Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Materials & Molecular
Research Division

HP-41C CALCULATOR PROGRAMS FOR FITTING OF
DATA BY AN ANALYTICAL FUNCTION

Leo Brewer

December 1982

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

LBL-15346

HP-41C CALCULATOR PROGRAMS FOR

FITTING OF DATA BY AN ANALYTICAL FUNCTION
by

Leo Brewer

Materials and Molecular Research Division, Lawrence Berkeley Laboratory
and Department of Chemistry
University of California, Berkeley, California 94720

DISCLAIMER

This report was prepared as an acciunt of work sponsored by an anency of the United States Government,
Neither the United States Government nor any agency thereof, nu
warranty, express or inolied, o assumes any legel liadi

ufacturer, or otherwise, does
not necessarily constitute or imply its endorsement. recommendation, or favaring by the United
States Government of ary agenry thereof, The views snd opirions of authors expressed herein Jo rot
necessarily state or reflect those of the United States Government or any agency thereof

commercial product, vrocess, or sarvice by trade name, trademark

NOTICE

PORTIONS OF THIS REPORT ARE ILLEGIBLE. It
has been reproduced fromtho best available

eopy to permit the broadest possible avail=
ability.

This work was supported by the Division of
Materials Sciences, Office of Basic Energy
Sciences, U.S. Department of Energy, Under

Contract No. DE:ACO3—76SF_‘90098

e

This manuscript was printed from originals provided by the author.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

-1-

Introduction

The general availability of programmable calculators and computers has
signaled a shift from the tabular presentation of thermodynamic data to
presentation in the form of analytical equations and the replacement of
graphical methods of treating data by analytical methods. HP-65 and HP-6T7

calculator programs for a variety of thermodynamic calculations have been

(1,2)

presented in two earlier reports. The present report lists programs

for the HP-Llc calculator which are of particular use in representing thermo-
dynamic data in analytical form.
The first section will deal with analytical equations for interpolation

purposes. The equations are fit to two, three, or four tabulated points.

o O

Std)/RT for the reactants and products

In particular, the values of —-(G -

of a reaction are combined to yield an equation for —A()/RT which can

Std

then be used to obtain values of the equilibrium constant at desired tem-

perature by the relation

o O

S /RT

1nK = -AG°/RT = -A(G°- 4)/RT - AH

Std

This procedure is much simpler than the use of A8; and AH; to obtain AG; as
the contribution of ACO causes more rapid changes of As® and AH® with tempera-

ture than of -A(G°)/RT, for which the AC contributions largely cancel.

298
The second section deals with fitting —(Go-Hgtd)/RT values or other

gquantities tabulated for a large number of evenly spaced temperatures. A

least-square fit is provided using Chebyshev orthogonal polynomials.

The third section deals with least-square fitting of sets of x,y values

(x),

to an equation for f(y) given as either a + bf(x), afl(x) + bf,

(x), or af

a + bfl(x) + cf,

(x) + b (x) + cf3(x). Some examples are given

1 2

of the types of functions needed for typical thermodynamic calculations.

-2

The initial sections give the directions for using the calculator
programs and the steps of the program are listed along with use of the
storage registers. 1In an appendix, a more detailed discussion is given in
regard to the reasons for the procedures used and operation of the program.
Possible modifications of the programs for special purposes are also listed.

This report is subdivided as follows:

page

Chapter I: Interpolation Fit to y=2anxn...................3

Chapter II: Data Fitting Using the Chebyshev

Polynomials.o..t.c.O-.looocoootoooioculc...7

Chapter III: Least Square Fitting of Data to an

Analytical FunctioNeeecesssessocccscscseselt
AppendixI(for alapter I)I....O....l.....l‘.........'.l‘.'zs

Appendix IJA (for Chapter II), by Susie Hahn...oeeeseososss2b
Flow Chart for Program (Hieeeeeessosesccccecsss30

Flow Chart for Program CBi.cecoscesssceccsscsseb3

Appendix IIB (for alapter II)‘Q...‘....l......‘..........‘.64
Flow Chart for Program GG.eeeececssssccccosaseebl

Appendix III (fOI‘ a’.apter III)..-.O..I...QOOOIOO00000000.0075

Referencesoooc-'.0'itucoc...o'.ooooo..lol00000000000000000082

Program Steps

CHevveeoosnnanososncnssossnossossasssnsscsscssell
CBeveossoeonssossscsansoosssssnsencssssnssal2=l3
abl,ab2,abc2,abc3cuscececccccscsnsscossssesl2=23
P, STeeesevssesssascesssosssossscasccssassoscncell
CBOeescesesanssnssnsnssessasascssnsccncsnsesl3I~7h

GG..ooooo.t..o.l.oottolco0.000000000000000000074

SR, REGE, EREG.0.0.....I......5....00.....0..074

CHAPTER I

Interpolation Fit to y = Za X"

) 8

Program INTERP will fit a pair of X,y values to a linear equation, a
set of three X,y values to a quadratic equation, or four x,y pairs with the

x values at evenly spaced intervals of magnitude I to a cubic polynomial.

In addition, the program is designed to accept values of —(Go-Hgtd)/RT of
—(Go—Hgtd)/T for each of the reactants and products of a chemical reaction

at two, three, or four temperatures and fit the resulting —A(GO-HStd)/RT
values to an interpolation equation which can be combined with AHgtd/R for
the reaction to calculate 1nK or K, the equilibrium constant of the reac-
tion, at desired temperatures in the interpolation range.

Directions:

(1) Insert tape INTERP or XEQ INTERP if program already inserted but

calculator is positioned on another program.

2 Pt. Fit Display
(2a) y 1y, XEQ2 ¥1-Y5
(3a) x 4%, R/S 8,
(La) SST a,
(5) x User E g

3 Pt. Fit
(2p) yl+y2+y3 XEQ 3 ¥1=Y5
(3b) X 4% 0% R/S a,
(4b) SST SST a8,
(5) X User E g

4 Pt. Fit
(2¢) ylfy2+y3+yh XEQU I3a3
(3c) Itx, R/S ag

=h_

4 Pt. Fit (cont.) Display
(Le) SST SST SST 815858,
(5) x User E 5

For values of x spaced at a regular interval I, R/S will give y(x+I)
after calculation of y(x) if I is in register 11.

For the reaction aA + bB = mM + nN, the values of g = (-G° -H)/RT (a

positive number) for the reactants and products are keyed in as follows:

Display

(a) n4m4+ b4 -a XEQ 1 n

The sign is positive for products and

negative for reactants. For total of

three reactants and products, n=0.

0404 m4+ -a if only two.
(b) gy * gy * 8 t g, A ey

Repeat (b) for each temperature.

) XEQ 10 ~A(G°- Std)/RTh

c
dh) For 4 pt. fit, XEQ 4 and continue with 3c and kc.

d3) For 3 pt. fit, SST XEQ 3 and continue with 3b and 4b.
d2) For 2 pt. fit, SST SST XEQ 2 and continue with 3a and ha.
(6) XEQ 6 to divide by R if -(G°-HS, .)/T values were inserted in steps (b)

and R is stored in reg. L. Std

(7) To obtain AHgtd/R of reaction, key 4.1 STO6 and then enter AH298/R for

each product and reactant as in (b).

(8a) To calculate AH298/R from a set of 1n KT values, XEQ T is followed by

T4 1In KT User H 298/R

Step (8a) is repeated for all T.
(8b) R/S SST av AHZQS/R, Std. Dev.
(9) T XEQ 5, SST 1n K, K

Note 1: Steps (b) and (e¢) will accomodate a total of four reactants and
products without any modification. Additional reactants and products can be
accomodated by c¢ + g, X ST+IND6 following step (b) and similarly for AH
after step (7). ¢

Note 2: The program can be used for —(GO)/T and ARS as well as for
the dimensionless quantities used to 1llustrage the dlsp§ays but step 9
will display R 1nK instead of 1nK and it must be divided by R before obtaining

K. R in appropriate units can be stored in register 4 for use in step (6)

to convert the equation for -A(GP-H

o]
S

td)/T to the dimensionless -A(

(0]
G-H td)/RT

S

form; so it is unnecessary to divide by R each time step 9 is carried out.

R (o} o
Of course, the appropriate AHStd or AHStd/R must be used.

Note 3: The values of —-A(G°-H

starting with R18.

O
Std

available for repeat fits using only a portion of the wvalues.

(R S S o B]
[I R
o)
L
-

o)
a5

XA
8TG 13 RIM
Bz - @

: ST0 B3 RBE RIN
5OEDM ZT0 i1 RN
2 i 1 .

5 [
5 4
.!_

e 8 en g ottt e $omeh
— b

—
b TRV T DN, SR 3 B
“

-

Vet o
[N

ey

BIHLBL G4
Rt §T0 iz - 70
FRE LBSTE - 570
FEN LRSTY - 70

FEL

LN e

e £
[l il
o

sz

P

]
<

P
— -~

o

[

s EIL 1]
+ ECL B2

koL 1s

R
REL 82

L,
]
L]
ot
ol

]

s
—
et
wel A
el
R
o]
bard
D)
=
[
fale

[
e oL

£

[,]

ST0 B2 ROL I3 ROL LI

)/RT obtained at each temperature are stored

Thus a set of values at three or more temperatures is

(Rl R

P
bt

257 steps
309 bytes

e
ol

oYy 3

)
q
DR

SIZE 022

-6

(2b) 1.978 4 2.536 4+ 3.25 XEQ 3 -0.558;

3b) 0.3 4 0.4 + 0.5 R/S 1.2L0;

Ub) SST 0.120 SST 7.800; (5) 0.4 E 2.536;

2c) 1.552 4 1.978 4 2,536 + 3.25 XEQ 4 0.00k4;
3c¢) 0.1 4 0.2 R/S 1.000

Le) SST 2.000 SST 3.000 SST 4.000; (5) 0.4 E 2.536

clgr) + 2Cl2(g) = CClh(s), (a) 0414 -24-1 XEQl, O
500 (bl) 68.1 449.85 4+ 1.16 A O

1000 (b2) 81.31455.43 4+ 2.78 A

1500 (b3) 90.01458.85 4 4,19 A

2000 (bh) 96.53461.34 4 5.38 A
K

(c¢) XEQ 10, -31.53; (dh) XEQ L4, -0.02; (3c) 500 + 500 R/S - 33.05;
(be) SST 3.60 x 10“” SST 5.20 x 107 ssT 1.60 x 10‘10; (5) BEX 3 E -32.33;

1.98719 STO k4, AHg = -25 x 103 RCL L4 /=-12581 STO 5; XEQ 6, 1.987
1nK K
(9) 500 XEQ 5 8.676 SST 5858
750 XEQ 5 0.392 " 1.479 N
EEX3 XEQ 5 -3.689 " 2.50x10‘h
1500 XEQ 5 -7.656 " h.73x10'5
2EEX3 XEQ 5 -9.576 " 6.94x10”

XEQ 10, -31.53; SST -31.88; (2b) XEQ 3, -0.43; L 8
(3b) 500 4+ EEX 3 4+ 1500 R/S -33.17; (Ulb) SST 8.0x10 SST L4.0x10 ~,
XEQ 6, 1.987

(9) 500 XEQ 5 8.676, SST 5858
750 XEQ 5 0.395, SST 1.485
1500 XEQ 5 -7.656, SST L4.73x10°

XEQ 10 -31.53; SST -31.88; SST -32.33; (2a) XEQ 2, -0.43;
(3a) 500 4+ EEX 3 R/S -33.19; (La) SST 8.6x10-} (5) EEX 3 E -32.33;
XEQ 6, 1.987

(9) 750 XEQ 5 0.397, SST 1.h487)
1500 XEQ 5 -7.666, SST L.69x10™

R 0O 1 2 3 Y 5 6 7 8 9 10 11 12 13 14 15 16 17

a5 a»:L a2 a.3 R AHStd Index -a -b m n x
R

Xy Yo V3V, Xy X3fegxo)koixg)

ye‘yl(y3'y1) (yh_yl) %

-
<
’_l

18 19 .20 21

R 12 13 4 17
(”Blﬁotd)/RT for 2 to ﬁ‘EZEa. For steps

o) o) 2
5 8a and 8b AH298E Hogg) 1nK n
R R

The minimum SIZE is 022. If data for more than four temperatures are used
in steps (b) and (c), the values of -A(G°—H398)/RT will be stored in R22 and
beyond if a larger SIZE is specified.

CHAPTER II

Data Fitting Using the Chebyshev Polynomials

The Chebyshev (Tschebycheff) polynomials, Tn(x) = cos(ncos_lx), are
orthogonal over the continuous interval O < x < 1 and they have been shown
to be the most economical polynomial for expressing f(x) as a polynomial
series with the minimum number of terms for a given accuracy.(3’h) The
Chebyshev polynomial can be modified to Cn(i) which is orthogonal for
discrete integer values of the variable, x, from O to N as discussed in
references 1-4. If X, is the initial value of x and I is the regular
interval between x values, the data points are assigned integral x values

from O to N where x = (x—xi)/I and the data are fit to a polynomial of
the type

() = (%) + c.C. (%) + c.C.(X) + chCh(i).

11 272

Because of the orthogonality of Cn(i), the matrix calculations for the

%o

least-square fit of the data are simple and the Cn constants do not depend
upon whether the quartic term is included or not. Also, the symmetry of
the function reduces the calculations by half. An additional advantage

is the more symmetrical weighting over a wide range of data points than
for many other fitting procedures. After fitting of the equation, the
value of the quartic term for X = 0 or N is displayed and a decision is
made whether the quartic term is large enough to retain. Then the egua-
tion is transformed to a power series of third or fourth order:

£f(x) = a, + ocli'c + a2}-(2 + a3§3 (+ ochih)
and

) 2 3
f(x) = By ¥ 8 X + aX + aX (+ a) X).

(2a)

(ka)

(4v)

_8-

The instructions for use of the program are given followed by a listing
of the program steps. TFor a more detailed record of the various opera-
tions of the program and the reasons for the procedures used, an Appendix
is provided which gives equations used, the general flow chart and dis-

cusses the indices and subroutines used.

Directions for Fitting N+1 Data Points at Even I Intervals of x

If programs are not already stored in calculator, insert Prgm. CH card

(2 sides) and Prgm. CB cards (7 sides).

If the Cn(i) values for N+1 data points have not already been calculated
and stored, key

N+1 XEQ 'CH' - SIZE? = > 3N+20(N 0dd) or 3N+22(N even)

Flwill be set if N is even. If number of storage registers is not adequate,
key

XEQ 'SIZE' mno where mno is three digit number corresponding to the

number of registers needed.

R/S -> Index = 21 + /1000 for Cn values in R21 to
£(0) XEQ 'CB' £(0) Ra
£(1) R/S -> £(1)

f(INT N/2) R/S > f(INT N/2)

f(1+INT n/2) R/S > f£(1+INT N/2)

f(N-1) R/S > -f(N-1)

£(N) R/S > c),C),(0)

If chCh(O) is small enough to drop the quartic term, key

User A - ay (F 0 set)

38T, S8ST, SST > al, a2, a3

If quartic term is to be retained key

R/S -> g

ssT, ssT, SST, SST - % Oy a3, o),

(5) To tabulate closeness of fit to data, turn off calculator, attach printer
in MAN mode, turn on calculator and printer, and key User D to obtain print
out of f and(f - f) for each data point where f is value calculated from
polynominal equation. After the deviations are printed,

s, = /&(%—f)z and the average deviation, Zl(%—f)l/(N+l) are printed.

N-1
(6) Xy 4 I User E > &g
SST, SST, SST, (SST) 85 8y 8 (ah)

~

(7) x User B
(8) x User C %(x)

If it is desired to check any constants, o

R 11-15 and a

0 to ah are stored in registers

o to @), are stored in R 16-20. All of the data points are
stored in order from f(0) to f(N). The number of the last f register,
which contains f(N) is given by 1000 (decimal portion of the f Index in
R5).

If it is desired to fit another set of data with the same number of
data points, it is not necessary to repeat steps (1), (2a) or (2b); one can
start inserting the data with step (3). If it is desired to haye dimensionless
values of -(G- éS/RT using ag/R to a)/R, store R in register 8, turn printer
on, and key User” 'F!

Test:
-(G3H298)/T values for C(graphite) from JANAF Tables (3/31/78) were fit
between 300 and 1300K.

(2a) 11 XEQ CH, SIZE? = > 52, Fl set, SIZE 052; (2b) R/S 21.0L0;

(3) 1.372 XEQ CB 1.3720, 1.462 R/S 1.4620, 1.657 R/S, 1.903 R/S, 2.17h R/S,
2.457 R/S 2.4570, 2.743 R/S -2.7L430, 3.026 R/S -3.026, 3.306 R/S, 3.579 R/S
-3.5790, 3.845 R/S 0.016;
(bb) R/S 1.368 SST L.9kx10™2 ssT 5.87 %107~ 88T -6.09x107> 88T 2.21x10_h H
(5) User D (6) 300 + 10° E 1.930k, SST -4.9088x107>,
' 5.Axt SST 1.254x107°, SST -8.7h46x1077, SST
2.212x10712, 1.98719 ST/16, ST/17, ST/18,
8T/19, ST/20, RCL 16 to 20 or 1.98719

STO8 ¥
Rlé= 871.415-83
Ri7= -2.47322-43
Ri3= &,31883-8¢
Ri9= -4, 48847-89
Rzg= LL11298-12

-10-

3 6 9.3

_(G_Hg98)/RT = 0.971k - 2.4702x107°T + 6.311x10" ™ _ 4.4005x10777° +
1.113x10°Y20% | 300-1300K, deviations range from
(1) 2 B -(G-Hg g)/T = 1.6564 compared with tabulated 1.657 cal

(8) 103 ¢ -(c¢°-1°.) /RT = l.52h5)R/S 3.0295 compared to tabulated —(G°-HO o)/T =

298 298
3.026
Register Use
R 00 1 2 3 L 5 6 7 8 9 10
N N Initial C_ index q n X
2 Cn 20 + 10900 index index
Index to qgtl 1to3 O toN
i INT =
2l* 7000 g1+ o 2
m (f,cn) f (f,CO) (f,Cl) (f,Cz) (f,C3) (f,Ch)
index q+l index index W
0 to 3 to 20 Tr(x)
0 to 2
0 to 1 o
0 index
15 to 11
I a n
index index
20 to 16 L4 to 1
11 12 13 14 15
(£,0))
ol,'o N o, ag [ah]
(£,Cpn)
z(c ,C)
n n
16 17 18 19 20
(£,01)
(¢,3) (c)p) (C,»C,) °F %1
Csp 033 C3,~C5p (Chl'chz)
272 3°73
(Chh)
ao al a2 a.3 ah

-11-

_ 20+2(N-1) for N odd

o 22 23 2h 25 === Q= r 042N for N even
N

c, (1) c,(1) 03(1) ¢,(1) cy(2) —- ¢, (INT)

_ 19+3N for N odd
q+l q+2 —-—= g+l = 21+3N for N even

£(0) £(1) ——— P(N)

SIZE = 20+3N odd
22+3N even

One may not have values of f(x) to be inserted in step (3) and it may be

necessary to calculate f(x,y) from values of x and y. For example, one might
wish to express —A(G;—Hg98)/RT as a polynomial in T given values of AG; at

. . _A(O_1° - O _anO _
even T intervals: A(GT H298)/RT (AH298 AGT)/RT. One would make the follow
ing modifications to program CB. RCL Z of step 6 would be replaced by the

two steps R* R4 and the following six steps would be added to the beginning

of LBL 10: RCL 55 + RCL56 / xiy / AH298 would be stored in R55 and
R would be stored in R56. SIZE would be set at 57. With these program
modifications, T4 -AG; would be inserted in place of each f(x) of step (3).

Of course AH and AG have to be in the same units and R has to be in corres-
pronding units. The values of AGO are not stored, but the derived values of

0 .0
-A(G -H298)/RT are stored.

