A CHRONOLOGY OF HP-41C PROGRAMS FOR USE AND EXAMPLE

Thomas W. Beers

A CHRONOLOGY OF HP-41C PROGRAMS FOR USE AND EXAMPLE

Thomas W. Beers
Professor of Forestry

Purdue University
(C) Copyright, 1983, Thomas W. Beers, Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907. All rights reserved. This book, or portions thereof, may be reproduced only with written permission of the author.

My dictionary defines a "chronology" as "any tabulated arrangement of events of historical or scientific import, in the order of the time of their occurrence." And that is just what is included in this publication. It has been assembled as a personal source of reference (to replace one file drawer of manila folders) with the hope that other HP-41C users and programmers can profit from my learning experiences.

The calculator programmer who anticipates that others will use his program normally tries to make it "user-friendly", but he frequently overlooks making the how-to-use instructions (i.e., the "write-up") user-friendly. The search for a simple, understandable, and useful general format for program documentation and instruction is the underlying thread that bonds this chronology; a project which began very innocently in late 1979 when the APPRAZ program was conceived and written.

The author recognizes and acknowledges: Richard J. Nelson (founder and driving force behind the PPC organization) and the contributors to the PPC Calculator Journal* for publishing various inspirational programming techniques; Linda S. Hampton for typing many of the program descriptions; my wife, Carolyn, for continuity typing and program listing and assembly; and my son, Ted W. Beers, for constant and reliable programming advice and for providing dialogue which enabled the fine-tuning of ideas and concepts.

[^0]TABLE OF CONTENTS
page
Preface i
Table of Contents ii
Introduction iii
Annotated Directory of Programs 1
The Programs:

Literature Cited 299

INTRODUCTION

This chronology is meant to be used as a learning device for novice HP-41C programmers and for direct use by certain 41C owners who can apply specific programs. In either case, the reader should be aware that the programs differ in styles, and, to a certain extent, in sophistication as the chronology develops. Therefore, since the author was learning with time, certain earlier programs would not be written the same, had they been undertaken at a later date (experience does help!). In order to preserve the sense of chronological development, yet provide an opportunity for modest refinement, the program as originally written is presented, followed (in most cases) by a section titled "Retrospective Comments Regarding...." This section was written in the summer of 1982 during which time the author tested and evaluated each program. As a result of the foregoing comments, it is recommended that the "Retrospective Comments" section (if present) be read by the user prior to the serious use of any program.

Although every attempt was made to eliminate technical, programming, and typographical errors, surely a certain number still exist. If these surface and cause major problems or concern, the author would appreciate being made aware, so that other users can be informed.

For those who desire the programs in mini-cassette tape form for use with the HP-82161A cassette drive, a complete assembly, called KRON-1, can be purchased. Presently, no barcode, magnetic card or disc copies of individual programs are available; however, this decision may change as technology advances. Current prices and availability can be obtained from the author, Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, phone (317) 494-3598 (office) or (317) 463-0807 (home).

ANNOTATED DIRECTORY OF PROGRAMS

Program

Program		
Number		Name
1	Page	
1	APPRAZ	13

2 CRUZ 25

5 MIL3

Purpose and Special Notes

To calculate and summarize timber volumes by species and log grade; additionally, numbers of trees by species and DBH class are summarized as are number of logs by species. Grand total volume, number of logs, and number of trees are also provided.

NOTES:

1. The use of a compact data input format to save keystrokes is worth noting.

To process inventory data from fixed-size or horizontal point samples, where the tallied data are: species, tree DBH (diameter breast high), number of logs, and, optionally, soundness. Per-acre and total tract summaries are provided for volume, basal area, and number of trees, by species and overall. Peracre and total estimates by DBH classes are provided for volume and number of trees. A statistical routine estimates the mean, standard error, percent standard error and . 95 confidence intervals for volume and basal area.

NOTES:

1. Compact data input as in APPRAZ.
2. The processing part of the program demonstrates that, with very minor differences, one can handle fixed-size plots, horizontal point sampling, and 100% inventories.

To provide on-the-spot solution of the following expression of sawmill "profit margin" using the formula:
$\operatorname{margin}=\sum_{i=1}^{6} \begin{gathered}\text { (lumber tally })_{i}\left(V_{i}\right)-\log \text { value }- \text { sawing } .\end{gathered}$
where \log value $=(\log$ grade value $)(\log$ scale $)$ sawing cost $=$ (cost per minute) (sawing time) $\mathrm{V}_{\mathrm{i}}=$ value for various lumber grades;
and to accumulate log scale and lumber tally by various species and grade classes, as well as total margin and sawing times for an indefinite number of logs.

[^1]
NOTES:

1. A multiple register clear routine (label MRC) is used to clear a block of registers.
2. A special routine is used to facilitate the loading of the necessary numeric constants and species names (label LOAD).
3. Facility is provided, at the user's discretion, to automatically process keyed-in data without pressing R/S (label F22).
4. Program listing in TRACE printer mode, to facilitate documentation, is included.

To replace tables and graphs in U.S. Forest Service NC-54 publication. Provides forward or inverse solution of $H=b_{1} S\left(1-e_{2}\right)^{A} b_{3}$ for nine
species-specific sets of b_{i} 's (stored in memory). NOTES:

1. Although present in previous programs also, the practice of "clear flag 29 in the presence of FIX $0^{\prime \prime}$ to eliminate decimal points after integers, is clearly evident.
2. Using a negative species code input as an indicator that a "reverse solution" is desired is employed; in this way, the height equation is solved backwards to obtain site index.

8 LOGVOL 68
\qquad
-

To calculate, display and print values of ($1+i)^{n}$ for arbitrary values of interest rate ($\mathrm{i}=\frac{\text { rate }}{100}$) and years (n). Two options are provided:
a. "Single" solution for specific rate, r, and range of years from 1 to $n_{\text {max }}$.
b. Semi-automatic or automatic max Solution for specified ranges of r and n, using specified intervals.

NOTES:

1. The use of the HP-41C to generate segments of "math tables" is exemplified.

Program
Number Name Rage
Purpose and Special Notes
2. User-defined "control numbers" are input to enable automatic solution, display and printing for a range of interest rates and years.
3. A function such as SIN is used after AVIEW to achieve a rapid pause and display of an "identifier".
4. Program listings in all three printer modes are included.

Programs 11 through 16 were written to complement and expand the outline published by W. D. Shepperd in U.S. Forest Service Gen. Tech. Report RM-76.

11 SLOPE $105 \quad$| To calculate the horizontal distance and, |
| :---: |
| optionally, the vertical rise from a given slope |
| distance and slope angle in percent, degrees (flag 01 |
| set), or topographic units (flag 02 set). |

To calculate tree basal area in square feet from a keyed-in diameter in inches or vice versa (with flag 01 set) and to summarize a series of such calculations, providing the arithmetic mean diameter, the arithmetic mean basal area, the quadratic mean diameter, the number of entries and the sums and standard deviations of both diąmeter and basal area. Metric output (basal area in m^{2}, diameters in cm.) from similar input, can be obtained with flag 02 set.

NOTES:

1. Use of $B A$ demonstrates that one program can be used as a conversion routine and, if the user desires, a summary processor to provide various average statistics.
2. The use of negative input for a normally positive variable to set a flag and cause inverse calculations (conversion of basal area to diameter in this case) is worth noting.

To calculate tree height when horizontal distance is not measured and the clinometer will not read directly. Therefore, tree height is calculated from keyed-in angles to tree top and base, and slope
Number Name Page

14 NTEST
distance. Provision is made for angles in percent, degrees (flag 01 set), or topographic units (flag 02 set).

NOTES:

1. The TH program provides reminders regarding flag settings, making use of the AVIEW, SIN sequence of instructions to provide a quick pause.

For a keyed-in preliminary sample of X_{i}, this program will calculate and display the preliminary sample size, n_{p}, sum, mean, standard deviation, standard error, variance, and coefficient of variation. After an arbitrary allowable error is keyedin, the sample size, n, required to achieve this error is calculated and displayed. An infinite population is assumed but the finite case can be handled by setting flag 00.

NOTES:

1. NIEST provides a way of calculating the basic statistics for a sample assumed to be from an infinite population and the processing speed is very fast; thus it can be used as an efficient alternative to the $\Sigma+$ key and MEAN, SDEV functions. Furthermore, the sample size required for given requirements is simply obtained.
2. A simple adjustment formula is used to obtain the required sample size if the population is assumed to be finite.

Angle gauges used in horizontal point sampling are "calibrated," or sometimes designed or assembled making use of the functional relation between basal area factor of the gauge, F , width of a sighting bar, W, and distance, D, from eye to "target." This program solves the relationship for any one of the three variables, using the other two as input; the determination of the basal area factor of wedge prisms is also possible. The use of metric units is enabled with flag 00 set.

NOTES:

1. Optional conversion of the basal area factor answer to or from metric units by pressing R/S is provided.

Program		
Number	Name	Page
16	PSFIELD	136

Purpose and special Notes
To solve certain problems relating to field
application of horizontal point sampling. For a
given basal area factor F , and if needed, tree DBH,
D, and a measure of slope, one can obtain: (a)
horizontal distance multiplier; (b) limiting horizon-
tal distance; (c) limiting slope distance; (d)
calibrated tape mark to hold; (e) tree factor; (f)
associated plot area; (g) a borderline tree check, if
actual distance to the tree is provided; and (h) a
boundary overlap correction "weight," given the
distance to boundary.
Slope can be expressed in percent, degrees
(flag 01 set), or topographic units (flag 02 set).
The technique for slope correction is assumed to be
the variable gauge angle approach (see Beers, Jour.
For. 67:l88-192); however, with flag 00 set, the
constant gauge angle technique is assumed. The
entire program can be "made metric" by setting flag
03.

NOTES:

1. PSFIELD is an example of a program which is too diverse to be of much practical value except for educational purposes.

To summarize data from either a simple or stratified sample, obtaining within stratum and overall estimates of the mean and standard error and, optionally, user-specified confidence intervals and other sample statistics. Provision is made to use or not (flag 00 set) a finite population correction.

NOTES:

1. SSRS was written to remove the tedium from processing data from a stratified random sample. Since each stratum sample is considered a simple random sample, data from this design can also be analyzed.
2. Initial reminders are skipped by setting flag 03 once familiarity with the program is gained.

To provide simple linear regression calculations which simulate the L.R., \hat{Y}, and r keys found on the HP-34C, HP-11C and HP-15C. Specifically, one may readily calculate the following, for X and Y data summarized by the $\Sigma+$ key:
a, the Y-intercept
b, the slope of the least-squares fitted line b^{\prime}, the slope assuming the line is forced through the origin
5, the simple correlation coefficient
r^{2}, the coefficient of determination
t_{r}, the calculated t to test the hypothesis
of zero correlation
\hat{Y}, a predicted value of Y for any keyed-in X
Additional statistics such as confidence interval estimates and standard errors can be calculated using the program SLR (Program No. 4lF019) but for brevity (96 program steps, 176 bytes, one magnetic card) only the listed items are included in "LR".

To extend the simple linear regression calculations achieved by "LR" (Program No. 4lF018) to provide, for ungrouped X and Y data summarized by the $\Sigma+$ key:
(1) $a, b, b^{\prime}, r, r^{2}, t_{r}$, and \hat{Y} (see LR program);
(2) standard errors: $s_{y x}, s_{a}, s_{b}, s_{b}$;
(3) confidence interval estimates assuming mean Y and assuming individual Y for given X_{0};
and (4) Student's ℓ to test the following hypotheses:

$$
\mathrm{H}_{0}: \rho=0, \mathrm{H}_{0}: \alpha=0, \mathrm{H}_{0}: \beta=0, \mathrm{H}_{0}: \beta^{\prime}=1
$$

NOTES:

1. SLR was written much later than its position in the chronology indicates, therefore the format of the write-up is practically "the latest."
2. Care was taken to make the program "printer compatible" and an automatic print-out mode (flag 00 set) is provided.

MSLR is a steering program to be used in conjunction with SLR (Program No. 41F019) to accommodate ungrouped, grouped, or weighted data and to extend the prompting, correction, and/or deletion capabilities of that program. With the insertion of appropriate subroutines it is anticipated that MSLR can also be used to transform the input data and achieve linear approximations to certain non-linear models.

NOTES:

1. As with SLR, MSLR was written later than its position in the chronology indicates.
2. Detailed examples of ungrouped and grouped cases are provided with printer output.
3. The deletion of data sets, purposefully or to correct for a keyboard error, is provided for and described in detail.

21 VOLl7 202
To demonstrate the capacity of the HP-41C to solve a non-linear volume estimation formula using 17 different sets of regression coefficients. The basic form of the equation is:

$$
v=b_{o}+b_{1} D^{b_{2}}+b_{3} D^{b_{4}}{ }_{H}^{b_{5}}
$$

where, $V=$ board foot volume, Int. $1 / 4$ " rule
D = tree DBH
$\mathrm{H}=$ tree merchantable length
$\mathrm{b}_{\mathrm{i}}=$ species unique coefficients developed by the U.S. Forest Survey (refer to U.S.F.S. Research Note NE-271, or parts F and G)

Provision is made in the program to obtain volume totals by species if desired and printed output is provided if the HP-82143A printer is attached.

NOTES:

1. This program makes use of 102 regression coefficients and 17 species groups names, which can be routinely loaded into the proper registers from magnetic cards. When used with the printer, the user is appropriately prompted to load the data (from cards) using the RDTAX command.

To provide an alternative to the usual "volume table look up" procedure for individual tree volume determination in board feet by International 1/4 inch, Scribner, and Doyle log rules. The tables obviated by this program are the Form Class 78 tables described by Mesavage \& Girard (Tables for Estimating Board-Foot Volume of Timber, U.S.F.S.) using the estimation equations developed by Wiant and Castaneda (Resource Inventory Notes, BLM, March, 1977). Wiant claims agreement with the tabular values within ± 3 percent, for 99 , 94 and 97 percent of the cell values for the three \log rules.

NOTES:

1. MG78 makes use of an audio signal to identify answers; for example, if all three \log rules are solved (label A), the standard beep implies Scribner rule, successive tones 9,7,9,7 implies Int. 1/4" rule, and successive tones $7,9,7,9$ implies Doyle rule.
2. An "adjustment routine" is used to calculate volumes for form classes other than 78, but this is simply 3% for each class unit removed from 78. This 3% rule is an approximation and should be used with discretion.

23 MYERS

SCALE 233
To provide a convenient calculation procedure to be used instead of the set of 14 tables of upland hardwood weights and volumes summarized by Myers, et al. (U.S.F.S. Gen. Tech. Rep. NC-60, 1980). Provision is made for all six species cited: black, red, and white oak, hickory, white ash, and yellow poplar. In addition to the obvious advantage of the calculator over the table look-up procedure, "interpolation" between classes given in the tables is routinely handled by the programmed procedure.

The program SCALE provides an accurate alternative to the scale-stick approach to log scaling. Gross scale, net scale and amount of defect can be displayed for each log after scaling diameter, length and defect type and dimensions are input. Provision is made for summaries of gross and net scale and numbers of logs by species (9 groups possible), and by log grade (4 possible) within species. Various flags are used to enable the selection of \log rule from Doyle, Scribner, Scribner Decimal C, International $1 / 4^{\prime \prime}$ and International $1 / 8^{\prime \prime}$. The defect calculation formulas are those proposed by Grosenbaugh (1952) and described in Husch, Miller and Beers (FOREST MENSURATION, 1982. John Wiley \& Sons). A printed copy of the summary by species is also made available by the program, if the HP-82143A printer is attached.

NOTES:

1. SCALE is a long and complicated program necessitated by the flexibility provided.

Program

Program			Purpose and Special Notes
Number	Name	Page	
			It can be used without summary (flag 00 set) as a log scale calculator (like LOGVOL, Program No. 41F008) or as a defect and net scale calculator. If a summary is desired (flag 00 clear) the calculator alone can be used in the field and then a printer attached and used for print-out, or, if one is processing data previously recorded on paper, the printer can be attached (NORM mode) to provide documentation for each \log as processed.
25	D2BVVMC	248	To solve the formula relating tree diameter in inches or centimeters, D, and crossectional area ("basal area") in square feet or square meters, $\mathrm{B}_{\text {, }}$ for either D or B, given the other as input. NOTES:
			1. The reminders at the beginning of the program are skipped, not by setting a flag, but by using a local alpha label (LBL A, step 13) placed just after the last reminder prompt.
			2. The direction of calculation (D to B or B to D) is reversed at the user's option by pressing R / S in the absence of a numeric input. Flag 22, which is automatically set by a numeric key depression, is tested in the program to accomplish this reversal.
			3. Intermittant change of the calculation direction as opposed to a constant "one-way" direction is dictated by flag 01 clear or set, respectively.
			4. Conversion of any answer from U.S. units to metric or vice versa is accomplished by a local alpha label (label a).
26	F2CVV	252	To convert either Fahrenheit or Centigrade degrees to the other, with optional conversion to Kelvin units.

NOTES:

1. This program is structured very much like D2BVMMC and consequently is executed
Number Name Page

CONVRT. Requires use of the PPC ROM.

NOTES:

1. Because the local label routines in the
CONVRT program are so alike, CONBLD was
2. Because the local label routines in the
CONVRT program are so alike, CONBLD was conceived and written to "automate" the assembly of these subroutines. And, although CONBLD takes more time to assemble the 14 program lines (approx. 3 minutes) than required to key them manually, it is good for the expansive-thinking programmer
to be aware of this alternative procedure. good for the expansive-thinking programmer
to be aware of this alternative procedure.
A general program for conmonly occurring conversions. Up to 15 local labels can be used to program user-specified conversions. Those presently programmed are inches-centimeters, feet-meters, square feet per acre-square meters per hectare, cubic feet per acre-cubic meters per hectare, ounces-milliliters (including "fifths" and "quarts"). Either direction of conversion is easily selected.

NOTES:

1. CONVRT was written to provide a general program for conversions involving a single multiplier (or divisor) in contrast to D2BVWMC and F2CVV which require formula solution. CONVRT is "open-ended" in that the user can insert his own specific conversion routines and prepare a keyboard overlay to identify the local label.

A unique program to compose programs similar to

To calculate individual and cumulative probabilities of obtaining k successes in n trials assuming a specified probability of success in one trial, p. Based on the binomial distribution.

Program	
Number Name Page	

NOTES:

l. $B P R O B$ is a simple program which exemplifies the type of applications by which one is able to obviate tables and graphs of distributions such as Poisson, Normal, Student's t, and Chi-square.

To calculate height or site index, given the other, after age has been specified. Based on Wiant's (Jour. Forestry, 1975, Vol. 73, page 429) prediction equation for Schnur's classic site index curves for upland oaks.

NOTES:

1. SCHNUR makes use of the prompt-reversal technique (R / S depression in the absence of numeric key input), and metric conversion by local label key depression as used in D2BVVMC (Program No. 41F025).

To calculate tree volume in cubic feet and lateral surface area in square feet, assuming the following:
a. Input is [DBH, upper diameter, merchantable length] for the main stem, and [lower diameter, upper diameter, length] for additional sections. All diameters are consistently outside (or inside) bark in inches and merchantable length is the distance in feet from stump height (here assumed to be .5 foot) to the upper diameter.
b. The section between breast height and stump height is a 4 -foot. cylinder.
c. The section above breast height is a frustum of a cone and volume is determined by Newton's formula.

To provide a means of fitting data of the form $Y=$ number of trees and $X=$ diameter x class to the negative exponential model, $\mathrm{y}=\mathrm{ke}-\mathrm{dx}$, using the linear least squares approximation $\log Y=b_{0}+b_{1} X$. Estimates of a, k, b_{0}, and b_{1} are displayed, as is the commonly used index, q, which reflects the ratio of trees in successive diameter classes. Provision is made to obtain predicted Y (i.e., \hat{Y}) for any X and to obtain q for class widths other than that assumed initiallv.

Thomas W. Beers
Dept. Forestry, Purdue Univ.
December 1979
APPRAZ

General Description

1. Program title: APPRAZ
2. Calculator: HP-41C with 3 memory modules or HP-41CV
3. Purpose: to calculate timber volumes and summarize same by species and log grade; additionally, numbers of trees by species and DBH class are summarized as are number of logs by species. Grand total volume, number of logs and number of trees are also provided.
4. Application: to be used in timber harvest inventories, on site, or from tally sheets where data are recorded by logs in the form dd - LL - G
where $d d=$ scaling diameter of \log in inches
LL $=$ log length in feet
$G=10 \mathrm{~g}$ grade (5 grades possible)
5. Justification: the primary advantage of calculator processing is that the very time consuming operation of sorting by grade within species is eliminated; secondarily all calculations and sums are automated, thus avoiding table look-up or calculation errors and minimizing transcribing errors.

Program Procedure

The following instructions are rather detailed, assuming that the user is "feeling his way." It is recommended that the procedure be read in its entirety at least once before actual implementation. If a printer is attached to the calculator, displayed output will be printed.

Step

1 XEQ SIZE 141 and load program APPRAZ.
2 To initialize (set flags and clear stack and registers; assign species names) XEQ APPRAZ. Assigning APPRAZ to a key (say $x>y$) is only advisable for demonstration purposes, and, in general, USER mode should not be used until all data have been processed (step 6).

3 In response to "SPECIES?"
a. Key in species code for first tree; example: WALNUT = l, WH. OAK $=2$, etc. (9 species possible)
b. If tree count is not desired by DBH class, depress CHS (change sign). The presence or absence of negative on this first tree only dictates absence or presence of the DBH count summary for entire cruise.
4. Depress R/S
a. In the absence of a negative species code, the prompt will be "DBH CLASS?" ; go to step 5.
b. If first species code was negative, the prompt will be: "dd.LLG?"
(1) whereupon, for the first log, one "keys-in" the integer scaling diameter (dd), decimal point, the integer length (LL) and log grade (zero through 4; i.e., five grades)
(2) depress R / S and the \log will be processed; an audible tone will sound and the prompt will be "NEW TREE? ${ }^{\prime \prime}$
(a) for a new \log in the same tree, press R / S and prompt will be "dd.LLG?" as for first log (as in 4b)
(b) for a new tree, press zero, then R / S and prompt will be "SPECIES?" as in 3

5 In response to "DBH CLASS? " key-in an integer diameter class (10 to 40) and press R/S.
a. Tree count by DBH class will be processed, and the prompt for the first \log will be "dd.LLG?"
b. Proceed as in $4 b$, eventually depressing $0, R / S$ for a new tree.
c. For each new tree, the "DBH CLASS?" prompt will automatically appear, unless species code is negative, in which case the DBH prompt and summary will be aborted. To re-activate this option, flag 1 must be set manually, i.e., f SF 01* (or start over by XEQ APPRAZ).

6 When all trees have been processed, summaries are available as follows:
a. In USER mode, depress keys A through E and $f A$ through fD for species 1 through 5 and 6 through 9, respectively. Example:
depress C (i.e., species 3) and output will be:

SPECIES 3	(pause)
RE.OAK	(pause)
GR. $0=\mathrm{x} \mathrm{x} \mathrm{x} \mathrm{x}$	(pause)
$\mathrm{GR} .1=\mathrm{x} \times \mathrm{x} \times$	(pause)
GR. $2=\mathrm{xxxx}$	(pause)
GR. $3=\mathrm{x} \times \mathrm{x}$ x	(pause)
GR. $4=\mathrm{x} \mathrm{x} \mathrm{x} \mathrm{x}$	(pause)
$\sum \mathrm{VOL} .=\mathrm{xxxx}$	(pause)
TREES $=\mathrm{xx}$	(pause)
Σ LOGS $=\mathrm{x} x$	

b. Similarly, in USER mode, depress fE to read grand totals of volume by grade (i.e., across species); output will be:

$$
\begin{aligned}
& \text { GRAND TOTALS (pause) } \\
& \text { GR. } 0=\mathrm{x} \times \mathrm{x} \times \text { (pause) } \\
& \text { GR. } 1=x \times \times \times \text { (pause) } \\
& \text { GR. } 2=\mathrm{x} \times \mathrm{x} \times \text { (pause) } \\
& \text { GR. } 3=\times \times \times \times \text { (pause) } \\
& \text { GR.4 = x x x x (pause) } \\
& \Sigma \text { VOL. }=\mathrm{x} \times \mathrm{x} \times \text { (pause) } \\
& \Sigma \text { TREES }=x \times x \text { (pause) } \\
& \Sigma \text { LOGS }=\mathrm{xx}
\end{aligned}
$$

c. Total number of trees by DBH class (DD) can be displayed using any of three options: semiautomatic (DBH); automatic display, one inch classes (ADl); or automatic display, two inch classes (AD2).

[^2](1) XEQ DBH (semiautomatic display)
(a) at the prompt "DBH CLASS?", key-in desired DD (10 to 40), depress R/S; "NO. TREES = xx." will be displayed for approx. 2 seconds then the "DBH CLASS?" prompt will reappear.
(b) repeat (a) for another DBH class.
(2) XEQ ADl (automatic display, one-inch classes; assuming data were recorded by one-inch classes in the cruise)
(a) at the prompt "lST CLASS:l:?", key-in the class where you want the consecutive automatic display to start, say DD (10 to 40), depress R/S.
(b) starting with this initial class, and then by increments of one-inch, the class will be identified rapidly by "DBH CLASS:DD". Then "NO. TREES = xx". will remain for two seconds.
(c) display will stop after 40 -inch class has been displayed (to stop manually, depress R/S)
(3) XEQ AD2 (automatic display, two-inch classes; assuming data were recorded by two-inch classes in the cruise)

Procedure is the same as for ADl, except that the prompt will be "1ST CLASS:2:?", whereupon an initial even DD (10 to 40) class should be keyed-in. Display will then proceed by two-inch increments through the 40-inch class.

SPECIAL NOTE: The contents of any two-digit storage register (00 through 99) can be displayed at any time by depressing f VIEW nn. Calculations are not affected since the stack is not disturbed. A depression of * will restore the x register contents to display. For example, the accumulated volume in species 1 grade 2 can be viewed by f VIEW 12; volume in species 6 , grade 0 by f VIEW 60; grand total volume by f VIEW 05; etc. (Refer to storage assignments list for other data locations)

ERROR CORRECTIONS. If one observes faulty species code, DBH, or log data in the display prior to processing that tree or log, the correction key (\leftarrow) can be used to rectify the information.

If one senses that faulty information has just been processed, certain "erasure" routines are possible:
a. To erase the effect of an erroneous species code or DBH class at the time of the first dd.LIG prompt in a tree (i.e., before the audible tone)
(1) XEQ TGOOF (for tree goof)
(2) prompt will then become "SPECIES?"
(3) proceed with correct species code and DBH as in step 3.
b. To erase the effect of erroneous log data at the time of the "NEW TREE? \varnothing " prompt (i.e., just after the audible tone)
(1) XEQ LGOOF (for \log goof)
(2) erroneous volumes and counts will be deducted and prompt will again be "NEW TREE? \varnothing " after tone sounds.
(3) depress R/S (as for any new log); key-in correct log data, and depress R / S to process the correct data.

Program as written assumes bd. ft. volumes, Doyle scale:

$$
v_{i}=\left(d_{i}-4\right)^{2} \frac{L_{i}}{16}
$$

where $\mathrm{V}_{\mathrm{i}}=\log$ volume in board feet
$d_{i}=\log$ diameter in inches, inside bark at the small end
$L_{i}=\log$ length in feet

If other log rules or cubic foot volume formulas are desired, one can substitute a subroutine with the label LBL 13; for location convenience, it is located last in the APPRAZ program.

Examples:
a. Scribner bd. ft. volume:

$$
v_{i}=\left(.79 d_{i}^{2}-2 d_{i}-4\right) \frac{L_{i}}{16}
$$

Subroutine:
LBL 13, RCL08, $x 2$, $79, x$, RCL08, $2, x,-, 4,-$, RCL09, $x, 16,:, F I X 0, X E Q ~ R N D, S T O 98$, FIX3, RTN

The species codes and names used in the program are as follows:
$1=$ WALNUT
2 = WH.OAK
3 = RE. OAK
4 = ASH
$5=$ TULIP
$6=$ HICKRY (yes, it's misspelled, but for convenient storage one is limited to six characters!)
7 = H.MAPL
$8=$ S.MAPL
$9=$ MISC.
To alter this list or use entirely different names or assignments, one can make appropriate changes in subroutine 15 , near the end of the program, as follows:
a. To get to this part of the program, make sure that the calculator is not in PRGM mode; depress f GTO 15.
b. Put the calculator in PRGM mode, and use the delete key (\leftarrow) to delete the unwarited names; then key-in the desired names from top (1) to bottom (9); they will be separated by XEQ 14 instructions.
c. Take calculator out of PRGM mode.

11 If calculator is turnea off before a summary is finished, it is most logical (though not necessary) to do this after a given tree has been processed and $\varnothing, R / S$ have been depressed. To see the prompt for the next tree when the calculator is turned on, depress ALPHA key. Depress ALPHA again (i.e., out of ALPHA mode) before keying-in the next \log data.

Typical Data and Example

The hypothetical data given here are meant to be used as a test after APPRAZ has been appropriately loaded in the HP-41C. A fcur-tree sample (2 black walnut, 1 white oak, and 1 red oak) is shown. Typical summary tables are then presented. In practice these tables should be prepared in skeleton form, then filled-in from observing the calculator display or the paper tape (see example in part C) if a printer has been used. Note that volumes shown are board feet, Doyle Scale. Other volume units can be obtained by program alteration as described in Step 9 of the "Procedure."
A. Data:

Tree No.			LOG \#1		LOG \#2		LOG \#3	
	Spec.	DBH	dd.LUG	vol.	dd.LLG	vol.	dd.LLG	vol.
1	BLW (1)	22	21.060	108	18.082	98		
2	WHO (2)	18	16.100	90	15.101	76		
3	BLW (1)	18	15.121	91	14.081	50	12.083	32
4	REO (3)	24	21.122	217				

B. Results:

DBH	
CLASS	NUMBER
\cdot	\cdot
18	$\dot{8}$

C．Sample printout obtained by pressing A，B，C，and f E and by executing（XEQ）AD2．

YED
SPECES：
WALHUT
CR． $\mathrm{G}=10 \mathrm{C}$
［iR $1=141$
CFE． $2=98$
［50． $3=32$
Cr： $4=0$
\sum VOL．$=379$
Σ TREES： 2
$\Sigma \log =5$
MED E
SPECES 2
Hituer
CR． $0=06$
CR， $1=76$
GR． $2=1$
［TR ，3－7
C． $4=0$
\sum MOL．$=166$
2 TPESG：
$2 \operatorname{loge} 2$
MET：
SPECTES 2
RE．OAK
TR 时
TR． $1=0$
57． $2=217$
GR： $3=0$
6R． $4=0$
E．UL．$=217$
${ }_{2}^{2}$ TRESE
© LoGS－
Yo：
GREHD TMTAS
GR． $\mathrm{G}=196$
TR． $1=217$
［日， $2=315$
PR， $3=32$
［共， $4=1$
E VIL．$=762$
Σ TRESS 4
ELDGS

```
            #ED "GTQ"
1ST CHCS:?
16 RU
IBh ClASS：1E
Ni．TREFS＝0
DEH CLRES：18
NO．TREES 2
IEH CLOSS：20
10．TREES＝6
DEH CLPGSZ
M0．TREES \(=\)
IBH Clase：24
N0．TREES 1
IRH CABSEG
W0．TREES＝0
IEH CTHS：28
NO．TREES＝0
STP
```


Storage Register Assignments

The location of various intermediate and final calculations can be found in the following table. One can determine the contents of register nn by using f VIEW nn or RCL nn , but this is not recommended until the entire data set has been completed. Otherwise, program processing might be adversely disturbed.

Register	Contents		UNUSED:
00	Volume in Grade 0 logs	19	
01	Volume in Grade 1 logs	29	
02	Volume in Grade 2 logs	38,39	
03	Volume in Grade 3 logs	48,49	
04	Volume in Grade 4 logs	58,59	
05	Grand total volume	68,69	
06	Grand total no. trees	78,79	
07	Grand total no. logs	100	
08	Current value of dd	111	
09	Current value of LL	113	If 2-inch DBH classes
10	Volume in species 1, Grade 0		are used.
11	Volume in species 1, Grade 1	\cdot	
12	Volume in species 1, Grade 2	137	
13	Volume in species 1, Grade 3	139	
14	Volume in species l, Grade 4		
15	Total volume for species 1		
16	Total no. trees for species l		
17	Total no. logs for species 1		
18	Current value of G		
20-27	Same as 10-17 for species 2		
28	Current species code or alteration		
30-37	Same as 10-17 for species 3		
-	-		
-	-		
80-87	Same as 10-17 for species 8		
88	DBH class start for automatic display		
89	Control number for automatic DBH display		
90-97	Same as 10-17 for species 9		
98	Current log volume		
99	Pointer for DBH summary register		
101-109	Species names		
110	No. trees in 10" class		
111	No. trees in ll" class		
-	-		
-	-		
140	No. trees in 40 " class		

Program Listing

APFRAZ

4：29Pm 03／23		
日1＊LEL＂APPRRH2＂	$515 \mathrm{~T}+87$	1815 TOP
82 CLST	$525 \mathrm{~T}+\mathrm{INI} 28$	102 GTO 91
03 CLRG	537	1936 LBLE
943501	54 ST－ 28	1045
85 XEQ 15	55 RCL 18	10559028
B6＊LEL 61	$56 \mathrm{ST}+28$	106 XED 12
97 ＂SPECIES ？	57 RCL 98	107 STOP
08 PROMPT	58 ST＋INI 28	188＊LBL a
时 X 目？	$59 \mathrm{ST}+$ INII 18	1996
10 CF 日1	69 RCL 18	1109508
11 ABS	$615 \mathrm{~T}-28$	111 XEQ 12
121 EOI	62 RCL 98	112 STOF
13＊	63 TONE 9	1130 LBL 6
1435028	64 ＂NEH TREE？8＂	1147
15 FS ？ OL_{1}	65 PROMPT	11557028
16 2E0 10	$66 \mathrm{X}=0$ ？	116×812
171	67 GT0 91	117 ST0P
$18 \mathrm{ST}+66$	68 CTO 11	1186 LBL
196	694LBL 10	1198
$20 \mathrm{ST}+28$	70 －IEH CLASS？	12950020
211	71 PROAPT	121 XEe 12
$22 \mathrm{ST}+$ IND 28	72 ENTERt	122 STOP
236	73168	1234LEL d
24 ST－ 28	74 ＋	1249
254LEL 11	$75 \mathrm{ST0} 99$	125 ST0 28
$26^{\text {a }}$ dd．LLG ？${ }^{\circ}$	761	126 XE0 12
27 PROMPT	77 ST＋INI 99	127 STOP
28 INT	78 RTN	128＊LEL E
$29570{ }^{29}$	794LBL H	129 －${ }^{\text {PrRANI TOTALS }}$
30 LASTX	891	139 AYIEH
31 FRC	8151028	131 PSE
321502	82 XED 12	132 日
33 ＊	83 STOP	133×1008
34 IHT	84 GT0 81	134 STOP
3557009	$85+$ LBL E	135 cTO 日1
36 LAST\％	862	$136+L B L 12$
37 FRC	87 ST0 28	137 FIU
381 E日1	88 XEQ 12	138 RCL 28
39＊	89 STOF	139 SPECIES：
44 STO 18	90 CTO प1	149 ARCL X
41 XEQ 13	$91+$ LBL ：	141 AYIEH
42 LEL 04	923	142 PSE
$43 \mathrm{ST}+65$	$93 \mathrm{ST0} 28$	143 CLA
445	94×12	144109
$45 \mathrm{ST}+28$	95 STOP	$145+$
46 RCL 98	96 CTO 81	146 ARCL INI X
47 ST＋INI 28	97＊LBL II	147 RUIEH
482	984	148 PSE
$495 T+29$	9957028	149 RCL 28
51	108 XEO 12	1501 E明

291 LEL 17
202 FIX
$20.3+$
20457089
2054 LBL 16
206－DBH CLASS：
297 ARCL 88
208 AUIEH
209 CLA
210 ＊ MO ．TREES＝＂
211 ARCL INI 89
212 AUIEH
213 PSE
214 IS5 89
215 G10 18
216 STOP
217 FSTC 92
$218 \mathrm{GTO} \mathrm{HDO}^{*}$
219 GTO ＂ADI＂
$229+\operatorname{LBL} 18$
221 FS ？ 2
2222
223 FC？ 02
2241
$225 \mathrm{ST}+88$
226 GT0 16
$227+\operatorname{LBL}$＂ ADC^{2}
228 ＂1ST CLASS：2：？＂
229 PROMPT
23457086
2311 EИZ
$232+$
233.14482

2349 F 日
2356 TO 17
$236+\mathrm{LBL}$＂LGOF＂
2377
$238 \mathrm{ST}+28$
2392
246 ST－INI 20
241 ST－ 67
2427
$243 \mathrm{ST}-28$
244－1
245 ST $=98$
246 FCL 98
247 GTO 44
2484LBL＂TGOMF＂
2496
$2505 \mathrm{~T}+2 \mathrm{~S}$

2511
252 ST－ 96
253 ST－INI 28
254 ST－INII 99
255 GT0
$256+$ LBL 15
257101.169

258 ST0 日
259 ＂HALNITT＂
260 XEO 14
261 ＂HH．ORK＂
262 XED 14
263 －RE．OAK：
264 XED 14
$265{ }^{\circ} \mathrm{A} 5 \mathrm{H}^{\prime}$
266 XEQ 14
267 ＂THLIF＂
268 XE 14
269 ＂HICKRY＂
27 XE 14
271 ＂H．MAPL＂
272 XEU 14
273 ＂S．MAPL＊
274 XEU 14
275 ＂MISC．＂
276．LBL 14
277 ASTO INI 90
278 ISG 明
279 RTN
2806
281570 日и
$2826 T 061$
$283+\operatorname{LBL} 13$
284 RCL 88
2854
$286-$
$287 \mathrm{X}+2$
$288 \mathrm{RCL} \mathrm{B9}$
289 ＊
2916
291 ／
292 FIX
293 RNI
294 ST0 98
295 FIX 3
296 RTH
297 ．ENII．

APPRER ： 791 BYTES

Retrospective Comments Regarding APPRAZ

1. The data input operation can be made less tedious by eliminating the "NEW TREE? \varnothing " prompt and adopting the convention: if there is another log in the tree, key the data and press R/S, otherwise simply press R/S; the absence of a number keyed-in thus indicates that the prompt for a new tree is needed. This can be accomplished by changing the program as follows:
a. delete steps 64 through 67
b. insert FC? 22

GIO 01 after step 27 (PROMPT)
c. insert CF 22 after step 25 (LBL 11)
2. In reviewing the number of trees by diameter class (AD2 and AD1) the class identifier is viewed a little fast; to correct this, insert SIN after step 208 (AVIEW). This will take the sin of whatever is in the X register and the time involved will effectively produce a short pause.
3. The program was written before a printer was available; therefore, if a printer is attached, turned on, and in MAN mode, species, grade, and DBH summaries will be printed but not spaced for legibility. To partially correct this, insert ADV statements after
step 128 (LBL e)
step 136 (LBL 12)
and step 205 (LBL 16)
4. The modifications described in comments 1,2 , and 3 have been incorporated into APPRAZ and the new program, called APPRZl, is available on the KRON-1 tape.

Thomas W. Beers
Dept. Forestry, Purdue Univ.
January 1980

General Description

1. Program title: CRUZ
2. Calculator: HP-41C with 4 memory modules or $\mathrm{HP}-41 \mathrm{CV}$
3. Purpose: to process inventory data from fixed-size or horizontal point samples, where the tallied data are: species, tree DBH, number of logs, and, optionally, soundness. Per-acre and total tract summaries are provided for volume, basal area, and number of trees, by species and overall. Per-acre and total estimates by DBH classes are provided for volume and number of trees. A statistical routine estimates the mean, standard error, percent standard error and . 95 confidence intervals for volume and basal area.
4. Application: to be used on site or from tally sheets where data are taken in the form

S - DD. H - SS
where $S=$ species code (9 possible)
DD = tree DBH
$H=$ height in logs
SS = tree soundness factor (this option available if flag 02 is set)

Horizontal point sampling is assumed; if fixed-size plots are used, flag 01 must be set.
5. Justification: there are two primary advantages provided by the calculator processing. The time consuming operation of sorting into species and DBH classes is eliminated and the tedious calculations and/or table look-up for tree volume and statistical computations are avoided.

Although the calculator can be used as an alternative to paper recording of the data it is probably safer to do both or plan on using the calculator after the inventory. In this case data can be recorded, line by line, by plot number and tree number and subsequently processed in an orderly manner. An obvious advantage of this recording format over a dot-dash summary tally is that the calculation of standard error and interval estimates is made possible.

Program Procedure

The following instructions are rather detailed, assuming that the user is "feeling his way." It is recommended that the procedure be read in its entirety at least once before actual implementation. Note that a printer cannot be attached since four modules are required. Use of double or quaddensity modules should overcome this limitation, but the spacing may be erratic since the program was written assuming no printer.

Step

1 XEQ SIZE 142
2 Load programs CRUZ, STP, TREEVOL, and SPECIES.*
3 Horizontal point sampling and no tree soundness is assumed:
a. for fixed-size plots, set flag 01 (i.e., f SF 0l)**
b. for inventories recognizing tree soundness, set flag 02

4 XEQ CRUZ -- this clears storage registers, stack, and certain internal flags

5 In response to " $\mathrm{F}=$?" (or "PLOT AREA = ?") key-in bäsal area factor
(or fixed-size plot area in acres) and depress R/S
6 In response to the prompt, "SDD.H" (or "SDD.HSS") key-in the data in the indicated format:
$\left.\begin{array}{ll}\text { Species code } & =S \\ \text { DBH } & =\mathrm{DD} \\ \text { height in logs } & =\mathrm{H} \\ \text { decimal soundness } & =\mathrm{SS}\end{array}\right\} \quad$ SDD. H (or SDD. HSS)
and depress R / S

7 An audible tone indicates that the tree has been processed; in response to the prompt
"LAST' TREE? Ø"
a. If that tree was the final one at the point (or on the plot) depress zero, then R / S

[^3]b. If there are more trees at that location, simply depress R / S.
c. Repeat steps 6 and 7 until the "last-tree" condition is met (i.e., 7a is executed)
(1) For the first tree on a new point (or plot), repeat step 6 and 7
(2) When the last tree on the last point (or plot) has been processed, go to step 8. (Note: display will be "SDD.H" or "SDD.HSS", awaiting the first tree at the next location.)

9 XES STP (can be assigned to STN)
a. In response to the prompt " $\mathrm{T}=$? , or P / S ", the user can key-in Student's t appropriate for . 95 confidence intervals (default value assumed by the program is 2.0)
b. Depress R / S-- calculations will be made; then the prompt " $\mathrm{A}=$ VOL., $\mathrm{B}=\mathrm{BA}$ " will appear

In USER mode, depressing A for volume or B for basal area will lead to estimates displayed in the following format: example: depress A

VOLUE:	(pause)	
HEAN $=$ xxxx.	(pause)	
$S \times \mathrm{BAR}=\mathrm{xxxx}$.	(pause)	-- standard error of mean
IN \% = xx .	(pause)	- standard error expressed as a \% of the mean
. $95 \mathrm{CI}= \pm \mathrm{xxx}$.		- . 95 confidence interval

c. If the mear and interval estimates are to be converted to a tract basis, after the above display depress R/S, and in response to the prompt "FOREST AREA = ?" key-in the area and depress k / S again. Display will be:

$$
\begin{aligned}
& \text { TOTAL }=\text { xyxxx } \quad \text { (pause) } \\
& .95 \text { C.I. }= \pm \operatorname{xxx}
\end{aligned}
$$

(1) Note that if these operations are done as follows: A, $P / S, B$; or A, B, these both can be reliably repeated; but attempts to repeat after the following (and perhaps cthers): $A, R / S, B, R / S$; or $A, B, R / S$ will lead to interchanging the volume and basal area ariswers. To clear this condition and to enable repeats, simply set flag 05 manually, and depress A.

XEQ DBH (can be assigned to COS)
a. In response to the prompt DBH CLASS?, key-in the lowest two-inch class that sumaries are desired for.
b. Depress R / S and display will be:

VOLURE $=\mathrm{xxxx}$ (pause)
10. TREES $=x x \cdot x$
c. Depress R / S again for the next higher class; the class identifier will be displayed rapidly, so be alert!
d. Caution: each time PA is executed after the first, execution of DBH will lead to answers $1 / n$th the correct values.

XEQ TOT (can be assigned to TAN)
a. In response to "FOREST $\operatorname{AREA}=$?" key-in the area, and depress R/S. (TOT takes about 25 seconds)
b. Display will be TRCT TOT CALC. NOW DONE. DEPRESS A THRU e, 1 BY 1
c. Summaries on a total tract basis will be displayed as described for per acre answers in 8a and 8b; Step 9 (STP program) is no longer appropriate.
d. Caution: if STP has been executed prior to TOT, the answers obtained from pressing fE may have the volume and basal area answers interchanged.

The program, as written, assumes tree volumes are board feet, Doyle scale, calculated using the following regression equations:

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{i}}=.018 \mathrm{D}_{\mathrm{i}}^{2} \mathrm{H}_{\mathrm{i}} & \text { for } \mathrm{DBH}=\mathrm{D}=10,12,14 \text { inches } \\
\mathrm{V}_{\mathrm{i}}=.022 \mathrm{D}_{\mathrm{i}}^{2} \mathrm{H}_{\mathrm{i}} & \text { for } \mathrm{DBH}=\mathrm{D}=16 \text { thru } 24 \text { inches }
\end{array}
$$

$\mathrm{V}_{\mathrm{i}}=.024 \mathrm{~L}_{\mathrm{i}}^{2} \mathrm{H}_{\mathrm{i}}$ for $\mathrm{DBH}=\mathrm{D}>24$ inches
To use another volume estimation formula, a new program called TREEVOL should be prepared, assuming the following register assignnents:
$R_{20}=$ source of DBH
$\mathrm{R}_{30}=$ source of height in 12-foot logs (the 12 multiplier is located in LBL 03 of CRUZ program; in case 16 -foot logs are to be used, this can be changed to 16)
$R_{36}=$ used for intermediate calculations; here to store $I_{i}^{2} H_{i}$
The calculated tree volume should be left in the X register and then should terminate with the
statements: FS? 02 (for soundness option)
RCL 40 (tree soundness)
FS? 02
X
END
to return sound volume to the main program if flag 02 is set.

The species codes and names used in the program are as follows:

$$
\begin{aligned}
& 1=\text { WALNUT } \\
& 2=\text { WH.OAK } \\
& 3=\text { RE.OAK } \\
& 4=\text { ASH } \\
& 5=\text { TULIP } \\
& 6=\text { EICKRY } \\
& 7=\text { H.MAPL } \\
& 8=\text { S.MAPL } \\
& 9=\text { MISC. }
\end{aligned}
$$

To alter this list or to use entirely different names or assignments, one can make appropriate changes in the program "SPECIES". T'o access the program:
à. in PRGM and/or USER mode, depress
f GTO alpha SPECIES alpha;
b. with calculator in PRGM mode, single step through the progran and make the necessary deletions (\leftarrow) and insertions;
c. take calculator out of PRGM mode

The following general comments should be noted:
a. Although in the program description, various program labels were assigned to keys, the user is cautioned that this might not be a sound practice in actual use since accidental depression
of such keys (in USER mode) may obliterate considerable data already entered and processed. As a protection against this problem:
(1) do not assign programs to keys, and/or
(2) keep the calculator out of USER mode until the final summaries are to be output
b. To minimize the chances of clearing the entire program when altering various segments, four stand-alone programs are used. They are
(1) CRUZ
using labels PA, TOT, DBH, A through e, 01 through $12,14,16,18$, and 21
(2) STP using labels A, B, 14 (same subroutine as in CRUZ), 19, and 20
(3) TREEVOL using labels 13, 17, and 22
(4) SPECIES using label 15
c. By reference to the register assignment sheet, the user can recall some values not specifically displayed by the program. For example, after the STP programi has been executed (step 9), to display

CV (coefficient of variation) for volume: RCL 44
CV for basal area : RCL 45
standard deviation for volume : RCL 24
standard deviation for basal area: RCL 25
statistical accumulations: RCL 04 through 09

Typical Data and Example

The hypothetical data given here are meant to be used as a test after CRUZ has been appropriately loaded in the HP-4lC. Part I assumes a horizontal point sample inventory (flag 01 clear), while part II assumes a fixed size plot (flag 01 set). Either can be used with (flag 02 set) or without soundness as an input variable. Typical summary tables are also shown. In practice, these would be prepared in skeleton form and filled-in with results read from the display. Note that volumes shown are in board feet, Doyle Scale, and that log length is 12 feet (see step 12 of Procedure for alterations.).
I. Horizontal Point Sample (with $F=10.0$)
A. Data:
Height
in Sound- Volume* Tree BA

Plot Tree Species DBH logs ness per tree per acre factor factor

1	1	BLW (1)	16	2	.99	$135.2(133.8)$	$968.3(958.3)$	7.16	10
2	$W H O(2)$	18	3	.75	$256.6(192.5)$	$\frac{1452.1(1089.4)}{2420.4(2047.7)}$	$\frac{5.66}{12.82}$	$\frac{10}{20}$	

2	1	BLW (1)	16	1	. 99	67.6(66.9)	484.2(479.2)	7.16	10
	2.	WHO (2)	18	2	. 75	171.1(128.3)	968.3(726.1)	5.66	10
	3	REO (3)	20	3	. 50	$316.8(158.4)$	$\frac{1452.1(726.1)}{2904.6(1931.4)}$	$\frac{4.58}{17.40}$	$\frac{10}{30}$
						Total:	5325.0(3979.1)	30.22	50
						Mean :	2662.5(1989.6)	15.11	25.0

B. Results:

SPECIES	VOLUME*	BA	NO. TREES	
1 WALIU'	726 (719)	10.00	7.2	(same as DBH class 16)
$2 \mathrm{WH} . \mathrm{OAK}$	1210(908)	10.00	5.7	(same as DBH class 18)
3 RE.OAK	$\frac{726(363)}{2662(1990)}$	$\frac{5.00}{25.00}$	$\frac{2.3}{15.2}$	(same as DBH class 20)
[IEAN	2662 (1989)	25.0	15.1	
$\therefore \times \mathrm{BNR}$	242 (58)	5.0	-	
1N\%	9 (3)	20.0	-	
$\begin{gathered} .95 \text { C.I. } \\ (t=2) \end{gathered}$	± 484 (116)	10.0	-	

*Voluncs in parentheses reflect the application of the soundness factor.
II. Fixed Size Plot Sample (one-fifth acre)
A. Data:

2	1	BLW (1)	16	1	. 99	67.6 (66.9)	338.0(334.6)	5	6.98
	2	WHO (2)	18	2	. 75	171.1(128.3)	855.5(641.6)	5	8.84
	3	REO (3)	20	3	. 50	316.8(158.4)	$\frac{1584.0(792.0)}{2777.5(1768.2)}$	$\frac{5}{15}$	$\frac{10.91}{26.73}$
						Total:	4736.5(3399.7)	25	42.55
						Mean:	2368.2(1699.8)	12.5	21.28

a/Tree factor $=1 /$ plot size in acres
$\underline{\mathrm{b}} /$ BA factor $=$ (Tree factor) (tree basal area)
B. Results:

SPECIES	VOLUNE*	BA	NO. TREES	
I WALNUT	$507(502)$	6.98	5.0	
(same as DBH class 16)				
2 WH.OAK	$1069(802)$	8.84	5.0	
3 RE.OAK	$\frac{792(396)}{2368(1700)}$	$\frac{5.45}{21.27}$	$\frac{2.5}{12.5}$	
	(same as DBH class 18)			
MEAN	$2368(1700)$	21.3	12.5	
S x BAR	$409(68)$	5.5	-	
IN \%	$17(4)$	25.6	-	
.95 C.I.	$\pm 818(137)$	10.9	-	
$\quad(t=2)$				

[^4]CRUZ
Storage Register Assignments

Register Contents Register Contents

Program Listing

CRUZ

5： 66 PM 明／23		
日1＊LBL＂CRUZ＂	51 ＊	101 VM？
Q2 CLST	52576	$102 \mathrm{GTO} \mathrm{O}_{2}$
03.8 CLR	53 ／	103 RCL 92
Q4 EREG 94	545015	104 RCL 11
05 XEE＂SPECIES＂	55 FS ？ 01	$1058+$
日6．CF M3	$561 / \mathrm{x}$	186
Q7 CF 95	57 RCL 日月	197 ST0 01
日80 LBL 11	58 ＊	1485908
09 FS ？ 01	59 FS ？ 11	189 ST0 03
16＂PLDT AREA＝？＊	60 GTO 04	119 GTO 92
11 Fr ？ 01	61 STO 16	$111+\mathrm{LBL}$－PA－
$12^{*} \mathrm{~F}=7$	62 RCL 80	112 b
13 PPOMPT	63 ST0 15	113 ST0 03
14 FS 61	64 GT0 65	114 613．89310
$151 / 4$	654LBL 84	115 STO 96
16 STO	66 STO 15	116 LBL 86
174LEL V_{2}	67 RCL 99	117 RCL IND 90
18 FS ？ O_{2}	68 STO 16	$118 \mathrm{ST}+6.3$
$19.900 .4 S^{*}$	694LBL 8.5	119 ISİ90
20 FD \％ 0	7010	120 CTO ${ }^{\text {G }}$ ，
21 ＝SDD．${ }^{\text {＊}}$	715 T 10	121 MEAN
22 PROMPT	721	$122 \mathrm{ST0} 91$
231 E月2	$73 \mathrm{ST}+16$	123 x ${ }^{\text {PY }}$
24%	74 XEQ＂TREEYOL＂	124 STO 22
25 INT	75 RCL 16.	125 RCL ${ }^{\text {a }}$
26 ST0 10	76 ＊	126 RCL 89
27 LASTX	77 ST0 14	127／
281	$78 \mathrm{ST}+61$	128 ST0 93
29 MOD	79 ST＋INII 18	129811.813
301502	801	13051078
31 ＊	$81 \mathrm{ST}+10$	13117
32 INT	82 RCL 15	$132 \mathrm{ST0} 84$
33 STO 28	$83 \mathrm{ST}+82$	133 LBL Q 7
34 LASTX	84 ST＋IND 18	134 RCL IND 70
35 FRC	851	135 RCL 日9
361 ER1	$86 \mathrm{ST}+10$	136 ／
37 ＊	87 RCL 16	137 STO INI 80
38 INT	$88 \mathrm{ST}+03$	1381
39 ST0 30	$89 \mathrm{ST}+$ IND 16	$1395 \mathrm{~T}+88$
40 FO	98189	146 ISS 70
41 crob 03	$91 \mathrm{ST}+20$	$141 \mathrm{GTO} \mathrm{O}_{1}$
42 LASTX	92 RCL 14	1427.810
43 FRC	$93 \mathrm{ST}+$ INI 20	$143 \mathrm{ST}+70$
44 ST0 46	941	144 ST＋ 80
45＊LBL 0.3	$95 \mathrm{ST}+29$	145 RCL 7 C
4612	96 RCL 16	14618 C
47 ST＊ 38	97 ST＋IND 29	$147 \mathrm{X} Y \mathrm{Y}$ ？
48 RCL 28	98 TONE 9	$148 \mathrm{CTO} \mathrm{TO}_{7}$
49 X 92	99 ＂LAST TREE？日＂	149110.141
5 P PI	100 PROMPT	150 ST0 60

