HP-41CV/CX

Geometrics Solutions

	K = 44.000	NU - J4.120	KHILUS PULNU:	1.0	KHUIUS PUINT:	n
• 1	DELTA =	∡RT=	N= 54.0734	N= 84.0724	N= 75.9426	E=
	272 36 18.8	74 . 51 . 2.2	E= 152.8275	E= 636.5152	E= 718.8642	
	1 =199.314					HD
	(15,98)	DIST 2=48.990	R = 30.0000	HD = 46.469	HD = 77.500	∡R
		0/S 2=20.000	DELTA =	∠RT=	ART=	3
			31 ° R' 9.8"	219° 35' 20.4"	148 8 1.9	
	DICT 1=27 994	DIST 1=34,641	1 = 16 277			RA
7.1-	0/6 1=28 571	0/5 1=30.000	T = 8.721	2/3	R = 35,0000	N=
	0/0/1-20:0/1	0.0100000	CH = 16 976	N= 79.5888	NFITO =	E=
	N- (5 0700	N= 69 3582	Ch - 10.000	E= 639.5038	510 47: 51 5=	
	n- 03.0300	F= 74 2885	N- 50 2020		1 - 71 691	HI
	E= 123.0213	2- 14.2005	Π- J7.2020 Γ- 107.0077	HD = 49.206	T = 12.001	45
	115 - 17 000		E= 123.2033	∡RT=	0 - 70 570	7
	HU = 43.000	KHUIUS FUIMI -	NIOT 0-7(05(214 1 32.4	UN - 30.330	
		N= 34.03/3	UISI 2=36.005			P
7 1 -	54° 24' 55.1"	E= 61.4327	0/5 2=20.000	N= 74 5132	1/4	n n
r • 1				$E = 641 \ 7129$	N= 90.0783	μC (
	RADIUS POINT:	<u>R = 28.0000</u>	DIST 1=28.551	E- 041.0127	E= 690.1556	
	H=	R =	0/\$ 1=25.481	un - 57 204		L
_	E=	0' 0.0"		HU = 33.274	HD = 46.862	1
.9		28.944	N= 87.6950		∡RT=	U)
	HD	11.547	E= 632.5263	510, 2, 2011	148° 55' 28.8"	
	∡R	20.000				17
	5		HD = 45.500	DIST 2=45.346	2/4	N=
	and the balance have	8.5644	∡RT=	0/\$ 2=19.000	N= 83.2945	E
	R	1.1289	226 • 11 • 50.9*		E= 687.7202	
	DF COMPANY AND AND AND					H
	4 State Sheet Street					
	in the best set		N= 69.7285		∡RT=	
	T Distant and the		F= 619,8413	273 56 11.1	156 . 7. 39.1	
	CU CU		E- Olylolia	L =203.196		2/
1.	ch	49,999	UN - 67 500	<10.06>	7/4	N
		0 =	/DT-		N= 76,1378	E
	1/2	2710 D. 0 D.	4KI- 007.0 111 50.0#		E- 686 8648	-
	N= 37.4620	1 -100 104	220 - 11 30.7	DIST 1=33.367	E- 00010010	H
	E= 117.8881	L -107.170	D - 05 0000	0/5 1=32.323	um - 54 255	
			K = 23.0000	0.010000	MJ - J0.2JJ	
	HU = 46.145	NTOT 1-00 (07	UELIH =	N= 96,1449	4K1- 1210 D: 52 1-	
	art=	DIST 1=20.603	42 12 19.6	F = 694.9475	161 0 JZ.1	u
	67° 11' 30.7"	0/5 1=24.286	L = 18.416	L- 0/1.0110	U- (0.0711	n C
			1 = 9.648	UD - 45 500	N= 68.9/11	C
1	N= 47.7606	N= 73.7562	CH = 18.002	/DT-	E= 687.6329	u
	E= 114 1436	F= 130, 1871		4K1-		

NOTICE

No express or implied warranty is made by D'Zign Land Survey & Development or the author with regard to the procedures and program material offered or their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made available solely on an "as-is" basis, and the entire risk as to their quality and performance is with the user. Should the procedures or program material prove defective, the user (and not D'Zign Land Survey & Development nor any other party) shall bear any and all cost of all necessary correction and all incidental or consequential damages. D'Zign Land Survey & Development and/or the author shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

HP-41CV/CX

Geometrics Solutions

TED J. KERBER, L.S.

Software by D'Zign P.O. BOX 1370 · PACIFICA, CA 94044

This book is dedicated to my wife, Phyllis, with my heartfelt thanks for her continued support, enthusiam and coffee.

Copyright © 1986 by Ted J. Kerber

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without written permission of the author.

published by D^oZign Land Survey & Development Pacifica, California 1986

ISBN 0-9616846-2-3

About the book

This is the second in a series of solutions books designed to aid the surveyor and engineer with calculations encountered on a day-to-day basis.

Surveyors favor the Hewlett-Packard 41 series over other available hand-helds, but no new software for the 41 has been generally available since the first survey applications book, and most of those programs are outdated.

These solution books are presented as an alternative to high-priced ROMs, most of which contain more traverse, inverse, intersection etc. programs. They have the added advantage that the user may customize them to his/her needs, add to them, or modify the type of output.

A printer is not a requirement, but a convenient option. If you have access to a card reader, having the programs on cards is the best way to assure error-free input of the program steps, and a mag card programming service is available through the publisher.

The author has an aversion to typing in long program names, and has assigned simple keystrokes as global labels for the programs, but the user should feel free to assign any name to the programs, if it aids in remembering how to address the programs.

Most of the sub-routines included in the utilities programs may be used in other programs besides those contained in this book. Or, they may act as guides when doing your own programming. It is hoped that other surveyors and engineers will write (and publish) new programs.

If the programs in this book can provide a starting point or stepping stone for new software, it will have been well worth the writing.

CONTENTS

Cul-de-sacs

CUL-DE-SAC

This program can be used for rapid solution of cul-de-sacs which occur on tangent. Optional input allows calculation of cul-de-sacs when the center point is offset from the main alignment of the street. Output may be with or without coordinate values, and a full routine for **layout** is included.

All of the programs which contain the layout option allow the user to select the offset distance to the hubs and the spacing of the hubs. The return curves are **automatically** divided into arc lengths which will not exceed the specified spacing, and inversed.

CURVED CUL-DE-SAC

Allows calculation of cul-de-sacs which occur at the end of a curved alignment. This program contains the same options as the previous one, including the ability to calculate the cul-de-sac when the center point is offset, and the **layout** routine.

BULBS

15

1Q)

77

1

This program calculates a cul-de-sac for the condition where the return lines are tangent to the line of the adjacent street. Output includes the length of the cul-de-sac tangent.

KNUCKLES

Solves for the condition where the cul-de-sac returns are tangent to two streets at an intersection. Also calculates the curve data for the opposite side of the street, if the BC and EC are to be opposite the return points of the cul-de-sac.

Intersections

BOTH STREETS STRAIGHT

This program calculates all of the data for the returns around a street intersection when both streets are on a straight alignment. Options include output with or without coordinates and a complete **layout** mode for field staking.

ONE STREET CURVED

Similar to the program above, except that the program calculates all of the data for the returns when one of the streets is curved.

BOTH STREETS CURVED

The returns are calculated for all of the corners of an intersection of two curved streets. Output with or without coordinates, and a complete **layout** mode are included in the options.

Program Listings	4]]
UTILITIES 2	45
CUL-DE-SAC	50
CURVED CUL-DE-SAC	55
BULBS AND KNUCKLES	61
INTERSECTION - BOTH STRAIGHT	67
INTERSECTION - ONE CURVED	73
INTERSECTION - BOTH CURVED	77
APPENDIX	S3

Some quick tips on storage of coordinates by point number, using the 41CV or CX. Extended memory is not required.

କ୍ଷର୍ମ

Cull-de-Sec

This program solves cul-de-sac problems for design, plotting or layout, with the option of output with or without coordinates. The amount of input information depends on the requested output requirements. For instance, it isn't necessary to input any coordinate or bearing information unless you want the output to show the coordinates. It isn't necessary to input coordinate or backsight information unless the layout option is selected.

In the latter case, the layout information can be assumed for field use; that is, when prompted for coordinate input of the center point, you can input N=100 and E=0, and use N=0 and E=0 for the required backsight information. Then you just occupy the center point and sight back downstation. For the bearing input you would just use "north".

This will also work for a cul-de-sac with a center point that is offset from the street centerline, just by setting the backsight on an offset equal to the centerline offset.

In it's simplest form, this program furnishes the designer with a quick calculation of the cul-de-sac curve data using different trial return curves, or with the coordinate option, quick plotting information is obtained to check the different curves against the terrain shown on a topographic map of the area.

In the field, the barest minimum of information is needed in order to calculate all of the information needed for layout of the curb and gutter offset hubs in just a few minutes.

As shown, the **layout** mode calculates the radial inverses from the center point, directly to the offset hubs. The offset distance to be used and the maximum spacing between the curve points are pre-selected by response to the prompts which are called up by a "Y" response to the **LAYOUT**? prompt.

The maximum spacing selected is the spacing at the curb line. The distance between the offset hubs is automatically adjusted to use the selected maximum distance.

If **layout mode** and **coordinate mode** are used together, the output distance along centerline and the output offset are to the actual curve return point, but the coordinates are those of the offset hub.

For the main curve area, a chord for use in double-chaining of the points is calculated, rather than output of a lot of angles. Since the instrument is at the center of this curve the radially inversed distance to the hubs is always the same.

This program has been designated as "CD". Size the calculator at 045 prior to running it, and initialize the program by keystroking **XEQ ALPHA C D ALPHA**. The routines used are guided by prompts, beginning with:

- 1 LAYOUT? If the calculated solutions are to include radial stakeout of the returns, answer Y and the additional prompts (marked *) will appear. If layout is not desired, answer N and go to step number 4 [₹/S]
- 2 OFFSET DIST?* Input the distance by which you wish to offset the stakes to be set
- 3 MAX SPG?* At this point you can select the maximum spacing which you want between the offset hubs. Input the maximum distance between staked points at the curb line [R/S]

4 SHOW COORDS? If the coordinates of the solution points are required, answer [Y]. If this option is selected, the coordinates of the radius point will also be calculated.

When the option for LAYOUT has already been selected, the coordinates which are output at the B.C. and E.C. will be those of the **offset hub** location. If layout has not been selected, the coordinates output are the actual E.C. and B.C. locations.

When the answer to this prompt is yes, the additional prompt (marked ******) for beginning coordinates will appear.

If the coordinates are not required, answer IN and proceed at step 9

R/S

R/S

5 INTER-X N+E** This refers to the actual center point of the main radius for the cul-de-sac. Input the N-coordinate of the intersection point

Input the E-coordinate of the intersection point

6 BACKSITE?** Any point with known coordinates may be used. Input the N-coordinate of the backsight point

Input the E-coordinate of the backsight point

Cull-de-Sac

R/S

-	DDC-2++	
/	DKG= { ^ ^	Input the bearing of the centerline of the street [R/S]
8	QD=?	Input the quadrant code, using the direction toward the cul-de-sac
9	RADII?	Input the first radius, beginning on the left side and proceeding clockwise around the cul-de-sac. If the cul-de-sac is offset in such a way that the central radius is tangent to the outside line of the street at this point (there is no return curve) input 0
		Input the central radius
		Input the last return radius. If there is no return at this point, input 0
10	WIDTH?	Input the width of the street
11	OFFSET?	input the amount of offset from the centerline of the street to the main radius point of the cul-de-sac. If the radius point is on the centerline of the street, input 0. If the offset is to the left, <u>CHS</u> .

Output is automatic, and will print out all of the required data in the same order that the radii were input. If you do not have a printer attached to the calculator, continue stroking the R/S key to obtain the output.

We will use the cul-de-sac shown to the right for our first keystroke example, and use both the coordinate output and layout modes.

Assume that a hub offset of 3' is wanted, and use a maximum between points of 12' for the example problem.

Use a coordinate value of N100/E300 for the backsight point, and follow the keystrokes shown in the example on the next page.

keystrokes:	prompt:	WIDTH?	
ALPHA C D ALPHA	keystrokes:		D =49 909
prompt: LAYOUT?	40 R/S		DELTA =
keystrokes:	prompt:	OFFSET?	272° 36' 18.0" L =190.314
Y R/S	keystrokes:		<15.98>
prompt: OFFSET DIST?	0 R/S		
keystrokes:	output:	DIST 1=29.814	DIST 1=27.994
3 R/S		0/5 1=26.667	0/5 1=28.3/1
prompt: MAX SPG?		N= 73.4145	N= 65.0300
keystrokes:		E- 00.2034	E- 123.0217
12 R/S		HD = 43.000	HD = 43.000 /PT=
prompt: SHOW COORDS?		141 . 48. 37.1-	54° 24' 55.1"
keystrokes:		RABIUS POINT:	RATTUS POINT:
Y R/S		N= 62.9040	N= 43.0721
prompt: INTER-X N+E		E= 52.8419	E= 140.7334
keystrokes:		HD = 60.000	HB = 70.000
1 0 0 ENTER+		4R1= 141° 48' 37.1"	∡R1= 54° 24' 55.1"
100 R/S		D - 00 0000	D - 70 0000
prompt: BACKSITE?		DELTA =	R = 38.0000 Deltr =
keystrokes:		48° 11' 22.9"	44° 24' 55.1°
1 0 0 ENTER+		T = 8.944	T = 12.247
300 R/S		CH = 16.330	CH = 22.678
prompt: BRG=?		1/2	1/2
keystrokes:		N= 67.0440 F= 69.3301	N= 57.4628 F= 117.8881
$1 0 \mathbb{R}/S$			
prompt: QD=?		HD = 45.019 ∡RT=	HD = 46.145 ∡RT=
keystrokes:		132 * 56 * 31.9*	67° 11' 30.7"
1 R/S		N= 59.9520	N= 47.7606
prompt: RADII?		E= 69.5836	E= 114.1436
keystrokes:		HD = 50.289	HD = 54.120
2 0 ENTER+		∠RT=	4RT=
4 0 ENTER+		121 12 37.0	(4* J1 Z+Z*
30 R/S		DIST 2=44.721	DIST 2=48.990
	I	0/3 2-20.000	. 0/0 2-20.000

Cul-de-Sae

The cul-de-sac to the left has an offset center point which is 10' left of the centerline of the street. Other than that, it is the same as the previous example.

The only difference in input for this one would be after the last prompt, **OFFSET**?, where you would enter -10 instead of 0.

For a keystroke example, we will calculate the cul-de-sac with just the coordinate output. The prompt for the coordinates of the center point will appear, but not the layout prompts for spacing, hub offset and backsight coordinates. Begin by stroking **[XEQ] (ALPHA) (C) (D) (ALPHA)**, and then:

prompt: LAYOUT?	prompt:	WIDTH?	
keystrokes:	keystrokes:		R =40.000
N R/S	40 R/S		271 ° 0' 9.8"
prompt: SHOW COORDS?	prompt:	OFFSET?	L =189.196
keystrokes:	keystrokes		
Y R/S	10 СН5	R/S	DIST 1=20.603
prompt: INTER-X N+E	output:	DIST 1=34.641	0/0/1-24.200
keystrokes:		0/S 1=30.000	N=73.7562 F=130.1871
1 0 0 ENTER+		N=69.3582	
100 R/S		E=74.2885	N=54.0734
prompt: BRG=?		RADIUS POINT:	E=152.8275
keystrokes:		N=54.0373	R = 30.0000
10 R/S		E=61.4327	DELTA =
prompt: QD=?		R = 20.0000	L = 16.233
keystrokes:		60° 0' 0.0"	T = 8.321
1 R/S		L = 20.944	ch - 10.030
prompt: RADII?		CH = 20.000	N=59.2828
keystrokes:		11 ED 5/44	E-123.2033
2 0 ENTERT		N=50.5644 E=81.1289	DIST 2=36.056
			0/5 2-20.000
[3] [0] [R/S]		DIST 2=51.962 D/S 2=20.000	
	-	· · ·	

R= 30,

WIDTH = 40

R=20'

10tes 		

Curved Cul-de-See

This group of program routines is used to obtain solutions for cul-de-sacs which occur at the end of a curved centerline alignment, as shown below. The program is fully prompted and begins the prompt sequence as soon as the program CDC is executed.

