

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Materials & Molecular

Research Division

HP-41C CALCULATOR PROGRAMS FOR FITTING OF
DATA BY AN ANALYTICAL FUNCTION

Leo Brewer

December 1982

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

LBL-15346

HP-41C CALCULATOR PROGRAMS FOR

FITTING OF DATA BY AN ANALYTICAL FUNCTION

by

Leo Brewer

Materials and Molecular Research Division, Lawrence Berkeley Laboratory

and Department of Chemistry

University of California, Berkeley, California 94720

Neither the United States Government nor any agency thereg

————————DISCLAIMER

This report was prepared as an account of work sponsored by an agencyof the United States Government,

.warranty, express or nolied, or assumes any legal liaoi
LOT gress, or usefultess ofan wn, at.

privately avmed rights.

commercial product, orocess, or service by trade name, trademark
represents that its use woul rit infrin

not necessarily constitute or imply its endorsement. recommendation, or favaring by the United
States Government of ary agenry thereof, The views and opirions of authors expressed herein Jo rot

necessarily state or reflect those of the United States Government or any agency thereof

NOTICE

PORTIONS OF THIS REPORT ARE ILLEGIBLE. It

has been reproduced from tho best available
copy to permit the broadest possible avail=
ability.

 This work was supported by the Division of

Materials Sciences, Office of Basic Energy

Sciences, U.S. Department of Energy, Under

Contract No. DE-AC03-765F00098
=e

This manuscript was printed from originals provided by the author.

DISCLAIMER

This report was prepared as an account of work sponsored by an

agency of the United States Government. Neither the United States

Government nor any agency thereof, nor any of their employees,

makes any warranty, express or implied, or assumes any legal liability

or responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or represents

that its use would not infringe privately owned rights. Reference

herein to any specific commercial product, process, or service by

trade name, trademark, manufacturer, or otherwise does not

necessarily constitute or imply its endorsement, recommendation, or

favoring by the United States Government or any agency thereof. The

views and opinions of authors expressed herein do not necessarily

state or reflect those of the United States Government or any agency

thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

_1-

Introduction

The general availability of programmable calculators and computers has

signaled a shift from the tabular presentation of thermodynamic data to

presentation in the form of analytical equations and the replacement of

graphical methods of treating data by analytical methods. HP-65 and HP-6T7

calculator programs for a variety of thermodynamic calculations have been

(1,2)
presented in two earlier reports. The present report lists programs

for the HP-Llc calculator which are of particular use in representing thermo-

dynamic data in analytical form.

The first section will deal with analytical equations for interpolation

purposes. The equations are fit to two, three, or four tabulated points.

o u°
Hg,4) /RT for the reactants and productsIn particular, the values of —-(G -

of a reaction are combined to yield an equation for -A(G®)/RT which can
Hota

then be used to obtain values of the equilibrium constant at desired tem-

perature by the relation

o H°

Bs /RT
1nK = -AG°/RT = -A(G°- 4)/RT - AH

Std

This procedure is much simpler than the use of Asp and AH to obtain acy as

the contribution of acy causes more rapid changes of As® and AH® with tempera-

ture than of -A(G°)/RT, for which the Ac, contributions largely cancel.
Hoos

The second section deals with fitting ~(6°-Hg,;)/RT values or other

quantities tabulated for a large number of evenly spaced temperatures. A

least-square fit is provided using Chebyshev orthogonal polynomials.

The third section deals with least-square fitting of sets of x,y values

(x),to an equation for f(y) given as either a + bf(x), af, (x) + bf,

a + bf,(x) + cf. (x), or af
2 1

(x) + bf, (x) + ef(x). Some examples are given

of the types of functions needed for typical thermodynamic calculations.

P=

The initial sections give the directions for using the calculator

programs and the steps of the program are listed along with use of the

storage registers. In an appendix, a more detailed discussion is given in

regard to the reasons for the procedures used and operation of the program.

Possible modifications of the programs for special purposes are also listed.

This report is subdivided as follows:

page

Chapter I: Interpolation Fit to ¥=LaXxeieieettirecnsannes3

Chapter II: Data Fitting Using the Chebyshev

PolynomialSeseseeesceescocccssccscscsosanaseel

Chapter III: Least Square Fitting of Data to an

Analytical FunctioNeeecesssessescccscccseseld

Appendix I (for Chapter I)eseoeooscsenssssosasssassansssnnesld

Appendix IIA (for Chapter II), by Susie Hahn...oeseseososss2b

Flow Chart for Program (Hieeeeeessosesccccecsss30

Flow Chart for Program CB.i.cecoseesssceccsscsseb3

Appendix IIB (for Chapter II) eceonessossascsssasssascnnceesbl

Flow Chart for Program GG.eeeececssssccccosaseebh]

Appendix III (for Chapter III) uceecsovsccesccoscsssnsasnnenald

REf@TENCES.sesssossssccsssossssssscsssssrsssssscscsssensesssssd2

Program Steps

CHevveeoosnnasssesscnssossnossesasssnsscssossell

CBeveossoeonssoossscsansnossossnsencssssnssal2=l3

abl,ab2,abc2,abc3euscececccccsssnsscossssesll=23

P, STeeeseossesssasscesssosssossscasccssassoscscell

CBOeescesesansanssnonnsessasascssnsccncsssesl3~7h

GGeeeoeoonoooososossssssssssoseascsscsccncncenll

SR, REGE, EREG.eveesescsossscsosssssssssasveesllh

CHAPTER I

Interpolation Fit toy = Za x

Program INTERP will fit a pair of X,y values to a linear equation, a

set of three X,y values to a quadratic equation, or four x,y pairs with the

x values at evenly spaced intervals of magnitude I to a cubic polynomial.

In addition, the program is designed to accept values of -(6°-Hg,4) /RT of

~(6%-Hg,,)/T for each of the reactants and products of a chemical reaction

at two, three, or four temperatures and fit the resulting ~A(G-Hg,4) /RT

values to an interpolation equation which can be combined with AHS,o/R for

the reaction to calculate 1nK or K, the equilibrium constant of the reac-

tion, at desired temperatures in the interpolation range.

Directions:

(1) Insert tape INTERP or XEQ INTERP if program already inserted but

calculator is positioned on another program.

2 Pt. Fit Display

(2a) y4, XEQ2 ¥,Ys

(3a) x4%, R/S a,

(La) SST a,

(5) «x User E §

3 Pt. Fit

(2p) vtytyg XEQ 3 ¥1=Y5

(3b) NN R/S a,

(4b) SST SST a8,

(5) x User E g

4 Pt. Fit

(2¢) yAvtysty, XEQU 1%,

(3c) Itx R/S ag

“hb

4 Pt. Fit (cont.) Display

(Le) SST SST SST 815858,

(5) x User E 5

For values of x spaced at a regular interval I, R/S will give y(x+I)

after calculation of y(x) if I is in register 11.

For the reaction aA + bB = mM + nN, the values of g = (-G°“Hg,4) /BT (a

positive number) for the reactants and products are keyed in as follows:

Display

(a) n+ m+ -b 4 -a XEQ 1 n
The sign is positive for products and

negative for reactants. For total of

three reactants and products, n=0.

0404 m4 -a if only two.

(b) gy * gy * 8g tg, A ney
Repeat (b) for each temperature.

) XEQ 10 ~A(G°-Hg,4)/RT),c

d,) For 4 pt. fit, XEQ 4 and continue with 3c and kc.

az) For 3 pt. fit, SST XEQ 3 and continue with 3b and bb.

d,) For 2 pt. fit, SST SST XEQ 2 and continue with 3a and ha.

(6) XEQ 6 to divide by R if -(G°-HS, .)/T values were inserted in steps (b)
and R is stored in reg. L. Std

(7) To obtain AHG,o/R of reaction, key 4.1 STO6 and then enter MHZo/R for

each product and reactant as in (b).

(8a) To calculate AHo/R from a set of 1n Kn values, XEQ T is followed by

T+ In Kop User H AHo/R

Step (8a) is repeated for all T.

(8b) R/S SST av MHDa/R, Std. Dev.

(9) T XEQ 5, SST 1n K, K

Note 1: Steps (b) and (ec) will accomodate a total of four reactants and
products without any modification. Additional reactants and products can be

accomodated by c¢ + g., X ST+IND6 following step (b) and similarly for AH
after step (7). ¢

Note 2: The program can be used for -(¢°-H)/T and ARS as well as for

the dimensionless quantities used to {0Hora) the displays, but step 9

will display R 1nK instead of 1nK and it must be divided by R before obtaining

K. R in appropriate units can be stored in register 4 for use in step (6)

to convert the equation for -8(6%-Hg,,)/T to the dimensionless -A(G-Hg,.)/RT

form; so it is unnecessary to divide by R each time step 9 is carried out.

. 0 0
Of course, the appropriate Mg,4 or AH,4/R must be used.

Note 3: The values of ~A(G°-Hg,,)/RT obtained at each temperature are stored

starting with R18. Thus a set of values at three or more temperatures is

available for repeat fits using only a portion of the values.

BMLEL 4
Rt STO 12 - S70 15
PRE LASTE - 370 14
Ri - 310 13

x

FEL

ECL
. £Ta 14

570 11 " y is
Ll i zt

Ix ROL 14 fb
Ti 83 noe ”

gs

STG 82

s FIL soon
+ BQ gs3 ETH . wt. . wre

a : RCL 14 5 67
- . £ Ri + a563 Bh 3 Th: Li EG

iE ein11 ph ki i §3 * - STi él g ! :

Bo Gr Ph STO 88 ROL 16 EOE H 14
0 . 5 4 } CHS FRCL 12 + 570 6%

: : TH ROL BF RCL 82117 ROL 1 La
1 AR ERE
1c 1 -

16 RCL 15 3
14 STO Bl AcE K ts
57 FH EYE c
LA o

RL: ‘
y So ao

T
a
)

r
e
a

 i

V
p
n

p
o

1

257 steps SIZE 022

309 bytes

c(gr) + 2C1

500
1000
1500
2000

K

1.978 4 2.536 + 3.25

3p) 0.3 4+ 0.4 4 0.5 R/S 1.2k0;

—6-

XEQ 3 -0.558;

SST 0.120 SST 7.800; (5) 0.4 E 2.536;

1.552 + 1.978 4 2.536 + 3.25

0.1 4 0.2 R/S 1.000

SST 2.000 SST 3.000 SST 4.000; (5) 0.4 E 2.536

2

b

b

b

b N
e
t
N
t
e
r

1
2

3
4

68.1 449.8
81.31+55.L
90.014 58.8
96.534 61.3 >

>

XEQ 4 0.00L;

(g) = ccyy (s), (a) 0414 -24-1 XEQl, O

0

(c¢) XEQ 10, -31.53; (q),) XEQ L, -0.02; (3c) 500 + 500 R/S - 33.05;

(Le) SST 3.60 x 107"

1.98719 STO kL, AH? = -25 x 10

1nK

(9) 500 XEQ 5 8.676
750 XEQ 5 0.392

EEX3 XEQ 5 -3.689
1500 XEQ 5 -7.656
2EEX3 XEQ 5 -9.576

XEQ 10, -31.53;

XEQ 6, 1.987

(9) 500 XEQ 5 8.676,

SST 5.20 x 10°
3

SsT
1"

n

1"

n"

7 SST 1.60 x 102° ; (5) EEX 3 E -32.33;

RCL 4 /=-12581 STO 5; XEQ 6, 1.987

K

5858
1.479_,

2.50x10_)

4.7310 ¢
6.9L4x10”

SST -31.88; (2b) XEQ 3, -0.43; _L _
(3b) 500 4 EEX 3 4 1500 R/S -33.1T; (Lb) SST 8.0x10 SST L4.0x10 ,

SST 5858
750 XEQ 5 0.395, SST 1.485

1500 XEQ 5 -7.656, SST L.73x10°

8

XEQ 10 -31.53; SST -31.88; SST -32.33; (2a) XEQ 2, -0.L43;
(3a) 500 4 EEX 3 R/S -33.19; (ka) SST 8.6x10-4
XEQ 6, 1.987

(9) 750 XEQ 5 0.397,
1500 XEQ 5 -T7.666,

5 6

a R AH Index
3 “sta

R

SST 1.487
SST L.69x10™

-a

4

8 9 10 11 12

-b m n Xx

et

=

(5) EEX 3 E -32.33;

13 14 15 16 17

V3Xy x3fea,fr+x)

yoy,(v3) rv)*

18 1920 2a
R 12 13 ih 17

A(C-KS,|) /RT for 2 to Ep For steps 0 0 2

8 8a and 8b OHoo8 p22) nk n

R R

The minimum SIZE is 022. If data for more than four temperatures are used
in steps (b) and (c), the values of -A(GO-HZg) /RT will be stored in R22 and
beyond if a larger SIZE is specified.

CHAPTER II

Data Fitting Using the Chebyshev Polynomials

The Chebyshev (Tschebycheff) polynomials, T(x) = cos (neos+x), are

orthogonal over the continuous interval 0 < x < 1 and they have been shown

to be the most economical polynomial for expressing f(x) as a polynomial

series with the minimum number of terms for a given accuracy. (32) The

Chebyshev polynomial can be modified to c(x) which is orthogonal for

discrete integer values of the variable, x, from O to N as discussed in

references 1-4. If x, is the initial value of x and I is the regular

interval between x values, the data points are assigned integral x values

from 0 to N where x = (x-x.)/1 and the data are fit to a polynomial of

the type

f(x) = (X) + c.C.(%) + c.C.(X) + ¢),C,(%).
11 272

Because of the orthogonality of c(x), the matrix calculations for the

0%

least-square fit of the data are simple and the C, constants do not depend

upon whether the quartic term is included or not. Also, the symmetry of

the function reduces the calculations by half. An additional advantage

is the more symmetrical weighting over a wide range of data points than

for many other fitting procedures. After fitting of the equation, the

value of the quartic term for Xx = 0 or N is displayed and a decision is

made whether the quartic term is large enough to retain. Then the egua-

tion is transformed to a power series of third or fourth order:

f(x) = a, + ayX + 0% + ax (+ 0,5)

and

_ 2 3
f(x) = By * aX + aX + aX (+ a)x).

(2a)

(ka)

(4p)

_8-

The instructions for use of the program are given followed by a listing

of the program steps. For a more detailed record of the various opera-

tions of the program and the reasons for the procedures used, an Appendix

is provided which gives equations used, the general flow chart and dis-

cusses the indices and subroutines used.

Directions for Fitting N+1 Data Points at Even I Intervals of x

If programs are not already stored in calculator, insert Prgm. CH card

(2 sides) and Prgm. CB cards (7 sides).

If the c, (x) values for N+1 data points have not already been calculated

and stored, key

N+1 XEQ 'CH' = SIZE? = > 3N+20(N odd) or 3N+22(N even)

Fl will be set if N is even. If number of storage registers is not adequate,

key

XEQ 'SIZE' mno where mno is three digit number corresponding to the

number of registers needed.

R/S > Index = 21 + q/1000 for Cc, values in R21 to

£(0) XEQ 'CB' £(0) Ra

£(1) R/S > £(1)

f(INT N/2) R/S > (INT N/2)

f(1+INT n/2) R/S +> f£(1+INT N/2)

f(N-1) R/S > -f(N-1)

£(N) R/S +> c),C), (0)

If ¢),C), (0) is small enough to drop the quartic term, key

User A > ay (F 0 set)

SST, SST, SST > a,» Ops og

If quartic term is to be retained key

R/S -> Og

ssT, ssT, SST, SST = %s Ops 03» 0),

(5) To tabulate closeness of fit to data, turn off calculator, attach printer

in MAN mode, turn on calculator and printer, and key User D to obtainprint

out of f and(f - f) for each data point where f is value calculated from

polynominal equation. After the deviations are printed,

5 = A(F-r)? and the average deviation, 2] (5-£)]/(n+1) are printed.
N-1

(6) xy 4 I User E > a,

SST, SST, SST, (SST) as 85 as (a),)

A

(7) x User B

(8) x User C F(x)

If it is desired to check any constants, o

R 11-15 and a

0 to 0), are stored in registers

o to a) are stored in R 16-20. All of the data points are

stored in order from f(0) to f(N). The number of the last f register,

which contains f(N) is given by 1000 (decimal portion of the f Index in

R5).

If it is desired to fit another set of data with the same number of

data points, it is not necessary to repeat steps (1), (2a) or (2b); one can

start inserting the data with step (3). If it is desired to haye dimensionless
values of -(G- BRT using ag/R to a)/R, store R in register 8, turn printer
on, and key User” 'F!

Test:

~(G2Hy0g) /T values for C(graphite) from JANAF Tables (3/31/78) were fit

between 300 and 1300K.

(2a) 11 XEQ CH, SIZE? = > 52, Fl set, SIZE 052; (2b) R/S 21.040;

(3) 1.372 XEQ CB 1.3720, 1.462 R/S 1.4620, 1.657 R/S, 1.903 R/S, 2.174 R/S,

2.457 R/S 2.4570, 2.743 R/S -2.7430, 3.026 R/S -3.026, 3.306 R/S, 3.579 R/S

-3.5790, 3.845 R/S 0.016;

(bb) R/S 1.368 SST L.9kx10™2 SST 5.87 x10™° 8ST -6.09x107> SST 2.215107" 3

(5) User D (6) 300 + 10° E 1.930k, SST -4.9088x107>,

oh. SST 1.254x107°, SST -8.7L46x10™7, ssT
2.212x10712, 1.98719 ST/16, ST/17, ST/18,
S8T/19, ST/20, RCL 16 to 20 or 1.98719

STO8 F

Rlé= 971.415-83
Ri7= -2.473%2-43
Ri3= &,31883-8¢
Ri9= -4,48847-89
Rzg= LL11298-12

Ca
d
I
U

F
a
d
f
d

r
e
s

pe
t

p
e
e

pe
n

-
«

C
a
d

[X
N
E
N

=
|

E
n

-
ote xo

~(C-Hpgg) /RT = 0.9714 - 2.4702x10

1.113010220"

(7) 2 B ~(6-H, g)/T = 1.6564 compared with tabulated 1.657 cal
Oo

-10-

3
T + 6,311x10°

T', 300-1300K, deviations range from

6
T° - 4.4005x10"

93 4

(8) 10° ¢ ~(6%-H)q) /RT = 1.52L5, R/S 3.0295 compared to tabulated ~(6°=Hpgg) /T =
3.026

Register Use

R 00 1 2 3 hy 5 6 7 8 9 10

N XN Initial C_ index aq n x
2 Cc index index

n 20 + 7500
Index to gtl 1to3 O toy

INT =01+ —3 2
1000 g+1+ Toso

m (f,c) f (£,c,) (fc) (£,C,) (£,C5) (£,c),)

index q+1 index index i
0 to 3 to 20 I(x)
0 to 2

0 to 1 o

0 index

15 to 11

I a n

index index

20 to 16 4 to 1

11 12 13 14 15

(£50)

a, 0, ag (a),]

(£,Chn)
XG ,C J

n n

16 17 18 19 20

(£,0))
(cs) (Cp) (C,.Cc,) °F Cy,1

Csp Cas C3,=Csp (),1-C),5)

Cc (£,Cr) (£,C3) (c,.~C, +2C, .) as B_.=2
22 (CorCy) (coc) 17 ho TY3 31

(c),),)

go 8 5s 83 ay,

I

_ 20+2(N-1) for N odd
al 22 23 2h 25 === QF 1p 2042N for N even

Nc, (1) c,(1) c5(1) ¢,(1) c,(2) _— c), (INT 2)

_ 19+3N for N odd
ql q+2 —-—= q+] = 21+3N for N even

£(0) £(1) ——— P(N)

SIZE = 20+3N odd

22+3N even

One may not have values of f(x) to be inserted in step (3) and it may be

necessary to calculate f(x,y) from values of x and y. For example, one might

wish to express ~A(Gp-H)og) /RT as a polynomial in T given values of AGq at

. . o_O = 0 _An° -even T intervals: AG Hogg) /RT (850g AG) /RT. One would make the follow

ing modifications to program CB. RCL Z of step 6 would be replaced by the

two steps R* R#4 and the following six steps would be added to the beginning

of LBL 10: RCL 55 + RCL56 / x¥y / MHZ would be stored in R55 and

R would be stored in R56. SIZE would be set at 57. With these program

modifications, T¢ - 467 would be inserted in place of each f(x) of step (3).

