "SIZE?" & "T+S") 3-1 1 RSUB behavior 14 78
Program used to enter data 21-6 78 RTN not needed at END 2-9 7

Programming changes 2-2 6 RTN to END 2-13 8
Programming Tips 11 6 RTNs, loss of pending 1-2 1
Prompt after initialization 3-10 13 "RV" (data register review) 9-1 32
Prompt determined by a flag 3-11 13 Rt or RDN? 2-20 9

Prompt for input, no stopping ("NUM?" & "WRD?") 3-18 14 "RI" (recall sigma) 19-5 73

Prompt print 22-1 82 ———

' Prompt X' 3-12 13 "S-R" (spherical-rectangular conversions) 16-14 63
Prompting, and Initialization III 1 "S1" (stacksort) 12-2 a7

"PRSW" (sideways printer characters) 22-21 90 "S2" & "S3" (synthetic quicksort) 12-3 48

"PRQE" (quadratic equation display) 15-26 59 “S?2" (synthetic size finder) 1217 3

Punctuation and editing blanks 5-3 19 "SA" (stack analysis) 7.7 26

Same-value load 10-1 35

Save display temporarily 4-5 15

"SC" (special characters) 22-25 95

CALCULATOR TIPS & ROUTINES 127 INDEX

ROUTINE OR CHAPTER NO. PAGE ROUTINE OR CHAPTER NO. PAGE

"SCE" (scroll left) 4-13 17 Sum of integer digits ("ID") 15-4 55

SCI, last two digits in 1-7 2 Sum of integers ("ZII") 15-1 55

“SCL" (special character list) 22-15 94 Sum of squares ("IS") 15-2 55

Scroll left ("SCE") 4-13 17 Sum of X & Y values ("XYI") 19-7 74

Scroll right ("SCR" & "SO") 4-14 17 Summation routines 19-1 to 19-11 72

Scrolling, approximating continuous 4-11 17 Summations with frequency ("IF") 19-1 72

Scrolling, avoid, but print alpha 2-31 9 "SUP" (supplement of an angle) 16-4 62

Scrolling readability 4-12 17 Supplement of an angle within *180° ("SUP") 16-4 62

"SCT" (special characters table) 22-25 93 Suspend and reactivate key assignments ("SK"/"RK")1-18 3

"SCX" (special characters example) 22-15 94 "Sv" (solve) 16-18 65

"SD" (store display mode) 4-4 15 "SYM" (letter banner) 23-2 98

"SE" (selection without replacement) 10-24 39 Symbol names 1-3 1

Selection without replacement ("SE") 10-24 39 Synthetic Load Bytes XXV 105

self-load ("SLD") 10-2 35 Synthetic load bytes program ("LB") 25-1 105

"SET" (set any flag) 6-15 25 Synthetic (status) registers 26-2 117

Set or clear any flag ("SET" or “"CLR") 6-15 25 Synthetics, keying 25-2 113

Shortcuts, Unit Conversions & XVIII 69 "Sz" (fast size finder) 1-15 3

Short-form labels 2-17 8 "SZE" (size finder) 1-14 2

Short yes/no question 3-9 13 ===

Shorten return stack ("SR") 2-33 10 "T+S" 3-1 11

"SI" (store indirect) 9-11 34 "T1" - "T5" (tone routines) 6-10 23

Sideways print characters ("PRSW") 22-21 90 TAN + 90° 16-2 62

Sigma finder, synthetic ("I?") 1-17 3 "TANH" (hyperbolic tangent) 16-17 65

Sigma finder, synthetic ("Z?") 19-4 73 "TB" (base ten to base b) 17-1 67

Sigma recall ("RZI") 19-5 73 "TC" (temperature conversions, all) 18-21 71

Sigma recall ("ZIR") 19-6 73 "TEM" (C° - F° conversions, both solutions) 18-19 n
SIGN 1-25 5 "TEMP" (C° - F° conversion) 18-17 70

SIGN 2-4 6 Temperature conversions 18-17 to 18-21 70

"SINH" (hyperbolic sine) 16-17 65 Temperature conversions, all ("TC") 18-21 7

Sixty minute or second display eliminated 16-5 62 Temperature input as C° or F° (special case) 18-20 7

Size finder, fast ("SZ") 1-15 3 Ten, repeated multiplication or division by 15-10 56

Size finder ("SZE") 1-14 2 Test determines function 2-17 7

Size finder, synthetic ("?2s") 1-16 3 Test display ("DT") 4-17 18

Size finder, synthetic ("s?") 1-17 3 Test size ("?S") 3-3 1"