When used for designing the cul-de-sac, the routine solves for the offsets from centerline at the beginning and ending points, and outputs the centerline arc length for calculation of the stations opposite the return points.

Usina the coordinate option, the coordinates for these points are also output, along with the coordinates of the radius point at each return. Using this routine, the coordinates of the main point and the center centerline radius point must be known (or assumed).

As with the other programs, a layout routine is included to allow field calculations of the offset hubs for staking. Layout is inversed directly, with the center point used as the instrument setup position, and the coordinates of a backsight point are also input during the initial prompting sequence. The offset distance and the maximum spacing between the offset hubs is pre-selected by the user.

As shown in the example above, the cul-de-sac return curves do not have to be symmetrical (and the center point of the cul-de-sac does not have to be on the centerline of the street). Use of the routine for a condition where the center is offset from the center of the street alignment will be shown in a second example.

The keystroke procedures and detailed examples are on the following pages. It is suggested that a sketch of the cul-de-sac be available for reference while using the program, to insure that the radii are input in the correct order. This program has been designated as "CDC". Size the calculator at 045 prior to running it, and initialize the program by keystroking **XEQ ALPHA C D C ALPHA**. The routines used are guided by prompts, the first of which is:

- 1 LAYOUT? If the calculated solutions are to include radial stakeout of the returns, answer Y and the additional prompts (marked *) will appear. If layout is not desired, answer N and go to step number 4
 R/S
- 2 OFFSET DIST?* Input the distance by which you wish to offset the stakes to be set
 (R/S)
- 3 MAX SPG?* At this point you can select the maximum spacing which you want between the offset hubs. Input the maximum distance between staked points at the curb line

 R/S
- SHOW COORDS? If the coordinates of the solution points are required, answer
 If this option is selected, the coordinates of the radius point will also be calculated.

When the option for LAYOUT has already been selected, the coordinates which are output at the B.C. and E.C. will be those of the **offset hub** location. If layout has not been selected, the coordinates output are the actual E.C. and B.C. locations.

When the answer to this prompt is yes, the additional prompt (marked ******) for beginning coordinates will appear.

If the coordinates are not required, answer IN and proceed at step 7

5 INTER-X N+E** This refers to the actual center point of the main radius for the cul-de-sac. Input the N-coordinate of the intersection point ENTER+

Input the E-coordinate of the intersection point

6 BACKSITE?* Any point with known coordinates may be used. Input the N-coordinate of the backsight point [ENTER+]

Input the E-coordinate of the backsight point

R/S

R/S

Curved Cul-de-Sae

7 RADIUS N+E?** Input the N-coordinate value of the main alignment radius point [ENTER+]

Input the E-coordinate

8 RADII? Input the radii, beginning with the radius of the centerline alignment (if the curve is to the left, CHS)

The radius of the **outside** return is input next. If the cul-de-sac is offset in such a way that the central radius is tangent to the outside line of the main alignment at this point (there is no return curve) input 0

Input the central radius

Input the radius of the last return. Again, if there is no return curve at this point, input 0

Note that, after the input of the centerline radius for the main alignment, the input of the radii is clockwise for an alignment which curves to the right and counter-clockwise for a curve to the left.

- ⁹ WIDTH? Input the width of the street
- ¹⁰ OFFSET? Input the amount of offset. If the center point of the cul-de-sac is not offset from the centerline alignment, input 0. If the offset is to the left, CHS R/S

Output will begin with the curve data and arc length/offset data for the outside return and proceed in the same order as the input. When **coordinate** or **layout routines** were requested, the coordinates of the radius point for each return will also be output. In the **layout mode** the coordinates of the return points are those of the offset hubs, but the arc and offset are still to the actual curve point.

In the layout mode the main curve is not divided into a series of angles for layout, but the chord distance from the last hub, for maintaining the required spacing of the hubs is given (shown <XX.xx> in the output) so that the hubs may be quickly double-chained using the last hub and the center point.

ENTERT

R/S

R/S

For a first example of the keystroke procedures which would be used in solving for the curve data and curve point locations for the cul-de-sac shown on page 7,we begin with the calculator sized at least at size 045.

keystrokes:	XEQ	prompt:	WIDTH?	1	R = 38.0000
ALPHA C D C A	LPHA	keystrokes:			DELTA =
prompt: L	AYOUT?	40 R/S			L = 177.823
keystrokes:		prompt:	OFFSET?		
N R/S		keystrokes:			R = 30.000
prompt:SHOW CO	DORDS?	0 R/S			DELTA = 48° 54' 46.4"
keystrokes:		output:	R = 20.0000		L = 25.611
N R/S			DELTA =		T = 13.644 CH = 24.840
prompt:	RADII?		42° 5' 24.0" L = 14.692		
keystrokes:			T = 7.695 CH = 14.364		ARC 1= 25.981 0/S 1= 29.123
250 ENTER+					000 2- 51 610
2 0 ENTERT			ARC 1= 26.865		0/S 2= 20.000
3 8 ENTER+			0.0 1- 20.400		
3 0 R/S			ARC 2= 39.036		
		•	U/S Z= ZU.UUN	•	

Next, as an example of the **layout mode**, we can use the same cul-de-sac, but assume that we are set up at the intersection point (center point of the main radius) and want to stake out the returns for curb and gutter. We will use a 3' offset line, and a maximum 12 feet between points, to ensure that the curbs will be smoothly curved.

As shown to the left, the maximum spacing selected is the spacing at the actual curb line. The distance between the offset hubs is adjusted automatically to not exceed the selected distance at the curb.

For the central portion the chord distance to pull between the offset hubs is given, and the hubs may be set by double-taping using the chord distance from the last hub and a distance from the center point that is equal to the radius + the offset.

The keystroke procedures for obtaining the angles and distances for layout are shown on the next page. Assume a backsight coordinate of N=100 and E=200.

10

Curved Cul-de-See

keystrokes: XEQ	keystrokes:	
ALPHA C D C ALPHA	250 ENTERT	D - 70 0000
prompt: LAYOUT?	2 0 ENTER+	DELTA =
keystrokes:	3 8 ENTER+	268 ° 7' 8.9"
Y R/S	30 R/S	L = 177.823 (16.77)
prompt: OFFSET DIST?	prompt: WIDTH?	
keystrokes:	keystrokes:	R = 30.00
3 R/S	4 0 R75	DELTA =
prompt: MAX SPG?	prompt: OFFSET?	L = 25.611
keystrokes:	keystrokes:	T = 13.644
1 2 R/S	0 R75	CH - 24.040
prompt: SHOW COORDS?	output: R = 20,0000	ARC 1= 25.981
kevstrokes:	DELTA =	0/5 1- 29.125
	42° 5' 24.0" L = 14.692	HD = 41.000
prompt: INTER-X N+F	T = 7.695	302 ° 44 · 58.2
keystrokes.	CH = 14.364	BOBTUC DOINT
	ARC 1= 26.865	HD = 68.000
	0/\$ 1= 25.485	∠RT=
	HD = 41.000	302 * 44 * 58.2*
prompt: BACKSITE?	∡RT= 34 ∘ 37 · 49,2•	1/3
keystrokes:		HD = 42.763 ∡RT=
	RADIUS POINT: HT = 58 AAA	312 • 57 • 33.8-
200 R/S	∡RT=	2/3
prompt: RADIUS N+E	34° 37' 49.2"	HD = 47.537
keystrokes:	1/2	4RT= 3280 34. 21 3-
2 1 8 9 7	HD = 42.574	320 34 21.3
	26° 23' 10.4"	HD = 54.219
[4] [4] [9] [·] [2] [8] [5] [3]	UT - 46 797	324 ° 47 · 39.3
	∡RT=	OPC 2= 51 618
prompt: RADII?	20° 32' 9.5"	0/S 2= 20.000
	ARC 2= 39.036	
	0/S 2= 28.000	

Curved Cul-de-Sae

R = 40.000RADIUS POINT: DELTA = N= 469.7078 44 48 49.5 E= 428.1224 L = 31.286T = 16.492N= 454.7487 CH = 30.495E= 465.2200 ARC 1= 17.689 ARC 2= 51.745 0/5 1= 22.049 0/S 2= 14.000 N= 485.2423 E= 464.9827

As a last example of this routine, the cul-de-sac shown above is at the end of an alignment curve to the right and is offset to the left. In addition, this is an example of a "0" radius on one side. The curb line on the right side of this street forms a smooth line as it joins the curve of the cul-de-sac at a PRC opposite and radial to the center point of the main cul-de-sac radius.

To demonstrate the output, we will solve for the coordinates, without the layout option. The calculator is sized at 045, and we begin with xeq (ALPHA) (C) (D) (C) (ALPHA).

prompt: LAYOUT? keystrokes: N R75 prompt: SHOW COORDS? keystrokes:	2 0 ENTER+ 3 B ENTER+ 0 R/S prompt: WIDTH? keystrokes:	RADIUS POINT: N= 144.4343 E= 165.3731 N= 148.2664 E= 185.0026
prompt: INTER-X N+E keystrokes: [2] [0] [ENTER+] [1] [8] [2] [R/S]	Image: bit with the second s	0/S 2= 20.000 R = 33.0000 DELTA = 253° 20° 28.7° L = 168.022
prompt: RADIUS N+E keystrokes: 200 ENTER+ 450 R/S prompt: RADII? keystrokes: 250 ENTER+	BELIN = 62° 17' 41.2" L = 21.745 T = 12.087 CH = 20.690 ARC 1= 32.450 0/S 1= 31.259 N= 163.5949 E= 171.1065	R = 0.000 ARC 1= 0.000 O/S 1= 20.000 N= 200.0000 E= 220.0000

notes		

A cul-de-sac that is designed in such a way that the return curves are also tangent to the line of the adjacent street is called a "bulb". There are a number of variations of this used by different designers, but the most common type is one that has a "real" throat width. In other words, the only difference between this cul-de-sac and any other is that there is no tangent line between the return curves of the cul-de-sac and the return curves of the street going by it.

The bulb shown to the left is typical of the type which may be resolved using this program. The program allows for the bulb occurring along the outside or inside of a curved street.

Bmllbs

The program has been designated as "**BB**", and works a little differently than the programs for cul-de-sacs, in that after execution, it will halt and wait for you to select the option you want. The options are whether you want the output with or without having the coordinates output.

If coordinates are not wanted, simply keystroke \underline{A} after the program halts (the display will show 360). For the option with coordinates, you will input the coordinates of the street centerline intersection with the centerline of the bulb, and then keystroke \underline{B} .

This program does not contain a layout option, it takes far more program steps. The layout may be done using the **cul-de-sac** program and one of the **street intersection** programs which follow.

The two buttons used for this routine are shown in the sketch to the right. When coordinate output is requested, it will output the coordinates of the three radius points, along with the design information and curve data.

If the bulb is on a curved street, the street centerline arc opposite the return points is also given. On a straight street the distance is half of the width of the bulb street plus the return radius. This allows the "street side" to be staked by offsets from centerline.

To make this program easy to access, it has been given a global lable of "BB". The calculator should be sized at least at 040 before beginning. Initialize the program by keystroking [XEQ] [ALPHA] [B] [B] [ALPHA]. The program will clear the registers and reset the flag status, and then halt.

- 1 If coordinates are to be calculated, input the N-coordinate value of the intersection of the streets and stroke ENTER†
 - Input the E-coordinate value for the streets' intersection and stroke

A

R/S

- 3 or
- If coordinates are not wanted, stroke

The prompts marked $\mbox{ will only appear if the coordinate calculation option has been chosen$

- ⁴ BRG=?* Input the bearing of the cul-de-sac street [R/S]
- 5 QD=?* Input the quadrant code in the direction toward the center of the cul-de-sac
- ⁶ CURVE? If the main street (the collector) is curving at the point where the bulb street intersects, answer Y R/S . If the street is straight, answer N R/S. When the Y answer is given, an additional prompt (marked**) will appear
- 7 OUTSIDE?** Answer this prompt Y R/S if the bulb is on the side of the street away from the main alignment's radius point, or N R/S if it is on the side toward the radius point
- 8 RADII? If the bulb does occur at a curve in the main alignment, input the main-line radius first ** [ENTER]
- 9
 or
 Input the radius of the return
 ENTER+

 10
 Input the center radius of the cul-de-sac
 R/S
- ¹¹ 1/2W A? Input the half-width of the street
- 12 WIDTH? Input the width at the "throat" of the cul-de-sac [R/S]

Bulbs

Output is automatic and will first print out the distance from the streets' intersection to the center of the cul-de-sac.

If the bulb is on a curve, the centerline arc distance on the main alignment will be output next, followed by the data for the center curve, the distance and offset to the PRC points and the curve data for the returns.

If coordinate output was selected, the coordinates for the radius points will also be output.

If you do not have a printer attached to the calculator, continue stroking the [R/S] key for the output.

As a first example we can calculate the data for the bulb shown above. We will assume that we do not need the coordinates.

followed by the additional keystrokes: XEQ output: 1 = 89,721 prompts: ALPHA B B ALPHA BRG=? CENTER : display: 360.0000 keystrokes: DELTR = 276 º 22 · 45.7 · keystroke: 8 7 R/S A L =168.736 prompt: OD=? prompt: CURVE? RETURNS: keystrokes: keystrokes: DIST = 26.087 0/9 = 23.333 4 R/S N R/S then: DELTA = prompt: RADII? 138° 11' 22.9" prompt: CURVE? keystrokes: L = 68.297 keystrokes: T = 65.4512 5 ENTERT CH = 46.709N R/S 3 5 R/S If coordinates had been prompt: RADIT? 1/2W A? prompt: wanted, the initial kevstrokes would have been: keystrokes: keystrokes: keystrokes: 2 5 ENTERT 2 0 R/S 5 0 0 ENTER+ 3 5 R/S WIDTH? prompt: 500 B prompt: 1/2W A? keystrokes: 30 R/S

A "knuckle" is sometimes added at the angle-point intersection of two streets in order to get a better lot pattern without actually building in a full cul-de-sac. As with anything else, different designers use different types of solutions. This routine solves for all of the needed data for the type where the return radii are equal, and the central angle of the main area is 180°.

The offset distance (D) from the main alignment intersection varies with the angle of intersection and the proportions of the main and return radii. If it occurs outside the angle point, it will be a positive number, if inside, negative. The main line tangent length (T) is the distance along the main alignment tangents which will be at a centerline point opposite the BC or EC of the returns.

/keystroke C to begin the /prompt sequence if you do not need coordinate output

> if coordinate output is wanted input the coordinates of the intersection point and stroke

An additional feature of this routine is that it also designs a curve to fit the opposite side of the street (opposite the same tangent points).

Knnckles

This allows layout by turning 90's at the tangent points to set the BC or EC offsets and radius points directly. Because of the type of knuckle, all of the radii and the PRC points are on a straight line.

It is also convenient for layout that, with the instrument at the main alignment intersection, the angle to turn to the center radius point is equal to the central angle of the returns when the point is on the inside (D is negative), or 180° minus the return central angle when it falls outside the intersection (D is positive).

Because this program uses so many of the same program steps as are needed in solving for the bulbs, the two programs have been combined. The basic moves are the same, with the exception that we use the C and D keys to begin the prompt sequence.

