
DATA
PROCESSING
ON THE
HP-41 G/GV

VOLUME 1:
Fundamentals
of Program
Design and
File Processing

 William C. Phillips

DATA
PROGESSING
ON THE
HP-41 G/GV

VOLUME 1:
Fundamentals
of Program
Design and
File Processing

by
William C. Phillips

The EduCALC Technical Series

EduCALL)
EduCALC Publications Box 974, Laguna Beach, California 92652

DATA
PROGCESSING
ON THE
HP-41 G/GV
by William C. Phillips

ISBN 0-936356-02-2
Library of Congress Catalogue Card Number 83-81097

NOTE for the EQuCALC Technical Series:
This volume was printed directly from printout prepared by the

author. The publisher has not performed his usual functions of

reviewing, editing, typesetting, and proof-reading the material prior
to publication. The publisher fully endorses this rapid and informal
method of bringing you technical notes at a moderate price, and he
wishes to thank the author for his preparation of this material for

publication!

The material contained in this book is supplied without

representation or warranty of any kind. The author and the
publisher assume no responsibility and shall have no liability,

consequential or otherwise, of any kind arising from the use of this

material or any part thereof.

Copyright ©1983, by EQUCALC Publications, Laguna Beach, CA. Allrights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written

permission of the publisher. Printed in the United States of America. Published simultaneously

in Canada.

Contents

Preface

Chapter 1: The HP-41C/CV Personal Computer

Introduction

The HP-41C/CV System Configuration

The HP-41C/CV Calculator

Internal System Architecture

The HP-41C/CV Addressing Scheme

HP 82161A Digital Cassette Drive

HP 82162A Thermal Printer

HP 82162A HP-IL Module

HP 82180A Extended Functions/Memory Module

HP 82181A Extended Memory Module

HP 82182A Time Module

Port-X-Tender

The Manuals

Notes and References

Chapter 2: RPN and the Stack

Introduction

History of RPN

Algebraic vs RPN Notation

Translating Algebraic Expressions into RPN

The Stack

Stack Operations

RPN and the Stack

Conclusion

References

Chapter 3: Simple Programming Summary

Introduction

Definition of a Program

Structure of a Program

Keying a Program into Program Memory

Program Verification

Editing Programs

Running Programs

—
_
N
N

=
=

e
£

14

16

18

19

20

20

21

21

22

22

22

23

26

27

29

29

33

33

34

34

34

35

37

41

41

43

Chapter 4:

Chapter 3: Simple Programming Summary(continued)

Compiling Programs

Conclusion

Program Design Methodology

Introduction

Historical Perspective

Structured Design

Structured Programming

Conclusion

References

Chapter 5: Program Control

Introduction

Unconditional Transfers

Conditional Transfers

User and System Flags

The IF-THEN-ELSE and CASE Control Structure

Loops

The DO-UNTIL and DO-WHILE Control Structures

Conclusion

Chapter 6: Subroutines

Introduction

Calling Sequences

Types of Subroutines

How Subroutines Work

Constructing Subroutines

Conclusion

Notes

Chapter 7: Simple Ordinary Annuities Program Example

Introduction

Simple Annuities

FV

PV

PV/FV Equivalency

PMT

n and Final Payment

i
c ii

Uy

Uy

45

45

45

u7

48

52

52

54

54

54

56

61

62

67

69

70

72

72

72

73

74

75

77

77

78

78

78

78

81

82

82

82

83

Chapter 7: Simple Ordinary Annuities Program Example(continued)

Annuities Program Design 85

Techniques Used 86

ANNUITY Routine &9

Internal Subroutine N 89

Internal Subroutine INT 89

Internal Subroutine PV 89

Internal Subroutine PMT 90

Internal Subroutine FV 90

CALC-N Subroutine 90

CALC-I Subroutine 92

CALC-PV Subroutine 94

CALC-FYV Subroutine 94

CALC-PY Subroutine 95

SINK Subroutine 95

PRS-VAL Subroutine 96

FIN-PMT Subroutine 96

Conclusion 96

Chapter 8: Internal Files 98

Introduction 98

Notation 98

Extended Memory 98

File Headers 99

File Pointers 99

Working Files 107

File Creation and Management 108

Recording Data into Internal Data Files 109

Retrieving Data from Internal Data Files 111

Recording Data into Internal ASCII Files 112

Retrieving Data from Internal ASCII Files 114

Conclusion 115

Chapter 9: 1/O Operations 116

Introduction 116

Notation 116

Initialization Procedures 117

File Pointers 117
iil

Chapter 9: 1I/O Operations (continued)

File Creation and Management

Recording Data into External Data Files

Checking Files

Protecting Files

Retrieving Data from External Data Files

External ASCII Files

Transferring Internal ASCII Files to External ASCII Files

Transferring External ASCII Files to Internal ASCII Files

Conclusion

Chapter 10: Sales Program Example

Index

Introduction

SALES Program Background

Program Files

SALES Program Design

SALES Routine

GETSAL Subroutine

GETPRIC Subroutine

TOTAL Subroutine

SUBTOTL Subroutine

TAX Subroutine

RECEIPT Subroutine

RECSAL Subroutine

Conclusion

iv

118

120

121

121

121

122

123

123

124

125

125

125

128

130

131

133

134

136

136

138

139

139

142

143

Preface

Since its introduction in 1974, the handheld, programmable calculator has

opened up a whole new area of interest and study for individuals who probably

would not have gotten involved in personal computing. Later, when the first

personal computers became available, another area of interest opened up for a

different set of individuals. The path taken by the programmable calculator owner

was a divergent one to that taken by the personal computer owner. In the early

days of these machines, however, this is as it should have been. The personal

computer was a quantum leap above the programmable calculator in both speed and

capabilities. The personal computer owner was interested in interfacing his

machine to the outside world, in playing games and in implementing all kinds of

programs. The programmable calculator owner, on the other hand, was interested

in reducing the number of keystrokes necessary to solve a problem. In 1979, the

HP-41C/CV was introduced and was destined to cause the two paths to begin to

converge. The owners of these new machines began to study the same kinds of

things about programming as the owners of the personal computers had been

studying for years.

In 1981, Hewlett-Packard introduced the HP-IL for the HP-41C/CV. This

interface was intended to allow the HP-41C/CV to "talk" to any compatable device

attached to the loop whether it be a printer a tape drive or another computer. The

HP-IL was the final step in removing the barrier between personal computer and

programmable calculator.

This is the first volume in a series concerned with data processing on the HP-

41C/CV personal computer. The intent is to teach programming skills and

techniques which the programmers of the larger machines have been using for

years. This in turn should lead into an understanding of how to use the machine as

a computer rather than just another fancy calculator. It is assumed that you are

familiar with the basic commands for the HP-41C/CV and how to program it.

This volume serves two purposes. First, it takes the reader through a

somewhat high level summary of the hardware and of programming the '"basic"

machine. Secondly, this volume introduces structured techniques and file creation

and processing.

The first three chapters are summary material. This material will serve to

place readers on a common plane of understanding. The next four chapters

introduce and discuss structured techniques. This material is strictly intended to

whet the appetite of the reader. The second volume of this series will be devoted

entirely to this and other program design considerations. The final three chapters

introduce and explain file creation and file processing. This material will be

covered in greater detail in volume three of this series.

It is my hope that after reading this first volume, you will begin to

understand how your HP-41C/CV can be used for its intended purposes and that you

will want to further your understanding of the HP-41C/CV by learning as much

about your machine as possible.

I would like to solicit your help in making this volume as useful as possible.

To that end, please send any comments or suggestions to the publisher.

vi

Chapter 1

The HP-41C/CV Personal Computer

INTRODUCTION

The HP-41C/CV represents a totally new concept in programmable

calculators. By itself, the HP-41C/CV is a powerful programmable scientific

calculator with more than 130 built-in functions, a continuous memory which may

be partitioned between program and data storage and an alphanumeric display.

Various application modules which contain pre-written programs may be inserted

into the 1/O ports to further increase the capabilities of the basic machine.

The newness in concept of this machine, and the reason it is termed a

personal computer, arises from the fact that the HP-41C/CV may be attached to

and drive up to 31 devices such as printers, tape drives and test equipment. The

basic HP-41C/CV now becomes a true computer capable of storing and retrieving

vast amounts of data and capable of executing large, complex programs.

This chapter will discuss the HP-41C/CV personal computer in detail. The

topics to be discussed are:

HP-41C/CV system configuration

HP-41C/CV calculator

Internal system architecture

HP-41C/CV addressing scheme

HP 82161A Digital Cassette Drive

HP 82162A Thermal Printer

HP 82160A HP-IL Module

HP 82180A Extended Functions/Memory Module

HP 82181 A Extended Memory Module

HP 82182A Time Module

AME Port-X-Tender

THE HP-41C/CV SYSTEM CONFIGURATION

This volume, and the volumes that follow, treat the HP-41C/CV as more than

Page 1.

a mere calculator. The HP-41C/CV is treated as a personal computer, and as such,

a certain minimum system configuration is assumed. This configuration is listed

next.

HP-41C calculator with full memory or an HP-41CV calculator

HP 82180A Extended Functions/Memory Module

two HP 82181 A Extended Memory Modules

HP 82161A Digital Cassette Drive

HP 82160A HP-IL Module

HP 82162A Thermal Printer

HP 82182A Time Module

Port-X-Tender

THE HP-41C/CV CALCULATOR

The HP-41C/CV is a scientific, alphanumeric, programmable calculator.

Externally, it consists of a liquid crystal display, two operating keys, a 35 key

keyboard and four I/O ports. The keyboard is the primary method of inputting data

and commands. It consists of 35 keys arranged in & rows as illustrated in Fig I.l.

The first three rows of keys contain five columns of keys and the remaining five

rows contain four columns of keys.

Most of the keys on the keyboard serve three functions and some serve four

functions. On the top face of each key is printed the normal unshifted function of

that key. Above the key and printed on the overlay is the normal shifted function

of that key. The character printed in blue on the front face of many of the keys is

the alpha character that the key will represent when pressed with the machine in

ALPHA mode. And finally, the picture of the keyboard on the back of the HP-

41C/CV shows the shifted alpha representation of each key.

Each key of the keyboard is assigned a keycode. These keycodes are used by

the machine to represent and locate keys on the keyboard. If the keyboard is

thought of as a matrix with five columns and eight rows, then any key may be

represented by its row/column number.

The keycode for an unshifted key is simply its row/column number. For

example, the keycode for the SIN key which is in row 2 and column 3 is 23 and the

keycode for the CHS key which is in row 4 column 2 is 42. Unshifted keys will

Page 2.

XXX- 1D XXX
BAT USER GRAD SHIFT 01234 PRGM ALPHA

[on1]usen| Prcm[ALPHAT

—{
2 x x

ABe
cLE sw' cos”! ran”!3h e 39

ASN LBL eTO BSTE E6
CATALOG 156 RTN CLX/A

B e= | =4
; a-.r

x>y? Fix scCl ENG£ F e
x:07 LASTX VIEW

Be
@ M E WLET T -PACKARD 4aC

Fig. 1.1 HP-41C/CV keyboard

Page 3.

execute the function printed on the top of the key.

The keycode for a shifted key is the row/column number of the key preceded

by a minus sign. For example, the keycode for the LBL key is -33. Shifted keys

execute the function printed on the overlay above the key. In order to execute a

shifted function, the gold shift key must be pressed before pressing the appropriate

key.

There are no keycodes assigned to the unshifted or shifted alpha keys.

The operating system uses keycodes instead of the name of the function

associated with the keys to reduce operating space and time. Every key has a

preprogrammed, or normal function associated with it. These functions are stored

in a key assignment table located within the operating system ROM's. Whenever a

key is pressed and the machine is not in USER mode, the operating system

determines the function to be performed by looking up the keycode in the table. If

a key is pressed and the machine is in USER mode, the system first checks the

appropriate key assignment bit map in the status registers to determine if the

normal function of the key is to be located or if a reassigned function is to be

executed.

When keys are reassigned, the new functions associated with the keys are

stored in low user memory beginning at address 0CO. Through reassignment, keys

may now serve up to 6 functions - 4 in NORMAL mode and two more in USER

mode. Key reassignment also causes the corresponding bit to be set in one of the

appropriate key assignment bit maps located in the status registers. In USER mode,

the system will first scan the bit map to see if the bit corresponding to the key

pressed has been set indicating that the key was reassigned. If the bit is set, the

function of the key is obtained from the key assignment area.

The two operating keys are located above the keyboard and below the display.

These two keys control the power to the machine and the mode or modes the

machine is operating in. The operating keys are rocker switches which toggle the

named function. The ON switch will turn the machine on if it is off or it will turn

the machine off if it is on. When the machine is turned on, it wakes up in

NORMAL or USER mode depending on which mode was active at the time the

machine was turned off. Also when the machine is turned on, PRGM and ALPHA

modes will be cleared if either happened to have been on prior to turning the

machine off.

The USER switch will turn USER mode on or off. When in USER mode, keys

Page 4.

which have previously been reassigned to different functions will assume their

reassigned functions. In NORMAL mode, the keys assume their preprogrammed

functions.

The PRGM switch will turn PRGM mode on or off. When in PRGM mode, all

keystrokes are recorded as program lines in the current program file. The display

shows the current program line and the instruction in that line. The machine will

not remain in PRGM mode once the power is turned off.

The ALPHA switch will turn ALPHA mode on or off. ALPHA mode controls

what is going into the ALPHA register. When in ALPHA mode, the characters

appearing on the front face of each key become active. Each shifted or unshifted

key pressed in this mode will cause the corresponding character to be recorded in

the ALPHA register. The machine will not remain in ALPHA mode once the power

is turned off.

The liquid crystal display serves two functions. First, it displays data located

in one of the stack registers, one of the main memory registers or in the ALPHA

register. Second, it displays the status of the machine.

RS
BAT USER GRAD SHIFT 01234 PRGM ALPHA

[on1]usen| PRGw[ALPHA]

P

L- y x? 10" et \

GO 1Y (2 9 ()

Fig 1.2 HP-41C/CV display

The display is capable of displaying up to 12 characters at one time. This will

allow a signed 10 digit number with a signed two digit exponent to be displayed or

12 characters from the ALPHA register to be displayed. As a string of ALPHA

characters is placed in the display either from the keyboard or from the ALPHA

register, the display scrolls to the left dropping one character off the left end of

the string and picking up one character on the right end of the string. In this

Page >.

manner, up to 24 characters may be displayed.

The status of the machine is displayed to the user through 7 annunciators.

Each annunciator tells the user something about how the machine is operating and

which mode the machine is in. The BAT annunciator signals the user that the

batteries are weak. If throw-away alkaline batteries are being used, then there is

about 20 days of operating time left. If rechargable NiCad batteries are being

used, then there is about one minute of operating time left.

The USER mode annunciator, when on, signifies that the machine has been

placed in USER mode. USER mode, you will recall, is set when the USER operating

key is pressed. This mode may also be set by setting user flag F27. This mode may

be turned off by again pressing the USER operating key or by clearing user flag

F27. When in USER mode, any previously reassigned keys become active.

The GRAD-RAD annunciators signal the user that the machine is in GRAD or

RAD trigonometric mode. If neither annunciator is on, then the machine is in DEG

mode.

The 01234 annunciators signal the user that the corresponding user flag is set

on. If the 0 annunciator is on then FQO is on, if the 1 annunciator is on then FOl is

on, and so on.

The SHIFT annunciator indicates that the SHIFT key has been pressed. This

warns the user that the next keystroke will invoke a shifted function. The

annunciator will turn off if either the SHIFT key is pressed again or if a function

key is pressed.

The PRGM mode annunciator indicates either one of two things. First, it

may indicate that the machine has been placed in PRGM mode by pressing the

PRGM operating key. Or the PRGM annunciator may indicate that a program is

executing. PRGM mode may be turned off by pressing the PRGM operating switch

or by turning the machine off. If a program is executing, PRGM mode will turn off

when the program finishes.

The ALPHA mode annunciator, when on, indicates that the machine is in

ALPHA mode. ALPHA mode is controlled by the ALPHA operating switch. When

the machine is in ALPHA mode, the blue characters on the front face of the keys

or the shifted characters corresponding to the chart on the back of the machine

will be placed into the ALPHA register. ALPHA mode is turned off by again

pressing the ALPHA operating switch or by turning the machine off.

Page 6.

The I/O ports allow the user to expand the capabilities of the basic HP-

41C/CV. These ports are located on the top end of the machine and are numbered

as shown in Fig. 1.3.

Fig. 1.3 The I/O ports

The HP-41C/CV system bus is accessible at the 1/O ports. This enables the

user to plug in any device capable of interfacing to the system bus. Plug-in ROM

(read only memory) can increase the basic function set of the machine with

programs prewritten in either the machines low-level language (assembly language)

or as a sequence of user written instructions. Plug-in RAM (random access

read/write memory) allows the user to expand the available memory of the basic

HP-41C to equal that of the HP-41CV. Peripheral devices can be added to the

system to further expand the machines capabilities. The functions for each

peripheral are contained in the ROM associated with the device. Available

peripherals include a magnetic card reader, a plug-in printer, an optical bar code

reader and an interface loop capable of supporting up to 31 devices such as mass

storage devices, printers and video interfaces.

INTERNAL SYSTEM ARCHITECTURE

Internally, the HP-41C contains eleven CMOS circuits and the HP-41CV

contains 27 CMOS circuits. A CMOS circuit is a very high density integrated

circuit which requires low power. A CMOS chip can retain data even when its

operating voltage is drastically reduced. It is this feature of CMOS that makes the

HP-41C/CV a continuous memory machine. The chip set of the HP-41C/CV

consists of one CPU, up to 21 data storage chips, three ROM's and two display

drivers. Fig. 1.4 is a block diagram of the system.

Page 7.

The power supply circuits supply power to the machine and monitor the

battery. The hardware can exist in any of three power modes. In SLEEP mode,

when the machine has been turned off, all of the circuits are inactive and are

supplied with only enough battery current to sustain the continuous memory. When

the machine is turned on, it enters RUN mode. If the machine remains inactive

after being turned on, it enters STANDBY mode. In this mode, only enough power

is supplied by the batteries to power the display. When a key is pressed, the

machine once again enters RUN mode (the full power mode). If, after 10 minutes

in STANDBY mode, the machine will turn itself off. A low battery circuit will

signal the CPU to turn on system flag F49 and the BAT annunciator.

The CPU (central processing unit) is the "heart" of the machine. It is the

circuit which interprets user commands and keystrokes and which controls the rest

of the machine. Inside the CPU are five working registers (A, B, C, M and N).

These registers are not to be confused with the status registers to be discussed

later. Also within the CPU are an 8-bit register and a 14-bit status register, two

pointers and four subroutine return registers. The CPU obtains ROM data using a

16-bit address. Data is passed to or from data registers using a 10-bit address.

Internal to the CPU is a keyboard interface where the keys of the keyboard are

decoded.

There are five data storage circuits in the basic HP-41C and 21 data storage

circuits in the HP-41CV each consisting of 16 registers. One of these circuits is

dedicated to a block of 16 registers known as the status registers. The status

registers, shown in Fig. 1.5, contain, among other things, the program pointer, the

subroutine return stack, the stack registers, the ALPHA register and the system

flags. The other data storage chips provide the user with between 64 and 319

registers that can be used to store data and/or program files.

There are three system ROM circuits each containing 4K words of system

read-only memory. These system ROM's occupy the lowest three addresses in the

system "address space". Contained within these three ROM's is the operating

system. The operating system is nothing more that a huge program written by the

manufacturer and which makes the HP-41C/CV behave more like an advanced,

alphanumeric programmable calculator rather than a computer. The operating

system controls the function of the keyboard, display and I/O ports.

Page 8.

BATTERIES

WER . I 1/0 |
PPLY — 1™ PORTS

| 1

'

w O r > <

| !

€3

| .E
' | O >

 KEYBOARD ‘ b/s

ROM | D/S

 O ~ »

Fig. 1.4 Block diagram of HP-41C/CV

Page 9.

D
I
S
P
L
A
Y

R
E
P
R
E
S
E
N
T
A
T
I
O
N

(
N
A
M
E
)

Il 6 Il 51 4 1 3 1 2 1 I | 0|

1 I ! 'SCR-J LINE
SHIlFTED I'](EY ASSIGN ATCH NO.

|
| | o

USEIR FLAGS (O-J29) !

‘i

|
SYSTEM FLAGS
(30-55) |

I
LREG

|

—1 .

coLD

S;TART

3rd
RTN 2nd R

ETURNJ Ist REITURN

11
REG OO .END.

i
ADDRESS
POIh{TER

6th RETURN
I 3rd

5th RETURN §4th RETURN RTN

1 |
 | Ty]

UNSHIFTED KEY ASSIGN. SCRATCH
]

TEMPORARY ALPHIA SCRATCH

| v

SCRATCH FOR
ALPl;lA 25 -128

|
ALPHA REGISTER

\ 22-24

I I I
ALPI‘liA REGI|STER 15-21 CHAR.

1]

|
ALPHA REGISTER 8-14 CHAR.

|
ALPHA REGISTER |-7 CHAR.

|

[
STACK REGISTER L

|

I
STACK REGISTER X

|

|
STACK REGISTER Y

|

|
STACT REGISTER Z
 I

STACK REGISTERT] 1
 s

i
g
n

Fig. 1.5 The status register block

l————- mantissa ——-l

Page 10.

s
i
g
n

exp

BYTE
NUMBER

0I5
(OOF)

014
(OOE)

0I13
(ooD)

ol2

(00C)

oIl
(0oB)

0i0
(O0A)

009
(009)

008
(008)

007
(007)

006
(006)

005
(005)

004
(004)

003
(003)

002
(002)

00l
(001)

000
(000)

REG.
NO.
(HEX)

THE HP-41C/CV ADDRESSING SCHEME

The HP-41C/CV is capable of addressing (accessing) up to 16 pages of ROM

each page being 4K words in length. The pages are numbered from bottom to top

of memory beginning with page 0 at the bottom and going through page 15 at the

top. The operating system occupies the first three pages numbered 0, 1 and 2. The

next five pages are reserved for plug-in extension ROM's such as the HP-IL module,

the Time module and the Extended Functions/Memory module. Also, pages 3-7

may be used for plug-in peripherals and modules which are addressed as actually

residing in the 1/O port ROM area (pages 8-15). These modules and peripherals are

refered to as "hard addressed" since they will always occupy the same page

location no matter which I/O port they are plugged into.

The ROMarea for the four I/O ports begins with page 8. Each I/O port will

accomodate up to 8K words of ROM. The first 4K words will occupy the lower of

the page number pair for the I/O port. For example, a 4K single density module

plugged into 1/O port 1 would occupy page 8. An 8K dual density module plugged

into 1/O port | would occupy pages 8 and 9. Pages 8 and 9 are reserved for 1/O port

1, pages 10 and 11 for port 2, pages 12 and 13 for port 3 and pages 14 and 15 for

port 4. The modules occupying pages 8 to 15 are refered to as "port addressed"

since the actual ROM address depends on which I/O port the module is occupying.

Fig. 1.6 illustrates the system address space.

The HP-41C/CV is capable of accessing up to 8 pages of RAM each page

being 4K words in length. The pages are numbered in a fashion similar to that for

ROM from bottom to top beginning with page 0 and ending with page 7 (see Fig.

1.6). The first 16 registers of page 0 are occupied by the status register block.

The remainder of page 0 and all of pages | through 4 are occupied by main

memory. In the HP-41C, pages | through 4 are located in four single memory

modules (HP 82106A) or one quad memory module (HP 82170A) plugged into the 1/O

ports. In the HP-41CV, pages 1 through 4 are built into the machine. Main

memory is filled from the bottom up with no allowable gaps.

