KPodic $\mathbb{C} / \mathbb{C} \mathbb{R}$

Geometrics Solutions

NoTrrcce

No express or implied warranty is made by D'Zign Land Survey \& Development or the author with regard to the procedures and program material offered or their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made available solely on an "as-is" basis, and the entire risk as to their quality and performance is with the user. Should the procedures or program material prove defective, the user (and not D'Zign Land Survey $\&$ Development nor any other party) shall bear any and all cost of all necessary correction and all incidental or consequential damages. D'Zign Land Survey \& Development and/or the author shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

MPoMTCQ/CM
 Geometrics Solutions

TED J. KERBER, L.S.

This book is dedicated to my wife, Phyllis, with my heartfelt thanks for her continued support, enthusiam and coffee.

Copyright © 1986 by Ted J. Kerber
All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without written permission of the author.

ISBN 0-9616846-2-3

今bout tbe book

This is the second in a series of solutions books designed to aid the surveyor and engineer with calculations encountered on a day-to-day basis.

Surveyors favor the Hewlett-Packard 41 series over other available hand-helds, but no new software for the 41 has been generally available since the first survey applications book, and most of those programs are outdated.

These solution books are presented as an alternative to high-priced ROMs, most of which contain more traverse, inverse, intersection etc. programs. They have the added advantage that the user may customize them to his/her needs, add to them, or modify the type of output.

A printer is not a requirement, but a convenient option. If you have access to a card reader, having the programs on cards is the best way to assure error-free input of the program steps, and a mag card programming service is available through the publisher.

The author has an aversion to typing in long program names, and has assigned simple keystrokes as global labels for the programs, but the user should feel free to assign any name to the programs, if it aids in remembering how to address the programs.

Most of the sub-routines included in the utilities programs may be used in other programs besides those contained in this book. Or, they may act as guides when doing your own programming. It is hoped that other surveyors and engineers will write (and publish) new programs.

If the programs in this book can provide a starting point or stepping stone for new software, it will have been well worth the writing.

CONTM NTNな

CUL-DE-SAC

This program can be used for rapid solution of cul-de-sacs which occur on tangent. Optional input allows calculation of cul-de-sacs when the center point is offset from the main alignment of the street. Output may be with or without coordinate values, and a full routine for layout is included.

All of the programs which contain the layout option allow the user to select the offset distance to the hubs and the spacing of the hubs. The return curves are automatically divided into arc lengths which will not exceed the specified spacing, and inversed.

CURVED CUL-DE-SAC

Allows calculation of cul-de-sacs which occur at the end of a curved alignment. This program contains the same options as the previous one, including the ability to calculate the cul-de-sac when the center point is offset, and the layout routine.

BULBS

This program calculates a cul-de-sac for the condition where the return lines are tangent to the line of the adjacent street. Output includes the length of the cul-de-sac tangent.

KNUCKLES

Solves for the condition where the cul-de-sac returns are tangent to two streets at an intersection. Also calculates the curve data for the opposite side of the street, if the BC and EC are to be opposite the return points of the cul-de-sac.

Intersections

BOTH STREETS STRAIGHT

This program calculates all of the data for the returns around a street intersection when both streets are on a straight alignment. Options include output with or without coordinates and a complete layout mode for field staking.

ONE STREET CURVED

Similar to the program above, except that the program calculates all of the data for the returns when one of the streets is curved.

BOTH STREETS CURVED

The returns are calculated for all of the corners of an intersection of two curved streets. Output with or without coordinates, and a complete layout mode are included in the options.

UTILITIES 2

CUL-DE-SAC

CURVED CUL-DE-SAC

BULBS AND KNUCKLES
INTERSECTION - BOTH STRAIGHT
INTERSECTION - ONE CURVED
INTERSECTION - BOTH CURVED

APPENDIX

Some quick tips on storage of coordinates by point number, using the 41 CV or CX. Extended memory is not required.

Cயூ-@ிంవిc

This program solves cul-de-sac problems for design, plotting or layout, with the option of output with or without coordinates. The amount of input information depends on the requested output requirements. For instance, it isn't necessary to input any coordinate or bearing information unless you want the output to show the coordinates. It isn't necessary to input coordinate or backsight information unless the layout option is selected.

In the latter case, the layout information can be assumed for field use; that is, when prompted for coordinate input of the center point, you can input $\mathrm{N}=100$ and $\mathrm{E}=0$, and use $\mathrm{N}=0$ and $\mathrm{E}=0$ for the required backsight information. Then you just occupy the center point and sight back downstation. For the bearing input you would just use "north".
This will also work for a cul-de-sac with a center point that is offset from the street centerline, just by setting the backsight on an offset equal to the centerline offset.

In it's simplest form, this program furnishes the designer with a quick calculation of the cul-de-sac curve data using different trial return curves, or with the coordinate option, quick plotting information is obtained to check the different curves against the terrain shown on a topographic map of the area.
In the field, the barest minimum of information is needed in order to calculate all of the information needed for layout of the curb and gutter offset hubs in just a few minutes.

As shown, the layout mode calculates the radial inverses from the center point, directly to the offset hubs. The offset distance to be used and the maximum spacing between the curve points are pre-selected by response to the prompts which are called up by a "Y" response to the LAYOUT? prompt.
The maximum spacing selected is the spacing at the curb line. The distance between the offset hubs is automatically adjusted to use the selected maximum distance.

If layout mode and coordinate mode are used together, the output distance along centerline and the output offset are to the actual curve return point, but the coordinates are those of the offset hub.

For the main curve area, a chord for use in double-chaining of the points is calculated, rather than output of a lot of angles. Since the instrument is at the center of this curve the radially inversed distance to the hubs is always the same.

This program has been designated as "CD". Size the calculator at 045 prior to running it, and initialize the program by keystroking XED ALPHA [D [ALPHA. The routines used are guided by prompts, beginning with:

1 LAYOUT?
If the calculated solutions are to include radial stakeout of the returns, answer \square and the additional prompts (marked *) will appear. If layout is not desired, answer \mathbf{N} and go to step number 4

2 OFFSET DIST?* Input the distance by which you wish to offset the stakes to be set

R/S
3 MAX SPG?* At this point you can select the maximum spacing which you want between the offset hubs. Input the maximum distance between staked points at the curb line

4 SHOW COORDS?
If the coordinates of the solution points are required, answer \square. If this option is selected, the coor dinates of the radius point will also be calculated.

When the option for LAYOUT has already been selected, the coordinates which are output at the B.C. and E.C. will be those of the offset hub location. If layout has not been selected, the coordinates output are the actual E.C. and B.C. locations.

When the answer to this prompt is yes, the additional prompt (marked **) for beginning coordinates will appear.

If the coordinates are not required, answer \boldsymbol{N} and proceed at step 9

This refers to the actual center point of the main radius for the cul-de-sac. Input the N -coordinate of the intersection point

Input the E-coordinate of the intersection point
6 BACKSITE?**
Any point with known coordinates may be used. Input the N -coor dinate of the backsight point

Input the E-coordinate of the backsight point

7 BRG=?**

8 QD=?

9 RADII?
Input the bearing of the centerline of the street
Input the quadrant code, using the direction toward the cul-de-sac

Input the first radius, beginning on the left side and proceeding clockwise around the cul-de-sac. If the cul-de-sac is offset in such a way that the central radius is tangent to the outside line of the street at this point (there is no return curve) input 0

EMTERT
Input the central radius
Input the last return radius. If there is no return at this point, input 0

10 WIDTH?
Input the width of the street
11 OFFSET?
input the amount of offset from the centerline of the street to the main radius point of the cul-de-sac. If the radius point is on the centerline of the street, input 0 . If the offset is to the left. CHS .

Output is automatic, and will print out all of the required data in the same order that the radii were input. If you do not have a printer attached to the calculator, continue stroking the R/S key to obtain the output.

We will use the cul-de-sac shown to the right for our first keystroke example, and use both the coordinate output and layout modes.

Assume that a hub offset of 3 ' is wanted, and use a maximum between points of 12^{1} for the example problem.

Use a coordinate value of N100/E300 for the backsight point, and follow the keystrokes shown in the example on the next page.

prompt：
LAYOUT？
keystrokes：

［ $\quad \mathrm{R} / \mathrm{S}$

prompt：OFFSET DIST？
keystrokes：
（3）R／S
prompt：MAX SPG？
keystrokes：
（1）R／S
prompt：SHOW COORDS？
keystrokes：
（ \downarrow R／S
prompt：INTER－X N4E keystrokes：
1000 ENTERT
$1008 \mathrm{R} / \mathrm{S}$
prompt：BACKSITE？
keystrokes：
100 EMTERT
（3） 0 R／S
prompt：BRG＝？
keystrokes：
10 R／S
prompt：
QD＝？
keystrokes：
1 R／S
prompt：
RADII？
keystrokes：

prompt keystrokes：

40 R／S prompt： OFFSET？
keystrokes：
0 R／S
output：DIST $1=29.814$
$0 / 51=26.667$
$N=73.4145$
$\mathrm{E}=66.2834$
$H D=43.088$
$\triangle \mathrm{RT}=$
$141^{\circ} 48^{\prime} 37.1^{\circ}$
radius point：
$N=62.9840$
$E=52.8419$
$\mathrm{HD}=60.000$
$\triangle \mathrm{RT}=$
$141^{\circ} 48^{\prime} 37.1^{-}$
$R=20.0090$
DELTR $=$
$48^{\circ} 11^{\prime} \cdot 22.9^{-}$
$L=16.821$
$\mathrm{T}=8.944$
$\mathrm{CH}=16.330$
1／2
$N=67.8440$
$E=69.3301$
$H D=45.019$
〈RT＝
$132^{\circ} 56^{\prime} 31.9^{\circ}$
$N=59.9528$
$E=69.5836$
$H D=58.289$
$\triangle \mathrm{RT}=$ $127^{\circ} 12^{-59.6}$

DIST $2=44.721$
$0 / 5 \quad 2=29.808$
$R=40.808$
BELTA＝
$272^{\circ} 36^{\circ} 18.0^{\circ}$
$\mathrm{L}=190.314$
〈15．98〉

DIST $1=27.994$
$0 / 51=28.571$
$N=65.0300$
$E=125.0219$
$H D=43.880$
$\angle R T=$
$54^{\circ} 24^{\circ} 55.1^{-}$
RADIUS POINT：
$N=43.8721$
$E=140.7334$
$H D=70.880$
4RT＝
$54^{\circ} 24^{\prime} 55.1^{*}$
$R=30.0080$
DELTA $=$
44＊ $24^{\prime} 55.1^{\circ}$
$L=23.256$
$T=12.247$
$\mathrm{CH}=22.678$
$1 / 2$
$N=57.4628$
$E=117.8881$
$H D=46.145$
$\angle R T=$ $67^{\circ} 11^{\circ} 30.7^{\circ}$
$N=47.7606$
$E=114.1436$
$H D=54.128$
－RT $=$
$74^{\circ} 51^{\prime} 2.2^{\circ}$
DIST $2=48.990$
$0 / 5 \hat{2}=28.808$

CயTlo@®o@®®

The cul-de-sac to the left has an offset center point which is 10^{1} left of the centerline of the street. Other than that, it is the same as the previous example.

The only difference in input for this one would be after the last prompt, OFFSET?, where you would enter -10 instead of 0 .

For a keystroke example, we will calculate the cul-de-sac with just the coordinate output. The prompt for the coordinates of the center point will appear, but not the layout prompts for spacing, hub offset and backsight coor dinates. Begin by stroking XEO ALPHA $C D$ ALPHA, and then:
prompt:
keystrokes:
(N) R/S
prompt: SHOW COORDS?
keystrokes:

(\downarrow R/S

prompt: INTER-X N4E keystrokes:
100 ENTERT

prompt: BRG=?
keystrokes:

prompt: $\quad \mathbf{Q D}=$?
keystrokes:
(1) R/S
prompt:
RADII?
keystrokes:

prompt: keystrokes:

(4) 0 R/S

prompt:
OFFSET? keystrokes

10 CHS R/S
output:
DIST $1=34.641$
$0 / 51=30.809$
$\mathrm{N}=69.3582$
$E=74.2885$
RADIUS POINT:
$\mathrm{N}=54.8373$
$E=61.4327$
$R=20.0880$
DELTA =
$60^{\circ} 9^{\circ} 0.0^{\circ}$
$L=29.944$
$\mathrm{T}=11.547$
$\mathrm{CH}=28.000$
$\mathrm{N}=50.5644$
$\mathrm{E}=81.1289$
DIST $2=51.962$
$0 / \mathrm{S} 2=28.880$
$R=40.000$ DELTA $=$ $271^{\circ} \mathrm{g}^{-9.8^{\circ}}$ $L=189.196$

DIST $1=28.693$ $0 / 51=24.286$
$N=73.7562$
$\mathrm{E}=136.1871$
RADIUS POINT:
$N=54.8734$
$E=152.8275$
$R=30.0800$
DELTA = 31° 日. 9.8°
$L=16.233$
$T=8.321$
$\mathrm{CH}=16.036$
$\mathrm{H}=59.2828$
$\mathrm{E}=123.2833$
DIST $2=36.056$
$0 / 5 \quad 2=20.000$

90亿கS
\qquad

This group of program routines is used to obtain solutions for cul-de-sacs which occur at the end of a curved centerline alignment, as shown below. The program is fully prompted and begins the prompt sequence as soon as the program CDC is executed.

When used for designing the cul-de-sac, the routine solves for the offsets from centerline at the beginning and ending points, and outputs the centerline arc length for calculation of the stations opposite the return points.

Using the coordinate option, the coordinates for these points are also output, along with the coordinates of the radius point at each return. Using this routine, the coordinates of the main center point and the centerline radius point must be known (or assumed).

As with the other programs, a layout routine is included to allow field calculations of the offset hubs for staking. Layout is inversed directly, with the center point used as the instrument setup position, and the coordinates of a backsight point are also input during the initial prompting sequence. The offset distance and the maximum spacing between the offset hubs is pre-selected by the user.

As shown in the example above, the cul-de-sac return curves do not have to be symmetrical (and the center point of the cul-de-sac does not have to be on the centerline of the street). Use of the routine for a condition where the center is offset from the center of the street alignment will be shown in a second example.

The keystroke procedures and detailed examples are on the following pages. It is suggested that a sketch of the cul-de-sac be available for reference while using the program, to insure that the radii are input in the correct order.

This program has been designated as "CDC". Size the calculator at 045 prior to running it, and initialize the program by keystroking XEO [ALPHA [C D [C] ALPHA. The routines used are guided by prompts, the first of which is:

1 LAYOUT?
If the calculated solutions are to include radial stakeout of the returns, answer \square and the additional prompts (marked *) will appear. If layout is not desired, answer \square and go to step number 4

2 OFFSET DIST?*
Input the distance by which you wish to offset the stakes to be set

R/S
3 MAX SPG?*
At this point you can select the maximum spacing which you want between the offset hubs. Input the maximum distance between staked points at the curb line

R/S
4 SHOW COORDS?
If the coordinates of the solution points are required, answer \square. If this option is selected, the coordinates of the radius point will also be calculated.

When the option for LAYOUT has already been selected, the coor dinates which are output at the B.C. and E.C. will be those of the offset hub location. If layout has not been selected, the coordinates output are the actual E.C. and B.C. locations.

When the answer to this prompt is yes, the additional prompt (marked **) for beginning coordinates will appear.