151*LBL 89	281 STOP
152 RCL 89	$292 * L B L B$
153 FS? 93	29832
154 RCL 5 ¢	2945 TO 10
$155 \mathrm{ST} /$ INI 60	295×12
15615068	28.56
157 GTO 99	286 ST0P
158 CF 63	2987 3 L
159 -PER ACRE CAL"	298
1680 LBL 11	210×0
161 "H.S. NOH DONE"	210 Xeg 12
162 RYIEH	211 ST0P
163 CLA	212 LBL II
164 - DEPRES ${ }^{\text {A }}$ TH"	2134
165 *FRU e, 1 BY 1"	21451016
166 PYIEN	215 XEO 12
167 CLA	216 STOP
168 RTN	217-LBL E
1694 LBL -TOT*	218.
17日 FOREST RREA?*	219 STII 10
171 PROMFT	220×12
172 SF 93	221570 P
17381050	222*LBL a
17417.919	2236
175 STO 70	22451010
176*LBL 88	225 XEQ 12
177 RCL 50	226 STOP
178 ST* INI 79	c27*Lb b
17915670	2887
1809608	2c9 51010
1817.916	23 XEd 12
$1825 \mathrm{~T}+70$	231 STOP
183 RCL 70	232 LBL -
184 1昌	2338
185 X XT ?	234 ST0 10
186 CTO 88	235 XE0 12
187110.141	236 STOP
1885 TO 68	$237 *$ LBL d
189*LBL 19	2389
190 RCL 58	239 ST0 161
191 ST* IND 60	$240 \times \mathrm{XEQ} 12$
192 ISG6 60	241 STOP
193 GTO 18	2424.BL E
194 -TRCT TOT CRL*	243 FS ? 83
$195 \times$ XEQ 11	244 XEQ 18
196 STOP	2451
197 LBL A	24651019
1981	247 XEQ 16
199 ST0 10	248 STOP
	249*LBL 12

251 "SPECIES:-
252 XEQ 14
253180
$254+$
255 ARCL INI X
256 AYIE
257 PSE
25810
259 ST* 10
2647
261 ST+ 19
262 2 LBL 16
263 FIX 0
264 RCL IHD 10
265 -YOL. $=$ "
266 XEQ 14
2671
$268 \mathrm{ST}+10$
269 RCL IND 10
279 FIX 2
271 B. A. $==$
272 XEO 14
2731
$2745 T+10$
275 RCL IND 10
276 FIX 1
277 "H0.TREES="
2784LBL 14
279 ARCL X
28 AUIEH
281 PSE
282 CLA
283 RTN
284 LBL 18
285 RCL 5 B
286 ST* 01
287 ST* 02
288 ST* 0.3
289 RTN
2904LBL ${ }^{\text {D }}{ }^{29 H}=$
291 -DBH CLASS?
292 PROMPT
293190.140
$294+$
2955 TO 69
2964LBL 21
297 RCL IND 68
298 FIX 0
299 "YOLUME=
390 XEO 14

3011
$302 \mathrm{ST}+60$
363 RCL IHI 6 的
304 FIX 1
305 ＂NO．TREES＝＊
306 XEQ 14
307 STOP
308 FIX 8
309 ISG 68
319 RCL 60
311190
312 －
313 INT
314 ＂DBH CLASS：＂
315 ARCL X
316 AUIEN
317 GTO 21
318 RTN
319 ．END．

CRID ： 773 BYTES
$91+L B L$＂STP＂
Q2 2
Q3＂T＝？，OR R／S＂
04 PEOMPT
055 TO 26
96 SIEV
07 ST0 24
$08 \mathrm{X} \backslash>\mathrm{Y}$
09 STO 25
10 RCL Q_{9}
11 SeRT
12 ；
135 TO 35
14 RCL 24
15 LASTM
16%
17 STO 34
18 RCL 24
19 RCL 日
29 ／
211 E 2
22 ＊
23 ST0 44
24 RCL 25
25 RCL 02
26 ／
271 EQ 2
28 ＊
295 TO 45
$39 \operatorname{RCL} 26$
31 RCL 34
32 ＊
33 STO 54
34 RCL 26
35 RCL 35
36 ＊
375 TO 55
$38{ }^{-\mathrm{A}}=40 \mathrm{~L} ., \mathrm{B}=\mathrm{BA}{ }^{-1}$
39 PROMFT
49 LBL A
41 －YOLUME：－
42 AUIEH
43 FIX
44 FST： 95
45 XEO 29
46 LRL 19
47 FSE
48 RCL 日l
49 －MEAN＝＊
$50 \times 2 \times 14$

51 RCL 34
52 － $5 \mathrm{XBAR}=$
53 XEE 14
54 RCL 日
55 ；
56 เй
57 ＊
58 －IN ：＝＝
59 XEQ 14
60 RCL 54
$61^{\text {P }} .95 \mathrm{C} . \mathrm{I}=$ º *
62 XEE 14
63 STOP
64 ＂FOREST RREA？
65 PROMFT
6657050
67 RCL 日1
68 RCl 5 R
69 ＊
7月 $\mathrm{TOTRL}=$－
71 XEQ 14
72 RCL 54
73 RCL 50
74 ＊

76 XEQ 14
77 RTN
784 LBL E
79 SF
8 8GBSAL RREA：＂
81 AYIEH
82 FIY 1
83 XEA 20
84 XEE 19
854LEL 20
86 RCL 11
87 x 9 昭
38 STO 1
$89 \operatorname{RCL} 34$
$90 \times>35$
9150034
92 RCL 54
$93 \times$ र 55
$945 T 054$
95 RTH
96 LBL 14
97 ARCL 8
98 AHIEL
99 PCE
1日G CIM
101 RTH
182 END

914LEL－TREEYOL＂	
02 RCL 30	Q1＊LBL＂SPESIES＂ Q2 191.109
日． RCL 20	0216.169
04×12	035 TO 日4
日5：	04 －HALNITT＂
$065 T 036$	Q5 XE0 15
Q7 24	日6－HH．OAK ${ }^{\text {a }}$
88 RCL 20	87 XEE 15
$09 \mathrm{X}) \mathrm{Y}$ ？	88 －RE．OAK：
10 CTO 13	Q9 XEQ 15
1115	14 ＂ASH＂
12 RCL 20	11 XE＠ 15
$13 \times$ Y？	12 ＂TILIP＂
14 GTO 17	13 XEQ 15
15 RCL 36	14 －HICKRY＂
16.022	15×15
17\％	16 ＂H．MAPL＂
184 LBL 22	17 XEU 15
19 FC ？ BC	18 ＂S．MAPL＂
2 REL 40	19 XE0 15
21 FS Q Q^{2}	20 －MISC．
22 ＊	21＊LEL 15
23 RTH	22 ASTO IND 80
24＊LEL 13	23 ISG 90
25 RCL 36	24 RTN
26.029	25. END．
27 ＊	
$28 \times 2 \mathrm{E}$ 2	SPECIES：12 BITES
294 LEL 17	
3 BCL 36	
31.018	
32 \％	
$33 \times 8 \mathrm{y} 22$	
34 ENII	
TREEYOL ： 77 BYTES	

Retrospective Comments Regarding CRUZ

1. Similar to the APPRAZ program, the data input operation in CRUZ can be made more efficient by eliminating the "LAST TREE? \varnothing " prompt and adopting the convention: if there is another tree on the plot, key the data and press R / S; the absence of a number keyed-in (i.e., pressing R / S without keying a number) indicates the end of the current plot. This can be accomplished by changing the program CRUZ as follows:
a. insert LBL 00 after step 102 (GTO 02)
b. delete steps 99, 100, and 101
c. insert FC? 22

GIO 00 after step 22 (PROMPT)
d. insert CF 22 after step 17 (LBL 02)
2. CRUZ was written without concern for printed output, therefore when a printer is attached and turned on, lack of spaces between groups of output will diminish legibility. To partially correct this one may:
a. In CRUZ
(1) insert ADV after steps

290 (LBL DBH)
and 262 (LBL 16)
(2) insert ADV

ADV after step 249 (LBL l2)
(3) insert CF 12 after step 256 (AVIEW)
(4) insert SF 12 after step 255 (ARCL IND X)
b. In STP
(1) insert ADV after steps

78 (IBL B)
and 40 (IBL A)
3. Initially it was felt that having separate programs for STP, TREEVOL, and SPECIES would be desirable; subsequent experience has shown this practice to be questionable. To make these programs integral to the CRUZ program, assuming the programs are in the calculator in order (CRUZ, STP, TREEVOL, and SPECIES) one can:
a. In CRUZ, delete step 319 (END)
b. In STP
(1) change
step 38 ($\mathrm{A}=\mathrm{VOL} ., \mathrm{B}=\mathrm{BA}$) to $\mathrm{I}=\mathrm{VOL} ., \mathrm{J}=\mathrm{BA}$
step 40 (LBL A) to LBL I $1 /$
step 78 (LBL B) to LBL J^{1}
(2) delete step 102 (END)
c. In TREEVOL, change step 34 (END) to RTN
4. The modifications described in comments 1,2 , and 3 have been incorporated into a new program called CRUZl, available on the KRON-1 tape.
5. Comments from certain users have indicated that CRUZ is too ponderous and is expected to do too much! The author sympathizes with these feelings but does not apologize, since the primary purpose of the program, indeed as for many of the programs in this chronology, was to demonstrate what can be done with a portable calculator. Ideally, efficient specific programs should be written to match the input data format and summary results desired.
6. CRUZ was originally written and described to process either fixed-size plots or variable-size plots (horizontal point sampling), and no mention was made of the fact that a 100% cruise (complete inventory) can also be acconmodated by the program. However, to handle a 100% inventory the user can:
a. select the fixed-size plot option (flag 01 set)
b. let plot size $=1$ at the appropriate prompt
c. assume the data came from one big plot, therefore
(1) if using CRUZ, key 0 then R/S only once, after the last tree has been processed
(2) if using CRUZl, hit R/S without data entry, only after the last tree has been processed
d. In this option, "PA" must be executed to calculate the "total" answers, "STP" and "TOT" have no meaning, but "DBH" when executed will provide proper answers by diameter classes.
$1 /$ Note that if this is done, DBH and TOT must be assigned to keys other than COS and TAN as described in the CRUZ write-up. Shift COS and shift TAN are logical alternatives.

Thomas W. Beers
Dept. Forestry \& Natural Resources, Purdue Univ.
July 1980

1. Program title: MIL3
2. Calculator: HP-41CV or HP-41C with 3 memory modules.
3. Purpose: (a) to provide on-the-spot solution of the following expression of sawmill "profit margin" using the formula:
margin $=\sum_{i=1}^{6}(l u m b e r \operatorname{tall} y)_{i}\left(V_{i}\right)-\log$ value - sawing cost,
where \log value $=(\log$ grade value $)(\log$ scale $)$
sawing cost $=$ (cost per minute) (sawing time)
$V_{i}=$ value for various lumber grades.
and (b) to accumulate \log scale and lumber tally by various species and grade classes, as well as total margin and sawing times for an indefinite number of logs.
4. Application: the program was prepared primarily as an example of what can be done with the programmable calculator, however, it could conceivably be adapted for a small study to evaluate the "margin" retrievable from an arbitrary run of logs.
5. Justification: the fact that the programmable calculator is portable makes it quite feasible to make on-site determinations where here-to-fore, results could only be done at some time subsequent to the data gathering phase of the study.

The capacity of the calculator to rapidly and selectively store and accumulate data enables rapid summarization and virtually eliminates hand-sorting and mathematical blunders.

Register Assignment for MIL3

```
Registers
    0 0
01-06
    0 7
    08
    09
    10
    11
    12
    1 3
    14
    15
    16
    1 7
    18
    19
    20
    .
    i
    .
    .
    80
    . ) Species 8: same as for species 1
89
    90
grand total of margins
91-93 stored log grade values (grades 1-3)
94 grand total of log scales
95 grand total of lumber tally
96 grand total sawtimes
97
[10(species code) + log grade + 6] or [10(spec. code) + ]umber grade]
98 species code
99 general indexing counter
101
100
not used
```


Arbitrary Data and Hand-Calculated Results for MIL3

A. Data:

			Lumber			
$\underline{\text { Log }}$	Species	Scale	Grade	Tally	Grade	Sawing Time
1	WALNUT (1)	555	1	150	1	5 minutes
				40	2	
				80	3	
				60	4	
				100	5	
				150	6	
2	WH. OAK (2)	625	2	300	1	6 minutes
				200	2	
				150	4	

$\begin{array}{lllcccccc}\text { B. } \begin{array}{lll}\text { Prices per } \\ \text { board foot: }\end{array} & \text { Lumber: } & \text { grade } & 1 & 2 & 3 & 4 & 5 & 6 \\ \text { value } & .60 & .50 & .40 & .30 & .20 & .10\end{array}$

Logs:	grade	1	2	3
value	.3	.2	.1	

Sawing cost per minute: $\$ 2.00$
C. Results:

1. margin $n_{1}=150(.6)+40(.5)+80(.4)+60(.3)+100(.2)+150(.10)$ - 555(.3) - 5(2.00) = \$18.50
margin $_{2}=300(.6)+200(.5)+150(.3)-625(.2)-6(2.00)=\$ 188.00$
2. Species summary: WALNUT scale $=555 \mathrm{bd}$. ft. tally $=580$ bd. ft.
WH. OAK scale $=625 \mathrm{bd} . \mathrm{ft}$. tally $=650$ bd. ft.
3. Margin total: $\$ 206.50$
4. Sawing time total: 11 minutes
5. Scale by log grade:

	Grade			
	1	2	3	Total
WALNUT	555	0	0	
WH. OAK	0	625	0	
Total	555	625	0	1180

6. Tally by lumber grade:

	Grade						
WALNUT	1	150	40	3	4	5	6
Total							
WH. OAK	300	200	0	60	100	150	580
Total	450	240	80	210	100	150	1230

Program Procedure

Step
1 XEQ SIZE 109, f* GTO...
2 Load program MIL3, f GTO.., load program TOT
3 To store the necessary constants, either a or b:
a. manually store data in the following registers:

Register	item
1-6	value per bd. ft., lumber grades 1-6
7	sawing cost, dollars per minute
91-93	value per bd. ft., log grades 1-3
101-108	species names, 6 character limit each

then, XEQ MIL3 (suggest assignment to LN key); at the prompt "TO LOAD, SFO6", depress R/S and go to step 4.
b. XEQ MIL3 and at "TO LOAD, SFO6", set flag 06 (f SFO6), and proceed to key in the constants as they are prompted for, then go to step 4.

NOTE:
(1) if flag 01 is not set, R / S must be depressed after each constant,
(2) if flag 01 is set, R / S need not be depressed, but you have limited time (1 sec.) to key in each digit.
(3) if only a few constants are to be changed, the manual procedure (3a) should be used.

4 After "STAND BY" (while registers 10-90 and 94-96 are being cleared),
a. for $\log 1$:

[^5]| Prompt | input ${ }^{(2)}$ | $\mathrm{key}^{(1)}$ | output | Example | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | input | key | output |
| SPEC. CODE? | a number, 1 to 8 | R/S | species name | 1 | R/S | WALNUT |
| LOG SSS.G? | \log scale.grade | R/S | none | 555.1 | R/S | |
| LUM SSS.G? | tally.grade | R/S | none | 150.1 | R/S | |
| - | - | | | - | | |
| . | | | | | | |
| LUM SSS.G? | tally.grade | R/S | none | 150.6 | R/S | |
| LUM SSS.G? | 0 | R/S | none | 0 | R/S | |
| SAW TIME? | sawing time | R/S | "margin" | 5 | R/S | \$18.50** |

(1) Note, if flag 01 is set R / S need not be pressed after data input.
(2) To undo a faulty log scale.grade or species code:
(a) at the prompt LUM SSS.G?, f GTO SIN, R/S
(b) Follow the species prompt with same code as just used, RCL SIN, CHS, R/S
(c) repeat step (a) and proceed using correct data To undo a faulty lumber tally.grade:
(d) at the prompt LUM SSS.G?, RCL SIN, CHS, R/S
(e) proceed with the correct data

To undo a faulty species code only:
(f) at the prompt LOG SSS.G?, f GTO SIN, R/S and proceed with the correct code.

Note: there is no way in the present program of correcting for a log grade over 3 or for a lumber grade over 6; this will really foul up the works and will go undetected until crazy answers appear.
b. for $\log 2$, depress R / S and repeat $4 a ;$ using the example:

[^6]| | Example | | |
| :--- | :---: | :---: | :---: |
| prompt | | input | key |
| SPEC. CODE? | 2 | R/S | WH. OAK |
| LOG SSS.G? | 625.2 | R / S | |
| LUM SSS.G? | 300.1 | R / S | |
| LUM SSS.G? | 200.2 | R / S | |
| LUM SSS.G? | 150.4 | R / S | |
| LUM SSS.G? | 0 | R / S | |
| SAW TIME? | 6 | R / S | $\$ 188.00^{* *}$ |

c. repeat 4 a for all logs in the "study".

5 For totals, XEQ TOT (suggest assignment to TAN), and proceed as prompted:
PRESS: A FOR SPEC. Σ
B FOR LOG Σ
C FOR LUM. Σ
Using the example previously cited:

key	output
a. $\mathrm{A}(\Sigma+)$	WALNUT (pause) SCALE $=555$ (pause) TALLY $=580$ WH. OAK (pause) SCALE $=625$ (pause) TALLY $=650$
	for all eight species, then MARGIN $\Sigma=\$ 206.50$ (pause) SAW TIME $\Sigma=11.0$
	Note: the species output list can be stopped, restarted, or aborted by presssing R/S, in which case the margin and saw time sums can be obtained by depressing $f A(\Sigma+)$
f $A(\Sigma+)$	MARGIN $\Sigma=\$ 206.50$ (pause) SAW TIME $\Sigma=11.0$
b. $B(1 / x)$	SCALE BY LOG GRADE
	GRADE $1=555$ GRADE $2=625$ GRADE $3=0$
c. $C(\sqrt{x})$	TALLY BY LUMBER GRADE (pause)
	GRADE 1 = 450 (pause)

[^7]| GRADE $2=240$ | (pause) |
| :--- | :--- |
| GRADE $3=80$ | (pause) |
| GRADE $4=210$ | (pause) |
| GRADE $5=100$ | (pause) |
| GRADE $6=150$ | |

d. After depressing either key B or key C the log scale and lumber tally, respectively, can be obtained for grades within species; with the user inputting the desired species code. Using the example, the procedure is as follows:
(1) immediately after depressing B and observing the output (or R / S)

key	prompt	input	key*	output
f $B(1 / x)$	SPECIES?	1	R/S	WALNUT: (pause)
				GRADE $1=555$ (pause)
				GRADE $2=0$ (pause)
				GRADE $3=0$ (pause)
	SPECIES?	2	R/S	WH. OAK: (pause)
				GRADE $1=0$ (pause)
				GRADE $2=625$ (pause)
				GRADE $3=0$ (pause)
	SPECIES?	0	R/S	0
	(this procedure is necessary to exit from the $f B$ subroutine in order to continue with the TOT program)			

(2) immediately after depressing C and observing the output (or R / S)

key	prompt	input	key*	output
$\mathrm{f} C(\sqrt{x})$	SPECIES?	1	R/S	WALNUT: (pause)
				GRADE 1 = 150 (pause)
				GRADE $2=40$ (pause)
				GRADE $3=80$ (pause)
				GRADE $4=60$ (pause)
				GRADE $5=100$ (pause)
				GRADE $6=150$ (pause)
	SPECIES?	2	R/S	WH. OAK: (pause)
				GRADE 1 = 300 (pause)
				GRADE 2 = 200 (pause)
				GRADE $3=0$ (pause)
				GRADE $4=150$ (pause)
				GRADE 5 = 0 (pause)
				GRADE $6=0$ (pause)
	SPECIES?	0	R/S	0
	(this procedure is necessary to exit from the $f C$ subroutine in order to re-do any of the TOT program)			

[^8]7

To examine the contents of any storage register (up to 99) one can either RCL nn or f VIEW nn (refer to register assignment). For example, after first going to f FIX 2 mode, to find
a. grand total of margins, RCL 90, read 206.50
b. grand total of \log scales, $R C L$ 94, read 1180.00
c. grand total of lumber tally, RCL 95, read 1230.00
d. grand total of sawing times, RCL 96, read 11.00
e. the lumber tally for species 2, lumber grade 2 , RCL 22 , read 200.00
f. the \log scale for species $2, \log$ grade 2 , RCL 28 , read 625.00
etc.
Note that registers over 99 can be viewed only by "indirect addressing"; thus, to recall R101: 101, STO 00, RCL f 00.

For a new set of logs using the same constants go to step 4, if new constants are to be entered go to step 3.

Example--printer output


```
printer output - continued
```


θ

Program Listing--MIL3

151×0 ?
152 GT0 06
153 FS? 48
154 ASTO IND 00
155 FC? 48
156 STO IND 90
157 ISG 80
158 GT0 09
159 ADFF
168 "DONE"
161 AYIEN
162 ENI
MIL3:414 BYTES

91*LBL -TOT*	51 GTO 02
02 -PRESS:-	52 - SCALE $=$
03 AYIEN	53 ARCL 88
04 PSE	54 AYIEW
95 "A FOR SPEC. $\Sigma^{\prime \prime}$	55 PSE
86 AYIEH	56- TALLY $=$ -
87 SIN	57 ARCL 99
08 SIN	58 AYIEM
09 -8 FOR LOG $\Sigma^{\prime \prime}$	59 ADY
18 AYIEN	60 PSE
11 SIN	61 ISG 90
12 SIN	62 GT0 03
13 "C. FOR LUA. 8 "	$63 *$ LBL a
14 AYIEH	64 FIX 2
15 STOP	65 ADY
16*LBL A	66 -MARGINE=*
17 FIX 0	67 ARCL 90
18181.108	68 AYIEN
19 ST0 90	69 ADY
294LBL 93	79 PSE
210	71 -SAN TIMES=*
22 ST0 08	72 FIX 1
23 ST0 99	73 ARCL 96
24 CLA	74 AYIEN
25 ARCL IND 00	75 RTN
26 AYIEH	760 LBL B
27 RCL 90	77 FIX 0
281 El	78 CF 97
29 *	79 "SCALE BY-
301890	80 AYIEW
$31-$	81 SIN
32 INT	82 "LOG GRADE*
33 ST0 99	83 AYIEW
345 $35+$	84 ADY
$35+$	85 SIN
361 E3	86 9
37 /	87 ST0 88
$38 \mathrm{ST}+99$	8817.08710
$39+$ LBL 01	$89 *$ LBL 06
48 RCL IND 99	98 ST0 09
41 ST+ 89	91 ST0 08
42 ISG 99	92 XEQ 94
43 GT0 81	93 - GRADE $1=$
44 RCL 99	94 XEQ 08
45.893	95 KEQ 84
$46 \mathrm{ST}+99$	96 - GRADE 2=
47*LBL 02	97 XEQ 98
48 RCL IND 99	98 XEQ 04
$49 \mathrm{ST}+68$	99. GRRDE 3= -
50 ISG 99	109 XEQ 08

MIL3 - continued (2)

101 RTN
102*LBL 04
103 RCL IND 80
104 ST+ 98
185 ISG 80
106 GTO 04
107 RTN
108*LBL 88
109 ARCL 88
110 AYIEH
111 日
112 ST0 88
113 RCL 99
1141.001
$115+$
116 STO 08
117 ST0 99
118 RTN
119 LBL b
12 -SPECIES ?"
121 FS? 01
122 XEQ ${ }^{-F 22 *}$
123 FC? 91
124 PROMPT
$125 \mathrm{X}=9$?
126 STOP
127 STO 89
128 ST0 99
1291 El
130 *
131 FC? 87
1327.809

133 FS? 97
1341.896
$135+$
136 RCL 99
1371 E 2
138 /
$139+$
$1405 T 099$
141109
$142 S T+90$
143 CLA
144 ARCL IND 88
145 " $:$:
146 AVIEN
147 SIN
148 - GRADE $1=$ -
149 XEQ 05
150 - GRADE 2=

151 XEQ 85
152 - GRADE 3= -
153 XEQ 05
154 FS? 97
155 GTO 07
156 ADY
157 GTO b
158*LBL C
159 SF 97
160 "TALLY BY"
161 AYIEN
162 SIN
163 "LUMBER GRADE"
164 AYIEN
165 ADY
166 SIN
1678
168 ST0 88
16911.88110

170 XEQ 86
171 XEQ 84
172 - GRADE 4=
173 XEQ 88
174 XEQ 04
175 - GRADE 5= -
176 XEQ 08
177 XEQ 64
178 - GRADE 6= *
179 ARCL 88
180 AYIEN
181 RTN
182*LBL c
183 XEQ b
184 \& LBL 07
185 - GRADE 4= -
186 XEQ 05
187 - GRADE 5= -
188 XEQ 0.5
189 - GRADE 6= -
198 XEO 85
191 ADY
192 GTO b
193*LBL 85
194 RRCL IND 99
195 AYIEN
196 PSE
197 ISG 99
198 END
TOT:594 BYTES

```
Documentation--MIL3
```

01*LBL ${ }^{-H I L} 3^{-}$
CF 29 -TO LOAB, SF96* PROMPT FC?C 06 GTO 06 SF 95 1.067 ST0 08
KEQ "LOAD" 91.093
STO OQ XEE "LOAD
101.108 STO 00 AON

XEQ "LOAD"
18*LBL 96
SF 93 SF 02

- stand by- hyien
10.09 XEQ "HRC" 0

STO 94 STO 95 STO 96
29ャLBL 85
0 STO 08
324LBL 88
FIX 0100 STO 99
-SPEC. CODE?- FS? 01
XEQ ${ }^{-F 22 "}$ FC? 01
PROHPT STO 98 ST+ 99
CLA ARCL IND 99 AYIEH
PSE FIX 1 -LOG SSS.G?*
FS? 01 XEQ -F22-
FC? 01 PROHPT XEQ 03
RCL 981 El * ST0 98
RCL $99+6+$ STO 97
98 ST+ 99 RCL 09
ST+ 94 ST+ IND 97
RCL IND 99 * ST- 09
714LBL 01
-LUM SSS.G?- FS? 01
XEQ -F22* FC? 01
PROMPT $x=8$? GTO 02
XEQ 03 RCL 98 +
ST0 97 RCL 09
ST+ IND 97 RCL IND 99

* ST+ 90 GTO 01
$89+$ LBL 82
FIX 2 -SAM. TIME?-
FS? 01 XEQ ${ }^{-F 22-~}$
FC? 01 PROWPT ST+ 96
RCL 07 * ST- 00
RCL 90 ST+ IND 98
ST+ 98 K<8? BEEP
-MARGIN=5- ARCL X
RYIEH STOP GTO 85
Automatice loadirg oftion

Initializatron and register clexrion

Lumbier tally
and grade
proresect

Sawing tirne processent
and margin
diniplay

```
118*LBL 03
STO 08 INT STO 09
LASTX FRC 1 EI * ABS
STO 99 RTN
121*LBL "MRC*
0
123*LBL }9
STO IND Y ISG Y GTO 04
RTN
128*LBL "F22"
CF 22 AYIEN
131*LBL }1
PSE FC?C 22 GTO 10
RTN
136+LBL "LOAD"
-START REG?- FC? }0
PROMPT . 4 + FC? 05
STO 00 FIX O CF 29
146*LBL }0
-REG " ARCL 08 "F= ?"
PROMPT X<B? GTO 06
FS? }48\mathrm{ ASTO IND 00
FC? }48\mathrm{ STO IND }9
ISG 00 GTO }09\mathrm{ HOFF
-DONE= AYIEH END
```

Documentation--MIL3 - continued (2)

01*LBL "TOT"
-PRESS:- AYIEH PSE

- A FOR SPEC. Σ " AYIEN

SIN SIN -B FOR LOG \sum^{*}
RUIEM SIN SIN
-C FOR LUH. Σ^{-}AVIEN

STOP
16*LBL A
FIX $0 \quad 101.108$ STO 00
$29+L B L 13$
0 STO 08 STO 09 CLA
ARCL IND 00 AYIEN
RCL 00 1 E1 * 1000 -

INT STO $995+1$ E3
, $\mathrm{ST}+99$
394LBL 01
RCL IND $99 \mathrm{ST}+99$
ISG 99 GTO 01 RCL 99
$.003 \mathrm{ST}+99$
47+LBL 82
RCL IND 99 ST+ 08
ISG 99 GTO 92

- SCALE= - ARCL 08

AYIEN PSE - TALLY= -
ARCL 09 AYIEN ADY PSE
ISG 00 GTO 03
63 +LBL a
FIX 2 ADV "MARGINE=-
ARCL 98 AYIEN GDY PSE -SAM TIMES=- FIX 1
ARCL 96 AYIEN RTN
760LBL B
FIX 0 CF 87 -SCALE BY*
AVIEN SIN "LOG GRADE"
AYIEH ADY SIN 0
STO $98 \quad 17.08718$
89*LBL 86
STO 69 STO 00 XEQ 94

- GRADE $1=$ - XEQ 08

XEQ 04 - GRADE 2= "
XEQ 08 XEQ 04

- GRABE 3= - XEQ 68

RTN

Prompt \hat{H}
varicus tetals

Instraízation

- Deceres cude manifulateon and tai'g and sicale cocirme lecation

Arcumulation of
immoer taily

Aec.cmisistron ai lon scale
ano deuplíy el scite
and taly

Morgin amó santinie desplay

Initicutienation - -
šate by iog:xic

Log grade desplay

Documentation--MIL3 - continued (3)

1024 LBL 04
RCL IND 00 ST+ 88
ISG 00 GTO 94 RTN
1084 LBL 88
ARCL 88 RYIEM 0
ST0 88 RCL $091.081+$
STO 00 STO 09 RTH
1190LBL b
-SPECIES ?- FS? 01
XEQ FF22* FC? 91
PROMPT $X=8$? STOP
STO 00 STO 991 E : *
FC? 07 7.099 FS? 97
$1.006+$ RCL 991 E2
, + ST0 99100
ST+ 90 CLA ARCL IND 00
-r:- AYIEN SIN

- GRADE $1=$ - XEQ 05
- GRADE 2= - XEQ 05
- GRADE 3= - XEQ 95

FS? 07 GTO 07 ADY
GTO b
158*LBL C
SF 97 -thlly by- ayien
SIN "Lumber Grade"
RYIEH ADY SIN 0
STO 0811.08118 XEQ 96
XEQ 04 - GRRDE 4="
XEQ 08 XEQ 04

- GRADE 5= - XEQ 08

XEQ 94 - GRADE 6= *
ARCL 08 RYIEK RTN
1824 LBL c
XEQ b
184* LBL 87

- GRADE 4= - XEQ 05
- GRADE 5= - XEQ 85
- GRADE 6= - XEQ 05

ADY GTO b
1930LBL 05
ARCL IND 99 AYIEM PSE
ISG 99 END
\log grade scale and
lumber tally accumulater
Incrementer for lumber grade and log grede pointer

Species prompt
and log scale
by grade display

Initialejatron--
ta ly by larnke grade

Lember tally
by grade display

Accumulater for
scale or tally
uithin species

Error Example:

Retrospective Comments Regarding MII3

1. The write-up is somewhat difficult to follow, which justifies why efforts continued to develop a "better" format of program description. Subsequent programs in this chronology incorporate more understandable (hopefullyl) directions.
2. When used with a printer attached and $O N$, reasonably spaced printed output is obtained, especially in NORM printer mode.
3. The fact that the output program (TOT) is a separate program may be inconvenient, and one may desire to incorporate TOT into MIL3 and then deal with one large program. Unfortunately, when these programs were written, the same numbers were used for the numeric local labels (01 through 06 , and 08 occur in both programs), therefore to incorporate TOT one must carefully and completely change one set of labels. This effort is probably not justified. However, on the KRON-1 tape the two programs (MIL3 and TOT) are available together under the file name MIL3FL to allow simple down-loading to the calculator by a read-all (READA) operation.

Program Name: SINDEX
Calculator: HP-41C/CV
Author: T.W. Beers, Dept. Forestry. Purdue U.
Date: July 1980

Purpose: To replace tables and graphs in NC-54 publication. Provides forward or inverse solution of $H=b_{1} S\left(1-e^{b_{2} A}\right)^{b_{3}}$ for nine speciesspecific sets of $b_{i}^{\prime} s$ (stored in memory).
A. Storage assignment

Register	Use	
00		
$01-09$		
10	b_{1} coefficients for species 1 through 9	
$11-19$	age	
20	b_{2} coefficients for species 1 through 9	
$21-29$	site index or height	
30	b_{3} coefficients for species 1 through 9	
$31-39$	intermediate calculations: $b_{1}\left(1-\mathrm{b}_{2} A\right) b_{3}$	
40	species names	

B. Labels

Name
SINDEX
XEQ to facilitate loading of coefficients and species names ("constants")

SI
XEQ after all constants are stored
LOAD
01
02
03
04
05
09
in loading
intermediate calculations
site index calculations control number storage height calculations and automatic display internal to LOAD
C. Flags

Number 00

29
48
set internally by negative species code to enable reverse solution of formula; i.e., to find S , given H and A .
cleared in load routine to eliminate decimal in FIX 0 ; also affects site index output. set in ALPHA mode; used to load species names, tested in LBL 09.
D. Program procedure

1. XEQ SIZE 041, load program SINDEX
2. To load constants initially, XEQ SINDEX, and proceed as prompted:

Prompt	Input	Key	Output	Example		
				Input	Key	Output
Bl COEFF:						
REG 1=?	b_{1} (species 1)	R/S		1.890	R/S	
-		-		-	-	
-	-	-		-	-	
-		-				
REG $9=$?	b_{1} (species 9)	R/S	DONE	1.598	R/S	DONE
B2 COEFF:						
REG 11=?	b_{2} (species 1)	R/S		-. 01979	R/S	
$\stackrel{\square}{-}$				-		
-	-	-		-	-	
REG 19=?	b_{2} (species 9)	R/S	DONE	-. 01938	R/S	DONE
B3 COEFF:						
REG 21=?	$\mathrm{b}_{3}($ species $)$				R/S	
-	-	-		-		
-	-	-		-	-	
REG 29=?	b_{3} (species 9)	R/S	DONE	. 9824	R/S	DONE
SPEC. NAMES: (alpha mode is automatic)						
REG 31=?	species 1	R/S		R.PINE	R/S	
-	-	-		-	-	
-	-	-		-	-	
-	-	-		\cdot	\bullet	
REG 39=?	species 9	R/S		PBIRCH	R/S	DONE

3. XEQ SI (suggest assignment to SIN key)
D. Program procedure (Continued)
4. To solve for site index go to step 5; to solve for a series of heights, given age and site index:

				Example		
Prompt	Input	Key	Output	Input	Key	Output
SPEC. CODE?	1 to 9	R/S	species name	1	R/S	R.PINE
AGE?	age	R/S		70	R/S	
FIRSTS.I.?	initial S.I.	R/S	height in meters	10	R/S	$H \mathrm{H} .=12.7 \mathrm{M}$.
			height inmeters			$\mathrm{HT} .=13.9 \mathrm{M}$.
						$\mathrm{HT} .=15.2 \mathrm{M}$.
						$\mathrm{HT} .=16.5 \mathrm{M}$.
						$\mathrm{HT} .=17.7 \mathrm{M}$.
						HT. $=19.0 \mathrm{M}$.
			\downarrow			$\mathrm{HT} .=20.3 \mathrm{M}$.
			height in meters		R/S	$H \mathrm{t}=21.5 \mathrm{M}$.

Note: the displayed heights correspond to the initial site index keyed-in and successive site index classes using an increment of 1 . The display can be stopped at any point by another R/S depression, and restarted at that point by another R/S depression.
For a new age or initial site index, go to step 3.
5. To solve the equation for site index, species code is keyed in as a negative value. Therefore, XEQ SI and proceed as prompted:

Prompt	Input	Key	Output	Example		
				Input	Key	Output
SPEC. CODE?	1 to 9, CHS	R/S	species name	1, CHS	R/S	R.Pine
AGE?	age	R/S		70	R/S	
HEIGHT?	height	R/S	site index	17.7	R/S	S.INDEX $=14$

For a new age and height, depress R / S and prompt is AGE?

For a different species, XEQ SI and follow prompts using negative species code.

E．Program

Q1＊LBL SINDEX＊	$51 \cdot \mathrm{HT} .=*$	191 ISG 90
021.899	52 ARCL X	$\begin{aligned} & 101 \text { ING } 00 \\ & 102 \text { FS? } 00 \end{aligned}$
03 STO 08	53 ＂${ }^{\text {¢ }}$ ．${ }^{\text {a }}$	183 GT0 93
04 －B1 COEFF：＂	54 AYIEH	194 STOP
95 XEO 91	55 PSE	1054LBL 82
8611.819	56 PSE	1961
87 ST0 日 0	571	197 RCL 19
08.82 COEFF：＂	$58 \mathrm{ST}+20$	108 RCL IND 08
99 XEQ O1	59 ISG 98	109 ＊
1021.929	60 XEQ 82	110 ETX
1151040	61 CTO 85	111 －
12 － $3^{\text {C COEFF：＊}}$	62＊LBL 81	112 ISG 日日
13 XEQ 91	63 AYIEH	113 RCL INI 80
1431.839	64 SIN	114 Y4X
15 STO 98	65 XEQ＂LOAD＂	11529
16 ＂SPEC．HAMES：	66 RTN	116 ST－90
17 AYIEH	67＊LBL＂L0AD＂	117 RDN
18 SIN	68 FIX 0	118 RCL IND 98
19 AON	69 CF 29	119＊
29 XEQ＂LOAD＂	78＊LEL 89	129 STO 30
21 RTN	71 －REG ${ }^{\text {\％}}$	121 RTN
22＊LBL＂SI＂	72 ARCL 90	122＊LBL 94
23 CF 90	73 －$=$ ？＊	123 RCL 90
24 －SPEC．CODE？${ }^{\text {－}}$	74 PROMPT	12410.99910
25 PROMPT	75 FS？ 48	$125+$
26×18 ？	76 ASTO IND 08	126 ST0 99
27 SF 90	77 FC？ 48	127 END
28 ABS	78 STO IND 90	
29 STO 98	79 ISG 08	SINDEX： 351 BYTES
$30 \mathrm{ST0} 40$	88 GT0 89	SINDEX．351 BYES
3138	81 AOFF	
$32 \mathrm{ST}+40$	82 ＂DONE＂	
33 CLA	83 AYIEN	
34 ARCL IND 40	84 RTN	
35 AYIEH	854 LRL 03	
36.9 SE	86 ＂AGE ？＂	
37 XEQ 84	87 PROMPT	
38 FS ？ 90	88 STO 10	
39 CTO 83	89 ＂HEIGHT ？＊	
40 －AGE ？＊	96 PROMPT	
41 PROMPT	91 ST0 20	
42 STO 10	92 XEQ 02	
43 －FIRST S．I．？＊	$931 / \times$	
44 PROMPT	94 RCL 20	
45 ST0 20	$95 *$	
46 XEQ 82	96 FIX 0	
47＊LBL 95	97 －S．INDEX $=\cdot$	
48 RCL 29	98 ARCL X	
49 ＊	99 AYIEH	
5 FIX 1	100 STOP	

F．Sample printout and stored constants

```
GTDFEN
    GQHETHHTE:
```


Fel $=$	1．890
$\mathrm{FOZ}=$	1．ES
F63＝	1． 1 $_{\text {E }}$
FE4 $=$	1．4 3
FES＝	1． P E
FEE＝	1.54%
「67 $=$	1.97
RGS＝	1．48E
FEG＝	1.59

$511=-0.01979$
P12 $=-0.4223$
Fis= - 10294
$814=-6266$
R15 $=-62011$
P16 $=-0,1246$
$R 17=-0.0153$
F18 $=-6.6140$
$\mathrm{F} 19=-6.41936$

$F 21=$	1．3日
Fごこ	1． 241%
F23＝	1． 3 － 3
F －	日＝931
F25＝	1．ご或
Fご	1．11ご
F27＝	1． 0.9 C
F こ＝	回，号采
FFG	日－9824

```
F31= "F=F%HE
F马Z= ".1.FIHE
FEJ= "M.FIHE
.
F:马堷 " FIF
FSE= 'SFFUIE
.:
FEE= MFPGH
F\Xi= "E:EMAF
FES= "GOFEH
FFG= "FEIFIH
```

G. 'econ'entation

RCL 28 * FIX 1

- HT. = - ARCL X
"F M.: RYIEH PSE PSE 1 ST+ 29 ISG 00 XEQ 22 GTO 85

```
014LBL "SINDEX"
1.009 ST0 00
-B1 COEFF:- XEQ 01
11. 1919 STO 08
-B2 COEFF:- XEQ 01
\(21.029 \mathrm{ST0} 00\)
-B3 COEFF:- XEQ 01
\(31.039 \mathrm{ST0} 88\)
-SPEC. NAMES:- AYIEM
SIN AON XEQ "LOAD"
RTN
store constants
1.889 ST0 06
-B1 COEFF:- XEQ 01
11.019 ST0 80
-B2 COEFF:- XEQ 01
21.029 ST0 00
-B3 CDEFF:- XEQ 01
31.039 ST0 80
-SPEC. NAMES:- AYIEM
SIN AON XEQ "LOAD"
RTN
```

224LBL "SI"
CF 90 -SPEC. CODE?
PROMPT $X<\theta$? SF 00 RBS
STO 08 STO 4030
ST +40 CLA ARCL IND 40
AUIEH PSE XEE 04
FS? 0 GTO B3 -AGE ?
PROMPT STO 10
-FIRST S.I. ?- PROHPT
STO 28 XEQ 02
47*LBL 85

224LBL "SI"
CF 90 -SPEC. CODE?" PROMPT $X<\theta$? SF 08 ABS
STO 08 STO 4030
ST+ 40 CLA ARCL IND 40
PUIEH PSE XEE 04
FS? 0 GTO 93 -AGE?
PROHPT STO 10
-FIRST S.I. ?- PROMPT
STO 28 XEQ 02
47*LBL 65

Tritialize and despley speres

```
cale. of
```

$62+$ LBL 01

AYIEH SIN XEQ *LOAD. RTN

67+LBL "LOAD"
FIX 0 CF 29
$70 *$ LBL 99
-REG - RRCL 98 - $5=$?
PROHPT FS? 48 ASTO IND 00 FC? 48 STO IND 00 ISG 00 GTO 99 ROFF -DONE" GYIEM RTH

854LBL 93
"AGE ?" PROHPT STO 10
-HEIGHT ?" PROHPT
STO 20 XEQ $821 / x$
RCL 20 * FIX 0 -5. INDEX = - ARCL X AYIEH STOP ISG 00 FS? 日月 GT0 03 STOF

185*LBL 92
1 RCL 10 RCL IND 06 * E4X - ISG 90 RCL IND 00 YtX 20 ST- 89 RDN RCL INI 09 * STO 30 RTN

122*LBL 94
RCL $0010.99910+$ STO 98 END

Coustants

pionet and stare.
calculation
of site indey
intermadicate
cote. tor R_{30}

Copficient
recall
indeyer

Metric site index curves for aspen, birch and conifer in the Lake States

Paul R. Laidly

Table 1.-Parameters of the equation describing metric site index curves ${ }^{1}$ (derived from Lundgren and Dolid 1970)

Species	Parameters			Standard error	$\underset{\text { error }}{\text { Maximum }}$
	b_{1}	b_{2}	b_{3}		
				-------meters------	
Red pine	1.890	-0.01979	1.3892	. 19	. 43
Jack pine	1.633	-0.02233	1.2419	. 15	. 34
White pine	1.966	-0.02399	1.8942	. 20	. 52
Balsam fir	1.437	-0.02266	0.9381	. 21	. 58
Black spruce	1.762	-0.02011	1.2307	. 22	. 58
Tamarack	1.547	-0.02246	1.1129	. 16	. 43
Northern white-cedar	1.973	-0.01535	1.0895	. 20	. 52
Aspen	1.480	-0.02140	0.9377	. 12	. 34
Paper birch	1.598	-0.01938	0.9824	. 10	. 18

Table 2.- Red pine height as related to site index and age
(In meters)

Site	Age (years)										
Index	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$	$\mathbf{8 0}$	$\mathbf{9 J}$	$\mathbf{1 0 0}$	$\mathbf{1 1 0}$	$\mathbf{1 2 0}$
10	4.0	6.2	8.2	9.9	11.4	12.7	13.7	14.6	15.4	16.0	16.5
11	4.4	6.8	9.0	10.9	12.5	13.9	15.1	16.1	16.9	17.6	18.2
12	4.8	7.4	9.8	11.9	13.7	15.2	16.5	17.6	18.4	19.2	19.8
13	5.2	8.0	10.6	12.9	14.8	16.5	17.9	19.0	20.0	20.8	21.5
14	5.6	8.7	11.4	13.9	16.0	17.7	19.2	20.5	21.5	22.4	23.1
15	6.0	9.3	12.3	14.9	17.1	19.0	20.6	21.9	23.1	24.0	24.8
16	6.4	9.9	13.1	15.9	18.2	20.3	22.0	23.4	24.6	25.6	26.4
17	6.8	10.5	13.9	16.8	19.4	21.5	23.3	24.9	25.1	27.2	28.1
18	7.2	11.1	14.7	17.8	20.5	22.8	24.7	26.3	27.7	28.8	29.7
19	7.6	11.8	15.5	18.8	21.7	24.1	26.1	27.8	29.2	30.4	31.4
20	8.0	12.4	16.3	19.8	22.8	25.3	27.5	29.3	30.7	32.0	33.0
21	8.4	13.0	17.2	20.8	23.9	26.6	28.8	30.7	32.3	33.6	34.7
22	8.8	13.6	18.0	21.8	25.1	27.9	30.2	32.2	33.8	35.2	36.3
23	9.2	14.2	18.8	22.8	26.2	29.1	31.6	33.6	35.4	36.8	38.0
24	9.6	14.9	19.6	23.8	27.4	30.4	33.0	35.1	36.9	38.4	39.6
25	10.0	15.5	20.4	24.8	28.5	31.7	34.3	36.6	38.4	40.0	41.3

Retrospective Comments Regarding SINDEX

1. The write-up for SINDEX approaches that which is used in most of the remaining programs.
2. The user who chooses to use the program as is, with the coefficients and species names as cited, can avoid the manual loading of these data (if the KRON-l tape is available) by the following:
a. insert after step 01 (LBL "SINDEX"):

FS? 01
GIO SI
b. down-load the data from the KRON-1 tape by:
(1) place SIDATA in alpha register
(2) CLX, then XEQ SEEKR
(3) key 1.039 , then XEQ READRX
c. set flag 01, then XEQ SINDEX; or, if flag 01 is not set, simply XEQ SI
3. The program SINDEX which is on the KRON-l tape incorporates the changes indicated in 2a.
4. Printed output is properly spaced and identified only when printer is in NORM mode.

```
Program Name: LOGVOL
Calculator: HP-41C with two memory modules or HP-41CV
Author: T. W. Beers, Dept. of Forestry, Purdue University
Date: August, 1980
Purpose: To calculate log volumes by Doyle, Scribner, Int.
\frac{1}{4}-inch, Int. 1/8-inch rules and cubic content
by Huber, Smalian, and Newton formulas - United States
or Metric units.
```

A. Storage assignment

Register	Use
00	alpha storage of "BF, "CF", or "M"
01	log length
02	d for board foot calculations
03	intermediate use in Int. algorithm ($\mathrm{d}_{\mathrm{u}}+\frac{\mathrm{n}}{2}$), etc.
04	$\mathrm{n}=$ integer part of $\mathrm{n} . \mathrm{f} \quad$ d
05	not used
06	${ }^{\text {d }}$ b
07	${ }_{d} \mathrm{~m}$ d in cubic foot and cubic meters calculations
09	$\mathrm{L}^{\text {u }}$
10	not used
11	Doyle volume in board feet
12	Scribner volume in board feet
13	Int. $1 / 4$ volume in board feet
14	Int. 1/8 volume in board feet
15	Huber volume in cubic feet or cubic meters
16	Smalian volume in cubic feet or cubic meters
17	Newton volume in cubic feet or cubic meters

B. Labels

Name	Use
LOGVOL	XEQ to prompt for BF, CF, or M
BF	prompts for d , L input and for A to D , and E depression
A	calculates and displays Doyle volume
B	calculates and displays Scribner volume
C	calculates and displays Int. $1 / 4$ volume
D	calculates and displays Int. $1 / 8$ volume
E	calculates and displays all four board-foot volumes
ABC	displays previously calculated Doyle, Scribner, Int. 1/4 volumes
AB	displays previously calculated Doyle, Scribner volumes
AC	displays previously calculated Doyle, Int. $1 / 4$ volumes
BC	displays previously calculated Scribner, Int. $1 / 4$ volumes
CF	prompts for $\mathrm{a}, \mathrm{b}, \mathrm{c}$, or e depression
a	prompts for $\mathrm{d}_{\mathrm{m}}, \mathrm{L}$ and calculates and displays Huber volume

Name	Use
b	prompts for d_{b}, d^{\prime}, L and calculates and displays Smalian volume
c	prompts for $d^{\mathrm{b}}, \mathrm{d}^{\mathrm{u}}, \mathrm{d}, \mathrm{L}$ and calculates and displays Newton volume
e	prompts for $\mathrm{d}_{\mathrm{b}}^{\mathrm{b}}, \mathrm{d}_{\mathrm{m}}^{\mathrm{m}}, \mathrm{d}_{\mathrm{u}}^{\mathrm{u}}, \mathrm{L}$ and calculates and displays all three volumes
M	sets flag 01 and directs control to CF assuming metric volume calculations
SP	"stop-pause" routine (pause with flag 01 set)
F23	R/S avoidance routine (if flag 01 set) ; alphabetic input
00	in C to convert Int. $1 / 8$ to Int. $1 / 4$
01	in A for Doyle display
02	in B for Scribner display
03	in C for Int. $1 / 4$ display
04	in D for Int. 1/8 display
05	in $A B C$ for display reversal
06,07	in C for Int. algorithm solution
08	in $A B$ for display reversal
09	in AC for display reversal
10	in CF for cubic feet to cubic meter conversion
11	in F23 for internal control
13	in e for internal looping
15	in BF for input data storage
16	in CF for input data storage
17	in CF for branch link from M
18	in CF for cubic meter to cubic feet conversion
20	in e for internal looping
21	in a for internal looping
22	in b for internal looping
23	in c for internal looping
24	in a for Huber calculation and display
25	in b for Smalian calculation and display
26	in c for Newton calculation and display
C. Flags	
Number	Use
00	set externally to reverse display in $A B C, A B, A C$, and $B C$
01	set externally to achieve "automatic" display or input; i.e., to avoid pressing R/S.
04	set internally in M to use $C F$ for metric input, calculation and display
06,07	internal use in C and D for Int. volume calculation
22	numeric data input flag; used in $C F$ to indicate input for new log has been keyed in.
23	alphabetic data input flag; used in F23 to indicate alpha data (BF, CF , or M) has been keyed in.

D. Program procedure

1. XEQ SIZE 018, load program LOGVOL
2. Select number of decimals, suggest 1 for board feet, 2 for cubic measure; therefore f^{*} FIX 1 initially.
${ }^{*} \mathrm{f}$ is used throughout to indicate the shift (gold) key.
3. Set appropriate flags for desired input/output format:
flag 01 set for "autamatic" input and display (where appropriate);
flag 00 set to reverse display within certain groups of board-foot calculations.

The following directions will assume $\mathrm{F} O 1$ is set and initially F 00 is clear; therefore f SF Ol, f CF 00.
4. For board-foot volume calculations,

XEQ LOGVOL (suggest assignment to TAN key), then depress $\mathrm{BF}(1 / \mathrm{x}$,
$\chi \geqslant y$) at the initial prompt and proceed as prompted:
Prompt Input Key Output $\frac{\text { Example }}{\text { Input Key } \text { Output }}$

a. BF CF or M ? b. KEY DU $\uparrow \mathrm{L}$	BF			BF		
	d_{u}	ENTER \uparrow	d_{u}	14	ENTER \uparrow	14.0
	L	R/S		10	R/S	Key A To D or E
c. KEY A TO D OR E	none	A	DOYLE $=\mathrm{xx} . \mathrm{x}$		A	DOYLE $=62.5$
d.		B	SCRIB. $=\mathrm{xx} . \mathrm{x}$		B	SCRIB. $=76.8$
e.		C	INT. $1 / 4=\mathrm{xx} . \mathrm{x}$		C	INT.1/4= 80.2
f.		D	INT. $1 / 8=\mathrm{xx} . \mathrm{x}$		D	INT.1/8= 88.6
g.		E	DOYLE $=\mathrm{xx} . \mathrm{x}$ (pause)		E	DOYLE $=62.5$ (pause)
			SCRIB. $=\mathrm{xx} . \mathrm{x}$ (pause)			$\begin{aligned} \text { SCRIB. } & =76.8 \\ & 7 \text { pause) } \end{aligned}$
			INT. $1 / 4=\mathrm{xx.x}$ (pause)			$\begin{array}{r} \text { INT. } 1 / 4=80.2 \\ \text { (pause) } \end{array}$
			INT. $1 / 8=\mathrm{xx} . \mathrm{x}$			INT.1/8= 88.6

h. After A, B, C, and D or after E, results can be recalled in groups as follows:

XEQ ABC (assign to x そy) to display Doyle, Scribner, Int. $1 / 4$
XEQ AB (assign to $R \downarrow$) to display Doyle, Scribner
XEQ AC (assign to SIN) to display Doyle, Int. 1/4
XEQ BC (assign to COS) to display Scribner, Int. $1 / 4$

By setting flag 00, one can reverse the order of display, except for ABC which wll then display Int. l/4, Doyle, Scribner
i. Note that to calculate volumes for several logs using same log rule, at the 4c. prompt (KEY A TO D OR E) choose the desired A to D key and proceed as follows; for example, to calculate Doyle volume (key A) for a series of logs: (14", 10'; 10', 4'; 14", 16').

Prompt	Input	Key	Output	Example		
				Input	Key	Output
KEY DUTL		XEQ BF			XEQ BF	
	d_{u}	ENTER \uparrow	d_{u}	14	ENTER \uparrow	14.0
	L	R/S		10	R/S	KEY A TO D OR E
$\begin{aligned} & \text { KEY A TO DO } \\ & \text { OR E } \end{aligned}$	none	A	DOYLE $=\mathrm{xx} . \mathrm{x}$		A	DOYLE $=62.5$
	d_{u}	ENTER \uparrow	d_{u}	10	ENTER \uparrow	10.0
	L	R/S	DOYLE $=\mathbf{x x . x}$	4	R/S	DOYLE $=9.0$
	d_{u}	ENTER \uparrow	d_{u}	14	ENTER \uparrow	14.0
	L	R/S	DOYLE $=x \times x$	16	R/S	DOYLE= 100.0
			etc.			etc.