The other three pages numbered 5, 6 and 7 are occupied by the HP 82180A

Extended Functions/Memory module (page 5) and two HP 82181 A Extended Memory

modules (pages 6 and 7). Each of these modules are "hard-addressed" to the page.

The rule that there be no gaps in memory applies to extended memory also.

Page 11.

E
X
T
E
N
D
E
D

M
E
M
O
R
Y

R
E
G
I
O
N
#

M
E
M
O
R
Y

R
E
G
I
O
N
%

M
A
I
N

R
O
M

P
A
G
E

(
E
A
C
H
4
0
9
8
B
Y
T
E
S
)

15 THIS SPACE 1/0

14 FOR PORT 4

13 PORT-ADDRESSED 1/0

12 ROM PORT 3

" APPLICATION I/0

10 MODULES PORT 2

® AND 1/0

8 DEVICES PORT |

7 THIS SPACE 82160A

6 FOR 82143A PRINTER HPIL MODULE

s HARD-ADDRESSED TIME MODULE

4 DEVICES

3 ROM EXTENSION

2 MODULES HP4I

! AND OPERATING

O JOPERATING SYSTEM SYSTEM

238 REGISTERS EXTENDED MEMORY

(1666 BYTES)

238 REGISTERS EXTENDED MEMORY
(1666 BYTES) MODULE # |

127 REGISTERS EXTENED FUNCTION /
(889 BYTES) MEMORY MODULE

€4 REGISTERS MEMORY MODULE = : i
(448 BYTES) IN PORT 4 §~ '

64 REGISTERS MEMORY MODULE gt <3 g
(448 BYTES) IN PORT 3 3 gg 3

64 REGISTERS MEMORY MODULE o 53 52
(e48 BYTES) IN PORT 2 3. %3 iE

64 REGISTERS MEMORY MODULE :" l =
(448 BYTES) IN PORT 1 3 v

€3 REGISTERS HP4IC INTERNAL
(445 BYTES) RAM MEMORY 1

Fig. 1.6 System ROM/RAM address space

HP 82161A DIGITAL CASSETTE DRIVE

Page 12.

the data is slow compared to internal memory access.

While the combined size of main and extended memory is large, the need

exists to store several orders of magnitude more data. Secondary storage devices

capable of storing enormous amounts of data meet this need even though access to

The movement of data between secondary memory and the rest of the

computer is via the internal memory (main and extended memory). That is, data

may be transfered from the internal memory to a secondary device, or the process

may OCcCur in reverse.

There is a class of secondary storage devices called mass storage devices

which are capable of storing on the order of 131,000 bytes of information. The HP

82161A Digital Cassette Drive uses tapes which can store up to 131,000 bytes

(nearly 19,000 registers) or 512 records of from 32 to 37 registers each.

Digital information is stored on magnetic mediums such as tape by lining up

the magnetic domains in different directions to represent Q0's and I's. The surface

of the medium passing under a read/write head has its magnetic domains lined up in

one of two directions to represent 0 and 1. To read the information on the

medium, the polarity of magnetism is sensed by the read/write head.

The front panel of the tape drive contains three switches and buttons and

three indicator lights. The ON-STANDBY-OFF switch controls power to the

machine. In the OFF position, the device is turned off and may only be turned on

by manually moving this switch to the ON position. In the STANDBY position, the

device may be turned on and off by using HP-IL commands sent from the controller

which in this case is the HP-41C/CV. If the drive is operated in the STANDBY

position, it will require more power than if operated in the ON position. In the ON

position, the drive is continuously powered up and cannot be powered down except

manually by placing the switch in the OFF position.

The REWIND button, when pressed will rewind the tape to the beginning of

the clear tape leader. With the tape rewound it is less likely to be damaged. If the

tape drive is busy, this button will not function.

The OPEN button will cause the tape access door to open allowing access to

the tape. After pressing this button, the drive status is set to "new tape".

The POWER light indicates that the device is powered up. This light will turn

off if the unit is powered down either manually or in the standby mode. This light

will also turn off if battery power is low.

The BAT light indicates the condition of the internal batteries. If the light is

on, then battery power is too low to operate the machine for much longer. The

batteries should be recharged at this point to avoid damage to them. Recharging

may occur simutaneously with operation of the device. If the light is off, then

battery power is sufficient to run the device.

Page 13.

The BUSY light is on whenever the device is performing some requested

operation. Conversly, the light is off if the device is idle.

The digital cassette has three internal features which are important for

understanding its operation. Buffer 0 which is 256 bytes in length is used for

storing the information being transferred between the tape and the interface loop.

Buffer 1 which is also 256 bytes long is used to store the information going to or

coming from the interface loop. The byte pointer directs the transfer of

information to and from the two buffers by specifying which byte (numbered 0 to

255) to transfer.

There are two modes available for recording data onto the tape. In

continuous recording mode, each time Buffer 0 is filled, its contents replace one

tape record. This is useful for storing entire records. In partial recording mode,

the current tape record is first copied into Buffer 0, then all or part of this copy is

altered by data from the interface loop. Whenever the buffer is filled or the tape

record update is complete, the revised contents of Buffer 0O replace the original

record on tape. This is useful for changing part of a record without affecting the

entire record.

HP 82162A THERMAL PRINTER

The HP-41C/CV display is very limited when it comes to outputting large

amounts of data. The display is slow because of the scrolling which must occur

when move than 12 characters are to be displayed at one time. Also, a hardcopy of

data is not possible when using the display alone.

Output devices such as the HP 82162A Thermal Printer solves both of these

problems. The printer attaches to the HP-IL and is controlled by the HP-41C/CV

through HP-IL commands.

The front panel of the printer contains five switches and two indicator lights.

The OFF-STANDBY-ON switch controls the power to the machine. In the OFF

position, the device is powered down and may only be powered up by manually

moving the switch to the ON position. In the STANDBY position, the device may

be powered up or down through HP-IL commands sent by the controller which in

this case is the HP-41C/CV. If the machine is operated in the standby mode, it will

require more battery power. In the ON position, the unit is powered up and will

remain on until manually turned off.

Page 14.

The INTENSITY switch controls the darkness of the print. There are five

darknesses ranging from very light to very dark.

The MODE switch sets the printer to one of three operating modes. In MAN

(manual) mode, the printer is idle until a print function is given by a running

program or by the user. If a program listing is produced in this mode, the listing

will be left-justified.

In NORM (normal) mode, all function names, numbers and alpha characters

are printed as they are keyed in by the user. If a running program issues a print

function or a PROMPT command, the data or the prompt will be printed. Program

listings produced in this mode will be right justified with the LBL statments

marked so as to stand out better.

In TRACE mode, all numbers, function names and alpha characters are

printed as they are keyed in by the user. In a running program, all function names,

intermediate results and final answers print in addition to data printed by a print

function. Program listings are produced in a special packed format.

The PRINT button, when pressed, will insert print functions into a program or

it will print the X or ALPHA registers. When the HP-41C/CV is in PRGM mode,

pressing the PRINT button will insert a PRX command as the next program step. If

the HP-41C/CV is in both PRGM mode and ALPHA mode, pressing the PRINT

button will insert a PRA command as the next program step. If the HP-41C/CV is

not in PRGM mode and not in ALPHA mode, pressing the PRINT button will cause

the contents of the X register to print. If the HP-41C/CV is in ALPHA mode,

pressing the PRINT button will cause the contents of the ALPHA register to print.

The PAPER ADVANCE button will insert ADV commands into a program if

the HP-41C/CV is in PRGM mode. If the HP-41C/CV is not in PRGM mode, the

PAPER ADVANCE button, when pressed, will advance the paper on line.

The POWER light is on whenever the printer is powered up. The light will go

off if the machine is powered down either manually by placing the OFF-STANDBY-

ON switch in the OFF position or through program control when in STANDBY

mode. This light will also go off if battery power is insufficient.

The BAT light indicates the condition of the batteries. If the light is off,

then there is sufficient power to operate the machine. If the light is on, then

battery power is too low to operate the machine. At this point the batteries should

be recharged. This may be done while the machine continues to operate.

Page 15.

There is an internal feature which is important to the understanding of the

printer operation. The PRINT BUFFER, which is 101 bytes in length, accumulates

data to be printed. In each byte, a character to be printed or a control character

may be stored. The printer will print the contents of the print buffer when one of

two things happen. First, if the buffer is full it will be printed. Second, if the

user sends a control character such as a carriage return (CR) the buffer will be

printed and cleared.

The printer may operate in one of several modes. In Uppercase/Lowercase

mode, the print buffer will accumulate alphabetic characters in either upper or

lower case. Other characters will not be affected.

In Single Wide/Double Wide mode, characters will be accumulated and will

print either as normal width characters or as double width characters.

In Character/Column mode, the print buffer will accumulate either character

or dot patterns.

In Left/Right Justify mode, the printer is set to print the print buffer either

left-justified (lined up with the left margin) or right-justified (lined up with the

right margin).

In Parse/Nonparse mode, the printer will output the print buffer and break a

line only at a space (parse mode) or when 24 characters have been printed on a line

(nonparse mode).

The printer, in addition to outputting regular lines of print, may also output

graphics or barcode. When outputting graphics, the print buffer accumulates

columns of dots to be printed. By building each column in the proper fashion,

special graphics characters may be output. Lines of barcode may also be

accumulated in the print buffer and then output. This barcode may be produced

either for program lines or for data lines.

HP 82160A HP-IL MODULE

The HP-IL (Hewlett-Packard Interface Loop) is a general purpose interface

between a controller (the HP-41C/CV in this case) and one or more HP-IL devices.

The controller and all devices attached to the loop are connected together in series

forming a closed communication circuit. Fig 1.7 illustrates this circuit with the

HP-41C/CV and two devices attached. The HP-IL is "hard-addressed" to ROM

pages 6 and 7 (see Fig. 1.6) and occupies 8K words.

Page l6.

Information is passed from one device to another around the loop. When the

information reaches the intended device, that device will respond accordingly. All

the other devices which receive the information simply ignore it and pass it on.

The device which originally sent the information will eventually receive it again.

Y 2 | i

IN ouT

HP-41C/CV

Fig. 1.7 The HP-IL communications circuit

Once the information is received back at the sender, it is compared with what was

sent out on the loop. If the information sent does not agree with the information

received, an error message will be issued. If the information sent and received

agree, the next set of information will be sent.

Each device attached to the loop is assigned a role by the system controller.

Once a device is assigned this role, the device must operate within the limits of its

role. For example, a printer cannot magnetically record information. The HP-

41C/CV is both the system controller and the active controller. Commands are

initiated by the controller and are monitored by all devices on the loop.

Page 17.

A listener is a device which receives information sent around the loop.

There may be multiple listeners assigned by the controller. A mass storage device

is a listener when it is receiving and recording data. A printer is a listener when it

is receiving and printing data. The controller is a listener when it is receiving data

from another device.

A talker is a device which sends information out over the loop. There may be

only one talker assigned by the controller at any one time. A mass storage device

is a talker when it is reading a recorded file and sending out the data read. The

controller is a talker when it is sending data out over the loop.

Any device which is not a talker or a listener is inactive.

The HP-IL is a ROM which contains three sets or classes of functions. There

is a set of interface control functions which give the user more complete control of

interface activity for any device attached to the loop.

Printer functions give the user almost complete control of the printer or

printer-like devices. The printer functions can be classified as:

Standard Printing Operations - instruct the printer to print data

immediately without waiting for the internal buffer to fill first

Print Buffer Operations - data is accumulated in the print buffer along

with control and formatting information. The buffer prints when it is

full or when it is explicitly instructed to do so

Graphics Operations - specially built characters are accumulated

column by column and then printed

Plotting Operations - allow single-valued mathematical functions to be

plotted on a predefined set of axes

Mass Storage functions give the user almost complete control over the

operation of mass storage devices.

HP 82180A EXTENDED FUNCTIONS/MEMORY MODULE

The Extended Functions/Memory module adds two new features to the basic

Page 18.

HP-41C/CV. First it adds 47 new functions. Second, it adds 127 extended memory

registers which may be used to store data and programs. This module is "hard-

addressed" to RAM page 5 (see Fig. 1.6).

Extended memory registers are similar to main memory registers in that they

may be used to store data and programs. However, there is one important

difference between main memory and extended memory. Extended memory

registers may not be accessed directly with STO or RCL functions. The data

contained within extended memory must first be moved to main memory using

extended functions.

Extended functions may be grouped into four categories. Programmable

functions are functions which may be coded directly into a program. When used in

this manner, these functions operate exactly as if they had been executed

manually. Some of the standard HP-41C/CV functions such as ASN, SIZE and CLP

which may not be included in programs have extended function analogues which

may be used in programs.

Register and Flag functions are a new class of functions not available on the

basic HP-41C/CV. Register functions operate on entire blocks of main memory

registers by moving or swapping data between one block and another. Flag

functions give the user access to the status of flags 0 through 43 and allow the user

to change the status or to store the status of these flags.

ALPHA Register functions give the user the ability to shift characters

between the X register and the ALPHA register, determine the length of a string in

the ALPHA register, search the ALPHA register for a specific string and rotate

the string in the ALPHA register a specific number of positions left or right.

Extended Memory functions give the user the ability to define a new class of

data called internal files. Data which is stored into internal files is considered to

have a logical relationship with all other data in that internal file. These functions

also enable the user to edit data within one class of internal file called ASCII files.

HP 82181A EXTENDED MEMORY MODULE

The HP 82180A Extended Function/Memory module contains 127 extended

memory registers. Up to 476 more extended memory registers may be added for a

total of 603 extended memory registers.

Page 19.

Each HP 82181A Extended Memory module will expand the available

extended memory by 238 regsiters. The HP-41C/CV will address up to two of these

modules. If more are added, the registers in the excess modules will not be

accessed due to the fact that extended memory is "hard-addressed" to the last two

RAM pages (pages 6 and 7).

HP 82182A TIME MODULE

The HP 82182A Time module expands the basic HP-41C/CV even further with

new functions and capabilities. There are 29 new functions supplied by the TIME

module. These functions may be grouped into five categories. Date and Time

functions give the user the ability to format the date and time, set the date and

time, specify the clock display contents, display the clock, recall the clock and

date and append the date or time into the ALPHA register.

Calendar functions give the user the ability to perform date arithmetic. A

specified number of days may be added to the date, the number of days between

two dates may be calculated and the day of the week may be determined.

Stopwatch functions turn the HP-41C/CV into a manual or programmable

stopwatch. Splits may be stored and recalled, the stopwatch may be set, started,

stopped and the stopwatch time may be recalled.

Alarm functions give the HP-41C/CV the ability to start and stop programs,

turn itself on and off and audibly signal the user of some event.

Time Adjustment functions give the user or the HP-41C/CV the ability to

correct the current time or date and monitor the accuracy of the internal clocks.

The Time module is "hard-addressed" to ROM page 5 and may be installed in

any I/O port above HP 82106A or HP 82170A Memory modules.

PORT-X-TENDER

The AME PORT-X-TENDER is a device produced by AME Designl. The
function of this device is to increase the number of available 1/O ports from four to

10. This device plugs in to I/O port 3 and attaches to the bottom of the HP-

41C/CV by means of Velcro™

(between 5 and 9), the standard number of I/O ports is quickly used up. To

strips. Due to the large number of plug-in modules

overcome this difficulty the Port-X-Tender is used.

Page 20.

THE MANUALS

This book is not intended to be a replacement for the owners manuals which

accompany the HP-41C/CV and the various peripherals and modules. Rather, this

book is intended to serve as a guide for anyone interested in using their machine

for its intended purpose - to process data. For this reason, it is highly

recommended that the user read and master the various owners manuals as far as

the installation and operation of the peripherals and modules is concerned.

NOTES AND REFERENCES

l AME Design

Box 373

13450 Maxella, G185

Marina Del Rey, California 90291

Figure 1.6 is copied from the PORT-X-TENDER owners manual

Johnson, N. L. and Marathe, V. V.; "Bulk CMOS Technology Forn The HP-41C"

Hewlett-Packard Journal, March, 1980.

Kane, G., Harper, S., Ushijima, D.; The HP-IL System: An Introductory Guide to

the Hewlett-Packard Interface Loop.; Osborne/McGraw-Hill, Berkeley, California,

1982

Musch, B. E., Wong, J. J. and Conklin, D. R.; "Powerful Personal Calculator System

Sets New Standards"; Hewlett-Packard Journal, March, 1980.

Page 21.

Chapter 2

RPN and the Stack

INTRODUCTION

This chapter will discuss the stack and the language of the HP-41C/CV.

These two topics are so closely tied together that it is useless to discuss one

without also discussing the other. The importance of a good understanding of these

concepts cannot be overstated. The HP-41C/CV expects the user to communicate

with it in its own language which is termed RPN.

This chapter will guide you to an understanding of RPN and the stack by

discussing the following topics:

History of RPN

Algebraic vs RPN notation

Translating algebraic expressions into RPN

The stack

Stack operations

RPN and the stack

HISTORY OF RPN

In his book Elements of Mathematical Logic (1929), and in other of his

publications, the Polish logician and mathematician Jan Lukasiewicz defines a

parentheses-free mathematical notation in which the functors (operations) precede

their parameters. For example, rather than writting (8+3)*2, one would write + 8 3

* 2. The reason for this strange notation is compactness:

parentheses are eliminated

the number of symbols which must be written is reduced

Since each symbol in an expression such as this represents a keystroke on the

HP-41C/CV, this Polish notation system has its advantages. By placing the functor

Page 22.

after its parameters, reverse Polish notation (RPN) is obtained. The above

example now becomes & 3 + 2 *,

ALGEBRAIC VS RPN NOTATION

Most of us learned that the use of parentheses is necessary in order to reduce

ambiguity in mathematical expressions. The expression 3X4+2, for example, may

be interpreted in one of two ways:

3X4 +2

3X 442

In the first case, the answer would be 14 while in the second case the answer

would be 18. Written as 3X4+2, there is no way to know the intended order of

evaluation. The use of parentheses alleviates this problem to some extent. If the

above expression were written as (3X4)+2, then the multiplication would be done

first, followed by the addition. If the expression were written as 3X(4+2), then the

addition would be done first, followed by the multiplication. This example,

although simple, does illustrate the need for parentheses as grouping symbols.

For more complicated expressions, it might be necessary to use several sets

of parentheses. But the more sets of parentheses used, the harder it is to read and

comprehend the expression. It is a good idea to use only as many sets of

parentheses as necessary to completely reduce ambiguity.

Once the expression has been written with parentheses, the question still

remains - in what order is the expression to be evaluated? For example, the

expression:

(3X(4+2)+(2X3))/(2+(6X8))

could yield two answers depending on how the expression in the numerator is

evaluated. The numerator could be evaluated in one of two ways:

3X (4+2)+(2X3)

3X(4+2) +(2X3)

Page 23.

For this reason, certain mathematical conventions have been adopted to solve the

order of evaluation problem.

l. evaluate all of the inner most sets of parentheses and then work out to

the next sets of parentheses, and so on

evaluate in a left to right direction

perform arithmetic operations in the following order

exponentiation

multiplication and division

addition and subtraction

Using these conventions, we can now evaluate the expression properly. The

steps involved would be:

(3X(4+2)+(2x3))/(2+(6x8))

1. evaluate the inner most sets of parentheses first

(4+2)=6

(2X3)=6

(6X8)=48

(3X6+6)/(2+48)

2. evaluate the numerator from left to right

3X6=18 +6=24

24/(2+43)

3. evaluate the denominator

(2+48)=50

24/50

4. finish the evaluation of the expression to get 0.48.

Page 24.

From the above example, it is apparent that "there's got to be a better way"

to write and evaluate expressions. Writting expressions without parentheses does

not work because the order of evaluation can not be readily determined. On the

other hand, parenthesis are difficult to use and key into a computer. In 1928 or

earlier, the Polish logician, Jan Lukasiewicz, invented a parenthesis-free notation

to describe expressions in symbolic logic. Because his nationality is easier to

pronounce than his last name, this system of notation became known as Polish

notation.

Polish notation is unique for two reasons. First, it is completely free of any

type of grouping symbols. Functors and their parameters are written as they are to

be evaluated. Secondly, Polish notation is unique because the functor

(mathematical operator) is written first followed by its parameters.

Polish notation is best understood by means of an example. Look again at the

expression

3X4+2

You will recall that in algebraic notation this expression may be written in

one of two ways depending on the intended order of evaluation.

(3X4)+2

3X(4+2)

In Polish notation, the expression could be written in one of two ways

depending on the intended order of evaluation.

X344+2

+42X3

At first this notation may look foreign and unnatural. However, upon closer

examination, one will discover that this is written in essentially the same order as

one would mentally go through the evaluation. Assume that the order of evaluation

is intended to be (3X4)+2.

Page 25.

Mentally, the evaluation of this expression would proceed as follows:

l. multiply 3 by &4

2. add 2

Now look again how this expression would be written in Polish notation.

X34

+2

The similarity between actual mental evaluation and Polish notation should

now be clear. Polish notation, whether we realize is or not, is really how we

mentally evaluate mathematical expressions.

The calculator market today is occupied by two classes of machines. First,

there are those machines which use an algebraic entry system. The expression to

be evaluated is entered into the machine exactly as it is written, parentheses and

all. The expression is evaluated following the rules of algebra where evaluation

begins at inner parentheses, multiplication and division first, etc.

The other end of the market is occupied by those machines which use a

varient of Polish notation called Reverse Polish Notation (RPN). Reverse Polish

Notation, as the name implies, is a reversed Polish notation. Instead of the functor

preceeding its parameters, the functor follows its parameters. In RPN, the

expression (3X4)+2 would be written 34X2+.

The natural question at this point might be - how does one translate algebraic

expressions into RPN?

TRANSLATING ALGEBRAIC EXPRESSIONS INTO RPN

The translation process is really quite simple. Beginning with the algebraic

expression, it is evaluated according to the following conventions and, as the

evaluation proceeds, written in RPN.

1. begin with the inner most sets of parentheses

Page 26.

translate in a left to right fashion

perform arithmetic operations in the following order

exponentiation

multiplication and division

addition and subtraction

Following these conventions and with a little practice, even the most

complex mathematical expression may be translated into RPN. The following

example will illustrate.

Ye=4/3n(1 + 2Wf7vo)

1. starting inside the parentheses, evaluate vf/Vo

AN,
SQRT

multiply by 2

2%

4, add 1

1+

JS. multiply by h

h*

6. evaluate 4/3

43/

7. multiply

*

Written out in full, the RPN for this expression would be written as follows.

VfVo/SQRT2*1+h*l#3/*

THE STACK

A stack is so named because of its similarity to the device in some cafeteria's

which holds plates. A stack of plates rests on this spring-loaded mechanism. As

Page 27.

more plates are added, the stack is pushed down by the weight of the new plates.

As a plate is removed, the stack lifts because some of the weight has been

removed. This type of stack is called a LIFO (last-in first-out) stack. As plates

are added, they are pushed onto the stack. As plates are removed, they are popped

off the stack.

The HP-41C/CV has a LIFO stack. This push down stack is four registers in

length. The last-in first-out register is called the X register and is the register

normally displayed. The other three registers in order are the Y, Z and T registers.

The registers in the stack are nearly always pictured upside down so that the

X register is on the bottom and the T register is on the top. This arrangement

allows the registers to be logically oriented for the operations to be performed.

For example, the operation x-y says to subtract y from x. If register X contains x

and register Y contains y, the upside down arrangement of the stack will place

register Y above regsiter X meaning that y is entered before x. This is more

logical than the other way around where register X would appear above regsiter Y.

Fig. 2.1 illustrates the upside down stack arrangement.

