

1. $\begin{aligned} & \text { 1LF5-0002 } \\ & 1 \text { LFS-0301 }\end{aligned}$

HP-41 CPU DESCRIPTION. HP-11C, 12C CPU DESCRIPTION.
2. 1LA4-4001 HP-41 DISPLAY DRIVER DESCRIPTION
3. 1LA7-9002-1 HP-41 RAM IC DESCRIPTION
4. 1LB6-4001

PIL IC DESCRIPTION
5. 1LB5-4001

PIL IC ELECTRICAL SPECIFICATION
$23 p p$.

6pp.

9pp.

14 pp.

1. 1LFG-4001 TIME MODULE (+CX) IC DESCRIPTION. J』pp.
2. 1LFG-4001 TIME MODULE IC ELECTRICAL SPECIFICATION.
3. 1LB4-4001 PERIPHERAL (82143) IC DESCRIPTION.
4. 1LB4-4001

PERIPHERAL (82143) IC ELECTRICAL SPECIFICATION.
8pp.

.... microcode ERS register usage definition XROM fens $5 / 23 / / 8$

operand, if any, in res 9 right justifitici $\sigma_{\text {oupurut }}$
 DC
NFRPU on the subroudioie stack should return to appropritite NFTR
$D C \equiv$ don't care
SCR \equiv scratch
$x \equiv$ unused

HEWLETT-PACKARD CO.

NOTE: This page provides a running history of changes for a multi-page drawing which cannot conveniently be reissued completely after each change. When making a change, list for each page all before-and-after numbers (within reason; use judgement, and use "extensive" revision note if loss of past history is tolerable, or retype complete page) and associate with each a symbol made up of the change letter and a serial subscript to appear here and on the page involved (there enclosed in a circle, triangle, or other attention-getting outline).

HEWLETT-PACKARD CO.

PART NUMBER

1LF5-0301
1LF5-0002

				modit.		STK NO				
				DETAILED DESCRIPTION CPU						
				or TOM REVERE			oate 7/14/81			
118	- C No	approvid	Dalt	APPD			smeti no	2	O1	42
	Revisions			Suriestides			Dwe no	A-1LF5-9002-1		

I. GENERAL DESCRIPTION

The 1LE3 CPU is designed for 41C and 11C, 12C calculator. At wafer and package level, their part numbers are designated as follows:

11C 12C 41C
WAFER
PACKAGE

The difference between the two parts are programmed at metal mask (mask 7, CMOSV). The rest of masks are common to both. Electrically, the differences are in the two circuits:

1) VCI, VCO CIRCUIT

In 41C mode, the VCI and VCO pins are provided to interface with a power supply. When the CPU wishes to wake up, it will pull the VCI line high. It will then wait until VCO is pulled low by the power supply circuitry indicating that VCC has reached the desired level. In 11C and 12C mode, this function is bypassed, however, VCI will still be active.
2) POWER ON CIRCUIT

In 41C mode, a resistor voltage divider is connected across th PWO line so that a lower PWO voltage is provided to the power on circuit. When the battery voltage becomes low, and with the presence of the PHASE 1 CLOCK, the low PWO voltage will cause a hardware shutdown at VCC $=4.0$ volts.

			мวขt:	strx no.	SEE TAE			
			DETAILED DESCRIPTION CPU					
			\cdots TOM REVERE		Date $7 / 14 / 81$			
+19	ic no	appovert			sheet no.	3	or	42
-		Sion			owg no A-1l Ff_onnn			

In 11C and 12C mode, this function is bypassed by disconnecting the voltage divider. The low voltage shutdown hardware circuitry resides in the display ship.

The operating range of the two chips are also different and are summarized as follows:

41C
11C 12C

VOLTAGE RANGE
6.0 to 7.0
3.0 to 5.0

CLOCK FREQUENCY RANGE
340 to 380 KHz
200 to 230 KHz

Other than the differences described above, both chips are functional identical.

The CPU is a highly intelligent, bit serial, low power, psuedo nonvolatile CMOS processor.

All instructions and address communicate via a bit serial, bidirectional ISA line. The ISA is divided into 56 bit words each having 16 bits of address and 10 bits of instruction. This allows a maximum of 64 K addressable ROM locations. The address is transmitted from bit time T14 to bit time T29 with the LSB ant T14. Instructions.are transmitted at bit time T44 to bit time T53 with LSB at T44. Data may be transferred (to data storage chips, peripheral equipment, display drivers, etc.) via the bidirectional DATA line. Data, in the form of digits, is transferred in bit serial form with 14 digits transferred per word time.

			mose		str. no SEE TABLE				
			DETAILED DESCRIPTION CPU						
			- TOM REVERE			date $7 / 14 / 81$			
It	ic no	aporovet	AOP:			sheet no.	4	or 42	
		ervion	surerseos:			owe		annon,	

For timing diagram refer to the electrical specifications.

The CPU also controls keyboard scanning, flags in/out and clock generation.

II. INSTRUCTIONS

2.1 The instruction set is divided into 4 categories based on bit patterns of the first two bits of the instruction.

TYPE 0 INSTRUCTIONS

There are 16 groups of instructions in this category. Each group has 16 available instructions. In essence, this category provides 256 instructions for such things as pointers, status bits, data storage manipulations and any other non-branch (or jump) nonarithmetic instructions.

TYPE 1 INSTRUCTIONS

These are two word time JUMP instructions that may jump anywhere within 64 K of ROM. During the first word bits $0-7$ of the address are transfered, the second word transfers bits 8-15. Decisions to Juilf are based on the state of the carry FF.

TYPE 2 INSTRUCTIONS
This is the arithmetic category with 32 possible instructions. All arithmetic operations are performed on the field defined by TIME ENABLE "TE"

TYPE 3 INSTRUCTIONS
This defines a one word branch instruction which may reach to anywhere within ${ }^{+} 64$ locations relative to the program counter. Decisions to branch are dependent of the state of the carry FF.

HEWLETT-PACKARD CO.

TYPE 00 INSTRUCTIONS

| 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MODIFIER | | | GROUP | | | 0 | 0 | | |

	19	18	171		15	14	13	12	MASM MNEMONICS
iNOP	0	0	0	0	0	0	0	0	
*RESET STATUS BIT "D"	X	X	X	x	0	0	0	1	$S D=0$ where D is bit
CLEAR STATUS BITS	1	1	1	1	0	0	0	1	CLR ST
*ET STATUS BIT "D"	X	x	x	x	0	0	1	0	$S D=1$ where D is bit
RESET KBF	1	1	1	1	0	0	1	0	RST KB
${ }^{\text {® }}$ IF STATUS BIT "D" $=1$	X	x	X	x	0	0	1	1	? $S D=1$ where D is bit
IF KBF	1	1	1	1	0	0	1	1	CHK KB
LOAD CONSTANT "N"	N	N	N	N	0	1	0	0	LC
[If POINTER "P" OR "Q" AT "D"	x	x	x	x	0	1	0	1	? PT=
DECREIAEIT POINTER	1	1	1	1	0	1	0	1	DEC PT
$C \rightarrow G(P, P+1)$	0	0	0	1	0	1	1	0	$\mathrm{G}=\mathrm{C}$
$G \cdot C(P, P+1)$	0	0	1	0	0	1	1	0	$C=G$
$c \rightarrow G(P, P+1)$	0	0	1	1	0	1	1	0	CG EX
$C \rightarrow H$ (W)	0	1	0	1	0	1	1	0	$M=C$
$H \rightarrow C$ (N)	0	1	1	0	0	1	1	0	$C=19$
\cos : 1 (W)	0	1	1	1	0	1	1	0	CM EX or MC EX
$S B \rightarrow F(W)$	1	0	0	1	0	1	1	0	$F=S B$
$F \rightarrow S B(W)$	1	0	1	0	0	1	1	0	$S B=F$
$S B \rightarrow F(W)$	1	0	1	1	0	1	1	0	FEXSB
$C \rightarrow S B$ (DIGITS 0,1)	1	1	0	1	0	1	1	0	ST $=\mathrm{C}$
SB \rightarrow C (DIGITS 0,1)	1	1	1	0	0	1	1	0	$C=S T$
t-SB (DIGITS 0,1)	1	1	1	1	0	1	1	0	CST EX
SET POIATTER "P" OR "Q" AT "D"	D	D	D	D	0	1	1	1	PT=D
IACREMEAT POINTER	1	1	1	1	0	1	1	1	INC PT
POP JSB	0	0	0	0	1	0	0	0	SPOPND
PdO OfF	0	0	0	1	1	0	0	0	POWOFF
SELECT POINTER "P"	0	0	1	0	1	0	0	0	SEL P
SELECT POINTER "Q"	0	0	1	1	1	0	0	0	SEL Q

1. Use Table 1 to select correct codes for D.
2. POWOFF is a two byte instruction, Byte $\# 2=\emptyset \emptyset \emptyset \emptyset$.
*3. Cannot be used immediately after an arithmetic (type 2) instruction.

TABLE I

Digit position and N for the pointer and status bits are related as follows; to Set or Test the "P" and "Q" pointers at digit D; use code N to Set, Reset or Test the status bits D; use code N

D	$C O D E$		N		
0	$E-1$	1	1	0	
1	C	-	1	1	0

HEWLETT－PACKARD CO．

TYPE 10 （2）INSTRUCTIONS ARITHMATIC INSTRUCTIONS

19	18	17	16	15	14	13	12	11	10

OP CODE
TIME EiNABLE 10

MASM
15 MNEMONICS
$0 \quad A=0$
$1 B=0$
$0 \quad \mathrm{C}=0$
$1 \quad A B E X$ or $B A E X$
$0 \quad B=A$
1 ACEX or CA EX
$0 \quad C=B$
1 BC EX or CB EX
$0 \quad A=C$
$1 \quad A=A+B$
$0 \quad A=A+C$
$1 \quad A=A+1$
$0 \quad A=A-B$
$\begin{array}{ccccc}A-1 & A & 1 & 1 & 0\end{array}$
$\begin{array}{llllll}A-C & A & 1 & 1 & 1\end{array}$
$\begin{array}{llllll}C+C & C & 0 & 1 & 1 & 1\end{array}$
$\begin{array}{llllll}A+C & C & 1 & 0 & 0\end{array}$
$C+1 \quad C \quad 1 \quad 0 \quad 0 \quad 0$
$\begin{array}{llllll}A-C & C & 1 & 0 & 0 & 1\end{array}$
$\begin{array}{llllll}C-1 & C & 1 & 0 & 0 & 1\end{array}$
$\begin{array}{llllll}0-C & C & 1 & 0 & 1 & 0\end{array}$
$\begin{array}{llllll}-1-C & C & 1 & 0 & 1 & 0\end{array}$
$\begin{array}{lllllll}\text { IF } B & 0 & 1 & 0 & 1 & 1\end{array}$
$\begin{array}{llllll}\text { IF C } & 0 & 1 & 0 & 1 & 1\end{array}$

TIME ENABLE
141312
000 on pointer P
$00 \quad 1 \exp \& \operatorname{sign} X$
010 word thru PTR W
011 whole word W
100 PTR P thru Q PO
10
110 mantissa only M
111 mantissa sign S

HEWLETT-PACKARD CO.

TYPE 10 (2) INSTRUCTIONS CONT'D

		19	18	17	16		15
MNEMON							
IF A	C	1	1	0	0	0	? A C
IF A B	1	1	0	0	1	? A B	
IF A	0	1	1	0	1	0	? A 0
IF A	C	1	1	0	1	1	? A C
SRA		1	1	1	0	0	A SR
SRB	1	1	1	0	1	B SR	
SRC	1	1	1	1	0	C SR	
SLA	1	1	1	1	1	A SL	

ADDRESSING

The address field (of ISA) is 16 bits long giving a maximum addressable system of 64 K words. Return addresses, for BRANCH and JUMAP SUB instructions, are stored in a 4 deep by 16 bit wide register STACK which operates on a first in last out principal.

There is a one word relative branch that can reach 64 locations relative to the program counter. There is also a two word absolute JUMP that can reach any place in 64 K of ROM. All branches and jumps are conditional and depend on the state of the carry flip-flop. Branches and jumps can be "if carry" or "if no carry".

TYPE 3 BRANCH INSTRUCTIONS

19	12	11	10
21 s compl.	C / NC	11	

BRN C ADDRESS (branch on carry to address)
One word branch instruction that will cause a branch to $+63,-64$ locations relative to the program counter if the carry flip flop has been set by an arithmetic or a "compare" instruction.

				noot	stk no	SEE TABL		
				DETAILED DESCRIPTIO:V - CPIJ				
				\therefore TOM REVERE		Sa:8 7/14/81		
$\because 1$	$\because 0$	aperets	2a:	...0		smer vo	11	$\bigcirc 42$
	envisions			suresests		2~6 ~0 A-1LF 5-9002-1		

TYPE 3 BRANCH INSTRUCTIONS CONT'D

If the carry flip flop has not been set, the branch is not taken, and the instruction following the branch is executed. The 2's complement number is added to the address producing the new address. BRN NC ADDRESS (branch on no carry to address)
Same as above except branch is taken if carry flip flop has not been set.

TYPE 1 ADDRESS INSTRUCTIONS
JUMP INSTRUCTIONS

19
Bits $\varnothing-7$ of 16 bit address $\emptyset 1$

Bits 8-15 of 16 bit address 1 C/NC JMP C ADDRESS (jump on carry to address)
Two word jump instruction that will cause an absolute jump to anywhere in 64K of ROiN if the carry flip flop has been set by an arithmetic or a "compare" instruction. If the carry flip flop has not been set, the jump is not taken and the instruction following the jump is executed. This instruction does not affect the address stack. During execution of the second word sync is suppressed.

JUMP SUB INSTRUCTION

19	11	10
Bits $0-7$ of 1 t bit address	\emptyset	1
Bits $8-15$ of 16 bit address \varnothing	C/NC	

JSB C ADDRESS (jump sub on carry to address)
Two word jump-sub instruction to anywhere in 64 K or ROM if the carry flip flop has been set by an arithmetic or a "compare" instruction. If the carry flip flop has not been set, the JSB is not executed and the instruction following the JSB is executed. This. instruction will push the program counter onto the return address stack. During execution of the second word sync is suppressed.

HEWLETT－PACKARD CO．

JSB NC ADDRESS（jump sub on no carry to ADDRESS）

Same as stated before except JSB is executed if carry flip flop has not been set．

III HARDWARE RESET

The 1LF5 incorporates circuitry to sense when the por input and either the key connecting key column \varnothing（KCØ）to key row input 3 （KR3）or the key connecting KC4 to KR3 are both active．If these conditions are met the reset flip－flop within the CPU will be set，forcing the PWO output to the active state；the clocks to stop，etc．If the display is off when the reset circuitry is activated，the CPU will，following the reset，wake up with the carry set－i．e．from the deep sleep state，if the display was on when the reset occurred，the CPU will go into deep sleep following the reset．The metal mask for the IC can be easily modified to select KCO．AND．KR4 rather than KCO．AND．KR3，or to remove the reset function．

				$\cdots \mathrm{cost}$	5：k No	SEF TABIF	
				DETAILED DESCRIP	－CP		
				s\％TOM REVERE		دA：8 7／14／81	
						smer～o 13	or． 42
：$:$	etris：crs			Sunestots		swe vo A－11F 5－9032－1	

IV. RETURN INSTRUCTIONS

RETURN (return from sub routine)
When this instruction is executed, the bit return address in the stack drops into the program counter and the program execution begins at that point. Note that a "NOP" at the beginning of a subroutine or a ROM not installed will cause a "RETURN".

RETURN C (return on carry)
This instruction follows an arithmetic or a "compare" instruction. If the carry FF has set, the program returns from subroutine uaing the first 16-bit return address in the stack. Otherwise the return C is skipped and the following instruction is executed.

RETURN NC (return on no carry)
Same as above execept the RETURN is executed if the FF has not been set.
V. ADDITIONAL ADDRESS AND STACK MODIFIERS

KEYS \rightarrow ROM ADDRESS
The eight-bit key code is used as the address for the next instruction in the current 256 word stack of ROM. The key code gets substituted into the least significant 8-bits of the program counter.

C \rightarrow ROM ADDRESS
Digits 3 and 4 of the C register are put into the least significant eight bits of program counter.

POP
Subroutine stack is popped once without branching to return address.

PUSH $\neq \mathrm{C}$
Digits 3, 4, 5, \& 6 of Reg. C are pushed onto the subroutine stack.
The program counter is incremented as usual.
$P O P \rightarrow C$
The subroutine stack is popped with the lower address on the stack going into digits $3,4,5, \& 6$ or register C. The program counter is incremented as usual. The other digits of the C-register remain unchanged.

VI. IF INSTRUCTIONS

The IF instruction is a one word test that causes the carry FF to be set, if the test is true, or reset if the test is false. The IF instruction will be followed by a BRANCH, JUMP. JUMP-SUB or a conditional RETURN instruction which follows for branching (or RETURNS) depending on the state of the carry FF.

The instructions are:
IF FLAG $N=1$
IF POINTER "P" = POINTER "Q"
IF POINTER $\quad=N(N=0 \geqslant 13)$
IF STATUS BIT $N=1 \quad(N=0 \neq 13)$
IF $C \neq 0$
IF $\mathrm{B} \neq 0$
IF $A \neq 0$
IF $A=C$
IF $A<B$
IF $A<C$

				modet		stx		
						ED D	SRIPTION	CPU
				or	TOM REVERE		date	7/14/81
17	¢c no	Apreoved	dati	Apro			sheti no 15	- 42
	irvisions			suritsiots			owc no A-1LF5-9002-1	

-320-27E日 IFORMERLVO-700024

The carry FF, when set by an FF instruction, will remain set for one word time and then be reset. The carry FF is always reset during non-arithmetic instructions.
VII. PROCESSOR REGISTER

The major registers in the CPU are the A, B and C registers which comprise thr working registers.

In addition there two memory registers, M and N. These are 14 digit register that can be copyed into or exchanged with the C register. There is no arithmetic capability with the M and N registers.

The registers are organized into different time enable fields to allow manipulation of différent fields within the register.

Digits 0 and 1 are the exponent. Digit 2 is the exponent sign. Digits 3-12 comprise the mantissa. Digit 13 is the mantissa sign.