SIZE hangup 21-9 79 Test size, synthetic ("?2sS") 3-4 11

Size subroutine ("SIZE?") 3-1 1 Text ("TX") 22-12 86

Size test, synthetic ("?s") 3-4 1 Tight 67/97 programs, fitting 1-8 2

Size, verify, synthetic ("VS") 3-5 12 Time & Date XX 76

"SIZE?" (size subroutine) 3-1 1 Timer ("TM") 20-3 76

"SK" (suspend key assignments) 1-18 3 "TITLE" (title subroutine) 3-1 1

"SLD" (self-load) 10-2 35 Title subroutine ("TITLE") 3-1 1

Slowing catalog review 1-4 1 "TM" (stopwatch) 20-3 76

"SM" (stack to memory) 7-10 27 "TMP" (C° - F° conversions, stack solution) 18-18 70

Small number multiply 18-7 69 TONE assigned to top row keys 6-9 23

Smallest of three or more numbers ("SORT") 12-4 49 Tone routines ("T1" - "T5") 6-10 23

“SO" & "SCR" (scroll right) 4-14 17 Tones, & Flags VI 22

Solutions, Interchangeable XXIV 101 "TP" (test if prime) 15-14 57

Solve ("SV") 16-18 65 "TR" (test random number generators) 13-5 51

"SORT" (smallest or largest of three numbers) 12-4 49 Triangles, solving integer-sided right ("IT") 16-15 64

Sorting XII 47 Trig & Calculus, Geometry XVI 62

"SP" (length of a parabolic segment) 16-11 63 Trigonometry XVI 62

Special characters ("sC", "SCT", "SCL" & "SCX") 22-25 93 Turning OFF in PRGM Mode 2-24 9

Spherical-rectangular conv. ("R-S", "S-R% "ET") 16-14 63 Two-digit numbers, vertical accumulation ("V2") 22-22 92

Square root of sums of squares 15-22 59 Two numbers within a certain % of each other 18-23 7

Squares, sum of ("IS") 15-2 55 Two-variable plotting ("2V") 22-10 90

"SR" (shorten return stack) 2-33 10 "TX" (text) 22-12 86

“ST" (stack review) 7-8 26 Typing top row key assignments 1-22 4

"STACK" (stack manipulations) 7-11 27

Stack analysis ("SA") 7-7 26 "UD" (uncover data registers) 8-6 30

Stack exchange, save & recall ("STX", "STS" Unary function 1-25 5

& "STR") 7-9 27 Unit Conversions & Shortcuts XVIII 69

Stack manipulations ("STACK") 7-11 27 Unlabeled programs 2-29 9

Stack Operations VII 26 "UR" (unpack register) 9-7 33

Stack rearrangements 26-3 118 Use RDN, RCL rather than CLX, RCL 2-18 8

Stack review, no printer ("ST") 7-8 26 USER key as a prefix key 1-1 2

Stack save & recall, indirect ("SM" & "MsS") 7-10 27

Stack sort ("S1") 12-2 47 "V2" (vertical accumulation of 2-digit numbers) 22-22 92

Standard character into X 1-1 1 "VA" (alpha view) 4-1 15

Standard character set ("CE") 22-10 85 Variable length 'pause' ("VP") 2-6 7

Statistics & Probability XIX 72 "VB" (view block) 10-7 36

Statistics, block ("BI") 19-11 74 Vector kept positive 16-1 62

Statistics block ("ZIB") 19-10 74 VER put into a program 21-15 80

Status card as first card of a set 21-7 79 Verify size, synthetic ("VS") 3-5 12

Status registers, illustration 26-2 117 Vertical accumulation of 2-digit numbers ("V2") 22-22 92

Step-function round 14-6 53 "VF" (view flags) 6-5 22

STO followed by register arithmetic 9-5 32 View alpha ("VA") 4-1 15

STOP made final 2-22 9 View block ("VB") 10-7 36

STOP vs. R/S 1-2 1 View flags ("VF") 6-5 22

Stopwatch ("TM") 20-3 76 View key assignments ("VK") 1-21 4

Store and recall indirect ("SI" & "RI") 9-11 34 View mantissa ("VMAN") 15-17 58

Store display mode ("SD") 4-4 15 View mantissa, synthetic ("VM") 15-19 58

"STX", "STS" & "STR" (stack exch., save & recall) 7-9 27 "VK" (view key assignments) 1-21 4