Of course AH and AG have to be in the same units and R has to be in corres-

ponding units. The values of AG° are not stored, but the derived values of

0 ..0
-A(G ~Hpgg) /RT are stored.

-10-

BieLBL "CH" BLeLE TLEBa a 6.1 STO 64 OL 82
STO 61 RCL 81 INT G70 Bs RCL wen
var OTD £4 SF Bi STC 85 S70 67 570 2
tr 55 STD ED STD 1R RTH

KED 10
LaniBL Bda 150L6L 01

ENTER! ENTERt EMTER}
a. ST INF 84 136
on STO bd JEQ BZ WEG BZ ¥EQ A2
Ei a alk STD a XERE2 5 ST- 24 Ri
’ RTH EQ 18 GTO 8]

CL 88 + Fv 8

“S1ZE7=)8" BRLL X JieLBL 8°
PROMPT & FIX 3 STD €7 Fp

420LEL 60 ISG 57
ISG 83 GTC 42 RCL 82 HT 83

2EG

47+4LBL 63
1 S70 65 ST+ &

RCL 87 RCL 81 7 CHS 4 ATH
i + 570 IND 83

S5eLBL BS
5g+L8L #1 ENTERt FHTERY 220 69

2 % RCL &1 RCL 87 - T+ 18 RDN 2E4 85 ROH

+ ROL BE 2 # 1 + # HED 89 ST+ B3 REMY
$C) RCL 86 * RCL 00 JEG 83 57+ 81 RIN
RILBS + 1 + % - YEO 85 8T+ 37 RY STOP
RCL 68 ROL 86 - 7 46 16 G10 43
REL 86 1 + 7 ISG 63
STO IMD 83 4 RCL 26 1 TaLEL BS

RCL INE 67 03F 82+ ¥=Y? GTO #2 STO 66
i 57-83 Rt
RCL IHD 63 XO0Y ISG @2

0 o
d
=

610 #1 SEALEL BS
5T67 Evo Z
Fit 57+ 2:

165+LEL 6
RCL 82 570 B32 :

i 1
1BEHLEL 82 1 £14 STR 14
FIZ 6 RCL 63 PSE Fen 60 67
RCL IND 83 FIX 2 PSE
ISG 63 GIO 82 RTH

—

118¢[BL £
FCL 82 PRREGY EMD

121 steps

167 bytes

PULsLBL 19
STO THD 25 130 B83 RTH
ER As ST+ 13 ROH
5T+ 99 FO 5T+ 83 FROM
T+ 87

133eL0L 17
g =T0at 4 STD Bd
AER 12 RCL [3 1»
Ta {1 ETOP CF 88 |
ACW 14 STD 23 |
5T0 81 #DM HER 14
STHO19 57-28 2
STO 81 PON REQ 14
57013 2 + 5T+ 28 3
5T0 61 RCL 15 MEQ 14
RCL 28 BMY STD 20 6
¥ - RCLIL + 57D 12
RCL 19 ROL 12 3 » -
RCL 28 11 + + RL 1
£ 570013 REL (2
BCL 2 & x - RCL 1
* E70 14 RCL 24
RCL 1 + STD 43

{3helBl 7
g staal 3 STO 84
AER 14 STDS |
370 81 RIN ZED 14
51-13 S117 2
570 81 EDM GED 14
A015 2 % REL 19 +
KER 13 RCL A9 +
37019 57+ 1] =
5T+ 12 RCL {7 RCL 18
I» - RILIS «
5T+ {2 RCL 15 RCL 19
57+ 14 BSE 24 4
STO 41 tHE 1
501% 1 5750 81 RIM
AE0 14 570 17 57-13
AE 13 ROL @3 a
T+ 11 S70 13 RCL 19
ST+ 12 ROL IT
RCL 12 + 57+ [3
TE 84 8 STD Bl 1
HER 14 KEQ 13 RCL 47
x STH 11 + 5T+ 12
RL a5 RCL A 1 + /
5T+ 11 RCL 11 ETOP
PCL 12 RCL 13 RCL 14
RCL 1S

-13-

a77+LBL 14
RCL 81 1 + ¥t2 LASTY
RCL 84 + + 1/3
RCL #1 RCL M4 - =
RCL #8 RCL 81 - 7 =
RTH

297+LBL 13
REL 38 FACT X12
RCL #8 RCL 84 - FACT
/ RCL 23 RCL 94 + |
+ FRCT + REL Ad 2 +
1 + *% RN

lzadBL E
ST0 91 OM EHYERt
INTERY ENTERY FC? 49
YER 15 FS? 28 XEQ 4A
RCL 14 RCL M1 3 YHX
/ ST+ 19 = 3 «x

ST- 13 x S8T+ 17 * 3
/ ST- 16 BDH RCL 13
RCL 91 ¥42 7 ST+ 13
r 2% ST-17 x 2
T+ 16 RDN RCL 12
RCL 81 7 S5T+ 17 =
57- 16 RCL 11 ST+ 16
RCL 16 RTH RCL 17
RCL 18 RCL 19 RCL 29

3754LBL 15
RCL 15 RCL A1 4 YX
/ ST0 28 x CHS 4 =
STO 19 * CHS 1.5 =
T0013 + CHS 1.9 /
ST0 17 «x CHS 4 /
5Td 16 PDH RTM

454+LEL 09
S70 16 STO 17
STO 18 57D 19 PDH RTH

4124BL 15
RCL IND 23 ACK 3
SKFCHR X(» T RMN -
ACY ADY HBS RTH

424+LBL D
FIZ 3 RCL BA [+
ST- a3 RCL 11 AER 1A
STO Ae Xt2 STO 87 |
T+ 05

477+L0L 93
15 HER 83 YEQ 1s
ST+ 86 X42 5T+ 87 RY
1 + IS6 83 &70 83
RCL @% 1 + S§T/ 86 2
- ST 97 RCL 87 SORT
PRY RCL #6 FRE RTH

462¢03L B
15 G70 83

455¢LBL C€
28

4670EL 3
5T0 93 F537 88 DSE 3
PIN EWIERt ENTER
ENTER ROL THD 83 =
DSE 83 XER 12 EQ 12
FC? 39 WED 12
RCL THD 83 + RTH
PLL 93 + RTH

43%eL8L 12
RCL [40 93 + & DSE 83
RTH

4540L8L F

RCL 88 577 1% S17 17
5T7 18 51/19 351s 29
ENG 5 16.82 F5? @a
16.819 PRREGY END

506 steps

T59 bytes

1h

CHAPTER III

Least-Square Fitting of Data to an Analytical Function

Least-square fitting of data to any equation y = f(x) is not a routine

process but requires careful consideration of the variations of errors in

(L4,5,6)
y as a function of x. For example, if it were desired to obtain

the values of a and b in the expression y = ax" + bx that best represent

a set of data, one could least-square a variety of functions of y. The

use of the unweighted function would tend to heavily weight values of y at

large x. As just one alternative example, one could least-square

v/x = a + bx and obtain, in general, quite different values of a and b

that would correspond to more heavy weighting of values of y at low x than

for the previous procedure.

One should carefully consider the magnitude of errors in y as a

function of x before selecting the appropriate procedure. One should apply

appropriate weighting to off-set any bias of the least-square procedure as

well as to attempt to correct for systematic errors. 6)

A set of x,y values may be fit by least-squaring procedures to a

variety of equations. Unless the data are unusually accurate, or have been

smoothed to fit an equation closely, it is rare that more than three para-

meters are justified. The four equations that are fit by the least-square

program given here are f(y) = a + bf(¥), fly) = af, (x') + bf(x),

fly) = a + bf. (x') + cof (x'), and f(y) = af_(x') + bf(x") + of5(x")
2 1

which will be identified in the program as abl, ab2, abe2, and abe.

f(y) can be any function of y or of x and y and fs f,, and f, can be

any three different functions of x or x', where x' which is afunction

of x such as f(T') = 7-298, T-1000, 2890-T, T/298, etc. #1) must also

be specified to convert values of f(y) to values of y.

As pointed out above, the least-square process can not be an automatic

procedure. Built-in weighting bias can distort the fitting depending upon

the way in which y varies with x. One can offset the bias as illustrated

above by fitting v/x° = a + bx instead of y = ax’ + bx by switching from

program ab2 to abl. The least-square program also allows specific weight-

ing factors to be applied to each specific value.

-15-

In applying the least-square program, one must first meke a decision

about which of the four equations will be used. Then one must decide

whether individual weighting will be used. If the values of x are spaced

at even intervals, the insertion of the data can be simplified by storing

the value of I, the interval between x values.

All data are stored and can be retrieved to be fit to any other equa-

tions, if desired. Once the constants a and b or a,b, and c¢c have been

fixed, the program will provide calculated values of y, §, for any value

of x in the range that was fit. If it is desired to examine the nature of

the fit, insertion of the HPUlc printer will provide a print-out of J-y

values for all n values of the original data, the standard deviation

VF-y)?/(n-2) and (§-y)/n, the average deviation. For accurate statical

evaluation, the standard deviation expression should be modified by

replacing the 2 in n-2 by larger values depending upon the degree of the

equation being fit.

To illustrate the selection of f(y), f(y), x', f(x"), etc., some

specific examples will be given. High temperature heatcapacities are

often obtained by Drop Calorimetry. Drop Calorimetry yields values of

Ho-H, for various values of T, where i refers to the reference temperature

which may be 273 or 298K or some other calorimeter temperature. It is

desired to obtain a Cp equation which will join the accurately known Co

at temperature TI. from low temperature. Shomate has proposed an equation

(7,8) For Cp = a + bT +whieh has been found useful for Cp evaluation.
-1

= + + + = T-(HHo-HH,)/6° Cp ;/@ a, a, a 1(@ T,) where © T-T.,c/T° + ar?,
2 ’ = -2 2

= 3a,, c= Te » b=2a, -dT, and a = CC, , -bT, -cT, - dT,. For use
1 i-1 0 i i i i 5

in the least-square programy = H -H , x = T, x' = T-T, =0, fly) = y/0" -

Cp 1/9 fly) = 0°fly) + oc; 4» and f (x') = (0 + 7) in program abce2.

This procedure joins c,imoothly 2”the low temperature values, but

the derivative may be discontinuous. To ensure a smooth Joining, one

would use £(y) = y/0 = Cp; = H0(dC, ,/aT)an £7y) = olely) + op,
350° (acy, ;/aT) with £1 (x') = (0/72am, -1/T) = 0?mdr and f,(x') =

(1/3)0% in program ave which will yield the constants c and 4d of theLP

) +

equation. The other two constants are given by b = ;/4T + 2(c/Tan,)
P,i

and a = C_ , = bT, - c/T° - are.
P,i i i i

There may be no accurate low temperature heat capacity data and the

-16-

high temperature data may not be accurate enough to warrant four parameters.

However, the temperature T* at which dC,/dT reaches a minimum is clearly

indicated by the heat capacity data. Use of T* reduces the parameters to

three with y = Cp, x' = T, £,(x) = (T + T.)/2 and f(x) = 1/1° - 32) (Te)

with 4 = -3¢/(T*)". a, b, and c are given by program sabe2.

A similar treatment for enthalpy with y = (Hy-H,), f(y) = y/0,

£7Hy) = 0f(y), x' =x ' 1, £(x) = H(T+1,), and £,(x) = 1/7, -
(1P+rr+12) /(0) yields with program abc? values of a, b, and c.

a= -3c/(m9)",
The example of the regular solution partial molal equation ¥ =

ax; + bx; with the choice of f(y) = ¥, 7x, and T,/x5 with appropriate

changes in £ and £, has been discussed above. A related equation for the

integral quantity Y,/x%, = a + %b + 3px, can be treated with f(y) =

y/(1-x,)x%,, £71) = (1-x,)x,£(y), and f(x) = hx, The term designated

as b by program abl corresponds to the b term of the regular solution

equation. The term designated as a by program abl is equal to %b plus

the regular solution a term.

When regular solution theory is applied to calculation of solidus

and liquidus curves of phase diagrams, an explicit equation for the

boundaries can not be obtained when there is appreciable solid and liquid

solubility, although accurate values can be calculated by successive

approximations. (2) The calculated values can be expressed analytically

in terms of an approximate equation of the form that would apply if solu-

bilities were small plus a deviation function. A least square fit using

program abc2 can provide an accurate representation of the solidus and

liquidus boundaries.

Directions

-17-

If program is already in or after insertion of cards, indicate by

la, 1b, lc, or 1d which equation will be used to fit data. ' ' indicates

ALPHA mode.

(1a) f(y) = a + bf(x'), key XEQ ' a b 1', which sets Fl.

(1b) f(y) = af, (x') + bf, (x'), key XEQ ' a b 2', which sets F2.

(1c) f(y) =a + bf, (x!) + ef, (x'), key XEQ ' a b c 2', which sets F3.

(1a) f(y) = af(x") + bf, (x") + cfs(x'), key XEQ ' a b ¢ 3', no flag set.

For all four program initiations, the calculator will prompt w?

SFO I? STO 00. If all the data are to be given equal weighting, no

response to the first question is needed. If w#l for any data, key

SF 00. If the values of x are at regular intervals of I, store I in

ROO; otherwise no response is needed.

If SIZE is not sufficient, XEQ 'SIZE' 22+2n, where n is the number

of data sets to be entered. If f(y) and f(x) have not already been

inserted for the desired equation, step (2) is carried out.

Display
(2a) key PRGM + LBL1, key in f(y).

(2b) SST SST + LBL2, key in £1(y).

(2¢) SST SST SST + STO 06, key in x'=f'(x). If x'=x, nothing is keyed in.

(2d) 8ST + STO 05, key in f(x). If f(x')=x', nothing is done.

(2e) SST SST SST > RCL 05a" wl, key OX,
for other programs, key f(x").

1

(2f) SST SST SST + RCL 05<— OF @b3, key fi(x') PRGM.
otherwise, key 0 X PRGM.

The above instructions assume no f(y) or f(x) steps left over from

previous calculations; if there are, they must be deleted if not consis-

tent with the desired functions. If there are no plans to use abe3 in

a series of calculations, step (2f) can be eliminated by leaving 0 X in

LBL5 and completing step (2c) with PRGM. If f(x')=x, steps (2c) and

(2d) can be bypassed after step (2b) by PRGM GTO: PRGM SST followed

by step (2c).

GTO and BST.

Other simplifications of step (2) are possible using

(3a)

(3b)

(3c)

(3a)

(5a)

(5b)

-18-

For each program, there are four variants for inserting data.

no I, w=1 key x 4 yy User E + x

x, + Ys E +> x

>Xx Y, E x,

I STO 00, w=1 key x; + v1 User E +> x,

Jo E > x3

Yn E> n+l

no I, w#l SFOO key x + ¥y rw User E + x,

x, 4 Ys + Ws E~»> X,

>x 4 Y, tw E x

I STO 00, w#1 SF 00 key x, + va tw User E > x,

Yo tw E»rx

>Vy 4 v E X

After all data have been entered,

RS + a, SST + b, and SST =» ¢ for abc? and abe3.

Calculated values of y, ¥,can be calculated for any x using step 5a.

If values are desired at even intervals of x, step 5b can be used.

x User C+ y

If I in ROO, x; User C =» Ys R/S + Yoo R/S....

The closeness of the fit between the calculated y values and the

unweighted original data can be checked by turning off the calculator,

attaching the printer, turning both on with the printer in MAN mode,

and keying n XEQ 10. The printer willprint y,, yyy Yoo ¥,-7, cee Vp

Tv, followed by vI(3-y)2/(n-2) and (E|§-y|)/n. (If the printer is

still attached from a previous step 6 when step 1 is carried out, the

calculator will stop after display of w?SFO. R/S will complete the

display of I?STO 00. SST will then put calculator in position for

-19-

insertion of f(y).)

The X;o¥s values were stored in step (3) and can be retrieved to fit

to another equation or other functions. Repeat step (1) to indicate

which equation and insert desired functions. Then n User A will retrieve

x;»y; values and make an unweighted least square fit in place of step (3).

Follow with step (4) to obtain a, b, and c¢ values. If it is desired

to use weighting in the new fit or change the weights applied in a

previous calculation, subroutine LBL6 can be modified by inserting

RTN before XEQ E and before GTO E. Step (1) is followed by SFO00 and

n User A as indicated above, but the calculation will stop to display

each ye Then key in LA followed by R/S. After the last value has

been keyed in, follow as usual with step (4).

Note 1: Additional data can be inserted by step (2) after steps k4, 5,

6, or 7 if the appropriate flag is set for the equation being used, and

SIZE is adequate or is increased.

Note 2: Steps 5, 6 and T can be repeated in any order.

Note 3: The closeness of fit obtained in step (6) can be compared

with the fit using weighting by inserting RTN X in IBL 1L between PRX

and ABS. Zw, which can be obtained from R16 for all programs except

abe3 is used in place of n in initiating step (6). The calculation

will stop after the display of each yioYs Key in wv. followed by R/S.

After the last value, there will be two additional printouts of which

the last will be I wo 9,-v. [2g which can be compared to Z19;-v;1/n

given by step 6 as normally carried out.

Note 4: If f(y) and f(x) used in the previous calculation require

three or more steps, the delete function can be used to remove them

and add the functions needed for the current calculation. If the

previous calculation was the fitting of enthalpy data to match pi

and (ac/ar), with ab2 as described in the introductory text cof

Chapter III, f(y) took 1k steps, (yy) 8 steps, x' 2 steps, f,

9 steps, and fs, 3 steps. Step (2) would be carried out as follows:

[(JGTO01 PRGM SST XEQ 'DEL! 01k, key in new f(y), SST SST SST XEQ 'DEL'

008 key in new £71 (5), ssT SST SST SST SST « <«, key in new x', SST SST

XEQ 'DEL' 009%key in new fo SST SST SST XEQ 'DEL' 003 key in new T

PRGM if no new fs.

2

~20-

As mentioned in the step (2) instructions, one can use PRGM

JGT0S5, for the example of deletion of f,» PRGM OBST [BST « « «

key in new £5 PRGM. One could reduce the number of keys required by

three if the step number after inserting £5 e.g. 40, is noted. Key

GTO .0k6 « « «, key in new f,,, PRGM.

TESTS A sample calculation is carried out for each of the four programs

which can serve as a check if the program is operating properly. The

appendix to Chapter III gives insertions into the program for the

functions and sample calculations for the fitting of Drop Calorimetry

data as discussed in the introductory text of Chapter III.

bl Test: 1Iny = a + bx©, n=h, I=100.
(1a) XEQ '0OaCvd1' > F1, EEX 2 STO 00, 'SIZE' 030

(2) With no entries from a previous calculation to be removed,

PRGM LN SST SST [Je SST SST SST SST 1/x

SST SST SST 0 X SST SST SST 0 X PRGM

(3b) 1300 4 0.0147 User E + 1400, 0.0263 E + 1500, 0.045 E »> 1600,

0.0696 E + 1700

(4) R/S a=4.108, SST b=-10 830

(5b) 1300 C 0.01465, R/S 0.02657, R/S 0.0445, R/S 0.06988

(6) OFF, Printer in, MAN, ON ON 4 XEQ 10

8.81478 -.03985
8.82038 9.88827
8.84539 -0,08353
8.66968 8.88023

2.63845 rH

8.58927 5k

(7) Retrieval for weighted fit:

XEQ 'Ja0b1' » F1,[JSF00, EEX 2 STO 00; [JGTO 6 PRGM SST [JRTN

[0cT0.508 [IRTN PRGM; 4 User A 0.0147, 2 R/S 0.0263, 4 R/S 0.0k450,

1.5 R/S 0.0696, 3 R/S 1700; R/S a = 4.106, b = -10 831

TGTO 6 PRGM SST SST <« OGTO0.508 « PRGM, to delete RTN twice.

ab2 Test: y = ax- + bxo, n=9, I =0.1, values to be weighted

(1v) XEQ 'Dadv[l2' + F2,[JSFO0 'SIZE' Oko, 0.1 STO 09

(2) PRGM SST « [JGT0.038 « [JGTO.0k2 « Ox CJGTO.04T « «3 Oy™ PRGM

(3d) 0.1 4 4.001 + 10 User E 0.2, 23.998 + 9 E 0.3, 72.003 + 8 E 0.4, 159.996 + TEO0.5,

abe?

