An Easy Course
In Programming The

By Ted Wadman and Chris Coffin
llustrated by Robert Bloch

AN EASY COURSE
IN
PROGRAMMING THE HP-4

Bg Ted Wadman and Chris Coff$in

Tllustrated b'd Robert Bloch

Grapevine Publications, Inc.
PO. Box 25724
Portland, Oregon Q7225

© Coptdrigh{ 1983, Grape.vine Publications, Inc.
All rights reserved. This book, or portions of
this book, may be reproduced only with

written permission.

For reasons of brevity and clarity, the name
“HP-4I” has been used throughout this course
to denote either the “HP-4IC” or the “HP-4ICV)
which are the complete names of the hand-
held computers made by:

The Hewlett-Packard ComPang.

LJe extend our thanks to Hewlett-Packard
Cor Produdns such top- obuali'tg products and.

documentation.

Disclaimer: The material in this book is supplied without representation
or warranty of any kind. Grapevine Publications, Inc., assumes no
responsibility and shall have no liability, consequential or otherwise,
arising from the use of any material in this book.

You have an HP-4I!

Now...what are you go'mg todo with1t?

You bough’c an HP-4l because you were sure
that 1t could do many things. But you are not
quite sure how to program it to do those ‘chings.

That'’s whg Yyou bought this book ... —>

Well, 5ou’r‘e righi. The HP-4l can do many,
many thinss.

That'’s what is meant when it's called a
powerful machine. That doesnt mean it can leap
tall buildings in a single bound, or predict the
future, or appreciate music. The HP-4l is not
a magic box. It is only a tool to help you
solve problems, and the reason it can be used
to solve so many different problems is that
wt s very...

1'}'

('

‘.‘ ’ ’ ' %‘\‘

R OIS
RN

URANY

Think about it this way: you can build. many
different 't){mss with a pi le of bricks, but the
bricks themselves are very simple. Theg are the
fundamental building blocks you use to build
ang‘thing you want.

That's exactly what a computer like the HP-4|
really is: just a pile of bricks, so to speak.

By giving the computer instructions on how
to manipulate numbers and. letters, you can
build the solution you are looking for, step-by-step
brick-by-brick.

Now, when a bricklayer is finished, the bui lding
looks large and complex and very impressive ... and.
it {s. The completed building is very useful as
well. But there's no mystery about hous it was
done. You saws the blr'ic.ldaqﬂer~ putting the bricks
together, one-by-ore.

That's how it is with the HP-4I. Tt’s just one simple
brick after ancther. You just need to knouw how to put
the bricks together.... So, let's mix some mortar. 2

-6~

A AREFIND
‘ o,
o b.l (X Oottcllllil K

X .O. OO X
’ l¢ O X
RAE AR
OIS,
O
Y \\\ &

Al ..n .~
O R
C.owssw&.s..\\z
Vv e 2%

How Do THE BRICKS 0o TOTETHER 2

How does the HP-4l manipulate numbers and
letters for you?

In learnins this, the first ‘ching you need. to
have is a Sood woy to picture in your mind jus-t
how the computer stores and. keeps track of

numbers and letters in its continuous memory.

PICTURE IT LIKE THIS:

ALPHA - rogictcr

Display

N

Stack regi sters

7 Data resisten
26 ‘

°5
oy
o3
o2
LY

T

If You know all about this a\re.adg then go on

ahead to page 18 . Otherwise ... >

-8-—

PATA BECISTERS | —— s
[oisplay
Just for convenience, we |—;

call numbers and letters R M~
“data,” and so it makes sense| C—* | ,
that a data regis‘cer* s a o
place to store data- numbers pata i
rq’utm—-.l
and letters. o

All of the data registers are the same size.
Each can hold one number or up to six letters
(but not both at the same time).

Data. re,gisters are numbered., starting at
0. You'll use these numbers to refer to the
registers in the computer.

So how many data registers are there?

Lell, there’s only so much memory space
in the HP-4l. You can use some (or all) of it for
dota registers - to store data. Then you canuse
the remainder for storing programs - the

-qQ-

instructions that manipulate this data. You can
change the location of the boundary between
data and program memory anytime, as you 'll see
later.

-0~

OLPHN-BeCISTER
This special register is what
helps to moke the HP-4l an ﬁpﬁ&mﬂg Co
powerful tool. With the help of
this register, the computer can

store and manipulate letters

as well as numbers.

Now, when we say letters, we really mean more than
just A o Z. Actually, weare regerrinj to most of the
characters you can Prooluce with a standard %5Pewri ter.
And, for this reason, we should start g_;jlx_ng them
characters — ALPHA characters.

The ALPHA-register canhold only ALPHA characters,
Tt can hold up to 24 of these. BUT IT CAN NEVER
HOLD ANY NUMBERS.

If you see “12" in the ALPHA- register, this is simply
the numeral *I” sitting next to the numerd “2. Tt mayas well
be “?K. They're all just characters. There’s no number
twelve in sigh')c. And if You ever try to 96.)(. the HP-4l to
do arithmetic with ALPHA characters, it will refuse to do it.

THE DISPLAY

- i‘ter N
J ALPHA ~ ¢ ‘5 WD oo ‘%\ \‘:.\.:,

o
€y

You can think of the display as a window. When
you look. at your computer and there is noi:h'mg in
front of this window, then you can look through this
window to see the contents of some reqister.

This window we call the displag canbe “located”
over either the X-register or the ALPHA-register.
Then, if the window is clear, you see the contents
of one of those registers. But if there’s some‘rh'zng
“in front” of this window, then that is what you

see when you look at the displag. uguallg you
see the contents of the X-register or the ALPHA-

-12-

resis’cer t_}m_gh the disp\ag window. But it's

possible to move the contents of any register into

the displag window so that it blocks your view
of the X- or ALPHA-regis’cer‘.

When you are looking at a number in, say, the
X-register; you can use the disp)a3 to “block out”
part of your view of that register by fixing the

decimal places that you wich Yo see. The gi;_s_plmj
does this by rounding the number. But remember,

the displcuj does this screening just to shows you
the pari' of the number you want to cee. [t does
not c_hange the actual number as it sits in the
X-register.

31¢K REGISTERS

r] ALPHA-register
[visplay
T
|2
2R & | |ee---- Y St“!‘t ,
g Ry
SEE A . 9
=EE .
NSNS0 I .
N :
x> ’I ==
SR —— ::'
y bata o3
reqisters = gp
L]

The stack registers are rea\\\j just data registers.
They are the same size as the numbered data registers,
but they are named with letters (rather than numbers):

X, Y, Z, T, and L.

The reagon they are called “the stack” is because

they are stacked on top of one another-

The stack registers are linked together in a special
way, and -theg are the most frequently used
registers in the HP-4].

Por Quiz

.. What's a data register?

2. How many data registers are there ?

3, What kind of register is the Z- regisi'er?

4. How many numbers can the ALPHA-register
hold? How many ALPHA- characters?

5. If you looked. at your computer and. it read
“HELLO,” what register would. you be 1ookin3 at ?

GIVE UP S w>

-|5~

POoP DNSWERS

. A data register is a place tohold data. Tt can hold.
one number orupto six ALPHA characters, but not
both at the same time (Review page I)

2. The rumber of data. registers depend.s on the location
of that boundary between data and program memory.
That boundary is something that you can adjust (page 9).

3. The Z—register is one of the stack registers. It is
a data regester; but it is named. with a letter to remind
You that it belongs to the stack - that collection of
5pecio.”5 linked data r‘esisters (POQQH).

4. The ALPHA-register cannct hold any numbers,
That's why its called "ALPHA~ it can hold only ALPHA
characters. [t can hold up to 24 ALPHA characters
(page 11).

5. You mayrot be locking at any register: It's entirely

possible to have "HELLO® in the displag and nowhere
else (page 13).

-lb-

How DD You DO 2

Do you {eel| that you have o good “mental Pid'ure)
of the differert parts of the memory and what they're
used for ?

If <o, then... 90 for it—

If not, then 9 back and. let it soak in a little bit more.
Re-read the pages that bounced off the first time.

Tt's worthit, even if it takes a couple extra minutes.

Now that you knows where the computer stores
data, it's time to leamn how to get data into it in
the first place.

TOGGLE KEYS

The first thing to do, of course, is to turn on the
HP-4l. Press the [ONl key at the upper left.

Question: LJhere's the [OFF keg?

Nice trs, risht?

Answer: There is no [OFF] key. To turn off the
HP-4l, just press IONI once again.

This kind of key is called a toggle key. If you
knous all about toggle keys, move to the next page.

A toggle key is any key whose meaning
alternates betuseen tuwo opposites (such as ON and
OFF, or RUN and STOP, e'tc..).

Thus, if your computer is o$f, then the [ON keg

means ‘“turn on, but if your computer is oireadg

on, then the [ON key means “turn off.

-]8-

TO STORE SOME DATD

There are only tuwo ways to key data into the HF-4I.
. To enter numeric data (numbers), you just key them
in and they re stored. in the X—regis’cen (Remember
the X-r'eﬁ'zs{-er ? Tt's one of the stack registers.) All
numeric data (all numbers) gointo the X-register when
wu first key them in.

For example, if you want 1o stere the number 1.2345
in the X- reqister; just press WERBIENS] and you'redone.

2. All ALPHA data (all characters) go into the
ALPHA-register when you First key thern in.

Easg to remember, right? Let's see...

-|9-

Chal\ense: Enter the characters ABCDE into the
ALPHA-register.

Solution: Rress [APHA (A] [B[C [DI[EI[APHA]

SATISFIED 2
NO?

Think about it this way:
Angtime You press the [ALPHA keH before you

press any other keg, you are readg to enter
characters into the ALPHA-register.

Lhen you're finished with this entry, just

press the [ALPHA] key once again to restore the

computer to its normal readiness for numeric

en’r.rg.

Notice that the [ALPHA key is a toggle key.

-2@-

FONCTIONS

Now that you can Piciure how the HP-4| stores data
and how you canget it into the computer to start with,
1t's time Yo start %Hmk'mg about how it combines data
and. moves data around. from one reqister to ancther

Lets agree to call any of these “combming”or

“moving—around”ad'ions bj one name:

TUWCTIONS

A function is any action that the compud‘er
takes ... period. If this is clear, qoon. —

ook, for examp]e, at the function called X<3'Y.
(Sag "X exchanse Y,")

As the name imp\ies, this function s'zmplg exc)'nnses the
contents of the X~ and Y-registers. Thats k. X<>Y
doesn’t. do any artthmetic at all.

Now, the function + also does some’ch'mg to the X- and.
Y-requsters, but it combines, numbers as well as moving then

around. It puts the sum of these two reg;slcers into the X- reg'zsjtef‘.

_2'-

Al told, the HP-4l has well over 10D different functions you
can choose $rom.

Question: There are on’H about 39 keys on the
keyboard.. How can we possibly use over |00 different
functions 7

It you know the answer, move on. 9

First, that go\cl key (called the "shift” key) allows you to
change the meaning of any key, if you press the gold. key
just prior to pressing the desired. key. You dont have
to hold down this shift key while you press the desired.
key. Just think of the shift key as a “prefix” keg. This
little feature wi r’cuaHH doubles the number of kegs as Sar
as the compu’cer 15 conc.erneo(, Jjust as a %ypewril‘er‘
shift key allows each key to print either upper- or lower-case.

v “J-Lv{.‘i/;,’;ud'l"..d,//
N RN N N AN
N N R e
'‘RURANAR A \{\\\'{\ ‘Q‘\"\‘{?\' A
A w\\}?‘\\\\;\\‘; N ‘\i\§\;;
N

74\ NE SRR
B N

/7
AN

NI

7
7o

N
0

%
Wy

L NN\

;.
Lot

N

w
74/
3N

%m - N
m\%\?«'/"‘\
‘\~,/ ~ TR
\&\\‘\\/ : “::‘n 3

AW \‘\r\ NN N\ \'E N\
U INA 7(&71;\“"\4\% : .
'W\\\\‘\ R N S &
SN AN A ‘ i<\:‘\\’ \‘_ ;, “"\
e &

> A

Challenge: Use the BEEP function to make the
compu’cer bee_p at you.

Solution: [54 [BEEP]

NOPROBLEM32 >

T hink about it this way:
The™ keg means just that: when You press this

keg, you key the number 4 into the X—~re9is’cer (or
its part of another number 3ou're keying in).

BUT, iactjou press the shift [key before pressing
the & key, then the computer will beep. And, sure

enough, written in goH just above the] key is the word
BEER Pressing %}\ega[d key will cause all the keys to

change their meanings to the functions written above

Hem in gcﬁ
Notice the little word swer that appearsin your dz’sp]ag
whenever the \«egs have switched their meanings.

Notice also that the shift+ kewj is o toggle keg.

- 23-

YES, Bur...

Even withthe chift key, we've accounted for less

than 80 functions on the kegboo.rci.

What about the rest of them ? How can we tell the
computer to per‘{:orm them ?

Well, we speH them. T his is one of the greo% %Hmﬂs
about the HP-4I. Its ALPHA capabilities allow you to

spe“ out your instructions.

Cha“enge,: Tell the computer o BEEPat you by

spelling out the name of the function. Don't use
(%] [BEEP],

Solution: XEQ[ALPHA] REEP [ALPHA]

First, find the KEQ] key. That keyis the “execute’
keg. (IF you say the letters X-E-Q , H’\eg sound like
the word. “execujce," ard XEQ is short enou.gh to fit
on a keg.)

Whenever you press the [XEQ keg before any other
key, the computer is immediately alerted. Tt has just

-zq_

been told that it is about to be asked o do somei'hing.

TRY Ir Now: [XEQ

To let you know that it is listening, the HP-HI responds
by putting the letters XEQ into the display (and only
the displmj— not into the ALPHA- register or angwhere
elee). So those letters are now in front of that
“window,” as we called it, and any letters that you
key in to follow XEQ will go into Q.[ll_% the disp]mj.

Now you should see XEQ __ in your display. The
computer s ready and waiting for your command. To
Spen anyf\'ling, you must be "IN ALPHA MODE." So
press the [ALPHA] key and be sure that the little word
ama appears in the digplay. Whenever this ALPHA
annunciator appears n the disp\og, the kegs all d‘\ange
their meaninﬂs—just as i—"\eg did with the [key- on]S
this time all the keHs become letter keys. Each key
corres por\ds o a chamc_)cer, ard. these characters are
prin%eal in blue on the front faces of the kegs. Also, the

-25-

display window moves from in front of the X- register Yo
in front of the ALPHA-register.

"The computer now knaws that you want to
"execute’ a function and that you are now going

to spe“ it out.

NN

S ESSNSIT AT N == ,\;s‘;*‘,~;;;.“‘:‘-\“;~“$§,“-
~—— \ o SRR N RN
.7-&) : \@‘\ y , p é‘ N 9
—_—— _.l' —_— N ‘. N) 7 YD
A N NS
:.v_'.;'_: \/ \\/ '/ - , BN N 'f LN
- 4 % A
L - #‘7 S = "f% s
2 2. 02 ya ..@,- PR <A
2w IR e
-y —a (Y N2
e £ =)
i .?g“)

A
[tigame
a 1A

a0 e

i
R
[

Wl
i

i
AL

T

7.
]
b

T2 &

nthe word BEEP? But,
wait @ minute ! Uhlj would you ever spell it out when
there 15 a keg waiting to be used. for BEEP?

In this case, of course, you'll spell it because we told.
you to spen . True, it 15 more conuenient o use one of
the keys, it you can. For this reason, \jou'l] find that
the functions Yyou use most often do have keljs of f"\eir

!

So you re going to ké

own.

But the poirt is, when Lou press a key you are telling

- 26-

the HP-4 to execute a function-_just asif you hadl

ALPHA]

spe”eo(out that function name us'm9 the XEG

procedure. And the computer will respond. exactly

the same in either coce.

So a0 ahead and l<e.3 in BEEPR

Your display should nowbe: XEQ BEEP_ | withthe
ALPHA annunciator still on. Turn that annuncioYor

off by pressing the [ALPHA] toggle key once again.

Ir BEeP3/

It's supposed to beeP. Whenever you §inish the

T

ALPHA

proce_dure blj 'l'urn)ng ot§ the ALPHA

annunciator, you are fe\liﬂg the Compu{'er “Heg, HR4|!
Im $inished Jce”)ng you what o do— sodo it 1"

Y.
% ,"\.’,?
2 - - B -
B AT AN
3 RS AN 1Y N\l #3
i 4 ...>DEEPREEP t
~ - 7 P 4 E
» 2 3
RNATIAYE REE BEEP
)
VAP A A AR
-l ALK/

RIS) N
e, €
- '("‘C(\‘;:':I "l-':.

. FERINRY N
NV RS
‘\J"\o“ <

AND IT DoES IT

-27-

Suppose nows that you have some message tn the
disp)ag ard you want to clear that'window’ so that
you can look ’chrough it and. see the X-register or the

ALPHA- regis’c.er (but you dont want to oles{‘roi,; the
contents of that reqister).

Question: How do LYou. doit?

Suppose, then, that you wish to dear the contents
of that register (Xor ALPHA).

Question: How do you do it?

Or what if you are \(eging in a number to the
X-register or a string of ALPHA characters to the
ALPHA-reg'z ster and you make a mistake (keg the
wrong number or letter) ? How do you correct the
mistake without c\earing the entire contents of the

re.sister and s?:ar%'mg over ?

Answer: he answer to all three of these %ues%ions:

VU3E ™E EIKEY

If all this 1s review, proceeol topage 3|,

-28..

As you may have noticed bynow, the only two
registers that the display “Lindow” can"cover” (the
X-register and the ALPHA-register) are also the only
two into which you can olired:\g ke\j data. (Hmmm...)

So the [<] (backarrow) key must be allowed todo

several H-\irgs.

[If You have some’cking (a me5503&) in frort of the d’lsplag
window so that it is blocking your view of the X- or
ALPHA- register, and you want to clear that message

(and only that message), then press (=—l.

Under these circumstances, the [==) means "clear
the Aisp’alj onlg. !
2. I there's nothing "in front” of your displa5 LWindow,
so that you have a clear view of either the X- or ALPHA-

register, then the [&J key means:

"Clear the X- register back to zero” if you re ‘ool(mg
at the X-register.
OR
“Clear the ALPHA-register “ if you re looking at the
ALPHA- register.

-2q-

3 If Hou're inthe process of ke__.,'mg in the digi’cs o
a number or the characters of an ALPHA string,
then the (=] key means: "Delete the last digit or
character keged in.” In other words,

RACKSPACE !

Three different uses: Not bad for one little ke}j!

Also, notice that the gold function written

above the (=] key is CLX/A (clear X /clear ALPHA).
T his means that Bd[=] will either clear the X-

register or the ALPHA-register; depending on where
the display is located at the moment. B (=] wil
always clear a register as well as the display, whereas

‘ust [=] may not clear a reaister-as in cases | and
) Y 3

3 above.

-30-

So, on with more and more functions
How can anyone remember them all? And

how to spe_H them correctl y ?
Suppose you forget that X<>Y has o key of its
oun, and you want to spell it using the [XEQ[ALPRA]

procedure, but you can’t remember how to spell

the name of this function, and you left your
Owners Handbook in Siberia? L;;;f,’}“\\\\%:&?}“,\j} S
Question: What do 3oudo?
a. Lump it
bo Cr‘lj
c. Panic
d. None, orall, of the above

Answer: The answer is d with the "none of the

above“option. Instead, use [[CATALOG 3 (CAT
3) and then stop the listing so that X<>Y shows in
the display.

Now, if you a]reaclg know all about this little
convenience, move dhead to page 3.

-3‘-

Otheruise, ... attend:

The CATALOG function tells the computer to run
brieﬂg *chrougk an internal list. The third such list,
CATALOG 3, ic a list of all the functions. One'b}j"
one, in alphabelzic_a\ order, each function name is
brought, very brieﬂg, in front of the o‘.isplcuj window.

Now, anytime the HP-4! is busﬂg oloing some’c\winﬂ
automatically, and you want to stopit, chances are
that you can do so by pressing [RZS1. This key is the
“run- s‘):op' |<e3 , and it 5 called that because its a
toggle key that alternates meanings between “run” and "stop.”

If you've just executed CAT 3 (CATALOG 3) and
the computer is ripping down the list, and you're
ua)cc_hing brea'l\'\\essll_.s for XY, relax.

First, you don't need anacute sense of timing to
get to the proper entry. 1§ you do choke under the
pressure ard press [R/S] to soon, the list will stop,
of course. But pressing again will re-start it.

Second, once you ve stopped. the list, You can use
the (sing\e-step) and (back-sw‘:ep) kegs to

-32—

step forward or backward, one function name ata time ,

H’\roush the list. You can get anﬂwher‘e, using this
method, in any CATALOG.

-33-

Challenge: Adjust the computer sothat you will
see 9 digits after the decimal point, wherever possible.

Solution: B [FIX] 9

OK ? Next page. —

NO?
Remember, this is all that FIX does. You can FIX

from @ to 9 decimal places, as you wish.

Also, remember that no matter how rmany
decimal places you actually see, the computer still
“knows about” and works with all possible digits (10
al’coge%her).

The HP-4I mer'elg uses the di splag (not any resisfer)
to round as you spe.ciﬂ.i when dxagmg you a rumber;

< ~

Now, remember when we Promised that you would be

able Yo decide how many registers the computer woulc!
have ?

[t's time to learn haw to do Hhis.

Chdlenge: Adjust the total number of data
regis)cers In your computer to 20.

Soluton: XEQ[APHA] ST ZE [ALPHA] @2 Q.
OK ? Move ahead —

Lell then.... SIZE is)'us)c ancther function—one
that demands a 'three_-disi{ argu.mgn%) rather than
the usual 2.

All that SIZE does is move the Par)ci%ion behoeen
the last dota register and the .END. of program
memory. It moves this partition so that you end up
with exactly the number of data registers you
reciuesl:ed.

So, after you ask for 20 data registers, you have 20
of them, namelvj, dota registers DO through 9.

35-

Cha“enge: Recall the cortents of data regis%er Dl to
the X-register.

Solution:

RCL

OK 2

Q|
Move to the next page.

TROUB LE3 2

is the recall key. Uhen you press i, you tell the

HP—L{I to recall some’ckmg to the X-register. The computer
responds bg plac'mg the name of the function (RCL __)
in the displa&. The tuwo blanks bg RCL are the HP-4ls

way orasking you " what register ?" So, you key in

ol

~

)
ik
7

7
7/

77
4/,

7

147
4 ,11

/ ,'l
4

"lll”l'll

i

As scon as you have given it two digits, it ’cakes ofk

and does the job.

