Cv-PAK
 USER'S MANUAL

INSTALLING THE ROM MODULE

```
WARNIMG ! Always turn your HP-41 and peripherals oft before
inserting or removing the ROM module! Failure to do so will most
likely damage the calculator and the Cv-FAK.
The \(C v-P A k\) is compatible with all models of HP-4i - however, if extended memory modules are installed, the CV-PAK ROM must always be placed in a higher numbered port than the last memory module.
```


CARE

The CV-PAK module needs no maintenance. If it is removed from the HP-41, reasonable care should be taken to avoid getting the module wet or dusty. Avoid prolonged storage at temperatures above 90 degrees F.

DISCLAMN토

The CV-PAK is offered as an aid to engineers, technicians, manufacturers sales representatives, and other professionals strictly on an "as-is" basis. The formulas and techniques included are accepted industry standards. In some instances, proprietary methods are used, with the permission of the originator.

There are no express or implied warranties as to the accuracy of this material, or to its suitability for any particular purpose. The seller accepts no liability for damages resulting from the use or misuse of this software.

INTRODUCIIDN

```
The Cv-FAK has been designed to be totally self - prompting.
If you are already familiar with HP-41 operation and I.S.A. valve
sizing terminology, you will quickly become accustomed to using this
package. Take a few moments to read the manual and work the sample
problems.
A loose leaf binder was selected for this manual so that you may
easily add your own supplementary programs, table and notes, making
the CV-PAK an excellent single point control valve reference source.
```


BASIC FORMAT

Each program in the CV-PAK has been assigned a short, easy to remember Alpha label which is also an acronym for the program function. (Note - If you are unfamiliar with Mp-41 operation, program labels are equivalent to "file names" in BASIC.)

UCV	(Volume $C V$-for gas)
WCV	(Weight $C V$ for gas or steam)
LV	(Liquid $C V$)
2FH	(2 Phase flow)
LAM	(Laminar flow)

REGISTER SIZE

Minimum register size is 30. Exerute SIZE DOB if fewer than 30 memory registers are available. Failure to do so will result in a NONEXISTANT message when the program tries to store data into a nonexistant register.

HELPEL HINTS

- Do not interrupt running programs, since this tends to affert flag status and proper recovery from subroutines.
- The display will not operate properly during "pause" operations if the printer is attached, but turned off.
-. The HF-41 runs noticeably faster without the printer connected, whether or not the printer is switched on.
- On rase occasions, you may suffer what HP-41 owners (as well as operators of other computers) refer to as a "crash". If this happens, you will lose control over the keyboard and strange characters may appear in the display - or it may blank out altogether. Don't panic, and don't send your calculator off for repair until you try the following procedure:

1) Remove the batteries for 5 minutes and then replace them. Perform a "master reset" by holding down the $\$$ key while pressing the [ON key. When you release the \square key you should see a MEMORY LOST message on the display. Re-execute SIZE 0,0 and you should be ready to go again.

ID STARI A PRDGRAM

Programs in the CV-PAK may be executed by their labels in exactly the same way as other programs in memory. For example, press XER AlPHA VCV ALPHA to execute the program labeled "VCU". To make the CV-PAK even more convenient, you may assign each program to a single key so that pressing the key in USER mode selects and starts the program. This technique saves several keystrokes per exerution.

Example: (Shift) ASN vCV Now the program labeled "VCV" is assigned to the v key *. Hereafter, you may simply press the reassigned key in USER mode to begin the program. (Refer to the HP-41 users manual for additional information on USER mode and key assignments.) The $C V-P A K$ is designed to facilitate execution of programs in this manner by cancelling USER mode automatically at the start of each routine. This avoids conflicts with other reassigned keys while entering data.

[^0]
DETAILED INSTRUCIIONS

All programs and subroutines follow the same general format. Answer prompts with the requested information and press R/S (RUN/STOF). The software guides the sequence of operation, and the user need only be familiar with I.S.A. terminology. Therefore, a detailed set of instructions will only be given for one program, using "VCV" as an example.

YOLUME CV

```
Program label: VCV
Descrigtion : Calculates required CV and/or aerodynamic
    sound level, exit velocity, pressure drop, and flow
        at any percentage of valve travel.
```

The program prompts for all required inputs. Enter the requested information after the prompt and press R/S to continue. It is not necessary to re-enter variables for subsequent calculations within the same program. The HP-41 will remember the previous values as long as no number keys are pressed in response to a prompt. To step past inputs without changing the value of a variable, just press \mathbb{R} / \mathcal{S} after the prompt. This feature 15 useful due to the iterative nature of ISA SP-75.01 valve sizing procedures. To review the value of a variable, press the \leqslant key once. If the value is satisfactory, press R/S to proceed to the next prompt. To make a change, enter the new value after the prompt \& press R/S - If you make a mistake while entering data, you may press (shift) חa RTN , or execute the program to restart the prompting routine. In this way, you may enter, edit, or review all inputs in a tew seconds.

(VOLUME EV)

ISA GAS (VDL)	Displayed for 0.5 seconds.
S.C.F.H. ?	Flow valume, standard cubic feet per hour.
P1? (PSIA)	Absolute pressure at valve inlet.
P2? (PSIA)	Absolute pressure at valve outlet.
MOL. WT.?	Molecular weight.
"Z" FACTOR?	Compressibility.
TEMF ? (F)	Inlet fluid temperature, Fahrenheit.
K? (CP/CV)	Ratio of specific heats, cp/cve
VALVE XT?	Valve pressure recovery factor for gas/vapor.
CALC. FF? Y / N	Do you want to calculate Fp? (Yes/No).
$F P=\pi$	Current value of Fp_{p} in register.
$C V=n n$	Valve CV required at given conditions.

After the required $C V i s$ displayed, the program halts. To calculate another $C v$ value, start the program over by pressing (shift) RIN. If R/S is pressed, the following options will be offered:

1) Print results of the $\mathrm{C} V$ calculation. (If the Hewlett-Packard thermal printer is attached.)
2) Predict aerodynamic sound level (followed by another print option if a printer is attached).
3) Calculate the valve body exit velocity (Mach number).
4) Calculate flow at any percentage of valve travel.
5) Calculate pressure drop across the valve.

Option prompts are accompanied by a "Y/N" to indicate that they are a yes/no choice. To select the option, press Y, then R/S . Pressing any other key, or just pressing $\quad \mathbf{R / S}$ will cause the program to skip to the next option or prompt.

(OPTIDNS - CONTINLEED)

If sound level prediction is requested, the program assumes that a new valve is being sized and does not offer a flow or pressure drop calculation. Options 4 \& 5 are for predicting flow rates for relief valvesizing, or to predict pressure drop across a valve at some x travel. If the user intends to solve for pressure drop or flow, the appropriate variables for the valve under consideration should be entered during the initial prompts (i.e.; valve Fl or $X t$ at the $\%$ of travel). In all cases, required $C V$ must be calculated first.

PROMPTS:

Ep CALCLLATION

```
Program label: FF
Description \(\dot{\text { D }}\) Calculates piping geometry factor, Fp.
The Fp calculation may be bypassed for initial sizing and selection
by pressing R/G after the Fp option prompt. The current value
of Fp is then displayed as Fp=nn. You may override this by entering
1 , or any other number, and proceed with the calculation. After
final valve selection has been made, the exact value of Fp may be
determined for the final Cv calculation. The Fp correction
subroutine is based on a valve installed between two concentric
reducers of the same size.
```

PROMPTS:

```
VALVE SIZE? Nominal valve size in inches 2, 3, etc.
NOM FIPE D? Nominal pipe size in inches.
100
        % cu?
    Valve CV at 100% travel.
```


AERODYNAMIC SOUND PREDICIION

```
Program label: SL
pescrifption : This subroutine is based on a non--proprietary
technique developed by Dr. Hans Baumann. It is applicable to single
stage valves of any design, and has demonstrated a high degree of
accuracy in ASME tests. The Raumann technique calculates the
acoustical efficiency factor as a function of valve fL and pressure
drop ratio. The resulting sound power generated is a product of this
factor and the mechanical power produced across the valve orifice by
the dominant noise source. This source is turbulent shear at
subsomic and transitional flow; sonic shock waves at low sonic flow;
and severe shock waves with shock cell formation at supersonic flow.
The program also indicates whether flow at the vena contracta is
subsonic, soric, or in the supersonic region.
```