REGISTERS

T

Z

 LAST X

Fig. 2.1 The HP-41C/CV stack

Page 28.

STACK OPERATIONS

Basically, there are two operations which affect the stack - manipulators and

functors. Functors can be monadic, diadic or bifid. A monadic functor is a functor

which requires only one parameter in the X register. Examples of monadic

functors are the CHS and the SIN operations. One number is popped off the stack,

operated upon and the answed placed back into the X register.

Diadic functors require two parameters, one in the X register and the other

in the Y register. Examples of diadic functors are the arithmetic operations of +, -

, ¥ and /. Two numbers are popped off the stack, combined to give the answer

which is then placed into the X register.

Bifid functors require two parameters, one in the X register and the other in

the Y register. Examples of bifid bunctors are the R-P and P-R operations. Two

numbers are popped off the stack, operated upon to give two answers which are

then placed back into the X and Y registers.

Manipulators are operations which affect either the arrangement of or the

contents of the stack. Examples of manipulators are the ENTER operation and the

X swap Y operation.

The HP-41C/CV is normally in the auto-push state. A new number keyed into

the machine in this state pushes into the X register, while the previous contents of

the X register goes into the Y register, and so on. The previous contents of the T

register are lost.

Some functors and manipulators will disable auto-push. In this state, a

number keyed into the machine will overwrite the X register and not disturb the Y,

Z and T registers.

RPN AND THE STACK

You may have noticed in the discussion of translating algebraic expressions

into RPN, that diadic functors in RPN sometimes appear to have only one

parameter. For example, in the RPN expression 34*2+, the parameters for the

multiplication are obviously 3 and 4, but what are the two parameters for the

addition? One of the parameters is the 2 and the other parameter, as we shall see,

is the resulting product of the multiplication of 3 by 4.

Page 29.

When the expression 34%*2+ is to be evaluated on the HP-41C/CV, the

parameters and functors are entered into the machine starting at the left and

proceeding to the right. As each parameter is entered, the stack is affected in

some way. In order to understand exactly how the stack is affected it is useful to

picture the stack after each operation. Let us walk through this simple example

and after each digit entry or mathematical operation, we will picture the stack

using the printer function PRSTK. In this manner, we can see how the stack

changes after each operation or after each number entry. The assumption is being

made here that the stack contains all zeroes.

Begin the evaluation of the RPN expression 34*2+ by keying in the number 3.

When the 3 is keyed in, it appears in the display (X register).
"

:
:
»
.
I
-
D
:
O
'
S
)

D
D

D
O
D

D
P
o

Stack after entry of the number 3

Now, unless we tell the machine otherwise, the next number to be keyed in

will be appended onto the 3. In other words, we must tell the machine when one

number ends and another number begins. Digit entry disables auto-push. What we

need is some operation which will enable auto-push for us. One way to enable

auto-push is to press the ENTER key. The ENTER functor operates by enabling

auto-push which causes the stack to lift when the next digit key is pressed.

Stack after ENTER is pressed

The next number can now be entered into the machine.

Page 30.

T= 8.80
= 3.68
Y= 3.68
X= 4.66

Stack after entry of the digit 4

The multiplication can now be performed. This is done by pressing the X

(multiplication) key. Most functors will enable auto-push so that a digit entered

into the machine after the functor has executed will cause the stack to lift. The X

operation is a diadic functor which requires two parameters -one in the X register

and the other in the Y regsiter.

T= 0.88
2= 6.60
= 3.08
= 12.68

Stack after multiplication

We are now ready to enter the next digit into the machine. Since auto-push

was enabled by the X operation, we don't need to worry about digit separation

between the 12 in the X register and the 2 we are about to enter.

T= 8.60
2= 3.68
Y= 12.68
X= 2.66

Stack after entry of the digit 2

Do you now see the two parameters required by the + operation? The 12 in

the Y register is the product from the previous multiplication. The 2 in the X

register is the number just entered.

Page 31.

The final operation may now be performed which will leave the final answer

in the X register.

Stack after + operation

This example has illustrated how the stack is affected by data entry and

machine operations. Almost every operation which may be performed on the HP-

41C/CV will affect the arrangement of the stack. It is important that the user

understand how the stack is affected by data entry and machine operations even

though he may not wish to use the stack as it was intended to be used.

The user may take one of two approaches when using the stack. One

approach is to store the results of all calculations into main memory registers and

recall them as needed. This approach is useful when there is no time to carefully

design an evaluation which will use the results of previous calculations left in the

stack. This approach may be used in a small program where the number of

available main memory registers used for storage is essentally unlimited.

The other approach the user may take when using the stack is to carefully

design the evaluation algorithm so as to take full advantage of the stack. It is

possible to evaluate expressions in such a way as to ensure that the stack registers

are set-up for the next operation.

If it is important to take full advantage of the stack, the user must know

ahead of time the parameters which will be needed and what the stack looks like at

any particular time. One way to know this is to analyse how the stack will be

affected after each operation or digit entry.

There is a printer function which will print the stack registers for you. The

PRSTK command could be executed after each parameter has been entered or

after each operation has been performed to show what the stack looks like. In

programs, it could be included after each program line so that as the program is

Page 32.

running, the contents of the stack will be printed. Notice that the PRSTK

command does not print the LASTX register. This command, as will most of the

other commands on the HP-41C/CV, will enable auto-push.

CONCLUSION

At this point, you should have a good idea of what RPN is and how it operates

with the stack. If you do not feel comfortable with RPN and how to convert

algebraic expressions into RPN notation, you should pause now and practice

evaluating expressions with pencil, paper and HP-41C/CV.

REFERENCES

Ball, J. A. ; Algorithms For RPN Calculators.; John Wiley & Sons, New York, 1978.

Page 33.

Chapter 3

Simple Programming Summary

INTRODUCTION

This chapter will serve as an HP-41C/CV programming summary. This

summary will be presented in such a way as to show how programming will save

time and labor. The following topics will be discussed.

Definition of a program

Structure of a program

Keying a program into program memory

Program verification

Editing a program

Running programs

Compiling programs

DEFINITION OF A PROGRAM

The best way to define a program is to explain what a program will do.

Suppose that you want to do a calculation that will convert gallons to liters. The

equation to be used is

liters = gallons * 3.785

Using this equation, you must key in the number of gallons to be converted

and then multiply this amount by 3.785. To convert 33.2 gallons to liters, for

example, would require the following keystrokes:

33.268 ENTER*

3.785 *
125.66 s+

Page 34.

After pressing the X key, the number of liters (125.66) will be displayed. This

problem required 11 keystrokes to arrive at the answer. If this conversion is not to

be done often, then this method of converting gallons to liters is adequate.

Suppose, however, that is necessary to do this calculation 16 times a day, every

day. Not only would the number of keystrokes required become significant, but the

chances of an error would greatly increase. Notice that each time the calculaton

is to be done, the constant 3.785 must be reentered. If some of the numbers of this

constant are reversed, the final answer would be in error. Therefore a slightly

better method of doing this conversion does not require that the constant be

entered each time. The following soluton is based on the fact that the HP-41C/CV

will "remember" data stored in its main memory registers even after the machine

is turned off. Suppose that the constant 3.785 is pre-stored in main memory

register RO0. Then the conversion would require the following keystrokes:

33.2688 ENTER*

RCL @&

This solution requires 9 keystrokes and is virtually error free. When it is

necessary to do the conversion several times, the constant does not need to be

entered.

There is an even better solution to this problem. This solution is based on the

fact that the HP-41C/CV can "remember" a series of keystrokes called a program.

Once the keystrokes are entered into the machine, they will remain there until

explicitly removed. To make these keystrokes perform their intended function, you

simply press one or two keys to start the program. The program to perform the

gallons to liters conversion is as shown on the following page.

STRUCTURE OF A PROGRAM

Look carefully at the gallons to liters program. There are several lines of

code which do not correspond to any keystroke used in

Page 35.

@1¢LBL “GRLLIT"
82 "HOW MANY GRLLON-®
83 PROMPT
84 3.785
@ =
86 “LITERS = -
87 ARCL X
88 AVIEW
89 END

Program to convert gallons to liters

the manual solution. These extra lines of code are called "overhead" and are

necessary in order to name the program, to prompt the user for information and to

display the results. In the following discussion, each line of the program will be

discussed.

Line 1 of the program is the program header. The program header is

necessary in order to tag the program with a unique name.

Programs are keyed into and stored in a part of main memory known as

program memory. Program memory and data storage registers together make up

main memory. Program memory may be made as large or as small as desired at

the expense of the data storage registers. If program memory is made large

enough to contain more than one program, then it is necessary to have some way of

telling programs apart. Programs are typically stored as individual program files

each with a unique name. Access to a program then is by its name. Another

advantage to storing programs as separate files is that the operating system will

enter the name of the program in its program catalog. This catalog may be viewed

at any time by executing the CAT 1 command. As this command is executing, the

name of each program file will be displayed in the order the programs were stored.

Line 2 is the beginning of the body of the program and is a message which

will be displayed to notify the user that some information is needed. This is one of

the main uses of the alphanumeric capability of the HP-41C/CV. Prompting for

data by name when it is needed makes the machine very friendly because the user

is told exactly what is needed by the program.

Line 3 of the program is the instruction that actually stops the running

program and displays the data prompt. Once the requested data has been keyed in,

Page 36.

the program is restarted by pressing the R/S key.

Line 4 of the program is the constant which will be multiplied by the number

of gallons.

Line 5 is the multiplication instruction itself.

Line 6 is the first part of a message which will be built in lines 6 and 7. The

purpose of this message is to label the result of the calculation. The user will not

have to guess what the number being displayed is. In this program, annotating the

output is trivial but in larger programs with several outputs, annotating the results

is essential.

Line 7 of the program is the instruction which will append the contents of the

X register onto the end of the string in the ALPHA regsiter. After the ARCL

instruction has executed, the ALPHA register will contain the complete message.

Line 8 of the program is the instruction which will cause the contents of the

ALPHA register to be displayed thereby showing the user the result of the

calculation.

Line 9 of the program is the program trailer which signals the end of the

current program and program file. The operating system considers everything

between the program header and the program trailer as a single program f{ile.

KEYING A PROGRAM INTO PROGRAM MEMORY

We have written a small program which will convert gallons to liters. The

next step is to enter the program into program memory.

As we have seen, a program is nothing more than a series of keystrokes. The

HP-41C/CV has the ability to "remember" a series of keystrokes provided they are

placed in program memory.

Main memory consists of 319 registers when all memory is present. These

registers may be used to store data or programs or both. If both data and programs

are to be stored, the operating system must have some way of knowing what

information in main memory is data and what information is program since

internally both are stored as strings of bits. The way the operating system knows

where data ends and programs begin is by means of a soft "curtain". This curtain is

the dividing line between the main memory register R00 and the first program file.

The address of this curtain is variable and is stored in status register c. If the user

wants to re-partition main memory (that is change the location of the curtain) he

Page 37.

does so using the SIZE or PSIZE (an extended function) function. Main memory

may be partitioned such that there is no program memory and all data storage

registers or such that there are no data storage registers and all program memory

or anywhere in between.

Program memory is directly accessed by the user only when the HP-41C/CV

is in PRGM mode. To enter or exit this mode, the PRGM operating switch is

pressed. When in PRGM mode, the PRGM annunciator will be on and a program

line or the .END. REG nn line will be displayed. If the .END. line is showing, nn is

the number of available program memory storage registers remaining.

The first thing to do after entering PRGM mode is to position the program

pointer to the next available program memory register. To do this the GTO..

instruction is used.

Executing this instruction will not only position the program pointer, it will

also pack program memory so that wasted space will be released. Wasted space

occurs whenever lines of code are deleted. Normally, instructions are packed so

that as many instructions as possible are put into each program memory register.

Instructions are not split bewtween registers. If an instruction will not completely

fit into a register the remaining bytes of the register are filled with nulls

(hexadecimal '00') and the instruction is put into the next register. When an

instruction is deleted, the space formerly occupied by the instruction is filled with

nulls. Packing program memory removes these nulls and replaces them with

instructions. The amount of space released by packing can be considerable if the

program had been heavily modified or if many mistakes had to be corrected while

keying a program in.

After positioning the program pointer to the next available register in

program memory, the program may be keyed in one line at a time starting at the

first statement. When a character string must be keyed in, simply remain in PRGM

mode and go into ALPHA mode and key in the characters between the " '"'s. After

the characters have been keyed in, take the machine out of ALPHA mode and

continue keying the program.

To key in line 1 of the program, press the LBL key. When the display shows

LBL_ , go into ALPHA mode and key in the characters G AL L I T. Notice that

after ALPHA mode is entered, the _ _ becomes a single _. This single dashed line

will precede the characters as they are being keyed in. The complete set of

Page 38.

keystrokes to enter the first line would be as follows. The shift means that the

gold shift key must be pressed.

shift LBL ALPHA GALLITALPHA

The next line of the program may now be keyed in. This is done by pressing

the following series of keys. The program pointer will automatically go to line 2

when you begin keying this line.

ALPHAHOWDMANYDbGALLON ALPHA

The b is the symbol for a space.

Line 3 of the program is entered by spelling out the name of the function

PROMPT. Any HP-41C/CV function may be executed by spelling out its name.

Some of the more commonly used functions have been preassigned to the various

keys of the keyboard. If a function is not assigned to a key, then it may only be

executed by spelling it out. In order to execute a function that has not been

assigned to a key, you must first press the XEQ key, put the machine into ALPHA

mode, spell out the name of the function then exit ALPHA mode. Once ALPHA

mode is exited, the function will be placed into program memory as an instruction.

The sequence of keystrokes used to key in line 3 of the program are:

XEQ ALPHAPR OMP T ALPHA

Line 4 of the program is entered simply by pressing the appropriate digit and

decimal point keys. The sequence would be:

3.785

Line 5 of the program is entered by pressing the X (multiply) key. Notice

that when the X key is pressed, the previously entered number was terminated.

The X key acted as a number terminator. Suppose that another number was to be

keyed in immediately following the 3.785. If the new number, say 1000, is entered

after entering the last number and no keys had been pressed, the new number would

be appended onto the end of the number 3.785 making it 3.7851000. To overcome

Page 39.

this difficulty, auto-push needs to be enabled even though the two numbers are not

going directly into the stack at this time. While in PRGM mode, auto-push is

enabled by either toggling the PRGM switch or the ALPHA switch before entering

the next number.

Line 6 of the program is entered in a manner similar to line 2. The machine

is first put into ALPHA mode, the string is keyed in and ALPHA mode is exited.

The keystrokes would be :

ALPHALITERSb=b ALPHA

Line 7 of the program is entered by first putting the machine into ALPHA

mode, pressing the VIEW key and then exiting ALPHA mode. The machine is put

into ALPHA mode first so that the next key pressed will be interpreted as the

ALPHA equivalent of the instruction. This same technique is used for RCL and

STO making them ARCL and ASTO respectively. The chart on the back of the HP-

41C/CV indicates all of the shifted and unshifted ALPHA functions. Alternately,

these functions may be input by spelling out their names. The keystrokes to get

the AVIEWinstruction into the program are:

ALPHA shift VIEW ALPHA

The END statement may be put into the program in one of two ways. First,

the END function may be executed like any other function or the GTO..

instruction may be executed. The first method will insert the END statement as

the next line of the program and the program file will be exited so that the

program pointer is positioned to the next available program register. However, the

operating system will not pack program memory. The second method will also

cause the END statement to be inserted as the last program line and the program

file to be exited so that the program pointer is positioned to the next available

program register. In addition, program memory will be packed. Regardless of the

method you use, be sure to switch out of PRGM mode after inserting the END.

Once the program has been keyed into program memory, it should be verified

line by line and any mistakes found should be corrected.

Page 40.

PROGRAM VERIFICATION

Program verification involves comparing every line of a program as it exists

in program memory with what should have been keyed in. To begin the verification

process, the first line of the program must be pointed to by the program pointer.

This may be done in one of several ways. The first way involves the use of the

CAT 1 function. It was mentioned earlier that the operating system maintains a

catalog of all program files in program memory. As the CAT 1 function is

executing, each program header and trailer is displayed beginning with the first

program in program memory. If the catalog is stopped by pressing the R/S key, the

program pointer will be positioned to whatever program was being displayed. If

you stop the catalog at the program that you wish to verify and then switch into

PRGM mode, then either the program header or trailer will be displayed,

depending on how soon the catalog was stopped. If you stop the catalog too late,

you may use the BST key to backup to the appropriate entry before switching to

PRGM mode.

Another way to get to a particular program in program memory is by using

the GTO instruction. When the GTO instruction is executed with an alpha label and

the machine is not in PRGM mode, the operating system will search all of program

memory for the requested label. The following sequence of keystrokes will locate

the program GALLIT:

shift GTO ALPHA GALLIT ALPHA

To look at each line in the program, you may use the SST key to advance one

line or the BST key to go back one line. Occasionally, you may want to skip down

or up several lines at once. The GTO.nnn command will do this for you. Simply

execute the command putting the target line number in place of the nnn. For

example, to get to line 8, the following GTO would be executed:

GTO.008

EDITING PROGRAMS

If an error is found in a program it must be corrected. Correction may take

Page 41.

one of five forms.

. correcting lines as they are being entered

. correcting lines after they have already been entered

1

2

3. removing entire lines

4. removing enire programs

5. inserting new lines of code

Correcting program lines as they are being entered is probably the most

common editing operation that you will perform. If a mistake is discovered while

the line is being keyed in, the mistake may be corrected by repeatedly pressing the

correction key until the character or command in error has been removed. Once

the error is removed, the program line may be completed.

If a mistake was made but was not discovered before the line was terminated,

the entire line must be removed and reentered. To do this, the program pointer is

placed at the line in error and the correction key pressed to remove the line. The

program pointer will now be positioned to the line immediately preceeding the line

just removed. The line may now be reentered and it will be in the correct place.

If the first line of a program is in error, the line must first be removed and

then reentered. To do this, the program pointer is placed at line 1. The correction

key is then pressed to remove the line. Finally, the GTO.000 command is executed

to place the program pointer to the beginning of the program and the new line is

entered.

Removing several lines of code may be done in one of two ways. First, the

correction key may be used repeatedly, once for each line to be removed. If this

method is to be used, the program pointer should be placed at the last line of code

to be removed. The reason for this is that when a line is removed using the

correction key, the program pointer will be left pointing to the line of code which

preceded the line removed. Another way to remove several lines of code is by

using the DEL function. To use this function, the program pointer is placed at the

first line of code to be removed. The DEL function is then executed. When the

display shows DEL_ _ _ , the number of lines of code to be removed including the

current line should be entered.

Entire programs may be removed by using one of two functions. The CLP

function will delete the program named in the ALPHA register. One or more

Page 42.

contiguously stored programs may be removed by using the PCLPS (an extended

function) function. To use this function, the name of the first program to be

deleted is entered into the ALPHA register. When the function is executed, all

programs in program memory beginning at the one named in the ALPHA register up

to and including the last program in program memory will be removed.

Inserting new lines of code is done first by positioning the program pointer to

the line which will immediately precede the new lines. The new lines of code are

then keyed in. If lines are to be inserted in several locations throughout a program,

it is a good idea to begin with the last set of lines (the ones towards the end of the

program) first and proceed to the next to last group, and so on up to the top of the

program. The reason for this is that as new lines are entered, the operating system

will automatically renumber the program lines beginning with the inserted lines and

going down. If lines are being inserted using a program listing as the source of line

numbers, then beginning at the top and working down will not allow you to use line

numbers after the first insertions are made. On the other hand, beginning at the

bottom will not cause lines above the insertions to be renumbered.

After the program is edited and ready to go, it is a good idea to get a

program listing. In order to do this, the printer should be set to MAN or NORM

mode depending on the format desired for the listing. Executing the PRP function

with the name of the program in the ALPHA register will list the program.

RUNNING PROGRAMS

Once the program has been entered into program memory and all obvious

errors removed, it may be run (executed). The actual method of execution depends

on how the particular program was designed. To run the program developed in this

chapter, the program pointer must first be placed at the first line of the program.

This is done with either the CAT 1 function or the GTO function. After the

program pointer is set, the R/S key is pressed to start the program. When the

program stops with the "NUMBER OF GALLON" prompt in the display, enter the

number of gallons to be converted and press R/S. The program will stop again with

the "LITERS = " display.

Page 43.

COMPILING PROGRAMS

Compiling is a process performed by the operating system which computes

and stores jump addresses within the jump instruction itself. The first time a

program containing GTO or XEQ instructions is executed, the system must search

for the address of the label being jumped to. Once found, the address of the label

is stored in the instruction. Now, as long as the program is not modified or

PACKed, the jump instructions will operate faster because the system does not

have to search for the label, it simply jumps to the label location. If a program is

to be stored on some external medium, the compiled version should be stored.

CONCLUSION

This chapter has presented a simplistic summary of programming the HP-

41C/CV. The remainder of this book will build upon this foundation by presenting

the programming of the extended functions and the HP-IL functions.

Page 44.

Chapter 4

Program Design Methodology

INTRODUCTION

It has been said that 'computer programs are never designed, they are

created on the coding pad". That this is true is certainly unfortunate. It is

unfortunate for the programmer because he must spend more time than necessary

getting his program written and running error-free. It is also unfortunate for the

person who must later make modifications to the program because the areas to be

changed may not be easily located.

This chapter will present program design and coding techniques that has been

in use for several years by programmers in the larger computer shops. The use of

the methods to be discussed are guaranteed to produce efficient and reliable

programs and to make future modifications easier to implement.

HISTORICAL PERSPECTIVE

The basic task of a programmer is to write programs, or sets of computer

instructions, which will make a computer translate input data into some predefined

output. Historically, the programmer would learn the instruction set (commands)

of the particular computer to be used and then set about to devise a solution to the

problem to be programmed. Through the use of flowcharts (one of several program

design tools available), the programmer would "figure out" what steps are

necessary to solve the problem using his own rules in the construction of the logic.

Little or no attention was given to how to design a '"good" program, that is, a

program which is both efficient in terms of computer resources and easy to modify.

The resulting programs were built on a trial and error basis, coping with each new

condition as it arose. If a similar problem was to be programmed at some future

date, it is unlikely that the resulting program would be logically or structurally

similar to the previous program. This unstructured approach to programming has

led to the development of programs which are unreliable.

This approach has also led to the development of programs which are next to

page 45.

impossible to read and understand. If a person cannot follow the logic flow of a

program, there is no possible way that the person can correct a problem with the

program or make modifications to the program. Therefore, the lack of proper

program design has also produced programs which are difficult to modify and

maintain.

There are at least two reasons why, historically, little emphasis has been

placed on the design of "good" programs. First, most of the emphasis has been

placed on program testing and debugging to obtain reliable programs. The program

development cycle consists of the following four phases:

analyse requirements

design the steps necessary to program the solution

write the program instructions

test the program and correct errors and problems

A very small percentage of the programmers time (about 20%) was spent in

program design and a very large amount of the programmers time (about 50%) was

spent in the testing and debugging of the program. It is difficult to produce good

programs when so little time is spent in the design phase.

The second reason why, historically, little emphasis has been placed on

program design is that there has been little or no consideration given to the person

who must eventually modify the program. Except possibly for small "one-timers",

it is unreasonable to say that a program will never need to be changed. Programs

which are poorly designed and coded are difficult and time-consuming to

understand and modify or correct. Frequent errors which must be corrected

include:

incorrect processing of all data

incorrect calculations

premature program termination due to incorrect instructions or data

When one or more of these errors occur, they must be corrected immediately.

If the program is written such that it is difficult to understand, then these

corrections will be difficult to make.

Page 46.