-21-

300.005 + 5 E 0.6, 503.994 4+ 4 E 0.7, 784.007 4+ 3 E 0.8, 1151.992 + 2 &

0.9, 1620.009 + 1.5 E 1.0

R/S a = 199.9906, SST b = 2000.015

0.1 ¢ 4.000, R/S 24.000, R/S 72.000, 0.9 C 1620.003

Printer ON, 9 XEQ 10,

4,031 -0.0081
23.998 6.082
72.063 -6.002
159.9% 0.083
Jng.0R3 -B.883
303.934 0.886
734.0887 -0.906

1,131,992 8.018
1,628,809 -0.0806

8.880 xx
8.805 x

Test: y = a + blnx + c¢/x, n=3, weighted fit

(1c)

(2)

(3c)

(4)

(5)

Test: 1/y = a(3000 - x) + b(3000 - x)% + ¢(3000 - xabe3

(14)

(2)

(34)

XEQ 'dalJvdc2' + F3, [OSFO0, 'SIZE' 028

[lGTO 4 PGRM [BST [$BST « LN [1GTO.0LT< «1/x PRGM

142042E1, 10 4+ 15.605 + 1.5 E 10, EEX 2 4 19.31 4 1 E 100

R/S a = 10.00, SST b = 1.99993, SST ¢ = 10.00

1 C 20.0, 10 C 15.605, EEX 2 C 19.31

)3, n=5, I=100

XEQ '[Jalib[Jel13', SFOO, EEX 2 STO 00, 'SIZE' 032

PRGM 1/x SST SST 1/x SST SST SST 3 EEX 3 - CHS

SST SST « 010.050 <« [X°[XT0.055<« + 3 [Jy° PROM

1800 +2.289k x 107% + 1 E 1900, 2.7465 x 107 4 2 E 2000, 3.3333 x 107"

+ 3 E 2100, 4.1 x 107" + 4 E 2200, 5.1234 x 107 + 5 E 2300

R/S a = 0.99508, SST b = 1.00947 x 1073, c = 9.955 x 1077

1800 C 2.2894 x 107", R/S 2.7L46L45 x 107, R/S 3.33328 x 107, R/S

4.1001 x 107", R/S 5.123hk x 107"

The keying of y could have been simplified by changing f(y) to 10% /y

and keying in 10%.

BieLBL “abl”
SF #1 GTC @2

B44LBL “abe”
SF 82 GT es

@74LBL "abcZ®
SF 62 GTO ae

jaelBL "5hc2-
f1+LBL 83

CF #3 22.1 570 2¢ (LT
8 Sib g2 STO 8!
STO 82 STD B84 F357 61
GT0 13 S70 17 S70 18
F§? @2 G70 12 STC 19

284LBL 12
“WH? SF &°
17 57 #3"

RYIEW PSE
RYIEW RTH

354L8L 61
RTH

37+LBL 62
RTH

J9+LBL 62
STO 2A STD 85 RTH

43+LBL 04
RCL 85 RIN

454LBL 80
RCL 85 RTH

490LBL E
FS? 88 GID &7 1
STH 88 RIN &T = n

y
“o

r

SeeLEL 87
ST+ 16 SGRT 270ed 1
§T- 1&6 RDN RIN

64LEL BE
STO IND 28 156
KEG @¢ RCL 83
STC 10 ROY STO
ISG 26 ¥EQ #7
¢ STOFS61
G70 69 CED £4 R
+ $5087 FS 2
610 1 FS? 63 G
GT15

=
o
w

p
e

x
aND 2

fe

RIN RCL 12

-22-

89+LBL 47
RCL BE 1 - + §T+ 11
LRSTY RCL 18 ST+ 13
RCL 19 PCL 0% Z+
RCL 85 RCL Ag + RTH
RCL 15 RTL tI RCL 13
s RCL 16 + - FRCL 12
RCL 11 Xt2 RCL 16 7
- + S70 62 MERW
RCL 82 * - 370 8l
CF 8! RTH RCL 82

129+LBL 1!
RCL 18 + S7+ 18
RCL #2 RIL 12
§7+ 17 RCL 87 RCL 8%
&+ RCL 85 RIL 608 +

RCL 18 #
RCL 17 RIL 15 + -
RCL 12 PCL 14 +
RCL 15 Xi2 - 7
STO 82 RIL 15
RCL 17 - CHS REL 12
+ STO #2 CF 82 RIN
RCL &3

178¢LBL 12
RCL 82 1 - 5T0 61 +
ST+ 13 FRCL 22 RCL 89
s ST+ {1 RCL 10
RCL 62 * S5T+ {9
RCL 87 ZER 11 RTH
RCL 13 570 18 RCL MM
#2 RCL 16 ST/ 1B /
RCL 12 - RIL li
RCL 13 RCL 16 7 =
RCL 15 - STD 85 XO
STO 83 PCL 12 X12
RCL 1& 7 RCL 14 -
STG 85 RCL 17 RCL 12
RCL 16 RCL 13 = RON
- STO BE RIL 18
RCL 1 + RT -
RCL 83 RCL 85 +
RCL 86 ¥32 - ROL 67
RCL 85 = BE
RCL 85 * 200
570 #2 RCL AZ #
RCL B7 - CHS RCL ©
/ ST0 B83 ROL 13 *
RCL 1! RCL @2 = +
RCL 16 + RCL 18 -
CHE STD 21 CF 43 RIN

RCE £2 ll 03

510 6&7

Toe Tio
coool

RCL 16

RCL 89

RCL &7

ECL 89

ST+ 15
+ ST+

RCL 83

ENTER?

ST+ 19
ST+ 12

RCL 85

§T+ 16
ST+ 13

+ RI
* RCL

S10 64

* RCL

STO 85

* RCL

S70 86

RCL 14

RCL 15

STG 7

+ KCL

STO 88

RCL 12

RCL 12

510 69

RCL 84

RCL &7

RCL 12

RCL 12

S10 19

RCL 83

RCL #9

RCL 87

RCL &5
RCL 18

RCL £3

RCL

RCL

RC 4

11 KEG 85
+ EHTERY
ENTER X%2

1g RCL 8%

ROH RCL 16 =
ROK RCL 89 +
te - 1 +

PON RCL 87 #
RCL 85
rel 17
18 ¥12
RCL 15

it. RCL 18
RCL 15 ~

~

*

RCL 6a
RCL 13

LL 19

I

{6 RCL 17 * -
RCL 16

RIL 84

RCL 65

RCL 12

12 RCL

RCL Is

RL 19

PCL ig

RCL 15

RCL 11

7 S70
PCL 13

RCL 1¢

RCL 16

ECL 1)

RCL 14

/ STO

RCL 11

RCL 13

RCL 14
7 S710 64

RTH RIL 82

L
E

=
p
n

[>
~]

W
o
w

d
W

O
d

H
e
W
W

W
F
E
W
W
M

X
D

+
EL

©
)
= i
r
o
D

416413
AQ €:
XED 84
4EQ 85
RCL 81
PCL 88

4364LBL
STO @7

-23-

C
PCL 82
RCL 83
RCL 84
+ KEY

RCL 66

18
2 x 22.82 +

1E3 + 22 + STD 29
1 + STO 21 8 STD @9
S70 1e

453:LBL 14
RCL IMD 21 XE
RCL IMD 28 IS CX
3 SKPCHR EIN ACX
ADY ABS ST+ [8 Xt2
ST+ 8% I56 21 G70 14
RCL 87 57/18 2 -
ST/ 8% RCL 99 SORT
ADY PRZ RCL 18 PRX
RTN

BC
628

483+L8L A
2 % 19 +

+ 57d 21
{E33 7 22

493+LBL 86
XEQ@ 16 XEQ E ISG 21
G70 95 .1 ST+ 21
EQ 16 GTO E

S824LBL 16
RCL IND 21 155 21
RCL IHD 21 XY END

507 steps

713 bytes

A
l
l

p
r
o
g
r
a
m
s

s
t
a
r
t
w
i
t
h

O
i
n
R
O
O

w
h
i
c
h

i
s
r
e
p
l
a
c
e
d
b
y

I
i
f

x
v
a
l
u
e
s

a
r
e

a
t

r
e
g
u
l
a
r

i
n
t
e
r
v
a
l
s

o
f

I
.

R
2
0

c
o
n
t
a
i
n
s

t
h
e

i
n
d
e
x

f
o
r

s
t
o
r
i
n
g

y
,
x

v
a
l
u
e
s
.

I
t

s
t
a
r
t
s

w
i
t
h

2
2
.
1

a
n
d

i
n
c
r
e
m
e
n
t
s

t
o

2
2
.
1
+
2
n
.

R
2
1

i
s
u
s
e
d

f
o
r

a
x

i
n
d
e
x

f
o
r

L
B
L
1
0

a
n
d

L
B
L
l
4

a
n
d

f
o
r

a
n
o
t
h
e
r

y
,
x

i
n
d
e
x

u
s
e
d

i
n

L
B
L
A
,

L
B
L
6
,

a
n
d

I
L
B
L
1
6
w
h
i
c
h

s
t
a
r
t
s

a
t

2
2

+
0
.
0
1
9

+
2
n
/
1
0
0
0
.

R
e
g
i
s
t
e
r
s

1
1
-
1
6

a
r
e

c
l
e
a
r
e
d

u
p
o
n

i
n
i
t
i
a
t
i
o
n
.

R
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

y
r

f
w

e
o

L
y
w

Le

Lz

a
b
l

0
0

0
x
!

x
—
_

a
b
2

0

Lz

Lz
o

e

™

o

£
A

y
a

—
t
o
u

—

ab
e?

2
f
w

y
w

I
f

ow
I
f
w

If
.
w

T
y
w
/
I
w

l= 3

Lz
CG

5

w

oO

—

2

oO

oho

=

a
b
e
3

0
0

Nd mw

SS
$4

4

w

f
w

y
w

L
y
f
w

Z
y
f
,
w

Ly
f.

w
S

 R
1k

15
16

17
18

19
y,

is
st

or
ed

in
R2
2,

x,
in

R2
3,

1

a
b
l

 —
——

T
y
f
w

T
w

y
,

i
n
R
2
4
,

et
c.

u
n
t
i
l

x_
is

s
t
o
r
e
d

n

i
n

R
2
1
+
2
n
.

Ww
-
—

0
0

a
b
2

I
t
o
w

o
f
,
f

Ly
f.

w
L
y
f
w

ab
ec

2
I
f
w

L
f
.
f
w

I
w

0
0

0
Z
y
f
,
w

Z
y
f
o
w

y
w

a
b
e
3

If
.
w

Lf
.
f
w

L
f
f
w

0
0

0
1

1
2

1
3

T
f
l
w

I
f
F

Ww
T
E

—25-

APPENDIX I (for Chapter I)

Prgm INTERP

2 Pt: a = (vy;“vy, / (x-X,)s ay = Vp = 8%,

(y,-y pty) (yy,) (x)+x,)
3 Pt: a. = Yoh” - 372 8 -x_)

x5 - x, X3 - x, 31

y
5 = oo372)//"xg)

. * = _L Pt: Ya SY, yy

3= * _ * *

— 2
a, = (v% - ey%)/21 - 3a4(1 + x,)

a, = y*/T - a (I + 2x) - (1° + 3x. I + 3%) a
1 2 2 1 1 1°73

a. = a x a x2 x
0 Y1 7 Pf 7 %% 7 83%

When values of y are not directly available and must be calculated, the

program can easily be modified. Steps a to d for the calculation of

-A(G%-H)gg) /RT present one example of the ways in which f(x) values can be

calculated and then fit to a power series. As another example, the use of

values of Mog 1-Hogg)/RT

will be illustrated. Key 0 4 4 + 1 XEQl for step (a). Key r + acy B

—Hpgg)/RT with R in register 4 and AH

LBLB CHS RCL5 + RCLY / x®y / STO IND6 RIN

and AG to obtain a two to four point fit for -A(GS

to display -A(G° g in register 5.
29

Steps (¢) and (d) are used unchanged. Before step (9) is used to calculate

K, RCLL ST/5 to convert AHS to AHC ./R.
298 298

-26-

APPENDIX IXIA (for Chapter II)

by Susie Hahn

1) Program CH

Program (H provides values of the Chebyshev polynomial terms C, (x) for

n=l to 4 and for x=0 to N when N+l data are to be inserted in program CB. Cy

=1, C,=1- 2x/N, C,=1+ 6x(x~N)/N(N-1) and additional terms can be calcu-

lated using the recurrence relation for a given x:

Col = [(2n+1)(N-2%)C, - n(N+n+1)C_;1/(n+1)(N-n).

The sequence of calculations in program 1 is outlined in the following

flow chart. When the number of data points, N+1, is followed by XEQ '(H', 1

is subtracted, N is stored in ROO, N/2 is stored in Rl, N/2 is compared with

the integer value of N/2 to determine if N is even or odd. If odd, the calcu-

lation goes to LBL4, flag 1 is cleared, and the calculation proceeds to LBLS,

If even, flag 1 is set and LBL5 is initiated. LBL5 calculates the last C,

register number, q = 20+4INT(N/2), which is stored in R4 and the C, index

number, 21 + q/1000, which is stored in R2. The form of the C, index number

is 21.7355 , where the integral part, 21, signifies the first register in

which the first value of G will be stored and the fractional part, a5 ,

signifies the last register in which the last value of Cy will be stored.

Next, the (, index number is reduced by one to accomodate the increment by 1

which occurs in LBLOO, and this number is stored in R3. SIZE = q+24N is

determined and displayed to indicate the minimum number of registers required.

The x index = 0 is stored in R7.

LBLOO increments the C, index in R3 by 1 and the calculation jumps to

LBL3 if the C, index in R3 is not greater than q. At this point, C, index =

21. and since 21 } q, the calculation goes to LBL3,J
1000

-27 =

LBL3 stores the n index of 1 in R6 and increments the x index in R7 by 1

and stores this new x. Then ¢, (1) = 1 ~- 2/N is calculated and stored indi-

rectly in R21 as directed by the C, index in R3.

LEBEL] then uses the recurrence relation to calculate c,(1) = (2c, (1)(N/2 -

x)(2n + 1) = n(N + n + 1)C(1)]/(n + 1)(N - n) with n = x = Cy (1) = 1. The

calculation proceeds as follows:

Cc, (1) + already in X stack position from LBL3

2

* 2¢, (1)(N/2 - x)(2n+1)

N/2 - x + RCL1 - RCL7 inXtoY +» XOY

*

n*2+1 + RCL6 x 2 + 1

*

6*(Mn+l) +> RCL6 x (RCLOO + RCL6 + 1) n(Mn+1)C(1)] in X

- _ X- Yin X
[2C3(1)(N/2 = x)(2n+1) = n(Mn+1)Co(l)]
 N-n + RCLOO - RCL6

/

n+l + RCL6 + 1

N-n

/ cy(1) = [2/2 = x)(2n+l) = n(Mn+1)Co(1)]
(n+1)(N-n)

Then the C, index in R3 is incremented by 1, which at this point is 22.7555 ,

so that C,(1) is stored indirectly in R22 as directed by the C, index in R3.

The next sequence of steps brings 4, the maximum number for n, into the X

stack position, recalls the n index in R6 and increments it by 1, which places

the new value of n in the X stack position and pushes 4 into the Y stack

position. Then, the new value of n is compared to the maximum value for n,

4, If n # 4 (and at this point n=2), the next step is skipped and the new

value of n is stored in R6. The C, index in R3 is reduced by 1 to obtain the

previous value, which at this point becomes 215s , so that the number C,

corresponding to the register of this index can be retrieved.

- 28 -

The next sequence of steps arranges the stack positions as follows:

T Cc, (1) 4 n index n index

Z 4 Rt Nn index pq, 1ND3 1 XY 1
—————> _——————— ———————

Y n index 1 C,(1) c,(D)

X 1 Cc, (1) c, (1) c,(1)

Then, the C, index in R3 1s incremented by 1, which at this point becomes

2273s » to restore the index to the proper value in its sequence.

The stacks are arranged in the way shown above when LBLl is again exe-

cuted. LBEL]1 repeats the process in a similar manner but with n=2 in R6 and

Cc, (1) in the X stack position to calculate Cc, (1) from the recurrence relation.

When Cc, (1) is calculated, the C, index is incremented by 1 so that Cc, (1) can

be stored in the next available register, which at this point is R23. Since n

4 yet, the stacks are again arranged so that Cc, (1) is in the X stack posi-

tion and Cc, (1) is in the Y stack position. Then GTO Ol again executes LBL1 to

repeat the calculation with n=3 in R6 and Cc, (1) in X to determine Cc, (1) which

is stored in the next available register, R24.

At this point, n = 4 so that the test condition x=y? is true. Therefore,

the program executes LBLOO which increments the GC index by 1 to position the

next available register, which at this point becomes R25, and then jumps to

LBL3. LBL3 restores the n index in R6 to 1 and increments the x index in R7

by 1. Then, C (2) = 1 - 2x/N, where x = 2 at this point is calculated and

stored indirectly in R25. The program repeatedly executes LBLl1 in a manner

analogous to the one previously described to calculate c, (2), c,(2), and

Cc, (2). When the n index in R6 is incremented to 4, the X=Y? test sends the

calculation back to LBLOO, LBL3, and then LBLl to calculate C, (x) for x in R7,

one larger than the previous calculation, starting with n=1 again. The loop

is repeated for each value of x in R7 until the return to LBLOO increments R3

beyond the limit for the storage of the C(x) values. If ISG 03 in LBLOO is

- 29 -

true, that is, the integer before the decimal point in the last calculated C,

index number is greater than q, then the next step in skipped and the calcula-

tion stops with a display of the initial C, index = 21 + q/1000.

Putting the calculator in the USER mode and then pressing B executes

label B. LBL B recalls the original Cy index and stores it in R3. Then LB. 2

is executed. The display is fixed to O to display only the register number

part of the C, index. Then, the C, value corresponding to this register

number is recalled and displayed, fixing to 2 decimal places. The register

number 1s incremented by 1 and as long as the register number is less than the

q value, the entire process 1s repeated until all the register numbers and

their corresponding Cy values are displayed.

Putting the calculator in the USER mode and then pressing C with the

printer attached prints the register numbers and their corresponding C, values

q
1000

corresponding values in these registers.

since the instruction 21. PRREGX prints the registers from 21 to q and the

- 30 -

Nl XEQ CH

STO N in RO

STO 3 in RI

Test N even or odd

l
SFO1 LBLO4

LBLO54——CFO0l

calc. C, index

l
L BLOO

I1SG03—>RIN if C, index in R3 exceeded

LBLO3

calc. C, (x)

LBLO1

calc. C41 (X) from C, (x) & Cp—1(¥)

 repeat for C, & C,

User B displays Reg. number & C, value

User C prints Reg. number & C, value

- 31 -

2) Program CB

Introduction:

The Chebyshev polynomials are so useful in treating data, that a detailed

discussion is presented. A summary of the nomenclature, equations, and calcu-

lation procedures is presented here.