C\'\a\‘enge: Store the contents of the X-reg'ts%er
into data regi ster Q2.

Solution: ET0] 02

TOOEASY ! =—>

This is the same idea as RCL— exac.HEj— except
that you use the [STO] ke:j (STO means "store”).

x,"

N

\§

77

NN ‘
~@ §\‘

2

7

-

7
/ 7
i

7 Z
7777
//”’ %
47, /st

N

97

/Z"

NS \\i\ N
\ 3"’1‘" N * <, 2B
\ D= AR NN
D \ NN N \ NN
SRR s e
ST A H A H T T ETTTET T S IAETRAN aES

Notice that, inmanyways, STO and RCL are a
"matched set.” RCL brings a copy of the contents
of the specified register to the X-register. STO sends
a copy of the cntents of the X-register to the specified

r‘eg l S{'ef‘. -37-

Cha\lenge: Recall the contents of the Z-regisw‘:er
to the X- reg; ster.

Solution: RCL[] Z
YAWNING ? Move ahead. —’

NoY SO FAST <
The RCL partisno Prob]em, right ? But then

you have to tell the machine that the regis%er
number its expec’cing (two cligi%s) 15 not Soing to
appear- You re going to sive it a stack regisi‘er instead.
To do this, press the [: ke\j. This changes the
displmj to RCL ST _ . Now the compu’cer 15 expec)c'mg

a STack reg'zs)cer name— a single letter:

Just press the ke»j with the Z on it.

(Don't go into ALPHA mode to gef the Z. The
computer has al r‘ead»j told you with "ST" that it is

expecting a letter)

-38-

Chal \enge Recall the contents of data register @1 to
the X-regzsi‘er but this Eme don't use the [RCL] kenj.

Solution: XEQ] [ALPEA] RCL [ALPHA] @ |
TRIVIALI, Right this way. —D>

Notice that this Proceo(ure uses the exact same

format as when the [RCL] kenj is used.
First tell the computer the name of the function

to execute.

It then o.cknou\edses your request by plac.i ng that
name in the display. Then it prompts you for the
register (i.e., it prompts you for the argument of
the function).

PRESSING THE [REU KEY IS EXACTLY
~ LIKE PRESSING [XEG] [APHA] RCL[ATPRA],

-3q-

Cha”enge: There is a [RU(RDN: roll-down) function on
a ke3 in the second row. There's also a R7 (ro“-up)
function, but it’s not on the keyboard. Execute the

function R/
Solution: XEGI{ALPHA| R / [ALPHA

NO mbtﬁk\s ? Move on ——

The /character isn't Prini’ed in blue on any of the
keys, isit ? Ahbut turn the HP-Hi over.

That little gold picture of the keyboard wias put
there to help you remember what the entire ALPHA
keujboard looks like.. This is what every key and every
shifted keg means when the ALPHA annunciator s on.

The / character is accessed. bﬂ using the
cshifted [N keg.

-L’e-

1sters

t pause to prompt you

!

find the < and > characters ?
ion to take and what reg

XEQI[ALPHA] X < > Y [ALPHA

(it upon.

on

d Yyou manage to

Cha“enge: Execute XY without pressing the
Notice that the computer doesn

XY keg.
Solut
Di

for an argument after you have spelled the name. It

knows exacﬂnj what act

[pemcorm

_1\\...,-\\”‘.4.34wﬁa&ﬁ-@.\\ﬁtﬁw&&m\s&x.é..ae
P B e X 7 . a iy i TN TP RN RO R
BRGNS, PORLX KT XEITXRIEIT AN XX XA X
47 RIS A.,\.v....\o\.,.%/w&“s.\.w.\u&...n SR
.. ' \\.l.wt ovdlt(..ﬂ \ :v..f (,V ‘-s.
A A

: BORNY)

IIIMY

R

\J
S
..\\?:
.

\/

Y ‘dﬁ“ T;Qw\.:f ¢s
) &:2.\.,. .ﬂ...,oa.... X)

SN

A\
OCXX

KA \YG L ATV AR UL N % SQQ—
,?,.."..ﬂ,,w.v,.,..“o‘.,x.....g.(”&.. RO S
DA MR/N , ! O

(% Y OO0
LX) .o.‘ ».»o ORI @so. . ooo;s.p,. ._.._\._. y

—L“ -

Chal \enge: Execute X<> L

Solution: [XEQJALPHA] X < > [ACPHA][-] L
1f you know all this, move ahead. =——pmp

MURKY WATERS ¢

This functions name is just X<>, not X<©>L
(there's no X<>Lin CAT 3).

So you must give the computer the function name
anrd let it qo H'\rough its routine where it pujcs the
name in the display and asks you for the argument. All

it knows is that it is supposed to exchange the contents
of the X-register with that of some cther register.
But, jus)c like STO and RCL, t doesn't know which

regis‘cer until You supplﬂ the argumen% (L inthis

case).

The X<> function is %O%QHH different from XOVY. The
XY function was provicled because itis used so often.
(Yes, you can use the X< function and spec'z{:g STack
Y @Y) as the argument . But why bother ?)

-42-~

Challenge: Execute the function called X€@7? (X

less than or eclual to 2ero 7).

Solution: XEQ][ALPHA] X < = @ 7 |ALPHA

§M“ 60 MZ Goto page 45. e 4
HEMWY SEdsS <

Chances are that if you had problems with this one,

they were:
. The € notation (how to k53 itin?).
2. How to keg in a @ character.

3. Forge‘):\:inﬂ the necessary R

l. Even if you checked the handj-dandg ALPHA
keyboard on the back of your computer; you couldn't
find a character that looks like <, could you ?

BUT, if you checked CAT 3 you fourd X<=0Q7?(in
its proper alphabetical order).

Notice that you dso find X% @72 and this does
ook similar in your display to X<QO7?, but X£Q7
means X#Z @7 (X not e%ual tozero?). | he # (not

-qs_

ecLua} to) sign is on the kegboard.

2. Any of the numerals @ to 9, the decimal point,
and the 53mbo|s +,—,%, and / can be obtained bH
pressing (in ALPHA mode, of course) the shift key
(gold keg) and then the corresponding key. The
ALPHA keyboard on the back shows this dearlﬁ'

3Ifa c‘ues{ion mark were not a part of the function
name, then the 7 would not appear in the CAT 3
er&ra for that function.

Don't forget — the HP-4| will not recognize any
function name that doesn’t e_)@_c_’gl_g match the
function's name as it appears in CAT 3.

_L'l.'-

Cha\\ense: Execute the function FS?C 22.

Solution: [XEQ] [AlPHA] S P [ALPHA] 22

NG SWEBT? Next page —3>
? (Even mild dampness 7)
OWENT ¢ p

You ProbaHH ao’c into trouble with:
. The "?” Don't neg)eci:it.
2. The argumen)c, 22: Uhentokeyitin?

REMEMBER! The name of the function is what
you tel] the HP-4l. Then it asks you for the
argument.,

The name of this function is FS?C, as CAT 3

will show. So that is all you tell the compu%er at
first.

Then it will prom pi' you for the argumen’c (22
in this case) with two cursors.

-L{S-

Cha”enge: Compud:e the sine of 1 radians. (If
you ve never had a trigonometry course, feel free

to s\dp ahead to paqge 49))
Solu‘z‘:ton [XEQBALPHA RAD [AtPHA] [[[SIN)
XO) Movetopage H8. —-—

The HP-HI makes assumptions about the numbers
its asked to work on. In this case, the assumption is
about the angle it works on with the SIN function.

If You see the little rao (radians annunciator) in the

display, that means the number in the X-register is in
radians as far as the HP-4| is concerned. 1§ you see
sam, likewise, the computer assumes the number is in
grads. I§ You don't see any annunciator there, then the
computer is assuming degrees.

You can change what your computer assumes by executing the
appropriate function—RAD, GRAD, or DEG. For this problem,
you execute RAD. Then you brmg T into the X-register
with the Pl function (@ keg) Now, if you press [SIN]
you s\‘\oulol Sef SIN (TT) which 1S Zero.

%-

'BUTWAIT! You didn't get zero! ?!
What s wrong? SIN(m) is zero.

The Prob\em here is that you didn't take the
sine of T (5&5 what ?). You tock the sine of
3.141592654. That is not 1. Thats almost rr. Thats
the first 1@ Jigii‘s of 1.

But m has an infinite number of disi’ts (accorcling
to the latest information). There is po way that any
compu*cer can ever take the sine of exad:]g T, because

a computer can oan work. with so many digifs.

The Po'm)c of all this is not to q’uibb]e about 1, but
to remind Yyou that the HP-4| keeps |@ digi‘cs (whichis
usually more than enough) of any number.

So, no matter how exact you know an ansuer should
be (mathemo?cic.al\g speaking), the computer uses |@
digi{'s of each number involved, and therefore, the last
digit of the final answer may vary from your expectations.
This limitation is characteristic of all computers, but you

wil] seldom need to consider this at all.
-y47~

Challenge:-ﬁke the inverse cosine (or "arc-cosine’) of
the number you 90% as a result for SIN(n). T hen
tell the compu’cer to return its assumpﬁon to DEG rees.

Solution: [€057 (or [XEq]ALPHA] ACOS [ALPHA)) then
XEQ|[ALPHA] DEG [ALPHA

Satisfied? Next page. ———————

Notice that the name of this function (as it appears in

CAT 3) is different than the sn_.jmbo] used for it on the key.
Notice the answer you So’c: .570796327. This is

“almost zm,” Whichis correct, because the cosine of
‘almost £ Tt " radians is “almost zero, and you hod “almost

2ero’ to begin with.

AT e e
ey ¢ BRI X

72 :
NN

o) | A 2 \\\\\\\\Q\
(>—7 C—>
Notice how the radians annunciator disappeared when you
executed DEG. The calculation was done while the HP-A) was

stil] assuming radians, but now itis assuming deqrees.
9 3943

Cha“enge: Rt “TAKE 5" into the ALPHA-regi ster.

Solution: [AlPHA] TAKE [sPaceE] § [ALPHA

Just c)nec\dng to see if you remember how to put
ALPHA data. into the ALPHA-register (as opposed to

spe”ing a function name in the disglag),
If you're hazy atall, go back and revieuw page 20.

(mark. your place here),

Cha\lenge: Look ot the contents of data
register 02 without using the RCL function at all.

Solution:] MEW] Q2

éL B ? Step this way. >

mUD Z Well, VIEW is a “clever” function.

Ty pu’cs a copy of the contents of the indicated
register into the display onlg.

)

_,,,1,,.?7&:,' T /1/7 ;/ (4
77
// /

In other words, VIEW puts those contents “in
front” of the display “window, so you can no longer
see “through” the “window” into the X- register.

-sa—

Challenge: Put the contents of data register D3 into the
A_PHA-regis)cer.

Solution: [ALPHA /18 ARCH D3 [A ﬁ
IFTHIS 1s HAT roeon —.

“VEW HAT

It happens that when you are in ALPHA mode (that is-when
the computer is in ALPHAmaode), not dllof the kegs change
their meanings to ALPHA characters, Some of them
change to different functions, and some of them don't
c.\'xange atall, The handﬂ-dandﬁ ALPHA keﬂboard onthe
back of the HP-4| shows these functions in white.

The function you just executed is "ALPHA-recall,” ARCL.
Now, put the HP-4| back into ALPHA mode to see Lhat happened.

Notice that the contents of reg'xs)cer D3 were added
to the characters that were oJreaAg in the ALPHA- regis%er
(remely, TAKE 5)

Cka“enae: Recall the contents of the X- register to

the ALPHA- regisi'er.

X [P

ARCL

*ﬁ

ALPHA

ﬂs’\:

l

So
O

3

yO

Jd L
5 o
c~
43
J . P
L VRS e T
Y ° .
5 2 d
- g
g £ g
.%J Ioww L
Y Vv :
n o - P
g 585K
-~ 4 -
2 £33 5[7
S g :
> 3§ 8
= S p) Jd K
R
cC /
g g 3 FW
4 ¥ o \
Nl ..m \..m 3
I\m \.m c — WJ ’
5 &g 5 £
g 3 £ B
x E <C . £ !
o
2 ¥ &

Chadl lenge Arrange {hings so that you are \ook'ma ok the
contents of the ALPHA-register... withouk bemg in
ALPHA mode.

Solution: XEQ[ALPHA] AV/TEW/ (ALPHA

QUESTI ON.S ? No?—

YESS

Just like the VIEW function, AVIEW fills the
display so that the register behind the “window’ s no
longer visible. The only difference between VIEW
ard AVIEW is that AVIEW uses the contents of the
ALPHA- register (VIEW uses the contents of data
registers— Including the stack registe rs),

Because there is o doubt about which register AVIEW

is using, it doesn’t need an argurnerct.

Also, notice that AVIEW is onthe ALPHA kegboar‘d.
You can execute it that way. (However, the \(egboord
function could not be used to solve the cho“enge as we
poseA it. T;'Lj it and Bou’n see u\'\g)

-5 3-

C\\a\\enge: Add, thatis, ggp_e_gi the characters "ABC”
o those a\readtj inthe ALPHA- regis)cen

Solution: [APHA] [, [APPEND] A RC [AtPHA

APPEND is a keg on the ALPHA keyboard (because
it pertains to the ALPHA—regisizer). Lhen you prese
the APPEND key, the HP-4] is instructed to “pretend”
that you are suclo{enlﬂ in the middle of an ALPHA
data entry— as if you had just entered. the current
contents of the ALPHA- register.

Then, you can add characters simply by spelling
them out , or you can delete characters, one-bg-one,

W T T T L N T AT T N, TN, o e v T YA T T AT e
S O SRS IO OISO \‘0\ R R R R e I R R RO DY R IR RIRES

R ORI R R IR SRR R IORDRG AR RN
R RS KRN
R ,

o7 A7
4 / /) e

NIV O PN VITIVAVEE ¢

T ST TR,
RN '.'«“‘”o\vo‘.»c?‘.
/ e

K5/
)

~54-

Cha“enge: Key the number |, 0Q@, QD@ inko the

X-regis’cer without using the

Solution: [EEX] [&

|

or (D (zero) kegs.

numbers in powers o 0.

EEX] means " enter exponent;” and it is used to express

So, 10°=|*|Q°= l, Q00,202 (note the six zeros),
and this represents the amount of money, in dollars,
that we Plan on maddng 55 L.JriJcing this book.

For ancther examp'e, .35 %1073 = 0.00135, ard

You would. kenj tinas U

-] (3] (51 [EEX] [3] [CHY)

Notice that when you press [EEX] before any

number ke_.l (as in the above solution), the computer

puts a one (I) in for you. [he keystrokes [TEEXI[C

are the same as J'usi: EEX

ol

One more thing: You may sometimes see a number

like 8.2 *1@% written as 8.2 E8, (The E stands

for "expone nt.")

-55-

Notes

l. The on)3 way Yo rell the HP-4! that You are
Sped ﬁj;m\? Q fund'/‘om name - rqther than s/'mp/b

kcyi;z?fzn a bunch. of characters to the ALPHA-

registér = is to vse the [XZ@_]&%

So, you've seen some kegsiroke combinations,
the kegs are alreo.olg ge’c)cing some individual

Persona)i{'ies.

But let's talk ’curkeﬂ, here.

and

No calculator is worth its weight in

Penci\ lead. if you cant use it effectively

jus’c to do arithmetic. So...

///\\\ _______

“.‘ »AARANIEA2.

v Em e~ - =

=1 lrﬂ,,.ﬂm f-r S

---.1‘ /./9

W//g NS

_57-

¥yYow
STACK

'~

=

Yo _' XN\ /N ‘ AN
ww ; \\ww\\,u.n\.w,.&%\ e Lo\',w \w\) /
9 /Ih e o .
L SIS,
D .!f:«?.#r’ﬁ,\l s "’/ LKL A
| R RO ZANSO KA
\.f . ,J.o..lun .,IO..» o .\v//,v,wlsn&oooo 2R
e.. 'ut\.h“n <\ ..~, L\.‘.\o \
%) AR
87 R o
() ¢ RO KA
o i % .’/ 4 o‘v\ »
”....' S LXK
.‘”\ \
.o’
7
Y

vw;“:‘
I,

34

AT ET =
"0" ::

<
-

o
>

<
S

X

S (
N’ AP
m.m%‘ ///v/\\ <
‘\.ll ’ / P \
r,.ww N »“h\ \\...4
woﬂc% i /,/%6., N7 .\,mc%m\\..nuu.,wqw&ﬂ..\ ve.
O / AN $1 0%\ WA
555 S R
O
X X ..? AN N0 48,05 8%
1 AN s
X S AU,
B IO SRNR
ot ek
D0 0e

23 RN
y/ 0—;,...» \\@&\M‘ \!0\ (Q\\’OOQ\'I\\’ 0500"05
0 RO X IRORMRCIOR N

g \%® 0K OO Qa:so SO BN A

3 X QA IO AR SAX NI .
W e XK XN XD R AN
o a0, aﬁo.\O#O /OO"\.\\O‘\I*\\\.oo\.\.».s..f;'

8\ () &..JRQW%«J\W&&M.\AW\%O“Q&Q\\%ﬁs ORON PO

R PR

,"? \)
J‘»

&
/
/
———

X

>]

Ny
S
ol

7 A

AN
'A%A

——
-

SO

S
Sy

—
&

N
e

SO SLAA

-58-~

The stack is a special set of five data. reqisters thak
is found on most HP calculators. This stack is what
makes HP calculators so much eosier to use than the
other leading brands. The main reason HP calculators
are easier to use is that when 5ou're doi nq \ength\j
calculations, your intermediate results get saved Sor
you automatically thusyou arent forced to use

pareritheses to grind through a. big, fat, hairy equation.

So, how does it work P Well, the Ouner's Handbook
often refers to a block diagram that locks like this:

P4

Y
X

L

This 1s an excellent way to picture the stack inyour
rmind, so we will use this method, too. Also, let's agree
that , unless we specifically mention the L—register)
we will be referri rq to the X, Y; £, and T-registers when

we use the word " stack.”
-sq—

Now, as you remember (from page 19), WHENEVER
you keg in a number, you are keﬂing & into the X-resis’cer.

ALL NUMBERS ARE KEYED INTO THE X-REGISTER

Once Bou’ve, put a number into the X-register,
THEN you can store it or add. it , etc.

Cha“ense'. Set up the X-,Y-,Z-, andT"regisi'ers

as S’O) ‘OUS.

_..8__|T
. <2
LY Vi S |

3.4 X

Solution: 8 ENTER 6.9 [ENTER} |2.4 [ENTER|3.9

Now, it Lou thoroughly understand this, and you
truly want to skip a fine discussion oy ENTERland
[CX, then go ahead. to page 6.

OTHEBWISE —

-be_

So, what is the famous ENTER] key ? Well, before we
get to that, there is a certain phrase we'll need to

use:

STHCK-LIFT

Stack-lift is the process by which each of the
values in the stack get lifted. one notch.

T
Z
Y
X

"

To never-never land (gone §or good)

/
—

T
Z

IR
X

Notice that the orisina\ value in the T-register 1S

gone Sor goocl after a stack-lift.

P
».
T

“But when does this stack-lift happen? How do L
know whether it's going to happen when 1 \<e5 ina
number ?”

Well, it the stack-lift does occur when you key in
a number, that means it was readg'o.nol- able to do
0. We say stock-lift was “enabled.”

But, if the stack doesn't lift whenyou key ina

number, then we sy stack-litt was “disabled.’

So, the question you're reo\lﬂ asl{mg 1s: “Howdo I

know when stack-lift is enabled and when it is
disabled (i.e., when the stack is lﬁig to lift and when
it's not) ?"

You should use this rule: There are only tuo things
you will commonly do to the computer to DLSable
stack-lift. Those are:

press [ENTER]
or press [CLX],

Now we're r‘eads to discuse ENTER], ——>

-2~

“So, the ENTER function leaveg stack-li§t
DISabled ; rig\'ﬂ: ? LJhat else does itdo?”
It does two things (in this order):

|. First, it pgdg_cma a stack-lift.

2. Then, it disables stack-lift.

Look at the §irst tuwo s%eps \n our solution.

_ 7a__ T T T T T
e _|Z |2 __fa_|2
e |Y Lt _|Y .8 __|Y

% x 8)x 8 x

L— 8 L ENTER)—)

(2 means: “We don’t know what's in there, and we don’t care”)

The §irst sheP 1s to kexj-in the number 8. No mxjsteg,
rig\\t ? It goes into the X—registe.r.

Now, when we press [ENTER], a stack-lift is
gr‘;ormgi (reaarolless of whether stack-lift was
enabled or dicabled). So our stack is lifted. That
s, a CopY of the 8 is sent o the Y—reg\ster; and,

the oi'her values are bumped up one notc}\.

-63-

Now ENTER] also disables stack-lift, so that if the
next step is one where a number is recalled or
keyed in to the X-register, the stack won't lift.
The value formerly in the X- register just gets

replaced by the new value, and the other
registers aren’t touched.

o T e |T
Lt |2 I S P4
.8 Y Y - Y | ¢
8 X 69 |X
L eq—T
Watch once again:
___:P_A__-T ___T.?_c_;___T ____?_u___T _-__}?__:___T
7 |2 R v 4 a2 | __Pa_ |2
I) __%a___|Y I =T) ¢ . 8__]Y
Pa|X 8 |Xx 8 X 6.9 |X

L——u8 T\ :ENTER: T)Q.C’—J

Think about it this way: [ENTE makes a copy of the
X—regisi:er in the Y-regisfer and bumps everﬂﬂ'\ina
else up one notch (lifts the stack). But that value in
the X-register Is a sitting duck if the next step
performed is a recall (RCL) or the keying-in of another

number:

Here is a comp\e’ce diasram of the sdlution to the
last dna”ense. Studtj 1t until Bou're_ comfortable

with the ENTER function.

____?_d___T ___:?_f_:.___T ____?_b___T % T
| __fe__|Z e _ |2 L __fa_]Z | __Pa_|Z
___De__|Y L Y L8 Y L_._.8__][Y
Pa__ X 8 |X 8 X 9 |X
l) L — ENTER]—T L— éq__f‘
e T [T [L.e. T [L.8.]T
__.8_.|Z8._|Z | __e:A (2 | _ea_ |2
__e.4__|Y | __6:4_|Y |2 Y IV T) {
6.9 |X 1.4 X 125 |X 39 x

-65-

While we're on the subject of disabling stack-lift,
let's mention |CLX

CLX also does two l:kings.
. It replaces the number in the X-register

with a 2ero - without o\is‘):urbirB an_g’c)'\'er
else.

