

INSTALLING THE ROM MODULE

WARNING ! Always turn your HP-41 and peripherals <u>off</u> before inserting or removing the ROM module! Failure to do so will most likely damage the calculator and the Cv-PAK.

The Cv-PAK is compatible with all models of HP-41 - however, if extended memory modules are installed, the Cv-PAK ROM must always be placed in a higher numbered port than the last memory module.

CARE

The CV-PAK module needs no maintenance. If it is removed from the HP-41, reasonable care should be taken to avoid getting the module wet or dusty. Avoid prolonged storage at temperatures above 90 degrees F.

DISCLAIMER

The Cv-PAK is offered as an aid to engineers, technicians, manufacturers sales representatives, and other professionals strictly on an "as-is" basis. The formulas and techniques included are accepted industry standards. In some instances, proprietary methods are used, with the permission of the originator.

There are no express or implied warranties as to the accuracy of this material, or to its suitability for any particular purpose. The seller accepts no liability for damages resulting from the use or misuse of this software.

INTRODUCTION

The Cv-PAK has been designed to be totally self - prompting. If you are already familiar with HP-41 operation and I.S.A. valve sizing terminology, you will quickly become accustomed to using this package. Take a few moments to read the manual and work the sample problems.

A loose leaf binder was selected for this manual so that you may easily add your own supplementary programs, table and notes, making the Cv-PAK an excellent single point control valve reference source.

BASIC FORMAT

Each program in the CV-PAK has been assigned a short, easy to remember Alpha label which is also an acronym for the program function. (Note - If you are unfamiliar with HP-41 operation, program labels are equivalent to "file names" in BASIC.)

Program Labels

VCV	(Volume Cv -for gas)
₩CV	(Weight Cv -for gas or steam)
LCV	(Liquid Cv)
25°H	(2 Phase flow)
LAM	(Laminar flow)

REGISTER SIZE

Minimum register size is 30. Execute SIZE 030 if fewer than 30 memory registers are available. Failure to do so will result in a NONEXISTANT message when the program tries to store data into a nonexistant register.

HELPFUL HINTS

- Do not interrupt running programs, since this tends to affect flag status and proper recovery from subroutines.
- The display will not operate properly during "pause" operations if the printer is attached, but turned off.
- The HP-41 runs noticeably faster without the printer connected, whether or not the printer is switched on.
- On rare occasions, you may suffer what HP-41 owners (as well as operators of other computers) refer to as a "crash". If this happens, you will lose control over the keyboard and strange characters may appear in the display or it may blank out altogether. Don't panic, and don't send your calculator off for repair until you try the following procedure:
 - Remove the batteries for 5 minutes and then replace them. Perform a "master reset" by holding down the set while pressing the ON key. When you release the set, you should see a MEMORY LOST message on the display. Re-execute SIZE 030 and you should be ready to go again.

TO STARI A PROGRAM

Programs in the CV-PAK may be executed by their labels in exactly the same way as other programs in memory. For example, press XEQ ALPHA VCV ALPHA to execute the program labeled "VCV". To make the CV-PAK even more convenient, you may assign each program to a single key so that pressing the key in USER mode selects and starts the program. This technique saves several keystrokes per execution.

Example: (Shift) ASN VCV V. Now the program labeled "VCV" is assigned to the V key *. Hereafter, you may simply press the reassigned key in USER mode to begin the program. (Refer to the HP-41 users manual for additional information on USER mode and key assignments.) The CV-PAK is designed to facilitate execution of programs in this manner by cancelling USER mode automatically at the start of each routine. This avoids conflicts with other reassigned keys while entering data.

* Any program may be assigned to any key.

DETAILED INSTRUCTIONS

All programs and subroutines follow the same general format. Answer prompts with the requested information and press **R/S** (RUN/STOP). The software guides the sequence of operation, and the user need only be familiar with I.S.A. terminology. Therefore, a detailed set of instructions will only be given for one program, using "VCV" as an example.

VOLUME CY

Program label:	VCV
	Calculates required Cv and/or aerodynamic
	sound level, exit velocity, pressure drop, and flow
	at any percentage of valve travel.

The program prompts for all required inputs. Enter the requested information after the prompt and press **R/S** to continue. It is not necessary to re-enter variables for subsequent calculations within the same program. The HP-41 will remember the previous values as long as no number keys are pressed in response to a prompt. To step past inputs without changing the value of a after the prompt. This feature is variable, just press R/S useful due to the iterative nature of ISA SP-75.01 valve sizing procedures. To review the value of a variable, press the 🗲 key once. If the value is satisfactory, press R/S to proceed to the next prompt. To make a change, enter the new value after the prompt & press R/S . If you make a mistake while entering data, RTN , or execute the program to reyou may press (shift) start the prompting routine. In this way, you may enter, edit, or review all inputs in a few seconds.

(VOLUME CV)

- ISA GAS (VOL) Displayed for 0.5 seconds.
- S.C.F.H. ? Flow volume, standard cubic feet per hour.
- P1? (PSIA) Absolute pressure at valve inlet.
- P2? (PSIA) Absolute pressure at valve outlet.
- MOL. WT.? Molecular weight.
- "Z" FACTOR? Compressibility.
- TEMP.? (F) Inlet fluid temperature, Fahrenheit.
- K? (CP/CV) Ratio of specific heats, cp/cv.
- VALVE XT? Valve pressure recovery factor for gas/vapor.
- CALC. FP? Y/N Do you want to calculate Fp? (Yes/No).
- FP=np Current value of Fp in register.
- CV= nn Valve Cv required at given conditions.

After the required Cv is displayed, the program halts. To calculate another Cv value, start the program over by pressing (shift) **RTN**. If **RTS** is pressed, the following options will be offered:

- Print results of the Cv calculation. (If the Hewlett-Packard thermal printer is attached.)
- Predict aerodynamic sound level (followed by another print option if a printer is attached).
- 3) Calculate the valve body exit velocity (Mach number).
- 4) Calculate flow at any percentage of valve travel.
- 5) Calculate pressure drop across the valve.

Option prompts are accompanied by a "Y/N" to indicate that they are a yes/no choice. To select the option, press Y, then [R/S]. Pressing any other key, or just pressing [R/S] will cause the program to skip to the next option or prompt.

(OPTIONS - CONTINUED)

If sound level prediction is requested, the program assumes that a new valve is being sized and does not offer a flow or pressure drop calculation. Options 4 & 5 are for predicting flow rates for relief valve sizing, or to predict pressure drop across a valve at some X travel. If the user intends to solve for pressure drop or flow, the appropriate variables for the valve under consideration should be entered during the initial prompts (i.e.; valve Fl or Xt at the % of travel). In all cases, required Cv must be calculated first.