The Chebyshev polynomial, C, (x)=1, C, (x)=1-2x/N, and C=

[(2n+1)(N-2x)C, ~ n(Mn+1)C,_]/(n+1)(N-n), is orthogonal for discrete integer

values of x from 0 to N. If x; is the initial value of x and I is the regular

interval between x values, N+l1 data points are assigned integral x values from

0 to N where x = (x-x;)/1 and the data are fit to a polynomial of the type:

f(x) = cy Cy (x) + c,C(x) + c,C, (x) + c;3C(x) + c,C, (x)

A least square fit is used to fit the data, but because of the orthogonality

of C(x), cross terms are zero in a matrix used to solve the set of linear

equations obtained by setting the partial derivatives of the squares of the

deviations equal to zero. Thus, the coefficients, c_ , of the polynomial are
n

readily calculated without solution of the matrix by the relation:

Cn = (£,¢,)/(C,,C)

where

N

(£,Cp) = £(x) Cy (x)

and
N

(CqsCp) =o) [C(0)° = (Mtl)!

(Nn
)!

(2041) (N1)2

If f(x) 1s desired as a function of x, an expansion of the Cc, (x) values

in powers of x by

(n+m)! x! (N-m)!

(n-m)! (m!)% (R-m)! N!

n

C, (x) =1 (-nH"

- 32 -

yields:
n

f(x) =L a,GOT =a, + xlax(a,x(atx(a,)))]

The a, terms are calculated from the relation

a, =) By(£,C)

where the values of Bom are calculated from

Boy = m(m+l) = 2

_ _ (mt2) _
Bi =p (Bm) = 6

on = =By, = - 5 (l+m) = 3

= m2 =B., = p“+3mt+l = 11

=_-1 = -Bg =~ 3 (14m) 6

so that

n” (£,¢)
a, = wc)’ where n° denotes a maximum n value of n”“=3 or 4.

n=0 n’ 0)

= (£,C) -
“4 (Ce, Cy LCi Coo + By G3 + By Gl

(£,C3) _ (£,Cp) -
+ (Cs, Ca) 031 Cio + By Gul + (Cr, G6) C21 Cpo!

(£,¢))
M (cr,cpt

a (f,Cy) (£,C3)
2 ~ (Cy, Cyt Cuz + By,C; + B,,G,1 + (Cs, C3)! C32 + B3,Cy5]

(£,C))
* (G6, cpl Ca!

(£,G)
(£,C3)

% 7 (Ce, Cyt Cu + By3C,,] + (cr,

6
)

Gs]

(£,Cy)
% = (Cy,Cy) Cy]

where values of Com are calculated from:

- 33 -

Co, mtl (n+m+1) (m-n)

Cam (n+1)2 (N-m)

 starting with Cao = 1.

If f(x) is desired as a function of x, the conversion

Eo) = 1 ayGO™ =) ax”

can be made using the relations:

X X X
iy2 iy2 i

3p = ~ay (7) +a, (F)° - (3) +9
2

(x,) x
- i” _ Ay xa, = 3a, 3 2a, 7) + 1

I 1

fapa, = -3a, —&+
2 3 13 12

= 23a, =

3 1°

= 24a =

4 *

The contributions of a to a4 to a must be added to each ay value if the0 y

quartic term is present. The a, term contributes to each a term from m = n

tom=0, For a given m and n, the contribution to ay is

“n mn-n pax jm
— (x) SI

420 itl

where j is a positive integer increasing from O to Imax =m-n - 1, The a,

contribution is a, /14 The a, contribution multiplied by (=bxy) yields the a
0 1

contribution. The a, contribution multiplied by (-1.5%4) yields the a, con-

tribution. The a, contribution multiplied by (-x4/1.5) yields the a con-
2 3

tribution. Multiplication by — T (xp) yields the a, contritution.

Program CB first calculates the contribution of the quartic terma
9

A decision is made whether to retain the quartic term, and the remainder of

the calculation can be carried out for a cubic or quartic fit. Due to the

orthogonality of CIN the coefficients of the earlier terms are not changed

- 34 -

if the quartic term is dropped for the Chebyshev polynomial. Also, the sym-

metry of the function reduces the calculation by half. The program indicates

the degree of fit by calculating (£(R)-£(X)), the standard deviation of the

(ElEG-£G) 2
(N-1)

for each data point, f denotes the value calculated from the Chelyshev poly-

1 ~

mean 0 =)2 and the mean derivation }|f(x)-f(X)|/(M¥+1) where

nomial and f denotes the corresponding value of the input data.

Explanation of Program CB Steps:

To begin Program CB, key the first data point, £f(0), and then XEQ 'CB'.

The first step of the program stores 6.1 in register R4. This number, actual-

ly 6.100, is the (£,C,) index number. Values for (£,C,) are stored in R6 to

R10; the 100 being a "dummy" counter test value. The next step recalls the C,

index number, 21 750 , calculated from Program CH from R2 and stores it in

R3. Then, £(0) is brought down from the z into the x stack position before

the program jumps to LELIL.

LBL11 recalls the GC, index number, takes its fractional part, and multi-

plies by 1000 to yield q. Adding 1 to q yields the register in which £(0)

will be stored. This quantity, q + 1, is stored in R5. The next sequence of

steps calculates q+ 1 + N (in ROO), which is the register number for the last

input data, f(N). Dividing this quantity by 1000 and adding this to the

q+1+N

1000 °

the input data f(x) will be stored from R(q+l) to R(q+1+N). The stack is

number previously stored in R5 yields the f index number, q+l. where

rolled down to restore f£(0) to the x position before the program continues to

LBL10O.

LBL10 indirectly stores £(0) in R(q+l), directed by the f index number in

R5. Then the f index 1s incremented by 1 to position the register for the

- 35 -

next input data before the program execution returns to LB. CB right after the

XEQLl instruction. Since f(0) is still in the x stack position, it is stored

in R6,7,8,9 and 10. The f(0) value can be stored directly in these (f,C)

registers because £(0) C(0) = £(0), since C,(0) = 1. The return instruction

stops the program and displays f(0).

Now, f(l) should be entered and then keying R/S resumes the program which

executes LBL10. LBL1O indirectly stores f(1) in the next available f register

and again increments the f index number to position the register for the next

input data. The program returns to LBL 'CB' after the XEQlOQ instruction and

proceeds to LBLI.

LBLl, in conjunction with LBL2, calculates the (f,C,) values for the

first half of M1 data points if N is odd or for the first half plus 1 of the

data points if N is even, excluding, of course, the first data point, f£(0).

The first steps in LBL1 fill the stacks with the previously entered f(l) value

since LBL2 uses it 4 times in the XEQ2 command. The next step indirectly adds

f(1) to £(0) in R6, directed by the (£,¢) index in R4 which at this point is

6.1. R6 will contain)f(X) since (£,C.) = JE(X)C(x) and Cy (x) = 1. Then, the

(f,C)) index 1s incremented by 1 to 7.1 to position the next (f,C) register

for the value £(1)c,(1). Next, the program jumps to LBL2.

In LBL2, the stack is rolled down to remove the previous (£,C,) value

(there is no (f,C,) value before the first XEQ2 in LBL1 but just f(x)) and

bring f(x) into the x stack position. c, (1) is indirectly recalled from R21

to the x stack position, directed by the C, index in R3, which pushes f(1)

into the y stack position. Then f(l) is multiplied by c,(1) and this value is

indirectly added to the contents of R7, £(0)¢, (0), and this sum is indirectly

stored in R7, directed by the (f,C)) index in R4 which is 7.1 at this point.

The (f,C,) index is incremented by 1 to 8.1, and the Cy index is also incre-

- 36 -

mented by 1 to prepare to retrieve the next C, value. Then program execution

returns to LEBEL] to XEQ2 a second time.

This time LBL2 removes the previous (£,C,) value and returns f£(l) to the

x stack position. Cc, (1) is indirectly recalled from R22, directed by the C,

index in R3. Then, £(1)xC, (1) is calculated and indirectly added to the

contents of R8, £¢0)c,(0), and this sum is indirectly stored in R8, directed

by the (£,Cy) index in R4 which is 8.1 at this point. The (f£,C,) index and

the C, index are both incremented by 1 before execution returns to LBL1 to

XEQ2 a third time.

LBL2 removes the previous (£,Cp,) value and brings £f(1) back to the x

stack position. Cy (1) is indirectly recalled from R23, directed by the C,

index in R3. Then £(1)xC, (1) is calculated and indirectly added to the con-

tents of RY, £(0)¢,(0), and this sum is indirectly stored in R9, directed by

the (£,C,) index in R4 which is 9.1 at this point. The (£,C,) index and the

C, index are both incremented by 1 before execution returns to LBL1 to XEQ2 a

fourth time.

LBL2 again removes the previous (£,C,) value and returns f(l) to the x

stack position. Cc, (1) is indirectly recalled from R24, directed by the C,

index in R3. Then £(1)xC,(1) is calculated and indirectly added to the con-

tents in R10, £(0)¢c, (0), directed by the (f,Cy) index in R4 which is 10.1 at

this point. The (f£,c,) index is incremented to 11.1 and the C, index is

incremented to 25.q before execution returns to LBL1 after the fourth XEQ2.

By subtracting 5 from R4 in LBL1l, the (f,C,) index is restored to 6.1 so

that the next (£,C)) value, £(2)¢, (2) may be added to the proper (f,C)) regis-—

ter, R6. Rolling up the stack brings f(l) into the x stack position. RIN

stops the program, displays f(1), and allows f(2) to be entered; program

resumes by keying R/S to execute LBL10O.

- 37 -

LBL10 indirectly stores £f(2) in the next available f register, directed

by the f index in R5 and this index is then incremented by 1 before execution

returns to LBL] right before the GTOl command which brings the program to the

beginning of LELL.

In a manner completely analogous to that just described, LBLl and LBL2

again calculate (f,C)) values, adds these values to the proper (£,C,) regis-

ters, and store these sums in thelr respective registers. Thus for £(2), the

registers contain:

previously in R6

£(2) + £(1) + £(0) STO+INDO4 or R6 with 6.1 in R4

previously in R7
£(2)¢, (2) + £(1)c,(1) + £¢0)¢, (0) STO+INDO4 or R7 with 7.1 in R4

previously in R8
£(2)¢C,(2) + £(1)C, (1) + £(0)¢, (0) STO+INDO4 or R8 with 8.1 in R4

previously in R9
£(2)C,(2) + £(1)C5(1) + £(0)C, (0) STO+INDO4 or RY with 9.1 in R4

previously in R10
£(2)c, (2) + £(1)c, (1) + £(0)¢, (0) STO+INDO4 or RIO with 10.1 in R4

At this point, immediately after the STO+INDO4 instruction from the

fourth execution of LBL2, the (f£,C,) index and the C index are again incre-

mented by 1. Assume now that half plus one (if N=4) or that half (if N=5) of

the N + 1 data points, that is, £(INT 2D) have been keyed in thus far. Then

the C, index will have been exceeded by the last incrementation to (a+1) pps

Thus, the next step, RIN, 1s skipped and the stack is rolled down to remove

the previous (£f,C,) value and return f(2) to the x stack position. The Cy

index, (a+1) 7a55 y» 1s recalled from R3 and the integral part is taken and

stored back into R3. Then the stack is rolled down to return f£(2) to the x

stack position before the C, index in R3 is decremented by 1 to yield q in R3,

the position of the last C value. Due to the symmetry of the Chebyshev

- 38 -

polynomial function, the program can run backwards through the C, values to

obtain the remaining (£,C)) values, and the DSE 03 instruction recalls the C,

values from the last to the first C register.

The next step, FS?0l1, tests whether N is even (flag 1 was set in Program

A if N was even). If so, the program jumps to LBL4., If N is even, in keep-—

ing with the symmetry, the last 4 G, values are not needed to calculate the

remaining (£,C) values:

keyed in £(0) x C,(€0)

thus £(1) x C(1)

far: £(2) x

£(3) x C(1)

£(4) x C, (0)

C,(2) -- last 4 C, values are used only once

Therefore, LBL4 decreases the C, index in R3 by 4, positioning the proper

register, R(q-4), for the next (f,C,) calculation. Then the stack is rolled

down to display f(2) before the program returns to LBL2 and stops to display

f(2). Then f(3) is entered and R/S keyed to resume the program execution with

LBL10.

LBL10 indirectly stores f(3) in the proper f register, guided by the f

index number in R5. Then, this index is incremented by 1 before the program

returns to LBL2 to go to LBL5.

LBELS5 fills the x, y, and z stack positions with £(3) and then jumps to

LBL9. LBL9 indirectly recalls the proper C, value, ¢c, (1), in the case with

N=4, directed by the C, index in R3. Then this index is decremented by one to

position to the correct C, value for the next time LBL9 is executed. Then

with £f(3) in the y stack position and c, (1) in the x stack position, the two

numbers are multiplied, yielding £(3)c, (1). The program returns to LBL5, adds

the last (£,C,) value to the sum of (f£,C,) values previously in R10, and

stores this new sum, £(3)C, (1) + £(2)C,(2) + £(1)c, (1) + £(0)c, (0), in R10.

- 39 -

Then the stack is rolled down to bring £(3) into the x stack position before

the program jumps to LBL6.

LBL6 rearranges the stack as follows:

T £(3)C, (1) £(3) £(3) £(3) £(3) -£(3)

Z £(3) £(3) £(3) £(3) -£(3) £(3)

SIOT_, STOY_, Qs_| STOZ_, RDN_,

Y £(3) £(3) £(3) £(3) £(3) -£(3)

X £(3) £(3) £(3) -£(3) -£(3) £(3)

Then f(3) is added to the contents of R6 and stored, to yield f(3) + £(2) +

f(1) + £(0) in R6. Then, the program returns to LBL5, after the XEQ6 command,

with the stacks arranged as shown after the RDN instruction in LBL6.

The importance of the alternating signs comes about from the symmetry of

the Chebyshev polynomial function. If a symmetry plane is drawn half way

between the x's for the Cy (x) values, the values above the plane are equal to

their corresponding "mirror images” below the plane, except that for n=l! and

3, the signs of the symmetrical C, values are opposite. For example, if N=4

the C, values are:

n 0 1 2 3 4

1 1 1 1 1

1 Yo -l/2 -2 4
_——— -— =~ 2| 1 0 -1 0 6 —- — — — symmetry plane

1 =Yo =lf2 2 -4
1 -1 1 -1 1

4 +
"mirror images" have opposite signs

but same absolute value

Instead of changing the signs of the proper C, values, the signs of the cor-

responding f(x) values will be changed to calculate (£,C) values.

- 40 -

Back in LBL5, the stacks are rolled down to yield:

T £(3)

Z -£(3)

Y £(3)

X -£(3)

Then LBLY9 is executed which indirectly recalls the proper C, value, C, (1) in

the case with N=4, guided by the Ca index in R3. Then this index is again

decremented by 1. Now, because N=3, -f(3) is in the Y stack position and

Cc, (1) is in the X stack position so multiplication yields -£(3) Cc, (1). The

program returns to LBL5, adds the last (£,C,) value to the sum of (£,Cy)

values previously in R9, and stores this sum, -£(3)¢C,(1) + £(2)¢,(2) +

£(1)C(1) + £(0)c,(0) in R9. Then the stack is rolled down to bring £(3) into

the X stack position before the program jumps again to LBL9. LBL9 indirectly

recalls the proper GC, value, Cc, (1) in the case with N=4, directed by the GC;

index in R3. This index is then decremented by 1. With £f(3) now in the Y

stack position and C,(1) in the X stack position, £(3)c, (1) is calculated and

the program returns to LBL5 to add this value to R8, and stores the sum,

£(3)C,(1) + £(2)C,(2) + £(1)c,(1) + £(0)¢,(0), in R8. Then the stack is

rolled down to bring -f(3) into the X stack position before execution jumps

again to LBL9. LBL9 recalls the proper C, value, Cc(1) in the case with N=4,

directed by the C index in R3. This index is decremented by 1. With -£(3)

now in the Y stack position, since n=l, and ¢, (1) in the X stack position

-£(3)C(1) is calculated and the program returns to LBL5 to add this value to

the contents of R7, and stores this sum, -£(3)C,(1) + £(2)c,(2) + £(1)c,(1) +

£(0)¢c,(0), in R7. Next, the stack is rolled up to display -f(3) when the

program halts. At this point, f(4) is keyed in and then R/S so that the

program returns with LBL1O.

- 41 -

LBLI0 indirectly stores f(4) in the proper f register, guided by the f

index in R5. Then the f index is incremented. If f(4) were not the last data

point, the program loops again through LBL5, LBL9, LBL6, and LBLI0 in an

analogous manner to that just described to determine and store the_}£5),(0)

values, up to N-1., However, if f(4) is the last data point, as it has been

formerly assumed, then this last incrementation exceeded the f index. There-

fore, the RIN instruction is skipped and the program executes LBL6.

LBL6 again rearranges the stack as follows:

T -£f(3) £(4) £(4) £(4) £(4) -£(4)

z f(3)ci(l) £(3)a(1) £(3)a(1) £(3)C1(1) -£(4) £(4)

SIO.TI, STOY_, Qis_, SI0_Z_, RDN_,

Y -£(3) -£(3) £(4) £(4) £(4) -f£(4)

X f£(4) £(4) £(4) ~-£(4) -£(4) f£(4)

Then, £f(4) 1s added to the contents of R6, and the sum £(4) + £(3) + £(2) +

f(1) + £(0) is stored in R6. The program returns to LBL10. Since C, (ND = *],

£E(N)C(N) = % f(N) so that f£f(N) can be directly stored in R8 and R10 and -f(N)

can be directly stored in R7 and R9, for which n=1 and 3, respectively. Thus,

£(4) (still in the X stack position) is added to the contents of R10, and the

sum, £(4)C,(4) + £(3)¢, (1) + £(2)C,(2) + £(1)C(1) + £(0)¢, (0) is stored in

R10, Then the stack 1s rolled down to bring -f(4) into the X position and

this is added to the contents of R9, and the sum, -£(4)C,(4) - £(3)c (1) +

£(2)C; (2) + £(1)C(1) + £(0)¢, (0), is stored in R9. The stack is rolled down

again to bring f(4) into the X position and this is added to the contents of

R8, and the sum, £(4)C,(4) + £(3)C, (1) + £(2)C,(2) + £(1)C, (1) + £(0)¢,(0), is

stored in RS. Again, the stack is rolled down to bring =-f(4) into the X

position and this 1s added to the contents of R7, and the sum, -£(4)C, (4)

-£(3)¢, (1) + £(2)C(2) + £(1)¢, (1) + £(0)¢, (0) is stored in R7.

- 42 ~

If, in LBL2, N was odd (for instance N=5), then the FS?0l test would be

false and the next step, XEQ4, would be skipped. If N is odd, in keeping with

the symmetry of the Chebyshev function, the last four C, values are used to

calculate the remaining (£,C,) values:

keyed in £(0) x C,(0)

thus £(1) x Ca(1) last 4 values are used for the

far: £(2) x C,(2) upcoming (£,C,) value

£f(3) x C,(2)

£(4) x Cc, (1)

£(5) x C,(0)

This execution proceedes immediately with LBL1O after £(3). R/S is keyed in,

skipping LBLA4 which decrements the C, index by 4, Then the program loops

through LBL5, LBLY9, LBL6, and LBL10, in an analogous manner to that previously

described to determine and store the J£()¢,(8) values in their proper regi-

sters.

Next, whether N was even or odd, LBL17 is executed. LBL17 calculates the

part of the o terms, involving the quartic term. First, 0, the m index, is

stored in Rl and 4, the n index, is stored in R4. Then, LBL13 is executed.