2. Tt disables stack-lift.

So, both ENTER and CLX |eave stack-lift
disabled. But \:heg both do very different '\:hinss
before that:

ENTER disturbs the whdle stack..

CLX disturbs onlg the X-register,

o

T RS
RSN
\\\§§§\\‘\\\ o

functions that leave stack-lift dicabled.

-bb—

Your stack should Jook like this:
.8 T
oa |z
a4 Y
3.9 |x

Cha\lenge: Replace the 6.9 inthe Z-register with
a 5.5,

So)ution Here 's one oF man5 solutions: [R¢
X<>Y XOY Q][ALPHA] R72 LPH

?IECI OF CA“EzTrg a bigger piece (page &9).

So here are more useful functions for

manipu\o.%:ing the stack, rig‘ht P

| ook at the stack diaﬂmms on the next poge
and observe how these functions accomplis\h

their task. Lt will be easy Sor you o see w)'tg

we cal| them “roll-up”(R1), “roll-down” (RY) , ard
“X exchange Y (XOY).

-6(—

8o v [34a_]v [34_]t [.39_]T
4 |z [8elz [8o |z [.s.@_|z
122470y [Ceq]y [2AYy [ozAl Y
3.9 X 12.4 |X 0.9 |X X
———»———TL—-> XOY —JL—>‘CLX ——3}

.. 3.9_|T 3.9 |T (. 8.2]T

8.9 |z . 8.2 |Z | _5.5__|Z

1241y __5.5_Y 124 Y
4! 5.5 x 12."" X 3-q X
5.5 71 , ks o I R»r__s

Remember, RT is not on the keyboard)so you. use

the (XEQ]ALPHA] proceclure.

Now, what would happen it you Pressed D2
ofter EX1? Lhat Lould the stack look like after
you keged in 557

Well, pressing [ST5] @2 wsould store @.0 in
register @2 and leave stack-litt enabled. After
ke3'm8 in 5.5, the stack would lodk like this:

8.0|T
2.4 |2
0.9 |Y

fos = - - — - -

5.5 |X

Since Q2 leaves stack-lift endbled, the stack
would lift when you keBed in 5.5, Every common
function except ENTERard CLX leaves stadk-lift enabled.

-68-

Your stack is now set up like this:

.82 1T
.55 |2
124 Y

39 X

Chal\enge-. Let's reverse the order of the values
in the stack.

Solution: There are many ways to accomp]is)w

this, the most straightforward of which is
Pmbab\}j‘ RY XOY RUXOYIRY.

If this settles well with you, move on ahead.
Otheruise, Follow the step-by-step solution belou;
then take a break. When you return, re-read. from

a c,ouple FIJ-SQ% tD.Ck.
80 T [3a]t [34a v [B5_]T
"8.5 0z [[Be]z [Be lz [[34]
MY T I A 4 | _S5.5_|Y N Y _8.@ Y
3.9 X 120.49 |X 5.5 X 2.4 |X
— R— - E—

 [zAT [2a T [3a]r

55 |z [[85 0z [xA]z

34y [[&oy [[55_]Y

¥ 8.2 |X 3.9 |Xx 8.0 |X

Your stack is set-up like this:
3.9 |T

2.4 |2

5.5 |Y

8.0 | X

Question: What is the value in the Y—register'
oSter you press L+ ? The T-resister?

Ansuer: After you press [H, the stack looks

like this: 3.9 T
___3:.9_12

2.4 Y

3.5 X

OK? Go To PAGE 72

The functions +, —, %, +, and y* opera?:e_ on the
X-ard Y-registers. That is, theB take the value in
the X- register and the value in the Y-register and
combine them as specified by the function.

The result stags in the X-register and the
stack “drops.” The value in the Z-reqister drops
to the Y—regisi:e,r, and the value in the T-regis’cer
dmps Yo the Z- r‘eg'zs’cer‘.

-70-

Note that the value inthe Tregister stays
the same.

The y* function is named so that it
tells you what it's oloing. From the name, you
can see thot it raises the value in the Y'reg'tstef‘
o the power of the walue in the X-registen If
2 is the wvalue in the Yregister and 3is inthe
X—regis’cer, then pressing [will return an 8
(Uhich is 2%) to the X-register.

It would be nice if E and &) were named in
a similar manner because in thege functions,
the order of Y and x is important. The(=]
function could be named Y-x, and the divide

function could be named. ¥x, because these
names would be more deccriptive. But that
lon't how ’cheg 're named, so just remermber:

=] means Y-X (the number in
the Y-register minus the number in the X—regxs%er)

= means 7x

Your stack is set-u.P like this:

3.9 T
_3.9_12
124 Y .
13.5 X and}jouve Just come

from the last cha\lense (a. couple pages back).

Cha“erge: Ui thout tou.c}'dns any of the
number keys, get the 8.@ (that used to be
in the X—re,gister) back into the X—reaister.

Solution: [Ms] [EASTX]
Are you comfortable with the L- reqister 7
Go to page TH.

Are you t\ninking,“ What-in-L is the L-re_gisi‘er? g
Lell, allow us to introduce you to this unique

member of the stack.

1
X<N-{

~72-

The L-register is where the last X-value ie
automatically saved after the execution of many
functions that operate on (or chcmge) X. So,

if you wish to recover the last X-value, just
Press F’\i LASTX.

Most functions that c,hange numbers (ltke +
%, COS, ¥*,...) save x in the L-reqister. But
functions that move numbers around (like STO,
RCL, X0Y, RT,...) dongt save x in the
L-register.

In the Owner's Handbook) around page 25@,
there's a list of the functions which tells whether
theg save x (the number in the X—register) in the
L-resister. 15 you're wondering about a particular

function, that's the place to look.
/<\’ ~ ;\ED{ < N A

>< ((\}: ‘L
Z
Vi s
N rusaieia
N L
<7, I il iy

Now we are going to supplﬂ you with a few more
challenges to hel P you oleuelop a'feel” for the stack.
It will take a little time before all the motions
become automatic. But now you know when to use
ENTER and when ENTER isn’t necessary. Plus,
you know that many intermediate answers are
o.w‘coma’cica”y saved in the stack.

Take a few deep breaths, and relax before you
Proceeol. (A lotus position, somewhere close to
the center of your livinsroom, may be appropria’te
while working the next few pages.)

Chal lenge: Using oan the stack (no paper or
numbered data registers), calculate the answer:

q+ [37"‘(5.*7) - 72.
q*(l31-5) (Looks touah,dmn'tit?)

Solution: 3.955395944
If you got that answer the first time and you

don’t want to look at the step-by-step solution
to this problem, then skip ahead to page 74,

5 S SEF
e I
=

Cha\\enge'. Evaluate /3+(5%7) =72

Solution: 3[ENTER] 5 ENTER] 7 ¥ [H [*] 72 (=
and the stack looks like this, step-b}j-step.

e T e (T e T __fa_|T
e |2 | __Pa_]Z | __Pa_lZ [__3__|Z
P 1Y 3 __1Y L __3__1Y ___5__]Y
3 X X 5 X 5 X
3—3\— [ENTER]—4— § fL—,m—U
;
___:?_A___ T ____‘?_Q___ T ____?_Q.___ T ____?G_-_ T
3 12 | __fa__|Z | Pa_|Z I 4
B Y L3 Y L Za Y L? a_|Y
L7« 35 x 38 | X 6. 16 | X
7—1 - k| —TF L — [F 3., [(X|l—T
[Pa_|T | _Pa _|T
| __Pa_|Z | ?a |2
L _6.16_|Y | __Za _|Y
\’ 72 |x =05.84 | X

Notice that the stack litts when you key in 72,
but it doesn’t lift when you keB nthe 5 or the 7.
It you don't understand. why the stack lifts in one.
case and doesn't in the other, review page 6b.

-76~

C\’\auenge: Com{na from the last page, evaluate

/38 -(2
9 *()13*-5)
Solution: 9 ENTER] |3 (*lLASE X [=
And the stack ? Well, it looks like this:
| __Pa__|T _2a_ T [2 _]T [_Za_]T
| __fa_|Z | __Ta___|Z 65.84_ |Z _-65.84 |Z
% _|Y | _T6e5.84]Y I) { .9 __|Y
v38-72 | X 9 X q X 13 X
72, |L 72 |L T2 L 72 | L
g T — 13—
o T | _765.84 (T | 6584 |T | 765.84 |T
| _-65.84(Z ___a __12 | -65.84 (2 _-6S.84 |2
__a__]Y __lea _ Y 8. __ Y __-65.841Y
169 X 5 X {64 X IH76 |X
3 L i3 L 5 L eq L
X% 7L > 5 JL___) —_ L y [_TJ
—
| -es.84 |T
| "65.84 |2
| -65.84 |Y
-Q.24 |X
v 1H76 |L
o7

We 're showing ‘rounded-of§" versions of the

numbers. |heres reaHB %) digi’cs in each register.

-7 '{..

Cha‘\enge: Now add A to the last result.

Solution: 4 Hl, and the answer is 3. 955395944,
Now, go back to page 75 and. work that chal fenﬂe.

BoMis QUESTION:

WHATS Iv THIE
L-REGISTER ¢

‘(purnouro Bugddp\s 240 oym Ss3309Yd noh
3d=ox3) sbod 1xeu ay3 o3 U0 ancw ‘Mo sopuim,

ﬁvldsgp 9Y3 4O 07 ssa.d uwayr ‘(M G

AR) 1 MITA e pimos noy e3sibeu - unoh ur
S UM DBt OU A0y 2 puyy (BuIReY> Ao noh ‘squted
snuoq 3y og. punao buiddoys 3snf aro moh g1 Usnemoy
0OV QDQD I SUOFUd J‘aa(sgga.&:‘ Y U3y ‘ 3bad

SR o egua”otp 3y PIP asnf noh 51 ‘([om Hemsuyy

-78-

Cha]\ense: Calculate A. (¥5)*
B. (35)°

Solution: A. 3 [ENTER]5E 3]y 9'lve5 Q.843
B. 3 [ENTER]ISE 3T gves D.216

Uhvj don't we press [ENTER after = P Would it
make a difference if we did press ?

The reason we don't press ENTER] here is because
stack-lift is left enabled by the (& function. The
only difference that would result by pressing
ENTER] here is that we would have pressed an
unnecessary key. Thus, we sould have wasted
an essential fraction-of-a-second of our lives

(not good). [ENTER leaves stack-litt disabled, so
the extra would have ro effect on the

result.

Challenge: Let's say that you have a list of |00
numbers that starts out 3.96, 5.12, 4.4, 10.61,...,
and you need to divide each of these numbers by
40 (the same as multiplying by Q.025). Making use of
the fact that the T-register doesn't change when
the stack ucirops," outline an easy way to accomplis)\

this task.

Solution: First, fill the stack with @.@25
(HO[A] [ENTER]), then use this sequence:

?.025|T 2.025|T 2.225|T | _2:225|T
(@025 |z [@e25]|z [@.ex5|z | _o.025]Z
| _@.@25 |Y __@.025 |Y | 2,225 |Y | _2.925 |Y

3.90 |X @.094 | X Q.20 X 5.1%L |X

396~ — B— — [—— 5.12—|

__2.025 |T _2.e25 |T | _2.225|T | _@.225|T

__2:225 |Z _0.225 |Z | _2.225 |2 | ®.925 12

__2.025 |Y _2.225 |Y __2.225 |Y __0.225 |Y
@.128 |X .02 | X .91 (X | @.248 X

5imi|arl3, if you had a list of numbers that you
wanted to subtract 3 from, you could fill up the

stack with =3's and use |H.

- 80-

TEST

. Without usmg the [ENTE keH, configure the stack

as such

w
g
< <N

2. Using the numbers in the stack from the above

problem (don't key in any numbers), compute:

(3.5-2.2)+4.7
.6

3. Compute (45% COS (45 °))"3 (the little ® means

'degrees -

EQ][ALPHA] DEG[ALPHA)])

H. True or false? The sequence [CtX] @ [CLX] @

CLX

1%

CLX

QD will egec.’cwelg clear the stack-

regzs):ers X,Y, Z, and T.

-8]...

éyswts.s

l)) 6 Xo0Y]IX0Y] 3.5 LPHA] 2.2
0] 4.7 is one posszbllchH The trick here is

that the execution of almost any function cther

than ENTER or CLX) leaves stack-lift enabled.
Thus, when you do something like XEQ] RAD (or
even press XEQ), thenl=lto clear it o.uag) the

cnmpw‘:er assumes 3ou're done k853n3 in the

Previous numbel; and stack-lift is enabled.

z) Ry (SFJFRES)(AFRA| R [APRAl) (FOYIEl= 3.9938

3) 45 [Co8) (%) TR 3(E [l 71 = 3. 16883

“l) False; CLX leaves stack-lift disabled, so the
zeros are rnot pusheo(up into the <tack. Though
it's rarely necessary, you can clear the stack by

executing the function CLST, or you can dear
it by pressing © [ENTER)[ENTER|ENTER],

- 82__

Paeview PBOBLEA)

You are given a list of 1@ data shown below,
and you know from your previous studies of latin
that a datum is | piece of data. Your mission,
should you choose to accept it, is to run each

datum throu.gh the formula:
32+ (q" ilﬁ:“m‘)7(datum)z.

What keHstrokes would you use each time?

Data: 25, 44, 64, 12, 3, 9, 5, 26, 31, 33

I — %’ % [7 7
/// // >
/////?/// 3 77 7 7
|Z//5/////i \l | D . ;
| e =0 o

.

Answer: Bk Jrasd®]q 6] 44 [=] 76 32+

(Whew!)

If we run the first datum through these keystrokes,
the stack looks like thic:

e T 2 _|T % _|T e T
v _|Z 12 | __ta___|Z ela_|Z
__Pa__ Y e Y 625 Y __625 _|Y
25 X 625 |X 25 X 5 X
P4 L 25 |L 25 |L 25 L
25— — X —I'— aax] —b— (x| —7
—
__Pa__|T P T [__Pa_|T ot T
| _625 |2 | __2a_|Z | 625 _|Z ___Ta__|Z
S __|Y | 625 _ Y __A45__1Y _ 625 _|Y
q X 45 |IX 4y X 1.@223 | X
25 L 3L q_ L o5 L
q— L [T 4y I = __J'J
1h
| __Za__|T | __Za__ T P T [__Fa _|T
625__ |Z | __a__|Z | __Ja__|Z __2a__12
1023 1Y 625 _|Y | __Za__ Y _ 731474
7 X 1170 | X 731.47% | X 32 X
Jaa_ ¢ 7 L 170 L 170 L
7T—IL 5 7 r s —T 32__3J
—
_-__??:.-_12' Now, qo ahead and. run each datum
-t .) .
| __ e _ 1Y t\'xrough this se%uence (that 5 nine more).
763.974 | X)
\C3z. HINT: If you read ghead first, youll
+ find an easy, timesaving way to do thie.

-sq-

W
WLt %
” N RS

a&) 0&/&@

A

A
v

-

"‘! \
A\

'D
Ol
ey}
) \

A < '/%.u) "
NP |

H7
0
LGS

J

4

&%
0’;

Q

X

L%o.mo a\ h ,/.04‘5 R
O RIEOTRI AN
AR RIRRREOIRORRER

-85-

In the Preview problem, You were faced with a list of
data. that youhad o run, piece-by-piece, number-hﬂ-number;
through a sequence of kegs‘trokes. The result that you
got from the keystroke sequence. wiill depend on the orisinal
number: In otherwords, each unique number input to the
sequence of keystrokes will return q unique output.

The input is the number that enters a. process, and
the output is the number that results from that

process. In the above case, the process s the sequence

of keystrokes,
We could substitute the word * proaram" for the

word, * process,” because what is a program but a
process that is carried out EH you ard the compu)cer ?
So the keystroke sequence is a program.

It may come as quite a shock 1o you when you realize
that You have ol readl.j created a program. The keHS‘).‘ml(e_
sequence you clevelopeci as a solution to the preview
problem i a. program.

At the preser‘&, this program is recorded. in your
mind (and a couple pages back), When You work. i—hrouﬁh

-86-

the)Cormula:

7
32+(q—>£:4"2l*“"‘) (datum)* ,
?zrs’c, You must "call uP" ’che program in Your mind. and)

with the he]p of your §ir‘gers , ork ’c\'\rough 1, SJCeP-bH—
step, starting with X3 and ending withH.

BUT....
ERE IS A BETTER WAY.

Uhﬂ clutter Lour mind. with the numerous kegs’cmke

sequences reqbdred Yo resalve your common mathematical

prob\ems? Uhg not @&L@g@gﬁm&s in the
continuous memory of the powemcu) HP-4| 72

GIVE IT A

TRY

- 87-

Challenge: Key in a program that you can use to

solve the equa’cion:]
(ou’cpu’c):' 32+ (%9—5&) (input)z
Before we spell out the solution to this challenge, we

will describe a couple of things that everyone should
know about program mode on the HP-4I.

PROGRAN) POINTER

First, we will describe the program Poini-er. This

pointer is what the compufer uses to remember
where it is in progrom memory. There is onlyone
program pointer, and the HP-HI always knows where
it is. The HP-4l users, however, are oocasiona“lj
ursure of the position of the program Po'mlrer. But
this uncer’cain{'g is easil y remedied baﬂ going into
program mode and looking ot the olisplaﬂ.

When you turn on the HP-4l, it wdkes Up N
what's called "RUN mode.” To put the HP-A| into
program mode, press PRGMI. To put the computer back
into RUN mode, press PRGM) aguin . [PREM is a togale kelj.

-88-

For now, you need to position the program poin)cer
to the end of program memory. The easiest way todo
this is just [GIAI][], The HP-4] will displcuj

PACKING for a short while.
SIZE
Next, Pui' the HP-4| into program mode. The d}splag

shows: @@ REG nnn, where nnn 1s some two- or

three-digit number. The number nnn shows you
how many empbj registers thot you have dlocated
for programming, If nnn s QO, you have no room
allocated for sﬁ)ring program lines.

Go {—\nmug\n this exercize to set the number of pragram
regis%ers to 1@. First, XEQ "SIZE" @00 (from nowon,
quote marks (") in kegs{roke and program)ns?:mss mean
[AIPHA] and they correspond to the T in the dzsplad)

SIZE @@ means that you have no memory
dllocated to dato. registers. Get imto RUN mode and press
ST0] DQ@. You wiil] get the message. NONEXISTENT. Data
register D@ doesn't exist because it is not a\\oca’cecl.Trg
STO @2. You get arcther NONEXISTENT. You have

-Sq..

no memory allocated to data resis’cers.

Go into programmode ard the display will show
@D REG nnn. Since you have no memory allocated

o data regis)cers, all your memory is allocated to

program storage. For our purposes, set nnn ecgua] to

|@ b‘:i the Fo“owing sequence:

XEQ "SIZE" (nnn-10).
So, if nnn =046, you set the SIZE to 036.

»

P N NEALSTENE X

SRS E NN
ks

- ~ ' ,7/.-—‘ N

G S]
'

7 7 7
. =

.

D

7

7]

’gé'*?/ i
THE PERWAVENT END,
Fress the [SST] key. The display will shows
.END. REG

@. This is the permanent END of program

memory, This is the ﬁ‘ﬁng Hhat you move around. when
you. XEQ "SIZE." The .. preceding and ?o“ouir-g

the permanent .END. disﬁnguish it from a
regl.dar program END (keep r‘eadmﬂ)

-99

Your memory is now set up like this:

Prosram Memory
(10 empty resistcrs)

ram —»| .END.
pointer

Data registers

(nnn-l@ of them)

Notice that the program pointer is Pos't‘cionedto
the permanent END. ofF progrom memory, and this is
what appears in the display, So, in oddition to the X-
and. ALPHA-register; the display “window’ can be
positioned over any line in program memory, as directed
bﬂ the program pointer.

Nou, key in [] ©@@. This moves the program
pointer back to line @@. The Jisp’aﬂ dows @D REG 10.

_q,.—

Here is the solution to the Previousl y posed

challenge; this is one program you can use to solve

: 7
(output)= 32+ (3—@1&;—) (input)®

(notice that this is the same e%uo:):ion we referred. to in
the preview Prob\e.m).

the equation:

Be sure that your c,ompud:er is in program mode !

Keg;in Di_s'pla&
By "FIRST” @I LBLTFIRST
[X7] QL X2
LASTX @3 LAST X
] @4 SQRT
g @5 9
* QD6 *
44 Q7 44
£ 08 /
4 @9 7
y* @ Y’X
% |
32 2 32
¥ 3 +

Remember, the cLuo’ce marks around the FIRST in

line @I mean: press the APHA key.
-q2-

So,up o nous, we ve shown that the oan ’ching you
have todo to writea program to solve the equcﬂ:ion:

(outpud:)z 32+ (C]JL;E‘):(;“P‘*{)I

is Yo figure out the keystrokes necessary to get an
answer, put the computer into program mode | key in
a label, and then go through the kegs%&es. Notice
that, except for the label ot line @1, the keystrokes
for the program FIRST are identical to the
kegs)crokes orisinal]3 Aeue\opecl to solve this e%uafzon
in the preview problem.

The LBL we put at line @l s impor)can% and it is
always good to put a LBL of more than one letter as
one line of any program. This allows you to access (cal 1)
the program using GTO or XEQ. LBl's are
discussed. in more detail later. But, for now, remember

that o LBL of more than one letter should alu.mja
be included ina program.

Finish off the program bnj Press'mg [GTOI[-][].
This places a normal END (different than the

-q3-

permanent .END.) at the end of the program FIRST.
And it positions the program poin{er to the end of

progrom memory.

Your memory looks like this:

Pr%rqm M e mOﬂ
(7 empty registers)

N FIRST
LBLTFIRST ote that the prosm.m IRS
. takes up about 3 registers o%
program memory.

END

r
progrom —| 00 Line @@ is aluays there as the
POln’(er' "ENBS T

fiest line of every program,

Data regi stere
(nn-10 of them)

"7 8
/]
0

Whenever you see the Permanen\: .END. in your
disp\atj, your program pointer 1S Posi):ioned to the last
program In memory. There is onhj one .END. and it
appears at the end of the last program in memory,

There can be numerous normal END's in memory.
The normal END separates one program from another
program. I} Your program pointer is posi{ioned to one
program and you want to jump to another program,

you have to call a lobel in the other pregram.