PROMPTS:

OPTIONS: R/S	Press R/S for option menu.
TRIM dBA: Y/N	Press Y (Yes), R/S to calculate noise.
MACH NÙ.: Y/N	Press Y (Yes), R/S to calculate exit mach number.
FLDW: Y/N	Press Y (Yes), R/S to calculate flow.
PR. DROP: Y/N	Press Y (Yes), <u>R/S</u> to calculate pressure drop across the valve.

Fp CALCULATION

Program label: FP
Description : Calculates piping geometry factor, Fp.

The Fp calculation may be bypassed for initial sizing and selection by pressing \mathbb{R}/\mathbb{S} after the Fp option prompt. The current value of Fp is then displayed as Fp=nn. You may override this by entering 1, or any other number, and proceed with the calculation. After final valve selection has been made, the exact value of Fp may be determined for the final Cv calculation. The Fp correction subroutine is based on a valve installed between two concentric reducers of the same size.

PROMPIS:

VALVE SIZE?	Nominal valve size in inches 2, 3, etc.
NOM PIPE D?	Nominal pipe size in inches.
100 % CV?	Valve Cv at 100% travel.

AERODYNAMIC SOUND PREDICTION

<u>Program label</u>: SL <u>Description</u>: This subroutine is based on a non-proprietary technique developed by Dr. Hans Baumann. It is applicable to single stage valves of any design, and has demonstrated a high degree of accuracy in ASME tests. The Baumann technique calculates the acoustical efficiency factor as a function of valve FL and pressure drop ratio. The resulting sound power generated is a product of this factor and the mechanical power produced across the valve orifice by the dominant noise source. This source is turbulent shear at subsonic and transitional flow; sonic shock waves at low sonic flow; and severe shock waves with shock cell formation at supersonic flow. The program also indicates whether flow at the vena contracta is subsonic, sonic, or in the supersonic region.

PROMPTS:

FL @ TRAVEL?	Manufacturer's pressure recovery coefficient at the valve position indicated by the required Cv.	
SUBSONIC	Display: flow is subsonic @ vena contracta	
SONIC	Display: flow is sonic @ vena contracta	
>>> SONIC	Display: flow is supersonic @ vena contracta	
VALVE SIZE?	Nominal valve size in inches.	
PARABOL.? Y/N	This prompt appears when reduced flow relative to the valve capacity is indicated, Answer yes <u>only</u> if the valve has a parabolic plug and is flowed to open.	
NO. ORIFICES?	Number of apparent flow producing orifices. (Ball valve has 1, butterfly 2, etc.)	
FIPE DD? (")	Nominal pipe size in inches.	
WALL THK? (")	Pipe wall thickness in inches.	
G? (ADJ.,dB)	Specific gravity adjustment factor - see Baumann's table.	

MACH NUMBER

Frogram label: MACH
Description : Predicts valve outlet mach number for compressible
fluids using results from the Cv calculation.

- DUT. d? (") Valve outlet diameter in inches.
- OUTLET T? (F) Fluid temperature at valve outlet, degrees F.
- MOL. WT? Molecular weight.
- Z @ OUTLET? Compressibility at downstream conditions.
- OUTLET VEL.: Display.
- MACH nn Outlet mach number.
- Note: Outlet velocities below Mach 0.33 are usually considered acceptible. Consult the manufacturers literature for recommendations.

WEIGHT CY

Program label: WCV Description 1 Calculates required Cv and/or aerodynamic sound level, exit velocity,pressure drop, and flow at any percentage of valve travel based on weight units.

PROMPIS:	
ISA GAS (WT)	Displayed for 0.5 seconds.
#/HOUR?	Mass flow rate in pounds per hour.
P1? (PSIA)	Absolute pressure at valve inlet.
P27 (PSIA)	Absolute pressure at valve outlet.
DENS.? (#/FT3)	Fluid density in lb/cubic feet.
K? (CP/CV)	Ratio of specific heats, cp/cv.
VALVE XT?	Pressure recovery factor - consult manufacturers literature.
CALC. FP? Y/N	Press Y R/S to calculate Fp; just R/S to bypass the calculation.
FP= nn	Current value of Fp.
CV≑ nn	Required valve Cv at the given conditions.

Note- See detailed instructions for program "VCV" regarding noise prediction and other options.

LIQUID CY

Program label: Description :	
PROMPIS:	
ISA LIQUID	Displayed for 0.5 seconds.
GPM?	Flow rate in U.S. gallons per minute.
F17 (PSIA)	Absolute pressure at valve inlet.
P27 (PSIA)	Absolute pressure at valve outlet.
SP GRAVITY?	Liquid specific gravity.
VAPOR PR.7	Fluid vapor pressure, psia.
CRITICAL PR.?	Fluid critical pressure, psia.
VALVE FL?	Valve pressure recovery coefficient. Consult manufacturers literature.
CALC. FED Y/N	Pressy R/S to calculate Fp; just R/S to bypass the calculation.
FF= nn	Current value of Fp.
CV≖ nn	Required valve Cv at the given conditions.
FF=nn	Display of Ff factor (curve is programmed in).

At this point the program will either display the required Cv, or warn of choked flow conditions. If the flow is choked, the program halts and displays either FLASHING OF CAVITATING. Fress $[\overline{R/S}]$ once to continue. For flashing conditions, the required Cv will be displayed.

For cavitating conditions, an audible warning is sounded along with the display. Press \mathbb{R}/\mathbb{S} once to display the allowable pressure drop in psi. Press \mathbb{R}/\mathbb{S} again to display the required CV at that pressure drop.

TWO PHASE FLOW

ei li Ca	timates required Cv for mixed phase flow - ther a liquid and non - condensing gas, or quid and its vapor. Adapted from Fisher talog 10. Original method was developed by . A.C. Fagerlund of Fisher Controls Company.
PROMPIS:	
2 PHASE FLOW	Displayed for 0.5 seconds.
18G:118V;2	Enter "1" to calculate Cv for liquid/gas mixtures, or "2" for liquid/vapor - then press R/S .
LIQUID & GAS	Displayed for 0.5 seconds.
SCEH GAS?	Gas flow component, soft
P17 (PSIA)	Absolute pressure at inlet
P2? (PSIA)	Absolute pressure at outlet
MOL WT?	Molecular weight
"Z" FACTOR?	Compressibility
TEMP(2) (F)	Inlet temperature, Fahrenheit
KP (SP.HTS)	Ratio of specific heats, cp/cv
VALVE "XT"?	Gas pressure recovery factor
EV (G)≃nn	Display: Cv required for gas portion
LIQUID GPM?	Liquid flow component, US gallons/minute
LIQ GRAVITY?	Liquid specific gravity
FV? (PSIA)	Fluid vapor pressure, psia
Pc? (PS1A)	Fluid critical pressure, psia
VALVE "FL"?	Liquid pressure recovery factor
EV (L)=nn	Display: Cv required for liquid portion

TWO PHASE FLOW - LIQUID & GAS (continued)

VR=nn	Display:	gas volume	ratio
FM-nn	Display:	correction	factor, Fm
CVR=nn	Display:	(Total red	quired Cv)