PROMPTS:

FL TRAVEL?	Manufacturer's pressure recovery coefficient at the valve position indicated by the required CV .
SUBSONIC	Display: flow is subsonic vena contracta
SONIC	Display: flow is sonic @ vena contracta
》ン SONIE	Display: flowis supersonic a vena contracta
VALVE SIZE?	Nominal valve size in inches.
FARABDL.? Y/N	This prompt appears when reduced flow relative to the valve capacity is indicated, Answer yes only if the valve has a parabolic plug anc is flowed to oper.
NO. DRIFICES?	Number of apparent flow producing orifices. (Ball valve has 1, butter $\ddagger 1 y 2$, etc.)
FIFE OD? (")	Nominal pipe size in inches.
WALL THK? (")	Fipe wall thickness in inches.
G? (ADJ., dB)	Specific gravity adjustment factor see Baumann's table.


```
Frogram label: MACH
Descrigtion E Predicts valve outlet mach number for compressible
fluids using results from the CV calculation.
```

DUT. d? (")	Valve outlet diameter in inches.
OUTLET T? (F) Fluid temperature at valve outlet, degrees F.	
MOL. WT?	Molecular weight.
Z OUTLET?	Compressibility at downstream conditions.
OUTLET VEI.:	Display.
MACH nn	Outlet mach mumber.

Note: Outlet velocities below Mach 0.33 are usually considered acceptible. Consult the manufacturers literature for recommendations.

WEIGHT CV

```
Frggram label: wCV
Descriqtion : Calculates required Cv and/or aerodynamit
    sound level, exit velocity,pressure drop, and flow
    at any percentage of valve travel based on weight
    units.
```


PROMPTS:

ISA GAS (WT)	Displayed for 0.5 seconds.
\#/HOUR?	Mass flow rate in pounds per hour.
F1? (FSIA)	Absolute pressure at valve inlet.
P2? (PSIA)	Absolute pressure at valve outlet.
DENS. ? (\#/FTS)	Fluid density in lb/cubic feet.
$K ? ~(C P / C V)$	Ratio of specific theats, cp/cv.
VALVE $X T$?	Pressure recovery factor - consult manufacturers literature.
CALC. FP? Y/N	Press Y R/S to calculate Fp ; iust R/S to bypass the calculation.
$F P=n n$	Current value of Fp.
$C V=n n$	Required valve $C V$ at the given conditions.

Note- See detailed instructions for program "VCV" regarding noise prediction and other options.

LIQUID $\underline{C} \underline{V}$

```
Program label: LCV
Descrigtion : Calculates required CV and/or flow noise,
    pressure drop, and flow at any percentage of
    valve travel. Halts and warns of flashing or
    cavitation.
```


PROMEIS:

ISA LIQUID	Displayed for 0.5 seconds.
GFM?	Flow rate in U.S. gallons per minute.
$F 1 \sim(P S I A)$	Absolute pressure at valve inlet.
$F \cdot 2 \rightarrow$ (PSIA)	Absolute pressure at valve outlet.
SF Gravity?	Liquid specific gravity.
VAFOR F'R.?	Fluid vapor pressure, psia.
CRITICAL. FR.?	Fluid critical pressure, psia.
VALVE FL?	Valve pressure recovery coetficient. Consult manufacturers literature.
CAIC. FFM Y N	Pressy R/G to calculate Fp; just R/S to bypass the calculation.
$F F=\mathrm{nn}$	Current value of Fp.
$C V=n$	Required valve $C \vee$ at the given conditions.
$F F=n r_{1}$	Display of Ff factor (curve is programmed in).

At this point the program will either display the required $C V$, or warn of choked flow conditions. If the flow is choked, the program halts and displays either flashing or CAVITATINti Fress [R/S once to continue. For flashing conditions, the required $C \vee$ will be displayed.

For cavitating conditions, an audible warning is sounded along with the display. Press R/S once to display the allowable pressure drop in psi. Press R/S again to display the required $C V$ at that pressure drop.

```
Program label: 2FH
Descrigtion : Estimates required Cv for mixed phase flow -
    either a liquid and mon - condensing gas, or
    liquid and its vapor. Adapted from Fisher
    Catalog 10. Driginal method was developed by
    Dr. A.C. Fagerlund of Fisher Controls Company.
```


PROMPIS:

2 FHASE FLOW	Displayed for th. seconds.
L \& G: 1 \& \& $V=2$	Enter "1" to calculate $C V$ for liquid/gas mixtures, or "2" for liquid/vapor - then press R/S
LIQUID \% GAS	Displayed for 0.5 seconds.
SCFH GAS?	Gas flow component, scfh
F1? (FSIA)	Absolute pressure at inlet
F2? (PSIA)	Absolute pressure at outlet
MOL WT?	Molecular weight
"2" FACtOF?	Compressibility
TEMF \cdot (F)	Inlet temperature, Fahrenheit
\cdots (SF.HTS)	Ratio of specific heats, cp/cy
VALVE "XT"?	Gas pressure recovery factor
$[V(G)=n$	Display: Cv required for gas portion
LIQUID GFM?	Liquid flow component, US gallons/minute
LIE GRAVITY?	Liquid specific gravity
FVO (PSIA)	Fluid vapor pressure, psia
Pc? (FSIA)	Fluid critical pressure, psia
VALVE "FL"?	Liquid pressure recovery factor
CV (L) =nn	Display: C V required for liquid portion

TWO PHASE FLOW - LIQUID : GAS (continued)

$U R=n n$	Display: gas volume ratio
$F M-n i z$	Display: correction factor, Fm
$C V F=n n$	Display: (Total required EV)

If 2 is selected:

LIQ. \& VAFOF	Displayed for 0.5 seconds.
\#/ HF	Pounds/hour of vapor
Fin (PSIA)	Absolute inlet pressure
F2? (FSIA)	Absolute outlet pressure
DENS., \#/FT3?	Vapor density, pounds/cubic foot
$k ?$ (SF.HTS)	Ratio of specific heats, cp/cv
VALVE "XT"?	Gas pressure recovery factor
CV $\left\langle G ;=r_{1} \mathrm{~m}\right.$	Display: Cv required for vapor portion
LJOLID GFM?	Gallons per minute of liquid
LIQ. GRAVITY?	Liquid specific gravity
FU? (FSIA)	Liquid fluid vapor pressure
FO? (FSIA)	Liquid fluid critical pressure
VALVE "FL"?	Valve liquid pressure recovery factor
$\mathrm{CV}(L)=\mathrm{nr}$	Display: C v required for liquid portion
\#, fthe biotal	Total pounds/hour of mixture
$V \mathrm{~F}=\mathrm{ran}$	Display: gas volume ratio
$F M=n$	Display: correction factor, Fm
$C V K=n n$	Display (Total $C \vee$ required for mixture)

LAMINAR FLOW

```
Frogram label: LAM
Description : Frogram tests for laminar ilow conditions.
and displays Feynolds number if flow 15
laminar. Calculates non-turbulent Cv.
```


PROMPIS:

L.AMINAFS FL.OW	Displayed for D. 5 seconds.
GFM?	Flow rate, US galiorsiminute
F17 (FSIA)	Absolute inlet pressure
F2? (F'SIA)	Absolute outlet pressure
SF GFAVITY	Liquid specific gravity
VALVE FL?	Liquid recovery factor
VISC, (CST.)?	Viscosity in centistolves
DESIGN? (Fd)	I.S.A. design factor
CALC. FP? Y/N	Fress y R/S to calculate Fp; iust R/S to bypass the calculation.
$F F=n \pi$	Curfent value of Fp.
NON LAMINAFI	Displayed when fier is , 1000 , von
XEQ "LCV"	
Kev=nn	Valve lieynolds mor.
FFi"	Reymolds number correction facter (ircmi chart)
	Laminat flow CV

```
Sample problem no. i
Liguig
```

A control valve in HVAC service is required for a chilled mater return loop. The following service conditions are given:

Normal flow is 250 gallons per minute of water at 56 degrees F. Inlet pressure is 75 psia. The pressure drop for sizing purposes is 5 psi. Piping is 6" schedule 48. Use a thin disc butterfly valve, sized to pass the normal flow at 60 degrees of travel.