If the coordinates are not required, answer \mathbb{N} and proceed at step 7

5 INTER-X NAE** This refers to the actual center point of the main radius for the cul-de-sac. Input the N -coordinate of the intersection point

Input the E-coordinate of the intersection point
6 BACKSITE?*
Any point with known coordinates may be used. Input the N -coordinate of the backsight point

Input the E-coordinate of the backsight point

Cயm『®ல Cயை

7 RADIUS NtE?**
Input the N -coordinate value of the main alignment radius point

EMTERA
Input the E-coordinate
8 RADII?
Input the radii, beginning with the radius of the centerline alignment (if the curve is to the left, CHS)

EMTERT
The radius of the outside return is input next. If the cul-de-sac is offset in such a way that the central radius is tangent to the outside line of the main alignment at this point (there is no return curve) input 0

ENTERT
Input the central radius
EMTERT
Input the radius of the last return. Again, if there is no return curve at this point, input 0

R/S
Note that, after the input of the centerline radius for the main alignment, the input of the radii is clockwise for an alignment which curves to the right and counter-clockwise for a curve to the left.
9 WIDTH?
Input the width of the street
R/S
10 OFFSET? Input the amount of offset. If the center point of the cul-de-sac is not offset from the centerline alignment, input 0 . If the offset is to the left, CHS

Output will begin with the curve data and arc length/offset data for the outside return and proceed in the same order as the input. When coordinate or layout routines were requested, the coordinates of the radius point for each return will also be output. In the layout mode the coordinates of the return points are those of the offset hubs, but the arc and offset are still to the actual curve point.

In the layout mode the main curve is not divided into a series of angles for layout, but the chord distance from the last hub, for maintaining the required spacing of the hubs is given (shown $\langle X X . x x\rangle$ in the output) so that the hubs may be quickly double-chained using the last hub and the center point.

For a first example of the keystroke procedures which would be used in solving for the curve data and curve point locations for the cul-de-sac shown on page 7,we begin with the calculator sized at least at size 045 .

keystrokes:	XEO
ALPHA $C D C$ ALPHA	
prompt:	LAYOUT?

keystrokes:
[\quad R/S
prompt: SHOW COORDS?
keystrokes:
R R/S R RADII?
keystrokes:
250 ENTERT
(2) 0 ENTERT
[3] [ENTERT]
[0 R/S

prompt: keystrokes:
(4) 0 R/S
prompt:
WIDTH?
$R=38.0880$
DELTA $=$
$268^{\circ} 7 \cdot 8.9^{-}$
$L=177.823$
$R=30.008$
DELTA $=$
$48^{\circ} 54^{\prime} 46.4^{-}$
$L=25.611$
$T=13.644$
$\mathrm{CH}=24.840$
ARC $1=25.981$
$0 / 51=29.123$
ARC $2=51.618$
$0 / 52=28.808$

ARC $2=39.036$
$0 / 52=20.880$
Next, as an example of the layout mode, we can use the same cul-de-sac, but assume that we are set up at the intersection point (center point of the main radius) and want to stake out the returns for curb and gutter. We will use a 3^{\prime} offset line, and a maximum 12 feet between points, to ensure that the curbs will be smoothly curved.

As shown to the left, the maximum spacing selected is the spacing at the actual curb line. The distance between the offset hubs is adjusted automatically to not exceed the selected distance at the curb.

For the central portion the chord distance to pull between the offset hubs is given, and the hubs may be set by double-taping using the chord distance from the last hub and a distance from the center point that is equal to the radius + the offset.

The keystroke procedures for obtaining the angles and distances for layout are shown on the next page. Assume a backsight coor dinate of $\mathrm{N}=100$ and $\mathrm{E}=200$.

keystrokes: XEO
ALPHA $D \square \square$ prompt: LAYOUT?
keystrokes:
(R / S
prompt: OFFSET DIST?
keystrokes:
[3) R/S
prompt: MAX SPG?
keystrokes:
1 R R/S
prompt: SHOW COORDS? keystrokes:
(\quad R/S
prompt: INTER-X N+E keystrokes:
2000 ENTERT
20 R 0 R/S
prompt: BACKSITE?
keystrokes:
1000 ENTERT
(2) 00 R/S
prompt: RADIUS N+E keystrokes:
(2) 1 8 8 [8] 8 7

keystrokes:
2] 0 ENTERT
(2) 0 ENTERT
[3] EENTERT
30 R/S
prompt:
keystrokes:
40 R/S
prompt:
OFFSET?
keystrokes:
0 R/S
output: $R=28.8080$
DELTA $=$ $42^{\circ} 5.24 .0^{\circ}$
$L=14.692$
$T=7.695$
$\mathrm{CH}=14.364$
ARC $1=26.865$
$0 / \mathrm{S} 1=25.485$
$H D=41.080$
$\triangle R T=$
$34^{\circ} 37^{-49.2}{ }^{-}$
radius point:
$H D=58.006$
$\triangle \mathrm{RT}=$
$34^{\circ} 37^{-49.2}$
1/2
$\mathrm{HD}=42.574$
$\triangle \mathrm{RT}=$
$26^{\circ} 23^{\prime} 10.4^{-}$
$H D=46.793$
$\triangle R T=$
$28^{\circ} 32^{\prime} 9.5^{\circ}$

ARC $2=51.618$
$0 / 52=20.880$
$R=38.8088$
DELTA $=$ 268* 7' 8.9"
$L=177.823$〈16.77〉
$R=30.80$
DELTH $=$ $48^{\circ} 54^{\prime} 46.4^{\circ}$
$L=25.611$
$T=13.644$
$\mathrm{CH}=24.848$
ARC $1=25.981$
$0 / 51=29.123$
$H D=41.090$
$\triangle \mathrm{RT}=$
$302^{\circ} 44^{\circ} 58.2^{\circ}$
RADIUS POINT
$H D=68.006$
$\triangle R T=$
$382^{\circ} 44^{\circ} 58.2^{\circ}$
$1 / 3$
$H D=42.763$
$\triangle \mathrm{RT}=$
$312^{\circ} 57^{\prime} 33.8^{\circ}$
2/3
$H D=47.537$

- RT $=$
$320^{\circ} 34^{\prime} 21.3^{\circ}$
$H D=54.219$
$\triangle \mathrm{RT}=$
$324^{\circ} 47^{\prime} 39.3^{\circ}$

ARC $2=39.836$
$0 / 52=28.806$

prompt:
keystrokes:
(\quad R/S
prompt: SHOW COORDS?
keystrokes:
\square R/S
prompt: INTER-X N+E keystrokes:
[50 0 ENTERT
500 R/S
prompt: RADIUS N+E keystrokes:
[50 0 ENTERT
[3 5 R \quad R/S

In addition to being an example of a cul-de-sac with an offset center point, we can also use the one shown to the left as an example of a cul-de-sac on an alignment with a curve to the left.

In using this keystroke example we will assume that we are designing the cul-de-sac, and want to calculate the coordinates for plotting.

With the calculator sized at 045 keystroke XED ALPHA C [D ALPHA.

Program execution is started and the first prompt appears:

ARC $1=31.758$
$0 / 51=24.386$
$\mathrm{N}=462.8507$
$\mathrm{E}=587.9958$
radius point:
$N=443.2985$
$E=512.2841$
$N=450.0887$
$E=493.3634$
ARC $2=46.190$
$0 / 52=14.006$
$R=38.080 日$
DELTA $=$
$280^{\circ} 42^{\prime} 21.3^{\circ}$
$L=186.171$

$R=48.980$
DELTA $=$
RADIUS POINT
$44^{\circ} 48^{\prime} 49.5^{\circ}$
$L=31.286$
$T=16.492$
$\mathrm{CH}=30.495$
$=469.7878$
$E=428.1224$
$N=454.7487$
$E=465.2280$
ARC $1=17.689$
$0 / 51=22.049$
$N=485.2423$
$E=464.9827$
ARC $2=51.745$
$0 / 52=14.800$

As a last example of this routine, the cul-de-sac shown above is at the end of an alignment curve to the right and is offset to the left. In addition, this is an example of a " 0 " radius on one side. The curb line on the right side of this street forms a smooth line as it joins the curve of the cul-de-sac at a PRC opposite and radial to the center point of the main cul-de-sac radius.

To demonstrate the output, we will solve for the coordinates, without the layout option. The calculator is sized at 045 , and we begin with XEO ALPHA $\square \square \square$ ALPHA.
prompt: LAYOUT?
keystrokes:

[m R/S

prompt: SHOW COORDS?
keystrokes:
(R / S
prompt: INTER-X N+E keystrokes:

prompt: RADIUS N+E keystrokes:

prompt:
RADII?
keystrokes:
250 ENTERT

2] 0 ENTER4

| 3 ENTER | ENTER |
| :--- | :--- | :--- |

0 R/S prompt:

WIDTH?
keystrokes:
40 R/S
prompt: OFFSET?
keystrokes:
18 CHS R/S
output: $R=28.8000$
$R=20.8$
DELTA $=$
$62^{\circ} 17 \cdot 41.2^{\circ}$
$L=21.745$
$T=12.887$
$C H=20.690$
ARC $1=32.459$
$0 / S I=31.259$
$M=163.5949$
$E=171.1865$

RADIUS POINT:
$N=144.4343$
$E=165.3731$
$N=148.2664$
$E=185.8826$
$\operatorname{ARC} 2=48.280$
$0 / 52=20.880$
$R=38.0008$
DELTO: = $253^{\circ} 20^{\circ} 28.7^{\circ}$
$L=168.022$
$R=0.080$
ARC $1=0.089$
$0 / 5 \mathrm{I}=28.000$
$N=288.9808$
$E=228.0888$

A cul-de-sac that is designed in such a way that the return curves are also tangent to the line of the adjacent street is called a "bulb". There are a number of variations of this used by different designers, but the most common type is one that has a "real" throat width. In other words, the only difference between this cul-de-sac and any other is that there is no tangent line between the return curves of the cul-de-sac and the return curves of the street going by it.

The bulb shown to the left is typical of the type which may be resolved using this program. The program allows for the bulb occurring along the outside or inside of a curved street.

The program has been designated as "BB", and works a little differently than the programs for cul-de-sacs, in that after execution, it will halt and wait for you to select the option you want. The options are whether you want the output with or without having the coordinates output.

If coordinates are not wanted, simply keystroke A after the program halts (the display will show 360). For the option with coordinates, you will input the coordinates of the street centerline intersection with the centerline of the bulb, and then keystroke [B.

This program does not contain a layout option, it takes far more program steps. The layout may be done using the cul-de-sac program and one of the street intersection programs which follow.

The two buttons used for this routine are shown in the sketch to the right. When coordinate output is requested, it will output the coordinates of the three radius points, along with the design information and curve data.

If the bulb is on a curved street, the street centerline arc opposite the return points is also given. On a straight street the distance is half of the width of the bulb street plus the return radius. This allows the "street side" to be staked by offsets from centerline.

To make this program easy to access, it has been given a global lable of "BB". The calculator should be sized at least at 040 before beginning. Initialize the program by keystroking XEO ALPHA B B ALPHA. The program will clear the registers and reset the flag status, and then halt.

If coordinates are to be calculated, input the N -coordinate value of the intersection of the streets and stroke

ENTERA
Input the E-coordinate value for the streets' intersection and stroke

3 or
If coordinates are not wanted, stroke
The prompts marked* will only appear if the coordinate calculation option has been chosen

4 BRG=?*
5 QD=?*
Input the bearing of the cul-de-sac street
Input the quadrant code in the direction toward the center of the cul-de-sac

If the main street (the collector) is curving at the point where the bulb street intersects, answer $\quad \mathrm{R} / \mathrm{S}$. If the street is straight, answer D R/S. When the Y answer is given, an additional prompt (marked**) will appear
7 OUTSIDE?**
Answer this prompt \square / S if the bulb is on the side of the street away from the main alignment's radius point, or $\left[\begin{array}{ll}0 \\ R & \text { if it is on the side toward the radius point }\end{array}\right.$

8 RADII?
If the bulb does occur at a curve in the main alignment, input the main-line radius first

Input the radius of the return
10 Input the center radius of the cul-de-sac
$111 / 2 \mathrm{~W}$ A?
Input the half-width of the street
12 WIDTH?
Input the width at the "throat" of the cul-de-sac

Output is automatic and will first print out the distance from the streets' intersection to the center of the cul-de-sac.

If the bulb is on a curve, the centerline arc distance on the main alignment will be output next, followed by the data for the center curve, the distance and offset to the PRC points and the curve data for the returns.

If coordinate output was selected, the coordinates for the radius points will also be output.

If you do not have a printer attached to the calculator, continue stroking the
 R/S key for the output.

As a first example we can calculate the data for the bulb shown above. We will assume that we do not need the coordinates.
keystrokes:
XEO

ALPHA	B ALPHA
display:	360.0000

keystroke:
prompt:
keystrokes:

(N) R/S

prompt:
RADII?
keystrokes:

2) 5 ENTERT
 3 R $5 / S$

prompt:
1/2W A?
keystrokes:
2] 0 R/S
prompt:
WIDTH?
keystrokes:
30 R/S
output: $D=89.721$
CENTER:
DELTG $=$
$276^{\circ} 22^{\prime}$ 45.7*
$\mathrm{L}=168.736$
RETURNS:
DIST $=26.887$
$0 / s=23.333$
DELTA $=$
$138^{\circ} 11^{\prime} 22.9^{\circ}$
$L=60.297$
$T=65.451$
$\mathrm{CH}=46.709$
If coordinates had been wanted, the initial keystrokes would have been:
keystrokes:

5	0	0	ENTERA
5	0	0	B

followed by the additional prompts:

BRG=?
keystrokes:
8 R/S
prompt: $\quad \mathrm{DD}=$?
keystrokes:
(4) R/S
then:
prompt:
CURVE?
keystrokes:
(\quad R/S
prompt:
RADII?
keystrokes:
2] ENTER4
3 R $5 / \mathrm{S}$
prompt:
1/2W A?
keystrokes:

prompt:
WIDTH?
keystrokes:
3 R/S
output: $\mathbb{D}=89.721$
CENTER:
$N=504.6957$
$E=410.4816$
DELTA $=$ $276^{\circ} 222^{\prime} 45.7^{\circ}$
$L=168.736$
RETURNS:
DIST $=24.667$
$0 / S=24.831$
$N=462.4899$
$E=452.9682$
DELTA $=$
$138^{\circ} 11 \cdot 22.9^{\circ}$
$\mathrm{L}=60.297$
$T=65.451$
$\mathrm{CH}=46.709$
$N=542.3083$
$E=457.155$!
The bulb shown above is similar to the first one, with the exception that it occurs on a curved street. In this case, on the outside of the curve.

The only difference in input will be that three radii are input instead of two. The main street alignment radius (in this case, 500) is input first.

The keystrokes are as shown to the right.

keystrokes:

$$
\text { ALPHA } B
$$

display:
keystroke:
prompt: CURVE?
keystrokes:
(1) R/S
prompt: OUTSIDE? keystrokes:
D R/S
prompt: RADII?
keystrokes:
[50 0 ENTERT
(2) 5 ENTERA
(3) R/S
prompt: $\mathbf{1 / 2 W}$ A?
keystrokes:
2) 0 R/S
prompt: WIDTH?
keystrokes:
3 0 R/S
output: $\quad D=88.251$
ARC $=36.730$
CENTER:
$N=686.8431$
$E=115.7038$
DELTA $=$
$276^{\circ} 22^{\prime} 45.7^{\circ}$
$\mathrm{L}=168.736$
RETURNS:
DIST $=21.519$
$0 / 5=27.603$
$N=649.9532$
$\mathrm{E}=68.3843$
DELTA =
$133^{\circ} 58^{\prime} 58.5^{\circ}$
$\mathrm{L}=58.468$
$T=58.869$
$\mathrm{CH}=46.022$
$N=635.7177$
$E=147.1875$

Bomcksos

A "knuckle" is sometimes added at the angle-point intersection of two streets in order to get a better lot pattern without actually building in a full cul-de-sac. As with anything else, different designers use different types of solutions. This routine solves for all of the needed data for the type where the return radii are equal, and the central angle of the main area is 180°.

The offset distance (D) from the main alignment intersection varies with the angle of intersection and the proportions of the main and return radii. If it occurs outside the angle point, it will be a positive number, if inside, negative. The main line tangent length (\mathbf{T}) is the distance along the main alignment tangents which will be at a centerline point opposite the BC or EC of the returns.