If 2 is selected:

LIQ. & VAPOR	Displayed for 0.5 seconds.
#/HR VAPOR?	Pounds/hour of vapor
FIT (PSIA)	Absolute inlet pressure
P2? (PSIA)	Absolute outlet pressure
DENS., #/FT37	Vapor density, pounds/cubic foot
KP (SF.HTS)	Ratio of specific heats, cp/cv
VALVE "XT"?	Gas pressure recovery factor
CV (G)=nn	Display: Ev required for vapor portion
LIQUID GPM?	Gallons per minute of liquid
LIQ. GRAVITY?	Liquid specific gravity
PVP (PSIA)	Liquid fluid vapor pressure
Pc? (PSIA)	Liquid fluid critical pressure
VALVE "FL"T	Valve liquid pressure recovery factor
CV (£)=nn	Display: Cv required for liquid portion
#7日秋 1016に?	Total pounds/hour of mixture
VR≃rm	Display: gas volume ratio
FM=nn	Display: correction factor, Fm
CVK=nn	Display (Total Cv required for mixture)

LAMINAR FLOW

Program label:	LAM
Description :	Frogram tests for laminar flow conditions,
	and displays Reynolds number if flow is Laminar. Calculates non-turbulent Cv.

PROMPTS:

LAMINAR FLOW	Displayed for 0.5 seconds.
GFM?	Flow rate, US galions/minute
F17 (FSIA)	Absolute inlet pressure
F27 (FS1A)	Absolute outlet pressure
SP GRAVITY	Liquid specific gravity
VALVE FL?	Liquid recovery factor
VISC, (CST.)?	Viscosity in centistokes
DESIGN? (Fd)	I.S.A. design factor
CALC. FP? Y/N	Fress y R/S to calculate Fp; just R/S to bypass the calculation.
FF= nn	Current value of Fp.
NON LAMINAR	Displayed when Rev is $>$ 100,000
XEQ "LCV"	Display - execute program "FCV"
ReV=nn	Valve Reynolds no.
FRO	Reynolds number correction factor (from chart)

Sample problem no. 1 Liquid service

A control valve in HVAC service is required for a chilled water return loop. The following service conditions are given:

Normal flow is 250 gallons per minute of water at 56 degrees F . Inlet pressure is 75 psia. The pressure drop for sizing purposes is 5 psi. Piping is 6" schedule 40. Use a thin disc butterfly valve, sized to pass the normal flow at 60 degrees of travel.

Use program "LCV". (Fix 2 decimal places) XEQ ALPHA LCV ALPHA

GPMP	250		R/5
P17 (PSIA)	75		R/S
F27 (PS1A)	70		R/S
SP. GRAVITY?	1		R7S
VAPOR PR. 2	. 22	(From chart)	R/S
CRITICAL PR. ?	3206	(From chart)	R/S
VALVE FL ?	.7	(Assumption-from chart)	R/5
CALC EP? Y/N		(Bypass this for 1st trial)	R/S
<u>Ethop</u>			
	1		R7S
FF=0.96			
RO'D CV= 111.80			

Now that a required Cv has been estimated, consult the manufacturer's literature to see which valve has the required Cv of 111 at 60 degrees of travel. A 3" thin disc butterfly appears to be adequate, with a Cv of 132 at 60 degrees. Now that we have selected a valve model and size, we will go back and do a more precise calculation to insure that a 3 inch valve will be the correct choice.

Sample problem no. 2: Gas service, volume flow units

The Joule-Thompson valve for a natural gas liquids plant has the following service conditions:

Required plant capacity is 25 million standard cubic feet per day of 25 molecular weight natural gas. Inlet pressure is 814.7 psia. Outlet pressure is 225 psia. Compressibility is 0.88. Valve inlet temperature is 20 degrees Fahrenheit, and outlet is (-) 60 F. Ratio of specific heats (K) is 1.32. Piping is 6" schedule 80S. Try a 3" globe valve.

Use program "VCV". (Fix 2 decimal places) XEQ ALPHA VCV ALPHA

ISA GAS (VOL)		
SCFH 7	25 EEX 6 ENTER 24 +	R/5
F12 (PSIA)	814.70	R/S
PD2 (PSIA)	225.00	R/5
MOL WT T	25.00	R/S
"Z" FA1 FOR 7	0.98	R/S
TEMPT (F)	20	R/S
11 (SF. HTS)	1.32	R/S
VALVE "XTTT	0.64 (From mfg. catalogue)	R/S
CAUC FER Y/N	Y	R/S
VALVE SIZES	3	R/S
NOM FILTE D?	6	R/S
100. CV	136 (From mfg. catalogue)	R/5]
FF=0.71		R/S
CRITICAL		
RCTD CV=37.60		

Conclusion - The 3" valve passes the required amount at between 50 % and 60 % of travel.

Sample problem 2. continued

What is the predicted noise level for this valve?

		R/S
OFTIONS: R/S		R/S
TRIM dBA: Y/N	Y	R/S
FL @ IRAVEL?	.8	R/S
>>> SONIC		indicates supersonic
		flow @ vena
		contracta,
		${oldsymbol{n}}$ factor above the
		break @ F1/P2>2.8.
VALVE SIZE?	3	R/S
PARABOL ? (Y/N)		R/S
ND. DRIFICES?	Z	R/S
PIPE 0D? (")	6	R/5
WALL THK?	1.432	R/5
G? (ADJ. dB)	1	R/S
SL= 112.00 dBA		This is the predicted sound
		level for a single stage valve when
		measured in accordance with ISA
		recommendations.

Conclusion: Sound attenuation is required. Contact the valve manufacturer for recommendations.

page 17

Now lets calculate outlet velocity.

First re-calculate the Cv, since the noise program and the Mach program overlap some data registers.

ISA GAS (VOL)		
SCFH 7		R/S
P17 (PSIA)		B/S
F27 (FSIA)		R/S
MOL WI P		R/S
"Z" FACTOR ?	0.88	R/S
TEME? (F)	20	R/S
K7 (SF. HTS)	1.32	R/Sj
VALVE "XT"O	0.64 (From mfg. catalogue)	B/S
CALC FER Y/N	Y	R/S
VALVE SIZED	3	R/S
NOM FIFE DO	6	8/5
188% CV7	136 (From mfg. catalogue)	R/S
EF=0.91		
		R/S
CRITICAL		
R0 D CV=37.60		
		RZS
OPTIONS: R/S		R/S
TRIM dBA: Y/N	· · · · · · · · · · · · · · · · · · ·	R/S
MACH ND: Y/N	Y	R/5
	•	
aa. ar (r)	7 [ENTER] 16 🗧 3 [+]	R/S
		R/S
GUILER IT (F)	60 CHS	R/S
MOL WT?	25	R/S
	<u> </u>	R/S
r e buite:		
OUTLET VEL:		
MACH 0.22		

Note: Dutlet velocities of less than MACH 0.33 are considered acceptable. The 3" valve will be sufficient.

