COORDINATE TRANSFORMATION
A POINT STORAGE CONVERSION for the HP-41CV/CX SURVEYING PAC

Software by Dơism
P. O. BOX 1370 • PACIFICA, CA 94044

No express or implied warranty is made by D'Zign Land Survey 2 Development or the author with regard to the procedures and program material offered or their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made available solely on an "as-is" basis, and the entire risk as to their quality and performance is with the user. Should the procedures or program material prove defective, the user (and not D'Zign Land Survey 2 Development nor any other party) shall bear any and all cost of all necessary correction and all incidental or consequential damages. D'Zign Land Survey \& Development and/or the author shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance, of the keystroke procedures or program material.

COORDINATE TRANSFORMATION A POINT STORAGE CONVERSION for the HP-41CV/CX SURVEYING PAC

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without written permission of the author.
published by $D^{2} \mathbb{Z} i \underline{S}$ Land Survey \& Development Pacifica, California 1987

ISBN 0-9616846-7-4

Introduction

A number of surveyors have requested programs which let them store coordinates by point number, without having to buy a module. Since most surveyors already have the HP-41 Surveying Pac, they are reluctant to spent three or four hundred dollars for a second module which, essentially, does the same work as the HP Surveying Pac.

This series of booklets was produced as a low-cost way of getting more out of the module which you already have.

Each booklet contains complete instructions for editing a routine in your Surveying $P a c$ to use the point number storage. The point storage program is the same for all of the conversions and, by itself, provides a complete system for radial inversing between coordinates for 'spraying' in points in the field.

This booklet converts the Coordinate Transformation routine in the Surveying Pac to work with pre-stored point numbers. It may be used independently, or in combination with the converted Traverse, Inverse \& Sideshots routine (D'Zign Booklet \#521). If the latter converted program is already in memory, there is no need to re-enter the utility program "XX" with this program.

The conversion in this booklet is compatible with the converted Intersections Solutions (Booklet \#523) and the converted Predetermined Areas program (Booklet \#531). If you have a CX, the intersection and transformation programs may be stored into extended memory until needed, used, and then deleted again from main program memory.

As an added bonus, this conversion does away with the need to inverse between the rotated coordinates with the Traverse routine after transformation. It contains an AUTO-INVERSE routine that lets you output the new bearings and distances between the transformed coordinates just by setting a flag.

This booklet has been published in two versions, one with and one without pre-programmed magnetic cards. If your version contains the cards, you will still find the editing lists helpful, and can further modify the programs to suit your particular needs.

Utility Programs

There is a short set of utility programs that acts as the 'driver' for the point storage system. The main routines are "PIN" (short for "Point IN"), "POUT" (Point OUT), and one called "XX" (no particular reason). After these have been entered into program memory we will assign them to the keyboard for convenient use.

Start by executing a GTO -., and enter program mode, by keystroking \square RCL • • PRGM. The display should show 00 REG, and a number, NNN, which is the number of available registers in memory. You will need at least
21 registers in order to type in these UTILITY programs.
If your version of this book includes the program cards, see Appendix A for input instructions. If not, type in the program steps listed below:

	22*LBL PPOUT"	44
$01 * L B L$ "XX*	23 STO 13	4519
82 XROM "*IH"	24*LBL -OUIT*	$46+$
83 XEQ "C**	25 RCL 13	47 XK>Y
04 CF 18	262	48 STO IND Y
85 XEQ -POUT*	27 *	49 RDN
66 XROM -NE*	2819	501
87 AYIEM	$29+$	$51-$
88 ADY	30 ENTER \uparrow	$52 \mathrm{X} \backslash \gg$
09 ST0 88	31 ENTER \uparrow	53 STO IND Y
10 RDN	321	54 RTN
11 STO 87	33-	*55*LBL ${ }^{\text {C/** }}$
12*LBL 83	34 RCL IND X	56.019
13 CF 01	35 RCL IND 2	570
14 "T0?"	36 RTN	584LBL 11
15 PROMPT	37-LBL ${ }^{\text {PIN }}{ }^{*}$	59 STO IND Y
16 XEQ -POUT"	38 SF 18	60 ISG Y
17 DSE 13	39 STO 13	61 GTO 11
18 STO X	48 XROM "NE"	62 RDN
19 XROM -INYERSE*	41 LBL ${ }^{\text {/IN }}$	63 RDN
20 GTO 03	42 RCL 13	64 RTN
21 RTH	432	65 END
If you are using a w program steps bstituting the steps e program steps fro	41CX, you (and regis shown to the 55 through	