= - I
/il L) o ,// -~ } e //// d
/ L) E /‘,/ \\ /'/' '//, - P ’) /
A\ K ey / co T s
S 5 . /7 7
4 P e O N | VA
z ? . , / /
e y / g
7 N) S /
\ \\\ ’ / n
v % ////@
7 \ P 4
, / ‘ -
Ve / d - e
/.’/ﬁ//\ ’f’ \\" // / /,/ // /// //,, "
/ \& \ ya
» AUNCINUIL S /
| ‘ R
/ \\ mé
0 § /
c,/\\ SO \\\.L\ Vs /
N >
// g
. _— .

Question: Inrunmode, what are two ways to posijdon

the program pointer to line @@ of the current
Program?

Answer: [GTO] 1] Q@ or [KIN

Lhen you are Posi’cioned toa program, you can
aluags move the Pom)cer to any line of that program 53

using the [GTO] kea sequence. . This works negard\ess
of whether you are in program mode or run mede. So,
if you want to go to line 20, keﬂ GTo][+] ©2Q. Toao
to line 125, key [GMOI[]125.

When youare in run mode, the [BTN] function sends
the program pointer to line @@ of the current program,

QuUIZ

. What are tuwo ways todetermine where the program
pointer is in program memorg?

2. The formula for the volume of a sphere is 3 R?, where
R is the radius of the sphere. Write a program o compute
the volume of a sp)'\ere given its radius. T hat 1s, write a
program to solve the eq)qucion: ou‘cpujc = %*n* (inpui?.

3. How many Permanen’c .END.’s are there in program
memors?

H. What happens when you are in program mode, Yyou've
just finished keying in a program, the END is showing in
the dlsplaﬂ, and you press the [SST] key?

5. What \nappens when you press [CTOI L 7

6. Urite a program to take the value in regqister D3,
divide it bnj the value in register @4, and add that
to 4 times the value in register Q2.

7. True or false ? The disPlag “window’ can be
positioned oan over the X- or ALPHA-register.

AMSWERS

| The first way to determine where the program pointer

IS In program memory is to press the [PRGM kea to put the
HP-4l into program mode. The line number that is in the
display is where the program pointer is.

There is ancther way that we haven 't mentioned
yet, and that is to press and hold down either the [SST)
l<e3 or the keﬁ. The line to which the program
pointer 1s posiHoned will appear in the displaﬂ.Then,
after holdins the keg down for a short while , a NULL

will appear in the display, to tell you that the computer

will now ignorg the command spec'zgiec\ bB the keg
you are holding down. So, the HP-HI wont perform
the SST or the R/S uwhen you let up the. keﬂ.

2. QILBLT™VOL @4 LASTX Q@7 *
@23 Q5 / 08 PL
@3 Y/ X Qo 4 Q9 *

Lines @2 ard @3 cube R, lines @4 and @5
divide R? by 3, lines @6 and @7 multiply by 4,
ard. lines @8 and @4 mu]ﬁp‘g b5 PI.

-qe-

3. One.

4. The program Poin?:er moves to line @l of your
program (try it).

5. The computer puts a normal END statement on any
program in memory that doesn't alreadg have an END.
Then the program pointer moves to the .END. of
program memory.

6. Ol BL™TQU @5 4

Q2 RCL @3 Q6 RCL 02

Q3 RCLA Q7 %
QH / o8 +

1. False; the displas *window’ can be situated. over

any ine In program memory,as well.

7%
i

Wi

| V— e —

C B
X1 [/ T 77 7 A e e e 77 s

-qq-

L l) BELS
BBA NC—HING

2%
) LR
g
\ N TN \,,\ \\

\/« 24 @é (\K\t\ =] 7 |
i ,Wr(rg = 4/,///(/ \///Zf{/ (?mé \
S5 A Z \
%\\ /{ (\ l & = \K \\
{ ¢ -
el LTy

= S \\¢¢% <

\ ///Jé 4
Wz 7
o - B2
S e
\\ P L \\\

The HP-4l uses labels as points of access to a
program. So, whenever the program FOEn)ter Is
jumping more than ore line in program memory, it
is headed Sor a label. When you wartted to run
the program “FIRST” you kegecl in the command
XEQ “FIRST.” This caused the program Poinfer to
g z2ipping)chroug\n program memory N a
systematic fashion, searching for the label “FIRSI”

Lhen this label was located, the c:ompu{er begon
program execution at that line.

N/ NZA0N o (L'(" o \/

S\//////§ ///3 P ! v '(] —’”/// 2
[//// YR /// y /((\[/(* =
A y (((/(’{{ 7 AN

/&*\& W, Y

—2%

/// %

v / %/; \ /

7> & {l

/ / % /
7 ,

T
///////(// /dﬁé‘ Z / (

-lol-

Question: True or Fqlse? Uhen. Ac}’\eg emerge

from the womb, most peop\e knows the difference
betLieen a g\oba’ labe) and a local label.

Answer: False, ... next q)ues-):ion?

Next Question: Which of the ?o”owing are
local labels and which are Slobo}’ labels™?

@l LBLTFIRST

@2 |BL @

@3 LBLB

@4 LBL 'Q

@5 LBL 99

Q6 LBL ™19

Answer: @2, @3, and @5 are local labels.
The rest are glgb_a_l labels.

If you know all about labels, Pr‘oceed 1o pPoge 0.

- 102~

LLABRELS

There are two types of labels-—g\oba\ labels
and local labele. Global labele are used for
jumping between programs. Local labels are used
for jumping within a program. LRLTFIRST is a
global label. You can always tella g\obal label by the
little T that shows in the display (7 for “text”)
right before the letters in the label.

GLOBAL LLABELS

A globa) label congists of one to seven ALPHA
characters. However, the sing\e letters A th roujh
J and @ t\ﬂroush e are reserved as local labels.
But almost every other ke5board character

or combination of characters is allowed as

o S\O\Da\ label.

GLOBAL LABELS CAN BE ACCESSED
FROM ANYWHERE IN PROGRAM MEMORY.

-103-

LOCAL LABELS

The most important thing to remember about
local labels is that they are local. The only time
the HP-4l can “see” a locallabel is when the
program Poin%er- 1S positioned to the program
that containg that label. If there is an END

statement betiseen the program p_q'm‘\:er‘ and a
local label, the HP-4] will never find that label.

Cha\lenge: Write a program that will start at
zero and count continuously (pausing at each number)
until it is s)topped by Pressing.

Answer: (GTO..)
@l LBL'TCOUNT @5 |
Q2 @ Db +
@3 |LBL @l @7 GTO 0l
Q4 PSE « (I8 (XK PSE EPWA))

With line @7 (GTO Q1) in your disp\aj, press SST
The permanent .END. should show up in Your
C{isplcuj. This means that the program with

-lQy-

LBLTCOUNT is the last program in memor y.

LBL'COUNT is a global label. LBL @l isa
local label. Prese BN [CAT] |, You will see that
LBLTCOUNT is the last en’crt:} in your program
ccfta\og (CAT 1. On\g 8\0\30\ labels ard END
statements ghow-up in this ccd-a\os. LBL @\ does
not appear in CAT | because it is a local label.

Get out of program mode and then press

XEQ]“COUNT" Tt works! Line @2 loads a zero into
the X—reﬁis’cer. Line @3 serves as the beﬁihning

of the loop. Line @4 momerttari l\uj disp)a:ds the
contents of the X- register, lines @5 and 06
add | to the X-register, and line @7 serds the
program Poin)cer up Yo line @3 to repea‘t the)oop.
This qves the effect of courﬁ:ins.

S’cop the program (Rz2)). K35 in 5 and restart
the program by pressing XEQ @l. The program
starts counting at 5.

-105-

Now press [R/S] to stop the program; then press
(GTOl [J [K35 in 12 to the X-register and

restart the program by Presslvm XEQ @l

WALT & M1

Question: U"\B did we Set o. NONEXI STENT

when we tried to XEQ @I7? LBL @l existed.
just a second ago!

Answer: It still exists , even as you are

reao\ing this. But pr‘essing crojl-il put an
END on the COUNT program and moved the
program pointer to the .END. of program
memory. Since LBL @l is a local label, the

computer can no \or\aer “see” LBL Q.
LJHENEVER THERE IS AN END STATEMENT

BETWEEN THE PROGRAM POINTER AND A
LOCAL LABEL, THE HP-4] WILL NOT BE
ABLE TO FIND THAT LOCAL LABEL.

-' %_

lJe can move the program pointer to the globod
label COUNT by pressing (GT0) " COUNT.”

Now there's no END statement betuseen the
program Poin%er and LBL @I, so press XEQ DL

The program starts incremerx%irg the X—register
once again (-Clever, these natives)

—_
S

S

7

QY

>z

RN NN

WHY USE A GLOBEL LABEL?

Use a Slobol label at least once in every program
and at any point in a program that You want to be
able to access from ancther program.

You can call a global label from anywhere in program
memory, by using GTO or XEQ. If you do call &
global label, using a GIO or XEQ statement,and the
program pointer doesn't have to jump over an END
statemertt o get to that global label, then youmay
be using Slobal labels incorrec.U&

Global labels take up lots of memory space, so it
is best to use them conservativel y.

Also, when the HP-HI searches for a global label, it
starts at the Permanerﬁ: .END. and searches backwards,
one at a time, throush your list of globcd labels. It can
toke a while to §ind a 3)0&11 label , espec'zo“&j i your
memory is chock-§ull of global labels.

Also, the HP-HI always has 1o search for glabal
labels, whereas with local labels, # may dready’know”
how Sar to‘Bump” to get there.

-‘08-

Wiy USE A LOCAHL LABELS

Use local labels to make jumps within a program. A
program that uses local labels to make internal jumpe

will run faster and take up less memory than would
that same program if it used. g\obal labels for

internal jumps:

let's say that at the top of one of your programs
you have the global label PRGMI and., at line 10, you
woant to jump to the top of the program. Don't use
GTO "PRGM|. Instead put a. numeric local label
(like LBL @3) after LBLTPRGMI ard use GTO Q3.
You ac’cua”g save memory by do'mg this, and the

final program will run faster.

. 07
e
T LAY

s
O

(R

A X
NN

N "l "&/

e

ON &T0 AV XEQ

We've mentioned GTO and XEQ statements, but
we haven't darified. when you would use a. GTO in
a. program and when you would use an XEQ.

GTO(go to) and. XEQ (execute) statements
are both used for branching to someuwhere else
in program memory. The difference between GTO
and XEQ is best explained by referring Yo the
two programs below:

Q| LBL™SONG Q| LBL™TN
@2 GTOTTN @2 TONE 9
@3 BEEP @3 END

@4 TONE @

@5 BEEP

@6 TONE 4

@r BEEP

@8 TONE 8

@9 END

~lo-

Cha“enge: Keg in the tuwo programs on the
previous poce.
Solution: With Your HP-4] in program mode,

keg the *?onoumg

GTO| -

Kgg strokes

Display

) [CB0 (ALPRA] SONG [ALPHA Q! LBLTSONG
.| [GTO[APEA] T N (ALPHA) @2 GTOTTN
=) [BEEP] @3 BEEP
xea)[APRA] TONE [AtPrA) Q) @4 TONE @
%] [BEEP] @5 BEEP
xEq] [APHA] TONE [APHA] 4 ©6 TONE 4
. [BEEP @7 BEEP
XeaAPRA] TONE ADeA] 8 @8 TONE 8
Now press ETOI)E] or XEQ]“ENDY)

%] [LBL] [ALPHA] TN [ALPHA Ol [BL™TN
XEQ) [ALPHA TONE ALPHA] 9 @2 TONE 4
=] EO|

PReM] (get out of program mode)

If you get a. NO ROOM or TRY AGAIN message,
you'll have to set o omaller S1ZE (fewer dota

resis-‘ters means more program memorB) or clear

away some programs, using the CLP function.
-1i1-

Now, run the program SONG (XEQ“SONG”).
Note that aH:houSh you keged in all those TONE
statements, all you get is one note. Put your

computer into program mode. The disp\a5 shows
LBLTTN. So what Happened when you ran

the program SONG?

Lell, what hoppened is this: [he computer
started. execu:l:ing at LBLTSONG, but since the
second line of that program was GTOTTN, it
jumped to LBLTTN and followed these instructions.
When it got to the END statement in the TN
program, it stopped. So the GTO at line @2 of
SONG was like a fork in the road.

Thats what a GTO statement is-a fork in the
rood. It's ro temporary sight-seeing trip. It's a
heavy commitment.

Lhen the pointer jumps to the specified label,
it Sorgets all about where it jumped from, and. it
just §or‘ses on, ‘?ollowiﬂg whatever instructions it

encounters.
-l2-

ChaHenSe: Nows, g0 back and change line @2 of the
SONG proSram to XEQTTN.

Solution:

PReM| (Get into program mode)

™. [cTO] [-] [APHA] SONG [APHA] (Move the Poinier
to the SONG Prosram.) |

[€ST] (Move to line @2)

<] (Delete this line)

XEQ] [APRA] TN [APHA] (Key in the new line @2)
PRGM] (Get out of program mode..)

Now execute SONG,

This time , it does alot more |, doesn't it ¢

And if you listen, you'll hear TONE 9 (hish pitd'\)
before the first BEER The pointer jumps to
the TN program, sounds the TONE 4, and. then
returns to the point it branched frominthe
SONG program, to continue on from there.

How did it know to do this™

Well, that's what XEQ reall y means: “Start

-l3-

from this point, search for this label, and when
you find it, Follow your nose ‘throuﬂh the
instructions after it UNTIL you encounter
either a RTN statement or the END of a program.
From there, you must retumn direc’c\g back. to
this point (do not pass GO) and continue on
from here.”

Note that even when You pressed the keys
to XEQ“SONG, You were telling the compudter
this same thing.

But when you gave this instruction, it wasn't
doing anbfchi ng at the time (just s'z’c’dﬂg around)

S0, when the program Poin)cer reaches the END
staterment ot line @9, it returns and takes up
where it left off- doing nothing. Lt stops!
Also, you can think of all the functions as
having built-in RTN statemerts. So, after
performing them, the HP-HI returns to what
it Las doing previously, whether it was running

a program or just sitting arounrd.

-114-

So, all the functions are just one-step sicle-trips.
In fact, that's what any XEQ reaHg 1s. Its a
side-trip that temporarily branches execution
to another place until a RTN or END is
encountered.

And, no matter how twisted the path gets,
the compu’ter can even remember its pai')'\ back.

'thr'ough 2 “lagers» o§ XEQ's , like this:

QI LBLTPILE 16 [BLO6 A mess, right?
Q2 XEQ @2 |7 BEEP

@3 RTN I8 END But the XEQ
@L] LBL @2 never ‘?01"8&1\:5\.
@5 XEQ @3
Q6 RTN

Q7 LBL 03
Q8 XEQ @4
@9RTN

@ LBL @4
| XEQ @5
2 RTN

3 LBL @5

). k
H XEQ @6 &1 \%}

5 RTN T AHALLRTM

~-li5-

-lle=

Dear ALPHA,

Yes, but sometimes L want my
programs to branch and sometimes
I don't. Iz all depends on the numbers

that come up as results.

What should Ido ?

Sisned ;
Ann Bivalent

Dear Ann B.,

Rejd ONV—>

==

/’ -!!-,';é.'{ggé.;x &
=tz
— /// /’/
AN

7 N .:: gjf&_'__; / / I ;/’ ~ \\
,‘ ////)i //// \,': \
/ i
7 { 7// i i

A ==V
< /7‘};1’;{?1 il ml.lé!!'/ \\\\\
/ " NN\
' /////é///;/él/i il il /“"5\}\§\\\\\s\\§\\>\\\%§

' 7 ///
17
, //// |

S9N

1

i o
nl,ﬂ' ! ,',,”va

-8~

Stop and think for a moment about the design
of this book:

We, the authors, wanted to write a self- paced
instruction manual on programming the HP-4. The
k65 phrase here is GELF-PACED: We don't krows
how fast you learn details or concepts. So we
had to write a book that would satisfy students

of either extreme - slow and methodical or quick

and intuitive—and everyone in between.

So we wrote a ngramme_d book.

Review a bit: In the firet section, we hadto
assume that some readers were not yet familiar
with the compu)cer’s stock. |ogic_ , ALPHA-reqister;
or function execution. But to dlow for those
who did know these concepts already, we put a

lixtle message here and there, saying; in effect:
“If you a]readﬂ know all this stuff, skip dhead

t ? N
o page Xx. N

-119-

So a person can find exactly where in the book
he or she needs to be in order to start \earnirg— |
in a very short search- no matter how fast or slows
his or her learning is.

This is called so\v'zrg the benem\ cace, thalis,
where your learming habits were unknown, but Lohere
those very hobits could always qualify you §or one
of the provided options.

But howdid we Provicle Yhose op%ions Py

Well, we acked questions of you, the student,
ard. then we gave you directions based upon
Your ansujers.

This is called “conditioral testing’ because
we test you with a question, ard. the
instructions we qwe Yo, afterwards are

conditional (‘cheB depend) UPON LS anster to
the test.

~j20-

Le have a very power‘;ul tool here in corditional
tegi:ing. Thege tests can he]p make pPrograms (or
books) flexible enough to accommodate a wide
varety of cases (or students).

The HP-Al has functions that are conditional
tests. The conditional test Sunctions are all those
that contain question marks (?) as part of their
Sunction names. These functions all work. similarly:

1§ the answer to the qbues%ion acked is ues,’
then the cornpu‘):er‘ continues , per?orm'mg the
next program step , etr<.

But, ¥ the ansuer o the question is ‘no,”
then the computer gkips the step immeciicfceig
conditional test.

Let's try anexample,.

Remember that little program called. “COUNT”
(on page 104) 2 You keaed thatin and ran it as a
demonstration of howa GTO statement ard
a label can be used to form a conﬁnuous'B loop'mg
program. That version of COUNT will just keep
qoing until you stop 1.

But SUPpPOse e Ty this:

Cha”enge'. Use a conditional test to c)*\ange
the program o that 1t will count up to a certain
numnber (sonj 1) and then au‘toma’dcqlhj stop.

Solution:
@l LBL"COUNT Q8 X=Y7
ya @9 STOP (RaE)
Q3 STO 00 © RDN ((R4)
0H @ ||
@5 LBL Ol 1+
06 PSE 3 GTO Q|
@7 RCL OO 4 END

Plain er\ou.gh? Move o paae [25.

=122~

Not ultra-lucid? Studg it abit....

Ql LBL "COUNT
02 10
03 STO 00

After the label, we store the number 1@ in
register QQ. Lhen the computer gets o 10, wse
want it to stop counting.

H O
LJe want Yo start Yhe count value ot zero.

05 LBL @l
Qb PSE
@7 RCL @0
08 X=Y7?
0q STOP

After pausing to display the current count
walue in the X-register, the progrom recalls a
copy of the ending value (10) to the X-register,
which bumps the current count value to the

Y—regis’cer.
Then , atline @8, the conditional test acks
the question, “ls the value in the X-regyster

=123~

equal to the value inthe Y-register "

If the answer o this question is “NO" (as lorgas
the current count walue in the Y-reg'zs%er hasn t
reached 1@ yet), then the STOP statement will
be skipped. The computer will ap on to perform
lines @9 thmush 11, which add | *to the current
counter wvalue and , at line 12, it will go to the
top of the loop (LBL @) and continue.

However, when the count value has reached
1@, the answer to the test is “YES' o the
STOP ctatement is performed to halt the progyom.

Notice something about this program: You
can change the length of the count simply by
changing lines @2 and OA.

-124-

Bonus Question: Suppo&e you want the program
To count up to the number Hou \49.3 n r-'lgh%
beSore uou run it. Howo do uou do this @

‘woiboud 3y3 una noh as043q
ul Vza)\ nohn SN|OA Jonaxoym RS M Q) O1S
aLH. usy |tz e ©33|3(Q Hemsuy/ Snuog

So, we've used a conditional test to make
the COUNT proegram more SFlexible. In this case,
the test compared the value in the X-register
with that in the Y-register.

But there's another kind of corditional test
that doesn't have anﬂ'):h'z ng to do with the

X-Pegis%er. This test s called a f\g% conditional
Yest,

BieHT...
... WHATS O FLAG 2

a

-125-

Fu.nn5 you should ask , because that's the next
topic.

Simplzj put, a flagis an indicator which has
fust two Possible values : Set or Clear. (Call it
true-or-false, up-or-down, Ues ~or-no, |-or-0,
us-or -them, whatever Yyou want.)

These indicators - these ‘Flags- are stored off
by themselves, not in data registers. There are5b
flags inall, and you can check any of them to see
if t}'\eg 're set or clear, But thereare only 30
that you can change if youdon't ltke what you see.
The other 26 are controlled 55 the HP-4I.

And out of the 30 you can control, only
(flags @D -10) mean rothing to the computer
The other 19 flage each instruct it to do sanez‘:HuH.

For example, if you clear flog 26, youare
telling the HP-4I to turn off its beeper, o that
it will no longer sound BEEP’s and TONE .

~126~

So you have | ?1&35 whose mMmeanings You
can determine bg the LWay Yyou, use rhem in
your programs.

Cha”engez Suppo.se. the one PSE (pause)
statement in the latest COUNT program is not
long enough for some. users, and you want to
gwe them more time to view each number. So you
decide to let the user choose one or tue PSE’s,
as Sollowss:

I§ the user keys in a negative number as
the upper limit of the count, this will be
taken to mean that twao PSE’s are desired.
Otherwise, i5 a Pos’ztive number is kQBed N, onlB
one PSE is desired. (In either case, the count
will be disp)aged in positive numbers. The

negative sign jus% means: - two pavses, p’ease.”)

GOT THAT 2

Use a ﬂa% to he\P you solve this one

~-127-

Solution: Here's ore Ly

Q| LALTCOUNT | PSE

02 CF 00 2 RCL Q0
03 X<@7? I K=Y
Q4 SF 00 HSTOP
05 ABS 5 RDN

Q6 STO QO o |

o7 @ 7+

08 LBL @ 8 GTO 0l
@9 PSE 9 END

1@ FS? 00

SEE How THIS WoRBKS ¢

Then skip ahead to page 13l

OTHERWISE ... —>

-128-

@1 LBL "count
@2 CF 00

Remember, when you execute COUNT, the
volue in the X-register tells the HP-HI both how long
to keep counting and. whether to pause once or tuwice
in each loop.