The following instructions manipulate the five registers on the CPU.
These are in addition to the arithmetic instructions.
CLEAR REGISTERS
Clears A, B and C registers. Does not clear M or N.
M/N EXCHANGE C
EXchanges contents of M and N with contents of C. All 14

				modet		str. no	
				DETAILED DESCRIPTION CPU			
					TOM REVERE	dare	7/14/81
11	.c no	arrioved	date	APro		shett no	16 or 42
	intions			suristots		owg no	A-1LF5-9002-1

digits.
$M / N \rightarrow C$
Copies contents of M or N into C.
C $\quad-M / N$
Copies contents of C into M or N.
RCR D
Rotate C right the amount the of digits specified by D. Left rotate may be accomplished by specifying D equal to 14 minus the number of left shift.
VIII. ARITHMETIC INSTRUCTIONS

Arithmetic instructions use registers A, B and C as sources and registers A and C as destinations fir the data. In each arithmetic instruction, there is a TIME ENABLE field that specifies the part of the registers (digits) to be operated on. Sums, differences, complements and shifts can be performed on different fields of the registers as defined by TIME ENABLE.

The following are the TIME ENABLE fields: Mantissa sign
On pointer PT

Pointer P thru pointer $Q \quad P Q$
Exponent sign only XS
Exponent and sign X
Mantissa sign S
Mantissa only M

Word through pointer WPT
The 32 arithmetic instructions are:
$\emptyset \rightarrow A[T E]$
The TE field in the A register is reset to zeros.
$\emptyset \rightarrow B[T E]$
The TE field in the B register is reset to zeros.
$\emptyset \rightarrow C[T E]$
The TE field in the C register is reset to zeros.
$A \leftrightarrow B[T E]$
The $T E$ fields are exchanged between the $A \& B$ registers. $A \leftrightarrow C[T E]$

The TE fields are exchanged between the A \& C registers.
$B \leftrightarrow C[T E]$
The TE fields are exchanged between the B \& C registers.
$A \rightarrow B[T E]$
The TE field in register A is loaded into register B.
C $\rightarrow \mathrm{A}[\mathrm{TE}]$
The TE field in register C is loaded into register A.
$\mathrm{B} \rightarrow \mathrm{C}[\mathrm{TE}]$
The TE field in register B is loaded into register C.
$A+B \rightarrow A[T E]$
Sums the TE fields of A and B and puts result into A.
$A+C \rightarrow A[T E]$
Sums the TE fields of A and C and puts result into A.

				modi		stix no				
				DETAILED DESCRIPTION CPU						
				or TOM REVERE			date $7 / 14 / 81$			
17	.c no	aprioved	DA1t	Apro			shett no	18	or	42
	aivisions			surtestiots			owe no A-1LF 5-9002-1			

[^0]$A+C \rightarrow C[T E]$
Sums the FE fields of A and C and puts result into C.
$\mathrm{C}+\mathrm{C} \rightarrow \mathrm{C}[\mathrm{TE}]$
Doubles the contents of the TE field in register C.
$A+1 \rightarrow A[T E]$
Increments the TE field of A.
$C+1 \rightarrow C[T E]$
Increments the TE field of C.
$A-B \rightarrow A[T E]$
Subtracts the TE field B from A and puts results in A :
$\mathrm{A}-\mathrm{C} \rightarrow \mathrm{C}[T E]$
Subtracts the TE field of C from A and puts result in C.
$A-C \rightarrow A[T E]$
Subtracts the TE field of C from A and puts results in A : A-1 \rightarrow A [TE]

Becrements the TE field in register A.
$C-1 \rightarrow C[T E]$
Decrements the TE field in register C.
$\emptyset-C \rightarrow C[T E]$
Forms 10's complement in DEC mode (16's in HEXMODE), in TE field of C.
$\emptyset-C-1 \rightarrow C$ [TE]
Forms 9's complement of DEC mode (15's in HEXMODE), in TE field of C.

9320-2789. IFORMERLY 0-700024

SLA [TE]
Shift the TE field in register A left by one digit.(0's shifted into end.

SRA [TE]
Shift the TE field in register A right by one digit. (0 's shifted into end.

SRB [TE]
Shift the TE field in register B right by one digit. (0 's shifted end.

SRC [TE]
Shift the TE field in register C right by one digit. (0 's shifted into end.
IX. IF INSTRUCTIONS; (also arithmetic)

The if instructions are followed by a branch, jump or return on carry or a brahch, jump or return on no carry instruction.

The sense of the IF instruction used is decided by which kind of conditional branch, jump or return follows it.

IF $\mathrm{B} \neq 0$ [TE]
If the TE portion of B is not equal to zero, the carry $F F$ is set. IFC $\neq 0$ [TE]

If the TE portion of C is not equal to zero, the carry $F F$ is set. IFA $\neq 0$ [TE]

If the TE portion of A is not equal to zero, the carry $F F$ is set.

				MODEL		STK NO.					
				DETAILED DESCRIPTION CPU							
		-		Br	TOM REVERE		Date	7/14/81			42
	-C NO		DATE	APPD ${ }^{\circ}$			SHEET	NO	20	or	
172	EEISIONS			Supiesedes			owe nA-1LF 5-9002-1				

IF A C [TE]
If the $T E$ portion of A is less than C, the carry $F F$ is set. IF A B [TE]

If the $T E$ portion of A is less than B, the carry $F F$ is set. IF $A \neq C[T E]$

If the $T E$ portion of A is not equal to C, the carry $F F$ is set.
X. DECIMAL and HEXADECIMAL MODES

There is a HEXIDECIMAL/DECIMAL flip flop which determines the mode of arithmetic operations. Two instructions set the FF to its two states. DECIMAL-Sets the FF enable decimal calculations.

HEXADECIMAL-Sets the FF to enable hexadecimal calculations. The carry (borrow) bit is associated with the TE field operated on by the arithmetic instruction. A carry is generated if the most significant digit of the TE field goes from 9 to \emptyset in the DECIMAL mode of from 15 to \emptyset in the HEXADECIMAL mode after an addition. A borrow is generated if the most significant digit in the TE field goes from \emptyset to 9 in the DECIMAL mode or from \emptyset to 15 in the HEXADECIMAL mode after a subtraction.

NOTE: If a register transfer, shift, rotate, "and" or "or" instruction is made in the decimal mode, the CPU operates in HEXADECIMAL mode long enough to make the transfer and then shifts back to DECIMAL.In this manner, non BCD digits are not destroyed during a register transfer.
XI. Other instructions

AND
Register A is "ANDED" to C with the result in register C. This instruction operates on the whole word.

OR
Register A is "ORED"to register C with the result in register C. This instruction operates the whole word.

CXISA (C exchange ISA)
This is a two word time instruction that provides for reading ROM instructions and for pitting them into the "C" register.

Daring the first word after CXISA is issued the ROH address residing in digits 3, 4, 5 and 6 of the C register is output; the instruction at its referenced ROM location is now read back. Note that SYNC is suppressed during this word time.

During the second word time the instruction is loaded into digits $\emptyset, 1$ and 2 of the register C.

XII. KEYBOARD

The key code matrix consists of 7 column lines and 9 row lines. The columns are scanned one at a time from digit time \emptyset to digit time 6 . when a key is pressed the keyboard flag is set and the 4 bit row and column codes are stored in the keyboard buffer. When this code is called for, by a KEYS \rightarrow ROM or KEYS $\rightarrow C$ the codes are sent out at digit times 3 (row) and 4 column. For codes use Table 1.

				modat		STK No				
				DETAILED DESCRIPTION CPU						
				or	TOM REVERE		dare	4/81		
te	-c No	APPeoved	Dati	APPD			Sheti no	22	or	42
1	Rivisions			suriestios			owe no A-1LF 5-9002-1			

Keyboard instructions:
CHK KB
Checks to see if the keyboard FLAG is set; if so, the carry FF is set. If the keyboard FLAG has been reset, then this instruction must be given before the FLAG can be set by a new closure. RST KB

Resets the keyboard FLAG if the key has been released. If the key is still down at the time this instruction is issued, the bit cannot be reset. KEYS $\rightarrow C$

The keyboard buffer is loaded into digits $3 \& 4$ of the C register. KEYS \rightarrow ROM

The keyboard buffer is loaded into the least significant bits of the program counter.

NOTE: This program
TYPICAL KEY CHECK PROGRAM

$$
\text { CHK KB } \quad \text { Wait for flag }
$$

BRN NC
provides the capabilfty of a two key rollover.

DEBOUNCE Software debounce

C REG DIGIT \longrightarrow TIME		3	
	CO	COLUMN	ROW
	D1	KC1 00011	KRØ 0000
	D2	KC2 0111	KR1 0001
	D3	KC3 1000	KR3 0011
	D4	KC4 1100	KR4 0100
	D5	KC5 1110	KR5 0101
	D6	KC6 1111	KR6 0110

When a key is depressed the row and column line are stored in the keyboard buffer and the key flag is set.

KEYBOARD CODES
TABLE 1

KEYBOARD SCANNER
STATE DIAGRAM

XIII. POINTER OPERATIONS

The processor has two pointers (P and Q), each of which can be shifted, initialized and tested. A pointer select is used that determines which of the two pointers will be operated on the pointer operations. once a pointer is selected all operations will be on that pointer until the other pointer is selected.

The following instructions are used for pointer operations:

SELECT POINTER P

After giving this command, all pointer operations will be on pointer P until pointer Q is selected.

SELECT POINTER Q

After giving this command, all pointer operations will be on pointer Q until pointer P is selected.

LOAD CONSTANT N

Loads a constant character (N) into the pointer position of the C register. The pointer is decremented by one position.

IF POINTER "P" OR "Q"=N (If pointer at N)
A conditional branch instruction follows this instruction.
The carry FF is set if the selected pointer is positioned at digit N. ($N=\varnothing$ 13) The pointer used is the pointer that was last selected.

IF $P+Q$ (If pointer $P=$ pointer Q)
A conditional branch, jump or return follows this instruction. If pointer P is equal to pointer Q set the carry FF.

				modrt		StK No				
					DETAILED DE	RIP	N CPU			
				ar	TOM REVERE		date	4/81		
178	P No	aprioved	date	APPD			SMEET NO	26	Of	42
	livisions			supiestots			Dwe no	A-1L F5-9002-1		

-320-2780 FFORMERLY 0-700024
$P T=N$
Sets selected pointer to $N(N=\emptyset-13)$, uses last pointer selected. DEC PT

Decrements pointer, if at digit \emptyset the pointer will wrap around to digit 13. Use last pointer selected.

INC PT
Increments pointer, if at digit 13 the pointer will wrap around to digit \emptyset. Uses last pointer selected.
XIV. USE OF POINTERS FOR TIME ENABLE

The pointer time enable field is pointer $P \rightarrow$ pointer Q. POINTER P THROUGH POINTER Q
(A) If pointer Q is to the left of pointer P, then time enable is from pointer P through pointer Q with the carry out being fron pointer Q position.
(B) If pointer P is to the left of pointer Q, then the time enable is between pointer P and the left end of the register; (digit 13) with the carry out from the left end of the register.
(C) If pointers are at the same position, pointer operation is on that. digit.

ON POINTER
All operations are performed on digit position indicated by pointer. WORD THRU POINTER

The time enable is from the beginning of word thru the selected pointer with the carry out from the painter position.

XV. STATUS BITS

There is a 14 bit status register that privides 14 bits for the programmer to store additional information.

Bits \varnothing through 7 can be transferred to or from digits \emptyset and 1 of the C-register or the output flag register.

The following instructions will test and manipulate the status bits: SET STATUS N

Causes status bit N to be set to "1".

RESET STATUS N

Causes status bit N to be reset to" \emptyset." CLEAR STATUS

Clears 8 of the 14 status bits. (Bits $\emptyset-7$). IF $S B$ il $=1$ (If status bit N to 1)

A conditional branch, jump or return instruction follows this instruction. The carry FF is set if status bit N is set or equal to 1. ($N \emptyset \rightarrow 13$)
$C \leftrightarrow$ Status
Status bits $\varnothing-7$ are exchanged with the C regieter at digits 0,1 .
$C \rightarrow$ STATUS
Digits \emptyset and 1 of the C register is transferred into status bits $\emptyset-7$ of the status register.

STATUS $\rightarrow C$
Status bits $\emptyset-7$ are moved into digits \emptyset and 1 , of the C register.

				modit.		stk				
				DETAILED DESCRIPTION CPU						
				ar	TOM REVERE		Date $7 / 14 / 81$			
$1{ }^{\text {c }}$	-c No	Appeoved	pate	APPD ${ }^{\circ}$			Shete no	28	Or	42
HR	eivisions			suriesedes			Dwe no	A-1LF 5-9002-1		

XVI. G - REGISTER

There is an 8 bit G-register that communicates with the C-register. Instructions are as follows:
$G \rightarrow C$
G is copies into the current pointer and pointer + 1 locations in the C-register.
$C \geqslant G$
The current pointer and pointer + locations of the C-register are copied into the G-register.

Cま
The current pointer and pointer +1 locations of the C-register are exchanged with the G -register.

NOTE:
If the selecter pointer is positioned at digit 13 , then C register digits \emptyset and 13 will be used.
XVII. DATA STORAGE

The following instructions operate on the data storage registers;
CLEAR DATA REGISTERS
Clears all 16 data storage registers on selected chip. Some chips ignore this instruction, i.e. Sleeper chip.

				MODEI		STK NO					
				DETAILED DESCRIPTION CPU							
				ar	TOM REVERE		Date		/81		
178	-C No	apreovid	Dale	APPD			SHEET	NO	29	Of	42
	Mevisions			Supese des			OWG NO		A-1LF5-9002-1		

9320-2789 IFORMERLY O-700024

C \rightarrow DATA ADDRESS
Digit \emptyset in C-register is used to select a specific data register and digit 1 is used to select a register chip if more than one is used in the system. The register remains selected until unselected by a REGN $\rightarrow C$ or $C \rightarrow$ REGII or another $C \rightarrow$ DATA ADDRESS instruction.

$C \rightarrow$ DATA

The contents of register C are loaded into the data register on the selected chip selected by the previous REGN $\lessgtr C$, $G \rightarrow$ REGN, or C \rightarrow DATA ADDRESS instruction.

DATA $\rightarrow C$

The contents of the data register on the selected chip selected by the previous REGH $>C$, $C>$ REGN or DATA ADDRESS instruction gets loaded into register C.

REGN $7 C$

The contents of data register N on the selected chip are loaded into C. N can be from $1>15$.

C•REGN

The contents of register C are loaded into data register N on the selected chip. N can be from $D \rightarrow 15$.

NOTE:
All of these instructions are at least partially implemented in the data storage chip used, and are therefore subject to change or other uses without affecting the NUT CPU chip.
XVIII. INPUTS, OUTPUTS AND PERIPHERALS

The NUT CPU has capability for seventeen flag inputs and eight flag outputs to allow increased interfacing to switches, lamp drivers, etc.

In addition, there is a PWO output that tells the other chips to wakeup or go to sleep.

There is also capability to turn over control to 16 different 'smart' peripherals.

FLAG IIIPUT
There is a single Flag Input line whose state during each of the 14 digit times represent one of the 14 Input Flags. This line is tested during the "IF FLAG iN" instruction and result is true, if the FI line is LOW during and $\emptyset 1$ clock of the digit time N. The flags are not stored by the hardware. The flag in line is pulled high by the CPU when open.

A flag input can be realized by making connection between one or more of the seven column lines of the keyboard scanner (KCO-KC5) and the FLGIN (FI) port, or with a switch, a transmission gate or a negative pulse at the appropriate digit time between digits $0-13$. The input flags are

				moott		stik no			
					DETAILED D	RIPTION CPU			
					TOM REVERE	dare	14/8		
17	-¢	arrovid	pati	arro		shett no	31	or	42
	intions			suriestets		dwe no	A-1LF 5-9002-1		

HEWLETT-PACKARD CO.

not stored and cannot be reset from the CPU. The flag resets as soon as the input stimulus ceases. The true states of the KCO-5 lines and F1 input port are " $0:$:" or low. During PWOF KCD-6 are all in the low state.

FLAG OUTPUTS

A Flag output can be realized by controlling a transister driver, transmission gate, etc. between one or more of the seven column lines of the keyboard scanner KCD-KC6 and the FLGOUT (FO) Port.

The peripheral being driven has to look for the output flag during the time the appropriate column line is being scanned. If all flags are either high or low the flag output line will be either high or low for the entire word time.

XIX INSTRUCTIONS

FOXSB
Exchange flag out register with bits $0-7$ or status register. $\mathrm{FO} \rightarrow \mathrm{SB}$

Copy flag out register into bits 0-7 of status register. SB \rightarrow FO

Copy bits 0-7 of status register into flag out register.

PWO OUTPUT

The PWO output is a control to tell the chips in the system to power on or off. When PWO is high, the chips connected to the PWO line are on.

HEWLETT-PACKARD CO.

When PWO is low, the external chips are off, the CPU clocks turn off and Sync pulses stop. (If in the FFLY MODE then a one bit pulse will be output at every T55 time on the Sync line, if in the NUT mode the Sync output will equal the DPVO Input. If the PNO line is forced low during any \emptyset pulse the chip will imnediately power off, all clocks will stop, and the timing circuits will reset to their off status. This feature is provided to allow a hardware shut down.

PWO LINE:
PWOF (Power Off)
The end of the next T53 time after this instruction marks the time when PWO goes low and turns off the external chips, as well as the greater portion of the CPU. The keyboard lines (KC \varnothing-KC6) all go to their true state. NOTE: That the clocks stop at T55 time. Refer to Fig. 2.

PWOF is a two byte instruction the second byte is sync will be present during the second byte.

DPWO INPUT

Holding this line high allows the processor to wake up (assumes a PWOF was previously issued) in response to any key closure of the pulling of ISA line high.

If DPWO is low (and the CPU has received a PWOF instruction) the only way to start operation again is to bring POR input low,

or ISA high; this will cause PWO to go high at the next T54 time. Note the clocks start at T52. Refer to Fig. 2.

If the DPWO line goes low at any time, then the carry FF will be set during the next work time.

POR INPUT

If the POR input goes low (when the CPU has previously powered down) the CPU wakes up, setting the PWO line high at the next T54 time and waking up the other chips. The system powers up at ROM location and does a wake routine. (Operation is the same for DPWO low). Note that the clock start at T52 time.

The POR input is also a key row line with row code =1 1 DD.

NUT POWER OFF

VC I

VO
(TYPICAL)

HEWLETT－PACKARD CO．
EB

07 LSヨ」 ヨ00W＂InN．dn ヨX甘M

HEWLETT-PACKARD CO.

HARDWARE SHUT DOWN TIMING

The states of Sync and VCI after shut down are dependent on the DPWO Input level.

				mODR.		SIK No				
					DETAILED DE	RIP	N CPU			
				ar	TOM REVERE		DAIt			
			Dalt	APrD			Smill No	37	-	42
17	- ${ }^{\text {c No }}$	aproved					Duc No			
	civisions							A-11F 5-9002-1		

HEWLETT-PACKARD CO.