It has been suggested that if more time were spent in the design of a program

and if the other person were kept in mind during the design and coding of the

program, then less time would be required to test and debug the program and the

difficulty in maintaining the program would be all but eliminated.

Considerable research has been conducted aimed at changing computer

programming from an art (a non-disciplined, ego-building expression of ones own

ideas) to a science (a disciplined approach to problem solving). This research

indicates that a method of program design and coding known as Structured

Techniques (structured design plus structured programming) can solve many, if not

all, of the problems described above. The resulting structured program is more

reliable and easier to read, understand and maintain.

STRUCTURED DESIGN

Structured design is a method of program design which forces the

programmer or designer to isolate each separate operation that the program is to

perform. This is accomplished in four steps. The first step involves defining the

problem to be solved. This step is very rarely done because it seems so obvious.

The final product will greatly suffer, however, if problem definition is omitted or

assumed. To carry out this step, the outputs of the program are carefully defined.

In other words, "What information is the program supposed to give to the user?".

After the outputs are defined, the inputs to the program must be defined -"What

input does the program need in order to generate the output?". Only after the

outputs and inputs have been defined, the processing which must take place in

order to generate the outputs from the inputs must be defined at a very high level.

In other words, the programmer or designer must make some very general

statements about the processing that is to take place. Once step 1 is complete,

every aspect of the problem to be solved should be thouroughly understood. If a

complete understanding is not there, step 1 must be done again.

The second step in program design involves designing one or more processes

to perform the translation of the inputs into the outputs. This will require thinking

about how the program will do what it is supposed to do. After an algorithm has

been developed, it must be checked by determining if it will handle all the inputs

necessary and if it will generate all the outputs necessary. Also, it is a good idea

Page 47.

to determine if it will be easy for the user to use. If not, then the algorithm must

be designed more carefully.

Once an algorithm has been decided upon, the third step, that of refining the

algorithm, must be done. This involves breaking the algorithm down into finer and

finer parts until each part will perform exactly one function. It is at this point

that the programmer or designer will decide when each process or function will be

performed.

Finally, the last step may be performed. This step also is rarely done but

very important. Once the algorithm is defined and each separate function

determined, it is necessary to "walk thru" the logic using accurate data. This will

insure that logic errors are caught before the actual coding of the program takes

place. If a logic error is found, it is easier to correct it during the design stage

than it is after the program has been written.

STRUCTURED PROGRAMMING

Structured programming is a method of programming which involves the

design and coding of programs using a limited number of control statements to

form a highly structured and easily read program.

A "proper" program has all of the following characteristics:

one and only one entry point

one and only one exit point

no infinite loops or unreachable code

uses only the SEQUENCE, IF-THEN-ELSE and DO-WHILE control

structures

can be read from top to bottom

An entry point is the place in the program where control passes from the

caller and execution begins. The exit point is the place in the program where

execution terminates and control passes back to the caller. An infinite loop is a

section of code which is executed indefinitely. Unreachable code is code that is

never executed because control cannot pass to it.

The SEQUENCE control structure enables the programmer to sequence

actions, one action, then the next, and so on. The following block diagram will

Page 48.

illustrate the SEQUENCE control structure.

SEQUENCE control structure

The rectangular boxes specify a particular event (instruction or instructions)

which must occur. Notice that event 1 occurs before event 2 and that event 1 does

not occur again once it has been completed.

The IF-THEN-ELSE control structure allows control in a program to branch

to segments of code depending on the value of a bivalued condition. The following

block diagram will illustrate the IF-THEN-ELSE control structure.

TRUE "l EVENT | I'——

—_— ———-[EVENT 3 1—»—

FALSE —-L EVENT 2].——

IF-THEN-ELSE control structure

The diamond shaped structure is the condition to be tested. The condition is

either TRUE or FALSE. If TRUE, then event | is executed. If the condition is

Page 49.

FALSE, then event 2 is executed. Notice that event 1 and event 2 are SEQUENCE

control structures and that they both will flow into the same event (event 3).

Notice also that event 1 or event 2 but not both could be null operations.

If it is necessary to test a multi-valued condition, a special form of the IF-

THEN-ELSE control structure called the CASE structure may be used. The

following block diagram will illustrate the CASE structure.

 I > EVENT |

0 A

—_— ’-l EVENT 2 J——

—’

 Lo)
CASE control structure

EVENT n+| _>

The semi-circle denotes the multi-valued condition to be tested. If the value

of the condition is 1 then event | will be executed, if the value of the condition is 2

then event 2 is executed, and so on. Again it is possible to make one or more of

the events a SEQUENCE control structure or to make any of the events null

events. Also, all events end at the point where the following event (event n+1) will

be executed.

The DO-WHILE control structure allows a segment of code to loop

(repeatedly execute) as long as the tested condition is TRUE. The block diagram

on the following page will illustrate the DO-WHILE control structure.

A special form of the DO-WHILE control structure, the DO-UNTIL control

structure, allows a program to loop until the tested condition is TRUE. The block

diagram on the next page will illustrate the DO-UNTIL control structure.

Page 50.

Look again at the characteristics of a "proper" program. The last

characteristic states that a "proper" program can be read from top to bottom. This

means that the program will flow beginning at the top (at the entry point) and flow

in a downward direction until the end (the exit point) is reached. The diagram on

the following page illustrates the flow thru a structured program.

FALSE TRUE

TRUE FALSE

EVENT | r EVENT |]

DO-WHILE control structure DO-UNTIL control structure

The triange represents the execution of a DO-WHILE control structure. The

diagram illustrates a basic fact of structured programs. Each segment of a

structured program can be determined to be correct independently of other

segments of the program. It this basic fact of structured programs that allows one

to test a program one module at a time, even before all the other modules have

been coded.

Page 51.

o
INSTRUCTIONS

W
0O
N
0

O
d
N

-

 o
TIME

Diagram of structured program flow

CONCLUSION

A structured program is one which will be easier to read and understand. The

author of the program will spend much more time designing the program and much

less time testing and debugging the program and yet feel confident that a "good"

program has been produced.

Chapter 5 will give a more detailed description of the program control

structures and Chapter 7 will show how these control structures are implemented

on the HP-41C/CV.

REFERENCES

Hearn, A.D.; "Some Words About Program Structure."; Byte, September 1978,

pages 68 thru 76.

Hearn, A.D.; "Top-Down Modular Programming."; Byte, July 1978, pages 32 thru

38.

Page 52.

Howard, J.; "What Is Good Documentation?"; Byte, March 1981, pages 132 thru 150.

Weems, C.; "Designing Structured Programs."; Byte, August 1978, pages 143 thru

154.

Williams, G.; "Structured Programming And Structured Flowcharts."; Byte, March

1981, pages 20 thru 34.

Williams, G.; "Is This Really Necessary? A First Look At Design Techniques.";

Byte, March 1981, pages 6 thru 214.

Page 53.

Chapter 5

Program Control

INTRODUCTION

This chapter will discuss the program control operations which allow sections

of code within a program to be executed over and over again. The great power and

flexability of computers rests in their ability to execute instructions and sequences

repeatedly in a controlled manner.

This chapter will present the theory and operation of conditional and

unconditional transfer instructions, system and user flags and the implementation

of the IF-THEN-ELSE and DO-WHILE control structures. To explain this theory

and to show the implementation of these control structures, the following topics

will be discussed:

Unconditional transfers

Conditional transfers

User and System flags

The IF-THEN-ELSE and CASE control structures

Loops

The DO-WHILE and DO-UNTIL control structures

UNCONDITIONAL TRANSFERS

Unconditional transfers are instructions which, when invoked, cause an

immediate branch or jump to the location specified within the instruction. The

HP-41C/CV unconditional transfer instruction is the GTO command. This

command may be coded in any one of several ways depending on where control is to

pass.

GTO programname or labelname

where programname is the name of a program file located in program

memory and labelname is an alphanumeric local or global label

Page 54.

GTO labelnumber

where labelnumber is a label number between 00 and 99

GTO IND nn

where nn is a main memory register number in the range 00 to 99 which

contains either a label number in the range 00 to 99, an alphanumeric

local or global label, or a program file name

GTO IND ST

where ST is a stack register or the LASTX register which contains

either a label number in the range 00 to 99, an alphanumeric local or

global label, or a program file name

The GTO programname form of the GTO command will cause the machine to

halt and begin searching for the program file whose name is specified in the

instruction. The machine will search sequentially through all of program memory

until either the program file is found or the end of program memory is

encountered. If the program is not found, an error message will be displayed. The

program name may be specified in a main memory register or a stack register in

which case the GTO IND nn or GTO IND ST forms of the command would be used.

The GTO labelnumber or the GTO labelname form of the GTO command will

cause the machine to halt and begin searching downward for the label specified in

the instruction. If the label is not found before the end of the program is

encountered, the search begins again at the top of the program and proceeds

downward until either the label is found or until the executing GTO command is

encountered. If the label is still not found, the HP-41C/CV will display an error

message and the program will halt with the program pointer positioned at the GTO

instruction which was being executed.

The GTO IND nn form of the GTO command will cause the machine to halt

and begin searching for the label specified in main memory register Rnn. The

machine will search sequentially downward until the label is found or until the end

of the program is encountered. If the label is not found before the end of the

program is encountered, the search will continue from the top of the program and

proceed downward until either the label is found or until the currently executing

GTO command is encountered. If the label is still not found, the

Page 55.

machine will halt and an error message will be displayed.

The GTO IND ST form of the GTO command will cause the machine to halt

and begin searching for the label specified in the stack register or the LASTX

register. The search will proceed sequentially downward until either the label is

found or until the end of the program is encountered. If the label has not been

found before the end of the program is encountered, the search will continue from

the top of the program and proceed sequentially downward until either the label is

found or until the currently executing GTO command is reached. If the label has

not been found by the time the entire program has been searched, the machine will

halt and display an error message.

If the label is found, the search will stop at the label and the machine will

begin executing the instructions following the label. The instructions will be

executed sequentially until either another transfer instruction is encountered or

until the end of the program is encountered.

The GTO instruction fits into the category of a SEQUENCE control structure

- almost. You will recall from Chapter 4 that the SEQUENCE control structure

enables actions to be sequenced, one action after another. The SEQUENCE control

structure does not allow for previous actions to be repeated - this function is left

up to the DO-WHILE or the DO-UNTIL control structures. For this reason, the

GTO statement should not be used in a stand alone capacity. We will see later that

the GTO is necessary with some other instructions like the ISG or DSE instructions.

CONDITIONAL TRANSFERS

Unconditional transfer instructions, as powerful as they are, do not allow the

programmer to control when a branch will occur. Whenever an unconditional

transfer instruction is encountered, control will be transfered immediately to the

label or program specified by the instruction. Conditional transfer instructions, on

the other hand, allow complete control over when a branch will occur.

There are three classes of conditional transfer instructions available to the

HP-41C/CV programmer. The first class consists of instructions which rely on a

control word for their operation and includes the ISG and the DSE instructions.

The Increment and Skip if Greater command will take one of two actions depending

on the value of a control word located in either a main memory register or in a

Page 56.

stack register or the LASTX register. The general forms of this command are:

ISG nn

where nn is a main memory register in the range 00 to 99 which

contains the control word

ISG IND nn

where nn is a main memory register in the range 00 to 99 which

contains the main memory register number in the range 00 to 319 which

contains the control word

ISG ST

where ST is a stack register or the LASTX register which contains the

control word. The possible values of ST are:

X which designates the X register

Y which designates the Y register

Z which designates the Z register

T which designates the T register

L which designates the LASTX register

ISG IND ST

where ST is a stack register or the LASTX register which contains the

main memory register number in the range 00 to 319 which contains the

control word

The control word is of the form:

cccc.tttii

where cccc is the current counter value

ttt is the current test value

ii is the increment value

The ISG command operates as follows. When the command is encountered,

the value of cccc is incremented by ii. If the value of cccc is less than or equal to

the value of ttt, the next line of the program is executed. If the value of cccc is

Page 57.

greater than the value of ttt, the next line of the program is skipped. Assume, for

example, that the value of the control word is 0000.00501 and that it is stored in

main memory register R00. The execution of ISG 00 would proceed in the following

manner.

1. the value of ii (01) is added to cccc (0000) resulting in a new value

for cccc of 0001

2. cccc is compared against tt (005)

3. if cccc is less than or equal to ttt, then the next line of the program

is executed

4. if cccc is greater than ttt, then the next line of the program is

skipped

After one pass through the loop, the new value of the control word located in

main memory register RO0 would be 0001.00501. Only when the control word

reaches a value of 0006.00501 would the next line of the program be skipped. This

would occur after five passes through the loop.

The HP-41C/CV will allow a minimum control word of 0.ttt to be used. If

this minimum control word is used, the system will use a default value of O for

cccc and a default value of 1 for ii. If a control word of 0.00 is used, the ISG can

be used to increment the control word by a value of 1. This is useful for

incrementing (adding to) a register for the purpose of counting by 1. If it is

necessary to count by some other number, then the control word must be set up

such that cccc and ttt are both zero and ii is the number to count by. For example,

assume main memory register R00O is set to zero at the beginning of a program and

a count of number of times an event occurs is required. The following commands

placed at the appropriate place in the program will accomplish this task.

ISG 00
LBL 00

Page 58.

The ISG will function as previously described. The value of ii (set by default

to 01) will be added to the value of cccc (initially set to 0000). The new value of

cccc will be tested against the value of ttt (initially set to 000). Of course, cccc

will be greater than ttt, so the next line of the program will be skipped and the

program will proceed. The LBL 00 is necessary because the ISG command is

actually a two line command. The first line is the ISG itself and the second line is

the instruction to be executed if the value of cccc is not greater than ttt. So, the

LBL 00 is a dummy line (a no-operation) to satisfy the requirements of the ISG

command.

The next conditional transfer command is the Decrement and Skip if Equal

command. The DSE command will take one of two actions depending on the value

of a control word supplied in either a main memory register or a stack register or

the LASTX register. The general forms of this command are:

DSE nn

where nn is a main memory register number in the range 00 to 99 which

contains the control word

DSE IND nn

where nn is a main memory register number in the range 00 to 99 which

contains the main memory register number in the range 00 to 319 which

contains the control word

DSE ST

where ST is the stack register or the LASTX register which contains the

control word. The possible values of ST are:

X which designates the X register

Y which designates the Y register

Z which designates the Z register

T which designates the T register

L which designates the LASTX register

DSE IND ST

where ST is the stack register or LASTX register which contains the

Page 59.

main memory register number in the range 00 to 319 which contains the

control word

The control word is of the form:

cccc.tttdd

where cccc is the current counter value

ttt is the current test value

dd is the decrement value

The DSE command operates as follows. When the command is encountered,

the value of cccc is decremented by dd. If the value of cccc is greater than the

value of ttt, then the next line of the program is executed. If the value of cccc is

less than or equal to the value of ttt, then the next line of the program will be

skipped. Assume, for example, that the value of the control word is 0007.00501

and that it is stored in main memory regsiter R0O0. The execution of the command

DSE 00 would proceed in the following manner.

the value of dd (01) is subtracted from the value of cccc (0007)

2. cccc is compared against ttt (006)

if the value of cccc is greater than the value of ttt, then the next

program line is executed

4. if the value of cccc is less than or equal to the value of ttt, then the

next line of the program is skipped

After one pass through the loop, the new value of the control word is

0006.00501. The second time the DSE instruction is encountered, the control word

becomes 0005.00501. Since cccc is now less than or equal to ttt, the next line of

the program is skipped.

The HP-41C/CV will allow a minimum control word of cccc.00000. If a

control word of this form is used, the system will use a default value for ttt of 0

and a default value for dd of 0l. If a control word of 0.00 is used, the DSE

instruction can be used to decrement (subtract from) a register. If it is necessary

to decrement by some value other than 1, then dd may be set to the necessary

value.

Page 60.

The next class of conditional transfer instructions consists of simple

relational tests. A relational test is one in which the relationship of X to 0 or X to

Y is determined. These instructions allow programs to make "decisions" about

which of two paths in a program to take.

There are 10 relational instructions available on the HP-41C/CV. Each

instruction operates in essentially the same manner. The value in the X register is

compared against either zero or a value in the Y register. If the result of this

comparison is TRUE, then the next instruction is executed. If the result of the

comparison is FALSE, then the next instruction is skipped. This is the "do if true"

rule.

One final class of conditional transfer instructions consists of instructions

which test a flag to see if it is SET (ON) or CLEAR (OFF). These instructions also

allow the program to make "decisions" about which path to take in a program.

USER AND SYSTEM FLAGS

A flag is nothing more than a bit in status register d. Bits may assume a

value of zero or one. There are 56 flags available in the system. The first 30 flags

are termed "user" flags. These flags record the status of items which are of

interest to the user such as whether the printer is enabled or whether a numeric

item has been input. The "user" flags may be both altered (set or cleared) and

tested.

The other 26 flags are termed "system" flags. System flags record the status

of many of the machines conditions. These flags may not be altered by the user

but they may be tested.

The first 11 "user" flags are termed '"general purpose" flags. These flags will

always be maintained by the system even if the machine is turned off. Unlike

many of the "user" flags, the status of these 11 flags is controlled explicitly by the

user. This means that these flags may be set if a certain condition is encountered

and later tested to see if the condition occured. In addition to complete control

over these 11 flags, the status of the first five flags (FOO thru F04) may be seen in

the display annunciators.

Page 61.

THE IF-THEN-ELSE AND CASE CONTROL STRUCTURES

In Chapter 4, the IF-THEN-ELSE control structure and its variant the CASE

control structure were discussed. It was mentioned that it is by means of one of

these control structures that sections of code may be executed outside the normal

sequence of the program.

The IF-THEN-ELSE control structure is used to determine which of two

sections of code will be executed next. IF the result of the test is TRUE THEN do

some sequence of instructions ELSE do another sequence of instructions. This

control structure is normally implemented using either relational test instructions

or flag testing instructions. When designing the code for an IF-THEN-ELSE control

structure, three cases will become apparent.

Case 1 This is the case where only TRUE logic is needed. The FALSE

logic is a null sequence. This case could be pictured as follows:

> EVENT |
TRUE |

—_— — EVENT 2

FALSE

Case 1 IF-THEN-ELSE control structure

Notice that event | is executed only if the condition is TRUE. Event 2 is

executed after event 1 is complete or if the condition is FALSE.

Case 2This is the case where only FALSE logic is needed. The TRUE

logic is a null sequence. This case could be pictured as follows:

Page 62.

TRUE

—={ —»l EVENT 2]—

FALSE | '
=| EVENT | \

Case 2 IF-THEN-ELSE control structure

Notice that event 1 is executed only if the condition is FALSE. Event 2 is

executed after event 1 or if the condition is TRUE.

Case 3This is the case where both TRUE and FALSE logic is needed.

This case could be pictured as follows:

 > EVENT |

 TRUE

—— — EVENT 3 —

FALSE EVENT 2

Case 3 IF-THEN-ELSE control structure

Notice that event 1 is executed if the condition is TRUE and event 2 is

executed if the condition is FALSE. Event 3 is executed after the completion of

event | or event 2.

Implementing these three cases requires different techniques for each case.

The important thing to remember is that the logic that is most frequently executed

Page 63.

should be included as soon after the test as possible. For example, if a case 1 IF-

THEN-ELSE is being implemented, the logic most commonly executed should

follow the test. The wrong way to implement this would be to GTO the most

commonly executed logic.

In order to include the proper logic after the test, it may be necessary to

reverse the test so that the "do if true" rule will not interfere. If the test is

reversed so that the exact opposite of the condition is tested for, then the common

logic will not have to be placed away from the test. For example, suppose it is

necessary to test for the X register being zero. If X is equal to zero (the TRUE

logic) then a six line sequence of instructions must be executed. If the test is

FALSE, then the program should continue to flow normally. Since a six line

sequence of code is necessary if the test is TRUE, the X=0? command should not

be used because a branch to the TRUE logic would have to take place. Rather, the

X#0? instruction should be used. What would have been the TRUE logic for the

X=0? test is now the FALSE logic for the X#07? test. Do you see how test reversal

will reduce the number of GTO and LBL instructions in a program and make the

program more readable? The following lines of code show the right and wrong way

to implement the case 1 IF-THEN-ELSE control structure example discussed above.

RieLBL "RIGHT" @ieLBL “WRONG"
ez -.- gz =.-
a1 =~ CX
B4 =" 84 ="
ac X072 85 ¥=@7
86 GTO @l 8c GTC 88
a7 =.- 87 GT0 a1
ag -.- @8eLBL 06
@9 -x=@ LOGIC" fs -.-
18 == 18 =.-
to=.- 11 =X=@ LOGIC"
1zeLEL 8! 12 ="
13 =" 17 ="
14 == 14eLBL 81
15 =" 15 ="
1€ END 16 ="

17 ="
12 END

Right way Wrong way

Notice that the wrong way requires 2 GTO statements and 2 LBL statements.

The right way requires one of each of these instructions. If the most frequently

executed logic can be implemented as a subroutine (subroutines will be discussed in

Chapter 6), then test reversal may not necessary because subroutines are invoked

using a single XEQ instruction.

Implementing a case 3 IF-THEN-ELSE could be tricky depending on what the

TRUE and FALSE logic is to be. Keep in mind the rule that the most frequently

executed logic should immediately follow the test. If the case 3 IF-THEN-ELSE

can be implemented as a combination of a case 1 and a case 2, then most of the

difficulties of a case 3 may be eliminated. An example of how a case 3 IF-THEN-

ELSE would be implemented follows.

@1eLBL =CASE 3-
2--

83-.-

84 =."
a5 X#87?
#6 GT0 81
e’ .-
ac =~
fQ -¥=@ LOGIC"
18 =.-
11 ==
12 GT0 82
13¢LBL 81
14 =.*
15 ="
16 =X+@ LOGIC"
17 ="
18 =.-
19¢LBL 82
2e -.-
2l =.-
22 -."
23 END

Case 3 IF-THEN-ELSE coding example

In all the previous examples, flag testing could have been used rather than

relational testing. Both flag testing instructions and relational testing instructions

are useful for implementing the IF-THEN-ELSE control structure.

Page 65.

The CASE control structure is very straight forward to implement.

Implementation depends on a feature of the HP-41C/CV called indirect addressing.

This control structure should be implemented using subroutines if at all possible.

The reason for this is that after a subroutine is executed, control will pass back to

the instruction immediately following the XEQ instruction which called the

subroutine. Using the XEQ IND instruction will reduce the number of GTO

instructions necessary.

Some preliminary setup work will be required before the CASE is

encountered. First, the sections of code to be executed depending on the values

expected must have been identified with the appropriate LBL statements. For

example, if one of the values that may be encountered is 5, then the section of

code to be executed if this value occurs must be labeled with LBL 05. Secondly,

some location to receive the values must be agreed upon before hand. The

following example shows how the CASE control structure is implemented using a

GTO IND instruction. Assume that main memory register R00 will contain the

values which may be 0 or 1.

@1eLBL “CARSE"
82 -.-
e: -.-
84 GTO IND 6@
@5¢LBL 64
@6 .-
87 =.-
65 -8@ LOGIC"
e -.-
16 =.-
11 GT0 86
12¢LBL 61
13 =.°
14 =.-
15 81 LOGIC"
16 =.°
17 =.=
18¢LBL 86
19 =.-
28 -.*
21 END

CASE control structure coding examples

Page 66.

LOOPS

Before proceeding on to the actual implementation of the DO-WHILE and

DO-UNTIL control structures, it is necessary to stop and discuss some theory of

loops. Every loop consists of four parts or steps: an initialization step, the body of

the loop, the adjustment step and the test for loop exit. Each part or step is

related to the other parts or steps in some way and occasionally two steps may be

combined.