After keystroking XEQ (ALPHA B B (ALPHA), and execution halts, you may either continue by stroking C or input the coordinates of the intersection and stroke D if you want coordinate output. Either key will begin the prompt sequence. The complete keystroke procedures are on page 20.

Initialize the program by keystroking XEQ ALPHA B B ALPHA The . program will clear the registers and reset the flag status, and then halt. After the calculator has halted you may choose whether or not you want to have the coordinates calculated. The routine is fully prompted, and the following are the keystroke procedures: 1 If coordinates are to be calculated, input the N-coordinate value of the intersection of the streets and stroke ENTERT 2 Input the E-coordinate value for the streets' intersection and stroke D or If coordinates are not wanted, stroke C The prompts for the remainder of the input are the same regardless of which option was chosen. Bearing input should be in a clockwise direction. 3 BRG=? Input the bearing of the first street R/S OD=? Input the quadrant code R/S BRG=? Input the bearing of the second street R/S OD=? Input the guadrant code R/S 7 RADII? Input the radius of the return ENTER Input the center radius of the cul-de-sac R/S 8 1/2₩? Input the half-width of the street R/S

Output is automatic and will first print out the tangent distance (T) along the main tangent, followed by the distance from the streets' intersection to the center of the knuckle (D). If coordinate output was selected, the coordinates for the radius points will also be output.

As a first keystroke example, we will use the knuckle shown on the opposite page. Assume that the coordinates of the intersection are N=500 and E=500, and we will have it output the coordinates. If a printer is not attached, continue stroking [R/S] to obtain the output.

$\begin{array}{c} \hline \\ \hline $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{c} & & & \\ & $			1Knuck165
prompt: RADII? N= 505.6304 knuckle and creates a	keystrokes: IEO ALPHA B B ALPHA display: 360.0000 keystrokes: 5 0 0 ENTERT 5 0 0 0 prompt: BRG=? keystrokes: 4 0 • 1 R/S prompt: QD=? keystrokes: 1 R/S prompt: BRG=? keystrokes: 5 2 • 2 2 3 R/S prompt: QD=? keystrokes: 5 2 • 2 7 3 R/S prompt: QD=?	<pre>keystrokes: 2 0 ENTER+ 4 5 R/S prompt: 1/2W? keystrokes: 2 4 R/S output: T = 47.861 D = -1.289 CENTER: N= 498.7186 E= 500.1370 DELTA = 180° 0' 0.0° L = 141.372 RETURNS: N= 491.8067 E= 435.5056 DELTA = 46° 16' 15.0° L = 16.152 T = 8.545 CH = 15.716 N= 505.6304 E= 505.6304 E= 505.6304</pre>	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $

Intersection-Both Straight

This program can be used on those many occasions when the field crew is to stake out an intersection, but the site plan or subdivision map doesn't give all of the necessary information, or can be used to generate quick solutions when designing the intersection.

In its simplest form, it calculates the distance along centerline to be opposite the E.C. or B.C. of the returns. If desired, the coordinates of the return points and the radius points may be generated, either for plotting or for radial layout from known coordinate points.

A third option, using this program is direct radial layout of offset points to the curb returns from an instrument setup at the intersection. The angles and distances to the offset hubs are output, and the maximum spacing of the offset points around the curve, as well as the offset distance, can be pre-selected to meet the needs of the contractor.

The intersection shown to the left will be used for the examples which follow.

The required information is the bearing of the centerline of each street, the street widths, and the radii at the curb returns. In order to avoid confusion with the output, the line which runs most nearly north-south is designated as line A, and the street running most nearly east-west as line B.

When input, the line A quadrant code should be given in the northerly direction, and the line B quadrant code in the easterly direction. The solutions will begin with the northeasterly return and go clockwise around the intersection.

The output "Dist A" and "Dist B" allow quick calculation of the station at the E.C. and B.C. of the returns and, of course, the offset from centerline is already known.

When used for radial layout of the intersection, the program calculates the angle right to the solution point backsighting northerly along line A.

For easy access to this program, it has been designated as "NN". With the calculator sized at 035, Initialize the program by keystroking [XEQ] (ALPHA) [N] [ALPHA]. All of the routines used are guided by prompts, and the first of these appears as

- I LAYOUT? If the calculated solutions are to include radial stakeout of the returns, answer Y R/S, and the additional prompts (marked *) will appear. If layout is not desired, answer N R/S and go to step number 4.
- 2 OFFSET DIST?* Input the distance by which you wish to offset the stakes to be set
- 3 MAX SPG?* At this point you can select the maximum spacing which you want to have between the offset hubs, in order to assure that the construction of the return is a curve instead of a series of chords. Input the maximum distance between points at the curb line
 (R/S)
- 4 SHOW COORDS? If the coordinates of the solution points are required, answer Y R/S. If this option is selected, the coordinates of the radius point will also be calculated. When the option for LAYOUT has already been selected, the coordinates which are output at the B.C. and E.C. will be those of the offset hub location.

If layout has not been selected, the coordinates output are the actual E.C. and B.C. locations. When the answer to this prompt is yes, the additional prompt (marked ******) for beginning coordinates will appear.

If the coordinates are not required, answer [N] [R/S] and proceed at step 6.

 5
 INTER-X N+E**
 Input the N-coordinate of the intersection point
 ENTER+

 Input the E-coordinate of the intersection point
 R/S

 6
 BRG=?
 Input the bearing of line A
 R/S

 7
 QD=?
 Input the quadrant code for line A, using the northerly direction of the bearing
 R/S

Intersection-Both Straight

8	BRG?	
•		Input the bearing for line B
9	QD=?	Input the quadrant code for the line B bearing, using the
		easterly direction [R/S]
10	1/2W A?	Input the half-width of street A
	1 /01/ 00	
11	1/2W B?	Input the half-width of street B
12	R?	Input the radius of the first return, beginning in the upper

right-hand (northeasterly) corner of the intersection [R/S]

Output will be the solutions requested for the return. If a printer is not attached, continue stroking $\boxed{R/S}$ after each output until the solution for this quadrant has been completed. At this point the program will again prompt R?.

Return to step 12 for solution of the next return, working clockwise around the intersection.

To begin with an easy example of the keystroke procedures, use the illustrated intersection to calculate solutions without layout or coordinates, as follows:

keystrokes:	XEQ	prompt:	BRG=?	prompt:	R?
ALPHA N N	ALPHA	keystrokes:		keystrokes:	
prompt:	LAYOUT?	70 R/S		30 R75	
keystrokes:		prompt:	QD=?	output:	R = 30.0000
N R/S		keystrokes:			DELTR = 60º 0º 0.0"
prompt: SHO	COORDS?	2 R/S			L = 31.416
keystrokes:		prompt:	1/2W A?		T = 17.321 CH = 30.000
N R7S		keystrokes:			
prompt:	BRG=?	20 R/S			BISI H = 34.641 BIST B = 25.981
keystrokes:		prompt:	1/2W B?	The distances m	may be added or
10 R75		keystrokes:		subtracted to the intersection	the station at
prompt:	QD=?	25 R75		station at the	return points.
keystrokes:					
4 R/S					
		•		•	

prompt:	R?	prompt:	R?	prompt:	R?
keystrokes:		keystrokes:		keystrokes:	
20 R/S output:	R = 20.0000 DELTA = 120° 0° 0.0° L = 41.888 T = 34.641 CH = 34.641	30 R75 output:	R = 30.0000 DELTA = 60° 0' 0.0' L = 31.416 T = 17.321 CH = 30.000	2 5 R/S output:	R = 25.0000 DELTA = 120° 0° 0.0° L = 52.360 T = 43.301 CH = 43.301
	BIST A = 75.056 DIST B = 72.169		DIST A = 34.641 DIST B = 25.981		BIST A = 83.716 DIST B = 80.829
Using the same with an answe to the coordinates coordinates wo input as 1 0 5 0 0 0 (outputs would a to the right.	keystrokes, but r of Y R/S ate prompt, the uld have been O O ENTER† , R/S , and the appear as shown s shown after	R = 30.0000 DELTA = 60° 0° 0.0° L = 31.416 T = 17.321 CH = 30.000 DIST A = 34.641 N= 1.037.5877	$R = 20.0000$ $DELTA = 120^{\circ} 0^{\circ} 0.0^{\circ}$ $L = 41.888$ $T = 34.641$ $CH = 34.641$ $DIST A = 75.056$ $N = 929.5577$	R = 30.0000 $DELTA = 60° 0' 0.0°$ $L = 31.416$ $T = 17.321$ $CH = 30.000$ $DIST A = 34.641$ $N = 962.4123$	R = 25.0000 DELTA = 120° 0° 0.0° L = 52.360 T = 43.301 CH = 43.301 DIST A = 83.716 N= 1.078.9710 F = 4.076.7710
distances A and inates of the at the half-wid and opposite distance point.	B are the coord- return points, th distance from the centerline	E= 5,013.6808 Radius Point: N= 1,042.7972 E= 5,043.2250	E= 5,032.7294 Radius point: N= 933.0307 E= 5,052.4256	E= 4,986.3192 RADIUS POINT: N= 957.2028 E= 4,956.7750	E= 4,963.7688 RADIUS POINT: N= 1.074.6298 E= 4,941.1466
The radius poin as a design aid	tisalsooutput,	DIST B = 25.981 N= 1.014.6064 E= 5.032.9644	DIST B = 72.169 N= 951.8245 E= 5,059.2660	DIST B = 25.981 N= 985.3936 E= 4,967.0356	DIST B = 80.829 N= 1,051.1375 E= 4,932.5961

Next, as an example of the **layout mode** of this program, we can work the same example, assuming that we are setting the instrument up at the intersection of the centerlines of the two streets, and sighting northerly along line A. We will further assume that we want to set our offset stakes at an offset of 3 feet to the face of the curb, and that we do not want more than 16 feet between the points around the curve.

keystrokes:	XEQ	prompt: OF	FSET DIST?	keystrokes:
ALPHA N N	ALPHA	keystrokes:		16 R/S
prompt:	LAYOUT?	3 R75		prompt: SHOW COORDS?
keystrokes:		prompt:	MAX SPG?	keystrokes:
Y R/S	:			N R/S

		Inters	ection -)8	oth S	traigh
prompt:	BRG=?		1/2	prompt:	R?
keystrokes:			HD = 33.992	keystrokes:	
10 R/S			41 ° 32' 28.9"	30 R/S	
prompt:	QD=?		DIST $B = 25.981$	output:	R = 30.0000
keystrokes:	-		HD = 38.197		DELTA =
4 R/S			∡RT= 62° 51' 27.9"		L = 31.416
prompt:	BRG=?				T = 17.321
keystrokes:		prompt:	R?		CH - 30.000
70 R/S		keystrokes:			DIST $A = 34.641$ HD = 41 581
prompt:	QD=?	20 R/S			∡RT=
keystrokes:		output:	R = 20.0000		203 • 34 56.2
[2] [R/S]			DELTA =		RADIUS POINT:
prompt:	1/2W A?		120° 0' 0.0- L = 41.888		HD = 60.828 ∡RT=
keystrokes:			T = 34.641		225 • 17 • 6.0
[2] [0] [R/S]			CH = 34.641		1/2
prompt:	1/2W B?		DIST A = 75.056		HD = 55.009
keystrokes:			∡RT=		198° 56' 18.0"
[2] [5] [R/S]			152° 57' 46.3"		NICT D - 25 001
prompt:	R?		RADIUS POINT:		HD = 38.197
keystrokes:			HD = 85.049 /PT=		∡RT= 2429 511 27 9*
30 R/S			141 ° 56' 42.4"	prompt:	R?
output:	R = 30.0000		1/3	keystrokes:	
-	DELTA =		HD = 69.571	[2] [5] [R/S]	
	60° 0' 0.0- L = 31.416		∡RI= 147º 11' 4.6"	output:	R = 25.000
	T = 17.321		0.7		DELTA =
	LH = 30.000		273 HD = 69.087		120° 0' 0.0" L = 52.360
	DIST $A = 34.641$		∠RT=		T = 43.301
	∡RT=		10f - 07 10.7		LM = 43.301
	23° 34' 56.2"		BIST B = 72.169 HD = 77.410		DIST $A = 83.716$
	RADIUS POINT:		∡RT=		∡RT=
	HD = 60.828 ∡RT=		131 ° 12 · 18.8 ·		334 * 38 15.5
	45° 17' 6.0"	ł		I	

RADIUS POINT: HD = 95.044∡RT= 321 . 44. 25.8-1/4 HD = 98.206∡RT= 334 . 40. 46.8" 2/4 HD = 108.247∡RT= 331 . 41. 37.2. 3/4 HD = 114.895∡RT= 326 ° 56 ' 31.3" DIST B = 80.829 HD = 85.541∡RT= 389 6 23.8 It may be noted that, f last radius, the mid-poi labled as "2/4" instead of Similar output will oc 2/8, 4/8, 6/8, etc. t it was felt that the use rather not have to pu all of the extra steps would be needed, just to the fractional output to common denominator.

Answering YES to both the LAYOUT? and the SHOW COORDS? prompts would result in output as shown below. This type of output is convenient if the layout calculations are done at the same time as the design data is calculated, since it does not require additional work to obtain the field layout information at a later date. A partial printout is shown as an example of the output.

	R = 30.0000	HD = 38.197
	DELTA =	∡RT=
	60° 0' 0.0-	62° 51' 27.9"
	L = 31.416	
	I = 17.321	
	CH = 39.090	R = 20.0000
		DELTA =
	DIST A = 34.641	120° 0' 0.0"
	N= 1,038,1086	L = 41.888
	F = 5.016.6352	T = 34.641
		CH = 34.641
	HD = 41.581	
	∠RT=	D IST A = 75.056
	23° 34' 56.2"	N= 930.0786
		E= 5,035.6838
	RABIUS POINT:	
	N= 1,042,7972	HD = 78.501
	E= 5,043.2250	∡RT=
for the		152° 57' 46.3"
nt was	HD = 60.828	
of 1/2.	∠RT=	RADIUS POINT:
.,	45° 17' 6.0"	N= 933.0307
cur as		E= 5,052.4256
ecause	1/2	
r would	N= 1,025.4419	HD = 85.049
nch in	E= 5,022.5418	∡RT=
which		141° 56' 42.4"
reduce	HD = 33.992	
least	∡RT=	1/3
	41° 32' 28.9"	N= 941.5307
		E= 5,037.7031
	DIST B = 25.981	
	N= 1,017.4254	HD = 69.571
	E= 5,033.9905	∡RT=
		147° 11' 4.6"

When working in both **layout** and **coordinate output** modes, it should be remembered that coordinates of the offset points are output, rather than those of the return and curve points.
Intersection-One Curved

This program is similar to the previous one, with the exception that it calculates the intersection when one of the streets is straight and the other is curved.

The required information is the bearing of the centerline of the straight street, the radial bearing, **to** the point of intersection, and radius of the curved street, the street widths, and the radii at the curb returns.

The solutions begin with the return to the right of the line A direction, and go clockwise around the intersection.

The output distance, "A" and the arc, "B" allow calculation of the stations of the E.C. and B.C. points.

The intersection shown to the right will be used as the example, and is a type A1 intersection. All of the basic information is the same as in the last progam, with the exception of the radial instead of the tangent bearing being used for the curved street. Select type A if the radial bearing is northeast or southwest, and Type B when the radial bearing is northwest or southeast.

When input, the line A quadrant code should be given in the northerly or southerly direction which matches the northerly or southerly direction of the radial bearing of B, when the line B quadrant code is given as radial to the point of intersection.