"SyU" (substitute characters) 5-5 20 "VM" (view mantissa, synthetic) 15-19 58

Subroutine, bytes saved with a ("BS") 1-27 5 "VMAN" (view mantissa) 15-17 58

Substitute character ("SU") 5-5 20 "VP" (variable length 'pause') 2-6 7

Sum of cubes ("I3") 15-3 55 "VS" (synthetic verify size) 3-5 12

CALCULATOR TIPS & ROUTINES 128 INDEX

ROUTINE OR CHAPTER NO. PAGE ROUTINE OR CHAPTER NO. PAGE

WALL, resuming execution after 21-12 79 Yellow filter for photocopying 22-5 83

WALL, set of cards, reading part of 21-11 79 Yes/no question, short 3-9 13

Wand, Card Reader & XXI 78 Yes or no question subroutine ("YN") 3-8 13
Wand interference 21-16 80 "YN" (yes or no question subroutine) 3-8 13

Wand tips 21-17 80 Y1(X/2) 18-3 70
WPRV put into a program 21-15 80 YtX for large values ("BYX") 15-28 60
"WRD?" (prompt for alpha input, no stopping) 3-18 14

=== - Zero, faster 18-5 69

X and V1%X2, functions of 16-16 64 Zero-one toggle 9-3 32
X and Y alphabetize ("AL") 12-5 49 Zero or one, convert to 18-15 70

X and Y divided by ten 7-6 26 Z=mmmmmmemmm—mme -

X changed to 1 7-5 26 "Z3" (sum of cubes) 15-3 55

X multiplied by a value if flag is clear 7-2 26 "Z?" (synthetic sigma finder) 1-17 3

X operations on X 7-1 26 "Z?" (sigma finder) 19-4 73

"XB" (exchange block) 10-13 37 "IB" (statistics block) 19-10 74

"XD" (hex to decimal, synthetic) 17-5 68 "IC" (IREG-curtain exchange) 8-6 30

XEQ, indirect use for data recall ("PHONE") 9-4 32 "ID" (sum of integer digits) 15-4 55
"XL" (XROM inputs for "LB") 25-4 114 "IF" (summations with frequency) 19-1 72

"XPN" (exponent replace X) 15-16 57 "ZI" (sums of integers) 15-1 55
"XR" (compute XROM "LB" inputs) 25-3 113 "IR" (sigma recall) 19-6 73

XROM "KA" & "LB" inputs ("XR") 25-3 113 "IRECIP" (reciprocal of sums of reciprocals) 19-2 73

XROM "LB" inputs ("XL") 25-4 114 ZREG-curtain exchange ("IC") 8-6 30

"XYy" & "X?Y" (display X and Y) 4-16 17 "ZS" (sum of squares) 15-2 55

(X,Y) = (X-Y, Y) 7-3 26 e
"XYZ" (manual sum of X and Y values) 19-7 74

AUTHOR INDEX:

AKIMA, KIYOSHI (3456): 13-4

ALBILLO, VALENTIN (4747): 3-9, 3-14,
4-7, 4~9, 4-17, 6-6, 6-7, 7-1, 10-10,
13'—2, 15-21 9’ 15"24

BARTHOLOMEW, DAVID (3666): 10-15, 25-3

BERTUCCELLI, HARRY (3994): 2-33

BOLZ, JOACHIM (401): 16-6

BOULTON, BILL (700): 18-16

BURKHART, JOHN (4382): 10-22

BUTTERFIELD, JIM (1076): 13-1

CADWALLADER, TOM (3502): 1-21, 2-6

CAPPEL, JURGEN (6015): 19-6

CARRIE, CLIFF (834): 22-22

CARTER, BILL (2998): 7-9

CASSON, HENRY (5047): 18-4, 18-20

CHEESEMAN, WILLIAM (4381): 2-10, 6-3,
12-5, 22-16, 25-1

CLARK, BRUCE (5795): 7-8

CLOSE, CHARLES (3878): 1-27

DAVIDSON, JAMES (547): 15-5, 15-6,
15-7, 18-17, 19-12

DEARING, JOHN (2791): 1-22, 2-13, 2-14,

24=2, 24-3, 24~4, 24~5, 24-6, 26-=3

DENNES, GRAEME (1757): 16-18

DERRICK, BILL (1393): 15-28, 18-19, 19-12

EDELEN, ROBERT (339): 22-9

ELDRIDGE, GEORGE (5575): 17-1

EVANS, RAY (4928): 12-3

FIELDS, PAUL (3114): 17-2

FRAUNDORF, PHIL (1025): 16-14

GORDON, RONALD (3449): 22-8, 22-10

GREEN, DENNIS (4213): 21-4

GROOM, ROBERT (5127): 15-25, 15-26

HALE, MIKE (4457): 12-1

HARRIS, CHARLES (1959): 5-3

HERZFELD, JOHN (5428): 2-31, 2-32, 10-25,
15-26, 21-15

HEWLETT-PACKARD: 1-2, 1-9, 1-10, 1-13,
1-24, 2-4, 2-6, 2-9, 2-11, 2-12, 2-17,
2-24, 3-1, 3-6, 3-7, 3-8, 3-18, 4-2,
4-18, 5-2, 6-13%, 6-14, 8-2, 8-3, 9-4,
10-21, 15-7, 15-9, 15-17, 15-32, 16-8,
17-3, 18-21, 18-22, 19-1, 20-3, 21-6,
21-7, 22-1, 22-3, 22-10, 22-12, 24-7,
26=-4