If you are not fully familiar with programming on the HP41 calculators, don't panic; all of the program steps are normal ones, and you shouldn't have any trouble. To put in an XROM, such as are shown at steps $02,06,19$ and 40, you input the step as "XEQ".

The calculator will change the command to "XROM" for you, as long as the Surveying Pac is in the calculator. For instance, the keystrokes for input of step 06 are xEO ALPHA N alpha.

Any portion of a program step which is listed in quotation marks (" ") indicates that it is alpha input, and must be input with the calculator in alpha mode.

Program steps which are indirect store or recall instructions are input by stroking the shift key after the STO or RCL key. For example, program step 34 would be input by keystroking RCL $\square \cdot 6$.

Step 49, RDN is "roll down", sometimes mistaken for "round" which is printed as "RND". The symbol at each label is inserted by the printer when it lists the programs ... you don't need to input it. Finish typing in the program.

Once that chore is completed, we will assign the program "PIN" to the shifted STO key, and try storing a coordinate pair from the keyboard. Size your calculator to 040 by stroking XEO बLPHA S I Z E ALPHA, and, when the display shows the prompt SIZE _--, stroke 040. Keystroke \square XEO ALPHA $\mathbf{P} \boldsymbol{P} \mathbf{I} \mathbf{N}$ ALPHA $\square \mathbf{S t O}$, to assign "PIN". The keystroke instructions are simple: Input the point number, stroke \square sто, and the display will prompt for the North coordinate. Input the coordinate and stroke R/S, and the display will prompt for the East coordinate. Input the coordinate, stroke R/S. Now the coordinates are stored.

Practice this by inputting the coordinates of the traverse on the next page. A step by step example is shown, so just follow the procedures.

User instructions

First, let's assign the "XX" program to the shifted CHS (-42) key, by stroking

xEO बLPHA $x \times$ alpha
 \square CHS

 We can also assign the program "POUT" to the shifted RCL button at this time, and our assigned keys will be as shown to the right.When FLAG 00 is clear, output will be azimuth. When set, the output will be shown as a bearing.

The keystroke instructions for RADIAL INVERSING are as follows:
1.

Put the calculator into USER mode.
2. Input the beginning (setup) point number, and stroke
output: $\quad \mathbf{N} \times=\mathbf{X X X X X} . \mathbf{x x x x}$
3.

If a printer is attached, the output is automatic. If no printer, stroke

R/S
output: Ex=XXXXX.XXXX
R/S if no printer prompt: TO?
4.

Input the point number of the point you are inversing to, and stroke
output: AZ=DDD.mmss (bearing if flag 00 is set)
R/S if no printer
$H D=X X X . x \times x$
R/S if no printer
$\mathbf{N y}=\mathbf{X X X X X} . \mathbf{x X x X}$
R/S if no printer
$E y=\mathbf{X X X X X} . \mathbf{x x} \mathbf{x}$
R/S if no printer

To illustrate the keystrokes for storing coordinate pairs, we'll use the little traverse shown below, and input the coordinates of the angle points. The keystrokes shown assume that "PIN" is assigned to the shifted STO key, as shown on the previous page.
keystroke:

keystrokes:

keystrokes:

we've stored point \#1
keystrokes:

keystrokes:

keystrokes:

1 1 5 R/S
 we've stored point \#2

keystrokes:

3

prompt: N3=?
keystrokes:

prompt: E3=?

keystrokes:

that stored point \#3 keystrokes:

STO prompt: N4=?
keystrokes:

prompt: E4=?
keystrokes:
13 R/S

We now have all of the points in storage, and we can use these same points as examples of how to inverse with "XX".

keystroke examples

To give you an example of the keystrokes, let's assume that point \#1 is the setup point, and do radial inverses to the other points.