5. For cubic-foot input and volume calculations, XEQ LOGVOL (TAN key), then depress $C F(\sqrt{x}, \quad x<y)$ at the initial prompt, and proceed as prompted: (assume f FIX 2)

Example

Prompt	Input	Key	Output	Input	Key	Output
BF CF OR M?	CF			CF		
$\begin{aligned} & \text { KEY } a, b, c, \\ & \text { OR } e \end{aligned}$	none	a(i.e.fA)	HUBER VOLUME		a	HUBER VOLUME
KEY DMTL	d_{m}	ENTER \uparrow	d_{m}	10	ENTER \uparrow	10.00
	L	R/S	HUB. $=\mathbf{x . x x C F}$	14	R/S	HUB. $=7.64 \mathrm{CF}$
	(optional)	R/S	$=\mathrm{x} \cdot \mathrm{xxM} \mathrm{\uparrow} 3$	(opt.)	R/S	$=0.22 \mathrm{M} \mathrm{\uparrow} 3$
		b	SMALIAN VOLUME		b	SMALIAN VOLUME
KFY DB¢DU ${ }^{\text {d }}$	d_{u}	ENTER \uparrow	a_{b}	12.4	ENTER \uparrow	12.40

	Prompt	Input	Key	Output	Example		
					Input	Key	Output
d.	$D B \uparrow D M \uparrow D U \uparrow, L$	d_{u}	ENTER \uparrow	$\mathrm{d}_{\mathbf{u}}$	9.1	ENTER \uparrow	9.10
		L	R/S	SMAL. $=\mathrm{x} . \mathrm{xxCF}$	14	R/S	SMAL. $=9.03 \mathrm{CF}$
			C	NEWTON VOLUME		c	NEWTON VOLUME
		d_{b}	ENTER \uparrow	a_{b}	12.4	FNTER \uparrow	12.40
		d_{m}	ENTER \uparrow	d_{m}	10	ENTER \uparrow	10.00
		d_{u}	ENTER \uparrow	d_{u}	9.1	ENTER \uparrow	9.10
		L	R/S	NEWT. $=\mathbf{x} \cdot \mathbf{x x C F}$	14	R/S	NEWT. $=8.10 \mathrm{CF}$
e.	$D B \uparrow D M \uparrow D U \uparrow L$		e	none		e	
		d_{b}	ENTER个	a_{b}	12.4	ENTER \uparrow	12.40
		d_{m}	ENTER \uparrow	d_{m}	10	ENTER \uparrow	10.00
		d_{u}	ENTER \uparrow	d_{y}	9.1	ENTER \uparrow	9.10
		L	R/S	HUB. $=\mathrm{x} \cdot \mathrm{xxCF}$ SMAL. $=\mathrm{x} \cdot \mathrm{x} \times$ CF NEWT. $=\mathrm{x} \cdot \mathbf{x x C F}$	14	R/S	$\begin{gathered} \text { HUB. }=7.64 \mathrm{CF} \\ \text { (pause) } \\ \text { SMAL. }=9.03 \mathrm{CF} \\ \text { (pause) } \\ \text { NEWT. }=8.10 \mathrm{CF} \end{gathered}$

f. Note the optional feature of metric conversion shown in step 5b. This is available by R / S depression immediately after the cubic-foot display in labels a, b, or c.
g. To calculate volumes for several logs using the same formula, after the answer is displayed for the first log (before or after metric conversion) simply key in the next \log dimensions and depress R / S.
6. For metric input and volume calculations, XEQ LOGVOL (TAN key), then depress M (RCL) at the initial prompt and proceed as prompted. Refer to step 5 instructions and keep in mind that:
a. diameters are assumed to be in centimeters
b. lengths are assumed to be in meters
c. answers will be labeled in $\mathrm{m}^{3}(\mathrm{M} \uparrow 3)$
d. the optional R/S conversion feature will lead to answers in cu. ft. (CF)
E. Sample Printer Output

SF 01
FIX 1
XEQ "LOGYOL"
BF CF OR M?
BF CF 日品
KEY DU \uparrow L SF 01
FIX 2
XEQ "LOCYOL"
KEY A TO D OR E
XEQ A
DOYLE $=62.5$
XEO B
SCRIB: $=76.8$
XEO C
INT. $1 / 4=89.2$
XEQ I
INT. $1 / 8=88,6$
XEO E
DOYLE $=62.5$
SCRIE $=76.8$
INT, $1 / 4=80.2$
INT. $1 / 8=88.6$
$X E Q$ " $A B C$ "
DOYLE $=62.5$
SCRIB. $=76.8$
INT. $1 / 4=80.2$
XEQ "AB"
DOYLE $=62.5$
SCRIB. $=76.8$
XEQ ${ }^{-A C " ~}$
DOYLE $=62.5$
INT. $1 / 4=89.2$
XEQ "BC"
$\operatorname{SCRIB}=76.8$
INT. $1 / 4=89.2$
SF 9 B
$X E Q$ " ABC "
INT: $1 / 4=80.2$
DOYLE $=62.5$
SCRIB. $=76.8$
XEO "AB"
SCRIB. $=76.8$
IOYLE $=62.5$
XEE "AC"
INT. $1 / 4=80.2$
DOYLE $=62.5$
XEQ "BC"
INT. $1 / 4=80.2$
SCRIB. $=76.8$

F. Program Listing

		515 STO 12	101 RCL 14
	Q2 AON	524 LBL 02	102.985
	03 -BF CF OR H? ${ }^{\text {- }}$	53 -SCRIB. $=$ *	103 *
	94 F ? ? 91	54 ARCL 12	18451013
\underline{z}	05 XEQ -F23*	55 XEQ -SP"	105*LBL 63
- ${ }_{\text {¢ }}^{\sim}$	96 FC? 01	56 RTN	106 -INT. 1/4= "
$\cup^{2} \stackrel{\text { a }}{\sim}$	97 PROMPT	57 XEQ 15	187 ARCL 13
¢	08 AOFF	58 GTO B	108 XEQ -SP"
-	99 ASTO 08	59*LBL C	109 RTN
$\stackrel{\text { ¢ }}{\sim}$	18 GTO IND 90	60 SF 96	118 XEQ 15
\%	11*LBL *BF*	61 RCL 01	111 GTO C
-	12 -KEY DU \uparrow L"	624	1124LBL II
a.	13 PROMPT	63 \%	113 SF 87
	14 STO 01	64 INT	114 XEQ C
	15 XSY	65 ST0 04	1154LBL 04
	16 STO 82	66 LASTX	116 -INT. 1/8=
	17 -KEY A TO D ORE"	67 FRC	117 ARCL 14
	18 PROMPT	68 XEO 07	118 XEQ -SP-
	19*LBL A	69 CF 96	119 RTN
	29 RCL 82	70 *	120 XEQ 15
	214	71 ST0 14	121 GTO D
	22 -	72 RCL 04	122*LBL E
	23×12	$73 \mathrm{X}=8$?	123 XEQ A
	24 RCL 01	74 GTO 98	124 XEQ B
	2516	754LBL 06	125 XEQ C
	26 \%	761	126 XEQ D
	27 *	77 ST- 94	127 RTN
	28 ST0 11	78*LBL 97	128*LBL *ABC*
	290LBL 81	79 RCL 04	129 FS? 08
	$30 \cdot$ DOYLE $=$	802	138 XEQ 05
	31 ARCL 11	81 \%	131 XEQ 01
	32 XEQ -SP*	82 RCL 02	132 PSE
	33 RTN	$83+$	133 XEQ 02
	34 XEQ 15	8457093	134 FS ? 96
	35 GTO A	85×1	135 RTN
	$36 *$ LBL B	86.22	136 PSE
	37 RCL 82	87 *	137*LBL 05
	38×12	88 RCL 03	138 XEQ 0.3
	39.79	89.71	139 PSE
	40*	90 *	148 RTN
	41 RCL 82	91 -	
	422	92 FS? 06	142 FS ? 08
	43 *	93 RTN	143 XEQ 08
	44-	$94 \mathrm{ST}+14$	144 XEQ 01
	454	95 RCL 04	145 FS ? 90
	$46-$	$96 \mathrm{X}>0$?	146 RTN
	47 RCL 91	97 CTO 06	147 PSE
	4816	984 LBL 09	148*LBL 88
	49 /	99 FS?C 97	149 XEQ 82
	58 *	190 RTN	150 PSE

F．Program Listing（Continued 1）

	151 RTN	201 AVIEH	251 ST0 08
	152＊LBL＊AC＂	202 SIN	252 RDN
	153 FS？ 08	293 SIN	253 RDN
	154 XEQ 89	204 －KEY DH $\uparrow L^{\circ}$	254 ST0 96
	155 XEO 01	285 PROMPT	2554LBL 25
	156 FS？ 90	2064 LBL 21	256 RCL 89
$\leq \frac{5}{n}$	157 RTN	287 ST0 99	257 PI
\％	158 PSE	288 X＜＞Y	258 ＊
$\cup \alpha \frac{1}{z}$	159＊LBL 99	209 ST0 07	259 FS？ 94
㸚号云	160 XEQ 03	2104LBL 24	26088080
	161 PSE	211 RCL 89	261 FC？ 94
－	162 RTN	212 RCL 87	2621152
${ }_{\text {a }}^{\alpha}$	1634 LBL＂BC＂	213×42	263 \％
${ }_{\square}$	164 FS？ 08	214 ＊	264 RCL 06
	165 XEQ 89	215 PI	$265 \mathrm{X}+2$
	166 XEQ 82	216 ＊	266 RCL 08
	167 FS ？ 90	217 FS？ 94	267×42
	168 RTN	21849898	268 ＋
	169 PSE	219 FC？ 84	269 ＊
	178 XEQ 89	220576	270 STO 16
	171 RTN	221 ／	271 －SMAL．$=$－
	172－LBL－SP－	222 ST0 15	272 ARCL 16
	173 AYIEN	223 HUUB．$=$－	273 FS？ 94
	174 FS？ 01	224 ARCL 15	$274{ }^{\circ} \mathrm{F}$ H43－
	175 PSE	225 FS？ 94	275 FC？ 94
	176 FC？ 01	226 － 4 4 3 －	$276{ }^{\circ}+$ CF－
	177 STOP	227 FC？ 94	277 XEQ－SP－
	178 RTN	228 －${ }^{\text {CF }}$	278 CF 22
	179＊LBL＂F23＊	229 XEQ－SP－	279 RTN
	180 CF 23	230 CF 22	280 FS？ 22
	181 RYIEN	231 RTN	281 GT0 22
	182 AON	232 FS？ 22	282 FS？ 04
	$183 *$ LBL 11	233 GTO 21	283 XEQ 18
	184 PSE	234 FS？ 94	284 FC？ 84
	185 FC C 23	235 XEQ 18	285 XEQ 10
	186 GTO 11	236 FC？ 84	286 RTN
	187 AOFF	237 XEQ 10	287 FS？ 22
	188 RTN	238 RTN	288 GT0 22
	189＊LBL 15	239 FS？ 22	289＊LBL ¢
	198 ST0 01	240 GTO 21	290 －NEWTON VOLUME＂
	191 X＜${ }^{\text {Y }}$ Y	$241 *$ LBL b	291 AYIEN
	192 STO 02	242 －SMALIRN YOLUME＂	292 SIN
	193 RTN	243 AYIEH	293 SIN
	194＊LBL＂CF＂	244 SIN	294 －DBt DHt DUt，${ }^{\text {c }}$
	195 CF 04	245 SIN	295 PROMPT
	1960 LBL 17	246 －KEY DBt Dut L＂	2960LBL 23
	197 ＂KEY a，b，c，OR e＂	247 PROMPT	297 XEQ 16
	198 PROMPT	248＊LBL 22	298＊LBL 26
	199＊LBL a	249 STO 99	299 RCL 86
	290 －HUBER YOLUME＊	250 X ¢ Y^{\prime}	308 X＋2

76
F. Program Listing (Continued 2)

G. Documentation

01*LBL "LOGYOL"
AON "BF CF OR N?"
FS? 01 XEQ "F23"
FC? 81 PROAPT AOFF ASTO 68 GTO IND 08
$11 * L B L=B F=$
"KEY DU \uparrow L" PROMPT
STO 81 X X SY STO 82 -KEY A TO D OR E" PROMPT

29*LBL 01
-DOYLE = - ARCL 11
XEQ "SP" RTN XEQ 15
GTO A
36*LBL B
RCL 12×12. 79 *
RCL 822 *-4 -
RCL 01 16 / * STO 12
52•LBL 82
-SCRIB. = - ARCL 12
XEQ "SP" RTN XEQ 15
GTO B
$59+$ LBL C
SF 96 RCL 914 / INT
STO 94 LASTX FRC
XEQ 97 CF 96 * STO 14
RCL $84 \quad X=0$? GTO 8 日
75*LBL 86
1 ST- 04
78*LBL 87
RCL 942 , RCL 82 +
STO 03×12.22 *
RCL 13 . 71 * -
FS? 96 RTN ST+ 14
RCL $94 X>日$? GTO 06
$98 *$ LBL 08
FS?C 97 RTN RCL 14
$.905 *$ STO 13

105*LBL 03

- INT. 1/4 = - ARCL 13 XEQ -SP- RTN XEQ 15 GTO C

112*LBL D
SF 07 XEQ C
1154LBL 94
-INT. 1/8= " ARCL 14 XEQ "SP" RTN XEQ 15 GTO D

122*LBL E
XEQ A XEE B XEQ C
XEQ D RTH
$128+$ LBL $^{-A B C-}$
FS? 00 XEQ 05 XEQ 01
PSE XEQ 02 FS? 08 RTN
PSE
137*LBL 85
XEQ 03 PSE RTN
$141+L B L$ " $A B^{*}$
FS? 00 XEQ 08 XEQ 01
FS? 00 RTH PSE
148*LBL 88
XEO 02 PSE RTN
152*LBL "AC"
FS? 00 XEQ 09 XEQ 01
FS? 00 RTN PSE
159*LBL 99
XEQ 83 PSE RTN
163 \& LBL ${ }^{\text {"BC" }}$
FS? 80 XEQ 09 XEQ 02
FS? 80 RTN PSE XEQ 89
RTN
1724LBL *SP"
AYIEN FS? 01 PSE
FC? 01 STOP RTN
1794LBL ${ }^{\circ}$ F23 ${ }^{-}$
CF 23 RYIEH AON
183*LBL 11
PSE FC?C 23 GTO 11
AOFF RTN

All fower loyrules
calculateon and
dejplay
Doyle, scribner, Int.I's
display
Doybe, Scribiee
Dciesplay
All fowe loyruler
calculation and
dujplay
Doyle, seribner, Int. I's
display
Doybe, Scribsee
deisplay
All fowe loyruler
calculation and
dujplay
Doyle, seribner, Int. I's
display
Doybe, Scribsee
deisplay

Scribner, Int. Iff dioplay
stop-fieuse
subroctine

G. Documentation (Continued)

289*LBL C
"NEWTON VOLUME" RYIEN SIN SIN

- BBt BMt DUA,L" PROMPT

296*LBL 23
XEQ 16
298-LBL 26
RCL $06 \quad X+2$ RCL $88 \quad x \uparrow 2$ +RCL 07 Xt2 $4 *+$ PI * RCL 89 * FS? 04 248000 FC? 943456 / STO 17 -NEMT. = -
ARCL 17 FS? 04 "F $\mathrm{H}+3^{*}$ FC? 94 " FF " XEQ "SP"
CF 22 RTN FS? 22
GTO 23 FS? 94 XEQ 18
FC? 94 XEQ 10 RTN
FS? 22 GTO 23
337-LBL 10
$.828317 *$ - =
RRCL X - $\operatorname{HT} 3^{\circ}$ AVIEW RTN

345*LBL 16
STO 99 RDN STO 98 RDN STO 07 REN STO 66 RTN

354 L LBL e

- BBt BMt DUt,L" PROMPT

357*LBL 20
XEQ 16
3594LBL 13
XEQ 24 XEQ 25 XEQ 26
CF 22 RTN FS? 22
GTO 20 GTO 13
3684LBL " H "
SF 84 GTO 17 RTN
372*LBL 18
$35.3144 *$ - $=$
ARCL X - CF" AVIEM RTH END

Newtor formuin catcuiatern a.i désplay

$$
\begin{aligned}
& \text { 1. } \because \text { 在 } \mathrm{m}^{3} \\
& \text { comersten. } \\
& \text { subroutice } \\
& \text { CF unput data } \\
& \text { storage. } \\
& \text { stobroutine }
\end{aligned}
$$

Cubre meaccive
all Fonnceía
calculation
arsí L'spion,

Mefric meajure
flog cist ano branch
${m r^{3}}^{2}$ cen.ft.
concersin
subrontine

H. Formulas used

Reference to any reputable mensuration text (e.g., Husch, Miller, and Beers, 1972 and 1982 Forest Mensuration, John Wiley and Sons.) will make clear that the Doyle and International log rules were based originally on formulas and therefore should present no problem being adapted for calculator solution. As will be discussed later, this is not necessarily the case.

Unlike the computer with its virtually unlimited storage space, the portable calculator can rarely afford the luxury of a "table-look-up" procedure, therefore to determine log volumes for the Scribner rule (originally a "diagram" rule) one must employ a regression fit such as that developed by Bruce and described in Husch, Miller and Beers (1982).

As in the Scribner case, the calculation of cubic volumes presents no real problem either, since basic mensurational formulas are traditionally used.

An irregularity which surfaces in the calculation of "short log" board-foot volumes is rarely faced except by the forester charged with developing a volume table from felled-tree or dendrometer data. That is, the calculation of volumes for irregular-length or very short sections. The general rule for Doyle and Scribner rules seems to be: calculate the volume of a 16 -foot log and multiply by the factor (log length/16). For the International rule, an additional complication arises because the original rule assumes a taper allowance (from the top end) of onehalf inch for every four feet of length.

Recognizing the above conventions and constraints, the following formulas were used in the program previously described:

1. Board-foot Calculations:
assume $d_{u}=$ scaling diameter in inches i.e., diameter inside bark at the small end of the log.
$L=\log$ length in feet.
$V=\log$ volume in board feet.
a. Doyle rule:

$$
V=\left(d_{u}-4\right)^{2} L / 16, L \leq 16
$$

b. Scribner rule:

$$
V=\left(.79 d_{u}^{2}-2 d_{u}-4\right) L / 16, L \leq 16
$$

H. Formulas used (continued)

c. International $1 / 4$ inch rule:

$$
V=(.905) \text { (volume for Int. } 1 / 8 \text { inch rule) }
$$

d. International $1 / 8$ inch rule:

Here we have a complication! The rule specifies that starting at the top end of the log, calculate the volume in 4 -foot sections, using the scaling diameter, from the formula:

$$
v=.22 d_{u}^{2}-.71 d_{u},
$$

then add one-half inch to d_{u} and apply the formula using ($d_{u}+.5$), etc., until the length ($\mathrm{L} \leq 20$) is exhausted. For the last section (large end) a partial 4 -foot section might be encountered, but its volume is calculated as if 4 feet long, then adjusted by the multiplicative factor, $\frac{\text { section length }}{4}$. In the past, using the above taper assumptions, formulas have been derived for common even-foot lengths (e.g., 14, 12, 10, and 8) less than 16 feet (Husch, Miller, and Beers, 1982).

Using this multitude of formulas is perhaps satisfactory for the old rotary calculator (and lots of labor time available) or for the modern computer, but storing or generating the various required coefficients exhausts storage capacities or program steps rapidly and/or can become tedious to place in calculator memory. Therefore, the following algorithm was developed and used:
(1) Calculate L/4 to obtain n.f, where
$1 \leq L \leq 20$
$n=$ the integer component, $0 \leq n \leq 5$
$\mathrm{f}=$ the fractional component: $.00, .25, .50$, or .75 .
(2) When $4 \leq L \leq 20$, calculate \log volume, V, from the two-part formula:

$$
v=\sum_{j=1}^{n}\left\{.22\left(d_{u}+\frac{n-j}{2}\right)^{2}-.71\left(d_{u}+\frac{n-j}{2}\right)\right\}+f\left\{.22\left(d_{u}+\frac{n}{2}\right)^{2}-.71\left(d_{u}+\frac{n}{2}\right)\right\}
$$

H. Formulas used (continued)
(3) If $L<4, n=0$, implying the summation part of the formula is meaningless and the second part reduces to:

$$
v=f\left(.22 d_{u}^{2}-.71 d_{u}\right)
$$

(4) If $L>20$ the \log should be scaled as two logs.

2. Cubic calculations

Assume
$D_{b}, D_{m}, D_{u}=\begin{aligned} & \text { diameters in inches (or centimeters) at the log base, } \\ & \text { middle and upper (small) end. }\end{aligned}$
$\mathrm{L}=$ section length in feet (or meters)
$V=$ section volume in cubic feet (or cubic meters)
a. Huber's formula:

$$
\begin{aligned}
V & =L \frac{I \frac{D_{m}^{2}}{576}}{} \text { in cubic feet } \\
& =L \frac{\Pi D_{m}^{2}}{40,000} \text { in cubic meters }
\end{aligned}
$$

b. Smalian's formula:

$$
\begin{aligned}
V & =\frac{L}{2} \frac{\pi}{576}\left(D_{b}^{2}+D_{u}^{2}\right) \text { in cubic feet } \\
& =\frac{L}{2} \frac{\pi}{40,000}\left(D_{b}^{2}+D_{u}^{2}\right) \text { in cubic meters }
\end{aligned}
$$

c. Newton's formula:

$$
\begin{aligned}
V & =\frac{L}{6} \frac{\Pi}{576}\left(D_{b}^{2}+4 D_{m}^{2}+D_{u}^{2}\right) \text { in cubic feet } \\
& =\frac{L}{6} \frac{\pi}{40,000}\left(D_{b}^{2}+4 D_{m}^{2}+D_{u}^{2}\right) \text { in cubic meters }
\end{aligned}
$$

Figure 1. Representation of Options, Input, and Display of the HP-41C Program: LOGVOL.

Retrospective Comments Regarding_IOGYOL

1. The means by which the board feet, cubic feet, or metric options are chosen (keying BF, CF or M at the initial prompt) may not be pleasing to all users, but it represents an alternative to using flags or alphabetic local labels. Similarly, the use of global labels $A B C, A B, A C$, and $B C$ to display groups of board-foot output could be replaced by logical alphabetic local labels.
2. An alternative to using the Int. l/8-inch algorithm (label C) is available if one chooses to use the detailed equations developed by Grosenbaugh (1952, Shortcuts for Cruisers and Scalers); answers will be equivalent and the programming logic will be somewhat easier to follow.
3. Printed output is adequately spaced and identified only when printer is in NORM mode.

Progam Name: RANCHEK
Calculator: $\mathrm{HP}-41 \mathrm{C} / \mathrm{CV}$
Author: T.W. Beers, Dept. Forestry, Purdue U.
Date: August 1980

Purpose: To evaluate a random number generator (RAN) by simulating the rolling of one die a user-determined number of times. The occurrences of l's, 2's, . . ., 6's are tallied and displayed, as is the calculated chisquare value, sample mean, and the bias in \% (deviation of mean from the true: 3.5).
A. Storage assignment

Register
00
01-06
07
08
09
10
11-16

Use

```
N Nax for RNG; here, N N max }=
```

No. of l's $\left(n_{1}\right), n_{2}, \ldots, n_{6}$
seed for RNG
roll count, calculated internally, = n
decrementing counter, from input n ' to zero and in label 04
general indexing counter
statistical accumulators
B. Labels

Name
RANCHEK
F22
MRC
RAN random number generator (RNG); one used here in the "9821X" based on Malm's algorithm.
in MRC
in RAN
main program; generate, count, and accumulate calculate ΣO_{i}^{2} for chi-square count display subroutine
B. Labels (Continued)

Name

06	in F22
07	display calling for counts pause-stop option
08	to repeat read-out of counts
A	to repeat chi-square display
B	to repeat mean display
C	to repeat bias \% display

C. Flags

Number

01

05
22
numeric data input flag, used in F22
D. Program procedure

1. XEQ SIZE 017, fla GTO . ., load program RANCHEK
2. For "automatic" input and count display, f SF 01.

If flag 01 is clear, R/S must be pressed after desired roll count is keyed and between count displays.
3. Store seed ($0 \leq$ seed <1) in R_{07} (Example: 0 STO 07)
4. XEQ RANCHEK (suggest assignment to $L N$) and follow prompts, assuming flag 01 has been set:
Prompt Input Key Output Example
NO. ROLLS? arbitrary* none *GENERATING*

DONE: HIT R/S none
then audible beep.
ROLL CT. = n
$\mathrm{N} 1=\mathrm{n}_{1}$
$\mathrm{N} 2=\mathrm{n}_{2}$
$\mathrm{N} 3=\mathrm{n}_{3}$
GENERATING then audible beep.
R/S ROLL CT. $=6$
$\mathrm{N} 1=1$
$\mathrm{N} 2=2$
N3 $=1$
$\sqrt{1 / f}$ is used to indicate the shift (gold) key.
D. Program procedure (Continued)
4. (Continued)

Example

*Note: approximately 15 seconds are needed when $n^{\prime}=10$
5. For repeat of the output, in USER mode:
depress A for count display
" B for chi square
" C for mean
" D for bias percent
Note that the order of depression is immaterial except that C must be pressed before D.
6. For a new set of rolls, go to step 4; seed for the RNG will be the "unknown" contents of R_{07}.
E. Formulas and results

1. Formulas
a. in RAN, Malm's algorithm for pseudo-random numbers, modified to provide integers from 1 to arbitrary $N_{\text {max }}$:

$$
\begin{aligned}
N_{i}= & \operatorname{INT}\left[N_{\max }\left(u_{i}\right)\right]+1 \\
& \text { where } u_{i}=\operatorname{FRAC}\left[9821\left(u_{i-1}\right)+.211327\right]
\end{aligned}
$$

b. chi square: based on $x^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$ one can show

$$
\begin{aligned}
& x^{2}=\sum \frac{0_{i}^{2}}{E_{i}}-n, \text { where } n=\sum 0_{i}=\sum E_{i} \\
& \quad \text { but when } E_{1}=E_{2}=\ldots=E_{6}=\frac{\sum E_{i}}{6}=\frac{n}{6} \\
& x^{2}=\frac{6 \Sigma 0_{i}^{2}}{n}-n \quad, \quad n=\text { roll count }
\end{aligned}
$$

E. Formulas and results (Continued)
c. true mean $=\mu=3.5$ by definition
d. sample mean $=\bar{X}=\sum_{i=1}^{n} X_{i} / n, \quad X_{i}=1,2,3,4,5$, or 6
e. bias $\%=\left(\frac{\bar{X}-\mu}{\mu}\right) 100$
2. Some results (compare with 34 C results)

Trial	seed	time	\underline{n}	Number of						χ^{2}	\bar{X}	Bias \%	$\chi^{2} .05$
				1	2	3	4	5	6				
1 a.	0	12 sec .	6	1	2	1	2	0	0	4.00	2.67	-23.81	11.07
2 a .	0	15	10	2	2	2	4	0	0	6.80	2.80	-20.00	
3 a .	0	30	20	3	6	4	4	0	3	5.80	3.05	-12.86	
4 a .	0	2 min .30 sec.	100	18	14	23	22	11	12	7.88	3.30	-5.71	
b.	?		100	13	22	18	25	13	9	11.12*	3.30	-5.71	
c.	?	"	100	17	17	21	18	13	14	2.48	3.35	-4.29	
d.	?	"	100	20	16	14	16	17	17	1.16	3.45	-1.43	
e.	?	"	100	18	21	18	20	12	11	5.24	3.20	-8.57	
f.	?	"	100	19	12	15	23	15	16	4.40	3.51	0.29	

```
F. Progran Lluting
```

Q1*LBL -RANCHEK"	51 -ROLL CT. $=$ *	
92 CF 29	52 ARCL 88	$102 * \text { LBL } 66$
03 FIX	53 FS? 91	183 PSE
04 -N0. ROLLS? ${ }^{\text {a }}$	54 XEQ 98	184 FC?C 22
05 FS? 91	55 FC ? 01	$185 \mathrm{GTO} \mathrm{C}^{\text {a }}$
Q6 XEQ F F22*	56 PROMPT	106 RTN
97 FC? 81	$57+$ LBL 97	187 LLBL - MRC:
88 PROMPT	58 XEQ 0.5	1880
99 ST0 89	59 ISG 10	109*LBL 61
16 "*GENERATING**	60 GTO 97	110 STO INI Y
11 AYIEH	61 RTN	111 ISG Y
12 ADY	626	112 GTO 91
13 SF 95	63 ST* 09	113 RTN
14 CLE	64 RCL 88	114*LBL 88
151.096	$65 \mathrm{ST} / 89$	115 AVIEN
16 XEQ "RRC"	$66 \mathrm{ST}-09$	116 PSE
179	$67+$ LBL B	117 RTN
18 ST0 08	68 FIX 2	$118 *$ LBL ${ }^{\text {R }}$ - ${ }^{\text {c }}$
19 STO 10	69 -CHI SQ. $=$ -	119 FS? 85
206	78 ARCL 09	128 GT0 02
224 LBL 03	71 AVIEH	121 -MRX YRLUE?*
23 XEQ -RAN*	73 RIN	122 PROMPT
243.5	74 MEAN	123 ST0 08
25 XQ ¢Y	75 - MEAN $=\cdot$	125 RCL 97
$268+$	76 RRCL X	1269821
27 LASTX	77 AYIEH	127*
28 ISG IND X	78 RTN	128.211327
29 BEEP	79+LBL D	$129+$
39 ISG 88	89 \% 2 CH	130 FRC
31 BEEP	81 -BIAS $=$	131 STO 97
32 DSE 99	82 ARCL X	132 RCL 08
33 GT0 03	83 "ト\%"	$133 *$
34 BEEP 35 - ${ }^{\text {d }}$	84 AYIEN	1341
35 -DONE: HIT R/S"	85 RTN	135 +
36 PROMPT	86 GTO -RANCHEK*	136 INT
37 B	874LBL 95	137 END
38 ST0 99	88 RCL 10	137 ENI
391.086	89 INT	RANCHEK:341 BYTES
40 ST0 10	$90^{-} \mathrm{N}^{-}$	RHNEHEK. 341 BYIES
$41+$ LBL 94	91 ARCL X	
42 RCL IND 10	92 " $=$ -	
$43 \mathrm{X}+2$	93 ARCL IND 10	
$44 \mathrm{ST}+69$	94 FS ? 01	
45 ISG 10	95 XEQ 88	
$46 \mathrm{CTO} 0^{4}$	96 FC ? 61	
47*LBL A	97 PROMPT	
481.806	98 RTH	
49 ST0 10	99*LBL ${ }^{-F 22}{ }^{-}$	
59 FIX 0	109 CF 22	

H. Printer Dutput -- with and without flag 01 set.

0 STO 07
 SF 91
 SEQ "RAHCHEK"

N0. ROLLS?

CHI SQ $=4.60$	RUN
MEAN $=2.67$	RUN
BIAS $=-23.81 \%$	

TIME NEEDEI:
15 SEC. PER 10 NOS.

®）					ホーペーオ广ó＂～～	チッロパス $00^{\circ} 0^{\circ}$
$1 \times$	人̂oㅇㅇㅇㅇ ヘinimo	응ㅇㅇㅇ ヘ்ற்ற்	ウ்ற்ற்～	융ㅆㅆㄴ뭉 м்ウ்ற்	м்ற்ற்	凸ーN゙゚゚゚ мゥmim
${ }^{\sim}$	88888 $-60 n i n$ $\dot{\sigma} \cdot 0 \sim \sim$	08888 －0． 0 Ni	8080 아 ம～～ن			

$$
=100000
$$

으으으으으 옹ㅅN소시
으으으응

$$
\begin{aligned}
& 88888 \\
& 608080
\end{aligned}
$$

$$
\begin{aligned}
& 88888 \\
& 8888888 \\
& 6868
\end{aligned}
$$

$\stackrel{\otimes}{E} \stackrel{\square}{E}$	$\begin{aligned} & \dot{\sim} \\ & \stackrel{\sim}{\sim} \\ & \stackrel{\circ}{\sim} \end{aligned}======$	$\begin{aligned} & \dot{\ddot{U}} \\ & \underset{\sim}{m} \\ & \underset{\sim}{\prime} \end{aligned}=====$	$\begin{aligned} & \dot{\ddot{u}} \\ & \stackrel{\sim}{n} \\ & \underset{\infty}{n} \end{aligned}====$	$\begin{aligned} & \dot{\sim} \\ & \dot{\sim} \\ & \stackrel{N}{N} \\ & \stackrel{\sim}{E} \\ & \underset{E}{=}==== \end{aligned}$
				N
\mid	or．r．n．n．	○～．n．r．n．	on．n．r．n．	or．n．n．r．

Retrospective Comments Regarding RANCHEK

1. RANCHEK as originally written is extremely inefficient in places; for example, the use of global labels such as MRC and RAN, and statements such as GIO RANCHEK take many bytes to represent and force the calculator to search its entire resident and peripheral memory for these labels. It is usually better to employ local numeric labels even though some program clarity is sacrificed.
2. Since the statistical registers are assumed to be 11 through 16 , the statement ¿REG 11 should be inserted just after step 01.
3. The program was written to simulate the roll of a six-sided die, generating the integers 1 through 6 from a uniform distribution, and to demonstrate the calculation of certain statistics to evaluate the performance of an arbitrary "random" number-generating algorithm. Realistically, one might want the integers 0 through 9, rather than 1 through 6 , in the evaluation. A very short program to do this is described by Dearing (1982, Calculator Tips and Routines), or, one can use a refined version of RANCHEK, called RCHEKl, found on the KRON-1 tape.
4. In RCHEKI, some of the inefficiencies of RANCHEK were removed, the program was shortened to 129 steps, and it was made to simulate a ten-sided die assuming the integers 0 through 9. Other comments regarding RCHEKl:
a. With flag 04 set, other random number generators, such as RANl shown here
```
Gl*LEL "RRNI"
O2 RCL 27
0. R-II
014 FRC
0.5 ST0 27
Q6 10
B7 *
昭 IHT
09 END
```

can be evaluated by this method:
(1) key global name of generacor, here RANl
(2) ASTO 20
(3) SF 04
(4) store seed in R_{27} (optional, but in RANl zero or multiples of π won't work!)
(5) XEQ RCHEKI

The evaluation of RAN1 and the "resident" Malm generator (label 10 in RCHEKl) are shown below:

RAN: ASTO 20	
9F 64	CFF_{84}
.12345651027	0. 19 STO 27
XEQ "RCHEK1"	XEE "RCHEX1"
NO. ROLLS?	HO. ROLLS?
50.890	50.90
SEET $=0.123456$	SEED $=6.880080$
* CiENERATING*	*CENERATING*
FOLL CT, $=50$	ROLL CT, $=50$
$\mathrm{NG}=6$	$\mathrm{HO}=4$
$\mathrm{Ni}=9$	$\mathrm{HI}=4$
$\mathrm{N} 2=4$	$\mathrm{H} 2=5$
113= 3	$\mathrm{N} 3=2$
$\mathrm{N}_{4}=3$	$\mathrm{N}_{4}=9$
$\mathrm{H}^{5}=8$	$N 5=9$
$\mathrm{N} 6=4$	$N_{6}=4$
$\mathrm{N} 7=5$	$\mathrm{NT}=4$
N8 $=5$	$N 8=4$
$N 9=3$	$N \mathrm{CO}=5$
CHI S0. $=8.90$	CHI 50. $=9.20$
MERN= 4.88	MEAN $=4.68$
BIAS $=-9.33 \%$	BIRS $=2.22 \%$

b. An additional characteristic of the generators, time required, can be evaluated efficiently if one employs an HP Time Module (HP 82182 A) as follows:
(1) In the generator routine itself, insert RUNSW just after the label (LBL 10 or LBL RAN1 in the example above), and insert STOPSW just before the END (or RTN) statement.
(2) From the keyboard:

XEQ SIOPSW
key 0
XEQ SETSW
(3) Run the RCHEKl program as usual.
(4) At the "DONE, HIT R/S" prompt (or later):
depress FIX 6
clear alpha register (CLAA)
XEQ RCLSW
XEQ ATTME24
go to alpha mode and observe elapsed time for generator to generate the number of rolls specified.
(5) Note: using the RANl example for ROLL CT= 50, the result after step (4) will be 00:00:18.20 (approximately) indicating that RANl takes 18.20 seconds to generate the 50 numbers, even though the time elapsed, during which *GENERATING* fills the display, is a little over a minute.

Calculator: HP-41C/CV
Program Name: INMULT (interest multiplier)
Author: Thomas W. Beers
Date: October, 1980

Purpose: To calculate, display and print values of $(1+i)^{n}$ for arbitrary values of interest rate $\left(i=\frac{\text { rate }}{100}\right)$ and years (n). Two options are provided:

1. "Single" solution for specific rate, r, and range of years from 1 to $n_{\text {max }}$.
2. Semi-automatic or automatic solution for specified ranges of r and n, using certain specified intervals.
A. Storage assignments

Register
00
B. Labels

Name

INMULT
F22
00
01

04
4

01 interest rate, r, as a percent

```
\frac{r}{100},\mathrm{ then (1 + }\frac{r}{100})\mathrm{ , i.e., (1 + i)}
\(\frac{r}{100}\), then \(\left(1+\frac{r}{100}\right)\), i.e., \((1+i)\)
```

control number for interest (BB.EEEII)
stored control number for years

Use
$n_{\text {max }}$, or active control number for years (BB.EEEII) control number for interest (BB.EEEII)
stored control number for years

Use
program name; should be assigned.
used to achieve automatic input and output if flag 01 is set. automatic solution routine, reached if flag 00 is set primary routine for "single" solution option rate display subroutine years incrementing loop
interest rate incrementing loop
B. (continued)

Name	Use
	subroutine to achieve .5 increment in rate; active if flag 02 is set.
06	internal loop in F22
07	internal access for .5 increment option

C. Flags

Number
if set, input and output are automatic in option 1 (i.e. R/S need not be pressed between data); in option 2 this flag is only operative on output.
for use only in option 2; if set, interest rate is incremented in steps of 0.5% above those specified in the control number.
internal use in conjunction with flag 02.
double wide printing flag; used to print rate in bold type.
numeric input flag; used to detect input in F22 subroutine.
digit grouping flag; used to suppress printing and display of decimal point for years.
D. Program procedure and example

Step

1. XEQ SIZE 005, f* GTO..
2. Load program INMULT
3. To select option 1 (single solution) insure that flag 00 is clear, then
[^9]
D. (continued)

3. a. XEQ INMULT (suggest assignment to COS key) and follow the prompts:

Prompt	input	keyl	output	Example		
				input	keyl	output
RATE $=$?	rate $=r$	R/S	-	18	R/S	-
FINAL YR=?	$n_{\text {max }}$	R/S	$\begin{aligned} & \text { rate \% } \\ & \text { YR.1: X.XXX } \end{aligned}$	5	R/S	$\begin{aligned} & \text { RATE }=18.00 \% \\ & \text { YR. } 1: 1.180 \end{aligned}$
		R/S	YR.2: X.XXX		R/S	YR. 2: 1.392
					R/S	YR. 3: 1.643
		R/S	YR.n: X.XXX		R/S	YR. 4: 1.939
		R/S	beep then n .000		R/S	YR. 5: 2.288
		(if flag	g 01 is set, fina		R/S	beep 5.000
		output	is YR.n:XXX)		or	beep YR.5:2.288

${ }^{1}$ note, if flag 01 is set, R / S need not be pressed after inputs or between outputs.
b. For new interest rate or final number of years $\left(n_{\max }\right)$ repeat step 3a.
4. To select option 2 (automatic solution), set flag 00 , then
a. Develop control numbers for interest rate and for years, using the format BB.EEEII,

$$
\begin{aligned}
& \text { where } \begin{aligned}
B B & =\text { beginning rate or year } \\
E E E & =\text { ending rate or year } \\
\text { II } & =\text { desired increment (if not specified II is assumed }=01)
\end{aligned} \\
& \text { Example: }
\end{aligned}
$$

if rate: 16.02202 and years: 5.02505 , then $(1+i)^{n}$ would be calculated and displayed for $n=5,10,15,20$, and 25 for interest rates 16, 18, 20, and 22.
b. XEQ INMULT (flag 00 set) and follow the prompts:
4. b. (continued)

Prompt	input	keyl	output	Example		
				input	keyl	output
			InPUT RATE:			INPUT RATE:
BB.EEEII	Bb.EEEII	R/S		6.008	R/S	
BB.EEEII	BB.EEEII	R/S	INPUT YEARS: $\begin{aligned} & \text { RATE }=X . X X \% \\ & \text { YR. }-(1+I) \uparrow N \end{aligned}$ $Y_{1} \quad X . X X X$	1.00502	R/S	$\begin{aligned} & \text { INPUT YEARS: } \\ & \text { RATE }=6.00 \% \\ & \text { YR--(1+I) } 1 \mathrm{~N} \\ & 1.060 \end{aligned}$
		R/S	$Y_{2}:{ }^{\text {P. }} \mathrm{XXX}$		R/S	31.191
		R/S	$Y_{n} \quad X . X X X$		R/S	$5 \quad 1.338$
		R/S	$\begin{aligned} & \text { RATE }=X . X X \% \\ & \text { YR. }-(1+I)+N \\ & Y_{1} \quad X . X X X \end{aligned}$		R/S	$\begin{aligned} & \text { RATE }=7.00 \% \\ & \text { YR }-(1+I) \uparrow N \\ & 1 \quad 1.070 \end{aligned}$
		R/S	$\mathrm{Y}_{2} \mathrm{X} . \mathrm{XXX}$		R/S	31.225
		R/S	etc. till finally beep, then BB.EEE (if flag 01 is set, output is Y_{n} and	for year final X. XXX)	R / S R / S	$\begin{gathered} 5 \quad 1.403 \\ \text { RATE }=8.00 \% \\ \text { YR. }-(1+I) \uparrow N \\ 1 \quad 1.080 \end{gathered}$
					R/S	31.260
					R/S R/S	$\begin{gathered} 5 \\ \text { beep, then } 1.005 \end{gathered}$
					or	beep, then $5 \quad 1.469$

1 note, if flag 01 is set, R / S need not be pressed between output answers, i.e., display of $(1+i)^{n}$ is automatic.
c. An additional feature in option 2 only is the incrementing of interest rates by one-half percents. To employ this refinement:
(1) set flag 02 (as well as flag 00)
(2) proceed as in 4 a and 4 b
(3) if the same example is used, the interest rates now considered will be $6.00,6.50,7.00,7.50,8.00$, and 8.50 , years will still be 1,3 , and 5 .

E1. Program listing--with printer control in MAN mode.
Note that statements are "left-justified and not set off into label groups.

Q1*LBL "INHULT"	51 ADY	101 -
02 FS? 08	52 ADY	182 FIX 3
83 GT0 00	53 ADY	183 ARCL X
04 -RHTE = ?*	54 ADY	184 AYIEH
05 FS ? 91	55 RTN	105 FS? 01
06 XEQ -F22*	56-LBL -F22"	106 PSE
67 FC ? 91	57 CF 22	187 FC? 81
98 PROMPT	58 AYIEH	108 STOP
9957001	$59+$ LBL 96	189 SF 29
101 E 2	68 PSE	110 ISG 80
11 \%	61 FC?C 22	111 GT0 03
12 STO 82	62 GTO 66	112 RCL 84
$13{ }^{\circ}$ FINAL YR $=$?	63 RTN	11357080
14 FS ? 01	64*LBL 96	114 ADY
15 XEQ "F22*	65 -INPUT RATE:	115 ADY
16 FC ? 01	66 AYIEM	116 ADY
17 PROMPT	67 SIN	117 FS? 06
181 E3	68 - BB.EEEII*	118 RTN
19 \%	69 PROMPT	119 FS? 02
201	76 STO 93	120 XEQ 65
$21 \mathrm{ST}+02$	71 -INPUT YEARS:*	121 ISG 03
$22+$	72 AYIEN	122 GT0 04
23 ST0 90	73 SIN	123 BEEP
24 XEQ 82	$74^{\text {- }}$ BB.EEEII*	124 RTN
254LBL 11	75 PROMPT	125*LBL 82
26 RCL 82	76 STO 90	126 FIX 2
27 RCL 90	77 ST0 94	127 SF 12
28 INT	784LBL 84	128 ADY
$29 \mathrm{Y4X}$	79 RCL 83	129 -RATE=*
36 LASTX	80 INT	138 ARCL 01
31 FIX 0	8151081	131 \% $\%$
32 -YR. *	821 E2	132 AYIEH
3318	83 /	133 CF 12
$34 \mathrm{X}>\mathrm{Y}$?	841	134 ADY
$35{ }^{\circ}{ }^{\circ}$	$85+$	135 PSE
36 RIN	86 STIJ 22	136 RTN
37 CF 29	87*LBL 07	137*LBL 95
$38 \mathrm{ARCL} X$	88 XEQ 92	138.5
39 'r:	89 "YR. $-\left\langle\langle 1+\mathrm{I}\rangle+\mathrm{N}^{\text {- }}\right.$	$139 \mathrm{ST}+11$
40 FIX 3	90 AYIEM	1491 E2
41 ARCL Y	91 SIN	141 /
42 AYIEN	924 LBL 93	$142 \mathrm{ST}+82$
43 FS? 01	93 RCL 92	143 SF 96
44 PSE	94 RCL 90	144 XEQ 97
45 FC ? 01	95 INT	145 CF 86
46 STOP	$96 \mathrm{Y}+\mathrm{X}$	146 RTN
47 SF 29	97 CF 29	147 END
48 ISC 90	98 FIX 9	
49 CTO 81	99 CL. ${ }^{\text {A }}$	IHMULT: 329 BYTES
50 BEEP	180 APCL L	

E2．Program listing－－with printer control in TRACE mode． Note that statements are left－justified，and in ＂paragraph＂form grouped by label designation．

```
Q1+LBL "INMULT"
FS? 08 GTO 0日
-RATE = ?" FS? 01
YEQ "F22" FC? 目
PROMPT STO O1 1 E2 /
STO Q2 "FINGL YR = ?"
FS? 01 YEO 'F22"
FC? 91 PROMPT 1 E3 /
1 ST+ 82 + STO 00
XEQ 92
```

254LBL 81
RCL 82 RCL 0 In INT Y4 LPSTX FIX G－YR．－ 16
XXY？${ }^{\circ} \mathrm{F}$－RDN CF 29
ARCL y＂${ }^{\circ}$ ：－FIX 3
ARCL Y RYIEH FS？ 01
PSE FC？日1 STOP SF 29
ISG 00 GTO Q1 BEEP
ADY ADY ADY ADY RTH
$56+$ LBL ${ }^{-F 22}$
CF 22 日VIEW
59＋LEL 66
PSE FC？C 22 GTO 96 RTN

64 L LL G 9
－INPIT RATE：＂AYIEN
SIN＂BE．EEEII＂PROMPT
STO 03 ＂INPIT YERRS：
AYIEN SIN＂BB．EEEII＂
PROMPT STO 日G STO 04

78＊LBL 94
RCL 03 INT STO 01
$1 \mathrm{E} 2,1+8 \mathrm{O} 02$
87＋LBL 07

AYIEA SIN
924 LBL 13
RCL 02 RCL 0 日 INT Y Y
CF 29 FIX 0 CLA
ARCL L $+\quad$－FIX 3
ARCL X FVIEN FS？ 81
PSE FC？日1 STOP SF 29
ISG 日G STO O3 RCL 04
STO 9 A ADY ADY ADY
FS？ 66 RTH $F S$ ？ 02
XEO 05 ISG G3 GTO 04
BEEP RTH

1254LBL 82
FIX 2 SF 12 ADY
－RRTE＝＂ARCL 日1＂$\%$
AYIEH CF 12 ADY PSE
RTH
1374LBL 65
$.5 \mathrm{ST}+61 \quad \mathrm{E} 2$ ，
$\mathrm{ST}+82 \quad \mathrm{SF} 66 \quad \mathrm{XED} \quad \mathrm{B7}$
CF 66 RTN ENI

E3．Program listing－－with printer control in NORM mode．
Note that statements are essentially right justified with a space before all labels．The fastest listing is obtained in this mode．

G1＋LBL＂INMILT＂	56＊LBL＂F22＂	$92+\text { LEL } 83$ $93 \text { RCL } 02$
02 FS ？ 80	57 CF 22	93 PCL 82
03 GTO 60	58 AYIEN	94 FCL 86
$84{ }^{-2}$ RTTE $=$ ？${ }^{\text {a }}$		95 IHT
95 FS？ 01	594LBL 96	96 Y 4 X
06 XEQ F22＂	68 PSE	97 CF 29
07 FC ？ 01	61 FT？ 22	98 FIX
88 PROMPT	62 GTO 86	99 CLA
09 STO 01	63 RTN	108 ARCL L
101 E 2		101 －
11%	64＊LBL 90	102 FIX 3
12 ST0 82	65 －INPUT RATE：${ }^{\text {a }}$	183 ARCL X
13 －FINAL YR＝？${ }^{\text {a }}$	66 AYIEH	184 AVIEH
14 FS ？ 01	67 SIN	185 FS？ 01
15 XEQ F22＂	68 ＂B8．EEEII＂	106 PSE
16 FC ？ 91	69 PROMPT	107 FC？ 01
17 PROMPT	70 ST0 63	108 STOP
181 E3	71 ＂INPUT YEARS：	109 SF 29
19 \％	72 AYIEH	118 ISG 80
281	73 SIN	111 GTO 03
$215 \mathrm{ST}+82$	$74{ }^{\text {－B8．EEEII＊}}$	112 RCL 94
$22+$	75 PROMPT	113 STO 08
23 STO 0 O	76 STO 90	114 ADY
24 KEQ 02	77 STO 04	115 ADY
		116 ADY
254LBL 81	784LBL 14	117 FS？ 06
26 RCL 02	79 RCL 83	118 RTN
27 RCL 80	80 INT	119 FS？ 82
28 INT	81 STO 81	$12 \mathrm{CXE0} 85$
29 YYK	321 E2	121 ISG 03
3 LASTX	83 \％	122 GTO 64
31 FIX 0	841	123 BEEP
32 －YR．＊	$85+$	124 RTN
3318	86 STO 82	
$34 \mathrm{X}>\mathrm{Y}$ ？		1254LBL 82
35 ＂＋．	87 L 6 L 日 7	126 FIX 2
36 RDN	88 XEE 82	127 SF 12
37 CF 29	$89 \sim Y R .-\langle 1+1\rangle+N=$	128 ADY
$38 \mathrm{ARCL}:$	98 AYIEW	129 ＂RATE＝＂
39 ＂ト：	91 SIN	
4 FIX 3		131 ＂F \％＂
41 ARCL Y		132 AYIE
42 AYIEH		133 CF 12
43 FS？ 91		134 ADY
44 PSE		135 PSE
45 FC ？ H 1		136 RTN
46 STOP		
47 SF 29		1374LBL 05
4815 C 明		138.5
49 GTO 81		$139 \mathrm{ST}+81$
50 BEEP		1481 E2
51 ADY		$141 /$
52 ADY		$142 \mathrm{ST}+82$
53 ADY		143 SF 06
54 PDY		144 XEQ 07
55 RTN		145 CF 96
		$\begin{aligned} & 146 \text { RTN } \\ & 147 \text { END } \end{aligned}$

F1. Sample printer output--option 1 (flag 00 clear), with flag 01 clear, then set (IA).

F2. Sample printer output--option 2 (flag 00 set), with flag 01 clear, then flag 01 set (2A), and then also with flag 02 set (2B).

RATE=7.00 \%

$Y R$.	$-\langle 1+1\rangle \uparrow N$
1	1.076
3	1.225
5	1.403

$$
\text { RATE }=8.00 \%
$$

RATE $=8.06 \%$

	1+19+4
!	1.960
3	1.250
5	1.469

Retrospective Comments Regarding INMULT

1. INMULT has certain inefficiencies similar to those discussed for the RANCHEK program, but in general it is fairly efficient. The following minor changes might be made:
a. Since the "F22" routine is part of the INMULT program, the global label designation is not needed, therefore it could be changed to "LBL 22"; that is
(1) change steps 06 and 15 to XEQ 22
(2) change step 56 to LBL 22
b. Delete step 146 since both RTN and END are not needed to terminate label 05.

Calculator: HP-41C/CV
Program Name: SLOPE
Author: T.W. Beers
Date: January 1981

Purpose: To calculate the horizontal distance and, optionally, the vertical rise from a given slope distance and slope angle in percent, degrees (flag 01 set) or topographic units (flag 02 set). (Refer to "Slope to Horizontal Distance" program in Rocky Mtn. Gen. Tech. Rep. RM-76 by Shepperd.)
A. Storage assignments

Register
01
02

03
B. Labels

Global
SLOPE
Local
a

01
02
C. Flags

Number
none set
01

Use
keyed-in slope distance keyed-in angle, then angle in degrees calculated horizontal distance
\qquad
start of program, conversion of percent to degree measure
calculation of vertical rise (after calculation of horizontal distance) calculation and display of horizontal distance conversion of topo to degree measure
\qquad
assumes angle is in percent
if set, assumes angle is in degrees
C. Flags (Continued)

Number
Use
02
if set, assumes angle is in topographic units
D. Program procedure and example
I. In PRGM mode, load program "SLOPE"
(SIZE needed is 004)
II. In RUN mode:

1. Check flags for the three options:
a. none set implies angle in percent
b. 01 set implies angle in degrees
c. 02 set implies angle in topo
2. XEQ SLOPE (suggest assignment to $1 / X$) and follow the prompts.

Prompt	Input	Key	Output	Example		
				Input	Key	Output
DIST.个\&?	slope distance	\uparrow	slope distance	100	\uparrow	100.00
	slope percent	R/S	H.DIST. $=$ XX. XX	10	R/S	H.DIST. $=99.50$
	-	fA*	V. RISE $=X X . X X$	-	fA*	V. RISE $=9.95$

*the "f" is to be interpreted as the shift (gold) key, and the underline implies USER mode.
b. If flag 01 is set the input angle will be in degrees and the example: $100 \uparrow 100.00$

10 R/S H.DIST. $=98.48$

- \quad VA \quad RISE $=17.36$
c. If flag 02 is set the input angle will be in topo and the example:

100	\uparrow	100.00
10	R/S	H.DIST. $=98.87$
-	$\underline{\text { fA }}$	V.RISE $=14.98$

3. General comments:
a. After calculation of either horizontal distance or vertical rise, a depression of R/S will recover the distance-angle prompt for the next set of data.

E. Program Listing and Printer Output

$01+L B L$ "SLOPE"	
92 -IIST. $\uparrow 6$? ${ }^{\text {c }}$	
03 PROMPT	
04 STO 92	
$0.5 \mathrm{X}) \mathrm{Y}$	XEQ -SLIPE"
06 ST0 01	DIST. $\uparrow \triangleleft$?
07 FS ? 01	180.88 ENTER \uparrow
98 GTO 91	10.80 RUN
89 FS ? 82	H. DIST. $=99.50$
10 GTO 82	YE0 a
11 RCL 92	Y. $\mathrm{RISE}=9.95$
12180	
13 /	
14 ATAN	
15 ST0 02	SF 01
16*LBL 81	XEQ "SLOPE"
17 RCL 82	DIST. 46
18 cos	109.80 ENTER \uparrow
19 RCL 81	10.80 RUN
2 A *	H. DIST. $=98.48$
21 FIX 2	XEQ a
22 ST0 83	Y. RISE $=17.36$
23 -H. DIST. = -	
24 ARCL X	
25 RYIEH	
26 STOP	CF 91
27 GTO -SLOPE*	SF 92
$28+$ LBL a	XEQ "SLOPE"
29 RCL 92	DIST. $\uparrow 6 ?$
30 TAN	100.90 ENTER \uparrow
31 RCL 93	10.00 RUH
32 *	H. DIST. $=98.87$
33 -4. RISE =	YEQ a
34 ARCL X	4. RISE $=14.98$
35 AVIEH	
36 STOP	
37 GTO -SLOPE*	
$38+$ LBL 92	
39 RCL 92	
4966	
41 /	
42 ATPN	
43 STO 92	
44 GTO 11	
45 RTN	
46 END	

F. Formulas used.

1. Angle conversion (assuming DEG mode):
angles input in percent or topographic units are converted to degrees by

$$
\text { degrees }=\arctan \left(\frac{\%}{100}\right)
$$

or

$$
\text { degrees }=\arctan \left(\frac{\text { topo }}{66}\right)
$$

2. Horizontal distance (HD) and vertical rise (VR):
the $H D$ and VR calculations make use of basic trigonometric functions;
```
HD = (slope distance) (cos S),
```

and

$$
V R=(H D)(\tan S),
$$

where $S=$ slope angle in degrees.

Calculator: $\mathrm{HP}-41 \mathrm{C} / \mathrm{CV}$
Program Name: BA (for basal area)
Author: T.W. Beers
Date: January 1981

Purpose: To calculate tree basal area in square feet from a keyed-in diameter in inches or vice versa (with flag 01 set) and to summarize a series of such calculations, providing the arithmetic mean diameter, the arithmetic mean basal area, the quadratic mean diameter, the number of entries and the sums and standard deviations of both diameter and basal area. Metric output (basal area in m^{2}, diameters in cm.$)$ from similar input, can be obtained with flag 02 set. (Refer to "Basal Area Computation" program in Rocky Mtn. Gen. Tech. Rep. RM-76 by Shepperd).
A. Storage assignments

$\frac{\text { Register }}{00}$	Use
	internal storage of the constant .005454 or .00007854 (with flag 02 set)
02	individual basal area
03	individual diameter
04	arithmetic mean basal area
05	arithmetic mean diameter
06	suadratic mean diameter
07	standard deviation of basal area
$11-16$	statistical summaries; $\Sigma B, \Sigma B^{2}, \Sigma D, \Sigma D^{2}, \Sigma B D, n$

B. Labels

Global
BA
Local
a
b
c

01

02
C. Flags

Number
none set
01

02

Use

start of program, initialization steps and initial prompt
calculation and display of $\bar{B}, \bar{D}, Q M D$, and number of observations recall and display of sums of diameters and basal areas calculation and display of standard deviation of diameter and basal area
when flag 01 is set, calculation and display of diameter from keyed-in basal area calculation and display of basal area from keyed-in diameter

Use

> assumes U.S. units and diameter as input
> if set, assumes basal area as input. Set internally if initial input is negative (indicating B is to be converted to D).
> if set, assumes metric units (input and output)
D. Program procedure and example
I. In PRGM mode, load program "BA"
(SIZE needed is 017)
II. In RUN mode:

1. Check flags for the various options:
a. none set implies input of diameter in inches and output of basal area in sq. ft.
b. 01 set implies input of basal area, output of diameter
c. 02 set implies metric units-- centimeters for diameter, sq. meters for basal area
2. XEQ BA (suggest assignment to \sqrt{X}) and follow the prompts. (Assume no flags are set).