3-3, 3-4, 3-12, 7-11, 9-1, 9-9, 10-2,
10-3, 10-4, 10-5, 10-7, 10-19, 10-20,
13-5, 14-2, 14-3, 16-9, 19-5, 19-7,
19-10, 22-11, 22-14, 22-17, 24-1,

HILL, ROGER (4940): 1-16, 1-17, 1-21,
3-5, 4-1, 5-6, 5-7, 6-4, 6-5, B8-5,
15-12, 15-18, 15-19, 17-5, 19-4, 20-2,
20-4, 21-8, 22-7, 25-4, 25-5

CALCULATOR TIPS & ROUTINES 129 INDEX

HOLMES, JOSEPH (3673): 9-3 MURDOCK, BRUCE (2916): 23-2

HORN, JOSEPH (1537): 7-3, 19-15 MURPHY, NEIL (6): 18-3

JARETT, KEITH (4360): 1-17, 1-18, 2-18, NELSON, RICHARD (1): 1-4, 1-8, 1-12,
4-4, 4-8, 5-1, 6-5, 8-5, B-6, 12-5, 1-14, 2-2, 2-3, 2-16, 2-19, 2-20, 4-11,
19-4, 19-14, 25-1, 25-6 4-12, 4-14, 7-10, 9-6, 15-1, 19-8,

21_2’ 21-16, 21—17, 22—15’ 22—19’JUNG, ROB (2455): 15-16 22-21, 25-2, 26-4
KARRAS, PHILIP (3480): 21-1 PEROS, NICHOLAS (2392): 6-10
KENNEDY, JOHN (918): 9-7, 10-6, 10-12, .

10-13, 10-16, 10-17, 10-23, 10-24, PITTMAN, JAMES (1002): 1-7
11-1, 11-2, 11-3, 11-4, 13-4, 14-1, PREDMORE, READ (5184): 16-19
14-7, 15-4, 15-13, 15-14, 16-17, .
16-18, 17-4, 19-11, 19-14, 20-2 RE;T?IEIN, CARY (2046): 6-10, 18-20,

KENNER, HUGH (103): 16-12, 18-14 ROSTENBACH, CURT (382): 15-10
KIMMEL, RICHARD (6003): 14-8 RVEN, RON (205): 1818

KNAPP, RON (618): 1-15, 6-1 SCHWARTZ, JAKE (1820): 1-11, 5-8, 6-1,
KOLB, BILL (265): 1-6, 1-9, 1-13, 1-20, 22-20, 22-25

1-23, 1-24, 1-25, 21, 2-7, 2-21, SCHUARTZ, RICHARD (2289): 10-9, 10-13,
2225, 2=29, 6-2, 6-12, 10-11, 10-14, 10-17, 10-18, 16-18, 16-20, 19-11
10-24, 12—4, 13—5, 15-2, 15-3, 15-8, ’ ’ ? ’

15-22, 15-29, 16-4, 16-10, 16-16, SMITH, RICHARD (4856): 16-15
}8:2: ;f:;: ;f:g: ;f:}?: ;?:1%: ;?::i’ STEVENS, CHRIS (3005): 15-20, 19-13

KUYT, FRITS (236): 22-5 SWANSON, ROBERT (5993): 6-11, 22-24

LADRACH, PETER (5060): 4-16 TENZER, GARY (1816): 6-10
LAMPMAN, DEAN (41): 23-1 TOCCI, DOM (189): 15-2

LICHTENWALNER, JOEL (2957): 15-23 TR?ETE;&’1;6§§Y gg?g?)’ 10-26, 13-4,
LIND, PAUL (6157): 1-26, 2-32 TRINH, PHI (6171) s 15-15
McDONALD, ROBERT (5460): 3-15 VAN ALLEN, LELAND (1319)s 1-25

McGECHIE, JOHN (3324): 5-7 WALKER, DAVID (1840): 4-13
MALM, DON (1362): 13-3 WESTEN, GERARD (4780): 5-4
MARTELLARO, JOHN (1816): 9-8, 15-16, WHEELER, FRED (1150): 20-1, 20-2, 21-316-5, 18-8, 18-11

) WICKES, WILLIAM (3735): 2-30, 4-10, 4-15,MELBOURNE CHAPTER: 2-26, 7-5, 9-2 417, 5-5, 5-6, 5-9, 6.8, 6-9, 8.1,

MORRISON, SCOTT (4360): 4-3 8-4, 12-5, 12-10, 21-12, 22-18, 26-1,

MOTTO, DAVID (2339): 15-11 26-2
WILDER, DAVE (452): 16-1, 16-2, 16-3, 16-7

CALCULATOR TIPS & ROUTINES 130 INDEX

GLOBAL LABELS USED IN THIS BOOK: ACCHR character order.