VCI
VCO
The VCI and VCO PINS are provided to interface with a power supply. When the CPU wishes to wake up it will pull the VCI line HIGH. When in NUT MODE the wake up will then wait until VCO is pulled LOW by the power supply circuitry indicating that VCC has reached the desired level. In FFLY mode this function is bypassed, however, VCI will still be active.

XX.MANAGEMENT OF SMART PERIPHERALS

A smart peripheral will be a chip with a board processing capability. This chip may look like more ROM to the CPU, and it may be given control with a subroutine call from the CPU. The subroutine may consist of instructions, but will also have a PERI (N) instruction which caused the SYNC pulses to cease and the CPU to ignore further instructions. The selected peripheral (N) will decode further instructions as well as manipulate data for further operations. Note the contents of the "C" register is continuously output on the data line except during a DATA C instruction.

Control may be returned to the CPU with any instruction that has BIT $\varnothing=1$ which will reinstate the SYNC pulse at the next work time.

PERIPHERAL INSTRUCTIONS:

19	10	17	16	15	14	13	12	11
N	N	N	N	I	10			

PERI N ($\mathrm{N}=0-15$)
Selects peripheral (N) for control, manipulation and/or processing of data.

				moins.		Stix				
				TOM REVERE			N CPU			
							oate $7 / 14 / 81$			
11	ic no	aprroved	Dalt	apro			SHEt No	40	or	42
	atisions			supiestots			owg no	A-1LF5-9002-1		

If PFLAGN=1 If peripheral flag $N=1 \quad(N=D-15)$

19	18	17	16	15	14	13	12	11	10
N	N	N	N	0	0	0	0	1	1

Each peripheral may have up to 16 flags that can be tested and multiplexed onto the ISA line at time TO. The CPU test this flag and sets the carry FF accordingly. This instruction returns control to the CPU.

LOAD CHARACTER

This instruction is used to transmit 8 bit characters (such as ASCII) to the selected peripheral.

If $10=1$ control is returned to the CPU.

DATA (Hp)C

19	16	15	14	13	12	11	10
N		1	1	1	0	1	0

The data line is read into the C register. N may be used to select a register on the peripheral, or any other data storage chip.

If $10=1$ control is returned to the CPU.

HEWLETT-PACKARD CO.

XXI. IEST FACILITIES

There is a "Test input provided on the CPU that provides two functions:
(A) If "Test" is driven high when POR is low, then an external clock can drive the CPU through the LC inputs.
(B) If "Test" is driven high when POR is driven high/low all output pins are put in tri-state mode. This allows a test CPU to be put in parallel with the tested CPU without opening lines.

HEWLETT-PACKARD CO.

NOTE: This page provides a running history of changes for a multi-page drawing which cannot conveniently be reissued completely after each change. When making a change, list for each page all before-and-after numbers (within reason; use judgement, and use "extensive" revision note if loss of past history is tolerable, or retype complete page) and associate with each a symbol made up of the change letter and a serial subscript to appear here and on the page involved (there enclosed in a circle, triangle, or other attention-getting outline).

suoorroder Norm Johnson 6-5.79

I. GENERAL DESCRIPTION

This integrated circuit is an LSI CMOS LCD driver. It will drive six digits of display, each consisting of a 3×6 matrix of segments (see fig̣ure 1). Thirty-nine of its 57 pads are outputs for display driving. It is designed to interface directly with the HP-41Cprocessor. It may be daisy chained to configure any length display, although the HP-41C is defined with a 12 character, 2 chip display system.

Broken into blocks (see figure 2), the display driver consists of control and timing, instruction decode, internal registers, a character decode ROM, display timing, and display outputs. $\emptyset 1, \varnothing 2$, SYNC, and PWO provide clocks and synchronization. Instructions are issued from ROM on the ISA line, and data to and from the reaisters is transferred via the DATA, DATA IN and DATA OUT lines. There are four internal reaisters; the A and B registers are organized in a 6×4 bit array, the C and E reaisters in a 6×1 array. The flip-flops making up the registers are pseudo nonvolatile cells which allow retention of data when clocks are stopped. The character ROM is addressed by seven bits which oriainate from data stored in the registers. The RO! 1 outputs segment information which is stored in three bit recirculatina latches connected to the column drivers. Display timing is initialized by power on and instruction sequences and produces the appropriate drive waveforms which, when aated with all possible seg̣ment data, create the HP-41C character set (see figure 3). Annunciators are controlled independently of the other display characters. Note that this circuit is designed expressly to drive the HP-41C display; to make use of its annunciator and punctuation control, a non HP-41C display must be laid out correctly.

An internal oscillator circuit, which requires an external capacitor allows display while the rest of the system is dormant. The oscillator, in conjunction with internal status and a mask programable delay, controls the state of the DPWO line which is used in controlling the system power modes. Two features included on the chin but not used by the HP-41C system

are a voltage divider to derive the drive voltages for the LCD and a temperature compensation circuit that adjusts the duty cycle through pulse width modulation of display outputs and which requires three external components.
II.

SIGNALS
$2.1 \quad \emptyset 1$ and $\emptyset 2$ are non-overlapping, positive clock inputs. See the electrical specification for timing requirements. At 6 volts, this IC will operate typically from 400 KHz to 10 KHz .
2.2 PWO - The rising edge and high state of PWO initializes the master timing and enables the internal clocks, respectively, thus synchronizing the display driver with the rest of the system. The leading edge must occur during T54 before 01 but after 02 . See figure 4a. The low state of PWO resets the master timing and gates off the internal clocks. If internal status is appropriate, it turns on the "light sleep" oscillator. The falling edge of PWO may occur asynchronously as long as it occurs a minimum of two word times after the last display instruction.
2.3 SYNC is a 10 bit positive pulse expected from the rising edge of T44 to the falling edge of T53. See Figure 4a. Sync gates the ISA line and its absence causes a NOP to be decoded. This signal is used by the HP-4IC chip set to discriminate a one byte instruction from a two byte instruction in which the second byte is additional bits of address needed to complete a long jump.
2.4 DATA is a bidirectional system line over which the majority of data transfer takes place. In the HP-4IC system, the CPU drives the data line by outputting its C -register at all times except

those word times when a type $\mathrm{XX7O}_{8}$ instruction is in effect. During $\mathrm{XX70}_{8}$ instructions some enabled device-a data storage chip (Pam) display driver, card reader chip, etc. - will take control of the data line and output data appropriate to the $\times \times 70_{8}$ instruction issued. This data is written into the CPU's C-register.

On the display driver, DATA is connected to the system data line and is used to input its peripheral address (see figure 4b) and to compare against two other lines-DATA IN and DATA OUT-to determine its position in a string of display drivers. On the display driver, DATA has no output capability.
2.5 DATA IN and DATA OUT are bidirectional lines that the display driver uses to transmit and receive data. The display driver responds to 37 instructions, 33 of which cause the input.or output of data. This data is either buffered in or read from the internal registers. The 33 read/write instruction specify the direction of information flow which determines DATA IN and DATA OUT as input or output pins. The internal registers have DATA IN connected to their left end and DATA OUT to their right. Left shifted reads and writes occur with DATA IN operating as an output and DATA OUT operating as an input. Right shifted reads and writes cause DATA OUT to be an output and DATA IN to be an input.

Display drivers are cascadable as one would cascade shift registers. The normal convention is to connect DATA OUT of the preceeding stage to DATA IN of the succeeding stage. The left-most chip has its DATA IN connected to the DATA OUT of the right-most chip which are both connected to DATA. Figure 5 shows three possible configurations. Besides establishing the necessary data link, interconnection of DATA to DATA IN/OUT sets internal status which controls output onto the system DATA line and enables the internal oscillator.

"I am first" (IAF) is high when DATA and DATA IN are connected together; "I am last" (IAL) is high when DATA and DATA OUT are connected together. The start up (PWO) sequence presets IAF and IAL high; any exclusive or condition on the respective pairs of lines clears the status bits low. The compare is synchronous and inhibited upon reception of the first read instruction. IAF high, with appropriate time out status, enables the internal oscillator. Note, for proper operation, some non-zero data should be placed on DATA. Otherwise, in multichip systems IAL and IAF may not clear correctly which would cause incorrect operation of the internal oscillator and loss of row synchronization.
2.6 ISA-The display driver reads 10 bits serially, least significant bit first, from the ISA line during SYNC time. The display driver responds to 37 instructions:
2.6.1. DISPLAY OFF $\left(1340_{g}\right)$-This instruction resets the display status flip-flop to zero. With DSTAT zero, all display outputs are driven to ground, a non-destructive DC off condition for the LCD. If DSTAT is set to one, then all rows and columns free run with the appropriate 4 voltage waveforms (V3V, V2V, V1V and GND).
2.6.2 DISPLAY TOGGLE $\left(\mathrm{I}_{4} \mathrm{O}_{8}\right)$-DTOG togales DSTAT: If DSTAT is hiọh, DTOG will toggle it low; if DSTAT is low DTOG will toggle it high.
2.6.3 COMPENSATION INSTRUCTION (17748)-CI prompts the temperature compensation circuitry to beẹin a compensation cycle. With no external components present CI will reinitialize the duty cycle to 100%. If TC1 and TC2 are connected for internal compensation then CI should be issued after each block of display instructions and should not be

				mooti	stx no.	ILA4-			
				DISPLAY DRIVER - DETAILED DESCRIPTION					
				or Hank Koerner		part 11-20-78			
iti	. $\mathrm{c}^{\text {no }}$	amoveo	OARt	Apro		sheet no	5	or 23	

followed by a display instruction for at least 24 word times. This instruction is not tested or guaranteed.
2.6.4 C+PFAD (17608) —PFAD causes the display driver to gate in the first 2 digits appearing on DATA immediately following the issuance of the instruction (see figure 4b). It treats these 8 bits as chip address, least significant bit first. If the correct address is issued at this time (FD_{16}) the chip enabled flip-flop is set high, otherwise CE is set low. All except the above instructions are disabled when CE is low.
2.6.5 WRITE ANNUNCIATORS (13608) - WA causes the first 12 bits, bit time 0 through bit time 11, appearing on DATA IN to be right shifted through the E-register and output by DATA OUT if IAL is low, and into the bit bucket if IAL is high (see figure 4c). There are 6 bits in the E register, each corresponding to an annunciator segment on the display. Storing ones in the E-register causes the annunciators to be activated.
2.6.6 READ AINUNCIATORS ($57 \mathrm{O}_{8}$)—During the same window as WA, RA causes information stored in the E-register to be right shifted, output by DATA OUT irregardless if IAL, and to input data appearing at DATA IN. Besides driving DATA OUT independently of IAL, RA differs from ! $W A$ in the way the HP-4IC CPU interprets the instruction. The CPU tri-states its data line and buffers whatever it sees on data in its C -register. When connected in one or two chip configurations (see figure 5), RA performs a nondestructive read of the E-register.

				noot			
				DISPLAY DRIVER - DETAILED DESCRIPTION			
				or Hank Koerner		-anti 11-20-78	
:!	.c. no	Aproveo	oart	$\triangle P D O$			of 23
		,				owe. no. A-1LA4-4001-2	

2.6.7 The other 31 read/write instructions address the reaisters and transfer data to them in a number of different modes. Right shifted operations cause data flow from DATA IN to DATA OUT; left shifted operations are the reverse of right shifted instructions. During writes, $\mathrm{XX5O}_{8}$ instructions, the output pin will be driven if the corresponding status (IAF for DATA IN, IAL for DATA OUT) is low, otherwise the output is tri-stated. During reads, $\mathrm{XX7O}_{8}$ instructions (excluding 570_{8}), the output pin is driven irregardless of status and the chip assumes that any other devices connected to the outputs are tri-stated.

There are four fields during which transfers occur: 4 bit (1 Hexidecimal digit), 8 bits (2 digits), 12 bits (3 digits), 48 bits (12 digits). See figure $4 c$. Each of the fields begins at the rising edae of the valid word time. All 4 bit transfers operate on one register. All eiọht bit transfers operate on the A - and B - registers only. All twelve bit transfers operate on $\mathrm{A}-, \mathrm{B}-$, and $\mathrm{C}-.48$ bit transfers may operate on a single register, on $A-$ and $B-$, or on $A-, B-$, and $C-$. Operations involving all three repeat the $A-, B-, C$ - sequence gating digits to each register as many times as the field permits (as with all transfer instructions). A- and B- can each buffer 6 hexidecimal digits of data, every digit corresponding to a character position which it is displayine. C- has capacity for only six bits; each digit written to C- has the first bit buffered and the other three ignored. When read, C - outputs a bit into the least significant of the appropriate digit. The other three bits are meaningless.

				modit	stx. no	ILA4	-4001	
				DISPLAY DRIVER - DETAILED DESCRIPTION				
				or Hank Koerner		oare 11-20-78		
11	- ${ }^{\text {c }}$	amoveo	DaII	APO		Shet no 7 Of 23		
	evisions			sure stets		ows noA-ILA4-4001-2		

Lumping the $A-, B-$, and C-registers together, a 6×9 bit organization can be assumed. The 6 corresponds to the 6 character positions. Seven of the 9 bits are used to provide ASCII form addresses which are input to the character Rom. The remaining 2 bits comprise the punctuation field; the four punctuations yield no punctuation (00), decimal point period (01), colon (10) and comma (11). See figure 3 for the character set and figure 6 for the data structure. The seven bits are stored in the 4 bits of $A-$, the 2 least significant bits of $B-$, and the one bit of C -. C - is the most significant bit of the address, the least significant bit of A - is the least significant bit of the address. The 3 registers are independently addressable so that when a numerical display is desired, a mask may be set up and the entire display can be changed with one instruction. When displaying alpha, several instructions may be required to update the entire display.

2.7 The WRITE INSTRUCTIONS are:

SRSDA	${ }^{0750} 8$	Store right short (4 bits) in display register A.
SRSOB	${ }_{1050}^{8}$	Store right short in display register B.
SRSDC	${ }_{1150}^{8}$	Store right short in display register C .
SLSDA	${ }_{1250}^{8}$	Store left short in display register A.
SLSDB	${ }^{1350} 8$	Store left short in display register B.
SRSDAB	${ }_{1450}^{8}$	Store right short (8 bits) in display registers A and B.
SDSDAB	${ }_{1550}^{8}$	Store left short in display registers A and B.
SRSDABC	1650_{8}	Store right short (12 bits) in display registers A, B, and C.
SLSDABL	17508	Store left short in display registers A, B, and C.

2.8 The READ INSTRUCTIONS are:

FLLDA	$0^{007)_{8}}$	Fetch left long (48 bits) from display register A.
FLLDB	${ }^{0170} 8$	Fetch left long from display register B.
FLLDC	$\mathrm{O270}_{8}$	Fetch left long from display register C.
FLLDAB	0_{03708}^{8}	Fetch left long from display registers A and B .
FLLDABC	$\mathrm{O470}_{8}$	Fetch left long from display registers A, B, and C.
FLSDC	${ }^{0670} 8$	```Fetch left short (4 bits) from display register C.```
FRSDA	$0^{0770} 8$	Fetch right short from display register A.
FRSDB	1070_{8}	Fetch right short from display register B.
FRSDC	${ }^{1170} 8$	Fetch right short from display register C.
	moot	sm. no. 1LA4-4001
	DISP	Y DRIVER - DETAILED DESCRIPTION
	or Ha	Koerner \quad oare 11-20-78
	APro	shetr no. 9 of 23

FLSDA	1270_{8}	Fetch left short from display register A.
FLSDB	1370_{8}	Fetch left short from display register B.
FRSDAB	1470_{8}	Fetch right short (8 bits) from display registers A and B.
FLSDAB	1570_{8}	Fetch left short from display registers A and B.
FRSDABC	1670_{8}	Fetch right short (12 bits) from display registers A, B, and C.
FLDABC	1770_{8}	Fetch left short from display registers A, B, and C.

2.9 DPWO is a display driver output which when combined with PWO, determines the HP-4IC system power modes. The three modes are:

$\frac{\text { PWO }}{0}$	$\frac{\text { DPWO }}{0}$	POWER MODE
0	1	System dormant. 0
	1	System clocks off; system receptive to wake up. Display on.
1	0	Illegal state.
1	1	System running.

DPWO itself is described by the following truth table:

$\frac{\text { PWO }}{0}$	$\frac{C E}{0}$	$\frac{\text { DSTAT }}{X}$	$\frac{\text { TOUT }}{X}$	$\frac{\text { DPHO }}{1}$
0	1	0	X	0
0	1	1	0	1
0	1	1	1	0
1	X	X	X	1

2.9 CE = Chip enabled flip-flop

DSTAT = Display status flip-flop
TOUT = Time out flip-flon, output of a mask programmable delay.

DP:1O is provided so that an HP-41C system calculator may save energy. This is accomplished by turning off high power clocks when an operation is complete and assuming a standby mode in which the display supplies its own clock throughout the delay period. When the display times out, it stops its onboard oscillator, grounds the display outputs and notifies the rest of the system by dropping DPWO. The mask programmable delay is presently set to approximately 11 minutes. The delay is calculated by the formula Delay $=9 \times 2^{16+n} \times$ internal oscillator period, where $n=0,1,2,3$ (presently $n=3$). The rising edge of DPHO is coincident with PHO.
2.10 OS1 and OS2. These two pins are input and output for the internal oscillator. OSI is the input and should be connected to a capacitor to ground. The frequency varies proportionally to the value of the capacitor. OS2 is a tristate output which during standby mode also serves as the clock input to counters controlling the display timing. The oscillator is enabled only when PWO is low, DP!!O and IAF are high. Otherwise OS1 is high and OS2 is tristated. In the HP-41C system, OSI of the first chip is connected to a capacitor; OS2 of both chips are tied together.
2.11 TC1 and TC2 are inputs to temperature compensation circuitry. In multi-chip system, only the chip doing the compensation needs its TC1 connected; however, all TC2's must be connected together. Components required for the temperature compensation are a trimmer resistor, a thermistor, and a capacitor to ground. See figure 7. Note this circuitry is not tested and not guaranteed to be functional.

				modet	str. no.	1LA	-4001		
				DISPLAY DRIVER - DETAILED DESCRIPTION					
				or Hank Koerner		oate 11-20-78			
17				$\underbrace{n P r o}$		$\text { shete no } 11$		or	23
17	- $0^{\text {No }}$	apriovio	Dati						

Compensation is accomplished through pulse width modulation of the display outputs. The RC time constant of the compensation network is inversely proportional to temperature as are the drive requirements of the LCD.