An additional feature of this routine is that it also designs a curve to fit the opposite side of the street (opposite the same tangent points).

This allows layout by turning 90 's at the tangent points to set the BC or EC offsets and radius points directly. Because of the type of knuckle, all of the radii and the PRC points are on a straight line.

It is also convenient for layout that, with the instrument at the main alignment intersection, the angle to turn to the center radius point is equal to the central angle of the returns when the point is on the inside (D is negative), or 180° minus the return central angle when it falls outside the intersection (D is positive).

Because this program uses so many of the same program steps as are needed in solving for the bulbs, the two programs have been combined. The basic moves are the same, with the exception that we use the \square and D keys to begin the prompt sequence.

After keystroking XEQ [ALPHA B B [ALPHA, and execution halts, you may either continue by stroking [] or input the coordinates of the intersection and stroke \square if you want coordinate output. Either key will begin the prompt sequence. The complete keystroke procedures are on page 20.

Initialize the program by keystroking XEO ALPHA B B ALPHA . The program will clear the registers and reset the flag status, and then halt.

After the calculator has halted you may choose whether or not you want to have the coordinates calculated. The routine is fully prompted, and the following are the keystroke procedures:
or

The prompts for the remainder of the input are the same regardless of which option was chosen. Bearing input should be in a clockwise direction.

BRG=?
Input the bearing of the first street
$Q D=?$
Input the quadrant code
BRG=? Input the bearing of the second street
QD=?
Input the quadrant code
If coordinates are to be calculated, input the N -coordinate value of the intersection of the streets and stroke

Input the E-coordinate value for the streets' intersection and stroke

If coordinates are not wanted, stroke

RADII?
Input the radius of the return

Input the center radius of the cul-de-sac R/S
$1 / 2 W ?$

Input the half-width of the street

Output is automatic and will first print out the tangent distance (T) along the main tangent, followed by the distance from the streets' intersection to the center of the knuckle (D). If coordinate output was selected, the coordinates for the radius points will also be output.

As a first keystroke example, we will use the knuckle shown on the opposite page. Assume that the coordinates of the intersection are $N=500$ and $E=500$, and we will have it output the coordinates. If a printer is not attached, continue stroking R/S to obtain the output.

Calculate the knuckle, using the street bearings and curve radii shown above, as follows:
keystrokes:
ALPHA B
display:
360.0000
keystroke:
prompt:
BRG=?
keystrokes:
8 R/S
prompt:
QD=?
keystrokes:
2) R/S
prompt:
BRG=?
keystrokes:
10 R/S
prompt:
QD=?
keystrokes:
(2) R/S

prompt:
RADII?
keystrokes:
20 ENTERt
(2) 8 R/S
prompt:
$1 / 2 W$?
keystrokes:
2 2 R/S
output: $\quad \mathrm{T}=28.2749$
$D=16.108$
CENTER:
DELTA =
$180^{\circ} 0^{\circ} 8.0^{\circ}$
$\mathrm{L}=87.965$
RETURNS:
DELTA $=$
$52^{\circ} 30^{-} 0.8^{-}$
$L=18.326$
$T=9.863$
$\mathrm{CH}=17.692$

OPPOSITE:
$R=14.849$
DELTA $=$
$75^{\circ} 9^{\circ} 8.8^{\circ}$
$L=19.437$
$T=11.394$
$\mathrm{CH}=18.879$

The angle is turned to the center point and D is set in the normal way (to become the radius point of the island nose at the centerline).

Set another point at the desired distance from D. This point becomes both the radius point of the cul-de-sac and the radius point of the other end of the island.

If the opposite radius which is calculated by the program is not long enough to meet minimum local ordinances, in this case 14.85', it can be recalculated with a new radius, or the return radii can be increased in length. Using 25^{\prime} as the return radius would give:

OPPOSITE:
$R=18.062$
DELTA $=$
$75^{\circ} 0^{\circ} 0.8^{\circ}$
$L=23.643$
$T=13.859$
$\mathrm{CH}=21.991$

This program can be used on those many occasions when the field crew is to stake out an intersection, but the site plan or subdivision map doesn't give all of the necessary information, or can be used to generate quick solutions when designing the intersection.

In its simplest form, it calculates the distance along centerline to be opposite the E.C. or B.C. of the returns. If desired, the coordinates of the return points and the radius points may be generated, either for plotting or for radial layout from known coor dinate points.

A third option, using this program is direct radial layout of offset points to the curb returns from an instrument setup at the intersection. The angles and distances to the offset hubs are output, and the maximum spacing of the off set points around the curve, as well as the offset distance, can be pre-selected to meet the needs of the contractor.

The intersection shown to the left will be used for the examples which follow.

The required information is the bearing of the centerline of each street, the street widths, and the radii at the curb returns. In order to avoid confusion with the output, the line which runs most nearly north-south is designated as line A, and the street running most nearly east-west as line B.

When input, the line A quadrant code should be given in the northerly direction, and the line B quadrant code in the easterly direction. The solutions will begin with the northeasterly return and go clockwise around the intersection.

The output "Dist A" and "Dist B" allow quick calculation of the station at the E.C. and B.C. of the returns and, of course, the offset from centerline is already known.

When used for radial layout of the intersection, the program calculates the angle right to the solution point backsighting northerly along line A.

For easy access to this program, it has been designated as "NN". With the calculator sized at 035, Initialize the program by keystroking XED ALPHA [\square [0 ALPHA. All of the routines used are guided by prompts, and the first of these appears as

1 LAYOUT? If the calculated solutions are to include radial stakeout of the returns, answer \square R/S , and the additional prompts (marked *) will appear. If layout is not desired, answer [\quad R/S and go to step number 4.

2 OFFSET DIST?*
Input the distance by which you wish to offset the stakes to be set

R/S
3 MAX SPG?* At this point you can select the maximum spacing which you want to have between the offset hubs, in order to assure that the construction of the return is a curve instead of a series of chords. Input the maximum distance between points at the curb line

R/S
4 SHOW COORDS? If the coordinates of the solution points are required, answer (\quad R/S. If this option is selected, the coordinates of the radius point will also be calculated. When the option for LAYOUT has already been selected, the coordinates which are output at the B.C. and E.C. will be those of the offset hub location.

If layout has not been selected, the coordinates output are the actual E.C. and B.C. locations. When the answer to this prompt is yes, the additional prompt (marked**) for beginning coordinates will appear.

If the coordinates are not required, answer $⿴ 囗 \pi / S$ and proceed at step 6.

5 INTER-X N+E** Input the N-coordinate of the intersection point ENTERA
Input the E-coordinate of the intersection point
6 BRG=? Input the bearing of line A
7 QD=? Input the quadrant code for line A, using the northerly direction of the bearing

โatersectiono Bot

8 BRG?
Input the bearing for line B
R/S
9 QD=? Input the quadrant code for the line B bearing, using the easterly direction

R/S
10 1/2W A?
Input the half-width of street A
R/S
11 1/2W B?
Input the half-width of street B
R/S
12 R?
Input the radius of the first return, beginning in the upper right-hand (northeasterly) corner of the intersection

R/S
Output will be the solutions requested for the return. If a printer is not attached, continue stroking R/S after each output until the solution for this quadrant has been completed. At this point the program will again prompt R?.

Return to step 12 for solution of the next return, working clockwise around the intersection.

To begin with an easy example of the keystroke procedures, use the illustrated intersection to calculate solutions without layout or coordinates, as follows:


```
(n) R/S
prompt: SHOW COORDS?
keystrokes:
```


($\quad \mathrm{m} / \mathrm{S}$

prompt:
BRG=?
keystrokes:
10 R/S
prompt:
QD=?
keystrokes:
(4) R/S
prompt:
keystrokes:
7 R R/S
prompt:
keystrokes:
(2) R/S
prompt: $\quad 1 / 2 \mathrm{~W} A$?
keystrokes:
(2) 0 R/S
prompt:
1/2W B?
keystrokes:
2) 5 R/S

BRG=? prompt:
R?
keystrokes:
3 0 R/S
output: $R=30.0880$
DELTR $=$
$60^{\circ} 0^{\circ} 8.8^{\circ}$
$\mathrm{L}=31.416$
$T=17.321$
$\mathrm{CH}=38.880$
BIST $A=34.641$
BIST $\mathrm{B}=25.981$
The distances may be added or subtracted to the station at the intersection to obtain the station at the return points.

Next, as an example of the layout mode of this program, we can work the same example, assuming that we are setting the instrument up at the intersection of the centerlines of the two streets, and sighting northerly along line A. We will further assume that we want to set our offset stakes at an offset of 3 feet to the face of the curb, and that we do not want more than 16 feet between the points around the curve.
keystrokes:

keystrokes:
v R/S
prompt: OFFSET DIST? keystrokes:

3 R/S
prompt MAX SPG?
keystrokes:
1 R/S
prompt: SHOW COORDS?
keystrokes:
R/S

RADIUS POINT:
$H D=95.844$
$\triangle \mathrm{RT}=$
$321^{\circ} 44^{-25.8}{ }^{-}$
1/4
$H D=98.286$
$\triangle \mathrm{RT}=$
$334^{\circ} 40^{\circ} 46.8^{\circ}$
2/4
HD $=108.247$
©RT= $331^{\circ} 41^{\prime} 37.2^{\circ}$

3/4
$H D=114.895$
$\triangle \mathrm{RT}=$
$326^{\circ} 56^{\prime} 31.3^{\circ}$
DIST $B=80.829$
$\mathrm{HD}=85.541$
〈RT=
$389^{\circ} 6^{\circ} 23.8^{-}$

It may be noted that, for the last radius, the mid-point was labled as "2/4" instead of $1 / 2$.

Similar output will occur as $2 / 8,4 / 8,6 / 8$, etc. because it was felt that the user would rather not have to punch in all of the extra steps which would be needed, just to reduce the fractional output to least common denominator.

Answering YES to both the LAYOUT? and the SHOW COORDS? prompts would result in output as shown below. This type of output is convenient if the layout calculations are done at the same time as the design data is calculated, since it does not require additional work to obtain the field layout information at a later date. A partial printout is shown as an example of the output.

$\mathrm{R}=30.0000$	HD $=38.197$
BELTA $=$	
$66^{\circ} 8^{0.0 .0}$	$62^{\circ} 51 \cdot 27.9^{\circ}$
$\mathrm{L}=31.416$	
$\mathrm{T}=17.321$	
$\mathrm{CH}=38.800$	$\begin{aligned} & R=28.0088 \\ & \text { BELTA }= \end{aligned}$
DIST $A=34.641$	$128^{\circ} 0^{\circ} 8.8{ }^{\circ}$
$N=1,038.1886$	$\mathrm{L}=41.888$
$\mathrm{E}=5,016.6352$	$T=34.641$ $\mathrm{CH}=34.641$
$\mathrm{HD}=41.581$	
$\triangle \mathrm{RT}=$	DIST $\mathrm{A}=75.856$
$23^{\circ} 34^{\prime} 56.2^{-}$	$\begin{aligned} & N=938.0786 \\ & E=5,835.6838 \end{aligned}$
RADIUS POINT:	
$N=1,042.7972$	$\mathrm{HI}=78.501$
$E=5,043.2250$	$\begin{aligned} & \triangle R T= \\ & 152^{\circ} 57^{\circ} .46 .3^{3} \end{aligned}$
$\mathrm{HD}=66.828$	
- $\mathrm{RT}=$	RRDIUS POINT
$45^{\circ} 17^{\circ} 6.8^{\circ}$	$N=933.8387$ $E=5,052.4256$
1/2	
$N=1,025.4419$	$\mathrm{HD}=85.849$
$\mathrm{E}=5,022.5418$	$\begin{aligned} & \mathrm{CRT}= \\ & 141^{\circ} 56^{-42.4} \end{aligned}$
$\mathrm{HD}=33.992$	
<RT $=$	
$41^{\circ} 32 \cdot 28.9 *$	$\begin{aligned} & N=941.5387 \\ & E=5,037.7831 \end{aligned}$
DIST $\mathrm{B}=25.981$	
$N=1,817.4254$	HD $=69.571$
$\mathrm{E}=5,033.9985$	$\Delta \mathrm{RT}=$
	$147^{\circ} 11^{\prime} 4.6^{\circ}$

When working in both layout and coordinate output modes, it should be remembered that coordinates of the offset points are output, rather than those of the return and curve points.

This program is similar to the previous one, with the exception that it calculates the intersection when one of the streets is straight and the other is curved.

The required information is the bearing of the centerline of the straight street, the radial bearing, to the point of intersection, and radius of the curved street, the street widths, and the radii at the curb returns.

Select type A if the radial bearing is northeast or southwest, and Type B when the radial bearing is northwest or southeast.

When input, the line A quadrant code should be given in the northerly or southerly direction which matches the northerly or southerly direction of the

TYPE "B"1
The solutions begin with the return to the right of the line A direction, and go clockwise around the intersection.

The output distance, "A" and the arc, "B" allow calculation of the stations of the E.C. and B.C. points.

The intersection shown to the right will be used as the example, and is a type A1 intersection. All of the basic information is the same as in the last progam, with the exception of the radial instead of the tangent bearing being used for the curved street. radial bearing of B, when the line B quadrant code is given as radial to the point of intersection.

This program has been designated as "NO". With the calculator sized at 035, Initialize the program by keystroking XED ALPHA $\boldsymbol{M} 0$ 日 0 ALPHA. The calculator will clear and pause with a display of 0.0000 .

1

2 LAYOUT?

3 OFFSET DIST?*

4 MAX SPG?*

5 SHOW COORDS?

6 INTER-X N+E**
Input the N -coordinate of the intersection point ENTERA Input the E-coordinate of the intersection point

7 BRG=?

8 QD=?
Input the bearing of line A
Input the quadrant code for line A that corresponds to the northerly or southerly direction of the radial bearing
$9 \quad \mathrm{BRG}=$?
Input the radial bearing of street B
10 QD=? Input the quadrant code for the radial bearing of street B in the direction to the intersection

R/S

โatarsection-(0)® CuTr CB

$11 \mathbf{R}$?
Input the radius of the centerline of street B
12 1/2M A?
Input the half-width of street A

13 1/2H B?
Input the half-width of street B

14 R?
Input the radius of the first return, beginning in the quadrant indicated for the type of intersection being calculated

Output will be the solutions requested for the return. If a printer is not attached, continue stroking R / S after each output until the solution for this quadrant has been completed. At this point the program will again prompt R?.

Return to step 14 for solution of the next return, working clockwise around the intersection.

To begin with an easy example of the keystroke procedures, use the illustrated intersection to calculate solutions without layout or coordinates, as follows:

prompt:
keystrokes:

4. 0 R/S	
output:	$A=103.231$
	$R=40.008$
	DELTA $=$
	$127^{\circ} 54^{\prime} 19.6{ }^{\circ}$
	$L=89.295$
	$\mathrm{T}=81.841$
	CH $=71.875$
	$B=189.378$

R?
| prompt:
keystrokes:
60 R/S
output: $A=66.588$
$R=60.008$
DELTA $=$
$80^{\circ} 32^{\prime} 33.8^{\circ}$
$L=84.344$
$\mathrm{T}=50.832$
$\mathrm{CH}=77.569$
$B=64.482$
keystrokes:
6 R/S
output: $A=182.981$
$R=69.088$
DELTA $=$
$95^{\circ} 46 \cdot 47.7^{\circ}$
$L=180.300$
$T=66.380$
$\mathrm{CH}=89.823$
$B=86.866$

\begin{tabular}{|c|c|c|c|c|}
\hline $A=58.477$
$N=1.857 .7239$ \& $A=183.231$

H \& $A=66.588$ \& $A=182.981$
$N=1.83811$ \& Using the same keystrokes, but with an answer of $\quad R / S$

\hline $N=1,857.7239$ \& $N=896.1692$ \& $N=934.2534$ \& $N=1,183.5011$ \&

\hline $\mathrm{E}=5,018.5355$ \& $\mathrm{E}=5,811.4819$ \& $E=4,981.1142$ \& $E=4,988.5037$ \& to the coordinate prompt, the coordinates would have been

\hline RAD. POINT: \& RRD. POINT: \& \& \& input as 1000 ENTERT, 500 R/S, and the

\hline $\mathrm{E}=5,878.4784$ \& $\mathrm{E}=5,851.4438$ \& $E=4,921.1713$ \& $\mathrm{E}=4,928.5688$ \& outputs would appear as shown to the left.