Example
Prompt Input Key Output Input Key Output
a. KEY D OR-BA diameter

R/S 1 (pause)
10 R/S 1 then B.A. $=0.545$
B. A. $=X . X X X$

NEXT DIAM? diameter R/S 2 (pause) 12 R/S 2 then B. A. $=0.785$
B.A. $=X . X X X$

14 R/S 3 then B.A. $=1.069$
b.

fA*	AVE.D. $=$ X. XK	fA*	AVE.D. $=12.00$
	AVE.B.A. $=X . X X X$		AVE.B.A. $=0.800$
	Q.M.D. $=X . X X$		Q.M.D. $=12.11$
	NUMBER $=X$		NUMBER=3

c.
fB $\quad \Sigma D=X . X X$
fB $\quad \Sigma D=36.00$
$\Sigma B A=2.400$
d.

$$
\begin{array}{lll}
\text { fC } \quad \text { S.D. }(D)=X . X X & \text { fC } & \text { S.D. }(D)=2.00 \\
\text { S.D. }(B)=X . X X X & & \text { S.D. }(B)=0.262
\end{array}
$$

*the "f" is to be interpreted as the shift (gold) key, and the underline implies USER mode.
3. General comments:
a. Examples of "BA" executed with flags 01 or 02 set are shown as printer output in section E .
b. For repeat viewing of the various answers shown in $2 b$ through 2 d the user can do one or more of the following:
(1) repeat depression of $\underline{f A}, \underline{f B}$, or $\underline{f C}$;
(2) recall the appropriate storage register manually;
(3) replace the PSE statements in the program with R/S statements, which will necessitate pressing the R/S key between answers.

E. Program Listing and Printer Output

```
56 -Q.M. I. = "
57 ARCL 85
58 AYIEH
59 PSE
60 FIX 0
61 - NUMBER= -
62 ARCL 16
63 AYIEH
64 RTN
\(65+\) LBL 81
66 ABS
67 STO 01
68 RCL 80
69 /
70 SQRT
71 STO 02
72 RCL 01
73 \&
74 FIX
75 PSE
76 FIX 2
77 -DIAM. = -
78 ARCL 02
79 AYIEN
8 PSE
81 PSE
82 "NEXT B.A.?"
83 PROMPT
84 GTO 01
85 RTN
86*LBL b
87 FIX 2
88 " \(\mathrm{ED}=\cdot\)
89 ARCL 13
90 AYIEH
91 PSE
92 FIX 3
93 " \(2 \mathrm{BA}=\) -
94 ARCL 11
95 AYIEH
96 RTN
97*LBL c
98 FIX 2
99 SDEY
100 STO 66
101 XXY
102 STO 07
103 "S.D. \(\langle\mathrm{II}\rangle==\)
184 ARCL X
105 AYIEN
106 PSE
107 FIX 3
108 -S.D. \(\langle\mathrm{B}\rangle=-\)
109 ARCL Y
110 AYIEN
111 END
```


E．Printer Output（Continued）

人llsyaninn ヨnaynd Ni 3sn yos aэnoucidy ว พษO』

YEO＂BA＂

KE I D OR－ EH
-.545 RUN
DIOM．$=10.90$
NEXT B．A．？
MIAH．$=12.00$
NEAT E．A．？
RUM
DIAM．$=14.060$
NEMT E．A．？

XEO 3
QUE． $\mathrm{D}_{1}=12.60$
QUE．$B A=$ 日． 800
日．M．I．$=12.11$
WIMBER $=3$
$2 B=35.99$
EBR $=2.349$
S．D．$\langle D\rangle=2.00$
S．D．$\langle B\rangle=0.262$

CF 91 SF 02 YEQ＂BA＂ 30.00 RUN 49.00 RUN 50.80 RUN

B． $\mathrm{H}_{\mathrm{C}}=0.196$ NEXT DIAM．？

KEE a
QUE．I．$=40.00$
AUE．B Q $=0.131$
0．M．II $=40.82$ NUMEER $=3$
$\Sigma D=120.90$
$\mathrm{EED}=0.393$
S．7．$\langle D\rangle=10.00$
S．D．$\langle B\rangle=9.063$

XEQ＂BA＂

KEY D OR－EF
-.071 RIIN
DIOM．$=30.07$
NEXT E．A．？
DIPM：$=40.05$
WEXT B．A．？
MIAM $=49.96$
NEXT E．C．？

MEO a
HVE． $\mathrm{H}=4 \mathrm{a} .0 \mathrm{~B}$
HYE．$E R=0.131$
0． $\mathrm{H} . \mathrm{I},=48.84$
HMMBER＝ 3
3EE b
$\Sigma I=120.08$
$\Sigma B A=0.393$
XEQ E
5． $1 .\langle D\rangle=9.94$
S．7．$\langle B\rangle=8.663$
F. Formulas used

1. Basal area, B, and diameter, D, are calculated for U.S. units, by

$$
B=.005454 D^{2} \text { or the inverse, } D=\sqrt{\frac{B}{.005454}}
$$

For metric units, the constant is replaced by . 00007854
2. The quadratic mean diameter, Q.M.D., (i.e., the diameter corresponding to the arithmetic mean basal area) is calculated using the inverse form of the above equation with the arithmetic mean basal area, \bar{B} substituted for B:

$$
\begin{aligned}
\text { Q.M.D. } & =\sqrt{\frac{\bar{B}}{.005454}} \\
\text { or } & \text { (U.S. units) } \\
\text { Q.M.D. } & =\sqrt{\frac{\bar{B}}{.00007854}} \quad \text { (metric units) }
\end{aligned}
$$

3. Arithmetic means, \bar{D}, and \bar{B}, and the standard deviations, S_{D} and S_{B} are "calculated" using the HP defined functions "MEAN" and "SDEV", Respectively. The formulas used therein are:

$$
\begin{aligned}
& \bar{X}=\frac{\Sigma X}{n} \\
& s=\sqrt{\frac{\Sigma X^{2}-(\Sigma X)^{2} / n}{n-1}}
\end{aligned}
$$

Retrospective Coments Regarding BA

1. To ensure that the statistical registers are 11 through 16 as assumed in the program, the command EREG 11 should be inserted immediately after step 01 (IBL "BA"). Also, to avoid the decimal point appearing in integer output (FIX 0), the instruction CF 29 should be placed early in the program.

Calculator: $\mathrm{HP}-41 \mathrm{C} / \mathrm{CV}$
Program Name: TH (for tree height)
Author: T.W. Beers
Date: January 1981

Purpose: To calculate tree height when horizontal distance is not measured and the clinometer will not read directly. Therefore, tree height is calculated from keyed-in angles to tree top and base, and slope distance. Provision is made for angles in percent, degrees (flag 01 set) or topographic units (flag 02 set). (Refer to "Tree Heights" program in Rocky Mtn. Gen. Tech. Rep. RM-76 by Shepperd.)

A Storage assignments

Register
01
02
03
04
B. Labels

Global
TH
Local
01

15

Use
keyed-in angle to top, then angle in degrees $\left(B_{t}\right)$ keyed-in angle to base, then angle in degrees (B_{b}) angle sum, $B=B_{t}+B_{b}$ or $B=B_{t}-B_{b}$ (flag 00 set) slope distance
start of program

Use

```
prompt for slope distance; calculation and display of
    tree height
                                    prompt for top and base angles; conversion of angles to
                                    degrees if needed
```

C. Flags

Number
none set assumes angles are physically different in sign and are expressed in percent

00
01 if set, assumes angles in degrees
02
if set, assumes angles in topo scale
D. Program procedure and example
I. In PRGM mode, load program "TH"
(SIZE needed is 005)
II. In RUN mode:

1. Check flags for the various conditions
a. none set assumes angles in percent
b. 00 set assumes angles are same sign
c. 01 set assumes angles are in degrees
d. 02 set assumes angles are in topo scale
2. XEQ TH (suggest assignment to LOG) and follow the prompts

b. If both angles are positive or both are negative, flag 00 can be set externally or slope distance can be keyed as a negative value.

$40 \uparrow 20$	R/S	-
56	CHS	-56
-	R/S	HEIGHT $=11.0$

c. Assume angles are in degrees, then SF 01 and proceed.

$21.8 \uparrow 11.3$	R/S	-
56	R / S	$H E I G H T=32.9$

d. Assume angles are in topo units, then SF 02 and proceed.

$26.4 \uparrow 13.2$	R / S	-
56	R / S	$H E I G H T=32.9$

D. Program procedure and example (Continued)
III. General comments:

1. In the usual application, "TH" will be executed, then the user will consistently be using one of procedures $2 \mathrm{a}, \mathrm{c}$, or d . Therefore once one of these is chosen, the proper flag set (or cleared), and the first tree height calculated, pressing R/S will recover the prompt for keying the next set of angles.
2. Use of procedure 2 b will occur rarely, therefore after use, pressing R/S will automatically clear flag 00.
3. Special note: observe that for simplicity angles are always keyed-in as positive numbers, although it is recognized that the angles actually measured are usually different in sign.

E. Program Listing and Printer Output

51 RCL 94		
52 *		
5398		
54 RCL 91		YEQ - TH"
$55-$	FLAGS SET?	
56 SIN	\%: NONE	
57 /	DEGREES: 01	
58 FIX 1	TOPD: 02	
59 -HEIGHT= *	TOP \triangle ¢ BASE \triangle	
60 ARCL X		SF 01
61 AYIEH		21.8 ENTER \dagger
62 RTN		11.3 RUH
63 CF 90	SLOPE DIST.?	11.3 Rum
64 GTO 15		56.6 RUH
65 END	HEIGHT $=11.9$	

RUN
TOP $\angle \uparrow$ © BSE G
21.8 ENTER \uparrow
11.3 RJN

SLOPE DIST.?
-56.8 RUN
HEIGHT= 11.0

XE日 "TH"
FLAGS SET?
$\%$: NONE
DEGREES: 01
TOPO: 82
TOP $\triangle+$ BASE \triangle
SF 92
26.4 ENTER \uparrow
13.2 RUN

SLOPE IIST.?
56.0 RUN

HEIGHT $=32.9$

RUH
TOPA \uparrow BRSE 4
26.4 ENTER \uparrow
13.2 RUN

SLOPE DIST.?
-56.0 RIJN
HEICHT $=11.0$
F. Formulas used

1. Angle conversion (assuming DEG mode)
angles input in percent or topographic scale are converted to degrees by

$$
\text { degrees }=\arctan \left(\frac{\%}{100}\right)
$$

or

$$
\text { degrees }=\arctan \left(\frac{\text { topo }}{66}\right)
$$

2. Tree height calculation
a. Usual case; where slope signs are opposite:

$$
\text { tree height, } b=\frac{a \sin \left(B_{t}+B_{b}\right)}{\sin \left(90-B_{t}\right)}
$$

b. Abnormal case; where slope signs are alike:

F. Formulas used (Continued)
c. The formulas cited above were used in the program "TH" to conform with those in U.S.F.S. Gen. Tech. Rep. RM-76. A more "traditional" approach would be to use the following:

This approach makes clear the practical simplicity of using the percent scale when assessing tree height, for, by definition $\tan X=\frac{X(\%)}{100}$, therefore:

$$
\text { if } \quad \begin{aligned}
H & =100 \\
h & =100\left[\frac{B_{t}(\%)}{100}+\frac{B_{b}(\%)}{100}\right] \\
& =B_{t}(\%)+B_{b}(\%)
\end{aligned}
$$

or if $H \neq 100$

$$
h=\frac{H}{100}\left[B_{t}(\%)+B_{b}(\%)\right]
$$

Retrospective Comments Regarding_TH

1. Although the flag setting reminders are helpful, one eventually tires of seeing them each time TH is executed. Thus, the option to bypass their display can be provided with a flag setting (say flag 03) by inserting the following instructions just after step 01 (LBL "TH"):

FS? 03
GIO 15
2. In similar fashion, the basic prompt for angle input can be obtained automatically after each height "answer" by inserting the following three statements after step 61 (AVIEW):

FS? 03
PSE
FC? 03
3. The program called THl, found on the KRON-1 tape, incorporates both of the above refinements.

Calculator: HP-41C/CV
Program Name: NTEST (sample size determination)
Author: T.W. Beers
Date: January 1981

Purpose: For a keyed-in preliminary sample of X_{i}, this program will calculate and display the preliminary sample size, n_{p}, sum, mean, standard deviation, standard error, variance, and coefficient of variation. After an arbitrary allowable error is keyed-in, the sample size, n, required to achieve this error is calculated and displayed. An infinite population is assumed but the finite case can be handled by setting flag 00. (Refer to "Adequacy of Sample Test" program in Rocky Mtn. Gen. Tech. Rep. RM-76 by Shepperd.)
A. Storage assignments

Register	Use	
01	n_{p}, sample size	
02	ΣX, sum of X	
03	\bar{X}, arithmetic mean	determined from
04	s, standard deviation	preliminary
05	$\mathrm{s}_{\bar{X}}, \text { standard error }$	sample
06	s^{2}, variance	
07	$C V$, coefficient of variation $=\frac{S}{\bar{X}}(100)$,	
08	AE, allowable error in \%	
09	n, calculated sample size	
10	not used	
11-16	statistical registers	

B. Labels

Global
NTEST
Local
a
b

00
01
03
04
05
C. Flags

00
22

29

Number

29
calculates and displays $n_{p}, \Sigma x, \bar{x}$, and s
prompts for allowable error and Student's t, then calculates required sample size n.
adjustment for finite population
summarization loop
calculates and displays $s_{\bar{x}}, s^{2}$, and $C V$
prompt for new value of t
calculating loop in label b
Use
start of program, prompt for first X

Use
if set, implies sampling from finite population
data-entry flag, used to detect keyboard entry of t in label b
digit-grouping flag, cleared to suppress decimal point and conmia in FIX () status
D. Program procedure and example
I. In PRGM mode, load program "NTEST"
(Size needed is 017)
II. In RUN mode:

Basic assumption is for sampling with replacement (i.e., infinite population); for sample size determination assuming sampling without replacement (i.e., finite population) flag 00 must be set prior to step 1c or the allowable error can be keyed-in as a negative value.

1. XEQ NTEST (suggest assignment to $L N$) and follow the prompts.

D. Program procedure and example (Continued)

2. General comments

a. As shown in the above example one can use a refined t value and repeat the solution until N settles down. Note that the program assumes initially that $t=2$, unless otherwise keyedin step lc.
b. The preliminary sample is always assumed to be from an infinite population, therefore the standard error is uncorrected.

E．Program Listing and Printer Output

日1＊LBL＂NTEST＂	51 RCL 04
82 CLE	52×12
03 FIX	53 ST0 96
04 CF 29	$54-\mathrm{St}$－$=$
85 ＂EACH X，R／S＂	55 ARCL X
96 PROMPT	56 AYIEN
$97+$ LBL 01	57 PSE
$08 \mathrm{c}+$	58 FIX 1
09 STOP	59 RCL 04
18 GTO 01	66 RCL 93
11＊LBL a	61 \％
12 CF 29	62108
13 －NO．OBS．$=\cdot$	63 ＊
14 ARCL 16	64 ST0 97
15 AYIEH	$65^{\circ} \mathrm{C} .4 .=$
16 PSE	66 ARCL X
17 STO 91	67 ＂F \％＂
18 FIX 1	68 AYIEH
19 － $8 \mathrm{X}=$－	69 PSE
20 ARCL 11	79 －PRESS b^{*}
21 AVIEH	71 PROMPT
22 PSE	72•LBL b
23 ST0 02	73 FIX 0
24 FIX 2	74 ＂A．E．IN \％？＂
25 MEAN	75 PROHPT
26 STO 93	76 X 人日？
27 －\times BRR $=$－	77 SF 90
28 ARCL X	78 ABS
29 RYIEH	79 ST0 08
30 PSE	80 CF 22
31 SDEY	$81{ }^{\text {－KEY T }}$ OR R／5＊
32 ST0 64	82 PROMPT
$33-5$. DEV．$=*$	83 F S？ 22
34 ARCL X	$84 \mathrm{X}+2$
35 AYIEW	85 FC ？ 22
36 PSE	864
37 －R／S FOR MORE＊	87＊LBL 85
38 OYIEH	88 RCL 97
39 STOP	$89 \mathrm{X}+2$
$40 \cdot \mathrm{LBL} 83$	90 ＊
41 FIX 2	91 RCL 08
42 RCL 84	92×42
43 RCL 16	93 \％
44 SQRT	94 FS？ 98
45 \％	95 XEQ 80
46 ST0 85	$96-\mathrm{N}=\cdot$
47 － $\mathrm{S} \mathrm{XBAR}=$－	97 ARCL ${ }^{\text {¢ }}$
48 ARCL X	98 AYIEH
49 AYIEM	99 BEEP
50 PSE	108 STOP

Q1*LBL "NTEST"
02 CLE
03 FIX
34 CF 29
" E EACH X, R/S"
96 PROMPT
97*LBL 01
08 ¿ +
09 STOP
18 GTO 01
11*LBL a
12 CF 29
13 "NO. OBS. = -
14 ARCL 16
15 AYIEH
16 PSE
17 STO 01
18 FIX 1
19 - $8 \times=$
2 ARCL 11
21 AYIEM
22 PSE
23 STO 92
24 FIX 2
25 MEAN
26 STO 03
27 : X BAR= •
28 ARCL X
29 AYIEN
30 PSE
31 SDEY
32 STO 64
33 -S.DEY. $=$
34 ARCL X
35 AYIEW
36 PSE
37 "R/S FOR MORE"
38 AYIEH
39 STOP
$40 \times \mathrm{LBL} 03$
41 FIX 2
42 RCL 64
43 RCL 16
44 SQRT
.
46
48 ARCL X
49 AYIEN
50 PSE

51 RCL 94
52
54 － $9 \uparrow 2=-$
55 ARCL X
56 AYIEN
PSE
58 FIX

64 RCL 03
61 ／
62108
63 ＊
64 STO 87
66 ARCL X
67 ＂F \％
68 AYIE

71 PROMPT
$72+$ LBL b
73 FIX 0
N

77 SF 00
78 ABS
79 STO 68
CF

82 PROMPT
83 FS？ 22
84 X12
FL？ 22
86
88 RCL 97
$89 \mathrm{X}+2$

91 RCL 88
92×4
93 ／
94 FS？ 06
95 XEO 80
96 ＂ $\mathrm{N}=\cdot$
97 ARCL x

99 BEEP
100 STOP

101 GTO 64
1024LBL 08
103 STO 89
184 －POP．SIZE ？＂
185 PROMPT
186 ／
1071
$108+$
109 RCL 69
$110 \mathrm{X} \backslash>$
$111 /$
112 RTN
113＊LBL 84
114 ＂NEW T ？－
115 PROMPT
116×42
117 GTO 05
118 END
NTEST：284 BYTES

E. Printer Output (Continued)

F. Formulas used

1. For the preliminary sample.

$$
\begin{aligned}
& X B A R=\frac{\Sigma X}{n} \\
& \text { S.DEV. }=\sqrt{\frac{n \Sigma X^{2}-(\Sigma X)^{2}}{n(n-1)}}=s \\
& S X B A R=\frac{s}{\sqrt{n}} \\
& s+2=s^{2}=\text { variance } \\
& \text { C.V. }=\frac{s}{X}(100)
\end{aligned}
$$

2. For sample size determination.
a. Infinite population:

$$
n=\frac{t^{2}\left(C_{.} V_{0}\right)^{2}}{\left(A_{\cdot} E_{\cdot}\right)^{2}}
$$

```
where both C.V. and A.E. are in percent
and t = Student's t
```

b. Finite population:

$$
n_{a d j}=\frac{n}{1+\frac{n}{N}}
$$

where

$$
n=\text { calculated as in } 2 a
$$

and

$$
N=\text { population size }
$$

Retrospective Comments Regarding NIESI

1. The program can be made more smooth in the iteration phase (i.e., where a refined Student's t is to be input) by deleting step 100 (STOP) and inserting one or two pauses (PSE), depending upon how long one needs to view the current value of n.
2. Since registers 11 through 16 are assumed to be the statistical registers, EREG 11 should be inserted immediately after step 01 (LBL "NTEST").
3. In the finite population case, label 00 , as written, requires the re-entry of population size at each iteration; in order to avoid this, one can use flag 02, label 02, and storage 10 and make the following changes:
a. Insert CF 02 after step 72 (IBL b)
b. Insert FS? 02

GIO 02 after step 103 (STO 09)
C. Insert STO 10
$X \gtrless Y$
LBL 02
RCL 10 after step 105 (PROMPT)
d. Insert SF 02 after step 113 (LBL 04)
4. All of the above changes are incorporated into the program NIESTl, found on the KRON-1 tape.

Calculator: HP-41C/CV
Program Name: GCAL (Gauge calibration)
Author: T.W. Beers
Date: January 1981

Purpose: Angle gauges used in horizontal point sampling are "calibrated," or sometimes designed or assembled making use of the functional relation between basal area factor of the gauge, F, width of a sighting bar, W, and distance, D, from eye to "target." This program solves the relationship for any one of the three variables, using the other two as input; the determination of the basal area factor of wedge prisms is also possible. The use of metric units is enabled with flag 00 set. (Refer to "BAF" Gauge Calibration program in Rocky Mtn. Gen. Tech. Rep. RM-76 by shepperd.)
A. Storage assignments

Register	Use
00	internally stored constant, 43560 or 10000 (flag 00 set)

B. Labels

Global
GCAL
Use
start of program, prompts for the 3 options, and stores constants
Local
calculates F, from prompted W and D
b
c
calculates W, from prompted F and D
calculates D, from prompted F and W
C. Flags

Number
Use
00

[^10]D. Program procedure and example
I. In PRGM mode, load program "GCAL" (SIZE needed is 001)
II. In RUN mode:

1. XEQ GCAL (suggest assignment to $X \lessgtr Y$) and follow the prompts (choosing a, b, or c)

Prompt	Input	Key	Output	Example		
				Input	Key	Output
KEY a,b, OR c	-	a	-	-	a	-
BAR WIDTH?	W	R/S	-	1	R/S	-
DISTANCE?	D	R/S	$B A F=X . X X$	33	R/S	$B A F=10.00$
-	-	R/S	= X. XX SQ.M.	-	R/S	$\begin{aligned} & =2.30 \\ & \text { SQ.M./A } \end{aligned}$
KEY a, b, OR c	-	b	-	-	b	-
BAF?	F	R/S	-	10	R/S	-
DISTANCE?	D	R/S	WIDTH=X. XX	33	R/S	WI DTH=1.00
KEY a,b,OR c	-	c	-	-	C	-
BAF?	F	R/S	-	10	R/S	-
WIDTH?	W	R/S	DIST. $=$ X. XX	I	R/S	DIST. $=33.00$

2. If input units are metric, SF 00, XEQ GCAL (to load proper constant) and proceed as above; an example for la would be:

Prompt	Input	Key	Output
KEY a, b, OR c	-	a	-
BAR WIDTH	2	R/S	-
DISTANCE?	70.7	R/S	$B A F=2.00$
		R/S	=8.71 SQ.FT./A

III. General comments:

1. After label a, b, or c has been selected, pressed, and the first pair of data has been processed, depression of R/S will keep the user within that routine, and the appropriate prompts will be repeated.
2. For input in U.S. units, F is assumed to be square feet per acre; W and D can be either feet or inches but both must be in the same units. For metric input, F is assumed to be square meters per hectare, while W and D can be either cm. or meters (both the same).

E. Program Listing and Printer Output

$51+$ BL b			
52 -BAF?			
53 PROMPT	XEQ "SCAL"		
54 -DISTANCE?*			
55 PROMPT	BAF? KEY a		
56 X \>Y	WIDTH? KEY b		
57 RCL 日 0	DIST.? KEY c		
58 /	KEY a, b, OR c		
59 SQRT	XEQ a		
68 ASIN	BAR HIDTH?		
61 TAN	1.08	RUN	
62 *	DISTANCE?		
632	33.80	RUN	
64 *	$B A F=10.80$		
65 * $\mathrm{HIDTH}=$ "		RUH	
66 ARCL X	$=2.30 \mathrm{SQ} . \mathrm{H} . / \mathrm{H}$		
67 AYIEN			
68 STOP			
69 GT0 b			
$76+$ LBL c		XEQ b	
71 -BAF?*	BAF?		
72 PROMPT	10.90	RUN	
73 "HIDTH? ${ }^{\text {a }}$	DISTANCE?		
74 PROMPT	33.80	RUN	
752	HIDTH $=1.00$		
76 \%			
77 X (>Y			
78 RCL 80			
79 \%		XEO C	
80 SQRT	BAF?		
81 ASIN	10.00	RUN	
82 TAN	WIDTH?		
83 /		RUW	
84 -DIST. $=$ -	DIST. $=33.90$		
85 ARCL X			
86 AYIEH			
87 STOP			
88 GTO c		$\begin{gathered} \text { SF } 90 \\ \text { CGCAL } \end{gathered}$	
89 END	XEQ		
	BAF? KEY a WIDTH? KEY b DIST.? KEY © KEY a, b, OR c		
GCAL:262 BYTES			
		XEQ a	
	BAR WIDTH? 2.08		
		RUN	
	DISTANCE?		
	70.70	RUN	
	$B 9 F=2.80$		
		RUN	
	$=8.71 \mathrm{SO} . \mathrm{FT} . / \mathrm{A}$		

F. Formulas used

1. Assuming U.S. units as input
a. The basic formula, solved in label a, is

$$
\begin{aligned}
& F=43560 \sin ^{2} A \\
& \text { where } \quad A=\arctan \frac{W / 2}{D}
\end{aligned}
$$

note: $F=$ basal area factor
W = bar width or "target" width
$D=$ distance to bar or "target"
$A=\frac{1}{2}$ the angle generated by the gauge

b. When solving for bar width, as in label b, one first finds angle A from

$$
\begin{equation*}
A=\arcsin \sqrt{\frac{F}{43560}} \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
W=2 D(\tan A) \tag{4}
\end{equation*}
$$

c. When solving for distance, as in label c, angle A is found from formula (3),
then

$$
\begin{equation*}
D=\frac{W / 2}{\tan A} \tag{5}
\end{equation*}
$$

2. Assuming metric units as input, the above formulas apply if 43560 is replaced by 10000
3. For conversion of F from U.S. to metric or vice versa the following are appropriate:
$F_{\text {sq. m. per hectare }}=.2295684 \mathrm{~F}_{\text {sq. }}$ ft. per acre
and

$$
F_{\text {sq. ft. per acre }}=\frac{1}{.2295684} F_{\text {sq. m. per hectare }}
$$

Retrospective Comments Regarding GCAL

1. If the initial reminder messages display too rapidly, insertion of an additional SIN command after steps 04,08 , and 12 should produce sufficient slow-down.

Calculator: HP-41C/CV
Program Name: PSFIELD (Point sampling, field)
Author: T.W. Beers
Date: January 1981

Purpose: To solve certain problems relating to field application of horizontal point sampling. For a given basal area factor F, and if needed, tree DBH, D, and a measure of slope, one can obtain:
a. horizontal distance multiplier
b. limiting horizontal distance
c. limiting slope distance
d. calibrated tape mark to hold
e. tree factor
f. associated plot area
g. a borderline tree check, if actual distance to the tree is provided
h. a boundary overlap correction "weight", given the distance to boundary

Slope can be expressed in percent, degrees (flag 01 set), or topographic units (flag 02 set). The technique for slope correction is assumed to be the variable gauge angle approach (see Beers, Jour. For. 67: 188-192); however, with flag 00 set, the constant gauge angle technique is assumed. The entire program can be "made metric" by setting flag 03. (Refer to "Limiting Distance" program in Rocky Mountain Gen. Tech. Rep. RM-76 by Shepperd.)
a. Storage Assignments

Register
Use
A. Storage Assignments (continued)

Register
01
02
B. Labels

Global
PSFIELD

Local
a

C
d
e

00

HDM, horizontal distance multiplier
D, tree diameter at breast height
R, horizontal associated plot radius
S, slope angle in degrees
R_{s}, plot radius on the slope
D_{t}, calibrated tape mark to hold
F_{t}, tree factor
a, plot area
M, slope multiplier (using "constant slope correction")
B, horizontally measured distance from point to boundary
W, tree "weight" if boundary overlap is corrected by direct weighting method
prompts for actual distance, compares this with plot radius (R or R_{s}) and displays whether tree is IN or OUT.
calculates and displays the "D to hold" mark for use with a calibrated point sampling tape
calculates and displays the tree factor and optionally, the associated plot area
for use when flag 00 is set; calculates and displays the "adjusted F" and the adjusted tree factor
prompts for horizontal distance to the boundary, B, then calculates and displays the tree "weight", adjusted F and adjusted tree factor, F_{t}.
when flag 00 is set, labels and stores horizontal radius as slope radius

01 angle in degrees prompt and storage
02 angle in topo prompt, conversion to degrees and storage
C. Flags

Number
None

00

01
02
03 DBH prompt, calculates and displays horizontal radius calculates and displays slope radius angle in percent prompt, conversion to degrees and storage when flag 00 set, calculates and displays slope multiplier

None

0
if set, assumes slope angle is in degrees
if set, slope angle is in topo units
if set, metric input and output; F in sq. m. per hectare, D in cm., R in meters, and area in hectares
D. Program procedure and example
I. In PRGM mode, load program "PSFIELD: (size needed is 010)
II. In RUN mode:

1. Check flags for the appropriate conditions:
a. none set assumes U.S. units, angle in percent, variable slope
b. 00 set assumes constant slope adjustment
c. 01 set assumes angle expressed in degrees
D. Program procedure and example (Continued)
d. 02 set assumes angle expressed in topo units
e. 03 set assumes metric units
2. XEQ PSFIELD (suggest assignment to R \downarrow) and follow the prompts, noting first the flag reminders.
a. No flags set

Prompt				Example		
	Input	Key	Output	Input		Output
F?	F	R/S	HDM $=$ X. XXX	10	R/S	HDM $=2.750$
DBH?	D	R/S	HOR. RAD $=X X . X X$	10	R/S	HOR. RAD $=27.50$
		R/S			R/S	
* in \%	α	R/S	SLP. $R A D=X X . X X$	30	R/S	SLP. RAD=28.71
-	-	a		-	a	
ACTUAL DIST?		R/S	$\left\{\begin{array}{c} \text { TREE IS IN } \\ \text { or } \\ \text { TREE IS OUT } \end{array}\right.$	28	R/S	TREE IS IN
-	-	b	D TO HOLD $=$ XX. ${ }^{\text {PX }}$	-	b	D TO HOLD $=10.44$
-	-	$\begin{gathered} C \\ R / S \end{gathered}$	$\begin{aligned} & \text { TREFAC }=X X \cdot X X \\ & \text { AREA }=X \cdot X X \end{aligned}$	-	$\begin{gathered} c \\ R / S \end{gathered}$	$\begin{aligned} & \text { TREFAC }=18.34 \\ & \text { AREA }=0.05 \end{aligned}$
-	-	e		-	e	
HORIZ. B?	B	R/S	W=X. XX	20	R/S	W=1.09
		R/S	WTD. $F=X X . X X$ WTD. $F(T)=X X, X X$		R/S	WTD. $F=10.89$ WTD. $F(T)=19.97$

b. If flag 01 or flag 02 is set, the procedure is similar to a., except that degrees or topo units are used. See part E for an example of printer output for these cases.
c. If flag 00 is set, the normal procedure is as follows:

Prompt	Input	Key	Output	Example		
				Input	Key	Output
F?	F	R/S	HDM $=\mathrm{X} . \mathrm{XX}$	10	R/S	HDM $=2.750$
DBH?	D	R/S	SLP. RAD $=$ XX. XX $^{\text {d }}$	10	R/S	SLP. RAD $=27.50$
- in ?	-	R/S		-	R/S	
* in \%?	α	R/S	MULT. $=X . X X X$	30	R/S	MULT. $=1.044$

D. Program procedure and example (Continued)

Prompt	Input	Key	Output	Example		
				Input	Key	Output
-	-	a		-	a	
ACTUAL DIST?		R/S	$\left\{\begin{array}{l}\text { TREE IS IN } \\ \text { or } \\ \text { TREE } \\ \text { IS OUT }\end{array}\right.$	28	R/S	TREE IS OUT
-	-	c	TREFAC=XX. XX	-	c	TREFAC=18.34
-	-	R/S	AREA $=X$. $X X$	-	R/S	AREA $=0.05$
-	-	d	ADJ. F=XX. XX	-	d	ADJ. $F=10.44$
-	-	R/S	ADJ. $F(T)=X X . X X$	-	R/S	ADJ. $F(T)=19.14$

Note: In this constant gauge angle approach, Label b (depression of key b) is not necessary since the tape mark to hold is the same as tree diameter; also, depression of key c provides the unadjusted tree factor and plot area on the slope.
d. If flag 03 is set, the procedures outlined above in a or c are still appropriate; the only difference being the input and output are in metric units. See part E for an example of printer output in this case.
III. General Comments:

1. In general, PSFIELD need only be executed once, enabling either U.S. or metric units mode, and the storage of the basal area factor. After that, the basic prompt DBH? can be obtained by XEQ 15 or by successive depression of R / S since labels a, b, c, d , and e all end in GTO 15 statements.
2. The calculation of an overlap correction weight in label e is recommended only if the mirage method (see Beers, South. Jour. App. For. 1:16-18) is not feasible. Also, use of label e with the constant gauge angle method (flag 00 set) is questionable since then two adjustment multipliers are necessary.

E. Program Listing and Printer Output

Q1*LBL -PSFIELD"	51 ST0 95	101 ST0 06
Q2 "FLHSS SET?	52 FIX 2	102 -II T0 HOLII=
Q3 PYIEH	53 FS ? 60	103 ARCL X
04 PSE	54 GTO 98	104 AYIEN
$95{ }^{\text {-CNSTS: }}$ SF 00°	55 FC ? 08	105 STOP
96 QYIEH	56 "HOR.RAD $=$ -	106 GTO 15
07 SIN	57 ARCL X	107*LBL c
08 SIN	58 PROMPT	108 FIX 2
09 "YAR.4: NONE"	59*LBL 17	109 RCL 00
10 AYIEH	60 FS? 01	110 RCL 82
11 PSE	61 GTO 01	111×2
12 - \% NONE	62 FS? 02	112 FC? 83
13 AYIEH	63 GT0 02	113. 905454
14 SIN	$64^{\circ} \stackrel{\text { IN }}{ } \times 7$?	114 FS? 83
15 SIN	65 PROMPT	115.88087854
16 -DEG, : SF 01*	66190	116 *
17 AYIEH	67 \%	117 /
18 SIN	68 ATAN	118 ST0 97
19 SIN	69 STO 04	119 -TREFAC= -
2 C - TOPO: SF 02"	70 FS? 80	129 ARCL X
21 AYIEH	71 RTN	121 AYIEH
22 PSE	72*LBL 16	122 STOP
23 -METRIC: SF 03*	73 COS	123 1/X
24 AYIEK	74 1/X	124 ST0 08
25 SIN	75 RCL 03	125 -AREA= -
26 SIN	76 *	126 ARCL X
27^{-}F ?	77 -SLP.RAD $=$ "	127 AUIEW
28 PROMPT	78 ARCL X	128 STOP
29 ST0 08	79 AVIEH	129 GTO 15
3016	80 ST0 85	1304LBL 61
$31 \mathrm{X} \backslash \bigcirc \bigcirc$	81 STOP	131 " 12.1 DEGREES?*
32%	82 GTO 15	132 PROMPT
33 SQRT	$83 *$ LBL a	133 ST0 04
342.75	84 RCL 65	134 FS? 010
35.	85 "ACTUAL DIST?*	135 GTO 18
36 FS ? 03	86 PROMPT	136 GTO 16
37 XEQ 19	$87 \mathrm{X}=\mathrm{Y}$?	137*LBL 02
38 STO 01	88 "TREE IS IN"	138 " $¢$ IN TOPO?"
39 FIX 3	89 X ${ }^{\text {¢ }}$ Y ?	139 PROMPT
$40^{-H D M}=\times$	90 -TREE IS OUT*	14866
41 ARCL X	91 AYIEN	141 /
42 AYIEH	92 STOP	142 ATAN
43 PSE	93 GTO 15	143 ST0 84
44 LBL 15	$94 *$ LBL b	144 FS? 80
45 "DEH?"	95 FIX 2	145 GTO 18
46 PROMPT	96 RCL ט4	146 GTO 16
47 STO 92	97 COS	147*LBL 06
48 RCL 01	98 1/4	148 -SLP. RAII $=$ -
49 *	99 RCL 02	149 ARCL X
50 STO 93	106 *	150 ST0 05

E. Program Listing and Printer Output (Continued)

151 PROMPT

152 XEQ 17
153*LBL 18
154 RCL 84
$155 \cos$
156 1/X
157 ST0 99
158 FIX 3
159 - MULT. $=$ -
160 ARCL X
161 RYIEW
162 RTN
$16 \cdot 34$ LBL d
164 FIX 2
165 RCL 99
166 RCL 88
167 *
168 *AD.J. F= -
169 ARCL X
179 RYIEM
171 STOP
172 RCL 02
173×42
174 FC? 03
175.085454

176 FS? 93
177. .80907854

178 *
179 /
189 ADJ. $F(T)=\cdot$
181 ARCL X
182 RYIEM
183 STOP
184 GTD 15
$185+$ LBL 19
186 RCL 89
187 SQRT
1882
189 *
$1981 / x$
191 RTN
192+LBL e
193 RAD
194 HORIZ. B ?-
195 PROMPT
196 STO 18
197 RCL 83
198 /
199 ACOS
200 CHS

291 PI
$292+$
203 RCL 93
204×42
205 *
206 LASTX
207 RCL 10
298×42
299 -
218 SQRT
211 RCL 10
212 *
$213+\quad$ YEQ "PSFIELD"
214 RCL 08
215 *
216 RCL 02
$217 \times+2$
218 PI
219 *
228 FS? 03
221.25

222 FC? 03
22375.625

224 *
225 X \gg
226 /
227 STO 11
$228 \cdot \boldsymbol{H}=\cdot$
229 ARCL X
230 AYIEL
231 DEG
232 ST0p
233 RCL 00
234 *
235 " HTD. F= -
236 ARCL X
237 AYIEH
238 PSE
239 RCL 67
240 RCL 11
241 *
242 - hTD. $\mathrm{F}\langle\mathrm{T}\rangle=\cdot$
243 ARCL X
244 AYIEN
245 STOP
246 GTO 15
247 END
PSFIELD: 634 BYTES

FLAGS SET?
CNST: SF GB
YRR. S: NONE
\% NONE
DEG. : SF 01
TOPO: SF 92
METRIC: SF 93
F?
$H D H=2.750$
DBH?
10.090 RUN

HDR. RAD $=27.5 日$
\triangle IN $\%$
30.80 RUN

SLP. RAI $=28.71$
XED a
ACTUAL DIST?
28.06 RUW

TREE IS IN
XEQ b
D TO HOLD $=10.44$
XEO :
TREFAC $=18.34$
RUN
AREA $=0.05$
XEO E
HORIZ. B?
20.89 RUN
$H=1.89$
HTD. $F=10.89$
HTD. $F\langle T\rangle=19.97$

E. Printer Output (Continued)

F. Formulas used: (see part A for definition of symbols)

1. Basic horizontal point sampling
a. Horizontal distance multiplier

$$
H D M=\frac{33 \sqrt{10}}{12 \sqrt{F}}=\frac{2.75 \sqrt{10}}{\sqrt{F}}=2.75 \sqrt{\frac{10}{F}} \text {, U.S. units }
$$

or $H D M=\frac{1}{2 \sqrt{F}}$, metric units
b. associated plot radius, horizontal

$$
R=H D M(D)
$$

c. tree factor

$$
\begin{aligned}
F_{t} & =\frac{F}{\text { tree basal area }} \\
& =\frac{F}{.005454 D^{2}} \text {, U.S. units }
\end{aligned}
$$

$$
\text { or } F_{t}=\frac{F}{.00007854 D^{2}} \text {, metric units }
$$

d. plot area

$$
a=\frac{1}{F_{t}}
$$

2. Slope conversion
a. angle in degrees $=\arctan \left(\frac{\text { angle in } \%}{100}\right)$
b. angle in degrees $=\arctan \left(\frac{\text { topo angle }}{66}\right)$
3. Related to slope correction techniques
a. using variable gauge angle approach
(1) associated plot radius on the slope
$R_{S}=R \sec S$
$=\frac{D(H D M)}{\cos S}$
note: S is the slope angle (in degrees) from sample point to the tree
(2) calibrated tape diameter mark to hold; tape used on the slope
(2) continued

$$
D_{t}=D \sec S=\frac{D}{\cos S}
$$

(3) tree qualification test, given actual distance, R_{a}

IN if $R_{a} \leq R_{s}$, OUT otherwise
b. using the constant gauge angle approach
(1) associated plot radius on the slope
$R_{S}=R$ i.e., horizontal associated plot radius is established on the slope as if the terrain were level
(2) slope multiplier, assuming one "prevailing" slope measurement at the point
$M=\sec S=\frac{1}{\cos S}$
(3) adjusted basal area factor
adj. $F=M(F)$
(4) adjusted tree factor
adj. $F_{t}=M\left(F_{t}\right)$
4. Boundary overlap correction
a. mirage method is recommended and appropriate for either variable or constant gauge angle on the slope.
b. in case mirage method is impractical, the direct weighting procedure can be used (label e); the weight calculated from
$W=\frac{\pi D^{2}}{576} \cdot \frac{43560}{F(I)}=\frac{75.625 \pi D^{2}}{F(I)}$, U.S. units
or, $W=\frac{\pi D^{2}}{40000} \cdot \frac{10000}{F(I)}=\frac{.25 \pi D^{2}}{F(I)}$, metric units
where, in either system of units, the plot area inside the boundary, I, is found by
$I=R^{2}\left(\pi-\arccos \frac{B}{R}\right)+B \sqrt{R^{2}-B^{2}}$, radian mode

Note: in field application, B, the distance from sample point to boundary is:
(1) measured horizontally in the variable gauge angle technique.
(2) measured on the slope in the constant gauge angle technique.
c. for the direct weighting procedure,

Weighted $F=(W)(F)$ and
Weighted $F_{t}=(W)\left(F_{t}\right)$ are calculated and can be used as an alternative to tallying trees as the weight, W.

Retrospective Comments Regarding PSEIEID

1. PSFIELD is a ponderous program which probably has no practical use except to demonstrate the potential field application of the HP-4lC. For this reason it is included in this compilation.
2. Foresters wishing to apply such a program would be well advised to extract the parts of PSFIELD appropriate for their purpose and prepare a specific program. The formulas and references cited in the write-up should prove useful.

Calculator: HP-41C/CV
Program Name: SSRS (Simple and Stratified Random Sampling)
Author: T.W. Beers
Date: February 1981

Purpose: To summarize data from either a simple or stratified sample, obtaining within stratum and overall estimates of the mean and standard error and, optionally, user specified confidence intervals and other sample statistics. Provision is made to use or not (Flag 00 set) a finite population correction.
A. Storage assignments

Register	Use
00-05	statistical: $\Sigma \mathrm{X}, \Sigma \mathrm{X}^{2}, \Sigma \mathrm{Y}, \Sigma Y^{2}, \Sigma X Y, \mathrm{n}$
06	N, population size or N_{h}, stratum size
07	\bar{X}, sample mean, or \bar{X}_{h}, stratum sample mean, then $\bar{X}_{s t}$, overall stratified sample mean
08	$\Sigma N_{h} \bar{X}_{h}$
09	ΣN_{h}
10	s, sample standard deviation, or s_{h}
11	$\mathrm{s}_{\bar{x}} \text {, sample standard error, or } \mathrm{s}_{\bar{X}_{h}} \text {, the } \mathrm{s}_{\bar{x}_{s t}} \text {, overall }$ standard error
12	$\sum N_{h}{ }^{2} S^{2} \bar{X}_{h}$ used in overall standard error calculation
13	f.p.c., finite population correction
14	Student's t used for confidence interval calculations (user input, or default to $t=2$)

B. Labels

Global
SSRS

FPC

NSTRAT

STRAT

SUMRY

Local
clears flag 01 and directs execution to SUMRY label
directs execution to STRAT label
basic routine to calculate mean and standard error for simple sample or for within stratum estimates
for the stratified sample, calculates overall mean, standard error and standard error in percent, and clears accumulators for next problem
extended part of label B, used to conveniently display within stratum standard error in percent, no. observations, and coefficient of variation
prompts for Student's t and calculates lower and upper bounds of confidence interval estimate for \bar{X}, \bar{X}_{h} or $\bar{X}_{\text {st }}$
internal loop in SUMRY to summarize the data used in SSRS to skip the initial prompts (if flag 03 is set)
used in label c to enable a repeat calculation and display of confidence interval bounds (with flag 01 clear)
used in FPC to skip the prompt in stratified sampling (flag 01 set)
used in STRAT to skip the STR. SIZE? prompt after the initial stratum
C. Flags

Number
Use
NONE

01
03
assumes simple random sampling, finite population correction to be applied, and initial prompts are to be displayed
if set (externally), the f.p.c. is not applied and the prompt for population size in simple sampling is avoided set automatically in STRAT to signify stratified sampling mode if set (externally) several initial prompts are avoided
D. Program procedure and example
I. In PRGM mode, load program "SSRS" (SIZE needed is 015)
II. In RUN mode:

1. Check flags for proper condition
a. none set, assumes finite population correction (f.p.c.) is to be applied
b. 00 set, assumes no f.p.c. to be applied
c. 03 set, will skip preliminary prompts
2. XEQ SSRS (suggest assignment to $L N$) and follow the prompts, noting that key A will select simple random sampling, while key a (i.e., shift, A) will select the stratified sample mode. Four cases will be described:
a. stratified sampling with correction applied
b. stratified sampling without correction applied
c. simple random sampling with correction applied
d. simple random sampling without correction applied

The stratified sample used in the example, as shown below, is from a finite population. The standard errors assuming no correction are shown in parentheses, and of course no correction is made for the means. Stratum 2 is used for the simple sampling example.

	Stratum			Total
	1	2	3	
Data:	3,0,2	12,8,15,13	18,22	
N_{h}	30	50	20	100
\bar{X}_{h}	1.7	12.0	20.0	$10.5=\bar{X}_{s t}$
$s_{\text {h }}$	1.53	2.94	2.83	
$\overline{\mathrm{s}}_{\mathrm{h}}$	0.84 (0.88)	1.41(1.47)	1.90 (2.00)	$0.84(0.88)=s \bar{x}_{s t}$

a. No flags set-- stratified with correction (key a)

Prompt	Input	Key	Output	Example		
				Input	Key	Output
A OR a (STRT)	-	a	-	-	a	-
STR. SIZE?	N_{1}	R/S	-	30	R/S	-
EACH X, R/S	X_{1}	R/S	1	3	R/S	1
(repeat for all X in stratum 1)				0	R/S	2
				2	R/S	3
-	-	B	$\begin{aligned} & \text { MEAN }=X . X \\ & S . E .=X . X X \end{aligned}$	-	B	$\begin{aligned} & \text { MEAN }=1.7 \\ & S . E .=0.84 \end{aligned}$

NEXT SIZE?	N_{2}	R/S	-	50	R/S	-
$\text { EACH } X, R / S$	X_{1}	R/S	1	12	R/S	1
(repeat for all X in stratum 2)				8	R/S	2
				$\begin{aligned} & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & R / S \\ & R / S \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$
-	-	B	MEAN $=X . X$	-	B	MEAN $=12.0$
			S.E. $=X . X X$			S.E. $=1.41$
NEXT SIZE?	N_{3}	R/S	-	20	R/S	-
EACH X, R/S	X_{1}	R/S	1	18	R/S	1
(repeat for	all X	stra		22	R/S	2
-	-	B	MEAN $=X . X$	-	B	MEAN $=20.0$
			S.E. $=X . X X$			S.E. $=1.90$

NEXT SIZE?	-	b	$\operatorname{MEAN}(S T)=X . X$	-	b	$\operatorname{MEAN}(S T)=10.5$
			S.E. $(S T)=X . X X$			S.E. $(S T)=0.84$
-	-	R/S	S.E. $\mathrm{IN} \%=\mathrm{X} . \mathrm{X}$	-	R/S	S.E. IN \% = 8.0
-	-	R/S	-	-	R/S	-
T? OR R/S	-	R/S	$\begin{aligned} & \text { C.I. LOW. }=X . X \\ & \text { C.I.UP. }=X . X \end{aligned}$	$\begin{aligned} & 2 \\ & \text { efault) } \end{aligned}$	R/S	$\begin{aligned} & \text { C.I. LOW. }=8.8 \\ & \text { C.I. UP. }=12.2 \end{aligned}$

b. With flag 00 set-- stratified with no finite population correction. Instructions are the same as in $2 a$ with the following results:

	Key	Output
stratum 1:	B	MEAN $=1.7$
		S.E. $=0.88$
stratum 2:	B	MEAN $=12.0$
		S.E. $=1.47$
stratum 3:	B	MEAN $=20.0$
		S.E. $=2.00$

overall results:	b $\quad \operatorname{MEAN}(S T)=10.5$
	S.E. $(S T)=0.88$
R / S	S.E. IN $\%=8.4$
R / S	-
$R / S \quad$ C.I. LOW. $=8.7$	
	C.I. UP. $=12.3$

c. No flags set-- simple random sampling with correction (key A)

Prompt Input	Key	Output	Example		
			Input	Key	Output
A or a (STRT.) -	A	-	-	A	-
EACH X, R/S X_{1}	R/S	1	12	R/S	1
(repeat for all X)			8	R/S	2
			15	R/S	3
			13	R/S	4

c. Continued

Prompt	Input	Key	Output	amp		
				Input	Key	Output
-	-	B	-	-	B	-
POP. SIZE?	N	R/S	MEAN $=X . X$	50	R/S	MEAN $=12.0$
			S.E. = X.XX			S.E. $=1.41$
-	-	R/S	S.E. $\mathrm{IN} \%=\mathrm{X} . \mathrm{XX}$	-	R/S	S.E. IN \% = 11.77
			NO. OBS. $=X$			NO. OBS. $=4$
			C.V. IN \% = X.X			C.V. IN \% = 24.5
-	-	c	-	-	c	-
T? OR R/S	-	R/S	$\begin{aligned} & \text { C.I. LOW. }=X . X \\ & \text { C.I. UP. }=X . X \end{aligned}$	$\begin{gathered} 2 \\ \text { defaul } \end{gathered}$	R/S	C.I. LOW. $=9.2$ C.I. UP. $=14.8$

Example
d. With flag 00 set-- simple random sampling with no correction (key A)

Prompt	Input	Key	Output	Example		
				Input	Key	Output
A OR a (STRT.)	-	A	-	-	A	-
EACH X, R/S		R/S	1	12	R/S	1
(repeat for all X)				8	R/S	2
				15	R/S	3
				13	R/S	4
-	-	B	MEAN $=X . X$	-	B	MEAN $=12.0$
			S.E. $=$ X. XX			S.E. $=1.47$
-	-	R/S	S.E. IN \% =	-	R/S	S.E. IN \% = 12.27
-	-		NO. OBS. =			NO. OBS. $=4$
			C.V. IN \% =			C.V. IN \% $=24.5$

d. Continued

Prompt	Input	Key	Output	Example		
				Input	Key	Output
-	-	C	-	-	c	-
T? OR R/S	-	R/S	$\begin{aligned} & \text { C.I. LOW. }=X . X \\ & \text { C.I. UP. }=X . X \end{aligned}$	$\stackrel{2}{\text { default) }}$	R / S R / S	C.I. LOW. $=9.1$ C.I. UP. $=14.9$

3. General comments:
a. For simple random sampling use, SSRS need be executed only once for a given calculation session; thereafter key A can be used to initialize the registers; for several stratified sample data sets, SSRS must be executed for each new problem.
b. The initial reminder prompts can be avoided by setting flag 03.
c. Label C, which calculates and displays S.E. IN \%, NO. OBS, and C.V. IN \%, can be activated and used for within stratum answers (by key C) after the MEAN and S.E. results have been obtained by key B。After key C, then, for the NEXT SIZE? prompt, press R/S and input data for the next stratum. Pressing key C is not appropriate for the final stratified answers (i.e.. after key b has been pressed).