A compensation instruction (CI) initiates a compensation cycle. The RC network is allowed to charge up. When the voltage on TC2 passes an N-channel threshold, a compensation counter is reset, thus providing an endpoint to the pulse width. At $25^{\circ} \mathrm{C}$, the compensation network should be adjusted to give just 100% duty cycle. When no components are present, a CI will cause 1no\% duty cycle. Every time a read or write instruction is issued, the duty cycle is reset to 100%. Compensation instructions should not be issued with fewer than 24 word times between cycles so that the circuitry will be in a known state.
2.12 $\quad V_{C C}$ and GND !rovide power for the display driver.
2.13 V3V, V2V, and VIV are the voltage levels, in addition to ground, required by the LCD drive scheme.
2.14 ROW 0, ROW 1, and ROW 2 are the row outputs from the display driver. The row outputs are connected to the backplane of the display and their waveforms are constant irregardless of the desired segment pattern. In a multi-chip display, the rows are synchronized, which permits bussing the three rows together (in general, bussing is required because individual row outputs were not designed to drive the loads of large displays).

The LCD is driven by a one-third multiplexed, four level scheme that maximizes the on-to-off RMS voltage ratio which in turn maximizes the contrast ratio of the LCD. See figure 8.

				moom	srr. no. 1LA4-4001				
				DISPLAY DRIVER - DETAILED DESCRIPTION					
				or Hank Koerner		Dari 11-20-78			
				apro.		SHEET NO	12		23
-		amisions	OR	Suressets		owe. no A-1LP4-4001-2			

When the display driver is turned off, either through software control or time out, all display outputs are grounded. Read/ write instructions initiate a display update which occurs the word immediately following the issuance of the instruction. During the update, all display outputs are grounded. The update lasts 30 bit times and at its finish the rows start up. The rows and columns derive their timing from an internally generated SYNC while the system is running and from the internal oscillator while the system is timing out. One frame (half period) of a row waveform lasts 72 periods (mask programmable to 36) of the input signal.

The HP-4IC LCD is a twisted-nematic, field-effect device. Attached to the front glass plate is a polarizer; a polarizer and reflector are attached to the back plate. The directions of polarization are perpendicular. Translucent indium oxide conductors are placed on the front (columns) and back (rows) planes. With no electric field applied across the liquid crystal, a 90° shift in polarization is imparted to the light passing through it. Thus, light will pass through the display and be reflected back with little loss. Applying an electric field greater than the threshold (ideally $V_{\text {th }}=$ VIV) of the LCD causes, roughly speaking, the molecules to orient themselves in parallel with the field, and light passing between the polarizers is absorbed. This appears as a dark region on a light background.

The contrast of the LCD is proportional to the RMS voltage driving it. A four level drive produces a higher RMS voltage than does a three level drive for the same duty cycle.
$2.15 \quad C_{\text {nO }}-C_{55}$. There are 36 column outputs; 6 columns per character times 6 characters per chip. Each column is identified by 2

				moot \quad ste no. 1LA4-4001			
				DISPLAY DRIVER - DETAILED DESCRIPTION			
				or Hank Koerner		Dati 11-20-78	
\%	Pe No	apmoved	DARI	Apro		sheer no 13	or 23
				suresteots			ows vo A-1LA4-4001-2

numbers; the first denotes its character position, the second its column position within the character. For example, C45 refers to the sixth column of the fifth character. A column waveform is determined by the segment pattern. The character " H " has one of column O 's segments on, two of column l's segments on, zero of column 2's segments on, etc. See figure 8 . During a frame an on column will be driven to the on voltage, V3V or VOV, that the corresponding row is not to achieve the greatest differential voltage. The same is true for an off column except the driving voltages are V2V and V1V. See figure 8. Columns $\mathrm{Cx5}$ are dedicated to displaying punctuation on the HP-41C display. Columns $C \times 4$ have the third segment dedicated to displaying annunciators.

III
 IDIOSYNCRACIES

3.1 When clocks are shut off, display counters are reset but segment patterns are left unchanged. It is unlikely that the segment patterns will be synced up with the counters. To refresh the correct synchronization, merely rotate the display 1 character right and then 1 character left after start up.
3.2 When in peripheral mode (DPHO always hig̣h), the oscillator runs regardless of display status.
3.3 If an address outside the 80 possible is issued to the character ROM, then a blank is displayed.
3.4 IAF and IAL are preset high every start up (PNO). If there is more than 1 display driver in a display system and 2 or more have IAF status bits high, then those with IAF high will try to drive the on board oscillator. This "fiṇht" causes row

				MODEL	STk no 1LA4-4001				
				DISPLAY DRIVER - DETAILED DESCRIPTION					
				or Hank Koerner		oate 11-20-78			
IT	ic. No	approved	date	APPD.		sm	$\begin{array}{ll} 114 \\ n & 11 \end{array}$	$\text { or } \quad 23$	
ITR	pe. no	aprioved	Date					(1)	

synchronization to be lost and the display to be garbled. In normal operation, l's and O's will appear on DATA, DATA IN, and DATA OUT causing IAF and IAL to be cleared to their proper states. The compare occurs until the first fetch instruction after which it is inhibited. If no "l's" occur on DATA between start up and standby, then IAF and IAL are never reset properly and the fight will occur.

Note also that if a slow device is connected to the DATA line, it may cause IAF and IAL to change state unexpectedly. If a device grabs hold at the data line and then tristates during part of its allotted time, the same thing may occur.

HEWLETT-PACKARD CO.

FIGURE 1

HEWLETT－PACKARD CO．

ADDRESS	CHARACTER	ADDRESS	CHARACTER
000	［	028	＋
001	A	02 C	\leftarrow
002	F	02D	－
003	ᄃ	02 E	\rightarrow
004	口	02 F	$/$
005	E		
006	F	030	\triangle
007	Ξ	031	1
008	\xrightarrow{H}	032	2
009	I	033	3
00A	J	034	4
OOB	K	035	5
00 C	L	036	E
000	M	037	7
OOE	N	038	昌
OOF	0	039 038	鹵
010	P	03B	7
011	\square	03 C	\angle
012	R	030	＝
013	5	03E	$\stackrel{\rightharpoonup}{*}$
014	T	03 F	T
015	－		
016	\checkmark	100	\vdash
017	W	101	20
018	\％	102	㫛
019	Y	103	E
014	\underline{Z}	104	ロ
018	ᄃ	105	R
01 C	\vdots	106	－
01 E	ォ	108	τ
015	－	109	줒
020		10 B	天
021	${ }_{1}$	10 C	$\stackrel{H}{*}$
022		100	\underline{z}
023	考	10 E	Σ
024	＊	10 F	＜
026	E		
027	1		
028	＜		
02 A	＊		

FIGURE 3

				moot	str．no	1LA4	001		
				DETAILED DESCRIPTION－DISPLAY DRIVER					
				ir Hank Koerner		dart 11－20－78			
I＇1	．c no	aproved	Dart	A $\times 1$		sheet no 17		or	23
		evisions		surestees		ows no A－1LA4－4001－2			

HEWLETT-PACKARD CO.

START UP SEQUENCE - RISING EDGE OF PWO INITIALIZES TIMING, FROM EDGE TO EDGE OF 02 DEFINES 1 BIT TIME.

FIGURE 4A

SYNC AND PERIPHERAL ADDRESS TIMING - SYNC OCCURS FOR 10 BIT TIMES FROM T44 THROUGH T53. PERIPHERAL ADDRESSES OCCUR FROM TO THROUGH T7. THE. ADDRESS FOR THE DIAPLAY DRIVER, FD ${ }_{16}$, IS SHOWN IN THIS EXAMPLE.

FIGURE 4B

HEWLETT-PACKARD CO.

RELATIVE TIMING OF DIFFERENT LENGTH TRANSFERS FOR FETCH AND STORE INSTRUCTIONS

FIGURE 4C

				MODEL	STK NO	1LA4-4001			
				DISPLAY DRIVER - DETAILED DESCRIPTION					
				sr Hank Koerner		OATE 11-20-78			
192	- 6 *	APPROVED	DATE	$\triangle P P O$		SHEET NO 19		Of	23
	EEvISIONS			SUPERSEDES		owG No. $A-1 L A 4-400 T-2$			

HEWLETT-PACKARD CO.

EACH BOX REPRESENTS I STARBURST CHARACTER

INTERCONNECTION FOR 3 DIFFERENT SIZE DISPLAY SYSTEMS

FIGURE 5

| $C D$ | $B 3$ | $B 2$ | $B 1$ | $B D$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A 3$ | $A 2$ | $A 1$ | $A D$ | |
| $X X Y$ | | | | |

X Register C stores the first bit of a digit; it is used for upper/lower half ROM select.
$Y B 3, B 2$ of the B register determine punctuation as follows:

B3 B2
$0 \quad 0 \quad$ No punctuation
01 period or decimal point
10 colon
11 comma

Z Character definition - 1 of 64 possible

ANNUNCIATORS: Annunciators are specified by the contents of the E register. There is 1 annunciator bit per character.

CHARACTER DEFINITION
FIGURE 6

COMPONENT CONNECTION TO TEMPERATURE CONPENSATION CIRCUITRY

FIGURE 7

				modet	STk no	1LA4	4001	
				DISPLAY DRIVER - DETAILED DESCRIPTION				
				or Hank Koerner		date 11-20-78		
LTe	Pe no	approved	date	Appo		smete no.	22	of 23
	Revision			suriestios		owe no A-1LA4-4001-2		

HEWLETT-PACKARD CO.

* 72 WORD TIMES WITH SYSTEM RUNNING ~ 10.6 MS @ 380 KHz 72 INTERNAL OSCILLATOR CYCLES.

HEWLETT-PACKARD CO.

NOTE: This page provides a running history of changes for a multi-page drawing which cannot conveniently be reissued completely after each change. When making a change, list for each page all before-and-after numbers (within reason; use judgement, and use "extensive" revision note if loss of past history is tolerable, or retype complete page) and associate with each a symbol made up of the change letter and a serial subscript to appear here and on the page involved (there enclosed in a circle, triangle, or other attention-getting outline).

I DETAILED DESCRIPTION

The CMOS Data Storage circuit (DS2D) is a modified circuit of the existing part (5061-0493). DS2D contains 16 registers of 56 bits ling. The $\emptyset 1$ and 02 clocks have been inverted to work with the 41C and the 30 's CPU's. The chip address has been increased to 6 bits ling to allow up to 64 chip addresses in the system. B6 is internally programmed to "0" level, while $B 1, B 2, B 3, B 4$ and B5 are brought out for external programming. Internal pulldown circuit has also been added on these pins so that they are normally at a "0" level. To program the bit to a "l", simply connect the pad to $V_{C C}$ (or die attach area).

II DS2D SIGNAL DESCRIPTION
2.1 CLOCKS ($\varnothing 1, \emptyset 2$) - The clocks are active high clocks originated from the CPU. $\varnothing 1$ is the input strobe clock, while $\emptyset 2$ starts the output transfer. A bit time is defined from the leading edge of $\emptyset 2$ to the next leading edge of $\emptyset 2$.
2.2 ISA - Instructions generated by the ROM'S are read in from the ISA line during SUNC time. The chip decodes 5 instrucitons and ignores the rest.

	See Sh	1		model	stk no SEE PAGE 6				
				DETAILED DESCRIPTION - DATA STORAGE					
				br John Wong		date	6-5-78		
tir	PC NO	APPROVED	date	APPD		SHEET NO	- 2	Of	6
	revisions			supersedes		DwG NOA--1LA7-90C?-1			

2.3 SYNC - The SYNC signal is used to synchronize DS2D to the rest of the system. When SYNC is not present, instructions on ISA are ignored.
2.4 DATA - data is a bi-directional line used to transfer data between the processor chip and DS2D. The DATA line remains tri-stated at all times except during read instruction.
2.5 PWO - PWO is a power on indication coming from the CPU. After PWO goes high, DS2D goes active at the falling edge SYNC. As soon as PWO goes low, DS2D stops it's internal clocks and locks out everything to preserve the memory data.
2.6 TEST - TEST is a normally pulled high input for test purpose. When TEST is pulled low (to GND). The DATA line is forced into tri-state through a minimal amount of logic. This prevents bad chips from effecting others.
$2.7 \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~B} 3, \mathrm{~B} 4, \mathrm{~B} 5$ - Externally programmable pins for DS2D chip select. These are internally pulled low.

III INSTRUCTIONS

There are five instrucitons that DS2D responds to.

	See Sh\&et 1			modet	stx no SEE PAGE 6				
				DETAILED DESCRIPTION - DATA STORAGE					
				or John Wong		date 6-5-78			
tir	P ${ }^{\text {c }}$		date	APPD		$\begin{array}{\|l\|} \hline \text { Sheet no } 3 \\ \hline \end{array}$		OF	6
the	revisions			supersedes		dwg no A-1LA7-9002-1			

3.1 $D A D D=C, A 10$ bit address is loaded into the DS2D chip from the DATA line during the next word time. The 10 bits comes in during T_{\emptyset} to T_{9}. Register address of 0 to 15 corresponds to $T_{\emptyset}-T_{3}$ ($T_{\emptyset}=L S B$). Chip address of 0 to 63 corresponds to $T_{4}-T_{9}$ ($\left.T_{4}=L S B\right)$. A DATA word is defined from T_{\emptyset} to $T_{55^{\circ}}$. Once addressed, the chip remembers both addressed, the chip remembers both addresses until a new one is issued or with a new power on. If a chip is not selected, it ignores the following instructions.
3.2 DATA $=C$, The contents of the C register on the CPU is written into the previously addressed register during the next word time ($T_{\emptyset}-T_{55}$) via the DATA line.
3.3 C=DATA, The contents of the previously addressed register is read out into the C register during the next word time.
3.4 REGN=C, Contents of the C-register is written into register N (where $N=0$ to 15) of DS2D during the next word time. N is the 4 MSB's of the instructions, which overwrites the previous register address information. REGN=C is a direct write instruction for the enabled chip.

	See Sh			MODEt	stk no. SEE PAGE 6				
				DETAILED DESCRIPTION - DATA STORAGE					
				or John Wong		date 6-5-78			
Lre	pc no	Approved	date	APpo		Sheet no	4	or	6
	revisions			supr rsedes		ows no A-1LA7-9002-1			

3.5 C=REGN, Contents of register N (where $N=1$ to 15) of DS2D is read out into the C register during the next wordtime. $C=$ REGN is a direct read instruction for the enabled chip, except for register 0 . Note that C=REG \emptyset is equivalent to $\mathrm{C}=$ DATA. Therefore, register 0 can only be addressed indirectly.

	See Sheet 1			model	stk. no SEE PAGE 6			
				DETAILED DESCRIPTION - DATA STORAGE				
				or John Wong		date 6-5-78		
וre	P ${ }^{\text {no }}$	approved	date	Appo		Sheet no 5	5 of	6
	revisions			suprasedes		ows no A-1LA7-900 2-1		

HEWLETT-PACKARD CO.

```
USED ON
1LA7-0001
|..: ...:
1LA7-0002
1LA7-0003
1LA7-0004
1LA7-0005
!!-: %
```


HEWLETT-PACKARD CO.

NOTE: This page provides a running history of changes for a multi-page drawing which cannot conveniently be re-issued completely after each change. When making a change, list for each page all before-and-after numbers (within reason; use judgement, and use "extensive" revision note if loss of past history is tolerable, or retype complete page) and associate with each a symbol made up of the change letter and a serial subscript to appear here and on the page involved (there enclosed in a circle, triangle, or other attention-getting outline).

I. GENERAL DESCRIPTION

This document describes the PIL Interface Chip. The PIL Interface chip communicates directly to the 41C I/0 bus and to the PIL loop through several discrete components and 2 pulse transformers. The PIL Interface Chip, discrete components, and 2 4IC ROMs are packaged in a PC hybrid. The PC hybrid, pulse transformers, and mechanical connectors are packaged in a 41C plug-in module.

The PIL Interface Chip consists of 2 major portions, the 4IC interface and the PIL interface:

PIL Interface Chip

41C I/O

The PIL interface portion is very similar to the PIL interface for the 85A and General Purpose interfaces as described in "PIL Chip ERS" by Dave Sweetser, June 1978. This document will describe the 4IC interface portion and any differences in the PIL interface from the above mentioned ERS. Therefore, it is very important that the reader first read and understand that ERS.
II. CHIP ARCHITECTURE

Shown in Figure 1, is a block diagram of the 4IC PIL interface portion. The function of the major blocks will be described later. Communication with PIL is done by reading and writing to 1 of 8 PIL registers. These Registers are defined in FIGURE 2 and differences from the GP chip.

register difinition are noted. Note that some registers are read or write only.

				modet	stix no				
				41C PIL INTERFACE DETAILED DESCRIPTION					
				or. CARL LANDSNESS		date 8-2			
2 ta	Pe no	apprew.	date	APPo		shett no	3	or	9

HEWLETT-PACKARD CO.
FIGURE 2: PIL REGISTERS

NOTE: SLRDY and CLIFCR are self-resetting bits (resetting occurs 1-2 uSec after end of write pulse). Reading ROR/W returns the value of CLIFCR (which is always a logic 0 if reading occurs 2 uSec after any write of a 1 to the bit).

CO	IR	C13	C12	C11	IFCR	SRQR	FRAV	FRNS	ORAV	EAD
REGISTERS	RIW	CO3	CO2	CO1						

C13-C11 - Input Control bits from received frame. IFCR - Interface Clear Received. FRNS - Frame Received Not as SRQR - Service Request Received. Sent. FRAV - Frame Available.

ORAV - Output Register Available FLGENB - Flag Enable. Writing a \emptyset to FLGENB disables (tri-states) the FI line.
C03-C01 - Output Control bits to be transmitted.

DATA R2R	D18	DI7	DI6	DI5	DI4	DI3	DI2	DII	READ
INPUT-OUTPUT $_{\text {R2W }}$	D08	D07	D06	D05	D04	D03	D02	D01	WRITE

D18-D11 - Input Data bits from received frame.
D08-DO1 - Output Data bits to be transmitted.
PARALLEL
POLL
REGISTER

R3R/W

W OSCDIS \begin{tabular}{|l|l|}
\hline AUTO

IDY*

 PPIST

\& PPEN \& PPSENSE \& P3

\hline
\end{tabular} ${ }^{-}$

LOOP ADDRESS REGISTER

R4R/W

R5R/W \square READ/WRITE SCRATCHPAD
REGISTER

SCRATCHPAD REGISTER

SCRATCHPAD REGISTER*

R6R/W \square READ/WRITE

\square READ/WRITE

* Denotes differences from 85A/GP chip.

				modet	stk. no				
				41C PIL INTERFACE DETAILED DESCRIPTION					
				or. CARL LANDSNESS		date 8-21-80			
17 H	ic no	Approwr.	Dati	APPD		sheet no	5	or	9
	Revis			:estots		owe no A-1LB6-4001-2			

HEWLETT-PACKARD CO.