-12-

gielBL “CH- B Br B
i - SITE‘ 8’} 2 / L A3 ol B
.. A me STo 83 BCL 7 wER 1)
c 4 { el 3 - IR £) SO (12 4
oo e r%“%;”‘ﬁcI;T ST0 86 ST0 67 370 B2
frys LIRS SER ST B3 STO 18 RTH
CTD ;::, «.".-- D RS I }f
$EQ i
144180 B4
oF Bl 15+LBL 01
; EXTERT ENMTERt CHTERG
VEALEL 65 ST+ INB B4 150 B4
) oo an CED B
ST 84 ::LL_A ‘i‘ %EL a& REG B2
£ ¢
T

K
5
2 5 ST- @4 Rt
;I

+ 5T) &2
ER 18 670 &

CL &8 + Fi¥ @ o
*S1ZE7=33" GRCL X rfE*LBF as
PROMPT & FIX 3 S§10 @7 ﬁf? G
42¢LBL 88 IEE §
ISC 83 6T 42 RCL @2 E:I 3
ETH T;E

¥EG

474080 83
1 ST0 86 ST+ 87 ,
RLL @7 RCL 61 7/ CHS ¢
{ + 570 IND 83

S3+LEL 8BS
55l 8l 61 EHTERt EHTZRY 2§ 89
2 & RCL 81 FBCL 87 - ST+ 18 RIN ¥EG 25 REN
* POLBS 2 # 1 + % KEW B9 ST+ B3 EDY
SO RCL 86 *x RCL B8 #EG @5 5T+ 82 BIY
RLBE + 1 + % - FED 8% 8T+ 47 RY ST
RCL 60 RCL 06 -~ 7 AEW 18 G10 83
poLes 1 o+ /7 ISC 63 o
STO IWD 83 4 RCL 86 1 LB 8

ECL IND 83 BSE 82 %

+ ¥=Y? GT0 @2 STO0 66
i §7-83 Rt
RCL IHD 63 XO0Y IS0 @2

3
-
A

676 #1 GHLEL RE
370 T ST0 Y z
RIH ST+ B¢

Aot

-m

&

5]

18541
RCL E
185+LEL &2 STG 14
FI¥ & BLCL 63 PSE
RCL IHD B3 FIX 2 PSE
IS6 83 GT0 82 RTH

—

11g¢lBL £
FCL 82 PRREGY EMD

121 steps
167 bytes

PULsLBL 19

70 THD 25 I35 B3 RTH
YER A5 ST+ 13 RO

5T+ 99 RO 5T+ 83 FOM
5T+ &7

133eL0L 17

g =104t 4 STD B4
AER 12 RCL {3 »

5T {1 2TOP CF W8 |
ALW 14 ST 23 |

5T0 81 #DM HER 14
5THO19 5T- 28 2

5T0 81 POM WEQ 14

ST0 15 2 % 5T+28 3
5T0 81 ROL 15 NEQ'I4
RCL 28 B40Y STD 22 6
¥ - RCLIL o+ 57D 12
RCL 19 ROL 12 3 » -
RCLZ8 11+ + RCL 1
£ 5T013 RLL (2

BCL 2 & x - RCL 1Y
* 510 14 RCL 28

RCL 1)+ 5T 43

{3heLBlL &7

g sToal 3 STO @84
ZER 14 STD1S |

370 81 RN GED 14
5T- 13 ST 17 2

570 @81 EDH GED 14
AT018 2 % REL 19 +
KER 13 RCL A9
37019 5T+ 1] =

5T+ 12 RCL {7 RCL 18
I » - RILIS «

5T+ {2 RCL 15 RCL 19
¥ 5T+ 14 DSE 24 4
STO 81t HER 1
5013 1 5750 81 RN
AE0 14 570 17 57~ 13
AEQ 13 RCL @3

5T+ 11 570 13 RCL 19
ST+ 12 ROL 17

RCL 12+ 5T+ (3

T5E 84 8 STD Bl 1
HER 14 KEQ 13 RCL 47
* ST+ 11 % 5T+ 12
RiL a5 RCL A2 1 + /
5T+ 11 ROL 11 ETOP
PCL 12 RCL 13 RCL 14
REL 15

13-

A77+LBL 14

RCL 81 1+ ¥t2 LASTY
RCL 84 + + 1/

RCL 81 RCL M4 - =

RCL #8 RCL A1 - 7 =
RTH

297+LBL 13

REL 38 FACT X%2

RCL B3 RCL 84 - FRCY
/ RCL 23 RCL 94 + |
+ FRCT 7 RCL A4 2 ¢
1+ % RN

ZaelBlL £

STO @ ROM EHTERY
TNTERY ENTERY FC? 88
YER 15 FS? A8 XEQ 44
RCL 14 RCL A1 3 YHX
/7 ST+ 19 = 3 x

ST- 13 * ST+ 17 = 3
/ ST- 16 EDH RCL 13
RCL a1 242 - ST+ 13
* 2 o« 8T-17 * 2 /
5T+ 16 RDN RCL 12

RCL AL 7 5T+ 17 =
5T- 16 RCL {1 ST+ 16
RCL 16 RTH RCL 17
RCL 18 RCL 19 RCL 29

3754LBL 15

RCL 15 RCL A1 4 Y
/ 5T028 + CHS 4 =
5T0 19 * CHS 1.5 #
5T 13 =+ CHS 1.9 7/
ST0 17 x CHS 4 /
5Tk 16 PDH RTM

454+LEL 09
g ST0 16 S5TO 17
5TO 18 57D 19 PRDH RTN

4124 BL 15

RCL IND A3 ACX 3
SKFCHR Xy T RN -
AcY ADY RBS RTH

424+LBL D

FIZ3 RCLBA [+
ST- a3 RCL 11 2EQ 14
ST0 A6 X2 STO &7 |

ST+ 05

477+L0L 93

15 HER 83 ¥EQ 1s

ST+ 86 ¥t2 5T+ 87 RY
1+ IS6 @83 &70 83
RCL#% 1 + §T/ 86 2
- ST/ 97 RCL 87 G0RT
PRY RCL A6 FRE RTH

462¢03L B
15 G670 83

455¢LBL €

28

4670EL 3
5T0 93 F3? 88 DSE 3
PN EWIERt ENTER?
ENTERt ROL THD 83 =
DSE 83 XER 12 EQ 12
FC? 99 WEQ 12

RCL THD 83 + RTH

PL 33 * RTH

4290L8L 12
RCL 10 93 + % DSE 03
RTH

4540L8L F

RCL 88 5T/ 15 ST/ 17
5T/ 18 51/ 19 51s 29
ENG 5 16.82 F5? &@
16.819 PRREGY END

506 steps
T59 bytes

—1h-

CHAPTER III

Least-Square Fitting of Data to an Analytical Function

Least-square fitting of data to any equation y = f(x) is not a routine
process but requires careful consideration of the variations of errors in

(L4,5,6)

y as a function of x. For example, if it were desired to obtain

the values of a and b in the expression y = &x2 + bx3 that best represent
a set of data, one could least-square a variety of functions of y. The
use of the unweighted function would tend to heavily weight values of y at
large x. As Jjust one alternative example, one could least-square

y/x2 = g + bx and obtain, in general, quite different values of a and b
that would correspond to more heavy weighting of values of y at low x than
for the previous procedure.

One should carefully consider the magnitude of errors in y as a
function of x before selecting the appropriate procedure. One should apply
appropriate weighting to off-set any bias of the least-square procedure as
well as to attempt to correct for systematic errors. 6)

A set of x,y values may be fit by least-squaring procedures to a
variety of equations. Unless the data are unusually accurate, or have been
smoothed to fit an equation closely, it is rare that more than three para-
meters are justified. The four equations that are fit by the least-square
program given here are f(y) = a + bf(¥), f(y) = afl(x') + bfg(x'),
fly) = a + bfl(x') + ef (x'), and f(y) = af_(x') + bfg(x') + cf3(x')

2 1
which will be identified in the program &s abl, ab2, abc2, and abc%.
f(y) can be any function of y or of x and y and fs f,, and f, can be

any three different functions of x or x', where x' which is avfunction
of x such as f(T') = T-298, T-1000, 2890-T, T/298, etec. f'l(y) must also
be specified to convert values of f(y) to values of y.

As pointed out above, the least-square process can not be an automatic
procedure. Built-in weighting bias can distort the fitting depending upon
the way in which y varies with x. One can offset the bias as illustrated
above by fitting y/x2 = a + bx instead of y = ax2 + bx3 by switching from
program ab2 to abl. The least-square program also allows specific weight-

ing factors to be applied to each specific value.

15—

In applying the least-square program, one must first meke a decision
about which of the four equations will be used. Then one must decide
whether individual weighting will be used. If the values of x are spaced
at even intervals, the insertion of the data can be simplified by storing
the value of I, the interval between x values.

All data are stored and can be retrieved to be fit to any other equa-
tions, if desired. Once the constants s and b or a,b, and ¢ have been
fixed, the program will provide calculated values of y, ¥, for any value
of x in the range that was fit. If it is desired to examine the nature of
the fit, insertion of the HPUlc printer will provide a print-out of -y

values for all n values of the original data, the standard deviation

V(§-y)*/(n-2) and (§-y)/n, the average deviation. For accurate statical
evaluation, the standard deviation expression should be modified by
replacing the 2 in n-2 by larger values depending upon the degree of the
equation being fit.

To illustrate the selection of f(y), f_l(y), x', f.(x'), etc., some

specific examples will be given. High temperature heatlcapacities are
often obtained by Drop Calorimetry. Drop Calorimetry yields values of
HT--Hi for various values of T, where i refers to the reference temperature
which may be 273 or 298K or some other calorimeter temperature. Tt is
desired to obtain a CP equation which will Jjoin the accurately known CP

at temperature T_ from low temperature. Shomate has proposed an equation
(7.8) For CP = a + bT +

whlch has been found useful for C evaluation.
-1
= + + + = T-
(H Hp-H)/O Co i/O a, alO a 1(@ Ti) where © = T-T.,

c/T + dT2
2 ? - -2 2
= 3a,, ¢ = —T.a » b =2a, -dT, and a = C_, , -bT, -cT, - d4T,. For use
1 i-1 0 i i i i >
in the least-square programy = H -H , x =T, x' = T—Ti =0, fly) = y/0" -

Cp i/@, f_l(y) = () + OC 4> and T (x') = (0 + Ti)_l in program abce2.

This procedure Jjoins CP smoothly io the low temperature values, but
the derivative may be discontinuous. To ensure a smooth Joining, one
Would use f(y) = y/0 - Cp.q = %O(dC l/dT) and f”l(y) o(r(y) + Cp.3
350° (dC ;/aT) with £l (x') = (O/T)(l/T - 1/T) =0 /TfT and f,(x') =

(1/3)0% in program ab2 which w1ll yleld the constants c and d of the C

) +

equation. The other two constants are given by b = /dT + 2(0/T dT)
’
and a = C_ , - bT, - c/T? - dT?.
P,i i i i

There may be no accurate low temperature heat capacity data and the

-16-

high tempersture data may not be accurate enough to warrant four parameters.
However, the temperature T*¥ at which dCP/dT reaches a minimum is clearly
indicated by the heat capacity data. Use of T* reduces the parameters to
three with y = Cps x' = T, £,(x) = (T + T,)/2 and f,(x) = 1/1° - 3T2/(T*)h
with 4@ = -3¢/(T*) . a, b, and ¢ are given by program sbe2.

A similar treatment for enthalpy with y = (HT—Hi), f(y) = y/0,
f‘l(y) = 0f(y), x* =x"'T, fl(x) = %(T+Ti), and fg(x) = l/TTi -

(T2+TT:.L+‘I‘§)/(T"")LL yields with program abc2 values of a, b, and c.

a = <3e/(mh)",

The example of the regular solution partial molal equation Yl =
axg + bxg with the choice of f(y) = Yl’ Yl/x2, and Yl/xg with appropriate
changes in fl and f2 has been discussed above. A related equation for the
integral quantity Yl/xlx2 = a + ¥b + ¥bx, can be treated with f(y) =
y/(1-x,)%5 £7H(y) = (1-x,)x,2(y), and £(x) = ¥x,.

as b by program abl corresponds to the b term of the regular solution

The term designated

equation. The term designated as a by program abl is equal to %b plus
the regular solution a term.

When regular solution theory is applied to calculation of solidus
and liquidus curves of phase diagrams, an explicit equation for the
boundaries can not be obtained when there is appreciable solid and liquid
solubility, although accurate values can be calculated by successive
approximations.(Q) The calculated values can be expressed analytically
in terms of an approximate equation of the form that would apply if solu-
bilities were small plus a deviation function. A least square fit using
program abc2 can provide an accurate representation of the solidus and

ligquidus boundaries.

Directions

-17-

If program is already in or after insertion of cards, indicate by

la, 1b, lc, or 1d which equation will be used to fit data. ' ' indicates
ALPHA mode.

(1a) f(y) = a + bf(x'), key XEQ ' a b 1', which sets F1.

(1) f(y) = afl(x') + bfg(x'), key XEQ ' a b 2', which sets F2.

(lc) f(y) =a+ bfl(x') + cfg(x'), key XEQ ' a b ¢ 2', which sets F3.

(1a) f(y) = afl(x') + bfg(x') + cf3(x'), key XEQ ' a b ¢ 3', no flag set.

For all four program initiations, the calculator will prompt w?

SFO I? STO 00. If all the data are to be given equal weighting, no

response to the first question is needed. If w#l for any data, key

SF 00.

If the values of x are at regular intervals of I, store I in

ROO; otherwise no response is needed.

If SIZE is not sufficient, XEQ 'SIZE' 22+2n, where n is the number

of data sets to be entered. If f(y) and f(x) have not already been

inserted for the desired equation, step (2) is carried out.
Display

(2a) key PRGM + LBL1, key in f(y).
(2b) SST SST -+ LBL2, key in f‘l(y).
(2¢) SST SST SST + STO 06, key in x'=f'(x). If x'=x, nothing is keyed in.
(2d) 8sT + S8TO 05, key in fl(x'). If f(x')=x"', nothing is done.
(2e) SST SST SST > RCL 05<::f°r abl, key O X.

for other programs, key fe(x').

1

(2f) SST SST SST » RCL 05<— 10T @b3, key fi(x') PRGM.

otherwise, key 0 X PRGM.

The above instructions assume no f(y) or f(x) steps left over from

previous calculations; if there are, they must be deleted if not consis-

tent with the desired functions. If there are no plans to use abe3 in

a series of calculations, step (2f) can be eliminated by leaving 0 X in
LBL5 and completing step (2c) with PRGM. If f(x')=x, steps (2c) and

(2d) can be bypassed after step (2b) by PRGM GTO4X PRGM SST followed
by step (2¢).
GTO and BST.

Other simplifications of step (2) are possible using

-18-

For each program, there are four variants for inserting data.

(3a) no I, w=l key X 4 ¥y User E X
X, 4 s E > X,
-5
* " Vn E Xy
(3b) I STO 00, w=l key X, + ¥y User E > x,
Y2 E ~» X3
yn B> xn+1
(3¢) no I, w#l SFOO key X, by, v User E + x,
x, 4 Yo 4 L2 E -~ X,
x ty +w E-+»x
n n n
(3@) I STO 00, w#l SF 00 key X, Yy, by User E + x,
Y5 +w E»rx
-
Yy 4 v E X

(4) After all data have been entered,
RS + a, SST -+ b, and SST =+ ¢ for abc?2 and abe3.
Calculated values of y, ¥,can be calculated for any x using step 5a.

If values are desired at even intervals of x, step 5b can be used.
(5a) x User C >y

(50) If I in ROO, x, User C >y, R/S ~» Yoo R/S....

(6) The closeness of the fit between the calculated y values and the
unweighted original data can be checked by turning off the calculator,
attaching the printer, turning both on with the printer in MAN mode,
and keying n XEQ 10. The prlntéf will print Yys ¥17V5 Yoo Yo ¥p o0 Vs
&n—yn followed by vI(§-y)?/(n-2) and (X|§-y|)/n. (If the printer is

still attached from a previous step 6 when step 1 is carried out, the
calculator will stop after display of w?SFO. R/S will complete the
display of I?STO 00. SST will then put calculator in position for

-19-

insertion of f(y).)

The Xi’yi values were stored in step (3) and can be retrieved to fit

to another equation or other functions. Repeat step (1) to indicate

which equation and insert desired functions. Then n User A will retrieve

x>y, values and make an unweighted least square fit in place of step (3).
Follow with step (4) to obtain a, b, and c¢ values. If it is desired

to use weighting in the new fit or change the weights applied in a
previous calculation, subroutine LBL6 can be modified by inserting

RTN before XEQ E and before GTO E. Step (1) is followed by SFO00 and
n User A as indicated above, but the calculation will stop to display
each v Then key in Wi followed by R/S. After the last value has
been keyed in, follow as usual with step (4).

Note 1: Additional data can be inserted by step (2) after steps k4, 5,
6, or 7 if the appropriate flag is set for the equation being used, and
8IZE is adequate or is increased.

Note 2: Steps 5, 6 and T can be repeated in any order.

Note 3: The closeness of fit obtained in step (6) can be compared

with the fit using weighting by inserting RTN X in IBL 1L between PRX
and ABS. Zwi which can be obtained from R16 for all programs except
abec3 is used in place of n in initiating step (6). The calculation
will stop after the display of each ?i—yi. Key in v, followed by R/S.
After the last value, there will be two additional printouts of which
the last will be E wi|§i—yi|/2wi which can be compared to ?I?i—yil/n

given by step 6 as normally carried out.

Note 4: If f(y) and f(x) used in the previous calculation require
three or more steps, the delete function can be used to remove them
and add the functions needed for the current calculation. If the
previous calculation was the fitting of enthalpy data to match CP,i
and (dCP/dT)i with ab2 as described in the introductory text cof
Chapter III, f(y) took 1k steps, f-l(y) 8 steps, x' 2 steps, i

9 steps, and f2 3 steps. Step (2) would be carried out as follows:

[JGT01 PRGM SST XEQ 'DEL! Olh,key in new f(y), SST SST SST XEQ 'DEL'
008 key in new f-l(y),SST SST SST SST SST « <, key in new x', SST SST
XEQ 'DEL' 009 key in new ff SST SST SST XEQ 'DEL' 003 key in new T

PRGM if no new f3.

2

~20-

As mentioned in the step (2) instructions, one can use PRGM
JGT05, for the example of deletion of f,» PRGM OBsT [BST « « «
key in new f2 PRGM. One could reduce the number of keys required by
three if the step number after inserting fl, e.g. 40, is noted. Key
OGTO .0k6 « « «, key in new f,,, PRGM.

TESTS A sample calculation is carried out for each of the four programs
which can serve as a check if the program is operating properly. The
appendix to Chapter III gives insertions into the program for the
functions and sample calculations for the fitting of Drop Calorimetry

data as discussed in the introductory text of Chapter ITI.

bl Test: 1Iny = a + bx ©, n=h, I=100.
(1a) XEQ '0OaCvd1' » F1, EEX 2 STO 00, 'SIZE' 030
(2) With no entries from a previous calculation to be removed,
PRGM LN SST SST [SST SST SSsT SST 1/x
SST SST SST 0 X SST SST SST 0 X PRGM
(3b) 1300 4 0.01L47 User E + 1400, 0.0263 E » 1500, 0.045 E - 1600,
0.0696 E » 1700
(4) R/S a=4.108, SST b=-10 830
(5b) 1300 C 0.01L465, R/S 0.02657, R/S 0.0445, R/S 0.06988
(6) OFF, Printer in, MAN, ON ON 4 XEQ 10

B.81478 -B.03985
B.92038 9.88827
8.84539 -0,08353
8.66968 8.88023

2.63845 hH
8. 5a927 ¥k

(7) Retrieval for weighted fit:
XEQ 'Ja0b]1' - F1,[]SF00, EEX 2 STO 00; [JGTO 6 PRGM SST [JRTN
[0cT0.508 [IRTN PRGM; 4 User A 0.0147, 2 R/S 0.0263, 4 R/S 0.0k450,
1.5 R/S 0.0696, 3 R/S 1700; R/S a = 4.106, b = -10 831

TGTO 6 PRGM SST SST <« OGTO.508 « PRGM, to delete RTN twice.

ab2 Test: y = ax2 + bx3, n=9, I =0.,1, values to be weighted

(1v) XEQ '[Dadv[l2' + F2,[JSFO0 'SIZE' 0kLo, 0.1 STO 09
(2) PRGM SST <« [JGT0.038 « [JGTO.0k2 <« ng CJGTO.04T ««3 Oy™ PRGM
(3d) 0.1 4 4.001 + 10 User E 0.2, 23.998 + 9 E 0.3, 72.003 + 8 E 0.4, 159.996 + TEO0.5,

abe?