The body of the loop is the area containing the instructions which are the real

work to be done by the loop. The body includes the instructions to be done

repetitively. The other three steps or parts have only one purpose - to insure that

the body will be performed the proper number of times.

The adjustment step of the loop is the set of instructions which either sets

the conditions for exit, or increments or decrements a counter of the number of

times the loop has already been performed. The adjustment step may also include

moving information around so that it will be in the correct place for the next

repetition of the loop.

The test for loop exit is some sort of conditional transfer that is not always

taken. If certain conditions occur then control will leave the loop, if other

conditions occur then the loop is continued.

The body, adjustment step and test for exit are repeated over and over again

within the loop. The initialization step takes place outside the loop, before

execution of the loop begins. In the initialization step, all conditions necessary to

the proper functioning of the loop are set. A location to be used as a counter will

be initialized, a location used to address data items will be set to the address of

the first item, etc.

Loops are the physical implementation of the DO-WHILE and DO-UNTIL

control structure. If these two control structures are drawn showing the four steps

of a loop, they would appear as the diagrams on the next page illustrates.

DO-UNTIL loops are implemented on the HP-41C/CV using the DSE, ISG, flag

testing instructions or relational instructions. Notice that this type of loop must

be executed at least one time. For some applications, this may present a problem.

Page 67.

The DO-WHILE type of loop solves the problem of the loop having to be

executed at least one time. However, this type of loop is not easily implemented

using the ISG or DSE instructions. The type of loop used in a particular case

depends on the application. The only real guideline is that the number of LBL and

GTO statements used should be held to a minimum.

I

lNITIALIZATION]

ADJUSTMENT

STEP

|

—
J

FALSE TRUE

DO-UNTIL loop

Y :

FNITIALIZATION]

FALSE

!
TRUE

! |

r BODY]

!
 ADJUSTMENT

STEP

DO-WHILE loop

THE DO-UNTIL AND DO-WHILE CONTROL STRUCTURES

The DO-UNTIL control structure is implemented using any of the conditional

transfer instructions discussed. Depending on which instruction is used, the

adjustment step will be different. If the DSE or ISG instruction is used to

implement the loop, the adjustment step will not be a separate entity because it is

built into the instruction itself. The adjustment step for the various flag testing

instructions is the code which sets or clears the flag being tested. For the

relational instructions, the adjustment step is the code which sets the values in the

X and maybe the Y registers.

The initialization step is where the control word for the DSE or ISG

instruction is built and stored or where the initial flag setting or clearing take

place. Segments of code to implement the DO-UNTIL control structure follow on

the next page.

In the first example, the initialization step is the CF 00 instruction, the body

of the loop is identified, the adjustment step is the X=0?/SF 00 combination, and

the test for exit is the FC? 00/GTO 00 combination.

In the second example, an initialization step is not necessary. The body of

the loop is identified, the adjustment step is the "ENTER X"/PROMPT combination

and the test for exit is the X=0?/GTO 01 combination.

In the third example, the initialization step is the 25.000/STO 00

combination, the body of the loop is identified and the adjustment step/test for

exit are both incorporated into the DSE 00/GTO 00 combination.

The DO-WHILE control structure is implemented using any of the flag testing

or relational instructions. Although the ISG or DSE instructions could be used,

their implementation would increase the number of LBL and GTO instructions in

the program. The actual implementation of a DO-WHILE control structure is

similar to that of the DO-UNTIL structure. The segments of code on the page

after next show how to implement the DO-WHILE control structure.

In the first example, the initialization step is the CF 00 instruction, the body

of the loop is identified, the adjustment step is the X=0?/SF 00 combination and

the test for exit is the FS? 00/GTO 00 combination.

In the second example, an initialization step is not necessary. The body of

the loop is identified, the adjustment step is the "ENTER X"/PROMPT combination

and the test for exit is the X=0?/GTO 01 combination.

Page 69.

CONCLUSION

The use of loops is a very important programming technique that will save

time and memory if the loops are designed and implemented properly. It cannot be

stressed too much that careful design of the code and a careful choise of the

instructions used to implement loops will pay off in the long run.

O1eLBL "EX 1"
6 -
83 -
-
#5 CF 08
o -.-
07 .
8 -.-
#94LBL 68
16 -.-
11 =,
12 -
13 *BODY OF LOOP"
-
15 =
16 *.°
17 =87
18 SF 08
19 =.°
20 -
21 =
22 FC? 88
23 CT0 08
24 .
25 .
2 .
27 END

G1eLBL “EX 2°
e .-
e .-
04 -.°
e -."
06 °.°
67 -.°
@8eLBL 66
89 -.°
18 =.*
11 ="
12 “ENTER X*
13 PROMFT
14 X=8?
15 GT0 &1
16 =.°
17 .-
18 =.-
19 -BODY OF LOOF-
28 °.°
21 =.*
2 ",
23 GT0 88
24+LBL 01
.
26 °.°
a7 =,
28 END

Examples of DO-UNTIL coding

Page 70.

@1eLBL “EX 2"
ez .-
83 -."
84 =."
85 25. 668
‘6 -.-

87 =.°
eg -.°
89¢LBL 68
16 .-
1 =.°
12 =.°
13 -BODY OF LCOF-
14 =.*
15 ="
16 =.°
17 BSE 68
18 GTO oe
19 =.°
28 -."
21 =.°
22 END

81eLBL “EX 1-
e -.-
e -.-
04 -.°
@ CF @8
86 -."
87 =.-
a5 -.-
@9¢LBL 66
1€ =.*
11 ="
12 -'-

13 =BODY OF LOOP-
14 =.°
15 =.*
16 °.°
17 ¥=8?
18 SF @8
19 =.*
28 -.-
2f =.°
22 F5? 88
23 GTO 88
24 °.°
2 .-
26 -.-

27 END

Examples of DO-WHILE coding

Page 71.

@ieLBL “EX 2-
82 -.-
83 -."
@4 -.-
85 -.-
86 .-
87 °.-
@8e¢LBL 0@
@9 -.-
i@ =."
i1 =.-
12 “ENTER X°
13 PROWPT
14 Xz@°

15 GT0 @1
16 =.°
17 =.°
le -.-

19 -BODY OF LOOP"
28 =,
21 .
22 °."
23 GT0 ee
24+BL 8!
25 °."
26 °."
27 "."
28 END

Chapter 6

Subroutines

INTRODUCTION

Among the concepts that are useful in structuring large programs, the

subroutine is especially important. A program, sometimes called a routine,

performs a task which may be broken down into smaller tasks, each of which is

performed as a subroutine. Often a subroutine will be used, or called, more than

once. Sometimes subroutines themselves will have subroutines, so that there may

be several levels of subroutines. At the lowest level, there will be subroutines

which perform very common functions, and which may be called by more than one

subroutine at a higher level, as well as more than once in a routine.

This chapter will discuss subroutines and will present some useful theory and

guidelines for the effective use of subroutines. In order to do this the following

topics will be discussed:

Calling sequences

Types of subroutines

How subroutines work

Constructing subroutines

CALLING SEQUENCES

The purpose of a subroutine is to perform some task which is part of a larger

task performed by the routine which calls the subroutine. In constructing

subroutines, data which is in a place where the subroutine may reference it, and

which may be changed each time the subroutine is called, is referred to as a

parameter. Regardless of the number of parameters used, the subroutine must

know where to find each parameter. One way to do this is to pass the address of

the beginning of a parameter list to the subroutine. Access to the parameters is

then via indirect addressing off the parameter list address.

Depending on the purpose of the subroutine, it may be necessary to pass

Page 72.

information back to the caller. Information may be passed back to the caller in the

form of parameters. Of course, the caller must know where to find this

information. One way to pass information back to the caller, is to pass the address

of a results parameter list to the caller and let the caller use indirect addressing to

obtain each result.

A subroutine is called using the XEQ (execute) instruction. On the XEQ

instruction is the name or label of the subroutine to be executed. The XEQ

instruction itself along with the appropriate parameters or parameter list addresses

is termed the calling sequence.

TYPES OF SUBROUTINES

Some coding sequences, if implemented as subroutines, would contain so few

lines of code that it would be best not to treat the sequence as a subroutine at all.

Instead, the sequence would be repeated when and where needed. A section of

code which occurs in this way is called an open subroutine; an ordinary subroutine

is called a closed subroutine. The decision as to whether to treat a given task as an

open or closed subroutine depends on several factors the most important of which

is the size (in bytes) of the subroutine. In general, the larger the subroutine, the

more space is saved if it is made a closed subroutine.

The reason for this is best explained by an example. Suppose it is necessary

to perform a 3-byte sequence of code 10 times in a program. Should this code be

constructed as an open or as a closed subroutine? To answer this question, the

following analysis must be performed. If coded as open subroutines, then a total of

30 bytes of code would be required. On the other hand, if coded as a closed

subroutine, a total of 35 bytes would be required. The body of the subroutine would

require 3 bytes, the header and trailer would require a total of 2 bytes, and the ten

XEQ statements required to invoke the subroutine would require a total of 30

bytes. So you see, the closed subroutine in this example would actually require 5

bytes more than the open subroutines. As a matter of fact, this or any 3-byte

sequence should never be coded as a closed subroutine no matter how many times it

is to be called.

Richard Nelson of the PPCl has developed a formula which calculates the

savings (or loss) in bytes realized by coding a sequence as a closed subroutine. In

the formula, if S is positive, a savings of S bytes will occur by

Page 73.

coding the sequence as a closed subroutine. If S is negative, a loss of S bytes will

occur if the sequence is coded as a closed subroutine.

S=RC-2-R-3C

where S is the number of bytes saved or lost

R is the number of bytes in the body of the subroutine

C is the number of times the subroutine is to be called

A similar formula has been developed for determining the savings (or loss) in

bytes realized by coding a sequence as a closed subroutine and then calling it

indirectly with the XEQ IND instruction. The XEQ IND instruction itself requires 2

bytes and the register used to contain the address requires 7 bytes. Obviously, a

sequence of code would have to be fairly large to warrent it being coded as an

indirectly executed closed subroutine.

S=RC-9-R-2C

where S, R and C mean the same as in the other formula

HOW SUBROUTINES WORK

In many ways, the XEQ instruction is similar to the GTO instruction. Both

instructions are unconditional transfer instructions which means that control is

passed immediately to the label or program specified in the instruction. The

difference lies in the fact that the XEQ instruction has a built-in mechanism which

allows control to pass back to the instruction following the XEQ instruction (the

next sequential instruction or NSI) after the subroutine has completed its task.

This mechanism is called the subroutine return stack. The return stack is a

block of six registers located in status registers b and a. Whenever an XEQ

instruction is encountered, the address of the NSI is pushed onto the return stack.

The address of the label or program specified in the XEQ instruction is placed in

the address pointer and control passes to that address. When an RTN or END

instruction is encountered, the address most recently pushed onto the return stack

is popped and placed in the address pointer. Control then passes to this new

address.

Page 74.

The return stack is large enough to accomodate six return addresses. What

this means is that subroutines may be nested (a subroutine or routine calls a

subroutine which calls another subroutine and so on) up to six levels deep. If a

seventh call is made, the address of the first NSI stored will be lost.

It is important to let the system follow the calling sequence back to the

caller by means of the return stack. If control is returned to a calling routine or

subroutine using a conditional or unconditional transfer instruction, the integrity of

the return stack will be lost because the next NSI on the stack will no longer be the

NSI to be used next. Later, when a normal return is to be made, those NSI's popped

will belong to a different calling sequence.

CONSTRUCTING SUBROUTINES

Subroutines, whether open or closed, are just sequences of code. Open

subroutines are placed at the location within the routine or subroutine where they

are needed. Closed subroutines, on the other hand, are placed either at the end of

the routine or subroutine but still within the calling program file (internal closed

subroutines) or they may be constructed such that each subroutine occupies its own

program file (external closed subroutines). Internal and external closed subroutines

consist of three parts:

the subroutine header

the body of the subroutine

the subroutine trailer

The subroutine header is the statement used to name the subroutine. This

statement takes the form of a LBL statement with either a label number or a name

on it. If an internal closed subroutine is coded, then the LBL statement must

contain either a label number between 00 and 99 or a local alpha label (A thru F or

a thru e). If an external closed subroutine is coded, then the LBL statement must

contain a global alpha label of up to seven characters.

When an XEQ instruction containing a label number or a local alpha label is

encountered in a running program, the program stops and the operating system

starts searching the current program file for the label. If the label is not found

before the end of the program file is reached, then the search continues from the

Page 75.

top of the program file and continues until either the label is found or the XEQ

instruction which called the subroutine is encountered. If the label is not found

after one complete pass through the program file is made, the program aborts and

the system issues an error message. If the label is found, execution begins at the

label.

When an XEQ instruction with a global alpha label is encountered in a running

program, the program stops and the system searches all of program memory for the

subroutine starting at the last program file in program memory. If the subroutine

is not found, the program aborts and the system issues an error message. If the

subroutine is found, execution begins at the subroutine.

The subroutine trailer is the terminating statement of a subroutine.

Depending on where the subroutine is coded, the trailer will be either an RTN or an

END statement. If an internal closed subroutine is coded and it is not the last

section of code within the file, the subroutine must be terminated with an RTN

statement. If the internal closed subroutine is the last section of code within the

program file, then it may be terminated with an RTN statement or the program

file END statement may serve as the terminator. If an external closed subroutine

is coded, it may be terminated with either an RTN statment or the program file

END statement. Both the RTN and the END statement serve the purpose of telling

the operating system that the end of a subroutine has been encountered. The

operating system will pop the next NSI off the return stack, load this address into

the address pointer and begin execution again at the new address.

The body of the subroutine is the sequence of instructions to be executed.

Subroutines should be designed and coded with the same amount of care as any

program. The subroutine should not use any but the three basic control structures

discussed in Chapter 4. In addition, a subroutine should perform one and only one

function -that is the subroutine should be functionally cohesive.

If a subroutine is to be modified at some later time, then it is easy to

determine where the changes must go if the subroutine is functionally cohesive.

Also, the change will be a proper change for the function being performed by the

subroutine. The changes made to functionally cohesive subroutines are guarenteed

to not affect other routines or subroutines improperly.

One good way to determine if a subroutine is functionally cohesive is to

write a statement of what the subroutine does. If this statement turns out to be a

Page 76.

compound sentence then the subroutine is not functionally cohesive and should be

redesigned.

Another point which should be kept in mind when designing and coding

subroutines is that the name should be as descriptive as possible within the bounds

of a seven character name. Although seven characters is not many, it should be

enough to at least logically abbreviate the function performed by the subroutine.

For example, if a subroutine is to calculate the monthly payment for a loan, then

give the subroutine the name CALCPMT or some similar name. Inappropriate

names would be something like CP or CALC because these names do not indicate

the function of the subroutine.

CONCLUSION

This chapter has examined subroutines as a method of simplifying programs.

Properly used, subroutines will allow programs to be structured and easily read.

NOTES

Lppc
The Personal Programming Center founded by Richard Nelson

For a free issue of the PPC Calculator Journal send a 9" by 12" self-addressed

envelope with 2 ounces of postage affixed to

PPC

2545 W. Camden Place

Santa Ana, California 92704

Page 77.

Chapter 7

Simple Ordinary Annuities Program Example

INTRODUCTION

This chapter will discuss the design and implementation of a program which

will calculate any of the five unknowns related to simple ordinary annuities. The

topics to be discussed are:

Simple annuities

Simple ordinary annuity variables to be calculated

Annuities program design

Techniques used

Annuity routine and subroutines

SIMPLE ANNUITIES

An annuity is the term used for a series of equal payments - one each period

for a given length of time. The mortgage on your house is an example of an

annuity. A simple annuity occurs when the interest compounding period is the

same as the payment period. In simple annuities, it is assumed that compounding

occurs at the end of each period. Simple ordinary annuities are simple annuities in

which payments are made at the end of each period.

Five variables are involved in the calculation of simple ordinary annuities.

PMT

FV

PV

FV

the interest rate per compounding period

the number of payment periods

the payment per payment period

the future value of the simple ordinary annuity

the present value of the simple ordinary annuity

The future value of a simple ordinary annuity is its value at some point in the

Page 78.

future. For example, suppose that $100.00 is invested in a money market fund at

the end of each year for two years. Assume also that the interest paid on the

investment is 10% annually. What is the future value of the account at the end of

the second year? This problem may be diagrammed as follows on a time diagram.

FV?
CASH FLOW $ 100 $ 100

| I |
| | |

TIME PERIOD O | 2
COMPOUNDING PERIOD | 0

Time diagram

The calculation of the future value would procede as follows using the

formula given below.

FV = PMT * S(n,ic)

where FV is the future value

PMT is the constant payment for each period

S(n,ic) is the sinking fund factor

The sinking fund factor is calculated using the following formula. This factor

is so useful that it will be used throughout the remainder of this chapter.

S(n,ic) - (1+ iC)n -1

i
c

where ic is the compound interest rate per compounding period

n is the number of payment periods calculated by multiplying the

Page 79.

elapsed time for the annuity (in years) by the number of

payments per year

To find the FV for the example being discussed, simply plug the known values

into the equation.

lC = 0.1

n=2

PMT = 100.00

2
S(Z,O.l) - (1 + O.l) - l

0.1

S(2,0.1) = 2.10

FV = 100.00 * 2.10

FV = 210.00

PV

The present value of a simple ordinary annuity is the value of the annuity at

the beginning of time period 1. Using the example from the previous section, the

PV of the money market fund may be diagrammed as follows.

PV ?
CASH FLOW $ 100 $ 100

I |
|

TIME PERIOD O
COMPOUNDING PERIOD N

N
—
_

Time diagram

Page &0.

To find the PV of the account, the following formula is used.

PV = PMT * A(n,ic)

where PV is the present value of the annuity

PMT is the payment made at the beginning of each period

A(n,ic) is the present value factor

The present value factor, like the sinking fund factor is an important factor

that will be used throughout the remainder of this chapter. The formula to

calculate the present value factor is:

. y-N
A(n,i)= l-(l +lc)

c R

i
C

where ic is the compound interest rate per compounding period

n is the number of payment periods calculated by multiplying the

elapsed time for the annuity (in years) by the number of payments per

year

The PV may be found for this example by plugging the known amounts into

the formula.

iC = 0.1

n=2

PMT = 100.00

-2
A2,0.1) = ! - (1 +0.1)

0.1

A(2,0.1) = 1.74

Page 81.

PV = 100.00 * 1.74

PV =173.55

PV/FV EQUIVALENCY

If either PV or FV is known, then the other may be calculated using one of

the following relationships:

FV=PV *(l + ic)“

PV =FV * (1 + ic)""

PMT

The equal periodic payment for a simple ordinary annuity is easily calculated

if either PV or FV is known. The equations below are used to determine PMT.

PMT = FV * S(n,ic)'l
PMT = PV * A(n,ic)'l

n AND FINAL PAYMENT

If either PV or FV is known, then n may be calculated using the appropriate

formula:

n < In(FV * (i/PMT) + 1)

In(1 + 1C)

o - -In(1 - PV * (i_/PMT))

In(1 + ic)

In most cases, n will be a real number of the form M.X. The integer part, M,

will be the number of whole payments. The final payment of a simple ordinary

Page 82.

annuity is usually less than the other payments and is calculated differently

depending on whether PV is known or FV is known.

Case 1 PV known

1. determine M.X

2. compute the PV of M payments

3. subtract the PV of M payments from the original PV to

determine the final payment

4. compound the present value of the final payment forward M+1

periods to determine the last payment amount

This procedure may be condensed into the following formula:

Case 2

Final payment = (PV - PMT * A(M,i)) * (1 + i)M*]

FV known

1. calculate M.X

2. calculate the FV at the end of M payments

3. compound the FV at the end of M payments forward one

period

4. subtract the amount calculated in step 3 above from the

original FV to obtain the final payment

This procedure may be condensed into the following formula:

Final payment = FV - (PMT * S(M,i)) * (1 +i)

The procedure for calculating the compound interest rate is an iterative one.

It is not possible to explicitly solve for io Therefore, ic can only be determined by

trial and error. The method used to solve for i_ differs depending on whether PV or

FV is known.

Page 83.

Case 1 FV known

1. obtain an initial guess for ic and call it ig

iy = (FV / (PMT * n?)) - (PMT / FV)

2. calculate the increment to be subtracted from the initial and

later estimates and call it dik

. -1 %

d1k=

n(+ i)™ @-ai/i)

3. obtain an improved estimate ik+1

Lol = i - dip

This process continues until an answer accurate to within some predefined

limit is reached. It has been found that 5 iterations of steps 2 and 3 above will

result in an answer accurate to 5 decimal places.

Case 2 PV known

1. obtain an initial guess for ic and call it i,

iy = (PMT / PV) - (PV / (PMT * n%))

2. calculate the increment to be subtracted from the initial and

later estimates and call it dik

. yvN .
di, - 1-(1+7) -(PV/PMT)*lk

n(1+ i)™ (i)™ -1 /5

3. obtain an improved estimate ik+l

Page 84.

Iy = iy - dip

This process continues until an answer accurate to within some predefined

limit is reached. It has been found that 5 iterations of steps 2 and 3 above will

result in an answer accurate to 5 decimal places.

ANNUITIES PROGRAM DESIGN

Armed with the preceeding background material, we want to design a

program which will solve for any of the 5 variables associated with simple ordinary

annuities. The program should allow the user to input only what he knows and to

solve for the other.

There are 8 values which must be solved - n, ic’ PMT, PV, FV, S(n,ic), A(n,ic)

and final payment. Since calculating these values requires no interaction with the

other values, the use of subroutines would be called for. Thus, in addition to the

mainline routine, 8 external closed subroutine program files will be required.

These are listed below along with a brief description of each.

ANNUITY mainline routine which initializes main memory registers, sets up

key assignments, and performs the interchangeable solutions logic

CALC-1 subroutine to solve for ic

CALC-N subroutine to solve for n

CALC-PV subroutine to solve for PV

CALC-PY subroutine to solve for PMT

CALC-FV subroutine to solve for FV

SINK subroutine to calculate the sinking fund factor S(n,ic)

PRS-VAL subroutine to calculate the present value factor A(n,ic)

FIN-PMT subroutine to calculate the final payment

In addition to the subroutines listed above, the mainline routine contains 5

internal closed subroutines. These subroutines - N, INT, PV, PMT and FV - are

associated with the mainline routine and are made closed subroutines only because

each subroutine must be assigned to a key.

A good way to visualize the relationship between routines and subroutines

within a complex program is to draw a hierarchy diagram of the overall system.

Page 85.

The vertical placement of items within such a diagram represents the relationship

between the routines and subroutines.

The diagram, shown on the next page, illustrates that subroutines N, INT, PV,

PMT, FV and FIN-PMT are called from the mainline routine ANNUITY. Subroutine

CALC-N is called from subroutine N, subroutine CALC-I is called from subroutine

INT, subroutine CALC-PV is called from subroutine PV, subroutine CALC-PY is

called from subroutine PMT and subroutine CALC-FV is called from subroutine FV.

Subroutine SINK is called from subroutines CALC-PY, CALC-FV and FIN-PMT.

Subroutine PRS-VAL is called from subroutines CALC-PV, CALC-PY and FIN-

PMT. Do you see how such a diagram helps you to visualize the processing which

must occur within a program?