III. INSTRUCTIONS

The following instructions are used to communicate with the PIL interface. Refer to NUT CPU description for 41C instruction formats and timing.

INSTRUCTION	$\begin{aligned} & \text { 41C CODE } \\ & \text { I9 IO } \end{aligned}$	MASM MNEUMONIC
$C \longrightarrow P I L(N)$	INNN000000	PIL $=\mathrm{C}$ M1
CHAR \rightarrow PIL (N)	ONNN100100 CCCCCCCCO1	$\begin{array}{ll} \mathrm{HPL}=\mathrm{CH} & \mathrm{M} 1 \\ \mathrm{CH}= & \mathrm{M} 2 \end{array}$
$\operatorname{PIL}(N) \longrightarrow C$	$\begin{aligned} & \text { 1NNN100100 } \\ & 0000111010 \\ & 0000000011 \end{aligned}$	C=PIL M1
IFCR?	0101101100	1FCR?
SRQR?	1010101100	SRQR?
FRAV?	0100101100	FRAV?
FRNS?	1001101100	FRNS?
ORAV?	0011101100	ORAV?

$\mathrm{C} \rightarrow \mathrm{PIL}(\mathrm{N})$

A one word CPU instruction $\mathrm{C} \rightarrow$ PIL(N) will transfer digits 0 and 1 of the 41C register to one of the eight 8 bit PIL registers selected by N.
$\mathrm{CHAR} \rightarrow \mathrm{PIL}(\mathrm{N})$
A two word instruction CHAR \rightarrow PIL (N) transfers an 8 bit constant directly
from ROM to one of the eight PIL registers selected by N. The first instruction word is a CPU PERI (N) instruction where PIL registers are treated as 8 separate peripherals out of a possible 16 . The second

HEWLETT-PACKARD CO.

instruction word contains the 8 bit constant in bits I2-I9 (I2=LSB) and returns decode control to CPU (IO=1).

PIL $(N) \rightarrow C$

A three word instruction $\operatorname{PIL}(N) \rightarrow C$ reads the contents of one of eight PIL registers selected by N into digits 0 and 1 of 41C C register. The remainder of the C register is filled with zeros. The first instruction word is a CPU PERI(N) instruction where N selects one of eight PIL registers and passes decode control to PIL. The second instruction word is a CPU DATA \rightarrow C instruction which reads the data from the selected register into C. The third instruction word returns decode control to the CPU. The third instruction word is only needed because the 41C CPU cannot presently execute a DATA $\rightarrow C$ and RETURN (IO=1) as described in CPU description.

FLAG TESTS

The five PIL interruptbits (IFCR, SRQR, FRAV, FRNS, and ORAV) located in RIR (Register 1 Read) are multiplexed onto the FLGIN line during digit times 6-10 to allow interrogation by CPU instructions:

IFCR? sets carry if "Interface Clear Received" = 1 (Flag 6)
SRQR? sets carry if "Service Request Received" = 1 (Flag 7)
FRAV? sets carry if "Frame Available" = 1 (Flag 8)
FRNS? sets carry if "Frame Received Not as Sent" = 1 (Flag 9)
ORAV? sets carry if "Output Register Available" = 1 (Flag 10)
These flags may be disabled (FLGIN line tri-stated) by writing a \emptyset to FLGENB (LSB of RIW).

IV. AUTOIDY MODE

If the 41C is in light sleep (SYNC• $\overline{\mathrm{PWO}}=1$) and if $C A=1$ and if AUTOIDY $=1$ (bit 6 of R3), then the PIL chip hardware will generate an IDY frame every 10 mS to allow loop devices to insert a service request. No handshaking is performed. If SRQR goes true, ISA will be pulled high. This will wake-up the CPU and a serial or parallel poll may then be performed. The 8 data bits of the automatically generated IDY are undefined, so it should not be used for a parallel poll.

If $41 C$ is in light sleep and $C A=0$ and $A U T O I D Y=1$, the PIL chip will remain running, but it will not generate IDY frames. However, it may still receive and transmit frames. If IFCR or FRAV or FRNS go true, ISA will be pulled high waking up the 41C CPU.

AUTOIDY (bit 6 of R3) is not affected by MCL. However, AUTOIDY will power on low when power is first applied to the chip.

V. CHIP INITIALIZATION

This section replaces section 17 (Chip Initialization) in "PIL CHIP ERS" by Dave Sweetser.

The 41C PIL chip provides for several levels of initialization. Complete chip initialization occurs when an internal signal RESET goes true when:

1) 41 C is in deep sleep ($\overline{\mathrm{PWO}} \cdot \overline{\mathrm{SYNC}}=1$), or
2) 41 C is in light sleep ($\overline{\mathrm{PWO}} \cdot \mathrm{SYNC}=1$) and PIL chip is not in AUTOIDY mode (bit 6 of R3=0), Boolean equivalent: RESET=PWO-SYNC+PWO-AUTOIDV.

				moot	stx no			
				41 C PIL INTERFACE DETAILED DESCRIPTION				
				or CARL LANDSNESS	date 8-21-80			
$1{ }^{12}$	ic no	APrec.	darit	Appo	sheer no	8	or	9

HEWLETT-PACKARD CO.

RESET provides the following initialization:

1) Initializes 41C timing and decode logic.
2) Turns off the PIL oscillator by resetting the oscillator enable signal, OSCEN, to \emptyset.
3) Resetting OSCEN also forces MCL (LSB of $\mathrm{R} \emptyset$) to be set to 1 . This signal resets all the PIL Interface section logic.

MCL provides the following initialization:

1) IFCR $=S R Q R=F R N S=F R A V=0$
2) $O R A V=1$
3) FLGENB bit in R1W reset to \emptyset.
4) The SC (System Controller) bit in RO is set to the state defined by external input SCTL. Input is internally pulled low.
5) The internal latch RTSR is reset.
6) Driver and Acceptor PLA's set to DIDS and AIDS.

Shown below is a state diagram relating RESET, MCL, and OSCEN. The use of three states permits an orderly transition after power-on, i.e., first the oscillator is enabled and then MCL is set to \emptyset to permit

HEWLETT-PACKARD CO.

NOTE: This page provides a running history of changes for a multi-page drawing which cannot conveniently be reissued completely after each change. When making a change, list for each page all before-and-after numbers (within reason; use judgement, and use "extensive" revision note if loss of past history is tolerable, or retype complete page) and associate with each a symbol made up of the change letter and a serial subscript to appear here and on the page involved (there enclosed in a circle, triangle, or other attention-getting outline).

HEWLETT-PACKARD CO.
I. ABSOLUTE MAXIMUM RATINGS:
1.1 SUPPLY VOLTAGE $V_{C C}(G N D=V) \ldots$.
1.2 STORAGE TEMPERATURE $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
1.3 OPERATING TEMPERATURE $0^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
1.4 HUMIDITY ... 0 to 90%
1.5 VOLTAGE AT ANY INPUT OR OUTPUT PIN GND -0.3 V to $\mathrm{V}_{\text {CC }}{ }^{+0.3 \mathrm{~V}}$ 1.6 INPUT TRANSIENT PROTECTION STANDARD 500 VOLTS (SEE FIG. 1)
1.7 INPUT TRANSIENT PROTECTION ON RXDO,RXDI,TXDO,TXDI.... 5000 VOLTS
II. OPERATING CONDITIONS: $0^{\circ} \mathrm{C} \leq T_{A} \leq 45^{\circ} \mathrm{C}$

HEWLETT-PACKARD CO.

HEWLETT-PACKARD CO.
hp

SYMBOL	PARAMETER	MIN.	TYP. MAX.	UNIT	COMMENT
TRXHD	$\begin{aligned} & \text { RXDO, RXD1 } \\ & \text { HOLD TIME } \end{aligned}$	50		nS	AFTER TRAILING EDGE OF TCLK. SEE FIG. 4
TRXLO	RXDO,RXD1 LOW TIME BETWEEN PULSES	1.3		us	
TRXOV	RXDO,RXDI OVERLAP TIME	0	300	nS	
TTXPW	TXDO,TXD1 PULSE WIDTH	950	$\underset{O R}{2 \times T L C} 2 \times T C L K$	nS	MEASURED WITH 470pF LOAD. SEE FIG. 5
TTXTR	$\begin{aligned} & \text { TXDD,TXD1 } \\ & \text { TRANSITION TIME } \end{aligned}$		120	nS	MEASURED WITH 470pF LOAD. SEE FIG. 5
TTXOV	TXDQ,TXD1 OVERLAP TIME	0	120	ns	MEASURED WITH 470pF LOAD. SEE FIG. 5

III. SUMMARY OF SIGNALS:

SIGNAL	1/0	DESCRIPTION
flgin	OUT	PULLS LOW DURING FIRST 3 BIT TIMES AND PULLS HIGH DURING LAST bit time of digits 6-10 If Pil flags are set and flags are enabled (PRoGrammable). OTHERWISE this Line is tri-stated. It is ALWAYS TRI-STATED DURING $\emptyset 2$.
$V_{C C}$	IN	POSITIVE VOLTAGE SUPPLY (SUBSTRATE).
GND	IN	NEGATIVE VOLTAGE SUPPLY.
LC1, LC2	I/0	PINS FOR PARALLEL LC CONNECTION FOR PIL 2 MHz OSCILLATOR. OSCILLATOR IS UNDER PROGRAM CONTROL.
TSTCLK	IN	allows external clock to be fed to chip in lieu of 2 MHz OSCILLATOR. INTERNALLY PULLED HIGH. WHEN USED, LC2 MUST BE PULLED high and external lC disconnected.
RXDO, RXD1	IN	RECEIVER INPUTS FROM RECEIVER TRANSFORMERS. SCHMITT TRIGGER BUFfers are used to provide noise immunity.
TXDQ, TXD1	OUT	TRANSMITTER OUTPUTS TO DRIVER TRANSFORMERS.
SCTL	IN	WHEN TIED LOW, CHIP WAKES UP AS SYSTEM CONTROLLER. INTERNALLY PULLED LOW.

IV. IC TEST CONDITIONS:

The preceeding pages show specifications for the 41C chips for an operating range of 0 to 45 degrees C. To insure proper operations at these temperatures, $V_{C C}$ should be adjusted to compensate for room temperature testing as well as providing enough guard band on the part during wafer and package tests for both high and low V_{CC}.

ER. PT. 1	$V C C=5.5 \mathrm{~V}$	$V C C=5.5 \mathrm{~V}$	VCC $=5.7 \mathrm{~V}$
MIN. V. MAX F	41C FREQ $=380 \mathrm{~K}$	41C FREQ=380K	41C FREQ=380K
	PIL FREQ $=2.2 \mathrm{M}$	PIL FREQ $=2.2 \mathrm{M}$	PIL FREQ=2.2M
OPER. PT. 2	$\mathrm{VCC}=7.2 \mathrm{~V}$	$\mathrm{VCC}=7.1 \mathrm{~V}$	$\mathrm{VCC}=7.0 \mathrm{~V}$
MAX.V, MIN.F	41C FREQ $=340 \mathrm{~K}$	41C FREQ $=340 \mathrm{~K}$	41C FREQ $=340 \mathrm{~K}$
	PIL FREQ $=1.8 \mathrm{M}$	PIL FREQ $=1.9 \mathrm{M}$	PIL FREQ $=1.8 \mathrm{M}$

The above table shows the different test conditions for the wafer test

				mODE		s5k no 1LB6-4001				
				1LB6 ELECTRICAL SPECIFICATION						
				or CARL LANDSNESS			date 11-27-79			
Ita	is no	aprooved		APPD			shet no	7	Of	14
		Revisions		suprest.			owe NA-1LB6-4031-1			

HEWLETT-PACKARD CO.
package test, and thepart spec. (QA) test. All test programs should do functional tests on the part for both operating points. The table below shows a detailed breakdown of recommended values for these operating points, and a general guide for DC parametric test guard banding.

PARA	WAFER	PKG	QA	WAFER	PKG	QA

LOW VOLTAGE
HIGH VOLTAGE

VHRX	4.1	4.1	4.2	4.1	4.1	4.2
VLRX	1.25	1.25	1.25	1.25	1.25	1.25
VCC	5.5	5.5	5.7	7.2	7.1	7.0
VIH	4.25	4.25	4.45	5.95	5.85	5.75
VIL	1.25	1.25	1.25	1.25	1.25	1.25
VOH	4.5	4.5	4.7	6.0	6.0	6.0
VOL	$1.0 \quad 1.0$		1.0	1.0	1.0	1.0
	HIGH FREQUENCY		LOW FREQUENCY			
TP	2630	2630	2630	2950	2950	2950
TPW1	500	500	500	750	750	750
TPW2	500	500	500	750	750	750
TCD	900	900	900	1200	1200	1200
TDV	1000	1000	1000	1000	1000	1000
TSU	550	550	550	550	550	550
TCLK	450	450	450	550	550	550
		TRIC			CONDITIONS	
ICCOP	2.0	2.25	2.5		.5V, FREQ $=$ MAX	
ICCST	0.8 uA	0.9uA	14 A		.ov, STATIC	
ILIN	90nA	100 nA	--		OV, VIN=GND and VCC	
ILIO	.8uA	.9uA	14 A		.5V, VIN=GND and VCC	
ICCTR	2.8	3.15	3.5 mA		.5V FREQ=MAX	
			moot		1LB6. 4001	
			1LB6 ELEC	AL SPE	ATION	
			or CARL LAND		oare 11-27-79	
ic no	aproveo	date	apoo		shetr no 8 or	14
	Revision		sur		owe no A-1LB6-4031-1	

					stk no. 1LB6-4001				
				$1 \mathrm{LB6}$ ELECTRICAL SPECIFICATION					
				${ }^{\text {Br }}$ CARI_ANDSNESS		date 11-27-79			
178	PC NO	approved	\because	APPO		Shett no	9	Of	14
	Revisions			su -s		ows no $A-1 L B 6=4001-1$			

HEWLETT-PACKARD CO.

GATE PROTECTION TEST CIRCUIT

FIGURE 1

HEWLETT-PACKARD CO.

HEWLETT-PACKARD CO.

NUT SYSTEM TIMING
(Figure 3)

	SEE	SHEET T		moot	str no.	1LB6-			
				ILB6 ELECTRICAL SPECIFICATIONS					
				or CARL LANDSNESS		Dars 11-27-79			
17	- ${ }^{\text {no }}$	amovid	"	Apro		shetr no	12	or	14

HEWLETT-PACKARD CO.

FIGURE 4 - PIL RECEIVER TIMING

FIGURE 5 - PIL TRANSMITTER TIMING

				mooti		stx no 1LB6-4001				
				1LB6 ELECTRICAL SPECIFICATION						
				or CARL LANDSNESS			date 11-27-79			
Ite	ic no		$\overline{D A^{T}}$	ApPo			sheri no	13	or	14
		aprroved		Superseots			owg no A-1LB6-4001-1			

HEWLETT-PACKARD CO.

TEST CONDITION FOR OUTPUT PINS
(Figure 4)
$I_{\text {LOAD for specified }} C_{\text {out }}$ is 0 . For testers with ${ }^{\text {I LOAD }} 0$, modify $C_{\text {OUT to }}{ }^{C_{N E W}}$ with the following formulas to compensate for the load. Also $I_{\text {LOAD should maintain an equal sinking and sourcing level to }}$ make the modification valid.

Basic formula
$\mathrm{I}_{\text {AVE }}=\mathrm{C}_{\text {OUT }} \times \underset{-\mathrm{VOH}-\mathrm{VO}}{ } \quad$ No l \quad Normal device drive
$I_{\text {LOAD }}=C_{\text {MOD }} \quad x \quad-\frac{V O H}{-T D V^{-}}$
Calculate ${ }^{C_{M O D}}$ for extra load current required for the device.
$C_{\text {NEW }}=C_{\text {OUT }}-C_{\text {MOD }}$

HEWLETT-PACKARD CO.

NOTE: This page provides a running history of changes for a multi-page drawing which cannot conveniently be reissued completely after each change. When making a change, list for each page all before-and-after numbers (within reason; use judgement, and use "extensive" revision note if loss of past history is tolerable, or retype complete page) and associate with each a symbol made up of the change letter and a serial subscript to appear here and on the page involved (there enclosed in a circle, triangle, or other attention-getting outline).