-21-

300.005 + 5 E 0.6, 503.994 4+ 4L E 0.7, 784.007 4+ 3 E 0.8, 1151.992 4+ 2 &
0.9, 1620.009 4+ 1.5 E 1.0

R/S a = 199.9906, SST b = 2000.015

0.1 ¢ 4.000, R/S 2k.000, R/S 72.000, 0.9 C 1620.003

Printer ON, 9 XEQ 10,

4,031 -0.001
23.998 6.e82
72,0863 -8.002

159.59% 0.883
JRg.0R3 -B.883
303,934 0.68¢
734,887 -0.906
1,131,992 9.018
1,628,809 -0.806

8,880 xxx
8,885

Test: y = a + blnx + c¢/x, n=3, weighted fit

(1c)
(2)
(3c)
(4)
(5)

Test: 1/y = a(3000 - x) + b(3000 - x)2 + ¢(3000 - x

abe3
(14)
(2)

(34)

XEQ 'Caldvdc2' » ¥3, [OSFO0, 'SIZE' 028

[lGTo 4 PGRM [JBST [$BST « LN [1GTO.0LT < «1/x PRGM
142042E1, 10 4+ 15.605 + 1.5 E 10, EEX 2 4+ 19.31 4+ 1 E 100
R/S a = 10.00, SST b = 1.99993, SST ¢ = 10.00

1 C 20.0, 10 C 15.605, EEX 2 C 19.31

)3, n=5, I=100

XEQ '[Jalib[Jel13', SFOO, EEX 2 STO 00, 'SIZE' 032

PRGM 1/x SST SST 1/x SST SST SST 3 EEX 3 - CHS
SST SST <« GT0.050 <« [X°[XT0.055<« <+ 3 [Jy° PROM
1800 +2.289k x 10'h + 1 E 1900, 2.7465 x 1o'h 4 2 E 2000, 3.3333 x 1o'h
+ 3 E 2100, k4.1 x 10'h + 4 E 2200, 5.1234 x 10'h + 5 E 2300

R/S a = 0.99508, SST b = 1.00947 x 10‘3, c = 9.955 x 10‘7

1800 C 2.2894 x 1o'h, R/S 2.7L46k45 x 1o‘h, R/S 3.33328 x 1o'h, R/S

4, 1001 x 1o'h, R/S 5.123hk x 10‘h

The keying of y could have been simplified by changing f(y) to th/y

and keying in thy.

*abl”
615 g2

B eLBL
SF &i

B44LBL "abe”
SF 82 T @&

974LBL "abol
SF 63 {70 @8

jaelBL "5hc3-
f1+LBL 83
CF 83 22.1 ST0 28
8 Si0 g2 STO 8!
STO 83 ST B4 FS7
GT0 13 ST0 17
FS? @2 G0 13

26+LBL 13
W7 SF 8"
*17 ST 83

354L8L 61
RTH

37+L8L B2
RTH

39+ BL 62
STO 24 STD 85 RTH

43+LBL B4
RCL 85 RIN

454LBL 80
RCL 85 RTH

490LBL E
FS? 88 GTD &7 1
STH @8 ERIN &7

=
oy
o

SeeLEL &7
ST+ 16 SGRT
§T- 16 FRDN F

CI ﬁn‘\

64LEL B8
STO IND 28 156
XEG 8¢ RCL 83
STC 10 ROV ST0
1SC 26 ¥EQ A7

¢ S0 FS 61
GT0 69 CED 84 R
£ S50 87 FS7 2
610 1 FS? 63 ¢
517 15

"O [Tl] Pu

34

510 18
STC 19

RYIEK PSE
RYIEW RN

1

2

L %)

RIN RCL 12

-22-

89+LBL 47

RCLBE t - * 5T+ 11
LRST{ PRCL 15 % ST+ 13
RCL 19 PCL 8% Z+

RCL 85 RTL a3 + RTH
RCL 15 PRTL f1 RCL 13
s RCL 16 + - FRCL 12
RCL 11 Xt2 RCL 16 7
- 7 ST0 €2 MERW

RCL 82 * - 370 8l

CF 8! RTH FRCL 82

129+L8L 11

RCL 18 * ST+ 18

RCL 89 RCL 12 =

ST+ 17 RCL @7 RCL @9

T+ RCL B RCL 68 +

RCL 18 =

RCLIS + -

PCL 14 =

X2 - 7

RCL 15 4

RCL 12
RTH

RCL 17
RCL 12
RCL 15
ST0 82
RCL 17 - CHS

7 ST0 92 CF @2
RCL &3

178¢LBL 12

RCL 82 1 - 5T0 61 +
ST+ 13 FRCL @2 RCL &9
s ST+ 1t RCL 10

RCL 62 * 5T+« {9

RCL 87 ZER 11 RTH
RCL 13 570 18 RCL 1
#t2 RCL 16 ST/ 18 /
RCL 12 - RIL LI

RCL 13 RCL 16 7 =
RCL 15 - ST 85 XOY
ST0 83 FRCL 12 X2

RCL 1& 7 RCL 14 -
STG 85 RCL 17 RCL 12
RCL 16 RCL 13 * RO
- STO B8 RIL 1@
RCL 1 o+ BT -
RCL 83 RCL 85 +
RCL 86 ¥32 - ROL 67
RCL 85 =+ BE
RCL 85 * hA0%
570 g2 RCL A3 @
RCL 87 - RN
s/ ST0 B3 RLL 13 *
RCL 11 RCL @2 = ¢+
RCL 16~ RCL 18 -
CHE 5T @Y OF 43
RCY 22 ¢l 03

510 &7

RN

T Tel L1 o1
cobofoL .

pCL 16
RCL 89
RCL &7
kCL 89
ST+ 15
£ ST+
RCL 83
ENTER?
ST+ 19
ST+ 12
RCL 85
ST+ 16
ST+ 13
+ RIH
* RCL
ST0 64
* RCL
ST0 85
* RCL
S0 86
RCL 14
RCL 15
ST0 7
* KCL
STO 88
RCL 12
RCL 12
510 69
RCL &4
RCL &7
RCL 12
RCL 12
ST0 19
RCL 85
RCL 9
RCL 87
RCL &5
RCL 18
RCL &3
RLL
RCL
RO o4

11 XE6 85
* EHTERY
EMTERY K12
RDH
RIH
¥z - 1
ROH
RCL 65
ReL 17
1§ 2
RCL 15
1¢ PRLL 18
RCL 15
1€ ECL
RCL 16
pIL B4
RCL 65
RCL 12
12 RCL
RCL &
RL 19
PCL ig
RCL 15
RCL 18
7 870
pCL 13
RCL 1¢
RCL 16
ECL 1)
RCL 14
/7 ST0
RCL 11
RCL 13
RCL 14
7 "\“3 F-“
RTH ERIL 82

)

w W M

] ——

[>~]
oW W Od e W B W W0 W W N M~ XD

+

*

+

B

16 RCL &%

RCL 16 =
RCL 89 =

RCL 87 =
RCL 6@
RCL 13
2LL 19

oL 13

7 s -

(o]
=
[y
o0

4164130
AEQ €2
XED 84
4EQ 85
RCL 81
PCL 88

4364LBL
STo @7

c

RCL 92 »
RCL 83 =
RCL 84 #
+ XEG 82
RCL 66 +

18
2 % 22,82 ¢

183 + 22 + STD 29
1 + STo 21 @ STD @9
570 1@

453:LBL 14
RCL IMD 21 XER

RCL IMD 28 IS Ch
3 SKPCHR EIN ACX
ADY ABS ST+ I8 X2
ST+ 8% I56 21 G470 14
RCL 87 5T/ 18 2 -
ST/ 8% RCL 99 SORT
ADY PRZ RCL 18 PRX
RTN

BC
628

483+L8L A
2« 19 + 13 7 22
+ 5Td 21

493+LBL 86

XEQ 16 XEQ E ISG 21
670 % .1 ST+ 21
%EB 16 GTOE

S824LBL 16

RCL IND 21 IS5 21
RCL IHD 21 XY EHD

507 steps

713 bytes

-23-

ne33 #£5%1 i €1 2.1 T
0 0 0 TN ¢ n73°33 M_FT €oq®
nhg wC3hz nlyag .
0 0 0 M7 Smw I Bmmw 2oqe
nC1h7 w3 .
0 0 - wC3lyz smmw 2qe
"ug+Teyd ut
paJo3s ST Yy TTun 032 ‘xgy ut of AZ n3L3 e
T
‘Czy UT 'X gy uT paols ST A 6T QT LT 91 ST T g
u o]
¢ > - S b, Y a 0 q v aq B
n= 3L n"347 M- JL7 HpL BATT np L X WX 0 0 0 €oge
o u b
a4 2 I I ny/nky I n 1, S by b q B
n-3z smmw N ¢ apk LY M L X X 0 T-4p 0 2g°qe
T T Z 4 ©
- 832 -—- apk LY LY MpAg X WX 0 0 0 2ae
u q B
LEN h_3% n33 apL HAg Ap --- X WX 0 0 0 Ta®
€T AN TT 01 6 8 L 9 S i € Z T g

‘uoTq®I3TUT uodn paJgsa[d aae 9T~TT SJI93STIY 'Q00T/UC + 6TO°0 + 22 3B SIIBIS YOTUM 9TId1

pue ‘9@ ‘yIgl UT pesn x9pur XA Jsyjzour I0J Pu® HTIFI PUB QTIdT JO0F XSPUT X B JI0J Pasn ST TgH
‘ug+I°gg O3} SIUSWSJOUT pu® T°gg UITA S3aels 3] °sanTea XL BFurJao}s I0J X9PUT SY3} SUTBIUOD O2H

*I JO STBAJISQUI JBTNIax 38 aa® sauTeA X JT I £q poderdod ST YOTum 004 UT O U3TA 3ae3s suwexdoad TTV

—25-
APPENDIX I (for Chapter I)

Prgm INTERP

2 Pt: a = (yl y2)/(x X,)s 8y = ¥y = 8%,

(y-y) (oty) (y,-)(x +x,)
3Pt: a, = [R A - Y372 /4x -x_)

x2 - x x3 - x2 31

y
2=<3y2 J>/X+X)

. * = _
b Pt: yn yn yl
3
= * _ * *
— 2
a, = (y§ - 2y§)/21 - 3a3(I + xl)
a, = y*¥/T - a (I + 2x) - (12 + 3x. I + 3x2)a
1 2 2 1 1 1°73
a. = a.x a x2 x3
0 Y1 T Mfp T %% T g%

When values of y are not directly available and must be calculated, the
program can easily be modified. Steps a to d for the calculation of
_A(GO—HZ98)/RT present one example of the ways in which f(x) values can be
calculated and then fit to a power series. As another example, the use of
values of AH298 298)/RT
will be illustrated. Key O 4 4 4+ 1 XEQl for step (a). Key T 4 AG; B
298)/RT with R in register 4 and AH
LBLB CHS RCL5 + RCLY / x®y / STO IND6 RTN

and AG; to obtain a two to four point fit for -A(Go

to display -A(G° g in register 5.

29

Steps (¢) and (d) are used unchanged. Before step (9) is used to calculate

K, RCLL ST/5 to convert AHS . to AHC ./R.

298 298

26~

APPENDIX IXIA (for Chapter 1II)

by Susie Hahn

1) Program CH

Program (H provides values of the Chebyshev polynomial terms Ch(i) for
n=l to 4 and for x=0 to N when N+l data are to be inserted in program CB. C,
=1, ¢, =1 - 2x/N, C, =1+ 6x(x~N)/N(N-1) and additional terms can be calcu-
lated using the recurrence relation for a given x:

Chtl = [(2n+1)(N-2§)Cn - n(N+n+1)Cn_1]/(n+1)(N—n).

The sequence of calculations 1in program 1 is outlined in the following
flow chart. When the number of data points, N+1, is followed by XEQ '(H', 1
is subtracted, N is stored in RO0O, N/2 is stored in Rl, N/2 is compared with
the integer value of N/2 to determine if N is even or odd. If odd, the calcu-
lation goes to LBL4, flag 1 is cleared, and the calculation proceeds to LBL5,
If even, flag 1 is set and LBL5 is initiated. LBL5 calculates the last C;
register number, q = 204+4INT(N/2), which is stored in R4 and the C, index
number, 21 + q/1000, which is stored in R2. The form of the Cn index number
is ZI.T%EE , where the integral part, 21, signifies the first register in
which the first value of Ch will be stored and the fractional part, T%ﬁﬁ ,
signifies the last register in which the last value of Cn will be stored.
Next, the (, index number is reduced by one to accomodate the increment by 1
which occurs in LBLOO, and this number is stored in R3. SIZE = q+2+N 1is
determined and displayed to indicate the minimum number of registers required.
The x index = 0 is stored in R7.

LBLOO increments the G, index in R3 by 1 and the calculation jumps to
LBL3 1if the C, index in R3 is not greater than q. At this point, C, index =

21. and since 21 » q, the calculation goes to LBL3,

4 __
1000

-27 -

LBL3 stores the n index of 1 in R6 and increments the x index in R7 by 1
and stores this new x. Then Cl(l) = 1 - 2/N is calculated and stored indi-
rectly in R21 as directed by the C, index in R3.

LEL]1 then uses the recurrence relation to calculate Cz(l) = [2C1(1)(N/2 -
x)(2n + 1) = n(N + n + 1)C(1)]/(n + 1)(N - n) with n = x = Cy(1) = 1. The
calculation proceeds as follows:

Cl(l) + already in X stack position from LBL3

2
* 2C1(1)(N/2 - x)(2n+1)
N/2 - X + RCL1 - RCL7 inXtoY +» XOY

*

n*2+1 -+ RCL6 x 2 + 1
*

6*(Mn+l) + RCL6 x (RCLOO + RCL6 + 1) n(Mn+1)C (1)] in X
- _ X - Yin X
[2C3(1)(N/2 = x)(2n+1) = n(Mn+1)Co(l)]

N-n * RCLOO - RCL6
/
n+l + RCL6 + 1

N-n

/ (1) = L2612 - x)(2n+1) = n(¥m+1)Co(1)]
2 (n+1)(N-n)
Then the ¢, index in R3 is incremented by 1, which at this point is 22.T%66 ,

so that Cn(l) is stored indirectly in R22 as directed by the C, index in R3.
The next sequence of steps brings 4, the maximum number for n, into the X
stack position, recalls the n index in R6 and increments it by 1, which places
the new value of n in the X stack position and pushes 4 into the Y stack
position. Then, the new value of n 1is compared to the maximum value for n,
4, If n # 4 (and at this point n=2), the next step is skipped and the new
value of n is stored in R6. The C, index in R3 is reduced by 1 to obtain the

previous value, which at this point becomes 21.%666 , so that the number C1

corresponding to the register of this index can be retrieved.

- 28 -

The next sequence of steps arranges the stack positions as follows:

T Cz(l) 4 n index n index

Z 4 Rt N index pq, 1ND3 1 XY 1
—————— > ————————y ———————

Y n index 1 C2(1) Cl(l)

X 1 Cz(l) Cl(l) Cz(l)

Then, the C, index in R3 1s incremented by 1, which at this point becomes
22'?%65 » to restore the index to the proper value in its sequence.

The stacks are arranged in the way shown above when LBLl is again exe-
cuted. LBEL]1 repeats the process in a similar manner but with n=2 in R6 and
Cz(l) in the X stack position to calculate C3(1) from the recurrence relation.
When C3(1) is calculated, the C, index is incremented by 1 so that C3(1) can
be stored in the next available register, which at this point is R23. Since n
4 yet, the stacks are again arranged so that C3(1) is in the X stack posi-
tion and Cz(l) is in the Y stack position. Then GTO Ol again executes LBL1 to
repeat the calculation with n=3 in R6 and C3(1) in X to determine C“(l) which
is stored in the next available register, R24.

At this point, n = 4 so that the test condition x=y? is true. Therefore,
the program executes LBLOO which increments the G index by 1 to position the
next available register, which at this point becomes R25, and then jumps to
LBL3. ©LBL3 restores the n index in R6 to 1 and increments the x index in R7
by 1. Then, € (2) = 1 - 2x/N, where x = 2 at this point is calculated and
stored indirectly in R25. The program repeatedly executes LBLl1 in a manner
analogous to the one previously described to calculate C2(2), C3(2), and
CR(Z). When the n index in R6 is incremented to 4, the X=Y? test sends the
calculation back to LBLOO, LBL3, and then LELl to calculate Cn(i) for x in R7,
one larger than the previous calculation, starting with n=1 again. The loop
is repeated for each value of x in R7 until the return to LBLOO increments R3

beyond the limit for the storage of the C (x) values. If ISG 03 in LBLOO is

- 29 -

true, that is, the integer before the decimal point in the last calculated ¢,
index number is greater than q, then the next step in skipped and the calcula-
tion stops with a display of the initial C, index = 21 + q/1000.

Putting the calculator in the USER mode and then pressing B executes
label B. LBH. B recalls the original Cn index and stores it in R3. Then LB 2
is executed. The display is fixed to O to display only the register number
part of the C, index. Then, the C, value corresponding to this register
number is recalled and displayed, fixing to 2 decimal places. The register
number 1is incremented by 1 and as long as the register number is less than the
q value, the entire process 1s repeated until all the register numbers and
their corresponding Cn values are displayed.

Putting the calculator in the USER mode and then pressing C with the

printer attached prints the register numbers and their corresponding C, values

9
1000

corresponding values in these registers.

since the instruction 21. PRREGX priats the registers from 21 to q and the

- 30 -

N+l XEQ CH

STO N in RO
STO -’g— in Rl

Test N even or odd

!

SFO1 LBLO4
LBLO54——CFO0l

calc. Cn index

!

L BLOO
I1SG03— RIN if C, index in R3 exceeded

LBLO3

cale. Cl(i)

LELO1 &

calc. Cn+1(§) from Cn(i) & Cn_l(i)

repeat for C3 & C,

User B displays Reg. number & Cn value

User C prints Reg. number & C, value

- 31 -

2) Program CB

Introduction:

The Chebyshev polynomials are so useful in treating data, that a detailed
discussion is presented. A summary of the nomenclature, equations, and calcu-
lation procedures is presented here.

The Chebyshev polynomial, CO(§)=1, C1(§)=1—2§/N, and C .=
[(2n+1)(N-2x)C, - n(Mn+1)C,_]/(n+1)(N-n), is orthogonal for discrete integer
values of x from O to N. If x; 1is the initial value of x and I is the regular
interval between x values, N+l data points are assigned integral x values from
0 to N where x = (x-xi)/I and the data are fit to a polynomial of the type:

f(x) = cOCO(x) + clcl(x) + czCz(x) + c3C3(x) + chq(x)
A least square fit is used to fit the data, but because of the orthogonality
of (5(2), cross terms are zero in a matrix used to solve the set of linear
equations obtained by setting the partial derivatives of the squares of the
deviations equal to zero. Thus, the coefficients, c¢_, of the polynomial are

n

readily calculated without solution of the matrix by the relation:
Cn = (f’cn)/(cn’cn)

where
N
(£,Cp) =§§0 £(%) C, (%)
and
N
(C,,C,) =§;0 [Cn(,;)]z _ (Mntl)! (N-n)!