Sample problem no. 3 Saturated steam

A pressure control valve for utility steam has these service requirements:

Flow is 25,000 #/hour of saturated steam. Upstream pressure is 125 psia. Downstream pressure is 30 psia. Piping is 6 inch schedule 40. Use program "WCV". Try a 4 inch globe valve.

#/HOUR ?	25000		R/S
F17 (PSIA)	125		R/S
P27 (PSIA)	30		B/S
DENS. 7 (#/F13)	.28	(From steam tables)	R/S
K? (CF/CV)	1.28		8/S
VALVE X17	.67	(From mfg. literature)	R/S
CALC FP? Y/N	Y		R/S
VALVE SIZE?	4		R/S
NOM FIPE D?	6		B/S
100% CV ?	224	(From mfg. literature)	R/S
FF=0.95			R/S
CALICAL			
RC'D CV= 135.67			

XED ALPHA WOW ALPHA

The 4" globe valve will pass the required flow at just over 70% travel.

Sample problem no. 4 Laminar flow

Size a V-notch ball valve for controlling the flow of a highly viscous Newtonian lubricating oil, given the following conditions:

Flow is 100 gallons per minute; P1=116 psia; P2=87 psia; specific gravity=0.908; viscosity= 3000 centistokes. Assume line-sized valve.

Use program "LAM". XEO ALPHA LAM ALPHA

GF:MA	100		R75
P17 (PSIA)	116		R/S
F2* (FSIA)	87	-	R/S
SF GRAVITY	. 908		R/S
VALVE FL 7	.8		R/S
VISC. (CST)?	3000		R/S
DESIGN? (Fd)	1	(From chart)	R75
CALC FER Y/N	(NO)		R/S
FFierin	1		R/S
ReV= 153.61			R75
FRO	.55	(From chart)	R75
CV- 77.03			

This is the "pseudo sizing coefficient", which may be used to select a valve size. The catalogue data indicates that a 2 inch valve should be sufficient for this application. Now the exact CV may be calculated, based on this preliminary selection, by an iterative process of calculating the required CV and then re-calculating based on the projected angle of valve travel.

Incompressible fluids - Program LCV

$$Cv = N1 FLp Fr \sqrt{\Delta P (or \Delta Pt)}$$

$$1.0 1.0 \sqrt{Bf}$$

q = Flow, U.S. gallons per minute Fr = Reynolds number correction, assumed = 1.0 Pt = Pressure drop effective in producing flow (P allowable) Fp = Piping geometry correction factor Fl = Liquid pressure recovery factor FLp = Liquid pressure recovery factor with attached fittings

Where
$$\Delta Pt = \begin{pmatrix} FLp \\ ---- \\ Fp \end{pmatrix}$$
 (P1 - Ff Pv)
= 2 (-) 1/2

$$Fp = \left[1.0 + \frac{\sum K}{N2} \left(\frac{Cv}{d} \right)^2 \right]$$

$$FLp = \begin{bmatrix} -\frac{Ki}{N2} & \frac{Cv}{d} \\ \frac{1}{2} & \frac{2}{d} \end{bmatrix} \begin{pmatrix} -\frac{1}{1/2} \\ \frac{1}{2} \\ \frac{2}{d} \\ FL \end{bmatrix}$$

Ki = k1 + K B1
Ki = Resistance coefficient of upstream fittings
K B1 = Inlet Bernoulli coefficient

$$Ki = 0.5 \begin{pmatrix} 2 & 2 \\ d \\ 1 & -\frac{d}{---} \\ 2 \\ D \end{pmatrix} \qquad K Bi = 1 - \begin{pmatrix} -\frac{d}{--} \\ D \end{pmatrix}$$

APPENDIX A EQUATIONS USED IN THE CV-PAK

Compressible fluids, volume units - Program VCV

$$Cv = \frac{q}{73210 \text{ Fp P1 Y}} \sqrt{\frac{x}{\text{M T1 Z}}}$$

q = Flow, standard cubic feet per hour Fp= Piping geometry correction factor Y = Expansion factor x = Pressure drop ratio M = Molecular weight T1= Fluid inlet temperature, degrees Rankine Z = Compressibility

$$Y = 1 - \begin{bmatrix} x \\ -3 & Fk & Xt \end{bmatrix}$$

Fk = K/1.4 K = cp/cv $x = \Delta P/P1$ Xt = Pressure drop ratio required to produce critical flowwhen Fk = 1.0

$$Fp = \begin{bmatrix} 1.0 + \frac{\sum K}{N2} & \begin{pmatrix} Cv \\ --- \\ 2 \\ d \end{bmatrix} \end{bmatrix}$$
 (-) 1/2

$$Xtp = \begin{bmatrix} Xt & Xt & Ki \\ - & 1.0 + & - & - \\ 2 & 1000 & \begin{pmatrix} Cv \\ - & 2 \\ 2 \\ Fp \end{bmatrix}^{(-)} 1$$

Compressible fluids, weight units - Program WCV

$$Y = 1 - \begin{bmatrix} x \\ ----- \\ 3 \ Fk \ Xt \end{bmatrix}$$

Critical when x >= (Fk Xt)

Y = 0.667 @ critical

Fk = K/1.4
K = cp/cv
x = P/P1
Xt = Pressure drop ratio required
 to produce critical flow
 when Fk = 1.0

$$Fp = \left[1.0 + \frac{\sum K}{N2} \left(\frac{Cv}{2}\right)^2\right]^{(-) 1/2}$$

$$Xtp = \begin{bmatrix} Xt & Xt & Ki \\ -\frac{2}{Fp} & 1.00 + \frac{1000}{1000} & \begin{pmatrix} Cv \\ -\frac{2}{J} \\ d \end{pmatrix} \end{bmatrix} (-) 1$$

Aerodynamic noise prediction - Baumann method

SL = 145.5 + N + 10 log (Cv FLp P1 P2) - TL + G (1)
SL = Sound level, dBA @ 1.0 meter downstream of valve
and 1.0 meter from pipe
N = Acoustical efficiency factor (10 log
$$\eta$$
)
TL = Pipe wall transmission loss, dBA
G = Adjustment, dB
TL = 84.6 + 10 log $\begin{bmatrix} 3 \\ t & (39 + D/2) \\ -----3 \\ D \end{bmatrix}$ (2)
If n(o) > 1, add 10 log n(0) to equation #2
IF reduced flow capacity exists ; Cv FL < 4d
Add to results of equation (2):
20 log $\begin{bmatrix} 2 \\ 4d \\ Cv FL \end{bmatrix}$ 10 log $\begin{bmatrix} 2 \\ 4d \\ Cv FL \end{bmatrix}$