\hline $\mathrm{R}=60.000$ \& $R=40.808$ \& $R=68.808$ \& 0.080 \& The coordinates shown after

\hline $$
\begin{aligned}
& \text { DELTA }= \\
& 63^{\circ} 11 \cdot 46.1^{\circ}
\end{aligned}
$$ \& \& BELTA $=$ \& DELTA $=$ \& stances A and B are the

\hline $$
L=66.179
$$ \& $127^{\circ} 54^{\circ} 19.6^{\circ}$

$L=89.295$ \& 80

$L=84.344$ \& $$
\begin{aligned}
& 95^{\circ} 46^{\circ} 47 . \\
& L=180.300
\end{aligned}
$$ \& inates of the return poin

\hline $T=36.989$ \& $\mathrm{T}=81.841$ \& $\mathrm{T}=56.832$ \& $\mathrm{T}=66.388$ \& half-width dista

\hline $\mathrm{CH}=62.875$ \& $\mathrm{CH}=31.875$ \& $\mathrm{CH}=77.569$ \& $\mathrm{CH}=89.823$ \& and opposite the centerli distance point.

\hline $B=41.563$ \& $B=189.378$ \& B \& \& e radius point is

\hline $N=1,082.7837$ \& $\mathrm{H}=924.8835$ \& $\mathrm{N}=995.5687$ \& $N=1,046.7437$ \& as a design aid.

\hline $\mathrm{E}=5,049.1119$ \& $\mathrm{E}=5,877.3715$ \& $\mathrm{E}=4,933.6822$ \& $E=4,919.9283$ \&

\hline
\end{tabular}

Next, as an example of the layout mode of this program, we can work the same example, assuming that we are setting the instrument up at the intersection of the centerlines of the two streets, and sighting along line A in the direction that was input at steps 7 and 8 . We will further assume that we want to set our offset stakes at an offset of 3 feet to the face of the curb, and that we do not want more than 25 feet between the stakes around the curve.

keystrokes:
prompt:
LAYOUT? keystrokes:
[R/S
prompt: OFFSET DIST?
|keystrokes:

prompt: MAX SPG?
keystrokes:
2 5 R/S

prompt: SHOW COORDS?
keystrokes:

(m / S

prompt:
BRG=?
keystrokes:

prompt:
QD=?
keystrokes:
1 R/S
prompt:
BRG=?
keystrokes:

prompt:
QD=?
keystrokes:
1 R/S
prompt:
R?
keystrokes:
350 R/S
prompt:
1/2 A?
keystrokes:
16 R/S
prompt: $\quad \mathbf{1 / 2} \mathbf{B}$?
keystrokes:
(2) 4 R/S
prompt:
R?
keystrokes:
6 R/S
output: $A=58.477$
$H D=61.486$
$\triangle R T=$
$17^{\circ} 59^{\prime} 59.4^{-}$

RAD. POINT:
$H D=95.893$
4RT=
$52^{\circ} 25^{\prime} 27.4^{-}$
$R=60.008$
BELTA $=$
$63^{\circ} 11^{\prime} 46.1^{-}$
$L=66.179$
$T=36.989$
$\mathrm{CH}=62.875$
1/3
$H D=44.318$
$\triangle \mathrm{RT}=$
$38^{\circ} 58^{\prime} 53 . \mathrm{B}^{\circ}$
$2 / 3$
$H D=39.335$
$\triangle \mathrm{RT}=$
$59^{\circ} 1 \cdot 57.7^{\circ}$
$B=41.563$
$H D=50.868$
$\triangle \mathrm{RT}=$
$81^{\circ} 24^{\prime} 22.8^{\circ}$
prompt:
keystrokes:
(0 R/S
output:
$A=183.231$
$H D=184.965$
$\triangle \mathrm{RT}=$
$169^{\circ} 34^{\prime}$ 16.5*
RAD. POINT:
$H D=117.442$
$\angle \mathrm{RT}=$
$151^{\circ} 31^{\prime} 17.8^{\circ}$
$R=48.088$
DELTA $=$
$127^{\circ} 54^{\prime} 19.6^{\circ}$
$L=89.295$
$T=81.841$
$\mathrm{CH}=71.875$

1/4
$H D=87.184$
$\triangle \mathrm{RT}=$
$163^{\circ} 36^{\circ} 3.6^{\circ}$
2/4
$H D=80.491$
$\triangle \mathrm{RT}=$
$150^{\circ} 24^{\prime} 14.5^{\circ}$
3/4
$H D=89.395$
$\triangle \mathrm{RT}=$
$137^{\circ} 59^{\prime} 44.5^{\circ}$
$B=109.378$
$H D=188.075$
-RT=
$133^{\circ} 14^{\prime} 24.8^{-}$
prompt:
R?
keystrokes:
6 R/S
output: $A=66.588$
$\mathrm{HD}=69.169$

- RT=
$195^{\circ} 56^{\circ} 37.0^{-}$
rad. POINT
$\mathrm{HD}=100.992$
〈RT=
$228^{\circ} 48^{\circ} 38.7^{\circ}$
$R=68.808$
DELTA $=$
$80^{\circ} 32.33 .8^{-}$
$L=84.344$
$T=50.832$
$\mathrm{CH}=77.569$
1/4
$H D=51.998$
- $\mathrm{RT}=$
$285^{\circ} 37^{\prime} 11.2^{\circ}$

The solution of the returns on an intersection where both of the streets are curved has some slightly different prompts. The main difference is in the layout routine. Because neither of the streets is on a tangent, it is necessary to input the backsight coor dinates.

When we come to the layout example, we will assume a known point with the coor dinates $\mathrm{N}=1122 / \mathrm{E}=5086$ as a backsight, but any convenient known point may be used.

Both of the bearings are the radial bearings to the intersection point. Line A should be clockwise and line B counterclockwise of the return which is inside both curves.

The first solution will be the return which is on the inside of both curves. Go clockwise for the other solutions.

In the intersection shown to the left, line A has a radius of 380^{\prime} and a radial bearing of $\mathrm{N} 27^{\circ} 30^{\prime} \mathrm{E}$. Line B has a radial bearing of $\mathrm{N} 66^{\circ} \mathrm{W}$, with a radius of 400^{\prime}.

The street half-widths are as shown, as are the return radii. The centerline arc distances opposite the E.C. and B.C. points of the returns are output so that the stations may be calculated. As in the previous programs, there are options for calculating the arcs and curve data, the coordinates of the points or doing a complete layout of the intersection at any selected offset and spacing for the stakes.

Keystroke procedures and detailed examples are on the following pages. Even though the program prompts for all of the necessary input, it's handy to have a sketch of the intersection while working with it, in order to input the proper radius dimensions as the solutions are generated.

This program has been designated as "CC". Size the calculator at 045 prior to running it, and initialize the program by keystroking XEO [ALPHA [C] C [ALPHA. the routines used are guided by prompts, and the first of these is:

1 LAYOUT?

2 OFFSET DIST?*
If the calculated solutions are to include radial stakeout of the returns, answer \square R/S and the additional prompts (marked *) will appear. If layout is not desired, answer [M R/S and go to step number 4

Input the distance by which you wish to offset the stakes to be set

R/S
3 MAX SPG?*

4 SHOW COORDS?
At this point you can select the maximum spacing which you want between the layout points. Input the maximum distance between points

R/S
If the coordinates of the solution points are required, answer [R/S]. If this option is selected, the coordinates of the radius point will also be calculated.

When the option for LAYOUT has already been selected, the coordinates which are output at the B.C. and E.C. will be those of the offset hub location. If layout has not been selected, the coordinates output are the actual E.C. and B.C. locations.

When the answer to this prompt is yes, the additional prompt (marked **) for beginning coordinates will appear.

If the coordinates are not required, answer $D \mathbb{R} \boldsymbol{D}$ and proceed at step 7
5 INTER-X N+E**
Input the N -coordinate of the intersection point
Input the E-coordinate of the intersection point
6 BACKSITE?*
Any point with known coordinates may be used. Input the N -coor dinate of the backsight point

Input the E-coordinate of the backsight point

7 A-LINE R=?
Input the centerline radius of street "A" line. In selecting which line to designate as "A" and which to designate as "B", the line to be used as "A" will be the one with a radial bearing to the intersection clockwise from the return which is inside both curves.

R/S
$8 \quad B R G=$?
Input the bearing of line A.
$9 \mathbf{Q D}=$? Input the quadrant code for the line A bearing, using the direction toward the intersection

1/2W A?

Input the half-width of street A
11 B-LINE $R=$?
Input the centerline radius of street B

Input the bearing for line B
13 QD=?
Input the quadrant code for the line B bearing, using the direction toward the intersection

14 1/2W B?
Input the half-width of street B

15 R?
Input the radius of the first return, beginning with the return which is inside both curves

Output will be the solutions requested for the return. If a printer is not attached, continue stroking R/S after each output until the solution for this quadrant has been completed. At this point the program will again prompt R?.

Return to step 15 for solution of the next return, working clockwise around the intersection.

This program, like the last two, assumes that the coordinates of the basic curve data are already known (such as the coordinates of the intersection. In the two previous programs sighting down the tangent and using assumed coordinates will work, but for this program it is necessary to use real values for the intersection and backsight points in order to prevent rotation of the intersection layout.

We will begin with the keystrokes for an example run without the layout option, and do the first three returns. All of the keystrokes for solving the intersection are the same when the layout option is used, except that the additional prompts are answered with known information. Start with the calculator sized at 045, then

keystrokes:		XEO
ALPHA C	C	ALPHA
prompt:		LAYOUT?

keystrokes:
[\quad R/S
prompt: SHOW COORDS?
keystrokes:

Y R/S
prompt: INTER-X NTE
keystrokes:
10000 ENTERT
[5 0 0 0 R/S
prompt: A-LINE R=?
keystrokes:
[3] 8 R/S
prompt: $\quad \mathbf{B R G}=$?
keystrokes:

prompt: $\quad \mathbf{Q D}=$?
keystrokes:

(1) R/S

prompt: $\quad \mathbf{1 / 2 W}$ A?
keystrokes:
(1) $6 / S$
prompt: B-LINE R=?
keystrokes:
4 00 R/S
prompt: keystrokes:
 prompt: keystrokes: (4) R/S prompt: keystrokes:
20 R/S
prompt:
keystrokes:
40 R/S
output:
ARC $A=83.849$
$N=919.2480$
$E=4,994.3566$
RADIUS POINT:
$\mathrm{N}=910.6153$
$E=5,033.4157$
$R=40.808$
DELTA $=$
$117^{\circ} 41^{\prime} 27.8^{\circ}$
$L=82.164$
$T=66.166$
$\mathrm{CH}=68.462$
ARC $B=80.622$
$N=941.1938$
$E=5,859.2034$
prompt:
keystrokes:
(5) R/S

ARC $A=74.002$
output:
$N=950.7452$
$E=4,961.8280$
RADIUS POINT:
$H=964.2499$
$E=4,912.8863$
$R=50.008$
DELTA =
$89^{\circ} 19.48 .1^{\circ}$
$\mathrm{L}=77.953$
$T=49.417$
$\mathrm{CH}=70.295$
ARC $B=58.155$
$N=1,012.2298$
$E=4,926.9549$
prompt: R?
keystrokes:
6 R 0 R/S
output: ARC $A=65.876$
$N=1,065.1239$
$E=5,812.5745$
radills point
$M=1,897.6694$
$E=4,962.1682$
$R=60.888$
DELTA =
$74^{\circ} 43^{\prime} 6.3^{\circ}$
$\mathrm{L}=78.245$
$T=45.886$
$\mathrm{CH}=72.817$
ARC $B=61.777$
$N=1,040.4676$
$E=4,944.8586$

Now, for the example using the layout routine, a backsight point must be selected. In the example illustration the known point used as a backsight is shown as having coordinates of N1122/E5086, and is convenient for backsighting. With a maximum spacing required at 20 feet and the hubs offset 3 feet, we use the keystrokes shown below.

Begin with the calculator sized at 045 and stroke XEQ ALPHA C C ALPHA to initiate the routine, and follow the prompts

ARC $A=83.849$
prompt: LAYOUT?
keystrokes:
(R/S
prompt: OFFSET DIST?
keystrokes:
(3) R/S
prompt: MAX SPG?
keystrokes:
$20 \mathrm{R} / \mathrm{S}$
prompt: SHOW COORDS?
keystrokes:
(\quad R/S
prompt: INTER-X N+E keystrokes:

1000 0	ENTER
[5] 000	R/S
prompt:	BACKSI

keystrokes:

prompt: A-LINE R=?
keystrokes:
[3 8 R/S
prompt:
BRG=?
keystrokes:
2 7 R 3 R/S
prompt:
QD=?
keystrokes:
(1) R/S
prompt: $\quad 1 / 2 \mathrm{~W}$ A?
keystrokes:
(1) R/S
prompt: B-LINE R=?
keystrokes:
4] 00 R/S
prompt: \quad BRG=?
keystrokes:
6 R $6 / S$
prompt:
keystrokes:
4 R/S
prompt: $\quad \mathbf{1 / 2 W} \mathbf{B}$?
keystrokes:
20 R/S
prompt:
R?
keystrokes:
(4) R/S
output:
$H D=81.452$
$\triangle R T=$
$146^{\circ} 43^{\prime} 43.5^{\circ}$
RADIUS POINT:
$H D=95.427$
<RT=
$124^{\circ} 19^{\prime} 17.4^{\circ}$
$R=40.000$
DELTA =
$117^{\circ} 41^{\prime} 27.8^{\circ}$
$\mathrm{L}=82.164$
$T=66.166$
$\mathrm{CH}=68.462$
1/5
$H D=69.593$
〈RT=
$185^{\circ} 36^{\prime} 54.3^{\circ}$
2/5
$H D=60.889$
-RT=
$116^{\circ} 1^{\prime} 5.1^{\circ}$
3/5
$\mathrm{HD}=59.333$
$\triangle \mathrm{RT}=$
$138^{\circ} 31^{\circ} 19.4^{\circ}$
4/5
$H D=67.731$
$\triangle \mathrm{RT}=$
$141^{\circ} 52^{\prime} 32.4^{\circ}$
ARC $B=80.6226$
$H D=83.744$
$\triangle \mathrm{RT}=$
$101^{\circ} 40^{\circ} 23.8^{\circ}$
prompt：
keystrokes：
50 R／S
output： $\operatorname{ARC} A=74.802$
$H D=64.825$
$\triangle \mathrm{RT}=$
$185^{\circ} 38^{\prime} 57.4^{-}$
radius point
$\mathrm{HD}=94.164$
$\triangle \mathrm{RT}=$
$212^{\circ} 30^{-24.5}$
$R=50.008$
DELTA $=$
$89^{\circ} 19.49 .1^{-}$
$L=77.953$
$T=49.417$
$\mathrm{CH}=78.295$
1／4
$\mathrm{HD}=57.752$
\triangle RT $=$
$235^{\circ} 45^{\circ}$ 19．2＊
$2 / 4$
HD $=47.797$
$\triangle \mathrm{RT}=$
$219^{\circ} 4^{\prime} 35.8^{\circ}$
3／4
$\mathrm{HD}=50.523$
〈RT＝
$197^{\circ} 58^{\circ} 22.8^{-}$
ARC $B=58.155$
$H D=74.479$
©RT＝
$242^{\circ} 1^{\prime} 55.3^{-}$
prompt： keystrokes：

60 R／S
output：ARC $A=65.876$
$H D=67.584$
$\triangle \mathrm{RT}=$
$333^{\circ} 23 \cdot 5.5^{-}$
RADIUS POINT：
$H D=104.746$
$\triangle \mathrm{RT}=$
$303^{\circ} 38^{\circ} 44.4^{\circ}$
$R=60.000$
DELTA＝
$74^{\circ} 43^{\prime} 6.3^{\circ}$
$\mathrm{L}=78.245$
$T=45.806$
$\mathrm{CH}=72.817$
1／4
$H D=54.885$
＜RT＝
$282^{\circ} 44^{\prime} 38.9^{\circ}$
2／4
$H D=47.777$
$\triangle \mathrm{RT}=$
$381^{\circ} 59 \cdot 49.6^{\circ}$
3／4
$\mathrm{HD}=53.896$
$\triangle \mathrm{RT}=$
$322^{\circ} 15^{-37.8^{\circ}}$
ARC $B=61.7769$
$\mathrm{HD}=78.845$
$\triangle \mathrm{RT}=$ $273^{\circ} 1 \cdot 52.9^{-}$
prompt：
R？
keystrokes：
40 R／S
output： $\operatorname{ARC} A=52.775$
$H D=59.681$
$\triangle \mathrm{RT}=$
$15^{\circ} 31^{\circ} 6.5^{\circ}$
radius point：
$\mathrm{HD}=79.540$
〈RT＝
$41^{\circ} 48^{\prime} 54.6^{\circ}$
$R=40.080$
DELTA $=$
$86^{\circ} 39.43 .3^{-}$
$\mathrm{L}=68.582$
$T=37.735$
$\mathrm{CH}=54.897$
1／3
$H D=44.154$
〈RT＝
$52^{\circ} 8^{\prime} 46.9^{\circ}$
$2 / 3$
$H D=45.257$
$\angle R T=$
$28^{\circ} 21^{-38.0^{-}}$
ARC $B=56.6842$
$H D=57.278$
$\triangle \mathrm{RT}=$
$66^{\circ} 58^{\prime} 25.4^{-}$

The following pages contain the program steps which must be keyed into the calculator in order for the programs to function properly. Since this book has been written with the intention of providing help in the calculations needed for surveying, it is important that the programs provide correct answers when used.