These outputs are all "north" azimuths, so if you set the azimuth of the backsight in the instrument before backsighting, $0^{\circ} 00^{\prime} 00^{\prime \prime}$ would have you looking "north".

This works whether the coordinate grid is set up on 'true' north, 'project' north, or 'assumed' north. When you set the azimuth to the next point, it is the same as turning an 'angle right'.

This means that, with pre-stored job coordinates, you have a really fast way to calculate "spray" ties in the field. And you can pick the setup and backsight points when you get to the job, no matter what the job conditions are.

Clear flag 00 before you start, and then follow these procedures:
keystrokes:

* $\mathrm{H}=180.8906$
* $E 1=100.8880$
prompt: TO?
keystrokes:
2 R/S
output:
* $\mathrm{H} Z=8.3151$
* $\mathrm{HD}=101.1187$
* $\mathrm{H} 2=290.8808$
* $\mathrm{E} 2=115$. 800 B
prompt: TO?
keystrokes:
3 R/S

output:	* AZ $=82.1485$
	* $\mathrm{HD}=111.8189$
	* N3=115.0800
	* E3-210.0800
prompt:	TO?

keystrokes:
4 R/S
output:

* $\mathrm{AZ}=153.2606$
* $\mathrm{HD}=67.0826$
* $\mathrm{N} 4=49.8006$
${ }^{\star}$ E4=130. 8006
prompt: ${ }^{*}$ TO?
* R/S if no printer

If you are using the program with a printer attached, the output is automatic. If no printer is used, continue stroking R/s and writing down the answers until the prompt TO? appears. Then input the next point number.

We'll use the same stored coordinates to do a keystroke example of an INVERSE TRAVERSE, using "XX". The only difference between this example and the last is that we set FLAG 01 each time, prior to entering the point number.

We will also set FLAG 00 before we start, to have bearing output instead of azimuth.
keystrokes:

* prompt: TO?
keystrokes:

* prompt: TO?
keystrokes:

output:
548.1847 E $\mathrm{HI}=127.4755$
$\mathrm{H} 3=115.80 \mathrm{Ban}$
E3=210. 800 B
* prompt: TO?
*An additional R/s will be needed if used without printer

keystrokes:

output:
§ 46.5651 H
$\mathrm{HI}=109.6586$
H4 $=40$. 10 日明
$E 4=130.8800$
* prompt: TO?
keystrokes:

To use "POUT", simply input the point number, and stroke \qquad RCL. This recalls the point's coordinates to the x and y registers. The Easting will be displayed, and you may verify that the northing is in the y-register by stroking either $x \geq \mathbf{y}$ or Rt .

Editing the Surveying Pac

We are going to "edit" the program "COORD" which is in the HP Surveying Pac so that it will work with our stored coordinates, instead of requiring that the coordinates be input. Because the programs in the module cannot be altered, we do the next best thing by having a modified version of the same program in our program memory.

First, make sure that you are NOT in user mode, because two of the keys which we will be using are assigned keys. Next do a GTO - and shift into program mode by stroking the PRGM key. You will need at least 55 available registers, so verify that you have enough registers to do the editing, then stroke PRGM again.

Stroke XEO बLPHA C O P Y ALPHA, and at the prompt COPY_, stroke

alphe C O O R D alphe

Stroke PRGM, and you should see 01 LBL ${ }^{\top}$ COORD in the display. We will make our first change to the program by typing in the following:

This has given the program a new name, and deleted the old one. From now on, when we want to call up this program we will call it "CT".