(2n+1) (N1)2

If f(x) 1s desired as a function of x, an expansion of the Cn(;c) values

in powers of x by
(n+m)! x! (N-m)!
(n-m)! (m!)% (R-m)! NI

n
C, (%) =m;0 (-nH"

- 32 -

yields:
n

f(x) =ﬁZO am(i)m = a, + i[alﬁ(azﬁ(af%(aq)))]

The o, terms are calculated from the relation
a, =) B (£,C)

where the values of Bnm are calculated from

831 = m(m+l) = 2
_ _ (m¥2) -
B =" 7g (3w =6
o = -
332— -—2-(l+m) = =3
= m2 =
qu = n“+3mt+l = 11
=0 = -
B3 =~3% (14m) 6
so that
n” (£,¢)
&, =) === , where n” denotes a maximum n value of n”=3 or 4.
0 =0 (C ,C)
n n’™n
- (£,C) -
* (Cq,Cq)[Ckl Coo + By G5 * By Gl
(£,C3) _ (£,C2) -
+ (C3,C3)[C31 C3p + By Gyul + (CZ,CZ)[CZI Cpo!

(£,¢))
* ey, ept Gl

(£,G) (£,C3)
2 (Cu,Cq)[C‘*Z + By,C; + B, G, 1 ¢ —(_Ca,L%_J[CM + B3,Cy3]

(£,C))
* (6, el Ca!

(£,Cy) (£,C3)
3 (Cu.Cu)[Cus + By3GC,,] + TC_s-:%a—)[caal

[}
]

(£,Cy)
a'* = (Cq,Cq) C‘4’+]

where values of Cnm are calculated from:

- 33 -

Cn,m+1 - (n+m+1) (m-n)

Cn,m (m+1)2 (N-m)

starting with Cno = 1.
If f(x) is desired as a function of x, the conversion

) = L ayGO™ =) apx”

can be made using the relations:

X X X
iy2 iy2 i
3g = ~ay () + o, (F)° - o (5) +q
2
(x,) x
- S Ay
a, = 3a3 3 2a2(2) + 1
I 1
7Y
a, = -3a, —&+
2 3 I3 I2
= 23
a—
3 I3
= 24
a_
Y 14

The contributions of o to a

4 to a must be added to each ay value 1if the

0 4

quartic term is present. The @, term contributes to each a term from m = n

tom=0, For a given m and n, the contribution to ay is

c‘m mn-n jfax j—m
— (x;) s
=0 i+l

where j is a positive integer increasing from O to jmax =m-n -1, The a,

contribution is aq/Ia. The a, contribution multiplied by (—4xi) yields the a

0 1

contribution. The a, contribution multiplied by (—1.5xi) yields the a, con-

tribution. The a, contribution multiplied by (-xi/l.S) yields the a

con-
2

3
tribution. Multiplication by - %-(xi) yields the a, contritution.
Program CB first calculates the contribution of the quartic term %%jg%%y.
’
A decision is made whether to retain the quartic term, and the remainder of

the calculation can be carried out for a cubic or quartic fit. Due to the

orthogonality of Cn(i), the coefficients of the earlier terms are not changed

- 34 -

if the quartic term is dropped for the Chebyshev polynomial. Also, the sym-
metry of the function reduces the calculation by half. The program indicates

the degree of fit by calculating (E(i)—f(ﬁ)), the standard deviation of the
E(£(x)-£ ())2
(N -1

for each data point, f denotes the value calculated from the Chelyshev poly-

1 ~
mean o = ()/2, and the mean derivation }|f(x)-f(X)|/(M¥1) where

nomial and f denotes the corresponding value of the input data.

Explanation of Program CB Steps:

To begin Program CB, key the first data point, £f(0), and then XEQ 'CB'.
The first step of the program stores 6.1 in register R4. This number, actual-
ly 6.100, is the (f,Cn) index number. Values for (f,Cn) are stored in R6 to
R10; the 100 being a "dummy” counter test value. The next step recalls the C,
index number, 21.1%66 , calculated from Program CH from R2 and stores it in
R3. Then, £(0) is brought down from the z into the x stack position before
the program jumps to LELIL.

LBL11 recalls the Cn index number, takes its fractional part, and multi-
plies by 1000 to yield q. Adding 1 to q yields the register in which £(0)
will be stored. This quantity, q + 1, is stored in R5. The next sequence of
steps calculates q + 1 + N (in RO0O), which is the register number for the last

input data, f(N). Dividing this quantity by 1000 and adding this to the

q+1+N
1000 °

the input data f(x) will be stored from R(q+l) to R(q+1+N). The stack is

number previously stored in R5 yields the f index number, q+l. where

rolled down to restore f£f(0) to the x position before the program continues to
LBL10O.
LBL10 indirectly stores £(0) in R(q+l), directed by the f index number in

R5. Then the f index 1s incremented by 1 to position the register for the

- 35 -

next input data before the program execution returns to LB, CB right after the
XEQll instruction. Since f(0) is still in the x stack position, it is stored
in R6,7,8,9 and 10. The f(0) value can be stored directly in these (f,Cn)
registers because £(0) C,(0) = £(0), since C,(0) = 1. The return instruction
stops the program and displays f(0).

Now, f(l) should be entered and then keying R/S resumes the program which
executes LBL10. LBL1O indirectly stores f(l1) in the next available f register
and again increments the f index number to position the register for the next
input data. The program returns to LBL 'CB' after the XEQlOQ instruction and
proceeds to LBLI.

LBLl, in conjunction with LBL2, calculates the (f,Cn) values for the
first half of M+l data points if N is odd or for the first half plus 1 of the
data points if N is even, excluding, of course, the first data point, f£(0).
The first steps in LBL1 fill the stacks with the previously entered f(1l) value
since LBL2 uses it 4 times in the XEQ2 command. The next step indirectly adds
f(1) to £(0) in R6, directed by the (f,Cn) index in R4 which at this point is
6.1. R6 will contain)f(X) since (£,C.) = LE(X)Cy(x) and Cy(X) = 1. Then, the
(f,Cn) index 1s incremented by 1 to 7.1 to position the next (f,Cn) register
for the value f(l)Cl(l). Next, the program jumps to LBL2.

In LBL2, the stack is rolled down to remove the previous (f,Cn) value
(there is no (f,C,) value before the first XEQ2 in LBLl but just f(x)) and
bring f(x) into the x stack position. Cl(l) is indirectly recalled from R21
to the x stack position, directed by the C, index in R3, which pushes f(1)
into the y stack position. Then f(l) is multiplied by Cl(l) and this value is
indirectly added to the contents of R7, f(O)Cl(O), and this sum is indirectly
stored in R7, directed by the (f,Cn) index in R4 which is 7.1 at this point.

The (f,Cn) index is incremented by 1 to 8.1, and the Cn index is also incre-

- 36 -

mented by 1 to prepare to retrieve the next Cn value. Then program execution
returns to LEL]l to XEQ2 a second time.

This time LBL2 removes the previous (f,Cn) value and returns f(l) to the
x stack position. C2(1) is indirectly recalled from R22, directed by the C,
index in R3. Then, f(l)sz(l) is calculated and indirectly added to the
contents of R8, f(O)CZ(O), and this sum is indirectly stored in R8, directed
by the (f,Cn) index in R4 which is 8.1 at this point. The (f,Cn) index and
the C, index are both incremented by 1 before execution returns to LBLl to
XEQ2 a third time.

LBL2 removes the previous (f,Cn) value and brings f(l) back to the x
stack position. C3(1) is indirectly recalled from R23, directed by the C,
index in R3. Then f(l)xC3(1) is calculated and indirectly added to the con-
tents of R9, f(O)C3(0), and this sum is indirectly stored in R9, directed by
the (f,Cn) index in R4 which is 9.1 at this point. The (f,Cn) index and the
C, index are both incremented by 1 before execution returns to LBL1 to XEQ2 a
fourth time.

LBL2 again removes the previous (f,Cn) value and returns f(l) to the x
stack position. C“(l) is indirectly recalled from R24, directed by the C,
index in R3. Then f(l)qu(l) is calculated and indirectly added to the con-
tents in RI10, f(O)Cq(O), directed by the (f,Cn) index in R4 which is 10.1 at
this point. The (f,Cn) index is incremented to 1l.1 and the C, index is
incremented to 25.q before execution returns to LBLl1 after the fourth XEQ2.

By subtracting 5 from R4 in LBL1l, the (f,Cn) index is restored to 6.1 so
that the next (f,Cn) value, f(2)C0(2) may be added to the proper (f,Cn) regis-—
ter, R6. Rolling up the stack brings f(l) into the x stack position. RIN
stops the program, displays f(1), and allows f(2) to be entered; program

resumes by keying R/S to execute LBL10O.

- 37 -

LBL10 indirectly stores £f(2) in the next available f register, directed
by the f index in R5 and this index is then incremented by 1 before execution
returns to LBL1 right before the GTOl command which brings the program to the
beginning of LELL.

In a manner completely analogous to that just described, LBLl and LBL2
again calculate (f,C) values, adds these values to the proper (£,C,) regis-
ters, and store these sums in thelr respective registers. Thus for £(2), the
registers contain:

previously in R6
£(2) + £(1) + £(0) STO+INDO4 or R6 with 6.1 in R4

previously in R7
f(Z)Cl(Z) + f(l)Cl(l) + f(O)Cl(O) STO+INDO4 or R7 with 7.1 in R4

_previously in R8
f(2)C2(2) + f(l)CZ(l) + f(O)Cz(O) STO+INDO4 or R8 with 8.1 in R4

previously in R9
£(2)¢,(2) + £(1)C5(1) + £(0)C,(0) STO+INDO4 or R9 with 9.1 in R4

__previously in R10
f(Z)Cq(Z) + f(l)Cq(l) + f(O)Cq(O) STO+INDO4 or R1O with 10.1 in R4

At this point, immediately after the STO+INDO4 instruction from the
fourth execution of LBL2, the (f,Cn) index and the Cn index are again incre-
mented by 1. Assume now that half plus one (if N=4) or that half (if N=5) of
the N + 1 data points, that is, f(INT-g) have been keyed in thus far. Then
the C, index will have been exceeded by the last incrementation to (q+l)'1%56'
Thus, the next step, RTN, 1s skipped and the stack is rolled down to remove
the previous (£f,C,) value and return f(2) to the x stack position. The C,
index, (q+1)'3%56 y 1s recalled from R3 and the integral part is taken and
stored back into R3. Then the stack is rolled down to return f£(2) to the x

stack position before the C, index in R3 is decremented by 1 to yield q in R3,

the position of the last Ch value. Due to the symmetry of the Chebyshev

- 38 -

polynomial function, the program can run backwards through the C, values to
obtain the remaining (f,Cn) values, and the DSE 03 instruction recalls the C,
values from the last to the first C register.

The next step, FS?0l1, tests whether N is even (flag 1 was set in Program
™ if N was even). If so, the program jumps to LBL4, If N is even, in keep-—
ing with the symmetry, the last & G values are not needed to calculate the
remaining (f,Cn) values:

keyed in £(0) x Cn(O)

thus £(1) x C (1)
far: £(2) x

£(3) x C (1)

£(4) x C,(0)

Cn(2) -- last 4 C% values are used only once

Therefore, LBL4 decreases the C, index in R3 by 4, positioning the proper
register, R(q-4), for the next (f,C,) calculation. Then the stack 1s rolled
down to display f(2) before the program returns to LBL2 and stops to display
f(2). Then f(3) is entered and R/S keyed to resume the program execution with
LBL10.

LBL10 indirectly stores f(3) in the proper f register, guided by the f
index number in R5. Then, this index is incremented by 1 before the program
returns to LBL2 to go to LBL5.

LBELS5 fills the x, y, and z stack positions with £(3) and then jumps to
LBL9. LBL9 indirectly recalls the proper C, value, Cu(l)’ in the case with
N=4, directed by the C, index in R3. Then this index is decremented by one to
position to the correct Cn value for the next time LBL9 is executed. Then
with f(3) in the y stack position and C“(l) in the x stack position, the two
numbers are multiplied, yielding f(3)Cq(1). The program returns to LBL5, adds
the last (f,Cn) value to the sum of (f,Cn) values previously in R10, and

stores this new sum, f(3)Cq(1) + f(2)q+(2) + f(l)Cq(l) + f(O)Cq(O), in RI10.

- 39 -

Then the stack is rolled down to bring £(3) into the x stack position before
the program jumps to LBL6,

LBL6 rearranges the stack as follows:

T £(3)C, (1) £(3) £(3) £(3) £(3) -£(3)
Z £(3) £(3) £(3) £(3) -£(3) £(3)
SIQ_T_, STO_ Y_, Qs _, ST0 Z_, RDN_,

Y £(3) £(3) £(3) £(3) £(3) -£(3)
X £(3) £(3) £(3) -£(3) -£(3) £(3)

Then f(3) is added to the contents of R6 and stored, to yield f(3) + £(2) +
f(1) + £(0) in R6. Then, the program returns to LBL5, after the XEQ6 command,
with the stacks arranged as shown after the RDN instruction in LBL6.

The importance of the alternating signs comes about from the symmetry of
the Chebyshev polynomial function. If a symmetry plane is drawn half way
between the x's for the Cn(i) values, the values above the plane are equal to
their corresponding "mirror images” below the plane, except that for n=1 and
3, the signs of the symmetrical C, values are opposite. For example, if N=4
the C, values are:

n 0 1 2 3 4

1 1 1 1 1
1 Yo -2 -2 -4
_______ 2| 1 0 -1 0 6 - - - - symmetry plane
1 =Yo =lf2 2 -4
1

-1 1 -1 1

4 +
"mirror images" have opposite signs
but same absolute value

Instead of changing the signs of the proper C, values, the signs of the cor-

responding f£(x) values will be changed to calculate (f,Cn) values.

- 40 -

Back in LBL5, the stacks are rolled down to yield:

T £(3)

Z -£(3)

Y £(3)

X -£(3)
Then LBLY9 i1s executed which indirectly recalls the proper C, value, C3(1) in
the case with N=4, guided by the Cn index in R3. Then this index 1is again
decremented by 1. Now, because N=3, -f(3) is in the Y stack position and
C3(1) is in the X stack position so multiplication yields -f(3)C3(1). The
program returns to LBL5, adds the last (f,Cn) value to the sum of (f,Cn)
values previously in R9, and stores this sum, -f(3)C3(1) + f(2)C3(2) +
f(l)C3(1) + f(O)C3(0) in R9. Then the stack is rolled down to bring £(3) into
the X stack position before the program jumps again to LBL9. LBL9 indirectly
recalls the proper C, value, Cz(l) in the case with N=4, directed by the G
index in R3. This index is then decremented by 1. With £f(3) now in the Y
stack position and Cz(l) in the X stack position, f(3)C2(1) is calculated and
the program returns to LBL5 to add this value to R8, and stores the sum,
f(3)CZ(1) + f(2)C2(2) + f(l)Cz(l) + f(O)CZ(O), in R8. Then the stack is
rolled down to bring -£f(3) into the X stack position before execution jumps
again to LBL9. LBL9 recalls the proper C, value, Cl(l) in the case with N=4,
directed by the C index in R3. This index is decremented by 1. With -£(3)
now in the Y stack position, since n=l, and Cl(l) in the X stack position
-f(3)C1(1) is calculated and the program returns to LBL5 to add this value to
the contents of R7, and stores this sum, -f(3)C1(l) + f(2)C1(2) + f(l)Cl(l) +
f(O)Cl(O), in R7. Next, the stack is rolled up to display -£f(3) when the
program halts. At this point, f(4) 1is keyed in and then R/S so that the

program returns with LBL1O.

- 41 -

LBLI0 indirectly stores f(4) in the proper f register, guided by the f
index in R5. Then the f index is incremented. If f(4) were not the last data
point, the program loops again through LBL5, LBL9, LBL6, and LBLI0 in an
analogous manner to that just described to determine and store the;iof(i)cn(i)
values, up to N-1. However, if £(4) is the last data point, as it has been
formerly assumed, then this last incrementation exceeded the f index. There-

fore, the RIN instruction is skipped and the program executes LBL6.

LBL6 again rearranges the stack as follows:

T -£f(3) £(4) £(4) £(4) £(4) -£(4)
z f(3)ci(1) £(3)a1(1) £(3)a(1) £(3)C1(1) -£(4) £(4)
sI0.T_, ST0 Y_, Qis_, SI0 Z_, RDN_,

Y -£(3) -£(3) £(4) £(4) £(4) -f£(4)
X f£(4) £(4) £(4) ~-£(4) -£(4) f£(4)

Then, £f(4) 1is added to the contents of R6, and the sum £(4) + £(3) + £(2) +
f(1) + £(0) is stored in R6. The program returns to LBL10., Since Cn(N) = *],
£(N)C (N) = £ f(N) so that f£f(N) can be directly stored in R8 and R10 and -f(N)
can be directly stored in R7 and R9, for which n=1 and 3, respectively. Thus,
£(4) (still in the X stack position) is added to the contents of R10, and the
sum, f(4)Cq(4) + f(3)q+(l) + f(2)(L(2) + f(l)Cq(l) + f(O)Cq(O) is stored in
R10, Then the stack 1is rolled down to bring -f(4) into the X position and
this is added to the contents of R9, and the sum, —f(4)C3(4) - f(3)C3(1) +
f(Z)C3(2) + f(l)C3(1) + f(O)Ca(O), is stored in R9. The stack is rolled down
again to bring f(4) into the X position and this is added to the contents of
R8, and the sum, f(4)C2(4) + f(3)C2(1) + f(2)C2(2) + f(l)Cz(l) + f(O)CZ(O), is
stored in RS. Again, the stack 1is rolled down to bring -f(4) into the X
position and this 1s added to the contents of R7, and the sum, -f(4)C1(4)

—f(3)C1(1) + f(2)C1(2) + f(l)Cl(l) + f(O)Cl(O) is stored in R7.

- 42 ~

If, in LBL2, N was odd (for instance N=5), then the FS?0l test would be
false and the next step, XEQ4, would be skipped. If N is odd, in keeping with
the symmetry of the Chebyshev function, the last four C, values are used to

calculate the remaining (f,Cn) values:

keyed 1in £(0) x Cn(O)
thus £(1) x cﬂ(l) last 4 values are used for the
far: £(2) x C,(2) upcoming (£,C,) value
£f(3) x Cn(Z)
£(4) x Cn(l)

£(5) x Cn(O)

This execution proceedes immediately with LBL1O after £(3). R/S is keyed in,
skipping LBLA4 which decrements the C, index by 4, Then the program loops
through LBL5, LBLY9, LBL6, and LBL10, in an analogous manner to that previously
described to determine and store theng(ﬁ)cn(i) values in their proper regi-
sters.

Next, whether N was even or odd, LBL17 is executed. LBL17 calculates the
part of the o terms, involving the quartic term. First, 0, the m index, is
stored in Rl and 4, the n index, is stored in R4. Then, LBL13 is executed.