For those users who have card readers, D'Zign provides a card-programming service. We will program your cards for you and return them in a labeled card holder which can be inserted directly into the book. The cost for the service is $\$ 8.50$, and you provide the blank cards.

To take advantage of this option, send 20 blank magnetic cards and your check for $\$ 8.50$ to D'Zign land survey \& development, P.O. Box 1370, Pacifica, CA 94044.

KEYING IN A PROGRAM

1. Before beginning to key the program steps into the calculator, keystroke shift GT0 \cdot to prepare the calculator for the new program. Set the calculator to program mode by pressing the PRGM key.
2. Labels are marked with a diamond () in the program listings, as a visual aid. When keying in the program ignore the diamond, and key in LBL by keystroking shift LBL (the STO button), followed by either the label number or ALPHA the label name ALPHA.
3. Symbols or characters shown with quote marks indicate that they are alpha characters, and must be input as program steps in alpha mode.
4. Functions which do not appear on the keyboard may be keyed into the program by stroking ALPHA, spelling out the function, and again stroking ALPHA. Some of the functions, such as FC?01 must be input partly in alpha. Stroke ALPHA F C ? ; again stroke ALPHA, and the display will prompt FC?- - at which time you stroke the 01 . The character * in the listing is the x (multiply) button, and the character printed as / is the divide button.

UTILITY PROGRAMS

These are programs which are used as sub-routines by the other programs. For the main programs to function properly these sub-routines must also be in program memory. They are divided into two groups, one called UTILITIES, and the other UTILITIES 2.

Those shown on the opposite page are the same as used in the book "HP-41CV/CX Surveying Field Solutions", and do not need to be input again if previously input for use with programs from that book. Additionally, they do not have to be input if the calculator contains the D'Zign "COGO 41" module.
"AZ" need not be input if the calculator contains the HEWLETT-PACKARD Surveying Pac. This program changes bearing input to north azimuth for storage and use in the various calculations.
"DMS" must be in the calculator memory if the calculator is used with a printer attached. It is not necessary when no printer is used. Other than input by use of a card reader, this routine cannot be put into memory unless a printer is attached while programming.

If you do not already have these programs, and want them, when sending for the card programming service, include one extra card with your order. The extra card will also contain "STA", a handy subroutine which changes the number in the x-register to stationing $(X X+X X . \times x \times)$ form. The extra card will be programmed with your set at no extra charge.

The following pages contain the programs of the UTILITIES 2 set. The program listings for each of the main programs will tell you which are used each time, but most all of them are used by all of the main programs. UTILITIES 2 contains 529 bytes of programming which would otherwise have to be typed in as part of each program. This sub-routine group occupies 77 registers of program memory.

All of these may also be used with other programs which you write yourself. "CURD", for instance, calculates the curve data (store the radius in 17 and the central angle in 21 and have your program contain the step XEQ "CURD") and "CLR" may be used at the start of any program to reset the flag status and clear the registers.

Another that you may find use for in your own programming is "RI", which performs the radial inverses. Store your instrument position northing in register 05, the easting in 06, and have the north azimuth to the backsight in register 01. If your program includes the step XEQ "RI", it will automatically perform the inverse and output the horizontal distance and angle right to any point whose N -coordinate is in the Y -register and E -coordinate is in the X -register.

రTHilcitics

01*LBL - A2*	81+LBL - DMS ${ }^{\text {a }}$	276
02 - $8 \mathrm{RG}=$? ${ }^{\text {- }}$	82 STO 23	28 ACCOL
03 PROHPT	03 RDN	292
$84{ }^{-2 D=? ~}{ }^{\text {a }}$	84 STO 24	30 SKPCOL
85 PROMPT	85 RDH	31 RCL 22
06 K ¢ Y^{\prime}	86 STO 25	32 IHT
87 HR	07 RIN	33 ACX
$08 \mathrm{XK} \mathrm{Y}^{\text {¢ }}$	88 STO 26	3439
09 ENTER 4	89 RDN	35 ACCHR
10 ENTER \uparrow	18 ENTERT	36 RCL 22
112	11 INT	37 FRC
12 \%	12 CF 29	38108
13 INT	13 FIX 0	39 *
14 PI	14 ACX	40 FIX 1
$15 \mathrm{R}-\mathrm{II}$	15 -	41 ACX
16 *	16180	4234
17 KOY	17 *	43 ACCHR
18 LASTX	18 ABS	44 PRBUF
19*	19 STO 22	45 RCL 26
28 COS	283	46 RCL 25
21 RT	21 SKPCOL	47 RCL 24
22 *	226	48 RCL 23
23 -	23 ACCOL	49 FIX 4
24 FS? 18	249	58 SF 29
25 RTH	25 ACCOL	51 RTN
26 HMS	26 ACCOL	52 ENI
27 RTH		

MPOMRCV/CK Surveying Field Solutions

FULLY DOCumented and illustrated SOLUTIONS BOOK! $\$ 19.95^{*}$ (CALIfornia residents please add $\$ 1.30$ Sales tax)
FIELD LAYOUT O RADIAL INVERSE ALIGNMENT AND OFFSETS - a new concept in COGO with coordinate solutions using STATION input AND with an AUTO-INVERSE option! SPIRAL CURVES (including the circular portion) with coordinate output from STATION input and the same AUTO-INVERSE option!

FIELD LOCATION O TOPO O AS-BUILTS - REMOTE SLOPE STAKING O TUNNEL TIGHTS and TRIANGLE SOLUTIONS seven types including two solutions where the AREA is one of the known parts.

01*LBL "SORT"
82 XEE 01
03 "LAYOUT?" is layout wanted?
04 YEQ 82
$85 \mathrm{~K}=\mathrm{Y}$?
86 XEG 23
87 YER 81
88 -SHOH COORDS?: are coordinates
89 XEE 82
$10 \mathrm{X}=\mathrm{Y}$?
11 XEQ 22
12 RTH
13*LEL 01 set for alpha response
14 - $\%$ "
15 ASTO X
16 HON
17 RTN
18*LBL 02 accept alpha response
19 PROMPT
28 ASTO Y
21 ADFF

22 RTN
23+LBL 22
24 SF 96
25 SF 92
26 "INTER-X NTE"
27 PROMPT prompt for input of 28 ST0 06 center coordinates
29 RDN
30 STO 85
31 RTH
$32+$ LBL 23
33 SF 92
34 SF 93
35 -OFFSET DIST?
36 PROMPT prompts for desired 37 STO 02 hub offset distance 38 - MAX SPG?-
39 PROMPT prompts for spacing 40 STO 32 between layout points 41 RTN
42 + LBL - $B A^{-}$

43 RCL 37
44 RCL 3
45 RCL 83
46 +
$47+$
482
49 /
50 STO 18
51×12
52 LASTX
53 RCL 38
54 *
55 -
56 RCL 37
57 RCL 83
58 *
59 /
68 SQRT
61 ACOS
622
63 *
64 STO 39 ancle 'C'
65 SIN
66 RCL 37 radius 'a'
67 STO 28
68 RCL 18
69×42
78 LASTX
71 RCL 37
72 *
73 -
74 RCL 38 radius ' b '
75 /
76 RCL 03 base distance
77 /
radius 'a'
return radius 'b'
base distance
distan

81 *
82 STO 48 angle ' B '
83 SF 91
84 RTH
85*LBL "SET"
86 RCL 27 denominator
87 RCL 34
$88 \quad X=Y$?
89 RTH
98 RCL 31 return base azimuth
91 RCL 33 curve portion angle
92 RCL 27
93 *
94 FS? 87
95 CHS
96 -
97 CLA
98 FIX 0
99 CF 29
188 ARCL 27 numerator
181 ㄱ/•
102 ARCL 34 denominator
183 AYIEK
104 SF 29
105 RCL 17 return radius
106 RCL 82 hub offset constant
187 -
108 P-R
109 RCL 87 radius point N -coord $118+$
111 K<>Y
112 RCL 88 radius point E-coord

$113+$		148 ARCL X	
114 CLA		149 A M IEH	output tangent dist
115 FIX 4		150 RCL 21	
116 XEQ RI*		1512	
1171		152 \%	
$118 \mathrm{ST}+27$		153 SIN	
119 GTO ${ }^{-S E T}{ }^{-}$		154 RCL 17	
128 ETH		155 *	
121*LBL "CUPD ${ }^{\text {a }}$		1562	
122 HMS		157 *	
123 - TELTA $=$ *		$158{ }^{\circ} \mathrm{CH}=\cdot$	
124 MVIEH		159 ARCL X	
125 FIX 4		168 RYIEH	output chord length
126 CLA		161 RTN	
127 ARCL X		162*LBL *DIU*	
128 FC ? 55		163 RCL 17	
129 AVIEH		$164 \mathrm{X}=8$?	
138 FS ? 55		165 RTN	
131 YEQ -DMS'	output as DD0 ${ }^{\text {MM'SS }}{ }^{\prime \prime}$	1661	
132 FCL 17		167 STO 27	
133 RCL 21		168 RCL 89	
134 D-R		169180	
135 *		170 +	
13657038	curve length	17151031	return base azimuth
137 RCL 21	curve central angle	172 RCL 30	curve arc length
1382		173 RCL 32	maximum spacing
139 ,		174 /	
148 TRN		175.46	
141 RCL 17		176 +	
142 *		177 FIX 0	
143 FIX 3		178 RHD	
$144{ }^{\circ} \mathrm{L}=$ -		179 ST0 34	denominator
145 ARCL Y		180 FIX 4	
146 RYIEH	output length	181 RCL 21	
147 - ${ }^{\text {- }}$ -		182 \$T0 38	curve portion length

183 Kく>Y		218 INT	
184 /		219188	
185 ST0 33		228 *	
186 RTN		221 -	
187*LBL *RI*		222 ABS	
188 FS? 06		223 HMS	
189 XEQ"98"	output coordinates	224 FIX 4	
198 FS? 06		225 RCL 12	
191 AD4		226 RCL 11	
192 RCL 86	instrument E-coord	227 RCL 81	
193 -		228 -	
194 X		229 ENTERT	
195 RCL 85	instrument N -coord	230 CLX	
196 -		231 X<>Y	
197 R-P		$232 \times$ < ${ }^{\text {? }}$	
198 FIX 3		233368	
199 HD = -		234 +	
288 ARCL X		235 HMS	
201 AYIEH	distance to hub being	236 - 8 RT $=$ -	
282 CLX	set (offset hub)	237 FC ? 55	
293 K ${ }^{\text {S }}$ Y		238 ARCL X	
$204 \mathrm{~K} \times 8$?		239 AVIEH	output angle right if
285360		240 FS? 55	no printer attached
$286+$		241 XES -DMS ${ }^{\text {- }}$	output as DDomm'SS"
287 ST0 11		242 ADY	when the printer is
288 ENTERT		243 RTH	
289 ENTERT	calculate angle right	244*LBL -98*	
21090	to the offset hub	245 FIX 4	
211 \%		246 * $=$ -	
2121		247 ARCL Y	
$213+$		248 AVIEH	
214 INT		249 E = -	
215 STO 12		258 ARCL X	
2162		251 AVIEH	
217 \%		252 RTH	

253*LBL ${ }^{\text {C }}$ CLR ${ }^{\text {a }}$	261 CF 94
254 CLRG	262 CF 95
255 SF 21	263 CF 96
256 SF 27	264 CF 07
257 CF 88	265 CF 88
258 CF 91	266 CF 09
259 CF 82	267 CF 18
268 CF 93	268 RTN

Cயூー@®ロవ®®

CD occupies 79 registers of program memory and should be used with the calculator sized at least to 045 . The program contains 550 bytes of programming, and can be stored on 5 tracks of magnetic cards.

Subroutines used with this program are "SORT", "SET", "CURD", "DIV", "98", "CLR" and "RI", all of which are contained in the UTILITIES 2 series of program steps. "AZ" and "DMS" are also used with this program. "AZ" is contained in the Hewlett-Packard Surveying Pac, and both are in the D'Zign "COGO 41" module. It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached.