91*LBL "SSRS"	51 FC ? 08	101 GTO 05
92 ERES 99	52 RCL 13	182*LPL "STRAT"
93 CLRG	53 FS ? 90	103 SF 91
84 CF 29	541	104 "STR. SIZE?"
05 FS ? 0.3	55 *	105 PROMPT
$96.9 T 082$	56 SQRT	106*LBL 05
日 7 - SF $80 \mathrm{FOR}=$	57 ST0 11	107 ST0 96
98 QUIEL	58×12	188 ST+ 89
89 PSE	59 RCL 96	189 GTO -SUMRY*
10. ND F.P.C.:	60×12	1184LBL b
11 AYIEH	61 *	111 RCL 98
12 PSE	$62 \mathrm{ST}+12$	112 RCL 99
13 "THEN PRESS*	63 FIX 2	113\%
14 AYIEH	64 -S.E. $=\cdot$	114 FIX 1
15 PSE	65 ARCL 11	115 STO 97
$16+L$ BL 82	66 AYIEH	116 -MERM \langle ST $\rangle=$ *
17 "A OR a ${ }^{\text {a }}$ (STRT. $\rangle^{\prime \prime}$	67 PSE	117 ARCL X
18 PROMPT	68 FS ? 91	118 AYIEN
190LBL A	69 GTO -NSTRAT"	119 PSE
29 CF O1	70 STOP	129 RCL 12
21 GTO -SUHRY"	$71 \times$ LBL C	121 RCL 89
224LBL a	72 RCL 11	122×12
23 GTO "STRAT"	73 RCL 87	123/
24*LEL "SIMMRY"	74 /	124 SQRT
25 FIX	751 E 2	125 FIX 2
26 CLE	76 *	126 STO 11
27 "EACH X, R/S"	77 "S.E. IN \%="	127 -S.E. $\langle\mathrm{ST}\rangle=$ -
28 PROMPT	78 ARCL X	128 ARCL X
$29+$ LBL 01	79 AYIEH	129 AYIEH
3 3¢ $2+$	86 PSE	1360
31 STOP	81 FIX 0	131 ST0 08
32 GT0 Q1	82 -NO. OBS. $=\cdot$	132 ST0 99
$33+$ LBL B	83 ARCL 85	133 STO 12
34 FC ? 19	84 AYIEH	134 STOP
35 XEQ "FPC:	85 PSE	135 RCL 11
36 FIX 1	86 RCL 18	136 RCL 87
37 MEAN	87 RCL 07	137/
38 ST0 87	88 /	1381 E 2
39 -MEAN=	891 E 2	139 *
$46 \mathrm{ARCL} X$	$901 *$	148 FIX 1
41 AYIEN	91 FIX 1	141 -S.E. IN \%=*
42 PSE	92 -C.Y. IN \% $=$	142 ARCL X
43 RCL 06	93 ARCL X	143 AYIEN
$44 *$	94 AYIEN	144 RTN
$45 \mathrm{ST}+88$ 46 SDEY	95 STOP	145 L L L C
46 SDEY 47 STO 10	96 FC? 91	146 CF 22
$49 \times+2$	98*LBL -NSTRAT"	147 "T? OR R/S" 148 PROMPT
49 RCL 85	99 -NEXT SIZE? ${ }^{\text {- }}$	149 FC? 22
54%	108 PROMPT	1562

156
E. Program Listing (continued) and Printer Output

Stratified-- with f.p.c. correction

15157014
152•LBL 03
153 RCL 97
154 RCL 14
155 RCL 11
156 *
157-
158 "C.I. LOH. = "
159 ARCL X
168 AYIEN
161 PSE
162 LASTX
163 RCL 97
$164+$
165 -C.I. UP. $=\cdot$
166 ARCL X
167 AYIEN
168 STOP
169 FS? 01
170 GTO -NSTRAT*
171 GTO 03
172*LBL "FPC:
173 FS? 91
174 GTO 94
175 "P0P. SIZE?*
176 PROMPT
177 STO 86
$178+$ LBL 04
179 RCL 96
189 RCL 85
181 -
182 RCL 06
183 /
184 STO 13
185 RTN
186 END
SSRS:505 BYTES

```
                                XEO "SSRS"
    SF 0% FOR
    NO F.P.C.
    THEN PRESS
    A OR a<STRT.>
```

 XEO a
 STR. SIZE?
 EACH \(X, R / 5\)
 RUN
 0 RUN
 RUN
 YEQ B
 MEAN \(=1.7\)
 S.E. \(=0.84\)
 NEXT SIZE?
 50.09 RUN
 EACH \(X, R / S\)
 | 12 | RUN |
| ---: | ---: |
| 8 | RUN |

 15 RUN
 13 RUH
 XEO 6
 MERN \(=12.9\)
 S.E. \(=1.41\)
 NEXT SIZE?
 20.06 RUN
 EACH \(x, R / S\)
 | 18 | RUN |
| :--- | :--- |
| 22 | RUN |

MEAN $=20.0$
S.E. $=1.90$

NEXT SIZE?
YEO b
MERN $\langle S T\rangle=10.5$
S.E. $\langle S T\rangle=0.84$

RUN
S.E. IN $\%=8.0$

RUH
$T ?$ OR R / S
C.I. LOH. $=8.8$
C.I. UP. $=12.2$

Stratified-- without f.p.c.
correction

Simple-- with f.p.c.
$X E Q=\operatorname{SSR}=$

	XEQ -SSRS ${ }^{\text {- }}$	
SF 9 F FOR		
N0 F.P.C.		
THEN PRESS		
A OR a SSTRT. $^{\text {a }}$		
		SF 90
		YEO a
STR. SIZE?		
	30.0	RUW
ERCH $X, R / S$		
	3	RUN
	0	RUN
	2	RUN
		YEQ B

MEAN $=1.7$
S.E. $=0.88$

NEXT SIZE?
50.89 RUN

EACH $\mathrm{K}, \mathrm{R} / \mathrm{S}$

12	RUN
8	RUN
15	RUN
13	RUN
	YEO B

HEAN $=12.8$
S.E. $=1.47$

NEXT SIZE?
20.06 RUH

EACH $x, R / S$

18	RUN
22	RUN
	XEO B

MEAN $=20.9$
S.E. $=2.80$

HEXT SIZE?
XEQ 6
$\operatorname{MERN}(S T)=15.5$
S.E. $\langle S T\rangle=0.88$

RUN
S.E. IN $\%=8.4$

T? OR R/S
RUN
RUN
C.I. LOW: $=8.7$
C.I. $\mathrm{UP}=12.3$

EACH X, R/S	$\begin{aligned} & \text { CF } 90 \\ & X E Q 日 \end{aligned}$		EACH X, R/S	SF 98 XEQ A	
	12	RUN		12	RUN
	8	RUN		8	RUN
	15	RUN		15	RUH
	13	RUN		13	RUH
		Q B			O ${ }^{\text {B }}$

MEAN $=12.0$
$S . E_{2}=1.47$
S.E. IN $\%=12.27$

NO. OBS. $=4$
C.Y. IN $\%=24.5$

XEQ c
T? OR R/S
RUN
C.I. LOH. $=9.1$
C.I. UP. $=14.9$
F. Formulas used:
I. Simple random sampling
a. \quad mean $=\bar{X}=\frac{\Sigma X}{n}$
b. standard error

$$
s_{\bar{x}}=\sqrt{\frac{s^{2}}{n}}
$$

or

$$
s_{\bar{X}}=\sqrt{\frac{s^{2}}{n}\left(\frac{N-n}{N}\right)} \quad \text { if finite population is assumed }
$$

c. coefficient of variation
C.V. $=\frac{s}{x}(100)$
d. standard error in \%

$$
s_{\bar{x}}(\%)=\frac{s_{\bar{x}}}{\bar{x}}(100)
$$

e. confidence interval

$$
\bar{X} \pm t s_{\bar{X}} \text {, value of } t \text { determines degree of "confidence" }
$$

II. Stratified sampling
a. through e., same as above for within-stratum estimates
f. overall mean, $\quad \bar{X}_{s t}=\frac{\Sigma N_{h} \bar{X}_{h}}{N}$
where $\quad N_{h}=$ population size for stratum h

$$
\bar{X}_{h}=\text { sample mean for stratum } h
$$

and

$$
N=\text { total population size }=\Sigma N_{h}
$$

g. overall standard error, ${ }^{s} \bar{X}_{s t}=\sqrt{\frac{1}{\bar{N}^{2}}\left(\Sigma N_{h}^{2} s^{2} \bar{X}_{h}\right)}$
where

$$
\begin{aligned}
\mathrm{s}^{2} & \text { squared standard error for stratum } h, \\
\overline{\mathrm{X}}_{\mathrm{h}} \quad & \begin{array}{l}
\text { corrected, if appropriate, for finite } \\
\text { population }
\end{array}
\end{aligned}
$$

h. confidence intervals commonly used

$$
t=2 \text { for } .05 \text { probability level }
$$

and $t=2.6$ for .01 probability level.
i. $\mathrm{s}_{\bar{X}_{s t}}(\%)=\frac{{ }^{s} \bar{x}_{s t}}{\bar{X}_{s t}}(100)$

Retrospective Comments Regarding SSRS

1. While the use of descriptive global labels such as FPC, STRAT, and SUMRY make programing logic easier to follow, they require more memory space than numeric labels, and they slow down a "CATl" function execution to a considerable degree. Therefore, such labels should be used with discretion.

Calculator: HP-41C/CV
Program Name: LR (for Linear Regression)
Author: T.W. Beers
Date: March 1981

Purpose: To provide simple linear regression calculations which simulate the L.R., \hat{y}, and r keys found on the HP-34C. Specifically, one may readily calculate the following, for X and Y data summarized by the $\Sigma+$ key:

```
a, the \(Y\)-intercept
b, the slope of the least-squares fitted line
\(b^{\prime}\), the slope assuming the line is forced through the origin
\(r\), the simple correlation coefficient
\(r^{2}\), the coefficient of determination
\(t_{r}\), the calculated \(t\) to test the hypothesis of zero correlation
\(\hat{Y}\), a predicted value of \(Y\) for any keyed-in \(X\)
```

Additional statistics such as confidence interval estimates and standard errors can be calculated using the program SLR (program number 41F019) but for brevity (96 program steps, 176 bytes, one magnetic card) only the listed items are included in "LR".
A. Storage assignments

Register	Use
	B.F.O., the slope, forced through the origin
01	\bar{X}, arithmetic mean X
02	Σx^{2}, corrected sum of squares for X
03	\bar{Y}, arithmetic mean Y
04	Σy^{2}, corrected sum of squares for Y
05	$\Sigma x y$, corrected sum of products

A. Storage assignments (continued)

Register
06
B. Labels

Global
LR

Local
H

I

J

01
prompts for X to be input, then calculates and displays the predicted Y (Y-HAT) obtained by solving the equation, $\hat{Y}=a+b X$, for \hat{Y}
calculates and displays the simple correlation coefficient (r) and optionally (by R/S), its square, the coefficient of determination (r^{2})
calculates and displays the calculated t value, t_{r}, used to test the hypothesis of zero correlation between X and Y
used in label H to skip the "KEY X, R/S" prompt, expediting additional \hat{Y} solutions
C. Flags -- none used
D. Program procedure and example
I. In PRGM mode, load the program "LR"
(SIZE needed is 017)
II. In RUN mode: (make sure the current statistical registers are 11-16, i.e., XEQ \sum REG 11)

1. Obtain summations for the two-variable data by the normal use of the $\Sigma+$ key. For example, if the sample data are:

\underline{Y}	\underline{X}
7	5
5	3
9	8

The steps would be
a. $f * C L \Sigma$ (to clear the summation registers)
b. $7 \uparrow 5, \Sigma+$ (read 1.00)
$5 \uparrow 3, \Sigma+\quad(r e a d 2.00)$
$9 \uparrow 8 \Sigma+\quad(r e a d 3.00$, i.e., n)
*f means the shift (gold) key
2. XEQ LR (suggest assignment to $\mathrm{R} \downarrow$ key). The above example is used, and USER mode is assumed. Example assumes f FIX 2.

	Prompt	Input	Key	Output
a. least squares line	-	-	R \downarrow	$\begin{aligned} & \text { Y-INT. }=2.79 \\ & \text { SLOPE }=0.79 \end{aligned}$
			R/S	B.F.0. $=1.24$
b. predicted Y	-	-	H(SIN key)	-
	KEY X, R/S	6	R/S	$Y-H A T=7.53$
		8	R/S	$Y-H A T=9.11$
		10	R/S	$Y-H A T=10.68$
		etc.,	more X_{i}	
c. correlation	-	-	I (COS key)	$R=0.99$
			R/S	$R \uparrow 2=0.99$
d. t statistic	-	-	J(TAN key)	$T(R)=8.66$

D. Program procedure and example (Continued)
e. If one has previously assigned the MEAN function to a key (say LOG) and the SDEV function to a key (say f LOG) then the folowing can be obtained:

Key	Output	
LOG	5.33	(\bar{X})
$X>Y$	7.00	(\bar{Y})
f LOG	2.52	$\left(s_{x}\right)$
$X>Y$	2.00	$\left(s_{\gamma}\right)$

f. In addition, the stored items (see Section A) can be observed by RCL $n n$:

Key	Output	
RCL 00	1.24	$\left(b^{\prime}\right)$
RCL 01	5.33	(\bar{X})
RCL 02	12.67	$\left(\Sigma x^{2}\right)$
RCL 03	7.00	(\bar{Y})
RCL 04	8.00	$\left(\Sigma y^{2}\right)$
RCL 05	10.00	$(\Sigma x y)$
RCL 06	2.79	(a)
RCL 07	0.79	(b)
RCL 08	0.99	(r)
RCL 11	16.00	(ΣX)
RCL 12	98.00	$\left(\Sigma X^{2}\right)$
RCL 13	21.00	(ΣY)
RCL 14	155.00	$\left(\Sigma Y^{2}\right)$
RCL 15	122.00	$(\Sigma X Y)$
RCL 16	3.00	(n)

III. Notes and cautions

1. LR must be executed before the other labels.
2. Label I (COS key) must be pressed before label J(TAN key).
3. Erroneous data pairs in the summation process can be corrected by the usual use of the Σ - key.
E. Program listing and printer output
$91 * L B L{ }^{-L R}{ }^{-}$
02 MEAN
日3 ST0 01
04×42
95 ST0 82
06 X K>Y
97 STO 93
08×42
09 ST0 84
10 RCL 01
11 RCL 03
12 *
13 STO 95
14 RCL 16
15 CHS
16 ST* 02
17 ST* 04
18 ST* 85
19 RCL 12
$28 \mathrm{ST}+82$
21 RCL 14
$22 \mathrm{ST}+94$
23 RCL 15
$24 \mathrm{ST}+0.5$
25 RCL 95
26 RCL 82
27 /
28 ST0 97
29 RCL 01
30 *
31 CHS
32 RCL 83
$33+$
34 ST0 06
35 - Y -INT. $=\cdot$
36 ARCL X
37 AYIEH
38 PSE
39 -SLOPE = *
48 ARCL 87
41 AYIEH
42 STOP
43 RCL 15
44 RCL 12
45 /
46 STO 010
47 B.F.O. =
48 ARCL X
49 AYIEH
50 RTN
$51+$ LBL H
52 "KEY X, R/S"
53 PROMPT
54*LBL 01
55 RCL 07
56 *
57 RCL 86
$58+$
59 - $Y-$ HAT $=-$
60 ARCL X
61 AYIEH
62 STOP
63 GTO 01
640 LBL I
65 RCL 95
66 RCL 82
67 RCL 84
68 *
69 SQRT
70 /
71 STO 88
72 - $\mathrm{R}=\cdot$
73 ARCL X
74 AYIEH
75 STOP
76×42
$77-\mathrm{R}+2=-$
78 ARCL X
79 AYIEK
80 RTN
$81+$ LBL J
82 RCL 16
832
84 -
851
86 RCL 88
$87 \times \uparrow 2$
88 -
89 /
90 SQRT
91 RCL 88
92 *
93 - $T\langle R\rangle=\cdot$
94 ARCL X
95 AYIEH
96 END

LR:176 BYTES
E. Printer output (Continued)

Printer in NORM mode

Printer in MAN mode

[^11]F. Formulas used

Many variations exist for the calculation of simple linear regression statistics. The following were chosen for programming simplicity.

1. Means -- \bar{X} and \bar{Y} calculated using the standard MEAN function
2. standard deviations $--s_{X}$ and s_{Y} calculated using the standard
SDEV function SDEV function
3. corrected sum of squares and products, i.e., sum of squared (or product) deviations about the mean (designated by lower case leters)

$$
\begin{aligned}
& \Sigma x^{2}=\Sigma X^{2}-n \bar{X}^{2} \\
& \Sigma y^{2}=\Sigma Y^{2}-n \bar{Y}^{2} \\
& \Sigma x y=\Sigma X Y-n \bar{X} \bar{Y}
\end{aligned}
$$

4. least squares slope and Y-intercept

$$
\begin{aligned}
& b=\frac{\Sigma x y}{\Sigma x^{2}} \\
& a=\bar{Y}-b \bar{X}
\end{aligned}
$$

5. slope when line is forced through the origin

$$
b^{\prime}(\text { or B.F.O. })=\frac{\Sigma X Y}{\Sigma X^{2}}
$$

6. correlation coefficient and coefficient of determination

$$
\begin{aligned}
r & =\frac{\sum x y}{\sqrt{\sum x^{2} \Sigma y^{2}}} \\
\mathrm{R} \uparrow 2 & =r^{2}
\end{aligned}
$$

7. Student's to test the hypothesis that the true correlation is zero ($H_{0}: \rho=0$), which is identical to the t which tests the hypothesis of zero slope ($H_{0}: \beta=0$)

$$
t_{r}=r \sqrt{\frac{n-2}{1-r^{2}}}
$$

Calculator: HP-41C/CV
Program Name: SLR (́Simple Linear Regression)
Author: T.W. Beers
Date: 1982
Purpose: To extend the simple linear regression calculations achieved by "LR" (Program No. 41F018) to provide, for ungrouped X and Y data summarized by the $\Sigma+$ key:
$a, b, b^{\prime}, r, r^{2}, t_{r}$, and \hat{Y} (see LR program)
standard errors: $s_{y x}, s_{a}, s_{b}, s_{b}{ }^{\prime}$
confidence interval estimates assuming mean Y and assuming individual Y for given X_{0}

Students t to test the following hypotheses:

$$
\begin{aligned}
& H_{0}: \rho=0 \\
& H_{0}: \alpha=0 \\
& H_{0}: \beta=0 \\
& H_{0}: \quad \beta=1
\end{aligned}
$$

A. Storage assignments

Register	Use
00	the beginning and incremented number in a sequence of X^{\prime} s to facilitate automatic printing of \hat{Y} and confidence intervals
01	\bar{X}, arithmetic mean X
02	Σx^{2}, corrected sum of squares for X
03	\bar{Y}, arithmetic mean Y
04	$\sum y^{2}$, corrected sum of squares for Y
05	Exy, corrected sum of products
06	Y-INT., the Y intercept ($=a$)
07	SLOPE, the change in Y per unit increase in $X(=b)$

A. Storage assignments (continued)

Register
r, the simple correlation coefficient
s_{a}, standard error of a
s_{b}, standard error of b
$\sum X$, sum of X
ΣX^{2}, sum of squared X
ΣY, sum of Y
ΣY^{2}, sum of squared Y
£XY, sum of products of X and Y
n, number of pairs of data
t, Student's t, keyed-in; default value $=2.00$
X_{0}, arbitrary X, keyed-in
\hat{Y}, γ-HAT or predicted $\gamma ; \hat{Y}=a+b X_{0}$
C, intermediate value in confidence interval calculations
$t s_{y x} \sqrt{C}$ or $t_{y x} \sqrt{1+C}$
B.F.O, slope forced through the origin (= b^{\prime})
$s_{y x}^{\prime}$, standard error of estimate about the b^{\prime} line
s_{b}, standard error of b^{\prime}
$S_{y x}$, standard error of estimate
c, the number of "classes" of data (appropriate only if the program MSLR is used for grouped data)
to store the alpha string MCI= or ICI=, meaning "mean confidence interval" or "individual confidence interval" respectively; used in the "auto print" option (flag 00 set)
to save the current decimal fix setting, when "control number" is printed in label PCI
the control number printed in label PCI of the formbbbb.dddII, where bbbb is the beginning X, ddd (≤ 999) is the difference between the beginning and ending X, and II (≤ 99) is the increment value for which $\hat{\gamma}$ and confidence interval estimates are to be calculated.
B. Labels
an alternative to "SLR" after SLR has been executed once calculates and displays $s_{y x}, s_{a}, s_{b}$, and optionally (by R / S) s_{b} '
calculates and displays r and optionally (by R/S) r^{2}
prompts for X_{0}, then calculates and displays the corresponding \hat{Y} ("Y-HAT")
calculates and displays t_{a} and t_{b} to test the hypotheses $\alpha=0$ and $\beta=0$ and optionally (by R / S) t_{b}, to test the hypothesis that β forced through the origin ("BFO") equals 1 calculates and displays t_{r} to test the hypothesis that the true correlation coefficient $\rho=0$, i.e., that there is no linear correlation between Y and X
calculates and displays (assuming user-provided Student's t and X_{0}) predicted Y, \hat{Y}_{0}, then lower and upper confidence limits for the mean Y for that X_{0}; optionally (by R/S) the lower and upper confidence limits for the corresponding individual Y are calculated and displayed
used in label E
used in label e to enable individual confidence interval estimates
used in label e to skip the Student's t prompt for X_{0} 's after the first
used in label PCI as the re-entry point in the ISG loop
used in label PCI to enable calculation of individual confidence interval estimates
B. Labels (continued)

Local	Use
09	used in label PCI to store "ICI= " and adjust the inter- mediate value C to $C+1$ for individual confidence interval estimation
10	used in label PCI to print the beginning and ending "bar" in the table of \hat{Y} and confidence intervals

C. Flags

Type and Number

User:
00
tested throughout the program, and if set, the data are processed and printed automatically and \hat{Y} and confidence intervals are automatically calculated and printed for the range of X specified by the keyed-in numbers: bb $\uparrow e e \uparrow I I$, where $b b=$ beginning X value, ee = ending X value, $I I=$ increment value
tested in label C to enable grouped regression if flag 02 is set (applicable only if program MSLR is used)
set the first time through label e to skip the Student's t prompt the next times through; cleared early in label SLR
set, tested, and cleared in label 02 (in label e) to select the proper confidence interval prompt, calculation formula and display
used in conjunction with flag 22 in label e to enable (if set) being "locked in" to the mean confidence interval calculations if a numeric value is keyed
the double wide flag; set and cleared in label 10
the printer enable flag; cleared occasionally to suppress printing of messages meant for display only
the numeric data input flag; tested in label e and used to set flag 08 and direct calculations for confidence interval estimates

System:
36-39

55
number of digits flags; tested in label PCI to determine and save the "current" decimal fix
printer existence flag; tested in label 08 (in PCI) to suppress the display of long scrolling alpha strings so that the automatic printing will proceed more rapidly

D．Size and key assignments
SIZE：≥ 030
Suggested key assignments：
＂SLR＂on $R \downarrow$
B，C，D，E，and b，d，e are all assigned internally and are available once SLR has been executed

E．Program procedure and example
I．Load the program into the calculator．
II．Assume a printer is not attached；make sure the calculator is not in PRGM mode，not in USER mode and decimal control is FIX 2.

1．Obtain summations for the two－variable data by the normal use of the $\Sigma+$ key．For example if the sample data are：

Y		X
7		5
5		3
9		8

The steps would be
a．shift CLE（to clear the summation registers）
b．7个5，$\Sigma+$（read 1．00）
5ヶ3，$\Sigma+\quad(r e a d 2.00)$
9ヶ8，Σ^{+}（read 3．00，i．e．，n）
2．Go into USER mode
3．XEQ SLR（press R \downarrow key）and follow the procedure in the example which follows，using the above data as input

Step	Prompt	Input	Example	
			Key	Output
a．least squares line	－	－	R \downarrow	Y－INT．$=2.79$
				SLOPE $=0.79$
	－	－	R／S	B．F．O．$=1.24$
b．standard errors	－	－	$C^{\text {1／}}$	$\mathrm{S}\langle\mathrm{YX}\rangle=0.32$
				$S<a\rangle=0.52$
				$\mathrm{S}<\mathrm{b}>=0.09$
	－	－	R／S	$S<B F 0\rangle=0.13$

1／Rather than press each local label as shown in this example，one can simply press R／S for the next＂group＂of calculations．
E. Program procedure and example (continued)

Step		Excomple						
	Prompt	Input	Key	Output				
c. correlation	-	-	D	$\mathrm{R}=0.99$ (.9934)				
	-	-	R/S	$\mathrm{R} \uparrow 2=0.99$ (.9868)				
d. predicted Y	-	-	E	-				
	KEY X, R/S	4	R/S	$X=4.00$				
				$\mathrm{Y}-\mathrm{HAT}=5.95$				
	KEY X, R/S	6	R/S	$X=6.00$				
				$\mathrm{Y}-\mathrm{HAT}=7.53$				
	etc., for any X_{0}							
e. t-tests (1)	-	-	$\begin{gathered} \text { d (shift D) } \\ \text { R/S } \end{gathered}$	$\mathrm{T}\langle\mathrm{R}\rangle=8.66$				
	-	-		$\mathrm{T}\langle\mathrm{a}\rangle=5.35$				
				$\mathrm{T}<\mathrm{b}>=8.66$				
	-	-	R/S	$\mathrm{T}\langle\mathrm{BF} 0=1>=1.94$				
or (2)	-	-	b (shift B)	$\mathrm{T}\langle\mathrm{a}\rangle=5.35$				
				$\mathrm{T}\langle\mathrm{b}\rangle=8.66$				
		-	R/S	$\mathrm{T}<\mathrm{BFO}=1>=1.94$				
f. confidence intervals	KEY ${ }^{-}$- ${ }^{\text {d }}$	-21	e (shift E)	$\mathrm{T}=2.00$				
	KEY T, R/S	-	R/S					
	KEY X, R/S	4	R/S	$X=4.00$				
				$\mathrm{Y}-\mathrm{HAT}=5.95$				
				C.I. $=5.50$				
				${ }^{\text {T0 }} 6.39$				
	IND. CI?, R/S	-	$\mathrm{R} / \mathrm{S}^{3 /}$	IND. $C I=5.16$				
				T0 6.74				
	KEY X, R/S	6	R/S	$x=6.00$				
				Y-HAT $=7.53$				
				C.I. $=7.13$				
				T0				
				IND 7.92				
	IND. CI?, R/S	-	R/S	IND. $C I=6.77$				
				$\text { T0 } 8.29$				
etc., for any X_{0}								
If a specific value is keyed-in at this point it replaces the default value of $t=2$ obtained (as here) by R / S depression.								
3/ If the "individual" confidence interval is not wanted, the next X_{0} can be keyed and R/S pressed, providing the mean confidence interval estimate for that X_{0}.								

E．Program procedure and example（continued）

III．If a printer is attached and in MAN mode the use of flag 00 provides for manual and automatic mode．Assuming that the data have been properly summarized by the $\Sigma+$ key these options are described below， using the preceding example．

1．Manual mode－－flag 00 clear，MAN printer mode
If the steps described in part II－3 are followed the following print－out will be obtained：

```
Y -INT. \(=2.79\)
SLOPE \(=9.79\)
B.F.0. \(=1.24\)
\(S(Y X)=0.32\)
\(\mathrm{S}\langle\mathrm{a}\rangle=0.52\)
\(\mathrm{S}(\mathrm{b})=0.89\)
\(\varsigma\langle B F 0\rangle=\overline{9} .13\)
\(\mathrm{R}=0.99\)
\(R 12=9.99\)
\(x=4\).0日
\(Y-H R T=5.95\)
\(x=6.90\)
\(Y-H A T=7.53\)
\(\mathrm{T}\langle\mathrm{R}\rangle=8.66\)
\(\mathrm{T}\langle\mathrm{A}\rangle=5.35\)
\(T\rangle\rangle=8.66\)
\(T\langle B F 0=1\rangle=1.94\)
\(\mathrm{T}=2\). 昭
\(x=4\). 8 明
\(Y-H A T=5.95\)
C.I. \(=5.50\)
    T0
        6.39
IND. CI \(=5.16\)
            TII
            6.74
\(x=6.00\)
\(Y-H A T=7.53\)
C.I. \(=7.13\)
            TO
        7.92
```

E. Program procedure and example (continued)
2. Manual mode -- flag 00 clear, NORM printer mode

Doing the same example but with the printer in NORM mode provides a somewhat better picture as to what keys have been pressed. Starting with step II-1, the example would appear as follows:

		CL			
	7.09	ENTER			
	5.60	\&			
	5.96	Entert			
	3.68	$\Sigma_{\text {E }}+$			xet e
	9.00	Entert	KEY 1, R/S		
	8.90	$\Sigma+$			RUN
		-SLR"	$\begin{aligned} & \mathrm{T}=2.0 \mathrm{Q} \\ & \mathrm{KEY} \mathrm{X}, \mathrm{R} / \mathrm{S} \end{aligned}$		
Y-INT. $=2.79$				4.60	RIJN
SLOPE $=0.79$			$y=4.86$		
		RUM	$Y-$ HRT $=5.95$		
B.F.0. $=1.24$					
		XEQ [$\cdots \cdot 10$		
$S Y \%=0.32$			10.39		
$S(7)=0.52$			6.39		
$\leqslant \mathrm{Sb}=0.09$		Fus	Ind. CI? E / S		
$5\langle\mathrm{BFD})=9.13$		Rul			RUN
		XEQ II	IND. $\mathrm{CI}=5.16$		
$\mathrm{R}=0.99$			T0 6.74		
		RIJ	6.74		
$R 12=0.99$		WEO	KEY $\mathrm{O}, \mathrm{R} / \mathrm{S}$		
KEY Y, R/G				6.06	RIIN
	4.09	RUM	$y=6.06$ $y-H 0 T$		
$y=4.008$					
Y-HAT $=5.95$			$0.1 .=7.13$		
KEY $\mathrm{X}, \mathrm{R} / \mathrm{S}$			T0		
	6.091	RUN	7.92		
$x=6.80$			5		
Y-HAT $=7.53$			Ind. Cl?, kis		PUH
KEY \% R/S			IND. $\mathrm{CI}=6.77$		
		XEQ d	T0		
$\mathrm{T}\langle\mathrm{R})=8.66$			8.29		
		RIJIN			
$T\langle\mathrm{j}\rangle=5.35$			KEY \% , R/S		
$\mathrm{T}\langle\mathrm{b}\rangle=8.66$					
		Rum			
$T\langle B F 0=1\rangle=1.94$					

E. Program procedure and example (continued)
3. Automatic mode -- flag 00 set, MAN printer mode

Starting with part II-3, if flag 00 is set, the following will be obtained automatically upon execution of SLR ($R \downarrow$ in USER mode):

```
Y-INT. = 2.79
SLOPE= 0.79
8.F.0.= 1.24
SYY%=0.32
S<4}=0.5
S(b)=0.09
S<BFD\rangle= G. 13
R=0.99
R+2=0.99
T<R\rangle=8.66
T\langlea\rangle= 5.35
T<b\rangle=8.66
T<BFO=1}=1.9
```

The calculator display should now show the prompt bbれee \uparrow II, R/S. If one wants \hat{Y} and confidence interval estimates for a beginning $X_{0}=b b$, and ending with $X_{0}=e e$, incremented by II, simply key these numbers in and press R / S. For example for $X_{0}=4$ to $X_{0}=10$ by increments of 2, and using a Student's t of 2.00:

Prompt		Input		
-	$\frac{\text { Key }}{\uparrow}$		$\frac{\text { Output }}{4.00}$	
-	10		\uparrow	
KEY T, R/S	-		R/S	10.00
	-	R / S	(see below)	

STUDENTS $T=2.00$
X: 4. An
$Y-H A T=5.95$
MCI $=5.50$ TO 6.39
ICI $=5.16 \quad 106.74$
X: 6.16
$Y-H A T=7.53$
MCI $=7.13107 .92$
ICI $=6.77108 .29$
8: 8.00
$Y-H A T=9.11$
$\mathrm{MCI}=8.49 \mathrm{TO} 9.72$
$\mathrm{ICI}=6.21 \mathrm{TO} 10.06$
$x: 10.00$
$Y-H A T=10.68$
$\mathrm{MCI}=9.75 \mathrm{TO} 11.61$
$I C I=9.55 \quad \mathrm{TO} \quad 11.82$

E．Program procedure and example（continued）

Note that the＂bbb．dddII＂number at the top of the table indicates bbb，the beginning X_{0} ，ddd，the difference between beginning X_{0} and ending X_{0} ，and II，the increment value．The program was written so that any reasonable number of digits for bbb could be handled，but with the constraints that ddd ≤ 999 and IIs99．Exceed these constraints and results will be hard to interpret，therefore one should revert to the manual mode （flag 00 clear）for confidence interval estimation．

V．Additional notes and comments
1．Mean and standard deviation．
If one has previously assigned the MEAN and SDEV functions to say the COS and shift COS keys，using the example the following can be obtained：

Key	Output	
COS	5.33	(\bar{X})
$X \geqq Y$	7.00	(\bar{Y})
shift COS	2.52	$\left(s_{x}\right)$
$X \geqq Y$	2.00	$\left(s_{y}\right)$

2．Recalling stored items．
Stored calculations and statistics（see Section A）can be displayed by RCL nn or VIEW nn，and with a printer attached and ON a complete listing can be obtained by keying ． 029 and XEQ PRREGX（print registers according to X ）．The example with printer in NORM mode follows：
.829
PRREGX

$R ⿴ 囗 ⿰ 丿 ㇄=$	0.06			
RO1 $=$	5.33 x			
$\mathrm{PO} 2=$	12.67	$\Sigma \psi^{2}$	R17 $=$	$2.96 t$
R93：$=$	$7.90 \bar{y}$		R18＝	6.86
RИ4 $=$	$\because 80$	Σy^{2}	R19 $=$	7.53
R0．5 $=$	18.09	2xy	R20 $=$	0.37
P6e：	2.79 a		R21 $=$	日． 76
RQ7 $=$	0.79 b		R22 $=$	$1.24 b^{\prime}$
608＝	0.99 N		R23 $=$	$1.25 A_{y x}^{\prime}$
R69 $=$	0.52 Aa		R24 $=$	$0.13 \mathrm{Ab}^{\circ}$
	B． 69 Ab		R25 $=$	$0.32 \Delta^{\text {yx }}$
R11 $=$	16.80	$\sum x$	R26 $=$	0.80
R12 $=$	98.80	$\sum x^{2}$	R27 $=$	0.88
R13 $=$	21.60	ΣY	R28 $=$	0.06
R14 $=$	155.80	Σy^{2}	R29 $=$	9.88
R15 $=$	122.818	$\sum x y$		
R16＝	3.96	n		

E. Program procedure and example (continued)
3. Deletion of data

Pairs of X and Y data can be deleted at any time (before or after SLR has been executed) by the use of the shift $£$ - key as described in the HP-41C manual.
4. Use of the $\mathrm{E}+\mathrm{t}$ key

Summarizing the basic data using the $\Sigma+$ key will proceed much faster if the calculator is not in USER mode.
5. Order of calculations

After SLR has been executed, label C (calculation of standard errors) must precede the t calculations (labels dor b) and/or the confidence interval calculations (label e); otherwise the order of pressing the various local label keys (after XEQ SLR) is immaterial, and each can be repeated if desired.
6. Use of the printer

The program was not written to cope with all printer associated stoppages; however, the underlying philosophy used, and recommended action in this regard is summarized in the following table:

Status of Flag 00	Printer Status	Problem	Solution or Comment
clear	unattached	none	-
	attached, OFF	program stops at first AVIEW	turn printer $0 N$ or unplug it
	attached, ON	none	use MAN or NORM mode for printout
set	unattached	fast display then stoppage, displaying NONEXISTENT if control number is keyed and R/S pressed	plug in printer and turn ON
	attached, OFF	program stops at first AVIEW	turn printer ON
	attached, ON	none	use MAN or NORM mode for printout

F. Formulas used

Many variations exist for the calculation of simple linear regression statistics. The following formulas in general were chosen for programming simplicity. Where feasible, the standard MEAN and SDEV function were employed. The $\Sigma+$ key provides the gross (raw) sums of squares and products. The following summary is according to the order of calculations itemized in Section E.

Note: lower case letters indicate deviations from the mean, i.e. "corrected", whereas capital letters are used to represent the gross sum of squares and products.
a. least squares line
(1) corrected sums of squares and products

$$
\begin{array}{lll}
\Sigma x^{2}=\Sigma X^{2}-n \bar{X}^{2} & \text { i.e., } & \Sigma x_{i}^{2}=\Sigma\left(X_{i}-\bar{X}\right)^{2} \\
\Sigma y^{2}=\Sigma Y^{2}-n \bar{Y}^{2} & & \Sigma y_{i}^{2}=\Sigma\left(Y_{i}-\bar{Y}\right)^{2} \\
\Sigma x y=\Sigma X Y-n \bar{X} \bar{Y} & & \Sigma x_{i} y_{i}=\Sigma\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)
\end{array}
$$

(2) regression coefficients

$$
b=\frac{\sum x y}{\sum x^{2}}
$$

$$
a=\bar{Y}-b \bar{X}
$$

$$
b^{\prime}=\frac{\sum X Y}{\sum X^{2}} \quad, \quad b^{\prime}=\text { the slope of the line }
$$

forced through the origin, $X=0, Y=0$
b. standard errors

$$
\begin{aligned}
& s_{Y X}=\sqrt{\frac{\sum y^{2}-b \Sigma x y}{n-2}} \\
& s_{a}=s_{Y X} \sqrt{\frac{\sum X^{2}}{n \sum x^{2}}} \\
& s_{b}=\frac{s_{Y X}}{\sqrt{\Sigma x^{2}}} \\
& s_{b^{\prime}}=\frac{s^{\prime}{ }_{Y X}}{\sqrt{\Sigma X^{2}}} \quad, \quad \text { where } s_{Y X}^{\prime}=\sqrt{\frac{\sum Y^{2}-b^{\prime} \Sigma X Y}{n-1}}
\end{aligned}
$$

F. Formulas used (continued)
c. correlation coefficient

$$
r=\frac{\sum x y}{\sqrt{\sum x^{2} \sum y^{2}}}
$$

d. predicted Y

$$
\hat{Y}_{0}=a+b X_{0}
$$

e. t tests

$$
\begin{aligned}
& t_{r}=r \sqrt{\frac{n-2}{1-r^{2}}} \\
& t_{a}=\frac{a}{s_{a}} \\
& t_{b}=\frac{b}{s_{b}} \\
& t_{b^{\prime}}=1=\frac{b^{\prime}-1}{s_{b^{\prime}}}
\end{aligned}
$$

f. confidence interval estimates
the general formula used was
C.I. for given $X_{0}=\hat{Y}_{0} \pm t s_{Y X} \sqrt{C}$
where $\mathrm{t}=$ appropriate keyed-in Student's t
$s_{Y X}=$ standard error of estimate
and

$$
C=\frac{1}{n}+\frac{\left(x_{0}-\bar{X}\right)^{2}}{\Sigma x^{2}} \quad \text { for mean C.I. }
$$

or $C=1+\frac{1}{n}+\frac{\left(X_{0}-\bar{X}\right)^{2}}{\Sigma x^{2}} \quad$ for individual C.I.

G．Program listing

G1 LEL＂SLR＂	5151022	101 RCL 14
Q2＋LBL B	52 －B．F．0．＝－	192 RCL 22
Q3 EREC 11	53 ARCL X	183 RCL 15
Q4 CF 63	54 AYIEN	104＊
Q5 MEAN	55 FC ？ 98	105－
Q6 STO 91	56 STOP	186 FS ？ 92
87×12	57 ADY	107 RCL 26
㫙 STO G2	58＊LBL C	$188 \mathrm{FC} ?$
Q9 X X Y Y	59 RCL 84	189 RCL 16
16 STO 83	68 RCL 65	1101
11812	61 RCL 97	111 －
12 STO 44	62 ＊	112 \％
13 RCL 81	$63-$	113 SQRT
14 FCL 日 3	64 F5？ 42	114 STO 23
15＊	65 RCL 26	115 RCL 12
1695085	66 FC ？ 12	116 SQRT
17 RCL 16	67 RCL 16	117 ／
18 CHS	682	118 STO 24
19 ST＊ 92	69 －	119 －S $\langle 8 F 0\rangle=$－
2 ST S＊ 84	70 －	129 ARCL X
2 ！ST＊ 95	71 SQRT	121 AYIEN
22 PCL 12	72 STO 25	122 FC？ 90
$23 \mathrm{ST}+02$	73 RCL 日2	123 RTN
24 PCL 14	74 SQRT	124 AIV
$25 \mathrm{ST}+84$	75 \％	125 LBL D
26 RCL 15	76 ST0 10	126 RCL 95
$27 \mathrm{ST}+5.5$	77 RCL 12	127 RCL 82
28 RCL 95	78 RCL 16	128 RCL 94
29 RCL	79 RCL 02	129 ＊
36 ：	8 *	130 SRRT
31 ST0 67	81%	131 \％
32 RCL 日1	82 SQRT	132 ST0 08
33＊	83 RCL 25	133 ＇R＝＂
34 CHS	84 ＊	134 ARCL Y
35 RCL G3	85 ST0 99	135 AYIEN
$36+$	86 ＂S（YX）$=$＂	136 FC ？ 98
37 ST0 日6	87 ARCL 25	137 STOP
38 HIV	88 AYIEN	138×4.2
39 － 3 －INT．＝－	89 FC？ 90	139 －R＋2＝${ }^{\text {\％}}$
$4 \mathrm{ARCL} X$	99 PSE	149 ARCL χ
41 AYIEM	$91-\mathrm{S}\langle\mathrm{a}\rangle=$＂	141 AYIEN
42 FSE	92 ARCL 89	142 FC？ 88
43 ＂SLOPE＝	93 AYIEN	143 RTN
44 ARCL B7	94 FC？ 90	144 AD
45 PYIEW	95 PSE	145＊LEL d
46 FC ？ 日 $^{\text {a }}$	$96.5\langle b\rangle=\cdot$	146 FS？ 82
47 STOF	97 ARCL 10	147 RCL 26
48 PCL 15	98 AYIEN	148 FC？ 62
49 RCL 12	99 FC？ 80	149 RCL 16
517	100 STOP	1502

G. Program listing (continued)
$291="$
202 ARCL X
203 A IVIEN
204 RCL 87
205 *
296 RCL 96
$207+$
298 STO 19
299 "Y-HAT= =
210 ARCL X
211 AVIEW
212 ADY
213 PSE
214 FS? 93
215 RTN
216 GTO E
217*LBL e
218 FS? 93
219 GT0 93
2292
221 "KEY T, R/S"
222 PROMPT
223 CF 22
2245 TO 17
225 "T="
226 ARCL 17
227 AYIEW
228 SF 03
$229+$ LBL 93
230 FC? 08
231 XEQ E
232 FS?C 88
233 XEQ 01
234 PSE
235 RCL 18
236 RCL 日1
237 -
238×42
239 RCL 62
246 ;
241 RCL 16
$2421 / \mathrm{K}$
$243+$
244 ST0 20
24.5 LBL 92

246 SQRT
247 RCL 17
248 *
249 RCL 25
250*

251 STO 21
252 CHS
253 RCL 19
$254+$
255 FS? 44
256 *IND. $\mathrm{CI}=$ -
257 FC? 64
258 "C.I: $=$
259 ARCL X
264 RYIEH
261 PSE
262 - $T 0^{*}$
263 PIIEH
264 PSE
265 RCL 21
$266+$
267 RCL 21
$263+$
269 FC? 84
27月 *
271 FS ? 4
$272=$
273 ARCL X
274 RYIEN
275 ADU
276 PSE
277 FS?C 84
278 GT0 63
279 =INI. CI?, R/s"
280 PROMFT
281 FS? 22
282 SF 88
283 FS?C 22
284 GTOE
285 RCL 20
2861
$287+$
288 5F 94
289 GT0 02
2964 LEL "PCI "
291 CLST
292 FS ? 36
2938
294 F5? 37
2954
$296+$
297 FS? 38
2982
$299+$
300 FS? 39
G. Program listing (continued)

3011
$362+$
36.3 STO 28

304 CF 21
305 "X CONTROL:
306 AYIEN
3 3.7 PSE
3 S SF 21
309 "bbteetII, R/S"
310 PROMFT
311 x 2
31257029
313 -
3141 E3
315%
316 Y \gg
3171 E5
318 ;
$319+$
320 ST0 90
321 XEQ 16
322 FIX 5
323 "bbb.dddII: *
324 RCL 29
$325+$
326 ARCL X
327 ACA
320 PRBUF
329 AII
3362
331 "KEY T: R/S"
332 PROMPT
333 STO 17
374 FIX INI 28
335 -STUDENTS $T=\cdot$
336 ARCL 17
$33{ }^{3} \mathrm{ACA}$
338 PRBUIF
339 RIV
340 LBL 17
341 RC. 29
342 RCL 40
343 INT
$344+$
345 ST0 15
346 RCL 67
347*
348 RCL 96
$344+$
350 9T0 19

351 " $\mathrm{W}: ~=$
352 ARCL 18
353 AYIEN
354 - Y-HAT $=$ -
355 ARCL 19
356 AYIEN
357 " $\mathrm{MCI}=$ -
358 ASTO 27
359 RCL 18
36 RCL 91
361 -
$362 \times \uparrow 2$
363 RCL 02
364 /
365 RCL 16
$3661 / X$
$367+$
368 STO 20
369 SF 94
379 LBL 08
371 SQRT
372 RCL 17
373 *
374 RCL 25
375 *
376 ST0 21
377 CHS
378 RCL 19
$379+$
380 CLA
381 ARCL 27
382 ARCL X
383 RCL 21
$384+$
385 RCL 21
$386+$
387 " 70 "
388 ARCL X
389 FC? 55
390 RUIEK
391 FS? 55
392 PRA
393 FC? 84
394 ADU
395 FS?C 04
396 GTO 69
397 ISG 90
398 CTO 07
399 FIX IND 28
40 BEO 10

401 ADY
402 ADY
403 ADY
484 ADY
405 ADY
406 ADY
407 STOP
$488 *$ LBL 19
489 SF 12
410 "************"
411 ACA
412 ADY
413 CF 12
414 RTH
$415 *$ LBL 09
416 " $\mathrm{ICI}=$ *
417 ASTO 27
418 RCL 29
4191
$420+$
421 GTO 68
422 END

CAT 1
LBL'SLR
LBL'PCI
END
873 BYTES

Calculator: HP-41C/CV
Program Name: MSLR (Master Simple Linear Regression)
Author: T.W. Beers
Date: 1982
Purpose: MSLR is a steering program to be used in conjunction with SLR (Program No. 41F019) to accomodate ungrouped, grouped, or weighted data and to extend the prompting, correction, and/or deletion capabilities of that program. With the insertion of appropriate subrountines it is anticipated that MSLR can also be used to transform the input data and achieve linear approximations to certain non-linear models.
A. Storage registers

Register	Use
00	the current frequency, F_{i}, for grouped data (flag 01 set) or the current weight, W_{i} for weighted data (flag 02 set)
01	the current value of $X\left(i . e ., X_{i}\right)$ for grouped or weighted data
02	the current value of Y (i.e., Y_{i}) for grouped or weighted data
03	current $F_{i} Y_{i}$ or $W_{i} Y_{i}$
04	current $F_{i} Y_{i}^{2}$ or $W_{i} Y_{i}$
05	current $\mathrm{F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$ or $\mathrm{W}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$
06	current $F_{i} X_{i}^{2}$ or $W_{i} X_{i}^{2}$
07	current $\mathrm{F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}$ or $W_{i} \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}$
08-10	used only in SLR program
11	$\Sigma \mathrm{X}, \Sigma \mathrm{FX}$, or $\Sigma W X$

A. Storage registers (continued)

Register
12

13

14
B. Labels

Global
MSLR

DLT

Local
c
for deletion of data before SLR has been used and the "faulty" data point has just been summarized (by R/S depression); in this case, the faulty data need not be re-keyed
in MSLR to clear registers 00-29
used by label c and DLT for correction or deletion of data; ungrouped case
used by label c and DLT for correction or deletion of data; grouped and weighted cases
used in label 01 and by label DLT to print the deleted data point, ungrouped case
used by label DLT to process and print, delete and print (twice) the deleted data point; grouped and weighted cases
B. Labels (continued)
Local Use

10
11
12
13
14
prints and summarizes ungrouped data point
prompts for grouped data point ($\mathrm{Y} \uparrow \times \uparrow F$)
prompts for weighted data point ($\mathrm{Y} \uparrow \mathrm{X} \uparrow \mathrm{W}$)
prints and summarizes grouped and weighted data points
directs control to labels 11 or 12 or prompts for ungrouped data point ($\mathrm{Y} \uparrow \mathrm{X}$)
C. Flags

Type and Number

User:
01
if set (externally) implies the grouped data case; frequencies are prompted for and required

02 if set (externally) implies the weighted data case; weights are prompted for and required

03
if set (externally) the initial flag reminders and prompts are skipped; note that flag 03 is cleared when SLR is executed and therefore may have to be re-set manually if MSLR is repeated

07 set in label 05 to enable executing labels 13 and 02 as subroutines as required in the label DLT option

12
System:
55 the printer existence flag; tested throughout to enable printing of information if printer is attached
D. Size and key assignments

SIZE: ≥ 030 (since MSLR assumes SLR will be used, the SIZE must be at least as large as SLR requires, i.e., 030)
D. Size and key assignments (continued)

Suggested key assignments:
MSLR: on shift $X \gtrless Y$ (logic: this is "CLE" which normally would precede a statistical summary!)

DLT: on shift TAN (this is the "previously summarized" correction routine and the deletion routine)
c: on shift C (this is done internally and is the "just summarized" correction key)
E. Program procedure and example
I. Load the program into the calculator
II. XEQ MSLR (shift $X \geqslant Y$ in USER mode) and observe the following reminders:

CLEARING	(registers 00-29 are set to zero)
FLAG SET ?	
00 AUTO PRNT	
01 FOR FREQ.	
02 FOR WTD.	
SF XX, R/S	

Thus, the options are:
(1) no flags set implies ungrouped data
(2) flag 01 set implies grouped data
(3) flag 02 set implies weighted data
(4) flag 00 set implies automatic printing of the results
(5) note that if flag 03 is set, these reminders are skipped upon execution of MSLR

Let's first assume that the printer is not attached (therefore make sure flag 00 is clear) and that the same example as described in the SLR program for ungrouped data is used:

1. Ungrouped data:

$\frac{Y}{7}$	$\frac{X}{5}$
7	5
5	3
9	8

E. Program procedure and example (continued)

The procedure would be as follows: (assume FIX 2)

Step	Prompt	Example		
		Input	Key	Output
a. start and data entry	SF XX, R/S	-	R/S	
	KEY $\mathrm{Y} \uparrow \mathrm{X}$, R/S	$7 \uparrow 5$	R/S	1.00
	-	$5 \uparrow 3$	R/S	2.00
	-	$9 \uparrow 8$	R/S	3.00
b. execute SLR	-	-	$\mathrm{R} \downarrow$	$Y-I N T=2.79$
				SLOPE $=0.79$

c. continue as described in SLR
d. data correction options:
(1) just summarized data -- assume the second observation was keyed in as $5 \uparrow 33$ and R/S pressed; if we realize this before keying in the next data point, the faulty point can be deTeted by shift C (i.e., c); the prompt, KEY Y Y X, R/S, will be displayed, at which time we then key in the correct values, $5 \uparrow 3, R / S$ and proceed with $9 \uparrow 8$, R/S, then $R \downarrow$ to XEQ SLR
(2) previously summarized data -- assume we again had used $5 \uparrow 33, \mathrm{R} / \mathrm{S}$ but did not realize it until after $9 \uparrow 8, R / S$; in this case to undo the error, we must re-key the faulty point then XEQ DLT (shift TAN in USER mode). Therefore, assuming $7 \uparrow 5 \mathrm{R} / \mathrm{S}$ $5 \uparrow 33 \mathrm{R} / \mathrm{S}$ $9 \uparrow 8 \mathrm{R} / \mathrm{S}$
oops! ($5 \uparrow 33$ should be $5 \uparrow 3$), so $5 \uparrow 33$, shift TAN to delete, then at the KEY $Y \uparrow X, R / S$ prompt, $5 \uparrow 3, R / S$, then $R \downarrow$ to XEQ SLR
(Note, this procedure can also be used to delete data points after SLR has been executed).
2. Grouped data: (i.e., flag 01 must be set)

\underline{Y}	\underline{X}	$F(=$ frequency $)$
7	5	3
5	3	4
9	8	2

E. Program procedure and example (continued)

Again assume FIX 2 and assume we have XEQ MSLR and the prompt is SF XX, R/S.

Step	Prompt	Example		
		Input	Key	Output
a. set flag	SF XX, R/S	-	shift SF 01	0.00
and start	-	-	R/S	-
b. data entry	$Y \uparrow X \uparrow F, R / S$	$7 \uparrow 5 \uparrow 3$	R/S	1.00
		$5 \uparrow 3 \uparrow 4$	R/S	2.00
		$9 \uparrow 8 \uparrow 2$	R/S	3.00
c. execute SLR	-	-	$R \downarrow \quad Y$	NT. $=2.70$
				PE= 0.81

d. continue as described in SLR
e. data correction options: same as described for ungrouped data
3. Weighted data: (i.e., flag 02 must be set, and flag 01 clear!)

$\frac{Y}{Y}$	\underline{X}	$W(=$ weight $)$
0	1	1
1	2	.25
5	5	.04
10	10	.01

Again assume FIX 2 and the prompt stands at SF XX, R/S.

	Prompt	Example		
Step		Input	Key	Output
a. clear flag, set flag and start	SF $X X, R / S$	-	shift CF 01	0.00
		-	shift SF 02	0.00
		-	R/S	-
b. data entry	$\mathrm{Y} \uparrow \mathrm{X} \uparrow \mathrm{W}, \mathrm{R} / \mathrm{S}$	$0 \uparrow 1 \uparrow 1$	R/S	1.00
		$1 \uparrow 2 \uparrow .25$	R/S	2.00
		$5 \uparrow 5 \uparrow .04$	R/S	3.00
		10ヶ10ヶ.01	R/S	4.00
c. execute SLR	-	-	R \downarrow	AT $=-1.17$
				$P \mathrm{P}=1.15$

d. continued as described in SLR
e. data correction options: same as described for ungrouped data
E. Program procedure and example (continued)
III. Printed output with flag 00 clear

Using the same three examples described in section II, and assuming R/S is pressed between the SLR groups of answers, the printed output will look like this (up to the calculation of \hat{Y} values)

1. Ungrouped case:

Printer in MAN mode

Printer in NORM mode

III．（continued）
2．Grouped case with an error detected just after summarizing the second observation（i．e．，use key c to correct error）．

Printer in
Printer in
MAN mode
NORM mode

＊LLEARIHG＊：
FLHG SET？
QR RUTO PRHT
G1 FOR FREG．
V2 FOR WTI．
SF EL, RS
Y\＆XF：R／S
7.6045 .6943 .96

YHYtF，R／S
$5.0643 .90+4.00$

Y－INT．$=2.70$
BLIPE $=0.81$
E．F．O．$=1.29$
$\mathrm{SYY}=0.21$
$5 \mathrm{~s}=8.19$
$5(b)=0.04$
$S(B F O)=0.07$
$E=6.99$
$\mathrm{F}+2=0.99$
$T E=21.96$
$\left.T T_{5}\right\rangle=14.22$
$T 6=21.96$
T CFO＝1）＝4．16

XEO MSLF＂

＊CLEAR IHG：＊

FLAG SET ？
QG OUTO PRNT
Q1 FOR FREE．
Q2 FOR WTD．
SF $\mathrm{XN}, \mathrm{R} / \mathrm{S}$

$$
\text { SF } \quad 11
$$

SF 日1
ROH

Y $4 \mathrm{XAF}=\mathrm{R} / \mathrm{S}$
7． 00 ENTERt
5．09 ENTER
$3.60 \quad$ RUN
7.9945 .9073 .90

5． 0 EATER +
3．BG ENTER \uparrow
44.90 RUH
$5.9843 .98 \uparrow 44.00$
XEQ＂SLR＂
Y－INT．$=2.70$
SLOPE $=0.81$
B．F．0．$=1.29$
5． 90 ENTER 4
3．00 ENTER \uparrow
4.80 RUN
5.9073 .9674 .06

9．日R ENTER \uparrow
8.00 ENTER \uparrow

2．G日 RUN
RIIN
9.0818 .9842 .00

RUN
$R=0.99$
$R+2=0.99$
$T\langle R\rangle=21.96$
$T\langle\boldsymbol{a}\rangle=14.22$
$T\langle b\rangle=21.96$
RUN
$T\langle B F O=1\rangle=4.16$

III．（continued）
3．Weighted case with an error detected in the second observation， after the third and fourth observations have been summarized（i．e．， the DLT subroutine，assigned to shift TAN，must be used）．

Printer in MAN mode

Printer in
NORM mode
＊CLEAR IHG＊：
FLAGSET？
GO OITO PRNT
al FOR FREE．
62 FOR WTD．
SF RK，R／S
Y $4 \times+W, R / G$
G． 08 个 $1.08 \uparrow 1.00$
$1.00422 .00 \uparrow \quad 0.25$
$5.80 \uparrow 5.98 \uparrow 0.04$
10.09410 .0010 .01

1．804 22.8840 .25
1． $10.22 .06,0.25 ;->$
1．90，22．80，8．25〈－＞
Y $4 \times+\mathrm{W}, \mathrm{R} / \mathrm{S}$
$1.0812 .00 \uparrow 0.25$
Y－INT．$=-1.17$
$\operatorname{GIOPE}=1.15$
E．F．D $=0.63$
$S\langle Y X\rangle=0.88$
$S\langle 弓\rangle=0.11$
$S\langle b\rangle=0.97$
$S<B F \cap\rangle=0.24$
$R=1.00$
$\mathrm{Ft}=8.97$
$T\langle R\rangle=17.73$
$T\langle\Delta\rangle=-18.29$
$T(b)=17.73$
$T\langle B F \cap=1\rangle=-1.57$

XEQ＂MSLF＂
＊CLEARIHG＊
FLAC SET ？
QO QUTD FRNT
91 FIR FREE．
Q2 FOR WTII．
SF $X X, R / S$
CF 01
SF 82 RUN
Y \uparrow \＆\uparrow W，R／S

1． 09 ENTERt
1.90 KUN
$0.8091 .50+1.80$
1．00 ENTER ${ }^{4}$
22.00 ENTER \uparrow
1.09422 .0940 .25

5． 90 ENTER \uparrow
5.88 ENTER \uparrow
.84
． 60 ENTERT
． 0 ．
$S\langle Y\rangle=0.48$
$S(\bar{a})=0.11$
$g(b)=0.97$
$S(B F O)=0.24$
$R=1.00$
$R+2=0.99$
$T\langle R\rangle=17.73$
RUN

RIIK
$T\langle B F O=1\rangle=-1.57$

E．Program procedure and example（continued）
IV．Printed output with flag 00 set（＂automatic＂mode）
The automatic printout facilitates rapid analysis for data，and when used in conjunction with the delete subroutine，DLT，enables re－analysis with selected points deleted．

1．Ungrouped data
Consider the following data described in a problem posed by Draper and Smith（p． 68 in Applied Regression Analysis， 2nd Ed．，1981，John Wiley \＆Sons，N．Y．）

Per bottle price of vintage port wine (Y)	Year (X)
$\$ 50.00$	1890
35.00	1900
25.00	1920
11.98	1931
15.00	1934
13.00	1940
6.98	1941
10.00	1944
5.99	1948
8.98	1952
6.98	1955
4.99	1960
5.98	
4.98	

Say we want the complete analysis，then \hat{Y} and .95 confidence intervals for the years 1900 to 1960 by increments of 20 ．The pertinent steps，then，are：

1．XEQ MSLR（shift $X<Y$ ）
2．at the prompt SF XX R／S，SF 00
$\left.\begin{array}{ll}\text { CF } & 01 \\ \text { CF } & 02\end{array}\right\}$ if needed
3．key in data
4．XEQ SLR（R \downarrow ）
5．at the prompt bb个eeヶII，R／S，1900个 1960 \uparrow

20 R／S
6．at the prompt KEY T，R／S， $2.18 \mathrm{R} / \mathrm{S}$
（since ． 95 Student＇s tor $14-2=12 \mathrm{df}$ is 2．18）
Now，let＇s assume that the 1941 price is an＂outlier＂and we want to delete it and run the analysis again．Therefore：

7．Key $10 \uparrow 1941$ and XEQ DLT（shift TAN）
8．XEQ SLR（R \downarrow ）
E. Program procedure and example (continued)
9. use the same bb, ee, and II but now Student's $t=2.20$ for 11 degrees of freedom and .95 confidence level

The results are shown on the next page for the two cases described above. The careful observer will note that linear regression (without a transformation) is not appropriate for this problem, which is implicit in the presentation by Draper and Smith.