LBL13 calculated the reciprocal values of (Cn,Cn). At this point, since

n = 4, it calculates 1/(Cq,Cq) as follows:

(v1)2 -- ROO, FACT, X2

(N - n)! =-- ROO - R4, FACT

N2/ -t —

(N+n +1)! -—— RCLOO + RCL4 + 1, FACT
(NDZ/(N+n+ 1)1 (N-na) — /

(2n + 1) —- RCL4 * 2 + 1

(20 + DND2/(N +n + 1)1 (N - n)! — *

- 43 -

Then execution returns to LBL17, with 1/(Cq,Cu) in the X stack position,

f,Cy)
,C) to yield (£,C4)
AR (Cy,Cy)

which is stored in R1l. The program stops to display this ratio which is the

where (f,C) is recalled from R10 and multiplied to 1/(C

contribution of the quartic term to %(0) and %(N) for which Cq = 1. As Cu(i)
is usually less than 1, the display indicates the maximum error if the quartic
term is dropped. If the quartic term is to be retained, key R/S; if it is to
be dropped, press USER A,

If R/S is pressed, flag 0, which indicates the quartic term is dropped,
is cleared. One is placed into the X stack position before LBL14 is executed

(c)
(2,m+; % (Cn m) where G is obtained from the

s
n,m
previous run through of LBLl4. However, for the first execution of LBL14 in

because LBL14 calculates

the sequence, Cn,m = lzcsince)n =4 and m = 0 and Cu,o =1,
LBL14 calculates'—(%LEi%— in the following manner:
n,m
(m+ 1)2 — (RCLL + 1), x°
(m +1+n) - LASTx + RCL4
m+ DZ/@+1+n) — /
(n+m+1)/(m+ 12 — 1/%
(m - n) -~ RCL1I - RCLA4
(n+m+ 1@ -n)/(m+1)2 — *
(N -m) -- RCLOO - RCL1
(Cn m+1) 2
—2 = (n+mn+ 1)m-n)/(m+1)(N-m) — /
(c_)
n,m
At this point, n = 4 and m = 0 so that %%ﬁlt%-was calculated. Then, with C‘+ 0
= 1 now in the Y stack position, %%%Jé%(Cu O) is calculated so that execution
, ’

returns to LBL17 with CL in the X stack position.
bl

1

In LBL17, Cb 1 is stored in R20. The m index in Rl is incremented by 1

so that at this point, m = 1. Then the stack is rolled down to restore Cq 1
b

to the X stack position before LBL14 is executed again.

- 44 -

(Cn m+l)
(T’-)_-’ this time with n = 4 and m = 1. Since
n
)

C is in the Y stack position, S22/ (CG,1) =C is calculated. Then the
4y 1 (Cyy1) 4s 2

LBL14 again calculates

program returns to LBL17 with Cu 2 in the X stack position.
?

In LBL17, Cq 2 is stored in R19. Then Cq 2 is subtracted from the con-
’ bl

tents of R20, so that C“-Cu2 is stored in R20. Again, the m index in Rl is

incremented by 1 to m=2. Then the stack is rolled down to restore Cl+ , to the
L]

X stack position before LBL14 is executed.

This time, LBL14 calculates {Cy,3) and then —(—C—l*-’—3-)—(Cq,1) = Cy,3. The
(C'+ ’ 1) (C'+ ’ 1)

program returns to LBL17 with Cu in the X stack position.

3

In LBL17, C is stored in R18. Multiplying C,

4,3 by 2 yields B_.C

3 31743

since B, = 2. Adding B_.C ., to R20 yields qu - C

31 Cy3 B_..C . in R20. Again,

'+2+ 31743

the m index in Rl is incremented by 1 to m = 3. Then Cq 3 is restored to the

X stack position before LBLl4 is executed by recalling RI18.

At this point, LBL14 calculates LCuu) and then LCusp) (C)=2¢C _. The

(Cy,3) (Cyy3) " Tus3 4,2

program returns to LBL17 with Cq in the X stack position.

sl

In LBL17, the contents of R20 are recalled and then the X and Y stack

positions are interchanged:

Y C c,-C_,+ B, C
(PN 41 42 31743
XY _,

X G, - G, + ByCpy Gy

Then C, , 1is stored in R20. C, , 1s multiplied by 6 and 6Cl+ , 1s subtracted
’ b ’

from Cy; = Cyp + B31Cy3 to yield G,; — Cyp + B3;Cy3 + By Cyy since B'+l = -6.
Then this value is multiplied to the contents of Rl1l, (f,C)/(CM,CL*), to yield

%%[C“ - C4y2 + B3)Cy3 + By Gy] which is stored in R12. The next series

of steps brings CL*2 in R19 to the Z stack position, C . in R18 to the Y stack

43
position, and 3 to the X stack position. Multiplying yields 3CL'3 and then
subtracting yields Cyp - 3Cyu3 or G,p + B3, C,3 since By, = -3. The last value

is pushed into the Z stack position as q* 4 in R20 is placed in the Y stack
’

- 45 -

position and 11 is placed in the X stack position. Multiplying yields llcqq

and adding yields ng + BBZCL3 + quchq since BL’2 = 11. Then this value is

multiplied to the contents of R1l, to yield (£,C4) [c +B C +B C]
(Cy,Cy) 42 32 43 42 4y
which is stored in R13. The next series of steps brings C,5 in R18 to the Z

stack position, qu in R20 to the Y stack position, and 6 to the X stack

position. Multiplying yields 6qu and then subtracting yields Cu'3 - 6qu or

CL3 + Bq3cqq since Bq3 = -6. Then this value is multiplied to the contents of

Rl1l, to yield SfiS&l.[C + B C] which is stored in R14. The contents of
(Cy,Cy) 43 43 4y

are miltiplied to the contents of RIl, to yield {£2C4) [¢] which
(Cy,Cy)

is stored in R1l, that of oy is

R20, C_,,

is stored in R15. Now the quartic term of %

in R12, that of o, is in R13, that of o, is in Rl4, and that of «, , which con-

2 3 Y

sists only of the quartic term, is in R15, that is, R15 contains Q.

If, after the program halts in LBL17 to display the quartic term error,
the decision is made to drop the quartic term, key USER A, LBL A stores the

display, %%ﬁg%l), in R20. Then it clears Rl1l, 12, 13, and 14 since the STO+
L , Cy

command will be used with these registers to determine « and o,.

o 2° 3

0’ o

1°
Also, if R/S was first keyed and then the decision is made to drop the quartic
term, this step clears the quartic term contributions to the o, values, which
were previously calculated and stored in R 11 through R15 by the steps in
LBL17 following R/S. (R15 is not cleared because it contains a, which is no
longer required so that this register is never again recalled to use for the
cubic fit.) Then, flag 0 is set to indicate that the quartic term has been
dropped.

Next, LBL7 1is executed whether the quartic term has been retained or

not. LBL7 calculates Ugs Gy Oy, Qg and o, 1if the quartic term is retained.

L

First, m = 0 is stored in Rl and n = 3 is stored in R4, One is placed in the

X stack position since C3 0 = 1. Then LBL14 is executed.
b4

- 46 -

(Ca,n+1? (C3,1)
Once again, LBLl4 calculates-—rai——y—, or at this point zzgléju Then
m,n i

(C3,1) -
zzgjtj(cs’o) = 03,1 is calculated. The program returns to LBL7 with C3,1 in

the X stack position.

In LBL7, C3 1 is stored in R19. Then the m index is increased by one to

m = 1. The stack is rolled down to bring C, back in the X stack position

1
before LBLl4 is executed again.

This time, LBL14 calculates (C3,2) and then-SEiLZZ(C) =C

. The
(C3,1) (C3,1)" 73,1 3,2
program returns to LBL7 with Cé’z in the X stack position.
In LBL7, C3 , 1s subtracted from the contents of R19 so that C31- 032 is
?

stored in R19. Then C3 2 is stored in R17. The m index is incremented to m =
?
2. Then 03 2 is returned to the X stack position before execution proceeds to
]
LBL14.

LBL14 calculates %%%L%% and then %%iii%(c3 2) = C3 . The program returns
’ ? ’ ’

to LBL7 with C3 in the X stack position.
9

3

In LBL7, C3 3 is stored in R18. Then C3 , is miltiplied by 2 and added
’ ’

to the contents of R19 to yield the sum Csl_ 032+ B31C33, since 331 = 2, Then

execution jumps to LBL13,
As before, LBL13 calculates 1/(Cn,Cn), but this time with n = 3 so that
1/(C3,C3) is calculated. The program then returns to LBL7.

In LBL7, 1/(C3’C3) is multiplied to (f,Ca) in R9 to yield EZ;CCZ) which

is stored in R19. This is added to the contents of Rll so that the sum %%ig%ly
s Vb

+ %%%E%l) is stored in Rll. However, 1f the quartic term was dropped the
3, L3

first term would be zero. Since (%1-032+B c is in the Y stack position

31733
and (£,C3) is still in the X position, multiplying gives (£,C5) [Cc,, - C,, +
(C3,C3) (C3,C3) 31 32
B,,C 3]. This term is added to the contents of R12 to yileld (£,C) 4 [C ., -
313 (Cy,Cy) 41
(£,C3)
+ B .C + 2237 _[¢c -C + B C] which is stored in R12. Again
G2 mGad * e 1% T %t B ’

the first term would be zero for a cubic fit. The next series of steps places

- 47 -

C in the Z stack position, C in the Y position and 3 in the X position.

32 32
Multiplying yields 3C and then subtracting yields C - 3C33 or C32 + B,,Cy5
since B, = -3. This is multiplied by (£,G) in R19 to yield (£,C3)

32 (C3,C3) (C3,C3)

[C32 + B32C33] which is added to the contents of R13 to yield the sum

(,8) (¢ +B ¢c +B C]+ (fC)[c +B C] which 1is stored in
(Cy,Cy) " Ty2 32 43 42 4y (C3,C3) 32 33

R13. For a cubic fit, the first term would be zero. Then C33 in RI18 is

multiplied to (f,C3) in R19. This is then added to the contents of Rl4 to

(C3,C3)
yield the sum (f,Cy) (c +B ¢] +60) ¢ which is stored in Rl4. This
(Cy»Cu) 43 43 uy (c3,c3) 33

sum 1is Ose Again, the first term would be zero if the quartic term had been

dropped. Next, the n index in R4 is decremented by 1 to n = 2 and the m index

in Rl 1is decremented to O. One is placed in the X stack position since C2 0=

1 before the program jumps to LBL14.

LBL14 calculates EC > ; and then E—g—gf%(c) = C2,1. The program re-

turns to LBL7 with C2 1 in the X stack position.

In LBL7, 02 1 is stored in R19. The m index is incremented to m=1 and

then C2 1 is restored to the X stack position before LBL14 is executed again.
LBL14 calculates (C2,2) and then —97—’L) =C , The program re-
(C2,1) (C,1 252
turns to LBL7 with 02 , In the X stack position.

In LBL7, C2 2 is stored in R17. Then C2 2 is subtracted from C21 in R19

and C21 - C22 is stored in R19 before execution jumps to LBLIL3.

LBL13 again calculates 1/(Cn,Cn) with n = 2. The program then returns to
LBL7.

In LBL7, 1/(Cn,Cn) is multiplied to (f,Cz) in RS. Then% is added
2

(f’Cl{) + (f,Cg) + (f’CZ

(G,Cy) (C3,C3) (Cy,Co)°

cubic fit, the first term would be =zero. ég;cci) is stored in R18 and then

multiplied by (C21 - CZZ) in R19. Next, this product is added to the contents

to the contents of Rll to yield the sum For a

of R12 to yield the sum, ﬁﬁ)—[c -C +B C +B C]+ (£f,C3) [C3; -
(Cy,Cy) 42 31 43 41 4y (C3,C3)

- 48 ~

(£,C)
C32 + B31C33] + 722"~ [C - C], which is stored in RI2. Again, the first
32 31633 (C2,C2) 21 22] g
term would be zero for a cubic fit. Now, 02 5 in R17 is multiplied to Ef Cé)
’ 2 5 L2

in R18. This product is added to the contents of Rl3 to yield the sum, EZLCCE)
C +B C +B C 1+ (£,C3) [+B C I+ (f,Cp) C which is stored in

42 32 43 42 4l (C3,C3) 32 33 (C2,C) 22
R13. This sum is Qe Once again, the first term would be zero if the quartic

term had been dropped. Finally, the n index in R4 is decremented by 1 to n=l,

the m index in Rl is decremented to O, and 1 is placed in the X stack position

since C1 0= 0, before the program jumps to LBLl4.
LBL14 calculates £C1,1) and then £6,1))()=2C . Execution returns
(C1,0) (C150) 1,0 1s1
with C1 In the X stack position to LBL7 which immediately executes LBLIL3.
s

LBL13 calculates 1/(Cn,Cn) for n=1. The program returns to LBL7.
In LBL7, 1/(C1 1) is multiplied to (f,Cl) in R7 and the product is added
(£,4G,) (£,C3) (£,C2) (£,¢))
to the contents of Rll to yield (C.,C) (Cs,C3) (Cy,C0) (C,CD)
stored in R11. Again, the first term would be zero if the quartic term had

which is

been dropped. Then multiplication with C in the Y stack position and

151

-gngll— in the X position yields (£,C) (C) which is added to the contents

(€;,Cy) (C1,Cy)
of R12 to yield the sum, {fsG) [c, -c +B c +B c]+
(&, Q) 42 31 43 b1 4y
(4,6 ¢ _¢c +38 ¢]+(—’92)—[c -c]+if——9L)—[c J. This sun is

(C3,C3) " 31 32 31 33 (C,G) (c,Cy)
al. Again, the first term would be zero for a cubic fit. Next, (£,C.) in R6

is placed in the Z stack position, N in ROO is placed in the Y position, and 1
is placed in the X position. Addition yields N+l1, and then division yields

(£,C.)/(N+1). (N+1) is the value of 1/(Cn,Cn) for n=0. Then, (f,C)/(CO,CO)

(fgck) (f)C3) (f)CZ) + (fQC]_)

is added to the contents of Rll to yield

+ EEOCC;) This sum in R1ll, minus the gzgccz) contribution if the quartic

term had been dropped, 1is og- At this point, the program stops to display
oge Then keying SST recalls o, in R12 to the display, keying SST once more

recalls a, in R13 to the display,.SST again recalls «

) in R14 to the display,

3

- 49 -

and if the quartic term was retained, keying SST a final time recalls o, in

R15 to the display. If the quartic term had been dropped, the % value dis-

played would not contain the quartic term contribution and, of course, a,
would not exist.

LBL D tabulates the closeness of fit of the Chebyshev polynomial equation
to the data for each data point. To execute LBL D, turn off the calculator,
attach the printer in manual mode, and key USER D. LBL D fixes the number of
places after the decimal to 3. Then it recalls N in ROO and adds l. Since at
this point, the f index in R5 1s exceeded by 1, subtracting 5 from this index
positions the f registers to f(0). Then a, is recalled from R1l before execu-
tion jumps to LBL16.

LBL16 holds instructions for the printer. First, £f(0) is recalled indi-
rectly by the f index in R5. A copy of £(0) in the X register is accumulated
into the print buffer when the instruction, ACX, is given. 3 SHPCHR tells the

printer to skip 3 spaces on a line. The next two steps rearrange the stacks

as follows:

N+1 3 N+1
o X<OT a, RDN 3
———————— > ——————
Y £(0) £(0) a,
X 3 N+1 £(0)

Subtracting yields o, - £(0) which equals E(O) - £(0), where £ denotes the

0
calculated value and f denotes the data input value, since f(0) = %5 using

the general equation, %(i) = a, + E[ul + }'c(a2 + i(a3 + i(aq)))]. ACX accumu-

0
lates %(0) - £f(0) into the print buffer. ADV prints what is in the buffer,
right justified:

£(0) E(O) - £(0) in this case, with x = O..
Then the absolute value of E - f is taken before the program returns to LBL D,

LBL D then stores |f-f| in R6, squares this value and stores If—fl2 in

R7. The f index in R5 is incremented by 1 to prepare to retrieve f(l).

- 50 -

Next LBL8 is executed. The o index number, 15, is placed in the X stack
position before execution jumps to LBL3.

LBL3 stores the a index, 15, into R3, Then FS?00 tests whether flag O is
set, that is, whether the quartic term was dropped.

If the answer is no, that is, the quartic term was retained, the next
line is skipped and the stack is rolled down to bring 1, corresponding to x=Il,
into the X stack position and then the stacks are filled with x=1. Guided by

the o index in R3, which is 15 at this point, o, is indirectly recalled from

M

R15. Multiplication yields 1 x a or simply o Then the o index in R3 is

Y 4°

decremented by 1 to 14 before execution jumps to LBL12,
LBL12 indirectly recalls Az, using the o index in R3. Since 1 is in both

the T and Z stack positions, a 1s in the Y position, and o, is in the X

N 3

position, addition yields o, + o, and then multiplication by 1 yields the

same. The a index is again decremented by 1 to 13 before the program returns
to LBL3.
LBL3 immediately executes LBL12 again., This time a, is indirectly recal-

led by the o index in R3. With 1 in both the T and Z stack positions, a, + o,

3

in the Y position, and a, in the X position, addition yields az + a3 + aq, and

2

then multiplication by ! yields the same. The a index is decremented by 1 to
12 before the program returns to LBL3.

In LBL3, FC?00 tests to see if flag 1 is cleared, that is, if the quartic
term was retained.

If the answer 1is yes that the quartic term was retained, LBL12 is exe-

cuted once again. This time a is recalled indirectly by the a index. With 1

in both the T and Z stack positions, a, + g + o, in the Y position, and o in

the X position, addition yields o + o, + a, + %, and multiplication by 1

yields the same. The o index is decremented by 1 to 11 before the program

returns to LBL3.

- 51 -

In LBL3, o

0 is indirectly recalled by the a index in R3. With al + a2 +

+ a. + a, + a, + a which

a3 4+ o 1in the Y stack position, addition yields % 1 2 3 Y

Ly
equals E(l). Then the program returns to LBL8 after the XEQ 3 command and
jumps to LBL16.

In LBL16, f£f(l) is recalled indirectly by the f index in R5 and then

accumulated in the print buffer. The next two steps rearrange the stacks:

T 1 1

z £ 1. XOT 3
2. RDN A

Y £(1y T > £(1)

X 3 £(1)

Subtraction yields E(l) - £f(1), which is accumulated into the print buffer.
Then £(1) and f(l) - f(1) are printed. The absolute value of f(l) - £(1) is
taken before the program returns to LBLS.

In LBL8, |£(1) - £(1)| is added to the contents of R6 and the sum,
|%(1) - £(1)]| + IE(O) - £(0)], is stored in R6. Then IE(I) - £(1)]2 1s calcu-
lated and added to the contents of R7 and the sum, |£(1) - £(1)|% +
IE(O) - f(0)|2 is stored in R7. The stack is rolled up to bring 1 to the X
stack position and 1 is added to yield x=2. Then the f index in R5 is incre-
mented by 1 to prepare to retrieve f(2) before the program goes to the begin-
ning of LBLS.,

LBL8 restores the & index to 15 before it jumps to LBL3.

LBL3 stores the a index of 15 in R3. Then it tests flag 0 again to see
if the quartic term was dropped. If the answer is no, the next line is skip-
ped again and the stacks are rolled down to bring x=2 in the X position and
then the stacks are filled with x=2. Directed by the a index in R3, o, is
indirectly recalled from R15 and multiplied by 2. Then the a index is decre-

mented to 14 before LBL12 is executed.

52

LBL12 indirectly recalls oy from R14 by the o index. With 2 in both the

T and Z stack positions, 2(1I+ in the Y position, and ag in the X position,

addition yields a, + 2(au) and then multiplication yields 2((13 + 2(aq)). The

a index is again decremented to 13 before the program returns to LBL3 which
immediately executes LBL12 again.

This time, LBL12 indirectly recalls a, from R13 using the a index. With

2 in both the T and Z stack positions, 2(a3 + 2(au)) in the Y position, and a,

in the X position, addition yields o, + Z(a3 + Z(au)) and then multiplication

2
yields 2(a2 + Z(a3 + Z(au))). The a index is decremented to 12 before the
program returns to LBL3.

In LBL3, FC?00 tests to see if the quartic term was retained. If the
answer is yes, LBL12, is executed once again.