Use program "LCV". (Fix 2 decimal places) XED ALPHA LCV ALPHA

SEM	250		R/S
F12 (ESIA)	75		R/S
F 23 (FSSLA)	70		[R/5]
SE. GRAVITY?	1		R/8)
VAFOR FE, $?$	-22 (From chart)		R/6
CGIIICAL PR,?	3206 (From chart)		825
VAI VE FL?	. 7	(Assumption-from chart)	R/5
CALEFP? Y / N		(Bypass this for 1st trial)	R/5
FF:\%nr,			
	1		R/5]
$\begin{aligned} & F \bar{r}=\Omega .9 t \\ & \mathrm{FO} \text { : } \mathrm{CV}=111.00 \end{aligned}$			

Now that a required $C V$ has been estimated, consult the manufacturer's literature to see which valve has the required C of 111 at 60 degrees of travel. A $3^{\prime \prime}$ thin disc butterfly appears to be adequate, with a $C \vee$ of 132 at 60 degrees. Now that we have selected a valve model and size, we will go back and do a more precise calculation to insure that a 3 irch valve will be the correct choice.

Sample problem no. 2:
Gas gervices volume flow units

The Joule-Thompson valve for a natural gas 1 iquids plant has the following service conditions:

Required plant capacity is $25 \mathrm{million} 5 t a n d a r d$ cubic feet per day of 25 molecular weight natural gas. Inlet pressure is 814.7 psia. Qutlet pressure is 225 psia. Compressibility is 0.88. Valve inlet temperature is 20 degrees Fahrenheit, and outlet is (-) 60 F . Ratio of specific heats (K) is 1.32. Piping is $6^{\prime \prime}$ schedule $80 S$. Try a $3^{\prime \prime}$ globe valve.

Use program "VCV". (Fix 2 decimal places)
XER APBA VCV ALPHA

Conclusion - The $3^{\prime \prime}$ valve passex the required amount at between $50 x$ and 60% of travel.

Conclusion: Sound ettenuation is required. Contact the valve manufacturer for recommendations.

```
Now lets calculate outlet velocity．
First re－calculate the \(C \vee\) ，since the noise program and the Mach program overlap some data registers．
```

ISA GFis（VOL）		
SCFH？		R／S
Fi，（FSIA）		8／5
Fご（F゚らIF）		R／S
MCL W：		R／S
＂2＂${ }^{\text {FAETOR }}$－	0.88	R／S
TEMF？（F）	20	R／S］
17（SF．HTS）	1.32	R／S
VALVE＂XT＂	O． 64 （From mfg．catalogue）	8／51
CA． $\mathrm{FFF} \quad \mathrm{F} / \mathrm{N}$	Y	R／S］
VA：UF SITE	3	R／S
NSM fift ${ }^{\text {N }}$	6	2／5］
1RE：CY＇	136 （From mfg．catalogue）	R／5］
Fr－0．3）		
		R／S
$\begin{aligned} & C H 1 ? 16 A_{1} \\ & \mathrm{RE} \text { D } \mathrm{CW}=27.60 \end{aligned}$		
		R／S
DFTIONS：K／S		R／5
TRIM dEA：Y / N		R／S
MACH TE：Y Y	Y	R／S
U1． 0°（＊）	7 ENTER $16 \div 5$	R／S
		R／S
（C．112：1－（F）	60 CHS	R／S
Mit WT ${ }^{\text {co }}$	25	R／S
7 ¢ U¢！1t！	0.98	R／S

Note：Outlet velocities of less than MACH O． 3 O are considered acceptable．The $3^{\prime \prime}$ valve will be sufficient．

Sample problem no. 3 Satur ated steaㄼㅕ

A pressure control valve for utility steam has these service requirements:

Flow is 25, $\quad 00$ \#/hour of saturated steam. Upstream pressure is 125 psia. Downstream pressure is 30 psia. Piping is 6 inch schedule 40 . Use program "WCV". Try a 4 inch globe valve.

XED ALPHA WC: ALPHA

\#/BOLF	25800		R/S
F1? (FSIA)	125		R/3
$F 2=$ (FSIA)	30		8, ${ }^{1}$
	. 28	(From steam tables)	R/S
k? (CF/CV)	1.28		8/3
VALVE XI?	. 67	(From mfg. literature)	R/5
CALC FF? Y/N	Y		R/S
VALVE SILE?	4		R/S
NDM FIPE D?	6		8/51
100\% EV?	224	(From mfg. literature)	R/S
$\mathrm{FF}=0.95$			R/S
$\begin{aligned} & \text { CFIIICAL } \\ & \text { RCD CU- IJE.S7 } \end{aligned}$			

The 4^{*} globe valve will pass the required flow at just over 70\% travel.

Sample problem no. 4

Size a Unotch ball valve for controlling the flow of a highly viscous Newtonian lubricating oil, given the following conditionss

Flow is 100 gallons per minute; $P 1=116$ psia; $P 2=87$ psia; specific gravity= 0 . 0 g; viscosity $=30 \Leftrightarrow 0$ centistokes. Assume line-sized valve.

Use program "LAM".
XED APHA LAM ALPHA

6.r.m	100		R/5]
Fin (FSGIA)	116		R/S
Fご SFSIA)	87		R75
Si GKA' 17 \%	. 908		R/S
VGi.VEFL ?	. 8		R/S
	30000		R/S]
DESIGN ${ }^{\text {a }}$ (f O)	1	(From chart)	R75
CALE FF\% $\%$ Y/N	(NO)		R75
$F F=r_{1} F_{1}$	1		R/S
Fiev $=15 \% .61$			R75
FR?	. 55	(From chart)	R/5

This is the "pseudo sizing coefficient", which may be used to select a valve size. The catalogue data indicates that a 2 inch valve should be sufficient for this application. Now the exact CV may be calculated, based on this preliminary melection, by an iterative process of calculating the required $C V$ and then re-calculating based on the projected angle of valve travel.

AFFENDIX A
EQUATIONS USED IN THE CV-PAF

Compressible fluids, volume units - Progran VCV

$$
\begin{aligned}
& Y=1-\left[\begin{array}{c}
x \\
3 F k \times t
\end{array}\right] \\
& \text { Critical wheri } \therefore=\text { (Ft } x t \text {) } \\
& Y=0.667 \text { @ critical flow }
\end{aligned}
$$

$$
\begin{aligned}
& F_{p}=\left[1.0+\frac{\sum K}{N 2}\left(\begin{array}{c}
C V \\
---- \\
2
\end{array}\right)^{2}\right]^{(-) 1 / 2}
\end{aligned}
$$

APPENDIX A
EQUATIDNS USED IN THE CV-PAK

Compressibl fluids, meight units - Program WCV

```
Cv=-
    63.3 Fp Y > P1 Y1
W = Flow, pounds per hour
Y= Specific weight, lb./ft3
Y = Expansion factor
P1= Pressure e inlet, psia
```

$Y=1-\left[\begin{array}{c}x \\ 3 \text { Fk } \times \mathbf{t}\end{array}\right]$
Critical when $x:=$ (Fk Xt) $Y=0.667$ e critical

```
```

Fk=k/1.4

```
```

Fk=k/1.4
K = cp/cV
K = cp/cV
x = P/P1
x = P/P1
Xt = Pressure drop ratio required
Xt = Pressure drop ratio required
to produce critical flow
to produce critical flow
when FK = 1.0

```
```

 when FK = 1.0
    ```
```

$$
F p=\left[1.0+\frac{\sum K}{N 2}\left(\begin{array}{c}
C v \\
-(-1 / 2 \\
d
\end{array}\right]^{(-) 1 / 2}\right.
$$