LBL13 calculated the reciprocal values of (CC) At this point, since

n = 4, it calculates 1/(c,,c,) as follows:

(v1)2 -- ROO, FACT, X?

(N =n)! =-- ROO - R4, FACT

NDZ=n) —

(N+n +1)! -—— RCLOO + RCL4 + 1, FACT

(NDZ/(N +n +1)! (N-na)! — /

(2n + 1) —- RCL4 * 2 + 1

(2n +)(ND2/(N +n + 1)! (N =n)! — *

- 43 -

Then execution returns to LBL17, with 1/(c,,¢,) in the X stack position,

f,Cy),C) to yield (£,C4)
Wel (C4,Cy)

which is stored in Rll. The program stops to display this ratio which is the

where (f,C) is recalled from R10 and multiplied to 1/(C

contribution of the quartic term to £(0) and £(N) for which C, = 1. As C, (x)

is usually less than l, the display indicates the maximum error if the quartic

term is dropped. If the quartic term is to be retained, key R/S; if it is to

be dropped, press USER A.

If R/S is pressed, flag 0, which indicates the quartic term is dropped,

is cleared. One is placed into the X stack position before LBL14 is executed

(c)
Ls x (c_ 2 where GC is obtained from the

,
n,m

previous run through of LBLl4. However, for the first execution of LBL14 in

because LBL14 calculates

the sequence, Ca,m = hy Stones = 4 and m = 0 and Cy, 0 = 1,

LBL14 calculates —gtTr— in the following manner:

n,m

(m+ 1)2 — (RCLL + 1), x2

(m +1 +n) -- LASTx + RCL4

m+ D%/@+1+n) — /

(n+m+1)/(m+ 12 — 1/%

(m - n) -- RCL1I - RCLA4

(n+m+ 1m -n)/(m+1)2 — *

(N-m) -- RCLOO - RCL1

<, w+) 2
—2—= (n+mn+ 1)m-n)/(m+ 1)((N-m) — /

(c_)
n,m

At this point, n = 4 and m = 0 so that feels as calculated. Then, with C, 0

= 1 now in the Y stack position, teal, 0) is calculated so that execution
’ ’

returns to LBL17 with C, in the X stack position.
b] 1

In LBL17, C, 1 is stored in R20. The m index in Rl is incremented by 1

so that at this point, m = 1. Then the stack is rolled down to restore C, 1
»

to the X stack position before LBL14 is executed again.

- 44 -

(c, ntl)
— this time with n = 4 and m = 1. Since

n
)C is in the Y stack position, ~ha2s (CG,1) =C is calculated. Then the41 (Cy, 1) 4s 2

LBL14 again calculates

program returns to LBL17 with C, 2 in the X stack position.
bd

In LBL17, C, 2 is stored in R19. Then C, 2 is subtracted from the con-
’ b]

tents of R20, so that C.-C is stored in R20. Again, the m index in Rl is

incremented by 1 to m=2. Then the stack is rolled down to restore C, , to the
9

X stack position before LBL14 is executed.

This time, LBL14 calculates {Cy,3) and then LCys3)ec, 1) = Cy,3. The
(Cys) (Cy, 1)

program returns to LBL17 with C, in the X stack position.
3

In LBL17, C is stored in R18. Multiplying C,4,3 by 2 yields B_.C
3 31743

since B,, = 2. Adding B_,.C to R20 yields Cyt -C31 C3 B_,.C in R20. Again,
v2 t 31743

the m index in Rl is incremented by 1 to m = 3. Then C, 3 is restored to the

X stack position before LBLl4 is executed by recalling R18.

At this point, LBL14 calculates LCu,u) and then £Cus2) (C)=2¢C _. The
(Cy, 3) (Cy, 3) 4s 3 b,2

program returns to LBL17 with C, in the X stack position.
sb

In LBL17, the contents of R20 are recalled and then the X and Y stack

positions are interchanged:

Y C C.-C. +B, C4 i XOY_, ly 1 Np) 31°43

X CGC, - GC, + By Cy G 4

Then C, y 18 stored in R20. C, y 18 multiplied by 6 and 6C, , 1s subtracted
’ ? 9

from Cy; = Cyp + B31Cy3 to yield CG; — Cup + B3;Cy3 + By Cyy since B., = -6.

Then this value is multiplied to the contents of Rll, (f,C)/(c,,C,), to yield

sro - C42 + B3 C43 + By) Cy] which is stored in R12. The next series

of steps brings Co in R19 to the Z stack position, C in R18 to the Y stack
43

position, and 3 to the X stack position. Multiplying yields 3C,, and then

subtracting yields Cup —- 3Cyu3 or Gp + B3pC,3 since By, = -3. The last value

is pushed into the Z stack position as G, 4 in R20 is placed in the Y stack
’

- 45 -

position and 11 is placed in the X stack position. Multiplying yields 11C,,

and adding yields C,, + Bs,C,3 + B,C, since B,,» = 11. Then this value is

multiplied to the contents of Rll, to yield (£,C4) [c +B C +B C |]
(Cy, Cy) 42 32 43 42 4h

which is stored in R13. The next series of steps brings C,5 in R18 to the Z

stack position, Cy in R20 to the Y stack position, and 6 to the X stack

position. Multiplying yields 6C,, and then subtracting yields Cs - 6C,, or

C, 5 + B,,C,, since B,, = —6. Then this value is multiplied to the contents of

Rll, to yield (£,8)[¢ + B C |] which is stored in R14. The contents of
(Cy, Cy) 43 43 uh

are miltiplied to the contents of Rll, to yield {£284 [c| which
(Cy,Cy)

is stored in Rll, that of oy is

R20, C,y»

is stored in R15. Now the quartic term of ay

in R12, that of ao, is in R13, that of ao, is in Rl4, and that of « , which con-
2 3 by

sists only of the quartic term, is in R15, that is, R15 contains a,

If, after the program halts in LBL17 to display the quartic term error,

the decision is made to drop the quartic term, key USER A, LBL A stores the

display, tall in R20. Then it clears Rll, 12, 13, and 14 since the STO+
4 , Cy

command will be used with these registers to determine « and a,.o 2° 30’ «1°

Also, if R/S was first keyed and then the decision is made to drop the quartic

term, this step clears the quartic term contributions to the o, values, which

were previously calculated and stored in R 11 through R15 by the steps in

LBL17 following R/S. (R15 is not cleared because it contains a, which is no

longer required so that this register is never again recalled to use for the

cubic fit.) Then, flag 0 is set to indicate that the quartic term has been

dropped.

Next, LBL7 is executed whether the quartic term has been retained or

not. LBL7 calculates Ags Gs Oy, Gg, and ao, if the quartic term is retained.y

First, m = 0 is stored in Rl and n = 3 is stored in R4. One is placed in the

X stack position since C, 0 = 1. Then LBL14 is executed.
’

- 46 -

(Ga,nt+1? (C3,1)
Once again, LBLl4 calculates —re——, or at this point Cy Then

m,n ’
(C3,1) =eryCs, 0) = Cy, is calculated. The program returns to LBL7 with Cy, in

the X stack position.

In LBL7, C, 1 is stored in R19. Then the m index is increased by one to

m = 1. The stack is rolled down to bring C, back in the X stack position
1

before LBLl4 is executed again.

This time, LBL14 calculates $0322) and then $S322)(¢) = Cc . The
(C3,1) (C3,1)" "3,1 352

program returns to LBL7 with G,o in the X stack position.

In LBL7, C , 1s subtracted from the contents of R19 so that Cy C;, is
?

stored in R19. Then C, 2 is stored in R17. The m index is incremented to m =
1d

2. Then C, 2 is returned to the X stack position before execution proceeds to
»

LBL14.

LBL14 calculates Le) and then aide , = C, 5 The program returns
9 ? ’ ’

in the X stack position.to LBL7 with CG, 3
’

In LBL7, C, 3 is stored in R18. Then C, , is multiplied by 2 and added
? ’

to the contents of R19 to yield the sum Cy Cyt B,, Cys since B., = 2, Then

execution jumps to LBL13,

As before, LBL13 calculates 1/(C,, CL), but this time with n = 3 so that

1/(¢,, Cy) is calculated. The program then returns to LBL7.

In LBL7, 1/(C;,Cy) is multiplied to (£,C;) in R9 to yield {ails which

is stored in R19. This is added to the contents of Rll so that the sum £5
s Mh

+ $6.3 is stored in Rll. However, if the quartic term was dropped the
3, C3

first term would be zero. Since Cy,=C3,*B Cc is in the Y stack position
31733

and (£,C3) is still in the X position, multiplying gives (£,C3) [Cc,, - C,, +
(C3,C3) (C3,C3) 31 32

B,,C 31 This term is added to the contents of R12 to yield (£,Cu) 4 [C, -31-3 (Cy,Cy) 41
(£,C3)

+ B.C + >2237[cc -C +B C] which is stored in R12. Again
Cuz mGFee 1% Gt Bas ’

the first term would be zero for a cubic fit. The next series of steps places

- 47 -

C in the Z stack position, C in the Y position and 3 in the X position.
32 32

Multiplying yields 3C,, and then subtracting yields Cs, - 3C,, or Cs, + B;,Cy,

since B,, = -3. This is multiplied by (£,G) in R19 to yield (£,C3)
32 (C3,C3) (C3,C3)

(c,, + B.,Cs,) which is added to the contents of R13 to yield the sum

UG) ¢c +B ¢c +B Cc]++eakie +B C |] which is stored in
(Cy, Cy) "Tu2 32 43 42 44 (C3,C3) 32 33
R13. For a cubic fit, the first term would be zero. Then Cig in R18 is

multiplied to (f,C3) in R19. This is then added to the contents of Rl4 to
(C3,C3)

yield the sum (f,Cy) [c +B Cc |] +60) ¢ which is stored in R14. This
(CubCu) 43 43 uy (c3,c3) 33

sum 1s Ose Again, the first term would be zero if the quartic term had been

dropped. Next, the n index in R4 is decremented by 1 to n = 2 and the m index

in Rl is decremented to O. One is placed in the X stack position since Cc, 0"

1 before the program jumps to LBL14.

LBL14 calculates {2212> LS and then {2uM0, ,) = C1 The program re-

turns to LBL7 with C, 1 in the X stack position.

In LBL7, C, 1 is stored in R19. The m index is incremented to m=1 and

then Cc, 1 is restored to the X stack position before LBL14 is executed again.

LBL14 calculates (C252). and then {aad J =C , The program re-
(C2,1) (C1 252

turns to LBL7 with C, , In the X stack Soeition.

In LBL7, C, 2 is stored in R17. Then Cc, 2 is subtracted from C1 in R19

and C, - C,, is stored in R19 before execution jumps to LBLIL3.

LBL13 again calculates 1/(C,, Cy.) with n = 2. The program then returns to

LBL7.

In LBL7, 1/(C,, Cp) is multiplied to (£,C,)) in RS. Then £252) is added
2,

(£,Cy) + (£,C3) + (f, Cy

(¢,Cy) (C3,C3) (Cy,Co)°

cubic fit, the first term would be zero. {rads is stored in R18 and then

multiplied by (¢,, - C,,) in R19. Next, this product is added to the contents

 to the contents of Rll to yield the sum For a

of R12 to yield the sum, {£,G)¢ -C +B CC +B C]+ (f,C3) [C3 -
(Cy, Cy) 42 31 43 N1 uy (C3,C3)

- 48 ~

(£,C)C32 + B31C33] + 7=>2"~ [C - C], which is stored in R12. Again, the first
32 31€33] (C2,C2) "21 2) g

term would be zero for a cubic fit. Now, c 5 in R17 is multiplied to)to)
’ 2 502

in R18. This product is added to the contents of R13 to yield the sum, EE)

C +B C +B C 1+ (£,C) [c, +B C + (f,Cp) C which is stored in
42 32 43 42 4 (C3,C3) 32 33° (C2,C) "22

R13. This sum is aye Once again, the first term would be zero if the quartic

term had been dropped. Finally, the n index in R4 is decremented by 1 to n=l,

the m index in Rl is decremented to 0, and 1 is placed in the X stack position

since C, 0 = 0, before the program jumps to LBLl4.

LBL14 calculates (C11) and then £61)£81))=2C . Execution returns
(C150) (C150) "1,0 1s1

with C, In the X stack position to LBL7 which immediately executes LBLIL3.
’

LBL13 calculates 1/(C,, Cy) for n=1. The program returns to LBL7.

In LBL7, 1/(c, LD is multiplied to (f,C)) in R7 and the product is added

to the contents of Rll to yield (C,,C) (Cs,C3) (C5, C0) (CL, CD)

stored in R11. Again, the first term would be zero if the quartic term had

which is

been dropped. Then multiplication with C in the Y stack position and
151

{£,C00) in the X position yields (£,C) () which is added to the contents
(C1,Cy) (C1,Cy)

of R12 to yield the sum, {fC lc, -c +B c +B Cc I+
(CG, Q) 42 31 43 bl by

(4,6)1c _¢c +38 c HG) -c1+EeJ. This sun is
(€C3,C3)" "31 32 31 33 (C,G) (c,Cp)

a Again, the first term would be zero for a cubic fit. vent. (f£,C.) in R6

is placed in the Z stack position, N in ROO is placed in the Y position, and 1

is placed in the X position. Addition yields N+l1, and then division yields

(£,C.)/(N+1). (N+1) is the value of 1/(c,,C,) for n=0. Then, (f,C)/ (Cy, Cy)

(f,C,) (£,C3) (£,Cy) + (£,C;)is added to the tents of Rll to yields added to contents o o yie (Cy, 6) (Cs,Cs (C,,C0) (C1, C)

+ (E00), This sum in Rll, minus the (ores contribution if the quartic

term had been dropped, is og- At this point, the program stops to display

og. Then keying SST recalls a, in R12 to the display, keying SST once more

recalls a, in R13 to the display, SST again recalls «a2 in R14 to the display,
3

- 49 -

and if the quartic term was retained, keying SST a final time recalls a, in

R15 to the display. If the quartic term had been dropped, the on value dis-

played would not contain the quartic term contribution and, of course, a,

would not exist.

LBL D tabulates the closeness of fit of the Chebyshev polynomial equation

to the data for each data point. To execute LBL D, turn off the calculator,

attach the printer in manual mode, and key USER D. LBL D fixes the number of

places after the decimal to 3. Then it recalls N in ROO and adds l. Since at

this point, the f index in R5 1s exceeded by 1, subtracting 5 from this index

positions the f registers to f(0). Then a, is recalled from Rll before execu-

tion jumps to LBL16.

LBL16 holds instructions for the printer. First, f(0) is recalled indi-

rectly by the f index in R5. A copy of £(0) in the X register is accumulated

into the print buffer when the instruction, ACX, is given. 3 SHPCHR tells the

printer to skip 3 spaces on a line. The next two steps rearrange the stacks

as follows:

N+1 3 N+1

a XT a RDN 3
———————> ——————

Y £(0) £(0) a,

X 3 N+1 £(0)

Subtracting yields a, = £(0) which equals £(0) - £(0), where £ denotes the
0

calculated value and f denotes the data input value, since f(0) = %gs using

the general equation, £(X) =a + x[a, + x(a, + x(a, + x(a IN]. ACX accumu-
0

lates £0) - £(0) into the print buffer. ADV prints what is in the buffer,

right justified:

£(0) £(0) - £(0) in this case, with x = O..

Then the absolute value of £ - f is taken before the program returns to LBL D.

LBL D then stores |f-f| in R6, squares this value and stores |£-£|2 in

R7. The f index in R5 is incremented by 1 to prepare to retrieve f(l).

- 50 -

Next LBL8 is executed. The o index number, 15, is placed in the X stack

position before execution jumps to LBL3.

LBL3 stores the a index, 15, into R3., Then FS?00 tests whether flag O is

set, that is, whether the quartic term was dropped.

If the answer is no, that is, the quartic term was retained, the next

line is skipped and the stack is rolled down to bring 1, corresponding to x=Il,

into the X stack position and then the stacks are filled with x=1. Guided by

the ao index in R3, which is 15 at this point, ao, is indirectly recalled fromuy

R15. Multiplication yields 1 x a or simply a Then the o index in R3 is
y 4°

decremented by 1 to 14 before execution jumps to LBL12,

LBL12 indirectly recalls az, using the o index in R3. Since 1 is in both

the T and Z stack positions, a, 1s in the Y position, and o, is in the X
L 3

position, addition yields a, + ao, and then multiplication by 1 yields the

same. The a index is again decremented by 1 to 13 before the program returns

to LBL3.

LBL3 immediately executes LBL12 again. This time a, is indirectly recal-

led by the ao index in R3. With 1 in both the T and Z stack positions, a, + 0%,
3

in the Y position, and a, in the X position, addition yields a + + a and
2

then multiplication by 1! yields the same. The a index is decremented by 1 to

12 before the program returns to LBL3.

In LBL3, FC?00 tests to see if flag 1 is cleared, that is, if the quartic

term was retained.

If the answer is yes that the quartic term was retained, LBL12 is exe-

cuted once again. This time a is recalled indirectly by the a index. With 1

in both the T and Z stack positions, a, + oq + a, in the Y position, and oy in

the X position, addition yields oy + a, + a, + os and multiplication by 1

yields the same. The o index is decremented by 1 to 11 before the program

returns to LBL3.

- 51 —

In LBL3, a, is indirectly recalled by the ao index in R3. With * + o +
0

+ a. + a, + a, + a whicho + ao in the Y stack position, addition yields % 1 2 3 "
IN

equals £(1). Then the program returns to LBL8 after the XEQ 3 command and

jumps to LBL16.

In LBL16, f£f(l) is recalled indirectly by the f index in R5 and then

accumulated in the print buffer. The next two steps rearrange the stacks:

T 1 1

Zz £1) 1. XOT 3
2. RDN A

Y fl) =* £(1)

X 3 £(1)

Subtraction yields £(1) - £(1), which is accumulated into the print buffer.

Then £(1) and £(1) - f(1) are printed. The absolute value of £(1) - £(1) is

taken before the program returns to LBLS.

In LBL8, |£(1) - £(1)| is added to the contents of R6 and the sum,

|£(1) - £(1)| + |£(0) ~- £(0)], is stored in R6. Then |£(1) - £(1)]2 1s calcu-

lated and added to the contents of R7 and the sum, |£(1) - £(1)|% +

|£(0) - £(0)|?2 is stored in R7. The stack is rolled up to bring 1 to the X

stack position and 1 is added to yield x=2. Then the f index in R5 is incre-

mented by 1 to prepare to retrieve f(2) before the program goes to the begin-

ning of LBLS.

LBL8 restores the a index to 15 before it jumps to LBL3.

LBL3 stores the a index of 15 in R3. Then it tests flag 0 again to see

if the quartic term was dropped. If the answer is no, the next line is skip-

ped again and the stacks are rolled down to bring x=2 in the X position and

then the stacks are filled with x=2. Directed by the a index in R3, a, is

indirectly recalled from R15 and multiplied by 2. Then the a index is decre-

mented to 14 before LBL12 is executed.

- 52 -

LBL12 indirectly recalls ay from R14 by the ao index. With 2 in both the

T and Z stack positions, 2a, in the Y position, and ay in the X position,

addition yields a, + 2(a,) and then multiplication yields 2(a, + 2(a,)). The

a index is again decremented to 13 before the program returns to LBL3 which

immediately executes LBL12 again.

This time, LBL12 indirectly recalls a, from R13 using the a index. With

2 in both the T and Z stack positions, 2(a, + 2(a,)) in the Y position, and a,

in the X position, addition yields ao, + 2(a, + 2(a,)) and then multiplication
2

yields 2(a, + 2(a, + 2(a,))). The a index is decremented to 12 before the

program returns to LBL3.

In LBL3, FC?00 tests to see if the quartic term was retained. If the

answer is yes, LBL12, is executed once again.