81*LBL ${ }^{\circ} \mathrm{CD}{ }^{\circ}$	
82 XEQ "CLR"	clear registers \& set
03 SF 90	flag status
04 SF 87	
05360	
06 STO 80	
97 XEQ -SORT"	prompt subroutine
88 FS? 83	
89 XEQ 21	prompt for backsight
10 FS? 02	coordinates (layout)
11 XEQ 16	prompt routine, input
12 FS ? 82	when coordinates or
13 XED 22	layout are wanted
14 -RADII?	
15 PROMPT	
16 STO 15	
17 RDN	
18 ST0 84	
19 RDN	
20 STO 14	

21 STO 17
22 "MIDTH?
23 PROHPT
242
25 /
26 STO 16
27 STO 18
28 -OFFSET?
29 PROMPT prompt for offset from
30 STO 10
31 LBL 02
32 RCL 14
33 RCL 84
$34+$
35 STO 37
36 RCL 14
37 RCL 16
$38+$
39 RCL 10
40 FS? 07
store outer and inner values for $\frac{1}{2}$ width of street
prompt for offset from
centerline of street
calculate distance and offset to return point

41 CHS
42-
$43 \mathrm{~K} \backslash Y$
44 /
45 ASIN
46 ST- 88
47 FC? 87
48 CHS
49 STO 19
50 FC? 87
51 XEQ 12
52 RCL 19
53 RCL 84
54 XKYY
55 COS
56 *
57 ABS
58 FIX 3
59 "DIST $1=$ " output PRC distance 60 ARCL X
61 AYIEK
62 RCL 04
63 RCL 19
64 SIN
65 *
66 ABS
67 RCL 10
68 FS? 87
69 CHS
78 +
71 -0/S 1=" output offset at PRC
72 ARCL X
73 AVIEH
74 FC? 06
75 ADY

76 RCL 19
77 RCL 28
$78+$
79 STO 89
88 KEE 15
81 RCL 14
82 STO 17
$83 \cdot R=$ - output return radius
84 ARCL X
85 AYIEH
8698
87 RCL 19
88 FC? 87
89 CHS
98 -
91 STO 21
92 XEQ "CURII' calculate curve data
93 ADY
94 RCL 19
95 FS? 83 layout wanted?
96 XEE "DIV' divide curve
97 FS? 03
98 XEQ -SET" calculate arc points
99 FS? 82 and set for layout
100 XEQ 18
181 RCL 37
102 RCL 19
103 COS
184 *
185 ABS
186 RCL 16
187 FIX 3
108 - DIST 2=•
109 ARCL Y
118 RYIEH output distance to $B C$

111 -0/5 2=*
112 ARCL X
113 AVIEH output offset at BC
114 ADY
115 FC? 87
116 RTH
117 RCL 15
118 STO 14 second return curve
119 STO 17
128 RCL 18
121 STO 16
122 CF 07
123 XEQ 82
124 RTN
125+LBL 12 calculate curve data 126 ADY
127 - $\mathrm{R}=\cdot$
128 RRCL 84
129 RYIEK
138 RCL 00
131 HMS
132 - DELTA $=$ =
133 RYIEK
134 CLA
135 ARCL X
136 FC? 55
137 AYIEH
138 FS? 55
139 XEQ ${ }^{-D M S}$ -
148 RCL 84
141 RCL 89
$142 \mathrm{D}-\mathrm{R}$
143 *
144 FIY 3
145 " $\mathrm{L}=$ =

146 ARCL X
147 RYIEK output curve length

149 XED 11
150 An
151 ADY
152 RTH
153*LBL 11
154 ENTER \uparrow
155 RCL 32
156 /
157 RCL 82
158 RCL 84
$159+$
168 RCL 84
161 /
162 *
163 /
164 FIX 2
165 - 〈"
166 ARCL X
$\left.167{ }^{\circ}+\right\rangle^{-}$
168 AYIEN
output chord value to use for double-chain layout in central area of the cul-de-sac
169 RTW
$178+$ LBL 18
171 RCL 43
172 RCL 21
173 FC? 87
174 CHS
$175+$
176 XEQ 19
177 RTH
1784LEL 58 output of coordinates
179 FS? 83
188 RTH

181 XEQ -98*	coordinate subroutine	216 RCL 82	hub offset distance
182 ADY		217 FS ? 83	
183 RTH		218 -	
184*LBL 15		$219 \mathrm{F-R}$	
185 RCL 89		220 RCL 87	
186 RCL 37		$221+$	
187 P-R		222 K< ${ }^{\text {Y }}$	
188 RCL 85		223 RCL 88	
$189+$		224 +	
190 ST0 07	return radius N -coord	225 FS? 86	coordinates wanted?
191 X<>Y		226 XEQ 50	output the coordinates
192 RCL 86		227 FS? 83	
193 +		228 KEQ -RI*	calculate angle and
194 ST0 88	return radius E-coord	229 RTH	distance to new point
195 FS? 82		2304LBL 81	
196 YEQ 17	adjust azimuth value	231 RCL 01	
197 -RADIUS	WT: ${ }^{\text {c }}$	232 RCL 19	
198 FS? 02	coordinates or layout?	$233+$	
199 RYIEH	output	234 RCL 84	
208 RCL 07		235 FS? 03	
281 RCL 88		236 RCL 02	
282 FS? 86	coordinates wanted?	237 FS? 83	
203 XEQ 50	output of coordinates	$238+$	
284 FS? 03	is layout wanted?	$239 \mathrm{P}-\mathrm{F}$	
205 XEQ -RI*	calculate angle and	248 RCL 85	
206 RTN	distance to new point	$241+$	
267+LBL 17		$242 \mathrm{~K}\langle\times \mathrm{Y}$	
288 ADY		243 RCL 06	
289 RCL 89		244 +	
210180		245 RTN	
211 +		246 LLBL 16	
212 STO 43		247 FS? 86	
213*LBL 19		248 RTH	
214 RCL 17		249 -INTER-X	NtE* this prompt will
215 FS? 83		258 PROMPT	appear when either of the coordinates or the layout options wanted

2515066		267 CF 18
252 RDN		268 RTH
253 STO 85		$269+$ LBL 23
254 RTH		278 RCL 86
255*LBL 21		271
256 "BACKSITE?*	Prompt appears when	$272 \mathrm{X} \backslash \mathrm{Y}$
257 PROMPT	layout is wanted	273 RCL 85
258 XEE 23		274 -
259 STO 01		275 R-P
250 RTH		276 CLX
2610 BL 22		277 KK>Y
262 SF 18		278 K<8?
263 XEQ *AZ*	the input bearing and	279360
264188	quadrant code stored as reverse azimuth	280 +
$265+$		281 RTH
266 ST0 20		282 END

CDC occupies 95 registers of program memory and should be used with the calculator sized at least to 045 . The program contains 669 bytes of programming, and can be stored on 6 tracks of magnetic cards.

Subroutines used with this program are "SORT", "BA", "SET", "CURD", "DIV", "CLR", "98" and "RI", all of which are contained in the UTILITIES 2 series of program steps. In addition to these, both "AZ" and "DMS" are used. These are the programs contained in the UTILITIES programs at the beginning of the program listings, and are the same utilities group used with the programs in the book "HP-41CV/CX Surveying Field Solutions".

It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached, and it is not necessary to include the subroutine "AZ" in program memory if the calculator contains either the Hewlett-Packard Surveying Pac, or the D'Zign COGO 41 module.

```
01+LBL "CDC*
02 XEQ "CLR"
03 SF 04 flag status
04 SF }0
05 XEQ "SORT" prompt routine sets
06 FS? 02 flag status for output
87 XEQ 06
08 FS? 03 radial inverse if set
99 XEQ 03
18 FS? 02
11 YEQ 02
12 "RADII?"
13 PROMPT
14 STO 15 ending return radius
15 RDH
16 ST0 04 main radius
17 RDN
18 STO 14 beginning return rad.
1 9 \text { RDH}
28 %<8?
```

21 SF 85
22 FS? 85
23 CHS
24 STO 38
25 "HIDTH?"
26 PROMPT
272
23 /

32 PROMPT
33 FS? 85
34 CHS
36 CHS
$37 \mathrm{ST}+18$
$38 \mathrm{ST}+38$
39 STO 36
40 RCL 14

29 ST0 16 store outer and inner
30 ST0 18 values for half-width
31 "OFFSET?" centerline offset dist.

35 ST+ 16 modify half-width
alignment radius
modify half-width modify the alignment radius

41 RCL 04
$42+$
43 STO 37
44 RCL 38
45 RCL 16
46 RCL 14
47 +
$48+$
49 STO 83
50 XEQ "BR" calculate angles
51 RCL 48
52 RCL 39
$53+$
54 ST +08
55 -R = -
56 ARCL 14
57 AVIEH first return radius
58 RCL 14
59 STO 17
60 RCL 39
61 XEE 01
$62+$ LBL 13
63 RCL 38
64 RCL 18
65 RCL 15
$66+$
67 -
68 ST0 03
69 RCL 15
70 RCL 84
$71+$
7257037
73 XEQ "BR" calculate angles
74188
$75 \mathrm{ST}+80$
$76 \mathrm{~K}>Y$
77 RCL 39 angle
78 +
79 -
$88 \mathrm{ST}+80$
81 FC? 08
82 XEQ 12 calculate curve data
$83 \cdot R=$ - for central curve
84 ARCL 15
85 AVIEK begin output return 86 RCL 15 number two
87 STO 17
88130
89 RCL 39
98 -
$91+$ LBL 01
92 STO 21
$93 \mathrm{X}=8$?
94 SF 88
95 FC ? 88
96 XEQ "CURIV calculate curve data
97 XEE 18
98 FS? 82
99 XED 04
100 FS? 88
101 CF 04
102 FS?C 08
103 RTH
184 FS? 83 layout wanted?
185 XEQ 'DIY' divide curve length 106 FS? 83
187 XEQ -SET" calculate radial layout
108 FS? 82
109 XER 88
110 XED 14

111 RTH
112*LEL 86
113 FS? 86
114 RTH
115 "INTER-X NTE"
116 PROMPT prompt appears when
117 ST0 06 either coordinate or
118 RDH
11957085
128 RTH
121•LBL 84
122 RCL 89
123 RCL 28
$124+$
125 STO 89
126 RCL 37
127 FS? 85 is main curve to the
128 CHS
$129 \mathrm{P}-\mathrm{R}$
130 RCL 85
$131+$
$132 \mathrm{ST0} 87$ return radius N -coord
133 KくY
134 FS? 85
135 CHS
136 RCL 86
$137+$
138 §T0 88
139 FS? 82
140 XEQ 07 backsight azimuth
141 FS? 88
142 RTH
143 -RADIUS POINT:*
144 FS? 82 coordinates or layout?
145 AYIEK

146 PCL 87

147 RCL 88
148 FS? 06
149 XEQ 85 output coordinates
150 FS? 93
151 XEQ "RI" radial inverse to set
152 RTH curve points
153*LBL 14
154 RCL 48
155 D-R
156 RCL 38
157 RCL 36
158 -
159 *
168 FIX 3
161 FC? 82
162 ADY
163 - RRC 2= -
164 ARCL X
165 RYIEH
166 RCL 36
167 ST+ 16
168 ST- 18
169 -0/5 $2=\cdot$
178 FS? 04 which side?
171 ARCL 16
172 FC? 04
173 ARCL 18
174 AYIEK
175 RCL 36
176 ST- 16
$177 \mathrm{ST}+18$
178 CF 94
179 FIX 4
180 ADY

181 RTH
1824LBL 12 output curve data for 183 - $R=$ - main portion
184 ARCL 84
185 AYIEN
186 RCL 88
187 HMS
188 - DELTA ="
189 AYIEH
198 CLA
191 ARCL X
192 FC? 55
193 AVIEN
194 FS? 55
195 XEQ "DMS"
196 RCL 04
197 RCL 88
198 D-R.
199 *
208 FIX 3
281 'L = •
282 ARCL X
283 AYIEN
204 FS? 83
205 XEQ 11 calculate offset chord
206 ADY
297 ADV
208 CF 07
209 RTN
210*LBL 11
211 ENTER
212 RCL 32
$213 /$
214 RCL 82
215 RCL 04
$216+$
217 RCL 84
218 /
219 *
220 /
221 FIX 2
222 " く"
223 ARCL X
224 "ト>"
225 RYIE output chord distance
226 RTH
2274LBL 85
228 FS? 83
229 RTH
230 XEQ -98" output coordinates
231 AIV
232 RTN
2330LBL 83
234 "BACKSITE?"
235 PROAPT prompt for input of
236 XEQ 23 backsight coordinates
237 STO 81
238 RTN
239*LBL 82
248 -RRDIUS NtE*
241 PROMPT prompt for input of
242 XEQ 23 alignment radius point
243 STO 28 coordinates
244 RTN
245-LBL 23
246 RCL 86
247 -
248 X< $\rangle Y$
249 RCL 85
250 -

$251 \mathrm{R}-\mathrm{F}$		286 - ARC 1=	output arc length to
252 CLX		287 KK>Y	return point
253 X<>Y		288 RCL 38	
254×86 ?		289 RCL 36	
255368		298 -	
$256+$		291 RCL 38	
257 RTN		292 /	
258*LBL 18	calculates the offset	293 *	
259 ADY	and arc distances at	294 K< ${ }^{\text {Y }}$	
268188		295 ARCL Y	
261 RCL 48		296 AYIEH	
262 RCL 39		297 RCL 36	
263 +		298 FS? 84	
264 -		299 CHS	
265 ST0 89		308	
266 RCL 84		301 -0/5 1=	
267 P-R		382 ARCL X	
268 CHS		303 RYIEH	output offset distance
269 RCL 38		304 FIX 4	to return point
278 +		305 RTH	
271 ST0 28		306-LBL 87	moves to next curve
272 /		307 ADY	
273 HTAN		308 RCL 89	
274 STO 29		309188	
275 d-k		318 FS ? 85	
276 RCL 38		311 CHS	
277 *		312 +	
278 RCL 28		313 ST0 43	
279 RCL 29		314*LBL 89	calculates coordinates
288 COS		315 RCL 17	from return's radius
281 /		316 FS? 83	point coordinates
282 RCL 38		317 RCL 82	
283-		318 FS? 83	
284 FIX 3		319 -	
285 RBS		$328 \mathrm{P}-\mathrm{R}$	

321 FS? 85
322 CHS
323 RCL 07
324 +
325 X XY
326 RCL 88
327 +
328 XEQ 05
329 FS? 03
330 XER -RI•

331 RTH
332 LBL 88
333 RCL 43
334 RCL 21 335 FC? 87
336 CHS
337 +
338 XEQ 69
339 RTH
348 . END.
radial inverse to set point

Bulbs firnuckics

BB occupies 90 registers of program memory and should be used with the calculator sized at least to 045 . The program contains 627 bytes of programming, and can be stored on 6 tracks of magnetic cards.

Subroutines used with this program are "CURD", "CLR" and "98", all of which are contained in the UTILITIES 2 series of program steps. In addition to these, both "AZ" and "DMS" are used.

It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached, and it is not necessary to include the subroutine "AZ" in program memory if the calculator contains either the Hewlett-Packard Surveying Pac, or the D'Zign COGO 41 module.
$01+L E L$ "BR"
02 XEQ "CLR"
9396
04 ST0 21
85364
86 ST0 88
67 SF 97
88 SF 10
89 RTH
10 LBL B
11 ST0 06
12 RDH
13 STO 85
14 SF 96
15 XEQ "AZ" bearing to azimuth 16 STO 18
17+LBL A
18 SF 99
19 XEQ 06
$28 \mathrm{X}=\mathrm{Y}$?