-DEC BL D-DM FB IT N-A PRSW S2 SUP VK
—-INT BLR D-F BD IV NC OE S3 SV VP
2V BI DC FFFF JC NF QOEQ SA SYM VM
55 BM DF FIN JD NH OR SC SZ VMAN
7TENG BP DFD FL KC NP 0S SCE SZE VS
TFIX BR DIG FN LB NUM? R-S SCL T+S WRD?
7SCI BS DIV FT LD N 1R R1 SCR T X?Y
= BV DN GCD LET N 1S R2 SCT T2 XB
?S BX DM-D GD LG OUT R3 SCX T3 XD
ACOSH BYX DR GN LINE OE RAN SD T4 XL
AD BZ DS GT LO p* RB SE T5 XPN
AL c? DSPR HD LR P+C RD SET TANH XR
AM CD DSPS HG M1 P-S RDEC SI TB XY
AN CE DT HN M2 P2 RE SINH TC XYZ
AP CFA DUP 1/ M3 PC RED SIZE? TEM YN
AR CFX DV 1B M4 PD RF SK TEMP dB+
ASINH CHAR DX IF M5 PE RI SLD TITLE dB-
ATANH CJ EB 1G MA PERM RK SM ™ %3
AV CLR EN IN MAN PF RN SO TMP 2
AVN CLRGX ER INB MANT PHONE RNG SORT TP IB
AX CcM ET INBL MARY PM ROCT SP TR IC
B+ CODE EX IR MC PN RRM SR TX D
B? COM EXP 1S1 MIO POLY RS ST UD IF
BANR COMB F* 1S2 MO PO RV STACK UR I
BC COSH F+ 1S3 MOZ PR RZ STR V2 IR
BD CR F- 1S4 MS PRL S-R STS VA ZRECIP
BE CuU F-D 1S5 MT PRM S? STX VB IS
BF CURT F/ 1S6 MX PRQE S1 SU VF

TWO-CHARACTER GLOBAL LABELS USED BY

the HP-41, its peripherals, and all

*@
*1
*2
*3
*4
*5
*6
*7
*8

PPC ROM GLOBAL LABELS NOT IN ABOVE LISTS:

*9 *1,
*/ *M

*7? *N

*A *P

*B *R

*C *S

*H *W

*1 *X

*J *a

*b

*C

*e

10

AO

AZ

BG

GO

BT

C*

C+
C-

c/
C=

CF
CG
CH
CL

CoO

CP

CS

CT

CwW

Cz

DB

DH

DI

H-P: These are the 2-character global labels in

modules as of August 15, 1981.

DL
DR
EO
EQ
Et
FA
FF
FM
FV

GC

GY

HR

HT

IN

JD

LN

LP

LS

MI

NA

NE

ON

PH

PI

PL

PP

PV Rt

Pb Re

R2 SF

R= SH

RC SL

RL ST

RM TF

RP TS

RS UG

uo
uv
uw
W@
W1
W2
w3
w4
W5

W6
W7
w8
W9

WA
WB
X@
X1
X2

X3

X4

X5

X6

X7

X8

X9

2+

T—

PPC is a private users club that supports

Hewlett-Packard personal programmable calculators and computers. One of the price-

less benefits available only to members is the opportunity to help design, and then

purchase, 'limited edition' calculator-related products. One of these has been the

PPC ROM—a programmers 8K application module. Many of its routines are in this book;

many are not. If you have the extraordinarily good fortune to come into possession of

one of these ROMs, you will want to avoid labeling your own programs with the fol-

lowing PPC ROM labels:

+K

-B

1K

2D BA

A? CA

Ab CB

CK

CP

Cv

CX

DP

E?

EP

F?