Now, follow these procedures in the order shown:

1. Stroke \square RCL • 1 2 8 , to go to program step 128, and type in these additional steps:

129 FTH	148 RCL 87	151 AYIEH
1390LEL 67	141 -	152 HDY
131 FIPG	142 R -F	153 RTH
132 ARCL 13	143 " $\mathrm{HI}=$ "	154*LBL 11
133 " ${ }^{\text {* }}$	144 ARCL X	$155 \mathrm{R} \uparrow$
134 RTH	145 A PIEH	156 CF 10
135*LBL 69	146 KPY	157 XROM "NE"
136 YE0 "OUT"	147 X ${ }^{\text {P }}$?	158 AYIEH
137 RCL 88	148 YES 85	159 ADV
138 -	149 H月5	168 RTH
139 XYH	158 XR0月 ${ }^{\text {P }}$	

Editing the Surveying Pac

5. Backstep to step 111 (XROM "NE"), and delete thru 109 ("1 OLD"), replacing them with the steps shown to the right.

add these
189 "FOT. PT.?"
116 PROMFT
111 XEQ "POUT"
6. Go to program step 106 (ADV), and delete all of the steps thru 99 (CLA).

Type in the new program steps shown to the right.

If you stroke sst after typing in the new steps, you should see 111 STOP in the display.

replace

99 CF 16
190 XROM "NE"
188 ARCL 11
101*LBL 06
102 ASTO 13
101 HUIEH
102 ADH
183 CF $10 \quad 183$ FTK
184 XROM "NE"
104 LEL 86
185 AVIEN 185 FCL 16
106 STO 13
107 RIN
188 XED "IN"
81 "OLI"
199 "STOREI"
11 GUIEH
(7) insert 84 STO 16 "POUT: $\frac{88 \mathrm{ALBL} \text { B }}{81 \text { RCL } 83}$ 77 LLH \leftarrow delete 78 ARCL 12 79 GTO 06 7. Keystroke
add these

```
70 XEG "IH" 86 [F 10
to go to step 080 (LBL B). Type in STO 16, XEQ "POUT".
79 FS? 69 87 "NEH"
80 XEE 69 89 FYIEH
81 YEQ "OUT" 89 XROM "NE"
Backstep to 79, and delete steps
79 (GTO 06) and 78 (ARCL 12).
82 STO 88 90 AHIEH Type in the new steps shown to
83 XKYY 91 HITY the left.
84 ST0 67 92 STOP
85 足)Y
```

8. Keystroke

yr sur (8) insert | $58+\angle B L A$ |
| :--- |
| 59 REL 01 |\(<\begin{array}{lll}59 \& STD \& 16

59 \& MED \& "POUT"\end{array}\) ca -

Delete steps 26 (XROM "NE") thru 24 ("2 OLD"), and type in the steps shown to the right.

Backstep to program step 021 (GTO 01), delete it and replace it with STOP.
9. 4 bOL $\cdot 0$ and delete steps 41 (XROM "NE") thru 38 (XEQ 04), replacing them with the steps shown to the left.
ca.23 SEQ 83

(11) insert 7 02*LBL E
11. Stroke
(た RCL $\cdot 0$

94 XES "[\#* 83 XROH **IN" to go to program step 003, and 04 SF 10 insert XEQ "C末".
851
12. Stroke \square RCL • 001 to go to the beginning of the program, and use sst to check your program against the listing on page 13.