ILFg Timer Chif

Detailed Description

Hank Koerner
HP Corvallis Division

2 February 1982

Table of Contents

1 Introdaction . 1
2 The Phineas Chip andthe $41-C$ Sjstem Dus 3
2.1 Backgroond. 3
2.2 Bit times, wordtimes, and the two phase clock system. 3
2.3 PWO and system-ienable. 4
2.4 ISA: instructions and addresses on the 41-c bus. . . . 4
2.5 SYNC: peciodic:synchronization. 5
2.6 DATA: data traEsfer in the 41-C. 5
2.7 FLAG and system:interrupt. $€$

3 Non-system 1 ines on the Fhineas chif. 8
3.1 Ose In and osc.out. 8
3.2 Alarm A and B. 8
3.3 Start and Stop:pins. 9

4 The Phineas Instraction Set. io
4.1 Enable Instructions: CPFAD (1268) and CDADO (1160), , FQ
4.2 The Puis low instruction, $\operatorname{PblOFF}(140)$. 10
4.3 Peripheral Instruetions, $x \times 50$ and $x \times 70$. 11
4.3.1 Data transfer instructions. 11
4.3.1.1 Write.clock $\langle 50\rangle$. 11
4.3.1.2 Read.Clock (70) 11
4.3.1.3 Write and Correct (150) 12
4.3.1.4 Read and Hold (170) 12
4.3.1.5 Write Alarm (250) 12
4.3.1.6 Reat Alarm (270). 12
4.3.1.7 Write Status $\langle 550\rangle$. 12
4.3.1.8 Read Status $\langle 370\rangle$. 13
4.3.1.9 Write Accuracy Factor $\langle 350$) 13
4.3.1.10 Read frecuraç Factor 〈370) $\ddagger 4$
4.3.1.11 Write Scrateh 〈450) 14
4.3.1.12 Read Seraten $\langle 470\rangle$. 14
4.3.1.13 Write Interval Timer and Start (550) . . f4
4.3.1.14 Read Intersal Timer (570) 15
4.3.2 Control Instroctions. 15
4.3.2.1 Stop Interval Timer (750) 15
4.3.2.2 Clear Test Mode (1050). 15
4.3.2.3 Set Test Mode (1150) 15
4.3.2.4 Disable Alarm (1250). 5
4.3.2.5 Enable Alarm $\langle 1350\rangle$. 16
4.3.2.6 Stop Clock \{1450\} ie
4.3.2.7 Etart Cioch (1550). it
4.3.2.e Set Pointer to $\mathrm{E}(1650)$. 16

5 The Status Register 17
5.1 Alarm status, bits 0 through 5. 17
5.1.1 ALMA (ALarm A) 13
5.1.2 DTZA 〈Derrement Through Zero \hat{A}) 18
5.1.3 ALMB 〈ALarm B) 18
5.1.4 DTZB (Deccement Through Zero B) 18
5.1.5 DTEIT (Deerement Through Zero Interial Timer) 18
5.1.6 PUS (Power Up Status) $\ddagger 8$
5.2 Hardware Status; bits 6 through 12. 19
5.2.1 CKAEN (ClocK A.ENable) $\{9$
5.2.2 CREEN (Clock E ENable) 20
5.2.3 ALAEN (ALEarm A ENable) 20
5.2.4 ALBEN (ALarm E ENable) 20
5.2.5 ITEN (Intermal Tiner ENatle) 20
5.2.6 TESTA 21
5.2.7 TESTE 22
6 Figures and Tables. 23
N6. 1 Table 1; The Phineas Instruction Set Summary. 24
※̛́ 2 Table 2: Phineas Status Bit Assignment 25
N6.3 Table 3: Test, Options 26
6.4 Figure 1: Phineas Clocks. 27
6.5 Figure 2: Pwo Timing. 27
6.6 Figure 3: 41-C'System Signals 29
6.7 Figure 4; FLAG Timing 28
6.3 Figure 5: Cbip:Enable Timing 29
6.9 Figure 6: PloFF Timing. 29
6.10 Figure 8: Block Diagram. 30
6:11 Figure 9: Metal Mask. 31

The ILF6 〈codenamed Phineas〉 is a general purpose CMOS LSI clock-chif, It is designed for Corvallis.Divison's bu CMOSY process and it measures $150 \times 215 \mathrm{mils}$. The design of the 1 LFE was begun in December of 1979 and characterization of the circuit was complete in the fall of 1981.

The lLFG was designed as a peripheral chip for the HP 41-E handheld calculator. Its:desion is intended to allow.it to implement any tiarkeefing function consistent with the 41-C system design. Spesifically, the lLFE has been incorporated into a produet known as the 'Time Module' which provides the 41-c with a largi number of timekeeping functions. Among them are a 100 hour stop watch with extensive:split capability, a clock with or without constant display, a 300 year calendar, and a sophistieated alarm system that allows from simple audible alarms to interrupting program alarms.

The 41-C system commonicates via a 56 bit serial bus. Generally, peripheral chifs will transfer the contents of registers during zommunisation with-the 41-c. The timer chip has nine of these registers: six are dedicated to timekeeping tasks and three provide general information. The six timekeeping registers consist of two independent 56 bit clocks, two companion alarms <also 56 bits), a 20 bit interval timer, and 313 bit register that allows adjustment to the chip's internal timebase. The remaining three registers consist of two general purpose.scrateh registers and a 13 bit status register which indicates the state of the circuit.

A 32TEe Hz quartz erystal provides the accurary and stability for the the timer chip's timebase. The timer chip contains prescalers that seale the input by a farter of 175/57344; this results in a 100 Hz signal that provides , 01 second resolution to all the time keefing functions, 5000 Hz clocks gate the 56 bit registers so that they are recirculated once every ill seconds wheneser the 41-C system is inactive. Howeyer, when the system is active, registers are recicculated by the:system clorks once every .01 second, allowing commonication with the 41-C to proceed without interruption.

In addition to the above, the timer chip has features which enhance its flexibilty and rapabilty. There is a low voltage detert eiredit that is active when voltage is first applied or when
it drops below a level not sufficient to maintain proper circuit operation of the clocks. There are four pins that give direct. control over the operation of the clocks. The alarms are brought. to external fads so that-they can be monitored directly, Finallys there iserircuitry to aid:in the test of the part; sperifically, the test oftions make aceess to certein internal nodes and bypass the prescalers to allow easy synchronization with the part during test.

The remainder of this document delineates the operation, conditions for speration, and function of the 1 LFG timer chip. Examples are given of how, specific features are used within the context of the Time Module. Chapter 2 covers the 41-C bus, bus requirements of the iLFE, and bus funetions implemented by the 1LF6. Chafter 3 describes the non-system'signals required and created by the timer chip. The instruction set is discussed in Chapter 4, as is the Status Register in Chapter 5. Figures and Tables referenced througbout the text are assembled in Chafter $E_{\text {. }}$ Other useful documents are:

1. HP Orawing Number E-1LF6-9001-50 : 1LFE Logic Diagram
2. HP Draring Number A-1LFe-9002-1 : 1LFE Electrical Sper
3. HP Draming Number A-82182-69901-1: Hybrid Electrical Epec The electrical specifications define timing, level, and sapply limits andrequirements.

2.1 Background.

The 41-C system bus:and ralculator chip set have evolved from earlier calculator designs. In particular, the 41 CPU is a CMOS implementation, with enhancements, of the Woodstock PMOS CPU whieh in turn was a derivation from the classif line processor circuits (eg. the HP 35). This sertion is not-meant to be an exhaustive discussion of the 41-c bus, but to supply general information to help the user understand:operation of the Phineas chip.
2.2 Bit times, wordtimes, and the two fhase clock system,

The fundamental timing unit is the tit time. All timing specifieations are made in reference to this unit. The 41-c bus uses a two phase clock system; the two.clocks are called Fhase 1〈Ph1) and Phase 2 (Ph2). The bit time has:the same period (Tp) as each of the clocks; its boondaries are coinrident with the rising edge of Ph2. Nominally, the clocks have a pulse width (Tpw) equal to 2/8's of the period; the clock delay (Ted) is equal to if8 of the period, Operating frequency is the re=iprocal of the bit time period. Output data valid time (Tdv) is measured from the trailing edge of Ph2; output one/zero transitions will be valid within this time. Inpot set up time (Tsu) is measured from the trailing edge of Phi toward the beginning of the bit time; input onelzero transitions will be validiwithin this time. See figure for a simple diagram and refer to the LLFE Electrical Epecification for more information on these:papameters. The Phineas chip inputs Fhi and Ph2, enables them with PWO, and uses the results as its own internal.clocks.

The 41-C system bus :operates on a $5 \in$ bit <bit time and bit are equivalent, cyele known as-a wordtine. The 56 bit length allows for a 14 bed digit word. The 41-C performs internal computations in flogting point; the 14 digit. computational word Eonsists of a 2 digit expenent, a 1 digit exponent sign, a 10 digit, mantissa, and a

1 digit mantissa sign. All registers and Ram used in the $41-C$ sustem are designed in 5 E.bit chunks to arcomodate a 14 digit bed word. Each bit, in the word is numbered in ascending arder, the first or least significant bit is bit \dot{u} (synonymous terms are bit 0 , bit time 0, time 0 , and TO), the last or most significant bit is bit 55, Whenever data, address, or instrurtion are transmitted on the 41-C's serial bus, it.is transmitted least significant bit. first.

2.3 PWO and system enable.

Abstract

PuG is the line that informs the sostem that the bus is artive, Its leading edgesserges as initial timing synchronization. Its inactive or lon state:is.used to reset system counters and clamp dynafic nodes. See figure 2 for Puo timing. PW0 is also used to enable the clocks. An integrated pull down of approximately 200 K ohms stabilizes PWO while power is first. applied. In the Time Module, the pull down helps insure that internal slocks are inactive 〈assuming the calculator is offy during insertion which often causes contact bounce. This in turn guarantees that important-initiadization status, such as the Power Up Status bit, are not arcessed until all.system lines are stable.

2.4 IEA; instructions and addresses on the 41-f bus,

Quring bit times 14 throagh 29 the CPU issues a 16 bit seriai address on the instruction and address (ISA) line. A Rom connected to the system bus will decode the address and output a ten bit. serial instruction. The:instruction is output on ISA during bits 44 through 53, All circaits other than Roms input the 10 bit instructions; it is the means by which the CPU controls actions and supervises data communication with other chips in the spstem.

There are a class of instructions known as peripheral/data storage instruetions: the:opecdes are represented by $\times x 50$ and $\times x 70$ octal. These instructions :ontrol both fhineas and data storage (Ram). To avoid contention, Ram and perifheral shifs each have separate chip enable instructions and addresses; when enabling one of these chips, care must be taken to iasure one and only ene device is enabled at the:same time.

Hs 三tated abowe, instructions are output for 10 tits curing the latter part of the wordtime. However, only one instruetion per
wordtime is issaed; therefore, instructions are valid for an entire wordtime and their validity begins two.bits after kom has oritput the last bit of the instruction. So, the'statement at the ent of an instruction' refers to the last bit of the word for which the instruetion applied. See:figure \bar{J}.

When the system bus.is iriactive - PWO low - ISA has another system function. It is pulled high by peripheral chips to request, service. In the 41-C this may occur when the calculator is fully off: before the CPU can respond, the switching power supply is started and the supply voltage yec is stepped up to normal operating levels. This process'may take 50 ms or more. In any case, Phineas will drive.ISA high until the system acknowledges its serviec request (signified by bringing Pho high). The timer ehip will then tristate its ISA driver and drive Flag 1Ξ. Read the sction below on FLAG.

2.5 SYNC: periodic synchronjzation.

SYNC is a 10 bit wide.pulse output.by the CPU. The pulse occurs at instrustion time <bit times 44 through 53). It has a number of purposes; two are discussed here. The first use of sYME is to provide a periodic:synchronizing.signal to the rest of the systen. Use of SYNC in this may allows recovery from disturbances causing temporary loss of communication. The second use of SiNC is to enable instruetions appearing on ISA. The CPU will suppress SYNC for one word time when it Executing a 16 bit goto or gosrat; the data output on ISA while SYNC is suppressed is address, not instruction, and should not be decoded by chips other than the CPU. Phineas inputs SYNC and implements both functions stated above.
2.6 DATA: data transfer-in the 41-C.

OATA is the line over which all data transfer takes place, data teing distinct fromieither addresses or instruetions. Normally: the CP! drives. DATA with the contents of one of its registers; if instrurtedia peripheral dejice :an buffer this data. However, a series of instructions may be issued, sommanding the peripheral devize to outpat its own data. At that time, the CFU tristates its DATA driver and inputs the information appearing on the [JATA line.

Data transfer always:oceurs 56 bits:at a time. The CFU always
outputs a full data word. If fewer than 56 bits are required bu a peripheral, it simply ignors the extratbits. Similarly, the EFU alwass inputs a full data word, A feripheral device should drive DATA to a valid logic lesel for the entire word even if only a portion contains real data, Dat. dransfer occurs with least. significant bit first, most significant last. with bed data this translates to least signifieant digit first, etc. A digit or digit $t i m e i \equiv d e f i n e d: a s$ the four bits comprising a bed digit. A word is devided into 14 digits in:aseending order. See figure 3.

2.7 FLAG and system interrupt.

FLAG provides peripheral devices with a means of requesting service from andior indicating status to the CPU. The protocol of FLAG has Ehanged since the original design of the 4i-E to ailow greater flexibility and usage. There are 14 flags available; eaen is time multiplexed onto the FLAG line. Each flag is coineident with its corresponding digit-time, ie, flag 8 orcurs simultaneously with digit. 8 . To indicate a valid flag, a device should drive FLAE lou at the fapropriate time and then drive it high when it is done. The CPU has a high impedance pull up which can maintain state, but not change it. See figure 4 for FLAG timing. All flags but Flag 13 should bedriven by a devies only if that device is selected. This convention promotes maximom ase of FLAG without contention.

Flag 13 is the system service request flag. This flag is checked a^{t} the end of every keystroke and program step. A peripheral devies requesting service should drive this flag, sinee there can be more than one-device requiring service, Flag 13 requires a 'wired or' convention. That is: all chips with valid flagz should pull flag low, bat false flags must not pull it high. As before, FLAG should bereturned to its inactive state at the end of Flag 13 time.

Phineas uses Flags 12 and 13, Flag 13, as stated above, is driven to request service-whenever an alarm condition exists. Flag 12 is dri\%en when the above condition is true and Phineas is enabled, This second flag reduces the service response time in a loaded system. Additional.status is obtained by dirertly interrogating the chip.

LLF6 Detailed Description
2.s Vce and Gnd; system:power supply.

The Phineas chip has:twis power supply connections, Vec the positive lead, and Gnd the negative lead. fll circuitry is run from this voltage, and all inpots and outputs are referenced to this level. See the 1LFG:Electrical Specifications, HP drawing number A-1LF6-9002-1, for operating limits on the supply voltage and input and oatput sigaals.

There are eight pinsion Phineas in addition to those deseribed above. These pins are either necessary for correst, the operation of the chip or provide spesial.features not found within the $41-\varepsilon$ system bus definition.
3.1 Ose In and ose Out.

These two pads connect the chip's internal oscillator to the outside world. The 'Piecce' oscillator has been designed to aecept, a standard 32768 Hz watch :erystal with a Cload of 12.5 pF <eg. NOK's MU 206). Each-pad.is connected to an integrated 22 pF phase shift rapacitor to ground. P-Hell soureeresistors of approximately 250 K ohms have also been integrated to reduce power consumption and increasesstability due to power supply variations, Ose Out, the output of the oscillator, is input to a Schmitt trigger which has been optimized for wide supply ranges, low power operation, and greatly reduced input levels. A high impedance bias resistor of 22 M ohms is connected to both pads in parallel with the crystal. Refer to the lLFE loogic diageam for a complete schematic of the oscillator. Typical performance of the oscillator at room temperature and with a 5 volt supply voltage is +- 0.5 seconds per day or approximately +- 6.ppm error usiog the erystal mentioned above. Supply variations:of +- 2 volts introduce additional error of +- 5 to 10 ppa.

3.2 Ararm A and E.

The alarm pads serve twis functions: 1. they provide external connestions for Phineas' internal alarms, and 2 . they serve as test pads. Thera are two. oloek registers, two alarm registers, and two alarms on the Phineas chip. This allews two comfletely independent timekeeping functions. Alarms become valid when the alarm register matehes the rlock register. The alarm pads uili reflect, the state of the :alarms with the ippropriate eontrol statas
<i.e. TESTA $=$ TESTB $=0$). In the Time Madule the alaras will remain valid for only the time it take the 4t-C to servies them; this interval is $1-50 \mathrm{me}$ in a normal system.

Curing functional testing of Phineas, the control status TESTH and TESTE is altered to bring certain internal nodes to the plarm pads. This feature greatly facilitates verification of several blocks of logie including:the presealers and the Accuracy Factor, Read the sectionz on TESFA and TESTB for mere information en the test facilities. In the Time Module the internal alaems are always brought out to the alarm:pads. The alarm pads are inverter outputs with roughly half the drive capability of the DATA driver,
3.3 Start and Stop pins.

The four Start and Stop pins provide remote control over each of the clocks on the chip, one set of control pins for each clock. All pins assume positive true logic. Each set of inputs is connerted to an \exists synchronous state machine that has several purposes. 1. The inputs:are debounced for at least. 01 seconds; the debounce period may not be long enoagh for noisy inputs. 2 . The state machine insures:operation of startistop instructions even when stuck at zerolone faults exist on the start/stoo pins. 3. A toggle function is implemented when stop and start are wired togetier allowing single:posbbutton control of the clocks. Pulling Start A high sets CKAEN uhich starts clock A. Pulling Stop a high clears CKAEN whish stops. Clock A. when Start A and Stop a are connected pulling them high results in the toggle function; pulling them high once will starticlock A, pulling them high again will stop Clork A. Start and Stop B have a similar effect on Clock B. The start and stop pins have integrated poly resistor pull downs of about 2.5 K ohms connected:to each pad.

Phineas responds'to 24 instructions. Twenty one of these are peripheral instructions, either tppe $\times x 50$ or $x \times 70$. The periphefal instructions fall into two rategories, data transfer and control. of the three non-peripheral or general spstem instruetions, two are enable instructions and one is a power off instruction. Table 1 presents a summary of the:instruction set. The instructions described below are followed by their oetal representation in parenthesis.
4.1 Enable Instructions: CPFAD $\langle 1760\rangle$ and CDADO (1160).

CPFAD (CPU C register to Periferal ADdress) is the instruction that enables and disables the Phineas cbip as well as other peripheral chips. CPFAD enables Phineas in the following sequence: 1760 octal is ootput onto. ISA at instruetion time followed two bit times later by Phineas' cbip address. $F B$ hex, least significant bit first, at bit times 0 through $\overline{7}$ (chip address time) on DATA. This sequence.sets the chip eable flif-flop; peripheral instructions are ignored unless chip enable is set. Chip enable is reset when CPFAO is.issued with an address:other than the Phineas address.

CDADD (cpu C register to Data storage ADDress) is the system instruction used to enable data storage chips or Ram. Because Ram and peripheral chips like Phineas share the same data transfer instructions, only one chip at a time may be enabled to avoid contention or 'bus fighting'. To insure that Phineas is never enabled at the sane time:as:data storage, the CDADD instruction will reset chif enable regardless of the dita appearing at enif address time.
4.2 The PWO low instrortion, PWBFF \{140).

FUOFF (PWo OFF) instracts the system that PWO will be driven low during the eurrent wordtime ethe woratime directiy after PWBFF
is sent ${ }^{\text {sen }}$ bit time 54，Seefigure for fuoff timing，Phineas increments its clork registers every ，01 三esonds asynchronously with respert to system timing．However，when the system is artire， the increment cyeles：though triggered ewery ol seconds，will be synchronized with word time poundaries．This feature allews simultaneous data transfer and incrementiag．If the ． 01 second trigger occurs after Pldoff issues，incrementing takes flace at once rather than waiting for the next word boandary to avoid losing an increment cycle．

4．3 Perifheral Instructions，$x \times 50$ and $x \times 70$.