```
Aerodynamic noime prmigiction - Baumann method
```

$S L=145.5+N+1010 g(C V F L p P 1 P 2)-T L+G$
$S L=$ Sound level, dBA a 1.0 meter downstream of valve and 1.0 meter from pipe
$N=$ Acoustical efficiency factor ($10 \log \eta$)
$T L=P i p e$ wall transmission loss, dBA
$\mathbf{G}=$ Adjustment, $d B$
$J=84.6+10109\left[\begin{array}{cc}t^{3}(39+D / 2) \\ -\cdots\end{array}\right]$
If $n(0) \geqslant 1$, add $10 \log n(B)$ to equation \#2
IF reduced flow capacity exists; $\quad 2 \mathrm{CV}$ FL 4d
Add to results of equation (2):
$20109\left[\begin{array}{c}2 \\ 4 d^{2} \\ \hdashline F L\end{array}\right]$
For single seated globe valves, parabolic plug, flowed to open

Factor N at subsonic flow:
$N=26 \log \left[\begin{array}{c}P 1-P 2 \\ -2(P 1-P 1+P 2\end{array}\right]+10100\left(F^{2}\right)-38.7$

APFENDIX A
EQUATIONS USED IN THE CV-PAK

Aerodynamic naise- continued

Factor N at sonic velocity up to break at $(P 1 / P 2)=2.8$:
$N=n 109\left[\frac{P 1 / P 2}{P 1 / P 2(\operatorname{sonic})}\right]+10109 \mathrm{FL}^{2}-38.7$

And n is a function of $F L$:

Factor N at supersonic flow (Pi/P2) > 2.8:
$N=1010 g \mathrm{FL}^{2}+10 \log (P 1 / 2.9 \mathrm{PZ})-30.0$

AFPENDIX A
 EQUATIDNS USED IN THE CV-FAK

Laminer flow - Program LAM

Pseudo-sizing coefficient:

$D=$ Nominal line size
Fd= Valve style modifier
$V=$ Kinematic viscosity of liquid - centistokes

Laminer flow CV:

Fr $=$ Reynolds number correction factor

APPENDIX A
EQUATIONS USED IN THE CV-PAK

Two phase f1 Dw - Program 2PH

```
Cvr = <Cvl + Cvg) (1.D + Fm>
```


where:

$C_{V r}=C_{V}$ required for mixture flow
$C \vee 1=C \vee$ required for liquid phase
Cvg $=C V$ required for gas phase
$F_{m}=[v$ correction factor as a function of gas volume ratio

Gas volume ratio, Vr:
For liquid/gas mixtures:
$V=\frac{V g}{V 1+V g}=\frac{O q}{\left[\frac{284 \mathrm{O}_{1} P 1}{T 1}\right]} \quad+\mathrm{Vg}_{\mathrm{g}}$
3
$V g=$ Gas flow, ft $/ 5$ fis
VI $=$ Liquid flow, ft/s
Qg $=$ Gas flaw, scfh
Ql = Liquid flow, gpm
T1 = Inlet temp., Rankine
Pi $=$ Inlet press., psia

For liquid/vapor mixtures:

$v g=$ Specific volume of gas phase, ft/ib
v1 $=$ Specific volume of liquid phase
$x=$ Quality, lb. vapor/lb. mixture

Qutlet velocity, compressible fluids - program MACH

Dutlet mach number:


```
M = Macts no. outlet, out. vel/ sonic vel.
d = Dutlet diameter, inches
T2= Gutlet temperature, Rankine
M = Molecular weight
```

To convert volume units to actual cubic feet:
$C F H=(S C F H) \times\left(\frac{14.7}{P 2}\right) \times\left(\frac{T 2}{520}\right) \times\left(\frac{22}{1}\right)$
$P 2=$ Pressure outlet, psia
Z2 $=$ Compressibility outlet

To convert weight units to actual cubic feet:
$\frac{1 b / h r}{1 b / f t^{3}}=4 t^{3} / h r$

at? E Pi: : x

| $\begin{aligned} & \text { NOM } \\ & \text { SIZE } \end{aligned}$ | $\begin{aligned} & \mathrm{NOM} \\ & \mathrm{O} . \mathrm{D} . \end{aligned}$ | | $\begin{aligned} & \text { Sch } \\ & 20 \end{aligned}$ | STD | $\begin{gathered} \text { Sch } \\ 30 \end{gathered}$ | $\begin{aligned} & \text { Sch } \\ & 40 \end{aligned}$ | XS | $\underset{60}{\text { Sh }}$ | $\begin{aligned} & \text { Sch } \\ & 80 \end{aligned}$ | $\begin{aligned} & \text { Sch } \\ & 100 \end{aligned}$ | $\begin{aligned} & \text { Sch } \\ & 120 \end{aligned}$ | $\begin{aligned} & \text { Sch } \\ & 140 \end{aligned}$ | $\begin{aligned} & \text { Sch } \\ & 160 \end{aligned}$ | XXS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.315 | $\begin{array}{r} \mathrm{t} \\ \mathrm{~d} \end{array}$ | | $\begin{array}{r} 133 \\ -\quad 1.049 \\ \hline \end{array}$ | | STD | $\begin{array}{r} .179 \\ .95 i \\ \hline \end{array}$ | | x | | | | $\begin{array}{r} .250 \\ .815 \end{array}$ | $\begin{aligned} & .358 \\ & \hline 999 \end{aligned}$ |
| 1.25 | 1.660 | $\stackrel{i}{i}$ | | $\begin{aligned} & 140 \\ & 1.380 \end{aligned}$ | | ST1) | $\begin{array}{r} 191 \\ 1.278 \end{array}$ | | XS | | | | $\begin{aligned} & .250 \\ & 1.160 \end{aligned}$ | $.862$ |
| 1.5 | 1.900 | $\stackrel{i}{d}$ | | $\begin{array}{r} .145 \\ 1.810 \end{array}$ | | STD | $\begin{array}{r} .200 \\ 1.500 \\ \hline \end{array}$ | | xs | | | | $\begin{array}{r} .28! \\ 1.338 \end{array}$ | $\begin{array}{r} .400 \\ 1.100 \end{array}$ |
| 2 | 2.375 | $\begin{aligned} & 1 \\ & d \end{aligned}$ | | $\begin{array}{r} .154 \\ 2.067 \end{array}$ | | STD | $\begin{array}{r} .218 \\ 1.939 \\ \hline \end{array}$ | | XS | | | | $\begin{array}{r} .344 \\ 1.687 \end{array}$ | $\begin{array}{r} .436 \\ 1.503 \end{array}$ |
| 2.5 | 2.875 | r | | $\begin{array}{r} .203 \\ 2.464 \end{array}$ | | STD | $\begin{array}{r} .276 \\ 2.323 \end{array}$ | | XS | | | | $\begin{array}{r} 375 \\ 2.125 \\ \hline \end{array}$ | $\begin{array}{r} 552 \\ 1.871 \\ \hline \end{array}$ |
| 3 | 3.500 | t | | $\begin{array}{r} .216 \\ 3.068 \\ \hline \end{array}$ | | STD | $\begin{array}{r} .300 \\ 2.900 \\ \hline \end{array}$ | | XS | | | | $\begin{array}{r} 438 \\ 2.624 \\ \hline \end{array}$ | $\begin{array}{r} .600 \\ 2.300 \end{array}$ |
| 3.5 | 4.000 | $\begin{gathered} \mathrm{t} \\ d \end{gathered}$ | | $\begin{array}{r} 226 \\ 3.548 \end{array}$ | | STD | $\begin{array}{r} 318 \\ 3.364 \end{array}$ | | XS | | | | | $\begin{array}{r} 636 \\ -2728 \\ -27 \end{array}$ |
| 4 | 4.500 | t | | $\begin{array}{r} .237 \\ 4.026 \end{array}$ | | STD | $\begin{array}{r} .337 \\ 3.826 \\ \hline \end{array}$ | | XS | | $\begin{array}{r} .438 \\ 3.624 \\ \hline \end{array}$ | | $\begin{array}{r} .531 \\ 3.438 \end{array}$ | $\begin{array}{r} .674 \\ 3.152 \end{array}$ |
| 5 | 5.563 | d | | $\begin{array}{r} 258 \\ 5.04 \hat{i} \end{array}$ | | S77) | $\begin{array}{r} 335 \\ 4.813 \end{array}$ | | XS | | $\begin{array}{r} .500 \\ 4.563 \end{array}$ | | $\begin{array}{r} .625 \\ .313 \end{array}$ | $\begin{array}{r} .850 \\ -4.063 \end{array}$ |
| 6 | 6.625 | i | | $\begin{array}{r} .280 \\ 6065 \end{array}$ | | STD | $\begin{array}{r} .432 \\ 5.761 \\ \hline \end{array}$ | | XS | | $\begin{array}{r} .562 \\ 5.501 \end{array}$ | | $\begin{array}{r} .719 \\ 5.187 \\ \hline \end{array}$ | $\begin{array}{r} 884 \\ 4.89 ? \end{array}$ |
| 8 | 8.625 | d | $\begin{array}{r} .250 \\ 8.125 \\ \hline \end{array}$ | $\begin{array}{r} 322 \\ 7.981 \\ \hline \end{array}$ | $\begin{array}{r} .277 \\ 8.071 \\ \hline \end{array}$ | STD | $\begin{array}{r} .500 \\ 7.625 \end{array}$ | $\begin{array}{r} .406 \\ 7.813 \end{array}$ | Xs | $\begin{array}{r} 594 \\ 7.437 \end{array}$ | $\begin{array}{r} .719 \\ 7.187 \end{array}$ | $\begin{array}{r} 812 \\ 7.001 \\ \hline \end{array}$ | $\begin{array}{r} 906 \\ 6.813 \end{array}$ | $\begin{array}{r} .875 \\ 8.875 \\ \hline \end{array}$ |
| 10 | 10.750 | d | $\begin{array}{r} .250 \\ 10.250 \end{array}$ | $\begin{array}{r} 365 \\ 10.020 \end{array}$ | $\begin{array}{r} .307 \\ 10.136 \\ \hline \end{array}$ | STD | $\begin{array}{r} .500 \\ 9.750 \\ \hline \end{array}$ | XS | $\begin{array}{r} .594 \\ 9.562 \\ \hline \end{array}$ | $\begin{array}{r} .719 \\ 9.312 \\ \hline \end{array}$ | $\begin{array}{r} .844 \\ 9.062 \\ \hline \end{array}$ | $\begin{aligned} & 1.000 \\ & 8.750 \end{aligned}$ | $\begin{aligned} & 1.125 \\ & 8.500 \end{aligned}$ | $\begin{aligned} & \text { Sch } \\ & 140 \end{aligned}$ |
| 12 | 12.750 | d | $\begin{array}{r} .250 \\ 12.250 \end{array}$ | $\begin{array}{r} .375 \\ 12.000 \\ \hline \end{array}$ | $\begin{array}{r} 330 \\ 12.090 \end{array}$ | $\begin{array}{r} .406 \\ \hline \end{array}$ | $\begin{array}{r} 500 \\ 11.750 \\ \hline \end{array}$ | $\begin{array}{r} .562 \\ 11.626 \\ \hline \end{array}$ | $\begin{array}{r} .688 \\ 11.374 \\ \hline \end{array}$ | $\begin{array}{r} .844 \\ 11.062 \end{array}$ | $\begin{array}{r} 1.000 \\ 10.750 \\ \hline \end{array}$ | $\begin{array}{r} 1.125 \\ 10.500 \\ \hline \end{array}$ | $\begin{array}{r} 1.112 \\ 10.126 \\ \hline \end{array}$ | $\begin{aligned} & \text { Sch } \\ & 120 \\ & \hline \end{aligned}$ |
| 14 | 14.000 | $\begin{gathered} \mathrm{t} \\ \mathrm{~d} \end{gathered}$ | $\begin{array}{r} .312 \\ 13.376 \\ \hline \end{array}$ | $\begin{array}{r} .375 \\ 13.250 \\ \hline \end{array}$ | STD | $\begin{array}{r} .438 \\ 13.124 \\ \hline \end{array}$ | $\begin{array}{r} .500 \\ 13.000 \end{array}$ | $\begin{array}{r} .594 \\ 12.812 \\ \hline \end{array}$ | $\begin{array}{r} .750 \\ 12.500 \end{array}$ | $\begin{array}{r} .938 \\ 12.124 \\ \hline \end{array}$ | $\begin{array}{r} 1.094 \\ 11.812 \\ \hline \end{array}$ | $\begin{array}{r} 1.250 \\ 11.500 \\ \hline \end{array}$ | $\begin{array}{r} 1.406 \\ 11.188 \\ \hline \end{array}$ | |