This time, LBL12 indirectly recalls a, guided by the a index. With 2 in
the T and Z stack positions, 2(cx2 + Z(a3 + Z(aq))) in the Y position, and o
in the X position. Addition yields a, + Z(a2 + 2(a3 + Z(a“))) and then multi-
plication yields 2[a1 + Z(a2 + Z(a3 + 2(a“)))]. The o« index 1s decremented to
11 before fhe program returns to LBL3.

In LBL3, ay is indirectly recalled by the a index. With Z[a1 + Z(a2 +

2(a; + 2(,)))] in the Y stack position, addition yields a, + 2[a; + 2(a, +

0
Z(a3 + 2(a“)))] which equals %(2). Then the program returns to LBL8, after
the XEQ 3 command, to immediately execute LBLI16.

LBL16 calculates £(2) - £(2) and |§(2) - £(2)| and prints £(2) and £(2) -
f(2) in a manner analogous to the one previously described. Then the program
returns to LBLS,

LBL8 adds |f(2) - £(2)| to the contents of R6 to yield |£(2) - £(2)| +
|£(1) - £(1)] + |§(0) - £(0)] which is stored in R6. It then calculates

|E(2) - f(2)|2 and adds this to the contents of R7 to yield |§(2) - f(2)|2 +

- 53 -

|£¢(1) - £(1)|% + |£(0) - £(0)|% which is stored in R7. Then the stack is
rolled up to bring x=2 to the X stack position and 1 is added to obtain x=3.
Finally, the f index in R5 is incremented by 1 to prepare to retrieve £(3).

At this point the program would return to the beginning of LBL 8 and the
great loop of LBL8 to LBL3 to LBL12 to LBL16, and then back to LBL8 would be
repeated. However, to address the matter of the flags if the quartic term
were dropped, momentarily Iinterrupt the quartic loop and return to LBL3 for
the first test for flags, FS?00. If the answer is yes, that the quartic term
had been dropped, the next step decrements the o index from 15 to 14 so that

after x=1 is filled in the stacks, o, is indirectly recalled from Rl4 by the «

3
index in R3. Then the o index is decremented to 13 before LBL16 is executed
and then decremented to 12 before LBL16 is executed again to yield l[a1 + l(a2
+ 1(a3))]. Then o is decremented to 1l before the program returns to LBL3 for
the second test, FC?00. Since the answer to whether the quartic term was
retained is no, the program skips the third execution of LBL12 and proceeds to

indirectly recall o, from Rll using the o index. Then a, + l[al + l(a2 +

0 0

1(a3))] is calculated. Similarly, when the test FS?00 is encountered a second
time with x=2, the « index is decremented from 15 to 14 so that 0y is recalled
first and then 2[a1 + 2(a2 + 2(a3))] is eventually calculated. Also, when
FC?00 is encountered again with x=2, the third execution of LBL12 is akipped
so that a, + Z[a1 + 2(a, + 2(a3))] is then calculated.

Now, returning to the paragraph before the last one, and the position in
the program after the steps ISGO5 and GTO08 in LBL8, the great loop of LBLS,
LBL3, LBL12, LBL16, and then LBL8 once more, is repeated again and again in
exactly the same fashion as previously described. Each time 1 is incremented

to the x value and also to the f index so that all the data is run through the

calculations. At the end of the 1last execution of this loop, immediately

- 54 -

preceeding the step, I1SG05, in LBLS, Z|E(x) - f(x)| will be stored in R6,

Zlf(x) - f(x)|2 will be stored in R7, and the printer read out will appear as:

£0) £(0) - £(0)
£(1) £(1) - £(1)
£(N) £(N) - £(N)

If FS?00 is true, these calculated values will not contain the quartic terms.
Then since ISG 05 will not be true, that is, the f index will be exceeded
after the last data point has been run through, the next step, GTO 08, will be
skipped. The next set of calculations in LBL8 tabulate the average derivation

and the standard derivation as follows:

N+1 — RCLOO + 1, in X stack position

Z|£(§) - f(x)|/(N+1) -- S8T0/06 : average derivation in R6
N~-1 -— (N+1) - 2

LX) - £(x)|2/(N-1) -- STO/07

(EIE(;:) - f(x)lz)l/z .
(N-1)

RCL 7, SQRT : standard derivation

The standard derivation 1is printed and the average derivation is recalled from
R6 and is also printed. Then the program returns to the normal mode.

LBL E converts the on values to ay values. To execute LBL E, key in Xy

the initial value, press ENTER, key in I, the interval, and then key USER E,
LBL E stores I in Rl. The stack is rolled down to return %; to the X stack
position and then the stacks are filled with x4. Next the FC?00 test checks
to see if the quartic term was retained.

If the answer is yes that the quartic term was retained, the program

jumps to LBL15 which calculates the contribution of « . The

to a, through a,

L

first series of steps places Xy in the T stack position, 0 in R15 in the Z

- 55 -

position, I in Rl in the Y position, and 4 in the X position. Taking y to the
power of x yields I4 and then dividing yields a“/I4 which is stored in R20.

This is the contribution of a to a

4 0 and also equals a

Thus, a, is stored

y* Y

in R20. With Xy mnow in the Y stack position, multiplication yields aqxi/14.

Then the sign of this value is changed and it is multiplied by four to yield

-4auxi/14 which is the contribution of a, to a . This is stored in R19. With

x; again in the Y stack position, multiplication yields —4aqx1/14. Then

multiplication by -1.5 yilelds 6aqx§/14 which 1s the a, contribution to a,.

This is stored in R18. With x; still in the Y stack position, multiplication

yields 6a4x£/14. Then division by -1.5 yields —4ou+x2/14 which 1is the o,

contribution to aj. This is stored in R17. With x; again in the Y stack

position, multiplication yields —4aux§/14. Then division by -4 yields auxl{/I4

which is the o, contribution to a,. This 1s stored in R16. Then the stack is

rolled down to bring x; to the X stack position before the program returns to
LBLE after the XEQ 15 command. In LBL E, the test FS?00 is made. Since the
quartic term was retained the answer to whether flag 0 was set is no, so that
the next step, GTO 00, is skipped and the program continues with the step, RCL
14,

However, back to the first test, FC?00, in LBL E: if the answer had been
no so that the quartic term had been dropped, the next step, XEQ 15, would be
skipped and the test FS?00 would be encountered. This time the answer would
be yes and LBLOO would be executed. LBLOO stores O in R16,17,18 and 19 since

the contribution of a, to a, through a

4 0 does not exist if the quartic term is

3

dropped. Thus, if at first the quartic term had been retained and then it was

decided to drop it, LBLO clears the registers in which the a, contribution to

a, through a, had been stored. (It does not clear R20 which contains the «

0 3 y

contribution to a,, or simply a,, because this is not necessary.) Then the

- 56 -

stack 1s rolled down to bring Xy to the X stack position. The program returns
to LBL E after the XEQ 00 command and continues with the next step, RCL l4.
Hence, whether or not the quartic term was retained, the program contin-
ues by recalling ag in Rl4 and placing it in the Z stack position, placing I
in Rl in the Y position, and 3 in the X position. Taking y to the power of x
yields I3 and then division yields a3/13. Adding to the contents of RI9

yields a3/I3 - 4auxi/14 which 1s stored in R19, This equals a If the quar-

3
tic term had been dropped the last term would be zero. Next, with Xy in the Y
stack position and as/I3 in the X position, multiplication yields a3xi/I3 and
then multiplication by 3 yields 3a3x1/13. Subtracting this term from the
contents of R18 yields —3a3x1/I3 + 6aux12/I4 which is stored in R18., The last
term 1is zero for a cubic fit. Then with Xy in the Y stack position and
3a3xi/I3 in the x position, multiplication yields 3a3x§/13. This term 1is
added to the contents of Rl7 to yield 3a3x§/13 -4aqxi/14 which is stored in
R17. The 1last term is zero for a cubic fit. With x; still in the Y stack
position and 3a3x§/13 in the X position, multiplication yields 3a3xi/13 and
then division by 3 yields asx%/13. Subtracting this term from the contents of
R16 yields -asxi‘/I3 + aqxi‘/l4 which is stored in R16. The last term is again
zero for a cubic fit. Then the stack is rolled down to keep x; in the stack.
The next series of steps places Xy in the Z stack position, a, in R13 in the Y
position, and I in Rl in the X position. Squaring yields 12 and then dividing
yields aZ/IZ. This term is added to the contents of R18 which yields

—3a3x13/13 + az/I2 + 6aqx%/14 which is stored in R18. This equals a The

2.
last term 1is zero for a cubic fit. Then with X; now in the Y stack position
and aZ/I2 in the X position, multiplication yields azxi/I2 and then multipli-
cation by 2 yields 2a2xi/I2. This term is subtracted from the contents of RI17

to yield 3a3x§/13 - 2a2xi/I2 - 4aqx%/14 which is then stored in R17. Again,

- 57 -

the last term is zero for a cubic fit. With x; again in the Y stack position
and 2a2xi/I2 in the X stack position, multiplication yields 2a2x§/12 and then
division by 2 yields azxgllz. This term is added to the contents of R16 to
yield —aa(xi/I)3 + az(xi/I)2 + a‘*(xi/I)4 which is stored in R16. The last
term is zero for a cubic fit. Then the stack is rolled down to keep x; in the

stacks. The next series of steps places xq in the Z stack position, o, in R12

in the Y position, and I in Rl in the X position. Division yields al/I. This
term is added to the contents of Rl7 to yield 3a3x§/13 - 2a2xi/12 + al/I -

4aqx%/la. This equals a The last term is zero for a cubic fit. Then with

l.
X4 in the Y stack position and al/I in the X position, multiplication yields
alxi/I. This term is subtracted from the contents of R16 to yield —a3(xi/I)3
+ az(xi/l)2 - o, (% /1) + aq(xi/I)4 which is stored in Rl6. Again the last

term is zero for a cubic fit. Next, o, is recalled from Rll and added to the

0

contents of Rl6 to yield —aa(xi/I)3 + az(xi/l)2 - al(xi/I) + ay + aq(xi/I)4

which is stored in R16. This equals a Once again the last term is zero for

0.

a cubic fit. Finally, a, is recalled from R16 and the program stops to dis-

]

play a Keying SST recalls a, from R17 and displays it. Keying SST again

0° 1

recalls a, from R18 and displays it, SST again recals a, from R19 and displays

3

it, and if the quartic term was retained, keying SST a final time would recall

a, from X20 and display it.

If it is desired to have a, to a

0 or a, yield dimensionless values of

3 L

-(G°—H§98)/RT, at this point store R, the universal gas constant, in R90 and
with the printer attached, key USER F. LBL F recalls R from R90 and then

divides the a values in R16 through R20 by R to obtain aO/R, al/R, az/R,

a;/R, and a,/R if the quartic term was retained. The display is set to 5
figures beyond the decimal point in engineering notation in case the am/R

values are very small. Entry of 16.02 in the X position is followed by FS?00,

- 58 -

If the test FS?700 is false, that is, the quartic term was retained, execution
jumps to PRREGX and the command 16.02 (actually 16.020). PRREGX prints the
contents of R16 through R20 which are aO/R, al/R, az/R, a3/R, and aq/R.If the
quartic term had been dropped, FS?00 is true and 16.02 in the X position is
displaced by 16.019. The command 16.019 PRREGX tells the printer to print the
contents of R16 though R19 which are aO/R, al/R, az/R, and a3/R.

LBL B calculates and displays individual E(i) values. To execute LBL B,
enter a x value for which the E(i) value is desired; then press USER B. LBL B
sets the a index to 15 before it goes to LBL 3. LBL 3 stores the a index, 15,
in R3 and then fills the stacks with the x value entered. By decrementing the

a index each time the loop is performed, the program goes through a, or o, to

L 3

% depending on whether the quartic term was retained or dropped. The pro-

gram proceeds to calculate E(i) = oy +)_c[a1 + :'E(a2 + i(a3 + i(aq)))], where
the last term would be zero for a cubic fit, in a manner analogous to the one
previously described for LBL 3, going through LBL 12, After E(i) has been
calculated, the program stops to display it.

LBL C calculates and displays individual E(x) values. To execute LBL C,
enter a x value for which the E(x) value is desired; then press USER C. LBL C
sets the a index to 20 before it moves to LBL 3. LBL 3 stores the a index,

20, in R3 and then fills the stacks with the x value entered. By decrementing

the a index each time the loop is performed, the program runs through a, or a

L 3

to aj, depending on whether the quartic term was retained or dropped. The

program proceeds to calculate £(x) = a. + x[a, + x(a, + x(a; + x(a,)))] in a

0 1

procedure analogous to that described previously. After E(x) has been calcu-
lated, the program stops to display it. However, if USER F has been keyed
already, the a registers would contain a /R so that f(x)/R would have been
calculated instead. Since R is in R90 and LBL3 is followed by RCL90 * RIN,

R/S will calculate £§¥2-R to obtain and display E(x).

- 59 -

Program CB can readily be modified to fit various types of data. For

instance, if values of =-(G°-H?

298)/T are to be fit into an analytic equation

but the data points are given in reference to HB so that values of -(G°—H8)/T
are listed instead; the following modification of Program CB can be made to

convert values of -(G°—H8)/T to =(G°-H2__)/T before the data are fit to the

298
Chebyshev polynomial equation.

To execute this modified version, labelled CBO, store R, the universal
gas constant, in R90, the value of Hzge-Ha for the given substance in R91, the
initial temperature, T,, in R92, and the temperature interval between the data
points, I, in R93. If the four quantities are put on the stack in order from
R to I, LBLST ST093 RDN ST092 RDN ST091 RDN ST090 END will store the values
with XEQ 'ST'. The maximum register numbers needed for storage, excluding R88
through R95, if N < 16 is:

20 + 4N for N odd and 22 + 4N for N even.
Two entirely new labels are introduced, LBL18 and LBL19. LBL 19 sets up

the registers where —(G°-H8)/T values will be stored and where —(G°—H8)/T +

(H

- [+
298 HO)/T

-(G°-H

298)/T values will be stored. LBL 18 adds the (H® -

298
HS)/T values to the corresponding —(G°-H8)/T values.

Upon entering the first data point, fO(O) = —(G°—H8)/T, and then XEQ CBO,
the program proceeds unchanged from the unmodified version until LBL11 is
executed. LBL1l is changed by adding XEQ 19 and then XEQ 18 at the end of the
original version. LBL19 consists of the following steps:

LBL19 RCL92 RCL93 - STO89 RDN RCLO5 FRC 1E3 * 1.1 + ST094 RDN RTN
First, T, in R92 is reduced by I in R93 so that T1 - I is stored in R89. The
reason for this is that LBL18 increments the temperature, T, in R89, by I each

time it is executed so that the first time the program executes LBL18, T will

equal Tl' The the stack is rolled down to bring f(0) back to the X stack

- 60 —

position, having been placed there before LBL19 had been executed. Next, the
original f index, q+1.%%%%ﬁ, is recalled from R5. The fractional part of the
f index is taken and multiplied by 1000 to yield the register in which the
last value of -(G°-H;98)/T = f,9g(N) = £,(N) + (H;98 - HB)/T will be stored
(by LBL10). Then 1.1 is added to yield a new index, g, = 4 + 1+ N+ 1.100,
for the input data, and this number is stored in R94. Thus, the original data
will be stored beginning with R(q+N+2); 100 is merely a large enough counter
test value to prevent skipping. Finally, the stack is rolled down to bring
f(0) back to the X stack position before the program returns to LBL1l to
immediately execute LBL1S,
LBL18 consists of the following steps:
LBL18 STO IND94 ISG94 RCL93 ST+89 RDN RCL91 RCL89 / + RTN

First, fO(O) is indirectly stored in R(q+N+2) by the g index in R94, Then
this index is incremented by 1 in preparation for the next data point. I is
recalled from R93 and added to the temperature, T, in R89 which had equalled

T.-I. The incremented temperature, T,, is stored in R89., The stack is rolled

1 1

down to return fO(O) to the X position.(Hsgs- HS) is recalled from R91 and

divided by the temperature in R95, T=T1, corresponding to fo(O). This value,

1§54

298 ~ HB)/T1 is added to fO(O) before execution returns to LBL1l which then

continues to LBLI1O.

No steps are altered in LBL10, but this time it indirectly stores the

calculated fO(O) + (H;98 - H(‘)’)/T1 value, guided by the original f index,
q+1.%%%%§ in R5. Thus, the values for fzgs(i) = fo(i) + (HZ98- HS)/T, where T

is continually incremented to correspond to its fo(i) value, are stored in
R(q+1) through R(q+1+N).

Since LBL10 stores the fo(i) + (HZSS- HS)/T values, LBLI8 must be exe-
cuted before each execution of LBLIO. Thus, before each XEQ 10 in LBL 'CBO’',

- 61 -

LBL1, LBL2, and LBL5, an XEQ 18 must be inserted after steps 13, 29, 49, and
86, respectively. Then the modified program runs through the data in a simi-
lar manner to the original program, but with LBL18 storing fo(i) in R(q+N+2)

through R(q+2N+2) using the g, index in R94 and storing f (x) in R(q+l)

298
through R(q+N+1) using the original f index in R5. Then the calculations for

fit proceed in the same manner, using the f (x) values.

298
The next modification of the program occurs in LBL E, as follows:
LBL E RCL93 STOOl RCL92 ENTERt « o« o « &

Since the interval, I, is stored in R93 and the initial value, T., is stored

1°
in R92, these values are simply recalled rather than re-entered before keying
USER E, as done with the original program.

The next alteration occurs in LBL D. An extra step, ST-94, should be
inserted after step ST-05. Subtracting N+l from the original f index in RS
had positioned the registers to the first fo(i) + (Hggs— H;)/T value. Also
subtracting N+l from the g, 1lndex in R94 positions the registers to the first
fo(i) value.

LBL16 which handles the printout is modified as follows:

LBL16 RCL IND94 ACX ISG94 RDN RCL INDO5 ACX -— AXX ADV ABS RTN
The first time through, —(G°—H8)/Tl is indirectly recalled, directed by the g
index in R94 which had been set to R(q+N+2) by LBL D before LBLl16 was exe-

cuted. This value is printed and the g index is incremented by 1 to prepare

to print out the next —(G°—H8)/T value. Then the stack is rolled down to

bring f298(0) = —(G°—H;98)/T into the X position, having been placed in the
stack previously by LBL D, Next, f298(0) = —(G°—H;98)/T is indirectly re-

called, guided by the f0 index in R5, and this value is printed. Subtraction

(0), with H)

298 a8 the reference state, and this value is

yields f298(0) - f298

also printed. LBL16 eventually runs through all the data as before, so that

the printout is listed as follows:

- 62 -

fo(O) = —(G°—HE’))/T1 f298(0) = —(G°-H])/T1 f

298 0) = £,4g(0)

298(298

The final modification of Program CB occurs in LBL3. The following steps
may be added after step 518, RIN:
RCL90 * RCL91 4+ / —— RIN
These steps would be executed after USER C was keyed if USER F had been keyed
earlier. Before these steps, -(G°-H£98)/RT would be placed in the X stack
position by LBL3, if LBL F had been previously executed. Therefore, R is
recalled from R90 so that multiplication yields —(G°—H;98)/T. Then H§98 - Hs

is recalled from R91. Since the value for T corresponding to f(x) had been

keyed in along with USER C, the stack is rearranged as follows:

T T N+1
R4 ~(G®-Hygg)/T
———————— >
~(G®-H gg) /T 208 ~ Hg
Y HESS - HS T
Therefore, division yields (H;9B - HS)/T and then subtraction yields -(G° -

H;sa)/T or -(G° - HS)/T, which is displayed.
The following change may be made if it 1is desired to recall the fo(i)
values for a repeat fitting; for example if one of the values was incorrectly
keyed in.

To repeat a fit, replace STO IND94 in LBL18 by RCL IND94., XEQ "CBO".
Then key R/S for automatic retrieval of each value of fo(i).

With the foregoing modifications of Program CB, the program consists of

559 steps and 857 bytes.