For single seated globe valves, parabolic plug, flowed to open

For all other valve types

Factor N at subsonic flow:

$$N = 26 \log \begin{bmatrix} P_1 - P_2 \\ ----- \\ 2 \\ F_L P_1 - P_1 + P_2 \end{bmatrix} + 19 \log (F_L) - 38.7$$

Aerodynamic noise- continued

APPENDIX A EQUATIONS USED IN THE CV-PAK

Laminer flow - Program LAM

$$Cvc = \frac{9}{N1 \sqrt{\frac{P1-P2}{gf}}}$$

 $Rev = \frac{17,386 \text{ Fd B}}{\frac{2}{\sqrt{FLp \sqrt{Cv}}}} \begin{bmatrix} 1 & (FLp Cv) \\ B98 & 4 \end{bmatrix}^{1/4}$

D = Nominal line size Fd= Valve style modifier \mathcal{V} = Kinematic viscosity of liquid - centistokes

$$Cv = \frac{q}{\int \frac{P1-P2}{Gf}}$$

Fr = Reynolds number correction factor

Two phase flow - Program 2PH

Cvr = (Cv1 + Cvg) (1.0 + Fm)

Where: Evr = Ev required for mixture flow Evl = Ev required for liquid phase Evg = Ev required for gas phase Fm = Ev correction factor as a function of gas volume ratio

Gas volume ratio, Vr:

For liquid/gas mixtures:

Outlet velocity, compressible fluids - program MACH

Outlet mach number:

$$M = \frac{2}{4388} \sqrt{\frac{K}{12}} \frac{1}{M}$$

M = Mach no. @ outlet, out. vel/ sonic vel. d = Outlet diameter, inches T2= Outlet temperature, Rankine M = Molecular weight

To convert volume units to actual cubic feet:

CFH = (SCFH)
$$X\left(\frac{14.7}{P2}\right)X\left(\frac{T2}{520}\right)X\left(\frac{22}{1}\right)$$

P2 = Pressure @ outlet, psia Z2 = Compressibility @ outlet

To convert weight units to actual cubic feet:

$$\frac{1b/hr}{1b/ft} = \frac{3}{3} = \frac{3}{5} + \frac{3}{5$$

3 M P2 1b/ft = ______ 10.73 T2 Z2 APPENDIX B

					REFER	E FAL F	MATER	161	STEE	L P	IPE	DATA		
NOM SIZE	NOM. O.D.		Sch 20	STD	Sch 30	Sch 40	xs	Sch 60	Sch 80	Sch 100	Sch 120	Sch 140	Sch 160	xxs
1	1.315	t		133		STD	.179		X5				.250	.358
		d		1.049		0.000	.957			 		+	.815	.599
1.25	1.660	r d		.140 1.380		STD	.191 1.278		xs		1		.250 1.160	.382 .896
1.5	1.900			.145		STD	.200		XS			4	.281	.400
		d		1.610			1.500						1.338	1.100
2	2.375	t d		.154 2.067		STD	.218		xs				.344 1.687	.436 1.503
2.5	2.875	r d		.203		STD	.276		xs				.375 2.125	.552 1.771
3	3.500	r d		.216 3.068		SID	.300 2.900		xs			-	.438 2.624	.600 2.300
3.5	4.000	t	· ·	.226		STD	.318		xs			+	2.024	.636
4	4.500	d t		<u>3.548</u> .237		STD	3.364		xs		.438	+	.531	2.728
7	1.,00	d		4.026		510	3.826		~ ~ ~		3.624		3.438	3.152
5	5.563	t		258		STD	.375		XS		.500	1	.625	.750
·····	6.635	d		5.047		0770	4.813		NC		4.563		4.313	4.063
6	6.625	t d		.280 6.065		STD	.432 5.761		XS		.562 5.501		.719 5.187	.864 4.897
8	8.625	t d	.250 8.125	322 7.981	.277 8.071	STD	.500 7.625	.406 7.813	XS	.594 7.437	.719 7.187	.812 7.001	.906 6.813	.875 6.875
10	10.750	r d	.250	.365 10.020	.307 10.136	STD	.500 9.750	xs	.594 9.562	.719 9.312	.844 9.062	1.000 8.750	1.125	Sch 140
12	12.750	۲	.250	.375	.330	.406	.500	.562	.688	.844	1.000	1.125	1.312	Sch
		d	12.250	12.000	12.090	11.938	11.750	11.626	11.374	11.062	10.750	10.500	10.126	120
14	14.000	t	.312	.375	STD	438 13.124	.500	.594	.750 12.500	.938	1.094 11.812	1.250	1.406	
16	16.000	1	.312	.375	STD	xs	.500	.656	.844	1.031	1.219	1.438	1.594	
		6	15.376	15.250			15.000	14.688	14.312	13.938	13.562	13.124	12.812	
18	18.000	r b	.312	.375 17.250	.438 17 124	.562 16.876	17.000	.750 16.500	.938 16-124	1.156	1.375	1.562	1.781 14.438	
20	20.000	í d	STD	.375 19.250	XS	.594 18.814	500 19.000	.811 15.376	1.031	1.281 17.438	1.500	1.750 16.500	1.969 16.062	
22	22.000	l i di	STD	.375 21.250	XS		21.000	.857 20.250	1.125 19.750	1.375 19.250	1.625	1.875 18.250	2.125	
24	24.000	t d	STD	.375	.562 22.876	.688 22.624	.500	.969	1.219 21.562	1.531 20.938	1.812	2.062 19.876	2.344	
26	26.000	ı d	xs	375 25.250			.500							
28	28.000	t d	XS	.375	.625 26.750		.500				1			
30	30.000	t d	xs	.375 29.250	.626 28.750		.500							
36	36.000	t d	xs	375	.625 34.750	.750	502					1	1	<u>↓</u> ·
42	42.000	r d	1	.375 41.250	40.750	.750	.500		<u>i</u>	• • • · · • • • • • •			and comments to the second second	

V,	A	L١	٧E	Т	Y	PE

No	GAS
140	040

full bore ball valve	1	Acetylene
Single seat angle valve, flow to close		Air Ammonia
Eccentric rotary plug valve, flow to close	1	Argon
Segmented ball valve	1	Butane
Butterfly valve (non-fluted) 60° travel	2	Carbon Dioxide
Single seat globe valve, flow to open	2	Chlorine
Angle valve, flow to open	2	Ethane
Eccentric rotary plug valve, flow to open	2	Ethylene
Double seated globe valve (parabolic)	14	Helium
		1

G	GAS		G
- 0.5	Hydrogen		- 9.0
0	Hydrogen		1
1.5	Chloride		-1.0
1.0	Isobutane		- 6.(
- 6.0	Methane		2.(
- 3.0	Natural Ga	5	0.6
D	Nitrogen		1 (
- 2.5	Oxygen		- 0.1
- 2.0	Pentane		- 7.
- 1.5	Propane		- 4.
9.0	Propylene		4!
	Sulphur De	oxide	- 5 (