| 16 | 16.000 | t | $\begin{array}{r} .312 \\ 15.376 \\ \hline \end{array}$ | $\begin{array}{r} .375 \\ 15.250 \\ \hline \end{array}$ | STD | XS | $\begin{array}{r} .500 \\ 15.000 \\ \hline \end{array}$ | $\begin{array}{r} .656 \\ 14.688 \\ \hline \end{array}$ | $\begin{array}{r} .844 \\ 14.312 \\ \hline \end{array}$ | $\begin{array}{r} 1.031 \\ 13.938 \\ \hline \end{array}$ | $\begin{array}{r} 1.219 \\ 13.562 \\ \hline \end{array}$ | $\begin{array}{r} 1.438 \\ 13.124 \\ \hline \end{array}$ | $\begin{array}{r} 1.594 \\ 12.812 \end{array}$ | |
| 18 | 18.000 | $\begin{aligned} & \mathrm{j} \\ & \mathrm{~d} \end{aligned}$ | $\begin{array}{r} .312 \\ 17.376 \end{array}$ | $\begin{array}{r} .375 \\ 1 \div .250 \\ \hline \end{array}$ | $\begin{array}{r} .438 \\ 17124 \\ \hline \end{array}$ | $\begin{array}{r} .562 \\ 16.576 \end{array}$ | $\begin{array}{r} 500 \\ 17.000 \\ \hline \end{array}$ | $\begin{array}{r} 850 \\ 16.56 \end{array}$ | $\begin{array}{r} 938 \\ 10124 \\ \hline \end{array}$ | $\begin{array}{r} 1.156 \\ 1568 k \end{array}$ | $\begin{array}{r} 1.375 \\ 15.250 \\ \hline \end{array}$ | $\begin{array}{r} 1.562 \\ 14.876 \end{array}$ | $\begin{array}{r} 1.781 \\ 14.438 \end{array}$ | |
| 20 | 20.000 | d | STO | $\begin{array}{r} .375 \\ 19.250 \\ \hline \end{array}$ | Xs | $\begin{array}{r} 594 \\ 18814 \end{array}$ | $\begin{array}{r} 50 \\ 19 \times 00 \end{array}$ | $\begin{array}{r} 81 \\ 1536 \\ \hline \end{array}$ | $\begin{array}{r} 1.031 \\ 1 \div .936 \\ \hline \end{array}$ | $\begin{array}{r} 1281 \\ 18.438 \end{array}$ | $\begin{array}{r} 1.500 \\ 17.000 \\ \hline \end{array}$ | $\begin{array}{r} 1.750 \\ 16.500 \\ \hline \end{array}$ | $\begin{aligned} & 1.964 \\ & 16.062 \end{aligned}$ | |
| 22 | 22.000 | $\begin{aligned} & \mathrm{t} \\ & \mathrm{~d} \\ & \hline \end{aligned}$ | STD | $\begin{array}{r} .375 \\ 21.250 \\ \hline \end{array}$ | XS | | $\begin{array}{r} 50 \\ 21000 \end{array}$ | $\begin{array}{r} 850 \\ 20250 \end{array}$ | $\begin{array}{r} 1.125 \\ 19.50 \end{array}$ | $\begin{array}{r} 1.775 \\ 19.250 \end{array}$ | $\begin{aligned} & 1.625 \\ & 18.750 \end{aligned}$ | $\begin{array}{r} 1.875 \\ -18: 50 \end{array}$ | $\begin{aligned} & 2.185 \\ & 13.39 \end{aligned}$ | |
| 24 | 24.000 | d | STD | $\begin{array}{r} .375 \\ 23.250 \\ \hline \end{array}$ | $\begin{array}{r} .362 \\ 22.876 \end{array}$ | $\begin{array}{r} .688 \\ 22.624 \\ \hline \end{array}$ | $\begin{array}{r} 500 \\ 23.000 \\ \hline \end{array}$ | $\begin{gathered} .964 \\ 22.062 \end{gathered}$ | $\begin{array}{r} 1.219 \\ 21.562 \end{array}$ | $\begin{array}{r} 1.531 \\ 20.938 \\ \hline \end{array}$ | $\begin{array}{r} 1.812 \\ 20.376 \\ \hline \end{array}$ | $\begin{array}{r} 2.062 \\ -19.876 \\ \hline \end{array}$ | $\begin{array}{r} 2.34 \\ 19.312 \end{array}$ | |
| 26 | 26.000 | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \end{aligned}$ | Xs | $\begin{array}{r} .375 \\ 25.250 \\ \hline \end{array}$ | | | $\begin{array}{r} 5.5 x \\ 25.0 x^{\prime} \\ \hline \end{array}$ | | | | | | | |
| 28 | 28.000 | $\begin{aligned} & \mathrm{t} \\ & \mathrm{~d} \end{aligned}$ | XS | $\begin{array}{r} .375 \\ 27.250 \end{array}$ | $\begin{array}{r} .625 \\ 26.750 \end{array}$ | | $\begin{array}{r} .500 \\ 2 . i .0 \times 7 \\ \hline \end{array}$ | | | | | | | |
| 30 | 30.000 | $\stackrel{\tau}{\mathrm{d}}$ | XS | $\begin{array}{r} 39 \\ 2935 \\ \hline \end{array}$ | $\begin{array}{r} 626 \\ \hline \\ \hline \end{array}$ | | $\begin{array}{r} 500 \\ 20.00 ? \end{array}$ | | | | | | | |
| 36 | 36.000 | $\begin{aligned} & \mathrm{t} \\ & \mathrm{~d} \end{aligned}$ | xs | $\begin{array}{r} 35 \\ 35.250 \\ \hline \end{array}$ | $\begin{array}{r} .625 \\ 3+.50 \\ \hline \end{array}$ | $\begin{array}{r} .750 \\ 34.500 \\ \hline \end{array}$ | $\begin{aligned} & 50 \\ & 350 \end{aligned}$ | | | | | | | |
| 42 | 42.000 | d | | $\begin{array}{r} 376 \\ 41.250 \end{array}$ | $\begin{array}{r} 625 \\ 40.750 \end{array}$ | $\begin{array}{r} 750 \\ 40.500 \\ \hline \end{array}$ | $\begin{array}{r} .506 \\ 41.000 \end{array}$ | | | | | | | |

VALVE TYPE

| Full bore ball valve | 1 |
| :--- | :---: |
| Single seat angle valve, flow to close | 1 |
| Eccentric rotary plug valve, flow to close | 1 |
| Segmented ball valve | 1 |
| Butterfly valve (non-fluted) 60° travel | 2 |
| single seat globe valve, flow to open | 2 |
| Angle valve, flow to open | 2 |
| Eccentric rotary pluq valve, flow to open | 2 |
| Double seated globe valve (parabolic) | 4 |

GAS
Acetylene
Air
Ammonia
Argon
Butane
Carbon Dioxide
Camon Monoxide
Chborine
Ethane
Ethyiene
Helium

G GAS

| C | GAS |
| :---: | :---: |
| ${ }^{-0.5}$ | Hydrogen |
| | Hydrogen |
| 1.5 | Chloride |
| 1.0 | Isobutane |
| 6.0 | Methane |
| -3.0 | Natural Gas |
| | Nitrogen |
| -2.5 | Oxygen |
| -2.0 | Pentane |
| -1.5 | Propane |
| 9.0 | Propylene Sulphur Dioxide |

Al- ' E RU: : Y
Fifl_IENU:I MEIE:IAI

STEAM DENSITY, lb/fis

Fift.tD] 5 :

riE: ERENIE MATERIAN
GAS COMPRESSIBILITY-CHART 2

Critical Pressures and Temperatures for Various Gases

| Gas | Pcritical psia/KPa | $\begin{aligned} & \text { T critical } \\ & { }^{\circ} \mathrm{R} /{ }^{\circ} \mathrm{K} \end{aligned}$ |
| :---: | :---: | :---: |
| Air | 547 (3772) | 240 (133) |
| Oxygen. | 731 (5040) | 278 (154) |
| Nitrogen | 492 (3392) | 227 (126) |
| Hydrogen | 306*(2110)* | 41* (22)* |
| Carbon Dioxide | 1073 (7398) | 548 (304) |
| Helium | 152* (1048)* | 8* (4)* |
| Ammonia | $1640(11,308)$ | 730 (405) |
| Methane. | 674 (4647) | 343 (190) |
| Acetylene. | 912 (6288) | 556 (309) |
| Argon | 706 (4868) | 272 (151) |
| Ethylene | 7748 (5157) | 509 (282) |
| Hydrogen Chloride. | 1200 (8274) | 585 (325) |
| Nitric Oxide. | 956 (6592) | 323 (179) |
| Sulfur Dioxide | 1142 (7874) | 775 (430) |
| | | |