TECHNIQUES USED

The ANNUITY program uses a technique called interchangeable solutions,

which allows a program to be written which will solve for any term of a

multivalued function. The trick is to assign each term of the function to a

separate key and then to assign to the appropriate key the logic which will

determine whether the user wants to input a value for that term or solve for the

term. The logic assigned to each key is generalized as follows:

1. check digit entry flag, F22, to determine if it is SET (ie if a digit key

has been pressed) or CLEAR (ie no digit key has been pressed)

2. if F22 is CLEAR, then the user has indicated by pressing the key

without first pressing a digit key that he wants to solve for the term

associated with the key

3. if F22 is SET, then it is assumed that the user has entered a value for

the term thereby indicating that the term is not to be solved for

4. the entered or calculated value for the term is stored into the

appropriate main memory register

3. the ALPHA register is formated with the name and value of the term

which is then printed

Page 86.

Page 87.

Hierarchy diagram for ANNUITY system

A
N
N
U
I
T
Y

C
A
L
C
-
N

C
A
L
C
-
T
I

C
A
L
C
-
P
V

C
A
L
C
-
P
Y

C
A
L
C
-
F
V

F
I
N
-
P
M
T

S
I
N
K

P
R
S

-
V
A
L

P
R
S

-
V
A
L

S
I
N
K

P
R
S
-
V
A
L

S
I
N
K

Assume, for example, that the monthly payment required for a $50,000.00

15% mortgage is to be calculated. The operation of the ANNUITY program would

proceed in the following manner. The program is started by pressing R/S after

positioning the program pointer to the first line of the program or by assigning the

program ANNUITY to an unused key (say key -11) and then pressing that key while

the HP-41C/CV is in USER mode. When the program stops, the following key

assignments will have been made:

N will be assigned to key 11

INT will be assigned to key 12

PV will be assigned to key 13

PMT will be assigned to key 14

FV will be assigned to key 15

FIN-PMT will be assigned to key -15

Now, the known amounts may be input in any order. The value for n of 360 is

keyed in and the "N" key pressed. The keying in of the number 360 (30 years X 12

months per year) causes F22 to be SET. The testing of this flag results in a FALSE

condition for the test in line 31 of the ANNUITY program. The value 360 is stored

into R00. The ALPHA register is formatted and printed so that the user will know

the value of n used in this case.

The value for ic of 0.0125 (15%/100/12 months) is keyed in and the "INT" key

pressed. Again, F22 is SET. The value for i_ is simply stored into ROl. The

ALPHA register is formatted and printed to give the user a permanent record of

the value of ic used in this case.

The value for PV of 50,000.00 is keyed in and the "PV" key pressed. Again

F22 is set by the digit entry and the value is stored into RO2. The ALPHA register

is formatted and printed to give a permanent record of the value used.

The "PMT" key is now pressed without pressing any other digit keys first.

This causes F22 to remain CLEAR and the test in line 58 to be TRUE.

Consequently, the subroutine CALC-PY is executed to solve for PMT and the

calculated payment is stored into RO4. The ALPHA register is formatted and

printed to give a permanent record of the calculated payment for this case.

Page 88.

ANNUITY ROUTINE

ANNUITY is the mainline routine or driver for the ANNUITY system. Within

ANNUITY, the following processing takes place. The program name and version is

printed, user flag F27 is set which turns on USER mode, all allocated main memory

registers are cleared and all key assignments are cleared. The necessary key

assignments are then made and the user is prompted to supply the known values.

INTERNAL SUBROUTINE N

N is the first internal closed subroutine in ANNUITY and is assigned to key

11. Within this subroutine, the following processing takes place. User flag F22

(the digit entry flag) is tested to see if it is SET or CLEAR. If SET, then the value

entered by the user prior to pressing key 11 is stored into main memory register

RO0. If F22 is CLEAR, then the subroutine CALC-N is called to calculate N. The

calculated value of N is then stored into main memory register R0O0. The ALPHA

register is formatted to display the value of N.

INTERNAL SUBROUTINE INT

INT is the second internal closed subroutine in ANNUITY and is assigned to

key 12. Within this subroutine, the following processing takes place. User flag F22

(the digit entry flag) is tested to see if it is SET or CLEAR. If SET, then the value

entered by the user prior to pressing key 12 is stored into main memory register

ROl. If F22 is CLEAR, then the subroutine CALC-I is called to calculate INT. The

calculated value of INT is then stored into main memory register ROl. The ALPHA

register is formatted to display the value of INT.

INTERNAL SUBROUTINE PV

PV is the third internal closed subroutine in ANNUITY and is assigned to key

13. Within this subroutine, the following processing takes place. Main memory

register R0O3 is cleared. User flag F22 (the digit entry flag) is tested to see if it is

SET or CLEAR. If SET, then the value entered by the user prior to pressing key 13

Page 89.

is stored into main memory register R02. If F22 is CLEAR, then the subroutine

CALC-PV is called to calculate PV. The calculated value of PV is then stored into

main memory register RO2. The ALPHA register is formatted to display the value

of PV.

INTERNAL SUBROUTINE PMT

PMT is the fourth internal closed subroutine in ANNUITY and is assigned to

key 14. Within this subroutine, the following processing takes place. User flag F22

(the digit entry flag) is tested to see if it is SET or CLEAR. If SET, then the value

entered by the user prior to pressing key 14 is stored into main memory register

RO4. If F22 is CLEAR, then the subroutine CALC-PY is called to calculate PMT.

The calculated value of PMT is then stored into main memory register RO4. The

ALPHA register is formatted to display the value of PMT.

INTERNAL SUBROUTINE FV

FV is the fifth and final internal closed subroutine in ANNUITY and is

assigned to key 15. Within this subroutine, the following processing takes place.

Main memory register R02 is cleared. User flag F22 (the digit entry flag) is tested

to see if it is SET or CLEAR. If SET, then the value entered by the user prior to

pressing key 15 is stored into main memory register R03. If F22 is CLEAR, then

the subroutine CALC-FV is called to calculate FV. The calculated value of FV is

then stored into main memory register R03. The ALPHA register is formatted to

display the value of FV.

CALC-N SUBROUTINE

CALC-N is a subroutine called by the internal closed subroutine N. Within

CALC-N, the following processing takes place. The subroutines function is printed

so that the user is kept informed of what is happening in the program. Main

memory register R03 (the register which contains a given or calculated value for

FV) is tested to determine if FV was supplied by the user. If R03 is zero meaning

that the user did not supply a value for FV, then the section of code which will

Page 90.

6:46AN 11/29
@1eLBL “ANNUITY"
82 “ORD. ANNUITIES®
82 PRA
84 “VERSION 1.6"
85 PRA
86 SF 27
87 CLRG
@8 CLKEYS
89 “N-
16 11
11 PASK
12 "INT*

13 12
14 PASN
15 =Py~
16 13
17 PRASK
18 “PHT"
19 14
28 PRSHN
21 “F¥-
22 15
23 PASN
24 “FIN-PHT"
25 -15
26 PASK
27 “SUPPLY KNONNS®
28 PRA
29 RN
38eLBL “N-
31 FC2C 22
32 Xt@ “CALC-N"
33 STC 68
34 K="
35 ARCL 88
36 PRA
37 RTN

Listing of ANNUITY mainline

Page 91.

38¢LBL °INT"
39 FC2C 22
48 XE0¢ °CALC-1°
41 ST0 81
2 °1="
43 ARCL 61
44 PRA
45 RTN
464LBL °PY-
47 @
48 STO 83
49 XOY
9 FC?C 22
51 XEQ@ °CALC-PY-
52 ST0 82
93 Py ="
54 ARCL @2
55 PRA
5 RTN
S7¢LBL °PHT"

98 FC?C 22
59 XE@ °CALC-PY"
68 STO 84
61 “PNT = °
62 ARCL 84
63 PRA
64 RTN
65¢LBL °F¥-
66 @
67 STO 82
68 XOY

69 FC?C 22
78 XEQ °CALC-FY-
71 STO 83
72 "Fy = -
73 ARCL 82
74 PRA
75 END

compute N given PV is entered. If R03 is not zero, then the user supplied a value

for FV and the section of code which will compute N given FV is entered.

@1¢LBL "CALC-K" 19 ¢

82 “CALC H- 26 GTQ 19

@3 PRA 21¢[BL 16

@84 RCL 83 22 STQ 61

05 X=87 27 RCL @84

86 G0 18 24 /7

87 RCL 01 25 RCL 82

0t RCL 04 26 %

9 s/ 27 1

18 RCL 63 28 XOY

i1 = 29 -

12 1§ 3@ CHS

13 ¢+ 31 RCL 6!

14 LN 3? i

15 RCL 81 I+

16 | 24 7/

{7 + J5eLBL 19

{8 LN 36 ENL

Listing of CALC-N subroutine

CALC-I SUBROUTINE

CALC-I is a subroutine called by the internal closed subroutine INT. Within

CALC-I the following processing takes place. The subroutines function is printed

so the user will be kept informed of what processing is taking place. The control

word for the loop is put into main memory register R07. Main memory register

RO3 is tested to determine if the user inputted a value for FV. If RO3 is equal to

zero, then it is assumed that i_ is to be calculated using PV and the appropriate

section of code is entered. If R03 is not zero, then the section of code to calculate

i using FV is entered. In either case, an initial guess is made and then a loop is

executed 5 times to refine this estimate.

Page 92.

@ieLBL “CALC-I-
@2 =CaLC I~
83 PRA
84 5
85 570 &7
@6 RCL @3
@7 X=@?
88 GT0 25
89 RCL &4
16 RCL od@
11 Xt2
12 *
13 7
14 RCL 84
15 RCL €3
16 7
17 -
18eLBL 288
19 §70 @l
26 1
21 RCL @1
2z +
23 RCL 68
24 Y%
25 §70 @9
20 |
27 -
28 RCL 83
26 RCL 81
36 %
31 RCL @4

34 5T0 88
35 RCL 61
£ 1
7+

36 RCL 68
391
40 -
41 Y1
42 RCL 08
42 =
44 |
45 RCL 89

46 -
47 RCL 8!
48 /
49 +
9% RCL 88
51 2OV
a2/
93 RCL 81
4 XY
N -
9 DSE @7
7 GT0 28

58 GTO 2¢
39¢LBL 23
68 RCL @84
61 RCL 82
62 /
63 RCL 62
64 RCL 84
65 RCL @&
66 Xt2
67 %
68 /
69 -
78¢LBL 26
71 STO 61
721
73+

74 RCL o8

Listing of CALC-I subroutine

Page 93.

75 CHS

76 Yt
77 STO 89
76 1
79 -
8# RCL 81
g1 7
82 RCL 81
g1 1
84 +

85 RCL 6@
86 CHS
87 1
£s -
89 Yt
9% RCL B8
af x
92 +
93 STO 82
94 |
a% RCL @9
9 -
97 RCL 82
9% RCL &4
9g v

166 RCL @1
121 %
182 -
163 RCL 8E
1ad 7

185 RCL 81
166 XOY
167 -
148 DSE @7
185 GT0 26
{16BL 29
111 END

CALC-PV SUBROUTINE

CALC-PV is a subroutine called by the internal closed subroutine PV. Within

CALC-PV, the following processing takes place. The subroutines function is

printed so that the user is kept informed of the processing taking place. The

subroutine to calculate the present value factor is then called. Finally, the present

value factor is multiplied by the payment amount.

@1eLBL “CALC-PY"
82 =CALC Py~
@3 PRA
84 XEQ “PRS-VAL"
85 RCL 84
86
87 END

Listing of CALC-PV subroutine

CALC-FV SUBROUTINE

CALC-FYVis a subroutine called by the internal closed subroutine FV. Within

CALC-FV, the following processing takes place. The subroutines function is

printed so that the user is kept informed of the processing taking place. The

subroutine to calculate the sinking fund factor is then called. Finally, the sinking

fund factor is multiplied by the payment amount.

@1eLBL "CRLC-FV~
82 “CALC Fy-
@3 PRA
64 XEQ “SINK-
85 RCL 64
66 =

87 END

Listing of CALC-FV subroutine

Page 94.

CALC-PY SUBROUTINE

CALC-PY is a subroutine called by the internal closed subroutine PMT.

Within CALC-PY, the following processing takes place. The subroutines function is

printed so that the user is kept informed of the processing taking place. Next,

main memory register R03 is tested to determine if the user has supplied a value

for FV.

using PV.

If RO3 is zero, then it is assumed that the payment is to be calculated

The reciprocal of the present value factor is calculated and then

multiplied by the value of PV. If R03 is not zero, then the reciprocal of the sinking

fund factor is calculated and then multiplied by the value for FV.

81eLBL “CALC-PY" 16 »
82 “CaLC PHT- 11 GT0 39
€3 PRA 12¢LBL 3@
84 RCL 63 13 XE@ "PRS-VAL®
85 X=8? 14 17¥
6t GT0 36 15 RCL 82
87 XEQ “SINK- 16 *
et 1/¥ 17¢LBL 39
89 RCL 83 18 END

Listing of CALC-PY subroutine

SINK SUBROUTINE

SINK is a subroutine called by CALC-FV, CALC-PY and FIN-PMT. Within

SINK, the sinking fund factor is calculated and stored into main memory register

R10.

OfeLBL °SINK-

1
83 RCL €1
84 +

@8> RCL 6e

06 YX
07 1

8 -

@9 RCL 61

16 /
11 ST0 18

12 END

Listing of SINK subroutine

Page 95.

PRS-VAL SUBROUTINE

PRS-VAL is a subroutine called by CALC-PV, CALC-PY and FIN-PMT.

Within PRS-VAL, the present value factor is calculated and stored into main

memory register R11.

O1eLBL “PRS-VAL"
61
83 ENTER¢
@4 ENTER?
65 RCL €1
06 +

87 RCL 6@
08 CHS
89 Yt
1@ -
11 RCL 81
12 7
13 ST0 11
14 END

Listing of PRS-VAL subroutine

FIN-PMT SUBROUTINE

FIN-PMT is a subroutine which is invoked by pressing key -15. Within FIN-

PMT, the following processing takes place. The subroutine function is printed so

that the user is kept informed of the processing taking place. Next, main memory

register R03 is tested to determine if the user has supplied a value for FV. If R03

is zero, then it is assumed that the final payment amount is to be calculated using

PV in which case the calculation proceeds. If R03 is not zero, the calculation of

final payment proceeds using a value for FV. In either case, the final payment

amount is stored into main memory register R05 and is printed out.

CONCLUSION

The preceding program ANNUITY illustrates the use of several programming

ideas. The program should be studied and understood before proceeding on to the

next chapter. It is not as important to understand the mathematics involved as it

is to understand the techniques used in the program.

Page 96.

@ieLBL °FIN-P¥T-
82 “CALC FINRL PMT"
€3 PRA
@4 RCL 63
a5 X=0?
86 GTO 48
@7 XEQ “SINK-
6t RCL 04
@9 RCL 10
18 =
11 RCL 6!
12 1
13 +
14 »
15 RCL @3
16 XOY
17 -
18 GTO 49
19¢LBL 46
28 XEQ “PRS-YAL®
21 RCL 11

22 RCL 84
22 %
24 PCL 82
23 XOY
26 -
27 1
28 ENTER?
29 RCL 61
36 +
31 RCL 68
321
33 ¢
34 YHX
35 =
36eLBL 49
37 STO0 85
38 “FIN PHT = =
39 ARCL 85
48 PRF
41 END

Listing of FIN-PMT subroutine

Page 97.

Chapter 8

Internal Files

INTRODUCTION

There are several file types available for use on the HP-41C/CV. Of these,

only the data and ASCII files may be used to store the data used in programs. This

chapter will discuss in detail the creation and use of internal data and ASCII {iles.

An understanding of these two file types will be obtained through a discussion of

the following topics:

Extended memory

File headers

File pointers

Working files

File creation and management

Recording data into internal files

Retrieving data from internalfiles

NOTATION

In this chapter, many of the extended functions will be discussed. The

general form of an extended function command is

command X(n) ALPHA(string)

X(n) is used to indicate that some value n is to be placed into the X register

prior to executing the command. ALPHA(string) is used to indicate that some

string of alphanumeric characters is to be placed into the ALPHA register prior to

executing the command.

EXTENDED MEMORY

Extended memory is treated by the HP-41C/CV differently from main

Page 98.

memory. The data stored in extended memory cannot be directly accessed with

basic HP-41C/CV commands such as STO and RCL. Instead, the desired data must

be transfered to main memory before the machine can operate on it. The extra

steps necessary to transfer this data are offset by the extra capacity offered by

the extended memory.

Extended memory registers are organized into structures called internal files.

There are three types of files which may be stored into and recalled from external

memory - data (D), ASCH (A) and program (P) files. Program files will be

discussed in Chapter 10.

Internal files consist of two registers which contain information about the

file and one or more data records. Internal files are stored in extended memory in

the order in which they were created.

FILE HEADERS

The first two registers of any internal file are called the file header. The

first register of the file header contains the filename. Filenames can be any

combination of alphanumeric characters up to seven characters in length. Longer

filenames will be truncated to seven characters. Shorter filenames will be right-

filled with spaces to bring the name up to seven characters.

The second register of the file header contains information about the length

and type of file and one or two pointers used to gain access to data within the file.

Internal data files require only a register pointer whereas internal ASCII files

require both a record pointer and a character pointer.

FILE POINTERS

The HP-41C/CV uses a portion of the second file header register to store the

file pointers. These pointers enable the system to know exactly which register or

character within a record is currently being accessed or about to be accessed. In

order to understand how the pointers work, we will discuss an internal data file

example and an internal ASCII file example.

Page 99.

DATA FILE POINTERS

Internal data files enable the contents of main memory registers to be stored

in extended memory. This frees up the main memory registers for other uses. The

simplist internal data file consists of one record of n registers containing numeric

data. Fig. 8.1 illustrates how an internal data file may be logically viewed.

Suppose it is necessary to access the data stored in register 2 of the record.

The register pointer would have to be moved so that it points to register 2. The

SEEKPTA command will position the record pointer to the register specified in the

command and will make the named file the working file. It is never necessary to

account for the two registers in the file header when issuing any of the internal file

FILE HEADER

FILE HEADER

REGISTER O

REGISTER |

REGISTER 2

REGISTER n-3

REGISTER n-2

REGISTER n-lI
Fig. 8.1 A single record internal data file

Page 100.

commands. The following line of code will access register 2 of the named file and

make the file the working file:

SEEKPTA X(2.00) ALPHA(filename)

Now, suppose it is necessary to access register 0 of the record. The SEEKPT

command will position the register pointer in the working file to the register

specified in the command. The following line of code will accomplish this:

SEEKPT X(0.00)

The register pointer may be moved up or down as desired. If the program

calculates the value of the register pointer, only the interger portion of the value

in the X register will be used.

A more complicated type of internal data file consists of multiple records

each of which contain several registers. Logically, this type of file looks like Fig.

8.2. Since the file is stored as contiguous register locations and the machine does

not recognize record boundaries as it does for ASCII files, it is the programmers

responsibility to calculate the register pointer.

~

FILE HEADER

FILE HEADER

RECORD |

RECORD 2

 RECORD 3
Fig. 8.2 A complex internal data file

Page 101.

Each rectangular block represents a register within the file. The first two

registers within the internal file are the file header. Each record consists of of 6

registers numbered 0 through 5. When using this type of internal data file , it is

advantageous to assign the same data to the same relative register within each

record. For example, if the file contains items for an inventory system, then each

record would contain the data for one item in inventory. The registers within each

record might contain the following data:

register 0 item number

register 1 cost of the item

register 2 quantity on hand

register 3 quantity on order

register 4 minimum quantity allowed

register 5 lead time

If it is necessary to determine the cost of inventory on hand, the quantity on

hand (the contents of register 2) would be multiplied by the cost of the item (the

contents of register 1). If this is done for all records in the file, then a total cost

of inventory would be obtained. This type of operation would not be possible is the

same data had not been assigned to the same relative register within the records.

If the complex internal data file is viewed as it is actually stored in the

machine, it would appear as in Fig 8.3. Register 0 of record | is physical register

0, register 0 of record 2 is physical register 6 and register 0 of record 3 is physical

register 12.

The record/register pointer for a complex data file is easy to calculate if Fig

8.3 is kept in mind. The formula used is:

register = ((record number - 1) * (size of record)) + (relative register number)

where record number is the desired "record" within the file

size of record is the number of registers in each "record" of the

internal file

relative register number is the desired relative register within

the "record"

Page 102.

FILE HEADER

FILE HEADER

REGISTER O

REGISTER |

REGISTER 2
 RECORD |

REGISTER 3

REGISTER 4

REGISTER 5

REGISTER 6

. RECORD 2

REGISTER 16 RECORD 3

REGISTER 17
Fig. 8.3 The physical storage of a complex internal data file

Page 103.

The result of the calculation would be left in the X register (remember, only

the interger portion of the number will be used). For example, suppose it is

necessary to access the quantity on hand (register 2 of each record) of record 3.

The calculation would be:

register = (3 - 1) * (6)) + (2)

register = 14

Once this calculation is made, the following line of code would set the

register pointer of the named file to register 14 and make the named file the

working file:

SEEKPTA X(14.00) ALPHA(filename)

The position of the file pointer may be determined at any time using the

RCLPTA or the RCLPT commands. The RCLPTA command will make the named

file the working file and will return the current value of the file pointer to the X

register. The general form of this command is:

RCLPTA ALPHA(filename)

The RCLPT command will return the current value or the file pointer for the

working file to the X register. The general form of this command is:

RCLPT

ASCII FILE POINTER

Internal ASCII files enable the creation and storage of alphanumeric text which

can be accessed at the record or character level. The inconvenience of having to

calculate the record/register pointer is eliminated because the file header carries

two pointers - a record pointer and a character pointer. Fig. 8.4 illustrates how a

small ASCII file appears in extended memory.

Page 104.

FILE HEADER

FILE HEADER

RECORD 3

s4

RECORD /// 5
POINTER

6

7
o |« 2 3 4 5 6 7 8 9 10 1l

CHARACTER

CHARACTER POINTER

Fig. 8.4 Storage of internal ASCII files

This file is 18 registers in length and consists of 8 records of 12 characters

each. Each square represents one character. The record pointer is set to record 4

and the character pointer is set to character 7.

The pointers for internal ASCII files are positioned using the same commands

as for data files. The difference is that both the interger and decimal portions of

the X register is used. The integer portion is the record pointer and the decimal

portion is the character pointer. The following command will position the pointers

to character 1 of record 1 and make the named file the working file:

SEEKPTA X(1.001) ALPHA(filename)

Notice that the value in the X register is a real number. The format for the

record/character pointer is:

rrr.ccc

where rrr is the register number

ccc is the character number

Page 105.

If the character pointer is omitted, character 0 is assumed.

Now reposition the record/character pointer for the working file to character

10 of record 5. The following command will accomplish this:

SEEKPT X(5.010)

It is possible to recall the pointers for an internal ASCII file so that they may

be manipulated or used in some calculation. The RCLPTA command will recall the

current record/character pointers for the named file to the X register and make

the named file the working file.

RCLPTA ALPHA(filename)

The RCLPT command will recall the current record/character pointers for

the working file to the X register.

RCLPT

When the pointers are recalled, the number placed in the X register is a real

number. The integer portion of the number is the record pointer and the decimal

part of the number is the character pointer. The number may be manipulated just

like any other number. For example, the pointers may be recalled to the X

register, incremented and the next record retrieved. The following code will do

this:

RCLPT

ISG X

LBL 00

SEEKPT

RCLREC

Page 106.

WORKING FILES

The HP-41C/CV has the ability to remember the name of the file that is

currently being manipulated. Several of the internal file manipulation commands

require that the filename be placed in the ALPHA register before the first

execution of the command. After execution, the named file becomes the working

file for the system. File commands issued after a working file is established do not

require that a filename be placed into the ALPHA register. The following list of

functions will cause the named file to become the working file for the system:

CLFL

CRFLAS

CRFLD

FLSIZE

RCLPTA

SEEKPTA

The following list of commands will operate on the current working file:

APPCHR

APPREC

DELCHR

DELCHR

GETREC

GETRX

GETX

INSCHR

INSREC

POSFL

RCLPT

SAVERX

SAVEX

SEEKPT

Page 107.