This program has been designated as "NO". With the calculator sized at 035, Initialize the program by keystroking $\boxed{\textbf{XEQ}}$ $\boxed{\textbf{ALPHA}}$ $\boxed{\textbf{N}}$ $\boxed{\textbf{O}}$ $\boxed{\textbf{ALPHA}}$. The calculator will clear and pause with a display of 0.0000.

- Keystroke either A or B , to correspond with the type of intersection.
- 2 LAYOUT? If the calculated solutions are to include radial stakeout of the returns, answer Y R/S and the additional prompts (marked *) will appear. If layout is not desired, answer N R/S and go to step number 5
- 3 **OFFSET DIST?*** Input the offset distance for the hubs

1

- 4 MAX SPG?* Input the maximum spacing which you want between the curve points on the returns [R/S]
- 5 SHOW COORDS? If the coordinates of the solution points are required, answer
 Y R/S. If this option is selected, the coordinates of the radius point will also be calculated.

When the answer to this prompt is yes, the additional prompt (marked ******) for beginning coordinates will appear.

R/S

R/S

R/S

If the coordinates are not required, answer [N] [R/S] and proceed at step 7

- 6 INTER-X N+E** Input the N-coordinate of the intersection point [ENTER+] Input the E-coordinate of the intersection point [R/S]
- 7 BRG=? Input the bearing of line A
- 8 QD=? Input the quadrant code for line A that corresponds to the northerly or southerly direction of the radial bearing [R/S]
- 9 BRG=? Input the radial bearing of street B
- 10 QD=? Input the quadrant code for the radial bearing of street B in the direction to the intersection [R/S]

Intersection-ODS CUIVEd

11	R?	Input the radius of the centerline of street B	R/S]
12	1/2W A?	Input the half-width of street A	
13	1/2W B?	Input the half-width of street B	
14	R?	Input the radius of the first return, beginning in the qua indicated for the type of intersection being calculated	adrant

Output will be the solutions requested for the return. If a printer is not attached, continue stroking [R/S] after each output until the solution for this quadrant has been completed. At this point the program will again prompt R?.

Return to step 14 for solution of the next return, working clockwise around the intersection.

To begin with an easy example of the keystroke procedures, use the illustrated intersection to calculate solutions without layout or coordinates, as follows:

keystrokes:	XEQ	prompt:	BRG=?	prompt:	R?
ALPHA N O	ALPHA	keystrokes:		keystrokes:	
display:	0.0000	2203	R/S	60 R/S	
A prompt:	LAYOUT?	prompt:	QD=?	output:	A = 58.477
keystrokes:		keystrokes:			R = 60.000 DFLTA =
N R/S		1 R/S			63° 11' 46.1"
prompt: SHOW	COORDS?	prompt:	R?		L = 66.179 T = 36.989
keystrokes:		keystrokes:			CH = 62.875
N R/S		350 R/S	0		B = 41.563
prompt:	BRG=?	prompt:	1/2W A?	The stations of	the E.C. and
keystrokes:		keystrokes:		A and ARC B.	
2 · 3 R/S		16 R/S		Add or subtract f	from the center-
prompt:	QD=?	prompt:	1/2W B?	line intersection	ons, depending
keystrokes:		keystrokes:		stationing.	
1 R/S		24 R/S			

prompt:	R?	prompt:	R?	prompt: R?
keystrokes:		keystrokes:		keystrokes:
4 0 R/S output:	A = 103.231 R = 40.000 DELTA = 127° 54' 19.6° _ = 89.295 T = 81.841 CH = 71.875 B = 109.378	60 R/S output:) A = 66.508 R = 60.000 DELTA = 80° 32° 33.8° L = 84.344 T = 50.832 CH = 77.569 B = 64.402	6 0 R75 output: A = 102.901 R = 60.000 DELTA = 95° 46' 47.7° L = 100.300 T = 66.380 CH = 89.023 B = 86.866
A = 58.477 N= 1,057.7230 E= 5,018.5355 RAD. POINT: N= 1,055.1059 F= 5,078.4784	A = 103.231 N= 896.1692 E= 5.011.4819 RAD. POINT: N= 894.4245 F= 5.051.4438	A = 66.508 N= 934.2534 E= 4,981.1142 RAD. POINT: N= 936.8706 F= 4.921.1713	A = 102.901 N= 1,103.5011 E= 4,988.5037 RAD. POINT: N= 1,106.1183 F= 4,928.5608	Using the same keystrokes, but with an answer of Y R/S to the coordinate prompt, the coordinates would have been input as 10000 ENTERT, 5000 R/S, and the outputs would appear as shown
R = 60.000 DELTA = 63° 11' 46.1" L = 66.179 T = 36.909 CH = 62.875	R = 40.000 DELTA = 127° 54' 19.6" L = 89.295 T = 81.841 CH = 71.875	R = 60.000 DELTA = 80° 32' 33.8" L = 84.344 T = 50.832 CH = 77.569	R = 60.000 DELTA = 95° 46' 47.7" L = 100.300 T = 66.380 CH = 89.023	to the left. The coordinates shown after distances A and B are the coord- inates of the return points, at the half-width distance from and opposite the centerline distance point.
B = 41.563 N= 1,002.7837 E= 5,049.1119	B = 109.378 N= 924.8835 E= 5,077.3715	B = 64.402 N= 995.5687 E= 4,933.6022	B = 86.866 N= 1,046.7437 E= 4,919.9203	The radius point is also output, as a design aid.

Next, as an example of the **layout mode** of this program, we can work the same example, assuming that we are setting the instrument up at the intersection of the centerlines of the two streets, and sighting along line A in the direction that was input at steps 7 and 8. We will further assume that we want to set our offset stakes at an offset of 3 feet to the face of the curb, and that we do not want more than 25 feet between the stakes around the curve.

keystrokes:	j prompt: LAYOUT?	keystrokes:
ALPHA N O ALPHA] keystrokes:	3 R/S
display: 0.00		prompt: MAX SPG?
keystrokes:	prompt: OFFSET DIST?	keystrokes:
Α]	2 5 R/S

Intersection-One Curved

RAD. POINT: prompt: SHOW COORDS? HD = 95.8931/4 ∡RT= keystrokes: HD = 87.18452° 25' 27.4" ∡RT= N R/S 163° 36' 3.6" R = 68.000prompt: BRG=? BELTA = 2/4 keystrokes: 63º 11' 46.1" HD = 80.491 L = 66.179∡RT= 2 · 3 R/S T = 36.909150° 24' 14.5" prompt: QD=? CH = 62.8753/4 keystrokes: 1/3HD = 89.3951 R/S HD = 44.310∡RT= ∡RT= 137 . 59 . 44.5 prompt: BRG=? 30° 58' 53.0" keystrokes: B = 109.3782/3HD = 108.07522·3 R/S HD = 39.335∡RT= prompt: ∡RT= QD=? 133 . 14 . 24.8-59° 1' 57.7" keystrokes: prompt: **R**? B = 41.563keystrokes: 1 R/S HD = 50.868prompt: R? 6 0 R/S ∡RT= 81 º 24 · 22.8* keystrokes: output: A = 66.508 HD = 69.169350 R/S prompt: R? ∡RT= prompt: 1/2 A? keystrokes: 195 . 56 . 37.0 keystrokes: 4 0 R/S RAD. POINT: output: 1 6 R/S HD = 100.992A = 103.231∡RT= HD = 104.965prompt: 1/2 B? 228 48 38.7 ∡RT= keystrokes: 169° 34' 16.5" R = 68.0002 4 R/S DELTA = RAD. POINT: 80 32 33.8 prompt: R? HD = 117.442L = 84.344∡RT= keystrokes: T = 50.832151 º 31 · 17.0 · CH = 77.5696 0 R/S R = 40.000output: A = 58.4771/4 DELTA = HD = 61.486HD = 51.998127 0 54 19.6 ∡RT= ∡RT= L = 89.295 17° 59' 59.4" 205° 37' 11.2" T = 81.841CH = 71.875

	2/4 HD = 44.008 4RT= 227° 37' 18.7"	output:	A = 102.901 HD = 104.641 ∡RT= 349° 32° 18.8°	2/4 HD = 71.424 ∡RT= 328° 4° 0.8°
	3/4 HD = 50.762 &RT= 250° 30° 7.5°		RAB. POIMT: HD = 127.924 ∡RT= 323° 33° 5.2°	3∕4 HD = 75.937 ∡RT= 309° 55' 52.8°
prompt:	B = 64.402 HD = 67.423 $\Delta RT = 261^{\circ} 13^{\circ} 39.8^{\circ}$ R?		R = 60.000 DELTA = 95° 46' 47.7" L = 100.300 T = 66.380 CH = 89.023	B = 86.866 HD = 93.889 ∡RT= 299° 28° 13.9°
keystrokes: 60 (R/S)			1/4 HD = 83.272 ∡RT= 343° 19° 0.8-	

Intersection-Both Curved

The solution of the returns on an intersection where both of the streets are curved has some slightly different prompts. The main difference is in the **layout** routine. Because neither of the streets is on a tangent, it is necessary to input the backsight coordinates.

When we come to the layout example, we will assume a known point with the coordinates N=1122/E=5086 as a backsight, but any convenient known point may be used.

Both of the bearings are the radial bearings to the intersection point. Line A should be clockwise and line B counterclockwise of the return which is inside both curves.

The first solution will be the return which is on the inside of both curves. Go clockwise for the other solutions.

In the intersection shown to the left, line A has a radius of 380' and a radial bearing of N 27°30' E. Line B has a radial bearing of N 66° W, with a radius of 400'.

The street half-widths are as shown, as are the return radii. The centerline arc distances

opposite the E.C. and B.C. points of the returns are output so that the stations may be calculated. As in the previous programs, there are options for calculating the arcs and curve data, the coordinates of the points or doing a complete layout of the intersection at any selected offset and spacing for the stakes.

Keystroke procedures and detailed examples are on the following pages. Even though the program prompts for all of the necessary input, it's handy to have a sketch of the intersection while working with it, in order to input the proper radius dimensions as the solutions are generated. This program has been designated as "CC". Size the calculator at 045 prior to running it, and initialize the program by keystroking **[XEQ] (ALPHA) (C) (C) (ALPHA)**. the routines used are guided by prompts, and the first of these is:

- 1 LAYOUT? If the calculated solutions are to include radial stakeout of the returns, answer Y R/S and the additional prompts (marked *) will appear. If layout is not desired, answer N R/S and go to step number 4
- 2 OFFSET DIST?* Input the distance by which you wish to offset the stakes to be set

 R/S

 2
- 3 MAX SPG?* At this point you can select the maximum spacing which you want between the layout points. Input the maximum distance between points
- 4 SHOW COORDS? If the coordinates of the solution points are required, answer Y R7S. If this option is selected, the coordinates of the radius point will also be calculated.

When the option for LAYOUT has already been selected, the coordinates which are output at the B.C. and E.C. will be those of the **offset hub** location. If layout has not been selected, the coordinates output are the actual E.C. and B.C. locations.

When the answer to this prompt is yes, the additional prompt (marked ******) for beginning coordinates will appear.

If the coordinates are not required, answer \mathbb{N} \mathbb{R}/\mathbb{S} and proceed at step 7

5 INTER-X N+E** Input the N-coordinate of the intersection point [ENTER+] Input the E-coordinate of the intersection point

6 BACKSITE?* Any point with known coordinates may be used. Input the

N-coordinate of the backsight point [ENTER+] Input the E-coordinate of the backsight point

R/S

Intersection-Both Curved

A-LINE R=? 7 Input the centerline radius of street "A" line. In selecting which line to designate as "A" and which to designate as "B", the line to be used as "A" will be the one with a radial bearing to the intersection clockwise from the return which is inside both curves. R/S BRG=? 8 Input the bearing of line A. R/S OD=? Q Input the quadrant code for the line A bearing, using the direction toward the intersection R/S 10 1/2W A? Input the half-width of street A R/S 11 B-LINE R=? Input the centerline radius of street B R/S 12 BRG=? Input the bearing for line B R/S 13 **QD=?** Input the quadrant code for the line B bearing, using the direction toward the intersection R/S 14 1/2W B? Input the half-width of street B R/S

15 R? Input the radius of the first return, beginning with the return which is inside both curves

Output will be the solutions requested for the return. If a printer is not attached, continue stroking \mathbb{R}/S after each output until the solution for this quadrant has been completed. At this point the program will again prompt $\mathbb{R}?$.

Return to step 15 for solution of the next return, working clockwise around the intersection.

This program, like the last two, assumes that the coordinates of the basic curve data are already known (such as the coordinates of the intersection. In the two previous programs sighting down the tangent and using assumed coordinates will work, but for this program it is necessary to use real values for the intersection and backsight points in order to prevent rotation of the intersection layout.

We will begin with the keystrokes for an example run without the layout option, and do the first three returns. All of the keystrokes for solving the intersection are the same when the layout option is used, except that the additional prompts are answered with known information. Start with the calculator sized at 045, then

keystrokes:	XEQ	prompt:	BRG=?	output:	ARC A = 74.002 N= 950.7452
ALPHA C	C ALPHA	keystrokes:			E= 4,961.0280
prompt:	LAYOUT?	66 R75			RADIUS POINT:
keystrokes:		prompt:	QD=?		N= 964.2499
N R/S		keystrokes:			E= 4,712.0003
prompt: S	HOW COORDS?	4 R75			R = 50.000
keystrokes:		prompt:	1/2W B?		89° 19' 48.1"
Y R/S		keystrokes:			L = 77.953
prompt:	INTER-X N+E	20 R75			CH = 70.295
keystrokes:		prompt:	R?		OPC 8 = 58 155
1000	ENTERT	keystrokes:			N= 1,012.2298
5000	R/S	40 R/S		nrompt.	E= 4,926.9549 R?
prompt:	A-LINE R=?	output:	ARC A = 83.849 N= 919.2400	kevstrokes:	
keystrokes:			E= 4,994.3566		
380 R7	5		RADIUS POINT:	output:	ARC $A = 65.876$
prompt:	BRG=?		N= 910.6153		N= 1,065.1239
keystrokes:			E= 3/033.413/		F= 21615.242
27.3	R/S		R = 40.000		RADIUS POINT:
prompt:	QD=?		117° 41' 27.0"		E= 4,962.1682
keystrokes:			L = 82.164 T = 66.166		D - 40 000
1 R/S			CH = 68.462		DELTA =
prompt:	1/2W A?		ARC B = 80.622		74° 43' 6.3"
keystrokes:			N= 941.1930		T = 45.806
16 R/S		prompt:	E= 5,059.2034 R?		CH = 72.817
prompt:	B-LINE R=?	keystrokes:			ARC B = 61.777
keystrokes:		50 R75			N= 1,040.4676 E= 4,944.0586
400 R/	S				

Intersection-Both Curved

Now, for the example using the layout routine, a backsight point must be selected. In the example illustration the known point used as a backsight is shown as having coordinates of N1122/E5086, and is convenient for backsighting. With a maximum spacing required at 20 feet and the hubs offset 3 feet, we use the keystrokes shown below.