Program Listings

B1＋LEL $\mathrm{CT}^{\text {c }}$	51 ST＊ 85	181 RCL 82	151 AHIEN
betLEL E	$52 \mathrm{X} \backslash \mathrm{Y}$	102 －	152 RCL 13
	53 XE0 85	$103 \mathrm{R}-\mathrm{P}$	153 ¢F 16
04 YE0 C\％＂	54 ST－ 84	104 RCL 8.5	154 YPOM＂ $\mathrm{HE}^{\text {＂}}$
0.59710	55 STOP	105；	15551003
861	$56+1$ BL A	$186 \mathrm{X}) \mathrm{Y}$	156 ST0 97
8757085	5751016	107 RCL 84	157 RIN
प9 Of 22	58 XEQ＂POUT＂	$108+$	158 ST0 92
09 ＂ROT． $4=$ ？${ }^{\text {a }}$	59 RCL 01	189 XCY	159 ST0 88
10 FPOMPT	60－	$118 \mathrm{P}-\mathrm{R}$	168 XEQ 11
11 FI ？ 22	61 XPY Y	111 RCL 日可	161 RTN
12 CTO 82	62 RCL 日日	$112+$	1624LBL 85
13 HE	63 －	113 XKY	163 X ${ }^{\text {P }}$ ？
1451064	$64 \mathrm{R}-\mathrm{F}$	114 RCL 81	164 RTH
15 OF 22	65 RCL 85	$115+$	165369
16 ＂SCALE FACT．$=$ ？${ }^{\text {a }}$	66 ＊	116 OF 16	$166+$
17 PROMPT	67 XlVY	117 XROM＂HE＂	167 RTH
18 FS ？ 22	68 RCL 84	118 BYIEH	168 LBL 87
195008	69 －	119 ADY	169 FIX
20 XE0 03	70 XYY	128 RTH	170 ARCL 13
21 HEQ 94	$71 \mathrm{P}-\mathrm{R}$	121＊LBL 96	171 ＂${ }^{\text {－}}$
22 STOP	72 RCL 82	122 RCL 16	172 RTH
23 LBL 82	$73+$	123 ST0 13	173＊LBL 89
24 YEQ 03	$74 \mathrm{XV}) \mathrm{Y}$	124 RIM	174 XEE－OUT＂
25 XEE 84	75 RCL 83	125 XEQ－IN＂	175 RCL 98
26 ＇2ND PT？	$76+$	126 ＂STORED＂	176 －
27 PROMPT	77 CLA	127 RUIEH	$177 \times$ Y
28 XEE＂POUT＂	78 XEQ＂IN＂	128 STOP	178 RCL 67
29 RCL 91	$79 \mathrm{F5}$ ？ 69	1294LBL 03	179－
30－	84 YED 89	130 －ROT．PT．？＂	$180 \mathrm{R}-\mathrm{P}$
31 W	81 YE0＂OIIT＂	131 PROMPT	181 －HII＝
32 RCL 98	8257088	132 XEQ－POUT＂	182 ARCL X
33 －	$83 \mathrm{Xc}) \mathrm{Y}$	133 ST0 81	183 AㄲIEH
$34 \mathrm{R}-\mathrm{F}$	8457087	134 ST0 67	184 X XY
$351 / \mathrm{R}$	$85 \mathrm{X} \times \mathrm{Y}$	135 STO 03	$185 \times$ ¢
3651005	86 CF 10	136 RDN	186 XEQ 95
37×1	87 ＂NEW＂	13757090	187 HMS
38 PEQ 85	88 AYIEH	138 ST0 88	188 XROM－ $\mathrm{BRG}^{\text {＂}}$
3957084	89 YROH＂NE＂	139 ST0 02	189 AVIEH
48 － 2 EH －	90 AYIEN	148 XEQ 11	190 ADY
41 XEO 87	91 ADY	141 RTN	191 RTH
$42 \mathrm{FH}+\mathrm{E}$＂	92 STOP	142＊LBL 84	192＊LBL 11
43 FIP 4	93 LBL E	143 ＂NEW COORIS＂	193 Rt
44 PROMPT	94 ＂0LI＂	144 YROM＂＊YN＂	194 CF 19
45 RCL 93	95 AVIEH	145 CLX	195 XROM＂NE＂
$46-$	96 STO 16	146 FS？ 10	196 AYIEH
47 XCY	97 XED－POUT＂	147 YEQ 88	197 AIP
48 RCL 02	98 RCL 03	148 RTH	198 RTN
49－	99 －	1490 LBL 88	199 ENI
$56 \mathrm{~F}-\mathrm{F}$	$108 \times \mathrm{K}$	158 ＂NEW＂	

With your program in the calculator, and proof-reading completed, you are probably anxious to try it out. The program functions the same as the HP Surveying Pac version, but with different prompts. Of course, the main differences are that this version stores the coordinates, and can also inverse between them when you want it to.