There are thirty two：peripheral instructions whish mag be used by all peripherals．Generally，the $x \times 50$ instruetions are used to send data to the peripheral or inact a control function，$\times x$（ instrustions are used to receive data from the peripherals；in ang case，an xxip instrurtion causes the 41－C CPU to tristate its DATA driver and buffer into its C register whatever appears．on DATA during this instruction，The $x \times$ represents the octal namegrs 00 through 17．

Phineas uses twenty one jeripheral instructions．These are broken into twelye data transfer and nine control instructions． The data transfer instructions access registers on Phineas，the control instrmstions either manipulatestatus on Phineas or command it to take an action．

4．3．1 Data transfer iastructions．

4．3．1．1 甘rite Clock（50）

Causes the surrently accessed clock register to buffer 56 bits appearing on DATA during this instruction．Read the section on CKAEN for more information on clock registers．

4．3．1．2 Read Clock（70）
Causes the eurrently aceessed clock register to outpist its contents，leヨst，significant bit first，onto oHTA during this instraction．
4.3.1.3 drite and Correet (150)

Causes the same action as Write Clock above. In addition it commands the correction circaitry to either reset or to add two to the clock on the next increment cycle. See Read and Hold telow.
4.3.1.4 Read and Hold (170)

Causes the same action as.Read Clock above. In addition it initiates a correct cyele. This feature is used when a time is to be read, medified, and restored to Phioeas without loss of accuracy〈e.g. when adjusting for daylight saviogs time〉. The correct cireaitry allows the user, 01 seconds to modify and restore the time, If an increment cyele nceurs during this time, the correct circuitry compensates by addirig two to the time on the next. inerement cyele, If no increment occurs during the modify/restore process the correct ciccuitry is reset. If modify/restore exeeeds . 01 sEconds then two is addej on the next increment cycle but accuracy eannot be guaranteed. In a normal 4i-c there are at least 67, word times per . 01 second period. The Read and Hold instruction initiates the correct cycle and it is concluded by write and Correct. The correct state machine will not be reset to its at. rest state unless Write:and Correct follows a Read and Hold.
4.3.1.5 Hrite Alarm (250)

Causes the currently accessed alarm register to buffer the 50 bits appearing on DATA during-this instruction. Read the sestion on ALAEN for more information on alarm registers.
4.3.1.6 Read Alarm (270)

Causes the eurrently accessed alarm register to output its contents, least, significant bit first, onto DATA during this instraction.
4.3.1.7 Write Status (350)

If the pointer is on A, this instruction saoses the status register to be written. Actually, only the first six of the thirteen status bits can be written and these only te a zero level. To accomflish this the user must drive DATA low for the first six least signifigant bits of a word; alletter tits ere ignored during this instruction, Internal hardwaresets these tits and the user resetis them. Refer to the following chafter on the etatus Register.

4.3.1.8 Read Status 《37.0)

If the pointer is on A, this instruction sauses the status register to be read. The status register ouputs.its thirteen tits, least significant bit first, and then drives DAFA low for the remaining 43 bit times.
4.3.1.9 Write Accurary:Factor (350)

If the pointer is on B, this instiruction writes DATA to the Accuracy Factor. Note that the Accuracy Factor buffers only data appearing at bit times 4 through 1ϵ. The Accuracy factior is a thirteen bit register that sontrols modification of Phineas' internal 10240 Hz timebase. The first twelve bits form three bed digits which represeat an interval in the form of +- nn.n seconds. This interval centrols how often pulses are added or subtracted from the 10240 Hz refereace. The thirteenth bit is a sign bit; a zero means pulses are added to the reference, a one means they are subtracted. For example, an zccuracy factor of +o0.1 causes a pulse to be addes 10 tines a second; therefore the 10240 Hz reference becomes 10250 Hz . The error of a product, using the Phineas chip san be corrected through use of the Accuracp factor. The following formulas relate the error to the Accaracy Factor setting.

ERRPpm	$=$ Error in parts：per million
ERRSpA	$=$ Error in seaonds fer day
$A F$	$=$ Accuracy Factor

4．3．1．10 Read Accurary Factor \｛3．0）
If the pointer is on B，this instruction sauses the Accuracy Factor to output．its contents onto DAFA at bit times 4 through 16 ，least significant bit first，sign bit last．DATA is driven low at．all other times during this aned．

4．3．1．11 Write Scratch 〈450）
Causes the eurrently accessed sceatch register to buffer the 56 bits appearing on DATA during this instruction．There are too general purfese． 56 bit sccateh registers that are called \hat{H} and $E ;$ access is controlled by the pointer．The intent of these registers is to provide the user with on chip storage for important status or variables．

4．3．1．12 Read Scrateh（470）
Causes the surrentyy arcessed schatrh register to output its contents，least，significant bit first，onto DATA during this instruetion．

4．3．1．13 Write Interval Timer and Start \｛550；
The Intermal Timer is a five bed digit register that may be used to create pericodic alarms ranging from 01 to 999.99 seconds．The Write Interval Timer and Start instrurtion causes the Interval Timer to buffer the least ：significant five digits appearing on Ufin during this instruction as its terminal count and to enable its interval rounter by setting ITEN 《see the sertion below on ITEN）． The interqal counter is cleared and startes；the counter inerements from zero towards the terminal count．When the terminal count is reached，the rounter is eeset and the process begins again．The terminal＝ount state sets the Deerement，Through Zero Interval Timer〈OTZIT）status bit which wili cause the phineas chip to rearest service regardless of whether the bus is active．DTZIT will remain set until fleares by a write status instrastion．The Interval Timer is used by the Time Module to generate service requests for its continuous display＇CLOCK＇function；in this ease the Interval Timer issset to either 1 secand or 1 minute and the periodic service requests enable the Time Modile to update the 41－0．s display like a digital clock．

4．3．1．14 Read Intergal Timer（570）

Causes the interval Timer to be read．The interval Timer outputs its 20 bits，least significant bit first，onto DATA and drives entf low during the renaining ： 36 ．bit times．

4．3．2 Control Instructions．

4．3．2．1 Stop Interval Timer 〈750〉
This instruction elears the ITEN status bit；ITEN is set only by the instrustion Write Interoal Timer and Start．Clearing ITEN disables the Interval Timer ecunter；it does not reset the counter or clear DTZIT．

4．3．2．2 Clear Test Mode－（1050）
Causes the currentiy accessed Test Mode flip－flop to be cleared at the end of this instraction．

4．3．2．3 Set Test Mode（1150）

There are two Test Mode flip－flops that are called TESTA and TESTR； access is controlled by the pointer．The Test Mode bits are cleared for normal operation；setting Test Mode invokes special states that aid in testing the part．Test featurs are detailed below in the section on TESTA and TESTB．

4．3．2．4 Disable Alarm（1250）

Clears the rurrently accessed alarm enable 三tatus bit at the end of this instruction．The akarm enable status bit controls the comparison of the alarm register with its：corresponding clock register．If alarm enable is set，the compare is enabled；if clear，the compare is inhibited，Disablirg an alarm will gate off all clocks to the register；consequently，there is a slight， decrease in power consumption．This instruction does not clear current alarms，it inhitits or disarms future alarms：Eee the section describing ALAEN for more detail．

4.3.2.5 Enable Alarm (1350)

Sets the currently accessed alarm enable status bit at the end of this instruction. This will arm future alarms, but will not set. current alarms.

4.3.2.6 Stop.Clock (1450)

Clears the rurrently accessed clock enable status bit at the end of this instruction. The clock enable bit, determines the state of the clock. If the clock enable is set, the clock. is on and incrementing: if slear, the cloek is off. When clear, incrementing and alarm comparison are:inhibited, and all clocks to the register are gated off, resulting in a slight decrease in fower consumption.
4.3.2.7 Start Clock (1550)

Sets the surrentiy accessed clock enable status bit.at, the end of this instruction. Start Clork enables the clock's inerementer.
4.3.2.8 Set Pointer to 8 (1650)

Sets the pointer flip-flop to the B state. Phineas has two clock registers, two alarm registers, and two scraten registers. There is one set of instructions to commanieate with two sets of registers. To aceess a specific register, the user must indieate which set, of registers he warits to communicate with. He does this by manipulating the pointer. To communicate with Alarm 8 , the pointer is-set to E. To rear or write the Status Reaister, the pointer must be set to A. Changing the state of the pointer simpig redireets instruetions to the register speaified; it does net effect the machine in any other way.
4.3.2.9 Set Pointer to A (1250)

Sets the pointer flip-flof to the A state at the end of this instruction, See the pacagraph above for additional information.

The Status Register, a register of thirteen status bits, indicates to the user the state of corresponding hardware. Each status bit is physically located near the hardware it represents. Because of this, the register is actually a multiplexer which merges the bits onto a common line. However, refresenting the status bits as a register provides a straightfarward means of descriting their function.

The Status Register is accessed by Read and Write Status instruetions. Nete that the pointer must be set to A since these instructions share the same opcode as the Read/urite Accuracy Fartor instructions, Refer to the paragraph; above describing the instruetions. A read will casse the Status Register to output its 13 bits onto DATA beginning at To, UATA is driven low for the remaining 43 bit times.

Writing the Status Register has a different effect than writing other registers. The Status Register contains two types of statiss, alarm and hardwape status. Alarm status comprises the first six bits in the Status Register; these bits, when set, will generate service requests. The only way to clear one of these bits is by writing a zero to its bit locaton during a ldrite Status instruetion. Alarm status.is-set only by the internal hardware of the timer chip. For example, the status bit ALMA is set only when a valid compare between Clock A and Alarm A orcurs. The remaining seven stiatus bits constitote the Hardware status. Hardware status informs the user how the part is set up; these bits are set and cleared only by the control iostructions. Therefore, writing status resets only the first six bits inthe register and has no other effect.

The following panageaphs-describe the function of each status bit in detail. Note that:positive true logic applies to each status bit. For a summary, please refer to table 2.
5.1 Alarm status, bits 0 through 5.

There are six alarm status bits; when set, earh of these bits except the pus bit will request sergice by either pulling ISA high

1LF́ Detailed Description
when the gystem is inastive or fulling flas low when the system is active．

5．1．1 ALMA 〈ALarm A〉
This bit is set when Alarm A matches Clock A．See ALAEN for more detail．

5．1．2 DTZA（Desrement Through Zero A ）
This bit $i s$ set when Clock A overflows while incrementing，dhen this ofcars，the register－rolls over to all zeros and continues incrementing．If a negative ten＇s complement number is stored in the elock register，it will be incrementied towards zere，when the count hits zero，the clock register overflows setting DTZA．

5．1．3 ALME 〔ALarm B〉
This bit is set when Alarm B matches Clock B ．See ALAEN for more detaii．

5．1．4 DTZB（Decrement Fhrough Zero B）
This bit is set when Clock 8 ouerflows while incrementing．See the description for DTZA for mor \equiv details．

5．1．5 DTZIT（Decrement Through Zero Intermal Tiner）
This bit is set when the interval Timer reaches its terminal counf． Note that the terminal caunt register is sompared bit for bit with the interwal sounter which is incremented．as bod；the terminal count should also be stoced as a bed number．See ITEN for more detail．

5．1．6 PUS（Power Up Status）
This bit $i s$ set when Phineas first has．fower apflied or whenewer the supply woltage falls：below a level sufficient to sustain proper circuit operation cchararterization indieates that the average trip
voltage is $2.5 \mathrm{~V}+0.3$ over a 0 to 65 . degree C temperature range). Note that this bit does not onenerate a serwire request. pefe is used to inform the user that there mas be meaningless data in the register:, In the Time Module the chip is initialized if pus is set; the time ant date are reset to the bejinning of the celendar, (12:00 AM, January 1, 1900) and all other status is eleared. pus uses a two threshold detection scheme coopled to a raticed flip-flop designed to power up in a known state. Refer to the 1LF 6 logir diagram for a full PUS sireuit schematic. The pus detection circuit is clocked to reduce power consumption; the duty cycle is 3.12\% and the circuit.is gated on for 15.3 us. The average current drain at 6.5 Y is 0.1 to 0.5 A. When $P U S$ is set, service requests via the ISA and FLAG lines are inhibited. This frevents the Time Module from disrupting the system when it is first inserted into a calcurator.
5.2 Hardware Status, bits 6 through 12.

The hardware status bits reflert the state of the Phineas chip. Read Status interrogates the these bits, Write Status has no effert. Hardware status is set and clearey by each of the respective set and clear instructions. Refer to the chapter above on the Instruction Set.

5.2.1 CKAEN (Clock A EHable)

CKAEN indicates whether Clock A is enabled and incrementing. Each of the two clock registers $=0 n s i s t s$ of 56 bits or 14 bed digits. Every, 01 seconds the registers, if enabled, are recirculated through a serial incrementer. The registers are bed corrected every increment cycle. If non-bed is stored to the register, it will be converted to bed on the first increment cyele. when the system bus is dormant, the clock registers (and all timekeeping registers) are recirculated continuously at a 5600 Hz closk frequency, each increment cyele taking 01 seconds. When the system bus is active, the clock registers are rerirculated at system clock frequency, 340 to 300 K Hz . Any timekeeping registers may be accessed at any time without having to wait for an inerement cycle. The increment process, as far as data transfer is concerned, is completely trarisparent to the user. An inerement. cycle lasts approximately 165 us. The clock registers are static during the remainder of the 01 second period. The increment eycle is initiated at $T 0$, the beginning of a wordtime, so that data transfers between Phineas and the CPU froceed without interruption. There are two asynchronous state machines that implement the elack switching function and the increment cycle synchronization

ILFG Detailed Description
function；they are ralled the Clock Enable state machine and the Update In Progress state：machine respectirely．

5．2．2 CKBEN 〈ClocK 8 EHable）

CKBEH indicates whether Clock E．is enabled and incrementing． Please read the paragrapbs describing CKAEN for more detail．

5．2．3 ALAEH 《AEarm A EHatle〉

ALAEN indicates whether Alarm A is enabled and sequentially compared to Clock．A．There are two 5e．bit alarm registers，each is linked to a specific clock register．The alarms are used to store 14 bed digit times which are sompared bit for bit with their respertive slock register，If the alarm and clock match and the alarm register is enabled，then the alarm bit，is set．Note that a non－bed alarm cannot result in a valid compare with a clock register，when an alarm is disabled，the clocks to that register are inhibited minimizing fouer consumption by that section of logir．

5．2．4 ALBEN（ALarm B EHable：
ALEEN indicates whether Alarm E is enabled and sequentially compared to Clock E ．Please read the paragraphs describing ALAEH for more detail．

5．2．5 ITEN（Interyal Timer ENable）
ITEN indicates whether the Interval Timer－is enabled and counting up towards the terminal count．The Interial Timer，a 20 bit， 5 brd digit，eircuit，sonsists of two main components，a terminal cocint register and an interval．couriter．The terminal count is the register $\exists \mathrm{ge}$ essed by Readdwrite Interyal Timer instructions．It holds the number compared to the interval counter．When the terminal sount matehes the interval counter，DTZIT is set，and the interval sounter is reset to zero and again counts up towards the terminal count．In function，the terminal count register $i s$ very similar to an alarm．Note that a non－bcd number stored as the terminal count will prevent the interval counter from matehing．
5.2.6 TESTA

The two test mode status bits, TESTÁ and TEETR, serve as controls to test options on Phineas, These bits control the signals output to the Alarm A and B pads, and control bypassing inprat frequency pressalers. For a sumary refer to the test opton truth table, table 3. In normal operation internal Alarm A and Alarm E are outpist to their respective pads and the input frequency is fully prescaled, when TESTA is:set and TESTB is clear the logical and of ITCMP and IT55 is outpot, to Alafm A. 100 Hz , the final outpot of the prescalers, is routed:to Alarm B. This test mode does not bupass any pressalers. ITCMP*IT55 is a signal that is active during the last, bit of an increment cycle if the terminal count register matches the interval counter <both are part of the Interwal Timer). The duration of this.pulse is one bit time when the system is active andiapproximately 178 uS when the systemi is inactive (assuming the input frequency is . 32768 Hz), The period, on the average, is the same:as the interval stored as the terminal count; jitter is induced:into the period:because the eircuits used in the prescalers generate sthort term assymetrical waveforms. 10 Hz triggers the entire:inerement ejucle process. Its pulse width is the same as ITCMP*IT55 :and its period on the average is .01 seconds, degrades also by the jitter phenomena outlined above.

When TESTB is set and TESTA is a 'don't care', node \#832, an Accuracy Factor output, is routed to Alarm A. 100 Hz is again outprat to Alarm B, but since the prescalers are bypassed in this mode its frequency is the:input frequency devided by 112 . \#832 is the signal that controls:adding or subtracting a pulse from the 10240 Hz timebase. Nomisally \#E32 has a pulse width of ten input. cycles and a period of sixteen input cycles. However, as a pulse is added (subtrafted) the.pulse width of \#83? varies to 12 (8) input cy:les; the period remains the same. This will occur at an intersal equal to that stored in the Accocacy Factor.

The input frequency is normally 327.68 Hz and the presealers devide it to create the signals. 5600 Hz and 100 Hz . 5600 Hz is used to clock the 56 bit timekeeping registers when the systekm bus is inactive, 100 Hz is used to initiate the increment cycle', With all prescalers in place, the inpst is multiplied by the constant 175.57344 <multiplying 327.68 by this constant results in 100). This sonstant is derived from several prescaler stages and the following symbolically represents the sequence of each stage: Finpidt $\times 1 / 2 \times 5 / 8 \times 5 / 8 \times 7 / 8 \times 1 / 56=100 \mathrm{~Hz}$. A synchronous counter, combinational feedback.logis, and rlocked decoded outpats comprise each stage. The output from the previous stage is rippled to its succesor. The 5fo and $7 / 8$ stages are mod 8 counters whose decoded outputs are pulses that have the sams pulse width as as the numerators of the fartors deseriting the stages. When these pulses
are used to generate the ripple outputs the resulting waveform, in the case of the $5 / 8$ stage, is a pulse train of 5 pulses followed. by 3 nulls. Two of these stages cascaded create short term assymetries that contribute to jitter. The absolute error caused by the jitter does not exceed +- 2.34% of . 01 seconds and the average aproaches zero in an interval as short as 14100 input cycles. \hat{p}

5.2.7 TESTB

For a description of TESTB read the paragraphs above in the section on TESTA.

The following figures and tables are those that have been refered to throughout the :text of this.description. In addition, a block diagram ans 20x metal mask photo have been included for completeness. For detailed:schematics, refer to the documents listed in Chapter 1. For more information on 41-C bus signals, refer to appropriate circuit descriftions and the other system documentation.

1LF6 Detailed Description
6.1 Table 1: The Phineas Instruction Set Summary.

S. 2 Table 2: Phineas Status:Bit fssignment.

1LF6 Detailed Desrription

ILF6 Detailed Deseription
6.4 Figure 1: Phineas Elocks.