This time, LBL12 indirectly recalls a, guided by the a index. With 2 in

the T and Z stack positions, 2(a, + 2(a, + 2(a,))) in the Y position, and a

in the X position. Addition yields a, + 2(a, + 2(a, + 2(a,))) and then multi-

plication yields 2[a, + 2(a, + 2 (a, + 2(a, IN]. The « index 1s decremented to

11 before the program returns to LBL3.

In LBL3, ay is indirectly recalled by the a index. With 2[a, + 2(a, +

2(a; + 2(,)))] in the Y stack position, addition yields a, + 2[a; + 2(a, +
0

2(0y + 2(a,)))] which equals £02). Then the program returns to LBL8, after

the XEQ 3 command, to immediately execute LBLI6.

LBL16 calculates £(2) - £(2) and |£(2) - £(2)| and prints £(2) and £(2) -

f(2) in a manner analogous to the one previously described. Then the program

returns to LBLS,

LBL8 adds |f(2) - £(2)| to the contents of R6 to yield |£(2) - £(2)| +

| £1) - £(1)] + | £00) - £(0)] which is stored in R6. It then calculates

|£(2) - £(2)]? and adds this to the contents of R7 to yield |£(2) - £(2)|2 +

- 53 =

£1) - £(1)|% + |£(0) - £(0)|? which is stored in R7. Then the stack is

rolled up to bring x=2 to the X stack position and 1 is added to obtain x=3.

Finally, the f index in R5 is incremented by 1 to prepare to retrieve £(3).

At this point the program would return to the beginning of LBL 8 and the

great loop of LBL8 to LBL3 to LBL12 to LBL16, and then back to LBL8 would be

repeated. However, to address the matter of the flags if the quartic term

were dropped, momentarily interrupt the quartic loop and return to LBL3 for

the first test for flags, FS?00. If the answer is yes, that the quartic term

had been dropped, the next step decrements the a index from 15 to 14 so that

after x=1 is filled in the stacks, co, is indirectly recalled from Rl4 by the «a
3

index in R3. Then the o index is decremented to 13 before LBL16 is executed

and then decremented to 12 before LBL16 is executed again to yield 1a, + 1(a,

+ 1(a 1. Then o is decremented to ll before the program returns to LBL3 for

the second test, FC?00. Since the answer to whether the quartic term was

retained is no, the program skips the third execution of LBL12 and proceeds to

indirectly recall o, from Rll using the ao index. Then a, + 1{a, + 1(a, +
0 0

1(a3))] is calculated. Similarly, when the test FS?00 is encountered a second

time with x=2, the « index is decremented from 15 to 14 so that 0g is recalled

first and then 2[a, + 2(a, + 2(ay))] is eventually calculated. Also, when

FC?00 is encountered again with x=2, the third execution of LBL12 is akipped

so that a, + 2[a, + 2(a, + 2(ay))] is then calculated.

Now, returning to the paragraph before the last one, and the position in

the program after the steps ISGO5 and GTO08 in LBL8, the great loop of LBLS,

LBL3, LBL12, LBL16, and then LBL8 once more, is repeated again and again in

exactly the same fashion as previously described. Each time 1 is incremented

to the x value and also to the f index so that all the data is run through the

calculations. At the end of the last execution of this loop, immediately

- 54 -

preceeding the step, I1SG05, in LBLS, £| £(x) - f(x)| will be stored in R6,

£|£ (x) - £(x)|2 will be stored in R7, and the printer read out will appear as:

£0) £00) - £(0)

£(1) £(1) - £(1)

£(N) £(N) - £(N)

If FS?00 is true, these calculated values will not contain the quartic terms.

Then since ISG 05 will not be true, that is, the f index will be exceeded

after the last data point has been run through, the next step, GTO 08, will be

skipped. The next set of calculations in LBL8 tabulate the average derivation

and the standard derivation as follows:

N+1 — RCLOO + 1, in X stack position

L|£(X) ~- £(x)|/(N+1) -- S8T0/06 : average derivation in R6

N-1 -— (N+1) - 2

LEX) - £(x)|2/(N-1) -- STO/07

EE) - £62
(N-1)) -— RCL 7, SQRT : standard derivation

The standard derivation 1s printed and the average derivation is recalled from

R6 and is also printed. Then the program returns to the normal mode.

LBL E converts the op values to ay values. To execute LBL E, key in Xi

the initial value, press ENTER, key in I, the interval, and then key USER E,

LBL E stores I in Rl. The stack is rolled down to return ¥; to the X stack

position and then the stacks are filled with x4. Next the FC?00 test checks

to see if the quartic term was retained.

If the answer is yes that the quartic term was retained, the program

« Thejumps to LBL15 which calculates the contribution of « 4, to ag through a

first series of steps places xy in the T stack position, 0, in R15 in the Z

- 55 —

position, I in Rl in the Y position, and 4 in the X position. Taking y to the

power of x yields 4 and then dividing yields a, /T4 which is stored in R20.

This is the contribution of a to a4 0 and also equals a Thus, a, is storedy* Y

in R20. With X; now in the Y stack position, multiplication yields aux, /T,

Then the sign of this value is changed and it is multiplied by four to yield

~bayx,/T* which is the contribution of a, to a. This is stored in R19. With

x; again in the Y stack position, multiplication yields ~houx[14 Then

multiplication by -1.5 yields 6aux2/ 1% which 1s the a, contribution to a,.

This is stored in R18. With x; still in the Y stack position, multiplication

yields 6aux3/I%. Then division by -1.5 yields ~bouxs/T* which is the a,

contribution to aj. This is stored in R17. With x; again in the Y stack

position, multiplication yields ~hauxt14, Then division by —-4 yields aux/T4

which is the 0, contribution to a,. This is stored in R16. Then the stack is

rolled down to bring x; to the X stack position before the program returns to

LBLE after the XEQ 15 command. In LBL E, the test FS?00 is made. Since the

quartic term was retained the answer to whether flag 0 was set is no, so that

the next step, GTO 00, is skipped and the program continues with the step, RCL

14,

However, back to the first test, FC?00, in LBL E: if the answer had been

no so that the quartic term had been dropped, the next step, XEQ 15, would be

skipped and the test FS?00 would be encountered. This time the answer would

be yes and LBLOO would be executed. LBLOO stores 0 in R16,17,18 and 19 since

the contribution of a, to a, through a4 0 does not exist if the quartic term is
3

dropped. Thus, if at first the quartic term had been retained and then it was

decided to drop it, LBLO clears the registers in which the a, contribution to

a, through a, had been stored. (It does not clear R20 which contains the «a
0 3 y

contribution to a,, or simply a,, because this is not necessary.) Then the

- 56 -

stack is rolled down to bring x; to the X stack position. The program returns

to LBL E after the XEQ 00 command and continues with the next step, RCL l4.

Hence, whether or not the quartic term was retained, the program contin-

ues by recalling ag in R14 and placing it in the Z stack position, placing I

in Rl in the Y position, and 3 in the X position. Taking y to the power of x

yields 3 and then division yields a, /13. Adding to the contents of RI19

yields a,/13 - box,/1% which 1s stored in R19, This equals a If the quar-3°

tic term had been dropped the last term would be zero. Next, with xy in the Y

stack position and a, /13 in the X position, multiplication yields ax/13 and

then multiplication by 3 yields 3a3x, /13. Subtracting this term from the

contents of R18 yields -303%,/13 + 6a, x;2/1% which is stored in R18, The last

term 1s zero for a cubic fit. Then with xy in the Y stack position and

3a,%;/13 in the x position, multiplication yields 3a,x2/13. This term is

added to the contents of R17 to yield 3ax2/13 ~bo,x3/1* which is stored in

R17. The last term is zero for a cubic fit. With x; still in the Y stack

position and 3a,x2/1 in the X position, multiplication yields 3o,x3/13 and

then division by 3 yields ax3/13, Subtracting this term from the contents of

R16 yields ax3/13 + o,x4 /14 which is stored in R16. The last term is again

zero for a cubic fit. Then the stack is rolled down to keep x; in the stack.

The next series of steps places xy in the Z stack position, a, in R13 in the Y

position, and I in Rl in the X position. Squaring yields 12 and then dividing

yields a, /1%. This term is added to the contents of R18 which yields

-3a,%,3/13 + a,/12 + 6a,x2/1% which is stored in R18. This equals a The2°

last term is zero for a cubic fit. Then with xX; now in the Y stack position

and a,/ 12 in the X position, multiplication yields ax;/ 12 and then multipli-

cation by 2 yields 2a,%, / 12. This term is subtracted from the contents of R17

to yield 30,x3/13 - 2a,%; / 1? - bax3/ 14 which is then stored in R17. Again,

- 57 =~

the last term is zero for a cubic fit. With x; again in the Y stack position

and 2a,%; /2 in the X stack position, multiplication yields 2a,x2/1% and then

division by 2 yields a,x3/12, This term is added to the contents of R16 to

yield ~a, (x/T)7 + a, (x; / 1)? + a, (x; / 1) which is stored in R16. The last

term is zero for a cubic fit. Then the stack is rolled down to keep x; in the

stacks. The next series of steps places xq in the Z stack position, a, in R12

in the Y position, and I in Rl in the X position. Division yields a/L This

term is added to the contents of Rl7 to yield Sax? /13 - 2a,%; / 1% + a,/I -

ba, x3/ 14. This equals a The last term is zero for a cubic fit. Then with1°

x4 in the Y stack position and o,/I in the X position, multiplication yields

ax; /1. This term is subtracted from the contents of R16 to yield ~a, (x,/1)°

+ a, (x4 / 1)? - a(x/I) + a, (xg /T)* which is stored in R16. Again the last

term is zero for a cubic fit. Next, a, is recalled from Rll and added to the
0

contents of R16 to yield ~ay (x, /T)3 + a, (xg / 1)? - a, (x4/1) + ay + a, (x; /D*

which is stored in R16. This equals a Once again the last term is zero for0°

a cubic fit. Finally, a, is recalled from R16 and the program stops to dis-
0

play a Keying SST recalls a, from R17 and displays it. Keying SST again
0° 1

recalls a, from R18 and displays it, SST again recals a, from R19 and displays
3

it, and if the quartic term was retained, keying SST a final time would recall

a, from X20 and display it.

If it is desired to have a, to a0 or a, yield dimensionless values of
3 L

-(G°-HJ 44)/RT, at this point store R, the universal gas constant, in R90 and

with the printer attached, key USER F. LBL F recalls R from R90 and then

divides the a values in R16 through R20 by R to obtain a,/R, a,/R, a,/R,

a;/R, and a,/R if the quartic term was retained. The display is set to 5

figures beyond the decimal point in engineering notation in case the a/R

values are very small. Entry of 16.02 in the X position is followed by FS?00,

- 58 -—

If the test FS?700 is false, that is, the quartic term was retained, execution

jumps to PRREGX and the command 16.02 (actually 16.020). PRREGX prints the

contents of R16 through R20 which are a,/R, a,/R, a,/R, a,/R, and a, /R.If the

quartic term had been dropped, FS?00 is true and 16.02 in the X position is

displaced by 16.019. The command 16.019 PRREGX tells the printer to print the

contents of R16 though R19 which are a,/R, a,/R, a,/R, and a/R.

LBL B calculates and displays individual £() values. To execute LBL B,

enter a x value for which the £(X) value is desired; then press USER B. LBL B

sets the a index to 15 before it goes to LBL 3. LBL 3 stores the a index, 15,

in R3 and then fills the stacks with the x value entered. By decrementing the

a index each time the loop is performed, the program goes through a, or a, to
Lt 3

% depending on whether the quartic term was retained or dropped. The pro-

gram proceeds to calculate £(%) = ay + x[a, + x(a, + x(a + x(e)N], where

the last term would be zero for a cubic fit, in a manner analogous to the one

previously described for LBL 3, going through LBL 12, After £() has been

calculated, the program stops to display it.

LBL C calculates and displays individual £(%) values. To execute LBL C,

enter a x value for which the £(x) value is desired; then press USER C. LBL C

sets the a index to 20 before it moves to LBL 3. LBL 3 stores the a index,

20, in R3 and then fills the stacks with the x value entered. By decrementing

the a index each time the loop 1s performed, the program runs through a, or a
4 3

to aj, depending on whether the quartic term was retained or dropped. The

program proceeds to calculate f(x) = a. + x[a, + x(a, + x(a; + x(a,)))] in a0 1

procedure analogous to that described previously. After £(x) has been calcu-

lated, the program stops to display it. However, if USER F has been keyed

already, the a registers would contain a/R so that £(x)/R would have been

calculated instead. Since R is in R90 and LBL3 is followed by RCL90 * RIN,

R/S will calculate Ex) to obtain and display £(x).

- 59 -

Program CB can readily be modified to fit various types of data. For

instance, if values of =-(G°-H?29g MT are to be fit into an analytic equation

but the data points are given in reference to Hy so that values of =(6°-H)/T

are listed instead; the following modification of Program CB can be made to

convert values of -(G°-H3)/T to =(G°-H2__)/T before the data are fit to the
298

Chebyshev polynomial equation.

To execute this modified version, labelled CBO, store R, the universal

gas constant, in R90, the value of Hy oo ~Hy for the given substance in R91, the

initial temperature, T,, in R92, and the temperature interval between the data

points, I, in R93. If the four quantities are put on the stack in order from

R to I, LBLST ST093 RDN ST092 RDN STO091 RDN ST090 END will store the values

with XEQ 'ST'. The maximum register numbers needed for storage, excluding R88

through R95, if N < 16 is:

20 + 4N for N odd and 22 + 4N for N even.

Two entirely new labels are introduced, LBL18 and LBL19. LBL 19 sets up

the registers where -(G°~H7)/T values will be stored and where -(G°-Hg)/T +

(H -— ©

298 HY) /T
-(G°-H298) /T values will be stored. LBL 18 adds the (H? -

298

HO)/T values to the corresponding -(G°-H7)/T values.

Upon entering the first data point, £,(0) = -(G°-H_)/T, and then XEQ CBO,

the program proceeds unchanged from the unmodified version until LBL11 is

executed. LBL1l is changed by adding XEQ 19 and then XEQ 18 at the end of the

original version. LBL19 consists of the following steps:

LBL19 RCL92 RCL93 - STO89 RDN RCLO5 FRC 1E3 * 1.1 + ST094 RDN RTN

First, T, in R92 is reduced by I in R93 so that T, - I is stored in R89. The

reason for this is that LBL18 increments the temperature, T, in R89, by I each

time it is executed so that the first time the program executes LBL18, T will

equal T,. The the stack is rolled down to bring f(0) back to the X stack

- 60 —

position, having been placed there before LBL19 had been executed. Next, the

original f index, q+.0, is recalled from R5. The fractional part of the

f index is taken and multiplied by 1000 to yield the register in which the

last value of =(G°-H] 4g)/T = f,9g(N) = £,(N) + (HS 5g - HO)/T will be stored

(by LBL10). Then l.l1 is added to yield a new index, g, = 4 + 1+ N+ 1.100,

for the input data, and this number is stored in R94. Thus, the original data

will be stored beginning with R(q+N+2); 100 is merely a large enough counter

test value to prevent skipping. Finally, the stack is rolled down to bring

f(0) back to the X stack position before the program returns to LBL1l to

immediately execute LBL1S8,

LBL18 consists of the following steps:

LBL18 STO IND94 ISG94 RCL93 ST+89 RDN RCL91 RCL89 / + RIN

First, £,(0) is indirectly stored in R(q+N+2) by the gg index in R94, Then

this index is incremented by 1 in preparation for the next data point. I is

recalled from R93 and added to the temperature, T, in R89 which had equalled

T.-I. The incremented temperature, T,, is stored in R89. The stack is rolled1 1°

down to return £,(0) to the X position. (HJ,- Hy) is recalled from R91 and

divided by the temperature in R95, T=T,, corresponding to £,€0). This value,

(4)298 ~ HY) /T, is added to £,(0) before execution returns to LBL1l which then

continues to LBLI1O.

No steps are altered in LBL10, but this time it indirectly stores the

calculated £,(0) + (H2 4g - Hi)/T, value, guided by the original f index,

grIT in R5. Thus, the values for £,45(X) = £,(x) + (Ho g™ H3)/T, where T

is continually incremented to correspond to its £,(x) value, are stored in

R(q+1) through R(q+1+N).

Since LBL10 stores the £,(x) + (Hygg = HJ)/T values, LBLI8 must be exe-

cuted before each execution of LBL10. Thus, before each XEQ 10 in LBL 'CBO’',

- 61 —-

LBL1, LBL2, and LBL5, an XEQ 18 must be inserted after steps 13, 29, 49, and

86, respectively. Then the modified program runs through the data in a simi-

lar manner to the original program, but with LBL18 storing £,(x) in R(q+N+2)

through R(q+2N+2) using the g, index in R94 and storing f (x) in R(q+l)
298

through R(q+N+1) using the original f index in R5. Then the calculations for

fit proceed in the same manner, using the f (x) values.
298

The next modification of the program occurs in LBL E, as follows:

LBL E RCL93 STOOL RCL92 ENTERt « « + «

Since the interval, I, is stored in R93 and the initial value, T,, is stored1°

in R92, these values are simply recalled rather than re-entered before keying

USER E, as done with the original program.

The next alteration occurs in LBL D. An extra step, ST-94, should be

inserted after step ST-05. Subtracting N+1 from the original f index in RS

had positioned the registers to the first £,(x) + (HD gg = HO)/T value. Also

subtracting N+1 from the g, index in R94 positions the registers to the first

£,(x) value.

LBL16 which handles the printout is modified as follows:

LBL16 RCL IND94 ACX ISG94 RDN RCL INDO5 AX — AX ADV ABS RTN

The first time through, -(G°-H7)/T, is indirectly recalled, directed by the g

index in R94 which had been set to R(q+N+2) by LBL D before LBL16 was exe-

cuted. This value is printed and the g index is incremented by 1 to prepare

to print out the next -(G°-Hj)/T value. Then the stack is rolled down to

bring £,44(0) = —(G°-HJ 4.)/T into the X position, having been placed in the

stack previously by LBL D. Next, £,405(0) = =(G°-H3 og)/T is indirectly re-

called, guided by the £, index in R5, and this value is printed. Subtraction

(0), with H)29g a8 the reference state, and this value isyields £,44(0) - f,98

also printed. LBL16 eventually runs through all the data as before, so that

the printout is listed as follows:

- 62 —-

£,(0) = -(G°-Hy)/T, £,95(0) = —(G°-H] MT, f298 0) = £,4g(0)298¢ 298

The final modification of Program CB occurs in LBL3. The following steps

may be added after step 518, RIN:

RCL90 * RCL91 4+ / —— RIN

These steps would be executed after USER C was keyed if USER F had been keyed

earlier. Before these steps, -(G°-HJ0)/RT would be placed in the X stack

position by LBL3, if LBL F had been previously executed. Therefore, R is

recalled from R90 so that multiplication yields =(G°-H}4)/T. Then Hog - HJ

is recalled from R91. Since the value for T corresponding to f(x) had been

keyed in along with USER C, the stack is rearranged as follows:

T T N+1

RA —(G®-Hygg)/T
———————>

~(G®-Hgg) /T 208 ~ Hg
Y Hos - Ho T

Therefore, division yields (H4g - HO)/T and then subtraction yields -(G° -

H)og)/T or ~(G° - H)/T, which is displayed.

The following change may be made if it is desired to recall the £,(x)

values for a repeat fitting; for example if one of the values was incorrectly

keyed in.

To repeat a fit, replace STO IND94 in LBL18 by RCL IND94., XEQ "CBO".

Then key R/S for automatic retrieval of each value of £,(x).

With the foregoing modifications of Program CB, the program consists of

559 steps and 857 bytes.