FI

FR

GE

HA

HP

HS

IP

L-

LF

MK

ML NS

MP OM

NR PA

PK

PS

RT

RX

Rb

SX

Sb

TN

XE

POSTFIX DIRECT POSTFIX INDIRECT

-
4
1

B
Y
T
E

T
A

B
L

E
(
H
E

X
T
A
B
L
E

)

0
4

5
6

9
C

E
F

0
e

N
U
L
L

__
0
0

1
=

L
B
L

0
0

01

L
B
L

01

0
2

L
B
L

0
2

0
3

4
5

B
6

LB
L

03
|L
BL

04
|L
BL

05
04

05
o6

J

7
¥

L
B
L

0
6

0
7

8
A

L
B
L

0
7

0
8

9
a

L
B
L

0
8

0
9

L
B
L

1
01
0

o

0
9

11
A

L
B
L

1
0

11

1
2

L
B
L

1
2

1
3

&£

L
B
L

1
2

1
3

1
4

L
B
L

1
3

1
4

15
&

LB
L

14
|0

15

1
6

g

0 1
6

1
7

1
7

1
8

&

1
8

1
9

&

1
9

20
0

g
27

@&
2
2

4

4
5

6

2
0

21
2
2

2
3

7 2
3

2
4

2
4

2
5

0

9
.

25

2
6

2
6

2
7

E
E
X

2
7

2
8

C
H
S

2
8

Iy 11
/
U

0
2
9

G
T
O

a

2
9

3
0

X
E
Q

a

3
0

£
3
1

%

S
P
A
R
E

1

3
1

3
2

R
C
L

0
0

32
SP

AC
E

33
1

R
C
L

0
1

33
|

3
4

e

R
C
L

0
2

34
'

35
@

RC
L

03
35

3
6

%
3
7

%
3
8

&

R
C
L

0
4

|R
CL

0
5

|R
CL

0
6

36
F
l
3
7

H
|
3
s

39
-

RC
L

07
39

!

4
0

R
C
L

4
0

0
8

4
1

R
C
L

0

41

4
2

*

R
C
L

4
2

4
3

R
C
L

4
3

4

R
C
L

1
2

44
<€

4
5

R
C
L

4
5

4
6

R
C
L

1
4

46
)

.

4
7

-

R
C
L

1
5

|2

47
/

48
@

ST
O

00
48

49 ST
O

01
49

|

-

50
2

S
T
O

02
50

=

5
1

33

S
T
O

0
3

51
3

5
2

4
|5
3

S5
|5
4

6
S
T
O

0
4

|S
TO

0
5
_
|
S
T
O

0
6

s2
YH
ls
z

S
l
s
a

B

5
5

¢

S
T
O

0
7

ss
|

5
6

S
T
O

0O

5
6

5
7

S
T
O

0

5
7

~ oAlo

S
T
O

sg
B

5
8

:

1
0

5
9

;

S
T
O

1
1

5
9

6
0

<
S
T
O

1
2

60
L

61

61

6
2

>

S
T
O

1
4

62
N

6
3

72

S
T
O

1
5

|3

63
P

6
4

+ 6
4

6
5

6
5

6
6

B

6
6

6
7

C

L
C

6
7

6
8

D
6
9

E
7
0

F

X
<
Y
?

X
>
Y
?

X
<
=
Y
?

D
E

~

G

I
+

[
3

7
2

- 7
2

7
3

H
M
S
+

7
3

o= H

4
J o

H
M
S
-

7
4

7
5

M
O
D

7
5

7
6

L

%
L

7
7

%
C
H

7
7

7
8

N

P
-
R

N

7
9

0O

R
-
P

4

79
[

8
0

L
N

8
0

81

X
12

81

82 SQ
RT

g2
R

83
§

Y
tX

8
3

5
5

6
8

6
9

7
0

T
U

84
85

86
¥

T
L

8
4

3
5

8
6

71 87
W W

8
7

8
8

E
t
X
-
1

8
8

ooz L|x X

8
9

Y

S
I
N

Y
8
9

9
0

Z Z
C
O
s

9
0

9

T
A
N

9
1

7
6

~
92

N\

93
3

A
C
Q
O
S

93
_J

7
8

o
'
x

94

s
9
4

9
5

_
D
E
C

5

9
5

—_
—

Nie Blla O]+

9
6

1
/
X

9
6

a Tl Ao

9
7

A
B
S

9
7

9
8

b
F
A
C
T

9
8

9
9

¢

X#
07
?

9
9

[

C
H
S

E
t
X

L
O
G

P
/

d
e

10
0

10
1

1
0
2

X
>
0
?

L
N
1
+
X

X
<
0
?

00
10
03
|0
71

1
0
1
2

|a
10
2

1
0

t
X

A=
1
0
3

X=
07

?