So, af ter the label, the first thing o do is o clear
the Flag we're qoing to use. Then we knows the flagq
was initially clear and i we §ind that it s set later in
the program, we knows it was set by the program-not
prior to running the program. This is cdlled

03 X<Q7?
@4 Sk 00

Next, we test to see i} the value inthe x—regis’cer
is negative, using the conditional test X<@7? (Is the
value in the X-register less than zero?) 1§ YES, do
line @4 and continue. I§ NO, gkip line @4 and
continue.

So, if the Input value is negative (which means

-129-

that twso pauses are desired), then ?\ag Q0 Se'ts set.

@5 ABS
Q6 STO Q0

Here, we store the absolute value of the input
number (this i the ¢ positive versiont of that
number) in register @0. This will be the ending

count value - the upper limit,

From here, the rest of the program Pr‘oceed.s as
usual, exc_ePt $or one minor d’\ange. At line 98, we
have our pause: @8 PSE , but look at lines @9 and
2.

@9 F5? 00
|©@ PSE

Here's where we use our ﬂag: The second pause
is executed onl y if the answer to the ‘Elas corditional
test is “YES! This works out just right, because
ﬂas QD was set if the input Las neqative, and the

negative input meartt tuso pauses P\ease.n

-i30-

F\ags are Hond)j this way. Theg're a 3000\ way 1o
remember a YES-or-NO ansuer longy afrer the

cluesﬁon was asked.

Notice that i§ 4\08 QD is set, o little @ @era
appears in the disp]ag. This convenience also works

Sor S:\ags Q| throuah QH.

NN
\ s \ N \\\\\ / ‘,") ! . a
NS L
g
V4 2
R =

=131-

Loo? COUNTERS

Now we're going to take a loock at a very convenient
pair of functions that cando tuwo useful things at once.
A TheH can Provide a. counter for program loops.
2. Thevj can allows exiting from loops after a given
number of aycles.
The two functions are 159G and DSE which mean:
“Increment and Skip if Greater than,”
and
“Decrement and Okip if _E_qua\ o or less than.”

Theﬂ each demand. an argument — a data regisi:er
number or stack reqister letter — becauce theg
operate on the numnber contained. in the named
register.

HeReS WHAT HAPPENG...

=132~

When the computer is told to 15G Q2 (§or exomP\e))
it does the g‘o\\ouing:
. It looks at the number inregister @2,
particularly at the integer portion (the portion

to the left of the decimal Po'm't) , and. the first
five digits of the fractional portion.

Let’s Suppose the number in register Q2 is:
27.05712

2.1t takes the digite inthe 4™ and 5™ decimal
places (here theyare | and 2) and makes a. number
out of them: 12 (twelve).
3. It adds (Increments) this new number to the
integer Por’cion of the or'lg'ma\ number.
2(+12=39, so the new number is:
39.05 712 in reqister @1,

4, Final 15 , the HP-Hl makes a little comparison. It
takes the integer portion (39) and compares it to the
number that appears in the §irst three decimal
places (@57 §i§t5- seven). Then, if the 'm)ceger‘

-133-

Por’cion is Greater, the line ‘;o\\owins 15G 02 would
be _S_l(ippeci.

Thus the name: Increment and Skip # Greater than.

186

This all sounds pretty complicated, but let's try
some more examples,and you can start thinking about:
it like this:

Questionr: What number should T store in
register Q0 s that repeated executions of 195G Q0
will help me to count from 10 to 27 53 37

Answer: 10.02/03

Question: What number chould go there to
count from @ to 9 bxj s

Angswer: ©.0090| or Q99| or
Q0900 or 009
As you can see, because the most common way
of counting 1 by I's, the increment is assumed *o
be | if the forth and §ifth decimal P]aces are zero.

-134-

Now, the ISG and DSE functions don't Sorma

program loop all by themselves. They still need labels
and GJO’s and all that. For example, how would

you write a program }oop Yo count from zero o
nire , b»j one's ?

@l LBLTTRYIT

02 .09

03 LBL Q|

@LI ISG X (remember how to key this in?)

05 GTO 0|

06 END

How about $rom @ to 10Q b5 He?

ol LBL "WORKS

02 .100QH

@3 STO 02

@4 LBL Ol

@5 I%G @2 (Note: @2 refers to a data register)
Q6 G—TO @l (Note: @l refers to a LBL)

@r END

=135~

How about a loop that counts down fFrom 200 to
29 bg 75
Q| LBLTOKIDOKI
Q2 200.02907
03 LBL @5
@4 DSE X

05 GTO 05
Qe END

Now, these don't pause to displa}j anﬂthins, but
they all work the same way. Let's look at the last
case: |he number that's being decremented. is

200. 0299.

The first time throush the loop, DSE X subtracts
 §rom 200 to get 193. Then it compares this
193 to 29. Since 93 is not _Eq,ucd to (or less than)
29, ro skiPping takes P\ace. The GTO @5 is
per%rmed) ard. arourd we go again.

Nows the number in the X-register is |93.029Q7.
So DSE X subtracts 7 from 193 to et 186. But
186 is still greater than 29,0 no skip. And here e
go agan, arourd and arourd the \ooP, Sub’cmcﬁna

-136~

and comPor'inS cee.

Finol\xj, the value in the X-register has been
reduced Yo 32.02907. This time, when DSE X
decrements this X-value by 7, we get:

25.902997.

Well, 25 is less than 29, so the skip takes
place. The GIO is sk'zpped, the loopis exited, and
thate dll she wrote.

Remember:

ISG meang Lncrement (add) and @(ip 1§ Greader
than.

DSE means Decrement (subtract) and S_klp S
_E_c%ua\ Yo or less than.

-137-

Lell, you knew it was coming, 50 let s get on Litth

1t.... Go for broke!

Chal\enge: Rewrite the COUNT progrom just once
more (this is the last Yime — yes, we Prom'xsel

Rewrite it so that it uses 19G. The enci'mg value
should still be specified in the X-register (negatives
still mean an extra]:xmse.), but the amount of the
increment should be in the Y-regis‘cer.

So i§ You want to count to 39 b\j 3’s with two
pauses, 50u‘l| keg in 3[ENTER] 39 [cR3) (xEQ] “COUNT.”

Solution: (one of many po ssibilities)

Ol LBL'COUNT @8 XOY 5 INT
02 CF 00 @9 | ES o PSE
Q3 X<Q7 0 / (FS? 00
Q4 SF 00 [+ 8 PSE
05 ABS |2 STO00 9 1SG 00
0 | E3 13 LBLOI 20 GTOOI
or / 14 RCL@2 2| END

See hows it works? Then exit; stage rigt (to page (43)
Ldant a closer look ? OK, next pooge. EEam—

-138-

Now the first §ive steps of the program are nothing
new, righ’c ?

Q| LBLTCOUNT

Q2 CF QD

Q3 X<Q7°

Q4 SF OO

@5 ABRS

We test $or a negative number and adjus)c § 105 Q0

according\ﬂ. I we're coun‘cing to 34 bl:s 3’5, os srated.
in the cko”enge, ﬂag @0 Lould be set Sor hmpo.uses.

Qo | E3
Qr /

Now, instead. of storing the er*ding value, we are
qoing to use it to create the Index number $or con’crd\irg
the 15G loop. As you recall, the erding walue inthe

156G \oop s the Sirst 30\'23&3 Yo the r'zgh% o the decimal
pownt.

So we divide the quen er‘ding value, 39 , blj 100D
(ie., sz X102 or | E3, all the came i'h'mg). This moves
the 39 over to those 3decimdl places just tothe riqht
of the decimal point: 39+ 1E3=.034.

-134-

08 XOY
29 | ES
10 /

Next, we exchanse the contents of the X and
Y- regis’cers so thot we can horse around a bit with

the increment value. Since the increment wvalue in

an 19G index number is a)wags found at the
fourth and §i5th decimal places, we have ¥ divide

b5 100,00 to mowe it there. Our exomp)e werement
was 3. So, 3+ 1 E5=,00003.

I+

12 STO @0
So now we sum the contents of the % and Y- requsters,
.039 +.00003=0.939923

And, THAT looks like an index number that will
he\P us countt from @ to 39 by 3. So we store
1t in regqister 0, reo.dg o use as our counter:

Now, there's only one page left in this section, and,
were do'mg the best we can to keep LOW $rom 3e&ing
bored.. While we're on the sublect of boredomn, have Yo

-140-

ever tried hanA\ettering an entire book. like this?
Boy, the ’c\'\ings Peop\e will do Sor money

So, where were we?

13 (BL @ 16 PSE
14 RCL 0@ 7 FS? 00
15 INT 18 PSE

Here,we start the \oop with a label. Then,we
recall the current counter value, lop 5§ the
fractional portion with the INT Sunction, and
do the usual charade withthe PSE's.

19 195G 09
20 GTo 0|
2l END

And here’s the Pagoﬁ: That 195G Q0 il

increment our counter each time ‘through , test 1t

and decide (correct! u, 0T couree) when to skip the
GIO Ql, thus END'mS the count.

-141-

Notes

- 142~

ALPHANUMEBICS
PROGRANNING

- '%-

In the " naked Program” section, you took a series
of ke5strokes and turned them into a program. Now,
let's see how to make programs more “Sriend] 5’,’ via
the ALPHA mode.

The HP-4| qives you the capab'zli‘tg to make
programs user-friendly with a little help Srom ALPHA
strings and built-in functions suchas PROMPT, AVIEW,
and. ARCL. Ue'll qo into qory detail about these
built-in functions in a little bit. Nows, let’s discuss
ALPHA strings.

ALPHA strings are messaaes or; in some cases,
just a collection or str-mg of characters—THIS
1S AN ALPHA STRING ; TIME="7" TIME= 2 PM:
‘BLARNEY~= are all ALPHA strings. You can use them
in Your programs to prompt for input, label your
output, or even to tell you what'’s aoing on 1N the
program while it's running

In program mode, your HP-41 will always
display ALPHA strings with a little 7 Preced'mg
them. The only P\cce this little T (text mark) will

-144-

appear is Preceding ALPHA etrings and global ALPHA
\abels.(In a listing in the Standard. Applications
book, the little T that appears in your displag wil]
be replaced by quote marks (") surrounding the
ALPHA string or Sloba\ labe}.>

In the “naked pr*ograrr\n section, you developed
a. program to solve the equation:

7
ouTPuT = 32 + \BEEL) anpuTy:

The program to solve it was:

@l LBLT FIRST o8 /
QL X172 09 7
03 LASTX |@ Y/'X
Q4 SQRT | *
05 9 2 32
Q6 * 3 +
Q7 44 4 END

To run the program, you just keged in a value
of INPUT (let’s use INPUT=4), then you usedIXEQ
ALPHA] FTRST [ALPRAl, and. out wiould pop the ansuer
(QUTPUT=32.03,if your ol'zsphg 1s set to FIX 2).

I4S

S'zmple enou.gh to remember, right? But, what i¥
you shelved the program for a while and. didn’t
use it ? [hen six months down the road, You. needed
to use it again but you J?or-go%: how it worked.. Thats
where ALPHA strings step in. They make the
program help You remember how o use it.

Cha”enge: Let’s put a fews ALPHA strings into
the program labeled. FIRST, Incert afew proqram

lines o that the program will prompt for an 'mPu.’c
bg disp‘agins “INPUT=7" and label the output with
“OUTPUT = nn.nnn” where the n's represen% the

numerical answer.

Solution:
QI LBLTFIRST @6 SQRT] 7 6 TOUTPUT=
Q2 TINPUT=? @7 9 2 YMX 17 FIX3
?3 PROMPT @8 3 * 8 ARCL X
Q4 X72 Q9 44 4 32 19 AVIEW
@5 LASTX 1@ / |15 + 20END

If you know all about this, turn to page H9.

-146-

GoRY DETAILS

Okay, it's tha t'mée‘.o&?T

PROMPT is used. in a program to stop the program
and display whatever is in the ALPHA-register at
the time. In the program FIRST, it will stop and.
display “INPUT=?. That's your cue to key in the
value Sor INPUT (trs H). To have the program
start running again, press R7S]. The program
Will then use the value H just exacﬂg like it did.
before you put in the prompt. PROMPT does not
change the stack or the actual calculation of the
program. It 5us?: halte the program Sor some

inSormation. The HP-4| qoes on tts merry way as

S0ON as You. press R7S).
CL
ARCL recalls ?ro??r‘egisi:er the contents of
that register and joins it to the erd of whatever
s oJr‘eadj in the ALPHA—reSis“ten You. can specify
either a numbered register or a stack register. (I§

-147-

you have trouble keg'zncj in ARCL X or ARCL. Z , tumn
to page 38.) Ln the program FIRST, we used.
ARCL X to add the cortents of the X-register o
the contents of the ALPHA-register, which was

QUTPUT=.
AWVIEW

AVIEW dis’olaﬂs the contents of the ALPHA-register:
Then, inthe program FIRST, the END stops the
program. So,(the final displag ($or INPUT=4) looks
ike this: OUTPUT=32.03I"

Now, anﬂtime You wart to run the program
FIRST, all you need to do is load it irto your HP-4,
(if it's not already in there) and press [XEQ.] (ALPHA] F
IRST [ALPHA], The program will tell you what it
needs ; then it will label arnd cﬁsp\ag the ansuer

{or You.

How much friendlier can you agt?

-148-

GORY DETAILS Tr
In order to be anexpert with ALPHA mode on the

HP-41, you have ¥ knowa Cews more things. You have
o know when o use CLA and when it isn't necessary
to use CLA. You have to know how to add. ‘):ngs to
the ALPHA-register without desi'roging what's in
there a read\j. You have to know how 1o
Pr‘ogmmmq‘i:icang turn ALPHA mode on and of5. And
you have to know how to store and retrieve par% or
all of the ALPHA- reqister,

If You odreada know all theee things, then skip
ahead o page 154,

CLY,ARCL, Awvd F

You know that when you're in RUN mode and you
press the [APHA] key, then press a letter key, whatever
was inthe ALPHA-register prior to pressing the
letter key is cleared auay. So, whenever you just
click into ALPHA mode, it isnt necessary to clear
the cortents of the ALPHA-register before you start

-144-

-bjp'ma. It's cleared au)comq{-icanﬂ.

The same i true in programs. That is, unless
you make an effort o preserve the contents of
the ALPHA- register; a program line that is an
ALPHA string will completely replace what'’s in the
ALPHA-reSis%er. So it's not necessary to use CLA

before an ALPHA string.
BUT:

1§ you want to preserve the comtents of the
ALPHA-register and. add. a. character or string of
characters 1o thase cortents, then you have to use the
APPEND character (F) as the Sirst character of the.
add tion.

The ARCL function is a kind of “appending’ function.
The Programline: ARCL 14 is like saying * take the contents
of register |4 and append. it to the conterts of ALPHA.”
ARCL Lway adds onto whateveris in the ALPHA-
register at the time. So, if you want the ALPHA-
register clear before you ARCL something, Yo have
w wse CLA.

-150-

let’s clear the 903 with some chal |en8es.

Challenge: Write a program that will prompt Sor an
input with the messoge “AMOUNT ?”, then ci'\splag
that input n the ’?o\\owing Cormat: $amourt CREDIT,
So if you input a 5, itwill clisp\o.B $5.00 CREDIT.
And i you input a 12,3t ui“dispimj $12.00 CREDLT.

Solution:
@1 LBLTPR 06 ARCL X
@2 TAMOUNT? @7 "+ CREDIT
03 PROMPT 08 AVIEW
24 "¢ @9 END
05 FIX 2

Line @2 rep\qces whatever is in the ALPHA- reg'zster‘
with the ALPHA s’cr'mg “AMOUNT ?”, Line @3 halts
the pregram and. o\.isP\a)js the conterts of the ALPHA-

register
After you kez:s N the amount (*o the X- register

of course) and press IR/S], line @H replaces the
s’crinS“AMOUNT?"ul’ch the s‘crinauﬁs‘. Lines @5 and

-1

Q6 add the contents of the X—register' to the
ALPHA-register in the FIX 2 format. Line @7
adds a space and the word. “CREDIT to the
ALPHA-reSister‘ (the APPEND character is found
on Yhe shifted K key in ALPHA mode). And

line @8 displays the message.

ZLHse «‘(’»"’ ""”'"m 7 "}f/)ﬂ’ i”///'/ T

Il’ M«)’ »)), " / 5)5
/

Challenge: Change the program PR so that i§
Hou InPUi- Q_ 5 at the pr'omp't AMOUNT?) lt
will dxsp\ag 5.00Q FEET.

Solution:
LJRONG RIGHT
2l LBLTPR @l LBL PR
02 TAMOUNT ? 02 TAMOUNT ?
@3 PROMPT ?3 PROMPT
OH FIX 2 Q4 FLX 2
05 ARCL X @5 CLA
Q6"+ FEET 06 ARCL X
07 AVIEW Q7 "+ FEET
08 END 98 AVIEW

@9 END

The point here is that, because ARCL X adds
the contents of the X-register to whatever is
in the ALPHA-register, o CLA needs o be
inserted before the ARCL X o oet the right
dtsp\QB In the prewous version, line @4 (™$)
replaced the sirms 'AMOUNT? that was cdread_g in
the ALPHA- regls%er So You didn’t need a. CLA.

-153-

ASTO Avd DSHF

ASTO stores the §irst six characters in the
ALPHA-register into a. specified register. ASHF
chifts everj‘thing in the ALPHA- register SX spaces
to the left (it lops ofF the first six characters).

Challenge: Writea program that §ills the ALPHA-
register with the letters A throuﬂh X (24 letters),
then stores these letters in registers @l to OH,
then Pr‘omp‘hs the user for an input (INPUT= ?”),
the stores the square-roct of that input in reqister
@D, then restores the letters A through X to
the ALPHA-register. (This is onlgadri\\.)

Solution:
A LBLTFUTILE

08 ASTO 03

@2 TABCDEFGHITKLMNO @9 ASHF

@3 TFPQRSTUVW X
Q4 ASTO @l

@5 ASHF

Qo ASTO 02

@7 ASHF

-154~-

@ ASTO @H
| TINPUT="?
2 PROMPT
3 SGRT

H STO 00 s

15 ARCL @ 18 ARCL QH
loe ARCL 02 19 AVIEW

17 ARCL @3 20 END
60T 112 NEXT PAGE—>

NEEP SOME ExPLAMATION?

The §iret 10 lines store the letters A through X in
data registers 0] thmugh QH (six letters per res'tster).
Don’t forget the APPEND character (k) in line @3.

Lines |l through 14 prompt for an input and. ctore
its square- root in reqister 0Q. And the restof the
program brings the letters A through X back irto the

ALPHA—reSis‘cer and disFlags them.
Bornus Questior: Uh5 don't we need a CLA

betwseen lines 14 and 157

Uy w Epoa.xlv GJI}_Pfluv o sat.‘snd Ppuo 1935 }S‘a.A
“PHAY 34t Sifis Rpreiduio Yoy) weasai-yHg1y
U3 01Ut Pybnaiq 3q |1 SIe3TRIOY Jmog -hyusmy L0
|DI0Y © (S13333] 9 PPO | M SIIYY b M0 40 Y03 Mouy 3
35M023q /D) © PIBU JUOP M :seMSUy sTuog

=156~

DON v DOFF

AON ina program will turn on ALPHA mode.
AOFF turns it off.

Ifa program stops with ALPHA-mode on, then
the display “window” will be sitting over the ALPHA-
reqister rather than the X—reSis ter. So, aslo nqas
this window is clear you will see the contents of the

ALPHA- regis’cer.

AON and AOFF, a\ong with STOP are handxj
functions when prompting jor alphanumeric input.
With these functions, for example, a program can
ask you a yes-or-no ctues’cion)ard LYou can respond

with Y or N for an answer.

Now, let's take a close look at the AVIEW function.
/ %/ "/’7' o= /// —

/‘) > @s‘/
& /

% A7 h
1 !/l/l/l,,%,w

,W
777,
Wi i m’ /

MEW AVp FLAG 21

In programs FIRST and FUTILE (poges l%HS‘i),
when the computer encountered the AVIEW
nnstruction, 1t désplagecl the contents of the

ALPHA-reﬂister and si'opgd.. Ac‘tua\hj , in both
programs, there wasn't much choice,since AVIEW

was the last executable statement. But suppose
you had AVIEW's scattered. throughout the program?
Lbould. it stop at every AVIEW encountered?
(QUESTIONS, QUESTIONS))
Ina program, when an AVIEW is encountered,
the status of flag 2| determines whether the
program halts or continues. [f ?Iaa 2| is set, AVIEW
will cause the running program to si:op and. disPla5
what's in the ALPHA-register: Then [R7S] has to be
pressed. to continue the program. If §lag 2l is dear,
AVIEW will cause the contents of the ALPHA -register
to be displaged while proaram execution continues,
1§ you have a printer, you !l want o s%udg

~157-

more about tlaq Zl, flag55, and AVIEW. But since
we are dealing only with the computer itsel§ (no
extra attachments), the above explanation is all
we can o¥fer.

When ﬂos 2] is set, AVIEW acts like PROMPT,

Heav5 seas P Calmthem with this examp\e:

@l LBLTCALM 08 TONE 2
02 "THIS IS AVERY 09 TONE @

@3 "+ SHORT ONE 0 CLD
4 AVIEW | 25
@5 TONE 9 2 SQRT
Ot TONE 9 3 END
@7 TONE 5

With program CALM keged N to your HP-4,
set 9\a3 21 (SF 21), clear the X-register;and run
the program (FEQ)“CALM"). You should see the
display: THIS 15 AVERY SHORT ONE. But
what happeneo[to the song? And where 1 the 5
that should be in the display when the program.

stops P
Well, because §lag2l was et , the HP-HI

-158

stopped. when it encountered the AVIEW instruction
ot line @H. Pux your HP-4l into program mode,

anrd Sou.‘\\ see that it's waiting patien’dﬂ at
line @5.

Nouws, with ﬂasll cleared (CF 21), run CALM.
You'll cee the ALPHA displaﬂz THIS IS AVERY
SHORT ONE. Then HoufH hear the tune, and then
the program wiill §inish with a5 in the X-register:

To borrow a roble phrase ard tusist it for our
purposes: To set or not to set flog 2]? That is
the question.

You can write programs so that their actions
depencl on the sratus of 4\06 21,

Incicisn’cqﬂﬂ, the VIEW function behaves
the same as AVIEW in its dependence on ﬂoﬂ 2.

-0~

INDIB
ECT
ADBESSING-

7y
‘7
Clrreenes
(14

17 /
4

o

7,

%///Q/; -
7 A e :

.