Begin with the calculator sized at 045 and stroke **XEQ ALPHA C C ALPHA** to initiate the routine, and follow the prompts

				ARC A = 83.849
prompt: LAYOUT?	prompt:	BRG=?	output:	HD = 81.452
keystrokes:	keystrokes:			∡RT=
Y R/S	27.3	R/S		146° 43' 43.5"
prompt: OFFSET DIST?	prompt:	QD=?		RADIUS POINT:
keystrokes:	keystrokes:			HD = 95.427
3 R/S	1 R/S			∡RT=
prompt: MAX SPG?	prompt:	1/2W A?		124° 19' 17.4"
keystrokes:	keystrokes:			R = 40.000
[2] $[0]$ $[R/S]$	16 R/S			DELTH = 117º 41' 27.0"
prompt: SHOW COORDS?	prompt:	B-LINE R=?		L = 82.164
keystrokes:	keystrokes:			T = 66.166 CH = 68.462
		5		
prompt: INTER-X N+E	prompt:	BRG=?		1/5 HD = 69.593
keystrokes:	keystrokes:			∡RT=
				105° 36' 54.3"
	prompt:	0D=?		2/5
prompt: BACKSITE?	keystrokes:	4 2 ·		HD = 60.089 ∡RT=
kevstrokes:				116° 1' 5.1-
	prompt.	1/2W R2		3/5
	keystrokes:	1/28 0:		HD = 59.333
				∡R1= 130° 31' 19.4"
kovstrokos:		0.2		
	prompt:	K f		4/5 HD = 67.731
	Reystrokes:			∡RT=
			l	141 0 52' 32.4"
				ARC B = 80.6220
				HU = 83.744 ∡RT=
\				101 * 40 * 23.0*

prompt:	R?	prompt:	R?	prompt:	R?
kovstrokost		kovstrokost		kovstrokost	
Reystrokes.		Reystrokes.		meystrokes.	
5 0 R/S		60 R/S		4 0 R/S	
output:	ARC A = 74.002	output:	ARC A = 65.876	output:	ARC A = 52.775
	HD = 64.025 ∡RT= 185° 38' 57.4"		HD = 67. 504 ∡RT= 333° 23° 5.5°		HD = 59.601 ∡RT= 15° 31' 6.5"
	RADIUS POINT: HD = 94.164 ∡RT= 212° 30' 24.5-		RADIUS POINT: HD = 104.740 &RT= 303° 38' 44.4"		RADIUS POINT: HD = 79.540 ∡RT= 41° 40' 54.6"
	R = 50.000 DELTA = 89° 19' 40.1" L = 77.953 T = 49.417 CH = 70.295		R = 60.000 DELTA = 74° 43' 6.3" L = 78.245 T = 45.806 CH = 72.817		R = 40.000 DELTA = 86° 39' 43.3" L = 60.502 T = 37.735 CH = 54.897
	1∕4 HD = 57.752 ∡RT= 235° 45' 19.2"		1/4 HD = 54.805 ∡RT= 282°44′38.9°		1/3 HD = 44.154 ∡RT= 52° 8' 46.9-
	2/4 HD = 47.797 ∡RT= 219° 4' 35.0-		2/4 HD = 47.777 ∡RT= 301° 59' 49.6"		2/3 HD = 45.257 ≰RT= 28° 21' 38.0-
	3/4 HD = 50.523 ∡RT= 197° 58° 22.0°		3/4 HD = 53.096 ∡RT= 322° 15' 37.0°		ARC B = 56.6842 HD = 57.278 ≰RT= 66° 58° 25.4°
	ARC B = 58.1550 HD = 74.479 ∡RT= 242° 1' 55.3"		ARC B = 61.7769 HD = 70.045 ∡RT= 273° 1° 52.9°		

Program Listings

The following pages contain the program steps which must be keyed into the calculator in order for the programs to function properly. Since this book has been written with the intention of providing help in the calculations needed for surveying, it is important that the programs provide correct answers when used.

For those users who have card readers, **D'Zign** provides a card-programming service. We will program your cards for you and return them in a labeled card holder which can be inserted directly into the book. The cost for the service is \$8.50, and you provide the blank cards.

To take advantage of this option, send 20 blank magnetic cards and your check for \$8.50 to **D'Zign land survey & development**, P.O. Box 1370, Pacifica, CA 94044.

KEYING IN A PROGRAM

- 1. Before beginning to key the program steps into the calculator, keystroke <u>shift</u> <u>GTO</u> • to prepare the calculator for the new program. Set the calculator to program mode by pressing the <u>PRGM</u> key.
- Labels are marked with a diamond (♦) in the program listings, as a visual aid. When keying in the program ignore the diamond, and key in LBL by keystroking shift LBL (the STO button), followed by either the label number or ALPHA the label name ALPHA.
- 3. Symbols or characters shown with quote marks indicate that they are alpha characters, and must be input as program steps in alpha mode.
- 4. Functions which do not appear on the keyboard may be keyed into the program by stroking <u>ALPHA</u>, spelling out the function, and again stroking <u>ALPHA</u>. Some of the functions, such as FC?01 must be input partly in alpha. Stroke <u>ALPHA</u> F C ? ; again stroke <u>ALPHA</u>, and the display will prompt FC?___, at which time you stroke the 01. The character * in the listing is the X (multiply) button, and the character printed as ∠ is the divide button.

UTILITY PROGRAMS

These are programs which are used as sub-routines by the other programs. For the main programs to function properly these sub-routines must also be in program memory. They are divided into two groups, one called UTILITIES, and the other UTILITIES 2.

Those shown on the opposite page are the same as used in the book "HP-41CV/CX **Surveying Field Solutions**", and do not need to be input again if previously input for use with programs from that book. Additionally, they do not have to be input if the calculator contains the **D'Zign** "COGO 41" module.

"AZ" need not be input if the calculator contains the HEWLETT-PACKARD Surveying Pac. This program changes bearing input to north azimuth for storage and use in the various calculations.

"DMS" must be in the calculator memory if the calculator is used with a printer attached. It is not necessary when no printer is used. Other than input by use of a card reader, this routine cannot be put into memory unless a printer is attached while programming.

If you do not already have these programs, and want them, when sending for the card programming service, include one extra card with your order. The extra card will also contain "**STA**", a handy subroutine which changes the number in the x-register to stationing (XX+XX.xxx) form. The extra card will be programmed with your set at no extra charge.

The following pages contain the programs of the UTILITIES 2 set. The program listings for each of the main programs will tell you which are used each time, but most all of them are used by all of the main programs. UTILITIES 2 contains 529 bytes of programming which would otherwise have to be typed in as part of each program. This sub-routine group occupies 77 registers of program memory.

All of these may also be used with other programs which you write yourself. "CURD", for instance, calculates the curve data (store the radius in 17 and the central angle in 21 and have your program contain the step XEQ "CURD") and "CLR" may be used at the start of any program to reset the flag status and clear the registers.

Another that you may find use for in your own programming is "RI", which performs the radial inverses. Store your instrument position northing in register 05, the easting in 06, and have the north azimuth to the backsight in register 01. If your program includes the step XEQ "RI", it will automatically perform the inverse and output the horizontal distance and angle right to any point whose N-coordinate is in the Y-register and E-coordinate is in the X-register.

Vtilities

014	LBL AZ	01+LBL "DMS"	27	6
02	-BRG=?-	02 STO 23	28	ACCOL
03	PROMPT	03 RDN	29	2
84	•QD=?•	04 STO 24	30	SKPCOL
0 5	PROMPT	05 RDN	31	RCL 22
0 6	X<>Y	06 STO 25	32	INT
0 7	HR	07 RDN	33	ACX
8	X<>Y	0 8 STO 26	34	39
09	ENTERT	09 RDN	35	ACCHR
10	ENTERT	10 ENTERT	36	RCL 22
11	2	11 INT	37	FRC
12	1	12 CF 29	38	100
13	INT	13 FIX 0	39	*
14	PI	14 ACX	40	FIX 1
15	R-D	15 -	41	ACX
16	*	16 100	42	34
17	X<>Y	17 *	43	ACCHR
18	LASTX	18 ABS	44	PRBUF
19	+	19 STO 22	45	RCL 26
28	COS	20 3	46	RCL 25
21	Rt	21 SKPCOL	47	RCL 24
22	*	22 6	48	RCL 23
23	-	23 ACCOL	49	FIX 4
24	FS? 10	24 9	50	SF 29
25	RTH	25 ACCOL	51	RTN
26	HMS	26 ACCOL	52	END
27	RTN			

HP-41CV/CX Surveying Field Solutions

FULLY DOCUMENTED AND ILLUSTRATEDSOLUTIONS BOOK!\$19.95*(CALIFORNIA RESIDENTS PLEASE ADD \$1.30 SALES TAX)

FIELD LAYOUT © RADIAL INVERSE ALIGNMENT AND OFFSETS - a new concept in COGO with coordinate solutions using STATION input AND with an AUTO-INVERSE option! SPIRAL CURVES (including the circular portion) with coordinate output from STATION input and the same AUTO-INVERSE option!

FIELD LOCATION \circ TOPO \circ AS-BUILTS \circ REMOTE SLOPE STAKING \circ TUNNEL TIGHTS and TRIANGLE SOLUTIONS seven types including two solutions where the AREA is one of the known parts.

* PRICE VALID THRU MAY 1987

Software by D'Zign p. o. box 1370 · pacifica, ca 94044

01+LBL "SORT" 02 XEQ 01 **03 "LAYOUT?"** is layout wanted? 04 XEQ 82 05 X=Y? 06 XEQ 23 07 XEQ 01 08 "SHOW COORDS?" are coordinates wanted? 09 XEQ 02 10 X=Y? 11 XEQ 22 12 RTN 13+LBL 01 set for alpha response 14 •Y* 15 ASTO X 16 AON 17 RTN 18+LBL 02 accept alpha response 19 PROMPT 20 ASTO Y 21 **AOFF**

22 RTN 23+LBL 22 24 SF 06 25 SF 82 26 *INTER-X NYE* 27 PROMPT prompt for input of center coordinates 28 STO 06 29 RDN 30 STO 05 31 RTN 32+LBL 23 33 SF 02 34 SF 03 35 *OFFSET DIST?* **36 PROMPT** prompts for desired hub offset distance 37 STO 02 38 "MAX SPG?" **39 PROMPT** prompts for spacing between layout points 40 STO 32 41 RTN 42+LBL -BA-

Utilities 2

43 RCL 37 44 RCL 38 45 RCL 03 46 + 47 +	radius 'a' return radius 'b' base distance	78 SQRT 79 ACOS 80 2 81 * 82 STO 40	angle 'B'
48 Z 49 /		83 SF 01 84 RTN	
50 STO 10		85+LBL -SET-	
51 Xt2		86 RCL 27	denominator
52 LHSTX	noturn nadius lbl	87 KUL 34	
54 #	return radius 'b'	89 RTN	
55 -		90 RCL 31	return base azimuth
56 RCL 37		91 RCL 33	curve portion angle
57 RCL 03		92 RCL 27	
58 ¥		93 ¥ 04 EC2 07	
57 / 60 SORT		94 F32 07 95 FHS	
61 ACOS		96 -	
62 2		97 CLA	
63 *		98 FIX 0	
64 STO 39	ancle 'C'	99 CF 29	
60 51N 44 PCL 77	radius 'a'	100 HKUL 27	numerator
67 STO 28		102 ARCL 34	denominator
68 RCL 10		103 AVIEN	
69 X12		104 SF 29	
70 LASTX		105 RCL 17	return radius
71 RCL 37		106 RCL 02	hub offset constant
72 +		107 - 108 P-P	
74 RCL 38	radius 'b'	109 RCL 07	radius point N-coord
75 /		110 +	
76 RCL 03	base distance	111 X<>Y	
77 /		112 RCL 08	radius point E-coord

113 + 114 CLA 115 FIX 4 116 XEQ "RI" 117 1 118 ST+ 27 119 GTO "SET" 120 RTN 121+LBL "CURD" 122 HMS 123 "DELTA =" 124 AVIEN 125 FIX 4 126 CLA 127 ARCL X 128 FC? 55 129 AVIEN 130 FS? 55 131 XEQ "DMS" output as DD"MM"SS" 132 RCL 17 133 RCL 21	148 ARCL X 149 AVIEW 150 RCL 21 151 2 152 / 153 SIN 154 RCL 17 155 * 156 2 157 * 158 *CH = * 159 ARCL X 160 AVIEW 161 RTN 162*LBL *DIV* 163 RCL 17 164 X=0? 165 RTN 166 1 167 STO 27 168 RCL 09	output tangent dist output chord length
134 J-K 135 * 136 STO 30 curve length 137 RCL 21 curve central angle 138 2 139 / 140 TAN 141 RCL 17 142 * 143 FIX 3 144 -L = - 145 ARCL Y 146 AVIEN output length 147 -T = -	169 180 170 + 171 STO 31 172 RCL 30 173 RCL 32 174 / 175 .46 176 + 177 FIX 0 178 RND 179 STO 34 180 FIX 4 181 RCL 21 182 STO 30	return base azimuth curve arc length maximum spacing denominator curve portion length

183 X<>Y		218 INT	
184 /		219 180	
185 STO 33		229 *	
186 RTN		221 -	
19741 RI - PT-		222 086	
100 500 84		222 H00	
100 FJ: 00	output coordinates	223 1113	
107 AE& 70	output cool anates	227 110 T	
190 632 00		22J KUL 12	
191 HUY		226 KUL 11	
192 RCL 06	Instrument E-coord	227 RUL 01	
193 -		228 -	
194 X<>Y		229 ENTERT	
195 RCL 05	instrument N-coord	230 CLX	
196 -		231 X<>Y	
197 R-P		232 X(0?	
198 FIX 3		233 360	
199 HD = -		234 +	
200 ARCL X		235 HMS	
201 AVIEW	distance to hub being	236 "∡RT="	
202 CLX	set (offset hub)	237 FC? 55	
203 X<>Y		238 ARCL X	
204 X(0?		239 AVIEN	output angle right if
205 360		240 FS? 55	no printer attached
206 +		241 XEQ -DMS-	output as DD°MM'SS"
207 STO 11		242 ADV	when the printer is
208 ENTERT		243 RTH	attached
209 ENTERT	calculate angle right	244+LBL -98-	
210 90	to the offset hub	245 FIX 4	
211 /		246 "N= "	
212 1		247 ARCL Y	
213 +		248 AVIEW	
214 INT		249 •E= •	
215 STO 12		250 ARCL X	
216 2		251 AVIEN	
217 /		252 RTN	

253+LBL -CLR-254 CLRG 255 SF 21 256 SF 27 257 CF 00 258 CF 01 259 CF 02 260 CF 03

 ${\rm CD}$ occupies 79 registers of program memory and should be used with the calculator sized at least to 045. The program contains 550 bytes of programming, and can be stored on 5 tracks of magnetic cards.

Cul-de-Sac

Subroutines used with this program are "SORT", "SET", "CURD", "DIV", "98", "CLR" and "RI", all of which are contained in the UTILITIES 2 series of program steps. "AZ" and "DMS" are also used with this program. "AZ" is contained in the Hewlett-Packard Surveying Pac, and both are in the D'Zign "COGO 41" module. It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached.