Let's cover that aspect first. If you want to inverse as the new coordinates are calculated, set flag 09. If you do not need the new distances and bearings output, clear flag 09. The inverses, when output, are from the last point calculated to the new point.

The two types of setup input are the same as in the Surveying Pac; if rotation angle is known, and if two points in each system are known. If the rotation angle is entered, the option for changing the scale factor prompts for it.

As in the Hewlett Packard version, the rotation angle is entered as POSITIVE FOR COUNTERCLOCKWISE and negative for clockwise. That's backwards in surveying, left is negative, but we haven't changed it in this version because we want the program to work as closely as possible to the original, to avoid confusion.

The keystroke procedures for both types are shown below. Begin by calling up the program with XEO ALPHA C T alPHA. The first prompt, ROT. $\boldsymbol{A}=$? is displayed.

IF ROTATION ANGLE IS KNOWN:

Input the rotation angle, in Degrees, Minutes and Seconds (if CLOCKWISE, chs)

prompt: SCALE FACT.

2.

If scale factor is not 1:1, input the new scale factor. If the factor is 1 , it is not necessary to input anything
prompt: ROT. PT.?
3. Input the point number of the pivot point

User instructions

output: $N x=X X X X . x \times x x$
R/S if no printer
$E x=X X X X . \mathbf{x x x}$
R/S if no printer

prompt: NEW COORDS?

4.

Stroke \mathbf{N} R/S if the coordinates of the pivot point are the same in the new system, OR stroke Y R/S if the coordinates of the pivot point are different in the new system. If the answer is YES, the additional prompts (marked**) will appear.
**Prompt: $\mathbf{N x}=$?
Input the pivot point north-coordinate in the NEW system

R/S
**prompt: Ex=?
Input the east-coordinate of the pivot point in the NEW system

All of the parameters for rotating or transforming the other coordinates are now stored, and the program will halt to await input of the first point number (see SOLUTIONS). At this point, if you want to inverse between the new points, set FLAG 09 before continuing.

IF TWO POINTS IN EACH SYSTEM ARE KNOWN:
1.

When the prompt, ROT. $\boldsymbol{\Delta}=$? is displayed, stroke
prompt: ROT.PT.?
2.

Input the point number of the pivot point
R/S
output: $N \mathbf{x}=\mathbf{X X X X} . \times \times \times x$
R/S if no printer
$E x=X X X X . x \times x x$
R/S if no printer
prompt: NEW COORDS?
3.

Stroke \mathbf{N} R/S if the coordinates of the pivot point are the same in the new system, OR stroke Y R/S if the coordinates of the pivot point are different in the new system. If the answer is YES, the additional prompts and output (marked**) will appear.
**prompt: $\mathbf{N x}=$?
Input the pivot point north-coordinate in the NEW system

R/S
**prompt: Ex=?
Input the east-coordinate of the pivot point in the NEW system

R/S
**output: Nx=XXXX.xxxx
R/s if no printer
$E x=X X X X . x \times x X$
R/S if no printer
prompt: 2ND PT?
4.

Input the point number of the second point
prompt: NEW X. N+E
R/S
Input the north-coordinate of the second point, in the NEW system

ENTER4
Input the east-coordinate of the second point, in the NEW system

All of the parameters for rotating or transforming the other coordinates are now stored, and the program will halt to await input of the first point number (see SOLUTIONS, below). At this point, if you want to inverse between the new points, set FLAG 09 before continuing.

SOLUTIONS:

1.