So, what is all this stuff - “indirect addressing?”
What'’s wronq with direct, addressirg (whatever
that is)7?

Well, here's how it works:

Picture a baghful young man Who s going on &
bind. date. OF course, he called a dating service
that caters especia”g to shy peoP\e. ThereSere, he
was not given the address of the Young lng, because
this is much too personal to divulge o just anyone.
Instead, he was told the address of her brothers
home. There (i¥ he meets with the brother's
o.pprova\, of course) he would be given her actual
address.

The dq’c'mg service hag told him 'mc[ir‘gg},lg how
to get to his date’s home: He was told what
address to 9o to in order to obtain her address.

Y Sy

Now, at the risk of removing & bit of romance,
the instruction from the dating service is like a
RCL IND instruction— like RCL IND @0, for
example..

The brother’s address is 00.(He “lives” in

register 00.) The number in register Q0 is the
address of the young \odg.

Question: But how do you kE3 in RCLIND @

Answer: R Fie] Q|

Lhenever you want to specigg an indirect

address, press the [P« key before the addrecs.

T e)

7 NN 2
77777777 70 77T A W (/77/*7]

i N7 /7/’, T
L e Xy U

~ \ NG\

- o e
T 777777777 7 L3/

‘ .

o X% Q.
; »\\\\\ L\ ‘.
~ .
RS P N / A
% %ﬂ«: ~ 1 A
Ul R N
. . B Aff N 7
7 N ¢ AN "/
NG i 7
7 Uy A . \
0777777777770 O //7 N o o

DI 220N "//' \

~i63-

Cha”ense: Set up your HP-4| so that the value
in the X-register is 29.7 and the value in register
Al is 3. Now, it you execute the function:

STO IND @l | what happens?

Answer: The computer will store the number
29.7 into resis‘cer Q3.

EASY? | OK —>
Alittle shaky?(That's O K - blind dotes tend
to be a bit shakg at first..)

Here's what happens:

STO IND @l says: “STORE the value inthe
X-register into the register whose address is
indicated by the contents of register @.”

So, the HP-4I| takes a copy of the 29.7 thats
sitting in the X-register and goes look at
register @l. There it finds the number 3. Then
it knows where o put the 29.7—into reqister @3.

- 164~

Let's tryancther-...

Cha”ense: Sto.rting with the results $rom
the first try and using indirect oddressing

onl Yy, store the number 29.7 into register @0

Solution: @
RCL IND @I
STOINDY |

NO ?BOBLE\\S 7
PROBLEMNS ? WATCH -

First, we keged a @ into the X- register,

Then we performed RCL IND @l which places
29.7 into the X-register Uifting the @ into the
Y-register). Here, the indirect odd.ressins works

exactlg as 1t did in the first example—onls it does
a RCL instead of 0. STO.

Then comes STOIND Y, A copy of the contents
of the X-regis’cer 1s stored into the register indacated. bg the
Y-reg'zs’oer: That indicated resister 1s Q0.

=165~

CETIING TRE HAMG OF Iv 7

Algo, keeP inmind. that indirect addressing works
for other functions besides STO and RCL.

In fact, it works for all the functions listed on
pages |97 and 198 of the Quner’s Handbook.

For example, suppose You have a program with

26 sections (each with a numeric label and a RTN
statement) - one for each letter of the alphabet.
Each section is supposed to do seme colculation
about how much space and. ink each letter requires

on a certain type of printer: The program might look
like this: @ LBLTLETTERS

@2 LBL 0 :
: LBL 25
RTN ;
1BL @2 RTN
: [BL 26
RTN ‘

BL 03 END

~lob~

Each of these sections will do a different
calculation, but for each input (each letter), there's

onllj one section that appl 1es,

Question: What's an easy way to tell the HP-4|
to choose the proper section Sor a given letter?

Answer: Keg in the number of the letter you want
(1 Sor A, 250r B, ..., 26 $or Z) and then use:
XEQ IND X.

UNDERSTAND 2 —>

No? Watch what hoppens:

Let's sayyou want to caleulate all this good stuft
Sor the letter K.

You would ke:i in the number |l (Kis the eleventh
letter, righ’c?).

Now, when you use XEQ IND X this tells the HP4|
o “execute the section whose label is indicated. in
the X-register.” 1n the X-register, it finds the number
Il, o0 it executes the cection with LBL Il.

167~

Remember that the numeric labels in the Jast
examp]e are local labels, so the program Poin%er would

have o be Posz'tioneo(to the program LETTERS before
the HP-4| could §ind them.

e

77 ///-'9 G
é/ ' J 7770 ///;//

=7 77 Lt 4 g
///////////%% t 87|

// /:// / 75 ‘ 70

V/;/;/ /?/ //// & 07
Z / / (;Z'»’ ‘ /

14 s

b iaklil ({1,

77 ;

A ¢ ¢
— 7
S
= diney)

Also, Yyou can execute ALPHA labels 'mdirectlg
bg ASTO ring the characters of the lobel in a data
or stack register and. then using XEQ. IND, with
that register as the argument. The ALPHA labels
here are limited to a maximum of six charactere

because that's all Lou can store in a reqister.
(Ungor’cuna’ce\g, there 15 no XEQ IND ALPHA
function, so you must store the label in a register Sirst.)

-le8 -

As a good firalexample, here's a. ...

Chal\enge'. ldrite a short program (10 steps or
less) that stores the integers @ through 19 in
reqisters @ through 19, respec‘cive_la.

Solution: Here's one way to do it:

Ol LBL'FILL 06 STO IND X
02 .0 19 07 RDN

03 LBL % 08 156G X

Q4 ENTER 29 GTO 6
05 INT |@ END

I§ you have the SIZE set below 020 data
registers, you' || geta NONEXISTENT if you run this
program, becavse you will not have enough data
registers. Change line @2 or change the SIZE and it
should work.

1§ you were able Yo write this program without
\ooking at the solution, qo to page 173.

If twas a struggle » 90 to the next page —>

-169-

OI LBLTFILL
2 .219

First, after the label, we put the number.@19
into the X~resisten This is qoing tobe the index
number for the ISG loop, and it’s also qoing to
act as an index for indirect storage. (Rememben;
D19 is the same as 0.0 19 and, as an I19G index,
it also acts the same as ©.0190Q1)

@3 LBL 06
Now we put in a local label at the head of the
repeating loop. Notice that everytime the label is
reached, the index number must be in the X-reqster,

@4 ENTER
Inside the loop, the First)ching todo is to make a
copy of the index number inthe Y- register.

@5 INT
Next, we extract the integer portion of the index
number in the X—reaister. For example , 1§ that number

-170~-

is 0.019, the INT function produces the number @
in the X- reoyster,

Qo STO IND X
Here's the elegant part: STO IND X cays “store
0. copy of the value in the X-register into Yhe requster
indicated by the X-register.” If that number is @
then @ gets stored in reqister Q0. If s 19, it
gets stored in register [4. So the very number
you wartt o store is also the ore that tellg the

compuier where to store it!

Bonus Question: LJhat would happen i§ e used.
STOINDY at line @6 7?

€10'S =(XTb'9-)=(G) =G "552-PpPo P34iput vo sy
"(TR 0 ‘uorsuan antyised a3 Puv) fromiu ‘Uorged

_eboyut 3y hjuo suspisuos GugssaJﬂoo 32941t

Mg Jagsleu Ayt Ut s Yoym Jo Uoizdod Jsbaw
3y S0 fdon v surUE JG;G]SEJ-X 3y | ‘bunp swos ayz
Rppoore op |[1rs pimom weuboud By | iamsuy smuog

=171

Now to wrap ’chings up:
@7 RDN .
We bring the unmolested version of the index
back down from the Y-register to the X-register,

08 15G X
29 GT0 06
| @ END

Now we increment this index and,as yow
remember from the “Decisionmaking in Programs’
section, the news integer Por’cion of the index is
compared Yo the First three digits of the fractional
portion. If the in'teser' Por’cion is grecécer, then
GTO @6 is skipped, and we're done. But, i the
integer portion is less, then there’s no skipping,
and. GTO Qb sends the program poi rter back to
LBL @6, with the newlyincremented index sitting
in the X—registef‘.

~172-

5

e
A BTt

WA
2o
ey

~

C\

)

)
\
% \\‘

S\

\."’,J}:\“
i
\

) %

\)

v\
4‘“
X
i

\)
(\

)
\
3

A
W)

SO R,
st 7~ K

S

/\/—’__/

S—T T \r‘v -
O //'/,7/1, 7
= A I
= B
=% LK
X

L W

—— ﬁ—-,%‘-f':‘—&@w v

by’ > =

e
A—::.’—’ o

gi::{ﬁ
e
)
\"

N

\
B LN
G
) 4 /\{

3

<
p

Ju

}\\“.\P N

,,,,, 25
2 2
7 L e Swmsamana A}

AR \
LENERBEY
B TERN LR LR
VU \AESS
PP PR

.
L ldsd =

2

ST X

- - —

At this Poirﬁ: in the easy Prosra.mmins course,
you know the following:

. You know how to execute any function given the
name of that function. You are no longer confused
by the "name” of a function and the “argument’
of a function (page 4E).

2. You know how to picture n your mind the
memory structure (data registers, program
memory, stack registers, ciisp]a\j, ALPHA- register)
of the HP-4| (page 8).

3. You know how the stack works (pages 58-80).

4. You know the difference betueen keying ALPHA
data into the ALPHA- register and keying a
function name into the display. Both of these
tkings are done in ALPHA mode, but theg are
completely different (pases 25, 56, IH4-145).

5. You know that when we're discussing programming

and we use quote marks ina kexjstroke listing,

those abuo)ce marks mean: press the [ALPHA keB.

-174-

6. You know when your computer is in RUN mode,
and. when it’s in program mode. You know how
to get from one mode to the other (page 88).

7. You know (with a little contemp}oction) how to
q0 Lfrom an g_osggj;i_o_n to a sequence of keggtmkes

to a sim,ole , linear (one time through) program.

You knous that you can use a program like this
to run great hordes of data ’dr\rough an eobucd:ion
by simply entering the datalas input) and
pressing the R75] key (page 92).

8. You knows about ALPHA prompts and AVIEW

and using ALPHA data in a program (Pages I47-159),

9. You know that certain functions are * yes or no’
“questions (like X=@7) and that if the answer to
these questions is no, the followsing line in the
program will not be executed (page 121).

|@. You know that you canuse these conditional
test functions as a basis for making decisions

in a program (Pages 122 - 125).

-175-

II. You knous about program branching. You know
when to use a GTO statement and when to
use an XEQ statement. You know when to use
a 3\obal label and uwshen to use a local labe]
(Pases 10l tol15).
12. You know whot a “loop” is in o program and hous
+0 cono[itionaﬂg branch out of a Ioop (pages |35 vo l4])
[3. You know how to move arcund. in program memory,
You know how to use the CAT | function to
position the program pointer to any global label
or END in program memory. You know what RTN
does in RUN mode. You knows how to use the
GTO 1 function and you know what GTO L
does (Pases 33,125, 96-99).
4 You have a good ?eeling for what flaqs are and.

how to use them (po.ge 126 to 131).
I5. You. know how to turn the HP-4l off without
pressing the [ON keg (Hint: XEQ] “OFF")

~176-

16, You know that nowhere inthe balcomj scene
does Juliet wonder where Romeois (Actll, sceneii)

Well, anyway, you knowsall these things plus
o few others. So it's time Yo delve into the
purpose of this book ... program development
(You didn’t know you were. still reading the
introduction, did Bou?).

Our first challenge willbe a ?a'zrlg common
application. Checkbook balancing is some’ching
that most of us have had experience with (ot
least the attempt is familiar). So together; e

can deve)op a fairly extensive checkbook:balancing
program to incor porcrte many aspects oS HP-4|

Programmi ng.
7 Z Z~
o
' /;// / % -

Cha“ense: There are three major steps to

ba\o.ncing your checkbook.. LJrite down these
three steps.

Solution:
. Find the balance from the last time you
balanced your checkbook.
2. Add all the deposits and. interest since that
time. Record the balance resulting from each.
addition,

3. Subtract al| checks and charses. Record. the
balance §rom each check or charge.

ASter per?orming the above three steps, your
checkbook will be balanced. Basically, what we've
done here is defined the process by which we
balance our checkbooks, in terms that are easy
for us to understand.

You could take this list of three checkbook.
balancing steps, hand. it to one of your friends,
and. they could follow it with no problem.

-178-

In a sense, our checkbook- balancing program
1S c:omplete. LJe understand the prob)em, and
with these three ste.ps , ue ve developed a

solution, or program, Yo handle the prob)em
WELL, THAT WAS 1556‘(

Question: What would happen if you were to

explain a recipe to a small child (Hto (years old)
in the following manner?

“Get a cup of flour, 5 cup shor’cen'mg,
“2 teaspoon salt, atab!espoon of sugar: Then
cut the shor’cenir\g into a mixture of the flour
salt, and sugar; until the chunks are about the
size of peas. Next, add a couple table_spoons of
cold water and blend with a fork (not too much).
Shape /the d.ou.g)'\ into a ball, and roll it out and.
VOILA ! Pie crust (w).”

Answer: | he child would be dumbfounded.

-119-

Nevertheless, this is the way we think. As we
deve!op and. aain experience in life, many of the
details of dag-’co-daﬂ tasks become automatic—
they require no conscious thought. Driving a caris
a prime example of details becom'mg automatic
(especiaﬂ\\j a car witha standard transmission).

It takes patience and effort to explain
50methin3 to a small child. We actual |5 have to
slow down our th'mkir\g process and. analgze each
step.

1f You were exp)a'ming our pie crust recipe to
a. small child, the §irst step of the recipe Lould.
Probabhj translate into something like this:
“Now listen, here is a one-cup measure (note
the visual aid.). Go over to the flour can and
scoop out one cup of flour. You'll have to use
this knife to level of§ the top so you have
exacthd one cup of flour.” So you see, it takes
more words and more effort to explain a

process toa small child, because a child’s
- 180

thinking process is less complex than ours.

The ¢ ﬂ'\inking process” of the HP-A) (or of any
C.om):mter) is far less comp)ex than even that of
a small child. In order to program the HP-4|
to do a task , we first have to e.xpand the
steps by which we do things into many more
steps, each much simp’er. In other words, we

have to translate our complex thinki ng process
into simp?e Yerms that the HP-4| understands.

-i181-

Cha“en\ge: Rewrite the three checkbook- balar\cing
steps in terms that are closer to the way the HP-4|
“thinks.”

Solution:

l. Prompt for initial balance

2. Store initial balance in a numbered, register.

3. Prompt for the input of either a check, charae,
deposi’c, or interest.

4. If the input is a check or charge, subtract it
from the balance.

5. I the input is adeposit or interest, add it to
the balance.

6. Display the new balance.

7 Go back o step 3.

Your solution to this question may vary
considerablg from ours. Here is where you start to
develop Your own pregramming technique.
Everyone will approach a solution inaslig\'\thj

different manner. However, for this first program,
-182-

1t may be easiest for you to follow Fairl\jcloselg to

You can see that what was three Seneral steps

our deve\oloment tedxniabue..

into seven more detailed. steps. Each

has evolved.

of these seven steps carries a simpler concept than

And each of these

))

of the original three.

each

to the language of

sounds closer

«

seven steps

the HP

ol

AN MASAMANCY
NN NN N

-183-

Cha”ense: EciuiPPecl with the Prev'zous seven
steps, c{euelop an HP-4l program to balance

your checkbook..
Solution:

@ LBLTCHKRBK || CHS
@2 FIX 2 12 LBL D
Q3 SF 27 3ST+ 00
24 TINITIAL BAL? 4"BAL=%
@5 PROMPT |5 ARCL @0
0% STO 00 16 PROMPT
o7 LBL O 7GTO 0)
98 TAMNT?C,D,E I8LBL E
29 PROMPT 9RCL 90
10 LBL C 20CF 27

21 END
I§ this make sense to you, head to page |97.

I 3ou’re even slighﬂg confused, that'’s goocl.
A completely unexplained list of HP-4l code
should be confusing.

What follows is an explanation of the thought
process that is required to go from the seven

- lsq_-

stePs in English on page 82 to the 2| lines of HP-4|
cade that appear on poge 184,

First, don't expect to start at the top o§ the
list. The order of the steps will reflect the order
that thinﬂs are done in the completecl program.
But that doesn’t mean youre qoing to start
d.evelopins the program at step .

The first ’d—fmg to do is to search throuSH the
list Sor the s‘ceps that are most sisn'&icont to the
program. Basical l3 , What 3ou’re looking for are the
steps that look ltke ihe\g will require the most work.
You will develop these steps first and. then clesign the
rest of the program around them.

In our list of seven steps, steps Hand 5 are the
onJH sieps that will require some type of calculation
and some type of decisionmakinsz

H If the input 1s a check or charge, subtract it
from the balance.
5. If the input is adePos'z’c or interest , add it to

the balance.
-ies-

Loo)dng at steps H4and b, You cangee that the
HP-Al will have to treat an input in one of tuwo ways,
o\epenoling on whether it is a check or a deposi’c.
Now, 1t boils down to this: one way or another, you
are going to have to tell the HP-4) whether Lou
are inpu’c’ting a check or a clepos'zt. ~

There are many ways to tell this to the HP-4I.
Le feel the easiest way is to have one key to press
for a check or chorse and. ancther key for a deposit
or interest.

LJe notice (sz observing some of the programs in

the Standard Applications book) that it is
possib)e) 135 us'mg local-ALPHA labels and USER

mode, to deslgn our program so that one kea

(say the [d key) canmean a check or charge, and.
another k83 (the [0 kes) can mean a. cieposﬁ; or
interest.

So, when the program 19 comp)e’ce , We want to

be able to key in an amount, press the [€] key,
and have the HP-4l treat that amount like a check

-|86-

(that is, subtract that amount from our balance)
Likewise, we want to be abl to keH In an amount,

press the [D ke3 . and. have the HP-4| treat that

amount like a oleposit.

The only difference between the way a check
is treated and the way a deposit is treated. is that
a check is subtracted. from the balanceuhile
deposit is added. to the balance. Other than that,
the program should treat a check. the same as a
deposit.

Nouws everyone remembers that ching the
negative of a number to someiking is just like
subi:msting that number. That is,

a-b=a+(b)=(b)+a=-b+a.

So, when we press the L€ keS, if the HP-4|
just puts a negative sign on the amount we keyed

in, then treats it like a deposit, that chould do
the trick!

-‘81-

LJith all this in mind, we can sketch out a. routine
to handle steps A and 5 of our list:

LBL C
CHS
LBL D

RCL BALANCE
+

STO NEW BALANCE
Of course, there are no “RCL BALANCE " or
*STO NE\W BALANCE” functions on the HP-4I.
But we havent designated a storage register
for keeping the balance uet. By using this method,

we can organize our thoush’cs N a languase that

s close to what the HP-4] uses but is still easihj
understood by us.

The six lines above will just about take care of
steps 4 and 5 of our list. Let’s put those steps
on the back burner for a second,and look at the others.

_—

-188-

Cha“enge: Translate step | (Promfﬁ: for inttial
balance) into HP-4|’eze.

Solution: TINITIAL BAL?
PROMPT

That was easy. The line TINITIAL BAL? will
place those ALPHA characters into the ALPHA-
reqister. Then, as you know, PROMPT will halt
program execution after ﬂ”ing the ciisplo.g Lith,

the message in the ALPHA-resls%er.
Step 2 (store initial balance) is also an easy one

to translate. It Sust recLuires that Hou Pic.ko.

number (we chose @@) and use that register. So
step 2 becomes: STO Q0.

StePB translates much like stepl. All we need to
do 1s think of aneffective message (pre?erab)\nj less
than 12 characters, so the d’zspla5 doesn’t scrdll),
and. put a PROMPT afterit. So step 3 becomes:

TAMNT? C,D
PROVIPT

-‘8q-

The message that we chose reminds the user that
an amount needs to be ke3ed in and.that either the
< key (check) or the B keg (deposit) should be

Presseal.

Chal lenge: Translate step 6 into HP-4) code.

Solution: TBAL=%
ARCL Q0
PROMPT

The first line is just a text message. T he second.
line appends the number in register D0 to the
contents of the ALPHA-register. And, as You
know, the PROMPT causes program execution

to halt with the contents of the ALPHA-resister
in the disp\ag.

-190-

Cha”enge: Go back and look at the routine we
sketched out to handle steps 4 and 5 of our lict.
Rewrite these six lines into HP-4l'eze. (Remember
reqister @0 contains the balance.)

Solution:
LBL C LBL C
CHS CHS
LBL D or LBL D
RCL Q0 ST+ 00
+
STO Q0

Sincewe are concerned thatan updated balance be
maintained. onlyin regis%er 00, we canuse the
ST+ (store-plus) Sunction to add the deposit (or
the negative amount of the check) to reg'zster Q0.

The sequence RCL@D; +; STO @O would do
almost the same tﬁing, except it would leave the
upola*ced balance in the X—reSis%er as well.

-1q1-

UP to now, the program looks like this:

%*INITIAL BAL?
PROMPT

STO 00

AMNT? C,D
PROMPT

{
LBL C
45 CHS
Hand5 LBL D
ST+ 00
"BAL=%
ARCL 00
PROMPT

1. Go back to S)CQP?).
LJe've translated six of the seven steps into

6.

HP-4] code. The seventh step is obvious)g qoing
to be a GTO statement. But first we have to
insert a LBL at the top of ste.P 3, so the final

routine looks like this: 2

-192-

Ol LBL"CHKBK 10 LBL D
@2 "INITIAL BAL? 11 ST+ @0

@3 PROMPT 12 "BAL=%
o4 STO Q0 13 ARCL Q0
o5 LBL 0! 14 PROMPT

Q6 "AMNT? C,D |5 GTO @

07 PROMPT 16 END

28 LBL C

29 CHS

So we've developed our first complete program,
righ{? Well, not rea\\g. Once we've §finished.
coding a problem for the HP-HI, we should take a
look at it to see if there's anything that we have
assumed. about the status of the compuier (Hass)
disp\ag status, etc.)- things we should. establish
at the \:segir\rfmg of the program.

In other words, we have to inttialize the
status of the HP-4l so that the program Ll
always run correctly. If Le use some § lags in the

program, and. we need those flaggs tobe clear initially,
we should have the program clear them.