B
1
0
3

1
0
4

I
N
T

C
1
0
4

h
1
0
5

1
|1

F
R
C

D
1
0
5

0
6

4

D
-
R

E
1
0
6

z K K C C
10

7
k

R
-
D

F
1
0
7

A
S
I
N

9
2

1
0
8

1

H
M
S

G
1
0
8

1
0
9

m

H
R

H
1
0
9

A
T
A
N

n
1
1
0

R
N
D

I
1
1
0

1
1
1

o

o
C
T

6

J
1
1
1

lk————— 1-BYTE INSTRUCTIONS

Fle

1
1
2

CL
ZX

T

d|

1
3

X
<
>
Y

Z

1
4

r

P
I

1
1
5

C
L
S
T

X

s
1
1
6

¢
1
1
7

wu
(1
18

w

R
t

R
D
N

L
A
S
T
X

L
M

[
N

\

1
1
9

C
L
X

0
]

W
1
2
0

X
=
Y
?

p
t

X
1
2
1

X
#
Y
?

O

¥
1
2
2

SI
GN
T

z
1
2
3

X
<
=
0
7
?

a

o
1
2
4

I

M
E
A
N

b

1
2
5

>

S
D
E
V

c

12
6

%
A
V
I
E
W

a

1
2
7

W+

C
L
D

1
2
8

D
E
G

0
0

+

1
2
9

«x

R
A
D

01

1
3
0

G
R
A
D

0
2

1
3
1

€

E
N
T
E
R

0
3

1
3
2

o
(1

33
B

(1
34

I
S
T
O
P

R
T
N

B
E
E
P

0
4

0
5

0
6

1
3
5

4

C
L
A

0
7

1
3
6

A
S
H
F

0
8

&
1
3
7

P
S
E

0
9

o
|1
3
8

«

C
L
R
G

1
0

1
3
9

=

A
O
F
F

1
1

1
4
0

A
O
N

1
2

1
4
1

O
F
F

1
3

1
4
2

P
R
O
M
P
T

1
4

1
4
3

A
D
V

15e
r
d 8

1
4
4

R
C
L

1
6

1
4
5

S
T
O

1
7

1
4
6

&

S
T
+

1
8

1
4
7

A

S
T
-

1
9

1
4
8

o0
|1

49
1
5
0

a

S
T
*

S
T
/

I
S
G

2
0

21
2
2

C

1
5
1

D
S
E

2
3

1
5
2

V
I
E
W

2
4

S
1
5
3

QO
1

Z
R
E
G

2
5

5
4

U
A
S
T
O

2
6

1
5
5

A
R
C
L

2
7

fE
1
5
6

F
I
X

2
8

1
5
7

S
C
1

2
9

1
5
8

£

E
N
G

3
0

sle
"<

1
5
9

¥

T
O
N
E

9

31

1
6
0

X
R
O
M

3
2

1
6
1

1

X
R
O
M

3
3

1
6
2

=

X
R
O
M

3
4

1
6
3

#

X
R
O
M

3
5

1
6
4

%
[
1
6
5

*%
|
1
6
6

&

X
R
O
M

X
R
O
M

X
R
O
M

3
6

3
7

3
8

1
6
7

*

X
R
O
M

3
9

1
6
8

S
F

4
0

¢ ~
1
6
9

2
1

C
F

7
0

ok

F
s
?
C

4
2

1
M
+

FC
?C

4
3

1
7
2
,

F
S
?

4
4

1
7
3

F
C
?

4
5

1
7
4

.