| Gas | Molecular formula | $\begin{aligned} & \text { Molec- } \\ & \text { ular } \\ & \text { weight } \\ & \text { M } \end{aligned}$ | Cubic Weight $\gamma \mathrm{n}$ | | Spec. gravity (ratio of dens.) G_{c} | Critical pressure | | Critical temperature
 WF $4=$ | | Ratio of specific heats\mathbf{k}^{*} | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Acetylene | $\mathrm{C}_{2} \mathrm{H}_{2}$ | 26.04 | . 069 | 1.11 | 0.91 | 905 | 62.4 | 96 | 35.7 | 1.23 | |
| Air | - | 28.98 | . 076 | 1.225 | 1.00 | 547 | 37.7 | -221 | . 140.7 | 1.40 | |
| Ammonia | NH_{3} | 17.03 | . 046 | 0.73 | 0.60 | 1638 | 113.0 | 271 | 132.4 | 1.32 | |
| Argon | Ar | 39.94 | . 106 | 1.69 | 1.38 | 705 | 48.6 | -189 | -122.4 | 1.67 | |
| Berzene | $\mathrm{C}_{6} \mathrm{H}_{6}$ | 78.11 | . 206 | 3.30 | 2.70 | 703 | 48.5 | 551 | 288.5 | 1.10 | (194* ${ }^{\circ}$ |
| Butane (n-) | C. H_{10} | 58.12 | . 162 | 2.59 | 2.09 | 529 | 36.5 | 309 | 153.2 | . | |
| Butane (i-) | $\mathrm{C}_{4} \mathrm{H}_{10}$ | 58.12 | . 157 | 2.51 | 2.05 | 529 | 36.5 | 275 | 135.1 | 1.11 | (59 F) |
| Butylene | $\mathrm{C}_{4} \mathrm{H}_{4}$ | 56.11 | . 148 | 2.37 | 1.94 | 570 | 39.5 | 296 | 146.6 | . | |
| Carbon dioxide | CO_{2} | 44.01 | . 117 | 1.87 | 1.53 | 1073 | 74.0 | 88 | 31.0 | 1.31 | |
| Carbon monoxide | CO | 28.01 | . 074 | 1.18 | 0.97 | 508 | 35.0 | -220 | -140.2 | 1.40 | |
| Chlorine | Cl_{2} | 70.91 | . 190 | 3.05 | 2.49 | 1116 | 77.0 | 292 | 144 | 1.34 | |
| Chlorine dioxide | ClO_{2} | 67.46 | . 184 | 2.94 | 2.40 | - | - | . | . | . | |
| Cyanogen | $\mathrm{C}_{2} \mathrm{~N}_{2}$ | 52.04 | . 139 | 2.23 | 1.78 | 882 | 60.8 | 262 | 128.3 | 1.26 | |
| Dichlordiflour methane | | | | | | | | | | | |
| (Freon 12) | $\mathrm{CF}_{2} \mathrm{Cl}_{2}$ | 120.92 | . 301 | 4.82 | 3.93 | 581 | 40.1 | 232 | 111.5 | 1.14 | |
| Ethane | $\mathrm{C}_{2} \mathrm{H}_{6}$ | 30.07 | . 081 | 1.29 | 1.05 | 708 | 48.8 | 90 | 32.2 | 1.22 | |
| Ethylene | $\mathrm{C}_{2} \mathrm{H}_{4}$ | 28.05 | . 074 | 1.19 | 0.98 | 742 | 51.2 | 49.5 | 9.7 | 1.25 | |
| Fluorine | F_{2} | 38.00 | . 101 | 1.61 | 1.31 | 808 | 55.7 | -200 | -128.7 | | |
| Formaldehyde | $\mathrm{CH}_{2} \mathrm{O}$ | 30.03 | . 082 | 1.32 | - | - | . | - | - | | |
| Helium | He | 4.00 | . 011 | 0.17 | 0.14 | 33 | 2.3 | -450 | . 267.9 | 1.66 | |
| Hydrogen | H_{2} | 2.02 | . 005 | 0.08 | 0.07 | 188 | 13.0 | -400 | -239.9 | 1.41 | |
| Hydrogen bromide | HBr | 80.92 | . 215 | 3.45 | 2.82 | 1241 | 85.6 | 194 | 90 | 136 | |
| Hydrogen chloride | HCl | 36.47 | . 097 | 1.55 | 1.27 | 1219 | 84.1 | $12: 3$ | 51.4 | 1.43 | |
| Hydrogen iodide | HI | 127.93 | . 343 | 5.49 | 4.48 | 1205 | 83.1 | 304 | 150.8 | 1.40 | |
| Hydrogen sulfide | $\mathrm{H}_{2} \mathrm{~S}$ | 34.08 | . 091 | 1.46 | 1.19 | 1306 | 90.1 | 213 | 1005 | 1.33 | |
| Methane | CH_{4} | 16.04 | . 042 | 0.68 | 0.55 | 671 | 46.3 : | -117 | 82.5 | 1.30 | |
| Methyl chloride | $\mathrm{CH}_{3} \mathrm{Cl}$ | 50.49 | 1. 137 | 2.19 | 1.78 | 969 | 66.8 | 290 | 143.1 | 1.28 | |
| Methyl ether | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ | 46.07 | \| 124 | 1.98 | 1.62 | 773 | 53.3 | 260 | 126.9 | 1.11 | (6× F! |
| Methyl mercaptan | $\mathrm{CH}_{4} \mathrm{~S}$ | 48.10 | -. 066 | 1.06 | 0.87 | 1048 | 72.3 | 386 | 196.8 | | |
| Nean | Ne | 20.18 | . 053 | 0.85 | 0.70 | 394 | 27.2 | -380 | -228.i | 1.67 | |
| Nitric oxide | NO | 30.01 | . 079 | 1.27 | 1.04 | 956 | 65.9 | -135 | - 94 | 1.40 | |
| Nitrogen | N_{2} | 28.02 | . 074 | 1.18 | 0.97 | 492 | 33.9 | -232 | -147.1 | 1.40 | |
| Nitrous oxide | $\mathrm{N}_{2} \mathrm{O}$ | 44.02 | : 117 | 1.88 | 1.53 | 1054 | 72.7 | 98 | 36.6 | 1.28 | |
| Oxygen | O_{2} | 32.00 | . 084 | 1.35 | 1.11 | 731 | 50.4 | . 182 | -118.8 | 1.40 | |
| Ozone | O_{3} | 48.00 | ! 127 | 2.03 | 1.66 | 1356 | 93.5 | 23 | - 5 | 1.29 | |
| Propane (n -) | $\mathrm{C}_{3} \mathrm{H}_{8}$ | 44.09 | . 1119 | 1.90 | 1.56 | 618 | 42.6 | 206 | 96.8 | 1.14 | |
| Propylene | $\mathrm{C}_{3} \mathrm{H}_{6}$ | 42.08 | . 113 | 1.81 | 1.48 | 666 | 45.9 | 198 | 92.0 | . | |
| Sulfur dioxide | SO_{2} | 64.06 | . 173 | 2.77 | 2.26 | 1143 | 78.8 | 316 | 157.3 | 1.29 | |
| Steam | $\mathrm{H}_{2} \mathrm{O}$ | 18.02 | $\left.\right\|^{1-.044}$ | -0.76 | \| $1 \sim 0.622$ | \|3196 | 220.4 | 705 | 374 | -1.3 | |

[^1]Fage tit

ArFENDI $=\mathrm{E}$
referlentee MAIENIAt

LIQUID

| Liquid | Formula | Molecular weight M | Specific gravity G_{r} | Critical pressure | | Critical temperature | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | A/psia | A/bar | $4 /{ }^{\circ} \mathrm{F}$ | $4 /{ }^{\circ} \mathrm{C}$ |
| Acetaldehyde | $\mathrm{CH}_{3} \mathrm{CHO}$ | 44.05 | 0.783 | | - | 370 | 188 |
| Acetic acid | $\mathrm{CH}_{3} \mathrm{COOH}$ | 60.05 | 1.049 | 840 | 57.9 | 612 | 322 |
| Acetic anhydride | $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{O}\right.$ | 102.09 | 1.082 | 676 | 46.6 | 565 | 296 |
| Acetone | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ | 58.08 | 0.792 | 690 | 47.6 | 457 | 236 |
| Amyl alcohol (i-) | $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$ | 88.15 | 0.812 | - | . | 588 | 309 |
| Amyl acetate (i-) | $\mathrm{CH}_{3} \mathrm{COOC}_{3} \mathrm{H}_{1}$ | 130.18 | 0.873 | - | - | 618 | 326 |
| Aniline | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ | 93.12 | 1.022 | 770 | 53.1 | 798 | 426 |
| Benzene | $\mathrm{C}_{6} \mathrm{H}_{6}$ | 78.11 | 0.879 | 705 | 48.6 | 552 | 289 |
| Bromine | BR_{2} | 159.83 | 3.120 | 1493 | 103 | 590 | 310 |
| Butyl alcohol (i-) | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ | 74.12 | 0.804 | 709 | 48.9 | 522 | 272 |
| Carbon disulfide | CS_{2} | 76.13 | 1.263 | 1073 | 74 | 523 | 273 |
| Carbon tetrachloride | CCL | 153.84 | 1.594 | 661 | 45.6 | 542 | 283 |
| Chlorobenzene | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ | 112.56 | 1.107 | 655 | 45.2 | 678 | 359 |
| Chloroform | CHCl_{3} | 119.39 | 1.489 | 793 | 54.7 | 500 | 260 |
| Cyclohexane | $\mathrm{C}_{6} \mathrm{H}_{12}$ | 84.16 | 0.779 | 584 | 40.3 | 536 | 280 |
| Ethyl acetate | $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ | 88.10 | 0.900 | 555 | 38.3 | 482 | 250 |
| Ethyl alcohol | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ | 46.07 | 0.790 | 927 | 63.9 | 470 | 243 |