Input the point number of the first point which you wish to transform (NOTE: the point numbers input for setup have not yet been transformed)

User Instructions

$2 a$.
To transform coordinates from old system to new system

A
*output: HD=XXX.xxxx from last point to this point
R/S if no printer
*output: BEARING from last point to this point
R/S if no printer
output: NEW
R/S if no printer
$\mathbf{N x}=\mathbf{X X X X} . \mathbf{x x x x}$
B/S if no printer
$E x=X X X X . \mathbf{x x x x}$
2b.
To transform coordinates from new system to old system
output: OLD
R/S if no printer
$\mathbf{N x}=\mathbf{X X X X} . \mathbf{x x x x}$
R/S if no printer
$E x=X X X X . x \times x \times$
Note: These coordinates in the old system are calculated, but NOT stored. If you wish to store them as OLD system, stroke R/S. The calculator will output "STORED" to indicate that you have stored the coordinates under that point number in the old system.

3. | Continue repeating steps 1 and 2 as |
| :--- |
| desired. |
4.

For a new case, stroke

We can use the points that we have already stored (page 5) for the keystroke examples. If you have already cleared them, it only takes a minute to put them back in.

Before beginning, the calculator should be sized at least to 040 , and the utility programs must be in program memory.

For the first example, we will assume that we want to rotate the traverse 5° to the left, using point number 1 as the pivot, and with the coordinates of the pivot point the same in both systems.
*Output when FLAG 09 is set.

We will begin with the keystrokes

XEO ALPHA C T ALPHA
prompt: ROT. $\angle=$?
keystrokes:
5 R/S
prompt: SCALE FACT.=?
keystrokes:
R/S
prompt:
ROT PT?
keystrokes:
1 R/S
output:
${ }^{*} \mathrm{NI}=180.0080$
${ }^{*} E 1=100.8080$
prompt: NEW COORDS?
keystrokes:
N R/S
7009 R/S
display: 0.0000
keystrokes:
2 A
output:

* $\mathrm{HID}=161.1187$
* 3.3151 E

NEH

* ${ }^{\text {H2 } 2=29 日 . ~} 9268$
$\mathrm{E}=166.2273$
keystrokes:
3 A output:

keystrokes:

4 A

output:
${ }^{\mathrm{HID}=109.6586}$
© 41.5051 H

* HE H
${ }^{*}{ }^{N} \mathrm{~N} 4=42.8430$
keystrokes:
1 A output:
$\mathrm{HD}=67.19820$
${ }_{\star}{ }_{H}$ H1.3354 H
NEH
* ${ }^{1} 1=104.0806$
* E1=104. 18060

If, for some reason, we wanted to see what point number 3 coordinates were in the old system, we could do it with the keystrokes:

3 B
output: *OLD

keystroke examples

Store the original coordinates again, for another example. Let's assume that we want to move the traverse 100^{\prime} north, and 100^{\prime} east. This can be done by using a 0° rotation angle and "NEW" coordinates of 200/200 for point number 1, with the same keystrokes we just practiced.

Another way to do it would be to use $200 / 200$ for NEW \#1, and 300/215 for NEW \#2, then working the problem as two points in each system known. Clear FLAG 09.
keystrokes:

xEO ALPHA C T ALPHA	
prompt:	ROT. $\triangle=$?

keystrokes:
prompt: ROT. PT.?
keystrokes:
1 R/S
output: ${ }_{\star} \mathrm{N}=100.8800$ * $\mathrm{EI}=10 \mathrm{~B} .8004$
prompt: NEW COORDS?
keystrokes:
Y R/S
output: * NEH
prompt: N1 =?
keystrokes:
200 R/S
prompt:
E1=?
keystrokes:
$200 \mathrm{R} / \mathrm{S}$ output:

* $\mathrm{N} 1=200 \mathrm{~B} .0800$
* $\mathrm{EI}=204.0000$
prompt:
2ND PT?
keystrokes:
2 R/S
prompt:
NEW 2. N4E
keystrokes:

3000 entera
 215 R/S

The program will stop and wait for input of the first point number.
keystrokes:
2 A
output:
HEH
H2 $=380.8080$
$E 2=215.9090$
keystrokes:
3 A
output: * NEH
N3=215. 8006
E3=316. 9890
keystrokes:
4 A
output:

* NEH
* $\mathrm{N} 4=141.880 \mathrm{~B}$

E4=230.0090
keystrokes:
1 A
output:

* HEH
* $\mathrm{Hl}=290.8000$ $E 1=200.0800$

R/S if no printer

Appendix A

If your version of this booklet includes the programmed magnetic cards, cards A and B contain the "CT", and card C contains the UTILITY program, "XX".
"CT" contains 375 bytes, and will occupy 54 registers. If the converted TRAVERSE, INVERSE \& SIDESHOT (booklet \#521) is in program memory, it is not necessary to enter the UTILITY programs.