1. (continued)

Ungrouped case showing complete analysis and with one point deleted. Printer in MAN mode.

Complete case
Deleted case
10.09. 1941.06 <->

FLAG SET?
जि BllTO PRNT
al FOR FRED.
02 FOR WTI.
SF $\mathrm{XX}, \mathrm{R} / \mathrm{S}$
KEY Y事, RS
54. 9011890.00
35. 901 1900. 60
25.4091920 .00
11.9811931 .60
$15.80+1934.00$
13.481 1935.00
$6.98 * 1949.06$
10.001 1941.00
5.9911944 .00
$8.98+1948.60$
$6.98+1958.06$
4.9011952 .00
5.9811955 .06
4.981 1964.06
Y-INT: $=1233.81$
SLOPE $=-0.63$
E.F.O. $=0.01$
$\mathrm{STH}=3.80$
$S\langle 3\rangle=100.62$
$S(b)=0.95$
$S(B F O)=1.85 E-3$
$R=-1.96$
$R+2=0.92$
$T(\mathrm{P}:=-12.12$
$T\langle 3\rangle=12.26$
$T(6)=-12.12$
$T(B F D=1)=-535.81$

bbb. dddII: 1906.06020
STUDENTS $T=2.18$
X: 1900.9 日
$Y-H A T=37.13$
$\mathrm{MCI}=32.51$ T0 41.74
ICI $=27.65 \mathrm{TO} 46.60$
X: 1920.90
$Y-H O T=24.53$
$\mathrm{MCI}=21.69$ T0 27.37
ICI $=15.78$ T0 33.28
X: 1940.90
$Y-H R T=11.93$
$\mathrm{MCI}=9.67 \mathrm{TO} 14.20$
ICI $=3.35 \mathrm{TO} 20.51$
X: 1960. 90
$Y-$ HRT $=-0.66$
MCI $=-4.19$ T0 2.87
$\mathrm{ICI}=-9.66 \mathrm{TO} 8.34$

KEY Y*X, R/S
$Y-I N T=1231.20$
SLOPE $=-6.63$
E.F.O. $=$ 9. 01
$S\langle Y Y=3.94$
$S\langle a\rangle=104.81$
$S\langle b\rangle=0.05$
$S\langle B F 0\rangle=1.99 E-3$
$R=-0.96$
$\mathrm{R}+2=0.92$
$T\langle R\rangle=-11.60$
$T\langle 3\rangle=11.75$
$T(b)=-11.6 \bar{b}$
$T\langle B F 0=1\rangle=-498.25$

bbb.dddII: 1980.96020
STUDENTS $T=2.20$
x: 1906.90
$Y-H A T=37.18$
MCI $=32.33$ T0 42.02
ICI $=27.24$ TO 47.12
X: 1920.90
Y HAT $=24.61$
$\mathrm{MCI}=21.59$ T0 27.63
ICI= 15.42 T0 33.60
X: 1940.90
$Y-$ HAT $=12.04$
$\mathrm{MCI}=9.57 \mathrm{TO} 14.51$
$I C I=3.82 \quad 1021.06$
$\mathrm{X}: 1969.90$
Y-HRT $=-9.53$
MCI $=-4.33$ T0 3.27
ICI $=-1 \overline{0} .90 \quad 108.95$
E. Program procedure and example (continued)
2. Grouped or weighted data

Since the difference in the analysis is minor if one uses either the grouped or the weighted approach, and since the weighted situation is probably more common, only that case will be described. The differences between the two are described in Section F.

For an example, consider data given by Meyer (H. Arthur Meyer, 1953. Forest Mensuration. Penns Valley Publishers. State College, PA.) concerning average tree diameter growth by diameter classes:

Average diameter growth Y	Average diameter X	Number of observations (weight) W
inches	inches	
0.137	4.2	6
0.203	5.3	26
0.164	6.4	14
0.195	7.5	13
0.166	8.5	24
0.166	9.4	15
0.122	10.6	9
0.161	11.4	6
0.158	12.5	11
0.129	13.2	4
0.167	14.5	3
0.104	15.4	3
0.172	16.3	6
0.068	17.3	
0.132	20.7	1
0.068	23.6	1
		143

The pertinent steps in the analysis are:

1. XEQ MSLR (shift $X>Y$)
2. at the prompt $S F X X R / S$, $S F 00$

SF 02 (for weighted data)
CF 01 if needed
3. key in data (use FIX 3)
4. XEQ SLR ($\mathrm{R} \downarrow$)
5. at the prompt bb个ee $\uparrow I I, R / S$, $6 \uparrow$

2 R/S
6. at the prompt KEY T, R/S, 2.145 R/S
(since $\mathrm{c}=16=$ number of classes, and . 95 Student's t for $16-2=14 \mathrm{df}$ is 2.145)
E. Program procedure and example (continued)

Noting that the last 3 data points are based on only 1 tree each let's delete them and re-run the analysis. Furthermore, say we want the deleted data printed in FIX 3, the various fitted coefficients in FIX 5, then the predicted Y and confidence interval table in FIX 3 again. Therefore:
7. key. $068 \uparrow 17.3 \uparrow 1$ XEQ DLT (shift TAN)
key . $132 \uparrow 20.7 \uparrow 1$ XEQ DLT (shift TAN)
key . $068 \uparrow 23.6 \uparrow 1$ XEQ DLT (shift TAN)
8. shift FIX 5
9. XEQ SLR ($\mathrm{R} \downarrow$)
10. 3 STO 28 (register 28 is used at this point in the program to control the decimal FIX)
11. for \hat{Y} and CI, use $6 \uparrow 18 \uparrow 4$, but now Student's $t=2.201$ for 11 degrees of freedom and .95 confidence level

2．（continued）Weighted case，showing complete analysis，and analysis with three classes deleted．Printer in MAN mode．

Complete case
＊CLEFRIHG：
FLAG SET？
Q A RUTO PFRT
al FOR FRED．
02 FOR WTII．
SF XX，R／S

0． $137+4.20016 .000$
$0.203+5.304+26.060$
$0.164 \uparrow 6.49$ й 14. घЙ
$0.195+7.500+13.060$
$0.166 * 8.500+24.400$
$0.166+9.4009+15.606$
$0.122410 .600+9.40 \mathrm{e}$
$0.161+11.40496 .000$
0． 158 ＋12．5094 11． 196
6．129＋13．209 4.490
6．167＋ $14.509+3.606$

0．172＊16．30日早 6.006
$0.868 \div 17.300+1.646$
0．132 $29.706+1.696$
0.068423 .60011 .604

Y －INT．$=0.206$
SLOPE $=-0.065$
B．F．0．$=0.015$
$S(Y)=0.070$
$S(3)=0.916$
$5(b)=6.902$
$S\langle B F D\rangle=0.062$
$R=-6.598$
$R 12=0.358$
$T\langle R\rangle=-2.793$
$T\langle\overline{ }\rangle=13.034$
$T\langle b\rangle=-2.793$
$T\langle B F O=1\rangle=-467.734$

bbb．dddII：6．01802
STUDENTS $T=2.145$

4：6． 9 日品
Y－ $\mathrm{HOT}=8.18 \mathrm{I}$
MiCI＝ 0.164 T0 0.197
$\operatorname{ICI}=6.429 \mathrm{T0} 0.332$

8． 8.006
Y－ $\mathrm{HHT}=0.172$
$\mathrm{MCl}=0.158 \mathrm{~T} 0 \quad 6.185$
$\mathrm{ICT}=0.620 \mathrm{TO} 0.323$
Y：10． 0 的
$Y-\mathrm{HRT}=0.162$
MCI $=0.149$ T0 0.175
ICI $=8.011$ T0 0.314
x：12． 196
$Y-$ HRT $=0.153$
$\mathrm{MCI}=0.137 \mathrm{TO} \quad 0.170$
ICI $=0.092$ TO 5.305

X： 14.090
Y－HAT $=0.144$
$\mathrm{MCI}=0.123$ T0 0.166
ICI $=-9.008$ T0 0.296

莫： 16.004
$Y-H A T=0.135$
MCI $=0.108$ T0 0.162
ICI $=-$－ .0 .18 T0 日． 288
$x: 18.096$
$Y-H A T=0.126$
$\mathrm{MCI}=0.092 \mathrm{TO} \quad 6.160$
ICI $=-6.828$ T0 9.280
x：20．006
Y－HRT $=0.117$
MCI $=0.076$ T0 0.157
$\mathrm{ICI}=-6.839 \mathrm{TO} 0.273$

X： 22.960
Y－HAT $=0.168$
MCI $=0.061$ T0 0.155
ICI $=-0.050$ T0 6.265

X：24．096
$Y-H A T=0.998$
$\mathrm{MCI}=0.645 \mathrm{TO} 0.152$
ICI $=-6.061 \quad 100.258$

Deleted case
0． $\mathbf{6} 6917.300+1.000$

0． $668,17.360,1.060<->$
$\mathrm{Y}+\mathrm{XHL}, \mathrm{R} / \mathrm{S}$
$0.132 * 20.760 * 1 . \log$
$0.132,20.700 .1 .000<->$
0．132，20．706．1．060（－）

6． 669 23．606 1．606

$\mathrm{Y}-\mathrm{INT}=6.20360$
SLOPE $=-6.09462$
B．F．0．$=0.01640$
$\mathrm{SYH}=0 . \overline{\mathrm{H}} 592$
$\left.S_{5}\right\rangle=0.01892$
$\mathrm{S}<\mathrm{b})=0.0 \mathrm{~b} 2 \mathrm{D}^{2}$
$\mathrm{S}(\mathrm{BFO})=0.0422$
$E=-6.51569$
$R+2=6.26594$
$T(6)=-1.99626$
$T\langle 0\rangle=10.77358$
$T(b)=-1.99626$
$T\langle B F D=1\rangle=-442.34533$

bbh．dddII：6．612й4
STUEHTS $T=2.201$

X： 6.696
Y－HAT $=0.186$
$\mathrm{MCI}=0.161$ T0 0.199
$\mathrm{ICI}=0.012$ T0 0.348

8：10． 900
$Y-$ HAT $=6.164$
$\mathrm{HCI}=0.149 \mathrm{TO} 0.179$
$\mathrm{ICI}=-6.684 \mathrm{TO} 9.331$
x： 14.094
Y－HAT $=6.148$
$\mathrm{MCI}=0.121$ T0 0.174
$\mathrm{ICI}=-0.022 T 0 \quad 0.317$
x：13． 600
Y－HAT $=6.131$
MCI $=0.988$ TO 0.175
$\mathrm{ICI}=-\overline{0} .041$ T0 0.304

F. Formulas used

1. Ungrouped data

The same formulas as shown in section F of program SLR were used in the case of ungrouped data after the basic sums, sums of squares and products were accumulated using the $\Sigma+$ function.
2. Grouped and weighted data

Here, the procedure was to accumulate the weighted sums, weighted sums of squares and products, and store them in the statistical registers, i.e., $\Sigma F X$ or $\sum W X$ in $R_{11}, \sum F X^{2}$ or $\Sigma W X^{2}$ in R_{12}, etc. After that, nearly all the formulas used for the ungrouped case apply, with appropriate symbol changes; for example:

$$
\begin{aligned}
\Sigma F x^{2}=\Sigma F X^{2}-n \bar{X}^{2}, & \text { where } \\
& n=\Sigma F \\
\text { and } \quad \bar{X} & =\frac{\Sigma F X}{\Sigma F}
\end{aligned}
$$

or

$$
\begin{aligned}
\Sigma W y^{2}=\Sigma W Y^{2}-n \bar{Y}^{2}, \quad \text { where } n & =\Sigma W \\
\text { and } \bar{Y} & =\frac{\sum W Y}{\sum W}
\end{aligned}
$$

The minor exceptions to this procedure are discussed below.
a. Grouped data

It is important to realize that this is the case where identical Y's and X's occur more than once, and repetitive entry of such pairs is not desirable. Thus, in this situation, the number of observations, n, is equal to $\sum_{i=1}^{c}$, where there are $i=1$
c groups. Therefore, since registers 11 through 16 are "loaded" with $\Sigma F X, \Sigma F X^{2}, \Sigma F Y, \Sigma F Y^{2}, \Sigma F X Y$, and ΣF, the ungrouped procedure in SLR is totally appropriate.
b. Weighted data

Weighted data arise in regression generally because (1) one has c classes of data where $\left(\bar{X}_{i}, \bar{Y}_{i}\right)$ are based on different numbers of observations (W_{j}) or (2) one wants to weight the c data points to correct for (or lessen) the condition known as heterogeneous variance, or (3) a combination of (1) and (2). In any of these cases, no error will be incurred by proceding as in the grouped case described in 2 a , and letting $\Sigma \mathrm{W}$ replace $\Sigma \mathrm{F}$ except for the following; in weighted regression:
F. Formulas used (continued)

$$
\begin{aligned}
s_{Y X} & =\sqrt{\frac{\sum W y^{2}-b \Sigma W x y}{c-2}}, \\
t_{r} & =r \sqrt{\frac{c-2}{1-r^{2}}}, \\
\text { and } \quad s^{\prime}{ }_{Y X} & =\sqrt{\frac{\sum W Y^{2}-b^{2} \Sigma W X Y}{c-2}}
\end{aligned}
$$

Examination of the SLR program will show that in the calculation of these three estimates, R_{26} (containing c) is recalled and used for the weighted case (flag 02 set) rather than R_{16} (containing $n, ~ \Sigma F$ or ΣW).

G．Program listing

日1＊LBL＂MSLF＂	56 ARCL X	111 STOP
B2 EREG 11	57 ＂${ }^{\text {P }}$ 〈－＞＊	112＊LBL 13
0.3 .029	58 FS？ 55	113 CLA
Q4．	59 PRA	114 ARCL 2
059512	69 E －	115 ＂${ }^{\text {¢ }}$
06＊＊CLEARING＊＊	61 GTO 14	116 ARCL Y
67 RUIEH	62＊LBL ©	117 ＂トキ ${ }^{\text {\％}}$
08 CF 12	63 FS ？ 91	118 ARCL X
B9＊LBL 90	64 CTO 02	119 FS？ 55
10 STO INI Y	65 FS？ 02	129 PRA
11 150 \％	66 GTO 92	121 STO 08
12 GTO 08	67 GTO 91	122 ST＋ 16
13 FS ？ 03	68＊LBL 02	123 RIN
14 GTO 14	69 CLA	124 ST0 91
15 ＝FLAG SET ？${ }^{\circ}$	78 RCL 68	125 RDN
16 PYIEN	71 ST－ 16	126 STO 92
17 PSE	72 RCL． 03	127 RCL 90
18 ＂90 quto prnt＂	$73 \mathrm{ST}-13$	128 ＊
19 OYIEN	74 RCL 04	129 ST0 93
20 PSE	75 ST－14	$130 \mathrm{ST}+13$
21 － 11 FOR FREQ．＂	76 RCL 95	131 RCL 92
22 RYIEH	77 ST－ 11	132 ＊
23 PSE	78 RCL 86	133 ST0 04
24 ＂ 22 FOR WTD．	$79 \mathrm{ST}-12$	134 ST＋ 14
25 AYIEW	80 RCL 97	135 RCL 91
26 PSE	81 ST－ 15	136 RCL 90
27 ＂SF XX，R／S＂	82 ARCL 82	137 ＊
28 QUIEW	83 ＂	138 STO 65
29 STOP	84 ARCL 91	$139 \mathrm{ST}+11$
3 CLEL 14	85 ＊	149 RCL 81
31 FS ？ 91	86 ARCL 00	141 ＊
32 CTO 11		142 STO 96
33 FS？ 02	88 FS？ 55	143 ST＋ 12
34 CTO 12	89 PRA	144 RCL 98
$35 . \mathrm{KEY} \mathrm{Y} 9 \mathrm{X}, \mathrm{R} / \mathrm{S}^{\prime \prime}$	901	145 RCL 91
36 PVIEW	$91 \mathrm{ST}-26$	146 RCL 82
37 ADY	92 FS ？ 97	147 ＊
38 STOP	93 RTH	148 ＊
$39+L$ BL 18	94 CTO 14	149 STO 87
40 CLA	954 LBL 95	$150 \mathrm{ST}+15$
41 ARCL Y	96 SF 97	1511
$42 \mathrm{~F}+{ }^{-1}$	97 XEQ 13	152 ST＋ 26
43 ARCL X	98 XEQ 92	153 RCL 26
44 FS？ 55	99 CF 97	154 FS？ 97
45 PRR	108 GTO 92	155 RTN
$46 \mathrm{E}+$	101＊LBL 11	156 STOP
47 STOP	$182=Y 4 \times 4 F, R / S *$	157 GT0 13
48 CTO 18	163 AVIEN	158＊LBL＂DLT＂
$49+$ LEL 61	104 ADV	159 CLA
50 CLA	105 STOP	160 FS？ 91
51 RDN	186 GTO 13	161 GTO 95
52 LASTX	107＊LBL 12	162 FS？ 92
53 LEL 94	108 ＂Y4X＋H，R／S＊	163 GT0 05
$54 \mathrm{ARCL} Y$	109 AVIEW	164 GT0 04
55 ＂F，＂	118 RIV	165 ENI

LBL＇MSLR

Calculator: HP-41CV or HP-41C with 3 single density memory modules
Program Name: VOL17 (17 species board foot volume calculations)
Author: T.W. Beers
Date: April, 1981

Purpose: To demonstrate the capacity of the HP-41C to solve a non-linear volume estimation formula using 17 different sets of regression coefficients. The basic form of the equation is:

$$
\text { where, } \begin{aligned}
V= & b_{0}+b_{1} D^{b_{2}}+b_{3} D^{b_{4}} H^{b_{5}} \\
V= & \text { board foot volume, Int. } \frac{1}{4} \text { " rule } \\
D= & \text { tree DBH } \\
H= & \text { tree merchantable length } \\
b_{i}= & \text { species unique coefficients developed by the } \\
& \text { U.S. Forest Survey (refer to U.S.F.S. Research } \\
& \text { Note NE-271, or parts } F \text { and } G \text {) }
\end{aligned}
$$

Provision in the program is made to obtain volume totals by species if desired and printed output is provided if the HP-82143A printer is attached.
A. Storage assignments

Register Use
00 control number for recall of b coefficients by species (see part F for formula)
01-17 volume sum for species 1 through 17
18 overall volume total
21
22
23
24
25
29
D, tree diameter at breast height in inches
H, tree height in feet
V, individual tree volume
control number for species names used in labels B and a control number to recall volume sums used in labels B and a preservation of control number used in R_{00} current species number code
b_{0} for species 1 through 17
b_{1} for species 1 through 17
b_{2} for species 1 through 17
A. Storage assignments (Continued)

Register

82-98 $\quad b_{3}$ for species 1 through 17
99-115 $\quad b_{4}$ for species 1 through 17
116-132 $\quad b_{5}$ for species 1 through 17
141-157 6-letter species abbreviations
158
19,20,26-28, 133-140
B. Labels

> Global

> VOL17

BAR
CRAX

VOL

Local
A
a

B

00
01

11
prints the contents of R_{1} through R_{18} species; species having zero volume are skipped volume species are skipped
incrementing loop in label CRAX to construct the species control number
used in label a to store control numbers in printed table
displays and/or prints species name and volume for that
prints in tabular form the species name and volume; zero
used in VOL17 to prompt for and display species code and
incrementing, display, and printing loop in label a
used in label B to test for zero volume and skip spaces
used in label VOL to skip steps when printer is not attached used in label B to skip printing when volume is zero
B. Labels (Continued)

Local
12
13
same as 11 but in label a
provides the "NEED PRINTER" message when printer is not attached.
C. Flags

Type and
Number
User:
01 to skip prompts for data cards and for read data statement in label VOL17
same as flag 01, but in label a printer double-wide flag used in labels VOL17, B, and BAR

21 printer enable flag, used in label VOL to skip printer functions with no printer

29
digit grouping flag, used in label 01 to suppress decimal point

System:
55 printer existence flag, used variously to skip printer functions or prompt for printer to be attached
D. Program procedure and example
I. In PRGM mode, key in the program "VOL17"; or in RUN mode, read the program (SIZE needed is 159) from magnetic cards.
II. In RUN mode

1. Be prepared to load the 102 regression coefficients into R_{31} through R_{132}, and the species names in R_{141} through R_{158} by one of the following:
a. key the data in manually; making use of the program "LOAD" (No. 41U007), then set flags 01 and 02 before proceeding
b. have the coefficients and species names recorded on magnetic cards and the card reader attached; to obtain the appropriate prompts, flags 01 and 02 should be clear initially.
2. Assuming the data are on cards and the card reader is attached, go to step 3. A four-tree example will be used assuming the coefficients and names as listed in part G.
D. Program procedure and example (Continued)
3. XEQ VOL17 (suggest assignment to $X \geqslant Y$ key), and follow the prompts; USER mode is assumed, with flags 01 and 02 clear.

Example

	Prompt	Input	Key	Output
a. Start	-	-	$X \geqslant Y$	-
		COAD		
	FROM			
	DATA CARDS			

b. (Insert the first data card and follow subsequent prompts; 7 tracks needed)
c. Volume calculations

SPEC: 0 OR ?	4	R/S	-
KEY DTH, R/S	$18 \uparrow 16$	R/S	VOLUME $=115.8$
SPEC: 4 OR ?	7	R/S	-
KEY DTH, R/S	$20 \uparrow 32$	R/S	VOLUME $=276.9$
SPEC: 7 OR ?	-	R/S	-
KEY DYH, R/S	$16 \uparrow 24$	R/S	VOLUME $=137.6$
SPEC: 7 OR ?	16	R/S	-
KEY DTH, R/S	$24 \uparrow 12$	R/S	VOLUME $=188.1$

SPEC: 16 OR ?
d. Volume summary:
(1) with no
printer, set - - SF02
flag 02 - \quad - a

> (If species names have been keyed manually, names will display, otherwise 0.0 will show for all species codes.)

$$
\left\{\begin{array}{l}
\text { HEMLOK }=115.8 \mathrm{BF} \\
\text { SUMAPL }=414.5 \mathrm{BF} \\
\text { HICKRY }=188.1 \mathrm{BF} \\
\text { TOTAL }=718.5 \mathrm{BF}
\end{array}\right.
$$

(2) with printer attached and flag 02 clear or set

A the contents of R_{1} through R_{18} will be printed without species names
with flag 02 clear:

- a
-

LOAD NAMES
FROM
DATA CARDS
(Insert the species name data card, and follow subsequent prompts; 2 tracks needed)
with flag 02 set: the "load prompt" will be skipped.
D. Program procedure and example (Continued)

Example

Prompt Input Key \quad\begin{tabular}{l}
Output

display will be
the same as in (1)
above and results
will also be printed

$-\quad$ B

species totals
will be printed
in tabular form

\end{tabular}

e. For a new group of trees go to step 3a, flags 01 and 02 will be automatically set and the card-loading prompts will be skipped.

日1＊LBL FOLI7＊	$51 \times \gg$
02 XEO＂CRAX＂	52 STO 21
Q3 31.132	53 FC ？ 21
04 FS？ 81	54 GTO 10
85 CTO 81	55－n：－
	56 XEQ＂ACA＂
Q？AYIEH	57 XEQ＂ACX
日8 PSE	$58 . \mathrm{H}$ ：
89. FROH－	59 XEQ＂ACA＂
10 AYIEK	60 RCL 22
11 PSE	61 XEQ＂ACX＊
12 －DATA CARDS＂	62 ADY
13 QYIEH	63＊LBL 16
14 XEQ＂RDTAX：＂	64 RCL IND 90
15 SF Q1	65 STO 23
16＊LEL 11	66 ISG 90
17 CF 29	67 RCL IND 90
18 FIX	68 ISC 09
19 RCL 30	69 RCL 21
28 －9PEC：－	79 RCL IND 90
21 ARCL X	$71 \mathrm{Y}+\mathrm{Y}$
22 － 0 O ${ }^{\text {？}}$	72 ＊
23 PROMPT	$73 \mathrm{ST}+23$
24 －SPECIES：	74 ISG 99
25 ARCL X	75 RCL IND 00
26 SF 12	76 RCL 21
27 FS？ 55	77 ISG 00
28 PRH	78 RCL IND 00
29 CF 12	79 Y4X
3057030	80 ＊
3130	81 RCL 22
$32+$	82 ISG 99
3357090	83 RCL IND 96
34 RCL 30	84 Y4X
35115	85 ＊
$36+$	$86 \mathrm{ST}+23$
37153	87 RCL 30
38 \％	88 RCL 23
$39 \mathrm{ST}+80$	$89 \mathrm{ST}+\mathrm{IND} \mathrm{Y}$
48.60817	$90 \mathrm{ST}+18$
$41 \mathrm{ST}+80$	91 －YOLUME＝－
42 RCL 日8	92 ARCL X
43 STO 29	93 AVIEW
44＊LBL－Y OL ${ }^{\text {－}}$	94 ADY
45 FIX 1	95 PSE
46 RCL 29	96 GTO 01
47 STO 09	$97+$ LBL A
48 ＂KEY DtH，R／S＂	98 FIX 1
49 PROMPT	99 FC？ 55
50 STO 22	100 GTO 13

$1811_{1,818}$
102 XER－PRREGX＝
103 RTN
104＊LBL a
105 FIX 1
106141.158

107 FS？ 02
198 GTO 02
189 ＂LORD NAMES＂
110 AYIEN
111 PSE
112 ＊FROM＊
113 AYIEH
114 PSE
115 ＂DATA CARDS＂
116 AYIEN
117 XEQ＂RDTAX＂
118 SF 02
$119+$ LBL 02
120 ADY
121141.158

122 STO 24
1231.818

124 STO 25
125＊LBL 83
126 RCL IND 25
$127 x=0$ ？
128 GTO 12
129 CLA
130 ARCL IND 24
131 N＝
132 ARCL IND 25
133 ＂ FF ＝
134 AYIEH
135 PSE
136 LBL 12
137 ISG 25
138 X \gg
139 ISG 24
140 GT0 03
141 RTN
1424 LBL B
143 FIX I
144 FC？ 55
145 GTO 13
146 ADY
147 XEQ＂BAR＂
148141.158

149 ST0 24
1501.818
E. Program listing and printer output (Continued)

151 STO 25
152 -SPECIES*
153 ACA
15411
155 SKPCHR
156 "YOLUME-
157 ACA
158 ADY
159 SF 12
160
161 PRA
162 CF 12
163*LBL 84
164 RCL IND 25
$165 x=9$?
166 GTO 11
167 CLA
168 ARCL IND 24
169 ACA
170 RCL IND 25
171 LOG
172 INT
173 CHS
17414
$175+$
176 SKPCHR
177 RCL IHD 25
178 ACX
179 ADY
180*LBL 11
181 ISG 25
182 X ($) ~ X$
183 ISG 24
184 GT0 04
$185 *$ LBL "BRR"
186 SF 12
187 "*************"
188 PRA
189 CF 12
198 RTN
191*LBL 13
192 -NEED PRINTER-
193 PROMPT
194*LBL "CRAX"
1951.818

1968
197 STO 30
198*LBL 00
199 STO IND Y
200 ISG Y
291 GTO 90
202 END

Y0L17:583 BYTES

Individual tree results

SPECIES: 4
D: $18.0 \mathrm{H}: 16.0$
VOLUME $=115.8$

SPECIES: 7
D: $20.0 \mathrm{H}: 32.0$
YOLUME $=276.9$
SPECIES: 7
D: $16.8 \mathrm{H}: 24.6$
YOLUME $=137.6$
SPECIES: 16
I: $24.0 \mathrm{H}: 12.6$
VOLUME $=188.1$

Label A output
$R 01=0.0$
$R 02=0.0$
$R 03=0.0$
$\mathrm{R} 04=115.8$
R05 $=0.0$
$\mathrm{R} 06=0.0$
$R 07=414.5$
$\mathrm{R} 08=0.8$
$R 09=0.0$
$R 1 \theta=0.0$
$R 11=0.0$
$\mathrm{RL} 2=0.8$
$R 13=0.0$
R14 $=0.0$
R15 $=8.0$
$R 16=188.1$
$R 17=0.0$
R18 $=718.5$

Label a output

HEMLOK $=115.8 \mathrm{BF}$
SJMAPL $=414.5 \mathrm{BF}$ HICKRY= 188.1 BF TOTAL $=718.5 \mathrm{BF}$

Label B output

SPECIES	VOLDME
HEMLOK	115.8
SUMAPL	414.5
HICKRY	188.1
TOTAL	718.5

F. Formulas used and background material

1. Formula

The individual tree volume formula used is that cited by Scott (1979) in U.S.F.S. Res. Note NE-271:

$$
V=b_{0}+b_{1} D^{b_{2}}+b_{3} D^{b_{4}} H^{b_{5}}
$$

where,

$$
\begin{aligned}
& V=\text { Int. } \frac{1}{4} \text {-inch board-foot volume } \\
& D=\text { tree diameter at breast height in inches } \\
& H=\text { bole length in feet }
\end{aligned}
$$

2. The coefficients are stored in R_{31} to R_{132} as follows:

For a given species code S, the appropriate set of coefficients is retrieved by indirect addressing, making use of a control number developed (in label 01) from the following algorithm:

$$
\text { control number }=(S+30)+\frac{S+115}{1000}+.00017
$$

The coefficients for species 3, for example, would be retrieved by the control number:

$$
\begin{aligned}
\text { C.N. } & =3+30+\frac{3+115}{1000}+.00017 \\
& =33.11817\left(\text { i.e., } R_{33}, R_{50}, \ldots, R_{118}\right)
\end{aligned}
$$

F. Formulas used and background material (Continued)
3. Species group names were abbreviated as follows:

Species code	abbreviation	species included
1	W, RPNE	white, red pine
2	R,W,BS	red, white, black spruce
3	BALFIR	balsam fir
4	HEMLOK	hemlock
5	HP, T, N	hard pines, tamarack, Norway spruce
6	CEDARS	cedar species
7	SUMAPL	sugar maple
8	SMP, YP	soft maple, yellow-poplar
9	ASHASP	ash species, aspen species
10	BLCHRY	black cherry
11	BIRCHS	birch species
12	ABEECH	american beech
13	BASSWD	basswood
14	RO, GUM	redoaks, sweetgum, blackgum
15	CHSOAK	chestnut oak
16	HICKRY	hickory
17	OTHERS	other hardwoods

G. Coefficients and species names

$\mathrm{R} 31=-12.25086$		
$R 32=-13.93890$	R82=	0.89614
R33 $=-12.29880$	R83=	0.12896
$\mathrm{R} 34=-8.36098$	R84 $=$	0.14160
$\mathrm{R} 35=-6.78889$	R85=	0.87710
$\mathrm{R} 36=-8.89896$	R86 $=$	0.96459
$\mathrm{R} 37=3.73090$	R87=	0.12160
$R 38=2.84090$	R88=	0.02626
$R 39=9.29 日 Q ด$	R89 $=$	0.02960
$\mathrm{R} 40=1.58 \mathrm{~g} 9 \mathrm{~g}$	$\mathrm{R90}=$	0.01938
$\mathrm{R} 41=8.23999$	R91=	0.02879
$R 42=-0.84899$	R92=	0.02068
$\mathrm{R} 43=2.66099$	R93=	0.84198
$R 44=1.91990$	R94=	0.62828
$R 45=4.46890$	R95=	0.02460
$\mathrm{R} 46=-1.24800$	R96=	0.01820
$\mathrm{R} 47=0.03809$	R97=	0.03120
$R 48=-0.02418$	R98=	0.02630
$R 49=-0.85197$	R99 =	2.22810
RS0 $=-0.08212$	R190 $=$	2.19998
$R 51=-9.81433$	R101 $=$	2.26579
$R 52=-0.08841$	R182=	2.25938
$R 53=-0.07324$	R10.3 $=$	2.19380
R54 $=-9.80182$	R184 $=$	2.23828
R55 $=-0.00557$	R105=	2.42910
$\mathrm{R} 56=0.80952$	R196=	2.46868
R57 $=-0.08151$	R187 $=$	2.21658
$R 58=0.00839$	R108=	2.38756
$R 59=-0.01297$	R109 $=$	2.21168
$\mathrm{R} 6 \mathrm{a}=-6.09313$	R110 $=$	2.39510
$R 61=-0.09192$	R111 $=$	2.44168
$R 62=-9.00061$	R112=	2.42680
$R 63=-8.08385$	R113=	2.48948
$R 64=-0.08196$	R114=	2.38888
$R 65=2.68659$	R115=	2.41628
R66 $=2.52480$	R116 $=$	0.42228
$R 67=2.56410$	R117 $=$	0.42278
$R 68=2.78780$	R118=	0.37448
$R 69=2.70610$	R119 $=$	0.42028
$\mathrm{R} 70=2.45560$	R129 $=$	0.47130
$R 71=3.37660$	R121 $=$	0.32498
R72 $=3.18680$	R122 $=$	0.65719
$R 73=3.08086$	R124 $=$	0.51710
R74 $=3.38780$	R124	0.88436
$R 75=3.88890$	R125=	0.63568
$\mathrm{R76}=3.88439$	R126 $=$	0.88198
$R 77=3.27806$	R127 $=$	0.59120
$R 78=3.31888$	R128 $=$	0.59400
$\mathrm{R} 79=3.59720$	R129 $=$	0.69000
$\mathrm{R} 88=3.16480$	R130 $=$	0.59228
R81 $=3.32360$	R131 $=$	0.68679
R. 1 - 3.3236	R132=	0.60120

Retrospective Comments Regarding VOILI

1. The program was written originally assuming a printer is attached; consequently, if no printer is used the write-up is a little rough in spots. Specifically, one should load the seventeen species names into registers 141 through 157 and "TOTAL" into register 158. If these names are on a card one can simply key 141.158 then XEQ RDTAX and follow the prompt. A logical time to do this is immediately after the coefficients have been loaded into memory.
2. The numeric coefficients and the species names are present on the KRON-1 tape under the name VIDATA, and can be downloaded to the calculator by the following (make sure SIZE 2 159) :
a. with VIDATA in alpha register, CLX (to put zero in the X register), then XEQ SEEKR
b. key 31.158 , then XEQ READRX
3. A slightly modified version of VOLl7 (with SF 01 and SF 02 inserted as steps 02 and 03) and all the numeric coefficients and the species names, are grouped under the file name VLl7FL and can be downloaded in one step from the KRON-1 tape by:
a. Vll7FL in the alpha register
b. XEQ READA

Calculator: HP-41CV or HP-41C with one single density module
Program Name: MG78 (for Mesavage \& Girard form class 78)
Author: T.W. Beers
Date: May 1981

Purpose: To provide an alternative to the usual "volume table look up" procedure for individual tree volume determination in board feet by International $\frac{1}{4}$ inch, Scribner, and Doyle log rules. The tables obviated by this program are the Form Class 78 tables described by Mesavage \& Girard (Tables for Estimating Board-Foot Volume of Timber, U.S.F.S.) using the estimation equations developed by Wiant and Castaneda (Resource Inventory Notes, BLM 4, March, 1977). Wiant claims agreement with the tabular values within ± 3 percent, for 99,94 and 97 percent of the cell values for the three \log rules.
A. Storage assignments

Register
Use
01
02
03
04
05
06

> D, tree diameter at breast height in inches N, number of 16 -foot logs D^{2} N^{2} calculated volume externally stored form class (needed when flag 04 is set)
B. Labels

Global
MG78 program start, initialization and reminders
ADJUST
INPUT to enable adjustment for form classes other than 78 data prompting and storage for D, D^{2}, N, and N^{2}
B. Labels (Continued)

Global
TONEB
TONED
TONEDD
TONES
Local
A
B
C
D
01
02
03
04
C. Flags

User

04

22

29

Use
tone routine for Int. $\frac{1}{4} \log$ rule
tone routine for Doyle log rule tone routine for Doyle log rule tone routine for Scribner log rule
calculates and displays tree volume for all three log rules
calculates and displays volume by Int. $\frac{1}{4}$ rule calculates and displays volume by Scribner rule calculates and displays volume by Doyle rule
used to skip identifier and flag clear in label B used to skip identifier and flag clear in label C used to skip identifier and flag clear in label D used to skip the prompt in INPUT when flag 22 is set
set automatically in label A to signify the calculation of volume by all three log rules
set externally to display the form class and calculate the volume according to the form class stored in register 06
numeric data input flag, when set automatically by numeric data entry, skips the prompt in INPUT
digit grouping flag, cleared in MG78 to eliminate decimal point (in FIX 0)
D. Program procedure and example
I. In PRGM mode, load the program "MG78"
(SIZE needed is 007)
II. In RUN mode:

1. XEQ MG78 (suggest assignment to TAN key) and follow the prompts.

Example
Prompt Input Key Output
a. start KEY A, B, C OR D

A FOR ALL 3
B FOR INT. $\frac{1}{4}$
C FOR SCRIB.
D FOR DOYLE
b. all 3

DBH \uparrow LOGS, R/S $16 \uparrow 2 \quad R / S$
*INT. $\frac{1}{4} \star$ then
VOL. $=177 \mathrm{~B} . \mathrm{FT}$.
SCRIBNER then
VOL. = $156 \mathrm{~B} . \mathrm{FT}$.
DOYLE then
VOL. $=114 \mathrm{~B} . \mathrm{FT}$.
DBH \uparrow LOGS, R/S $18 \uparrow 4$ R/S *INT. $\frac{1}{4} *$ then
VOL. $=376 \mathrm{~B} . \mathrm{FT}$.
etc.
330 for Scribner
248 for Doyle
etc.
(1) Note that a distinctive 4-note tone is heard just before each answer (Int. $\frac{1}{4}=9,7,9,7$; Scribner = standard "beep"; Doyle = 7,9,7,9).
c. one table only; for example, Doyle:

| DBH \uparrow LOGS, R/S | - | $18 \uparrow 4$ | D
 R / S |
| :---: | :---: | :---: | :--- | | DOYLE |
| :--- |
| *DOYLE* then |
| DBH \uparrow LOGS, R/S |

(1) Note, in this "single action" mode, the audible signal is one tone 9 for Int. $\frac{1}{4}$, two tone 9 's for Scribner and three tone 9's for Doyle.
(2) To change to another log rule (i.e., table) or to the automatic mode, one can either (a) press B, C, D, or A, note the identifier and key in data at the DBH \uparrow LOGS, R/S prompt or (b) key in the DBH, \uparrow, No. of logs, then press B, C, D, or A.
D. Program procedure and example (Continued)
III. Notes and cautions

1. The audio part of the display can be disabled by clearing flag 26 manually (shift, CF 26); but note that turning the calculator off, then on, resets this flag. "Permanent" disabling of the audio can be done by inserting a CF 26 statement in the initialization part of the program.
2. A two-second pause is programmed after any answer, before the next prompt; if the answer is missed, it can be retrieved by a single depression of the correction key (\leftarrow), or by VIEW 05 or RCL 05.
3. The program can be used to calculate volumes for form classes other than 78, by
a. store the desired form class in register 06
b. set flag 04
c. proceed as in part II
4. No error check is made on the reasonableness of the diameter and number of logs-- let the user beware!
E. Program Listing

日1*LBL -MG78"	51 RCL 82	101 *
02 FIX 0	52 *	182-
03 CF 29	$53-$	10322.56365
04 CF 22	54 RCL 01	104 -
95 CF 日 0	55 *	1853.82988
96 "KEY A,B,C OR D"	$56+$	186 ENTERT
97 AVIEH	57.84482	107.02302
08 SIN	58 ENTER \uparrow	108 RCL 94
69 SIN	59.88961	189 *
10 -A FOR ALL 3*	68 RCL 84	110-
11 AYIEH	61 *	1114.34381
12 PSE	62 -	112 RCL 82
13 "B FOR INT. 1/4"	63.45997	113 *
14 AYIEN	64 RCL 82	114-
15 PSE	65 *	115 RCL 01
16 -c. FOR SCRIB."	66 +	116 *
17 AYIEH	67 RCL 83	$117+$
18 PSE	68 *	118.51593
19 "I FOR DOYLE"	$69+$	119 RCL 82
28 PROHPT	70 ST0 95	120 *
$21.4 B L$ A	71 FS? 94	121.02035
22 -AUT0.--ALL 3*	72 XEQ -AD.JUST"	122 RCL 04
23 AYIEH	73 FC ? 08	123 *
24 SF 90	74 TONE 9	124-
25 GTO -INPUT"	75 FS? 89	125.01969
260 LBL B	76 XEQ 'TONEB"	126 -
27 -INT.1/4 INCH*	77 - Y0L. $=$ -	127 RCL 93
28 AVIEH	78 ARCL X	128 *
29 CF 08	79 - ${ }^{\text {P B.FT.* }}$	$129+$
$30 \times$ LBL 01	80 AYIEH	130 ST0 05
31 FC ? 08	81 PSE	131 FS? 94
32 XEQ "INPUT"	82 PSE	132 XEQ -AD.JUST-
33 - \#INT. 1/4**	83 FC? 08	133 FS? 08
34 OVIEH	84 ¢50 01	134 BEEP
351.52968	85 FS? 80	135 FC? 08
36 RCL 14	86 GTO 02	136 XEQ - TONES ${ }^{\text {- }}$
37 *	87+LBL C	137 -YOL. $=$ -
389.58615	88 - SCRIBNER ${ }^{\text {- }}$	138 ARCL X
39 RCL 02	89 AYIEH	139 - ${ }^{\text {P B.FT. }}$
418*	98 CF 98	148 AYIEN
$41+$	$91+$ LBL 02	141 PSE
4213.35212	92 FC? 90	142 PSE
43-796	93 XEQ -INPUT-	143 FC? 08
441.7962	94 " *SCRIBNER**	144 GTO 92
45 ENTERT	95 AYIEH	145 FS? 90
46.27465	9617.53588	146 GTO 03
47 RCL 84	97 RCL 02	147*LBL D
48 *	98 *	148 ${ }^{\text {- D }}$ DOYLE
49-	99.59242	149 AYIEH
582.59995	186 RCL 64	150 CF 08

E. Program Listing (Continued)

151*LBL 93	291 AVIEW	251 TONE 9
152 FC? 80	202 PSE	252 RTN
153 XEQ -INPUT"	203 PSE	$253 *$ LBL - TONEDD-
154 - *DOYLE**	204 FC? 09	254 TONE 9
155 AYIEH	205 GT0 93	255 TONE 9
156.55743	206*LBL -INPUT"	256 TONE 9
157 RCL 04	297 FS? 22	257 END
158 \#	288 GTO 04	
15941.51275	209 "DBHtLOGS, R/S"	MG78:795 BYTES
160 RCL 02	218 PROMPT	
161 *	211 LBL 84	
$162+$	212 ST0 02	
16329.37337	213×12	
164 - 7804	214 ST0 04	
1652.7864 .3	215 K ${ }^{\text {P }}$ Y	
166 ENTERT	216 ST0 01	
167.04516	217×42	
168 RCL 04	218 ST0 03	
169 *	219 CF 22	
170	220 FC? 90	
1718.77272	221 RTN	
172 RCL 02	222 GTO 91	
173 *	223*LBL "AD.JUST*	
174 -	224 RCL 06	
175 RCL 91	225 F. CLASS: -	
176 *	226 ARCL X	
177 +	227 AYIEN	
178.04177	22878	
179 ENTER	229 -	
189. 01578	230.63	
181 RCL 04	231 *	
182 *	2321	
183-	$233+$	
184.59842	234 RCL 85	
185 RCL 02	235 *	
186 *	236 RTN	
187 +	237*LBL ${ }^{\text {- TONEB }}{ }^{\text {- }}$	
188 RCL 03	238 TONE 9	
189 *	239 TONE 7	
$198+$	240 TONE 9	
191 STO 05	241 TONE 7	
192 FS? 84	242 RTN	
193 XEQ "ADJUST"	243*LBL -TONES ${ }^{-}$	
194 FC? 68	244 TONE 9	
195 XEQ - TOMEDD-	245 TONE 9	
196 FS? 09	246 RTN	
197 XEQ -TONED ${ }^{\text {c }}$	247*LBL -TOMED*	
198 - $40 \mathrm{~L} .={ }^{-}$	248 TONE 7	
199 ARCL X	249 TONE 9	
288 "+ B.FT."	250 TONE 7	

F. Formulas used.

1. Assuming Girard Form Class 78, the formulas for the three volume tables are those published by Wiant and Castaneda:

Log rule Equation

Int. $\frac{1}{4}$ "

$$
\begin{aligned}
\text { Vol. }= & \left(1.52968 N^{2}+9.58615 N-13.35212\right)+ \\
& \left(1.79620-0.27465 N^{2}-2.59995 N\right) D+ \\
& \left(0.04482-0.00961 N^{2}+0.45997 N\right) D^{2}
\end{aligned}
$$

Scribner

$$
\begin{aligned}
\text { Vol. }= & \left(17.53508 N-0.59242 N^{2}-22.50365\right)+ \\
& \left(3.02988-0.02302 N^{2}-4.34381 N\right) D+ \\
& \left(0.51593 N-0.02035 N^{2}-0.01969\right) D^{2} \\
\text { Vol }= & \left(0.55743 N^{2}+41.51275 N-29.37337\right)+ \\
& \left(2.78043-0.04516 N^{2}-8.77272 N\right) D+ \\
& \left(0.04177-0.01578 N^{2}+0.59042 N\right) D^{2}
\end{aligned}
$$

Doyle

Where: $N=$ number of 16 -foot logs

$$
\mathrm{D}=\mathrm{dbh}
$$

2. In this program if form class is not 78, the often cited rule: "volume changes by 3 percent for each class change from 78" is applied to unrounded class 78 volumes calculated using the above formulas. The extent of the error involved with this adjustment is unde termined.

FORM CLASS 78

Tanle 73.--Grosis volume of tree, Doyle log rule

$\begin{gathered} \text { Tree } \\ \text { diam- } \\ \text { (teor } \\ \text { (incteen) } \end{gathered}$	VOIUME (board feat) HY NUMEEIR OF USABLE dGOOT LOOS										
	1	13/	a	21/5	3	3\%	4	4/5	b	613	${ }^{+}$
10	14	17	30	21	22						
11	22	27	32	35	34.						
12	28	36	43	18		54	86				
13	38	48	89	66	73	76	80				
14	48	6.	75	34	83	98	10.3				
	60	78	86	108	1.21	128	136				
15	72	94	116	132	149	100	170				
17	86	113	140	101	132	146	20				
	100	182	16.4	! (M)	21.6	212	214				
19	118	186	1.4	235	2, 20	20	297				
	135	180	20	201	207	322	346	3 ct	3 8		
	154	207	2200	302	344	371	414	4 L 23	4×2		
	174	234	215	344	$3: 2$!	427	$4{ }^{4} 2$	492	521		
23	195	264	332	388	444	4×3	$3 / 2$	6.581	5 H		
	216	203	371	433	496	$\square_{\text {- }}^{4} 4$	5×2	625	Gtik		
	241	3288	414	4 sin	5is	Bra	660	(ir	75		
	266	362	159			678	737		849		
2	292	398	50.15	524	684,	740	314	877	944		
28	317	434	551	850	750	8×0	890	961	1,032	1.096	
2	348	478	${ }^{604}$	714	324	902	0x\%	1,031	L, 142	1,218	1, 3×1
	376							1, 150	1,251	1,330	1, +27
	418	562	717	850	2031	1,080	1.176	1, 273	1,370		1, 1.67
	411	608	776	922	1 , Mis	i. 176	1.2×3	1,386	1, 188	1, 淮	
	574	${ }^{6} 50$	838		1, 152	1.2fx 1	1,385	1, 497	1, ars	1,734	, sfo
3	506	700		1,064	1, 2×1	1,3611	1,487	1, icme	1, 7 , 30	1, 8 (a)	2,0\%3
	644	754				1,472	1,610	1,743	1, 876	2, (2)	2163
	881		, $\mathrm{N} / 3$	1,234	1.439.1	1. 5×31	1,732	1, 878	2,023	2, 17.1	$2,3 \%$
	${ }^{618}$, 1112	1,318	1. $0: 4$	1, $6^{2} 4$	1, $8: 51$	1, 013	2, 172	2, 332	
	${ }^{65}$, 170	1,402	1, 6331	1,815	1,073	2, 14.1	2, $3: 212$	2, 401	2, 641
	769		, 250	1,468	1, 7461	1,932	2, 118	2, 293	2.479	2.662	
		1,038	, 330	$1, \mathrm{BOH}$	1.850	2, 059	2, 210	2. 448	2, 8:36	\|2, $832 \mid$	$3,122$

FORM CLASS 78

Table 47.-Gross volume of tree, Scribmer log rule

Retrospective Comments Regarding MG78

1. Skipping the initial reminders could be accomplished by using flag 03 and inserting the following:
a. FS? 03

GIO 05 after step 07 (AVIEW)
b. IBL 05 after step 19 ("D FOR DOYLE")
2. Reasonable printer output is obtained only with printer in NORM mode.

Calculator: HP-41C/CV
Program Name: MYERS
Author: T.W. Beers

Date: June, 1981

Purpose: To provide a convenient calculation procedure to be used instead of the set of 14 tables of upland hardwood weights and volumes summarized by Myers, et. al. (U.S.F.S. Gen. Tech. Rep. NC-60, 1980). Provision is made for all six species cited: black, red, and white oak, hickory, white ash, and yellow poplar. In addition to the obvious advantage of the calculator over the table look-up procedure, "interpolation" between classes given in the tables is routinely handled by the programmed procedure.
A. Storage assignments

```
Register
Use
                                    control number for the recall of the appropriate set of coefficients ( \(a, b\), and \(c\) )
                                table number (as specified in NC-60, cited above)
                                species number code:
                                1 = black oak (key A)
                        2 = red oak (key B)
                        3 = white oak (key C)
                        4 = hickory (key c, i.e., shift C)
                        5 = white ash (key D)
                        6 = yellow poplar (key E)
a copy of the control number stored in \(R_{00}\)
tree DBH, in inches or centimeters
tree height, in feet or meters
calculated tree weight or volume in pounds (LBS.), kilograms (KG.),
cubic feet (CU.FT.), or cubic meters (Mヶ3)
the 84 a coefficients listed in parts \(E\) and \(F\)
91-174 the 84 b coefficients listed in parts \(E\) and \(F\)
175-258 the \(84 \underline{\text { c coefficients }} 1\) isted in parts \(E\) and \(F\)
```

B. Labels

Global
MYERS
Loca 1
A
B
C
c
D
C. Flags

Type and

Type and
Number

User:
program start and initialization
black oak control routine red oak control routine white oak control routine hickory control routine white ash control routine yellow poplar control routine
prompts for the desired table, then tests for and displays the nature of the table; volume, green weight, or oven dry weight
constructs the control number from the keyed-in table number and generated species code number
prompts for DBH and height and calculates the desired answer
a guiding routine for label 00
to affix "LBS." to answer
to affix "CU.FT." to answer to affix "KG." to answer
displays answer and provides 2-second pause
provides the prefix "GREEN WT."
provides the prefix "OVEN DRY WT."
provides the prefix "VOLUME"
displays prefix for answer and prompts for keys A through E or c (i.e., for desired species)
tests for the appropriate units suffix for the answer; defaults to "Mヶ3" if labels 03, 04, or 05 are not used
printer double-wide flag, used in label F
printer enable flag, used in label 01 to skip printed documentation of DBH and height if printer is not attached

C. Flags (Continued)

Type and Number

User:
22 numeric data input flag, used in label F to detect a newly input table number

29 digit grouping flag, used in the initialization to suppress the decimal point (in FIX 0)

System:
55

printer existence flag, used in label F to suppress print statement

D. Program procedure and example
I. In PRGM mode, load the program "MYERS"
(SIZE needed is 259)
II. In RUN mode

1. XEQ MYERS (suggest assignment to shift $X \geq Y$ key), and follow the prompts; USER mode is assumed in the following description, and the printer is not attached.

			Example	
	Prompt	Input	Key	Output
a. start	-	-	shift $X^{\geq}>Y$	-
	TABLE: \emptyset OR ?	3	R/S	GREEN WT. (pause)
	KEY: A-E OR c	-	A	*BLACK OAK* (pause)
	DBHYHT, R/S	$6 \uparrow 40$	R/S	273 LBS. (pause)
	DBHYHT, R/S	$20 \uparrow 64$	R/S	$\begin{aligned} & 5678 \text { LBS. } \\ & \text { (pause) } \end{aligned}$
	etc., for black oak in Table 3			
b. another species in same table - - B *RED OAK*				
in same table	-	-	B	*RED OAK* (pause)
	DBHTHT, R/S	$22 \uparrow 56$	R/S	6052 LBS.
	etc., for red oak in Table 3			

D. Program procedure and example (Continued)

Prompt		Example		
		Input	Key	Output
c. different table	-	-	F	-
	TABLE 3 OR ?	9*	R/S	VOLUME
				(pause)
	KEY: A-E OR c	-	shift C	*HICKORY*
	DBH^HT, R/S	$20 \uparrow 80$	R/S	(pause) $67.3 \mathrm{CU} . \mathrm{FT}$.
	-			(pause)
	DBHTHT, R/S	etc.		
*If the same table is desired (here, Table 3) R/Sis pressed instead of another number				

III. Notes and Cautions

1. The user is cautioned that in certain instances the calculator answer will not agree with the answer printed in the NC-60; it is presumed that this is occasioned by the fact that the coefficients presented in Table 17 of the cited publication were rounded-off to facilitate printing. The printed ones were employed in the program described here in.
2. If the printer is attached and the program is executed, paper documentation of the input and output is provided; however if the calculator display only is to be monitored, the printer should be turned off and unplugged to avoid program interruptions.

E 1. Program Listing and Example

01*LBL "MYERS*	51 PSE	101 ISCS 90
820	52 -KEY: A-E OR c"	182 RCL 85
03 ST0 01	53 PROMPT	183 RCL IND 90
04 CF 29	54*LBL \boldsymbol{A}	104 Y4X
954LBL F	55 "*BLACK OAK*"	185 *
06 FIX 8	56 AYIEH	186 ST0 06
97 CF 22	571	107 FIX B
08 -TABLE:	58 CTO 92	108 FC? 21
89 ARCL 01	59*LBL B	189 GTO 11
10 "+ OR ?*	60 -*RED 0RK**	118 -1]:
11 PROMPT	61 AYIEN	111 ACA
12 FS ? 22	622	112 RCL 84
13 ST0 01	63 GT0 82	113 ACX
14 RCL 81	64*LBL C	$114^{*} \mathrm{H}: *$
15 SF 12	65 "*WHITE OAK**	115 ACA
16 "TABLE -	66 AYIEN	116 RCL 85
17 ARCL X	673	117 ACX
18 FS? 55	68 GT0 82	118 ADY
19 PRA	69*LBL c	1194 LBL 11
20 CF 12	79 "*HICK0RY**	120 CLA
216	71 AYIEN	1217
22 X YY?	724	122 RCL 91
23 GT0 07	73 GTO 82	$123 \mathrm{~K}=$ Y?
24 RCL 81	744LBL D	124 GTO 93
258	75 **NHITE ASH**	12510
$26 \mathrm{X} \backslash Y$?	76 AYIEM	$126 \mathrm{X}>9$?
27 GTO 88	775	127 GTO 04
28 RCL 01	78 GTO 82	12814
2910	794LBL E	129 RCL 81
$30 \mathrm{X} \backslash Y$?	88 "*Y. POPLAR**	$138 \mathrm{X}=\mathrm{Y}$?
31 CTO 09	81 RYIEN	131 GT0 05
32 RCL 81	826	132 FIX 2
3313	830 LBL 02	133 ARCL 86
$34 \mathrm{X} Y$ Y?	84 ST0 82	$134{ }^{\circ}+\mathrm{Ht} 3^{\circ}$
35 GTO 07	85 XEO 90	135 GT0 86
36 RCL 81	86 L ${ }^{\text {L }}$ L 61	136 LBL 03
3715	87 RCL 83	137 FIX 0
$38 \mathrm{X} \backslash \times$?	88 ST0 90	138 ARCL 96
39 CTO 88	89 "DBHTHT, R/S"	$139{ }^{\circ}+$ LBS.*
404LBL 99	98 PROMPT	148 GTO 96
41 -YOLUME"	91 CLA	$141 *$ LBL 84
42 GTO 10	92 STO 85	142 FIX 1
43 L LBL 88	$93 \mathrm{XK} \mathrm{Y}^{4}$	143 ARCL 96
44 *OVEN DRY HT. ${ }^{\text {a }}$	94 ST0 94	$144^{\circ} \mathrm{F}$ CUS. FT.
45 GTO 10	95 RCL IND 80	145 GT0 06
46*LBL 87	96 X S $>Y$	146*LBL 05
47 -GREEN HT. ${ }^{\text {a }}$	97 ISS 80	147 FIX 0
48*LBL 10	98 RCL IND 80	148 ARCL 86
49 ADY	$99 \mathrm{Y} 4 \times$	149 "+ KG. ${ }^{\text {\% }}$
50 AYIEH	100 *	$158+$ LBL 86

E 1. (Continued)

TABLE 10
GREEN HT.
WHITE ASH
D: $40 \mathrm{H}: 15$
1220 KI.