FILE CREATION AND MANAGEMENT

The HP-41C/CV operating system must know the file size and other

attributes of a file before the file can be processed. The file size, file type and

file name are passed to the operating system using the appropriate file creation

command. If an internal data file is to be created, the CRFLD command is used.

The general form of this command is:

CRFLD X(number of registers) ALPHA(data filename)

If an internal ASCII file is to be created, the CRFLAS command is used. The

general form of this command is:

CRFLAS X(number of registers) ALPHA(ASCII filename)

The number of registers required by the internal file (excluding the two

registers required by the header) must be put into the X register and the filename

must be put into the ALPHA register. After the file has been created, the new file

becomes the working file.

Determining the file size for internal data files is a straight forward process.

For simple internal data files, the size is simply the number of registers required to

contain the necessary data.

For complex internal data files, the file size is determined by multiplying the

number of registers in each record by the number of records. Usually, the exact

number of records will not be known ahead of time. In this case, it is a good idea

to add 20% to a best guess of the number of records. Although this will increase

the file size, it will add a buffer for future file expansion. Registers may be

removed easier than they may be added.

The procedure for determining the size of an internal ASCII file is not quite

as easy as for data files. The thing to remember here is that a register will hold up

to six characters. If the input and output requirements of a program have been

determined accurately, then the number of characters for each record of the

internal ASCII file will be known. The number of records will not be known, but

the 20% rule could be used to come up with a good estimate. To calculate the file

Page 108.

size, the number of characters per record is divided by 6 and the result rounded up

to the next whole number. This number is then multiplied by the estimated

number of records to arrive at the number of registers required by the file.

Occasionally, it may be necessary to clear a file. For internal data files, this

means setting all registers of the file to zeroes and for internal ASCII files it

means setting the character and record pointers to 0. The clear file command will

clear the named file and retain the file for further use. The general form of this

command is:

CLFL ALPHA(filename)

Notice that it is not necessary to indicate the file type as this information is

carried in the file header. Files that have just been created will be clear of any

data that may have been in the registers prior to the creation of the file.

If a file is no longer needed, it may be purged (removed) from extended

memory by using the purge file command. The general form of this command is:

PURFL ALPHA(filename)

The FLSIZE command will return the file size (the number of registers

allocated to the file) of the named file to the X register. If the ALPHA registeris

clear at the time the command is executed, the size of the working file will be

returned to the X register. If the size of some other file is desired, the name of

the file is placed into the ALPHA register before the command is executed. The

general form of the FLSIZE command is:

FLSIZE ALPHA(filename)

RECORDING DATA INTO INTERNAL DATA FILES

Data is stored into an internal data file from main memeory registers. The

SAVER, SAVERX and SAVEX commands are used to store the data (a sequence of

main memory registers or the contents of the X register) into the internal data

file.

Page 109.

The SAVER command copies all the main memory registers currently

allocated into the named internal data file. If the ALPHA register is clear, then

the main memory registers will be copied into the working file. Main memory

register ROO will be copied into internal data file regsiter 0, main memory register

ROl will be copied into internal data file register 1, and so on until the last main

memory register allocated has been copied into the internal data file. When the

process is complete, main memory registers R00 through Rnn will have been copied

into data file registers 0 through mm. The process terminates when the last main

memory register (Rnn) has been copied or when the last internal data file register

(Rmm) has been filled, whichever comes first. At the end of the operation, the file

pointer will be positioned to the next available register in the internal data file or

to the end-of-file (EOF). The general form of the command is:

SAVER ALPHA(data filename)

The SAVERX command copies all main memory registers specified by a

control word in the X register to the working file. The control word is of the form:

bbb.eee

where bbb is the beginning main memory register

eee is the ending main memory register

Main memory register Rbbb is copied to internal data file register 0, main

memory register Rbbb+1 is copied to internal data file register 1, and so on until

main memory register eee has been copied to the internal data file. When using

this operation, bbb must be less than eee. The general form of this command is:

SAVERX X(bbb.eee)

At the end of the operation, the register pointer will be positioned to the

register following the last internal data file register affected or to EOF. The

operation will not be attempted if there is not enough room in the internal data file

for the data.

Page 110.

The SAVEX command will copy the contents of the X register into the

internal data file register pointed to by the register pointer. The general form of

this command is:

SAVEX

RETRIEVING DATA FROM INTERNAL DATA FILES

Data is retrieved from internal data files and placed into contiguous main

memory registers or into the X register. The GETR, GETRX and GETX commands

are used to retrieve the data from internal data files.

The GETR command retrieves the contents of the named internal data file

(or working file if the ALPHA register is clear) into consecutive main memory

registers. The contents of internal data file register 0 is placed into main memory

register R0OO, the contents of internal data file register 1 is placed into main

memory register RO1l, and so on. The process is complete or is terminated when

the last main memory register has been filled or when EOF on the internal data file

is encountered, whichever comes first. The general form of the command is:

GETR ALPHA (internal data filename)

At the end of the operation, the register pointer will be positioned to the

next available register in the internal data file or at EOF.

The GETRX command retrieves the contents of the working file into the

block of main memory registers specified by the control word in the X register.

The control word is of the form:

bbb.eee

where bbb is the beginning main memory register used to receive the data

eee is the ending main memory register of the block

The contents of internal data file register 0 is placed into main memory

register Rbbb, the contents of internal data file register 1 is placed into main

Page 111.

memory register Rbbb+1, and so on. When using this command, bbb must be less

than eee. The general form of the command is:

GETRX X(bbb.eee)

At the end of the operation, the register pointer will be positioned to the

next register following the last register accessed or to EOF.

The GETX command copies the internal data file register pointed to by the

register pointer into the X regsiter. The general form of the command is:

GETX

RECORDING DATA INTO INTERNAL ASCII FILES

Whereas internal data files are built by copying blocks of main memory

registers, internal ASCII files are built by appending or inserting the contents of

the ALPHA register into the current record of the file. The ALPHA register may

contain single characters, parts of records or entire records. There are two

commands which will put entire records into the working ASCII file and two

commands which will append (add) characters to the end of existing records in the

working ASCII file.

The append record command will append the contents of the ALPHA register

to the end of the working file as a new record. Since the ALPHA register may

contain at most 24 characters, records added to the file in this manner can be no

longer than 24 characters. To overcome this restriction, the append characters

command is used to add characters onto the end of the current record in the

internal ASCII file (the record being pointed to by the record/character pointers).

The insert characters command will also overcome the 24 character restriction by

inserting characters ahead of the character being pointed to by the

record/character pointers. The only restriction to adding or inserting characters to

the current record is that the total record length may not exceed 254 characters.

The general form of the append record command is:

APPREC ALPHA(up to 24 characters of text)

Page 112.

The general form of the append characters command is:

APPCHR ALPHA(up to 24 characters of text)

The general form of the insert characters command is:

INSCHR ALPHA(up to 24 characters of text)

Suppose it is necessary to add another record to the working file. The text to

be in the record is 'LAMP, 3 BULB W/ SHADE 1015810055.00'. The following

lines of code will create this record and insert the appropriate text:

81eLBL "AR"
@z -."
a3 =.-
a4 ="
85 CLA
86 "LAMP, 3BULE W-/5"
@7 “HHADE"
88 APPREC
83 RCLPT
18 INT
11 8.824
12 +
13 SEEKPT
14 1815818855, 88"
15 RPPCHR
16 =.°
T u o=
1

18 ="
19 END

Occasionally it may be necessary to add a record in front of another record.

The insert record command will insert the contents of the ALPHA register as a

new record in front of the record being pointed to by the record/character

pointers. The general form of this command is:

INSREC ALPHA(up to 24 characters of text)

Recall that the SEEKPT command will position the record/character pointers

within an internal ASCII file. This command must be issued prior to inserting

Page 113.

records or characters. Otherwise, the record or characters being inserted will will

be put in the wrong place.

RETRIEVING DATA FROM INTERNAL ASCII FILES

Internal ASCII files are stored in extended memory as strings of alphanumeric

characters. Each record can be from 1 to 254 characters in length. Because of the

length limitation on the ALPHA register, only 24 characters at a time may be

transfered from an internal ASCII file to the ALPHA register. One of the system

flags (F17) is used to signal the end of record (EOR) during a transfer from the

internal ASCII file to the ALPHA register. There are two commands available for

transferring data from an internal ASCII file to the ALPHA register. The get

record command will clear the ALPHA register and then transfer up to 24

characters from the working file to the ALPHA register. The fetch begins at the

current record/character pointer position. At the end of the fetch, the character

pointer is set to the next character to be transfered. Flag 17 is set at the end of

each transfer if EOR has not been reached. If the EOR has been encountered, flag

17 will be cleared. The usefulness of flag 17 arises from the fact that a loop may

be coded which will allow the contents of an internal ASCII file to be printed one

record at a time with blank lines between the records. The general form of the get

record command is:

GETREC

The following code will cause the contents of the working file to be printed in

its entirity:

@leLBL “BB" 11 FS? 17
82 -.- 12 GT0 82
e -.- 13 ADY
84 -." 14 ADY
85¢LBL @@ 15 DSE 66
86 ISG @1 16 GT0 @4
87 SEEKPT 17 =.°
@geLBL B2 18 =.-
@9 GETREC 19 =~
18 OUTR 26 END

Page 114.

The alpha recall record command will append characters from the working

file onto the end of the ALPHA register until the ALPHA register is full. Flag 17

will be set if EOR is not reached and cleared if EOR is reached. This function is

useful for constructing lines of print. For example, if a mailing list is to be

produced from name, address and phone records, each triple of records would be

accumulated 24 characters at a time into the ALPHA register. The ALPHA

register would then be output to a printer. The general form of the command is:

ARCLREC

CONCLUSION

Internal files and the commands used to create and access them have been

discussed. Alone, these files add an order of magnitude of capability to the basic

HP-41C/CV. The understanding of these files will allow the user to move out of

the realm of simply storing seemingly unorganized data in main memory into the

realm of creating and maintaining organized records and files of data.

Page 115.

Chapter 9

I/O Operations

INTRODUCTION

In the last chapter, methods of creating and using internal data and ASCII

files were discussed. The reader may realize by now that as large as the combined

main memory and external memory is, it will quickly be used up if several internal

files are created and kept. To overcome this limitation, mass storage devices may

be put to good use. This chapter will discuss the commands available to transfer

internal files to mass storage and to transfer external files on mass storage to

internal files. The discussion will center around the following topics:

Initialization procedures

File pointers

File creation and management

Recording data onto and retrieving data from external files

Checking files

Protecting files

External ASCII files

Transfering internal ASCII files to external ASCII files

Transfering external ASCII files to internal ASCII files

NOTATION

In this chapter, many of the HP-IL I/O functions will be discussed. The

general form of an HP-IL command is

command X(n) ALPHA(string)

X(n) is used to indicate that some value n is to be placed into the X register

prior to executing the command. ALPHA(string) is used to indicate that some

string of alphanumeric characters is to be placed into the ALPHA register prior to

Page 116.

executing the command.

INITIALIZATION PROCEDURES

The medium on which the external file will be recorded contains not only the

data itself, but also a directory and two other records used by the system. The

directory is a file which contains a catalog of all files on the medium and their

location. The directory contains one entry for each file stored on the medium.

Each directory record may contain up to 8 entries. The last entry in the directory

is used by the system. The directory must be large enough to accomodate as many

files as will be written to the medium. Although as many as 447 files may be

accounted for in the directory, it is not a good idea to build a directory which will

accomodate more than the necessary number of files. The reason for this is that

the more entries there are in the directory the longer the system will take to

locate a file. Therefore, you should allocate a directory which is only large enough

to handle the expected number of files.

The command used to initialize a new medium is the NEWM command. This

command will build a directory large enough to accomodate the number of files

specified by the user and will fill all registers on the medium with zeroes. The

NEWM command need only be executed one time for each new medium. The

command takes about 3 minutes to execute. The general form of the NEWM

command is:

NEWM

The command will prompt for a three digit number which is the number of

entries to be built into the directory.

FILE POINTERS

The individual registers within an external data file are located by means of

the SEEKR command. The basic form of this command is:

SEEKR X(register) ALPHA(filename)

Page 117.

This command must be executed prior to any operation which will retrieve

from or store into an external data file. Registers within an external data file are

numbered beginning at register 0.

External ASCII files do not have a corresponding SEEKR command. ASCII

files may only be stored onto or retrieved from the medium. Any file manipulation

must occur within the internal ASCII file.

FILE CREATION AND MANAGEMENT

The NEWM command builds a directory and clears the medium of any

previously stored data. It is necessary to define to the system the name and size of

each external data file to be stored. The CREATE command will allocate a part of

the medium to the new external data file and fill the space with zeroes. The

number in the X register and the name in the ALPHA register will be recorded into

the directory. If the name already exists on the directory, an error message will be

displayed by the system. The general form of the CREATE command is:

CREATE X(filesize) ALPHA(filename)

If the duplicate filename message is issued, you have several options

available to handle the problem. Assuming that the name used in the CREATE

command is the name intended, you may PURGE the existing file from the medium

or RENAME the existing file.

To purge a file means to remove its name from the medium so that access to

the data on the file is no longer possible. The general form of the PURGE

command is:

PURGE ALPHA(filename)

The PURGE command works with both external data and external ASCII files.

Since the results of this command are permanent, it is a good idea to be sure that

the file is no longer needed.

Renaming a file means to change the name of a file stored on the medium.

The general form of the RENAME command is:

Page 118.

RENAME ALPHA(oldname,newname)

Occasionally, you may not want to remove a file. Renaming a file is a good

alternative to purging a file. This command may also be used with external ASCII

files.

If you want to reuse a file already on the medium, it may be necessary to

clear the file to zeroes so that unexpected data will not be encountered. The

ZERO command will clear the named file to zeroes. The general form of this

command is:

ZERO ALPHA(filename)

If a medium contains more than one file, a listing of the contents of the

directory should be obtained. The DIR command will display the name of each file

on the medium along with the length of the file and the file type. If a printer is

attached, then this information will be printed. If a directory listing is to be

obtained, it should always be printed and kept with the medium in its container. It

is also a good idea to have the date and time appear on the listing. This is a good

use of the TIME module. The following program will allow the user to obtain a

date and time stamped directory listing. The listing produced will assure that the

current contents of the medium will be known.

@leiBL "DTETIME"
82 FIX 4
@3 DRTE
84 CLA
@5 RDATE
86 PRA
@7 TIME
88 CLA
09 ATIME
16 PEA
11 FI¥ 2
12 DIR
13 END

Listing of a directory listing routine

Page 119.

RECORDING DATA INTO EXTERNAL DATA FILES

There are two commands available which will cause the data stored in main

memory registers to be copied into the appropriate external file. The WRTR

command will copy data from all main memory registers into the named external

file. If an internal data file is to be copied to an external data file, the data must

first be transfered from the internal file in extended memory into main memory.

The general form of the WRTR command is:

WRTR ALPHA(filename)

The copying begins at main memory register R0O0 and continues until all main

memory registers have been copied. Data is stored in the external file beginning at

register 0. At the end of the copy, the external file pointer will be positioned at

the next available register in the external file or at the end of file (EOF).

The WRTRX command will copy data from the specified main memory

register block into the external file beginning at the register pointed to by the

external file pointer. The medium must be positioned prior to executing this

command if the data is to occupy the proper registers. The SEEKR command or a

previously executed WRTR, WRTRX, READR or READRX command will leave the

external file pointer positioned at the next available register in the file. The basic

form of the WRTRX command is:

WRTRX X(bbb.eee)

Copying begins at main memory register Rbbb and continues until main

memory register Reee has been copied or until the last main memory register has

been copied. If bbb is greater than eee, then only main memory register Rbbb will

be copied. At the end of the operation, the external file pointer will be positioned

at the next available register in the external file or to EOF.

Page 120.

CHECKING FILES

The VERIFY command will allow the user to check the named external file to

ensure that the data recorded in the file can be accessed. It is a good idea to

execute this command immediately after recording the data. If the result of the

verification is such that the file cannot be read, then the same data may be

recorded again on another medium. The basic form of the VERIFY command is:

VERIFY ALPHA(filename)

PROTECTING FILES

Once an external file has been created and verified, it may be a good idea to

protect the file from accidental erasure or alteration. This may be done with the

SEC command. The basic form of this command is:

SEC ALPHA(filename)

A secured external file has an S following the filename in a directory listing.

There are two ways in which a secured file may be altered. First, a NEWM

command may be executed to completely initialize the medium. Secured files are

not immune to the effects of the NEWM command. Secondly, the file may be

unsecured.

The UNSEC command will cancel the security given an external file by the

SEC command. The basic form of the UNSEC command is:

UNSEC ALPHA(filename)

After a file has been unsecured, it may be altered as desired.

RETRIEVING DATA FROM AN EXTERNAL DATA FILE

There are two commands available which will cause the data stored in an

external file to be copied into main memory registers. The READR command will

Page 121.

cause the data in an external file to be copied into main memory beginning at main

memory register R00. External file registers are copied beginning at register 0 and

continuing until the end of the external file is reached or until all allocated main

memory registers have been filled. The external file pointer will be left positioned

to the next available external file register or EOF. The general form of the

READR command is:

READR ALPHA(filename)

The READRX command will copy data beginning at the current position of

the external data file pointer into the specified main memory register block. The

medium must be positioned to the first external data file register to be copied

prior to executing this command. The SEEKR command or a previously executed

WRTR, WRTRX, READR or READRX command will leave the external data file

pointer positioned at the next available register in the file. The basic form of the

READRX command is:

READRX X(bbb.eee)

Copying begins at the current location of the external file pointer and data is

placed into main memory beginning at Rbbb. Copying continues until main memory

register Reee is filled or until the end of the external file is reached. If bbb is

greater than eee, then only the data from the current external file register is

copied into main memory register Rbbb. At the end of the operation, the external

file pointer will be positioned at the next available register or to EOF.

The data placed into the HP-41C/CV through the use of a READR or

READRX command goes directly into main memory. If the data is destined for an

internal data file, then the data must be copied into extended memory from main

memory.

EXTERNAL ASCII FILES

Internal ASCII files may be stored as external ASCII files in much the same

way as internal data files are stored as external data files. The major difference

between external ASCII files and external data files is that external ASCII files

Page 122.

may only be read or written, they may not be altered in whole or in part while on

the medium. Before an internal ASCII file may be stored as an external ASCII file,

the external file must have been created using the CREATE command. If an

external ASCII file is to be transferred to an internal ASCII file, the internal file

must have been allocated using the CRFLAS command.

External ASCII files may be secured with the SEC command, unsecured with

the UNSEC command, renamed with the RENAME command and verified with the

VERIFY command.

TRANSFERING INTERNAL ASCII FILES TO EXTERNAL ASCII FILES

The SAVEAS command will copy the named internal ASCII file to the

specified external ASCII file. This command requires that the names of both the

internal and external files be supplied at the time of issuing the command. If only

the internal file name is given, then the system will assume that the external file is

to be called by the internal filename. The general form of the SAVEAS command

is:

SAVEAS ALPHA(internal name,external name)

If the external filename is not the same as the name specified on the

CREATE command, then the system will issue an error message. Copying will

continue until the end of the internal file is reached or until the end of the external

file is reached.

TRANSFERING EXTERNAL ASCII FILES TO INTERNAL ASCII FILES

The GETAS command will copy the named external ASCII file to the

specified internal ASCII file. This command requires that both the internal

filename and external filename be specified in the ALPHA register at the time the

command is issued. If only the external filename is supplied, then the system will

assume that the name of the internal file is the same as the name of the external

file. Whatever name is used for the internal file must have been specified on a

CRFLAS command. The general form of the GETAS command is:

Page 123.

GETAS ALPHA(external name,internal name)

Copying will continue until either the end of the external file is reached or

the end of the internal file is reached.

CONCLUSION

This chapter has presented the commands necessary to create and access

external files. With the current capacity of mass storage devices (131K

characters) and the expanded capabilities to the HP-41C/CV and the Extended

Functions, you will be hard pressed to find applications which cannot be

accomodated on the HP-41C/CV personal computer.

Page 124.

Chapter 10

Sales Program Example

INTRODUCTION

This chapter will present a program which uses both internal and external

data files. Careful study will give you a better understanding of how to setup

internal and external data files and how to use the powerful I/O commands

available in the HP-IL and Extended Functions modules.

SALES PROGRAM BACKGROUND

SALES is a program designed to prompt the user for an item number and the

quantity sold. The program will obtain the price of the item sold from an internal

price file, calculate the extended cost and print a line on the receipt. At the end

of the sale, the program will subtotal the sale, calculate the appropriate sales tax

and total the sale. In addition to creating a receipt, the program will create a

record of the sale and write this out to tape. At a later time, this tape will be used

as input to an inventory program.

There are three auxillary programs associated with SALES which help the

user with loading the internal price file and with loading and unloading the

programs in the SALES system.

LODPRIis a short program which prompts the user for item number and price

and then loads this information into an internal data file called PRIC.DA. The

program first positions the internal file pointer to register 0 (it assumes that the

file PRIC.DA has already been created and is of such a size as to allow for

expansion). The user is then prompted for an item number between 100 and some

predefined upper limit found by multiplying the size of the internal file PRIC.DA

minus 1 by 100. If a proper number is keyed in and R/S pressed, the program will

go on to prompt the user for the price of the item associated with the item

number. The program uses the item number as an absolute index (register number)

into the file and stores the price there. This process of prompting the user for an

item number and price continues until the user presses R/S without first keying in

Page 125.

an item number.

This technique of calculating a register number into which to store data is

useful for two reasons. First, space is saved in the internal file because the file

does not have to contain the item number associated with the price as this

information is determined from the location within the file of the price. If a price

is stored in register 5, for example, then the program is "intelligent" enough to

know that the price must be associated with item number 105. Secondly, the

location of items within the file are easy to determine and remember.

@i{eLBL "LODPEI"
@2 CLA
83 “PRIC.DR"
84 @
85 SEEKPTR
86 FIX @
@7¢LBL A8
88 ~ITEN-NUM®
29 PROMPT
18 FC2C 22
11 GT0 88
12 18¢
13 -
14 “PRICE 2~
15 PROMPT
16 CF 22
17 ¥O¥Y
18 SEEKPT
19 RIN
26 SAYEX
21 GT0 a8
2z¢LBL 89
23 FI¥ 2
24 ENL.

Listing of program LODPRI

LOD-SAL is a program which resides in program memory at all times. This

program will prompt the user for the physical location (tape or extended memory)

of the SALES system. If the SALES system is located on tape, then LOD-SAL will

load each routine and subroutine into program memory using the READP command.

Page 126.

If the SALES system is located in extended memory, then LOD-SAL will load each

routine and subroutine into program memory using the GETP command. After the

SALES system is loaded, the program UNL-SAL is loaded. The necessary key

assignments are then made and LOD-SALis exited.