- 63 -

Program CB

£(0) XEQ CB ~————~———3% LBLl]1 ——— LBLI0
store 6.1=(f,C.) in R4 f index store £
transfer C inﬁex from in RS

R2 to R3 store £(0)
in R6 to RI10
f(1)R/S
£(2)R/S LBLOl o ——>»LBLO2
. adds f to R6 cale. & store

: (£,)
£(INT N/2)

When C_. index
s n

N is exceeded
integer C, index in R3

FS?01
€ N_odd Yes, N even_)LBL04
reduce Cn index
f(1 + INT N/2) R/S < by 4
(2 + INT N/2) R/S ~ —

. stores f
f(N - 1) R/S
LBL(O5
adds (f,Cn) to R(6+n)

LBLO6 first

giie:un 4dd £ to R6 (cyele)

and alternate signs

LBLO9

calc. (f,Cn) add to R6 to 10
store m index in Rl
store n index in R4

LBL17 <— — LBL13 1
(f,9|) cale. '(—C—-C—j'
(C ,Cq) n’n

retain quartic, R/S Reject quartic, User A
CFO0, XEQL4 SF00
calc. gquartic contrib. to a clear R11-14

m
LBL07G—J -
calc. ay or a3 to og LBL D f (f-£)
_/ prints-..} ,

L(£-£)2/(N-1) LBL E
L|£-£|/(N+1) calc. a or a; to a,

- 64 -

APPENDIX IIB (for Chapter I1I)

A number of supplementary programs are used for additional treatment of
the analytical equations, -(G°—H;98)/RT = ZanTn, obtained by programs CB or
CBO. For example, it may be desired to round the values of a, without chang-
ing the calculated values even at the highest temperature by more than the

uncertainty or probable error, e, of the original data. Also, when fitting

_(Go_Ho

)/T values, it may be desired to have the calculated value at 298.15K
298

fit exactly the value of 3398' Because the rounding error might happen to be
in the same direction for most of the a, values, a limiting rounding error,

e/2, 1s applied to the contribution from each a_ value at the maximum tempera-

n

ture, T The probable error is based on the uncertainty of 8398’ which is

max®
usually the major source of uncertainty, and no account 1s taken of the in-
creasing uncertainty due to error in the heat capacity values as the tempera-
ture is increased. When the uncertainty in S;QS/R is greater than 0,005, the
value of e/R used in the rounding procedure is restricted to 0,005.

Program GG starts with the following quantities in registers 88 to 94,
when used with program CBO:

R: 88 89 90 91 92 93 94
e/R Thax R 298~ HY T, I g, index

Register 71 contains the index used for indirect storing of the final rounded
and corrected a_ values in registers 72 to 87. The g, index in R94 is used
for storing and retrieving —(G°-H8)/T values in registers q+N+2 to q+2N+2, As
described in Appendix IIA, the f index in R5 deals with indirect storage and
retrieval of values of -(G°~H3,;)/T in registers q+l to qHN+l. For example,
for 13 data points ranging from 1000 to 3000K at intervals of I=200K, N = 12,

q = 44, and the —(G°—H§98)/T valués are stored in registers 45 to 57 and the

—(G°—H8)/T values are stored in registers 58 to 70.

- 65 —

In addition to the a values in R16 to 19 or 20, the following additional

quantities are utilized by program GG:

R: 1 3 4 5 6 7 8 9 10

m n m
e/2R a, index 10 a, f index Am e/2RTmax Npax A 10

Operation of the rounding operation of programGG is outlined below. Flag

2 is set for m=6, 9, and 12. R8 contains nmax=3 if FOO is set or 4 if FOO is

not set. R7*R10+10™(e/2RTI])=0.h and FRC 10"a =0.d.

R3 R6 LBL25 m for 10:an in R4
a, index Am operation and 107 in R10
+

17.1 0 > 5 ‘;Z: ‘é° iggg'\» LBL24 848 to LBL25
o) on m=8 line
17.1 1 » G6 » LBL26 » LBL21
18.1 0 N g d>h to LBL26——3 ;p194 8¢1] to LBL20
d<h to LBLZS—y' lines a or b
18.1 1 > Go » LBL26 » LBL21
19.1 0 > 11 gz: :0 t‘;gg* LBL24 8<14 to LBL20
° P ////’ line ¢
19.1 1 > G12 » LBL26 » LBL2L
20,1 0 N 14 gz: 20 356\9 LBL24 8<17 to LBL20
o
‘:)////ﬂ line ¢
20.1 1 > G15 > LBL26 » LBL2L

a to LBL H if F0O set, XEQ LBL25 on line m=11 above to round a,
LBL20 ¢ b to LBL25 on m=11 line above if 11{m=11
c to LBL I as 11<m=14 or 17, XEQ LBL25 on line m=14 above

to round a,

The rounding procedure starts with n=1, m=5, Am=0 and 17.1 in R3. ooy is 3

if FOO is set and is 4 otherwise., LBL25 puts 105a in R4 and 105 x e/2RT

1 max

ylelds the fraction O.,h which is compared with FRC 105a1=0.d. If d<h, LBL26

rounds 105a1 from R4, drops 0.d, divides by 105 and stores in R17. R3 is

- 66 —

incremented to 18.1, and m in R10 is increased to 8. LBL24 divides R7 by T

from R89 and LBL25 commences the rounding of a If d>h, Flag 2 is set, Am=l

2.
is put in Rll, and m in R10 is increased to 6. Then LBL25 is repeated to find

10%(e/2rT,,) > FRC 10% . 10 from R4 is then rounded by LBL26, divided by

1
106, and stored in R17. R3 is incremented to 18.1 and LBL21 increases m in
R10 by 3-Am=2 to m=8 and changes Am in Rl1 back to zero. Then LBL24 prepares
for a, as indicated above.

When m in R10 has been increased to 11, LBL20 checks Flag00. If F0O is
not set (nmax=4 in R8), LBL25 commences rounding of age If it is desired to
round the last a, value, XEQ 25 will round it and stop again at LBL H or LBL
I. R/S with printer attached will then print calculated values of —(G°—H8)/T
at T1 and Tmax’ and rounded values of ane

When T1 is 300K and it is desired to have the calculated value at 298.15K
fit exactly the value of 3598’ the first and last a, values are modified to
increase the calculated value ; at 298 or 300K by A=y—; to provide an exact
fit and to reduce the calculated value at T by A so that the fit at high
temperature is not changed by the adjustment at 298K. The two equations,

y=y = A = Aa +Aa (298.15)® and 0 = Aaj+da (T,)%,

yield: ba = 8/(298.157-Tp) and ba, = 8-(298.15)"ha.
If this procedure is to be followed, program GG is carried out to round the
intermediate a, values until LBL H or LBL I is reached. If R/S is then keyed,

a, and the last a are modified to provide the exact fit at 298K and both.are

0
rounded. R/S will print out the calculated values at 298.15 and Tpax based on
the revised and rounded values followed by a printout of the final a, values.

It is often desired to not only print out the constants along with the

name of the species, the temperature range, and uncertainty, but it is conven-

ient to store the information in the main storage registers of the calculator,

- 67 -

or in the extended memory, or in a cassette to allow ready retrieval of the
constants for use in calculations without having to key them in.

Program P can be run after (H and before (B or CBO to store the name and
state of the species and the temperature range of fit in registers starting
with R72. As each register holds only six characters and the program rotates
the entries in the Alpha register six at a time, sufficient spaces should be
included to yield a total of 18 characters or, if Flag 4 is set, a total of 24
characters. The entire line will be printed out. Before initiating program P
for the first time, the index value 72.1 should be stored in R71. If program
CBO is being used, only registers 72 to 87 are available. When the available
registers have been used, the stored data is transferred to extended memory or
to a cassette and 72.1 is stored again in R71 for a new set of entries. The
storage in the Alpha register is simplified by use of ARCL to abtain the
following register contents:

R: 95 96 97 98 99
K,e/R= <5,L> 0-1000 0-2900 0-3000

The procedure will be illustrated first for 02 gas. The quotation marks
indicate entries in ALPHA mode.

72,1 STO71, '02<G>100 ARCL99 Sp K Sp' XEQ 'P'.
The printout is 02<G>1000-3000 K and 02<G>1 is stored in R72, 000-30 is stored
in R73, 00 K is stored in R74.

The inclusion of uncertainty will be illustrated for O gas.
72.1 STO71 '0<G>30 ARCL97 ARCL95' XEQ 'P' will print out 0<G>300-1000K,e/R=,
and if this is now followed by 0.002 R/S, the 0.002 will be printed out on the
second 1line. 0<G>30 will be stored in R72, 0-1000 will be stored in R73,
K,e/R= will be stored in R74, and 0.002 will be stored in R75 and in R88 where

it will be used subsequently by program G for the rounding operations. The

- 68 -

first six characters stored in the first register should contain enough infor-
mation to identify the species, 1its state, and the temperature range if equa-
tions are given for two temperature ranges for the same state, as the contents
of the first register will also be used as a data file name for storage in
extended memory or in a cassette. Seven examples are given below to indicate
the entries in the ALPHA mode and the printout. The printout is separated
into the contents of each storage register. The actual printout will not have
any gaps. For MgO and A1203, a bracket was omitted so that the temperature
range beginning at 300K could be distinguished in the file name from the range
beginning at 1000K for MgO or the label for A1203 s0lid could be distinguished
from the label for A1203 liquid. For 02 and Mg0O, the equals sign was deleted

to save a register as e/R=0.002 or e/R 0.002 are equivalent.

T i) o R72 | R73 | R74 | R75 sF4
'0<G>30 ARCL97 ARCL95' 0<G>30|0-1000|K,e/R=
'02<G>30 ARCL97 ARCL95 CLA' 02<G>3|00-100|0K,e/R
'AL ARCL96 ARCL97 ARCL95 SpSpSp' AIL<S,L|>300-1|000K,e| /R=
'MGO<G30 ARCL97 ARCL95 CIA' MGO<G3 |00~-100|0K,e/R
"AL203S>30 ARCL97 ARCL95 SpSpSp' AL203S|>300-1|000K,e| /R=
'M08023<S>30 ARCL97 ARCL95 Sp' M08023|<S>300|-1000K| ,e/R=
'TI305<a,b>30 ARCL97 ARCL9S' TI305<|a,b>30|0-1000|K,e/R=

The iandex for storing in the registers is automatically incremented, but
when the registers have been used up and the stored data transferred to ex-
tended memory or to a cassette the next entries must be preceeded by 72.1

STO71.

- 69 -

After entry of the characters in the ALPHA register, keying 0.002, for
example, followed by R/S will print 0.002 on the second line. However, if a
number greater than 0.005, e.g. 0.0l, is keyed in, the printout will read
0.01, USE 0.005 and 0.005 will be stored in R88 in place of 0.0l for the
rounding operations of program GG. However, the e/R value of 0.0l will be
stored in the register following the register which contains e/R.

After the use of program P, the data are entered as described in Chapter
ITI and Appendix IIA followed by the rounding operations of program G described
above in this appendix.

There are other auxillary programs that are convenient to use with pro-

gram CBO. Program CBO requires the storage of R, HS __ - Hs, T and I in

298 1’

registers 90 to 93. The entry of these four values followed by XEQ ST will
store them in the proper registers, as noted in Appendix IIA. For subsequent
calculations, if only HZSS- HS needs to be changed, it can be stored in R91
without using program ST.

The above discussion of program P described the storage of information
about the species, its state, temperature range covered, and the e/R uncer-

tainty. Following the rounding of the a, values, XEQ SR will shift the aj,

n
values from registers 16 to 19 or 20 and store them in the registers following
the register containing the e/R value as directed by the index in R71. After
all the available registers have been used, the data can be stored in extended
memory or in a cassette using programs REGE or REGC. Two sets of information
are needed for these programs. First the data file name is required in the
ALPHA register which can be provided by the name in the first register filled
in program P, e.g. ARCL72 or perhaps ARCL80, and the total number of registers

in the X register. In the example of O gas with a quartic fit between 300 and

100K, nine registers would be required. If only a cubic fit were selected,

- 70 -

eight registers would be required. For Ti305 between 300 and 1000K with a
quartic fit, ten registers would be required. With those two entries, XEQ
REGE will prepare a file in extended memory. Then the numbers of the regis-—
ters to be moved must be inserted in the X register followed by R/S. For the
example of Ti305 with ten registers starting in R72, the entry would be 72.081
R/S. Exactly the same procedure is used to store in a cassette. For the Ti305
example, the steps would be 'ARCL72' 10 EXQ'REGC' followed by 72.081 R/S.
To retrieve the Ti 0, data from extended memory, one would key in
'TI305<' XEQ'EREG' followed by bbb.eee R/S where the data are to be stored in
registers bbb to eee. To retrieve the T130S data from the cassette, one would
key in 'TI305<' XEQ'CREG' followed by bbb.eee R/S.
If one were fitting N+l tabulated values of g0=—(G°-H3)/T at regular
intervals using program CBO together with the auxillary programs described
above, the sequence of steps would be as follows:
(1) N+1 XEQ'AH', R/S
(2) Enter in ALPHA register the name of species, state, and temperature
range, using ARCL 96 to 99 as appropriate, followed by ARCL 95, for
a total of 18 or 24 characters, spaces and commas. SF4 if 24
characters. Tone will sound when 24 characters have been entered.
72.1 STO71 if initiating storage.

(3) Attach printer in MAN mode and XEQ 'P',

(4) Value of e/R R/S.

(5) R4RH? —H8+T1f1 XEQ 'ST' unless values of R, T, and I are unchanged

298
from previous fit; then H;QS—HS STO91.,
(6) g,(0) XEQ'CBO' » g,.,(0)
gO(N—l) R/S > —gzgs(N_l)'

gO(N) R/S > €quar» eTrTOr due to dropping quartic term.

-71 -

(7) 1If quartic term selected, R/S with printer in MAN mode.
If cubic fit selected, User A with printer in MAN mode.
As T1 and I have been stored in step(5), it is not necessary to stop and
initiate D, E, F, and GG as in program CB. As a result of initiating step 7,
two printouts will take place. The first will print all the values of gy in-
serted, the resulting values of 8951 and the difference é298_g298 between the
values calculated from the analytical equation and the value obtained from the
entered values, followed by the standard error and the average deviation. The
second printout will give the a, values of -(G°—H;98)/RT = ZanTn. For a cubic
fit, 8 will be displayed in the X register, For a quartic fit, 11 will be
displayed.
(8a) If T, = 300K and it is desired to fit 8298/R exactly, initiate the
modification by R/S. 8 or 11 will be displayed again. R/S with MAN
printer will print out the calculated values of -(G°-HJ_,6)/T at

298

298.15K and Tmax based on the final a, values which are also
printed.

(8b) If T, is not 300K or it is not necessary to fit S, . /R exactly, XEQ

298
25 will round the 1last a, value. RCL16 FIX3 RND STOl6 will round
ag. R/S will print out calculated 8o values at the extreme tempera-
tures and the values of a .

(9) Either step (8a) or (8b) will also initiate program SR which trans-—
fers the final a, values to the register following the register
containing the e/R value as directed by the index in R71.

It is often convenient to fit data for the 298-1000K and 1000K-3000K

separately but to store the constants together. If the lower temperature data

are fit first and the name and constants stored starting with register 72, the

index in R71 will store the constants for the higher temperature in the regis-

-72 -

ters following those used for the first set. It is not necessary to repeat
the uncertainty in the second set. The versions of programs SR and REGE given
below will retrieve R72 to use as a file name and will calculate the number of
registers used from the R71 index. With that version, no additional data have
to be inserted after the printout of the rounded constants. Keying R/S will
initiate program REGE and automatically transfer all the stored information to
extended memory.

The steps listed below for programs P, ST, CBO, GG, SR, REGE, and EREG
are given with GG and CBO combined in a single program. They are stored in
extended memory or on magnetic tapes separately to allow GG to be used either
with CB or CBO. However, once they are recalled, END at the end of CBO is
deleted to allow automatic initiation of GG after completion of the subroutine
of LBL F and to allow subroutine 22 of GG to utilize LBL C of program CB or
CBO. Program (H, which is given in Chapter 2, is normally used with deletion
of subroutines B, C, and 2 to reduce the number of steps to 105. With the 35
steps of LBL P, the 9 steps of LBL ST, the 684 steps of CBO combined with GG,
and the 39 steps of the combined SR, REGE, and EREG programs,there is a total
of 872 steps. The number of bytes is 1395, corresponding to use of 199 regis-

ters for the programs.

&
371
70 B HOMY PREBUF RTH

21¢LBL BH
RSTO IHR 71 IS5 71 6
fROT RTH

274LBL B
570 88 Rod -, UBE-
RAFF BLB B0Y PREUF
EHE

FRe =57"
BisLBL "5T
ST0 93 PRBM STD 92 RIH
570 G1 ROH ST %2 EHD

OtsLRL 5

&.1 570 8 :
575 83 RCL 2 X
STO B4 570 &7 =70
570 #% 570 1§ RO
¥ER 15 RO 1B

e e i ol e B 0

R I
", - " e

23slal
RRY RCL [Hp 83 #
5T+ IHD 94 ~

& 72 n‘ﬂ

Rt AR
573 B2
G X0
g xen

S3+LEL 12
570 THD 94
ECL 33 5T+
RCL 81 RCL
Fid

E4+LEL 04
4 ST- 83 PN RTH

£541 BL
ENTERT
ST+ 18
iEG 69
LED 89
¥EQ 69
¥ED 1§

9a4LE
CL THD

l""l I'""

PEL T
2

=~ oy

TH

95+LEL

~73-

a5

EHTERT ¥EG 0%
ROH Zca 86 REH
57+ 89 RN

5T+ 83 RN

5T+ 87 Rt STOP
YED 12 GTD 65

85
83 IZE 67 #
B

STOT ST Y CHS STDZ
PON ST+ 86 RTH

Qe D AT e
—{ A -

1274020
RCL B2

+ 5T0 85

1 E3 7
ZEQ 13
143+LBL
575 THR
KEf Bi
57+ B3
5T+ 87

Lol 8

wn
Ul
[
e
Lo
F

T N 2 O s
] md e (0] el (T
[oug T e R o v O v O i SO i O o
DR bme R e et een
al

MO M = R
CQ e QD e QD e B e

Dt |
—

DO
S
3

e

WOIT PO IO LY U A Lo D
.