The storage register location of
 any point may be found as follows:
north coordinate
18 + 2(PT\#)
east coordinate
19 + 2 (PT\#)
To store data onto magnetic cards, input 20.eee (where eee is the three-digit number of the highest register used) and execute WDTAX.

The card reader function RDTAX may be used to input the coordinates in the same way. place 20.eee in the x-register before executing the function. The coordinates may also be input and output from extended memory or external memory in a similar manner.

A number of the Surveying Pac programs, as well as user-written programs, contain the command "CLRG" as a part of their 'housekeeping' routine. This command will clear ALL of the registers, including the ones which are holding your stored coordinates.

The routine, "C*" will clear only those registers directed by the number in the x-register, and will work in any HP-41. If you are using a CX, there is a function, "CLRGX" which will do this, and you should (where possible) substitute it for "CLRG" (see page 3) in your programs.

HP41-CV/CX
 SOLUTIONS BOOKLETS

VERTICAL ALIGNMENT

Calculates CONTINUOUS vertical

 alignment without changing back and forth between Grade and Curve routines. Asymmetrical, Compound and Reverse Curves.booklet \#525 \$6.95
with programmed cards $\$ 12.95$
SPIRAL CURVE SOLUTIONS
The only COMPLETE spiral curve program for use with hand-helds.
Booklet \#529 \$6.95
with programmed cards $\$ 12.95$

EDM SLOPE STAKING

Sets slope stakes and reference points from remote instrument and backsight locations directly.
Booklet \#533 \$6.95
with programmed cards $\$ 12.95$

TRIANGLE SOLUTIONS

The most complete triangle solutions program available. Solves with any of the following knowns: ASA SAA SAS SSA SSS Area-SS Area-AA Area-SA
Booklet \#535 \$6.95
with programmed cards $\$ 12.95$

POINT STORAGE CONVERSIONS for the
 HP41-CV/CX Surveying Pac

Traverse, Inverse \& Sideshots w/automatic compass correction. Booklet \#521 \$6.95
with programmed cards \$12.95
INTERSECTION SOLUTIONS
(Auto-Inverse routine added) Bearing-Bearing, Bearing-Dist, Dist-Dist and Offset to a Line.
Booklet \#523
\$6.95
with programmed cards $\$ 12.95$

Coordinate Transformation

Rotate or re-scale. Automatically outputs the new rotated bearings and distances between points.
Booklet \#527
\$6.95
with programmed cards $\$ 12.95$

PREDETERMINED AREAS

Calculate required areas from your pre-stored coordinate pairs.
Booklet \#531
\$6.95
with programmed cards $\$ 12.95$
Software by $D^{2} \mathbb{Z i g m}$
P. O. BOX 1370 - PACIFICA, CA 94044

CA residents add 6.5% sales tax

This is the ROM you've been needing. Complete traverse, inverseeverything the others have and more! Coordinate storage and retrieval option by point number. No need to pre-divide to mean angles before input in the field.

The closure routine includes automatic angle check and adjustment. The compass and transit corrections are automatic, with auto-inverse between the adjusted coordinates, all at the touch of a button. Does not require X -memory to work.

Contains keyboard functions for all of the common conversions; Feet to Meters, Feet to Foot-Inch-Fraction, Azimuth to Bearing, (option of North or South Azimuth), add or subtract feet-inch-fractions directly with one shifted keystroke! And, of course, inverse functions of all of these.
$\$ 6.95$
41886