G
T
O
/
X
E
Q

4
6

I
N
D
*

1
7
5

~

S
P
A
R
E

A

1
7
6

B9

S
P
A
R
E

4
8

1
7
7

1
G
T
O

0
0

4
9

1
7
8

2

G
T
O

01

5
0

1
7
9

2

G
T
O

0
2

51

1
8
0

4
18
1

3
[1
82

6
G
T
O

03
|G

TO
04

|G
TO

0
5

5
2

5
3

5
4

1
8
3

7

G
T
O

0
6

5
5

1
8
4

8
G
T
O

0
7

5
6

41 1
8
5

9

G
T
O

0
8

5
7

1
8
6

G
T
O

0
9

5
8

1
8
7

GT
O

10
59

1
8
8

<

G
T
O

1
1

6
0

1
8
9

=

G
T
O

1
2

61

19
0

>
GT
O

13
62

4
7

1
9
1

2

G
T
O

1
4

|B

6
3

2-BYTE

1
9
2

@

G
L
O
B
A
L

64

1
9
3

A
G
L
O
B
A
L

6
5

1
9
4

B
G
L
O
B
A
L

6
6

1
9
5

C
G
L
O
B
A
L

6
7

1
9
6

D
1
9
7

E
[1
98

F

G
L
O
B
A
L

|
G
L
O
B
A
L

|
G
L
O
B
A
L

6
8

6
9

7
0

1
9
9

G
G
L
O
B
A
L

71

2
0
0

H
G
L
O
B
A
L

7
2

2
0
0

1

G
L
O
B
A
L

7
3

2
0
2

G
L
O
B
A
L

7
4

J
2
0
3

K
G
L
O
B
A
L

75

2
0
4

L

G
L
O
B
A
L

7
6

2
0
5

M

G
L
O
B
A
L

7
7

2
0
6

X
<

7
8

N
2
0
7

0O

L
B
L

C

7
9

2
0
8

G
T
O

8
0

P
2
0
9

G
T
O

81

@
2
1
0

G
T
O

8
2

R
2
1
1

G
T
O

8
3

S
2
1
2

2
1
3

2
1
4

G
T
O

G
T
O

G
T
O

8
4

8
5

8
6

T
u

Vv
2
1
5

G
T
O

8
7

W
2
1
6

G
T
O

8
8

>
2
1
7

Y
|2

G
T
O

8
9

1
8

2
G
T
O

9
0

2
1
9

[
G
T
O

91

2
2
0

G
T
O

9
2

~
22

1
3

G
T
O

93

2
2
2

T

G
T
O

9
4

2
2
3

G
T
O

D

9
5

2
2
4

T

X
E
Q

9
6

2
2
5

X
E
Q

9
7

22
6

b
XE
Q

9
8

22
17

X
E
Q

9
9

2
2
8

2
2
9

€
2
3
0

f

X
E
Q

X
E
Q

X
E
Q

0
0

1
0
0

|0
1

1
0
1

|A
1
0
2

d
23
1

X
E
Q

B
10

3

2
2
3
2

X
E
Q

h

C
1
0
4

2
3
3

1

X
E
Q

D
1
0
5

2
3
4

XE
Q

E
10
6

2
3
5

k

X
E
Q

F
1
0
7

2
3
6

1

X
E
Q

G
1
0
8

23
7

™
XE
Q

H
1
0
9

2
3
8

X
E
Q

I
1
1
0

N
23
9

o
XE
Q

E
J

11
1

2
4
0

p

T
E
X
T

O

T

2
4
1

«a

T
E
X
T

1

Z

2
4
2

r

T
E
X
T

2

Y

2
4
3

T
E
X
T

X

Vi

24
4

t
24
5

wu
24

6
o

T
E
X
T

4
|T

EX
T

5
|T
EX
T

6
L

M
[

N
\

2
4
7

w

T
E
X
T

7

0
1

2
4
8

T
E
X
T

p
t

X 8

2
4
9

T
E
X
T

9

Q
—

2
5
0

TE
XT

10
E
T

Zz
2
5
1

w

T
E
X
T

1
1

a

25
2

|
T
E
X
T

12
b

2
5
3

=»

T
E
X
T

1
3

C

2
5
4

Z
T
E
X
T

14
d

2
5
5

T
E
X
T

1
5

|F

e

3-BYTE3—? -

 0 1
 2 3 456 =

 8 9 A B C D E F

*
B
y
t
e

1
7
4

i
s

G
T
O

I
N
D

i
f

t
h
e

b
y
t
e

f
o
l
l
o
w
i
n
g

i
s

f
r
o
m

t
h
e

t
o
p

h
a
l
f

o
f

t
h
e

t
a
b
l
e

(
R
o
w
s

0
-
7
)
;

X
E
Q

I
N
D

i
f

t
h
e

b
y
t
e

f
o
l
l
o
w
i
n
g

i
s

f
r
o
m

t
h
e

b
o
t
t
o
m

h
a
l
f

o
f

t
h
e

t
a
b
l
e

(
R
o
w
s

8
-
F
)
.

i
t

i
s

	Cover
	Contents
	I. Basic Functions & Operations
	II. PRogramming Tips
	III. Initialization & Prompting
	IV. Display
	V. Alpha Manipulations
	VI. Flags & Tones
	VII. Stack Operations
	VIII. Memory & Curtain
	IX. Data Registers
	X. Block Operations
	XI. Matrices & Data Processing
	XII. Sorting
	XIII. Random Numbers
	XIV. Fractions & Rounding
	XV. Arithmetic & Algebra
	XVI. Geometry, Trig & Calculus
	XVII. Base Conversions
	XVIII. Unit Conversions & Shortcuts
	XIX. Statistics & Probability
	XX. Time & Date
	XXI. Card Reader & Wand
	XXII. Printer
	XXIII. Banners
	XXIV. Interchangeable Solutions
	XXV. Synthetic Load Bytes
	XXVI. Reference
	Index