=

(L]

s
o

e} Loyl
r~ ~
Lol B B B N I e
[l RS w1}

i

FRCOLED * |
RIL 65+

5T+ 85 R

¥ED 15

1z

85156 85 RTH

ST+ 18 RIN

ROH ST+ B8 RN

- b
L)
e

o

e

STOP F 88 1
T

c
o
oY
F
~
2
3
o
b
[

22E*LBL

OSTOBL 2 STD 84 |

[JTS I W IS W]

(4]

——

oo »
st

(A%

o (T V] e =
L ST 5 o o e Y e}
[[

Pl B~ O L W Sl o T T BT P O
4=
[
Prmante

(Rl My]

[B B
<
=

ety
-+

IB4+LBL
rCL 8l

L B4

RCL 81

RCL 23

PTH

Z4+LBL
LL &3
L B2

- N O D Nl
[
P

+ T

474LEL

tL 93

HTERT

£7 69

E4 83
iy
g1~
;

ST T MO0 T Ll W el DC T I) el

L Iy
= =4 r~

51013 1
RI¥ Keo 14
S 17 ¢

RI¥ ¥l 14
* ROL 19 +

T

o
(U
[R

I TR e

i“?l

F»L
BCL 12
14 BEE G

£5

T e o

L1

[T AR A

X
-]
e
ranede
Ll

i 570 61

[A3 U |

1 610 80 R

ST 17 87- 19

RCL 82 =%

S0 12 RCL 13
12 RCL 17

. €

@

i3 -
FRIT &t2
BCL 84 - FACT
R RCL 8¢+]
/ FLL B4 2

[

ST gt ROL
EHTERY EHTE
#ED 13 FS7
kv 14 RCL 8
S © I £ I ¢
13 % 57+ 17

S1- 1e EBDK

REL a1 ¥z 7
¥ 571- 17
t6 R
!

s

EYS
L

ET- 16
1e GT0F

39T4LEL 15

RCL 15 PRCL 81 4 TR
s 5TDze * THS 4 #
5T0 19 * CHS 1.:

ST0 13 + CHS 1.
570 17 + CHS 4 ~/
570 16 ROH RTH

N

*
/

4274LEL 8
g §T0 16 STO 17
S0 1§ ST0 19 RB4 RTH

4154LBL 16

RCL THD 94 ACX I56 94
RDY RCL IND 65 ACH -
fic¥ ADY ABS RTH

447+LEL T

FIZ 3 RCL BB 1 +
57- 85 S57T- %4 RLL 11
JED 16 57D 86 X12
5T0 67 § 5T+ 43

4t1+LBL
15 el

84
83 2EG 16

§T+ 86 ¥t
56

12 ST+ 47 Rt
t + 15625 67D 628
RecLBe | + STre6 2
- S§T/ 47 PRCL 97 5607
PRE RCL 86 PRY CIGE

426+LEL B
13 G710 82

439+LEL C

¥

491+LBL 83

§10 B3 FS? 82 DSE 82
RDH EHTEEY EHTERY
EHTERT RCL IHD B3 +
DSE 83 ¥ED 12 KER 12
FC?7 88 JEG 12

PCL IHD 83 + ETH

599+LBL 12
PCL THD 83 + =+ DPSE 23
ETH

Th=

S15+LBL F

pCL 98 51/ 16 §17 17
ST/ 18 51/ 19 57/ 24
EHG 5 14.82 FS? 86
16.819 PRREGY

S27eLBL “6G*

RCL 88 2 ~+ 570 81
RCL 89 7 STO A7 1 E5
STg 18 17.1 570 83 8
5T0 86 3 ST0 83

F$? €8 G100 25

ST+ 88

S47eLEL 25

RCL 87 RLL 9 =

RCL IKD 83 RCL 1B =
STO 84 FRC ABS XKY?
GT0 26 SF 82 1 ST+ 86
18 ST 18 GT0 23

SE5eLBL 26

RCL 84 FiZ 8 RKD
RCL 18/ ST IWD 93
1SG 83 F5? 82 GT0 21
t E3 ST+ i@

ST7eLBL 24

RCL 89 ST/ 97 RCL 19
Lot 8 ¥(y? 470 2@
670 23

S86eLBL 23
FS2 88 ST H RDN 11
Y? Gid I &7 28

594+LEL 21

3 RCL 86 - 1013

ST+ 19 CF 82 B ST0 96
GTD 24

bB4+LBL H

STOP 15.919 ST6 24
RCL 63 28 ¥{=Y?
oTd 23 GT0 27

613eLBL I

STOP 16.822 ¢70 84
RCL 83 21 ¥¢=Y7
610 23

6cleLBL 27

RCL @2 {1 + ST- 85

RCL IND @5 RCL 98
S0 64 29%2.15 STO 92
YEx C RCL 84 - CHS
STh 89 RCL 92 RCL 08
Yt¥ RCL 25 RCL @8 Y4¥
- 4/ §T+ 28 RCL 92

FCL 82 Y% s+ RCL 09

- §T-16 RCL 1€ FIX 3
PNE ST0 16 RCL 88 .1
t ST+ 83 670 25

E62¢LBL 23

FIX 2 RCL 92 XE@ 22
RCL 85 XEQ 22 RCL 64
ENG 3 PRREGX €TO °SR°

672¢LBL 22
ACY 2 SKPCHR RDN
X C RCL %% = ACK
ALY ENE
PRP -SR*

d1eLBL *SR*
®CL 71 IKT STO 7@
1 E3 7 16 + RCL 68
St¢78 1 + ST+ 1§
1 B¢ 7 + REGHOYE RTH

19eLBL "REGE®
CLE ARCL 72 PCL 78 71
- CRFiR RCL 70 1 E3
/ v + TRYZRX. KTH

J3¢LBL "EREG"
e SEEKPTR RTR GETRX
END

-5~

APPENDIX III (for Chapter III)

The combined programs abl, ab2, abc2, and abc3 carry out the same
calculations in the first 36 steps except for the flag setting of F1 if
abl is initiated, ¥2 if ab2 is initiated, F3 if abc2 is initiated, and
no specific flag if abe3 is initiated and the clearing of R19 for abe2
and abc3, and the clearing of R17 and R18 for all but abl. For all pro-
grams, registers 0, 1, 3, 4 and 11-16 are cleared and 22.1 is stored in
R20 as an index for storage of the x,y input data. FO is also cleared.

In response to the queries from the calculator after the first step,
FO is set if w#l,and if the x values are at regular intervals of I, I is

stored in RO.
Data Entry

After the initial step, the data are inserted followed by User mode
E in four possible manners as indicated in the directions depending upon
whether the weighting factor w is 1 or not and whether the x values come
at intervals of I or not. The treatment of the inserted values is indicated
by the following outline.
SFO(w#1) »LBT Add w, to R16, vw, to R8, decrement R16 so

only w,-1 tis added, rémove 1 and v, from stack
' * Go to LBL8

l

LBL8: Store y, in IND20, increment R20, calc f(yi) by LBL1, store /@2 f(yi)
in R10,

LBLE

CFO — Store 1 in R8, remove 1

store Xy in IND20, increment R20, use LBL3 to store X, in R6,

calc xi and store in RS, calc f (xi) and fl/;; and store in R9.

1
Then branch to specific calculations for each program.
SF1—LBLY
<:: F2 —>LBL11
] o]
CFl—>Calc fg(xi) by LBL4; then fQVE; in RT SF3———TBL12

i
CF2
[—, ,LBL15

For all program upon completion of entry of each (xi, Vi wi), xi
from R6 plus I from RO displays X, + I for next data entry. In the follow-
. . . . '
ing summaries, y will be used for f(yi), fl for fl(xi), £, for f2(xi)’
etc. and subscript i is dropped on w, x, and y. n will be used for the

_76-

total number of x,y sets inserted, and Iw = I LI A storage entry for a

register which is not used in the specific program is indicated by --- on pg. 2k,

abl IBL9: (V/w - 1)f/W = fw - £/& added to R11
(VW - 1)y/w = yw - y/w added to R13
y/w and fY/w are processed by I+ to add fVW to previous
fw — f¥W in R11 to yield net addition of fw and similar
calculation for yw. w - 1 had been previously added to R16
so net addition is w. Additions to R12, 13, and 15 are fzw,

yw, and yfw, respectively.

ab2 LBL11l: f./w times yv/w from R10 is added to R18. From R9,
f_vw times y/w from R10 is added to R17. Then
2
f, VW and fl/ﬁ'are processed by I+. Only If v in R12,

fgw in R1k4, and f1f2w in R15 are used.

N, =N

abc2 LBL12: fg/ﬁ; yw from R8 minus 1 STO3, (fg/;)(/5 -1)

£ = /W ST+13, f.v - £/ ST+11, (y/)V

fe/»T to LBL1l as for ab2 above.

"

yw ST+19,

2 2
abe3 LBL15: f2/€w‘ times y/w from R10 adds yf v to R12. (R9)” = £V ST+1k,
2 2

(RT) = row ST+17. RORT = f f,w ST+15. RLOR9 = yf,w ST+1l.

LBL5 calculates f,. f3/ir— fills the stack. fgw ST+19.
yf3w ST+13. f.f.w - w +1 ST+16 (-w+l compensates for LBLT).

13
f2f3w ST+18.

Least-Squares Calculations

The next section outlines the calculations after all of the data have
been entered. For each program, the least-square equations are derived
and the calculations given in terms of storage registers used.

2
]

abl To minimize [Z(y-a-bf)]", differentiation with respect to a and

then b and setting differentials equal to zero yields

-77-

Iyfw - (Xywifw)/Iw
Lféw - (Zfw)%/Zw

alw + bLfw = Iyw b =

alfw + bIfow = Zyfw a = (Zyw - bIfw)/Iw

After insertion of all data, the remainder of LBL9 calculates

£ = R15 - R11R13/R16 = Iyfw - IfwIyw/Iw
m = R12 - (R11)%/R16 = Lfow - (Ifw)"/Zw
b = &/m is stored in R2.

MEAN places Ifw/Iw in x register and Iyw/Iw in y register.
a = Zyw/Iw - bIfw/Iw is stored in Rl.

ab?2 Minimization of [Z(y-afl-bfz)]g yields
2
alfow + bIf.T.w = Iyf.w | Mgwiyfov - Zyfwif fov
1 12 1 b= —5— 5
Zflefzw - (Zflf2w)
aSf f.w + bIfow = Lyf w a = [Zyf w - bIf w]/Zfzw
12 2 2 1 172 1

The remainder of LBL1l calculates

R12R18 - R1TR15

J 2
2

2
Zfleyf2W - nyleflf W

k

R12R1h - (R15)2 Zfinfgw - (Zf.f w)

12
2
b = j/k is stored in R3. a = (R17 - bR15)/R12 = (nylw - belf2w)/Zflw

is stored in R2.

abe? Minimization of [Z(y—a—bfl—cf)]2 yields

2

alw + beiw + ch2W Zyw

2
aZflw + belw + chlfgw = nylw
2 _
aZf2W + belf2w + c2f2w = nygw
The remainder of LBL12 calculates R19/R16 = Iyw/Iw, stored in R10 and

(R11)2/Rl6 - R12 (Zflw)2/2w - fow stored in R3.

q = =
s = R11R13/R16 - R15 = Zlengw/ZW - If f,w stored in R6.
r = (Rl3)2/Rl6 - R1k = (Zfzw)g/Zw - ngw stored in R5.
u = R10R13 - R18 = Zyw2f2w/2w - Lyf,w stored in R8.

~78-

t = R10R1l - R17 = Zwaflw/Zw - nylw stored in RT.
b = RORT - R6R82 = rt - su stored in R2.
R3R5 - (RS5) qQr - s
c = w t___._bq. stored in R3.
R6)
a = R10 - [R3R13 + R11R2]/R16 = Iyw/Iw - [ch2w + belw]/zw
stored in R1.
abe3 Minimization of [Z(y—afl—bf2—0f3)]2 yields
aZflw + belfgw + chlf3w = Eyflw
2
aZf2W + beEW + c2f2f3w = nyzw
2
aZf3w + be2f3w + c2f3 w o= ny3w
The remainder of LBL 15 calculates
A = R17R19 - (R18)2 = ZfSWngw - (Zf2f3w)2 , stored in R,
- _ 2 _ .
B = R15R19 - R16R18 = Zflf2w2f3w Zflf3w2f2f3w, stored in R5,
2 .
C = R15R18 - R16R17 = Zf1f2W2f2f3w - Zflf3wzf2 w , stored in R6,
- 2 .
D = C(R16) + R1LR4 - R1ISR5 = CZflf3w + AZflw - BZflf2w in RT,
- _ 2 .
R = R12R18 - R13R17 = ny2w2f2f3w - ny3w2f2w in R8,
_ - 2 .
Q = R12R19 - R13R18 = ny2w2f3w - ny3w2f2f3w in R9,
a = [R(R16)-Q(R15)+RLR11]/RT = (RZflf3w - Qf fw + AnylW)/D in R2,
S = R13R15 - R12R16 = ny3w2flf2w - ny2w8f1f3w in R10,
b = (5(R16)-R5R11+R9R14)/RT7 = (SZflf3w-Bnylw+QZfiw)/D in R3,
2

¢ = (R6R11-R10R15-R8R1k4)/R7 = (Cnylw-SZflf

2

Closeness of Fit

w-REZf_w)/D in Rh.

’_l

The number of data sets, n, is stored by LBL10 in R7. Then 22 +

(2n + 22.02)/1000 is used as a y index in R20.
larger by 1. R9 and 10 are cleared.
next x value which is used by LBLC to calculate ¥y.

N

The x index in R21 is

LBL1lhk uses RCL IND2] to retrieve

RCL IND20 provides y;

-T9-

y §-y is printed after incrementing R20. |§-y| is added to R10 and
('ﬁr—y)2 to R9. R21 is incremented. As long as the integer portion in R21
is not greater than 22 + 2n, the calculation will return to the beginni.g
of LBL1k4. After the last set has been treated, ISG2lwill cause a jump
to division of R10 by n and division of ROby n-2 followed by the square
root.

Note 3 of the Directions section of Chapter III indicates a procedure
for printing of the weighted average ; wilﬁi-yi!/ZWi. Minor modifications

1A
of LBL14 can allow calculation of /fgi(yi-yi)‘/(2w1-2) or simultaneous

calculation and printing of both weighted and unweighted quantities.

i f
Retrieval o (xi,x.) Values

All inserted data sets are stored in R22 to R21+2n and can be retrieved
by step (7). n User A calculates the y,x index 22+(19+2n)/1000 for R21

and LBL6 uses LBL16 to retrieve ¥y and x, which are then inserted by LBLE.

This continues until the next to last sit has been processed when ISG21
causes jump to add 0.1 to R2L. LBL16 retrieves the last y,x set and

LBLE completes insertion of the last data set. The rest of the Procedure
is the regular least-square calculation for the indicated equation. As
indicated in step (7) of Chapter III, a minor modification allows insertion
of weighting factors. Step (7) thus allows repeated least-square treat-
ments of the data using different fitting equations and different weighting

factors.

Special Programs

The introductory text of Chapter III discusses equations for fitting
enthalpy, heat capacity, and partial molal data. Their application will
be illustrated by some examples.

If it is desired to fit drop calorimetry data, y = (HT—Hi)/R, as a
function of 6 = T—Ti, where Ti is the reference temperature of the calori-

meter, with a smooth Jjoining to C_ and dCP/dT at Ti obtained from low

P
temperature calorimetric measurements, program ab2 can be used with the

following functions.

"y = ole(y)+c, /r] +0°(ac /Ram)

fly) = y/6 - CP,i/R - %e(ch/RdT)i, i .

-80-

2
2(x') = (1/3)8°. The data for aCa will be used to

illustrate the insertion of the functions and testing of the program.
= = 3 .~1
T, = 298.15, (Cp/R),qq = 3.16, (a(C /R)aT)

x'=6 , £ (x') = 92/T?T, f
1 1

ngg = 1.2 x 1077 K77, n=5, I=100.

(1b) XEQ 'TlepbO2' - F2, EEX 2 STO 00, 'SIZE'032, 298.15 STO 19, 6 EEX L

CHS ST021

(2) With no entries from previous use of the program,
PRGM x+y ST06 RCLI19 - STOS / 3.16 - RCLS
RCL21 X - RCL 6 x<y SST SST 3.16 + RCL5
RCL21 X + RCLS X SST SST SST RCL19 -
SST [JLAST x 3 Oy~ / RCL5 X RCL6 / SST
SST SST x2 3 / SST SST SST 0 X
PRGM

(3p) 300 * 6.0 User E 400, 326.6 E 500, 651.7 E 600, 979.3 E 700, 1307.9 E
800

(L) R/S ¢ = -16 805, SST d = 6.7 x 102

(56) 300 C 5.85, R/S 326.4, R/S 651.8, R/S 979.k, R/S 1307.8

To calculate the other constants and CP/R’ the following additions to
to program are made to the end of IBL16.

[CTO16 PRGM [IGTO.543 ORIN [ILBL'B' RCL2 RCLY 3 Oy /

RCL3 RCL19 X - 2 X RCL21 2 X +
STOL RCL3 RCI1G X + RCL19 X CHS RCL2 RCL19

P / - 3.6 + STO1 [RTN RCL4

LBLD 4 4 4 RCL3 X RCLL + X RCL1
+ RCcL2 R CJx° / + ORTN R RCLOO +

GTOD PRGM

User B a = 3.3688 b = -6.41k x 107°
Cp/R = 3.369 - 6.1 x 107°T - 6.7 x 107 T° - 16 805 /1",
300 D 3.162, R/S 3.237, R/S 3.268, R/S 3.281, R/s 3.286, 298.15 D 3.160,
350 D 3.208
There is some uncertainty in the value of dCP/dT at 298.15K. The
retrieval capability of step (7) is illustrated by repeating the fit
with (d(CP/R)/dT)298 = 1.202 x 10 K" instead of 1.2 x 107K .

(1b) XEQ '(Jalb(i2'> F2, EEX 2 STO 00.
As R21 which had been used to store dCP/RdT is used in step 7, R21

~81-

in f(y) and f'(y) must be changed to R1. Also the use of R21 in LBLB

must be changed to RCL1. As above, %(d@p/R)/dT)298
(2) PRoM [IGTO.045 « RCL1 [JGTO.055 <+ RCL1 [JGTO.557 <+ RCL1 PRGM
(7) 6.01 EEX 4 CHS STOl 5 User A 800

is stored.

(4) R/S ¢ = -16 920, SST d = 4.6 x 1072
User B a = 3.3731, SST b = ~7.757 % 107
CP/R = 3,373 - 7.76 x 1072 T + Lh.6 x 10’9 T2 - 16 92o/T2

300 D 3.162, R/S 3.237, R/S 3.268, R/S 3.281, R/S 3.286

If (4C_/aT). is not well known, but C_ .
P i P,i
calorimeter data can be treated by abc2 as described in the intro-

ductory text of Chapter III

is known, the drop

fly) = y/e2 - CP’i/Re, f‘l(y) = ezf(y) + bcy /R

fl(x') =6, 1,
(le) XEQ 'TJadb[def]2', EEX2 STO 00.

(2) With no entries from a previous calculation,

(x') = (8 + Ti)_l.

PRGM xZy STO6 298.15 - ST05 [Olx° / 3.16 RCLS
/ - RCL6 X2y SST S8ST RCL5 X 3.16 +
RCL5 X SST SST SST 298.15 - SST SST SST
SST < RCL6 1/x SST SST SST 0 X PRCM
(3b) 300 +5.85 User E 40O, 326.4 E 500,651.85 E 600, 979.4 E 700, 1307.8
E 800
(k) R/S ag = -2.5k4 x 10‘3, SST a, = 3.09 x 10'6SST, a . = 1.10

1 -1
(5) 300 User C 5.85, R/S 327.L4, R/S 649.6, R/S 97L4.8, R/S 131L.6

(2)

(3)

(4)

(5)
(6)

(1)
(8)

-82-

REFERENCES

L. Brewer, Estimation of Thermodynamic Data and Phase Diagrams Using
HP-65 Calculator Programs, LBL-4994, June 1976.

L. Brewer, HP-67 Calculator Programs for Thermodynamic Data and Phase
Diagram Calculations, LBL-5485, May 1978.

M. Abramowitz and I.A. Stegun, Editors, Handbook of Mathematical
Functions, N.B.S. Applied Mathematics Series 55, June 1964, Supt. of
Documents, U.S. Gov't Printing Office, Washington.

R. Hamming, Numerical Methods for Scientists and Engineers, McGraw-
Hill, New York, 1973.

W.E. Wentworth, J. Chem. Educ. 42, 96-103, 162-7 (1965).

W.E. Deming, Statistical Adjustment of Data, John Wiley, New York,
1943,

C.H. Shomate, J. Am. Chem. Soc. 66, 928 (194L).

T. Chiang, Y.A. Chang, Can. Metall. Quart. L, 233-h1 (1975).

	Cover
	Contents
	Chapter I: Interpolation Fit to y=∑aₙxⁿ
	Chapter II: Data Fitting Using the Chebyshev Polynomials
	Chapter III: Least Square Fitting of Data to an Analytical Function
	Appendix I (for Chapter I)
	Appendix IIA (for Chapter II), by Susie Hahn
	Flow Chart for Program CH
	Flow Chart for Program CB

	Appendix IIB (for Chapter II)
	Flow Chart for Program GG

	Appendix III (for Chapter III)
	References