'eqe ₁:1

APTEND:X P REFERENCE MATERIAL

APTENDUX EF REFERENCE MARERUAT

APPENDIX E REFERENCE MATERIAL

Critical Pressures and Temperatures for Various Gases

Gas	P critical psia/KPa	T critical °R/°K
Air	547 (3772)	240 (133)
Oxygen.	731 (5040)	278 (154)
Nitrogen	492 (3392)	227 (126)
Hydrogen	. 306*(2110)*	41* (22)*
Carbon Dioxide	1073 (7398)	548 (304)
Helium	152* (1048)*	8* (4)*
Ammonia	. 1640 (11,308)	730 (405)
Methane	674 (4647)	343 (190)
Acetylene	912 (6288)	556 (309)
Argon	706 (4868)	272 (151)
Ethylene		509 (282)
Hydrogen Chloride	. 1200 (8274)	585 (325)
Nitric Oxide		323 (179)
Sulfur Dioxide	. 1142 (7874)	775 (430)
Page 84		

Acetylene C_2H_2 26.04 $.069$ 1.11 0.91 905 62.4 96 3 Air 28.98 $.076$ 1.225 1.00 547 37.7 -221 1.4 Ammonia NH_3 17.03 $.046$ 0.73 0.60 1638 113.0 271 133 ArgonAr 39.94 106 1.69 1.38 705 48.6 1.89 128 Benzene C_6H_6 78.11 226 3.30 2.70 703 48.5 551 285 Butane (i-) C_4H_6 58.12 1.62 2.59 2.09 529 36.5 309 15 Butylene C_4H_6 56.11 1.48 2.37 1.94 570 39.5 296 44 Carbon dioxide CO_2 44.01 1.17 1.87 1.53 1073 74.0 88 3 Carbon monoxide CO 28.01 $.074$ 1.18 0.97 508 35.0 -220 44 Chlorine C_12 70.91 1.90 30.5 2.49 1116 77.0 292 14 Chlorine dioxide CIO_2 67.46 1.84 2.94 2.40 $ -$ Cyanogen C_2H_2 20.92 301 4.82 3.93 581 40.1 232 116 Chlorine C_2 42 10.97 1.99 305 720 -15 -162 H	32.4 1.32 22.4 1.67 38.5 1.10 33.2 -	(194°F)
Air28.98.0761.2251.0054737.7.2211.4AmmoniaNH ₃ 17.03.0460.730.601638113.027113ArgonAr.39.94.1061.691.38.70548.6-189-12BenzeneC.4H ₆ 78.11.206.3.002.7070348.555128Butane (n-)C.H ₁₀ 58.12.162.259.20952936.527513ButyleneC.4H ₆ 56.11.1482.371.9457039.529614Carbon dioxideCO28.01.0741.180.9750835.0-22014ChlorineCl270.91.190.3052.49111677.029214Chlorine dioxideClO67.46.1842.942.40CyanogenC2N252.04.1392.231.7888260.826212Dichlordi- flour methaneFormaldehydeCH ₂ O30.03.0821.32FormaldehydeCH230.03.0821.33.23.450.460.33.23.450HeilumHe4.00.011.611.31.808.557.7.200.13FormaldehydeCH2O.30.03	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(194° F)
Air28.98.0761.2251.0054737.7.2211.4AmmoniaNH ₃ 17.03.0460.730.601638113.027113ArgonAr.39.94.1061.691.38.70548.6-189-12BenzeneC.4H ₆ 78.11.206.3.002.7070348.555128Butane (n-)C.H ₁₀ 58.12.162.259.20952936.527513ButyleneC.4H ₆ 56.11.1482.371.9457039.529614Carbon dioxideCO28.01.0741.180.9750835.0-22014ChlorineCl270.91.190.3052.49111677.029214Chlorine dioxideClO67.46.1842.942.40CyanogenC2N252.04.1392.231.7888260.826212Dichlordi- flour methaneFormaldehydeCH ₂ O30.03.0821.32FormaldehydeCH230.03.0821.33.23.450.460.33.23.450HeilumHe4.00.011.611.31.808.557.7.200.13FormaldehydeCH2O.30.03	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(194°F)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	82.4 1.32 22.4 1.67 88.5 1.10 63.2 - 16.6 -	()94 °F)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22.4 1.67 88.5 1.10 () 63.2 - 85.1 1.11 () 66.6 -	(194° F)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	i3.2 - i5.1 1.11 (i6.6 -	(1941F)
Butane (n-) C_4H_{10} 58.12 1.62 2.59 2.09 529 36.5 309 15 Butane (i-) C_4H_{10} 58.12 1.57 2.51 2.05 529 36.5 275 13 Butylene C_4H_* 56.11 1.148 2.37 1.94 570 39.3 296 14 Carbon dioxide CO_2 44.01 1.17 1.87 1.53 1073 74.0 88 33 Carbon monoxide CO 28.01 0.74 1.18 0.97 508 35.0 -220 14 Chlorine C_{12} 70.91 1.90 3.05 2.49 1116 77.0 292 14 Chlorine dioxide CIO_2 67.46 1.84 2.94 2.40 Cyanogen C_2N_2 52.04 1.39 2.23 1.78 882 60.8 262 12 Dichlordi- flour methane $ -$ (Freon 12) CF_2Cl_2 120.92 301 4.82 3.93 581 40.1 232 11 Ethane C_2H_4 30.07 081 1.29 1.05 708 48.8 90 36 Ethylene Γ_2H_4 2.020 3003 082 1.32 HeiumHe 4.00 011 0.17 0.14 33 2.3 450 23 <tr<< td=""><td>53.2 - 15.1 1.11 (16.6 -</td><td></td></tr<<>	53.2 - 15.1 1.11 (16.6 -	
Butane (i-) C_4H_{10} 58.12 $.157$ 2.51 2.05 529 36.5 275 133 Butylene C_4H_* 56.11 $.148$ 2.37 1.94 570 39.3 296 144 Carbon dioxide CO_2 44.01 $.117$ 1.87 1.53 1073 74.0 88 33 Carbon monoxide CO 28.01 $.074$ 1.18 0.97 508 35.0 -220 -14 Chlorine Cl_2 70.91 190 3.05 2.49 1116 77.0 292 14 Chlorine dioxide Cl_2 67.46 $.184$ 2.94 2.40 $ -$ Cyanogen C_2N_2 52.04 $.139$ 2.23 1.78 882 60.8 262 12 Dichlordi-flour methane $ -$ (Freon 12) CF_2Cl_2 120.92 $.301$ 4.82 3.93 581 40.1 232 11 Ethane C_2H_4 28.05 $.074$ 1.19 0.98 742 51.2 49.5 Fluorine F_2 38.00 $.011$ 1.61 1.31 808 55.7 -200 -15 Formaldehyde CH_4O 30.03 $.082$ 1.32 $ -$ </td <td>6.6 -</td> <td></td>	6.6 -	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(59°F)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0 1.31	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.2 1.40	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