| Ethyl ether | $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ | 74.12 | 0.714 | 529 | 36.5 | 382 | 194 |
| Ethylene glycol | $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ | 62.07 | 1.115 | - | . | . | . |
| Ethylene trichloride | $\mathrm{C}_{2} \mathrm{HCl}_{3}$ | 131.40 | 1.464 | 728 | 50.2 | 520 | 271 |
| Glycerine | $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OH}_{3}\right.$ | 92.09 | 1.260 | - | - | . | . |
| Heptane (n -) | $\mathrm{C}_{2} \mathrm{H}_{16}$ | 100.20 | 0.684 | 394 | 27.2 | 512 | 267 |
| Hexane (n -) | $\mathrm{C}_{6} \mathrm{H}_{14}$ | 86.17 | 0.659 | 435 | 30.0 | 455 | 235 |
| Mercury | Hg | 200.61 | 13.546 | 15312 | 1056 | 2660 | 1460 |
| Methyl alcohol | $\mathrm{CH}_{3} \mathrm{OH}$ | 32.04 | 0.792 | 1156 | 79.7 | 464 | 240 |
| Methyl sulfide | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$ | 62.13 | 0.845 | 802 | 55.3 | 446 | 230 |
| Nitric acid | HNO_{3} | 63.02 | 1.512 | - | - | - | . |
| Octane (n -) | $\mathrm{C}_{8} \mathrm{H}_{2}$ | 114.22 | 0.702 | 363 | 25.0 | 565 | 296 |
| Pentane (n -) | $\mathrm{C}_{5} \mathrm{H}_{12}$ | 72.15 | 0.626 | 484 | 33.4 | 387 | 197 |
| Propionic acid | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ | 74.08 | 0.993 | 779 | 53.7 | 464 | 240 |
| Propylalcohol (n) | $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ | 60.09 | 0.804 | 735 | 50.7 | 507 | 264 |
| Propylamine | $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2}$ | 59.11 | 0.719 | 687 | 47.4 | 435 | 224 |
| Pyridine | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$ | 79.10 | 0.983 | 882 | 60.8 | 652 | 344 |
| Sulfurchloride | $\mathrm{S}_{2} \mathrm{Cl}_{2}$ | 135.03 | 1.68 | - | . | . | - |
| Sulfuric acid | $\mathrm{H}_{2} \mathrm{SO}_{4}$ | 98.08 | 1.834 | \cdot | - | - | - |
| Toluene | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ | 92.13 | 0.866 | 612 | 42.2 | 610 | 321 |
| Water | $\mathrm{H}_{2} \mathrm{O}$ | 18.02 | 0.998 | 3196 | 220.4 | 705 | 374 |

Specific gravity at $68^{\circ} \mathrm{F}$.
lage E6

AIFHENXH
liEfERIVNCE MIIERIAL.

PROPERTIES OF WATER AT VARIOUS TEMPERATURES
(Referred 10 Water at 68 F Weighing $62318 \mathrm{Lb} / \mathrm{CuFt}$

| Temp "F | Specific Volume cu $1 / 1 \mathrm{lb}$ | Specific Gravity | Vapor Pressure PSIA | Temp ${ }^{\circ} \mathrm{F}$ | Specilic volume cu H / sb | Specitic Gravity | Vapor Pressure PSIA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | 001002 | 1.0016 | 0.0835 | 210 | 0.01670 | 0.9609 | 14.123 |
| 33 | 0.01603 | 1.0017 | 0.0922 | 220 | 0.01677 | 0.9569 | 17.186 |
| 34 | 0.01602 | 1.0017 | 0.0960 | 230 | 0.01684 | 0.9529 | 20.780 |
| 35 | 0.01602 | 1.0017 | 0.1000 | 240 | 0.01692 | 0.9484 | 24.969 |
| 36 | 0.01602 | 1.0017 | 0.1040 | 250 | 0.01700 | 0.9439 | 29.825 |
| 37 | 0.01602 | 1.0018 | 0.1082 | 260 | 0.01709 | 0.9392 | 35.429 |
| 38 | 0.01602 | 1.0018 | 0.1126 | 270 | 0.01717 | 0.9346 | 41.853 |
| 39 | 0.01602 | 1.0018 | 0.1171 | 280 | 0.01726 | 0.9297 | 49.203 |
| 40 | 0.01802 | 1.0018 | 0.1217 | 290 | 0.01735 | 0.9249 | 57.556 |
| 41 | 0.01602 | 1.0018 | 0.1265 | 300 | 0.01745 | 0.9196 | 67.013 |
| 42 | 0.01602 | 1.0018 | 0.1315 | 310 | 0.01755 | 0.9143 | 77.68 |
| 43 | 0.01602 | 1.0017 | 0.1367 | 320 | 0.01765 | 0.9092 | 89.60 |
| 44 | 0.01602 | 1.0017 | 0.1420 | 330 | 0.01776 | 0.9036 | 103.04 |
| 45 | 0.01602 | 1.0017 | 0.1475 | 340 | 0.01787 | 0.8920 | 118.0 ? |
| 46 | 0.01602 | 1.0017 | 0.1532 | 350 | 0.01799 | 0.8920 | 134.63 |
| 47 | 0.01603 | 1.0016 | 0.1591 | 360 | 0.01811 | 0.8361 | 153.04 |
| 48 | 0.01503 | 1.0016 | 0.1653 | 370 | 0.01823 | 0.8302 | 173.37 |
| 49 | 0.01603 | 1.0016 | 0.1716 | 380 | 0.01836 | 0.8741 | 195.77 |
| 50 | 0.01603 | 1.0015 | 0.1781 | 390 | 0.01850 | 0.8673 | 220.37 |
| 51 | 0.01603 | 1.0014 | 0.1849 | 400 | 0.01864 | 0.8609 | 247.31 |
| 52 | 0.01603 | 1.0014 | 0.1918 | 410 | 0.01878 | 0.8545 | 276.75 |
| 53 | 0.01603 | 1.0013 | 0.1990 | 420 | 0.01894 | 0.8473 | 308.83 |
| 54 | 0.01603 | 1.0013 | 0.2064 | 430 | 0.01910 | 0.8402 | 343.72 |
| 55 | 0.01603 | 1.0012 | 0.2141 | 440 | 0.01926 | 0.8332 | 381.59 |
| 56 | 0.01603 | 1.001% | 0.2220 | 450 | 0.0194 | 0.826 | 422.6 |
| 57 | 0.01603 | 1.0010 | 0.2302 | 460 | 0.0196 | 0.818 | 465.9 |
| 58 | 0.01704 | 1.0010 | $0.2: 45$ | 470 | 0.0195 | 0.810 | $514,7$ |
| 59 | $0.015,04$ | 1.0009 | 0.2473 | 480 | 0.0200 | 0.802 | 566.1 |
| 60 | c.01604 | 1.0008 | 0.2563 | | | 0.79 .4 | |
| 62 | $0.01 \text { Gi) }$ | 1.0006 | 0.2751 | 500 | 0.0204 | 0.786 | 680.3 |
| 64 | 0.01605 | 1.00074 | 0.2951 | 510 | 0.0207 | 0.775 | 744.3 |
| 66 | 0.01605 | 1.0002 | 0.3104 | 520 | 0.0209 | 0.767 | 812.4 |
| 68 | 0.01605 | 1.0000 | 0.3390 | 530 | 0.0212 | 0.757 | 885.0 |
| 70 | 0.01606 | 0.9998 | 0.3631 | 540 | 0.0215 | 0.746 | 962.5 |
| 75 | 0.01607 | 0.9991 | 0.4298 | 550 | 0.0218 | 0.737 | 1045.2 |
| 80 | 0.01608 | 0.9984 | 0.5069 | 560 | 0.0221 | 0.725 | 1133.7 |
| 85 | 0.01509 | 0.9976 | 0.5959 | 570 | 0.0224 | 0.716 | 1226.5 |
| 90 | $0.015 .10$ | 0.9968 | 0.6952 | 580 | 0.0228 | 0.704 | 1325.8 |
| 95 | $0.01: 12$ | 0.9958 | 0.8153 | 590 | 0.0232 | 0.692 | 1431.2 |
| 100 | 0.01613 | 6.9949 | 0.9192 | | 0.0236 | | |
| 110 | 0.01617 | 0.9927 | 1.275 | $6: 0$ | 0.0241 | 0.666 | 1661.2 |
| 120 | 0.01620 | 0.9903 | 1.692 | 620 | 0.0247 | 0.650 | 1786.6 |
| 130 | 0.01625 | 0.9878 | 2.2 .3 | 630 | 0.0253 | 0.634 | 1919.3 |
| 140 | 0.01629 | 0.9850 | 2.889 | 640 | 0.0260 | 0.618 | 2059.7 |
| 150 160 | 0.01634 0.02639 | 0.9327 0.9790 | 3.713 4.741 | 650 | 0.0268 | 0.599 0.578 | 2203.2 |
| 160 170 | 0.016 .39 0.01645 | 0.9790 0.9755 | 4.741 5.902 | 660 620 | C. 6278 c. 0790 | 0.578 | 2365.4 |
| 170 180 | 0.01645 0.01651 | 1.9755 0.9720 | 5.992 7.510 | 6.0 680 | 6.0790 6.6305 | 0.554 0.526 | 2531.8 2703.1 |
| 190 | 0.01657 | 0.9684 | 9.337 | 690 | 0.0328 | 0.489 | 2895.1 |
| 200 | 0.01663 | 0.9619 | 11.596 | 7054 | 0.0503 | 0.319 | 3205.2 |

(7 HFE THIIX E
IIf:THENAC MAIERIAI.

[^0]: * Any program may be assigned to any key.

[^1]: * k is at temperature $32^{\circ} F\left(0^{\circ} \mathrm{C}\right)$ unless otherwise specified