21 SF 01
22 FS? 91
23 YED 86
24 XXY Y ?
25 SF 04
26 "RADII?"
27 PROMPT input radii
28 STO 94 main radius stored
29 RDH
38 STO 17 return radius stored
31 FS? 01
32 RDH
33 FS? 01
34 STO 03
$35-1 / 2 \mathrm{H}$ A?
36 PROMPT one-half of the street
37 STO 36 width
38 "HIDTH? throat width of the 39 PROMPT cul-de-sac
482

41 /
42 STO 16
43 RCL 17
44 +
45 FS? 01
46 GT0 03
47 RCL 17
48 RCL 64
$49+$
50 STO 37
51 /
52 ASIN
53 STO 14
54 CHS
5590
$56+$
$57 \mathrm{ST}+21$
58 RCL 14
592
60 *
61 ST- 08
62 RCL 14
63 COS
64 RCL 37
65 *
66 RCL 17
67 RCL 36
68 +
$69+$
70+LBL 80
71 FIX 3
72 STO 15
73 - ${ }^{-1}$
74 RRCL X
75 AYIEH
calculate if on curve
an

84 RCL 80
85 HMS
86 FIX 4
87 - DELTA $=\cdot$
88 AYIEN
89 ARCL X
98 FC? 55
91 AYIEH
92 FS? 55
93 XEQ "DMS" output in form Do ${ }^{\circ}$ 'S"
$94 \mathrm{D}-\mathrm{R}$ if printer is attached
95 *
96 FIX 3
97 - $\mathrm{L}=$ =
98 ARCL X
99 AYIEH length of arc for main
108 ADY curve
101 -RETURNS:-
102 AVIEN
103 XEE 85
104 RCL 84
185 P-R
106 ABS
107 FIX 3
108 - DIST $=$ - distance to point on 189 ARCL X centerline at PRC's 110 FC? 88
tangent distance to be at centerline of bulb
calculate central angle of main bulb section
add to central angle storage of return -
straight and curve return point

81 FS? 06
82 XEQ 02 calculate coordinates 83 RCL 84 at center point
76 FS? 01
77 XEQ 01 calculate arc if curve
78 ADY
79 "CENTER:-
80 AYIEK

111 RYIEM		$146+$	
112 K ${ }^{1} \mathrm{Y}$		$147 \mathrm{~K}, Y^{\prime}$	
113 ABS		148 \%	
$114{ }^{\circ} 0 / 5=\cdot$	offset to PRC's from	149 STO 11	
115 ARCL X	centerline	150 ASIN	
116 FC? 88		151510	
117 AYIEN		152 FS? 84	on curve?
118 FC ? 88		153 CHS	
119 ADY		$154 \mathrm{ST}+21$	add to return delta
128 FS? 86		155 RCL 27	
121 XED 84	calculate radius point	156 RCL 17	
122 FS? 86	of return curve	157 RCL 16	
123 ADY		158 +	
124 RCL 21		159 RCL 17	
125 XEQ "CURD"	calculate and output	168 RCL 84	
126 FS? 86	curve data for return	$161+$	
127 ADY		162 STO 37	
128 CF 87		163 /	
129 FS? 86		164 ASIN	
138 XEQ 84		165 STO 14	
131 FS? 86		166 CHS	
132 AD 4		16790	
133 FS ? 88		168 +	
134 XEQ 87		$169 \mathrm{ST}+21$	
135 RTN		170 RCL 14	
136*LBL 83	calculate if on curve	1712	
137 RCL 83		172 *	
138 RCL 36		173 ST-88	subtract from central
139 RCL 17		174180	delta angle
148 +		175 RCL 14	
141 FS? 84	outside curve?	176 FC? 94	
142 CHS		177 -	
143 -		178 PCL 12	
144 RCL 17		$179+$	
145 RCL 16		188 SIN	

181 RCL 37
182 *
183 RCL 11
184 \%
185 RCL 83
186 -
187 ABS
188 XEQ 88
189 RTN
1984LBL D
191 SF 06
192 STO 66
193 RDN
194 ST0 85
195*LBL C
196 SF 88
197186
198 STO 80
19998
208 STO 14
201 XEQ *AZ-
202 STO 09
203 XEQ ${ }^{\circ}$ AZ ${ }^{-}$
204 STO 18
285 RCL 89
206 RCL 18
207 -
208 ABS
2092
210 /
211 STO 02
21290
213 Xく>Y
214 -
215 STO 21

216 -RADII? ${ }^{*}$
217 PROMPT input of radii
218 STO 04 center radius
219 RDN
220 \$T0 17 return radius
221 -1/24?"
222 PROMPT half-width of street

224 RCL 89

22598
226 RCL 82
227-
228 -
229 STO 10
solve knuckle without 238 RCL 84
coordinates $\quad 231$ RCL 17
$232+$
233 RCL 82
234 SIN
235 /
236 STO 19
237 RCL 17
238 RCL 16
$239+$
240-
241 RCL 82
242 TAN
243 *
$244{ }^{\circ} \mathrm{T}=\cdot$
245 ARCL X output tangent dist.
246 AYIEH
247 RCL 04
248 RCL 17
$249+$
250 RCL 82

251 TAN
252 /
253 RCL 19
254 RCL 16
255 -
256 RCL 17
257 -
258 RCL 82
259 COS
268 /
261 -
262 XEQ 08 263 RTN
264*LBL 01
265 RCL 12
266 I-R
267 RCL 03
268 *
269 -ARC = " output arc length
278 ARCL X
271 AYIEN
272 RTH
273 -LBL 82
274 RCL 18 275 RCL 15
276 P-R
$277 \mathrm{ST}+85$
278 Kく>Y
$279 \mathrm{ST}+66$
280 RCL 85
281 RCL 86
282 YEQ 98°
283 RTH
284*LBL 84
285 XEQ 85

286 RCL 84
287 RCL 17
288 +
289 P-R
298 RCL 85
$291+$
292 STO 07
293 XKY
294 RCL 86
$295+$
296 STO 88
297 KEQ -98* output coordinates
298 RTN
299*LBL 85 set brg/az to radius 308 RCL 10 point of return
301186
302
303 RCL 14
304 FS? 87
305 CHS
306 -
307 RTH
308*LBL 06 prompt sequence for 309 - φ curved alignment

310 ASTO X
311 ROH
312 FS? 89
313 -CURYE?-
314 FC? 99
315 "OUTSIDE?"
316 PROMPT
317 ASTO Y
318 ROFF
319 CF 89
328 RTN

321 LBL 87	calculate curve data	332 *
322 RCL 19	opposite knuckle	333 \$T0 21
323 RCL 16		334 AIY
3242		335 -OPPOSITE:*
325 *		336 RYIEM
326 -		337 - $=$ - output radius opposite
327 RCL 17		338 ARCL Y
328 -		339 RYIEN
329 STO 17		340 XEQ "CURD' calculate curve data
338 RCL 82		341 RTN
3312		342 ENI

โఠtఆrsectionobot

NN occupies 94 registers of program memory and should be used with the calculator sized at least to 045 . The program contains 656 bytes of programming, and can be stored on 6 tracks of magnetic cards.

Subroutines used with this program are "SORT", "CURD", "CLR", "RI" and "98", all of which are contained in the UTILITIES 2 series of program steps. In addition to these, both "AZ" and "DMS" are used.

It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached, and it is not necessary to include the subroutine "AZ" in program memory if the calculator contains either the Hewlett-Packard Surveying Pac, or the D'Zign COGO 41 module.

81-LBL $\cdot \mathrm{HN} \cdot$
82 XEE "CLR"
clear registers \& set
flag status
83 SF 10
84 XEQ "SORT" subroutine for prompt
05 XEQ "AZ" sequence
06 STO 09
07 XEQ 04 set direction
881
$89 \mathrm{X}=\mathrm{Y}$?
10 SF 08
11 XEQ 'AZ" bearing to azimuth
12 STO 18
1390
14 -
15 XEQ 84 set direction
161
$17 X=Y$?
18 SF 01
19 RCL 89
28 RCL 18

21 -

22 ENTER \dagger
23188
$24 \mathrm{X}=\mathrm{Y}$?
25 XEQ 01 rotate by 180°
$26 \mathrm{~K} \backslash>Y$
$27 \times<\theta$?
28 XEE 80 rotate by 180°
$29 \mathrm{~K}(8$?
38 XEQ 80
31 STO 83
32 XEQ 82
33 ADY
34+LBL 88 calc subroutine
35 -R?-
36 PROMPT
37 STO 17
38 RCL 83
39 FS? 87
48 KEQ 13 subtract from 180°

41 STO 21
42 XED 83
43 XEE 89
44 FIX 3
45 RCL 19
46 ABS
47 -DIST $A=\cdot$
48 ARCL X
49 RYIEH output first distance
50 FIX 4
51 FS? 02
52 XEQ 05
53 FS? 02
54 XEQ 07 calculate radius point
55 FS? 83
56 XEQ 18
57+LBL 25
58 FIX 3
59 RCL 28
60 ABS
61 - BIST B = -
62 ARCL X output distance \#2
63 AYIEH
64 FIX 4
65 FS? 82
66 YEE 86 calculate coordinates
67 FS? 89
68 STOP
69 FS? 88
78 GTO 11
71 FS? 87
72 GTO 14 redo flag status
73 SF 88
74 SF 95
75 SF 87

76 GT0 88
77 RTH
$78 \times$ LBL 日 9
79 RCL 89
80 FS? 87
81 XEQ 00 delta less than 0° ?
8298
83 FS? 97
84 CHS
85 FS? 88
86 CHS
87 +
88 RCL 16
89 FS? 69
98 CHS
91 P-R
92 RCL 18
9398
94 FS? 87
95 CHS
96 FS? 08
97 CHS
98 -
99 RCL 18
188 P-R
101 K K Y
182 RDN
$103 \mathrm{X}\rangle Y$
104 -
185 RDN
106 K K Y Y
107 -
188 RT
189 KKYY
118 STO 22

111 KスY
112 STO 23
113 RCL 18
114 SIN
115 *
116 X XY
117 RCL 18
118 COS
119 *
128 +
121 RCL 83
122 SIN
123 /
124 STO 19
125 RCL 22
126 RCL 23
127 FS? 89
128 CHS
129 RCL 89
138 SIH
131 *
132 K $\>Y$
133 FS? 09
134 CHS
135 RCL 89
136 COS
137 *
138 +
139 RCL 03
148 SIH
141 /
142 FS? 89
143 CHS
144 STO 28
145 RCL 17

146 RCL 21
1472
148 /
149 TAN
158*
151 FS? 87
152 CHS
153 FS? 88
154 CHS
$155 \mathrm{ST}+19$
156 FS? 87
157 CHS
158 FS? 69
159 CHS
160 ST+ 28
161 RTN
162 4 LBL 10 calculate return delta
1631
164 STO 27
165 RCL 89
16698
167 FS? 88
168 CHS
169 FS? 09
178 CHS
171 -
172 STO 31
173 RCL 38
174 RCL 32
175 /
176.46

177 +
178 FIX 0
179 RHD
180 STO 34

181 FIX 4
182 RCL 21
183 STO 30
$184 \mathrm{XK}) \mathrm{Y}$
185 /
186 STO 33
1874 LBL 12
188 RCL 27
189 RCL 34
$198 \mathrm{X}=\mathrm{Y}$?
191 GTO 25 insert for return
192 XEO 19
193 RTK
194*LBL 19
195 RCL 31
196 RCL 33
197 RCL 27
198*
199 FS? 07
280 CHS
201 FS? 88
282 CHS
263 -
284 CLA
285 FIX 8
206 CF 29
287 ARCL 27
288 "ト/-
209 ARCL 34
210 RYIEH
211 SF 29
212 RCL 17
213 RCL 82
214 -
$215 \mathrm{~F}-\mathrm{R}$

216 RCL 07
$217+$
218 X $\langle>Y$
219 RCL 88
$228+$
221 CLA
222 FIX 4
223 XEQ "RI" radial inverse to set 2241 point
225 ST +27
226 GTO 12
227 RTN
228+LBL 11 change from zone 3 to
229 CF 88
238 CF 88
231 CF 87
232 CF 85
233 SF 89
234188
235 RCL 83
236 -
237 ST0 03
238 STO 21
239 GTO 88
248 RTN modify delta
241 +LBL 13
242188
243 KK Y
244 -
245 RTN
246+LBL 14 reset flag status
247 CF 87
248 SF 88
249 SF 84
258 SF 01

251 GT0 88		2862		
252 RTN		287 /		
253+LBL 01		288 INT		
254 -		289 RTN		
255 EHTERT		$298+$ LBL 85	calculate	e coordinates
256 RTN		291 RCL 89	calculate	coordinates
257-LBL 88		292 RCL 16		
258188		293 FS? 93		
259 FS? 07		294 XEQ 24		
268 CHS		295 FS? 88		
$261+$		296 CHS		
262 RTH		297 FS? 89		
263*LBL 82	prompt sequence	298 CHS		
264-1/24 R ? ${ }^{\text {- }}$		299 RCL 19		
265 PROHPT		300 R-P		
266 STO 16		301 RDN		
$267{ }^{-1 / 24 ~}{ }^{-}$		$382+$		
268 PROMPT		303 R \uparrow		
269 STO 18		304 P-R		
278 RTN		305 RCL 85		
271 LBL 83		306 +		
272 ADY		307 K ¢ $>\mathrm{Y}$		
273 -R = -		308 RCL 06		
274 ARCL 17	output return radius	$389+$		
275 AYIEH		310 FC? 83		
276 RCL 21		311 XEQ 98°	output	coordinates
277 KEQ "CURD ${ }^{\text {a }}$	calculate and output curve data	312 FC? 03		coordinates
278 ADY	curve data	313 ADY		
279 RTH		314 FS? 83		
280*LBL 84	set azimuth direction	315 XEQ -RI-	radial in	inverse to set
28198		316 RTN	point	set
282 /		317 LBL 24		
283 INT		318 RCL 82		
2841		$319+$		
285 +		328 RTN		

321-LBL 87
322 RCL 89
323 RCL 17
324 RCL 16
325 +
326 FS? 88
327 CHS
328 FS? 89
329 CHS
330 RCL 19
331 R-P
332 RDH
333 +
334 Rt
335 P-R
336 RCL 85
337 +
338 ST0 07
339 Y. $>Y$
348 RCL 06
341 +
342 STO 88
343 -RADIUS POINT:-
344 FS? 82
345 RYIEH
346 FC? 03
347 XEQ ${ }^{-98^{\circ}}$ output coordinates
348 FC? 83
349 ADY
350 FS? 83

351 XEQ RI" radial inverse to set 352 RTN point
353*LBL 06 calculate coordinates
354 RCL 18
355 RCL 18
356 FS? 83
357 XEQ 24
358 FS? 88
359 CHS
368 RCL 28
361 R-P
362 RDN
363 FS? 07
364 CHS
365 -
366 R \uparrow
367 P-R
368 RCL 85
$369+$
370 KK>Y
371 RCL 06
372 +
373 FC? 03
374 XEQ -98 $^{\circ}$ output coordinates
375 FC? 03
376 ADY
377 FS? 93
378 KEQ "RI' radial inverse to set 379 RTN point

ปatersectioa-(0)

NO occupies 64 registers of program memory and should be used with the calculator sized at least to 045 . The program contains 448 bytes of programming, and can be stored on 4 tracks of magnetic cards.

Subroutines used with this program are "SORT", "CURD", "CLR", "RI", "DIV", "SET" and "98", all of which are contained in the UTILITIES 2 series of program steps. In addition to these, both "AZ" and "DMS" are used.

It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached, and it is not necessary to include the subroutine "AZ" in program memory if the calculator contains either the Hewlett-Packard Surveying Pac, or the D'Zign COGO 41 module.