Dichlordi- flour methane (Freon 12) CF_2Cl_2 120.92.3014.823.9358140.123211Ethane C_2H_6 30.07.0811.291.0570848.89033Ethylene C_2H_4 28.05.0741.190.9874251.249.5Fluorine F_2 38.00.1011.611.3180855.7-200-13Formaldehyde CH_2O 30.03.0821.32HeliumHe4.00.0110.170.14332.3-450-26HydrogenH22.02.0050.080.0718813.0-400-23Hydrogen bromideHBr80.92.2153.452.82124185.61949Hydrogen chlorideHCl36.47.0971.551.27121984.11235Hydrogen sulfideH234.08.0911.461.19130690.121.310Methyl chlorideCH416.04.0420.680.5567146.3-11785Methyl etherC2H6O46.07.1241.981.6277353.326012Methyl etherC2H6O46.07.1241.981.6277353.326012Methyl etherC2H6O46.07.1241.981.6277353.326012 <t< td=""><td>28.3 1.26</td><td></td></t<>	28.3 1.26	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
Ethane C_2H_6 30.07 $.081$ 1.29 1.05 708 48.8 90 33 Ethylene C_2H_4 28.05 $.074$ 1.19 0.98 742 51.2 49.5 Fluorine F_2 38.00 $.101$ 1.61 1.31 808 55.7 -200 -12 Formaldehyde CH_2O 30.03 $.082$ 1.32 $ -$ HeliumHe 4.00 $.011$ 0.17 0.14 33 2.3 -450 -26 Hydrogen H_2 2.02 $.005$ 0.08 0.07 188 13.0 -400 -23 Hydrogen bromideHBr 80.92 $.215$ 3.45 2.82 1241 85.6 194 9 Hydrogen chlorideHCl 36.47 $.097$ 1.55 1.27 1219 84.1 123 53 Hydrogen sulfideH_2S 34.08 $.091$ 1.46 1.19 1306 90.1 213 100 Methyl chloride CH_4 16.04 $.042$ 0.68 0.55 671 46.3 -117 83 Methyl ether C_2H_8O 46.07 $.124$ 1.98 1.62 773 53.3 260 12 Methyl mercaptan CH_4S 48.10 $.066$ 1.06 0.87 1048 72.3 386 19 NeonNe 20.18 $.053$ 0.85 0.70 394 27.2 -380 <td></td> <td></td>		
Ethylene C_2H_4 28.05.0741.190.9874251.249.5Fluorine F_2 38.00.1011.611.3180855.7-200-13Formaldehyde CH_2O 30.03.0821.32HeliumHe4.00.0110.170.14332.3-450-26HydrogenH22.02.0050.080.0718813.0-400-23Hydrogen bromideHBr80.92.2153.452.82124185.61949Hydrogen chlorideHCl36.47.0971.551.27121984.11235Hydrogen iodideHI127.93.3435.494.48120583.130415Hydrogen sulfideH2S34.08.0911.461.19130690.121310MethaneCH416.04.0420.680.5567146.3-11785Methyl chlorideCH3Cl50.49.1372.191.7896966.829014Methyl etherC2H6O46.07.1241.981.6277353.326012Methyl mercaptanCH4S48.10.0661.060.87104872.338619NeonNe20.18.0530.850.7039427.2-380<-22	1.5 1.14	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32.2 1.22	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.7 1.25	
HeliumHe4.00.0110.170.14332.3.450.26HydrogenH22.02.0050.080.0718813.0.400.23Hydrogen bromideHBr80.92.2153.452.82124185.6194.9Hydrogen chlorideHCl36.47.0971.551.27121984.1123.5Hydrogen iodideHI127.93.3435.494.48120583.130415Hydrogen sulfideH2S34.08.0911.461.19130690.121310MethaneCH416.04.0420.680.5567146.3-11785Methyl chlorideCH3Cl50.49.1372.191.7896966.829014Methyl etherC2H6O46.07.1241.981.6277353.326012Methyl mercaptanCH4S48.10.0661.060.87104872.338619NeonNe20.18.0530.850.7039427.2-380<-22	28.7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	67.9 1.66	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.9 1.41	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1.36	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.4 1.41	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.8 1.40	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.5 1.33	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.5 - 1.30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13.1 1.28	
Neon Ne 20.18 .053 0.85 0.70 394 27.2 -380 -22 Nitric oxide NO 30.01 .079 1.27 1.04 956 65.9 -135 9 Nitrogen N2 28.02 .074 1.18 0.97 492 33.9 -232 -14		(68 F)
Nitric oxide NO 30.01 .079 1.27 1.04 956 65.9 -135 9 Nitrogen N2 28.02 .074 1.18 0.97 492 33.9 -232 -14	6.8	
Nitrogen N ₂ 28.02 .074 1.18 0.97 492 33.9 -232 -14	28.7 ± 1.67	
	1.40	
	6.6 1.28	
Oxygen O ₂ 32.00 .084 1.35 1.11 731 50.4 -182 -11	8.8 1.40	
	5 1.29	
	6.8 ± 1.14	
	2.0 -	
Sulfur dioxide SO2 64.06 .173 2.77 2.26 1143 78.8 316 15	7.3 1.29	
Steam H_2O 18.02 $[(048)(-0.76)]$ (-0.622) 3196 220.4 705 37	74 ~1.3	tu normal con-