@lelBL "LOD-5AL" 32 GTO @1
82 SF 27 J3+LBL 04
8; @ 34 SALES"
@4 PSIZE
@5 “TAPEIY,N: 2

35 READSUB
36 =GETSAL®

86 AOK 37 READSUE
87 PRONPT 38 =GETPRIC"
88 AOFF 39 READSUE
@9 AToX 48 "RECSAL"
16 78 4! READSUE
11 - 42 “TOTAL"
12 X087 43 RERDSUE
12 G0 8@ 44 “SUBTOTL"
14 “SALES*" 45 RERDSUB
15 GETSUE 46 “TA¥"
16 =GETSAL"
17 GETSUE
18 =GETPRIC"

47 READSUE
48 “RECEIPT"
49 RERDSUE

19 GETSUE 28 “UNL-SAL"
26 “PECSAL" 21 PERDSUE
21 GETSUR 92¢LBL 81
22 “TOTAL" 93 "SALES-
23 GETSUE 34 11
24 “SUBTOTL™ 93 PASN
25 GETSUB 9 “TAE"
26 “TRE" 7 13
27 GETSUE 3& PASN
26 “RECEIPT" 99 “UKL-SAL"
29 GETSUE 68 15
38 “UNL-SAL" ¢! PASK
31 GETSUE 62 END

Listing of program LOD-SAL

UNL-SAL is a program which will move the SALES system out of program

memory. The program will prompt the user as to whether the SALES system is to

be recorded onto tape in addition to being copied into extended memory. After the

programs have been copied, any key assignments which have been made are erased

and the SALES system is removed from program memory.

Page 127.

@1eLBL “UNL-SRL" 38 WFTP
@2 "RECORD ?- 31 =SUBTATL-
82 RON 32 SAYEP
64 PROMPT 33 FS? ea
@5 ROFF 34 WRTF
@t ATOX 35 =TAx-
87 76 36 SAVEP
@ - 37 FS? @R
89 X287 32 WRTP
1é SF @8 39 “RECEIPT"
11 "SALES" 4@ SAVEP
12 SAVEP 41 FS? 66
13 FS7 @4 42 WRTF
14 WETP 43 “UNL-SAL"
15 =GETSAL" 44 SAVEF
16 SAVEF 45 FS?2C 88
17 FS? 0@ 46 WRTP
1€ WETF 47 CLA
19 “GETPRIC" 4¢ 11

2¢# SRYEF 49 PRSKN
21 FS7 B8 5 13
22 WRTF S1 PASN

27 "RECSAL" 52 15
24 SAYEP 52 PRSK
25 FS? 66 54 °SALES-
2% WRTF 95 PCLPS
27 °T07AL" 5 CF {1
28 SAYEP 57 CF 27
29 FS7 @R 58 .ENL.

Listing of program UNL-SAL

PROGRAM FILES

Within main memory, there may be two types of information - data and

programs. The only way the system has of knowing whether something in main

memory is program or data is by the location of the curtain. Programs may also be

stored in extended memory or on an external medium. When stored in one of these

other areas, the system must know that they are programs and not some other type

of data. This problem is handled by the definition of a new type of f{ile

Page 128.

called program files. Program files in extended memory are labeled as P files and

program files on an external medium are labeled as PR files.

Programs files in program memory may be stored into extended memory

using the SAVEP command or they may be copied onto an external medium using

the WRTP command. When copying program files from main memory to one of

these other areas, there is no distinction between program and subroutine. The

basic form of the SAVEP and WRTP commands is:

SAVEP ALPHA(program name,file name)

WRTP ALPHA(program name,file name)

These commands will copy a program from program memory to either

extended memory or to an external medium as a program file. If the HP-41C/CV is

in USER mode and some keys are reassigned, then the key assignments will also be

copied. If the file name is omitted at the time of copying, the name of the

program will become the name of the file. Program files do not need to be

allocated prior to being copied by the SAVEP or WRTP commands.

Program files stored in either extended memory or on an external medium

may also be copied into program memory. The location where the program file will

be placed depends upon whether the program file is copied into program memory as

a program or as a subroutine. If the program file is copied as a program, then the

file will be placed in main memory program space replacing the last program. If

the program file is copied as a subroutine, then it will be placed into program

memory following the last program. If program files are coming from extended

memory, then either the GETP or the GETSUB command will copy the program f{file

into program memory. The basic form of these commands is:

GETP ALPHA(file name)

GETSUB ALPHA(file name)

If program files are coming from an external medium, then either the READP

or the READSUB command will copy the program file into program memory. The

Page 129.

basic form of these commands is:

READP ALPHA(file name)

READSUB ALPHAC(file name)

Any key assignments recorded with the program will become active when the

program file is copied into main memory program space.

SALES PROGRAM DESIGN

The SALES program was designed to meet two objectives. First, it had to be

as easy to use as possible. Secondly, it was to be part of a larger system to be used

in small businesses to function as a point-of-sale terminal and to create input for

an inventory system.

To make the SALES system as easy to use as possible, many of the

preliminary tasks are handled by the SALES program and the auxilliary programs.

File pointers are prepositioned, main memory registers are allocated and the price

file is made the working file. All that is left for the user to do is answer the

questions asked by the system.

The SALES system was designed to interface with an inventory system. The

purpose of this interface is to allow sales transactions to be passed to an inventory

system so that the appropriate inventory records may be updated.

The SALES system consists of the following routines and subroutines. Along

with the name is the function performed by the routine or subroutine.

SALES the mainline routine which sets user flag Fll so that the

program will start each time the HP-41C/CV is turned on, initializes

control registers and continually calls GETSAL until user flag F0O is set

at which time TOTAL is called

GETSAL this subroutine prompts the user for the quantity and item sold.

If the user pressed R/S without pressing a digit key, the subroutine will

set FOO and exit

GETPRIC this subroutine calculates a register number in PRIC.DA from

which the price of the item is obtained

Page 130.

RECSAL this subroutine formats the sale information into a data record

and writes the record out to tape

TOTAL this subroutine calculates a total for the sale and then produces

two receipts. The subroutine SUBTOTL is called to calculate a subtotal

and TAX is called to determine the appropriate sales tax

SUBTOTL this subroutine subtotals the sale

TAX this subroutine determines the appropriate sales tax

RECEIPT this subroutine formats and produces two receipts - one for the

customer and one for the user

The hierarchy diagram for the SALES system is on the page after next.

Referring to this diagram will allow you to visualize the relationship of the

subroutines to each other and to the routine SALES.

SALES ROUTINE

SALES is the mainline routine or driver for the SALES system. Within

SALES, the following processing takes place. User flag F1ll is set so that the

program will automatically begin whenever power is applied to the machine. User

flag F27 is set to place the machine in USER mode.

The PWRDN command is issued so that the printer and tape drive, both of

which should be in STANDBY mode, will be powered down.

The internal data file, PRIC.DA, is made the current file and its pointer is

set to register O.

Main memory register RO4, which will be used in a later subroutine to count

the number of groups of items sold, is initialized to 0. Main memory register R03,

which will be used in a later subroutine as a pointer to a block of main memory

registers used to store sale information, is initialized to 10.

Main memory is sized to 40.

The subroutine GETSAL is called repeatedly until user flag FO0O is set.

When user flag F0O is set, subroutine TOTAL is called.

The OFF command is issued to turn the HP-41C/CV off. When the machine is

turned on again, the mainline routine SALES will begin automatic execution at the

GTO "SALES" statement.

Page 131.

Page 132.

Hierarchy diagram for the SALES system

 I
S
A
L
E
S

]

G
E
T
S
A
L

I

G
E
T
P
R
I
C
J

 |
T
O
T
A
L

]

[
S
U
B
T
O
T
L
J

l
T
A
X
J

I
R
E
C
E
I
P
T
J

I
R
E
C
S
A
L
J

81eLBL "SALEEZ"
82 SF 11
83 SF 27
A4 PHRDH
25 CLA
@6 “PRIC.DR"
@7 @
88 SEEKPTR
89 STO 64
18 18
11 ST0 83
12 48
13 PSIZE
1441BL 84
15 XEG@ =GETSAL"
16 FC?C @4
17 GT0 04
18 XEG "TOTAL"
19 OFF
28 GTO =SALEZ"
21 .ENL.

SALES program listing

GETSAL SUBROUTINE

GETSAL is a subroutine called by SALES to prompt the user for the

appropriate input. Within the subroutine, the following processing takes place.

The user is prompted for the quantity sold. If a number is entered before pressing

R/S, then the program will continue and store the quantity indirectly according to

RO3.

Main memory register R03 is incremented and the user is prompted for the

item number. This numberis stored indirectly according to RO3.

The subroutine GETPRIC is called to obtain the price of the item from the

internal data file PRIC.DA and then to store this price indirectly according to R03.

Main memory register R04 is incremented and the subroutine is executed again. At

Page 133.

this point, the Sales Storage Block which is pointed to by RO3 contains the

quantity, item number and price of the item sold. The block may be pictured as

follows:

I QUANTITY ITEM NUMBER PRICE]

Rn Rn+1 Rnt+2

Rn begins at main memory register R10

n+l begins at main memory register R11

n+2 begins at main memory register R12

Sales storage block

The way this storage block is defined, up to 10 items may be recorded in it.

If more than 10 items may be sold per transaction, the initial size and the initial

value set in R03 must be adjusted accordingly. If R/S was pressed in response to

the "QUANTITY" prompt without first pressing a digit key, the user flag FOO will

be set and the subroutine will exit.

GETPRIC SUBROUTINE

GETPRIC is a subroutine called by GETSAL to obtain a price in the internal

data file PRIC.DA. The subroutine assumes that register X contains a number

between 100 and some upper limit as defined earlier. The value in register X has

100 subtracted from it and this new value is used in a SEEKPT command to position

the internal data file pointer to the appropriate file register. The GETX command

is then issued to return the value in the file register to the X register. The

number returned to the X register is the price associated with the item sold. This

Page 134.

is an example of a function subroutine, a subroutine which receives a value and

transforms that value into another value. SIN and COS are also function

subroutines.

@1eLBL "GETSAL"
82 CLA
83 “QUANTITY 2=
84 PRONPT
@5 FS2C 22
86 GTO 82
@7 SF o8
88 GT0 el
@9¢LBL 62
18 STO IND 82
11 ISG 63
12¢LBL R
13 -ITEM-NUK °“
14 PROMPT
15 CF 22
16 STO IND €2
17 XE@ “GETPRIC"
18 1SC 83
19¢LBL 08¢
28 STO IND 82
21 156 @3
22¢LBL oé
23 1SC 84
24+LBL 68
25¢LBL 81
26 .END.

Listing of GETSAL subroutine

@leLBL "GETPEIC®
62 16
ez -
@4 SEEKPT
85 GETX
86 .END.

Listing of subroutine GETPRIC

Page 135.

TOTAL SUBROUTINE

TOTAL is a subroutine called by SALES to calculate a total for the sale and

to produce two receipts. Within the subroutine the following processing takes

place. The printer and tape drive are powered up in preparation for use in printing

the receipts and recording the inventory record. Subroutine SUBTOTL is called to

calculate the subtotal for the sale. The subtotal is placed into main memory

register ROO.

The subroutine TAX is called to calculate the appropriate sales tax on the

sale. The sales tax is placed into main memory register ROl.

The total is calculated and printed. The user is then prompted to enter the

amount tendered by the customer which is stored in main memory register R03. A

calculation is then done to determine the amount of change due the customer or

the additional amount needed from the customer. The amount of change or the

additional amount needed from the customer is stored in main memory register

R05. If change is due the customer, then a line is printed to tell the user the

amount of change to give. If an additional amount is needed from the customer,

then a line is printed to tell the user the amount to collect.

The subroutine RECEIPT is then called twice to print two receipts - the first

to be kept by the user and the second to be given to the customer.

The subroutine RECSAL is then called to build and record an inventory record

for each item sold.

The printer and tape drive are then powered down and the subroutine is

exited.

SUBTOTL SUBROUTINE

SUBTOTL is a subroutine called by TOTAL to calculate a subtotal for the

sale. This subroutine first calculates a control number and stores it in main

memory registers R03 and R07. The control number is calculated according to the

following equation:

c(R03) = ((c(RO%) X 3) +9) / 1000

Page 136.

dielBL “TOTAL"

82 PHRUP

83 XE@ “SUBTCTL"

@84 RCL 68

85 XE@ °“TAX-

86 STO 81
67 +

88 STO 82

69 @

16 ST0 63

i1 “TOTAL = "

12 ARCL @2

13 PRA

{4¢LBL 85

15 “TENDEREL °-

16 PROMPT

17 ST+ @83

18 RCL 62

19 RCL 82

28 -

21 570 85

22 ¥=87

23 GT0 86

24 ¥>8?

25 GT0 87

2 TONE @

27 °COLLECT = =

28 ARCL 85

29 PRA

38 GT0 85

31eLBRL 87

32 TONE 9

33 "CHANGE = =

34 ARCL B85

25 PRR

36¢LBL 86

37 XEQ "RECEIPT"

38 XEQ “RECEIPT-

39 PHRIN

4@ XEQ “RECSAL"

41 LEND.

Listing of TOTAL subroutine

Page 137.

After this control number is calculated, the extended costs for all items sold

is calculated and summed into main memory register R00. This process uses the

information stored in the Sales Register Block.

@1eLBL “SUBTOTL"
82 @
83 STO 84
84 RCL 64
05 3
66 =
87 9
83 +
89 | E-3
18 *
i1 18
12 +
13 STO 83

14 STO @7
15¢LBL @82
16 RCL IND 83
17 2
18 ST+ @83

19 RDK
28 RCL IND 82
21 *
22 ST+ @8
23 15GC @3
24 CTC @82
25 .ENL.

Listing of SUBTOTL subroutine

TAX SUBROUTINE

TAX is another function subroutine called by TOTAL and which takes 5% of

whatever is passed to it in the X register. At the end of the subroutine, register X

will contain the tax and register Y the amount that was taxed.

B1¢LBL “TRX"
ez 5
a3 z
84 LEND.

Listing of subroutine TAX

Page 138.

RECEIPT SUBROUTINE

RECEIPT is a subroutine called by TOTAL to format and print a receipt of

the sale. Within the subroutine, the following processing takes place. The heading

of the receipt is formatted with the name of the company and its phone number.

The FMT function of the printer is put to use here to center the information on the

line. The current date is then obtained from the TIME module and centered on the

receipt.

The secondary heading for the receipt is then formatted with the column

headings QUANT, ITEM and COST.

The control number calculated in subroutine SUBTOTL is recalled from main

memory register R07 and is placed into R03. A loop to retrieve sale data is then

entered.

Sale data is obtained from the Sales Register Block, one item at a time, and

is formatted onto a detail print line. After the detail line is formatted, it is

printed and then the next detail line is formatted and printed, and so on until all

details have been formatted and printed.

A subtotal line is then formatted and printed. The subtotal is obtained from

main memory register R00. A sales tax line is then formatted and printed. The

sales tax is obtained from main memory register ROl. A total line is then

formatted and printed. The sales total is obtained from main memory register

RO2.

Finally, a THANK YOU line is formatted and printed, the printer paper is

advanced 4 times and the subroutine is exited.

RECSAL SUBROUTINE

RECSAL is a subroutine called from TOTAL to create and record an

inventory record for use later in an inventory system. Within this subroutine, the

following processing takes place. The internal data file SALH.DA (assumed to

already exist) is made the working file and its pointer set to 0. A loop is then

entered which will extract each block of information from the Sales Storage Block

and store it into SALH.DA.

Page 139.

@1eLBL °RECEIPT"
82 CLA
83 ADY
84 FMT
85 °SPICE OF LIFE"
86 ACA
87 - CRAFTS*
62 ACR
89 PRBUF
16 CLA
11 FHT
12 (813> 397-3673"
13 ACA
14 PRBUF
15 CLA
16 FIX 4
17 DATE
18 FNT
19 ADATE
28 ACH
21 PRBUF
22 CLAR
23 FIX 2
24 ADY
25 FMT
26 "QUANT"
27 ACR
28- .

2% ACA
3¢ ~ITEM"
3! ACA
32 -
33 ACH
34 =COST"
35 RCA
36 PRBUF
37 CLH
38 ADY
39 RCL @7
4€ STG 82
41¢iBL 10
42 FI5 @
43 CF 28
44 CF 29
45 RCL IND @1
46 STO 8¢
47 FUT
48 ARCL IND €3
49 ACR
56- .

91 RCA
92 18G 83
93 b*

Listing of RECEIPT subroutine

Page 140.

94 ARCL IND 82
95 RCA
% FIX 2
37 SF 28
3¢ SF 29
39 ISG 83
68 “F-
61 RCL IND 82
62 ST+ 86
63 = -
64 RCA
65 ARCL @¢
66 RACR
67 PRBUF
68 CLA
69 ISG &3
78 GT0 18
71 ARV
72 =Sug-
73 RCL 086
74 RCA
75 FHT
76 RCX
77 PRBUF
76 CLA
79 “TRX"
8e RCL 61
g1 ACA
g2 FNT
8: ac¥
g4 PREUF
8% CLH
8¢ “TOTAL"
§7 RCL @2
8¢ ACA
gy FMT
9@ ACX
9! PREUF
92 CLA
3 am
94 AMY
a5 §F 12
9 FMT
97 “THANK YOU®
9¢ ACA
99 PRBUF
184 Cr 12
18! ADY
182 ADY
183 ADY
184 RDY
185 ENL

@ieLBL “RECSAL"
82 =SALH.DR"
a3 8
@4 SEEKR
@5 RCL @7
@6 STO 83
A7+LBL 88
88 RCL IND 82
89 ISG 83
18¢LBL @@
11 RCL IND 82
12 15G 83
13¢LBL @8
14 RCL IND €2
15 ¥EHY
16 184
17 -
18 2
19 %
26 STO o8
21 SEEER
22 RN
23 3.689
24 READRX
23 RCL @4
26 SEEKR
27 RDH
28 RIN
29 AN
3@ ST+ 68
31 %
32 5T+ @9
33 RIN
34 RIN
35 RIN
36 WRTRX
37 156G @3
38 GT0 68
39 LEND.

Listing of RECSAL

Page 141.

CONCLUSION

This program has illustrated several important concepts. The use of internal

and external data files was illustrated as well as HP-IL and Extended Functions.

This program should be studied carefully so that it is understood. The techniques

used here may be used equally well in other applications you may have.

Page 142.

adjustment step

annuities

APPCHR

APPREC

ARCLREC

ASCII files

ASCII file pointers

auto-push state

bbb.eee

BST

calling sequence

CASE

CAT 1

cccc.tttdd

CCCC.tttii

CLFL

closed subroutine

compiling

complex data file

conditional transfers

CREATE

CRFLD

CRFLAS

data files

data file pointer

DEL

directory

DO-UNTIL

DSE

Index

Page 143.

67

78

113

112

115

99

104

29

110, 111

41

73
50

36

60

57

109

73

Uy

101

56

118

108

108

99

100

42

117
69, 50

59

DO-WHILE

END

entry point

exit point

external ASCII files

file headers

file pointers

FLSIZE

FMT

functionally cohesive

functors

GETAS

GETP

GETR

GETREC

GETRX

GETSUB

GETX

GTO

GTO..

GTO.nnn

hard addressed

hierarchy diagrams

IF-THEN-ELSE

infinite loops

initialization step

INSCHR

INSREC

interchangable solutions

Page 144.

68, 50

40

48

48

99

99

109

139

76

29

123

129

111

114

111

129

112

54

33

41

11

85

49, 62

48

67

113

113

86

internal files

ISG

loops

loop body

manipulators

NEWM

next sequential instruction

NSI

open subroutine

PACK

parameter

PCLPS

port-addressed

PPC

program body

program files

program header

program trailer

program memory

PRP

PSIZE

PRSTK

PURFL

PURGE

PWRDN

RCLPT

RCLPTA

READP

READR

Page 145.

99

57

67

67

29

117

74

74

73

38

72

43

11

73

36

99, 128

36

36

36

43

38

30

109

118
131

104

104

129

122

READRX

READSUB

RENAME

RPN

rrr.Cccc

SAVEAS

SAVEP

SAVER

SAVERX

SAVEX

SEC

sequence control structure

SEEKPTA

SEEKPT

SEEKR

SIZE

SST

status registers

structured design

structured programming

structured techniques

subroutine body

subroutine header

subroutine trailer

test for loop exit

unconditional transfers

unreachable code

UNSEC

VERIFY

Page 146.

122

129

119

23

105

123
129

110

110

111

121

48

101

101

117

38

41

u7

48

u7

76

75

76

67

54

43

121

121

working files

WRTP

WRTR

WRTRX

XEQ

ZERO

20% rule

Page 147.

107

129

120

120

73

119

108

DATA
PROCESSING
ON THE
HP-41 G/GV

VOLUME 1:
Fundamentals
of Program
Design and
File Processing

by
William C. Phillips

	Cover
	Contents
	Preface
	Chapter 1: The HP-41C/CV Personal Computer
	Introduction
	The HP-41C/CV System Configuration
	The HP-41C/CV Calculator
	Internal System Architecture
	The HP-41C/CV Addressing Scheme
	HP 82161A Digital Cassette Drive
	HP 82162A Thermal Printer
	HP 82160A HP-IL Module
	HP 82180A Extended Functions/Memory Module
	HP 82181A Extended Memory Module
	HP 82182A Time Module
	Port-X-Tender
	The Manuals
	Notes and References

	Chapter 2: RPN and the Stack
	Introduction
	History of RPN
	Algebraic vs RPN Notation
	Translating Algebraic Expressions into RPN
	The Stack
	Stack Operations
	RPN and the Stack
	Conclusion
	References

	Chapter 3: Simple Programming Summary
	Introduction
	Definition of a Program
	Structure of a Program
	Keying a Program into Program Memory
	Program Verification
	Editing Programs
	Running Programs
	Compiling Programs
	Conclusion

	Chapter 4: Program Design Methodology
	Introduction
	Historical Perspective
	Structured Design
	Structured Programming
	Conclusion
	References

	Chapter 5: Program Control
	Introduction
	Unconditional Transfers
	Conditional Transfers
	User and System Flags
	The IF-THEN-ELSE and CASE Control Structure
	Loops
	The DO-UNTIL and DO-WHILE Control Structures
	Conclusion

	Chapter 6: Subroutines
	Introduction
	Calling Sequences
	Types of Subroutines
	How Subroutines Work
	Constructing Subroutines
	Conclusion
	Notes

	Chapter 7: Simple Ordinary Annuities Program Example
	Introduction
	Simple Annuities
	FV
	PV
	PV/FV Equivalency
	PMT
	n and Final Payment
	ic
	Annuities Program Design
	Techniques Used
	ANNUITY Routine
	Internal Subroutine N
	Internal Subroutine INT
	Internal Subroutine PV
	Internal Subroutine PMT
	Internal Subroutine FV
	CALC-N Subroutine
	CALC-I Subroutine
	CALC-PV Subroutine
	CALC-FYV Subroutine
	CALC-PY Subroutine
	SINK Subroutine
	PRS-VAL Subroutine
	FIN-PMT Subroutine
	Conclusion

	Chapter 8: Internal Files
	Introduction
	Notation
	Extended Memory
	File Headers
	File Pointers
	Working Files
	File Creation and Management
	Recording Data into Internal Data Files
	Retrieving Data from Internal Data Files
	Recording Data into Internal ASCII Files
	Retrieving Data from Internal ASCII Files
	Conclusion

	Chapter 9: 1/O Operations
	Introduction
	Notation
	Initialization Procedures
	File Pointers
	File Creation and Management
	Recording Data into External Data Files
	Checking Files
	Protecting Files
	Retrieving Data from External Data Files
	External ASCII Files
	Transferring Internal ASCII Files to External ASCII Files
	Transferring External ASCII Files to Internal ASCII Files
	Conclusion

	Chapter 10: Sales Program Example
	Introduction
	SALES Program Background
	Program Files
	SALES Program Design
	SALES Routine
	GETSAL Subroutine
	GETPRIC Subroutine
	TOTAL Subroutine
	SUBTOTL Subroutine
	TAX Subroutine
	RECEIPT Subroutine
	RECSAL Subroutine
	Conclusion

	Index