6.5 Figure 2: PwO Timing.

6.6 Figure 3: 41-C System Signals.

6.7 Figure 4: FLAG Tining.

A: If ($\overline{C=}$-WO.PUS) $=1$ then $A=H_{i}$,
If ($(\overline{C E} \cdot \overline{P W O} \cdot P U S)=O$ AND ALMSTAT=1, then $A=O$; AND ALMSTATV1, then $A=1$
B:- if $(\overline{C E}+\overline{P W O}-P u s)=1$ then $B=\mathrm{Hi}_{\mathrm{Z}}$,
$H\left(\overline{C E} \cdot \overline{P_{W O}}+P O S\right)=0$ then $B=1$
C: if ($\overline{\text { DNO }}$. PUO) $=1$ then $\mathrm{C}=\mathrm{Hi}_{\mathrm{N}}-2$

D: if (DWO-Dus) $=1$ then $D=H_{i}-2$
if $(\overline{000}+P)=0$ then $D=1$.
$E: M_{1} 2$
PHINEAS FLAGS
HK $4-29-81$

1LF6 Detailed Desreription

6.8 Figure 5: Chip Enable Tining.

CHIP ENABLE SEQUENCE
6.9 Figure 6: PGOFF'Timing.

ILFも Detailed Description
6.10 Figure E: Elock Diagram,

PHINEAS BLOCK DIAGRAM

LLF6 Detailed Description
6.11 Figore 9: Metal Mask.

HRER 1981

HEWLETT-PACKARD CO.

NOTE: This page provides a running history of changes for a multi-page drawing which cannot conveniently be reissued completely after each change. When making a change, list for each page all before-and-after numbers (within reason; use judgement, and use "extensive" revision note if loss of past history is tolerable, or retype complete page) and associate with each a symbol made up of the change letter and a serial subscript to appear here and on the page involved (there enclosed in a circle, triangle, or other attention-getting outline).

Model No
Stock No. Applies To: 1LF6-4001
ILF6 Electrical Specifications

Description	
Br	Hank Koerner
supenodes	

Date	$01-08-82$	
Shoot No.	1 of 7	
Drawing No.	A-11	$6-9002-1$

The following specifications detail operating limits and conaitions for for the 1 Lf' 6 Timer Chip (1LF6-4001) in a 28 pin ceramic package (1LF6-0101) and a 20 pin plastic DIP (1LF6-0001).
I. Absolute maxinum Ratings:


```
+0.3 V
Input Transient Protection ..................... 600 vac
```

II. Recommended Operating Conditions: $0 \mathrm{C}<=\mathrm{Ta}<=45 \mathrm{C}$

Title: 1 LF6 Electrical Spec Date: 6 Jan 1982

By: Hank Koerner Dwg. NO. Page 2 Of 7

A-1LFS-9002-1
II. Kecommended Operating Conditions: $0 \mathrm{C}<=\mathrm{Ta}<=4 \mathrm{~b} \mathrm{C}$

II. Recommended Uperating Conditions: 0 C $<=$ Ta $<=45 \mathrm{C}$

Note 1 : The Iinlk spec applies to: Phase 1, Phase 2, sYNC, Pwo.
usc in is connected, via the perforinance board, through a 22 M onm resistor to Usc Uut; consequently, its spec is +- ooo nA. Start $A \& B$ and Stop $A \& B$, all four are inputs, each have a 2.5 h onm pull down; only their positive going diodes are measured at a leakage spec of 4 un.
PWo has a 250 K onm integrated p-well pull down; only its positive going diode is measured for leakage.

Note 2 : Tne liolk spec applies to: Alarm A, Alarm B, Osc Uut, FLAG, ISA, DATA.

Note 3 : The Cin spec applies to: Phase 1, Phase 2, SYNC, Osc In, Pwo, Start A, Start B, Stop A, Stop B.

Note 4 : The Cinio spec applies to: Alarm A, Alarm B, Osc Out, FLAG, ISA, DATA.
III. Test Specifications.

IV. Figure 1 - Timing Parameter definition and clock system waverorms.

Title: 1 LF6 Electrical Spec Dates 6 Jan 1982

By: Hank Koerner Page ó of 7

Dwa. No.
A-1LF6-9002-1
V. 28 Pin ceramic packac̣e pinout listing:

Pin*	Signal	Pin \#	Signal
1	vcc	15	NC
2	NC	16	NC
3	NC	17	FLAG
4	NC	18	$\cdots \mathrm{C}$
5	Phase 2	19	ISA
6	Phase 1	20	Hwo
7	Alarm A	21	stop B
8	Alarm B	22	Start B
9	SYNC	23	ivC
10	DATA	24	Start A
11	osc unt	25	NC
12	NC	26	Stop A
13	Osc in	27	Gna
14	NC	28	fi C

VI. 20 Pin Plastic DIP pinout listing:

Pin \#	Signal	Pin \#	Signal
1	SYNC	11	NC
2	DATA	12	Start A
3	OsC Out	13	Stop A
4	NC	14	GND
5	OsC In	15	VCC
6	FLAG	16	NC
7	ISA	17	Phase 2
8	PWO	18	Phase 1
9	Stop B	19	Alarm A
10	Start B	20	Alarm B

by: Hank koerner page 7 of 7

Dwg. NO.
A-1LF6-9002-1

NOTE: This page provides a running history of changes for a multi-page drawing which cannot conveniently be reissued completely after each change. When making a change, list for each page all before-and-after numbers (within reason; use judgement, and use "extensive" revision note if loss of past history is tolerable, or retype complete page) and associate with each a symbol made up of the change letter and a serial subscript to appear here and on the page involved (there enclosed in a circle, triangle, or other attention-getting outline).

HEWLETT-PACKARD CO.

THE NUT-PERIPHERAL INTERFACE CHIP

ABSTRACT

The Nut-peripheral interface chip (NPIC) is a bidirectional serial in, serial out buffer. This chip will allow Nut-CPU to interface with microprocessor which has different system clock, bus structure and speed. Two sets of 56 bits of data or information can be simultaneously input to or output from the NPIC. With a single mask option, NPIC chip-select-addresses can be changed. With this option, two NPIC can be controlled independently by the same Nut-CPU. The NPIC will also include feature which enables the peripheral to wake up the Nut-CPU while Nut-CPU is in a "light-sleep" mode. Conversely, the Nut-CPU can wake up the peripheral through an assianed Nut-peripheral instruction. Providing that the Nut-CPU speed is not a problem or sufficient buffering is available, NutCPU will be able to interface with any general microprocessor in existence. The $95 \times 100 \mathrm{mil}^{2}$ CMOS chip will have 13 bonding pads. Currently, the NPIC is designed to drive the Nut-peripheral printer (Helios).

CIRCUIT DESCRIPTION

The chip can be divided into four parts. They are timing generator, instruction decoder, Nut-data buffer and transfer loaic and peripheral-data buffer \& transfer logic.

The timing generator keeps the NPIC and the Nut-CPU in synchronization. It also generates bit time T 0 and $T 55$ from the "SYNC" line.

The instruction decoder detects the five NPIC instructions from the "ISA" line. They are ENPIC, LOAD, SAVE, SET, PRTON. Nut-CPU instruction (11444_{8}) ENPIC switches Nut-CPU mode to NPIC mode. Any instruction that follows after the ENPIC instruction is a Nut-peripheral instruction. During NPIC mode the 10 bit instructions are ignored by the Nut-CPU. LOAD, SAVE, SET, PRTON instructions can be executed only during the NPIC mode. Any odd number Nut-peripheral instruction

CIRCUIT DESCRIPTION (CONT.)

will switch NPIC mode back to the Nut-CPU mode. With a single mask option different chip-select-addresses can be built into different NPIC chips. Preassigned ENPIC instructions can be used to select different NPIC chips. (10448) ENPIC instruction is already assigned for the second NPIC chip. Command, status \& data can be independently transferred using two NPIC chips.

NPIC INSTRUCTION SET

ENPIC (11448)
It enables NPIC mode and selects different NPIC chips.
LOAD ($\mathrm{XXX7}_{8}$) $\quad X=$ Don't Cares
It loads data from CPU reạister C into NPIC buffer 1. "Busy Flip Flop" is set after the data transfer.
SAVE $\left(X X 72_{8}\right)$
It saves data from NPIC buffer 2 into CPU register C. "Read Flip Flop" is reset after the data transfer. An odd number (XXX_{8}) peripheral instruction must follow the save instruction to switch back to the Nut-CPU mode.
SET (XQO_{8}); $\mathrm{Q}=0,1,2$.
It selects one of the three flags from NPIC and sent it into the carry bit of the Nut-CPU . Q is the flag select bit

$$
\begin{array}{ll}
Q=0 & \text { selects "Busy" flag } \\
Q=1 & \text { selects "RFF" flag } \\
Q=2 & \text { selects "DD3" flag }
\end{array}
$$

"Busy" indicates that data from the Nut-CPU are still in buffer 1 of NPIC. "Busy" is cleared after the data from buffer 1 are transferred out to the peripheral. "Busy" is set after a "load" Nut-peripheral instruction. "Busy" can be read by both the peripheral and the Nut-CPU.
"RFF" indicates that data are ready to be saved into the Nut-CPU reaister C. "RFF" is set after the data from the peripheral are transferred into buffer 2. "RFF" is reset after a "save" Nut-peripheral instruction. "RFF" can be read by both the peripheral and the Nut-CPU.

NPIC INSTRUCTION SET CONT.

"DD3" indicates that the peripheral is switched "ON". When the peripheral is disconnected or switched "OFF", "DD3" will be low.

PRTO - XXXH_{8})

It turns on the peripheral by pulling Poin linelow fon one-fut word time-

NUT INTERFACE LINES

. SYNC, ISA, DATA are the Nut-CPU serial bus lines which can transfer data and instruction to and from the Nut-CPU. To the Nut-CPU, NPIC works like another memory chip.
. PWO clears all NPIC's internal Flip Flops, whenever the Nut-CPU wakes up from "Deep" or "Light-sleep" mode.

- $\emptyset_{1} \& \emptyset_{2}$ are the two-phase clock used by the Nut system.
- VCC is the 6 volt regulated power supply line from the Nut system. During Nut's "Light-sleep" mode, VCC is still at 6 volt, "SYNC" line is hig̣h and $\emptyset_{1} \& \emptyset_{2}$ clock is disabled. During Nut's "Deep-sleep" mode, VCC is at 3.9 volt, "SYNC" line is low and $\emptyset_{1} \& \varnothing_{2}$ clock is also disabled.
- GND is common to all systems.

PERIPHERAL INTERFACE LINES needs lok pull-up resistor
. $D D \varnothing$ is a bidirectional data line interfacing the peripheral and the NPIC.
. DD1 is a strobe line controlled by the peripheral. Data or flan can be transferred through the $\mathrm{DD} \mathrm{\emptyset}$ line sequentially by the strobing of DD1.
. DD2 is a direction-select line. Data can be transferred from the peripheral to the NPIC when DD2 is low. One or more DD1 strobes, while DD2 is low, followed by a positive edge of DD2 sets "RFF". Two or more DD1 strobes, while DD2 is high, followed by a negative edge of DD2 resets "Busy".

When- DD2 goes hioh, the first bit on DDØ line is the "Print Flip Flop". The second bit on DDØ line is the "RFF". The 56 bits of data from buffer 1 follows after "RFF". "PFF" is the same as "उUSY". When NPIC is not connected to the

HEWLETT-PACKARD CO.

PERIPHERAL INTERFACE LINES CONT.
peripheral DDØ should stay high indicating "Busy".
When DD2 goes low, 56 bits of data from the peripheral can be transferred into buffer 2.
DD3 can be any peripheral flag. Normally it will be used to indicate peripheral on/off status.
$\overline{P O N}$ is a bidirectional power on for both the Nut-CPU and the peripheral. Normally $\overline{P O N}$ stay high. When the peripheral pull down $\overline{\text { PON }}$, while Nut-CPU is in "Lightsleep" mode, it wakes up the Nut-CPU. This is done internal to the NPIC by detecting "Light-sleep" mode and pulling "ISA" line hiah until "PWO" line goes high.

When "Nut-CPU" sends a "PRTON" peripheral instruction, it pulls down the $\overline{\text { PON }}$ line for exactly one word time. If the peripheral is designed to detect this state, it will be able to execute a wake-up routine.

TIMING REQUIREMENTS

When transferring data from the peripheral to the NPIC, DD2 must be low. Valid data must be held stable on $\operatorname{DD\emptyset }$ for at least two Nut-system clock after the positive transition of DD1.

When transferring data from the NPIC to the peripheral, DD2 must be high. "PFF" will be on DDD, one Nut-system clock after the positive transition of DD2. The rest of the data will be on DDQ, two Nut-system clock after the positive transition of DD1.

				MODEL	Stk No	1LB4-4001
				PERIPHERAL INTERFACE CHIP		
				8r Charles Tan		date March 29, 1978
ITR	pe no	Approved	date	APPO		SHeet no 5 of 7
	revisions			superseots		ows no A-1LB4-4001-2

BLOCK DIAGRAM OF NUT PERIPHERAL INTERFACE CHIP

FIGURE 1

HEWLETT-PACKARD CO.

56 BIT DATA FROM NPIC BUFFER 1 TO THE PERIPHERAL

NOTES:

1. VALID DATA MUST BE ON DD \emptyset BEFORE DDI STROBES.
2. RECOMMENT TO HOLD DATA FOR AT LEAST 2 NUT SYSTEM CLOCK AFTER DD1 STROBES.

TIMING DIAGRAM OF THE NPIC-PERIPHERAL INTERFACE SIGNAL

FIGURE 2

HEWLETT-PACKARD CO.

NOTE: This page provides a running history of changes for a multi-page drawing which cannot conveniently be reissued completely after each change. When making a change, list for each page all before-and-after numbers (within reason; use judgement, and use "extensive" revision note if loss of past history is tolerable, or retype complete page) and associate with each a symbol made up of the change letter and a serial subscript to appear here and on the page involved (there enclosed in a circle, triangle, or other attention-getting outline).

HEWLETT-PACKARD CO.

I MAXIMUM RATINGS

1.1	

1.2 Storage Temperature............................ $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
1.3 Operating Temperature........................... $0^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
1.4 Humidity... 0 to 90%
1.5 Voltage at any input or output pin.............GND -0.3 V to $\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$
1.6 Input transient protection...................... 1000 V

II OPERATING CONDITIONS
$0^{\circ} \mathrm{C} \leq T E M P \leq 45^{\circ} \mathrm{C}$

HEWLETT-PACKARD CO.

HEWLETT-PACKARD CO.

SYM		PARAMETER	MIN	TYP	MAX	UNIT		COMMENTS
	timing parameters for peripheral interface							
$\mathrm{T}_{\text {DV2 }}$		TIME FROM DD2 \uparrow TILL VALID "BUSY" ON DDD	TP+200			ns		SEE FIG. 2 NO DDI \uparrow ALLOWED
$\mathrm{T}_{\mathrm{PWI}}$		DDI PULSE WIDTH	TP+50			ns		SEE FIG. 2
$\mathrm{T}_{\mathrm{DVI}}$		TIME FROM 1st DDIf TILL VALID "REF" ON DDD	TP+400			ns		SEE fig. 2
T_{R}, ${ }^{\text {, }}$		RISE, fALL TIME		100		ns		SEE FIG. 2
$\mathrm{T}_{\text {DV3 }}$		TIME FROM 2nd AND SUCCEEDING DDI + TILL VALID DATA ON DDD	$3 T P+300$			ns		SEE fig. 2
T DV5		TIME FROM DD2 TILL DD@ TRISTATED BY NPIC	TP+200			ns		SEE FIG. 3
$\mathrm{T}_{\text {DV4 }}$		TIME FROM DDIt TILL DATA ON DDD READ			TP+100			SEE FIG. 3 DDØ DATA MUST BE VALID BEFORE THIS time
${ }^{\text {D }}$ ${ }$		dATA HOLD TIME	TP+100					SEE FIG. 3 dATA ON DDø MUST BE HELD VALID FOR THIS TIME
				moot		sik no 1LB4-4001		
				INTERFACE CHIP - ELECTRICAL SPECIFICATION				
				or Dave Shelley			оат 6 -1-79	
12	- ${ }^{\text {no }}$	no ammovo	0ati	Apo			shet no 4 or 8	
		revisions		suressets			ows no A-1LB4-4001-1	

HEWLETT-PACKARD CO.

PARA.	WAFER	PKG	QA	WAFER	PKG	QA
	LOW VOLTAGE (V)		HIGH VOLTAGE (V)			
VCC	5.5	5.5	5.7	7.6	7.5	7.4
VIH	4.25	4.25	4.45	6.0	6.0	6.0
VIL	1.25	1.25	1.25	1.25	1.25	1.25
VOH	4.5	4.5	4.7	6.0	6.0	6.0
VOL	1.0	1.0	1.0	1.0	1.0	1.0
	HIGH FREQUENCY (ns)		LOW FREQUENCY (ns)			
TP	2360	2360	2360	2950	2950	2950
TPW1	500	500	500	750	750	750
TPW2	500	500	500	750	750	750
TCD	900	900	900	1200	1200	1200
TDV	1000 (1)	1000 (1)	1000 (1)	1000 (1)	1000 (1)	1000 (1)
TSU	550	550	550	550 (2)	550 (2)	550 (2)

DC PARAMETRIC

ICCOP	. 8ICCOP	. 9ICCOP	ICCOP
ICCST	.8ICCST	. 9ICCST	ICCST
$\mathrm{I}_{\text {INL }}$. 91 INL	$\mathrm{I}_{\text {INL }}$	- -
${ }^{\text {I }}$ INL	-	- - -	$\mathrm{I}_{\text {INL }}$
$\mathrm{I}_{\text {IOL }}$.81 IOL	. ${ }^{\text {I }}$ IOL	$\mathrm{I}_{\text {IOL }}$

STRESS TEST
COMMENTS

VSTRESS IOV - - . - OPERATE PART AT MAX FREQ WITH VCC= VSTRESS FOR 1 LIALOAD, IGNORE FAILURES.
NOTE:

1. DATA and ISA (\emptyset) on ILA5, and ISA on ILA3 - - TDV at 800 ns .
2. DATA and ISA inputs on IAL4 and ILA7 - - TSU at 800 ns before trailing edge $\emptyset 1$.

HEWLETT-PACKARD CO. hp

SYSTEM CLOCK WAVEFORMS

FIGURE 1

DATA TRANSFER FROM PERIPHERAL TO NPIC

FIGURE 3

				modet	six no 1LB4-4001				
				INTERFACE CHIP - ELECTRICAL SPECIFICATIONS					
				or Charles Tan		date 8-15-78			
IT:	bc. no	Approved	Dat:	Appo		Sheet no 8 or 8			
	eivisions			supresedes		ows no A-1LB4-4001-1			

[^0]: 0320-2780
 (FORMERLY O-700024