ditions

* k is at temperature $32^{\circ}F$ (0°C) unless otherwise specified.

APPENDIX B REFERENCE MAIERIAL

Liquid	Formula	Molecular weight M	Specific gravity	Critical pressure		Critical temperature	
			Gr	p,∕psia	p₁/bar	t₊⁄°F	⊾/°C
Acetaldehyde	CH ₃ CHO	44.05	0.783	-	-	370	188
Acetic acid	CH₃COOH	60.05	1.049	840	57.9	612	322
Acetic anhydride	(CH ₃ CO) ₂ O	102.09	1.082	676	46.6	565	296
Acetone	(CH ₃) ₂ CO	58.08	0.792	690	47.6	457	236
Amyl alcohol (i-)	C ₅ H ₁₁ OH	88.15	0.812	-		588	309
Amyl acetate (i-)	CH ₃ COOC ₃ H ₁₁	130.18	0.873	-		618	326
Aniline	C ₆ H ₅ NH ₂	93.12	1.022	770	53.1	798	426
Benzene	C ₆ H ₆	78.11	0.879	705	48.6	552	289
Bromine	BR	159.83	3.120	1493	103	590	310
Butyl alcohol (i-)	C ₄ H ₉ OH	74.12	0.804	709	48.9	522	27 2
Carbon disulfide	CS_2	76.13	1.263	1073	74	523	273
Carbon tetrachloride	CCL	153.84	1.594	661	45.6	542	28 3
Chlorobenzene	C ₆ H ₅ Cl	112.56	1.107	655	45.2	678	359
Chloroform	CHCla	119.39	1.489	793	54.7	500	260
Cyclohexane	C_6H_{12}	84.16	0.779	584	40.3	536	280
Ethyl acetate	CH ₃ COOC ₂ H ₅	88.10	·· 0.900	555	38.3	482	250
Ethyl alcohol	C ₂ H ₅ OH	46.07	0.790	927	63.9	470	243
Ethyl ether	$(C_2H_5)_2O$	74.12	0.714	529	36.5	382	194
Ethylene glycol	$(CH_2OH)_2$	62.07	1.115	- 1	-		-
Ethylene trichloride	C ₂ HCl ₃	131.40	1.464	728	50.2	520	271
Glycerine	$C_3H_5(OH)_3$	92.09	1.260	-	-		-
Heptane (n-)	$C_7 H_{16}$	100.20	0.684	394	27.2	512	267
Hexane (n-)	C_6H_{14}	86.17	0.659	435	30.0	455	235
Mercury	Hg	200.61	13.546	15312	1056	2660	1460
Methyl alcohol	CH3OH	32.04	0.792	1156	79.7	464	240
Methyl sulfide	$(CH_3)_2S$	62.13	0.845	802	55.3	446	230
Nitric acid	HNO3	63.02	1.512		-	-	
Octane (n-)	C_8H_{18}	114.22	0.702	363	25.0	565	296
Pentane (n-)	C_5H_{12}	72.15	0.626	484	33.4	387	197
Propionic acid	C ₂ H ₅ COOH	74.08	0.993	779	53.7	464	240
Propylalcohol (n)	C ₃ H ₇ OH	60.09	0.804	735	50.7	507	264
Propylamine	$C_3H_7NH_2$	59.11	0.719	687	47.4	435	224
Pyridine	C ₅ H ₅ N	79.10	0.983	882	60.8	652	344
Sulfurchloride	S_2Cl_2	135.03	1.68	-	-	-	-
Sulfuric acid	H ₂ SO ₄	98.08	1.834	-		-	-
Toluene	C ₆ H ₅ CH ₃	92.13	0.866	612	42.2	610	321
Water	H ₂ O	18.02	0.998	3196	220.4	705	374

LIQUID

Specific gravity at 68°F.

ALFENDIX B REFERENCE MATERIAL

PROPERTIES OF WATER AT VARIOUS TEMPERATURES (Referred to Water at 68 F. Weighing 62 318 Lb/Cu Ft

		(Heleneo lo V		ereigening bi			
Temp °F	Specific Volume cu ft/lb	Specific Gravity	Vapor Pressure PSIA	Temp °F	Specific Volume cu ft/ib	Specific Gravity	Vapor Pressure PSIA
32 33 34 35 36 37 38 39	0 01602 0.01603 0.01602 0.01602 0.01602 0.01602 0.01602 0.01602 0.01602	1.0016 1.0017 1.0017 1.0017 1.0017 1.0018 1.0018 1.0018	0.0835 0.0922 0.0960 0.1000 0.1040 0.1082 0.1126 0.1171	210 220 230 240 250 260 270 280	0.01670 0.01677 0.01684 0.01692 0.01709 0.01709 0.01717 0.01725	0.9609 0.9569 0.9529 0.9484 0.9439 0.9392 0.9346 0.9297	14,123 17,186 20,780 24,969 29,825 35,429 41,853 49,203
40 41 42 43 45 45 46 47 48 49	0.01602 0.01602 0.01602 0.01602 0.01602 0.01602 0.01603 0.01603 0.01603	1.0018 1.0018 1.0018 1.0017 1.0017 1.0017 1.0017 1.0016 1.0016 1.0016	0.1217 0.1265 0.1315 0.1367 0.1420 0.1475 0.1532 0.1591 0.1653 0.1716	290 300 310 320 330 340 350 350 360 370 380	0.01735 0.01745 0.01755 0.01765 0.01776 0.01787 0.01787 0.01789 0.01811 0.01823 0.01836	0.9249 0.9196 0.9143 0.9092 0.9036 0.8920 0.8920 0.8301 0.8302 0.8741	57.556 67.013 77.58 89.60 103.04 118.01 134.63 153.04 173.37 195.77
50 51 52 53 54 55 56 57 58 59	0.01603 0.01603 0.01603 0.01603 0.01603 0.01603 0.01603 0.01603 0.01604	1,0015 1,0014 1,0014 1,0013 1,0013 1,0012 1,0015 1,0010 1,0010 1,0009	0.1781 0.1849 0.1918 0.1990 0.2064 0.2141 0.2220 0.2302 0.2385 0.2473	390 400 410 420 430 440 450 460 470 480	0.01850 0.01864 0.01878 0.01894 0.01910 0.01926 0.0194 0.0196 0.0195 0.0200	0.8673 0.8609 0.8545 0.8473 0.8402 0.8332 0.826 0.818 0.810 0.802	220.37 247.31 276.75 308.83 343.72 381.59 422.6 466.9 514.7 566.1
60 62 64 68 70 75 80 85 90 95	0.01604 0.01604 0.01605 0.01605 0.01605 0.01606 0.01606 0.01607 0.01608 0.01509 0.01610 0.01612	1.0008 1.0006 1.0004 1.0002 1.0000 0.9998 0.9998 0.9976 0.9968 0.9958	0.2563 0.2751 0.2951 0.3164 0.3390 0.3631 0.4298 0.5959 0.5959 0.6952 0.8153	490 500 510 520 530 540 550 550 570 580 590	0.0202 0.0204 0.0207 0.0209 0.0212 0.0215 0.0218 0.0221 0.0221 0.0224 0.0228 0.0232	0.794 0.786 0.775 0.757 0.746 0.737 0.725 0.716 0.704 0.704 0.692	621.4 680,3 744.3 812.4 865.0 962.5 1045.2 1133.1 1226.5 1325.8 1431.2
100 110 120 130 140 150 160 170 180 190 200	0.01613 0.01617 0.01620 0.01625 0.01634 0.01634 0.01634 0.01651 0.01657 0.01663	(1.9949 0.9927 0.9803 0.9878 0.9850 0.9321 0.9790 0.9755 0.9720 0.9684 0.9619	0.9492 1.275 1.692 2.223 2.889 3.713 4.741 5.992 7.510 9.337 11.526	600 610 620 630 640 650 660 670 680 590 705 4	0.0236 0.0241 0.0247 0.0253 0.0260 0.0268 0.0278 0.0278 0.0278 0.0290 0.0305 0.0328 0.0503	0.680 0.656 0.634 0.599 0.578 0.554 0.554 0.526 0.489 0.319	1542.9 1661,2 1786.6 1919.3 2059.7 2203.2 2365.4 2531.8 2703.1 2895.1 3205.2

APPENDIX B REFERENCE MATERIAL