01+LBL "CD"	21 STO 17
02 XEQ "CLR" clear registers & set	22 "WIDTH?"
03 SF 00 flag status	23 PROMPT
04 SF 07	24 2
0 5 360	25 /
06 STO 00	26 STO 16 store outer and inner
97 XEQ "SORT" prompt subroutine	27 ST0 18 values for $\frac{1}{2}$ width of
08 FS? 03	28 -OFFSET?-
69 XEQ 21 prompt for backsight	29 PROMPT prompt for offset from
10 FS? 02 coordinates (layout)	30 STO 10 centerline of street
11 XEQ 16 prompt routine, input	31+LBL 02 calculate distance and
12 FS? 02 when coordinates or	32 RCL 14 offset to return point
13 XEQ 22 layout are wanted	33 RCL 04
14 "RADII?"	34 +
15 PROMPT	35 STO 37
16 STO 15	36 RCL 14
17 RDN	37 RCL 16
18 STO 84	38 +
19 RDN	39 RCL 10
20 STO 14	40 FS? 07

41 CHS 76 RCL 19 42 -77 RCL 20 43 X<>Y 78 + 44 / 79 STO 09 45 ASIN 88 XEQ 15 46 ST- 00 81 RCL 14 47 FC? 87 82 STO 17 48 CHS 83 •R = • output return radius 49 STO 19 84 ARCL X 50 FC? 07 85 AVIEW 51 XEQ 12 86 90 52 RCL 19 87 RCL 19 53 RCL 84 88 FC? 07 54 X<>Y 89 CHS 55 COS 98 -56 * 91 STO 21 57 ABS 92 XEQ CURD calculate curve data 58 FIX 3 93 ADV 59 •DIST 1=• 94 RCL 19 output PRC distance 60 ARCL X 95 FS? 03 layout wanted? 61 AVIEW 96 XEQ "DIV" divide curve 62 RCL 04 97 FS? 83 98 XEQ -SET calculate arc points 63 RCL 19 64 SIN and set for layout 99 FS? 82 65 * 100 XEQ 18 66 ABS 101 RCL 37 67 RCL 10 102 RCL 19 68 FS? 07 103 COS 69 CHS 104 * 78 + 105 ABS 71 *0/S 1=* output offset at PRC 106 RCL 16 72 ARCL X 107 FIX 3 73 AVIEW 108 DIST 2=* 74 FC? 86 109 ARCL Y 75 ADY 110 RYIEW output distance to BC

111 "0/S 2=" 146 ARCL X 112 ARCL X 147 RVIEW output curve length 113 AVIEW 148 FS? 03 output offset at BC 114 ADV 149 XEQ 11 115 FC? 07 150 ADY 116 RTH 151 ADY 117 RCL 15 152 RTN reset for solution of 118 STO 14 second return curve 153+LBL 11 119 STO 17 154 ENTER† 128 RCL 18 155 RCL 32 121 STO 16 156 / 122 CF 07 157 RCL 02 123 XEQ 02 158 RCL 04 124 RTN 159 +125+LBL 12 calculate curve data 168 RCL 04 for central radius of 126 ADY 161 / the cul-de-sac 127 R = * 162 * 128 ARCL 04 163 / 129 AVIEW radius output 164 FIX 2 130 RCL 00 165 • <output chord value to 131 HMS 166 ARCL X use for double-chain 132 "DELTA =" 167 ->lavout in central area 133 AVIEW 168 AVIEW of the cul-de-sac 134 CLA 169 RTN 135 ARCL X 170+LBL 18 136 FC? 55 171 RCL 43 137 AVIEW central angle output 172 RCL 21 when printer is not 138 FS? 55 173 FC? 07 attached 139 XEQ "DMS" 174 CHS with printer attached 148 RCL 04 175 + 141 RCL 00 176 XEQ 19 142 D-R 177 RTN 143 * 178+LBL 50 output of coordinates 144 FIX 3 179 FS? 03 145 "L =" 180 RTN

181 XEQ -98-	coordinate subroutine	216 RCL 82	hub offset distance
182 DNV		217 602 62	hub offset distance
107 DTN		211 13: 03	
103 KIN 4044 DL 15		218 -	
184+LBL 15		219 P-R	
185 RCL 09		220 RCL 07	
186 RCL 37		221 +	
187 P-R		222 X<>Y	
188 RCL 05		223 RCL 08	
189 +		224 +	
198 STD 87	return radius N-coord	225 ES2 86	coordinates wanted?
191 ¥<>Y		220 YEA 50	output the coordinates
102 DC1 96		220 AL& JU	output the cool dilates
107 A		227 532 03	
173 T		228 XEW -R1-	calculate angle and
194 510 08	return radius E-coord	229 RIN	distance to new point
195 FS? 02		230+LBL 01	
196 XEQ 17	adjust azimuth value	231 RCL 01	
197 - RADIUS PO	INT: •	232 RCL 19	
198 FS? 02	coordinates or layout?	233 +	
199 AVIEW	output	234 RCL 04	
200 RCL 07		235 FS? 03	
201 RCL 08		236 RCL 02	
202 FS? 06	coordinates wanted?	237 FS? 83	
203 XEQ 50	output of coordinates	238 +	
204 FS? 03	is layout wanted?	239 P-R	
205 XEQ "RI"	calculate angle and	248 RCL 85	
206 RTN	distance to new point	241 +	
297+LBL 17		242 X()Y	
208 ADV		243 801 86	
209 RCL 09		244 +	
210 180		245 DTN	
211 +		24641 RI 16	
212 STO 43		2404202 10	
213+1 BI 19		241 13: 00 240 DTN	
214 DCL 17		240 KIN 940 BINTED_V	
217 NUL 11		247 INIEK-A	appear when either of
21J F3: 03		200 PRUMPI	the coordinates or the
			layout options wanted
`			

251 STO 06		267 CF 10
252 RDN		268 RTN
253 STO 0 5		269+LBL 23
254 RTN		270 RCL 06
255+LBL 21		271 -
256 BACKSITE?	Prompt appears when	272 X<>Y
257 PROMPT	layout is wanted	273 RCL 05
258 XEQ 23		274 -
259 STO 01		275 R-P
260 RTN		276 CLX
261+LBL 22		277 X<>Y
262 SF 18		278 X(0?
263 XEQ "AZ"	the input bearing and	279 360
264 180	quadrant code stored	280 +
265 +		281 RTN
266 STO 20		282 END

set backsight azimuth

54

Curved Cul-de-See

CDC occupies 95 registers of program memory and should be used with the calculator sized at least to 045. The program contains 669 bytes of programming, and can be stored on 6 tracks of magnetic cards.

Subroutines used with this program are "SORT", "BA", "SET", "CURD", "DIV", "CLR", "98" and "RI", all of which are contained in the UTILITIES 2 series of program steps. In addition to these, both "AZ" and "DMS" are used. These are the programs contained in the UTILITIES programs at the beginning of the program listings, and are the same utilities group used with the programs in the book "HP-41CV/CX Surveying Field Solutions".

It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached, and it is not necessary to include the subroutine "AZ" in program memory if the calculator contains either the Hewlett-Packard Surveying Pac, or the D'Zign COGO 41 module.

01+LBL *CDC* 02 XEQ *CLR* clear registers & set 03 SF 04 flag status 04 SF 07 05 XEQ *SORT* prompt routine sets 06 FS? 02 flag status for output	21 SF 05 22 FS? 05 23 CHS 24 STO 38 alignment radius 25 "WIDTH?" 26 PROMPT
07 XEQ 06	27 2
08 FS? 03 radial inverse if set	28 /
09 XEQ 03	29 STO 16 store outer and inner
10 FS? 02	30 STO 18 values for half-width
11 XEQ 02	31 * 0FFSET?* centerline offset dist.
12 "RADII?"	32 PROMPT
13 PROMPT	33 FS? 05
14 STO 15 ending return radius	34 CHS
15 RDN	35 ST+ 16 modify half-width
16 STO 04 main radius	36 CHS
17 RDN	37 ST+ 18 modify half-width
18 STO 14 beginning return rad.	38 ST+ 38 modify the alignment
19 RDN	39 STO 36 radius
20 X<0?	40 RCL 14

41 RCL 04 42 + 43 STO 37 44 RCL 38 45 RCL 16		76 X()Y 77 RCL 39 angle 78 + 79 - 80 ST+ 00
46 RCL 14 47 +		81 FC? 00 82 XEQ 12 calculate curve data
48 +		83 • R = • for central curve
49 STO 03		84 ARCL 15
50 XEW "BH"	calculate angles	85 AVIEN begin output return
52 RCL 39		87 STO 17
53 +		88 139
54 ST+ 00		89 RCL 39
55 "K = "		90 -
57 AVIEN	first return radius	91+LBL 01 92 STO 21
58 RCL 14		93 X=0?
59 STO 17		94 SF 08
60 RCL 39		95 FC? 08
61 XEW 01	output curve data for first return	96 XEQ "CURD" calculate curve data
63 RCL 38		97 XEV 10 98 ES2 02
64 RCL 18		99 XEQ 04
65 RCL 15		100 FS? 08
66 +		101 CF 04
67 - 68 STO 83		102 FS?C 08
69 RCL 15		103 KIN 194 ES? 83 layout wanted?
70 RCL 84		105 XEQ "DIV" divide curve length
71 +		106 FS? 03
72 STU 37		107 XEQ "SET" calculate radial layout
74 180	calculate angles	108 FS7 62 109 YEA 09
75 ST+ 00		110 XEQ 14

111 RTN 146 RCL 07 112+LBL 86 147 RCL 08 148 FS? 06 113 FS? 06 114 RTN 149 XEQ 05 output coordinates 115 "INTER-X NTE" 150 FS? 03 116 PROMPT 151 XEQ -RIprompt appears when radial inverse to set either coordinate or curve points 117 STO 06 152 RTN layout is selected as 118 RDN 153+LBL 14 output. Stores setup 119 STO 05 154 RCL 40 point coordinates 120 RTN 155 D-R 121+LBL 84 156 RCL 38 122 RCL 09 157 RCL 36 123 RCL 20 158 -124 + 159 * 125 STO 09 160 FIX 3 126 RCL 37 161 FC? 02 127 FS? 05 162 ADV is main curve to the left? 128 CHS 163 - ARC 2= -129 P-R 164 ARCL X 130 RCL 05 165 AVIEW 131 + 166 RCL 36 132 STO 87 167 ST+ 16 return radius N-coord 133 X<>Y 168 ST- 18 134 FS? 85 169 *0/S 2= * is the main curve to the left? 135 CHS 170 FS? 04 which side? 136 RCL 06 171 ARCL 16 137 +172 FC? 04 138 STO 08 173 ARCL 18 return radius E-coord 139 FS? 82 174 AVIEW 140 XEQ 07 backsight azimuth 175 RCL 36 141 FS? 88 176 ST- 16 142 RTH 177 ST+ 18 143 -RADIUS POINT: -178 CF 04 179 FIX 4 144 FS? 02 coordinates or layout? 145 AVIEW 180 ADV

181 RTN		216 +	
182+LBL 12	output curve data for	217 RCL 04	
183 R = T	main portion	218 /	
184 ARCL 04		219 *	
185 AVIEW		228 /	
186 RCL 00		221 FIX 2	
187 HMS		222 - <-	
188 "DELTA ="		223 ARCL X	
189 AVIEW		224 * +>*	
190 CLA		225 AVIEW	output chord distance
191 ARCL X		226 RTN	
192 FC? 55		227+LBL 05	
193 AVIEW		228 FS? 03	
194 FS? 55		229 RTN	
195 XEQ "DMS"		230 XEQ -98-	output coordinates
196 RCL 04		231 ADY	
197 RCL 00		232 RTN	
198 D-R		233+LBL 03	
199 *		234 BACKSITE	?=
200 FIX 3		235 PROMPT	prompt for input of
201 •L = •		236 XEQ 23	backsight coordinates
202 ARCL X		237 STO 01	
203 HYIEN		238 RTN	
204 15/ 03	adaulate offect shand	239+LBL 02	14 5 -
203 XEW 11	calculate offset chord	240 "RHDIUS N	ITE"
200 HUT		241 PRUMPT	prompt for input of alignment radius point
201 HUT 202 FF 07		292 AEW 23 347 STO 30	coordinates
200 CT 01 209 PTN		243 310 20 344 DTN	
210+1 RI 11	determines the chord	244 KIN 24541 DI - 27	
211 ENTERT	at the offset line for	24JVLDL 23	
212 RCL 32	double-taping of main	240 KUL 00 247 -	
213 /	portion of cul-de-sac	248 X()Y	
214 RCL 02		249 RCL 05	
215 RCL 04		250 -	

251 R-P 252 CLX 253 X<>Y 254 X<0? 255 360 256 + 257 RTN 258+LBL 10 259 ADY 260 180 261 RCL 40 262 RCL 39 263 + 264 - 265 STO 09 266 RCL 04 267 P-R 268 CHS 269 RCL 38 270 + 271 STO 28 272 / 273 ATAN 274 STO 29 275 D-R 276 RCL 38 277 * 278 RCL 28 279 RCL 29 280 COS 281 / 282 RCL 38 283 - 284 FIX 3 295 OPS	calculates the offset and arc distances at the return PRC	286 *ARC 1= 287 X<>Y 288 RCL 38 289 RCL 36 290 - 291 RCL 38 292 / 293 * 294 X<>Y 295 ARCL Y 295 ARCL Y 296 AVIEW 297 RCL 36 298 FS? 04 299 CHS 300 - 301 *0/S 1= 302 ARCL X 303 AVIEW 304 FIX 4 305 RTH 306+LBL 07 307 ADY 308 RCL 09 309 180 310 FS? 05 311 CHS 312 + 313 STO 43 314+LBL 09 315 RCL 17 316 FS? 03 317 RCL 02 318 FS? 03 319 - 720 P=P	output arc length to return point output offset distance to return point moves to next curve calculates coordinates from return's radius point coordinates
285 ABS		320 P-R	

344 544 45		
321 FS? 05		331 RTN
322 CHS		332+1 BL 98
323 RCL 07		777 PCL 47
724 +		555 KCL 45
324 1		334 RCL 21
325 X<>Y		335 FC? 07
326 RCL 08		336 CHS
327 +		777 +
700 VED 05		331 T
328 YER 03	output coordinates	338 XEQ 09
329 FS? 03		339 RTN
770 YED -01-	radial invenes to act	
JUG NEG KI	point	340 .END.

Bulbs & Knuckles

BB occupies 90 registers of program memory and should be used with the calculator sized at least to 045. The program contains 627 bytes of programming, and can be stored on 6 tracks of magnetic cards.

Subroutines used with this program are "CURD", "CLR" and "98", all of which are contained in the UTILITIES 2 series of program steps. In addition to these, both "AZ" and "DMS" are used.

It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached, and it is not necessary to include the subroutine "AZ" in program memory if the calculator contains either the Hewlett-Packard Surveying Pac, or the D'Zign COGO 41 module.