-193-

In the CHKBK program, we use local ALPHA-
labels. So, when the computer is in USER mode
and the program pointer is)oosi’cioned to this program,
those labels will be assigned to their respective
keys. The [€] key becomes XEQ C, for example.
Therefore, if the computer is not in USER mode,
the program will not work. So we initialize USER
mode by inserting a OF 27 after the first line
of the program., “Set ﬂag 21" meang “turn on
USER mode.” Now the program wil| turn on USER

mode.

@ LBL "CHKBK @ CHS

02 SF27 | LBLD
@3 TINITIALBAL? (2 ST+ 00
24 PROMPT 3 "BAL=9%
05 STO 00 4 ARCL 00
% LBL ol 5 PROMPT
Q7 TAMNT ? C,D 6 GTO 0l
28 PROMPT 7 END

29 LBL C

Now, what other improvements can we make ?

-194-

How about this?

Since we're dealing with dollars and. cents,
the program should sex the disp\cui Yo show orJB two
decimal p}aces.

Also, besides the check ([€]) keg ard the depos'rt
(D) keS, 1t would be nice 1§ there was an exit (E)
key by means of alocal ALPHAlabel. Then, when
you're all done balancing uour checking book, you
could press the [El key to RCL the final balance

to the X—reg’lsw‘:er‘ and send the Pr*ogr‘am Poirﬁcer
Yo the END of the program.

Chal lerxge: Make the above improvements to
the pregram.

Solution:

@ |BLTCHKBK

¥ 02 FIX 2 l:-32 ls's% 8@
@3 SF 27 4 "BAL=9%
@4 "INITIAL BAL? |5 ARCL 00
25 PROMPT 6 PROMPT
Qo STO Q0 17 GTO 0
27 LBL » |8 |LBL E
03" AMNT? C.D,E (9 RCL 00
@9 PROMPT 20 CF 27
10 LBL C 2] END
|} CHS

* This sets the displaxﬂ Yo show two decimal places.
“ LBL E just recalls the final balance into the
X—register ard. turns off USER mode. (We gorsot

to mention turning of§ USER made.) Lhen
you're all done balancing your checkbook, press the

= keg.

-196-

Chanengez Let’s say that every check you write
corries a $0.25 charge. Modi?a the program to
take care of this charge.

Solution:

@| LBLTCHKBK 3 CHS
Q2 FIX 2 HLBL D
@3 SF 27 5 ST+ 00
Q4 TINITIAL BAL? 16 "BAL=%
05 PROMPT 7 ARCL 00
d STO Q0 8 PROMPT
o7 LBL O 19 GTO Q|
08 TAMNT?(C,D,E 20LBL E
29 PROMPT 21 RCL 00
1@ LBL C 22CF 27

« || 25 23 END

* |1 +

* Lines || and 12 make up the modification. T here’s

a problem with this, however. Now the [Elkey can
handle only checke. I your bank charges Yyou, say,
$3.00 a month plus 23 cents for each check,
there's no 5)cr'a'13h‘h§orward way to deduct the
$3.00 c]r\arae.. If you keg in 3 and press & ythe

-1q7-

program will deduct $3.25 from your balance.

To remedH this problem, we can just insert a
LBL ¢ (little'e") after line 14, Then for checks,
you can press the [C key, and for straight charges,

you can press [rise] [C].,

So the comp)ete program looks like this:
@l LBL "CHKBK 13 LBL ¢

02 FIX 2 14 CHS
23 SF 27 I5LBL D
Q4 "INITIAL BAL? 6 ST+ 00
@5 PROMPT 17 "BAL=9
0o STO Q0 18 ARCL 00
07 LBL @l 19 PROMPT
08 TAMNT? C,D,E 20GTO 0l
29 PROMPT 21 LBL E
0 (BLC 22RCL 20
| .25 23CF 27
2 + 24 END

- ‘qs-

The next program we wil| deve\op 1S Q program to
convert feet, inches, and sixteenths of aninch into
feet and. decimal fractions of feet, and. vice versa.
For example) | oot © %6 inches will be converted.
to 1.515625 feet and 1.515625 feet will be
converted to |foot 6 ¥ie inches.

The calculations involved. in this program will be
pretty simple. The main emphasis of this program
will be the format of the input and output. We
have to deve)op a. reasonable way to input feet,
inches, and. sixteenths of an inch!

Now, it would be best i we could l<25 N one
number to represent all three units (feet, inches,
16™). Let's develop a format Sor input of three
different ’ch'mgs With one number, —

-199-

Cha“enge: Convert 3hours, 26 minutes, and
14 seconds into hours and. decimal §ractions of hours.

Solution: 3.26!4 xEa] “HR" displags 3.43722

So, 3 hours, 26 minutes, ard |14 seconds is eq’ua\
to 3.43722 hours. The point here is that for certain
functions onthe HP-H\, one number can represent
different things. The HR (HOUR) Sunction looks
at the number inthe X- register as meaning hours,
minutes, and. seconds in the form HH.MMSS. The
HH means “number of }\ours,“ the MM means
“number of minutes,”and. the S5 meang “number of

seconds.” T here are onl y two Places reserved. for
minutes, because the number of minutes will never
exceed 60 (that's an hour),and. fractions of minutes
are expressed. in seconds. (However, there are
actually more than two places reserved for seconds.
I§ you want to keg in 57 %4 seconds, you would. keg

in Q05775 because 34=0.75. The Sfraction of a

second is keyed. in after the whole seconds.)
-200-

In the lost Cho.”enge , one number represerfcs hours,
minutes, and seconds. Inthe program we're

developing, we want one number to represent

feet, inches,and sixteenths of an inch.

Cha“ense: Express “feet, 8 e inches ina formax
similar to the HH.MMSS formaz.

Solution: 4.08@9 (FF. 11SS)

This is the input format that we'll use inour
conversion program. Le will ke5 in feet, inches, and
sixteenths of an inch, using the form FF. 115S.
Here, FF means “number of Seet,” 11 means “number
of inches, and $S means “number of sixteenths.”
Two places each are reserved for the inches and the
sixteenths. This makes good sense because there
will be,at most, || and. e inches (.1I15) in any

fraction of a foot.

-201-

Challenge: Sketch down the general steps
required to convert aninput of the form FF.IISS
(feet, inches, sixteenths) to feet and decimal
fraction of a foot (we'll represent the output

format b»j FF. $65%

.r))

== =~
-:,/ =
Pesssan, 7y AN
(LS 7/ "‘ I
PP 94 ’ -
Ay 0! 4
V= 4 v, ‘.‘5’0 —5 Y
AD > - I g

\

- 2@ z'.

Solution:

“Visual Aid”
. Get the 'mpu’c FF.I1SS
2. Take the integer portion and.
save it. 1 his is the number of |
FHILITLS
whole feet. Also, save the = :IE]
$ractional por tion.
3. Multiplg the fractional e

portion b5 10Q. —
4. The inteser Porﬁon of that
result is the number of whole

inches, and the fractiondl FH(LILI].SS

portion is the number of sixteenths

divided)33 100Q.

5.Divide the fractional partbyl 92 [FBID |53 =
SS
192

©. Divide the number of inches FRIEE
bg 12, and add up all the parts.

7. The result eqbua\s the sum FF +J;:_91:+ \fz

-203~

What we re shoo’cing for in the solution is this:

Firet, we want to save the FF part o5 the input
because this is the number of whole feet , and. we
don’t need. to change this in the final answer:

Next, we need to get the number of inches
(I1) and divide this bg 12 (t]'\ere are 12 inches
in a foot). Then we have to get the number of
sixteenths and divide it b3 192 (12 %16), since
there's 192 sixteenths-of-an-inch in a foot.

T™E TAMAL BESULT:
F/F ;'_ % ‘.,66

// 7 /
, / 7 - 7
4 ' o~ - // /' / ’
A / ’ / o Y,
/“ u ’ / 7
/ / / ,’/’ //
/ // / E / / /

7
///// / A / /
7//// 7 //// / //////

/
///// /// /// 775
— /// 7 ////

-204-

////

Challenge: Sketch down the steps required to take
an input of feet and decimal fractions of feet
(FF. $§555---) and convert it to feet, inches, and.
sixteenths of an inch.

Solution:

. Get input of FF.{5F-

2.Save the integer portion, FF.

3. Multiply the fractional portion by 12 and save
the integer portion of the result, II.

4, Multiply the remaining fraction by lb, S5. (Let's
leave fractions of sixteenths just |ike fractions of
seconds.)

5. Save the result inthe X-regis’cer in the form
FF IISO (FF+T5_0+ |oo¢o)

-205-

Let's run an arbitrarg lnput ’chrough these steps
to see if ’c\'\eg work. TrS, for example, 14.9 feet.
First, save the integer Por‘tion, |4, Then, mu"cip)ﬂ
4 by 12 toget 10.8 and , again, save the integer
portion. So far we have 14 feet, 10 inches , and.

8 tenths of an inch. To convert the 8 tenths to
sixteenths, mu)tiplﬂ the .8 by 16. This gives 12.80
so the final result is [Hfeet,l0 **%e inches. So

our Seneral idea seems to work.

From the way things are working out, it looks
like we are going to develop two independent
programs. One of these programs will take an input
of the form FF.IISS and return feet and. decimal
Sractions of feet. The other program will take an
input in the form FF.§§££+ and returnitinthe

form FF.II5S. These two programs will be a
matched. pair of functions much like the HR (hour)

and HMS (hours, minutes, seconds) Sunctions.

~206~

Let's call this pair of functions FT and FIS.
. LBLTFT
2. Get input of FF.IISS
3. Save the integer portion: FFl.
4. Multiply the fractional portion by 10Q:|LL.SS.
5. Sove the m‘\:eser‘ portion: I1J.
6. Divide the Sractional portion by L.92: .
7. Divide the inches by 12:(3% m
8. Result= FF+3: + %
QLEND of FT
0.LBL TFIS
. Get input of FF. £5¢5---.
2.Save the whole §eet:|FF
3, Mul’ciplﬁ the Sractional portion b3 12: {11
H. Multiplg the remaining fraction bg lo:
I5.Result = FF +355 + o9s0

|6.END of FI1S

-207-~

you should be able to

toke the list of sixteen steps fromthe previous page

At this point ,

Chal lenge:

ines. Giveita

and convert them to HP-4| prbgraml

kable

try and. see if you can come up with a wor
program. It's possible to do all the calculations

usins onl Y the stack resis’cers.

-208-

OILBLTFT — Assume the X-resister contains FF, IISS
@2 INT — Separate the whole feet

@3 LASTX —Get back FF.1ISS

@4 FRC — Take .II5S

5| E2 - . .

26 % _;Mu.lttpls by 100: I1.55

Q7 INT - Sepqrate 11

@28 LASTX — Get back 11.55

29 FRC — Separate .55

:'0 l/.Q‘). :} %" '\%%::C.orwert siateenths to decimal.
12 XoOY —Get 11

1312 —l i, Convert inches to decimal

i4 / -) 1%

15 + -

o + _} Result= FF+ 3+ 3%

17 RTN — END of FT routine

18 LBLTF1IS — Assume X-reaister contains FF.§£§¢..-
19 INT — Separate whole feet: FF

20 LASTX — Get back FF.$¢%--.

2l FRC -~ Separqte fractional feet: .GE65---

AR ~! Multiply by 12

23 % _ ultip y by

24 INT — Separate the number of inches: I1

25 LASTX - . . .

2 FRC _% Gex remaining §raction

27 le - .]

28 * _} Multxp\3 bB 10: 89

29 | E2 -

30 / - .
3+ - _ I1+ %6
32 | E2 _¢ Resuilt= FF+%¢+§5———‘0,“@ = FF+ T3
3 / -

M + -

35 END — END of FIS

Solution:

-209-

The program we've developed here is the ‘no frills”
version. | here are no ALPHA prompts or o\isplqgs,
no beeps or tones. For conversion routines, the
“no §rills” version is usuaﬂg the best way togo.

To convert, soy 13 Seet 9 %o inches Yo Seetand
decimal fractions of feet, all Yyou have Yo dois keg in
13,0904 FEG]I“FT". The result comes back in the
X-regis‘):er:

The RTN statement at line I7 just means “stop
(ie., return to the keﬂboard), in this case. But, using
this RTN instead of a STOP allows you to call
this routine as a subroutine §rom other programs.

To convert 12. 77673 Seet to Feet, inches,and
sixteenths of an inch, just key in 2. 776(3 XEQ
“FIS". The END at line 35 will cause program

execution to haltin this case, but it will act as

»

a RTN if the routine is called as a subroutine.
BB the way , Yyou would have o have an extremely

accurate ruler to determine that somethi nq Was

exo.c)cls 12.77673 Seet \ong[

21

lJe could snaz up this routine a bit b3 Q0

e

some ALPHA messages and. makins use of the

numeric entry ﬂag (f lag 272) for repetitive

'ms

entries. | he snazzed- Up version could look. some-

thing like this:

@l LBLTFT

@2 TINPUT FF.IISS

@3 PROMPT
@4 CF 22
@5 LBL 02
o6 INT
@7 LASTX
28 FRC
@3 | E2
10 %

(1 INT
12 LASTX
13 FRC
14 1,92
IS /
le XY
17 12
8 /
19 +
20 +
["zl CLA

22 ARCL X
23 TF FEET
|24 AVIEW
25 RTN

Y26 Fs2c 22
27 GTO 02
28 LBLTFIS
29 TINPUT FEET
3@ PROMPT
31 CF22
32 LBL @3
~33 INT

34 LASTX
35 FRC

36 12

a7 %

38 INT

39 LASTX
40 FRC

41 16

-2\

42 %
(43 CLA

44 ARCL Z
45 THFT,

He ARCL Y
47 T

48 ARCL X
|49 TF/16 IN
50 | E2

51 /

52 +

53 | E2

54 /

55 +

(56 AVIEW
57 RTN

58 Fs?C 22
59 GTO @3

60 5T0 @2

0l END

As you can see, the sno.zzed-up version of the
program is considerably longer: Whether this version
1s easter to use depends on several th'mgs. If you
only use a program once in a blue moon, then it's best
to keep the lonaer, “triendlier"” version around.. But
if you use a. program Fre.q}uentl»d , then it’s best to
streamline the program so that it's just amatter of
keying in a number or two and executing the right
label. ALPHA prompts and elaborate output methods
in short, Frec‘uentlg used. routines just become
redundant and inconvenient. (We 've marked these
additions with bradkets.)

A neat feature of the snazzed-up version that
doesn’t appear in the original routine is the capabilitg

for repeating the same routine b':i keging ina new

input and pressing RZS]. For example, let’s say we
have six entries of feet, inches, and sixteenths

that we want to convert to feet. ——

212~

(1)4 feet 11 % inches
(2)5 feet 2 inches
(3) 9 feet 4% inches
(),Heet |l %o inches
(5) 9% inches

(6) 7feet "8 inches

The keystroke solution using the Sirst routine would

look some)ching like this:

KEYSTROKES DISPLAY
41105 XE&]“FT” 4.9427
5.02 XEq“FT” 5.1667
9.0408 kEQ] “FT” q.3750
1113 E] “FT” 11.9844
0912 XEq “FT 0.8125
7. 0014 XeEq] “FT" 7.0729

Whereas, using the second. routine, the keystroke
solution would. look like this:

XEQ] “FT" INPUT FF.IISS
4.1105 R/9l 4.9427 FEET
5.02 Rz] S5.1667 FEET
9.0408 R 9.3750 FEET
[.1113 RS 11.9844 FEET
L0912 R/S @.8125 FEET
7. QQIHRZE] 1.Q729 FEET

-2'3~

The second. routine requires fewser kegstrokes Sor
repe’dtive conversions. When you keg ina number,
flag22 is set. S0 when you then press [R73) the

GTO @2 is executed and the FT conversion is repeated.
Also, notice that if you don't ketd in a. number

before Pr‘essing R/S), the Previous result will be

Challenge: Incorporate the feature of easy
repetition from the steps on page 2l into the streamlined”
version on page 209. You will have to make use of
?lag 22. The end result will be a quick, easy-to-use
routine with no ALPHA prompts or displass.

-214-

Solution:

Ol LBLTFT 24 INT
02 LBL @I 25 LASTX
03 INT 26 FRC
@4 LAST X 27 12
@5 FRC 28 *
Q6| E2 29 INT
Q7 X 30 LAST X
@8 INT 3] FRC
09 LASTX 32 16

@ FRC 33 %

| 1.92 341 E2
2/ 35 /

3 XOY 36 +

412 37| EZ
5/ 38 /

b+ 39 +

T+ 4O CF 22
8 CF 22 4l RTN

q RTN H2 FS?C 22
20 FS?C 22 43 GTO 02
21 GTO @l 44 GTO 0l
22 LBLTFIS 45 END

23 LBL @2

-2)5-

The §ina| program that we will developisa program
to evaluate a table of Xand. Y-values for an equation
that you program into the HP-A.

Most of us have done this before in an old a\sebra
class, Back. in odgebra, theg called it “Sraphingﬂ an
equation or "Plotﬁnsw an equation. LJe start with
some equation like:

Y= X*+5X.

Now these Y's and Xs don't have ang’ching to
do with the X- and. Y-registers on the HP-4I. e
could. easil Y rewrite this equation as:

B=A*+5A or (OUTPUT)=(TNPUT) ™+ 5*(INPUT).

But, because it's common to talk about equations
graphed onthe X and Y axis, we'll use the original
Y=X*+5X. Whenever we mean the X-register, well
write “the X-register:“ Otheruwise, X means the
variable number X in the equation.

Anyuway, to plot the equation Y= X*+5X, we
would start at, say, zero and. plug in a bunch of

values for X to see what Yvalue each X qives.

-2l6~

e would Senercﬁ:e. a table that looks like this:

For X equal to

%
|
2
3
-
2

Y-equals | For X equalto
% -3
6 4
4 5
24 6
-4 7
6 -8

Yequals
“b
-4
Q@
b
14
24

Then we could take these pairs ard. plot them
ona Sraph with the X-value plotted horizon)ca\lg
ond the Y-value p\o’c‘ce.d vertic_allﬂ.

(=7,14)

(.6)6)

(5,0

ol |
s
_ S%')‘)

1114
[] (2,4)
b

Y
Grqph of Y=X2+5X
1T .
(-8, 24) (3,24)

(4,4

(‘3,“) R ¥

/(0,0) s 0 l‘S
[(~1,=4)

;S

(-2,~6)

The program we develop will generate the X,Y
pairs, so that we can plot the graph of any equation
we program into the HP-4l.

C"\anense: Write a routine to do the eq)uation:
Y=H4X?*-12X+5

or

OUTPUT=4*INPUT)>- 12#(INPUT) + 5.

50) u’cior\:

@1 LBL "FUNKI 08
Q2 S10 10 09 X
@3 3 0 -
H Y7 X | 5
05 H 2 +
Qb * 3
@7 RCL 10

If this “throws you fora Ioop," review pages 88-%2.

.
74 7 o
s %//%A/ 7

&

2 s
g o
,/’/:’
9 /f% %
N Q
ﬁ%l \ “
) A s . '{. 7, o W 5 Z -”:\' \ f ‘-

X 2y Wi T) e
P . WA I o R
2" / 7 2N Nl 2

(\

7 -
s, < T
~ &, - \ N \ \

-219-

ChaHenge: Using the FUNK| routine, calculate
aset of X,Y pairs, starting at X=@ and increasing
bH D.25 each time,up to 2 (that's 9 pairs). Pa\j
close attention to the motions that you go through,
because the program you cleve)op 15 goins todo
the same t}\ing.

Solution:

For X eq‘gg! to \Le_,q;.m_s_ For X eq,gl to M‘_ﬁ
Y 5 .25 =2.1875
@.25 2.0625 .50 0.5000
0.50 ~0.5000 .75 5.4375
@.75 =2.3125 2.00 13.0000
.00 -3.0000
OK? ™ >

All it amounts to is this: To get the first Yvalue,
key in @ (xEQ] “FUNKI” and the HP-4I will return
5.0000. So the §First X,Y pair is @,5. To et
the second. Yvalue, keyin .25 REQI“FUNKI " and
the HP-4l will return 2.0625, etc.

-220-

Challenge: Write out , step bg step, what you
just did. onthe last page , as if you were

explaining the process to a Srend.

Solution: Uell, let’s see....

. I read the Problem and. saw that 1 was

supposed to use the FUNKI routine ‘o gener‘ate
a table of X,Y pairs. I was to beain ot X=0,

end at X=2, and increase by Q. 25 each time.
So I was told the name of the program with which

to evaluate the Y-values, the beginr\ing Yvalue,
the ggdingﬁ X-value, and the increment.

2.] started at the beginming X-value.

3. I ran this current %volue throusk the FUNKI
routine to get Y.

4. I wrote down this X, Y pair.

5.1 added the increment (0.25) to X.

6. 1 checked to see 1§ this new currert X-value
was greater than 2. If t wasn't, 1 repea’ced
steps 3 through b. I§ it was, 1 stopped.

-221-

Question: What are the six steps that a

program would have to per form to do wha you
did. on page 220 (two pages back)?

Answer:

. Prompt for the name of the program for which
you're generating X, Y pairs (FUNKI), the beginning
X-value (9), the ending Xvalue (2), and. the
increment value. (@.25). Store them all.

2. Start at the beginning X-value.

3. Run this current Xvalue through the named.
program (FUNKI) to qet Y.

4. DisplaH the currertt X,Y pair.

5 Add the increment to the current X-value to

get @ new current X-value.

0. Check Yo see if this new current X value is
greater than the ending X-value. If it isn’t,
repeat steps 3 throush 6. If ixis, stop.

See what we're Se&'mg at? These aix steps are

ne,arlg Yhe same as those on the previous pace.
222

The general steps that You take to complete
0. process are cLui’ce similar to the steps a program
has to take to complete the same process.
Since the program we re deve lopinﬂ serves to

generate Poirﬁ:s for plot’cing the 8raph of an

A
s

S
\\\\\ \

\

N
N
A

~Z

Nouw, it's just a matter of expanding the Senera)

steps on the)qs’c page into HP -4| Pr‘osr'a.m “r\es.
It's Probablg best, inthis POINTS program, to
start expanding at step .
Let's agree to store the recluired data as
follows: register 00— Name of function to plot
register O - Beginn’mg X-value
register OZ - Ending X-value

register @3 - Increment value

-w-

CHaHenSe: Expo.nd step | on page 222 into
HP-4I program lines.