$01+L B L$-NO"		23 PROMPT	
82 XEQ "CLR"	clear registers \& set	24 STO 18	
83 SF 10	flag status	25 -R?*	
84 CLK		26 PROMPT	
85 RTH		27 STO 17	
86*LBL B	type B intersection	28 RCL 18	
07 SF 81		29 RCL 01	
88 SF 94		$38-$	
890LBL A	type A intersection	31 FS ? 04	
10 XES -SORT*	prompt sequence	32 XEQ 03	calculate return curve
11 SEQ - AZ*	bearing to azimuth	33 STO 08	
12 STO 01		34*LBL 88	
13 YER - AZ*	bearing to azimuth	35 ENTERT	
14 STO 18		36 SIH	
15 R ${ }^{\text {? }}$ -	start prompts	37 RCL 94	
16 PROMPT		$38 *$	
17 STO 84		39 ST0 03	
18*LBL 82		40 RCL 17	
19-1/2k A?		41 RCL 16	
28 PROMPT		$42+$	
21 STO 16		43 FS ? 88	
$22 \cdot 1 / 248$? ${ }^{\text {- }}$		44 CHS	

45 FS? 84
46 CHS
47 +
48 RCL 17
49 RCL 18
$50+$
51 FS? 88
52 CHS
53 FS? 87
54 CHS
55 RCL 84
$56+$
57 /
58 ASIN
59 STO 14
60 KK>Y
61 FS? 04
62 KT>Y
63 FS? 88
64 KKYY
65 FS? 07
66 KKYY
67 -
68 STO 15 angle factor
69 RCL 14
78 COS
71 RCL 04
72 RCL 17
73 FS? 88
74 CHS
75 FS? 87
76 CHS
77 +
78 RCL 18
79 FS? 88

88 CHS
81 FS? 87
82 CHS
83 +
84 *
85 FS? 87
86 CHS
87 RCL 80
88 COS
89 FS? 01
98 CHS
91 RCL 84
92 CHS
93 FS? 87
94 CHS
95 FS? 04
96 CHS
97 *
98 +
99 FS? 07
108 CHS
101 STO 19 distance, line A
102 ABS
103 ADY
104 FIX 3
$185 \cdot A=\cdot$
106 ARCL X
107 AYIEH output distance A
108 XEQ 87 calculate coordinates
109*LBL 85
110 RCL 15
111 FS? 87
112 CHS
113 D-R
114 RCL 84

115*		158 -R?-	
116 FS? 88		151 PROMPT	input next radius
117 CHS		152 STO 17	
118 STO 28		153 RCL 88	
119 ABS		154 GTO 88	
128 FIX 3		155 RTN	
121 - ${ }^{\text {c }}$		156 LBL 83	calculate return curve
122 RRCL X		157360	
123 AYIEN	output distance B	158 X<>Y	
124 FI\% 4		159-	
125 RCL 89		168360	
126188		161 X $2>Y$	
$127+$		$162 X>Y$?	
128 RCL 21		163-	
129 FS? 87		164 X<8?	
138 CHS		165 CHS	
131 -		166 RTN	
132 RCL 17		167*LBL 01	reset flag status
133 FS? 82		168 SF 98	
134 RCL 82		169 CF 97	
135 FS? 82		178 SF 98	
$136-$		171 -R?*	
137 P-R.		172 PROMPT	input next radius
138 RCL 87		173 STO 17	
$139+$		174 RCL 80	
148 X<>Y		175 GTO 80	
141 RCL 88		176 RTN	
$142+$		177*LBL 87	calculate coordinates
143 FS? 86		178 RCL 81	at radius point
144 XEQ 84	output coordinates if	179 RCL 19	
145 FS? 03	wanted	188 P-R.	
146 XEQ -RI*	radial inverse to set	181 RCL 85	
147 FS? 87	point	$182+$	
148 GTO 81		183 STO 87	
149 SF 87			

185 RCL 86
$186+$
187 STO 88
188 RCL 01
18998
190 FS? 88
191 CHS
$192+$
193 STO 09
194 RCL 16
195 FS? 82
196 RCL 82
197 FS? 82
$198+$
199 P-R
208 ST+ 97
201 K $\gg Y$
202 ST+ 88
203 RCL 87
204 RCL 88
265 FS? 86
206 XEO 84 output coordinates
267 FS? 83
288 XEQ ${ }^{2}$ RI*
209 RCL 89
210 RCL 17
211 FS? 82
212 RCL 02
213 FS? 82
214 -
215 P-R
216 ST+ 87
217 Kく>Y
$218 \mathrm{ST}+88$
219 RCL 87

228 RCL 88
221 -RAD. POINT:-
222 FS? 82
223 AYIEK label output
224 FS? 86
225 XEQ 84 output coordinates
226 FS? 83
227 KEQ "RI" radial inverse to set
228 FIX 3 point
229 -R = -
230 ARCL 17
231 RYIEH output current radius
23290
233 RCL 14
234 CHS
235 FS? 07
236 CHS
237 FS? 84
238 CHS
$239+$
248 STO 21
241 XEQ "CURD"calculate and output 242 ADY curve data
243 FS? 03
244 XEQ -DIY" divide curve per max
245 FS? 83 spacing requirements
246 XEQ "SET" calculate curve points
247 GTO 85
248 RTN
249*LBL 84
250 FS? 83
251 RTN
252 XEQ -98* output coordinates
253 ADY
254 RTN

CC occupies 92 registers of program memory and should be used with the calculator sized at least to 045 . The program contains 641 bytes of programming, and can be stored on 6 tracks of magnetic cards.

Subroutines used with this program are "SORT", "CURD", "CLR", "RI", "DIV", "SET" and "98", all of which are contained in the UTILITIES 2 series of program steps. In addition to these, both "AZ" and "DMS" are used.

It is not necessary to have "DMS" in program memory unless the calculator is being used with a printer attached, and it is not necessary to include the subroutine "AZ" in program memory if the calculator contains either the Hewlett-Packard Surveying Pac, or the D'Zign COGO 41 module.

01-LBL ${ }^{\circ} \mathrm{CC}{ }^{-}$	
02 YEQ 'CLR' c	clear registers \& set
03 SF 10 flag status	
04 XEQ "SORT" prompt sequen	
85 FS? 83	
86 XEQ 11	
07 FS? 03	
88 XEQ 10	
09 - A LINE R=?*	
18 PROMPT	begin added prompts
11 STO 37	
12 XEG - AZ - bearing to azimuth	
13 STO 35	
$14^{-1 / 2 H ~}{ }^{\text {? }}$?	
15 PROMPT	
16 STO 16	
17 -B LINE R=?*	
18 PROMPT	
19 STO 38	
28 XEQ ${ }^{\text {AR }}$ - b	bearing to azimuth

21 STO 36 radial azimuth, line B
22 CF 18
23 RCL 35 radial azimuth line A

$24 X<\gg$

25-
26360
27 K<>Y
$28 \mathrm{X} \times 8$?
$29+$
38 STO 88
$31^{-1 / 24 ~ B ? ~}$ -
32 PROMPT
33 STO 18
34 RCL 08 delta
35 RCL 38 radius, line B
36 P-R
37 RCL 37 radius, line A
38 -
39 R-P
40 ST0 03 base distance

41 CLX
42 RCL 37
43 RCL 38
44 RCL 03
45 +
$46+$
472
48 /
49 STO 10
50 Xt 2
51 LASTX
52 RCL 38
53 *
54 -
55 RCL 37
56 RCL 83
57 *
58 /
59 SQRT
68 ACOS
612
62 *
63 STO 39 calculated angle
64 SIN
65 RCL 37
66 STO 28
67 RCL 10
68 x 42
69 LASTX
70 RCL 37
71 *
72 -
73 RCL 38
74 /
75 RCL 83

76 /
77 SQRT
78 RCOS
792
80 *
81 STO 48 calculated angle
82 SF 81
83 L LBL 08 begin solutions
84 FS? 84
85 SF 07
86 FS? 89
87 SF 07
88 "R?"
89 PROMPT
98 STO 17
91 RCL 16
$92+$
93 FS? 01
94 CHS
95 FS? 04
96 CHS
97 RCL 37
98 +
99 STO 10
180 RCL 17
101 RCL 18
$182+$
183 FS? 81
104 CHS
165 FS? 89
106 CHS
107 RCL 38
$188+$
189 STO 28
110 RCL 83

$111+$		146 STD 41	third angle		
$112+$		147188			
1132		148 KK ${ }^{\text {Y }}$			
114 \%		149 RCL 29			
115 ST0 42	temporary storage reg	158 +			
116×42		151 FS? 81			
117 LASTX		152 -			
118 RCL 28	base side two	153 FS? 88			
119 *		154 -			
120-		155 STO 21	central angle of the		
121 RCL 18	base side one	156 RCL 39	return		
122 RCL 83	base distance	157 RCL 29			
123 *		158 FS? 84			
124 /		159 KJ>Y			
125 SQRT		168 FS? 88			
126 ACOS		161 X $\$ YY & \hline 1272 & & 162 - & \hline 128 * & & 163 I-R & \hline 129 STO 29 & calculated angle & 164 RCL 37 & radius, line A \hline 138 SIN & & 165 * & \hline 131 RCL 18 & & 166 FIX 3 & \hline 132 RCL 42 & & 167 ADY & \hline 133×42		168 ADY	
134 LASTX		169 -ARC A $=$			
135 RCL 18		170 ARCL X			
136 *		171 AYIEH	output arc distance		
137 -		172 FC? 82			
138 RCL 28		173 ADY			
139 /		174 FS? 02			
148 RCL 83		175 KEQ 01	set coordinates		
141		176 FS? 82			
142 SQRT		177 XEQ 82	output radius point if		
143 ACOS		178 FIX 3	coordinates or layout		
1442		179 -R = -			
145 *		188 ARCL 17			

181 AVIEN	output return radius	216 RTN	
182 RCL 21		217 -INTER-X	NtE"
183 XEQ "CURD"	calculate curve data	218 PROMPT	input coordinates at
184 ADY		219 STO 86	intersection
185 FS? 83		220 RDH	
186 XEQ "DIY:	divide curve per max	221 STO 85	
187 FS? 03	spacing instruction	222 RTN	
188 XEQ -SET*	set coordinates at the	$223+$ LBL 12	azimuth rotation
189 RCL 48	curve points	224188	
198 RCL 41		225 -	
191 FS? 88		226 ST0 89	
$192 \mathrm{X} \times 3 \mathrm{Y}$		227189	
193 FS? 89		$228+$	
194 X<>Y		229 RTH	
195-		230*LBL 81	calculate coordinates
196 II-R		231188	at return radius point
197 RCL 38		232 RCL 35	
198 *		233 +	
199 Fİ 3		234 RCL 37	
280 -ARC B = -		235 P-R	
201 ARCL X		236 RCL 85	
292 AVIEN	output line B arc dist	$237+$	
293 FS? 82		238 STO 87	
284 XEQ 83		239 X<>Y	
285 FS?C 88		248 RCL 86	
286 SF 99		$241+$	
207 FS?C 84		242 STO 88	
208 SF 68		243 RCL 35	
289 FS?C 81		244 RCL 39	
218 SF 04		245 RCL 29	
211 CF 07		246 -	
212 GTO 88		$247+$	
213 RTH		248 FS? 81	
214*LBL 11	additional prompts if	249 XEQ 12	rotate
215 FS? 86	layout or coord. mode	258 FS? 84	

251 XEQ 12	rotate
252 FS? 88	
253 ST0 89	
254 FS? 89	
255 ST0 89	reset azimuth
256 RCL 17	return radius
257 RCL 16	half-width A
258 +	
259 FS? 81	
268 CHS	
261 FS? 84	
262 CHS	
263 RCL 37	radius, line A
264 +	
265 P-R.	
$266 \mathrm{ST}+87$	
267 X<>>	
268 ST+ 88	
269 RCL 36	
278 RCL 40	
271 RCL 41	
272 -	
273 -	
274 RCL 17	
275 FS? 83	
276 XEQ 89	modify radius by o/s
277 FS? 84	
278 CHS	
279 FS? 88	
288 CHS	
281 P-R	calculate coordinates
282 RCL 87	
283 +	
284 Y 2 \>Y	
285 RCL 88	

253 STO 89
254 FS? 89
255 ST0 89
256 RCL 17
257 RCL 16
$258+$
259 FS? 81
268 CHS
261 FS? 84
262 CHS
263 RCL 37
$264+$
265 P-R
266 ST+ 87
267 K KY
268 ST+ 88
269 RCL 36
278 RCL 48
271 RCL 41
272 -
273 -
274 RCL 17
275 FS? 83
276 XEQ 89
277 FS? 84
278 CHS
279 FS? 88
288 CHS
281 P-R
282 RCL 87
283 +
284 Y $\langle>Y$
285 RCL 88
$286+$
287 FC? 83
288 XEQ 98° output coordinates
289 RDY
298 FS? 83
291 XEQ "RI" radial inverse to set 292 RTH points
2934LBL 82 output coordinates
294 -RADIUS POINT:
295 FS? 82
296 AVIEH
297 RCL 87
298 RCL 88
299 FC? 83
308 XEQ -98" output coordinates
301 FS? 86
302 ADY
303 FS? 83
384 XEO RRI" radial inverse to set 305 RTH
$306+$ LBL 83
307 RCL 35
308 RCL 39
309 RCL 29
310 -
$311+$
312 RCL 17
313 FS? 03
314 XEQ 89 modify radius by o/s
315 FS? 88
316 CHS
317 FS? 89
318 CHS
319 P-R
320 RCL 87

$321+$		336 PROMPT	
$322 \mathrm{X}\rangle \mathrm{Y}$		337 RCL 86	
323 RCL 88		338 -	
324 +		$339 \mathrm{~K} \backslash \gg$	
325 FC? 83		348 RCL 85	
326 XEQ -98*	output of coordinates	341-	
327 FS? 83		342 R-P	
328 XEQ ${ }^{\text {RI* }}$	radial inverse to set	343 CLX	
329 RTH	point	$344 \mathrm{X}\rangle \gg$	
$330+$ LBL 89		$345 \times 8 \times 8$?	
331 RCL 82		346360	
332 -		347 +	
333 RTN		348 STO 01	backsight azimuth
334*LBL 18	prompt (layout mode)	349 RTN	
335 BACKSITE?		350 END	

We often are asked, "How do you store coordinates by point number without X-function in a 41?" There are a number of ways this can be done, but this little routine is one of the easiest.

PIN (point in) assigns the next consecutive number in the counter register to any coordinate pair when the N -coord is in the Y register and the E -coord is in X. POUT (point out) replaces the coordinate pair into the Y and X registers for whatever point number is in the X register when executed.

These two routines (©1983, Ted J. Kerber), combined with short programs that tap the subroutines of the HP SURVEYING PAC, give you a complete traverse and inverse package. It may also be extended into storage of three-dimensional coor dinates by using similar steps to store the Z register, and have the elevation of the point reside there.

The number of points you can store by this method is only limited by the total number of available registers (it requires two registers per point number), and this is dictated by how many registers you have to use up with the other routines.

In the example listings, with the calculator sized at 120, we're storing N -coordinates in registers 20 thru 69, and E-coordinates in registers 70 thru 119 (a total of 49 points), with register 17 used as the counter. Begin with 0 in register 17.

You can custom fit the routine to your own needs by varying step 19 (first E register), steps 26 and 38 (first N register) and step 43 (difference between registers). Data cards can be used to input or dump the coordinates for later use. You can recall and use the coordinates without having to look at them by adding a PRINT/DON'T PRINT flag in front of the "AVIEW" steps.

01*LBL -PIN"	15 CLA	29 RDN	4350
02 RCL 17	16 ARCL Y	30 STO IND 19	44 +
831	17 AYIEN	31 RTH	45 STO 19
04 +	18 GIV	32*LBL -POUT*	46 RDH
05 FIX 0	1978	33 FIX 8	47 RCL IND 19
06 CF 29	$20+$	34 CLA	48 CLA
07 CLA	2151019	35 ARCL X	49 ARCL Y
88 ARCL X	22 RDH	36 AYIEM	50 AYIEH
09 AYIEH	23 STO IND 19	37 FIX 4	51 CLA
10 STO 17	24 C.LX	3828	52 ARCL X
11 FIX 4	25 RCL 17	$39+$	53 AYIEH
12 CLA	2628	40 STO 19	54 ADY
13 ARCL 2	$27+$	41 RCL IND 19	55 RTN
14 AYIEH	28 STO 19	42 XインY	56 END

CARD PROGRAMMING SERVICE time involved in typing in the program steps, and to insure that the programs will work properly, send 20 blank card with your check or money order ($\$ 8.50$ per set)

We will program your cards for you and return them in a labeled card holder which may be inserted directly into your book.
Programming on cards, Geometrics $\$ 8.50$

HP-41CV/CX SURVEYING FIELD SOLUTIONS

A fully documented and illustrated solutions book for the surveyor.
FIELD LAYOUT \approx SPIRALS ξ FIELD LOCATION ξ^{*} TOPO REMOTE SLOPE STAKING \mathcal{F} RADIAL INVERSE and much more! Surveying Field Solutions $\$ 19.95$

CARD PROGRAMMING SERVICE
the card programming service is also available for the Surveying Field Solutions book. Send 20 blank cards with your order.
Programming on cards, Field Solutions $\$ 8.50$

COGO 41

This is the ROM you've been needing. Complete traverse, inverse . . everything the others have and more! Coordinate storage and retrieval option by point number. No need to pre-divide to mean angles before input.

The closure routine includes automatic angle check and adjustment. The compass and transit corrections are automatic, at the touch of a button. X-memory is not required!

All of the normal intersection routines are included, plus LINE TO SPIRAL and CURVE TO SPIRAL. Bearings and azimuth may be input, or defined by input of the point numbers at either end of an existing line.

COGO 41 . available mid-1987

CALIFORNIA RESIDENTS PLEASE ADD 6 6 g taX
prices valid thru May 1987