01+LBL "BB"		21 SF 01	
02 XEQ "CLR"	clear registers & flag	22 FS? 01	
03 90	status	23 XEQ 06	
04 STO 21		24 X=Y?	
8 5 360		25 SF 04	
06 STO 00		26 "RADII?"	
07 SF 07		27 PROMPT	input radii
08 SF 10		28 STO 04	main radius stored
09 RTH		29 RDN	
10+LBL B	bulb solution with the	30 STO 17	return radius stored
11 STO 06	coordinates output	31 FS? 01	
12 RDH		32 RDH	
13 STO 0 5		33 FS? 01	
14 SF 06		34 STO 03	
15 XEQ "AZ"	bearing to azimuth	35 =1/2W A?=	
16 STO 10		36 PROMPT	one-half of the street
17+LBL A	bulb solution without	37 STO 36	width
18 SF 09	coordinates	38 "WIDTH?"	throat width of the
19 XEQ 06		39 PROMPT	cul-de-sac
20 X=Y?		48 2	

41 / 76 FS? 01 42 STO 16 77 XEQ 01 calculate arc if curve 43 RCL 17 78 ADV 44 + 79 *CENTER:* 45 FS? 01 80 AVIEW 46 GTO 03 calculate if on curve 81 FS? 06 47 RCL 17 82 XEQ 82 calculate coordinates 48 RCL 04 at center point 83 RCL 04 49 + 84 RCL 00 50 STO 37 85 HMS 51 / 86 FIX 4 52 ASIN 87 •DELTA =• 53 STO 14 88 AVIEW 54 CHS 89 ARCL X 55 90 90 FC? 55 56 + 91 AVIEW 57 ST+ 21 92 FS? 55 add to central angle 58 RCL 14 storage of return 93 XEQ "DMS" output in form D°M'S" 59 2 if printer is attached 94 D-R 68 * 95 * 61 ST- 00 calculate central angle 96 FIX 3 of main bulb section 62 RCL 14 97 ·L =· 63 COS 98 ARCL X 64 RCL 37 99 AVIEW length of arc for main 65 * curve 100 ADY 66 RCL 17 101 "RETURNS: " 67 RCL 36 102 AVIEN 68 + 103 XEQ 05 69 + 104 RCL 04 70+LBL 00 straight and curve 105 P-R return point 71 FIX 3 106 ABS 72 STO 15 107 FIX 3 73 D = -108 DIST = distance to point on 74 ARCL X centerline at PRC's 109 ARCL X 75 AVIEW tangent distance to be 110 FC? 08 at centerline of bulb

111 AVIEW		146 +	
112 X()Y		147 X()Y	
113 ABS		148 /	
114 = 0/S = -	offset to PRC's from	149 ST0 11	
115 ARCL X	centerline	150 ASIN	
116 FC? 88		151 ST0 12	
117 AVIEN		152 ES2 84	
118 FC? 88		153 CHS	
119 ADV		154 ST+ 21	add to return delta
120 FS? 06		155 RCL 27	
121 XEQ 04	calculate radius point	156 RCL 17	
122 FS? 86	of return curve	157 RCL 16	
123 ADV		158 +	
124 RCL 21		159 RCI 17	
125 XEQ CURD	calculate and output	160 RCL 04	
126 FS? 86	curve data for return	161 +	
127 ADV		162 ST0 37	
128 CF 07		163 /	
129 FS? 06		164 ASIN	
130 XEQ 04		165 STO 14	
131 FS? 06		166 CHS	
132 ADV		167 90	
133 FS? 08		168 +	
134 XEQ 07		169 ST+ 21	
135 RTN		170 RCL 14	
136+LBL 03	calculate if on curve	171 2	
137 RCL 03		172 *	
138 RCL 36		173 ST- 00	subtract from central
139 RCL 17		174 180	delta angle
140 +		175 RCL 14	
141 FS? 04	outside curve?	176 FC? 04	
142 CHS		177 -	
143 -		178 RCL 12	
144 RUL 17		179 +	
145 KUL 16		180 SIN	

181 RCL 37		216 -PODIT2-	
182 *		210 KHDII. 217 DDAMDT	input of radii
107 DCI 11		211 FRUIE 1	
100 KUL II 104 /		210 510 04	center radius
104 /		219 KUN	
185 KUL 03		220 SIU 17	return radius
186 -		221 1 /2W?"	
187 HB5		222 PROMPT	half-width of street
188 XEQ 00		223 STO 16	
189 RTN		224 RCL 09	
198+LBL D	knuckle solution with	225 90	
191 SF 06	coordinates	226 RCL 02	
192 STO 06		227 -	
193 RDN		228 -	
194 STO 05		229 STO 10	
195+LBL C	solve knuckle without	238 RCL 84	
196 SF 08	coordinates	231 PCI 17	
197 180		272 +	
198 STO 88		232 PCI 02	
199 98		233 KCL 02	
200 STO 14		237 318	
201 XED -07-		200 / 274 CTA 10	
202 STO 09		230 310 17	
202 YFD -07-		237 KUL 17	
200 NEQ NE		230 KUL 10	
205 RCL 09		237 +	
206 RCL 18		240 -	
207 -		241 KUL 02	
208 085		242 180	
200 100		243 + 244 =T - =	
207 2		244 - 1 = -	
210 7 211 STO 82		293 HKUL A	output tangent dist.
212 90		290 HYIEN 247 DCL 04	
217 8/38		247 KUL 04	
214 -		240 KUL 17 240 i	
215 ST0 21	central angle return	247 T 250 DCI 82	
LIG 010 LI	central angle, return	230 KUL 02	
251 TAN		286 801 84	
-----------------------	---------------------------------------	---------------------------------	
252 /		200 RCL 04	
253 RCI 19		201 KCL 11	
254 RCL 16		200 T 200 D_D	
255 -		207 FTK 200 DCL 05	
255 DCI 17		296 KUL 00	
2JO KUL 11 257 -		291 +	
2J1 - 250 601 82		292 510 07	
238 KUL 02		293 X<>Y	
239 005		294 RCL 06	
260 /		295 +	
261 -		296 STO 08	
262 XEW 00	output return point	297 XEQ *98* output coordinates	
263 RIN		298 RTN	
264+LBL 01		299+LBL 05 set brg/az to radius	
265 RCL 12		300 RCL 10 point of return	
266 D-R		301 180	
267 RCL 03		302 +	
268 🔹		303 RCI 14	
269 •ARC = •	output arc length	304 FS2 97	
270 ARCL X		705 CHC	
271 AVIEW		704 -	
272 RTN		300 - 707 DTN	
273+LBL 02	calculate coordinates		
274 RCL 10	at center	700 - V curved alignment	
275 RCL 15			
276 P-R		310 H310 A	
277 ST+ 05		311 HUN 740 FCO 00	
278 \$ \ \		312 13/ 87	
270 CT+ 06		313 - LURVE /-	
200 DCI 05		314 FC? 89	
200 KUL 0J		315 "OUTSIDE?"	
201 KUL 00		316 PROMPT	
282 AEW 78"	output coordinates	317 ASTO Y	
203 KIN 2044 DL 04	and and the anists of	318 AOFF	
2097LDL 09	caic radius points of return curve	319 CF 09	
203 YFM 03		320 RTN	

321+LBL 07 322 RCL 19 323 RCL 16 324 2 325 * 726 -	calculate curve opposite knuckle	data 332 333 334 335 336 336	* STO 21 ADY •OPPOSITE:• RYIEN
327 RCL 17		337 338	ARCL Y
328 - 329 STO 17		339 340	XEQ "CURD" calculate curve data
330 RCL 02 331 2		341 342	RTN END

Intersection-Both Straight

NN occupies 94 registers of program memory and should be used with the calculator sized at least to 045. The program contains 656 bytes of programming, and can be stored on 6 tracks of magnetic cards.

Subroutines used with this program are "SORT", "CURD", "CLR", "RI" and "98", all of which are contained in the UTILITIES 2 series of program steps. In addition to these, both "AZ" and "DMS" are used.

It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached, and it is not necessary to include the subroutine "AZ" in program memory if the calculator contains either the Hewlett-Packard Surveying Pac, or the D'Zign COGO 41 module.

01+LBL "NN"		21 -	
02 XEQ CLR	clear registers & set	22 ENTER [†]	
03 SF 10	flag status	23 180	
04 XEQ -SORT-	subroutine for prompt	24 X<=Y?	
05 XEQ "AZ"	sequence	25 XEQ 01	rotate by 180°
06 STO 09		26 X<>Y	
07 XEQ 04	set direction	27 X(0?	
0 8 1		28 XEQ 00	rotate by 180°
09 X=Y?		29 X(0?	
10 SF 00		30 XEQ 00	
11 XEQ •AZ•	bearing to azimuth	31 STO 03	
12 STO 10		32 XEQ 02	
13 90		33 ADY	
14 -		34+LBL 08	calc subroutine
15 XEQ 04	set direction	35 "R?"	
16 1		36 PROMPT	
17 X=Y?		37 STO 17	
18 SF 01		38 RCL 03	
19 RCL 09		39 FS? 07	
20 RCL 10		40 XEQ 13	subtract from 180°

41 STO 21 42 XEQ 03 43 XEQ 09 44 FIX 3 45 RCL 19 46 ABS 47 -DIST A = -	curve data setup sorts direction, match to flag setting	76 GTO 08 77 RTN 78+LBL 09 79 RCL 09 80 FS? 07 81 XEQ 00 82 90 87 FS2 07	delta less than 0°?
49 AVIEW 50 FIX 4 51 FS? 02	output first distance	84 CHS 85 FS? 88 86 CHS	
52 XEQ 05 53 FS? 02 54 XEQ 07	calculate coordinates calculate radius point	87 + 88 RCL 16 89 FS? 09	
55 FS? 03 56 XEQ 10 57+LBL 25	for return	90 CHS 91 P-R 92 RCL 10	
58 FIX 3 59 RCL 20 60 ABS		93 90 94 FS? 07 95 CHS	
61 "DIST B = " 62 ARCL X 63 AVIEW 64 ETY 4	output distance #2	96 FS? 08 97 CHS 98 -	
65 FS? 02 66 XEQ 06 67 FS? 09	calculate coordinates	99 RCL 18 100 P-R 101 X<>Y 102 RDN	
69 FS? 08 70 GTO 11 71 FS? 07 72 GTO 14 73 SF 00 74 SF 05 75 SF 07	redo flag status	103 X() 104 - 105 RDN 106 X()Y 107 - 108 R† 109 X()Y 110 STO 22	

111 X()Y			146 RCL 21			
112 570 27			147 2			
117 DCI 10			140 /			
113 RUL 10			140 7			
114 010			197 IHN 150 ±			
11J + 112 U/NU			130 *			
110 A\/1			151 157 87			
117 KUL 10			152 CH5			
118 605			153 157 08			
119 *			154 CHS			
120 +			155 51+ 19			
121 KLL 03			156 FS? 07			
122 SIN			157 CHS			
123 /			158 FS? 0 9			
124 STO 19	distance, quads	1 & 3	159 CHS			
125 RCL 22			160 ST+ 20			
126 RCL 23			161 RTN			
127 FS? 09			162+LBL 10	calculate	return	delta
128 CHS			163 1			
129 RCL 09			164 STO 27			
130 SIH			165 RCL 09			
131 *			166 98			
132 X<>Y			167 FS? 08			
133 FS? 09			168 CHS			
134 CHS			169 FS? 89			
135 RCL 09			170 CHS			
136 COS			171 -			
137 *			172 STO 31			
138 +			173 RCL 30			
139 RCL 03			174 RCL 32			
140 SIH			175 /			
141 /			176.46			
142 FS? 09			177 +			
143 CHS			178 FIX 0			
144 STO 20	distance quads 2	28.4	179 RHD			
145 RCL 17			180 STO 34			

181 FIX 4		216 RCL 07	
182 RCL 21		217 +	
183 STO 30		218 X()Y	
184 X()Y		219 RCL 08	
185 /		228 +	
186 STO 33		221 CLA	
187+LBL 12	loop/stop	222 FIX 4	
188 RCL 27		223 XEQ -RI-	radial inverse to set
189 RCL 34		224 1	point
198 X=Y?		225 ST+ 27	
191 GTO 25	insert for return	226 GTO 12	
192 XEQ 19		227 RTN	
193 RTN		228+LBL 11	change from zone 3 to
194+LBL 19	curve loop	229 CF 00	zone 4
195 RCL 31		230 CF 08	
196 RCL 33		231 CF 07	
197 RCL 27		232 CF 05	
198 *		233 SF 09	
199 FS? 07		234 189	
200 CHS		235 RCL 03	
201 FS? 08		236 -	
202 CHS		237 STO 03	
203 -		238 STO 21	
204 CLA		239 GTO 08	
205 FIX 0		248 RTN	modify delta
206 CF 29		241+LBL 13	
207 ARCL 27		242 180	
208 */*		243 X()Y	
209 ARCL 34		244 -	
210 HYIEW	output fractional label	245 KIN	
211 55 29		240*LBL 14	reset flag status
212 KUL 17		241 UF 01 240 CF 00	
213 KUL 02 214 -		240 OF 00 240 CE 04	
214 - 215 P-P		250 SF 01	
21J F-K			

251 GTO 98		00/ 0		
252 DTN		285 2		
		287 /		
253+LBL 01		288 INT		
254 -		289 RTN		
255 ENTERT		200ALDI 05		
256 PTN		270VLDL 0J	calculate	coordinates
257ALDI 00		291 RUL 09		
		292 RCL 16		
258 180		293 FS? 03		
259 FS? 07		294 XEQ 24		
268 CHS		295 FS? 88		
261 +		296 045		
262 RTN		200 000		
263+1 BL 82	prompt sequence	27(F3: 07		
268 -1/24 82-	prompt sequence	298 CH5		
207 1/28 R:		299 RCL 19		
263 PRUMPI		300 R-P		
266 STO 16		301 RDN		
267 1/2W B		302 +		
268 PROMPT		303 Rt		
269 STO 18		794 P-P		
270 RTN		705 DCI 05		
271+1 BL 93		303 KUL 03		
272 011		300 T		
277 •P = •		307 8171		
274 0001 17		308 RUL 06		
274 HKUL 11	output return radius	389 +		
ZIJ HYIEN		310 FC? 03		
276 RCL 21		311 XEQ -98-	output	coordinates
277 XEQ "CURD"	calculate and output	312 FC? 83		
278 ADY	curve data	313 ADV		
279 RTH		314 ES2 83		
280+LBL 04	set azimuth direction	715 YEQ -DI-	radial in.	
281 98		JIJ ALK KI 717 DTH		erse to set
282 /		310 KIN	point	
207 INT		3117LUL 29		
203 111		318 RUL 02		
204 1		319 +		
283 +		320 RTN		

321•LBL 07 322 RCL 09	351 XEQ •RI• 352 RTN	radial inverse to set point
323 RCL 17	353+LBL 06	calculate coordinates
324 RCL 16	354 RCL 10	
325 +	355 RCL 18	
326 F5? 08	356 FS? 03	
327 CHS	357 XEQ 24	
328 F3/ 87	358 FS? 08	
323 LHS 770 PCL 10	359 CHS	
330 KUL 17 771 D-D	360 RUL 20	
332 RIN	301 K-F 749 DNN	
333 +	362 KUN 367 FC2 A7	
334 Rt	364 CHS	
335 P-R	365 -	
336 RCL 05	366 R†	
337 +	367 P-R	
338 STO 07	368 RCL 05	
339 X<>Y	369 +	
340 RCL 06	370 X<>Y	
341 +	371 RCL 06	
342 510 08 747 - DODING DOINT	372 +	
343 - KHUIUS FUINI - 744 FC2 R2	373 FC? 03	
345 BYIEN label output	3/4 XEW 70"	output coordinates
346 FC? 03	376 ANV	
347 XEQ *98* output coordinates	377 FS? 03	
348 FC? 03	378 XEQ -RI-	radial inverse to set
349 ADY	379 RTN	point
350 FS? 03	380 END	

Intersection-ODE CUIVEd

NO occupies 64 registers of program memory and should be used with the calculator sized at least to 045. The program contains 448 bytes of programming, and can be stored on 4 tracks of magnetic cards.

Subroutines used with this program are "SORT", "CURD", "CLR", "RI", "DIV", "SET" and "98", all of which are contained in the UTILITIES 2 series of program steps. In addition to these, both "AZ" and "DMS" are used.

It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached, and it is not necessary to include the subroutine "AZ" in program memory if the calculator contains either the Hewlett-Packard Surveying Pac, or the D'Zign COGO 41 module.