- 63 -

Program CB

f(0) XEQ CB ~—————3 LBL11 ——— LBLI0O

store 6.1=(f,C_) in R4 f index store £
transfer C index from in R5

R2 to R3 store £(0)

in R6 to R10

f(1)R/S
£(2)R/S LBLOl _____—» LBL0O2

. adds f to R6 calc. & store

: (£,C,)
£(INT N/2)

When C, index

is exceeded

integer C, index in R3

F5?701

Yes, N even

LBLO4

reduce Cy index

f(1 + INT N/2) R/S < by 4
(2 + INT N/2) R/S < —

. LBL1O

: stores £ for £(M)
f(N - 1) R/S

LBLO5
adds (f,C,) to R(6+n)

LBLO6 first
after 43d £ to R6 (cycle)

and alternate signs

LBL0O9

calc. (£,C)) add to R6 to 10

store m index in Rl

store n index in R4

LBLl7€<~——LBL13 1

(£,G,) calc. ————
(C » Cy) (c»¢)

retain quartic, R/S Reject quartic, User A
CFO0, XEQlI4 SFO0

calc. quartic contrib. to on clear R11-14

ore -
calc. ay or a3 to og LBL D f (f-f)

7prints-.. B —_—
L(f-£)2/(N-1) LBL E

I|E-£|/(N+1) calc. aor a; to a,

- 64 -

APPENDIX IIB (for Chapter II)

A number of supplementary programs are used for additional treatment of

the analytical equations, -(G°-H34)/RT = ZaT°, obtained by programs CB or

CBO. For example, it may be desired to round the values of a, without chang-

ing the calculated values even at the highest temperature by more than the

uncertainty or probable error, e, of the original data. Also, when fitting

~(G°-H°)/T values, it may be desired to have the calculated value at 298.15K
298

fit exactly the value of S295 ° Because the rounding error might happen to be

in the same direction for most of the a, values, a limiting rounding error,

e/2, 1s applied to the contribution from each a_ value at the maximum tempera-
n

ture, T The probable error is based on the uncertainty of 5598s which is
max®

usually the major source of uncertainty, and no account 1s taken of the in-

creasing uncertainty due to error in the heat capacity values as the tempera-

ture is increased. When the uncertainty in S5qg/R is greater than 0,005, the

value of e/R used in the rounding procedure is restricted to 0.005.

Program GG starts with the following quantities in registers 88 to 94,

when used with program CBO:

R: 88 89 90 91 92 93 94

e/R Tax R CoE Hy T, I g, index

Register 71 contains the index used for indirect storing of the final rounded

and corrected a, values in registers 72 to 87. The 8, index in R94 is used

for storing and retrieving -(G°-H7)/T values in registers q+N+2 to q+2N+2., As

described in Appendix IIA, the f index in R5 deals with indirect storage and

retrieval of values of -(G°~H3,,)/T in registers q+l to qHN+l. For example,

for 13 data points ranging from 1000 to 3000K at intervals of I=200K, N = 12,

q = 44, and the =(G°-H34)/T values are stored in registers 45 to 57 and the

-(G°-Hy)/T values are stored in registers 58 to 70.

- 65 —

In addition to the a, values in R16 to 19 or 20, the following additional

quantities are utilized by program GG:

R: 1 3 4 5 6 7 8 9 10

m n me/2R a, index 10 a, f index Am e/2RT Dpox A 10

Operation of the rounding operation of program GG is outlined below. Flag

2 is set for m=6, 9, and 12. R8 contains noa=3 if FOO is set or 4 if FOO is

not set. R7*R10+10™(e/2RTI})=0.h and FRC 10"a=0.d.

R3 R6 LBL25 m for 10%, in R4

a, index Am operation and 107 in RIO
>

d>h to LBL2617.1 0 + 5 TT——>_ LBL24 848 to LBL25d<h to LBL2S > £8toLBL2S

17.1 1 » G6» LBL26 » LBL2I

18.1 0 > g d>h to LBL26~——y 1p194 8¢11 to LBL20
d<h to RS lines a or b

18.1 1 > Gog» 1LBL26 » LBL2I

19.1 0 > d>h to LBL26——— 1p194 8¢14 to LBL20
d<h to LBL2S Sf line o

19.1 1 > = » LBL26 » LBL21

20.1 0 14 dh to LBL26—— 137194 8¢17 to LBL20
d<h to LBL25 J line c

20.1 1 > Gis > LBL26 » LBL21

a to LBL H if FOO set, XEQ LBL25 on line m=11 above to round a,

LBL20 b to LBL25 on m=11 line above if 11{m=11
c to LBL I as 11<m=14 or 17, XEQ LBL25 on line m=14 above

to round a,

+

The rounding procedure starts with n=l, m=5, Am=0 and 17.1 in R3. nox is 3

if FOO is set and is 4 otherwise. LBL25 puts 10°a in R4 and 10° x e/2RT
1 max

yields the fraction O.h which is compared with FRC 10°a,=0.d. If d<h, LBL26

rounds 10%a, from R4, drops 0.d, divides by 10° and stores in R17. R3 is

- 66 —

incremented to 18.1, and m in R10 is increased to 8. LBL24 divides R7 by T

from R89 and LBL25 commences the rounding of a If d>h, Flag 2 is set, Am=l2°

is put in Rll, and m in R10 is increased to 6. Then LBL25 is repeated to find

10%(e/2rT,,) > FRC 10% . 10% from R4 is then rounded by LBL26, divided by
1

108, and stored in R17. R3 is incremented to 18.1 and LBL21 increases m in

R10 by 3-Am=2 to m=8 and changes Am in R11 back to zero. Then LBL24 prepares

for a, as indicated above.

When m in R10 has been increased to 11, LBL20 checks Flag00. If FOO is

not set (ng=4 in R8), LBL25 commences rounding of age If it is desired to

round the last a, value, XEQ 25 will round it and stop again at LBL H or LBL

I. R/S with printer attached will then print calculated values of -(G°-HJ)/T

at T, and Tax? and rounded values of ane

When T, is 300K and it is desired to have the calculated value at 298.15K

fit exactly the value of 529g» the first and last a, values are modified to

increase the calculated value y at 298 or 300K by A=y-y to provide an exact

fit and to reduce the calculated value at T by A so that the fit at high

temperature is not changed by the adjustment at 298K. The two equations,

y=y = A = Aa+Aa(298.15)® and 0 = Aa+a(T,,)",

yield: ba, = 8/(298.157-Tp) and ba, = 8-(298.15)"ha.

If this procedure is to be followed, program gg is carried out to round the

intermediate a, values until LBL H or LBL I is reached. If R/S is then keyed,

a, and the last a, are modified to provide the exact fit at 298K and both.are
0

rounded. R/S will print out the calculated values at 298.15 and Tpax based on

the revised and rounded values followed by a printout of the final a, values.

It is often desired to not only print out the constants along with the

name of the species, the temperature range, and uncertainty, but it is conven-

ient to store the information in the main storage registers of the calculator,

- 67 -

or in the extended memory, or in a cassette to allow ready retrieval of the

constants for use in calculations without having to key them in.

Program P can be run after (H and before CB or CBO to store the name and

state of the species and the temperature range of fit in registers starting

with R72. As each register holds only six characters and the program rotates

the entries in the Alpha register six at a time, sufficient spaces should be

included to yield a total of 18 characters or, if Flag 4 is set, a total of 24

characters. The entire line will be printed out. Before initiating program P

for the first time, the index value 72.1 should be stored in R71. If program

CBO is being used, only registers 72 to 87 are available. When the available

registers have been used, the stored data is transferred to extended memory or

to a cassette and 72.1 is stored again in R71 for a new set of entries. The

storage in the Alpha register is simplified by use of ARCL to abtain the

following register contents:

R: 95 96 97 98 99

K,e/R= <5,L> 0-1000 0-2900 0-3000

The procedure will be illustrated first for 0, gas. The quotation marks

indicate entries in ALPHA mode.

72.1 STO71, '02<G>100 ARCL99 Sp K Sp' XEQ 'P'.

The printout is 02<G>1000-3000 K and 02<G>1 is stored in R72, 000-30 is stored

in R73, 00 K is stored in R74.

The inclusion of uncertainty will be illustrated for O gas.

72.1 STO71 '0<G>30 ARCL97 ARCL95' XEQ 'P' will print out 0<G>300-1000K,e/R=,

and if this is now followed by 0.002 R/S, the 0.002 will be printed out on the

second line. 0<G>30 will be stored in R72, 0-1000 will be stored in R73,

K,e/R= will be stored in R74, and 0.002 will be stored in R75 and in R88 where

it will be used subsequently by program G for the rounding operations. The

- 68 -

first six characters stored in the first register should contain enough infor-

mation to identify the species, its state, and the temperature range if equa-

tions are given for two temperature ranges for the same state, as the contents

of the first register will also be used as a data file name for storage in

extended memory or in a cassette. Seven examples are given below to indicate

the entries in the ALPHA mode and the printout. The printout is separated

into the contents of each storage register. The actual printout will not have

any gaps. For MgO and Al,0,, a bracket was omitted so that the temperature

range beginning at 300K could be distinguished in the file name from the range

beginning at 1000K for MgO or the label for Al,0, solid could be distinguished

from the label for Al,0, liquid. For 0, and MgO, the equals sign was deleted

to save a register as e/R=0.002 or e/R 0.002 are equivalent.

TT .) oo R72 R73 R74 R75 sF4

'0<G>30 ARCL97 ARCL95' 0<G>30|0-1000|K,e/R=

'02<G>30 ARCL97 ARCL95 CLA’ 02<G>3|00-100|0K,e/R

"AL ARCL96 ARCL97 ARCL95 SpSpSp' AL<S,L|>300-1|000K,e| /R=

'MGO<G30 ARCL97 ARCL95 CIA’ MGO<G3 00-100 |0K,e/R

"AL203S>30 ARCL97 ARCL95 SpSpSp' AL203S|>300-1|000K,e| /R=

'M08023<S>30 ARCL97 ARCL95 Sp' M08023 <S>300|-1000K| ,e/R=

'TI305<a,b>30 ARCL97 ARCL9S' TI305<|a,b>30|0-1000|K,e/R=

The index for storing in the registers is automatically incremented, but

when the registers have been used up and the stored data transferred to ex-

tended memory or to a cassette the next entries must be preceeded by 72.1

STO71.

- 69 -

After entry of the characters in the ALPHA register, keying 0.002, for

example, followed by R/S will print 0.002 on the second line. However, if a

number greater than 0.005, e.g. 0.01, is keyed in, the printout will read

0.01, USE 0.005 and 0.005 will be stored in R88 in place of 0.01 for the

rounding operations of program GG. However, the e/R value of 0.01 will be

stored in the register following the register which contains e/R.

After the use of program P, the data are entered as described in Chapter

ITI and Appendix IIA followed by the rounding operations of program G described

above in this appendix.

There are other auxillary programs that are convenient to use with pro-

gram CBO. Program CBO requires the storage of R, HS - He, T and I in
298 1’

registers 90 to 93. The entry of these four values followed by XEQ ST will

store them in the proper registers, as noted in Appendix IIA. For subsequent

calculations, if only Hyg Ho needs to be changed, it can be stored in R91

without using program ST.

The above discussion of program P described the storage of information

about the species, its state, temperature range covered, and the e/R uncer-

tainty. Following the rounding of the a, values, XEQ SR will shift the a,n

values from registers 16 to 19 or 20 and store them in the registers following

the register containing the e/R value as directed by the index in R71. After

all the available registers have been used, the data can be stored in extended

memory or in a cassette using programs REGE or REGC. Two sets of information

are needed for these programs. First the data file name is required in the

ALPHA register which can be provided by the name in the first register filled

in program P, e.g. ARCL72 or perhaps ARCL80, and the total number of registers

in the X register. In the example of O gas with a quartic fit between 300 and

100K, nine registers would be required. If only a cubic fit were selected,

- 70 -

eight registers would be required. For Ti,0, between 300 and 1000K with a

quartic fit, ten registers would be required. With those two entries, XEQ

REGE will prepare a file in extended memory. Then the numbers of the regis-—

ters to be moved must be inserted in the X register followed by R/S. For the

example of Ti,0, with ten registers starting in R72, the entry would be 72.081

R/S. Exactly the same procedure is used to store in a cassette. For the T1,0,

example, the steps would be 'ARCL72' 10 EXQ'REGC' followed by 72.081 R/S.

To retrieve the Ti0, data from extended memory, one would key in

'TI305<' XEQ'EREG' followed by bbb.eee R/S where the data are to be stored in

registers bbb to eee. To retrieve the Ti,0, data from the cassette, one would

key in 'TI305<' XEQ'CREG' followed by bbb.eee R/S.

If one were fitting N+l1 tabulated values of g,=—(G°-HY)/T at regular

intervals using program CBO together with the auxillary programs described

above, the sequence of steps would be as follows:

(1) N+1 XEQ'AH', R/S

(2) Enter in ALPHA register the name of species, state, and temperature

range, using ARCL 96 to 99 as appropriate, followed by ARCL 95, for

a total of 18 or 24 characters, spaces and commas. SF4 if 24

characters. Tone will sound when 24 characters have been entered.

72.1 STO71 if initiating storage.

(3) Attach printer in MAN mode and XEQ 'P'.

(4) Value of e/R R/S.

(5) RH? ~HJ4T,41 XEQ 'ST' unless values of R, T, and I are unchanged
298

from previous fit; then Ho~Ho STO91.

(6) g,(0) XEQ'CBO' ~ g,95(0)

g, (8-1) R/S +> ~8,45 (N-1).

go (N) R/S > €quar» error due to dropping quartic term.

-71 -

(7) If quartic term selected, R/S with printer in MAN mode.

If cubic fit selected, User A with printer in MAN mode.

As T, and I have been stored in step(5), it is not necessary to stop and

initiate D, E, F, and GG as in program CB. As a result of initiating step 7,

two printouts will take place. The first will print all the values of gy in-

serted, the resulting values of 895° and the difference 82058208 between the

values calculated from the analytical equation and the value obtained from the

entered values, followed by the standard error and the average deviation. The

second printout will give the a, values of =(G°-HJ 4.)/RT = ZaT™. For a cubic

fit, 8 will be displayed in the X register, For a quartic fit, 11 will be

displayed.

(8a) If T, = 300K and it is desired to fit S,495/R exactly, initiate the

modification by R/S. 8 or 11 will be displayed again. R/S with MAN

printer will print out the calculated values of -(G°-H3_,6)/T at
298

298.15K and Thax based on the final a, values which are also

printed.

(8b) If T, is not 300K or it is not necessary to fit S,. ./R exactly, XEQ
298

25 will round the last a, value. RCL16 FIX3 RND STOl6 will round

ag. R/S will print out calculated gg values at the extreme tempera-

tures and the values of a.

(9) Either step (8a) or (8b) will also initiate program SR which trans-—

fers the final a, values to the register following the register

containing the e/R value as directed by the index in R71.

It is often convenient to fit data for the 298-1000K and 1000K-3000K

separately but to store the constants together. If the lower temperature data

are fit first and the name and constants stored starting with register 72, the

index in R71 will store the constants for the higher temperature in the regis-

-72 -

ters following those used for the first set. It is not necessary to repeat

the uncertainty in the second set. The versions of programs SR and REGE given

below will retrieve R72 to use as a file name and will calculate the number of

registers used from the R71 index. With that version, no additional data have

to be inserted after the printout of the rounded constants. Keying R/S will

initiate program REGE and automatically transfer all the stored information to

extended memory.

The steps listed below for programs P, ST, CBO, GG, SR, REGE, and EREG

are given with GG and CBO combined in a single program. They are stored in

extended memory or on magnetic tapes separately to allow GG to be used either

with CB or CBO. However, once they are recalled, END at the end of CBO is

deleted to allow automatic initiation of GG after completion of the subroutine

of LBL F and to allow subroutine 22 of GG to utilize LBL C of program CB or

CBO. Program CH, which is given in Chapter 2, is normally used with deletion

of subroutines B, C, and 2 to reduce the number of steps to 105. With the 35

steps of LBL P, the 9 steps of LBL ST, the 684 steps of CBO combined with GG,

and the 39 steps of the combined SR, REGE, and EREG programs,there is a total

of 872 steps. The number of bytes is 1395, corresponding to use of 199 regis-

ters for the programs.

~73-

634LEL 05
ENTERT ENTER XEG 09 2zgsLBL 87
ST+ 18 RI ¥EQ 66 ROY BOSTO BL 7 STO 84 1
KEG 69 ST+ 89 RIN FED 14 57013 1
WEQ 83 5T+ #3 RIN STa Bl RIM REQ 14
NER 69 5T+ 87 RY STOP 57-19 STO 17 2

[
a
]

f
—

L
o

“
L
H

871 i WY FRRUF RTH KER 12 XER 12 GTO 65 STi 81 RIN HED 14
57015 2 = RCL 19 +

214LBL BA Sa+LEL 85 ven 12 BOL 65 0%

RSTO THD 71 ISE 71 6 REL IHD 83 IGE 67 + STO 19 §T+ 11%
EROT ETH RTH ST+ 12 ROL i7 ROL 18

¥ - FL ts +
274LBL Bi 95+LBL fg T+ 121 RCL £CL 15

570 82 RON USES STO T STO Y CHS STD Z T+ 14 it 64 @
BOSE RCE BCX PREUF ROH ST+ 66 ETH TO #1 1 NEG 14

EHR 78 19 510 80 RIM

ERP ET BILL £0 14 STO 17 ST- 19
i E013 RCL 82

T+ 012
L ~

~
R
Y

de

C
E

be
e
[
N
D

Te
d
0 o
i

O
N = yt po
t

T
r
e
e
n

SW
C
B
e

TH
R

Ap
F
Y

DM
T
D
E

L
Y

U
Y

Me
O
Y
d
a
l

d=

Po
nt

e
t
e

T
e
d

O
D

S
R
D
U
D

e
e

BLsLEL ~5T- STd 13 570 14 {
ST0 93 RDN STO 92 FIM 8 £10 67 Cale
519 BIH STD 22 EHD WL 12 57+ 1
1051 HH STO SE EAD 12oLBL 19 SER4 6 S10 61 1

CL92 ROL 97 - EG FR 13 RCL 67
TO 83 RIM RIL 85 FRC * 8TH 02

+

— o
m

w
y
a
s

T
Q

e
n
2

T
T
]

e
e
s

w
r
— = w
h

b
i
e

230)

2
T
a

-
—
f
5

-
~

t+LE

£.1 5 ECL BZ
578 B3 REL 7 HEG i,
STD 4 STD 87 ST 65 fe7+L2l 1 IA44LBL 14

STH 22 270 {8 EByH RCL 8FRC LEZ x= | rCLogl 1 + ¥12 LASTY

YER 15 REG iE + 570 #8 ROL 68 + LEE + 7 1/E

t EZ + ona 83 PM ECL 61 BOL #4 - #

FEQ 13 BED 13 RCL #3 ROL BL - 7 3%

PTH

N
T
S
a

p
=

5
Lets

£T- 16
Ie GTO F

=
x

L
n

E4+4LEL 84
4 ST- 83 BDH ETH

£4
S74 143+LEL 12
ud STO IHD BS 156 85 RTH 3244LPL 13
vE YEO 64 ST+ 12 ROH BCL 83 FACT R12
RT} ST+ BI FIN ST+ 65 Rib pel 62 BCL 84 - FACT
570 5T+ §7 / ECL BR ROL 84 + 1

+ FACT 7 RCL B4 2
33sL BL az 155+LBL 17 {1 + #% RTH

RIE ROL IH ROSTO BL 4 STO 84
ST+ IHD 04 YER 13 PCL 18 4 PLE E

TH 570 11 STOP OF 89 1 BCL 93 STO 81
BI “Ea 14 87 ENTER EMTERY
£0 570 81 RE FL7 68 YER 15
Fi 570 19 5 YEO BE RCL 14

570 81 R I VY os STH 13 x 3
SIeLEL iE 570 18 7 + ST- 18 = ST+ 17 +

STO THE 34 sth el # ¢ Sic 16 RO
RCL 53 ST+ ROL 28 PCL 13 RCL 81 wiz /
RCL SI ROL + - FR ST+ 18 % 2 SI- 17
4] RCL 19 + 7 7 57+ 16 PDH