Solution:
"NAME? END X7
AON PROMPT
STOP STO 92
AOFF TINCREMENT?
ASTO Q0 PROMPT
"BEGIN X? STO @3
PROMPT
STO 2l

Notice the method we use to prompt for ALPHA
data. This method stops the program with the
computer in ALPHA mode. So, all you have to do
s spell the name and press(R/S],

Also, remember that a data register can hold
a maximum of six characters. So the g,obal
label of the program you're plotting can be a

maximum of six characters]ons.

-224-

Step 2 merels reminds us that,the firet time
through, the be.g'mnlng X-value will be the

current Xvalue. So, let’s a\wags maintain the

current X-value in resis’cer Q.

Chanenge: Expand step 3 page 222)

Solution: LBL @l
RCL @l (currert X value)
XEQ IND 00

NO SWf.AT dn >

Not clear ?

L ook at it this Lay: When You were Sener-a’dng
the table of X,Y pairs manually, you would. establish
a current Xvalue in the X-reaisie_r, and then you
would XEQ“FUNKI” to get the Y-value. The POINTS
program has to Qo ‘chrou.gh this same process.

RCL @] bri ngs the current Xvalue into the

X-register.
XEQ IND @9 says “look at the program name

-225-

in regisier 00 and. XEQ that proaram."
e put the LBL @l at the top because step ©

mentions re’curning to s‘cep 3.

Chanenge: Expcmd s’cep H.

Solution: FOR X=
ARCL 0! (current Xvalue)
AVIEW
PSE
T'Y=
ARCL X (current Y-value)
PROMPT

Cha\lenae: Expand step 5 into HP-4l code.

Solution: RCL @3 (increment)

RCL @l (current Xvalue)
+

STO @l (hew X-value)

Cha”enge: Expand step 6.

Solution: RCL @Z(ending X-value)
RCL @l (current X-value)
X<=Y? (x£2))
G110 @l
END

T £ 2

\\.

Chal lenﬂe: Put it all toge’c‘her under the Slobal
labe| POINTS!

-228-

Solution:
@0l LBLTPOINTS 18 XEQ IND 00
02 "NAME ? 19 TFOR X=
@3 AON 20 ARCL @l
@4 STOP 2l AVIEW
05 AOFF 22 PSE
06 ASTO 00 23 TY=
@7 "BEGIN X7 24 ARCL X
08 PROMPT 25 PROMPT
@9 STO 0l 26 RCL @3
© TEND X7 27 RCL @l
| PROMPT 28 +
2 ST0 02 29 STO Q|
3 "INCREMENT? 30 RCL @2
4 PROMPT 3l RCL @l
5 8T0 @3 32 X<{=Y?
6 LBL @I 33 GTO @l
7 RCL @l 34 END

Now, ts the program finished ?

Have we used. any ﬂags ? Have we assumed.
angthiﬂg about the machine Prior to r‘unr\'mg the
program that may not be true @

Lell, at line 2| we've used an AVIEW statement

and because we use a PSE statement after it,
we have assumed. thot AVIEW is not going to
halt program execution. But remember, if ?\ag
2 is set, AVIEW will stop program execution.
So, we should insert CF 2| early in the program:

QI LBLTPOINTSI3 "INCREMENT?25 ARCL X
02 "NAME 4 PROMPT 26 PROMPT
@3 AON 55T0©03 77 RCL @3
Q4 STOP *16 CF 2| 28 RCL Q|
@5 AQOFF 7 LBL Ol 29 +

2 ASTO 00 I8 RCL 0| 30 STO 9l
@7 "BEGIN X? 19 XEQ IND @@ 31 RCL @2
@8 PROMPT 207FOR X= 32 RCL @l
09 STO @I 2l ARCL @I 33 X4=VY7
1@ "END X? 22 AVIEW 34 GTO Ol
Il PROMPT 23PSE 35 END

12 STO @3 247Y=

-nq-

Your §inal mission (should you choose to accept

- and n:sou’d. better! You've come toofar to give

Up now): Generate a table of X,Y pairs for the
equation: Y=4X3-12X+5, withe X
beginr\ing at “2.2 , end'mg at @.4, and
increasing by 0.2 each time.

Solution:

For X e%ua\ to Yegvgals
22 LI
2.0 ~3.0000
-1.8 3.2720
1.6 7.8160
-1 .4 0.8240
1.2 2.4880
-.Q 3,0000

For X eqvgal to

Yeguals
12.5520
11,3360
9.5540
1.3680
5.0000
2.6320

’

-230-

(egs)crokes D_i_gp_a%

xEQ] “POINTS” NAME?

FUNKI [R7S)] BEGIN X7

2.2 [CRS][R/S END X 7

0.4 R75] INCREMENT ?

2 R3] FOR X=-2.2000
Y="11.1920

R/S FOR X=-2.0000

Y=-3.0000

R/S FOR X="1.8000

Nothing toit, right?
This is what's meant bgq ?riendlg program: It
leaves little doubt about what o do.
l

It looks like Jou are nows & ?riencﬂj Progmmmer.

(Did you save any of the champagne from Page"r?)

.END.

-231-

AYPEMDIX

oN Usn\/c;r
MA :Vw) LS

of Problem
5>c>c al Function
- Fun facte 1o kro c“:n

The manuals you recieved. with your HP-4l are some
of the best 3ou.’|| find. anguhere. But like most books,
their benefits are most cbvious when you read them,
thorou8h15, cover to cover, lnclu.ding the examples
and. their solutions.

Yes , but that can qet pretty tedious, righ’c?
True, few people really enjoy reading technical
manuals. So part of the aim of this book was to
Prov':cle a basic tutorial Suide so that you would be
free to use the provided manuals more as references
than as instructional materials.

Obviouslg , we couldn’t cover all the details
contained in the HP-4l manuals. So now we'll give
you a few tips on using those books as reference
manuals:

Got a problem? Is the computer doing somethS
weird ? Magbe an error messase? Or are you

looking for a certain function or a certain woy to

do 5omethin3? Where do you look. $or the answers?

-233-

Well, what part of the computer does the problem
involve ?

It pressing certain keys ques unexpected results,
look in the index under kegs," “kegboard,” or key
assignments.” If all else fails, look in Appendix B of
the owner's handbook , under “Maintenance and
Service.”

Be glad when you get an error message. The
message will always lead you q’uicklg to the problem:

fFirst, 1f the message oppears dur'mg a running
program, you can determine what coused. the error
bs sui’cchins into program mode: The program line
in the displa3 is the one that caused. the error.

» If the messaqge is one that you've never seen
before, you con look it up in the index. Tt will appear
in blue letters in the index. Also, you can a\wags
look under “Errors” or “Error messases.“

* If you need to find out about a certain function,

the best place to look is in the shaded. function
index immedia’celb following the main index. There

- 23‘,‘-

you will find, in alphabetical order, a brief
description-and a page reference-of each standard

function.

Now, if Bou're uri’cing o} program,and Yyou need.
to do some kind. of calculation or manipulation,
and. you don't know what functions to use:

*Is it an ALPHA manipu\ation? (Look under
ALPHA.)

] it a stack manipulation?(l.ook under stack.)

Js it a conditional test, or a ﬂgg manipulation.

*Does it involve program loopigg, or mo.sbe you
wont touse indirect o.d.cir‘essins, or bro.ndrﬁng?

* Are you confused. with any Proced.ure dore

n program mode (PRGM)?
* Do you need information on subroutines ?
°Are You having trouble using Lc&e_l_s_ eﬁ'ec.i:ivelg?
Not surprisingly, the rule of thumb is to look up
the answer ac:cor‘ding to the nature of the
problem. All we’re doing here is listing some of

-235-

the key words and phrases you can look up in the
manual's index,

As another Perhaps c%uicker) alternative, once
you're ?air\g familiar with your computer, you
can refer to the “Operating Manual-A Guide
For the Experienced. User.”

This booklet summarizes, in brief, the main
points you need. to know to program your HP-4I.
Some of the fine points not covered in the main
manual are here, too- certain keystroke
shortcuts and programming hints.

Also, one of the handiest parts of this book. is the
function index (s’car’cing on page 52), which lists each
function, its memory usage, and its effect upon
the stack (\Lg_cg impor‘l‘an’t).

F'man&, we come to the “Standard Applica‘cions»
book: This is a collection of programs for you to
key in and. run- mainl.g to qwe you Practice at
kegins n programs, and. to pr‘ovide you with
examples of working programs.

236"

Be sure to read the in’croduciorad pages
before starting in on the programs. These pages
contain good information, and they tend to
answer the obuestions you would. otherwise have
upon encountering certain program lines. There
are good. reasons whg these first few pages are
there, so read them!

-237-

THE STATISTICAL FuncTIONS

If at some time you have the urge to use statistics

to try to prove something, you will $ind pages 99-104
of the Owner's Handbook helpful.

Here are a few added comments:

. REMEMBER, the statistical registers are movable.
Theg are not guararﬁ:eed. to be regis’cers H"llé, except
after o MEMORY LOST. You adjust the location
of this block bg usins the 2REG function to speci§3
the location of the first register in this block.

2. All 6 of these registers must be allocated data
registers. Otheruwise, the execution of any
statistical function will result in a NONEXISTENT.

3, 3+ and 2~ are functions that disable stack lift.

4, The statistical functions 2+, 2-, MEAN, and SDEV
always operate on both X and Y data, regardless
of whether you are interested in just the X-values.

For this reason, you may encounter an OuUuT OF

=238~

RANGE error when you ottempt SDEV i you haven't
been paying attention to the Y-register at all. When
this happens, it’s because the computer has been
faithfully accumulating Y-data right along with
your X-data. And it is possible to have data
that produces an error with SDEV (see page
256 of the Owner’s Handbook).

The cure is simple: When you use CLY. to start

your accumulation, press @ [ENTER], Then Just

proceed. as usual.
5. Lhen you accumulate o set of X,Y data pairs,
you can fit a s’craigh’c line to them o.ccording to

the formula:

Y= A+BX.
You can compute the values A and B b\j using
the values in the statistical registers and. these

formulae:

_n2 XY-2X23Y _2Y-B2X
B" nle_ (Zx)z O.ﬂd A‘ n

-239-

Notice that page 42 of the Standard Applications
Book shows the relationship between A, B, X, and
Y for computing the equations of 4 different
tHPQS of curves.

TN TACISTO Kvow AV TEL L

There are some functions in cata\og 3 that
ceem clever enough, but theg seem to lack
practical uses... not so!

It’s just that these uses may not appear
obvious to the casual observer. So, as a pub)ic.
service, we thou.gh’c we'd. Po'ln?: them ou.t—along
with a few other handy tidbits.

To wit:

. If you want to write a program with several
different sections, where these sections may
be used in any order, chances are Sood that
you will §find it convenient to use local-label
key assignments.

Stu.clg, for example, the Financial Calculations

-240-

program on page 33 of ﬂ‘\e Standard App)ic.a"c'lons

Handbook .
See also: pages 33 and 34 of the “Guide
for the Experienced User.’
2. Notice the section on page 8 of the “‘Guide
for the Experienced User” called “Single K33

Parameter Spec'nC ication.”

All this means is that anytime you are keying
in a function that demands a numerical argument
from | to 1@ (inclusive), you con enter that
argument with a single key.

This is not a bis deal. But, it is convenient
because 5ou’ I scon §ind that you are consi:ar&lg
using registers [t0 10, ﬂags | to 1@, LBL's | to
I@) and even SIZE’s from | to |Q.

3.“I need to find the seventh root of a number,
but there’s only a square-root key! LJhat should
Ido?”

LJell, the first thing to do in any such

emergency s to remain calm.
-24)-

Now, it happens that when you take the n™
root. of a number, what you're r'eang o(oing =
raising that number to the ‘h powser.

T = (1)
To compute this:

|| (ENTER] 77 [&] [™Nse] [¥X] —— |, 4|

So, the seventh root of Il is just Il raised to

the % pouser.

Remember that ke,S!

4, LN; LOG
Just what are logarithms?

SimPIH put, the ogprithm of a number N, is
the power to which you must raise another
number (called the base,B) to arrive at N itself:

If you say “Lis the log in base B of the number

N,” you are rea‘llﬂ 5a3in3:

B=N

-242-

The LN function uses the base B=2.71828I823,
which is the first 10 digi%s of a number that some
people call © e.

The LOG function uses the base B=10.

Notice the shifted functions on the (LNl and

LOG kess are e Qn& |0*) T‘esPéCtiV81S. These

functions are the aniilogari’chme thot

correspond to the logarithms on the unshifted
keys.
5.MOD
What's this 3ood for?

Llell, Suppose you are trying to gisuu'e out
what time of dag your astronaut friend will
will re-enter the earths atmosphere if he/she
reached orbit at 140@ hours, to begin a ©5-
hour orbit.

First, you odd: |4 [ENTER] 65 [—— 74q.

So, re-en’crH will occur at 7900 hours after
midnight of the launch date.

-243-

But, what time of dcnj is that P
Use the MOD function and. the foct that
there's 24 hours 1n a dag to determine the

time of re-entry:
24 [XEq) [ALPHA] MOD [ALPHA] —~— 7

Your friend will re-enter the atmosphere at

700 hours (7 a.m.).
So, MOD is handtj for £ inding the remainder

of divisions. It\s Sreat for problems ir\volving
regular cgclic intervals of time or position.

Take note of how it works with negative

numbers...!

6. FRC; INT
LJhat good are these™
Well, as an example, suppose you have more
numbers to store than you have registers to put
them in.
If you know how many dig’t’cs these numbers will
have, then you can solve the storase Problem b5

- 244-

combining two numbers as ore.

For example, you could combine the numbers
32 and 0 53 using 32,90, or combine the
numbers | and |7 to Set .17,

Here, the integer portion of the number would
represen’c the first of the pair, and the fractional

por tion would reprecent the second..

To retrieve the originod pair of numbers from

the “h\dbrid” number, you would use:
FRC and INT.

Can you see how ?

Using INT on 32.006 procluc_eg 32.00.
Using FRC on 32.06 Produ.c.es Q.00.
Then multip)ging b5 100 qives 0. 00.

AHY /

(Remember our FT and FIS routines, too-

page 209),

~245-

1. Remember!

You'll never get the HP-4| to tell you
numerically that the sine of 1 radians is zero or
that (vZ)'=2.000000000.

This is because it can never work with w
or with JZ or with any other number with an
intinite number of digits (onlg 1@ digits, a_lg,ggg).

The best it can do (which is quite adec%uate) is
SIN(3.141592654) =-4.100000000 * 0™ and
(I.414213562)*=1.999999999. This is accurate
ond consistent.

8. HMS; HR; HMS+; HWS-

These 4 functions are used for calculations

involving Hours, Minutes, and. Seconds , or decimal
HouRs (i.e., for time). But notice that they work
just as well with degrees , minutes, and seconds

(i.e. , angles).

—

9. qugs: Certain ﬂass are useful in writing
nicelg po)ishe,d programs: —)

-246"

FLAG 2|: Altkough this is used mainlg to control
a printer, it can determine when the VIEW and
AVIEW functions halt program execution (and
when they don’t).

FLAGS 22 and 23: You can use these to
write programs where the user has a choice
whether to respond to a prompt with a data
input, or with just a [RZS], or with some other
command. (For an example , see the Financial

Calculations program in the Standard Applications
book..)

FLAGS 24 and 25: Error-ignore ?lags are handﬂ

in preventing unforeseen inputs from stopping
execution due to computa’cion errors.

FLAG 27: This lets you twn on (or ofF) USER
mode in a running program.

FLAGS 28 and 29: With these § lass, you can get
European notation (CF 28), and remove the decimal
point and olisi’c separa)cors i¥, Sor example, you want o
ARCL integers only.

-241-

FOR FURTHER READING
After you've been programming the HP-4|

for a little while, you might want more tips

on olevelopins your programming skills.

We sugqest thot you contact:

Hewlett - Packard Users' Library
1000 N.E. Circle Blvd.
Corvallis, OR 97330

Uu. S. A.

Ask about
. The Progro.mmer‘s Reference Guide

2. Back issues of a periodical called:

Kgg Notes.

Both are “chock-full” of information.

-248-~

Do you have any comments, complo,irﬁ:s, or

questions about this book ? Urite to us!

Do you have any suggestions for other books
(any subjec‘c)? Write to us!

Do you have a manuscript that you want to
have Published (amd subjec’c)? Lrite to us!

WRITE TO US (RIGHT TO US)

LJe may not be able to respond to everybody,

but we always read our mail.

Grapevine Publications, Inc.

PO. Box 25724
Portland , Oregon Q7225

-244-

-EDITORLAL -
Le hope you liked. the design. of this book.

We have used simple language, cartoons,
and an “un-compact” format, because this
ls still the easiest way for anyone to learn
from a. book. There is no need to resort to

a lot of technical jargon to explain programming.

I§ you have any comments or have noted

any errors (although there’s no possible way
that we made ang), please write to us.

In the making of this book, wse cer%ainlg
wanted, to help you learn about the HP-4]. Tt is
an excellent machine and you will appreciate
1t even more as you learn more about it.

But begond helping you learn, we wanted to
reassure you that computer programming is
not some cult of technobabble, explicable
only to child pr‘odiaies, sci-§i buffs,

engineers, mathematicians, and persons

=250~

surrounded 133 mist and butterflies. angboclg
who can learn to read and. write can learn about
proSramming.

Lle have watched, with growing concern, the
crescendo of media hype over “high tech” and
"persona} c;om’:mlter's,,n and it seems much too
easy for teachers, parents, and. other mortals to
be led to believe that they or their children
will somehow be left behind if they don’t join
the mad rush to “get into” computers, either
voca‘cionang or avoca’cionalhj.

Computers are indeed very useful tools, and
theg are becoming a common part of our lives.
But, this doesn’t mean that the world is ru.shing
you by just because you don't own one. People
have quite enough worries for themselves and
their children without the addition of such an
artificial burden of Suil‘t.

And above all, when you find 3ourse)F in the

midst of some over-inflated. , buzz-word egos,
-25)=

mointain your confidence. 1t is no crime to
prefer' plain English, or to take more time in
learning to write a program. In fact, there is no
crime in being more interested in, say,
3ardenin3 tools than in computing tools. €ach
tool has its place and purpose. And, with the
help of good sense and patience, each will bear
fruit,

Ted Wadman

Aocn G

Lobeot Block~

-2_52.-

TABLE OF CONTENTS

(SUST IN CASE YOU WANT TO BRUSH UP)

CONTENTS PAGE

*An Easg Course In Programming

The HP-4| cover
*LWJhodunit Q
‘5e’ct°m3 the scene 4
*How to Picture your HP-4| 8
Data rcsisters q
ALPHA-register I
Display 12
Stack registers 14
Quiz 15
'KeBinS data into the HP-4| |8
*Functions and the keyboard 2
B 22
24
= 28
=g 3 3]
ALPHA characters on the keyboard Ho
Function names vs. Sunction arquments 4
Functions on the ALPHA keﬂboarcl 5

-253..

CONTENTS

* You've Sot to know your stack.

Stack-lift

Arithmetic in the stack
The L-register
Exercise

* The naked. program

The program pointer
SIZE

.END.

e

rEcjelo)

END vs. .END.

Quiz

*Labels and branching

Global vs. local labels
Why usea global label
Uhy use a local label
vs.[XEa]

'Decisionmqk'ms in programse
Conditional testing

Flags and how to use them
Looping with ISG and DSE

-25].‘-

58

6l

63
66
10
T2
74

85

88

q0
qil

Qa3
q95

100

103
108
109
HO

|8

120
126
132

CONTENTS

* Alphanumerics in programs

ALPHA str ngs
PROMPT

AV1IEW

,

and ASHF
AON and AOFF
and flag 2|

Indirect addressing

With registers
With labels

*PROGRAM DEVELOPMENT

Review

Bo.lam:ing a checkbook

Decimal fractions to/from inches and sixteenths
Plotting points from an equation

*Appendix: On using the manuals
Statistical functions
Fun facts 0o know and tell

*For further reading

*(Jrite Yo us

* Editorial

-255-

PAGE
143

144
147
47
148
44
I54
156
157

16

163
lob

173

174
172
1aq
2le

232

238
249

248
249
250

This incredibly friendly book will help you discover and understand
the power and sophistication within your HP-41 calculator. Its refresh-
ing, conversational style and unique, readable format take the intimi-
dation out of learning to program your calculator. The authors, both
former Hewlett-Packard support engineers, realize that a relaxed,
jargon-free approach is the best possible way to present a technical
subject. And if a dash of humor along with some clever cartoon illust-
rations are added, then learning to program your HP-41 becomes both
EASY and ENJOYABLE!

Packed with examples, review questions, explanations and fun quiz-
zes, this self-paced book lets you work along at your own rate, learning
all the ins and outs of programming. “AN EASY COURSE IN PROG-
RAMMING THE HP-41"is the easiest and fastest way to master your
calculator. Come along on this Easy Course, and you'll soon find

7/ yourself using your calculator like an expert!

This book applies to the HP-41C, the HP-41CV,
and the ultimate: the HP-41CX.

Prom e PRESS A ’”
GRWEVINE. PuBLichTIons, 1wve I

92234T ISBN 0-931011-09-4

	Cover
	Setting the scene
	How to Picture your HP-41
	Data registers
	ALPHA-registers
	Display
	Stack registers
	Quiz

	Keying data into the HP-41
	Functions and the keyboard
	[SHIFT]
	[XEQ]
	[<-]
	[Catalog] 3
	ALPHA characters on the keyboard
	Function names vs. function arquments
	Functions on the ALPHA keyboard

	You've got to know your stcack
	Stack-lift
	[ENTER]
	[CLX]
	Arithmetic in the stack
	The L-register
	Exercise

	The naked program
	The program pointer
	SIZE
	.END.
	[GTO][.]
	[GTO][.][.]
	END vs. .END.
	Quiz

	Labels and branching
	Global vs. local labels
	Why use a global label
	Why use a local label
	[GTO] vs. [XEQ]

	Decisionmaking in programs
	Conditional testing
	Flags and how to use them
	Looping with ISG and DSE

	Alphanumerics in programs
	ALPHA strings
	PROMPT
	[ARCL]
	[AVIEW]
	[APPEND], [CLA]
	[ASTO] and ASHF
	AON and AOFF
	[AVIEW] and flag 21

	Indirect addressing
	With registers
	With labels

	Program Development
	Review
	Balancing a checkbook
	Decimal fractions to/from inches and sixteenths
	Plotting points from an equation

	Appendix: On using the manuals
	Statistical functions
	Fun facts to know and tell

	For further reading
	Write to us
	Editorial
	Table of Contents