01+LBL "NO"		23 PROMPT	
02 XEQ CLR	clear registers & set	24 STO 18	
03 SF 10	flag status	25 "R?"	
94 CLX		26 PROMPT	
05 RTN		27 STO 17	
06+LBL B	type B intersection	28 RCL 10	
07 SF 01		29 RCL 01	
08 SF 04		30 -	
09+LBL A	type A intersection	31 FS? 04	
10 XEQ "SORT"	prompt sequence	32 XEQ 03	calculate return curve
11 XEQ "AZ"	bearing to azimuth	33 STO 00	data
12 STO 01		34+LBL 00	
13 XEQ "AZ"	bearing to azimuth	35 ENTER [†]	
14 STO 10		36 SIN	
15 "R?"	start prompts	37 RCL 04	
16 PROMPT		38 *	
17 STO 84		39 STO 03	
18+LBL 02		40 RCL 17	
19 -1/2W A?-		41 RCL 16	
20 PROMPT		42 +	
21 STO 16		43 FS? 08	
22 1/2W B?*		44 CHS	

45 FS?	84		89 CH	HS	
46 CHS			81 F9	52 87	
47 +			02 01		
AO DOI	17	return radius	02 07	10	
40 RUL	10		83 +		
49 KUL	18		84 *		
50 +			85 FS	5? 0 7	
51 FS?	0 8		86 CH	łS	
52 CHS			87 PC	N AA	
53 FS?	97		00 00	רבי גע וכ	
54 CHS	••			00 01	
55 001	94		07 F3	D? 101	
JJ KUL	70		90 CH	15	
26 +			91 RC	CL 04	
57 /			92 CH	łS	
58 ASI	N		93 FS	5? 8 7	
59 STO	14		94 CH	łS	
60 X()	Y		95 FS	52 84	
61 FS?	84		96 01	19	
62 X()	Y		97 +	10	
67 ES2	99		71 +		
ZA V/N	v		70 T		
25 500	1 197		77 53	5/10/	
0J F0:	101 U		100 CH	15	
00 A\/	1		101 51	10 19	distance, line A
01 -	15		102 HB	35	
68 510	15	angle factor	103 AI	DY	
69 KUL	14		104 FI	IX 3	
70 COS			105 - A	4 = •	
71 RCL	0 4		106 AR	RCL X	
72 RCL	17	return radius	107 AV	/IEW	output distance A
73 FS?	8 8		108 XE	EQ 07	calculate coordinates
74 CHS			109+1 B	81 95	at radius point
75 FS?	87		110 PC	1 15	
76 CHS			111 59	52 97	
77 +			112 0	10	
78 001	18	width	112 UN	10 _D	
70 500	00	width	113 0-	-K N 04	
17 83	00		114 KU	JL 09	

115 * 150 "R?" 116 FS? 08 151 PROMPT input next radius 117 CHS 152 STO 17	
116 FS? 08 151 PROMPT input next radius 117 CHS 152 STO 17	
117 CHS 152 ST0 17	
118 510 20 133 KLL 00	
119 HB5 154 GIU 88	
120 F1X 3 155 RIN	
121 *B = * 156+LBL 03 calculate return curv	/e
122 ARCL X 157 360	
123 AVIEN output distance B 158 X()Y	
124 FIX 4 159 -	
125 RCL 09 160 360	
126 189 161 X()Y	
127 + 162 ¥)Y2	
120 DC1 21 127 -	
127 F3: 01 104 AND: 170 CUC 1/E CUC	
130 LHS 103 LHS	
131 - 100 KIN 170 DOL 17 1(74) DL 01	
134 KUL 02 169 UF 07	
135 FS? 02 170 SF 08	
136 - 171 [•] K? [•]	
137 P-R 172 PROMPT input next radius	
138 RCL 07 173 STO 17	
139 + 174 RCL 00	
140 X<>Y 175 GTO 00	
141 RCL 08 176 RTN	
142 + 177+LBL 07 calculate coordinate	<u>25</u>
143 FS? 06 178 RCL 01 at radius point	
144 XEQ 04 output coordinates if 179 RCL 19	
145 FS? 03 wanted 180 P-R	
146 XEQ •RI• radial inverse to set 181 RCL 05	
147 FS? 87 point 182 +	
148 GTO 01 183 STO 07	
149 SF 07 184 X<>Y	

185 RCL 06	228 RCL 88
186 +	221 -PON POINT
187 STO 88	221 KH2: 101H1:
100 RUL 01	ZZ3 HYIEN Tabel output
	224 FS? 06
190 F5? 08	225 XEQ 04 output coordinates
191 CHS	226 FS? 03
192 +	227 XEQ "RI" radial inverse to set
193 STO 09	228 FIX 3 point
194 RCL 16	229 - R = -
195 FS? 02	230 ARCL 17
196 RCL 02	231 RYIEN output current radius
197 FS? 02	232 98
198 +	233 RCI 14
199 P-R	234 CHS
200 ST+ 07	275 FS2 97
201 X()Y	276 049
202 ST+ 08	277 FS2 84
203 RCL 07	231 13: 04 278 FMC
204 RCL 08	230 -
205 ES2 06	249 STO 21
296 XED 84 output coordinates	241 YEQ =CUDD= calculate and output
207 FS2 97	242 ALC CORD Calculate and output
200 YEQ +PI+ radial inverse to get	242 HDT 000 00 0000
200 DCI 00 Doint	243 F32 03
207 KUL 07 POWE	244 ALW JIY divide curve per max
210 KUL 17	245 FS? 03 spacing requirements
	246 XEQ SEL calculate curve points
212 KUL 82	247 GIU 05
213 F5? 82	248 RTN
214 -	249+LBL 04
215 P-K	250 FS? 03
216 51+ 8/	251 RTN
217 X()Y	252 XEQ *98* output coordinates
218 ST+ 08	253 ADY
219 RCL 07	254 RTN

Intersection-Both Curved

CC occupies 92 registers of program memory and should be used with the calculator sized at least to 045. The program contains 641 bytes of programming, and can be stored on 6 tracks of magnetic cards.

Subroutines used with this program are "SORT", "CURD", "CLR", "RI", "DIV", "SET" and "98", all of which are contained in the UTILITIES 2 series of program steps. In addition to these, both "AZ" and "DMS" are used.

It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached, and it is not necessary to include the subroutine "AZ" in program memory if the calculator contains either the Hewlett-Packard Surveying Pac, or the D'Zign COGO 41 module.

01+LBL -CC-	21 STO 36 radial azimuth, line B
02 XEQ •CLR• clear registers & set	22 CF 10
03 SF 10 flag status	23 RCL 35 radial azimuth line A
04 XEQ "SORT" prompt sequence	24 X<>Y
05 FS? 03	25 -
06 XEQ 11	26 360
07 FS? 03	27 X<>Y
08 XEQ 10	28 X<0?
09 "A LINE R=?"	29 +
10 PROMPT begin added prompts	30 STO 00
11 STO 37	31 =1/2W B?=
12 XEQ AZ bearing to azimuth	32 PROMPT
13 STO 35	33 STO 18
14 =1/2W A?"	34 RCL 00 delta
15 PROMPT	35 RCL 38 radius, line B
16 STO 16	36 P-R
17 "B LINE R=?"	37 RCL 37 radius, line A
18 PROMPT	38 -
19 STO 38	39 R-P
20 XEQ "AZ" bearing to azimuth	40 STO 03 base distance

41 CLX 42 RCL 37 43 RCL 38 44 RCL 03 45 + 46 + 47 2 48 / 49 STO 10 50 Xt2 51 LASTX 52 RCL 38 radius, line B 53 * 54 -55 RCL 37 56 RCL 03 57 * 58 / 59 SORT **60 ACOS** 61 2 62 * 63 STO 39 calculated angle **64 SIN** 65 RCL 37 66 STO 28 67 RCL 10 68 Xt2 69 LASTX 70 RCL 37 71 * 72 -73 RCL 38 74 / 75 RCL 03

76 / 77 SQRT 78 ACOS 79 2 89 * 81 STO 49 calculated angle 82 SF 01 83+LBL 00 begin solutions 84 FS? 04 85 SF 07 86 FS? 89 87 SF 67 88 "R?" 89 PROMPT 90 STO 17 91 RCL 16 92 + 93 FS? 01 94 CHS 95 FS? 84 96 CHS 97 RCL 37 98 + 99 STO 10 100 RCL 17 101 RCL 18 102 +103 FS? 01 104 CHS 105 FS? 09 106 CHS 107 RCL 38 108 + 109 STO 28 110 RCL 03

111 +		146 STO 41	third angle
112 +		147 180	-
113 2		148 X<>Y	
114 /		149 RCL 29	
115 STO 42	temporary storage reg	150 +	
116 Xt2		151 FS? 01	
117 LASTX		152 -	
118 RCL 28	base side two	153 FS? 08	
119 *		154 -	
120 -		155 STO 21	central angle of the
121 RCL 10	base side one	156 RCL 39	return
122 RCL 03	base distance	157 RCL 29	
123 *		158 FS? 04	
124 /		159 X<>Y	
125 SQRT		160 FS? 08	
126 ACOS		161 X<>Y	
127 2		162 -	
128 *		163 D-R	
129 STO 29	calculated angle	164 RCL 37	radius, line A
130 SIN		165 *	
131 RCL 10		166 FIX 3	
132 RCL 42		167 ADY	
133 X†2		168 ADY	
134 LHSTX		169 "ARC A =	•
135 RUL 10		170 ARCL X	
135 +		171 HYIEW	output arc distance
137 - 170 DCI 20		172 FU? 02	
130 KUL 20		173 HUY 174 ECO 00	
137 7 148 DCI 97		174 FJ: 02	
140 KCL 03		175 ACH 01	set coordinates
142 SOPT		170 F32 02	output radius point if
142 0005		177 ETY 7	coordinates or layout
144 2		170 FIA J 170 PD	are wanted
145 *		100 0001 17	
		ING HAGE IT	

181 AVIEW 216 RTN output return radius 182 RCL 21 217 "INTER-X NTE" 183 XEQ "CURD" calculate curve data 218 PROMPT input coordinates at 184 ADV intersection 219 STO 06 185 FS? 03 220 RDN 186 XEQ "DIV" divide curve per max 221 STO 85 187 FS? 83 spacing instruction 222 RTN 188 XEQ •SET• azimuth rotation 223+LBL 12 set coordinates at the curve points 189 RCL 40 224 189 190 RCL 41 225 -191 FS? 88 226 STO 09 192 X<>Y 227 180 193 FS? 09 228 + 194 X<>Y 229 RTN 195 -230+LBL 01 calculate coordinates at return radius point 196 D-R 231 180 197 RCL 38 232 RCL 35 198 * 233 +199 FIX 3 234 RCL 37 200 "ARC B = " 235 P-R 201 ARCL X 236 RCL 05 202 AVIEW output line B arc dist 237 + 203 FS? 02 238 STO 07 204 XEQ 03 239 X<>Y 205 FS?C 08 240 RCL 06 206 SF 09 241 + 207 FS?C 04 242 STO 08 208 SF 08 243 RCL 35 209 FS?C 01 244 RCL 39 210 SF 04 245 RCL 29 211 CF 07 246 -212 GTO 00 247 + 213 RTN 248 FS? 01 214+LBL 11 249 XEQ 12 additional prompts if rotate layout or coord. mode 215 FS? 06 250 FS? 04

251 X 252 F 253 S 254 F 255 S	EQ 12 S? 08 TO 09 S? 09	rotate	286 287 288 289 298	+ FC? XEQ ADY FS2	03 •98•	output	coordinates
256 R	CL 17	return radius	291	XEQ	-RI-	radial	inverse to set
257 R	CL 16	half-width A	292	RTN		points	
258 +			2931	LBL	82	output	coordinates
259 F	57 81		294	TCO	DIUS P	UINI:"	
200 0	115 120 0 <i>4</i>		290	15?	102 เม		
201 F	101 04 110		270	DUI DUI	£≓ 197		
263 R	CL 37	radius line A	298	RCL	8 8		
264 +			299	FC?	83		
265 P	-R		300	XEØ	-98-	output	coordinates
266 S	T+ 07		301	FS?	8 6		
267 X	K)Y		302	ADV			
268 S	T+ 08		303	FS?	03		
269 K	UL 36		504	XEW	-K1-	radial point	inverse to set
270 K	UL 40 11 41		300	KIN N Di	97	P	
272 -			397	RCI	35		
273 -			308	RCL	39		
274 R	CL 17		309	RCL	29		
275 F	S? 83		310	-			
276 X	EQ 09	modify radius by o/s	311	+			
277 F	S? 84		312	RCL	17		
278 0	HS 100 00		313	15?	03		manding the state
217 5	93 00 19		314	FS2	07 08	moany	radius by 0/s
281 P	?−R	calculate coordinates	316	CHS	•••		
282 R	CL 07		317	FS?	89		
283 +	•		318	CHS			
284 X	K >Y		319	P-R			
285 R	RCL 08		320	RCL	07		

321 +	336 PROMPT
722 ¥/ \Y	777 Pri 86
323 KUL 08	338 -
324 +	339 X<>Y
325 FC? 03	340 RCL 05
326 XEQ '98' output of coordinates	341 -
327 FS? 03	342 R-P
328 XEQ •RI• radial inverse to set	343 CLX
329 RTN point	344 X<>Y
330+LBL 09	345 X(0?
331 RCL 02	346 369
332 -	347 +
333 RTN	348 STO 01 backsight azimuth
334+LBL 19 prompt (layout mode)	349 RTN
335 BACKSITE?"	350 END

We often are asked, "How do you store coordinates by point number without X-function in a 41?" There are a number of ways this can be done, but this little routine is one of the easiest.

PIN (point in) assigns the next consecutive number in the counter register to any coordinate pair when the N-coord is in the Y register and the E-coord is in X. **POUT** (point out) replaces the coordinate pair into the Y and X registers for whatever point number is in the X register when executed.

These two routines (@1983, Ted J. Kerber), combined with short programs that tap the subroutines of the HP SURVEYING PAC, give you a complete traverse and inverse package. It may also be extended into storage of three-dimensional coordinates by using similar steps to store the Z register, and have the elevation of the point reside there.

The number of points you can store by this method is only limited by the total number of available registers (it requires two registers per point number), and this is dictated by how many registers you have to use up with the other routines.

In the example listings, with the calculator sized at 120, we're storing N-coordinates in registers 20 thru 69, and E-coordinates in registers 70 thru 119 (a total of 49 points), with register 17 used as the counter. Begin with 0 in register 17.

You can custom fit the routine to your own needs by varying step 19 (first E register), steps 26 and 38 (first N register) and step 43 (difference between registers). Data cards can be used to input or dump the coordinates for later use. You can recall and use the coordinates without having to look at them by adding a PRINT/DON'T PRINT flag in front of the "AVIEW" steps.

01+LBL "PIN"	15 CLA	29 RDN	43 50
02 RCL 17	16 ARCL Y	30 STO IND 19	44 +
03 1	17 AVIEN	31 RTN	45 STO 19
84 +	18 ADV	32+LBL -POUT-	46 RDN
05 FIX 0	19 70	33 FIX 0	47 RCL IND 19
06 CF 29	20 +	34 CLA	48 CLA
07 CLA	21 STO 19	35 ARCL X	49 ARCL Y
08 ARCL X	22 RDN	36 AVIEW	50 AVIEN
09 AVIEW	23 STO IND 19	37 FIX 4	51 CLA
10 STO 17	24 CLX	38 20	52 ARCL X
11 FIX 4	25 RCL 17	39 +	53 AVIEW
12 CLA	26 20	40 STO 19	54 ADY
13 ARCL Z	27 +	41 RCL IND 19	55 RTN
14 AVIEN	28 STO 19	42 X<>Y	56 END

lotes			
\			

OTHER SOFTWARE FOR THE HP-41CV/CX

CARD PROGRAMMING SERVICE to save yourself the time involved in typing in the program steps, and to insure that the programs will work properly, send 20 blank card with your check or money order (\$8.50 per set)

We will program your cards for you and return them in a labeled card holder which may be inserted directly into your book.

HP-41CV/CX SURVEYING FIELD SOLUTIONS

CARD PROGRAMMING SERVICE the card programming service is also available for the Surveying Field Solutions book. Send 20 blank cards with your order.

COGO 41

This is the ROM you've been needing. Complete traverse, inverse . . everything the others have and more! Coordinate storage and retrieval option by **point number**. No need to pre-divide to mean angles before input.

The closure routine includes **automatic angle check and adjustment**. The compass and transit corrections are **automatic**, at the touch of a button. X-memory is **not** required!

All of the normal intersection routines are included, plus LINE TO SPIRAL and CURVE TO SPIRAL. Bearings and azimuth may be input, or defined by input of the **point numbers** at either end of an existing line.

CALIFORNIA RESIDENTS PLEASE ADD 645 TAX prices valid thru May 1987 DE Zign land survey & development P. O. BOX 1370 • PACIFICA, CA 94044

\$21.00

ISBN 0-9616846-2-3