3 R
* g

C
Y
=

=
«
+

r
~

FY o
Y

~
~

[o
rl

~
~

r
o
t
e
f

N
I

e
e
d
N
Y

s
e

—
D
n oy ~—

39T4LEL 15
RCL 15 RCL 81 4 TIX
7 STD z8 * THS 4 #
5T0 19 * CHS 1.:
S570 13 + CHS 1.
570 17 + CHS 4 ~/

570 16 ROH RTH

n
w

*

/

427+LBL 82
B STO 16 STO 17

57) 1g S70 19 RBM RTH

4154LBL 16
RCL THD 94 ACY ISG 94
ROH RCL IND 65 ACH -
fic¥ ADY ABS RTH

447+LEL T
FIZ 3 RCL BB 1 +
57-85 57-94 RCL 11
JED 16 STD 86 X12
5T0 67 § S5T+ 43

4t1¢LBL
15 Zed

84
83 REG 16

§T+ 86%
56
12 ST+ 47 Rt

t + 15625 G70 62
RecL Be | + STr Be 2
- S§T/ 67 RCL 97 S607
PRE RCL 86 PRY CTC E

4264LEL B
13 G10 82

439+LEL C
¥

491+LBL 83
£10 B3 FS? 82 SE 82
ROH EHTEEY EHTERY
EHTERT RCL IHD B32 +
OSE 83 ¥ED 12 KER 12
FC? 88 JEG 12
PCL IHD 83 + ETH

S99+LBL 12
PCL THD 83 + =* PSE 23
ETH

Th

S15+LBL F
RCL 98 517 16 S17 17
ST/ 18 51/19 51/ 24
EHG 5 16.82 FS? 86
16.819 PRREGY

S27eLBL “GG
RCL 88 2 + 5T0 81
RCL 89 + STO #7 1 ES
Sta 18 17.1 570 83 8
5T0 86 3 STO #3
FS? 88 GT 25
ST+ 88

S47eLEL 25
RCL 87 RCL [9 =
RCL IND 83 RCL 1B =
STO 84 FRC ABS XY?
GTO 26 SF 82 1 ST+ 86
18 ST 18 GTO 23

SE5eLBL 26
RCL 84 Fi 8 RKD
RCL 18 / STO IND 93
1SG 83 F357? 82 GTO 21
t E3 ST+ i@

ST7eLBL 24
RCL 89 ST/ 97 RCL 10
Lot 8 ¥(y? 470 28
G70 23

S86eLBL 25
FS? 88 GT) H RDN 1
KY? Gid I «Td 28

594+LEL 21
3 RCL 86 - 1013
ST+ 19 CF 82 STO 96
GTO 24

bB4LBL H
STOP 15.919 S16 24
RCL 63 29 ¥{=Y?
oT) 23 GTD 27

613eLBL I
STOP 16.822 S70 84
RCL 83 21 ¥¢(=Y7
G10 23

6cleLBL 27
RCL 82 § + ST- 85
RCL IND @5 RCL 98
S70 64 2982.15 STO 92
YER C RCL 84 - CHS
STG 89 RCL 92 RCL 08
Yt¥ RCL 25 RCL @8 Y$¥
- 4 §T+ 28 RCL 92
RCL 82 Y4i + RCL 89
- 87-16 RCL 1€ FIX 3
PNE STO 16 RCL 88 .1
t ST+ 83 670 25

E62¢4LBL 23
FIX 2 RCL 92 XE@ 22
RCL 85 XEQ 22 RCL 04
ENG 3 PRREGYX €TO °SR°

672¢LBL 22
ACY 2 SKPCHR RDN
XG C RCL 98 = ACK
ALY ENE

PRP “SR

d1eLBL *SR*
RCL 71 INT STO ve
1 E3 7 16 + RCL 68
St+78 1 + ST+ Ti
1 E¢ 7 + REGHOYE RTH

i9eLBL "REGE®
CLE ARCL 72 PCL 78 71
- CEFR RCL 70 1 E3
/ 7 + TRYZRX. KTH

J3+LBL "EREG"
e SEEKPTR RTH GETRX
END

~T5-

APPENDIX III (for Chapter III)

The combined programs abl, ab2, abc2, and abc3 carry out the same

calculations in the first 36 steps except for the flag setting of F1 if

abl is initiated, ¥2 if ab2 is initiated, F3 if abc? is initiated, and

no specific flag if abe3 is initiated and the clearing of R19 for abe?

and abc3, and the clearing of R17 and R18 for all but abl. For all pro-

grams, registers 0, 1, 3, 4 and 11-16 are cleared and 22.1 is stored in

R20 as an index for storage of the x,y input data. FO is also cleared.

In response to the queries from the calculator after the first step,

FO is set if w#l,and if the x values are at regular intervals of I, I is

stored in RO.

Data Entry

After the initial step, the data are inserted followed by User mode

E in four possible manners as indicated in the directions depending upon

whether the weighting factor w is 1 or not and whether the x values come

at intervals of I or not. The treatment of the inserted values is indicated

by the following outline.

SFO(w#1) ~LBT Add w, to R16, vw, to R8, decrement R16 so
only w_.-1 tis added, rémove 1 and vw, from stack

LBLE + + Go to LBL8

|

LBL8: Store y, in IND20, increment R20, calc £(y;) by LBL1, store hig £(y,)

in R10,

CFO—Store 1 in R8, remove 1

store xg in IND20, increment R20, use LBL3 to store x, in R6,

calc x} and store in RS, calc f (x!) and £0 and store in R9.
1

Then branch to specific calculations for each program.

SF1—3LBL9
C F2 —LBL11

1 o 1CFl—>Calc f,(x}) by LBLY4; then £0, in wr aF3- LBLL2

CF2
lLCF3 ——LBL15

For all program upon completion of entry of each (x, Yi» wv.) x,

from R6 plus I from RO displays x, + I for next data entry. In the follow-

. . . , ,
ing summaries, y will be used for f(y;)s f] for f(x!) £, for (x1),

etc. and subscript i is dropped on w, x, and y. n will be used for the

_76-

total number of x,y sets inserted, and Iw = I We A storage entry for a

register which is not used in the specific program is indicated by --- on pg. 2U.

abl IBL9: (Vw - 1)f/W = fw - £4 added to R11

(VW = 1)y/& = yw - y/w added to R13

y/wand fw are processed by I+ to add fVWto previous

fw — f¥W in R11 to yield net addition of fw and similar

calculation for yw. w - 1 had been previously added to R16

so net addition is w. Additions to R12, 13, and 15 are £2,

yw, and yfw, respectively.

ab2 LBL11l: f,./w times yv/w from R10 is added to R18. From R9,

f vwtimes y/w from R10 is added to R17. Then
2

f, vwand fVware processed by I+. Only IfWw in R12,

tou in R1k4, and £Ew in R15 are used.

nN
,
=

M
N

abec2 LBL12: £,/W, yw from R8 minus 1 STO3, (£04) (Var -1)

fw = f£/W ST+13, fv - £/4 ST+11, (y/o)

£05 to LBL1l as for ab2 above.
" yw ST+19,

2 2
abe3 LBL15: Vv times y/w from R10 adds yfvw to R12. (R9)™ = fv ST+1kL.

2 2(RT) = row ST+17. RORT = ffw ST+15. RLOR9 = yf,w ST+1l.

ILBLS calculates fs £5 fills the stack. rw ST+19.

yi ST+13. f.f.w —- w +1 ST+16 (-w+l compensates for LBLT).
13

fofav ST+18.

Least-Squares Calculations

The next section outlines the calculations after all of the data have

been entered. For each program, the least-square equations are derived

and the calculations given in terms of storage registers used.

2
]abl To minimize [Z(y-a-bf)]", differentiation with respect to a and

then b and setting differentials equal to zero yields

ab2

abe?

-77-

_ _ Iyfw - (IywIfw)/Iw
alw + bIfw = Iyw b= ST CT (itw) Zw

(Zyw - bIfw)/Iwalfw + bIfow = Lyfw a

After insertion of all data, the remainder of LBL9 calculates

2 = R15 - R11R13/R16 = Iyfw - IfwIyw/Iw

m= R12 - (R11)°/R16 = fw - (Ifw)"/Sw
b = &/m is stored in R2.

MEAN places Ifw/Iw in x register and Iyw/Iw in y register.

a = Iyw/Iw - bIfw/Iw is stored in Rl.

)12 yieldsMinimization of [Z(y-af,-bf,

2

alfow + bIf. f.w = Iyf.w | Mgwiyfow - Zyfwiffv
1 172 1 b = 5 5 5

LEWILW - (Iffw)

aff. fw + bIfow = Lyf w a= [Zyf w - If wl/ze2w
12 2 2 1 172 1

The remainder of ILBL1l calculates

R12R18 - R1TR15
2

LEwEyfw - Zyfwiffw

2

J

k R12R1h - (R15)° zedultow - (Zr. fw)
12

b j/k is stored in R3. a = (R17 - bR15)/R12 = (Zyfwv - bIf£0) /EEow

is stored in R2.

Minimization of [2(y-a-bf-cf 11° yields
2

alw + bZf,wv + elfw Zyw

2
alfw + bIf,w + cffw = Lyfw

2 _alfwv + bLffw + cfw = Lyfwv

The remainder of LBL12 calculates R19/R16 = Iyw/Iw, stored in R10 and

(R11)%/R16 - R12q = = (2£,0)°/2w - Ifou stored in R3.

s = R11R13/R16 - R15 = LEWEEW/Iw - Iff,w stored in R6.

r = (R13)°/R16 - R1k = (zr)°/2u - 1t2w stored in R5.

u = R10R13 - R18 = LywLfw/Iw - Lyf,w stored in R8.

~78-

t = R10R11l - R17 = ZywZfw/Iw - Lyf,w stored in RT.

b = FORT = BERS = re - 3 stored in R2.

R3R5 - (RS) qr - s

c = RZR3 = - stored in R3.

R6 s

a = R10 - [R3R13 + R11R2]/R16 = Iyw/Iw - [elfw + bIfw]/Iw

stored in Rl.

ea . 2
abe3 Minimization of [2(y-af-bf,-cf,)] yields

alfwv + vf,fw + cbfFaw = Lyfw

2
alfwv + bIfw + cf,Faw = Zyfwv

2
alfjw + bLEfw + clfy w= Lyfgw

The remainder of LBL 15 calculates

2 2 2 2 ,
A = R17R19 - (R18) = Lfwifw - (z£,fWw) , stored in Rb,

2 .
= - = Ww -B R15R19 R16R18 LffWEE, LfTWiffw, stored in R5,

2 .C = R15R18 - R16R17 = LETWEE,Tow - LffwIf, w , stored in R6,

D = C(R16) + R14R4 ~ R1SRS5 = CIf. ft w+ Aztoy - BIf_f w in RT,
3 12

— _ 2 .R = R12R18 - R13R17 = Lyfwif,fow - Lyfwifw in R8,

_ = 2 .Q = R12R19 - R13R18 = Lyfwf - LyfwifLow in R9,

a = [R(R16)-Q(R15)+RLR11]/RT = (RZf.fw - Qffw + ALyfw)/D in R2,

S = R13R15 - R12R16 = Lyfwiffw - Lyfwif,fw in R10,

b = (5(R16)-R5R11+R9R14)/RT7 = (SI.£w-BEyfweQIfow) /D in R3,

c¢ = (R6R11-R10R15-R8R1k4)/R7 = (CEyfw-SEf,£w-RIfSw) /D in RL.

Closeness of Fit

The number of data sets, n, is stored by LBL10 in RT. Then 22 +

(2n + 22.02)/1000 is used as a y index in R20. The x index in R21 is

larger by 1. R9 and 10 are cleared. LBL1lL4 uses RCL IND21 to retrieve

AN

next x value which is used by LBLC to calculate y. RCL IND20 provides y;

-T9-

y §-y is printed after incrementing R20. |§-y| is added to R10 and

(5-y)° to R9. R21 is incremented. As long as the integer portion in R21

is not greater than 22 + 2n, the calculation will return to the beginni.g

of LBL1k4. After the last set has been treated, ISG2lwill cause a jump

to division of R10 by n and division of ROby n-2 followed by the square

root.

Note 3 of the Directions section of Chapter III indicates a procedure

for printing of the weighted average z vw[Fy/mw Minor modifications

of LBL14 can allow calculation of Vow(5,7,)2/(Zw2) or simultaneous

calculation and printing of both weighted and unweighted quantities.

i fRetrieval o (x,5¥,;) Values

All inserted data sets are stored in R22 to R21+2n and can be retrieved

by step (7). n User A calculates the y,x index 22+(19+2n)/1000 for R21

and LBL6 uses LBL16 to retrieve yy and x, which are then inserted by LBLE.

This continues until the next to last cet has been processed when ISG21

causes jump to add 0.1 to R21. LBL16 retrieves the last y,x set and

IBLE completes insertion of the last data set. The rest of the Procedure

is the regular least-square calculation for the indicated equation. As

indicated in step (7) of Chapter III, a minor modification allows insertion

of weighting factors. Step (7) thus allows repeated least-square treat-

ments of the data using different fitting equations and different weighting

factors.

Special Programs

The introductory text of Chapter III discusses equations for fitting

enthalpy, heat capacity, and partial molal data. Their application will

be illustrated by some examples.

If it is desired to fit drop calorimetry data, y = (Hy-H,)/R, as a

function of 6 = T-T,» where I. is the reference temperature of the calori-

meter, with a smooth joining to C_ and dc,/daT at T, obtained from low
P

temperature calorimetric measurements, program ab2 can be used with the

following functions.

ly) = ole(y)+c, ,/r] +07 (ac/Ram)fly) = y/6 - Cp ;/F - 0 (ac,/RaT), , i i’

-80-

2
ox") = (1/3)8°. The data for aCa will be used to

illustrate the insertion of the functions and testing of the program.

x'=6 , f (x') = 02/70, f
1 1

T, = 298.15, (Cp/R) 5g = 3.16, (a(Cp/R)AT) 55g = 1.2 x 1073 KL, n=5, I=100.

(1b) XEQ 'TlepbO2' =»F2, EEX 2 STO 00, 'SIZE'032, 298.15 STO 19, 6 EEX L

CHS ST021

(2) With no entries from previous use of the program,

PRGM x+y ST06 RCLI19 - STOS / 3.16 - RCLS

RCL21 X - RCL 6 x<y SST SST 3.16 + RCL5

RCL21 X + RCLS X SST SST SST RCL19 -

SST [LAST x 3 Oy / RCL5 X RCL6 / SST

SST SST x 3 / SST SST SST 0 X

PRCM

(3p) 300 4+ 6.0 User E 400, 326.6 E 500, 651.7 E 600, 979.3 E 700, 1307.9 E

800

(4) R/S ¢ = -16 805, SST a = 6.7 x 102
(5b) 300 Cc 5.85, R/S 326.4, R/S 651.8, R/S 979.4, R/S 1307.8

To calculate the other constants and Co/R, the following additions to

to program are made to the end of IBL16.

[CTO16 PRGM [IGTO.543 ORIN [ILBL'B' RCL2 RCL 3 Oy /

RCL3 RCL19 X - 2 X RCL21 2 X +

STOL RCL3 RCI1G X + RCL19 X CHS RCL2 RCL19

/ - 3.16 + STO1 [RTN RCL
LBLD 4 + 4 RCL3 X RCLL + X RCL1

+ RCL2 RA x2 / + ORTN RA RCLOO +
GTOD PRGM

User Ba = 3.3688 1b = -6.41k x 107°

Cp/R = 3.369 — 6.1 x 107°- 6.7 x 1077 T° - 16 805 / T°,
300 D 3.162, R/S 3.237, R/S 3.268, R/S 3.281, R/S 3.286, 298.15 D 3.160,

350 D 3.208

There is some uncertainty in the value of dC,/aT at 298.15K. The

retrieval capability of step (7) is illustrated by repeating the fit

with (a(CL/R)/AT) 54g = 1.202 x 107K! instead of 1.2 x 107K.

(1b) XEQ '(Jalb(i2'> F2, EEX 2 STO 00.

As R21 which had been used to store dC,/RAT is used in step 7, R21

(2)

(7)

(4)

~81-

in f(y) and f'(y) must be changed to Rl. Also the use of R21 in LBLB

must be changed to RCL1. As above, 5(a(Cy /R)/ar) yo

PROM [IGTO.045 « RCL1 [JGTO.055 « RCL1 [JGTO.557 + RCL1 PRGM

6.01 EEX 4 CHS STOl 5 User A 800

is stored.

R/S ¢ = -16 920, SST 4 = 4.6 x 107°

User B a = 3.3731, SST b = ~7.757 x 107°

Co/R = 3,373 - 7.76 x 107° 7 + h.6 x 1077 T° - 16 920 / T°

300 D 3.162, R/S 3.237, R/S 3.268, R/S 3.281, R/S 3.286

If (dC_/aT). is not well known, but C_
P i P,i

calorimeter data can be treated by abc? as described in the intro-

ductory text of Chapter III

is known, the drop

fly) = v/6° - Cp ;/RO, £71 (y) = 8°(y) + 8c ;/R

f(x") = 0, f,

XEQ 'Jadv[dec[]2', EEX2 STO 00.

With no entries from a previous calculation,

(x') = (8 + 1T,)7L,
1

PRGM xZy STO6 298.15 - ST05 Olx° / 3.16 RCLS

/ - RCL6 xy SST SST RCLS X 3.16 +

RCL5 X 8ST SST SST 298.15 SST SST SST

SST < RCL6 1/x SST SST SST 0 X PRGM

300 45.85 User E 400, 326.4 E 500,651.85 E 600, 979.4 E 700, 1307.8

E 800

R/S ag = -2.5L4 x 1073, SST a, = 3.09 x 100s, a_, = 1.10

300 User C 5.85, R/S 327.4, R/S 649.6, R/S 97L.8, R/S 131L.6

(2)

(3)

(4)

(5)

(6)

(7)

(8)

-82-

REFERENCES

L. Brewer, Estimation of Thermodynamic Data and Phase Diagrams Using

HP-65 Calculator Programs, LBL-4994, June 1976.

L. Brewer, HP-67 Calculator Programs for Thermodynamic Data and Phase

Diagram Calculations, LBL-5485, May 1978.

M. Abramowitz and I.A. Stegun, Editors, Handbook of Mathematical

Functions, N.B.S. Applied Mathematics Series 55, June 1964, Supt. of

Documents, U.S. Gov't Printing Office, Washington.

R. Hamming, Numerical Methods for Scientists and Engineers, McGraw-

Hill, New York, 1973.

W.E. Wentworth, J. Chem. Educ. 42, 96-103, 162-7 (1965).

W.E. Deming, Statistical Adjustment of Data, John Wiley, New York,

1943,

C.H. Shomate, J. Am. Chem. Soc. 66, 928 (194k).

T. Chiang, Y.A. Chang, Can. Metall. Quart. kL, 233-h1 (1975).

	Cover
	Contents
	Chapter I: Interpolation Fit to y=∑aₙxⁿ
	Chapter II: Data Fitting Using the Chebyshev Polynomials
	Chapter III: Least Square Fitting of Data to an Analytical Function
	Appendix I (for Chapter I)
	Appendix IIA (for Chapter II), by Susie Hahn
	Flow Chart for Program CH
	Flow Chart for Program CB

	Appendix IIB (for Chapter II)
	Flow Chart for Program GG

	Appendix III (for Chapter III)
	References