TABLE 16
YOL LJME
BLACK OAK
D: $60 \quad H: 30$
$3.77 \mathrm{n}+3$

E 2. Printer Output of Regression Coefficients Stored in Registers 07 through 258

	0.29110
	0.
R89 $=$	1.
R19	0.8
R11 $=$	0.7
2	0.1
	0.0
	0.
R15	3.
R16	0.5
R17	0.8
R18=	0.007380
19	0.998598
R2日 $=$	0.
$\mathrm{R21}=$	1.7
R22	0.4
R23	0.8
R24 $=$	0.084889
R25	0.047820
R26=	0.8
	2.086780
R28=	0.29
R29 $=$	0.184918
R39 =	0.803920
R31 $=$	0.0455
R32 $=$	0.05
R33 $=$	0.8407
R.34 $=$	0.224620
R.35 $=$	0.8452
R36 $=$	0.80196
R37 $=$	0.001268
R38 $=$	9.801539
R39	0.046890
R48 $=$	0.086538
$1=$	0.082580
R42 $=$	0.809110
R	0.091198
R.4	0.801520
R45=	0.028368
R46=	0.885828
27 $=$	0.881150
R48=	0.888968
29 $=$	0.835330
$50=$	0.

R51 $=$	0.111370	R101 =	1.928418
R52=	0.178268	R102=	1.848408
R53=	0.079360	R103=	2.309488
R54 $=$	0.839230	R104 $=$	2.365680
R.55=	0.017618	R105 $=$	2.398180
R56=	0.817870	R106 $=$	2.897488
R57 $=$	0.149828	R107=	2.214988
R58=	0.892870	R108=	1.722330
R59 $=$	0.809758	R169 $=$	2.233698
R60 $=$	0.804680	R110 $=$	2.296010
R61 $=$	0.014660	R111 $=$	2.471640
R62 $=$	0.815478	R112=	2.818330
R63=	9.106340	R113=	2.239780
R64 $=$	0.863780	R114 $=$	1.847630
R65 $=$	0.015890	R115=	2.384898
R66=	0.803690	R116 $=$	2.361488
R67 $=$	0.808888	R117=	2.358198
R68 $=$	0.808980	R118=	2.892780
R69 $=$	0.891820	R119 $=$	2.197630
R78=	0.049740	R120 $=$	1.718528
R71 $=$	0.815288	R121 $=$	2.214210
R72=	0.082468	R122 $=$	2.285730
R73=	0.867430	R123 $=$	2.392336
R74 $=$	0.897898	R124 $=$	2.819780
R75 $=$	0.857338	R125 $=$	2.216510
R76=	0.834838	R126 $=$	1.817998
R77 $=$	0.888680	R127 $=$	2.278140
R78=	0.801808	R128=	2.348390
R79 $=$	0.808815	R129 $=$	2.357396
R89 $=$	0.808015	R139 $=$	2.891340
R81 $=$	0.880137	R131 $=$	2.176980
R82=	0.808068	R132 $=$	1.784528
R83 $=$	0.880824	R133 $=$	2.167906
R84 $=$	0.888085	R134 $=$	2.388980
R85 $=$	0.888013	R135 $=$	2.221880
R86=	0.080013	R136 $=$	1.853288
R87=	8.8800887	R137 $=$	2.242028
R88 $=$	0.808049	R138 $=$	1.889920
R89 =	0.880015	R139 $=$	2.237600
R90 $=$	0.080004	R149 $=$	2.299000
R91 $=$	2.167980	R141 $=$	2.481480
R92 $=$	2.388988	R142=	2.818480
R93=	2.221898	R143 $=$	1.928410
R94 $=$	1.853289	R144 $=$	1.848400
R95=	2.242020	R145=	2.389400
R96=	1.889920	R146=	2.365688
R97 $=$	2.237608	R147 $=$	2.398100
R98=	2.299898	R148=	2.897488
R99 $=$	2.481480	R149 $=$	2.214880
R100 $=$	2.018480	R158 $=$	1.722330

E 2. (Continued)

R151 $=$	2.233698	R201 $=$	0.255320
R152=	2.296010	R202=	0.738450
R153 $=$	2.471640	R293 $=$	0.999260
R154 $=$	2.818330	R204 $=$	1.941689
R155=	2.239780	R205 $=$	1.883570
R156 $=$	1.847630	R296 $=$	0.914640
R157 $=$	2.364800	R207 $=$	0.082890
R158=	2.361480	R298 $=$	0.746409
R159 $=$	2.358190	R299=	0.841790
R16 $=$	2.892780	R210 $=$	1.783230
R161 $=$	2.197630	R211 $=$	0.955630
R162=	1.718520	R212=	0.855270
R163=	2.214210	R213 $=$	0.256710
R164 $=$	2.285730	R214 $=$	0.739870
R165=	2.392330	R215 $=$	1.824888
R166=	2.819780	R216 $=$	1.976320
R167 $=$	2.216510	R217 $=$	0.982600
R168=	1.817998	R218 $=$	1.182980
R169 $=$	2.278140	R219 $=$	0.481800
R170 $=$	2.348398	R228 $=$	0.898180
R171 $=$	2.357390	R221 $=$	0.585690
R172=	2.891340	R222 $=$	1.186350
R173=	2.176980	R223 $=$	0.999508
R174 $=$	1.764520	R224 $=$	0.923500
R175=	0.982698	R225 $=$	0.017440
R176=	1.182980	R226 $=$	0.737608
R177 $=$	0.481880	R227 $=$	1.458860
R178=	0.888100	R228 $=$	1.732280
R179 $=$	0.585690	R229 $=$	0.945580
R180 $=$	1.186350	R230 $=$	0.862588
R181 $=$	1.999508	R231 $=$	0.200680
R182=	0.923508	R232 $=$	0.730406
R183 $=$	0.917440	R233 $=$	9.978720
R184 $=$	0.737688	R234 $=$	1.932250
R185=	1.458060	R235 $=$	1.800480
R186 $=$	1.732280	R236 $=$	9.921430
R187 $=$	0.945500	R237 $=$	0.801130
R188=	0.862508	R238 $=$	0.744448
R189 $=$	0.280680	R239 $=$	0.880928
R190 $=$	0.738480	R24 ${ }^{\text {a }}$ =	1.723588
R191 $=$	0.978720	R241 $=$	0.947800
R192=	1.932250	R242 $=$	0.868980
R193=	1.800408	R243 $=$	0.255328
R194 $=$	0.921438	R244 $=$	9.738458
R195=	0.881130	R245 $=$	0.999268
R196=	0.744448	R246=	1.941680
R197 $=$	0.808928	R247 $=$	1.883578
R198=	1.723500	R248 $=$	0.914648
R199 $=$	0.947000	R249 $=$	0.082890
R280 $=$	0.860980	R250 $=$	0.746488
		R251 $=$	0.841790
		R252=	1.783238
		R253 $=$	0.955630
		R254 $=$	9.855270
		R255 $=$	0.256718
		R256=	0.739070
		R257 $=$	1.024886
		R258=	1.976320

F. Formulas used and background material

1. Basic computation formula

As described in the NC-60 publication, the tree volume or weight (Y) was predicted using the non-linear regression model

$$
Y=a D_{H}^{b}
$$

where $\quad D$ is tree diameter breast high H is tree height
and $\quad a, b, c$, are the fitted coefficients
2. The 252 coefficients are stored in R_{07} to R_{258} as follows:

Table	Species	a	b	c
3	1	R_{07}	R_{91}	R_{175}
	2	Ro8	R_{92}	R_{176}
	3	Rog	R_{93}	R_{177}
	4	R_{10}	R_{94}	R_{178}
	5	R_{11}	R95	R_{179}
	6	R_{12}	R_{96}	R_{180}
4	1	R_{13}	$\mathrm{R}_{9} 7$	R_{181}
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
16	6	R_{90}	R_{174}	R_{258}

3. Retrieval of the proper set of coefficients for table T and species code S is achieved by indirect addressing, making use of a control number developed
(in label 00) from the following algorithm:
control number $=x+\frac{x+168}{1000}+.00084$
where

$$
X=(T-3) 6+(S+6)
$$

note: (1) the "3" is needed because table numbers start with 3 , not 1
(2) the first "6" is needed because there are 6 species, the second "6" because register 7 is the start of the stored coefficients

The coefficients for species 3 (white oak) in Table 4 would be retrieved by:

$$
\begin{aligned}
X & =(4-3) 6+(3+6)=15 \\
\text { C.N. } & =15+\frac{15+168}{1000}+.00084 \\
& =15.18384\left(i . e ., R_{15}, R_{99}, \text { and } R_{183}\right)
\end{aligned}
$$

F. Formulas used and background material (Continued)
4. Copy of Table 17 from NC-60

Table 17. Equation coefficients ${ }^{I}-W=a D^{\prime \prime} H^{C}$

Table reference	Species	a	b	c	Table reference	Species	a	b	c
3	Black oak	0.20110	2.16790	0.90260	10	Black oak	0.03533	2.16790	0.90260
	Red oak	0.05700	2.30890	1.10200		Red oak	0.01113	2.30890	1.10200
	White oak	1.09890	2.22180	0.48180		White oak	0.11137	-. 22180	0.48180
	Hickory	0.81630	1.85320	0.80010		Hickory	0.17026	1.85320	0.80010
	White ash	0.77560	2.24202	0.50569		White ash	0.07936	2.24202	0.50569
	Yellow poplar	0.11415	1.80992	1.18635		Yellow poplar	0.03923	1.80992	1.18635
4	Black oak	0.09530	2.23760	1.99950	11	Black oak	0.01761	2.23760	0.99950
	Red oak	0.11210	2.29900	0.92350		Red oak	0.01787	2.29900	0.92350
	White oak	3.25212	2.48148	0.01744		White oak	0.14902	2.48148	0.01744
	Hickory	0.55940	2.01840	0.73760		Hickory	0.09287	2.01840	0.73760
	White ash	0.02277	1.92041	1.45806		White ash	0.00975	1.92041	1.45806
	Yellow poplar	0.00738	1.84840	1.73228		Yellow poplar	0.00468	1.84840	1.73228
5	Black oak	0.09050	2.30940	0.94550	12	Black oak	0.01466	2.30940	0.94550
	Red oak	0.11100	2.36560	0.86250		Red oak	0.01547	2.36560	0.86250
	White oak	1.72720	2.39810	0.20060		White oak	0.10634	2.39810	0.20060
	Hickory	0.41710	2.09740	0.73040		Hickory	0.06378	2.09740	0.73040
	White ash	0.08193	2.21408	0.97872		White ash	0.01509	2.21408	0.97872
	Yellow poplar	0.00408	1.72233	1.93225		Yellow poplar	0.00369	1.72233	1.93225
6	Black oak	0.04782	2.23369	1.00040	13	Black oak	0.00888	2.23369	1.00040
	Red oak	0.05629	2.29601	0.92143		Red oak	0.00898	2.29601	0.92143
	White oak	2.00678	2.47164	0.00113		White oak	0.09102	2.47164	0.00113
	Hickory	0.29717	2.01833	0.74444		Hickory	0.04974	2.01833	0.74444
	White ash	0.10491	2.23978	0.80092		White ash	0.01528	2.23978	0.80092
	Yellow poplar	0.00392	1.84763	1.72350		Yellow poplar	0.00246	1.84763	1.72350
7	Black oak	0.04553	2.30400	0.94700	14	Black oak	0.00743	2.30400	0.94700
	Red oak	0.05584	2.36140	0.86098		Red oak	0.00780	2.36140	0.86098
	White oak	0.84076	2.35819	0.25532		White oak	0.05733	2.35819	0.25532
	Hickory	0.22462	2.09270	0.73845		Hickory	0.03483	2.09270	0.73845
	White ash	0.04527	2.19763	0.99926		White ash	0.00868	2.19763	0.99926
	Yellow poplar	0.00196	1.71852	1.94168		Yellow poplar	0.00180	1.71852	1.94168
8	Black oak	0.00126	2.21421	1.00357	15	Black oak	. 000015	2.21421	1.00357
	Red oak	0.00153	2.28573	0.91464		Red oak	. 000015	2.28573	0.91464
	White oak	0.04080	2.39233	0.08289		White oak	. 000137	2.39233	0.08289
	Hickory	0.00653	2.01978	0.74640		Hickory	. 000068	2.01978	0.74640
	White ash	0.00250	2.21651	0.84179		White ash	. 000024	2.21651	0.84179
	Yellow poplar	0.00011	1.81799	1.78323		Yellow poplar	. 000005	1.81799	1.78323
9	Black oak	0.00119	2.27814	0.95563	16	Black oak	. 000013	2.27814	0.95563
	Red oak	0.00152	2.34839	0.85527		Red oak	. 000013	2.34839	0.85527
	White oak	0.02036	2.35739	0.25671		White oak	. 000087	2.35739	0.25671
	Hickory	0.00502	2.09134	0.73907		Hickory	. 000049	2.09134	0.73907
	White ash	0.00115	2.17690	1.02488		White ash	. 000015	2.17690	1.02488
	Yellow poplar	0.00006	1.70452	1.97632		Yellow poplar	. 000004	1.70452	1.97632

[^12]
Retrospective Comments Regarding MYERS

1. Although the species names and table identifiers are generated within the program, the 252 numeric coefficients must be loaded into registers 7 through 258 prior to program execution. This can be done by loading 8 magnetic data cards as follows:
a. key 7.258
b. execute RDTAX, and feed in cards as prompted
2. The numeric coefficients are present on the KRON-1 tape under the name MYDATA and can be downloaded to the calculator by the following (make sure SIZ $E=259$) :
a. MYDATA in alpha register, zero in X register
b. XEQ SEEKR
c. key 7.258, then XEQ READRX
3. The MYERS program and the necessary coefficients are also grouped under the file name MYERFL on the KRON-1 tape and can be downloaded in one step by:

> a. MYERFL in the alpha register
> b. XEQ READA

Calculator: HP-41C/CV
Program Name: SCALE
Author: T.W. Beers
Date: February 1982

Purpose: The program SCALE provides an accurate alternative to the scalestick approach to log scaling. Gross scale, net scale and amount of defect can be displayed for each log after scaling diameter, length and defect type and dimensions are input. Provision is made for summaries of gross and net scale and numbers of logs by species (9 groups possible), and by log grade (4 possible) within species. Various flags are used to enable the selection of log rule from Doyle, Scribner, Scribner Decimal C, International 1/4" and International 1/8". The defect calculation formulas are those proposed by Grosenbaugh and described in Husch, Miller and Beers (FOREST MENSURATION, 1982. John Wiley \& Sons). A printed copy of the summary by species is also made available by the program, if the HP-82143A printer is attached.
A. Storage assignments

Reqister	Use
00	species code; 1 through 9
01	current log gross scale
02	current \log defect
03	current log net scale
04	current defect proportion regarding length
05	dd, current log scaling diameter (small end, inside bark) in inches; must be integer
06	LL, current log length in feet; an integer
	(Note: registers 00 through 06 are also used in label J for indexing)
07	temporary storage in INT $1 / 4$
08	current log grade; 1 through 4
09	general temporary storage

A. Storage assignments (continued)

Register	Use
10	Net scale sum, species 1
11	Net scale sum, species 1, grade 1
12	Net scale sum, species 1, grade 2
13	Net scale sum, species 1, grade 3
14	Net scale sum, species 1, grade 4
15	Gross scale sum, species 1
16	Gross scale sum, species 1, grade 1
17	Gross scale sum, species 1, grade 2
18	Gross scale sum, species 1, grade 3
19	Gross scale sum, species 1, grade 4
$\left.\begin{array}{c}20 \\ \cdot \\ \cdot \\ 29\end{array}\right\}$	Same as 10-19, but for species 2
-	
$\left.\begin{array}{c}90 \\ \cdot \\ \cdot \\ 99\end{array}\right\}$	Same as 10-19, but for species 9
$\begin{aligned} & 100 \\ & 101-109 \end{aligned}$	not used not used; anticipated storage for species names or abbreviations
110	no. logs, species 1
111	no. logs, species 1, grade 1
112	no. logs, species 1, grade 2
113	no. logs, species 1, grade 3
114	no. logs, species 1, grade 4
$\left.\begin{array}{c}115 \\ \vdots \\ 119\end{array}\right\}$	Same as 110-114, but for species 2

A. Storage assignments (continued)

Register	Use
$\left.\begin{array}{c} 150 \\ \cdot \\ \cdot \\ 154 \end{array}\right\}$	Same as 110-114, but for species 9
$\begin{aligned} & 155 \\ & 156 \\ & 157 \\ & 158 \end{aligned}$	```total number of logs total gross scale total net scale total defect```

B. Labels

Global
SCALE
DOYLE
program start and initialization volume calculation by Dovle log rule

INT $1 / 4$
INT $1 / 8$
SCRIB
SCRIBC
SPEC
Local

A
a
circular defect prompt and master processing loop for
defect calculation
elliplical defect prompt
square defect prompt
rectangular defect prompt
crook defect prompt
sweep defect prompt
entire end defect prompt
wedge shape end defect prompt
prints a summary table with printer attached
clears registers 00-158
accumulates total log count, in label 19
subtracts 1 from log diameter, in label 19
calculates, displays and accumulates defect and net scale, in label 19
length proportion of defect calculation, in label 19
flag test to select desired log rule; defaults to Doyle rule
internal use in INT 1/4
internal use in INT 1/4
internal use in INT $1 / 4$
prompt for diameter and length (dd.LL?) and grade (GRADE?)
B. Labels (continued)

Local
10
11
12
13
14
15
16
17, $19{ }^{18}$
20
C. Flags

Type and
Number
User:
00
05
09
01
02
03
04
08
06
07
26
29

Use
in SCRIB, to enable Scribner decimal C calculation
in INTI/4 to enable Int. 1/8" calcualtion
in the printing routine, label J , tests for zero entries and aligns and prints each table entry
increments the species code and source register number, in J
subroutine used in alignment of table entries, in J
"line" printing subroutine, in J
"bar" printing subroutine, in J
to provide various skips when flag 00 is set
accumulation of gross volume, log count and prompt for defect type
access to skip log count by grade, in label 19

Use
when set, assumes non-summary use, ignoring grade and species prompts, and the initialization steps
when set, enables display of defect amount
when set, enables prompt and summary by grade
set, implies Doyle log rule*
set, implies Scribner log rule
set, implies Scribner Dec. C log rule
set, implies Int. 1/4 inch log rule
set, implies Int. $1 / 8$ inch log rule
used in INT $1 / 4$
used in INT $1 / 4$
can be cleared to silence the tones throughout the program
cleared in the program to suppress decimal points and separators
*when none of the log rule flags are set, the program defaults to Doyle rule, setting flag 01 in the process.

System:
none tested
D. Size and Key assignments

SIZE: 159
Suggested key assignments:
"SCALE" on COS
"J" on TAN (this is done internally)
E. Program procedure and example
I. Load the program "SCALE" into the calculator.
II. In RUN mode, process the following data:
dd.LL
Diameter (dd)
and

Log No.	Species	Length (LL)
1	7	20.16
2	3	24.08
3	5	16.08
4	5	30.20
5	1	14.16

$\frac{\text { Grade }}{1}$	
2	Defect Type
2 A-round	
3	B-ellipse
4	b-rectangle
1	C-crook

Defect
$\frac{\text { Dimensions }}{\text { diam. }=5^{\prime \prime}, \text { len. }=4^{\prime}}$
major d $=6^{\prime \prime}$ minor d =4", len. $=5^{\prime}$
side $=8^{\prime \prime}$, len. $=6^{\prime}$
side $1=6$ "
side $2=9$ ", len. $=10^{\prime}$
deflection=4", len. $=4$ '

1. First, assume that summaries are to be made (flag 00 clear) by species (no flag necessary) and by log grade (flag 09 set) and that defect amount is to be displayed for each \log (flag 05 set) in addition to the usual gross and net scale, Doyle rule (flag 01 set). Therefore, we need to CF 00, SF 09, SF 05, and SF 01 . This can be done at the first prompt if flag 00 is initially clear. Let's assume this is the case (flag 00 clear). We'll also presume USER mode and the printer is not attached until final summary printout is desired.

Excomple

	Prompt	Example		
		Input	Key	Output
a. start	-	-	COS	-
	CHECK FLAGS	-	SF 09	-
			SF 05	
			SF 01	
			R/S	
	CLEARING	(takes 45 seconds)		

E. Program procedure and example (continued)

SPEC: 1 OR ?

[^13]
E. Program procedure and example (continued)

At this point, since there is no log 6 in the example, one can either recall the various totals manually (step lg.) or automatically with the aid of an attached printer (step 1h.)
g. Manual recall of totals.

Reference to part A, Storage assignments, shows the location of the various totals by species and grade. Net and gross scale can be obtained by direct register recall, whereas number of logs and grand totals must be recalled indirectly. Both procedures are shown, using the example.
(1) Gross and net scale.

Species	Grade	Net		Gross	
1	A11	RCL 10:	93	RCL	15: 100
1	1	RCL 11:	93	RCL	16:100
3	A11	RCL 30:	192	RCL	35: 200
3	2	RCL 32:		RCL	37: 200
5	A11	RCL 50:	847	RCL	55: 917
5	3	RCL 53:	47	RCL	58: 72
5	4	RCL 54:	800	RCL	59: 845
7	A11	RCL 70:		RCL	75: 256
7	1	RCL 71:	250	RCL	76: 256

Note that "defect" is not summarized, nor are net and gross scale by log grades only; Since allowance is made for up to 9 species groups, there is insufficient memory space to accomplish this.
(2) Number of logs (for brevity this will be shown only for species 5).

Species	Grade	Reg. No.*	Input	Keys **	Output
5	A11	130	130	RCL f. X	2
5	3	133	133	RCL f. X	1
5	4	134	134	RCL f.X	1

*The register number having the \log count for species \underline{n} can be found by the formula

$$
R_{n}=(n+1) 5+100
$$

The log count by grade within species follows logically from the species total.
**Note the "f" implies the shift key
E. Program procedure and example (continued)
(3) Grand totals

Type of total		Reg. No.		Input	
	Keys		Output		
number of logs	155		155		RCL f.X

h. Automatic recall of some totals

To obtain a print out of gross scale, net scale, and number of logs by species and grand total:
(1) Turn calculator OFF and ensure that the HP 82143A printer is OFF.
(2) Attach printer to lowest available port.
(3) Turn both calculator and printer $O N$ and put printer in MAN mode.
(4) Press TAN key (in USER mode); this excutes label J and provides a printout as shown for the example.

Note that species are in numeric order and "zero entry species" are not printed.
i. Printed output.

	GROSS	NET	No.
SPEC.	SCALE	SCALE	L00s
1	106	93	1
3	209	192	
5	917	847	2
7	256	250	
Total	1473	1382	5

F. Formulas used.

1. For the calculation of gross scale in board feet, V, of a log having a scaling diameter in inches, d, and log length in feet, L:
a. Doyle rule: $\quad V_{D}=(d-4)^{2} \frac{L}{16}$
b. Scribner: $\quad V_{S}=\left(.79 d^{2}-2 d-4\right) \frac{L}{16}$
c. Scribner Decimal: $V_{C}=V_{S} / 10$, rounded to an integer
d. International $1 / 8$ inch: $V_{\text {I1/8 }}$ was calculated using the algorithm developed by Beers (see FOREST MENSURATION, by Kusch, Miller and Beers, 1982. John Wiley \& Sons).

The algorithm makes use of the traditional formula, $V=.22 d^{2}-.71 d$, for the top 4 -foot section, followed by the diameter of each subsequent 4 -foot section incremented by .5 inch, and re-use of the formula.
e. International $1 / 4$ inch: $\quad V_{I 1 / 4}=.905\left(\mathrm{~V}_{\mathrm{I} 1 / 8}\right)$
2. For the calculation of various defects the formulas proposed by Grosenbaugh and cited in FOREST MENSURATION were used:

$K \quad \mathrm{~L} \quad \rightarrow$
F. Formulas used (continued)

In all the above formulas
$\ell=$ defect length in feet
$L=\log$ length in feet
d = scaling diameter, i.e. diameter inside bark at the small end of \log
$\mathrm{p}=$ proportion of defect.
3. Defect amount and net scale:

```
    defect = (p) (gross scale), where
            p = proportion of defect
    net scale = gross scale - defect
```

G．Program listing and example．

010LBL＊SCALE＊	52 FS ？ 94
Q2 FS？Q日	53 GTO － $\mathrm{INT1/4}{ }^{-}$
Q3 GT0 99	54 FS？ 98
94 －check flags＂	55 GT0＂INT1／8＂
	$56+$ LBL－DOYLE＂
Q6 PROMPT	57°＊${ }^{\text {dioyle＊＊}}$
97＊＊CLEARING＊＊	58 PYIEH
88 AYIEH	59 KCL b
89 CF 29	604
16 FIX 8	61
11.158	62×12
120	63 RCL 96
$13+$ LRL 09	6416
14 STO IND Y	65
15 TONE 3	66 ＊
$16 \mathrm{ISG} Y$	67 RHD
17 GTO	68 ST0 01
184LEL－SPEC＂	69 SF 日1
19 RCL 日吅	71.156
20 TONE 7	15
21 ＂SPEC：－	72 RDN
22 ARCL X	73 ST＋IND T
$23 \cdot 9 \mathrm{P}$ ？${ }^{\text {a }}$	74 FS？日日
24 Pronpt	75 GTO 17
25 STO 日为	76 RCL 98
$26+$ LRL 89	771
27 TONE 7	78
28 TONE 7	795
29 ＊dd．LL ？＊	89
$33^{\text {Prohpt }}$	81100
31 INT	$82+$
32 STO 95	831
33 LASTX	84 ST＋INT Y
34 FRC	85 FC ？ 99
351 E 2	${ }^{86}$ GTO 29
36 ＊	87 XCY
37 INT	88 RCL 08
38 STO 96	$89+$
39 FC ？ 89	$98 \times \mathrm{KY}$
$40 \mathrm{~g} T 065$	91 SIt IND Y
41 TONE 7	$92+$ LEL 29
42 －grane ？	93 RCL 90
43 PROMPT	9410
44 ST0 88	95 ＊
$45+$ LBL 85	965
46 FS ？ 01	
47 GT0－DOYLE＊	98 RCL
48 FS ？ 82	$99 \mathrm{ST}+\mathrm{IND}$
49 GT0－SCRIB＊	10 OLT ？${ }^{\text {a }}$
54 FS ？ 03	

$1019 T 017$
$102 \mathrm{X}\rangle \mathrm{Y}$
193 RCL 88
$184+$
185 XOY
186 ST＋IND Y
107＊LBL 17
108 ＂G．SCALE＝
109 ARCL X
110 AYIEN
111 PSE
112 TONE 7
113 －DEF：AaBbCDE $=$
114 PROMPT
115 \＆LBL 01
116155
117 RDN
118 ISG IND T
119 X （）X
120 FS？ 80
121 GTO 69
122 GTO＂SPEC．
123＊LBL A
124 TONE 7
125 －DEF．DIAM．？＂
126 PROMPT
1271
$128+$
129×42
1304LBL 02
131 RCL 85
1321
133－
134×92
135 ／
136 LBL 84
137 TONE 7
138 －DEF．LENGTH ？＂
139 PROMPT
146 ＊
141 RCL 96
142 ／
143 STO 04
144＊LBL 03
145 RCL 04
146 RCL 81
147＊
148 RHD
149 STO 62
150158
G. Program listing and example (continued)

151 RIN
152 ST+ IND T
153 CHS
154 RCL 91
$155+$
156157
157 RDN
158 ST+ IND T
159 FS? 06
169 GTO 18
161 RCL 80
162 1月
163*
$164 \mathrm{X}) \mathrm{Y}$
$165 \mathrm{ST}+\mathrm{IND} \mathrm{Y}$
166 FC? 09
167 GTO 18
$168 \mathrm{X} \backslash>$
169 RCL 08
$175+$
$171 \mathrm{X}\langle>\mathrm{Y}$
172 ST+ IND Y
173 STO 93
174 LBL 18
175 *N. SCALE= *
176 ARCL X
177 AYIEN
178 PSE
179 FC? 05
189 GTO 01
181 RCL 92
182 -DEFECT= *
183 ARCL X
184 AYIEH
185 GTO 01
186* LBL a
187 TONE 7
188 "MAJOR AXIS ?"
189 PROMPT
1901
$191+$
192 TONE 7
193 -MINOR AXIS ?*
194 PROMPT
1951
$196+$
197*
198 GTO 02
1994LBL B
200 TONE 7

201 -DEF. SIDE ?"
202 PROMPT
2031
$204+$
$205 \times+2$
2064
297 *
208 PI
209 /
216 GTO 02
$211 *$ LBL b
212 TONE 7
213 -DEF. SIDE 1 ?
214 PROMPT
2151
$216+$
217 TONE 7
218 - SIDE 2 ?"
219 PROMPT
2281
$221+$
222 *
2234
224 *
225 PI
226 /
227 GTO 02
228*LBL C
229 TONE 7
230 -DEFLECTION ?"
231 PROMPT
232 RCL 95
233 /
234 GTO 04
$235+$ LBL D
236 TONE 7
237 -DEPARTURE ?"
238 PROMPT
2392
240 -
241 RCL 85
242 /
243 STO 04
244 GT0 93
2454LBL E
2461
247 GTO 04
248*LBL e
249 TONE 7
250 -DEFECT \&?"

251 PROMPT
25236 析
253 /
254 GTO 04
255*LBL -SCRIB*
256 **SCRIBNER**
257 AYIEH
258*LBL 10
259 RCL 85
264×42
261.79

262 *
263 RCL 05
2642
265 *
266-
2674
268 -
269 RCL 86
27616
271 /
272 *
273 FS? 83
274 RTN
275 RND
276 STO 01
277 GTO 19
278*LEL "SCRIBC"
279 **SCRIB. DEC.C**
280 AVIEH
281 XEQ 10
28210
283 /
284 RND
285 STO 81
286 GTO 19
287*LBL -INT1/4"
288 CF 97
289 * *INT1/4**
290 AYIEH
$291+$ LBL 11
292 SF 96
293 RCL 06
2944
295 /
296 INT
297 STO 97
298 LASTX
299 FRC
308 XEQ 07
G. Program listing and example (continued)

		401 INT
301 CF 96	35115.89510	4821
302 *	$352 \mathrm{ST0} 01$	493
303 ST0 01	3531.889	494
304 RCL Q 7	35450002	485
$305 \mathrm{X}=8$?	355 XEQ 16	486
396 GT0 88	356 - GROSS ${ }^{\text {- }}$	407 STO 04
$387 *$ LBL 86	357 ACA	408 RCL INII 94
3081	$358 . \mathrm{NET}$ NO.	489 LOG
$30951-97$	359 ACA	418 INT
$310 \times$ ELL 97	360 PRBIJF	411 CHS
311 RCL 97	361 -SPEC. SCALE	4123
3122	362 ACA	$413+$
313 \%	363 " SCALE LOGS*	414 SKPCHR
314 RCL 9.5	364 ACA	415 RCL IND 64
$315+$	365 PRBUF	416 ACX
316 ST0 99	366 XEQ 15	417 PRBUF
317×42	367 L LBL 12	4184LBL 13
318.22	368 RCL IND 11	419 ISG 01
319 \%	$369 \mathrm{X}=8$?	420 X<> X
32 RCL 99	378 ¢TO 13	421 ISG 82
321.71	3711	422 GT0 12
322 *	372 SKPCHR	423 ADY
323-	373 RCL 02	424 -TOTAL"
324 FS? 96	374 ACX	425 ACA
325 RTN	375 RCL IWI 81	426156
$326 \mathrm{ST}+81$	376 LOG	427 ST0 05
327 RCL 17	377 INT	4285
328×7 ?	378 CHS	429 ST0 96
329 GT0 96	3797	430 XEQ 14
$338+$ BL 88	$380+$	431157
331 FS ? C 97	381 SKPCHR	432 ST0 05
332 RTN	382 RCL IND 61	433 XEQ 14
333 RCL 91	383 ACX	434155
334.985	384 RCL 91	435 ST0 05
335 *	3855	
336 RND	386 -	437 ST0 96
337 STO 01	387 ST0 83	438 XEQ 14
338 GTO 19	388 RCL IND 93	439+LBL 16
$339+\mathrm{LBL}$ - INT1/8*	389 L0G	440 SF 12
345 SF 97	396 INT	441 "\#\#\#\#\#\#\#\#\#\#\#\#"
341 - *INT1/8**	391 CHS	442 PRA
342 AYIEN	3925	443 CF 12
343 XEQ 11	$393+$	444 RTN
344 RCL 11	394 SKPCHR	445*LBL 14
345 RND	395 RCL IND 03	446 RCL IND 05
346 STO 91	396 ACX	447 ENTERT
347 GTO 19	397 RCL 03	448 LOG
3484 LRL J	398100	449 INT
349 CF 29	$399+$	458 CHS
350 FIX	400 RCL 22	

G. Program listing and example (continued)

451 RCL 86
$452+$
453 SKPCHR
$454 X(>Y$
455 ACX
456 RTN
457*LBL 15
458 SF 12

468 PRA
461 CF 12
462 CLA
463 END

	GROSS	NET	N0.
SPEC.	SCALE	SC.ALE	LOGS
1	100	93	1
3	290	192	
5	917	847	2
7	256	250	
TOTAL	1473	1382	5

CAT 1
LBL'SCALE
LBL'SPEC
LBL' DOYLE
LBL'SCRIB
LBL'SCRIBC
LBL'INT1/4
LBL'INT1/8
END
1189 BYTES

Retrospective Corments Regarding SCALE

1. Because of the program length and required SIZE, if SCALE is used for summary purposes, the user is cautioned that no error correction routine is present, therefore faulty data, once processed, must be recorded and deleted "by hand."
2. For specific applications, a shorter program should be written, incorporating an error correction procedure.

Calculator: HP-41C/CV
Program Name: D2BVVMC (ㅁiameter To Basal Area and Vice-Versa with Metric Capability)

Author: T.W. Beers
Date: February, 1982

Purpose: To solve the formula relating tree diameter in inches or centimeters, D, and crossectional area ("basal area") in square feet or square meters, B, for either D or B, given the other as input.
A. Storage assignments-- none used.
B. Labels
Global

D2BVVMC
Local

A program start if reminder prompts are not wanted
a to convert an answer (B or D) to the "other" units (U.S. or metric)

00 basic input prompt and its reversal
01 calculation and display of basal area
02 calculation and display of diameter
03 internal to label a
04 to enable "one-way" calculation with flag 01 set
C. Flags

01
if clear, intermittent calculation of D and B is assumed, therefore the prompt is always present before an input
C. Flags (continued)

Number
Use
if set (externally), the user is assumed to want "one-way" calculations, therefore after the initial choice of direction (B to D or D to B) the input prompt is skipped and an input, followed by R / S leads to the displayed answer

02

20
if set, metric input (cm or m^{2}) is assumed and metric output is obtained
set internally to imply the direction of calculation from D to B

22
numeric data input flag set automatically when numbers are keyed in; tested to detect this condition.
D. Size and key assignments

SIZE needed: any
key assign : D2BVVMC on $X \gtrless Y$
A on A (done internally)
a on shift A (done internally)
E. Program procedure and example
I. Load the program into the calculator.
II. XEQ D2BVVMC ($X \geqslant Y$ in USER mode) and follow the prompts; note the following guidelines:

1. With flag 01 clear, if the prompt is in the correct direction, key the number, press R / S and read the answer. To reverse the direction of the prompt and calculation, press R/S without first keying the number.
2. With flag 01 set, prompting is skipped and the current direction of the calculator prevails. If the direction is correct for you, key the number, press R/S, read answer; key the next number, R/S, read answer, etc. To change the direction to your liking, press A, observe prompt, then R/S.
3. Metric input and output prevail with flag 02 set.
4. An answer can be converted to the other units by pressing a (shift A).
E. Program procedure and example (continued)
III. Some examples:
5. U.S. (CF 02)

Direction	Input	Output	Using key a converts to
D to B	10	$B A=0.545 \mathrm{SF}$	$=0.051 \mathrm{M} \uparrow 2$
"	12	$B A=0.785 \mathrm{SF}$	$=0.073 \mathrm{M} \uparrow 2$
"	30	$B A=4.909 \mathrm{SF}$	$=0.456 \mathrm{M} \uparrow 2$
B to D	. 5454	DIAM $=10.0 \mathrm{IN}$.	$=25.4 \mathrm{CM}$.
"	4.3	DIAM $=28.1 \mathrm{IN}$.	$=71.3 \mathrm{CM}$.

2. Metric (SF 02)

Direction	Input	Output	Converts to
D to B	25.4	$B A=0.051 \mathrm{M} \uparrow 2$	$=0.545 \mathrm{SF}$
"	100	$B A=0.785 \mathrm{M} \uparrow 2$	$=8.454 \mathrm{SF}$
B to D	. 051	DIAM. $=25.5 \mathrm{CM}$.	$=10.0 \mathrm{IN}$.
B to D	. 456	DIAM. $=76.2 \mathrm{CM}$.	$=30.0 \mathrm{IN}$.

F. Formulas

1. Basic formula:
U.S.

$$
B(\text { in. sq. ft. })=\frac{\pi D^{2}}{576}, D \text { in inches }
$$

Metric

$$
B\left(\text { in. } \mathrm{m}^{2}\right)=\frac{\Pi D^{2}}{40000}, \quad D \text { in } \mathrm{cm}
$$

2. Conversion factors used:

1 in. $=2.54 \mathrm{~cm}$, and its inverse
1 sq.ft. $=0.09290304 \mathrm{~m}^{2}$, and its inverse

G．Program listing and example．

CHECK FLAGS
SFI：OHE WRY
SF2：METRIC
SF 01
Bull
BH TO IIAM．
RUN
IIAM．TO B
10． 1 日ी RIN
$B H=9.545 \mathrm{SF}$
YEO a
$=6.051 \mathrm{Mt2}$ Rum
$B H=0.785 \mathrm{SF}$
MEO a
$=0.673 \mathrm{~m}+2$
30. 的的 RUN
$B H=4.989 \mathrm{SF}$
XEO a
$=0.456 \mathrm{mt}$
YEE A
MIAM．TO EA
EH TO IIAK．
.5454 RUN
HIM．$=16.0 \mathrm{IN}$.
YE日
$=25.4 \mathrm{~m}$
4.3 ROH

DIOM．$=28.1 \mathrm{IN}$.
XEO a
$=71.3 \mathrm{ch}$

SF 82
YEE A
BH TO MIAH．
IIMM．TO BR
25.4 RUI
$\mathrm{BH}=0.0 .51 \mathrm{H} 2$
XEQ a
$=0.545 \mathrm{gF}$
109.690 ROIN
$B H=6.7851+2$
XEO a
$=8.454 \mathrm{SF}$
XEE A
IIIAM．TO BA
BH TO IIMM．
.851 RUH
DIAM $=25.5 \mathrm{~cm}$.
SEO a
$=10.0 \mathrm{IN}$.
.456 RIM
IIAH．$=76.2 \mathrm{ch}$.
XED a
$=30.0 \mathrm{IN}$.

Calculator: HP-41C/CV
Program Name: F2CVV (Fahrenheit To Centigrade and Vice Versa)
Author: T.W. Beers
Date: February, 1982

Purpose: To convert either Fahrenheit and Centigrade degrees to the other.
A. Storage assignments

Register	Use
01	
02	
03	degrees Fahrenheit
degrees Centigrade (i.e., Celsius)	
Kelvin units	

B. Labels

Global
F2CVV
Local
B program start if reminder prompts are not wanted
b

00
01
C. Flags

Number
01 to convert the displayed answer to Kelvin units basic input prompt and its reversal calculation and display of the answer
,
if clear, intermittent calculation of either degrees F or degrees C is assumed, therefore the prompt is always present before an input
if set (externally), the user is assumed to want "one-way" calculations, therefore after the initial choice of direction (F to C or C to F) the input prompt is skipped, and an input, followed by R/S leads to the displayed answer
C. Flags (continued)

Number
20

22

Use
set internally to imply the direction of conversion from C to F
numeric data input flag; tested to detect this condition (numeric data input)
D. Size and key assignments

SIZE needed: ≥ 004
Key assign : F2CVV on $\mathrm{R} \downarrow$
$\begin{array}{llll}\mathrm{B} & \text { on } & \mathrm{B} & \text { (done internally) } \\ \mathrm{b} & \text { on } & \mathrm{b} & \text { (done internally) }\end{array}$
E. Program procedure and example
I. Load the program into the calculator.
II. XEQ F2CVV ($\mathrm{R} \downarrow$ in USER mode) and follow the prompts; note the following guidelines:

1. With flag 01 clear, if the prompt is in the correct direction, key the number, press R / S, and read the answer. To reverse the direction of the prompt and conversion, press R / S without first keying the number.
2. With flag 01 set, prompting is skipped and the current conversion direction prevails. If the direction is correct for you, key the number, press R / S, and read the answer; key the next number, R / S, read the answer, etc. To change the direction to your liking, press B, observe prompt, then R / S.
3. A displayed answer (Fahrenheit or Centrigrade) can be converted to Kelvin units by pressing b (i.e., shift b) in USER mode; then, pressing R/S returns the calculations to the main stream.
III. Some examples:

Direction	Input	Output	using key b, converts to
F to C	32	DEG C $=0.0$	$=273.2$ KELVIN
F to C	86.9	DEG $C=30.5$	$=303.7$ KELVIN
C to F	100	DEG F $=212.0$	$=373.2$ KELVIN
C to F	-10	DEG F $=14.0$	$=263.2$ KELVIN

F. Formulas

1. The primary conversion is based on the algorithm: add 40 to the number, multiply by $\frac{5}{9}$ or $\frac{9}{5}$, depending on the direction of conversion, and subtract 40.

Thus:

$$
\begin{aligned}
& \text { from } F \text { to } C \\
& \qquad{ }^{\circ} \mathrm{C}=\frac{5}{9}\left(40+{ }^{\circ} \mathrm{F}\right)-40 \\
& \text { from } C \text { to } F \\
& \qquad{ }^{\circ} \mathrm{F}=\frac{9}{5}\left(40+{ }^{\circ} \mathrm{C}\right)-40
\end{aligned}
$$

2. Kelvin units are obtained by the relation

$$
\text { KELVIN units }=273.15+{ }^{\circ} \mathrm{C}
$$

G. Program listing and example

	52 RCL 02		
日1*LBL "F2CYy" 92 "CHECK FLACS:	53273.15		
02 CHECK FLAGS:"	$54+$		
Q3 AYIEH	$55 \mathrm{ST0} 0.3$		
04 PSE	$56^{\circ}=$		
05 "SF1: ONE WAY"	57 ARCL X		
06 AYIEN	58 " 5 KELYIN"		
67 PSE	59 RYIEW		
98 "*D0 IT NOH**	60 RTN		
89 PROMPT	61 FS? 01		
$16+L B L B$	62 GTO 81		
11 CF 22	63 GTO 68		
12 FIX 1	64 END		
134LBL 60			
14 "FAHR. TO CENT"			
15 FS ? 20			
16 "CENT. TO FAHR"			
17 TONE 7			
18 TONE 7			
19 PROMPT			
29 FS? 22			
21 GTO 81		XEQ	"F2CWY"
22 FC? 20		CHECK FLAGS	
23 SF 29		SFI: ONE HPY	
24 CTO 90		*DO IT NOH*	
254LEL 01			SF 01
26 FC 20			XEQ B
27 ST0 91		FAHR. TO CENT	
28 FS ? 20		32.0	RUN
29 STO 92		DEG C= 0.0	
3040			XEQ b
$31+$		$=273.2 \mathrm{KELYIN}$	
321.8		86.9	RUN
33 FC ? 20		DEG $C=30.5$	
341%			XEQ b
35 *		$=303.7 \mathrm{KELVIN}$	
3640			XEQ B
37 -		FAHR. TO CENT	
38 FS ? 20			RUN
39 STO 11		CENT. TO FAHR	
40 FC 20		100.0	RUN
41 STO 62		DEG F $=212.0$	
42 "DEG C= "			XEQ b
43 FS ? 20		$=373.2 \mathrm{KELYIN}$	
44 -DEG F = "		-10.0	RUN
$45 \mathrm{PRCL} X$		DEG F $=14.0$	
46 AYIEW			XEQ b
47 STOP		$=263.2 \mathrm{KELYIN}$	
48 FS? 01			
4967091			
50 CTO 00			

Calculator: HP41C/CV
Program Name: CONVRT
Author: T.W. Beers
Date: 1982
Purpose: A general program for commonly occurring conversions. Up to 15 local labels can be used to program user-specified conversions. Those presently programmed are inches-centimeters, feet-meters, square feet per acre-square meters per hectare, cubic feet per acre-cubic meters per hectare, ounces-milliliters (including "fifths" and "quarts"). Either direction of conversion is easily selected.
A. Storage assignments:

Register
B. Labels

Global
CONVRT

Use
the six-character prompt indicating the "forward" direction of conversion
the reverse prompt from that in register 00
the six-character identifier for the answer in the "forward" direction the identifier for the "reverse" direction answer the conversion constant; a multiplier in the forward direction, e.g., 2.54 for inches to centimeters the number of decimals to be displayed

Use
B. Labels (continued)

Local	Use
A	loads the registers for the conversion of inches to and from centimeters ($I N \rightarrow C M$ or $C M \rightarrow I N$)
B	same, for feet and meters ($\mathrm{FT} \rightarrow \mathrm{M}$. or M. $\rightarrow \mathrm{FT}$)
C	same, for square feet per acre and square meters per hectare (SFA-MH or SMH-FA)
D	same, for cubic feet per acre and cubic meters per hectare (CFA-MH or CMH-FA)
E	same, for ounces and milliliters ($0 Z \rightarrow M L$ or $\mathrm{ML} \rightarrow 0 \mathrm{Z}$)
e	converts ounces or milliliters to "fifths" (i.e., 4/5 of a quart, $1 / 5$ of a gallon, or 25.6 ounces) and to quarts (1.25 of a fifth, or 32 ounces)
00	provides the initial prompt for direction of conversion and its automatic reversal by R/S in the absence of a numeric key stroke
01	converts milliliters (ML) to ounces in label e. Note: 1 ML = . 001 liter $=1$ cubic centimeter, i.e., ML = cc
11	performs the acutal conversion arithmetic, displays the answer and directs control dictated by flag 01

C. Flags

Type and Number

User:
when set (externally), implies the user desires consistent use of one conversion label for several successive numbers, therefore one need only key the number and press R/S after the first conversion; otherwise the inital prompt is obtained by R/S
set in label 00 and used throughout to indicate the direction of conversion; "clear" implies the forward direction (inches to centimeters, feet to meters, etc.) while "set" implies the reverse direction.
numeric data entry flag, tested in label 00 to reverse the direction of conversion in the absence of a numeric key stroke prior to R/S
C. Flags (continued)

Type and Number Use

System: none tested
D. Size and key assignments

SIZE: ≥ 006
Suggested key assignments:
"CONVRT" on shift $\mathrm{R} \downarrow$
$\left.\begin{array}{l}\text { A } \\ \text { B } \\ \text { C } \\ \text { D } \\ \text { E } \\ \text { e }\end{array}\right\} \quad$ done internally on these respective keys
$\left.\begin{array}{l}\text { F through } \\ \text { a through } d\end{array}\right\} \quad$ potential local labels for future conversions
E. Program procedure and example
I. Load the program into the calculator
II. XEQ CONVRT (shift $\mathrm{R} \downarrow$ in USER mode) and follow the prompts. As examples, assume we need the following conversions made and require one decimal place in the answer:
(a) using key A and with flag 01 set:
10)

12 to centimeters
14
(b) using key B and with flag 01 clear:
4.5 feet to meters
1.0 meters to feet
(c) using key C:

10 sq. ft. per acre to sq. meters per hectare
1 sq . m. per hectare to sq. feet per acre
100 sq. ft. per acre to sq. m. per hectare
E. Program procedure and example (continued)
(d) using key D:

128 cu. ft. per acre to cu. m. per hectare
175 cu. m. per hectare to cu. ft. per acre
(e) using key E (and e)

32 oz . to ml ., then to fifths and quarts 750 ml . to oz., then to fifths and quarts

Step	Prompt	Input	Example	
1. Initialize	-	-	Key	Output
	-	-	SF 01*	-
	NO. DECIMALS	$\overline{1}$	shift R \downarrow	R/S

2. Answers:
(a)

	-
IN \rightarrow CM **	10
	12
	14
	-
	-
FT \rightarrow M.	4.5
FT \rightarrow M.	-
M. \rightarrow FT	-

CF 01
B
R/S
R/S
R/S
R/S
C
R / S
D
R / S
R / S
R / S
R / S

E. Program procedure and example (continued)

Step	Example			
	Prompt	Input	Key	Output
(e)		-	E	-
	ML $\rightarrow 0 \mathrm{Z}$	-	R/S	-
	$0 \mathrm{Z} \rightarrow \mathrm{ML}$	32	R/S	ML. $=946.2$
		-	E (i.e., e)	$\begin{aligned} & =1.2 \text { FIFTHS } \\ & =1.0 \text { QTS. } \end{aligned}$
		-	R/S	-
	$\mathrm{OZ} \rightarrow \mathrm{ML}$	-	R/S	-
	$M L \rightarrow 0 Z$	750	R/S	OZ. $=25.4$
		-	e	$\begin{aligned} & =1.0 \text { FIFTHS } \\ & =0.8 \text { QTS. } \end{aligned}$

*setting flag 01 is needed only in part (a) of the example since only there do you find a "group" of conversions in the same direction
**if the prompt is not in the correct direction for your needs, press R/S without keying a number, and the direction will be reversed.
III. Other comments

1. This program as described and listed in part F, provides for only 5 conversions. The addition of others to keys F, G, H, I, J, and a, b, c, and d is easily accomplished by inserting appropriate labels, prompts, and multipliers into the program. For example, a conversion routine for miles to kilometers and vice versa could be "assigned" to key F and achieved by inserting the following program steps just prior to the END statement (step 130):

Step
130 LBL F
131 CF 22
132 FIX IND 05
133 "MI->KM"
134 ASTO 00
135 "KM->MI"
136 ASTO 01
137 "MI. = "
138 ASTO 02
139 "KM. = "
140 ASTO 03
$141 \quad 1.6093$ (the multiplier to convert miles to kilometers)
142 STO 04
143
GTO 00
E. Program procedure and example (continued)
2. Careful examination of the program listing, steps $39,41,53$, 55, 95 and 97 , reveals the attempt to create a right-facing arrow using the minus sign and a right parenthesis; the right parenthesis can be generated "from scratch" only by use of the technique known as synthetic programming (reference: Wickes, W.C. 1980. Synthetic Programming on the HP-41C. Larken Publications, 4517 NW Queens Ave. Corvallis, OR. 97330). A reasonable approximation to the right parenthesis is on the standard 41C keyboard as the "greater than" symbol (shift TAN in ALPHA mode).
3. The generation of the conversion routines as described above can also be achieved by use of the program CONBLD (conversion builder). This method is very inefficient timewise, but does provide an insight into the use of a program to write another program. Synthetic programming is employed in CONBLD (program number 41F028), and the PPC ROM is required.
4. The program as written assumes a printer is not attached; if printed copy is desired, appropriate changes should be made to provide neatly formatted output. Part F shows the example, if printer is attached and in NORM mode.
5. The use of conversions that require more than a simple multiplier or divisor, such as Fahrenheit to centigrade and vice versa, can be built into this CONVRT program but it might be just as efficient to develop individual programs. This has been done in programs F2CVV (program number 41F026) and D2BVVMC (program number 41F025).

F．Program listing and example

61＊LEL＂COnvrt＂	51 CF 22	101 － $\mathrm{ML}=-$
Q2＂NO．Trimals？	52 FIX INT 65	1028 月510 日
83 Prip：	53 ＂FT－M．＂	1032.957 E ！
44 STO 65	54 ASTO 8 E	$1845 \mathrm{STO} \mathrm{O}_{4}$
－5＂Lachl lmbel？	55 M．－－7FT＂	$165970{ }^{6}$
Q6．PROMPT	56 ASTO 01	1860 LEL E
87＊LEL 90	57 ＂FT．$=$＂	187 FC 208
昭 CLA	58 RSTO Q2	183 \％E0 O1
日99 FC？ 26	$59 \mathrm{M}={ }^{\text {a }}$	18925.6
10 PrCL 日回	60 ASTO Q3	119．
11 FS ？ 29	61.3048	$111{ }^{\prime \prime}={ }^{\prime}$
12 ARCL O1	625 Sto 44	112 ARCL X
13 TONE 7	63 GTO 日6	113 ＋FIFTHS
14 PROAPT	$64+$ LBL 0	114 PUIEL
15 FS 2 C 22	65 CF 22	115 PSE
16 GTO 11	66 FIX IND 65	116 PSE
17 FCOC 20	67 ＂SFA－MH＂	1171.25
18 SF 29	68 Asto an	118
19 GTO Q9	69 ＂SMH－FA＂	$119{ }^{*}={ }^{\prime}$
204 BL 11	$77^{\text {PSTO M }}$	12 ARCLL X
21 RCL 44	71 ＂SF／h＝${ }^{\text {a }}$	121 ＂＋QTS．
22 Fs ？ 28		122 FYIEW
$231 / \%$	73 ＂SM／H＝${ }^{\text {c }}$	123 RTN
24 ＊	74 AST0 63	124 Fs？${ }^{\text {b }}$
25 CLA	$752.296 \mathrm{E-i}$	125 GTO 11
26 FS ？ 20	76 ST0 94	$126 \mathrm{GTO} \mathrm{Q日}^{6}$
27 ARCL 82	77 GT0 M0	1274LEL 91
$28 \mathrm{FC}) 28$	78＊LEL II	12829.573
29 ARCL 03	79 CF 22	129 －
$3 \mathrm{ARCL} \times$	80 FI\％INI 05	130 END
31 RUIEM	81 ＂CFA－MH＂	
32 Stop	82 ASTO M	
33 FS ？ 01	83 ＂CMH－FA＂	
34 GTD 11	84 ASTO 01	
35 GT0 90	$85{ }^{\text {－}} \mathrm{CF} / \mathrm{H}=$－	
$36+L$ RL A	86 AST0 日2	
37 CF 22	$87^{\circ} \mathrm{CM} / \mathrm{H}={ }^{\text {－}}$	
38 FIX INJ 05	88 ASTO 03	
39 ＂IN－）CM＂	$896.997 \mathrm{E}-2$	
	98 STO 84	
41 ＂CM－${ }^{\text {IN＂}}$	9167090	
42 AST0 01	924LEL E	
43 ＂IN．$=*$	93 CF 22	
44 AST0 02	94 FIX IND 85	
$45{ }^{\circ} \mathrm{CH}={ }^{\text {a }}$	95 ＂0Z－）ML＂	
46 AST0 03	96 ASTO 49	
472.54	97 ＂ML－）OZ＂	
48 STO 04	98 ASTO 01	
49 GTO 00	$99 * 02 .=\times$	
$50+L 8 L$ B	$10 \mathrm{HSTO} \mathrm{Q}^{2}$	

F．Program listing and example（continued）

Example with printer in NORM mode

SF 01
XER＂CONYRT＂
NG．DECIMRLS？
1．0 RUT
local label？
Xe日 A $\mathrm{IN}-\mathrm{CM}$

10． 18 RUN
C月．$=25.4$
$\mathrm{cm} .=30.5$
12．月 RUN
14.2 RUN CM．$=35.6$

Retrospective Comments Regarding convRT

1. Since many local alpha labels are used, one must be careful to not have other programs assigned to keys meant for use in CONVRT; otherwise the assignment takes precedence over the local label and calculator execution transfers to the assigned program.
2. Inspired by the need to convert liters to gallons on a recent auto trip, and the desire to calculate miles per gallon easily, a program called CVERT was prepared incorporating these needs with the conversions also present in CONVRT. The program CVERT is on the KRON-1 tape and operates similar to CONVRI with the following local label functions:

A through E and e - same as in CONVRT
F - the miles-kilometers conversion routine suggested in the CONVRT write-up

G -- gallons-liters conversion
H -- calculation of miles per gallon; assumes label G was just used to convert liters to gallons, therefore "gallons used" is in X register when H is pressed.

Calculator: HP-41C/CV
Program Name: CONBLD (for Conversion Builder)
Authors: Thomas W. and Ted W. Beers
Date: 1982
Purpose: CONBLD was written to demonstrate that program statements and indeed entire programs can be composed by another program. Thus, CONBLD can be used to insert user-designed subroutines in the CONVRT program (No. 41F027) as an alternative to keying the instructions directly into the program. "Synthetic programming" (see Wickes, W.C. 1980. Synthetic Programming on the HP-41C. Larken Publications, 4517 NW Queens Ave. Corvallis, OR. 97330) is used and the PPC ROM is required (Personal Programming Center, 2545 West Camden Place, Santa Ana, CA 92704).
A. Storage registers

Register	Use
00	the six-character prompt indicating the "forward" direction of the conversion
01	the reverse of the prompt stored in register 00 the six-character identifier (units) for the answer in the "forward" direction
03	the identifier for the answer in the reverse direction the conversion constant; a multiplier in the forward direction, e.g., 3.785 for U.S. gallons to liters.
04	the local label (A through J or a through e) $06-11$
13	used in the synthetic programming process. decrementing used in label 15 to isolate numerals in the conversion factor
17	decrementing used in label 07 to determine text length

A. Storage registers (continued)

Register
18
B. Labels

Global
CONBLD

Local
00
07
08
09
10
11
12

13
14
15
C. Flags

Type and
Number
User:
08,09
21

Use
index for indirect recall of text line by labels $07,08,09$ incrementing used in label 10 to select alpha text to be assembled
first part of the conversion factor (alpha form) second part of the conversion factor (alpha form)
\qquad
program start, prompts for input and assembles first three program lines in the conversion subroutine
determines the number of digits in the conversion factor determines the length of and generates the text length generates a text line isolates, decodes and loads the text characters assembles the next eight program lines checks for decimal point and if factor is negative assembles the conversion factor and the last two program lines and terminates the byte loading process.
locates and decodes each digit of the conversion factor generates the exponent byte for the factor sets up the decoding and assembly of the conversion factor

Use
\qquad
used in the byte-loading subroutine in PPC ROM
cleared, to enable normal VIEW and AVIEW; set, if printer is attached (Flag 55 set) to enable printing if printer is ON .
C. Flags (continued)

Type and
Number
System:
55 tested to determine if printer is attached
D. Size and key assignments

SIZE: ≥ 23
E. Program procedure and example
I. Load the program "CONBLD" into the calculator
II. Assume that we want to insert a subroutine, label F, in the program CONVRT to convert from pounds to kilograms and vice-versa. The multiplicative conversion factor in the "forward" direction is 0.4536 (pounds $\times 0.4536=$ kilograms), and the six-character prompts and identifiers we choose are:
"LB->KG"
"KG->LB"
"LB. = "
"KG. = "

The procedure is as follows:

1. Go to the place in the CONVRT program that we want the subroutine inserted. A logical place is just before the END statement. (GTO CONVRT, then BST twice.)
2. In PRGM mode, insert the following steps:

3. In RUN mode, XEQ CONBLD and follow the prompts
E. Program procedure and example (continued)

	Prompt	Example		
		Input	Key	Output
a. local label	LOCAL LBL?	F	R/S	-
b. first prompt	IST PROMPT?	LB->KG	R/S	-
c. second prompt	2ND PROMPT?	KG->LB	R/S	-
d. first units	1ST UNITS?	LB. $=$	R/S	-
e. second units	2ND UNITS?	KG.		-
f. conversion factor	FACTOR?	. 4536	R/S	blank, then *WORKING*

g. after approximately 3 minutes, during which time tone 87 sounds as each instruction is loaded into program memory, proceed to the next step.
h. program SST, DEL oox
clean-up

PRGM mode	SST
XEQ DEL oox	x.xxx

- SST to XROM ${ }^{\top}$ LB and delete this and any +'s that remain in program.
i. Program CONVRT has now been augmented by the addition of Label F which will convert pounds to kilograms and vice-versa.
III. Other comments

1. In the program listing tone 87 prints as TONE 7 in steps $36,41,46,53,59,115$, and 120. In order to achieve tone 87, one can XEQ 1 K after first keying in: $159 \uparrow 87 \uparrow X X$, where $X X$ is the key location code where tone 87 is to be assigned.
2. In the generation of the conversion factor, SCI 3 (4 significant digits) is the most accurate possible due to PPC ROM program NC limitation; if greater precision is desired the factor can be replaced manually.
F. Program listing and example

Q! 1 LEL "CONBLI"	51 RCL 20
	52 XEQ 98
0.3 "LOCAL LEL ?	53 TOHE 7
04 PROMPT	54154
6. ASTO 65	$55 \mathrm{XROM}=-\mathrm{B}^{\text {a }}$
06 "IST PROMPT ?	56 RCL 20
97 PROMPT	57 INT
88 ASTO 90	58 XROM "-8"
09 -2ND PROMFT ?	59 TONE 7
10 PROMPT	60 ISG 20
11 ASTO 91	61 GT0 10
12 "1ST UNITS ?	624 LBL 15
13 PROMFT	63 CLA
14 ASTO 82	64 SCI 3
15 "2HI UNITS ?	65 ARCL 64
16 PROMFT	66 ASTO 21
17 AST0 63	67 ASHF
18 AOFF	68 ASTO 22
19 "FACTOR ?	6911
20 PROMPT	79 STO 13
2157064	710 LBL 6 日
22 XROM "L-"	72 DSE 13
23 * *HORKING*"	73 CLA
24 CF 21	74 ARCL 21
25 RUIEN	75 ARCL 22
26 FS? 55	76 RCL 13
27 SF 21	77 XROM "NC"
28267	78 XROM "CD"
29 KROM "-E"	$79 \mathrm{n}=0$?
30 CLA	89 GTO 98
31 ARCL 65	$81+$ LBL 13
32 XROM "CI"	82 RCL 13
3337	83 CLA
34 +	84 ARCL 21
35 PR0M ${ }^{\text {a }}$-8"	35 ARCL 22
36 TOHE 7	86 XROH "NC"
37169	87 KROM "CI"
38 SROM "-8"	8848
3922	89 XPY ?
48 SROM "-8"	98 GTO 11
41 TOME 7	91 RDN
42156	9269
43 YROM "-E"	$93 \mathrm{X}=1 \mathrm{~T}$?
44133	94 GTO 14
	95 RDN
46 TONE 7	9632
47 CLA	97 -
48.903	98 CTO 12
4957020	994 LBL 11
$50 . L$ LEL 10	10845

101 RCL 2
$182 X \neq Y$?
103 GT0 11
10428
105 GTO 12
106*LBL 11
10726
108 GTO 12
169*LBL 14
11027
$111+$ LBL 12
112 XROM "- B^{2}
113 DSE 13
114 GTO 13
115 TONE 7
11652
117 XROM "-B"
118177
119 XROM "-8"
128 TOHE 7
121 CF 69
122 XROH "-8"
123*LBL 88
124 STO 18
1257
126 STO 17
127*LBL 87
128 DSE 17
129 CLA
130 RRCL IND 18
131 RCL 17
132 XROM "NC"
133 XROM "CD"
$134 x=8$?
135 GTO 97
136 RCL 17
137248
$138+$
139 XROM "-B"
140 LBL 99
141 CLA
142 ARCL IND 18
143 RCL 17
144 XROM "NC"
145 XROM "CD"
146 XROM "-B"
147 DSE 17
148 GTO 69
149 END

GTO "CONYRT"

	130+LBL "++"	$181+$				
	$131+$	$182+$				
	$132+$	$183+$				
25	$133+$	$184+$				
$\stackrel{\text { in }}{\sim}$	$134+$	$185+$				
${ }_{i}{ }^{\text {m }}$	$135+$	$186+$				
37	$136+$	$187+$				
0	$137+$	$188+$				
3	$138+$	$189+$				
\%	$139+$	$198+$				
${ }_{3}$	$140+$	$191+$				
	$141+$	$192+$				
	$142+$	197 XROM "LB"				
	$143+$	XEQ "CONBLD"				
	$144+$	LOCAL LBL?				
	$145+$	F RUN				
	$146+$	IST PRDMPT ?				
	$147+$	LB->KG 2ND PROMPT ?				
	$148+$					
	$149+$	$K G->L B$	RUN			
	$158+$		IST UNITS ?			
	$151+$					
	$152+$			The completed Label F prepared by CONBLD		
	$153+$	$K G_{1}=$ FACTOR ?	RUN			
	$154+$ $155+$					
	$155+$. 4536	RUN			
	$156+$					
	$157+$	SST, DEL 906 DEL 096				
	158 +					
	$159+$			1390LBL F		
	$168+$			131 CF 22		
	$161+$			132 FIX IND 95		
	162 +			133 "LB->KG'		
	$163+$			134 ASTO 08		
	$164+$			135 "KG->LE*		
	$165+$			136 ASTO 01		
	166 +			137 LB. $=$ -		
	$167+$			138 ASTO 92		
	168 +			$139{ }^{\circ} \mathrm{KG}$, $=$ -		
	$169+$			140 ASTO 03		
	$178+$			$1414.536 \mathrm{E}-1$		
	$171+$			142 STO 84		
	$172+$			143 GTO 90		
	$173+$			144 END		
	174 +					
	$175+$					
	$176+$					
	$177+$					
	178 +					
	$179+$					
	$180+$					

Calculator: HP-41C/CV
Program Name: BPROB (Binomial Probability)
Author: T.W. Beers
Date: February, 1982

Purpose: To calculate individual and cumulative probabilities of obtaining k successes in n trials assuming a specified probability of success in one trial, p.
A. Storage assignments

Register
00
01
02

03
B. Labels

Global
BPROB program start; initial prompts and storage of input
Local
A
01
p, the probability of success, 1 trial
n, the number of trials
k, the number of successes; changes throughout the program if the automatic incrementing feature is enabled (flag 01 set)
cumulative probabilities, i.e., $\sum P_{k} ; P_{k}=$ probability of obtaining k success

$$
0-1+2
$$

```
    prompt and storage of first k
    calculation and display of individual probability,
        incrementing k if flag 01 set, and accumulation of the
        probabilities
    display of the cumulative probability
    printing of table heading
    printing of table "line"
    printing of table "bar"
```

C. Flags

Type and Number

Use
User:
01 if set, the initial k is incremented by 1 and display proceeds automatically

12 to print double-wide characters
29 to supress decimal point in FIX 0

System:
55 to detect printer attached
D. Size and key assignments

SIZE needed: ≥ 004
Key assign: BPROB on $X \gtrless Y$
A on A (done internally)
E. Program procedure and example
I. Load the program into the calculator.
II. XEQ BPROB ($X \gtrless Y$ in USER mode) and follow the prompts. For the following steps, consider the case where a die is to be rolled 4 times ($n=4$) and we want to know the probability of obtaining 2 ones, 3 ones, and 4 ones ($k=2, k=3, k=4$) and the probability of obtaining at least 2 ones $[P(2)+P(3)+P(4)]$. Note that the probability of obtaining a "one" in one trial (a roll) is $p=1 / 6=.1667$.

1. Assume flag 01 clear, FIX 3

Prompt	Input	Key	Output
-	-	$X \geqslant Y$	
KEY P, R/S	. 1667	R/S	-
KEY N, R/S	4	R/S	-
1ST K?, R/S	2	R/S	$P(2)=0.116$
	-	R/S	$P(3)=0.015$
	-	R/S	$P(4)=0.001$
	-	R/S	CUM P $=0.132$

For the same N and p, press A and the prompt is lst K ? R/S
For new N and/or p, XEQ BPROB or press $X \gtrless Y$ in USER mode.
E. Program procedure and example (continued)
2. If flag 01 is set, R/S need not be pressed between answers.
F. Formulas used.

1. Basic binomial distribution formula

$$
P(k)=\binom{n}{k} p^{k}(1-p)^{(n-k)}
$$

where:

$$
\begin{aligned}
& P(k)=\text { the probability of obtaining } k \\
& \text { "successes" in } n \text { trials } \\
& p=\text { the probability of a "success" } \\
& \text { in } 1 \text { trial } \\
& n=\text { number of trials } \\
&\binom{n}{k}=\text { the combination of } n \text { items taken } \\
& k \text { at a time }
\end{aligned} \quad \begin{aligned}
& n! \\
&=\frac{n!(n-k)!}{k!}
\end{aligned}
$$

G. General comments regarding the program.

The PPC ROM was used to calculate $\binom{n}{k}$, and to generate the parentheses in the display. If the ROM is not available, one should change the program as follows:

```
replace steps 39 with "P<"
replace step 41 with " 
replace steps 20-24 with
    XEQ FACT
    RCL O2
        XEQ FACT
        \div
        RCL 01
        RCL 02
            -
        XEQ FACT
```

H. Program listing and example.

Retrospective Comments Regarding BPROB

l. The printed output from BPROB can be cleaned up slightly by the following:
a. delete step 100 (ADV)
b. insert 5 advances (ADV) after step 63 (XEQ 05)
2. The above changes were made in the BPROB program which is on the KRON-1 tape.

Calculator: HP4IC/CV
Program Name: SCHNUR
Author: T.W. Beers
Date: 1982
Purpose: To calculate tree height or site index, given the other, after age has been specified. Based on Wiant's (Jour. Forestry, 1975, Vol. 73 page 429) prediction equation for G. Luther Schnur's (1937) classic site index curves for upland oaks.
A. Storage assignments:

Register	
00	
$01-06$	not used
07	constants in the prediction equation
08	average tree age
09	site index
	average tree height

B. Labels

Global
SCHNUR
program start, generates constants
Local

A
B

01

02
prompts for and stores age converts height or site index in feet to meters provides the prompt for height or site index directs solution for site index (flag 20 set) or height (flag 20 clear)
views the input prompt, stops for data input, and provides the "toggle" to change the input prompt in the absence of numeric data key depression
B. Labels (continued)

Local
03
04
C. Flags

Type and Number

User:

20

22

29
System:

Use
solves the prediction equation for height in feet
solves the prediction equation for site index in feet
\qquad
Use
set in label 02 to indicate height is keyed-in and solution is for site index; clear indicates the reverse
numeric data input flag, tested in label 02 to provide the alternative input prompt in the absence of a numeric key stroke prior to R/S
cleared, to eliminate decimal in FIX 0
none tested
D. Size and key assignments

SIZE ≥ 010
Suggested key assignments:
"SCHNUR" on TAN
A on $\Sigma+$ (done internally)
B on $1 / x$ (done internally)
E. Program procedure and example
I. Load the program into the calculator
II. XEQ SCHNUR (TAN in USER mode) and follow the prompts. Consider the following examples:
(a) Age: 60, $\mathrm{SI}=40, \mathrm{HT}=$?
$\mathrm{SI}=50$, $\mathrm{HT}=$?
$\mathrm{SI}=60$, $\mathrm{HT}=$? , HT in meters= ?
(b) Age: 90, $\mathrm{HT}=70, \mathrm{SI}=$? $\mathrm{HT}=100$, SI= ? , SI in meters= ?
E. Program procedure and example (continued)

Example

Step	Prompt	Example		
		Input	Key	Output
1. Initialize	-	-	TAN	*SCHNUR*
2. Example a	AGE ?	60	R/S	-
	KEY SI, R/S	40	R/S	$\mathrm{HT} .=45 \mathrm{FT}$.
	-	50	R/S	$\mathrm{HT} .=55 \mathrm{FT}$.
	-	60	R/S	$\mathrm{HT} .=66 \mathrm{FT}$.
	-	-	B	$=20$ METERS
3. Example b	-	-	A	-
	AGE ?	90	R/S	-
	KEY SI, R/S	-	R/S	-
	KEY HT., R/S	70	R/S	S.I. $=54$ (FT.)
	-	100	R/S	S.I. $=78$ (FT.)
	-	-	B	$=24$ METERS

4. Formore data in the same age class, press R / S and observe the prompt, if it is not the right one, press R/S again.
5. For a new age class, press A to obtain the $A G E$? prompt.
F. Program listing and example

Examples (a) and (b) with printer in NORM mode

G. Formulas used

The formula used to fit Schnur's site index curves (in USDA Technical Bull. No. 560, 1937) was that derived by H.V. Wiant, Jr. (Jour. Forestry 73: 429):

$$
S I=62.7+8.37\left(\frac{H-\left[81.63249-.00786(100-A)^{2}\right]}{4.09382 A \cdot{ }^{29}-4.40767}\right)
$$

where:

```
SI= site index
H= average tree total height
A= average tree age
```

The above formula was also solved for H and used in the part of the program which prompts the user for site index.

Schnur's site index curves for upland oaks formulated

Harry V. Wiant, Jr.

The Author-Harry V. Wiant, Jr., is professor, Division of Forestry, West Virginia University, Morgantown. (Published with the approval of the Director of the West Virginia University Agricultural I:xperiment Station as Scientific Paper No. 1352.)

ABSTRACT-An equation for Schmur's site index curves for oaks is presemted, facilitating computerized computations. The average absolute difference between formula and table values was 0.5 foot and the maximum difference was 1.4 ferer.

RResearchers $(2,3)$ have formulated site index curves previously published for some forest species to eliminate the need for reading and interpolating from sets of curves and to facilitate computer processing. Complicated growth functions requiring sophisticated computer programs were used in developing these formulas, and maximum errors-the maximum difference between observed and predicted heights over the range of data points analyzed-have ranged between 0.6 and 4.6 feet. Schnur's (4) site index curves for
upland oaks have been widely used for many years in the Appalachians, and there is a need for a formulated approach.

Procedure

Schnur presents a formula for ascertaining site index (base age, 50 years) as follows:

$$
\begin{aligned}
& \text { years) as IOllOWS: } \\
& \text { Site index } \quad 62.7+8.37\left(\frac{H-11 a}{S a}\right)
\end{aligned}
$$

where $H=$ average total height (ft.) of dominant and codominant oaks, with an age of "a" (yrs.).
$\mathrm{Ha}=$ average height of oaks from Schnur's data for trees of age "a."
$\mathrm{Sa}=$ standard deviation of height about the average at age "a."
The "matchacurve system" (1) was used to develop predictions of Ha and Sa using data presented by Schnur.

Results

The prediction equation for Ha , with $\mathrm{r}=0.999$, was:

$$
\mathrm{Ha}=81.63249-0.00786(100-\mathrm{A})^{2}
$$

Sa was related to age, with $r=0.998$, as follows:

$$
S_{11}=4.09382 A \cdot 29-4.40767
$$

Substituting these relations into Schnur's equation,
we have:
Site index $=62.7+8.37\left(\frac{H-\left[81.63249-0.00786(100-A)^{2}\right]}{4.09382 A^{29}-4.40767}\right)$
Prediction of the 70 points Schnur used to plot his site index curves showed an average absolute difference of 0.5 foot and a maximum error of 1.4 feet. Considering the inaccuracies inherent in reading graphs and in height measurements as usually made in the field, the error in the formulated approach is negligible.

Literature Cited

I. Jensen, C. E., and J. W. Homeyer. 197I. Matchacurve-2 for algebraic transforms to describe curves of the class X^{n}. USDA Forest Serv. Res. Paper INT- 106.
2. Lundgren, A. L., and W. A. Dolid. 1970. Biological growth functions describe published site index curves for Lake States timber species. USDA Forest Serv. Res. Paper NC-36.
3. Payandeh, B. 1974. Formulated site index curves for major timber species in Ontario. Forest Sci. 20:143-144.
4. Schnur, G. L. 1937. Yield, stand, and volume tables for even-aged upland oak forests. USDA Tech. Bul. 560.

Retrospective Comments Regarding SCHNUR

1. A frequently occurring problem is encountered in this program - that is, program stoppage when an AVIEW is executed and the printer is OFF! If one wants to have the flexibility of running the program with the printer attached and either ON or OFF, the AVIEW-encountered stoppage (if printer OFF) can be avoided by the following program changes:
a. insert CF 21 just before the AVIEW (step 03 in SCHNUR)
b. insert FS? 55

SF 21 just after the AVIEW
Thus, clearing flag 21 disables printing and the calculator acts as if the printer is not attached and therefore the AVIEW does not cause a stoppage with the printer OFF; setting flag 21 in the presence of flag 55 set (55 is set automatically when printer is connected), restores the condition required to print, if the printer is then turned on.

The effect on a running program when a VIEW or AVIEW is encountered, is summarized below:

		Flag 55. printer existence flag	
		SET (printer attached)	CLEAR (printer disconnected)
Flag 21, print enable flag	$\left\{\begin{array}{c} \text { SET: } \\ \text { CLEAR: } \end{array}\right.$	printer ON -- prints, no stoppage printer OFF - stoppage, no print no print, no stoppage	stoppage, no print no print, no stoppage

2. In the above example, the printing of the AVIEW "message" was not necessary; if one wants to ensure that an AVIEW stoppage will not occur and that the AVIEW message will be printed, a routine developed by Roger Hill for the PPC ROM module is useful. Instead of AVIEW, one would use XBQ VA in the program, assuming the PPC ROM is inserted, or that the following subroutine is present in the calculator:

LBL VA
SF 25
PRA
SF 25
FS?C 21
CF 25
AVIEW
FC?C 25
SF 21
RIN

Calculator: HP-41C/CV
Program Name: TVOLSA (Tree Volume and Surface Area)
Author: T.W. Beers
Date: 1982
Purpose: To calculate tree volume in cubic feet and lateral surface area in square feet, assuming the following:

1. Input is [DBH \uparrow upper diameter \uparrow merchantable length] for the main stem, and [lower diameter \uparrow upper diameter \uparrow length] for additional sections. All diameters are consistently outside (or inside) bark in inches and merchantable length is the distance in feet from stump height (here assumed to be .5 foot) to the upper diameter.
2. The section between breast height and stump height is a 4-foot cylinder.
3. The section above breast height is a frustum of a cone and volume is determined by Newton's formula.
A. Storage assignments

Register Use
$0 \quad$ accumulated tree volume
$1 \quad R_{\ell}$, radius at breast height (or lower diameter point) in feet
R_{u}, radius at upper diameter point in feet
L', section length in feet
R_{m}, mid-section radius in feet $=\frac{R_{\ell}+R_{u}}{2}$
accumulated surface area
individual section volume individual section surface area sum of volumes for all trees keyed in sum of surface areas for all trees keyed in
B. Lábels

Global
TVOLSA

Use

program start, clearing of certain registers
B. Labels (continued)

Local
A
a

B

00

02

03

04

05
06
07
displays the volume and surface area (with flag 01 set) for the tree and adds these values to the grand totals
displays the grand total volume and surface area (with flag 01 set)
provides a repeat of LBL A output, without affecting the grand totals
initial prompt involving DBH, upper end diameter, d, and first section length, L
calculation of main stem volume from stump height of .5 foot to main stem upper diameter
calculation of main stem surface area above breast height
primary routine for the calculation and display of both section volume and surface area; also provides the prompt for the sections above the one that includes $D B H, D \uparrow d \uparrow L^{\prime}$, $D=$ lower diameter, $d=$ upper diameter, $L^{\prime}=$ section length
subroutine to display section surface area subroutine to calculate surface area below breast height
to provide program re-entry for the second and subsequent trees in a data set
C. Flags

Type and
Number
User:
00

01

22
set internally to signal calculation for a section not
when set (externally) causes surface area to be displayed in
tested to provide branch to label A in the absence of data

System:
including the main stem below breast height addition to volume input for an "upper section"

Use
none tested
D. Size and key assignments

SIZE: ≥ 010
Suggested key assignments:

"TVOLSA"	on	shift TAN
A	on	A (done internally)
a	on	shift A (done internally)
B	on	B (done internally)

E. Program procedure and example
I. Load the program into the calculator
II. XEQ TVOLSA (shift TAN in USER mode) and follow the prompts. As an example, consider the following trees, for which we want to calculate cubic-foot volume and surface area (set flag 01) in square feet.

Tree 1:

 main stem:$$
\text { DBH }=20 "
$$

$d=12^{\prime \prime}$
L = 20^{\prime}
upper sections:
D = 10"
$d=6^{\prime \prime}$
$L^{\prime}=8^{\prime}$
$D=8^{\prime \prime}$
$d=4^{\prime \prime}$
$L^{\prime}=10^{\prime}$

E．Program procedure and example（continued）
Excomple

Step	Prompt	Input	Key	Output
1．Initialize	－	－	SF 01	－
	－	－	shift TAN	－
2．Data input	DBH＾d ${ }^{\text {L }}$ ，R／S	$20 \uparrow 12 \uparrow 20$	R／S	VOL．$=31.5 \mathrm{CF}$
				S．A．$=88.0 \mathrm{SF}$
	Dヶd ${ }^{\text {L }}$＇，R／S	$10 \uparrow 6 \uparrow 8$	R／S	VOL．$=2.9 \mathrm{CF}$
				S．A．$=16.8 \mathrm{SF}$
	Dヶd ${ }^{\text {L＇，}}$ ，R／S	$8 \uparrow 4 \uparrow 10$	R／S	$\mathrm{VOL} .=2.0 \mathrm{CF}$
				S．A．$=15.7 \mathrm{SF}$
3．Tree 1 total	Dヶd＾L＇，R／S	－	A	$\Sigma \mathrm{VOL}=36.4 \mathrm{CF}$
	（press B for	nother look）		$\Sigma S A=120.4 \mathrm{SF}$
4．Tree 2 input	－	－	R／S	－－
	DBH＾d ${ }^{\text {L }}$ ，R／S	$16 \uparrow 13 \uparrow 8$	R／S	VOL．$=10.2 \mathrm{CF}$
				S．A．$=31.9 \mathrm{SF}$
	D＾d＾L＇，R／S	$13 \uparrow 11 \uparrow 14$	R／S	VOL．$=11.0 \mathrm{CF}$
				S．A．$=44.0 \mathrm{SF}$
5．Tree 2 total	D＾dヶL＇，R／S	－	A	$\Sigma \mathrm{VOL}=21.2 \mathrm{CF}$
	（press B for	nother look）		$\Sigma S A=75.9 \mathrm{SF}$
6．Grand totals	－	－	a	TOT $V=57.6$
				TOT $\mathrm{SA}=196.3$

F．Formulas
1．Volume－－all radii and lengths are assumed in feet
a．main stem from stump to breast height：

$$
\begin{aligned}
V=\pi R^{2} L, \text { where } L & =4 \\
\text { and } R & =\frac{D B H}{2}
\end{aligned}
$$

b．main stem above breast height；Newton＇s formula is used：

$$
V=\frac{L^{\prime}}{6} \Pi\left(R_{l}^{2}+4 R_{m}^{2}+R_{u}^{2}\right)
$$

where $\quad L^{\prime}=$ merchantable length－ 4
$R_{\ell}=$ radius at breast height
$R_{u}=$ radius at merchantable top
$\mathrm{R}_{\mathrm{m}}=$ radius at mid－section

$$
=\left(R_{\ell}+R_{u}\right) / 2
$$

F. Formulas (continued)

c. upper sections; Newton's formula is again used, but:

$$
\begin{aligned}
& L^{\prime}=\text { section length } \\
& R_{\ell} \text {, } R_{u} \text {, and } R_{m}=\text { lower, upper, and mid-section radii }
\end{aligned}
$$

2. Surface area-- all radii and lengths are assumed in feet
a. main stem from stump to breast height:

$$
\begin{aligned}
S & =2 \pi R L \\
& =8 \pi R, \quad \text { where } L
\end{aligned} \begin{aligned}
L & =4 \\
\text { and } \quad R & =\frac{D B H}{2}
\end{aligned}
$$

b. main stem above breast height; upper and lower circumferences are "unrolled" to form a trapezoid, leading to:

$$
\begin{aligned}
S & =\left(2 \pi R_{\ell}+2 \pi R_{u}\right) \frac{L^{\prime}}{2} \\
& =\pi\left(R_{\ell}+R_{u}\right) L^{\prime}
\end{aligned}
$$

c. upper sections are handled also as trapezoids, using the same altered definitions as described for volume determination.

G．Program listing and example

nitlet＂TVOLSA＂	516	
V2	52	192 RCL 日l
0350080	53 BCL	103 FI
8457089	$54 *$	104 ：
$05+$ LBL 67	559606	195
66 OF 60	56 91＋ 00	168
67 ERES gu	57 YED O	$10751+85$
时 CL	58 FCO 昭	160 ST +67
99＊LEL 09	59 YED 6	1098 PTH
10 TONE 9	61 FIX 1	IU＋LEL
11 ＂DBHTdtL，R／E＂	61 ＂402：$=$－	111 RCL की
12 PROPPT	62 FP 明	112 ST＋${ }^{\text {a }}$
134	63 ArCL 6	115 PC M5
14 －	64.50060	114 ST +0
154LEL 92	65 ARCL 60	115＋LEL 8
165063	$66^{\circ+\mathrm{F}} \mathrm{CF}^{\text {a }}$	$116-5000$
17 RDH	67 AUIEN	117 Mrct 60
1824	68 PSE	
19%	69 F9？ 01	119 autia
2650042	70×1508	106 FO 01
21 RDH	71 of 22	121 stop
2224	72 TOAE 7	122 FO 0
23 ；	73 TONE 7	123 GT0 07
$24 \mathrm{ST0} 01$	74 ＂ItdtL＇ $\mathrm{F} / \mathrm{S}^{\prime \prime}$	124 \％ 000
25 FS ？${ }^{\text {明 }}$	75 PROPFT	125 PSE
$26 \mathrm{GT0} 44$	76 FO 22	126 － $2 \mathrm{SH}=$－
$27 \mathrm{O}+2$	77 GT0 A	127 ArCh ${ }^{\text {a }}$
28 Pl	70 9F 明	120 ＋ 57
29 ＊	796060	129 aticu
314	8 BCLLEL 日	130 StOP
31 ＊	81 RCL 01	1316007
32570 日処	82 RCL प2	1324LEL
334 LEL 64	$83+$	133 －T0T $4=$－
34 RCL 01	84 PI	134 ARCL 80
35 RCL 02	05 ：	135 pulen
$36+$	86 RCL 03	136 FO 01
372	87 ＊	13750 TOF
36 \％	8897067	138 FS 901
3987064	$89 \mathrm{ST}+65$	139 PSE
41812	90 RTH	$140 \times 0 \mathrm{~T}$ 90 $=$－
414	$91+\operatorname{LBL} 95$	141 BRCL 日\％
$42 *$	$92-5 . H_{2}=$	142 BuIEM
43 RCL 81	93 FS 61	143 STOF
44 912	94 PrCL 0^{7}	1446007
45 ＋	95 FC 明	145 ENI
$46 \mathrm{RCL} \mathrm{O}_{2}$	96 ARC 95	
47×12	$97 \times 5{ }^{\text {a }}$	
$48+$	90 RuIEH	
49 fl	99 PEF	
50 ＊	$1 \operatorname{lung~}^{\text {RTH }}$	

G. Program listing and example (continued)

Printer in NORM. mode
with flag 01 set SF 0.
Wen "TWOLSA"
MBHdtL: RSS
2月.1 EATERT
12. $\mathrm{B}_{\mathrm{ENTER}}$
2.1 R R
$\mathrm{WOL}=31.5 \mathrm{CF}$
S.A. $=0.4 \mathrm{BF}$

IfdtL': B/
10.1 ENTER
6. 10 ENTER
0.4 RIH

WL. $=2.9 \mathrm{fF}$
S. $\mathrm{H}_{1}=16.3 \mathrm{SF}$

Intill': P/S
8.0 ENTER
4.0 ENTER

IG.
40L. $=2.0 \mathrm{CF}$
S. $\mathrm{A}=15.7 \mathrm{FF}$

Itdt!': R/S
ged
EMOL $=36.4 \mathrm{CF}$
$\mathrm{S} 日 \mathrm{~A}=120.4 \mathrm{SF}$
Flos
IEHTdtL, RG
16.4 EMTER
13. 0 ENTERT
8.0 Rill

MO. $=10.2 \mathrm{cF}$
S.A. $=31.9 \mathrm{SF}$

ITdtL' R R
13. 1 ENTER:
11. 1 ERTER
14. 8 Elis

WOL $=11.0 \mathrm{CF}$
S.A. $=44.0 \mathrm{BF}$

XEG
E40 $=21.2 \mathrm{OF}$
Sh $=75.95 \mathrm{~F}$
Yed a
$5074=57.6$
TuT $\mathrm{SH}=196.3$
with flag 01 clear
sed "TVOLSA"
IBHtdtL: R/S
zag entert
12 EMTERT
24 Pul
UOL $=31.5 \mathrm{CF}$
ITdNL: RG
10. EATERT 2 6.0 Entert
8.8 Fin

40L. $=2.9 \mathrm{oF}$
IIdtL' R R/S
8.0 EnTER
4.1 EnTER:
10. 0 R RUN
$40 .=2.0 \mathrm{cF}$
[itdtL', R/S
$240 \mathrm{~L}=36.4 \mathrm{CF}$ wed
ath N.
Rul
IEFAdtL R/G
16.0 EMTERT
13.0 ENTERT
8.0 Fin

40L $=10.2 \mathrm{cF}$
DidtL: F/S
13. 1 ENTER
11.0 EMTERT
14.9 Rill
$\mathrm{HOL}=11.0 \mathrm{CF}$
IItdtL' P/S Yed a
SOLO $=21.2 \mathrm{oF}$ 80 a
ToT $y=57.6$

Calculator: HP-41CV
Program Name: OFACTOR
Author: T.W. Beers
Date: March, 1982

Purpose: To provide a means of fitting data of the form $Y=$ number of trees and $X=$ diameter class to the negative exponential model, $Y=k e^{-a X}$, using the linear least squares approximation $\log Y=b_{0}+b_{1} X$. Estimates of a, k, b_{0}, and b_{1} are displayed, as is the commonly used index, q, which reflects the ratio of trees in successive diameter classes. Provision is made to obtain predicted Y (i.e., \hat{Y}) for any X and to obtain q for class widths other than that assumed initially.
A. Storage assignments

Register
00

Use

```
\(D_{i}\), current diameter, i.e., \(X_{i}\)
\(\bar{X}\), arithmetic mean of \(X\)
    \(\Sigma x^{2}, \Sigma\left(X_{i}-\bar{X}\right)^{2}\)
    \(\bar{Y}^{\prime}\), arithmetic mean \(Y^{\prime} ; Y^{\prime}=\log Y\)
    \(\Sigma y^{\prime}{ }^{2}, \Sigma\left(Y_{i}-\bar{Y}^{\prime}\right)^{2}\)
    \(\Sigma x y^{\prime}, \Sigma\left(X_{i}-\bar{X}\right)\left(Y_{i}^{\prime}-\bar{Y}^{\prime}\right)\)
    \(b_{0}\), the \(Y^{\prime}\) intercept (a base 10 logarithm)
    \(b_{1}\), the slope (change in \(Y^{\prime}\) per unit change in \(X\) )
    \(r\), the simple correlation coefficient between \(Y^{\prime}\) and \(X\)
    \(a\), the "rate-of-change coefficient"
    \(k\), the "density coefficient"
    \(\Sigma X\), sum of \(X\)
    \(\Sigma X^{2}\), sum of squared \(X s\)
    \(\Sigma Y^{\prime}\), sum of \(\log Y\)
```

A. Storage assignments (continued)

Register
14
15
16
17
18

$$
\begin{equation*}
20 \tag{19}
\end{equation*}
$$

B. Labels

Global
QFACTOR

```
LRS
```

Local
A basic calculations, automatic display of a, k, and $q(h)$; after R/S, prompt for h^{\prime} and calculation and display of $q\left(h^{\prime}\right)$
prompts and calculation of $\hat{\gamma}$, predicted number of trees
basic summation loop in QFACTOR
input error correction loop, activated by a negative value for Y
calculation and display loop in B
in A, to enable return to the basic $q(h)$ by R / S after $q\left(h^{\prime}\right)$ calculation
C. Flags -- flag 29 cleared to suppress decimal in FIX 0
D. Size and key assignments

SIZE needed: ≥ 021
Key assign: \quad QFACTOR on shift $X \geqslant Y$
A on A (done internally)
B on B (done internally)
E. Program procedure and example
I. Load the program into the calculator
II. XEQ QFACTOR (shift $X \gtrless Y$ in USER mode) and follow the prompts and reminders. As an example, consider the following data for which we want to calculate a " q " factor assuming a class width of 2 inches, and we also want q based on 1 inch classes.

Selected two-inch DBH class	Per-acre basis	
	0bserved	Predicted
	no. trees	no. trees
X	γ	$\hat{\text { Y }}$
10	13.79	?
20	3.97	?
30	1.12	?

Step		Example		
	Prompt	Input	Key	Output
1. Data input	-	-	Shift $X \geq Y$	
	CLASS WIDTH?	2	R/S	$\begin{aligned} & x=D . \quad \text { CLASS } \\ & Y=N O . \quad \text { TREES } \end{aligned}$
	$X \uparrow Y, R / S$	$10 \uparrow 13.79$	R/S	X DONE: 10
	$X \uparrow Y, R / S$	$20 \uparrow 3.97$	R/S	X DONE: 20
	$X \uparrow Y, R / S$	$30 \uparrow 1.12$	R/S	X DONE: 30
	$X \uparrow Y, R / S$			
2. Calculation	$X \uparrow Y, R / S$	-	A	$b(0)=1.68620$
				$b(1)=-0.05452$
				WORKING
				$\begin{aligned} & a=0.126 \\ & K=48.552 \end{aligned}$
				$\begin{aligned} K & =48.552 \\ Q(2) & =1.29 \end{aligned}$

3. Alternative q

- R/S

FOR O(H)
KEY "H", R/S
4. Predicted Ys
-
FOR NO. TREES, KEY D, R/S
10
20
30

R/S
$Y(10)=13.84$
20
R/S
R/S
$Q(1)=1.13$
R/S

30
$Y(20)=3.94$
$Y(30)=1.12$
5. Repeat -- for a repeat of step 2 output and as a lead-in to step 3, press A again
-- for more predicted $Y s$, press B
E. Program procedure and example (continued)
6. Error correction -- if in the input of data, a faulty value has been processed, at the $X \uparrow Y, R / S$ prompt one can delete the faulty data by again keying the faulty pair and changing the sign (CHS key) of the Y (actually in the X register at this point) and pressing R/S. The correct pair can now be keyed and processed as indicated in step 1.
F. Formulas

1. Linear regression.

The usual simple linear regression formulas using the least squares approach were employed to obtain b_{0} and b_{1} in
$y^{\prime}=b_{0}+b_{1} x$, where

$$
\begin{aligned}
& Y^{\prime}=\log Y=\log \text { (no. of trees) } \\
& X=\text { diameter class }
\end{aligned}
$$

Note that base 10 logarithms were used.
2. Non-linear form.

The values of the coefficients a and k in the basic form of the fitted equation,

$$
\begin{aligned}
Y=k e^{-a X}, \text { where } & \\
& \begin{aligned}
Y & =\text { no. of trees } \\
X & =\text { diameter class } \\
& e=\text { base of natural logarithms }
\end{aligned}
\end{aligned}
$$

were calculated by

$$
\begin{aligned}
& a=\frac{-b_{1}}{\log e}=\frac{-b_{1}}{0.43429} \\
& k=\operatorname{antilog}\left(b_{0}\right)=10^{b_{0}}
\end{aligned}
$$

Note that if natural logs had been used the formulas would have been different; see FOREST MENSURATION (Husch, Miller, and Beers, 1982, John Wiley \& Sons.)
3. q values
a. for the basic class width, h,

$$
q=e^{h a}
$$

F. Formulas (continued)

b. for the alternative class width, h^{\prime},

$$
q_{h^{\prime}}=10^{-h^{\prime} b_{1}}
$$

c. another convenient formula relating q_{h} and q_{h}, is

$$
\begin{aligned}
& q_{h}=\left(q_{h}\right)^{h / h^{\prime}}, \quad \text { or the reverse } \\
& q_{h}=\left(q_{h}\right)^{h^{\prime} / h}
\end{aligned}
$$

4. Predicted number of trees

Predicted values for Y were obtained by solving the basic model for Y given the class midpoint, X :

$$
\hat{Y}_{i}=k^{\prime} e^{-a X_{i}}
$$

where

$$
\left.\begin{array}{rl}
\hat{Y}_{i}= & \text { value on the fitted curve } \\
X_{i}= & \text { ith diameter class midpoint } \\
k^{\prime}= & \text { the density coefficient appropriate, as used here, for per } \\
& \text { acre data and two-inch classes } \\
a= & \text { the rate -of-change coefficient as defined earlier; } \\
& \text { independent of area and class width }
\end{array}\right\} \begin{aligned}
& \text { Note that if the class width is not } 2 \text {, and the number of } \\
& \text { trees in a class of width h is desired, the right side of the } \\
& \text { equation must be multiplied by h/2. Refer to FOREST MENSURATION } \\
& \text { for more details. }
\end{aligned}
$$

G．Program listing and example

	日1＊EL＂DFACTOE＂	51 ＊	$1 \mathrm{H}_{1} \mathrm{SIN}$
	W2 Of 29	52 EfP	$1 \mathrm{~L}_{2} \mathrm{SIN}$
	W5 FIY	5357018	183 ＂KEY D，R／S＂
	64 EREG 11	54 ＂．g＝	164 PRDMPT
		55 ARCL 69	1054LBL V2
	U6－LAES WIITH？	56 RUIEN	106 ST0 88
	Q7 PROMFT	57 PSE	187 RCL 日 9
	昭 51017	$58 \mathrm{~K}=$	108＊
	日9＂ $\mathrm{A}=\mathrm{D} . \mathrm{CLASE}$	59 ARCL 10	169 CHS
	1易 BUIER	60 PYIEN	110 EF
	11 sH	61 PSE	111 RCL 15
	12 sln	62 LBL 13	112＊
		63 FIP 6	113 FIO
	14 PUIEN		114 ＂Y（\％
	15 Sh	65 ARCL 17	115 PRCL 日 0
	16 sh	66 ＂ト）＝＂	$116 \times{ }^{\circ} \mathrm{F}=$＂
	ITCLEL 0 O	67 FIX 2	117 FIM 2
		68 ARCL 19	$118 \mathrm{ARCL} Y$
	19 PROMPT	69 PYIE：	119 AUIEN
	20 \％ F ？	7 STOF	120 STOF
	210011	71 ＂FOR OCH$)^{\prime \prime}$	121 GT0 62
	22 nb	72 AYIEN	1224LBL＂LRS＂
	23 HY	73 PSE	123 MEAN
	245010	74 KEV ${ }^{\text {HF，}}$ ，R／S＂	124 ST0 81
	25.4	75 PUIEA	125×12
	26 PC 日	76 STOP	126 ST0 82
		77 STO 20	127 ¢ ¢ Y
	26 ARCL X	78 PCL 67	12857063
	29 AUIEW	79 CHS	129×12
	30 PSE	8 B	1365064
	31 6T0 60	81 164\％	131 RCL 01
	324EL	82 STG 19	132 RCL 93
	33 FI \％ 5	83 FIP ${ }^{1}$	133＊
	34 PED＂LRE＂	84 ＂D（＂	1345095
	35 FSE	85 ARCL 20	135 RCL 16
	36 FIP 3	86 ＂ト）＝＂	136 CHS
	37 ＂＊WORKINTF＂	87 FIP 2	137 ST＊㫜
	38 AVIEN	88 ARCL 15	138 ST＊ 64
	39 RCL 8	89 AUIEW	139 ST＊ 05
	40 CH	96 STOF	146 RCL 12
	41	916906	141 ST＋ 62
	4 E EtP	924LEL 01	142 RCL 14
	43 D6	93 ABS	$143 \mathrm{ST}+64$
	44 \％	94 LOC	144 RCL 15
	455010	95 XPY	145 ST＋ 65
	46 BCL g6	$96 \mathrm{E}-$	146 RCL 95
	47169%	$97 \mathrm{GT0}$ 保	147 RCL घ2
	485010	984 LEL E	148\％
	$4 \% \mathrm{RCL} 99$	99 ＂FOR HO．TREES：＂	1495006
	50 PCL 17	10日 RUIEN	［5й RCL 61

G. Program listing and example (continued)

1. The QFACTOR program provides a useful means of fitting the negative exponential model to data commonly encountered in forest management, and for calculating the q-value. However, careful reading of FOREST MENSURATION (Husch, et al. 1982) will show that while the a coefficient is independent of land area and diameter class width, and q depends on diameter class width, the k coefficient depends upon both the land area on which the numbers of trees are based, and diameter class width.
2. As a result of comment 1, future versions of QFACTOR should prompt for area (per-acre would be $A=1$) as well as class width. Thus, one could designate for display and printing:

k , and q , without subscripts, to indicate per-acre data by one-inch classes,

$\mathrm{q}(\mathrm{h})$ to indicate q appropriate for h -inch classes,
and $k^{\prime}(A, h)$ to imply the k coefficient appropriate for number of trees on an area of A acres, by h-inch diameter classes.

In programming, then, one would fit the regression of number of trees per area, A, by diameter classes of width, h, and calculate

$$
a=\frac{-b_{1}}{\log e}
$$

$$
\mathrm{k}_{\mathrm{A}_{\mathrm{\prime}} \mathrm{~h}}=10^{\mathrm{b}_{\mathrm{o}}}
$$

and

$$
q_{h}=e^{h a}
$$

Then, the basic per acre, one-inch class coefficients (unsubscripted a, k, and q) are calculated from:

$$
\begin{aligned}
a & =a \quad \text { (i.e., no change) } \\
q & =\left(q_{h}\right)^{1 / h} \\
\text { and } k & =\frac{k^{\prime} A_{, h}}{h A}
\end{aligned}
$$

3. One should also be careful in estimating numbers of trees (i.e., predicted Ys). That is, for per-acre estimates and one-inch classes, number of trees in the $i{ }^{\text {en }}$ class, n_{i}, is

$$
n_{i}=k e^{-a x_{i}}
$$

But, for class width, h, on an area, A, number of trees in the $i^{\text {th }}$ class, N_{i}, is

$$
N_{i}=h A n_{i}=h A k e^{-a X_{i}}
$$

4. The foregoing comments and the pattern of previous "Retrospective Comments" should lead the reader to expect that a revised program to accomplish the refinements can be found on the KRON-1 tape. However, such major changes deserve a new write-up and, alas!, the author finally recognizes that it is time to bring this nearly three-year project to a close. Writing the QFACl program must wait for another day.

+		+
${ }^{\text {rr }}$		11
rrrr		1111
rerrer		111111
rerrrrar		11111111
rrrrrrrrrr		111111111
rerrrrrrrrer		11111111111
rrerrmprrmprrm		11111111111111
rerrmerrerrrrrar		111111111111111
rrerprrrerprrrerrm		1111111111111111
		11111111111111111
rrerrerrrrrrrrrrrrrrre		1111111111111111111
j.j.j.j	+	$\operatorname{css~}^{\text {c }}$
j.j.j.j	PP	555
nnnnnin	$\begin{gathered} \text { PPPP } \\ \text { PPPPPP } \end{gathered}$	hhhhhih
	PPPPPPPP	
	PPPPPPPPPF	
	PPPPPPPPPPPP	
	PPPPPPPPPPPPPP	
	PPPPPPPPPPPPPPPF	
	PPPPPPPPPPPPPPPPPP	
	PPPPPPPPPPPPPPPPPPPF	
+	PPPPPPPPPPPPPPPPPPPPPP	$+$
ff	PPPP	tt
$\mathfrak{f f f}$	PPPP	titt
ffffff	crecoc	titut
ffffffff		ttittit
$\mathfrak{f f f f f f f f f ~}$		tittittit
$\mathfrak{f f f f f t f f f f f ~}$		tittititut
$\mathfrak{f f f f f f f f f f f f ~}$		titutituttit
ffffffffffffff		titttitututt
ffffffffffffffff		tettututitutt
ffffifffifffffffff		tttitutututtitit
$\mathfrak{f f f f f f f f f f f f f f f f f f f ~}$		
cccc		แแแ𠃊
ccce		WHLH
ввввев		B8B8B8

LITERATURE CITED

Beers, T. W. 1969. Slope corrections in horizontal point sampling. Jour. Forestry 67:188-92.

Dearing, J. 1981. Calculator tips and routines. Corvallis Software, Inc. Box 1412, Corvallis, Oregon 97330.

Grosenbaugh, L. R. 1952. Shortcuts for cruisers and scalers. U.S.F.S. Southern For. Exp. Sta. Occ. Paper No. 126.

Husch, B., Miller, C. I., and Beers, T. W. 1982. Forest mensuration. 3rd ed. John Wiley \& Sons, New York.

Laidly, P. R. 1979. Metric site index curves for aspen, birch and conifer in the Lake States. U.S.D.A. Forest Service Gen. Tech. Rep. NC-54.

Mesavage, C., and Girard, J. W. 1946. Tables for estimating board foot volume of timber. U.S. Forest Service, Washington, D.C.

Myers, C., Polak, D. J., Raisanen, D., Schlesinger, R. C., and Stortz, L. 1980. Weight and volume equations and tables for six upland hardwoods in southern Illinois. U.S.D.A. Forest Service Gen. Tech. Rep. NC-60.

PPC. 1981. PPC ROM user's manual. Personal Programming Center, 2545 W. Camden Place, Santa Ana, CA 92704.

Schnur, G. L. 1937. Yield, stand, and volume tables for even-aged upland oak forests. U.S. Dept. Agric. Tech. Bull. No. 560.

Scott, C. T. 1979. Northeastern forest survey board-foot volume equations. U.S.D.A. Forest Service Res. Note NE-271.

Shepperd, W. D. 1980. Hand-held calculator programs for the field forester. U.S.D.A. Forest Service Gen. Tech. Rep. RM-76.

Wiant, H. V., Jr. 1975. Schnur's site index curves for upland oaks formulated. Jour. Forestry 73:429.

Wiant, H. V., Jr., and Castaneda, F. 1977. Mesavage and Girard's volume tables formulated. Resource Inventory Notes March 1977. U.S.D.I. Bureau of Land Mgt. Denver, C.

Wickes, W. C. 1980. Synthetic programming on the Hp-41C. Larkin Publications, 4517 NW Queens Ave., Corvallis, OR 97330.

578 8

＊CLEARIHG＊
FLAG SET ？
GIA RUTO PRNT
GI FDR FREE．
02 FOR MTD．
SF $X X, R / S$
KEY Y4X，R／S
50.9641890 .00
35.0911906 .06
$25.091192 \overline{4}$. 明
11.9891931 .09

15．084 1934．06
13．084 1935，明
$6.98+1946.06$
10．0日 1941.00
5.9941944 .09
$8.98+1948$. 昭
6.984 1955． 㨐
4.9941952 .06
$5.98 \uparrow 1955.06$
$4.98 \uparrow 1969.09$
Y－INT．$=1233.81$
SLOPE $=-4.63$
B．F．0．$=$ G． 61
$S(Y \mathrm{P})=3.84$
$S(9)=100.62$
$\mathrm{s}(\mathrm{b})=4.85$
$S\langle B F 0\rangle=1.85 \mathrm{E}-3$
$R=-9.96$
$\mathrm{R}+2=0.92$
$T(R\rangle=-12.12$
$T\langle\exists\rangle=12.26$
$T\langle b\rangle=-12.12$
$\mathrm{T}\langle B F 0=1\rangle=-535.81$

XEQ "LOCYOL"
BF CF OR M?
BF
KEY DU \uparrow L

14.0 ENTER \uparrow
 10.6 RUN

KEY A TO D OR E
YEO E
DOYLE $=62.5$
SCRIB $=76.8$
INT. $1 / 4=89.2$
INT. $1 / 8=88.6$

GRADE $1=459$
GRADE 2= 240
CRADE $3=89$
GRADE 4=210
GRADE $5=190$
GRADE 6= 150

XEO C
1 RUN
SPECIES ?
HRL NITT:
GRADE $1=150$
GRADE $2=40$
GRADE 3= 89
GRADE 4=60
GRAIE 5= 109
GRADE $6=150$

XEQ -LOCYOL"
BF CF OR M?
CF
KEY a,b,c, OR E
XEO e
IBt $\mathrm{DM}+\mathrm{DUT}, \mathrm{L}$
12.49 ENTER \uparrow
10.00 ENTER \uparrow
9.10 ENTER \uparrow
14.00 RUN
$\mathrm{HUB}=7.64 \mathrm{CF}$
SHAL $=9.63 \mathrm{CF}$
NEHT: $=8.16 \mathrm{CF}$

SPECIES	VOLIME
HEMLOK	218.6
CEDARS	343.7
SUMAPL	834.4
BIRCHS	212.7
ABEECH	198.1
BASSHD	615.1
HICKRY	989.1
OTHERS	251.8
TOTAL	3583.5

XEQ a
HJBER YOLUME
KEY DM \uparrow L
25.46 ENTER \uparrow
4.27 RUH
$H U B:=0.22 \mathrm{H}+3$
RUN
$=7.64 \mathrm{CF}$
XEO E
$\mathrm{DB}+\mathrm{DH}+\mathrm{DU} \uparrow, \mathrm{L}$
31.50 ENTER \uparrow
25.40 ENTER 4
23.10 ENTER 4
4.27 RUH

HUB. $=0.22 \mathrm{Mt} .3$
SHAL $=0.26 \mathrm{M} \uparrow 3$
NEHT. $=0.23 \mathrm{H} \uparrow 3$

[^0]: *Published by Personal Programming Center, PPC, 2545 West Camden Place, Santa Ana, CA 92704.

[^1]: *For brevity, only the last digits of the full number (41F001, 4lF002, etc.) are given.

[^2]: * Throughout this program, the letter " f " is used to indicate depression of the shift (gold) key.

[^3]: If these programs are read from nagnetic cards, one rust first XEQ SIZE 064, and an "f GTO.." operaticn must occur between eack program loaded. Before continuing then, turn calculator OFF, remove card reader, insert fourth menory module, turn calculator ON, and XEQ SIZE 142.
 ** Throughout this program, the letter " f " is used to indicate depression of the shift (gold) key.

[^4]: *Volunes in parentheses reflect the application of the sounconess factor.

[^5]: *throughout this paper "f" represents the shift (gold) key.

[^6]: ** Note, these results are identified as "MARGIN=\$xx.xx" and if negative, an audible "beep" is sounded.

[^7]: ${ }^{\star \star}$ Note, these results are identifed as "MARGIN $=\$ x x . x x$ " and if negative, an audible "beep" is sounded.

[^8]: if flag 01 is set, R / S need not be pressed.

[^9]: *Throughout this paper "f" represents the shift (gold) key.

[^10]: if set, metric units are assumed and are implied in output; also in label a, conversion of F to sq. meters is enabled.

[^11]: Y-INT. $=2.79$
 SLOPE $=0.79$
 B.F. $\mathrm{O}_{\mathrm{C}}=1.24$
 $Y-$ H月T $=7.53$
 Y - $\mathrm{HAT}=9.11$
 Y-HAT $=19.68$
 $\mathrm{R}=0.99$
 $R \uparrow$ 2 $=0.99$
 $T\langle R\rangle=8.66$

[^12]: ${ }^{1}$ Metrics of equation variables coincide with metrics of designated tables.

[^13]: *Use of the zero in "08" is required for log lengths less than 10. **If the species code does not change (as here, for code 5) simply press R / S without keying a code.
 ***The trailing zero in " 20 " need not be keyed.

